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ÖZET 

 

 

Yarı iletkenlerde elektron taşınımına son yıllardaki araştırmalarda dikkate değer 

şekilde ilgi duyulmaktadır. Uygulanan elektrik alanın elektron sürüklenme hızına olan 

bağımlılığı bu tip araştırmalarda ana amaç haline gelmiştir.   

 

Direkt geçişli yarı iletkenlerin önemli karakteristiklerinden biri, sürüklenme hızının 

elektrik alan artarken, maksimumunun yüksek değerler almasıdır. İndirekt geçişli 

malzemeler de ise sürüklenme hızının maksimumunun daha düşük değerler alması 

beklenebilir. 

 

Galyum Arsenit yarı iletken bileşiğinin direkt geçişli bir yarı iletken olduğu 

bilinmektedir. Galyum Arsenit içerisine alüminyum ilave edilerek yeni bir yarıiletken bileşik 

olan alüminyum galyum arsenit elde edilmektedir. Alüminyum galyum arsenit düşük 

oranlarda alüminyum içeriyorsa direkt geçişli bir malzemedir. Ancak alüminyum galyum 

arsenit bileşiğinin içerisindeki alüminyum miktarı arttıkça malzeme indirekt geçişli hale 

gelmektedir. Bundan dolayı, bu tez çalışmasında alüminyum galyum arsenit malzemesindeki 

alüminyum oranı arttırıldıkça sürüklenme hızının elektrik alan ile nasıl değiştiği ve bu 

değişim esnasında, hangi tip saçılmaların rol aldığı ve bu saçılmaların sürüklenme hızı 

elektrik alan grafiğine olan etkisi 77K, 300K ve 450K sıcaklıkları için incelenmiştir.  

 

Anahtar kelimeler: Monte Carlo Metodu, yarıiletken, elektron taşınımı, alüminyum 

galyum arsenit 
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SUMMARY 

 

 

Electron transport in semiconductors has received considerable research attention in 

recent years. The dependence of the applied electric field on the electron drift rate has 

become the main goal in this type of research. 

 

An important characteristic of direct transition semiconductors is that the drift 

velocity reaches high values as the electric field increases. In indirect transition materials, 

the maximum drift speed can be expected to take lower values. 

 

Gallium Arsenide semiconductor compound is known to be a direct transition 

semiconductor. By adding aluminum to Gallium Arsenide, a new semiconductor compound, 

aluminum gallium arsenide, is obtained. Aluminum gallium arsenide is a direct transition 

material if it contains low amounts of aluminum. However, as the amount of aluminum in 

the aluminum gallium arsenide compound increases, the material becomes indirectly 

transitional. Therefore, in this thesis study, how the drift velocity changes with the electric 

field as the aluminum ratio in the aluminum gallium arsenide material is increased, what 

type of scattering takes part during this change, and the effect of these scattering on the drift 

velocity electric field graph is examined for 77K, 300K and 450K temperatures. 

 

Keywords: Monte Carlo Method, semiconductor, electron transport, aluminum gallium 

arsenide 
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1.GİRİŞ VE AMAÇ 

 

 

III-V grubu yarı iletkenlerde elektron taşınım özelliklerinin belirlenmesi, son 

yıllardaki araştırmalarda dikkate değer şekilde artmıştır. Uygulanan elektrik alanın elektron 

sürüklenme hızına olan bağımlılığı bu tip araştırmalarda ana amaç haline gelmiştir. Birçok 

III-V grubu yarıiletken, belli bir kritik elektrik alanda sürüklenme hızının pik değer yaptığı, 

daha sonrasında ise uygulanan elektrik alanın artmasıyla beraber sürüklenme hızının düştüğü 

negatif diferansiyel mobilitesi sergilemektedir. Bu tip negatif diferansiyel mobilitesi 

sergileyen yarı iletkenlere çoğunlukla aşağı ve yukarı vadiler arasında, vadiler arası geçiş 

atfedilmektedir. Direkt geçişli III-V grubu yarı iletkenlerin önemli karakteristiklerinden 

birisi, sürüklenme hızı elektrik alan grafiğinde, elektrik alan artarken, sürüklenme hızının 

şiddetli şekilde artması biçiminde görülmektedir. İndirekt geçişli malzemeler de ise 

sürüklenme hızı elektrik alan grafiğinde, elektrik alan artarken, sürüklenme hızının şiddetli 

arttığı görülmemektedir. 

 

AlxGa1-xAs malzemesine, modern elektronikte mikrodalga cihazlarda ve 

optoelektronik uygulamalarında, band yapısının ve örgü sabitinin değiştirilebilir olması gibi 

sebeplerden ötürü dikkate değer bir ilgi vardır. AlxGa1-xAs malzemesinin özellikle kızıl ötesi 

dedektör ve lazerlerde kullanımı oldukça yaygındır. 

 

AlxGa1-xAs malzemesinde x = 0,4 değerinden sonra malzemenin indirekt geçişli hale 

geldiği görülmüştür. Bundan dolayı, bu çalışmada x = 0,4 değerine yaklaşıldıkça sürüklenme 

hızının nasıl değiştiği ve bu değişim esnasında, hangi tip saçılmaların rol aldığı ve bu 

saçılmaların sürüklenme hızı elektrik alan grafiğine olan etkisi Monte Carlo metodu 

kullanılarak incelenmiştir. 

 

Monte Carlo metodu, nümerik sonuçlar elde etmek için, çok fazla tekrar eden 

gelişigüzel örneklemeler kullanır. İlk olarak Nicholas Constantine Metropolis kullanmıştır. 

Daha sonrasında Stanislaw Ulam, nükleer bomba patlaması sonrasında nötron salınımına 

karşı kalkan geliştirmek için 1940 ‘larda kullanılmıştır. 
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Son otuz yılda Monte Carlo yöntemi yarı iletkenlerde ve yarı iletken cihazlarda çok 

çeşitli taşıma olaylarını araştırmak için başarıyla kullanılan güvenilir ve sık kullanılan bir 

araca dönüşmüştür. Yöntem, konum ve dalga vektörlerinin oluşturduğu altı boyutlu faz 

uzayında yük taşıyıcıların hareketinin simülasyonundan oluşur. 

 

Bir dış kuvvetin etkisine maruz kalan nokta benzeri taşıyıcılar, Newton yasası ve 

taşıyıcının dağılım ilişkisi tarafından belirlenen yörüngeleri takip eder. Kristal örgünün 

kusurları nedeniyle sürüklenme süreci, uzayda yerel ve zamanda anlık olduğu düşünülen 

saçılma olayları tarafından kesintiye uğrar. Bir sürüklenme sürecinin süresi ve saçılma 

mekanizmasının türü, mikroskobik süreci tanımlayan verilen olasılıklara göre rastgele 

seçilir. 
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2. LİTERATÜR ARAŞTIRMASI 

 

 

 Monte Carlo yöntemi, karmaşık problemleri rastgele örnekleme ve istatistiksel analiz 

yoluyla çözmek için kullanılan bir hesaplama tekniği olarak ortaya çıkan bir yöntemdir. Bu 

yöntemin adı, rastgelelik öğesinin ön planda olduğu bir yöntem olduğunu vurgulayan bir 

tercihle, Monaco'daki Monte Carlo Kumarhanelerinden esinlenmiştir. 

 

 Monte Carlo yöntemi, 1940’ lı yıllarda İkinci Dünya Savaşı sırasında atom 

bombasının geliştirilmesiyle bağlantılı olarak ortaya çıktı. Bilim insanları, John Von 

Neumann, Stanislaw Ulam ve Nicholas Metropolis gibi isimler, fisil izotop malzemelerde 

nötronların davranışını simüle etmek için olasılık temelli teknikler kullanmışlardır. Bu 

çalışma, Monte Carlo simulasyonlarının temelini atmıştır. 

 

 II. Dünya Savaşı'nın ardından, Monte Carlo yöntemi çeşitli bilimsel ve mühendislik 

alanlarında uygulama bulmuştur. İlk başlarda nükleer fizikdeki sorunlar, özellikle nötron 

yayılma problemleri için kullanılmıştır.  

 

 Bilgisayarların 1950 'lerde ve 1960' larda gelişmesi, Monte Carlo yönteminin 

yeteneklerini büyük ölçüde artırmıştır. Araştırmacılar artık daha karmaşık simulasyonlar 

yapabiliyorlardı, bu simulasyonlar parçacık fiziği, istatistik ve matematik problemleri, 

akışkanlar dinamiği dahil olmak üzere birçok alanda kullanılmıştır. 

 

 1960'ların sonlarından itibaren, Monte Carlo yöntemi yarı iletken fiziği alanında 

popüler hale geldi. Yarıiletkenlerdeki taşıyıcıların (elektronlar ve boşluklar) hareketini ve 

etkileşimlerini simüle etmek için kullanıldı. Bu yöntem, yarı iletkenlerin elektriksel 

özellikleri üzerindeki farklı etkileşim mekanizmalarının ve saçılma olaylarının etkilerini 

incelemek için oldukça önemli bir araç haline geldi. 

 

Fawcett vd. (1970) Monte Carlo metodunu galyum arsenit için uygulayarak elektrik 

alan, sürüklenme hızı arasındaki ilişkiyi ve elektronun enerjisi ile elektrik alan arasındaki 

ilişkiyi ortaya koymuştur. Aynı zamanda  ve L vadilerindeki saçılma mekanizmalarını 

incelemişlerdir.  
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Buldukları sonuçları önceki yapılmış teorik çalışmalar ve deneysel çalışmalar ile     

kıyaslamışlardır. 

 

 Arabshahi vd. (2008) AlAs, AlGaAs, GaAs malzemelerini elektrik alan ve 

sürüklenme hızı arasındaki ilişkiyi ve saçılma mekanizmalarını Monte Carlo metodu ile 

inceleyerek malzemeleri birbirleri ile kıyaslamışlardır. 

 

 Abou EL-Ela (2005) AlxGa1-xAs malzemesini x = 0 ile x = 3.25 aralığında 

sürüklenme hızı ve elektrik alan arasındaki ilişkiyi ve sürüklenme hızında rol oynayan 

saçılma mekanizmalarını incelemiştir. 

 

 Hava ve Auslender (1993) AlGaAs malzemesini Maxwell yaklaşımı kullanarak 

yüksek elektrik alan altında sürüklenme hızını farklı alaşım kompozisyonları için 

incelemiştir. 
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3. MONTE CARLO METODU 

 

 

 Yarıiletkenlerdeki yük transferi, temel fiziksel ve elektronik cihazlar açısından büyük 

öneme sahiptir. Yarıiletken elektronik cihazların performansı, kullanılan malzemelerin 

düşük ve yüksek alan elektron taşıma özelliklerine bağlıdır. Taşıma özelliklerini hesaplamak 

için kullanılan çeşitli yöntemler vardır. Bu yöntemler arasında varyasyon ilkesi, yinelemeli 

yöntem, gevşeme süresi yaklaşımı, Matthiessen kuralı ve Monte Carlo yöntemi 

bulunmaktadır. Bu sayısal teknikler, orijinal olarak Boltzmann taşıma denklemlerine 

dayanan yarı iletken denklemlerini çözmek için kullanılır (Özbaş ve Akarsu, 2002). 

 

 Monte Carlo yöntemi, diğer yöntemlerden farklı bir metodolojiye sahiptir, ancak 

çözüm hala Boltzmann denklemine dayanmaktadır. Bu yöntem, yarı iletken malzemelerde 

ve cihazlarda taşıyıcı taşıma olaylarını incelemek için çok yönlü bir araçtır. Yöntem, konum 

ve momentum tarafından oluşturulan faz uzayındaki yük taşıyıcılarının hareketini simüle 

eder. Nokta benzeri taşıyıcılar, dış kuvvet alanının etkisi altında Newton'un yasasına ve 

taşıyıcının dağılım ilişkisine göre belirlenen yörüngeleri takip eder. Bu sürüklenme süreçleri, 

uzayda lokal ve zamanda anlık olarak meydana gelen saçılma olayları tarafından kesilir. 

 

Bir sürüklenme sürecinin süresi, saçılma mekanizmasının tipine ve saçılma sonrası 

duruma bağlı olarak, mikroskobik sürece özgü olasılıklara göre rastgele seçilir. Bu prosedür 

temelde, bir Boltzmann denklemini karşılayan bir taşıyıcı dağılımını ortaya çıkarır 

(Lundstrom, 2000). 

 

Monte Carlo yöntemi, yarı iletkenlerde yük taşıyıcılarının dış kuvvet alanlarına ve 

saçılma mekanizmalarına maruz kalarak hareketinin simülasyonunu gerçekleştirir. 

 

 Yük taşıyıcısının ardı ardına gerçekleşen iki saçılma arasındaki geçen zaman ve 

farklı saçılma tipleri, malzemedeki mikroskobik durumları göz önüne alarak gerçekleşen 

olasılıklar ile uyumlu olmalıdır. Elektronun malzeme içerisindeki hareketini bulmak için bir 

tek parçacığın hareketini ele almak yeterli olacaktır. Başlangıçta simülasyon için 𝐤𝟎 ilk 

durum dalga vektörü bulunmalıdır. Serbest uçuş süresince uygulanan elektrik alan altında  
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ħ
d𝐤

dt
=  −e𝐄 (3.1) 

   

bağıntısına uygun olarak elektrik alan kuvvetine maruz kalır. Başlangıç durumu için enerji 

ve parçacığın hızı bulunur. Daha sonra parçacığın hareketinin sona ermesi için bir saçılma 

mekanizması kullanılmalıdır. Saçılma mekanizmasının seçimi gerçekleşebilecek bütün 

saçılma mekanizmaları göz önüne alınarak bu mekanizmaların bağıl olasılıklarına göre 

seçilir. Saçılma gerçekleştikten sonra elektron yeni bir k dalga vektörü ile temsil edilir ve bu 

dalga vektörü yeni saçılma mekanizmasına bağlı olarak seçilir. Bu saçılma işlemi ardı ardına 

tekrar edilir. Devam eden simülasyon ile daha doğru sonuçlar elde edilmesi olasılığı artar 

(Akarsu, 2003). 

 

3.1. Tek Parçacık Monte Carlo Metodu 

 

Bir yarı iletkende elektron hareketini incelemek zorlayıcı bir problemdir. Bunun 

sebebi yük taşıyıcılarının aralarında gerçekleşen etkileşimdir. Bu durumu çözebilmek için 

çok sayıdaki parçacık sistemini birbirinden bağımsız parçacıkların bir topluluğu olarak 

düşünmek kolaylık sağlar. Tek bir taşıyıcının malzeme içindeki davranışını incelemek, ve bu 

yük taşıyıcısının maruz kaldığı saçılmaları incelemek toplam yük taşıyıcılarının davranışını 

simüle edilmesini sağlar.  

 

3.1.1. Taşıyıcı hareketinin simülasyonu 

 

 Monte Carlo metodunda yük taşıyıcısının davranışını incelemek için tek bir 

parçacığın momentum uzayındaki davranışı simüle edilir. Bunun için yük taşıyıcısının 

saçılma tipleri ve serbest uçuş için geçen süre rastlantısal olarak belirlenir. Bundan dolayı 

bir rasgele sayı dizisi simülasyon için üretilmelidir. 
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Şekil 3.1. Tek parçacık Monte Carlo metodu akış şeması 
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Simülasyon boyunca farklı sebeplerden ötürü kaynaklanan saçılmalar elektrik alan 

altında elektronların sürüklenmesi boyunca değerlendirilir (Jacoboni ve Reggiani 1983). 

Elektron için serbest uçuş süresi farklı tipteki saçılmaların hızlarının toplamına 

bağlıdır. Saçılma hızlarına bakıldığında, bu saçılma hızlarının elektronun bir fonksiyonu 

olduğu görülür. Bundan dolayı parçacığın enerjisi de toplam saçılmanın bir fonksiyonudur. 

Bir elektronun τ süresi boyunca hareketi ve hareketi sonunda birim zaman başına saçılma 

olasılığı P(τ); 

 

 
P(τ) = WT(Ek)exp [−∫ WT(Ek)dt]

τ

0

 (3.2) 

 

denklemi ile gösterilir. Burada WT(Ek) toplam saçılma hızıdır.  

 

 

WT(Ek) =  ∑Wj(Ek)

N

j=1

 (3.3) 

 

 

 Burada j alt simgesi, bir saçılma mekanizmasını belirtir ve N olası saçılma 

mekanizması için 1,2,3,…,N değerlerini alır. Uçuş süresini belirlemek için Denklem 3.1 den 

yararlanır ve 0 ve 1 arasında homojen dağılmış rastgele bir r1 sayısıyla belirtilen 

P(τ) WT(Ek)⁄  için τ belirlenmelidir. Ancak integral her Wj(Ek) ‘nın karmaşıklığından dolayı 

analitik olarak çözülemez. Bundan dolayı alternatif bir metod kullanılır. Saçılma hızı 

W0(Ek) olan ve k⃗  parçacığın dalga vektöründe farklılık oluşturmayan kendiliğinden saçılma 

tipi belirlenir ve yeni toplam saçılma hızı Ʌ sabittir. 

 

 

W0(Ek) =  Ʌ − ∑Wj(

N

j=1

Ek) (3.4) 

 

 

Ʌ =  ∑Wj(Ek)

N

j=0

 (3.5) 

 

biçiminde iki farklı şekilde gösterilebilir.  



9 

 

Bu sayede (3.1) Denklemi; 

 

 P(τ) =  Ʌexp (−Ʌτ) (3.6) 

 

biçiminde yazılabilir. Son olarak uçuş süresi; 

 

 
τ = −

ln (r1)

Ʌ
 (3.7) 

 

denklemi ile belirlenir. İlgilenilen enerji aralığında negatif bir W0(Ek) değerinden kaçınmak 

için sabit Ʌ, W0(Ek) ‘nın en büyük değerinden daha büyük olarak alınır. Ancak, daha küçük 

bir Ʌ değeri kendiliğinden saçılma olaylarının sayısını minimuma indirmek için istenir. 

Elektronun serbest uçuş zamanına sahip olunduğu için, hareket denklemine bağlı olarak 

sürüklenme sürecini hesaplamaya imkan sağlar (Jacoboni ve Lugli, 1989).  

 

 Elektron serbest uçuşundan sonra saçılma mekanizmalarından biri tarafından, 

kendiliğinden saçılmalar da dahil, tekrar saçılacaktır. Saçılma hesaplamalarında, elektronun 

hangi saçılma mekanizması ile saçıldığı öncelikli olarak belirlenmeli, daha sonra elektronun 

saçılmalar sonrasındaki durumu belirlenmelidir. 

 

 Parçacık için gelişigüzel bir dalga vektörü, başlangıç koşulu olarak seçilir ve 

simülasyon bu şekilde başlar. Aynı zamanda parçacığın tekrar eden hareketleri ve birçok 

saçılma mekanizması oluşana kadar devam eder. Toplam parçacığın hareketi için geçen süre, 

başlangıçtaki parçacık durumunun etkisinin minimum olabilmesi için uzun seçilmelidir. Bu 

sayede simülasyon sonuçları daha doğru hale gelmeye yaklaşır.  

 

3.1.2. Sürüklenme süreci 

 

 Eğer elektronun potansiyel enerjisi elektronun pozisyonuna bağlı olarak değişiyorsa, 

yarıiletken içindeki taşıyıcıların sürüklenme davranışı yarı-klasik olarak ele alınabilir. 

Bundan dolayı yük taşıyıcıları kristal içerisinde etkin kütleli bağımsız taşıyıcılar olarak 

düşünülür.  
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Elektronun hareketini gösteren eşitlikleri göz önünde bulundurarak, uçuş süresi τ 

sürecinde dalga vektöründeki değişim, zamana bağlı olarak hareket denkleminin 

integrasyonu ile elde edilir. Bu yüzden; 

 

                      Δ𝐤 =  −
1

ħ
∫ ∇Hdt′
t+τ

t
   (3.8) 

 

burada H, -e yüklü elektronun toplam enerjisidir ve aşağıdaki gibi elde edilir; 

 

 H =  Ek − eV(𝐫) (3.9) 

 

Burada Ek elektronun kinetik enerjisi, V(𝐫) elektrostatik potansiyeldir. Eğer  bir elektrik alan 

malzemeye uygulanırsa, çözüm; 

 

 
Δ𝐤 =  −

e𝐄

ħ
τ (3.10) 

 

olur. 

 

3.1.3. Saçılma süreci 

 

 Saçılma süresinde saçılma tipi Ʌn(E𝐤) ifadesinden yola çıkarak elde edilebilir. 

Öncelikle saçılmanın tipi belirlenir ve daha sonra taşıyıcının ne durumda olduğu tespit edilir. 

 

 
Ʌn(Ek) =  

∑ (E𝐤)
n
J=1

Ʌ
      n = 1,2, … . . N (3.11) 

 

bu ifade saçılma hızlarının Ʌ ile normalize olmuş toplam saçılma hızlarını verir.  

 

 Enerjisi E𝐤 olan bir parçacık düşünülerek saçılma tipini belirlerken yeni bir 

gelişigüzel sayı sıfır ile bir arasında belirlenerek yapılır. Gelişigüzel seçilen sayı burada r2 

olarak gösterilmiştir. 
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Şekil 3.2. Saçılma tipi seçimi için akış şeması 
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 Ʌn−1(𝐸𝐤) <  𝑟2  ≤ Ʌn(E𝐤) (3.12) 

 

 Burada n saçılma tipini temsil eder. Denklem (3.11) kullanılarak seçilen rastsal sayı 

r2 karşılaştırılır ve hangi saçılma tipinin rol oynayacağı seçilir.  

 

 Saçılmadan sonraki durumu belirlemek için 𝐤′ olarak ifade edilen saçılma 

sonrasındaki taşıyıcının dalga vektörünün bilinmesi gereklidir. Bunu yapabilmek için 𝐤′ 

vektörünün büyüklüğü ve doğrultusu bulunmalıdır. 𝐤′ vektörünün doğrultusunu kartezyen 

koordinatlardaki bileşenleri yardımıyla bulmak mümkündür. Vektörün büyüklüğünü 

bulurken ise enerji korunumundan yola çıkmak gerekmektedir. 

 

 Ele alınan taşıyıcı saçılma sürecinden sonra bütün doğrultular için bulunma olasılığı 

aynı olarak düşünülür. Bundan dolayı P(Ø′, ϴ′)dØ′dϴ′ olarak verilen olasılık yoğunluğu 

hesaba katılmalıdır. Burada 𝐤′ vektörünün bileşenlerini hesaplarken labratuvar koordinat 

sistemi düşünerek koordinatları  kx
L , ky

L , kz
L şeklinde yazmak kolaylık sağlar. Bu çerçeve 

düşünüldüğünde Ø′ ve ϴ′ sırasıyla kz
L eksenine göre 𝐤′ vektörünün sahip olduğu azimut ve 

kutup açısıdır. Ø′ ve ϴ′ değerlerinin bulunabilmesi için,  sıfır ve bir arasında iki yeni ayrı 

sayı belirlenmelidir. Burada bu sayılar r3 ve r4 olarak verilmiştir. 

 

 Ø′ = 2πr3 (3.13) 

 

 cosϴ′ = 1 − 2r4  (3.14) 

 

 (3.12) ve (3.13) Denklemlerindeki açıları bulmak için ise küresel koordinatlarda 

kullanılan bileşenlerin denklemleri kullanılır. 

 

 kx
′ = k′sinϴ′cosØ′ (3.15) 

 

 ky
′ = k′sinϴ′sinØ′ (3.16) 

 

 k𝑧
′ = k′cosϴ′ (3.17) 
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Şekil 3.3. Laboratuvar sistemine göre koordinat sistemi 

 

 (3.14), (3.15) ve (3.16) Denklemleri saçılmadan sonra saçılacak parçacığın yönünün 

her yönde eşit olasılıkta saçılma olasılığı olduğu düşünüldüğü durumlarda geçerlidir. 

Safsızlık saçılmaları ve polar optik fonon gibi saçılmaların doğrultusu ise her yönde eşit 

olasılıkla gerçekleşmez. Bundan dolayı yeni denklemler belirlenmelidir. Bu denklemler 

belirlenirken Şekil 3.3 koordinat sistemi düşünülerek hareket edilir. 

 

 Ø belirlenirken, geçiş hızı Ø açısından bağımsız olduğu için aşağıdaki gibi yazılabilir. 

 

 Ø = 2πr3 (3.18) 

 

ϴ kutup açısı safsızlıklardan kaynaklanan saçılmalar için, 
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cosϴ = 1 −

2r4

1 + (1 − r4) (
2k
qD
)
2 

(3.19) 

 

Denklemi ile belirlenir. Burada r3 ve r4 gelişigüzel olacak şekilde sıfır ve bir arasında 

seçilmiş sayıdır. 

 

 Kutupsal optik fonon saçılması düşünüldüğünde ise, 

 

 
cosϴ =

1 + f − (1 + 2f)r4

f
 (3.20) 

 

 
f =

2√E𝐤E𝐤′

(√E𝐤 −√E𝐤′)
2 (3.21) 

 

denklemleri ile verilir. Ek saçılma öncesindeki taşıyıcı enerjisi,  Ek′ ise saçılmadan sonraki 

saçılma enerjisidir.  

 

 Her yönde aynı saçılma olasılığına sahip olmayan saçılmalar yani anizotiropik olan 

saçılmalarda, 𝐤′ nün koordinatlarının bulunabilmesi için farklı bir yol izlenmelidir. Ø ve ϴ 

açıları (3.18) ve (3.19) Denklemleri kullanılır. 

 

 Yeni izlenecek yolda laboratuvar için belirlenen koordinatlar yerine, taşıyıcı dalga 

vektöründeki değişimi bulmak için yeni 𝐤′ dalga vektörünün kz eksenine paralel olduğu 

düşünülen yeni bir koordinat sistemi kullanmak yerinde olacaktır. Yeni koordinat sistemi 

laboratuvar sisteminin 𝑘𝑥  ekseni çevresinde α açısı, 𝑘𝑧 etrafında ise β açısı kadar dönmesi 

ile bulunabilir. 

 

 Bu işlem için bir dönüşüm matrisi kullanılması gerekir. Yeni koordinat sistemi 

𝑘𝑥
𝑟 , 𝑘𝑦

𝑟 , 𝑘𝑧
𝑟  olarak aşağıda verilir.  
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Şekil 3.4. 𝐤 dalga vektörüne göre 𝐤′ dalga vektörünün ϴ ve  Ø açılarının belirlenmesi 

 

 

 

(
1 0 0
0 cosα −sinα
0 sinα cosα

)(
cosβ −sinβ 0
sinβ cosβ 0
0 0 1

) (3.22) 

 

Ø ve ϴ son durum dalga vektörü 𝐤′ ‘nün ilk durum dalga vektörü 𝐤 arasındaki sırası ile 

azimut ve kutup açılarıdır.  Yeni koordinat sisteminde (𝐤𝐱
𝐫 , 𝐤𝐲

𝐫 , 𝐤𝐳
𝐫),  𝐤𝐱, 𝐤𝐲, 𝐤𝐳 bileşenleri, 

 

 kx = k
′sinϴcosØ (3.23) 

 

 ky = k
′sinϴsinØ (3.24) 

 

 kz = k
′cosϴ (3.25) 

 

biçiminde yazılabilir. Laboratuvar koordinat sistemi düşünülerek yazılan 𝐤′  vektörü (3.21) 

Denklemindeki matrisin tersi ile çarpılarak elde edilir. 
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(
cosβ cosαsinβ sinαsinβ
−sinβ cosαcosβ sinαcosβ
0 −sinα cosα

) (3.26) 

 

Burada sinüs ve kosinüs fonksiyonları, Şekil 3.3 ‘den yola çıkarak bulunabilir. 

 

 

Sinα =  
√kx2 + ky2

k
 ,          cosα =

kz
k
  

(3.27) 

 

 
sinβ =

kx

√kx2 + ky2
 ,         cosβ =

ky

√kx2 + ky2
 

(3.28) 

 

Laboratuvar koordinat sisteminde saçıldıktan sonra taşıyıcının dalga vektörünü, son olarak,  

 

 

(

kx
′

ky
′

kz
′

) =

(

 
 
 
 
 
 
 

ky

√kx2 + ky2

kxkz

k√kx2 + ky2

kx
k

−
kx

√kx2 + ky2

kykz

k√kx2 + ky2

ky

k

0

−√kx2 + ky2

k

kz
k )

 
 
 
 
 
 
 

(
k′sinϴcosØ
k′sinϴsinØ
k′cosϴ

) (3.29) 

 

bulunur. 

 

Eliptik bandlar düşünüldüğünde, parçacığın saçılma olasılığı her doğrultu için aynı 

olasılıkta olduğunda elipsoidal yüzeyleri küresel yüzeylere küçülten Herring-Vogt 

dönüşümü kullanılır. 

 

 𝐤∗ = U𝐤 (3.30) 

 

 Burada U etkin kütledir ve aşağıdaki matris ile ifade edilir. 
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U =

(

 
 
 
 
 
(
mf
mx∗
)

1
2⁄

0 0

0 (
mf
my∗
)

1
2⁄

0

0 0 (
mf
mz∗
)

1
2⁄

)

 
 
 
 
 

 (3.31) 

 

Burada, mf = (mx
∗my

∗mz
∗)
1
3⁄   , mx

∗ , my
∗ , mz

∗ değerleri, sırası ile x, y, ve z eksenleri üzerinden 

tanımlanan etkin kütlelerdir.  Buradan yola çıkarak enerji yazılırsa; 

 

 
E𝐤 =

ħ2

2
(
kx
2

mx∗
+
ky
2

my∗
+
kz
2

mz∗
) =

(ħk∗)2

2mf
 (3.32) 

 

olarak bulunur. 

 

3.1.4. Hız hesabı 

 

 Taşınım sürecinde Boltzmann taşınım denkleminin çözülmesi gereklidir. Bu süreç 

için Monte Carlo yöntemini kullanmak büyük bir kolaylık sağlar. Taşıyıcı serbest uçuş 

zamanı bütün hacim elemanlarında, momentum uzayında bulunursa, sürüklenme hızının 

ortalaması ve parçacıkların enerjisinin ortalaması bir dağılım fonksiyonu yardımıyla 

bulunabilir. Yük taşıyıcısının her bir katı içerisindeki hareketini gözlemleyerek hız 

ortalamaları ve enerji ortalamaları belirlenebilir. Tüm taşıyıcı hareketi için bir ortalama 

alınır. 

 

 
𝛎 =  

1

ħ
∇𝐤E𝐤 (3.33) 

 

Denklemi anlık hız olarak verilir. Τ taşıyıcı uçuş zamanı süresince ortalama hız ise; 

 

 
〈ν〉τ =

1

ħ

ΔE𝐤
Δ𝐤

 (3.34) 
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Denklemi ile verilir. ΔE𝐤 ile Δ𝐤 sırası ile yük taşıyıcısının enerjisi,  𝐤 ‘daki küçük değişimler 

olarak verilmiştir. Denklem (3.10) kullanılarak Δ𝐤 ifadesi yalnız bırakılıp, (3.34) 

Denkleminde yerine yazılırsa, ortalama hız elektrik alan kullanılarak, 

 

 
〈𝛎〉τ = −

ΔE𝐤
eEτ

 (3.35) 

 

tekrardan yazılabilir. 

 

 Toplam taşıyıcı hızı ortalamasını bulmak istersek,  

 

 
〈ν〉T =

1

T
〈𝛎〉ττ (3.36) 

 

 
=

1

eET
∑ΔE𝐤 (3.37) 

 

 
= −

1

eET
∑(Ef − Ei) (3.38) 

 

biçiminde yazılabilir. Ef ve Ei sırasıyla son durum ve ilk durum enerjisidir. 

 

 Toplam ortalama taşıyıcı enerjisi ise, 

 

 
〈E〉T =

1

T
∑〈E〉ττ (3.39) 

 

olarak elde edilir. Son olarak; 

 

 
〈E〉T =

Ef + Ei
2

 (3.40) 

 

yaklaşık olarak yazılabilir. 
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4.TAŞIYICI SAÇILMA MEKANİZMALARI 

 

 

 Bir yarı iletkenin kristal yapısı içindeki taşıyıcı hareketi Bloch Teoremi tarafından 

verilir. Bu teorem, periyodik bir potansiyelin varlığında, taşıyıcının dalga fonksiyonunun, 

bir hücre periyodik bileşeni tarafından modüle edilmiş bir düzlem dalga şeklinde 

yazılabileceğini belirtir. Böylece, tek parçacık modeli içinde, Schrödinger dalga denkleminin 

çözümleri taşıyıcı hareketi; 

 

 Ψn,k(𝐫) = Un,k(𝐫)e
i𝐤𝐫 (4.1) 

 

Bloch fonksiyonu olarak bilinen formda verilir. Burada k ve r sırasıyla, dalga vektörü ve 

gerçek uzay konum vektörünü, n ise hücre periyodik fonksiyonu Un,k(𝐫) ‘nin bant indisini 

verir. 

 

 İdeal bir periyodik potansiyelde parçacık hareketi için saçılma olmaz. Gerçekte ise, 

kristal potansiyelinin periyodikliği, bir taşıyıcının momentumunu ve kinetik enerjisini 

değiştirebilen kuantum mekanik saçılma mekanizmalarının temelini oluşturan rastgele 

pertürbe potansiyeller tarafından bozulur.  

 

4.1. Fermi Altın Kuralı 

 

 Kuantum fiziğinde Fermi’nin altın kuralı, zayıf bir pertürbasyonun sonucu olarak bir 

kuantum sisteminin bir enerji öz durumundan başka bir enerji öz durumuna geçiş oranını 

(birim zaman başına geçiş olasılığı) açıklayan bir formüldür. 

 

H/ büyüklüğünün hamiltonyeninin petürbasyonundan dolayı bir taşıyıcının ψ(k,r) 

durumundan ψ(k/,r) durumuna geçişinin birim zamandaki saçılma oranı, birinci dereceden 

pertürbasyon teorisi olarak; 

 

 
S(𝐤, 𝐤′) =  

2π

ħ
| < 𝐤′|H′|𝐤 > |2δ(E𝐤′ − E𝐤 ± ħω) (4.2) 
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verilir. Burada 𝑘′ ve k durum vektörleridir. Burada Kronecker-delta fonksiyonu δ, başlangıç 

enerjisi Ekve son durum enerjisi Ek′ arasındaki enerji korunumunu verir. ħ burada Planck 

sabiti ω ise fonon frekansıdır (Moglestue, 1993). Bu denklem Fermi altın kuralı olarak 

adlandırılır. ħω ise yayınım veya soğurma olayları sırasındaki fonon enerjisidir. Fermi altın 

kuralından yola çıkarak saçılma oranına ulaşılabilir. Bunun için H′ Fourier serisine açılır.  

 

 H′ = ∑Uqexp (i𝐪. 𝐫)

𝐪

 (4.3) 

 

H′ beklenen değeri ifadesi yazılır ve Denklem (4.3) içine yazılırsa, 

 

 
< 𝐤′|H′|𝐤 > = ∫U𝐤′

∗ (𝐫)exp (−i𝐤′. 𝐫)∑U𝐪 exp(i𝐪. 𝐫) U𝐤(r)exp (i𝐤. 𝐫)d𝐫
𝐪Ω

 (4.4) 

 

 
< 𝐤′|H′|𝐤 > =  ∑U𝐪

𝐪

∫U𝐤′
∗

Ω

(r)U𝐤(r) exp[i(𝐪 − 𝐤
′ + 𝐤). 𝐫] dr (4.5) 

 

 

Burada 𝐪 = 𝐤′ − 𝐤 haricindeki q değerleri integre edilirse, değeri 0 olur. Bunun sebebi üstel 

fonksiyonun kendini tekrar eden bir fonksiyon olmasıdır. Bu sebeple matris elemanı; 

 

 < 𝐤′|H′|𝐤 > =  UqI(𝐤, 𝐤
′)δ(𝐪 + 𝐤 − 𝐤′) (4.6) 

 

 < 𝐤′|H′|𝐤 > = U𝐤′−𝐤I(𝐤, 𝐤
′) (4.7) 

 

biçiminde elde edilir. I(𝐤, 𝐤′) faktörü örtüşme integralidir ve yalnızca H′ değerinin uzamsal 

değişiminin Bloch fonksiyonunun periyodik bileşenine kıyasla yavaş olması koşuluyla 

geçerlidir. S-benzeri orbitallerden kaynaklanan ve küresel ve parabolik bantları kabul eden 

iletim bantları durumu için, I(𝐤, 𝐤′) yaklaşık bir değerini alır. 

 

 
I(𝐤, 𝐤′) =  ∫Uk′

∗ (𝐫)Uk(𝐫)d𝐫
Ω

 (4.8) 
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şeklinde yazılabilir.  U𝐤′−𝐤 ise aşağıdaki gibi yazılabilir. 

 

 
U𝐤′−𝐤 = ∫exp(−i𝐤

′. 𝐫) U(𝐫, t)exp (i𝐤. 𝐫)𝐝𝐫
Ω

 (4.9) 

 

 
< 𝐤′|H′|𝐤 > ≌  ∫exp(−i𝐤′. 𝐫) U(𝐫, t) exp(i𝐤. 𝐫) 𝐝𝐫

Ω

 (4.10) 

 

biçiminde tekrar yazabiliriz. 

 Bu durumda düzlem dalgalar, neredeyse parabolik biçimli bandlar için pertürbe 

edilmemiş haller şeklinde değerlendirilebilir. 

 Fermi altın kuralı ile verilen S(𝐤, 𝐤′) değerinin integrali 𝐤′ değerine bağlı olarak 

alınırsa; 

 

 W(𝐤) = 
𝛺

(2𝜋)3
∫ S(𝐤, 𝐤′)𝐝𝐤′ (4.11) 

 

değerler yerine konursa; 

 

 
W(k) =

2π

ħ

Ω

(2π)3
∫| < 𝐤′|H′|𝐤 > |2δ(Ek′ − Ek ± ħω)𝐝𝐤′ (4.12) 

 

saçılma hızı elde edilmiş olur. Parabolik olmayan band için; 

 

 |I(𝐤, 𝐤′)|2 = (akak′ + ckck′cosϴ)
2 (4.13) 

 

ifadesi şeklindedir. ϴ burada 𝐤 ve 𝐤′ arasındaki açıdır. Ak ve ck ise; 

 

 
ak = [

1 + αE(k)

1 + 2αE(k)
]

1
2⁄

 (4.14) 

 

 
ck = [

1 + αE(k)

1 + 2αE(k)
]

1
2⁄

 (4.15) 
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şeklinde verilir. Burada α parabolden sapma faktörü, 

 

 
α =  

1

Eg
[1 −

m∗

m0
] (4.16) 

 

biçimindedir. Son olarak δ fonksiyonu da hesaba katılmalıdır. 

 

 

W(𝐤) =
Ω

(2π)3
∭ S(𝐤,𝐤′)dk′dϴdØ

2π π∞

0 0 0

 (4.17) 

 

Malzemelerde, etkin kütle sürekliliği olan bir ortam varlığı düşünülerek hesaplandığı için 

W(k), Ø açısına bağlı olmaktan çıkar. Bundan dolayı ifade aşağıdaki gibi yazılabilir. 

 

 

W(𝐤) =
Ω

(2π)3
∬ S(𝐤, 𝐤′)dk′dϴ

𝜋 0

0 0

 (4.18) 

 

4.2. İyonize Safsızlık Saçılması 

 

 İyonize safsızlık saçılması, doğası gereği elastiktir ve bir dış alanın mevcudiyetinde 

taşımayı kendi başına kontrol edemez. Uygun enerji dağılımını elde etmek için bazı enerji 

tüketen saçılma mekanizmaları eşlik etmelidir. İyonize safsızlık için saçılma kaynağı, bir 

Coulomb perdeleme potansiyelidir. Bunun nedeni, donör safsızlık atomunun kütlesinin bir 

elektronunkinden çok daha büyük olmasıdır. Sonuç olarak, böyle bir saçılma işlemi sırasında 

elektron enerjisinin değişimi, saçılmadan önceki elektron enerjisine kıyasla ihmal edilebilir 

düzeydedir. 

 

 Boşlukta tek bir yük bir Coulomb yasasına uyacak şekilde elektrostatik potansiyel 

oluşturur. Ancak safsızlıkların oluşturduğu potansiyel malzemenin içindeyken serbest 

taşıyıcıların sayısına bağlıdır. Saçılma perdeleme potansiyelinden dolayı Conwell-

Weisskopf ve Brooks-Herring yaklaşımları kullanılarak başlangıçta incelenir. 
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 Öncelikle yarıiletken termal dengedeyken perdeleme potansiyeli belirlenir. Hareketli 

yük taşıyıcıları ve iyonize haldeki safsızlıkların hareketinden kaynaklanan elektrostatik 

potansiyeli bulmak için, orijinde yükü Ze olan ve orijine uzaklığı δn ile gösterilen pozitif bir 

yük düşünülürse, yük nötralliği bu nokta civarında pertürbe edilir. δn = n − ND
+ kadar       

elektron yoğunluğu artar. Bu durum Şekil 4.1 ‘de gösterilmiştir. 

 

 

Şekil 4.1. Pozitif bir iyon yakınında yük nötralliğinin bozunumu, n0 denge elektron                                       

yoğunluğu, r iyondan olan uzaklık 

 

 Küresel koordinatlarda etkin elektrostatik potansiyel; 

 

 1

r2
d

dr
(r2

dV

dr
) =

e

εs
[Zδ(r) − δn] (4.19) 

 

 

Poisson denklemi çözerek bulunur. Burada r ve εs sırasıyla orijinden uzaklık ve statik 

dieletrik sabitidir. Dengedeki elektron yoğunluğu n0 olursa klasik dağılım fonksiyonu 

kullanılarak TL sıcaklığında δn, 

 

 
δn = n0exp (

eV

kBT𝐿
) − n0 ≈  

en0
kBTL

V (4.20) 

 

olur. (4.18) ve (4.19) eşitlikleri birleştirilirse; 
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 1

r2
d

dr
(r2

dV

dr
) − 𝑞𝐷

2𝑉 = −
𝑍𝑒

ε𝑠
 δ(r)  (4.21) 

 

bulunur. 

 

 

QD = √
e2n0
εskBTL

 (4.22) 

 

olarak verilir. QD Debye uzunluğunun tersidir. 

 

(4.21) eşitliğinin özel çözümü, 

 

 
𝑉(𝑟) =

𝑍𝑒

4𝜋εs𝑟
exp (−𝑞𝐷𝑟) (4.23) 

 

şeklindedir. Bu ifade perdelenmiş Coulomb potansiyelidir. Bundan dolayı pertürbasyon 

potansiyeli; 

 

 
H′ =

Ze2

4πεsr
exp (−qDr) (4.24) 

  

 

 𝐻′ (4.10) Denkleminde yerinde yazılırsa; 

 

 
< 𝐤′|H′|𝐤 > ≌  

1

Ω

Ze2

4πεs
∫exp(−i𝐤′. 𝐫)

exp (−qDr)

r
exp(i𝐤. 𝐫) 𝐝𝐫

Ω

 (4.25) 

 

bulunur. Ω hacmi üzerinden integrali alınırsa, 

 

 
< 𝐤′|H′|𝐤 >=

Ze2

Ωεs

1

|𝐪|2 + qD
2  (4.26) 
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olur. 𝐪 = 𝐤′ − 𝐤 değeri, momentum korunumu ile orantılı olur. (4.2)’ de (4.26) Denklemi 

yazılırsa; 

 

 
S(𝐤, 𝐤′) =

2π

ħ
(
Ze2

Ωεs
)

2
δ(Ek′ − Ek)

(q2 + qD
2 )2

 (4.27) 

 

elde edilir. δ – fonksiyonu, perdelenmiş Coulomb potansiyeli zamandan bağımsız 

olmasından dolayı, saçılma sürecinde elektronun enerjisinin korunduğunu göstermektedir.  

 

Şekil 4.2. ϴ, 𝐤, 𝐤′ arasındaki kutup açısı 

 

𝐤′ =  𝐤  olduğu için, 

 

 q2 = (𝐤′ − 𝐤)2 = 2k2(1 − cosϴ) (4.28) 

 

olur.  

 

NsΩ toplam Ω hacmindeki safsızlık sayısı olarak alınır ve Denklem (4.27) ile çarpılırsa; 

 

 2𝜋

ħ

𝑁𝑆𝑍
2𝑒4

Ω𝜀𝑠2
δ(Ek′ − Ek)

[2𝑘2(1 − 𝑐𝑜𝑠ϴ) + 𝑞𝐷
2 ]2

 (4.29) 
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Denklemi elde edilir. Saçılma hızı bu durumda (4.29) Denklemi (4.11) ‘de yerine yazılırsa 

𝑊(𝐤), 

 

W(k) =
2π

ħ

NSZ
2e4

εs2Ω

Ω

(2π)3
∫ dØ∫dϴ∫ dk′

∞

0

π

0

2π

0

k′
2
sinϴδ(Ek′ − Ek)

[2k2(1 − cosϴ) + qD
2 ]2

 (4.30) 

 

olarak bulunur. İfade daha sonra; 

 

 

W(k) =
2π

ħ

NSZ
2e4

εs2Ω

Ω

(2π)3
∫dϴ∫ dk′

∞

0

π

0

k′
2
sinϴδ(E𝐤′ − E𝐤)

[2k2(1 − cosϴ) + qD
2 ]2

 (4.31) 

 

 

k uzayında E𝐤 ile E𝐤 + dE𝐤 enerji aralığında hacim 4π2k2dk olduğundan integralde bulunan 

Ω4πk′
2
dk′/(2π)

3 ifadesi, N(E𝐤′)dE𝐤′ yerdeğiştirilir. N(E𝐤′) ifadesi birim enerji başına 

düşen son durumların yoğunluğudur. Bu durumda integral, E𝐤′ ‘ne göre alınabilir. 

 

 

W(k) =  
πNsZ

2e4N(Ek) 

ħεs2
∫

𝑑(𝑐𝑜𝑠ϴ)

[2𝑘2(1 − 𝑐𝑜𝑠ϴ) + 𝑞𝐷
2 ]2

1

−1

 (4.32) 

 

 

integrali alındığında, 

 

 
W(k) =  

πNsZ
2e4N(Ek) 

ħεs2
1

qD
2 (4k2 + qD

2 )
 (4.33) 

 

denklemi ile saçılma hızı iyonize safsızlıklar için yazılabilir. 

 

 
N(E𝐤) =

(2m∗)
3
2⁄ √E𝐤

4π2ħ3
 (4.34) 

 

eşitliği yukarıda söylenen durum yoğunluğu ifadesidir. 
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 Elektronun son durumunu belirlemek için geçiş hızı belirlenmelidir. İyonize 

safsızlıklar için geçiş hızı Ø azimut açısından bağımsız olduğundan kutup açısı ϴ,  ile 2π 

arasında rastgele bir sayı olarak seçilir. ϴ ve  dϴ arasında bulunan bir açıya göre saçılma 

olasılığı (4.32) Denklemi kullanılarak; 

 

 
𝑃(ϴ)dϴ =

𝜋𝑁𝑠𝑍
2𝑒4𝑁(𝐸𝐤)

ħε𝑠2
𝑠𝑖𝑛ϴdϴ

[2𝑘2(1 − 𝑐𝑜𝑠ϴ) + 𝑞𝐷
2 ]2

 (4.35) 

 

 

biçiminde yazılır. 

 

 (3.35) ifadesi 0’ dan ϴ ‘ya integrali alınır ve saçılma hızına bölünürse  

 

 
W(ϴ)

W(𝐤)
=

1

W(𝐤)
∫ P(β)dβ

ϴ

0

 (4.36) 

 

 

= ∫
qD
2 (4k2 + qD

2 )

2[2(1 − η)k2 + qD
2 ]2

dη

cosϴ

−1

 (4.37) 

 

şeklinde bulunabilir. İntegral alındıktan sonra; 

 

 

W(ϴ)

W(𝐤)
=

(1 − cosϴ) [1 + (
2k
qD
)
2

]

2 + (1 − cosϴ) (
2k
qD
)
2  (4.38) 

 

𝑊(ϴ)/W(𝐤) değeri, sıfırdan büyük olmasından dolayı ve ϴ açısının artmasından dolayı 

Denklem (4.38) 0 ve 1 arasında düzgün dağılmış gelişigüzel olacak şekilde bellli bir sayıya 

eşitlenerek aşağıdaki gibi bulunur (Kazutaka T, 1993). 

 

 
cosϴ = 1 −

2r

1 + (1 − r) (
2k
qD
)
2 

(4.39) 
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4.3. Fonon Saçılması 

 

 Fononlar, kristal yapıdaki bir malzemede titreşimlerin veya dalga hareketlerinin 

kuantum mekaniği ile açıklanan temel birimlerdir. Fononlar, malzemenin ısı iletimi, 

elektriksel iletkenlik, termal genleşme gibi fiziksel özelliklerini anlamak için önemlidir. 

 

Fononlar, atomlar arasındaki bağları ve yerel ortamlardaki malzeme özelliklerini 

etkileyen titreşimlerin kuantum mekaniksel dalga fonksiyonları olarak düşünülür. Bu dalga 

fonksiyonları, malzeme içindeki atomların titreşimlerini ve enerji dağılımını tanımlar. 

Fononların enerji seviyeleri, Planck’ın enerji kuantizasyon ilkesine tabidir. 

 

Fononlar, katıların termal davranışını anlamak için kullanılır ve malzemelerin ısı 

iletkenliği, elektriksel iletkenlik ve elektron-fonon etkileşimleri gibi özelliklerini etkilerler. 

Fononlar ayrıca malzeme tasarımı ve yarıiletkenler gibi birçok uygulamada önemlidir. Bu 

nedenle fononlar, katı hal fiziği ve malzeme biliminde önemli bir yere sahiptir. 

 

İki farklı fonon modu vardır. Bunlar akustik fonon ve optik fonon modlarıdır. Optik 

fononlar, kristal yapının yüksek frekansta titreşen modlarını temsil ederler.  

 

Optik fononlar genellikle malzemenin optik özellikleriyle ilgilidir. Işıkla 

etkileşimleri, malzemenin dielektrik sabiti ve optik dağılımı üzerinde etkili olabilir. Optik 

fononların hareketi, kristal içerisinde birbirine zıt olacak şekildedir. Bundan dolayı bu zıt 

yönlü hareket yüzünden optik fononlar örgüde değişikliğe neden olabilirler. 

 

Akustik fononlar, kristal yapının düşük frekansta titreşen modlarını temsil ederler. 

Akustik fononlar, kristal yapının düşük frekansta titreşen modlarıdır. Bu titreşimler, 

malzeme içindeki atomların elastik deformasyonlarından kaynaklanır. Akustik fononlar, 

malzemenin temel titreşimlerini temsil ederler ve bu nedenle frekansları genellikle daha 

düşüktür. Akustik fononlar, ses dalgalarıyla benzer özelliklere sahiptir ve malzemenin ses 

iletimi ve mekanik özellikleri üzerinde etkilidirler. Bu nedenle akustik fononlar, sesin iletimi 

gibi olayları etkiler. Akustik fononlarda, kristaldeki atomlar birbirleri ile aynı yönde hareket 

ederler. 
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4.4. Akustik Fonon Saçılması  

 

 Bir kristal içerisindeki atomlar titreştiklerinde normal mod titreşimlerinin 

süperpozisyonu olarak ele alınır. Her normal mod birbirinden bağımsız olarak bir harmonik 

osilatöre benzer şekilde titreşirler ve bu titreşimler kuantize olarak ele alınır. Bu kuantaya 

fonon denir. Fononlar kuantum mekaniğinde yaratma ve yok etme operatörleri olarak 

bilinen, a𝐪
+ ve a𝐪 operatörleri ile elde edilir. Herhangi bir t anında r noktasındaki yer 

değiştirmeye bakıldığında; 

 

 

𝐮(𝐫, t) =∑(
ħ

2ρΩw𝐪
)

1
2

𝐞𝐪
𝐪

(a𝐪 + a𝐪
+)exp (i𝐪. 𝐫) (4.40) 

 

denklemi ile verilir. Burada ρ, Ω, 𝐞𝐪, 𝐪 ve w𝐪, sembolleri sırasıyla, malzeminin yoğunluğu, 

kristalin toplam hacmi, polarizasyon birim vektörü, dalga vektörü ve titreşimin açısal 

frekansı olarak verilmiştir. 

 

 Dalga boyu uzun olan akustik fononlarda; 

 

 wq

q
= νs = √

cl
ρ

 (4.41) 

 

bağıntısı ile dispersiyon yasası elde edilir. Burada νs ve cl sembolleri sırasıyla boyuna elastik 

dalga hızı ve malzemenin elastik sabiti olarak verilmektedir. Bu durumda denge konumunda 

bulunan malzemedeki iyonların salınımları, malzemenin enerji bandında anlık değişimlere 

neden olur. Bu salınımlar yük taşıyıcılarının saçılmasına sebep olmaktadır. 

 

 Enerji bandındaki değişimlerin örgü sabitindeki değişimler ile orantılı olduğu 

söylenebilir. Örgüdeki değişim ile oluşan gerilmeyi, 𝛁. 𝐮(𝐫, t) ifadesi ile gösterebiliriz. Bu 

sayede akustik fononlar için etkileşme potansiyelini; 

 

 H′ = Ξd𝛁. 𝐮(𝐫, t) (4.42) 
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biçiminde yazarız. Ξd ile gösterilen ifade burada deformasyon potansiyelini temsil 

etmektedir. (4.40) Denkleminde (4.42) Denklemi yerine yazılırsa; 

 

 

H′ =∑iqΞd (
ħ

2ρΩw𝐪
)

1
2

𝐞𝐪
𝐪

(a𝐪 + a𝐪
+)exp (i𝐪. 𝐫) (4.43) 

 

Denklemi elde edilir. Buradaki dalga vektörü polarizasyon vektörüne paralel olduğu 

düşünülerek 𝐪. 𝐞𝐪 = q olarak kullanılırsa pertürbasyon potansiyelinin matris elemanını, 

 

 

< 𝐤′, n𝐪 − 1|H
′|𝐤, n𝐪 >= iqΞd (

ħ

2ρw𝐪Ω
)

1
2⁄

√nqδ(𝐤
′ − k − 𝐪) (4.44) 

 

 

< 𝐤′, n𝐪 + 1|H
′|𝐤, n𝐪 >= iqΞd (

ħ

2ρw𝐪Ω
)

1
2⁄

√nqδ(𝐤
′ − k − 𝐪) (4.45) 

 

 n𝐪 = 1 [exp(𝑒𝑥𝑝 ħw𝐪 𝑘𝐵𝑇⁄ ) − 1]⁄  (4.46) 

 

olarak buluruz. Bose-Einstein dağılımına göre n𝐪 toplam fonon saysısı, δ-fonksiyonu ise 

malzeme boyunca elektron ve fonon etkileşimlerinde kristalin momentumunun 

korunduğunu söyleyen fonksiyondur. Verilen denklemler Fermi altın kuralı kullanılarak 

yerine yazılır ve akustik fononların geçiş hızını soğurma ve yayınlanması için; 

 

 
S(k, k′) =

πΞd
2q2

ρw𝐪Ω
(nq +

1

2
±
1

2
)δ(k′ − k ± q)δ(Ek′ − Ek ± ħw𝐪) (4.47) 

  

olarak elde edilir.  

 

 Ek′ = Ek ± ħw𝐪 (4.48) 

 

 𝐤′ = 𝐤 ± 𝐪 (4.49) 
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ħw𝐪 ve q sırasıyla kristaldeki fonon enerjisi, fonon dalga vektörü olarak verilir. Malzemenin 

enerji bandının parabolik veya küresel olması durumunda enerji korunumu; 

 

 ħ2k′
2

2m∗
=
ħ2k2

2m∗
± ħw𝐪 (4.50) 

 

ifadesi biçiminde yazılabilir. δ-fonksiyonlarını birleştirmek için 4.48 denklemi, 4.49’ da 

yerine yazılırsa; 

 

 
δ(k′ − k ± q)δ(Ek′ − Ek ± ħw𝐪) = δ (

ħ2q2

2m∗
±
ħ2kqcosϴ′

m∗
± ħw𝐪) (4.51) 

 

ϴ′ bu denklemde kutup açısıdır. Bu durumda; 

 

 
cosϴ′ =

1

2
(±
q

k
+
ħw𝐪

E𝐤

k

q
) (4.52) 

 

(4.52) Denkleminde ϴ açısı fononun soğurma ve yayınlanma esnasındaki momentumunun 

açısal frekansına bağlı durumu arasında olan açıdır ve Şekil.4.3’ de verilmiştir. 

 

 

Şekil.4.3. ϴ′ k ve q arasındaki kutup açısı, ϴ, k ve 𝐤′ arasında kalan kutup açısı olmak 

üzere, sol taraf soğurmayı, sağ taraf yayınımı göstermektedir. 

 

 

Oda sıcaklığında akustik fononların enerjisi  kBT enerjisinden oldukça küçük 

olmasından dolayı ħw𝐪 akustik fonon enerjisi sıfır kabul edilerek saçılmanın elastik olduğu 

kabul edilir. Bundan dolayı, Denklem (4.48) de enerji değişmez olarak alınır. Bu sayede, 
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nq ≈

kBTL
ħw𝐪

 (4.53) 

 

olarak kabul edilebilir. Bu sayede S(𝐤, 𝐤′) ifadesi; 

 

 
S(𝐤, 𝐤′) =

πΞd
2kBTL
ħclΩ

k

qE𝐤
δ(
q

2k
± cosϴ′) (4.54) 

 

bulunur. Bu denklem saçılmadaki iki durumu da içerir. Bu durumda saçılma hızı; 

 

 
W(𝐤) =

Ω

(2π)3
∫S(𝐤, 𝐤′)d𝐤′ (4.55) 

 

 
W(𝐤) =

Ξd
2kBTL
8π2ħcl

k

Ek
∫
1

q
δ(
q

2k
± cosϴ′)d𝐪 (4.56) 

 

integral daha sonra; 

 

 
𝐈q = ∫

1

q
δ (
q

2k
± cosϴ′) d𝐪 (4.57) 

 

 

𝐈q = ∫ ∫ ∫ δ(
q

2k
± cosϴ′) dØd(cosϴ′)qdq

2π

0

+1

−1

∞

0

 (4.58) 

 

(4.52) Denklemi kullanılarak q değerinin minimumu ve maksimumu bulunabilir. 

 

 𝑞𝑚𝑖𝑛 = 0 

𝑞𝑚𝑎𝑥 = 2𝑘 
(4.59) 

 

Bu sayede; 
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Iq = 2π ∫ qdq = π(qmax
2

qmax

qmin

− qmn
2 ) = 4πk2 (4.60) 

 

Bu durumda saçılma hızı; 

 

 
𝑊(𝐤) =

2𝜋Ξd
2𝑘𝐵𝑇𝐿
ħ𝑐𝑙

𝑁(𝐸𝐤) (4.61) 

 

olarak bulunur. 

 

4.5. Kutupsal Olmayan Optik Fononların Saçılması 

 

 Kutupsal olmayan optik fonon saçılması, deformasyon potansiyeli saçılması gibi 

düşünülmelidir. Bundan dolayı birim hücrede bulunan atomların yer değiştirmesi ile ilgili 

olan optik yer değiştirme parametresi kullanılmalıdır. Bu parametre elektronun enerjisini 

doğrudan etkiler. Bu sayede etkileşme potansiyeli; 

 

 H′ = (𝐫, t) = 𝐃𝟎. 𝐮(𝐫, t) (4.62) 

 

𝐃𝟎 burada optik deformasyon potansiyelidir. Optik yer değiştirme ise; 

 

 

u(r, t) = ∑(
ħ

2ρΩw𝐪
)

1
2⁄

q

𝐞𝐪(aq + a−q
+ )ei𝐪.𝐫 (4.63) 

 

olarak verilir. Burada 𝐞𝐪, w𝐪 ifadeleri sırasıyla, kutuplanmanın birim vektörü, q dalga 

vektörünün açısal frekansıdır. 

 

 Bu durumda etkileşme potansiyeli, 

 

 

H′ =∑𝐷0 (
ħ

2ρΩw𝐪
)

1
2⁄

(aq + a−q
+ )exp (i𝐪. 𝐫)

q

 (4.64) 
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olarak bulunur. Bu durumda optik deformasyon potansiyelinin matris elemanını yazmak 

istersek, 

 

 
|⟨k′|H′|k⟩|2 =

D0
2ħ

2ρΩw𝐪
(nq +

1

2
±
1

2
)δ(𝐤′ − 𝐤 ± 𝐪) (4.65) 

 

elde edilir. w𝐪 ve nq sabit olarak düşünülebilir. Bunun sebebi optik fononun enerjisinin sabit 

kabul edilmesidir. Bundan dolayı w𝐪 ve nq ifadeleri yerine 𝑤0 ve 𝑛0 olarak yazılabilir. 

 

Bu durumda (4.65) Denklemini Fermi altın kuralında yazarsak; 

 

 
S(k, k′) =

πD0
2

ρw0Ω
(n0 +

1

2
±
1

2
) δ(

ħ2q2

2m∗
±
ħ2kqcosϴ′

m∗
± ħw0) (4.66) 

 

geçiş hızı elde edilir. Burada cosϴ′ -1 ve +1 arasında değer alabilir. Bu sayede; 

 

 
qmin = k |1 − (1 ±

ħw0
E𝐤
)

1
2⁄

| (4.67) 

 

 
𝑞𝑚𝑎𝑥 = k |1 + (1 ±

ħw0
E𝐤
)

1
2⁄

| (4.68) 

 

bulunur. Bu ifadeler üzerinden saçılma hızını yazmak istediğimizde (4.66) ifadesinin 

integrali, 𝑘′ üzerinden almak gerekir. 

 

 

W(𝐤) =
Ω

(2π)3
∫S(𝐤, 𝐤′)d𝐤′ (4.69) 

 

 
W(𝐤) =

𝐷0
2

8𝜋2ρ𝑤0
(n0 +

1

2
±
1

2
)∫δ(

ħ2𝑞2

2𝑚∗
±
ħ2kqcosϴ′

m∗
± ħw0)𝑑𝐪 (4.70) 

 

 Bu durumda kutupsal koordinatlarda integral yazılırsa; 
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𝐈q = ∫δ(

ħ2q2

2m∗
±
ħ2kqcosϴ′

m∗
± ħw0)d𝐪 (4.71) 

 

 

𝐈q =
k

2E𝐤
∫ ∫ ∫

1

q
δ (
q

2k
± cosϴ′ ±

ħw0
Ek

k

2q
) dØd(cosϴ′)q2dq

2π

0

+1

−1

qmax

qmin

 (4.72) 

 

 
𝐈q =

2𝜋𝑘3

𝐸𝐤
(1 +

ħ𝑤0
𝐸𝑘
)

1
2⁄

= 8𝜋3𝑁(𝐸𝑘 ± ħ𝑤0) (4.73) 

 

sonucu elde edilir. Bu durumda bu sonuç 4.70’ de yerine yazılırsa; 

 

 
W(𝐤) =

πD0
2

ρw0
(n0 +

1

2
±
1

2
)N(Ek ± ħw0) (4.74) 

 

saçılma hızı olarak bulunur.  

 

 Optik fonon enerjisi akustik fonona göre daha fazladır. Optik fonon enerjisinn 𝑘𝐵𝑇𝐿 

ile kıyaslanabilir olduğu görülmektedir. Bundan ötürü bu tip saçılmalar elastik olmayan 

saçılma olarak kabul edilir. 

 

4.6. Vadiler Arası Optik Fononların Saçılması 

 

 Vadiler arası optik fononların gerçekleşebilmesi için fonon dalga vektörünün bölge 

sınırında olması gerekir. Bunun sebebi bu tip saçılmalar için büyük momentum değişim 

değerleri gerektirmesidir. ħ𝑤0 olan optik fonon enerjisi, bölge merkezindeki optik fononlar 

için geçerlidir. Bu enerji bölge sınırlarında bir miktar daha azdır. Bu enerjiyi ħ𝑤𝑖𝑗 olarak 

yazılır. 

 

 H′ = 𝐃ij. 𝐮(r, t) (4.75) 
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ifadesi etkileşme potansiyeli olarak vadiler arası saçılma için yazılabilir. Burada i ve j alt 

indisleri vadileri temsil eder. 𝐃ij ise deformasyon potansiyelidir. Bu durumda geçiş hızını 

yazmak istersek, 

 

 
S(k, k′) =

πDİJ
2Zj

ρwijΩ
[n(wij) +

1

2
±
1

2
] δ(Ek′ − Ek ± ħwij + ΔEij) (4.76) 

 

biçiminde elde edilir. Burada Zj ve Eij ifadeleri sırasıyla, saçılmanın gerçekleşebileceği vadi 

sayısının mümkün olan değerleri, i ile verilen vadinin tabanındaki enerjinin j. vadideki taban 

enerjisi olarak verilir. Bu durumda saçılma hızı yazıldığında; 

 

 
W(k) =

πDij
2Zj

ρwij
[n(wij) +

1

2
±
1

2
]N(Ek ± ħwij − ΔEij) (4.77) 

 

biçiminde elde edilir. 

 

4.7. Kutupsal Optik Fononların Saçılması 

 

 Elektronların kutupsal saçılmaları, kutuplanma dalgalarının yük taşıyıcısı ile 

etkileşimi sebebi ile oluşur. Bu kutuplanma dalgaları ise kristallerde boyuna örgü 

titreşimlerinin bir sonucudur. Bu kutupsal saçılmalar farklı tipte fonon saçılmalarından 

kaynaklanabilir. 

 

 Dipol momenti 𝑒∗ etkin yük ile bağlantılıdır. Kutupsal etkileşme şiddeti ise bu dipol 

moment ile orantılıdır. u bağıl yer değiştirme dipol momenti tedirgin eder. Bu bağıl yer 

değiştirme; 

 

 
𝐮(𝐫, t) =∑(

ħ

2NMw0
)

1
2⁄

𝐞𝐪(a𝐪 + a−𝐪
+

𝐪

)exp (i𝐪. 𝐫) (4.78) 
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ifadesi ile verilir. N ve M burada sırasıyla, iyon çiftlerinin sayısı, pozitif ve negatif iyonlar 

için indirgenmiş kütledir. D dielektrik yer değiştirme vektörüne P kutuplanma vektörüne ek 

olarak artı ve eksi yüklü iyonların bağıl yer değiştirmesinin katkısı da vardır. 

 

 𝐃 = ε0𝐄 + 𝐏ion + 𝐏 (4.79) 

 

 

ε0, 𝐄, 𝐏 sırasıyla boşluğun dielektrik sabiti, elektrik alan ve kutuplanma vektörü temsil eder. 

𝐏 kutuplanma vektörü; 

 

 
𝐏 =

e∗N

Ω
(𝐮+ − 𝐮−) =

e∗N

Ω
𝐮 (4.80) 

 

olarak verilir.  

 

 ε∞𝐄 = ε0𝐄 + 𝐏ion (4.81) 

 

4.81 ile verilen ifade yüksek frekans için dielektrik sabiti ile iyon dipol momenti arasındaki 

ilişkiyi verir. Bu sayede; 

 

 
𝐃 = ε0𝐄 + 𝐏 = ε∞𝐄 +

e∗N

Ω
𝐮 (4.82) 

 

biçiminde yazılabilir. Boyuna elastik dalgalar ve kutuplanmış yükler ile ilgili olarak sırasıyla  

𝐃 = 𝐃𝐞𝐪exp (i𝐪. 𝐫) ve 𝛁.𝑫 = 0 bağıntıları ile yer değiştirilir. Bu sayede; 

 

 i𝐪.𝐃 = 0 (4.83) 

 

olduğu yazılabilir. (4.83) Denklemi, 𝐪 vektörünün sıfır olmadığı yerlerde 𝐃 = 0 

yazılabileceğini bize söyler. Bu durumda (4.82) Denkleminde 𝐃 = 0 yazılırsa; 

 

 
𝐄 =

N

Ω

e∗𝐮

ε∞
 (4.84) 
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ifadesi elde edilir. Bu durumda elektrostatik potansiyel; 

 

 
U(𝐫) = −∫𝐅. d𝐫 = −i

N

Ω

e∗

qε∞
𝐮(𝐫) (4.85) 

 

şeklinde yazılabilir. 

 

 
𝑒∗ = (

𝛺𝑀

𝑁
)

1
2⁄

𝑤0𝜀∞ (
1

𝜀∞
−
1

𝜀𝑠
)

1
2⁄

 (4.86) 

 

(4.86) Denklemi etkin yük olarak verilir. Pertürbe potansiyelini yazarsak; 

 

 

H′ = −eU(r) =∑i
e

q
(
ħw0
2εpΩ

)

1
2⁄

q

(aq + a−q
+ )exp (i𝐪. 𝐫) (4.87) 

 

olur. 

 

 1

𝜀𝑝
=
1

𝜀∞
−
1

𝜀𝑠
 (4.88) 

 

𝜀∞ ile 𝜀𝑠 ifadeleri arasındaki bağıntı (4.88) ile verilmiştir. Bu durumda matris elemanı 

kutupsal optik fononlar için; 

 

 
|⟨𝐤′|H|𝐤⟩|2 =

e2ħw0
2εpΩ

1

q2
[n(w0) +

1

2
±
1

2
] δ(𝐤′ − 𝐤 ± 𝐪) (4.89) 

 

olarak bulunur. Geçiş hızı ise; 

 

 
S(𝐤, 𝐤′) =

πe2w0
εpΩ

1

q2
[n(w0) +

1

2
±
1

2
] δ(𝐤′ − 𝐤 ± 𝐪)δ(E𝐤 − E𝐤′ ± ħw0) (4.90) 

 

biçiminde bulunur. 
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Saçılma hızı ise; 

 

 
W(𝐤) =

πe2w0
εpΩ

[n(w0) +
1

2
±
1

2
]
Ω

(2π)3

×∫
1

q2
δ (
ħ2q2

2m∗
±
ħ2kqcosϴ′

m∗
± ħw0)d𝐪 

 

(4.91) 

 

olarak yazılabilir. Burada q üzerinden integral kutupsal koordinatlar üzerinden alınır. 

 

 
𝐈q = ∫

1

q2
δ (
ħ2q2

2m∗
±
ħ2kqcosϴ′

m∗
± ħw0)d𝐪 (4.92) 

 

 

𝐈𝐪 = ∫ ∫ ∫ δ(
ħ2q2

2m∗
±
ħ2kqcosϴ′

m∗
± ħw0)dqd(cosϴ

′)d∅

2π

0

+1

−1

∞

0

 (4.93) 

 

 
𝐈q =

2πm∗

ħ2k
ln (
qmax
qmin

) (4.94) 

 

Bu durumda saçılma hızı integral sonucunda; 

 

 
W(𝐤) =

e2w0
8πεp

k

E𝐤
[n(w0) +

1

2
±
1

2
] ln (

qmax
qmin

) (4.95) 

 

Saçılma hızı hesabını yapabilmek için saçılma açısı bulunmalıdır. Ancak kutupsal optik 

fononlarda saçılma her yönde aynı olasılık ile gerçekleşmez. Bundan dolayı yeni bir bağıntı 

yazmak gerekir. 

 

 
W(ϴ′)

W(𝐤)
=
∫ ∫

1
q δ
(
q
2k
± cosϴ′ ±

ħw0
Ek

k
2q
) dqd(cosϴ′)

+1

−1

𝑞
𝛳′

qmin

∫ ∫
1
q δ
(
q
2k
± cosϴ′ ±

ħw0
Ek

k
2q
) dqd(cosϴ′)

+1

−1

qmax
qmin

 (4.96) 

 

 



40 

 

W(ϴ′) W(𝐤)⁄  ifadesi ϴ′ ile artar. Bundan dolayı ϴ′ 0 ve 1 arasında gelişigüzel seçilen 

değerler kullanılarak bulunabilir. Bunun dışında k ve 𝐤′ arasındaki açının da bulunması 

gerekir. Bundan dolayı; 

 

 
r =

ln (qϴ qmin)⁄

ln (qmax qmin)⁄
 (4.97) 

 

Eşitliği cosϴ düşünülerek çözülmelidir. 𝑞ϴ ifadesi de; 

 

 qD
2 = k′

2
+ k2 − 2k′kcosϴ (4.98) 

 

denklemi yazılabilir. Bu denklemden yola çıkarak; 

 

 q𝑚𝑖𝑛
2 = k′

2
+ k2 − 2k′k (4.99) 

 

 q𝑚𝑎𝑥
2 = k′

2
+ k2 + 2k′k (4.100) 

 

burada ϴ = 0 ve ϴ = π olarak alınmıştır. 

 

4.8. Alaşım Saçılması 

 

 AxB1-xC formülüne uygun şekilde bir malzemede, A ve B atomları malzeme boyunca 

gelişigüzel şekilde yerleşmiştir. Bundan dolayı malzemedeki iyonların da potansiyelleri 

değişim gösterir. Bu durumda A bölgesinde potansiyel VA ve B bölgesinde VB potansiyeli 

olduğu düşünülebilir. Ortalama potansiyeli yazmak istersek V = xVA + (1 − x)VB olarak 

yazabiliriz. Bir 𝐫a konum vektörü düşünülürse bu vektöre A bölgesinden etkiyen potansiyel 

∆𝑉 = 𝑉𝑎(𝑉 − 𝑉𝐴) δ(𝐫 − 𝒓a) biçiminde yazılabilir. Burada Va saçılmaların oluştuğu 

hacimdir. Buradan Va ifadesini Va = 1 Na 2⁄⁄  olarak yazılabilir. Na burada atomik 

konsantrasyon olarak alınmıştır. 

 

 
|⟨𝐤′|H′|𝐤⟩|A

2 =
Va
2

Vc2
(V − VA)

2I(𝐤, 𝐤′) (4.101) 
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A bölgesi için matris elemanı olarak yazılabilir. Toplam A bölgesi sayısı ve Toplam B bölgesi 

sayısı sırasıyla yazılırsa (
𝑁𝑎𝑉𝑐

2
) 𝑥, (

𝑁𝑎𝑉𝑐

2
) (1 − 𝑥) olur. Toplam matris elemanı; 

 

 
|⟨𝐤′|H′|𝐤⟩2 =

Va
2

Vc2
NaVc
2
[x(V − VA)

2 + (1 − x)(V − VB)
2]|I(𝐤, 𝐤′)|2 (4.102) 

 

 
|⟨𝐤′|H′|𝐤⟩2 =

Va
Vc
x(1 − x)(VA − VB)

2|I(𝐤, 𝐤′)|2 (4.103) 

 

olarak bulunur. VA − VB = Ξal yazılırsa, 

 

 
W(𝐤) =

3√2πx(1 − x)Ξal
2 (m∗)

3
2⁄

16ncħ4
×√E𝐤(1 + 2aEk)(1 + 2aE𝐤) (ak

2 +
ck
2

3
) (4.104) 

 

saçılma hızı elde edilir. Ξal, nc sırasıyla A ve B bölgesi için malzemenin iş fonksiyonları 

arasındaki fark, atomların sayısal yoğunluğu olarak verilmiştir. 
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5. MATERYAL VE YÖNTEM 

 

 

5.1. GaAs ve AlxGa1-xAs Kristal Yapısı 

 

III-V grubu yarıiletkenler teknolojide önemli bir yere sahiplerdir. GaAs, elementlerin 

periyodik tablonun III. sütunundaki galyum (Ga) elementinden ve V. sütunundaki arsenik 

(As) elementinden oluşan bir III-V grubu bileşik yarı iletkendir. GaAs ilk olarak 

Goldschmidt tarafından oluşturuldu ve 1929'da rapor edildi, ancak III-V grubu yarı iletken 

olarak bildirilen ilk elektronik özellikleri 1952'ye kadar ortaya çıkmadı.  

 

Çoğunlukla III-V grubu yarıiletkenler çinkosülfür kristal yapısındadırlar. III-V grubu 

yarı iletkenlerde iyonik bağ ve kovalent bağ aynı anda görülebilmektedir. Bunun sebebi yarı 

iletkeni oluşturan elementlerin farklı elektronegatifliklere sahip olmasıdır. Ancak kovalent 

bağ, iyonik bağa göre daha fazla görülür. İki farklı element yüzünden malzemedeki elektron 

dağılımı simetrik değildir. Elektron dağılımı büyük olan atoma doğru yoğunlaşır. 

Elektronların büyük atoma doğru kaymasından dolayı bağlar iyonik davranış sergilerler. Bu 

iyonik davranış yüzünden III-V grubu yarı iletkenler polar doğaya sahiptirler (Feenstra 

ve Stroscio, 1993). 

 

 

 Şekil 5.1. GaAs çinkosülfür yapısı 
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AlxGa1-xAs ‘de III-V grubu bir yarıiletkendir. Kristal yapısı olarak GaAs yarı 

iletkenine oldukça benzerdir. GaAs gibi, AlxGa1-xAs ‘de çinkosülfür yapıdadır. Örgü sabiti 

GaAs ile oldukça yakındır. GaAs için örgü sabiti, 5,65325 Å olarak verilirken, AlxGa1-xAs 

için ise 5,6533 + 0,0078x Å formülü ile bulunmaktadır. Örgü sabitlerinin bu kadar yakın 

olması ve kristal yapısının benzer olması, bu iki malzemenin teknolojide yaygın şekilde 

beraber kullanılmasına sebep olmuştur. 

 

 

Şekil 5.2. AlxGa1-xAs çinkosülfür yapısı 

 

5.2. GaAs ve AlxGa1-xAs Bant Yapısı 

 

 0 K’ de yarıiletkenlerde son dolu banda valans bandı, onun bir üstündeki boş banda 

ise iletim bandı denir. Valans bandı ile iletim bandı arasında kalan bölgeye ise yasak enerji 

aralığı denir. Metallerde valans ve iletim bandı çakışıktır. Bundan dolayı yasak enerji aralığı 

yoktur. Yarıiletkenlerde ise yasak enerji aralığı birkaç elektron volt değerinde olabilir. 

Elektrona dışarıdan ısıl veya optik bir yolla enerji verilirse ve bu enerji en az yasak enerji 

aralığı kadar olursa, valans bandındaki elektronlar iletim bandına geçebilirler. Bu geçiş 

esnasında valans bandında elektron bir boşluk oluşturur. Elektriksel iletim elektron ve 

boşluklar ile beraber gerçekleşir. 
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 Valans bandının maksimumu ile iletim bandının minimumu k uzayında aynı k dalga 

vektörü değerinde olduğunda, bu tip yarıiletkenlere doğrudan geçişli yarıiletkenler denir. Bu 

tip malzemelerde elektron valans bandından iletim bandına geçerken enerji ve momentum 

korunumu için fonon gibi üçüncü bir parçacığa gerek duyulmaz (Kittel,1996). 

  

 Valans bandının maksimumu ile iletim bandının minimumu k uzayında farklı k dalga 

vektörü değerinde olduğunda ise bu tip yarıiletkenlere dolaylı geçişli yarıiletkenler denir. Bu 

tip yarı iletkenlerde elektron valans bandından iletim bandına geçerken, enerji ve 

momentumun korunumu için üçüncü bir parçacık olan fonon gereklidir. 

 

 GaAs direkt geçişli bir yarıiletkendir. AlxGa1-xAs yarıiletkeni ise x < 0,4 değeri için 

direkt geçişli, x > 0,4 den sonraki değerler için ise indirekt geçişli bir malzemedir (Saxena, 

1981). 

 

 

 

Şekil 5.3. GaAs ve AlxGa1-xAs bant yapısı 

  



45 

 

Çizelge 5.1. GaAs ve AlxGa1-xAs için parametreler 

PARAMETRELER AlxGa1-xAs 

Eg(eV) 1.425+(1.155x) + 0.37x2 

ɛs (13.18-(3x)) ɛ0 

ɛf (10.89- (2.73x)) ɛ0 

ρ (g/cm-3) 5320-(1560x) 

ħw0 (meV) (0.03625 + (0.00183x) + (0.01712x2) -(0.00511x3)) 

ħwij (meV) 0.030 

𝑚1
∗/m0 (0.063+(0.083x)) 

𝑚2
∗ /m0 (0.35+(0.25x)) 

𝜈𝑠 (ms-1) 5240-1000x 

imp(1/m3) 1.1022 

 

 

Çizelge 5.1. ‘de Monte Carlo metodu için gerekli olan parametreler GaAs ve AlxGa1-

xAs yarı iletkenleri için verilmiştir (Guen-Bouazza vd, 2013). Burada Eg yasak enerji 

aralığı, ɛs statik dielektrik sabiti, ɛf , yüksek frekans dielektrik sabiti, ρ özkütle, ħw0, 

fonon enerjisi, ħw ij, vadiler arası optik fonon enerjisi, 𝑚1
∗  vadisindeki etkin 

elektron kütlesi, 𝑚2
∗  L vadisindeki etkin elektron kütlesi, 𝜈𝑠, ses hızı, imp ise 

safsızlık miktarı olarak, Vegard yasasına uygun şekilde verilmiştir.  
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6. BULGULAR VE TARTIŞMA 

 

 

AlxGa1-xAs yarıiletken bileşiği, x=0, x=0,1, x=0,2, x= 0,3, x=0,4 değerleri için, 77K, 

300K, 450K sıcaklıklarında 2ns’lik simülasyon süresi uygulanarak incelenmiştir. Kullanılan 

parametreler Tablo 5.1‘de verilmiştir (Vurgafman vd, 2001). Uygulanan elektrik alanın; 

elektron sürüklenme hızı, elektron enerjisi ,  ve L vadisi için saçılma hızları ve 

yüzdelerine bakıldı. Saçılma mekanizmaları için   ve L vadileri dikkate alındı ve 

hesaplamalar; iyonize safsızlık, kutupsal optik fonon, akustik fonon, kutupsal 

olmayan optik fonon, vadiler arası optik fonon, alaşım ve dislokasyon saçılma 

mekanizmaları göz önünde bulundurularak yapıldı.  

 

Şekil 6.1. ve Şekil 6.2 dört farklı bölgeye ayrılarak incelenmiştir.1. bölgeye 

ohmik bölge denir. Burada sürüklenme hızı ohm yasasına uygun olarak artar. 2. 

bölge sürüklenme hızının pik yaptığı bölgedir. Bu bölge vadiler arası geçişlerin 

başladığı bölgedir. 3. Bölge negatif diferansiyel mobilite bölgesidir. Bu bölge L 

vadisindeki saçılmaların çoğunlukta olduğu bölgedir ve sürüklenme hızı düşer. 4. 

Bölge ise satürasyon bölgesidir. Bu bölge sürüklenme hızının dengeye oturduğu 

bölgedir. 
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Şekil 6.1. GaAs için sürüklenme hızı ve sıcaklık karşılaştırması 

 

 

Şekil 6.2. AlxGa1-xAs için sürüklenme hızı ve sıcaklık karşılaştırması 
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Şekil 6.3. AlxGa1-xAs 77K için sürüklenme hızı elektrik alan grafiği 

 

 

Şekil 6.4. AlxGa1-xAs için enerjinin 77K’ de uygulanan elektrik alanla değişimi 
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Şekil 6.5. AlxGa1-xAs için 300K sürüklenme hızı elektrik alan grafiği 

 

 

Şekil 6.6. AlxGa1-xAs için 300K enerjinin uygulanan elektrik alanla değişimi 
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Şekil 6.7. AlxGa1-xAs için 450K sürüklenme hızı elektrik alan grafiği 

 

 

 Şekil 6.8. AlxGa1-xAs için 450K enerjinin uygulanan elektrik alanla değişimi 
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 vadisi için, incelenen saçılmalar polar optik fonon yayınım, polar optik 

fonon soğurma, vadiler arası optik fonon yayınım, vadiler arası optik fonon 

soğurma, akustik fonon, iyonize safsızlık, alaşım ve dislokasyon saçılmalarıdır. L 

vadisi için ise polar optik fonon yayınım, polar optik fonon soğurma, polar olmayan 

optik fonon yayınım, polar olmayan optik fonon soğurma, vadiler arası optik fonon 

yayınım, vadiler arası optik fonon soğurma, akustik fonon, iyonize safsızlık 

saçılmaları incelenmiştir. Yüzde beşin altında kalan saçılmaların etkisi önemsiz 

olacağından Şekil-6.9, Şekil-6.10, Şekil-6.11, Şekil-6.12, Şekil-6.13 ve Şekil-6.14 

’de gösterilmemiştir. 

 

 

Şekil 6.9.  vadisi için 77K’ de saçılma yüzdeleri 
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Şekil 6.10. L vadisi için 77K’ de saçılma yüzdeleri  

 

 

Şekil 6.11.   vadisi için 300K’ de saçılma yüzdeleri  
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Şekil 6.12. L vadisi için 300K’ de saçılma yüzdeleri  

 

 

Şekil 6.13.   vadisi için 450K’ de saçılma yüzdeleri 
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Şekil 6.14. L vadisi için 450K’ de saçılma yüzdeleri  

 

Şekil-6.9, Şekil-6.11 ve Şekil-6.13’ de polar optik fonon yayınım saçılmaları, 

pope, iyonize safsızlık saçılmaları iss, alaşım saçılmaları alloy olarak gösterilmiştir. 

Şekil-6.10, Şekil- 6.12 ve Şekil-6.14’ de ise polar optik fonon yayınım saçılmaları, 

pope, polar olmayan optik fonon yayınım saçılmaları npope, iyonize safsızlık 

saçılmaları, iss olarak gösterilmiştir.  
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Şekil 6.15. 77K’ de vadi işgaliyeti 

 

 

Şekil 6.16. 300K’ de vadi işgaliyeti 
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Şekil 6.17. 450K’ de vadi işgaliyeti 

 

 Şekil 6.15., Şekil 6.16, Şekil 6.17’ de elektrik alana bağlı olarak vadi işgaliyeti, sırası 

ile 77K, 300K ve 450K sıcaklıkları için gösterilmiştir. 
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7. SONUÇ VE ÖNERİLER 

 

 

Şekil 6.5’ de AlxGa1-xAs 300K için sürüklenme hızı elektrik alan grafiği, Şekil 6.6’ 

da enerjinin uygulanan elektrik alanla değişimini gösteren grafik verilmektedir.  

AlxGa1-xAs yarıiletken bileşiği için sırası ile x=0, x=0,1, x=0,2, x= 0,3, x=0,4 

değerlerinde incelenerek tek parçacık Monte Carlo simülasyonundan elde edilen 

elektron sürüklenme hızı elektrik alanın bir fonksiyonu olarak 77K, 300K ve 450K 

sıcaklığı için elde edildi . 300K GaAs elektron sürüklenme hızının uygulanan 

elektrik alanla, yaklaşık 4,1 kV/cm elektrik alan değerine kadar, lineer olarak 

1.8x107 cm/s lik bir pik değerine kadar arttığı görülmüştür.  GaAs içine, Al 

elementinin katılması ile beraber elektrik alana karşılık gelen pik değerlerinin 

düştüğü görülmektedir. AlxGa1-xAs malzemesinin yasak enerji aralığının, GaAs ye göre 

daha geniş olması, elektronun enerjisinin daha fazlasının valans bandından kopmak için 

harcandığını ve sürüklenme hızına kalan enerjinin daha az katkıda bulunduğunu bundan 

dolayı da sürüklenme hızının pik değerlerinin AlxGa1-xAs için daha düşük çıkmasını 

açıklayabilir. Aynı zamanda GaAs malzemesi direkt bant geçişli bir malzemeyken, içerisine 

Al elementinin katılması ile beraber indirekt geçişli bir malzemeye dönüştüğü bilinmektedir. 

Literatürde x = 0,4 değerinden sonra AlxGa1-xAs malzemenin indirekt geçişli hale 

gelmektedir (Saxena, 1981). Sürüklenme hızındaki ani artış direkt geçişli malzemelerle de 

ilişkilendirilmektedir. GaAs malzemesinin içine Al katılması ile beraber sürüklenme hızının 

pik değerindeki düşüş bu durum ile de açıklanabilir.  ve L vadileri için enerji 

hesaplamaları Vegard yasasına göre yapıldığında Çizelge 7.1. ‘deki sonuçlar elde 

edilmiştir. 

 

Çizelge 7.1.  ve L vadileri için enerji değerleri 

x = 0 E = 1,42eV EL = 1.71eV 

x = 0,1 E = 1,54eV EL = 1.77eV 

x = 0,2 E = 1,67eV EL = 1.84eV 

x = 0,3 E = 1,80eV EL = 1.91eV 

x = 0,4 E = 1,94eV EL = 1.98eV 
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x = 0,4 değerine yaklaşılırken Çizelge 7.1’ e göre,  ve L vadilerinin enerji 

değerleri birbirine yaklaşmaktadır ve x değeri büyürken L vadisine geçiş için gerekli 

olan enerjinin,  vadisine geçiş için gerekli olan enerjiden daha fazla olduğu 

anlaşılmaktadır.  Bu durumda x değeri büyüdüğünde indirekt geçiş olasılığının da 

arttığı söylenebilir. İndirekt geçiş için gerekli olan enerjinin daha fazla olması ve  

vadisinde saçılmalar azalırken L vadisinde polar optik fonon  yayınım saçılmaları 

ile polar olmayan optik fonon yayınım saçılmalarının başlaması, x değeri büyürken 

sürüklenme hızının pik değerinin azalmasına katkıda bulunduğu söylenebilir.  

 

 Sıcaklık değeri arttıkça sürüklenme hızının pik yaptığı değerlerde azalma 

görülmüştür. Bunun sebebi sıcaklık arttıkça saçılma miktarının da artmasıdır. Enerji 

grafikleri incelendiğinde ise farklı sıcaklıklar için enerji değerlerinin çok değişmediği 

görülmüştür. Bunun sebebi ise elektronun termal enerjisinin dışardan uygulanan kuvvet 

sebebi ile kazandığı enerji yanında oldukça küçük olması olarak gösterilebilir. 3 2⁄ kBT 

formülüne göre bu enerjiler 77K, 300K ve 450K için yaklaşık olarak sırasıyla 0.009eV, 

0.038eV ve 0.058eV olarak bulunur. Bu değerler enerji grafiğindeki değerler ile yaklaşık 

olarak aynıdır. 

 

77K, 300K ve 450K’ de bütün x değerleri için iyonize safsızlık saçılmalar ının 

en etkin saçılma olduğu görülmüştür. Aynı zamanda, x değeri artarken iyonize 

safsızlık saçılmalarının yanında, alaşım saçılmalarının da ortaya çıktığı ve x değeri 

arttıkça alaşım saçılmalarının da arttığı görülmüştür. İyonize safsızlık saçılmaları 

ve alaşım saçılmaları elastik saçılmalardır. Bundan dolayı enerji grafiği 

incelendiğinde enerjinin pik yapmış olduğu değerlerin GaAs için sorumlusunun 

iyonize safsızlık saçılmaları, AlxGa1-xAs için iyonize safsızlık saçılmaları ve alaşım 

saçılmaları olduğu söylenebilir.  

 

Saçılma grafikleri incelendiğinde, iyonize safsızlık saçılmaları,   vadisinde 

bütün x değerleri için azalırken, L vadisinde artmaya başlamıştır.   vadisi için polar 

optik fonon yayınım saçılmaları, genel olarak, iyonize safsızlık saçılmaları ile 

beraber görülmüştür. L vadisinde ise polar optik fonon yayınım saçılmalarının 

yanında, polar olmayan optik fonon yayınım saçılmaları da görülmüştür. Bu yayınım 
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saçılmaları sayesinde elektron fazla olan enerjisini yayınlayarak, sürüklenme hızını 

dengelemiş ve sürüklenme hızında şiddetli bir artış olmasına engel olmuştur.  

 

Negatif diferansiyel mobilite bölgesinde L vadisindeki saçılmalar  vadisine 

göre çok daha fazladır. Enerji grafiği incelendiğinde bu bölgede enerjide elektrik 

alan artmasına rağmen fazla artış olmadığı görülmektedir. L vadisinde  vadisine 

göre elektronun kütlesi daha büyüktür. Bundan dolayı sürüklenme hızında ani düşüş 

yaşanırken enerji az miktarda da olsa artmaya devam eder. İyonize safsızlık 

saçılmaları ve alaşım saçılmaları elastik saçılmalardır. Bundan dolayı GaAs için 

iyonize safsızlık saçılmaları elektronun enerjisinin negatif diferansiyel bölgesinde 

artış yapmasında rol oynadığı söylenebilir. Aynı şekilde AlxGa1-xAs için alaşım 

saçılmaları ve iyonize safsızlık saçılmaları, sürüklenme hızı azalırken enerjinin artışında rol 

oynadığı ve GaAs’ ye göre enerjinin daha fazla artması bu sayede açıklanabilir.  

 

Satürasyon bölgesinde enerji artsa da, yayınım saçılmaların artması ve L vadisinde 

elektronun kütlesinin daha fazla olmasından dolayı sürüklenme hızı elektrik alan arttıkça 

dengeye oturmuştur. Bu durum vadi işgaliyeti incelendiğinde daha net görülmektedir. Vadi 

işgaliyetleri incelendiğinde satürasyon bölgesinde L vadisinde saçılmaların çoğunun 

gerçekleştiği görülmektedir. 

 

Sıcaklık azaldıkça sürüklenme hızının tüm değerler için arttığı görülmüştür. Bu 

durumun düşük sıcaklıkta saçılmaların azalmasından kaynaklandığı söylenebilir. Enerji 

grafiğinin ise tüm değerler için çok değişmediği görülmüştür. Taşıyıcı enerjisi fazla 

değişmiyorken sürüklenme hızının artmasından dolayı, saçılmaların sürüklenme hızına etki 

eden asıl mekanizma olduğu söylenebilir. Düşük sıcaklıkta alaşım ve iyonize safsızlık 

saçılmalarının  vadisinde daha fazla olması, yüksek sıcaklıktaki duruma göre elektrik alan 

artarken daha uzun süre varlıklarını göstermeleri ve bu saçılmaların esnek saçılmalar olması 

sürüklenme hızının daha yüksek değerler almasını açıklayabilir. Aynı zamanda yayınım 

saçılmalarının da arttığı görülmüştür. Bu saçılmalar sayesinde enerji dengelenmiştir. 
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