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1.GİRİŞ  

Birçok bilim alanında yer bulan gerçek hayat problemlerindeki çoğu fiziksel fenomenin 

matematiksel modellemesi, diferansiyel denklemler özellikle de Kısmi Türevli 

Denklemler (KTD) ile yapılmaktadır. Söz konusu KTD arasında en önemli alt gruplardan 

biri ikinci mertebe diferansiyel denklemler olup, çeşitli fiziksel olaylara karşılık gelen 

matematiksel modelleri difüzyon-reaksiyon sistemleri oluşturmaktadır. Fiziksel olarak 

difüzyon-reaksiyon sistemleri, örneğin bir kimyasal reaksiyon sürecinin modellemesinde, 

bir veya daha fazla kimyasal maddenin konsantrasyonunun konum ve zamana göre 

değişimini modellemektedir. Sistemdeki ikinci mertebe türev terimini içeren difüzyon, 

maddelerin uzayda ne kadar yayıldığını göstermekte iken, bilinmeyen fonksiyonlara bağlı 

reaksiyon terimleri ise maddelerin konsantrasyonlarının ne ölçüde kullanıldığını işaret 

eder. Genel olarak bir Ω × [0, 𝑇] uzay-zaman alanında 𝑚 bileşenli bir difüzyon-reaksiyon 

sistemi  

𝜕𝑡𝑤⃗⃗ = 𝐷∆𝑤⃗⃗ + 𝑅(𝑤⃗⃗ ),  

formunda ifade edilebilir. Burada, 𝑥 ∈ Ω ⊂ ℝ𝑑 (𝑑 = 1,2) uzay konumu değişkeni, 𝑡 ∈

[0, 𝑇] ⊂ ℝ zaman değişkeni olmak üzere 𝑤⃗⃗ (𝑥, 𝑡) = (𝑤1(𝑥, 𝑡), 𝑤2(𝑥, 𝑡), … ,𝑤𝑚(𝑥, 𝑡))
𝑇
 

vektörü bilinmeyen fonksiyonların vektörünü, 𝐷 ∈ ℝ𝑚×𝑚 difüzyon katsayılarını içeren 

köşegen matrisi ve 𝑅(𝑤⃗⃗ ) vektörü ise bilinmeyen fonksiyonlara bağlı reaksiyon terimini 

ifade eden ve genelde doğrusal olmayan reaksiyon terimidir. 𝜕𝑡 ve ∆= 𝜕𝑥1
2 + ⋯+

𝜕𝑥𝑑
2  operatörleri ise sırasıyla 𝑡 zaman değişkenine ve 𝑥𝑖 konum değişkenlerine göre birinci 

ve ikinci mertebe kısmi türev operatörleridir. Difüzyon-reaksiyon denklemlerinin 

çözümleri hareketli dalgalar ve enerji tüketen solitonlar gibi daha karmaşık yapılar veya 

"Turing kalıpları" adı verilen kendi kendine organize olan desenlerin oluşumu dahil 

olmak üzere geniş bir davranış yelpazesi sergilerler. Son yıllarda, difüzyon-reaksiyon 

sistemleri model oluşumu için bir prototip model olarak çok ilgi çekmiştir. Difüzyon-

reaksiyon süreçlerinin, biyolojide morfogenez ile bağlantılı süreçler ve hatta hayvan 

tüyleri ve deri pigmentasyonu ile ilgili kısımları da tartışılmıştır. Difüzyon-reaksiyon 

denklemlerinin diğer uygulamaları arasında ekolojik istilalar, salgın hastalıkların 

yayılması, tümör büyümesi ve yara iyileşmesi yer alır (Ei vd., 2005). 

Hemen hemen tüm difüzyon-reaksiyon sistemleri, fiziksel olarak genelde sistem enerjisi 

olarak adlandırılan bir ölçü ile ilişkilidir. Bu noktada, sistem enerjisinin davranışsal 

özellikleri bakımından difüzyon-reaksiyon denklemleri Hamilton, gradyan ve anti-
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gradyan sistemler olmak üzere üç genel sınıf altında kategorize edilebilirler. Hamilton 

sistemlerinin karakteristik yapısı, makine hassasiyetine kadar doğru bir şekilde 

çözüldüğünde, sistemin enerjisinin zaman içinde korunması temeline dayanmaktadır. 

Gradyan sistemlerde sürekli olarak azalan serbest bir enerji (Lyapunov fonksiyoneli) 

bulunup, serbest enerjinin yerel minimize edicileri kararlı durumlara karşılık gelir. Enerji 

güdümlü model oluşumu, gradyan sistemlerde salınımlı ve Turing desenleri şeklinde 

gerçekleşir. Anti-gradyan yapıya sahip difüzyon-reaksiyon sistemleri ise, bir tür 

aktivatör-inhibitör sistemi olarak görülebilir. Bu tip sistemlerde sistem enerjisinin belli 

bir karakteristiği yoktur, yani probleme göre bazı zaman aralıklarında enerji 

azalabiliyorken başka zaman aralıklarında artış gösterebilir. Bu tez çalışmasında, temel 

olarak bahsi geçen üç tip difüzyon-reaksiyon sistemleri ele alınacaktır. 

Gerçek hayat problemlerinin modellemesinde kullanılan matematiksel (diferansiyel) 

denklem sistemlerinin genelde analitik çözümlerinin bulunması mümkün olmamaktadır. 

Bu sebeple, söz konusu denklemler sayısal olarak çözülmektedir. Sayısal çözüm 

tekniklerinin temelinde denklemdeki bilinmeyen fonksiyonların bağımsız değişkenleri 

üzerinde sonlu ayrıklaştırma yöntemlerinin kullanılması yolu ile sistemdeki diferansiyel 

operatörleri temsil edecek matrisler belirlemek ve bilinmeyen fonksiyonun bağımsız 

değişken yönünden boyutsuzlaştırılması, yani bağımsız değişkenlere olan bağımlılığının 

sürekli bir şekilde ortadan kaldırılması yatmaktadır. Literatürde çeşitli amaçlara yönelik 

birçok ayrıklaştırma yöntemi geliştirilmiş ve kullanılmaktadır. Bunlar arasında en basit 

ve en sık kullanılanların başında sonlu farklar temelli yöntemler gelmektedir. Bu tez 

çalışmasında, diferansiyel operatörler merkezi fark türev formülleri ile yaklaşık 

hesaplanarak konum boyutunda ayrıklaştırma gerçekleştirilecektir. Diğer yandan, 

özellikle Hamilton ve gradyan sistemlerinin yaklaşık sayısal çözümlerinin bulunması 

açısından kullanılacak olan sayısal yöntemin, mevcut sürekli sistemin sahip olduğu yapıyı 

da koruması beklenmektedir. Bu nedenle, zaman boyutunda kullanılacak olan 

ayrıklaştırma yöntemi önem kazanmaktadır. Literatürde, verilen sistemin belirli yapılarını 

koruyan birçok zamanda ayıklaştırma yöntemleri olmakla birlikte bunların birçoğu kapalı 

formüller ve/veya yakınsama mertebesi düşük olan yöntemlerdir. Bu tez çalışmasında, 

zaman boyutunda ayrıklaştırma yöntemi olarak, ikinci mertebe yakınsaklığa sahip ve açık 

bir formül olan Kahan yöntemi kullanılacaktır (Kahan ve  Li, 1997; Celledoni vd., 2012). 

Kahan yönteminin en önemli özelliklerinin başında, Hamilton ve gradyan sistemlerin 

enerji davranışlarını sayısal olarak koruyor olması gelmektedir. 
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Tamamen ayrıklaştırılmış bir diferansiyel denklem sisteminin çözümlerinin, kesinliğinin 

arttırılması için ayrıklaştırmanın boyutunun sonlu ama büyük olması gerektiği bilinen bir 

gerçektir. Bu şekilde oluşturulan ayrık sistemlerin sayısal çözümlerinin bulunması, 

özellikle iki ve üç boyutlu konumsal uzayda, son derece zaman alıcı olmaktadır. Bu 

nedenle Model İndirgeme Yöntemleri (MİY), bu tür problemleri indirgenmiş veri ile 

çözmek için son derece önemli hale gelmiştir (Kuwamura, 2007). MİY tekniklerinin ilk 

kullanımı Lumley’nin 1967’deki çalışmalarına dayanır. Bu çalışmalarda, türbülans 

mekanizmalarının yoğunluğu ve akışkan problemlerinde mevcut olan büyük boyutlu 

yapıları açıklamak için MİY kullanılmıştır. Son 20 yılda, bilgisayar bilimi ve 

mühendisliğine olan ilginin artmasıyla makine mühendisliği, elektrik-elektronik, 

nörobilimler, tıp, çevre mühendisliği, biyoloji ve finans dahil temel ve uygulamalı 

bilimler gibi alanlar başta olmak üzere MİY yüksek performanslı hesaplamada önemli bir 

rol oynamaktadır (Berkooz vd., 1993). Biyoloji, atmosferik dinamikler ve moleküler 

dinamik simülasyonları gibi çok ölçekli dinamik sistemlerde ortaya çıkan modeller için 

MİY, düşük kaliteli modelde yüksek kaliteli modelin özelliklerinin doğru istatistiksel 

tahminlerini elde etmenin mümkün olduğu ölçeklenebilir bir matematiksel çerçeve sağlar. 

MİY, yüksek kalitede karmaşık modelleri basitleştirir. Karmaşık bir sistemi optimize edip 

incelemek ve çözmek için gereken süreyi azaltmak amacıyla da kullanılır. Dahası, yapay 

zekâdan genetiğe, hava hareketlerinden borsa hareket değişimlerine, gök mekaniğine, 

akışkanlar mekaniğinden aerodinamiğe, yüz tanıma sistemlerinden tıpta 

elektromanyetik/lazer MR görüntüleme sistemlerine kadar pek çok yerde uygulama alanı 

vardır. MİY’nin en temel kullanım alanlarından biri verilen bir dinamik sistemin 

çözümünün, çok daha küçük boyutlu bir alt uzayda temsil edilebilmesidir. MİY, fazla 

zaman harcamamak için ayrıklaştırma sonrası elde edilen Tam Mertebeli Modelin 

(TMM), daha küçük boyutlu bir alt uzayda yaklaşık olarak karşılığını bulabilmektedir 

(Volkwein, 2010). Bu yöntemlerin merkezinde olan Temel Bileşenler Analizi (TBA), 

sonlu bir sayıda değişkenden oluşan bir veri setini, çok daha az sayıda ve değişkenlerin 

doğrusal bileşenleri olan yeni değişkenlerle ifade etme yöntemidir. Diğer bir deyişle, 

aralarında korelasyon bulunan sonlu bir sayıdaki değişkenlerin açıkladığı yapıyı, 

aralarında korelasyon bulunmayan ve sayıca orijinal değişken sayısından çok daha az 

sayıda doğrusal bileşenleri olan değişkenlerle ifade etme yöntemidir (Johnson ve 

Wichern, 2007). TBA yöntemi çok büyük boyutlu veriyi daha küçük boyutlu bir veriye 

dönüştürür. Bu doğrusal dönüşümü yaparken kovaryans matrisini kullanır. Kovaryans 

matrisinin özdeğer ve özvektörleri bulunarak temel bileşenler hesaplanabilir.  
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TBA, birçok farklı disiplinlerce sıklıkla kullanılmasına rağmen, elde edilen verilerin 

boyutlarının indirgenmesi ve modellenmesi gibi uygulama alanlarında Çekirdek Temel 

Bileşenler Analizinin (ÇTBA) kullanımı çok yenidir. ÇTBA, TBA’dan farklı olarak 

doğrusal olarak ayrıştırılamayan ya da bir başka ifadeyle doğrusal bir dağılım 

göstermeyen verilerin doğrusal bileşenler ile ifade edilmesidir. ÇTBA yöntemi, bilim, 

mühendislik ve tıpta yüksek sonuçlu uygulamalarda birçok farklı türde önemli fiziksel 

olayı modellemek için kullanılmaktadır. Doğrusal olmayan modellerin çözülmesi çok 

zaman alır, bu da onları tasarım, parametre araştırması, kontrol veya gerçek zamanlı karar 

verme için zorlu hale getirir. Doğrusal sistemler için izdüşüm tabanlı bir indirgenmiş 

model kompakt, hesaplanması kolay bir temsile sahiptir ve doğrusal bir modelin 

izdüşümü açık bir indirgenmiş biçim verir. Fakat doğrusal olmayan bir sistem için 

indirgenmiş operatörler orijinal gerçek boyutlu modele geri dönmeden açıkça 

hesaplanamaz (Salvador vd., 2021). Çekirdek yönteminin kullanılmasının temel nedeni, 

veriler iç çarpımsal olarak göründüğünden, tüm hesaplamalar yüksek boyutlu özellik 

uzayında açıkça temsil edilmeden işlemlerin yapılabilmesinden kaynaklanmaktadır. 

Bunun nedeni, özellik uzayındaki iç çarpımların girdi uzayındaki çekirdek fonksiyonu 

cinsinden yazılabileceğini ifade eden çekirdek numarasıdır. Son yıllarda veri toplama, 

depolama ve hesaplama yöntemlerindeki gelişmeler, bu teknikler sayesinde 

hesaplamaların kolaylaşması nedeniyle, çekirdek yönteminin popülerliğini artırmıştır. Bu 

uygulamalar arasında nesne tanıma, metin sınıflandırma, zaman serisi tahmini ve DNA 

analizi de yer almaktadır. Birçok gerçek hayat problemi yalnızca doğrusal ilişkiler 

açısından tanımlanamaz ve bu nedenle doğrusal olmayan yöntemlere ihtiyaç 

duyulmaktadır. Literatürde difüzyon-reaksiyon sistemlerinde, örüntü oluşumunun 

indirgenmiş düzende modellenmesine ilişkin olarak, Ginzburg-Landau denklemi ve Fitz-

Hugh Nagumo denklemi için çalışmalar bulunmaktadır. Çekirdek temelli araştırma ilk 

olarak Aizerman vd. (1964) tarafından tanıtılmıştır. Schölkopf ve Smola (1998), ÇTBA 

için özdeğer problemi ile daha genel sonuçlar elde etmişlerdir. İngiliz matematikçi olan 

Karl Pearson, çok değişkenli bir problemde değişken sayısının nasıl azaltılacağına dair 

ilk fikirleri ortaya atmıştır. Ayrıca, Mika (1999) tarafından görüntü işleme üzerine 

uygulanmış ve yeni beklenmeyen veri örneklerini belirlemek için ise Hoffmann (2007) 

tarafından çeşitli uygulamalar verilmiştir. ÇTBA yöntemi, Zhou (2019) tarafından 

doğrusal olmayan süreçlerin kontrolü için ve Bueso (2020) tarafından ise meydana gelen 

olayların konumsal-zamansal analizine uygulanmıştır. Gonzalez (2020), ÇTBA 

yönteminin çeşitli uygulamalarını incelemiştir. Bu çalışmada mevcut yöntem akışkanlar 
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dinamiği alanında uygulanmıştır. Akışkanlar dinamiği süreçlerini modelleyen KTD’nin 

çözümü ile elde edilen uzay-zamansal veri kümelerinin yeniden yapılandırılması için 

TBA ve ÇTBA arasındaki çözüm hataları ve çözüm süreleri ile ilgili karşılaştırmalar 

yapılmıştır. 

Bu tez çalışmasının ana teması, girdi uzayını temsil eden bir veri matrisi üzerinden ÇTBA 

yöntemi uygulanarak boyutları indirgenmiş model elde edilip çözüldükten sonra, elde 

edilen yaklaşık verinin girdi uzayına geri getirilmesidir. Ancak, yüksek mertebeli modele 

geri dönüş zor olduğundan, Çok Boyutlu Ölçekleme (ÇBÖ) yönteminden 

yararlanılmıştır. Difüzyon-Reaksiyon KTD’nin çözümlerinden elde edilen veriler genel 

olarak doğrusal olmayan bir dağılım gösterebileceğinden, ÇTBA yönteminin merkezinde 

veri setlerinin boyutlarının indirgenerek modellenmesi yer almaktadır. Bu yöntem 

verimliliği korurken, daha düşük bir boyuta sahip anlık çözüm setinin daha doğru bir 

yaklaşım sunmasını sağlar. Bu nedenle, çözüm katsayılarını bulmak için bilinen 

yöntemlerin aksine, ÇTBA ile daha kolay ve daha az hesaplamaya ihtiyaç duyulur. 

İndirgenmiş sıralı bir uzayın üretilmesi için ÇTBA ve indirgenmiş sıralı yaklaşımın 

değerlendirilmesi için ÇBÖ’den yararlanılmıştır. Özellikle, indirgenmiş hızlı, güvenilir 

ve kesin çözümler elde etmek için modellerin yüksek kaliteli çözümünde klasik TBA 

yerine ÇTBA ve ÇBÖ kullanılmıştır.  

Bu tez çalışması şu şekilde planlanmıştır: Birinci bölüm giriş bölümü olup, ikinci 

bölümde, temel bilgiler olarak Difüzyon-Reaksiyon KTD tanıtılacak ve bu denklemlerin 

tam ayrık sisteminin matematiksel modellemesi, yani uzay ve zaman ayrıklaştırma 

yöntemleri kısaca işlenecektir. Ardından klasik TBA yöntemi hatırlatılacaktır. Üçüncü 

bölümde ise ayrık çözüm vektörleri ile elde edilen veri setine uygulanan ÇTBA süreci 

açıklanacaktır. İndirgenmiş çözümlerin doğruluğu, sistem enerjisi davranışlarının 

korunması ve hesaplama hızındaki artışlar dördüncü bölümde çeşitli difüzyon-reaksiyon 

KTD örnekleri üzerinden gösterilecektir. 
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2.  GENEL BİLGİLER 

Bu bölümde diğer bölümlerde kullanılacak olan temel bilgiler ve kavramlar açıklanmıştır.  

2.1. Difüzyon-Reaksiyon Kısmi Türevli Denklemler 

Difüzyon-Reaksiyon KTD, birçok fiziksel, kimyasal ve biyolojik süreçlerin matematiksel 

modellemesinde kullanılan önemli denklemlerin başında gelmektedir. Bu denklemler 

genellikle birçok bağımlı değişkenin zaman ve uzay konumlarında nasıl değiştiğini 

açıklamak için kullanılır. Difüzyon, maddenin rastgele hareketi sonucu bir ortam içinde 

yayılması sürecini tanımlarken, reaksiyon ise kimyasal veya biyolojik reaksiyonların 

meydana geldiği süreci ifade eder. Difüzyon-Reaksiyon denklemleri genellikle 

bilinmeyen bağımlı değişkenlerin kısmi türevlerini içeren diferansiyel denklemler 

şeklinde yazılır ve belirli koşullar altında çözümleri incelenir. Bu denklemler, 

matematiksel modelleme, fizik, kimya, biyoloji ve mühendislik gibi birçok alanda 

kullanılır. Difüzyon-Reaksiyon KTD, genellikle sayısal yöntemlerle çözülür. Bu 

çözümler, belirli koşullar altında sistemdeki bağımlı değişkenlerin nasıl davrandığını 

anlamak için kullanılır. Ayrıca, bu denklemlerin çözümleri, gerçek dünya problemlerine 

uygulanabilir ve bu sayede pratik uygulamalarda da kullanılır. Bu nedenle, Difüzyon-

Reaksiyon KTD, bilimsel araştırmalarda ve endüstriyel uygulamalarda önemli bir rol 

oynamaktadır. 

Bu bölümde, difüzyon-reaksiyon KTD üç ana başlık altında tanımlanacaktır. Örnek 

olarak bu sistemlere karşılık gelen en önemli problemler ve uygulama alanları 

tanıtılacaktır. Genel olarak bir 𝛺 ∈ ℝ𝑑  (𝑑 ≥ 1) alanında ve bir [0, 𝑇] zaman aralığında, 

bir difüzyon-reaksiyon KTD sistemi, 𝑤𝑖(𝑥, 𝑡): 𝛺 × [0, 𝑇] → ℝ  gerçel değerli 

fonksiyonlardan oluşan 𝑤⃗⃗ (𝑥, 𝑡) = (𝑤1(𝑥, 𝑡), 𝑤2(𝑥, 𝑡), … ,𝑤𝑚(𝑥, 𝑡))
𝑇
 bilinmeyen 

fonksiyonların vektörü için 

𝑆𝜕𝑡𝑤⃗⃗ = 𝐷∆𝑤⃗⃗ + 𝑓(𝑤⃗⃗ ),          𝑓(𝑤⃗⃗ ) = 𝑄∇𝑤⃗⃗ 𝐹(𝑤⃗⃗ ),           𝑤⃗⃗ ∈ 𝛺 × [0, 𝑇],                (2.1.1) 

formunda yazılır (Yanagida, 2002). (2.1.1) denklemi beraberinde başlangıç ve sınır 

koşulları ile verilir. Burada, 𝑓(𝑤⃗⃗ ): ℝ𝑚 → ℝ𝑚 doğrusal olmayan reaksiyon terimi, 

𝐹(𝑤⃗⃗ ): ℝ𝑚 → ℝ gerçel değerli potansiyel fonksiyon, 𝐷 ∈ ℝ𝑚×𝑚 difüzyon katsayılarını 

içeren köşegen matrisi, 𝑆 ∈ ℝ𝑚×𝑚 negatif olmayan köşegen bir matris, 𝑄 ∈ ℝ𝑚×𝑚 

dejenere olmayan ve 𝑄2 = 𝐼  bağıntısını sağlayan simetrik bir matris olmak üzere,  
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𝐷𝑇𝑄 = 𝑄𝐷 koşulu sağlanır ve buradan 𝑄𝐷 matrisinin dejenere olmaması gerçekleşir. 

Ayrıca doğrusal olmayan 𝑓(𝑤⃗⃗ )  reaksiyon vektörü için 𝑓𝑤⃗⃗ ∈ ℝ𝑚×𝑚  Jakobiyen matrisi,  

𝑓𝑤⃗⃗ (𝑤⃗⃗ )
𝑇𝑄 = 𝑄𝑓𝑤⃗⃗ (𝑤⃗⃗ ) koşulunu sağlar. Sistem (2.1.1)’e karşılık gelen enerji 

fonksiyoneli, 

𝐸[𝑤⃗⃗ ] = ∫ {
1

2
〈𝐷∇𝑤,⃗⃗⃗⃗ 𝑄∇𝑤⃗⃗ 〉ℝ𝑚 − 𝐹(𝑤⃗⃗ )} 𝑑𝑥,

 

𝛺
                                    (2.1.2)   

olmak üzere enerji fonksiyonelinin türevi 〈∙,∙〉ℝ𝑚 standart 𝑚  boyutlu Öklit iç çarpımı için 

𝑑

𝑑𝑡
𝐸[𝑤⃗⃗ (𝑥, 𝑡)] = −∫ 〈𝑤⃗⃗ 𝑡, 𝑄𝑆𝑤⃗⃗ 𝑡〉ℝ𝑚 𝑑𝑥

 

𝛺
,                        (2.1.3) 

olarak hesaplanır. (2.1.3) denkleminin sağlandığı kısmi integrasyon ile 𝑄2 = 𝐼,        

𝐷𝑇𝑄 = 𝑄𝐷 ve 𝑓𝑤⃗⃗ (𝑤⃗⃗ )
𝑇𝑄 = 𝑄𝑓𝑤⃗⃗ (𝑤⃗⃗ ) bağıntıları kullanılarak aşağıdaki adımlarla 

görülebilir: 

𝑑

𝑑𝑡
𝐸[𝑤⃗⃗ (𝑥, 𝑡)] =

𝑑

𝑑𝑡
∫ {

1

2
〈𝐷∇𝑤,⃗⃗⃗⃗ 𝑄∇𝑤⃗⃗ 〉ℝ𝑚 − 𝐹(𝑤⃗⃗ )} 𝑑𝑥,

 

𝛺

 

                        = ∫ {
1

2
〈𝐷∇𝑤⃗⃗ 𝑡, 𝑄∇𝑤⃗⃗ 〉ℝ𝑚 +

1

2
〈𝐷∇𝑤⃗⃗ , 𝑄∇𝑤⃗⃗ 𝑡〉ℝ𝑚 − 〈∇𝑤⃗⃗ 𝐹(𝑤⃗⃗ ), 𝑤⃗⃗ 𝑡〉ℝ𝑚} 𝑑𝑥,

 

𝛺

 

                        = ∫ {−
1

2
〈𝐷𝑤⃗⃗ 𝑡, 𝑄∆𝑤⃗⃗ 〉ℝ𝑚 −

1

2
〈𝐷∆𝑤⃗⃗ , 𝑄𝑤⃗⃗ 𝑡〉ℝ𝑚 − 𝑄𝑄⏟

𝐼

〈∇𝑤⃗⃗ 𝐹(𝑤⃗⃗ ), 𝑤⃗⃗ 𝑡〉ℝ𝑚} 𝑑𝑥,
 

𝛺

 

                        = ∫ {−
1

2
〈𝐷𝑤⃗⃗ 𝑡, 𝑄∆𝑤⃗⃗ 〉ℝ𝑚 − 〈

1

2
𝐷∆𝑤⃗⃗ + 𝑓(𝑤⃗⃗ ), 𝑄𝑤⃗⃗ 𝑡〉ℝ𝑚} 𝑑𝑥,

 

𝛺

 

                        = ∫ {−
1

2
〈𝐷𝑤⃗⃗ 𝑡, 𝑄∆𝑤⃗⃗ 〉ℝ𝑚 − 〈

1

2
𝐷∆𝑤⃗⃗ + 𝑆𝑤⃗⃗ 𝑡 − 𝐷∆𝑤⃗⃗ , 𝑄𝑤⃗⃗ 𝑡〉ℝ𝑚} 𝑑𝑥,

 

𝛺

 

                        = ∫ {−
1

2
〈𝐷𝑤⃗⃗ 𝑡, 𝑄∆𝑤⃗⃗ 〉ℝ𝑚 − 〈−

1

2
𝐷∆𝑤⃗⃗ + 𝑆𝑤⃗⃗ 𝑡, 𝑄𝑤⃗⃗ 𝑡〉ℝ𝑚} 𝑑𝑥,

 

𝛺

 

                        = ∫ {−
1

2
〈𝐷𝑤⃗⃗ 𝑡, 𝑄∆𝑤⃗⃗ 〉ℝ𝑚 +

1

2
〈𝑄𝐷∆𝑤⃗⃗ , 𝑤⃗⃗ 𝑡〉ℝ𝑚 − 〈𝑄𝑆𝑤⃗⃗ 𝑡, 𝑤⃗⃗ 𝑡〉ℝ𝑚} 𝑑𝑥,

 

𝛺

 

                        = ∫ {−
1

2
(𝑤⃗⃗ 𝑡)

𝑇 𝐷𝑇𝑄⏟
𝑄𝐷

∆𝑤⃗⃗ +
1

2
(𝑤⃗⃗ 𝑡)

𝑇𝑄𝐷∆𝑤⃗⃗ − 〈𝑄𝑆𝑤⃗⃗ 𝑡, 𝑤⃗⃗ 𝑡〉ℝ𝑚} 𝑑𝑥,
 

𝛺

 

                        = −∫ 〈𝑄𝑆𝑤⃗⃗ 𝑡, 𝑤⃗⃗ 𝑡〉ℝ𝑚𝑑𝑥.
 

𝛺

 

𝑆, 𝑄 ve 𝐷 matrislerinin durumuna göre (2.1.1) sisteminden Hamilton, gradyan ve anti-

gradyan olmak üzere üç farklı temel denklem sınıfı elde edilebilir (Diez vd., 2021).  
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2.1.1. Hamilton sistemler 

Hamilton KTD fizik, mühendislik ve matematik alanlarında yaygın olarak kullanılan 

önemli sistemlerdir. Özellikle klasik ve kuantum mekaniği, optik, kontrol teorisi gibi 

alanlarda önemli bir rol oynar. Hamilton sistemler, (2.1.2) ile verilen sistem enerjisinin 

korunduğu yani zaman içinde değişmediği, başka bir deyişle (2.1.3) ile verilen enerji 

fonksiyoneli türevinin sıfır olduğu duruma karşılık gelen sistemlerdir. Bu sistemlerde, 

doğru bir sayısal çözüm elde etmek için sistem enerjisinin sayısal olarak da korunması 

esastır (Afkham ve Hesthaven, 2019). En bilinen ve araştırılan Hamilton sistemlerin 

arasında Korteweg-De Vries (KdV) denklemi ve doğrusal olmayan Schrödinger (NLS) 

denklemi örnek olarak verilebilir. KdV denklemi, doğrusal olmayan hiperbolik bir 

denklem olup sığ su dalgaları, okyanustaki dalgalar, bir plazmadaki akustik dalgalar ve 

daha fazlası dahil olmak üzere tek boyutlu dalgaların yayılmasını açıklamak için 

kullanılan bir diferansiyel denklemdir. Genel olarak KdV denklemi 

𝜕𝑡𝑢 = −𝛼𝑢𝜕𝑥𝑢 − 𝜇𝜕𝑥𝑥𝑥𝑢,          [𝑎, 𝑏] × [0, 𝑇],                                              (2.1.1.1) 

şeklinde olup, bir  𝑢(𝑥, 0) = 𝑢0(𝑥)  başlangıç koşulu ve  𝑢(𝑎, 𝑡) = 𝑢(𝑏, 𝑡)  periyodik sınır 

koşulları altında 𝛼, 𝜇 ∈ ℝ  sistem parametreleri için yazılabilir. (2.1.1.1) ile verilen KdV 

denklemi 

𝜕𝑡𝑢 = 𝜕𝑥 (−
𝛼

2
𝑢2 − 𝜇𝜕𝑥𝑥𝑢),          [𝑎, 𝑏] × [0, 𝑇], 

formunda da yazılabileceğinden,  

𝑆 =
1

𝜕𝑥
 ,   𝐷 = −𝜇,  𝑄 = −1, 

için KdV denklemi, 𝑚 = 1 bileşenli (2.1.1) ile verilen formda bir denklemdir. İlgili 

potansiyel fonksiyon  𝐹(𝑢) = 𝛼𝑢3/6 olup, KdV denklemine ait olan ve (2.1.2) ile verilen 

enerji fonksiyonu  

𝐸[𝑢] = ∫ {
1

2
〈−𝜇𝑢𝑥, (−1)𝑢𝑥〉ℝ −

𝛼

6
𝑢3} 𝑑𝑥

 

𝛺

= ∫ (
𝜇

2
𝑢𝑥

2 −
𝛼

6
𝑢3) 𝑑𝑥,

 

𝛺

 

olarak bulunur. Bu bağıntılar için (2.1.3) ile verilen enerji fonksiyonunun türevi  

𝑑

𝑑𝑡
𝐸[𝑢(𝑥, 𝑡)] = −∫ 〈𝑢𝑡, 𝑄𝑆𝑢𝑡〉ℝ𝑚 𝑑𝑥 = ∫ 𝑢𝑡

1

𝜕𝑥
𝑢𝑡  𝑑𝑥

 

𝛺

 

𝛺

= 0, 

olduğundan sistem enerjisi korunur. Son denklemde sonucun sıfır olarak 

gerçekleşmesinin sebebi, sayısal olarak bu tez çalışmasında kullanılacak olan birinci 

mertebe kısmi türev operatörünün anti-simetrik bir matrisle, (2.2.1.1.1) ile verilen 𝐷1 
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matrisiyle ifade edilmesidir. Yani, anti-simetrik bir matrisin tersinin de anti-simetrik 

olmasından dolayı  𝑢𝑡
1

𝜕𝑥
𝑢𝑡 ifadesinin sıfır olmasıdır.  

Enerji fonksiyonunun yanında, KdV denkleminin çözümleri başka önemli ölçüleri de 

korumaktadır. Bunların başında 𝐼1(𝑢) momentum fonksiyonu ve 𝐼2(𝑢) kütle fonksiyonu 

gelmekte olup 

𝐼1[𝑢] = ∫ 𝑢𝑑𝑥,    𝐼2[𝑢] = ∫𝑢2𝑑𝑥
 

𝛺

 

𝛺

, 

formülleri ile tanımlanmaktadır. 

NLS denklemi, fiber optikte, düzlemsel dalgalarda ışığın iletiminde ve Bose-Einstein 

yoğuşma teorisinde yavaş değişen dalga gruplarının hareketlerini tanımlayan model 

denklem olarak verilir (Karasözen v.d., 2014). Bir, 𝜓(𝑥, 𝑡) kompleks değerli bilinmeyen 

fonksiyon için, NLS denklemi  

𝑖𝜓𝑡 = −𝜇∆𝜓 − 𝛽|𝜓|2𝜓,                                                                                        (2.1.1.2)     

formunda olup bir 𝜓(𝑥, 0) = 𝜓0(𝑥) başlangıç koşulu ve 𝜓(𝑥, 𝑡) = 𝜓(𝑥 + 𝐿, 𝑡) periyodik 

sınır koşulu ile birlikte verilir. Burada 𝑥 ∈ ℝ konum noktası, 𝜇 > 0 difüzyon parametresi 

olup, 𝛽 pozitif değerleri için sistemi itici özellikte yaparken negatif değerleri için sistemi 

geri çekici bir özelliğe sahip kılan bir sistem parametresidir. 𝜓(𝑥, 𝑡) kompleks değerli bir 

fonksiyon olduğundan 𝜓(𝑥, 𝑡) = 𝑝(𝑥, 𝑡) + 𝑖𝑞(𝑥, 𝑡) şeklinde reel değerli 𝑝(𝑥, 𝑡) ve 

𝑞(𝑥, 𝑡) fonksiyonları cinsinden yazılabilir. Bu durumda (2.1.1.2) ile verilen denklem 

sistemi, 

𝑝𝑡 = −𝜇∆𝑞 − 𝛽(𝑝2 + 𝑞2) 𝑞                     (2.1.1.3)     

𝑞𝑡 = 𝜇∆𝑝 + 𝛽(𝑝2 + 𝑞2)𝑝 

olarak yazılabilir. Bu formuyla NLS denklemi, 𝑤⃗⃗ = (𝑝, 𝑞)𝑇 vektörü (𝑚 = 2), 

𝐹(𝑝, 𝑞) =
𝛽

4
(𝑝2 + 𝑞2)2, 

potansiyel fonksiyonu ve 

𝑆 = (
1 0
0 1

),   𝐷 = (
0 −𝜇
𝜇 0

),  𝑄 = (
0 −1
1 0

),   

matrisleri için (2.1.1) ile verilen formda bir sistemdir. Sistemin (2.1.2) ile verilen enerji 

fonksiyonu  

𝐸[𝑝, 𝑞] = ∫ {
1

2
〈𝐷∇𝑤,⃗⃗⃗⃗ 𝑄∇𝑤⃗⃗ 〉ℝ2 − 𝐹(𝑤⃗⃗ )} 𝑑𝑥

 

𝛺

, 

               = ∫ {
1

2
〈(

0 −𝜇
𝜇 0

) (
∇p
∇q

) , (
0 −1
1 0

) (
∇p
∇q

)〉ℝ2 −
𝛽

4
(𝑝2 + 𝑞2)2} 𝑑𝑥

 

𝛺

, 
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               = ∫ {
1

2
〈(

−𝜇∇q
𝜇∇p

) , (
−∇q
∇p

)〉ℝ2 −
𝛽

4
(𝑝2 + 𝑞2)2} 𝑑𝑥,

 

𝛺

 

               = ∫ (
𝜇

2
|∇𝑝|2 +

𝜇

2
|∇𝑞|2 −

𝛽

4
(𝑝2 + 𝑞2)2) 𝑑𝑥,

 

𝛺

 

olarak hesaplanır. Sistemin (2.1.3) ile verilen enerji fonksiyonunun türevi 

hesaplandığında 

𝑑

𝑑𝑡
𝐸[𝑤⃗⃗ (𝑥, 𝑡)] = −∫〈𝑤⃗⃗ 𝑡, 𝑄𝑆𝑤⃗⃗ 𝑡〉ℝ2 𝑑𝑥 = −∫ 〈(

𝑝𝑡

𝑞𝑡
) , (

0 −1
1 0

) (
1 0
0 1

) (
𝑝𝑡

𝑞𝑡
)〉ℝ2 𝑑𝑥

 

𝛺

 

𝛺

, 

                          = −∫ 〈(
𝑝𝑡

𝑞𝑡
) , (

−𝑞𝑡

𝑝𝑡
)〉ℝ2 𝑑𝑥

 

𝛺

, 

                          = −∫(−𝑝𝑡𝑞𝑡 + 𝑝𝑡𝑞𝑡)𝑑𝑥
 

𝛺

, 

                          = 0, 

olduğundan sistem enerjisi korunur (Karasözen ve Uzunca, 2018). KdV denklemi gibi 

NLS denkleminin çözümleri de enerji fonksiyonunun yanında başka önemli ölçüleri de 

korumaktadır. Bunların başında yine 𝐼1(𝑝, 𝑞) momentum fonksiyonu ve 𝐼2(𝑝, 𝑞) kütle 

fonksiyonu gelmekte olup 

𝐼1[𝑝, 𝑞] = ∫(𝑝𝑞𝑥 − 𝑞𝑝𝑥)𝑑𝑥,    𝐼2[𝑝, 𝑞] =
1

2
∫(𝑝2 + 𝑞2)𝑑𝑥,

 

𝛺

 

𝛺

 

formülleri ile tanımlanmaktadır. 

2.1.2. Gradyan sistemler 

Gradyan sistemlerde, sürtünme gibi enerjiyi azaltan kuvvetler sistemin enerjisini 

değiştirebilir. Bu tür sistemlerde enerji artık korunmadığından, mevcut yöntemler artık 

doğrudan uygulanamayabilir. Enerjinin azaldığı modeller, (2.1.3) ile verilen enerji 

fonksiyonunun türevinin negatif olduğu sınıftır. Bu denklemlere örnek olarak, Allen-

Cahn (AC) ve Swift-Hohenberg (SH) denklemleri verilebilir.  

AC denklemi, faz geçişi problemlerinde yaygın olarak kullanılan bir diferansiyel denklem 

modelidir. Bu denklem, faz dönüşümü ve ayrışma, kristal büyümesi, kimyasal 

reaksiyonlar, görüntü işleme gibi pek çok uygulama alanında kullanılır. Örneğin, 

malzeme biliminde AC denklemi; polimer, metal ve seramik malzemelerin faz 
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dönüşümlerini modellemek için kullanılır. Bir 𝜀 > 0 difüzyon parametresi için AC 

denklemi                        

𝜕𝑡𝑢 = 𝜀∆𝑢 + 𝑢 − 𝑢3,                     (2.1.2.1)     

olarak verilir. (2.1.2.1) denklemi beraberinde bir başlangıç koşulu ve periyodik sınır 

koşulu ile verilir. Bazı modellerde, homojen Neumann sınır koşulu ile birlikte de 

verilebilmektedir, yani sınır noktalarındaki dışa dönük yönsel türevinin sıfır olması 

koşulu. AC denklemi, 𝑆 = 1,  𝐷 = 𝜀  ve  𝑄 = 1 için (2.1.1) ile verilen formda tek bileşenli 

bir sistemdir. Sistemin potansiyel fonksiyonu 𝐹(𝑢) = −(𝑢2 − 1)2/4 olup, (2.1.2) ile 

verilen enerji fonksiyonu 

𝐸[𝑢] = ∫ (
1

2
〈𝐷∇𝑢, 𝑄∇𝑢〉ℝ − 𝐹(𝑢))  𝑑𝑥

 

𝛺

, 

          = ∫ (
1

2
〈𝜀∇𝑢, ∇𝑢〉ℝ +

1

4
(𝑢2 − 1)2) 𝑑𝑥

 

𝛺

, 

          = ∫ (
𝜀

2
|∇𝑢|2 +

1

4
(𝑢2 − 1)2) 𝑑𝑥

 

𝛺

, 

olarak hesaplanır. Bu durumda (2.1.3) ile verilen enerji fonksiyonunun türevi 

𝑑

𝑑𝑡
𝐸[𝑢(𝑥, 𝑡)] = −∫ 〈𝑢𝑡, 𝑄𝑆𝑢𝑡〉ℝ 𝑑𝑥

 

𝛺

= −∫〈𝑢𝑡, 𝑢𝑡〉ℝ 𝑑𝑥
 

𝛺

, 

                         = −∫ (𝑢𝑡)
2 𝑑𝑥

 

𝛺
< 0, 

olduğundan sistem enerjisi azalır (Mori ve Kuramoto, 1998). 

Swift-Hohenberg denklemi örüntü görüntü oluşturma davranışıyla dikkat çeken bir kısmi 

diferansiyel denklemdir. Basit sıvılarda ve çeşitli karmaşık sıvılarda ve sinir dokuları gibi 

biyolojik materyallerde kalıpları modellemek için de kullanılmıştır (Kuwamura ve 

Yanagida, 2020). SH denklemi 

𝜕𝑡𝑢 = 𝜇𝑢 − (1 + ∆)2𝑢 − 𝑢3,             

formunda bir başlangıç koşulu ve periyodik/homojen Neumann sınır koşulu ile verilir. 

Orjininde 4. mertebe bir diferansiyel denklem olan SH denklemi, 𝑣 = 𝑢 + ∆𝑢  dönüşümü 

altında 

𝜕𝑡𝑢 = −∆𝑣 + 𝜇𝑢 − 𝑢3 − 𝑣                     

0 = ∆𝑢 + 𝑢 − 𝑣                                                                                                      (2.1.2.2) 
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denklem sistemi olarak 2. mertebe bir diferansiyel denklem sistemi olarak yazılabilir.  Bu 

sistem, 𝑤⃗⃗ = (𝑢, 𝑣)𝑇 vektörü (𝑚 = 2), 

𝐹(𝑢, 𝑣) =
𝜇

2
𝑢2 −

1

4
𝑢4 − 𝑢𝑣 +

1

2
𝑣2, 

potansiyel fonksiyonu ve 

𝑆 = (
1 0
0 0

),   𝐷 = (
0 −1
1 0

),  𝑄 = (
1 0
0 −1

),   

matrisleri için (2.1.1) ile verilen formda bir sistemdir. Sistemin (2.1.2) ile verilen enerji 

fonksiyonu  

𝐸[𝑢, 𝑣] = ∫ {
1

2
〈𝐷∇𝑤,⃗⃗⃗⃗ 𝑄∇𝑤⃗⃗ 〉ℝ2 − 𝐹(𝑤⃗⃗ )} 𝑑𝑥

 

𝛺

, 

               = ∫ {
1

2
〈(

0 −1
1 0

) (
∇u
∇v

) , (
1 0
0 −1

) (
∇u
∇v

)〉ℝ2 −
𝜇

2
𝑢2 +

1

4
𝑢4 + 𝑢𝑣 −

1

2
𝑣2} 𝑑𝑥

 

𝛺

, 

               = ∫ {
1

2
〈(

−∇v
∇u

) , (
∇u
−∇v

)〉ℝ2 −
𝜇

2
𝑢2 +

1

4
𝑢4 + 𝑢𝑣 −

1

2
𝑣2} 𝑑𝑥

 

𝛺

, 

               = ∫ (−∇𝑢 ∙ ∇𝑣 −
𝜇

2
𝑢2 +

1

4
𝑢4 + 𝑢𝑣 −

1

2
𝑣2) 𝑑𝑥

 

𝛺

, 

olarak hesaplanır. Bu durumda (2.1.3) ile verilen enerji fonksiyonunun türevi  

𝑑

𝑑𝑡
𝐸[𝑤⃗⃗ (𝑥, 𝑡)] = −∫〈𝑤⃗⃗ 𝑡, 𝑄𝑆𝑤⃗⃗ 𝑡〉ℝ2 𝑑𝑥 = −∫ 〈(

𝑢𝑡

𝑣𝑡
) , (

1 0
0 −1

) (
1 0
0 0

) (
𝑢𝑡

𝑣𝑡
)〉ℝ2 𝑑𝑥

 

𝛺

 

𝛺

, 

                              = − ∫ 〈(
𝑢𝑡

𝑣𝑡
) , (

1 0
0 0

) (
𝑢𝑡

𝑣𝑡
)〉ℝ2 𝑑𝑥

 

𝛺

= −∫ 〈(
𝑢𝑡

𝑣𝑡
) , (

𝑢𝑡

0
)〉ℝ2 𝑑𝑥

 

𝛺

, 

                              = − ∫(𝑢𝑡)
2 𝑑𝑥

 

𝛺

< 0, 

olduğundan sistem enerjisi azalır (Mori ve Kuramoto, 1998). 

2.1.3. Anti-Gradyan sistemler 

Anti-gradyan sistemler, sistem enerjisinin bazı zaman dilimlerinde azalıp bazı zaman 

dilimlerinde arttığı durumlara sahip sistemlerdir. Bu tip denklemlere örnek olarak 

FitzHugh-Nagumo (FHN) denklemi verilebilecek örneklerin başında gelmektedir. FHN 

denklem sistemi inhibitör değişkeninin yavaş ve aktivatör değişkeninin hızlı olduğu 

inhibitör-aktivatör sistemleridir. Başlangıçta nöronların aksiyon potansiyeli aktivitesini 
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tanımlamak için kullanılmasıyla birlikte, FHN denklemi, uyarma ve difüzyonun 

birleşmesi, spiral dalga dinamiğinde ortaya çıkabilecek uyarılabilir ortamlarda dalgaların 

yayılmasını ele almayı uygun hale getirir. Dolayısıyla bu denklem sistemi benzer fiziksel 

özelliklere sahip diğer modeller için bir başlangıç sağlamıştır. İlave olarak FHN denklem 

sistemi, su temini ve sulama içeren güç üretim sistemlerinde veya hastalık ve 

mikroorganizmaların yayılmasını içeren doğum-ölüm reaksiyonu modellerinde, merkezi 

sinir sistemleri ile akıllı sistemler arasında sinyal iletimini kullanan robotik protez 

modelleri de dahil olmak üzere kullanılabilir (Chen ve Choi, 2014). FHN denklemi,  

𝜏1𝑢𝑡 = 𝑑1∆𝑢 + 𝑓1(𝑢) + 𝑓2(𝑣)                                            

𝜏2𝑣𝑡 = 𝑑2∆𝑣 + 𝑔1(𝑢) + 𝑔2(𝑣)                                                                     (2.1.3.1)                          

formunda verilir.  Bu sistem,  

𝑆 = (
𝜏1 0
0 𝜏2

),   𝐷 = (
𝑑1 0
0 𝑑2

),  𝑄 = (
1 0
0 −1

) ,  

matrisleri için (2.1.1) ile verilen formda bir sistemdir. Sistemin 

𝐹[𝑢, 𝑣] = −
𝑢4

4
+

(1 + 𝛽)𝑢3

3
−

𝛽𝑢2

2
− 𝑢𝑣 +

𝛾𝑣2

2
− 𝜀𝑣, 

potansiyel fonksiyonu için (2.1.2) ile verilen enerji fonksiyoneli 

𝐸[𝑢, 𝑣] = ∫ {
1

2
〈𝐷∇𝑤,⃗⃗⃗⃗ 𝑄∇𝑤⃗⃗ 〉ℝ2 − 𝐹(𝑤⃗⃗ )} 𝑑𝑥

 

𝛺

, 

              = ∫ {
1

2
〈(

𝑑1 0
0 𝑑2

) (
∇u
∇v

) , (
1 0
0 −1

) (
∇u
∇v

)〉ℝ2 − 𝐹(𝑢, 𝑣)} 𝑑𝑥,
 

𝛺

 

              = ∫ {
1

2
〈(

𝑑1∇u
𝑑2∇v

) , (
∇u
−∇v

)〉ℝ2 − 𝐹(𝑢, 𝑣)} 𝑑𝑥,
 

𝛺

 

              = ∫ {
𝑑1

2
|∇𝑢|2 −

𝑑2

2
|∇𝑣|2 − 𝐹(𝑢, 𝑣)} 𝑑𝑥,

 

𝛺

 

olarak bulunur. Bu durumda, (2.1.3) ile verilen bağıntıya karşılık gelen enerji 

fonksiyonelinin türevinin işareti değişkenlik gösterip, enerjinin bazı yerlerde azalıp bazı 

yerlerde arttığı görülebilir (Yanagida, 2002).  
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2.2. Ayrıklaştırılmış Model 

Bu bölümde bir ve iki boyutlu model problemlerinin periyodik/homojen Neumann sınır 

koşulu altında uzay-zaman ayrıklaştırılması ifade edilecektir. Notasyon kolaylığı için, 

tam ayrık sistem formülasyonu, 𝑢(𝑥, 0) = 𝑢0(𝑥)   başlangıç koşulu için bir Ω ⊂ ℝ𝑑 (𝑑 =

1,2) alanında 

𝜕𝑡𝑢 = ∆𝑢 + 𝑓(𝑢),                                                                                                (2.2.1)                                                                         

yarı-doğrusal model problemi için verilecektir. Ayrıklaştırma yöntemi olarak konumsal 

uzayda sonlu farklar kullanılıp, zaman boyutunda Kahan (Celledoni vd., 2012) yöntemi 

verilecektir. 

2.2.1. Uzayda ayrıklaştırma 

Bu tez çalışmasında, verilen denklemlerin ayrık çözümleri elde edilirken konumsal 

uzayda sonlu farklar kullanılacaktır. Sonlu farklar yöntemlerinin temelinde, denklemin 

geçerli olduğu konumsal uzaydaki sonlu sayıdaki ayrık noktalarda (ağ noktaları) 

bilinmeyen fonksiyonun yaklaşık değerlerinin bulunması yatmaktadır. Bağımlı 

değişkenlerin değerlerinin bilinmediği ağ noktası sayısı, oluşacak olan yarı ayrık 

(dinamik) sistemin boyutunu, 𝑁 diyelim, vermektedir. Belirli bir 𝑡 zamanındaki yarı ayrık 

bilinmeyen vektörü, 𝒖(𝒕) ∶ [0, 𝑇] ⟶ ℝ𝑁, ağdaki söz konusu 𝑁 noktadaki yaklaşık 

değerlerden oluşmaktadır. Konumsal kısmi türev terimleri için ise ilgili sonlu farklar 

formülleri gözetilerek dinamik sistemde yer alacak sistem matrisleri kullanılır. Bu 

tanımlar sonucu (2.2.1) ile verilen modeline ait 𝑁  boyutlu yarı ayrık sistem,                 

𝒖(𝒕) ∶ [0, 𝑇] ⟶ ℝ𝑁 zamanda sürekli yarı ayrık çözüm vektörü ve ∆ Laplace operatörünü 

temsil edecek  𝐴 doğrusal sistem matrisi için 

𝒖̇ = 𝐴𝒖 + 𝒇(𝒖),                                                                  (2.2.1.1)            

denklem sistemi ile verilir. Burada, 𝒖̇ terimi 𝒖 vektörünün 𝑡 zaman değişkenine göre adi 

türevini ifade ederken 𝒇(𝒖) ∶ ℝ𝑁 ⟶ ℝ𝑁 vektörü (2.2.1) denkleminde verilen doğrusal 

olmayan 𝑓(𝑢)  fonksiyonunu temsil etmekte olup girdileri 𝒇𝒊 = 𝑓(𝑢𝑖) olarak tanımlanır, 

𝑖 = 1, … ,𝑁. Sonuç olarak, (2.2.1.1) ile verilen model dinamik sisteminin oluşturulması 

için, konumsal uzayın boyutuna bağlı olarak, konumsal ağdaki 𝑁  ayrık noktanın ve 

Laplace operatörünü temsil edecek  𝐴 doğrusal sistem matrisinin belirlenmesi 

gerekmektedir. Bunun için, önncelikle 𝑑 = 1 boyutlu uzayda formülasyon verilecek olup, 
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bulunan formüller Kronecker çarpım yardımıyla 𝑑 = 2 boyutlu uzaydaki 

formülasyonlara genişletilecektir. 

2.2.1.1. Bir boyutlu uzayda ayrıklaştırma 

Konumsal uzayda bir boyutlu (d = 1) kısmi türevli denklemin yarı ayrık formunun elde 

edilmesine, alınan Ω = [𝑎, 𝑏] aralığının 𝑁 eşit parçaya bölünmesiyle başlanır: 

𝑎 = 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑁+1 = 𝑏,     ∆𝑥 = (𝑏 − 𝑎)/(𝑁). 

Burada, aralıkların uzunluğu olan ∆𝑥 değeri ile 𝑥𝑖  ayrık konum noktaları birlikte ayrık 

bölüntüyü (ağ) oluşturur ve ∆𝑥 değeri bölüntünün ölçüsü olarak adlandırılır. 

Oluşturulmuş olan bölüntü üzerindeki her ağ noktasında ayrık çözümlerden oluşan 𝑁 

boyutlu çözüm vektörü 

𝒖 ≔ 𝒖(𝑡) = (𝑢1(𝑡), 𝑢2(𝑡), … , 𝑢𝑁(𝑡))
𝑇
,     𝑢𝑖(𝑡) = 𝑢(𝑥𝑖, 𝑡),     𝑖 = 1,… ,𝑁, 

şeklinde tanımlanır. Dikkat edilirse, periyodik sınır koşulundan dolayı, 𝑢(𝑥𝑖, 𝑡) =

𝑢(𝑥𝑁+𝑖, 𝑡), ayrık çözüm vektöründe bilinen 𝑢𝑁+1(𝑡) = 𝑢1(𝑡) değerine yer verilmemiştir. 

Homojen Neumann sınır koşulu söz konusu olduğunda, 𝑢𝑁+1(𝑡) bileşeni de çözüm 

vektöründe yer alır ve sistem boyutu 𝑁 ≔ 𝑁 + 1 olur. Yarı ayrık formun elde 

edilmesinde sıradaki işlem, problemdeki diferansiyel operatörlere yaklaşık olarak karşılık 

gelecek matrislerin belirlenmesidir. Birinci mertebe türev operatörü, her ne kadar (2.2.1) 

ile verilen model denkleminde yer almasa da,  

𝜕𝑥𝑢|𝑥𝑖
≈

1

2∆𝑥
(𝑢𝑖+1 − 𝑢𝑖−1),         𝑖 = 1,… ,𝑁, 

merkezi sonlu bölünmüş fark formülü kullanılacaktır. Periyodik sınır koşulları altında, 

yukarıdaki formül 

𝑖 = 1   ⇒    
1

2∆𝑥
(𝑢2 − 𝑢𝑁)    

𝑖 = 2, … ,𝑁 − 1   ⇒    
1

2∆𝑥
(𝑢𝑖+1 − 𝑢𝑖−1)    

𝑖 = 𝑁   ⇒    
1

2∆𝑥
(𝑢1 − 𝑢𝑁−1)    

bağıntılarını sağlar. Söz konusu bağıntılar sonucu oluşan birinci mertebe türev için 

𝐷1 sonlu farklar matrisi 



16 

 

𝐷1 =
1

2∆𝑥

[
 
 
 
 
 
 
 
 

0 1       −1
−1 0 1 ⋯ ⋯   ⋯ ⋮
⋮ −1 0 1    ⋯ ⋮
⋮  ⋱  ⋱  ⋱     
          
     ⋱   ⋱   
     −1  0 1 ⋮
⋮         − 1 0 1
1 ⋯     ⋯ −1 0 ]

 
 
 
 
 
 
 
 

∈ ℝ𝑁×𝑁,       (2.2.1.1.1) 

formunda yazılır. Homojen Neumann sınır koşulu altında, yukarıdaki matrisin boyutu 

𝑁 = 𝑁 + 1 olup, −1 olan ilk satırın son girdisi ile 1 olan son satırın ilk girdisi 0 değerini 

alırlar. İkinci mertebe türev (Laplace) operatörü için ise 

𝜕𝑥𝑥𝑢|𝑥𝑖
≈

1

∆𝑥2
(𝑢𝑖−1 − 2𝑢𝑖 + 𝑢𝑖+1),         𝑖 = 1, … , 𝑁, 

merkezi sonlu bölünmüş fark formülü kullanılacaktır. Periyodik sınır koşulları altında, 

yukarıdaki formül 

𝑖 = 1   ⇒    
1

∆𝑥2
(𝑢𝑁 − 2𝑢1 + 𝑢2)    

𝑖 = 2, … ,𝑁 − 1   ⇒    
1

∆𝑥2
(𝑢𝑖−1 − 2𝑢𝑖 + 𝑢𝑖+1)    

𝑖 = 𝑁   ⇒    
1

∆𝑥2
(𝑢𝑁−1 − 2𝑢𝑁 + 𝑢1)    

bağıntılarını sağlar. Söz konusu bağıntılar sonucu oluşan ikinci mertebe türev için 

𝐷2 sonlu farklar matrisi 

𝐷2 =
1

∆𝑥2

[
 
 
 
 
 
 
 
 
−2    1           1
   1 −2    1 ⋯ ⋯   ⋯     ⋮
   ⋮    1 −2 1    ⋯     ⋮
   ⋮  ⋱  ⋱  ⋱     
          
     ⋱   ⋱   
     1  −2      1     ⋮

   ⋮           1  −2     1
   1 ⋯     ⋯      1  −2]

 
 
 
 
 
 
 
 

∈ ℝ𝑁×𝑁, 

formunda yazılır. Homojen Neumann sınır koşulu altında, yukarıdaki matrisin boyutu 

𝑁 = 𝑁 + 1 olup, 1 olan ilk satırın son girdisi ve son satırın ilk girdisi 0 değerini alırlar. 

Tanımı verilmiş 𝐷1 ∈ ℝ𝑁×𝑁  ve  𝐷2 ∈ ℝ𝑁×𝑁  matrisleri kullanılarak, bir KTD’de yer alan 

birinci ve ikinci mertebe türev terimlerinin ağdaki 𝑥𝑖   ayrık noktalarındaki değerleri 

yaklaşık olarak sırasıyla 
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𝐷1𝒖 ∈ ℝ𝑁×𝑁,   𝐷2𝒖 ∈ ℝ𝑁×𝑁, 

terimleri ile ifade edilirler. Bu tanımlar sonucu, konumsal uzayda bir boyutlu (2.2.1.1) 

model dinamik sistemindeki doğrusal sistem matrisi 𝐴 = 𝐷2 olarak alınır.  

2.2.1.2. İki boyutlu uzayda ayrıklaştırma 

Konumsal uzayda iki boyutlu (𝑑 = 2) kısmi türevli denklemin yarı ayrık formu için,   

𝛺 = [𝑎, 𝑏] × [𝑐, 𝑑]  alanı 𝑥 ve 𝑦 eksenleri yönünde sırasıyla 𝑁𝑥 ve 𝑁𝑦 sayıda eşit parçaya 

bölünerek iki boyutlu  

𝑎 = 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑁𝑥+1 = 𝑏,               ∆𝑥 = (𝑏 − 𝑎)/(𝑁𝑥), 

𝑐 = 𝑦1 < 𝑦2 < ⋯ < 𝑦𝑁𝑦+1 = 𝑑,               ∆𝑦 = (𝑑 − 𝑐)/(𝑁𝑦), 

ağı oluşturulur. Yarı ayrık 𝒖(𝒕) ∶ [0, 𝑇] ⟶ ℝ𝑁×𝑁 çözüm vektörü (𝑁 = 𝑁𝑥𝑁𝑦),  𝑢𝑖,𝑗(𝑡) =

𝑢(𝑥𝑖, 𝑦𝑖 , 𝑡), 𝑖 = 1,… , 𝑁𝑥, 𝑗 = 1, … ,𝑁𝑦,  için 

𝒖 ≔ 𝒖(𝑡) = (𝑢1,1(𝑡), … , 𝑢1,𝑁𝑦
(𝑡), 𝑢2,1(𝑡),… , 𝑢𝑁𝑥𝑁𝑦

(𝑡))
𝑇

, 

olarak tanımlanırsa, iki boyutlu uzaydaki birinci ve ikinci mertebe türev terimlerine 

karşılık gelen 𝐷𝑥, 𝐷𝑦, 𝐷𝑥𝑥, 𝐷𝑦𝑦 ∈ ℝ𝑁×𝑁 merkezi sonlu farklar matrisleri  

𝐷𝑥 = 𝐷1  ⊗ 𝐼𝑦,  𝐷𝑥𝑥 = 𝐷2 ⊗ 𝐼𝑦,  𝐷𝑦 = 𝐼𝑥 ⊗  𝐷1,   𝐷𝑦𝑦 = 𝐼𝑥 ⊗  𝐷2,   

formülleri ile hesaplanabilirler (Uzunca vd., 2021). Burada 𝐼𝑥 ve 𝐼𝑦 matrisleri sırasıyla  

𝑁𝑥 ve 𝑁𝑦 boyutlu birim matrisler, ⊗ Kronecker çarpımı olup  𝐷1 ve  𝐷2  matrisleri Bölüm 

2.2.1.1’de tanımlanmıştır. Verilen tanımlar sonucu, konumsal uzayda iki boyutlu 

(2.2.1.1) ile verilen model dinamik sistemindeki doğrusal sistem matrisi 𝐴 = 𝐷𝑥𝑥 +   𝐷𝑦𝑦 

olarak alınır. Kronecker çarpım sınır koşullarını koruduğundani, homojen Neumann sınır 

koşulu altında, bir boyutlu uzayda tanımlanmış olan ilgili matrislerin kullanılması yeterli 

olmaktadır. 

2.2.2. Zamanda ayrıklaştırma 

Yarı ayrık formdaki (2.2.1.1) ile verilen model denklem sisteminin tam ayrık formu için, 

öncelikli olarak [0, 𝑇] aralığı 𝐾 eşit parçaya bölünerek 

0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝐾 = 𝑇 ,          ∆𝑡 = 𝑇/𝐾,      
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zaman ağı oluşturulur. Sonrasında, 𝑡 = 𝑡𝑘  anındaki yaklaşık çözüm vektörü  𝒖𝑘 ≈ 𝒖(𝑡𝑘) 

formunda tanımlansın. Tam ayrık çözümlerin elde edilebilmesi için, zamana göre türev 

terimi içeren yarı ayrık sistemin bir sayısal yöntem ile integre edilmesi gereklidir. Bu tez 

çalışmasında, verilen problemlerin zamanda ayrıklaştırılması için Kahan yöntemi 

kullanılmıştır (Kahan ve Li, 1997). Kahan yöntemi ikinci mertebe yakınsaklığa sahip bir 

yöntem olup en önemli özelliklerinin başında doğrusal-kapalı bir yöntem olması 

gelmektedir, başka bir deyişle ayrıklaştırma sonucu elde edilen sistem bilinmeyen 

seviyedeki çözüm vektörü için doğrusal olup doğrusal olmayan sistemlerin çözümünde 

kullanılan Newton tipi iteratif yöntemlere gerek olmamaktadır (Celledoni vd., 2012). 

(2.2.1) ile verilen model probleminin, (2.2.1.1) ile verilen yarı ayrık haline Kahan 

yöntemi uygulandığında 

(𝐼𝑁 −
∆𝑡

2
𝐑′(𝒖𝑘)) (𝒖𝑘+1 − 𝒖𝑘) = ∆𝑡𝐑(𝒖𝑘),         𝑘 = 0,1, … , 𝐾 − 1,       

tam ayrık sistem formülasyonu elde edilir. Burada, 𝐑(𝒖) = 𝐴𝒖 + 𝐟(𝒖) vektörü yarı ayrık 

sistemin sağ tarafını temsil ederken, 𝐑′(𝒖) ∈ ℝ𝑁×𝑁  matrisi 

(𝐑′(𝒖))𝑖𝑗 =
𝜕𝐑𝒊

𝜕𝒖𝒋
,     𝑖, 𝑗 = 1,… ,𝑁, 

girdilerine sahip olup 𝐑(𝒖) vektörünün jakobiyen matrisini ifade eder. Dikkat edilecek 

olunursa, oluşan tam ayrık sistem ile 𝒖𝑘+1 bilinmeyen vektörü tek bir doğrusal denklem 

sisteminin çözümüyle hesaplanabilmektedir.  

2.3. Temel Bileşenler Analizi   

Temel Bileşenler Analizi (TBA) olarak bilinen yöntemin ilk tanımları, Karl Pearson 

(1901) tarafından yapıldığı literatürde genel olarak kabul edilmektedir. TBA’nın amacı 

doğrusal bağımlı çok sayıda veriden, birbirinden bağımsız daha az sayıda veri elde 

etmektir. Buradaki en önemli nokta, veri boyutunun düşürülebilmesi için doğrusal olarak 

bağımlı verilerin ayıklanmaya çalışılmasıdır. Bu sayede boyut azalırken, verilerin 

sistemdeki tanımlayıcı olma niteliği de korunur. Dolayısıyla, TBA yöntemi, veri 

sıkıştırma yöntemi olarak da kullanılabilir. TBA, sonlu bir sayıda değişkenden oluşan bir 

veri setini, çok daha az sayıda ve bu değişkenlerin doğrusal bileşenleri olan yeni 

değişkenlerle ifade etme yöntemidir. Yani, aralarında korelasyon bulunan sonlu bir 

sayıdaki değişkenlerin açıkladığı yapıyı, aralarında korelasyon bulunmayan ve orijinal 
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değişken sayısından çok daha az sayıda yani daha küçük boyutlu doğrusal bileşenleri olan 

değişkenlerle ifade etme yöntemine TBA denir (Johnson ve Wichern, 2007). 

TBA, veri setiyle ifade edilmiş olan bilgiyi daha farklı formda ifade etmek amacıyla 

uygulanan bir yöntemdir. Veri setindeki tüm değişkenler bir teknik içerisinde, aynı 

doğrultuda hizmet ederler. İçlerinden herhangi bir tanesi diğerini açıklamak için seçilmez. 

TBA, veri setini yeniden ifade etmeye yarayan bir teknik olarak bilindiği kadar, boyut 

indirgeme yöntemi olarak da bilinir (Jackson, 2004). 

TBA, veri setinin gerçek boyutunu belirlemek içinde kullanılır ve orijinal değişkenler en 

az bilgi kaybederek daha az sayıdaki değişkenlerle yer değiştirir. Bu oluşan yeni 

değişkenler farklı çok değişkenli analizlerde de kullanılır. Genel olarak TBA’nde veri 

setini özetlemek için, mümkün olabilecek en az bilgi kaybıyla doğrusal bileşen 

oluşturulmaya çalışılır (Johnson ve Wichern, 2007). TBA, veri indirgemek, şekil sıkıştırıp 

özellik çıkarmak için esaslı ve önemli bir tekniktir. Bir veri setinin varyans-kovaryans 

yapısını, bu değişkenlerin doğrusal birleşimleri yardımıyla açıklayarak, boyut 

indirgenmesini ve yorumlanmasını sağlayan çok değişkenli bir istatistiksel yöntemdir 

(Yaycılı, 2006).  

TBA yöntemi çok büyük boyutlu veriyi daha küçük boyutlu bir veriye dönüştürür. Bu 

doğrusal yolu kurarken kovaryans matrisi kullanılır. Kovaryans matrisinin özdeğer ve 

özvektörleri bulunarak temel bileşenler hesaplanır.  

Bu bölümde ele alacağımız veri seti 

𝑌 = [𝑦1 … 𝑦𝑛] ∈ ℝ𝑚×𝑛,   𝑦𝑖 ∈ ℝ𝑚,         (𝑛 ≫ 𝑚),          𝑖 = 1,2, … , 𝑛.          (2.3.1) 

şeklinde verilsin. Veri setimizin dağılım ve yapısını incelemek için kullandığımız varyans 

ve kovaryans tanımları şu şekildedir.  

2.3.1. Tanım: 𝑌 veri setinin varyansı, veri içerisindeki yayılımın ölçüsüdür. Genellikle 

değişimi ölçmek için kullanılır. Standart sapmanın da karesi olan varyans 

𝑣𝑎𝑟(𝑌) =
1

𝑛−1
∑ (𝑦𝑖𝑛

𝑖=1 − 𝑦̅)2, 

ifadesiyle verilir. Yukarıdaki eşitlikte 𝑛: veri sayısını,  𝑦𝑖: 𝑦  değişkenine ait 𝑖. gözlem 

değeri ve 𝑦̅ =
1

𝑛
∑ 𝑦𝑖𝑛

𝑖=1   ise 𝑛 adet verinin ortalamasını ifade etmektedir (Jackson, 1991). 

2.3.2. Tanım: Kovaryans, iki değişkenin birlikte ne kadar değiştiklerinin ölçüsüdür. 

Varyans bir boyutlu veriler için kullanılmaktayken, kovaryans ise iki rastgele değişkenin 
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beraber değişimlerini inceleyen bir istatistiktir. Ancak çoğu durumda veri setleri birden 

fazla boyuta sahiptir. Kovaryans iki boyut arasında ölçüm yapabilmek için 

kullanılmaktadır.  

𝑋 = [𝑥1 … 𝑥𝑛] ∈ ℝ𝑚×𝑛 ve 𝑌 = [𝑦1 … 𝑦𝑛] ∈ ℝ𝑚×𝑛 gibi iki veri setinin 

kovaryansı 

𝐶𝑜𝑣 (𝑋, 𝑌) =
1

𝑛
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖𝑛

𝑖=1 − 𝑦̅)𝑇, 

ifadesiyle hesaplanır. Yukarıdaki eşitlikte  𝑛: veri sayısını, 𝑥𝑖 , 𝑦𝑖 : ilgili 𝑖. verileri ve      

𝑥̅, 𝑦̅ : ilgili 𝑛 adet verinin ortalamalarını ifade etmektedir (Jackson, 1991). 

2.3.2. Tanım: Kovaryans matrisi, her bir değişkenin diğer değişkenlerle olan ilişkisini 

gösteren kovaryans değerlerini içerir. Değişkenler arasındaki ilişkinin yönünü ve gücünü 

belirlemeye yardımcı olur. Kovaryans matrisinin izi olan köşegen elemanların toplamı 

varyansa eşit olup “Toplam Varyans” olarak anılır. Örnek olarak, 𝑥, 𝑦 𝑣𝑒 𝑧  

değişkenlerine ait kovaryans matrisi 

𝐶3×3 = [

𝐶𝑜𝑣(𝑥, 𝑥) 𝐶𝑜𝑣(𝑥, 𝑦) 𝐶𝑜𝑣(𝑥, 𝑧)
𝐶𝑜𝑣(𝑦, 𝑥) 𝐶𝑜𝑣(𝑦, 𝑦) 𝐶𝑜𝑣(𝑦, 𝑧)
𝐶𝑜𝑣(𝑧, 𝑥) 𝐶𝑜𝑣(𝑧, 𝑦) 𝐶𝑜𝑣(𝑧, 𝑧)

], 

şeklinde verilir (Jackson, 1991). 

2.3.1. Temel bileşenler analizinin özellikleri 

Geometrik olarak, birbirinden bağımsız değişkenler üreten TBA’nın önemli olan 

özelliklerinden bazıları şunlardır: 

 Birimlerin her bir eksene göre koordinatları yeni değişkenlerin birim değerlerini 

vermektedir. Yeni eksenlere veya değişkenlere temel bileşenler adı verilmektedir. 

 Yeni oluşan her bir değişken, orijinal değişkenlerin doğrusal bir birleşimidir. 

 Birinci temel bileşen üretilirken, verilerdeki maksimum varyansı açıklayacak şekilde 

oluşmaktadır. 

 İkinci temel bileşen ise geriye kalan toplam varyansa en fazla katkıyı sağlar. Yani 

birinci temel bileşen en çok, diğer bileşenler ise gittikçe azalan bir şekilde toplam 

varyansa maksimum katkıda bulunurlar. Dolayısıyla, çok az sayıda bileşenle toplam 

varyans büyük ölçüde açıklanabilmektedir. 
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 Maksimum olarak oluşturulabilecek temel bileşen sayısı orijinal değişken yani toplam 

değişken sayısından fazla değildir. 

 Yeni bileşenler birbirinden doğrusal bağımsız olacak şekilde oluşturulmaktadır 

(Albayrak, 2006). 

TBA’da, yeni temel bileşenler kendileri bir sonuç almaktan daha ziyade sonuç almayı 

sağlayan özelliğe sahiptirler. Çünkü temel bileşenler daha geniş incelemeler ve 

açıklamalar için bir geçiş adımı özelliği taşır. Temel bileşenler analizinin kullanımının 

faydalarından bir tanesi de temel bileşenlerin aralarında korelasyon bulunmamasıdır. Bu 

bir avantajdır ve temel bileşenlerin birbirine dik oluşundan kaynaklanır. Bu avantaj iki 

şekilde gerçekleşir. İlki, nesneler arasında temel bileşenler analizi değerlerinin alınması 

sonucu yapılacak karşılaştırmalarda farklı bileşenler birbirleriyle ilişkisiz olacaktır ve 

sonraki analizlerde temel bileşen değerleri uygun bir şekilde kullanılabilecektir. Temel 

bileşenler analizinin kullanım faydalarından ikincisi, temel bileşenler analizi sonucunda 

elde edilen doğrusal bileşenler, orijinal değişkenlerin diğer doğrusal bileşenlerden farklı 

olarak, mümkün olabilecek en az sayıda değişkenler arasındaki değişim yüzdesini, 

maksimum yapacak şekilde oluşturulmasıdır (Özdamar, 2004). 

2.3.2. Temel bileşenler analizine geometrik yaklaşım 

Geometrik olarak temel bileşenler analizi, değişken eksenlerinin varyans 

maksimizasyonu ölçütü göz önüne alınarak, bir dönüştürme matrisi yardımıyla 

döndürülmesinden meydana gelen bir yöntemdir. 

Geometrik olarak  𝑦1, 𝑦2, … , 𝑦𝑛  koordinat eksenlerini oluşturan 𝑛 tane değişkenin ana 

bileşenlerinin her biri, yeni eksenleri meydana getirmesi suretiyle döndürülmüş yeni bir 

koordinat sistemini göstermektedir. Dolayısıyla 𝑛 adet değişken ve 𝑚 adet gözlem, 𝑛 

boyutlu uzayda 𝑚 adet noktayı belirlemektedir. 

Dönüşüm matrisi 𝑄 ∈ ℝ𝑚×𝑛  ile verilirse, eksen döndürme işlemi, 

𝑍 = 𝑄𝑇𝑌,                                                                                                                 (2.3.2.1) 

bağıntısıyla tanımlanır. Böylece, 𝑖. eksen için 𝑥𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑚)𝑇  ve 𝑦𝑖 = (𝑦𝑖1, … , 𝑦𝑖𝑚)𝑇 

olarak alınırsa, birbirleriyle ilişkili olan 𝑥1𝑗 değerlerinden, dönüştürme sonucu aralarında 

korelasyon bulunmayan 𝑦𝑖𝑗 değerleri bulunur. Bu dönüşüm Şekil 2.1’de gösterilmiştir 

(Sharma, 1995). 
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Şekil 2.1 Temel bileşenler dönüşümünün iki boyutlu uzayda gösterimi 

2.3.3. Temel Bileşenler Analizinin Uygulanışı 

(2.3.1) ifadesinde verildiği şekilde bir veri kümesini  

𝑌 = [

𝑦11 𝑦12 … 𝑦1𝑛

𝑦21 𝑦22 … 𝑦2𝑛

…
𝑦𝑚1

…
𝑦𝑚1

… …

… 𝑦𝑚𝑛

],                             (2.3.3.1)  

şeklinde bir matris olarak ele alarak 𝑛 tane 𝑚 boyutlu gözlem vektöründen oluştuğunu 

kabul edelim. Verilerin aynı ölçü biriminde olması daha iyi sonuç vereceğinden, (2.3.3.1) 

ile verilen veri setinin merkezi olduğunu, diğer bir deyişle veri matrisinin sütun 

vektörlerinin sıfır ortalamaya sahip olduğunu varsayalım yani ∑ 𝑦𝑖 = 0𝑛
𝑖=1  olsun. 

Aksi bir durumda, bu standartlaştırma veri ortalaması 0 olacak bir veri matrisi 

oluşturularak yapılabilir. Bunun için 𝑦̅ ∈ ℝ𝑚 ortalama vektörü her bir 𝑦𝑖 ∈ ℝ𝑚 gözlem 

vektöründen çıkartıldığında, 𝑌̃  yeni veri matrisini oluşturan sütun vektörleri sıfır 

ortalamalı olur.  

𝑌̃ = [𝑦̃1 … 𝑦̃𝑛] =

[
 
 
 
 
𝑦11 − 𝑦̅1

 
𝑦 

12 − 𝑦̅ 
1 … 𝑦1𝑛

 
− 𝑦̅ 

1

𝑦 
21 − 𝑦̅ 

2 𝑦22
 
− 𝑦̅2

 
… 𝑦2𝑛

 
− 𝑦̅ 

2

⋮
𝑦𝑚1

 
− 𝑦̅ 

𝑚
⋮

𝑦𝑚2
 
− 𝑦̅ 

𝑚
⋱
…

⋮
𝑦𝑚𝑛

 
− 𝑦̅ 

𝑚
]
 
 
 
 

,         

𝑦̃𝑖
 
= 𝑦𝑖

 
− 𝑦̅,       

1

𝑛
∑ 𝑦̃𝑖 =

1

𝑛
∑ (𝑦𝑖 − 𝑦̅)𝑛

𝑖=1
𝑛
𝑖=1 = 0,       

merkezi olacak şekilde kabul edilen 𝑌  veri matrisinin kovaryans matrisi  
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𝐶 =
1

𝑛
∑ 𝑦𝑖𝑦𝑖𝑇 =

1

𝑛

𝑛
𝑖=1 𝑌𝑌𝑇, 

hesaplamalarıyla elde edilir. 

TBA’da bulunması gereken temel bileşen vektörleri esasında (2.3.2.1) denkleminde 

verilen 𝑄 dönüşüm matrisinin sütün vektörleri olup aynı zamanda 𝐶 kovaryans matrisinin 

özvektörleridir. Bu durum şu şekilde açıklanabilir, 𝑍 = 𝑄𝑇𝑌 dönüşümü sonrası elde 

edilecek olan yeni veri değişkenlerinin sıfır korelasyonlu olması beklenmektedir. Böyle 

bir özellik için, 𝑍 veri matrisinin kovaryans matrisi köşegen olmalıdır, çünkü diğer 

durumda köşegende olmayan kovaryans matrisi elemanlarının sıfırdan farklı değerlere 

sahip olması farklı değişkenler arasında korelasyon olduğunu ifade eder.  𝑍  matrisinin, 

kovaryans matrisi 𝐶𝑍  ile ifade edilecek olursa, 

𝐶𝑍 =
1

𝑛
∑𝑧𝑖𝑧𝑖𝑇 =

1

𝑛

𝑛

𝑖=1

𝑍𝑍𝑇 , 

matrisi yazılır. 𝑍 = 𝑄𝑇𝑌  dönüşümü yerine yazılırsa 

𝐶𝑍 =
1

𝑛
𝑍𝑍𝑇 

     = 
1

𝑛
(𝑄𝑇𝑌)(𝑄𝑇𝑌)𝑇 

     =
1

𝑛
𝑄𝑇𝑌𝑌𝑇𝑄 

     =
1

𝑛
𝑄𝑇𝐵𝑄, 

ifadesi  𝐵 = 𝑌𝑌𝑇 için elde edilir. Burada  𝐵  matrisi simetrik bir kare matris olduğundan, 

𝐵 matrisi 𝐵 = 𝐸𝐷𝐸𝑇 özdeğer ayrışmasına sahiptir, öyle ki 𝐷 matrisi özdeğerleri 

barındıran köşegen bir matris olup,  𝐸 matrisi ise ilgili özvektörleri sütunlarında tutan 

ortogonal bir matristir. Bu aşamada, 𝐵 = 𝑌𝑌𝑇 olduğundan, dönüşümdeki 𝑄 matrisi, 

özvektörleri tutan 𝐸 matrisi olarak alınıp yerine yazılarak ortogonallik özelliğinden 𝐸𝑇𝐸  

matrisinin birim matris olduğu kullanılırsa 

𝐶𝑍 =
1

𝑛
𝑄𝑇𝐵𝑄 

     = 
1

𝑛
 𝑄𝑇𝐸𝐷𝐸𝑇𝑄 

     =
1

𝑛
(𝑄𝑇𝑄)𝐷(𝑄𝑇𝑄) 
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     =
1

𝑛
𝐷, 

ifadesi elde edilir ki bu da köşegen bir kovaryans matrisi elde ettiğimizi gösterir. Sonuç 

olarak, yeni eksen değişkenlerinin aralarında korelasyon olmaması için 𝑄 dönüşüm 

matrisini sütunları 𝑌𝑌𝑇 matrisinin (veya 𝑌 veri setinin kovaryans matrisi olan 𝐶 

matrisinin) özvektörleri olacak şekilde seçmek yeterlidir. Geldiğimiz noktada 𝑄 dönüşüm 

matrisinin bulunabilmesi için 𝐶 kovaryans matrisinin özvektörlerinin hesaplanması 

gereklidir. Bunun için ise 

𝐶𝑣𝑖 = 𝜆𝑖𝑣𝑖,      𝑖 = 1, … ,𝑚,                (2.3.3.2) 

özdeğer problemi çözülmelidir. (2.3.3.2) ile verilen denklemde, 𝐶 matrisi 𝑚 × 𝑚 boyutlu 

kovaryans matrisi, 𝜆𝑖 herhangi bir skaler ve 𝑣𝑖 ∈ ℝ𝑚 sıfırdan farklı bir sütun vektörü 

olmak üzere, eşitliği sağlayan 𝜆 değeri 𝐶 matrisinin özdeğeri, 𝑣𝑖  vektörü ise 𝜆𝑖 ile ilişkili 

özvektördür.  

(2.3.3.2) ile verilen eşitlikte özdeğerler büyükten küçüğe doğru sıralanacak şekilde 

yazıldığında, 𝜆1 ≥ … ≥ 𝜆𝑚 ≥ 0, sıralı özdeğerlere karşılık gelen 𝑣𝑖 özvektörleri 

kullanılarak dönüşüm matrisi  𝑄 = [𝑣1 …𝑣𝑚] ∈ ℝ𝑚×𝑚 olarak alınabilir. Diğer yandan, 

boyut indirgeme anlamında, ilk 𝑘 ≪ 𝑚 tane özdeğere karşılık gelen 𝑣𝑖 özvektörleri 

kullanılarak da  

𝑄𝑘 = [𝑣1 …𝑣𝑘] ∈ ℝ𝑚×𝑘,                                                                             

matrisi en iyi izdüşümü gerçekleştiren izdüşüm matrisi olarak elde edilebilir. Boyutu 

indirgenmiş yeni eksen değişkenlerinin bulunması için veri matrisinin her bir değeri 

özvektörlerle belirlenen uzay üzerine izdüşümü alınmak suretiyle 

𝑧𝑖 = 𝑄𝑘
𝑇𝑦𝑖 ∈ ℝ𝑘,             𝑖 = 1,… , 𝑛 ,                                                                                       

şeklinde hesaplanır. 

Özet olarak, TBA’daki işlem akışı Şekil 2.2’de yer alan diyagramda gösterilmiştir. 
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Şekil 2.2 TBA işlem akışı 

TBA, Şekil 2.3 (a)’daki gibi doğrusal olarak düzgün dağılmış veriler için etkin iken, 

doğrusal olmayan düzgün dağılım göstermeyen veriler için etkili değildir, Şekil 2.3 (b). 

Doğrusal olmayan yani düzgün dağılım göstermeyen veriler için Çekirdek Temel 

Bileşenler Analizi daha etkin bir yöntem olarak karşımıza çıkmaktadır. Bu yöntem Bölüm 

3 de ayrıntılı olarak verilecektir. 

 
(a)                                                                  (b) 

Şekil 2.3 (a) Doğrusal olarak ayrılabilen; (b) Doğrusal olarak ayrılamayan veri 

dağılımları 
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2.4. Kovaryans Matrisinin Köşegenleştirilmesi 

Bu bölümde ele alacağımız veri seti 

𝑌 = [𝑦1 … 𝑦𝑛] ∈ ℝ𝑚×𝑛,      𝑦𝑖 ∈ ℝ𝑚,    𝑖 = 1,2, … , 𝑛,     (𝑛 ≫ 𝑚)                                                                      

şeklinde verilsin. TBA, 𝑌 veri setimizi temsil eden (𝑘 ≪ 𝑚) matris olmak üzere 𝑘 

boyutunda doğrusal bir model bulmayı amaçlamaktadır. Yani, TBA yöntemi çok boyutlu 

veriyi daha küçük boyutlu bir veriye dönüştürür. Bu doğrusal dönüşümü yaparken 

Kovaryans matrisi kullanılır. Kovaryans matrisinin özdeğer ve özvektörleri bulunarak 

temel bileşenler hesaplanır. Veri setimizin dağılım ve yapısını incelemek için 

kullandığımız (𝑚 × 𝑚) boyutlu Kovaryans matrisi  

𝐶 = 𝑌𝑌𝑇 = ∑ 𝑦𝑖𝑛
𝑖=1 (𝑦𝑖)

𝑇
,                                             (2.4.1) 

Formundadır. Verilerin farklı ölçü biriminde olmaması daha iyi sonuç vereceğinden, 

(2.4.1) ifadesinde verilen veri setinin merkezi olduğunu, diğer bir deyişle veri matrisinin 

sütun vektörlerinin sıfır ortalamaya sahip olduğu varsayılsın. 𝐶 Kovaryans matrisinin 

köşegenleştirilmesi ile özdeğerleri 𝜆1 ≥ … ≥ 𝜆𝑚 ≥ 0, olan köşegen bir 𝛬 matrisi ve 

ortogonal 𝑈 matrisinin bulunmasıyla 

𝐶 = 𝑈𝛬𝑈𝑇 ∈ ℝ𝑚×𝑚,                                 (2.4.2) 

olarak yazılabilir. TBA’da bulunması gereken temel bileşen vektörleri esasında (2.4.2) 

denkleminde verilen  𝑈 = [𝑢1 … 𝑢𝑚] ∈ ℝ𝑚×𝑚 ortogonal dönüşüm matrisinin sütün 

vektörleri olup aynı zamanda  𝐶  Kovaryans matrisinin özvektörleridir. Bu durumda,   𝑍 =

𝑈𝑇𝑌 ∈ ℝ𝑚×𝑛 dönüşümü sonrası yeni veri değişkenleri elde edilir (Gonzalez vd., 2020). 

2.5. Boyut İndirgenmesi 

Λ matrisinin izi ve dolayısıyla 𝜆𝑖 özdeğerlerinin toplamına eşit olan 𝐶 Kovaryans 

matrisinin izi, 𝑖 =  1, … ,𝑚 için, 𝑌 veri matrisinin toplam varyansıdır. Özdeğerler azalan 

bir şekilde sıralandığında, indirgenmiş 𝑘  boyut sayısı varyansın önemli bir kısmını 

içerdiğinden, 𝑈 matrisi en iyi izdüşümü gerçekleştiren izdüşüm matrisi olarak elde 

edilebilir. Gerektiği durumlarda, yani 𝑘 sayısının elle girilmeyip sisteme bağlı olarak 

otomatik bulunması gerektiğinde, bir 𝜀 toleransı için 

∑ 𝜆𝑖 ≥ (1 − 𝜀)∑ 𝜆𝑖𝑚
𝑖=1

𝑘
𝑖=1  ,            
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olacak şekilde bir 𝑘 belirlenebilir. Bu şekilde bulunan bir 𝑘 sayısı kullanıldığında, örneğin 

𝜀 = 0.001 alındığında, veri setinin davranış yapısının %99,9 oranında temsil edildiği 

kabul edilir. 

Burada, (𝑘 +  1) ile 𝑚 sayısına kadar olan özdeğerler ihmal edilir ve sonuç olarak 𝑈 

matrisinin son 𝑚 − 𝑘  tane sütunlarının (veya 𝑈𝑇 matrisinin son satırlarının) 𝑦 

vektörünün varyansına katkıda bulunması beklenmez. Buna göre, 𝑧 vektörünün son 𝑚 −

𝑘 tane bileşenleri önemli bir bilgi kaybı olmaksızın ihmal edilebilir. Böylece indirgenmiş 

uzayda, boyutu indirgenmiş yeni eksen değişkenlerinin bulunması için veri matrisinin her 

bir değeri özvektörlerle belirlenen 𝑘 boyutlu uzay üzerine 𝑈∗ = [𝑢1 … 𝑢𝑘] ∈ ℝ𝑚×𝑘  

matrisi ile izdüşümü alınmak suretiyle 

𝑍∗ = 𝑈∗𝑇𝑌 ∈ ℝ𝑘×𝑛 ,                          

şeklinde hesaplanabilir. Geriye doğru dönüşüm ise, (ℝ𝑘 indirgenmiş boyut uzayından, 

ℝ𝑚 tam boyut uzayına)  𝑦 = 𝑈𝑧 bağıntısının boyutunun azaltılmış hali olarak görülebilir, 

yani 

𝑦 = ∑ [𝑧]𝑖 𝑢
𝑖 ≈ ∑ [𝑧]𝑖𝑢𝑖𝑘

𝑖=1
𝑚
𝑖=1  ,                      

şeklinde yeniden yazılabilir. Matris formunda ise  𝑌 = 𝑈𝑍 ≈ 𝑈∗𝑍∗  olarak yazılabilir. 

Boyut indirgeme işleminde (𝑚 boyutundan 𝑘 boyutuna) ortaya çıkan hata,  𝑌 − 𝑈∗𝑍∗ 

arasındaki farkla ilişkilidir ve 𝜀 toleransı azaldıkça (ve 𝑘 arttıkça) hata azalır (Gonzalez 

vd., 2020). 

2.6. Tekil Değer Ayrıştırması (TDA): Köşegenleştirmeye Alternatif 

Tekil Değer Ayrıştırması (TDA),  𝑚 × 𝑛  boyutlu  𝑌  matrisinin (𝑚 < 𝑛 varsayalım)  

𝑌 = 𝑈𝛴𝑉𝑇 ,                                                  

formunda bir ayrışmasını sağlar. Burada 𝑈 ve 𝑉 matrisleri sırasıyla 𝑚 × 𝑚 ve 𝑛 × 𝑛 

boyutlarında ortogonal matrisler, 𝛴 matrisi  𝑚 × 𝑛 boyutlu köşegen bir matris olmak 

üzere, 𝑌 matrisinin 𝜎 
1 ≥ 𝜎 

2 ≥ ⋯𝜎 
𝑚 ≥ 0 tekil değerleri 𝛴 matrisinin köşegen 

girdileridir: 
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𝛴 =

1

 

 

 

2

0 0 0

0

0

0 0 0 0m







 
 
 
 
 
  

= [
𝛴𝑚 0

0 0
] ∈ ℝ𝑚×𝑛, 

𝛴𝑚 = [
𝜎 

1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜎 

𝑚
] ∈ ℝ𝑚×𝑚. 

𝐶 Kovaryans matrisinin köşegenleştirilmesi TDA'nın doğrudan bir sonucudur: 

𝐶 = 𝑌𝑌𝑇 = 𝑈𝛴𝑉𝑇𝑉𝛴𝑇𝑈𝑇 = 𝑈[𝛴𝛴𝑇]𝑈𝑇 = 𝑈𝛬𝑈𝑇. 

𝑉𝑇𝑉 = 𝐼𝑛 ∈ ℝ𝑛×𝑛 ve 𝛬 = 𝛴𝛴𝑇 olup dolayısıyla, 𝐶 Kovaryans matrisinin özdeğerleri  

𝜆𝑖 = (𝜎 
𝑖)

2
,    𝑖 =  1, … ,𝑚 olmak üzere tam olarak 𝑌 matrisinin tekil değerlerinin 

karesidir (Gonzalez vd., 2020).  

2.7. Gram Matris 

𝑌𝑇 matrisini veri matrisi olarak alan (verileri sütunlar yerine satırlara göre düzenleyen) 𝐶 

Kovaryans matrisine alternatif 𝑛 × 𝑛 boyutlu matris 𝐺 = 𝑌𝑇𝑌 olup, [𝐺]𝑖𝑗 = (𝑦𝑖)
𝑇
𝑦𝑗    

şeklinde yazılır ve Gram matris olarak ifade edilir. TBA ile 𝐺 matrisinin köşegenleştirme 

süreci, 𝐶 Kovaryans matrisinin köşegenleştirme süreci ile aynıdır, ancak 𝑚 boyutunun 

yerine 𝑛 boyutunun azaltılması amaçlanmaktadır. TDA kullanıldığında 𝑌 matrisinin 𝑌𝑇 

matrisi ile değiştirilmesi durumu önemli değildir. Yani, TDA ile  𝑌𝑇 = 𝑉𝛴𝑇𝑈𝑇 şeklinde 

ifade edilebilir. Bu durum 𝐺 Gram matrisinin köşegenleştirilmesini sağlar;  

𝐺 = 𝑌𝑇𝑌 = 𝑉𝛴𝑇𝑈𝑇𝑈𝛴𝑉𝑇 = 𝑉[𝛴𝑇𝛴]𝑉𝑇 = 𝑉𝛬̆𝑉𝑇 .                                                  (2.7.1) 

Burada 𝑈𝑇𝑈 = 𝐼𝑚 ∈ ℝ𝑚×𝑚 ve 𝑛 × 𝑛 boyutlu 𝛬̆ = 𝛴𝑇𝛴  köşegen matrisi, 𝛬 köşegen 

matrisi gibi sıfır olmayan 𝜆𝑖 girdilerinden oluşur (𝑖 = 1,… ,𝑚). Boyut azaltma işlemi, 

Bölüm 2.5'e anlatıldığı şekilde yapılır ve veri uzayının 𝑛 boyutunu 𝑘 boyuta indirgemeyi 

amaçlamaktadır. Yani, 𝑛 boyutlu uzaydaki verilerden herhangi biri (veya aynı uzay ait 

herhangi bir vektör), 𝑉 matrisinin ilk 𝑘 sütunu olan 𝑘 tane vektörün doğrusal bir 

kombinasyonu olarak yazılabilir (Gonzalez vd., 2020). 
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2.8. 𝑪 ve 𝑮  Matrislerinin Köşegenleştirilmesinin Eşdeğer Olması 

𝐶 Kovaryans matrisi (2.4.2) ifadesinde belirtildiği gibi köşegenleştirildiğinde, 𝑈 

dönüşüm matrisinin sütunları tam olarak  

𝐶𝑢𝑖 = 𝜆𝑖𝑢𝑖    𝑖 = 1,… ,𝑚,                                                                   

olacak şekilde 𝐶 Kovaryans matrisinin öz vektörleridir. Aynı durum (2.7.1) ifadesindeki 

𝐺 Gram matrisi ve 𝑉 dönüşüm matrisi için de geçerlidir, yani 

𝐺𝑣𝑖 = 𝜆𝑖𝑣𝑖    𝑖 = 1,… ,𝑚,                                                                     

𝑣𝑖, 𝑉 matrisinin  𝑖. sütunu olmak üzere 𝑖 = 𝑚 + 1,… , 𝑛  için, 𝑉 matrisinin 𝑣𝑖 sütunları 

sıfır özdeğere karşılık gelmektedir. Bölüm 2.6'da anlatılan TDA'nın tek seferde hem 𝑈 

hem de 𝑉 matrisini sağlaması, 𝐶 Kovaryans matrisinin köşegenleştirilmesinde (ve 

dolayısıyla 𝑈 matrisinin elde edilmesinde) yapılan hesaplama işlemlerinin 𝐺 matrisinin 

köşegenleştirilmesine (ve 𝑉 matrisinin elde edilmesine) eşdeğer olduğunu 

göstermektedir. Bu ilk bakışta anlaşılamayabilir, çünkü 𝐶 Kovaryans matrisinin boyutu 

𝑚 × 𝑚 ve 𝐺 matrisinin boyutu 𝑛 × 𝑛 olmaktadır, dolayısıyla 𝐺 matrisinin boyutu çok 

daha büyüktür. Bölüm 2.5’teki gibi boyut indirgeme işlemleri yapılırsa, özdeğeler azalan 

bir şekilde sıralandığında, indirgenmiş 𝑘 boyut sayısı varyansın önemli bir kısmını 

içerdiğinden, 𝑉  matrisi en iyi izdüşümü gerçekleştiren izdüşüm matrisi olarak elde 

edilebilir (Gonzalez vd., 2020). Bu noktada indirgenmiş verilerin bulunabilmesi için 𝐺 

Gram matrisinin özvektörlerinin hesaplanması gereklidir. Bunun için ise 

 𝐺𝑣𝑖 = 𝜆𝑖𝑣𝑖    𝑖 = 1,… ,𝑚,                          (2.8.1)                                                       

özdeğer problemi çözülmelidir. (2.8.1) ile verilen eşitlikte 𝜆1 ≥ … ≥ 𝜆𝑚 ≥ 0, özdeğerleri 

büyükten küçüğe doğru sıralanacak biçimde yazıldığında, sıralı özdeğerlere karşılık gelen  

𝑣𝑖   özvektörleri kullanılarak dönüşüm matrisi 𝑉∗𝑇
 olarak alınabilir (Gonzalez vd., 2020). 

𝑉∗𝑇
 matrisi en iyi izdüşümü gerçekleştiren izdüşüm matrisi olarak elde edilebilir. 

Böylece, indirgenmiş uzayda boyutu indirgenmiş yeni eksen değişkenlerinin bulunması 

için veri matrisinin her bir değeri 𝑣𝑖 ∈ ℝ𝑘 özvektörlerle belirlenen 𝑘 boyutlu uzay üzerine 

𝑉∗ = [𝑣1 … 𝑣𝑛] ∈ ℝ𝑘×𝑛 matrisi ile izdüşümü alınır.  

𝑌 = 𝑈𝛴𝑉𝑇   ifadesinde her iki taraf sağdan  𝑉 ile çarpıldığında 𝑌𝑉 = 𝑈𝛴  olup  

𝑈 = 𝑌𝑉𝛴−1,    𝑈𝑇 = 𝛴−1𝑉𝑇𝑌𝑇                         (2.8.2) 
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ifadeleri elde edilir. Bu durumda  𝑈∗ = 𝑌𝑉∗𝛴−1 olup, (2.8.2) ile verilen ifade  𝑍 = 𝑈𝑇𝑌  

denkleminde yerine yazılıp 

𝐺 = 𝑌𝑇𝑌 = 𝑉𝛴𝑇𝑈𝑇𝑈𝛴𝑉𝑇 = 𝑉𝛴𝛴𝑉𝑇 , 

bağıntısı kullanılırsa    

𝑍 = 𝛴−1𝑉𝑇𝑌𝑇𝑌 = 𝛴−1𝑉𝑇𝐺,     

denklemi indirgenmiş olarak 

𝑍∗ = 𝛴−1𝑉∗𝑇𝑌𝑇𝑌 = 𝛴−1𝑉∗𝑇𝐺,             

şeklinde elde edilir. Boyutu indirgenmiş yeni eksen değişkenleri orijinal uzaya geri 

getirildiğinde  

𝑋 = 𝑈𝑍 ≈ 𝑈∗𝑍∗ = 𝑋𝑉∗𝛴−1𝑍∗,                                                         (2.8.3) 

şeklinde hesaplanabilir. 
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3. MATERYAL VE YÖNTEM 

Bu bölümde, tez çalışmasının merkezinde yer alan Çekirdek Temel Bileşenler Analizi 

(ÇTBA) tanıtılıp model bir veri setine uygulanışı gösterilecektir. 

3.1. Çekirdek Temel Bileşenler Analizi 

TBA, birçok farklı disiplinlerce sıklıkla kullanılmasına rağmen, elde edilen verilerin 

boyutlarının indirgenmesi ve modellenmesi gibi uygulama alanlarında ÇTBA’nın 

kullanımı çok yenidir. ÇTBA, TBA’dan farklı olarak doğrusal olarak ayrıklaştırılamayan 

ya da bir başka ifadeyle doğrusal bir dağılım göstermeyen verilerin doğrusal bileşenler 

ile ifade edilmesini sağlamaktadır. ÇTBA ile veriler çok boyutlu bir doğrusal olmayan 

özellik uzayına izdüşürülür. Çok boyutlu uzayın boyutu sonsuz da olabilir.  

TBA yönteminde farklı özelliklere ait veriler çok büyük bir varyans ile dağılmak 

zorundadır. Çok küçük varyanslı dağıldığı durumlar olduğunda ise TBA’nın başarısı 

azalmaktadır. Böyle durumlarda TBA, doğrusal geçiş ile alt uzayda ayrıklaştırmayı 

yapamamaktadır. Bu sebeple veriyi doğrusal olmayan bir geçiş ile alt uzaya iz düşüren 

ÇTBA yöntemi önem kazanmaktadır. ÇTBA ile, TBA yönteminden daha farklı olarak, 

çok büyük bir boyutta veriler temsil edilerek, temel bileşenlerine ayrışması sağlanır. 

ÇTBA hesaplamalarının daha etkin ve kolay hesaplanması için ise doğrusal olmayan 

çekirdek fonksiyonları kullanılmaktadır. Literatürde çokça kullanılan çekirdek 

fonksiyonları ise gauss, polinom ve hiperbolik tanjanttır. Doğrusal olmayan boyut 

indirgemesine olanak tanıyan çeşitli teknikler vardır. Bunlar arasında, ÇTBA basitliği ve 

kolay uygulanabilirliği nedeniyle tercih edilmektedir (Gonzalez vd., 2020). 

3.2. Yapının Yüksek Boyutlu Hale (𝑴 Boyuta) Dönüştürülmesi 

ÇTBA fikri, bazı çok büyük 𝑀 ≫ 𝑚  boyutları için ℝ𝑚 uzayından ℝ𝑀 uzayına keyfi bir 

Ф:ℝ𝑚 → ℝ𝑀 dönüşümü getirilerek ortaya atılmıştır. Büyük boyutlu bir uzaya yapılan bu 

dönüşüm ile, 𝑦 verisinin ait olduğu doğrusal olmayan manifoldu çözmesi (veya 

düzleştirmesi) beklenmektedir. Yani, Ф dönüşümü ve 𝑀 boyutunun, ℝ𝑀 uzayına eşlenen 

𝑦̃ = Ф(𝑦) şeklindeki değişkenlerin, TBA tarafından kolayca bulunabilecek doğrusal ve 

düşük boyutlu bir manifold içinde yer alacak şekilde olması beklenmektedir. Başka bir 

deyişle, klasik TBA 



32 

 

𝑌̃ = [Ф(𝑦1)Ф(𝑦2)…Ф(𝑦𝑛)] = [𝑦̃1𝑦̃2 … 𝑦̃𝑛] ∈ ℝ𝑀×𝑛,                  (3.2.1) 

şeklinde dönüştürülmüş verileri içeren 𝑀 × 𝑛 boyutlu 𝑌̃  matrisine uygulanacaktır. Eğer 

𝑀 boyutunun bilindiği varsayılırsa, TBA uygulanır ve Bölüm 2'de açıklandığı gibi 𝑀 ×

𝑀 boyutlu Kovaryans matrisi 𝐶̃ = 𝑌̃𝑌̃𝑇 olacak şekilde köşegenleştirilir. Fakat, bu durum 

iki önemli zorluğu beraberinde getirir: birincisi, Ф dönüşümü bilinmemektedir ve ikincisi, 

manifoldun düzgün bir şekilde çözülmesi için gereken 𝑀 boyutu çok büyüktür (özellikle 

𝑛 boyutundan çok daha büyüktür) ve sonuç olarak 𝐶̃ kovaryans matrisini hesaplama 

zorluğu ortaya çıkacaktır. Ancak dönüştürülmüş 𝐺̃ = 𝑌̃𝑇𝑌̃ Gram matrisi boyutunun 𝑛 ×

𝑛 (𝐺 matrisi ile aynı) olduğundan (Bölüm 2.4’te gösterildiği gibi) 𝐺̃ matrisinin 

köşegenleştirilmesi 𝐶̃ matrisinin köşegenleştirilmesi ile aynı şekilde boyutu azaltacaktır. 

Dolayısıyla, Ф dönüşümü esas olarak  𝐺̃  matrisini hesaplamak için gereklidir (Gonzalez 

vd., 2020). 

3.3. Çekirdek Fonksiyonu 

Ф dönüşümünün, doğrusal olmayan manifoldu, daha yüksek boyutlu bir uzayda doğrusal 

bir manifolda eşlemesi beklenir. Ancak verileri, ℝ𝑀 uzayının doğrusal bir alt uzayına 

eşleyen bir yöntem belirlemek kolay değildir. Çekirdek fonksiyonu, 𝐺̃ matrisinin 

boyutunun indirgenmesini amaçlamaktadır. 𝐺̃ matrisinin tüm terimlerinin 𝑖, 𝑗 =  1, … , 𝑛 

için  

[𝐺̃]
𝑖𝑗

= Ф(𝑦𝑖)
𝑇
Ф(𝑦𝑗) = (𝑦̃𝑖)

𝑇
𝑦̃𝑗 ,             (3.3.1) 

şeklinde olduğunu dikkate alındığında, çekirdek fonksiyonu, Ф(. )  dönüşümü yerine,  

[𝐺̃]
𝑖𝑗

= 𝜅(𝑦𝑖, 𝑦𝑗),                 (3.3.2) 

olacak şekilde 𝜅(. , . ) çekirdek fonksiyonu seçilebilir (Gonzalez vd., 2020). 

3.4. Merkezileştirme 

Daha önce de belirtildiği gibi, TBA'nın uygun şekilde uygulanabilmesi için örneklerin 

merkezileştirilmesi gerekmektedir. Bununla beraber, keyfi bir Ф(. ) dönüşümü seçip 

dönüştürülen verilerin merkezileştirilmiş durumda olduğu bilinmemektedir. Yani, Ф(. ) 

dönüşümü biliniyor olduğunda, (3.2.1) ifadesindeki 𝑌̃ matrisini merkezileştirme işlemi 

kolaydır. Fakat, 𝜅(. , . ) olacak şekilde seçildiğinde, merkezileştirilmemiş bir 𝐺̃ matrisi 

oluşmaktadır. 𝐺̃ matrisinin merkezileştirilmesi için sırasıyla aşağıdaki işlemler 
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yapılabilir. Ф dönüşümü biliniyorsa, dönüşümü yapılan verilerin merkezileştirilmesi için 

𝑦̃𝑖  girdilerinin 

𝑦̃̅𝑖= Ф(𝑦𝑖) −
1

𝑛
∑ Ф(𝑦𝑙)𝑛

𝑙=1 ,            (3.4.1) 

olacak şekilde yeniden düzenlenmesi (𝑦̃𝑖 verisinin 𝑦̃̅𝑖 verisine dönüştürülmesi) 

gerekmektedir. Merkezileştirilmiş veriler (3.4.1) ifadesindeki 𝑦̃̅𝑖 gibi üst çizgi ile 

gösterilmiştir. Sonuç olarak, merkezileştirilmiş Gram matrisi, (3.3.1) ifadesine göre 

[𝐺̃̅]
𝑖𝑗

= (𝑦̃̅𝑖)
𝑇
𝑦̃̅𝑗,   

şeklinde yazılır ve  

[𝐺̃̅]
𝑖𝑗

= Ф(𝑦𝑖)
𝑇
Ф(𝑦𝑗) −

1

𝑛
∑Ф(𝑦𝑖)

𝑇
Ф(𝑦𝑙 ̅)

𝑛

𝑙=1

−
1

𝑛
∑Ф(𝑦𝑙)𝑇Ф(𝑦𝑗)

𝑛

𝑙=1

+ 
1

𝑛2
∑∑Ф(𝑦𝑙)𝑇Ф(𝑦𝑙 ̅)

𝑛

𝑙=1

𝑛

𝑙=1

, 

olacak şekilde bulunur. (3.3.2) ifadesi kullanıldığında 

[𝐺̃̅]
𝑖𝑗

= 𝜅(𝑦𝑖, 𝑦𝑗) −
1

𝑛
∑ 𝜅(𝑦𝑖, 𝑦𝑙)𝑛

𝑙=1 −
1

𝑛
∑ 𝜅(𝑦𝑙, 𝑦𝑗)𝑛

𝑙=1 + 
1

𝑛2
∑ ∑ 𝜅(𝑦𝑙, 𝑦𝑙)𝑛

𝑙=1
𝑛
𝑙=1 ,  

bağıntısı elde edilir. Gerekli düzenlemeler yapıldığında 

𝐺̃̅ = 𝐺̃ −
1

𝑛
𝐺̃1[𝑛×𝑛] −

1

𝑛
1[𝑛×𝑛]𝐺̃ +  

1

𝑛2 1[𝑛×𝑛]𝐺̃1[𝑛×𝑛] ,                                    

Denkliği elde edilie. Burada 1[𝑛×𝑛] ∈ ℝ𝑛×𝑛 tüm girdileri bir olan 𝑛 × 𝑛 boyutlu matristir. 

Buna göre, 𝐺̃̅ matrisinin 𝑗. sütun vektörü olan  𝑔̃̅𝑗 vektörü  

𝑔̃̅𝑗  = 𝑔̃𝑗 − (
1

𝑛
1𝑇

[𝑛]𝑔
𝑗) 1[𝑛] −

1

𝑛
1[𝑛×𝑛]𝑔̃

𝑗 + 
1

𝑛2 (1𝑇
[𝑛]𝐺̃1[𝑛])1[𝑛] ,                         

şeklinde yazılabilir. Burada,  𝐺̃ matrisinin 𝑗. sütunu 𝑔̃𝑗 vektörü olup 1[𝑛] = [1,… ,1]𝑇 

olarak verilir (Gonzalez vd., 2020).  

3.5. ÇTBA ile İleriye Doğru Eşleme: 𝒀 → 𝑷𝒌Ф(𝒀) 

ÇTBA ile, 𝑚 boyutlu girdi uzayındaki vektörler önce keyfi doğrusal olmayan dönüşüm 

Ф(. ):ℝ𝑚 → ℝ𝑀 aracılığıyla özellik uzayı adı verilen 𝑀 ≫ 𝑚 boyutlu (sonsuz boyutlu da 

olabilir) bir uzaya dönüştürülür ve ardından bu özellik uzayındaki vektörlere TBA 

uygulanır. Bu amaçla, aşağıdaki şekilde tanımlanan dönüştürülmüş veri matrisi 𝑌̃ ile 
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tanımlansın. 𝑌 = [𝑦1𝑦2 …𝑦𝑛] ∈ ℝ𝑚×𝑛 giriş verisi olmak üzere, bu verinin 

merkezileştirilmiş ve Ф dönüşümü altındaki görüntüsü olan özellik uzayındaki veri                

𝑌̃ = [Ф(𝑦1)Ф(𝑦2)…Ф(𝑦𝑛)] = [𝑦̃1𝑦̃2 … 𝑦̃𝑛] ∈ ℝ𝑀×𝑛,  

olmak üzere, keyfi Ф(∙) dönüşümü için, 𝑌̃ matrisi genellikle TBA işlemi için ihtiyaç olan 

sıfır sütun toplamına yani merkezileştirmeye sahip değildir. Her bir sütundan, sütunların 

ortalaması     

Ф̅(𝑦) =
1

𝑛
∑ Ф(𝑦𝑖)𝑛

𝑖=1   

çıkarılarak sıfır sütun toplamlı bir veri matrisi                  

Ф̃(𝑦𝑙) = Ф(𝑦𝑙) − Ф̅(𝑦)  

elde edilebilir. Buradan da        

𝑌̃̅ = [Ф̃(𝑦1)Ф̃(𝑦2)… Ф̃(𝑦𝑛)] = 𝑌̃𝐻 ∈ ℝ𝑀×𝑛  

sıfır sütun toplamlı veri matrisi elde edilebilir. Yukarıdaki formülde 

𝐻 = 𝐼 −
1

𝑛
11𝑇 ∈ ℝ𝑛×𝑛,              (3.5.1) 

merkezileştirme matrisi olarak adlandırılırken 𝐼 ∈ ℝ𝑛 birim matris,                                        

1 = [11…1]𝑇 ∈ ℝ𝑛×1  𝑛-boyutlu birler vektörüdür. Bu aşamada, sütunları özellik 

uzayını kapsayan 𝑌̃̅  veri matrisi için önceki bölümde açıklanan TBA yöntemi uygulanır, 

yani  

𝐶̃ = ∑ Ф̃(𝑦𝑙)Ф̃(𝑦𝑙)𝑇𝑛
𝑙=1 = 𝑌̃̅𝑌̃̅ 𝑇 ∈ ℝ𝑀×𝑀,                    (3.5.2) 

kovaryans matrisinin özvektörlerinin bulunması gerekmektedir. Bu noktada, iki ciddi 

dezavantaj vardır. İlk olarak, 𝑀 boyutu çok büyük bir sayı olabilir hatta sonsuz da olabilir. 

İkinci olarak, doğrusal olmayan Ф(∙) dönüşümü keyfidir ve çoğu zaman 

bulunamamaktadır. Bu da 𝑀 boyutlu 𝐶̃ Kovaryans matrisinin özvektörlerinin 

hesaplanmasını neredeyse imkânsız hale getirebilir. Tüm bu sorunların ortadan kalkması 

için çekirdek yöntemi uygulanmaktadır. Bu yöntemi açıklamak için, {𝜆̃𝑖, 𝑣𝑖} değerlerinin  

𝐶̃ kovaryans matrisinin özdeğerleri olduğu 

𝐶̃𝑣𝑖 = 𝜆̃𝑖𝑣𝑖,         𝑖 = 1,… ,𝑀,               (3.5.3) 
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özdeğer problemi kullanılabilir. Bu noktada özvektörlerin, özellik uzayını, yani              

𝑌̃̅ = [Ф̃(𝑦1)Ф̃(𝑦2)… Ф̃(𝑦𝑛)] dönüştürülmüş veri matrisinin sütun uzayını oluşturduğu 

düşünülürse, her 𝑣𝑖 özvektörü için 

𝑣𝑖 = ∑ 𝑎𝑖𝑗
𝑛
𝑗=1  Ф̃(𝑦𝑗),      𝑖 = 1,… ,𝑀,        (3.5.4) 

doğrusal kombinasyonunu sağlayan 𝑎𝑖𝑗 katsayıları bulunmaktadır. Daha sonra, (3.5.4) ile 

verilen bağıntı (3.5.2) ile verilen özdeşlikle birlikte (3.5.3) ile verilen özdeğer 

probleminde yerine yazılırsa  

∑ Ф̃(𝑦𝑙)∑ 𝑎𝑖𝑗
𝑛
𝑗=1 Ф̃(𝑦𝑙)𝑇 Ф̃(𝑦𝑗)𝑛

𝑙=1 = 𝜆̃𝑖 ∑ 𝑎𝑖𝑗
𝑛
𝑗=1 Ф̃(𝑦𝑗),  

eşitliğinde tüm özvektörler {Ф̃(𝑦𝑠)}
𝑠=1

𝑛
 vektörlerinin uzayında bulunduğundan,              

𝑠 = 1, . . . , 𝑛 için, eşitliğin her iki tarafı  Ф̃(𝑦𝑠) ile izdüşümü alınırsa  

∑ Ф̃(𝑦𝑠)𝑇Ф̃(𝑦𝑙)∑ 𝑎𝑖𝑗
𝑛
𝑗=1 Ф̃(𝑦𝑙)𝑇 Ф̃(𝑦𝑗)𝑛

𝑙=1 = 𝜆̃𝑖 ∑ 𝑎𝑖𝑗Ф̃(𝑦𝑠)𝑇𝑛
𝑗=1 Ф̃(𝑦𝑗),     (3.5.5) 

eşitliği elde edilebilir. Bu noktada, özellik uzayındaki vektörlerin Öklid iç çarpımlarını 

Ф(. )𝑇Ф(. ) girdi uzayının vektörleri ile temsil eden bir 𝜅(. , . ) ∶ ℝ𝑚 × ℝ𝑚 →  ℝ çekirdek 

fonksiyonu 

𝜅(𝑦𝑠, 𝑦𝑙) =< Ф(𝑦𝑠), Ф(𝑦𝑙)  > = Ф(𝑦𝑠)𝑇 Ф(𝑦𝑙),     𝑠, 𝑙 = 1,… , 𝑛,                          

şeklinde tanımlanır. Özellik uzayında merkezileştirilmiş ve dönüştürülmüş vektörleri 

Ф̃(. )𝑇Ф̃(. )  Öklid iç çarpımı şeklinde gösterebilmek için, 𝐾 ∈  ℝ𝑛×𝑛 çekirdek matrisi ve 

𝒌𝒚 ∈ ℝ𝑛 vektörü sırasıyla 𝐾𝑖𝑗 = 𝜅(𝑦𝑖, 𝑦𝑗) ve 𝒌𝒚 = (𝜅(𝑦, 𝑦1), … , 𝜅(𝑦, 𝑦𝑛))
𝑇
    olmak 

üzere 

𝜅̃(𝑦𝑠, 𝑦𝑙) = 𝜅(𝑦𝑠, 𝑦𝑙) −
1

𝑛
1𝑇𝒌𝒚𝒔 −

1

𝑛
1𝑇𝒌𝒚𝒍 +

1

𝑛2 1𝑇𝐾1,  

ifadesi kullanılmaktadır. Burada, 𝒌𝒚𝒊 vektörlerinin hesaplanmaları gerekmemektedir, 

çünkü bunlar 𝐾 simetrik çekirdek matrisinin  𝑖. sütunlarıdır. Bu durumda, (3.5.5) ile 

verilen ifade çekirdek fonksiyonu cinsinden 

∑ 𝜅̃(𝑦𝑠, 𝑦𝑙)∑ 𝑎𝑖𝑗
𝑛
𝑗=1 𝜅̃(𝑦𝑙, 𝑦𝑗)𝑛

𝑙=1 = 𝜆̃𝑖 ∑ 𝑎𝑖𝑗
𝑛
𝑗=1 𝜅̃(𝑦𝑠, 𝑦𝑗),           (3.5.6) 

olacak şekilde elde edilir. Literatürde doğrusal, polinom ve Gauss çekirdeği gibi çeşitli 

çekirdek fonksiyonları bulunmaktadır. Burada, ∥ . ∥ standart Öklid normu ve 𝜎 pozitif bir 

parametre olmak üzere 
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𝜅(𝑥, 𝑦) = 𝑒𝑥𝑝 (−
 ∥ 𝑥−𝑦 ∥2  

2𝜎2 ) , 

Gauss çekirdek fonksiyonu kullanılmaktadır. 𝑎𝑖  =  (𝑎𝑖1, . . . , 𝑎𝑖𝑛)𝑇 ∈ ℝ𝑛  katsayı vektörü 

için (3.5.6) ile verilen ifade 

𝐾̃2𝑎𝑖 = 𝜆̃𝑖𝐾̃𝑎𝑖     veya    𝐾̃𝑎𝑖 = 𝜆̃𝑖𝑎
𝑖      𝑖 = 1,… ,𝑀,         (3.5.7) 

olacak şekilde matris-vektör formunda yazılabilir. Burada 𝐾̃ = 𝐻𝐾𝐻 olmak üzere, (3.5.1) 

ile verilen 𝐻 matrisi merkezileştirme matrisidir. Son olarak, giriş uzayından rastgele 

alınan bir 𝑦∗ ∈  ℝ𝑚 vektörü için, özellik uzayında merkezileştirilmiş ve Ф dönüşümü 

altındaki görüntüsü Ф̃(𝑦∗) ∈ ℝ𝑀 olmak üzere,  𝑘  boyutlu (𝑘 ≪  𝑚 ≪  𝑀) indirgenmiş 

uzaya izdüşüm vektörü 

𝑧∗  =  [𝑧1
∗, 𝑧2

∗, … , 𝑧𝑘
∗] ∈ ℝ𝑘, 

{𝑣1, . . . , 𝑣𝑘} en büyük ilk 𝑘 tane  𝜆̃𝑖  (𝑖 =  1, . . . , 𝑘) özdeğerlerine karşılık gelir. (3.5.7) 

ile verilen eşitlikteki özdeğer probleminde 𝑎𝑖 katsayıları hesaplandıktan sonra, 𝑣𝑖 

özvektörlerinin (3.5.4) ile verilen ifadesi kullanılarak, izdüşüm vektörünün 𝑧𝑖
∗ bileşenleri 

çekirdek fonksiyonu cinsinden 

𝑧𝑖
∗ = Ф̃(𝑦∗)𝑇𝑣𝑖 = ∑𝑎𝑖𝑗Ф̃(𝑦∗)𝑇

𝑛

𝑗=1

Ф̃(𝑦𝑗) = ∑𝑎𝑖𝑗

𝑛

𝑗=1

𝜅̃(𝑦∗, 𝑦𝑗), 

formülüyle bulunabilir.  
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Şekil 3.1 ÇTBA kullanılarak boyut azaltmanın gösterimi 

Şekil 3.1, giriş uzayındaki 𝑦𝑖 ∈ ℝ𝑚 verilerinin indirgenmiş uzayda 𝑧𝑖 ∈ ℝ𝑘 verilerine 

nasıl eşlendiğini göstermektedir. Bu yöntem öncelikle özellik uzayından geçiş sağlayarak, 

Ф(𝑦𝑖) ∈ ℝ𝑀 verilerinin boyutunu azaltmak için TBA kullanarak ve daha sonra bunların 

indirgenmiş ℝ𝑘 uzayına izdüşümü alınarak gerçekleştirilir (Şekil 3.1'deki gri noktalı 

oklar) (Gonzalez vd., 2020). 

Uygulamada, özellik uzayı hiçbir zaman kullanılmaz. ÇTBA ile çekirdek fonksiyonu, 

doğrudan 𝑦𝑖 ∈ ℝ𝑚 verisinden 𝑧𝑖 ∈ ℝ𝑘 verisine (Şekil 1'de mavi kesikli okla gösterilen) 

ileriye doğru geçiş sağlayan alternatif bir yöntem (Ф dönüşüm fonksiyonunun belirli bir 

şekilde tanımlanamadığı) olarak uygulanabilir. 

3.6. ÇTBA ile Geriye Doğru Eşleme: 𝑷𝒌Ф(𝒀) → 𝒀 

Bölüm 3.5'te belirtildiği gibi, sadece 𝑣𝑖 matrisinin biliniyor olması, bir 𝑧∗ ∈ ℝ𝑘 verisinin 

ön görüntüsünün 𝑦∗ ∈ ℝ𝑚 verisine (Şekil 3.1'deki kırmızı kesikli ok) geriye doğru olarak 

eşleştirmeye izin vermemektedir. Giriş uzayından herhangi bir keyfi vektörün 𝑦∗ ∈ ℝ𝑚 

için, ön görüntüsü 𝑦̂∗ ∈ ℝ𝑚, TBA ile (2.8.3)’de verilen eşitlikteki gibi yaklaşık olarak 

hesaplanabilir. Ancak bu durum ÇTBA için aynı değildir. Ф(𝑦∗) özellik uzayı vektörünün 
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{𝑣1, . . . , 𝑣𝑘} özvektörleri tarafından oluşturulan indirgenmiş uzaya izdüşümü         

𝑃𝑘Ф(𝑦∗)  ∈ ℝ𝑘 olmak üzere 

𝑃𝑘Ф(𝑦∗)  = ∑ 𝑧𝑖
∗𝑘

𝑖=1 𝑣𝑖 + Ф̅(𝑦),  

şeklinde yazılır. Daha sonra, Ф( 𝑦̂∗) vektörünün 𝑃𝑘Ф(𝑦∗)   indirgenmiş vektörüne, en 

yakın vektör olması 𝜌(𝑦̂∗) = ‖Ф(𝑦̂∗) − 𝑃𝑘Ф(𝑦∗)‖2 durumunda yaklaşık ön görüntü olan 

𝑦̂∗ elde edilebilir. 

Optimizasyon yöntemi, özellikle zamana bağlı problemlerde, her zaman için problemde 

aynı işlemlerin yapılması zaman alıcı bir işlem olduğundan, alternatif olarak Çok Boyutlu 

Ölçekleme (ÇBÖ) yöntemi araştırılacaktır. ÇBÖ yöntemi; yüksek boyutlu nesnelerin, 

düşük boyutlu bir alana aralarındaki mesafenin korunarak izdüşümünün alınmasıdır. 

Bu bölümde, 𝑌 = [𝑦1𝑦2 …𝑦𝑛] ∈ ℝ𝑚×𝑛 giriş verisi olmak üzere, bu verinin 

merkezileştirilmiş ve Ф dönüşümü altındaki görüntüsü olan özellik uzayındaki veri    

𝑌̃ = [Ф(𝑦1)Ф(𝑦2)…Ф(𝑦𝑛)] = [𝑦̃1𝑦̃2 … 𝑦̃𝑛] ∈ ℝ𝑀×𝑛, 

olmak üzere, ön görüntüyü bulabilmek için özellik uzayı mesafesini en aza indirerek, 

özellik uzayındaki izdüşümüne mümkün olduğunca yakın eşleşen bir nokta olarak ön 

görüntü girdi uzayında aranır. 

 

Şekil 3.2: Özellik uzayından girdi uzayına geri dönüş 

Bu fikir Şekil 3.2'de gösterilmiştir. 𝑎𝑟𝑔𝑚𝑖𝑛‖Ф(𝑦̂∗) − 𝑃𝑘Ф(𝑦∗)‖2 optimizasyon 

probleminin çözümünden ön görüntü elde edilmeye çalışırken, daha düşük boyutlu bir 

uzaya indirgenen verilerin ikili mesafelerini koruyan, ÇBÖ yönteminden yararlanılır. 

Özellik uzayında verilerin Öklid mesafelerini korumaya çalışarak ön görüntüyü bulmak 

için iterasyon süreci içeren ÇBÖ yöntemine alternatif olarak iterasyonsuz bir algoritma 

türetilerek ÇBÖ algoritması güncellenebilir. Girdi uzayındaki ön görüntü yeniden 
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bulunurken özellik uzayındaki ilgili verinin sabit sayıda komşuyla olan mesafesi dikkate 

alınır (Rathi vd., 2006). 

ÇBÖ 19. ve 20. yy’da temel bilimlerin daha da gelişmesiyle ortaya çıkan bazı çalışmalar 

ve sonrasında çok gelişen bilgisayar teknolojisi sayesinde geniş kullanım alanı bulmuştur. 

ÇBÖ yönteminin geliştirilmesinde kullanılan hesaplamalar, temel bilimlerin ve 

mühendisliğin ana konularını oluşturmaktadır. Özvektör ve özdeğer kavramları kuantum 

fiziğinin daha çok gelişmesiyle birlikte bu yöntemlerde kullanılmaya başlanmıştır. 

İstatistiksel olarak ÇBÖ Yöntemi, Çok Değişkenli İstatistiki Analiz Teknikleri’nin içinde 

yer almaktadır. Bu teknikler kullanılarak çok değişkene göre oluşturulan matrisler 

aracılığıyla araştırma konusu daha iyi analiz edilebilmektedir. ÇBÖ, TBA'ya benzer bir 

doğrusal izdüşüm yöntemidir. Ancak, bu yöntemde veri noktalarının özelliklerinin 

bilinmesine gerek yoktur. Bunun yerine yalnızca iki veri noktası arasındaki mesafe 

bilinmesi gerekir. Bu durum hangi özelliklerin kullanılacağına karar vermenin zor olduğu 

problemler için avantaj sağlar (Tapramaz, 2002). ÇBÖ'nün temel fikri, veri noktaları 

arasındaki  |𝑦𝑖 − 𝑦𝑗|  mesafelerini koruyacak şekilde verilerin izdüşümünün alınmasıdır. 

Yani, |𝑦̂𝑖 − 𝑦̂𝑗| ≈ |𝑦𝑖 − 𝑦𝑗| olacak şekilde  𝑦 verileri daha düşük boyutlu uzaydaki 𝑦̂ 

verilerine izdüşürülür.  

Çekirdek fonksiyonu 𝜅(𝑦𝑖 , 𝑦𝑗)  seçimi için birçok fonksiyon bulunmaktadır. En çok 

kullanılan çekirdek fonksiyonu  

𝜅(𝑦𝑖, 𝑦𝑗) = 𝑒
−

 𝑑2(𝑦𝑖,𝑦𝑗) 

2𝜎2   , 

Gauss çekirdeği olup, formüldeki 𝑑2(𝑦𝑖, 𝑦𝑗) girdi uzayında bir mesafe ölçüsüdür. 

Dolayısıyla çekirdek fonksiyonu, girdi uzayı mesafesinin bir fonksiyonudur, yani     

𝜅(. , . ) = 𝑓(𝑑2).  Benzer şekilde, özellik uzayındaki mesafe metriği 𝑑̃2 (Ф(𝑦𝑖),Ф(𝑦𝑗)) 

de hesaplanabilir. Bu bilgiler ışığında, özellik uzayındaki bir veri noktasının ilk 𝑘 

özvektör (özellik uzayında) üzerine izdüşümü olan 𝑃𝑘Ф(𝑦∗) ile bir veri noktasının 

Ф  dönüşümü altındaki görüntüsü arasındaki mesafe 

𝑑̃2(Ф(𝑦𝑖), 𝑃𝑘Ф(𝑦∗) ) = ‖Ф(𝑦𝑖) − 𝑃𝑘Ф(𝑦∗)‖
2
               

                                         = ‖𝑃𝑘Ф(𝑦∗)‖2 + ‖Ф(𝑦𝑖)‖
2
− 2𝑃𝑘Ф(𝑦∗)𝑇Ф(𝑦𝑖), 
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şekilde yazılabilir. Matris-vektör işlemlerinden sonra, bu uzaklık çekirdek fonksiyonu 

cinsinden aşağıdaki şekilde yazılabilir: 

𝑑̃2(Ф(𝑦𝑖), 𝑃𝑘Ф(𝑦∗) )

= (𝑘𝑦∗ +
1

𝑛
𝐾1 − 2𝑘𝑦𝑖)

𝑇

𝐻𝑇𝐶𝑎𝐻 (𝑘𝑦∗ −
1

𝑛
𝐾1) +

1

𝑛2
1𝑇𝐾1 + 𝐾𝑖𝑖

−
2

𝑛
1𝑇𝑘𝑦𝑖  . 

Burada   

𝐶𝑎 = ∑
1

𝜆𝑗
𝑎𝑗(𝑎𝑗)

𝑇𝑘
𝑗=1 ,   𝐾𝑖𝑖 = 𝜅(𝑦𝑖, 𝑦𝑖) ,   

olarak alınmıştır. Ayrıca, 𝑑2
𝑖𝑗 = 𝑑2(𝑦𝑖 , 𝑦𝑗) girdi uzayı uzaklığı ile                                  

𝑑̃2
𝑖𝑗 = 𝑑̃2 (Ф(𝑦𝑖),Ф(𝑦𝑗)) özellik uzayı uzaklığı arasında 

𝑑̃2
𝑖𝑗 = ‖Ф(𝑦𝑖),Ф(𝑦𝑗)‖

2
=  𝜅(𝑦𝑖, 𝑦𝑖) + 𝜅(𝑦𝑗, 𝑦𝑗) − 2𝜅(𝑦𝑖, 𝑦𝑗) 

        =  𝐾𝑖𝑖 + 𝐾𝑗𝑗 − 2𝑓(𝑑2
𝑖𝑗),     

olacak şekilde bir ilişki olup, Gauss çekirdek fonksiyonu için 

𝑓(𝑑2
𝑖𝑗) =

1

2
(𝐾𝑖𝑖 + 𝐾𝑗𝑗 − 𝑑̃2

𝑖𝑗)  →    𝑑2
𝑖𝑗 = 𝑓−1(𝐾𝑖𝑖 + 𝐾𝑗𝑗 − 𝑑̃2

𝑖𝑗), 

bağıntısı gerçekleşir. 𝑃𝑘Ф(𝑦∗) izdüşümünün girdi uzayında 𝑦̂∗ ön görüntüsünün elde 

edilmesi hedeflenmektedir. Ancak çoğu zaman, ön görüntü mevcut olmayabilir. Bu 

nedenle,  𝑃𝑘Ф(𝑦∗)  izdüşümünün ön görüntüsü yaklaşık olarak bulunabilir. Bu ise, 

𝜌(𝑦̂∗) = ‖Ф(𝑦̂∗) − 𝑃𝑘Ф(𝑦∗)‖2  hatası en aza indirildiğinde elde edilebilir. Çekirdek 

fonksiyonu 

 𝜅(𝑦𝑖, 𝑦𝑗) = 𝑒
−

 𝑑2(𝑦𝑖,𝑦𝑗) 

2𝜎2  ,  

olarak alındığında ve girdi uzayındaki uzaklığın 𝑑2(𝑦𝑖, 𝑦𝑗) = ‖𝑦𝑖 − 𝑦𝑗‖
2
 ile verildiği 

düşünülürse,  

𝜓𝑖(𝑦̂
∗) = 𝛾̃𝑖𝑒𝑥𝑝 (−‖𝑦̂∗ − 𝑦𝑖‖

2
/(2𝜎2)) ,   

 𝛾𝑖=∑ 𝛽𝑘
𝑛
𝑘=1 𝑎𝑘𝑖  ve  𝛾̃𝑖 = 𝛾𝑖 +

1

𝑛
(1 − ∑ 𝛾𝑖

𝑛
𝑗=1 ) ,  

değişkenleri için  
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∇𝑥̂𝜌 = (∑ 𝜓𝑖
𝑘
𝑖=1 (𝑦̂∗)) 𝑦̂∗ − (∑ 𝜓𝑖

𝑘
𝑖=1 (𝑦̂∗)) 𝑦𝑖 = 0 ,  

bağıntısının çözülmesi gerekir. Burada 𝑦̂∗ yalnız bırakıldığında 

𝑦̂∗ =
(∑ 𝜓𝑖

𝑘
𝑖=1 (𝑦̂∗))𝑦𝑖

(∑ 𝜓𝑖
𝑘
𝑖=1 (𝑦̂∗))

  ,           (3.6.1) 

formülü elde edilir. (3.6.1) ile verilen formül, sabit nokta iterasyonu yönteminden gelen 

ifadedir. Bu durumda ön görüntü başlangıç noktasına bağlı olacaktır ve yerel minimum 

değerlerde takılma olasılığı yüksektir. Buna alternatif olarak, 𝑃𝑘Ф(𝑦∗) ≈  Ф(𝑦̂∗)  

yaklaşımı kullanıldığında, ( 𝜌(𝑦̂∗) ≈ 0 olduğu varsayılarak)     

𝑦̂∗ =

∑ 𝛾̃𝑖𝑒𝑥𝑝(−
‖𝑦̂∗ − 𝑦𝑖‖

2

(2𝜎2)
) 𝑦𝑖𝑘

𝑖=1

∑ 𝛾̃𝑖𝑒𝑥𝑝 (−
‖𝑦̂∗ − 𝑦𝑖‖2

(2𝜎2)
)𝑘

𝑖=1

=

∑ 𝛾̃𝑖 (
1
2 (2 − 𝑑̃2 (Ф(𝑦̂∗),Ф(𝑦𝑖))) 𝑦𝑖𝑘

𝑖=1

∑ 𝛾̃𝑖 (
1
2

(2 − 𝑑̃2(Ф(𝑦̂∗), Ф(𝑦𝑖)))𝑘
𝑖=1

      

≈

∑ 𝛾̃𝑖 (
1
2 (2 − 𝑑̃2 (𝑃𝑘Ф(𝑦∗),Ф(𝑦𝑖))) 𝑦𝑖𝑘

𝑖=1

∑ 𝛾̃𝑖 (
1
2 (2 − 𝑑̃2(𝑃𝑘Ф(𝑦∗),Ф(𝑦𝑖)))𝑘

𝑖=1

 ,                                                                  (3.6.2) 

çözümü elde edilir. Böylece, tek bir adımda basit hesaplamalar kullanılarak (iterasyon 

gerekmeden) ön görüntü elde edilebilir. Dolayısıyla, bu yöntem sadece hesaplama 

süresini azaltmakla kalmaz, aynı zamanda ön görüntüyü hesaplamak için başka bir 

yaklaşım gerektirmediğinden (giriş koordinat sistemine geri döndürme) daha doğrudur. 
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4. BULGULAR  

Bu bölümde, 3. Bölümde tanıtılan ÇTBA yöntemi, bir ve iki boyutlu Hamilton, gradyan 

ve anti-gradyan sistemler için verilecek olan örnekler üzerinde uygulanarak etkinliği ve 

kesinliği tartışılacaktır. Tüm örneklerde, bir girdi uzayı vektörü 𝑦∗ ile TBA veya ÇTBA 

kullanılarak elde edilmiş indirgenmiş yaklaşık vektör 𝑦̂∗ arasındaki hatayı hesaplamak 

için 

‖𝑦∗ − 𝑦̂∗‖∗ =
|𝑦∗ − 𝑦̂∗|

|𝑦∗|
, 

mutlak bağıl hata kullanılmıştır. İlave olarak, m = 2 > 1 bileşenli NLS ve FHN 

modellerinde ayrıklaştırılmış veri matrisi olan 𝑌  matrisi oluşturulurken, her iki bağımlı 

değişkene ait ayrık zamanlardaki çözüm vektörleri alt alta koyularak 𝑌  matrisinin 

sütunları oluşturulmuştur. Literatürde, her bağımlı değişken için ayrı bir veri matrisi 

kullanımı da mevcut olmakla birlikte, böyle bir yol izlendiğinde her veri seti için ÇTBA 

yönteminin uygulanması gerekeceği ve dolayısıyla zaman yönünden etkinliğin 

kaybolacağı muhakkaktır. 

4.1. Hamilton Sistemler 

Hamilton sistemlerin incelenmesinde bir ve iki konumsal boyutlu KdV ve NLS 

denklemleri ele alınacaktır. KdV denklemi doğrusal olmayan hiperbolik bir denklemdir. 

Sığ su dalgaları, okyanustaki dalgalar, bir plazmadaki akustik dalgalar ve daha fazlası 

dahil olmak üzere tek boyutlu dalgaların yayılmasını açıklar. Dağılım ve doğrusal 

olmama, kalıcı ve yerelleştirilmiş dalga formları üretmek için etkileşime girebilir. NLS 

denklemi ise fiber optikte, düzlemsel dalgalarda ışığın iletiminde ve Bose-Einstein 

yoğuşma teorisinde yavaş değişen dalga gruplarının hareketlerini tanımlayan model 

denklem olarak verilir. 

4.1.1. Bir boyutlu KdV denklemi 

Bir boyutlu (2.1.1.1) KdV denklemi, (𝑥, 𝑡)  ∈  [−10, 10] × [0, 8] uzay-zaman alanı için 

𝑢0(𝑥) =
𝛽

2
sech2 (

√1.5𝑥

2
),  

başlangıç dalgası ve 𝛼 = 6, 𝜇 = 1, 𝛽 = 1.5 parametre değerleri için ele alınacaktır. 

Ayrıklaştırma ölçüleri olarak ∆𝑥 = 0.04 ve ∆𝑡 = 0.02 değerleri için uzay-zaman 
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ayrıklaştırılması ile sistemin anlık bilgilerinden alınan her t𝑘 anındaki ayrık çözümlerden 

𝑌 veri matrisi oluşturulmaktadır. Uzay ve zaman koordinatları için ayrıklaştırılmış veri 

matrisi 𝑌 = [𝐮1 …𝐮400] ∈ ℝ500×400  şeklinde yazılır.  

Şekil 4.1  𝑡 = 0,0.98,2.98,7.98  zamanlarındaki dalga grafikleri 

Dalga denkleminin 𝑡 = 0, 0.98, 2.98, 7.98  zamanlarındaki grafik çizimleri Şekil 4.1 de 

verilmiştir. Burada başlangıç dalgası, zaman ilerledikçe aynı genlik ve dalga boyuyla sağa 

doğru hareket etmektedir ve bu da sistemin enerjisinin korunduğunu göstermektedir. 

Şekilden de görüleceği üzere, başlangıç zamanındaki dalga, dalga boyu değişmeden 

pozitif x-ekseni yönünde hareket edip, periyodik sınır koşulundan dolayı tekrar içeri 

yönlü hareket etmektedir. 

 

Şekil 4.2 Büyüklüklerin tam çözüm halinde korunumu 
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Şekil 4.2, başlangıç değerlerinden itibaren zaman dilimlerinde momentum 𝐼1, kütle 𝐼2 ve 

Hamilton (Enerji) 𝐸 ölçülerinin başlangıçtaki değerlerinden farklarını göstermektedir. 

Gözlemlenen salınımlar, her değişmez için de iyi bir koruma sağlandığını ve hassasiyetin 

neredeyse makine hassasiyeti ile karşılaştırılabilir olduğunu göstermektedir. 

Tablo 4.1 Farklı k değerleri için oluşan bağıl mutlak hatalar 

𝒌 TBA ÇTBA  

1 7.31e-01 1.41e-02 

2 3.84e-01 6.79e-03 

3 3.44e-01 1.34e-02 

4 2.87e-01 1.16e-02 

5 1.35e-01 9.87e-03 

6 7.78e-02 2.05e-03 

 

Daha sonra, Tablo 4.1’de, TBA ve ÇTBA yöntemleri hata ve hesaplama etkinliği 

açısından karşılaştırılmaktadır. Bu karşılaştırma için, 𝑡 =  2 zamanındaki dalgaya karşılık 

gelen 𝒖∗  =  𝒖100  girdi uzayı çözüm vektörü kullanılmaktadır. Sonuçlar indirgenmiş 

boyutlar 𝑘 =  1, . . . , 6 için sunulmaktadır. TBA ve ÇTBA kullanıldığında, yapılan 

işlemler sonucu tam çözüm 𝑦∗ ile indirgenmiş yaklaşık çözüm 𝑦̂∗ arasındaki oluşan 

‖𝒖∗ − 𝒖̂∗‖𝑅 bağıl mutlak hatalar gösterilmektedir. Tablo incelendiğinde, beklendiği gibi 

aynı sayıda baz kullanıldığında ÇTBA ile daha kesin sonuçlar elde edilmiştir.  

Tablo 4.2 Farklı 𝑘 değerleri için oluşan bağıl mutlak hatalar ve çözüm süreleri 

 Mutlak Bağıl Hata İşlem Süresi 

 

𝒌 

İterasyonlu 

(formül 3.6.1) 

İterasyonsuz 

(formül 3.6.2) 

İterasyonlu 

(formül 3.6.1) 

İterasyonsuz 

(formül 3.6.2) 

1 1.41e-02 1.41e-02 3.9634 0.1026 

2 6.79e-03 6.83e-03   1.9047 0.1630 

3 1.34e-02 1.35e-02 2.1734 0.1660 

4 1.16e-02   1.17e-02 1.8595 0.1932 

5 9.87e-03 1.01e-02 2.2519 0.1721 

6 2.05e-03 2.51e-03 2.3998 0.1872 
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Diğer yandan, hesaplama etkinliği açısından sabit nokta iterasyonu ile çözülen (3.6.1) 

formülünü kullanan ÇTBA yöntemi ile cebirsel bir denklem olan (3.6.2) formülünü 

kullanan yöntemin ihtiyaç duyduğu çözüm süreleri Tablo 4.2’de verilmektedir. İlk iki 

sütun her iki formülle elde edilen tam ve indirgenmiş çözümler arasındaki hataları, son 

ikisi ise ön görüntülerin oluşturulması için gereken işlem sürelerini göstermektedir. 

(3.6.1) formülüyle iterasyonlu (2 iterasyon) çözülen doğrusal olmayan denklemin 

çözümleriyle, (3.6.2) formülüyle iterasyon olmadan çözülen denklemin çözümleri ile elde 

edilen hataların neredeyse aynı olduğu görülebilir, ki bu da iterasyon olmadan elde edilen 

çözümlerin hassasiyet açısından kabul edilebilir olduğunu göstermektedir. ÇTBA 

yönteminin, iterasyonsuz ihtiyaç duyduğu çözüm süresinin, iterasyonlu ihtiyaç duyduğu 

çözüm süresinden çok daha az olduğu, yani yöntemin oldukça hızlı olduğu son iki 

sütundan görülmektedir. 

Şekil 4.3’de, 𝑡 =  0.5 ve 𝑡 =  3.82  zamanlarındaki tam çözümler ile birlikte indirgenmiş 

çözümler gösterilmektedir. İndirgenmiş boyut 𝑘 =  2 için, her iki zamanda tam ve 

indirgenmiş dalgaların birbiriyle çakıştığını görülmektedir. Bu da indirgenmiş 

çözümlerin tam çözüm ile aynı dalga boyuna ve dalga genliğine sahip güvenilir bir dalga 

yayılımı sağladığı anlamına gelmektedir ki fiziksel olarak başarılı bir modelleme için çok 

önemlidir. 

 

Şekil 4.3  𝑘 = 2 için 𝑡 = 0.5, 3.82 zamanlarındaki tam/indirgenmiş çözümler 
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Ön görüntülerle elde edilen korunan değişmezler Şekil 4.4’de verilmektedir. Burada, 

Şekil 4.2'deki değişmezlere benzer şekilde, her değişmezin farklı zamanlardaki değerleri 

ile başlangıç değerleri arasındaki fark gösterilmektedir. Kütlenin makine hassasiyetiyle 

korunduğu açıkken, momentum ve Hamilton değişmezlerindeki hatalar tam çözümlerle 

elde edilenler kadar küçük değildir. Model indirgeme yöntemlerinde, özellikle de 

değişmezlerin korunumu açısından bu beklenen bir durumdur. Bu değişmezlerin, 

salınımları küçük bir aralık içinde, herhangi bir kayma olmaksızın devam ettiğinden, 

belirtilen süre boyunca korunduğu söylenebilmektedir. 

 

Şekil 4.4  𝑘 = 2 için indirgenmiş büyüklüklerin korunumu 

4.1.2. İki boyutlu KdV denklemi 

Bir [𝑎, 𝑏] × [𝑐, 𝑑] alanında iki boyutlu KdV denklemi olarak kabul edilen 

𝜕𝑡𝑢 = −𝛼𝑢𝜕𝑥𝑢 − 𝜇(𝜕𝑥𝑥𝑥𝑢 − 𝜕𝑥𝑦𝑦𝑢),                                                          (4.1.2.1) 

denklemi literatürde Zakharov-Kuznetsov denklemi olarak anılmaktadır. Simülasyon için 

(4.1.2.1) denklemi (𝑥, 𝑦, 𝑡)  ∈  [0, 32] × [0, 32] × [0, 5] uzay-zaman alanı için 

𝑢0(𝑥, 𝑦) = ∑
𝑐𝑗

3
∑ 𝑎2𝑚 (𝑐𝑜𝑠 (2𝑚 (𝑎𝑟𝑐𝑐𝑜𝑡 (

√𝑐𝑗

2
𝑟𝑗))) − 1)10

𝑚=1
2
𝑗=1 ,      

başlangıç koşulu ile ele alınacaktır. Burada 𝑐1 ve 𝑐2 soliton tipi dalga çözümlerinin hızları 

olup 𝑗 = 1,2  için   
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𝑟𝑗
2 = (𝑥 − 𝑥𝑗)

2
+ (𝑦 − 𝑦𝑗)

2
,  

olarak tanımlıdır. 𝑥𝑗   ve  𝑦𝑗 noktaları ise başlangıçtaki iki dalganın en yüksek oldukları 

tepe noktalarının 𝑥 ve 𝑦 koordinatlarıdır. Simülasyonda 𝑥1 = 8, 𝑥2 = 𝑦1 = 𝑦2 = 16, 

sistem parametre değerleri ise 𝛼 = 6, 𝜇 = 1 olarak alınmıştır. Ayrıklaştırma ölçüleri 

olarak ∆𝑥 = ∆𝑦 = 0.2286 ve ∆𝑡 = 0.01 değerleri için uzay-zaman ayrıklaştırılması ile 

sistemin anlık bilgilerinden alınan her t𝑘 anındaki ayrık çözümlerden 𝑌 veri matrisi 

oluşturulmaktadır. Uzay ve zaman koordinatları için ayrıklaştırılmış veri matrisi,           

𝑌 = [𝐮1 …𝐮500] ∈ ℝ19600×500    şeklindedir.  

Başlangıç dalgaları Şekil 4.5 de verilmiştir. Burada soldaki dalga, sağındaki dalgadan 

daha hızlı olup zaman ilerledikçe sağındaki dalgaya doğru ilerleyip içinden geçerek önüne 

geçmektedir.  

    

Şekil 4.5 Başlangıç dalgaları 

Şekil 4.6, başlangıç değerlerinden itibaren zaman dilimlerinde momentum 𝐼1, kütle 𝐼2 ve 

Hamilton (Enerji) 𝐸 değerlerinin değişkenliğini göstermektedir. Gözlemlenen salınımlar, 

her değişmez için de iyi bir koruma sağlandığını, kütle için ise hassasiyetin makine 

hassasiyeti ile karşılaştırılabilir olduğunu göstermektedir. 



48 

 

Şekil 4.6 Büyüklüklerin tam çözüm halinde korunumu 

Daha sonra, Tablo 4.3’de, TBA ve ÇTBA yöntemleri hata ve hesaplama etkinliği 

açısından karşılaştırılmaktadır. Bu karşılaştırma için, 𝑡 =  1 zamanındaki dalgaya karşılık 

gelen 𝒖∗  =  𝒖100  girdi uzayı çözüm vektörü kullanılmaktadır. Sonuçlar indirgenmiş 

boyutlar 𝑘 =  1, . . . , 6 için sunulmaktadır. TBA ve ÇTBA kullanıldığında, yapılan 

işlemler sonucu tam çözüm 𝒖∗ ile indirgenmiş yaklaşık çözüm 𝒖̂∗ arasındaki oluşan bağıl 

mutlak hatalar gösterilmektedir. Aynı sayıda baz kullanıldığında ÇTBA ile daha kesin 

sonuçlar elde edilmiştir.  

Tablo 4.3 Farklı 𝑘 değerleri için oluşan bağıl mutlak hatalar 

𝒌 TBA ÇTBA  

1 9.19e-01 3.60e-02 

2 7.71e-01 1.80e-02 

3 7.61e-01 3.58e-02 

4 7.59e-01 1.79e-02 

5 6.86e-01 3.56e-02 

6 3.83e-01 1.84e-02 

 

Diğer yandan, hesaplama etkinliği açısından, sabit nokta iterasyonu ile çözülen (3.6.1) 

formülünü kullanan ÇTBA yöntemi ile cebirsel bir denklem olan (3.6.2) formülünü 

kullanan yöntemin ihtiyaç duyduğu çözüm süreleri Tablo 4.4’de verilmektedir. İlk iki 

sütun her iki formülle elde edilen tam ve indirgenmiş çözümler arasındaki hataları, son 

ikisi ise ön görüntülerin oluşturulması için gereken işlem sürelerini göstermektedir. 
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(3.6.1) formülüyle iterasyonlu (2 iterasyon) çözülen doğrusal olmayan denklemin 

çözümleriyle, (3.6.2) formülüyle iterasyon olmadan çözülen denklemin çözümleri ile elde 

edilen hataların neredeyse aynı olduğu görülebilir, bu da iterasyon olmadan elde edilen 

çözümlerin hassasiyet açısından kabul edilebilir olduğunu göstermektedir. ÇTBA 

yönteminin, iterasyonsuz ihtiyaç duyduğu çözüm süresinin, iterasyonlu ihtiyaç duyduğu 

çözüm süresinden oldukça daha az olduğu, yani yöntemin oldukça hızlı olduğu son iki 

sütunda görülmektedir. 

Tablo 4.4 Farklı 𝑘 değerleri için oluşan bağıl mutlak hatalar ve çözüm süreleri 

 Mutlak Bağıl Hata İşlem Süresi 

 

𝒌 

İterasyonlu 

(formül 3.6.1) 

İterasyonsuz 

(formül 3.6.2) 

İterasyonlu 

(formül 3.6.1) 

İterasyonsuz 

(formül 3.6.2) 

1  3.60e-02 3.60e-02 72.9980 10.7240 

2 1.80e-02 1.79e-02 35.6080 13.4720 

3 3.58e-02 3.56e-02 11.2200 1.8450 

4 1.79e-02 1.75e-02 12.0040 1.5960 

5 3.56e-02 3.50e-02 15.6960 1.6130 

6 1.84e-02 1.77e-02 16.0200 1.6970 

 

Şekil 4.7’de, 𝑡 =  5 zamanındaki tam çözümler ile birlikte indirgenmiş çözümlerin 

profilleri gösterilmektedir. İndirgenmiş boyut 𝑘 =  2 için, tam ve indirgenmiş dalgaların 

birbiriyle çakıştığı görülmektedir. Bu da indirgenmiş çözümlerin tam çözüm ile aynı 

dalga davranışına sahip olup aynı dalga yayılımı sağladığı anlamına gelmektedir. 
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Şekil 4.7  𝑘 = 2 için 𝑡 = 5  zamanındaki tam/indirgenmiş çözümler 

Ön görüntülerle elde edilen korunan değişmezler Şekil 4.8’de verilmektedir. Burada, 

Şekil 4.6'daki değişmezlere benzer şekilde, her iki değişmezin farklı zamanlardaki 

değerleri ile başlangıç değerleri arasındaki fark gösterilmektedir. Kütlenin makine 

hassasiyetiyle korunduğu açıkken, momentum ve Hamilton değişmezlerindeki hatalar 

tam çözümlerle elde edilenler kadar küçük değildir. Model indirgeme yöntemlerinde, 

özellikle de değişmezlerin korunumu açısından bu beklenen bir durumdur. Bu 

değişmezlerin, salınımları küçük bir aralık içinde, herhangi bir kayma olmaksızın devam 

ettiğinden, belirtilen süre boyunca korunduğunu söylenebilmektedir. 
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Şekil 4.8  𝑘 = 2 için indirgenmiş büyüklüklerin korunumu 

4.1.3. Bir boyutlu NLS denklemi 

Bir boyutlu NLS denklemi (2.1.1.2) formunda, (𝑥, 𝑡)  ∈  [−20, 60] × [0, 7] uzay-zaman 

alanı için 

𝜓0(𝐱) = sech (𝑥)𝑒𝑖𝑥, 

başlangıç koşulu ve  𝜇 = 1, 𝛽 = 2.5 parametre değerleri için simule edilecektir. NLS 

denklemi (2.1.1.3) formunda gerçel değerli bağımlı değişkenlerin sistemi olarak 

alındığında, ilgili başlangıç koşulları 

𝑝0(𝐱) = sech(𝑥) cos(𝑥), 

𝑞0(𝐱) = sech(𝑥) sin(𝑥), 

olarak gerçekleşir. Ayrıklaştırma ölçüleri olarak ∆𝑥 = 0.08 ve ∆𝑡 = 0.01 değerleri için 

uzay-zaman ayrıklaştırılması ile sistemin anlık bilgilerinden alınan her t𝑘 anındaki ayrık 

çözümlerden 𝑌 veri matrisi oluşturulmaktadır. Uzay ve zaman koordinatları için 

ayrıklaştırılmış veri matrisi, 𝐰𝑗 = ((𝐩𝑗)𝑇 , (𝐪𝑗)𝑇)𝑇 ∈ ℝ2000  vektörleri için 𝑌 =

[𝐰1 …𝐰700] ∈ ℝ2000×700  şeklinde yazılır.           

Şekil 4.9, başlangıç değerlerinden itibaren zaman dilimlerinde momentum 𝐼1, kütle 𝐼2 ve 

Hamilton (Enerji) 𝐸 değerlerinin değişkenliğini göstermektedir. Gözlemlenen salınımlar, 

her değişmez için de iyi bir koruma sağlandığını göstermektedir.                     
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Şekil 4.9 Büyüklüklerin tam çözüm halinde korunumu  

Daha sonra, Tablo 4.5’te, TBA ve ÇTBA hata ve hesaplama etkinliği açısından 

karşılaştırılmaktadır. Bu karşılaştırma için, 𝑡 =  2 zamanındaki dalgaya karşılık gelen 

𝒘∗  =  𝒘200  girdi uzayı çözüm vektörü kullanılmaktadır. Sonuçlar indirgenmiş boyutlar 

𝑘 =  1, . . . , 6 için sunulmaktadır. TBA ve ÇTBA kullanıldığında, yapılan işlemler sonucu 

tam çözüm 𝒘∗ ile indirgenmiş yaklaşık çözüm 𝒘̂∗ arasındaki oluşan  

‖𝒘∗ − 𝒘̂∗‖∗ bağıl mutlak hatalar gösterilmektedir. Aynı sayıda baz kullanıldığında 

ÇTBA ile daha kesin sonuçlar elde edilmiştir.  

Tablo 4.5 Farklı k değerleri için oluşan bağıl mutlak hatalar 

𝒌 TBA ÇTBA  

1 9.29e-01       1.41e-02 

2 5.98e-01       6.64e-03 

3 5.97e-01        1.33e-02 

4 4.60e-01        7.44e-03 

5 2.77e-01        1.42e-02 

6  2.48e-01        8.65e-03 

 

Diğer yandan, hesaplama verimliliği açısından, sabit nokta iterasyonu ile çözülen (3.6.1) 

formülünü kullanan ÇTBA yöntemi ile cebirsel bir denklem olan (3.6.2) formülünü 

kullanan yöntemin gerektirdiği çözüm süreleri Tablo 4.6’da sunulmaktadır. İlk iki sütun, 

her iki formülle elde edilen tam ve indirgenmiş çözümler arasındaki hataları gösterirken, 
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son iki sütun ön görüntülerin oluşturulması için gereken işlem sürelerini yansıtmaktadır. 

(3.6.1) formülüyle iterasyonlu (4-6 iterasyon) çözülen doğrusal olmayan denklemin 

çözümleriyle, (3.6.2) formülüyle iterasyon olmadan çözülen denklemin çözümleri ile elde 

edilen hataların neredeyse aynı olduğu gözlemlenmektedir; bu durum, iterasyonsuz 

çözümlerin hassasiyet açısından yeterli olduğunu göstermektedir. Ayrıca, ÇTBA 

yönteminin iterasyonsuz olarak ihtiyaç duyduğu çözüm süresinin, iterasyonlu çözüme 

kıyasla çok daha az olduğu, yani yöntemin oldukça hızlı olduğu son iki sütunda açıkça 

görülmektedir. 

Tablo 4.6 Farklı 𝑘 değerleri için oluşan bağıl mutlak hatalar ve çözüm süreleri 

 Mutlak Bağıl Hata İşlem Süresi 

 

𝒌 

İterasyonlu 

(formül 3.6.1) 

İterasyonsuz 

(formül 3.6.2) 

İterasyonlu 

(formül 3.6.1) 

İterasyonsuz 

(formül 3.6.2) 

1 1.41e-02 1.41e-02 1.8350        0.1210 

2 6.64e-03 6.09e-03   1.8600 0.2910 

3 1.33e-02 1.21e-02 1.8680        0.2320 

4 7.44e-03       4.63e-03 2.1730        0.3280 

5 1.42e-02    1.06e-02  2.5240        0.2730 

6 8.65e-03       2.02e-03 3.5320        0.2890 

 

Şekil 4.10’da, 𝑡 = 0  ile 𝑡 = 2 zaman aralığında tam çözümler ile oluşan dalga profili ile 

birlikte indirgenmiş çözümler ile oluşan dalga profili gösterilmektedir.  

Not: NLS denklemi için bir 𝑡 anındaki dalga |𝝍(𝑡)| = √𝒑(𝑡)𝟐 + 𝒒(𝑡)𝟐 formülüyle 

hesaplanmaktadır.  

İndirgenmiş boyut 𝑘 =  2 için belirlenen zaman aralığında tam ve indirgenmiş dalgaların 

birbiriyle çakıştığı görülmektedir. Bu da indirgenmiş çözümlerin tam çözüm ile aynı 

dalga davranışına sahip güvenilir bir dalga yayılımı sağladığı anlamına gelmektedir ki 

fiziksel olarak başarılı bir modelleme için çok önemlidir. 
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Şekil 4.10  𝑘 = 2 için tam/indirgenmiş dalga profilleri 

Ön görüntülerle elde edilen korunan değişmezler Şekil 4.11’de sunulmaktadır. Şekil 

4.9'da gösterilen değişmezlere benzer şekilde, her iki değişmezin farklı zamanlardaki 

değerleri ile başlangıç değerleri arasındaki fark burada da gösterilmektedir. Tüm 

değişmezlerin, tam çözümlerle elde edilenler kadar hassa olmasa da, benzer şekilde 

korunduğu görülmektedir. Model indirgeme yöntemlerinde, özellikle değişmezlerin 

korunumu söz konusu olduğunda, bu beklenen bir durumdur. Ancak, bu değişmezlerin 

küçük bir aralık içinde salındığı ve herhangi bir kayma olmaksızın sabit kaldığı, belirtilen 

süre boyunca korunduğu söylenebilir. 

 

Şekil 4.11  𝑘 = 2 için indirgenmiş büyüklüklerin korunumu 
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4.1.4. İki boyutlu NLS denklemi 

İki boyutlu NLS denklemi (2.1.1.2) formunda, (𝑥, 𝑦, 𝑡)  ∈  [−8, 8] × [−8, 8] × [0, 3] 

uzay-zaman alanı için 

𝜓0(𝐱) =
1

√𝜋
𝑒−

(𝑥2+𝑦2)

2 ,      

başlangıç koşulu ile ele alınacaktır. NLS denklemi (2.1.1.3) formunda gerçel değerli 

bağımlı değişkenlerin sistemi olarak alındığında, ilgili başlangıç koşulları 

𝑝0(𝐱) =
1

√𝜋
𝑒−

(𝑥2+𝑦2)
2 , 

𝑞0(𝐱) = 0, 

olarak gerçekleşir. Simülasyonda sistem parametre değerleri 𝜇 = 0.5, 𝛽 = −1 olarak 

alınmıştır. Ayrıklaştırma ölçüleri olarak ∆𝑥 = ∆𝑦 = 0.5 ve ∆𝑡 = 0.01 değerleri için 

uzay-zaman ayrıklaştırılması ile sistemin anlık bilgilerinden alınan her t𝑘 anındaki ayrık 

çözümlerden 𝑌 veri matrisi oluşturulmaktadır. Uzay ve zaman koordinatları için 

ayrıklaştırılmış veri matrisi, 𝒘𝑗 = ((𝒑𝑗)𝑇 , (𝒒𝑗)𝑇)𝑇 ∈ ℝ2048  vektörleri için                      

𝑌 = [𝒘1 …𝒘300] ∈ ℝ2048×300  şeklindedir.      

Şekil 4.12, başlangıç değerlerinden itibaren zaman dilimlerinde momentum 𝐼1, kütle 𝐼2 ve 

Hamilton 𝐸 değerlerinin değişkenliğini göstermektedir. Gözlemlenen salınımlar, her 

değişmez için de iyi bir koruma sağlandığını, momentum için ise hassasiyetin makine 

hassasiyeti ile karşılaştırılabilir olduğunu göstermektedir. 

 

Şekil 4.12 Büyüklüklerin tam çözüm halinde korunumu  
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Daha sonra, Tablo 4.7’de, TBA ve ÇTBA yöntemleri hata ve hesaplama etkinliği 

açısından karşılaştırılmaktadır. Bu karşılaştırma için, 𝑡 = 1 zamanındaki dalgaya karşılık 

gelen 𝒘∗  =  𝒘100  girdi uzayı çözüm vektörü kullanılmaktadır. Sonuçlar indirgenmiş 

boyutlar 𝑘 =  1, . . . , 6 için sunulmaktadır. TBA ve ÇTBA kullanıldığında, yapılan 

işlemler sonucu tam çözüm 𝒘∗ ile indirgenmiş yaklaşık çözüm 𝒘̂∗ arasındaki oluşan 

‖𝒘∗ − 𝒘̂∗‖∗ bağıl mutlak hatalar gösterilmektedir. Aynı sayıda baz kullanıldığında 

ÇTBA ile daha kesin sonuçlar elde edilmiştir.  

Tablo 4.7 Farklı 𝑘 değerleri için oluşan bağıl mutlak hatalar 

𝒌 TBA ÇTBA  

1 5.68e-01        2.58e-02 

2 1.43e-01        1.27e-02 

3 1.41e-01        2.49e-02 

4  5.29e-02        1.16e-02 

5 6.03e-02  2.38e-02 

6 3.48e-02        1.63e-03 

 

Diğer yandan, hesaplama verimliliği açısından, sabit nokta iterasyonu ile çözülen (3.6.1) 

formülünü kullanan ÇTBA yöntemi ile cebirsel bir denklem olan (3.6.2) formülünü 

kullanan yöntemin ihtiyaç duyduğu çözüm süreleri Tablo 4.8’de sunulmaktadır. İlk iki 

sütun, her iki formülle elde edilen tam ve indirgenmiş çözümler arasındaki hataları 

gösterirken, son iki sütun ön görüntülerin oluşturulması için gereken işlem sürelerini 

göstermektedir. İterasyonla (2 iterasyon) çözülen doğrusal olmayan denklem (3.6.1) ile 

iterasyon gerektirmeyen denklem (3.6.2) arasındaki hataların neredeyse aynı olduğu 

görülmektedir. Bu, iterasyon olmadan elde edilen çözümlerin hassasiyet açısından kabul 

edilebilir olduğunu gösterir. ÇTBA yönteminin iterasyonsuz çözüm süresinin, iterasyonlu 

çözüm süresinden oldukça daha az olduğu, yani yöntemin oldukça hızlı olduğu, son iki 

sütunda açıkça görülmektedir. 
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Tablo 4.8 Farklı 𝑘 değerleri için oluşan bağıl mutlak hatalar ve çözüm süreleri 

 Mutlak Bağıl Hata İşlem Süresi 

 

𝒌 

İterasyonlu 

(formül 3.6.1) 

İterasyonsuz 

(formül 3.6.2) 

İterasyonlu 

(formül 3.6.1) 

İterasyonsuz 

(formül 3.6.2) 

1 2.58e-02 2.58e-02 2.7680 10.6040 

2 1.27e-02 1.27e-02 0.8590 11.4970 

3 2.49e-02 2.48e-02 1.1030 0.5840 

4 1.16e-02 1.17e-02 1.3340 0.3420 

5 2.38e-02 2.38e-02 1.5960 0.2200 

6 1.63e-03 1.66e-03 1.7070 0.2340 

 

Şekil 4.13’te, 𝑡 = 0.5 ve 𝑡 = 3 zamanlarındaki tam çözümler ile birlikte indirgenmiş 

çözümlerin profilleri gösterilmektedir. İndirgenmiş boyut 𝑘 =  2 için, tam ve 

indirgenmiş dalgaların birbiriyle çakıştığı görülmektedir. Bu da indirgenmiş çözümlerin 

tam çözüm ile aynı dalga davranışına sahip olduğu anlamına gelmektedir ki fiziksel 

olarak başarılı bir modelleme için çok önemlidir. 

 

Şekil 4.13  𝑘 = 2 için 𝑡 = 0.5 ve 𝑡 = 3 zamanlarındaki tam/indirgenmiş dalga profilleri 
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Öte yandan, ön görüntülerle elde edilen korunan değişmezler Şekil 4.14’te verilmektedir. 

Burada, Şekil 4.12'deki değişmezlere benzer şekilde, değişmezin farklı zamanlardaki 

değerleri ile başlangıç değerleri arasındaki fark gösterilmektedir. Momentumun makine 

hassasiyetiyle korunduğu açıkken, kütle ve Hamilton değişmezlerindeki hatalar tam 

çözümlerle elde edilenler kadar küçük değildir. Model indirgeme yöntemlerinde, 

özellikle de değişmezlerin korunumu açısından bu beklenen bir durumdur. Bu 

değişmezlerin, salınımları küçük bir aralık içinde, herhangi bir kayma olmaksızın devam 

ettiğinden, belirtilen süre boyunca korunduğunu söylenebilmektedir. 

 

Şekil 4.14  𝑘 = 2 için indirgenmiş büyüklüklerin korunumu 

4.2. Gradyan Sistemler  

Gradyan sistemlerin incelenmesinde bir ve iki boyutlu AC ile iki boyutlu SH denklemi 

ele alınacaktır.  

4.2.1. Bir boyutlu AC denklemi 

Bir boyutlu (2.1.2.1) AC denklemi, (𝑥, 𝑡)  ∈  [0,2𝜋] × [0, 600] uzay-zaman alanı için 

𝑢0(𝑥) = 0.8 + 𝑠𝑖𝑛𝑥,  

başlangıç dalgası ve 𝜀 = 0.0256 parametre değeri için simule edilecektir. Ayrıklaştırma 

ölçüleri olarak ∆𝑥 = 𝜋/100 ve ∆𝑡 = 0.5 değerleri için uzay-zaman ayrıklaştırılması ile 

sistemin anlık bilgilerinden alınan her t𝑘 anındaki ayrık çözümlerden 𝑌 veri matrisi 

oluşturulmaktadır. Uzay ve zaman koordinatları için ayrıklaştırılmış veri matrisi            

𝑌 = [𝒖1 …𝒖1200] ∈ ℝ200×1200  şeklinde yazılır. Tam çözümlerin 𝑡 = 0,250,400,500   



59 

 

zamanlarındaki grafik çizimleri Şekil 4.15’de verilmiş olup, [0, 600] zaman aralığındaki 

çözüm profili Şekil 4.16’da verilmiştir. AC denklemi, ele alınan potansiyel fonksiyonu 

𝐹(𝑢) = (𝑢2 − 1)2/4  için, faz ayrımı adıyla anılan ve çözümlerinin bir denge alanından 

diğerine geçtiği bir kararlı (𝑢 = 0) ve iki kararsız (𝑢 = ±1)  denge alanına sahiptir. İki 

kararsız denge alanı arasındaki ara yüzeyler uzun zaman aralığı boyunca bölgeler 

üzerinde hareket eder, ki bu duruma meta-kararlılık fenomeni denir (Karasözen vd., 

2018). Söz konusu meta-kararlılık durumu Şekil 4.16’da gözlemlenebilmektedir. 

 

Şekil 4.15  𝑡 = 0,250,400,500  zamanlarındaki dalga grafikleri 

 

Şekil 4.16 Tam çözüm profili 
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Tablo 4.9’da, TBA ve ÇTBA yöntemleri hata ve hesaplama etkinliği açısından 

karşılaştırılmaktadır. Bu karşılaştırma için, 𝑡 =  2 zamanındaki çözüme karşılık gelen 

𝒖∗  =  𝒖100  girdi uzayı çözüm vektörü kullanılmaktadır. Sonuçlar indirgenmiş boyutlar            

𝑘 =  1, . . . , 6 için sunulmaktadır. TBA ve ÇTBA kullanıldığında, yapılan işlemler sonucu 

tam çözüm 𝒖∗ ile indirgenmiş yaklaşık çözüm 𝒖̂∗ arasındaki oluşan bağıl mutlak hatalar 

gösterilmektedir. Aynı sayıda baz kullanıldığında ÇTBA ile daha kesin sonuçlar elde 

edilmiştir.  

Tablo 4.9 Farklı k değerleri için oluşan bağıl mutlak hatalar 

𝒌 TBA ÇTBA  

1 7.31e-01 1.41e-02 

2 3.84e-01 6.79e-03 

3 3.44e-01 1.34e-02 

4 2.87e-01 1.16e-02 

5 1.35e-01 9.87e-03 

6 7.78e-02 2.05e-03 

 

Öte yandan, hesaplama etkinliği açısından, sabit nokta iterasyonu ile çözülen (3.6.1) 

formülünü kullanan ÇTBA yöntemi ile cebirsel bir denklem olan (3.6.2) formülünü 

kullanan yöntemin ihtiyaç duyduğu çözüm süreleri Tablo 4.10’da verilmektedir. İlk iki 

sütun her iki formülle elde edilen tam ve indirgenmiş çözümler arasındaki hataları, son 

ikisi ise ön görüntülerin oluşturulması için gereken işlem sürelerini göstermektedir. 

(3.6.1) formülüyle iterasyonlu (2-3 iterasyon) çözülen doğrusal olmayan denklemin 

çözümleriyle, (3.6.2) formülüyle iterasyon olmadan çözülen denklemin çözümleri ile elde 

edilen hataların neredeyse aynı olduğu görülebilir, bu da iterasyon olmadan elde edilen 

çözümlerin hassasiyet açısından kabul edilebilir olduğunu göstermektedir. ÇTBA 

yönteminin, iterasyonsuz ihtiyaç duyduğu çözüm süresinin, iterasyonlu ihtiyaç duyduğu 

çözüm süresinden çok daha az olduğu, yani yöntemin oldukça hızlı olduğu son iki sütunda 

görülmektedir. 
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Tablo 4.10 Farklı 𝑘 değerleri için oluşan bağıl mutlak hatalar ve çözüm süreleri 

 Mutlak Bağıl Hata İşlem Süresi 

 

𝒌 

İterasyonlu 

(formül 3.6.1) 

İterasyonsuz 

(formül 3.6.2) 

İterasyonlu 

(formül 3.6.1) 

İterasyonsuz 

(formül 3.6.2) 

1 1.41e-02 1.41e-02 3.9634 0.1026 

2 6.79e-03 6.83e-03   1.9047 0.1630 

3 1.34e-02 1.35e-02 2.1734 0.1660 

4 1.16e-02   1.17e-02 1.8595 0.1932 

5 9.87e-03 1.01e-02 2.2519 0.1721 

6 2.05e-03 2.51e-03 2.3998 0.1872 

 

Şekil 4.17, 𝑡 =  250 ve 𝑡 =  500 zamanlarındaki tam çözümlerle birlikte indirgenmiş 

çözümleri göstermektedir. İndirgenmiş boyut 𝑘 =  2 için, her iki zamanda tam ve 

indirgenmiş çözümlerin birbiriyle çakıştığı görülmektedir. Tam ve indirgenmiş çözüm 

profilleri Şekil 4.18’de verilmiştir. Şekillerden, tam ve indirgenmiş çözümlerin çakıştığı, 

ve dolayısıyla aynı faz geçişi davranışını gösterdiği gözlemlenmiştir. 

 

Şekil 4.17  𝑘 = 2 için 𝑡 = 250, 500 zamanlarındaki tam/indirgenmiş çözümler 
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Şekil 4.18  𝑘 = 2 için tam/indirgenmiş çözüm profilleri 

Öte yandan, tam çözümler ile ön görüntülerle elde edilen enerji grafikleri Şekil 4.19’da 

verilmektedir. Her iki grafikte de aynı enerji azalma davranışının gerçekleştiği 

görülmektedir. 

 

 

Şekil 4.19 Tam enerji ile  𝑘 = 2 için indirgenmiş enerji 
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4.2.2. İki boyutlu AC denklemi 

İki boyutlu (2.1.2.1) AC denklemi (𝑥, 𝑦, 𝑡)  ∈  [0, 2𝜋] × [0, 2𝜋] × [0, 5] uzay-zaman 

alanında 

𝑢0(𝑥) = 2𝑒(𝑠𝑖𝑛𝑥+𝑠𝑖𝑛𝑦)−2 + 2.2𝑒−(𝑠𝑖𝑛𝑥+𝑠𝑖𝑛𝑦)−2 + 1  

Başlangıç koşulu ve 𝜀 = 0.0025 parametre değeri için simule edilecektir. Ayrıklaştırma 

ölçüleri olarak ∆𝑥 = ∆𝑦 = 𝜋/32 ve ∆𝑡 = 0.01 değerleri için uzay-zaman 

ayrıklaştırılması ile sistemin anlık bilgilerinden alınan her t𝑘 anındaki ayrık çözümlerden 

𝑌 veri matrisi oluşturulmaktadır. Uzay ve zaman koordinatları için ayrıklaştırılmış veri 

matrisi, 𝑌 = [𝒖1 …𝒖500] ∈ ℝ4096×500    şeklindedir.  

Tablo 4.11’de, TBA ve ÇTBA yöntemleri hata ve hesaplama etkinliği açısından 

karşılaştırılmaktadır. Bu karşılaştırma için, 𝑡 =  2 zamanındaki çözüme karşılık gelen 

𝒖∗  =  𝒖100  girdi uzayı çözüm vektörü kullanılmaktadır. Sonuçlar indirgenmiş boyutlar            

𝑘 =  1, . . . , 6 için sunulmaktadır. TBA ve ÇTBA kullanıldığında, yapılan işlemler sonucu 

tam çözüm 𝒖∗ ile indirgenmiş yaklaşık çözüm 𝒖̂∗ arasındaki oluşan bağıl mutlak hatalar 

gösterilmektedir. Aynı sayıda baz kullanıldığında ÇTBA ile daha kesin sonuçlar elde 

edilmiştir.  

Tablo 4.11 Farklı 𝑘 değerleri için oluşan bağıl mutlak hatalar 

𝒌 TBA ÇTBA  

1 2.80e-01      2.50e-03  

2 8.22e-02      1.49e-03 

3 4.78e-02      3.28e-03 

4  2.13e-02      1.92e-03 

5 6.53e-03      2.45e-03 

6 3.54e-03      1.37e-03 

 

Hesaplama etkinliği açısından, sabit nokta iterasyonu ile çözülen (3.6.1) formülünü 

kullanan ÇTBA yöntemi ile cebirsel bir denklem olan (3.6.2) formülünü kullanan 

yöntemin ihtiyaç duyduğu çözüm süreleri Tablo 4.12’de verilmektedir. İlk iki sütun her 

iki formülle elde edilen tam ve indirgenmiş çözümler arasındaki hataları, son ikisi ise ön 

görüntülerin oluşturulması için gereken işlem sürelerini göstermektedir. (3.6.1) 

formülüyle iterasyonlu (2 iterasyon) çözülen doğrusal olmayan denklemin çözümleriyle, 

(3.6.2) formülüyle iterasyon olmadan çözülen denklemin çözümleri ile elde edilen 
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hataların neredeyse aynı olduğu görülebilir, bu da iterasyon olmadan elde edilen 

çözümlerin hassasiyet açısından kabul edilebilir olduğunu göstermektedir. ÇTBA 

yönteminin, iterasyonsuz ihtiyaç duyduğu çözüm süresinin, iterasyonlu ihtiyaç duyduğu 

çözüm süresinden oldukça daha az olduğu, yani yöntemin oldukça hızlı olduğu son iki 

sütunda görülmektedir. 

Tablo 4.12 Farklı 𝑘 değerleri için oluşan bağıl mutlak hatalar ve çözüm süreleri 

 Mutlak Bağıl Hata İşlem Süresi 

 

𝒌 

İterasyonlu 

(formül 3.6.1) 

İterasyonsuz 

(formül 3.6.2) 

İterasyonlu 

(formül 3.6.1) 

İterasyonsuz 

(formül 3.6.2) 

1 2.50e-03  3.80e-03 2.2090        1.0310 

2 1.49e-03 1.89e-03 1.7000        1.2470 

3 3.28e-03 3.77e-03          2.2340         0.9070 

4 1.92e-03 1.82e-03 2.6700        0.7160 

5 2.45e-03 3.66e-03 3.2030        0.8110 

6 1.37e-03 1.68e-03 3.5700        0.8230 

 

Şekil 4.20’de, 𝑡 =  5 zamanındaki tam çözümler ile birlikte indirgenmiş çözümlerin 

profilleri gösterilmektedir. İndirgenmiş boyut 𝑘 =  2 için, tam ve indirgenmiş 

çözümlerin birbiriyle benzer olduğu görülmektedir. Bu da indirgenmiş çözümlerin tam 

çözüm ile aynı davranışa sahip olduğu anlamına gelmektedir. 

     

Şekil 4.20  𝑘 = 2 için 𝑡 = 5  zamanındaki tam/indirgenmiş çözüm profilleri 
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Öte yandan, tam çözümler ve ön görüntülerle elde edilen enerji grafikleri Şekil 4.21’de 

verilmektedir. Burada, bir boyutlu AC denklemindekine benzer şekilde her iki grafikte de 

aynı enerji azalma davranışının gerçekleştiği açıkça görülmektedir. 

 

Şekil 4.21 Tam enerji ile  𝑘 = 2 için indirgenmiş enerji 

4.2.3. İki boyutlu SH denklemi 

İki boyutlu (2.1.2.2) SH denklemi, (𝑥, 𝑦, 𝑡)  ∈  [0, 100] × [0, 100] × [0, 10] uzay-zaman 

alanı için simule edilecektir. Başlangıç koşulu olarak, rand() fonksiyonu [0,1] aralığında 

eşit dağılımlı rastgele sayı fonksiyonu olmak üzere  

𝑢0(𝑥, 𝑦) = 0.4 + 0.01√𝜇(2rand() − 1), 

fonksiyonu alınmıştır. Sistemdeki dönüşüm değişkeni olan ikinci değişken 𝑣 için yarı 

ayrık formdaki başlangıç koşulu ise, ilgili dönüşüm gereği 𝒗0 = 𝒖0 + 𝐴𝒖0 olarak 

alınmıştır. Ayrıca, 𝜇 = 0.3 parametre değeri ve ayrıklaştırma ölçüleri olarak ∆𝑥 = ∆𝑦 =

3.125 ve ∆𝑡 = 0.01 değerleri için uzay-zaman ayrıklaştırılması ile sistemin anlık 

bilgilerinden alınan her t𝑘 anındaki ayrık çözümlerden 𝑌 veri matrisi oluşturulmaktadır. 

Uzay ve zaman koordinatları için ayrıklaştırılmış veri matrisi, 𝑌 = [𝒖1 …𝒖1000] ∈

ℝ1024×1000    şeklindedir.  

Tablo 4.13’de, TBA ve ÇTBA yöntemleri hata ve hesaplama etkinliği açısından 

karşılaştırılmaktadır. Bu karşılaştırma için, 𝑡 =  2 zamanındaki çözüme karşılık gelen 

𝒖∗  =  𝒖100  girdi uzayı çözüm vektörü kullanılmaktadır. Sonuçlar indirgenmiş boyutlar            

𝑘 =  1, . . . , 6 için sunulmaktadır. TBA ve ÇTBA kullanıldığında, yapılan işlemler sonucu 

tam çözüm 𝒖∗ ile indirgenmiş yaklaşık çözüm 𝒖̂∗ arasındaki bağıl mutlak hatalar 
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gösterilmektedir. Aynı sayıda baz kullanıldığında ÇTBA ile daha kesin sonuçlar elde 

edilmiştir.  

Tablo 4.13 Farklı 𝑘 değerleri için oluşan bağıl mutlak hatalar 

𝒌 TBA ÇTBA  

1 2.80e-01      2.50e-03  

2 8.22e-02      1.49e-03 

3 4.78e-02      3.28e-03 

4 2.13e-02      1.92e-03 

5 6.53e-03      2.45e-03 

6 3.54e-03      1.37e-03 

 

Hesaplama etkinliği açısından, sabit nokta iterasyonu ile çözülen (3.6.1) formülünü 

kullanan ÇTBA yöntemi ile cebirsel bir denklem olan (3.6.2) formülünü kullanan 

yöntemin ihtiyaç duyduğu çözüm süreleri Tablo 4.14’de verilmektedir. İlk iki sütun her 

iki formülle elde edilen tam ve indirgenmiş çözümler arasındaki hataları, son ikisi ise ön 

görüntülerin oluşturulması için gereken işlem sürelerini göstermektedir. (3.6.1) 

formülüyle iterasyonlu (3 iterasyon)  çözülen doğrusal olmayan denklemin çözümleriyle, 

(3.6.2) formülüyle iterasyon olmadan çözülen denklemin çözümleri ile elde edilen 

hataların neredeyse aynı olduğu görülebilir, bu da iterasyon olmadan elde edilen 

çözümlerin hassasiyet açısından kabul edilebilir olduğunu göstermektedir. ÇTBA 

yönteminin, iterasyonsuz ihtiyaç duyduğu çözüm süresinin, iterasyonlu ihtiyaç duyduğu 

çözüm süresinden oldukça daha az olduğu, yani yöntemin oldukça hızlı olduğu son iki 

sütunda görülmektedir. 

Tablo 4.14 Farklı 𝑘 değerleri için oluşan bağıl mutlak hatalar ve çözüm süreleri 

 Mutlak Bağıl Hata İşlem Süresi 

 

𝒌 

İterasyonlu 

(formül 3.6.1) 

İterasyonsuz 

(formül 3.6.2) 

İterasyonlu 

(formül 3.6.1) 

İterasyonsuz 

(formül 3.6.2) 

1 2.50e-03  3.80e-03 2.2090        1.0310 

2 1.49e-03 1.89e-03 1.7000        1.2470 

3 3.28e-03 3.77e-03         2.2340        0.9070 

4 1.92e-03 1.82e-03 2.6700        0.7160 

5 2.45e-03 3.66e-03 3.2030        0.8110 

6 1.37e-03 1.68e-03 3.5700        0.8230 
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Şekil 4.22’de, 𝑡 =  0 anındaki rastgele başlangıç deseni ve 𝑡 =  10 zamanındaki tam 

çözümleri ile birlikte indirgenmiş çözümlerin oluşturduğu desenler gösterilmektedir. 

İndirgenmiş boyut 𝑘 =  2 için, tam ve indirgenmiş desenlerin birbiriyle benzer olduğu 

görülmektedir. Bu da indirgenmiş çözümlerin tam çözüm ile aynı davranışa sahip olduğu 

anlamına gelmektedir. 

 

Şekil 4.22 Başlangıç profili ile 𝑡 = 10 zamanındaki tam ve  𝑘 = 2 için indirgenmiş 

çözüm profilleri 

Son olarak, tam çözümlerle ve ön görüntülerle elde edilen enerji grafikleri Şekil 4.23’de 

sunulmaktadır. Şekilden, tam ve indirgenmiş çözümlerle elde edilen enerjilerin aynı 

şekilde azalarak devam ettiği görülmektedir.  

 

Şekil 4.23 Tam enerji ile  𝑘 = 2 için indirgenmiş enerji 
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4.3. Anti-Gradyan Sistemler  

Anti-Gradyan sistemlerin incelenmesinde bir ve iki boyutlu FHN denklemleri, önceki 

örneklerin aksine homojen Neumann sınır koşulları altında ele alınacaktır.  

4.3.1. Bir boyutlu FHN denklemi 

Bir boyutlu (2.1.3.1) FHN denklemi, (𝑥, 𝑡)  ∈  [−60, 60] × [0, 50] uzay-zaman alanı için 

𝑢0(𝑥) = tanh(𝑥),   𝑣0(𝑥) = −0.6, 

başlangıç koşulları ve 𝜏1 = 𝜏2 = 12.5, 𝜇1 = 1, 𝜇2 = 1.25, 𝛾 = 0.8, 𝜀 = 0.7, 𝛽 = 1/3 

parametre değerleri için simule edilecektir. Ayrıklaştırma ölçüleri olarak ∆𝑥 = 0.12 ve 

∆𝑡 = 0.1 değerleri için uzay-zaman ayrıklaştırılması ile sistemin anlık bilgilerinden 

alınan her t𝑘 anındaki ayrık çözümlerden 𝑌 veri matrisi oluşturulmaktadır. Uzay ve 

zaman koordinatları için ayrıklaştırılmış veri matrisi, 𝒘𝑗 = ((𝒖𝑗)𝑇 , (𝒗𝑗)𝑇)𝑇 ∈

ℝ2000  vektörleri için 𝑌 = [𝒘1 …𝒘500] ∈ ℝ2000×500  şeklinde yazılır. 

Şekil 4.24’de, 𝑡 = 0, 10, 30, 50  zamanlarındaki tam çözümler ile birlikte indirgenmiş 

çözümler gösterilmektedir. İndirgenmiş boyut 𝑘 =  2 için, verilen zamanlardaki tam ve 

indirgenmiş çözümlerin birbiriyle çakıştığı görülmektedir. Bu da indirgenmiş çözümlerin 

güvenilir olduğu anlamına gelmektedir. 

                  

Şekil 4.24  𝑘 = 2 için 𝑡 = 0, 10, 30, 50  zamanlarındaki tam/indirgenmiş çözümler 
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Şekil 4.25, başlangıç değerlerinden itibaren tam ve indirgenmiş enerji değişimleri 

gösterilmektedir. Her iki grafikte de enerji değişimi aynı davaranışı göstermekte olup 

beklendiği gibi monoton bir azalma veya korunma görülmemektedir. 

 

Şekil 4.25 Tam enerji ile  𝑘 = 2 için indirgenmiş enerji 

Tablo 4.15’te, TBA ve ÇTBA yöntemleri hata ve hesaplama etkinliği açısından 

karşılaştırılmaktadır. Bu karşılaştırma için, 𝑡 =  2 zamanındaki çözüme karşılık gelen 

𝒘∗  =  𝒘100  girdi uzayı çözüm vektörü kullanılmaktadır. Sonuçlar indirgenmiş boyutlar 

𝑘 =  1, . . . , 6 için sunulmaktadır. TBA ve ÇTBA kullanıldığında, yapılan işlemler sonucu 

tam çözüm 𝒘∗ ile indirgenmiş yaklaşık çözüm 𝒘̂∗ arasındaki bağıl mutlak hatalar 

gösterilmektedir. Aynı sayıda baz kullanıldığında ÇTBA ile daha kesin sonuçlar elde 

edilmiştir.  

Tablo 4.15 Farklı k değerleri için oluşan bağıl mutlak hatalar 

𝒌 TBA ÇTBA  

1 4.13e-01     5.35e-03 

2 1.63e-01     4.02e-03 

3 1.43e-02     7.46e-03 

4 1.32e-02     3.92e-03 

5 1.07e-02   7.78e-03 

6 8.49e-04     3.55e-03 
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Öte yandan, hesaplama etkinliği açısından, sabit nokta iterasyonu ile çözülen (3.6.1) 

formülünü kullanan ÇTBA yöntemi ile cebirsel bir denklem olan (3.6.2) formülünü 

kullanan yöntemin ihtiyaç duyduğu çözüm süreleri Tablo 4.16’da verilmektedir. İlk iki 

sütun her iki formülle elde edilen tam ve indirgenmiş çözümler arasındaki hataları, son 

ikisi ise ön görüntülerin oluşturulması için gereken işlem sürelerini göstermektedir. 

(3.6.1) formülüyle iterasyonlu (2 iterasyon) çözülen doğrusal olmayan denklemin 

çözümleriyle, (3.6.2) formülüyle iterasyon olmadan çözülen denklemin çözümleri ile elde 

edilen hataların neredeyse aynı olduğu görülebilir, bu da iterasyon olmadan elde edilen 

çözümlerin hassasiyet açısından kabul edilebilir olduğunu göstermektedir. ÇTBA 

yönteminin, iterasyonsuz ihtiyaç duyduğu çözüm süresinin, iterasyonlu ihtiyaç duyduğu 

çözüm süresinden çok daha az olduğu, yani yöntemin oldukça hızlı olduğu son iki sütunda 

görülmektedir. 

Tablo 4.16 Farklı 𝑘 değerleri için oluşan bağıl mutlak hatalar ve çözüm süreleri 

 Mutlak Bağıl Hata İşlem Süresi 

 

𝒌 

İterasyonlu 

(formül 3.6.1) 

İterasyonsuz 

(formül 3.6.2) 

İterasyonlu 

(formül 3.6.1) 

İterasyonsuz 

(formül 3.6.2) 

1 5.35e-03 8.17e-03 5.0550        1.2950 

2 4.02e-03 4.07e-03 5.0380 1.4770 

3 7.46e-03 8.13e-03 7.7830        0.6760 

4 3.92e-03 4.01e-03 7.8140 0.3490 

5 7.78e-03 8.06e-03 8.9820        0.2440 

6 3.55e-03 3.94e-03 8.1190        0.2670 

 

4.3.2. İki boyutlu FHN denklemi 

İki boyutlu (2.1.3.1) FHN denklemi, (𝑥, 𝑦, 𝑡)  ∈  [−1, 1] × [−1,1] × [0, 30] uzay-zaman 

alanında,  

𝑢0(𝑥, 𝑦) = 2rand() − 1,  𝑣0(𝑥, 𝑦) = 2rand() − 1, 

başlangıç koşulları, Şekil 4.26, ve 𝜏1 = 𝜏2 = 1, 𝜇1 = 0.00028, 𝜇2 = 0.005, 𝛾 = 1,

𝜀 = 0, 𝛽 = −1  parametre değerleri için simule edilecektir. Ayrıklaştırma ölçüleri olarak 

∆𝑥 = ∆𝑦 = 0.0625 ve ∆𝑡 = 0.05 değerleri için uzay-zaman ayrıklaştırılması ile sistemin 
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anlık bilgilerinden alınan her t𝑘 anındaki ayrık çözümlerden 𝑌 veri matrisi 

oluşturulmaktadır. Uzay ve zaman koordinatları için ayrıklaştırılmış veri matrisi, 𝒘𝑗 =

((𝒖𝑗)𝑇 , (𝒗𝑗)𝑇)𝑇 ∈ ℝ2048  vektörleri için 𝑌 = [𝒘1 …𝒘600] ∈ ℝ2048×600   şeklinde 

yazılır.  

Rastgele başlangıç profili Şekil 4.26’da verilmiştir. Şekil 4.27’de, 𝑡 =  15 zamanındaki 

tam çözümler ile birlikte indirgenmiş çözümlerden elde edilmiş desen profilleri 

gösterilmektedir. İndirgenmiş boyut 𝑘 =  2 için, tam ve indirgenmiş desenlerin birbiriyle 

çakıştığı görülmektedir. Benzer şekilde 𝑡 =  30 zamanındaki tam çözümler ile birlikte 

indirgenmiş çözümlerden elde edilmiş desen profilleri Şekil 4.28’de gösterilmektedir. 

İndirgenmiş boyut 𝑘 =  2 için, yine tam ve indirgenmiş desenlerin birbiriyle çakıştığı 

görülmektedir.  

 

Şekil 4.26  𝑡 = 0 zamanındaki başlangıç profilleri 
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Şekil 4.27  𝑘 = 2 için 𝑡 = 15  zamanındaki tam ve indirgenmiş çözüm profilleri 

 

Şekil 4.28 𝑘 = 2 için 𝑡 = 30  zamanındaki tam ve indirgenmiş çözüm profilleri 
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Tablo 4.17’de, TBA ve ÇTBA yöntemleri hata ve hesaplama etkinliği açısından 

karşılaştırılmaktadır. Bu karşılaştırma için, 𝑡 =  2 zamanındaki çözümlere karşılık gelen 

𝒘∗  =  𝒘100  girdi uzayı çözüm vektörü kullanılmaktadır. Sonuçlar indirgenmiş boyutlar 

𝑘 =  1, . . . , 6 için sunulmaktadır. TBA ve ÇTBA kullanıldığında, yapılan işlemler sonucu 

tam çözüm 𝒘∗ ile indirgenmiş yaklaşık çözüm 𝒘̂∗ arasındaki bağıl mutlak hatalar 

gösterilmektedir. Aynı sayıda baz kullanıldığında ÇTBA ile daha kesin sonuçlar elde 

edilmiştir.  

Tablo 4.17 Farklı 𝑘 değerleri için oluşan bağıl mutlak hatalar 

𝒌 TBA ÇTBA  

1 1.00e+00        2.93e-02 

2 4.95e-01        2.93e-02 

3 3.91e-01        5.87e-02 

4 3.71e-01        5.87e-02 

5 2.22e-01 5.87e-02 

6 2.29e-01        5.87e-02 

 

Hesaplama etkinliği açısından, sabit nokta iterasyonu ile çözülen (3.6.1) formülünü 

kullanan ÇTBA yöntemi ile cebirsel bir denklem olan (3.6.2) formülünü kullanan 

yöntemin ihtiyaç duyduğu çözüm süreleri Tablo 4.18’de verilmektedir. İlk iki sütun her 

iki formülle elde edilen tam ve indirgenmiş çözümler arasındaki hataları, son ikisi ise ön 

görüntülerin oluşturulması için gereken işlem sürelerini göstermektedir. (3.6.1) 

formülüyle iterasyonlu (2 iterasyon) çözülen doğrusal olmayan denklemin çözümleriyle, 

(3.6.2) formülüyle iterasyon olmadan çözülen denklemin çözümleri ile elde edilen 

hataların neredeyse aynı olduğu görülebilir, bu da iterasyon olmadan elde edilen 

çözümlerin hassasiyet açısından kabul edilebilir olduğunu göstermektedir. ÇTBA 

yönteminin, iterasyonsuz ihtiyaç duyduğu çözüm süresinin, iterasyonlu ihtiyaç duyduğu 

çözüm süresinden oldukça daha az olduğu, yani yöntemin oldukça hızlı olduğu son iki 

sütunda görülmektedir. 
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Tablo 4.18 Farklı 𝑘 değerleri için oluşan bağıl mutlak hatalar ve çözüm süreleri 

 Mutlak Bağıl Hata İşlem Süresi 

 

𝒌 

İterasyonlu 

(formül 3.6.1) 

İterasyonsuz 

(formül 3.6.2) 

İterasyonlu 

(formül 3.6.1) 

İterasyonsuz 

(formül 3.6.2) 

1 2.93e-02 2.93e-02 1.3520 0.5880 

2 2.93e-02 1.47e-02 1.9060 0.2690 

3 5.87e-02 2.93e-02 2.1780 0.2290 

4 5.87e-02 1.47e-02 2.4030 0.2560 

5 5.87e-02 2.93e-02 2.6060 0.2870 

6 5.87e-02 1.51e-02 3.6770 0.2980 

 

Şekil 4.29’da, başlangıç değerlerinden itibaren tam ve indirgenmiş enerji değişimleri 

gösterilmektedir. Bir boyutlu örnekte olduğu gibi, her iki grafikte de enerji değişimi aynı 

davaranışı göstermekte olup beklendiği gibi monoton bir azalma veya korunma 

görülmemektedir. 

 

Şekil 4.29  𝑘 = 2 için tam/indirgenmiş çözümde enerji korunumu 
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5. SONUÇ VE ÖNERİLER 

Bu tez çalışmasında Difüzyon-Reaksiyon KTD’nin mertebe indirgenmiş modellemesi 

incelenmiştir. Mertebe indirgenmiş modellemede TBA teknikleri baz alınarak 

formülasyonlar elde edilmiştir. Tezin konusu olan difüzyon-reaksiyon sistemlerinin 

çözümlerinin davranışları düşünüldüğünde, soliton dalga yapısı, desen yapısı vb. klasik 

TBA ile elde edilen yaklaşık çözümlerin veri setini temsil etmede, özelliklede ele alınan 

denklem sistemlerinin fiziksel olarak çok önemli rol oynayan sistem enerji ölçülerinin, 

sürekli problemdeki enerji davranışlarını korumada zayıf kalması sebebi ile, TBA 

tekniklerini temel alan ama doğrusal olmayan varyantı olan ÇTBA mertebe indirgenmiş 

modelleme bu tez çalışmasının ana unsurunu oluşturmuştur.  

Tezin Genel Bilgiler bölümünde Difüzyon-Reaksiyon KTD genel olarak ele alınıp, 

mertebe indirgenmiş modellemede gerekli olan veri setinin oluşturulmasında kullanılacak 

olan çözüm vektörlerinin elde edilmesi açıklanmıştır. Çözüm vektörleri için ele alınan 

denklem sistemleri konumsal uzayda merkezi fark türev formülleri, zaman boyutunda ise 

Kahan yöntemi ile ayrıklaştırılmış ve ayrık çözümler elde edilmiştir. Yine Genel Bilgiler 

bölümünde klasik TBA tekniğinin adımları hatırlatılıp elde edilen veri setine uygulanışı 

açıklanmıştır. 

Tezin 3. Bölümü, bu tez çalışmasının literatüre katkısını sağlayacak ÇTBA yönteminin 

difüzyon-reaksiyon KTD’ye uygulanışına ayrılmıştır. Klasik TBA’nın aksine ÇTBA, veri 

setindeki vektörleri girdi uzayından özellik uzayına doğrusal olmayan bir yapıyla 

eşleştirmektedir. Girdi uzayından özellik uzayına olan yönde TBA’da yapılanlara benzer 

işlemler yapılmaktadır. Ancak, özellik uzayında karşılık gelen veri vektörünün mertebesi 

indirgendikten sonra girdi uzayına geri dönüşü klasik TBA’da olduğu gibi açık değildir. 

Bu konuda literatürde bazı geri dönüş teknikleri ele alınmaktadır. Bu tez çalışmasında 

girdi uzayına geri dönüş için ÇBÖ tekniğinden yararlanılmıştır. ÇBÖ yöntemi iterasyon 

gerektiren bir yöntemdir. Mevcut iterasyonlu yöntem geliştirilerek iterasyon 

gerektirmeyen bir formülasyon oluşturulup iterasyon sebebi ile oluşan fazla zaman 

harcamadan tasarruf edilerek yöntemin etkinliği arttırılmıştır. 

Tezin son bölümünde Hamilton, gradyan ve anti-gradyan difüzyon-reaksiyon KTD için 

ÇTBA uygulamaları bir ve iki konumsal boyutlu problemler için test edilmiştir. Hamilton 

sistemler için KdV denklemi ile NLS denklemi ele alınmış, yapılan simülasyonlar 

sonucunda Hamilton sistemlerde olması beklendiği gibi sistem enerjileri ile momentum 
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ve kütle ölçülerinin, ÇTBA ile elde edilen çözümler için de korunduğu gösterilmiştir. 

Gradyan sistemler için AC denklemi ile SH denklemi ele alınmıştır. Gradyan sistemlerde 

olması gerektiği gibi sistem enerjisinin bulunan indirgenmiş boyutlu yaklaşımlar için de 

azaldığı gösterilmiştir. Son olarak anti-gradyan sistemlere örnek olarak FHN denklemi 

için simülasyonlar yapılmış ve tam boyutlu ayrık çözümler ile oluşan desenler ile sistem 

enerjisi davranışının aynısı ÇTBA kullanılarak elde edilen sonuçlar için de elde edildiği 

görülmüştür. Tüm simülasyonlarda, klasik TBA ile karşılaştırmalar yapılmış, aynı 

kesinlikte sonuçlar elde edilmiş ve (zaman bakımından) daha etkin bir yol izlendiği 

sayısal olarak gösterilmiştir. 

Gelecek çalışmalarda, henüz açık bir problem alanı olan ve ÇTBA tekniklerinde sorun 

olan girdi uzayına geri dönüş yolları incelenmeye devam edilecektir. Farklı çekirdek 

fonksiyonları araştırılıp çözümlerin kesinliği ve etkinliği arttırılmaya çalışılacaktır. 
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