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ÖZET 

YÜKSEK LİSANS TEZİ 

GENELLEŞTİRİLMİŞ KUDRYASHOV METODU İLE BAZI LİNEER 

OLMAYAN KISMİ DİFERANSİYEL DENKLEMLERİN ÇÖZÜMLERİNİN 

İNCELENMESİ 

Uğur BAYRAKCI 

Erzurum Teknik Üniversitesi 

Fen Bilimleri Enstitüsü 

Matematik Ana Bilim Dalı 

 

Danışman: Dr. Öğr. Üyesi Vehpi YILDIRIM 

Eş Danışman: Doç. Dr. Şeyma TÜLÜCE DEMİRAY 

 

Bu tez çalışması beş ayrı bölümden meydana gelmektedir. Birinci bölüm olan giriş 

kısmında kısmi diferansiyel denklemler ve genelleştirilmiş Kudryashov metodunun 

ortaya çıkışı ve metodun gelişimi ile ilgili birtakım bilgiler aktarılmıştır. İkinci bölüm 

kaynak özetleri kısmı olup Kudryashov metodu, modifiye edilmiş Kudryashov metodu 

ve genelleştirilmiş Kudryashov metodu ile ilgili geçmişte yapılmış olan bazı çalışmalar 

hakkında bilgiler verilmiştir. Üçüncü bölümde bu tez çalışması için gerekli olan bazı 

temel tanım ve kavramlar yer almış ve genelleştirilmiş Kudryashov metodunun genel 

yapısı hakkında bilgiler verilmiştir. Dördüncü bölümde gergin dalga denklemi, (2+1)-

boyutlu enerji tüketen uzun dalga sistemi, (2+1)-boyutlu Bogoyavlensky-Konopelchenko 

(BK) denklemi, perturbe edilmiş Radhakrishnan-Kundu-Lakshmanan (RKL) denklemi, 

(2+1)-boyutlu Date-Jimbo-Kashiwara-Miwa (DJKM) denklemlerinin bazı tam 

çözümlerini elde etmek amacıyla bu denklemler için genelleştirilmiş Kudryashov metodu 

(GKM) ele alınmıştır. Ayrıca, Mathematica 12 programı kullanılarak da elde edilmiş olan 

çözümlerin iki ve üç boyutlu grafikleri belli değerleri için çizilmiştir. Beşinci bölüm 

sonuç ve öneriler kısmıdır ve bu tezde bulunan çözümlerle ilgili olarak kapsamlı sonuçlar 

belirtilmiştir. 

 

 

 

2021, 44 sayfa 
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Metodu. 
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ABSTRACT 

MS. Thesis 

INVESTIGATION THE SOLUTIONS OF SOME NONLİNEAR PARTIAL 

DIFFERENTIAL EQUATIONS BY GENERALIZED KUDRYASHOV METHOD  
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Department of  Maths 

Supervisor: Assist. Prof. Dr. Vehpi YILDIRIM    

Co-supervisor: Assoc. Prof. Dr. Şeyma TÜLÜCE DEMİRAY    

 

 

This thesis consists of five distinct chapters. In the introduction part, which is the 

first chapter, some information about partial differential equations and the emergence of 

the generalized Kudryashov method and the development of the method are given. The 

second part is the section of resource summaries, and some information about the past 

studies on Kudryashov method, modified Kudryashov method and generalized 

Kudryashov method have been given. In the third part, some basic definitions and 

concepts required for this thesis study are included and information about the general 

structure of the generalized Kudryashov method is introduced. In the fourth chapter, 

generalized Kudryashov method is employed for obtaining some exact solutions of strain 

wave equation, (2+1)-dimensional dissipative long wave system, (2+1)-dimensional 

Bogoyavlensky-Konopelchenko (BK) equation, perturbed Radhakrishnan-Kundu-

Lakshmanan (RKL) equation,  (2+1)-dimensional Date-Jimbo-Kashiwara-Miwa (DJKM) 

equations. In addition, two- and three-dimensional graphs of the obtained solutions by 

using the Mathematica 12 programming language were plotted for certain values. The 

fifth chapter is conclusion and suggestions, and comprehensive results regarding the 

solutions found in this thesis are stated. 
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1. GİRİŞ 

Matematik biliminin en önemli alanlarından birisi olan uygulamalı matematik, 

diğer bilim dallarında ve gerçek hayatta karşımıza çıkan problemleri çözmek için 

kullanılmaktadır. Bilim dünyasının birçok alanında ortaya çıkan problemlerin 

matematiksel modellemesini yapmak ve çözmek için diferansiyel denklemler ortaya 

çıkmıştır. Diferansiyel denklemler hakkında yapılan ilk çalışmalar ise 17.yy’da İngiliz 

matematikçi Newton ve Alman matematikçi Leibniz ile başlar. Diferansiyel denklemler 

ilk olarak adi diferansiyel denklemler olarak ortaya çıkmış daha sonra kısmi diferansiyel 

denklemler oluşturulmuştur.  

 

Diferansiyel denklemler bir uygulamalı matematik konusu olmasına rağmen 

biyoloji, tıp, sosyoloji, teknoloji, ekonomi, fizik ve mühendislik gibi çok geniş bir 

kullanım alanına sahiptir (Aksoy ve Özkan 2011). Özellikle de lineer olmayan kısmi 

diferansiyel denklemler çeşitli bilim çevrelerinde meydana gelen kimyasal reaksiyonları 

araştırma, canlı popülasyonlarında oluşan değişimler, metaller üzerindeki ısı yayılımı, 

elektrik devrelerinde yük ve akım belirleme, levha ve tel titreşimleri; deniz, göl, akarsu 

ve gelgit dalgaları, radyoaktif bir cismin bozulması gibi önemli fiziksel olayların 

incelenmesinde ve yorumlanmasında yaygın olarak kullanılmaktadır (Upton 2004; Aslan 

2007).  

 

Bilim ve teknolojinin çok hızla geliştiği günümüzde bilimsel olayları anlamak ve 

çözüme kavuşturabilmek için oluşturulan lineer olmayan kısmi diferansiyel denklemler 

daha karmaşık ve zor hale gelmiştir. Dolayısıyla bu denklemleri çözmek ve tam 

çözümlerini elde edebilmek bilim çevreleri için çok önemli bir konu haline gelmiştir. Son 

zamanlarda, ortaya çıkan zor ve uğraştırıcı hesaplamalardan dolayı lineer olmayan kısmi 

diferansiyel denklemlerin çözümlerinde kullanılan Mathematica, Matlab ve Maple gibi 

güçlü bilgisayar programları geliştirilmiştir.  

 

Dünyamız için son derece önemli kullanım alanlarına sahip olan lineer olmayan 

kısmi diferansiyel denklemlerin çözümleri de dünyanın dört bir yanındaki birçok 

araştırmacı için çok büyük bir önem arz etmektedir. Bu amaç doğrultusunda lineer 

olmayan kısmi diferansiyel denklemlerin çözümlerini elde etmek için birçok farklı 
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yöntem çeşitli araştırmacılar tarafından oluşturulmuştur. Bu yöntemlerin bazısı şunlardır; 

sine-Gordon açılım metodu (Taşbozan and Kurt 2020), exp ( ( )) − –açılım metodu 

(Arshed 2020), F–açılım metodu (Yıldırım 2021), geliştirilmiş Bernoulli alt-denklem 

fonksiyonu metodu (Dusunceli et al. 2021), modifiye edilmiş varyasyonel iterasyon 

metodu (Ahmad et al. 2020), modifiye edilmiş yardımcı denklem metodu (Mahak and 

Akram 2020), modifiye edilmiş Kudryashov metodu (Rahman et al. 2020), modifiye 

edilmiş genişletilmiş doğrudan cebirsel metot (Soliman 2008), Darboux dönüşümü (Xu 

et al. 2017). 

 

Lineer olmayan diferansiyel denklemlerin tam çözümlerini bulmak için kullanılan 

Kudryashov metodu ilk olarak Nikolay A. Kudryashov tarafından 1988 yılında 

gösterilmiş (Kudryashov 1988) ve 1991 yılında ise uygulaması yapılmıştır (Kudryashov 

1991). Bu metot o dönem için fark edilmemiştir. Literatüre kazandırılması ise yine 

Nikolay A. Kudryashov tarafından 2012 yılında gerçekleştirilmiştir (Kudryashov 2012). 

Bu metot daha sonra çeşitli lineer olmayan diferansiyel denklemlerin çözümlerini bulmak 

için bazı yazarlar tarafından uygulanmıştır (Hubert et al. 2014; Hosseini and Ayati 2016; 

Nuruddeen and Nass 2018). Kudryashov metodunun modifiye edilmesiyle oluşturulan 

modifiye edilmiş Kudryashov metodu (MEKM) yine çeşitli yazarlar tarafından lineer 

olmayan kısmi diferansiyel denklemlerin tam çözümlerini elde etmek için kullanılmıştır 

(Tandogan et al. 2013; Ege and Misirli 2014; Hosseini et al. 2017).  

 

Bu çalışmada kullanılacak olan Genelleştirilmiş Kudryashov Metodu (GKM), 

Kudryashov metodunun genelleştirilmesiyle elde edilmiş olup literatüre ilk olarak 2014 

yılında sunulmuştur (Tuluce Demiray et al. 2014). Zaman içerisinde çeşitli araştırmacılar 

tarafında da bir takım lineer olmayan diferansiyel denklemlerin çözümlerini elde etmek 

için GKM kullanılmıştır (Tuluce Demiray 2020a, 2020b; Gurefe 2020; Tuluce Demiray 

and Bayrakci 2021a, 2021b). Bu tez çalışmasında ise, gergin dalga denklemi, (2+1)-

boyutlu enerji tüketen uzun dalga sistemi, (2+1)-boyutlu Bogoyavlensky-Konopelchenko 

(BK) denklemi, perturbe edilmiş Radhakrishnan-Kundu-Lakshmanan (RKL) denklemi,  

(2+1)-boyutlu Date-Jimbo-Kashiwara-Miwa (DJKM) denklemlerinin tam çözümlerini 

elde etmek için GKM kullanılmıştır. 
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2. KAYNAK ÖZETLERİ 

Lineer olmayan diferansiyel denklemlerin çözüm yöntemlerinden olan 

Kudryashov metodu, bu metodun modifiye edilmesiyle oluşturulan MEKM ve 

genelleştirilmesi ile elde edilen GKM hakkında yapılan çalışmalardan bazıları aşağıda 

gösterilmiştir. 

Kudryashov metodu ilk olarak Nikolay A. Kudryashov tarafından 1988 yılında 

dalga dinamiklerinin genelleştirilmiş gelişim denklemlerinin soliton çözümlerini bulmak 

için kullanılmıştır (Kudryashov 1988). 

1991 yılında Kudryashov metodu, Nikolay A. Kudryashov tarafından Burgers-

Korteweg-de Vries, Bretherton, Kuramoto-Sivashinsky ve Kawachara denklemlerinin 

çözümlerini elde etmek amacıyla kullanılmıştır (Kudryashov 1991).  

2012 yılında Nikolay A. Kudryashov, daha önce kullanılan fakat fark edilmeyen 

Kudryashov metodunu literatüre kazandırmış vebu metodu Fisher denklemi ve yedinci 

mertebeden lineer olmayan diferansiyel denklemin çözümünü bulmak için kullanmıştır 

(Kudryashov 2012). 

2014 yılında Hubert ve arkadaşları lineer olmayan iletim hat denkleminin 

çözümünü bulmak için Kudryashov metodunu uygulamışlardır (Hubert et al. 2014).  

2016 yılında Hosseini ve Ayati, Kudryashov metodunu uzay zaman kesirli equal 

width ve modifiye edilmiş equal width denklemleri için uygulamışlardır (Hosseini and 

Ayati 2016). 

2018 yılında Nuruddeen ve Nass, Kudryashov metodunu kesirli genelleştirilmiş 

equal width-Burgers ve klasik genelleştirilmiş equal width-Burgers denklemlerinin 

çözümlerini bulmak için kullanmışlardır (Nuruddeen and Nass 2018).  
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2013 yılında Tandogan ve arkadaşları MEKM’i Rosenau-Kawahara denkleminin 

çözümlerini bulmak için uygulamışlardır (Tandogan at el. 2013).  

2014 yılında MEKM, Ege ve Misirli tarafından uzay zaman kesirli modifiye 

edilmiş Benjamin-Bona-Mahony denklemine ve uzay zaman kesirli potansiyel 

Kadomtsev-Petviashvili denklemine uygulanmıştır (Ege and Misirli 2014). 

Hosseini ve arkadaşları, 2017 yılında zaman kesirli Klein-Gordon denkleminin 

çözümünü bulmak için MEKM kullanmışlardır (Hosseini et al. 2017). 

2014 yılında Tuluce Demiray ve arkadaşları tarafından zaman kesirli Klein-

Gordon denklemine GKM uygulanmıştır (Tuluce Demiray at al. 2014). 

2020 yılında Tuluce Demiray GKM’yi kullanarak beta zaman türevli Biswas-

Arshed denkleminin yeni çözümlerini bulmuştur (Tuluce Demiray 2020a).  

2020 yılında Tuluce Demiray tarafından beta zaman türevli optik darbe zarfı 

( , )E z  denkleminin çözümleri GKM yoluyla elde edilmiştir. (Tuluce Demiray 2020b) 

2020 yılında Gurefe GKM’yi uygulayarak Atangana’nın çarpılabilir türevi ile 

Hunter-Saxton ve Schrödinger denklemlerinin çözümlerini elde etmiştir (Gurefe 2020). 

Tuluce Demiray ve Bayrakci 2021 yılında genelleştirilmiş üçüncü mertebeden 

lineer olmayan Schrödinger denkleminin çözümlerini GKM yoluyla bulmuşlardır 

(Tuluce Demiray and Bayrakci 2021a). 

Tuluce Demiray ve Bayrakci 2021 yılında uzay-zaman kesirli Heisenberg 

ferromanyetik spin zincir denkleminin çözümlerini GKM yoluyla bulmuşlardır (Tuluce 

Demiray and Bayrakci 2021b). 
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3. MATERYAL ve YÖNTEM 

3.1 Temel Tanım ve Teoremler 
 
 
 

Tanım 3.1.1: Herhangi bir fonksiyon ve bu fonksiyona ait olan türevlerden oluşan 

denklemlere diferansiyel denklem adı verilir. Kısaca diferansiyel denklem, bir veya 

birden daha fazla bağımlı değişkeni içerisinde barındıran bir fonksiyon ile bu fonksiyona 

ait bağımsız değişkenlere göre türevleri arasında tanımlanmış bağıntıdır (Tuluce Demiray 

2014). 

 

Tanım 3.1.2: Herhangi bir diferansiyel denklem içerisindeki bağımsız değişken, belirli 

bir değişkene göre denklemde türev alınması durumunda göz önüne alınan değişken 

olarak, bağımlı değişken ise denklem içerisinde türevi alınan değişken olarak tanımlanır 

(Tuluce Demiray 2014). 

x →Bağımsız değişken 

t →  Bağımlı değişken  

 

Tanım 3.1.3: Bir bağımsız ve bir bağımlı değişkenden oluşan ve bağımlı olan değişkenin 

bağımsız olan değişkene göre çeşitli mertebelerden adi türevlerinden oluşan denklemlere 

adi diferansiyel denklemler denilmektedir. Bir adi diferansiyel denklem genel olarak, 

 
2 3

2 3
, , , , , , 0

n

n

dt d t d t d t
g x t

dx dx dx dx

 
= 

 
                                                                               (3.1) 

 

şeklinde ifade edilebilir (Tuluce Demiray 2014). 

 

 

Tanım 3.1.4: Herhangi bir diferansiyel denklem, en az bir bağımlı değişken ve en az iki 

bağımsız değişken ile bağımlı değişkenin bağımsız değişkenlere göre çeşitli 

mertebelerden kısmi türevlerini içeriyorsa bu tür denklemlere kısmi türevli diferansiyel 

denklem adı verilir. v  ’nin bağımlı ,x y  ve t  ’nin bağımsız değişkenler olarak ele alındığı 

n. mertebeden bir kısmi diferansiyel denklem 
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2 2 2 2

2 2 2
, , , , , , , , , , , , 0,

n

n

v v v v v v v v
K x y t v

x y t x x y y t x

        
= 

         
     

 
2 2 2 2

2 2 2
, , , , , , ,..., ,n

n

x y t xx xy yy tt nx

v v v v v v v v
v v v v v v v v

x y t x x y y t t

       
= = = = = = = =
        

 

 

( , , , , , , , , , , ,... ) 0,nx y t xx xy yy tt x
K x y t v v v v v v v v v =                                                                 (3.2) 

 

şekillerinde ifade edilir (Tuluce Demiray 2014). 

 

Tanım 3.1.5: Herhangi bir kısmi türevli denklem içerisinde yer alan en yüksek basamaklı 

kısmi türevin basamağına bu denklemin mertebesi denilmektedir (Tuluce Demiray 2014). 

 

Tanım 3.1.6: Herhangi bir kısmi türevli denklem içerisinde yer alan en yüksek basamaklı 

kısmi türevin kuvvetine bu denklemin derecesi denilmektedir (Tuluce Demiray 2014). 

 

Tanım 3.1.7: Diferansiyel denklemler genel olarak lineer olan diferansiyel denklemler 

ve lineer olmayan diferansiyel denklemler olmak üzere olarak iki ayrı kısma ayrılır. 

Herhangi bir diferansiyel denklem içerisinde bulunan bağımlı değişken ve onun 

türevlerinin katsayıları bağımsız değişken içeriyorsa bu tür diferansiyel denklemlere 

değişken katsayılı diferansiyel denklemler denir. Herhangi bir kısmi türevli denklemde 

bulunan bağımlı değişken ve bu değişkenlerin denklem içerisindeki bütün kısmi türevleri 

birinci dereceden ve denklem, bağımlı değişkenler ile onların türevleri parantezi 

içerisinde yazıldığı zaman katsayıları sabit veya yalnızca bağımsız olan değişkenlerin 

fonksiyonu oluyorsa bu tür denklemlere lineer diferansiyel denklem denir. Herhangi bir 

diferansiyel denklem içerisinde bulunan bağımlı değişken kendisi ya da türevleri ile 

çarpım veya bölüm şeklinde yazılıyor ya da bağımlı olan değişken üstel, logaritmik ya da 

trigonometrik olarak bulunuyor veya bağımlı olan değişkenlerin herhangi bir türevinin 

derecesi iki ve ikiden daha büyükse bu türde olan denklemler lineer olmayan diferansiyel 

denklemlerdir (Tuluce Demiray 2014). 

 

Tanım 3.1.8: Herhangi bir lineer olmayan adi diferansiyel denklem içerisindeki en 

yüksek mertebeden lineer olan terim 

q

q

d

d
 ve en yüksek mertebeden lineer olmayan terim 
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s
r

p

r

d
u

d

 
 
 

 ifadeleri ile verilmiş olsun. Bu durumda dengeleme terimi olarak göz önüne 

alınan M  için ( )M q M p s M r+ = + +  eşitliği yazılabilir (Tuluce Demiray 2014). 

Kavram 3.1.1: Tekil dalgalar (Solitary waves) ilk olarak 1834 yılında Scott Russell 

tarafından gözlenmiştir. 1965 yılında ise Kruskal ve Zabusky tekil dalgaların birbiriyle 

olan etkileşimlerini ve başlangıç durumlarını korumalarını araştırdılar. KdV denklemi 

üzerinde Zabusky ve Kruskal tarafından yapılmakta olan nümerik araştırmalar esnasında; 

adına soliton ismini verdikleri ve çarpıştıktan sonra hızlarını ve şekillerini koruyan 

partikül benzeri bir davranış gösteren dalgalar buldular. Her lineer olmayan diferansiyel 

denklemin çözümü soliton özelliğini yansıtmayabilir. Elde edilen hiperbolik fonksiyon 

çözümlerin soliton özelliğini yansıtabilmesi için denklemin integrallenebilir olması 

gerekmektedir. Denklemin çözümünde elde edilen soliton çözümler dark soliton ve bright 

soliton olmak üzere iki farklı çeşit olabilir. Eğer elde edilen çözüm sech fonksiyon tipinde 

ise buna bright soliton çözüm, eğer tanh fonksiyon tipinde bir çözüm var ise buna dark 

soliton çözüm denir. Elde edilen çözüm, sech ve tanh fonksiyonlarını bir arada içeriyorsa 

dark-bright soliton çözüm olarak adlandırılır (Hirota 2004; Tuluce Demiray et al. 2015). 

 

Kavram 3.1.2: Mathematica, Wolfram Research tarafından piyasaya sürülen, çeşitli 

matematiksel hesaplamalar yapılmasında, özellikle zor ve karmaşık yapıdaki sayısal 

problemlerin hızlı bir şekilde çözülmesinde, hem üç boyutlu hem de iki boyutlu renkli 

grafiklerin çiziminde kolaylık sağlaması sayesinde son derece etkili, güvenilir ve hızlı 

çözüm yapan matematiksel bir yazılım programıdır (Taşlıbeyaz and Gülcü 2013). Bu 

çalışmada ise araştırılan denklemlerin çözümleri Mathematica 12 sürümü kullanılarak 

yapılmıştır. 

 

3.2 Genelleştirilmiş Kudryashov Metodu (GKM) 

 

Lineer olmayan diferansiyel denklemlerin tam çözümlerini bulmak için Nikolay 

A. Kudryashov tarafından literatüre kazandırılmış olan Kudryashov metodunun 

genelleştirilmiş hali olan GKM’nin yapısı şu şekilde verilebilir (Tuluce Demiray at al. 

2014): 
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1. Adım: 

 

Bağımlı bir v fonksiyonu x , y  ve t şeklindeki üç farklı bağımsız değişkene bağlı 

olmak üzere, 

 

( ), , , , ,... 0t y x xxR v v v v v =                                                                                                  (3.2.1)  

 

eşitliği ile verilmiş olan kısmi diferansiyel denklemi göz önüne alınsın. (3.2.1) denklemi 

için dalga dönüşüm denklemi, 

 

( ) ( ), , ,v x y t v kx ly ct = = + −                                                                             (3.2.2) 

 

şeklinde olsun. (3.2.1) ile verilmiş olan denkleme (3.2.2) eşitliği ile verilmiş olan dalga 

dönüşümü uygulanırsa, (3.2.1) eşitliğindeki kısmi diferansiyel denklem, 

 

( ), , , , ', '',... 0L t y x v v v =                                                                                          (3.2.3) 

 

eşitliğindeki gibi bir lineer olmayan adi diferansiyel denkleme indirgenir. Bu eşitlikteki 

türevler   ’ya göre alınmıştır. 

 

2. Adım: Genelleştirilmiş Kudryashov fonksiyonu, (3.2.3) eşitliği ile verilmiş 

olan adi diferansiyel denklem için, 

( )
( )

( )

( )

( )
0

0

N
i

i
i

M
j

j
j

a Q P Q
v

S Qb Q

 




=

=

 
  

 
  


= =



                                                     (3.2.4) 

eşitliği ile ele alınır. Burada  
1

1
Q

e
=

  
olarak ele alınmaktadır. Q  fonksiyonu ise 

2Q Q Q = −                                                                                       (3.2.5) 

eşitliği ile verilmiş olan denklemin bir çözümüdür (Kudryashov 2012).  

  ’ya göre v 'nin türevleri, (3.2.4) denkleminden yola çıkılarak, 

 

( ) ( )2

2 2 2

' ' ' ' ' ' ' '
' ' ,

P Q S PS Q P S PS P S PS
v Q Q Q

S S S


− − −   
= = = −   

   
                (3.2.6) 

 

 

( ) ( )( ) ( )
2

2

2
2'' 2 1 ' ' '' '' 2 ' ' 2 ( ')

Q Q Q Q
v Q P S PS S P S PS S P S P S

SS


 
  
    

− −
= − − + − − + ,      (3.2.7) 
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şeklinde elde edilebilir. 

 

3. Adım: (3.2.3) eşitliği ile verilmiş olan lineer olmayan adi diferansiyel 

denklemin çözümü, GKM’ye göre aşağıdaki şekilde aranır;  

 

( )
2

0 1 2

2

0 1 2

.
N

N

M

M

a a Q a Q a Q
v

b b Q b Q b Q


+ + + +
=

+ + + +
                                     (3.2.8)  

 

(3.2.6) ve (3.2.7) denklemleri (3.2.3)’de yerine yazılır. Elde edilmiş olan bu 

denklemin dereceleri olan M  ve N ’yi hesaplamak için dengeleme prensibi dikkate 

alınır. Bunun için de denklemde bulunan en yüksek dereceli lineer olmayan terimin 

polinom karşılığındaki en yüksek dereceli terim ile en yüksek mertebeden türev içeren 

terimin dengeleme bağıntısından yararlanılır. 

 

4. Adım: (3.2.3) ile verilmiş olan lineer olmayan adi diferansiyel denklem 

içerisinde (3.2.4) eşitliği ile verilen denklem yazılırsa Q ’ ya bağlı bir ( )R Q  diferansiyel 

denklemi elde edilmektedir. ( )R Q  denkleminin katsayılarının sıfıra eşitlenmesiyle bir 

cebirsel denklem sistemi bulunur. Bulunan bu cebirsel denklem sistemini çözerek 

0 1 2 0 1 2, , , , , , , , ,N Ma a a a b b b b  katsayıları belirlenir. Bu şekilde (3.2.1) eşitliği ile verilen 

kısmi diferansiyel denklemi için tam çözümler elde edilir. 
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4. ARAŞTIRMA BULGULARI ve TARTIŞMA 

              Bu bölümde, gergin dalga denklemi, (2+1)-boyutlu enerji tüketen uzun dalga 

sistemi, (2+1)-boyutlu Bogoyavlensky-Konopelchenko (BK) denklemi, perturbe edilmiş 

Radhakrishnan-Kundu-Lakshmanan (RKL) denklemi, (2+1)-boyutlu Date-Jimbo-

Kashiwara-Miwa (DJKM) denklemlerinin tam çözümlerini bulmak için GKM 

uygulanmıştır. 

 

4.1 Gergin Dalga Denklemi ve Uygulaması 

 

Mikro yapılı katılarda mikro gergin dalga denklemi  

 

( ) ( ) ( )2 2

1 2 3 4 7 5 6 0,tt xx xxt xxxx xxtt xxxxt xxtttxx
u u u k u u k u k u u       − − − + − + + + =  

                                                                                                                                   (4.1.1) 

şeklinde ifade edilmektedir (Seadawy et al. 2020). (4.1.1) ile verilen denklemde ( , )u x t  

mikro gerilme dalga fonksiyonudur,   elastik gerilmeyi gösterir,   mikro yapının dalga 

uzunluğu ve boyutu arasındaki elastik gerilmeleri ve oranı gösterir, k  dağılım etkisini 

yansıtır,  1 2 3 4 5 6 7, , , , , ,        değerleri ise keyfi sabitlerdir. (4.1.1) denklemi üzerinde 

( )O =  olduğu düşünülürse dağılım ve lineer olmama arasında bir dengeleme 

gerçekleşir. Bu denklem üzerinde 0k = seçilirse mikro gerilme dalgasının dağılımsız 

durumu elde edilir. Bu şekilde aşağıdaki mikro yapılı katılardaki çift dağılımlı denklem 

elde edilir (Ayati et al. 2017; Arshad et al. 2019; Kumar et al. 2020; Gao et al. 2020; 

Irshad et al. 2020):  

 

( )( )2

1 3 4 0.tt xx xxxx xxttxx
u u u u u   − − − + =                                                                 (4.1.2) 

 

Gergin dalga denkleminin tam çözümlerini bulmak için (4.1.2) denkleminde GKM 

dikkate alınır. 

 

( , ) ( ), .u x t u x ct = = −                                                                                                 (4.1.3) 

 

(4.1.3) ile verilen dönüşüm (4.1.2) denklemi üzerinde uygulanırsa, 
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( )2 2 2

1 3 4( 1) '' 0,c u u c u   − − + − =  (4.1.4) 

 

denklemi elde edilir. Böylece (4.1.2) denklemi (4.1.4) linner olmayan adi diferansiyel 

denklemine indirgenir. (3.2.4) ve (3.2.7) eşitlikleri (4.1.4) lineer olmayan adi diferansiyel 

denkleminde yerine yazılarak dengeleme prensibi uygulanırsa 

 

2 2 2 2,N M N M N M− + = −  = +                                                                      (4.1.5) 

 

olduğu görülür. Burada  1M =  için  3N =  olduğundan, 

 

( )
2 3

0 1 2 3

0 1

,
a a Q a Q a Q

u
b b Q


+ + +

=
+

                                                                                     (4.1.6) 

 

( ) ( )
( )( ) ( )

( )

2 2 3

1 2 3 0 1 1 0 1 2 32

2

0 1

2 3
,

a a Q a Q b b Q b a a Q a Q a Q
u Q Q

b b Q


 + + + − + + +
  = −

+  
         (4.1.7) 

 

( )
( )

( ) ( )( ) ( )

( )
( )

( ) ( ) ( )( ) ( )

2
2 2 3

1 2 3 0 1 1 0 1 2 32

0 1

2
2

2 2 2 2 3

0 1 2 3 1 0 1 1 2 3 1 0 1 2 33

0 1

2 1 2 3

2 6 2 2 3 2 ,

Q Q
u Q a a Q a Q b b Q b a a Q a Q a Q

b b Q

Q Q
b b Q a a Q b b b Q a a Q a Q b a a Q a Q a Q

b b Q


−

  = − + + + − + + +
 +

−
 + + + − + + + + + + +
 +

 

                                                                                                                                   (4.1.8) 

bulunur. (4.1.2) ile verilen gergin dalga denkleminin tam çözümleri aşağıdaki gibi elde 

edilir.  

 

Durum 1: 

 

0 3 4 0 1 3 4
0 1 2

1 4 1 4

31 3 4
3

1 4 4

6 ( ) 6( )( )
0, , ,

( 1 ) ( 1 )

16 ( )
, .

( 1 ) 1

b b b
a a a

b
a c

   

   

 

  

− − + −
= = =

− + − +

− +− +
= = −

− + − +

                                                 (4.1.9) 

(4.1.9) eşitlikleri (4.1.6) denkleminde yerine yazılırsa  
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3 4
1

3

1 4

4

3( )
( , ) ,

1
1 cosh ( 1 )

1

u x t

x t

 


 



−
=
  − +
 + + − + 
 − +   

                                                              (4.1.10) 

 

çözümü elde edilir. Gergin dalga denkleminin GKM ile elde edilen (4.1.10) tam çözümü 

için iki ve üç boyutlu grafikleri aşağıdaki şekilde çizilmiştir. 

 

   

 

Şekil 4.1.1. Gergin dalga denkleminin GKM ile elde edilen (4.1.10) tam çözümünün 

1 3 42, 3, 0.5, 4, 25 25x   = = = = −    ile 25 25, 2.5t t−   = değerleri için sırasıyla 

üç boyutlu ve iki boyutlu grafikleri. 

 

Durum 2: 

 

0 3 4 0 1 3 4 0 1 3 4
0 1 2

1 4 1 4 1 4

31 3 4
3

1 4 4

( ) ( 6 )( ) 6( )( )
, , ,

(1 ) (1 ) (1 )

16 ( )
, .

(1 ) 1

b b b b b
a a a

b
a c

     

     

 

  

− − + − − −
= = =

+ + +

+−
= =

+ +

                            (4.1.11) 

 

(4.1.11) eşitlikleri (4.1.6) denkleminde yerine yazılırsa 
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3

3 4

4

2

3

1 4

4

1
2 cosh ( )

1
( , ) ,

1
1 cosh (1 )

1

x t

u x t

x t


 




 



  +
 − + − − 
 +   =
  +
 + − + 
 +   

                                                              (4.1.12) 

 

çözümü elde edilir. Gergin dalga denkleminin GKM ile elde edilen (4.1.12) tam çözümü 

için iki ve üç boyutlu grafikleri aşağıdaki şekilde çizilmiştir. 

 

    

 

Şekil 4.1.2. Gergin dalga denkleminin GKM ile elde edilen (4.1.12) tam çözümünün 

1 3 41.5, 2, 0.2, 1.5, 20 20x   = = = = −    ile 20 20, 3t t−   = değerleri için 

sırasıyla üç boyutlu ve iki boyutlu grafikleri. 

 

Durum 3: 

 

( )

( )

2
2 2

21 3 4 3 4

1 3 4
0 1 2

1 1

2 2

1 3 4
3 0

2
21

3 4

6 ( )
0, , ,

2

6 ( ) 1
, 0, .

b c c
b c

a a a

b c c
a b

c

   
 

 

 


  

 
− + + −  − = = − = −

− −
= = =

−

                         (4.1.13) 

 

(4.1.13) eşitlikleri (4.1.6) denkleminde yerine yazılırsa 
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( ) ( )

( )( )

22
3 4

2

3 4

3

1

5 cosh[ ] 5 cosh[ ]
sech

2 1 cosh[ ]
( , ) ,

4

x ct c x ctx ct

x ct c
u x t

 

 



 − − + − + − + −− 
 

   + + − −   
= −        (4.1.14)   

      

çözümü elde edilir. Gergin dalga denkleminin GKM ile elde edilen (4.1.14) tam çözümü 

için iki ve üç boyutlu grafikleri aşağıdaki şekilde çizilmiştir. 

 

   

 

Şekil 4.1.3. Gergin dalga denkleminin GKM ile elde edilen (4.1.14) tam çözümünün 

1 3 43, 2.5, 0.25, 2, 4, 20 20c x   = = = = = −    ile 20 20, 1t t−   = değerleri için 

sırasıyla üç boyutlu ve iki boyutlu grafikleri. 

 

Durum 4: 

 

( ) ( )2 2

0 0

0 1 2 3

1 1

2 2

3 1 4
1 32

6 1 6 1
0, , ,

1
, .

6 6

c b c b
a a a a

a c c
b

c

 

  




− + − +
= = = − −

− +
= =

−

                                                    (4.1.15) 

 

(4.1.15) eşitlikleri (4.1.6) denkleminde yerine yazılırsa 

 

4

20
( , ) ,

1 cosh[ ]
u x t

x ct
= −

+ −
                                                                                        (4.1.16)        
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çözümü elde edilir. Gergin dalga denkleminin GKM ile elde edilen (4.1.16) tam çözümü 

için iki ve üç boyutlu grafikleri aşağıdaki şekilde çizilmiştir. 

 

   

 

Şekil 4.1.4. Gergin dalga denkleminin GKM ile elde edilen (4.1.16) tam çözümünün 

0.6, 5 5c x= −    ile 5 5, 3t t−   = değerleri için sırasıyla üç boyutlu ve iki boyutlu 

grafikleri. 

 

Durum 5: 

 

( )

( )

2

3 4
0 1 3 2 3 0

2
2

3 4

2

3 1
1 2 2

23 4
3 4

1
0, 1 , , 0,

12

1
, .

6 6

c
a a a a a b

c

a c
b

c
c

 

 




 
 

 
− + 

= = + = − = 
 −
 

−
= =

−
−

                                               (4.1.17) 

 

(4.1.17) eşitlikleri (4.1.6) denkleminde yerine yazılırsa 

 

 ( )  ( )

 ( )( )
 ( )

2

3 4

2

3 4

5

1

5 cosh 5 cosh

1 cosh
( , )

2 1 cosh

x ct c x ct

x ct c
u x t

x ct

 

 



 − − + − + −
 
 + + − −
 = −

+ −
                                         (4.1.18)   

      

çözümü elde edilir. Gergin dalga denkleminin GKM ile elde edilen (4.1.18) tam çözümü 

için iki ve üç boyutlu grafikleri aşağıdaki şekilde çizilmiştir. 

 



4. ARAŞTIRMA BULGULARI ve TARTIŞMA  

 

16 

     

 

Şekil 4.1.5. Gergin dalga denkleminin GKM ile elde edilen (4.1.18) tam çözümünün 

1 3 43, 0.01, 0.5, 0.3, 15 15c x  = = = = −    ile 15 15, 4t t−   = değerleri için 

sırasıyla üç boyutlu ve iki boyutlu grafikleri. 

    

4.2 (2+1)-Boyutlu Enerji Tüketen Uzun Dalga Sistemi ve Uygulaması 

 

              (2+1)-boyutlu enerji tüketen uzun dalga sistemi fiziksel uygulamalarda, lineer 

olmayan dalga teorisi ve lineer olmayan bilimde kullanılan ünlü bir denklem sistemidir 

(Chang et al. 2020). (2+1)-boyutlu enerji tüketen uzun dalga sistemi, 

 

2 2 0,

2 2 2 0.

t xx x x

t y xxy xx x y xy

u u u v uv

v v u v v vv

− − − =

+ − − − =
 (4.2.1) 

 

şeklinde verilmektedir (Yang and Feng 2021). (4.2.1) ile verilen sistemin tam çözümlerini 

bulabilmek için GKM dikkate alınır. 

 

( , , ) ( ), ( , , ) ( ),u x y t u v x y t v x y ct  = = = + −  (4.2.2) 

 

(4.2.1) sistemi için (4.2.2) dönüşümü ele alınır ve integrasyon sabiti de sıfır kabul edilerek 

integral alınırsa, 

 

2 2 3'' 3 2 0,c v v cv v− − + + =  (4.2.3) 
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elde edilir. Böylece (4.2.1) denklemi, (4.2.3) lineer olmayan adi diferansiyel denklemine 

dönüşür. (3.2.4) ve (3.2.7) eşitlikleri (4.2.3) denkleminde yerine yazılarak dengeleme 

prensibi uygulanırsa 

 

2 3 3 1N M N M N M− + = −  = +                                                                     (4.2.4) 

 

olduğu görülür. Burada  1M =  için  2N =  olduğundan, 

 

( )
2

0 1 2

0 1

,
a a Q a Q

u
b b Q


+ +

=
+

                                                                                            (4.2.5) 

 

( ) ( )
( )( ) ( )

( )

2

1 2 0 1 1 0 1 22

2

0 1

2
,

a a Q b b Q b a a Q a Q
u Q Q

b b Q


 + + − + +
  = −

+  
                          (4.2.6) 

 

( )
( )

( ) ( )( ) ( )

( )
( )

( ) ( )( ) ( )

2
2

1 2 0 1 1 0 1 22

0 1

2
2

2 2 2

2 0 1 1 1 2 0 1 1 0 1 23

0 1

2 1 2

2 2 2 2 ,

Q Q
u Q a a Q b b Q b a a Q a Q

b b Q

Q Q
a b b Q b a a Q b b Q b a a Q a Q

b b Q


−

  = − + + − + +
 +

−
 + + − + + + + +
 +

(4.2.7) 

 

bulunur. (4.2.1) ile verilen (2+1)-boyutlu enerji tüketen uzun dalga sisteminin tam 

çözümleri aşağıdaki gibi elde edilir.  

 

Durum 1: 

 

0 1 0 2 10, , , 1.a a b a b c= = − = − =  (4.2.8) 

 

(4.2.8) eşitlikleri (4.2.5) denkleminde yerine yazılırsa 

 

1

1
( , , ) 1 tanh tanh ,

4 2 2

x y ct x y ct
u x y t c

 + −  + −    
= − − + +     

     
                                       (4.2.9) 
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1

1 1
( , , ) tanh ,

2 2 2

x y ct
v x y t

+ − 
= − +  

 
 (4.2.10) 

 

dark soliton çözümleri elde edilir. (2+1)-boyutlu enerji tüketen uzun dalga sisteminin 

GKM ile elde edilen (4.2.9) ve (4.2.10) tam çözümleri için iki ve üç boyutlu grafikleri 

aşağıdaki şekillerde çizilmiştir. 

 

  

 

Şekil 4.2.1. (2+1)-boyutlu enerji tüketen uzun dalga denkleminin GKM ile elde edilen 

(4.2.9) tam çözümünün 2, 2, 5 5c y x= = −    ile 10 10, 3t t−   = değerleri için 

sırasıyla üç boyutlu ve iki boyutlu grafikleri. 

 

  

 

Şekil 4.2.2. (2+1)-boyutlu enerji tüketen uzun dalga denkleminin GKM ile elde edilen 

(4.2.10) tam çözümünün 0.25, 2, 10 10c y x= = −    ile 10 10, 3t t−   = değerleri için 

sırasıyla üç boyutlu ve iki boyutlu grafikleri. 
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Durum 2: 

 

1
0 1 1 1 2 1 0, 2 , , , 2.

2

b
a b a b a b b c= = − = = − =  (4.2.11) 

 

(4.2.11) eşitlikleri (4.2.5) denkleminde yerine yazılırsa 

 

( )( )2

1
( , , ) 1 coth[ ] 2 4coth[ ] csch[ ] ,

4
u x y t x y ct c x y ct x y ct= + + − + + − + + −          (4.2.12) 

 

2

2

1
( , , ) 1 coth tanh ,

2 2 2

x y ct x y ct
v x y t

 + −  + −   
= − +    

    
 (4.2.13) 

 

(4.2.12) dark-bright soliton ve (4.2.13) dark soliton çözümleri elde edilir. (2+1)-boyutlu 

enerji tüketen uzun dalga sisteminin GKM ile elde edilen (4.2.12) ve (4.2.13) tam 

çözümleri için iki ve üç boyutlu grafikleri aşağıdaki şekillerde çizilmiştir. 

 

  

 

Şekil 4.2.3. (2+1)-boyutlu enerji tüketen uzun dalga denkleminin GKM ile elde edilen 

(4.2.12) tam çözümünün 1, 1, 10 10c y x= − = −    ile 5 5, 4t t−   = değerleri için 

sırasıyla üç boyutlu ve iki boyutlu grafikleri. 
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Şekil 4.2.4. (2+1)-boyutlu enerji tüketen uzun dalga denkleminin GKM ile elde edilen 

(4.2.13) tam çözümünün 1, 2, 15 15c y x= = −    ile 15 15, 0.5t t−   = değerleri için 

sırasıyla üç boyutlu ve iki boyutlu grafikleri. 

 

Durum 3: 

 

1 1
0 1 1 2 1 0, 1 , , , 2.

22 2 2

ib bi
a a b a b b c i

 
= = − = − = − = 

 
 (4.2.14) 

 

(4.2.14) eşitlikleri (4.2.6) denkleminde yerine yazılırsa 

 

3

1
( , , ) 1 2 2csch[ ] 2 tanh ,

4 2

x y ct
u x y t i c x y ct i c

  + −  
= + + + − − + +   

   
           (4.2.15) 

 

3( , , ) csch[ ],
2

i
v x y t x y ct= − − + −  (4.2.16) 

 

(4.2.15) dark-bright soliton ve (4.2.16) bright soliton çözümleri elde edilir. (2+1)-boyutlu 

enerji tüketen uzun dalga sisteminin GKM ile elde edilen (4.2.15) ve (4.2.16) tam 

çözümleri için iki ve üç boyutlu grafikleri aşağıdaki şekillerde çizilmiştir. 
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Şekil 4.2.5. (2+1)-boyutlu enerji tüketen uzun dalga denkleminin GKM ile elde edilen 

(4.2.15) tam çözümünün 3, 5, 15 15c y x= = −    ile 10 10, 2t t−   = değerleri için 

sırasıyla üç boyutlu ve iki boyutlu grafikleri. 

 

  

 

Şekil 4.2.6. (2+1)-boyutlu enerji tüketen uzun dalga denkleminin GKM ile elde edilen 

(4.2.16) tam çözümünün 1, 0.2, 20 20c y x= = −    ile 15 15, 3t t−   = değerleri için 

sırasıyla üç boyutlu ve iki boyutlu grafikleri. 

 

4.3 (2+1)-Boyutlu Bogoyavlensky–Konopelchenko (BK) Denklemi ve Uygulaması 

 

(2+1)-boyutlu BK denklemi, 

 

1 4 2 3 3 4 ( ) 0,xt x x y xx x x y x xx yu hu h u h u u h u u u u+ + + + + =                                                    (4.3.1) 
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şeklinde verilsin (Ray 2018). Burada 1 2 3 4, , ,h h h h  değerleri keyfi sabitlerdir. (4.3.1) 

denklemindeki 
1 2 3 4, , ,h h h h  sabitleri için 

1 2 3 4, , 6 , 4h a h h a h = = = =  değerleri seçilirse 

(4.3.1) denklemi  

 

4 3 6 4 4 0,xt x x y xx x x y x xx yu au u au u u u u u  + + + + + =                                                 (4.3.2) 

 

şeklinde yazılabilir. Elde edilen (4.3.2) denklemi Korteweg-de Vries denkleminin iki 

boyutlu bir genellemesi olarak kabul edilir ve uygun şartlar da Korteweg-de Vries 

denklemine indirgenebilir (Yan et al. 2016). (4.3.2) denklemi 0a =  değeri için Calogero-

Bogoyavlensky-Schiff denklemini sağlamaktadır ve aynı zamanda da akışkanlar 

mekaniğinde y ekseni boyunca yayılan bir Riemann dalgası ile x ekseni boyunca yayılan 

uzun bir dalganın etkileşimi olarak da tanımlanmaktadır (Xiang-peng at al. 2010; Zhou 

et al. 2021). (4.3.2) denkleminde 
y xu v=  dönüşümü yapılır ve integral alınırsa  

 

2

3 3 3 4 0,t x x x x xu au v au u v + + + + =  (4.3.3) 

 

denklemi elde edilir. Buna göre (4.3.2) denklemi  

 

2

3 3 3 4 0,

0,

t x x x x x

y x

u au v au u v

u v

 + + + + =

− =
 (4.3.4) 

 

şeklinde bir sistem olarak yazılabilir. Elde edilen (4.3.4) sistemi üzerinde GKM dikkate 

alınır. 

 

( , , ) ( ), ( , , ) ( ), .u x y t u v x y t v x y ct  = = = + −                                                            (4.3.5) 

 

(4.3.5) ile verilen dönüşüm (4.3.4) sistemi üzerinde uygulanırsa, 

 

2' ( ) ''' (3 4 )( ') 0,cu a u a u − + + + + =  (4.3.6) 

 

elde edilir. Bu elde edilen (4.3.6) denklemi üzerinde  'u g=  dönüşümü uygulanırsa  
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2( ) '' (3 4 ) 0,cg a g a g − + + + + =  (4.3.7) 

 

elde edilir. Böylece (4.3.4) sistemi (4.3.7) ile verilen lineer olmayan adi diferansiyel 

denklemine dönüşür. (3.2.4) ve (3.2.7) eşitlikleri (4.3.7) denkleminde yerine yazılarak 

dengeleme prensibi uygulanırsa 

 

2 2 2 2.N M N M N M− + = −  = +                                                                      (4.3.8) 

 

olduğu görülür. Burada 1M =  için  3N =  olduğundan, 

( )
2 3

0 1 2 3

0 1

,
a a Q a Q a Q

u
b b Q


+ + +

=
+

                                                                                     (4.3.9) 

 

( ) ( )
( )( ) ( )

( )

2 2 3

1 2 3 0 1 1 0 1 2 32

2

0 1

2 3
,

a a Q a Q b b Q b a a Q a Q a Q
u Q Q

b b Q


 + + + − + + +
  = −

+  
      (4.3.10) 

 

( )
( )

( ) ( )( ) ( )

( )
( )

( ) ( ) ( )( ) ( )

2
2 2 3

1 2 3 0 1 1 0 1 2 32

0 1

2
2

2 2 2 2 3

0 1 2 3 1 0 1 1 2 3 1 0 1 2 33

0 1

2 1 2 3

2 6 2 2 3 2 ,

Q Q
u Q a a Q a Q b b Q b a a Q a Q a Q

b b Q

Q Q
b b Q a a Q b b b Q a a Q a Q b a a Q a Q a Q

b b Q


−

  = − + + + − + + +
 +

−
 + + + − + + + + + + +
 +

 

                                                                                                                                 (4.3.11) 

 

bulunur. (4.3.1) ile verilen (2+1)-boyutlu BK denkleminin tam çözümleri aşağıdaki gibi 

elde edilir.  

 

Durum 1: 

 

0 0 1 0 1 1
0 1 2 3

(6 ) 6 ( ) 6
, , , , .

3 3 3 3

cb c b b c b b cb
a a a a a c

c c c c


   

− − +
= = = = − = − −
− + − − −

              (4.3.12) 

 

(4.3.12) eşitlikleri (4.3.9) denkleminde yerine yazılırsa 

 

1

( ) ( )
( ) 6 6 tanh

2 2
( , , ) ,

6 2

x y ct x y ct
c x y ct c c

u x y t
c 

+ − + −   
+ − − +   

   =
−

                         (4.3.13) 
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1

( ) ( )
( ) 6 6 tanh

2 2
( , , ) ,

6 2

x y ct x y ct
c x y ct c c

v x y t
c 

+ − + −   
+ − − +   

   =
−

                        (4.3.14) 

 

dark soliton çözümleri elde edilir. (2+1)-boyutlu BK denkleminin GKM ile elde edilen 

(4.3.13) tam çözümü için iki ve üç boyutlu grafikleri aşağıdaki şekilde çizilmiştir. 

 

 

Şekil 4.3.1. (2+1)-boyutlu BK denkleminin GKM ile elde edilen (4.3.13) tam 

çözümünün 1, 2, 0.5, 20 20c y x= = = −    ile 20 20, 3t t−   = değerleri için 

sırasıyla üç boyutlu ve iki boyutlu grafikleri. 

 

Durum 2:  

 

0 0 1 0 1 1
0 1 2 3

( ) ( )(6 ) 6( )( ) 6( )
, , , , .

3 4 3 4 3 4 3 4

a b a b b a b b a b
a a a a c a

a a a a

   


   

+ + − + − + +
= − = = = − = − −

+ + + +
   

                                                                                                                                 (4.3.14) 

  

(4.3.14) eşitlikleri (4.3.9) denkleminde yerine yazılırsa 

 

( )

2

( ) ( 3tanh
2

( , , ) ,
3 4

x y ct
a x y ct

u x y t
a





+ − 
+ + − −  

 = −
+

                                            (4.3.15) 
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( )

2

( ) ( 3tanh
2

( , , ) ,
3 4

x y ct
a x y ct

v x y t
a





+ − 
+ + − −  

 = −
+

                                           (4.3.16) 

 

dark soliton çözümleri elde edilir. (2+1)-boyutlu BK denkleminin GKM ile elde edilen 

(4.3.15) tam çözümü için iki ve üç boyutlu grafikleri aşağıdaki şekilde çizilmiştir. 

 

 

 

Şekil 4.3.2. (2+1)-boyutlu BK denkleminin GKM ile elde edilen (4.3.15) tam 

çözümünün 0.5, 3, 2, 4, 15 15c a y x= = = = −    ile 15 15, 2t t−   = değerleri için 

sırasıyla üç boyutlu ve iki boyutlu grafikleri. 

 

Durum 3:  

 

0 0
0 1 2 3 1

6 6
0, , , 0, 0, .

4 4

cb cb
a a a a b a c

a c a c
= = − = = = = − +

− −
                                      (4.3.17) 

 

(4.3.17) eşitlikleri (4.3.9) denkleminde yerine yazılırsa 

 

3

3 tanh
2

( , , ) ,
4

x y ct
c

u x y t
a c

+ − 
 
 = −
−

                                                                             (4.3.18) 
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3

3 tanh
2

( , , ) ,
4

x y ct
c

v x y t
a c

+ − 
 
 = −
−

                                                                             (4.3.19) 

 

dark soliton çözümleri elde edilir. (2+1)-boyutlu BK denkleminin GKM ile elde edilen 

(4.3.18) tam çözümü için iki ve üç boyutlu grafikleri aşağıdaki şekilde çizilmiştir. 

 

 

 

Şekil 4.3.3. (2+1)-boyutlu BK denkleminin GKM ile elde edilen (4.3.18) tam 

çözümünün 0.4, 0.8 2, 10 10c a y x= = = −    ile 10 10, 2.5t t−   = değerleri için 

sırasıyla üç boyutlu ve iki boyutlu grafikleri. 

 

4.4 Perturbe Edilmiş Radhakrishnan–Kundu–Lakshmanan (RKL) Denklemi ve 

Uygulaması 

Perturbe edilmiş RKL denklemi 

 

( ) ( )2 2 2
,t xx x xxx

x x

iq aq b q q i q i q q i q q i q   + + = + + −                                          (4.4.1)                               

 

şeklinde verilmektedir. Burada ( , )q x t  karmaşık değerli bağımlı bir fonksiyondur ve x  

uzaysal değişkenleri t  ise zamansal değişkenleri temsil eden bağımsız birer 

değişkenlerdir. (4.4.1) denkleminin sol tarafında bulunan ilk terim lineer olmayan 

dalganın zamansal değişimini, a  katsayısı grup hız dağılımını, b  ise lineer olmama 

katsayısını gösterir. Denklemdeki eşitliğin sağ tarafında bulunan katsayılar da ise   

modlar arası dağılımı,   kısa darbeler için yükselme katsayısını,   yüksek dereceli 
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dağılım katsayısını,   ise üçüncü dereceden dağılım terimini temsil eder (Biswas et al. 

2018; Biswas 2018; Ghanbari and Gomez-Aguilar 2019).  (4.4.1) ile verilen perturbe 

edilmiş RKL denklemine GKM’yi uygulamak için ilk olarak  

 

( , )( , ) ( ) , , ( , ) .iP x tq x t u e x vt P x t kx wt = = − = − +                                                                 (4.4.2) 

 

dönüşümü göz önüne alınır. (4.4.1) denkleminde (4.4.2) ile verilen dönüşüm uygulanırsa,  

 

( ) ( )2 3 3( 3 ) '' 0,a k u w ak k k u b k u   + − + + + + − =                                                         (4.4.3) 

 

( ) ( )2 33 '' 3 2 3 3 2 0,u v ak k u u    − + + + − + =                                                              (4.4.4) 

 

elde edilir. Böylece (4.4.1) denklemi (4.4.3) denklemi ile verilen reel ve (4.4.4) denklemi 

ile verilen imajiner çiftine indirgenir. (3.2.4) ve (3.2.7) eşitlikleri (4.4.3) ve (4.4.4) 

denklemlerinde yerine yazılarak dengeleme prensibi uygulanırsa 

 

2 3 3 1,N M N M N M− + = −  = +                                                                     (4.4.5) 

 

olduğu görülür. Burada 1M =  için  2N =  olduğundan, 

 

( )
2

0 1 2

0 1

,
a a Q a Q

u
b b Q


+ +

=
+

                                                                                            (4.4.6) 

 

( ) ( )
( )( ) ( )

( )

2

1 2 0 1 1 0 1 22

2

0 1

2
,

a a Q b b Q b a a Q a Q
u Q Q

b b Q


 + + − + +
  = −

+  
                          (4.4.7) 

 

( )
( )

( ) ( )( ) ( )

( )
( )

( ) ( )( ) ( )

2
2

1 2 0 1 1 0 1 22

0 1

2
2

2 2 2

2 0 1 1 1 2 0 1 1 0 1 23

0 1

2 1 2

2 2 2 2 ,

Q Q
u Q a a Q b b Q b a a Q a Q

b b Q

Q Q
a b b Q b a a Q b b Q b a a Q a Q

b b Q


−

  = − + + − + +
 +

−
 + + − + + + + +
 +

(4.4.8) 
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bulunur. (4.4.1) ile verilen perturbe edilmiş RKL denkleminin tam çözümleri aşağıdaki 

gibi elde edilir.  

 

Durum 1: 

 

( ) ( )( )( )

2

0

0

2

02
1

2

1
2

(6 ) 3 (9 ) 3
,

3 2

2 (6 ) 3 (9 ) 3
,

2 3 2

3 2
,

2 (6 ) 3 (9 ) 3

1
2 6 6 2 3 2 9 2( 3 ) .

3

i ak ak v w k k kb
a

b k

i ak ak v w k k kba
a

b k

i b k a
b

ak ak v w k k k

a ak ak v w k k k k

   

  

   

  

  

   

     

− + − − − + − −
= −

− − −

− + − − − + − −
= − +

− − −

− − −
= −

− + − − − + − −

= − − + − − − + + − − −

                (4.4.9)                            

 

(4.4.9) eşitlikleri (4.4.6) denkleminde yerine yazılırsa 

 

( ) 2

1

( )
(6 ) 3 3 tanh

2
( , ) ,

3 2

i kx wt x vt
e i ak ak v w k k

u x t
b k

  

  

− + − 
− + − − − − −  

 = −
− − −

               (4.4.10) 

 

( ) 2

2

( )
(6 ) 3 3 coth

2
( , ) ,

3 2

i kx wt x vt
e i ak ak v w k k

u x t
b k

  

  

− + − 
− + − − − − −  

 = −
− − −

               (4.4.11) 

 

çözümleri elde edilir. Perturbe edilmiş RKL denkleminin GKM ile elde edilen (4.4.10) 

tam çözümü için iki ve üç boyutlu grafikleri aşağıdaki şekilde çizilmiştir. 
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Şekil 4.4.1. Perturbe edilmiş RKL denkleminin GKM ile elde edilen (4.4.10) tam 

çözümünün 0.25, 3, 0.5, 2, 1, 5, 3, 4, 1, 10 10a w v k b x   = = = = = = = = = −    ile 

10 10, 0.2t t−   = değerleri için sırasıyla üç boyutlu ve iki boyutlu grafikleri. 

 

Durum 2: 

 

( )

0 02
0 1

2

1

3( ) 2 3( )
, ,

22 3 2 3 2

3 2
,

2 6 6

1
2 (6 ) 6 3 (3 2 (9 )) 2(3 ) .

2

i a k b i a k ba
a a

b k b k

i b k a
b

a k

w a ak ak v k k k k

   

     

  

 

     

+ + + +
= − = − +

− − − − − −

− − −
= −

+ +

= − − + − − − + + − +

                (4.4.12)                            

 

(4.4.12) eşitlikleri (4.4.6) denkleminde yerine yazılırsa 

 

( )

3

( )
3( ) tanh

2
( , ) ,

2 3 2

i kx wt x vt
e i a k

u x t
b k

 

  

− + − 
+ +  

 = −
− − −

                                                               (4.4.13) 

 

( )

4

( )
3( ) coth

2
( , ) ,

2 3 2

i kx wt x vt
e i a k

u x t
b k

 

  

− + − 
+ +  

 = −
− − −

                                                               (4.4.14) 
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çözümleri elde edilir. Bu çözümler içerisinde yer alan       

( )
1

2 (6 ) 6 3 (3 2 (9 )) 2(3 )
2

w a ak ak v k k k k     = − − + − − − + + − +  dir. Perturbe 

edilmiş RKL denkleminin GKM ile elde edilen (4.4.13) tam çözümü için iki ve üç boyutlu 

grafikleri aşağıdaki şekilde çizilmiştir. 

 

  

Şekil 4.4.2. Perturbe edilmiş RKL denkleminin GKM ile elde edilen (4.4.13) tam 

çözümünün 5, 0.05, 4, 0.1, 3, 4, 0.01, 0.5, 15 15a v k b w x  = = = = = = = = −    ile 

15 15, 1.5t t−   = değerleri için sırasıyla üç boyutlu ve iki boyutlu grafikleri. 

 

Durum 3: 

 

( )

( )( )

( )

( )( )

( )( )

( )

( )

1

0 1
2

1

1 1

2
2

1

2

1 1
0

2 3( )1
2 ,

4 3( ) 3 2

2 3( )
,

3( ) 3 2

3( ) 3 2
,

22 3( )

1
2 (6 ) 6 3 (3 2 (9 )) 2(3 ) .

2

a k b
a a

a k b k a

a k a b
a

a k b k a

a k b k a b
b

a k

w a ak ak v k k k k

 

    

 

    

    

 

     

 + +
 = − +
 − + + − − − 

+ +
= −

− + + − − −

− + + − − −
= − +

+ +

= − − + − − − + + − +

                      (4.4.15) 

 

(4.4.15) eşitlikleri (4.4.6) denkleminde yerine yazılırsa 
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1
( )

5
2

1

( )
3( ) tanh

2
( , ) ,

2 ( 3( ))( 3 2 )

i kx wt

x vt
a k a

u x t e
a k b k a

 

    

− +

− 
+ +  

 =
− + + − − −

                                          (4.4.16) 

 

1
( )

6
2

1

( )
3( ) coth

2
( , ) ,

2 ( 3( ))( 3 2 )

i kx wt

x vt
a k a

u x t e
a k b k a

 

    

− +

− 
+ +  

 =
− + + − − −

                                          (4.4.17) 

 

çözümleri elde edilir. Burada çözümler içerisinde yer alan 

( )
1

2 (6 ) 6 3 (3 2 (9 )) 2(3 )
2

w a ak ak v k k k k     = − − + − − − + + − +  dir. Perturbe 

edilmiş RKL denkleminin GKM ile elde edilen (4.4.16) tam çözümü için iki ve üç boyutlu 

grafikleri aşağıdaki şekilde çizilmiştir. 

 

   

Şekil 4.4.3. Perturbe edilmiş RKL denkleminin GKM ile elde edilen (4.4.16) tam 

çözümünün 15, 2.5, 1, 2, 1, 3, 4, 1, 2, 5 5a a v k b w x  = = = − = = = = − = = −    ile 

5 5, 1.5t t−   = − değerleri için sırasıyla üç boyutlu ve iki boyutlu grafikleri. 
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Durum 4: 

 

( )

( )( )

( )

( )( )

( )( )

( )

( )

1

0 1
2

1

1 1

2
2

1

2

1 1
0

2 3( )1
2 ,

4 3( ) 3 2

2 3( )
,

3( ) 3 2

3( ) 3 2
,

22 3( )

1
2 (6 ) 6 3 (3 2 (9 )) 2(3 ) .

2

a k b
a a

a k b k a

a k a b
a

a k b k a

a k b k a b
b

a k

w a ak ak v k k k k

 

    

 

    

    

 

     

 + +
 = − −
 − + + − − − 

+ +
=

− + + − − −

− + + − − −
= +

+ +

= − − + − − − + + − +

                      (4.4.18) 

 

(4.4.18) eşitlikleri (4.4.6) denkleminde yerine yazılırsa 

 

7

1 1

1
1 12 2

1 1

2

1 1
1

( , )

2 1 tanh
22

2 2 1 tanh
2

,

4 2 1 tanh
2 22

u x t

x vt
Aa b

Ab x vt
a a

ABa ABa

ABa b x vt
b

A

=

  −  
−      −      − + + − − +        − −   

 

 −  −  
 + − − +       

   (4.4.19) 

 

8

1 1

1
1 12 2

1 1

2

1 1
1

( , )

2 1 coth
22

2 2 1 coth
2

,

4 2 1 coth
2 22

u x t

x vt
Aa b

Ab x vt
a a

ABa ABa

ABa b x vt
b

A

=

  −  
−      −      − + + − − +        − −   

 

 −  −  
 + − − +       

   (4.4.20) 

 

çözümleri elde edilir. Burada ( ) ( )3( ) , 3 2A a k B b k    = + + = − − −  dir. Perturbe 

edilmiş RKL denkleminin GKM ile elde edilen (4.4.19) tam çözümü için iki ve üç boyutlu 

grafikleri aşağıdaki şekilde çizilmiştir. 
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Şekil 4.4.4. Perturbe edilmiş RKL denkleminin GKM ile elde edilen (4.4.19) tam 

çözümünün 1 11, 2, 2, 1, 1, 3, 1, 1, 2, 15 15a a k v b b x  = = = = = = = = = − −    ile 

5 5, 1t t−   = değerleri için sırasıyla üç boyutlu ve iki boyutlu grafikleri. 

 

4.5 (2+1)-Boyutlu Date-Jimbo-Kashiwara-Miwa (DJKM) Denklemi ve Uygulaması 

 

(2+1)-boyutlu DJKM denklemi Kadomtsev-Petviashvili hiyerarşisinin integral uzantısı 

olarak yazılır ve  

 

4 2 6 2 0,xxxxy xxy x xxx y xy xx yyy xxtu u u u u u u u u+ + + + − =                                                        (4.5.1) 

 

şeklinde verilmektedir (Yuan et al. 2017; Pu and Hu 2019; Ismael et al. 2020). (4.5.1) ile 

verilen (2+1)-boyutlu DJKM denklemine GKM’yi uygulamak için ilk olarak aşağıdaki 

dönüşüm göz önüne alınır. 

 

( )( , , ) ( ), .u x y t u n x y kt = = + −                                                                                (4.5.2) 

 

(4.5.2) ile verilen dönüşüm (4.5.1) denklemi üzerinde uygulanırsa, 

 

( ) ( )
22 3''' 3 ' 2 ' 0,an u an u a k u+ + + =  (4.5.3) 

 

denklemi elde edilir. Elde edilen (4.5.3) denklemi üzerinde aşağıda verilen  

 

' ,u g=                                                                                                                            (4.5.4) 
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dönüşümünü uygulayarak  

 

( )2 2 3'' 3 2 0,an g ang a k g+ + + =                                                                                  (4.5.5) 

 

elde edilir. Böylece (4.5.1) denklemi (4.5.5) ile verilen lineer olmayan adi diferansiyel 

denklemine indirgenir. (3.2.4) ve (3.2.7) eşitlikleri (4.5.5) denkleminde yerine yazılarak 

dengeleme prensibi uygulanırsa 

 

2 2 2 2,N M N M N M− + = −  = +                                                                      (4.5.6) 

                                                                   

olduğu görülür. Burada 1M =  için 3N =  olduğundan, 

 

( )
2 3

0 1 2 3

0 1

,
a a Q a Q a Q

u
b b Q


+ + +

=
+

                                                                                     (4.5.7) 
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u Q Q
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

 + + + − + + +
  = −

+  
         (4.5.8) 
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                                                                                                                                   (4.5.9) 

 

bulunur. (4.5.1) ile verilen (2+1)-boyutlu DJKM denkleminin tam çözümleri aşağıdaki 

gibi elde edilir.  
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Durum 1: 

 

( )
( )

0 1
0 1 0 2 0 1 3 1

2/3
1/3 2 2 6

1/3
2/3 2 6

, , ( ), ,
6 6

3 9 81 3
.

3 9 81 3

nb nb
a a nb a n b b a nb

n k k n
a

k k n

= − = − = − + = −

+ − + −
=

− + −

                                                (4.5.10) 

 

(4.5.10) eşitlikleri (4.5.7) denkleminde yerine yazılırsa 

 

( )
( )

( )
( )

2/3
1/3 2 2 6

1/3
2/3 2 6
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3 9 81 31
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3 9 81 3
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n k k n
nx nkt ny

k k n

   
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− − +   
   − + −

   
=  
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   − + −      

   (4.5.11) 
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=  

    + − + −    + − +    
   − + −      

  (4.5.12) 

çözümleri elde edilir. (2+1)-boyutlu BK denkleminin GKM ile elde edilen (4.5.11) tam 

çözümü için iki ve üç boyutlu grafikleri aşağıdaki şekilde çizilmiştir. 
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Şekil 4.5.1. (2+1)-boyutlu DJKM denkleminin GKM ile elde edilen (4.5.11) tam 

çözümünün 0.2, 4, 0.5, 2, 25 25n a y k x= = = = −    ile 25 25, 0.5t t−   = değerleri 

için sırasıyla üç boyutlu ve iki boyutlu grafikleri. 

Durum 2: 

 

( ) ( )3 33
0 1 0 10

0 1 2

3 3

1
3

2 6 22
, , ,

6 6

2 2
, .

a k b b a k b ba kb
a a a

a a a

a kb a k
a n

a a

+ − + + −+
= = =

+ +
= = −

                            (4.5.13) 

 

(4.5.13) eşitlikleri (4.5.7) denkleminde yerine yazılırsa 

 

( )
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3

2 3tanh
2

( , , ) ,
6
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u x y t
a

 + − 
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  =                         (4.5.14) 

 

( )
( )3

4

2 3coth
2

( , , ) ,
6

nx nay nkt
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u x y t
a

 + − 
+ + − −   

  =                         (4.5.15) 

 

çözümleri elde edilir. (2+1)-boyutlu DJKM denkleminin GKM ile elde edilen (4.5.14) 

tam çözümü için iki ve üç boyutlu grafikleri aşağıdaki şekilde çizilmiştir. 
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Şekil 4.5.2. (2+1)-boyutlu DJKM denkleminin GKM ile elde edilen (4.5.14) tam 

çözümünün 3, 0.2, 2, 5, 20 20a k n y x= = = = −    ile 20 20, 0.02t t−   = değerleri 

için sırasıyla üç boyutlu ve iki boyutlu grafikleri. 

 

Durum 3: 

 

3

1
0 1 2

3 3
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3 0
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2 2
, 0, .
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+ +
= = = −

                                                                  (4.5.16) 

 

(4.5.16) eşitlikleri (4.5.7) denkleminde yerine yazılırsa 

 

3

5

2 tanh
2

( , , ) ,
2

nx nay nkt
i a k

u x y t
a

+ − 
+  

 = −                                                           (4.5.17) 

 

3
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2 coth
2

( , , ) ,
2

nx nay nkt
i a k

u x y t
a

+ − 
+  

 = −                                                         (4.5.18) 

 

çözümleri elde edilir. (2+1)-boyutlu DJKM denkleminin GKM ile elde edilen (4.5.17) 

tam çözümü için iki ve üç boyutlu grafikleri aşağıdaki şekilde çizilmiştir. 
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Şekil 4.5.3. (2+1)-boyutlu DJKM denkleminin GKM ile elde edilen (4.5.17) tam 

çözümünün 4, 2, 0.5, 20 20a k y x= = = −    ile 20 20, 1t t−   = değerleri için 

sırasıyla üç boyutlu ve iki boyutlu grafikleri. 

 

 

Durum 4: 
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                    (4.5.19) 

 

(4.5.19) eşitlikleri (4.5.7) denkleminde yerine yazılırsa 

 

3 3

7

1 2 ( ) 2 ( )
( , , ) 17 3tanh ,

6 2

a k x ay kt a k x ay kt
u x y t i

a a
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         (4.5.20) 

 

3 3

8

1 2 ( ) 2 ( )
( , , ) 17 3coth ,

6 2
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u x y t i

a a

  + + − + + −
 = −  
    

         (4.5.21) 

 

çözümleri elde edilir. (2+1)-boyutlu DJKM denkleminin GKM ile elde edilen (4.5.20) 

tam çözümü için iki ve üç boyutlu grafikleri aşağıdaki şekilde çizilmiştir. 
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Şekil 4.5.4. (2+1)-boyutlu DJKM denkleminin GKM ile elde edilen (4.5.20) tam 

çözümünün 0.1, 0.5, 8, 5 5a k y x= = = −    ile 5 5, 2t t−   = değerleri için sırasıyla 

üç boyutlu ve iki boyutlu grafikleri. 
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5. SONUÇ ve ÖNERİLER 

Bu çalışmada Nikolay A. Kudryashov tarafından literatüre sunulmuş olan 

Kudryashov metodunun genelleştirilmiş bir hali olan GKM ele alınmıştır. İlk olarak bu 

metodun genel yapısı verilmiş ve GKM kullanılarak gergin dalga denklemi, (2+1)-

boyutlu enerji tüketen uzun dalga sistemi, (2+1)-boyutlu Bogoyavlensky-Konopelchenko 

(BK) denklemi, perturbe edilmiş Radhakrishnan-Kundu-Lakshmanan (RKL) denklemi 

ve (2+1)-boyutlu Date-Jimbo-Kashiwara-Miwa (DJKM) denkleminin tam çözümleri elde 

edilmiştir. Ele alınan bu denklemlerde ilk olarak hareketli dalga dönüşümleri kullanılarak 

ele alınan denklemler lineer olmayan adi diferansiyel denklem formuna indirgenmiştir. 

Elde edilen bu denklem Mathematica 12 programı kullanılarak bir cebirsel denklem 

sistemine dönüştürülmüş ve bu cebirsel denklem sistemlerinin aynı program yoluyla 

çözülmesi sonucunda söz konusu denklemlerin tam çözümleri elde edilmiştir. Ayrıca ele 

alınan bu denklemlerin bulunan çözümlerinin belli değerleri için hem iki boyutlu hem de 

üç boyutlu grafikleri Mathematica 12 programı kullanılarak çizilmiştir. Böylece lineer 

olmayan kısmi diferansiyel denklemlerin tam çözümlerini elde etmek için kullanılan 

GKM kullanışlı ve kesin sonuç veren bir yöntemdir. Ayrıca GKM’nin lineer olmayan 

kısmi diferansiyel denklemlerin soliton ve hiperbolik çözümlerini bulmak için kullanılan 

etkili bir yöntem olduğu görülmüştür.  

GKM’nin (2+1)-boyutlu DJKM denklemine uygulanmasında elde edilen 

çözümler Pu and Hu (2019) tarafından verilen (24) çözümü ile benzerdir. Gergin dalga 

denklemi, (2+1)-boyutlu enerji tüketen uzun dalga sistemi, (2+1)-boyutlu 

Bogoyavlensky-Konopelchenko (BK) denklemi ve perturbe edilmiş Radhakrishnan-

Kundu-Lakshmanan (RKL) denklemlerinin çözümlerinde elde edilen sonuçlara ise 

yapılan literatür taramalarında rastlanılmamış olup, bulunan çözümlerin yeni oldukları 

görülmüştür. 
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