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ABSTRACT

SPARSE LINEAR SENSOR ARRAYS: ANALYSIS OF RECENT COARRAY
BASED ARRAYS AND ARRAY DESIGN FOR NONLINEAR PROCESSING

Epçaçan, Erdal

Ph.D., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Tolga Çiloğlu

September 2021, 124 pages

In this thesis, sparse linear sensor arrays have been studied. The study of sparse

arrays in this work can be considered under two main headings: Analysis and com-

parison of recently proposed coarray based arrays, and the adaptation of the nonlinear

apodization method for linear arrays and its use in sparse linear array design.

Recently proposed coarray-based sparse arrays are designed with closed form struc-

tures without the need for any optimization and have much higher degrees of freedom

(DOF) than a uniform linear array with the same number of sensors. DOF gives the

number of targets that can be resolved. In this thesis, the analysis and comparison of

the most known of these arrays have been made by considering the accuracy in direc-

tion of arrival, DOF, resolution in direction of arrival and mutual coupling. The aim

is to reveal the advantages, disadvantages, and aspects accompanying the increased

DOF. As a result of the simulations, it can be concluded that the increase in the DOF

and in the resolution of direction of arrival is mainly provided by the enlarged array

aperture. On the other hand, the effective use of the enlarged array aperture and no

need of any optimization are superiority of these methods.
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Nonlinear apodization has been used to solve the trade off between sidelobe level

and mainlobe width. In this method, it is aimed to suppress sidelobe levels without

increasing the mainlobe width. In this thesis, a variant of nonlinear apodization has

been adapted to the spatial domain and it is used in beamforming. One of the most

common problems in the design of sparse arrays is the increase in the sidelobe level

and/or the emergence of grating lobes while narrowing the mainlobe width. Consider-

ing the success of the nonlinear apodization method in this topic, a sparse linear array

design method using nonlinear apodization and the genetic algorithm is proposed.

Keywords: sensor arrays, sparse linear arrays,nonlinear apodization, DOA estima-

tion, beamforming
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ÖZ

SEYREK DOĞRUSAL SENSÖR DİZİNLERİ: GÜNCEL "COARRAY"
TABANLI DİZİNLERİN ANALİZİ VE DOĞRUSAL OLMAYAN İŞLEME

İÇİN DİZİN TASARIMI

Epçaçan, Erdal

Doktora, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Tolga Çiloğlu

Eylül 2021 , 124 sayfa

Bu tezde seyrek doğrusal sensör dizinleri çalışılmıştır. Tezde seyrek dizinlerle ilgili

yapılan çalışmalar iki ana başlık altında ele alınabilir: Yakın zamanda önerilmiş olan

“coarray” tabanlı dizinlerin analizi ve karşılaştırması, ve doğrusal olmayan pencere-

leme yönteminin doğrusal dizinler için uyarlanması ve seyrek doğrusal dizin tasarı-

mında kullanılması.

“Coarray” tabanlı seyrek dizinler herhangi bir optimizasyon gerektirmeden, kapalı

form yapıları ile tasarlanmakta ve aynı sayıda sensöre sahip düzgün bir doğrusal di-

zine göre çok daha yüksek serbestlik derecesine (SD) sahip olmaktadır. SD, ayırt

edilebilen hedef sayısını vermektedir. Bu tezde, bu dizinlerin en çok bilinenlerinin

analizi ve karşılaştırması, yön kestirim doğruluğu, SD, yön kestirim hassasiyeti ve

karşılıklı etkileşim hususları göz önünde bulundurularak yapılmıştır. Amaç, bu dizin-

lerin üstün ve zayıf yönlerini incelemek ve belirtilen özelliklerinin beraberinde gelen

niteliklerini belirlemektir. Benzetimler sonucunda, SD ve yön çözünürlüğündeki artı-

şın esas olarak genişletilmiş dizin açıklığı tarafından sağlandığı sonucuna varılabilir.
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Öte yandan, genişletilmiş dizin açıklığının etkin kullanımı ve herhangi bir optimizas-

yona gerek olmaması bu yöntemlerin üstünlüğüdür.

Doğrusal olmayan pencereleme yöntemi, yan lob seviyesi ve ana lob genişliği den-

gesini sağlamak amacıyla kullanılmıştır. Bu yöntemde ana lob genişliği artırılmadan

yan lob seviyelerinin bastırılması amaçlanmaktadır. Bu tezde doğrusal olmayan pen-

cerelemenin bir türü uzaysal alana uyarlanmış ve hüzmelemede kullanılmıştır. Seyrek

dizinlerin tasarımında en sık karşılaşılan problemlerdem biri ana lob genişliği daral-

tılırken yan lob seviyesinin yükselmesi veya istenmeyen lobların ortaya çıkmasıdır.

Doğrusal olmayan pencereleme yönteminin bu konudaki başarısı göz önünde bulun-

durularak doğrusal olmayan pencereleme ve genetik algoritma yöntemini kullanan

bir seyrek doğrusal dizin tasarım yöntemi sunulmuştur.

Anahtar Kelimeler: sensör dizinleri,seyrek doğrusal dizinler, doğrusal olmayan pen-

cereleme, geliş yönü kestirimi, hüzme şekillendirme
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CHAPTER 1

INTRODUCTION

In this thesis, linear sensor arrays and in particular sparse linear sensor arrays have

been studied. A sparse array contains neighboring elements with a spacing larger

than the Nyquist spatial limit. Nyquist spatial limit is the counterpart of the Nyquist

sampling limit in the time domain. A spacing larger than this limit causes spatial

aliasing which yields undesired grating lobes and increased sidelobe levels in the ar-

ray pattern. On the other hand, the spatial resolution of an array is proportional to

its aperture. Increasing the aperture by obeying the Nyquist spatial limit means in-

creasing the number of sensors. Consequently, this means increasing the cost, the

complexity and the computational burden of the system. This tradeoff is the first

problem that a designer will face and should solve. Therefore, although there are

many studies to understand the properties of sparse linear sensor arrays, most of them

aim to design/construct new sparse linear sensor arrays fitting to the case-specific

purposes. Common purposes in these designs are to reduce the complexity and the

cost. A rich variety of methods have been developed in this context. Some use linear

or nonlinear optimization methods while some others do not. Optimization parame-

ters in the design process are sensor positions and/or sensor weights. This study has

started with a similar motivation. The study can be divided into two main branches.

In the first branch, the analysis and the comparison of "coarray based arrays" have

been conducted. The term "coarray based array" has been introduced in this thesis

to describe the recently proposed sparse linear arrays which rely on the concept of

the difference coarray. The difference or sum coarray of an array is defined as the

virtual array located at distinct differences or sums between the locations of the sen-

sors. Broadly speaking, coarray based methods aim to minimize "redundancy" in the
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coarray, maximize the length of the "hole" free segment of the coarray, and there-

fore maximize array aperture and resolution. Redundancy indicates the amount of

the repeating lags in the coarray except the zero lag. If an array has no repeating

lags in its coarray except the zero lag, then it is called as a nonredundant array. On

the other hand, hole indicates a missing lag. The design of sparse arrays based on

coarray concepts has a long history which dates back even before the use of the term

coarray. For example, "minimum redundancy arrays" are designed based on coarray

concepts [1,2]. The coarray concept regained attention recently. The basic motivating

arguments in the recently proposed arrays are the lack of the need for optimization

routines for array element placement, i.e., the existence of closed-form expressions

for array topology, and that the degrees of freedom (DOF) can be significantly in-

creased compared to that of a uniform linear array of the same amount of elements.

DOF of an array is related to the maximum number of sources that it can resolve.

Our motivation is also based on these two arguments. A series of simulations have

been conducted to fulfill our purpose. In simulations, the performance of coarray

based arrays are compared in terms of DOA estimation accuracy, CRLB, degrees

of freedom, DOA resolution and mutual coupling. DOA estimation accuracy is the

primary concern. For DOA estimation, firstly a modified signal model is obtained

from the auto-correlation matrix of the array output through Khatri-Rao product [3].

Then spatial smoothing methods are used to construct a suitable matrix, also called

as spatially smoothed matrix. Finally, MUSIC method is applied to the spatially

smoothed matrix. The MUSIC method in coarray based processing has been called

as coarray-based MUSIC. The simulations have shown that it is the expanded aperture

that increases DOF and the resolvability opposing to the second argument.

In the second branch, we study the design of sparse arrays for nonlinear processing,

in particular for "nonlinear apodization". Nonlinear apodization as the name implies

uses a nonlinear method for windowing/tapering/apodization (Tapering and apodiza-

tion are terms used for windowing in sensor array and optical signal processing, re-

spectively). Nonlinear apodization has been first presented to increase resolution in

synthetic aperture radar images. Similar to sparse array design, there is a tradeoff

between sidelobe level and mainlobe width in windowing operation. This tradeoff is

the main problem that designers should handle. The aim is to obtain the narrowest

2



mainlobe and the lowest sidelobe level possible. Conventionally, windowing is used

at the expense of widening the mainlobe in order to reduce the sidelobe level. How-

ever, in nonlinear apodization, the sidelobe level can be reduced without increasing

the mainlobe width. The main idea is to use multiple windows instead of a single win-

dow and to select the minimum spectral value for each frequency. Patterns of some

of these windows have a good sidelobe level while some of them have good main-

lobe width. Nonlinear apodization successfully combines their good spatial regions.

This method eases the tradeoff between sidelobe level and mainlobe width to some

extent. Nonlinear apodization can reduce the sidelobe level at most down to the noise

level. Moreover, using multiple windows naturally increases the complexity and the

computational burden. In this study, firstly, nonlinear apodization has been adapted

to the spatial domain. Then, because windowing and sparse array design problems

have similar tradeoffs, nonlinear apodization has been used for the sparse linear ar-

ray design together with the Genetic Algorithm (GA). The design contains a special

layout which consists of two sub-arrays. One of the sub-arrays is designed by GA,

whereas the other one is designed according to results of the aforementioned design.

Dual-apodization is applied to the sub-arrays to obtain the output. One of the sub-

arrays have a good behavior around the mainlobe regions and the other at sidelobe

regions. Obviously, the aim is to have good behaviour in all regions while steering

to any particular direction. However, a perfect solution is not possible with only two

sub-arrays but a great many. On the other hand, this is practically and computation-

ally very difficult. Instead, a design with a moderate computational load for a limited

number of targets is proposed.

The outline of the thesis is as follows: Chapters 2 and 4 give required background

knowledge about the topics in this thesis. Chapter 3 gives the study conducted in the

first branch of this thesis. While, chapters 4, 5, and 6 construct the second branch,

and give the corresponding works.

In Chapter 2, a brief overview of sensor array signal processing and modeling has

been provided. The DOA estimation methods used in this thesis and their perfor-

mances with comparative examples in the case of sparse linear arrays are presented.

In Chapter 3, firstly a history of sparse arrays is provided. Then, detailed analysis
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and comparison of coarray based methods have been given. The advantages and

disadvantages of these methods with simulation results have been provided. The

arguments of these methods have been examined and their justifications have been

questioned.

Chapter 4 presents the details of nonlinear apodization methods. One of the nonlinear

apodization methods known as Spatially Variant Apodization is shown to be a variant

of the minimum variance estimator.

In Chapter 5, Spatially Variant Apodization (SVA) has been adapted to the spatial

domain and a beamforming method using SVA has been presented.

Nonlinear Apodization and Genetic Algorithm have been combined and a novel hy-

brid sparse array design method has been presented in Chapter 6. This novel method

has a better sidelobe level and mainlobe resolution compared to some existing solu-

tions.

Chapter 7 concludes up the study and Appendix A give some DOA estimation meth-

ods widely used in the literature.

Contributions of this work are included in chapters 3, 5, and 6, and can be summarized

as follows,

• An analysis and comparison of coarray based arrays of recent interest have

been carried out. Aspects accompanying the ability to detect more sources than

sensors have been investigated. The importance of extended aperture as the

basis of the increase in DOF has been emphasised. In particular, coarray based

arrays have been studied with the two points of view: the layout for a fixed

number of sensors, and the number of sensors for a fixed aperture.

• Spatially Variant Apodization (SVA) method has been adapted to beamforming

and implementation issues have been investigated.

• A novel sparse array design approach for nonlinear processing has been pro-

posed. Despite its low computational demand, the proposed approach uses a

given aperture and array elements efficiently.
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The notation used in this thesis is as follows: scalar quantities are shown by italic

lowercase letters , vectors by bold lowercase letters , and matrices by bold uppercase

letters . The transposition, complex conjugation, and complex conjugate transposition

operations are denoted by superscripts T, ∗ and H respectively.
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CHAPTER 2

BACKGROUND OF THE PROCESSING METHODS IN THIS WORK

The main objective in array signal processing is to detect and extract information in

the wave or signal gathered by an array of sensors. The information may be the con-

tent of the signal or it can be the location of the source. Many different methods from

other areas have been adapted to the area of sensor array signal processing in order

to extract this useful information. Sensor arrays can be found in many areas such as

communication, sonar, radar, seismology, bio-medicine, astronomy, and imaging, [4].

A sensor array can be considered as a spatial window which samples the components

of the field on that particular location. The rate of spatial sampling is determined by

the distance between sensors. The pattern of the this spatial window is determined

by the weights and the locations of the sensors. This pattern can change according to

steered direction if array aperture and sensor locations are not uniform for all direc-

tions. The field is a result of the sources located at different directions. The powers

and the directions of the sources relative to the sensor array determine the pattern of

the field. For a particular direction, sum of the multiplication of the array pattern and

the field pattern gives the output of the sensor array for that particular direction. This

operation reminds us the convolution operation. Therefore, assuming array pattern is

uniform for all directions, the array output can be obtained by the convolution of the

array pattern and the field pattern.

Beamforming and direction of arrival (DOA) estimation are among the most common

and important tasks in array signal processing. Various methods have been developed

for such purposes. In this chapter, the methods that are used in the thesis will be sum-

marized. Some other important methods worth mentioning are provided in Appendix

A.
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In practice, there are various array geometries, in this work, linear arrays in which

identical elements are placed on a line are considered. In particular, the focus will be

on sparse linear arrays.

2.1 Array Signal Model

To have a basic model of the spatial sampling process, some assumptions are made

about the signal and the medium. The assumptions are listed below [5]:

• The incoming wave is a narrowband signal, that is the propagation delay across

the array is very small compared to the reciprocal of the signal bandwidth.

• The source is in the far-field of the array, therefore the incoming signal is a

planar wave.

• The sensor array and the sources are assumed to be on the same plane.

• The sources and the receivers are point elements.

• The propagation medium is homogeneous.

Consider an array of M sensors and K narrowband sources, M ≥ K. Let the DOA

of the signals be θ1...,θK where θk = [θk φk] and θk is the azimuth of the kth source

measured from positive x axis and φk is the elevation measured from positive z axis.

For simplicity unless otherwise stated the elevation angle is taken as π/2 in calcula-

tions, so DOA will be defined only by the azimuth angle.

Using the assumptions given above, the output vector of the sensor array, y(t), at time

instant t, also called a snapshot, is given as [6],

y(t) = A(θ)s(t) + v(t), (2.1)

where s(t) = [s1(t)s2(t)...sK(t)]TK×1 are source signals and θ = [θ1 θ2...θK ]T are re-

lated DOAs, v(t) is M × 1 noise vector and A(θ) = [a(θ1), a(θ2)...a(θK)] is M ×K
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steering matrix. The noise is assumed to be zero mean, spatially and temporarily

white, and Gaussian. The steering vector a(θk) for k = 1, 2, ..., K is given as,

a(θk) = [g1(θk)e
−jωcτ1(θk)g2(θk)e

−jωcτ2(θk)...gM(θk)e
−jωcτM (θk)]T , (2.2)

where gm(θk), m = 1, 2, ...,M is the sensitivity of the mth sensor at direction θk,

τm(θk) is the time delay of arrival between the mth sensor and some reference point

and ωc is the center frequency. In this report, it is assumed that all sensors are iden-

tical and omni-directional, therefore gm(θk) = 1, for m = 1, 2, ...,M , moreover the

reference point is taken as the first sensor of the array and its position is accepted to

be the origin of the coordinate system in which sensor array and sources are located.

A plane wave propagating in direction θk has the direction vector gk given as,

gk =


cos θk sinφk

sin θk sinφk

cosφk

 =


cos θk

sin θk

0

 . (2.3)

Let the position of the mth sensor be pm, then the time delay τm(θk) is

τm(θk) =
−gTk pm

c
, (2.4)

where c is the speed of the wave in the medium. Therefore, (2.2) now can be written

as,

a(θk) = [1, e
jωcgTk p2

c , ..., e
jωcgTk pM

c ]T . (2.5)

The given model can be extended for N snapshots. Then, the model given in (2.1)

can be rewritten as follows,

Y = A(θ)S + V, (2.6)

where Y and V are M ×N matrices and S is K ×N and they are given as follows,
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Y = [y(t1), y(t2), ..., y(tN)]

V = [v(t1), v(t2), ..., v(tN)] (2.7)

S = [s(t1), s(t2), ..., s(tN)].

Now let’s consider a uniform linear array (ULA) with sensor separation d. In this

case, the delay between the mth sensor and the reference point is τm(θk) = d(m −
1)cos(θk)/c for m = 1, 2, ...M .

Assuming there are K sources in the medium with DOAs θk, k = 1, 2, ..., K, and

noting that c = λfc where λ is the wavelength of the signal and ωc = 2πfc, the

steering matrix for M sensors is obtained as follows,

A(θ) =


1 1 . . . 1

ej2π
d
λ
cos(θ1) ej2π

d
λ
cos(θ2) . . . ej2π

d
λ
cos(θK)

...
... . . . ...

ej2π
d
λ

(M−1)cos(θ1) ej2π
d
λ

(M−1)cos(θ2) . . . ej2π
d
λ

(M−1)cos(θK)

 . (2.8)

Note that in (2.8), in order to have a unique A(θ) or to have no spatial aliasing it is

required that 2π d
λ
cos(θk) ≤ π for k = 1, 2, ..., K. Since | cos(θk)| ≤ 1, the maximum

separation between the sensors is obtained as d ≤ λ/2; this is known as the Nyquist

spatial limit.

2.2 DOA Estimation Methods

DOA estimation is one of the most important topics in array signal processing. Many

methods have been developed in the literature for DOA estimation [7]. DOA estima-

tion methods can be categorized into two main parts; non-parametric methods and

parametric methods. In non-parametric methods, generally a spectrum-like function

(spatial spectrum) concerning DOA is obtained and DOAs are determined by an anal-

ysis of the peaks of the spectrum. Beamforming and some subspace-based methods
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are the most known spectral approaches. Parametric methods fully exploit the un-

derlying data model and better estimation accuracy is obtained at the expense of an

increase in the computational burden. In parametric methods, a multidimensional

search is conducted over parameters of interest. Moreover, spectral-based methods

may be insufficient in the case of highly correlated or coherent signals, but parametric

methods have the robustness in these cases. Maximum-likelihood (ML) techniques

are the most famous parametric methods. In this chapter, conventional beamforming,

Capon beamforming (MVDR), and MUSIC methods are reviewed. For an interested

reader, ESPRIT and maximum-likelihood methods are described in Appendix A.

2.2.1 Beamforming

A sensor array performs a spatial sampling similar to the temporal sampling. Spatial

sampling helps to discriminate signals having similar time and frequency content but

different DOA. Beamforming combines temporal and spatial filtering, spatiotemporal

filtering [6], for two main purposes; finding the DOA of the incoming signal and

enhancing the signals from the interested direction while attenuating signals from

other directions. In this thesis, beamforming is used for the first purpose.

The main idea in beamforming is to "steer" the array to all directions electronically by

adjusting the phases. Then, the power is measured for each direction. DOA estimates

are obtained by an analysis of the angular spectrum. To achieve steering, the output

of the sensor array is weighted by w, yielding yf (t) = wHy(t). Choices of weighting

vector w determine the type of the beamformer.

2.2.1.1 Conventional Beamforming

Conventional Beamforming (CBF) algorithm is one of the oldest DOA estimation

techniques. The weights are chosen such that the power is maximized in a certain

direction. Suppose that there is a single source at θk, then the optimal weight vector

is obtained by solving the following optimization problem [7]:
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wopt = arg max
w

E{yf (t)yf (t)H}

= arg max
w

E{wHy(t)yH(t)w}

= arg max
w

wHE{y(t)yH(t)}w, subject to wHw = 1 (2.9)

Remembering the signal model given in (2.1), (2.9) becomes as follows,

wopt = arg max
w

σ2
swHa(θk)aH(θk)w + σ2

vwHw, subject to wHw = 1

= arg max
w

σ2
s |wHa(θk)|2 + σ2

v |w|2, subject to |w| = 1, (2.10)

where σ2
s is the signal power and σ2

v is the noise power. Then, the optimum weights

are obtained as [7],

wCBF =
a(θk)√

aH(θk)a(θk)
. (2.11)

DOA estimate is taken as the angle of the largest peak of the spatial spectrum, |wH
CBFy(t)|2.

Using (2.11), the spatial spectrum is obtained as follows [5],

PCBF (θ) =
|aH(θ)y(t)|2

aH(θ)a(θ)
. (2.12)

When there are K sources in the medium, the location of K largest peaks of (2.12)

are taken as DOA estimates. The main problem in conventional beamforming is the

resolution performance. Independent of the quality or amount of the available data,

the resolution of the conventional beamformer is limited [7]. The resolution here is

the ability to separate two sources close to each other in terms of angle of arrival.

Algorithmic steps for conventional beamforming in the existence of K sources are as

follows:

1. Collect output data samples y(t)

12



2. Calculate weights w(θ) using 2.11

3. Evaluate (2.12) for all θ directions

4. Locations of K largest peaks are DOAs

2.2.1.2 Capon Beamforming

In order to improve the resolution performance of the conventional beamformer, a

new method has been proposed by Capon [8]. The optimization problem for a single

source is now given as follows:

wopt = arg min
w

wHRyw subject to wHa(θk) = 1 (2.13)

where Ry = E{y(t)yH(t)} is the output covariance matrix. In this formulation, as it

is seen from (2.13), the aim is to minimize the output power while keeping the power

in steering direction θk constant, therefore the method is also known as Minimum

Variance Distortionless Response (MVDR). In this way, while noise and interference

from directions other than the steering direction are attenuated, the power of the signal

coming from steering direction is kept constant. The optimum weights for Capon

beamformer (CPN) are obtained as [5],

wCPN =
R−1
y a(θk)

aH(θk)R−1
y a(θk)

. (2.14)

The spatial spectrum using (2.14) is,

PCPN(θ) =
1

aH(θ)R−1
y a(θ)

. (2.15)

The location of the largest peak in spatial spectrum (2.15) is the DOA estimate. In

case of K sources the locations of K largest peaks of (2.15) are DOA estimates.

Although Capon beamforming has a better resolution compared to conventional beam-

forming, its resolution limit also depends on the number of sensors and SNR [5].
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Moreover, computing R−1
y becomes computationally prohibitive as the number of

sensors increase and it may fail in case of coherent signals since Ry becomes ill-

conditioned [9]. Robust variants of Capon beamforming have been proposed to over-

come this problem [10, 11].

In practice, output covariance matrix Ry is not available, therefore an estimate, sample

covariance matrix, computed from output data samples is found as,

R̂y =
1

N

N∑
t=1

y(t)yH(t). (2.16)

Fundamental steps of Capon beamforming algorithm for K sources are as follows:

1. Collect output data samples, also known as snapshots, y(1), y(2), ..., y(N)

2. Evaluate the estimate of the covariance matrix from (2.16)

3. Evaluate (2.15) for all θ directions

4. Locations of K highest peaks are DOAs

2.2.2 Subspace Based Methods

The main idea in subspace based methods is to partition the covariance matrix Ry,

of the array output y(t), into signal and noise subspaces. These two subspaces are

orthogonal and obtained by eigenvector decomposition. It is assumed that there are

K sources which are incoherent, wide sense stationary processes [5]. Subspace meth-

ods are sub-optimal, high-resolution methods, and they are widely used in practice.

Moreover, the estimates are statistically better in comparison to beamforming tech-

niques [7]. However, they require much more computation, and in low SNR cases

"subspace swap" may cause serious problems.

Consider the signal model given by (2.1). Assuming the noise in sensors are spa-

tially and temporarily white, Gaussian, and uncorrelated with the sources, the auto-
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correlation matrix of the array output is determined as,

Ry = ARsAH + σ2
vI, (2.17)

where Rs isK×K covariance matrix of the sources. Since the sources are incoherent,

Rs is full rank. θ has been dropped in (2.17) for simplicity. σ2
v is the power of the

noise signals which are both temporarily and spatially independent from each other,

and are white Gaussian processes with zero mean, and I is identity matrix.

Let U = [u1u2...uM ] and V = diag(λ̄1, λ̄2, ..., λ̄M) where um and λ̄m are the mth

eigenvector and corresponding eigenvalue of Ry, respectively. A is full rank (K),

however ARsAH is M dimensional therefore M − K eigenvalues of ARsAH are

zero. Thus, M − K smallest eigenvalues of Ry are σ2
v . Let λ̄1 ≥ λ̄2 ≥ ... ≥

λ̄K+1 = λ̄K+2... = λ̄M = σ2
v with corresponding eigenvectors u1,u2, ...,uM . The

eigenvectors spanning signal subspace are the firstK eigenvectors, Us = [u1u2...uK ],

and the ones which span noise subspace are the remaining M − K eigenvectors,

Un = [uK+1uK+2...uM ] [7]. Here, Us ⊥ Un and A ⊥ Un. Moreover, A and Us span

the same column space [5, 7, 9].

2.2.2.1 MUSIC

MUSIC (MUltiple SIgnal Classification) is one of the oldest and most commonly used

noise subspace methods for DOA estimation [9]. There are variations of MUSIC such

as Root-MUSIC, Weighted MUSIC, Spectral MUSIC. Here Spectral-MUSIC method

will be described.

Noting that all eigenvectors in Un correspond to the same eigenvalue σ2
v we have,

RyUn = σ2
vUn. Inserting (2.17) into this expression we get

(ARsAH + σ2
vI)Un = σ2

vUn → ARsAHUn = 0 (2.18)

It is known that A is full rank and Rs is nonsingular [9], this implies that AHUn = 0,

as indicated previously, A ⊥ Un. Remember that A = A(θ) = [a(θ1), a(θ2), ..., a(θK)]
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therefore, all steering vectors with true DOA will satisfy aH(θk)UnUH
n a(θk) = 0, for

k = 1, 2, ..., K. Thus, the MUSIC spatial spectrum is defined as [9],

PMUSIC(θ) =
1

aH(θ)UnUH
n a(θ)

. (2.19)

The DOA estimates can be found as locations of K largest peaks of the spectrum

obtained by (2.19).

Fundamental steps of MUSIC in case of K sources are as follows:

1. Collect output data samples y(1), y(2), ..., y(N).

2. Evaluate the estimate of the covariance matrix from (2.16).

3. Find the eigenvalues and the eigenvectors of R̂y and determine noise subspace

Un. Note that the number of sources can be found by extracting the number of

repeating smallest eigenvalues from the number of sensors.

4. Evaluate (2.19) for all θ.

5. Locations of K highest peaks are DOAs.

2.2.3 Comparison of DOA Methods

In this section a comparison of the DOA methods given above will be presented using

a sparse linear array. For comparison, a Minimum Redundancy Array (MRA) with

8 sensors will be used [1]. MRAs achieve maximum resolution by minimizing the

redundant spacings present in the array. There is no closed form expression for the

topology of these arrays, they are obtained by optimization algorithms [1,2]. The lay-

out of the array is given in Figure 2.1. In DOA estimation and resolution simulations,

the result for each SNR is an average of 1000 Monte Carlo runs.

2.2.3.1 Spatial Spectrum

The spatial spectra obtained by conventional beamforming (CBF), Capon and MU-

SIC methods are given in figures 2.2, 2.3 and 2.4. In Figure 2.2, there is a single target
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Figure 2.1: MRA layout. Solid Rectangles stand for sensors and crosses represent

number of empty spaces or holes. Elements are located at multiples of d = λ/2

(half-wavelength).

at broadside (θ = 90) of the array, and there are 4 SNR values. The number of snap-

shots for Capon and MUSIC is 50. The spatial spectra for a line array is symmetric

with respect to end-fire of the array, therefore, results for [0 180]◦ interval have been

provided.
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Figure 2.2: Comparison of spatial spectra for different SNR values, single target.

Figure 2.2 tells us that CBF performs very poorly due to missing sensors even at

high SNR, however, Capon and MUSIC are not affected much since they collect the

information provided by the missing sensors from the auto-correlation function of the

array. Moreover, these methods are more appropriate for a coarray based design. In

Capon and MUSIC, the sidelobes are suppressed more as SNR increases.
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Figure 2.3: Comparison of spatial spectra for 7 targets.

In figures 2.3 and 2.4 there are 7 and 9 targets, respectively. Due to restriction in

number of sources in MUSIC, at most 7 sources can be resolved by this method,

therefore in Figure 2.4 MUSIC is not given. However, there is no restriction for CBF

or Capon. CBF performs poorly due to missing sensors as expected. On the other

hand, Capon successfully detects all sources in the given examples. Moreover, notice

that the spurious peaks observed in both MUSIC and Capon spatial spectra gets higher

and increases in number. Specifically, in MUSIC spatial spectrum, the spurious peak

at around 50◦ is very high. Moreover, although all sources have the same SNR, the

level of some of the targets in MUSIC spectrum is lower due to sparsity. Therefore,

although Capon and MUSIC may have satisfactory results for a single target and high

SNR, as the number of targets increases their performances degrades for the given

sparse array.

2.2.3.2 DOA Estimation

RMSE of DOA estimation for a single target with respect to SNR is given in Figure

2.5. DOA has been randomly selected in each run between [45, 135]◦. For smaller

18



0 20 40 60 80 100 120 140 160 180

Azimuth (deg)

-30

-25

-20

-15

-10

-5

0
SNR = 10 dB

Conventional

Capon

Source Directions

Figure 2.4: Comparison of spatial spectra for 9 targets.

SNR values the performances of Capon and MUSIC also degrade due to missing

sensors. Capon and MUSIC performs very similarly, except that MUSIC makes the

sharp decrease before the Capon.

2.2.3.3 DOA Resolution

The resolution here is defined as the ability of discriminating two close targets, and

results are provided in Figure 2.6. In resolution simulations, two closely located

sources are considered. The sources are located at 90±∆θ degrees. If two peaks are

observed around 90 degrees with separation bigger than ∆θ, then it is assumed that

the sources are resolved otherwise they are not resolved. The superiority of MUSIC

in resolution is observed in Figure 2.6. CBF cannot succeed to resolve the targets

even at 10 degrees separation.
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2.3 Conclusion

In this chapter, DOA estimation methods used in the following chapters are presented.

MUSIC is used in Chapter 3, and CBF is used in Chapters 5 and 6. On the other hand,

Capon has also been included because of its similarity to SVA presented in Chapter

4.

The focus of this thesis is on sparse linear arrays, therefore in the last section of this

chapter, a sparse linear array has been used to compare the performance of CBF,

Capon, and MUSIC. The conclusion of simulations can be stated as; CBF performs

poorly in DOA estimation with the sparse array presented in Figure 2.1. Capon and

MUSIC, on the other hand, have given sufficient and acceptable results for a single

target. Moreover, it can be concluded these methods can be used with an appropriate

choice of a sparse array. MUSIC is restricted by the number of sensors but has better

resolution and RMSE performance compared to Capon.

21



22



CHAPTER 3

ANALYSIS AND COMPARISON OF COARRAY BASED SPARSE ARRAYS

The study of sparse linear arrays has started in the 1960’s and remains a hot topic.

Since then, the problem has been approached in a variety of ways, and many different

optimization algorithms have been used to design sparse arrays. In the early years of

sparse array research, in addition to other methods that involve array pattern related

measures, the problem had been handled in terms of the coarray structure. Such

methods do not directly involve pattern-based objectives, and in some cases, they have

closed-form structures; we call these methods as coarray based methods. Nowadays,

coarray based methods are attracting considerable attention again. In this chapter,

the analysis and comparison of the most commonly known ones of those arrays are

conducted. Moreover, the necessity and the success of those arrays are discussed by

chasing answers to two questions with simulation results. First, while keeping the

number of sensors fixed what is the optimum layout? Secondly, while keeping the

aperture fixed what is the optimum number of sensors to be used?

3.1 A History of Sparse Arrays

The work on sparse linear array design dates back to the 1960’s (in some cases,

"nonuniform" instead of "sparse" may be more appropriate for these early studies)

[1, 12–21]. One motivation behind these early studies is to realize a tapered field

distribution over the antenna aperture by properly adjusting the spacing between the

elements of a discrete element antenna instead of varying element excitations. This

approach has been called "space tapering". Space tapering was considered as an alter-

native to amplitude tapering in reducing sidelobes. By that time, sidelobe reduction
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by tapering a continuous source distribution had already been studied [22–24].

In [12], a sparse array design has been made by varying the spaces between the array

elements using the continuous field distribution of a reference pattern. The aperture

is kept fixed and the number of sensors is reduced compared to a ULA with the same

aperture. In [13] for the first time, as of our knowledge, an optimization technique,

dynamic programming, has been used for "thinned" array design. It is basically a

trial-and-error computational technique which systematically eliminates most of the

possible configurations in searching for an optimum configuration to achieve a desired

pattern. As the authors report, their designs were better than the reported methods at

that time at the expense of significantly more computations. The effects of the de-

sign parameters are studied but the optimality of the results has not been verified in

the paper. The authors in [14] make use of Poisson’s sum formula and a "Source

Position Function", and derive a transformation between an equivalent continuous

source distribution and a given unequally-spaced array. Then, according to the num-

ber of elements, desired side lobe and grating lobe suppression levels, the continuous

source distribution is found. The element locations of the unequally-spaced array

can be obtained by the transformation. The method has been especially successful

in suppressing the sidelobes near the mainlobe, however, its performance degrades

at distant sidelobes. This is mainly because the underlying assumptions are not suf-

ficiently supported in those regions. The method in [14] has been extended in [15]

and an analytical array design method has been presented. The problem of having

high sidelobes in regions far from the mainlobe has been solved. In addition to that,

the design has been modified such that the beam-pattern does not have any high side-

lobes in the bandwidth determined by the design parameters. A statistical analysis

was made in [16] to reveal the interaction between the physical antenna properties

(number of elements, element placement, aperture size) and performance indicators

(sidelobe level, resolution, gain, beamwidth). The study has led to promising conclu-

sions about nonuniform placement of the array elements. In [17], finding the optimum

values of element excitations and locations was formulated as a constrained nonlin-

ear optimization problem. The problem is transformed into a series of unconstrained

nonlinear problems and solved by the Fletcher-Powell method. In [21], space tapered

2-D arrays were designed by adjusting the element spacing according to a reference
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amplitude tapering. Specific locations of antenna elements were determined by a

probabilistic method. In [19], space tapered arrays were designed by using analog

and digital computers together. In each round, a sequence of antenna patterns are

computed for varied positions of a single element, and the best position is determined

for that element. In [20], the results of the studies conducted up to that time have

been examined, and it has been concluded that the results obtained by trial-and-error

methods and by non-global optimization methods are not very different and that the

design with the lowest sidelobe can only be found by using truly global optimization

methods.

After the work of Arsac, [25], towards the end of the 1960’s, Moffet, [1], introduced

the terms "Redundancy" and "Minimum Redundancy Linear Array" (MRLA) in the

context of sparse array design. In [1], the objective in finding the element locations of

an array for a given number of total elements is the maximization of the resolution. To

achieve this, the target is set as the maximization of the support of the complete part

(without zeros) of the spatial/spectral sensitivity function stated as "the minimization

of the number of redundant spacings present in the array". In doing this, elements

locations form a subset of multiples of half wavelength. Such an objective also serves

to obtain a complete set of autocorrelation values up to a maximized lag, a point of

attention after the introduction of high resolution array processing methods. Spa-

tial/spectral sensitivity function and difference coarray have overlapping meanings.

The term coarray was first used in [26], [27]. Obtaining a complete spatial/spectral

sensitivity function was an important requirement to observe completely the spectrum

of the intensity variation on the sun’s surface [28], [29], [30]. No design criteria other

than elimination of zeros of the spatial/spectral sentivity function while maximizing

array aperture has been mentioned. This contrasts the array pattern referenced design

trend which dominates in this field. A particular geometry presented under the name

of "Compound Grating Interferometer" [1] is important since later this geometry has

been presented as ’Nested Arrays’ in 2010 [31]. A very similar configuration for a

large number of arrays has been presented in [32].

The studies on nonuniform/sparse linear antenna design show a slowdown by the

number of published papers in the 1970’s. Besides the variation of choices of the

optimization (free) variables, proposed methods aim to achieve predefined array pat-
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terns. In [33], a shaped-beam is synthesized by using simple array pattern formulas

without a rigorous optimality concern. However, after inserting the parameters of

the desired shaped-beam into array pattern formula, the locations and related am-

plitudes are selected manually. Reference [34] extended the application of optimal

pattern design in the minimax sense to nonuniform symmetric linear arrays and has

demonstrated that by just using an unequal spacing instead of equal spacing, the side-

lobe levels can be decreased. The method finds the excitations of the elements for

a given set of element positions. On the other hand, a very basic result has been

shown in [34]; for a given aperture size, as sidelobe level decreases, the beamwidth

increases. Reference [35] is one of the initial works to include element positions into

the optimization process. A perturbation technique has been applied in [35] to design

an array pattern employing L2 or L∞ norms. In the perturbation, either the positions

and currents of antenna or only the antenna currents have been varied. The method

starts with initial values for positions and currents and stops when the error between

the desired array factor and designed array factor does not decrease anymore by any

perturbation. The designed array factors seem to reach desired ones, however, the

complexity is high since too many iterations have to be implemented. Moreover, the

iterations may not converge depending on the initial values. The authors of [35] have

used the perturbation method in another work [36], but this time perturbing only po-

sitions or only phases of antenna elements. Divergence problem was also reported

in [36]. In [37] another iterative method for symmetric nonuniform array design has

been used. Element excitations are kept the same and fixed during the design process.

In each iteration, the element positions are perturbed by a small value and using the

array pattern function of unperturbed and perturbed array, the new positions of array

elements are determined. The element positions to perturb are taken from the previ-

ous iteration. As the search is performed in a heuristic manner, the array pattern after

a perturbation may not be satisfactory, in that case, another perturbation is made. The

solution for a desired array pattern may not be unique.

MRLA for a large number of sensors has been presented in [2]. The problem state-

ment to obtain an MRLA has been given and different methods have been proposed

for the solution. Two of the proposed methods use a systematic approach using a com-

bination and recursion of smaller MRLAs to design MRLAs with many elements. In
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addition to those systematic approaches, 3 ad-hoc methods that use the power of dig-

ital computation have also been used. While the systematic approaches can only be

used for a specific number of antennas, ad-hoc methods do not have considerable

superiority over existing MRLAs, on the other hand, they require too much computa-

tion.

It seems that the research activity on sparse linear arrays has a lower profile in 1980’s

also, and again mostly follows array pattern-based approach. In [38], MRLAs and

“Minimum Hole Linear Arrays" (MHLA) have been studied considering the concept

of coarray. A method to design a recursive MHLA has been provided. The optimum

array structures depending on the algorithm used have been stated for source detection

and bearing resolvability. In [39] a detailed comparison between sparse and uniform

arrays on the basis of array patterns with supporting examples has been provided. A

design procedure in which the elements are only located on the multiples of the half

wavelength has been presented. The procedure is applicable to only symmetric arrays.

A uniform array is thinned by removing a symmetric pair of sensors which results in

minimum side lobe level for the newly formed array, this procedure is repeated until

the desired number of sensors is obtained. After determining sensor locations, best

weights are searched with linear programming.

In the 1990’s and 2000’s, a remarkable increase in the number of published works

related to sparse linear arrays, is observed. The focus of research is at achieving

predefined array patterns with emphasis on sidelobe characteristics. In general, both

element locations and weights are included as optimization variables. Starting from

early 1990s till the end of 2010s, the genetic algorithm (GA) and the simulated an-

nealing seem to be the mostly applied methods for sparse array design due to the

combinatorial nature of the problem, [40–50]. As of our knowledge, the genetic algo-

rithm has been used for array synthesizing in [40] for the first time. The steps of the

GA are well described and adapted for the array design. The advantages of the GA

are being more efficient for a large number of sensors and in contrast to the existing

methods in that time, the ability to overcome the local minima due to the mutation

step [40]. On the other hand, the problems of GA are that the convergence can be

very slow to have a good design and that it is not applicable to real-time optimization

procedures. Moreover, there is no single way to implement the steps of GA which
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are crossover, selection and mutation. This results in having different outcomes for

different implementation ways. In [49], GA has been simplified by using the array

excitation weights as chromosomes and avoiding encoding/decoding. Although, the

design proposed in [49] seems to be successful in terms of sidelobe suppression, the

design only includes weight optimization. In other words, the layout optimization

of the array is not done in [49]. Moreover, when the array is steered to a different

direction than the broadside, the sidelobe level increases.

Simulated Annealing (SA) was first proposed to “simulate the behavior of the molecules

of a pure substance during the slow cooling that results in the formation of a per-

fect crystal (minimum-energy state)" [42, 51]. Later, it has been used for different

optimization problems in which the variables that minimizes the cost function have

similar states to that of the molecules. Non-optimal solution and slow convergence

disadvantages seen in GA are also observed in SA. In [42], as authors state, Simulated

Annealing (SA) has been applied to array design type problems for the first time. SA

has been adapted such that the positions and the weights of the sensors are optimized

to have minimum sidelobe level. The results seem to be better than the existing so-

lutions at that time. However, due to nature of SA, the obtained solution may not be

optimal and even in some cases may be worse than the existing solutions.

Compressive Sensing (CS) is one of the most recently applied methods in linear

sparse array design. [52–59]. Under suitable conditions, CS indicates that it is pos-

sible to reconstruct necessary information from an incomplete data set [60]. Refer-

ence [58] uses a famous greedy algorithm known as Orthogonal Matching Pursuit

together with spherical wave expansion for the problem. In the design process of that

study, both element field patterns and mutual coupling between elements are consid-

ered. In [57], the extension of CS to wideband arrays has been provided. Inspiring

the idea used in robust beamforming methods, a robust CS method has been presented

in [54] by adding an extra constraint. Extension of Bayesian Compressive Sensing to

sparse arrays has been successfully used in [55] and [52].

Recently, coarray based methods regained attention, [31, 61–64]. Design of sparse

arrays based on coarray concepts is not new (even before the use of the term “coar-

ray") [1,26–30,65]. Coarray based methods aim to minimize redundancy in the coar-
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ray, maximize the length of hole free segment of the coarray, and therefore maximize

array aperture and resolution. Coarray based designs were applied in radio astronomy,

and for DOA estimation combined with MUSIC type processing. Recently, following

the study on “Nested Arrays", [31], other methods have been proposed; “Co-prime

Arrays" (CA) [61], “Augmented Nested Arrays" (ANA) [63], “Super Nested Arrays"

(SNA) [64] and “Sparse Ruler Array" (SRA) [62]. The basic motivating arguments

are the lack of the need for optimization routines for array element placement, i.e.,

existence of closed form expressions for array topology (except SRA), and that the

degree of freedom (DOF) can be significantly increased compared to that of a uni-

form linear array of the same amount of elements. DOF of an array is related to

the maximum number of sources that it can resolve. On the processing side, spatial

smoothing methods are used to have a full rank correlation matrix and the MUSIC

method is applied for DOA estimation. In particular, the MUSIC method in coarray

based processing has been called as coarray-based MUSIC.

In this chapter, the analysis and the comparison of coarray based sparse arrays are

presented. The comparison criteria are Cramér-Rao Lower Bound (CRLB), DOA es-

timation accuracy, degrees of freedom, DOA resolution and mutual coupling. How-

ever, the main purpose is to answer two fundamental questions based on the results of

simulations made for analysis and comparison. Firstly, we look for the array layout

which yields the best results while keeping the number of sensors fixed. Secondly,

assuming the cost and complexity issues are neglected, we look for the array which

shows the best performance in a fixed physical aperture scenario.

In Section 3.2, the signal model used in coarray domain and the signal model under

mutual coupling are presented. Moreover, candidate arrays used for comparison and

their design details are explained. Section 3.3 gives the Coarray-MUSIC and spa-

tial smoothing methods used in Coarray-MUSIC. The CRLB for DOA estimation in

under-determined signal model is also provided in Section 3.3. The simulations and

analyses are presented in Section 3.4. Section 3.5 concludes up the chapter.
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3.2 Coarray Based Signal Models and Coarray Based Arrays

The difference coarray of an array is the collection of differences between the loca-

tions of its sensors. Specifically, if the sensor locations (at some multiples of λ/2)

are S = {d1, d2, ..., dM}, the corray is D = {di − dj}, i, j = 1, 2, ...,M . An array

without “holes" in its coarray is preferable.

In [3], a new model for aperture extension by vectorizing array covariance matrix has

been introduced. Consider an M element sparse linear array with sensor locations S,

and K uncorrelated, far field sources with directions θ = [θ1, θ2, ...θK ]T , the array

output at tth snapshot is given as,

y(t) = A(θ)s(t) + v(t), (3.1)

where s(t) = [s1(t), s2(t), ..., sK(t)]T are the incoming signals, v(t) is the M × 1

noise vector, and A(θ) = [a(θ1), a(θ2), ..., a(θK)] is the M ×K manifold matrix.

The noise is assumed to be zero mean, spatially and temporarily white. The array

steering vector is,

a(θk) =[ej
2π
λ
d1 cos θk ej

2π
λ
d2 cos θk ... ej

2π
λ
dM cos θk ]T ,

k = 1, 2, ..., K. (3.2)

When the elements of the noise vector are spatially and temporarily white, and un-

correlated with sources, the auto-correlation matrix of array output, Ry, becomes

Ry = ARsAH + σ2
vI, (3.3)

where I is the identity matrix and Rs is the auto-correlation matrix of the sources,

and σ2
v is the noise power. Assuming sources are uncorrelated, Rs becomes diagonal,

Rs = diag(σ2
1, σ

2
2, ..., σ

2
K) where σ2

k is the power of the kth source. Vectorizing Ry,

stacking its columns on each other, the following model is obtained,

z = vec(Ry) = (A∗ � A)p + σ2
v1v = Adp + σ2

v1v, (3.4)

where (A∗ � A)M2×K = [a(θ1)∗ ⊗ a(θ1) a(θ2)∗ ⊗ a(θ2) ... a(θK)∗ ⊗ a(θK)] , p =

[σ2
1, σ

2
2, ... , σ

2
K ]T , and 1v = [eT1 eT2 ... eTM ]T . eTm is a column vector of all zeros except
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a 1 at location m, � is Khatri-Rao product, and ⊗ is Kronecker product. Note that

the entries of [a(θk)
∗ ⊗ a(θk)] are as ej(2π/λ)(di−dj) cos(θk) for i, j = 1, 2, ...,M . z in

(3.4) will be referred to as "coarray vector".

Comparing (3.1) and (3.4), it can be concluded that (3.4) is a different version of

classical array model with a longer array consisting of virtual sensors located at (di−
dj), i, j = 1, 2, ...,M with sources p = [σ2

1, σ
2
2, ..., σ

2
K ]T and noise σ2

v1v, note that

the noise is deterministic in this model. Moreover, the locations of sensors of this

new model is the coarray of the actual array. Therefore, coarray based signal model,

i.e. coarray vector, can be used for DOA estimation. In the matrix Ad = (A∗ � A),

there are repeated rows, in order to use the coarray vector for DOA estimation, either

repeated rows are removed after the first occurrence or their mean is used. Let A1 be

the new matrix constructed from (A∗ � A) by removing repeated rows, and sorting

the rows such that the sensor locations in coarray are in the increasing order, the new

model is obtained as

z1 = A1p + σ2
ve, (3.5)

where e is a vector of all zeros except a 1 in the center position, location corresponding

to 0 in coarray. z1 can be used for DOA estimation in the coarray domain.

3.2.1 Mutual Coupling

In obtaining the array model in (3.1), it is assumed that there is no mutual coupling

between the sensors. As this is not a realistic assumption, mutual coupling is modeled

by inserting a coupling matrix C into (3.1),

y(t) = CA(θ)s(t) + v(t). (3.6)

The coupling matrix C has many variants depending on the type of sensors, their

separation, working mode, operating frequency, impedance, etc. Therefore, there are
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different forms of C, in this work the B-banded mode, [63, 64, 66, 67], is used,

Ci,j =

c|di−dj | if |di − dj|/d ≤ B,

0 otherwise.
(3.7)

The magnitudes of the elements of the C matrix are inversely proportional to sensor

separation such that 1 = |c0| > |c1| > ... > |cB| > |cB+1| = 0. Note that, the off-

diagonal entries of C characterizes the mutual coupling, hence a diagonal C indicates

no mutual coupling. Therefore, a coupling leakage, L, has been defined in [64] for

the total mutual coupling,

L =
||C− C̃||F
||C||F

, C̃i,j =

Ci−j if i = j

0 otherwise.

where ||.||F is the Frobenius norm. Smaller L indicates smaller mutual coupling.

3.2.2 Some Useful Definitions

Before presenting the coarray based arrays, some useful definitions will be given.

Degrees Of Freedom (DOF) : The difference coarray D, may have repetitions. The

cardinality of the distinct elements of D, is defined as the degrees of freedom.

Central ULA : The central part of the coarray with no holes.

Uniform DOF (uDOF) : The number of virtual sensors in the central ULA of the

coarray is defined as uniform DOF. Actually, this can also be called as effective DOF,

since this number determines the number of sources that can be resolved or identified

by coarray MUSIC and coarray based methods. For a coarray with a uDOF 2Mv − 1,

the number of sources resolvable is Mv − 1.
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Figure 3.1: A 2-level Nested Array with 3 sensors in each level (top), and its coarray

(bottom).

3.2.3 Nested Arrays

In [31], a sparse array structure, "Nested Array" (NA), has been introduced which has

a closed form array geometry and provides O(M2) DOF for O(M) sensors. An NA

is a concatenation of uniform linear sub-arrays with different sensor separations. The

sensor positions of a K-level NA are given as SKlevel = ∪Ki=1Si, where

Si =

{
nd

i−1∏
j=1

(Nj + 1), n = 1, 2, ..., Ni

}
, (3.8)

i = 2, 3, ..., K; S1 = nd, n = 1, 2, ..., N1.

d = λ/2 is the minimum sensor separation, Ni’s are the numbers of sensors in each

level. A 2-level NA with 3 sensors in each level, and its coarray is shown in Figure

3.1. In figures 3.1 to 3.6 solid rectangles stand for sensors and crosses for holes.

The disadvantage of an NA, as the authors claim, is the mutual coupling between

the close sensors in the first level. However, the proposed array structure may have

holes in its coarray if the level of nesting is greater than two. Moreover, a 2-level NA

may have less DOF compared to the Minimum Redundancy Arrays (MRA) for the

same number of sensors, since MRAs are optimized to have the longest coarray with

no hole. The proposed spatial smoothing method in [31] can be applied to hole free

segment of the coarray, which means a loss in DOF when the level order is greater

than 2. To reduce mutual coupling, a different array structure, "Coprime Array" is

proposed in [61] by the same authors.
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Figure 3.2: A Coprime Array, M = 2, N = 3 (top), and its coarray (bottom).

3.2.4 Coprime Arrays

A Coprime Array (CA) involves two linear sub-arrays. One of the sub-arrays has M

sensors with Nd spacing and the other one has N sensors with Md spacing. They

share the same sensor as the first element, therefore there are a total of M + N − 1

physical sensors. M and N are coprime integers. In some works, the structure is

given as M sensors with Nd spacing and 2N − 1 sensors with Md spacing. Here,

we use the structure with the larger physical aperture for the same number of sensors.

A CA with M = 3 and N = 2, and its coarray is seen in Figure 3.2. Notice that,

there are holes in the coarray of a CA. This is a disadvantage of CAs and results in a

smaller uDOF compared to NAs. Although the main purpose of proposing the CAs is

to reduce the mutual coupling, as also observed in the provided example a significant

amount of unit spacings may exist.

3.2.5 Super Nested Arrays

"Super Nested Arrays" (SNA) have been introduced in [64] as an improvement reduc-

ing the mutual coupling in NA and holes in CA. An SNA is obtained by a systematic

approach in which the sensors in the dense subarray of a parent NA are distributed

into the sparse subarray. The number of relocated sensors determines the order of

SNA. 2nd and 3rd order SNAs are given in [64], whereas higher-order SNAs are given

in a companion paper [68]. As the sensors are relocated within the sparse subarray,

the physical aperture and coarray of the parent NA and SNA remains unchanged.

The only difference is in the redudancy in spatial sampling. SNA usually has smaller

sampling counts (spatial sensitivity) for the smaller spatial frequency components.

An SNA, parented by the NA given in Figure 3.1, is given in Figure 3.3. The effec-
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Figure 3.3: A Super Nested Array, parented by the Nested Array in Figure 3.1 (top),

and its coarray (bottom).

Figure 3.4: An Augmented Nested Array, parented by the NA in Figure 3.1 (top), and

its coarray (bottom).

tiveness of the SNA structure becomes more obvious with higher number of sensors

and orders.

3.2.6 Augmented Nested Arrays

In [63], NAs have been reorganized to get the structure named “Augmented Nested

Array" (ANA). Compared to an NA with the same number of sensors, ANA has a

higher DOF and lower mutual coupling. This is achieved by distributing the sen-

sors of a dense subarray of the NA either into two parts (2-level ANA) or into four

parts (4-level ANA) by two different methods. Therefore, four different closed-form

configurations have been provided which have no holes in their coarrays. A 2-level,

type-1 ANA, parented by the NA shown in Figure 3.1, is given in Figure 3.4. Figure

3.4 shows that the mutual coupling has been decreased and DOF has been increased

as claimed, however, notice that the physical aperture has been also increased. This

is pointed out as the main reason for the simultaneous improvements in mutual cou-

pling and DOF by the authors of [63] as compared to SNAs. As a matter of fact, it

should also be noted that the claimed results are applicable for arrays with more than

10 sensors.
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Figure 3.5: A Sparse Ruler Array, (top) and its coarray (bottom).

3.2.7 Sparse Ruler Arrays

"Sparse Ruler Arrays" (SRA) are based on a sparse ruler concept. A sparse ruler

can measure all integer distances between 0 and N − 1 with only M marks, where

M < N . The sparse ruler with minimum M is the "minimal sparse ruler". Although

the adaptation of sparse ruler to sensor arrays was proposed in [62], the problem of

the sparse ruler and its solution was first presented in [69]. SRAs have somewhat dif-

ferent structures than those presented above; they do not have closed-form structure,

a search is required to find a new structure for a given N. A list of SRAs is given

in [69], an example for M = 6 and N = 13 is given in Figure 3.5.

3.3 DOA Estimation Methods and CRLB

The coarray based signal model, z1, in (3.5) can be used for DOA estimation in the

coarray domain. z1 can be seen as a single snapshot in conventional sense, how-

ever, its correlation matrix Rz = z1 ∗ zH1 is a rank-1 matrix. Therefore, subspace

based methods cannot be applied directly, further action is required. Assume that the

support of the central ULA of the coarray is −Mv + 1, −Mv + 2, ... − 1 , 0 , 1,

... ,Mv − 2, Mv − 1. The coarray can be partitioned into Mv overlapping subarrays

of Mv elements, denoted by z1_1, ..., z1_Mv . A partitioning for Mv = 12 is shown in

Figure 3.6.
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Figure 3.6: Subarray partitioning of a coarray.

3.3.1 Spatially Smoothed (SS)-MUSIC and Direct Augmentation (DA)-MUSIC

In [31], a "Spatial Smoothing" (SS) method has been used to be able to apply the

MUSIC method. In spatial smoothing, the auto-correlation matrix is obtained as,

Rz1 =
1

Mv

Mv∑
i=1

z1_izH1_i. (3.9)

Rz1 is full-rank, and the method is called SS-MUSIC.

Another method to obtain a full-rank auto-correlation matrix is given in [70] as,

Rz2 = [z1_Mv z1_Mv−1 ... z1_1] =
Mv∑
i=1

z1_(Mv−i+1)e
T
i . (3.10)

MUSIC with Rz2 is called “DA-MUSIC". Actually, Rz1 and Rz2 are related as Rz1 =

R2
z2/Mv, [71].

3.3.2 Cramér-Rao Lower Bound (CRLB)

CRLB in DOA estimation for linear arrays has been investigated in [72, 73]. This

bound is valid when sensors are more than sources, i.e. it is valid for the over-

determined case. CRLB for more sources than sensors, i.e. the under-determined

case, has been independently studied in [71,74,75]. The common outcome is that the

CRLB exists for the stochastic signal model and is strictly nonzero. The CRLB of

coarray based DOA estimation for under-determined case, see (3.1), (3.3) and (3.4),

has been found as [71, 74, 75],

CRLB(θ) =
1

Ts
(MH

θ Π⊥Ms
Mθ)

−1. (3.11)

37



where Ts is the number of snapshots, Mθ =
(
RT
y ⊗ Ry

)−1/2ȦdP, and Ms =
(
RT
y ⊗

Ry

)−1/2
[Ad1v]. Π⊥Ms

is the projection operator onto the null space of MH
s and is

defined as Π⊥Ms
= I −Ms(MH

s Ms)
−1MH

s . Ȧd is the derivative of Ad and is defined

as Ȧd = (Ȧ
∗ � A + A∗ � Ȧ) where

Ȧ =

[
∂a(θ1)

∂θ1

∂a(θ2)

∂θ2

...
∂a(θK)

∂θK

]
. (3.12)

3.4 Simulation Results

The focus of the simulations is DOA estimation. DOA estimation performances of

candidate arrays are compared for two cases, with and without mutual coupling. Ad-

ditionally, target resolution simulations are also conducted. For a fair comparison,

the natural choice is to use the same number of sensors for the same aperture size.

However, as will be clear shortly, it is not possible to find such a match for all array

types used in the comparison. As a trade-off, the number of sensors is fixed and two

individuals from all NA, CA, SNA, ANA and SRA are selected; one with 6, and the

other with 10 sensors. The reason of this choice is their wide usage in the literature.

We call the 6-element group as Array Group 1 (AG1) and the 10-element group as

Array Group 2 (AG2). The sensor positions of the arrays are given in Figure 3.7. By

keeping the number of sensors fixed, the success of arrays in spanning the physical

aperture will also be compared.

Extra two ULAs have also been included in the simulations. These two arrays serve

as references for comparison. The classical MUSIC method has been used for the

reference arrays. One ULA (ULA1) has the same number of sensors with the com-

parison group while the other one (ULA2) has an aperture equal to the biggest one in

the comparison group. Remember that, maximum number of resolvable targets with

classical MUSIC is M − 1, where M is the number of the physical sensors.
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Figure 3.7: Sensor positions of the arrays.

Figure 3.8: The physical apertures spanned by the arrays.

3.4.1 Apertures and uDOFs

The physical apertures, and (uDOF-1)/2 of NA, CA, SNA, ANA, and SRA in terms

of the number of sensors are given in figures 3.8 and 3.9. Inspection of Figure 3.8

reveals the reason of different physical apertures in the simulations.

The implications of figures 3.8 and 3.9 are as follows:

• SRA has the maximum aperture, given the number of sensors, or it has the

minimum number of elements, given the aperture.

• All arrays have hole-free coarrays except CA. This justifies the minimal uDOF

of CA.
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Figure 3.9: uDOF (# of resolvable targets) obtained by the arrays.

• SRA outperforms the others in spanning the physical aperture, in particular as

the number of sensors increases.

Remember that the number of resolvable sources is (uDOF − 1)/2 and notice that

the number of resolvable sources is never larger than the physical aperture size in

terms of the half-wavelength. This seems to be a critical fact and it points to an

aspect of coarray based structures and processing that is not sufficiently emphasized

in [31,61–64]. The main factor that enables detection of more targets from sensors is

the enlargement of the aperture for a given number of sensors.

3.4.2 DOA Estimation

It was shown in [70, 71] that SS-MUSIC and DA-MUSIC have the same asymptotic

second-order statistics in DOA estimation. In this work SS-MUSIC is used with the

models in (3.1) and (3.5). Performance measure in DOA estimation for the candidate

arrays is taken as the mean square error of estimation,

MSE(θ) =
1

RK

R∑
r=1

K∑
k=1

(
θ̂

(r)
k − θ

(r)
k

)2

(3.13)
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where θ̂(r)
k is the estimate of kth source’s DOA, θk, at the rth Monte-Carlo run, R

is the number of total runs which is 1000 in all simulations, and K is the number

of sources. The sources are uniformly distributed between [30-150] degrees, and

randomly selected in each Monte-Carlo run. 90 degrees is the broadside of the arrays.

Average efficiency is used to measure the statistical efficiency of arrays in DOA esti-

mation. The average efficiency is defined as,

κ =
mean of diagonals of CRLB(θ)

MSE(θ)
. (3.14)

Average efficiency is expected to be, 0 ≤ κ ≤ 1, and for an efficient estimator κ = 1.

CRLB Analysis:

The CRLBs of AG1, AG2 and the reference arrays with respect to SNR, number

of snapshots, #sn, and number of sources, #so, are provided in figures 3.10 and

3.11. These are the traces of the corresponding CRLB matrices in (3.11). CRLBs

with respect to SNR have been given for two cases. In the first case, the number of

sources is smaller than the number of sensors (over-determined), on the other hand,

in the second case the number of sources is bigger than the number of sources (under-

determined). Analyzing figures 3.10 and 3.11, the following observations can be

made:

• The best and the worst performances in the comparison group are seen in

ANA/SRA and CA, respectively.

• Although mostly, ANA and SRA show similar performances, SRA’s curve in

AG1 shows an odd pattern when SNR increases, and its performance becomes

the worst.

• In AG2, ANA and SNA have similar odd patterns.

• Arrays with the same aperture have similar CRLB curves.

• Including the reference arrays, it can be stated that the aperture size seems to

be the most dominant parameter in the performance of an array. On the other
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hand, having the same aperture ULA2 has a better CRLB curve than ANA and

SRA.

• Even though NA and SNA have the same aperture and the coarray, their CRLB

values are different particularly for different numbers of snapshots.

• In under-determined cases, CRLB curves converge to a positive constant in-

stead of zero when SNR goes to infinity.

Let us review CRLB results in terms of the questions we are interested in. In the case

of a fixed aperture, the best results are obtained for a filled array. Therefore, for a

system where complexity and cost issues can be handled, optimization based designs

would be recommended. On the other hand, for a fixed number of sensors, the layout

is critical. In that case, the configuration which maximizes the aperture and has no

holes in the coarray is preferable. The advantage and superiority of coarray based

arrays become clear here. This result also supports our argument in the last paragraph

of Section 3.4.1.

MSE Analysis:

MSE and average efficiency curves for AG1 and AG2 are given in figures 3.12, 3.13,

3.14 and 3.14 respectively. The observations are as follows:

• The MSE curves wrt. SNR of coarray based arrays cease to decrease, and tend

to settle at a level as SNR increases and eventually results in an overcome of

ULA1. Accordingly, even though the coarray based arrays have larger physi-

cal apertures, with less sources than sensors, ULA1 has better performance at

higher SNRs. Therefore, in over-determined case using coarray based arrays

and coarray based MUSIC is not advantageous. The same results is observed

in average efficiency curves and agrees with the previous results [71, 76].

• The inferior performance of CA becomes more noticeable compared to CRLB

profiles. The gap observed in CA’s coarrray degrades its performance seriously.

• ULA2 with classical MUSIC yields much better results. Therefore, even though

ANA and SRA have the same aperture with ULA2, the number of sensors or

the DOA method makes a considerable difference.
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Figure 3.10: Trace of CRLB(θ) for AG1. a: #sn= 500, b-left: SNR = 0 dB, #so=

7, b-right: #sn= 500, SNR = 0 dB.
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Figure 3.11: Trace of CRLB(θ) for AG2. a: #sn= 500, b-left: SNR = 0 dB, #so=

11, b-right: #sn= 500, SNR = 0 dB.
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• Nonmonotonicities of MSE curves wrt. #so are observed, especially with ULAs.

• The performance ordering is similar to that observed with the CRLB curves.

The aperture size dominates.

• In over-determined case, the average efficiency decreases to zero as SNR in-

creases. On the other hand, in under-determined case average efficiency con-

verges to a positive value. This result is referred as "saturation" behavior of

coarray based MUSIC in high SNR regions in the literature [71,74,76]. There-

fore, higher DOF is obtained at the cost of the reduced statistical efficiency.

• In terms of our questions of interest, the outcomes are parallel to that of the

CRLB analysis. Additionally, the superiority of coarray based arrays is lost at

at higher SNRs and over-determined signal model.

The estimates for the MSE curves in figures 3.12 and 3.13 are obtained via the local

peaks of the spatial MUSIC spectrum. In some cases, the number of peaks was less

than the number of sources. In that case, this is assumed a failure, and not included in

the MSE calculation. The probabilities of estimating the true number of sources are

given in figures 3.16 and 3.17 for AG1 and AG2, respectively. The superiority of hav-

ing a filled array in a fixed aperture is more obvious in these simulations, particularly

in Figure 3.17. The bigger difference in Figure 3.17 is because of a higher sparsity

ratio in the comparison group of Figure 3.17.

Resolution Simulations:

The resolution performances of AG1 and AG2 are provided in figures 3.18 and 3.19,

respectively. In resolution simulations, two closely located sources are considered.

The sources are located at 90 ± ∆θ degrees. If two peaks are observed around 90

degrees with separation bigger than ∆θ then it is assumed that the sources are re-

solved. The resolution is closely related to aperture size, therefore the arrays with the

same aperture have similar results with minor differences. Within AG1, CA shows

the worst performance in resolution. ULA2’s performance has a delayed increase at

the smallest angles, except against CA, but its sharper slope makes it the earliest to

reach 1. The behaviors are similar among AG1 and AG2.
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Figure 3.12: MSE results for AG1. a: #sn= 500, b-left: SNR = 0 dB, #so= 7, b-right:

#sn= 500, SNR = 0 dB.
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Figure 3.13: MSE results for AG2. a: #sn= 500, b-left: SNR = 0 dB, #so= 11, b-

right: #sn= 500, SNR = 0 dB.
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Figure 3.14: Average efficiency results for AG1, #sn = 500
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Figure 3.15: Average efficiency results for AG2, #sn = 500
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Figure 3.16: Probability of having true number of peaks in the spatial spectra of AG1,

#sn = 500 and #so = 5.
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Figure 3.17: Probability of having true number of peaks in the spatial spectra of AG2,

#sn = 500 and #so = 9.
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Figure 3.18: Resolution results for AG1. #sn = 500, SNR = 0 dB.

3.4.3 Mutual Coupling

MSE simulations have been repeated with mutual coupling. The mutual coupling has

been modeled by the B-Banded model in (3.7), with B = 100. The entries of C

matrix are set as, [63, 64],

c1 = cse
jπ/3, cl = c1e

−jπ(l−1)/8/l, 2 ≤ l ≤ B (3.15)

where cs determines the strength of the mutual coupling. The coupling leakage de-

fined in (3.8) for the arrays in AG1 and AG2 for different cs values are given in tables

3.1 and 3.2. Even though SRA and ANA have higher DOF and larger physical aper-

ture, SNA has the lowest coupling leakage values.

The MSE results of AG1 and AG2 under mutual coupling are provided in figures

3.20 and 3.21. Although ULA2 has the biggest coupling leakage it has the best per-

formance. The reason is that the increase in the number of sensors has suppressed

the effect of mutual coupling. When figures 3.12, 3.13, and figures 3.20, 3.21 are
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Figure 3.19: Resolution results for AG2. #sn = 500, SNR = 0 dB.

Table 3.1: The Coupling Leakage for AG1

cs NA CA SNA ANA SRA ULA1 ULA2

0.1 0.1129 0.1049 0.0814 0.0933 0.0933 0.1456 0.1627

0.3 0.3225 0.3016 0.2379 0.2706 0.2706 0.4039 0.4434

0.5 0.4938 0.4664 0.3779 0.4242 0.4242 0.5927 0.6361

Table 3.2: The Coupling Leakage for AG2

cs NA CA SNA ANA SRA ULA1 ULA2

0.1 0.1154 0.0856 0.0724 0.0992 0.0757 0.1566 0.1709

0.3 0.3291 0.2496 0.2128 0.2865 0.2220 0.4295 0.4617

0.5 0.6309 0.5154 0.4531 0.5722 0.4691 0.7429 0.7719
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Figure 3.20: MSE results for AG1 under mutual coupling. cs = 0.1 and cs = 0.3,

#sn = 500 and #so = 5.

compared, it is seen that all arrays have higher MSE values when mutual coupling is

included. The sharp decrease in MSE of ULA1 is lost when mutual coupling exists.

Compared to other arrays, SNA has an improvement in MSE results: SNA shows the

worst results in figures 3.12, 3.13, except CA, and this has changed in figures 3.20

and 3.21. Therefore, it can be concluded that SNA seems to have the best mutual

coupling performance. This result can also be observed in tables 3.1 and 3.2.

3.5 Conclusion

In this chapter, a historical progress of sparse linear arrays, and analysis and compar-

ison of the recently proposed sparse linear arrays have been presented. One of the

most recent and popular methods in designing sparse arrays is the “coarray based”

method. In this method, no optimization for the placement of array elements is re-

quired. A closed-form structure is used, and the aim is to maximize the size of the

hole-free segment of the difference coarray. The most known five of these methods

have been studied and their performances in terms of DOA estimation accuracy, de-
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Figure 3.21: MSE results for AG2 under mutual coupling. cs = 0.1 and cs = 0.3,

#sn = 500 and #so = 9.

grees of freedom, DOA resolution, and mutual coupling have been compared. The

aim is to determine their advantages, disadvantages, necessities, and success in case

of fixed aperture and a fixed number of sensors scenarios. The arrays used in the com-

parison are Nested Array (NA), Co-prime Array (CA), Super Nested Array (SNA),

Augmented Nested Array (ANA), and Sparse Ruler Array (SRA), which are called

the comparison group. The outcomes of the analysis and comparison can be summa-

rized as follows: In the case of the fixed aperture, using a filled array seems to be

the best option in terms of performance. Coarray based arrays are not advantageous

in this case. On the other hand, when the number of sensors is fixed, as long as the

real world allows, the array which has the largest aperture always has a higher degree

of freedom (DOF) and resolvability. In simulations, this one comes out to be SRA.

Therefore, contrary to the authors of the comparison group, it needs to be underlined

that it is the aperture size that determines DOF and resolvability. However, using the

aperture efficiently is the success of the coarray based methods. On the other hand,

even if they have the same aperture, their performances may differ depending on their

coarray topologies, distribution of redundancies.
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CHAPTER 4

NONLINEAR APODIZATION

Sidelobes are common problems in many signal processing applications. The main

objective is to obtain the narrowest mainlobe and the lowest sidelobe level possible.

In conventional operations, weighting/windowing/apodization is applied to the data

to be processed to reduce the sidelobe at the expense of widening the mainlobe [77].

However, in [78], it has been shown that by applying a nonlinear operation, the side-

lobe level can be reduced without degrading the mainlobe resolution. The main idea is

to use multiple windows instead of a single window and to select the minimum spec-

tral value for each frequency. Using multiple windows naturally increases the com-

plexity and the computational burden. On the other hand, nonlinear apodization can

reduce the sidelobe level at most down to the noise level. Three different approaches

have been provided in [78] for sidelobe reduction in synthetic aperture radar image

formation; dual-apodization, multi-apodization, and spatially variant apodization. In

this chapter, these methods are applied for spectrum estimation of time domain data.

4.1 Apodization/Windowing

In real applications, a finite extent of data set is used for processing. Most of the time,

the data set does not contain an integer multiple of periods of the signal. That causes

discontinuities in the signal and results in spectral leakage in the frequency domain.

Moreover, there may be multiple components in the spectrum of the signal. These

components may interfere with each other due to spectral leakage. Windowing is used

to overcome the discontinuities and to suppress the mutual interference. Windowing

also referred to as apodization in the optical signal processing can be considered as

55



the multiplication of the signal with a sequence whose amplitude varies smoothly and

gradually goes to zero at the edges. For a signal x[n] of length N and a window w[n],

it can be mathematically expressed as,

y[n] = w[n]x[n]. (4.1)

It is known that windowing or multiplication in discrete-time domain means periodic

convolution in the frequency domain i.e.,

Y (ejω) =
∞∑

n=−∞

y[n]e−jωn (4.2)

=
∞∑

n=−∞

x[n]w[n]e−jωn (4.3)

=
∞∑

n=−∞

(
1

2π

∫ π

−π
X(ejθ)ejθndθ

)
w[n]e−jωn (4.4)

=
1

2π

∫ π

−π
X(ejθ)

[ ∞∑
n=−∞

w[n]ejθne−jωn
]
dθ (4.5)

=
1

2π

∫ π

−π
X(ejθ)W (ej(ω−θ)dθ. (4.6)

Equation 4.6 tells us that the value of the Y (ejω) at a particular frequency, say ω = ω0,

has contributions from each spectral component of X(ejω) weighted by the shifted

windowW (ej(ω0−ω)). This can be more easily visualized with the help of an example.

Lets assume thatX(ejω) consists of two pure spikes located at ωa and ωb with weights

Xa and Xb, respectively. Let Wa(e
jω) = W (ej(ωa−ω)) and Wb(e

jω) = W (ej(ωb−ω)),

then the spectral components of the output signal at ωa and ωb are obtained as,

Y (ejωa) = XaWa(ωa) +XbWa(ωb) (4.7)

Y (ejωb) = XaWb(ωa) +XbWb(ωb). (4.8)

As it is seen, the spectral leakage causes a bias in the amplitude of the spectral com-

ponents. Similarly, increasing the number of spikes in the signal, the example can
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be extended. Moreover, depending on the mainlobe width and sidelobe level of the

window, and the positions and the weights of spikes in the signal, the spectral leakage

may cause a bias both in the amplitude and the position of the spectral components.

4.2 Dual-Apodization

Dual apodization is the simplest one and uses two different windows (e.g., rectangular

and Hanning) to obtain two different outputs. Then, at each spectral location the

minimum absolute value from the two normalized spectra is selected. In this way,

the narrow mainlobe of the rectangular window and the low sidelobes of the Hanning

window are obtained. Consider an input signal x[n] of length N and two windows

w1[n] and w2[n], the outputs for these windows are,

y1[n] = w1[n]x[n]

y2[n] = w2[n]x[n] (4.9)

Normalized magnitudes of DTFTs of the windowed data will be obtained as,

Yl(e
jω) =

∣∣∣∣N−1∑
n=0

yl[n]e−jωn
∣∣∣∣ =

∣∣∣∣N−1∑
n=0

x[n](wl[n]e−jωn)

∣∣∣∣, l = 1, 2,

Y n
l (ejω) = Yl(e

jω)/max
(
Yl(e

jω)
)
, l = 1, 2. (4.10)

The output of the dual-apodization is found by selecting the minimum spectral value

at each frequency bin,

Ymin(ejω) = min
ω∈[−π, π]

(
Y n

1 (ejω), Y n
2 (ejω)

)
. (4.11)

An example of a dual apodization is shown in Figure 4.1. The figure shows that

dual-apodization inherits good main-lobe behavior of rectangular window and good

side-lobe behavior of Hanning window.
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Figure 4.1: Dual Apodization

4.3 Multi-Apodization

As its name implies, multi-apodization is an extension of dual-apodization in which

more than two windows are used. The performance gets better compared to dual-

apodization however the computational load is increased.

Consider a set of windows wl(n), l ∈ L = {1, 2, ...L} and a modeling as given in

equation (4.9).The multi-apodization output can be found by selecting the minimum

at each spectral location of the normalized magnitude of DTFTs

Ymin(ejω) = min
l∈L

Y n
l (ejω). (4.12)

An example of a multi-apodization is shown in Figure 4.2. As it is seen from Fig-

ure 4.2 the improvement increases in multi-apodization as the number of windows

increases with an expense of an increase in computational load. The key point of the

success of the multi-apodization is that each window has a different mainlobe width

and different notch points. Therefore, if a sufficient number of windows are used at
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Figure 4.2: Multi-apodization

least one notch will coincide with each of the interfering sources and eliminate their

effects. Actually, in the optimum case, the number and the type of the windows should

be chosen such that when focusing on a particular spectral location there should be a

notch at all interfering spectral locations for a specific window. Although this requires

high computational demand and it is practically very difficult, it resembles the idea

of Capon. In Capon, when designing weights for a spectral location, notches were

inserted to the locations with high interference.

4.4 Spatially Variant Apodization (SVA)

To overcome computational problem of multi-apodization, Spatially Variant Apodiza-

tion (SVA) approach is introduced in [78]. This approach is also a multi-apodization

method but with an infinite set of windows and much better computational efficiency.

The requirement is that all windows should be in the form of a raised-cosine function.
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The family of raised-cosine window functions are given by

w(n;α) = 1− 2αcos(2πn/N), n = 0, 1, . . . , N − 1 (4.13)

where N is the window length and

0 ≤ α ≤ 1/2. (4.14)

The extreme values α = 0 and α = 1/2 yield rectangular and Hanning windows,

respectively. The DTFT of the raised-cosine function given in (4.13) is

W (ejω) = 2π(−αδ(ej(ω−2π/N)) + δ(ejω)− αδ(ej(ω+2π/N))). (4.15)

Note that DTFT functions given in this study are for one period only, −π ≤ ω ≤ π.

As the DTFT of the window function (4.15) contains only three impulses (Dirac delta

functions), windowing can be performed easily in frequency domain. Let X(ejω) be

the DTFT of the observation, then the DTFT of the windowed observation is

Y (ejω) = −αX(ej(ω−2π/N)) +X(ejω)

− αX(ej(ω+2π/N)). (4.16)

For each frequency, SVA finds the value of α which minimizes |Y (ejω)|2 subject to

the constraint 0 ≤ α ≤ 1/2. The problem is solved by setting the partial derivative of

|Y (ejω)|2 with respect to α to zero and solving for α. The optimal value is [78]

α0(ω) = Re

{
X(ejω)

X(ej(ω−2π/N)) +X(ej(ω+2π/N)

}
. (4.17)

Therefore, the final SVA output with the constraint in (4.14) becomes:

Yf (e
jω) =


X(ejω) α0(ω) < 0,

X(ejω)− α0(ω)S(ejω) 0 ≤ α0(ω) ≤ 1/2,

X(ejω)− 1/2S(ejω) α0(ω) > 1/2

(4.18)
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where S(ejω) = (X(ej(ω−2π/N)) + X(ej(ω+2π/N))). The result in (4.18) is obtained

by processing the real (I, in-phase) and imaginary (Q, quadrature) parts of X(ejω)

jointly and is called "I-Q jointly SVA". In [78], a different approach that processes

the real and the imaginary parts separately is also given and is called "I-Q separately

SVA". The output for "I-Q separately SVA" is given as

Yf (e
jω) =


X(ejω) α0(ω) < 0,

0 0 ≤ α0(ω) ≤ 1/2,

X(ejω)− 1/2S(ejω) α0(ω) > 1/2.

(4.19)

This operation is applied to both in-phase and quadrature components of the complex

data.

In practice DTFT will be implemented by DFT, the expressions for "I-Q jointly SVA"

and "I-Q separately SVA", respectively, in terms of N -point DFT are

Yf [k] =


X[k] α0[k] < 0,

X[k]− α0[k](S[k]) 0 ≤ α0[k] ≤ 1/2,

X[k]− 1/2S[k] α0[k] > 1/2

(4.20)

Yf [k] =


X[k] α0[k] < 0,

0 0 ≤ α0[k] ≤ 1/2,

X[k]− 1/2S[k] α0[k] > 1/2

(4.21)

where X[k] = X(ejω)|ω=k2π/N , S[k] = X[k −K] + X[k + K], k = 0, 1, ..., N − 1,

K is zero padding factor and α0[k] is given as:

α0[k] = Re

{
X[k]

X[k −K] +X[k +K]

}
. (4.22)

Examples for "I-Q jointly SVA" and "I-Q separately SVA" are provided in Figure 4.3.

It is seen that, SVA suppresses sidelobes while preserving the mainlobe resolution.
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Figure 4.3: SVA for two close, equal power (0 dB) and one distant low power (-40

dB) sources

A disadvantage of the nonlinear methods given above is that they have no effect on

the noise, they can reduce the sidelobe level down to the noise level. In Figure 4.3,

the SNR has been taken as infinite. When a noise with an SNR of 20 dB is included,

the results for SVA methods are given in figures 4.4, 4.5 and 4.6. The low-powered

target is observed when its power together with DFT gain overcomes the noise level.

Multi-apodization (or SVA) can be formulated as a power spectral estimator. It

has been shown that it is a special version of minimum variance spectral estimator

(MVDR or Capon) [79, 80].

Let wl = [wl(0) wl(1)e−jω ... wl(N − 1)e−j(N−1)ω]T , then the periodogram power

spectral density estimate of the signal with window wl is

Px(e
jω) =

1

N
|wH

l xxHwl| (4.23)

using multiapodization and neglecting 1
N

term the power spectral density estimate can
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Figure 4.4: SVA for two close, equal power (SNR 20 dB) and one distant low power

(SNR -20 dB) sources and noise
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Figure 4.5: SVA for two close, equal power (SNR 20 dB) and one distant low power

(SNR -10 dB) sources and noise
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Figure 4.6: SVA for two close, equal power (SNR 20 dB) and one distant low power

(SNR -5 dB) sources and noise

be given by

P̃x(e
jω) = min

l∈L

|wH
l xxHwl|

max(|wH
l xxHwl|)

(4.24)

with unity gain constraint wH
l e = 1 where e = [1 ejω ... ej(N−1)ω], the minimization

problem with multiapodization approach can be stated as follows

P̃x(e
jω) = min

l∈L

|wH
l xxHwl|

max(|wH
l xxHwl|)

subject to wH
l e = 1. (4.25)

The formulation given in equation 4.25 is very similar to formulation in equation

2.13 given for Capon(MVDR), except that input correlation function is replaced by

Rx = xxH . In other words, in MVDR multiple snapshots are used to evaluate corre-

lation function, whereas in multiapodization a single snapshot is used for correlation

function. Moreover, in MVDR there is no restriction on the number of windows,
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Figure 4.7: SVA and MVDR for two close, equal power (SNR 20 dB) and one distant

low power (SNR -5 dB) sources and noise

however in multiapodization the window set is restricted with L. For the conditions

given in Figure 4.6 the MVDR and SVA results are given in Figure 4.7. Number of

snapshots used for MVDR is 100. MVDR, as expected, has better results since it uses

much more information compared to SVA.

4.5 Conclusion

In this chapter, types of nonlinear apodization have been studied. These methods are

used to improve the tradeoff between sidelobe level versus mainlobe width. The main

idea is to use two or more windows and select the minimum from windowed outputs

at each spectral location. The performance improves as the number of windows in-

creases. However, the computational complexity also increases with the number of

windows. SVA has been proposed to overcome this problem. In SVA, an infinite

number of windows with the form of a raised-cosine function are used. Moreover, the

multiapodization or SVA method has been shown to be a version of MVDR. These

methods have been adapted to array signal processing. SVA method will be used and

65



a beamforming method based on SVA will be presented in Chapter 5. On the other

hand, dual-apodization will be used in Chapter 6 together with GA to design sparse

linear arrays.
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CHAPTER 5

SVA BASED BEAMFORMING

A frequency domain method is proposed to reduce the sidelobe level of a uniformly

weighted uniform linear array in direction-of-arrival estimation. The development is

based on the nonlinear method of "spatially variant apodization" originally proposed

for spectral analysis and synthetic aperture radar imagery [78].

5.1 Introduction

Short-time Fourier transform is a basic tool in spectral analysis. In short-time Fourier

transform, "short" data/signal segments are generally multiplied by a weighting func-

tion (window) prior to the Fourier transform computation. This operation is known

as windowing or apodization, the latter term being more widely used in optics. A

short-time Fourier spectrum involves the convolution of the Fourier transforms of

the signal and the window. Broadly speaking, the effect of the Fourier transform of

the window (on the resulting short-time spectrum) is generally quantified in terms of

its main lobe width and side lobe level. Main lobe width is related to the accuracy

in localizing spectral peaks and side lobe level to the interference among the spec-

tral components. Inherent tradeoff between main lobe width and side lobe level has

led to a substantial amount of study on the design of window functions [77, 81, 82]

(and references therein). On the other hand in [78], it has been shown that by ap-

plying a nonlinear operation, the sidelobe level can be reduced without degrading the

mainlobe resolution. The idea is to first compute multiple STFTs each with its own

window function and then, for each frequency, keep the value of the one having the

minimum magnitude. The detail of this method is given in Chapter 4
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This approach has been utilized in [78] for sidelobe reduction in SAR (synthetic aper-

ture radar) imagery. The use of two (dual apodization) or more (multi-apodizaton)

windows has been studied. Although, it would be preferred to include as many dif-

ferent types of windows as possible in multi-apodization, this may not be practical

because of the accompanying computational demand. In [78], another method, a

special case of multi-apodization, called as Spatially Variant Apodization (SVA) has

been proposed to incorporate infinitely many windows provided that windows are of

raised-cosine type. In [79, 80], SVA has been formulated as a spectral estimator and

its relationship to minimum variance spectral estimator (MVSE) has been empha-

sized. Although SVA is data dependent, it effectively suppresses the sidelobe level

without explicit use of a priori information. Moreover, it has much less computational

demand compared to MVSE and free from its finite numerical problems since it does

not require the inversion of the covariance matrix of the input.

Although it has been stated, [78], that nonlinear apodization techniques have very

broad range of applications where the data can be represented as the Fourier trans-

form of a finite-aperture signal and there are some other studies on SVA [83–85], any

study adapting SVA to beamforming has not been encountered. As in other signal pro-

cessing operations, narrow main lobe and low side lobe level in spatial power spec-

trum estimation is very important for beamforming and direction of arrival (DOA)

estimation. In this chapter, an SVA approach will be developed for spatial domain

processing of the element outputs of a sensor array. To achieve the goal, we use

the similarity of Fourier transform and beamforming operations. In this development

beamforming is performed in frequency domain.

In Section 5.2 the relationship between DTFT and beamforming is recalled. SVA

based beamforming is presented in Section 5.3. Section 5.4 provides some simulation

results. Some of the practical issues are discussed in Section 5.5. Conclusions are

given in Section 5.6.
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5.2 Relationship between DTFT and Uniform Linear Array Beamformer

The conventional beamformer output of a uniform linear array (ULA) of M sensors

(with equal weighting, i.e., rectangular windowing) for a complex plane wave of fre-

quency ω0 and DOA θ is, [6],

XBF (θ) =
M∑
m=1

Xme
−jω0τm(θ) (5.1)

where θ is defined with respect to positive x-axis and sensors are located on x-axis,

Xm is the spectral component of the mth sensor output at frequency ω0, and τm(θ)

is the time delay at the mth sensor with respect to the reference point. Assuming the

reference point as the first sensor of the array, τm(θ) is defined as

τm(θ) =
(m− 1)d cos θ

c
(5.2)

where d is the separation between the sensors and c is the propagation speed of the

wave. Letting d = dλλ0, dλ > 0 where λ0 = 2πc/ω0 and a change of variable

n = m− 1, (5.1) can be written as

XBF (θ) =
M−1∑
m=0

Xme
−jm2πdλ cos(θ). (5.3)

On the other hand, DTFT of a length-M signal x[m] is

X(ejω) =
M−1∑
m=0

x[m]e−jωm. (5.4)

Comparing equations (5.3) and (5.4), when x[m] = Xm, XBF (θ) and X(ejω) are

related as
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XBF (θ) = X(ejω0
d
c

cos(θ)) = X(ej2πdλ cos(θ)),

X(ejω) = XBF

(
cos−1

(
ωc

ω0d

))
(5.5)

= XBF

(
cos−1

(
ω

2πdλ

))
.

(5.6)

Therefore the beamformer output of ULA at direction θ can be found by evaluat-

ing the Fourier transform of the sensors’ spectral components at frequency ω =

(ω0d cos(θ))/c. In other words, given X(ejω) we can obtain XBF (θ) by a nonlin-

ear mapping.

In terms of the DFT values, the results in (5.6) can be approximated as:

XBF (θ) ≈ X[int(N cos(θ)dλ)],

X[k] ≈ XBF

(
cos−1

(
k

dλN

))
(5.7)

where X[k] is the N−point DFT of the sensors’ spectral components. In (5.7), int(.)

stands for rounding operation, i.e. the integer closest to the argument.

The simulation results of beamforming (BF) by direct computation and DFT based

computation are shown in Figure 5.1. The patterns in Figure 5.1 are obtained for

two sources and an array of 32 sensors separated by half wavelength at the operation

frequency. 1024 point DFT is used by zero padding.

5.3 SVA Based Beamforming Algorithm

Beamforming by a ULA and DTFT operations are similar. Using this similarity and

the fact that SVA is based on the DTFT of the observation, SVA can be applied to

beamforming.

Let the output of themth sensor in a ULA withM sensors be x̃m[n],m = 0, 1, ...M−1
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Figure 5.1: Conventional and DFT based beamforming

and its DTFT be X̃m(ejω). Also let the value of the DTFT at frequency ω0 be Xm =

X̃m(ejω0) and DTFT of X = [X0 X1 ... XM−1] be Xs(e
jω) ("s" stands for spatial),

Xs(e
jω) =

M−1∑
m=0

Xme
−jωm (5.8)

Recall that "I-Q jointly SVA" output for a given DTFT, X(ejω), is given by (4.16)

with α0(ω) given by (4.17)

Accordingly, using the relationship in (5.6), SVA beamforming output can be found

as

YBF (θ) = Y (ej2πdλ cos(θ)) (5.9)

Using (4.16) and (5.9):
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YBF (θ) = −α0(θ)Xs(e
j(2πdλ cos(θ)−2π/M))

+Xs(e
j2πdλ cos(θ))− α0(θ)Xs(e

j(2πdλ cos(θ)+2π/M)) (5.10)

Now, using the second line of (5.6), SVA-beamforming output becomes

YBF (θ) = −α0(θ)XBF

(
cos−1

(
cos(θ)− 1

Mdλ

))
+XBF

(
θ
)

− α0(θ)XBF

(
cos−1

(
cos(θ) +

1

Mdλ

))
(5.11)

α0(θ) is given by

α0(θ) = Re

{
XBF

(
θ
)

SBF (θ)

}
,

0 ≤ α0(θ) ≤ 0.5 (5.12)

where SBF (θ) = XBF

(
cos−1

(
cos(θ)− 1

Mdλ

))
+XBF

(
cos−1

(
cos(θ)+ 1

Mdλ

))
In terms of DFT, SVA beamforming output is given by

YBF (θ) ≈ Y [int(N cos(θ)dλ)] (5.13)

where Y [k] is obtained by applying SVA to Xs[k], (equations (4.20)-(4.22)), and

Xs[k] is the N -point DFT of X = [X0 X1 ... XM−1]. Here zero padding factor is

K = N/M since Xm = 0 for m ≥M .

The flowchart for the proposed algorithm is given in Figure 5.2. Firstly, the data at

each sensor output is buffered to transform to frequency domain via DFT operation.

The aim of the first set of DFT operations is to obtain the magnitudes and the phases

of sensor outputs at the frequency of interest. Then, based on the similarity of beam-

forming and DFT (See Eqs. 5.1 and 5.4), N point DFT (N ≥ M ) is applied to those
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Figure 5.2: Flowchart for the proposed algorithm. The numbers of paths at the outputs

of the blocks are indicated by the arrows.

components by padding N −M zeros to the end of the data, and therefore, we get the

result of beamforming corresponding to a rectangular window. Following the DFT

operation, SVA is applied. For lower computational complexity, SVA is computed

only for desired steering directions (Ns is the number of desired steering directions,

N ≥ Ns). Finally, by the nonlinear mapping (See Eq. 5.7) SVA applied beamforming

is obtained for the specific Ns steering directions. In Figure 5.2, the size of data at the

output of each block is shown by arrows.

5.4 Results

Mainlobe widths (resolution) and sidelobe levels, obtained by SVA based beamform-

ing and by alternative methods will be compared. Figure 5.3 shows an example with

3 targets in the environment. The target at azimuth angle of 75◦ has 50 dB lower

power compared to the other two targets. In this example ULA has 64 sensors with

dλ = 1/2. SNR is infinite and 1024-point DFT is used. It is seen that beamform-

ing with Hanning shading cannot resolve two close targets and beamforming with

rectangular shading cannot find the low power target whereas SVA beamforming can

resolve two close sources and find the low power target. In the example above, "I-Q

jointly SVA" has been applied.
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Figure 5.3: SVA Based Beamforming

5.5 Some Practical Issues

Additive noise: The method presented in this chapter inherits the properties of SVA

therefore it has no effect on noise, that is the sidelobe level can be reduced at most to

the level of the noise. The results of an example with the same parameters of the case

given in Figure 5.3 but with additive noise at specified SNRs are provided in Figure

5.4. Figure 5.4 reveals that for the regions where sidelobe level is greater than the

noise level, around the mainlobe, the sidelobe has been suppressed to the noise level,

however for other regions sidelobe level remains at the noise level.

The low powered target in Figure 5.4 can be observed when the processing gain ex-

ceeds the noise level. The results for the same scenario with Figure 5.4 but with

different SNR levels for the target at 75◦ are given in Figure 5.5. The low powered

target became clear around -18 dB. Notice that, although 1024 points DFT is used,

the effective processing gain is limited by the number of sensors which is 64.

The peak-to-peak variation around the target peaks: The number of sensors affects the

resolving capability, there may be cases where rectangular shading has better resolu-
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Figure 5.4: SVA Based Beamforming with noise

tion compared to that of SVA based beamforming. The results for two close targets,

with the same parameters of the case given in Figure 5.3 but with 32 sensors, are pro-

vided in Figure 5.6. As it is seen from Figure 5.6 there is about 2 dB loss compared to

rectangular shading. The reason for this is the decrease in mainlobe energy [86, 87].

When Figure 5.6 is analyzed it is seen that around the mainlobe the optimal weights

are close to 1/2 instead of 0. To have the same resolution with rectangular shad-

ing, the number of sensors has to be increased or modified SVA (MSVA) method

described in [86, 87] can be applied. In MSVA, the filter length is increased from 3-

taps to 5-taps and the constraints are adjusted accordingly. The result of MSVA based

beamforming is given in Figure 5.7. It is seen that MSVA and rectangular shading

curves almost coincide around the peaks.

DFT length: The number of DFT points has to be large enough to have an acceptable

accuracy and better performance. Increasing the number of DFT points decreases the

error in nonlinear mapping. Moreover, having the number of DFT points as an integer

multiple of the number of sensors has a positive effect on the performance. Choosing

the number of DFT points as an integer multiple of the number of sensors makes the
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Figure 5.5: SVA Based Beamforming with noise and different SNR levels for the low

powered target
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zero padding factor an integer and this decreases the mapping loss.

5.6 Conclusion

As a specific multi-apodization approach, SVA is a computationally convenient method

that brings together the advantages of different window functions in spectral analy-

sis. In this chapter, SVA has been adapted to beamforming by a uniform linear array.

The main idea is to use the similarity of beamforming and DTFT operations and the

fact that optimization in SVA is done in frequency domain. SVA based beamforming

achieves the resolving capability of rectangular shading with much lower sidelobe

level. SVA based beamforming naturally inherits the properties of SVA; A possi-

ble drawback, its poorer resolution (relative to that of rectangular shading) when the

number of sensors is reduced can be overcome by a modified SVA method. Choos-

ing the number of DFT points as an integer multiple of the number of sensors reduces

possible deviation in array output pattern to a negligible level. That this is a frequency

domain method can be considered as a practical advantage due to the availability of

custom FFT routines for many processors.
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CHAPTER 6

A HYBRID NONLINEAR THINNED ARRAY DESIGN METHOD

A nonlinear method for array thinning is proposed. The method is based on hybrid

usage of genetic algorithm and nonlinear apodization. The method proposes a special

layout which consists of two sub-arrays. Layout and weights for the sub-array having

larger aperture are designed by genetic algorithm. Layout and weights for the second

sub-array are determined according to results of the aforementioned design. Dual-

apodization is applied to the outputs of the sub-arrays to obtain the output. Results

show that there is an improvement in peak side lobe level, beam-width and current

taper ratio for some particular test problems in the literature.

6.1 Introduction

A sparse array is an array which contains neighboring elements with a spacing larger

than the Nyquist spatial limit (λ/2 for linear arrays, where λ is the wavelength). As a

special case of sparse arrays, if the element spacings are quantized to multiples of λ/2

then they are called thinned arrays. Quantizing element spacings has the advantages

of Nyquist spatial sampling rate validity at all frequencies below the design frequency

and of having no limit on scan angle [88]. On the other hand, the degree of freedom

in the array design is decreased by quantizing element spacings.

The advantages of sparse arrays are reduced cost, complexity and computational bur-

den of the system and to have a spatial resolution similar to that of the full array which

obeys Nyquist spatial limit. However, sparse arrays cause spatial aliasing which may

yield high sidelobes in the array pattern [6]. High sidelobes are undesired, and there

are many studies to suppress them. In these studies, layout and weights are opti-

79



mized to improve the performance in terms of the peak sidelobe level (PSLL), the

beam width (BW) and the current taper ratio (CTR). High sidelobe level may result

in ambiguities in signal processing operations therefore low sidelobe level is always

desired. BW determines the angular resolution of the array, the smaller the BW, the

better close targets can be resolved. CTR is the ratio of the largest weight to the

smallest weight. High CTR means high complexity in hardware design. Moreover,

the best SNR gain is obtained when an equal weighting, CTR value of 1, is used.

In [42, 46] and [47] both layout and weight optimizations are done by Simulated

Annealing (SA). The same study is conducted in [49] by Genetic Algorithm (GA).

In [40, 50] solely layout optimization is done with GA. In [89], in addition to opti-

mization of the layout and the weights, solely weights optimization for fixed locations

is done with linear programming. In [90–92] the problem is handled in a different way

and a beam-pattern that is similar to a desired/reference beam-pattern is searched to

find the layout and the weights. In [48], a hybrid approach combining GA and a local

optimizer has been utilized to solve the problem. In [88], a version of iterative FFT

has been proposed for the solution of the problem. [93] and [94] have used determin-

istic approaches for designing linear sparse arrays. In [93], the solution is based on

simple analytical expressions which jointly optimize sensor positions and dimensions

with pre-assigned power levels. The method in [94] exploits an analytical formula-

tion of the problem and convex programming routines and generates shaped beams

by changing the location and the phase of the uniform amplitude sensors. Recently,

compressive-sensing (CS) based methods have been proposed in the design of sparse

arrays, [52–55, 57–59]. [58] uses a famous greedy algorithm known as orthogonal

matching pursuit (OMP) together with spherical wave expansion for the problem.

In the design process of that study, both element field patterns and mutual coupling

between elements are considered. In [57], the extension of CS to wideband arrays

has been provided. Inspiring the idea used in robust beamforming methods, a robust

CS method has been presented in [54] by adding an extra constraint. Extension of

Bayesian Compressive Sensing (BCS) to sparse arrays has been successfully used

in [55] and [52].

In this chapter, a nonlinear method for the design of sparse linear arrays is proposed.

The method is based on nonlinear apodization and GA. The motivation of the work
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is to combine two array structures to make use of their desirable characteristics while

eliminating their weaknesses. The objective in this combination and in the work pre-

sented is to obtain a new structure that has a “good” pattern over the whole spatial

region. The innovative part of this work in terms of methodology is to combine two

different algorithms for sparse array design. The combined usage of those algorithms

has not been encountered previously and yields improved PSLL, BW, and CTR com-

pared to those in the literature. The proposed method can be used for the receiving

operation only.

In the study, the aperture size and the maximum number of sensors are determined a

priori. The objective is to obtain the best performance given these values. Unlike the

settings of the existing methods, in this method thinned array is divided into two sub-

arrays called SA1 and SA2. The motivation to use two sub-arrays is due to the inher-

ent property of dual apodization. Dual-apodization needs two sub-arrays (windows

in spectral context) in order to apply the nonlinear “minimum” operation. Another

contribution of this study is to optimize the sensor locations of the sub-arrays so as to

get the best performance of dual apodization. The method successfully combines the

patterns of sub-arrays which are complementary in their “good” spatial regions.

The number of sensors in sub-arrays is not determined a priori but their sum is lim-

ited and subarrays may have common elements. Subarray SA1 has a nonuniform

structure and extends over the whole, predetermined aperture. It is designed by GA.

For optimization of SA1, however, any appropriate optimization algorithm capable of

handling the constraints of the problem can also be used. SA2 obeys Nyquist spatial

criterion and is designed according to the design of SA1.

In the proposed method, there are mainly two steps; optimization and nonlinear

apodization. In optimization step, SA1 is designed such that its maximum side-lobe

level within the mainlobe of SA2 is minimized. Remaining side-lobes are disregarded

in this step since they will be suppressed in the second step. The layout and weights

of SA2 are also determined in this step. After determining layout and weights of the

sub-arrays, dual-apodization is applied to the output of the sub-arrays in the second

step. The method is adapted for two cases. In the first case, merely the layout of

SA1 is designed and in the second case, both the layout and the weights of SA1 are
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designed. In both cases, both the layout and the weights of SA2 are designed. The

method has been studied for two test problems in the literature.

The study as mentioned above is inspired by the idea of nonlinear apodization and

uses two sub-arrays, dual-apodization and related designs. However, for an "opti-

mal" result many sub-arrays, multi-apodization and related designs should be used.

At least one of those sub-arrays should have a mainlobe width satisfying required

resolution. Moreover, when steered to any particular direction, all the remaining in-

terfering directions should be in a notch of the design. The idea actually converges to

the Capon method; roughly stated, placing a notch to every interfering point. How-

ever, a practical solution is not feasible due to the high computational load. Therefore,

in this study practical concerns and optimum computation for necessary performance

is considered and the method given in the following sections has been presented. It

has much less computational demand compared to Capon and free from its finite nu-

merical problems since it does not require the inversion of the covariance matrix of

the input.

Section 6.2 gives the description of beam-pattern function and dual apodization. De-

tails of constructing sub-arrays and of the proposed method are provided in Section

6.3. Section 6.4 presents results obtained by this method and compares them to those

from the literature. Section 6.5 concludes up the work.

6.2 Preliminaries

6.2.1 Beam Pattern (BP) Formulation

Beam pattern (BP (θ)) of a linear array, made of N omnidirectional sensors, and

located along x-axis is

BP (θ) =

∣∣∣∣N−1∑
n=0

wne
j 2π
λ
dn(cos(θ0)−cos(θ))

∣∣∣∣, (6.1)

where dn and wn are the position and the weight of the nth sensor, respectively. θ

and θ0 are the scan angle and the steered direction of the array which are measured
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Figure 6.1: Architecture for obtaining dual apodization in the array context

with respect to the x axis. In this chapter, it is accepted that θ0 = 90◦. It is known

that (BP (θ)) is an even function. Moreover, when the sensor locations are quantized

with λ/2, the domain to be examined can be restricted to 90◦ ≤ θ ≤ 180◦ and the

mainlobe is centered at θ = 90◦ [91].

6.2.2 Dual Apodization

Dual-apodization has been introduced in Chapter 4. It has been adapted for beam-

patterns and used for the spatial domain in the proposed method. The counterpart

of the temporal frequency in the spatial domain is the scanning angle. The windows

and the DFTs of the windows have been replaced by the sub-arrays and the beam

patterns of the sub-arrays respectively. Moreover, beamforming for a linear array

in the array context and DFT of a windowed time signal in the spectral context are

dual. In practice, the spatial spectra for both arrays will be obtained by beamforming

methods. In beamforming, the sensor locations and the weights determined by this

study will be used. Then dual apodization will be applied to spatial spectra of two

arrays. Architecture of the operations explained above is given in Figure 6.1.

6.3 Description of the Algorithm

As in the existing studies, the main goal of this study is to obtain the narrowest BW

and to keep PSLL and CTR as low as possible. To this end, a special array layout

is proposed. The whole array is considered as the combination of two subarrays,

named as SA1 and SA2, and SA2 is located approximately around the center of the

aperture of SA1. SA1 covers a predefined/desired aperture and the spacing between
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any two neighboring elements is λ/2 or a multiple of λ/2. SA2 is a uniform array with

a significantly smaller aperture and its element spacings are λ/2. The optimization

process is carried out for either only locations or both locations and weights of sensors

in SA1. The target of the optimization at this step is to minimize the PSLL of SA1

within the mainlobe of SA2. Since it is a uniform array, mainlobe of SA2 is limited

by the size of its aperture. The fitness function is defined accordingly. The weights

of the elements of SA2 are determined according to the result of the design of SA1.

Then dual apodization, [78], is applied to beam-patterns of these two sub-arrays. SA2

obeys Nyquist limit but it has a small aperture, therefore, its beam-pattern has a good

sidelobe level behavior whereas its mainlobe is very large. On the other hand, SA1 has

a large aperture but violates the Nyquist limit, therefore, its beam-pattern has a narrow

mainlobe, however, with possible strong sidelobes. Dual-apodization of these two

sub-arrays results effectively in a narrow mainlobe and low sidelobe levels. Before

we give a step-by-step description of the design algorithm below in Section 6.3.3,

we provide preliminary information in Section 6.3.1 and 6.3.2 about the formation of

subarrays to expose the underlying motivation.

6.3.1 Formation of Subarrays

Let, the desired aperture in wavelengths, the maximum number of all sensors in the

complete array, the number of sensors of the subarray SA1 and the number of sensors

of the subarray SA2 be L, N , N1 and N2, respectively. In general, N ≤ N1 + N2,

and the equality is satisfied when there is no common element of SA1 and SA2. As

an example, layout configuration and beam-patterns BPSA1 and BPSA2 for SA1 and

SA2 are shown in Figure 6.2. Uniform weighting has been applied to both sub-arrays

in Figure 6.2. In Figure 6.2(b) it is seen that the mainlobe of BPSA2 covers the first

few sidelobes of BPSA1. Therefore, if dual-apodization is applied to the example

given in Figure 6.2, PSLL will be around−8 dB which is not satisfactory practically.

However, if SA1 is designed such that its side-lobes within the mainlobe of SA2

(i.e. the region between the edges of the mainlobes of SA1 and SA2, this region is

denoted by ustop in Figure 6.2(b)) are suppressed, dual apodization will result in a

beam-pattern with a narrow mainlobe and well-suppressed sidelobes.
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6.3.2 Suppression region by GA (ustop)

The first null beam-width (FNBW) of a linear array is defined as [95]

FNBW = λ/Deff (6.2)

where Deff is the effective aperture of the array. Effective aperture is related to the

physical apertureD byDeff = ρD where ρ depends on steering direction. Deff takes

the maximum value at the broadside and the minimum value at the end-fire. ustop is

the spatial interval over which the response of SA1 will be suppressed. Its length,

|ustop|, can be defined as,

ustop = {u|u > B1 and u <= B2},

|ustop| = (B2 −B1), (6.3)

where

B1 = FNBWSA1, B2 = FNBWSA2. (6.4)

This region is shown in Figure 6.2(b).

6.3.3 Layout Optimization

In this part, GA will optimize solely the layout of SA1. The design variables of the

GA for this part will be the locations of sensors in SA1 at multiples of λ/2. SA1 will

be stimulated with uniform weighting. The fitness function of the GA is defined as,

f(d) = 1/ max
u∈ustop

(abs(BPSA1(d, u))), subject to |BPSA1(θ0)| = 1, (6.5)

where d is the elements’ position vector. GA finds the element positions of SA1 such

that, the PSLL of BPSA1 in ustop region, see Figure 6.2(b), will be minimized. The

remaining regions will be disregarded by GA, since those regions will be suppressed

by dual-apodization. During GA optimization, each chromosome in the population

consists of N1 genes, each of which represents the location of a sensor. The details of

the algorithm are given below:
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Figure 6.2: (a)An example layout configuration for L = 50, N = 27, N1 = 18, N2 =

13, (b) beam-patterns for SA1 and SA2 and regions of BPSA1 to be suppressed by

GA, u = cos(θ0)− cos(θ).

1. The algorithm starts with a sought aperture, L, and an allowed maximum num-

ber of sensors N .

2. Initially N1 = N , N2 = floor(N/2) .

3. First null beamwidths are found using L, N1 and N2. Initial region for ustop, is
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determined.

4. A random population is generated for locations of SA1, the first and the last

sensors are located at extreme points of the aperture ( 0(λ/2) and (2L)(λ/2) ).

Remaining sensor positions are chosen randomly between the extreme points.

5. N1 − 2 optimum sensor locations are found according to fitness function pro-

vided in (6.5) by GA. Temporal counterpart of this step can be assumed as the

selection of an optimum window such that BP of SA1 in ustop region has lowest

PSLL possible.

6. If there are any repeating sensor locations, they are excluded. N1 is set to the

number of remaining sensors. Although fitness function is defined according to

ustop, the suppression region after design may be larger. ustop is updated.

7. Sensors of SA2 are positioned such that SA1 and SA2 have a maximum num-

ber of common elements. This is the location where a group of sensors are

positioned firmly in SA1 and generally occurs around the center of the aper-

ture. The maximum coincidence is desired in order to reduce the total number

of sensors. The details of this step is given below as Algorithm-A.

8. If the total number of the sensors exceeds N , decrease N1 by 1 and proceed to

step 3, otherwise, proceed to step 9

9. A weighting function is applied to elements of SA2 such that after dual-apodization

the best sidelobe behavior is obtained. The details of this step is given below as

Algorithm-B.

10. If the mainlobe of SA2 fits ustop, proceed to dual-apodization step. If the main-

lobe is smaller/larger than the ustop, increase/decrease N2 by 1 and proceed to

step 7.

Algorithm-A: The details of the step-7 of the design algorithm.

A1) Initially, locate uniformly the sensors of SA2 between 0 and(N2 − 1)λ/2.

A2 ) Find the number of SA1 sensors coinciding with the sensors of SA2. Set this

value as the score of this region. Ultimately, SA2 will be positioned using these

scores.
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A3) If all aperture has been browsed, proceed to step A4, otherwise shift SA2 to the

right by 1(λ/2) and go to step A2.

A4 ) Place SA2 to the region with the highest score.

Algorithm-B: The details of the step-9 of the design algorithm.

B1) The weighting function for SA2 is in the form of (1− α cos(2πn/N2)), where

n = 0, 1, ...N2 − 1, 0 ≤ α ≤ 1. Set α = 0 initially.

B2) Set the upper edge of ustop as ue.

B3 ) Find B2 ( FNBWSA2) for the current α value. Neglect the α values satisfying

B2 < ue, otherwise find the scalar difference B2 − ue

B4) If α = 1, proceed to step B5 otherwise increase α by 0.01 and go to step B3.

B5 ) Select the α value that yields the minimum difference |B2 − ue| .

6.3.4 Layout and Weight Optimization

In this part, both the layout the and weights of SA1 will be optimized. The design

variables of GA for this case will be the locations and the weights of the sensors in

SA1. The fitness function will be as:

f(w, d) = 1/ max
u∈ustop

(abs(BPSA1(w, d, u))), subject to |BPSA1(θ0)| = 1, (6.6)

where w is the weight vector. Each chromosome in the population will consist of

2N1 genes. First N1 genes represent the sensor locations whereas the last N1 genes

represent the weights. Crossover and mutation operations for the weights and the

sensor locations are done separately. The steps of the algorithm for this case are the

same with steps in Part 6.3.3 except the steps 4, 5 and 6 are modified as:

4. A population for sensor locations and weights is generated. Each chromosome

in the population consists of N1 genes representing sensor locations and N1
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genes representing the sensor weights. The first and the last sensors are located

at extreme points of the aperture ( 0(λ/2) and (2L)(λ/2) ). Remaining sensor

positions are chosen randomly between extreme points. Genes representing

sensor locations are integer numbers which are decoded as multiples of half-

wavelength. Generated weights are real and uniformly distributed between [0,

1] with resolution of 0.0001.

5. N1 − 2 optimum sensor locations and N1 optimum real weights are found ac-

cording to fitness function provided in (6.6).

6. If there are any repeating sensor locations, they are eliminated and the weight

for that location is chosen as the sum of the weights of the repeated sensors. In

that case, the weight of a sensor in SA1 can be larger than 1. N1 is set to the

number of remaining sensors.

6.4 Results and Discussion

Two test problems will be handled to compare the results of the proposed method with

the existing methods. The first problem is a widely studied problem and considers an

aperture of 50λ, 101 locations with 25 sensors. Some results in the literature for this

problem are provided in Table 6.1, taken from [88]. The second problem considers

an aperture of 31.5λ, 64 locations with 48 sensors. Although in existing solutions,

symmetric placement is required for this problem, in our solution we will not enforce

symmetric placement. The existing results for this problem are provided in Table 6.2,

taken from [88].

6.4.1 Layout Optimization

The population in GA is produced randomly, therefore different solutions may be

observed in different simulation runs. The best solutions obtained by layout opti-

mization for 25-element, 50-wavelength problem are provided in Table 6.3.

Results in Table 6.3 show that the PSLL of the proposed method, compared to existing

solutions that can scan all angles, is better by at least 3 dB and has much better CTR
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Table 6.1: Existing solutions for 25-sensors, 50-wavelength problem

Solution Source PSLL BW CTR Length

(dB) (u3dB) (λ)

L1 [42] -13.51 0.0143 4.1 50

L2 [91] -14.45 0.0192 6.5 50

L3 [49] -14.67 0.0190 7.3 50

L4 [48] -14.67 0.0190 3.1 50

L5 [48] -14.77 0.0204 7.1 50

L6 [88] -14.00 0.0160 2 50

L7 [88] -14.83 0.0206 5.98 50

L8 [96]1 -17.01 0.0166 3.33 26.013

L9 [96]1 -20.1 0.0185 2.63 26.013
1The pattern cannot be scanned. The design is done for a particular steering angle, if

steering angle is changed grating lobes show up.

Table 6.2: Existing solutions for 31.5λ, 64 locations with 48 sensors problem

Solution Source PSLL BW(3dB) CTR Length

(dB) (degrees) (λ)

L10 [89] -18.76 1.812 2.76 31.5

L11 [88] -19.72 1.839 1.91 31.5

Table 6.3: Solutions by the proposed method for layout optimization for 25-sensors,

50-wavelength problem

Solution N,N1,N2 PSLL BW CTR Length

(dB) (u3dB) (λ)

S1 25,18,11 -18.25 0.0192 1.86 50

S2 25,18,11 -18.31 0.0188 1.86 50

S3 25,18,11 -19.02 0.0188 1.86 50

S4 24,17,10 -17.9 0.0192 1.86 50

S5 23,17,9 -17.55 0.0192 1.66 50
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Table 6.4: Solutions by the proposed method for layout optimization for 31.5λ, 64

locations with 48-sensors problem

Solution N,N1,N2 PSLL BW(3dB) CTR Length

(dB) (degrees) (λ)

S6 38,30,22 -21.54 1.78 2.08 31.5

S7 41,30,30 -22.01 1.76 2.12 31.5

S8 47,30,38 -24.85 1.76 2.77 31.5

and comparable BW. Only the solution L9 seems to provide better PSLL and BW but

with a cost of disability to scan the pattern. The sensor locations, the weights and

the beam-patterns of SA1 and SA2 together with output beam-pattern for solution S3

are provided in Figure 6.3. Furthermore, better results can be obtained even with less

sensors, solutions S4 and S5. Results of solution S5 are provided in Figure 6.4.

The reason for some solutions of this method to have the same BW is the fact that SA1

has the same BW in all cases. Thanks to the nonlinear operation of dual-apodization,

BW of the output is the same with the one having narrower BW. Mainlobe of SA1 is

affected by the lower end of ustop and by keeping lower end of ustop fixed, widening

of mainlobe is prevented.

Solutions for the second problem obtained by layout optimization are given in Table

6.4.

Results in Table 6.4 show that the proposed method get better results even with less

number of sensors; at least 2dB better PSLL, smaller BW and comparable CTR.

Results of solution S8 are provided in Figure 6.5.

6.4.2 Layout and Weight Optimization

The best solutions obtained for the first problem by layout and weights optimization

are provided in Table 6.5. The PSLLs are even better than previously presented re-

sults of Part 6.4.1. However, BW and CTR are increased but still comparable with

solutions from the literature. Beam-patterns for solution S10 are provided in Figure
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Figure 6.3: Beam-patterns (a,b), weights and locations (c) for S3
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Figure 6.4: Beam-patterns (a,b), weights and locations (c) for S5
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Figure 6.5: Beam-patterns (a,b), weights and locations (c) for S8
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Table 6.5: Solutions by the proposed method for layout and weights optimization for

25-sensors, 50-wavelength problem

Solution N,N1,N2 PSLL BW CTR Length

(dB) (u3dB) (λ)

S9 25,18,11 -19.72 0.0188 6.16 50

S10 25,18,12 -20.37 0.0192 6.35 50

Table 6.6: Solutions by the proposed method for layout and weights optimization for

31.5λ, 64 locations with 48-sensors problem

Solution N,N1,N2 PSLL BW(3dB) CTR Length

(dB) (degrees) (λ)

S11 42,28,33 -25.16 1.64 7.258 31.5

S12 42,29,33 -25.38 1.64 12.22 31.5

6.6, positions and weights are provided in Table 6.7.

Solutions to the second problem by layout and weights optimization are provided in

Table 6.6. PSLL and BW values are better than the solutions presented in Part 6.4.1

and in the literature, however, CTR values are worsened. Beam-patterns for solution

S12 are provided in Figure 6.7, positions and weights are provided in Table 6.7.

Table 6.7: Positions and weights of sensors for S10 and S12. x is position (in λ/2)

and w is the weight

S10 S12

SA1 SA2 SA1 SA2

x w x w x w x w

0 0,4708 45 0,6500 0 0,9037 16 0,4800

8 0,8035 46 0,6969 1 0,8146 17 0,4894

17 0,9590 47 0,8250 9 0,6590 18 0,5172

26 0,4896 48 1,0000 11 0,8028 19 0,5625

Continued on next page

95



Table 6.7 – continued from previous page

S10 S12

SA1 SA2 SA1 SA2

x w x w x w x w

28 0,6813 49 1,1750 14 0,2561 20 0,6237

35 0,5242 50 1,3031 15 0,8742 21 0,6984

37 0,5653 51 1,3500 18 0,1843 22 0,7840

46 0,8161 52 1,3031 21 0,8130 23 0,8774

48 0,2293 53 1,1750 22 0,5471 24 0,9753

52 0,2134 54 1,0000 23 0,8439 25 1,0740

54 0,6764 55 0,8250 25 0,4566 26 1,1701

56 0,2402 56 0,6969 26 0,5297 27 1,2600

61 0,6587 28 0,9496 28 1,3405

67 0,8858 29 0,1508 29 1,4087

75 0,7212 32 0,5531 30 1,4622

84 0,4488 33 0,1615 31 1,4989

91 0,5570 34 0,7736 32 1,5176

100 0,3039 36 0,4515 33 1,5176

38 0,2016 34 1,4989

39 0,6763 35 1,4622

41 0,6075 36 1,4087

42 0,4446 37 1,3405

43 0,9058 38 1,2600

44 0,2636 39 1,1701

47 0,6346 40 1,0740

50 0,7337 41 0,9753

51 0,5767 42 0,8774

54 0,5455 43 0,7840

63 1,8425 44 0,6984

45 0,6237

46 0,5625

Continued on next page
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Table 6.7 – continued from previous page

S10 S12

SA1 SA2 SA1 SA2

x w x w x w x w

47 0,5172

48 0,4894

A drawback of the solutions presented here is the loss in SNR gain since the sensors

are apportioned among the two sub-arrays. However, considering the main reasons

for using thinned arrays; economy, complexity and computational load, and the fact

that the performance in terms of PSLL, CTR and BW of these solutions is better

than the cases with larger numbers of sensors, it is meaningful to use these solutions.

For example, for the first problem of the first part, SNR gain loss is 10log10(25) −
10log10(18) ≈ 1.43 dB however, PSLL is improved at least 3 dB. This figure is even

better in the other cases. Moreover, when compared to the existing solutions for the

first problem, the proposed method yields less SNR loss in layout optimization. The

comparisons of SNR losses are provided in Table 6.8. Since in some references the

numbers are not provided, they are estimated from figures. Although it seems that

the proposed solution yields higher SNR losses for layout and weight optimization

case, it leads to better sidelobe suppression. This result also supports that it may be

advantageous to use this method.

Another drawback of the proposed method is that in classical designs once the layout

Table 6.8: SNR losses (dB) by the proposed method and those of the indicated refer-

ences.

Solution SNR Loss Solution SNR Loss

[42] 1.7263 [96] 1.7975

[91] 2.8485 S1-S3 1.4267

[49] 1.7958 S4-S5 1.6749

[48] 1.6067 S9 4.5451

[88] 1.9004 S10 3.1965
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Figure 6.6: Beam-patterns for S10
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Figure 6.7: Beam-patterns for S12
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Table 6.9: Computational complexity for CBF and Capon with S10 and an array with

25-sensors

CBF Capon

25-sensors 180 ∗ 25
180 ∗ (253 + 2 ∗ 25)

= 180 ∗ 15675

S10

180 ∗ (18 + 12)

+180 ∗ (2 ∗ 2) + 180

= 180 ∗ 35

180 ∗ (183 + 36) + 180 ∗ (123 + 24)

+180 ∗ (2 ∗ 2) + 180

= 180 ∗ 7625

and weights of the sensors are determined, nothing is done related to design in real

time operation. However, in the proposed method, dual-apodization is done continu-

ously in real time operation. This makes obtained design suitable for receiver arrays

only. In addition to that, any beamforming or direction-of-arrival (DOA) estimation

algorithm used in the system will be executed for each sub-array. Change of compu-

tational complexity in this matter depends on the algorithm used. For example, for

the solution S10 the complexity comparison should be done between an array with

25-sensors and two subarrays with 18-sensors and 12-sensors. Therefore, in the case

where computational burden becomes prohibitive with the increasing number of sen-

sors, it will be advantageous. In the case where computational complexity increases

slightly with increasing number of sensors, it will be disadvantageous. The extra

computations due to dual apodization are finding the maximum of the both spatial

spectra, dividing each value by the corresponding maximum and finding the mini-

mum of the two values at each spatial point. Therefore, the complexity increase due

to dual apodization also depends on the number of scanning angles (Ns). The change

of computational complexities for S10 when conventional beamforming (CBF) and

Capon are used are given in Table 6.9. In Table 6.9 the number of scanning angles

is taken as Ns = 360, but due to symmetry in the spatial spectrum of a linear array

only half of the spectrum has been considered, and the second lines of S10 are due to

nonlinear apodization (normalization and minimum operation).

In CBF, the computational complexity is O(n). On the other hand, in Capon, the

biggest part of the complexity is due to inversion operation, O(n3), and the remaining
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Figure 6.8: Spatial power spectra with S12 for a single target at different azimuth

locations

computations are comparatively negligible. Therefore, dividing the whole array in

two subarrays will be advantageous in Capon but disadvantageous in CBF. Moreover,

the computational complexity increase due to nonlinear apodization is dramatically

high when CBF is used, whereas it is negligible when Capon is used.

In order to see the effectiveness and the disadvantages of the proposed method, a

DOA search simulation has been conducted using conventional beamforming. Syn-

thetically generated frequency domain data has been used and solutions S10 and S12

have been selected. The simulation results with S12 for a single target are provided

in Figure 6.8. In Figure 6.8 the spatial power spectra for a single target with an SNR

of 10 dB at different azimuth locations are provided. Figure 6.8 shows that the target

has been successfully detected in all locations with high resolution and low sidelobe

level.

As mentioned before, for an optimum result many subarrays and designs should be

used. However, the method used in this study uses two subarrays one of which is

effective around the mainlobe regions and one at the sidelobe regions. Therefore, the
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Figure 6.9: Spatial power spectrum with S12 for two close targets, SNR 10 dB
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Figure 6.10: Spatial power spectrum with S12 for two separated targets, SNR 10 dB
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method has acceptable results for two close targets (Figure 6.9) and two separated

targets (Figure 6.10). However, when there are more than two targets with close SNR

values, the proposed method is expected to under-perform. The simulation results for

three targets located at [60◦ 65◦ 95◦] with S10 is given in Figure 6.11. The distant

target cannot be located clearly and the sidelobe level is around -5 dB. However, any

agent with an expertise in the analyses of such designs, Figure 6.11(b), can conclude

that there are at least two targets located around 60◦ and 90◦. This conclusion can

also be obtained with the result of SA2. On the other hand, looking at the result of the

proposed method it can also be concluded that quite likely there are two close targets

around 60◦. That makes the proposed method more advantageous compared to SA2.

6.5 Conclusion

In this chapter, a nonlinear method for array thinning has been proposed. The pro-

posed method depends on the hybrid usage of dual-apodization and genetic algorithm.

PSLL, BW and CTR parameters have been used for performance comparison. Results

show that the proposed method gives better results compared to existing solutions for

two test problems in the literature. Moreover, these results can also be obtained with

less number of sensors which improves the economy, complexity and computational

load performance of the system. Although reducing the number of sensors for the

test problems was not one of the initial aims of this study, it comes out to be another

advantage of the proposed method. In previous works in the literature, the genetic

algorithm is used to suppress PSLL in all side-lobes region. However, in this method,

the genetic algorithm considers the side-lobes within the mainlobe of SA2. There-

fore, suppression level of genetic algorithm increases. The main drawback of this

method is that it requires continuous dual-apodization of two sub-arrays in real time

operation and is that it is applicable to receiver arrays only. The design of arrays in

this chapter has been done merely considering the beam patterns.
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Figure 6.11: Spatial power spectrum with S10 for three targets, SNR 10 dB
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CHAPTER 7

CONCLUSION

In Chapter 3, the historical progress of sparse linear arrays and analysis and compar-

ison of the recently proposed sparse linear arrays have been presented. One of the

most recent and popular methods in designing sparse arrays is the "coarray based"

method. In this method, no optimization for the placement of array elements is re-

quired. A closed-form structure is used, and the aim is to maximize the size of the

hole-free segment of the difference coarray. The most known five of these methods

have been studied and their performances in terms of DOA estimation accuracy, de-

grees of freedom, DOA resolution, and mutual coupling have been compared. The

aim is to determine their advantages, disadvantages, necessities, and success in case

of fixed aperture and a fixed number of sensors scenarios. The arrays used in the com-

parison are Nested Array (NA), Co-prime Array (CA), Super Nested Array (SNA),

Augmented Nested Array (ANA), and Sparse Ruler Array (SRA), which are called

the comparison group. The outcomes of the analysis and comparison can be summa-

rized as follows: In the case of the fixed aperture, using a filled array seems to be

the best option in terms of performance. Coarray based arrays are not advantageous

in this case. In case, the number of sensors is fixed, the array which has the largest

physical aperture always has a bigger degrees of freedom (DOF) and resolvability.

In simulations, this one comes out to be SRA. Therefore, contrary to the authors of

the comparison group, we believe that it is the physical aperture that determines DOF

and resolvability. However, using this physical aperture efficiently is the success of

the coarray based methods. On the other hand, even if they have the same physical

aperture, their performances may differ. Therefore, it can be concluded that the per-

formances of the coarray based arrays depend on their coarray apertures and coarray

topologies (distribution of redundancies) together with their physical apertures and
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physical topologies.

As a specific multi-apodization approach, SVA is a computationally convenient method

that brings together the advantages of different window functions in spectral analy-

sis. In Chapter 5, SVA has been adapted to beamforming by a uniform linear array.

The main idea is to use the similarity of beamforming and DTFT operations and the

fact that optimization in SVA is done in frequency domain. SVA based beamforming

achieves the resolving capability of rectangular shading with much lower sidelobe

level. SVA based beamforming naturally inherits the properties of SVA; a possible

drawback, its poorer resolution (relative to that of rectangular shading) when the num-

ber of sensors is reduced can be overcome by a modified SVA method. Choosing the

number of DFT points as an integer multiple of the number of sensors reduces pos-

sible deviation in array output pattern to a negligible level. That this is a frequency

domain method can be considered as a practical advantage due to the availability of

custom FFT routines for many processors.

In Chapter 6, a nonlinear method for array thinning has been proposed. The pro-

posed method depends on the hybrid usage of dual-apodization and genetic algo-

rithm. PSLL, BW, and CTR parameters have been used for performance comparison.

Results show that the proposed method gives better results compared to existing so-

lutions for two test problems in the literature. Moreover, these results can also be

obtained with less number of sensors which improves the economy, complexity and

computational load performance of the system. Although reducing the number of

sensors for the test problems was not one of the initial aims of this study, it comes out

to be another advantage of the proposed method. In previous works in the literature,

the genetic algorithm is used to suppress PSLL in all side-lobes region. However, in

this method, the genetic algorithm considers the side-lobes within the mainlobe of

SA2. Therefore, suppression level of genetic algorithm increases. The main draw-

back of this method is that it requires continuous dual-apodization of two sub-arrays

in real time operation and is that it is applicable to passive arrays only. The design of

arrays in this chapter has been done merely considering the beam patterns.

In the design given in Chapter 6, the constraint on the numbers of array elements, N1

and N2, is loose. In future studies, the values of these parameters can be obtained
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by an optimization algorithm such that they are kept fixed during the design process,

and result in the best mainlobe width and sidelobe level. Moreover, the results of the

design in practice can be best evaluated by an agent with an expertise. The role of

this agent can be fulfilled by machine learning methods. Firstly, the machine learning

methods can be used for the estimation of number of sources by using the spatial

spectra of SA1, SA2, and their dual apodization. Then, given the number of sources,

the DOA of sources can be estimated with machine learning methods. A combined

machine learning model which estimates both the number of sources and their DOAs

can be used. However, this will require a dynamic output length and increase the

complexity of the machine learning model.
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APPENDIX A

DOA ESTIMATION METHODS

A.1 ESPRIT:

ESPRIT (Estimation of Signal Parameters via Rotation Invariant Techniques) method,

in contrast to the MUSIC method, is a signal subspace method. ESPRIT does not

involve a search algorithm and decreases computational load and storage requirement

dramatically compared to the MUSIC method [5, 9]. Moreover, ESPRIT does not

need to know the array steering vector, A(θ), exactly. However, this method can only

be used for certain array configurations which consist of two sub-arrays with fixed

separation, ∆, between doublets each from one sub-array [5,9]. The doublets in each

sub-array should be identical.

Consider the signal model given in (2.1), the array steering vector A now is the com-

bination of two sub-matrices. Assume A1 is steering matrix of the first sub-array and

A2 of the second sub-array. A is given as follows:

A =

A1

A2

 (A.1)

where A1 and A2 are related by

A2 = A1D (A.2)

and D is a diagonal matrix and is given by

D = diag(e−jω∆ cos θ1/c, e−jω∆ cos θ2/c, ..., e−jω∆ cos θK/c) (A.3)

where θk, k = 1, 2, ..., K are DOA angles. Therefore, DOA angles can be estimated
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from the eigenvalues λ̄k, k = 1, 2, ..., K of D by

arg(λ̄k) = jω∆ cos θk/c→ θk = acos(
−jarg(λ̄k)

2π∆
) (A.4)

Therefore, the problem of DOA estimation is reduced to finding the D matrix [7]. As

stated before in Chapter 2, A and Us span the same column space, therefore there

should be a unique and non-singular matrix C such that

Us =

Us1

Us2

 =

A1

A2

C (A.5)

combining (A.2) and (A.5) yields Us2 = Us1C−1DC. Let Φ = C−1DC, then Φ and D

are related by similarity transformation, therefore they have the same eigenvalues [5,

7, 9]. Therefore, DOA estimation can be completed by finding such a Φ that satisfies

Us2 = Us1Φ relation. Applying (A.4) to the eigenvalues of Φ, DOA estimations can

be found.

Even though its performance is similar to MUSIC algorithm, ESPRIT does not re-

quire a search algorithm and is simple [7, 97]. Moreover, the sensor positions is not

required to be known exactly and array geometry is flexible. In contrast to these ad-

vantages, ESPRIT requires identical doublets and the separation between doublets

∆ should satisfy ∆ < λ/2. Furthermore, there exists an 180◦ of ambiguity in the

estimation of ESPRIT.

Algorithm steps of ESPRIT for K sources is as follows:

1. Collect output data samples y(1), y(2), ..., y(N)

2. Evaluate the estimate of covariance matrix from (2.16)

3. Eigen-decompose R̂y and determine signal subspace Us and Us1, Us2, note that

number of signals can be found by extracting number of repeating smallest

eigenvalues from the number of sensors

4. Find Φ such that Us2 = Us1Φ is satisfied, in this step to find a solution for Φ
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either a Least Squares (LS-ESPRIT) or a Total Least Squares approach (TLS-

ESPRIT) can be used

5. Apply (A.4) to the eigenvalues of Φ for DOAs.

A.2 Maximum Likelihood Methods

The DOA estimation methods provided previously do not result in sufficient perfor-

mance specifically in low SNR and in the existence of coherent signals. Maximum

likelihood (ML) methods, on the other hand, have optimum performance. That is, the

covariance of the estimates asymptotically reaches the stochastic Cramer Rao Bound

(CRB) [98], even in low SNR and in the existence of coherent signals. However,

this success comes with the cost of an increase in computational load mainly due to

multidimensional search requirements [7]. ML methods are parametric methods and

make use of a data set and a statistical model.

In DOA estimation two techniques of the ML method are used depending on the

signal model, these techniques are the Stochastic and the Deterministic ML meth-

ods. In the Stochastic Maximum Likelihood(SML) technique the incoming signals

are modeled as zero-mean, temporally white Gaussian processes whereas in the De-

terministic Maximum Likelihood (DML) technique the incoming signals are modeled

as unknown deterministic quantities. In both cases, the noise is modeled as a zero-

mean, spatially, and temporally white Gaussian process [5]. In the following parts, a

brief overview of these two techniques will be provided.

A.2.1 Deterministic Maximum Likelihood:

As mentioned before in this case the signal is assumed to be unknown constant and

the noise is white Gaussian process with zero mean. Therefore from (2.1) the output

y(t) will be a Gaussian process with mean A(θ)s(t) and covariance matrix Ry =

σ2
vI. Therefore the probability density function of each measurement will be given as
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follows:

f(y(t)) =
1

(πσ2
v)
M
e−||y(t)−A(θ)s(t)||2/σ2

v (A.6)

Note that (A.6) is M variate complex Gaussian distribution and ||.|| is Euclidean

norm. In (A.6) the unknowns are θ, s(t) and σ2
v . The measurements in each snap-

shot are independent, therefore the likelihood function for N snapshots becomes as

follows:

LDML(θ, s(t), σ2
v) =

N∏
t=1

(πσ2
v)
−Me−||y(t)−A(θ)s(t)||2/σ2

v (A.7)

The ML estimates of the unknown parameters θ̂, ŝ(t) and σ̂2
v are the ones which

maximizes (A.7). Alternatively for simplicity, ML estimates of the unknown pa-

rameters can also be found as the ones which minimizes the negative log-likelihood

function [7]:

lDML(θ, s(t), σ2
v) = − log(LDML(θ, s(t), σ2

v)) (A.8)

Inserting (A.7) in (A.8), neglecting the constant terms and normalizing by N yields:

lDML(θ, s(t), σ2
v) = M log(σ2

v) +
1

Nσ2
v

N∑
t=1

||y(t)− As(t)||2 (A.9)

Then the ML estimates ŝ(t) and σ̂2
v are obtained as follows [7]:

σ̂2
v =

1

M
Tr
{

(I − ΠA)Ry

}
(A.10)

ŝ(t) = A†y(t) (A.11)

where A† = (AHA)−1AH is pseudo inverse of A and ΠA = AA† is orthogonal projec-

tion on the range space of AH . Inserting (A.10) and (A.11) in (A.9) the ML estimate
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θ̂ is found as the solution of the following optimization problem:

θ̂DML = arg
{

min
θ
Tr
{

Π⊥ARy

}}
(A.12)

Where Π⊥A = I−ΠA. Analytical solutions for this problem are not available generally,

therefore numerical methods should be implemented [5, 7].

A.2.2 Stochastic Maximum Likelihood:

In this method the signal is modeled as a zero-mean temporarily white Gaussian ran-

dom process [5, 7] with covariance matrix Rs = E{s(t)sH(t)}. The output y(t)

is therefore a zero-mean Gaussian random process with covariance matrix Ry =

ARsAH + σ2
vI. Similarly, as in DML case, measurements are independent and iden-

tically distributed, however the unknown parameters are now θ, Rs and σ2
v . The

likelihood function for N snapshot is obtained as follows:

LSML(θ,Rs, σ
2
v) =

N∏
t=1

1

πM |Ry|
e(−yH(t)R−1

y y(t)) (A.13)

Normalizing by N and neglecting the constant terms, the negative log-likelihood

function is found to be proportional to [5, 7]:

1

N

N∑
t=1

||Π⊥Ay(t)||2 = Tr{Π⊥ARy} (A.14)

For fixed θ, the minimum with respect to Rs and σ2
v are found to be [7]:

σ̂2
v =

1

M −K
Tr{Π⊥ARy} (A.15)

R̂s = A†(Ry − σ̂2
vI)A†H (A.16)
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Using the estimates (A.15) and (A.16), the estimation for θ is obtained as follows:

θ̂SML = arg
{

min
θ
log|AR̂sAH + σ̂2

vI|
}

(A.17)

124


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	BACKGROUND OF THE PROCESSING METHODS IN THIS WORK
	Array Signal Model
	DOA Estimation Methods
	Beamforming
	Conventional Beamforming
	Capon Beamforming

	Subspace Based Methods
	MUSIC

	Comparison of DOA Methods
	Spatial Spectrum
	DOA Estimation
	DOA Resolution


	Conclusion

	ANALYSIS AND COMPARISON OF COARRAY BASED SPARSE ARRAYS
	A History of Sparse Arrays
	Coarray Based Signal Models and Coarray Based Arrays
	Mutual Coupling
	Some Useful Definitions
	Nested Arrays
	Coprime Arrays
	Super Nested Arrays
	Augmented Nested Arrays
	Sparse Ruler Arrays

	DOA Estimation Methods and CRLB
	Spatially Smoothed (SS)-MUSIC and Direct Augmentation (DA)-MUSIC
	Cramér-Rao Lower Bound (CRLB)

	Simulation Results
	Apertures and uDOFs
	DOA Estimation
	Mutual Coupling

	Conclusion

	NONLINEAR APODIZATION
	Apodization/Windowing
	Dual-Apodization
	Multi-Apodization
	Spatially Variant Apodization (SVA)
	Conclusion

	SVA BASED BEAMFORMING
	Introduction
	Relationship between DTFT and Uniform Linear Array Beamformer
	SVA Based Beamforming Algorithm 
	Results
	Some Practical Issues
	Conclusion

	A HYBRID NONLINEAR THINNED ARRAY DESIGN METHOD
	Introduction
	Preliminaries
	Beam Pattern (BP) Formulation
	Dual Apodization

	Description of the Algorithm
	Formation of Subarrays
	Suppression region by GA (ustop)
	Layout Optimization
	Layout and Weight Optimization

	Results and Discussion
	Layout Optimization
	Layout and Weight Optimization

	Conclusion

	CONCLUSION
	REFERENCES
	DOA ESTIMATION METHODS
	ESPRIT:
	Maximum Likelihood Methods
	Deterministic Maximum Likelihood:
	Stochastic Maximum Likelihood:



