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MODELLING-CONTROL OF SHIMMY OSCILLATIONS IN AIRCRAFT 

LANDING GEAR AND APPLICATION DESIGN 

SUMMARY 

In aviation, the landing gear is a critical component that ensures the aircraft’s stability 

and safety during ground operations. There are two fundamental types of landing gear 

configurations: Tail-Wheel and Tricycle. The Tail-Wheel setup consists of two main 

landing gears at the front and a single tail gear at the rear. Conversely, the Tricycle 

arrangement features a single nose landing gear complemented by two main landing 

gears at the rear. 

One of the significant challenges in landing gear design is the phenomenon known as 

shimmy. Shimmy refers to an oscillatory motion that combines lateral and yaw 

movements of the landing gear. This motion results from the complex interaction 

between the tire dynamics and the structural characteristics of the landing gear. Both 

nose and main landing gears can exhibit shimmy oscillations; however, the nose gear 

in Tricycle configurations and the tail gear in Tail-Wheel setups are particularly 

susceptible. 

The prevalence of shimmy oscillations has led to extensive research, with most studies 

concentrating on the nose or tail landing gears. Shimmy is characterized by self-

excited oscillations propelled by the aircraft’s forward movement. The oscillation 

amplitude can range from minor disturbances affecting comfort and visibility to 

intense vibrations that may cause structural damage or even catastrophic failure. To 

mitigate these risks, a comprehensive modelling and analysis of the landing gear’s 

dynamic behavior and structural integrity are imperative. This approach enables the 

evaluation of the landing gear design and facilitates the implementation of necessary 

modifications at an early development stage. 

For analytical purposes, a mathematical model of the landing gear is derived using the 

Lagrange equation. This model includes a third-order, 1-degree-of-freedom system 

representing the yaw motion, and a more complex fifth-order, 2-degree-of-freedom 

system accounting for both yaw and lateral movements. Subsequently, the Routh-

Hurwitz criteria and the coefficients of the characteristic equation are employed to 

conduct a linear stability analysis. Following the derivation of the mathematical 

equations, various simulations are executed using MATLAB and Simulink. Once the 

mathematical models and simulation frameworks are established and validated, 

control strategies such as Linear Quadratic Regulator (LQR) controller design is 

applied to both models. 

To streamline the analysis process, a specialized application named LaGeSh has been 

developed. This application allows for the adjustment of multiple parameters, 

including tire characteristics, slip angle, caster length, force, moments of inertia, and 

aircraft speed. These modifications enable a practical assessment of the aircraft’s 

susceptibility to shimmy vibrations and facilitate the extraction of controller 

parameters based on the input values. Moreover, LaGeSh can generate comparative 



xxiv 

graphs, such as caster length versus aircraft speed and force versus aircraft speed, to 

identify the most optimal parameter configurations. 

As a result this study not only elaborates on the technical aspects of landing gear 

dynamics but also provides a comprehensive overview of the analytical methods and 

tools used in the study of shimmy oscillations. 
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UÇAK İNİŞ TAKIMLARINDA SHIMMY TİTREŞİMİNİN 

MODELLENMESİ-KONTROLÜ VE UYGULAMA TASARIMI 

ÖZET 

Havacılık endüstrisinde, bir uçağın güvenli bir şekilde havalanması, uçuşu sürdürmesi 

ve nihayetinde güvenli bir şekilde yere inmesi, uçağın farklı sistemlerinin bir arada 

sorunsuz bir şekilde çalışmasına bağlıdır. Bu sistemler arasında iniş takımı, özellikle 

yere iniş, kalkış ve taksi gibi kritik operasyonlar sırasında uçağın stabilite ve 

güvenliğini sağlayan en önemli bileşenlerden biri olarak ön plana çıkar. İniş takımı, 

sadece uçağın havacılık faaliyetlerini başarılı bir şekilde yerine getirmesi için değil, 

aynı zamanda yerdeki tüm operasyonlarının güvenli bir şekilde gerçekleştirilmesi için 

de tasarlanmış bir sistemdir. İniş takımı olmadan, bir uçağın yer operasyonlarını 

gerçekleştirmesi mümkün değildir, bu nedenle iniş takımı, havacılığın ayrılmaz bir 

parçası olarak kabul edilir.  

İniş takımları, uçağın yerle temas ettiği ilk andan itibaren devreye girer. Uçağın 

ağırlığı, iniş sırasında büyük bir kuvvetle iniş takımları üzerine biner ve bu kuvvetlerin 

uçağın gövdesine zarar vermeden emilmesi gerekir. Ayrıca, iniş sırasında meydana 

gelebilecek herhangi bir dengesizlik, uçağın ciddi hasar almasına veya tehlikeli 

durumların oluşmasına neden olabilir. Bu nedenle, iniş takımları sadece uçağın 

ağırlığını taşımakla kalmaz, aynı zamanda bu yükü güvenli bir şekilde dağıtarak 

uçağın stabilitesini korur. İniş takımları, uçağın hareket halindeyken ya da yerde 

durduğu sürece sürekli olarak bu dengeyi sağlamak zorundadır.  

Uçakların farklı kullanım amaçlarına ve tasarımlarına bağlı olarak, iniş takımlarının 

konfigürasyonları da çeşitlilik gösterir. Genel olarak, iki ana iniş takımı 

konfigürasyonu bulunmaktadır: Tail-Wheel (Kuyruk-Tekerlek) ve Tricycle (Üç 

Tekerlekli) konfigürasyonları. Tail-Wheel konfigürasyonu, uçağın ön kısmında iki ana 

iniş takımının ve arka kısmında tek bir kuyruk iniş takımının bulunduğu bir yapıya 

sahiptir. Bu yapı, özellikle hafif uçaklar, eski model uçaklar ve bazı helikopterler gibi 

daha küçük hava araçlarında tercih edilir. Kuyruk-Tekerlek konfigürasyonunun, 

uçağın kalkış ve iniş sırasında daha hassas bir denge gerektirmesi, bu tür uçakların 

pilotlarının dikkatini ve deneyimini önemli kılar. Kuyruk iniş takımının konumu, 

uçağın dengesinin korunmasında kritik bir rol oynar ve özellikle düzensiz zeminlerde 

iniş veya kalkış sırasında pilotların daha dikkatli olmasını gerektirir.  

Bununla birlikte, modern havacılıkta yaygın olarak kullanılan Tricycle 

konfigürasyonu, uçağın burun kısmında bir burun iniş takımı ve arka kısmında iki ana 

iniş takımından oluşur. Bu konfigürasyon, günümüzün büyük yolcu uçakları ve askeri 

jetlerde standart bir hale gelmiştir ve bu uçakların yerde daha fazla stabilite ve manevra 

kabiliyeti sağlamasına olanak tanır. Tricycle konfigürasyonu, uçağın kalkış ve iniş 

işlemlerinin daha kolay ve güvenli bir şekilde gerçekleştirilmesini sağlar, bu da bu 

konfigürasyonu modern havacılıkta yaygın hale getiren en önemli faktörlerden biridir. 

Ayrıca, bu konfigürasyon, uçakların farklı yüzeylerde daha iyi performans 
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göstermesine yardımcı olur, bu da çeşitli hava koşullarında uçak operasyonlarının 

sorunsuz bir şekilde gerçekleştirilmesine katkıda bulunur.  

Ancak, iniş takımı tasarımı ve konfigürasyonları, sadece uçağın stabilitesini ve 

güvenliğini sağlamakla kalmaz; aynı zamanda çeşitli fiziksel fenomenlere karşı da 

dayanıklı olmalıdır. Bu fenomenlerden biri olan shimmy, iniş takımlarında sıklıkla 

karşılaşılan ve özellikle uçakların yüksek hızlarda hareket ettiği durumlarda ciddi 

tehlikeler yaratabilen bir olgudur. Shimmy, iniş takımının yanal (lateral) ve yalpa 

(yaw) hareketlerini birleştirerek ortaya çıkan salınımlı bir hareketi ifade eder. Bu 

salınımlar, iniş takımı bileşenlerinin dinamik özellikleri ile lastiklerin yapısal 

özellikleri arasındaki karmaşık etkileşimlerin bir sonucudur. Shimmy salınımlarının 

şiddeti ve genliği, birçok faktöre bağlı olarak değişebilir ve bu salınımlar, uçak 

stabilitesini ciddi şekilde tehdit edebilir.  

Shimmy fenomeni, özellikle yüksek hızlarda veya iniş sırasında meydana geldiğinde, 

uçak operasyonları için kritik bir risk oluşturur. Hem burun iniş takımı hem de ana iniş 

takımları shimmy salınımlarına maruz kalabilir; ancak, Tricycle konfigürasyonunda 

burun iniş takımı ve Tail-Wheel düzeninde kuyruk iniş takımı özellikle shimmyye 

karşı duyarlıdır. Bu tür salınımlar, iniş takımının yapısal bütünlüğünü tehlikeye 

atabilir, bu da uçağın güvenliğini riske sokabilir. Shimmy fenomeni, iniş takımında 

yapısal hasarlara, yolcular için rahatsız edici titreşimlere ve en kötü durumda uçak 

kazalarına yol açabilecek ciddi bir sorundur. Bu nedenle, shimmy salınımlarının 

kontrol altına alınması ve minimize edilmesi, iniş takımı tasarımında en önemli 

hedeflerden biri olarak kabul edilir.  

Shimmy fenomeninin geniş çaplı bir sorun olması, mühendisler ve araştırmacılar 

tarafından yoğun olarak çalışılmasına yol açmıştır. Bu çalışmaların büyük bir kısmı, 

shimmy salınımlarını anlamak ve önlemek için matematiksel modelleme, analitik 

inceleme ve simülasyon tekniklerine dayanmaktadır. Shimmy, uçağın ileriye doğru 

hareketiyle tetiklenen ve lastik deformasyonları, iniş takımının elastik özellikleri ve 

yüzey düzensizlikleri gibi faktörlerin etkisi altında gelişen kendiliğinden uyarılan 

salınımlar olarak tanımlanır. Bu salınımlar, küçük rahatsızlıklardan yapısal hasarlara 

kadar uzanan geniş bir etki spektrumuna sahip olabilir. Shimmy fenomeninin bu denli 

karmaşık ve tehlikeli olması, iniş takımı tasarımında kapsamlı bir analiz ve modelleme 

gerektirir.  

Shimmy fenomenini incelemek için kullanılan analitik yöntemler, iniş takımlarının 

dinamik davranışını ve yapısal bütünlüğünü modellemek amacıyla kapsamlı ve detaylı 

matematiksel yaklaşımlar gerektirir. Bu tür analizlerde, iniş takımlarının karmaşık 

dinamik yapısını tam olarak temsil edebilmek için genellikle Lagrange denklemi temel 

alınır. Lagrange denklemleri, enerjinin korunumu ilkelerine dayanan güçlü bir 

matematiksel araç olarak, fiziksel sistemlerin hareket denklemlerini türetmekte kritik 

bir rol oynar. Bu denklemler, bir sistemin potansiyel ve kinetik enerjisini dikkate 

alarak, sistemi tanımlayan diferansiyel denklemleri oluşturur.  

Özellikle shimmy fenomeninin anlaşılmasında, bu yöntemler büyük önem taşır. 

Shimmy, iniş takımlarında, genellikle yüksek hızlarda karşılaşılan ve kontrol 

edilmezse uçuş güvenliğini tehdit edebilecek tehlikeli bir salınım türüdür. Bu 

fenomeni analiz etmek amacıyla geliştirilen matematiksel modeller arasında, farklı 

derecelerde serbestlik içeren sistemler bulunmaktadır. Örneğin, shimmy davranışını 

temsil eden basit bir model, üçüncü dereceden, bir serbestlik dereceli bir sistem 

olabilir. Bu tür bir model, yaw (sapma) hareketini temsil eder ve shimmy 

salınımlarının temel dinamiklerini incelemek için yeterlidir. Bununla birlikte, daha 
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karmaşık durumları analiz etmek için, hem yaw hem de lateral (yanal) hareketleri 

kapsayan beşinci dereceden, iki serbestlik dereceli sistemler de kullanılabilir. Bu daha 

gelişmiş modeller, iniş takımının hareketinin daha geniş bir spektrumunu kapsar ve 

shimmy fenomeninin daha kapsamlı bir şekilde incelenmesine olanak tanır.  

Bu modellerin temel amacı, shimmy salınımlarının dinamik özelliklerini anlamak ve 

bu salınımların iniş takımına ve dolayısıyla uçuş güvenliğine olan potansiyel etkilerini 

değerlendirmektir. Shimmy'nin ortaya çıkması ve büyümesi, iniş takımının yapısal 

bütünlüğünü tehdit edebilir ve bu nedenle bu fenomenin önceden tespit edilmesi ve 

kontrol altına alınması hayati öneme sahiptir. Bu bağlamda, sistemlerin stabilitesini 

incelemek, shimmy riskini değerlendirmenin önemli bir parçasıdır. Stabilite 

analizlerinde, sistemin karakteristik denkleminin köklerini ve bu köklerin gerçek 

eksen üzerindeki konumlarını değerlendirmek için Routh-Hurwitz kriterleri gibi 

yöntemler kullanılır. Routh-Hurwitz kriterleri, sistemin stabil olup olmadığını 

belirlemek için matematiksel olarak sağlam bir temel sağlar. Sistem köklerinin gerçek 

eksende olup olmadığı, shimmy fenomeninin başlaması ya da büyümesi açısından 

kritik bir gösterge olup, bu köklerin kompleks düzlemdeki konumu, sistemin uzun 

vadeli davranışını belirler. 

Matematiksel modellerin türetilmesinden sonra, bu modeller üzerinde çeşitli 

simülasyonlar gerçekleştirilir. Simülasyonlar, MATLAB ve Simulink gibi gelişmiş 

yazılımlar kullanılarak yapılır. Bu simülasyonlar, iniş takımı dinamiklerini ve shimmy 

fenomenini daha iyi anlamak için önemli veriler sağlar. Simülasyonların yanı sıra, 

modellere Linear Quadratic Regulator (LQR) kontrolcü tasarımı gibi kontrol 

stratejileri uygulanır. LQR kontrolcüleri, sistemin performansını optimize etmek 

amacıyla geri besleme kazançlarını belirler ve böylece shimmy salınımlarını minimize 

eder. Bu kontrol stratejileri, shimmy fenomenini kontrol altına almak ve minimize 

etmek için etkili bir çözüm sunar.  

Bu tür analiz süreçlerini daha pratik ve kullanıcı dostu hale getirmek için, shimmy 

fenomenini incelemek üzere LaGeSh adlı özel bir uygulama geliştirilmiştir. LaGeSh, 

lastik özellikleri, kayma açısı, caster uzunluğu, tekerlek kuvveti, atalet momentleri ve 

uçak hızı gibi parametrelerin kolayca ayarlanmasına olanak tanır. Bu parametreler 

üzerinde yapılan değişiklikler, uçağın shimmy titreşimlerine karşı duyarlılığını 

değerlendirmeyi sağlar ve kontrolcü parametrelerinin optimize edilmesine yardımcı 

olur. Ayrıca, LaGeSh, çeşitli parametreler arasındaki ilişkileri görselleştirmek için 

karşılaştırmalı grafikler oluşturabilir. Bu grafikler, caster uzunluğu ve uçak hızı veya 

tekerlek kuvveti ve uçak hızı gibi ilişkileri daha iyi anlamak için kritik bir araç sunar. 

LaGeSh'in sunduğu bu görsel ve analitik araçlar, shimmy fenomeninin daha 

derinlemesine incelenmesi ve bu fenomeni kontrol altına almak için etkili çözümler 

geliştirilmesi açısından büyük bir değer taşır.  

Sonuç olarak, shimmy fenomeni, iniş takımı tasarımında dikkate alınması gereken 

karmaşık ve tehlikeli bir olgudur. Uçakların güvenli bir şekilde iniş yapması ve yerde 

manevra yapması için shimmy fenomeninin etkilerinin minimize edilmesi büyük bir 

önem taşır. Bu amaçla geliştirilen matematiksel modeller, simülasyonlar ve kontrol 

stratejileri, shimmy fenomeninin anlaşılmasına ve etkili bir şekilde kontrol altına 

alınmasına katkı sağlar. LaGeSh gibi özel uygulamalar ise bu süreçleri daha kullanıcı 

dostu ve erişilebilir hale getirir. Bu sayede, mühendisler, uçakların iniş takımlarını 

daha güvenli ve verimli bir şekilde tasarlayabilir, uçak operasyonlarının güvenliğini 

artırabilir.  
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 INTRODUCTION  

The shimmy phenomenon refers to a self-excited oscillatory motion commonly 

observed in aircraft. This phenomenon manifests as intense angular vibrations during 

movement, posing significant safety risks. Although the main causes of shimmy 

appear to be the tire and wheel, it depends on various parameters such as caster length, 

aircraft speed, and moment of inertia. Shimmy is particularly dangerous in the tail 

landing gear of tail-wheel type landing gears and the nose landing gear of tricycle type 

landing gears. If not properly controlled, it can lead to severe structural damage. To 

understand and mitigate this phenomenon, comprehensive models are required that 

consider various parameters, including tire dynamics, suspension systems, and the 

interaction between the vehicle and the road surface. 

 Literature Review 

The phenomenon of shimmy has long been analyzed by researchers and engineers in 

the aviation industry. Early studies focused on modeling the dynamic behavior of tires. 

Some of these early tire models, developed by Von Schlippe in 1941 [1] and Moreland 

in 1954 [2], are still in use today. Building on the work of Von Schlippe and Moreland, 

Smiley developed a summary theory in 1956. Smiley and Horne conducted 

experiments on different aircraft tire sizes and parameters, proposing empirical 

formulas for calculating tire parameters. In 1966, Pacejka [3] expanded the Von 

Schlippe tire model with a straightforward tangential approach and suggested 

nonlinear models. In 1974, Rogers [4] developed an empirical tire model based on 

measured transfer functions. Grossman [5] demonstrated the use of linearization 

techniques to simplify nonlinear analysis in 1980. More recent work by Somieski [6] 

in 1997 applied well-known linear and nonlinear methods to analyze the nonlinear 

model of landing gear and tire mechanics, including eigenvalue calculations, analytical 

solutions of stability boundaries, and limit cycle determination. Additionally, typical 

tire and landing gear parameters for a 10-ton small aircraft were provided. 
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Besselink [7] analyzed twin-wheel cantilever aircraft landing gear in 2000. Simple 

linear and nonlinear models available in the literature, along with empirical formulas 

for calculating tire parameters, were summarized. The impact of different landing gear 

parameters on shimmy was investigated. In 2006, Long [8] developed an active control 

strategy to suppress shimmy oscillations. The stability changes of shimmy with 

varying casting length and speed were analyzed for a linear system, and a new control 

strategy was formed by combining RMPC control law with linear parameter-varying 

polytope design. Atabay [9] performed shimmy analysis of torsional nose landing gear 

using the model and parameters provided by Somieski [6]. The effect of parameters 

such as caster length and tire's semi-contact length on stability was investigated. An 

MR damper using the current-dependent Bouc-Wen model was incorporated into the 

torsional landing gear model with and without clearance in 2012. 

Although the primary application of shimmy analysis is in airplanes, shimmy 

vibrations can also occur in helicopters. Helicopter-specific studies have been 

conducted by Kogan and Butts [10] and Grossini et al. [11]. Kogan and Butts [10] 

developed a full aircraft shimmy model for the CH-53K and compared the results with 

an independent model using nonlinear analysis software, VI-Aircraft. Given the 

previous aircraft test experience with the CH-53A, the full aircraft model provided a 

better understanding of the shimmy phenomenon in 2010. Grossini et al. [11] modeled 

the landing gear of the A109 helicopter using two multibody models with two and five 

degrees of freedom.  

 Methodology 

A mathematical model of a third-order, single-degree-of-freedom system representing 

yaw motion and a more complex fifth-order, two-degrees-of-freedom system 

accounting for both yaw and lateral motions are derived. These equations are 

formulated in state-space form. The stability analyses of these systems, written in this 

form, are examined using the Routh-Hurwitz criteria and eigenvalue evaluations. After 

deriving the mathematical equations, various simulations are performed using 

MATLAB and Simulink. Once the mathematical models and simulation frameworks 

are established and validated, control strategies such as Linear Quadratic Regulator 

(LQR) controller design is applied to both models. To facilitate the analysis process, a 

specialized application called LaGeSh has been developed. This application allows for 
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the adjustment of multiple parameters, including tire characteristics, slip angle, caster 

length, force, moments of inertia, and aircraft speed. With this application, various 

results such as the stability status of the system in stable and unstable regions and 

controller design can be obtained. Comparative graphs can be generated, such as 

aircraft speed versus caster length and aircraft speed versus force, to determine the 

optimal parameter configurations. The generated graphs can be examined for a single 

condition, and controller design for unstable conditions is also possible. In the 

controller design, LQR (Linear Quadratic Regulator) method has been utilized. 
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 LANDING GEAR SYSTEMS 

 Landing Gear Configurations 

In terms of landing gear, aircraft have various types such as single main, taildragger 

(tail-wheel), quadricycle, bicycle, tricycle, and multi-bogey. These aircraft 

configuration types can be seen in Figure 2.1. Among these, the most important types 

are the tricycle and taildragger (tail-wheel) landing gear. Each type has its own 

advantages and disadvantages. In tricycle landing gear, the main landing gears are 

located behind the center of gravity (CG), which increases stability during taxiing. 

However, in tail-wheel landing gear, the main landing gears are in front of the CG, 

resulting in lower stability during taxiing compared to tricycle landing gear.

 

Figure 2.1 : Landing gear comfigurations [13]. 
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 Landing Gear Components 

Landing gear is crucial for an aircraft, serving as a vital component for safe takeoffs 

and landings. As seen in Figure 2.2, the landing gear contains many components. This 

system comprises various components, each playing an essential role in its 

functionality. The primary parts of the landing gear system include the cylinder, piston, 

axle, brake, wheel, and tire. For aircraft with retractable landing gear, additional 

components such as extension/retraction actuators are necessary. Depending on the 

type of aircraft, if the front or rear landing gears are non-steerable, equipment like 

centering cams and center lock actuators may also be present. 

One of the most critical elements of the landing gear is the shock absorber. The shock 

absorber consists of various parts housed within the piston and cylinder, designed to 

absorb and dissipate the kinetic energy from landing impacts. Additionally, the 

selection of components like the wheel and tire is of paramount importance, as they 

directly influence the aircraft's performance and safety during landing and takeoff. 

 

Figure 2.2 : Landing gear components [16]. 
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2.2.1 Shock absorbers 

Shock absorbers play the most crucial role in absorbing energy during landing. It can 

be said that shock absorbers are the most complex and relatively high-cost components 

of landing gear. However, there are some simple types of shock absorbers used for 

light, ultra-light, small, and home-built aircraft or helicopters. In this section, the types 

of shock absorbers will be briefly introduced and compared. Figure 2.3 shows a 

comparison of the efficiency of different landing gear shock absorber types. [17] 

2.2.1.1 Solid spring 

These types of shock absorbers are preferred due to their simplicity and low cost. 

2.2.1.2 Steel spring 

Steel springs are often useful due to their simplicity and ease of maintenance. They are 

commonly preferred for light aircraft. 

2.2.1.3 Rubber spring 

It is a type of shock absorber that utilizes the high damping properties of rubber. 

However, it is not preferred today due to its lack of control, mechanical weaknesses, 

and inability to withstand high temperatures. 

2.2.1.4 Liquid spring 

Fluid damping systems were used from World War II until the 1980s. Although they 

resemble oleo-pneumatic systems, their need for high fluid pressure and sensitivity to 

temperature changes in the fluid make them very heavy and inefficient. 

2.2.1.5 Air pneumatic 

Pneumatic dampers are heavier and less efficient compared to oleo-pneumatic 

dampers. As a result, pneumatic systems are not used today. 

2.2.1.6 Oleo-Pneumatic 

Modern aircraft and rotorcraft use oleo-pneumatic shock absorbers in their landing 

gear. Oleo-pneumatic shock absorbers consist of a gas spring and a hydraulic damper. 

The gas springs can be designed as single-stage or double-stage. The nitrogen-filled 

gas chamber acts as a spring during landing, while the oil passing through the orifice 
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between chambers to balance the pressure changes in the fluid creates a damping 

effect. Additionally, design solutions such as metering pin and poppet valves are 

available for the damper. 

 

Figure 2.3 : The efficiency of shock damper models [17]. 

The shock absorber systems in landing gear consist of two interrelated components: 

the gas spring and the damper. The gas springs can be single or double chamber, while 

the dampers include mechanisms such as metering pin and poppet valves. The 

operating principle of shock absorber systems is that during the vertical descent of the 

aircraft to the ground with a certain acceleration and speed, the gas compresses 

between the piston and the oil, increasing its pressure. This compression forces the 

fluid through the orifice, creating the damping force. The gas spring operates based on 

the ideal gas principle, calculated using the F_spring formula. The damper force for 

the poppet valve is defined by mathematical equations, while the behavior curve of the 

adjustment rod mechanism is determined through dynamic analysis. The parameters 

used during the design process and the resulting spring and damper curves are shown 

below with mathematical relations. In hydraulic force calculations, one important 

parameter is the orifice discharge coefficient (Cd), which depends on the dimensional 

parameters and vertical speed of the landing gear. 

2.2.1.7 Spring force 

The spring force in oleo-pneumatic systems is generated by the compression and 

subsequent expansion of nitrogen gas and oil. Since oil is a liquid, its compression is 

negligible. The spring force in oleo-pneumatic systems is created in two different 
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configurations: single-chamber systems and double-chamber systems. The following 

formula is used as a reference for both configurations.  

𝐹𝑠𝑝𝑟𝑖𝑛𝑔 = 𝑃2𝐴 (
𝑦1

1 −
𝑦1

𝑦0

)

𝑛

 (2.1) 

Nitrogen Gas Pressure (P2): The pressure value generated by nitrogen gas is calculated 

by considering the state of the system at full extension. It is obtained by multiplying 

the constant pressure value by the expansion ratio. 

Pneumatic Area (A): Calculated from the piston diameter. 

Stroke Position (y1): A variable length that can move as much as the stroke length due 

to the movement of the piston. 

Piston Length (y0): A fixed length that must be greater than the stroke length. 

2.2.1.8 Single gas chamber systems 

Figure 2.4 shows an example of a single gas chamber oleo-pneumatic system. In these 

types of systems, the spring force is provided by nitrogen gas compressed in a 

chamber. When the aircraft piston begins to compress, the oil applies pressure to the 

air chamber, causing it to compress. This compression continues until the equation of 

equilibrium is reached. Once this equilibrium is achieved, the compression of the air 

chamber stops. The air chamber then starts to push the oil back, indicating that the 

compression phase has ended and the expansion phase has begun. Figure 2.5 shows 

the spring force-stroke curve of the single gas chamber oleo-pneumatic system 

 

Figure 2.4 : Single gas chamber oleo-pneumatic systems [17]. 



10 

 

Figure 2.5 : Spring force-stroke curve in single gas chamber systems. 

 

2.2.1.9 Double gas chamber systems 

These systems generate more spring force compared to single-chamber systems due to 

the presence of multiple chambers that can be compressed. The spring force in such 

systems is generally calculated using the Fspring formula. While the number of 

chambers can be increased, production typically favors a two-chamber design. This is 

because the cost increases with each additional chamber, and the benefits diminish 

beyond the first addition. Figure 2.6 shows an example of a double gas chamber oleo-

pneumatic system, and Figure 2.7 presents its spring force-stroke curve. 
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Figure 2.6 : Double gas chamber oleo-pneumatic systems [17]. 

 

Figure 2.7 : Spring force-stroke curve in double gas chamber systems. 

 

2.2.1.10 Damper force 

The damper force is the force generated to balance the spring force. It can be increased 

or decreased as needed. In pinned oleo-pneumatic systems, the presence of the stroke 

speed value in the damper force equation allows for the determination of damper force 

values by establishing a dynamic model. In contrast, for systems with poppet valves, 
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the damper force-speed curve can be determined without a dynamic model, as the 

design of the poppet takes speed value. 

𝐹𝑑𝑎𝑚𝑝𝑒𝑟 =
1

2
𝜌

𝐴1
3|𝑦̇|𝑦̇

𝐶𝑑
2𝐴0

2  (2.2) 

Hydraulic Area (A1): This is calculated by subtracting the area of the pin from the main 

orifice area. Due to the geometry of the pin, it varies according to the stroke position 

and is used in determining the damper force. 

Discharge Coefficient (Cd): This is the most important parameter in calculating the 

damper force. The discharge coefficient represents the flow rate through the orifice 

and, therefore, has a maximum value of 1. 

Orifice Area (A0): This is the sum of the fixed orifices, expansion orifices, and main 

orifice areas. Expansion orifices are only considered during the expansion phase. 

2.2.1.11 Oleo-pneumatic systems with metering pins 

Figure 2.8 shows the main components of the landing gear. 

 

 

Figure 2.8 : Oleo-pneumatic systems with metering pins [18]. 
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Air Chamber: This is the section containing nitrogen gas (N2) and generates the 

system's spring energy. The spring force is calculated using the formula above. 

Floating Piston: This component separates the nitrogen gas from the oil. The oil passes 

through the orifice and applies pressure to the piston. Therefore, the piston is designed 

considering the maximum pressure. 

Lower Oil Chamber: During compression, this chamber compresses the air chamber 

with the oil passing through the orifice until the pressure-volume relationship equalizes 

(P1V1
n = P2V2

n). When this equilibrium is reached, the system stops. It is one of the 

components that provide damping force to the system. 

Snubber Orifice and Snubber Chamber: These are optional components. These 

components are used to reduce the damping force. 

Main Orifice: This is the section through which the metering pin passes. As the pin 

has variable diameters in different sections, the orifice diameter should be determined 

considering the widest part of the pin and the vibration during compression. 

Main Piston: This part contains the orifice holes. It moves, causing the hydraulic area 

to change due to the pin having variable diameters in different sections. 

Upper Oil Chamber: This chamber houses the metering pin and most of the oil. During 

compression, it sends oil to the lower chamber, and during expansion, it collects the 

oil again. 

Metering Pin: This is the most critical component determining the damping force 

generated to dampen the system. The pin has variable diameters along its length. 
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2.2.1.12 Oleo-pneumatic systems with poppet valf 

 

Figure 2.9 : Poppet valve open status. 

 

 

Figure 2.10 : Poppet valve close status. 

 

In shock absorber systems with poppet valves, the variability of the fluid flow area 

depends on the poppet. While the orifice holes in a metering pin are fixed, the orifice 

holes in a poppet valve change according to speed and pressure. The poppet valve has 

taxi holes that are always open. At the center of the system is the poppet valve itself, 

which opens to increase the orifice area based on changes in speed. This reduces the 

increase in pressure difference, thereby increasing the damping force. This opening 

and closing are passively controlled by a spring that connects the poppet valve to the 

mechanism. Figures 2.9 and 2.10 show the poppet valve component in its open and 

closed states. 
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2.2.2 Tire 

Most aircraft are used with pneumatic tires. With technological advancements, 

pneumatic tires have become a lightweight and effective solution compared to other 

options. The primary functions of these tires include generating adequate friction with 

the ground, distributing the applied load over a contact area, and providing shock 

absorption. Figure 2.11 shows the normal pressure and longitudinal stress curves 

corresponding to the forces applied to the tire. 

 

Figure 2.11 : Tire (Normal pressure – Longitudinal stress) [20]. 

 

Most aircraft are used with pneumatic tires. With technological advancements, 

pneumatic tires have become a lightweight and effective solution compared to other 

options. The primary functions of these tires include generating adequate friction with 

the ground, distributing the applied load over a contact area, and providing shock 

absorption. When a force is applied perpendicular to the wheel plane, the tire moves 

along the wheel plane. In contrast, when a lateral force is applied, it generates a lateral 

force in the contact area, causing the tire to move along a path at an angle to the wheel 

plane. This angle is known as the slip angle. At small slip angles, the cornering force 



16 

on the ground plane typically lags behind the applied lateral force, resulting in a torque 

that aligns the wheel plane with the direction of motion. This torque is known as the 

self-aligning torque and is the primary moment that returns the tire to its original 

position after a turn. The distance between the lateral force and the cornering force is 

referred to as the pneumatic trail, and the product of the cornering force and the 

pneumatic trail produces the self-aligning torque. Figure 2.12 shows the factors 

affecting tire behavior. [19][20] 

 

Figure 2.12 : Tire behaviour [19]. 

 

 This thesis focuses on the analytical tire model. There are primarily two types of 

analytical tire models: the straight tangent approximation and the elastic string tire 

model. In this study, the elastic tire model will be used. The following formula 

illustrates this approach: 

 

𝑦̇1 = −
𝑉

𝜎
𝑦1 + 𝑉𝑠𝑖𝑛(𝛹) + (𝑒 − 𝑎)𝛹̇ cos(𝛹) cos(𝛷) + 𝑙𝑔𝛿̇cos⁡(𝛿) (2.3) 
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The term 𝑦1 represents the lateral displacement in the y-axis at the leading contact 

point. V denotes the velocity of the aircraft, σ is the relaxation length of the tire, Ψ is 

the yaw angle e is the caster length, 2a is the total contact length, and Φ is the rank 

angle. In this thesis, the rake angle of the landing gear is assumed to be 0 degrees. 

After linearization and substituting the necessary values, the following equation is 

obtained: 

sin(𝛹) = 𝛹 (2.4) 

 

cos(𝛹) = 1 (2.5) 

 

cos(𝛷) = cos(0) = 1 (2.6) 

As a result, the equation, 

 

𝑦̇1 = −
𝑉

𝜎
𝑦1 + 𝑉𝛹 + (𝑒 − 𝑎)𝛹̇ (2.7) 

 

This equation will be used in the shimmy model. 

As shown in Figure 2.13, the relationship between cornering force and slip angle is 

provided. Beyond a certain angle, the relationship between slip angle and cornering 

stiffness becomes nonlinear. Therefore, a low slip angle value has been chosen for this 

thesis.  

 

Figure 2.13 : Cornering Force – Slip Angle [15]. 
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 LANDING GEAR SHIMMY OSCILLATIONS 

Shimmy is a rapid, oscillatory motion that occurs in an aircraft's landing gear, 

primarily during taxiing, takeoff, or landing. This phenomenon is caused by several 

factors, including imbalances in the wheels, loose or worn components, and 

misalignment. When the wheels are not balanced, they can cause vibrations similar to 

those experienced when a car's wheels are out of balance. Loose or worn parts such as 

bearings and bushings can exacerbate these vibrations, while improper alignment can 

cause uneven movement and additional stress on the landing gear. The speed of the 

aircraft and the surface it is moving over can also influence the occurrence of shimmy, 

with rough surfaces and certain speeds being more prone to inducing this oscillation. 

Shimmy can lead to increased wear and tear on the landing gear, necessitating more 

frequent maintenance and repairs. Figure 3.1 shows the shimmy phenomenon. It can 

also affect passenger comfort and, in severe cases, compromise the pilot's ability to 

control the aircraft during critical phases of flight. To prevent shimmy, regular 

maintenance is essential, including balancing the wheels and inspecting for worn parts. 

Proper alignment of the landing gear and the use of shock absorbers can also help 

mitigate the effects of shimmy, ensuring a smoother and safer operation of the aircraft. 

 

Figure 3.1 : Shimmy phenomenon [9]. 
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 Eigenvalues and Characteristic Equation 

Eigenvalues and the characteristic equation are crucial in the aviation industry for 

analyzing and ensuring the stability and performance of aircraft systems. Eigenvalues 

are special numbers that arise from solving the characteristic equation of a matrix that 

represents a system. The characteristic equation,  

det(𝐴 − 𝜆𝐼) = 0 (3.1) 

where I is the identity matrix, is a polynomial equation whose roots are the eigenvalues 

of the matrix A. The eigenvalues of the system matrix in flight dynamics determine 

the stability of an aircraft; negative real parts of eigenvalues indicate a stable system, 

while positive real parts suggest instability.  

As an example, if we derive the characteristic equation of the state space form of a 1 

DOF third order shimmy model: 

A = [
0 1 0
𝑐1 𝑐2 𝑐3

𝑉 𝑐4 𝑐5

] (3.2) 

 

λI = [
λ 0 0
0 λ 0
0 0 λ

] (3.3) 

 

det⁡(A − λI) = |
λ 1 0
𝑐1 𝑐2 − λ 𝑐3

𝑉 𝑐4 𝑐5 − λ
| (3.4) 

 

λ(𝑐2 − λ)(𝑐5 − λ) + 0 + V𝑐3 − (0 + 𝑐3𝑐4λ + ((𝑐5 − λ)𝑐1)) = 0 (3.5) 

 

λ3 − (𝑐2 + 𝑐5)λ
2 + (𝑐2𝑐5 − 𝑐1 − 𝑐3𝑐4)λ + (𝑐1𝑐5 − V𝑐3) = 0 (3.6) 
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The roots of the derived characteristic equation provide the eigenvalues and determine 

the stability condition. Similarly, the characteristic equation of the 2 DOF fifth order 

shimmy model is derived, and stability analysis is performed using the eigenvalues. 

 Routh-Hurwitz Criterion 

The Routh-Hurwitz Criterion is a mathematical method used in the aviation industry 

to determine the stability of dynamic systems without solving for the eigenvalues 

explicitly. This criterion provides a systematic procedure to assess whether all the roots 

of a characteristic polynomial lie in the left half of the complex plane, which 

corresponds to stable behavior. In aviation, ensuring the stability of control systems 

and dynamic models is critical for safe operation. The Routh-Hurwitz Criterion 

involves constructing the Routh array from the coefficients of the characteristic 

polynomial. By examining the first column of this array, one can determine the number 

of roots with positive real parts. If there are no sign changes in the first column, the 

system is stable.  

 One DOF Third Order Landing Gear Shimmy Model 

The research work mentioned in Section 1.1, present the developed landing gear and 

tire models. Among the mentioned research work Somieski [6] provides a modeling 

approach of coupling simple mechanical model and the elastic tire model, the 

equations are also linearized and typical values of the landing gear system parameters 

of a small aircraft are provided. Therefore, the modeling approach by Somieski is 

widely used by other researchers [8][9]. The same approach shall be used in the current 

analysis, the detailed explanation of tire and landing gear mechanical models are can 

be found in some doctoral thesis [7] [[8][9] . The simple trailing wheel model seen in 

Figure 3.2 and Figure 3.3  are used to evaluate the shimmy instability. 
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Figure 3.2 : Shimmy dynamic model side view [12]. 

 

Figure 3.3 : Shimmy dynamic model top view [12]. 

 

The torsional dynamics of the lower parts of the landing gear is described by the 

following equation [6]: 

𝐼𝑧𝛹̈ = 𝑀1 + 𝑀2 + 𝑀3 + 𝑀4 (3.7) 
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Where Iz is the moment of inertia about the z-axis. M1 is the linear spring torque 

provided by the turning tube and the torque link and M2 is a combined damping 

moment from the viscous friction in the bearings of the oleo-pneumatic shock 

absorber. M3 is the tire moment due to tire lateral deformation and M4 is the tire 

damping moment due to tire tread width. In the following equations, the notation of 

stiffness and damping has been changed from the original equations [6] similar to 

Atabay [9], such that the stiffness is represented by kΨ and the damping by cΨ. 

𝑀1 = 𝑘𝛹𝛹 (3.8) 

 

𝑀2 = 𝑐𝛹𝛹̇ (3.9) 

 

𝑀3 = 𝑀𝑧 − 𝑒𝐹𝑦 (3.10) 

 

𝑀4 =
𝐾

𝑉
𝛹̇ (3.11) 

Mz is aligning torque and Fy is the cornering force. The constant K is defined as [6],[9]: 

𝐾 = −0.15𝑎2𝐶𝐹𝛼𝐹𝑧 (3.12) 

Fy and Mz depend on the vertical force Fz and slip angle α.  

 

𝐹𝑦 = {
𝐶𝐹𝛼𝛼𝐹𝑧 , 𝛼 ≤ 𝛿

𝐶𝐹𝛼𝛿𝐹𝑧𝑠𝑖𝑔𝑛(𝛼), 𝛼 > 𝛿
 (3.13) 

 

𝑀𝑧

𝐹𝑧
= {

𝐶𝑀𝛼

𝛼𝑔

180
sin⁡(

180

𝛼𝑔
𝛼), 𝛼 ≤ 𝛼𝑔

0, 𝛼 > 𝛼𝑔

 (3.14) 
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Where δ is the limiting slip angle of tire force (5 degrees) and αg is the limiting angle 

of tire moment (10 degrees). The lateral deflection of the tire is; 

𝑦1̇ +
𝑉

𝜎
𝑦1 = 𝑉𝛹 + (𝑒 − 𝑎)𝛹̇ (3.15) 

From y1 an equivalent slip angle is formed as: 

𝛼 ≈ arctan 𝛼 =
𝑦1

𝜎
 (3.16) 

The equations given above are linearized and summerized in state-space form with 

states; 

 

[
𝛹̇
𝛹̈
𝑦1̇

] =

[
 
 
 
 

0 1 0

−
𝑘𝛹

𝐼𝑧
−

𝑐𝛹

𝐼𝑧
+

𝐾

𝑉𝐼𝑧

𝐹𝑧(𝐶𝑀𝛼 − 𝑒𝐶𝐹𝛼)

𝐼𝑧𝜎

𝑉 𝑒 − 𝑎 −
𝑉

𝜎 ]
 
 
 
 

[
𝛹
𝛹̇
𝑦1

] (3.17) 

 

 

Table 3.1 : 1 DOF 3 order shimmy model parameters. 

Description Parameter Value Unit 

kΨ torsional spring rate 100000 Nm/rad 

cΨ torsional damping constant 50 Nm/rad/s 

Iz rotational area moment of inertia 1 kgm2 

K 
tire longitudinal slip; tread width 

moment constant 
-270 Nm2/rad 

Fz vertical force 9000 N 

Cmα tire self-alligning moment derivative  -2 m/rad 

Cfα tire side force derivative 20 1/rad 

a half contact length 0.1 m 

e caster length 0.05 m 

V velocity of aircraft 100 m/s 
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3.3.1 One DOF third order stable/unstable region  

In this study, stability analysis was performed both by calculating the eigenvalues and 

by using the Routh-Hurwitz criteria. The e-V plane can only be used during the design 

phase, while the Fz-V plane can also be used during the operational phase. 

3.3.1.1 One DOF third order shimmy model e-V plane stability status 

In this section, caster length (e) and aircraft speed (V) are defined as variables. The 

stability and instability conditions of the system will be investigated based on these 

variations. While plotting the e-V plane, for different rotational stiffness coefficient 

(kΨ) values are used. The other parameter values are taken from Table 3.1. 

 

 

Figure 3.4 : 1 DOF Stability region of e-V plane for k=100000 Nm/rad 

(Eigenvalue).  

 

 

Figure 3.5 : 1 DOF Stability region of e-V plane for k=100000 Nm/rad (Routh-

Hurwitz).  
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Figure 3.6 : 1 DOF Torsional stability for k=100000 & V=120 m/s & e=0.1325 m 

(unstable). 

 

 

Figure 3.7 : 1 DOF Torsional stability for k=100000 & V=85 m/s & e=0.1325 m 

(stable). 

 

 

 

 

Figure 3.8 : 1 DOF Stability region of e-V plane for k=75000 Nm/rad (Eigenvalue).  
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Figure 3.9 : 1 DOF Stability region of e-V plane for k=75000 Nm/rad (Routh-

Hurwitz).  

 

 

Figure 3.10 : 1 DOF Torsional stability for k=75000 & V=153 m/s & e=0.135 m 

(unstable). 

 

 

Figure 3.11 : 1 DOF Torsional stability for k=75000 & V=52 m/s & e=0.135 m 

(stable). 
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Figure 3.12 : 1 DOF Stability region of e-V plane for k=50000 Nm/rad 

(Eigenvalue).  

 

 

Figure 3.13 : 1 DOF Stability region of e-V plane for k=50000 Nm/rad (Routh-

Hurwitz).  

 

 

Figure 3.14 : 1 DOF Torsional stability for k=50000 & V=173 m/s & e=0.14 m 

(unstable). 
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Figure 3.15 : 1 DOF Torsional stability for k=50000 & V=33 m/s & e=0.14 m 

(stable). 

 

 

 

Figure 3.16 : 1 DOF Stability region of e-V plane for k=25000 Nm/rad 

(Eigenvalue).  

 

 

 

Figure 3.17 : 1 DOF Stability region of e-V plane for k=25000 Nm/rad (Routh-

Hurwitz).  
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Figure 3.18 : 1 DOF Torsional stability for k=25000 & V=187 m/s & e=0.14 m 

(unstable). 

 

 

Figure 3.19 : 1 DOF Torsional stability for k=25000 & V=18 m/s & e=0.14 m 

(stable). 

 

Conclusion; 

- As seen in Figures 3.4-3.5, 3.8-3.9, 3.12-3.13, and 3.16-3.17, the system was 

solved using both the eigenvalue method and the Routh-Hurwitz method, 

resulting in identical graphs. Therefore, only one method will be used in the 

subsequent graphs. 

- As seen in Figures 3.6-3.7, 3.10-3.11, 3.14-3.15, and 3.18-3.19, both stable and 

unstable conditions were created. Closely spaced values were selected to 

examine the critical conditions while generating the curves. 

- Table 4.2 shows that as the normal tire force increases, stability decreases. 

Conversely, as the rotational stiffness coefficient increases, stability also 

increases. 
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Table 3.2 : 1 DOF 3 order the effect of Fz change on e -V plane. 

e=-0.1-0.4 m Rotational Stiffness Coefficient 

V=1-200 m/s k=100000 Nm/rad k=75000 Nm/rad k=50000 Nm/rad k=25000 Nm/rad 

Fz=10000 N 
87.09 % stable 76.48 % stable 65.38 % stable 54.47 % stable 

55.32 % increment 51.42 % increment 46.76 % increment 43.08 % increment 

Fz=12500 N 
66.16 % stable 59.23 % stable 51.95 % stable 44.00 % stable 

17.99 % increment 17.26 % increment 16.61 % increment 15.58 % increment 

Fz=15000 N 56.07 % stable 50.51 % stable 44.55 % stable 38.07 % stable 

Fz=17500 N 

49.5 % stable 44.75 % stable 39.69 % stable 34.04 % stable 

11.72 % decrement 11.40 % decrement 
10.91 % 

decrement 
10.59 % decrement 

Fz=20000 N 
44.8 % stable 40.64 % stable 36.13 % stable 31.16 % stable 

20.10 % decrement 19.54 % decrement 18.9 % decrement 18.15 % decrement 

 

 

3.3.1.2 One DOF third order shimmy model Fz-V plane stability status 

In this section, normal tire force (Fz) and aircraft speed (V) are defined as variables. 

The stability and instability conditions of the system will be investigated based on 

these variations. While plotting the Fz-V plane, for different rotational stiffness 

coefficient (k) values are used. The other parameter values are taken from Table 3.1. 

 

 

Figure 3.20 : 1 DOF Stability region of Fz -V plane for k=100000 Nm/rad 

(Eigenvalue).  
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Figure 3.21 : 1 DOF Torsional stability for k=100000 & V=30 m/s & Fz=19000 N 

(unstable). 

 

 

Figure 3.22 : 1 DOF Torsional stability for k=100000 & V=26 m/s & Fz=19000 N 

(stable). 

 

 

 

Figure 3.23 : 1 DOF Stability region of Fz -V plane for k=75000 Nm/rad 

(Eigenvalue).  
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Figure 3.24 : 1 DOF Torsional stability for k=75000 & V=22 m/s & Fz=19000 N 

(unstable). 

 

 

Figure 3.25 : 1 DOF Torsional stability for k=75000 & V=20 m/s & Fz=19000 N 

(stable). 

 

 

 

Figure 3.26 : 1 DOF Stability region of Fz -V plane for k=50000 Nm/rad 

(Eigenvalue). 
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Figure 3.27 : 1 DOF Torsional stability for k=50000 & V=15 m/s & Fz=19000 N 

(unstable). 

 

 

Figure 3.28 : 1 DOF Torsional stability for k=50000 & V=13 m/s & Fz=19000 N 

(stable). 

 

 

 

Figure 3.29 : 1 DOF Stability region of Fz-V plane for k=25000 Nm/rad 

(Eigenvalue).  
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Figure 3.30 : 1 DOF Torsional stability for k=25000 & V=8 m/s & Fz=19000 N 

(unstable). 

 

 

Figure 3.31 : 1 DOF Torsional stability for k=25000 & V=6 m/s & Fz=19000 N 

(stable). 

 

Conclusion; 

- In Figures 3.20, 3.23, 3.26, and 3.29, the stable region is observed. In these 

graphs, the variables are normal tire force and aircraft speed.. 

- As seen in Figures 3.21-3.22, 3.24-3.25, 3.27-3.28, and 3.30-3.31, both stable 

and unstable conditions were created. Closely spaced values were selected to 

examine the critical conditions while generating the curves. 

- Examining Table 4.3, it is evident that an increase in caster length (e) expands 

the stability region. Similarly, an increase in the rotational stiffness coefficient 

also expands the stability region. 
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Table 3.3 : 1 DOF 3 order the effect of e change on Fz -V plane. 

Fz=0-50000 N Rotational Stiffness Coefficient 

V=1-200 m/s k=100000 Nm/rad k=75000 Nm/rad k=50000 Nm/rad k=25000 Nm/rad 

e=0.26 m 
42.93 % stable 39.6 % stable 35.95 % stable 31.79 % stable 

25.59 % increment 26.92 % decrement 28.56 % decrement 30.71 % decrement 

e=0.28 m 
49.00 % stable 45.57 % stable 41.80 % stable 37.5 % stable 

15.06 % decrement 15.91 % decrement 16.95 % decrement 18,27 % decrement 

e=0.30 m 57.69 % stable 54.19 % stable 50.32 % stable 45.88 % stable 

e=0.32 m 
70.64 % stable 67.17 % stable 63.33 % stable 58.94 % stable 

22.45 % increment 23.95 % increment 25.85 % increment 28.47 % increment 

e=0.34 m 
89.99 % stable 87.3 % stable 84.18 % stable 80.50 % stable 

55.99 % increment 61.01 % increment 67.29 % increment 75.46 % increment 

 

 Two DOF Fifth Order Landing Gear Shimmy Model 

In addition to the One DOF third-order shimmy model presented in Section 3.3, a 

lateral DOF has been added. Consequently, the system becomes, as seen in Figure 

3.32, 2 DOF fifth-order model, considering the tire order. The system used by Arreza 

[14] will be applied. 

 

Figure 3.32 : 2 DOF (Yaw and lateral) shimmy model [21]. 

 

The equations with the addition of the lateral degree of freedom to the torsional degree 

of freedom system are as follows: 

𝐼𝑧𝛹̈ + 𝑘𝛹𝛹 + 𝑐𝛹𝛹̇ + 𝐹𝑦𝑒 + 𝑀𝑧 + 𝑀𝑘 − 𝐹𝑍𝑒𝑠𝑖𝑛(𝛹)sin⁡(𝛷) = 0 ⁡⁡(3.18) 
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𝐼𝑥𝛿̈ + 𝑘𝛿𝛿 + 𝑐𝛿𝛿̇ + 𝑙𝑔𝐹𝑦 cos(𝛹) − 𝐹𝑧𝑒 sin(𝛹) = 0 (3.19) 

Ix represents the lateral area moment of inertia of the landing gear, kδ represents the 

landing gear lateral stiffness coefficient, cδ represents the landing gear lateral damping 

coefficient, and lg represents the landing gear height. 

The equations given above are linearized and summerized in state-space form with 

states; 

 

[
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𝛿
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𝑦1]

 
 
 
 

 (3.20) 

Table 3.4 : 2 DOF 5 order shimmy model parameters. 

Description Parameter Value Unit 

kΨ torsional spring rate 100000 Nm/rad 

cΨ torsional damping constant 50 Nm/rad/s 

Iz rotational area moment of inertia 1 kgm2 

K 
tire longitudinal slip; tread width moment 

constant 
-270 Nm2/rad 

Fz vertical force 9000 N 

Cmα tire self-alligning moment derivative  -2 m/rad 

Cfα tire side force derivative 20 1/rad 

a half contact length 0.1 m 

e caster length 0.05 m 

V velocity of aircraft 100 m/s 

kδ lateral spring rate 6100000 Nm/rad 

cδ lateral damping constant 300 Nm/rad/s 

Ix lateral area moment of inertia 600 kgm2 

lg landing gear hight 2.5 m 
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3.4.1 Two DOF third order stable/unstable region  

Since it was proven in Section 3.3.1.1, eigenvalues and the Routh-Hurwitz method 

were not derived again using both methods. The graph was created using only one 

method. The e-V plane can only be used during the design phase, while the Fz-V plane 

can also be used during the operational phase. 

3.4.1.1 Two DOF third order shimmy model e-V plane stability status  

In this section, caster length (e) and aircraft speed (V) are defined as variables. The 

stability and instability conditions of the system will be investigated based on these 

variations. While plotting the e-V plane, for different rotational stiffness coefficient 

(kΨ) values are used. The other parameter values are taken from Table 3.4. 

 

 

 

 

 

Figure 3.33 : 2 DOF Stability region of e-V plane for k=100000 Nm/rad.  
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Figure 3.34 : 2 DOF Torsional stability for k=100000 & V=103 m/s & e=0.125 m 

(unstable). 

 

 

Figure 3.35 : 2 DOF Torsional stability for k=100000 & V=85 m/s & e=0.125 m 

(stable). 

 

 

 

Figure 3.36 : 2 DOF Stability region of e-V plane for k=75000 Nm/rad.  
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Figure 3.37 : 2 DOF Torsional stability for k=75000 & V=140 m/s & e=0.13 m 

(unstable). 

 

 

Figure 3.38 : 2 DOF Torsional stability for k=75000 & V=47 m/s & e=0.13 m 

(stable). 

 

 

 

Figure 3.39 : 2 DOF Stability region of e-V plane for k=50000 Nm/rad.  
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Figure 3.40 : 2 DOF Torsional stability for k=50000 & V=154 m/s & e=0.13 m 

(unstable). 

 

 

Figure 3.41 : 2 DOF Torsional stability for k=50000 & V=30 m/s & e=0.13 m 

(stable). 

 

 

 

 

Figure 3.42 : 2 DOF Stability region of e-V plane for k=25000 Nm/rad.  
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Figure 3.43 : 2 DOF Torsional stability for k=25000 & V=160 m/s & e=0.13 m 

(unstable). 

 

 

Figure 3.44 : 2 DOF Torsional stability for k=25000 & V=14 m/s & e=0.13 m 

(stable). 

 

Conclusion; 

- In Figures 3.33, 3.36, 3.39, and 3.42, the stable region is observed. In these 

graphs, the variables are caster length and aircraft speed.. 

- As seen in Figures 3.34-3.35, 3.37-3.38, 3.40-3.41, and 3.43-3.44, both stable 

and unstable conditions were created. Closely spaced values were selected to 

examine the critical conditions while generating the curves. 

- Table 4.5 shows that as the normal tire force increases, stability decreases. 

Conversely, as the rotational stiffness coefficient increases, stability also 

increases. 

- A similar situation to the One DOF third-order model applies to this model as 

well. However, the stability rates are different. Therefore, it is appropriate to 

consider both when a design or operational condition arises. 
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Table 3.5 : 2 DOF 5 order the effect of Fz change on e-V plane. 

e=-0.1-0.4 m Rotational Stiffness Coefficient 

V=1-200 m/s k=100000 Nm/rad k=75000 Nm/rad k=50000 Nm/rad k=25000 Nm/rad 

Fz=10000 N 
89.13 % stable 79.64 % stable 70.29 % stable 60.58 % stable 

55.71 % increment 53.21 % increment 51.81 % increment 46.79 % increment 

Fz=12500 N 
67.74 % stable 61.23 % stable 54.48 % stable 47.53 % stable 

18,34 % increment 17.80 % increment 17.67 % increment 15.17 % increment 

Fz=15000 N 57.24 % stable 51.98 % stable 46.30 % stable 41.27 % stable 

Fz=17500 N 
50.56 % stable 46.03 % stable 40.58 % stable 37.30 % stable 

11.67 % decrement 11.45 % decrement 12.35 % decrement 9.62 % decrement 

Fz=20000 N 
45.76 % stable 41.71 % stable 36.85 % stable 34.55 % stable 

20.06 % decrement 19.76 % decrement 20.41 % decrement 16.28 % decrement 

 

 

3.4.1.2 Two DOF third order shimmy model Fz-V plane stability status  

In this section, normal tire force (Fz) and aircraft speed (V) are defined as variables. 

The stability and instability conditions of the system will be investigated based on 

these variations. While plotting the Fz-V plane, for different rotational stiffness 

coefficient (kΨ) values are used. The other parameter values are taken from Table 3.4. 

 

 

Figure 3.45 : 2 DOF Stability region of Fz-V plane for k=100000 Nm/rad.  
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Figure 3.46 : 2 DOF Torsional stability for k=100000 & V=24 m/s & Fz=19000 N 

(unstable). 

 

 

Figure 3.47 : 2 DOF Torsional stability for k=100000 & V=22 m/s & Fz=19000 N 

(stable). 

 

 

Figure 3.48 : 2 DOF Stability region of Fz-V plane for k=75000 Nm/rad.  
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Figure 3.49 : 2 DOF Torsional stability for k=75000 & V=17 m/s & Fz=19000 N 

(unstable). 

 

 

Figure 3.50 : 2 DOF Torsional stability for k=75000 & V=17 m/s & Fz=19000 N 

(stable). 

 

 

 

Figure 3.51 : 2 DOF Stability region of Fz-V plane for k=50000 Nm/rad. 
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Figure 3.52 : 2 DOF Torsional stability for k=50000 & V=7 m/s & Fz=19000 N 

(unstable). 

 

 

Figure 3.53 : 2 DOF Torsional stability for k=50000 & V=7 m/s & Fz=17000 N 

(stable). 

 

 

Figure 3.54 : 2 DOF Stability region of Fz-V plane for k=25000 Nm/rad. 
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Figure 3.55 : 2 DOF Torsional stability for k=25000 & V=7 m/s & Fz=19000 N 

(unstable). 

 

 

Figure 3.56 : 2 DOF Torsional stability for k=25000 & V=8 m/s & Fz=7500 N 

(stable). 

 

Conclusion; 

- In Figures 3.45, 3.48, 3.51, and 3.54, the stable region is observed. In these 

graphs, the variables are normal tire force and aircraft speed.. 

- As seen in Figures 3.46-3.47, 3.49-3.50, 3.52-3.53, and 3.55-3.56, both stable 

and unstable conditions were created. Closely spaced values were selected to 

examine the critical conditions while generating the curves. 

- Examining Table 4.6, it is evident that an increase in caster length (e) expands 

the stability region. Similarly, an increase in the rotational stiffness coefficient 

also expands the stability region. 

As seen from the graphs and tables, the characteristics of the 1 DOF and 2 DOF 

shimmy models are similar. However, there are differences between them. 

While the stability rates may be very close under certain conditions, this is not 

always the case. 
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Table 3.6 : 2 DOF 5 order the effect of e change on Fz-V plane. 

Fz=0-50000 

N 
Rotational Stiffness Coefficient 

V=1-200 m/s k=100000 Nm/rad k=75000 Nm/rad k=50000 Nm/rad k=25000 Nm/rad 

e=0.26 m 
46.45 % stable 43.64 % stable 40.75 % stable 37.87 % stable 

30.91 % increment 32.71 % decrement 34.76 % decrement 37.09 % decrement 

e=0.28 m 
54.71 % stable 52.00 % stable 49.24 % stable 46.55 % stable 

18.62 % decrement 20.81 % decrement 21.17 % decrement 22.67% decrement 

e=0.30 m 67.23 % stable 64.85 % stable 62.46 % stable 60.20 % stable 

e=0.32 m 
87.04 % stable 85.59 % stable 84.19 % stable 83.02 % stable 

29.47 % increment 31.98 % increment 34.79 % increment 37.91 % increment 

e=0.34 m 
100 % stable 100 % stable 100 % stable 100 % stable 

48.74 % increment 54.20 % increment 60.10 % increment 66.11 % increment 
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 LANDING GEAR SHIMMY CONTROL 

First of all controller is a device or a set of algorithms designed to manage, command, 

direct, or regulate the behavior of other devices or systems. It is an essential part of a 

control system, which includes sensors, actuators, and other components that interact 

to achieve a desired performance. There are various types of controllers used in control 

systems, each designed for specific applications and performance criteria. Here are 

some of the main types: PID Controller (Proportional-Integral-Derivative, 

Feedforward Controller, On-Off Controller, Adaptive Controller, Optimal Control, 

Robust Control, Sliding Mode Controller, Model Predictive Control (MPC). Linear 

Quadratic Regulator (LQR) has been selected as one of the optimal control types 

because it is important to minimize the time in shimmy phenomenon. 

 

 Linear Quadratic Regulator (LQR) 

The Linear Quadratic Regulator (LQR) is an optimal state-feedback control method 

specifically designed to calculate the most effective control input by using 

performance indices and state variables to minimize a predefined cost function. This 

technique, a part of modern control theory, utilizes state-space representations for 

analyzing the system it's applied to. The main goal in the LQR control system is to 

derive the gain matrix K by minimizing the cost function. 

 

𝑢 = −𝐾𝑥 (4.1) 

 

𝐽 =
1

2
∫ [𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢]𝑑𝑡

∞

0

 (4.2) 
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J, is the cost function, is the objective function that the LQR controller aims to 

minimize. It typically represents the cumulative cost over time, accounting for both 

the states of the system and the control efforts. The Q and R matrices are known as 

weighting matrices and allow the control designer to adjust the weight values affecting 

the control inputs and state variables, thereby tuning their impact on system 

performance. The size of the Q matrix is defined by the number of state variables in 

the system. The extent of control performance allocated to a state variable is 

determined by the importance given to the first element of the Q matrix, and the 

deployment of control power is directly proportional to the magnitude of the element. 

The final LQR gain is calculated using the equation provided: 

𝐾 = 𝑅−1𝐵𝑇𝑃 (4.3) 

 

The Algebraic Riccati Equation is used to determine the constant matrix P: 

 

𝑄 + 𝐴𝑇𝑃 + 𝑃𝐴 + 𝑃𝐵𝑅−1𝐵𝑇𝑃 = 0 (4.4) 

 

 

4.1.1 LQR controller design for 1 DOF system 

An LQR design is implemented to control torsional stability in a 1 DOF 3rd order 

system. The graphs provided in sections 3.3.1.1 and 3.3.1.2 will demonstrate how 

unstable systems can be stabilized. The Q and R matrices necessary to determine the 

K gain have been chosen based on simulations as follows: 

 

𝑄 = [
100 0 0
0 300 0
0 0 100

] 

 

(4.5) 
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𝑅 = {0.025} 

 

(4.6) 

 

 

 

Figure 4.1 : 1 DOF Stability region of e-V plane for k=100000 Nm/rad & V=120 

m/s & e=0.1325 m (Roots). 

 

 

Figure 4.2 : 1 DOF Stability region of e-V plane for k=100000 Nm/rad & V=120 

m/s & e=0.1325 m (System/LQR). 

 

 

 

Figure 4.3 : 1 DOF Stability region of e-V plane for k=100000 Nm/rad & V=120 

m/s & e=0.1325 m (Actuator moment). 
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Figure 4.4 : 1 DOF Stability region of e-V plane for k=50000 Nm/rad & V=173 m/s 

& e=0.14 m (Roots). 

 

 

Figure 4.5 : 1 DOF Stability region of e-V plane for k=50000 Nm/rad & V=173 m/s 

& e=0.14 m (System/LQR). 

 

 

Figure 4.6 : 1 DOF Stability region of e-V plane for k=50000 Nm/rad & V=173 m/s 

& e=0.14 m (Actuator moment). 
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Figure 4.7 : 1 DOF Stability region of Fz-V plane for k=100000 Nm/rad & V=30 

m/s & F=19000 N (Roots). 

 

 

Figure 4.8 : 1 DOF Stability region of Fz-V plane for k=100000 Nm/rad & V=30 

m/s & F=19000 N (System/LQR). 

 

 

Figure 4.9 : 1 DOF Stability region of e-V plane for k=100000 Nm/rad & V=30 m/s 

& F=19000 N (Actuator moment). 
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Figure 4.10 : 1 DOF Stability region of Fz-V plane for k=50000 Nm/rad & V=15 

m/s & F=19000 N (Roots). 

 

 

 

Figure 4.11 : 1 DOF Stability region of Fz-V plane for k=50000 Nm/rad & V=15 

m/s & F=19000 N (System/LQR). 

 

 

 

Figure 4.12 : 1 DOF Stability region of e-V plane for k=50000 Nm/rad & V=15 m/s 

& F=19000 N (Actuator moment). 
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4.1.2 LQR controller design for 2 DOF system 

 

An LQR design is implemented to control torsional stability in a 1 DOF 3rd order 

system. The graphs provided in sections 3.4.1.1 and 3.4.1.2 will demonstrate how 

unstable systems can be stabilized. The Q and R matrices necessary to determine the 

K gain have been chosen based on simulations as follows: 

 

𝑄 =

[
 
 
 
 
100 0 0 0 0
0 300 0 0 0
0 0 100 0 0
0 0 0 100 0
0 0 0 0 100]

 
 
 
 

 

 

(4.7) 

 

𝑅 = {0.025} 

 

(4.8) 

 

 

 

 

 

Figure 4.13 : 2 DOF Stability region of e-V plane for k=100000 Nm/rad & V=103 

m/s & e=0.125 m (System/LQR). 
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Figure 4.14 : 2 DOF Stability region of e-V plane for k=100000 Nm/rad & V=103 

m/s & e=0.125 (Actuator moment). 

 

 

 

Figure 4.15 : 2 DOF Stability region of e-V plane for k=75000 Nm/rad & V=140 

m/s & e=0.13 m (System/LQR). 

 

 

 

Figure 4.16 : 2 DOF Stability region of e-V plane for k=75000 Nm/rad & V=140 

m/s & e=0.13 (Actuator moment). 
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Figure 4.17 : 2 DOF Stability region of e-V plane for k=50000 Nm/rad & V=154 

m/s & e=0.13 m (System/LQR). 

 

 

Figure 4.18 : 2 DOF Stability region of e-V plane for k=50000 Nm/rad & V=154 

m/s & e=0.13 (Actuator moment). 

 

 

 

Figure 4.19 : 2 DOF Stability region of Fz-V plane for k=100000 Nm/rad & V=24 

m/s & Fz=19000 N (System/LQR). 

 

 

 



58 

 

 

Figure 4.20 : 2 DOF Stability region of Fz -V plane for k=100000 Nm/rad & V=24 

m/s & Fz =19000 N (Actuator moment). 

 

 

 

Figure 4.21 : 2 DOF Stability region of Fz-V plane for k=75000 Nm/rad & V=17 

m/s & Fz=19000 N (System/LQR). 

 

 

 

Figure 4.22 : 2 DOF Stability region of Fz -V plane for k=75000 Nm/rad & V=17 

m/s & Fz =19000 N (Actuator moment). 
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Figure 4.23 : 2 DOF Stability region of Fz-V plane for k=50000 Nm/rad & V=7 m/s 

& Fz=19000 N (System/LQR). 

 

 

 

Figure 4.24 : 2 DOF Stability region of Fz -V plane for k=50000 Nm/rad & V=7 m/s 

& Fz =19000 N (Actuator moment). 

 

Shimmy oscillation is a highly dangerous phenomenon that can lead to accidents if not 

properly addressed. Thus, it requires thorough analysis. In previous sections, a linear 

controller was designed to stabilize conditions that were identified as unstable. As 

shown in Figures 4.1, 4.4, 4.7 and 4.10 the roots of the uncontrolled systems have 

positive real roots, indicating instability. However, in the same graphs, it can be 

observed that the designed controller shifts the real roots of these roots to the negative 

side, stabilizing the system. This stabilization is clearly demonstrated in Figures 4.2, 

4.5, 4.8, 4.11, 4.13, 4.15, 4.17, 4.19, 4.21 and 4.23. Moreover, for the designed 

controller to take action, an actuator is necessary. The moment values of this actuator 

are provided in Figures 4.3, 4.6, 4.9, 4.12, 4.14, 4.16, 4.18, 4.20, 4.22 and 4.24. The 

moment values do not exceed 3500 Nm, which is within the capabilities of actuators 

currently available on the market. This consideration was taken into account during 

the controller design process. 
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 LANDING GEAR SHIMMY APPLICATION DESIGN (LaGeSh) 

The shimmy phenomenon depends on many parameters, and controlling these 

parameters is quite challenging. Therefore, to facilitate a better understanding of this 

phenomenon, an application named LaGeSh was developed in this thesis. This 

application possesses numerous capabilities. It can be used to identify potential 

shimmy scenarios during the design phase or for an already designed landing gear. The 

application is composed of five tabs. In the first tab, as shown in Figure 5.1, the 

parameters used for either the 1 DOF third order or 2 DOF fifth order model are listed, 

along with their meanings and units. The necessary parameters for the selected model 

type are displayed accordingly. 

 

Figure 5.1 : LaGeSh parameters table. 

 

The second tab, Figure 5.2, is where you can examine the stable regions. In this tab, 

depending on the selection of 1 DOF or 2 DOF, the required parameters become 
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visible. After the parameters are displayed, you need to choose between the V-e 

(Velocity-Caster Length) or V-Fz (Velocity-Normal Tire Force) options. Based on the 

selection, you must enter the desired working ranges. Once these parameters are 

entered, you can select the method to generate the graph, either the eigenvalue method 

or the Routh-Hurwitz method, by pressing the corresponding button. The desired graph 

will then be generated. 

 

Figure 5.2 : LaGeSh stable region table. 

 

In the tab shown in Figure 5.3, similar to the previous tab, you need to select either the 

1 DOF or 2 DOF model. Based on the selected model, its parameters will become 

visible. In this tab, you enter the values for these parameters and set the runtime. After 

that, the system is run, and the results are displayed in the plot screen below. 
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Figure 5.3 : LaGeSh stability table. 

 

We can evaluate the last two tabs together. The fourth tab is used for 1 DOF controller 

design, and the fifth tab is for 2 DOF controller design. Figure 5.4 and Figure 5.5 show 

the tab layouts. In the top left corner of the opened screen, there are three types of 

controller operations available. This thesis discusses the design of an LQR controller. 

Depending on the selected controller, the required parameters become visible. Once 

the desired values are entered into the system, three buttons appear. The 'Start' button 

provides the torsional stability-time curve without a controller and with the selected 

controller. The 'Roots' button shows the roots of the system, displaying the roots for 

both the system and the designed controller. Finally, the 'Moment' button indicates the 

amount of torque required by the system according to the designed controller. 
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Figure 5.4 : LaGeSh 1 DOF Controller table. 

 

Figure 5.5 : LaGeSh 2 DOF Controller table. 
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 CONCLUSION AND FUTURE WORK 

This study presents a comprehensive investigation into the phenomenon of shimmy 

oscillations in aircraft landing gear systems. By focusing on both 1-DOF and 2-DOF 

models, the thesis presents a detailed analysis of the factors contributing to this 

instability. The results obtained through this research have demonstrated the critical 

importance of understanding shimmy oscillations for ensuring aircraft safety and 

performance. Key findings include the importance of considering the relationship 

between caster length and aircraft speed during the design phase. For existing aircraft, 

reducing the normal tire force by adjusting the aircraft's center of gravity is 

recommended. The study also revealed that increasing rotational stiffness and reducing 

normal tire force can enhance system stability. 

Furthermore, the analysis showed that the system's stability is influenced by a 

combination of caster length, aircraft speed, and rotational stiffness. Controller designs 

were successfully implemented to stabilize unstable conditions. The development of 

the LaGeSh application facilitated comprehensive parameter analysis, providing 

valuable insights for landing gear design and optimization. 

To ensure research reliability, eigenvalue analysis, Routh-Hurwitz criteria, and 

Simulink models were employed in specific cases. 

 

 Future Recommendations 

Building upon the results of this study, future research should include developing and 

analyzing nonlinear models, conducting in-depth studies on various landing gear types 

(articulated, semi-articulated, cantilevered), and modeling the entire aircraft to assess 

its impact on shimmy characteristics. Additionally, incorporating friction into the 

model, examining the effects of braking, and conducting rigorous testing to refine 

system parameters are essential for improving model accuracy. Exploring different 
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controller designs and conducting stability analysis without the rank angle assumption 

can provide valuable insights for optimizing landing gear performance.



67 

REFERENCES 

[1] B. von Schlippe, & R. Dietrich (1941). Shimming of a pneumatic wheel. 

[2] Moreland, R. J. (1954). The Story of Shimmy, Journal of the Aeronautical 

Sciences, 21, 12, 793-. 

[3] Pacejka, H. B. (1966). The Wheel Shimmy Phenomenon (Dissertation), Delf 

University of Technology 

[4] Roger L. C. (1972). Theoretical tire equations for shimmy and other dynamic 

studies, AIAA Journal of Aircraft, 585-589 

[5] Grossman, D. T. (1980). F-15 nose landing gear shimmy, taxi test and corrective 

analyses, SAE technical paper 801239 

[6] Somienski, G. (1997). Shimmy Analysis of a Simple Aircraft Nose Landing Gear 

Model Using Different Mathematical Methods, Aerospace Science and 

Technology, 545-555 

[7] Besselink, I. J. M. (2000). Shimmy of Aircraft Main Landing Gears (Dissertation), 

Technical University of Delft. 

[8] Long, S. H. (2006). Active Control of Shimmy Oscillation in Aircraft Landing Gear 

(Dissertation), Concordia University. 

[9] Atabay E. (2012) Dynamics of a Landing Gear Mechanism (Dissertation), Istanbul 

Technical University. 

[10] Buts D., & Kogan, A. (2010). Helicopter Landing Gear Shimmy Analysis, 

Conferance, San Francisco, California, USA 

[11] Abba A., Carrera E., & Grossini, M. (2001). Dynamic Models for Shimmy 

Analysis of Helicopter Landing Gear, EUROMECH-427 

[12] Çakır U., Sezer S. (2019). Burun İniş Takımında Meydana Gelen Shimmy 

Titreşim Hareketinin PID ve LQR ile Kontrolü. TOK'2019 Otomatik 

Kontrol Ulusal Toplantısı, Muğla. 

[13] Özgen S., Middle East Technical University, Aerospace Engineering. (2017). 

Aeronautical Engineering Design I Landing Gear Sizing and 

Placement [PowerPoint slides]. Retrieved from 

http://www.ae.metu.edu.tr/~ae451/lecture10_landing_gear.pdf 

[14] Arreaza, C. (2015). Linear Stability Analysis, Dynamic Response, and Design of 

Shimmy Dampers for Main Landing Gears (Dissertation), University of 

Toronto 

[15] Ünlüsoy Y. S., Middle East Technical University, Mechanical Engineering. 

Vehicle Dynamics [PowerPoint slides]. 

[16] Roskam J., (1989). Airplane design. Part IV layout design of landing gear design 

analysis and research 



68 

[17] Currey N. S., (1988). Aircraft Landing Gear Design: Principles, AIAA Education 

Series 

[18] Barve S., & Menghani R., & Patel J., & Shetty D.(2017). Optimization of an 

Oleo-Pneumatic Shock Absorber for Main Landing Gear of a 

Commercial Aircraft, International Conference on Advances in 

Thermal Systems, Materials and Design Engineering (ATSMDE2017) 

[19] Schmidt R. K., (2021). The Design of Aircraft Landing Gear, SAE Interinational 

[20] Farroni F., (2014) DEVELOPMENT OF A GRIP & THERMODYNAMICS 

SENSITIVE TYRE / ROAD INTERACTION FORCES 

ESTIMATION PROCEDURE EMPLOYED IN HIGH-

PERFORMANCE VEHICLES SIMULATION (Dissertation), 

Universita’ Degli Studi Di Napoli Federico II 

[21] Krüger W. R, Morandini M.,  (1989). Numerical Simulation of Landing Gear 

Dynamics: State-of-the-art and Recent Developments 

[22] Tourajizadeh H., Zare S., (2015). Robust and optimal control of shimmy 

vibration in aircraft nose landing gear, Aerospace Science and 

Technology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



69 

 

APPENDICES 

APPENDIX A: Landing Gear Shimmy Controller Design Graphics 
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APPENDIX A  

 

 

Figure A.1 : 1 DOF Stability region of e-V plane for k=75000 Nm/rad & V=153 m/s 

& e=0.135 m (Roots). 

 

 

Figure A.2 : 1 DOF Stability region of e-V plane for k=75000 Nm/rad & V=153 m/s 

& e=0.135 m (System/LQR). 

 

 

 

Figure A.3 : 1 DOF Stability region of e-V plane for k=75000 Nm/rad & V=153 m/s 

& e=0.135 m (Actuator moment). 
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Figure A.4 : 1 DOF Stability region of e-V plane for k=25000 Nm/rad & V=187 m/s 

& e=0.14 m (Roots). 

 

 

 

Figure A.5 : 1 DOF Stability region of e-V plane for k=25000 Nm/rad & V=187 m/s 

& e=0.14 m (System/LQR). 

 

 

 

Figure A.6 : 1 DOF Stability region of e-V plane for k=25000 Nm/rad & V=187 m/s 

& e=0.14 m (Actuator moment). 
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Figure A.7 : 1 DOF Stability region of Fz-V plane for k=25000 Nm/rad & V=8 m/s 

& F=19000 N (Roots). 

 

 

Figure A.8 : 1 DOF Stability region of Fz-V plane for k=25000 Nm/rad & V=8 m/s 

& F=19000 N (System/LQR). 

 

 

Figure A.9 : 1 DOF Stability region of e-V plane for k=25000 Nm/rad & V=8 m/s & 

F=19000 N (Actuator moment). 
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Figure A.10 : 2 DOF Stability region of Fz-V plane for k=25000 Nm/rad & V=7 m/s 

& Fz=19000 N (System/LQR). 

 

 

 

Figure A.11 : 2 DOF Stability region of Fz -V plane for k=25000 Nm/rad & V=7 

m/s & Fz =19000 N (Actuator moment). 

 

 

 

 

Figure A.12 : 1 DOF Stability region of Fz-V plane for k=75000 Nm/rad & V=22 

m/s & F=19000 N (Roots). 
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Figure A.13 : 1 DOF Stability region of Fz-V plane for k=75000 Nm/rad & V=22 

m/s & F=19000 N (System/LQR). 

 

 

 

Figure A.14 : 1 DOF Stability region of e-V plane for k=75000 Nm/rad & V=22 m/s 

& F=19000 N (Actuator moment). 

 

 

 

Figure A.15 : 2 DOF Stability region of e-V plane for k=25000 Nm/rad & V=160 

m/s & e=0.13 m (System/LQR). 
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Figure A.16 : 2 DOF Stability region of e-V plane for k=25000 Nm/rad & V=160 

m/s & e=0.13 (Actuator moment). 
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