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Bu tez ¢alismasi bes ayr1 boliimden meydana gelmektedir. Birinci boliim olan giris
kisminda kismi diferansiyel denklemler ve genellestirilmis Kudryashov metodunun
ortaya ¢ikist ve metodun gelisimi ile ilgili birtakim bilgiler aktarilmistir. Ikinci boliim
kaynak 6zetleri kismi olup Kudryashov metodu, modifiye edilmis Kudryashov metodu
ve genellestirilmis Kudryashov metodu ile ilgili gegmiste yapilmis olan bazi ¢alismalar
hakkinda bilgiler verilmistir. Ugiincii boliimde bu tez calismasi i¢in gerekli olan bazi
temel tanim ve kavramlar yer almis ve genellestirilmis Kudryashov metodunun genel
yapist hakkinda bilgiler verilmistir. Dordiincii béliimde gergin dalga denklemi, (2+1)-
boyutlu enerji tiikketen uzun dalga sistemi, (2+1)-boyutlu Bogoyavlensky-Konopelchenko
(BK) denklemi, perturbe edilmis Radhakrishnan-Kundu-Lakshmanan (RKL) denklemi,
(2+1)-boyutlu  Date-Jimbo-Kashiwara-Miwa (DJKM) denklemlerinin  bazi tam
¢oziimlerini elde etmek amaciyla bu denklemler igin genellestirilmis Kudryashov metodu
(GKM) ele alinmistir. Ayrica, Mathematica 12 programi kullanilarak da elde edilmis olan
coziimlerin iki ve li¢ boyutlu grafikleri belli degerleri icin ¢izilmistir. Besinci bolim
sonug ve Oneriler kismidir ve bu tezde bulunan ¢éziimlerle ilgili olarak kapsamli sonuglar
belirtilmistir.

2021, 44 sayfa

Anahtar Kelimeler: Mathematica 12, Soliton ¢6ziimler, Genellestirilmis Kudryashov
Metodu.



ABSTRACT

MS. Thesis

INVESTIGATION THE SOLUTIONS OF SOME NONLINEAR PARTIAL
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This thesis consists of five distinct chapters. In the introduction part, which is the
first chapter, some information about partial differential equations and the emergence of
the generalized Kudryashov method and the development of the method are given. The
second part is the section of resource summaries, and some information about the past
studies on Kudryashov method, modified Kudryashov method and generalized
Kudryashov method have been given. In the third part, some basic definitions and
concepts required for this thesis study are included and information about the general
structure of the generalized Kudryashov method is introduced. In the fourth chapter,
generalized Kudryashov method is employed for obtaining some exact solutions of strain
wave equation, (2+1)-dimensional dissipative long wave system, (2+1)-dimensional
Bogoyavlensky-Konopelchenko (BK) equation, perturbed Radhakrishnan-Kundu-
Lakshmanan (RKL) equation, (2+1)-dimensional Date-Jimbo-Kashiwara-Miwa (DJKM)
equations. In addition, two- and three-dimensional graphs of the obtained solutions by
using the Mathematica 12 programming language were plotted for certain values. The
fifth chapter is conclusion and suggestions, and comprehensive results regarding the
solutions found in this thesis are stated.
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1. GIRIS

1. GIRIS

Matematik biliminin en 6nemli alanlarindan birisi olan uygulamali matematik,
diger bilim dallarinda ve gercek hayatta karsimiza g¢ikan problemleri ¢ézmek igin
kullanilmaktadir. Bilim diinyasinin bir¢ok alaninda ortaya c¢ikan problemlerin
matematiksel modellemesini yapmak ve ¢ozmek icin diferansiyel denklemler ortaya
cikmustir. Diferansiyel denklemler hakkinda yapilan ilk ¢aligmalar ise 17.yy’da Ingiliz
matematik¢i Newton ve Alman matematikgi Leibniz ile baglar. Diferansiyel denklemler
ilk olarak adi diferansiyel denklemler olarak ortaya ¢ikmis daha sonra kismi diferansiyel

denklemler olusturulmustur.

Diferansiyel denklemler bir uygulamali matematik konusu olmasina ragmen
biyoloji, tip, sosyoloji, teknoloji, ekonomi, fizik ve miihendislik gibi ¢ok genis bir
kullanim alanma sahiptir (Aksoy ve Ozkan 2011). Ozellikle de lineer olmayan kismi
diferansiyel denklemler ¢esitli bilim ¢evrelerinde meydana gelen kimyasal reaksiyonlari
arastirma, canli popiilasyonlarinda olusan degisimler, metaller iizerindeki 1s1 yayilimi,
elektrik devrelerinde yiik ve akim belirleme, levha ve tel titresimleri; deniz, gol, akarsu
ve gelgit dalgalari, radyoaktif bir cismin bozulmasi gibi onemli fiziksel olaylarin
incelenmesinde ve yorumlanmasinda yaygin olarak kullanilmaktadir (Upton 2004; Aslan
2007).

Bilim ve teknolojinin ¢ok hizla gelistigi giiniimiizde bilimsel olaylar1 anlamak ve
¢ozlime kavusturabilmek i¢in olusturulan lineer olmayan kismi diferansiyel denklemler
daha karmasik ve zor hale gelmistir. Dolayisiyla bu denklemleri ¢6zmek ve tam
coziimlerini elde edebilmek bilim ¢evreleri i¢in ¢ok dnemli bir konu haline gelmistir. Son
zamanlarda, ortaya ¢ikan zor ve ugrastirici hesaplamalardan dolayi lineer olmayan kismi
diferansiyel denklemlerin ¢oziimlerinde kullanilan Mathematica, Matlab ve Maple gibi

giiclii bilgisayar programlar gelistirilmigtir.

Diinyamiz i¢in son derece dnemli kullanim alanlaria sahip olan lineer olmayan
kismi diferansiyel denklemlerin ¢oziimleri de diinyanin dort bir yanmdaki birgok
arastirmact i¢in ¢ok biiyiik bir 6nem arz etmektedir. Bu ama¢ dogrultusunda lineer

olmayan kismi diferansiyel denklemlerin ¢6ziimlerini elde etmek igin bir¢ok farkl
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yontem cesitli aragtirmacilar tarafindan olusturulmustur. Bu yontemlerin bazisi sunlardir;

sine-Gordon agilim metodu (Tasbozan and Kurt 2020), exp(—¢(&))—a¢ilim metodu

(Arshed 2020), F—a¢ilim metodu (Yildirim 2021), gelistirilmis Bernoulli alt-denklem
fonksiyonu metodu (Dusunceli et al. 2021), modifiye edilmis varyasyonel iterasyon
metodu (Ahmad et al. 2020), modifiye edilmis yardimct denklem metodu (Mahak and
Akram 2020), modifiye edilmis Kudryashov metodu (Rahman et al. 2020), modifiye
edilmis genisletilmis dogrudan cebirsel metot (Soliman 2008), Darboux déniisiimii (Xu

et al. 2017).

Lineer olmayan diferansiyel denklemlerin tam ¢oziimlerini bulmak i¢in kullanilan
Kudryashov metodu ilk olarak Nikolay A. Kudryashov tarafindan 1988 yilinda
gosterilmis (Kudryashov 1988) ve 1991 yilinda ise uygulamasi yapilmistir (Kudryashov
1991). Bu metot o donem igin fark edilmemistir. Literatiire kazandirilmasi ise yine
Nikolay A. Kudryashov tarafindan 2012 yilinda gergeklestirilmistir (Kudryashov 2012).
Bu metot daha sonra gesitli lineer olmayan diferansiyel denklemlerin ¢oztimlerini bulmak
icin bazi yazarlar tarafindan uygulanmistir (Hubert et al. 2014; Hosseini and Ayati 2016;
Nuruddeen and Nass 2018). Kudryashov metodunun modifiye edilmesiyle olusturulan
modifiye edilmis Kudryashov metodu (MEKM) yine gesitli yazarlar tarafindan lineer
olmayan kismi diferansiyel denklemlerin tam ¢oziimlerini elde etmek i¢in kullanilmigtir

(Tandogan et al. 2013; Ege and Misirli 2014; Hosseini et al. 2017).

Bu ¢alismada kullanilacak olan Genellestirilmis Kudryashov Metodu (GKM),
Kudryashov metodunun genellestirilmesiyle elde edilmis olup literatiire ilk olarak 2014
yilinda sunulmustur (Tuluce Demiray et al. 2014). Zaman igerisinde gesitli aragtirmacilar
tarafinda da bir takim lineer olmayan diferansiyel denklemlerin ¢oziimlerini elde etmek
icin GKM kullanilmistir (Tuluce Demiray 2020a, 2020b; Gurefe 2020; Tuluce Demiray
and Bayrakci 2021a, 2021b). Bu tez ¢alismasinda ise, gergin dalga denklemi, (2+1)-
boyutlu enerji tiikketen uzun dalga sistemi, (2+1)-boyutlu Bogoyavlensky-Konopelchenko
(BK) denklemi, perturbe edilmis Radhakrishnan-Kundu-Lakshmanan (RKL) denklemi,
(2+1)-boyutlu Date-Jimbo-Kashiwara-Miwa (DJKM) denklemlerinin tam ¢6ziimlerini

elde etmek i¢in GKM kullanilmistir.
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2. KAYNAK OZETLERI

Lineer olmayan diferansiyel denklemlerin ¢6ziim yontemlerinden olan
Kudryashov metodu, bu metodun modifiye edilmesiyle olusturulan MEKM ve
genellestirilmesi ile elde edilen GKM hakkinda yapilan ¢aligmalardan bazilar1 asagida

gosterilmigtir.

Kudryashov metodu ilk olarak Nikolay A. Kudryashov tarafindan 1988 yilinda
dalga dinamiklerinin genellestirilmis gelisim denklemlerinin soliton ¢éziimlerini bulmak

icin kullanilmistir (Kudryashov 1988).

1991 yilinda Kudryashov metodu, Nikolay A. Kudryashov tarafindan Burgers-
Korteweg-de Vries, Bretherton, Kuramoto-Sivashinsky ve Kawachara denklemlerinin

coziimlerini elde etmek amaciyla kullanilmistir (Kudryashov 1991).

2012 yilinda Nikolay A. Kudryashov, daha 6nce kullanilan fakat fark edilmeyen
Kudryashov metodunu literatiire kazandirmis vebu metodu Fisher denklemi ve yedinci

mertebeden lineer olmayan diferansiyel denklemin ¢éziimiinii bulmak i¢in kullanmistir

(Kudryashov 2012).

2014 yilinda Hubert ve arkadaslar1 lineer olmayan iletim hat denkleminin

¢Oziimiinii bulmak i¢in Kudryashov metodunu uygulamislardir (Hubert et al. 2014).

2016 yilinda Hosseini ve Ayati, Kudryashov metodunu uzay zaman kesirli equal
width ve modifiye edilmis equal width denklemleri i¢in uygulamislardir (Hosseini and
Ayati 2016).

2018 yilinda Nuruddeen ve Nass, Kudryashov metodunu kesirli genellestirilmis
equal width-Burgers ve Klasik genellestirilmis equal width-Burgers denklemlerinin

coziimlerini bulmak i¢in kullanmislardir (Nuruddeen and Nass 2018).
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2013 yilinda Tandogan ve arkadaslart MEKM’i Rosenau-Kawahara denkleminin

¢oziimlerini bulmak i¢in uygulamislardir (Tandogan at el. 2013).

2014 yilinda MEKM, Ege ve Misirli tarafindan uzay zaman kesirli modifiye
edilmis Benjamin-Bona-Mahony denklemine ve uzay zaman Kesirli potansiyel

Kadomtsev-Petviashvili denklemine uygulanmistir (Ege and Misirli 2014).

Hosseini ve arkadaslari, 2017 yilinda zaman kesirli Klein-Gordon denkleminin

¢Oziimiinii bulmak i¢cin MEKM kullanmiglardir (Hosseini et al. 2017).

2014 yilinda Tuluce Demiray ve arkadaslar1 tarafindan zaman kesirli Klein-

Gordon denklemine GKM uygulanmistir (Tuluce Demiray at al. 2014).

2020 yilinda Tuluce Demiray GKM’yi kullanarak beta zaman tiirevli Biswas-

Arshed denkleminin yeni ¢oziimlerini bulmustur (Tuluce Demiray 2020a).

2020 yilinda Tuluce Demiray tarafindan beta zaman tiirevli optik darbe zarfi

E(z,7) denkleminin ¢oziimleri GKM yoluyla elde edilmistir. (Tuluce Demiray 2020b)

2020 yilinda Gurefe GKM’yi uygulayarak Atangana’nin carpilabilir tiirevi ile

Hunter-Saxton ve Schrédinger denklemlerinin ¢éziimlerini elde etmistir (Gurefe 2020).

Tuluce Demiray ve Bayrakci 2021 yilinda genellestirilmis iiclincli mertebeden
lineer olmayan Schrodinger denkleminin ¢oziimlerini GKM yoluyla bulmuslardir

(Tuluce Demiray and Bayrakci 2021a).

Tuluce Demiray ve Bayrakci 2021 yilinda uzay-zaman kesirli Heisenberg

ferromanyetik spin zincir denkleminin ¢oziimlerini GKM yoluyla bulmuslardir (Tuluce

Demiray and Bayrakci 2021b).
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3.1 Temel Tanim ve Teoremler

Tammm 3.1.1: Herhangi bir fonksiyon ve bu fonksiyona ait olan tiirevlerden olusan
denklemlere diferansiyel denklem adi verilir. Kisaca diferansiyel denklem, bir veya
birden daha fazla bagimli degiskeni igerisinde barindiran bir fonksiyon ile bu fonksiyona
ait bagimsiz degiskenlere gore tlirevleri arasinda tanimlanmis bagintidir (Tuluce Demiray
2014).

Tamim 3.1.2: Herhangi bir diferansiyel denklem igerisindeki bagimsiz degisken, belirli
bir degiskene gore denklemde tiirev alinmasi durumunda g6z Oniine alinan degisken
olarak, bagimli degisken ise denklem igerisinde tiirevi alinan degisken olarak tanimlanir
(Tuluce Demiray 2014).
x — Bagimsiz degisken

t > Bagimli degisken

Tamm 3.1.3: Bir bagimsiz ve bir bagimli degiskenden olusan ve bagimli olan degiskenin
bagimsiz olan degiskene gore ¢esitli mertebelerden adi tiirevlerinden olusan denklemlere

adi diferansiyel denklemler denilmektedir. Bir adi diferansiyel denklem genel olarak,

g Xtﬂd_ztd_?’t d't =0
o A X" &1

seklinde ifade edilebilir (Tuluce Demiray 2014).

Tamm 3.1.4: Herhangi bir diferansiyel denklem, en az bir bagimli degisken ve en az iki
bagimsiz degisken ile bagimhi degiskenin bagimsiz degiskenlere gore ¢esitli
mertebelerden kismi tiirevlerini i¢eriyorsa bu tiir denklemlere kismi tiirevli diferansiyel

denklem ad1 verilir. v *nin bagimli X, y ve t *nin bagimsiz degiskenler olarak ele alindig1

n. mertebeden bir kismi diferansiyel denklem
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N NV v o oV AV
K Xlyltlvl_l_l_!_zl—l_zl_zl.“l_n :O’
Ox oy ot ox™ oxoy oy® ot OX
V:@V:@V:@V :6_2\/\/ :6_2\/\/ :a_zv\/:azv V:anv
X aX! y ayit at’ XX 6X21 Xy axﬁy’ vy ayzatt atz,---, X" atnl
KX Y 8V V30V Vi Vg Vi Vi ViV ) =0, (3.2)

sekillerinde ifade edilir (Tuluce Demiray 2014).

Tanmim 3.1.5: Herhangi bir kismi tiirevli denklem igerisinde yer alan en yiiksek basamakli

kismi tiirevin basamagina bu denklemin mertebesi denilmektedir (Tuluce Demiray 2014).

Tanmim 3.1.6: Herhangi bir kismi tiirevli denklem igerisinde yer alan en yiiksek basamakli

kismi tiirevin kuvvetine bu denklemin derecesi denilmektedir (Tuluce Demiray 2014).

Tamm 3.1.7: Diferansiyel denklemler genel olarak lineer olan diferansiyel denklemler
ve lineer olmayan diferansiyel denklemler olmak iizere olarak iki ayr1 kisma ayrilir.
Herhangi bir diferansiyel denklem igerisinde bulunan bagimli degisken ve onun
tirevlerinin katsayilar1 bagimsiz degisken igeriyorsa bu tiir diferansiyel denklemlere
degisken katsayil1 diferansiyel denklemler denir. Herhangi bir kismi tiirevli denklemde
bulunan bagimli degisken ve bu degiskenlerin denklem igerisindeki biitiin kismi tiirevleri
birinci dereceden ve denklem, bagimli degiskenler ile onlarin tiirevleri parantezi
icerisinde yazildigi zaman katsayilar1 sabit veya yalnizca bagimsiz olan degiskenlerin
fonksiyonu oluyorsa bu tiir denklemlere lineer diferansiyel denklem denir. Herhangi bir
diferansiyel denklem igerisinde bulunan bagimli degisken kendisi ya da tiirevleri ile
carpim Veya boliim seklinde yaziliyor ya da bagimli olan degisken {istel, logaritmik ya da
trigonometrik olarak bulunuyor veya bagimli olan degiskenlerin herhangi bir tiirevinin
derecesi iki ve ikiden daha biiyiikse bu tiirde olan denklemler lineer olmayan diferansiyel
denklemlerdir (Tuluce Demiray 2014).

Tamim 3.1.8: Herhangi bir lineer olmayan adi diferansiyel denklem igerisindeki en

g
yiiksek mertebeden lineer olan terim e ve en yliksek mertebeden lineer olmayan terim
n
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r S
uP [d r] ifadeleri ile verilmis olsun. Bu durumda dengeleme terimi olarak goz oniine
n

alman M icin M+q=Mp+ S(M + I’) esitligi yazilabilir (Tuluce Demiray 2014).

Kavram 3.1.1: Tekil dalgalar (Solitary waves) ilk olarak 1834 yilinda Scott Russell
tarafindan gozlenmistir. 1965 yilinda ise Kruskal ve Zabusky tekil dalgalarin birbiriyle
olan etkilesimlerini ve baslangi¢ durumlarini korumalarini arastirdilar. KdV denklemi
tizerinde Zabusky ve Kruskal tarafindan yapilmakta olan niimerik aragtirmalar esnasinda;
adina soliton ismini verdikleri ve carpistiktan sonra hizlarmi ve sekillerini koruyan
partikiil benzeri bir davranis gosteren dalgalar buldular. Her lineer olmayan diferansiyel
denklemin ¢oziimii soliton 6zelligini yansitmayabilir. Elde edilen hiperbolik fonksiyon
¢oziimlerin soliton O6zelligini yansitabilmesi i¢in denklemin integrallenebilir olmasi
gerekmektedir. Denklemin ¢6ziimiinde elde edilen soliton ¢éziimler dark soliton ve bright
soliton olmak iizere iki farkli ¢esit olabilir. Eger elde edilen ¢6ziim sech fonksiyon tipinde
ise buna bright soliton ¢6ziim, eger tanh fonksiyon tipinde bir ¢éziim var ise buna dark
soliton ¢oziim denir. Elde edilen ¢6ziim, sech ve tanh fonksiyonlarini bir arada igeriyorsa

dark-bright soliton ¢6ziim olarak adlandirilir (Hirota 2004; Tuluce Demiray et al. 2015).

Kavram 3.1.2: Mathematica, Wolfram Research tarafindan piyasaya siiriilen, ¢esitli
matematiksel hesaplamalar yapilmasinda, 6zellikle zor ve karmasik yapidaki sayisal
problemlerin hizli bir sekilde ¢6ziilmesinde, hem ti¢ boyutlu hem de iki boyutlu renkli
grafiklerin ¢iziminde kolaylik saglamasi sayesinde son derece etkili, giivenilir ve hizl
¢ozlim yapan matematiksel bir yazilim programidir (Taslhibeyaz and Giilcii 2013). Bu
calismada ise arastirilan denklemlerin ¢oziimleri Mathematica 12 siiriimi kullanilarak

yapilmistir.

3.2 Genellestirilmis Kudryashov Metodu (GKM)

Lineer olmayan diferansiyel denklemlerin tam ¢oziimlerini bulmak i¢in Nikolay
A. Kudryashov tarafindan literatiire kazandirilmis olan Kudryashov metodunun
genellestirilmis hali olan GKM’nin yapisi su sekilde verilebilir (Tuluce Demiray at al.
2014):
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1. Adim:

Bagimli bir Vv fonksiyonu X, y ve t seklindeki ii¢ farkli bagimsiz degiskene bagl

olmak tizere,

R(v,vt,vy,vx,vxx,...)=0 (3.2.1)

esitligi ile verilmis olan kismi diferansiyel denklemi g6z 6niine alinsin. (3.2.1) denklemi

icin dalga doniisiim denklemi,

v(x,y,t)=v(n), n=ke+ly—ct (3.2.2)

seklinde olsun. (3.2.1) ile verilmis olan denkleme (3.2.2) esitligi ile verilmis olan dalga

doniisiimii uygulanirsa, (3.2.1) esitligindeki kismi diferansiyel denklem,

L(t,y,X,v,v',v",..)=0 (3.2.3)

esitligindeki gibi bir lineer olmayan adi diferansiyel denkleme indirgenir. Bu esitlikteki
tiurevler 77 ’ya gore alinmistir.

2. Adim: Genellestirilmis Kudryashov fonksiyonu, (3.2.3) esitligi ile verilmis

olan adi diferansiyel denklem igin,

iaQ n) P
V(n)= 3 () _P[Q(n) (3.2.4)
25,0 () -~ s[Q(n)]
esitligi ile ele alinir. Burada Q “Tie olarak ele alinmaktadir. @ fonksiyonu ise
+e
Q,=Q"-Q (3.2.5)

esitligi ile verilmis olan denklemin bir ¢oziimiidiir (Kudryashov 2012).

1] ’ya goére V 'nin tiirevleri, (3.2.4) denkleminden yola ¢ikilarak,

P'Q'S-PS'Q" _[P'S—PS P'S—PS
Vi) =225 Q=Q[S—}=(Q Q){S—} (326

v"(n)zQ;;Q[(zQ—l)(P's—Ps% 25‘ Q[S(P"S—PS")—28'P'S+2P(S')2ﬂ, (3.2.7)
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seklinde elde edilebilir.

3. Adim: (3.2.3) esitligi ile verilmis olan lineer olmayan adi diferansiyel

denklemin ¢oziimii, GKM’ye gore asagidaki sekilde aranir;

v(n)=2r2Q a9+ 12,00 (32.8)
B, +B,Q +B,Q% + -+ b, Q™ -

(3.2.6) ve (3.2.7) denklemleri (3.2.3)’de yerine yazilir. Elde edilmis olan bu
denklemin dereceleri olan M ve N ’yi hesaplamak icin dengeleme prensibi dikkate
almir. Bunun i¢in de denklemde bulunan en yiiksek dereceli lineer olmayan terimin
polinom karsiligindaki en yiiksek dereceli terim ile en yiikksek mertebeden tiirev igeren

terimin dengeleme bagintisindan yararlanilir.

4. Adim: (3.2.3) ile verilmis olan lineer olmayan adi diferansiyel denklem
icerisinde (3.2.4) esitligi ile verilen denklem yazilirsa @ ’ ya bagli bir R(Q) diferansiyel
denklemi elde edilmektedir. R(Q) denkleminin katsayilarimin sifira esitlenmesiyle bir

cebirsel denklem sistemi bulunur. Bulunan bu cebirsel denklem sistemini ¢ozerek
a,,8,,8,, -, 8y,0y,b,b,,---, b, katsayilar1 belirlenir. Bu sekilde (3.2.1) esitligi ile verilen

kismi diferansiyel denklemi igin tam ¢oziimler elde edilir.
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Bu boliimde, gergin dalga denklemi, (2+1)-boyutlu enerji tiikketen uzun dalga
sistemi, (2+1)-boyutlu Bogoyavlensky-Konopelchenko (BK) denklemi, perturbe edilmis
Radhakrishnan-Kundu-Lakshmanan (RKL) denklemi, (2+1)-boyutlu Date-Jimbo-
Kashiwara-Miwa (DJKM) denklemlerinin tam ¢o6ziimlerini bulmak i¢cin GKM

uygulanmistir.
4.1 Gergin Dalga Denklemi ve Uygulamasi

Mikro yapili katilarda mikro gergin dalga denklemi

Uy — U, — &0t (u? )XX —ka,u, + U, — (5a4 +Ka, )utht + KO (U + AgUg ) =0,

XXt XXXX

(4.1.1)
seklinde ifade edilmektedir (Seadawy et al. 2020). (4.1.1) ile verilen denklemde u(x,t)

mikro gerilme dalga fonksiyonudur, ¢ elastik gerilmeyi gosterir, & mikro yapinin dalga

uzunlugu ve boyutu arasindaki elastik gerilmeleri ve oran1 gosterir, k dagilim etkisini
yansitir, o,Q,,0,,0,, 0,04, &, degerleri ise keyfi sabitlerdir. (4.1.1) denklemi tizerinde
0=0(¢) oldugu disiiniilirse dagilim ve lineer olmama arasinda bir dengeleme

gerceklesir. Bu denklem {izerinde k =0 se¢ilirse mikro gerilme dalgasinin dagilimsiz
durumu elde edilir. Bu sekilde asagidaki mikro yapihi katilardaki ¢ift dagilimli denklem
elde edilir (Ayati et al. 2017; Arshad et al. 2019; Kumar et al. 2020; Gao et al. 2020;
Irshad et al. 2020):

+al,,)=0. (4.1.2)

XXXX

2
Uy — Uy, —g(al(u )XX —a,U

Gergin dalga denkleminin tam ¢oziimlerini bulmak igin (4.1.2) denkleminde GKM
dikkate alinir.

u(x,t) =u(n),n =x-ct. (4.1.3)
(4.1.3) ile verilen doniisiim (4.1.2) denklemi tizerinde uygulanirsa,

10
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(c® -Du—eau’® +5(a3—02a4)u"=0, (4.1.4)

denklemi elde edilir. Boylece (4.1.2) denklemi (4.1.4) linner olmayan adi diferansiyel
denklemine indirgenir. (3.2.4) ve (3.2.7) esitlikleri (4.1.4) lineer olmayan adi diferansiyel
denkleminde yerine yazilarak dengeleme prensibi uygulanirsa

N-M+2=2N-2M =N=M +2, (4.1.5)

oldugu goriiliir. Burada M =1 i¢in N =3 oldugundan,

u(n) = a, +2,Q+a,Q° +a,Q°

' 4.1.6
b, +0,Q ( )
(a, +2a,Q+32,Q%)(b, +bQ) b, (8, +aQ +a,Q° +2,Q°)
u'(n)=(Q"-Q ; (417
(n)= 2 8200 (34220 +380°) (0 5Q) b 8020 -
(Q*-Q) ) - s
+—(b 507 [(bo+b1Q) (2a, +6a,Q)—2b, (b, +bQ)(a, +22,Q +3a,Q )+ 207 (8, +2,Q +2,Q% +a,Q )],
(4.1.8)
bulunur. (4.1.2) ile verilen gergin dalga denkleminin tam ¢oziimleri asagidaki gibi elde
edilir.
Durum 1:
o —0,a = Tula=a) . _6(b+b)a-a)

o (-1+ea,) * o, (-1+eéa,)

419
_ob(agray) [ lrew “19
% a,(-1+ea,) J-l+ea,

(4.1.9) esitlikleri (4.1.6) denkleminde yerine yazilirsa

11



4. ARASTIRMA BULGULARI ve TARTISMA

3(053 B Ol4)

’_1 '
1+cosh| x+t Y _-"%% o, (-1+¢a,)
‘/—1+ ea,

(4.1.10)

ul(X!t) =

¢oziimii elde edilir. Gergin dalga denkleminin GKM ile elde edilen (4.1.10) tam ¢6ziimii

icin iki ve ti¢ boyutlu grafikleri agagidaki sekilde ¢izilmistir.

Iu1(lx-t)|

-"|"|""1 (x|

(I3

0an

posr

Sekil 4.1.1. Gergin dalga denkleminin GKM ile elde edilen (4.1.10) tam ¢6ziimiiniin
o =2,0,=3,0,=05=4,-25<x<25 ile -25<t < 25,t = 2.5degerleri i¢in sirasiyla

ii¢ boyutlu ve iki boyutlu grafikleri.

Durum 2:

_by(a — ) _ (=60, +b)(a; — ) a = 6(b, —b)(; —2,)

12

Ca(+ea,)’ a,(+ea,) a,(I+ea,)
(4.1.11)
_ 6b (o, —a,) oo 4/1+ gay,

% a(+ea,)  [fltea,

(4.1.11) esitlikleri (4.1.6) denkleminde yerine yazilirsa

12
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B ~ J1+éea, B
[2+cosh{x t\/1+7a4 (o;—r,)

1+cosh| x—t Vit ea a,(1+ea,)
Jl+ea,

u,(x,t) = (4.1.12)

¢oziimii elde edilir. Gergin dalga denkleminin GKM ile elde edilen (4.1.12) tam ¢6ziimii

icin iki ve lic boyutlu grafikleri asagidaki sekilde ¢izilmistir.

Iu‘zil?'i-tll

N

Sekil 4.1.2. Gergin dalga denkleminin GKM ile elde edilen (4.1.12) tam ¢6ziimiiniin
o, =150a,=2,0,=0.2,6=15-20<x<20 ile —20 <t < 20,t =3degerleri i¢in

sirastyla ti¢ boyutlu ve iki boyutlu grafikleri.

Durum 3:
2
bl(—oc3 +Cla, + (0:3 —CZaA) j 6, (e, - )
a‘0=0’a1=_ ’azz—#l
20, % (4.1.13)
2 _ 2
:6b1(a3 Ca4),b0:0’g: 1-c :
% (as—cza4)

(4.1.13) esitlikleri (4.1.6) denkleminde yerine yazilirsa

13
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) [ X — CtT £(5+ cosh[x—ct]) e, +¢? (-5+cosh[x—ct]) e,
sec

2 +(1+cosh[x—ct])(a3 —cza4)

Uy (X, 1) =— (4.1.14)

4o,

¢oziimii elde edilir. Gergin dalga denkleminin GKM ile elde edilen (4.1.14) tam ¢6ziimii

icin iki ve ti¢ boyutlu grafikleri agagidaki sekilde ¢izilmistir.

Jusx) Jus(x.)
'

N
45

035

030+

Sekil 4.1.3. Gergin dalga denkleminin GKM ile elde edilen (4.1.14) tam ¢6ziimiiniin
o, =3,a,=25a,=025¢=2,c=4,-20<x<20 ile —20 <t < 20,t =1degerleri i¢in

sirasiyla ti¢ boyutlu ve iki boyutlu grafikleri.

Durum 4:
6(-1+c%)b 6(-1+c%)b
a0 LN SCE
80{1 8&1 (4115)
_ea  1-ct+cteq,
b= e % PR

(4.1.15) esitlikleri (4.1.6) denkleminde yerine yazilirsa

20

u,(x,t)=——————
(1) 1+cosh[x—ct]

(4.1.16)

14
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¢coztimii elde edilir. Gergin dalga denkleminin GKM ile elde edilen (4.1.16) tam ¢6ziimii

icin iki ve li¢c boyutlu grafikleri agagidaki sekilde ¢izilmistir.

u(xb)

Sekil 4.1.4. Gergin dalga denkleminin GKM ile elde edilen (4.1.16) tam ¢6ziimiiniin

c=0.6,-5<x<5 ile -5<t<5,t =3degerleri i¢in sirasiyla ii¢ boyutlu ve iki boyutlu

grafikleri.
Durum 5:
_ 2
ao :O’a1 :ias :|_+LCO{4 ,az :_a3’b0 :0’
12 (a g )2
3T (4.1.17)
Y
% % (a3—cza4)
(4.1.17) esitlikleri (4.1.6) denkleminde yerine yazilirsa
{(SCosh[xct])a3+cz(5+cosh[xct])aAJ
+(1+cosh|[x—ct])(a, -’
ug (X, t) = — ( [x—ct]) (e ') (4.1.18)

2(1+cosh[x—ct])ey

¢cozliimii elde edilir. Gergin dalga denkleminin GKM ile elde edilen (4.1.18) tam ¢6ziimii

icin iki ve li¢c boyutlu grafikleri agagidaki sekilde ¢izilmistir.

15
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lus(x.) lus 8

Sekil 4.1.5. Gergin dalga denkleminin GKM ile elde edilen (4.1.18) tam ¢6ziimiiniin
o, =3,a,=0.0L¢,=05c=0.3-15<x<15 ile -15<t <15,t =4 degerleri i¢in

sirastyla ii¢ boyutlu ve iki boyutlu grafikleri.
4.2 (2+1)-Boyutlu Enerji Tiiketen Uzun Dalga Sistemi ve Uygulamasi
(2+1)-boyutlu enerji tiikketen uzun dalga sistemi fiziksel uygulamalarda, lineer
olmayan dalga teorisi ve lineer olmayan bilimde kullanilan iinlii bir denklem sistemidir

(Chang et al. 2020). (2+1)-boyutlu enerji tiikketen uzun dalga sistemi,

u, —u, —2u,\v—2uv, =0, 421
Viy Vg —2U, —2V,V, =2, =0. (421)

seklinde verilmektedir (Yang and Feng 2021). (4.2.1) ile verilen sistemin tam ¢6ziimlerini
bulabilmek i¢in GKM dikkate alinir.

u(x, y,t) =u(@),v(x, y,t) =v(n),n =x+y—ct (4.2.2)

(4.2.1) sistemi igin (4.2.2) doniisiimii ele alinir ve integrasyon sabiti de sifir kabul edilerek

integral alinirsa,

—v—v"+3cv: +2v° =0, (4.2.3)

16
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elde edilir. Boylece (4.2.1) denklemi, (4.2.3) lineer olmayan adi diferansiyel denklemine
doniisiir. (3.2.4) ve (3.2.7) esitlikleri (4.2.3) denkleminde yerine yazilarak dengeleme
prensibi uygulanirsa

N-M+2=3N-3M =N=M +1 (4.2.4)

oldugu goriiliir. Burada M =1 i¢in N =2 oldugundan,

u(y)= Bt BQTQ"

Y (4.2.5)
oY= (O? _ (a1+2a2Q)(b0+le)_bl(aO+a1Q+a2Q2)
u'(7)=(Q*-Q) (b, +60) , (4.2.6)
(n)= 2 85201 (a.+20.0)(8, +hQ) - (- 2@ ')
2 02 (4.2.7)
+%[2az(bo+b1Q)2—2b1(a1+2a2Q)(b0+b1Q)+2bf(ao+a1Q+a2Q2)]

bulunur. (4.2.1) ile verilen (2+1)-boyutlu enerji tiikketen uzun dalga sisteminin tam

cozlimleri asagidaki gibi elde edilir.

Durum 1:

a8,=0,a =-Dby,a,=-b,c=1 (4.2.8)

(4.2.8) esitlikleri (4.2.5) denkleminde yerine yazilirsa

u,(x,y,t) = —%(—H tanh [%_HD(C +tanh [%_G[D (4.2.9)

17
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v,(%, y,t) = —%%tanh[%_ﬂ, (4.2.10)

dark soliton ¢6ziimleri elde edilir. (2+1)-boyutlu enerji tiikketen uzun dalga sisteminin
GKM ile elde edilen (4.2.9) ve (4.2.10) tam ¢oztimleri igin iki ve ti¢ boyutlu grafikleri
asagidaki sekillerde gizilmistir.

Juixy. )l
% ey S s (x,y.0)]

Sekil 4.2.1. (2+1)-boyutlu enerji tikketen uzun dalga denkleminin GKM ile elde edilen
(4.2.9) tam ¢oziimiiniin c =2,y =2,-5<x<5 ile -10<t <10,t =3 degerleri i¢in

sirastyla ii¢ boyutlu ve iki boyutlu grafikleri.

thx_.v‘t}l

Sekil 4.2.2. (2+1)-boyutlu enerji tiikketen uzun dalga denkleminin GKM ile elde edilen
(4.2.10) tam ¢oztimiiniin ¢=0.25,y =2,-10<x<10 ile —10<t <10,t =3 degerleri i¢in

sirastyla li¢ boyutlu ve iki boyutlu grafikleri.
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Durum 2:
%Zbl,%=—2q,a2zbl,boz—%,c=2. (4.2.11)
(4.2.11) esitlikleri (4.2.5) denkleminde yerine yazilirsa

u,(X, y,t) = %(1+ coth[x+y —ct])(2c +4coth[x+ y —ct]+csch[x + y —ct]), (4.2.12)

2
Vv, (X, y,t) = —%[1+ coth {%_CtD tanh {%_Ct} , (4.2.13)

(4.2.12) dark-bright soliton ve (4.2.13) dark soliton ¢oziimleri elde edilir. (2+1)-boyutlu
enerji tilketen uzun dalga sisteminin GKM ile elde edilen (4.2.12) ve (4.2.13) tam

¢oztimleri i¢in iki ve {i¢ boyutlu grafikleri asagidaki sekillerde ¢izilmistir.

Jealey. i

|tz (x,y.t)]

Sk

Sekil 4.2.3. (2+1)-boyutlu enerji tiiketen uzun dalga denkleminin GKM ile elde edilen
(4.2.12) tam ¢oziimiiniin c=-1,y=1-10<x<10 ile -5<t <5,t =4 degerleri i¢in

sirastyla li¢ boyutlu ve iki boyutlu grafikleri.
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1va(xy.l

V2 (x,y.1)

i

Sekil 4.2.4. (2+1)-boyutlu enerji tiiketen uzun dalga denkleminin GKM ile elde edilen
(4.2.13) tam ¢oziimiiniin c=1y=2,-15<x<15 ile —15<t <15,t =0.5 degerleri igin
sirastyla ii¢ boyutlu ve iki boyutlu grafikleri.

Durum 3:
™ o (1o Jha-bb =2 o
a, = 2\/§’a1 (1 ﬁjbl’az b, b, 5 c=iv/2. (4.2.14)

(4.2.14) esitlikleri (4.2.6) denkleminde yerine yazilirsa

Us (X, y,t) = %[1+ in/2¢ +2csch[x + y—ct](—i 2 +cCc+tanh {%_NDJ (4.2.15)

V5(X, y,t) :—%—csch[x+ y —ct], (4.2.16)

(4.2.15) dark-bright soliton ve (4.2.16) bright soliton ¢6ziimleri elde edilir. (2+1)-boyutlu
enerji tikketen uzun dalga sisteminin GKM ile elde edilen (4.2.15) ve (4.2.16) tam
¢oziimleri i¢in iki ve ti¢ boyutlu grafikleri asagidaki sekillerde ¢izilmistir.
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s xy)]

|”J{39Yuﬂ|

Sekil 4.2.5. (2+1)-boyutlu enerji tiiketen uzun dalga denkleminin GKM ile elde edilen
(4.2.15) tam ¢dziimiiniin ¢ =3,y =5,-15< x <15 ile —10<t <10,t = 2degerleri i¢in
sirastyla ti¢ boyutlu ve iki boyutlu grafikleri.

PSR [v3(x.y.t)|

-

~ . PR A .
2 aul 10 - 10 all

Sekil 4.2.6. (2+1)-boyutlu enerji tiiketen uzun dalga denkleminin GKM ile elde edilen
(4.2.16) tam ¢oziimiiniin c=1,y=0.2,—20< x< 20 ile -15<t <15,t =3degerleri igin
sirastyla li¢ boyutlu ve iki boyutlu grafikleri.

4.3 (2+1)-Boyutlu Bogoyavlensky—Konopelchenko (BK) Denklemi ve Uygulamasi

(2+1)-boyutlu BK denklemi,

U, +hu,, +hus, +hu u +h,(u,u +u.u)=0, (4.3.1)

xxuy
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seklinde verilsin (Ray 2018). Burada h,h,,h,,h, degerleri keyfi sabitlerdir. (4.3.1)
denklemindeki h,h,,h,, h, sabitleriicin h =a,h, = §,h, =6a,h, =4 degerleri segilirse
(4.3.1) denklemi

u, +au,, + Au,,, +6au,u, +44u

+4/u =0, (4.3.2)

3xy xyUx wHy =
seklinde yazilabilir. Elde edilen (4.3.2) denklemi Korteweg-de Vries denkleminin iki
boyutlu bir genellemesi olarak kabul edilir ve uygun sartlar da Korteweg-de Vries
denklemine indirgenebilir (Yan et al. 2016). (4.3.2) denklemi a=0 degeri i¢in Calogero-
Bogoyavlensky-Schiff denklemini saglamaktadir ve aynmi zamanda da akiskanlar
mekaniginde y ekseni boyunca yayilan bir Riemann dalgasi ile x ekseni boyunca yayilan
uzun bir dalganin etkilesimi olarak da tanimlanmaktadir (Xiang-peng at al. 2010; Zhou

et al. 2021). (4.3.2) denkleminde u, =v, doniisiimii yapilir ve integral alinirsa

U, +au,, + Av, +3au’+4puyv, =0, (4.3.3)

denklemi elde edilir. Buna gore (4.3.2) denklemi

u, +au,, + Bv, +3au’+4puyv, =0,

4.3.4
u, —v, =0, ( )

seklinde bir sistem olarak yazilabilir. Elde edilen (4.3.4) sistemi {izerinde GKM dikkate

alinir.

u(x, y,t) =u(@),v(x, y,t) =v(r),nn = x+y—ct (4.3.5)

(4.3.5) ile verilen dontigiim (4.3.4) sistemi {lizerinde uygulanirsa,

—cu'+(a+ B)u"+Ba+4B)u’)’ =0, (4.3.6)

elde edilir. Bu elde edilen (4.3.6) denklemi iizerinde u'=g doniisiimii uygulanirsa
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—cg +(a+8)g"+(Ba+4p)g’ =0, (4.3.7)
elde edilir. Boylece (4.3.4) sistemi (4.3.7) ile verilen lineer olmayan adi diferansiyel
denklemine dontsiir. (3.2.4) ve (3.2.7) esitlikleri (4.3.7) denkleminde yerine yazilarak
dengeleme prensibi uygulanirsa

N-M+2=2N-2M =N =M +2. (4.3.8)

oldugu goriiliir. Burada M =1 i¢in N =3 oldugundan,
a, +a,Q+a,Q’ +a,Q’
u(n) =22 & 2 8

, 4.3.9
b, +bQ ( )
, | (a+28,Q+32,Q%) (b, +bQ)-b; (8, +aQ+2,Q° +2,Q°)
u(7)=(Q"-Q 3 . (43.10
o) (5, +bQ) 0
u”(n) = (b?i;lg)z (2Q-1)| (&, +28,Q+32,Q°) (b, +bQ) b, (8, +aQ +2,Q° +aQ’) |
+ (@'-0) [ (b, +bQ)" (23, +68,Q) - 2b, (b, +bQ) (3 +22,Q+3a,Q7 ) + 207 (3 +aQ +8,Q” +a,Q’)
(b0+b1Q)3 0 2 0 2 3 0 2 3 )

(4.3.11)

bulunur. (4.3.1) ile verilen (2+1)-boyutlu BK denkleminin tam ¢6ziimleri asagidaki gibi

elde edilir.
Durum 1:
_ cb, :c(6b0—bl) :6c(—b0+bl) _ 6ch, o
% —3C+ﬂ’ -4 182 3c-p3 85 3C—ﬂ’a c—-p. (4.3.12)

(4.3.12) esitlikleri (4.3.9) denkleminde yerine yazilirsa

C(x+y—ct)-6e [(x+y2—ct)} +6ctanh [(Xﬂfz_a)}

6c—-2p4

u (x,y,t) = (4.3.13)
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c(x+y—ct)—6c [(XJFYZ_CJ[)} +6ctanh [(x+y2—ct)}

v, (X, y,t) = 6c_25 , (4.3.14)

dark soliton ¢oziimleri elde edilir. (2+1)-boyutlu BK denkleminin GKM ile elde edilen
(4.3.13) tam ¢6ziimii i¢in iki ve li¢ boyutlu grafikleri asagidaki sekilde ¢izilmistir.

u(x.y.b)l
‘ T i (xy- )
| /
-110 5 | e =
e | / .
20: o -20 10 1] 20

Sekil 4.3.1. (2+1)-boyutlu BK denkleminin GKM ile elde edilen (4.3.13) tam
¢oziimiiniin c=1,y=2, #=0.5-20<x <20 ile —20 <t < 20,t =3degerleri i¢in
sirastyla ti¢ boyutlu ve iki boyutlu grafikleri.

Durum 2:

__@+pp,  _(@+p)6h-h) ~_6@+p)(h+b)  __ 6@+sh

T 3a+4p8 3a+4p arag 2T zarag O/
(4.3.14)
(4.3.14) esitlikleri (4.3.9) denkleminde yerine yazilirsa
y
(@+8)((x+ y—ct)—3tanh[x+);_0t}
U, (X, y,t)=— , (4.3.15)

3a+4p
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(a+ﬁ)((x+y—ct)—3tanh[x+é_ﬂ

Vo (X, y,t) =— 38147 : (4.3.16)

dark soliton ¢oziimleri elde edilir. (2+1)-boyutlu BK denkleminin GKM ile elde edilen
(4.3.15) tam ¢6ziimii i¢in iki ve ti¢ boyutlu grafikleri asagidaki sekilde ¢izilmistir.
v»[_urzh(x.y.t)|

AT |2 (x|

(%]
T

Sekil 4.3.2. (2+1)-boyutlu BK denkleminin GKM ile elde edilen (4.3.15) tam
¢oziimiiniin c=0.5,a=3,=2,y=4,-15<x<15 ile —15<t <15,t = 2degerleri i¢in

sirasiyla ti¢ boyutlu ve iki boyutlu grafikleri.
Durum 3:

6chb, 6cb,

-0a =— a, =
% =54 a—4ca2 a—4c

,a,=0,b,=0,f=-a+c, (4.3.17)

(4.3.17) esitlikleri (4.3.9) denkleminde yerine yazilirsa

3ctanh[x+g—ﬂ

Uy (X, y,t) =— e , (4.3.18)
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3ctanh[x+g—ﬂ

Vi (X, y,t) =— - : (4.3.19)

dark soliton ¢oziimleri elde edilir. (2+1)-boyutlu BK denkleminin GKM ile elde edilen
(4.3.18) tam ¢6ziimii i¢in iki ve ti¢ boyutlu grafikleri asagidaki sekilde ¢izilmistir.

IUs{:}-y-t]I

Sekil 4.3.3. (2+1)-boyutlu BK denkleminin GKM ile elde edilen (4.3.18) tam
¢oziimiiniin ¢ =0.4,a=0.8y =2,-10<x<10 ile —10<t <10,t =2.5degerleri i¢in
sirastyla ti¢ boyutlu ve iki boyutlu grafikleri.

4.4 Perturbe Edilmis Radhakrishnan—-Kundu-Lakshmanan (RKL) Denklemi ve
Uygulamasi

Perturbe edilmis RKL denklemi
0, + a0, +blaf” a=iza, +iA(jof a) +ix(la]) a=irt,, (4.4.1)

seklinde verilmektedir. Burada q(X,t) karmasik degerli bagimli bir fonksiyondur ve X
uzaysal degiskenleri t ise zamansal degiskenleri temsil eden bagimsiz birer
degiskenlerdir. (4.4.1) denkleminin sol tarafinda bulunan ilk terim lineer olmayan
dalganin zamansal degisimini, a katsayisi grup hiz dagilimini, b ise lineer olmama
katsayisin1 gosterir. Denklemdeki esitligin sag tarafinda bulunan katsayilar da ise ¢

modlar arast dagilimi, A kisa darbeler i¢in yiikselme katsayisini, u yiiksek dereceli
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dagilim katsayisini, y ise tigiincii dereceden dagilim terimini temsil eder (Biswas et al.
2018; Biswas 2018; Ghanbari and Gomez-Aguilar 2019). (4.4.1) ile verilen perturbe
edilmis RKL denklemine GKM’yi uygulamak i¢in ilk olarak

q(x,t) =u(n)e” ™Y, n = x—vt, P(x,t) = —kx + wt. (4.4.2)

dontigiimii g6z oniine alinir. (4.4.1) denkleminde (4.4.2) ile verilen doniisiim uygulanirsa,

(a+3yk)u"—(w+ak® + 7k* + gk Ju+(b—k1)u® =0, (4.4.3)
3yu "—3(v+g+2ak +37/k2)u—(3/1+2,u)u3 =0, (4.4.4)
elde edilir. Boylece (4.4.1) denklemi (4.4.3) denklemi ile verilen reel ve (4.4.4) denklemi

ile verilen imajiner ciftine indirgenir. (3.2.4) ve (3.2.7) esitlikleri (4.4.3) ve (4.4.4)

denklemlerinde yerine yazilarak dengeleme prensibi uygulanirsa
N—-M+2=3N-3M =N =M +1, (4.4.5)

oldugu goriiliir. Burada M =1 i¢in N =2 oldugundan,

) B+ 8Q+ 20"

=T e (449
’ _ 2 (a1+2a2Q)(bo+b1Q)_b1(ao+a1Q+a2Q2)
u'(7)=(Q°-Q) (b, 60)° : (4.4.7)
u"(n)=(bi—;lg)z(2<2—1)[(al+2azcz)(bo+b1Q)—b1(ao+a1Q+a2Q2)]

. (4.4.8)
+%[2a2(b0+b1Q)2—2b1(a1+2a2Q)(b0+b1Q)+2bf(ao+a1Q+a2Q2)]
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bulunur. (4.4.1) ile verilen perturbe edilmis RKL denkleminin tam ¢6ziimleri asagidaki
gibi elde edilir.

Durum 1:

" i\/—ak (6 +ak) —3v—w—yk?(9+7k) — 3¢ — kb,

’ Jo—ka-31-2u
N 2i/-ak (6 +ak) —3v—w— yk?(9+ yk) — 3¢ — kb,
2 Jb—kA-31-2u (4.4.9)
b = iyb—kA1-31-2ua,
2./-ak (6 +ak) —3v—w—yk?(9+ yk) 3z —ek
y:%Qa-2d¢6+a@-ﬁv—2w—yk@+2yk@+yk»—2¢35—gm)
(4.4.9) esitlikleri (4.4.6) denkleminde yerine yazilirsa
ek [ak (6 + ak) — 3v—w— yk? — 3 — £k tanh[(x ‘2‘“)}
u, (x,t)=— : (4.4.10)
Jo—KA-31-2u
ek [ak 6+ ak) —3v —w— yk® —3¢ — £k coth [(X‘Z"t)}
u,(x,t) =— : (4.4.11)

Jo—kA-31-2u

coztimleri elde edilir. Perturbe edilmis RKL denkleminin GKM ile elde edilen (4.4.10)

tam ¢oziimii icin iki ve {i¢ boyutlu grafikleri asagidaki sekilde cizilmistir.
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() (x|

Sekil 4.4.1. Perturbe edilmis RKL denkleminin GKM ile elde edilen (4.4.10) tam
¢oziimiiniin a=0.25,w=3,v=05k=2,y=L¢c=5b=3,1=4,4=1,-10<x<10 ile
-10<t <10,t =0.2degerleri i¢in sirasiyla ii¢ boyutlu ve iki boyutlu grafikleri.

Durum 2:

. ifa+3(y +7k)b, __ﬁ+iJ§ a+3(y +yk)b,

" oo—ki-si-2u' " 2 Jb-ki-3i-24
bl__i\/b—k/I—3/1—2ya2
J2a+6y +6yk

(4.4.12)

W= %(—a—Zak(6+ak)—6v—3y—yk(3+ 2yk(9+7k)) —2(3¢ + k).

(4.4.12) esitlikleri (4.4.6) denkleminde yerine yazilirsa

e' R} Ja+3(y + 7k) tanh[(X _ZVt)}

J2.\Jb—kA-31—2u

Uy (X, t) =— , (4.4.13)

e’k [313(y 1 7k) coth [(X‘Z"t)}

u,(x,t)=—
a J2\Jo—kA—-34-24

, (4.4.14)
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coziimleri elde edilir. Bu ¢oziimler icerisinde yer alan
W:%(—a—Zak(6+ak)—6v—37/—7k(3+ 2yk(9+7Kk))-2(Bs+¢k))  dir.  Perturbe
edilmis RKL denkleminin GKM ile elde edilen (4.4.13) tam ¢6ztimii igin iki ve {i¢ boyutlu

grafikleri asagidaki sekilde ¢izilmistir.

[us(x.t)]
) — |us(x.1)|

0.5

-II_—;L—IJ "JIILI_
Sekil 4.4.2. Perturbe edilmis RKL denkleminin GKM ile elde edilen (4.4.13) tam
¢oziimiiniin a=5,v=0.05k=4,y=0.,b=31=4,4=0.0L,w=0.5-15<x<15 ile
—15<t <15,t =1.5degerleri i¢in sirasiyla {i¢ boyutlu ve iki boyutlu grafikleri.

Durum 3:
o —tal ot J2(a+3(y+7k))b,
4 J-(@+3(7 +7K)) (b—kA-31-2u)a;
L J2(a+3(y+7k))ab,
J-(@+3(r+7K)) (b—kA-34-2u)a; (4.4.15)
o J-(a+3(r+7k))(b—kA-31-2u)a} b
0~ T
J2(a+3(y +7k)) 2

W= %(—a—Zak(6+ak)—6v—3y—7k(3+ 27k(9+7k)) —2(3 + k).

(4.4.15) esitlikleri (4.4.6) denkleminde yerine yazilirsa
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a+3(y+yk)a, tanh {(x—zvt)}

ug (x,t) = ek : (4.4.16)
5 V2\~(a+3(y +7k))(b—kA—32-2u)a;
a+3(y + yk)a, coth [ (x _ZW)}
Ug (X, t) = ' , (4.4.17)
V2\~(@+3(y + 7k))(b—kA—34 - 2u)a’
¢Oziimleri elde edilir. Burada ¢Oziimler igerisinde yer alan

W:%(—a—Zak(6+ak)—6v—37/—7/k(3+ 27k(9+7k)—2(Bc+¢k))  dir.  Perturbe

edilmis RKL denkleminin GKM ile elde edilen (4.4.16) tam ¢6ztimii igin iki ve {i¢ boyutlu
grafikleri asagidaki sekilde ¢izilmistir.

] [q#x.t)l

N

Sekil 4.4.3. Perturbe edilmis RKL denkleminin GKM ile elde edilen (4.4.16) tam
¢Oziimiiniin a=5a =25v=-1k=2,y=1b=31=-4, u=Lw=2-5<x<5 ile

-5<t <5t =-1.5degerleri icin sirastyla li¢ boyutlu ve iki boyutlu grafikleri.
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Durum 4:
N V2(a+3(r +7K))by
4 J-(a+3( 1K) (b—kA—32-2)a’
V2(a+3(y +yk))ab,
T (@r30 70 (b ki34 2m)al (4.4.18)
\/ (a+3(y+7k))(b-ki-31-2u)a’ b
J2(a+3(y + k) 2"

W= %(—a—Zak(6+ak)—6v—3;/—yk(3+ 2yk(9+7k)) —2(3¢ + k).

(4.4.18) esitlikleri (4.4.6) denkleminde yerine yazilirsa

Uz (x,t) =

X—vi
—a,| 2+ VoAb |, ZQ_ﬁAaibl(l_tanh[ 4 D (_1+tanh[X_VtD
J-ABa? J-ABa2 2 (4.4.19)

e e o I

V2 Aalbl(l coth| X~ vt ]
—a{2+ LD J+ 2a, - { 2 } [1 coth{x VtD
J-ABa? 2 (4.4.20)

Ja(eanl 7]

¢oziimleri elde edilir. Burada A=(a+3(y +yk)),B=(b—kA-31-24) dir. Perturbe

N
—
|
>
[w3]
A,
+
N L&

edilmis RKL denkleminin GKM ile elde edilen (4.4.19) tam ¢6ziimii i¢in iki ve {i¢ boyutlu
grafikleri asagidaki sekilde ¢izilmistir.
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it

|z (x.8)]

[BR<T) s
0

DHaH

-II"_- o -—;L- o .—I'.-I . - =l IL. o -I:'_ !
Sekil 4.4.4. Perturbe edilmis RKL denkleminin GKM ile elde edilen (4.4.19) tam
¢oziimiinin a=1a =2,k=2v=Ly=11=3 u=Lb=1b =-2,-15<x<15 ile

-5 <t <5t =1degerleri i¢in sirasiyla ii¢ boyutlu ve iki boyutlu grafikleri.

4.5 (2+1)-Boyutlu Date-Jimbo-Kashiwara-Miwa (DJKM) Denklemi ve Uygulamasi

(2+1)-boyutlu DIJKM denklemi Kadomtsev-Petviashvili hiyerarsisinin integral uzantisi

olarak yazilir ve

Uoy + AU, +20,,U +6u, U, +u, —2u, =0, (45.1)

XXXXY XXy X XXXy Xy~ XX

seklinde verilmektedir (Yuan et al. 2017; Pu and Hu 2019; Ismael et al. 2020). (4.5.1) ile
verilen (2+1)-boyutlu DJKM denklemine GKM’yi uygulamak igin ilk olarak asagidaki

dontistim g6z oniine alinir.

u(x, y,t)=u(®),n=n(x+y—kt). (4.5.2)
(4.5.2) ile verilen dontigiim (4.5.1) denklemi tizerinde uygulanirsa,

an’u "'+3an(u')2 +(a3+2k)u'=0, (4.5.3)
denklemi elde edilir. Elde edilen (4.5.3) denklemi {izerinde asagida verilen

u'=g, (4.5.4)
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dontistimiinii uygulayarak
an’g"+3ang’ +(a’+2k)g =0, (4.5.5)

elde edilir. Boylece (4.5.1) denklemi (4.5.5) ile verilen lineer olmayan adi diferansiyel
denklemine indirgenir. (3.2.4) ve (3.2.7) esitlikleri (4.5.5) denkleminde yerine yazilarak
dengeleme prensibi uygulanirsa

N-M+2=2N-2M =N=M +2, (4.5.6)

oldugu goriiliir. Burada M =1 i¢in N =3 oldugundan,

u(n) == +alQb:a El%z = (4.5.7)

(a, +2a,Q+32,Q”)(b, +bQ)-b; (8, +aQ +a,Q° +2,Q°)

u'(n)=(Q*-Q) (5, +5Q) (4.5.8)
u”(n)= (onj-;lcQ?)z (ZQ_l)[(a1+2azQ+3asQ2)(bo +b1Q)_b1(ao +a,Q+2a,Q” +a3Q3)J

(@°-Q)° : o o
(b 7607 [ (b, +bQ)" (28, +6a,Q) ~ 2b, (b, +bQ) (3, +28,Q +3a,Q7) + 207 (3, +2Q +2,Q° +a,Q”) |,

(4.5.9)

bulunur. (4.5.1) ile verilen (2+1)-boyutlu DJKM denkleminin tam ¢6ziimleri asagidaki
gibi elde edilir.
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Durum 1:

_ by

d, = 5

nby

18y =nbo_?’a2 :n(—b0+b1),a3 =—nb1,

2/3
332 +(—9k ++/81k% —3n° )

323 (—9k ++/81KZ —3n° )m

(4.5.10) esitlikleri (4.5.7) denkleminde yerine yazilirsa

1
ul(xl y't) = En

1
u, (X, y,t)=En

2/3
332 +(—9k ++/81K% —3n° )
1/3
323 (—9k ++/81K% —3n° )

213
332 +(-9k ++/81kZ —3n° )

—2| nx —nkt +ny

+6 tanh % nx —nkt + ny

3% (—9k +/81k? —3n° )m

2/3
332 +(—9k ++/81kZ —3n° )
1/3
323 (—9k ++/81Kk% —3n° )

2/3
332 +(—9k ++/81k2 —3n° )

—2| nx—nkt +ny

(4.5.10)

. (45.11)

+6 coth % nx —nkt + ny

1/3
323 (—9k + /81K —3n6)

. (4.5.12)

¢oztimleri elde edilir. (2+1)-boyutlu BK denkleminin GKM ile elde edilen (4.5.11) tam

¢Oziimii icin iki ve li¢c boyutlu grafikleri agagidaki sekilde ¢izilmistir.
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(x| |t (x.y.0)]

£
0054
00 1\_

0ozt
t

IR

=20 -10 10 o

Sekil 4.5.1. (2+1)-boyutlu DJKM denkleminin GKM ile elde edilen (4.5.11) tam
¢oziimiiniin n=0.2,a=4,y=0.5k=2,-25<x <25 ile —-25<t < 25,t =0.5degerleri
i¢in sirastyla ii¢ boyutlu ve iki boyutlu grafikleri.

Durum 2:

Ja®+2kb, . Va'+2k(-6by+b) = va’+2k(b,-h)

a, = a, = ,a, =

© 6Ya 6Va vaooo (4.5.13)
_ya’+2kb, n__\/a3+2k
S -SRI

(4.5.13) esitlikleri (4.5.7) denkleminde yerine yazilirsa

va®+2k {(nx+nay—nkt)—3tanh{(nXJrnay_nkt)D

2
Uy (X, y,t) = ~ , (4.5.14)
Ja® +2k ((nx +nay —nkt)—3coth [(nx+ na;y — nkt)D
(4.5.15)

U4(X, y’t): 6\/5 )

¢oziimleri elde edilir. (2+1)-boyutlu DJKM denkleminin GKM ile elde edilen (4.5.14)
tam ¢oziimii icin iki ve {i¢ boyutlu grafikleri asagidaki sekilde cizilmistir.
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) _19:;_(x:yr-f)l; |1.|3{x|.y.t}|

or

DAL /.10

Sekil 4.5.2. (2+1)-boyutlu DJKM denkleminin GKM ile elde edilen (4.5.14) tam
¢oziimiiniin a=3,k=0.2,n=2,y=5,-20<x<20 ile —20<t < 20,t =0.02 degerleri

icin sirastyla ti¢ boyutlu ve iki boyutlu grafikleri.

Durum 3:
iva®+2kb,
a,=0,4 =08, =7,
Ja (4.5.16)
iva®+2kb, ina® +2k
=—Ff—,b=0n=-—-r.
Ja Ja
(4.5.16) esitlikleri (4.5.7) denkleminde yerine yazilirsa
a2t M1
u: (X, y,t) =— , 45.17
s (X y.1) o a ( )
a2k cotn| P11
(4.5.18)

Us (X, Y, 1) == Ja :

¢oziimleri elde edilir. (2+1)-boyutlu DJKM denkleminin GKM ile elde edilen (4.5.17)

tam ¢oziimii icin iki ve li¢ boyutlu grafikleri asagidaki sekilde cizilmistir.
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_]t:s(X-Y-t)I

s (Xl

205

200

Sekil 4.5.3. (2+1)-boyutlu DJKM denkleminin GKM ile elde edilen (4.5.17) tam
¢oziimiiniin a=4,k=2,y=0.5,—20<x<20 ile —20<t < 20,t =1degerleri i¢in

sirastyla ti¢ boyutlu ve iki boyutlu grafikleri.

Durum 4:

_ Ja® 1 2kb, 1[ R +5\/a3+2kb0] " Ja® + 2kb,
e NaaKh | a2k,

!a1=_ - = 2 ’
6\/_ 6 a a
Va Va (4.5.19)
3
_ aa, o Nalr2k
ad+2k Ja

(4.5.19) esitlikleri (4.5.7) denkleminde yerine yazilirsa

" yt)__ L\/a T2k (x+ay kt) Btanh{\/a?’+2k(x+ay—kt)D, 45.20)
2\a
Uy (% yt)— [\/a + 2k (x+ay kt) _3c0 {\/a +22£>;:ray kt)D’ (45.21)

¢oziimleri elde edilir. (2+1)-boyutlu DJKM denkleminin GKM ile elde edilen (4.5.20)

tam ¢oziimii icin iki ve {i¢ boyutlu grafikleri asagidaki sekilde cizilmistir.
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\ g gy \h . - \_.f"‘*-\f‘\/ -

Sekil 4.5.4. (2+1)-boyutlu DJKM denkleminin GKM ile elde edilen (4.5.20) tam
¢oziimiiniin a=0.1,k=0.5,y=8,-5<x<5 ile -5<t <5t =2degerleri i¢in sirasiyla

ii¢ boyutlu ve iki boyutlu grafikleri.
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5. SONUC ve ONERILER

Bu calismada Nikolay A. Kudryashov tarafindan literatiire sunulmus olan
Kudryashov metodunun genellestirilmis bir hali olan GKM ele alimistir. ilk olarak bu
metodun genel yapist verilmis ve GKM kullanilarak gergin dalga denklemi, (2+1)-
boyutlu enerji tikketen uzun dalga sistemi, (2+1)-boyutlu Bogoyavlensky-Konopelchenko
(BK) denklemi, perturbe edilmis Radhakrishnan-Kundu-Lakshmanan (RKL) denklemi
ve (2+1)-boyutlu Date-Jimbo-Kashiwara-Miwa (DJKM) denkleminin tam ¢éziimleri elde
edilmistir. Ele alinan bu denklemlerde ilk olarak hareketli dalga doniisiimleri kullanilarak
ele alinan denklemler lineer olmayan adi diferansiyel denklem formuna indirgenmistir.
Elde edilen bu denklem Mathematica 12 programi kullanilarak bir cebirsel denklem
sistemine doniistiiriilmiis ve bu cebirsel denklem sistemlerinin ayni1 program yoluyla
¢ozlilmesi sonucunda s6z konusu denklemlerin tam ¢oziimleri elde edilmistir. Ayrica ele
aliman bu denklemlerin bulunan ¢éztimlerinin belli degerleri i¢in hem iki boyutlu hem de
iic boyutlu grafikleri Mathematica 12 programi kullanilarak ¢izilmistir. Béylece lineer
olmayan kismi diferansiyel denklemlerin tam ¢oziimlerini elde etmek i¢in kullanilan
GKM kullanigh ve kesin sonug veren bir yontemdir. Ayrica GKM’nin lineer olmayan
kismi diferansiyel denklemlerin soliton ve hiperbolik ¢6ziimlerini bulmak i¢in kullanilan
etkili bir yontem oldugu goriilmiistiir.

GKM’nin (2+1)-boyutlu DJKM denklemine uygulanmasinda elde edilen
¢oztimler Pu and Hu (2019) tarafindan verilen (24) ¢6ziimii ile benzerdir. Gergin dalga
denklemi, (2+1)-boyutlu enerji tiketen uzun dalga sistemi, (2+1)-boyutlu
Bogoyavlensky-Konopelchenko (BK) denklemi ve perturbe edilmis Radhakrishnan-
Kundu-Lakshmanan (RKL) denklemlerinin ¢6ziimlerinde elde edilen sonuglara ise
yapilan literatiir taramalarinda rastlanilmamis olup, bulunan ¢éziimlerin yeni olduklar

goriilmiistiir.
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