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Mathematics, Hacettepe University

Assoc. Prof. Dr. Yusuf İpekoğlu
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ABSTRACT

EFFECTS OF NON-ABELIAN MAGNETIC FIELDS ON PAIR
PRODUCTION IN FLAT AND CURVED SPACES

Özcan, Berk
M.S., Department of Physics

Supervisor: Prof. Dr. Seçkin Kürkçüoğlu

September 2021, 81 pages

Our objective in this thesis is to compute the pair production rates for both bosons

and fermions under the influence of non-abelian gauge fields on the manifolds R3,1 ≡
R2 × R1,1 and S2 × R1,1. We will compare the pair production rates of the spherical

cases with the flat ones, and also compare the non-abelian cases with the abelian ones

to see effects of both curvature and non-abelian field strength on the pair production.

We first review the pair production process, i.e. the so-called Schwinger effect using

the path integral formalism for bosonic spin-0 i.e. scalar fields and for fermions, spin-

1/2 i.e. spinor fields, and also subsequently review the recent results obtained in the

literature on R3,1 and S2×R1,1 with abelian orthogonal uniform electric and magnetic

fields. We then move on to generalize these results by the inclusion of a uniform

non-abelian magnetic field due to an external SU(2) gauge field. In doing so, we

find the opportunity to compare the pair production rates on R3,1 and S2 × R1,1 with

non-abelian field switched on, and also compare its influence to previously obtained

results without the non-abelian field. Novel effects of the presence of the uniform

non-abelian magnetic field together with the effects of constant positive curvature of

the S2-submanifold are emphasized.
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ÖZ

DÜZ VE EĞRİ UZAYLARDA DEĞİŞMELİ OLMAYAN ALANLARIN ÇİFT
ÜRETİMİ ÜZERİNDEKİ ETKİSİ

Özcan, Berk
Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Seçkin Kürkçüoğlu

Eylül 2021 , 81 sayfa

Bu tezin amacı R3,1 ≡ R2×R1,1 ve S2×R1,1 tipi manifoldların ve değişmeli olmayan

alanların, bozon ve fermiyonlardaki çift üretimi üzerindeki etksini araştırmaktır. Hem

küresel ve düz geometrilerdeki hem de değişmeli ve değişmeli olmayan alanların

etkisi altındaki çift üretimi oranlanarak geometri ve değişmeli olmayan alanların çift

üretimi üzerindeki etkisi görülecektir. İlk olarak Feynman’ın yol integrasyonu metodu

kullanılarak bozonik (spin-0) ve fermiyonik (spin-1/2) parçacıklarındaki çift üretimi

olayı (Schwinger mekanizması) yeniden değerlendirip, daha sonra literatüre yeni ka-

tılmış olan R3,1 ve S2×R1,1 tipi manifoldlar üzerinde değişmeli ve değişmeli olmayan

manyetik alanlar bulunduğu durumlardaki çift üretimi değerlendirilecektir. Ardından,

bu sonuçlar SU(2) ayar alanından oluşan değişmeli olmayan manyetik alanlar için

genellenecektir. Bu genelleme yapılırken, R3,1 ve S2 × R1,1 üzerindeki çift üretim-

leri değişmeli olmayan maynetik alan etkisi varken karşılaştırma ve aynı zamanda

değişmeli olmayan alanların olduğu durumla, literatürdeki değişmeli olmayan alanla-

rın olmadığı durumu karşılaştırma fırsatı elde edilecektir. Tekdüze değişmeli olmayan

alanların S2 altmanifoldu ile birlikte getirdiği yeni etkiler üzerinde de durulacaktır.
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Landau Problemi, Eğik Uzayda Dirac Operatörü

viii



To my family

ix



ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor Prof. Dr. Seçkin Kürkçüoğlu.
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CHAPTER 1

INTRODUCTION

Pair production under constant, strong electric fields, otherwise known as Schwinger

effect has become important area of research since the original calculation done by J.

Schwinger [1]. One important feature of Schwinger effect is that the pair production

exists for any electric field value, however for small electric field values pair produc-

tion rate is greatly diminished since the pair production probability is proportional to

e−πm
2/E . Because of this reason, up until now, Schwinger effect is not observed in

experiments, since the electric field strength required for the observations are larger

than our current technological means. This effect is also examined for time dependent

electric fields [2, 3, 4, 5]. Under the influence of these types of electric fields, pair

production probability increases but not sufficiently so that it allows a direct exper-

imental verification. Schwinger mechanism is also investigated for inhomogeneous

fields [6, 7], but currently no experimental verification can be done in these setups ei-

ther. Dual effect of the creation of monopole anti-monopole pairs under the influence

of magnetic fields is discussed in the early literature [8]. There have also been the

discussion of pair production in AdS2 space [9] as well as in the deSitter Space dS2

[10, 11]

Chapter 2 of this thesis will serve as a review, in which we will discuss the one-loop

effective action for scalar and spinor fields under the influence of background gauge

field. We will calculate the vacuum to vacuum transition amplitude, and subsequently

we will derive the probability for vacuum to vacuum transition. Subtracting this prob-

ability from the total probability 1 gives us the probability for pair production. We

will present the calculations of the one-loop effective action for scalar and spinor

fields under the influence of a constant electric field and reproduce Schwinger’s orig-
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inal result.

Subsequently, we review the effects of uniform abelian magnetic field and constant

positive curvature on pair production following the recent article [12]. Here we con-

sider manifolds of the type R2 × R1,1 ≡ R3,1 and S2 × R1,1. In addition to a uniform

electric field in the spatial direction in the subspace R1,1 a uniform magnetic field

will be present on R2 and S2, the magnetic field in the latter will be provided by a

Dirac monopole. Evaluating the effective action on R4 and R2 × S2, we Wick rotate

R2 → R1,1 to obtain the pair production rates.

In Chapter 3, we shift our attention to the effects of non-abelian magnetic fields on

pair production on flat surfaces. Here our approach will be similar to the case with

purely the abelian field. Essentially we will consider a case with uniform magnetic

fields with both abelian and non-abelian parts. We will first handle the calculation for

the scalar fields. This task will be facilitated by using the result of the spectrum of

the gauged Laplacian provided in [13], we will nevertheless reproduce the results for

completeness. Calculating the pair production rates gives us novel physics and allows

us to comment on the effects of the non-abelian magnetic field on pair production.

These results will be discussed in detail in Section 3.1.2. This will be done in two

ways. First, at different values of the non-abelian magnetic field strength, we will plot

and inspect the profiles of a function which is proportional to the effective action;

Secondly, we will form and examine the profile of a function which allows us to

compare the situation with non-abelian field present to that in the absence of the non-

abelian magnetic field.

In order to proceed to discuss the pair production for spinor fields with non-abelian

field switched on, we need to first address the problem of finding the spectrum of

the gauged Dirac operator, /D2, on this setting. We take up and handle this task in

Section 3.2.1 and determine the spectrum of /D2 using methods similar to those used

in the discussion of the Jaynes-Cummings model [14]. To the best of our knowledge

these results are all new and provide a novel contribution to the literature. Here we

also determine the eigenstates of the operator /D
2, which will be implicitly used in

the calculation of the pair production rates. Employing these results, we proceed

to compute the pair production rates for spinor fields and illustrate our results by
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considering the profile of function constructed in the same spirit as in the case of

scalar fields. These results are presented in Section 3.2.2.

In Chapter 4, we focus on the problem of computation of pair production rates on

the manifold S2 × R1,1. Here in addition to the uniform electric field in the spatial

direction of the subspace R1,1, and a uniform magnetic field composed of an abelian

part due to a Dirac monopole placed at the center of S2 and a non-abelian part due

to a SU(2) gauge field is present. In order to evaluate the pair production rates for

scalar and spinor fields on this manifold, we need the spectrum of both the gauged

Laplacian, D2, and that of the gauged Dirac operator, /D2, respectively. Incidentally

the spectrum of D2 is determined in a previous work [13] within the context of gener-

alizing the Landau problem on S2 by switching on a non-abelian uniform gauge field.

We review the result obtained in [13] in detail and adopt it to solve the gauged Dirac

operator on S2 in this context. This result is also new to the best of our knowledge.

With the spectrum of D2 and /D
2 available to us, we follow the approach given in

[12] and reviewed in Chapter 2, to compute the pair production rates on R1,1 × S2.

For this purpose, we start our considerations on the Euclidean manifold R2×S2 with

another magnetic field perpendicular to the R2 plane, and Wick rotate R2 to R1,1 and

this latter magnetic field to a uniform electric field (B → iE) at an appropriate stage

of our calculations. Our objectives are two fold in studying this problem, one is to

find out how the constant positive curvature of S2 affects the pair production rates

for scalar and spinor particles, and the second is to examine the direct effect of the

non-abelian gauge fields on the pair production. In order to reach our first goal we

form a function, which is designed to give the ratio for relative pair production rates

on R1,1 × S2 to that on R1,1 × R2. We plot the profile of this function to inspect the

effects of curvature in pair production. To meet our second objective, we inspect this

ratio for various different values of the non-abelian gauge field strength. Noting that

this is not completely independent of the effect of the curvature, we also compare

the pair production rates on S2 × R1,1 by forming a function which is the ratio of

pair production rates at non-zero values of non-abelian field strength to that with only

non-vanishing abelian magnetic fields.

In Chapter 5, we give a summary of our findings presented in this thesis, and indicate

3



a few directions for future research.
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CHAPTER 2

PAIR PRODUCTION IN FLAT AND CURVED SPACES: A REVIEW

In the presence of classical electric fields in vacuum, there is the possibility of pair

production. This is known in the literature as the Schwinger effect, i.e. production of

a charged pair of a particle and its anti-particle, first calculated by Julian Schwinger

in his seminal article in 1951 [1]. Schwinger’s result gives us the amplitude and

hence the probability for production of pairs of particles and anti-particles per unit

volume of the Minkowski space. This vacuum effect occurs in the presence of electric

fields. In other words it does not occur if only a pure magnetic field is applied to

the vacuum. Nevertheless, it is possible to contemplate situations in which both an

electric field and a magnetic field is present, a particular treatable case being mutually

perpendicular uniform electric and magnetic fields on the Minkowski space.

In this chapter we will present a review of the pair production process for scalar and

spinor fields under the influence of an external classical electromagnetic field, di-

rected perpendicular to an already existing uniform electric field. For this purpose,

we first start with the review of the Schwinger effect, following the article of Hol-

stein [15], and the lecture notes of Fradkin [16] on part integral techniques; first for

the scalar and subsequently for the spinor fields. Computing the vacuum to vacuum

transition probability and subtracting it from the total probability 1 gives us the pair

production probability in each case. We will follow the computation given in [12] to

discuss the pair production rates in the presence of a uniform magnetic field given in

the direction perpendicular to the electric field.

In Subsection 2.5.3 we will move on to computing the pair production problem under

perpendicular electric and magnetic fields on R1,1×S2 [12]. To examine this problem

we will start our discussion on the Euclidean space R2 × S2 with a uniform magnetic
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field perpendicular to R2 and another perpendicular to surface of S2, the latter one

is provided via a Dirac monopole placed at the center of S2. By Wick rotating R2

to R1,1 and the magnetic field perpendicular to R2 to an electric field in the spatial

direction in R1,1 we will calculate the pair production rates for scalar and spinor fields.

Subsequently we inspect how the curvature affects the pair production by looking at

by evaluating and plotting an appropriate function which is a direct measure of the

relative pair production rates.

2.1 Transition Amplitude for Complex Scalar Fields

We start our discussion by giving the action for the complex scalar field under the

influence of an external electromagnetic field Aµ(x) in 3 + 1 dimensions. This action

can be written in the following form:

S[φ, φ∗, ∂µφ, ∂µφ
∗] =

∫
d4xL(φ, φ∗, ∂µφ, ∂µφ

∗) ,

=

∫
d4x (Dµφ

∗)(Dµφ)−m2φφ∗ , (2.1)

Here φ and φ∗ indicates the complex scalar fields, and L[φ, φ∗, ∂µφ, ∂µφ
∗] indicates

the lagrangian density functional. Here, we have used the usual definition for the

covariant derivative, Dµ ≡ ∂µ− iAµ, and we work with the units in which the charge

of the scalar field is unity (e = 1). Integrating this expression by parts gives

S[φ, φ∗, ∂µφ, ∂µφ
∗] =

∫
d4x (∂µ − iAµ)φ∗(Dµφ)−m2φφ∗,

=

∫
d4x (∂µφ

∗)(Dµφ)− iφ∗Aµ(Dµφ)−m2φφ∗,

=

∫
d4x ∂µ(φ∗Dµφ)− φ∗(∂µDµφ)− iφ∗Aµ(Dµφ)−m2φφ∗,

= −
∫
d4xφ∗(D2 +m2)φ, (2.2)

where in passing from third line to the final line in Eq. 2.2 we have assumed that |φ|
vanishes sufficiently fast at infinity, so that the total derivative term (surface term)

vanishes. Also in the last line of (2.2) we have introduced the notation D2 ≡ DµD
µ.

In quantum mechanics, the transition amplitude i.e. the propagator between the states

at positions q(ta) and q(tb), between the states at an initial time, ta and the states at a

6



final time, tb, can be written as as a path integral [17],

D(qa, ta; qb, tb) =

∫
Dq e

i
~
∫
dtL(q,q̇), (2.3)

where L(q, q̇) is the lagrangian of the corresponding classical system, whose quantum

mechanical transition amplitude between initial and final states is being sought for.

The integration measure Dq is given as

Dq = lim
N→∞

N∏
i=1

dqi√
2π~

, (2.4)

and it essentially allows to take into account all possible paths from the initial to the

final configuration, as opposed to only the classically favored path. A short summary

of the path integrals in quantum mechanics, sufficient for our purposes, is given in

Appendix A. We want to consider the vacuum to vacuum transition amplitude, that is

the amplitude for initial and final states to be vacuum state. To do this we must take

the limits, ta → −∞ and tb → ∞ [15]. Taking this limit allows us to, effectively,

only consider the vacuum (ground) state, since at sufficiently large times the system

can be assumed to be in the ground state.

We can pass from quantum mechanics to quantum field theory and write the vacuum

to vacuum transition amplitude for complex scalar fields by making this following

changes.

q(t)→ φ(x), φ∗(x),∫
dtL(q, q̇)→

∫
d4xL[φ, φ∗, ∂µφ, ∂µφ

∗]. (2.5)

Denoting the vacuum state as |Ω〉, we have, for the vacuum to vacuum transition

amplitude is given as

〈Ω|Ω〉 =

∫
DφDφ∗ei

∫
d4xL[φ,φ∗,∂µφ,∂µφ∗]. (2.6)

In particular, for the vacuum to vacuum transition amplitude for the complex scalar

fields with a classical background gauge field, we may proceed to insert the action

from (2.2) into (2.6) to get

〈Ω|Ω〉 =

∫
DφDφ∗e−

∫
d4xφ∗(D2+m2)φ. (2.7)
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Let us note that this transition amplitude encodes the information or the amplitude for

the possible production of particle anti-particle pairs corresponding to the field φ and

φ∗. We will see how and under which circumstances this gives a non-zero amplitude.

Our first task is to calculate the integral (2.7). Let us use the notationO ≡ (D2 +m2)

for convenience. Also it is useful to separate the field φ into its real and imaginary

parts as

φ(x) = φ1(x) + iφ2(x),

φ∗(x) = φ1(x)− iφ2(x). (2.8)

(2.8) allows us to rewrite the integration measure as,

DφDφ∗ = Dφ1Dφ2, (2.9)

and the vacuum to vacuum transition amplitude in (2.7) as

〈Ω|Ω〉 =

∫
Dφ∗

∫
Dφ e−

∫
d4xφ∗Oφ,

=

∫
Dφ1

∫
Dφ2 e

−
∫
d4x [φ1−iφ2]O[φ1+iφ2],

=

∫
Dφ1

∫
Dφ2 e

−
∫
d4xφ1Oφ1+φ2Oφ2+iφ1Oφ2−iφ2Oφ1 ,

=

∫
Dφ1

∫
Dφ2 e

−
∫
d4xφ1Oφ1+φ2Oφ2 ,

≡

[∫
DΦ e−

∫
d4xΦOΦ

]2

. (2.10)

From the last line of (2.10) it is clear that the transition amplitude is just the square

of the transition amplitude for a real scalar field, say Φ, which we can proceed to

calculate as follows:

〈Ω|Ω〉Φ =

∫
DΦ e−

∫
d4xΦOΦ. (2.11)

We can expand Φ in terms of the eigenstates of the operator O, which forms a com-

plete and orthonormal set. Without loss of generality we may proceed in a notation in

which the eigenbasis of O is discrete (while continuous spectrum can also be treated

on equal footing) and write

Φ =
∑
n

anϕn(x), (2.12)
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where the basis {ϕn} satisfy

Oϕn(x) = λnϕn(x),∫
d4xϕm(x)ϕn(x) = δmn, (2.13)

with λn denoting the eigenvalues, i.e the spectrum of O. The measure for the path

integral in (2.11) then takes the form

DΦ = lim
N→∞

N∏
i=1

dai√
2π~

, (2.14)

since DΦ indicates the integration over all field configurations and integrating with

respect to all the an will therefore yield the desired result. For the transition amplitude

in (2.11) we therefore have,

〈Ω|Ω〉Φ =

∫
lim
N→∞

N∏
i=1

dai√
2π~

e−
∫
d4x

∑
n,m anϕnOamϕm ,

=

∫
lim
N→∞

N∏
i=1

dai√
2π~

e−
∑
n,m δnmanamλm ,

=

∫
lim
N→∞

N∏
i=1

dai√
2π~

e−
∑
n a

2
nλn , (2.15)

For the last line of (2.15), we see that the result involves product of infinite number

of Gaussian integrals with each integral being proportional to 1√
λn

, we find

〈Ω|Ω〉Φ = lim
N→∞

C̃√
λ1λ2...λN

,

=
C̃√
DetO

, (2.16)

where C̃ is the constant we get from the integration. Going back to (2.10) and squar-

ing the result in 2.16 we have

〈Ω|Ω〉 =
C

DetO
. (2.17)

We could write the 1/Det(O) term as

1

DetO
= exp(−log (DetO)),

= exp(−log (
∏
n

λn)),

= exp(−
∑
n

log (λn)),

= exp(−Tr log(D2 +m2)), (2.18)
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and therefore the vacuum to vacuum transition amplitude can be cast in the form

〈Ω|Ω〉 = C × e−Tr log(D2+m2). (2.19)

Here, the exponent of the exponential is the one-loop effective action, and in terms of

the Feynman diagrams it is the sum of all one-loop diagrams with the even number

of external photon legs [18].

2.2 Pair Production in Scalar Fields

In this section, we will calculate the pair production for scalar fields, given that there

is a constant, uniform electric field. If we assume that the electric field is on the z-

direction, we can write ~E = Eẑ. The vector potential for such field is easily written

as A0 = Ez, in the Landau gauge, with other components of Aµ being zero. This

shows that the operator O has the form O = (∂t − iEz)2 + ~∇2
⊥ + m2. We have to

solve the eigenvalue equation satisfied by this operator, since the vacuum to vacuum

transition amplitude depends on the determinant of O. It is possible to reorder the

operator O and write it as,

O = p2
z + E2Z2 + p2

⊥ +m2. (2.20)

Here we have defined Z ≡ (−∂t/E − iz). This is a valid definition since we could

write the commutation relation as [Z, pz] = 1. Also it is important to realize that

the definitions we have used for the momentum are just for convenience, meaning

p2
z = ∂2

z and ∂2
⊥ = ∂2

x + ∂2
y . That being said, the term p2

z +E2Z2 is just the harmonic

oscillator term. Spectrum of O is therefore given as

Spec(O) = p2
⊥ +m2 + E(2n+ 1), n = 0, 1, 2, ... , (2.21)

where p⊥ stands for the continuous eigenvalues of px and py, p⊥ =
√
p2
x + p2

y, and

the corresponding eigenvalues are ei~p⊥·~xϕn(Z). We now focus on the vacuum to

vacuum transition amplitude given by (2.19), from this amplitude we can calculate

the probability of finding the state in a vacuum state, given enough time by just taking

the modulus square of the amplitude. This gives us,

Prob. = | 〈Ω|Ω〉 |2 = C̃ e−2Re(Tr log (O)), (2.22)
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which means that the probability of pair production (p.p.p) must be obtained by sub-

tracting the probability in (2.22) from 1. From which we get,

p.p.p = 1− C̃ e−2Γ. (2.23)

Here we have defined Γ ≡ Re(Tr logO). Therefore, we can simply focus on calcu-

lating Γ. We start with the calculation of Tr logO,

Tr logO = Tr

∫
ds

s
e−sO. (2.24)

Here the trace indicates the summation of the eigenvalues for the given operator.

As we have already indicated the operator O has a harmonic oscillator part with

frequency ω = E, and a degeneracy coming from the fact that the solution for the x

and y directions are freely propagating plane waves. This means that we should write

the trace as a combination of integrals over the transverse direction and a summation

over the discrete harmonic oscillator eigenvalues. In a spatial cube of side length L,

and time interval T , we write this as,

Tr logO =

∫
d2p⊥
(2π
L

)2

∫
dp0

(2π
T

)

∫
dpz

∫
ds

s
〈p| e−sO |p〉

= L2T

∫ ∞
−∞

d2p⊥
(2π)2

∫ EL

0

dp0

2π

∫
dpz

∫
ds

s
e−s (p2z+E2Z2+p2⊥+m2)

= L3T
E

8π2

∫
dpz

∫
ds

s2
e−s (p2z+E2Z2+m2). (2.25)

In (2.25), when going from first to second line, we have used the degeneracy per unit

space-time volume which is
∫

d2p⊥
(2π)2

factor. Also the integration over the pz simply

converts to the summation over the eigenvalues. Therefore, we find

Tr logO = L3T
E

8π2

∫
ds

s2

∞∑
n=0

e−s (E(2n+1)+m2)

= L3T
E

16π2

∫
ds

s2

e−sm
2

sinh(sE)
. (2.26)

In order to take the integration over s, we have to perform Wick rotation by x0 → ix0,

and E → iE, then we can write (2.26) as,

Tr logO = L3T
iE

16π3
I. (2.27)

Here we have defined I to be,

I =

∫ ∞
0

ds

s2

e−sm
2

sin(sE)
, (2.28)
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for convenience. Notice that the integrand has poles at s = sn = nπ/E. To get

around that problem, we define the integration contour as small semicircular devia-

tions from the real axis, say z = εeiθ, centered at each sn. This means we could write

s− sn = z. Using this in (2.28), we get

I = lim
ε→0

∞∑
n=1

∫
Cn

ds

s2

e−sm
2

sin(nπ + Ez)
,

= lim
ε→0

∞∑
n=1

∫
Cn

ds

s2

e−sm
2

sin(nπ)cos(Ez) + cos(nπ)sin(Ez)
,

= lim
ε→0

∞∑
n=1

∫
Cn

ds

s2

(−1)n e−sm
2

sin(Ez)
,

= lim
ε→0

∞∑
n=1

∫
Cn

ds

s2

(−1)n e−sm
2

Ez
,

= lim
ε→0

∞∑
n=1

∫
Cn

dz

s2
n

(−1)n e−sm
2

Ez
,

= lim
ε→0

∞∑
n=1

∫
Cn

dz

s2
n

(−1)n e−snm
2

Ez
,

= i
∞∑
n=1

(−1)n e−snm
2

Es2
n

∫ 0

π

dθ,

= iE
∞∑
n=1

(−1)n+1 e−nπm
2/E

n2π
. (2.29)

Which means we could write Γ with the help of the result we have found in 2.29 in

conjunction with 2.27, and we could write

Γ = L3T
E2

16π3

∞∑
n=1

(−1)n+1

n2
e−nπm

2/E, (2.30)

dividing by the volume, L3T , gives the Schwinger result for the pair production per

unit space-time volume under constant electric field.

2.3 Transition Amplitude for Spinor Fields

Obtaining the vacuum to vacuum transition amplitude for spinor fields is similar in

vein to the complex scalar case. However, we have to use the Grassmann variables

to perform the path integrals. Therefore, it will be appropriate to start with a concise

review of the Grassmann variables.
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2.3.1 Grassmann Variables

Grassmann variables are the elements of the exterior (or, Grassmann) algebra and

they anti-commute [19]. This means for a Grassmann variable, θ, the following is

true

{θ, θ} = 0. (2.31)

Thus, for a Grassmann number, we have θ2 = 0. We can define the derivation, which

is the operator when applied to a Grassmann number, gives 1. For this purpose,

consider the equation {
d

dθ
, θ

}
θ′ =

d

dθ
(θθ′) + θ

d

dθ
θ′,

= θ′, (2.32)

where θ and θ′ are both Grassmann numbers. Therefore we see that the differentiation

is defined by the operator d/dθ such that,{
d

dθ
, θ

}
= 1. (2.33)

Note that the most general function f(θ) of a single Grassmann variable is f(θ) =

a+ bθ, where a and b are constants. This is because θ2 = 0.

The integration for Grassmann variables is defined as the operator which gives the

result of zero for the integral of a total derivative, and it is a linear operation. We

have, ∫
dθ
∂f(θ)

∂θ
= 0, (2.34)

which gives ∫
dθ a = 0,

∫
dθ θ = 1. (2.35)

We can generalize the definition for the derivation to N Grassmann variables, with

(i, j, k = 1, 2, ..., N ) as{
∂

∂θi
, θj

}
θk =

∂

∂θi
(θjθk) + θj

∂

∂θi
θk

=
∂θj
∂θi

θk −
∂θk
∂θi

θj

= δijθk (2.36)
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On the second term of the second line the minus sign comes from the fact that the

derivation is only applied to the variable right next to it. So, after changing the places

of the variables, we get a minus sign. With this, we can write,{
∂

∂θi
, θj

}
= δij. (2.37)

The integration, for N Grassmann numbers is defined as∫
dθiθj = δij,

∫
dθi = 0. (2.38)

We can take multiple integrations using the fact that the Grassmann variable anti-

commute ∫ ∫
dθ1dθ2 θ1θ2 = −

∫
dθ1

[∫
dθ2 θ2

]
θ1 = −1. (2.39)

Let us look to the expansion of particular exponential function involving Grassmann

variables, we have

eθ
TOθ = 1 + (θTOθ) +

1

2!
(θTOθ)2 + · · · (2.40)

Here O is an anti-symmetric N × N matrix, with the elements oij satisfying oij =

−oji and θ = (θ1, θ2, ..., θN)T , θT = (θ1, θ2, ..., θN) are column and row matrices

with N Grassmann variables . It is also important to realize that if N is even this

series truncates in the (N/2)th term, since there are only N Grassmann variables, and

if N is an odd number, the terms after the [(N + 1)/2]th term are zero because of

(2.31). If we want to integrate this expression we can write∫
dθ1

∫
dθ2 · · ·

∫
dθN

[
1 +

(∑
i,j

θioijθj

)
+

1

2!

(∑
i,j

θioijθj

)2

+ · · ·

· · ·+ 1

N !

(∑
i,j

θioijθj

)N]
. (2.41)

It is easy to see that the only term that survives this integral is the (N/2)nd term if

N is even, and the integral vanishes if N is odd. Hence N can only be even. So we

write the only surviving term more explicitly as∫
dθ1

∫
dθ2 · · ·

∫
dθN

[
1

(N/2)!

∑
i1,··· ,iN

oi1,i2oi3,i4 · · · oiN−1,iN

×θi1θi2θi3θi4 · · · θiN−1
θiN

]
. (2.42)
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We can see from this expression that the indices i1, i2, ..., iN cannot contain any two,

or more, numbers that are the same. Possible combinations of these indices form the

elements of the symmetric group, SN . Also, in order to take the integrals we have to

change the position of the Grassmann numbers, and any change between two adjacent

θ’s yields a factor of−1. SinceN must be an even number, the factor±1 can be found

from the sgn(σ) where σ ∈ SN is a permutation of {i1, i2, ..., iN}. Hence, we can

write

1

(N/2)!

∑
σ∈SN

[
N∏
i=1

sgn(σ) oσ(i),σ(i+1)

]
. (2.43)

Here, since we are summing over all possible permutations of the group elements, the

term oσ(i),σ(i+1) contains all of the matrix elements of O. This is the definition for the

Pfaffian, of a N ×N , anti-symmetric matrix up to a multiplicative constant 2N/2 [20].

Pfaffian of O equal to square root of the determinant [21]. Hence we could finally

write ∫
dθ1

∫
dθ2 · · ·

∫
dθNe

θTOθ = 2N/2
√
DetO. (2.44)

2.3.2 Transition amplitude for spinor fields

Now we proceed to discuss the calculation of vacuum to vacuum transition amplitude

of a Dirac field. We start with the Lagrangian [15],

L = ψ̄(i /D −m)ψ, (2.45)

where /D = γµDµ is the gauged Dirac operator, with Dµ = ∂µ − iAµ and ψ =

(ψ1, ψ2, ψ3, ψ4) is a 4-component Dirac spinor. Here γµ are the Dirac gamma matri-

ces, satisfying {γµ, γν} = 2gµν

Let us use the auxiliary notation O ≡ (i /D − m), and write the vacuum to vacuum

transition amplitude as

〈Ω|Ω〉 =

∫
Dψ̄Dψ e

∫
d4x ψ̄Oψ. (2.46)

Expanding the Dirac spinors as ψ =
∑
bnϕn, where bn are Grassmann variables, and

integrating the bn out, with the help of the result in (2.44), allows us to write (2.46)
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as,

〈Ω|Ω〉 =

∫ ∏
n 6=m

db̄ndbm e
∫
d4x b̄n(φnOφm)bm ,

=

∫ ∏
n 6=m

db̄ndbm e
∫
d4x b̄nOmnbm ,

=

∫
Db̄Db e

∫
d4x b̄TOb,

= C ×DetO, (2.47)

where C is the constant of integration and the multiplicative factors from (2.44). This

expression can also be written as the determinant of O and determinant of its conju-

gate O† as

〈Ω|Ω〉 = C ×
√
Det (OO†), (2.48)

and finally we may cast it into the form

〈Ω|Ω〉 = C × exp
[
log
√
Det (OO†)

]
, (2.49)

= C × e
1
2
Tr log (OO†).

2.4 Pair Production in Spinor Fields

With vacuum to vacuum amplitude formally expressed for the spinor fields in (2.49),

we now set out to derive the Schwinger’s result for pair production of spin-1/2

charged particle under constant electric field. Calculations will follow similarly to

the scalar case, the main difference being the eigenvalues and their degeneracies of

the operator O. We will use the pair to pair transition amplitude we have found in

(2.49) to calculate the pair creation probability.

In the same way we have encountered in Section 2.2, 1 − | 〈Ω|Ω〉 |2 will give us the

pair creation probability. Therefore, it is meaningful to calculate the Tr log (OO†).
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Let us remember that the operator OO† is given by

OO† = /D
2

+m2,

= (γµDµ)(γνDν) +m2,

= γµγνDµDν +m2,

= (ηµν − iσµν)DµDν ,

= D2 − iσµν(∂µ − iAµ)(∂ν − iAν),

= D2 − iσµν(∂µ∂ν − i∂µAν − iAν∂µ − iAµ∂ν − AµAν),

= D2 − σµν(∂µAν),

= D2 − 1

2
σµν(∂µAν + ∂µAν),

= D2 − 1

2
σµν(∂µAν − ∂νAµ),

= D2 − 1

2
σµνFµν . (2.50)

From the last line of (2.50) we see that the operator OO† consists of two parts. The

first term, D2, is the gauged Laplacian we have already examined in Section 2.2. The

second term can be called the Zeeman term as it encodes the interaction of the spin

with the external electromagnetic field. In (2.50) we have used the definition,

σµν =
i

2
[γµ, γν ], (2.51)

a partial explicit representation is provided by

σ0i =

 0 iσi

iσi 0

 , σij = εijk

 0 σk

σk 0

 . (2.52)

Proceeding with the same gauge choice we have used in Section 2.2, A0 = Ez, we
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are able to rewrite (2.50) using (2.52) as,

OO† = D2 − 1

2
σµνFµν ,

= D2 − 1

2
(σ0νF0ν + σµ0Fµ0),

= D2 − 1

2
(σ0jF0j + σi0Fi0),

= D2 − 1

2
(σ0zF0z + σz0Fz0),

= D2 − 1

2
(−σ0z∂zA0 + σz0∂zA0),

= D2 + σ0z∂zA0,

=

D212 iEσz

iEσz D212

 . (2.53)

By Wick rotating the result to Euclidean space, we will get

OO† =

 D2 Eσz

Eσz D2

 (2.54)

Which means the eigenvalues for such operator is given by

λ±n = p2
⊥ + (2n+ 1)E ± E +m2 (2.55)

Here the± indicates the spin for the system, we can also shift the indices to write this

result in a more suggestive form just like we have done in Appendix D.2,

λn = p2
⊥ + 2nE +m2 (2.56)

with the same degeneracy factors as (D.9). Now we will calculate the trace of logOO†

since the pair to pair transition amplitude is proportional to that, as it can be seen from
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Eq. (2.49).

Tr logOO† =

∫
d4p

∫
ds

s
〈p| e−sOO† |p〉 ,

=

∫ ∞
−∞

d2p⊥
(2π
L

)2

∫ EL

0

dp0

(2π
T

)

∫
ds

s

∑
n

e−sλn ,

= L3T
E

8π2

∫
ds

s2

∑
n

e−sλn ,

= L3T
E

8π2

∫
ds

s2
(e−sm

2

+ 2
∞∑
n=1

e−sλn),

= L3T
E

8π2

∫
ds

s2
(1 + 2

∞∑
n=1

e−s(2nE))e−sm
2

,

= L3T
E

8π2

∫
ds

s2
e−sm

2

coth sE, (2.57)

we will this expression back to the Minkowski space via Wick rotation, then obtain

Re(iSeff ) = −L3T
iE

8π2

∫
ds

s2
e−sm

2

cot sE, (2.58)

again just like the scalar case, we will have singularities at s = sn ≡ nπ/E because of

the coth sE term, and we will move around them with the small semicircles centered

around each sn. We also use cot sE ≈ 1/Ez, and write (2.58) as

Re(iSeff ) = −L3T
iE

8π2

∞∑
n=1

∫
Cn

dz

zE

E2

n2π2
e−(nπ/E)m2

,

= −L3T
iE

8π2

∞∑
n=1

∫ 0

π

idθ
E

n2π2
e−(nπ/E)m2

,

= −L3T
E2

8π3

∞∑
n=1

1

n2
e−(nπ/E)m2

. (2.59)

Dividing the last line of (2.59) we find the Schwinger result for the pair production of

charged spin-1/2 particles per unit volume of the Minkowski space.

2.5 Magnetic Fields Effects on Pair Production

We would like to proceed with exploring the effects of additional constant magnetic

field B applied to the system in a direction parallel to the constant electric field, E.

Consider that we have F03 ≡ E and F12 ≡ B1 with E & B1 constants in the

Minkowski space R3,1. In order to facilitate the evaluation of the necessary path
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integrals, we may work in the Euclidean space R4 with F12 ≡ B1, and F34 ≡ B2
1,

then at the appropriate stage of our calculation we will rotate R4 to the Minkowski

space R3,1 and B2 to −iE (F34 → iF30), i.e. to the electric field.

2.5.1 Scalar Fields on R3,1

Let us start with writing the vacuum to vacuum transition amplitude in (2.17) with

the notation

〈Ω|Ω〉 = C × eiSeff , (2.60)

where, we introduced

iSeff ≡ Tr log(D2 +m2), (2.61)

we are interested in obtaining the pair production probability (or, p.p.p.). This can be

computed from the vacuum to vacuum transition probability, by subtracting it from

the total probability 1. Therefore, we have

p.p.p. = 1− | 〈Ω|Ω〉 |2

= C × (1− e−2Re(iSeff ))

= C × (1− e−Γ) (2.62)

In (2.62) Re(iSeff ) is present instead of iSeff because in order to calculate the prob-

ability, we compute the modulus square of (2.60), and in the last line used definition

of Γ = Re(Tr log (O)) given after (2.22), corresponding to the real part of the iSeff ,

with Seff being the one-loop effective action.

We can compute Γ by writing the trace explicitly, and expressing the logarithm as an

integral. In the Euclidean signature we have

ΓE = −Tr lim
ε→0

∫ ∞
ε

ds

s
e−s(−D

2+m2),

= −
∫
d4x lim

ε→0

∫ ∞
ε

ds

s
〈x| e−s(−D2+m2) |x〉 . (2.63)

As mentioned earlier we will compute this integral in the Euclidean space and then

we will Wick rotate back to Minkowski space.
1 The subscripts in B1 and B2 are not tensor indices, they are just an auxiliary notation to label the magnetic

fields perpendicular to the (x1, x2) and (x3, x4) planes, respectively.
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In this case we have B1 as the magnetic field that is perpendicular to (x1, x2) plane,

and the magnetic field B2 that is perpendicular to the (x3, x4) plane. For which we

can write the spectrum for the D2 operator as,

D2ψn1,n2,α(x) = [(2n1 + 1)B1 + (2n2 + 1)B2]ψn1,n2,α(x)

n1 = 0, 1, 2, ...

n2 = 0, 1, 2, ...

(2.64)

This is essentially obtained from superposing the solution of two distinct Landau

problems on two orthogonal planes, a detailed calculation of which is given in Ap-

pendix D.1.

Expanding the position ket |x〉 in terms of the energy eigenbasis kets, labeled as

|n1, n2〉, i.e. |x〉 =
∑

n1,n2
|n1, n2〉 〈n1, n2|x〉, we may write

ΓE =

∫
d4x lim

ε→0

∫ ∞
ε

ds

s

∑
n1,n2,α

〈x| e−s(−D2+m2) |n1, n2〉α 〈n1, n2|x〉α ,

=

∫
d4x lim

ε→0

∫ ∞
ε

ds

s

∑
n1,n2,α

〈x|n1, n2〉α e
−s[B1(2n1+1)+B2(2n2+1)+m2] 〈n1, n2|x〉α ,

=

∫
d4x lim

ε→0

∫ ∞
ε

ds

s

∑
n1,n2,α

ψ∗n1,n2,α
(x)ψn1,n2,α(x)e−s[B1(2n1+1)+B2(2n2+1)+m2].

(2.65)

Here 〈n1, n2|x〉 ≡ ψn1,n2,α(x) with the α index labeling the degeneracy in each Lan-

dau level. We may use the orthogonality of the wavefunctions and the degeneracy

of the Landau levels to manipulate the last line of (2.65). Note that we have the

normalization condition, ∫
d4xψn1,n2,α(x)ψn1,n2,α(x) = 1, (2.66)

and since the density of states for Landau levels are B
2π

[22] and we have two distinct

Landau levels, sum over the degeneracy index α is given by∫
dx1dx2

B1

2π
×
∫
dx3dx4

B1

2π
=

∫
d4x

B1B2

4π2
. (2.67)

Putting these facts together, we have

ΓE = lim
ε→0

B1B2

4π2

∫
d4x

∫ ∞
ε

ds

s

∑
n1,n2

e−s[B1(2n1+1)+B2(2n2+1)+m2]. (2.68)
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Here we can perform the summation on n1 and n2 explicitly, using geometrical series.

In order to put this expression in a form which is better suited for physical interpreta-

tion we only perform the summation over n2. This yields

ΓE = − 1

8π2

∫
d4xB1 lim

ε→0

∫ ∞
ε

ds

s2

sB2

sinh sB2

∑
n1

e−s[B1(2n1+1)+m2], (2.69)

and Wick rotating the result by x4 → ix0 and B2 → −iE and identifying the contin-

uation of ΓE with iSeff . We get

iSeff =
i

8π2

∫
d4xB1 lim

ε→0

∫ ∞
ε

ds

s2

sE

sin sE

∑
n1

e−s[B1(2n1+1)+m2]. (2.70)

Now, we are in a position to perform the s-integral. First we have to realize that the

integral has singularities at s = nπ/E, n = 1, 2, · · · . It can be seen from (2.62) that

we are interested with the real part of the iSeff . This contribution comes from the

integrals around the small semicircles, Cn, centered around the singularities. Hence

our integration variable can be written as s = nπ/E + z, with |z| being small. We

can also write sin sE ≈ (−1)nzE. Hence the real part of the iSeff becomes

Re(iSeff ) =
i

8π2

∫
d4xB1

∑
n

∫
Cn

dz

(nπ/E)2

(−1)nnπ

zE

∑
n1

e−(nπ/E)[B1(2n1+1)+m2],

=
iEB1

8π2

∫
d4x

∑
n

∫
Cn

dz

z

1

(nπ)
(−1)n

∑
n1

e−(nπ/E)[B1(2n1+1)+m2],

=
iEB1

8π2

∫
d4x

∑
n

∫ 0

π

idθ
1

(nπ)
(−1)n

∑
n1

e−(nπ/E)[B1(2n1+1)+m2],

=
EB1

8π2

∫
d4x

∞∑
n=1

(−1)n

n

∑
n1

e−(nπ/E)[B1(2n1+1)+m2]. (2.71)

It is possible to take the B1 → 0 limit of the last line of (2.71), but to do so we must

first carry out the summation over n1. Carrying out the summation gives us

Re(iSeff ) = lim
B1→0

E

8π2

∫
d4x

∞∑
n=1

e−m
2(nπ/E) (−1)n

n

B1

2 sinh (nπB1/E)
,

= lim
B1→0

E

8π2

∫
d4x

∞∑
n=1

e−m
2(nπ/E) (−1)n

n

E/nπ

2 cosh (nπB1/E)
,

=
E2

16π3

∫
d4x

∞∑
n=1

e−m
2(nπ/E) (−1)n

n2
, (2.72)

which is the Schwinger’s result, as we have shown in Section 2.2, (2.30).
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2.5.2 Spinor Fields on R3,1

We now compute the pair production rates for spin-1/2 particles in the presence of

parallel E & B fields. To do so we again start with the Euclidean problem with B1

on the (x1, x2) & B2 on the (x3, x4) plane. We have 2

/D
2
2 +m2 = (τxDx + τyDy)(τxDx + τyDy)

= τ 2
xD

2
x + τ 2

yD
2
y + τxτy(DxDy −DyDx)

= D2
2 + iτz[(∂x + iAx)(∂y + iAy)− (∂y + iAy)(∂x + iAx)]

= D2
2 −B1τz (2.73)

Here the τx and τy operators indicate the usual Pauli spin operators. It is readily seen

from (2.73) that the spectrum depends on the spin of the particle, and it can be written

as

Spec( /D
2
2) = D2

21−B1τz =

D2
2 −B1 0

0 D2
2 +B1


=

(2n1 + 1)B1 +B1 = 2(n1 + 1)B1, n1 = 0, 1, 2, ...

(2n1 + 1)B1 −B1 = 2n1B1, n1 = 0, 1, 2, ...
(2.74)

Adding two copies of (2.74) with the quantum numbers n1 and n2 and magnetic fields

B1 and B2 we find the spectrum /D
2 on R4 as

Spec( /D
2
) = (2n1 + 1)B1 + (2n2 + 1)B2 ±B1 ±B2. (2.75)

Compared to the spectrum of the operator, D2 + m2, for the scalar case, we see that

there are the Zeeman terms ±B1 ±B2 with all possible (++,+−,−+,−−) sign

combinations. This causes an important change in the spectrum. For instance; for the

spin down state corresponding two lower signs, the ground level which is given by

n1 = n2 = 0 is a zero energy state i.e. it is a zero mode. This will have consequences

for pair production as it is a state that can be filled by produced pairs without any

energy cost.

The degeneracy factor is the same as in the scalar case for each spin branch, and given

2 Subscript 2 in /D
2
2 indicates that the operator is in two dimensions.
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by ∫
d4x

B1B2

4π2
. (2.76)

Putting these factors together, we can write the one loop effective action as

ΓE = −B1B2

8π2

∫
d4x lim

ε→0

∫ ∞
ε

ds

s

∑
n1,n2

[
e−s[B1(2n1+2)+m2] + e−s[B12n1+m2]

+e−s[B2(2n2+2)+m2] + e−s[B22n2+m2]
]
(2.77)

We can perform the summation on n1 in the (2.77), and write it as

ΓE = −B1B2

8π2

∫
d4x lim

ε→0

∫ ∞
ε

ds

s

∑
n1,n2

[
e−s[B12n1+m2](1 + e−s[2B1+m2])

+ e−s[B2(2n2+2)+m2] + e−s[B22n2+m2]
]

= −B1B2

8π2

∫
d4x lim

ε→0

∫ ∞
ε

ds

s
coth sB1

∑
n2

[
e−s[B1(2n1+2)+m2] + e−s[B22n2+m2]

]
(2.78)

Now we perform Wick rotation into the Minkowski space with B2 → −iE, and

identify continuation of ΓE with iSeff . This allows us to write

Re(iSeff ) = −iE B1

8π2

∫
d4x lim

ε→0

∫ ∞
ε

ds

s
cot sE

∑
n2

[
e−s[B1(2n2+2)+m2] + e−s[B22n2+m2]

]
= −E B1

8π2

∫
d4x

∞∑
n=1

1

n

∑
n1

[
e−(nπ/E)[B1(2n1+2)+m2] + e−(nπ/E)[B12n1+m2]

]
(2.79)

2.5.3 Spherical Scalar Case

We will now consider a situation in which not only the effects of magnetic field B

and an electric field E is taken into account, but also spatial curvature effect is also

examined. To do so, we will consider the pair production effects on the product

manifold S2×R1,1 with R1,1 is spanned by the coordinates x0 & x3. We will consider

a uniform electric field in the x3-direction, while the uniform magnetic field on S2 is

provided by a magnetic monopole.
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In order to compute the one-loop effective action, we follow the same approach as

before, and first consider this problem on the Euclidean space S2 × R2 with a mag-

netic field B1 perpendicular to S2 provided by a magnetic monopole, and B2 being

perpendicular to the plane R2. We will Wick rotate B2 to an electric field E at an

appropriate stage of this calculation, as in the flat case before.

Since, we need the spectrum of−D2+m2 to evaluate the one-loop effective action, we

may write −D2 = −D2
S2 +D2

R2 where the spectrum of D2
R2 is given by (2n2 + 1)B2

as this is the standard Landau problem solution we have used in Section 2.5.1 and

detailed out in Appendix D.1

Spectrum ofD2
S2 can be computed using group theory. The uniform magnetic field on

S2 is provided by a Dirac monopole placed at the center of this sphere. Due to Dirac

quantization condition [23] the magnetic field is quantized as B1 = N
2a2

where N is

an integer, and a is the radius of the sphere. The solution of this problem is provided

in Appendix E.1 and given as

Spec(−D2 +m2) =
1

a2

(
n1(n1 + 1) +Nn1 +

N

2

)
+ (2n2 + 1)B2 +m2, (2.80)

one-loop effective action takes the form

ΓE = −
∫
S2

dΩ

∫
dx3dx4 lim

ε→0

∫ ∞
ε

ds

s

∑
n1,n2,α

ψ∗n1,n2,α
(x)e−s(−D

2+m2)ψn1,n2,α(x)

= −
∫
S2

dΩ

∫
dx3dx4 lim

ε→0

∫ ∞
ε

ds

s

∑
n1,n2,α

ψ∗n1,n2,α
(x)ψn1,n2,α(x) (2.81)

× e−s[(n1(n1+1)+Nn1+N/2)/a2+B2(2n2+1)+m2]

Here dΩ denotes surface element of the 2-sphere, and the wavefunctions ψn1,n2,α(x)

are on the R2 × S2 space. In contrast to the flat case the degeneracy in each Landau

level is finite and given by the dimension of the spin J = n1 + N
2

irreducible repre-

sentation of SU(2) ' SO(3), which is 2n1 + 1 + N . Therefore the density of states

on S2 is ρS2 = 2k+1+N
4πa2

.

Using ρS2 , the orthogonality of the wavefunctions, and the degeneracy of the Landau

levels, which as we recall is B2 dx3 dx4/(2π) for the flat case. Summing over the
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degeneracy index, α we obtain∑
α

∫
S2

dΩ

∫
dx3dx4ψ

∗
n1,n2,α

(x)ψn1,n2,α(x) =

∫
S2

dΩ

∫
dx3dx4

B2

2π

2k + 1 +N

4πa2
.

(2.82)

Then the one-loop effective action takes the form

ΓE =
1

16π2a2

∫
S2

dΩ

∫
dx3dx4 lim

ε→0

∫ ∞
ε

ds

s2

sB2

sin sB2

×
∞∑

n1=0

(2n1 + 1 +N)e−s[(n1(n1+1)+Nn1+N/2)/a2+m2]. (2.83)

As we did previously, we again continue this expression into the R1,1 × S2 space by

means of the Wick rotation, x4 → ix0 andB2 → −iE. Taking the s-integral using the

residue theorem due to the singularities at sE = nπ, n = 1, 2, 3, .. we may write the

real part of iSeff as (recall that analytic continuation of−ΓE to R1,1×S2 is identified

as iSeff .)

Re(iSeff ) =
E

16π2a2

∫
dΩ2

∫
dx3dx0

∞∑
n=0

(−1)n

n

×
∞∑

n1=0

(2n1 + 1 +N) e−(nπ/E)[(n1(n1+1)+Nn1+N/2)/a2+m2]. (2.84)

Now we define the dimensionless variable ω = π/Ea2, and express (2.84) as

Re(iSeff ) = − E2

16π3

∫
S2

dΩ

∫
dx3dx0β0(ω), (2.85)

where we have also introduced,

β0(ω) := ω

∞∑
n=0

(−1)n

n

∞∑
n1=0

(2n1 + 1 +N) e−(nω)[B1(n1(n1+1)+Nn1+N/2)+m2a2],

= ω

∞∑
n1=0

(2n1 + 1 +N) log (1 + e−ω[n1(n1+1)+Nn1+N/2+m2a2]) (2.86)

In passing to the second line of (2.86) we have performed the sum over 3 n.

It is possible to take the flat limit of β0(ω), by letting N → ∞ and a2 → ∞ while

keeping N/a2 constant. This gives

βflat0 (ω) = ωN
∞∑

n1=0

log (1 + e−ω[Nn1+N/2+m2a2]). (2.87)

3 We recall that log (1 + Λ) =
∑∞
n=1

1
n

(−1)n+1Λn.
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In order to appreciate the effects of the curvature and magnetic field on the pair pro-

duction rates, we may consider the profile of the function γ0(ω) := β0(ω)/βflat0 (ω).

Explicitly, we have

γ0(ω) =


∑∞
n1=0(2n1+1+N) log (1+e−ω[n1(n1+1)+Nn1+N/2+m

2a2])

N
∑∞
n1=0 log (1+e−ω[Nn1+N/2+m

2a2])
N 6= 0,

12
π2 ω

∑∞
n1=0(2n1 + 1) log (1 + e−ωn1(n1+1)) N = 0.

(2.88)

In figures 2.1a and 2.1b we plot the profile of γ0 with respect to ω, at several values of

N . Since γ0(ω) > 1, we see that the pair production rates are larger than that is found

for flat space. This is mainly due to the fact that in the present case the degeneracy

is B1

2π
+ 2n1+1+N

4πa2
compared to just B1

2π
of the flat case. The term proportional to 1

a2

is the contribution of the curvature of S2 to the degeneracy, and acts to increase the

pair production rates. For N = 0, there is also an increase caused by the zero mode

states at n1 = 0, which are absent in the flat case, and they can be filled by produced

pairs without any energy cost. As N increases, we see that the γ0(ω) tends back

towards the value 1, meaning that as the magnetic field is increased it counter acts the

effect of positive curvature and tends to lower the pair production. In fact at large ω,

γ0(ω) ≈ N+1
N

= 1
N

+ 1.
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Figure 2.1a: γ0(ω)
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Figure 2.1b: γ0(ω)

2.5.4 Spherical Spinor Case

We now proceed to consider the pair production rates for spin-1/2 particles on R1,1×
S2 following the results in [12]. In this case we may start with

ΓE = −Tr log (iγµDµ +m) =
1

2

∫
ds

s
Tr e−s(m

2− /D2
) (2.89)
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In order to proceed, we need the spectrum of /D
2. This is worked out in the Ap-

pendix E.2. Here we give the results in Table 2.1. As will be explained in detail in

Appendix E.2 in Table 2.1, R3 denotes the eigenvalues of right acting U(1) generator

of the SU(2) ∼ SO(3) symmetry combined with the spin of the particle. Effective

Eigenvalues Degeneracy R3 Eigenvalues

2n2B2 + ((n1 + 1)2 +N(n1 + 1))/a2 2n1+2+N
4πa2

B2

2π
−1−N

2

(2n2 + 2)B2 + (n2
1 +Nn1)/a2 2n1+N

4πa2
B2

2π
1−N

2

(2n2 + 2)B2 + ((n1 + 1)2 +N(n1 + 1))/a2 2n1+2+N
4πa2

B2

2π
−1−N

2

2n2B2 + (n2
1 +Nn1)/a2 2n1+N

4πa2
B2

2π
1−N

2

Table 2.1: Eigenvalues of /D2, corresponding degeneracies and R3 eigenvalues

action can be cast in the form

ΓE =
1

16π2a2

∫
dΩ2dx3dx4

∫
ds

s
coth sB2 (2.90)

×
∑
n1

[
(2n1 +N)e−s[(n

2
1+Nn1)/a2+m2] + (2n1 + 2 +N)e−s[((n1+1)2+N(n1+1))/a2+m2]

]
.

Analytically continuing this expression to R1,1 × S2 via the Wick rotation, and also

performing the s-integral in a manner similar to the scalar case, we can write

Re(iSeff ) = −
∫
dΩ2dx3dx0

E2

8π3
β1/2(ω), (2.91)

where we have introduced

β1/2(ω) = ω
∞∑
n=1

1

n

[
N

2
e−nωm

2a2 +
∞∑

n1=1

(2n1 +N)e−nω(n2
1+Nn1+m2a2)

]
, (2.92)

= −ω

(
N

2
log (1− e−ωm2a2) +

∞∑
n1=1

(2n1 +N)log (1− e−ω(n2
1+Nn1+m2a2))

)
.

In the second line of (2.92) we have carried out the summation over n. Notice also

that the contribution of the zero modes are written out explicitly. Clearly there is zero

mode contribution for only the N 6= 0 case.

Just like in the scalar case as N → ∞, a → ∞ with N/a2 held fixed, we can write

the flat limit i.e. S2 → R2 of β1/2(ω) as

βflat1/2 (ω) = −ω

(
N

2
log (1− e−ωm2a2) +

∞∑
n1=1

Nlog (1− e−ω(Nn1+m2a2))

)
. (2.93)
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Finally, we define the ratio γ1/2(ω) ≡ β1/2(ω)/βflat1/2 (ω),

γ1/2(ω) =


N log (1−e−ωm2a2 )+2

∑∞
n1=1(2n1+N) log (1−e−ω(n

2
1+Nn1+m

2a2))

N log (1−e−ωm2a2 )+2
∑∞
n1=1N log (1−e−ω(Nn1+m2a2))

, N 6= 0,

12
π2 ω

∑∞
n1=0 n1 log (1− e−ωn2

1), N = 0.

(2.94)

Profile of γ1/2(ω) is provided in Figure 2.2
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Figure 2.2: γ1/2(ω).

By looking at the figure 2.2, we observe that, since γ1/2 < 1 pair production effects

are diminished compared to the flat case for spin-1/2 particles. Note that the sign of

the exponential term inside the logarithms is minus and this ensures that the numerator

of γ1/2(ω) remains smaller then its denominator. In the absence of any transverse

magnetic field the pair production effect is significantly reduced, while at N 6= 0

contribution of the zero modes counter acts the diminishing effect of the curvature.

Note also that the overall ratio of pair production is increasing with increasing N .
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CHAPTER 3

PAIR PRODUCTION IN THE PRESENCE OF NON-ABELIAN GAUGE

FIELDS

We now shift our focus to the treatment of the pair production in the presence of

electric fields as well as both abelian and non-abelian magnetic fields. The latter

renders the calculations to be treatable in several cases of interest as we will see in

the ensuing sections and the next chapter.

Presence of non-abelian gauge fields adds an isospin component to the already ex-

isting degrees of freedom. This will complicate calculations somewhat, but the main

essence will remain the same, while various novel physical effects will be noted and

discussed in detail. This chapter is devoted to the treatment of the problem of pair

production for spin-0 and spin-1/2 fields in on R3,1.

3.1 Scalar Fields

3.1.1 D2 operator and its spectrum

We start our discussion by considering the Landau problem for potentials subject to

a uniform magnetic field Bz, which is due to both an abelian component and a non-

abelian one. This magnetic field can be written in the form [13]

Bz = B112 + 2β2σz. (3.1)

Here, we may think of the first term is an abelian magnetic field component while the

second term represents a non-abelian uniform magnetic field due to an SU(2) pure

gauge field [24]. Considering the abelian component of Bz as being generated by a
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U(1) subgroup of SU(2), we may write the gauge field associated to Bz as

~A =
B1

2
(−yx̂+ xŷ)12 + β(−σyx̂+ σxŷ) (3.2)

We can see that the (3.1) follows from our gauge choice by making the calculation

Bz = Fxy = ∂xAy − ∂yAx + i[Ax, Ay],

=

[
∂x

(
B1 x

2

)
− ∂y

(
− B1 y

2

)]
12 − iβ2[σy, σx],

= B112 + 2β2σz. (3.3)

Now we consider the covariant derivative operator subject to this external gauge field.

We have Dµ = ∂µ + iAµ, and we want to compute the spectrum of the gauged

Laplacian operator D2 = DµD
µ similarly to the previous chapters.

D2 = DµD
µ,

= (∂x + iAx)(∂x − iAx) + (∂y + iAy)(∂y − iAy),

= (∂2
x − 2iAx∂x + A2

x) + (∂2
y − 2iAy∂y + A2

y),

= (∂2
x + ∂2

y)− i(−B1y∂x +B1x∂y − 2βσy∂x + 2βσx∂y) +
B2

1

4
(x2 + y2)

+B1β(xσx + yσy) + 2β2,

= 4∂∂̄ +B1(z̄∂̄ − z∂) + 4β(∂̄σ− − ∂σ+) +
B2

1

4
z̄z +B1β(zσ− + z̄σ+) + 2β2,

= 2B1

(2∂∂̄

B1

+
1

2
(z̄∂̄ − z∂) +

2β

B1

(∂̄σ− − ∂σ+)− B1

8
z̄z − β

2
(zσ− + z̄σ+) +

β2

B1

)
,

= 2B1

(
a†a+

√
2
β√
B

(a†σ+ + aσ−) +
1

2
+
β2

B1

)
,

= 2B1

(
a†a+

√
2β′(a†σ+ + aσ−) +

1

2
(1 + 2β′2)

)
. (3.4)

In passing to the last line of (3.4), we have defined the dimensionless quantity β′ ≡
β/
√
B1. Passing from line four to line five in (3.4), we have used the definitions,

z = x+ iy, z̄ = x− iy

∂ =
∂x − i∂y

2
, ∂̄ =

∂x + i∂y
2

(3.5)

σ+ =
σx + iσy

2
, σ− =

σx − iσy
2

and introduced the creation and annihilation operators in the penultimate line via

a =
1√
2B1

(B
2
z + 2∂̄

)
, a† =

1√
2B1

(B
2
z̄ − 2∂

)
. (3.6)
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It can be readily checked that [a, a†] = 1. Spectrum of D2 can be obtained manner

similar to one applied to the Jaynes-Cummings Hamiltonian [14]. This means that it

can be diagonalized by using the subspace of states, |n+ 1,+〉 and |n,−〉, where n

is the eigenvalue of the number operator N = a†a and ± denotes the isospin up and

isospin down respectively. This problem is already solved in [13], we are reproducing

the results for completeness. We can write out the operator D2 in the matric form

D2 = 2B1

a†a+ 1
2
(1 + 2β′2)

√
2β′a†

√
2β′a a†a+ 1

2
(1 + 2β′2)

 , (3.7)

in the aforementioned subspace, we can write the matrix elements of D2
n by writing

D2 = 2B1

n+ 1
2
(1 + 2β′2)

√
2(n+ 1)β′√

2(n+ 1)β′ n+ 1
2
(1 + 2β′2)

 , (3.8)

Finally we can write the eigenvalues of D2 operator by simply computing the eigen-

values of D2
n as

Λ±n1
=

2B1

(
n2

1 +
√

2β′2n1 + 1/4 + β′2
)
, n1 = 0, 1, 2, ...

2B1

(
n2

1 −
√

2β′2n1 + 1/4 + β′2
)
, n1 = 1, 2, 3, ...

(3.9)

Note in particular that the ground state is given by Λ+
0 = 2B1(β′2 + 1/2), using the

upper sign in (3.9).

3.1.2 Pair production

Now we will calculate the pair production rates in a manner similar to computation

presented in Section 2.4. We will start with the spectrum for the D2 +m2 operator in

the R2 × R2 ≡ R4 space that we have described earlier and rotate the second of the

R2 to R1,1 to obtain the electric field, while the first R2 is subject to the magnetic field

made up both abelian and non-abelian components. We can write down the spectrum

of the whole system as

Spec(D2 +m2) =

2B1(n2
1 +

√
2β′2n1 + 1/4 + β′2) +B2(2n2 + 1),

2B1(n2
1 −

√
2β′2n1 + 1/4 + β′2) +B2(2n2 + 1),

(3.10)

In (3.10) first spectrum is for the isospin up case and the quantum numbers n1 =

0, 1, 2, ..., n2 = 0, 1, 2, .., and the second is for the isospin down case and the quantum
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numbers n1 = 1, 2, ..., n2 = 0, 1, 2, ... The degeneracy in each of the R2 is as before.

The density of states on R2 × R2 is given by

B1B2

(2π)2
. (3.11)

Euclidean effective action, ΓE , on R2 × R2 takes the form.

ΓE = −
∫
d4x

∫ ∞
ε

ds

s

∫
d4x

B1B2

(2π)2

∑
n1,n2

e−s(2B1(n2
1+
√

2β′2n1+1/4+β′2)+B2(2n2+1)+m2)

×e−s(2B1(n2
1+
√

2β′2n1+1/4+β′2)). (3.12)

As before, all we need for pair production is to focus on to evaluate Re(iSeff ) this

is done by by Wick rotating ΓE and then calculating the residue integral, and then

evaluating the sum over the index n, labeling the poles, along the lines given in (2.71)

in Chapter 2. This gives

Re(iSeff ) = −
∫
d4x

EB1

8π2

[
∞∑

n1=1

log (1 + e−2πB1/E(n2
1−
√

2β′2n1+1/4+β′))

+
∞∑

n1=0

log (1 + e−2πB1/E(n2
1+
√

2β′2n1+1/4+β′))

]
(3.13)

Notice that, for the isospin up branch of the spectrum, sum over n1 starts from 0 and

for the isospin down part it starts from n1 = 1.

Let us define y ≡ B1/E for convenience, then by taking the limit m2 → 0 we are

able to write

Re(iSeff ) = −
∫
d4x

E2

96π2
f0(y, β′), (3.14)

where

f0(y, β′) =
12y

π

[
∞∑

n1=1

log (1 + e−2πy(n1−
√

2β′2n1+1/4+β′2))

+
∞∑

n1=0

log (1 + e−2πy(n1+
√

2β′2n1+1/4+β′2))

]
. (3.15)

In order to understand the pair production rates, we will need to take a look at the

plots of f0(y, β′), for different β′ values
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3.1.2.1 Pair production only for non-abelian case
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Figure 3.1: f0(y, β′)

In Figure 3.1, we are observing the profile of the function f0(y, β′). We see that

f0(y, β′) decreases with increasing y. This means that with the increasing abelian

field strength, B1, we see a decrease in the pair production. This effect is already

encountered in the abelian field case of Figure 2.1a. It is also possible to see fur-

ther decrease in the pair production when β′, non-abelian field strength, is increased.

However, this effect becomes significant for β′ & 0.61 at sufficiently large y, and

when β′ . 0.61 the hierarchy between pair productions are reversed compared to

the β′ & 0.61 case. But it is also important to note that when y is large this means

that the corresponding electric field must be small, this means we cannot observe pair

production for these values anyways.

3.1.2.2 Pair production comparison of non-abelian with abelian

Here we define the function F0(y, β′) ≡ f0(y, β′)/f0(y, 0), which is good for com-

parison of the pair production rates or spin-0 particles subject to a combination of an

abelian and non-abelian magnetic field to that with purely an abelian magnetic field.

In other words, we will be able to observe how the variation of β′ affects the pair

production rates.
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Figure 3.2: F0(y, β′)

Inspecting the graph of F0(y, β′) in Figure 3.2, we see an interesting behavior is

emerging, mainly there is a critical value for β′ called, β′c = 1, and when β′ = β′c

we see that in the limit of large y, F0(y, β′) approaches to 1/2. In another words

when the non-abelian field strength has the value of β′c, pair production rate quickly

converges to half of what it was for the purely abelian case. This β′c value can be

found by comparing the energy values between abelian and non-abelian cases. More

concretely, the lowest values of the energies 1 have the same value of B1
2 but since

there are essentially double the amount of states for the abelian case with the same

energy 3 the graph approaches to the value 1/2.

For the cases with β′ > 1 the situation is clear, the pair production decreases with

the increasing non-abelian magnetic charge. This is because the ground state energy

for the non-abelian case is always larger then the ground state energy for the purely

abelian case, hence the states become harder and harder to fill compared to the abelian

case, resulting in F0(y, β′) to approach zero faster. For 0 < β′ < 1 case F0(y, β′) has

a small dip below one, then we see an increase for the larger values of y. How-

ever, for the large y values, we see two cases emerging with one for β′ & 0.61 and

another for β′ . 0.61 comparing the hierarchy between these different non-abelian

1 isospin down part of Eq (3.9) with n1 = 1 and β′ = 1 and both isospin up, and down parts with β′ = 0.
2 Here, it is sufficient to focus on the lowest energy eigenvalues since the lowest energy eigenvalues are the

most easily filled states. This fact can also be seen, numerically, from the form of F0(y, β′).
3 Since the value B1 both comes from the isospin up and isospin down part for the abelian part.
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magnetic charges, first case we will look at is β′ . 0.61. Here the ground state en-

ergy eigenvalue for the non-abelian configuration is always less than of the abelian,

and, decreases further with the increasing β′ hence the function F0(y, β′) for large y

decrease with the increasing β′. For the b < β′ < 1 case, the situation is somewhat

reversed, i.e. here we see again, that the ground state eigenvalues are always lower

for the non-abelian case, however the difference keeps getting smaller and smaller,

hence we see that the hierarchy is increasing with the increasing β′.

3.2 Spinor Fields

We will now consider the pair production for spin-1/2 particles under the influence

of both the abelian and non-abelian magnetic field introduced in the previous section.

For this purpose, we will need the spectrum of the appropriate gauged Dirac operator.

This problem is not solved before, therefore we first proceed to handle this task,

outcome of which is relevant and interesting in its own right, and may be of relevance

in the context of condensed matter physics.

3.2.1 Gauged Dirac operator and its spectrum

We may launch the discussion by writing out the gauged Dirac operator on the 2D

flat space, R2. This is given as

/D = γi(pi − Ai) (3.16)

γi are the 2 × 2 matrices spanning the Clifford algebra on R2, we may take them as

γ1 = τ1 and γ2 = τ2, where τ1, τ2 are the 2 × 2 Pauli matrices. Components of the

gauge fields are given as before (3.2).

Ax = −B
2
y − βσy, Ay =

B

2
x+ βσx. (3.17)

Note that since Ai has dimensions [length]−1 we have non-abelian field strength β

given dimensions of [length]−1 as well, while B1 has dimensions [length]−2.

Now, with all this in mind, we can express /D as the following 2× 2 block matrix

/D =

 0 (px + B
2
y + βσy)− i(py − B

2
x− βσx)

(px + B
2
y + βσy) + i(py − B

2
x− βσx) 0

, (3.18)
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which, after some rearrangement of terms can be written as

/D = −i
 0 (∂x − i∂y) + B

2
(−x+ iy) + β(−σx + iσy)

(∂x + i∂y) + B
2

(x+ iy) + β(σx + iσy) 0

. (3.19)

Using the definitions (3.5) in /D, we can write it in terms of the complex coordinates

/D = −i

 0 2∂ − B
2
z̄ − 2βσ−

2∂̄ − B
2
z − 2βσ+ 0

 . (3.20)

Using the operators a & a† defined in (3.6), we can rewrite (3.20) as,

/D = −i

 0 −(
√

2Ba† + 2βσ−)

(
√

2Ba+ 2βσ+) 0

 , (3.21)

Let us introduce the magnetic length lB = 1√
B

, and the dimensionless non-abelian

field strength β′ = lBβ. We may then, write the Dirac operator as,

/D =
i
√

2

lB

 0 a† +
√

2β′σ−

−a−
√

2β′σ+ 0

 , (3.22)

We may consider the operator /D2. This is evaluated as

/D
2

= ωc

 0 a† +
√

2β′σ−

−a−
√

2β′σ+ 0

 0 a† +
√

2β′σ−

−a−
√

2β′σ+ 0

,
= ωc

a†a+
√

2β′(aσ− + a†σ+) + 2β′2p− 0

0 aa† +
√

2β′(aσ− + a†σ+) + 2β′2p+

, (3.23)

where ωc = 2
l2B

and p± = σ±σ∓. Now we can expand the 2 × 2 blocks in (3.23) by

writing the Pauli matrices explicitly. We have

/D
2

= ωc


a†a

√
2β′a† 0 0

√
2β′a a†a+ 2β′2 0 0

0 0 aa† + 2β′2
√

2β′a†

0 0
√

2β′a aa†

 . (3.24)

In order to obtain spectrum of /D2, we write the eigenvalue equation for (3.24) as

ωc


a†a

√
2β′a† 0 0

√
2β′a a†a+ 2β′2 0 0

0 0 aa† + 2β′2
√

2β′a†

0 0
√

2β′a aa†




φ1

φ2

φ3

φ4

 = λ


φ1

φ2

φ3

φ4

 . (3.25)
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This leads to the set of operator equations

ωc(a
†aφ1 +

√
2β′a†φ2) = λφ1, (3.26a)

ωc(
√

2β′aφ1 + a†aφ2 + 2β′2φ2) = λφ2, (3.26b)

ωc(aa
†φ3 + 2β′2φ3 +

√
2β′a†φ4) = λφ3, (3.26c)

ωc(
√

2β′aφ3 + aa†φ4) = λφ4. (3.26d)

From (3.25) and (3.26), the eigenket space for the operator /D2 is observed to be the

tensor product spaceH = C4⊗F . Here the Fock space spanned by the eigenstates of

the number operator N = a†a, the basis of F may be denoted by {|n〉} with n ∈ Z+.

In order to solve the (3.26), it is sufficient to consider the subspace F for which we

have the states |n+ 1〉, |n〉, and |n− 1〉, with all possible combinations of the spin

and isospin, namely, we have

|1〉 = |n+ 1,+,+〉 .=


|n+ 1〉

0

0

0

 , |2〉 = |n,+,−〉 .=


0

|n〉
0

0

 ,

|3〉 = |n,−,+〉 .=


0

0

|n〉
0

 , |4〉 = |n− 1,−,−〉 .=


0

0

0

|n− 1〉

 . (3.27)

Here the first spin component in the states refers to the spin, and the second refers

to the isospin4. Computing the /D
2 within this subspace, i.e determining the matrix

elements /D
2
ij = 〈i| /D2|j〉 with i, j = 1, 2, 3, 4, we find

/D
2
(n) = ωc


n+ 1

√
2β′
√
n+ 1 0 0

√
2β′
√
n+ 1 n+ 2β′2 0 0

0 0 n+ 1 + 2β′2
√

2β′
√
n

0 0
√

2β′
√
n n

 (3.28)

Eigenvalues of /D2 can be readily computed and we find.

λ±n =
ωc
2

(1 + 2n+ 2β′2 ±
√

1 + 4β′2(1 + 2n+ β′2)) (3.29)

4 Note that for the upper two component spinor spanned by |1〉 and |2〉, n = 0, 1, 2, 3, ..., while for the lower
two component spinor, spanned by |3〉 and |4〉, n = 1, 2, 3, ....
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Subscript ± in λ±n represents the isospin up and isospin down components of the

energy spectrum, and each eigenvalue is two fold degenerate, within this subspace.

To prepare for writing down the corresponding eigenvectors let us define the follow-

ing

a± =
1 + 2β′2 ±

√
1 + 4β′2(1 + 2n+ β′2)

2
√

2nβ′
, (3.30a)

b± =
1− 2β′2 ±

√
1 + 4β′2(1 + 2n+ β′2)

2
√

2n+ 2β′
. (3.30b)

Now, using (3.30), we can write the eigenvectors of (3.28). After orthonormalizing

the eigevectors, we may express them in the form

ψ+,1
n = a+ |3〉+ |4〉 , (3.31a)

ψ+,2
n = b+ |1〉+ |2〉 , (3.31b)

ψ−,1n = a− |3〉+ |4〉 , (3.31c)

ψ−,2n = b− |1〉+ |2〉 , (3.31d)

with ψ+,(1,2)
n corresponding to eigenvalues λ+

n and ψ−,(1,2)
n corresponding to λ−n . It is

important to see that the eigenvectors written in (3.31) are only valid when n ≥ 1.

More specifically, eigenvectors ψ+,1 and ψ−,1 require n ≥ 1 while the eigenvectors

ψ+,2 and ψ−,2 require n ≥ 0. This is caused by the definitions of the subspaces in

(3.27). So, in order to complete the solution of the eigenvalue equation, we should

inspect the solutions that include |0,+,+〉, |0,+,−〉, and |0,−,+〉 more carefully5.

To elaborate on the last point, we may start by looking at the zero mode solutions

taking the λ = 0 in (3.26). (3.26c) and (3.26d) are satisfied by only the trivial solu-

tions, φ3 = φ4 = 0. Solving (3.26a) and (3.26b) we find the normalized eigenvectors

5 Observe that these are the states that lies outside the limits we have given for n.
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corresponding to the zero modes

ψ1
0 = |0,+,+〉 =


|0〉
0

0

0

 , (3.32a)

ψ2
0 =

(−
√

2 |1,+,+〉+ |0,+,−〉)√
3

=
1√
3


−
√

2 |1〉
|0〉
0

0

 . (3.32b)

Here, the first eigenvector corresponds to both spin and isospin up case, while the sec-

ond is a combination of spin up isospin up, and spin up isospin down states. Another

state that is not covered by the subspace in (3.27) can be seen by taking φ3 = |0〉 and

φ1 = φ2 = φ4 = 0, which gives us λ = ωc(1 + 2β′2) 6. Taking φ3 = |0〉, and all

others zero means that we have this eigenvalue for spin down, isospin up.

3.2.2 Pair production

Having calculated the eigenvalues of the Dirac operator, we are in a position to cal-

culate the pair production rates. We start by writing the spectrum for the total system

on the R2 × R2

Spec( /D
2

+m2) =



B1

(
1 + 2n1 + 2β′2 ±

√
1 + 4β′2(1 + 2n1 + β′2)

)
+2B2(n2 + 1) +m2,

B1

(
1 + 2n1 + 2β′2 ±

√
1 + 4β′2(1 + 2n1 + β′2)

)
+2B2n2 +m2,

(3.33)

The degeneracies for each case given as before for the abelian case in Section 2.4, we

can write the degeneracies simply as B1B2/(2π)2.

Now, we are in a position to write the one-loop effective action, for the Euclidean

space as

ΓE = −1

2
Tr log ( /D

†
+m)( /D +m). (3.34)

6 Although this eigenvalue can be obtained by taking n1 = 0 in λ+
n1

, we have to make this calculation to
obtain its eigenstate.
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By writing the spectrum, and the zero modes explicitly, then performing the summa-

tion over the n2, which are the variables used to describe energy eigenvalues B2, we

get

ΓE =
B1B2

4π2

∫
d4x lim

ε→0

ds

s
coth sB2

[
∞∑

n1=0

e−s(1+2n1+2β′2+
√

1+4β′2(1+2n1+β′2))+m2

+
∞∑

n1=1

e−s(1+2n1+2β′2−
√

1+4β′2(1+2n1+β′2))+m2

+ e−sm
2

]
. (3.35)

Note that, since the eigenvalues are two fold degenerate, the factor 1
2

in (3.34) is

multiplied by a factor of 2 resulting in the 1
4π2 factor in (3.35) instead of 1

8π2 in (2.77)

in subsection 2.5.2. We also keep in mind that we have also two fold degeneracy in

the zero modes.

Performing the s-integration, evaluating the summation due to the residue integration

and Wick rotating the ΓE to Minkowski time allows us to write Re(iSeff ) as

Re(iSeff ) =−
∫
d4x

E2

2π2
y

[
log (1− eπm2/E)

+
∑
n1=0

log (1− e−yπ
(

1+2n1+2β′2+
√

1+4β′2(1+2n1+β′2)
)
)

+
∑
n1=1

log (1− e−yπ
(

1+2n1+2β′2−
√

1+4β′2(1+2n1+β′2)
)
)

]
. (3.36)

Here, we have again used the definition y ≡ B1/E. We are also defining f1/2(y, β′)

by

Re(iSeff ) = −
∫
d4x

E2

24π
f1/2(y, β′), (3.37)

with f1/2(y, β′)

f1/2(y, β′) =
12y

π

[
log (1− eπm2/E)

+
∑
n1=0

log (1− e−yπ
(

1+2n1+2β′2+
√

1+4β′2(1+2n1+β′2)
)
)

+
∑
n1=1

log (1− e−yπ
(

1+2n1+2β′2−
√

1+4β′2(1+2n1+β′2)
)
)

]
. (3.38)

We can also define the ratio F1/2(y, β′) ≡ f1/2(y, β′)/f1/2(y, 0), measuring the effect

of the non-abelian gauge field. Now we may proceed to explain the explain the behav-
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ior of the pair production rates by inspecting the graphs of f1/2(y, β′) and F1/2(y, β′),

for different values of β′.
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Figure 3.3a: f1/2(y, β′)

2 4 6 8 10
y

0.5

1.0

1.5

2.0

2.5

3.0

F1/2(y,β')

β'=1/4
β'=1/2
β'=3/4
β'=1
β'=3/2

Figure 3.3b: F1/2(y, β′)

Looking at the Figure 3.3a we see a quite simple behavior. The pair production in-

creases with increasing y, this is caused by the existence of the zero modes in the

energy spectrum. Since there exists zero modes, the minimum energy is always the

same, irrespective of the value of y or β′, hence the energy of easiest to fill states

do not change. How many states there can be for a given y value changes, in other

words the degeneracy changes since it is proportional toB1. Therefore, if we increase

y there are more and more zero energy states to fill, so the pair production increases

with increasing y. It is also clear that the pair production increases with the increasing

β′, for a given y value.

Effect of the increase in the non-abelian magnetic charge is easier to see for the Fig-

ure 3.3b, since we are comparing the non-abelian and abelian cases directly. Clearly,

the effect we observed, mainly the increase in the non-abelian charge causes an in-

crease in the pair production is also apparent here. Explanation for this behavior goes

two-fold, first the increase in the non-abelian magnetic charge, β′, is decreasing the

energies for the isospin down excited energy values. This shows us that the decrease

in the energies of isospin down states "outweigh" the increase in the energies of the

isospin up states. Second part for the explanation comes from the fact, for smaller

values of y there is a large increase in F1/2(y, β′), this is followed by a sharp decline,

meaning pair production of non-abelian and abelian cases with F1/2(y, β′) the value

1 for large y values. This is caused by the fact that the increase in y increases the

excited energies for both non-abelian and the abelian cases, hence the effect of the

zero modes on the pair production becomes much more pronounced, and dominant in
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both cases, irrespective of this hierarchy of the excited states.
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CHAPTER 4

PAIR PRODUCTION ON S2 × R1,1 WITH NON-ABELIAN MAGNETIC

FIELDS

We will now direct our attention to the pair production effects on the manifold S2 ×
R1,1. In addition to the effects of abelian and non-abelian magnetic fields on S2,

here we will inspect how the inclusion of the curvature changes the pair production

rates, for scalar and spinor fields. In particular, we will examine the ratios of pair

production rates of spherical to flat cases, both for the scalar and the spinor fields.

The new ingredient here compared to the review given in Section 2.4 is the non-

abelian magnetic field, and the additional isospin degree of freedom of the charged

particles, and these lead to novel physical effects.

4.1 Complex Scalar Field Subject to Uniform Non-abelian Magnetic field

In order to set up the problem, we may first consider the spectrum of the gauged

Laplacian on the product Euclidean manifold S2 × R2. Gauge field strength is com-

posed of two magnetic fields, with one abelian magnetic field on the R2 component

and non-abelian magnetic field on S2. Compared to the discussion in Section 2.4,

difference here will be caused by the presence of the non-abelian magnetic field and

the isospin degree of freedom of the charged fields mentioned above, and conse-

quently there will be important distinctions compared to the abelian case treated in

Section 2.4. Details of the calculation for the spectrum of non-abelian magnetic field

on the 2-sphere is given in [13], however we will provide a review here, for complete-

ness.
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4.1.1 Laplacian operator and its spectrum

Consider a two-sphere of radius a, with the radial vector denoted as ~r = ar̂. Let us

introduce an SU(2) gauge field ~A as follows

~A = ~Aabelian + α
~r × ~σ
a2

(4.1)

In (4.1), ~Aabelian stands for the gauge potential of a Dirac monopole with magnetic

charge N/2, N ∈ Z, and ~σ are the Pauli matrices spanning the SU(2) gauge sym-

metry, which we call the isospin in this context. Associated magnetic field strength is

computed via ~B = ~∇× ~A and yields a radial magnetic field; which takes the form1

Br =
N

2a2
+ 2α(α− 1)

~r · ~σ
a3

(4.2)

From (4.2) it is manifestly seen that the magnetic field has the symmetry α→ (α−1),

which is caused by the gauge transformation U := σr = ~σ · r̂ 2. This will become

important later in our discussion. Gauged Laplace operator on S2 may be written as

D2 =
~Λ2

a2
, (4.3)

where ~Λ is given as

~Λ ≡ ~r × (~p− ~A). (4.4)

After several steps of calculation (4.3) can be expressed as

D2 =
1

a2

[
~J2 +

1

4
+ 2α(α− 1) + (2α− 1)

(
~J · ~σ − 1

2
+
N

2
σr

)
+
N

2
σr

]
. (4.5)

In (4.5) the total angular momentum, ~J , is defined as

~J = ~r × (~p− ~Aabelian) +
N

2
r̂ +

~σ

2
= ~Λabelian +

N

2
r̂ +

~σ

2
, (4.6)

This involves the contribution of the orbital angular momentum of charged particles,

angular momentum of the particle-Dirac monopole electromagnetic field and that due

to the SU(2) isospin. We find the spectrum of D2 is given as [13],.

λ±n1
=

1

a2

[
n1(N + n1) + 2α(α− 1)±

√
(2α− 1)2(n1 +N)n1 +N2/4

]
(4.7)

n1 = 0, 1, 2, ...

1 Note that choice of gauge for ~Aabelian is immaterial for our purposes.
2 UBr(α)U = Br(α− 1)
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It is straightforward to see that D2 and ~J commute. Only nontrivial commutators are

[Ji, ~J ·~σ] and [Ji, σr], and they yield zero after the explicit calculation which are given

below:

[Ji, Jjσj] = [Li +
1

2
σi, (Lj +

1

2
σj)σj] = [Li +

1

2
σi, Ljσj],

= [Li, Lj]σj + Lj[Li, σj] +
1

2
[σi, Lj]σj +

1

2
Lj[σi, σj],

= [Li, Lj]σj +
1

2
Lj[σi, σj] = iεijk(Lkσj + Ljσk) = 0, (4.8a)

[Ji, σr] =
[
Ji,

σnrn√
rmrm

]
=
[
εijkrj(pk − Ak)−

N

2

ri√
rlrl

+
σi
2
,
σnrn√
rmrm

]
,

= εijk

[
rj(pk − Ak),

σnrn√
rmrm

]
− N

2

[ ri√
rlrl

,
σnrn√
rmrm

]
+
rn
2r

[σi, σn],

= εijkrj

[
(pk − Ak),

σnrn√
rmrm

]
+ εijk

[
rj,

σnrn√
rmrm

]
(pk − Ak) +

rn
2r

[σi, σn],

= εijkrj

[
pk,

σnrn√
rmrm

]
+
rn
2r

[σi, σn] = −iεijkrjσn
r2δnk − rnrk

r3
+
rn
2r

[σi, σn],

= −iεijk
rj
r
σnδnk +

rn
2r

[σi, σn] = −iεijk
rj
r
σk +

rn
2r

2iεinkσk = 0. (4.8b)

Therefore, we conclude that each energy level in (4.7) is 2j+1 fold degenerate, where

j = n1 + N−1
2

, with N ∈ Z and N ≥ 1 and n1 = 0, 1, 2, ....

We may express the spectrum of the operator D2 +m2 operator on the R2 × S2 as

Spec(D2 +m2) =
(
n1(N + n1) + 2α(α− 1)±

√
(2α− 1)2(n1 +N)n1 +N2/4)

)
/a2

+B2(2n2 + 1) +m2

n1 = 0, 1, 2, ...

n2 = 0, 1, 2, ...
, (4.9)

where we have added the Landau level energies for the R2 part subject to a B2 field

in the standard manner.

4.1.2 Pair production for the scalar fields

Now we will calculate the pair production rates for scalar fields under the influence

of non-abelian fields on a R1,1 × S2. To do so, we will start with the Euclidean

counterpart of this space, meaning R2 × S2, in this space using the result (4.9), the
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Euclidean one-loop effective action takes the form,

ΓE = − 1

16π2a2

∫
d2x

∫
dΩ2

∫
ds

s

B2

sinh sB2

×

{
∞∑

n1=0

(2n1 +N) e−s[n1(N+n1)+2α(α−1)+
√

(2α−1)2(n1+N)n1+N2/4]/a2

+

{
∞∑

n1=1

(2n1 +N) e−s[n1(N+n1)+2α(α−1)−
√

(2α−1)2(n1+N)n1+N2/4]/a2

}
(4.10)

After performing the Wick rotation R2 → R1,1, B2 → −iE and performing integra-

tion over s, we can write the Re(iSeff ) as

Re(iSeff ) = −
∫
d2x

∫
dΩ2

E2

16π2
β0(ω), (4.11)

where β0(ω) given as

β0(ω) = ω

{
∞∑

n1=0

(2n1 +N) log (1 + e−ω[n1(N+n1)+2α(α−1)+
√

(2α−1)2n1(n1+N)+N2/4])

+
∞∑

n1=1

(2n1 +N) log (1 + e−ω[n1(N+n1)+2α(α−1)−
√

(2α−1)2n1(n1+N)+N2/4])

}
.

(4.12)

In (4.12) we have defined the ω to be, ω := π/Ea2. In order to compare the pair

production rates on this geometry to the result on R3,1, in Section 3.1, we first of our

result for limit S2 → R2 the flat limit of the result we have found above in Eq. (4.12).

To compute this limit, we take a2 →∞, while keeping bothN/2a2 and α/a constant.

Since the definition of ω already contains the term 1/a2, we can keep ωN or similar

combinations as such.

Another important remark is that when comparing the effect of non-abelian fields on

the pair production, using the α as the non-abelian field strength presents some dif-

ficulties. This is mainly due to the fact that the non-abelian magnetic field strength

is symmetric for α → (α − 1), as can be seen from (4.2), but for the abelian mag-

netic field strength there is no such symmetry. For ease in comparison we define the

variable γ ≡ α(α− 1) as a convenient parameter to work with. While taking the flat

limit, a→∞, we can keep the product ωγ the same for both flat and spherical cases.

For the flat case γ will be proportional to β2 where β2 = B1β
′2 as it is apparent from

Eq. (3.1).
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Now we express our result in (4.12) in terms of γ as

β0(ω) = ω

{
∞∑

n1=0

(2n1 +N) log (1 + e−ω[n1(N+n1)+2γ+
√

(4γ+1)n1(n1+N)+N2/4])

+
∞∑

n1=1

(2n1 +N) log (1 + e−ω[n1(N+n1)+2γ−
√

(4γ+1)n1(n1+N)+N2/4])

}
.

(4.13)

By taking the flat limit we obtain

βflat0 (ω) = ωN

{
∞∑

n1=0

log (1 + e−ω[n1N+2γ+
√

4γNn1+N2/4])

+
∞∑

n1=1

log (1 + e−ω[n1N+2γ−
√

4γNn1+N2/4])

}
(4.14)

We can see that this matches with what we have found in Subsection 3.1.2 in (3.15),

since we have identified B1 = N
2a2

and γ = α2

a2
.

Now we can define the ratio γ0(ω) ≡ β0(ω)/βflat0 (ω), and compare the pair produc-

tion rates by plotting γ0(ω) for different values of the abelian, and the non-abelian

magnetic charges. We first inspect the profile of γ0(ω) at fixed values of γ. To be

precise, we consider γ = 1, 2 for N = 1, 2, 3, 4, 5. Profiles of γ0(ω) are given in the

figures below.
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Figure 4.1a: γ = 1
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Figure 4.1b: γ = 2

From Figure 4.1a and Figure 4.1b we see for all values of γ andN there is an increase

of the pair production rates at small ω values, since γ0(ω) ≥ 1. This increase is

caused by the fact that there is an extra term in the density of states factor, 2j+1
4πa2

in

β0(ω), which arises from the curvature. However, for larger ω values we see a more

complicated result compared to the abelian case in Section 2.4. Mainly, there is now
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a critical value for the non-abelian charge, which we may call γc, and γc = N/2.

Accordingly the limiting behavior of γ0(ω) at large ω is described as follows.

γ0(ω, γ,N)
ω→∞−−−→


∞ γ > γc

N+2
N

γ = γc

0 γ < γc

(4.15)

Effect in Eq. (4.15) is quite general and can be traced back to the energy spectrum

and degeneracies of the gauged Laplacian, as it is discussed in Appendix B. Physical

meaning of this effect may be stated as follows: If the ground state energy of the

spherical case is larger compared to the flat one, γ0(ω) will diverge at large ω; if the

ground state energy for the flat case is higher than the spherical, γ0(ω) converges to

zero at large ω; and finally if the two ground state energies are the same, then the

limiting behavior of γ0(ω) is given by the ratio of the degeneracies. This is because

when the energies are lower the states are easier to fill by the produced pairs, hence

they will have a tendency to fill the states with the lower energies, for example if the

ground state energy of the spherical case are higher than the flat one, denominator of

γ0(ω) will be larger, hence the limiting value 0. If the energies are the same for both

cases, more states that are available to be filled i.e. with larger degeneracy will yield

more pair production.

Besides the dependence of γc and limiting value of γ0(ω) on N , we also see that N

effects the hierarchy of the pair production rates. For smallerN values we see that the

pair production rates are generally higher, this is caused by the fact that the energies

increase with increasing abelian charge, hence the states become harder and harder to

fill by the produced pairs.

We may also consider the profiles of γ0(ω) at fixed values of N (N = 1, 2), while we

take γ to be γ = 1, 2, 3, 4. These plots are given in Figure 4.2a and Figure 4.2b.
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Figure 4.2a: N = 1
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Figure 4.2b: N = 2

Here we have, γc = 0.5 and γc = 1 respectively, and the plots are, in agreement with

(4.15). For the plot in Figure 4.2a, since all γ values we inspect are larger then γc,

γ0(ω) increases monotonically with γ. For the plot in Figure 4.2b the profiles with

γ = 2, 3, 4 increase monotonically, while γ = 1 profile first increases then settles to

the limiting value predicted in (4.15).

Finally, we may compare the pair production rates of β0(ω, γ,N) with that in the

absence of the non-abelian magnetic fields. For this purpose we defineR0(ω, γ,N) ≡
β0(ω, γ,N)/β0(ω, 0, N). This will allow us to further elaborate on the effects of the

non-abelian magnetic fields on the pair production.
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Figure 4.3a: N = 2
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Figure 4.3b: γ = 2.5

Inspecting the Figure 4.3a and Figure 4.3b we see that there is a decrease in the pair

production rates under the influence of both abelian and non-abelian case compared

to fields under the influence of purely abelian magnetic field, for smaller values of ω.

This can be essentially attributed to the fact that the profile of the functionR0(ω, γ,N)

is governed by the leading terms in both β0(ω, γ,N) and β0(ω, 0, N). These leading

terms are the states with the larger larger contribution to β0(ω), and it can be seen in

Figure C.6 in Appendix C, that the spin-up eigenvalues of the energy of the particles
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under the influence of both abelian and non-abelian magnetic fields are always higher

than the particles under the influence of purely abelian magnetic fields. Possibly spin

down states are not at a sufficiently low energy to balance or alter this behaviour.

More numerical analysis may be useful to further elaborate on this point, but such an

analysis is beyond the scope of this thesis.

We also see that our previous conclusion with γc holds true indeed. In this case we

find that the limiting behavior of R0(ω, γ,N) is described by

R0(ω, γ,N)
ω→∞−−−→


∞ γ < γc

N+2
2N+2

γ = γc

0 γ > γc

(4.16)

This time for limit to be∞ we need to have γ < γc, opposite of what we have found

for the γ0(ω) case, since compared to the ground state energy of the particles under

the influence of both abelian and non-abelian magnetic fields, the ground state energy

of the purely abelian magnetic field case becomes smaller when γ < γc.

4.2 Dirac fields on S2 × R1,1

Now let us investigate the same case for the Dirac fields. Here we again have the

total space of the form R2×S2 on which we have our two magnetic fields, an abelian

magnetic field on the R2 and a non-abelian field on the S2. We will rotate R2 to

R1,1 as usual to obtain an electric field in the course of the calculation of the pair

production rate. We start with discussing of the spectrum of the Dirac operator with

the non-abelian uniform magnetic field background on the two-sphere.

4.2.1 Spectrum of the gauged Dirac operator

We consider the Dirac operator in the background of the total magnetic field intro-

duced in (4.1). This Dirac operator can be written as /D = ~τ · ~Λ where ~τ are the Pauli

matrices, spanning the Clifford algebra {τατβ} = 2δαβ , and ~Λ is defined as previously

in (4.4).
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~Λ can be written as

~Λ = ~r × (~p− ~Aabelian − ~Anon−abelian),

= ~Λabelian − ~r × ~Anon−abelian, (4.17)

where the ~Λabelian and ~Anon−abelian are given as before

~Λabelian = ~L+
N

2
r̂, ~Anon−abelian = α

~r × ~σ
r2

. (4.18)

Here ~L is the angular momentum with [Lα, Lβ] = iεαβγLγ , which involves the orbital

angular momentum of the charged particles and the angular momentum of the abelian

electromagnetic field due to the Dirac monopole. It neither involves the spin nor the

isospin, so it is not the total angular momentum. With these we can write ~Λ as

~Λ = ~L+
N

2
r̂ + α(~σ − σrr̂) (4.19)

To determine the spectrum of /D we may work with its square /D
2

= (~τ · ~Λ)2. This

can be expressed as

/D
2

= (~τ · ~Λ)2,

= τiτjΛiΛj = (δij + iεijkτk)ΛiΛj,

= Λ2 +
i

2
εijk[Λi,Λj]τk,

= Λ2 +
i

2
εijk[Li +

N

2
r̂i + α(σi − σnr̂nr̂i), Lj +

N

2
r̂j + α(σj − σmr̂mr̂j)]τk,

= Λ2 +
i

2
εijk

(
[Li, Lj] +

N

2
[Li, r̂j] +

N

2
[r̂i, Lj]− α[Li, σmr̂mr̂j]− α[σnr̂nr̂i, Lj],

− α2[σi, σmr̂mr̂j]− α2[σnr̂nr̂i, σj] + α2[σi, σj] + α2[σnr̂nr̂i, σmr̂mr̂j]
)
τk,

= Λ2 +
i

2
εijk

(
[Li, Lj] +

N

2
[Li, r̂j] +

N

2
[r̂i, Lj]− ασm[Li, r̂mr̂j]− ασn[r̂nr̂i, Lj],

− α2r̂mr̂j[σi, σm]− α2r̂nr̂i[σn, σj] + α2[σi, σj] + α2r̂nr̂ir̂mr̂j[σn, σm]
)
τk,

= Λ2 + ~τ · ~Λ− N

2
r̂ · ~τ + 1 + 2α(1− α)(~τ · r̂)(~σ · r̂). (4.20)

In order to proceed we may first write an auxiliary step for /D2 in terms of ~J which is

defined as ~J = ~L+ ~σ
2
.

/D
2

=J2 + (2α− 1) ~J · ~σ +
3

4
− 3α + 2α2 +Nα~σ · r̂ − N2

4
+ ~τ · ~J

+ (α− 1

2
)~τ · ~σ + α(1− 2α)(~σ · r̂)(~τ · r̂) + 1 (4.21)
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Introducing the total angular momentum operator ~K and the operator ~τ · ~J

~K = ~J +
~τ

2
= ~L+

~σ

2
+
~τ

2
, (4.22a)

~τ · ~J = K2 − J2 − τ 2

4
, (4.22b)

we may express /D
2 as

/D
2

=K2 −
(N2

4
+ 2α(1− α)− 1

2

)
14

+ [(2α− 1)( ~K · ~σ − 1

2
) +Nα~σ · r̂ + α(1− 2α)(~σ · r̂)(~τ · r̂)]. (4.23)

In this expression first two terms are already diagonal, but we have to diagonalize the

operator in the square parenthesis. We define this part of /D2 as

χ := (2α− 1)( ~K.~σ − 1

2
) +N α~σ.r̂ + α(1− 2α)(~σ.r̂)(~τ .r̂), (4.24)

and consider its square, which is given as

χ2 = (2α− 1)2(K2 +
1

4
) + α(1− α)[N2 − (2α− 1)2]. (4.25)

Since K2 is the square of the total angular momentum, its eigenvalues are k(k + 1)

with k taking integer and half integer values, and hence we can write the /D
2 operators

eigenvalues

/D
2
k =k(k + 1)−N2/4− 2α(1− α) + 1/2

±
√

(2α− 1)2(k + 1/2)2 + α(1− α)[N2 − (2α− 1)2]. (4.26)

Inspecting the total angular momentum we see that its possible values can be obtained

by the tensor product l ⊗ 1/2⊗ 1/2 where l = n1 + N/2 with n1 = 0, 1, 2, ..., N =

1, 2, 3, ... and where one of the 1/2 factor is for spin and the other is for isospin. This

means that k can take three different values, namely k = l, l±1, where l = n1 +N/2.

Let us note that the irreducible representation of ~K for the spin down and isospin

down case k = n1 + N/2 − 1, is valid for N > 1 and when N = 1 we have n1 ≥ 1

for this case

l ⊗ 1

2
⊗ 1

2
= (l ⊗ 1)⊕ l = (l + 1)⊕ 222l ⊕ (l − 1) =


n1 + N

2
+ 1

n1 + N
2

n1 + N
2
− 1

(4.27)
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With this information we can write the spectrum of /D2 as

/D
2
l+1 = ξn1+1 + (2α− 1)2/4−

√
(2α− 1)2ξn1+1 +N2/4, (4.28a)

/D
2
l = ξn1 + (2α− 1)2/4±

√
(2α− 1)2ξn1 +N2/4, (4.28b)

/D
2
l−1 = ξn1−1 + (2α− 1)2/4 +

√
(2α− 1)2ξn1−1 +N2/4, (4.28c)

where ξn1 is

ξn1 = n2
1 + n1N +N/2 + n1 + 1/4 + α(α− 1). (4.29)

In order to see how we have decided the signs in front of the square roots in (4.28),

we should inspect the operator χ at α = 0, or χ0 for convenience

χ0 = −( ~K.~σ − 1/2). (4.30)

Let us recall that ~K = ~L + ~σ/2 + ~τ/2, also ~L has the irreducible representations

n1 +N/2. Let us consider the lowest lying state with n1 = 0. In this case, ~K has the

irreducible representations given by the direct sum obtained as follows

N

2
⊗ 1

2
⊗ 1

2
,

=
(N − 1

2
⊕ N + 1

2

)
⊗ 1

2
,

=
(N

2
− 1
)
⊕ 222

N

2
⊕
(N

2
+ 1
)
. (4.31)

We can write ~K · ~σ− 1/2 = ~K2− ~J2 + 1/4, from which we can find the eigenvalues

of χ0. These are given with the corresponding IRRs of ~K and ~J in the table below

To get these eigenvalues from square terms in (4.28a), (4.28b), and (4.28c) we chose

χ0 K J

−N/2− 3/2 N/2 + 1/2 N/2 + 1/2

N/2 + 1/2 N/2 N/2 + 1/2

−N/2− 1/2 N/2 N/2− 1/2

N/2− 1/2 N/2− 1/2 N/2− 1/2

Table 4.1: IRRs of χ0 and the corresponding IRRs of K and J

the minus sign in front of the square root in (4.28a), both signs for each IRRs of ~K

in (4.28b), and the plus sign for (4.28c). Since the spectrum of /D2 is continuous with

respect to α, these signs are correct for all values of α.
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4.2.2 Pair Production

We will now compute the pair production rates for Dirac fields on R1,1 × S2. On the

Euclidean space R2×S2 the spectrum of the square of the gauged Dirac operator and

the corresponding density of states are given as where ξn1 is given in Eq. (4.29).

Spec( /D
2
) Density of states

2n2B2 + (ξn1−1 + (2α− 1)2/4 +
√

(2α− 1)2ξn1−1 +N2/4) B2

2π
B1(2n1+N−1)

4πa2

2n2B2 + (ξn1 + (2α− 1)2/4±
√

(2α− 1)2ξn1 +N2/4) B2

2π
B1(2n1+N+1)

4πa2

2n2B2 + (ξn1+1 + (2α− 1)2/4−
√

(2α− 1)2ξn1+1 +N2/4) B2

2π
B1(2n1+N+3)

4πa2

2n2B2 + 2 + (ξn1−1 + (2α− 1)2/4 +
√

(2α− 1)2ξn1−1 +N2/4) B2

2π
B1(2n1+N−1)

4πa2

2n2B2 + 2 + (ξn1 + (2α− 1)2/4±
√

(2α− 1)2ξn1 +N2/4) B2

2π
B1(2n1+N+1)

4πa2

2n2B2 + 2 + (ξn1+1 + (2α− 1)2/4−
√

(2α− 1)2ξn1+1 +N2/4) B2

2π
B1(2n1+N+3)

4πa2

Table 4.2: Spectrum of /D2 and the corresponding density of states.

The quantum number n1 = 1, 2, 3, ... for the eigenvalues that include ξn1 with the

minus sign and eigenvalues that include ξn1 − 1, for others n1 = 0, 1, 2, ..., and also

n2 = 0, 1, 2, ... for all of them.

Now we are in a position to write the pair production rate on R1,1 × S2. We will

first evaluate the effective action on R2 × S2 and then Wick rotate to R1,1 × S2 at an

appropriate state of the calculation. ΓE is given as

ΓE =
1

2

∫
ds

s
Tr
[
e−s( /D

2
+m2)

]
(4.32)

Now we can write the real part of iSeff in Minkowski space, by letting x4 → ix0,
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B2 → −iE and taking the integral over s

Re(iSeff ) =
−1

16π2a2

∫
dµdx3dx4

∞∑
n=1

e−nπm
2/E E

n

{
(4.33)∑

n1=1

(2n1 +N − 1)
[
e−nπ[B1(ξn1−1+(2α−1)2/4+

√
(2α−1)2ξn1−1+N2/4)]/(Ea2)

]
+
∑
n1=0

(2n1 +N + 1)
[
e−nπ[B1(ξn1+(2α−1)2/4+

√
(2α−1)2ξn1+N2/4)]/(Ea2)

]
+
∑
n1=1

(2n1 +N + 1)
[
e−nπ[B1(ξn1+(2α−1)2/4−

√
(2α−1)2ξn1+N2/4)]/(Ea2)

]
+
∑
n1=0

(2n1 +N + 3)
[
e−nπ[B1(ξn1+1+(2α−1)2/4−

√
(2α−1)2ξn1+1+N2/4)]/(Ea2)

]}
.

Using ω = π
Ea2

as before we can also write Re(iSeff ) in the following form

Re(iSeff ) = −
∫
dµdx3dx4

E2

8π3
β1/2(ω), (4.34)

where

β1/2(ω) = −ω
2

{
2 log (1− e−ωm2a2) (4.35)

+
∞∑

n1=1

(2n1 +N − 1)log (1− e−ω(ξn1−1+(4γ+1)/4+
√

(2α−1)2ξn1−1+N2/4)+m2a2))

+
∞∑

n1=0

(2n1 +N + 1)log (1− e−ω(ξn1+(4γ+1)/4+
√

(4γ+1)ξn1+N2/4)+m2a2))

+
∞∑

n1=1

(2n1 +N + 1)log (1− e−ω(ξn1+(4γ+1)/4−
√

(4γ+1)ξn1+N2/4)+m2a2))

+
∞∑

n1=0

(2n1 +N + 3)log (1− e−ω(ξn1+1+(4γ+1)/4−
√

(4γ+1)ξn1+1+N2/4)+m2a2))

}
.

In (4.35), we have written the contribution of the zero modes explicitly, and also

introduced γ = α(α− 1) as before.

Let us now calculate the flat limit Eq. (4.35), that is R1,1 × S2 → R3,1. In order to do

this we have to take a2 → ∞, N → ∞, and γ → ∞, while keeping N/a2 and γ/a2

constant. Since ω is proportional to 1/a2 this practically means we can keep ωγ and
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ωN as such. While we drop the terms which vanish as a2 →∞. We find

βflat1/2 (ω) = −ωN
2

{
2 log (1− e−ωm2a2) (4.36)

+
∞∑

n1=1

log (1− e−ω(−N/2+n1N+2β2+
√

4β2(−N/2+n1N+β2)+N2/4+m2a2))

+
∞∑

n1=0

log (1− e−ω(N/2+n1N+2β2+
√

4β2(N/2+n1N+β2)+N2/4+m2a2))

+
∞∑

n1=1

log (1− e−ω(N/2+n1N+2β2−
√

4β2(N/2+n1N+β2)+N2/4+m2a2))

+
∞∑

n1=0

log (1− e−ω(3N/2+n1N+2β2−
√

4β2(3N/2+n1N+β2)+N2/4+m2a2))

}
.

Shifting the index of first sum in (4.36) to zero it is seen that the sum is equal to the

second sum in (4.36) and similarly, shifting the index of the last sum to the starting

value 1, it is seen to be equivalent to the third sum in (4.36). Thus, we obtain

βflat1/2 (ω) = −ωN

{
log (1− e−ωm2a2) (4.37)

+
∞∑

n1=0

log (1− e−ω(N/2+Nn1+2β2+
√

2β2(N+2Nn1+2β2)+N2/4+m2a2))

+
∞∑

n1=1

log (1− e−ω(N/2+Nn1+2β2−
√

2β2(N+2Nn1+2β2)+N2/4+m2a2))

}
.

In order to examine the effects of curvature and the non-abelian magnetic field, we

define the ratio

γ1/2(ω) := β1/2(ω)/βflat1/2 (ω) (4.38)

We plot the profile of γ1/2(ω) at a fixed non-abelian charge, γ, at different values of

the abelian monopole charge N . Figure 4.4a, shows us that when the non-abelian

charge is taken as zero our results exactly match with the results found in [12], which

we have reproduced in Section 2.4. Clearly this is because, when γ = 0, the non-

abelian part of the magnetic field becomes zero and we are left with just the abelian

part.
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Figure 4.4a: γ = 0
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Figure 4.4b: γ = 2

Figure 4.4b shows us that at γ 6= 0 the general profile/hierarchy at γ = 0 is pre-

served, meaning that we continue to see a decrease in the pair production rate for

small values of ω, then grows back and settles at γ1/2(ω) = 1, at large values of ω.

The initial decrease is caused by the fact that the energies of the quantum states for

the spherical case is higher compared tp those of the flat case. Also when we are at

low values of the abelian charge this dip becomes much more pronounced. This is es-

sentially because of the fact that energies generally increase when the abelian charge

is increased, hence the γ1/2(ω) settles much more quickly to the limiting value 1. The

reason for γ1/2(ω) approaching 1 at larger values of N is due to increasing number of

zero modes which cost no energy to be filled by the produced pairs. Let us also note

that from Figure 4.4b, we see a relative decrease at pair production rates for γ 6= 0

compared to γ = 0; This is due to the further increase in the energies of available

quantum the states due to the non-abelian field on R1,1 × S2 compared to R3,1 as it

can be seen from Figures C.9 and C.10 in Appendix C.

Now we will keep the abelian charge constant while increasing the non-abelian charge.

This will allow us to comment on the effects of the non-abelian magnetic field further.
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Figure 4.5a: N = 2
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Figure 4.5b: N = 3
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From the Figure 4.5a and Figure 4.5b, we see at fixed N , increasing γ, results in

an initial decrease in the pair production rates which, eventually settles back at 1 at

sufficiently large ω. We see that the increasing the non-abelian charge γ causes a

decrease in the pair production rates, this is due to the higher energies of the available

quantum states.

Another way to inspect the non-abelian charges effect on the pair production is to

compare it with the pair production rates at γ = 0. In other words, we compare γ 6= 0

case with γ = 0 case on the same geometry R1,1 × S2. To do this we define the

R1/2(ω,N, γ) function as

R1/2(ω,N, γ) ≡ β1/2(ω,N, γ)/β1/2(ω,N, 0) (4.39)

R1/2(ω,N, γ) function allows us to inspect the non-abelian charge effect directly. We

look at two graphs. In Figure 4.6a we take the non-abelian charge γ = 2 and look at

the different abelian charge values. In Figure 4.6b we take the abelian charge N = 2

to be constant and vary the non-abelian charge.
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Figure 4.6a: γ = 2
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Figure 4.6b: N = 2

Inspecting the Figure 4.6a we see that there is an increase in the pair production when

the ω values are smaller, then it approaches to 1. Initial increase in the pair production

is caused by the fact that energies of the quantum states with γ 6= 0 are lower than

those for γ = 0 as it can be seen from Figures C.9 and C.10 in Appendix C. Let us

also note that with increasing values of the abelian magnetic charge N, energies of the

quantum states also increase, and hence we see that increase in R0(ω, γ,N) is milder,

when N is larger, and settles back to the limiting value 1 faster.

Figure 4.6b behaves very similarly to Figure 4.12, mainly the pair production has an

increase, and converges to the limiting value of 1, at large enough ω. This is as before
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due to the dominant contribution of the zero modes at large ω. Since the energies of

the available quantum states decrease with the increasing non-abelian charge, we see

an increase in the pair production rates with increasing γ at fixed N .
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CHAPTER 5

CONCLUSIONS

Purpose of this thesis was to explore the effects of non-abelian magnetic field, as

well as the constant curvature on the pair production rate. In Chapter 2 we gave a

review for the Schwinger mechanism, and then also examined this effect on R3,1 and

R1,1 × S2 with an additional uniform abelian magnetic field. We have seen that the

pair production rate increased for scalar fields, due to the curvature of two-sphere

compared to the flat case, this was seen by the extra factor related to the curvature

of S2, the 1
a2

factor. Nevertheless with increasing abelian monopole charge, pair

production rates tended back to those of the flat case. This can be seen as the abelian

magnetic charge counterbalancing the effect of positive curvature on spin-0 fields, as

the energies of the quantum states at higher values of abelian magnetic charge are

higher and harder to be filled by the produced pairs. For spinor field we saw that

pair production on R1,1 × S2 is relatively smaller than that on R3,1, see Figure 2.2.

The reason for this effect is that, the energies of the quantum states on R1,1 × S2

are higher than those on R3,1 and they cost more energy to be filled. However, with

increasing abelian-charge there are increasing number of zero energy modes, which

cost no energy to be filled and therefore the relative pair production rate settles back

to 1 at sufficiently large ω, and this happens faster with increasing N .

In Chapter 3 we have inspected the pair production rates for spinor and scalar fields

under the influence of both abelian and non-abelian magnetic fields, on Minkowski

space R3,1. For the scalar fields case we have defined the function f0(y, β′) to examine

the pair production rates, and also defined F0(y, β′) to see the effects of non-abelian

field strength on the pair production. Our results show that the pair production de-

creases with increasing y and in general, decrease with increasing non-abelian field

63



strength β′. For the spinor fields, we have defined the similar functions f1/2(y, β′)

and F1/2(y, β′). Plotting these showed us that pair production in general, increased

with increasing y, in contrast with the scalar field case. Similarly we have also seen

that the pair production rate was increase with increasing non-abelian magnetic field

strength, β′.

In Chapter 4 we have looked at the pair production rates on R1,1 × S2 under the in-

fluence of non-abelian fields. We have compared two different cases for both spinor

fields and scalar fields. First case was for the comparison of pair production on spher-

ical spaces to pair production on flat spaces. This was done by defining the function

γ0(ω) for scalar fields, and γ1/2(ω) for the spinor fields. Secondly we looked at the

effects of the non-abelian magnetic fields directly by defining the function R0(ω) for

the scalar case, and R1/2(ω) for the spinor case. From these considerations for scalar

fields we have seen that the pair production decreases when we increase the non-

abelian field strength γ, and for the spinor fields the situation is reversed. However,

profiles of these functions are much more complicated for large ω values, compared

to the flat case. Mainly there exists a critical γ value for which the limiting values of

these functions are determined.

We may consider the pair production effects on manifolds of the type AdS2 × R2,

AdS2×S2, with an electric field on AdS2 and non-abelian magnetic fields on R2 and

S2 parts. Pair production onAdS2 areas considered in [9] and on de-Sitter in [10, 11].

We hope to tackle these problems in near future.
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Appendix A

PATH INTEGRAL FORMULATION

Path integral formulations were first used in physics in the context of diffusion equa-

tions and Brownian motion in the late 1920’s by Norbert Wiener. After Wiener,

P.A.M. Dirac used this concept in quantum mechanical context in 1933 [23]. The

method was rigorously applied to quantum mechanics, by R. Feynman, first in his

thesis.

A.1 Formulating the Path Integrals

We start with a simple quantum mechanical system in Schrödinger picture of quantum

mechanics, a time dependent position operator q̂, and with the state, |q, t〉 that satisfies

the following eigenvalue equation

q̂(t) |q, t〉 = q(t) |q, t〉 (A.1)

Let us say that this system has initial and final positions, with qa, ta and qb, tb respec-

tively. For this system we can find the transition amplitude of finding the system at

state b, given that it was initially in state a. This transition amplitude is also referred

to as the kernel, and defined as

K(a, b) = 〈qb, tb|qa, ta〉 (A.2)

We can expand A.2 in a way that there are different alternatives to go from a to b,

thanks to completeness of quantum states. Meaning we can write A.2 as

K(a, b) =

∫
dq′ 〈qb, tb|q′, t′〉 〈q′, t′|qa, ta〉 (A.3)
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Since ∫
dq′ |q′, t′〉 〈q′, t′| = 1 (A.4)

Which is the completeness relation. We can summarize what is happening in A.3 in

a space time graph of the form

Figure A.1: Particle path.

It is important to realize that the point q′, t′ is not a fixed point but stands for all

intermediate paths that the state can take. We can imagine there is some imaginary

"obstacle" at the position q′, t′, although the analogy is not % 100 accurate since the

obstacles we imagine are in the space time graph rather than in the 2D space. So

we will call these what they are, intermediate points. We can increase the number of

intermediate points, let us say we haveN number of points in total, including a and b,

which are separated in equal time to one another. This time separation is ∆t = ε. In

this case the space time graph is Here, the only fixed points are t0 = ta and tN = tb,

Figure A.2: Divided particle path.
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hence we can further expand the Kernel as

K(a, b) =

∫ ∫
· · ·
∫
dq1dq2 · · · dqN−1 〈qb, tb|qN−1, tN−1〉 〈qN−1, tN−1|qN−2, tN−2〉×

〈qN−2, tN−2| × · · · × |q1, t1〉 〈q1, t1|qa, ta〉
(A.5)

Here the integration is not over qa and qb since they are fixed points, as discussed

before. Before going any further, we should look at to the Schrödinger picture of

quantum mechanics and the time evolution of the states. It is known, according to our

current understanding, that the differences between the different pictures of quantum

mechanics do not effect the observed reality, and they are purely theoretical.

Let us say that we have a state at some time t0. We are interested to find out how

does this state evolve with time. Our initial state is |α, t0〉 and we want to find out the

evolved state at time, t1. For this we define an operator called U(t1, t0) which is both

a function of the initial and the final time. This operator should give us the state at

time t2 when applied to the state in time t0, hence it should satisfy

|α, t1〉 = U(t1, t0) |α, t0〉 (A.6)

This time evolution operator should also have the following properties

• It should preserve normalization of the states, i.e. if a state is normalized, it

should stay normalized after the time evolution operator is applied to it.

• If t1 and t0 are equal to each other operator in A.5 should be reduced to the

identity operator.

• It should follow U(t2, t1)U(t1, t0) = U(t2, t0).

Using the time evolution operator, it is easy to see that every factor in A.5 can be

written in following form

〈qi, ti|qi−1, ti−1〉 = 〈qi| e−iĤti/~eiĤti−1/~ |qi−1〉

= 〈qi| e−iĤε/~ |qi−1〉 (A.7)
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Now let ε→ 0 while keeping tb − ta, or Nε, constant. Which is very similar to what

we do when we are going from Riemann sum to integration. Since ε is very small, we

can use the following approximation

〈qi, ti|qi−1, ti−1〉 = 〈qi| e−iĤε/~ |qi−1〉

= 〈qi| 1−
iĤ

~
ε+O(ε2) |qi−1〉 (A.8)

First term in the right hand side of the equation A.8 is just the Dirac delta function

δ(qi−qi−1), and the second term is the matrix elements of the Hamiltonian, multiplied

by some factors. To go further from this point, we should use the general Hamiltonian,

written as

Ĥ =
p̂2

2m
+ V (q̂) (A.9)

We will write the matrix elements of the kinetic energy and the potential energy sep-

arately. We start with kinetic energy term. Which is

〈qi|
p̂2

2m
|qi−1〉 =

∫ ∫
dpi−1 dpi 〈qi|pi〉 〈pi|

p̂2

2m
|pi−1〉 〈pi−1|qi−1〉 (A.10)

Since ∫
dpi |pi〉 〈pi| = 1 (A.11)

We also know that the inner product of the momentum eigenstates, |pi〉 with the cor-

responding position eigenstates, |qi〉 is

〈qi|pi〉 =
1√
2π~

∫
ei(piqi)/~ (A.12)

Then the kinetic term becomes

〈qi|
p̂2

2m
|qi−1〉 =

1

2π~

∫ ∫
dpi−1 dpi δ(pi − pi−1)ei(piqi)/~e−i(pi−1qi−1)/~

×
p2
i−1

2m
(A.13)

With the help of the Dirac delta function, this result can be further simplified by

integrating once, which will give us

〈qi|
p̂2

2m
|qi−1〉 =

1

2π~

∫
dpi e

ipi(qi−qi−1)/~ p2
i

2m
(A.14)

Now we calculate the potential term, however there is one slight caveat, we can either

write

〈qi|V (q̂) |qi−1〉 = δ(qi − qi−1)V (qi) (A.15)
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Or similarly, we can write

〈qi|V (q̂) |qi−1〉 = δ(qi − qi−1)V (qi−1) (A.16)

Notice that, thanks to the Dirac delta function, the result we get when integrating

A.15 with respect to dqi is the same with integrating A.16 with respect to dqi−1, to

get around this issue, we write

〈qi|V (q̂) |qi−1〉 = δ(qi − qi−1)V
(qi−1 + qi

2

)
(A.17)

Just for the notational convenience we define q̄i ≡ (qi−1 +qi)/2, and writing the Dirac

delta function as an integral will get us

〈qi|V (q̂) |qi−1〉 =
1

2π~

∫
dpi e

ipi(qi−qi−1)/~ V (q̄i) (A.18)

Finally if we combine A.14 with A.18, we can write the matrix element for the Hamil-

tonian as

〈qi| Ĥ |qi−1〉 =
1

2π~

∫
dpi e

ipi(qi−qi−1)/~
( p2

i

2m
+ V (q̄i)

)
(A.19)

Now, if we get back to the original problem at hand, A.8 can be written as

〈qi, ti|qi−1, ti−1〉 =
1

2π~

∫
dpi e

ipi(qi−qi−1)/~

[
1− iε

~
H(pi, q̄i) +O(ε2)

]
(A.20)

Remember that we used the approximation for the exponential in A.7, and ignored

the ε2 terms and higher. Keeping the same level of approximation we can write

〈qi, ti|qi−1, ti−1〉 =
1

2π~

∫
dpi e

ipi(qi−qi−1)/~e−iεH(pi,q̄i)/~ (A.21)

Here it is appropriate to give some definitions before going any further. For a function

α(t) we define the following

Dα = lim
N→∞

N∏
i=1

dαi√
2π~

(A.22)

The factor 1/
√

2π~ is just there to allow us to write A.5 in a more compact way.

Which is

K(a, b) =

∫
DpDq

N∏
i=1

ei[pi(qi−qi−1)−εH(pi,q̄i)]/~

=

∫
DpDq ei limN→∞

∑N
i=1[pi(qi−qi−1)−εH(pi,q̄i)]/~ (A.23)
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Notice that since we are taking the limits N → ∞ and ε → 0, while keeping Nε

constant, we can divide and multiply everything by ε to write

K(a, b) =

∫
DpDq ei limN→∞

∑N
i=1 ε[pi(qi−qi−1)/ε−H(pi,q̄i)]/~ (A.24)

It is easy to see that the (qi − qi−1)/ε is just the time derivative of the momentum,

since ε is just the time steps we took, and the qi and qi−1 are the momenta separated

by those time steps. Also we are multiplying everything with ε while summing over

all of the time steps, this is just the definition of the integral, so we can written

K(a, b) =

∫
DpDq e

i
~
∫
dt[pq̇−H(p,q)] (A.25)

Since the part inside the integration is just the Lagrangian, we might also written

K(a, b) =

∫
DpDq e

i
~
∫
dtL(q,q̇)

=

∫
DpDq e

i
~S(q,q̇) (A.26)

If the Hamiltonian has the form it has in A.9, we can take the integral over the poten-

tial. To do this we will go back to A.24 and look to just one i value, and generalize it

after taking the integral for that. So we will start with

K(a, b) =

∫ ∞
−∞

dqi e
− iε

2m~ [p2i−2mpi(qi−qi−1)]

= e
imε
2~ (qi−qi−1)2

∫ ∞
−∞

dqi e
− iε

2m~ [pi−m(qi−qi−1)]2

=

√
2mπ~
iε

e
imε
2~ (qi−qi−1)2 (A.27)

Now since we have defined Dq with the factor 1/
√

2π~, we can redo the steps when

going from A.24 to A.26 and write our final result as

K(a, b) =

∫
Dq e

i
~
∫
dtL(q,q̇) (A.28)
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Appendix B

LIMITING BEHAVIOR OF THE GRAPHS

When we look to the pair production ratios, we see that their form is the same with

all of them, i.e.

f(x) =
a1 log (1± e−xλ1) + a2 log (1± e−xλ2) + ...+ an log (1± e−xλn) + ...

b1 log (1± e−xθ1) + b2 log (1± e−xθ2) + ...+ bm log (1± e−xθm) + ...

(B.1)

If we assume that the θn and λn are the lower when the subscript is lower, then we

can say that the limiting behavior when x→∞ is written as

lim
x→∞

f(x) =


∞ if θ1 > λ1

a1/b1 if θ1 = λ1

0 if θ1 < λ1

(B.2)
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Appendix C

ENERGY GRAPHS
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Figure C.1: spin-0 flat energies

0.5 1.0 1.5 2.0
β'

5

10

15

20

25

λn1 (β')

+, n1=0
-, n1=1
+, n1=1
-, n1=2
+, n1=2
-, n1=3

Figure C.2: spin-1/2 flat energies
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Figure C.3: ∆E of non-abelian spherical

spin-0 and abelian spherical spin-0N = 1
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Figure C.4: ∆E of non-abelian spherical

spin-0 and abelian spherical spin-0N = 2
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Figure C.5: ∆E of non-abelian spherical

spin-0 and flat spin-0 N = 1
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Figure C.6: ∆E of non-abelian spherical

spin-0 and flat spin-0 N = 2
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Figure C.7: Spectrum of /D2 for spherical

case, N = 1

ϵ+,0

ϵ-,1

ζ +,-1

ζ -,1

α+,-1

α-,0

ϵ+,1

ϵ-,2

ζ +,0

ζ -,2

α+,0

α-,1

2 4 6 8 10
γ

10

20

30

40

50

Energies
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case, N = 2
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Figure C.9: Spectrum of /D2 for spherical

vs flat cases, N = 1
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Appendix D

LANDAU PROBLEM ON R2

D.1 For Scalar Fields

Here we will discuss the solution for the Landau problem for scalar fields, that are

constraint to move on the flat R2 space. For starters we have a perpendicular magnetic

field that is also constant. Since the particles will only move in the flat surface, we

may reduce the problem to two dimensions. We take the plane to be the (x, y) plane,

then the magnetic field will have the form

~B = Bẑ. (D.1)

We can write the vector potential, ~A, using the Landau gauge in the following form

~A = Bxŷ. (D.2)

Which means we can write the operator D2 as

D2 = DµD
µ = (∂µ − iAµ)(∂µ − iAµ),

= ∂2
x + (∂y − iBx)2,

(D.3)

now we define the modified position operator as X = (∂y/B − ix), so that the com-

mutation relation is written as [X, ∂x] = [−ix, ∂x] = i, with of course ~ = 1. Then

with this definition we are able to write

D2 = ∂2
x +B2X2. (D.4)

Which is should just give us the energy spectrum for the quantum harmonic oscillator,

meaning the spectrum should be

λ = B(2n+ 1) (D.5)
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D.2 For Spinor Fields

Now we will make the calculation we have done in appendix D.1 with spinor fields.

Again in the same manner as before we will just focus on the two dimensional case

with an external magnetic field, B, perpendicular to the (x, y) plane, with using the

same gauge we have used in appendix D.1. The spectrum of the operator we will be

calculating is the Dirac operator, or more precisely its square. /D
2 operator can be

written for the aforementioned case is

/D
2

=
[
τx(∂x − iAx) + τy(∂y − iAy)

]2
,

= τ 2
x(∂x − iAx)2 + τ 2

y (∂y − iAy)2 + τxτy[∂x − iAx, ∂y − iAy],

= ∂2
x + (∂y − iBx)2 + τxτy[∂x, ∂y − iBx],

= D2 + iτz(−iB),

= D2 +Bτz. (D.6)

Which means that the spectrum for the operator /D2 is just

λ±n = B(2n+ 1)±B. (D.7)

Here ±B terms obviously comes from the spin of the particle, plus for spin up and

minus for spin down. Also notice that by shifting the index of the spin up eigenvalue

by one we are able to put it in a more manageable form,

λn = 2nB, (D.8)

With the degeneracy for each index n, dn, given by

dn =

1 n = 0

2 n 6= 0
(D.9)
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Appendix E

LANDAU PROBLEM ON S2

E.1 For Scalar Fields

Now, we will inspect the spectrum for the Landau levels on a sphere. To do this we

will need a magnetic field perpendicular to the surface and constant everywhere, we

can obtain this configuration by a Dirac monopole on the center of the said sphere.

Our magnetic field on the sphere will be given as

~B =
N

2a2
r̂. (E.1)

WithN ∈ Z+ for the Dirac quantization condition. Since the Laplacian can be written

in the form D2 = Λ2

a2
, where ~Λ = ~r × (~p− ~A). We see that the commutation relation

[Λi,Λj] is

[Λi,Λj] = iεijk

(
Λk −

N

2
r̂k

)
, (E.2)

here we define the operator ~J = ~Λ− N
2
r̂, with commutation relations being

[Ji, Jj] = iεijkJk. (E.3)

We see that the gauged Laplacian operator can be written as

D2 =
1

a2

(
J2 − N2

4

)
, (E.4)

and since the eigenvalues of J are j = n − N
2

, so the spectrum for the gauged La-

grangian is found to be

Spec(D2) =
1

a2

(
j(j + 1)− N2

4

)
,

=
1

a2

(
n(N + n+ 1) +

N

2

)
. (E.5)
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E.2 For Spinor Fields

With the same magnetic field given in Eq (E.1), we can write the operator /D2 as

/D
2

=
τiΛi

a2
,

=
(

Λ2 + ~τ · ~Λ− N

2
r̂ · ~τ + 1

)
/a2. (E.6)

Here we also define the total angular momentum operator J , with also including a

spin component, explicitly, Ji reads,

Ji = Λi −
N

2
r̂i +

τi
2
, (E.7)

it is easy to check that the operators Ji can be described with the SU(2) algebra, in

other words, they satisfy the commutation relationship [Ji, Jj] = iεijkJk. We can also

compute the operator ~J2, which gives

J2 =
(

Λi −
N

2
r̂i +

τi
2

)(
Λi −

N

2
r̂i +

τi
2

)
,

=
(

Λ2 + ~τ · ~Λ− N

2
r̂ · ~τ +

N2

4
+

3

4

)
. (E.8)

This result shows us that the operator /D2 can be simply written in terms of J2 as,

/D
2

=
(
J2 − N2

4
+

1

4

)
/a2. (E.9)

Since the eigenvalues of the operator J are n − N
2
± 1

2
the spectrum of the Dirac

operator on 2-sphere with radius a can be written as

Spec( /D
2
S2) =


1
a2

((n+ 1)2 +N(n+ 1))

1
a2

(n2 +Nn)
(E.10)
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