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MODELLING-CONTROL OF SHIMMY OSCILLATIONS IN AIRCRAFT
LANDING GEAR AND APPLICATION DESIGN

SUMMARY

In aviation, the landing gear is a critical component that ensures the aircraft’s stability
and safety during ground operations. There are two fundamental types of landing gear
configurations: Tail-Wheel and Tricycle. The Tail-Wheel setup consists of two main
landing gears at the front and a single tail gear at the rear. Conversely, the Tricycle
arrangement features a single nose landing gear complemented by two main landing
gears at the rear.

One of the significant challenges in landing gear design is the phenomenon known as
shimmy. Shimmy refers to an oscillatory motion that combines lateral and yaw
movements of the landing gear. This motion results from the complex interaction
between the tire dynamics and the structural characteristics of the landing gear. Both
nose and main landing gears can exhibit shimmy oscillations; however, the nose gear
in Tricycle configurations and the tail gear in Tail-Wheel setups are particularly
susceptible.

The prevalence of shimmy oscillations has led to extensive research, with most studies
concentrating on the nose or tail landing gears. Shimmy is characterized by self-
excited oscillations propelled by the aircraft’s forward movement. The oscillation
amplitude can range from minor disturbances affecting comfort and visibility to
intense vibrations that may cause structural damage or even catastrophic failure. To
mitigate these risks, a comprehensive modelling and analysis of the landing gear’s
dynamic behavior and structural integrity are imperative. This approach enables the
evaluation of the landing gear design and facilitates the implementation of necessary
modifications at an early development stage.

For analytical purposes, a mathematical model of the landing gear is derived using the
Lagrange equation. This model includes a third-order, 1-degree-of-freedom system
representing the yaw motion, and a more complex fifth-order, 2-degree-of-freedom
system accounting for both yaw and lateral movements. Subsequently, the Routh-
Hurwitz criteria and the coefficients of the characteristic equation are employed to
conduct a linear stability analysis. Following the derivation of the mathematical
equations, various simulations are executed using MATLAB and Simulink. Once the
mathematical models and simulation frameworks are established and validated,
control strategies such as Linear Quadratic Regulator (LQR) controller design is
applied to both models.

To streamline the analysis process, a specialized application named LaGeSh has been
developed. This application allows for the adjustment of multiple parameters,
including tire characteristics, slip angle, caster length, force, moments of inertia, and
aircraft speed. These modifications enable a practical assessment of the aircraft’s
susceptibility to shimmy vibrations and facilitate the extraction of controller
parameters based on the input values. Moreover, LaGeSh can generate comparative
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graphs, such as caster length versus aircraft speed and force versus aircraft speed, to
identify the most optimal parameter configurations.

As a result this study not only elaborates on the technical aspects of landing gear
dynamics but also provides a comprehensive overview of the analytical methods and
tools used in the study of shimmy oscillations.
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UCAK INiS TAKIMLARINDA SHIMMY TiTRESIMININ
MODELLENMESI-KONTROLU VE UYGULAMA TASARIMI

OZET

Havacilik endiistrisinde, bir ucagin giivenli bir sekilde havalanmasi, ugusu siirdiirmesi
ve nihayetinde giivenli bir sekilde yere inmesi, ucagin farkli sistemlerinin bir arada
sorunsuz bir sekilde ¢alismasina baghidir. Bu sistemler arasinda inig takimi, 6zellikle
yere inis, kalkis ve taksi gibi kritik operasyonlar sirasinda ugagin stabilite ve
giivenligini saglayan en onemli bilesenlerden biri olarak 6n plana ¢ikar. Inis takimu,
sadece ucagin havacilik faaliyetlerini basarili bir sekilde yerine getirmesi ic¢in degil,
ayn1 zamanda yerdeki tiim operasyonlariin giivenli bir sekilde gergeklestirilmesi igin
de tasarlanmis bir sistemdir. Inis takimi olmadan, bir ugagin yer operasyonlarini
gerceklestirmesi miimkiin degildir, bu nedenle inis takimi, havaciligin ayrilmaz bir
parcasi olarak kabul edilir.

Inis takimlari, ugagm yerle temas ettigi ilk andan itibaren devreye girer. Ugagin
agirligy, inis sirasinda biiyiik bir kuvvetle inis takimlari tizerine biner ve bu kuvvetlerin
ucagin gdvdesine zarar vermeden emilmesi gerekir. Ayrica, inig sirasinda meydana
gelebilecek herhangi bir dengesizlik, ugagin ciddi hasar almasina veya tehlikeli
durumlarin olusmasina neden olabilir. Bu nedenle, inis takimlar1 sadece ugagin
agirhgin tasgimakla kalmaz, ayni zamanda bu yiikii giivenli bir sekilde dagitarak
ucagin stabilitesini korur. Inis takimlari, ugagm hareket halindeyken ya da yerde
durdugu siirece siirekli olarak bu dengeyi saglamak zorundadir.

Ucaklarin farkl kullanim amagclarina ve tasarimlarina bagl olarak, inis takimlarinin
konfigiirasyonlar1 da cesitlilik gdsterir. Genel olarak, iki ana inis takimi
konfigiirasyonu bulunmaktadir: Tail-Wheel (Kuyruk-Tekerlek) ve Tricycle (Ug
Tekerlekli) konfiglirasyonlar1. Tail-Wheel konfigiirasyonu, u¢agin 6n kisminda iki ana
inis takiminin ve arka kisminda tek bir kuyruk inis takiminin bulundugu bir yapiya
sahiptir. Bu yap1, 6zellikle hafif ugaklar, eski model ucaklar ve baz1 helikopterler gibi
daha kiigiik hava araclarinda tercih edilir. Kuyruk-Tekerlek konfigiirasyonunun,
ucagin kalkis ve inig sirasinda daha hassas bir denge gerektirmesi, bu tiir u¢aklarin
pilotlarinin dikkatini ve deneyimini 6nemli kilar. Kuyruk inis takiminin konumu,
ucagin dengesinin korunmasinda kritik bir rol oynar ve 6zellikle diizensiz zeminlerde
inis veya kalkis sirasinda pilotlarin daha dikkatli olmasini gerektirir.

Bununla birlikte, modern havacilikta yaygmn olarak kullanilan Tricycle
konfigiirasyonu, u¢agin burun kisminda bir burun inis takimi ve arka kisminda iki ana
inis takimindan olusur. Bu konfigiirasyon, gliniimiiziin biiyiik yolcu ugaklar1 ve askeri
jetlerde standart bir hale gelmistir ve bu ugaklarin yerde daha fazla stabilite ve manevra
kabiliyeti saglamasina olanak tanir. Tricycle konfigilirasyonu, ucagin kalkis ve inis
islemlerinin daha kolay ve giivenli bir sekilde gerceklestirilmesini saglar, bu da bu
konfigiirasyonu modern havacilikta yaygin hale getiren en 6nemli faktorlerden biridir.
Ayrica, bu konfigiirasyon, ucaklarin farkli yiizeylerde daha 1yi performans

XXV



gbstermesine yardimci olur, bu da ¢esitli hava kosullarinda ugak operasyonlarinin
sorunsuz bir sekilde gerceklestirilmesine katkida bulunur.

Ancak, inis takimi tasarimi ve konfiglirasyonlari, sadece ugagin stabilitesini ve
glivenligini saglamakla kalmaz; ayn1 zamanda c¢esitli fiziksel fenomenlere karsi da
dayanikli olmalidir. Bu fenomenlerden biri olan shimmy, inis takimlarinda siklikla
karsilagilan ve Ozellikle ucaklarin yiiksek hizlarda hareket ettigi durumlarda ciddi
tehlikeler yaratabilen bir olgudur. Shimmy, inis takiminin yanal (lateral) ve yalpa
(yaw) hareketlerini birlestirerek ortaya c¢ikan salinimli bir hareketi ifade eder. Bu
salmimlar, inig takimi bilesenlerinin dinamik o&zellikleri ile lastiklerin yapisal
Ozellikleri arasindaki karmasik etkilesimlerin bir sonucudur. Shimmy salinimlarmin
siddeti ve genligi, birgok faktore bagli olarak degisebilir ve bu salimimlar, ucak
stabilitesini ciddi sekilde tehdit edebilir.

Shimmy fenomeni, 6zellikle yiiksek hizlarda veya inis sirasinda meydana geldiginde,
ucak operasyonlari i¢in kritik bir risk olusturur. Hem burun inis takim1 hem de ana inis
takimlart shimmy salinimlarina maruz kalabilir; ancak, Tricycle konfigiirasyonunda
burun inis takimi ve Tail-Wheel diizeninde kuyruk inis takimi 6zellikle shimmyye
kars1 duyarlidir. Bu tiir salinimlar, inis takiminin yapisal biitlinliigiinii tehlikeye
atabilir, bu da ugagin giivenligini riske sokabilir. Shimmy fenomeni, inis takiminda
yapisal hasarlara, yolcular i¢in rahatsiz edici titresimlere ve en kotii durumda ugak
kazalarina yol acabilecek ciddi bir sorundur. Bu nedenle, shimmy salinimlarinin
kontrol altina alinmasi ve minimize edilmesi, inis takimi tasariminda en Snemli
hedeflerden biri olarak kabul edilir.

Shimmy fenomeninin genis ¢apli bir sorun olmasi, miihendisler ve arastirmacilar
tarafindan yogun olarak calisilmasina yol agmistir. Bu ¢alismalarin biiytik bir kismu,
shimmy salinimlarin1 anlamak ve onlemek i¢in matematiksel modelleme, analitik
inceleme ve simiilasyon tekniklerine dayanmaktadir. Shimmy, ugagin ileriye dogru
hareketiyle tetiklenen ve lastik deformasyonlari, inis takiminin elastik 6zellikleri ve
ylizey diizensizlikleri gibi faktorlerin etkisi altinda gelisen kendiliginden uyarilan
salinimlar olarak tanimlanir. Bu salinimlar, kiigiik rahatsizliklardan yapisal hasarlara
kadar uzanan genis bir etki spektrumuna sahip olabilir. Shimmy fenomeninin bu denli
karmasik ve tehlikeli olmasi, inis takimi tasariminda kapsamli bir analiz ve modelleme
gerektirir.

Shimmy fenomenini incelemek i¢in kullanilan analitik yontemler, inis takimlarinin
dinamik davranigini ve yapisal biitiinliigiinii modellemek amaciyla kapsamli ve detayli
matematiksel yaklasimlar gerektirir. Bu tiir analizlerde, inig takimlarinin karmasik
dinamik yapisini tam olarak temsil edebilmek i¢in genellikle Lagrange denklemi temel
almir. Lagrange denklemleri, enerjinin korunumu ilkelerine dayanan giiglii bir
matematiksel arag olarak, fiziksel sistemlerin hareket denklemlerini tiiretmekte kritik
bir rol oynar. Bu denklemler, bir sistemin potansiyel ve kinetik enerjisini dikkate
alarak, sistemi tanimlayan diferansiyel denklemleri olusturur.

Ozellikle shimmy fenomeninin anlasiimasinda, bu yéntemler biiyiik énem tasir.
Shimmy, inis takimlarinda, genellikle yiiksek hizlarda karsilasilan ve kontrol
edilmezse ucus giivenligini tehdit edebilecek tehlikeli bir salinim tiiriidiir. Bu
fenomeni analiz etmek amaciyla gelistirilen matematiksel modeller arasinda, farkli
derecelerde serbestlik iceren sistemler bulunmaktadir. Ornegin, shimmy davranisini
temsil eden basit bir model, ii¢iincii dereceden, bir serbestlik dereceli bir sistem
olabilir. Bu tiir bir model, yaw (sapma) hareketini temsil eder ve shimmy
salinimlarmin temel dinamiklerini incelemek i¢in yeterlidir. Bununla birlikte, daha
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karmagik durumlar1 analiz etmek i¢in, hem yaw hem de lateral (yanal) hareketleri
kapsayan besinci dereceden, iki serbestlik dereceli sistemler de kullanilabilir. Bu daha
gelismis modeller, inis takimmin hareketinin daha genis bir spektrumunu kapsar ve
shimmy fenomeninin daha kapsamli bir sekilde incelenmesine olanak tanir.

Bu modellerin temel amaci, shimmy salinimlarinin dinamik 6zelliklerini anlamak ve
bu salinimlarin inis takimina ve dolayisiyla ugus glivenligine olan potansiyel etkilerini
degerlendirmektir. Shimmy'nin ortaya ¢ikmasi ve biiylimesi, inig takiminin yapisal
biitlinliigiinti tehdit edebilir ve bu nedenle bu fenomenin 6nceden tespit edilmesi ve
kontrol altina alinmasi hayati 6neme sahiptir. Bu baglamda, sistemlerin stabilitesini
incelemek, shimmy riskini degerlendirmenin Onemli bir parcasidir. Stabilite
analizlerinde, sistemin karakteristik denkleminin koklerini ve bu koklerin gercek
eksen lizerindeki konumlarmi degerlendirmek i¢in Routh-Hurwitz Kriterleri gibi
yontemler kullanilir. Routh-Hurwitz kriterleri, sistemin stabil olup olmadigini
belirlemek i¢in matematiksel olarak saglam bir temel saglar. Sistem koklerinin ger¢ek
eksende olup olmadigi, shimmy fenomeninin baslamasi ya da biiyiimesi agisindan
kritik bir gosterge olup, bu koklerin kompleks diizlemdeki konumu, sistemin uzun
vadeli davranigini belirler.

Matematiksel modellerin tiiretilmesinden sonra, bu modeller {izerinde c¢esitli
simiilasyonlar gerceklestirilir. Simiilasyonlar, MATLAB ve Simulink gibi gelismis
yazilimlar kullanilarak yapilir. Bu simiilasyonlar, inis takimi1 dinamiklerini ve shimmy
fenomenini daha iyi anlamak i¢in 6nemli veriler saglar. Simiilasyonlarin yani sira,
modellere Linear Quadratic Regulator (LQR) kontrolcii tasarimi gibi kontrol
stratejileri uygulanir. LQR kontrolciileri, sistemin performansini optimize etmek
amaciyla geri besleme kazanclarini belirler ve bdylece shimmy salinimlarint minimize
eder. Bu kontrol stratejileri, shimmy fenomenini kontrol altina almak ve minimize
etmek i¢in etkili bir ¢dziim sunar.

Bu tiir analiz siireglerini daha pratik ve kullanici dostu hale getirmek i¢in, shimmy
fenomenini incelemek iizere LaGeSh adl1 6zel bir uygulama gelistirilmistir. LaGeSh,
lastik 6zellikleri, kayma agisi, caster uzunlugu, tekerlek kuvveti, atalet momentleri ve
ucak hiz1 gibi parametrelerin kolayca ayarlanmasina olanak tanir. Bu parametreler
tizerinde yapilan degisiklikler, ugagin shimmy titresimlerine kars1 duyarliligim
degerlendirmeyi saglar ve kontrolcili parametrelerinin optimize edilmesine yardime1
olur. Ayrica, LaGeSh, cesitli parametreler arasindaki iligkileri gorsellestirmek icin
karsilastirmali grafikler olusturabilir. Bu grafikler, caster uzunlugu ve ugak hiz1 veya
tekerlek kuvveti ve ucak hiz1 gibi iligkileri daha iyi anlamak igin kritik bir ara¢ sunar.
LaGeSh'in sundugu bu gorsel ve analitik araglar, shimmy fenomeninin daha
derinlemesine incelenmesi ve bu fenomeni kontrol altina almak igin etkili ¢oziimler
gelistirilmesi agisindan biiyiik bir deger tasir.

Sonug olarak, shimmy fenomeni, inig takimi tasariminda dikkate alinmasi gereken
karmasik ve tehlikeli bir olgudur. Ucaklarin giivenli bir sekilde inis yapmasi ve yerde
manevra yapmast i¢in shimmy fenomeninin etkilerinin minimize edilmesi biiyiik bir
Onem tasir. Bu amacla gelistirilen matematiksel modeller, simiilasyonlar ve kontrol
stratejileri, shimmy fenomeninin anlasilmasina ve etkili bir sekilde kontrol altina
alinmasina katki saglar. LaGeSh gibi 6zel uygulamalar ise bu siire¢leri daha kullanic
dostu ve erisilebilir hale getirir. Bu sayede, miihendisler, ugaklarin inis takimlarin
daha giivenli ve verimli bir sekilde tasarlayabilir, ugak operasyonlarinin giivenligini
artirabilir.
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1. INTRODUCTION

The shimmy phenomenon refers to a self-excited oscillatory motion commonly
observed in aircraft. This phenomenon manifests as intense angular vibrations during
movement, posing significant safety risks. Although the main causes of shimmy
appear to be the tire and wheel, it depends on various parameters such as caster length,
aircraft speed, and moment of inertia. Shimmy is particularly dangerous in the tail
landing gear of tail-wheel type landing gears and the nose landing gear of tricycle type
landing gears. If not properly controlled, it can lead to severe structural damage. To
understand and mitigate this phenomenon, comprehensive models are required that
consider various parameters, including tire dynamics, suspension systems, and the

interaction between the vehicle and the road surface.

1.1 Literature Review

The phenomenon of shimmy has long been analyzed by researchers and engineers in
the aviation industry. Early studies focused on modeling the dynamic behavior of tires.
Some of these early tire models, developed by VVon Schlippe in 1941 [1] and Moreland
in 1954 [2], are still in use today. Building on the work of Von Schlippe and Moreland,
Smiley developed a summary theory in 1956. Smiley and Horne conducted
experiments on different aircraft tire sizes and parameters, proposing empirical
formulas for calculating tire parameters. In 1966, Pacejka [3] expanded the Von
Schlippe tire model with a straightforward tangential approach and suggested
nonlinear models. In 1974, Rogers [4] developed an empirical tire model based on
measured transfer functions. Grossman [5] demonstrated the use of linearization
techniques to simplify nonlinear analysis in 1980. More recent work by Somieski [6]
in 1997 applied well-known linear and nonlinear methods to analyze the nonlinear
model of landing gear and tire mechanics, including eigenvalue calculations, analytical
solutions of stability boundaries, and limit cycle determination. Additionally, typical
tire and landing gear parameters for a 10-ton small aircraft were provided.



Besselink [7] analyzed twin-wheel cantilever aircraft landing gear in 2000. Simple
linear and nonlinear models available in the literature, along with empirical formulas
for calculating tire parameters, were summarized. The impact of different landing gear
parameters on shimmy was investigated. In 2006, Long [8] developed an active control
strategy to suppress shimmy oscillations. The stability changes of shimmy with
varying casting length and speed were analyzed for a linear system, and a new control
strategy was formed by combining RMPC control law with linear parameter-varying
polytope design. Atabay [9] performed shimmy analysis of torsional nose landing gear
using the model and parameters provided by Somieski [6]. The effect of parameters
such as caster length and tire's semi-contact length on stability was investigated. An
MR damper using the current-dependent Bouc-Wen model was incorporated into the

torsional landing gear model with and without clearance in 2012.

Although the primary application of shimmy analysis is in airplanes, shimmy
vibrations can also occur in helicopters. Helicopter-specific studies have been
conducted by Kogan and Butts [10] and Grossini et al. [11]. Kogan and Butts [10]
developed a full aircraft shimmy model for the CH-53K and compared the results with
an independent model using nonlinear analysis software, VI-Aircraft. Given the
previous aircraft test experience with the CH-53A, the full aircraft model provided a
better understanding of the shimmy phenomenon in 2010. Grossini et al. [11] modeled
the landing gear of the A109 helicopter using two multibody models with two and five

degrees of freedom.

1.2 Methodology

A mathematical model of a third-order, single-degree-of-freedom system representing
yaw motion and a more complex fifth-order, two-degrees-of-freedom system
accounting for both yaw and lateral motions are derived. These equations are
formulated in state-space form. The stability analyses of these systems, written in this
form, are examined using the Routh-Hurwitz criteria and eigenvalue evaluations. After
deriving the mathematical equations, various simulations are performed using
MATLAB and Simulink. Once the mathematical models and simulation frameworks
are established and validated, control strategies such as Linear Quadratic Regulator
(LQR) controller design is applied to both models. To facilitate the analysis process, a

specialized application called LaGeSh has been developed. This application allows for



the adjustment of multiple parameters, including tire characteristics, slip angle, caster
length, force, moments of inertia, and aircraft speed. With this application, various
results such as the stability status of the system in stable and unstable regions and
controller design can be obtained. Comparative graphs can be generated, such as
aircraft speed versus caster length and aircraft speed versus force, to determine the
optimal parameter configurations. The generated graphs can be examined for a single
condition, and controller design for unstable conditions is also possible. In the

controller design, LQR (Linear Quadratic Regulator) method has been utilized.






2. LANDING GEAR SYSTEMS

2.1 Landing Gear Configurations

In terms of landing gear, aircraft have various types such as single main, taildragger
(tail-wheel), quadricycle, bicycle, tricycle, and multi-bogey. These aircraft
configuration types can be seen in Figure 2.1. Among these, the most important types
are the tricycle and taildragger (tail-wheel) landing gear. Each type has its own
advantages and disadvantages. In tricycle landing gear, the main landing gears are
located behind the center of gravity (CG), which increases stability during taxiing.
However, in tail-wheel landing gear, the main landing gears are in front of the CG,

resulting in lower stability during taxiing compared to tricycle landing gear.
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Figure 2.1 : Landing gear comfigurations [13].



2.2 Landing Gear Components

Landing gear is crucial for an aircraft, serving as a vital component for safe takeoffs
and landings. As seen in Figure 2.2, the landing gear contains many components. This
system comprises various components, each playing an essential role in its
functionality. The primary parts of the landing gear system include the cylinder, piston,
axle, brake, wheel, and tire. For aircraft with retractable landing gear, additional
components such as extension/retraction actuators are necessary. Depending on the
type of aircraft, if the front or rear landing gears are non-steerable, equipment like

centering cams and center lock actuators may also be present.

One of the most critical elements of the landing gear is the shock absorber. The shock
absorber consists of various parts housed within the piston and cylinder, designed to
absorb and dissipate the kinetic energy from landing impacts. Additionally, the
selection of components like the wheel and tire is of paramount importance, as they
directly influence the aircraft's performance and safety during landing and takeoff.
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Figure 2.2 : Landing gear components [16].



2.2.1 Shock absorbers

Shock absorbers play the most crucial role in absorbing energy during landing. It can
be said that shock absorbers are the most complex and relatively high-cost components
of landing gear. However, there are some simple types of shock absorbers used for
light, ultra-light, small, and home-built aircraft or helicopters. In this section, the types
of shock absorbers will be briefly introduced and compared. Figure 2.3 shows a

comparison of the efficiency of different landing gear shock absorber types. [17]

2.2.1.1 Solid spring

These types of shock absorbers are preferred due to their simplicity and low cost.

2.2.1.2 Steel spring

Steel springs are often useful due to their simplicity and ease of maintenance. They are
commonly preferred for light aircraft.

2.2.1.3 Rubber spring

It is a type of shock absorber that utilizes the high damping properties of rubber.
However, it is not preferred today due to its lack of control, mechanical weaknesses,

and inability to withstand high temperatures.

2.2.1.4 Liquid spring

Fluid damping systems were used from World War Il until the 1980s. Although they
resemble oleo-pneumatic systems, their need for high fluid pressure and sensitivity to

temperature changes in the fluid make them very heavy and inefficient.

2.2.1.5 Air pneumatic

Pneumatic dampers are heavier and less efficient compared to oleo-pneumatic
dampers. As a result, pneumatic systems are not used today.

2.2.1.6 Oleo-Pneumatic

Modern aircraft and rotorcraft use oleo-pneumatic shock absorbers in their landing
gear. Oleo-pneumatic shock absorbers consist of a gas spring and a hydraulic damper.
The gas springs can be designed as single-stage or double-stage. The nitrogen-filled

gas chamber acts as a spring during landing, while the oil passing through the orifice



between chambers to balance the pressure changes in the fluid creates a damping
effect. Additionally, design solutions such as metering pin and poppet valves are

available for the damper.
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Figure 2.3 : The efficiency of shock damper models [17].

The shock absorber systems in landing gear consist of two interrelated components:
the gas spring and the damper. The gas springs can be single or double chamber, while
the dampers include mechanisms such as metering pin and poppet valves. The
operating principle of shock absorber systems is that during the vertical descent of the
aircraft to the ground with a certain acceleration and speed, the gas compresses
between the piston and the oil, increasing its pressure. This compression forces the
fluid through the orifice, creating the damping force. The gas spring operates based on
the ideal gas principle, calculated using the F_spring formula. The damper force for
the poppet valve is defined by mathematical equations, while the behavior curve of the
adjustment rod mechanism is determined through dynamic analysis. The parameters
used during the design process and the resulting spring and damper curves are shown
below with mathematical relations. In hydraulic force calculations, one important
parameter is the orifice discharge coefficient (Cq), which depends on the dimensional

parameters and vertical speed of the landing gear.

2.2.1.7 Spring force

The spring force in oleo-pneumatic systems is generated by the compression and
subsequent expansion of nitrogen gas and oil. Since oil is a liquid, its compression is

negligible. The spring force in oleo-pneumatic systems is created in two different



configurations: single-chamber systems and double-chamber systems. The following
formula is used as a reference for both configurations.

Y1
Fspring = P2A 1— V1 (2.1)

Yo

Nitrogen Gas Pressure (P2): The pressure value generated by nitrogen gas is calculated
by considering the state of the system at full extension. It is obtained by multiplying

the constant pressure value by the expansion ratio.
Pneumatic Area (A): Calculated from the piston diameter.

Stroke Position (y1): A variable length that can move as much as the stroke length due
to the movement of the piston.

Piston Length (yo): A fixed length that must be greater than the stroke length.

2.2.1.8 Single gas chamber systems

Figure 2.4 shows an example of a single gas chamber oleo-pneumatic system. In these
types of systems, the spring force is provided by nitrogen gas compressed in a
chamber. When the aircraft piston begins to compress, the oil applies pressure to the
air chamber, causing it to compress. This compression continues until the equation of
equilibrium is reached. Once this equilibrium is achieved, the compression of the air
chamber stops. The air chamber then starts to push the oil back, indicating that the
compression phase has ended and the expansion phase has begun. Figure 2.5 shows

the spring force-stroke curve of the single gas chamber oleo-pneumatic system

Figure 2.4 : Single gas chamber oleo-pneumatic systems [17].
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Figure 2.5 : Spring force-stroke curve in single gas chamber systems.

2.2.1.9 Double gas chamber systems

These systems generate more spring force compared to single-chamber systems due to
the presence of multiple chambers that can be compressed. The spring force in such
systems is generally calculated using the Fspring formula. While the number of
chambers can be increased, production typically favors a two-chamber design. This is
because the cost increases with each additional chamber, and the benefits diminish
beyond the first addition. Figure 2.6 shows an example of a double gas chamber oleo-
pneumatic system, and Figure 2.7 presents its spring force-stroke curve.
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Figure 2.6 : Double gas chamber oleo-pneumatic systems [17].
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Figure 2.7 : Spring force-stroke curve in double gas chamber systems.

2.2.1.10 Damper force

The damper force is the force generated to balance the spring force. It can be increased
or decreased as needed. In pinned oleo-pneumatic systems, the presence of the stroke
speed value in the damper force equation allows for the determination of damper force

values by establishing a dynamic model. In contrast, for systems with poppet valves,
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the damper force-speed curve can be determined without a dynamic model, as the

design of the poppet takes speed value.

1 Aclyly

2°Cla 2

F damper =

Hydraulic Area (A1): This is calculated by subtracting the area of the pin from the main
orifice area. Due to the geometry of the pin, it varies according to the stroke position

and is used in determining the damper force.

Discharge Coefficient (Cq): This is the most important parameter in calculating the
damper force. The discharge coefficient represents the flow rate through the orifice

and, therefore, has a maximum value of 1.

Orifice Area (Ao): This is the sum of the fixed orifices, expansion orifices, and main
orifice areas. Expansion orifices are only considered during the expansion phase.
2.2.1.11 Oleo-pneumatic systems with metering pins

Figure 2.8 shows the main components of the landing gear.

Metering pin

Upper Oil
Chamber

Snubber orifice l-— 1 + Jl Main orifice I

Snubber
Chamber

Lower Oil
Chamber

i Floating piston |

Air
Chamber

Figure 2.8 : Oleo-pneumatic systems with metering pins [18].
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Air Chamber: This is the section containing nitrogen gas (N2) and generates the
system's spring energy. The spring force is calculated using the formula above.

Floating Piston: This component separates the nitrogen gas from the oil. The oil passes
through the orifice and applies pressure to the piston. Therefore, the piston is designed

considering the maximum pressure.

Lower Oil Chamber: During compression, this chamber compresses the air chamber
with the oil passing through the orifice until the pressure-volume relationship equalizes
(P1V1" = P2V2"). When this equilibrium is reached, the system stops. It is one of the
components that provide damping force to the system.

Snubber Orifice and Snubber Chamber: These are optional components. These

components are used to reduce the damping force.

Main Orifice: This is the section through which the metering pin passes. As the pin
has variable diameters in different sections, the orifice diameter should be determined

considering the widest part of the pin and the vibration during compression.

Main Piston: This part contains the orifice holes. It moves, causing the hydraulic area

to change due to the pin having variable diameters in different sections.

Upper Oil Chamber: This chamber houses the metering pin and most of the oil. During
compression, it sends oil to the lower chamber, and during expansion, it collects the

oil again.

Metering Pin: This is the most critical component determining the damping force

generated to dampen the system. The pin has variable diameters along its length.

13



2.2.1.12 Oleo-pneumatic systems with poppet valf

Figure 2.9 : Poppet valve open status.

Figure 2.10 : Poppet valve close status.

In shock absorber systems with poppet valves, the variability of the fluid flow area
depends on the poppet. While the orifice holes in a metering pin are fixed, the orifice
holes in a poppet valve change according to speed and pressure. The poppet valve has
taxi holes that are always open. At the center of the system is the poppet valve itself,
which opens to increase the orifice area based on changes in speed. This reduces the
increase in pressure difference, thereby increasing the damping force. This opening
and closing are passively controlled by a spring that connects the poppet valve to the
mechanism. Figures 2.9 and 2.10 show the poppet valve component in its open and
closed states.
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2.2.2Tire

Most aircraft are used with pneumatic tires. With technological advancements,
pneumatic tires have become a lightweight and effective solution compared to other
options. The primary functions of these tires include generating adequate friction with
the ground, distributing the applied load over a contact area, and providing shock
absorption. Figure 2.11 shows the normal pressure and longitudinal stress curves

corresponding to the forces applied to the tire.

NORMAL
PRESSURE

STRESS

LONGITUDINAL

Figure 2.11 : Tire (Normal pressure — Longitudinal stress) [20].

Most aircraft are used with pneumatic tires. With technological advancements,
pneumatic tires have become a lightweight and effective solution compared to other
options. The primary functions of these tires include generating adequate friction with
the ground, distributing the applied load over a contact area, and providing shock
absorption. When a force is applied perpendicular to the wheel plane, the tire moves
along the wheel plane. In contrast, when a lateral force is applied, it generates a lateral
force in the contact area, causing the tire to move along a path at an angle to the wheel

plane. This angle is known as the slip angle. At small slip angles, the cornering force
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on the ground plane typically lags behind the applied lateral force, resulting in a torque
that aligns the wheel plane with the direction of motion. This torque is known as the
self-aligning torque and is the primary moment that returns the tire to its original
position after a turn. The distance between the lateral force and the cornering force is
referred to as the pneumatic trail, and the product of the cornering force and the
pneumatic trail produces the self-aligning torque. Figure 2.12 shows the factors
affecting tire behavior. [19][20]

LATERAL
FORCE

4
1 p+— CORNERING
PNEUMATIC

eEv DRAG
TRAIL SNt I \

CORNERING
FORCE

SELF-ALIGNING
TORQUE

PATH OF
ADVANCE

Figure 2.12 : Tire behaviour [19].

This thesis focuses on the analytical tire model. There are primarily two types of
analytical tire models: the straight tangent approximation and the elastic string tire
model. In this study, the elastic tire model will be used. The following formula
illustrates this approach:

Yy = —gyl + Vsin(¥) + (e — a)¥ cos(¥) cos(®) + [,cos () (2.3)
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The term y; represents the lateral displacement in the y-axis at the leading contact
point. V denotes the velocity of the aircraft, o is the relaxation length of the tire, ¥ is
the yaw angle e is the caster length, 2a is the total contact length, and @ is the rank
angle. In this thesis, the rake angle of the landing gear is assumed to be O degrees.
After linearization and substituting the necessary values, the following equation is
obtained:

sin(¥) =y (2.4)
cos(¥) =1 (2.5)
cos(®) =cos(0) =1 (2.6)
As a result, the equation,
% .

This equation will be used in the shimmy model.

As shown in Figure 2.13, the relationship between cornering force and slip angle is
provided. Beyond a certain angle, the relationship between slip angle and cornering
stiffness becomes nonlinear. Therefore, a low slip angle value has been chosen for this
thesis.

\

W=38.5 kN /

AF,

=9
o

Act

4]

Cornering Force (kN)
(=]

2 4
Slip Angle (°)

Figure 2.13 : Cornering Force — Slip Angle [15].
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3. LANDING GEAR SHIMMY OSCILLATIONS

Shimmy is a rapid, oscillatory motion that occurs in an aircraft's landing gear,
primarily during taxiing, takeoff, or landing. This phenomenon is caused by several
factors, including imbalances in the wheels, loose or worn components, and
misalignment. When the wheels are not balanced, they can cause vibrations similar to
those experienced when a car's wheels are out of balance. Loose or worn parts such as
bearings and bushings can exacerbate these vibrations, while improper alignment can
cause uneven movement and additional stress on the landing gear. The speed of the
aircraft and the surface it is moving over can also influence the occurrence of shimmy,
with rough surfaces and certain speeds being more prone to inducing this oscillation.
Shimmy can lead to increased wear and tear on the landing gear, necessitating more
frequent maintenance and repairs. Figure 3.1 shows the shimmy phenomenon. It can
also affect passenger comfort and, in severe cases, compromise the pilot's ability to
control the aircraft during critical phases of flight. To prevent shimmy, regular
maintenance is essential, including balancing the wheels and inspecting for worn parts.
Proper alignment of the landing gear and the use of shock absorbers can also help

mitigate the effects of shimmy, ensuring a smoother and safer operation of the aircraft.

roll-
oscillation

lateral-oscillation yaw-oscillation

. J
Y

shimmy

Figure 3.1 : Shimmy phenomenon [9].
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3.1 Eigenvalues and Characteristic Equation

Eigenvalues and the characteristic equation are crucial in the aviation industry for
analyzing and ensuring the stability and performance of aircraft systems. Eigenvalues
are special numbers that arise from solving the characteristic equation of a matrix that

represents a system. The characteristic equation,
det(A—A1) =0 (3.1)

where | is the identity matrix, is a polynomial equation whose roots are the eigenvalues
of the matrix A. The eigenvalues of the system matrix in flight dynamics determine
the stability of an aircraft; negative real parts of eigenvalues indicate a stable system,

while positive real parts suggest instability.

As an example, if we derive the characteristic equation of the state space form of a 1

DOF third order shimmy model:

0 1 O
A= () C3] (32)
V ¢4 c5
A 0 O
Al = [0 A O] (3.3)
0 0 A
A 1 0
det(A—A)=(c; =2 ¢ (3.4)
%4 Cy s — A
Az =M (s —2) + 0+ Vez — (0 + c3c4A + ((c5 —A)cy)) =0 (3.5)
A3 = (cz + c5)A? + (c265 — €1 — €3¢4)A + (€165 — Vez) = 0 (3.6)
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The roots of the derived characteristic equation provide the eigenvalues and determine
the stability condition. Similarly, the characteristic equation of the 2 DOF fifth order

shimmy model is derived, and stability analysis is performed using the eigenvalues.

3.2 Routh-Hurwitz Criterion

The Routh-Hurwitz Criterion is a mathematical method used in the aviation industry
to determine the stability of dynamic systems without solving for the eigenvalues
explicitly. This criterion provides a systematic procedure to assess whether all the roots
of a characteristic polynomial lie in the left half of the complex plane, which
corresponds to stable behavior. In aviation, ensuring the stability of control systems
and dynamic models is critical for safe operation. The Routh-Hurwitz Criterion
involves constructing the Routh array from the coefficients of the characteristic
polynomial. By examining the first column of this array, one can determine the number
of roots with positive real parts. If there are no sign changes in the first column, the
system is stable.

3.3 One DOF Third Order Landing Gear Shimmy Model

The research work mentioned in Section 1.1, present the developed landing gear and
tire models. Among the mentioned research work Somieski [6] provides a modeling
approach of coupling simple mechanical model and the elastic tire model, the
equations are also linearized and typical values of the landing gear system parameters
of a small aircraft are provided. Therefore, the modeling approach by Somieski is
widely used by other researchers [8][9]. The same approach shall be used in the current
analysis, the detailed explanation of tire and landing gear mechanical models are can
be found in some doctoral thesis [7] [[8][9] . The simple trailing wheel model seen in

Figure 3.2 and Figure 3.3 are used to evaluate the shimmy instability.
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Figure 3.2 : Shimmy dynamic model side view [12].
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Figure 3.3 : Shimmy dynamic model top view [12].

The torsional dynamics of the lower parts of the landing gear is described by the

following equation [6]:

LY =M, + M, + M; + M, (3.7)
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Where 1z is the moment of inertia about the z-axis. My is the linear spring torque
provided by the turning tube and the torque link and M2 is a combined damping
moment from the viscous friction in the bearings of the oleo-pneumatic shock
absorber. Mz is the tire moment due to tire lateral deformation and My is the tire
damping moment due to tire tread width. In the following equations, the notation of
stiffness and damping has been changed from the original equations [6] similar to
Atabay [9], such that the stiffness is represented by ky and the damping by cy.

M, = ky¥ (3.8)
M, = cy¥ (3.9)
My = M, — cF, (3.10)
M, = glp (3.11)

M is aligning torque and Fy is the cornering force. The constant K is defined as [6],[9]:
K = —0.15a%Cp,F, (3.12)

Fy and M; depend on the vertical force F; and slip angle a.

E = { CrqaF,, a<éd
Y " |CpgOFE,sign(a), a>§ (3.13)
Iy c 21 (180 ), <
Mo ——Sin (—a a<a
FZ =1 1807 Ty ! (3.14)
0, a>ag
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Where ¢ is the limiting slip angle of tire force (5 degrees) and ag IS the limiting angle
of tire moment (10 degrees). The lateral deflection of the tire is;

v .
Vit =V¥+(e-a¥ (3.15)

From y1 an equivalent slip angle is formed as:

V1
a = arctana = — (3.16)

The equations given above are linearized and summerized in state-space form with
states;

0 1 0
1/ - k_‘l’ _ C_‘P i FZ(CMa B eCFa) 1)
p|= L L, Vi, I,0 llp] (3.17)
il | v |
e—a —-— ]
o

Table 3.1 : 1 DOF 3 order shimmy model parameters.

Description Parameter Value Unit
ky torsional spring rate 100000 Nm/rad
Cy torsional damping constant 50 Nm/rad/s
I, rotational area moment of inertia 1 kgm?
K tire longitudinal slip; tread width 270 Nm2/rad

moment constant
F, vertical force 9000 N
Cona tire self-alligning moment derivative -2 m/rad
Ctu tire side force derivative 20 1/rad
a half contact length 0.1 m
e caster length 0.05 m
V velocity of aircraft 100 m/s
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3.3.1 One DOF third order stable/unstable region

In this study, stability analysis was performed both by calculating the eigenvalues and
by using the Routh-Hurwitz criteria. The e-V plane can only be used during the design

phase, while the F.-V plane can also be used during the operational phase.

3.3.1.1 One DOF third order shimmy model e-V plane stability status

In this section, caster length (e) and aircraft speed (V) are defined as variables. The
stability and instability conditions of the system will be investigated based on these
variations. While plotting the e-V plane, for different rotational stiffness coefficient

(kw) values are used. The other parameter values are taken from Table 3.1.

04 1 DOF 3 ORDER MODEL e-V Status Stability Region

03
E
£ 02+
o
& o1
©
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0 -
-0.1 1 | | 1 | | | 1 | |
20 40 60 80 100 120 140 160 180 200
Velocity (m/s)
Figure 3.4 : 1 DOF Stability region of e-V plane for k=100000 Nm/rad
(Eigenvalue).
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Figure 3.5 : 1 DOF Stability region of e-V plane for k=100000 Nm/rad (Routh-
Hurwitz).
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Figure 3.6 : 1 DOF Torsional stability for k=100000 & V=120 m/s & €=0.1325 m
(unstable).
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Figure 3.7 : 1 DOF Torsional stability for k=100000 & V=85 m/s & e=0.1325 m
(stable).
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Figure 3.8 : 1 DOF Stability region of e-V plane for k=75000 Nm/rad (Eigenvalue).
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1 DOF 3 ORDER MODEL e-V Status Stability Region
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Figure 3.9 : 1 DOF Stability region of e-V plane for k=75000 Nm/rad (Routh-
Hurwitz).
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Figure 3.10 : 1 DOF Torsional stability for k=75000 & V=153 m/s & €=0.135 m
(unstable).
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Figure 3.11 : 1 DOF Torsional stability for k=75000 & V=52 m/s & e=0.135m
(stable).
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Figure 3.12 : 1 DOF Stability region of e-V plane for k=50000 Nm/rad
(Eigenvalue).
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Figure 3.13 : 1 DOF Stability region of e-V plane for k=50000 Nm/rad (Routh-
Hurwitz).
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Figure 3.14 : 1 DOF Torsional stability for k=50000 & V=173 m/s & e=0.14 m
(unstable).
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Figure 3.15 : 1 DOF Torsional stability for k=50000 & V=33 m/s & €=0.14 m
(stable).
04 1 DOF 3 ORDER MODEL e-V Status Stability Region
03 -
0.2
0.1+~
0 =
-0.1 | 1 1 | 1 1 1 | 1 1
20 40 60 80 100 120 140 160 180 200
Velocity (m/s)
Figure 3.16 : 1 DOF Stability region of e-V plane for k=25000 Nm/rad
(Eigenvalue).
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Figure 3.17 : 1 DOF Stability region of e-V plane for k=25000 Nm/rad (Routh-
Hurwitz).
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Figure 3.18 : 1 DOF Torsional stability for k=25000 & V=187 m/s & e=0.14 m
(unstable).
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Figure 3.19 : 1 DOF Torsional stability for k=25000 & V=18 m/s & €=0.14 m
(stable).
Conclusion;

- As seen in Figures 3.4-3.5, 3.8-3.9, 3.12-3.13, and 3.16-3.17, the system was
solved using both the eigenvalue method and the Routh-Hurwitz method,

resulting in identical graphs. Therefore, only one method will be used in the

subsequent graphs.

- Asseenin Figures 3.6-3.7, 3.10-3.11, 3.14-3.15, and 3.18-3.19, both stable and
unstable conditions were created. Closely spaced values were selected to

examine the critical conditions while generating the curves.

- Table 4.2 shows that as the normal tire force increases, stability decreases.

Conversely, as the rotational stiffness coefficient increases, stability also
increases.
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Table 3.2 : 1 DOF 3 order the effect of F, change on e -V plane.

e=-0.1-04 m

Rotational Stiffness Coefficient

V=1-200 m/s

Fz=10000 N

Fz=12500 N

Fz=15000 N

Fz=17500 N

Fz=20000 N

k=100000 Nm/rad
87.09 % stable

55.32 % increment
66.16 % stable

17.99 % increment
56.07 % stable
49.5 % stable

11.72 % decrement

44.8 % stable
20.10 % decrement

k=75000 Nm/rad
76.48 % stable
51.42 % increment
59.23 % stable
17.26 % increment
50.51 % stable
44.75 % stable

11.40 % decrement

40.64 % stable
19.54 % decrement

k=50000 Nm/rad
65.38 % stable
46.76 % increment
51.95 % stable
16.61 % increment
44.55 % stable

39.69 9% stable

10.91 %
decrement

36.13 % stable

18.9 % decrement

k=25000 Nm/rad
54.47 % stable
43.08 % increment
44.00 % stable
15.58 % increment
38.07 % stable
34.04 % stable

10.59 % decrement

31.16 % stable
18.15 % decrement

3.3.1.2 One DOF third order shimmy model Fz-V plane stability status

In this section, normal tire force (F;) and aircraft speed (V) are defined as variables.

The stability and instability conditions of the system will be investigated based on

these variations. While plotting the F,-V plane, for different rotational stiffness

coefficient (k) values are used. The other parameter values are taken from Table 3.1.
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Figure 3.20 : 1 DOF Stability region of F; -V plane for k=100000 Nm/rad

(Eigenvalue).
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Figure 3.21 : 1 DOF Torsional stability for k=100000 & V=30 m/s & Fz=19000 N
(unstable).
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Figure 3.22 : 1 DOF Torsional stability for k=100000 & V=26 m/s & Fz=19000 N
(stable).
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Figure 3.23 : 1 DOF Stability region of F; -V plane for k=75000 Nm/rad
(Eigenvalue).
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Figure 3.24 : 1 DOF Torsional stability for k=75000 & V=22 m/s & Fz=19000 N
(unstable).
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Figure 3.25 : 1 DOF Torsional stability for k=75000 & V=20 m/s & Fz=19000 N
(stable).
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Figure 3.26 : 1 DOF Stability region of F; -V plane for k=50000 Nm/rad
(Eigenvalue).
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Figure 3.27 : 1 DOF Torsional stability for k=50000 & V=15 m/s & Fz=19000 N
(unstable).
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Figure 3.28 : 1 DOF Torsional stability for k=50000 & V=13 m/s & Fz=19000 N
(stable).

1 DOF 3 ORDER MODEL F-V Status Stability |

*  unstable

0 | | | 1 | | | 1 1 |
20 40 60 80 100 120 140 160 180 200

Velocity (m/s)

Figure 3.29 : 1 DOF Stability region of F.-V plane for k=25000 Nm/rad
(Eigenvalue).
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Figure 3.30 : 1 DOF Torsional stability for k=25000 & V=8 m/s & Fz=19000 N
(unstable).
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Figure 3.31 : 1 DOF Torsional stability for k=25000 & V=6 m/s & Fz=19000 N
(stable).
Conclusion;

- In Figures 3.20, 3.23, 3.26, and 3.29, the stable region is observed. In these

graphs, the variables are normal tire force and aircraft speed..

- Asseen in Figures 3.21-3.22, 3.24-3.25, 3.27-3.28, and 3.30-3.31, both stable
and unstable conditions were created. Closely spaced values were selected to

examine the critical conditions while generating the curves.

- Examining Table 4.3, it is evident that an increase in caster length (e) expands
the stability region. Similarly, an increase in the rotational stiffness coefficient

also expands the stability region.
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Table 3.3 : 1 DOF 3 order the effect of e change on F; -V plane.

Fz=0-50000 N Rotational Stiffness Coefficient
V=1-200 m/s k=100000 Nm/rad k=75000 Nm/rad k=50000 Nm/rad k=25000 Nm/rad
6026 m 42.93 % stable 39.6 % stable 35.95 % stable 31.79 % stable
25.59 % increment  26.92 % decrement  28.56 % decrement  30.71 % decrement
=028 m 49.00 % stable 45.57 % stable 41.80 % stable 37.5 % stable
15.06 % decrement  15.91 % decrement  16.95 % decrement 18,27 % decrement
€=0.30m 57.69 % stable 54.19 % stable 50.32 % stable 45.88 % stable
_ 70.64 % stable 67.17 % stable 63.33 % stable 58.94 % stable
e=0-32m 2245 % increment  23.95 % increment  25.85 % increment  28.47 % increment
89.99 % stable 87.3 % stable 84.18 % stable 80.50 % stable
e=0.34m

55.99 % increment

61.01 % increment

67.29 % increment

75.46 % increment

3.4 Two DOF Fifth Order Landing Gear Shimmy Model

In addition to the One DOF third-order shimmy model presented in Section 3.3, a
lateral DOF has been added. Consequently, the system becomes, as seen in Figure
3.32, 2 DOF fifth-order model, considering the tire order. The system used by Arreza
[14] will be applied.

~" Shimmy

Figure 3.32 : 2 DOF (Yaw and lateral) shimmy model [21].

The equations with the addition of the lateral degree of freedom to the torsional degree

of freedom system are as follows:

[Zl;l'l + ky¥ + C!pllt’ + Fe+ M, + M, — Fzesin(¥)sin (@) =0 (3.18)
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L6 + ksé + c56 + l4E, cos(¥) — Fyesin(¥) =0

(3.19)

Ix represents the lateral area moment of inertia of the landing gear, ks represents the

landing gear lateral stiffness coefficient, cs represents the landing gear lateral damping

coefficient, and Iq represents the landing gear height.

The equations given above are linearized and summerized in state-space form with

states;

r 0 1 0 0 0 ]

, ky g K F,(Cya — €Crq)
N Lt ° I v
g z z z z0 s
1 10 0 0 1 0 5

6|=| Ee ks cs LyFyCra : (3.20)

NN L L e |2
:y-l X X X JIC/ yl

4 e—a 0 l <. ]
Table 3.4 : 2 DOF 5 order shimmy model parameters.

Description Parameter Value Unit
ky torsional spring rate 100000 Nm/rad
Cy torsional damping constant 50 Nm/rad/s
I, rotational area moment of inertia 1 kgm2
K tire longitudinal slip; tread width moment 270 Nm?2/rad

constant

F, vertical force 9000 N
Cima tire self-alligning moment derivative -2 m/rad
Cro tire side force derivative 20 1/rad
a half contact length 0.1 m

e caster length 0.05 m

\ velocity of aircraft 100 m/s
Ks lateral spring rate 6100000 Nm/rad
Cs lateral damping constant 300 Nm/rad/s
Ix lateral area moment of inertia 600 kgm2
Iy landing gear hight 25 m
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3.4.1 Two DOF third order stable/unstable region

Since it was proven in Section 3.3.1.1, eigenvalues and the Routh-Hurwitz method
were not derived again using both methods. The graph was created using only one
method. The e-V plane can only be used during the design phase, while the F;-V plane
can also be used during the operational phase.

3.4.1.1 Two DOF third order shimmy model e-V plane stability status

In this section, caster length (e) and aircraft speed (V) are defined as variables. The
stability and instability conditions of the system will be investigated based on these
variations. While plotting the e-V plane, for different rotational stiffness coefficient
(kw) values are used. The other parameter values are taken from Table 3.4.

04 2 DOF 5 ORDER MODEL e-V Status Stability Region

0.3

0.2+

o ol

Caster Length (m)

0.1 | | | | | | | | | |
20 40 60 80 100 120 140 160 180 200
Velocity (m/s)

Figure 3.33 : 2 DOF Stability region of e-V plane for k=100000 Nm/rad.
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Figure 3.34 : 2 DOF Torsional stability for k=100000 & V=103 m/s & e=0.125m
(unstable).
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Figure 3.35 : 2 DOF Torsional stability for k=100000 & V=85 m/s & e=0.125 m

(stable).
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Figure 3.36 : 2 DOF Stability region of e-V plane for k=75000 Nm/rad.
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Figure 3.37 : 2 DOF Torsional stability for k=75000 & V=140 m/s & €=0.13 m
(unstable).
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6 8 10 12 14 16 18 20
Time (s)
Figure 3.38 : 2 DOF Torsional stability for k=75000 & V=47 m/s & e=0.13 m
(stable).
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Figure 3.39 : 2 DOF Stability region of e-V plane for k=50000 Nm/rad.
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Figure 3.42 : 2 DOF Stability region of e-V plane for k=25000 Nm/rad.
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Figure 3.40 : 2 DOF Torsional stability for k=50000 & V=154 m/s & €=0.13 m
(unstable).
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Figure 3.41 : 2 DOF Torsional stability for k=50000 & V=30 m/s & €=0.13 m
(stable).
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Figure 3.43 : 2 DOF Torsional stability for k=25000 & V=160 m/s & €=0.13 m
(unstable).
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Figure 3.44 : 2 DOF Torsional stability for k=25000 & V=14 m/s & e=0.13 m
(stable).
Conclusion;

- In Figures 3.33, 3.36, 3.39, and 3.42, the stable region is observed. In these

graphs, the variables are caster length and aircraft speed..

- Asseen in Figures 3.34-3.35, 3.37-3.38, 3.40-3.41, and 3.43-3.44, both stable
and unstable conditions were created. Closely spaced values were selected to

examine the critical conditions while generating the curves.

- Table 4.5 shows that as the normal tire force increases, stability decreases.

Conversely, as the rotational stiffness coefficient increases, stability also
increases.

- Asimilar situation to the One DOF third-order model applies to this model as
well. However, the stability rates are different. Therefore, it is appropriate to
consider both when a design or operational condition arises.
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Table 3.5 : 2 DOF 5 order the effect of F, change on e-V plane.

e=-0.1-04 m Rotational Stiffness Coefficient
V=1-200 m/s k=100000 Nm/rad  k=75000 Nm/rad k=50000 Nm/rad k=25000 Nm/rad
89.13 % stable 79.64 % stable 70.29 9% stable 60.58 % stable
Fz=10000 N
55.71 % increment  53.21 % increment 51.81 % increment  46.79 % increment
67.74 % stable 61.23 % stable 54.48 9% stable 47.53 % stable
Fz=12500 N
18,34 % increment  17.80 % increment 17.67 % increment  15.17 % increment
Fz=15000 N 57.24 % stable 51.98 % stable 46.30 % stable 41.27 % stable
50.56 % stable 46.03 % stable 40.58 % stable 37.30 % stable
Fz=17500 N
11.67 % decrement 11.45 % decrement 12.35 % decrement  9.62 % decrement
45.76 % stable 41.71 % stable 36.85 9% stable 34.55 % stable
Fz=20000 N
20.06 % decrement 19.76 % decrement 20.41 % decrement 16.28 % decrement

3.4.1.2 Two DOF third order shimmy model Fz-V plane stability status

In this section, normal tire force (F;) and aircraft speed (V) are defined as variables.
The stability and instability conditions of the system will be investigated based on
these variations. While plotting the F.-V plane, for different rotational stiffness

coefficient (ky) values are used. The other parameter values are taken from Table 3.4.

2 DOF 5 ORDER MODEL F-V Status Stabili

Region

0 | | | ! ! | | ! ! |
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Figure 3.45 : 2 DOF Stability region of F;-V plane for k=100000 Nm/rad.
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Figure 3.46 : 2 DOF Torsional stability for k=100000 & V=24 m/s & Fz=19000 N
(unstable).
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Figure 3.47 : 2 DOF Torsional stability for k=100000 & V=22 m/s & Fz=19000 N
(stable).
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Figure 3.48 : 2 DOF Stability region of F,-V plane for k=75000 Nm/rad.
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Figure 3.49 : 2 DOF Torsional stability for k=75000 & V=17 m/s & Fz=19000 N
(unstable).
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Figure 3.50 : 2 DOF Torsional stability for k=75000 & V=17 m/s & Fz=19000 N
(stable).
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Figure 3.51 : 2 DOF Stability region of F.-V plane for k=50000 Nm/rad.
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Figure 3.52 : 2 DOF Torsional stability for k=50000 & V=7 m/s & Fz=19000 N
(unstable).
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Figure 3.53 : 2 DOF Torsional stability for k=50000 & V=7 m/s & Fz=17000 N
(stable).
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Figure 3.54 : 2 DOF Stability region of F;-V plane for k=25000 Nm/rad.
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Figure 3.55 : 2 DOF Torsional stability for k=25000 & V=7 m/s & Fz=19000 N
(unstable).
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Figure 3.56 : 2 DOF Torsional stability for k=25000 & V=8 m/s & Fz=7500 N
(stable).
Conclusion;

- In Figures 3.45, 3.48, 3.51, and 3.54, the stable region is observed. In these

graphs, the variables are normal tire force and aircraft speed..

- Asseen in Figures 3.46-3.47, 3.49-3.50, 3.52-3.53, and 3.55-3.56, both stable
and unstable conditions were created. Closely spaced values were selected to

examine the critical conditions while generating the curves.

- Examining Table 4.6, it is evident that an increase in caster length (e) expands
the stability region. Similarly, an increase in the rotational stiffness coefficient

also expands the stability region.

As seen from the graphs and tables, the characteristics of the 1 DOF and 2 DOF
shimmy models are similar. However, there are differences between them.
While the stability rates may be very close under certain conditions, this is not

always the case.
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Table 3.6 : 2 DOF 5 order the effect of e change on F;-V plane.

Fz=0-50000
N

Rotational Stiffness Coefficient

V=1-200 m/s

e=0.26 m

e=0.28 m

e=0.30 m

e=0.32m

e=0.34m

k=100000 Nm/rad
46.45 % stable
30.91 % increment
54.71 % stable
18.62 % decrement
67.23 % stable
87.04 % stable
29.47 % increment
100 % stable

48.74 % increment

k=75000 Nm/rad
43.64 % stable

32.71 % decrement
52.00 % stable
20.81 % decrement
64.85 % stable
85.59 % stable
31.98 % increment
100 % stable

54.20 % increment

k=50000 Nm/rad
40.75 % stable
34.76 % decrement
49.24 % stable
21.17 % decrement
62.46 % stable
84.19 % stable
34.79 % increment
100 % stable

60.10 % increment

k=25000 Nm/rad

37.87 % stable

37.09 % decrement
46.55 % stable

22.67% decrement
60.20 % stable
83.02 % stable

37.91 % increment

100 % stable

66.11 % increment
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4. LANDING GEAR SHIMMY CONTROL

First of all controller is a device or a set of algorithms designed to manage, command,
direct, or regulate the behavior of other devices or systems. It is an essential part of a
control system, which includes sensors, actuators, and other components that interact
to achieve a desired performance. There are various types of controllers used in control
systems, each designed for specific applications and performance criteria. Here are
some of the main types: PID Controller (Proportional-Integral-Derivative,
Feedforward Controller, On-Off Controller, Adaptive Controller, Optimal Control,
Robust Control, Sliding Mode Controller, Model Predictive Control (MPC). Linear
Quadratic Regulator (LQR) has been selected as one of the optimal control types

because it is important to minimize the time in shimmy phenomenon.

4.1 Linear Quadratic Regulator (LQR)

The Linear Quadratic Regulator (LQR) is an optimal state-feedback control method
specifically designed to calculate the most effective control input by using
performance indices and state variables to minimize a predefined cost function. This
technique, a part of modern control theory, utilizes state-space representations for
analyzing the system it's applied to. The main goal in the LQR control system is to

derive the gain matrix K by minimizing the cost function.

u=—Kx 4.1)

] = % J [x"Qx + u” Ruldt (4.2)
0
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J, is the cost function, is the objective function that the LQR controller aims to
minimize. It typically represents the cumulative cost over time, accounting for both
the states of the system and the control efforts. The Q and R matrices are known as
weighting matrices and allow the control designer to adjust the weight values affecting
the control inputs and state variables, thereby tuning their impact on system
performance. The size of the Q matrix is defined by the number of state variables in
the system. The extent of control performance allocated to a state variable is
determined by the importance given to the first element of the Q matrix, and the
deployment of control power is directly proportional to the magnitude of the element.
The final LQR gain is calculated using the equation provided:

K = R™1BTP (4.3)

The Algebraic Riccati Equation is used to determine the constant matrix P:

Q+ATP +PA+PBRBTP =0 (4.4)

4.1.1 LQR controller design for 1 DOF system

An LQR design is implemented to control torsional stability in a 1 DOF 3rd order
system. The graphs provided in sections 3.3.1.1 and 3.3.1.2 will demonstrate how
unstable systems can be stabilized. The Q and R matrices necessary to determine the

K gain have been chosen based on simulations as follows:

(4.5)
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Figure 4.1 : 1 DOF Stability region of e-V plane for k=100000 Nm/rad & V=120
m/s & e=0.1325 m (Roots).
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Figure 4.2 : 1 DOF Stability region of e-V plane for k=100000 Nm/rad & V=120
m/s & e=0.1325 m (System/LQR).
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Figure 4.3 : 1 DOF Stability region of e-V plane for k=100000 Nm/rad & V=120
m/s & €=0.1325 m (Actuator moment).
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Figure 4.5 : 1 DOF Stability region of e-V plane for k=50000 Nm/rad & V=173 m/s
& e=0.14 m (System/LQR).
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Figure 4.6 : 1 DOF Stability region of e-V plane for k=50000 Nm/rad & V=173 m/s
& e=0.14 m (Actuator moment).
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m/s & F=19000 N (Roots).
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Figure 4.8 : 1 DOF Stability region of F;-V plane for k=100000 Nm/rad & V=30
m/s & F=19000 N (System/LQR).
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Figure 4.9 : 1 DOF Stability region of e-V plane for k=100000 Nm/rad & V=30 m/s
& F=19000 N (Actuator moment).
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Figure 4.10 : 1 DOF Stability region of F.-V plane for k=50000 Nm/rad & V=15
m/s & F=19000 N (Roots).
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Figure 4.11 : 1 DOF Stability region of F.-V plane for k=50000 Nm/rad & V=15
m/s & F=19000 N (System/LQR).
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Figure 4.12 : 1 DOF Stability region of e-V plane for k=50000 Nm/rad & V=15 m/s
& F=19000 N (Actuator moment).
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4.1.2 LQR controller design for 2 DOF system

An LQR design is implemented to control torsional stability in a 1 DOF 3rd order
system. The graphs provided in sections 3.4.1.1 and 3.4.1.2 will demonstrate how
unstable systems can be stabilized. The Q and R matrices necessary to determine the
K gain have been chosen based on simulations as follows:

[100 0 0 0 0 1
| 0 300 0 0 0 |
Q=10 0 100 O 0

[ 0 0 0 100 0 J (4.7)

0 0 0 0 100
R ={0.025} (4.8)
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Figure 4.13 : 2 DOF Stability region of e-V plane for k=100000 Nm/rad & V=103
m/s & e=0.125 m (System/LQR).
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Figure 4.14 : 2 DOF Stability region of e-V plane for k=100000 Nm/rad & V=103
m/s & e=0.125 (Actuator moment).
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Figure 4.15 : 2 DOF Stability region of e-V plane for k=75000 Nm/rad & V=140
m/s & €=0.13 m (System/LQR).
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Figure 4.16 : 2 DOF Stability region of e-V plane for k=75000 Nm/rad & V=140
m/s & e=0.13 (Actuator moment).

56



Torsional Stability - Time Status

0.15
LQR
01 =, . . . . . P S S S T S S S S S S B R R A 0o System (Mo controller) | |
£ AAAANARANARANRARAONARANNANNNANARNR N \}"w(wuln)'lwl
z I A
ﬁDD5P'\\"'|"|‘I"|“"\l‘u‘\““\‘wlﬂl”|"||I‘|""‘l‘H‘I“'J'Jlll'h“f'|ll|""\l‘\\‘l\"f'f'll'u”‘l‘\
n I ARIEARRNARIA (11111 [ [1]] [ [ [ (L
= i 1 : I NS LU AESNANENANSNE [ ANANARENRN
A AR
| \ \

@ 0-05#”‘! INRIRIN INTRIninl (RIAIRIBIRIN "\‘ IRIRIAI IN ‘\" IR l“‘ | "“ IR Nl | ]
N R A A A AN A A AN AR A AR A AN
0.15 1 | | 1 | 1 1 | 1 |
0 0.1 0.2 03 04 05 06 0.7 08 09 1

Time (s)

Figure 4.17 : 2 DOF Stability region of e-V plane for k=50000 Nm/rad & V=154
m/s & €=0.13 m (System/LQR).
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Figure 4.18 : 2 DOF Stability region of e-V plane for k=50000 Nm/rad & V=154
m/s & €=0.13 (Actuator moment).
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Figure 4.19 : 2 DOF Stability region of F;-V plane for k=100000 Nm/rad & V=24
m/s & F;=19000 N (System/LQR).
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Figure 4.20 : 2 DOF Stability region of F; -V plane for k=100000 Nm/rad & V=24
m/s & F; =19000 N (Actuator moment).
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Figure 4.21 : 2 DOF Stability region of F,-V plane for k=75000 Nm/rad & V=17
m/s & F,=19000 N (System/LQR).
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Figure 4.22 : 2 DOF Stability region of F; -V plane for k=75000 Nm/rad & V=17
m/s & F; =19000 N (Actuator moment).
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Figure 4.23 : 2 DOF Stability region of Fz-V plane for k=50000 Nm/rad & V=7 m/s
& F;=19000 N (System/LQR).
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Figure 4.24 : 2 DOF Stability region of F; -V plane for k=50000 Nm/rad & V=7 m/s
& F;=19000 N (Actuator moment).

Shimmy oscillation is a highly dangerous phenomenon that can lead to accidents if not
properly addressed. Thus, it requires thorough analysis. In previous sections, a linear
controller was designed to stabilize conditions that were identified as unstable. As
shown in Figures 4.1, 4.4, 4.7 and 4.10 the roots of the uncontrolled systems have
positive real roots, indicating instability. However, in the same graphs, it can be
observed that the designed controller shifts the real roots of these roots to the negative
side, stabilizing the system. This stabilization is clearly demonstrated in Figures 4.2,
45, 4.8, 4.11, 4.13, 4.15, 4.17, 4.19, 4.21 and 4.23. Moreover, for the designed
controller to take action, an actuator is necessary. The moment values of this actuator
are provided in Figures 4.3, 4.6, 4.9, 4.12, 4.14, 4.16, 4.18, 4.20, 4.22 and 4.24. The
moment values do not exceed 3500 Nm, which is within the capabilities of actuators
currently available on the market. This consideration was taken into account during

the controller design process.
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5. LANDING GEAR SHIMMY APPLICATION DESIGN (LaGeSh)

The shimmy phenomenon depends on many parameters, and controlling these
parameters is quite challenging. Therefore, to facilitate a better understanding of this
phenomenon, an application named LaGeSh was developed in this thesis. This
application possesses numerous capabilities. It can be used to identify potential
shimmy scenarios during the design phase or for an already designed landing gear. The
application is composed of five tabs. In the first tab, as shown in Figure 5.1, the
parameters used for either the 1 DOF third order or 2 DOF fifth order model are listed,
along with their meanings and units. The necessary parameters for the selected model
type are displayed accordingly.

4 LaGeSh - 0 X

Parameters Stable Region Stability 1 DOF Controller 2 DOF Controller

‘ 1 DOF 3 ORDER PARAMETERS ‘ | 2 DOF 5 ORDER PARAMETERS |

k_psi | Rotational stiffness coefficient (Nm/rad) |

c_psi | Rotational damping coefficient (Nm/rad/s) |

Iz | Rotational area moment of inertia of landing gear (kgm2) |

v ‘ Velocity of aircraft landing gear (m/s) |

Fz | Normal tire force (N) |

C_m_alpha | Tire self-aligning moment derivative (m/rad) |

C_f alpha | Tire side force derivative (1/rad) |

e ‘ Landing gear caster length (m) |

a ‘ Tire half contact length (m) |

K | Tire longitudinal slip; constant of tread width tire moment (Nm2/rad) |

k_delta
c_delta

Ix

lg

Figure 5.1 : LaGeSh parameters table.

The second tab, Figure 5.2, is where you can examine the stable regions. In this tab,

depending on the selection of 1 DOF or 2 DOF, the required parameters become
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visible. After the parameters are displayed, you need to choose between the V-e
(Velocity-Caster Length) or VV-Fz (Velocity-Normal Tire Force) options. Based on the
selection, you must enter the desired working ranges. Once these parameters are
entered, you can select the method to generate the graph, either the eigenvalue method
or the Routh-Hurwitz method, by pressing the corresponding button. The desired graph
will then be generated.

4 LaGeSh - O X

Parameters Stable Region Stability 1 DOF Controller 2 DOF Controller

| 1DOF Shimmy Analysis | k_psi 1e+05 k_delta C_m_alpha 2
‘ 2 DOF Shimmy Analysis ‘ c_psi 50 c_delta C_f_alpha 20
| VePlot || V-FzPlot | Iz 1 Ix a 0.1
| Eigenvalue | K 270 Ig
_— Fz 9000
| Routh-Hurwitz | Range V 0 200
Range e 01 04
04 1 DOF 3 ORDER MODEL e-V Status Stability Region
-
0.3
— 025
E
£ 02
o
C
= -
2 01
(1)
© o005
0
-0.05;
-0.1%
0 20 40 60 80 100 120 140 160 180 200

Velocity (mis)

[ Clean | Stable Efficiency 0.9815 Stable Efficiency 0

Figure 5.2 : LaGeSh stable region table.

In the tab shown in Figure 5.3, similar to the previous tab, you need to select either the
1 DOF or 2 DOF model. Based on the selected model, its parameters will become
visible. In this tab, you enter the values for these parameters and set the runtime. After

that, the system is run, and the results are displayed in the plot screen below.
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4 LaGeSh - O *

Parameters Stable Region Stability 1 DOF Controller 2 DOF Controller

| 1DOF Shimmy Analysis | k_psi 1e+05 k_delta C_m_alpha -2

| 2 DOF Shimmy Analysis | c_psi 50 c_delta C_f_alpha 20
Iz 1 Ix a 01
K -270 Ig Fz 9000
\ 100 e 0.2

Duration

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100

| Start |

Torsional Stability - Time Status

Torsional Stability
=)

10 I 1 1 I 1 I I 1 I |
0 2 4 B 8 10 12 14 16 18 20

Time (s)

Clean

Figure 5.3 : LaGeSh stability table.

We can evaluate the last two tabs together. The fourth tab is used for 1 DOF controller
design, and the fifth tab is for 2 DOF controller design. Figure 5.4 and Figure 5.5 show
the tab layouts. In the top left corner of the opened screen, there are three types of
controller operations available. This thesis discusses the design of an LQR controller.
Depending on the selected controller, the required parameters become visible. Once
the desired values are entered into the system, three buttons appear. The 'Start’ button
provides the torsional stability-time curve without a controller and with the selected
controller. The 'Roots' button shows the roots of the system, displaying the roots for
both the system and the designed controller. Finally, the 'Moment' button indicates the

amount of torque required by the system according to the designed controller.
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Figure 5.4 : LaGeSh 1 DOF Controller table.
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Figure 5.5 : LaGeSh 2 DOF Controller table.
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6. CONCLUSION AND FUTURE WORK

This study presents a comprehensive investigation into the phenomenon of shimmy
oscillations in aircraft landing gear systems. By focusing on both 1-DOF and 2-DOF
models, the thesis presents a detailed analysis of the factors contributing to this
instability. The results obtained through this research have demonstrated the critical
importance of understanding shimmy oscillations for ensuring aircraft safety and
performance. Key findings include the importance of considering the relationship
between caster length and aircraft speed during the design phase. For existing aircraft,
reducing the normal tire force by adjusting the aircraft's center of gravity is
recommended. The study also revealed that increasing rotational stiffness and reducing

normal tire force can enhance system stability.

Furthermore, the analysis showed that the system's stability is influenced by a
combination of caster length, aircraft speed, and rotational stiffness. Controller designs
were successfully implemented to stabilize unstable conditions. The development of
the LaGeSh application facilitated comprehensive parameter analysis, providing

valuable insights for landing gear design and optimization.

To ensure research reliability, eigenvalue analysis, Routh-Hurwitz criteria, and
Simulink models were employed in specific cases.

6.1 Future Recommendations

Building upon the results of this study, future research should include developing and
analyzing nonlinear models, conducting in-depth studies on various landing gear types
(articulated, semi-articulated, cantilevered), and modeling the entire aircraft to assess
its impact on shimmy characteristics. Additionally, incorporating friction into the
model, examining the effects of braking, and conducting rigorous testing to refine

system parameters are essential for improving model accuracy. Exploring different
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controller designs and conducting stability analysis without the rank angle assumption
can provide valuable insights for optimizing landing gear performance.
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APPENDICES

APPENDIX A: Landing Gear Shimmy Controller Design Graphics
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Figure A.2 : 1 DOF Stability region of e-V plane for k=75000 Nm/rad & V=153 m/s
& €=0.135 m (System/LQR).
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& e=0.135 m (Actuator moment).
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Figure A.9 : 1 DOF Stability region of e-V plane for k=25000 Nm/rad & V=8 m/s &
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Figure A.11 : 2 DOF Stability region of F; -V plane for k=25000 Nm/rad & V=7
m/s & F, =19000 N (Actuator moment).
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Figure A.12 : 1 DOF Stability region of F.-V plane for k=75000 Nm/rad & V=22
m/s & F=19000 N (Roots).
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Figure A.13 : 1 DOF Stability region of Fz-V plane for k=75000 Nm/rad & V=22
m/s & F=19000 N (System/LQR).
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Figure A.14 : 1 DOF Stability region of e-V plane for k=75000 Nm/rad & V=22 m/s
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: 2 DOF Stability region of e-V plane for k=25000 Nm/rad & V=160

m/s & €=0.13 m (System/LQR).
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Figure A.16 : 2 DOF Stability region of e-V plane for k=25000 Nm/rad & V=160
m/s & e=0.13 (Actuator moment).
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