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1. GİRİŞ 

 

Bir kısım kısmi diferansiyel denklem (KDD) ler için kapalı formda çözüm elde 

edilebilir. Ancak kapalı formu veren teknikler ile çalışmak çok pratik değildir. Bir kısmı 

için ise integre edilememe gibi nedenlerle analitik çözüm elde edilemez. Bunun yanında 

nümerik teknikler genellikle iyi tanımlı kısmi diferansiyel denklemler için oldukça 

başarılı sonuçlar verir ve bilgisayar programlarının gelişmesiyle uygulanmaları da daha 

pratik hale gelmiştir. Sonlu elemanlar, sonlu hacimler, sonlu farklar, spektral metotları 

ile bu metotlardan türetilen teknikler, KDD için uygulanabilir tekniklerin en önemli 

örnekleri arasında verilebilir. Problem bölgesinin yapısı, istenen doğruluk derecesi ve 

işlem kapasitesi bu metotların seçiminde en önemli etkenlerdir. Bahsedilen metotlar şu 

şekilde özetlenebilir (Gottlieb ve Orszag, 1977; Fornberg, 1996; Boyd, 2000; Mason ve 

Handscomb, 2003; Bakioğlu, 2004; Quarteroni ve Valli, 2008): 

Sonlu farklar metodunda problem bölgesi düğüm noktaları yardımıyla alt 

bölgelere ayrılır. Fonksiyonun türevine, düğüm noktalarının kullanıldığı yerel 

argümanlarla (sonlu farklarla) yaklaşılır. Örneğin, x h   ve y k   bölgeyi 

parçalayan aralıklar, ,i jx i x y j y     düğüm noktaları ve  , ,i j i ju u x y  olmak 

üzere, fonksiyonun x  e göre birinci mertebe türevi 

1, 1,

, 2
i j i j

i j

u uu
x h

     
  

merkezi fark ifadesi ile formülize edilebilir. KDD’in yerine her bir noktada fark 

denklemleri yazılarak cebirsel denklem sistemi elde edilir. Cebirsel sistemin çözümü ise 

ayrık noktalarda aranan fonksiyonu verir. Bu yaklaşım, uygulama kolaylığı bakımından 

oldukça makuldür. Çünkü, türev fonksiyonun lokal (yerel) bir özelliğidir, ilgili nokta 

dışında bir fonksiyon değerini kullanmak gerekli değildir (Fornberg,1996). Ancak, bu 

yaklaşımda bölgenin düzgün olmaması durumunda uygulama zorlaşır. 

Sonlu elemanlar metodu, problemin kompleks yapıdaki çözüm bölgesinin sonlu 

sayıda basit alt bölgelere (elemanlara) ayrıştırılması fikriyle şekillenmiştir. Her alt bölge 

üzerinde, aranan fonksiyonun parçalı polinom interpolasyonu lokal yaklaşım 

fonksiyonu olarak seçilip problemde yerleştirilerek diferansiyel denklem, bilinmeyen 

katsayılar içeren cebirsel denklemlere dönüştürülür. Böylece elde edilen denklemlerden 

oluşan sistemin çözülmesiyle her bir düğüm noktasında (nodda) aranan büyüklükler 
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bulunur. Sonlu elemanlar ve sonlu hacimler metotları ile sonlu farklar metotları 

uygulamada benzerdirler.  

Sonlu elemanlar ve sonlu farklar metotlarının ortak dezavantajı, çözümde 

yüksek doğruluk istenmesi halinde daha fazla nokta ile problemi ele almak veya 

fonksiyonun hızlı değiştiği bölgelerde eşit olmayan aralıklar ile işlem yapmak 

gerekeceğinden, hesaplamaların yükünün oldukça artmasıdır.  

Sonlu elemanlar metotları, özellikle, 3-boyutlu yapılar gibi oldukça karmaşık 

geometriye sahip problemlerin ele alınışında etkili iken, dörtgensel ya da küre gibi basit 

düzgün bölgelerde tanımlı problemlerde spektral metotlar tercih edilerek yüksek 

doğrulukta sonuçlar daha kolay bir şekilde elde edilebilir.  

 Sonlu elemanların aksine, spektral metotlarda tanım bölgesinin tamamında 

geçerli baz fonksiyonu kullanılır. Kullanılacak baz fonksiyonunun bu özelliğinden 

dolayı spektral metotlara global tipte yaklaşım denilir. Bir fonksiyona, 

   
0

N

k k
k

u x a x


              (1.1) 

formunda düzgün baz fonksiyonlarının toplamı olarak yaklaşılır. Kullanılan baz 

fonksiyonu, tüm problem bölgesi üzerinde, izolasyon noktaları haricinde hiçbir noktada 

sıfır olmayan, istenildiği ölçüde yüksek dereceden olabilen polinomlardır.  Bu yaklaşım 

fonksiyonu analitik olarak diferansiyellenir. Çözüm fonksiyonu, yaklaşım 

fonksiyonunun probleme yerleştirilmesiyle elde edilen na  spektral katsayılarını içeren 

denklemlerin meydana getirdiği cebirsel denklemlerin, belirlenecek bir kriter 

doğrultusunda çözülmesiyle elde edilir. Tarihsel gelişim ve teorik alt yapı bakımından 

spektral metotlar hakkında öncelikli başvurulacak bir kaynak olarak (Boyd, 2000) 

verilebilir.  

 Spektral metotlar, literatürde ilk olarak interpole edilmeyen türde metotlar olarak 

yer almış olsa da, sıralama noktalarında çözüm arayan kolokasyon (sıralama) 

metodunun tanıtılmasıyla birlikte spektral metot kavramının kapsamı, sıralama 

noktalarında interpolasyon kurarak çözüm üreten metotları da kapsayacak şekilde 

genişletilmiştir. Yakın zaman çalışmalarının birçoğunda spektral metot kavramı, 

diferansiyel denklemlerin çözümlerini global fonksiyonların seri açılımları cinsinden 

veren metotların genel bir ifadesi olarak eşleştirilmiştir. Boyd’un (2000) eserinde de 

spektral metotlar interpolasyona dayanan ve dayanmayan metotlar olarak iki alt sınıfta 
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incelenmiştir. Bu sınıflama altında Galerkin ve Tau metotları interpole edilmeyen tür ve 

kolokasyon (sıralama) metodu ise interpole edilen tür metotlar olarak tanınır. Kısmi 

diferansiyel denklemlerin nümerik çözümleri için en çok tercih edilen metotlardan olan 

bu üç metot, temelde ağırlıklı kalanlar prensibine dayanır.  

 

Tanım 1.0.1. (Ağırlıklı Kalan Prensibi ) Bir bölge d   ile bu bölgenin sınırları 

1

k

i
i
     tanımlansın. Lineer diferansiyel operatörleri L   ve B  olmak üzere,    

üzerinde  

u fL               (1.2) 

lineer kısmi diferansiyel denkleminin,   üzerinde 

0u B               (1.3) 

sınır koşulları altında nümerik çözümü u  aransın. 

Bir W  Hilbert uzayının bir alt uzayı NP  olmak üzere, Nu P  çözüm 

fonksiyonunun  (1.3) sınır koşullarını sağlayarak, 

R u f L                (1.4) 

rezidü (kalan) fonksiyonunu bir ağırlık fonksiyonuna göre minimize edecek şekilde 

belirleme prensibine ağırlıklı kalan prensibi denir (Davies,2011).  

Ağırlıklı kalan prensibine dayanan metotlarda açılım (trial) fonksiyonu, NP  de 

baz fonksiyonları  0 1, ..., N   ; nümerik çözüm, 

0

N

n n
n

u u 


                (1.5) 

ve rezidünün minimasyonunu belirleyen ağırlık (test) fonksiyonları,  0 1, ..., NW W W  

ailesi olup, Hilbert uzayındaki iç çarpım ile  0,...,n N    için  

, 0nW R                (1.6) 

dır.  
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Bu prensibe dayanan metotlardan 

 sonlu farklar metodunda baz fonksiyonları olarak düşük dereceli, lokal 

parçalı fonksiyonlar, 

 sonlu elemanlar metodunda baz fonksiyonları olarak sabit dereceli, lokal 

düzgün fonksiyonlar, 

 spektral metotlarda baz fonksiyonu olarak keyfi dereceden, global 

düzgün fonksiyonlar  

seçilir.  

 Ağırlıklı kalan prensibi ile (1.5) de geçen u  katsayılarını belirlemede kullanılan, 

nW  inin seçileceği aileye göre birbirinden ayrılan birçok metot vardır. Literatürde sıkça 

karşılaşılan Galerkin, Tau ve kolokasyon metotları gibi.  

Tanım 1.0.2. (Galerkin metodu) Test fonksiyonu, sınır koşullarını sağlayacak şekilde, 

açılım baz fonksiyonu olarak seçilir. Yani n nW   ve 0n B  olup, (1.6) bağıntısı, 

, 0 , 0n nR u f    L   

0
, , 0

N

n k k n
k

u f  


   L  

0
, , 0

N

k n k n
k

u f  


    L  

0
,

N

nk n n
k

u f


  L  ,   ,nk n k L L                   (1.7) 

ile özdeştir. (1.7) sisteminin çözülmesiyle çözüm fonksiyonunun seri formdaki spektral 

katsayıları elde edilir. 

Test fonksiyonu olarak n nW   açılım baz fonksiyonunun kullanılması yönüyle 

Galerkin metoduyla benzerlik gösteren Tau metodunda, test fonksiyonları ortogonal 

fonksiyon ailelerinden seçilir ve test fonksiyonlarının sınır şartlarını sağlama şartı 

yoktur. Bunun yerine, sınır şartları için oluşturulan cebirsel denklem, diferansiyel 

denklem için oluşturulan sistemin içine ekleme ya da bir bölümünün yer değiştirmesi 

şeklinde yerleştirilerek sınır şartları çözüme etki etmiş olur. 
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Tanım 1.0.3. (Kolokasyon metodu) (1.5) formundaki çözüm fonksiyonunun, bölgeden 

seçilen ve kolokasyon (sıralama) noktaları olarak adlandırılan belirli sayıdaki nP , 

( 0,1,..., Nn  ) interpolasyon noktalarında (1.4) rezidü fonksiyonunu sıfırlaması 

sağlanır. Test fonksiyonu  n nW P  olarak alınır ( :  dirak delta fonksiyonu). 

Böylece,  

 , 0 , 0n nW R P R     

  0nR P      n nu P f P L   

   
0

N

k n n n
k

P u f P


  L              (1.8) 

formunda elde edilen cebirsel denklem sistemi çözüldüğünde, (1.5) yaklaşım 

fonksiyonunun spektral katsayıları elde edilir. 

 Kronolojik olarak “spektral” kavramı ilk defa “Galerkin” kavramının özdeşi 

olarak kullanılmıştır. Zamanla, Galerkin metodunun, belirli noktalar ve ağırlık 

fonksiyonuna göre Gauss-integralleme tekniğiyle ilişkisi kullanılarak geliştirilen 

kolokasyon metodu, “pseudo-spektral” (sanki-spektral; sıralama tabanlı spektral) 

metodu olarak literatüre girmiştir (Boyd, 2000).  

 Pseudo-spektral metot, problemin yapısından bağımsız olması ve kolay 

uygulanabilirliği ile oldukça sık kullanılan nümerik metotlardan biri olmuştur. Bunun 

yanında, metot ile elde edilen sonuçların doğruluğu, kolokasyon noktaları ve baz 

fonksiyonunun problemin doğasına en uygun şekilde seçimi ile mümkündür. Uygun baz 

kümesinin seçiminde birtakım kurallar göz önünde bulundurulur. En önemlisi ise,  

“geometri ya da uygulama bölgesi baz kümesini belirler” ilkesidir (Boyd,2000). 

Örneğin, bilindiği gibi     1, cos , sin ,...nx nx  Fourier açılımları cinsinden seçilecek 

baz fonksiyonları ailesi periyodiktir. Dolayısıyla, bu aile, periyodik davranış sergileyen 

problemlerin çözümü için oldukça uygun baz alternatifi olacaktır (Boyd,2000; Canuto 

ve ark,206; Agarwal ve O’Regan, 2009). Seçilecek baz kümesine göre de kolokasyon 

noktaları belirlenir. Taylor, Chebyshev, Legendre ve Fibonacci polinomları ise en sık 

kullanılan baz fonksiyonları arasındadır.  

Chebyshev polinom ailesinin baz fonksiyonları olarak seçildiği nümerik metotlar 

birçok problemin çözümünde başarılı sonuçlar vermiştir. Tarihsel süreçte denklemler 
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için Chebyshev seri açılımına dayalı çözüm arayışı ile ortaya çıkan çalışmalar, spektral 

metotların gelişimine de öncülük etmiştir. Bu metotların gelişimi ise beraberinde 

alternatif baz fonksiyonlarının da kullanılabilirliği sonucunu doğurmuştur. Bu konudaki 

başlıca eserler şu şekilde sıralanabilir: 

Kolokasyon yaklaşımı ilk defa Slater (1934) ve Kantorovich (1934) tarafından 

kullanılmış olsa da (Guo,1998), ortogonal kolokasyonu ilk defa Lanczos (1938) 

kullanmıştır. 

Lanczos (1938) da yaptığı çalışmaları geliştirerek 1957 de yazdığı kitabında, 

diferansiyel denklemlerin çözümünü 0 1 ... n
ny a a x a x     formunda ele almış ve 

bilinmeyen katsayılarını elde etme problemi için, seri formdaki çözüm diferansiyel 

denklemi sağlayacak şekilde, iki tür yaklaşım yapılabileceği görüşünü savunmuştur. 

İlkinde, bir küçük terimle pertürbe edilmiş diferansiyel denklemde bağımsız değişkenin 

kuvvetlerine göre ya da polinomun kuvvetlerine göre bilinmeyen katsayılar eşitlenerek 

çözüme gidilir. İkincisinde ise seri form, denklemi çeşitli bağımsız noktalarda 

sağlayacak şekilde kurulur. Lanczos, bu metodunda, çözümü Chebyshev polinomları 

cinsinden aramamış, yalnızca Chebyshev serilerinin yakınsaklık özelliğinden 

faydalanmıştır. Lanczos sunduğu metodu, seçilmiş noktalar ve Tau ( ) metodu olarak 

adlandırmıştır.   

Clenshaw (1957), bir fonksiyonun ( )s . mertebeden ile  1s  . mertebeden 

türevlerine ait Chebyshev seri açılımlarındaki katsayıları arasındaki bağıntıyı formülize 

etmiştir. Bu bağıntı yardımıyla, sonlu aralıkta tanımlı, reel değerli, adi türevli 

diferansiyel denklem (ADD) lerin sayısal çözümü için Chebyshev seri açılımında 

bilinmeyen katsayıların sistematik olarak elde edilmesine yönelik bir metot sunmuştur. 

Bu metot, Lanczos’un (1957) bahsi gecen birinci tür yaklaşımını andırmakla birlikte, 

burada çözüm tamamen Chebyshev polinomları cinsinden elde edilir. 

Lanczos ve Clenshaw tarafından sunulan metotlar, Fox (1962) tarafından tekrar 

karşılaştırmalı olarak ele alınmıştır. Clenshaw’un metoduna dair görüşlerini belirtmiş ve 

metodun küçük dereceli polinomlar ile çalışılması durumunda kullanışlı olacağını 

göstermiştir.  

Clenshaw ve Norton (1963) ise Lanczos’un ikinci tip yaklaşım fikrinden 

hareketle, Picard metoduna ve sıralama prensibine dayanan iteratif bir prosedür 

vermiştir. Bu metot, birçok diferansiyel denklem türü için uygulanabilir olmakla birlikte 

işlem yükünü arttırmıştır. 
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Wright (1964), ADD’ler için kolokasyon noktalarına dayalı 2 temel çözüm 

metodu tanıtmıştır. Bunlardan birincisini Picard varlık teoreminden hareketle geliştirmiş 

olup, ikincisinde diferansiyel denklemin lineerleştirilmesi formunu kullanmıştır. Çözüm 

sonlu Chebyshev serileri cinsinden ele alınmış, metoda ait özellik ve uygulamaları 

verilmiştir. Kolokasyon noktalarının tanım aralığındaki yerlerini, rezidüyü küçültecek 

şekilde seçilmesi gerektiğini ortaya koymuştur.  

Scraton (1965), Clenshaw’un metodunu geliştirerek, değişken katsayılı ADD’de, 

değişken katsayıları temsil eden fonksiyonları da seri forma dahil eden bir metot 

sunmuştur. 

Fox ve Parker (1968) tarafından sunulan kitapta, polinomal yaklaşım teorisi, 

interpolasyon ve sürekli ve ayrık halde en küçük kareler yaklaşımı gibi nümerik analizin 

başlıca konuları Chebyshev polinomları ile yeniden ele alınmış, uygulamalarla 

desteklenmiştir. Yine Chebyshev polinomlarının kullanıldığı Tau ve seçilmiş noktalar 

metotları uygulamalı olarak verilmiştir. Chebyshev polinomlarının ortogonalliği, 

katsayılar arasındaki integral ilişkileri gibi birçok temel özelliğinde en sade biçimde 

sunulduğu bu kitap Chebyshev polinomlarının nümerik analize entegrasyonu üzerine 

temel bir kaynak eserdir. 

Oliver (1969),  ADD’lerin Chebyshev seri çözümleri için hata tahmini tekniğini 

tanıtmıştır. 

KDD’ler için spektral metotların kullanılması 1970’li yıllarda yaygınlaşmaya 

başlamıştır. Bu alandaki ilk çalışmalar, Kreis ve Oliger (1972) ve Orszag (1972) 

tarafından sunulan pseudo-spektral metot uygulamalarıdır (Guo,1998). 

Basu (1973), Chebyshev polinomları yardımıyla, iki değişkenli Chebyshev 

polinom ailesini tanıtmıştır. Tek değişkenin sahip olduğu ortogonallik ve seri açılım 

gibi temel özelliklerin iki değişkenli Chebyshev polinomları için de geçerli olduğunu 

göstermiş ve bir problem çözümü için tanıtılan polinomu kullanmıştır. 

Gottlieb ve Orszag (1977), yaklaşım teorisi ve yakınsaklık teorisini özetleyerek 

spektral metotların teorik altyapısını sunmuş ve nümerik analizlerini yapmışlardır. 

Ayrıca galerkin, tau ve kolokasyon metotlarını, özel kısmi türevli denklemlere 

uygulamış ve karşılaştırmalı sonuçları tablo ve grafiklerle desteklemişlerdir. Teorik ve 

uygulamalı olarak hazırlanan bu kitap, spektral metotlar konusunda temel kaynak 

eserler arasındadır. 

Horner (1982), eliptik tipte kısmi diferansiyel denklemlerin çözümlerinde çift 

değişkenli Chebyshev seri metodunu kullanmıştır (Doha,1992). 
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Doha (1992), ortogonal Chebyshev polinomlarının tensör çarpımını birden çok 

değişkenli fonksiyonlara yaklaşım için kullanmıştır. Basu (1973) tarafından tanımlanan 

iki değişkenli Chebyshev polinomlarının KDD çözümlerinde spektral metotları ile 

kullanılabilmesi için sonsuz türevlenebilir çift değişkenli fonksiyon ve türevine ait seri 

açılımlardaki bilinmeyen katsayıları arasındaki rekürans bağıntısını vermiştir. Poisson 

denkleminin çözüm fonksiyonunu tau metodu ile araştırmıştır. Ayrıca, üç değişkenli 

Chebyshev polinomunu tanıtmış ve üç değişkenli fonksiyon ve türevlerinin seri 

açılımlarındaki katsayıları arasındaki bağıntıyı da vermiştir. 

Bilgisayar programlarının gelişimiyle spektral metotların da uygulamaları daha 

pratik hale gelmiş ve bu durum lineer ve lineer olmayan birçok problemin çözümünde 

sıklıkla tercih sebebi olmuştur. 

Lineer diferansiyel denklemlerin çözümü için, Pseudo-spektral uzantılı 

Chebyshev matris metodu, Sezer ve Kaynak (1996) tarafından tanıtılmıştır. Problemlere 

uygulanacak çözüm prosedürünün kullanışlı olması ve bilgisayar programları 

yardımıyla kısa sürede oldukça başarılı çözümlerin elde edilmesi, bu metoda ilgiyi 

arttırmıştır. Metodun tanıtıldığı tarihten günümüze, birçok problem, matris metodu 

kullanılarak yeniden ele alınmıştır.  Metodun uygulandığı Riccati denklemi (Gülsu ve 

Sezer, 2006), lineer Fredholm integro-diferansiyel denklemleri (Baykuş ve Sezer , 

2011), yüksek mertebeden kesirli diferansiyel denklem sistemleri (Khader ve ark., 

2013), gecikmeli diferansiyel denklemleri (Yüzbaşı ve ark., 2013) ve lineer Volterra 

integral denklem sistemleri (Mirzaee ve Bimesl, 2014) örnek olarak verilebilir.  

Chebyshev polinomlarının temel özelliklerinin çok değişkenli durumlara 

genişletilmesine yönelik çalışmalar Fox ve Parker (1968), Basu (1973), Doha (1992) ve 

Mason ve Handscomb (2003) tarafından sunulmasının sonrasında kısmi türevli 

diferansiyel denklemler için çift değişkenli Chebyshev polinomlarının kullanıldığı 

matris metotları Keşan (2003) ve Akyüz-Daşcıoğlu (2009) tarafından tanıtılmıştır.  

Ne var ki, Chebyhev polinomlarının  1,1  aralığı üzerinde ortogonal 

polinomlar olmaları, bu polinomların yalnızca  1,1  tanım aralığındaki problemler 

üzerine yapılan çalışmalarda kullanılabilir kılmıştır. Dolayısıyla, doğal olarak daha 

geniş aralıklarda ve özel olarak sınırsız aralıklarda tanımlı problemlere Chebyshev 

yaklaşımı yapılamayacaktır. Bu kısıtlamayı ortadan kaldırmak için, araştırmacılar 

tarafından Chebyshev polinomları üzerinden çeşitli dönüşümlerle yeni polinom aileleri 

geliştirilmiştir.  
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Boyd (1987),  negatif olmayan reel eksen üzerinde, bir alternatif olarak, rasyonel 

Chebyshev polinomları olarak adlandırılan polinom ailesini ve temel özelliklerini 

tanıttı. Rasyonel Chebyshev polinomları  2 0,L  da ortogonaldir (Guo ve ark., 2002). 

Negatif olmayan reel eksende tanımlı yüksek mertebeden adi türevli diferansiyel 

denklemlerin çözümü için, Parand ve Razzaghi (2004) rasyonel Chebyshev Tau 

metodunu, Sezer ve ark. (2011) ise rasyonel Chebyshev kolokasyon metodunu 

sunmuşlardır.  

Tarafımızdan (Kaya ve ark., 2011),  2 , L  da ortogonal olan eksponansiyel 

Chebyshev fonksiyonları tanıtılmış ve reel eksen üzerinde tanımlı adi türevli 

denklemlerin çözümü için Eksponansiyel Chebyshev fonksiyonları ile Tau ve 

kolokasyon metotları geliştirilmiştir.  

Ayrıca, tarafımızdan (Koç ve ark., 2012; Koç ve ark., 2013) bölge dönüşümüne 

gerek kalmaksızın reel eksen üzerindeki herhangi kapalı aralıkta tanımlı sınır değer 

problemlerine başarılı nümerik çözümler veren kullanışlı bir metot önerilmiştir. 

Çalışmada, (1.8) de verilen kolokasyon algoritmasının kullanıldığı çözüm prosedürü, 

Fibonacci polinomları cinsinden seri açılım üzerine kurulmuştur.  Genelleştirilmiş 

pantograf denklemleri için de Fibonacci polinomları cinsinden çözüm elde edilmiştir 

(Koç ve ark., 2014).  

Tez kapsamında, reel düzlem ve alt bölgelerinde tanımlı problemlerin pseudo-

spektral çözümü için, (1.8) de verilen kolokasyon algoritmasının kullanıldığı iki metot 

tanıtılacaktır. Metotlarda uygulanacak temel algoritmalar ortak olmakla birlikte, 

problemin bölgesine göre seçilecek baz fonksiyonuna göre çözüm prosedürü 

şekillenecektir.  

Bu doğrultuda,   , : ,x y x y       üzerindeki bir düzlemsel bölgede 

tanımlı problemlerin çözüm algoritmasında, çift değişkenli eksponansiyel Chebyshev 

fonksiyonları olarak adlandırılacak alternatif bir baz fonksiyonu kullanılacaktır. İki 

değişkenli Chebyshev polinomlarının tanım bölgesini reel düzleme taşıyan bir 

dönüşümle tanımlı bu baz fonksiyonu, eksponansiyel Chebyshev fonksiyonları 

yardımıyla kurulacaktır. Çift değişkenli eksponansiyel Chebyshev fonksiyonlarının 

ortogonallik gibi temel özellikleri de araştırılacaktır.  

        , : , , ,x y x y a b c d        bölgesinde tanımlı problemlerin 

çözüm algoritmasında ise bölge dönüşümüne ihtiyaç duymadan doğrudan 
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kullanılabilecek bir baz fonksiyonu seçilecektir. Fibonacci polinomlarının reel eksende 

tanımlı olması sebebiyle, bu baz, çift değişkenli bir polinom ailesi olarak Fibonacci 

polinomları yardımıyla kurulacaktır.  

Son olarak, belirlenen baza göre (1.8) algoritmasının probleme uygulanmasıyla 

elde edilecek lineer denklem sistemi, matris denklemlerine dönüştürülecektir. Bu 

dönüşüm esnasında türev işlemleri operasyonel matrisler ile temsil edilecektir. Çözüm 

fonksiyonunda aranan katsayılar ise bir vektörel form ile temsil edilecektir. Böylece 

oluşturulacak cebirsel denklemin çözümü aranacaktır. 

Tez kapsamında tanıtılacak metotların temel çalışma prensibi olan problemin 

cebirsel sisteme dönüştürülmesi algoritması, (Akyüz-Daşcıoğlu, 2009) çalışmasında 

verilen çözüm algoritmasıyla benzerlik gösterir. Ancak, bahsedilen çalışmada geçen 

metotla yalnızca    1,1 1,1    tanım bölgesindeki problemler için başarılı çözümler 

elde edilebilir. Dar uygulama alanı oluşu metodun en büyük dezavantajıdır. Tezde 

tanıtılacak baz fonksiyonları ile yapılandırılacak metotlarla, reel düzlemin herhangi alt 

bölgesinde tanımlı herhangi bir lineer kısmi diferansiyel denkleme çözüm aranabilir.  
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2. TEMEL KAVRAMLAR 

  

Bu bölümde tezde tanıtılacak metotların dayandığı temel yapılar ile kullanılan 

kavramlara ait özet bilgiler, literatürde mevcut olan kitap, makale vs. eserlerinden 

faydalanılarak verilecektir. 

 

2.1. Hilbert Uzayı ve Ortogonallik 

 

Nümerik analizde, bir nümerik çözümün gerçek çözüme olan yakınlığının test 

edilmesine ihtiyaç duyulur. Bunun için ise yaklaşımla gerçek çözüm arasındaki farkı 

nicel olarak ortaya koyacak ölçülere ihtiyaç duyulur. Örneğin vektör uzayındaki bir 

vektöre ait bir norm istenen ölçüyü sağlayabilir. Seçilecek norma göre elde edilecek 

hata düzeyleri, metodun duyarlılığını sergiler. Bu yüzden norm kavramı ve bu kavramı 

ortaya koyan yapılar, (Kreyszig, 1989; Kreyszig, 2006; Atkinson ve Han, 2009) 

çalışmalarından faydalanılarak kısaca aşağıda tanıtılacaktır. Ayrıca, tez kapsamında 

tanıtılacak metotlara baz teşkil edecek fonksiyon aileleri Hilbert uzayından 

seçileceğinden, Hilbert uzayı ve ortogonallik kavramı da bu kısımda verilecektir. 

 

Tanım 2.1.1. (Metrik uzay) X  boş olmayan bir küme olmak üzere, her , , Xx y z  için 

m.1.  , 0d x y    

m.2.  , 0d x y x y     

m.3.    , ,d x y d y x   

m.4.      , , ,d x y d x z d z y     

aksiyomlarını sağlayan : X Xd     fonksiyonuna X  üzerinde bir metrik denir. X  

üzerinde bir metrik tanımlanmasıyla oluşan  X,d  yapısına metrik uzay denir.  

Verilen bir küme üzerinde farklı metrikler kullanılarak çeşitli metrik uzaylar 

elde edilebilir (Kreyszig,1989). 

 



 

 

12

Örnek (Reel eksen  ): Tüm reel sayıların kümesi üzerindeki genel metrik 

 ,d x y x y               (2.1) 

şeklinde tanımlıdır. 

Örnek (İki boyutlu Euclidean düzlemi 2 ):   1 2,x   ,  1 2,y    gibi reel sayı 

çiftlerinden oluşan bir küme üzerindeki Euclidean metriği 

       2 2
1 1 2 2, 0d x y                   (2.2) 

şeklinde tanımlıdır. 

Örnek (Sürekli fonksiyonlar uzayı  ,a bC ):  t , bir bağımsız değişken olmak üzere, 

reel değerli ve  ,J a b  üzerinde tanımlanmış sürekli fonksiyonlar uzayındaki 

herhangi iki    ,x t y t  fonksiyonlarının üzerinde  

     , max
t J

d x y x t y t


              (2.3) 

metriği tanımlıdır. 

Örnek (Sınırlı fonksiyonlar uzayı  B A ): Verilen bir A  kümesi üzerinde tanımlı ve 

sınırlı fonksiyonlardan oluşan  B A  için  

     , sup
t A

d x y x t y t


              (2.4) 

metriği tanımlıdır. Burada, metrik aksiyomlarından üçüncüsü kullanılarak 

           
       sup sup

t A t A

x t y t x t z t z t y t

x t z t z t y t
 

    

   
         (2.5) 

eşitsizliği elde edilir.  
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Tanım 2.1.2. (Vektör uzayı) Boş olmayan bir X  kümesi ve K  reel ya da kompleks 

sayılar cismi verilsin.  X,   değişmeli grup ve  , , .K  reel ya da kompleks sayılar 

cismi olmak üzere, : X X X   , : X X  K  dönüşümleri ile   ,a bK  ve   

, Xx y  için 

v.1. Xa x   

v.2.    a b x ab x     

v.3.  a b x a x b x        

v.4.  a x y a x b y        

v.5. e x x   , ( e , K  cisminin birim elemanı) 

aksiyomları sağlanıyorsa X  kümesine K  cismi üzerinde bir vektör uzay denir 

(Kreyszig,1989).    

 

Tanım 2.1.3. (Komşuluk)   X,d  metrik uzayında, bir a  noktasına uzaklığı  ’dan 

küçük olan noktaların kümesine, a  noktasının  -komşuluğu denir.  

 

Tanım 2.1.4. (Cauchy dizisi)  nx ,  X, d  metrik uzayında bir dizi olmak üzere, eğer 

her 0   ve her ,m n N  için,  ,m nd x x   olacak şekilde en az bir  N N   varsa, 

bu  nx  dizisine Cauchy dizisi denir.  

 

Tanım 2.1.5. (Tam uzay) Bir  X,d  metrik uzayındaki her Cauchy dizisi yakınsak 

(yani, X ’de limit değeri mevcut) ise bu metrik uzaya tamdır denir.  

 

Tanım 2.1.6. (Normlu uzay) Bir X  vektör uzayı üzerinde, norm ile bir metrik 

tanımlanmasıyla oluşan uzaya normlu uzay denir ve  X, .  notasyonu ile ifade edilir. 

X  üzerinde tanımlı bir norm, her Xv  deki değeri v  şeklinde reel değerli bir 

fonksiyondur. X  üzerinde, her , Xu v  ve her  K  için  



 

 

14

n.1. 0v    

n.2. 0 0v v    

n.3. v v    

n.4. u v u v     

aksiyomları gerçeklenir (Kreyszig,1989).  

 

Tanım 2.1.7. (Banach uzayı) Eğer X  normlu uzayı, norm tarafından tanımlanan 

metriğe göre tam ise bu normlu uzaya Banach uzayı denir (Kreyszig,1989). 

Örnek: a b      ve  ,J a b  olmak üzere, sürekli fonksiyonlar uzayı  ,a bC , 

 max
t J

x x t


               (2.6) 

normu ile bir Banach uzayıdır. 

 

Örnek:  , n  de bir bölge, 1 p    olmak üzere   bölgesi üzerinde tanımlı, reel 

değerli, mutlak değerinin .p  kuvveti Lebesgue anlamında integre edilebilen yani, 

  p
v x dx



   

eşitsizliğini sağlayan, ölçülebilir  v x  fonksiyonlarının uzayı  p L ’dir.  p L  

üzerinde 

 
1/ p

p

p
v v x dx



 
  
 
              (2.7) 

normu tanımlıdır ve bu uzay bir Banach uzayıdır. 

 

Tanım 2.1.8. (İç çarpım uzayı) Üzerinde iç çarpım tanımlanmış bir X  vektör uzayına 

iç çarpım uzayı denir. X  vektör uzayındaki iç çarpım, X X den K  cismine tanımlı bir 
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dönüşüm olup x  ve y  vektörlerinin görüntüsü ,x y  şeklindedir. Ayrıca, her 

, , Xx y z  vektörleri ve her  K  skaleri için, iç çarpım ile 

i.1. , z , z , zx y x y    

i.2. , ,x y x y   

i.3. , ,x y y x  

i.4. , 0x x  ; , 0 0x x x    

aksiyomları sağlanır (Kreyszig,1989). 

 

Örnek : N   için NP , en yüksek N . dereceden cebirsel polinomların uzayı olsun ve 

ağırlık fonksiyonu  : ,I a b     olarak verilsin. 

    
1/2

2
b

a

v v x x dx



 

  
 
             (2.8) 

Euclidean normu ile  

   2 : Lebesgueölçülebilir veI v I v v    L          (2.9) 

uzayında tanımlı u  ve v  şeklinde iki fonksiyonun  x  ağırlık fonksiyonuna göre iç 

çarpımı, 

( )
, ( ) ( ) ( )

b

w x
a

u v u x v x x dx
 

  
 
          (2.10) 

şeklinde tanımlıdır.   

 

Tanım 2.1.9. (Hilbert uzayı) Bir iç çarpım uzayı, iç çarpımdan üretilen metriğe göre 

tam ise bu iç çarpım uzayına Hilbert uzayı denir. 
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Bir iç çarpım, üzerindeki vektör uzayında aynı zamanda ,x x x  şeklinde 

bir norm ve dolayısıyla  , ,d x y x y x y x y      şeklinde bir metrik tanımlar. 

Buradan açıktır ki, her iç çarpım uzayı bir normlu uzay ve her Hilbert uzayıda bir 

Banach uzayıdır (Kreyszig,1989). 

 

Örnek : Her  , ,f g a bC  için      : , 0,w x a b    ağırlık fonksiyonu olmak üzere  

     ,
b

a

f g f x g x w x dx           (2.11) 

dönüşümü  ,a bC  üzerinde bir iç çarpımdır. Bu iç çarpımla birlikte 

     2: , ,
b

a

S f f a b f x w x dx
 

    
 

        (2.12) 

şeklinde tanımlanan küme bir Hilbert uzayıdır ve  2 ,w a bL  ile gösterilir. 

 

Tanım 2.1.10. (Ortogonallik) Bir iç çarpım uzayının iki vektörü bir birine dik ise, yani, 

, 0x y  ise bu iki vektör ortogonaldir denir. Eğer bu vektörlerin normları da 1 ise bu 

vektörler ortonormal vektörler olarak adlandırılır. 

Ortogonal (veya ortonormal) elemanlardan oluşan bir küme sayılabilirse, 

elemanlar indislenerek küme  nx  dizisi şeklinde ifade edilebilir ve bu küme ortogonal 

dizi (veya ortonormal dizi) olarak adlandırılır. 

 

Lemma 2.1.1. Ortonormal bir küme lineer bağımsızdır (Kreyszig,1989).  

 

Örnek :    1 2, ,...,j nx       ve    1 2, ,...,j ny       olmak üzere, n  uzayı, 

üzerinde tanımlanan 

1 1 2 2, ... n nx y                   (2.13) 

iç çarpımına göre bir Hilbert uzayıdır. Buradan 
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 1/2 1/2
1 2, ... nx x x                 (2.14) 

normu ve  

     
1/21/2 2 2

1 1, , ... n nd x y x y x y x y                     (2.15) 

Euclidean metriği elde edilir. 

Ortogonallik tanımında geçen ortogonal kümenin elemanları, bir Sturm-

Liouville probleminden elde edilecek öz fonksiyonlardan seçilebilir. Bu durumda küme, 

ortogonal polinom ailesi olarak adlandırılır. 
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2.2. Sturm-Liouville Problemi ve Ortogonal Polinom Aileleri 

 

Bu bölümde, özfonksiyonları ortogonal olan Sturm-Liouville problemi ve bazı 

ortogonal polinomlara ait tanımlar verilecektir. Ayrıca, tez kapsamında tanıtılacak ilk 

metoda baz teşkil edecek fonksiyonların üretilmesinde kullanılacak,  2 ,w  L  de 

ortogonal olan eksponansiyel Chebyshev polinomları da yine bu bölümde verilecektir. 

 

Tanım 2.2.1. (Sturm-Liouville Problemi)  ,a b  aralığındaki her x  için, reel değerli 

  0p x  ,   0w x  ,  p x  ve  q x  sürekli fonksiyonlar,   değeri x den bağımsız bir 

parametre, 1A , 2A , 1B  ve 2B  reel sabitleri için 2 2
1 2 0A A   ve 2 2

1 2 0B B   olmak 

üzere, 

   

   

1 2

1 2

0

0

A y a A y a

B y b B y b

 

 

                                                                                                (2.16) 

sınır koşulları altında 

      0d dyp x q x w x y
dx dx

        
                                                                       (2.17) 

ikinci mertebeden homojen diferansiyel denklemi ile verilen probleme Sturm-Liouville 

problemi (SLP) denir (Ross, 1984). 

Tanımı verilen problem, regüler tipte SLP’dir. Ayrıca, problemde geçen 

değişken katsayıların ve sınır şartlarının özel durumlarına göre Singüler SLP ve 

periyodik SLP olarak sınıflandırmaları vardır. Bu sınıflandırmaların detaylarından 

bahsedilmeyecektir. 

Herhangi   parametresi için yukarıdaki sınır koşulları ile verilen problemin bir 

çözümü 0y  ’dır. Problem,  ’nın bazı değerleri için  ny y x  biçiminde sıfırdan 

farklı çözümlere sahip ise bu parametrelere özdeğer (karakteristik değer), bu 

özdeğerlere karşılık gelen  ny x  fonksiyonlarına da özfonksiyon (karakteristik 

fonksiyon) denir. Problem sonsuz sayıda n  özdeğere sahiptir. Bu özdeğerler reel olup 

ve n    için n    dur. Bu özelliği ile özdeğerler, bilim adamları tarafından reel 
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olması gereken titreşim, enerji gibi fiziksel niceliklerle ilişkilendirilirler (Kreyszig, 

2006).   

Sturm-Liouville probleminin özdeğerlerinin en önemli özelliği ortogonal 

olmalarıdır. Bu özellik seri açılım formundaki çözümlerin uygulamalarını hızla 

artırmıştır.  

 

Tanım 2.2.2. (Özfonksiyonların ortogonalliği) Sturm-Liouville probleminin öz 

fonksiyonlarından oluşan 1,2,...n   için   n x  fonksiyonlar ailesinin herhangi farklı 

iki üyesi  i x  ve  j x , [ , ]a b  aralığında ağırlık fonksiyonu  w x ’e göre 

ortogonaldir. Yani, bu öz fonksiyonlar  

 ( ) ( ) ( ) 0,
b

i j
a

x x w x dx i j              (2.18) 

ortogonallik bağıntısını gerçekler. Dolayısıyla    0n n
x


 ailesine ortogonal set 

(ortogonal sistem) adı verilir.  n x  özfonksiyonunun normu ise 

 2( ) ( ) ( )
b

n n
a

x x w x dx              (2.19) 

bağıntısı ile tanımlanır.  

Ayrıca, ( )n x , ( 1,2,...n  ) fonksiyonları  ,a b  aralığı üzerinde ortogonal ve 

norm değerleri 1 oluyorsa bu fonksiyonlar ailesine ortonormal fonksiyonlar ailesi denir.  

Böylece, ortonormal bir ailenin fonksiyonları için  

 
0,

( ) ( ) ( )
1,

b

i j
a

i j
x x w x dx

i j
 


  

           (2.20) 

dir. 

 

Teorem 2.2.1. i . dereceden i  polinomlarından oluşan    0i i
x


 ailesi, bir  ,a b  

aralığı üzerinde negatif olmayan  w x  ağırlık fonksiyonuna göre ortogonal ise, her 

0n   için n ’nin  ,a b  üzerinde n  reel ayrık kökü vardır.  
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2.2.1 Tek değişkenli ortogonal polinomlar 

 

Chebyshev, Legendre, Laguerre gibi polinom aileleri de farklı bileşenlerden 

oluşan Sturm-Liouville problemlerinin özfonksiyon aileleridir. Literatürde, birinci çeşit 

Chebyshev polinomları başta olmak üzere, ortogonal özfonksiyon ailelerinden 

faydalanılmış birçok nümerik analiz çalışması mevcuttur.  

 

Tanım 2.2.3. (Birici çeşit Chebyshev polinomu) cosx   olmak üzere, n . dereceden 

birinci çeşit Chebyshev polinomu  

  cos , 0,1,...nT x n n                                            (2.21) 

bağıntısı ile tanımlıdır (Fox ve Parker,1968).  

 Chebyshev polinomlarının kx  kökleri, 

  0n kT x     2 1cos , 1, 2,...,
2k
kx k n

n


         (2.22) 

ve kritik noktaları  cos , 0,1,...,k
kx k n
n


   dir (Philips, 2003).   

Chebyshev polinomları için rekürans bağıntısı, (2.21) eşitliği yardımıyla elde 

edilecek 

1( ) cos(( 1) ) cos( ) cos sin( )sinnT x n n n           

1( ) cos(( 1) ) cos( ) cos sin( )sinnT x n n n           

denklemlerinin taraf tarafa toplanmasıyla, 

1 1( ) 2cos( )cos ( )n nT x n T x                (2.23) 

1 1( ) 2 ( ) ( )n n nT x xT x T x              (2.24) 

şeklinde yazılabilir. 

 I : 1 1T x x     üzerinde negatif olmayan, integrallenebilir ağırlık 

fonksiyonu 
2

1( )
1

Tw x
x




 olmak üzere,  
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 
1

2 2

1

I : I : ( ) ( )
Tw T T Tf f x w x dx



 
    
 

L          (2.25) 

uzayındaki iç çarpım ve norm sırasıyla, 

 
1

1

, ( ) ( )
T

Twf g f x g x w x dx


           (2.26) 

1/21
2

1

( ) ( )
T

Tw
f f x w x dx



 
  
 
           (2.27) 

olarak verilmiştir (Quarteroni ve ark., 2007). 

( )Tw x  ağırlık fonksiyonu ve (2.26) de verilen iç çarpıma göre ortogonal olan 

Chebyshev polinomlarının ortogonallik bağıntısı ise, 

2
cos arccos

1
dxx x d

x
       


 

1 0

2
1 0

0,   
( ) ( )

cos( ) cos( ) cos( ) cos( ) ,   0
1

,   0
2

n m

m n
T x T x dx n m d n m d m n

x
m n





      



 


     
 

  


      (2.28) 

dir. Ayrıca n  için  nT x ,  

 2 2(1 ) ( ) ( ) 0n n nx T x xT x n T x            (2.29) 

Sturm-Liouville denkleminin öz fonksiyonlarıdır.  

 

Tanım 2.2.4. (Rasyonel Chebyshev polinomu) Birinci çeşit Chebyshev polinomu 

 nT y  ve 1
1

xy
x





 olmak üzere, rasyonel Chebyshev polinomları, 

   n nR x T y   

bağıntısı ile tanımlıdır (Guo ve ark., 2002).  
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 0 1
1( ) 1,   ( )
1

xR x R x
x


 


 olmak üzere 1n   için rasyonel Chebyshev 

polinomlarını veren rekürans bağıntısı 

n+1 1 n n-1R ( ) 2 ( ) ( ) ( )x R x R x R x           (2.30) 

dir.  

 I : 0R x x     üzerinde negatif olmayan, integrallenebilir ağırlık 

fonksiyonu 
 
1( )

1Rw x
x x




 olmak üzere,  

 2 2

0

I : I : ( ) ( )
Rw R R Rf f x w x dx

 
    
 

L         (2.31)  

uzayındaki iç çarpım ve norm sırasıyla, 

 
0

, ( ) ( )
R

Rwf g f x g x w x dx


           (2.32) 

1/2

2

0

( ) ( )
R

Rw
f f x w x dx

 
  
 
                    (2.33) 

olarak verilmiştir. 

(2.32) de verilen iç çarpıma göre ortogonal olan, IR ’da tanımlı rasyonel 

Chebyshev polinomlarının ortogonallik bağıntısı ise, 

 
0

0,   
( ) ( ) ,   0

,   0
2

n m R

m n
R x R x w x dx m n

m n







 


  

  


          (2.34) 

dir (Guo ve ark, 2002).  

 

Tanım 2.2.5. (Eksponansiyel Chebyshev fonksiyonu) Birinci çeşit Chebyshev 

polinomu  nT y  ve 1
1

x

x

ey
e





 olmak üzere, eksponansiyel Chebyshev fonksiyonları, 
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   n nE x T y   

bağıntısı ile tanımlıdır (Kaya ve ark., 2011).  

 0 1
1( ) 1,   ( )
1

x

x

eE x E x
e


 


  olmak üzere 1n   için eksponansiyel Chebyshev 

fonksiyonları 

n+1 1 n n-1( ) 2 ( ) ( ) ( )E x E x E x E x           (2.35) 

rekürans bağıntısı yardımıyla elde edilebilir.  

   0

N
nE x  eksponansiyel Chebyshev fonksiyonları ailesi,  

2
2

24 ( ) 1 ( ) ( ) 0
( 1) 1

x

n n nx x

e E x E x n E x
e e

        
       (2.36) 

Sturm-Liouville denkleminin öz fonksiyonlarından oluşur. 

 I :E x x      üzerinde ( )
1

x

E x

ew x
e




 negatif olmayan, integrallenebilir, 

ağırlık fonksiyonu olmak üzere  

 2 2I : I : ( ) ( )
Ew E E Ef f x w x dx





 
    
 

L         (2.37) 

uzayındaki iç çarpım ve norm sırasıyla, 

 , ( ) ( )
E

Ewf g f x g x w x dx




                            (2.38) 

1/2

2 ( ) ( )
E

Ew
f f x w x dx





 
  
 
          (2.39) 

olarak verilmiştir. 

IE  üzerinde, eksponansiyel Chebyshev fonksiyonlarının ,
Ew

f g   iç çarpıma 

göre ortogonallik bağıntısı, 
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0,   
( ) ( ) ,   0

1
,   0

2

x

n m x

m n
eE x E x dx m n

e
m n









 


  
 

  


          (2.40) 

dir.  

 

2.2.2. Çok değişkenli ortogonal polinomlar 

 

Tanım 2.2.6. (Tensör çarpım)  1,..., px xx  olmak üzere,  ’de tanımlı aralıklar 

1 2, ,..., pI I I  için 1 1x I , 2 2x I ,  … , p px I  ise x ’dir ve  

1 2 ... , ( )p
pI I I                                                                                     (2.41)  

tensör çarpımdır. 

 

Tanım 2.2.7. (Çok değişkenli ağırlık fonksiyonu)  Sırasıyla  ’deki 1 2, ,..., pI I I  

aralıklarında negatif olmayan tek değişkenli 1 2, ,..., pw w w  ağırlık fonksiyonlarının tensör 

çarpımı  

       1 1 2 2 ... p pw w x w x w xx          (2.42)   

olup  w x  de (2.41) de verilen bölgede bir ağırlık fonksiyonudur (Baudin ve Martinez, 

2013). 

 

Tanım 2.2.8. (Çok değişkenli  2
w L  uzayı) (2.42) de tanımlanan ağırlık fonksiyonu 

 w x  olmak üzere karesi integrallenebilir fonksiyonların uzayı  2
w L ’dir. Yani her 

 2
wg L  için        

1 2

2 2
1 2... ...

p

p
I I I

g w d g w dx dx dx

   x x x = x x  integrali sonludur. 

 

Tanım 2.2.9. Bir  2
wg L  fonksiyonunun Lebesgue normu 
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   2
2

g g w d


  x x x            (2.43) 

olarak tanımlıdır. 

 

Tanım 2.2.10. Herhangi  2, wg h L  fonksiyonlarının iç çarpımı, 

     ,g h g h w d


  x x x x           (2.44) 

şeklindedir.  

 

Tanım 2.2.11. (2.42) de tanımlanan ağırlık fonksiyonu  w x , tek değişkenli ortogonal 

polinomlar ailesi    k
i

ix

 ,     1 , 0,1, 2,... ,i ii   


     ve  

1

p
k

i
i

d 


  olmak 

üzere, d . dereceden çok değişkenli polinomu 

     
1

k
i

p

k i
i

x





 x ,   1,2,..., vep p
d d

p d
k P P

d
   

   
  

        (2.45) 

tensör çarpımı ile tanımlıdır. Bu tanıma göre verilen  k x  ve  l x  çok değişkenli 

polinomları ortogonaldir. Dolayısıyla (2.45) da tanımlanan fonksiyonlar aynı zamanda 

çok değişkenli ortogonal polinomları olarak adlandırılır (Baudin, Martinez, 2013). 

Birinci tip Chebyshev polinomlarından hareketle, iki değişkenli Chebyshev 

polinomları da tanıtılmıştır. 

 

Tanım 2.2.12. x  değişkenine göre .m  dereceden birinci çeşit Chebyshev polinomu 

 mT x  ve y  değişkenine göre .n  dereceden birinci çeşit Chebyshev polinomu  nT y  

olmak üzere iki değişkenli Chebyshev polinomu, 

     , ,m n m nT x y T x T y            (2.46) 

olarak tanımlıdır (Basu, 1973).  
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  , : 1 , 1T x y x y      üzerinde negatif olmayan integrallenebilir ağırlık 

fonksiyonu      2 2x, 1/ 1 1Tw y x y    olmak üzere iki değişkenli Chebyshev 

polinomları arasındaki ortogonallik, 

2

2

1 1 2

, ,
1 1

, 0

, 0 , 0
4

( , ) ( , ) ( , ) , 0, 0
2

ya da
0, 0

0, diğer tüm , , , değerleri.

i j k l T

i j k l

i k j l

T x y T x y w x y dx dy i k j l

i k j l
i j k l







 

    

    

    


    


                (2.47) 

bağıntısı ile verilmiştir.  
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2.3. Yaklaşım Teorisi ve Polinom İnterpolasyonu 

 

Bir fonksiyona başka bir fonksiyon ile yaklaşım sayısal analizin ana 

konularından biridir. F  fonksiyonlar uzayından seçilen bir  f x  fonksiyonuna uygun 

ve hemen hemene eşit  *
nf x  fonksiyonuna  f x  fonksiyonunun yaklaşım fonksiyonu 

denir. Bir fonksiyonun yaklaşım fonksiyonu elde etme problemi 3 temel süreçten 

oluşur. Bunlar, yaklaşımın formunun belirlenmesi, fonksiyonun yapısına uygun baz 

fonksiyonunun sınıfının seçimi ve son olarak yaklaşımın fonksiyona olan yakınlığını 

skaler olarak veren normun belirlenmesidir. En uygun seçimler kullanılarak başarılı bir 

yaklaşım elde edilebilir. 

Yaklaşım fonksiyonu, kullanım amacına bağlı olmakla birlikte, sıklıkla 

 *
0 1, , ,...,n nf x a a a  formunda ia ,   0 1i n  parametrelerine bağlı olarak seçilir ve 

seçilecek bir kritere göre de bu parametreler belirlenir. Yaklaşımın formu,  f x ’in 

muhtemel yaklaşım fonksiyonlarından oluşan bir A  ailesi tanımlar. Bir örneği, 

    *
0 1 ... n

n n nP f x p x a a x a x      A  

şeklinde tanımlı polinomlar ailesidir. A  ailesi, F  fonksiyonlar uzayının alt sınıfıdır 

( A F ).  

Yaklaşım fonksiyonunun, ia  parametrelerine doğrusal olarak bağlı olması 

durumunda, yaklaşım fonksiyonu önceden seçilen  i x  baz fonksiyonlarının doğrusal 

kombinasyonu olan 

           *
0 0 1 1

0
...

n

n n n i i
i

f x f x a x a x a x a x   


             (2.48) 

formunda seçilir. 

 Baz fonksiyonu olarak, tek terimliler  ix , trigonometrik fonksiyonlar, üstel 

fonksiyonlar, ortogonal polinomlar ve Fibonacci polinomları gibi basit fonksiyonlar 

seçilir. Fonksiyonun tanımlı olduğu bölge ya da aralık X  olmak üzere, baz 

fonksiyonlarının bağlı olduğu ailelerden bazıları 
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 XC   :  X  üzerinde sürekli fonksiyonlar 

 XL  :  X  üzerinde sınırlı fonksiyonlar 

 2 XL   :  X  üzerinde karesi integrallenebilir fonksiyonlar 

 XpL  :  X  üzerinde pL  integrallenebilir fonksiyonlar 

şeklindedir (Mason ve Handscomb,2003). 

Yaklaşım fonksiyonundaki parametrelerin belirlenmesinde kullanılan farklı 

kriterler vardır. En çok kullanılan kriterlerden biri yaklaşım eğrisinin verilen 

noktalardan geçmesi ve bu noktalarda fonksiyon ile yaklaşım fonksiyonunun ilk n  

türevinin birbirine eşit olmasıdır. Bu durumda yaklaşım eğrisine interpolasyon eğrisi 

denir. İkinci bir kriter, verilen noktalarda fonksiyon ile yaklaşım fonksiyonu arasındaki 

farkların karelerin toplamının en küçük olmasıdır. Bu kriter, en küçük kareler kriteri 

olarak adlandırılır. Diğer bir kriter ise fonksiyon ile yaklaşım fonksiyonu arasındaki 

farkların en büyük değerinin en küçük yapılmasıdır (Bakioğlu, 2004).  

Yaklaşım fonksiyonu probleminde kriterler kullanılırken,  f x  fonksiyonunun 

ayrık noktalarda  if x  şeklinde verilmesi ya da sürekli bir  f x  fonksiyonu şeklinde 

verilmesi durumları da göz önünde bulundurulur.  

Yaklaşım fonksiyonu *f ’in, yaklaşılacak fonksiyon f ’e olan yakınlığının 

skaler ölçüsünü norm belirler ve *f f  ile gösterilir. Yakınlığın skaler değerleri 

kullanılacak norm ile de ilişkilidir. Fonksiyon uzayları için seçilebilecek normlardan 

bazıları şu şekilde verilebilir (Mason ve Handscomb,2003):  

 

 L  norm (Sonsuz norm, Maksimum norm, Chebyshev normu) 

 max
a x b

f f f x
  

   

 2L  norm (En küçük kareler normu, Euclidean norm)  

    2

2

b

a

f f w x f x dx    
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 1L  norm (1-normu, Temel norm, Manhattan norm) 

   1

b

a

f f w x f x dx    

  pL  norm (Hölder norm) 

   
1

b pp

p
a

f f w x f x dx
 

   
 
 ,   1 p    

 Ağırlıklı minimaks norm  

   max
a x b

f w x f x
 

  

(  w x , negatif olmayan ağırlık fonksiyonu) 

 

Fonksiyonlar uzayı F , bir vektör uzayı olup üzerinde tanımlanan norma göre 

normlu vektör (lineer) uzaydır. 

Yaklaşım problemindeki fonksiyon sınıfı, yaklaşımın formu ve yaklaşımın 

yakınlık ölçüsü olan *f f  normu belirlendikten sonra yaklaşımın ölçüsünün kalitesi 

aşağıdaki üç tanımdan biri ile ifade edilir. 

 

Tanım 2.3.1. Normlu lineer uzayı F  de bir fonksiyon  f x  ve F ’in bir alt uzayı olan 

yaklaşım fonksiyonları ailesi A  olmak üzere, aşağıdaki tanımlamalar (Mason ve 

Handscomb, 2003) da verilmiştir.  

 

1.  İstenen mutlak doğruluk seviyesi 0   için 

*f f                                                                                                           (2.49) 

olacak şekilde bir  *f x   varsa,  *f x  ’e  A ’da bir iyi yaklaşımdır denir. 

 

2. A  daki her  *f x  yaklaşımı için, 
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* *
Bf f f f                                                                                                (2.50) 

eşitsizliğini gerçekleyecek şekilde bir  *
Bf x  varsa,  *

Bf x  yaklaşımına A ’da bir en iyi 

yaklaşımdır denir. 

 

3.   pozitif gerçel sayı ve  *
Bf x  yaklaşımı A ’da bir en iyi yaklaşım olmak 

üzere, 

 * *1N Bf f f f                                                                                      (2.51)  

eşitsizliğini gerçekleyen bir  *
Nf x  varsa,  *

Nf x  yaklaşımına A ’da   uzaklığında en 

iyiye yakın bir yaklaşımdır denir.  

Verilen (
1

. , 
2

. , .


 gibi) herhangi bir norma .   göre,  bir fonksiyon için 

(2.50) de tanımlanan en iyi yaklaşım, 

*

*minimise
f

f f



A

                                                                                                      (2.52)  

probleminin çözümüdür.  

 

2.3.1. Çok terimli interpolasyonu  

 

Yaklaşım fonksiyonunun, verilen noktalardan geçme ve verilen noktalarda 

türevlerinin eşitliği kriteri altında,   

  2
0 1 2

0
...

n
n i

n n i
i

p x a a x a x a x a x


              (2.53) 

şeklinde bir çok terimli olarak seçilmesi işlemine çok terimli interpolasyonu denir. 

İnterpolasyon çok terimlisinin bağlı olduğu ia  parametrelerinin belirlenmesi için, 1n  

ayrık noktada düzenlenmiş 1n  lineer denklemden oluşan 

   n k kp x f x ,       (  1 1 1k n  )                                                                         (2.54)  
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sistemini çözmek gerekir. (2.54) sistemi, ayrık noktalarda kurulduğundan bu sistemin 

katsayılar matrisinin determinantı 

 

2
1 1 1

2
2 1 2

2
1 1 1

1
1

det 0

1

n

n

i j
i j

n
n n

x x x
x x x

x x

x x x


 

 
 
     
  
 






    


        (2.55) 

olacaktır.   

 

Teorem 2.3.1.    ,f x a bC  olmak üzere,  ,a b  aralığında seçilen 1n  ayrık nokta 

için, bu noktalara karşılık gelen  kf x  değerleri ile kurulabilecek bir  np x  çok 

terimlisi vardır ve nP  ailesinde tektir (Mason ve Handscomb, 2003).  

 

2.3.2. Sürekli verilerde ortogonal özfonksiyon yaklaşımı 

 

 I :x a x b    üzerinde negatif olmayan, integrallenebilir bir fonksiyon 

 w x  ağırlık fonksiyonu olmak üzere,      ,
b

w
a

f g f x g x w x dx   iç çarpımına 

göre      2 2 2I : I ,
b

w w
a

f f x w x dx
 

     
 

L L   uzayı ve 1/2,w wf f f  normu 

tanımlansın. Bir 2
wf L  fonksiyonu  k x  ortogonal çok terimlilerinin kombinasyonu 

olarak 

   
0

k k
k

f x c x




                                                                                                      (2.56) 

seri formda yazılabilir. Burada  k x  fonksiyonlarına baz fonksiyonu denir.  En küçük 

kareler yaklaşım teorisinde yaklaşımın hatasının 2
wL  ’de minimum yapılması ilkesi ve 

ortogonallik bağıntılarından hareketle seri formda kc  parametreleri için 
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2

, k w
k

k w

f
c




  ,  0,1,...n                                                                                            (2.57) 

formülü elde edilir (Quarteroni,2007).   

Eğer baz fonksiyonu, ortonormal fonksiyon ailelerinden biri olarak seçilirse kc  

katsayılarını veren bağıntı, 

,k k wc f                                                                                                                 (2.58) 

bağıntısına indirgenir.  

 

2.3.3. Ayrık halde ortogonal özfonksiyon yaklaşımı 

 

 I :x a x b    üzerindeki 0 1, ,..., INx x x   noktaları için ayrık halde bir 

: If    fonksiyonu için interpolasyon fonksiyonu, ortogonal polinomları   0

N
r r


 ile 

   
0

N

f r r
r

p x a x


                                                                                                    (2.59) 

seri formda yazılır. 

Gauss integrali ile 0 1, ,..., INx x x   noktaları için ayrık halde iç çarpım  

     
0

,
N

k k kw
k

f g f x g x w x


                                                                                (2.60) 

ve ortogonallik bağıntıları  

     
0

, 0
N

i j i k j k kw
k

x x w x   


  , ( )i j                                                          (2.61) 

olarak tanımlıdır. Ayrık halde ortogonallik bağıntıları yardımıyla 

     2 2 2

0 0

N N

k k r r k
k r

w x f x a x
 

 
 

 
                                                                              (2.62) 
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hata değerinin minimum yapılması ilkesinden hareketle  ra  parametreleri, 

     

   
0

2

0

N

r k k k
k

r N

r k k
k

x f x w x
a

x w x













 , 0,1,...,r N                                                                (2.63) 

formülü ile belirlenir. 

 

2.3.4. Polinom türü yaklaşım teorisi 

 

Herhangi bir    ,f x a bC  fonksiyonuna .n  dereceden bir polinom yaklaşımı 

elde etmenin en basit yolu, fonksiyonun tanımlı olduğu aralığın alt aralıklarından uygun 

seçilmiş, bilinen 1n  ayrık noktadaki fonksiyon değerleri arasında interpolasyon 

kurmaktır. 

Klasik Weiestrass teoremi, sürekli fonksiyonlara polinom türü yaklaşımlar için 

temel prensiptir ve  f x  fonksiyonuna bir polinom ile istenen duyarlılıkta 

yaklaşılabileceğini gösterir (Atkinson, 1989). Dolayısıyla seçilen bir fonksiyonun tanım 

aralığında yeterince yüksek dereceden bir polinomla iyi bir yaklaşım elde 

edilebileceğini gösterir. 

 

Teorem 2.3.3. (Weiestrass Yaklaşım Teoremi) Bir    ,f x a bC fonksiyonu ve 

herhangi 0   olmak üzere, her  ,x a b  için    f x p x 


   olacak şekilde bir 

 p x  polinomu vardır.  

 

  - Normda en iyi yaklaşım 

0n   sabit sayı olmak üzere, bir    ,f x a bC  fonksiyonu için 

    inf
n

n q
f x p x f q

 
  

P
          (2.64) 

probleminden elde edilecek polinom,  -normda n . dereceden en iyi yaklaşımdır.  
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Teorem 2.3.4. Bir    ,f x a bC  fonksiyonu için, 

    min
n

n q
f x p x f q

 
  

P
          (2.65) 

eşitliğini gerçekleyen bir n np P  polinomu vardır (Süli ve Mayers, 2003). 

 nqP  polinomu   0 ... c n
n nq x c x    formunda yazıldığında istenen jc , 

0,..., nj   katsayıları, 

 

 
 

0

0,

,...,

max ...
n

n
nx a b

E c c f q

f x c c x




 

   
         (2.66) 

dönüşümü ile tanımlı    0 0: ,..., ,...,n nE c c E c c  fonksiyonunu mimimize edecek 

şekilde belirlenir. Böylece en iyi yaklaşım polinomu,    f x q x  hatasının maksimum 

değerini minimize eden polinomdur. Buradan hareketle  - normu altında en iyi 

yaklaşım polinomu, minimaks polinomu olarak da adlandırılır. 

 

Teorem 2.3.5.  ,a b  aralığı reel eksende sınırlı bir aralık olmak üzere, her  ,f a bC  

fonksiyonu,  ,a b  üzerinde tek bir minimaks polinomuna sahiptir (Süli ve Mayers, 

2003).      

 

2 -Normunda en iyi yaklaşım 

 2 ,f a bL  fonksiyonu için, 

2 2
inf

n
n q

f p f q


  
P

          (2.67) 

probleminden elde edilecek np  polinomu, 2 -normunda n. dereceden en iyi yaklaşımdır.  

  

Teorem 2.3.6. Her  2 ,f a bL  fonksiyonu için,  

2 2
min

n
n q

f p f q


  
P

  

ifadesini gerçekleyen tek bir n np P  polinomuna sahiptir (Süli ve Mayers, 2003). 
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Teorem 2.3.7. Bir n np P  polinomunun, bir  2 ,f a bL  fonksiyonu için 2 -

normunda n. dereceden en iyi yaklaşım olabilmesi, ancak ve ancak, nP  ailesindeki her 

elemanın nf p  ile ortogonal yani nq P  için , 0nf p q   olması durumunda 

mümkündür (Süli ve Mayers, 2003). 

 

Teorem 2.3.8. Bir  2 ,f a bL  fonksiyonunun 2 -normunda n. dereceden en iyi 

yaklaşımı,   0

n
i i


 ortogonal polinom ailesinin elemanları yardımıyla,  

0

n
B
n i i

i
p c 



              (2.68) 

formunda yazılabilir. Burada 
,
,

i
i

i i

f
c


 

   dir (Mason ve Handscomb, 2003).  

 

Teorem 2.3.9.    ,f x a bC  fonksiyonu ve bir  ,a b  aralığında negatif olmayan 

ağırlık fonksiyonu  w x ’e göre ortogonal olan polinomlar sistemi   , 0,1,...i x i   

olmak üzere eğer  f x  fonksiyonunun,  1n x  ’in köklerindeki interpolasyon 

polinomu  np x  ise, 

           
2 2

2
lim lim 0

b

n nn n
a

f x p x w x f x p x dx
 

          (2.69) 

dır (Mason ve Handscomb, 2003).  

 

Tanım 2.3.4. Bir   , : 1 1; 1 1x y x y         üzerinde  ,f x y  iki değişkenli 

fonksiyonu tanımlansın. 0 0 1x y    ve 1n nx y    olmak üzere 0,1,...,r n   için 

1n  değerli  rx  ve  ry  dizileri monoton azalmayan olsun. 0n   olmak üzere olası 

her  rx  ve  ry  dizileri için, 

   1 11
1

, ,
n

r r r r
r

f x y f x y 


     
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   1 12
1

, ,
n

r n r r n r
r

f x y f x y   


      

toplamları sınırlı ise  ,f x y  fonksiyonu,   üzerinde sınırlı varyasyonudur (Mason ve 

Handscomb, 2003). 

 

Teorem 2.3.10. Eğer bir  ,f x y  fonksiyonu, sürekli,  1 1; 1 1S x y        

üzerinde sınırlı varyasyonu ve kısmi türevlerinden biri S ’de sınırlı ise  ,f x y  

fonksiyonu, 

     
0 0

, ' ' ij i j
i i

f x y a T x T y
 

 

   

formunda  S ’de L -yakınsak bir, çift değişkenli Chebyshev açılımına sahiptir (Mason 

ve Handscomb, 2003).  
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2.4. Fibonacci Polinomları 

 

Bu bölümde, tezde verilecek ikinci metoda baz teşkil eden iki değişkenli 

polinom ailesinin kurulmasında kullanılacak Fibonacci polinomlarına dair temel tanım 

ve teoremler (Koshy, 2001; Falcon ve Plaza, 2007; Falcon ve Plaza, 2009) 

kaynaklarından faydalanılarak verilecektir.  

 

Tanım 2.4.1. ( k -Fibonacci dizisi) Herhangi pozitif reel k  sayısı için, k -Fibonacci 

dizisinin elemanları 

, 1

, , 1

0, 0
1, 1

, 1
k n

k n k n

n
F n

k F F n




 
 
  

  (2.70) 

bağıntısından elde edilir. 

 

Tanım 2.4.2. (Fibonacci polinomları) Fibonacci dizisinde, pozitif reel k  sayısı yerine 

reel değişken x  alınırsa, yani , ,k n x nF F  olması halinde elde edilecek poinom ailesi 

 
   

1

1

1, 0,
, 1,

, 1
n

n n

if n
F x x if n

xF x F x if n





 
  

         (2.71) 

Fibonacci polinomları olarak adlandırılır.  

 Bu polinomlardan ilk birkaçı şu şekildedir: 

 
 
 
 
 

1

2

2
3

3
4

4 2
5

1

,

1,

2 ,

3 1,

F x

F x x

F x x

F x x x

F x x x





 

 

  



  

Fibonacci polinomlarına dayalı çözüm metodu tanıtılırken diferansiyel denklemdeki 

türev işlemleri yerine, çeşitli mertebeden diferansiyellenmiş seri açılımın katsayıları 
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arasındaki bağıntıdan hareketle, operasyonel türev matrisleri kullanılacaktır. Kısmi 

türev için operasyonel matrisin elde edilişi ise,  Falcon ve Plaza (2009) tarafından ispatı 

verilen aşağıdaki bağıntılar kullanılarak Bölüm 3.3 de verilecektir. Belirtilen bağıntılar 

kullanılarak, daha önce tarafımızdan üretilen adi türev operasyonel matrisi için (Koç ve 

ark.,2013) çalışması incelebilir. 

 

Teorem 2.4.1. (Falcon ve Plaza,2009) Fibonacci polinomu ile türevi arasındaki bağıntı 

1.      1 1
1

n n nF x F x F x
n              (2.72) 

ve Fibonacci polinomu ile integrali arasındaki bağıntı  

2.           1 1 1 1
0

1 0 0
x

n n n n nF x dx F x F x F F
n            (2.73) 

şeklindedir. Denklem (2.73) de n ’in çift sayı olması durumunda    1 10 0 1n nF F    

ve n ’in tek sayı olması durumunda ise    1 10 0 0n nF F    olacaktır. 
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3. REEL DÜZLEMDE SIRALAMA TABANLI SPEKTRAL METOTLAR 

 

Bu bölümde, iki farklı tanım bölgesindeki karışık şartlı lineer kısmi denklemler 

için çözüm metotları geliştirilecektir. Bunun için öncelikle, Bölüm 3.1 de, çözümü 

araştırılacak problem genel formda ortaya konulacaktır. Daha sonra problem, sırasıyla, 

Bölüm 3.2 de reel düzlemde ve Bölüm 3.3 de reel düzlemin alt bölgelerinde ele 

alınacaktır. Çalışılmak istenen tanım bölgesine göre eksponansiyel Chebyshev ve 

Fibonacci polinomlarına dayalı baz fonksiyonları da tanıtılarak, temel özellikleri 

verilecektir. Sıralama tabanlı matris metotları, bu iki baz fonksiyon ailesi için elde 

edilecek operasyonel matrisler ile, çözümü aranan problemin ele alınışına uygun şekilde 

yapılandırılacak ve iki metot olarak sunulacaktır.  

Bölgeye bağlı baz seçimi yönüyle uygulamada birbirinden ayrılan her iki metot 

da, problem için -kolokayon noktalarını kullanarak- rezidüyü minimize edecek şekilde 

kurulan (1.8) deki temel algoritmayı kullanır. İlgili baz fonksiyonu cinsinden seri 

formda çözüm arayan metotların  temel çalışma algoritması şu şekilde özetlenebilir: 

1. Problemin   tanım bölgesine göre  , ,m n x y  baz fonksiyonu ve 

 ( , ) : ( , )i j i jx y x y   kolokasyon (sıralama) noktaları belirlenir. 

2. İlgili baz fonksiyonu yardımıyla operasyonel türev matrisleri belirlenir. 

3. Çözüm fonksiyonu    , ,
0

, ,m n m n
m n

u x y a x y
 


 

 formunda ele alınır.  

4. Kolokasyon noktaları kullanılarak, problemdeki diferansiyel denklem ve 

koşulları, spektral katsayılı cebirsel denklemler sitemine karşılık gelen temel 

matris denklemine dönüştürülür. Dönüşüm esnasında, türev operatörleri 

yerine operasyonel türev matrisleri kullanılır. 

5. Matris denkleminin bilinmeyen spektral katsayılara karşılık gelen katsayılar 

çözüm vektörü,   lineer denklem sistemleri için geliştirilen yöntemlerden biri 

kullanılarak elde edilir. 

Çözümleme işlemleri için Maple, Matlab, veya benzeri bir bilgisayar 

programından faydalanılması, kolokasyon nokta sayıları ve hane sayılarının istenildiği 

kadar büyük seçilmesine olanak tanır. Böylece istenilen duyarlılıkta çözüm elde 

edilebilir. 
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Burada hatırlatılmalıdır ki, baz fonksiyonunun belirlenmesinde, Galerkin 

metodunda olduğu gibi,  bazın problemin koşullarını sağlaması hususu dikkate alınmaz. 

Bunun yerine, koşullara ait temel matris denkleminin, KDD için elde edilen matris 

denklemine yerleştirilmesi yoluyla, koşullar çözüme etki etmiş olur. 
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3.1. Problemin Tanıtımı 

 

Bir   bölgesi üzerinde tanımlı ikinci mertebeden değişken katsayılı lineer kısmi 

diferansiyel denklemi 

     ( , )
,

0 0

, , ,
p r

i j
i j

i j

q x y u x y g x y
 

                                                                           (3.1) 

formunda verilsin. Burada, negatif olmayan i  ve j  değerleri için  

   (0,0) , , u x y u x y ,    ( , ) , ,
i j

i j
i ju x y u x y

x y



 

  

olarak gösterilir. Denklemin değişken katsayılarını ifade eden  , ,i jq x y  ile  ,g x y  

fonksiyonları  ’da tanımlı bilinen fonksiyonlardır. 

Akyüz-Daşçıoğlu (2009) tarafından,  ’nın sınırı olan   üzerinde üç olası 

durum için tanımlanan koşullar şu şekilde ele alınacaktır: 

  t , t , 
,i jtb ,   bilinen sabitler ve  ,t t    olmak üzere, koşullar 

 
,

( , )

1 0 0

,
i j

p r
i j

t t t
t i j

b u


  
  

                                                                (3.2) 

 t  sabit ve  , tx    olmak üzere, koşullar 

                            
,

( , )

1 0 0

,
i j

p r
i j

t t
t i j

c x u x x



  

 g          (3.3) 

 t  sabit ve  , tx    olmak üzere, koşullar 

     
,

( , )

1 0 0

,
i j

p r
i j

t t
t i j

d y u y h y



  

 .         (3.4) 

  Verilen koşullara göre (3.1) denkleminin, baz fonksiyonu  , ,m n x y  cinsinden 

   , ,
0 0

, ,m n m n
m n

u x y a x y
 


 

 şeklindeki çözümünü elde etmek için farklı baz 
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fonksiyonlarının kullanıldığı sıralama tabanlı spektral metotlardan türetilen iki matris 

metodu sırasıyla Bölüm 3.2 ve Bölüm 3.3 de tanıtılacaktır.  

Ele alınan kısmi diferansiyel denklem için, metotların dayanak noktası olan  

       ,
,

0 0

( , ) , , ,
p r

i j
i j

i j

R x y q x y u x y g x y
 

           (3.5) 

rezidü fonksiyonu kullanılacaktır. Bölgedeki kolokasyon noktaları  ,k lx y  ve test 

fonksiyonu  , ,m n k lW x y  olmak üzere, problemin sayısal çözümü için verilecek 

metotlar,  

     , , , 0 , , , 0m n k lW R x y x y R x y     

 , 0k lR x y          
 

( , )
,

0 0

0,1,...,
, , , ,

0,1,...,

p r
i j

i j k l k l k l
i j

k
q x y u x y g x y

l 


 





      (3.6) 

sıralama tabanlı spektral bağıntıları üzerinden yapılandırılacaktır. Bu işlemler sırasında, 

problem koşulları da benzer prosedüre tabi tutulur. Böylece elde edilecek iki lineer 

sistemin, operasyonel matrisler kullanılarak matris denklemine dönüştürülmesi ile 

problem, elemanları ,m na  bilinmeyen katsayıları olan vektörü bulma problemine 

dönüşecektir. Bu iki matris denkleminin birlikte çözümü ise, katsayılar vektörünü 

verecektir. 
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3.2. İkinci Mertebeden Değişken Katsayılı Lineer Kısmi Diferansiyel Denklemlerin 

Eksponansiyel Chebyshev Seri Çözümü 

 

  E , : ,x y x y       bölgesinde tanımlı (3.1) denkleminin (3.2)-(3.4) 

koşullarından birine ya da farklı kombinasyonlarına uyan  ,u x y  bilinmeyen çözüm 

fonksiyonuna seri formda bir yaklaşım bulabilmek için    1,1 1,1    bölgesinde 

tanımlı ve ortogonal olan Chebyshev polinomları ile yarı sonlu bölgede tanımlı ve 

ortogonal olan Rasyonel Chebyshev polinomları yeterli değildir ve çözüm için daha 

geniş bölgede çalışma olanağı sunacak bir baz fonksiyonuna ihtiyaç vardır. Problemin 

çözümüne geçmeden önce, reel düzlemde tanımlı ve ortogonal olan böyle bir alternatif 

baz fonksiyonu aşağıda tanıtılacaktır. 

 

3.2.1. Çift değişkenli eksponansiyel Chebyshev fonksiyonu 

 

Bu kısımda, ikinci bölümde yer verilen Basu’nun (1973) çift değişkenli 

Chebysev polinomları çalışmasından hareketle, reel düzlemde tanımlı bir baz 

fonksiyonu ve bazı özellikleri verilecektir (Koç ve Kurnaz, 2012a; Koç ve Kurnaz, 

2013).  

x  değişkenine göre .r  dereceden eksponansiyel Chebyshev fonksiyonu 

  1
1

x

r r x

eE x T
e

 
   

 ve y  değişkenine göre .s  dereceden eksponansiyel Chebyshev 

fonksiyonu   1
1

y

s s y

eE y T
e

 
   

 olmak üzere, çift değişkenli eksponansiyel Chebyshev 

fonksiyonu (EC),  

, ( , ) ( ) ( )r s r sE x y E x E y                                                                                                (3.7) 

formunda tanımlanır.  

 Farklı r  ve s  indisleri için , ( , )r sE x y  polinomları 

1, 1
1( , ) 2 ( ) ( ) ( ), 1,
1

x

r s r r sx

eE x y E x E x E y r
e 

  
       

                                              (3.8) 
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, 1 1
1( , ) ( ) 2 ( ) ( ) , 1.
1

y

r s r s sy

eE x y E x E y E y s
e 

  
       

        (3.9) 

üçlü tekrarlama bağıntıları yardımıyla belirlenir. Eğer i j m n    ise  , ,i jE x y  

polinomunun derecesinin  , ,m nE x y  polinomunun derecesinden büyük olduğu 

söylenebilir. Bu iki fonksiyonun çarpımını 

            , , , , , ,
1, , , , , ,
4m n i j m i n j m i n j m i n j m i n jE x y E x y E x y E x y E x y E x y           

 

bağıntısı verir.  

Bir   E , : ,x y x y       bölgesi üzerinde negatif olmayan 

integrallenebilir ağırlık fonksiyonu   

 ,
( 1)( 1)

x y

x y

ew x y
e e




 

          (3.10) 

olmak üzere,  

 
E

2 2
E E: : ( , ) ( , )w f f x y w x y dxdy



        
  

L         (3.11) 

uzayı tanımlansın. Tanımlanan uzaydaki iç çarpım ve norm sırasıyla, 

 
E

, ( , ) , ( , )
w

f g f x y g x y w x y dxdy


                                                                    (3.12) 

ve 

E

1/2

2 ( , ) ( , )wf f x y w x y dxdy


    
  
                                                                             (3.13) 

şeklindedir.  

   0,
0

( , ) rr s
s

E x y 


 EC fonksiyonlar ailesi, (3.12) altında ortogonaldir ve ortogonallik 

bağıntılarından hareketle 
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2

2

2

, ,

, 0

, 0 , 0
4

( , ) ( , ) ( , ) , 0, 0
2

ya da
0, 0

0, diğer tüm , , , değerleri.

i j k l

i j k l

i k j l

E x y E x y w x y dx dy i k j l

i k j l
i j k l





 

 

    

    

    


    


     

eşitlikleri gerçeklenir. 

   0,
0

( , ) rr s
s

E x y 


 EC fonksiyonlar ailesi,  2
Ew L  de tamdır. Herhangi 

 2
Ewu L  fonksiyonu, 

   , ,
0 0

, ,r s r s
r s

u x y a E x y
 

 

                                                                            (3.14) 

açılımına sahiptir. Açılımdaki bilinmeyen ,r sa  katsayılarını 

,
, 2

,

, r s w
r s

r s w

u E
a

E
                                                                                                          (3.15) 

formülü verir. (3.14) seri formu r m  ve s n  indisli teriminde kesilirse, 

       , ,
0 0

, , , ,
m n

r s r s
r s

u x y u x y a E x y x y
 

    E A                                                 (3.16) 

kesikli seri açılım için matris formu yazılabilir. Matris formda,  

             
     

0,0 0,1 0, 1,0 1,1 1,

,0 ,1 ,

, , , , , , ,

, , ,
n n

m m m n

x y E x y E x y E x y E x y E x y E x y

E x y E x y E x y

 


E   


     (3.17) 

1 ( 1)( 1)m n    tipinde EC fonksiyonlar vektörü ve 

0,0 0,1 0, 1,0 1,1 1, ,0 ,1 ,

T

n n m m m na a a a a a a a a   A                                                  (3.18) 
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( 1)( 1) 1m n    tipinde bilinmeyen EC katsayılar vektörüdür. Kesikli seri formdaki 

fonksiyonun  ,i j . mertebeden kısmi türevi 

   ( , ) ( , )
, ,

0 0
, ,

m n
i j i j

r s r s
r s

u x y a E x y
 

                                                                              (3.19) 

ve matris formu  

     , ( , ), ,i j i ju x y x y E A                                                                                        (3.20) 

olacaktır. Burada ise (0,0)
, ,r s r sE E  olup,  ( , ) ,i j x yE  

                       
           

, , , , , ,
0,0 0,1 0, 1,0 1,

, , ,
,0 ,1 ,

, , , , , ,

, , ,

i j i j i j i j i j i j
n n

i j i j i j
m m m n

x y E x y E x y E x y E x y E x y

E x y E x y E x y

 



E   


      (3.21) 

şeklinde türevli EC fonksiyonlarının 1 ( 1)( 1)m n    tipinde satır vektörüdür. 

 

Lemma 3.2.1. Bir  ,u x y  fonksiyonu ve bu fonksiyonun  ,i j  mertebeli türevi 

sırasıyla (3.16) ve (3.20) matris formlarında verilsin. Bu takdirde,  EC fonksiyonlar 

vektörü  ,x yE  ile  ,i j  mertebeden türevli polinomlar vektörü  ( , ) ,i j x yE  arasında 

      , , x yx y x y(i, j)E E D D
i j

                                                                              (3.22) 

bağıntısı mevcuttur. Öyle ki, xD  ve yD , ( 1)( 1) ( 1)( 1)m n m n      tipinde 

operasyonel türev matrisleri olup, sırasıyla 

,

0,1,...,
, , ,      

0,1,...,4 4

T
T

x

m
c diag

n 

 

           

D I O I        (3.23) 

ve 

,

0 0
0 0 0,1,...,

, ,0, ,     
0,1,...,4 4

0 0

T

y

m
d diag

n 

 


 
              
 
 

μ
μ

D μ

μ




   


    (3.24) 
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dir. Burada I  ve O  ise 2(n 1)  tipinde birim ve sıfır matrislerini temsil eder. 

İspat . 0,sE , 1,sE   ve (3.8) bağıntısıyla verilen 1, ( , )r sE x y  polinomlarının x  değişkenine 

göre birinci mertebeden kısmi türevleri, sırasıyla 

   (1,0)
0, 0,, , 0s sE x y E x y

x


 


                                                                                  (3.25) 

   
 

 (1,0) (0,0) (0,0)
1, 1, 0, 2,2

2 1 1, , ( , ) ( , )
4 41

x

s s s s sx

eE x y E x y E y E x y E x y
x e


   
 

            (3.26) 

ve 

 1,0 (0,0) (0,0) (0,0)
1, 1, , 1,

(1,0) (0,0) (0,0) (1,0) (1,0)
1, , 1, , 1,

( , ) 2 ( , ) ( , ) ( , )

2 ( , ) ( , ) 2 ( , ) ( , ) ( , ), 0

r s s r s r s

s r s s r s r s

E x y E x y E x y E x y
x
E x y E x y E x y E x y E x y s

 



    
   

  (3.27) 

dir. 0,1, 2,...,r m  için (3.25)-(3.27) denklemleri kullanılarak, 

(1,0)
0,

(1,0) (0,0) (0,0)
1, 0, 2,

(1,0) (0,0) (0,0)
2, 1, 3,

(1,0) (0,0) (0,0)
, 1, 1,

( , ) 0,

1 1( , ) ( , ) ( , ),
4 4

1 1( , ) ( , ) ( , ),
2 2

( , ) ( , ) ( , ), 0
4 4

s

s s s

s s s

m s m s m s

E x y

E x y E x y E x y

E x y E x y E x y

m mE x y E x y E x y s 








 



  



   



      (3.28) 

sistemi elde edilir. Bu sistem yardımıyla xD  matrisinin ,c   elemanlarına ulaşılır. 

 Benzer şekilde ,0rE , ,1rE  ve (3.9) ile verilen , 1 ( , )r sE x y  terimlerinin y  

değişkenine göre kısmi türevleri,  

   (0,1)
,0 ,0, , 0r rE x y E x y

y


 


         (3.29) 
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     
 

(0,1) (0,0) (0,0)
,1 ,1 ,0 ,22

2 1 1, , ( , ) ( , )
4 41

y

r r r r ry

eE x y E x y E x E x y E x y
y e


   
 

    (3.30) 

ve 

   0,1 (0,0) (0,0) (0,0)
, 1 ,1 , , 1

(0,1) (0,0) (0,0) (0,1) (0,1)
,1 , ,1 , , 1

, 2 ( , ) ( , ) ( , )

2 ( , ) ( , ) 2 ( , ) ( , ) ( , ), 0

r s r r s r s

r r s r r s r s

E x y E x y E x y E x y
x
E x y E x y E x y E x y E x y r

 



    
   

  (3.31) 

dir. 0,1, 2,..., ns   için (3.29)-(3.31) bağıntıları, 

(0,1)
,0

(0,1) (0,0) (0,0)
,1 ,0 ,2

(0,1) (0,0) (0,0)
, , 1 , 1

( , ) 0,

1 1( , ) ( , ) ( , ),
4 4

( , ) ( , ) ( , ), 0
4 4

r

r r r

r n r n r n

E x y

E x y E x y E x y

n nE x y E x y E x y r 








 



   




        (3.32) 

sistemini verir. Son olarak bu sistemden yD  operasyonel matrisinin elemanları elde 

edilir.  

 Burada, r m  terimleri için    (1,0) (0,0)
, ,, , 0r s r sE x y E x y   ve s n  terimleri 

için    (0,1) (0,0)
, ,, , 0r s r sE x y E x y   olduğuna dikkat edilmelidir. 

 Denklem (3.28) ve (3.32) dan, 0,1,2,...i   ve 0,1,2,...j   için  

     

              

           

1,0

2,0 1,0

,0 -1,0

, ,

, , , ,

, , ,

x

x x x x

ii i
x x

x y x y

x y x y x y x y

x y x y x y

2

E = E D

E = E D = E D D = E D

E = E D = E D



     (3.33) 

ve 
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     

              

           

0,1

20,2 0,1

0, 0, -1

, ,

, , , ,

, , ,

y

y y y y

jj j
y y

x y x y

x y x y x y x y

x y x y x y



  

 

E E D

E E D E D D E D

E E D E D



      (3.34) 

denklemlerinin sağlandığı görülür. I , ( 1)( 1)m n   tipinde birim matris olmak üzere 

   0 0
 D D Ix y  ve      0,0 , ,x y x yE E  dir. 

 Böylece, (3.33) ve (3.34) eşitlikleri birlikte ele alındığında, çift değişkenli EC 

fonksiyon vektörü ile türevleri arasındaki temel matris bağıntısı 

                     ,0 0,0( , ) , , , ,
i j i jjii j

y x y x yx y x y x y x y  E E D E D D E D D  (3.35) 

ya da 

                      0, 0,0( , ) , , , ,
j j ii iji j

x y x y xx y x y x y x y  E E D E D D E D D  (3.36) 

olarak elde edilir. 

 

Sonuç 3.2.1. i . mertebeden operasyonel türev matrisi  i
xD  ile j . mertebeden 

operasyonel türev matrisi   j

yD  çarpımsal olarak değişmelidir. Yani bu matrisler ile 

        j ji i
x y y xD D D D   

eşitliği mevcuttur. 

 
Sonuç 3.2.2. (3.22) matris denklemi, (3.20) türevli fonksiyon açılımında yerine 

konulduğunda, bir fonksiyonun çeşitli mertebeden türevleri için EC fonksiyonları 

cinsinden açılımı 

            , ,, , ,
i ji j i j

x yu x y u x y x y  E D D A         (3.37) 

elde edilir.  
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3.2.2. Çift değişkenli EC fonksiyonları ile matris metodu 

 

Bu kısımda, (3.1)-(3.4) problemi   E , : ,x y x y       bölgesinde ele 

alınarak, kesikli seri formdaki nümerik çözümün elde edilmesinde kullanılabilecek 

sıralama tabanlı spektral bir metot tanıtılacaktır. Seri formun bilinmeyen katsayıları, 

tanıtacağımız prosedürün sonucunda elde edilecek A  vektörünün elemanlarından 

oluşacaktır.  

Metot için test fonksiyonu olarak  ,k lW x y  ve baz olarak (3.7) de verilen 

, ( , )r sE x y  çift değişkenli eksponansiyel Chebyshev fonksiyonları kullanılacaktır. 

 ,k lx y  kolokasyon noktaları, bölgenin içinde 1, 2,..., 1k m   ve 1, 2,..., 1l n   için 

 
 

1 cos /
ln

1 cos /k

k m
x

k m



 
    

, 
 
 

1 cos /
ln

1 cos /l

l n
y

l n



 
    

      (3.38) 

ve sınırlarda 

i) mx   ve ny   

ii) 0x   ve 0y    

formunda seçilebilir. Burada hatırlatılmalıdır ki, verilen her iki sınırda da EC 

fonksiyonlarının değeri ya 1 ya da -1 olacaktır.  

 Kolokasyon noktaları, (3.37) türevli çözüm fonksiyonuna uygulanırsa 

         , , ,
jii j

k l k l x yu x y x y    E D D A          (3.39) 

elde edilir. Bu sistem ise, 
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  

   

   
   

   

   

   

,
0 0

,
0

,
, ( , )1 0

,
1

,

,

,

,

,

,

i j

i j
n

i j
jii j i j

x y

i j
n

i j
m n

u x y

u x y

u x y

u x y

u x y

 
 
 
 
 
 
   
 
 
 
 
 
  

U E A E D D A







       (3.40) 

matris formuna indirgenir. Burada E , kolokasyon noktaları ile verilmiş,  ,x yE  EC 

fonksiyon vektörlerinden oluşan 

           

     
0 0 0 1 0 1 0 1 1 1

0 1

, , , , , ,

, , ,

n n

T
m m m n

x y x y x y x y x y x y

x y x y x y

 



E E E E E E E

E E E

  


  

şeklindeki       1 1 1 1m n m n      tipinde, blok matrisidir. (3.40) eşitliğinde  

0i j   için U E A  dır. 

 Benzer şekilde, kolokasyon noktaları (3.1) denklemine uygulanırsa, 

         
 

,
,

0 0

0,1,...,
, , , ,

0,1,...,

p r
i j

i j k l k l k l
i j

k m
q x y u x y g x y

l n 




       (3.41) 

denklem sistemi ve bu sistemden, ,i jQ  notasyonu, elemanları  , ,i j k lq x y , 

 0,1,..., ; 0,1,...,k m l n   olan köşegen matrisi ve G  notasyonu ise elemanları 

 ,k lg x y ,  0,1,..., ; 0,1,...,k m l n   olan sütun matrisini temsil etmek üzere 

( , )
,

0 0

, ( , )
p r

i j
i j

i j

p m r n
 

   Q U G          (3.42) 

matris denklemi elde edilir. (3.42) matris denklemi, (3.40) de verilen ( , )i jU  eşitliği 

kullanılarak yeniden düzenlenirse, (3.1) kısmi diferansiyel denklemi için, ,r sa  

bilinmeyen EC katsayılarını içeren    1 1m n   adet lineer pseudo-spektral denkleme 

karşılık gelen 
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,
0 0

( ) ( )
p r

i j
i j x y

i j 

 
 

 
 Q E D D A G           (3.43) 

temel matris denklemi elde edilir.  

 ,
0 0

( ) ( )
p r

i j
i j x y

i j 

 
  
 
W Q E D D  kabul edilirse, (3.43) sistemi kısaca 

WA G              (3.44) 

formunda yazılabilir ve eklemeli matris gösterimi 

 

 
 

 

1,1 1,2 1,( 1)(n 1) 0 0

2,1 2,2 2,( 1)(n 1) 0 1

( 1)(n 1),1 ( 1)(n 1),2 ( 1)(n 1),( 1)(n 1),

: ,
: ,

:

: ,

m

m

m m m m m n

w w w g x y
w w w g x y

w w w g x y

 

 

       

 
 
   
 
  

W G




    


              (3.45) 

şeklinde olacaktır. 

 Diferansiyel denklemin cebirsel sisteme dönüştürüldüğü prosedür, benzer 

şekilde verilen koşullar içinde uygulanır.  

Kolokasyon noktaları, (3.2)-(3.4) ile verilen koşullarda yerlerine yazılır ve 

matris formlarına dönüştürülürse, sırasıyla 

     
,

1 0 0
, , ,

i j

p r ji
t t t x y t t

t i j



   
  

 
     

 
 b E D D A       (3.46) 

      
,

1 0 0
( ) , , , 0,1,...,

i j

p r ji
t k k t x y k k t

t i j
x x x k m



 
  

 
      

 
 c E D D A g  (3.47)  

         
,

1 0 0
, , , 0,1,...,

i j

p r ji
t l t l x y l l t

t i j
y y y l n



 
  

 
       

 
 d E D D A h    (3.48) 

sistemine ulaşılır. (3.46), (3.47) ve (3.48) sistemlerinde eşitliklerin sol yanlarındaki 

parantez içleri sırasıyla 1V , 2V  ve 3V  vektörleri ile, sağ yanları ise sırasıyla  , kg  ve 

lh  ile ifade edilmek üzere koşullara ait genel matris denklemleri 

1 V A  ,             (3.49) 
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2 kV A g              (3.50) 

ve  

3 lV A h              (3.51) 

olarak yazılabilir. Koşullardan gelen  1V   , 2 : k  V g  ve  3 : lV h  eklemeli matrisleri 

ile kısmi diferansiyel denklemden gelen  :W G  eklemeli matrisinin birleştirilmesiyle 

1* *

2

3

:
:

:
:
:

k

l

 
 
      
 
 

W G
V

W G
 V
 V h

g


            (3.52) 

matrisi elde edilir. Bu matris, denklem sayısının bilinmeyen sayısından fazla olduğu  

* *W A = G              (3.53)  

denklem sisteminin karşılığıdır. (3.53) sistemine Gauss satır indirgeme işlemi uygulanır 

ve sıfırdan farklı satırları silinerek :  W G  ile ifade edilirse, problemin çözümündeki 

bilinmeyen EC katsayılarını 

WA = G              (3.54) 

denkleminin çözümü verir. Gauss eliminasyon, üçgen matris metotları gibi lineer 

denklem sistemlerinin çözümünde kullanılan metotlardan biri yardımıyla çözüm 

gerçekleştirilir. Eğer W  matrisi tersinir değilse, kolokasyon noktaları, W  tersinir 

olacak şekilde değiştirilir.  

Denklemden gelen  :W G  matrisinin belli sayıdaki satırı silinip koşullardan 

gelen eklemeli matrislerin bu matrise eklenmesiyle :  W G  matrisi elde edilerek de 

çözüm gerçekleştirilebilir.  
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3.3. İkinci Mertebeden Değişken Katsayılı Lineer Kısmi Diferansiyel Denklemlerin 

Fibonacci Polinomları Cinsinden Seri Çözümü 

 

Denklem (3.1) ile verilen problemin 

      , : , ,x y x a b c d         

bölgesindeki çözümü, bu bölgede tanımlı bir baz cinsinden kesikli seri formda 

aranacaktır. Bunun için, baz fonksiyonu olarak Fibonacci polinomları kullanılarak 

meydana getirilen bir polinom ailesi kullanılacaktır. 

      F , : , ,x y x a b c d        şeklinde verilen bir bölgede spektral 

metotlar için yardımcı fonksiyonun seçimi çok önemlidir. Daha önce belirtildiği gibi, 

   1,1 1,1    düzleminde tanımlı Chebyshev ya da Legendre polinomları ile bu tür bir 

bölgedeki problemi çözebilmek için bir dönüşüm gereklidir. Örneğin, 3 3x    

aralığının 1 1r    aralığına dönüşümü için 2 6
6

xr 
  şeklinde bir dönüşüme ihtiyaç 

vardır. Aynı işlem, değişken sayısı kadar tekrar edecektir. Bunun yerine, dönüşüme 

gerek kalmaksızın, her sonlu bölgede işlem yapmaya olanak tanıyacak bir baz 

fonksiyonu kullanmak, hem işlem yükünü hafifletecek hem de uygulama güçlüğünü 

azaltacaktır. Bu amaçla, Bölüm 3.3 de reel eksenin tüm alt aralıklarında tanımlı 

Fibonacci polinomlarına dayanan, reel eksenin iki alt aralığının kronoker çarpımıyla 

oluşturulan bölgede tanımlı iki değişkenli bir baz fonksiyonu tanımlanarak yeni bir 

metot sunulacaktır (Koç ve Kurnaz, 2012b; Koç ve Kurnaz, 2014).  

 

3.3.1.  Fibonacci polinomları yardımıyla  , ,r sF x y  polinomlarının tanımlanışı 

   I : ,x x x a b     ve   I : y ,y y c d     olmak üzere F I Ix y    

bölgesi ve  

   
F

2 2
F F: : ,f f x y dxdy



        
  

L         (3.55) 
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uzayı tanımlansın.    2( , ), , Ff x y g x y  L  olmak üzere, tanımlanan uzaydaki iç 

çarpım ve norm, sırasıyla 

 
F

, ( , ) ,f g f x y g x y dxdy


           (3.56) 

ve  

 
F

1/2

2 ,f f x y dxdy


    
  
            (3.57) 

şeklindedir. x  değişkenine göre r . dereceden Fibonacci polinomu  rF x  ve y  

değişkenine göre s . dereceden Fibonacci polinomu  sF y  olmak üzere, bir polinom 

ailesi, , 0r s   için 

     , ,r s r sF x y F x F y            (3.58) 

formunda tanımlanabilir (Koç ve Kurnaz, 2012b). Farklı r  ve s  indisleri için , ( , )r sF x y  

polinomları 

 
 

   
     

1,s

1

, 0,
, , 1,

, 1

s

r s

r r s

F y r
F x y x F y r

x F x F x F y r




 


 
    

                                                  (3.59) 

 
 

   
     

r,s 1

1

, 0,
, , 1,

, 1

r

r

s s r

F x s
F x y y F x s

yF y F y F x s




 


 
    

                                                (3.60) 

üçlü tekrarlama bağıntıları yardımıyla belirlenir.  

   0,
0

, rr s
s

F x y 


 ailesi (FP ailesi), (3.55) ile verilen  2
FL  uzayında (3.57) 

normu altında tamdır. Herhangi    2
F,u x y  L  fonksiyonu 

   , ,
0 0

, ,r s r s
r s

u x y a F x y
 

 

   
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seri formunda yazılabilir. Bu seri açılımın kesikli serisi, 

       , ,
1 1

, , , ,
M N

r s r s
r s

u x y u x y a F x y x y
 

    F A               (3.61) 

matris formunda yazılabilir, öyle ki  ,x yF , 

             
     

1,1 1,2 1, 2,1 2,2 2,

,1 ,2 ,

, , , , , , ,

, , ,
N N

M M M N

x y F x y F x y F x y F x y F x y F x y

F x y F x y F x y

 


F   


   

1 ( )( )M N  tipinde  , ,r sF x y  polinomlar vektörü ve A , 

1,1 1,2 1, 2,1 2,2 2, ,1 ,2 ,... ... ...
T

N N M M M Na a a a a a a a a   A                                       (3.62) 

( )( ) 1M N    tipinde seri açılımdaki ,r sa  katsayılar vektörüdür.  

 Kesikli seri formdaki fonksiyonun  ,i j  mertebeli kısmi türevi 

     , ( , )
, ,

1 1
, ,

M N
i j i j

r s r s
r s

u x y a F x y
 

          (3.63) 

ve matris formu 

     , ( , ), ,i j i ju x y x y F A            (3.64) 

biçimindedir. Burada (0,0)
, ,r s r sa a ,    (0,0) , ,u x y u x y  olup ( , )i jA , 

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )
1,1 1,2 1, 2,1 2,2 2, ,1 ,2 ,... ... ...

Ti j i j i j i j i j i j i j i j i j i j
N N M M M Na a a a a a a a a   A                         (3.65) 

türevli fonksiyonun kesikli seri açılımındaki katsayılardan oluşan vektördür. 

 

Lemma 3.3.1 Bir  ,u x y  fonksiyonu ve bu fonksiyonun  ,i j  mertebeli türevi 

sırasıyla (3.61) ve (3.64) matris formlarında verilsin. Bu takdirde,  katsayılar vektörleri 

A  ile ( , )i jA  arasında 

   ( , ) i ji j
x yA D D A                                                                                        (3.66) 
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bağıntısı mevcuttur. Öyle ki,  xD  ve  yD ,      M N M N  tipinde operasyonel türev 

matrisleri olup, sırasıyla 1, 2,..., M  , 1, 2,..., N   için 


 

,
sin ,

2
,

x d 

  
  

 

 
    

 

ID
O

        (3.67) 

ve  









 

,

0 0

0 0 sin ,, 2
0,

0 0

y c 

  
  

 

 
   

        
  

  

μ

μD μ

μ




   



     (3.68) 

dir. Burada I  ve O  ise sırasıyla ( ) ( )N N  tipinde birim ve sıfır matrislerini temsil 

eder. 

İspat: Koç ve ark. (2013) tarafından verilen, bir fonksiyonun ve herhangi mertebeden 

adi türevinin Fibonacci polinomları cinsinden seri açılımlarını belirleyen katsayılar 

arasındaki ilişki, iki değişkenli bir fonksiyon ve  ,i j  mertebeli kısmi türevinin seri 

açılımındaki katsayılar için de geliştirilebilir. 

 Bunun için önce, seri formdaki fonksiyonun 1i k   ve 0j   mertebeli 

türevinde  ,0
,
k

r sa  ile  1,0
,
k

r sa   katsayıları arasındaki bağıntı 

     

 

1,0 ,0
, 2 1,

0

,0
,

1 ,

0,

tk k
r s r t s

t

k
r s

a r a r M

a r M




 


   

  


         (3.69) 

şeklinde kurulur.  1 1r M  ve  1 1s N  indisli elemanlar için sırasıyla (3.69) 

denklemi tek tek yazılır ve oluşan denklem sistemi, katsayılar vektörleri yardımıyla 

matris forma dönüştürülürse 

    1,0 ,0k k
x

 A D A             (3.70) 
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elde edilir, öyle ki (3.69) bağıntısında  ,0
,
k

r sa  elemanlarının başında çarpım durumundaki 

r  sabitlerine göre belirlenen    
 

0 1,
0 1

M
N

d  




     elemanları ile  xD  türev operatör matrisi 


 

,
sin ,

2
,

x d 

  
  

 

 
    

 

ID
O

        (3.71) 

dir. (3.70) rekürans bağıntısından,  0,0 A A  olmak üzere,  

     1,0 0,01, x xk   A D A D A   

           22,0 1,0 0,02, x x x xk    A D A D D A D A  

   

ve  

      ,0 1,0,
ii i

x xk i    A D A D A          (3.72) 

olduğu açıkça görülür.  

 Benzer süreçle, seri formdaki fonksiyon ve 0i   ve 1j l   mertebeli türevinde 

 0, 1
,

l
r sa   ile  0,

,
l

r sa  katsayıları arasında  

     

 

0, 1 0,
, , 2 1

0

0,
,

1 ,

0,

tl l
r s r s t

t

l
r s

a s a s N

a s N




 


   

  


         (3.73) 

bağıntısı mevcuttur. Bu bağıntı yardımıyla  0, 1
,

l
r sa   ile  0,

,
l

r sa  katsayılarını içeren vektörler 

arasındaki 

      0, 0, 1,
jj j

y yl j    A D A D A         (3.74) 
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matris denklemi elde edilir. (3.73) bağıntısındaki  0,
,

l
r sa  elemanlarının başında çarpım 

durumunda bulunan s  sabitlerine göre,        M N M N  tipindeki  yD  türev 

operatör matrisinin elemanları 









 

,

0 0

0 0 sin ,, 2
0,

0 0

y c 

  
  

 

 
   

        
  

  

μ

μD μ

μ




   



     (3.75) 

formunda belirlenir.  

 Böylece, (3.72) ve (3.74) matris bağıntıları birlikte ele alındığında, seri formdaki 

bir fonksiyon ve kısmi türevinin katsayılar vektörleri arasındaki bağıntı operasyonel 

türev matrislerine göre  

          i, 0,i i jj j
x x y A D A D D A          (3.76) 

ya da  

          i, ,0j j ij i
y y x A D A D D A          (3.77) 

şeklinde elde edilmiş olur. 

 

Sonuç 3.3.1 (3.66) eşitliğinde verilen i . mertebeden operasyonel türev matrisi  i
xD  ile 

j . mertebeden operasyonel türev matrisi   j
yD  çarpımsal olarak değişmelidir. Yani bu 

matrisler ile 

        i j j i
x y y xD D D D            (3.78) 

eşitliği mevcuttur.  

 

Sonuç 3.3.2. (3.66) matris denklemi, (3.64) türevli fonksiyon açılımında yerine 

konulduğunda, bir fonksiyonun çeşitli mertebeden türevleri için EC fonksiyonları 

cinsinden açılımı 
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         , , ,
i j

i j
x yu x y x y F D D A           (3.79) 

elde edilir. 

 

3.3.2.   , ,r sF x y  polinomları ile çözüm metodu 

 

Bu kısımda,       F , : , , ,x y x a b y c d        bölgesinde tanımlı bir 

(3.1) denkleminin (3.2)-(3.4) koşulları altındaki çözümünün (3.63) formunda elde 

edilebilmesi için bir metot sunulacaktır. 

Metot için test fonksiyonu olarak  ,k lW x y  ve baz olarak (3.58) de verilen, 

Fibonacci polinomları ile üretilen , ( , )r sF x y  çift değişkenli polinomları kullanılacaktır.  

ka x b  , lc y d  ,  1, 2,...,k M   ve  1, 2,...,l N   olmak üzere, 

 1
1k

b ax a k
M


  


,   1
1l

d cy c l
N


  


       (3.80) 

eşit aralıklı kolokasyon noktalarının (3.79) formundaki türevli çözüm fonksiyonuna 

uygulanmasıyla elde edilecek 

         , , ,
i ji j

x yk l k lu x y x y    F D D A   

sistemi, 

 

   

   
   

   

   

   

,
1 1

,
1

,
, ( , )2 1

,
2

,

,

,

,

,

,

i j

i j
N

i j i ji j i j
x y

i j
N

i j
M N

u x y

u x y

u x y

u x y

u x y

 
 
 
 
 
 
   
 
 
 
 
 
  

U FA F D D A







      (3.81) 
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matris denklemine indirgenir. Burada F , kolokasyon noktaları ile verilmiş,  ,x yF  

vektörlerinden oluşan 

           

     
1 1 1 2 1 2 1 2 2 2

1 2

, , , , , ,

, , ,

N N

T
M M M N

x y x y x y x y x y x y

x y x y x y

 



F F F F F F F

F F F

  


  

şeklindeki        M N M N  tipinde, blok matrisidir. (3.81) eşitliğinde  0i j   için 

U F A  dır. 

(3.80) deki kolokasyon noktalarının tek tek (3.1) diferansiyel denkleminde 

yerine konulmasıyla 

       ,
,

0 0

, , ,
p r

i j
i j k l k l k l

i j

q x y u x y g x y
 

          (3.82) 

lineer denklem sistemi elde edilir. Buradan, ,i jQ  notasyonu, elemanları  , ,i j k lq x y ’lar 

olan köşegen matrisi ve G  notasyonu ise elemanları  ,k lg x y ’lar olan sütun matrisini 

temsil etmek üzere  

( , )
,

0 0

, ( , )
p r

i j
i j

i j

p M r N
 

   Q U G         (3.83) 

matris denklemi yazılabilir. (3.81) ile verilen ( , )i jU  eşitliği kullanılarak (3.83) matris 

denklemi yeniden düzenlenirse, ,r sa  bilinmeyen FP katsayılarını içeren     M N  adet 

lineer pseudo-spektral denkleme karşılık gelen 

 
,

0 0
( ) ( )

p r
i j

x yi j
i j 

 
 

 
 Q F D D A G          (3.84) 

temel matris denklemi elde edilir. Parantez içindeki matris W  ile temsil edilmek üzere, 

WA G              (3.85) 

denkleminin eklemeli matris formu 

 :W G              (3.86) 
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şeklindedir.  

 Kolokasyon noktaları koşul denklemlerine de uygulanır ve matris formlarına 

dönüştürülürse, 

   
,

1 0 0
, ( ) ( ) , b, c

i j

p r
i j

x yt t t t t
t i j

a d


   
  

 
     

 
 b F D D A      (3.87) 

       
,

1 0 0
( ) , ( ) ( ) , d, 1 1

i j

p r
i j

x yt k k t k k t
t i j

x x x c k M


 
  

 
    

 
 c F D D A g    (3.88) 

         
,

1 0 0
, ( ) ( ) , , 1 1

i j

p r
i j

x yt l t l l l t
t i j

y y y a b l N


 
  

 
    

 
 d F D D A h    (3.89) 

sistemleri elde edilir. (3.87), (3.88) ve (3.89) sistemlerinde eşitliklerin sol yanlarındaki 

parantez içleri sırasıyla 1V , 2V  ve 3V  vektörleri ile, sağ yanları ise sırasıyla  , kg  ve 

lh  ile ifade edilmek üzere koşullara ait genel matris denklemleri 

1 V A  ,             (3.90) 

2 kV A g             (3.91) 

ve  

3 lV A h             (3.92) 

olarak yazılabilir. Koşullardan gelen  1V   , 2 : k  V g  ve  3 : lV h  eklemeli matrisleri 

ile kısmi diferansiyel denklemden gelen  :W G  eklemeli matrisinin birleştirilmesiyle 

1* *

2

3

:
:

:
:
:

k

l

 
 
      
 
 

W G
V

W G
 V
 V h


g

          (3.93) 

matrisi elde edilir. Bu matris, denklem sayısının bilinmeyen sayısından fazla olduğu  

* *W A = G             (3.94)  
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denklem sisteminin karşılığıdır. (3.94) sistemine Gauss satır indirgeme işlemi uygulanır 

ve sıfırdan farklı satırları silinerek :  W G  ile ifade edilirse, problemin çözümündeki 

bilinmeyen Fibonacci katsayılarını 

WA = G              (3.95) 

denkleminin çözümü verir. Gauss eliminasyon, üçgen matris metotları gibi lineer 

denklem sistemlerinin çözümünde kullanılan metotlardan biri yardımıyla çözüm 

gerçekleştirilir. Eğer W  matrisi tersinir değilse, kolokasyon noktaları, W  tersinir 

olacak şekilde değiştirilir.  

Denklemden gelen  :W G  matrisinin belli sayıdaki satırı silinip koşullardan gelen 

eklemeli matrislerin bu matrise eklenmesiyle :  W G  matrisi elde edilerek de çözüm 

gerçekleştirilebilir. 
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4. ARAŞTIRMA BULGULARI 

 

Bu bölümde, tez kapsamında tanımlanan sayısal yöntemlerin doğruluk ve 

etkinlikleri çeşitli kısmi diferansiyel denklem problemleri üzerinde test edilmiştir. 

İstenildiği kadar büyük kesme sınırlarında çalışabilmek için, metotlara ait algoritmalar 

Maple’da programlanarak problemlere uygulanmıştır. Ayrıca, kesme sınırlarının yeterli 

büyüklükte olması halinde bile oluşabilen bilgisayar kaynaklı hataları minimize 

edebilmek adına, programlamalar esnasında hane duyarlılığı da dikkate alınmıştır. 

Böylece elde edilen sonuçlar çeşitli tablo ve grafikler ile sunulmuştur.  

 

4.1. Çift Değişkenli Eksponansiyel Chebyshev Fonksiyon Yaklaşım Uygulaması 

 

Örnek 4.1.1. İkinci mertebeden, değişken katsayılı  

   2 2
2 4

1 1 1

x

x y xy x y

eu u
e e e

 
  

          (4.1) 

lineer kısmi diferansiyel denkleminin 

   0, 0, ,0 0yu y u x            (4.2) 

koşulları altındaki kesikli çift değişkenli eksponansiyel Chebyshev seri çözümü 

bulunsun (Koç ve Kurnaz,2013). 

 15m n   için     
 

0 1
0 1

, k mk l
l n

x y 


 kolokasyon noktaları ile oluşturulan  

         1,1 1,0, , , ,k l k l k l k lu x y q x y u x y g x y          (4.3) 

şeklinde 216  adet lineer denklemden oluşan sisteme karşılık temel matris denklemi 

      1,0x y x E D D Q E D A G           (4.4) 

olarak kurulur. Burada E , 216  adet kolokasyon noktası için verilmiş,  ,x yE   polinom 

vektörlerinden oluşan 2 216 16  tipinde blok matrisi; 1,0Q , elemanları 
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 1,0
2,

1lk l yq x y
e




 olan 2 216 16  tipinde köşegen matrisi ve G  ise, elemanları 

 
   2 2

4,
1 1

k

k l

x

k l x y

eg x y
e e


 

 olan 216 1  tipinde sütun vektörüdür. Kolokasyon 

noktaları ile koşullardan  0, 0yu y   için  

   0,1
1,0, l lu y             (4.5) 

sisteminden  

     1,0, l y ly E D A λ            (4.6) 

matris denklemi ve  , 0 0u x   için  

   0,0
2,,0k ku x              (4.7) 

sisteminden  

  2,,0k kx E A λ                    (4.8) 

matris denklem sistemi elde edilir. İstenen çözümdeki katsayıları içeren A  katsayılar 

vektörü, (4.4), (4.6) ve (4.8) matris denklemlerinin ortak çözümünden elde edilir.  

 Maple paket programı kullanılarak elde edilen sonuçlara ait grafikler problemin 

    
1,

1 1

x y x y

x y

e e eu x y
e e

   


 
  gerçek çözüm fonksiyonu ile karşılaştırmalı olarak Şekil 

4.1.1 ve Şekil 4.1.2 de verilmiştir. Farklı noktalardaki yaklaşıku u  mutlak hata 

fonksiyonuna ait değerler ise Tablo 4.1.1 de verilmiştir.  
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(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

 
           Şekil 4.1.1. (a) Örnek 4.1.1. in gerçek çözüm fonksiyonuna ait 2 , 10x y    aralığındaki  
                                     eşyükselti grafiği 

                    (b) Örnek 4.1.1. in nümerik çözüm fonksiyonuna ait 2 , 10x y    aralığındaki 
                                     eşyükselti grafiği 

                               (c) Örnek 4.1.1. in gerçek çözüm fonksiyonuna ait 3 3x    ve 5 5y     
                                    aralığındaki eşyükselti grafiği 

                               (d) Örnek 4.1.1. in nümerik çözüm fonksiyonuna ait 3 3x    ve 5 5y     
                                    aralığındaki eşyükselti grafiği 
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Tablo 4.1.1. Örnek 4.1.1 için farklı kolokasyon noktalarındaki mutlak hatalar 

  x  y  15m n   
 4.5056 4.5056 3.31 E-08 
 4.5056 2.248 2.09 E-08 
 4.5056 1.618 1.48  E-08 
 4.5056 -2.248 3.18  E-08 
 4.5056 -4.5056 3.38  E-08 
 3.0970 4.5056 1.58  E-08 
 3.0970 1.618 6.00  E-10 
 3.0970 -0.209 1.90  E-10 
 2.248 3.0970 4.40  E-09 
 2.248 -3.0970 5.30  E-09 
 1.6183 -0.2098 3.50  E-10 
 0.2098 -0.2098 1.80  E-10 
 -0.2098 -0.2098 1.00  E-10 
 -2.248 -1.098 1.90  E-09 

-3.0970 2.248 2.20  E-09 
-3.0970 -2.248 1.30  E-09 

   
 

 
Şekil 4.1.2. Örnek 4.1.1 de verilen problemin 15m n   için elde edilen nümerik çözüm ve gerçek 

çözüm grafikleri 
   (‒ ‒ ‒ : gerçek çözüm fonksiyonu,     • • • : nümerik çözüm fonksiyonu) 
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4.2. Fibonacci Polinomları Cinsinden Yaklaşım Uygulaması 

 

Örnek 4.2.1. Keşan  (2003)  tarafından Chebyshev polinomları ile 

        , : , 1,1 1,1x y x y       bölgesinde yaklaşım yapılan 

6y y xxu u               (4.9) 

ikinci mertebeden lineer sabit katsayılı diferansiyel denkleminin 

   2, 0 , ,0 4yu x x u x x          (4.10) 

koşulları altındaki çözümü,      , ,
1 1

, , ,
M N

yaklaşık r s r s
r s

u x y a F x y x y
 

  F A  formunda 

aransın. 

 1M m   ve 1N n   olmak üzere, 3m n   için eşit aralıklı 

    
 

1 1 1
1 1 1

, k mk l
l n

x y  
 

 kolokasyon noktaları ile oluşturulan 

         0,2 2,0, , ,k l k l k lu x y u x y g x y        (4.11) 

şeklinde 24  adet lineer denkleminin seri formlarına karşılık, bilinmeyen katsayıları 

içeren 24 1  tipindeki A  vektörü ile  

    2 2
y x F D F D A G         (4.12) 

genel matris denklemi elde edilir. Kısaca     2 2
y x F D F D W  olmak üzere 

WA G           (4.13) 

yazılabilir. W , 2 24 4  tipinde bir matris; G  ise 24  adet elemanı 0  olan sütun 

vektörüdür.  

 Benzer şekilde   2, 0u x x  ve  ,0 4yu x x  koşulları için kolokasyon noktaları 

ile kurulan, her bir koşula ait 4 adet denklemden oluşan sistem ve bu sisteme karşılık 

gelen matris denklemleri sırasıyla, 
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         0,0
1, 1, 1 1,0 , 0k k k k k ku x x x x    F A V A gg g   (4.14) 

ve 

          0,1
2, 2, 2 2,0 ,0 yk k k k k ku x x x x    F D A V Ag g g   (4.15) 

olacaktır. Burada,   2
1,k k kx xg  ve  2, 4k k kx xg  dır. (4.13), (4.14) ve (4.15) 

denklemlerinin ortak çözümüyle katsayılar vektörü 

 5,0, 4,0, 0, 4, 0,0,1,0, 0,0, 0,0,0, 0 T
 A       (4.16) 

olarak bulunur. Böylece, 

        2 2
1,1 1,3 2,2 3,15 , 4 , 4 , , 4 4yaklaşıku F x y F x y F x y F x y y xy x         (4.17) 

çözüm fonksiyonu elde edilir ki aynı zamanda gerçek çözüm fonksiyonu 

   2, 2u x y x y   elde edilmiş olur.  

 

Örnek 4.2.2.  Bir boyutlu, sabit katsayılı 

2 2

2 2 0u u
x y
 

 
 

         (4.18) 

homojen Laplace denklemi, 

   , 1 ,1 cos
2
xu x u x      

 
       (4.19) 

ve 

   1, 1, 0u y u y           (4.20) 

Dirichlet sınır koşulları altında ele alınsın. Problemin tam çözümü 

 
cos cosh

2 2,
cosh

2

x y

u x y

 



   
   
   

 
 
 

 olarak verilmiştir (Doha ve Abd-Elhameed,2005). 
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 Fibonacci polinomları cinsinden kesikli seri çözümü aransın. Problemin 

1 , 1x y    tanım bölgesinde eşit aralıklı her bir kolokasyon noktası için (4.18) 

denkleminin yeniden düzenlenmesiyle elde edilecek sisteme ait temel matris denklemi 

    2 2
y x F D F D A G         (4.21) 

olup,    2 2
y x W F D F D  matrisi ve kolokasyon nokta sayısı adedince sıfır 

satırından oluşan G  vektörü ile kısaca 

WA G           (4.22) 

yazılabilir. Aynı kolokasyon noktaları ile düzenlenmiş koşullara ait denklem sistemleri 

ve matris formları 

         0,0
1, 1, 1 1, 1 , 1k k k k k ku x x x x      F A V Ag g g   

         0,0
2, 2, 2 2,1 ,1k k k k k ku x x x x    F A V Ag g g   

         0,0
1, 1, 3 11, y 1, yl l l l l lu h y h y      F A V A h   

         0,0
2, 2, 4 21, y 1, yl l l l l lu h y h y    F A V A h   

şeklinde elde edilir, öyle ki    1, 2, cos
2

k
k k k k

xx x     
 

g g  ve    1, 2, 0l l l lh y h y   

dır. Böylece elde edilen beş temel matris denkleminin birlikte çözülmesiyle, A  

bilinmeyen katsayılar vektörü elde edilir ki bu da problemin    , ,yaklaşıku x y x y F A  

şeklinde kesikli seri çözümünü verir. Elde edilen çözüme ait veriler çeşitli tablo ve 

grafikler üzerinden verilmiştir.  

Eşit aralıklı farklı sayıdaki kolokasyon noktaları için mutlak hata fonksiyonunun 

sonsuz norm değerleri D=20 haneli ve D=30 haneli duyarlılıkta Tablo 4.2.1 de 

karşılaştırılmıştır.  
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Tablo 4.2.1. Örnek 4.2.2 için yaklaşıku u


  norm değerleri 

 

D=20 

D=30 
 

M=N=5 

0.0445024177 

0.0445024177 
 

M=N=6 

0.16257797 E-03 

0.15953927 E-03 
 

M=N=7 

0.12764070 E-03 

0.12378474 E-03 
 

M=N=8 

0.92179417 E-05 

0.91215651 E-05 
 

 

D=20 

D=30 
 

M=N=9 

0.72895596 E-05 

0.85967728 E-05 
 

M=N=10 

0.46072294 E-07 

0.28615508 E-07 
 

M=N=11 

0.81582800 E-07 

0.92190222 E-07 
 

M=N=12 

0.13350476 E-09 

0.13210058 E-09 
 

 

D=20 

D=30 
 

M=N=13 

0.94510664 E-10 

0.94492684 E-10 
 

M=N=14 

0.15523504 E-12 

0.15564536 E-12 
 

M=N=15 

0.21036052 E-12 

0.20975366 E-12 
 

M=N=16 

0.27673320 E-15 

0.28216683 E-15 
 

 

D=20 

D=30 
 

M=N=17 

0.27663185 E-15 

0.28649883 E-15 
 

… 

… 

… 
 

M=N=20 

0.59390799 E-18 

0.13643958 E-20 
 

 

 

8M N   için eşit aralıklı kolokasyon noktalarındaki mutlak hata fonksiyon 

değerleri Tablo 4.2.2 de verilmiştir. 5,10,15, 20M N   için mutlak hata fonksiyon 

grafikleri Şekil 4.2.1 de karşılaştırılmıştır. 10M N   için mutlak rezidü fonksiyonuna 

ait üç boyutlu grafiği ile eşyükselti grafiği ise Şekil 4.2.2 de sunulmuştur.  

 

Tablo 4.2.2. Örnek 4.2.2 için noktasal mutlak hata değerleri 
 

 
x  

1 

0.5 

0.2 

0 

-0.2 

-0.5 

-1 
 

 
y  

1 

0.5 

0.2 

0 

-0.2 

-0.5 

-1 
 

Fibonacci türü 
yaklaşım (D=20) 

0.39932169 E-18 

0.25859452 E-06 

0.42820801 E-06 

0.64241508 E-06 

0.97693630 E-06 

0.17751594 E-05 

0.42932169 E-18 
 

Fibonacci türü 
yaklaşım (D=30) 

0.15789800 E-28 

0.11347937 E-06 

0.67754326 E-07 

0.47611559 E-07 

0.76312080 E-07 

0.29505931 E-08 

0.17789800 E-28 
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(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 
Şekil 4.2.1. (a) Örnek 4.2.2. de N=M=5 için mutlak hata fonksiyonu grafiği 

                      (b) Örnek 4.2.2. de N=M=10 için mutlak hata fonksiyonu grafiği 

                      (c) Örnek 4.2.2. de N=M=15 için mutlak hata fonksiyonu grafiği 

                      (d) Örnek 4.2.2. de N=M=20 için mutlak hata fonksiyonu grafiği 
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(a) 

 

 

(b) 

 
 

          Şekil 4.2.2. (a) Örnek 4.2.2. de N=M=10 için mutlak rezidü fonksiyonu grafiği 

                     (b) Örnek 4.2.2. de N=M=10 için mutlak rezidü fonksiyonu eşyükselti eğri grafiği 
 

10M N   için nümerik çözüm ve gerçek çözüm fonksiyonlarına ait grafikler 

ise Şekil 4.2.3 ile verilmiştir. Grafikler D=30 haneli duyarlılıkta çalışılmıştır. 

 

 
  Şekil 4.2.3. Örnek 4.2.2. de N=M=10 için elde edilen nümerik çözüm ve gerçek çözüm grafikleri 

    (‒ ‒ ‒ : gerçek çözüm fonksiyonu,    • • • : nümerik çözüm fonksiyonu) 
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Örnek 4.2.3.  İkinci mertebeden, bir boyutlu, sabit katsayılı  

4 2tt t xxu u u u            (4.23) 

Telgraf denklemini 

 , 0 sinu x x ,  , 0 sintu x x         (4.24) 

başlangıç koşulları altındaki çözüm problemi ele alınsın. Tam çözümü 

 , sintu x t e x  fonksiyonudur (Yousefi,2010). Fibonacci polinomları cinsinden 

nümerik çözümü     , : , 0, 2x y x y    bölgesinde araştırılsın. Probleme ait matris 

denklemleri, Kısım 3.3.2 de verilen prosedür izlenerek 

             
      

0,2 0,1 0,0 2,0

2 2

4 2 0

, 4 , 2 , , ,

4 2

tt t xx

k l k l k l k l k l

y y x

u u u u

u x y u x y u x y u x y g x y

    

   

    F D F D F F D A G

  (4.25) 

      
    

0,0
1,

1, 1 1

,0 sin ,0

, 0
k k k

k k k

u x x u x x

x x

  

   F A V A

g

g g
   (4.26) 

      
     

0,1
2,

2, 2 2

, 0 sin , 0

,0
t k k k

yk k k

u x x u x x

x x

   

   F D A V A g

g

g
   (4.27) 

şeklinde elde edilir (Koç ve Kurnaz, 2014). Problem, 7,9,10,11,15M N   kesme 

sınırları alınarak temel matris denklemleri yardımıyla çözülmüş ve sonsuz normdaki 

sonuçlar 9,11M N   kesme sınırları için D=20 haneli ve D=30 haneli duyarlılıkta 

Tablo 4.2.3 da verilmiştir. 10,15M N   için mutlak hata fonksiyon grafikleri ve 

 15M N   kesme sınırı için elde edilen    , ,yaklaşıku x y x y F A  nümerik çözümü ile 

gerçek çözüm fonksiyonlarına ait yoğunluk grafikleri Şekil 4.2.4 de sunulmuştur. 

7,15M N   için mutlak rezidü fonksiyon grafikleri ise Şekil 4.2.5 de sunulmuştur. 

Grafikler D=25 haneli duyarlılıkta çalışılmıştır. 
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Tablo 4.2.3 . Örnek 4.2.3 için Taylor, Bernoulli ve Fibonacci türü yaklaşımların mutlak hatalarının 

kıyaslanması 
 

 9M N    11M N   

 ,r rx t  

Taylor 
Polinom 

Yaklaşımı 
(Bülbül ve 

Sezer, 2011) 

Bernoulli 
Yaklaşımı 
(Tohidi ve 

Shirazian,2012) 

Fibonacci 
Türü 

Yaklaşım 
 

Taylor 
Polinom 

Yaklaşımı 
(Bülbül ve 

Sezer, 2011) 

Bernoulli 
Yaklaşımı 
(Tohidi ve 

Shirazian,2012) 

Fibonacci 
Türü 

Yaklaşım 

(0.,0.) 0 9.84 E-09 3.12 E-23  0 2.49 E-10 3.13 E-24 

(0.1,0.1) 2.96 E-16 1,15 E-08 1.14 E-08  7.68 E-20 1.39 E-10 7.39 E-11 

(0.2,0.2) 7.01 E-13 1,41 E-08 1.70 E-09  7.34 E-16 1.77 E-10 4.15 E-11 

(0.3,0.3) 6.99 E-11 1,86 E-09 9.38 E-09  1.66 E-13 4.68 E-11 2.52 E-11 

(0.4,0.4) 1.90 E-09 7,21 E-08 7.67 E-09  8.12 E-12 2.38 E-09 2.12 E-11 

(0.5,0.5) 2.53 E-08 2,08 E-07 1.09 E-09  1.71 E-10 7.81 E-09 1.66 E-11 

(0.6,0.6) 2.15 E-07 3,46 E-07 4.46 E-09  2.11 E-09 1.41 E-08 4.27 E-12 

(0.7,0.7) 1.34 E-06 3,30 E-07 3.46 E-09  1.81 E-09 1.44 E-08 5.51 E-13 

(0.8,0.8) 6.62 E-06 2.10 E-08 1.35 E-08  1.18 E-07 1.27 E-09 5.60 E-12 

(0.9,0.9) 2.74 E-05 7.08 E-07 2.41 E-09  6.30 E-07 3.95 E-08 6.47 E-12 

(1.,1.)  9,69 E-07 4.46 E-09   9.81 E-08 1.42 E-11 

(1.1,1.1)  2.74 E-06 2.94 E-07   1.94 E-07 2.75 E-09 

(1.2,1.2)  2.36 E-05 2.00 E-06   5.48 E-07 3.37 E-08 

(1.3,1.3)  1.05 E-04 7.95 E-06   2.35 E-06 2.08 E-07 

(1.4,1.4)  3.79 E-04 2.42 E-05   1.04 E-05 8.99 E-07 

(1.5,1.5)  1.19 E-03 6.21 E-05   4.13 E-05 3.08 E-06 

(1.6,1.6)  3.43 E-03 1.40 E-04   1.45 E-04 8.98 E-06 

(1.7,1.7)  9.13 E-03 2.88 E-04   4.65 E-04 2.31 E-05 

(1.8,1.8)  2.26 E-02 5.47 E-04   1.36 E-03 5.38 E-05 

(1.9,1.9)  5.31 E-02 9.70 E-04   3.74 E-03 1.16 E-04 

(2.,2.)  1.18 E-01 1.63 E-03   9.67E-03 2.32 E-04 
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 (a) 

 

 (b) 

 

 
       (c) 

 
        (d) 

                 Şekil 4.2.4. (a) Örnek 4.2.3. de N=M=10 için mutlak hata fonksiyonu grafiği 

         (b) Örnek 4.2.3. de N=M=15 için mutlak hata fonksiyonu grafiği 

                            (c) Örnek 4.2.3. de N=M=15 için gerçek çözüm fonksiyonu yoğunluk grafiği 

                               (d) Örnek 4.2.3. de N=M=15 için nümerik çözüm fonksiyonu yoğunluk grafiği 
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(a) 

 
(b) 

Şekil 4.2.5. (a) Örnek 4.2.3. de N=M=7 için mutlak rezidü fonksiyonu grafiği 

                                         (b) Örnek 4.2.3. de N=M=15 için mutlak rezidü fonksiyonu grafiği 
 

Örnek 4.2.4.  Bir boyutlu, değişken katsayılı, homojen 

2 2
2

2 2
1 0
2

u ux
t x

 
 

 
         (4.28) 

hiperbolik diferansiyel denkleminin 

 ,0u x x ,   2,0tu x x         (4.29) 

koşulları altındaki tam çözümü   2, t sinhu x x x t   fonksiyonudur (Jin, 2008). 

    , : , 0,1x y x y    bölgesindeki    , ,yaklaşıku x y x y F A  çözümü için eşit 

aralıklı kolokasyon noktaları ile matris denklemleri 

       

    

2
0,2 2,0

2,0

2 2

2,0

0 , , ,
2tt xx k l k l k l

y x

xu u u x y q u x y g x y    

  F D Q F D A G
   (4.30) 

      
    

0,0
1,

1, 1 1

,0 ,0

, 0
k k k

k k k

u x x u x x

x x

  

   F A V A

g

g g
    (4.31) 

      
     

0,12
2,

2, 2 2

, 0 ,0

,0
t k k k

yk k k

u x x u x x

x x

  

   F D A V A g

g

g
   (4.32) 
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olarak elde edilir. Problem 5,6, 7,8,9,10,11,12,13,14,15,16,17, 20M N   alınarak 

temel matris bağıntıları yardımıyla çözülmüştür. Sonsuz normdaki çözüm hataları D=20 

haneli ve D=30 haneli duyarlılıkta Tablo 4.2.4 de verilmiştir. D=30 haneli duyarlılıkta 

çalışılan 5, 20M N   kesme sınırlarındaki mutlak hata fonksiyon grafikleri Şekil 

4.2.6 da, 10, 20M N   kesme sınırındaki mutlak rezidü fonksiyonlarının üç boyutlu 

grafikleri ile eşyükselti eğri grafikleri ise Şekil 4.2.7 de sunulmuştur.  
 
 

Tablo 4.2.4. Örnek 4.2.4 için yaklaşıku u


  norm değerleri 

 

D=20 

D=30 
 

M=N=5 

0.15035644 E-02 

0.15035644 E-02 

M=N=6 

0.20640031 E-02 

0.16121418 E-02 
 

M=N=7 

0.73015072 E-04 

0.70907238 E-04 
 

M=N=8 

0.25003073 E-04 

0.13015314 E-04 
 

 

D=20 

D=30 
 

M=N=9 

0.75949907 E-06 

0.38171485 E-05 
 

M=N=10 

0.70179172 E-07 

0.15430795 E-06 
 

M=N=11 

0.27643717 E-07 

0.26604715 E-07 
 

M=N=12 

0.24878215 E-08 

0.22846813 E-08 
 

 

D=20 

D=30 
 

M=N=13 

0.59732835 E-10 

0.98433976 E-10 
 

M=N=14 

0.19171218 E-10 

0.10992167 E-10 
 

M=N=15 

0.10345220 E-10 

0.10062110 E-12 
 

M=N=16 

0.25601901 E-11 

0.15383719 E-12 
 

 

D=20 

D=30 
 

M=N=17 

0.18809020 E-10 

0.35998881 E-14 
 

… 

… 

… 
 

M=N=20 

0.22299377 E-12 

0.64654392 E-19 
 

 

 

 
(a) 

 
(b) 

Şekil 4.2.6. (a) Örnek 4.2.4. de N=M=5 için mutlak hata fonksiyonu grafiği 

                      (b) Örnek 4.2.4. de N=M=20 için mutlak hata fonksiyonu grafiği 
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(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

                   Şekil 4.2.7. (a) Örnek 4.2.4. de N=M=10 için mutlak rezidü fonksiyonu grafiği 

                                (b) Örnek 4.2.4. de N=M=10 için mutlak rezidü fonksiyonu eşyükselti grafiği 

                (c) Örnek 4.2.4. de N=M=20 için mutlak rezidü fonksiyonu grafiği 

                                (d) Örnek 4.2.4. de N=M=20 için mutlak rezidü fonksiyonu eşyükselti grafiği 
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Örnek 4.2.5.  Bir boyutlu, değişken katsayılı, homojen olmayan 

2 2
2 2 2 2

2 2 2 x yu uy x x y e
y x
 

 
 

  

eliptik diferansiyel denkleminin, 

 , 0 1u x   ,  ,1 xu x e ,  0, 1u y  ,  1, yu y e   

Dirichlet sınır koşulları altındaki analitik çözümü  , x yu x y e  dir (Isik ve ark., 2013).  

     , : , 0,1x y x y    bölgesindeki eşit aralıklı kolokasyon noktaları ile 

yazılacak 

       

    

2 2
2,0 0,22 2 2 2

2,0 0,22 2

2 2

2,0 0,2

2 , , ,xy
k l k l k l

x y

u ux y x y e q u x y q u x y g x y
x y
 

    
 

  Q F D Q F D A G
  

      
    

0,0
1,

1, 1 1

,0 1 ,0

, 0
k k k

k k k

u x u x x

x x

  

   F A V A

g

g g
  

      
    

0,0
2,

2, 2 2

,1 ,1

,1

x
k k k

k k k

u x e u x x

x x

  

   F A V A

g

g g
  

      
    
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1,
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  

    F A V A h
  

      
    

0,0
2,

2, 4 2

1, 1, y

1, y

y
l l l

l l l

u y e u h y

h y

  

   F A V A h
  

matris denklemlerinden oluşan sistemin çözümü ile    , ,yaklaşıku x y x y F A  

formundaki çözüm elde edilir. Matris denklemlerinde   2
2,0 ,k l kq x y x , 

  2
0,2 ,k l lq x y y ,   2 2, 2 k lx y

k l k lg x y x y e ,  1, 1k kx g ,  2,
kx

k kx eg ,  1, 1l lh y   ve 

 2,
ly

l lh y e  dir. Farklı kolokasyon nokta sayısı ile elde edilen seri çözümlere ait 
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maksimum hata değerleri D=20 haneli ve D=30 haneli duyarlılıkta Tablo 4.2.5 da 

verilmiştir. D=30 haneli duyarlılıkta çalışılan 5,10,15M N   kesme sınırları 

kullanılarak elde edilen çözümlerine karşılık mutlak hata fonksiyonlarına ait eşyükselti 

eğri grafikleri Şekil 4.2.8. de sunulmuştur. 5,10,15, 20M N   kesme sınırlarının 

kullanıldığı mutlak rezidü fonksiyonlarına ait grafikler ise Şekil 4.2.9. de 

karşılaştırılmıştır. 

 

 
      (a) 

 

 
      (b) 

 

 
      (c) 

Şekil 4.2.8. (a) Örnek 4.2.5. için N=M=5 kesme sınırında mutlak hata fonksiyonu eşyükselti grafiği 

                     (b) Örnek 4.2.5. için N=M=10 kesme sınırında mutlak hata fonksiyonu eşyükselti grafiği 

                     (c) Örnek 4.2.5. için N=M=15 kesme sınırında mutlak hata fonksiyonu eşyükselti grafiği 
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(a) 
 

(b) 
 

(c) (d) 

Şekil 4.2.9. (a) Örnek 4.2.5. için N=M=5 kesme sınırında mutlak rezidü fonksiyon grafiği 

                                (b) Örnek 4.2.5. için N=M=10 kesme sınırında mutlak rezidü fonksiyon grafiği 

                      (c) Örnek 4.2.5. için N=M=15 kesme sınırında mutlak rezidü fonksiyon grafiği 

                     (d) Örnek 4.2.5. için N=M=20 kesme sınırında mutlak rezidü fonksiyon grafiği 
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Tablo 4.2.5. Örnek 4.2.5 için yaklaşıku u


  norm değerleri 

 

 

D=20 

D=30 
 

M=N=5 

0.52879249 E-05 

0.52879249 E-05 

M=N=6 

0.20059075 E-06 

0.20059075 E-06 
 

M=N=7 

0.51101377 E-08 

0.46468218 E-08 
 

M=N=8 

0.11342271 E-09 

0.11742078 E-09 
 

 

D=20 

D=30 
 

M=N=9 

0.28247502 E-11 

0.14742406 E-11 
 

M=N=10 

0.2006389 E-13 

0.35363249 E-13 
 

M=N=11 

0.7854 E-15 

0.76046132 E-15 
 

M=N=12 

0.31629947 E-16 

0.32095734 E-16 
 

 

D=20 

D=30 
 

M=N=13 

0.11537832 E-17 

0.82478138 E-18 
 

M=N=14 

0.18 E-17 

0.63314441 E-19 
 

M=N=15 

0.13 E-17 

0.30827579 E-21 
 

M=N=16 

0.16376744 E-17 

0.1500239 E-22 
 

 

D=20 

D=30 
 

M=N=17 

0.58367460 E-17 

0.97796492 E-25 
 

M=N=18 

0.16999999 E-17 

0.12165415 E-25 
 

M=N=19 

0.4089 E-17 

0.60 E-27 
 

M=N=20 

0.26 E-17 

0.39686264 E-27 
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5. SONUÇLAR 

 

Bu tez çalışmasına başlarken, iki farklı tipte bölgede tanımlı lineer kısmi 

diferansiyel denklemler için çözüm metotları geliştirilmesi amaçlanmıştır.  

Çalışılan metotlar, pseudo-spektral türde matris metotları olup, çalışılmak 

istenen tanım bölgesine göre geliştirilen baz fonksiyonları ile çözümü aranan problemin 

ele alınışına uygun hale getirilmiştir.  

Çalışmanın sonunda, çeşitli test problemleri üzerindeki uygulamalardan elde 

edilen verilere dayanan grafik ve tablolar, önerilen metotların başarılı olduğunu, 

böylece tezin amacına ulaştığını göstermiştir. Verilerin hızlı ve sağlıklı elde 

edilebilmesi için Maple bilgisayar programından faydalanılmıştır. 

İki farklı tanım bölgesine göre, Bölüm 3.2 ile Bölüm 3.3 de önerilen metotlara 

ait sonuçlar aşağıda sınıflandırılarak verilmiştir. 

Bölüm 3.2. de   , : ,E x y x y       üzerindeki diferansiyel denklemin 

E  deki koşulları altındaki çözümü için bir prosedür araştırılmıştır. Bunun için 

öncelikle, eksponansiyel Chebyshev fonksiyonları kullanılarak, çift değişkenli 

Chebyshev polinomlarının tanım aralığı reel düzleme taşınmış, böylece bu düzlemde 

ortogonal olan yeni bir polinom ailesi üretilmiştir. Bu polinom ailesinin ortogonalliği, 

rekürans bağıntıları ve operasyonel türev matrisleri elde edilmiştir. Üretilen polinom 

ailesinin, matris metodunda baz fonksiyonu olarak kullanılmasıyla E  üzerindeki 

problemler için çözüm prosedürü kurulmuştur. Önerilen metodun bir uygulaması Bölüm 

4.1 de verilmiştir. Seçilen baz fonksiyonu ile metoda ait şu sonuçlara varılmıştır: 

Çift değişkenli eksponansiyel Chebyshev fonksiyonları için bulunan türev 

matrisinin çok sayıda sıfır içermesi, türev matrisinin kuvvetlerinin alınmasını 

kolaylaştırmış, matrislerle çalışırken oluşan işlem yükünü azaltmış ve böylece zaman 

tasarrufu sağlamıştır. Elde edilen sayısal çözümün farklı kolokasyon noktalarındaki 

mutlak hata tablo değerleri metodun test problemindeki doğruluğunu göstermiştir. 

Gerçek çözüm fonksiyonu ile sayısal çözümün eşleştirmeli olarak verildiği grafik, 

sayısal çözümün, düzlemin bazı bölgelerinde daha tutarlı olduğunu göstermiştir. Sayısal 

çözümün doğruluğunu, farklı aralıklardaki eş yükselti eğri grafikleri de desteklemiştir. 

Bölüm 3.3. de       , : , ,F x y x a b c d        tanım bölgesindeki 

problemlerin çözümü için bir metot araştırılmıştır. Burada ise tüm reel eksende tanımlı 

olan Fibonacci polinomları kullanılarak iki değişkenli polinom ailesi verilmiştir. Bu 
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ailenin elemanları tarafından gerçeklenen rekürans bağıntıları çıkarılmış,  Fibonacci tipi 

polinomlar ile yaklaşımda kullanılacak türev operasyonel matrisleri elde edilmiştir. 

Fibonacci tipi polinomların, matris metodunda baz fonksiyonu olarak kullanılmasıyla 

F  bölgesinde tanımlı problemler için çözüm prosedürü kurulmuştur. Önerilen 

metodun uygulamaları Bölüm 4.2 de, farklı kapalı bölgelerde tanımlı, homojen, 

homojen olmayan, sabit ve değişken katsayılı, başlangıç ve sınır değer koşullarına sahip 

lineer kısmi diferansiyel denklemler için verilmiştir. Seçilen baz fonksiyonu ile metoda 

ait şu sonuçlara varılmıştır: 

Fibonacci tipi iki değişkenli polinomların rekürans bağıntısından elde edilen 

türev matrisleri çok sayıda sıfır içermektedir. Bu durum ise, metodun en önemli özelliği 

olan denklemlerdeki türev işlemlerinin operasyonel türev matrisleri tarafından 

gerçekleştirilmesi sırasında gereken matris kuvvetleri alma işlemini kolaylaştırmış, 

işleme ayrılan süreyi kısaltmıştır. 

Benzer avantaj Chebyshev matris metodunda da bulunmasına karşın, Chebyshev 

polinomlarının reel düzlemin alt bölgelerinde tanımlı problemlere uygulanabilmesi için 

gereken bölge dönüşümü işlem yükünü arttırmaktadır. Oysa Fibonacci polinomları ile 

işlem yaparken böyle bir dönüşüme gerek yoktur. Örneğin   ( , y) : , y 3,3Ö x x     

bölgesinde problemin matris metodu ile çözülmesi sırasında baz fonksiyonu olarak 

Chebyshev polinomunun seçilmesi durumunda elde edilen doğruluk başarısı ile 

Fibonacci tipi polinomun seçilmesi durumundaki ile hemen hemene aynı olmasına 

karşın, Fibonacci tipi polinomu seçilmesi işlem yükü bakımından Chebyshev 

polinomlarına göre avantaj sağlar. 

Oluşabilecek bilgisayar yuvarlama hatalarını azaltmak için, programlamalar 

esnasında hane duyarlılık sayısı olabildiğince arttırılmalıdır. Bu durum Örnek 4.2.2 için 

verilen Tablo 4.2.2 den görülür. Tablo 4.2.4 de de farklı kesme sınırlarındaki işlemler 

için D=20 hane duyarlılığında elde edilen hatalar ile D=30 hane duyarlılığındakilerin 

farklı olduğu görülür. Örneğin, bu tabloda M=N=9 kesme sınırında D=20 hane 

duyarlılığında hata daha küçükken, D=30 da hata daha büyüktür. Hane sayısının 

arttırılması, bazı kesme sınırlarında sayısal büyüklük olarak hatayı arttırmış olsa da, 

nümerik çözümü daha doğru elde edilmesine olanak tanır. Hane duyarlılığı ne kadar 

yüksek olursa, gerçek çözüme göre hesaplanan hata, o ölçüde tutarlı olacaktır.  
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Gerçek çözüm bir polinom ise, bu metotta uygun kesme sınırı seçilerek gerçek 

çözüme çok çok yakın nümerik çözüm elde edilebilir. Örnek 4.2.1 de olduğu gibi, bazı 

problemler için, gerçek çözüm fonksiyonu bile elde edilebilir. 

Genellikle, kesme sınırının artması, elde edilen çözümün hatasını azaltır. Söz 

konusu azalma Şekil 4.2.8 de belirgin bir şekilde görülmektedir. Hatanın büyüklüğü 

ölçüsünde rengin koyulaştığı şekilde, M=N=5 için mutlak hata eşyükselti grafiği iç 

bölgede de yoğunken, M=N arttıkça hata yoğunluğu da bölge içinde azalarak tanım 

bölgesi sınırlarında kalmıştır. Rezidü hatası da kesme sınırı ile ilişkilidir. Kesme sınırı 

ile rezidü hatası arasındaki ters orantılı ilişkiye örnek olarak, Şekil 4.2.9 verilebilir. 

Ancak belirli bir kesme sınırından sonra, sınırı arttırmak, hatada çok büyük bir 

değişikliğe sebep olmayabilir.  Bu durum, Örnek 4.2.2 e ait Tablo 4.2.1 de 

gözlemlenebilir. Tabloda M=N=16 ye kadar ki kesme sınırlarında hata hızla azalırken, 

M=N=16 dan sonra sınırın arttırılması hatayı çok etkilememiştir. Kesme sınırının 

artması aynı zamanda işlem yükünü arttırırken W  matrisinin koşul sayısını da 

arttıracaktır ve problemin kötü koşullanmasıyla metodun hassasiyeti azalacaktır. 

Dolayısıyla, ideal kesme sınırının belirlenmesi çok önemlidir. 

Fibonacci tipi matris metoduyla, tanım bölgesinin tamamında geçerli bir 

polinom ile yaklaşım yapıldığından, kompleks olmayan bölgelerde sonlu fark ve sonlu 

elemanlar metotlarına göre daha pratiktir. 

Matris metodunun, problemde geçen türevleri matrisler yolu ile ifade etmesi ve 

doğrudan integral işlemini kullanmaması, doğrudan integral işleminin karmaşık ve zor 

olduğu problemlerde Adomian ayrışım ve varyasyonel iterasyon gibi metotlara göre 

matris metodunu avantajlı kılacaktır. 
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