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1.GIRIS

Bir¢ok bilim alaninda yer bulan gergek hayat problemlerindeki ¢ogu fiziksel fenomenin
matematiksel modellemesi, diferansiyel denklemler o6zellikle de Kismi Tiirevli
Denklemler (KTD) ile yapilmaktadir. S6z konusu KTD arasinda en énemli alt gruplardan
biri ikinci mertebe diferansiyel denklemler olup, gesitli fiziksel olaylara karsilik gelen
matematiksel modelleri difiizyon-reaksiyon sistemleri olusturmaktadir. Fiziksel olarak
difiizyon-reaksiyon sistemleri, 6rnegin bir kimyasal reaksiyon siirecinin modellemesinde,
bir veya daha fazla kimyasal maddenin konsantrasyonunun konum ve zamana gore
degisimini modellemektedir. Sistemdeki ikinci mertebe tiirev terimini igeren difiizyon,
maddelerin uzayda ne kadar yayildigin1 géstermekte iken, bilinmeyen fonksiyonlara bagl
reaksiyon terimleri ise maddelerin konsantrasyonlarinin ne olgtide kullanildigini isaret
eder. Genel olarak bir Q X [0, T] uzay-zaman alaninda m bilesenli bir difiizyon-reaksiyon
sistemi

0w = DAW + R(W),

formunda ifade edilebilir. Burada, x € Q ¢ R? (d = 1,2) uzay konumu degiskeni, t €

[0,T] € R zaman degiskeni olmak iizere wW(x,t) = (W1 (x,t),wy(x, t), ..., wy(x, t))T
vektort bilinmeyen fonksiyonlarin vektoriinii, D € R™*™ diflizyon katsayilarini igeren
kosegen matrisi ve R(w) vektorii ise bilinmeyen fonksiyonlara baglh reaksiyon terimini
ifade eden ve genelde dogrusal olmayan reaksiyon terimidir. d, ve A= 6,?1 + -+
02 , operatorleri ise sirastyla t zaman degigkenine ve x; konum degiskenlerine gore birinci
ve ikinci mertebe kismi tiirev operatorleridir. Difiizyon-reaksiyon denklemlerinin
coziimleri hareketli dalgalar ve enerji tiikketen solitonlar gibi daha karmasik yapilar veya
"Turing kaliplari” ad1 verilen kendi kendine organize olan desenlerin olusumu dahil
olmak iizere genis bir davranis yelpazesi sergilerler. Son yillarda, diflizyon-reaksiyon
sistemleri model olusumu igin bir prototip model olarak ¢ok ilgi ¢ekmistir. Diflizyon-
reaksiyon siireglerinin, biyolojide morfogenez ile baglantili siire¢ler ve hatta hayvan
tiyleri ve deri pigmentasyonu ile ilgili kisimlar1 da tartisilmistir. Diflizyon-reaksiyon
denklemlerinin diger uygulamalar1 arasinda ekolojik istilalar, salgin hastaliklarin
yayilmasi, timdr biiyiimesi ve yara iyilesmesi yer alir (Ei vd., 2005).

Hemen hemen tiim difiizyon-reaksiyon sistemleri, fiziksel olarak genelde sistem enerjisi
olarak adlandirilan bir 6l¢ii ile iliskilidir. Bu noktada, sistem enerjisinin davranigsal

Ozellikleri bakimindan difiizyon-reaksiyon denklemleri Hamilton, gradyan ve anti-



gradyan sistemler olmak tizere ii¢ genel sinif altinda kategorize edilebilirler. Hamilton
sistemlerinin Kkarakteristik yapisi, makine hassasiyetine kadar dogru bir sekilde
¢ozildiugiinde, sistemin enerjisinin zaman iginde korunmasi temeline dayanmaktadir.
Gradyan sistemlerde siirekli olarak azalan serbest bir enerji (Lyapunov fonksiyoneli)
bulunup, serbest enerjinin yerel minimize edicileri kararli durumlara karsilik gelir. Enerji
giidiimlii model olusumu, gradyan sistemlerde salinimli ve Turing desenleri seklinde
gerceklesir. Anti-gradyan yapiya sahip difiizyon-reaksiyon sistemleri ise, bir tiir
aktivator-inhibitor sistemi olarak goriilebilir. Bu tip sistemlerde sistem enerjisinin belli
bir karakteristigi yoktur, yani probleme gore bazi zaman araliklarinda enerji
azalabiliyorken baska zaman araliklarinda artis gosterebilir. Bu tez ¢aligmasinda, temel
olarak bahsi gecen iic¢ tip difiizyon-reaksiyon sistemleri ele alinacaktir.

Gercek hayat problemlerinin modellemesinde kullanilan matematiksel (diferansiyel)
denklem sistemlerinin genelde analitik ¢éziimlerinin bulunmasi miimkiin olmamaktadir.
Bu sebeple, s6z konusu denklemler sayisal olarak c¢oziilmektedir. Sayisal ¢oziim
tekniklerinin temelinde denklemdeki bilinmeyen fonksiyonlarin bagimsiz degiskenleri
tizerinde sonlu ayriklastirma yontemlerinin kullanilmasi yolu ile sistemdeki diferansiyel
operatorleri temsil edecek matrisler belirlemek ve bilinmeyen fonksiyonun bagimsiz
degisken yoniinden boyutsuzlastirilmasi, yani bagimsiz degiskenlere olan bagimliliginin
stirekli bir sekilde ortadan kaldirilmasi yatmaktadir. Literatiirde ¢esitli amaglara yonelik
birgok ayriklastirma yontemi gelistirilmis ve kullanilmaktadir. Bunlar arasinda en basit
ve en sik kullanilanlarin basinda sonlu farklar temelli yontemler gelmektedir. Bu tez
caligmasinda, diferansiyel operatorler merkezi fark tiirev formiilleri ile yaklasik
hesaplanarak konum boyutunda ayriklasgtirma gergeklestirilecektir. Diger yandan,
0zellikle Hamilton ve gradyan sistemlerinin yaklasik sayisal ¢ézlimlerinin bulunmasi
acisindan kullanilacak olan sayisal yontemin, mevcut siirekli sistemin sahip oldugu yapiy1
da korumas1 beklenmektedir. Bu nedenle, zaman boyutunda kullanilacak olan
ayriklastirma yontemi 6nem kazanmaktadir. Literatiirde, verilen sistemin belirli yapilarini
koruyan birgok zamanda ayiklastirma yontemleri olmakla birlikte bunlarin birgogu kapali
formiiller ve/veya yakinsama mertebesi diislik olan yontemlerdir. Bu tez ¢alismasinda,
zaman boyutunda ayriklastirma yontemi olarak, ikinci mertebe yakinsakliga sahip ve agik
bir formiil olan Kahan yontemi kullanilacaktir (Kahan ve Li, 1997; Celledoni vd., 2012).
Kahan yonteminin en 6nemli 6zelliklerinin basinda, Hamilton ve gradyan sistemlerin

enerji davranislarini sayisal olarak koruyor olmasi gelmektedir.



Tamamen ayriklastirilmis bir diferansiyel denklem sisteminin ¢oziimlerinin, kesinliginin
arttirtlmasi i¢in ayriklagtirmanin boyutunun sonlu ama biiyiik olmasi gerektigi bilinen bir
gercektir. Bu sekilde olusturulan ayrik sistemlerin sayisal ¢dziimlerinin bulunmasi,
ozellikle iki ve ti¢ boyutlu konumsal uzayda, son derece zaman alici olmaktadir. Bu
nedenle Model indirgeme Yontemleri (MIY), bu tiir problemleri indirgenmis veri ile
¢dzmek icin son derece 6nemli hale gelmistir (Kuwamura, 2007). MIY tekniklerinin ilk
kullanimi Lumley’nin 1967°deki c¢alismalarmma dayanir. Bu c¢alismalarda, tiirbiilans
mekanizmalarinin yogunlugu ve akiskan problemlerinde mevcut olan biiyiik boyutlu
yapilar1 agiklamak i¢in MIY kullanilmistir. Son 20 yilda, bilgisayar bilimi ve
miithendisligine olan ilginin artmasiyla makine mihendisligi, elektrik-elektronik,
norobilimler, tip, ¢evre miihendisligi, biyoloji ve finans dahil temel ve uygulamali
bilimler gibi alanlar basta olmak iizere MIY yiiksek performansli hesaplamada 6nemli bir
rol oynamaktadir (Berkooz vd., 1993). Biyoloji, atmosferik dinamikler ve molekiiler
dinamik simiilasyonlar1 gibi ¢ok olgekli dinamik sistemlerde ortaya ¢ikan modeller igin
MIY, diisiik kaliteli modelde yiiksek kaliteli modelin zelliklerinin dogru istatistiksel
tahminlerini elde etmenin miimkiin oldugu 6l¢eklenebilir bir matematiksel ¢erceve saglar.
MIY, yiiksek kalitede karmasik modelleri basitlestirir. Karmasik bir sistemi optimize edip
incelemek ve ¢6zmek icin gereken siireyi azaltmak amaciyla da kullanilir. Dahasi, yapay
zekadan genetige, hava hareketlerinden borsa hareket degisimlerine, gok mekanigine,
akigkanlar ~ mekaniginden aerodinamige, yiiz tamima  sistemlerinden  tipta
elektromanyetik/lazer MR goriintiileme sistemlerine kadar pek ¢cok yerde uygulama alani
vardir. MIY’nin en temel kullanim alanlarindan biri verilen bir dinamik sistemin
¢dziimiiniin, ¢ok daha kiiciik boyutlu bir alt uzayda temsil edilebilmesidir. MiY, fazla
zaman harcamamak igin ayriklastirma sonrasi elde edilen Tam Mertebeli Modelin
(TMM), daha kiigiik boyutlu bir alt uzayda yaklagik olarak karsiligini bulabilmektedir
(Volkwein, 2010). Bu yontemlerin merkezinde olan Temel Bilesenler Analizi (TBA),
sonlu bir sayida degiskenden olusan bir veri setini, cok daha az sayida ve degiskenlerin
dogrusal bilesenleri olan yeni degiskenlerle ifade etme yontemidir. Diger bir deyisle,
aralarinda korelasyon bulunan sonlu bir sayidaki degiskenlerin agikladigi yapiyi,
aralarinda korelasyon bulunmayan ve sayica orijinal degisken sayisindan ¢ok daha az
sayida dogrusal bilesenleri olan degiskenlerle ifade etme yontemidir (Johnson ve
Wichern, 2007). TBA yontemi ¢ok biiyiik boyutlu veriyi daha kiiciik boyutlu bir veriye
doniistiiriir. Bu dogrusal doniisiimii yaparken kovaryans matrisini kullanir. Kovaryans

matrisinin 6zdeger ve 6zvektorleri bulunarak temel bilesenler hesaplanabilir.
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TBA, birgok farkli disiplinlerce siklikla kullanilmasina ragmen, elde edilen verilerin
boyutlarinin indirgenmesi ve modellenmesi gibi uygulama alanlarinda Cekirdek Temel
Bilesenler Analizinin (CTBA) kullanimi ¢ok yenidir. CTBA, TBA’dan farkli olarak
dogrusal olarak ayristirilamayan ya da bir baska ifadeyle dogrusal bir dagilim
gostermeyen Vverilerin dogrusal bilesenler ile ifade edilmesidir. CTBA ydntemi, bilim,
miithendislik ve tipta yliksek sonuglu uygulamalarda bir¢ok farkli tiirde 6nemli fiziksel
olayr modellemek icin kullanilmaktadir. Dogrusal olmayan modellerin ¢6ziilmesi ¢ok
zaman alir, bu da onlar1 tasarim, parametre arastirmasi, kontrol veya gercek zamanlh karar
verme i¢in zorlu hale getirir. Dogrusal sistemler icin izdiisiim tabanli bir indirgenmis
model kompakt, hesaplanmasi kolay bir temsile sahiptir ve dogrusal bir modelin
izdlisiimi agik bir indirgenmis bicim verir. Fakat dogrusal olmayan bir sistem icin
indirgenmis operatorler orijinal gercek boyutlu modele geri donmeden agikca
hesaplanamaz (Salvador vd., 2021). Cekirdek yonteminin kullanilmasinin temel nedenti,
veriler i¢ ¢arpimsal olarak goriindiigliinden, tiim hesaplamalar yiliksek boyutlu 6zellik
uzaymda agikca temsil edilmeden islemlerin yapilabilmesinden kaynaklanmaktadir.
Bunun nedeni, 6zellik uzayindaki i¢ carpimlarin girdi uzayindaki ¢ekirdek fonksiyonu
cinsinden yazilabilecegini ifade eden ¢ekirdek numarasidir. Son yillarda veri toplama,
depolama ve hesaplama yoOntemlerindeki gelismeler, bu teknikler sayesinde
hesaplamalarin kolaylagsmasi nedeniyle, ¢ekirdek yonteminin popiilerligini artirmistir. Bu
uygulamalar arasinda nesne tanima, metin siniflandirma, zaman serisi tahmini ve DNA
analizi de yer almaktadir. Bircok gergek hayat problemi yalnizca dogrusal iliskiler
acisindan tanimlanamaz ve bu nedenle dogrusal olmayan yontemlere ihtiyag
duyulmaktadir. Literatiirde difiizyon-reaksiyon sistemlerinde, oriintii olusumunun
indirgenmis diizende modellenmesine iligkin olarak, Ginzburg-Landau denklemi ve Fitz-
Hugh Nagumo denklemi icin ¢aligmalar bulunmaktadir. Cekirdek temelli arastirma ilk
olarak Aizerman vd. (1964) tarafindan tanitilmistir. Scholkopf ve Smola (1998), CTBA
i¢in 6zdeger problemi ile daha genel sonuglar elde etmislerdir. Ingiliz matematikgi olan
Karl Pearson, ¢ok degiskenli bir problemde degisken sayisinin nasil azaltilacagina dair
ilk fikirleri ortaya atmistir. Ayrica, Mika (1999) tarafindan goriintii isleme iizerine
uygulanmis ve yeni beklenmeyen veri drneklerini belirlemek igin ise Hoffmann (2007)
tarafindan ¢esitli uygulamalar verilmistir. CTBA yontemi, Zhou (2019) tarafindan
dogrusal olmayan siireglerin kontrolii i¢in ve Bueso (2020) tarafindan ise meydana gelen
olaylarin konumsal-zamansal analizine uygulanmistir. Gonzalez (2020), CTBA

yonteminin ¢esitli uygulamalarini incelemistir. Bu ¢calismada mevcut yontem akiskanlar
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dinamigi alaninda uygulanmistir. Akiskanlar dinamigi siireglerini modelleyen KTD’nin
¢coziimil ile elde edilen uzay-zamansal veri kiimelerinin yeniden yapilandirilmasi igin
TBA ve CTBA arasindaki ¢6ziim hatalar1 ve ¢6ziim siireleri ile ilgili karsilastirmalar
yapilmustir.

Bu tez calismasinin ana temast, girdi uzayini temsil eden bir veri matrisi tizerinden CTBA
yontemi uygulanarak boyutlar1 indirgenmis model elde edilip ¢oziildiikten sonra, elde
edilen yaklasik verinin girdi uzayina geri getirilmesidir. Ancak, yiiksek mertebeli modele
geri doniis zor oldugundan, Cok Boyutlu Olgekleme (CBO) yonteminden
yararlanilmistir. Difiizyon-Reaksiyon KTD’nin ¢6ziimlerinden elde edilen veriler genel
olarak dogrusal olmayan bir dagilim gosterebileceginden, CTBA yonteminin merkezinde
veri setlerinin boyutlarinin indirgenerek modellenmesi yer almaktadir. Bu yontem
verimliligi korurken, daha diisiik bir boyuta sahip anlik ¢6ziim setinin daha dogru bir
yaklagim sunmasini saglar. Bu nedenle, ¢Oziim katsayilarin1 bulmak i¢in bilinen
yontemlerin aksine, CTBA ile daha kolay ve daha az hesaplamaya ihtiya¢ duyulur.
Indirgenmis sirali bir uzayin iiretilmesi i¢in CTBA ve indirgenmis sirali yaklagimin
degerlendirilmesi igin CBO’den yararlamlmustir. Ozellikle, indirgenmis hizli, giivenilir
ve kesin ¢oziimler elde etmek igin modellerin yiiksek kaliteli ¢6ziimiinde klasik TBA
yerine CTBA ve CBO kullanilmustir.

Bu tez calismasi su sekilde planlanmistir: Birinci boliim giris bolimii olup, ikinci
boliimde, temel bilgiler olarak Difiizyon-Reaksiyon KTD tanitilacak ve bu denklemlerin
tam ayrik sisteminin matematiksel modellemesi, yani uzay ve zaman ayriklastirma
yontemleri kisaca islenecektir. Ardindan klasik TBA yontemi hatirlatilacaktir. Ugiincii
bolimde ise ayrik ¢oziim vektorleri ile elde edilen veri setine uygulanan CTBA siireci
aciklanacaktir. Indirgenmis ¢oziimlerin dogrulugu, sistem enerjisi davramglarinin
korunmasi ve hesaplama hizindaki artiglar dordiincii boliimde gesitli difiizyon-reaksiyon

KTD o6rnekleri lizerinden gosterilecektir.



2. GENEL BIiLGILER

Bu boliimde diger boliimlerde kullanilacak olan temel bilgiler ve kavramlar agiklanmistir.
2.1. Difiizyon-Reaksiyon Kismi Tiirevli Denklemler

Diflizyon-Reaksiyon KTD, birgok fiziksel, kimyasal ve biyolojik siire¢lerin matematiksel
modellemesinde kullanilan 6nemli denklemlerin basinda gelmektedir. Bu denklemler
genellikle bir¢ok bagimli degiskenin zaman ve uzay konumlarinda nasil degistigini
aciklamak icin kullanilir. Difiizyon, maddenin rastgele hareketi sonucu bir ortam ig¢inde
yayilmasi siirecini tanimlarken, reaksiyon ise kimyasal veya biyolojik reaksiyonlarin
meydana geldigi siireci ifade eder. Difiizyon-Reaksiyon denklemleri genellikle
bilinmeyen bagimli degiskenlerin kismi tiirevlerini igeren diferansiyel denklemler
seklinde yazilir ve belirli kosullar altinda ¢oziimleri incelenir. Bu denklemler,
matematiksel modelleme, fizik, kimya, biyoloji ve miihendislik gibi bir¢cok alanda
kullanilir. Diflizyon-Reaksiyon KTD, genellikle sayisal yontemlerle ¢oziiliir. Bu
coztimler, belirli kosullar altinda sistemdeki bagimli degiskenlerin nasil davrandigin
anlamak i¢in kullanilir. Ayrica, bu denklemlerin ¢oziimleri, ger¢ek diinya problemlerine
uygulanabilir ve bu sayede pratik uygulamalarda da kullanilir. Bu nedenle, Difiizyon-
Reaksiyon KTD, bilimsel arastirmalarda ve endiistriyel uygulamalarda 6nemli bir rol
oynamaktadir.

Bu boliimde, difiizyon-reaksiyon KTD ii¢ ana baslik altinda tanimlanacaktir. Ornek
olarak bu sistemlere karsilik gelen en O6nemli problemler ve uygulama alanlar
tamitilacaktir. Genel olarak bir 2 € R? (d > 1) alaninda ve bir [0, T] zaman araliginda,

bir difiizyon-reaksiyon KTD sistemi, w;(x,t): 2 X [0,T] > R gergel degerli

fonksiyonlardan  olusan Ww(x,t) = (W1 (x,t),wy(x,t), ..., wy (x, t))T bilinmeyen

fonksiyonlarin vektorii i¢in
S0, W = DAW + f(w), f(wW) = QVzF(w), w e N x[0,T], (2.1.1)

formunda yazilir (Yanagida, 2002). (2.1.1) denklemi beraberinde baslangi¢ ve sinir
kosullar1 ile verilir. Burada, f(w): R™ — R™ dogrusal olmayan reaksiyon terimi,
F(W): R™ - R gergel degerli potansiyel fonksiyon, D € R™™ difiizyon katsayilarini
iceren kosegen matrisi, S € R™*™ negatif olmayan kosegen bir matris, Q € R™™

dejenere olmayan ve Q2 =1 bagintisini saglayan simetrik bir matris olmak iizere,



DTQ = QD kosulu saglanir ve buradan QD matrisinin dejenere olmamas: gerceklesir.
Ayrica dogrusal olmayan f (W) reaksiyon vektorii i¢in f; € R™*™ Jakobiyen matrisi,
fwWTQ = Qfw(W) kosulunu saglar. Sistem (2.1.1)¢ karsihk gelen enerji

fonksiyoneli,

E[W] = [, {5 (DVW, QV)gn — F(W)} dx, (2.1.2)
olmak iizere enerji fonksiyonelinin tiirevi (-,")gm standart m boyutlu Oklit i¢ carpimi igin
LE[w(x, )] = — [ (W, QSWe)m d, (2.1.3)

olarak hesaplanir. (2.1.3) denkleminin saglandigi kismi integrasyon ile Q% =1,
DTQ =QD ve fy(W)TQ =Qf»(W) bagmtilarn kullanilarak asagidaki adimlarla

goriilebilir:

d . dd, _,
EE[W(X, t)] = EL{E(DVW,QVW)Rm — F(W)} dx,

1 — — 1 - - N\
_ j {E (DY, QV)gn +3 (DY, QU Jgm — (vWF(w),ngm} dx,
0

1 1
= j {— E (DWt; QAW)]Rm - E <DAWI th>Rm - ng (vWF(W)' Wt)Rm} dx'
0 I

(1 . R 1 _ — —
= ] — 5 (DWy, QAw)gm — {5 DAW + f(W), QWt)Rm} dx,
!2 \

1 1
— f _§<DW“ QAW)gm — (E DAW + Sw, — DAw, th>Rm} dx,
0

c 1 1
= ] — E (DVV}, QAW)Rm - (_ EDAW + Swt' th)Rm} d'x'
!2 \

1 — — 1 — —> —_ -
= .’;2 - E(DW@ QAW)Rm + E (QDAWi Wt)Rm - <QSth Wt)Rm} dx’
U S - - -
=] =5 (W) DTQ AW + 5 (W,)" QDAW — (QSW,, W,)gm  dx,
QD

= _j (QSW¢, Wi )gmdx.
0

S, Q ve D matrislerinin durumuna gore (2.1.1) sisteminden Hamilton, gradyan ve anti-

gradyan olmak iizere ii¢ farkli temel denklem sinifi elde edilebilir (Diez vd., 2021).



2.1.1. Hamilton sistemler

Hamilton KTD fizik, mithendislik ve matematik alanlarinda yaygin olarak kullanilan
onemli sistemlerdir. Ozellikle klasik ve kuantum mekanigi, optik, kontrol teorisi gibi
alanlarda 6nemli bir rol oynar. Hamilton sistemler, (2.1.2) ile verilen sistem enerjisinin
korundugu yani zaman iginde degismedigi, baska bir deyisle (2.1.3) ile verilen enerji
fonksiyoneli tiirevinin sifir oldugu duruma karsilik gelen sistemlerdir. Bu sistemlerde,
dogru bir sayisal ¢6ziim elde etmek i¢in sistem enerjisinin sayisal olarak da korunmasi
esastir (Afkham ve Hesthaven, 2019). En bilinen ve arastirilan Hamilton sistemlerin
arasinda Korteweg-De Vries (KdV) denklemi ve dogrusal olmayan Schrédinger (NLS)
denklemi ornek olarak verilebilir. KdV denklemi, dogrusal olmayan hiperbolik bir
denklem olup si1g su dalgalari, okyanustaki dalgalar, bir plazmadaki akustik dalgalar ve
daha fazlasi dahil olmak iizere tek boyutlu dalgalarin yayilmasimi aciklamak icin
kullanilan bir diferansiyel denklemdir. Genel olarak KdV denklemi

0:U = —QUOU — UOypx UL, [a,b] x [0,T], (2.1.1.1)

seklinde olup, bir u(x, 0) = u°(x) baslangi¢ kosulu ve u(a,t) = u(b,t) periyodik smir
kosullari altinda @, u € R sistem parametreleri i¢in yazilabilir. (2.1.1.1) ile verilen KdV

denklemi

a
0,u = 0, (—Eu2 — /,taxxu), [a,b] X [0,T],

formunda da yazilabileceginden,

S=o, D=—p, Q=-1,

icin KdV denklemi, m = 1 bilesenli (2.1.1) ile verilen formda bir denklemdir. ilgili
potansiyel fonksiyon F(u) = au3/6 olup, KdV denklemine ait olan ve (2.1.2) ile verilen

enerji fonksiyonu
1 a U a
_ i _ _ 3 — - 2 _ .3
E[u]—]n{z( Py, (— DUy g U }dx—Jﬂ(zux —u )dx,

olarak bulunur. Bu bagintilar i¢in (2.1.3) ile verilen enerji fonksiyonunun tiirevi

d 1
—E[u(x,t)] = —f(ut, QSu)gm dx = f u;—u; dx =0,
dt 0 Rt
oldugundan sistem enerjisi korunur. Son denklemde sonucun sifir olarak
gerceklesmesinin sebebi, sayisal olarak bu tez ¢alismasinda kullanilacak olan birinci

mertebe kismi tiirev operatériiniin anti-simetrik bir matrisle, (2.2.1.1.1) ile verilen D,



matrisiyle ifade edilmesidir. Yani, anti-simetrik bir matrisin tersinin de anti-simetrik

1. ..
olmasindan dolayr u; oo Ut ifadesinin sifir olmasidir.
X

Enerji fonksiyonunun yaninda, KdV denkleminin ¢oziimleri baska 6nemli Olciileri de
korumaktadir. Bunlarin basinda I; (u) momentum fonksiyonu ve I, (u) kiitle fonksiyonu

gelmekte olup
Lu] = f udx, L[u] = fuzdx,
Q 0

formiilleri ile tanimlanmaktadir.

NLS denklemi, fiber optikte, diizlemsel dalgalarda 1s18in iletiminde ve Bose-Einstein
yogusma teorisinde yavas degisen dalga gruplarmin hareketlerini tanimlayan model
denklem olarak verilir (Karasézen v.d., 2014). Bir, ¥ (x, t) kompleks degerli bilinmeyen
fonksiyon igin, NLS denklemi

i, = —pdy — BlYI*Y, (21.1.2)
formunda olup bir Y (x, 0) = ¥, (x) baslangi¢ kosulu ve Y (x,t) = Y (x + L, t) periyodik
siir kosulu ile birlikte verilir. Burada x € R konum noktasi, ¢ > 0 difiizyon parametresi
geri ¢ekici bir 6zellige sahip kilan bir sistem parametresidir. 1 (x, t) kompleks degerli bir
fonksiyon oldugundan (x,t) = p(x,t) +iq(x,t) seklinde reel degerli p(x,t)ve
q(x,t) fonksiyonlar1 cinsinden yazilabilir. Bu durumda (2.1.1.2) ile verilen denklem
sistemi,

pe = —ubq — B(p* +q*) q (2.1.1.3)
qc = pbp + B(p* + q*)p

olarak yazilabilir. Bu formuyla NLS denklemi, W = (p, q)T vektorii (m = 2),

B
Fo,q) =7 (* +4%)?
potansiyel fonksiyonu ve

s=( D o= ¢)e=0 )

matrisleri igin (2.1.1) ile verilen formda bir sistemdir. Sistemin (2.1.2) ile verilen enerji

fonksiyonu

E[p,q]=f

)

EC DEC Do

{% (DVW, QVW)gz — F (W)} dx,



1 (—uvq —Vq B 2 2 2}
=1 1= ) - d
,L{2<(ﬂvp) (Vp)>IR2 3 (P7Ta)Tjdx
— E 2 E Z_E 2 2 2>
—:L(ZWPI+2IWH 7 P° a7 )dx
olarak hesaplanir. Sistemin (2.1.3) ile verilen enerji fonksiyonunun tiirevi
hesaplandiginda

)0 D DEPea

at E[w(x,t)] = f(wt, QSW,)ge dx = _f

- [ ) (P

_f (—peq: + Deqe)dx,
0

=0,

oldugundan sistem enerjisi korunur (Karasézen ve Uzunca, 2018). KdV denklemi gibi
NLS denkleminin ¢6ziimleri de enerji fonksiyonunun yaninda bagka 6nemli 6lgiileri de
korumaktadir. Bunlarin basinda yine I; (p, q) momentum fonksiyonu ve I,(p, q) kiitle

fonksiyonu gelmekte olup

Lp f@% qap.)dx, I[p,q] f@*ﬂﬁw

formiilleri ile tanimlanmaktadir.
2.1.2. Gradyan sistemler

Gradyan sistemlerde, siirtinme gibi enerjiyi azaltan kuvvetler sistemin enerjisini
degistirebilir. Bu tiir sistemlerde enerji artik korunmadigindan, mevcut yontemler artik
dogrudan uygulanamayabilir. Enerjinin azaldigi modeller, (2.1.3) ile verilen enerji
fonksiyonunun tiirevinin negatif oldugu siniftir. Bu denklemlere 6rnek olarak, Allen-
Cahn (AC) ve Swift-Hohenberg (SH) denklemleri verilebilir.

AC denklemi, faz gecisi problemlerinde yaygin olarak kullanilan bir diferansiyel denklem
modelidir. Bu denklem, faz doniisimii ve ayrisma, kristal biiyiimesi, kimyasal
reaksiyonlar, goriintii isleme gibi pek ¢ok uygulama alaninda kullanilir. Ornegin,

malzeme biliminde AC denklemi; polimer, metal ve seramik malzemelerin faz
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doniistimlerini modellemek igin kullanilir. Bir € > 0 difiizyon parametresi i¢in AC

denklemi

oeu = eAu + u — ud, (2.1.2.1)

olarak verilir. (2.1.2.1) denklemi beraberinde bir baslangic kosulu ve periyodik sinir
kosulu ile verilir. Bazi modellerde, homojen Neumann sinir kosulu ile birlikte de
verilebilmektedir, yani smir noktalarindaki disa doniik yonsel tiirevinin sifir olmasi
kosulu. AC denklemi, S =1, D = ¢ ve Q = 1i¢in (2.1.1) ile verilen formda tek bilesenli
bir sistemdir. Sistemin potansiyel fonksiyonu F(u) = —(u? — 1)%/4 olup, (2.1.2) ile

verilen enerji fonksiyonu

Elu] = j <%(DVu,QVu)R — F(u)) dx,
0

= f (% (eVu, Vu)g + % (u? — 1)2> dx,
0

€ 1
= ]9(5 |Vul|? + Z(u2 — 1)2) dx,
olarak hesaplanir. Bu durumda (2.1.3) ile verilen enerji fonksiyonunun tiirevi
d
PG 0] = = [ (e @5udn dx = = [ (e,
0 )

=—[,(u)?dx <0,
oldugundan sistem enerjisi azalir (Mori ve Kuramoto, 1998).

Swift-Hohenberg denklemi oriintii goriintii olusturma davranisiyla dikkat ¢eken bir kismi
diferansiyel denklemdir. Basit sivilarda ve ¢esitli karmasik sivilarda ve sinir dokular: gibi
biyolojik materyallerde kaliplart modellemek igin de kullanmilmistir (Kuwamura ve
Yanagida, 2020). SH denklemi

oeu = pu — (1 + A)?u — ud,
formunda bir baslangi¢ kosulu ve periyodik/homojen Neumann simnir kosulu ile verilir.

Orjininde 4. mertebe bir diferansiyel denklem olan SH denklemi, v = u + Au doniisimi

altinda
ou=—-Av+puu—ud—v
O=Au+u-v (2.1.2.2)
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denklem sistemi olarak 2. mertebe bir diferansiyel denklem sistemi olarak yazilabilir. Bu

sistem, w = (u, v)T vektorii (m = 2),

1
F(u,v) = %uz —Zu“ —uv +§v2,

potansiyel fonksiyonu ve

_(1 0 _ (0 -1 _(1 0
s=( o) 2=(1 o) e=(p -1
matrisleri i¢in (2.1.1) ile verilen formda bir sistemdir. Sistemin (2.1.2) ile verilen enerji

fonksiyonu

Fluv] = L {%(DVWIQVVT})Rz —F(w’)}dx,

26 GG L) Goe =5 vt e goifa

= L{%((_vv), (_V;V))Rz — guz + %u“‘ +uv — %vz}dx,

1 1
= f (—Vu-Vv—Euz +—u* +uv——v2> dx,
; 24 Ty 2

olarak hesaplanir. Bu durumda (2.1.3) ile verilen enerji fonksiyonunun tiirevi
d | _ _ _, _ Uy (1 0\ /1 0\ (%
0l = = [ @ooswede== | (3.5 2@ o) (hwedx
_ Uy (1 0\ (Ut _ U\ (Ut
- fﬂ<(vt) ’ (o o) (vt))Rz dx = L<<vt) ’ ( 0 )>R2 dx,
= —f(ut)2 dx <0,
0
oldugundan sistem enerjisi azalir (Mori ve Kuramoto, 1998).

2.1.3. Anti-Gradyan sistemler

Anti-gradyan sistemler, sistem enerjisinin baz1 zaman dilimlerinde azalip baz1 zaman
dilimlerinde arttigi durumlara sahip sistemlerdir. Bu tip denklemlere 6rnek olarak
FitzHugh-Nagumo (FHN) denklemi verilebilecek 6rneklerin basinda gelmektedir. FHN
denklem sistemi inhibitoér degiskeninin yavas ve aktivator degiskeninin hizli oldugu

inhibitor-aktivator sistemleridir. Baslangigta noronlarin aksiyon potansiyeli aktivitesini
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tanimlamak i¢in kullanilmasiyla birlikte, FHN denklemi, uyarma ve difiizyonun
birlesmesi, spiral dalga dinamiginde ortaya ¢ikabilecek uyarilabilir ortamlarda dalgalarin
yayilmasini ele almay1 uygun hale getirir. Dolayisiyla bu denklem sistemi benzer fiziksel
ozelliklere sahip diger modeller i¢in bir baslangi¢ saglamustir. Ilave olarak FHN denklem
sistemi, su temini ve sulama igeren gii¢ iretim sistemlerinde veya hastalik ve
mikroorganizmalarin yayilmasini igeren dogum-6liim reaksiyonu modellerinde, merkezi
sinir sistemleri ile akilli sistemler arasinda sinyal iletimini kullanan robotik protez

modelleri de dahil olmak tizere kullanilabilir (Chen ve Choi, 2014). FHN denklemi,
iUy = djAu+ f1 () + f,(v)
Tve = dyAv + g, (W) + g, (v) (2.1.3.1)
formunda verilir. Bu sistem,

_(t1 O _(dy 0) (1 o0
S_<O T2>’ D_<0 dy)’ Q_(O —1)’

matrisleri i¢in (2.1.1) ile verilen formda bir sistemdir. Sistemin

ut 1+ p)ud pu? v?
—+( 2 —'8 —uv+y——sv,

Fluv]=-7 3 2 2

potansiyel fonksiyonu icin (2.1.2) ile verilen enerji fonksiyoneli

Emﬂ=]gwwww%rm@ﬁm

o)
=[G D)E-6 DG —renfe
- R Cape= )i

d d
=f % oul? — Z1wvf? - F(w ) d,
W2 2

olarak bulunur. Bu durumda, (2.1.3) ile verilen bagintiya karsilik gelen enerji
fonksiyonelinin tiirevinin isareti degiskenlik gosterip, enerjinin bazi yerlerde azalip bazi

yerlerde arttig1 goriilebilir (Yanagida, 2002).
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2.2. Ayriklastirilmis Model

Bu boéliimde bir ve iki boyutlu model problemlerinin periyodik/homojen Neumann sinir
kosulu altinda uzay-zaman ayriklastirilmasi ifade edilecektir. Notasyon kolaylig1 i¢in,
tam ayrik sistem formiilasyonu, u(x, 0) = u®(x) baslangic kosulu i¢in bir @ ¢ R? (d =
1,2) alaninda

du = Au+ f(w), 2.2.1)

yari-dogrusal model problemi igin verilecektir. Ayriklastirma yontemi olarak konumsal
uzayda sonlu farklar kullanilip, zaman boyutunda Kahan (Celledoni vd., 2012) yontemi

verilecektir.
2.2.1. Uzayda ayriklastirma

Bu tez calismasinda, verilen denklemlerin ayrik ¢oziimleri elde edilirken konumsal
uzayda sonlu farklar kullanilacaktir. Sonlu farklar yontemlerinin temelinde, denklemin
gecerli oldugu konumsal uzaydaki sonlu sayidaki ayrik noktalarda (ag noktalari)
bilinmeyen fonksiyonun yaklasik degerlerinin bulunmasi yatmaktadir. Bagiml
degiskenlerin degerlerinin bilinmedigi ag noktasi sayisi, olusacak olan yar1 ayrik
(dinamik) sistemin boyutunu, N diyelim, vermektedir. Belirli bir t zamanindaki yar1 ayrik
bilinmeyen vektorii, u(t) : [0,T] — RY, agdaki séz konusu N noktadaki yaklasik
degerlerden olusmaktadir. Konumsal kismi tiirev terimleri igin ise ilgili sonlu farklar
formiilleri gozetilerek dinamik sistemde yer alacak sistem matrisleri kullanilir. Bu
tanimlar sonucu (2.2.1) ile verilen modeline ait N boyutlu yari ayrik sistem,
u(t) : [0,T] — RY zamanda siirekli yar1 ayrik ¢6ziim vektorii ve A Laplace operatdriinii

temsil edecek A dogrusal sistem matrisi i¢in
u = Au+ f(uw), (2.2.1.2)

denklem sistemi ile verilir. Burada, u terimi u vektoriiniin t zaman degiskenine gore adi
tiirevini ifade ederken f(u) : RN — RN vektorii (2.2.1) denkleminde verilen dogrusal
olmayan f(u) fonksiyonunu temsil etmekte olup girdileri f; = f(u;) olarak tanimlanur,
i =1,..,N. Sonug olarak, (2.2.1.1) ile verilen model dinamik sisteminin olusturulmasi
i¢cin, konumsal uzaym boyutuna bagl olarak, konumsal agdaki N ayrik noktanin ve
Laplace operatoriinii temsil edecek A dogrusal sistem matrisinin belirlenmesi

gerekmektedir. Bunun i¢in, dnncelikle d = 1 boyutlu uzayda formiilasyon verilecek olup,
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bulunan formiiller Kronecker ¢arpim yardimiyla d =2 boyutlu uzaydaki

formiilasyonlara genisletilecektir.
2.2.1.1. Bir boyutlu uzayda ayriklastirma

Konumsal uzayda bir boyutlu (d = 1) kismi tiirevli denklemin yar1 ayrik formunun elde

edilmesine, alinan Q = [a, b] araliginin N esit pargaya bolinmesiyle baglanir:
a=x<x;<-<xy41=b, Ax=(b—a)/(N).

Burada, araliklarin uzunlugu olan Ax degeri ile x; ayrik konum noktalar1 birlikte ayrik
boliintiiyii (ag) olusturur ve Ax degeri boliintiiniin  Olgiisii olarak adlandirilir.
Olusturulmus olan boliintii iizerindeki her ag noktasinda ayrik ¢oziimlerden olusan N

boyutlu ¢oziim vektori

wi=u(t) = (w (), u(0), ., uy (), w() =ulx,t), i=1,..,N,

seklinde tanimlanir. Dikkat edilirse, periyodik sinir kosulundan dolayi, u(x;,t) =
u(xy4 t), ayrik ¢oziim vektoriinde bilinen uy 1 (t) = u,(t) degerine yer verilmemistir.
Homojen Neumann sinir kosulu s6z konusu oldugunda, uy,,(t) bileseni de ¢dziim
vektoriinde yer alir ve sistem boyutu N := N+ 1 olur. Yart ayrik formun elde
edilmesinde siradaki islem, problemdeki diferansiyel operatorlere yaklasik olarak karsilik
gelecek matrislerin belirlenmesidir. Birinci mertebe tiirev operatorii, her ne kadar (2.2.1)
ile verilen model denkleminde yer almasa da,

axulxi ~ E(ui+1 —Ui_1), i=1,..,N,

merkezi sonlu boliinmiis fark formiilii kullanilacaktir. Periyodik sinir kosullari altinda,

yukaridaki formiil

) 1
i=1 = m(uz—ul\,)

. 1
i=2,.,N—-1 = m(ui+1—ui_1)

] 1
i=N = m(u1 —Uy_1)

bagintilarin1 saglar. S6z konusu bagintilar sonucu olusan birinci mertebe tlirev igin

D, sonlu farklar matrisi
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L1

-1

0
-1

1
0
-1

e RVXN, (2.2.1.1.1)

1
0

formunda yazilir. Homojen Neumann sinir kosulu altinda, yukaridaki matrisin boyutu
N = N + 1 olup, —1 olan ilk satirin son girdisi ile 1 olan son satirin ilk girdisi 0 degerini

alirlar. ikinci mertebe tiirev (Laplace) operatdrii igin ise

axxulxi ~ E(ui—l - Zu’i + u’i+1)l [ = 11 ---;Ny

merkezi sonlu boliinmis fark formiilii kullanilacaktir. Periyodik sinir kosullar1 altinda,

yukaridaki formdil

i=1 = A—xz(uN—Zu1+u2)
i=2,.,N—-1 > A—xz(ui_l —2u; + Ujyq)
i=N = A—xz(uN_l — 2uy +uy)

bagintilarint saglar. S6z konusu bagmtilar sonucu olusan ikinci mertebe tiirev igin

D, sonlu farklar matrisi

—2 1 17
1 =2 1 e e :
1 -2 1
1 -
27 Ax? .
1 =2 1
: 1 -2 1
[ 1 .. 1 =2l

formunda yazilir. Homojen Neumann simir kosulu altinda, yukaridaki matrisin boyutu
N = N + 1 olup, 1 olan ilk satirin son girdisi ve son satirin ilk girdisi 0 degerini alirlar.
Tanimu verilmis D; € RV*N ve D, € RN*N matrisleri kullanilarak, bir KTD’de yer alan
birinci ve ikinci mertebe tlirev terimlerinin agdaki x; ayrik noktalarindaki degerleri

yaklasik olarak sirasiyla
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Dju € RV*N ' D,u € RV*N,
terimleri ile ifade edilirler. Bu tanimlar sonucu, konumsal uzayda bir boyutlu (2.2.1.1)
model dinamik sistemindeki dogrusal sistem matrisi A = D, olarak alinir.

2.2.1.2. iki boyutlu uzayda ayriklastirma

Konumsal uzayda iki boyutlu (d = 2) kismi tiirevli denklemin yar1 ayrik formu igin,
2 = [a, b] X [c,d] alanm x ve y eksenleri yoniinde sirasiyla N, ve N,, sayida esit pargaya

boliinerek iki boyutlu

a=x3 <xp < <Xy.41=b, Ax = (b —a)/(Ny),

cC=Y1<Y2 <"'<yNy+1 =d, Ay= (d_c)/(Ny)'

ag1 olusturulur. Yari ayrik u(t) : [0, T] — RV ¢oziim vektorii (N = Ny N,,), u; ;(t) =

ulx;,yit),i=1,..,N,, j =1, wrs Ny, igin

wim () = (w11 (0, 10y (0,121 (0 o Uy (O

olarak tanimlanirsa, iki boyutlu uzaydaki birinci ve ikinci mertebe tiirev terimlerine

karsilik gelen Dy, Dy, Dy, Dy, € RVN merkezi sonlu farklar matrisleri
Dy=Dy ® Iy, Dyy = D, ®1,, D, = I, Q® Dy, Dy, = I, ® Dy,

formiilleri ile hesaplanabilirler (Uzunca vd., 2021). Burada I, ve I, matrisleri sirasiyla
N, ve N,, boyutlu birim matrisler, @ Kronecker ¢arpimi olup D; ve D, matrisleri Boliim
2.2.1.1°de tanimlanmustir. Verilen tanimlar sonucu, konumsal uzayda iki boyutlu
(2.2.1.1) ile verilen model dinamik sistemindeki dogrusal sistem matrisi A = Dy, + D,
olarak alinir. Kronecker ¢arpim sinir kosullarin1 korudugundani, homojen Neumann sinir
kosulu altinda, bir boyutlu uzayda tanimlanmais olan ilgili matrislerin kullanilmas: yeterli

olmaktadir.
2.2.2. Zamanda ayriklastirma

Yari ayrik formdaki (2.2.1.1) ile verilen model denklem sisteminin tam ayrik formu igin,

oncelikli olarak [0, T] aralig1 K esit par¢aya boliinerek

0=t0<t1<<tK=T, AtzT/K,
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zaman ag1 olusturulur. Sonrasinda, t = t;, anindaki yaklasik ¢oziim vektorii u® ~ u(t;,)
formunda tanimlansin. Tam ayrik ¢éziimlerin elde edilebilmesi i¢in, zamana gore tlirev
terimi igeren yar1 ayrik sistemin bir sayisal yontem ile integre edilmesi gereklidir. Bu tez
calismasinda, verilen problemlerin zamanda ayriklastirilmasi icin Kahan yontemi
kullanilmistir (Kahan ve Li, 1997). Kahan yontemi ikinci mertebe yakinsakliga sahip bir
yontem olup en onemli oOzelliklerinin basinda dogrusal-kapali bir yontem olmasi
gelmektedir, baska bir deyisle ayriklastirma sonucu elde edilen sistem bilinmeyen
seviyedeki ¢oziim vektorii i¢in dogrusal olup dogrusal olmayan sistemlerin ¢éziimiinde
kullanilan Newton tipi iteratif yontemlere gerek olmamaktadir (Celledoni vd., 2012).
(2.2.1) ile verilen model probleminin, (2.2.1.1) ile verilen yar1 ayrik haline Kahan

yontemi uygulandiginda

(IN - %R'(uk)) Wk — k) = AtR(WX),  k=01,..K—1,

tam ayrik sistem formiilasyonu elde edilir. Burada, R(u) = Au + f(u) vektorii yar1 ayrik
sistemin sag tarafini temsil ederken, R’ (u) € RN matrisi

oR;

_J
(’)u]

(R'(u))u = l,] = 1, ...,N,

girdilerine sahip olup R(u) vektoriiniin jakobiyen matrisini ifade eder. Dikkat edilecek
olunursa, olusan tam ayrik sistem ile u**1 bilinmeyen vektérii tek bir dogrusal denklem

sisteminin ¢oziimiiyle hesaplanabilmektedir.
2.3. Temel Bilesenler Analizi

Temel Bilesenler Analizi (TBA) olarak bilinen yontemin ilk tanimlari, Karl Pearson
(1901) tarafindan yapildig: literatiirde genel olarak kabul edilmektedir. TBA’nin amaci
dogrusal bagimli ¢ok sayida veriden, birbirinden bagimsiz daha az sayida veri elde
etmektir. Buradaki en 6nemli nokta, veri boyutunun diisiiriilebilmesi i¢in dogrusal olarak
bagimli verilerin ayiklanmaya calisilmasidir. Bu sayede boyut azalirken, verilerin
sistemdeki tanimlayici olma niteligi de korunur. Dolayisiyla, TBA yontemi, veri
sikistirma yontemi olarak da kullanilabilir. TBA, sonlu bir sayida degiskenden olusan bir
veri setini, ¢cok daha az sayida ve bu degiskenlerin dogrusal bilesenleri olan yeni
degiskenlerle ifade etme yontemidir. Yani, aralarinda korelasyon bulunan sonlu bir

sayidaki degiskenlerin agikladigi yapiyi, aralarinda korelasyon bulunmayan ve orijinal
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degisken sayisindan ¢ok daha az sayida yani daha kiiciik boyutlu dogrusal bilesenleri olan
degiskenlerle ifade etme yontemine TBA denir (Johnson ve Wichern, 2007).

TBA, veri setiyle ifade edilmis olan bilgiyi daha farkli formda ifade etmek amaciyla
uygulanan bir yontemdir. Veri setindeki tiim degiskenler bir teknik igerisinde, ayni
dogrultuda hizmet ederler. i¢lerinden herhangi bir tanesi digerini aciklamak i¢in secilmez.
TBA, veri setini yeniden ifade etmeye yarayan bir teknik olarak bilindigi kadar, boyut

indirgeme yontemi olarak da bilinir (Jackson, 2004).

TBA, veri setinin ger¢ek boyutunu belirlemek i¢inde kullanilir ve orijinal degiskenler en
az bilgi kaybederek daha az sayidaki degiskenlerle yer degistirir. Bu olusan yeni
degiskenler farkli ¢ok degiskenli analizlerde de kullanilir. Genel olarak TBA’nde veri
setini Ozetlemek icin, miimkiin olabilecek en az bilgi kaybiyla dogrusal bilesen
olusturulmaya ¢alisilir (Johnson ve Wichern, 2007). TBA, veri indirgemek, sekil sikistirip
ozellik ¢ikarmak i¢in esash ve 6nemli bir tekniktir. Bir veri setinin varyans-kovaryans
yapisini, bu degiskenlerin dogrusal birlesimleri yardimiyla agiklayarak, boyut
indirgenmesini ve yorumlanmasini saglayan ¢ok degiskenli bir istatistiksel yontemdir
(Yaycili, 2006).

TBA yontemi ¢ok biiyiik boyutlu veriyi daha kii¢iik boyutlu bir veriye dondstiiriir. Bu
dogrusal yolu kurarken kovaryans matrisi kullanilir. Kovaryans matrisinin 6zdeger ve

ozvektorleri bulunarak temel bilesenler hesaplanir.

Bu boliimde ele alacagimiz veri seti

Y=[y'! .. y*] € R™" yieR™" (n > m), i=12,..,n (2.3.1)
seklinde verilsin. Veri setimizin dagilim ve yapisini incelemek i¢in kullandigimiz varyans
ve kovaryans tanimlar su sekildedir.

2.3.1. Tammm: Y veri setinin varyansi, veri igerisindeki yayilimin olgiistidiir. Genellikle

degisimi 6lgmek i¢in kullanilir. Standart sapmanin da karesi olan varyans
1
e

UCLT'(Y) = _1 7i1=1(yi - 37)2’

ifadesiyle verilir. Yukaridaki esitlikte n: veri sayisini, y':y degiskenine ait i. gozlem

degerivey = % .yt ise n adet verinin ortalamasini ifade etmektedir (Jackson, 1991).

2.3.2. Tammm: Kovaryans, iki degiskenin birlikte ne kadar degistiklerinin Sl¢isiidiir.

Varyans bir boyutlu veriler i¢in kullanilmaktayken, kovaryans ise iki rastgele degiskenin
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beraber degisimlerini inceleyen bir istatistiktir. Ancak cogu durumda veri setleri birden

fazla boyuta sahiptir. Kovaryans iki boyut arasinda oOlg¢iim yapabilmek igin

kullanilmaktadir.
X=[x1 . x"|€R™" ve Y=[yl .. y*]€R™™" gibi iki veri setinin
kovaryansi

Cov (X,Y) = - 3L, (x' =) (¥' - 3)",

ifadesiyle hesaplanir. Yukaridaki esitlikte n: veri sayisini, x%,y* : ilgili i. verileri ve

x,y . ilgili n adet verinin ortalamalarini ifade etmektedir (Jackson, 1991).

2.3.2. Tammm: Kovaryans matrisi, her bir degiskenin diger degiskenlerle olan iliskisini
gosteren kovaryans degerlerini igerir. Degiskenler arasindaki iliskinin yoniinii ve giiclinii
belirlemeye yardimei olur. Kovaryans matrisinin izi olan kdsegen elemanlarin toplami
varyansa esit olup “Toplam Varyans” olarak anmilir. Ornek olarak, x,y ve z
degiskenlerine ait kovaryans matrisi

Cov(x,x) Cov(x,y) Cov(x,z)

C3*3 = |Cov(y,x) Cov(y,y) Cov(y,z)],
Cov(z,x) Cov(z,y) Cov(z2z)

seklinde verilir (Jackson, 1991).
2.3.1. Temel bilesenler analizinin 6zellikleri

Geometrik olarak, birbirinden bagimsiz degiskenler iireten TBA’nin 6nemli olan

Ozelliklerinden bazilar1 sunlardir:

» Birimlerin her bir eksene gore koordinatlar1 yeni degiskenlerin birim degerlerini
vermektedir. Yeni eksenlere veya degiskenlere temel bilesenler ad1 verilmektedir.

» Yeni olusan her bir degisken, orijinal degiskenlerin dogrusal bir birlesimidir.

» Birinci temel bilesen ftiretilirken, verilerdeki maksimum varyansi agiklayacak sekilde
olusmaktadir.

> Ikinci temel bilesen ise geriye kalan toplam varyansa en fazla katkiyr saglar. Yani
birinci temel bilesen en ¢ok, diger bilesenler ise gittikce azalan bir sekilde toplam
varyansa maksimum katkida bulunurlar. Dolayisiyla, ¢cok az sayida bilesenle toplam

varyans biiylik ol¢iide agiklanabilmektedir.
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» Maksimum olarak olusturulabilecek temel bilesen sayisi orijinal degisken yani toplam
degisken sayisindan fazla degildir.

» Yeni bilesenler birbirinden dogrusal bagimsiz olacak sekilde olusturulmaktadir
(Albayrak, 2006).

TBA’da, yeni temel bilesenler kendileri bir sonu¢ almaktan daha ziyade sonug almay1
saglayan ozellige sahiptirler. Ciinkii temel bilesenler daha genis incelemeler ve
aciklamalar i¢in bir ge¢is adimi 6zelligi tasir. Temel bilesenler analizinin kullaniminin
faydalarindan bir tanesi de temel bilesenlerin aralarinda korelasyon bulunmamasidir. Bu
bir avantajdir ve temel bilesenlerin birbirine dik olusundan kaynaklanir. Bu avantaj iki
sekilde gerceklesir. Ilki, nesneler arasinda temel bilesenler analizi degerlerinin alinmasi
sonucu yapilacak karsilagtirmalarda farkli bilesenler birbirleriyle iliskisiz olacaktir ve
sonraki analizlerde temel bilesen degerleri uygun bir sekilde kullanilabilecektir. Temel
bilesenler analizinin kullanim faydalarindan ikincisi, temel bilesenler analizi sonucunda
elde edilen dogrusal bilesenler, orijinal degiskenlerin diger dogrusal bilesenlerden farkli
olarak, miimkiin olabilecek en az sayida degiskenler arasindaki degisim ylizdesini,

maksimum yapacak sekilde olusturulmasidir (Ozdamar, 2004).
2.3.2. Temel bilesenler analizine geometrik yaklasim

Geometrik olarak temel Dbilesenler analizi, degisken eksenlerinin varyans
maksimizasyonu Olciiti géz Oniine alarak, bir doniistirme matrisi yardimiyla

dondiiriilmesinden meydana gelen bir yontemdir.

Geometrik olarak yt,y?2, ...,y™ koordinat eksenlerini olusturan n tane degiskenin ana
bilesenlerinin her biri, yeni eksenleri meydana getirmesi suretiyle dondiiriilmiis yeni bir
koordinat sistemini gostermektedir. Dolayisiyla n adet degisken ve m adet gozlem, n

boyutlu uzayda m adet noktay1 belirlemektedir.

]Rmxn

Dontisiim matrisi Q € ile verilirse, eksen dondiirme islemi,

bagintisiyla tanimlanir. Béylece, i. eksen igin x; = (X1, ..., Xi)T V€ Vi = (Vity ooer Vim) T
olarak alinirsa, birbirleriyle iligkili olan x, ; degerlerinden, dontistiirme sonucu aralarinda
korelasyon bulunmayan y;; degerleri bulunur. Bu doniisiim Sekil 2.1°de gosterilmistir

(Sharma, 1995).
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Sekil 2.1 Temel bilesenler doniisiimiiniin iki boyutlu uzayda gosterimi
2.3.3. Temel Bilesenler Analizinin Uygulanisi

(2.3.1) ifadesinde verildigi sekilde bir veri kiimesini

yll y12 yln
S LA | (2.33.0)
ymoym™o L ymn

seklinde bir matris olarak ele alarak n tane m boyutlu gézlem vektoriinden olustugunu
kabul edelim. Verilerin ayni1 6l¢ii biriminde olmasi daha iyi sonug vereceginden, (2.3.3.1)
ile verilen veri setinin merkezi oldugunu, diger bir deyisle veri matrisinin siitun

vektdrlerinin sifir ortalamaya sahip oldugunu varsayalim yani Y;1-, y* = 0 olsun.

Aksi bir durumda, bu standartlastirma veri ortalamas: 0 olacak bir veri matrisi
olusturularak yapilabilir. Bunun icin ¥ € R™ ortalama vektdrii her bir y* € R™ gézlem
vektdriinden cikartildiginda, ¥ yeni veri matrisini olusturan siitun vektorleri sifir

ortalamali olur.

[yll _3—/1 y12 _3—/1 yln _}_]1—'
~ I 21 =2 22 =2 2n _ 52 I
V=0 .5=Y 7Y 7 77 ¥
yml _}—]m ymZ _}—]m ymn _}—}m

~i i _ 1 ~7 1 i _
yi=y' -y, JELy = LG -9) =0

n

merkezi olacak sekilde kabul edilen Y veri matrisinin kovaryans matrisi
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1 ;T 1
C=;Z?=1ylyl =;YYT1
hesaplamalariyla elde edilir.

TBA’da bulunmasi gereken temel bilesen vektorleri esasinda (2.3.2.1) denkleminde
verilen Q doniisiim matrisinin siitiin vektorleri olup ayni zamanda C kovaryans matrisinin
ozvektorleridir. Bu durum su sekilde aciklanabilir, Z = QTY doniisiimii sonras1 elde
edilecek olan yeni veri degiskenlerinin sifir korelasyonlu olmasi beklenmektedir. Boyle
bir 6zellik i¢in, Z veri matrisinin kovaryans matrisi kosegen olmalidir, ¢iinkii diger
durumda kosegende olmayan kovaryans matrisi elemanlarinin sifirdan farkli degerlere
sahip olmasi farkli degiskenler arasinda korelasyon oldugunu ifade eder. Z matrisinin,
kovaryans matrisi C, ile ifade edilecek olursa,

r 1

zizV ==777,
n

NgE

C—1
Z 7 n

i=1
matrisi yazilir. Z = Q7Y doniisiimii yerine yazilirsa
1
C,==27Z"T
Z 7 n
1
=L@y
1
==QTyyT
~QTYYTQ

=, Q"BQ,

ifadesi B = YYT i¢in elde edilir. Burada B matrisi simetrik bir kare matris oldugundan,
B matrisi B = EDET 6zdeger ayrismasmna sahiptir, dyle ki D matrisi dzdegerleri
barindiran kosegen bir matris olup, E matrisi ise ilgili 6zvektorleri stitunlarinda tutan
ortogonal bir matristir. Bu asamada, B =YY oldugundan, doniisimdeki Q matrisi,
ozvektorleri tutan E matrisi olarak alimip yerine yazilarak ortogonallik dzelliginden ETE

matrisinin birim matris oldugu kullanilirsa
1
C;=-Q"B
2 =—-Q"BQ
= % QTEDET(Q
1
=10"Q)D(Q"Q)
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ifadesi elde edilir ki bu da kdsegen bir kovaryans matrisi elde ettigimizi gosterir. Sonug
olarak, yeni eksen degiskenlerinin aralarinda korelasyon olmamasi i¢in Q doniisiim
matrisini siitunlar1 YYT matrisinin (veya Y veri setinin kovaryans matrisi olan C
matrisinin) 6zvektorleri olacak sekilde se¢gmek yeterlidir. Geldigimiz noktada Q doniisiim
matrisinin bulunabilmesi i¢in C kovaryans matrisinin 6zvektorlerinin hesaplanmasi

gereklidir. Bunun i¢in ise
cvi=Av, i=1,..,m, (2.3.3.2)

6zdeger problemi ¢oziilmelidir. (2.3.3.2) ile verilen denklemde, C matrisi m x m boyutlu

kovaryans matrisi, A herhangi bir skaler ve v € R™ sifirdan farkli bir siitun vektorii
olmak iizere, esitligi saglayan A degeri C matrisinin dzdegeri, v* vektorii ise A° ile iliskili

Ozvektordir.

(2.3.3.2) ile verilen esitlikte 6zdegerler biiyiikten kiigiige dogru siralanacak sekilde
yazildiginda, A > ... > A" >0, swrali ozdegerlere karsilik gelen v' o6zvektorleri
kullanilarak doniisiim matrisi Q = [v!...v™] € R™ ™ olarak alinabilir. Diger yandan,

boyut indirgeme anlaminda, ilk k « m tane 6zdegere karsilik gelen v' 6zvektdrleri

kullanilarak da

Qr = [v!..v*] € R™*k,

matrisi en iyi izdiisimi gergeklestiren izdiisiim matrisi olarak elde edilebilir. Boyutu
indirgenmis yeni eksen degiskenlerinin bulunmasi i¢in Veri matrisinin her bir degeri

ozvektorlerle belirlenen uzay tizerine izdiistimii alinmak suretiyle
7zl = QkTyi € ]Rk, i=1,..,n,
seklinde hesaplanir.

Ozet olarak, TBA daki islem akis1 Sekil 2.2’de yer alan diyagramda gosterilmistir.
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ﬁ - Veriyi merkezilestir

Kovaryans hesapla

v

. Ozdeger ve
Ozvektir hesapla

¥

En biiyiik k dzdegerli
dzvektorleri al

4

Indirgenmis veri=
I:diisiim marrisi X Veri

Sekil 2.2 TBA islem akis1

TBA, Sekil 2.3 (a)’daki gibi dogrusal olarak diizgiin dagilmis veriler i¢in etkin iken,
dogrusal olmayan diizgiin dagilim gostermeyen veriler icin etkili degildir, Sekil 2.3 (b).
Dogrusal olmayan yani diizgiin dagilim gostermeyen veriler i¢in Cekirdek Temel
Bilesenler Analizi daha etkin bir yontem olarak karsimiza ¢ikmaktadir. Bu yontem Boliim

3 de ayrintili olarak verilecektir.

@® o | g
‘e "0 0 ¢ e ®o0 @
(@ (b)

Sekil 2.3 (a) Dogrusal olarak ayrilabilen; (b) Dogrusal olarak ayrilamayan veri

dagilimlar
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2.4. Kovaryans Matrisinin Kosegenlestirilmesi

Bu boéliimde ele alacagimiz veri seti
Y=[y! .. y"leR™" yieR™ i=1.2..,n @n>m)

seklinde verilsin. TBA, Y veri setimizi temsil eden (k < m) matris olmak lizere k
boyutunda dogrusal bir model bulmay1 amaglamaktadir. Yani, TBA yontemi ¢ok boyutlu
veriyi daha kiigik boyutlu bir veriye dontistiiriir. Bu dogrusal doniisiimii yaparken
Kovaryans matrisi kullanilir. Kovaryans matrisinin 6zdeger ve 6zvektorleri bulunarak
temel bilesenler hesaplanir. Veri setimizin dagilim ve yapisin1 incelemek igin

kullandigimiz (m X m) boyutlu Kovaryans matrisi
C=vyT =32,y (yi) (2.4.1)

Formundadir. Verilerin farkli 6lgti biriminde olmamasi daha iyi sonug vereceginden,
(2.4.1) ifadesinde verilen veri setinin merkezi oldugunu, diger bir deyisle veri matrisinin
stitun vektorlerinin sifir ortalamaya sahip oldugu varsayilsin. € Kovaryans matrisinin
kosegenlestirilmesi ile 6zdegerleri A* > ... > A™ > 0, olan kdsegen bir A matrisi ve

ortogonal U matrisinin bulunmasiyla

C =UAUT € R™*™m, (2.4.2)
olarak yazilabilir. TBA’da bulunmasi gereken temel bilesen vektorleri esasinda (2.4.2)
denkleminde verilen U = [yt .. wu™] € R™™ ortogonal doniisiim matrisinin siitiin
vektorleri olup ayni zamanda € Kovaryans matrisinin 6zvektorleridir. Bu durumda, Z =

UTY € R™ " doniisiimii sonrasi yeni veri degiskenleri elde edilir (Gonzalez vd., 2020).
2.5. Boyut Indirgenmesi

A matrisinin izi ve dolayistyla A' 6zdegerlerinin toplamma esit olan C Kovaryans
matrisinin izi, i = 1,...,migin, Y veri matrisinin toplam varyansidir. Ozdegerler azalan
bir sekilde siralandiginda, indirgenmis k boyut sayisi varyansin dnemli bir kismini
icerdiginden, U matrisi en iyi izdlisimi gerceklestiren izdiislim matrisi olarak elde
edilebilir. Gerektigi durumlarda, yani k sayisinin elle girilmeyip sisteme bagli olarak

otomatik bulunmasi gerektiginde, bir ¢ toleransi i¢in

L 21— Xt A,
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olacak sekilde bir k belirlenebilir. Bu sekilde bulunan bir k sayis1 kullanildiginda, 6rnegin

€ = 0.001 alindiginda, veri setinin davranis yapisinin %99,9 oraninda temsil edildigi

kabul edilir.

Burada, (k + 1) ile m sayisina kadar olan 6zdegerler ihmal edilir ve sonug olarak U
matrisinin son m —k tane siitunlarmin (veya UT matrisinin son satirlarinin) y
vektoriiniin varyansina katkida bulunmasi beklenmez. Buna gore, z vektdriiniin son m —
k tane bilesenleri onemli bir bilgi kayb1 olmaksizin ihmal edilebilir. Boylece indirgenmis
uzayda, boyutu indirgenmis yeni eksen degiskenlerinin bulunmasi i¢in veri matrisinin her
bir degeri 6zvektorlerle belirlenen k boyutlu uzay iizerine U* = [yt ... yk] € R™*k

matrisi ile izdligiimii alinmak suretiyle
z*=U"y e RO
seklinde hesaplanabilir. Geriye dogru déniisiim ise, (R¥ indirgenmis boyut uzayindan,

R™ tam boyut uzayma) y = Uz bagintisinin boyutunun azaltilmig hali olarak goriilebilir,

yani
y = Z:il[z]l ul & f:l[z]lul ]
seklinde yeniden yazilabilir. Matris formunda ise Y = UZ =~ U*Z* olarak yazilabilir.

Boyut indirgeme isleminde (m boyutundan k boyutuna) ortaya ¢ikan hata, Y — U*Z”
arasindaki farkla iligkilidir ve € toleransi azaldikga (ve k arttik¢a) hata azalir (Gonzalez
vd., 2020).

2.6. Tekil Deger Ayristirmasi (TDA): Kosegenlestirmeye Alternatif

Tekil Deger Ayristirmasi (TDA), m X n boyutlu Y matrisinin (m < n varsayalim)
Y=U0xVT,

formunda bir ayrismasini saglar. Burada U ve V matrisleri sirasiyla m X m ve n X n
boyutlarinda ortogonal matrisler, X matrisi m X n boyutlu kdsegen bir matris olmak
lizere, Y matrisinin 6 >0%>--0™ >0 tekil degerleri ¥ matrisinin kdsegen

girdileridir:
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_ 0 O-Z - Zm 0 mxn
5= . ; =| ’ 0] € R™",
0 0 o™ 0 0
gl - 0
X = € R™ ™M,
0O . g™

C Kovaryans matrisinin kdsegenlestirilmesi TDA'nin dogrudan bir sonucudur:
C=vYr =uxvtvetuT = Uu[zxT|UT = UAUT.
VTV =1, € R™" ve A = X237 olup dolayisiyla, C Kovaryans matrisinin 6zdegerleri

D N\ 2 . il . - ..
At = (O'l) , i = 1,..,m olmak iizere tam olarak Y matrisinin tekil degerlerinin

karesidir (Gonzalez vd., 2020).
2.7. Gram Matris

YT matrisini veri matrisi olarak alan (verileri siitunlar yerine satirlara gore diizenleyen) C

Kovaryans matrisine alternatif n x n boyutlu matris G = Y'Y olup, [G];; = (yi)Tyf
seklinde yazilir ve Gram matris olarak ifade edilir. TBA ile G matrisinin kosegenlestirme
stireci, C Kovaryans matrisinin kosegenlestirme siireci ile aynidir, ancak m boyutunun
yerine n boyutunun azaltiimas: amaglanmaktadir. TDA kullanildiginda Y matrisinin Y7
matrisi ile degistirilmesi durumu 6nemli degildir. Yani, TDA ile YT = VETUT seklinde

ifade edilebilir. Bu durum G Gram matrisinin kosegenlestirilmesini saglar;

G=YTY =vETUTUZVT = V[ZTZIVT =VAVT. (2.7.1)

Burada UTU =I,, € R™™ ve n x n boyutlu A = 5T¥ koésegen matrisi, 4 kosegen
matrisi gibi sifir olmayan A° girdilerinden olusur (i = 1, ..., m). Boyut azaltma islemi,
Bolim 2.5'e anlatildig: sekilde yapilir ve veri uzaymin n boyutunu k boyuta indirgemeyi
amaglamaktadir. Yani, n boyutlu uzaydaki verilerden herhangi biri (veya ayni uzay ait
herhangi bir vektor), V matrisinin ilk k siitunu olan k tane vektoriin dogrusal bir

kombinasyonu olarak yazilabilir (Gonzalez vd., 2020).
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2.8. C ve G Matrislerinin Kosegenlestirilmesinin Esdeger Olmasi

C Kovaryans matrisi (2.4.2) ifadesinde belirtildigi gibi kosegenlestirildiginde, U

doniisiim matrisinin siitunlar1 tam olarak
Cut =A%t i=1,..,m,

olacak sekilde C Kovaryans matrisinin 6z vektorleridir. Ayn1 durum (2.7.1) ifadesindeki
G Gram matrisi ve V doniisiim matrisi i¢in de gegerlidir, yani

Gvi=Avt i=1,..,m,

vt, V matrisinin . siitunu olmak iizere i = m + 1, ...,n icin, V matrisinin v' siitunlar
sifir 6zdegere karsilik gelmektedir. Boliim 2.6'da anlatilan TDA'nin tek seferde hem U
hem de V matrisini saglamasi, C Kovaryans matrisinin kosegenlestirilmesinde (ve
dolayisiyla U matrisinin elde edilmesinde) yapilan hesaplama iglemlerinin G matrisinin
kosegenlestirilmesine (ve V  matrisinin elde edilmesine) esdeger oldugunu
gostermektedir. Bu ilk bakista anlasilamayabilir, ¢iinkii C Kovaryans matrisinin boyutu
m X m ve G matrisinin boyutu n X n olmaktadir, dolayisiyla G matrisinin boyutu ¢ok
daha biiyiiktiir. Boliim 2.5’teki gibi boyut indirgeme iglemleri yapilirsa, 6zdegeler azalan
bir sekilde siralandiginda, indirgenmis k boyut sayist varyansin onemli bir kismini
icerdiginden, V' matrisi en iyi izdiislimii gerceklestiren izdiisiim matrisi olarak elde
edilebilir (Gonzalez vd., 2020). Bu noktada indirgenmis verilerin bulunabilmesi i¢in G

Gram matrisinin 6zvektorlerinin hesaplanmasi gereklidir. Bunun i¢in ise
Gt =t i=1,..,m, (2.8.1)

6zdeger problemi ¢oziilmelidir. (2.8.1) ile verilen esitlikte A* > ... > 2™ > 0, 6zdegerleri
biiyiikten kii¢iige dogru siralanacak bi¢cimde yazildiginda, siral1 6zdegerlere karsilik gelen
vl 6zvektorleri kullanilarak déniisiim matrisi V*” olarak alinabilir (Gonzalez vd., 2020).
V*T matrisi en iyi izdiisiimii gerceklestiren izdiisim matrisi olarak elde edilebilir.
Boylece, indirgenmis uzayda boyutu indirgenmis yeni eksen degiskenlerinin bulunmasi
i¢in veri matrisinin her bir degeri v' € R¥ 6zvektorlerle belirlenen k boyutlu uzay iizerine

V*=[pt .. v"] € R¥™ matrisi ile izdiisiimii alinur.
Y = UXVT ifadesinde her iki taraf sagdan V ile ¢arpildiginda YV = UX olup

U=vvz-t, UuT=x1yTyT (2.8.2)
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ifadeleri elde edilir. Bu durumda U* = YV*X~1 olup, (2.8.2) ile verilen ifade Z = UTY

denkleminde yerine yazilip

G=YTYy =vITuTUusvT =v3zzvrT,

bagntis1 kullanilirsa

Z=x"tTyTy = 3-1v7g,

denklemi indirgenmis olarak

z* =y wTyTy = 577G,

seklinde elde edilir. Boyutu indirgenmis yeni eksen degiskenleri orijinal uzaya geri
getirildiginde

X=UZ=UZ*=XV*21Z7", (2.8.3)

seklinde hesaplanabilir.
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3. MATERYAL VE YONTEM

Bu béliimde, tez galismasinin merkezinde yer alan Cekirdek Temel Bilesenler Analizi

(CTBA) tanitilip model bir veri setine uygulanisi gosterilecektir.

3.1. Cekirdek Temel Bilesenler Analizi

TBA, bir¢ok farkli disiplinlerce siklikla kullanilmasina ragmen, elde edilen verilerin
boyutlarinin indirgenmesi ve modellenmesi gibi uygulama alanlarinda CTBA’nin
kullanimi1 ¢ok yenidir. CTBA, TBA’dan farkli olarak dogrusal olarak ayriklastirilamayan
ya da bir bagka ifadeyle dogrusal bir dagilim gostermeyen verilerin dogrusal bilesenler
ile ifade edilmesini saglamaktadir. CTBA ile veriler ¢ok boyutlu bir dogrusal olmayan

0zellik uzayina izdisiiriiliir. Cok boyutlu uzayin boyutu sonsuz da olabilir.

TBA yonteminde farkli 6zelliklere ait veriler ¢ok biiyiik bir varyans ile dagilmak
zorundadir. Cok kii¢iik varyansh dagildigi durumlar oldugunda ise TBA’nin basarisi
azalmaktadir. Boyle durumlarda TBA, dogrusal gegis ile alt uzayda ayriklastirmayi
yapamamaktadir. Bu sebeple veriyi dogrusal olmayan bir gecis ile alt uzaya iz diisiiren
CTBA yo6ntemi 6nem kazanmaktadir. CTBA ile, TBA yonteminden daha farkli olarak,
cok biiylik bir boyutta veriler temsil edilerek, temel bilesenlerine ayrigsmasi saglanir.
CTBA hesaplamalarinin daha etkin ve kolay hesaplanmasi i¢in ise dogrusal olmayan
cekirdek fonksiyonlar1 kullanilmaktadir. Literatiirde c¢okca kullanilan ¢ekirdek
fonksiyonlar1 ise gauss, polinom ve hiperbolik tanjanttir. Dogrusal olmayan boyut
indirgemesine olanak taniyan ¢esitli teknikler vardir. Bunlar arasinda, CTBA basitligi ve

kolay uygulanabilirligi nedeniyle tercih edilmektedir (Gonzalez vd., 2020).
3.2. Yapimin Yiiksek Boyutlu Hale (M Boyuta) Doniistiiriilmesi

CTBA fikri, baz1 ¢ok biiyiikk M > m boyutlar1 igin R™ uzayindan RY uzayma keyfi bir
®: R™ - RM doniisiimii getirilerek ortaya atilmistir. Biiyiik boyutlu bir uzaya yapilan bu
doniistim ile, y verisinin ait oldugu dogrusal olmayan manifoldu ¢ézmesi (veya
diizlestirmesi) beklenmektedir. Yani, ® déniisiimii ve M boyutunun, RM uzayina eslenen
¥ = ®(y) seklindeki degiskenlerin, TBA tarafindan kolayca bulunabilecek dogrusal ve
diisiik boyutlu bir manifold i¢inde yer alacak sekilde olmasi beklenmektedir. Bagka bir
deyisle, klasik TBA
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Y = [0eGHOG»?) ... e(™M] = [§'5? .7 € RM*™, (3.2.1)

seklinde déniistiiriilmiis verileri igeren M X n boyutlu ¥ matrisine uygulanacaktir. Eger
M boyutunun bilindigi varsayilirsa, TBA uygulanir ve Boliim 2'de agiklandig1 gibi M X
M boyutlu Kovaryans matrisi C = Y¥T olacak sekilde kosegenlestirilir. Fakat, bu durum
iki 6nemli zorlugu beraberinde getirir: birincisi, @ donilisiimii bilinmemektedir ve ikincisi,
manifoldun diizgiin bir sekilde ¢oziilmesi i¢in gereken M boyutu ¢ok biiytiktiir (6zellikle
n boyutundan ¢ok daha biiyiiktiir) ve sonug olarak € kovaryans matrisini hesaplama
zorlugu ortaya ¢ikacaktir. Ancak déniistiiriilmiis G = Y7Y¥ Gram matrisi boyutunun n x
n (G matrisi ile ayni) oldugundan (Bélim 2.4’te gosterildigi gibi) G matrisinin
kosegenlestirilmesi C matrisinin kosegenlestirilmesi ile ayn1 sekilde boyutu azaltacaktir.

Dolayisiyla, @ doniisiimii esas olarak G matrisini hesaplamak i¢in gereklidir (Gonzalez

vd., 2020).
3.3. Cekirdek Fonksiyonu
@ doniigiimiiniin, dogrusal olmayan manifoldu, daha yiliksek boyutlu bir uzayda dogrusal

bir manifolda eslemesi beklenir. Ancak verileri, R” uzayinin dogrusal bir alt uzayma
esleyen bir yontem belirlemek kolay degildir. Cekirdek fonksiyonu, G matrisinin

boyutunun indirgenmesini amaglamaktadir. G matrisinin tim terimlerinin i, j=1..,n
i¢in

6], = o(y) o(y)) = (55, (3.3.1)
seklinde oldugunu dikkate alindiginda, ¢ekirdek fonksiyonu, ®(.) doniisiimii yerine,
6], = (", ¥7). (332)

olacak sekilde x(.,.) ¢ekirdek fonksiyonu segilebilir (Gonzalez vd., 2020).
3.4. Merkezilestirme

Daha 6nce de belirtildigi gibi, TBA'nin uygun sekilde uygulanabilmesi i¢in orneklerin
merkezilestirilmesi gerekmektedir. Bununla beraber, keyfi bir ®(.) doniisimii se¢ip
dontstiiriilen verilerin merkezilestirilmis durumda oldugu bilinmemektedir. Yani, ®(.)
doniisiimii biliniyor oldugunda, (3.2.1) ifadesindeki ¥ matrisini merkezilestirme islemi
kolaydir. Fakat, x(.,.) olacak sekilde segildiginde, merkezilestirilmemis bir G matrisi

olusmaktadir. G matrisinin merkezilestirilmesi i¢in sirasiyla asagidaki islemler
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yapilabilir. @ doniisiimii biliniyorsa, doniisiimii yapilan verilerin merkezilestirilmesi i¢in

y¢ girdilerinin
y'=o(y)) - 3L, o(H, (3.4.1)

olacak sekilde yeniden diizenlenmesi (§* verisinin y‘ verisine doniistiiriilmesi)
gerekmektedir. Merkezilestirilmis veriler (3.4.1) ifadesindeki y' gibi iist ¢izgi ile

gosterilmistir. Sonug olarak, merkezilestirilmis Gram matrisi, (3.3.1) ifadesine gore

6], =G"'5.

seklinde yazilir ve

(6], = *() ‘D(y’)——z o(y) o ( ——2 o(yH (/)

+ %ii@(yl)% ().

olacak sekilde bulunur. (3.3.2) ifadesi kullanildiginda
[C], = (' y)) =2 Ei (YD) — B (0 y)) + S EE S k(0 ),

bagintisi elde edilir. Gerekli diizenlemeler yapildiginda

= ~ 1 ~ 1 ~
G=G- Gl[nxn] _;1[nxn]G + ﬁl[nxn]Gl[nxn] )

S|k

Denkligi elde edilie. Burada 1, € R™™ tiim girdileri bir olan n X n boyutlu matristir.

Buna gdre, G matrisinin j. siitun vektorii olan §7 vektorii
§F = = (170" 1 = = e + 25 (1T G L) 1y

seklinde yazilabilir. Burada, G matrisinin j. siitunu §/ vektdrii olup 1p, = [1,...,1]7

olarak verilir (Gonzalez vd., 2020).
3.5. CTBA ile ileriye Dogru Esleme: Y —» P, ®(Y)

CTBA ile, m boyutlu girdi uzayindaki vektorler 6nce keyfi dogrusal olmayan doniisiim
®():R™ - RM araciligiyla 6zellik uzayi adi verilen M >> m boyutlu (sonsuz boyutlu da
olabilir) bir uzaya donistiriliir ve ardindan bu 6zellik uzayindaki vektorlere TBA

uygulanir. Bu amagla, asagidaki sekilde tanimlanan doniistiiriilmiis veri matrisi ¥ ile
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tammlansm. Y = [yly? ... y"] € R™*" giris verisi olmak iizere, bu verinin

merkezilestirilmis ve @ doniisiimii altindaki goriintiisii olan 6zellik uzayindaki veri

Y =[0eGhHeGn?) .. e(™M] = [§'y? .5 € R,

olmak iizere, keyfi ®(-) doniisiimii i¢in, ¥ matrisi genellikle TBA islemi igin ihtiyag olan
sifir siitun toplamina yani merkezilestirmeye sahip degildir. Her bir siitundan, siitunlarin

ortalamasi

D(y) = -3, O(y)

cikarilarak sifir siitun toplamli bir veri matrisi

Py = o - d(y)

elde edilebilir. Buradan da

Y = [8OHB(2) .. d(y™)] = PH € RM*™

stfir siitun toplamli veri matrisi elde edilebilir. Yukaridaki formiilde

H=1--11T € R™™, (3.5.1)

merkezilestirme  matrisi  olarak  adlandinlirken [ € R™  birim  matris,
1=[11..1]" € R™! n-boyutlu birler vektdriidiir. Bu asamada, siitunlar1 6zellik

uzayini kapsayan Y veri matrisi icin onceki boliimde agiklanan TBA yontemi uygulanir,
yani

C=Yr, dOHPOHHT =YY T e RM*M, (3.5.2)
kovaryans matrisinin 6zvektorlerinin bulunmasi gerekmektedir. Bu noktada, iki ciddi
dezavantaj vardr. Ilk olarak, M boyutu ¢ok biiyiik bir say1 olabilir hatta sonsuz da olabilir.
Ikinci olarak, dogrusal olmayan ®(+) doniisiimii keyfidir ve c¢ogu zaman
bulunamamaktadir. Bu da M boyutlu € Kovaryans matrisinin 6zvektorlerinin
hesaplanmasini neredeyse imkansiz hale getirebilir. Tiim bu sorunlarin ortadan kalkmasi
icin cekirdek yontemi uygulanmaktadir. Bu yontemi aciklamak icin, {1}, v} degerlerinin

C kovaryans matrisinin 6zdegerleri oldugu

Cvt = v, i=1,..,M, (3.5.3)
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ozdeger problemi kullanilabilir. Bu noktada 06zvektorlerin, o6zellik uzayini, yani
Y = [D(y)P(y?) ... D(y™)| déniistiiriilmiis veri matrisinin siitun uzaymi olusturdugu

diisiiniiliirse, her v' 6zvektorii igin
vi=3"a; ®(y7), i=1,..M, (3.5.4)

dogrusal kombinasyonunu saglayan a;; katsayilart bulunmaktadir. Daha sonra, (3.5.4) ile

verilen baginti (3.5.2) ile verilen o6zdeslikle birlikte (3.5.3) ile verilen 6zdeger

probleminde yerine yazilirsa

?:1 5(3/1) Z?:l aij 5(YZ)T 6()”) = Zi Z’}=1 a;; &D(}’j).
esitliginde tiim &zvektorler {P(yS )}:=1 vektorlerinin  uzaymnda bulundugundan,
s =1,...,ni¢in, esitligin her iki tarafi ®(y*) ile izdiisiimii alinirsa

L )T Xy a;; POYHT d(y)) =4 Yioga; ()T d(y’), (3.5.5)
esitligi elde edilebilir. Bu noktada, 6zellik uzayindaki vektdrlerin Oklid i¢ carpimlarini
®()Td(.) girdi uzaymin vektorleri ile temsil eden bir k(.,.) : R™ x R™ - R ¢ekirdek
fonksiyonu
k(% yh) =< o), o) >=0H)" d@Y, sl=1.,n,
seklinde tamimlanir. Ozellik uzayinda merkezilestirilmis ve doniistiiriilmiis vektorleri
®()TP(.) Oklid i¢ carpimu seklinde gosterebilmek i¢in, K € R™™ ¢ekirdek matrisi ve
k, € R" vektori sirasiyla K;; = K(yi,yj) ve k, = (lc(y,yl), ...,K(y,y”))T olmak
uzere
. 1 1 1
Ry%yHD =k y) —-1Tkys ——1Tk + —17K1,

ifadesi kullanilmaktadir. Burada, k,: vektorlerinin hesaplanmalari gerekmemektedir,

¢linkii bunlar K simetrik ¢ekirdek matrisinin i. stitunlaridir. Bu durumda, (3.5.5) ile

verilen ifade ¢ekirdek fonksiyonu cinsinden
LiRGS, YD Y a k(YL y) = 4 X a4 k(S /) (3.5.6)
1=1 K5V ) Lj=1 i K\Y Y i 2j=1Qij K\Y", V"),

olacak sekilde elde edilir. Literatiirde dogrusal, polinom ve Gauss ¢ekirdegi gibi ¢esitli
cekirdek fonksiyonlar1 bulunmaktadir. Burada, || . || standart Oklid normu ve o pozitif bir

parametre olmak {izere
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k(x,y) = exp (— M) )

202

Gauss ¢ekirdek fonksiyonu kullanilmaktadir. a® = (a;s,...,a;,)" € R™ Katsay vektorii
i¢in (3.5.6) ile verilen ifade

K?a' = ;Ka* veya Ka'=Xlad i=1,..,M, (3.5.7)
olacak sekilde matris-vektor formunda yazilabilir. Burada K = HKH olmak iizere, (3.5.1)
ile verilen H matrisi merkezilestirme matrisidir. Son olarak, giris uzaymndan rastgele
alman bir y* € R™ vektori i¢in, 6zellik uzayinda merkezilestirilmis ve @ doniisiimii

altindaki goriintiisiit ®(y*) € RM olmak iizere, k boyutlu (k « m <« M) indirgenmis

uzaya izdiisiim vektorii
— * * * k
z" = |z, z3,...,7) € R¥,

{vl,...,v*} en biyiik ilk k tane A; (i = 1,...,k) 6zdegerlerine karsilik gelir. (3.5.7)
ile verilen esitlikteki 6zdeger probleminde a' katsayilari hesaplandiktan sonra, v
ozvektorlerinin (3.5.4) ile verilen ifadesi kullanilarak, izdiigiim vektoriiniin z; bilesenleri
¢ekirdek fonksiyonu cinsinden

n n
z; = ®(y)v' = Z a; Oy B(y’) = z ai; (v, ¥7),

j=1 j=1

formiiliiyle bulunabilir.
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" M
Ozellik Uzay1 R

M}a_n TBA - Boyut Indirgeme
Doniisiim Fonksiyonu ®

P
o®d(y')
Cekirdek Fonksiyonu \ k
_____________ > Indirgenmis Uzay R
[K]ij = £y y)
P ®(y?)
XN
_______ P (Y
--------------- o PG

Geriye dogru esleme 3
k(.,.) = f(d?)

Sekil 3.1 CTBA kullanilarak boyut azaltmanin gosterimi

Sekil 3.1, giris uzayindaki y* € R™ verilerinin indirgenmis uzayda z* € R¥ verilerine
nasil eslendigini gostermektedir. Bu yontem oncelikle 6zellik uzayindan gecis saglayarak,
dD(yi) € RM verilerinin boyutunu azaltmak i¢in TBA kullanarak ve daha sonra bunlarin

indirgenmis R¥ uzayma izdiisiimii almarak gerceklestirilir (Sekil 3.1'deki gri noktali

oklar) (Gonzalez vd., 2020).

Uygulamada, 6zellik uzayr higbir zaman kullanilmaz. CTBA ile ¢ekirdek fonksiyonu,
dogrudan y* € R™ verisinden z* € R¥ verisine (Sekil 1'de mavi kesikli okla gosterilen)
ileriye dogru geg¢is saglayan alternatif bir yontem (® doniisiim fonksiyonunun belirli bir

sekilde tanimlanamadigi) olarak uygulanabilir.
3.6. CTBA ile Geriye Dogru Esleme: P, ®(Y) - Y

Boliim 3.5'te belirtildigi gibi, sadece v matrisinin biliniyor olmast, bir z* € R¥ verisinin
On goriintiisiiniin y* € R™ verisine (Sekil 3.1'deki kirmizi kesikli ok) geriye dogru olarak
eslestirmeye izin vermemektedir. Giris uzayindan herhangi bir keyfi vektorin y* € R™
icin, 6n goriintiisii §* € R™, TBA ile (2.8.3)’de verilen esitlikteki gibi yaklasik olarak
hesaplanabilir. Ancak bu durum CTBA i¢in ayni degildir. ®(y*) 6zellik uzayi vektoriiniin
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{vl,...,v*} obzvektorleri tarafindan olusturulan indirgenmis uzaya izdiisiimii

P, ®(y*) € RF olmak iizere
P@(y") =X 2 v' + D),

seklinde yazilir. Daha sonra, ®( y*) vektoriiniin P, ®(y*) indirgenmis vektoriine, en
yakin vektdr olmasi p(§*) = ||®(5*) — P, ®(y*)||? durumunda yaklasik &n goriintii olan
y* elde edilebilir.

Optimizasyon yontemi, 6zellikle zamana bagli problemlerde, her zaman i¢in problemde
ayni1 islemlerin yapilmasi zaman alici bir islem oldugundan, alternatif olarak Cok Boyutlu
Olgekleme (CBO) yéntemi arastirilacaktir. CBO yéntemi; yiiksek boyutlu nesnelerin,

diisiik boyutlu bir alana aralarindaki mesafenin korunarak izdiistimiiniin alinmasidir.

Bu bolimde, Y = [y'y?..y"] € R™" giris verisi olmak {izere, bu verinin

merkezilestirilmis ve @ doniisiimii altindaki goriintiisii olan 6zellik uzayindaki veri

Y =[0(pHoy?) ... o0M] = [715%...5"] € RM™,

olmak {izere, 6n goriintiiyli bulabilmek i¢in 6zellik uzayr mesafesini en aza indirerek,
0zellik uzayindaki izdiislimiine miimkiin oldugunca yakin eslesen bir nokta olarak 6n

goriintli girdi uzayinda aranir.

Pp®(y")

\ <

7 = argmin||®(F*) — Pe®(y*)||”

Sekil 3.2: Ozellik uzaymdan girdi uzaymna geri doniis

Bu fikir Sekil 3.2'de gosterilmistir. argmin||®($*) — P,®(y*)||?> optimizasyon
probleminin ¢oziimiinden 6n goriintii elde edilmeye calisirken, daha diisiik boyutlu bir
uzaya indirgenen verilerin ikili mesafelerini koruyan, CBO ydnteminden yararlanilir.
Ozellik uzayinda verilerin Oklid mesafelerini korumaya calisarak 6n goriintiiyii bulmak
i¢in iterasyon siireci iceren CBO ydntemine alternatif olarak iterasyonsuz bir algoritma

tiiretilerek CBO algoritmas:1 giincellenebilir. Girdi uzaymndaki 6n goriintii yeniden
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bulunurken 6zellik uzayindaki ilgili verinin sabit sayida komsuyla olan mesafesi dikkate

alimur (Rathi vd., 2006).

CBO 19. ve 20. yy’da temel bilimlerin daha da gelismesiyle ortaya ¢ikan bazi calismalar
ve sonrasinda ¢ok gelisen bilgisayar teknolojisi sayesinde genis kullanim alan1 bulmustur.
CBO yonteminin gelistirilmesinde kullanilan hesaplamalar, temel bilimlerin ve
miihendisligin ana konularmi olusturmaktadir. Ozvektor ve 6zdeger kavramlari kuantum
fiziginin daha ¢ok gelismesiyle birlikte bu yontemlerde kullanilmaya baslanmistir.
Istatistiksel olarak CBO Yontemi, Cok Degiskenli Istatistiki Analiz Teknikleri’nin i¢inde
yer almaktadir. Bu teknikler kullanilarak ¢ok degiskene goére olusturulan matrisler
aracilifryla arastirma konusu daha iyi analiz edilebilmektedir. CBO, TBA'ya benzer bir
dogrusal izdiislim yontemidir. Ancak, bu yontemde veri noktalarinin 6zelliklerinin
bilinmesine gerek yoktur. Bunun yerine yalmizca iki veri noktasi arasindaki mesafe
bilinmesi gerekir. Bu durum hangi 6zelliklerin kullanilacagina karar vermenin zor oldugu
problemler icin avantaj saglar (Tapramaz, 2002). CBO'iin temel fikri, veri noktalar1
arasindaki | yt—yJ | mesafelerini koruyacak sekilde verilerin izdiisiimiiniin alinmasidar.
Yani, |37i — yf| ~ |yi — yjl olacak sekilde y verileri daha diisiik boyutlu uzaydaki y

verilerine izdiistrilir.

Cekirdek fonksiyonu K(yi,yj ) secimi icin bir¢cok fonksiyon bulunmaktadir. En ¢ok

kullanilan ¢ekirdek fonksiyonu

(31

K(yi,yj) =e 202

Gauss ¢ekirdegi olup, formiildeki dz(yi,yj ) girdi uzayinda bir mesafe Olciisiidiir.
Dolayisiyla cekirdek fonksiyonu, girdi uzayr mesafesinin bir fonksiyonudur, yani
k(.,.) = f(d?). Benzer sekilde, 6zellik uzayindaki mesafe metrigi d? (CD(yi), o(y’ ))
de hesaplanabilir. Bu bilgiler 1s1ginda, 6zellik uzayindaki bir veri noktasinin ilk k
Ozvektor (6zellik uzayinda) lizerine izdiisimii olan P, ®(y*) ile bir veri noktasinin
@ doniisiimii altindaki goriintiisii arasindaki mesafe

2

(o(y"), P2y ) = [[@(y) - PP

= 1P DO + [[0G)|* = 2P D) D(vY),
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sekilde yazilabilir. Matris-vektor islemlerinden sonra, bu uzaklik ¢ekirdek fonksiyonu

cinsinden agagidaki sekilde yazilabilir:
d*(@(y"), P®(y") )
1 T 1 1,
= (ky* +£K1 — Zkyi) H" C,H (ky* _EK1> +ﬁ1 K1+ K;;
2
_ Ty
- 1Tk
Burada

Ca=Tfeaz o), Ki=x("'y"),

olarak  almmustir.  Aynca, d?; =d*(y',y/) girdi uzayt uzakhig ile

d%; = d? (CD(yi), CD(yj)) ozellik uzay uzaklig1 arasinda

dZ

iy = leGD), oGI* = k(% y) +x(v7,57) - 26(y y7)
= Ku+Kj—2f(d%),
olacak sekilde bir iligki olup, Gauss ¢ekirdek fonksiyonu i¢in
1 i i
f(d?y) =5 (K + Kjj —d?y) - d?; = f7H(Ky + Kj; — d%),

bagintis1 gergeklesir. P, ®P(y*) izdiisiimiiniin girdi uzaymnda y* 6n goriintiisiiniin elde
edilmesi hedeflenmektedir. Ancak ¢ogu zaman, 6n goriintii mevcut olmayabilir. Bu
nedenle, P,®(y*) izdiisimiinin 6n goriintiisii yaklasik olarak bulunabilir. Bu ise,
p(P*) = [|P@*) — P,®(y*)||? hatasi en aza indirildiginde elde edilebilir. Cekirdek
fonksiyonu

(1)

K(yi’yj) =e 202

olarak alindiginda ve girdi uzayindaki uzakligin dz(yi,yj ) = ||yi —yJ ||2 ile verildigi

diistiniiliirse,

P ~ Ax i[12
V:(§") = Fiexp (—I AR /(202)) :
—\"n ~ 1 n
Yi=Xk=1Pk ki V& ¥i =y + ;(1 — dj=1 Yi),

degiskenleri i¢in
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Vep = (Xl )9 - (T 39) v =0,
bagintisinin ¢oziilmesi gerekir. Burada y* yalniz birakildiginda

Y TR wen) (3.6.1)

formiilii elde edilir. (3.6.1) ile verilen formiil, sabit nokta iterasyonu yonteminden gelen
ifadedir. Bu durumda 6n goriintii baslangi¢c noktasina bagli olacaktir ve yerel minimum
degerlerde takilma olasiligi yiiksektir. Buna alternatif olarak, P, ®(y*) = ®(9*)
yaklagimi kullanildiginda, ( p(9*) = 0 oldugu varsayilarak)

~x - ill? .
£ Tiexp (— ”@Ty)” D Y7 (% @-d (oG, c1>(yl’))> y!

G — vill2\
i Tiewp (- %) a7 (% @ - d* (oG, cb(yi)))

=1 7i G @2 - & (Po(), CD(yi))) y!

- , (3.6.2)
17 <§ (2 - d?(P@(y), q)(yi)))

¢coziimii elde edilir. Boylece, tek bir adimda basit hesaplamalar kullanilarak (iterasyon
gerekmeden) on goriintii elde edilebilir. Dolayisiyla, bu yontem sadece hesaplama
stiresini azaltmakla kalmaz, ayn1 zamanda On goriintiiyii hesaplamak i¢in bagka bir

yaklagim gerektirmediginden (giris koordinat sistemine geri dondiirme) daha dogrudur.
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4. BULGULAR

Bu béliimde, 3. Bolimde tanitilan CTBA yontemi, bir ve iki boyutlu Hamilton, gradyan
ve anti-gradyan sistemler i¢in verilecek olan 6rnekler {izerinde uygulanarak etkinligi ve
kesinligi tartigilacaktir. Tiim 6rneklerde, bir girdi uzay vektorii y* ile TBA veya CTBA
kullanilarak elde edilmis indirgenmis yaklasik vektor y* arasindaki hatayi hesaplamak
i¢in

Iy -1, =2 =21

|y~

mutlak bagil hata kullanilmistir. ilave olarak, m = 2 > 1 bilesenli NLS ve FHN
modellerinde ayriklastirilmis veri matrisi olan Y matrisi olusturulurken, her iki bagimli
degiskene ait ayrik zamanlardaki ¢6ziim vektorleri alt alta koyularak Y matrisinin
stitunlart olusturulmustur. Literatiirde, her bagimli degisken icin ayr1 bir veri matrisi
kullanim1 da mevcut olmakla birlikte, boyle bir yol izlendiginde her veri seti icin CTBA
yonteminin uygulanmasi gerekecegi ve dolayisiyla zaman yoniinden etkinligin

kaybolacagi muhakkaktir.
4.1. Hamilton Sistemler

Hamilton sistemlerin incelenmesinde bir ve iki konumsal boyutlu KdV ve NLS
denklemleri ele alinacaktir. KdV denklemi dogrusal olmayan hiperbolik bir denklemdir.
S1g su dalgalari, okyanustaki dalgalar, bir plazmadaki akustik dalgalar ve daha fazlasi
dahil olmak iizere tek boyutlu dalgalarin yayilmasini agiklar. Dagilim ve dogrusal
olmama, kalici ve yerellestirilmis dalga formlar1 tiretmek igin etkilesime girebilir. NLS
denklemi ise fiber optikte, diizlemsel dalgalarda 1s1g8in iletiminde ve Bose-Einstein
yogusma teorisinde yavas degisen dalga gruplarinin hareketlerini tanimlayan model

denklem olarak verilir.
4.1.1. Bir boyutlu KdV denklemi
Bir boyutlu (2.1.1.1) KdV denklemi, (x,t) € [—10,10] X [0, 8] uzay-zaman alani i¢in

ul(x) = £ sech? (@),

2
baslangi¢ dalgasi ve ¢ =6, u =1, f = 1.5 parametre degerleri i¢in ele alinacaktir.
Ayriklastirma Olctileri olarak Ax = 0.04 ve At = 0.02 degerleri i¢in Uzay-zaman
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ayriklastirilmasi ile sistemin anlik bilgilerinden alinan her t;, anindaki ayrik ¢oziimlerden
Y veri matrisi olusturulmaktadir. Uzay ve zaman koordinatlari i¢in ayriklastirilmis veri

matrisi Y = [u? ...u*%0] € R500%400 geklinde yazilir.

0.8

—1t=0

0.7 ——1-0.98]
——t=2.98

0.6 —1=7.98||

0.5

0.4 .

0.3, N

0.2}

0.1 i

—q (0] -5 (0] 5 10
X
Sekil 4.1 t = 0,0.98,2.98,7.98 zamanlarindaki dalga grafikleri

Dalga denkleminin t = 0,0.98,2.98,7.98 zamanlarindaki grafik ¢izimleri Sekil 4.1 de
verilmistir. Burada baglangi¢ dalgasi, zaman ilerledikce ayni1 genlik ve dalga boyuyla saga
dogru hareket etmektedir ve bu da sistemin enerjisinin korundugunu gostermektedir.
Sekilden de goriilecegi lizere, baslangic zamanindaki dalga, dalga boyu degismeden
pozitif x-ekseni yoniinde hareket edip, periyodik simnir kosulundan dolay1 tekrar iceri

yonlii hareket etmektedir.

« 10 Momentum «1071° Kitle «10°8 Hamilton
5 : : ‘ 4 - : 1.5 : : :
I \‘l
I 3 q |
| )
0 (I 2 vl
‘ | “ ‘ | . ‘ ‘“‘ \| I ““ “ll I
by A e BRI TR
—_ — — Il |
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= 0 =l I I
LT IR . 0o5) | | b
A0 | -2
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| \f‘”ul "Jl U 3
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Sekil 4.2 Biiyiikliiklerin tam ¢6ziim halinde korunumu
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Sekil 4.2, baslangi¢ degerlerinden itibaren zaman dilimlerinde momentum I, kiitle I, ve
Hamilton (Enerji) E olgiilerinin baslangictaki degerlerinden farklarini géstermektedir.
Gozlemlenen salinimlar, her degismez i¢in de iyi bir koruma saglandigin1 ve hassasiyetin

neredeyse makine hassasiyeti ile karsilagtirilabilir oldugunu gostermektedir.

Tablo 4.1 Farkli k degerleri igin olusan bagil mutlak hatalar

k TBA CTBA

1 7.31e-01 1.41e-02
2 3.84e-01 6.79e-03
3 3.44e-01 1.34e-02
4 2.87e-01 1.16e-02
5 1.35e-01 9.87e-03
6 7.78e-02 2.05e-03

Daha sonra, Tablo 4.1’de, TBA ve CTBA yontemleri hata ve hesaplama etkinligi
acisindan karsilastirilmaktadir. Bu karsilagtirma igin, t = 2 zamanindaki dalgaya karsilik
gelen u* = u'®® girdi uzay1 ¢oziim vektorii kullanilmaktadir. Sonuglar indirgenmis
boyutlar k = 1,...,6 i¢in sunulmaktadir. TBA ve CTBA kullanildiginda, yapilan
islemler sonucu tam ¢6ziim y* ile indirgenmis yaklasik ¢oziim y* arasindaki olusan
|lu* — @*||z bagil mutlak hatalar gosterilmektedir. Tablo incelendiginde, beklendigi gibi
ayni sayida baz kullanildiginda CTBA ile daha kesin sonuglar elde edilmistir.

Tablo 4.2 Farkli k degerleri i¢in olusan bagil mutlak hatalar ve ¢oziim siireleri

Mutlak Bagil Hata Islem Siiresi
Iterasyonlu Iterasyonsuz Iterasyonlu Iterasyonsuz
k (formiil 3.6.1) | (formiil 3.6.2) | (formiil 3.6.1) (formiil 3.6.2)
1 1.41e-02 1.41e-02 3.9634 0.1026
2 6.79e-03 6.83e-03 1.9047 0.1630
3 1.34e-02 1.35e-02 2.1734 0.1660
4 1.16e-02 1.17e-02 1.8595 0.1932
5 9.87e-03 1.01e-02 2.2519 0.1721
6 2.05e-03 2.51e-03 2.3998 0.1872
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Diger yandan, hesaplama etkinligi agisindan sabit nokta iterasyonu ile ¢oziilen (3.6.1)
formiiliinii kullanan CTBA yontemi ile cebirsel bir denklem olan (3.6.2) formiiliinii
kullanan yéntemin ihtiya¢ duydugu ¢dziim siireleri Tablo 4.2’de verilmektedir. ilk iki
stitun her iki formiille elde edilen tam ve indirgenmis ¢6ziimler arasindaki hatalari, son
ikisi ise On goriintiilerin olusturulmas: i¢in gereken islem siirelerini gostermektedir.
(3.6.1) formiiliiyle iterasyonlu (2 iterasyon) ¢oziilen dogrusal olmayan denklemin
¢oziimleriyle, (3.6.2) formiiliiyle iterasyon olmadan ¢6ziilen denklemin ¢éziimleri ile elde
edilen hatalarin neredeyse ayn1 oldugu goriilebilir, Ki bu da iterasyon olmadan elde edilen
cozlimlerin hassasiyet agisindan kabul edilebilir oldugunu gdstermektedir. CTBA
yonteminin, iterasyonsuz ihtiya¢ duydugu ¢oziim siiresinin, iterasyonlu ihtiya¢ duydugu
¢Oziim siiresinden ¢ok daha az oldugu, yani yontemin olduk¢a hizli oldugu son iki

siitundan goriilmektedir.

Sekil4.3’de,t = 0.5vet = 3.82 zamanlarindaki tam ¢éztimler ile birlikte indirgenmis
coziimler gosterilmektedir. Indirgenmis boyut k = 2 icin, her iki zamanda tam ve
indirgenmis dalgalarin birbiriyle cakistigini goriilmektedir. Bu da indirgenmis
cozlimlerin tam ¢6zlim ile ayni dalga boyuna ve dalga genligine sahip giivenilir bir dalga

yayilimi sagladigi anlamina gelmektedir ki fiziksel olarak basarili bir modelleme i¢in ¢ok

onemlidir.
0.8 :
—1t=0.5, Tam
t=0.5, Indirgenmis
| |=——=1=3.82, Tam
0.6 —=1=3.82, indirgenmis
0.4r
0.2
> "J/
0 Mo .
-0.2 '
-10 -5 0 5 10
X

Sekil 4.3 k = 2 i¢in t = 0.5, 3.82 zamanlarindaki tam/indirgenmis ¢6ziimler
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On goriintiilerle elde edilen korunan degismezler Sekil 4.4’de verilmektedir. Burada,
Sekil 4.2'deki degismezlere benzer sekilde, her degismezin farkli zamanlardaki degerleri
ile baslangi¢ degerleri arasindaki fark gosterilmektedir. Kiitlenin makine hassasiyetiyle
korundugu acikken, momentum ve Hamilton degismezlerindeki hatalar tam ¢oziimlerle
elde edilenler kadar kiigiik degildir. Model indirgeme yontemlerinde, 6zellikle de
degismezlerin korunumu acgisindan bu beklenen bir durumdur. Bu degismezlerin,
salinimlart kiigiik bir aralik i¢inde, herhangi bir kayma olmaksizin devam ettiginden,

belirtilen siire boyunca korundugu sdylenebilmektedir.
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Sekil 4.4 k = 2 i¢in indirgenmis biiyiikliiklerin korunumu
4.1.2. Tki boyutlu KdV denklemi

Bir [a, b] X [c, d] alaninda iki boyutlu KdV denklemi olarak kabul edilen
Oru = —aud,u — U(OyxxU — Oxyylh), (4.1.2.1)

denklemi literatiirde Zakharov-Kuznetsov denklemi olarak anilmaktadir. Simiilasyon igin

(4.1.2.1) denklemi (x,y,t) € [0,32] x [0,32] X [0, 5] uzay-zaman alani igin

u’(x,y) = ?21% 10 amm (cos <2m <arccot (@ 7}))) — 1>,

baslangic kosulu ile ele alinacaktir. Burada c; Ve c, soliton tipi dalga ¢6ziimlerinin hizlar

olupj = 1,2 igin
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7= (-2) + -y,

olarak tammlidir. x/ ve y/ noktalar ise baslangictaki iki dalgani en yiiksek olduklar:
tepe noktalarmm x ve y koordinatlaridir. Simiilasyonda x! = 8, x? = y! = y? = 16,
sistem parametre degerleri ise @ = 6, u = 1 olarak alinmustir. Ayriklastirma oSlgiileri
olarak Ax = Ay = 0.2286 ve At = 0.01 degerleri igin uzay-zaman ayriklastiritlmasi ile
sistemin anlik bilgilerinden alinan her t; anindaki ayrik ¢dziimlerden Y veri matrisi
olusturulmaktadir. Uzay ve zaman koordinatlari i¢in ayriklastirilmis veri matrisi,

Y = [ul...u500] € R19600X500  ceffindedir.

Baslangi¢ dalgalart Sekil 4.5 de verilmistir. Burada soldaki dalga, sagindaki dalgadan

daha hizl1 olup zaman ilerledikg¢e sagindaki dalgaya dogru ilerleyip icinden gegerek oniine

gecmektedir.
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Sekil 4.5 Baslangi¢ dalgalari

Sekil 4.6, baglangi¢ degerlerinden itibaren zaman dilimlerinde momentum I, kiitle I, ve
Hamilton (Enerji) E degerlerinin degiskenligini gostermektedir. Gozlemlenen salinimlar,
her degismez i¢in de iyi bir koruma saglandigini, kiitle i¢in ise hassasiyetin makine

hassasiyeti ile karsilastirilabilir oldugunu gostermektedir.
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Sekil 4.6 Biiyiikliiklerin tam ¢6ziim halinde korunumu

Daha sonra, Tablo 4.3’de, TBA ve CTBA yontemleri hata ve hesaplama etkinligi
acisindan karsilastirilmaktadir. Bu karsilagtirma i¢in, t = 1 zamanindaki dalgaya karsilik

100 girdi uzayr ¢dziim vektorii kullanilmaktadir. Sonuglar indirgenmis

gelen u* = u
boyutlar k = 1,...,6 i¢in sunulmaktadir. TBA ve CTBA kullanildiginda, yapilan
islemler sonucu tam ¢6ziim u* ile indirgenmis yaklasik ¢6ziim &* arasindaki olusan bagil
mutlak hatalar gosterilmektedir. Ayn1 sayida baz kullanildiginda CTBA ile daha kesin

sonuglar elde edilmistir.

Tablo 4.3 Farkli k degerleri i¢in olusan bagil mutlak hatalar

k TBA CTBA

1 9.19-01 3.60e-02
2 7.71e-01 1.80e-02
3 7.61e-01 3.58e-02
4 7.59%-01 1.79e-02
5 6.86e-01 3.56e-02
6 3.83e-01 1.84e-02

Diger yandan, hesaplama etkinligi a¢isindan, sabit nokta iterasyonu ile ¢6ziilen (3.6.1)
formiliinii kullanan CTBA yontemi ile cebirsel bir denklem olan (3.6.2) formiiliinii
kullanan yéntemin ihtiya¢ duydugu ¢dziim siireleri Tablo 4.4’de verilmektedir. ilk iki
siitun her iki formiille elde edilen tam ve indirgenmis ¢oziimler arasindaki hatalari, son

ikisi ise On gorilintiilerin olusturulmasi i¢in gereken islem siirelerini gdstermektedir.
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(3.6.1) formiiliiyle iterasyonlu (2 iterasyon) ¢oziilen dogrusal olmayan denklemin
¢oziimleriyle, (3.6.2) formiiliiyle iterasyon olmadan ¢6ziilen denklemin ¢éziimleri ile elde
edilen hatalarin neredeyse ayni oldugu goriilebilir, bu da iterasyon olmadan elde edilen
cOzlimlerin hassasiyet ac¢isindan kabul edilebilir oldugunu gostermektedir. CTBA
yonteminin, iterasyonsuz ihtiya¢ duydugu ¢6zlim siiresinin, iterasyonlu ihtiya¢ duydugu
¢Oziim siiresinden olduk¢a daha az oldugu, yani yontemin olduk¢a hizli oldugu son iki

siitunda goriilmektedir.

Tablo 4.4 Farkli k degerleri i¢in olusan bagil mutlak hatalar ve ¢dziim siireleri

Mutlak Bagil Hata Islem Siiresi
iterasyonlu iterasyonsuz iterasyonlu iterasyonsuz
k (formiil 3.6.1) (formiil 3.6.2) (formiil 3.6.1) (formiil 3.6.2)
1 3.60e-02 3.60e-02 72.9980 10.7240
2 1.80e-02 1.79e-02 35.6080 13.4720
3 3.58e-02 3.56e-02 11.2200 1.8450
4 1.79e-02 1.75e-02 12.0040 1.5960
5 3.56e-02 3.50e-02 15.6960 1.6130
6 1.84e-02 1.77e-02 16.0200 1.6970

Sekil 4.7°de, t = 5 zamanindaki tam ¢6ziimler ile birlikte indirgenmis ¢oziimlerin
profilleri gosterilmektedir. indirgenmis boyut k = 2 igin, tam ve indirgenmis dalgalarin
birbiriyle ¢akistigr goriilmektedir. Bu da indirgenmis ¢oziimlerin tam ¢déziim ile aym

dalga davranigina sahip olup ayni dalga yayilimi sagladigi anlamina gelmektedir.
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Sekil 4.7 k = 2 i¢in t = 5 zamanindaki tam/indirgenmis ¢oztimler

On goriintiilerle elde edilen korunan degismezler Sekil 4.8’de verilmektedir. Burada,
Sekil 4.6'daki degismezlere benzer sekilde, her iki degismezin farkli zamanlardaki
degerleri ile baslangig degerleri arasindaki fark gosterilmektedir. Kiitlenin makine
hassasiyetiyle korundugu agikken, momentum ve Hamilton degismezlerindeki hatalar
tam ¢ozlimlerle elde edilenler kadar kiiciik degildir. Model indirgeme ydntemlerinde,
Ozellikle de degismezlerin korunumu agisindan bu beklenen bir durumdur. Bu
degismezlerin, salinimlar1 kii¢lik bir aralik i¢inde, herhangi bir kayma olmaksizin devam

ettiginden, belirtilen siire boyunca korundugunu sdylenebilmektedir.
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Sekil 4.8 k = 2 i¢in indirgenmis biiyiikliiklerin korunumu
4.1.3. Bir boyutlu NLS denklemi

Bir boyutlu NLS denklemi (2.1.1.2) formunda, (x,t) € [—20,60] x [0, 7] uzay-zaman

alani i¢in

P°(x) = sech(x)e’,
baslangi¢c kosulu ve p =1, f = 2.5 parametre degerleri i¢in simule edilecektir. NLS
denklemi (2.1.1.3) formunda gergel degerli bagimli degiskenlerin sistemi olarak

alindiginda, ilgili baslangi¢ kosullar
p°(x) = sech(x) cos(x),
q°(x) = sech(x) sin(x),

olarak gerceklesir. Ayriklagtirma olciileri olarak Ax = 0.08 ve At = 0.01 degerleri i¢in
uzay-zaman ayriklastirilmasi ile sistemin anlik bilgilerinden alinan her t; anindaki ayrik
¢oziimlerden Y veri matrisi olusturulmaktadir. Uzay ve zaman koordinatlari igin
ayriklagtirilmis  veri matrisi, w/ = ((p/)7, (q/)")" € R?°°0 vektorleri icin Y =

1 .W700] € RZOOOX7OO

(wh.. seklinde yazilir.

Sekil 4.9, baslangi¢ degerlerinden itibaren zaman dilimlerinde momentum I, kiitle I, ve
Hamilton (Enerji) E degerlerinin degiskenligini gostermektedir. Gozlemlenen salinimlar,

her degismez i¢in de iyi bir koruma saglandigin1 géstermektedir.
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Sekil 4.9 Biiyiikliiklerin tam ¢6ziim halinde korunumu

Daha sonra, Tablo 4.5’te, TBA ve CTBA hata ve hesaplama etkinligi acisindan

karsilastirilmaktadir. Bu karsilastirma i¢in, t = 2 zamanindaki dalgaya karsilik gelen

w* = w?% girdi uzay1 ¢oziim vektorii kullanilmaktadir. Sonuglar indirgenmis boyutlar
k = 1,..., 6 1cin sunulmaktadir. TBA ve CTBA kullanildiginda, yapilan islemler sonucu
tam ¢Oziim w" ile indirgenmis yaklasik ¢O6ziim W* arasindaki olusan
|lw* — w*||, bagil mutlak hatalar gosterilmektedir. Ayni1 sayida baz kullanildiginda

CTBA ile daha kesin sonuclar elde edilmistir.

Tablo 4.5 Farkli k degerleri igin olugan bagil mutlak hatalar

k TBA CTBA
1 9.29e-01 1.41e-02
2 5.98e-01 6.64e-03
3 5.97e-01 1.33e-02
4 4.60e-01 7.446-03
5 2.77e-01 1.42-02
6 2.48e-01 8.65e-03

Diger yandan, hesaplama verimliligi agisindan, sabit nokta iterasyonu ile ¢oziilen (3.6.1)
formiiliinii kullanan CTBA yontemi ile cebirsel bir denklem olan (3.6.2) formiiliinii
kullanan ydntemin gerektirdigi ¢oziim siireleri Tablo 4.6’da sunulmaktadur. Ilk iki siitun,

her iki formiille elde edilen tam ve indirgenmis ¢éziimler arasindaki hatalar1 gosterirken,
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son iki siitun 6n goriintiilerin olusturulmasi i¢in gereken islem stirelerini yansitmaktadir.
(3.6.1) formiiliiyle iterasyonlu (4-6 iterasyon) ¢oziilen dogrusal olmayan denklemin
¢oziimleriyle, (3.6.2) formiiliiyle iterasyon olmadan ¢6ziilen denklemin ¢éziimleri ile elde
edilen hatalarin neredeyse ayni oldugu gozlemlenmektedir; bu durum, iterasyonsuz
cozlimlerin hassasiyet agisindan yeterli oldugunu gostermektedir. Ayrica, CTBA
yonteminin iterasyonsuz olarak ihtiya¢ duydugu ¢oziim siiresinin, iterasyonlu ¢oziime
kiyasla ¢cok daha az oldugu, yani yontemin oldukca hizli oldugu son iki siitunda agikca

gorilmektedir.

Tablo 4.6 Farkli k degerleri i¢in olusan bagil mutlak hatalar ve ¢6ziim stireleri

Mutlak Bagil Hata Islem Siiresi
iterasyonlu iterasyonsuz iterasyonlu iterasyonsuz
k (formiil 3.6.1) (formiil 3.6.2) (formiil 3.6.1) (formiil 3.6.2)
1 1.41e-02 1.41e-02 1.8350 0.1210
2 6.64e-03 6.09e-03 1.8600 0.2910
3 1.33e-02 1.21e-02 1.8680 0.2320
4 7.44e-03 4.63e-03 2.1730 0.3280
5 1.42e-02 1.06e-02 2.5240 0.2730
6 8.65e-03 2.02e-03 3.5320 0.2890

Sekil 4.10°da, t = 0 ile t = 2 zaman araliginda tam ¢oziimler ile olusan dalga profili ile

birlikte indirgenmis ¢6ziimler ile olusan dalga profili gosterilmektedir.
Not: NLS denklemi i¢in bir t amndaki dalga |P(t)| = /p(t)? + q(t)? formiiliiyle
hesaplanmaktadir.

Indirgenmis boyut k = 2 icin belirlenen zaman araliginda tam ve indirgenmis dalgalarin
birbiriyle cakistigr goriilmektedir. Bu da indirgenmis ¢oziimlerin tam ¢oziim ile ayni
dalga davranigina sahip giivenilir bir dalga yayilimi sagladigi anlamima gelmektedir ki

fiziksel olarak basarili bir modelleme igin ¢ok onemlidir.
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Sekil 4.10 k = 2 i¢in tam/indirgenmis dalga profilleri

On goriintiilerle elde edilen korunan degismezler Sekil 4.11°de sunulmaktadir. Sekil
4.9'da gosterilen degismezlere benzer sekilde, her iki degismezin farkli zamanlardaki
degerleri ile baslangic degerleri arasindaki fark burada da gosterilmektedir. Tim
degismezlerin, tam ¢oziimlerle elde edilenler kadar hassa olmasa da, benzer sekilde
korundugu goriilmektedir. Model indirgeme yontemlerinde, ozellikle degismezlerin
korunumu s6z konusu oldugunda, bu beklenen bir durumdur. Ancak, bu degismezlerin
kiictik bir aralik i¢cinde salindig1 ve herhangi bir kayma olmaksizin sabit kaldig, belirtilen

siire boyunca korundugu sodylenebilir.
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Sekil 4.11 k = 2 igin indirgenmis biiylikliiklerin korunumu
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4.1.4. ki boyutlu NLS denklemi

Iki boyutlu NLS denklemi (2.1.1.2) formunda, (x,y,t) € [—8,8] x [-8,8] X [0, 3]
uzay-zaman alani igin

. ) _(xz +y2)
Y x) = \/—Ee z o,
baslangi¢ kosulu ile ele alinacaktir. NLS denklemi (2.1.1.3) formunda gergel degerli

bagimli degiskenlerin sistemi olarak alindiginda, ilgili baslangic kosullar1

o 1 (%)
X)=—e 2 ,
r"(x) =
q°(x) =0,
olarak gerceklesir. Simiilasyonda sistem parametre degerleri u = 0.5, f = —1 olarak

alimmistir. Ayriklastirma Olgiileri olarak Ax = Ay = 0.5 ve At = 0.01 degerleri i¢in
uzay-zaman ayriklastirilmasi ile sistemin anlik bilgilerinden alinan her t;, anindaki ayrik
¢ozlimlerden Y veri matrisi olusturulmaktadir. Uzay ve zaman koordinatlari igin
ayriklagtirilmig veri matrisi, w/ = ((p))7, (¢/)")T € R?%48 vektorleri icin

Y = [w!..w3%0] € R2048%300 seklindedir.

Sekil 4.12, baslangi¢ degerlerinden itibaren zaman dilimlerinde momentum I, kiitle I, ve
Hamilton E degerlerinin degiskenligini gostermektedir. Gozlemlenen salinimlar, her

degismez igin de iyi bir koruma saglandigini, momentum igin ise hassasiyetin makine

hassasiyeti ile karsilastirilabilir oldugunu gostermektedir.
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Sekil 4.12 Biiyiikliiklerin tam ¢6ziim halinde korunumu
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Daha sonra, Tablo 4.7°de, TBA ve CTBA yontemleri hata ve hesaplama etkinligi
acisindan karsilastirilmaktadir. Bu karsilastirma i¢in, t = 1 zamanindaki dalgaya karsilik
gelen w* = w1 girdi uzay: ¢6ziim vektorii kullanilmaktadir. Sonuglar indirgenmis
boyutlar k = 1,...,6 icin sunulmaktadir. TBA ve CTBA kullanildiginda, yapilan
islemler sonucu tam ¢oziim w* ile indirgenmis yaklasik ¢o6ziim w* arasindaki olusan
|lw* — w*||, bagil mutlak hatalar gosterilmektedir. Ayni sayida baz kullanildiginda
CTBA ile daha kesin sonuglar elde edilmistir.

Tablo 4.7 Farkli k degerleri i¢in olusan bagil mutlak hatalar

k TBA CTBA

1 5.68e-01 2.58e-02
2 1.43e-01 1.27e-02
3 1.41e-01 2.49e-02
4 5.29e-02 1.16e-02
5 6.03e-02 2.38e-02
6 3.48e-02 1.63e-03

Diger yandan, hesaplama verimliligi agisindan, sabit nokta iterasyonu ile ¢oziilen (3.6.1)
formiiliinii kullanan CTBA yontemi ile cebirsel bir denklem olan (3.6.2) formiiliinii
kullanan yéntemin ihtiya¢ duydugu ¢oziim siireleri Tablo 4.8’de sunulmaktadir. Ilk iki
siitun, her iki formiille elde edilen tam ve indirgenmis ¢oziimler arasindaki hatalari
gosterirken, son iki siitun 6n goriintiilerin olusturulmasi i¢in gereken islem siirelerini
gostermektedir. iterasyonla (2 iterasyon) ¢éziilen dogrusal olmayan denklem (3.6.1) ile
iterasyon gerektirmeyen denklem (3.6.2) arasindaki hatalarin neredeyse ayni oldugu
goriilmektedir. Bu, iterasyon olmadan elde edilen ¢oziimlerin hassasiyet acisindan kabul
edilebilir oldugunu gosterir. CTBA yonteminin iterasyonsuz ¢6ziim siiresinin, iterasyonlu
¢Ozilim siiresinden olduk¢a daha az oldugu, yani yontemin olduk¢a hizli oldugu, son iki

stitunda agik¢a goriilmektedir.
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Tablo 4.8 Farkli k degerleri i¢in olusan bagil mutlak hatalar ve ¢oziim stireleri

Mutlak Bagil Hata Islem Siiresi
Iterasyonlu Iterasyonsuz Iterasyonlu Iterasyonsuz
k (formiil 3.6.1) (formiil 3.6.2) (formiil 3.6.1) (formiil 3.6.2)
1 2.58e-02 2.58e-02 2.7680 10.6040
2 1.27e-02 1.27e-02 0.8590 11.4970
3 2.49e-02 2.48e-02 1.1030 0.5840
4 1.16e-02 1.17e-02 1.3340 0.3420
5 2.38e-02 2.38e-02 1.5960 0.2200
6 1.63e-03 1.66e-03 1.7070 0.2340

Sekil 4.13’te, t = 0.5 ve t = 3 zamanlarindaki tam ¢oziimler ile birlikte indirgenmis
¢oziimlerin profilleri gosterilmektedir. Indirgenmis boyut k = 2 igin, tam ve
indirgenmis dalgalarin birbiriyle ¢akistig1 goriilmektedir. Bu da indirgenmis ¢éztimlerin
tam ¢oziim ile ayn1 dalga davranigina sahip oldugu anlamma gelmektedir ki fiziksel

olarak basarili bir modelleme i¢in ¢ok onemlidir.

Tam, t=0.5 Tam, t=3
0.6
5 5 0.6
0.4
- 0 - 0 0.4
0.2 0.2
-5 -5
Indlrgenm|§, t=0.5 Indlrgenm|§, t=3
0.6
5 5 06
0.4
-0 -0 0.4
0.2 0.2
-5 -5

X X

Sekil 4.13 k = 2 igin t = 0.5 ve t = 3 zamanlarindaki tam/indirgenmis dalga profilleri
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Ote yandan, 6n gériintiilerle elde edilen korunan degismezler Sekil 4.14’te verilmektedir.
Burada, Sekil 4.12'deki degismezlere benzer sekilde, degismezin farkli zamanlardaki
degerleri ile baslangi¢ degerleri arasindaki fark gosterilmektedir. Momentumun makine
hassasiyetiyle korundugu agikken, kiitle ve Hamilton degismezlerindeki hatalar tam
coziimlerle elde edilenler kadar kiiciikk degildir. Model indirgeme yoOntemlerinde,
ozellikle de degismezlerin korunumu agisindan bu beklenen bir durumdur. Bu
degismezlerin, salinimlari kii¢iik bir aralik i¢inde, herhangi bir kayma olmaksizin devam

ettiginden, belirtilen siire boyunca korundugunu séylenebilmektedir.

%107'® Momentum «10%  Kitle %10 Hamilton
3 ‘ ‘ 8 - - 15 - ‘
2 6 10
jﬂr
il
S 1 '" {8 4 S
i o
= ‘.n\w W = < 0
_—~ 0O L\M 1 r N2y 1 W
Wl o
. o
2 -2 : 5
1 2 3 1 2 3 1 2 3

Sekil 4.14 k = 2 igin indirgenmis biiyilikliiklerin korunumu

4.2. Gradyan Sistemler

Gradyan sistemlerin incelenmesinde bir ve iki boyutlu AC ile iki boyutlu SH denklemi

ele alinacaktir.
4.2.1. Bir boyutlu AC denklemi

Bir boyutlu (2.1.2.1) AC denklemi, (x,t) € [0,2m] X [0, 600] uzay-zaman alani igin
u%(x) = 0.8 + sinx,

baslangi¢ dalgasi ve € = 0.0256 parametre degeri i¢in simule edilecektir. Ayriklagtirma
oOl¢iileri olarak Ax = m/100 ve At = 0.5 degerleri i¢in uzay-zaman ayriklastiriimasi ile
sistemin anlik bilgilerinden alinan her t; anindaki ayrik ¢oziimlerden Y veri matrisi
olusturulmaktadir. Uzay ve zaman koordinatlar1 i¢in ayriklagtirllmig veri matrisi

Y = [ul ... ut?%0] g R200%1200 g¢eklinde yazilir. Tam ¢dziimlerin t = 0,250,400,500
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zamanlarindaki grafik ¢izimleri Sekil 4.15de verilmis olup, [0, 600] zaman araligindaki
¢oziim profili Sekil 4.16’da verilmistir. AC denklemi, ele alinan potansiyel fonksiyonu
F(u) = (u? — 1)?/4 igin, faz ayrim adiyla amlan ve ¢dziimlerinin bir denge alanindan
digerine gectigi bir kararli (u = 0) ve iki kararsiz (u = +1) denge alanina sahiptir. iki
kararsiz denge alami arasindaki ara ylizeyler uzun zaman araligi boyunca boélgeler
tizerinde hareket eder, ki bu duruma meta-kararlilik fenomeni denir (Karasdzen vd.,

2018). S6z konusu meta-kararlilik durumu Sekil 4.16’da gézlemlenebilmektedir.

2 . . . . . .
—t=0
—1=250
——1=400
Of —1t=500
-1 ' : :

Sekil 4.15 t = 0,250,400,500 zamanlarindaki dalga grafikleri

600
1.5
500
400 1
200 0
100 0.5
% 2 4 6

Sekil 4.16 Tam ¢6ziim profili
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Tablo 4.9°da, TBA ve CTBA yontemleri hata ve hesaplama etkinligi agisindan

karsilastirilmaktadir. Bu karsilastirma i¢in, t = 2 zamanindaki ¢oziime karsilik gelen

*

u 100

=u girdi uzay1 ¢6ziim vektorii kullanilmaktadir. Sonuglar indirgenmis boyutlar
k = 1,...,6i¢in sunulmaktadir. TBA ve CTBA kullanildiginda, yapilan islemler sonucu
tam ¢Oziim u” ile indirgenmis yaklasik ¢6ziim #* arasindaki olusan bagil mutlak hatalar
gosterilmektedir. Ayni1 sayida baz kullanildiginda CTBA ile daha kesin sonuglar elde

edilmistir.

Tablo 4.9 Farkli k degerleri i¢in olusan bagil mutlak hatalar

k TBA CTBA
1 7.31e-01 1.41e-02
2 3.84e-01 6.79e-03
3 3.44e-01 1.34e-02
4 2.87e-01 1.16e-02
5 1.35e-01 9.87¢-03
6 7.78e-02 2.05e-03

Ote yandan, hesaplama etkinligi acisindan, sabit nokta iterasyonu ile ¢oziilen (3.6.1)
formiiliinii kullanan CTBA yontemi ile cebirsel bir denklem olan (3.6.2) formiiliinii
kullanan yontemin ihtiya¢ duydugu ¢oziim siireleri Tablo 4.10°da verilmektedir. ilk iki
stitun her iki formiille elde edilen tam ve indirgenmis ¢6ziimler arasindaki hatalari, son
ikisi ise On goriintiilerin olusturulmasi i¢in gereken islem siirelerini gostermektedir.
(3.6.1) formiiliiyle iterasyonlu (2-3 iterasyon) ¢oziilen dogrusal olmayan denklemin
¢ozlimleriyle, (3.6.2) formiiliiyle iterasyon olmadan ¢o6ziilen denklemin ¢oziimleri ile elde
edilen hatalarin neredeyse ayni oldugu goriilebilir, bu da iterasyon olmadan elde edilen
¢coziimlerin hassasiyet agisindan kabul edilebilir oldugunu gostermektedir. CTBA
yonteminin, iterasyonsuz ihtiya¢ duydugu ¢oziim siiresinin, iterasyonlu ihtiya¢ duydugu
¢oziim siiresinden ¢cok daha az oldugu, yani yontemin olduk¢a hizli oldugu son iki siitunda

gorilmektedir.
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Tablo 4.10 Farkli k degerleri igin olusan bagil mutlak hatalar ve ¢6ziim siireleri

Mutlak Bagil Hata Islem Siiresi
Iterasyonlu Iterasyonsuz Iterasyonlu Iterasyonsuz
k (formiil 3.6.1) (formiil 3.6.2) (formiil 3.6.1) (formiil 3.6.2)
1 1.41e-02 1.41e-02 3.9634 0.1026
2 6.79e-03 6.83e-03 1.9047 0.1630
3 1.34e-02 1.35e-02 2.1734 0.1660
4 1.16e-02 1.17e-02 1.8595 0.1932
5 9.87e-03 1.01e-02 2.2519 0.1721
6 2.05e-03 2.51e-03 2.3998 0.1872

Sekil 4.17, t = 250 ve t = 500 zamanlarindaki tam ¢oziimlerle birlikte indirgenmis
coziimleri gostermektedir. Indirgenmis boyut k = 2 icin, her iki zamanda tam ve
indirgenmis ¢oziimlerin birbiriyle ¢akistigir goriilmektedir. Tam ve indirgenmis ¢oziim
profilleri Sekil 4.18de verilmistir. Sekillerden, tam ve indirgenmis ¢6ziimlerin gakistigi,

ve dolayisiyla ayn1 faz gecisi davranisini gésterdigi gozlemlenmistir.

_0.5 |—t=250, Full
=250, Reduced

—t=500, Full

-1 f==t=500, Reduced

Sekil 4.17 k = 2 i¢in t = 250, 500 zamanlarindaki tam/indirgenmis ¢6ziimler
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Tam indirgenmis

Sekil 4.18 k = 2 i¢in tam/indirgenmis ¢6ztim profilleri

Ote yandan, tam ¢oziimler ile 6n goriintiilerle elde edilen enerji grafikleri Sekil 4.19°da

verilmektedir. Her iki grafikte de ayni enerji azalma davranisinin gergeklestigi

goriilmektedir.
Tam indirgenmi
2.5 - - 2.5 ‘ 9 $
2 2
1.5} 1 1.5¢
] ]
1 1
0.5 1 0.5
0 : : 0 : :
0 200 400 600 0 200 400
t t

Sekil 4.19 Tam enerji ile k = 2 i¢in indirgenmis enerji
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4.2.2. ki boyutlu AC denklemi

Iki boyutlu (2.1.2.1) AC denklemi (x,y,t) € [0,2r] x [0,2n] x [0,5] uzay-zaman

alaninda

uo(x) = elsinx+siny)=2 4 9 7o—(sinx+siny)-2 4 1

Baslangi¢ kosulu ve € = 0.0025 parametre degeri i¢in simule edilecektir. Ayriklastirma
Olclileri olarak Ax =Ay =m/32 ve At =0.01 degerleri i¢in uzay-zaman
ayriklastirilmasi ile sistemin anlik bilgilerinden alinan her t;, anindaki ayrik ¢6ziimlerden
Y veri matrisi olusturulmaktadir. Uzay ve zaman koordinatlari i¢in ayriklastirilmis veri

matrisi, Y = [u! ... u>%0] € R*096%500  seklindedir.

Tablo 4.11°de, TBA ve CTBA yontemleri hata ve hesaplama etkinligi agisindan
karsilastirilmaktadir. Bu karsilastirma i¢in, t = 2 zamanindaki ¢oézlime karsilik gelen
u* = u'% girdi uzayr ¢oziim vektorii kullanilmaktadir. Sonuglar indirgenmis boyutlar
k = 1,...,61i¢in sunulmaktadir. TBA ve CTBA kullanildiginda, yapilan islemler sonucu
tam ¢Oziim u* ile indirgenmis yaklasik ¢6ziim U#* arasindaki olusan bagil mutlak hatalar
gosterilmektedir. Ayni sayida baz kullanildiginda CTBA ile daha kesin sonuglar elde

edilmistir.

Tablo 4.11 Farkli k degerleri igin olusan bagil mutlak hatalar

k TBA CTBA
1 2.80e-01 2.50e-03
2 8.22e-02 1.49¢-03
3 4.78e-02 3.28e-03
4 2.13e-02 1.92e-03
5 6.53e-03 2.45e-03
6 3.54e-03 1.37e-03

Hesaplama etkinligi agisindan, sabit nokta iterasyonu ile ¢oziilen (3.6.1) formiiliinii
kullanan CTBA yoOntemi ile cebirsel bir denklem olan (3.6.2) formiiliinii kullanan
yontemin ihtiya¢ duydugu ¢dziim siireleri Tablo 4.12°de verilmektedir. 1k iki siitun her
iki formiille elde edilen tam ve indirgenmis ¢dzlimler arasindaki hatalari, son ikisi ise 6n
goriintlilerin  olusturulmast i¢in gereken islem siirelerini gostermektedir. (3.6.1)
formiiliiyle iterasyonlu (2 iterasyon) ¢oziilen dogrusal olmayan denklemin ¢oziimleriyle,

(3.6.2) formiiliiyle iterasyon olmadan ¢oziilen denklemin g¢oziimleri ile elde edilen
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hatalarin neredeyse ayni oldugu goriilebilir, bu da iterasyon olmadan elde edilen

cozlimlerin hassasiyet agisindan kabul edilebilir oldugunu gostermektedir. CTBA

yonteminin, iterasyonsuz ihtiya¢ duydugu ¢6zlim siiresinin, iterasyonlu ihtiya¢ duydugu

¢oziim siiresinden olduk¢a daha az oldugu, yani yontemin oldukga hizli oldugu son iki

stitunda goriilmektedir.

Tablo 4.12 Farkli k degerleri igin olusan bagil mutlak hatalar ve ¢6ziim siireleri

Mutlak Bagil Hata Islem Siiresi
Iterasyonlu Iterasyonsuz Iterasyonlu Iterasyonsuz
k (formiil 3.6.1) (formiil 3.6.2) (formiil 3.6.1) (formiil 3.6.2)
1 2.50e-03 3.80e-03 2.2090 1.0310
2 1.49e-03 1.89e-03 1.7000 1.2470
3 3.28e-03 3.77e-03 2.2340 0.9070
4 1.92e-03 1.82e-03 2.6700 0.7160
5 2.45e-03 3.66e-03 3.2030 0.8110
6 1.37e-03 1.68e-03 3.5700 0.8230

Sekil 4.20°de, t = 5 zamanindaki tam ¢oziimler ile birlikte indirgenmis ¢oziimlerin

profilleri gosterilmektedir. Indirgenmis boyut k = 2 igin, tam ve indirgenmis

¢oztimlerin birbiriyle benzer oldugu goriilmektedir. Bu da indirgenmis ¢éziimlerin tam

¢oziim ile ayn1 davraniga sahip oldugu anlamina gelmektedir.

Tam, t=5

Indirgenmis, t=5

105

Sekil 4.20 k = 2 i¢in t = 5 zamanindaki tam/indirgenmis ¢6ziim profilleri
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Ote yandan, tam ¢dziimler ve 6n goriintiilerle elde edilen enerji grafikleri Sekil 4.21°de
verilmektedir. Burada, bir boyutlu AC denklemindekine benzer sekilde her iki grafikte de

ayni enerji azalma davranisinin gerceklestigi agik¢a goriilmektedir.

o Tam o Indirgenmis
6
=4
2
0 0
0 1 2 3 4 5 0 1 2 3 4 5
t t

Sekil 4.21 Tam enerji ile k = 2 i¢in indirgenmis enerji
4.2.3. Tki boyutlu SH denklemi

Iki boyutlu (2.1.2.2) SH denklemi, (x,y,t) € [0,100] x [0,100] x [0, 10] uzay-zaman
alan1 i¢in simule edilecektir. Baslangi¢ kosulu olarak, rand() fonksiyonu [0,1] araliginda

esit dagilimli rastgele say1 fonksiyonu olmak iizere
u°(x,y) = 0.4 + 0.01/u(2rand() — 1),

fonksiyonu alinmistir. Sistemdeki doniisiim degiskeni olan ikinci degisken v i¢in yar1
ayrik formdaki baslangi¢ kosulu ise, ilgili doniisiim geregi v° = u® + Au® olarak
alinmistir. Ayrica, u = 0.3 parametre degeri ve ayriklastirma olciileri olarak Ax = Ay =
3.125 ve At = 0.01 degerleri i¢in uzay-zaman ayriklastirilmas: ile sistemin anlik

bilgilerinden alinan her t; anindaki ayrik ¢oztimlerden Y veri matrisi olusturulmaktadir.

1 1000] =

Uzay ve zaman koordinatlari igin ayriklagtirilmis veri matrisi, ¥ = [u

R1024%1000  geklindedir.

.U

Tablo 4.13°de, TBA ve CTBA yontemleri hata ve hesaplama etkinligi agisindan
karsilastirilmaktadir. Bu karsilastirma i¢in, ¢ = 2 zamanindaki ¢oziime karsilik gelen
w* = u'® girdi uzay: ¢oziim vektodrii kullamlmaktadir. Sonuglar indirgenmis boyutlar
k = 1,..., 61i¢in sunulmaktadir. TBA ve CTBA kullanildiginda, yapilan islemler sonucu

tam ¢Oziim u* ile indirgenmis yaklagik ¢oziim #* arasindaki bagil mutlak hatalar
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gosterilmektedir. Ayni sayida baz kullanildiginda CTBA ile daha kesin sonuglar elde

edilmistir.

Tablo 4.13 Farkli k degerleri igin olusan bagil mutlak hatalar

k TBA CTBA
1 2.80e-01 2.50e-03
2 8.22e-02 1.49¢-03
3 4.78e-02 3.28e-03
4 2.13e-02 1.92e-03
5 6.53e-03 2.45e-03
6 3.54e-03 1.37e-03

Hesaplama etkinligi agisindan, sabit nokta iterasyonu ile ¢oziilen (3.6.1) formiiliinii
kullanan CTBA yontemi ile cebirsel bir denklem olan (3.6.2) formiiliinii kullanan
yontemin ihtiya¢ duydugu ¢dziim siireleri Tablo 4.14°de verilmektedir. 1k iki siitun her
iki formiille elde edilen tam ve indirgenmis ¢ozlimler arasindaki hatalari, son ikisi ise 6n
goriintlilerin  olusturulmast i¢in gereken islem siirelerini gostermektedir. (3.6.1)
formiiliiyle iterasyonlu (3 iterasyon) ¢oziilen dogrusal olmayan denklemin ¢oziimleriyle,
(3.6.2) formiiliiyle iterasyon olmadan ¢oziilen denklemin g¢oziimleri ile elde edilen
hatalarin neredeyse ayni oldugu gorilebilir, bu da iterasyon olmadan elde edilen
cozlimlerin hassasiyet agisindan kabul edilebilir oldugunu gostermektedir. CTBA
yonteminin, iterasyonsuz ihtiya¢ duydugu ¢oziim siiresinin, iterasyonlu ihtiya¢ duydugu
¢oziim siiresinden olduk¢a daha az oldugu, yani yontemin oldukga hizli oldugu son iki

siitunda goriilmektedir.

Tablo 4.14 Farkli k degerleri i¢in olusan bagil mutlak hatalar ve ¢oziim siireleri

Mutlak Bagil Hata Islem Siiresi
Iterasyonlu Iterasyonsuz Iterasyonlu Iterasyonsuz
k (formiil 3.6.1) (formiil 3.6.2) (formiil 3.6.1) (formiil 3.6.2)
1 2.50e-03 3.80e-03 2.2090 1.0310
2 1.49e-03 1.89e-03 1.7000 1.2470
3 3.28e-03 3.77e-03 2.2340 0.9070
4 1.92e-03 1.82e-03 2.6700 0.7160
5 2.45e-03 3.66e-03 3.2030 0.8110
6 1.37e-03 1.68e-03 3.5700 0.8230

66



Sekil 4.22’de,t = 0 anindaki rastgele baslangi¢ deseni ve t = 10 zamanindaki tam
¢oziimleri ile birlikte indirgenmis ¢oziimlerin olusturdugu desenler gosterilmektedir.
Indirgenmis boyut k = 2 i¢in, tam ve indirgenmis desenlerin birbiriyle benzer oldugu

goriilmektedir. Bu da indirgenmis ¢éziimlerin tam ¢dziim ile ayni davraniga sahip oldugu

anlamina gelmektedir.

Tam, t=10 Indugennu§t

7,. 7/,3 00 ?,‘ ’Mi W

" > l 0

40",;, 'l ;/"' ', 1
p q 2 ” ~
4 50' 10
X X X

Sekil 4.22 Baslangic profili ile t = 10 zamanindaki tam ve k = 2 i¢in indirgenmis

¢oztim profilleri

Son olarak, tam ¢oziimlerle ve 6n goriintiilerle elde edilen enerji grafikleri Sekil 4.23°de
sunulmaktadir. Sekilden, tam ve indirgenmis ¢6ziimlerle elde edilen enerjilerin ayni

sekilde azalarak devam ettigi goriilmektedir.

Tam indirgenmis

800 800

600 600

. 400 . 400
i} i}

200 200

0 0

-200 -200

0 5 10 0 5 10
t t

Sekil 4.23 Tam enerji ile k = 2 i¢in indirgenmis enerji
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4.3. Anti-Gradyan Sistemler

Anti-Gradyan sistemlerin incelenmesinde bir ve iki boyutlu FHN denklemleri, dnceki

orneklerin aksine homojen Neumann sinir kosullar1 altinda ele alinacaktir.
4.3.1. Bir boyutlu FHN denklemi

Bir boyutlu (2.1.3.1) FHN denklemi,(x,t) € [—60,60] X [0, 50] uzay-zaman alani i¢in
u°(x) = tanh(x), v°(x) = —0.6,

baslangi¢ kosullarivet; =7, = 125, yy =1, u, =125, y =08, ¢=0.7, § =1/3
parametre degerleri i¢in simule edilecektir. Ayriklastirma 6l¢iileri olarak Ax = 0.12 ve
At = 0.1 degerleri ig¢in uzay-zaman ayriklastirilmasi ile Sistemin anlik bilgilerinden
alinan her t; anindaki ayrik ¢6ziimlerden Y veri matrisi olusturulmaktadir. Uzay ve

zaman koordinatlar1 i¢in ayriklastirilmis  veri matrisi, w/ = ((w)T, @)1 €

]RZOOO 500] € ]RZOOOXSOO

vektorleriicin Y = [w! ..w seklinde yazilir.

Sekil 4.24’de, t = 0,10,30,50 zamanlarindaki tam ¢oziimler ile birlikte indirgenmis
coziimler gosterilmektedir. Indirgenmis boyut k = 2 igin, verilen zamanlardaki tam ve
indirgenmis ¢ozlimlerin birbiriyle ¢akistigr goriilmektedir. Bu da indirgenmis ¢éziimlerin

giivenilir oldugu anlamina gelmektedir.

t=0 t=10
1.5 T T T T 1 " T T
—Tamu =——Tamu
4[| Indirgenmis u P indirgenmis u
—Tamyv [ —Tamyv
== Indirgenmig v 0.5 f|==Indirgenmis v
051 !
of
O o
-0.5¢
-1 ‘ ‘ L : : -0.5 ‘ : : : :
-60 40 -20 0 20 40 60 -60 40 -20 0 20 40 60
X X
t=30 t=50
1 0.5
051 / —Tamu —Tamu
indirgenmis u or indirgenmis u| |
~—Tamyv —Tamyv
or —= indirgenmis v == indirgenmig v
0.5 -0.5
-60 40 -20 0 20 40 60 -60 40 -20 0 20 40 60

Sekil 4.24 k = 2i¢cint = 0,10,30,50 zamanlarindaki tam/indirgenmis ¢oziimler
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Sekil 4.25, baslangig degerlerinden itibaren tam ve indirgenmis enerji degisimleri
gosterilmektedir. Her iki grafikte de enerji degisimi ayni davaranisi gostermekte olup
beklendigi gibi monoton bir azalma veya korunma goriilmemektedir.

Tam indirgenmi
40 ‘ : ‘ : 40 : rgenmis

Sekil 4.25 Tam enerji ile k = 2 i¢in indirgenmis enerji

Tablo 4.15’te, TBA ve CTBA yontemleri hata ve hesaplama etkinligi agisindan
karsilastirilmaktadir. Bu karsilagtirma i¢in, t = 2 zamanindaki ¢ozlime karsilik gelen
w* = wl% girdi uzay ¢dziim vektorii kullanilmaktadir. Sonugclar indirgenmis boyutlar
k = 1,...,6i¢in sunulmaktadir. TBA ve CTBA kullanildiginda, yapilan islemler sonucu
tam ¢Oziim w* ile indirgenmis yaklasik ¢oziim w* arasindaki bagil mutlak hatalar
gosterilmektedir. Ayni sayida baz kullanildiginda CTBA ile daha kesin sonuglar elde

edilmistir.

Tablo 4.15 Farkli k degerleri igin olusan bagil mutlak hatalar

k TBA CTBA
1 4.13e-01 5.35e-03
2 1.63e-01 4.02e-03
3 1.43e-02 7.466-03
4 1.326-02 3.92e-03
5 1.07e-02 7.78e-03
6 8.49e-04 3.55e-03
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Ote yandan, hesaplama etkinligi acisindan, sabit nokta iterasyonu ile ¢oziilen (3.6.1)
formiiliinii kullanan CTBA yontemi ile cebirsel bir denklem olan (3.6.2) formiiliinii
kullanan ydntemin ihtiya¢ duydugu ¢dziim siireleri Tablo 4.16’da verilmektedir. 1k iki
stitun her iki formiille elde edilen tam ve indirgenmis ¢6ziimler arasindaki hatalari, son
ikisi ise On goriintiilerin olusturulmasi i¢in gereken iglem siirelerini gdstermektedir.
(3.6.1) formiiliiyle iterasyonlu (2 iterasyon) ¢oziilen dogrusal olmayan denklemin
¢oziimleriyle, (3.6.2) formiiliiyle iterasyon olmadan ¢6ziilen denklemin ¢éziimleri ile elde
edilen hatalarin neredeyse ayni oldugu goriilebilir, bu da iterasyon olmadan elde edilen
cozlimlerin hassasiyet agisindan kabul edilebilir oldugunu gostermektedir. CTBA
yonteminin, iterasyonsuz ihtiya¢ duydugu ¢oziim siiresinin, iterasyonlu ihtiya¢ duydugu
¢Oziim siiresinden ¢ok daha az oldugu, yani yontemin oldukc¢a hizli oldugu son iki siitunda

goriilmektedir.

Tablo 4.16 Farkli k degerleri igin olusan bagil mutlak hatalar ve ¢6ziim siireleri

Mutlak Bagil Hata Islem Siiresi
Iterasyonlu Iterasyonsuz Iterasyonlu Iterasyonsuz
k (formiil 3.6.1) | (formiil 3.6.2) (formiil 3.6.1) (formiil 3.6.2)
1 5.35e-03 8.17e-03 5.0550 1.2950
2 4.02e-03 4.07e-03 5.0380 1.4770
3 7.46e-03 8.13e-03 7.7830 0.6760
4 3.92e-03 4.01e-03 7.8140 0.3490
5 7.78e-03 8.06e-03 8.9820 0.2440
6 3.55e-03 3.94e-03 8.1190 0.2670

4.3.2. ki boyutlu FHN denklemi

Iki boyutlu (2.1.3.1) FHN denklemi, (x,y,t) € [—1,1] x [-1,1] x [0, 30] uzay-zaman
alaninda,

u®(x,y) =2rand() — 1, v°(x,y) = 2rand() — 1,

baslangi¢ kosullari, Sekil 4.26, ve 7, =7, =1, yu; = 0.00028, pu, = 0.005, y =1,
e =0, p = —1 parametre degerleri i¢in simule edilecektir. Ayriklastirma dl¢iileri olarak

Ax = Ay = 0.0625 ve At = 0.05 degerleri i¢in Uzay-zaman ayriklastirilmasi ile sistemin

70



anlik bilgilerinden aliman her t, anmndaki ayrik ¢6ziimlerden Y veri matrisi
olusturulmaktadir. Uzay ve zaman koordinatlar1 i¢in ayriklastirilmis veri matrisi, w/ =
()T, @)NHT € R?%48 vektorleri  igin Y = [w!...w00] € R2048%600  sekiinde

yazilir.

Rastgele baslangi¢ profili Sekil 4.26°da verilmistir. Sekil 4.27°de, t = 15 zamanindaki
tam c¢ozliimler ile birlikte indirgenmis ¢oziimlerden elde edilmis desen profilleri
gosterilmektedir. Indirgenmis boyut k = 2 i¢in, tam ve indirgenmis desenlerin birbiriyle
cakistigr goriilmektedir. Benzer sekilde t = 30 zamanindaki tam ¢oztiimler ile birlikte
indirgenmis ¢oziimlerden elde edilmis desen profilleri Sekil 4.28”de gosterilmektedir.
Indirgenmis boyut k = 2 igin, yine tam ve indirgenmis desenlerin birbiriyle cakistig1

goriilmektedir.

Sekil 4.26 t = 0 zamanindaki baslangig profilleri
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Tam u, t=15

0.2
0.1

-0.1
-0.2

-0.3

-1 -0.5 0 0.5 1

X
indirgenmis u, t=15

| I
0.5 |
> 0
05
T 05 0 05 1

X

0.2
0.1
0
-0.1
-0.2

-0.3

Tamyv, t=15

0.2
0.1

-0.1
-0.2
-0.3

-0.5 0 0.5 1
X

indirgenmis v, t=15

Sekil 4.27 k = 2 i¢in t = 15 zamanindaki tam ve indirgenmis ¢6ziim profilleri

Tam u, t=30

<

-1 -0.5 0 0.5 1
X

indirgenmis u, t=30

0.2
0.5
0.1
> 0
0
-0.5
-0.1

0.1
0
-0.1
-0.2
-0.3
X
Tam v, t=30
0.2
0.1
0
-0.1
-0.5 0 0.5 1
X
Indirgenmis v, t=30
0.2
0.1
0
-0.1

Sekil 4.28 k = 2 i¢in t = 30 zamanindaki tam ve indirgenmis ¢oziim profilleri



Tablo 4.17°de, TBA ve CTBA yontemleri hata ve hesaplama etkinligi agisindan
karsilastirilmaktadir. Bu karsilastirma icin, t = 2 zamanindaki ¢oziimlere karsilik gelen
w* = wl% girdi uzay ¢dziim vektorii kullanilmaktadir. Sonugclar indirgenmis boyutlar
k = 1,...,6i¢in sunulmaktadir. TBA ve CTBA kullanildiginda, yapilan islemler sonucu
tam ¢Oziim w* ile indirgenmis yaklasik ¢oziim w* arasindaki bagil mutlak hatalar
gosterilmektedir. Ayni1 sayida baz kullanildiginda CTBA ile daha kesin sonuglar elde

edilmistir.

Tablo 4.17 Farkli k degerleri igin olusan bagil mutlak hatalar

k TBA CTBA

1 1.00e+00 2.93e-02
2 4.95e-01 2.93e-02
3 3.91e-01 5.87e-02
4 3.71e-01 5.87e-02
5 2.22e-01 5.87e-02
6 2.29e-01 5.87e-02

Hesaplama etkinligi agisindan, sabit nokta iterasyonu ile ¢oziilen (3.6.1) formiiliinii
kullanan CTBA yontemi ile cebirsel bir denklem olan (3.6.2) formiiliinii kullanan
yontemin ihtiya¢ duydugu ¢dziim siireleri Tablo 4.18°de verilmektedir. 1k iki siitun her
iki formiille elde edilen tam ve indirgenmis ¢ozlimler arasindaki hatalari, son ikisi ise 6n
goriintlilerin  olusturulmast icin gereken islem siirelerini gostermektedir. (3.6.1)
formiiliiyle iterasyonlu (2 iterasyon) ¢oziilen dogrusal olmayan denklemin ¢oziimleriyle,
(3.6.2) formiiliiyle iterasyon olmadan ¢oziilen denklemin ¢oziimleri ile elde edilen
hatalarin neredeyse ayni oldugu goriilebilir, bu da iterasyon olmadan elde edilen
cozlimlerin hassasiyet agisindan kabul edilebilir oldugunu gostermektedir. CTBA
yonteminin, iterasyonsuz ihtiya¢ duydugu ¢6ziim siiresinin, iterasyonlu ihtiya¢ duydugu
¢Ozlim siiresinden oldukca daha az oldugu, yani yontemin oldukga hizli oldugu son iki

siitunda goriilmektedir.
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Tablo 4.18 Farkli k degerleri igin olusan bagil mutlak hatalar ve ¢6ziim siireleri

Mutlak Bagil Hata Islem Siiresi
Iterasyonlu Iterasyonsuz Iterasyonlu Iterasyonsuz
k (formiil 3.6.1) (formiil 3.6.2) (formiil 3.6.1) (formiil 3.6.2)
1 2.93e-02 2.93e-02 1.3520 0.5880
2 2.93e-02 1.47e-02 1.9060 0.2690
3 5.87e-02 2.93e-02 2.1780 0.2290
4 5.87e-02 1.47e-02 2.4030 0.2560
5 5.87e-02 2.93e-02 2.6060 0.2870
6 5.87e-02 1.51e-02 3.6770 0.2980

Sekil 4.29°da, baslangi¢c degerlerinden itibaren tam ve indirgenmis enerji degisimleri

gosterilmektedir. Bir boyutlu 6rnekte oldugu gibi, her iki grafikte de enerji degisimi ayni

davaranis1 gostermekte olup beklendigi gibi monoton bir azalma veya korunma

goriilmemektedir.

Tam

-1.5

Sekil 4.29 k = 2 i¢in tam/indirgenmis ¢6ziimde enerji korunumu

30
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5. SONUC VE ONERILER

Bu tez ¢alismasinda Diflizyon-Reaksiyon KTD’nin mertebe indirgenmis modellemesi
incelenmistir. Mertebe indirgenmis modellemede TBA teknikleri baz alinarak
formiilasyonlar elde edilmistir. Tezin konusu olan difiizyon-reaksiyon sistemlerinin
¢cozliimlerinin davranislari diisiiniildiigiinde, soliton dalga yapisi, desen yapist vb. klasik
TBA ile elde edilen yaklasik ¢6ziimlerin veri setini temsil etmede, 6zelliklede ele alinan
denklem sistemlerinin fiziksel olarak ¢ok onemli rol oynayan sistem enerji dlgiilerinin,
siirekli problemdeki enerji davraniglarimi korumada zayif kalmasi sebebi ile, TBA
tekniklerini temel alan ama dogrusal olmayan varyant1 olan CTBA mertebe indirgenmis
modelleme bu tez ¢alismasinin ana unsurunu olusturmustur.

Tezin Genel Bilgiler boliimiinde Difiizyon-Reaksiyon KTD genel olarak ele alinip,
mertebe indirgenmis modellemede gerekli olan veri setinin olusturulmasinda kullanilacak
olan ¢oziim vektorlerinin elde edilmesi agiklanmistir. Coziim vektorleri igin ele alinan
denklem sistemleri konumsal uzayda merkezi fark tiirev formiilleri, zaman boyutunda ise
Kahan yontemi ile ayriklagtirilmis ve ayrik ¢oziimler elde edilmistir. Yine Genel Bilgiler
boliimiinde klasik TBA tekniginin adimlari hatirlatilip elde edilen veri setine uygulanisi
aciklanmugtir.

Tezin 3. Boliimii, bu tez ¢aligmasinin literatiire katkisini saglayacak CTBA yonteminin
diflizyon-reaksiyon KTD’ye uygulanisina ayrilmistir. Klasik TBA’nin aksine CTBA, veri
setindeki vektorleri girdi uzayindan ozellik uzaymna dogrusal olmayan bir yapiyla
eslestirmektedir. Girdi uzayindan 6zellik uzayina olan yonde TBA’da yapilanlara benzer
islemler yapilmaktadir. Ancak, 6zellik uzayinda karsilik gelen veri vektoriiniin mertebesi
indirgendikten sonra girdi uzayma geri doniisii klasik TBA’da oldugu gibi agik degildir.
Bu konuda literatiirde baz1 geri doniis teknikleri ele alinmaktadir. Bu tez ¢alismasinda
girdi uzayma geri déniis icin CBO tekniginden yararlanilmistir. CBO yontemi iterasyon
gerektiren bir yontemdir. Mevcut iterasyonlu yontem gelistirilerek iterasyon
gerektirmeyen bir formiilasyon olusturulup iterasyon sebebi ile olusan fazla zaman

harcamadan tasarruf edilerek yontemin etkinligi arttirilmistir.

Tezin son boliimiinde Hamilton, gradyan ve anti-gradyan difiizyon-reaksiyon KTD ig¢in
CTBA uygulamalar1 bir ve iki konumsal boyutlu problemler i¢in test edilmistir. Hamilton
sistemler i¢cin KdV denklemi ile NLS denklemi ele alinmis, yapilan simiilasyonlar

sonucunda Hamilton sistemlerde olmas1 beklendigi gibi sistem enerjileri ile momentum
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ve kiitle Olciilerinin, CTBA ile elde edilen ¢oziimler i¢in de korundugu gosterilmistir.
Gradyan sistemler i¢in AC denklemi ile SH denklemi ele alinmistir. Gradyan sistemlerde
olmasi gerektigi gibi sistem enerjisinin bulunan indirgenmis boyutlu yaklasimlar i¢in de
azaldig1 gosterilmistir. Son olarak anti-gradyan sistemlere 6rnek olarak FHN denklemi
icin simiilasyonlar yapilmig ve tam boyutlu ayrik ¢oziimler ile olusan desenler ile sistem
enerjisi davranisinin aynist CTBA kullanilarak elde edilen sonuglar i¢in de elde edildigi
gorilmistiir. Tiim simiilasyonlarda, klasik TBA ile karsilastirmalar yapilmis, ayni
kesinlikte sonuglar elde edilmis ve (zaman bakimindan) daha etkin bir yol izlendigi

sayisal olarak gosterilmisgtir.

Gelecek caligsmalarda, heniiz acik bir problem alani olan ve CTBA tekniklerinde sorun
olan girdi uzayma geri doniis yollar1 incelenmeye devam edilecektir. Farkli ¢ekirdek

fonksiyonlar1 arastirilip ¢ozlimlerin kesinligi ve etkinligi arttirilmaya calisilacaktir.
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