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ABSTRACT

EFFECTS OF NON-ABELIAN MAGNETIC FIELDS ON PAIR
PRODUCTION IN FLAT AND CURVED SPACES

Ozcan, Berk
M.S., Department of Physics
Supervisor: Prof. Dr. Seckin Kiirk¢iioglu

September 2021, 81| pages

Our objective in this thesis is to compute the pair production rates for both bosons
and fermions under the influence of non-abelian gauge fields on the manifolds R®! =
R? x Rb and S? x RYM. We will compare the pair production rates of the spherical
cases with the flat ones, and also compare the non-abelian cases with the abelian ones
to see effects of both curvature and non-abelian field strength on the pair production.
We first review the pair production process, i.e. the so-called Schwinger effect using
the path integral formalism for bosonic spin-0 i.e. scalar fields and for fermions, spin-
1/2 i.e. spinor fields, and also subsequently review the recent results obtained in the
literature on R*! and S x R1! with abelian orthogonal uniform electric and magnetic
fields. We then move on to generalize these results by the inclusion of a uniform
non-abelian magnetic field due to an external SU(2) gauge field. In doing so, we
find the opportunity to compare the pair production rates on R*! and 5% x RV with
non-abelian field switched on, and also compare its influence to previously obtained
results without the non-abelian field. Novel effects of the presence of the uniform
non-abelian magnetic field together with the effects of constant positive curvature of

the S2-submanifold are emphasized.



Keywords: Non-abelian Gauge Theory, Pair Production, Schwinger Effect, Landau

Problem, Dirac Operator on Curved Spaces

vi



0z

DUZ VE EGRI UZAYLARDA DEGISMELI OLMAYAN ALANLARIN CiFT
URETIMI UZERINDEKI ETKISI

Ozcan, Berk
Yiiksek Lisans, Fizik Bolimii

Tez Yoneticisi: Prof. Dr. Seckin Kiirk¢iioglu

Eyliil 2021 ,[8T]sayfa

Bu tezin amaci R®! = R? x Rb! ve 5% x RL! tipi manifoldlarin ve degismeli olmayan
alanlarin, bozon ve fermiyonlardaki cift iiretimi iizerindeki etksini arastirmaktir. Hem
kiiresel ve diiz geometrilerdeki hem de degismeli ve de8ismeli olmayan alanlarin
etkisi altindaki cift iiretimi oranlanarak geometri ve degismeli olmayan alanlarin ¢ift
liretimi lizerindeki etkisi goriilecektir. Ik olarak Feynman’in yol integrasyonu metodu
kullanilarak bozonik (spin-0) ve fermiyonik (spin-1/2) parcaciklarindaki ¢ift iiretimi
olay1 (Schwinger mekanizmasi) yeniden degerlendirip, daha sonra literatiire yeni ka-
tilmis olan R*! ve S% x RY! tipi manifoldlar lizerinde degismeli ve degismeli olmayan
manyetik alanlar bulundugu durumlardaki ¢ift iretimi degerlendirilecektir. Ardindan,
bu sonuglar SU(2) ayar alanindan olugan degismeli olmayan manyetik alanlar i¢in
genellenecektir. Bu genelleme yapilirken, R®! ve S? x RY! iizerindeki ift iiretim-
leri degismeli olmayan maynetik alan etkisi varken karsilastirma ve ayni zamanda
degismeli olmayan alanlarin oldugu durumla, literatiirdeki degismeli olmayan alanla-
rin olmadig1 durumu kargilastirma firsati elde edilecektir. Tekdiize degismeli olmayan

alanlarin S? altmanifoldu ile birlikte getirdigi yeni etkiler iizerinde de durulacaktir.
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Landau Problemi, Egik Uzayda Dirac Operatorii
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CHAPTER 1

INTRODUCTION

Pair production under constant, strong electric fields, otherwise known as Schwinger
effect has become important area of research since the original calculation done by J.
Schwinger [1]]. One important feature of Schwinger effect is that the pair production
exists for any electric field value, however for small electric field values pair produc-
tion rate is greatly diminished since the pair production probability is proportional to
e~™*/E_ Because of this reason, up until now, Schwinger effect is not observed in
experiments, since the electric field strength required for the observations are larger
than our current technological means. This effect is also examined for time dependent
electric fields [2, 3} 4, 5]. Under the influence of these types of electric fields, pair
production probability increases but not sufficiently so that it allows a direct exper-
imental verification. Schwinger mechanism is also investigated for inhomogeneous
fields [6} [7]], but currently no experimental verification can be done in these setups ei-
ther. Dual effect of the creation of monopole anti-monopole pairs under the influence
of magnetic fields is discussed in the early literature [8]. There have also been the
discussion of pair production in AdS; space [9] as well as in the deSitter Space d.S,

(1O, [11]

Chapter @ of this thesis will serve as a review, in which we will discuss the one-loop
effective action for scalar and spinor fields under the influence of background gauge
field. We will calculate the vacuum to vacuum transition amplitude, and subsequently
we will derive the probability for vacuum to vacuum transition. Subtracting this prob-
ability from the total probability 1 gives us the probability for pair production. We
will present the calculations of the one-loop effective action for scalar and spinor

fields under the influence of a constant electric field and reproduce Schwinger’s orig-



inal result.

Subsequently, we review the effects of uniform abelian magnetic field and constant
positive curvature on pair production following the recent article [12]. Here we con-
sider manifolds of the type R? x R = R*! and S? x R!. In addition to a uniform
electric field in the spatial direction in the subspace R%! a uniform magnetic field
will be present on R? and S?, the magnetic field in the latter will be provided by a
Dirac monopole. Evaluating the effective action on R* and R? x S?, we Wick rotate

R? — Rb! to obtain the pair production rates.

In Chapter [3] we shift our attention to the effects of non-abelian magnetic fields on
pair production on flat surfaces. Here our approach will be similar to the case with
purely the abelian field. Essentially we will consider a case with uniform magnetic
fields with both abelian and non-abelian parts. We will first handle the calculation for
the scalar fields. This task will be facilitated by using the result of the spectrum of
the gauged Laplacian provided in [[13], we will nevertheless reproduce the results for
completeness. Calculating the pair production rates gives us novel physics and allows
us to comment on the effects of the non-abelian magnetic field on pair production.
These results will be discussed in detail in Section 3.1.2] This will be done in two
ways. First, at different values of the non-abelian magnetic field strength, we will plot
and inspect the profiles of a function which is proportional to the effective action;
Secondly, we will form and examine the profile of a function which allows us to
compare the situation with non-abelian field present to that in the absence of the non-

abelian magnetic field.

In order to proceed to discuss the pair production for spinor fields with non-abelian
field switched on, we need to first address the problem of finding the spectrum of
the gauged Dirac operator,lD2, on this setting. We take up and handle this task in
Section and determine the spectrum of ID2 using methods similar to those used
in the discussion of the Jaynes-Cummings model [14]. To the best of our knowledge
these results are all new and provide a novel contribution to the literature. Here we
also determine the eigenstates of the operator ]DZ, which will be implicitly used in
the calculation of the pair production rates. Employing these results, we proceed

to compute the pair production rates for spinor fields and illustrate our results by



considering the profile of function constructed in the same spirit as in the case of

scalar fields. These results are presented in Section [3.2.2]

In Chapter 4 we focus on the problem of computation of pair production rates on
the manifold S? x RY!. Here in addition to the uniform electric field in the spatial
direction of the subspace R>!, and a uniform magnetic field composed of an abelian
part due to a Dirac monopole placed at the center of S? and a non-abelian part due
to a SU(2) gauge field is present. In order to evaluate the pair production rates for
scalar and spinor fields on this manifold, we need the spectrum of both the gauged
Laplacian, D?, and that of the gauged Dirac operator, 192, respectively. Incidentally
the spectrum of D? is determined in a previous work [[13] within the context of gener-
alizing the Landau problem on S? by switching on a non-abelian uniform gauge field.
We review the result obtained in [13] in detail and adopt it to solve the gauged Dirac

operator on S? in this context. This result is also new to the best of our knowledge.

With the spectrum of D? and lD2 available to us, we follow the approach given in
[12] and reviewed in Chapter [2| to compute the pair production rates on R x S2.
For this purpose, we start our considerations on the Euclidean manifold R? x S? with
another magnetic field perpendicular to the R? plane, and Wick rotate R? to R"* and
this latter magnetic field to a uniform electric field (B — iFE') at an appropriate stage
of our calculations. Our objectives are two fold in studying this problem, one is to
find out how the constant positive curvature of S? affects the pair production rates
for scalar and spinor particles, and the second is to examine the direct effect of the
non-abelian gauge fields on the pair production. In order to reach our first goal we
form a function, which is designed to give the ratio for relative pair production rates
on R x S? to that on RY x R2. We plot the profile of this function to inspect the
effects of curvature in pair production. To meet our second objective, we inspect this
ratio for various different values of the non-abelian gauge field strength. Noting that
this is not completely independent of the effect of the curvature, we also compare
the pair production rates on S? x RM! by forming a function which is the ratio of
pair production rates at non-zero values of non-abelian field strength to that with only

non-vanishing abelian magnetic fields.

In Chapter[5] we give a summary of our findings presented in this thesis, and indicate



a few directions for future research.



CHAPTER 2

PAIR PRODUCTION IN FLAT AND CURVED SPACES: A REVIEW

In the presence of classical electric fields in vacuum, there is the possibility of pair
production. This is known in the literature as the Schwinger effect, i.e. production of
a charged pair of a particle and its anti-particle, first calculated by Julian Schwinger
in his seminal article in 1951 [1]. Schwinger’s result gives us the amplitude and
hence the probability for production of pairs of particles and anti-particles per unit
volume of the Minkowski space. This vacuum effect occurs in the presence of electric
fields. In other words it does not occur if only a pure magnetic field is applied to
the vacuum. Nevertheless, it is possible to contemplate situations in which both an
electric field and a magnetic field is present, a particular treatable case being mutually

perpendicular uniform electric and magnetic fields on the Minkowski space.

In this chapter we will present a review of the pair production process for scalar and
spinor fields under the influence of an external classical electromagnetic field, di-
rected perpendicular to an already existing uniform electric field. For this purpose,
we first start with the review of the Schwinger effect, following the article of Hol-
stein [[15]], and the lecture notes of Fradkin [[16] on part integral techniques; first for
the scalar and subsequently for the spinor fields. Computing the vacuum to vacuum
transition probability and subtracting it from the total probability 1 gives us the pair
production probability in each case. We will follow the computation given in [12]] to
discuss the pair production rates in the presence of a uniform magnetic field given in

the direction perpendicular to the electric field.

In Subsection[2.5.3] we will move on to computing the pair production problem under
perpendicular electric and magnetic fields on R*! x S? [12]. To examine this problem

we will start our discussion on the Euclidean space R? x S? with a uniform magnetic



field perpendicular to R? and another perpendicular to surface of S?, the latter one
is provided via a Dirac monopole placed at the center of S%. By Wick rotating R?
to RY! and the magnetic field perpendicular to R? to an electric field in the spatial
direction in R"!* we will calculate the pair production rates for scalar and spinor fields.
Subsequently we inspect how the curvature affects the pair production by looking at
by evaluating and plotting an appropriate function which is a direct measure of the

relative pair production rates.

2.1 Transition Amplitude for Complex Scalar Fields

We start our discussion by giving the action for the complex scalar field under the
influence of an external electromagnetic field A,,(z) in 3 + 1 dimensions. This action

can be written in the following form:
S(6, 6%, 0., 08" = / &' £(6,8°, 0,8, 0,6") .
. / ' (D) (D) — m>é¢r @.1)

Here ¢ and ¢* indicates the complex scalar fields, and L[¢, ¢*, 0,¢, 0,,¢*] indicates
the lagrangian density functional. Here, we have used the usual definition for the
covariant derivative, D, = d,, — iA,,, and we work with the units in which the charge

of the scalar field is unity (¢ = 1). Integrating this expression by parts gives
16,0".0,0.0,67] = [ &' (3, ~ i,)0" (Dy0) ~ w6
— [ @5 (0,0)(D,0) ~ 67 4,(D,0) — w65
— [ @20,(6'D,0) ~ 6°(0,D"6) ~ i67 4,(D,0) ~ o
— [ oD+ mt)s 22)

where in passing from third line to the final line in Eq. 2.2 we have assumed that |¢|
vanishes sufficiently fast at infinity, so that the total derivative term (surface term)

vanishes. Also in the last line of (2.2)) we have introduced the notation D? = D, D*.

In quantum mechanics, the transition amplitude i.e. the propagator between the states

at positions ¢(t,) and ¢(t,), between the states at an initial time, ¢, and the states at a

6



final time, t;, can be written as as a path integral [17],

D(Qas ta; gv, ty) = / Dy et [ ) (2.3)

where L(q, ¢) is the lagrangian of the corresponding classical system, whose quantum

mechanical transition amplitude between initial and final states is being sought for.

The integration measure Dq is given as

(2.4)

and it essentially allows to take into account all possible paths from the initial to the
final configuration, as opposed to only the classically favored path. A short summary
of the path integrals in quantum mechanics, sufficient for our purposes, is given in
Appendix [A] We want to consider the vacuum to vacuum transition amplitude, that is
the amplitude for initial and final states to be vacuum state. To do this we must take
the limits, {, — —oo and ¢, — oo [15]. Taking this limit allows us to, effectively,
only consider the vacuum (ground) state, since at sufficiently large times the system

can be assumed to be in the ground state.

We can pass from quantum mechanics to quantum field theory and write the vacuum
to vacuum transition amplitude for complex scalar fields by making this following

changes.
q(t) = o(x), 9" (x),
[ttia.i) > [ deco..0.0.0,67 es)

Denoting the vacuum state as |€2), we have, for the vacuum to vacuum transition

amplitude is given as
(QIQ) = / DDt | T L1007 0u00u07] (2.6)

In particular, for the vacuum to vacuum transition amplitude for the complex scalar

fields with a classical background gauge field, we may proceed to insert the action

from (2.2) into (2.6) to get

(QQ) = / D¢De e~ ¢o " (D> +m*)o. 2.7)



Let us note that this transition amplitude encodes the information or the amplitude for
the possible production of particle anti-particle pairs corresponding to the field ¢ and

¢*. We will see how and under which circumstances this gives a non-zero amplitude.

Our first task is to calculate the integral (2.7)). Let us use the notation O = (D?+ m?)
for convenience. Also it is useful to separate the field ¢ into its real and imaginary

parts as

¢(x) = p1(z) + iga(w),
¢*(7) = ¢1(x) — iga(z). (2.8)

(2.8) allows us to rewrite the integration measure as,
D¢D¢" = Dp1Deps, (2.9)
and the vacuum to vacuum transition amplitude in as
@) = [ Do [ DoeToeree,
= / Dy / Dy e~ J 42 [d1-i#2]Olé1+ida]
r / Do, / Dy = I 4176106146062 +i61 002162061

_ /D¢1/D¢2 e*fd41¢10¢1+¢>20¢27

2
= [/chefd“m@] : (2.10)

From the last line of (2.10) it is clear that the transition amplitude is just the square
of the transition amplitude for a real scalar field, say ®, which we can proceed to

calculate as follows:
Q) = /D@ ¢ [ w20 (2.11)

We can expand @ in terms of the eigenstates of the operator O, which forms a com-
plete and orthonormal set. Without loss of generality we may proceed in a notation in
which the eigenbasis of O is discrete (while continuous spectrum can also be treated

on equal footing) and write

® =" apn(z), (2.12)



where the basis {(,, } satisfy
Opn(z) = Anpn (),
/d4x Om () on(x) = Omn, (2.13)

with ), denoting the eigenvalues, i.e the spectrum of . The measure for the path

integral in (2.11)) then takes the form

N da,
DO = lim i
N—oo el \/27‘(7’}/

since D indicates the integration over all field configurations and integrating with

(2.14)

respect to all the a,, will therefore yield the desired result. For the transition amplitude
in (2.11)) we therefore have,

=

- fd4ac D ot ancpn(’)amgam

(QIQ),

N
/ | | _Zn,m Onm@nGmAm
Y

/ ) h ~2napAn, (2.15)
T

For the last line of (2.13)), we see that the result involves product of infinite number

of Gaussian integrals with each integral being proportional to W we find

An
C
Q) = lim ————
< ’ >¢) Nl_r}noo \/)\1)\2...)\]\[
C

where C is the constant we get from the integration. Going back to (Z.10) and squar-
ing the result in[2.16| we have

C
Det O

Q) = (2.17)

We could write the 1/ Det(O) term as

= exp(—log (Det O)),

— eap(—log ([T )

= exp(— Z log (A

= exp(—Trlog(D* + m?)), (2.18)

Det O



and therefore the vacuum to vacuum transition amplitude can be cast in the form
(QIQ) = C x e TriegD*+m?), (2.19)

Here, the exponent of the exponential is the one-loop effective action, and in terms of
the Feynman diagrams it is the sum of all one-loop diagrams with the even number

of external photon legs [18]].

2.2 Pair Production in Scalar Fields

In this section, we will calculate the pair production for scalar fields, given that there
1s a constant, uniform electric field. If we assume that the electric field is on the z-
direction, we can write £ = EZ. The vector potential for such field is easily written
as Ay = L'z, in the Landau gauge, with other components of A, being zero. This
shows that the operator O has the form O = (9, — iFz)* + 61 + m?. We have to
solve the eigenvalue equation satisfied by this operator, since the vacuum to vacuum
transition amplitude depends on the determinant of O. It is possible to reorder the

operator O and write it as,
O=p*+ E*Z* +p2 +m?. (2.20)

Here we have defined Z = (—0,/FE — iz). This is a valid definition since we could
write the commutation relation as [Z,p,] = 1. Also it is important to realize that
the definitions we have used for the momentum are just for convenience, meaning
p2 = 92 and 07 = 92 + 0. That being said, the term p? + E?Z? is just the harmonic

oscillator term. Spectrum of O is therefore given as
Spec(O) =p> +m* + E2n+1), n=0,1,2, ..., (2.21)

where p, stands for the continuous eigenvalues of p, and p,, p, = |/pz + p;, and
the corresponding eigenvalues are ¢”- %, (Z). We now focus on the vacuum to
vacuum transition amplitude given by (2.19), from this amplitude we can calculate
the probability of finding the state in a vacuum state, given enough time by just taking

the modulus square of the amplitude. This gives us,

Prob. = | (QIQ) |> = C ¢ 2Re(Trleg (0) (2.22)

10



which means that the probability of pair production (p.p.p) must be obtained by sub-
tracting the probability in (2.22) from 1. From which we get,

ppp=1—Ce™. (2.23)

Here we have defined I' = Re(T'r log O). Therefore, we can simply focus on calcu-
lating I'. We start with the calculation of 7'r log O,

Trlog® =1Tr ﬁe—so. (2.24)

s
Here the trace indicates the summation of the eigenvalues for the given operator.
As we have already indicated the operator O has a harmonic oscillator part with
frequency w = E, and a degeneracy coming from the fact that the solution for the z
and y directions are freely propagating plane waves. This means that we should write
the trace as a combination of integrals over the transverse direction and a summation
over the discrete harmonic oscillator eigenvalues. In a spatial cube of side length L,

and time interval 7', we write this as,

d? d d
TrlogO:/ pL/ Po/ / > (p| —sO|p>
EL
d,
2 J_ po E222 m?

— LBT_ dpz/ +E2Z2+m) (225)

8?2
In (2.25), when going from first to second line, we have used the degeneracy per unit

. . . 2
space-time volume which is [ ép)é

factor. Also the integration over the p, simply

converts to the summation over the eigenvalues. Therefore, we find

Tr lOg O = L3T § =8 (E(2n4+1)4+m?)
FE ds e_5m2
=I’rT— | = — 2.26
1672 / s? sinh(sE) (2.26)

In order to take the integration over s, we have to perform Wick rotation by 2° — iz?,
and F — 1 F, then we can write (2.20)) as,

s OB
TrlogO =1L T167r3[' (2.27)
Here we have defined I to be,
© ds e=sm’
I = —_— 2.28
/0 s? sin(sE)’ (2:28)
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for convenience. Notice that the integrand has poles at s = s, = nw/E. To get

around that problem, we define the integration contour as small semicircular devia-

tions from the real axis, say z = ee'?, centered at each s,,. This means we could write

s — 8, = z. Using this in (2.28)), we get

2

> ds e M
[=1i B
50 Z /C s? sin(nm + Ez)’

M

n=1 n
= 11_1)% ; /n ;lj sm(nw)cos(Eze)_j—mczos(nﬂ)sin(Ez),
-y [
= limy fi /d_ —E

e
=iF i : (2.29)

Which means we could write I' with the help of the result we have found in [2.29|in
conjunction with and we could write

n+1

3 —nmm?2/E
I =LT 16W32 e , (2.30)

dividing by the volume, L3T, gives the Schwinger result for the pair production per

unit space-time volume under constant electric field.

2.3 Transition Amplitude for Spinor Fields

Obtaining the vacuum to vacuum transition amplitude for spinor fields is similar in
vein to the complex scalar case. However, we have to use the Grassmann variables
to perform the path integrals. Therefore, it will be appropriate to start with a concise

review of the Grassmann variables.

12



2.3.1 Grassmann Variables

Grassmann variables are the elements of the exterior (or, Grassmann) algebra and
they anti-commute [19]. This means for a Grassmann variable, 6, the following is

true
{6,0} = 0. (2.31)

Thus, for a Grassmann number, we have 82 = (. We can define the derivation, which
is the operator when applied to a Grassmann number, gives 1. For this purpose,

consider the equation

d i Doy gy
{@,9}9 = —5(00) + 650"

=0, (2.32)

where 6 and 8’ are both Grassmann numbers. Therefore we see that the differentiation

is defined by the operator d/df such that,

d
{@,e} E | (2.33)

Note that the most general function f(f) of a single Grassmann variable is f(f) =

a + bl, where a and b are constants. This is because 6% = 0.

The integration for Grassmann variables is defined as the operator which gives the
result of zero for the integral of a total derivative, and it is a linear operation. We

have,

ofe)
/ db =5~ =0, (2.34)

/dea: 0, /dee ~ 1. (2.35)

We can generalize the definition for the derivation to N Grassmann variables, with

(t,5,k=1,2,...,N) as

) ) )
{— e}ek = —(0,6,) + 0, —0y

which gives

00, "’ 00; 708,
00, 06,
= 26,0~ a5,

13



On the second term of the second line the minus sign comes from the fact that the
derivation is only applied to the variable right next to it. So, after changing the places

of the variables, we get a minus sign. With this, we can write,

0

The integration, for /N Grassmann numbers is defined as

/ d0,0; = 6,5, / df; = 0. (2.38)

We can take multiple integrations using the fact that the Grassmann variable anti-

//d01d02 0105 = —/dQl [/ do, 92] 0, = —1. (2.39)

Let us look to the expansion of particular exponential function involving Grassmann

commute

variables, we have
T 1
e % =1+ (0700) + (9T 00)° + - - (2.40)

Here O is an anti-symmetric N X N matrix, with the elements o;; satisfying o,; =
—oji and 0 = (0y,04,...,0N5)", 67 = (6,04, ...,0y) are column and row matrices
with N Grassmann variables . It is also important to realize that if /V is even this
series truncates in the (N /2)th term, since there are only N Grassmann variables, and
if N is an odd number, the terms after the [(/N + 1)/2]th term are zero because of

(2.31)). If we want to integrate this expression we can write

/dal /d(92 "'/d@N 1+ (ZeiOinj) +%<Zeioij9j)2+“-
oy N
ot %(Zemiﬂj)N]. 2.41)
i7j

It is easy to see that the only term that survives this integral is the (N/2)nd term if

N is even, and the integral vanishes if /V is odd. Hence N can only be even. So we

write the only surviving term more explicitly as

1
/d91 /deg /d@N [W Z 0i1,i20i5,i4 * * " Oin_1,in
11, S IN

X9i19i29i30i4 R 9iN-191'N . (242)
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We can see from this expression that the indices ¢y, 75, ..., ¢y cannot contain any two,
or more, numbers that are the same. Possible combinations of these indices form the
elements of the symmetric group, Sy. Also, in order to take the integrals we have to
change the position of the Grassmann numbers, and any change between two adjacent
0’s yields a factor of —1. Since N must be an even number, the factor -1 can be found
from the sgn(o) where o € Sy is a permutation of {iy, s, ...,7y}. Hence, we can

write
N/2| Z [H sgn(o a(i),(,(m)]. (2.43)
ceSNy Li=1

Here, since we are summing over all possible permutations of the group elements, the
term 0, ;) »(i+1) contains all of the matrix elements of O. This is the definition for the
Pfaffian, of a N x IV, anti-symmetric matrix up to a multiplicative constant 2 /2 [20].
Pfaffian of O equal to square root of the determinant [21]. Hence we could finally

write

/ do, / dfy - - - / dOne? €0 = 2N/2\/Det O. (2.44)

2.3.2 Transition amplitude for spinor fields

Now we proceed to discuss the calculation of vacuum to vacuum transition amplitude

of a Dirac field. We start with the Lagrangian [[15],
L=yl —m)y, (2.45)

where [) = 4D, is the gauged Dirac operator, with D, = 9, — iA, and ¢ =
(11,12, 13,14) is a 4-component Dirac spinor. Here v* are the Dirac gamma matri-

ces, satisfying {7,, 7.} = 29,

Let us use the auxiliary notation © = (iI) — m), and write the vacuum to vacuum

transition amplitude as
(QQ) = / DYDip el @00 (2.46)

Expanding the Dirac spinors as ¢ = Y b, ,,, where b, are Grassmann variables, and

integrating the b,, out, with the help of the result in (2.44), allows us to write (2.46)

15



as,

(010) = [ T dbudt e #0n0000n,
n#Em

- / H dBndbm ef d4xi)nomnbm7

n#m
= / DbDbel TP

= C x Det O, (2.47)

where C'is the constant of integration and the multiplicative factors from (2.44)). This
expression can also be written as the determinant of @ and determinant of its conju-

gate O as

(QIQ) = C x \/Det (0O), (2.48)

and finally we may cast it into the form

(Q[Q) = C x exp[log \/Det (OO1)], (2.49)

— (' x e%Trlog(OOT)

2.4 Pair Production in Spinor Fields

With vacuum to vacuum amplitude formally expressed for the spinor fields in (2.49),
we now set out to derive the Schwinger’s result for pair production of spin-1/2
charged particle under constant electric field. Calculations will follow similarly to
the scalar case, the main difference being the eigenvalues and their degeneracies of
the operator . We will use the pair to pair transition amplitude we have found in

(2.49)) to calculate the pair creation probability.

In the same way we have encountered in Section 1 — [{Q|Q) |* will give us the
pair creation probability. Therefore, it is meaningful to calculate the T log (OO7).
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Let us remember that the operator OO is given by

00" = * + m?,
= (Y"Du)(v"D,) +m?,
="9"D,D, +m?,
= (" —io")D,D,,
= D? —io"(0, —iA,) (0, —iA,),
= D? —io"(0,0, — i0,A, —iA,0, —iA0, — A A),
= D* = 0 (0uAy),
= D? — o (0uA + DAL,
_p? %O—M@AV —,A,),

1 v
=D? - 50" Fw- (2.50)

From the last line of (2.50) we see that the operator OO consists of two parts. The
first term, D2, is the gauged Laplacian we have already examined in Section The
second term can be called the Zeeman term as it encodes the interaction of the spin

with the external electromagnetic field. In (2.50) we have used the definition,

i
o =S, (2.51)

a partial explicit representation is provided by

0i i ij 0 o
o = . 07 =€ ) (2.52)
’iO'i 0 O 0

Proceeding with the same gauge choice we have used in Section 2.2] Ay = Ez, we

17



are able to rewrite (2.50) using (2.52)) as,

00" = D* - %a’“’F

]
1

= D? — §(a°”F0V + 0" F),
1 . .

= D2 — Q(O'OJF()j + O'IOFI'(]),

1
= D2 — §(O'OZFQZ + UZOFZQ),

1

= D2 + Oozf)on,

D*1, iEo.
= . (2.53)
iEO’Z D212
By Wick rotating the result to Euclidean space, we will get
D? Eo,
00" = (2.54)
Eo. D?
Which means the eigenvalues for such operator is given by
MNo=pi +2n+ 1)E+ E+m? (2.55)

Here the 4 indicates the spin for the system, we can also shift the indices to write this

result in a more suggestive form just like we have done in Appendix [D.2]

Ap = P2+ 2nE + m? (2.56)

with the same degeneracy factors as (D.9). Now we will calculate the trace of log OOT

since the pair to pair transition amplitude is proportional to that, as it can be seen from

18



Eq. (2.49).

Trlog OO = / / s 00 D) .

/ dpo ds .
75/\71
- 1T, Z
FE ds 2 >
3 —sm —S8A\n
=L T@ ? (6 + 2 Z e ),
E ds > 2
_ LST_ - ) —s(2nE)\ —sm
2 | 2 (1+ nz:l e Je ,
E d
= L?’T@ / S—je’ 1% coth sE), (2.57)

we will this expression back to the Minkowski space via Wick rotation, then obtain

E [ds _, o
Re(iseff)——L:’)T# S—fes cot sE, (2.58)

again just like the scalar case, we will have singularities at s = s,, = n7/E because of
the coth sFE term, and we will move around them with the small semicircles centered

around each s,,. We also use cot sE' ~ 1/FEz, and write (2.58) as

E?
R@(iSeff — _L3T_ Z/ dz mr/E)m

72 *E n27r2

_ —L3T— f(nw/E'
> [ e

E? 2
_ 737 = & —(nw/E)m
— L T87T3§ nQe . (2.59)
n=1

Dividing the last line of (2.59) we find the Schwinger result for the pair production of

charged spin-1/2 particles per unit volume of the Minkowski space.

2.5 Magnetic Fields Effects on Pair Production

We would like to proceed with exploring the effects of additional constant magnetic

field B applied to the system in a direction parallel to the constant electric field, F.

Consider that we have Fy3 = FE and Fj», = B; with ¥ & B; constants in the

Minkowski space R*!. In order to facilitate the evaluation of the necessary path
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integrals, we may work in the Euclidean space R* with F}, = By, and F3, = BQEI,
then at the appropriate stage of our calculation we will rotate R* to the Minkowski

space R*! and By to —iE (I3 — iFy), i.e. to the electric field.

2.5.1 Scalar Fields on R?!

Let us start with writing the vacuum to vacuum transition amplitude in (2.17) with

the notation
(QIQ) = C x eefr (2.60)
where, we introduced
iS.rr = Trlog(D* +m?), (2.61)

we are interested in obtaining the pair production probability (or, p.p.p.). This can be
computed from the vacuum to vacuum transition probability, by subtracting it from

the total probability 1. Therefore, we have

pp.p.=1—](QQ)|?
— (O x (1 . 6—2Re(z’5‘eff))

=Cx(1—et) (2.62)

In (2.62) Re(iS.s¢) is present instead of .S, s ¢ because in order to calculate the prob-
ability, we compute the modulus square of (2.60), and in the last line used definition
of I' = Re(T'r log (O)) given after (2.22), corresponding to the real part of the .S,

with S, being the one-loop effective action.

We can compute [' by writing the trace explicitly, and expressing the logarithm as an

integral. In the Euclidean signature we have

o0

I'p=—Tr lim ﬁe_s(_phr”ﬂ),
e—0 ¢ S

& d 2 2
= — / dizlim [ 2 (g e D) |3y (2.63)
S

e—0 e
As mentioned earlier we will compute this integral in the Euclidean space and then

we will Wick rotate back to Minkowski space.

! The subscripts in B; and B, are not tensor indices, they are just an auxiliary notation to label the magnetic
fields perpendicular to the (1, z2) and (x3, x4) planes, respectively.
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In this case we have B; as the magnetic field that is perpendicular to (1, x2) plane,
and the magnetic field B that is perpendicular to the (x3,z4) plane. For which we
can write the spectrum for the D? operator as,

ny=0,1,2,..

D2¢n1,n2,a<x) = [(2n1 +1)By + (2ny + 1)32]@/)”17”27@(1‘)
ny=0,1,2,...

(2.64)

This is essentially obtained from superposing the solution of two distinct Landau

problems on two orthogonal planes, a detailed calculation of which is given in Ap-
pendix D.1]

Expanding the position ket |x) in terms of the energy eigenbasis kets, labeled as
[n1,ng), e |z) =3 | |ni,ne) (na, ne|z), we may write

4 1: > ds 73(7D2+m2)
['p= [ dxzlim — Z (x|e N1, na),, (N1, ne|z),,

e—0 ) S
ni,n2,x

:/d4xlim OO@ Z <x|n17n2>ae—s[Bl(2m+1)+Bz(2n2+1)+m21 (n1,na|T),
S

e—0 ¢
ni,n2,x

. > ds . - o . L
:/d%hm " Z Uy nga (L) WUny nyalT)e [B1(2n1+1)+ Bz (2na+1)+m?]

e—0 ¢
ni,n2,x

(2.65)

Here (n1,n2|T) = ¥, ny.o(x) with the a index labeling the degeneracy in each Lan-
dau level. We may use the orthogonality of the wavefunctions and the degeneracy
of the Landau levels to manipulate the last line of (2.65). Note that we have the

normalization condition,

/d4l’ wnl,ng,a(x)¢n1,n2,a(x) = 17 (266)

and since the density of states for Landau levels are % [22]] and we have two distinct

Landau levels, sum over the degeneracy index « is given by
B B BB
/ didry = X / dasdr, — = / d'e =2, (2.67)
2m 2m m

Putting these facts together, we have

'y = lim BB, /d4x /OO @ Z o~ S[B1(2n1+1)+ B2 (2n2+1)+m?] (2.63)
. S

e—0 472
ni,no
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Here we can perform the summation on n; and n, explicitly, using geometrical series.
In order to put this expression in a form which is better suited for physical interpreta-

tion we only perform the summation over n,. This yields

1 ®ds sBy 2
I'p= d'z By li — ) e sBEmt 2.69
B gn? Rt el—r>% s2 sinh sBsy nz ¢ ’ (2.69)

and Wick rotating the result by 24, — ixg and By — —¢FE and identifying the contin-

uation of I'; with iS.¢. We get

) >“d E
iSeff = # /d4l’ B lim s Z 6_5[31(2”1*‘1)4‘7"12}' (2.70)

=0 ). s?2sinsE
ni

Now, we are in a position to perform the s-integral. First we have to realize that the
integral has singularities at s = nw/E, n = 1,2, ---. It can be seen from that
we are interested with the real part of the iS.;s. This contribution comes from the
integrals around the small semicircles, C,,, centered around the singularities. Hence
our integration variable can be written as s = nw/E + z, with |z| being small. We

can also write sin sE ~ (—1)"zE. Hence the real part of the iS. ;s becomes

, o 4 dz (=1)"nm —(n7/E)[B1(2n1+1)+m?]
Re(zseff)—@/dl’Blz/ (nr/EY 2B 4 e :

BBy 4 dz 1 n —(nm/E)[B1(2n1+1)+m?]
= S [ e ’

ni

BB, 4 . n —(nm/E)[B1(2n14+1)4+m?)
ES ) /d i Z/;r Zdeﬁ(—l) Ze e 5

EB 2
_ 87T21 / T Z Z (nm/E)[B1 (2n1+1)+m?] (2.71)
ni

It is possible to take the B; — 0 limit of the last line of (2.71]), but to do so we must

first carry out the summation over n;. Carrying out the summation gives us

, —1)" By
R Se - 1 — d4 —m? n7r/E
€(iess) 5150 87r2 ‘ Z n  2sinh (nwB/E)’
_ —1)" E/nm
— i — d4 m? n7r/E
550 87T2 v Z c n  2cosh(nwBy/E)’

1)"
4 —m2(n7r/E
- / d mE , 2.72)

which is the Schwinger’s result, as we have shown in Section [2.2] (2.30).
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2.5.2 Spinor Fields on R*!

We now compute the pair production rates for spin-1/2 particles in the presence of
parallel £ & B fields. To do so we again start with the Euclidean problem with B,
on the (z1,x2) & By on the (x3, z4) plane. We haveE]

D+ m? = (1.D, + 7,D,)(r. D, + 7,D,)
= 7.D2+7.D; + 7,7,(D.Dy — D, D,)
= D2 +i7.[(0, +iA,) (9 +iA,) — (9, +iA,) (D, +iA,)]
= Dj — Bir, (2.73)

Here the 7, and 7, operators indicate the usual Pauli spin operators. It is readily seen

from (2.73) that the spectrum depends on the spin of the particle, and it can be written

as
D?—-B 0
Spec(Py) = D21 — By, = | >
0 D2 + By
<2n1+1)Bl+B1 :2(711—1—1)31, nq 20,1,2,...
= (2.74)
(2n1+1)31 —Bl :2TL1B1, T 2071,2,...

Adding two copies of (2.74)) with the quantum numbers n; and n, and magnetic fields
By and B; we find the spectrum lD2 on R* as

Spec(D?) = (2ny + 1)By + (2ny + 1)By + By + By, (2.75)

Compared to the spectrum of the operator, D? + m?, for the scalar case, we see that
there are the Zeeman terms +B; +By with all possible (++,+—, —+, ——) sign
combinations. This causes an important change in the spectrum. For instance; for the
spin down state corresponding two lower signs, the ground level which is given by
ny = ny = 0 is a zero energy state i.e. it is a zero mode. This will have consequences
for pair production as it is a state that can be filled by produced pairs without any

energy cost.

The degeneracy factor is the same as in the scalar case for each spin branch, and given

2 Subscript 2 in lZ); indicates that the operator is in two dimensions.
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472

B, B
/ dir==2 (2.76)

Putting these factors together, we can write the one loop effective action as

I'g = —Bl B /d4:L‘ lim h @ Z [@_5[31(2”1+2)+m2] + e sIBi2ni+m?]
S

87‘{'2 e—0 ¢
n1,n2

+efs[BQ(2n2+2)+m2] + efs[Bz2n2+m2}i|
(2.77)

We can perform the summation on n; in the (2.77)), and write it as

By B / 4 /°° ds _s(B 2 _ 2
pag— izl as 2 : [ sBi2ni+m?] (1 s[2B1+m?]
E x lim S e (1+e )

{72 e—0

ni,n2
+ 6—3[32(2n2+2)+m2} + 6—5[322n2+m2]]

By B,

72

/d4x lim h ﬁcoth sB; Z [6—5[31(2nl+2)+m21 + e~ s[B22na+m?]

e—0 S
€ na

(2.78)

Now we perform Wick rotation into the Minkowski space with B, — —iFE, and

identify continuation of Iy with S, . This allows us to write

FE B *“d
Re(iSeff) — _Z 1 /d4$ lim —SCOt SEZ [6—5[31(2n2+2)+m2} + 6—5[322n2+m2]i|
na

871—2 e—0 . S
EB 1 ] 2
= — 87T21 /d4g(; Z E Z [6—(n7r/E)[Bl(2n1+2)+m ] + 6—(n7r/E)[B12n1+m }]
n=1 1
(2.79)

2.5.3 Spherical Scalar Case

We will now consider a situation in which not only the effects of magnetic field B
and an electric field £ is taken into account, but also spatial curvature effect is also
examined. To do so, we will consider the pair production effects on the product
manifold S? x Rb! with RY! is spanned by the coordinates xy & 3. We will consider
a uniform electric field in the z3-direction, while the uniform magnetic field on S? is

provided by a magnetic monopole.
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In order to compute the one-loop effective action, we follow the same approach as
before, and first consider this problem on the Euclidean space S? x R? with a mag-
netic field B, perpendicular to S? provided by a magnetic monopole, and B, being
perpendicular to the plane R%2. We will Wick rotate B, to an electric field F at an

appropriate stage of this calculation, as in the flat case before.

Since, we need the spectrum of —D?-+m? to evaluate the one-loop effective action, we
may write —D? = — D%, + DZ, where the spectrum of D3, is given by (2ns + 1) B,
as this is the standard Landau problem solution we have used in Section and
detailed out in Appendix

Spectrum of D§2 can be computed using group theory. The uniform magnetic field on
S? is provided by a Dirac monopole placed at the center of this sphere. Due to Dirac
quantization condition [23] the magnetic field is quantized as B; = % where N is
an integer, and a is the radius of the sphere. The solution of this problem is provided

in Appendix [E.T]and given as

1 N
Spec(—D?* +m?) = = (nl(nl +1)+ Nny + E) + (2ng + 1)By +m?, (2.80)

one-loop effective action takes the form

. > ds * —s(=D?+m?
I'p = _/gg dQ/dx3d$41£%/e ? Z ¢n1,n2,a(I)6 (=P )wm,m,a(l‘)

ni,n2,x

. *ds .
= —/512 dQ/d$3d$4 11_1;%/6 ? Z wnhng,a(l’)wnhnma(l‘) (2.81)

ni,n2,x

x e—s[(n1 (n1+1)+Nn1+N/2)/a?+Ba(2n2+1)+m?]

Here df) denotes surface element of the 2-sphere, and the wavefunctions t,,, ,, o ()
are on the R? x S? space. In contrast to the flat case the degeneracy in each Landau
level is finite and given by the dimension of the spin J = n; + % irreducible repre-

sentation of SU(2) ~ SO(3), which is 2n; + 1 + N. Therefore the density of states

2k+1+N

on 5% is pg2 = 24

Using pg:2, the orthogonality of the wavefunctions, and the degeneracy of the Landau

levels, which as we recall is By dxs dx,/(27) for the flat case. Summing over the
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degeneracy index, o we obtain

By2k+1+N
Z/ dQ/dxgdan () Pmmal _/ dQ/dxgdm—QL.
S2 L2, 52 47TCL2

(2.82)
Then the one-loop effective action takes the form
*ds sBs
dQ? | dxsd l —
e = 167202 /s2 / T . S2sinsB,
x Z 201 + 1 + N)e slmm+D)+Nm+N/2)/a*+m?] (2.83)

n1=0
As we did previously, we again continue this expression into the R'! x S? space by
means of the Wick rotation, x4 — iz and By — —i . Taking the s-integral using the
residue theorem due to the singularities at sE = nmw, n = 1,2, 3, .. we may write the
real part of iS, s as (recall that analytic continuation of —I'; to RY! x S is identified

as iSeff.)

Re (ZSeff 167 B 2/ng/

« Z 2711 +1 ‘I‘N) (mr/E)[(nl(n1+1)+Nn1+N/2)/a2+m2]‘ (284)

n1=0

Now we define the dimensionless variable w = 7/ Fa?, and express (2.84) as

Re ('LSeff 1671’3 /S2 dQ/dJngQf()ﬂo (285)

where we have also introduced,

50(w) — WZ (_1)71 Z(2n1 +14+ N) ef(nw)[Bl(nl(n1+1)+Nn1+N/2)+m2a2]’

n=0 n1=0
= w Z (2n1 i 1 + N) lOg (1 4 efw[nl(n1+1)+Nn1+N/2+m2a2]) (286)
n1=0

In passing to the second line of (2Z.86)) we have performed the sum over .

It is possible to take the flat limit of Sy(w), by letting N — oo and a?> — oo while
keeping N/a? constant. This gives

Jw) = wN Y log (14 eeNmtN/2em%al) (2.87)

n1=0

3 We recall that log (1 4+ A) = 320 L(—1)"TIA",

n=1n
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In order to appreciate the effects of the curvature and magnetic field on the pair pro-
duction rates, we may consider the profile of the function vo(w) = So(w)/8I" (w).
Explicitly, we have

Z?;:O(ZnﬂrlJrN) log (1+e‘“’["1(”1+1)+N”1+N/2+m2“2])

Ny, log (L e—aNm T3 Z4m2a]) N7 88)

Zwd > ((2n1 + 1) log (1 + emwmlmtl) N =0.

Yo(w) =

In figures [2.Tajand [2.1b] we plot the profile of ~, with respect to w, at several values of
N. Since 7p(w) > 1, we see that the pair production rates are larger than that is found
for flat space. This is mainly due to the fact that in the present case the degeneracy
is % + % compared to just % of the flat case. The term proportional to a%
is the contribution of the curvature of S? to the degeneracy, and acts to increase the
pair production rates. For N = 0, there is also an increase caused by the zero mode
states at n,; = 0, which are absent in the flat case, and they can be filled by produced
pairs without any energy cost. As N increases, we see that the 7,(w) tends back
towards the value 1, meaning that as the magnetic field is increased it counter acts the

effect of positive curvature and tends to lower the pair production. In fact at large w,

Yo(w) m B =1 41

Yo(w) Yo(w)

181 / 1.20f
16l ;sz sl —_—
W N=2 M N=10
141 B N=3 110 W N=15
) B N=4 W N=20
12 105/

w L L L M.
05 1.0 15 20 05 1.0 15 20

Figure 2.1a: ~p(w) Figure 2.1b: ~o(w)

2.5.4 Spherical Spinor Case

We now proceed to consider the pair production rates for spin-1/2 particles on Rb x

S? following the results in [12]). In this case we may start with

1 [d )
Ly = ~Trlog ("D, +m) = 5 &y emstm?=1%) (2.89)
S
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In order to proceed, we need the spectrum of 122. This is worked out in the Ap-
pendix [E.2] Here we give the results in Table 2.1] As will be explained in detail in
Appendix in Table R3 denotes the eigenvalues of right acting U(1) generator
of the SU(2) ~ SO(3) symmetry combined with the spin of the particle. Effective

Eigenvalues Degeneracy | R3 Eigenvalues
Byt (m + 14 Ny 4 )/ | 2eiee | N
(2ny + 2)By + (n? + Nny)/a? 2utN By Ly
(202 +2) By + ((n + 1) + N(ny + 1)) fa® | 22N 5 =5
2nyBy + (nf + Nny)/a? 2t By Ly

Table 2.1: Eigenvalues of lDQ, corresponding degeneracies and R3 eigenvalues

action can be cast in the form

1
16m2a?

>3

ni

d
Ty = / Ay dzsdiy / fcoths& (2.90)

(2ny + N)e sl eNm)fam?] | o 49 ¢ N)e—swm+1>2+N<m+1>>/a2+m21] |

Analytically continuing this expression to RY! x S? via the Wick rotation, and also

performing the s-integral in a manner similar to the scalar case, we can write

Re(z’Seff) /dQQdIEg},d{L‘O—ﬁl/z( ) (291)

where we have introduced

ﬁ1/2 _ wz [ fnwm a? + Z o, + N) —nw(n3 +Nn1+m2a2)] , (2.92)

ni=1

N oo
- —w (5109 (1 _ e—wm2a2) + Z (2”1 + N)log (1 o e—w(n%+Nn1+m2a2))) '

ni=1
In the second line of (2.92)) we have carried out the summation over n. Notice also
that the contribution of the zero modes are written out explicitly. Clearly there is zero

mode contribution for only the N # 0 case.

Just like in the scalar case as N — 0o, a — oo with N/ a? held fixed, we can write

the flat limit i.e. S* — R? of 3 5(w) as

N 2.2 > 2.2
Bl w) = —w (5109 (L—e™ ) + ) Nlog (1 — e-w(Nmime ))>- (2.93)

ni=1
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Finally, we define the ratio v, /»(w) = B1/2(w)/ B{;gt (w),

2 2.2
Nlog (1_8—WM2a2)+2200 :1(2n1+N) log (l_efw(n1+Nn1+m a ))

L N #0
/2 (CU) _ Nlog (1—e—wm?a?) 42 E:Z:I N log (l—e—“’(Nn1+m2ﬂ2)) ! 7& ’
Ly gnilog (1 —eon), N =0.
(2.94)
Profile of ~; /»(w) is provided in Figure
y1/2(w)
10},
0.8 I
I W N=0
I [ N=1
06
[ B N=2
- [l N=3
0.4
r B N=4
02f

Figure 2.2: 71 /2(w).

By looking at the figure @, we observe that, since v,/ < 1 pair production effects
are diminished compared to the flat case for spin-1/2 particles. Note that the sign of
the exponential term inside the logarithms is minus and this ensures that the numerator
of 71/2(w) remains smaller then its denominator. In the absence of any transverse
magnetic field the pair production effect is significantly reduced, while at N # 0
contribution of the zero modes counter acts the diminishing effect of the curvature.

Note also that the overall ratio of pair production is increasing with increasing V.
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CHAPTER 3

PAIR PRODUCTION IN THE PRESENCE OF NON-ABELIAN GAUGE
FIELDS

We now shift our focus to the treatment of the pair production in the presence of
electric fields as well as both abelian and non-abelian magnetic fields. The latter
renders the calculations to be treatable in several cases of interest as we will see in

the ensuing sections and the next chapter.

Presence of non-abelian gauge fields adds an isospin component to the already ex-
isting degrees of freedom. This will complicate calculations somewhat, but the main
essence will remain the same, while various novel physical effects will be noted and
discussed in detail. This chapter is devoted to the treatment of the problem of pair

production for spin-0 and spin-1/2 fields in on R®!,

3.1 Scalar Fields

3.1.1 D? operator and its spectrum

We start our discussion by considering the Landau problem for potentials subject to
a uniform magnetic field B,, which is due to both an abelian component and a non-

abelian one. This magnetic field can be written in the form [[13]]
B, = B1, + 25%0,. (3.1

Here, we may think of the first term is an abelian magnetic field component while the
second term represents a non-abelian uniform magnetic field due to an SU(2) pure

gauge field [24]. Considering the abelian component of B, as being generated by a
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U(1) subgroup of SU(2), we may write the gauge field associated to B, as
- B
A= %(—yi +29)1y + B(—0yd + 0,) (3.2)
We can see that the (3.1]) follows from our gauge choice by making the calculation
B, = F,, = 0, A, — 0,A,; +i[A,, A,
B1 X B1 Y

= Bi1, + 28%.. (3.3)

1, — i3> [0y, 04],

Now we consider the covariant derivative operator subject to this external gauge field.
We have D, = 0, + iA,, and we want to compute the spectrum of the gauged

Laplacian operator D?* = D, D* similarly to the previous chapters.
D?*= D, D",

= (0, +14,)(0, —iA,) + (0, +1iA,)(0, — i4,),

= (02 — 2iA,0, + A2) + (0 — 2i4,0, + A2),

B2
= (02 + 82) — i(—B1y0, + B120, — 20,0, + 260,0,) + Il(:c2 + %)

+ B1B(zo, +yo,) + 287,
2
= 490 + By (20 — 20) + 4B(0o_ — do,) + %22 + B1B(zo_ + z0oy) + 28,

200 1 26 Bi__ § _ B
_281< B + 2(26—z8)+ Bl(ﬁa, —doy) — e 2(za,—|—za+)+ Bl>,
_ f Bt 1. A

_231<a a+\/§\/§(a 0++a0_)—|—2+31>,

= 2B, <aTa+ V2p'(aloy +ao_) + %(1 +25'2)>. (3.4)

In passing to the last line of (3.4)), we have defined the dimensionless quantity 5’ =
B /+/Bj. Passing from line four to line five in (3.4)), we have used the definitions,

z=x 41y, Z=x—y
0, — 10 ~ 0Oy +10
0=—-" 0= Y 3.5
5 5 (3.5)
U+:Ux+i0y’ J_:Ux—iay
2 2
and introduced the creation and annihilation operators in the penultimate line via
1 B - 1 B
o= (B 29), o =1 (Bs-20), 6
\/281(2 V2By \ 2 (3-6)
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It can be readily checked that [a,a’] = 1. Spectrum of D? can be obtained manner
similar to one applied to the Jaynes-Cummings Hamiltonian [14]. This means that it
can be diagonalized by using the subspace of states, |n + 1, +) and |n, —), where n
is the eigenvalue of the number operator N = afa and + denotes the isospin up and
isospin down respectively. This problem is already solved in [[13], we are reproducing

the results for completeness. We can write out the operator D? in the matric form

ala+ 3(1+287) V2p'al

D2 - 281 1
V2B'a a'a + 3(1+287)

; (3.7

in the aforementioned subspace, we can write the matrix elements of D? by writing

D? _2m, n+i(1+28% 2m+1)pf
V2 +1)  n+3(1+287)

Finally we can write the eigenvalues of D? operator by simply computing the eigen-

; (3.8)

values of D? as
2B, (nf 4 /252, + 1/4+ 5’2), n =012, ..

2B, <n§ /257, 1 1/4 + 5’2>, n=1,2.3, ..

Note in particular that the ground state is given by AJ = 2B, (3? + 1/2), using the
upper sign in (3.9).

Ay = (3.9)

3.1.2 Pair production

Now we will calculate the pair production rates in a manner similar to computation
presented in Section[2.4, We will start with the spectrum for the D? 4+ m? operator in
the R? x R? = R* space that we have described earlier and rotate the second of the
R? to RM! to obtain the electric field, while the first R? is subject to the magnetic field
made up both abelian and non-abelian components. We can write down the spectrum
of the whole system as

2B1(n? + \/282%n; + 1/4 + ?) 4+ By(2ny + 1),
Spec(D? +m?) = (ol V/26%m A 14+ 55+ By(2ny + 1) (3.10)

281 (n% — 2ﬂl2n1 -+ 1/4 + 5/2) =+ 82(277,2 + 1),

In (3.10) first spectrum is for the isospin up case and the quantum numbers n; =

0,1,2,...,m = 0,1,2, .., and the second is for the isospin down case and the quantum
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numbers n; = 1,2, ..., no = 0, 1,2, ... The degeneracy in each of the R? is as before.

The density of states on R? x R? is given by

By B,
(27)?

, (3.11)

Euclidean effective action, 'z, on R? x R? takes the form.

Iy = —/d4:1: /oo @/d4xBlBQ Z675(2Bl(n§+\/25’2n1+1/4+,3’2)+32(2n2+1)+m2)
¢ 8 (2m)?
2

ni,n

Xe—s(231(n%+\/m+ﬁ,2))‘ (312)

As before, all we need for pair production is to focus on to evaluate Re(iS.y) this
is done by by Wick rotating 'y and then calculating the residue integral, and then
evaluating the sum over the index n, labeling the poles, along the lines given in (2.71])

in Chapter 2| This gives

Z log (1 + 6727T31/E(n%7\/m+6/))

ni=1

+ > log (1+ e 2rBY/ECTH2 AL | (313)

n1=0

EB
Re(iSepyp) = —/d4x 87r21

Notice that, for the isospin up branch of the spectrum, sum over n, starts from 0 and

for the isospin down part it starts from n; = 1.

Let us define y = B;/F for convenience, then by taking the limit m? — 0 we are

able to write

. E?
Re(iSesy) = —/d4~"696w2fo(y,ﬂ’), (3.14)
where
fo(y, 5’) = 12_y Z log (1 + e*2ﬂ'y(n1*\/25/2n1+1/4+ﬁ/2))
T
ni=1

+ ) " log (1+ e 2mmit V2 m/aE0%) | (3.15)

n1=0

In order to understand the pair production rates, we will need to take a look at the

plots of fo(y, '), for different 5’ values

34



3.1.2.1 Pair production only for non-abelian case

W B=1/8
m B=1/4
W B=1/2
W B=3/4
m B=1

W B=3/2

0.2 0.4 0.6 0.8 1.0 1.2 14

Figure 3.1: fo(y, )

In Figure we are observing the profile of the function fy(y,3’). We see that
fo(y, 3') decreases with increasing y. This means that with the increasing abelian
field strength, B;, we see a decrease in the pair production. This effect is already
encountered in the abelian field case of Figure 2.Tal It is also possible to see fur-
ther decrease in the pair production when ', non-abelian field strength, is increased.
However, this effect becomes significant for 5/ 2> 0.61 at sufficiently large y, and
when ' < 0.61 the hierarchy between pair productions are reversed compared to
the #° 2 0.61 case. But it is also important to note that when y is large this means
that the corresponding electric field must be small, this means we cannot observe pair

production for these values anyways.

3.1.2.2 Pair production comparison of non-abelian with abelian

Here we define the function Fy(y, 8') = fo(y, 5’)/ fo(y,0), which is good for com-
parison of the pair production rates or spin-0 particles subject to a combination of an
abelian and non-abelian magnetic field to that with purely an abelian magnetic field.
In other words, we will be able to observe how the variation of 3" affects the pair

production rates.
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Fo(y.B)

m B=1/4
m B=1/3
W B=1/2
W B=3/4
m B=1

m B=3/2

0.5 1.0 1.5 20

Figure 3.2: Fy(y, 3')

Inspecting the graph of Fy(y,5’) in Figure we see an interesting behavior is
emerging, mainly there is a critical value for 8’ called, 5, = 1, and when ' = [
we see that in the limit of large y, Fy(y,3’) approaches to 1/2. In another words
when the non-abelian field strength has the value of /3, pair production rate quickly
converges to half of what it was for the purely abelian case. This /3 value can be
found by comparing the energy values between abelian and non-abelian cases. More
concretely, the lowest values of the energies E] have the same value of B; E]but since
there are essentially double the amount of states for the abelian case with the same

energy E] the graph approaches to the value 1/2.

For the cases with 5/ > 1 the situation is clear, the pair production decreases with
the increasing non-abelian magnetic charge. This is because the ground state energy
for the non-abelian case is always larger then the ground state energy for the purely
abelian case, hence the states become harder and harder to fill compared to the abelian
case, resulting in Fy(y, ') to approach zero faster. For 0 < ' < 1 case Fy(y, /') has
a small dip below one, then we see an increase for the larger values of y. How-
ever, for the large y values, we see two cases emerging with one for 5/ 2 0.61 and

another for 8/ < 0.61 comparing the hierarchy between these different non-abelian

! isospin down part of Eq (B9) with ny = 1 and 8’ = 1 and both isospin up, and down parts with 8’ = 0.

2 Here, it is sufficient to focus on the lowest energy eigenvalues since the lowest energy eigenvalues are the
most easily filled states. This fact can also be seen, numerically, from the form of Fy(y, 8').
3 Since the value B; both comes from the isospin up and isospin down part for the abelian part.
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magnetic charges, first case we will look at is f < 0.61. Here the ground state en-
ergy eigenvalue for the non-abelian configuration is always less than of the abelian,
and, decreases further with the increasing 4’ hence the function Fjy(y, 5’) for large y
decrease with the increasing (3'. For the b < 3’ < 1 case, the situation is somewhat
reversed, i.e. here we see again, that the ground state eigenvalues are always lower
for the non-abelian case, however the difference keeps getting smaller and smaller,

hence we see that the hierarchy is increasing with the increasing /3'.

3.2 Spinor Fields

We will now consider the pair production for spin-1/2 particles under the influence
of both the abelian and non-abelian magnetic field introduced in the previous section.
For this purpose, we will need the spectrum of the appropriate gauged Dirac operator.
This problem is not solved before, therefore we first proceed to handle this task,
outcome of which is relevant and interesting in its own right, and may be of relevance

in the context of condensed matter physics.

3.2.1 Gauged Dirac operator and its spectrum

We may launch the discussion by writing out the gauged Dirac operator on the 2D

flat space, R2. This is given as

D= Yi(pi — As) (3.16)
~; are the 2 x 2 matrices spanning the Clifford algebra on R?, we may take them as

v1 = 11 and 2 = T, where 7y, 75 are the 2 x 2 Pauli matrices. Components of the

gauge fields are given as before (3.2).

B B
A, = —Ey — Boy,, Ay = ESU + Bo,. (3.17)

Note that since A; has dimensions [length]~' we have non-abelian field strength (3

given dimensions of [length]~! as well, while B, has dimensions [length] 2.

Now, with all this in mind, we can express I as the following 2 x 2 block matrix

m _ 0 (pz+§y+60y) 7i(py7 gl’*ﬁ%) (3 18)
(o + 2y + Bo,) +ilp, — S — o) 0 -
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which, after some rearrangement of terms can be written as

lp — 0 (0, — 10,) + 2(—z +iy) + B(—0, +i0y)
(0, +1i0y) + Z(x +iy) + Blo, + ioy) 0

). (3.19)

Using the definitions (3.3]) in I9, we can write it in terms of the complex coordinates

, 0 20— Sz —2p0_
D= 20— 82— 280 0 . :20
2 +

Using the operators a & a' defined in (3.6)), we can rewrite (3.20) as,

0 —(vV2Ba! +2B0_)

D= (v2Ba + 260.,) 0

, (3.21)

1
-,
field strength ﬁ/ = ZBB We may then, write the Dirac operator as,

g
’L\/§ O (lT —|— \/513/0

. : 3.22
P\ 3o ’ (3.22)

Let us introduce the magnetic length I = and the dimensionless non-abelian

We may consider the operator lDQ. This is evaluated as

ng _ 0 at +v280_ 0 at +v280_
¢ —a — \/§B/O'+ 0 —a — \/§B/J+ 0 7

B afa 4+ V20 (ac_ + afoy) +287%p_ 0 (3.23)
‘ 0 aat + V2B (ao_ +dloy) +28%p. |

where w, = é and p; = oro-. Now we can expand the 2 x 2 blocks in (3.23) by

writing the Pauli matrices explicitly. We have

ata V28al 0 0
2f'a a'a+2p"” 0 0
D’ =w, V2 ala+25 . (3.24)
0 0 aat +287% 2pat
0 0 V2F'a aat
In order to obtain spectrum of I)°, we write the eigenvalue equation for (3.24) as
ata  V2pd 0 0 b1 b1
2f'a a'a+ 2" 0 0
B V28a ata+ 23 o _ P2 (32s)
0 0 aat +267 V28a | | ¢s b3
0 0 V2fa  adl P4 P4
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This leads to the set of operator equations

we(atagy +vV28'alpy) = Ay (3.26a)
we(V2B'ady + atags + 287%¢5) = Aoy (3.26b)
welaatps + 26%ps + V26 aldy) = A3 (3.26¢)
we(V2B'ags + aa’py) = Ay (3.26d)

From and (3.26), the eigenket space for the operator ]D2 is observed to be the
tensor product space H = C*® F. Here the Fock space spanned by the eigenstates of
the number operator N = a'a, the basis of 7 may be denoted by {|n)} with n € Z*.
In order to solve the (3.26), it is sufficient to consider the subspace F for which we
have the states [n + 1), |n), and |n — 1), with all possible combinations of the spin

and isospin, namely, we have

|n 4+ 1) 0
0 n
1) = fn 41, 4,4) = == [
0 0
0 0
0 0
0 0
n) 0
0 In —1)

Here the first spin component in the states refers to the spin, and the second refers
to the 1sospuﬂ Computing the ) within this subspace, i.e determining the matrix
elements lDZ = <z|]D2|j) withi,j =1,2,3,4, we find

n+1 V26'v/n + 1 0 0

wg . V2B8\/n+1  n+252 0 0 (3.28)
() — 0 0 0 n+1+28% V28'\/n |
0 0 V26'\/n n

Eigenvalues of IDQ can be readily computed and we find.

A= %(1 +2n 4287 £ /1 +487%(1 + 2n + 572)) (3:29)

4 Note that for the upper two component spinor spanned by |1) and [2), n = 0,1, 2, 3, ..., while for the lower
two component spinor, spanned by |3) and |4), n = 1,2,3, ....
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Subscript + in A\ represents the isospin up and isospin down components of the

energy spectrum, and each eigenvalue is two fold degenerate, within this subspace.

To prepare for writing down the corresponding eigenvectors let us define the follow-

ing

1+282 + /1 +4B2%(1 + 2n + B7?)
ay = ,
* 22np
1—282 4+ /1 +4B2%(1 + 2n + B7?)

by = . 3.30b
* 2v2n + 2f' (3.30b)

(3.30a)

Now, using (3.30), we can write the eigenvectors of (3.28)). After orthonormalizing

the eigevectors, we may express them in the form

ol =a,|3) +|4), (3.31a)
2=, 1)+ |2), (3.31b)
Yot =a_[3) +|4), (3.31¢)
T2 =b_|1) +|2), (3.31d)

with ¢, (1,2) corresponding to eigenvalues A\ and ¢;’(1:2)

corresponding to A, . It is
important to see that the eigenvectors written in (3.31)) are only valid when n > 1.
More specifically, eigenvectors ¢)™! and 1)~ require n > 1 while the eigenvectors
1?2 and ¢—% require n > 0. This is caused by the definitions of the subspaces in
(3.27). So, in order to complete the solution of the eigenvalue equation, we should

inspect the solutions that include |0, +, +), |0, +, —), and |0, —, +) more carefullyf]

To elaborate on the last point, we may start by looking at the zero mode solutions

taking the A = 0 in (3.26). and (3.26d) are satisfied by only the trivial solu-
tions, ¢35 = ¢4 = 0. Solving (3.26a) and (3.26b) we find the normalized eigenvectors

5 Observe that these are the states that lies outside the limits we have given for n.
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corresponding to the zero modes

10)
0
v =10, +,+) = . | (3.32a)
0
—V2[1)
2 (_\/5“7_'—7 +> + ’07 =+, _>) 1 |O>
= = — 32

0
Here, the first eigenvector corresponds to both spin and isospin up case, while the sec-
ond is a combination of spin up isospin up, and spin up isospin down states. Another
state that is not covered by the subspace in can be seen by taking ¢3 = |0) and
¢1 = ¢o = ¢4 = 0, which gives us A = w,(1 + 23”)[| Taking ¢5 = |0), and all

others zero means that we have this eigenvalue for spin down, isospin up.

3.2.2 Pair production

Having calculated the eigenvalues of the Dirac operator, we are in a position to cal-
culate the pair production rates. We start by writing the spectrum for the total system

on the R? x R?

;

By <1 +2ny + 267 £ /1 +4B2%(1 + 2ny + 5’2)>

+2B5(ng + 1) +m?,
Spec(lD2 +m?) = ez +1) (3.33)

By (1 +2ny + 287 £ /1 +45872(1 + 2ny + 5/2)>

+2Bony + m?,
\

The degeneracies for each case given as before for the abelian case in Section [2.4] we

can write the degeneracies simply as By By/(27)2.

Now, we are in a position to write the one-loop effective action, for the Euclidean

Space as

Iy = —%Tr log (D" +m) (P + m). (3.34)

6 Although this eigenvalue can be obtained by taking n; = 0 in /\Il, we have to make this calculation to
obtain its eigenstate.
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By writing the spectrum, and the zero modes explicitly, then performing the summa-
tion over the ny, which are the variables used to describe energy eigenvalues By, we
get

o0

Z o~ 51420142624/ 14452 (14201 +52))+m?

BB d
' = ! 2/d4xlim—scothsBQ

47T2 e—0 S

n1=0

n Z e~ s(1H2m 4267~ /1462 (14+2m +672))+m? | —sm?® | (3.35)

ni=1
Note that, since the eigenvalues are two fold degenerate, the factor % in (3.34) is
multiplied by a factor of 2 resulting in the ﬁ factor in instead of 8% in (2.77)
in subsection [2.5.2] We also keep in mind that we have also two fold degeneracy in

the zero modes.

Performing the s-integration, evaluating the summation due to the residue integration

and Wick rotating the I'; to Minkowski time allows us to write Re(iS,ry) as

. E? 7rm2/E
Re(iSesf) = dx 5.2V log (1 — )

+ Z log (]_ il G_yﬂ(1+2n1+25/2+\/1+4ﬂ’2(1+2n1+ﬁ’2)))

n1=0

+ ) log(1- ¢y (1r2m202 - IRz 59 | (336)

ni=1

Here, we have again used the definition y = B /E. We are also defining f/2(y, 3')
by

Re(iSesr) = /d x—f1/2(y B, (3.37)

with f1/2(ya 6/)

f1/2(y 5) 12y [109( - Wm2/E)

+ Zlog 7 (12n1 42824/ 154572 1+2n1+ﬁ’2)))
n1=0

+ ) log (1 - ~ (12 +252—/ 1+4ﬁ’2(1+2m+ﬁ'2))) : (3.38)
ni=1

We can also define the ratio F,2(y, 8') = fi/2(y, ')/ f1/2(y, 0), measuring the effect

of the non-abelian gauge field. Now we may proceed to explain the explain the behav-
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ior of the pair production rates by inspecting the graphs of f1/2(y, 5) and F 2(y, '),
for different values of (3.

fira(y.B) Fi(y.B)

m B=1/4 m B=1/4
4r W B=1/2 20 | Bg=112
sf mp=s4 | 4 W =34

m B=1 ' m B=1
2f B =312 | ot m p=32

L L L L L Ly L L L L Ly
0.5 1.0 15 20 25 3.0 2 4 6 8 10

Figure 3.3a: f1/2(y, 3') Figure 3.3b: Fy/5(y, ')

Looking at the Figure [3.3a] we see a quite simple behavior. The pair production in-
creases with increasing vy, this is caused by the existence of the zero modes in the
energy spectrum. Since there exists zero modes, the minimum energy is always the
same, irrespective of the value of y or 3/, hence the energy of easiest to fill states
do not change. How many states there can be for a given y value changes, in other
words the degeneracy changes since it is proportional to B;. Therefore, if we increase
y there are more and more zero energy states to fill, so the pair production increases
with increasing y. It is also clear that the pair production increases with the increasing

/', for a given y value.

Effect of the increase in the non-abelian magnetic charge is easier to see for the Fig-
ure [3.3b] since we are comparing the non-abelian and abelian cases directly. Clearly,
the effect we observed, mainly the increase in the non-abelian charge causes an in-
crease in the pair production is also apparent here. Explanation for this behavior goes
two-fold, first the increase in the non-abelian magnetic charge, ', is decreasing the
energies for the isospin down excited energy values. This shows us that the decrease
in the energies of isospin down states "outweigh" the increase in the energies of the
isospin up states. Second part for the explanation comes from the fact, for smaller
values of y there is a large increase in F 5 (y, 3'), this is followed by a sharp decline,
meaning pair production of non-abelian and abelian cases with F7 5(y, /') the value
1 for large y values. This is caused by the fact that the increase in y increases the
excited energies for both non-abelian and the abelian cases, hence the effect of the

zero modes on the pair production becomes much more pronounced, and dominant in
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both cases, irrespective of this hierarchy of the excited states.
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CHAPTER 4

PAIR PRODUCTION ON S? x R WITH NON-ABELIAN MAGNETIC
FIELDS

We will now direct our attention to the pair production effects on the manifold S? x
RY1. In addition to the effects of abelian and non-abelian magnetic fields on S2,
here we will inspect how the inclusion of the curvature changes the pair production
rates, for scalar and spinor fields. In particular, we will examine the ratios of pair
production rates of spherical to flat cases, both for the scalar and the spinor fields.
The new ingredient here compared to the review given in Section [2.4] is the non-
abelian magnetic field, and the additional isospin degree of freedom of the charged

particles, and these lead to novel physical effects.

4.1 Complex Scalar Field Subject to Uniform Non-abelian Magnetic field

In order to set up the problem, we may first consider the spectrum of the gauged
Laplacian on the product Euclidean manifold S? x R?. Gauge field strength is com-
posed of two magnetic fields, with one abelian magnetic field on the R? component
and non-abelian magnetic field on S?. Compared to the discussion in Section
difference here will be caused by the presence of the non-abelian magnetic field and
the isospin degree of freedom of the charged fields mentioned above, and conse-
quently there will be important distinctions compared to the abelian case treated in
Section [2.4] Details of the calculation for the spectrum of non-abelian magnetic field
on the 2-sphere is given in [[13], however we will provide a review here, for complete-

ness.
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4.1.1 Laplacian operator and its spectrum

Consider a two-sphere of radius a, with the radial vector denoted as 7 = ar. Let us
introduce an SU(2) gauge field A as follows

S o X o
A= Aabelian + « B
a

4.1)

In @.1), I‘Tabezmn stands for the gauge potential of a Dirac monopole with magnetic
charge N/2, N € Z, and & are the Pauli matrices spanning the SU(2) gauge sym-
metry, which we call the isospin in this context. Associated magnetic field strength is
computed via B=V x Aand yields a radial magnetic field; which takes the for
B, = % + 2a(a — 1)% 4.2)
From (4.2) it is manifestly seen that the magnetic field has the symmetry o« — (a—1),
which is caused by the gauge transformation U := 0, = & - 7 ﬂ This will become

important later in our discussion. Gauged Laplace operator on S? may be written as

A2
D? = —, (4.3)
a
where A is given as
N=7x(p— A). (4.4)

After several steps of calculation (4.3)) can be expressed as

1 1 > 1 N N
D= —|JP+-+2(a—1)+Q2a—-1)|J-Fd—=+ =0, | + =0.|. (45)
a? 4 2 2 2
In (#3) the total angular momentum, .J, is defined as
- ~ N & = N G
=7 _'_Aaeian —r _:Aaeian -7 a0 4.6
J=7x(p bel )+2T+2 bel +27”+2 (4.6)

This involves the contribution of the orbital angular momentum of charged particles,
angular momentum of the particle-Dirac monopole electromagnetic field and that due

to the SU(2) isospin. We find the spectrum of D? is given as [13],.

Ay = % ni(N +ny) 4 20 — 1) £ /(20 = 1)%(ny + N)ng + N2 /4| (4.7)

ny=0,1,2, ...

1 Note that choice of gauge for z‘fabelmn is immaterial for our purposes.
2 UB,(a)U = B.(a—1)
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It is straightforward to see that D? and J commute. Only nontrivial commutators are

[J;, J-3) and [J;, 0,], and they yield zero after the explicit calculation which are given

below:
1 1 1
[Ji, Jjoj] = [Li + 50 (L; + 5%‘)%‘} = [L; + 304 Ljojl,
1 1
= [Li, Ljloj + L[ Li, 0] + 5[% Ljloj + 5@7[% ajl,
1 .

= [Lm Lj]O'j + §Lj[0-i7 O'j] = zeijk(Lkaj —f- LjO'k;) = O, (488.)
o,T N r o; o,T

Ji)?“:|:<]i7 nn:|:|:7, i _A - 5 - _17 nn:|a

o T R R I R s

2

N AR

Unrn rn
| + €t 1, =] (o1 = AR) + 5L, ),

Onln } N[ T On'n ] . Tn[ ]
~ 104, 0nl,
N ToTm 2r

OnTn

= €k [7“3' (P — Ak),

= €jkTj [(sz — Ag),

VTmm \/Tm"m 2r
2
= €ijkTj [pk, ﬂ] + r—n[ai, on] = —ieijkrjanw + r—n[al-, onl,
/TmTm 2r r3 2r
= —ieijkﬁan&lk + T—n[ai, on] = —ieijkﬁak + T—n2iemkak = 0. (4.8b)
r 2r r 2r

Therefore, we conclude that each energy level in 1s 25+ 1 fold degenerate, where
j=ni+ %1 with N € Zand N > landny =0,1,2, ...

We may express the spectrum of the operator D? + m? operator on the R? x S? as

Spec(D?* + m?) :<n1(N +n1) +2a(a — 1) £/(2a — 1)2(ny + N)ny + ]\72/4)>/a2

m=0,1,2,..
4 Bo(2n + 1) +m2{ , 4.9)
n2:0,1,2,...

where we have added the Landau level energies for the R? part subject to a B, field

in the standard manner.

4.1.2 Pair production for the scalar fields

Now we will calculate the pair production rates for scalar fields under the influence
of non-abelian fields on a R"' x S%. To do so, we will start with the Euclidean

counterpart of this space, meaning R? x S?, in this space using the result (4.9), the
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Euclidean one-loop effective action takes the form,

[y = d*x | dQ
B T 162 aQ/ / 2/ S smh ng

X{ Z(znl + N) —s[n1(N+n1)+2a(a— 1)+\/(20¢71)2(n1+N)n1+N2/4]/a2

n1=0

+{ Z(2n1 + N) e—s[nl(N+n1)+2a(a—1)—\/(20¢—1)2(n1+N)n1+N2/4]/a2} (410)

ni=1

After performing the Wick rotation R* — RV, B, — —iE and performing integra-

tion over s, we can write the Re(iS.yy) as

ZSeff /d Qf/ng 161 2,60 ) (411)

where 5y(w) given as

n1=0

UJ{ Z 2n1 + N) lOg (1 + 6—w[n1(N+n1)+2a(a—l)+\/(204—1)2n1(n1+N)+N2/4])
+

WE

(2711 + N) lOg (1 r e—w[n1(N+n1)—&-20[(04—1)—\/(204—1)2711(n1+N)+N2/4])}.

—_

ni=

(4.12)

In (#.12) we have defined the w to be, w := 7/Fa? In order to compare the pair
production rates on this geometry to the result on R*!, in Section we first of our
result for limit S? — R? the flat limit of the result we have found above in Eq. (#.12).
To compute this limit, we take a?> — oo, while keeping both N/2a? and av/a constant.
Since the definition of w already contains the term 1/a?, we can keep wN or similar

combinations as such.

Another important remark is that when comparing the effect of non-abelian fields on
the pair production, using the « as the non-abelian field strength presents some dif-
ficulties. This is mainly due to the fact that the non-abelian magnetic field strength
is symmetric for @« — (o — 1), as can be seen from (4.2)), but for the abelian mag-
netic field strength there is no such symmetry. For ease in comparison we define the
variable v = a(a — 1) as a convenient parameter to work with. While taking the flat
limit, @ — oo, we can keep the product w~y the same for both flat and spherical cases.

For the flat case  will be proportional to 32 where 3? = B; 3" as it is apparent from

Eq. (3.1).
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Now we express our result in (4.12)) in terms of 7 as

o0
Bo(w) = w{ Z(in + N)log (1 + efw[nl(N+m)+27+\/(47+1)m(n1+N)+N2/4])

n1=0

ni=1

+ Z (277,1 + N) lOg (1 + e—w[n1(N+n1)+2'y—\/(4fy+1)n1(n1+N)+N2/4])}‘

(4.13)

By taking the flat limit we obtain

0

0o
flat<w) IWN{ Z lOg<1_'_efw[n1N+27+\/4’YNn1+N2/4}>

n1=0
+ Z log(l+e—w[mN-&—Q’y—\/4nyn1+N2/4}>} (4.14)
ni=1
We can see that this matches with what we have found in Subsection [3.1.2]in (3.13)),

. . 3 2
since we have identified B; = 3 and v = %.

Now we can define the ratio vo(w) = Bo(w)/ 33" (w), and compare the pair produc-
tion rates by plotting yo(w) for different values of the abelian, and the non-abelian
magnetic charges. We first inspect the profile of 7,(w) at fixed values of . To be
precise, we consider v = 1,2 for N = 1,2, 3,4, 5. Profiles of 7y(w) are given in the

figures below.

Yo(w,1.,N) Yo(w.2.N)

Jf ) /
°r =1, N= B y=2,N=1
; ;;1 E;; 3 B y=2, N=2
2f W y=1,N=3 B y=2,N=3
B /=1 Nt 2 W y=2,N=4
B y=2,N=5

1/’% 1
1 2 3 4 5 ¢ 1' 2 3 4 5 ¢
Figure 4.1a: v =1 Figure 4.1b: v =2

From Figure.Taland Figure d.1b| we see for all values of v and V' there is an increase

of the pair production rates at small w values, since 7o(w) > 1. This increase is

caused by the fact that there is an extra term in the density of states factor, iﬁr ::21 in

Bo(w), which arises from the curvature. However, for larger w values we see a more

complicated result compared to the abelian case in Section 2.4 Mainly, there is now
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a critical value for the non-abelian charge, which we may call ., and 7. = N/2.

Accordingly the limiting behavior of ,(w) at large w is described as follows.

0 V>
Yo(w, 7, N) == ¢ Md2 o — o) (4.15)
0 Y < e

Effect in Eq. is quite general and can be traced back to the energy spectrum
and degeneracies of the gauged Laplacian, as it is discussed in Appendix [B] Physical
meaning of this effect may be stated as follows: If the ground state energy of the
spherical case is larger compared to the flat one, yy(w) will diverge at large w; if the
ground state energy for the flat case is higher than the spherical, vy(w) converges to
zero at large w; and finally if the two ground state energies are the same, then the
limiting behavior of vy(w) is given by the ratio of the degeneracies. This is because
when the energies are lower the states are easier to fill by the produced pairs, hence
they will have a tendency to fill the states with the lower energies, for example if the
ground state energy of the spherical case are higher than the flat one, denominator of
vo(w) will be larger, hence the limiting value 0. If the energies are the same for both
cases, more states that are available to be filled i.e. with larger degeneracy will yield

more pair production.

Besides the dependence of 7, and limiting value of 7o(w) on N, we also see that N
effects the hierarchy of the pair production rates. For smaller N values we see that the
pair production rates are generally higher, this is caused by the fact that the energies
increase with increasing abelian charge, hence the states become harder and harder to

fill by the produced pairs.

We may also consider the profiles of v (w) at fixed values of N (N = 1, 2), while we
take 7y to be v = 1, 2, 3, 4. These plots are given in Figure 4.2a) and Figure [4.2b]
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Yo(wy,1) Yo(w,y:2)
5k

sl B y=1, N=1 W y=1,N=2
M y=2,N=1 3r M y=2,N=2
of B =3, N=1 / =3, N=2
W y=4, N=1 2 W y=4,N=2
1 1

Figure 4.2a: N =1 Figure 4.2b: N =2

Here we have, 7. = 0.5 and 7, = 1 respectively, and the plots are, in agreement with
(@.T3). For the plot in Figure f.24] since all y values we inspect are larger then .,
~o(w) increases monotonically with ~y. For the plot in Figure the profiles with
v = 2, 3,4 increase monotonically, while v = 1 profile first increases then settles to

the limiting value predicted in @.13).

Finally, we may compare the pair production rates of fy(w,~, N) with that in the
absence of the non-abelian magnetic fields. For this purpose we define Ry(w,y, N) =
Bo(w, v, N)/Bo(w, 0, N). This will allow us to further elaborate on the effects of the

non-abelian magnetic fields on the pair production.

Ro(w,y.2) Ro(w.y.2)

3.0
150 / 25f
; ng, Zﬁ 20p W y=5/2, N=3
T— = :;1 N=2 B y=5/2, N=4
B y=5/4, N=2 o B y=5/2,N=5
B y=2,N=2 10 B y=5/2,N=6
05F
05
@ w
! 2 3 4 5 6 1 2 3 4 5 5
Figure 4.3a: N =2 Figure 4.3b: v = 2.5

Inspecting the Figure .33 and Figure [4.3b] we see that there is a decrease in the pair
production rates under the influence of both abelian and non-abelian case compared
to fields under the influence of purely abelian magnetic field, for smaller values of w.
This can be essentially attributed to the fact that the profile of the function Ry(w, vy, V)
is governed by the leading terms in both 5y(w,~y, V) and fy(w, 0, V). These leading
terms are the states with the larger larger contribution to 5y(w), and it can be seen in

Figure [C.6)in Appendix [C} that the spin-up eigenvalues of the energy of the particles
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under the influence of both abelian and non-abelian magnetic fields are always higher
than the particles under the influence of purely abelian magnetic fields. Possibly spin
down states are not at a sufficiently low energy to balance or alter this behaviour.
More numerical analysis may be useful to further elaborate on this point, but such an

analysis is beyond the scope of this thesis.

We also see that our previous conclusion with 7, holds true indeed. In this case we

find that the limiting behavior of Ry(w,y, N) is described by

00 V<Y

w—00
Ro(w,’}/, N) — 2‘]]\(;;22 Y =" (4.16)
0 Y > Ve

This time for limit to be co we need to have v < ., opposite of what we have found
for the ~y(w) case, since compared to the ground state energy of the particles under
the influence of both abelian and non-abelian magnetic fields, the ground state energy

of the purely abelian magnetic field case becomes smaller when v < ..

4.2 Dirac fields on S? x R!

Now let us investigate the same case for the Dirac fields. Here we again have the
total space of the form R? x S? on which we have our two magnetic fields, an abelian
magnetic field on the R? and a non-abelian field on the S?. We will rotate R? to
RY! as usual to obtain an electric field in the course of the calculation of the pair
production rate. We start with discussing of the spectrum of the Dirac operator with

the non-abelian uniform magnetic field background on the two-sphere.

4.2.1 Spectrum of the gauged Dirac operator

We consider the Dirac operator in the background of the total magnetic field intro-
duced in (@.). This Dirac operator can be written as ) = 7- A where 7 are the Pauli

matrices, spanning the Clifford algebra {7,753} = 26,4, and A is defined as previously
in (4.4).
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A can be written as

A =7rX (p - Aabelian - Anon—abelmn)a

= Aabelian —rX Anon—abeliana (417)

where the Agperian and Ayon—abelian are given as before

(4.18)

> - N - rXo
Aabelian =L+ ET Anon—abelian =«

r2
Here L is the angular momentum with [L,, Lg| = i€qpL-, which involves the orbital
angular momentum of the charged particles and the angular momentum of the abelian
electromagnetic field due to the Dirac monopole. It neither involves the spin nor the
isospin, so it is not the total angular momentum. With these we can write A as

. - N
K=L+5f

+ (¢ — o,7) (4.19)

To determine the spectrum of /) we may work with its square IDZ = (7" K)z. This

can be expressed as
P = (7K,
= TZ‘TjAZ‘A]‘ = ((5” + Z'Gijka)AiAj,

= A+ Eeijk[AhAj]Tm

2
) N N
— A2 -+ %Ezgk[Lz + ETA’Z + Oé(O'Z' — O'nf‘nf‘i), Lj + 572] + Oé(O'j — O'mTA’n»ﬂA’j)]T;C7
1 N R N . R o
= A2 + 56@%([[@, L]] + E[Li,rj] + E[Ti, LJ] — Oé[Li, O'meTj] — Oé[O'nT'nT’i, Lj],

— 2[4, O Tty — @Plopfafs, 05] + a2[0i, 0] + &, fafy, omfmijTk,

7 N R N .. o .
=A%+ §ez~jk<[LZ~, L;]+ E[Li’ 5] + 5[7“@-, L;| — aop[Li, '] — aoy[Pati, Ljl,
— QPP filos, Om) — QPFtilon, 05 + aP[oy, 0] + QPP Tt w0, am]>7'k,

N
2

=N 47 N—=F- T+ 14201 — )7 -7)(F- 7). (4.20)

. . 2. ZoL
In order to proceed we may first write an auxiliary step for /)" in terms of .J which is

defined as J = L + g

- N
D=7+ (2a—1)J-3+° - 3a+ 2%+ Nad R
1
+(a—§)F~5—|—a(1—2a)(&~f)(7‘"~f)+1 4.21)



-

Introducing the total angular momentum operator K and the operator 7 - .J

e N
K=J+—-=L+—-+~= 4.22
T+ 5 t5t g (4.22a)
— T2
?~J:K¢—J”—Zy (4.22b)

2
we may express I)~ as

N2 1
wZZK%—@I+aaa—a)—§ﬁ4

Fl20— (K -7~ )+ Nad -+ +a(l - 20)(F - 7)(7-7).  (@423)

In this expression first two terms are already diagonal, but we have to diagonalize the

operator in the square parenthesis. We define this part of IDZ as

Xi=(2a—-1)(K.G—=)+Nadi+al—2a)G7)(7F), (4.24)

DN | —

and consider its square, which is given as

X%:@a—n%Kﬂ+i)+au—anN%—@a—nﬂ. (4.25)

Since K? is the square of the total angular momentum, its eigenvalues are k(k + 1)
) L . . 2
with k taking integer and half integer values, and hence we can write the )” operators

eigenvalues

P =k(k+1) — N*/4 - 2a(1 — ) + 1/2

+ /(20— 1)2(k +1/2)2 + a(1 — a)[N2 — (2a — 1)2]. (4.26)

Inspecting the total angular momentum we see that its possible values can be obtained
by the tensor product / ® 1/2 ® 1/2 where | = ny + N/2 withn; =0,1,2,..., N =
1,2,3, ... and where one of the 1/2 factor is for spin and the other is for isospin. This
means that & can take three different values, namely & = [, [+ 1, where | = n; + N /2.
Let us note that the irreducible representation of K for the spin down and isospin
down case k = n; + N/2 — 1, is valid for N > 1 and when N = 1 we have n; > 1

for this case

ni+ 5 +1
1 1
l®§®§:U®U®l:U+U®%@U—D: n+ 4 (4.27)
7’L1—|—%—1
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. .. . . 2
With this information we can write the spectrum of )~ as

lDlQJrl = €n1+1 + (20& - 1)2/4 - \/(2@ - 1)2£n1+1 + N2/47 (4283)
B} = + Q- 1215 /@a— 1%, + N/A,  (428b)
E?—l = €n1—1 + (204 - 1)2/4 + \/(20[ - 1)25711—1 + N2/47 (4.28¢)

where §,,, 1s
€y =13 + N + N/2+ny +1/4+ ala —1). (4.29)

In order to see how we have decided the signs in front of the square roots in (4.28)),

we should inspect the operator x at a = 0, or X for convenience
Yo=—(K.3—1/2). (4.30)

Let us recall that K = L + & /2 + T/2, also L has the irreducible representations
n1 + N/2. Let us consider the lowest lying state with n; = 0. In this case, K has the

irreducible representations given by the direct sum obtained as follows

N®1®1
2 °2° Y
_(N—l@N—i—l) il
-\ 2 2 2’

N N /N
_ ——1) 9 = (— 1). 431
(2 D 2@ 2+ (4.31)

We can write K - & — 1 /2= K2—J2+1 /4, from which we can find the eigenvalues

of xo. These are given with the corresponding IRRs of K and J in the table below
To get these eigenvalues from square terms in (4.28a)), (4.28Db), and we chose

X0 K J
~N/2-3/2 | N/2+1/2 | N/2+1/2
N/2+1/2 N/2 | N/2+1/2

—N/2—-1/2| N/2 | N/2-1/2
Nj2—-1/2 | NJ2—1/2 | N/2—1/2

Table 4.1: IRRs of x( and the corresponding IRRs of K and J

the minus sign in front of the square root in (#28a), both signs for each IRRs of K
in (4.28D), and the plus sign for (4.28c)). Since the spectrum of p* is continuous with

respect to «, these signs are correct for all values of a.
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4.2.2 Pair Production

We will now compute the pair production rates for Dirac fields on R*! x S2. On the
Euclidean space R? x S? the spectrum of the square of the gauged Dirac operator and

the corresponding density of states are given as where &,, is given in Eq. (4.29).

Spec( ]Dz) Density of states
5By + (Em_1 + (20 — 1)2/4 + /(20 — 1)%6,,_; + N2/d) | BBiCmiN-y
M5By + (&0, + (20— 1)2/4 + /(20 — 1)2¢,,, + N2/4) By BuZmtl+])
21282 + (Enppr + (20 — 1)2/4 — \/ Qo= Dy + N7/4) | D2Lalmiled)
2098y + 24 (£n1 + (20 — 1)2/4 + /(20 — 1)%6,, 1 + N?/4) | BaBrmsN—1)
M5By + 2 + (En, + (200 — 1)2/4 4 /(2 — 1)%€,,, + N2/4) B Br@mit N+1)
2283 + 2 + (b1 + (20 = 12/4 — /(B0 — 1%, 1 + N?/4) | 2Balmtins)

Table 4.2: Spectrum of ]D2 and the corresponding density of states.

The quantum number n; = 1,2, 3, ... for the eigenvalues that include ¢,,, with the
minus sign and eigenvalues that include én; — 1, for others ny = 0, 1,2, ..., and also

ny = 0,1, 2, ... for all of them.

Now we are in a position to write the pair production rate on Rb! x S2. We will
first evaluate the effective action on R? x S? and then Wick rotate to R'! x S? at an

appropriate state of the calculation. I'g is given as
1 [d >
e =3 / Sy [t )] (4.32)

Now we can write the real part of ¢S.;s in Minkowski space, by letting x4 — i,
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By — —iF and taking the integral over s

—1 - 2y E
—nmm?/E
Re(iSess) =155 / dudxgdx4z:le n{ (4.33)
Z (2n, + N — 1) [e—mr[Bl(fnl_1+(2o¢—1)2/4+\/(20¢—1)2§n1_1+N2/4)]/(Ea2)]
ni=1
i Z (2n1 + N + 1) 'e—mr[Bl(ﬁnl+(2a—1>2/4+\/<2a—1>2fn1+N2/4>1/<Ea2)}
n1=0 B
+3 @+ N+1) [ o—nlB1 (6ny +(20—1)%/4— <2a—1)25n1+N2/4>]/<Ea2>}
ni=1 B
+ Z (2711 + N+ 3) _efmr[B1(§n1+1+(20¢71)2/47\/(2a71)2§n1+1+N2/4)]/(Ea2):| }

n1=0

Using w = 55 as before we can also write Re(iS.y) in the following form

Re(iSesf) = /dudatgdm Bl/g( w), (4.34)
where
Brj2(w) = —g{Qlog (1-— e_“mzaz) (4.35)
+ Z 211 + N — 1)log (1 — e~ W(€ny —1+(47+1) /441 /(2a—1)2€,, 1+ N?/4)+m2a ))
n1=1
4 Z 91+ N + 1)log (1 — e~ @ Em+Ar+D)/ay/(0r41gn, +N7 /4 +m?a?))
n1=0
+ i (21 + N + Dlog (1 — e~Em+@r+D/4=y/Gr+)en, +N2/4)+m?a?))
n1=1

+ Z (2n, 4+ N + 3)log (1 — €_W(€n1+1+(47+1)/4_\/(47+1)€n1+1+N2/4)+m2a2))}.

n1=0

n (4.35), we have written the contribution of the zero modes explicitly, and also

introduced v = a(av — 1) as before.

Let us now calculate the flat limit Eq. #.33)), that is R! x S? — R%!. In order to do
this we have to take a®> — oo, N — oo, and v — oo, while keeping N/a? and ~y/a?

constant. Since w is proportional to 1/a? this practically means we can keep wy and
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wNN as such. While we drop the terms which vanish as a?> — co. We find

2,2

5{;?@1) = —T{%og (1 —em) (4.36)

+ Z log (1 — efw(*N/2+n1N+252+\/4,82(7N/2+n1N+,32)+N2/4+m2a2))

+ Z log (1 N 6—w(3N/2+n1N+2,82—\/4ﬁ2(3N/2+n1N+ﬁ2)+N2/4+m2a2))}.

n1=0

Shifting the index of first sum in (4.36) to zero it is seen that the sum is equal to the
second sum in (#.36) and similarly, shifting the index of the last sum to the starting

value 1, it is seen to be equivalent to the third sum in (4.36). Thus, we obtain

2.2

Bl (w) = —wN {log (1 — e em™) 4.37)

o0

+ Z lOg (1 _ 6—w(N/2+NTL1+262+\/262(N+2Nn1+262)+N2/4+m2a2))

+ Z log (1 . e—w(N/2+Nn1+262—\/252(N+2Nn1+252)+N2/4+m2a2)) }

In order to examine the effects of curvature and the non-abelian magnetic field, we

define the ratio

Y/2(w) = Brja(w)/ B3 (W) (4.38)

We plot the profile of 77 2(w) at a fixed non-abelian charge, v, at different values of
the abelian monopole charge /N. Figure 4.4a] shows us that when the non-abelian
charge is taken as zero our results exactly match with the results found in [[12]], which
we have reproduced in Section [2.4] Clearly this is because, when v = 0, the non-
abelian part of the magnetic field becomes zero and we are left with just the abelian

part.
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Figure 4.4a: v =0 Figure 4.4b: v =2

Figure [4.4b| shows us that at v # 0 the general profile/hierarchy at v = 0 is pre-
served, meaning that we continue to see a decrease in the pair production rate for
small values of w, then grows back and settles at v, 2(w) = 1, at large values of w.
The initial decrease is caused by the fact that the energies of the quantum states for
the spherical case is higher compared tp those of the flat case. Also when we are at
low values of the abelian charge this dip becomes much more pronounced. This is es-
sentially because of the fact that energies generally increase when the abelian charge
is increased, hence the 74 /2(w) settles much more quickly to the limiting value 1. The
reason for 7, 5(w) approaching 1 at larger values of N is due to increasing number of
zero modes which cost no energy to be filled by the produced pairs. Let us also note
that from Figure [4.40, we see a relative decrease at pair production rates for v # 0
compared to v = 0; This is due to the further increase in the energies of available
quantum the states due to the non-abelian field on R x S? compared to R®! as it

can be seen from Figures [C.9)and [C.10]in Appendix [C]

Now we will keep the abelian charge constant while increasing the non-abelian charge.

This will allow us to comment on the effects of the non-abelian magnetic field further.

Viz(w.y.2) Yia(w.y.3)

08 08|
B y=0, N=2 B y=0,N=3
061 [ y=1,N=2 06 [ y=1,N=3
M y=2,N=2 M y=2,N=3
041 W y=3,N=2 04 W y=3,N=3
02 02f
2 s s s ¢ 1 2 s . s e ¢
Figure 4.5a: N =2 Figure 4.5b: N =3
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From the Figure .53 and Figure [4.5b] we see at fixed N, increasing +, results in
an initial decrease in the pair production rates which, eventually settles back at 1 at
sufficiently large w. We see that the increasing the non-abelian charge v causes a
decrease in the pair production rates, this is due to the higher energies of the available

quantum states.

Another way to inspect the non-abelian charges effect on the pair production is to
compare it with the pair production rates at v = 0. In other words, we compare v # 0
case with v = 0 case on the same geometry RY x S2. To do this we define the

Ry /2(w, N, ) function as

Rl/Q(W,N,’y) Eﬁ”g(&),N,’Y)/ﬁl/g(w,N,O) (439)

Ry 5(w, N, ) function allows us to inspect the non-abelian charge effect directly. We
look at two graphs. In Figure [4.6a we take the non-abelian charge v = 2 and look at
the different abelian charge values. In Figure {.6b| we take the abelian charge N = 2
to be constant and vary the non-abelian charge.

Rip(w2.N) Rin(w,y.2)

15 /—\ \
B y=2, N=1 / B y=0, N=2
M y=2,N=2 1d T M y=1,N=2
W y=2,N=3 W y=3,N=2
H y=2,N=4 M y=5, N=2
0.5 05
I T e T T S e
Figure 4.6a: v = 2 Figure 4.6b: N =2

Inspecting the Figure we see that there is an increase in the pair production when
the w values are smaller, then it approaches to 1. Initial increase in the pair production
is caused by the fact that energies of the quantum states with v # 0 are lower than
those for v = 0 as it can be seen from Figures and in Appendix [Cl Let us
also note that with increasing values of the abelian magnetic charge N, energies of the
quantum states also increase, and hence we see that increase in Ro(w, v, N) is milder,

when N is larger, and settles back to the limiting value 1 faster.

Figure 4.6b] behaves very similarly to Figure [4.12] mainly the pair production has an

increase, and converges to the limiting value of 1, at large enough w. This is as before
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due to the dominant contribution of the zero modes at large w. Since the energies of
the available quantum states decrease with the increasing non-abelian charge, we see

an increase in the pair production rates with increasing - at fixed N.
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CHAPTER 5

CONCLUSIONS

Purpose of this thesis was to explore the effects of non-abelian magnetic field, as
well as the constant curvature on the pair production rate. In Chapter 2] we gave a
review for the Schwinger mechanism, and then also examined this effect on R*! and
RL1 x S? with an additional uniform abelian magnetic field. We have seen that the
pair production rate increased for scalar fields, due to the curvature of two-sphere
compared to the flat case, this was seen by the extra factor related to the curvature
of S?, the a% factor. Nevertheless with increasing abelian monopole charge, pair
production rates tended back to those of the flat case. This can be seen as the abelian
magnetic charge counterbalancing the effect of positive curvature on spin-0 fields, as
the energies of the quantum states at higher values of abelian magnetic charge are
higher and harder to be filled by the produced pairs. For spinor field we saw that
pair production on Rb x S? is relatively smaller than that on R*!, see Figure
The reason for this effect is that, the energies of the quantum states on R x 2
are higher than those on R*! and they cost more energy to be filled. However, with
increasing abelian-charge there are increasing number of zero energy modes, which
cost no energy to be filled and therefore the relative pair production rate settles back

to 1 at sufficiently large w, and this happens faster with increasing /V.

In Chapter [3] we have inspected the pair production rates for spinor and scalar fields
under the influence of both abelian and non-abelian magnetic fields, on Minkowski
space R®!. For the scalar fields case we have defined the function fy(y, ) to examine
the pair production rates, and also defined Fy(y, ') to see the effects of non-abelian
field strength on the pair production. Our results show that the pair production de-

creases with increasing y and in general, decrease with increasing non-abelian field
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strength /3’. For the spinor fields, we have defined the similar functions f;/2(y, ')
and F'/5(y, 8'). Plotting these showed us that pair production in general, increased
with increasing v, in contrast with the scalar field case. Similarly we have also seen
that the pair production rate was increase with increasing non-abelian magnetic field

strength, ('.

In Chapter 4 we have looked at the pair production rates on R\ x S? under the in-
fluence of non-abelian fields. We have compared two different cases for both spinor
fields and scalar fields. First case was for the comparison of pair production on spher-
ical spaces to pair production on flat spaces. This was done by defining the function
Yo(w) for scalar fields, and ~y; /2(w) for the spinor fields. Secondly we looked at the
effects of the non-abelian magnetic fields directly by defining the function Ry(w) for
the scalar case, and R j»(w) for the spinor case. From these considerations for scalar
fields we have seen that the pair production decreases when we increase the non-
abelian field strength +, and for the spinor fields the situation is reversed. However,
profiles of these functions are much more complicated for large w values, compared
to the flat case. Mainly there exists a critical v value for which the limiting values of

these functions are determined.

We may consider the pair production effects on manifolds of the type AdS, x R2,
AdS, x S?, with an electric field on AdS; and non-abelian magnetic fields on R? and
S? parts. Pair production on AdS, areas considered in [9] and on de-Sitter in [[10} 11].

We hope to tackle these problems in near future.
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Appendix A

PATH INTEGRAL FORMULATION

Path integral formulations were first used in physics in the context of diffusion equa-
tions and Brownian motion in the late 1920’s by Norbert Wiener. After Wiener,
P.A.M. Dirac used this concept in quantum mechanical context in 1933 [23]]. The
method was rigorously applied to quantum mechanics, by R. Feynman, first in his

thesis.

A.1 Formulating the Path Integrals

We start with a simple quantum mechanical system in Schrodinger picture of quantum

mechanics, a time dependent position operator ¢, and with the state, |q, t) that satisfies

the following eigenvalue equation

q(t)lg,t) = q(t)lq,t) (A.1)

Let us say that this system has initial and final positions, with q,, t, and gy, t; respec-
tively. For this system we can find the transition amplitude of finding the system at
state b, given that it was initially in state a. This transition amplitude is also referred

to as the kernel, and defined as

K(a7 b) = <qb7 tb‘Qaa ta> (A2)

We can expand [A.2]in a way that there are different alternatives to go from a to b,

thanks to completeness of quantum states. Meaning we can write as
K(aab> = /dq/ <qb7tb‘q/7t/> <q/7t/‘Qa7ta> (A3)
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Since
/dQ’ d ) (d, 1] =1 (A.4)

Which is the completeness relation. We can summarize what is happening in[A.3]in

a space time graph of the form

v T

Qdat

Figure A.1: Particle path.

It is important to realize that the point ¢/, ¢’ is not a fixed point but stands for all
intermediate paths that the state can take. We can imagine there is some imaginary
"obstacle" at the position ¢/, ¢/, although the analogy is not % 100 accurate since the
obstacles we imagine are in the space time graph rather than in the 2D space. So
we will call these what they are, intermediate points. We can increase the number of
intermediate points, let us say we have N number of points in total, including a and b,
which are separated in equal time to one another. This time separation is At = €. In

this case the space time graph is Here, the only fixed points are ¢ty = ¢, and ty = 1,

q

IN=D T
qN-11 /
qN-2+
2+
Uiny /
qo = 49at

} } ; } } } ¢
to=t, t t, N2 EN-1 Ey = H

Figure A.2: Divided particle path.

66



hence we can further expand the Kernel as

K(a,b) = // : '/dQ1dCJ2 e dgn—1 (qb, tylan—1.tn—1) (Gn—1,TN—1]qN—2, tN—2) X

(qn_2,tn—a] X -+ X |q1, t1) (@1, t1|da, ta)
(A.5)

Here the integration is not over ¢, and ¢, since they are fixed points, as discussed
before. Before going any further, we should look at to the Schrodinger picture of
quantum mechanics and the time evolution of the states. It is known, according to our
current understanding, that the differences between the different pictures of quantum

mechanics do not effect the observed reality, and they are purely theoretical.

Let us say that we have a state at some time ;. We are interested to find out how
does this state evolve with time. Our initial state is |, ty) and we want to find out the
evolved state at time, ¢,. For this we define an operator called U (¢, ty) which is both
a function of the initial and the final time. This operator should give us the state at

time ¢, when applied to the state in time ¢, hence it should satisfy
‘Oé,t1> = U(tl,to) |Oé,t0> (A6)

This time evolution operator should also have the following properties

e It should preserve normalization of the states, i.e. if a state is normalized, it

should stay normalized after the time evolution operator is applied to it.

e If ¢; and ¢, are equal to each other operator in [A.5] should be reduced to the

identity operator.

e It should follow U(tg, tl)U(tl, to) = U(t27 to)

Using the time evolution operator, it is easy to see that every factor in can be

written in following form

~iHti/h  iHti1/h Gi—1)

TN g ) (A.7)

(gis tilgi—1,tic1) = (@] e

= (qile

67



Now let € — 0 while keeping t;, — t,, or Ne, constant. Which is very similar to what
we do when we are going from Riemann sum to integration. Since ¢ is very small, we

can use the following approximation

(g, tilgiz1, tiz) = (g e~ tHe/h |qi—1)
il
= (g1 - -+ O(€%) gi-1) (A.8)

First term in the right hand side of the equation [A.§]is just the Dirac delta function
d(¢; —q;—1), and the second term is the matrix elements of the Hamiltonian, multiplied
by some factors. To go further from this point, we should use the general Hamiltonian,
written as

~2

b
H_%H/( q) (A.9)

We will write the matrix elements of the kinetic energy and the potential energy sep-

arately. We start with kinetic energy term. Which is

< |QZ //dpz 1dpz qz|pz> <pz| |pz 1> <pi—1|Qi—1> (AlO)

Since
/dpi lpi) (pil =1 (A.11)

;) with the cor-

We also know that the inner product of the momentum eigenstates,

responding position eigenstates, |¢;) is

(@lpiy = m ipias)/ (A.12)

Then the kinetic term becomes

n2
D 1 i(Dias —i(pi_1qi—
<ql| % |ql.71> :ﬁ / / dpifl dpl 5(]7@ — pifl)e (pz%)/he (pz 14 1)/h

(A.13)

2m
With the help of the Dirac delta function, this result can be further simplified by

integrating once, which will give us

0
p 1 p;
) . dp: ePi(@i—ai-1)/h Li_ A.14
{ail 2m 410 = 27 h/ Pi€ 2m ( )

Now we calculate the potential term, however there is one slight caveat, we can either

write

(@l V(@) lgi1) = 0(¢i = 4i1) V(i) (A.15)
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Or similarly, we can write

(@l V() |gi-1) = 6(qi — qi—1) V(qi—1) (A.16)

Notice that, thanks to the Dirac delta function, the result we get when integrating
with respect to dg; is the same with integrating with respect to dg;_1, to

get around this issue, we write

(@G| V() |gi-1) = 6(q — qi—1) V(%) (A.17)

Just for the notational convenience we define ¢; = (¢;—1 +¢;)/2, and writing the Dirac

delta function as an integral will get us

(@l V(@) |gi-1) /dpi ePilai—ai-)/h 7 (g,) (A.18)

~ 2rh

Finally if we combine[A.T4]with[A.T8| we can write the matrix element for the Hamil-

tonian as

N 1 - S p2
i H i— = — i pi(¢i—¢i-1)/h <—Z + [/ _i ) A.l
<q ’ ‘q 1> 9 ﬁ/dp € om (Q) (A.19)

Now, if we get back to the original problem at hand, [A.8|can be written as

1 ) 1€
. : — oi(@i—qi-1)/h |1 _ = - 2
(@i til g1, tiz1) Qﬂi/dpze [1 hH<pza%> +0(e7)|  (A20)

Remember that we used the approximation for the exponential in and ignored
the €2 terms and higher. Keeping the same level of approximation we can write

1

%/dpi ePi(ai=qi—1)/h o —ieH (pi,q;) /h (A.21)

(Gi, tilgi—1,tic1) =

Here it is appropriate to give some definitions before going any further. For a function

a(t) we define the following

(A.22)

Da = lim

N—oo i—1 \/27]']}))

The factor 1/v/27h is just there to allow us to write in a more compact way.
Which is

N
K(a,b) = /Dp’DqH oilpi(gi=ai—1)—€H (pi,q;)]/h
=1

— /Dqu eith%Oc SN i(gi—gi—1)—€eH (p:i,i) /B (A.23)
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Notice that since we are taking the limits N — oo and ¢ — 0, while keeping Ne

constant, we can divide and multiply everything by € to write
K(a, b) — /Dqu et ImN o0 SN elpi(gi—ai-1)/e—H(pi,@)l/h (A.24)

It is easy to see that the (g; — ¢;_1)/€ is just the time derivative of the momentum,
since € is just the time steps we took, and the ¢; and ¢;_; are the momenta separated
by those time steps. Also we are multiplying everything with € while summing over

all of the time steps, this is just the definition of the integral, so we can written
K(a,b) = /Dqu er [ dilpi-HP0)] (A.25)
Since the part inside the integration is just the Lagrangian, we might also written
K(a,b) = /Dqu er JdtL(@.d)
P / DpDq er5@d) (A.26)

If the Hamiltonian has the form it has in we can take the integral over the poten-
tial. To do this we will go back to[A.24]and look to just one i value, and generalize it

after taking the integral for that. So we will start with

K(a, b) = /oo in efﬁ[pffzmpi(%‘*qz'ﬂ)]

— e (QiQi1)2/ dg; e~ T Pi—m(@i— i)
_ 27@7?716%(%_%_1)2 (A.27)
i€

Now since we have defined Dq with the factor 1/v/27h, we can redo the steps when
going from to and write our final result as

K(a,b) = / Dy ei [ dtL@:d) (A.28)
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Appendix B

LIMITING BEHAVIOR OF THE GRAPHS

When we look to the pair production ratios, we see that their form is the same with

all of them, i.e.

arlog(Txte™) +aglog(1£e ™)+ .. +a,log (1 e ™)+ ..

~ bylog (14 e=201) 4 bylog (1 £ e=2%2) + ... + by, log (1 £ e=%0m) 4 ...
(B.1)

()

If we assume that the #,, and A, are the lower when the subscript is lower, then we

can say that the limiting behavior when x — oo is written as

00 if 0 >\
0 if 91 < )\1
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Appendix C

ENERGY GRAPHS

Ani(B)
W + =0 W +, ny=0
M -, ny=1 |-, m=1
W+, =1 |+, nq=1
W -, m=2 W -, m=2
W+, =2 W o+, =2
W -, m=3 W -, n=3
- : : ; =B . ; . =B
0.5 1.0 15 20 25 0.5 1.0 15 20
Figure C.1: spin-0 flat energies Figure C.2: spin-1/2 flat energies
BE*,, (r.1) AE*, (v.2)
M + N=1,n4=0 M + N=1,m=0
M + N=1, ny=1 M + N=1, ny=1
M +, N=1, n4=2 M +, N=1, 4=
W -, N=1, ny=1 W -, N=1, ny=1
W -, N=1,m=2 W -, N=1, n4=.
W -, N=1,n=3 W -, N=1,m=3
y 1

Figure C.3: AF of non-abelian spherical Figure C.4: AFE of non-abelian spherical
spin-0 and abelian spherical spin-0 N = 1 spin-0 and abelian spherical spin-0 N = 2

BE*, (r,1) BE*,(v2)

10

M + N=1,n4=0 M + N=2,m=0

M+ N=1, ny=1 M + N=2, ny=1

5 R M+, N=1,n4=2 5L W+, N=2, ny=2
— . o M -, N=1, ;=1 W -, N=2, n4=1

W -, N=1, m=2 W -, N=2, n4=2

0 s 20 | B N=1m=3 L[ m N2 m=s

Figure C.5: AF of non-abelian spherical Figure C.6: AFE of non-abelian spherical
spin-0 and flat spin-0 N =1 spin-0 and flat spin-0 NV = 2
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Figure C.7: Spectrum of lD2 for spherical Figure C.8: Spectrum of ]f for spherical
case, N =1 case, N =2
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Figure C.9: Spectrum of Dz for spherical Figure C.10: 12)2 for spherical vs flat

vs flat cases, N = 1 cases, N = 2
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Appendix D

LANDAU PROBLEM ON R?

D.1 For Scalar Fields

Here we will discuss the solution for the Landau problem for scalar fields, that are
constraint to move on the flat R? space. For starters we have a perpendicular magnetic
field that is also constant. Since the particles will only move in the flat surface, we
may reduce the problem to two dimensions. We take the plane to be the (z, y) plane,

then the magnetic field will have the form

B = B3. (D.1)
We can write the vector potential, A, using the Landau gauge in the following form

A = Bzy. (D.2)
Which means we can write the operator D? as

D? = D, D" = (9, — iA,)(0" —iA"),
=02 + (9, — iBx)?,
(D.3)

now we define the modified position operator as X = (9,/B — ix), so that the com-
mutation relation is written as [X, 0,] = [—iz, ;] = 4, with of course 4 = 1. Then

with this definition we are able to write
D? =9 + B*X?, (D.4)

Which is should just give us the energy spectrum for the quantum harmonic oscillator,

meaning the spectrum should be

A= B2n+1) (D.5)
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D.2 For Spinor Fields

Now we will make the calculation we have done in appendix [D.T| with spinor fields.
Again in the same manner as before we will just focus on the two dimensional case
with an external magnetic field, B, perpendicular to the (x,y) plane, with using the
same gauge we have used in appendix The spectrum of the operator we will be
calculating is the Dirac operator, or more precisely its square. lD2 operator can be

written for the aforementioned case is

D’ = [r(0, —iAy) + 7,0, —iA)]
=720y — iA,)? + T2(0y — iA,)? + 7,7, [0, — iA,, 0, — i4,),
=02+ (0, — iBx)* + 7,7[0s, 0, — iBa],
= D’ +it,(—iB),
= D* + Br,. (D.6)
Which means that the spectrum for the operator lD2 is just
M =B@2n+1)+B. (D.7)

n

Here + B terms obviously comes from the spin of the particle, plus for spin up and
minus for spin down. Also notice that by shifting the index of the spin up eigenvalue

by one we are able to put it in a more manageable form,
An = 20D, (D.8)

With the degeneracy for each index n, d,,, given by

d, = (D.9)
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Appendix E

LANDAU PROBLEM ON 52

E.1 For Scalar Fields

Now, we will inspect the spectrum for the Landau levels on a sphere. To do this we
will need a magnetic field perpendicular to the surface and constant everywhere, we
can obtain this configuration by a Dirac monopole on the center of the said sphere.

Our magnetic field on the sphere will be given as

. N
B=_"¢ (E.1)

202
With N € Z7 for the Dirac quantization condition. Since the Laplacian can be written

in the form D? = 2—22, where A = 7 x (p— ff) We see that the commutation relation

[Aia A]] is

, N
[Ai, A]] = ZEZ'jk (Ak - 57%), (EZ)

here we define the operator J=A-— %f with commutation relations being

We see that the gauged Laplacian operator can be written as
1 N?
D? = —<J2 - —) E.4
22 1) (E4)

and since the eigenvalues of J are j = n — % so the spectrum for the gauged La-
grangian is found to be
2

Spec(D?) = %(j(j +1) — 7)7
1

_ 2<n(N+n+1)—l—g>. (E.5)

IS
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E.2 For Spinor Fields

) ) o . 2
With the same magnetic field given in Eq (E.I)), we can write the operator I~ as
Til\s

2 7

D= -

:<A2+F-K— f-F—|—1>/a2. (E.6)

Here we also define the total angular momentum operator J, with also including a

spin component, explicitly, J; reads,

N T
=N — =+ o, E.7
J, 57 + 5 (E.7)
it is easy to check that the operators J; can be described with the SU(2) algebra, in
other words, they satisfy the commutation relationship [J;, .J;| = i€;j,.Ji.. We can also

compute the operator J2, which gives

2 9t 9

. N N2 3

o 2 — _ L — e
_<A 47 K-SR +4) (E.8)

This result shows us that the operator lD2 can be simply written in terms of .J? as,
N2
» = (ﬂ AR )/a (E.9)

Since the eigenvalues of the operator J are n — % + % the spectrum of the Dirac

operator on 2-sphere with radius a can be written as

Spec(iP) = =((n+1)*+N(n+1)) E10)
4 (n*+ Nn)
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