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Traditional management models of intersections, such as no-light intersections or
signalized intersection, are not the most effective way of passing the intersections if the
vehicles are intelligent. To this end, Dresner and Stone proposed a new intersection
control model called Autonomous Intersection Management (AIM). In the AIM
simulation, examining the problem from a multi-agent perspective, demonstrating that
intelligent intersection control can be made more efficient than existing control
mechanisms. In this study, autonomous intersection management has investigated. We
extend their works and added a potential-based lane organization layer. In order to
distribute vehicles evenly to each lane, this layer triggers vehicles to analyze near lanes
and they change their lane if other lanes have advantage. We can observe this behavior in
real life such as drivers change their lane by considering their intuitions. Basic intuition
on selecting correct lane for traffic is selecting less crowded lane in order to reduce delay.
We model that behavior without any change in AIM workflow. Experiment results shows
us that intersection performance is directly connected with the vehicle distribution in
lanes of roads of intersections We see the advantage of handling lane management with
a potential approach in performance metrics such as average delay of intersection and



average travel time. Therefore, lane management and intersection management are
problems that needs to be handled together. This study shows us that, the lane through
which vehicles enter the intersection is an effective parameter for intersection
management. Our study draws attention to this parameter and suggested a solution for it.
We observed that the regulation of AIM inputs, which are vehicles in lanes, was as
effective as contributing to aim intersection management. PLO-AIM model outperform
AIM in evaluation metrics such as average delay of intersection and average travel time
for reasonable traffic rates which is in between 600 vehicle/hour per lane to 1300
vehicle/hour per lane. Proposed model reduced the average travel time reduced in
between %0.2 - %17.3 and reduced average delay of intersection in between %1.6 -

%17.1 for 4-lane and 6-lane scenarios.

Keywords: AIM project, Autonomous intersection management, Lane organization,
Potential-based approach



OZET

GENIS CAPLI KALABALIK BENZETIMINDE ZAMAN ODAKLI SEZGISEL
YOL PLANLAMA

Berk ECER

Yiiksek lisans, Bilgisayar Miihendisligi Boliimii
Tez Damismani: Prof. Dr. Ebru AKCAPINAR SEZER

Nisan 2021, 121 sayfa

Araglarin akilli olmasi durumunda, 1s1ksiz kavsaklar veya sinyalize kavsaklar gibi
geleneksel kavsak yonetim modelleri, kavsaklar1 gegmenin en etkili yolu degildir. Bu
amagla, Dresner ve Stone, Otonom Kavsak Yonetimi (AIM) ad1 verilen yeni bir kavsak
kontrol modeli onerdi. AIM simiilasyonunda, problemi ¢ok ajanli bir perspektiften
inceleyerek, akilli kavsak kontroliiniin mevcut kontrol mekanizmalarindan daha verimli
hale getirilebilecegini gosterir. Onerilen model iizerinde yapilan deneyler ve gdzlemler
sonucunda araglarin kavsaga hangi sertitten girdiklerinin kavsak performansina dogrudan
etkisi oldugunu gordiik. Bu calismada, Stone ve Dresner’in sundugu AIM modeli ile
otonom kavsak yonetimi ele alinmis ve kavsak performansinin arttirilmasi hedeflenmistir.
Yapilan gelistirmeler ve deneyler sonucunda Stone ve Dresner’in sunduklart AIM
modelini genislettik ve potansiyele dayali bir serit organizasyon katmani ekledik. Araglari
her bir seride esit olarak dagitmak i¢in, bu katman araglar1 yakin seritleri analiz etmeleri
icin tetikler ve diger seritlerin avantaji varsa seritlerini degistirirler. Siiriiclilerin
sezgilerini dikkate alarak serit degistirmesi gibi gercek hayatta da bu davranisi
gozlemleyebiliriz. Trafik i¢in dogru seridi segmenin temel sezgisi, gecikmeyi azaltmak
icin daha az kalabalik seridi se¢mektir. Bu davranisi AIM is akisinda herhangi bir

degisiklik olmadan modelliyoruz. Deney sonuglar1 bize, kavsak performansinin, kavsak



yollarin seritlerinde ara¢ dagilimi ile dogrudan baglantili oldugunu gostermektedir.
Ortalama kavsak gecikmesi ve ortalama seyahat siiresi gibi performans Ol¢timlerinde
potansiyel bir yaklasimla serit yonetimini ele almanin avantajini1 goriiyoruz. Bu nedenle,
serit yonetimi ve kavsak yonetimi birlikte ele alinmasi gereken sorunlardir. Bu ¢alisma
bize, araglarin kavsaga girdigi seridin kavsak yonetimi i¢in etkili bir parametre oldugunu
gostermektedir. Calismamiz bu parametreye dikkat ¢ekmekte ve bunun igin bir ¢6ziim
onermektedir. Seritlerdeki araglar olan AIM girdilerinin diizenlenmesinin amag¢ kavsak
yonetimine katki saglayacak kadar etkili oldugunu gozlemledik. PLO-AIM modeli, serit
basina 600 arag / saat ila serit basia 1300 ara¢ / saat arasindaki makul trafik oranlari i¢in
ortalama kavsak gecikmesi ve ortalama seyahat siiresi gibi degerlendirme oSlgiitlerinde
AIM'den daha iyi performans gosterir. Onerilen model, 4 seritli ve 6 seritli senaryolarda
ortalama seyahat siiresini %0,2 - %]17,3 arasinda azaltmis ve ortalama kavsak

gecikmesini% 1,6 -% 17,1 arasinda azaltmstir.

Anahtar Kelimeler: AIM project, Autonomous intersection management, Lane

organization, Potential-based approach
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1. INTRODUCTION

In today’s world, there are several problems that is affecting the World such as
environmental pollution. One of the biggest reasons that the world is getting polluted is
the traffic jams caused by millions of vehicles that we used to go to work, go to schools,
shopping, holidays and etc. Mankind is trying to save the world by reducing pollution
that is created by vehicles with the ways like electric powered vehicles which is not
producing any pollution. In order to serve this purpose, vehicle usage could transform to
a smarter and efficient version which eliminates the extra time spending on travelling by

just increasing the traffic performance.

In this purpose, with the power of growing computer technology autonomous vehicles
can be used to transform our well-known transportation sector into a more intelligent,
safer, and more efficient version. With this transformation, the autonomous vehicles and
autonomous transportation could reduce the pollution of the vehicles by just increasing
vehicle performance during travelling. Autonomous vehicles could also decrease the
travelling time with the control of autonomous systems. Therefore, the pollution and the
vehicle usage could be decreased because there won’t be unnecessary movements and
traffics. For this purpose, this study presents a new model for increasing autonomous
vehicles performance in autonomous intersections. In order to understand the problem,

history of transportation must be investigated.

Transportation is a problem that humanity has tried to solve throughout history and has
produced different solutions about this issue and still tries to produce. The solutions and
ideas produced by humanity on this subject have developed very rapidly from the past to
the present. The transportation problem was tried to be solved by the invention of the
wheel in the early ages and by developing mobile vehicles. Later, these vehicles are

transformed into the tools we use today with the developing technology.



During this transformation, the transportation technologies we currently use have
changed and developed over the years. Humanity has produced countless different
vehicles for transportation and transportation. It has produced sophisticated vehicles such
as vehicles, trains, ships, and airplanes that can be reached by air, land and sea. Humanity
has had to improve itself in transportation in order to keep up with the developing
technology and the requirements of the age. As a result of these developments, different
types of transportation vehicles started to be produced from different sources. With the
production of these vehicles, a problem arose before mankind, such as maintaining

control and order during the transportation of these vehicles.

Today, cats are one of the most accessible and popular ways of transportation. In our daily
life, we need to reach somewhere for our business and social life. They are land
transportation vehicles developed for carrying passengers or cargo in cars. When we look
at the development of cars, in the early days, machines were able to convert the energy in

fuels into motion energy, that is, wheeled vehicles that move with motors.

Most of the vehicles are used in our age have become complex systems that can offer
different technologies and functions, pay attention to consumption efficiency and
environmental cleanliness, can be produced in different ways according to the passenger
or load profile they carry, and carry security measures, with computers that can have their
own system. Transportation to meet the needs of people is one of the giant sectors with
many sub-topics such as the production, control and security of vehicles, technical
maintenance, part production and technology research to further develop these vehicles.
This sector, which we can call the transportation sector, has been affected by other sectors

developed in our age and it looks like it will continue to be affected.

With the development of computers and technology, the technologies used on vehicles
have also developed. Computers are now integrated into most of the vehicles. With this
partnership, both the capabilities of the vehicles can be expanded, and the capabilities and
possibilities that the vehicles can offer to their users and to the jobs they can do in line

with their purposes can also be increased. For example, some of the vehicles that can park
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themselves, some of the vehicle systems that can follow lanes, GPS features that can be
used to track the position of the vehicles, and the ability to detect the vehicle's

environment and their own physical movements have gained many different functions.

Today, transportation vehicles, which are now called smart vehicles, are started to be used
and developed. Smart vehicles are vehicles that have sensors that can perceive their
movement and physical changes around them, and technologies that can communicate
with other smart tools and systems like themselves. These tools have been developed and
adapted to our age with the development of computer technology and its transformation
into more portable small technological units. In other words, with the developments in
many different sectors, vehicles can also be affected by these developments and have
become structures that can offer more performance, comfort, and confidence to their

USETrS.

Thanks to the variety of functions and capabilities of smart vehicles, these vehicles can
act on their own in today's technology. In fact, unmanned vehicles that can go beyond
this movement and use it for many purposes are produced. Unmanned vehicles are
vehicles that are managed by smart computer systems and can serve their users without
requiring any manpower, with features such as direction finding, route planning and
communication with other smart systems. These vehicles can be used in many areas such
as transportation, military, trade, and health. Human beings assign smart vehicles to
places that are dangerous for people to go to, jobs that need to be done with machine

precision, or jobs that do not require manpower with developing technology.

One of the most important features of smart vehicles to operate are being aware of their
environment, gathering information from their environment about their physical
movements, processing and interpreting this information and acting as a result of this
interpretation. Thanks to these features, smart vehicles are becoming capable of

functioning on their own.



If we limit the smart vehicles to the transportation sector, for example, when we think of
smart cars with land vehicles, they can plan routes according to their starting and ending
points or follow their determined routes, can detect obstacles and other objects they
encounter during their journey, so that they can travel without collision, on the route they
will follow during their journey We can explain it as a smart system that can follow its
lanes and change lanes, and receive information from other systems thanks to the

communication technologies it contains.

With the rapidly spreading smart vehicles, concepts such as autonomous cars,
autonomous driving, autonomous intersection, and road systems should be emerged
today. Autonomous vehicles are one of the intelligent transportation units that offer a
safe, comfortable and performance drive without the need for any driver. These vehicles
should have different sensor systems that enable them to perceive their surroundings, for
example, infrared, radar, or direct analysis through visual data.

By using the sensor systems, vehicles can perceive what is happening around them during
their travels and can detect obstacles or objects that they encounter. These vehicles should
able to access basic information about their physical movements such as speed,
acceleration, and direction, thanks to their detective sensors. These tools, which can
perceive their movement as well as their movements and positions in their surrounding
objects, have the knowledge to model movements in the real world. As a result of these
models, the vehicles have gained the ability to decide on their own actions and actions

and update these decisions against instant situations.

Using these models, vehicles can estimate the positions of themselves and the objects
around them over time, and using this position information, they can define the most
appropriate route for them with physical information such as acceleration, speed, and
direction. Autonomous driving can be expressed as the autonomous vehicles traveling on
their own without human input. Autonomous driving can also be seen as a type of travel
managed and maintained by smart vehicles. Due to the increase in the number of smart

vehicles and the development of their usability, they are getting more popular.
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The existence of vehicles that can travel on their own naturally created a need for smart
systems for the control and management of these vehicles. In order to meet this need,
smart intersection, and lane management mechanisms, which have smart management
units, should be emerged. Thanks to these mechanisms, it has been ensured that many
smart vehicles that can complete the travel task on their own are coordinated with each
other and with these management systems throughout their travels, in other words, the
travels of these vehicles are organized by individual vehicle agents or by intelligent
management units that are a higher control unit. Smart intersections can be counted

among these management units.

Smart intersections should provide a layout and management system for smart vehicles
to pass through the intersection by communicating with them as they approach. This
queuing problem, which can be solved with different approaches, can be handled by the
smart intersection manager on the intersection. They can create a ranking structure for
vehicles approaching the intersection and should allow the vehicles to pass through the
intersection without colliding with other vehicles in this sequence. Intelligent intersection
management can also be done by using a general manager such as the intersection
manager or by enabling vehicles to individually follow certain protocols. Communication
between objects plays an important role in both approaches. Coordination between
vehicles can be provided by using vehicle-vehicle and vehicle-structure communications

in smart traffic.

Developing technology and rapidly spreading smart traffic systems show us that in the
future, the transportation sector could be changed completely and new transportation
methods, where unmanned approaches are intense. For this reason, many studies are
carried out around the world to make smart vehicles and smart traffic units more efficient,
environmentally friendly, and more advantageous for the user. The development of the
unmanned transportation concept in the future with the knowledge that develops with
these studies is very important both environmentally and will help to create a better
transportation sector with the decrease in the energy and time people spend for

transportation.



Today, intersections are one of the most critical traffic points where vehicles lose the most
time in traffic and generate fuel waste and environmental pollution. When intersections
are managed with protocols such as intersections with lights or intersections with no
lights, which are traditional intersection management methods, they show lower
performance under the rate of heavy traffic. Considering the developing smart vehicle
technology with this situation, the need for smart intersection management units could be

increased.

This thesis is about intelligent intersection management. It aims to increase the
performance of smart intersection management mechanisms. The structure presented in
this thesis aims to reduce the amount of time and energy spent on transportation by
reducing the delay that vehicles experience due to waiting times at intersections, in other
words, due to junctions. As a natural result of saving time and energy, it aims to be
effective in reducing nature pollution such as noise, air and water caused by traffic.

In order to increase the intersection performance, proposed model triggers the vehicles
which are arriving to an intersection starts to check other possible lanes which may be
more advantageous. For example, if a vehicle should change its lane to less crowded lanes
it will arrive the intersection faster. Therefore, it will send its reservation request to the
intersection manager sooner. As a result of this earlier registration to intersection queue,
vehicles are served by intersection earlier. Therefore, the waiting time spending for the
queue of the intersection will be decreased for this specific autonomous vehicle.

All of the vehicles perform this evaluation by potential calculation to the neighboring
lanes and their current lane. The potential calculation based on the vehicle counts which
are in front of the subject vehicle. The less potential valued lane means that it is the less
crowded lane because potential calculation depends on the vehicle counts. This
calculation is repeated until the arrival of intersection with 1 second interval. If vehicle

finds a lane which is less crowded it changes its lanes.



When this behavior performed by all of the autonomous vehicles which are arriving to
the intersection, all of them will try to reach to intersection in the most advantageous lane
for them. In conclusion, this behavior provides earlier registrations to IM. The delay
caused by the intersection will be decreased. This performance update will reduce the
delay of intersection and average travel times which are performance metrics of

autonomous intersection management systems.

In the advanced parts of the thesis, concepts such as smart traffic management systems,
smart vehicles, road planning, collision-free traffic, lane management will be explained
respectively in the second part and field information is given about these subjects. In the
third part, a summarized field literature about the solutions produced about these issues
covered by the thesis study is presented. In the fourth chapter, the potential-based lane
management system for smart traffic management systems developed within the scope of
the thesis study will be explained and the experiments performed will be shared. Finally,
the results obtained in the thesis will be summarized, these results will be rocked with
other studies and the implications that can be made from these results and comparisons

are discussed.



2. BACKGROUND

2.1. Autonomous Vehicles

Autonomous vehicles are getting popular every day. They are used for military purposes
such as field explorations, or civilian purposes such as traffic and transportation.
Autonomous vehicles can used for anywhere that is dangerous for humans or does not
require humans to operate. With the help of the computers, autonomous vehicles can
serve the humanity and eliminate human responsibility in some of the routines for

transportation such as travelling to work, schools, or houses.

Autonomous vehicles (AV), also known as self-driving cars is a vehicle that has ability
to driving without any human who operates the vehicles through ability to sense its
surroundings. Autonomous vehicles don’t need any human drivers for travelling between
the start and destination points of the travel. Also, they don’t require even any passenger
in it. They can be used for commercial transportation. Autonomous vehicles can travel
wherever a conventional vehicle goes and can do anything an experienced human driver

does without any human touch[1].

An automated vehicle system can only be termed as an “autonomous” system, when all
the dynamic driving tasks, at all driving environment, can be performed by the vehicle’s
automated system. In order to, evaluate autonomous systems, SAE has presented the
levels of automation. Throughout this paper, the term autonomous vehicle (AV) refers to
the levels higher than 3 in levels of automation table described in the next chapter.



2.1.1. Models of Automation

Society of Automotive Engineers (SAE) presented the 5-level of automation in 2014 [1].
understanding Autonomous vehicles are separated into a six category by looking the level
of automation. No driving automation is the level 0 of the categories which is the vehicles
that is used manually. Level 0 vehicles contain automated systems such as breaking, or

cruise control. The vehicles which has driver assistance is the level 1 of the categories.

Level 1 vehicles contain automated driving assisted systems such as lane control or cruise
control which adapts the external changes. At level 3, vehicles contain partial automation
such as accelerate, break or steering. At level 4, vehicles are highly automated. They
contain self-driving mode which is not like fully autonomous vehicles. Because of the
legislation and infrastructure which are not as advanced as the vehicles automated

vehicles which can be seen in the real life are less than other vehicles.

Last level of automation is the full automation. At this level, vehicles are fully automated,
and they are capable of handling all of the responsibilities during travel which is taken by

the drivers.
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Figure 2.1.1 SAE J3016 levels of driving automation [1]



2.1.2. Abilities

Autonomous vehicles are the vehicles can operate and travel safe by sensing its
surroundings and provide functions to operate the vehicle without any other human
interaction. This type of vehicle requires different types of ability in order to operate
independently. They need to sense the environment which they are in, they need to detect
the obstacles before they reach in their way by using sensor, in order to achieve self-
driving, firstly vehicle needs sensors[2].

Self-driving vehicles uses different types of sensors in order to perceive their
surroundings, such as lidar, sonar, GPS, odometry and internal measurement systems.
Sensed data is used for detecting the environment or obstacles are processed with for
example computer vision techniques and as a result of this processing the vehicle know
about its surrounding and obstacles. Vehicles use this knowledge to plan their path and

actions during travelling in this path.

Sensor systems is the critical part of the autonomous vehicles because if the vehicles face
with an obstacle or any other vehicle, it must be detected by the sensor systems. The
environmental changes must also be detected such as traffic lights. Basically, sensor
systems are the eyes and the ears of the autonomous vehicles. The detected data gathered
from sensors are processed in the vehicle’s computer systems such as driver agent and

trajectory planning systems.

In an example scenario, autonomous vehicles detects the change by using its sensors, it
uses the data for computation of trajectories and determine that if it keeps on its movement
or if it needs a change in its movement such at decelerating or accelerating. Therefore,
autonomous vehicles must have a reasoning ability which is used with the data gathered

from sensors in order to move independently by itself.

Autonomous vehicles must have a control system which is responsible for following the

commands of the computation and decision-making systems. Converting the commands
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in the real-life actions such as breaking or turning is the job of the low-level control

systems.

Autonomous vehicles must have a communication ability in order to share and collect the
information about surroundings. The communication is one of the critical abilities that
autonomous vehicles have. The communication is used to interact with the environment

such that intelligent intersection managers and the other autonomous vehicles.

To sum up, an autonomous vehicle is the vehicle which can travel without collision and
does not need any other human interaction rather than its decisions. In general,
autonomous vehicles has sensors which provides the data, which is used to understand
the environment, computation center which use the data, understands the environment,
and calculate and plan the actions. They have communication ability to gather more
information about surroundings. By using all of these abilities, autonomous vehicles can

travel by their own.

2.2. Navigation of Autonomous Vehicles

Navigation of an autonomous vehicle is one of the biggest problems in this area.
Navigation is a field that investigates, monitors and controls of the motion of a vehicle
during their travels from their start point to their destination point[3]. All of the navigation

methods use navigators’ position and the known locations or patterns.

Due to the versatility of the environment, which is the real life basically, navigation of
the vehicles becomes harder. In order to achieve that autonomous vehicle navigation, the
data obtained by the sensor systems must processed because environmental changes are

directly affecting the path and also effect the navigation.

In generally, navigation is determined by the roads because traffic infrastructure does not
allow free movement. Vehicles must follow the lanes and roads and junctions. Therefore,
navigation of the autonomous vehicles is determined by the path planning. Path planning
methods are using the connections of the roads and intersections and applies specific path
planning algorithms to generate a list of paths must be followed by vehicles.
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2.2.1. Path Planning

The definition of the path planning problem can be defined as searching for a collision-
free motion between start and end points within a specified environment. The simplest
situation is when the path is to be planned in a static and known environment; however,
more generally, the path planning problem can be formulated for any robotic system
subject to kinematic constraints, in a dynamic and unknown environment[4]. The change
in the environment directly effects that path planning because static path planning is not

covering real time environment.

Autonomous vehicles must have collision-free path plan in order to travel safe. Path
planning algorithms can be diverse but in the end collision-free path must be achieved by
the path planning process. Traffic is a real life subject which actors and obstacles can
change any time. Therefore, path planning methods that is used for autonomous vehicles
must also work real time and must update the path by looking the environmental objects

or situations such as other vehicles or traffic lights.

Because of the changing environment, path planning algorithm must be dynamic and
every new event which has been captured by the sensors of the vehicles, must affect the
dynamic path plan. For example, the planned path can be changed the road regulations or
different events such that accidents, pedestrians, or obstacles must be considered by the

path planning system in order to achieve collision-free path.

2.2.2. Collision-free Movement

Collision-free movement can be defined as travelling between the start and end points
without any physical interaction with other objects and the autonomous vehicle [5].

Vehicles detect and sense their path with objects on top of it.

The other biggest problems in autonomous vehicles is the collision-free movement.
Because of the safety issues, vehicles have to avoid from the collisions. Collision can be

happening because of several factors such as other vehicles, obstacles, pedestrian, and
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other environmental objects. In order to prevent from the collisions, vehicles have to

detect their roads and the other objects in their roads.

Detecting the environment is the first part of providing collision-free movement. In order
to act about the environmental changes, first vehicle must sense or detect the
environmental changes by using its sensor system such that cameras, radars, lidars and
etc. When, vehicle detects a change in the environment, path planning and trajectory
planning systems must immediately act and calculate the future position of the vehicle
and the obstacles which can be mobile such that other vehicles or pedestrians or static
such that infrastructural buildings.

Trajectory planning is the key to the collision-free movement. Which can be defined as
calculating the future space-time occupancies of environmental objects and the vehicle
itself [6]. Sensor systems provides the physical data about the movement or position of
both environmental objects and the autonomous vehicles. Therefore, trajectory planning
can be performed as simulation because system got definitions of the movements such

that position, speed, acceleration, or deceleration.

By using this physical data about the movement, system can calculate the future positions
of the objects. The system also calculates the future position of the autonomous vehicle.
Therefore, if any of this calculated space-time trajectories collide, it means that if
autonomous vehicle keeps the same movement, in the future it will collide with the object

whose space-time trajectory intersects with the vehicle’s trajectory.

Collisions can be detected by the sensors and trajectory planning, after that vehicles must
act with the information gathered from trajectory calculations. If the system, detects a
collision by comparing the space-time trajectories, the system must alter their movement

such that stop, accelerate, decelerate.

Trajectory planning can be performed by the autonomous intersection managers as well

as the the autonomous vehicles. In this case, all of the objects in the intersections such
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that autonomous vehicles desire to use the intersection shared their movement
information to the intersection manager. Intersection manager calculated the trajectory
plans for every object and provides a collision-free movement for every vehicle. If any
future collision is detected by the intersection manager, intersection manager alters one
of the vehicles which will have a future collision. For example, intersection manager stops
on vehicle and let the other vehicle to pass. In general, the vehicle, which is arrived the
intersection first, gets the transition priority. Therefore, intersection managers use queue

mechanisms to handle transition priority problem.

2.3. Autonomous Intersection Management

Intersection management is the subject which can be described as the management of
vehicles in the intersection whose will use the intersection. Traditional intersection
management protocols such that traffic lights or no-light intersection protocol are used

for controlling and scheduling the vehicles which need to travel through the intersection.

Traffic lights controls the roads of the intersection and with the configurated interval it
allows the vehicles to enter the intersection. Traffic lights control the intersection by
letting the vehicles of the roads in an order. In each light step, flow of the some of the
roads stops and flow of some of the roads that will not create a collision starts. With this

interval-controlled mechanism, vehicles can enter the intersection with road-based order.

No light intersection protocol is the way that vehicles that needs to use the intersection
follow some rules and stop signs. For example, the vehicles must wait the other vehicles
who is inside of the intersection. First comes first goes method is used and if two vehicles
arrive to the intersection same time. Stop signs are used to manage lane priorities. If a
vehicle in the road with stop sign in no light intersection, other lanes which have not stop
sign have priority to use the intersection. With this protocol, vehicles are free to use

intersection with following all of these rules.

With the growing technology and autonomous vehicle industry, new intersection

management policies are appeared. Traditional models of intersection management are
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not really efficient when autonomous vehicles are in actors. Autonomous intersection
management can be described as managing the intersection of autonomous vehicles

without any human interaction.

When intersection protocols begin to be controlled by computer systems such that
autonomous intersection managers, the flow of autonomous vehicles don’t need to be
stopped like traffic light protocol and no-light protocol. The continuous flow will be
achieved because of the intersection manager or autonomous vehicles calculates the

future space-time trajectories of their and other vehicles in order to avoid collisions.

This study investigates autonomous intersection management and aims to improve the
intersection performance. The performance of the autonomous intersection management
can be measured by calculation the average travel time or delay of intersection values. In
this study, on top of the autonomous intersection management, a new lane management
model is proposed. Experiments revealed that the distribution of the vehicles in lanes of
roads are directly affect the performance of the intersection. Therefore, proposed model
provides a new potential based lane organization method which will be described in next
chapters.

2.3.1. Actors

Smart and autonomous vehicles are the main actor of the autonomous traffic.
Autonomous vehicles are the mobile part of the autonomous traffic. They are responsible
for traveling through their entrance and destination points without any human effort.
Autonomous vehicles are referred as connected which means that vehicle can
communicate between other vehicles or other infrastructures such that intersection
managers. Agents of autonomous traffics are directly connected to each other in order to

achieve collision-free travel.

Static members of autonomous traffic are the stationary parts such that intersection

manager systems. The intersection managers are in responsible for controlling the
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autonomous intersection usage. Autonomous vehicles communicate with the intersection

managers in order to share their physical information about their movement.

Intersection manager uses the collected information shared by each autonomous vehicle
and calculate space-time trajectories therefore, it will allow or reject the request of each
vehicle. Intersection manager provides collision-free continuous flow of autonomous

vehicles through intersection.

2.3.2. Communication Methods

Autonomous intersection management can be performed by different models and
solutions. These models differ by their communication types. Vehicle-to-vehicle
communication and vehicle-to-infrastructure communication methods are used in widely.
Autonomous vehicles can be managed by themselves alone in the intersections by using

vehicle-to-vehicle communication.

Vehicle-to-vehicle (V2V) communication means that all of the intelligent vehicles has
communication systems in order to share physical information about their movement.
With this information share, all of the autonomous vehicles can calculate both their
position in future and other vehicles positions. With this calculation, and a queue
mechanism such that first comes first served, autonomous vehicles can manage their

intersection behaviors.

Vehicle-to-Infrastructure (V21) communication means that all of the intelligent vehicles
can communicate with the smart intersection manager (IM) of the intersection. In this
case, calculation and collision-free movement are guaranteed by the intersection manager.
Vehicles send their movement information and to the intersection manager. Intersection
manager uses the information such that speed, acceleration, start point and destination to
calculate future positions of all the vehicles in the intersection. Then intersection manager
accepts or rejects the requests of the vehicles by looking calculations and the order of the

vehicle arrivals.
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If a vehicle won’t face with another vehicle in the intersection, in other words will have
collision-free space and time trajectory in the intersection, IM will accept and let it move.
If two space-time trajectory collides which means two vehicles will have collision if they
keep moving, intersection manager will reject one of them and let the first arrived vehicle

to use the intersection.

In both methods, the information which defines the movement of the vehicles must be
shared between the actors of intersection. In both methods, continuous flow of the
autonomous vehicles is succeeded. Proposed model in this study can be applied in both
methods of autonomous intersection managements because the lane distribution effects
the order of the vehicles which needs to use the intersection and eliminate unnecessary

latencies generated by randomized traffic of autonomous vehicles.

2.3.3. Systems Design

Intersections are the most common source of traffic delays and accidents in traditional
transportation systems. In order to ensure safety and collision-free transportation the

intersection systems must be evolved to be intelligent for autonomous vehicles.

Traditional intersection control systems can be investigated in three categories. First layer
is the coordination layer which is used for coordination between multiple intersections.
This layer controls the flow of the roads between intersection. Maximization of the green
band is very common application of this layer [8]. Second layer is the intersection
management and trajectory planning layer which controls and organize the vehicle flow
in the intersection. This layer can also be used for autonomous intersection management

which will provide efficiency for transportation of autonomous vehicles.

Second layer in autonomous intersection management provides trajectory planning in
order prevent collisions. Main goal of this trajectory planning is separation of the conflict
movements of the vehicles. Third layer is the vehicle control layer which aims to motion

control for each individual vehicle. Vehicle control can be managed by humans or in
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autonomous vehicles the control system is already operates the vehicle without any

human interaction.
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Figure 2.3.3.1 Intersection control layer [7]

Autonomous intersection management systems are more efficient and safer when it is
compared with the traditional intersections. By using the properties of being intelligent
and autonomous, new intersection management systems can be improved. Stone and
Dresner noticed that when the subject of the transportation is autonomous and intelligent,

traditional intersection management systems are not very effective [8].

Autonomous intersection management systems generally contain two individuals but
communicating part. First of them is the driver agent which controls the vehicle and
communicate with the environmental objects such as other vehicle agents or intersection
manager agents. When the vehicles arrive to the intersection, driver agent starts to
communicate and sends a reservation request in order to use the intersection. This process

can be handled by communicating other autonomous vehicles.

The other individual part is the intersection manager (IM). This system controls the
vehicle flow through the intersection and organize and manages the vehicle travels during
the intersection. IM is responsible for deciding weather a vehicle enter or wait for the
intersection. IM controls and operates the vehicle by calculation of the trajectory plans of

each vehicle. By looking these plans, IM decides actions for each vehicle which has
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requested. In general, IM uses queue mechanisms to determine which vehicle will go first

in conflicted vehicle movements.
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Figure 2.3.3.2 Intersection control layer [9]

Intersection management systems can be categorized in two as centralized and
decentralized intersection managements. In centralized architecture, all of the intelligent
vehicles are communicating with the central manager such that intersection manager
which is an intelligent traffic infrastructure. In decentralized architecture, all of the
autonomous vehicles are communicating with each other directly and plan their

movement by regarding the information shared [10].
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Figure 2.3.3.3 Centralized — Decentralized Architecture[10]
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2.3.4. Performance Criteria

Performance criteria of autonomous intersections are directly related with the time spent
during the travel through intersection. In this study, delay of intersection is used to
determine intersection efficiency and performance. Delay of intersection can be described
as the delay which is created by the intersection on the vehicles due to traffic

management.

In order to evaluate efficiency, Stone and Dresner measured the delay of intersection,
which can be described as the additional travel time caused by a vehicle as a result of
passing through the intersection [8]. Delay of intersection (DOI) can be calculated as the
time difference between travel times of the vehicle travelling without any other vehicles
and vehicle travelling in traffic load.

Other performance metric which is investigated in this study is the average travel time
(ATT). Average travel time can measure by taking the average of the travel times of each
vehicle. Travel time is measured as time difference between entrance and exit of vehicles.
Average travel time indicates that each vehicle can complete their travel through

intersection on average travel time value.

2.4. Lane Management

Lane management can be described as organizing the vehicles in the lanes of roads
therefore all of the lanes in roads shared equally distributed load. In other words, lane
management can refer as traffic load balancer on lanes of roads. In general, lane
management is used for big traffic networks or freeways in order to equalize the

randomized traffic.

Lane management can be used for autonomous intersections to eliminate the jams created
by randomized traffic. By organizing the vehicles at the entrance lanes of intersection,
input lanes of intersection, provides a fully and evenly distributed intersection reservation

line.
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In this study, lane management model has used for improving autonomous intersection
performance by prevent vehicles from piling up in a single lane due to randomized traffic.
Lane management has proven its success on autonomous intersections in the experiments
which is a part of this study. With the light of this study, it is seen that the lane
management directly effect the performance of the autonomous intersection as same as
traffic level. Therefore, in order to achieve lane management in autonomous intersections,

potential based lane organization model is proposed in this study.

2.5. Path Planning Methods

Path planning is one of the complex problems in the autonomous vehicles. Every vehicle
must have calculated collision-free path plan in order to follow through the intersection.
Path planning is an important subject because of the meaning of autonomous vehicles
refers travelling between destinations without any human interaction therefore, it requires

autonomous path planning.

Path finding is the first part of the path planning which can be described as finding all of
the possible paths between the points. Path finding provides all the possible paths to the
path planning part. Path planning uses the paths and tries to determine the optimal path
between start and end points from all of the paths provided by path finding operations
[11].

Path planning can be described as generating a geometric path between start point and
end point without any collisions. There are several types of path planning methods which

can be categorized in three method [4].

Firstly, the roadmap techniques can be used for path planning which can be defined as
union of curves in connected points between start and end points in free space. The
roadmap is generated by a set of paths where every path is connected and collision-free
area. The cell decomposition method is the second type of the path planning methods. In
this method the area which is used to for path planning is divided with the adjacent cells.
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The continuous path between cells is generated by considering obstacles. The potential
filed method is the third type. In this case, goal point has attractive potential and the
obstacles have a repulsive potential. Agents plan their path by this potential filed value
[12].

22



3. RELATED WORKS

Intersections are the most common point of accidents in the traffic. With the help of the
autonomous vehicles and other intelligent infrastructures, this critical accident cause may
be safer and more efficient. Autonomous intersection management is a major problem
about travelling with autonomous vehicles. Also, these two topics triggers each other.
Developments in intelligent vehicles causes new developments in management systems

of intelligent vehicles.

As the vehicles are getting smarter, the management systems are also getting smarter.
Because of that different solutions from multiple disciplines can be applied for this topic.
This study investigates that the effects of doing lane organization by using potential
approach on autonomous intersection management. Therefore, autonomous intersection

management models have been investigated in this study.

The most relevant studies about autonomous intersection management are listed in four
different categories. Relevant studies have been investigated under these four main topics.
Space-Time reservation and priority determination is the key elements of the autonomous
intersection management which is handled by trajectory planning. Third category is the
centralization which can be centralized and decentralized. Centralization basically defines
the communication and management method. In the fourth category, the studies, and
developments about vehicle control for autonomous intersection management is

presented. Lastly, AIM project will be described in detail.
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3.1. Space-Time Reservation

Trajectory planning which is directly connected with the Space-Time reservation is a
method which is used to determine rotation and future positions of the vehicles. By
calculation this trajectory, the management units of autonomous traffic such as

intersection managers can predict weather a collision will arise or not.

Trajectories and conflict points determined by finding the intersections between trajectory
plans of each vehicle is presented in the figure below. In autonomous intersection
management this trajectory planning is performed at vehicle level. Trajectory planning is

executed for each individual autonomous vehicle [7].

trajectory conflict point t
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Figure 3.1 Trajectory and conflict points [7]

These trajectory plans are used for collision-free autonomous driving. In autonomous
intersections all of the vehicles are planning their usage of intersection by reservation-
based methods which are determining which vehicle will move first in case of conflict

points.
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There are four different reservation methods in order to solve conflicts in AIM. First of
them is the intersection-based reservation [13] which allows one and only one vehicle
within an intersection in order to prevent from collisions. Secondly tile-based reservation
[9] is the method that free space is divided into a grid of tiles. Manager rejects if two
vehicles occupy the same tile at the same time which means a collision. In some of the
studies these ties can be grouped into bigger regions in order to decrease the computation
load and complexities for reservation [14].

Thirdly conflict point-based reservation [15] which is performed by conflict point
determination by using all of the space in the intersection. The last one is vehicle-based
reservation [16] system which guides and manages all of the autonomous vehicles within
an intersection space without any collision. The vehicle-based reservation method is

required computational expense in order to solve collision avoidance constraints.
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Figure 3.2 Reservation Models [7]
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3.2. Priority Determination

All of the autonomous intersection management systems requires a priority policy due to
decide which vehicle will move first when a collision or trajectory intersection occurs. In
AlIM, as well as the trajectory planning, priority determination is performed for each

individual vehicle [7].

Firstly, autonomous intersection management systems are using first-come-first-serve
(FCFS) policy which is fair as it’s in the real-life queues. Although vehicles are
autonomous, equality is an issue for everything. Therefore, this real-life behavior of

humans is applied on most the AIM research.

Secondly, system-optimal policy is the second most common policy. In the system-
optimal policy, vehicle queues are determined based on system-level performance
therefore, intersection manager always try to do the best when it comes to intersection
performance. It will not consider the order of the vehicle arrivals. In the system-optimal
policy, the priority is determined by considering system evaluation metrics such as overall

delay, vehicle throughput and travel times.

There are several other priority policies which have been tried and experimented on
priority determination in autonomous intersection management systems such as longest-
queue-first policy [17]. In the longest-queue-first policy the order of priority is
determined by considering the longest queues in the intersections. Vehicle type-based
policy [18] is used by Dresner and Stone in order to give higher priority to the important

or special vehicles during emergencies.

Custom-priority score-based policy[19] determines the priority by regarding the scores
which is generated by other previous vehicles in order to provide a fair and efficient
priority. The last one is the auction-based policy [20] which determines priority with
auctions. Auctions are used to determine which vehicle should enter the intersection next.
First vehicles of each lane are the participants of the auctions because no other vehicle in

their lane can move before of them.
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The other vehicles which are not participants, they bid on the first vehicle on their lane.
Therefore, the waiting vehicles back of the first vehicle add value to the first vehicles bid.

All of the vehicles in the same lanes are working together to get the priority.

Game theoretic priority policy [21, 22] is one of the most common method among the
heuristic methods. In some of the research, platoon-based performance evaluators [23,

24] which are also one of the heuristic methods are used to determine priority.

The FCFS is investigated in many of research about autonomous intersection
management. In this policy the arrival times of the vehicles are the first important point
of determining the order of the vehicles which is about to use the intersection. Therefore,
the intersection manager uses the time which a vehicle start communication to the
manager. The vehicles which are in front of the lanes send communication request earlier

to the other vehicles which are behind.

The second important point of determining the order is the intersection rules which is
defined for traditional intersection management method named stop signs policy. These
rules are working when more than one vehicle arrive and communicate with the IM at the

same time. At this point, the vehicle on the right-off-lane has the priority.

Stone and Dresner proposed an enhanced version of FCFS which considers the
emergency vehicles such as ambulances and firetrucks. Proposed FIFS-EMERG model
increase the priority of the special vehicles[18]. Proposed model tries to decrease average

delay of the emergency vehicles.

In the system-optimal priority policies, the system considers the over all performance of
the intersection. FCFS policy produce fair priority but it is not the optimal solution for
prioritizing the order of the vehicles. It is not optimizing the global intersection

performance[25].
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In the work of Lee and Park [26], a trajectory management layer for all intersection is
added in order to decrease the load of FCFS policy. In the proposed model, all of the
vehicles whose trajectories are conflicting are assigned individual trajectory in order to

reduce the overlapping trajectories.

3.3. Type of Centralization

Centralization is the structure of the autonomous intersection management which
determines how the organization is. The organization of the AIM determines the
communication schemes as well as the operation. Three types of centralization method

have been used in autonomous intersection management[7].

Centralized autonomous intersection management has one main coordinator which
generally named as intersection manager. Vehicles are sharing their information to the
one manager and the manager use this information for decision making about intersection
processes. In general, autonomous intersection management models are rely on central
coordinator but this method is expensive to built and operate and there are several

bottlenecks like communication performance[27].

Figure 3.3.1 Centralized Communication AIM [7]
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Decentralized autonomous intersection management has multiple group coordinators in
the intersection system. The information is shared to all of the nodes and also the
processing load is decentralized between nodes. In the platoon-based autonomous
intersection managements [23, 24] platoon leader acts like a decentralized coordinator

node which communicate the intersection manager except all of the vehicles.
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Figure 3.3.2 Decentralized Communication AIM [7]

Distributed autonomous intersection management is the extended version of
decentralization which means all of node are making decisions for their own behaviors.
All of the nodes are communicating with each other in order to gather information for

decision making.

In Hassan and Rakha’s work [27] fully distributed model is proposed. In their work
vehicles are categorized in four label which are out, last, mid, and head in order to reduce

the communication load of distributed system.
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3.4. Significant Works

In the study of C Yu, W Sun and X Yang, a reservation-based method with simple
policies, such as First-come-first-served Service (FCFS), has been proposed in the
literature to manage connected automated vehicles (CAV) at isolated intersections, but
there is a comprehensive analysis of intersection capacity and vehicle delays in FCFS
[28]. In order to solve the problem of lack of underlying control, especially in high traffic
demand situation, to solve this problem, adopt queuing theory to analytically show that
this method cannot meet the high demand where traffic flow overlaps, and provide
optimal service. Proposed an optimization model for CAV reaching the intersection to

minimize delay.

This study compares the performance of the predicted optimization-based control at
various demand levels for conventional vehicle drive control and reservation-based

control. It shows the best performance in the proposed optimization and has a noticeable

30



advantage over the other two controls. The advantages of reservation-based control are

insignificant over demanding vehicle operation control.

M Khayatian and M Mehrabian proposed a time and space sensitive technique for
managing the intersections of autonomous vehicles that are rugged against external
disturbances and model mismatches in their study about RIM [29]. In their method, IM
is responsible for assigning the oncoming vehicles safe Time of Arrival (TOA) and
Arrival Speed (VOA) without any conflict, and vehicles are responsible for selecting and
following a trajectory to reach the intersection and driving in VOA. Since the vehicles
follow a position trajectory, the effect of limited pattern mismatch and external
disturbances can be compensated. Also, vehicles that want to turn at the intersection do
not need to drive at low speed before entering the intersection. Results from experiments

show that improvements shorten the average times.

In the article of B Liu, Q Shi, Z Song and A El Kamel a collaborative timing mechanism
for autonomous vehicles passing through an intersection called TP-AIM has been
proposed [19]. The main purpose of this research is to ensure safe driving while
minimizing delay at an intersection without traffic lights. First, an intersection
management system used as an information gathering-editing center assigns reasonable
priorities for all available vehicles and thus plans their trajectories. Secondly, a window
search algorithm is performed to find backup windows as well as an input window that

can create a collision-free trajectory with minimal delay.

Finally, wvehicles can individually edit their trajectories by applying dynamic
programming to calculate the speed profile to pass the intersection. MATLAB / Simulink
and SUMO based simulations are created between three types of traffic mechanisms with
different traffic flows. The results show that the proposed TP-AIM mechanism
significantly reduced the average evacuation time and increased efficiency by over 20% .
The article also explores delay, which can be reduced to less than 10% compared to
conventional light management systems. Both safety and efficiency can be guaranteed in

the proposed mechanism.
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In the study of R Chen, J Hu, MW Levin and D Rey, they propose an autonomous
intersection management algorithm called AIM-pad that considers both vehicles and
pedestrians to provide optimal efficiency when combined with maximum pressure control
[30].This study analyzes the stability properties of the algorithm based on a simpler
version of AlM-pad, the conflict zone model of autonomous intersection management.
To apply the proposed algorithm in the simulation, this study the maximum pressure
control current trajectory optimization algorithm to calculate optimal vehicle trajectories.
Simulations were conducted to test the effects of pedestrian demand on intersection
efficiency. The simulation results show that the delays of pedestrians and vehicles are
negatively correlated, and the proposed algorithm can adapt to the change in pedestrian

demand and enable conflicting trajectory vehicle movements.

Y Wu, H Chen and F Zhu modeled CAVs as Markov Decision Processes (MAMDPS),
using communication and computational technologies, in which sequential movements
of vehicles from intersection points work together to minimize deceleration of vehicle
factors with non-collision constraints in their study DCL-AIM [17]. From the structural
features of the AIM problem and using a decentralized coordinated multi-factor learning
approach (DCL), it is divided into an independent part and a coordinated part. AIM) is
recommended to solve the problem efficiently by leveraging both global and localized
agent coordination requirements in AIM. The main feature of the proposed approach is
to clearly identify the coordination needs of representatives in the learning process and
adapt them dynamically, so that the dimensional and non-stationary problems of the

environment can be alleviated while learning with more than one tool.

The effectiveness of the proposed method has been demonstrated under various traffic
conditions. Comparative analysis is based on the LQFAIM guide (Longest Queue-First)
and Webster’s method (Signal) between DCL-AIM and first-come-first-service-based
AIM (FCFSAIM). as comparison. Experimental results show that DCL-AIM’s sequential

decisions outperform other control directives.
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3.5. AIM Project

Developments in autonomous vehicles and smart transportation systems point to a rapidly
approaching future where smart vehicles can automatically manage the travel process,
become aware of their environment, make decisions with this awareness, and implement
the decisions they make. When K Dresner and P Stone consider the increasing traffic and
number of active vehicles, they saw that smart solutions will need to be implemented in
the field of transportation. In order to increase the efficiency of transportation
infrastructure, more intelligent traffic control mechanisms that work hand in hand with

smart vehicles are needed to include into our lives.

To this end, Dresner and Stone proposed a new junction control mechanism called
Autonomous Intersection Management (AIM), and in the simulation, examining the
problem from a multi-agent perspective, it showed that intersection control could be made
more efficient than existing control mechanisms such as traffic signals or stop signs [8].
AIM is an open-source intersection management framework that generates an intersection
model based on simulation configurations. AIM also generate vehicles, drivers, and
operate them during intersections. All of the vehicles can turn left and right or keep

moving forward after the intersection.

This multi-agent systems-based intersection management strategy, introduced by Dresner
and Stone, follows a protocol for reservation for every vehicle. Arriving vehicles to the
intersection will inform the Intersection Manager (IM) agent. The IM is responsible for
controlling that intersection by reserving a trajectory for vehicles through intersection
space-time. The IM process every reservation request and determines requests whether

confirm or reject by regarding intersection control policy [8].
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General communication between vehicles and intersection manager is ordered below.

(@) The vehicle approaching the intersection informs the intersection manager that it is
approaching along with required information such as vehicle size, estimated time of
arrival, speed, acceleration, the lane it is in and the lane it wants to pass.

(b) The intersection manager simulates the road that the vehicle will follow inside the
intersection using the information shared by the vehicle. The IM checks whether the road
that the previous vehicles will follow at the intersection and the road that the new vehicle

wants to follow does not conflict.

(c) The intersection manager confirms a reservation if there is no interference with the
path in times the vehicles will use. After this point, it becomes the vehicle’s task to reach

the intersection and pass through the intersection.

(d) Vehicles must receive their successful reservation message from IM, in order to use

intersection and pass to their desired lanes.
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Figure 3.2 AIM workflow [9]

After the response of the intersection manager, vehicle performs the 1M decision or wait
and re-sent reservation request for successful message. It is vehicles’ duty to move as the

intersection manager accepted.
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Figure 3.3 Successful and rejected situations in simulation [9]

M Hausknecht, TC Au and P Stone extended the work of Stone and Dresner beyond the
situation of a single intersection and examine the unique consequences and capabilities
of using AIM-based agents to control an interconnected network of intersections [8].
They explore various navigation rules that autonomous vehicles can use to dynamically
change their planned routes, observe an example of the Braess Paradox, and explore the
new possibility of dynamically reversing traffic flow across lanes in response to minute-
by-minute traffic conditions. By examining this multi-agent system in simulation, they
measure the significant efficiency improvements that can be achieved with this tool-based

traffic control methods.
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4. POTENTIAL-BASED LANE MANAGEMENT SYSTEM

The aim of this study is to improve autonomous intersection management performance
by decreasing average travel time of vehicles and delay of the intersection. In order to
achieve this goal, proposed model enables vehicles to adjust their lanes in order to arrive
earlier to the intersection and as a result of this vehicle sends the intersection reservation
earlier. This lane adjustment uses potential based approach in order to select the most

advantageous lane for every vehicle.

Proposed model is a potential based lane organization module which triggers the vehicles
to reconsider their lanes and analyze neighboring lanes. When the vehicles pass through
the beginning data collection line, lane organization module is triggered. Once vehicle is
triggered, it calculates potential values for its current lane and neighboring left and right
lanes. When the vehicle has potential values of its own lane and neighboring lanes, it
compares the results and select the lowest potential lane which means most advantageous

lane. Then vehicle change its own current lane in order to reach the intersection earlier.

Vehicles calculate the lane potentials by looking frontier vehicles of each lane. In another
words, calculated lane potentials are based on vehicle counts in front of the current vehicle
in each lane. Therefore, the lowest potential lane will be the less crowded lane for the
vehicle.

This approach and potential calculation triggering occur on every vehicle that enters the
simulation. Therefore, all of the vehicles are trying to change their lanes to the lowest
potential lane which refers as less crowded lane. Also, when a vehicle triggered to
calculate potential, it repeats that calculation and decision making for every 1 second until
they stop or arrived at the intersection. This behavior is performed by every other vehicle

in the system.
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This common behavior provides benefits for the system and for each single vehicle. In
the perspective of the vehicle, vehicle will be arrived earlier to the intersection therefore
its total travel time and delay of intersection is decreased. In the system perspective, all
of the vehicles are trying to change their lane to the less crowded lanes therefore,
problems caused by randomized traffic such as single lane jams or lane blockings will be
reduced and eliminated. With this common behavior, it is ensured that the vehicles are

evenly distributed to the lanes on the roads.

Potential approach was used in Cumhur Y. Ozcan’s path-based study of crowd simulation
for path planning [31]. They proposed a system using the Reciprocal Speed Barriers [32]
(RVO) model as the basic routing algorithm, which provides macro information

computed by a modified A * algorithm.

The main feature of the proposed system is the modification of cost function of the A *
algorithm to consider the current and possible future positions of other agents and path
calculations. For this purpose, after a path calculation is made for an agent, they store the
information about the calculated path (ie potential value) on the grid that other agents will
use when determining their paths. Cumhur Y. Ozcan used potential approach in
comparison with machine learning methods in his time-based global path planning study
[33].

These studies show that the potential approach can compete with machine learning
approaches. Because, in fact, moving in the crowd and driving in the crowd as a very
similar problem are actions based on learned reflexes that people perform with their
intuition. For this reason, it is very plausible that heuristic algorithms modeling human

intuition are successful.

In addition, collecting the volume and variety of data required by machine learning is a
research problem in itself. While collecting even this data, data must be collected from
intersections where there are intuitive approaches to actually reflect the context, because

people drive intuitively. For this reason, we cannot collect data as if all drivers behave in
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the same way because we do not drive our cars that way. In order for machine learning
data to work, it must be based on real life. In real life, people are already driving

intuitively.

People actually predict who will turn, who will not turn, and which vehicle will turn where
even if it does not signal. This is a very important issue because we choose the most
advantageous lane according to these estimates. What we are trying to do with potential

is to be able to model this intuitive behavior and prediction that people exhibit.

In this study, crowd management problem is investigated, and proposed model uses
potential base crowd navigation by calculating position potentials of each agent. Lane
management of autonomous vehicle agents as sharing the same problem as the crowd
management of Cumhur Y. Ozcan. All of the agents in this case vehicles add potential to
the positions which they will arrive in their path. Navigation system uses this potential

information for calculating possible paths.

With the help of the potential information enhanced A Star Algorithm calculate the
optimal path for the agents. The proposed A Star algorithm considers the potential
information as well as the standard A * algorithm [33]. Therefore, it considers both the

path and the potential which is generated individual values by the crowd.

In this study, potential based method is used to organize vehicle positions in the lanes of
roads. Autonomous vehicles are the agents that calculate potential information for their
current and neighboring lanes. Each vehicle adds potential value to its current lane.
Therefore, vehicles can determine the least potential lane by calculating the potentials of

the lanes.

After that point, vehicle can change their lane in order to be in a lane which is more
advantageous or if the current lane of the vehicles is the most advantageous, the vehicle
will keep its movement on that lane. All of the autonomous vehicles are triggered to

potential calculation and the following lane change consideration. When the process is
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triggered, every vehicle which is triggered for lane management starts to calculate
potential values for lanes. After the calculation complete, they compare the potential their
lane and the others, and they decide weather change the lane or not. This procedure is
repeated at a specified time interval which is 1 second in this study.

Figure 4.1 PLO-Layer Areas

PLO layer is triggering the vehicles when they intersect with the data collection lines and
they perform potential calculation until they arrive the intersection. The area which is
shown in the Figure 4.1 is representing the PLO layer operation region.
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Every vehicle which enters the systems, evaluate the neighboring lanes of it in every 1
second by using potential approach. With the procedure executed several times, all of the

vehicles adjust their lanes to the most advantageous one for them.

Figure 4.2 Lane changing vehicles

Vehicles in the Figure 4.2 are performing lane changes depending on the comparison of
the potential values of the neighboring lanes and their current lane. After the potential
calculation, the vehicles know that which lane has lowest potential value. As a result of

this, the vehicles are performing lane changes.
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5. EXPERIMENTS

5.1. Experimental Setup

This study uses AIM open source software for autonomous intersection management
system and AIM simulation tool for experimenting and observations. AIM contains a
built-in simulator which can be used for testing and visualizing traffic motion. We used
this simulator in order to analyze AIM performance. After that, proposed model has been
applied to the AIM source code without changing the flow of AIM. Proposed model
which can be denoted as PLO-AIM has been tested and performance metrics has been

gathered by using this simulation tool.
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Figure 5.1.1 AIM configuration panel
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AIM simulator has several options in it. In the configuration part of simulator, required
traffic parameters such as traffic rate, lane counts, etc. can be set. Different models of
intersection can be simulated. By using this configuration panel, complex systems of

intersection can also be simulated.

In the configuration panel, user can select intersection management protocol as the first
parameter. Protocol can be set on of the three pre-defined protocols such that standard
traffic light protocol, no light protocol and finally AIM protocol which is directly design
for autonomous intersection management. In this AIM protocol, autonomous vehicles and
autonomous intersection manager organize vehicle flow inside the intersection. This
study uses AIM protocol in order to experiment and develop new model for autonomous

intersection management.

Speed limit parameter can be set in this configuration. Which directly controls the speed
limit of autonomous vehicles. In this study, 25 meters/second speed (90 km/h) has used
in all experiments. Speed limit is fixed for the entire experiment in order to eliminate the

effects of the parameter differences.

Stopping Distance Before Intersection is one of the other configuration parameters. It
defines the distance that vehicles should stop before entering the intersection. This
parameter is fixed as 1 meter same as default configuration of AIM. Same stopping

distance is used for entire experiment.

In the configuration panel, user can set number of roads in North-South direction and
East-West direction. This parameter defines the number of roads which contains lanes
that enters the intersections. In this experiment, 4-way intersection model has been used,
in order to simulate this Number of North-bound/South-bound roads parameter and

Number of East-bound/West-bound roads parameter kept 1 as the default.
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Figure 5.1.2 Single intersection and Multiple intersection systems

Last parameter is the Number of Lanes per Road which defines the lane count of each
road contains. In this experiment, AIM and proposed model PLO-AIM has been analyzed,
tested for both 4 lanes per road and 6 lanes per road. Therefore, this parameter takes

values either 4 or 6.

Figure 5.1.3 4-lane and 6-lane intersection models

To sum up, in this study all of the configuration parameters kept as what is set in AIM as
default except traffic level and number of lanes per road. The effects of the traffic level
are investigated by increasing the values from 600 veh/hour to 200 veh/hour by 200. Also,
the effects of lane count of road are investigated by changing value either 4 or 6.
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In order to extract data from simulation, AIM has data collection lines at the beginning
and end of all roads. Data required for this study, is gathered by modifying these data
collection lines. Added a timestamp collector in order to get when the vehicle enter the

system and when they left the system of intersection.

Every vehicle pass through this data collection lines twice in the system. First pass
happens when they have entered the system and second pass happens when they exit the
system. Each time, with the modified data collection line, timestamp and vehicles
identifier is stored and exported to the database.

Figure 5.1.4 Data collection line.

In this study, these entering and exiting timestamps of vehicle data has been used for
calculating metrics such as delay of intersection (DOI) and average travel time (ATT) as

performance evaluators. This part will be present with more detail in following section.
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5.2. Measurement Data

In order to determine efficiency, Dresner and Stone measured delay of intersection, which
can be presented as the additional travel time caused by a vehicle as a result of passing
through the intersection. Delay of intersection can be denoted as the time difference
between travel times of the vehicle passing through the same intersection without any

other cars and vehicle passing through the intersection with in traffic load.

In this study, delay of intersection and average travel time is measured by using the
timestamps that is gathered by data collection lines. After the simulation ends, the

timestamp data is exported to a database table in order to prepare calculations.

Exported data contains vehicle identifiers which is denoted as vehicle identifier and
timestamps. Therefore, for each vehicle, two different timestamps have collected from
simulation. One timestamp is for entrance and second timestamp for the exit. By using
these timestamps, we can calculate the time difference between entrance and exit of each
vehicle. Calculated difference refers total travel time of vehicle.

By using this difference method, travel time of every vehicle is calculated. After these
calculations, vehicle identifiers and total travel times are inserted to different database
table which is used for determining DOI and ATT. Average of total travel time values
will reveal average travel time(ATT) which is one of the performance metrics that this

study investigates.

Second performance metric that this study investigates is delay of intersection(DOI). In
order to calculate this metric, calculations have designed as Stone and Dresner
description. Therefore, in order to calculate additional travel time caused by a vehicle as
a result of passing through the intersection, firstly the time spent for travelling between
data collection lines without traffic is measured. This measurement is performed by just
spawning one vehicle at once. Therefore, spawned vehicle will arrive their destination

without any delay cause by traffic and intersection.
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At this point, total travel times of each vehicle has calculated, and the time required for
travel without any traffic has measured. By using Stone and Dresner description, the
difference calculation between total travel time and time without traffic provides the delay
that intersection cause on the vehicles which is main performance metric that this study
investigates. The calculation results which is delay of intersection values are inserted in
the same database table near the total travel time values. The average value of delay of

intersections provides us average delay of intersection value.

These ATT and DOI calculations have done for every vehicle in every simulation for five
times. Also, this procedure has completed for each configuration setup for both AIM and
proposed model PLO-AIM. Results of this measurements and comparison between AIM

and PLO-AIM will be presented in the next section.
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5.3. AIM and PLO-AIM Experiments

In this study, several of experiments has done for both base AIM system in order to
analyze and measure AIM performance. After AIM experiments has completed, proposed
model has been implemented without changing workflow of base AIM. Then, same
experiments that has been investigated with base AIM product, has executed again for
proposed PLO-AIM model.

In this section of this study, all the experiments has done for five times for each
configuration for both AIM and proposed PLO-AIM model, in order to calculate average
total travel time and average delay of intersection, this five experiment results has been
used. In each time, data collection and extracting, ATT and DOI calculation is repeated.
Therefore, for each experiment, five result has been calculated. In the end, the average
value of these five results is calculated for ATT and DOI. The results are the average
travel time and average delay of intersection is the performance metrics for that

experiment.

This procedure of ATT and DOI calculation has been performed for all of the different
simulation configurations which is described in Experimental Setup section has
performed. This procedures and experiments have performed for base AIM product in
order to analyze its performance and results of AIM is the base performance value that
proposed model must improve. After the proposed model PLO-AIM has implemented,
all the performance evaluation procedure has repeated for PLO-AIM. The results of this
PLO-AIM experiments are used to measure the PLO-AIM results and compare it with
base AIM product.

This study aims to improve autonomous intersection management performance by
reducing travel time and delay of intersections. In order to achieve this, potential based
lane management system that is described in the third section, has been implemented on
top the AIM product. In the following sections, the results of ATT and DOI calculations
will be presented for every simulation configuration. All the parameters except lane count

and traffic level has kept default as AIM predefined. In each experiment, traffic level is
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increasing by 200 from 600 veh/hour to 200 veh/hour. All of these different traffic level
scenarios has been tested and measured for both 4 lane and 6 lane intersections.

5.3.1. 4 Lane Experiments

In this study, two different intersection model has been investigated. All of the
experiments have been performed for both 4 lane intersections and 6 lane intersections.
Number of lanes in roads parameter, directly effects the vehicle count that intersection
manager must handle. Therefore, in this study, first the 4-lane intersection model has been
tested.

Figure 5.3.1 4-lane intersection

In this infrastructure, intersection is created by 4-way roads which all roads contain four
lanes. Therefore, intersection has 16 lanes as input lanes which provide vehicle flow to
the intersection and it also has 16 lanes which vehicle exits the intersection and travel to

the out of the intersection.

In the following sections, the average travel time(ATT) and delay of intersection(DOI)

calculations has been presented for both AIM product and proposed model PLO-AIM.
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Presented results has been achieved by performing every simulation five times. All of the
simulation results will be described in detailed for both models.

In this study, second configuration parameter is the traffic rate. Traffic rate means that
the vehicle spawn rate of each lane. Traffic rate parameter is changing between 600 and
2000 by 200. In another words, 600 veh/hour means that in every lane 600 vehicles will
be spawned in one hour. By changing this parameter, the effects of the increasing traffic
rate is observed for both AIM and PLO-AIM.

5.3.1.1. 600 veh/hour

First, AIM model and PLO-AIM model is used to simulate 4 lane intersection model with
600 veh/hour vehicle spawn rate. Measurements are gathered and ATT and DOI

calculations has performed for five times.

Table 5.3.1.1. ATT and DOI calculations for 4 lane 600 veh/hour experiment

AIM PLO-AIM

Experiment  Average Travel  Delay of Average Travel  Delay of
No Time Intersection Time Intersection
1 18.039 4.549 15.525 4.396

2 19.671 6.181 15.191 4.062

3 17.966 4.476 15.795 4.666

4 19.191 5.701 16.954 5.825

5 19.183 5.693 14.987 3.858

After performing the same simulation for five times with both AIM and proposed PLO-
AIM model, calculated average travel times and delay of intersections presented above.
Proposed model PLO-AIM outperformed AIM in all experiments that performed for this

configuration setup.
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5.3.1.2. 800 veh/hour

In this experiment, traffic level is increased by 200 to 800 veh/hour. Calculation results
are presented below. AIM model and PLO-AIM model is used to simulate 4 lane

intersection model with 800 veh/hour vehicle spawn rate.

Table 5.3.1.2. ATT and DOI calculations for 4 lane 800 veh/hour experiment

AIM PLO-AIM

Experiment  Average Travel  Delay of Average Travel  Delay of
No Time Intersection Time Intersection
1 27.796 14.306 24.968 13.839

2 31.954 18.464 24.902 13.773

3 33.210 19.720 28.149 17.020

4 29.597 16.107 24.661 13.532

5 31.050 17.560 24.318 13.189

Proposed model PLO-AIM outperformed AIM in all experiments that performed for this
configuration setup. PLO-AIM model has decreased the delay of intersection and average

travel times for all the experiments.

5.3.1.3. 1000 veh/hour

In this experiment, traffic level is increased by 200 to 1000 veh/hour. Calculation results
are presented below. AIM model and PLO-AIM model is used to simulate 4 lane
intersection model with 1000 veh/hour vehicle spawn rate.

At this traffic rate, the intersection begins to get full due to increased level of traffic.
Therefore, the effect of the lane management system begins to decrease. When we
examine the difference between, AIM and PLO-AIM, the effect of lane management still

can be seen.
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Table 5.3.1.3. ATT and DOI calculations for 4 lane 1000 veh/hour experiment

AIM

PLO-AIM

Experiment
No

1

2

Average Travel

Delay of

Average Travel

Delay of

Time Intersection Time Intersection
52.907 39.417 43.285 32.156
45.498 32.008 49.485 38.356
47.247 33.757 42.845 31.716
53.044 39.554 41.803 30.674
48.656 35.166 37.399 26.270

Proposed model PLO-AIM outperformed AIM in all experiments that performed for this

configuration setup. Above table show us that, the performance improvement of the

proposed model still observed in the performance metrics.

5.3.1.4. 1200 veh/hour

In this experiment, traffic level is increased by 200 to 1200 veh/hour. Calculation results

are presented below. AIM model and PLO-AIM model is used to simulate 4 lane

intersection model with 1200 veh/hour vehicle spawn rate.

By increasing the traffic level, intersection begins to get full faster. In case of intersection
gets full, the effect of lane management module will decrease because there will be no

advantage between the lanes. When all of the lanes are fully occupied, lane management

is not making change between the lanes because all of the lanes are equally full.
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Table 5.3.1.4. ATT and DOI calculations for 4 lane 1200 veh/hour experiment

AIM PLO-AIM

Experiment  Average Travel  Delay of Average Travel  Delay of
No Time Intersection Time Intersection
1 69.764 56.274 65.630 54.501

2 70.190 56.700 61.295 50.166

3 57.403 43.913 58.933 47.804

4 64.579 51.089 66.409 55.280

5 73.202 59.712 66.762 55.633

Propsed model PLO-AIM outperformed AIM in all experiments that performed for this

configuration setup.

5.3.1.5. 1400 veh/hour

In this experiment, traffic level is increased to 1400 veh/hour. After this point of 1300
veh/hour, intersection becomes fully occupied more rapidly. Therefore, no other lane has

advantage to any other lane because every lane of intersection is full.

Table 5.3.1.5. ATT and DOI calculations for 4 lane 1400 veh/hour experiment

AIM PLO-AIM

Experiment  Average Travel Delay of Average Travel  Delay of
No Time Intersection Time Intersection
1 85.552 72.062 84.106 72.977

2 82.860 69.370 83.461 72.332

3 85.906 72.416 81.072 69.943

4 75.981 62.491 79.574 68.445

5 82.379 68.889 82.513 71.384
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When the intersection is full, lane management does not produce any advantage.
Therefore, the calculation results are now similar with the base AIM product. The

decrease of the effect of lane management can be seen in the table above.

5.3.1.6. 1600 veh/hour

In this experiment, traffic level is increased to 1600 veh/hour. Calculation results are

presented below table.

Table 5.3.1.6. ATT and DOI calculations for 4 lane 1600 veh/hour experiment

AIM PLO-AIM

Experiment  Average Travel Delay of Average Travel  Delay of
No Time Intersection Time Intersection
1 90.451 76.961 89.947 78.818

2 92.696 79.206 92.183 81.054

3 90.275 76.785 97.846 86.717

4 96.262 82.772 85.671 74.542

5 96.510 83.020 95.472 84.343

When the traffic level reaches the 1600 veh / hour, as well as the other traffic levels which
are greater than 1300, the lanes of intersections are getting full in a short period of time.

Therefore, the lane change is not providing any advantage.

Because of the input of the intersection and lane is huge, the lane management module
works for a short period of time until the lanes are full. But in this case, lane changing
can be expensive if the vehicle which is about to change their lane has lots of other

vehicles waiting for it. In this case, the lane changing is not providing any advantage.
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5.3.1.7. 1800 veh/hour

In this experiment, traffic level is increased to 1800 veh/hour. Calculation results are

presented below table.

Table 5.3.1.7. ATT and DOI calculations for 4 lane 1800 veh/hour experiment

AIM PLO-AIM

Experiment  Average Travel  Delay of Average Travel  Delay of
No Time Intersection Time Intersection
1 98.572 85.082 97.218 86.089

2 98.701 85.211 103.745 92.616

3 99.618 86.128 103.141 92.012

4 100.556 87.066 95.914 84.785

5 99.186 85.696 102.436 91.307

5.3.1.8. 2000 veh/hour

In this experiment, traffic level is increased to 1200 veh/hour. Calculation results are

presented below table.

Table 5.3.1.8. ATT and DOI calculations for 4 lane 2000 veh/hour experiment

AIM PLO-AIM

Experiment  Average Travel Delay of Average Travel  Delay of
No Time Intersection Time Intersection
1 102.241 88.751 104.405 93.276

2 104.722 91.232 106.892 95.763

3 108.735 95.245 101.356 90.227

4 103.855 90.365 108.958 97.829

5 103.196 89.706 99.840 88.711
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5.3.2. 6 Lane Experiments

In this infrastructure, intersection is created by 4-way roads which all roads contain six
lanes. Therefore, intersection has 24 lanes as input lanes which provide vehicle flow to
the intersection and it also has 24 lanes which vehicle exits the intersection and travel to

the out of the intersection.

In the following sections, the average travel time(ATT) and delay of intersection(DOI)
calculations has been presented for both AIM product and proposed model PLO-AIM.
Presented results has been achieved by performing every simulation five times. All of the

simulation results will be described in detailed for both models.

In this study, second configuration parameter is the traffic rate. Traffic rate means that
the vehicle spawn rate of each lane. Traffic rate parameter is changing between 600 and
2000 by 200. In another words, 600 veh/hour means that in every lane 600 vehicles will
be spawned in one hour. By changing this parameter, the effects of the increasing traffic
rate is observed for both AIM and PLO-AIM.

Figure 5.3.2 6-lane intersection
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5.3.2.1. 600 veh/hour

First, AIM model and PLO-AIM model is used to simulate 6 lane intersection model with
600 veh/hour vehicle spawn rate. Measurements are gathered and ATT and DOI

calculations has performed for five times.

Table 5.3.2.1. ATT and DOI calculations for 6 lane 600 veh/hour experiment

AIM PLO-AIM
Experiment  Average Travel  Delay of Average Travel  Delay of
No Time Intersection Time Intersection
1 25.159 11.669 19.552 8.423
2 25.222 11.732 22.288 11.159
3 23.621 10.131 18.732 7.603
4 26.272 12.782 21.171 10.042
5 27.569 14.079 23.943 12.814

After performing the same simulation for five times with both AIM and proposed PLO-
AIM model, calculated average travel times and delay of intersections presented above.
Proposed model PLO-AIM outperformed AIM in all experiments that performed for this
configuration setup.

5.3.2.2. 800 veh/hour

In this experiment, traffic level is increased by 200 to 800 veh/hour. Calculation results
are presented below. AIM model and PLO-AIM model is used to simulate 4 lane

intersection model with 800 veh/hour vehicle spawn rate.
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Table 5.3.2.2. ATT and DOI calculations for 6 lane 800 veh/hour experiment

AIM PLO-AIM

Experiment  Average Travel Delay of Average Travel  Delay of
No Time Intersection Time Intersection
1 38.006 24,516 36.140 25.011

2 39.168 25.678 38.184 27.055

3 38.455 24.965 34.351 23.222

4 33.489 19.999 30.910 19.781

5 47.862 34.372 38.310 27.181

Proposed model PLO-AIM outperformed AIM in all experiments that performed for this

configuration setup.

5.3.2.3. 1000 veh/hour

In this experiment, traffic level is increased by 200 to 1000 veh/hour. Calculation results

are presented below.

Table 5.3.2.3. ATT and DOI calculations for 6 lane 1000 veh/hour experiment

AIM PLO-AIM

Experiment  Average Travel Delay of Average Travel  Delay of
No Time Intersection Time Intersection
1 61.911 48.421 56.116 44,987

2 63.795 50.305 58.417 47.288

3 57.891 44.401 51.865 40.736

4 54.095 40.605 59.360 48.231

5 61.304 47.814 56.590 45.461
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At this traffic rate, the intersection begins to get full due to increased level of traffic.
Therefore, the effect of the lane management system begins to decrease. When we
examine the difference between, AIM and PLO-AIM, the effect of lane management still

can be seen.

5.3.2.4. 1200 veh/hour

In this experiment, traffic level is increased by 200 to 1200 veh/hour. Calculation results
are presented below. AIM model and PLO-AIM model is used to simulate 4 lane

intersection model with 1200 veh/hour vehicle spawn rate.

By increasing the traffic level, intersection begins to get full faster. In case of intersection
gets full, the effect of lane management module will decrease because there will be no
advantage between the lanes. When all of the lanes are fully occupied, lane management
Is not making change between the lanes because all of the lanes are equally full.

Table 5.3.2.4. ATT and DOI calculations for 6 lane 1200 veh/hour experiment

AIM PLO-AIM

Experiment  Average Travel Delay of Average Travel  Delay of
No Time Intersection Time Intersection
1 86.145 72.655 77.283 66.154

2 79.446 65.956 82.064 70.935

3 85.638 72.148 75.917 64.788

4 76.952 63.462 71.728 60.599

5 78.520 65.030 77.068 65.939

Proposed model PLO-AIM outperformed AIM in all experiments that performed for this

configuration setup.
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5.3.2.5. 1400 veh/hour

In this experiment, traffic level is increased to 1400 veh/hour. After this point of 1300
veh/hour, intersection becomes fully occupied more rapidly. Therefore, no other lane has

advantage to any other lane because every lane of intersection is full.

Table 5.3.2.5. ATT and DOI calculations for 6 lane 1400 veh/hour experiment

AIM PLO-AIM

Experiment  Average Travel Delay of Average Travel  Delay of
No Time Intersection Time Intersection
1 90.787 77.297 98.910 87.781

2 98.416 84.926 97.385 86.256

3 95.200 81.710 93.462 82.333

4 92.272 78.782 87.479 76.350

5 93.468 79.978 98.864 87.735

When the intersection is full, lane management does not produce any advantage.
Therefore, the calculation results are now similar with the base AIM product. The
decrease of the effect of lane management can be seen in the table above.

5.3.2.6. 1600 veh/hour

In this experiment, traffic level is increased to 1600 veh/hour. Calculation results are
presented below table. In this case, the traffic load of intersection is getting bigger, all of

the lane’s spawns 1600 vehicles in hour.

Intersection system suffers from the fully crowded lanes, all of the lanes gets full very
rapidly. Lane management system works for a very short time which begins with the

simulation starts and ends when the intersection is full.

Table 5.3.2.6. ATT and DOI calculations for 6 lane 1600 veh/hour experiment
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AIM PLO-AIM

Experiment  Average Travel Delay of Average Travel  Delay of
No Time Intersection Time Intersection
1 107.229 93.739 102.634 92.505

2 110.752 97.262 103.142 93.013

3 113.268 99.778 107.720 97.591

4 114.058 100.568 116.066 105.937

5 106.480 92.990 108.105 97.976

The calculation results are now similar with the base AIM product. The decrease of the
effect of lane management can be seen in the table above.

5.3.2.7. 1800 veh/hour

In this experiment, traffic level is increased to 1800 veh/hour. Calculation results are
presented below table.

Table 5.3.2.7. ATT and DOI calculations for 6 lane 1800 veh/hour experiment

AIM PLO-AIM

Experiment  Average Travel Delay of Average Travel  Delay of
No Time Intersection Time Intersection
1 118.903 105.413 116.601 105.472

2 110.288 96.798 117.349 106.220

3 114.080 100.590 117.578 106.449

4 115.451 101.961 110.389 99.260

5 121.323 107.833 117.644 106.515
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5.3.2.8. 2000 veh/hour

In this experiment, traffic level is increased to 2000 veh/hour. Calculation results are

presented below table.

Table 5.3.1.8. ATT and DOI calculations for 6 lane 2000 veh/hour experiment

AIM PLO-AIM
Experiment  Average Travel Delay of Average Travel  Delay of
No Time Intersection Time Intersection
1 123.996 110.506 123.663 112.534
2 120.577 107.087 123.789 112.660
3 119.517 106.027 123.873 112.744
4 118.415 104.925 128.998 117.869
5 122.847 109.357 122.542 111.413

The results of the higher traffic levels, the effect of the lane change is totally vanished.
Due to high traffic level, the intersection immediately gets full of all of its input lanes.
After that point, nothing can improve the performance of the intersection because all of

the lanes in all of the roads are full filled.

At this point, all of the processes are dependent to the queue mechanism which determines
which vehicle will use the intersection first and the trajectory planning systems. When all
of the lanes in the all of roads are full, the system acts as a closed-system and all of the

measurements are getting similar because there is nothing to solve or change.
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5.4. Comparison and Results

In this section present results have been compared and summarized. All of the
calculations presented in the previous section is used to get following average values of
each traffic level. Therefore, in the following tables presents the average values of each

experiment which is performed five times.

Average Travel time and Average Delay of Intersection values are used as performance
metrics that is used for comparison between AIM and PLO-AIM.

5.4.1 4 Lane Comparison

Table 5.4.1. ATT and DOI comparisons between AIM and PLO-AIM in 4 lanes

AIM PLO-AIM
Traffic Average Travel  Delay of Average Travel  Delay of
Level Time Intersection Time Intersection
600 18.810 5.320 15.690 4.561
800 30.721 17.231 25.400 14.271
1000 49.470 35.980 42.963 31.834
1200 67.028 53.538 63.806 52.677
1400 82.536 69.046 82.145 71.016
1600 93.239 79.749 92.224 81.095
1800 99.327 85.837 100.491 89.362
2000 104.550 91.060 104.290 93.161

By looking the above comparison between AIM and proposed model PLO-AIM, PLO-
AIM outperformed AIM for reasonable traffic rates which is 600 veh/hour to 1300
veh/hour. Above this traffic rate intersections gets full very rapidly therefore, there is not
enough time for lane management. Without lane management, the performance gets
similar with the AIM.
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The measurement data of 4-lane delay of intersection for bot AIM and PLO-AIM models
are displayed in the following figure.
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Figure 5.4.1.1 4-lane Delay of Intersection Comparison

The measurement data of 4-lane average travel time for bot AIM and PLO-AIM models

are displayed in the following figure.
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Figure 5.4.1.2 4-lane Average Travel Time Comparison



5.4.2 6 Lane Comparison

In this chapter, the results of 6 lane experiments are compared with the base AIM product.
Following table, presents the average values of delay of intersections of each traffic level,
and presents the average travel time for each traffic level.

These average values of the performance metrics are generated by using all of the five
trials of each experiment. Therefore, in the below table, performance metrics of
autonomous intersections such that delay of intersection and average travel times are

listed for both AIM and proposed PLO-AIM model for 6-lane experiments.

Table 5.4.2. ATT and DOI comparisons between AIM and PLO-AIM in 6 lanes

AIM PLO-AIM

Traffic Average Travel  Delay of Average Travel  Delay of
Level Time Intersection Time Intersection
600 25.569 12.079 21.137 10.008
800 39.396 25.906 35.579 24.450
1000 59.799 46.309 56.470 45.341
1200 81.340 67.850 76.812 65.683
1400 94.029 80.539 95.220 84.091
1600 110.357 96.867 107.533 97.404
1800 116.009 102.519 115.912 104.783
2000 121.070 107.580 124.573 113.444

4 lane results are repeating themself also in the 6 lane experiments. By looking the
comparison table, PLO-AIM outperformed AIM for reasonable traffic rates. Same
behavior caused by increasing traffic observed also in 6 lane experiments. PLO-AIM
outperformed AIM for reasonable traffic rates which is 600 veh/hour to 1300 veh/hour.
After that point, because of intersection being full, lane management does not provide

any advantage to vehicles. Therefore, results are getting similar with the base AIM.

64



The measurement data of 6-lane delay of intersection for bot AIM and PLO-AIM models
are displayed in the following figure.
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Figure 5.4.2.1 6-lane Delay of Intersection Comparison

The measurement data of 4-lane delay of intersection for bot AIM and PLO-AIM models
are displayed in the following figure.
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6. RESULTS AND DISCUSSIONS

After completing experiments about proposed model, organizing the autonomous vehicle
distribution approaching the intersection in every lane is directly affecting the
performance of the intersection. By triggering the autonomous vehicles to adjust their
lane by looking the potential values regulates the inputs of intersections. This regulation
provides time savings to each vehicle until they arrive to the intersection. Each vehicle
changes their lane to most advantageous lane for themselves which means less crowded

lanes. Therefore, autonomous vehicles arrive intersection earlier.

All of the vehicles try to adjust their lane, with this common behavior, all of the time
required for vehicles to arrive intersection is decreased. Therefore, managing the lane
distribution of autonomous vehicles improved the performance of the intersection and
made the passing through the intersection is more efficient at acceptable traffic densities.

In this study, average intersection delay and average travel time criteria is used to evaluate
the performance of autonomous intersections. With the vehicles using the potential
approach to organize their own lanes, traffic flow has been managed in a more balanced
form. Since the accumulations are balanced on the lanes, it has been observed that both

the total travel time of the vehicles and the intersection delays have decreased.

PLO-AIM model improves the evaluation metrics such as average delay of intersection
and average travel time for reasonable traffic rates, which is in between 600 vehicle/hour
per lane to 1300 vehicle/hour per lane. The proposed model reduced the average travel
time reduced in between %0.2 - %17.3 and reduced the average delay of intersection in
between %1.6 - %17.1 for 4-lane and 6-lane scenarios for reasonable traffic rates, which

is in between 600 vehicle/hour per lane to 1300 vehicle/hour per lane.
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As a result of the development and experiments were carried out in this study, it is
observed that lane management is a parameter that directly affects autonomous
intersection management performance. The solution that is proposed has increased the
performance of autonomous intersection management compared to the base AIM

structure for acceptable traffic densities.

Additionally, it is observed that at high traffic densities, the effect of the potential based
lane arrangement layer gradually diminished. However, this is not a problem with the
potential approach. Since the intersection reaches its maximum capacity very quickly at
high traffic rates, no lane has an advantage over other lanes. For this reason, there is no
benefit in changing lanes. Therefore, the effect of a lane management and potential based
lane changes can only be observed in a short time until the intersection is full. Since this

time is too short, the effect of the PLO layer is not be observed at high traffic densities.

By decreasing the travel times and delays, the wasted time and energy for transportation
will also be decreased. Proposed model will increase the autonomous intersection
performance therefore, it will decrease the time spent. Intersections are the bottleneck of
the efficient autonomous transportation. Therefore, increasing the performance of the
intersections are directly increase the performance of the autonomous transportation. By
saving time and energy, transportation of autonomous vehicles will be more efficient and

will reduce the side effects of the transportations such as air pollution and noise pollution.

In future studies, proposed potential based method can be used not only to reorganize the
lanes, but also to plan all the routes of autonomous vehicles with potential-based intuitive
choices. With this approach, it is aimed to create a potential-based autonomous vehicle

management strategy different from the existing methods in the literature.

The scope of decisions taken by autonomous vehicles can be expanded by adding
additional parameters that will express the different intentions and preferences of the
vehicles or passengers to the potential calculation is used in this study. Intentions means

that each vehicle has destination points in autonomous driving therefore, they have
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intention to reach their destination. In order to use this intention, additional parameters
can be added to the potential calculation. By considering the intention, destination
relevant lane changing can be achieved. Therefore, autonomous vehicles will try to
change their lane by considering their destinations. The vehicles need to turn right, will
not go to the left lanes unless there is not a huge advantage difference. This approach

will make the potential based lane changing more efficient.

By adding additional parameters to the potential calculation such as representing different
types of actors such that ambulances, fire trucks and police vehicles can be prioritized in
lanes. With this concept, real-life intuitive driving will be modeled more accurately by

autonomous vehicles.
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7. COMMENTS AND CONCLUSIONS

In conclusion, autonomous intersection management is one of the popular subjects about
autonomous vehicles. Also, these two areas trigger each other to expand. Developments
in intelligent vehicles feeds the developments in management of intelligent vehicles. As
the vehicles are getting smarter, the management systems are also getting smarter.

Because of that different solutions from multiple disciplines can be applied for this topic.

This study presents the effects of lane organization by using potential approach in order
to improve performance of autonomous intersection management. In light of the results
achieved, managing the lanes of vehicles entering intersections has a significant impact
on determining autonomous intersection management performance. By managing the
lanes, intersection delay and travel times of vehicles for specified traffic rates is decreased.
This study showed that performance of autonomous intersection management is directly
related with the lane management and by organizing the lanes, the intersection

performance, output, has increased.

Proposed model allows the vehicles to manage their lanes by potential calculation. There
is no central moderator, but as the vehicles switched the most advantageous lane for
themselves as a result of potential-based decisions. Therefore, proposed model can be

applied to all of the autonomous vehicles which will eventually use the intersection.

The proposed model does not even require an intersection. Lane management can be used
in free ways or long roads. Therefore, lane management ability can be used for every
where during the autonomous travels because proposed model gave the ability to vehicles

not a central moderator.

With the increasing traffic rate, intersections are getting crowded faster than ever. This
study also showed that, lane management in the fully crowded intersections does not
provide any performance benefits because no other lane has advantage to each other.

Therefore, vehicles must follow their lane to the intersection.

69



8. REFERENCES

[1] Serban, Alexandru Constantin, Erik Poll, and Joost Visser. "A standard driven
software architecture for fully autonomous vehicles." 2018 IEEE International
Conference on Software Architecture Companion (ICSA-C). IEEE, 2018.

[2] Kato, Shinpei, et al. "An open approach to autonomous vehicles." IEEE Micro
35.6 (2015): 60-68.

[3] Nearchou, Andreas C. "Adaptive navigation of autonomous vehicles using
evolutionary algorithms.” Artificial Intelligence in Engineering 13.2 (1999): 159-173.
[4] Gasparetto, Alessandro, et al. "Path planning and trajectory planning algorithms:
A general overview." Motion and operation planning of robotic systems (2015): 3-27
[5] Llorca, David Fernandez, et al. "Autonomous pedestrian collision avoidance using
a fuzzy steering controller.” IEEE Transactions on Intelligent Transportation Systems
12.2 (2011): 390-401.

[6] Gasparetto, Alessandro, et al. "Path planning and trajectory planning algorithms:
A general overview." Motion and operation planning of robotic systems (2015): 3-27.
[7] Zhong, Zijia, Mark Nejad, and Earl E. Lee. "Autonomous and Semi-Autonomous
Intersection Management: A Survey." arXiv preprint arXiv:2006.13133 (2020).

[8] Dresner, Kurt, and Peter Stone. "Multiagent traffic management: An improved
intersection control mechanism.” Proceedings of the fourth international joint
conference on Autonomous agents and multiagent systems. 2005.

[9] Dresner, Kurt, and Peter Stone. "A multiagent approach to autonomous
intersection management.” Journal of artificial intelligence research 31 (2008): 591-
656.

[10] Khayatian, Mohammad, et al. "A survey on intersection management of
connected autonomous vehicles." ACM Transactions on Cyber-Physical Systems 4.4
(2020): 1-27.

[11] Sathyaraj, B. Moses, et al. "Multiple UAVs path planning algorithms: a
comparative study." Fuzzy Optimization and Decision Making 7.3 (2008): 257.

[12] Seda, Milo§. "Roadmap methods vs. cell decomposition in robot motion
planning." Proceedings of the 6th WSEAS international conference on signal
processing, robotics and automation. 2007.

[13] Zhang, Yue J., Andreas A. Malikopoulos, and Christos G. Cassandras. "Optimal

70



control and coordination of connected and automated vehicles at urban traffic
intersections." 2016 American Control Conference (ACC). IEEE, 2016.

[14] Bichiou, Youssef, and Hesham A. Rakha. "Real-time optimal intersection control
system for automated/cooperative vehicles.” International Journal of Transportation
Science and Technology 8.1 (2019): 1-12.

[15] Kamal, Md Abdus Samad, et al. "A vehicle-intersection coordination scheme for
smooth flows of traffic without using traffic lights." IEEE Transactions on Intelligent
Transportation Systems 16.3 (2014): 1136-1147.

[16] Li, Bai, et al. "Near-optimal online motion planning of connected and automated
vehicles at a signal-free and lane-free intersection.” 2018 IEEE Intelligent Vehicles
Symposium (1V). IEEE, 2018.

[17] Wu, Yuanyuan, Haipeng Chen, and Feng Zhu. "DCL-AIM: Decentralized
coordination learning of autonomous intersection management for connected and
automated vehicles." Transportation Research Part C: Emerging Technologies 103
(2019): 246-260.

[18] Dresner, Kurt, and Peter Stone. "Human-usable and emergency vehicle-aware
control policies for autonomous intersection management.” Fourth International
Workshop on Agents in Traffic and Transportation (ATT), Hakodate, Japan. 2006.
[19] Liu, Bing, et al. "Trajectory planning for autonomous intersection management
of connected vehicles." Simulation Modelling Practice and Theory 90 (2019): 16-30.
[20] Carlino, Dustin, Stephen D. Boyles, and Peter Stone. "Auction-based
autonomous intersection management.” 16th International IEEE Conference on
Intelligent Transportation Systems (ITSC 2013). IEEE, 2013.

[21] Zohdy, Ismail H., and Hesham Rakha. "Game theory algorithm for intersection-
based cooperative adaptive cruise control (CACC) systems." 2012 15th International
IEEE Conference on Intelligent Transportation Systems. IEEE, 2012.

[22] Elhenawy, Mohammed, et al. "An intersection game-theory-based traffic control
algorithm in a connected vehicle environment.” 2015 IEEE 18th international
conference on intelligent transportation systems. IEEE, 2015.

[23] Bashiri, Masoud, and Cody H. Fleming. "A platoon-based intersection
management system for autonomous vehicles.” 2017 IEEE Intelligent Vehicles
Symposium (1V). IEEE, 2017.

[24] Bashiri, Masoud, Hassan Jafarzadeh, and Cody H. Fleming. "Paim: Platoon-

based autonomous intersection management.” 2018 21st International Conference on

71



Intelligent Transportation Systems (ITSC). IEEE, 2018.

[25] Zohdy, Ismail H., and Hesham A. Rakha. "Intersection management via vehicle
connectivity: The intersection cooperative adaptive cruise control system concept.”
Journal of Intelligent Transportation Systems 20.1 (2016): 17-32.

[26] Lee, Joyoung, Byungkyu Park, and llsoo Yun. "Cumulative travel-time
responsive real-time intersection control algorithm in the connected vehicle
environment.” Journal of Transportation Engineering 139.10 (2013): 1020-1029.
[27] Hassan, Abdallah A., and Hesham A. Rakha. "A fully-distributed heuristic
algorithm for control of autonomous vehicle movements at isolated intersections."
International Journal of Transportation Science and Technology 3.4 (2014): 297-3009.
[28] Yu, Chunhui, et al. "Managing connected and automated vehicles at isolated
intersections: From reservation-to optimization-based methods."
research part B: methodological 122 (2019): 416-435.

[29] Khayatian, Mohammad, Mohammadreza Mehrabian, and Aviral Shrivastava.

Transportation

"RIM: Robust intersection management for connected autonomous vehicles." 2018
IEEE Real-Time Systems Symposium (RTSS). IEEE, 2018.

[30] Chen, Rongsheng, et al. "Stability-based analysis of autonomous intersection
management with pedestrians.” Transportation research part C: emerging
technologies 114 (2020): 463-483.

[31] Ozcan, Cumhur Yigit, and Murat Haciomeroglu. "A path-based multi-agent
navigation model.” The Visual Computer 31.6 (2015): 863-872.

[32] Van Den Berg, Jur, et al. "Reciprocal n-body collision avoidance." Robotics
research. Springer, Berlin, Heidelberg, 2011. 3-19.

[33] Ozcan, Cumhur Yigit, Ebru Akcapinar Sezer, and Murat Haciomeroglu. "A time-
based global path planning strategy for crowd navigation." Computer Animation and
Virtual Worlds 30.2 (2019): e1864.

72



APPENDIX

EK 1 - Tezden Tiiretilmis Bildiriler

PLO-AIM: Potential-based Lane Organization in
Autonomous Intersection Management

Berk Ecer, Ebru Ak¢apinar Sezer

Berk Ecer is with the Computer Engineering department of Hacettepe University, 06450 TR, (e-
mail: berk.ecer@cs.hacettepe.edu.tr).

Ebru Akcapinar Sezer is with the Computer Engineering department of Hacettepe University,
06450 TR, (e-mail: ebru@hacettepe.edu.tr).

Abstract—Traditional management models of intersections, such as no-light
intersections or signalized intersection, are not the most effective way of passing the
intersections if the vehicles are intelligent. To this end, Dresner and Stone proposed a
new intersection control model called Autonomous Intersection Management(AlM).In
the AIM simulation, they were examining the problem from a multi-agent perspective,
demonstrating that intelligent intersection control can be made more efficient than
existing control mechanisms. In this study, autonomous intersection management has
been investigated. We extended their works and added a potential-based lane organization
layer. In order to distribute vehicles evenly to each lane, this layer triggers vehicles to
analyze near lanes, and they change their lane if other lanes have an advantage. We can
observe this behavior in real life, such as drivers, change their lane by considering their
intuitions. Basic intuition on selecting the correct lane for traffic is selecting a less
crowded lane in order to reduce delay. We model that behavior without any change in the
AIM workflow. Experiment results show us that intersection performance is directly
connected with the vehicle distribution in lanes of roads of intersections. We see the
advantage of handling lane management with a potential approach in performance metrics
such as average delay of intersection and average travel time. Therefore, lane
management and intersection management are problems that need to be handled together.
This study shows us that the lane through which vehicles enter the intersection is an
effective parameter for intersection management. Our study draws attention to this
parameter and suggested a solution for it. We observed that the regulation of AIM inputs,
which are vehicles in lanes, was as effective as contributing to aim intersection
management. PLO-AIM model outperforms AIM in evaluation metrics such as average
delay of intersection and average travel time for reasonable traffic rates, which is in
between 600 vehicle/hour per lane to 1300 vehicle/hour per lane. The proposed model
reduced the average travel time reduced in between %0.2 - %17.3 and reduced the average
delay of intersection in between %1.6 %17.1 for 4-lane and 6-lane scenarios.

Keywords— AIM project, Autonomous intersection management, Lane organization,
Potential-based approach
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I. INTRODUCTION

In this study, research and developments and experiments have been made on models
related to intersection management of autonomous vehicles. The basis of our problem is
to ensure that autonomous vehicles pass through intersections collision-free and with as

little delay as possible.

Autonomous intersection management systems are systems established to manage the
passage of connected and autonomous vehicles (CAV) through intersections without
collision. For this purpose, different approaches have been adopted. Intersection
management is provided by the communication between smart vehicles or with a central
moderator. In this approach, smart vehicles coming to the intersection share physical
parameters such as speed, position, acceleration, direction, source, target with each other
and become aware of each other. As a result of the calculations made with these data
defining the movement, they enable them to pass through the intersection without
collision. Another approach is in the structures where these smart vehicles communicate
with an intersection manager or moderator placed on the intersection and plan their
passage through the intersection. There are approaches that create learning models over
the movements of vehicles using machine learning or even more complex systems using

fuzzy logic with machine learning to make decision to move together or individually.

One of the most outstanding studies in this field is AIM, the autonomous intersection
management system presented by Stone and Dresner in 2004 and developed in 2008 with
a multi-agent approach [1]. AIM offers a multi-agent model and simulator that
communicates with an intersection manager of autonomous vehicles to pass the
intersection without collision. There are many successful studies in the literature based
on this AIM simulator developed by Stone and Dresner. In our study, we used this AIM
simulator to implement our own approach. In studies on this subject, approaches are

generally seen with the movements of the vehicles.

During our experiments on AIM, we saw that how the vehicles approach the intersection

and which lane they go from have a significant effect on the delay values caused by the
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intersection. We said that the vehicles do not proceed to the intersection randomly, after
a control mechanism and evaluation mechanism calculate which lane is more
advantageous for them and enter the intersection over that lane. In this way, we reduce
the delay applied by the intersection, namely the delay of Intersection. This means

reducing the time spent by vehicles at intersections.

About this problem, we aim to enable autonomous vehicles to change the lanes from
which they enter intersections to be the most advantageous lane for them. With this
approach, it is aimed that vehicles can overcome the accumulation of random traffic. It is
aimed to reduce the travel time of vehicles and reduce intersection delays by enabling
them to approach the intersection from the most suitable lane. In our study, instead of
dealing with the movements of the vehicles, we ensure that the filling of intersections is
out of randomness and filled in a balanced way by determining the most appropriate lane
in which the vehicles can move. While doing this, we ensure that the vehicles calculate
the potential values for their own and adjacent lanes, and according to these potential

values, they switch to the most convenient and most advantageous lane.

As a result, we have shown that the lane from which the vehicles enter the intersections
and the delays that the intersections cause on autonomous vehicles are interrelated. We
will present with our experimental results that this delay can be reduced by a correct lane
management. Lane management will increase the performance of autonomous
intersections and reduce the duration of autonomous travels. As a natural consequence of
this, traffic created by autonomous vehicles will decrease in the final case. While
supporting the positive environmental changes that occur with the decrease in traffic, it

will save energy and time when evaluated specifically for autonomous vehicles.

Il. LITERATURE SUMMARY
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Autonomous intersection management is a common problem about autonomous vehicles.
Also, these two topics triggers each other. Developments in intelligent vehicles feeds the
developments in management of intelligent vehicles. As the vehicles are getting smarter,
the management systems are also getting smarter. Because of that different solutions from
multiple disciplines can be applied for this topic. This study investigates that the effects
of doing lane organization by using potential approach on autonomous intersection
management. Therefore, we researched about autonomous intersection management. The

most relevant studies have listed in the table below.

In the study of C Yu, W Sun and X Yang, a reservation-based method with simple
policies, such as First-come-first-served Service (FCFS), has been proposed in the
literature to manage connected automated vehicles (CAV) at isolated intersections, but
there is a comprehensive analysis of intersection capacity and vehicle delays in FCFS [2].
In order to solve the problem of lack of underlying control, especially in high traffic
demand situation, to solve this problem, adopt queuing theory to analytically show that
this method cannot meet the high demand where traffic flow overlaps, and provide
optimal service. Proposed an optimization model for CAV reaching the intersection to
minimize delay. This study compares the performance of the predicted optimization-
based control at various demand levels for conventional vehicle drive control and
reservation-based control. It shows the best performance in the proposed optimization and
has a noticeable advantage over the other two controls. The advantages of reservation-

based control are insignificant over demanding vehicle operation control.

M Khayatian and M Mehrabian proposed a time and space sensitive technique for
managing the intersections of autonomous vehicles that are rugged against external
disturbances and model mismatches in their study about RIM [3]. In their method, IM is
responsible for assigning the oncoming vehicles safe Time of Arrival (TOA) and Arrival
Speed (VOA) without any conflict, and vehicles are responsible for selecting and
following a trajectory to reach the intersection and driving in VOA. Since the vehicles
follow a position trajectory, the effect of limited pattern mismatch and external
disturbances can be compensated. Also, vehicles that want to turn at the intersection do
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not need to drive at low speed before entering the intersection. Results from experiments

show that improvements shorten the average times.

In the article of B Liu, Q Shi, Z Song and A EI Kamel a collaborative timing mechanism
for autonomous vehicles passing through an intersection called TP-AIM has been
proposed [4]. The main purpose of this research is to ensure safe driving while minimizing
delay at an intersection without traffic lights. First, an intersection management system
used as an information gathering-editing center assigns reasonable priorities for all
available vehicles and thus plans their trajectories. Secondly, a window search algorithm
is performed to find backup windows as well as an input window that can create a
collision-free trajectory with minimal delay. Finally, vehicles can individually edit their
trajectories by applying dynamic programming to calculate the speed profile to pass the
intersection. MATLAB / Simulink and SUMO based simulations are created between
three types of traffic mechanisms with different traffic flows. The results show that the
proposed TP-AIM mechanism significantly reduced the average evacuation time and
increased efficiency by over 20% . The article also explores delay, which can be reduced
to less than 10% compared to conventional light management systems. Both safety and

efficiency can be guaranteed in the proposed mechanism.

In the study of R Chen, J Hu, MW Levin and D Rey, they propose an autonomous
intersection management algorithm called AlM-pad that considers both vehicles and
pedestrians to provide optimal efficiency when combined with maximum pressure control
[5].This study analyzes the stability properties of the algorithm based on a simpler version
of AIM-pad, the conflict zone model of autonomous intersection management. To apply
the proposed algorithm in the simulation, this study the maximum pressure control current
trajectory optimization algorithm to calculate optimal vehicle trajectories. Simulations
were conducted to test the effects of pedestrian demand on intersection efficiency. The
simulation results show that the delays of pedestrians and vehicles are negatively
correlated, and the proposed algorithm can adapt to the change in pedestrian demand and

enable conflicting trajectory vehicle movements.
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Y Wu, H Chen and F Zhu modeled CAVs as Markov Decision Processes (MAMDPSs),
using communication and computational technologies, in which sequential movements of
vehicles from intersection points work together to minimize deceleration of vehicle
factors with non-collision constraints in their study DCL-AIM [6]. From the structural
features of the AIM problem and using a decentralized coordinated multi-factor learning
approach (DCL), it is divided into an independent part and a coordinated part. AIM) is
recommended to solve the problem efficiently by leveraging both global and localized

agent coordination requirements in AIM.

The main feature of the proposed approach is to clearly identify the coordination needs
of representatives in the learning process and adapt them dynamically, so that the
dimensional and non-stationary problems of the environment can be alleviated while
learning with more than one tool. The effectiveness of the proposed method has been
demonstrated under various traffic conditions. Comparative analysis is based on the LQF-
AIM guide (Longest Queue-First) and Webster's method (Signal) between DCL-AIM and
first-come-first-service-based AIM (FCFS-AIM). as comparison. Experimental results

show that DCL-AIM's sequential decisions outperform other control directives.

Developments in autonomous vehicles and smart transportation systems point to a rapidly
approaching future where smart vehicles can automatically manage the travel process,
become aware of their environment, make decisions with this awareness and implement
the decisions they make. When K Dresner and P Stone consider the increasing traffic and
number of active vehicles, they saw that smart solutions will need to be implemented in
the field of transportation. In order to increase the efficiency of transportation
infrastructure, more intelligent traffic control mechanisms that work hand in hand with

smart vehicles are needed to include into our lives.

To this end, Dresner and Stone proposed a new junction control mechanism called
Autonomous Intersection Management (AIM), and in the simulation, examining the
problem from a multi-agent perspective, it showed that intersection control could be made
more efficient than existing control mechanisms such as traffic signals or stop signs [1].

AIM is a open source intersection management framework that generates an intersection
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model based on simulation configurations. AIM also generate vehicles, drivers, and

operate them during intersections.

This multi-agent systems-based intersection management strategy, introduced by Dresner
and Stone, follows a protocol for reservation for every vehicle. Arriving vehicles to the
intersection will inform the Intersection Manager (IM) agent. The IM is responsible for
controlling that intersection by reserving a trajectory for vehicles through intersection
space-time. The IM process every reservation request and determines requests whether

confirm or reject by regarding intersection control policy [1].

General communication between vehicles and intersection manager is ordered below.

(a) The vehicle approaching the intersection informs the intersection manager that it is
approaching along with required information such as vehicle size, estimated time of
arrival, speed, acceleration, the lane it is in and the lane it wants to pass.

(o) The intersection manager simulates the road that the vehicle will follow inside the
intersection using the information shared by the vehicle. The IM checks whether the
road that the previous vehicles will follow at the intersection and the road that the
new vehicle wants to follow does not conflict.

() The intersection manager confirms a reservation if there is no interference with the
path in times the vehicles will use. After this point, it becomes the vehicle’s task to
reach the intersection and pass through the intersection.

(d) Vehicles must receive their successful reservation message from 1M, in order to use
intersection and pass to their desired lanes.

L.l Preprocess
1 =

Reject No, Reason

m

Driver
Agent

Intersection Control Policy

Yes,
Restriction:

Postproces

Intersection Manager

Fig. 1. Diagram of Intersection workflow.

After the response of the intersection manager, vehicle performs the IM decision or wait

and re-sent reservation request for successful message.
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(a) Successful (b) Rejected

Fig. 2. Successful and rejected situations in simulation.

M Hausknecht, TC Au and P Stone extended the work of Stone and Dresner beyond the
situation of a single intersection and examine the unique consequences and capabilities
of using AIM-based agents to control an interconnected network of intersections [7]. They
explore various navigation rules that autonomous vehicles can use to dynamically change
their planned routes, observe an example of the Braess Paradox, and explore the new
possibility of dynamically reversing traffic flow across lanes in response to minute-by-
minute traffic conditions. By examining this multi-agent system in simulation, they
measure the significant efficiency improvements that can be achieved with this tool-based
traffic control methods.

1. METHOD

The main problem that we focus on this study is to reduce the intersection delays and the
maximum travel time by reorganizing the lane distributions of autonomous vehicles in
autonomous intersection management. We have observed in our experiments that
reorganizing the lanes from which vehicles enter the intersections to the density of their
neighboring lanes and allowing the vehicles to move to the less dense lanes from their

own lanes, reduces the delays that the vehicles are exposed to.

To this end, the solution we proposed is to create a lane management line that will trigger
autonomous vehicles to evaluate other lanes in order to change their lanes to the most

advantageous lane. Vehicles change their lanes by making assessment according to the
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condition of the neighbor lanes repeatedly at a certain interval. VVehicles uses potential
approach for evaluation of the other lanes.

At this point, we are managing autonomous intersections using the AIM project presented
by Stone and Dresner [1]. AIM is a simulation tool for autonomous intersection
management. AIM creates a intersection or system of intersections using preselected
parameters in configuration panel. Then, it starts to produce vehicles at the rate
determined by the configuration parameters. These vehicles begin to move from the lane
they spawned to the intersection. When vehicles enter the intersection, zone determined
dynamically by IM, if they are the first vehicle in their lane, they send a reservation
request to IM.

Reservation requests thrown by the foremost vehicle of all lanes are kept in a queue
structure. Vehicles whose turn is in the queue enter the intersection for turning and are
removed from the queue. The first vehicle just behind the vehicle that has entered the
intersection and started the turning process, as it is now the first in that lane, sends a
reservation request to IM and is included in the queue structure. In this way, vehicles cross
the intersection with the principle of first come, first out.

For vehicles that send reservation requests, the intersection manager runs a simulation
and calculates the space-time trajectory of these vehicles. As long as the results of the
calculation do not intersect with the space-time trajectory of the vehicles at the
intersection, the intersection manager sends permission to pass these vehicles. If there is
an intersection, the intersection manager sends a rejection response and triggers the
vehicle to request a reservation again. In this way, all vehicles complete the intersection

crossing within a queue structure without collision.

With the traffic density parameter selected during configuration, vehicles begin to spawn
from all lanes and move towards the intersection. At this point, we can observe the
situation that we consider as a problem. Since the vehicles are moving in the lanes they

are formed, they are not stacked in a balanced way on the intersection. This means that
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instead of entering the intersection from an emptier lane and queuing up and out faster,
they only have to wait for the vehicles in front of them because they comes from the lane
they were created in. This increases the intersection delay and total travel time, which are

our evaluation criteria.

Our solution is to use the potential approach to move vehicles into the lane that is most
advantageous for them. As a natural consequence of this, vehicles will enter the
intersection in the least crowded lane and the distribution of vehicles at the intersection
on the lanes will be balanced. Ultimately, the efforts of vehicles to reach the intersection
in the most advantageous lane based on lane density will reduce their junction delay and

overall travel time.

Potential approach was used in Cumhur Y. Ozcan’s path-based study of crowd simulation
for path planning [8]. They proposed a system using the Reciprocal Speed Barriers [9]
(RVO) model as the basic routing algorithm, which provides macro information

computed by a modified A * algorithm.

The main feature of the proposed system is the modification of cost function of the A *
algorithm to consider the current and possible future positions of other agents and path
calculations. For this purpose, after a path calculation is made for an agent, they store the
information about the calculated path (ie potential value) on the grid that other agents will
use when determining their paths. Cumhur Y. Ozcan used potential approach in
comparison with machine learning methods in his time-based global path planning study
[10].

These studies show that the potential approach can compete with machine learning
approaches. Because, in fact, moving in the crowd and driving in the crowd as a very
similar problem are actions based on learned reflexes that people perform with their
intuition. For this reason, it is very plausible that heuristic algorithms modeling human

intuition are successful.
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In addition, collecting the volume and variety of data required by machine learning is a
research problem in itself. While collecting even this data, data must be collected from
intersections where there are intuitive approaches to actually reflect the context, because
people drive intuitively. For this reason, we cannot collect data as if all drivers behave in
the same way because we do not drive our cars that way. In order for machine learning
data to work, it must be based on real life. In real life, people are already driving

intuitively.

People actually predict who will turn, who will not turn, and which vehicle will turn where
even if it does not signal. This is a very important issue because we choose the most
advantageous lane according to these estimates. What we are trying to do with potential

is to be able to model this intuitive behavior and prediction that people exhibit.

We achieved the lane management using the potential approach to organize AIM inputs
by keeping the core business logic of AIM. Lane management means regulating the
distribution of vehicles on a road over lanes. We solved this problem by enabling the
vehicles to calculate the potential for their lane and neighboring lanes at certain time
intervals and to choose the most advantageous lane according to these potential values

and change lanes.

With this potential calculation, we enable vehicles entering from a random lane to
determine which lane they should be in by evaluating their lane and the density of
neighboring lanes. During this assessment, vehicles calculate the total potential for the
right adjacent lane, left adjacent lane and the current lane. While doing this calculation,
the vehicles give potential values to the vehicles ahead of them, in other words closer to

the intersection, according to their distance from them.

Vehicles obtains the potential values of the lanes by summing up these potential values
by lane. With this logic, the lane with the lowest potential means the most advantageous
lane for that vehicle. If the lane with the lowest potential value is the current lane of the

vehicle, the vehicles do not change its movement, but if the lane with the lowest potential
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value is the right and left adjacent lane, the vehicle changes lane. Repeating this process
every second until they reach the intersection, they enter this intersection in the most
advantageous lane for them. Since this approach is made by all vehicles, a balanced
distribution of vehicles on lanes is ensured. This increases the performance of the
intersection by reducing the intersection delay and travel time, which are performance
metrics as described in the previous sections.

IV. EXPERIMENTS

In this section, there will be detailed information about what experiments we have done
for research. We firstly analyze the base AIM system. After that, we implement our lane
organization layer to distribute vehicles more intuitive with the potential based approach.
We did all the tests and experiments we did on the base AIM version in this version as
well in order to comparison of performances. We compared our PLO-AIM version with
standard AIM version and listed the results. Finally, in the discussion subsection we
present summary information about findings of this study, strengths and weaknesses of

our development, and possible future works.

A. Measurement Data

This study aims to decrease the delay of intersection(DOI) and average travel time in
order to increase the efficiency of intersection. We implement a structure to collect time
and space data about vehicles. Data collection lines, triggers the measurement methods,
and outputs every time vehicle passes. Therefore, we can determine the timestamps of

each vehicle entered and also the timestamps of each vehicle exit the intersection.

Measurement layer produce timestamp data indexed by vehicle identifiers and ready to
import local database. After we import the data to oracle database, we calculate timestamp
differences of each vehicles data. This difference corresponds to the time differences

between the vehicles entering and exiting the intersection.
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B. Experimental Setup

AIM project has built-in simulator. We used this tool for experimenting base AIM project
and also experimenting our version of AIM with potential based approach. In this
simulator you can configure, some key parameters to build and simulate autonomous
intersection. We can set traffic management protocol (aim, traffic lights, etc.), traffic level
(vehicles /hour) per lane, vehicle speed(meters/second), stopping distance before
intersection, number of north-bound/southbound roads, number of east-bound/west-
bound roads, intersection count. In this study, all the configurations kept as default except
traffic level rate will change by 200 from 600 veh/hour to 2000 veh/hour. Also, we

execute same scenarios for 4 lane per road and 6 lane per road.

We collect the data from base AIM product and after that we execute the same simulations
with AIM with potential based approach. In order to evaluate performances of both
systems, we calculate delay of intersection (DOI) and average travel time as performance
evaluators. Travel time means that total time of vehicle. We measure this by taking

timestamps in entering and exiting points of roads.

In order to determine efficiency, Dresner and Stone measured delay of intersection, which
can be presented as the additional travel time caused by a vehicle as a result of passing
through the intersection. Delay of intersection can be denoted as the time difference
between travel times of the vehicle passing through the same intersection without any
other cars and vehicle passing through the intersection within traffic load. We measured
the same criteria in order to compare. Results of these calculations and comparisons

between AIM and PLO-AIM is shared in following section.

C. Results

In order to analyze and observe base AIM system times, we run five simulation for each
traffic rate and intersection size. We calculated average delay of intersection (Average

DOI) and average travel time for each configuration. In this case, our experiments use
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same configuration, but we use two different intersection model. First one has 4 road entry
in each direction, we call this 4-lane intersection. Second one has 6 road entry in each
direction, we call this 6-lane intersection. Also, traffic rate (veh/hour) is changing. We
defined a wide set of traffic rates in order to extend our research from sparse traffic
situations to dense traffic situations. Therefore, we observe the performance of AIM in

crowded or non-crowded traffic situations.

TABLE |
AIM: AVERAGE TRAVEL TIME - DOI FOR 4-LANES

Vehicle  4-lane Max-Min 4-lane Average 4-lane Average

Count DOI (s) Travel Time (s) DOI (s)
600 1.7052 18.8099 5.3199
800 5.4143 30.7213 17.2313

1000 7.546 49.4704 35.9804
1200 15.7993 67.0275 53.537

1400 9.9248 82.5357 69.0457
1600 6.2349 93.2388 79.7488
1800 1.9842 99.3265 85.8365
2000 6.494 104.5498 91.0598

In the first table above, we analyze the change of average travel time and average delay
of intersection for 4-lane intersection. We can see that delay and travel time increases
while the traffic rate increase. As the data show us, while vehicle rate is increasing, travel
time and delay will perform logarithmic growths because of the capacity of intersection.
When all the lanes are full, maximum delay rate achieved. We called this as maximum
intensity point of intersection. After that point, delay time and travel time convergence

for same values.
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TABLE Il
AIM: AVERAGE TRAVEL TIME - DOI FOR 6-LANES

Vehicle  6-lane Max -Min  6-lane Average 6-lane Average

Count DOI (s) Travel Time (s) DOI (s)
600 3.9486 25.5685 12.0785
800 14.3727 39.3960 25.9060

1000 9.7 59.7993 46.3093
1200 9.1927 81.3401 67.8501
1400 7.6292 94.0286 80.5386
1600 7.578 110.3573 96.8673
1800 11.0349 116.0088 102.5188
2000 5.5807 121.0703 107.5803

In the 6-lane scenario, average travel time and delay starts with greater values compare to
4-lane values as expected. Because total vehicle density increased. Also 6-lane statistics
shows us AIM performs same behavior for 6-lane intersections. Average delay time and
travel time performs logarithmic growth and they also keep converging.

At this point, we collected enough data for evaluating base AIM system. Then we
implement our solution in order to organize AIM inputs which are vehicles in lane. In
order to make comparison between AIM and PLO-AIM, we had repeated the same
analyzing and data collection process that we done for AIM with PLO-AIM model.

TABLE IlI
PLO-AIM: AVERAGE TRAVEL TIME - DOI FOR 4-LANES

Vehicle 4-lane Max -Min DOI  4-lane Average 4-lane Average

Count (s) Travel Time (s) DOI (s)
600 1.967 15.6904 45614
800 3.831 25.3996 14.2706

1000 12.08665 42.96333 31.8343
1200 7.82874 63.80585 52.6768
1400 4.531592 82.14534 71.0163
1600 12.175 92.22365 81.0946
1800 7.830872 100.4908 89.3618
2000 9.118 104.2902 93.1612
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Table 3 shows us that, AIM with potential-based lane organization layer performs better
until the intersection is full. Because it distributes vehicles more evenly to each lane
vehicles sent reservation to intersection manager faster. Therefore, they act faster. We can
observe the improvement until the intersection capacity be full. If the traffic rate increase,

time to full fill the intersection decreases. Therefore, the effect of PLO layer also
decreases.

TABLE IV
PLO-AIM: AVERAGE TRAVEL TIME - DOI FOR 6-LANES

Vehicle 6-lane Max -Min DOl 6-lane Average  6-lane Average

Count (s) Travel Time (s) DOI (s)
600 5.211 21.1372 10.0082
800 7.4 35.579 24.45

1000 7.4945 56.4695 45.3405
1200 10.3359 76.8117 65.6827
1400 11.4311 95.2200 84.0910
1600 13.4313 107.5334 97.4044
1800 7.25450 115.9122 104.7832

2000 6.456 124573 113.444

In the 6-lane scenario of PLO-AIM, we observed the same improvement in times in Table

4. PLO layer decrease times until intersection becomes full and until there is no advantage
for lane changing.

In both intersection model (4-lane or 6-lane), PLO layer proved its effect on time
measurements. PLO layer reduce the times for each vehicle by adjusting their lanes to
less crowded lanes. Results shows us that PLO layer decrease the average travel time and

average delay of intersection for intersections which lanes are not fully occupied.

We saw that PLO layer is more effective in for acceptable traffice rates. In our vehicle
traffic rates, PLO layer affects and reduce the measurements until 1300 veh/hour. Above

that point, intersection becomes full very rapidly because of high traffic rate.
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TABLE V
4-LANE ATT - DOI COMPARISON

Vehicle Base AIM PLO-AIM Base AIM  PLO-AIM

Count ATT(s) ATT(s) DOI(s) DOI(s)
600 18.8099 15.6904 5.31992 4.5614
800 30.7213 25.3996 17.2313 14.2706

1000 49.4704 42.9633 35.9804 31.8343
1200 67.0275 63.8058 53.5375 52.6768
1400 82.5357 82.1453 69.0457 71.0163
1600 93.2388 92.2236 79.7488 81.0946
1800 99.3265 100.4908 85.8365 89.3618

2000 104.5498 104.2902 91.0598 93.1612

Table 5 presents the comparison of 4-lane delay of intersection(DOI) and average travel
time(ATT) data between AIM and PLO-AMI. PLO layer decreases the delay of
intersection until the intersection is full and or until lanes have no advantage to each other.
We can observe this effect of PLO layer until the traffic rate reaches to 1300 veh/hour.
After that point, intersection gets full very rapidly. Therefore, PLO layer works in very
short duration because of intersection crowdedness which is directly dependent on traffic
rate. Because of that, average DOI does not decreases after 1300 veh/hour per lane which

is very high.

Table 5 also shows us that, PLO layer decreases travel times. Because of lane
organization, vehicles spend less time until they reach intersection. This decreases their

travel time just like delay of intersection.

89



TABLE VI
6-LANE ATT - DOl COMPARISON

Vehicle Count Base AIM  PLO-AIM Base AIM PLO-AIM

ATT(S) ATT(S) DOI(s) DOI(s)
600 255685  21.1372  12.07856  10.0082

800 39.3960 35579  25.90602 24.45
1000 59.7993  56.4695  46.30936  45.34050
1200 81.3401  76.8117  67.85012  65.6827
1400 94.0286 952200  80.53868  84.09101
1600 110.3578  107.5334  96.86738  97.40448
1800 116.0088 1159122  102.51886  104.7832
2000 121.0703 124573 107.58034  113.444

In the table 6, we also can observe the same PLO layer behavior for 6-lane scenario. Delay
of intersection decreased until we reach 1300 veh/hour traffic level. We observed the
simular effect of PLO layer when we compare the average travel times for each

experiment.

Table 6 shows us that, PLO layer decreases travel times also for 6-lane scenario. Because
of lane organization, vehicles spend less time until they reach intersection. This decreases
their travel time just like delay of intersection. PLO layer effect can be seen also in 6-lane

scenario. In the table 6, the decrease of average travel time is presented.

To sum up, PLO-AIM model outperformed base AIM model for traffic density rates less
then 1300 veh/hour per lane which are denoted as acceptable traffic rates. Proposed PLO-
AIM model reduced the average travel time reduced in between 0.2% - 17.3% and
reduced average delay of intersection in between 1.6% - 17.1% for 4-lane and 6-lane

scenarios.
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D. Discussion

As we observed in our experiments, regulating the distribution of autonomous vehicles
approaching the intersection on lanes made autonomous intersection crossing more
efficient at acceptable traffic densities. In this study, we based on average intersection
delay and average travel time criteria to evaluate the performance of autonomous
intersections. With the vehicles using the potential approach to organize their own lanes,
traffic flow has been managed in a more balanced form. Since the accumulations are
balanced on the lanes, it has been observed that both the total travel time of the vehicles
and the intersection delays have decreased.

As a result of the development and experiments we carried out in this study, we observed
that lane management is a parameter that directly affects autonomous intersection
management performance. The solution we offer has increased the performance of
autonomous intersection management compared to the base AIM structure for acceptable

traffic densities.

Additionally, we observed that at high traffic densities, the effect of the potential based
lane arrangement layer gradually diminished. However, this is not a problem with the
potential approach. Since the intersection reaches its maximum capacity very quickly at
high traffic rates, no lane has an advantage over other lanes. For this reason, there is no
benefit in changing lanes. Therefore, the effect of a lane management and potential based
lane changes can only be observed in a short time until the intersection is full. Since this

time is too short, the effect of the PLO layer is not be observed at high traffic densities.

In future studies, we plan to use this approach not only to reorganize the lanes, but also
to plan all the routes of autonomous vehicles with potential-based intuitive choices. With
this approach, we aim to create a potential-based autonomous vehicle management
strategy different from the existing methods in the literature. The scope of decisions taken
by autonomous vehicles can be expanded by adding additional parameters that will

express the different intentions and preferences of the vehicles or passengers to the
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potential calculation we use in this study. With this concept, real-life intuitive driving will
be modeled more accurately by autonomous vehicles.

V. CONCLUSION

In conclusion, autonomous intersection management is one of the popular subjects about
autonomous vehicles. Also, these two areas trigger each other to expand. Developments
in intelligent vehicles feeds the developments in management of intelligent vehicles. As
the vehicles are getting smarter, the management systems are also getting smarter.

Because of that different solutions from multiple disciplines can be applied for this topic.

This study presents the effects of lane organization by using potential approach in order
to improve performance of autonomous intersection management. In light of the results
we have achieved, we have seen that managing the lanes of vehicles entering intersections
has a significant impact on determining autonomous intersection management
performance. By managing the lanes, we have managed to decrease intersection delay
and travel times of vehicles for specified traffic rates. We showed that we increased the

intersection performance with this decrease in our performance criteria.

We also managed this lane management not by a central moderator, but as the vehicles
switched the most advantageous lane for themselves as a result of potential-based

decisions.
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