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OZET

DOKTORA TEZi

SIRALAMA TABANLI SPEKTRAL METOTLAR iLE LINEER KISMi
DIFERANSIYEL DENKLEMLERIN REEL DUZLEMDE COZULMESI
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2014, 94 Sayfa

Jiiri
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Prof. Dr. Asir GENC
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Do¢. Dr. Nurcan BAYKUS SAVASANERIL

Bu calismada, reel diizlem ve alt dortgensel bdlgelerinde tanimli lineer kismi diferansiyel
denklemlerin sayisal ¢oziimleri igin siralama tabanli spektral (pseudo-spektral) tipte iki metot verilmistir.
Ele almnan iki farkli problem bolgesi i¢in gerekli cift degiskenli baz fonksiyonlari, eksponansiyel
Chebyshev ve Fibonacci polinomlari kullanilarak iretilmistir. Kare integrallenebilir uzayindaki bu
fonksiyonlara ait temel Ozellikler incelenmis, tekrarlama bagintilar1 ve operasyonel matrisleri elde
edilmistir. Spektral metotlarin temel uygulama prensibi geregince, problemlere, tanim bolgesinin
geometrisine gore belirlenecek baz fonksiyonlarmin dogrusal bir kombinasyonu seklinde ¢6ziim
aranmigtir.  Onerilen metotlarm, dogrusal kombinasyondaki bilinmeyen spektral katsayilarin
bulunmasimdaki etkinligi test problemleri iizerinden gosterilmistir. Son olarak, oOnerilen metotlar
kullanilarak elde edilen sonuglar tartisilmistir.

Anahtar Kelimeler: Kismi diferansiyel denklemler; iki degiskenli eksponansiyel
Chebyshev fonksiyon yaklasimi; Fibonacci tiirii iki degiskenli polinom yaklasimi; Pseudo-spektral
kolokasyon metodu; Operasyonel matris
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In this study, two collocation based spectral (pseudo-spectral) methods are given for the
numerical solutions of linear partial differential equations defined on a real domain and its rectangular
sub-domains. Bivariate base functions for two different regions of the handled problem are produced by
using the exponential Chebyshev and Fibonacci polynomials. The main properties of these bases which
are the elements of the space of the square integrable functions are investigated, and then recurrence
relations and operational matrices are obtained. In accordance with the main application principles of the
spectral methods, the solutions are sought as a linear combination of the base functions determined
regarding the geometry of the domain of the problems. The effectiveness of the proposed methods for
finding the unknown spectral coefficients are shown on the test problems. Finally, the results are
discussed.

Keywords: Partial differential equations; Bivariate exponential Chebyshev function
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1. GIRIS

Bir kisim kismi diferansiyel denklem (KDD) ler i¢in kapali formda ¢6ziim elde
edilebilir. Ancak kapali formu veren teknikler ile calismak ¢ok pratik degildir. Bir kismi1
icin ise integre edilememe gibi nedenlerle analitik ¢6ziim elde edilemez. Bunun yaninda
niimerik teknikler genellikle iyi tanimli kismi diferansiyel denklemler i¢in oldukca
basarili sonuglar verir ve bilgisayar programlarinin gelismesiyle uygulanmalar1 da daha
pratik hale gelmistir. Sonlu elemanlar, sonlu hacimler, sonlu farklar, spektral metotlar1
ile bu metotlardan tiiretilen teknikler, KDD i¢in uygulanabilir tekniklerin en onemli
ornekleri arasinda verilebilir. Problem bélgesinin yapisi, istenen dogruluk derecesi ve
islem kapasitesi bu metotlarin se¢ciminde en 6nemli etkenlerdir. Bahsedilen metotlar su
sekilde 6zetlenebilir (Gottlieb ve Orszag, 1977; Fornberg, 1996; Boyd, 2000; Mason ve
Handscomb, 2003; Bakioglu, 2004; Quarteroni ve Valli, 2008):

Sonlu farklar metodunda problem bdlgesi diiglim noktalar1 yardimiyla alt
bolgelere ayrilir. Fonksiyonun tiirevine, diiglim noktalarmmn kullanildig1r yerel

argiimanlarla (sonlu farklarla) yaklasilir. Ornegin, Ax=h ve Ay=k Dbolgeyi
pargalayan araliklar, x, =iAx, y,=jAy digim noktalar1 ve u,; :u(xl., yj) olmak

iizere, fonksiyonun x e gore birinci mertebe tiirevi

(a_uj Uy T U
ox ), ; 2h

merkezi fark ifadesi ile formiilize edilebilir. KDD’in yerine her bir noktada fark
denklemleri yazilarak cebirsel denklem sistemi elde edilir. Cebirsel sistemin ¢oziimii ise
ayrik noktalarda aranan fonksiyonu verir. Bu yaklagim, uygulama kolaylig1 bakimindan
olduk¢a makuldiir. Ciinkdi, tiirev fonksiyonun lokal (yerel) bir 6zelligidir, ilgili nokta
disinda bir fonksiyon degerini kullanmak gerekli degildir (Fornberg,1996). Ancak, bu
yaklagimda bolgenin diizgiin olmamasi durumunda uygulama zorlasir.

Sonlu elemanlar metodu, problemin kompleks yapidaki ¢6ziim bdlgesinin sonlu
sayida basit alt bolgelere (elemanlara) ayristirilmasi fikriyle sekillenmistir. Her alt bolge
iizerinde, aranan fonksiyonun pargali polinom interpolasyonu lokal yaklasim
fonksiyonu olarak se¢ilip problemde yerlestirilerek diferansiyel denklem, bilinmeyen
katsayilar i¢eren cebirsel denklemlere doniistiiriiliir. Boylece elde edilen denklemlerden

olusan sistemin ¢oziilmesiyle her bir diiglim noktasinda (nodda) aranan biiyiikliikler



bulunur. Sonlu elemanlar ve sonlu hacimler metotlar1 ile sonlu farklar metotlar
uygulamada benzerdirler.

Sonlu elemanlar ve sonlu farklar metotlarinin ortak dezavantaji, ¢6ziimde
yiiksek dogruluk istenmesi halinde daha fazla nokta ile problemi ele almak veya
fonksiyonun hizli degistigi bolgelerde esit olmayan araliklar ile islem yapmak
gerekeceginden, hesaplamalarin yiikiiniin olduk¢a artmasidir.

Sonlu elemanlar metotlari, 6zellikle, 3-boyutlu yapilar gibi oldukca karmagik
geometriye sahip problemlerin ele aliniginda etkili iken, dortgensel ya da kiire gibi basit
diizglin bolgelerde tanimli problemlerde spektral metotlar tercih edilerek yiiksek
dogrulukta sonuglar daha kolay bir sekilde elde edilebilir.

Sonlu elemanlarin aksine, spektral metotlarda tanim bdlgesinin tamaminda
gecerli baz fonksiyonu kullanilir. Kullanilacak baz fonksiyonunun bu o6zelliginden

dolay1 spektral metotlara global tipte yaklasim denilir. Bir fonksiyona,

u(x)zZakgbk (x) (1.1)

formunda diizgiin baz fonksiyonlarinin toplami olarak yaklasilir. Kullanilan baz
fonksiyonu, tiim problem bolgesi lizerinde, izolasyon noktalar1 haricinde hi¢bir noktada
sifir olmayan, istenildigi 6l¢iide yiiksek dereceden olabilen polinomlardir. Bu yaklasim
fonksiyonu analitik olarak diferansiyellenir. Coziim fonksiyonu, yaklasim

fonksiyonunun probleme yerlestirilmesiyle elde edilen a, spektral katsayilarmni iceren

denklemlerin meydana getirdigi cebirsel denklemlerin, belirlenecek bir kriter
dogrultusunda ¢oziilmesiyle elde edilir. Tarihsel gelisim ve teorik alt yapt bakimindan
spektral metotlar hakkinda oncelikli basvurulacak bir kaynak olarak (Boyd, 2000)
verilebilir.

Spektral metotlar, literatiirde ilk olarak interpole edilmeyen tiirde metotlar olarak
yer almis olsa da, swralama noktalarinda ¢6ziim arayan kolokasyon (siralama)
metodunun tanitilmasiyla birlikte spektral metot kavraminin kapsami, siralama
noktalarinda interpolasyon kurarak ¢6ziim iireten metotlar1 da kapsayacak sekilde
genisletilmistir. Yakimn zaman c¢alismalarmin birgogunda spektral metot kavramu,
diferansiyel denklemlerin ¢dziimlerini global fonksiyonlarin seri agilimlari cinsinden
veren metotlari genel bir ifadesi olarak eslestirilmistir. Boydun (2000) eserinde de

spektral metotlar interpolasyona dayanan ve dayanmayan metotlar olarak iki alt sinifta



incelenmistir. Bu siniflama altinda Galerkin ve Tau metotlar1 interpole edilmeyen tiir ve
kolokasyon (siralama) metodu ise interpole edilen tiir metotlar olarak tanmir. Kismi
diferansiyel denklemlerin niimerik ¢oziimleri i¢in en ¢ok tercih edilen metotlardan olan

bu lic metot, temelde agirlikli kalanlar prensibine dayanur.

Tamm 1.0.1. (Agirhkh Kalan Prensibi ) Bir bolge Qc R? ile bu bélgenin smirlar:

k
UoQ, =0Q tanimlansin. Lineer diferansiyel operatérleri L ve B olmak iizere, Q

i=1

iizerinde

Lu=f (1.2)
lineer kismi diferansiyel denkleminin, 6Q tizerinde

Bu=0 (1.3)

sinir kosullar1 altinda niimerik ¢6ziimii % aransin.

Bir W Hilbert uzaymm bir alt uzayr P, olmak lizere, u P, ¢oziim

fonksiyonunun (1.3) smir kosullarini saglayarak,
R=Lu-f (1.4)

rezidii (kalan) fonksiyonunu bir agirlik fonksiyonuna gére minimize edecek sekilde
belirleme prensibine agirlikli kalan prensibi denir (Davies,2011).

Agirlikli kalan prensibine dayanan metotlarda ag¢ilim (trial) fonksiyonu, P, de

baz fonksiyonlari (¢0 ,¢l...,¢N) ; niimerik ¢6zlim,

=Yg, (1.5)

n=0
ve rezidiinlin minimasyonunu belirleyen agirlik (test) fonksiyonlari, (WO,WI...,WN)

ailesi olup, Hilbert uzaymdaki i¢ ¢arpim ile Vn €{0,...,N} i¢in
(W,,R)=0 (1.6)

dir.



Bu prensibe dayanan metotlardan
e sonlu farklar metodunda baz fonksiyonlar1 olarak diisiik dereceli, lokal
parcali fonksiyonlar,
e sonlu elemanlar metodunda baz fonksiyonlar1 olarak sabit dereceli, lokal
diizgiin fonksiyonlar,
e spektral metotlarda baz fonksiyonu olarak keyfi dereceden, global
diizgiin fonksiyonlar
secilir.
Agirlikli kalan prensibi ile (1.5) de gecen u katsayilarmi belirlemede kullanilan,

W inin segilecegi aileye gore birbirinden ayrilan bircok metot vardir. Literatiirde sik¢a

karsilagilan Galerkin, Tau ve kolokasyon metotlar1 gibi.

Tamm 1.0.2. (Galerkin metodu) Test fonksiyonu, sinir kosullarini saglayacak sekilde,
acilim baz fonksiyonu olarak secilir. Yani W, =¢, 6 ve B¢, =0 olup, (1.6) bagmtisi,

(¢,,R)=0 < (4, Lu—[)=0

< <¢n’Lzﬁk¢k>_<¢n’f>:0
Qzﬁk <¢n’L¢k>_<¢n’f>:0
2 Lui,=(6,. 1) ( L =(4,,L4:) ) (1.7)

ile 6zdestir. (1.7) sisteminin ¢ozlilmesiyle ¢oziim fonksiyonunun seri formdaki spektral

katsayilar1 elde edilir.

Test fonksiyonu olarak W =¢, ac¢ilim baz fonksiyonunun kullanilmasi yoniiyle

Galerkin metoduyla benzerlik gosteren Tau metodunda, test fonksiyonlar1 ortogonal
fonksiyon ailelerinden secilir ve test fonksiyonlarinin siir sartlarmi saglama sarti
yoktur. Bunun yerine, smnir sartlar1 i¢in olusturulan cebirsel denklem, diferansiyel
denklem i¢in olusturulan sistemin i¢ine ekleme ya da bir boliimiiniin yer degistirmesi

seklinde yerlestirilerek sinir sartlar1 ¢oziime etki etmis olur.



Tamm 1.0.3. (Kolokasyon metodu) (1.5) formundaki ¢6ziim fonksiyonunun, bolgeden

secilen ve kolokasyon (swralama) noktalar1 olarak adlandirilan belirli sayidaki P,
(n=0,1,...,N) interpolasyon noktalarinda (1.4) rezidii fonksiyonunu sifirlamasi
saglanir. Test fonksiyonu W =06 (ﬂ ) olarak almir (o6 : dirak delta fonksiyonu).

Boylece,

(m,.R)=0 < (5(P,),R)=0

Q;L@(ﬂ)ﬁn:f(ﬂ) (1.8)
formunda elde edilen cebirsel denklem sistemi ¢doziildiigiinde, (1.5) yaklasim
fonksiyonunun spektral katsayilari elde edilir.

Kronolojik olarak “spektral” kavrami ilk defa “Galerkin” kavraminin 6zdesi
olarak kullanilmistir. Zamanla, Galerkin metodunun, belirli noktalar ve agirlik
fonksiyonuna gore Gauss-integralleme teknigiyle iliskisi kullanilarak gelistirilen
kolokasyon metodu, “pseudo-spektral” (sanki-spektral, siralama tabanli spektral)
metodu olarak literatiire girmistir (Boyd, 2000).

Pseudo-spektral metot, problemin yapisindan bagimsiz olmasi ve kolay
uygulanabilirligi ile olduk¢a sik kullanilan niimerik metotlardan biri olmustur. Bunun
yaninda, metot ile elde edilen sonucglarin dogrulugu, kolokasyon noktalar1 ve baz
fonksiyonunun problemin dogasma en uygun sekilde se¢imi ile miimkiindiir. Uygun baz
kiimesinin se¢iminde birtakim kurallar géz oOniinde bulundurulur. En 6nemlisi ise,

“geometri ya da uygulama bdlgesi baz kiimesini belirler” ilkesidir (Boyd,2000).
Ornegin, bilindigi gibi {1, cos(nx),sin(nx),...} Fourier ac¢ilimlar1 cinsinden segilecek

baz fonksiyonlar1 ailesi periyodiktir. Dolayisiyla, bu aile, periyodik davranis sergileyen
problemlerin ¢oziimii i¢in oldukca uygun baz alternatifi olacaktir (Boyd,2000; Canuto
ve ark,206; Agarwal ve O’Regan, 2009). Secilecek baz kiimesine gore de kolokasyon
noktalar1 belirlenir. Taylor, Chebyshev, Legendre ve Fibonacci polinomlar1 ise en sik
kullanilan baz fonksiyonlar1 arasindadir.

Chebyshev polinom ailesinin baz fonksiyonlar1 olarak se¢ildigi nlimerik metotlar

bircok problemin ¢oziimiinde basarili sonuglar vermistir. Tarihsel sliregte denklemler



icin Chebyshev seri acilimina dayali ¢6ziim arayisi ile ortaya ¢ikan ¢aligmalar, spektral
metotlarin gelisimine de Onciilik etmistir. Bu metotlarm gelisimi ise beraberinde
alternatif baz fonksiyonlarmin da kullanilabilirligi sonucunu dogurmustur. Bu konudaki
baslica eserler su sekilde siralanabilir:

Kolokasyon yaklasimi ilk defa Slater (1934) ve Kantorovich (1934) tarafindan
kullanilmis olsa da (Guo,1998), ortogonal kolokasyonu ilk defa Lanczos (1938)
kullanmustir.

Lanczos (1938) da yaptig1 calismalar1 gelistirerek 1957 de yazdigi kitabinda,

diferansiyel denklemlerin ¢oziimiini y =a,+ax+...+a,x" formunda ele almis ve

bilinmeyen katsayilarin1 elde etme problemi i¢in, seri formdaki ¢dziim diferansiyel
denklemi saglayacak sekilde, iki tiir yaklasim yapilabilecegi goriisiinii savunmustur.
Ikinde, bir kiigiik terimle pertiirbe edilmis diferansiyel denklemde bagimsiz degiskenin
kuvvetlerine gore ya da polinomun kuvvetlerine gore bilinmeyen katsayilar esitlenerek
¢oziime gidilir. Ikincisinde ise seri form, denklemi cesitli bagimsiz noktalarda
saglayacak sekilde kurulur. Lanczos, bu metodunda, ¢6ziimii Chebyshev polinomlari
cinsinden aramamis, yalnizca Chebyshev serilerinin yakimsaklhik 6zelliginden
faydalanmistir. Lanczos sundugu metodu, secilmis noktalar ve Tau (7 ) metodu olarak

adlandirmistir.

Clenshaw (1957), bir fonksiyonun (s). mertebeden ile (s+1). mertebeden

tiirevlerine ait Chebyshev seri agilimlarindaki katsayilar1 arasindaki bagmntiy1 formiilize
etmistir. Bu bagmnt1 yardimiyla, sonlu aralikta taniml, reel degerli, adi tiirevli
diferansiyel denklem (ADD) lerin sayisal ¢oziimii i¢in Chebyshev seri agiliminda
bilinmeyen katsayilarin sistematik olarak elde edilmesine yonelik bir metot sunmustur.
Bu metot, Lanczos’un (1957) bahsi gecen birinci tiir yaklasimini andirmakla birlikte,
burada ¢6ziim tamamen Chebyshev polinomlar1 cinsinden elde edilir.

Lanczos ve Clenshaw tarafindan sunulan metotlar, Fox (1962) tarafindan tekrar
karsilagtirmali olarak ele alinmistir. Clenshaw’un metoduna dair goriislerini belirtmis ve
metodun kiiciik dereceli polinomlar ile ¢alisilmast durumunda kullanigh olacagini
gostermistir.

Clenshaw ve Norton (1963) ise Lanczos’un ikinci tip yaklasim fikrinden
hareketle, Picard metoduna ve swralama prensibine dayanan iteratif bir prosediir
vermistir. Bu metot, birgok diferansiyel denklem tiirii i¢in uygulanabilir olmakla birlikte

islem ytikiini arttrmstr.



Wright (1964), ADD’ler i¢in kolokasyon noktalarina dayali 2 temel ¢6ziim
metodu tanitmistir. Bunlardan birincisini Picard varlik teoreminden hareketle gelistirmis
olup, ikincisinde diferansiyel denklemin lineerlestirilmesi formunu kullanmistir. Coziim
sonlu Chebyshev serileri cinsinden ele alinmis, metoda ait 6zellik ve uygulamalari
verilmistir. Kolokasyon noktalarinin tanim araligindaki yerlerini, rezidiiyli kiigiiltecek
sekilde se¢ilmesi gerektigini ortaya koymustur.

Scraton (1965), Clenshaw’un metodunu gelistirerek, degisken katsayili ADD’de,
degisken katsayilar1 temsil eden fonksiyonlar1 da seri forma dahil eden bir metot
sunmustur.

Fox ve Parker (1968) tarafindan sunulan kitapta, polinomal yaklasim teorisi,
interpolasyon ve siirekli ve ayrik halde en kiiciik kareler yaklagimi gibi niimerik analizin
baslica konular1 Chebyshev polinomlar1 ile yeniden ele alinmis, uygulamalarla
desteklenmistir. Yine Chebyshev polinomlariin kullanildigi Tau ve se¢ilmis noktalar
metotlar1 uygulamali olarak verilmistir. Chebyshev polinomlarnin ortogonalligi,
katsayilar arasindaki integral iliskileri gibi bircok temel 6zelliginde en sade bigcimde
sunuldugu bu kitap Chebyshev polinomlarinin niimerik analize entegrasyonu iizerine
temel bir kaynak eserdir.

Oliver (1969), ADD’lerin Chebyshev seri ¢oziimleri i¢in hata tahmini teknigini
tanitmisgtir.

KDD’ler i¢in spektral metotlarm kullanilmasi 1970’li yillarda yayginlasmaya
baslamistir. Bu alandaki ilk ¢aligmalar, Kreis ve Oliger (1972) ve Orszag (1972)
tarafindan sunulan pseudo-spektral metot uygulamalaridir (Guo,1998).

Basu (1973), Chebyshev polinomlar1 yardimiyla, iki degiskenli Chebyshev
polinom ailesini tanitmistir. Tek degiskenin sahip oldugu ortogonallik ve seri a¢ilim
gibi temel ozelliklerin iki degiskenli Chebyshev polinomlar: i¢in de gegerli oldugunu
gostermis ve bir problem ¢6ziimii i¢in tanitilan polinomu kullanmastir.

Gottlieb ve Orszag (1977), yaklasim teorisi ve yakinsaklik teorisini 6zetleyerek
spektral metotlarin teorik altyapismi sunmus ve niimerik analizlerini yapmuslardir.
Ayrica galerkin, tau ve kolokasyon metotlarmi, 6zel kismi tirevli denklemlere
uygulamis ve karsilastirmali sonuglar1 tablo ve grafiklerle desteklemislerdir. Teorik ve
uygulamali1 olarak hazirlanan bu kitap, spektral metotlar konusunda temel kaynak
eserler arasindadir.

Horner (1982), eliptik tipte kismi diferansiyel denklemlerin ¢oziimlerinde ¢ift
degiskenli Chebyshev seri metodunu kullanmistir (Doha,1992).



Doha (1992), ortogonal Chebyshev polinomlarinin tensér ¢arpimini birden ¢ok
degiskenli fonksiyonlara yaklagim i¢in kullanmistir. Basu (1973) tarafindan tanimlanan
iki degiskenli Chebyshev polinomlarmm KDD c¢oziimlerinde spektral metotlar: ile
kullanilabilmesi i¢in sonsuz tiirevlenebilir ¢ift degiskenli fonksiyon ve tiirevine ait seri
acilimlardaki bilinmeyen katsayilar1 arasindaki rekiirans bagintisini vermistir. Poisson
denkleminin ¢6ziim fonksiyonunu tau metodu ile arastirmistir. Ayrica, lic degiskenli
Chebyshev polinomunu tanitmis ve ii¢ degiskenli fonksiyon ve tiirevlerinin seri
acilimlarindaki katsayilar1 arasindaki bagmtiy1 da vermistir.

Bilgisayar programlarinin gelisimiyle spektral metotlarin da uygulamalar1 daha
pratik hale gelmis ve bu durum lineer ve lineer olmayan bir¢cok problemin ¢oziimiinde
siklikla tercih sebebi olmustur.

Lineer diferansiyel denklemlerin ¢6ziimii i¢in, Pseudo-spektral uzantili
Chebyshev matris metodu, Sezer ve Kaynak (1996) tarafindan tanitilmistir. Problemlere
uygulanacak c¢o6ziim prosediiriiniin kullanisli olmasi ve bilgisayar programlari
yardimiyla kisa siirede olduk¢a basarili ¢oziimlerin elde edilmesi, bu metoda ilgiyi
arttirmistir. Metodun tanitildigr tarihten giintimiize, birgok problem, matris metodu
kullanilarak yeniden ele almmustir. Metodun uygulandigi Riccati denklemi (Giilsu ve
Sezer, 2006), linecer Fredholm integro-diferansiyel denklemleri (Baykus ve Sezer ,
2011), yiiksek mertebeden kesirli diferansiyel denklem sistemleri (Khader ve ark.,
2013), gecikmeli diferansiyel denklemleri (Yiizbast ve ark., 2013) ve lineer Volterra
integral denklem sistemleri (Mirzaee ve Bimesl, 2014) 6rnek olarak verilebilir.

Chebyshev polinomlarmin temel Ozelliklerinin ¢ok degiskenli durumlara
genisletilmesine yonelik caligmalar Fox ve Parker (1968), Basu (1973), Doha (1992) ve
Mason ve Handscomb (2003) tarafindan sunulmasinin sonrasinda kismi tiirevli
diferansiyel denklemler icin c¢ift degiskenli Chebyshev polinomlarinin kullanildigi
matris metotlar1 Kesan (2003) ve Akytliz-Dascioglu (2009) tarafindan tanitilmastir.

Ne var ki, Chebyhev polinomlarinin [—1,1] aralig1 tlizerinde ortogonal

polinomlar olmalari, bu polinomlarin yalnizca [—1,1] tanim araligindaki problemler

iizerine yapilan ¢aligmalarda kullanilabilir kilmistir. Dolayisiyla, dogal olarak daha
genis araliklarda ve 6zel olarak smirsiz araliklarda tanimli problemlere Chebyshev
yaklagimi yapilamayacaktir. Bu kisitlamay1 ortadan kaldirmak ig¢in, arastirmacilar
tarafindan Chebyshev polinomlar1 iizerinden ¢esitli doniisiimlerle yeni polinom aileleri

gelistirilmistir.



Boyd (1987), negatif olmayan reel eksen lizerinde, bir alternatif olarak, rasyonel

Chebyshev polinomlar1 olarak adlandirilan polinom ailesini ve temel 6zelliklerini

tanittr. Rasyonel Chebyshev polinomlar1 £, (0,00) da ortogonaldir (Guo ve ark., 2002).

Negatif olmayan reel eksende tanimli yiiksek mertebeden adi tiirevli diferansiyel
denklemlerin ¢oziimii i¢in, Parand ve Razzaghi (2004) rasyonel Chebyshev Tau
metodunu, Sezer ve ark. (2011) ise rasyonel Chebyshev kolokasyon metodunu

sunmuslardir.

Tarafimizdan (Kaya ve ark., 2011), £, (—oo,oo) da ortogonal olan eksponansiyel

Chebyshev fonksiyonlar1 tanitilmis ve reel eksen {izerinde tanimli adi tiirevli
denklemlerin ¢6ziimii i¢in Eksponansiyel Chebyshev fonksiyonlar1 ile Tau ve
kolokasyon metotlar1 gelistirilmistir.

Ayrica, tarafimizdan (Kog ve ark., 2012; Kog¢ ve ark., 2013) bolge doniisiimiine
gerek kalmaksizin reel eksen iizerindeki herhangi kapali aralikta tanimli sinir deger
problemlerine basarili niimerik c¢oziimler veren kullanigli bir metot Onerilmistir.
Calismada, (1.8) de verilen kolokasyon algoritmasmin kullanildig1 ¢6ziim prosediirti,
Fibonacci polinomlar1 cinsinden seri agilim iizerine kurulmustur. Genellestirilmis
pantograf denklemleri i¢in de Fibonacci polinomlari cinsinden ¢6ziim elde edilmistir
(Kog ve ark., 2014).

Tez kapsaminda, reel diizlem ve alt bdlgelerinde tanimli problemlerin pseudo-
spektral ¢oziimil i¢in, (1.8) de verilen kolokasyon algoritmasmin kullanildig: iki metot
tanitilacaktir. Metotlarda uygulanacak temel algoritmalar ortak olmakla birlikte,
problemin bolgesine gore secgilecek baz fonksiyonuna gore ¢oziim prosediirii

sekillenecektir.
Bu dogrultuda, Q={(x,y):—0<x,y<o} iizerindeki bir diizlemsel bdlgede

taniml1 problemlerin ¢6ziim algoritmasinda, ¢ift degiskenli eksponansiyel Chebyshev
fonksiyonlar1 olarak adlandirilacak alternatif bir baz fonksiyonu kullanilacaktir. Iki
degiskenli Chebyshev polinomlarinin tanim bdlgesini reel diizleme tasiyan bir
doniisiimle tanimli bu baz fonksiyonu, eksponansiyel Chebyshev fonksiyonlari
yardimiyla kurulacaktir. Cift degiskenli eksponansiyel Chebyshev fonksiyonlarinin

ortogonallik gibi temel 6zellikleri de arastirilacaktir.
Q= {(x,y) : (x,y) IS [a,b] X [c,a’] c Rx R} bolgesinde tanimli problemlerin

¢Ozliim algoritmasinda ise bolge donilisimiine ihtiyag duymadan dogrudan
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kullanilabilecek bir baz fonksiyonu secilecektir. Fibonacci polinomlarinin reel eksende
taniml1 olmas1 sebebiyle, bu baz, ¢ift degiskenli bir polinom ailesi olarak Fibonacci
polinomlar1 yardimiyla kurulacaktir.

Son olarak, belirlenen baza gore (1.8) algoritmasinin probleme uygulanmasiyla
elde edilecek lineer denklem sistemi, matris denklemlerine doniistiiriilecektir. Bu
dontistim esnasinda tiirev islemleri operasyonel matrisler ile temsil edilecektir. Coziim
fonksiyonunda aranan katsayilar ise bir vektorel form ile temsil edilecektir. Boylece
olusturulacak cebirsel denklemin ¢6ziimii aranacaktir.

Tez kapsaminda tanitilacak metotlarin temel ¢alisma prensibi olan problemin
cebirsel sisteme doniistiiriilmesi algoritmasi, (Akyiiz-Dascioglu, 2009) c¢alismasinda

verilen ¢6zlim algoritmasiyla benzerlik gosterir. Ancak, bahsedilen ¢alismada gecen
metotla yalmzea [-1,1]x[-1,1] tanim bdlgesindeki problemler i¢in basarili ¢dziimler
elde edilebilir. Dar uygulama alani olusu metodun en biiyilk dezavantajidir. Tezde

tanitilacak baz fonksiyonlar1 ile yapilandirilacak metotlarla, reel diizlemin herhangi alt

bolgesinde tanimli herhangi bir lineer kismi diferansiyel denkleme ¢6ziim aranabilir.
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2. TEMEL KAVRAMLAR

Bu boliimde tezde tanitilacak metotlarin dayandigi temel yapilar ile kullanilan
kavramlara ait 6zet bilgiler, literatiirde mevcut olan kitap, makale vs. eserlerinden

faydalanilarak verilecektir.

2.1. Hilbert Uzay1 ve Ortogonallik

Niimerik analizde, bir niimerik ¢6ziimiin gercek ¢oziime olan yakmliginin test
edilmesine ihtiya¢ duyulur. Bunun i¢in ise yaklasimla ger¢ek ¢oziim arasindaki farki
nicel olarak ortaya koyacak olgiilere ihtiya¢ duyulur. Ornegin vektdr uzaymdaki bir
vektore ait bir norm istenen Ol¢iiyli saglayabilir. Secilecek norma gore elde edilecek
hata diizeyleri, metodun duyarliligini sergiler. Bu yiizden norm kavrami ve bu kavrami
ortaya koyan yapilar, (Kreyszig, 1989; Kreyszig, 2006; Atkinson ve Han, 2009)
calismalarindan faydalanilarak kisaca asagida tanitilacaktir. Ayrica, tez kapsaminda
tanitilacak metotlara baz teskil edecek fonksiyon aileleri Hilbert uzayindan

sec¢ileceginden, Hilbert uzay1 ve ortogonallik kavrami da bu kisimda verilecektir.

Tamm 2.1.1. (Metrik uzay) X bos olmayan bir kiime olmak {iizere, her x,y,z € X i¢in
m.1. d(x,y)>0
m2. d(x,y)=0cx=y

m.3. d(x,y)=d(y,x)
m4. d(x,y)<d(x,z)+d(z,y)

aksiyomlarini saglayan d:XxX — R fonksiyonuna X iizerinde bir metrik denir. X
iizerinde bir metrik tanimlanmasiyla olusan (X, d ) yapisina metrik uzay denir.

Verilen bir kiime iizerinde farkli metrikler kullanilarak cesitli metrik uzaylar

elde edilebilir (Kreyszig,1989).
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Ornek (Reel eksen R ): Tiim reel sayilarm kiimesi iizerindeki genel metrik
d(x,y)=|x—y| (2.1)
seklinde tanimlidir.

Ornek (iki boyutlu Euclidean diizlemi R*): x=(¢.&,), y=(n,,n,) gibi reel say1

ciftlerinden olusan bir kiime tizerindeki Euclidean metrigi

d(x,y):\/(§] _771)2"'(52_772)2 (2 0) (2.2)
seklinde tanimlidir.

Ornek (Siirekli fonksiyonlar uzayr ¢ [a,b] ): t, bir bagimsiz degisken olmak {izere,
reel degerli ve J=[a,b] iizerinde tammlanmus siirekli fonksiyonlar uzaymndaki

herhangi iki x(¢),y(¢) fonksiyonlarmnin iizerinde

d(x,y):max‘x(t)—y(t)‘ (2.3)

teJ

metrigi tanimhidir.

Ornek (Simirh fonksiyonlar uzay: B(A) ): Verilen bir 4 kiimesi {izerinde tanimli ve

sinirli fonksiyonlardan olusan B (A) icin

d(x,y) = sup‘x(t) - y(t)‘ (2.4)

ted
metrigi tanimhidir. Burada, metrik aksiyomlarmdan ti¢iinctist kullanilarak

e (6) =y (1)|<|x(6)=2(¢)|+|z(£) = > (2)

<suplx(t)=z(1)|+sup|z (1) = (1) (2:5)

esitsizligi elde edilir.
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Tamm 2.1.2. (Vektor uzayr) Bos olmayan bir X kiimesi ve K reel ya da kompleks
sayilar cismi verilsin. (X,+) degismeli grup ve (K,+,.) reel ya da kompleks sayilar
cismi olmak tizere, ®: XxX - X, ®: KxX — X doniisiimleri ile V a,beK ve V

x,y € X i¢gin
v.l. a®x e X
v2. a®(b®x)=(ab)®x
v3. (a+b)®x=a@x®b®x
V4 a®(xDy)=a®@x®b®y
v.5. e®x=x, (e, K cisminin birim elemani)
aksiyomlar1 saglaniyorsa X kiimesine K cismi ilizerinde bir vektdr uzay denir

(Kreyszig,1989).

Tamm 2.1.3. (Komsuluk) (X,d ) metrik uzaymda, bir @ noktasina uzakligi ¢ ’dan

kii¢iik olan noktalarm kiimesine, a noktasinin ¢ -komsulugu denir.

Tamm 2.1.4. (Cauchy dizisi) (xn) , (X, d ) metrik uzayinda bir dizi olmak {izere, eger
her & >0 ve her m,n> N igin, d(x,,x,)<é& olacak sekilde en az bir N =N (&) varsa,

bu (x,) dizisine Cauchy dizisi denir.

Tanmim 2.1.5. (Tam uzay) Bir (X,d ) metrik uzayindaki her Cauchy dizisi yakinsak

(yani, X ’de limit degeri mevcut) ise bu metrik uzaya tamdir denir.

Tanmm 2.1.6. (Normlu uzay) Bir X vektor uzayr ilizerinde, norm ile bir metrik

tanimlanmasiyla olusan uzaya normlu uzay denir ve (X, ||) notasyonu ile ifade edilir.

X tzerinde tanimli bir norm, her ve X deki degeri ||v|| seklinde reel degerli bir

fonksiyondur. X {iizerinde, her u,v € X ve her o € K i¢in
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nl. |v|=0

n2. y|=0<v=0

n.3. fav]=la||v]

n 4. fu+v] < Ju] +[v]

aksiyomlar1 gerceklenir (Kreyszig,1989).

Tanim 2.1.7. (Banach uzayr) Eger X normlu uzayi, norm tarafindan tanimlanan

metrige gore tam ise bu normlu uzaya Banach uzayi denir (Kreyszig,1989).

Ornek: —o<g<b<ow ve J = [a,b] olmak iizere, siirekli fonksiyonlar uzay1 ¢ [a,b] ,

x| = max‘x(t)‘ (2.6)

teJ

normu ile bir Banach uzayidir.

Ornek: Q, R" de bir bolge, 1 < p <o olmak iizere Q bolgesi iizerinde tanimli, reel

degerli, mutlak degerinin p. kuvveti Lebesgue anlaminda integre edilebilen yani,
ﬂv(x)‘p dx <o
Q

esitsizligini saglayan, Slgiilebilir v(x) fonksiyonlarmin uzayr £7(Q) dir. £7(Q)

uzerinde

||v||,,=[ﬂv<x>r’ dx] o

normu tanimlidir ve bu uzay bir Banach uzayidir.

Tamim 2.1.8. (I¢ carpim uzayr) Uzerinde i¢ ¢arpim tanimlanmus bir X vektdr uzayina

i¢c carpim uzay1 denir. X vektor uzayindaki i¢ carpim, X x X den K cismine tanimli bir
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donlisim olup x ve y vektorlerinin goriintiisi <x, y> seklindedir. Ayrica, her

x,y,z € X vektorleri ve her a € K skaleri i¢in, i¢ carpim ile
.1 <x+y,z> :<x,z>+<y,z>

1.2. <ax,y> =a <x,y>

1.3. <x, >:<y,x>
1.4. <x,x>20; <x,x>=0<:>x=0

aksiyomlar1 saglanir (Kreyszig,1989).

Ornek : N eN icin 7, en yiiksek N . dereceden cebirsel polinomlarin uzay1 olsun ve

agirlik fonksiyonu w:/ =[a,b]— R" olarak verilsin.

|

b 1/2
. :{ﬂv(x)‘za)(x)dx] (2.8)
Euclidean normu ile
L ()= {v :1 — R|v Lebesgue 8lgiilebilir ve|[v| <o } (2.9)

uzaymda tanimhi # ve v seklinde iki fonksiyonun a)(x) agirlik fonksiyonuna gore i¢

carpimi,

<u, v>w(x) = (J. u(x)v(x)a)(x)dx] (2.10)

a

seklinde tanimlidir.

Tamm 2.1.9. (Hilbert uzayi) Bir i¢ carpim uzayi, i¢ carpimdan iiretilen metrige gore

tam ise bu i¢ ¢arpim uzayma Hilbert uzay: denir.
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Bir i¢ ¢arpim, iizerindeki vektor uzayinda ayni zamanda ||x|| = 1/<x,x> seklinde

bir norm ve dolaysiyla d(x,y)=|x-y|=/(x—y,x-») seklinde bir metrik tanimlar.

Buradan agiktir ki, her i¢c carpim uzayr bir normlu uzay ve her Hilbert uzayida bir

Banach uzayidir (Kreyszig,1989).

Ornek : Her f,g e(C[a,b] i¢in w(x):[a,b]—>[0,0) agirlik fonksiyonu olmak iizere

b

(£.g)=]1 (x)g(x)w(x)dx (2.11)

a

doniistimii £ [a,b] iizerinde bir i¢ ¢arpimdir. Bu i¢ ¢arpimla birlikte

b
S:{f|f:(a,b)—)R,Ifz(x)w(x)dx<oo} (2.12)
seklinde tamimlanan kiime bir Hilbert uzayidir ve £} (a,b) ile gosterilir.

Tanim 2.1.10. (Ortogonallik) Bir i¢ carpim uzayinin iki vektorii bir birine dik ise, yani,

<x, y> =01ise bu iki vektor ortogonaldir denir. Eger bu vektorlerin normlari da 1 ise bu

vektorler ortonormal vektorler olarak adlandirilir.

Ortogonal (veya ortonormal) elemanlardan olusan bir kiime sayilabilirse,

elemanlar indislenerek kiime (xn) dizisi seklinde ifade edilebilir ve bu kiime ortogonal

dizi (veya ortonormal dizi) olarak adlandirilir.

Lemma 2.1.1. Ortonormal bir kiime lineer bagimsizdir (Kreyszig,1989).

Ornek : x:(fj):(;,éz,...,én) ve y:(nj):(n],nz,...,nn) olmak iizere, R" uzay,

uzerinde tanimlanan

<x’y>:§1771 +&1, + 8,1, (2.13)

i¢c carpimina gore bir Hilbert uzayidir. Buradan
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||x|| = <x,x>]/2 = (fl +&, +...+ &, )]/2 (2.14)
normu ve
d(xy)=lx=y]=(x-y,x-»)" = [(é —1,) +.t (& -1, ﬂm 2.15)

Euclidean metrigi elde edilir.
Ortogonallik tanimmda gecen ortogonal kiimenin elemanlari, bir Sturm-
Liouville probleminden elde edilecek 6z fonksiyonlardan secilebilir. Bu durumda kiime,

ortogonal polinom ailesi olarak adlandirilir.
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2.2. Sturm-Liouville Problemi ve Ortogonal Polinom Aileleri

Bu béliimde, 6zfonksiyonlar1 ortogonal olan Sturm-Liouville problemi ve bazi

ortogonal polinomlara ait tanimlar verilecektir. Ayrica, tez kapsaminda tanitilacak ilk

metoda baz teskil edecek fonksiyonlarm iretilmesinde kullamlacak, £ (—o0,0) de

ortogonal olan eksponansiyel Chebyshev polinomlar1 da yine bu boliimde verilecektir.

Tanim 2.2.1. (Sturm-Liouville Problemi) [a,b] araligindaki her x icin, reel degerli
p(x)>0, w(x)>0, p'(x) ve ¢(x) siirekli fonksiyonlar, A degeri x den bagimsiz bir
parametre, 4, 4,, B, ve B, reel sabitleri i¢in 4’ +4; #0 ve B} +B; #0 olmak

uzere,

0

Ay(a)+ A4,y (a)
(2.16)
By(b)+B,)' (b)=0

sinir kosullar1 altinda

%[p(x)%}+[q(x)+ﬂw(x)]y:0 (2.17)

ikinci mertebeden homojen diferansiyel denklemi ile verilen probleme Sturm-Liouville
problemi (SLP) denir (Ross, 1984).

Tanimi verilen problem, regiiler tipte SLP’dir. Ayrica, problemde gegen
degisken katsayilarin ve smir sartlarmin 6zel durumlarma gore Singiiler SLP ve
periyodik SLP olarak siniflandirmalar1 vardw. Bu smniflandirmalarin detaylarindan
bahsedilmeyecektir.

Herhangi A parametresi i¢in yukaridaki sinir kosullari ile verilen problemin bir

¢oziimii y =0’dwr. Problem, A’nmn bazi degerleri i¢cin y =y, (x) bi¢iminde sifirdan

farkl1 ¢oziimlere sahip ise bu parametrelere Ozdeger (karakteristik deger), bu

ozdegerlere karsihik gelen y=¢, (x) fonksiyonlarna da 6zfonksiyon (karakteristik
fonksiyon) denir. Problem sonsuz sayida A, 6zdegere sahiptir. Bu 6zdegerler reel olup

ve n— +oo igin A, = +oo dur. Bu 6zelligi ile 6zdegerler, bilim adamlar: tarafindan reel
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olmas1 gereken titresim, enerji gibi fiziksel niceliklerle iliskilendirilirler (Kreyszig,
20006).

Sturm-Liouville probleminin 6zdegerlerinin en oOnemli 6zelligi ortogonal
olmalaridir. Bu o6zellik seri a¢ilim formundaki c¢oziimlerin uygulamalarini hizla

artirmistir.

Tamm 2.2.2. (Ozfonksiyonlarin ortogonalligi) Sturm-Liouville probleminin 6z

fonksiyonlarindan olusan n=1,2,... igin {q&n (x)} fonksiyonlar ailesinin herhangi farkli
iki tyesi ¢,(x) ve ¢,(x), [a,b] aralignda agwhk fonksiyonu w(x)’e gore

ortogonaldir. Yani, bu 6z fonksiyonlar
b
[8,(0)¢,()w(x)dx =0, i# (2.18)

ortogonallik bagintisin1 gercekler. Dolayisiyla {q&n (x)}m ailesine ortogonal set

(ortogonal sistem) adi verilir. ¢, (x) 6zfonksiyonunun normu ise

@cmanj@%xMWxﬁh (2.19)

bagintisi ile tanimlanir.
Ayrica, ¢,(x), (n=1,2,...) fonksiyonlar1 [a,b] aralig1 iizerinde ortogonal ve

norm degerleri 1 oluyorsa bu fonksiyonlar ailesine ortonormal fonksiyonlar ailesi denir.

Boylece, ortonormal bir ailenin fonksiyonlar1 i¢in

i#]j

b 0,
mewm{li, (2.20)

dir.

Teorem 2.2.1. i. dereceden ¢ polinomlarindan olusan {gbl (x)}M ailesi, bir [a,b]
aralig1 lizerinde negatif olmayan w(x) agirlik fonksiyonuna gore ortogonal ise, her

n=0 i¢in ¢, nin [a,b] iizerinde n reel ayrik kokii vardr.
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2.2.1 Tek degiskenli ortogonal polinomlar

Chebyshev, Legendre, Laguerre gibi polinom aileleri de farkli bilesenlerden
olusan Sturm-Liouville problemlerinin 6zfonksiyon aileleridir. Literatiirde, birinci gesit
Chebyshev polinomlar1 basta olmak iizere, ortogonal 0Ozfonksiyon ailelerinden

faydalanilmis bir¢ok niimerik analiz ¢alismasi mevcuttur.

Tanmim 2.2.3. (Birici cesit Chebyshev polinomu) x = cosf olmak {izere, n . dereceden

birinci ¢esit Chebyshev polinomu
T, (x)=cosnd, n=0,1,... (2.21)

bagintisi ile tanimlidir (Fox ve Parker,1968).

Chebyshev polinomlarmin x, kokleri,

2k -1
2n

T.(x)=0 < x, =cos r, k=12,..n (2.22)

ve kritik noktalar1 x, = cosk—ﬂ, (k=0,1,...,n) dir (Philips, 2003).
n

Chebyshev polinomlar: i¢in rekiirans bagmtisi, (2.21) esitligi yardimiyla elde

edilecek
T . (x)=cos((n+1)8) = cos(nf)cosd —sin(nd)sinf
T (x)=cos((n—1)0) = cos(nf)cosf +sin(nd)sinf

denklemlerinin taraf tarafa toplanmasiyla,

T . (x)=2cos(nf)cos@—T, (x) (2.23)
T,..(x)=2xT,(x) =T, ,(x) (2.24)
seklinde yazilabilir.

I, = {x —=1<x< 1} iizerinde negatif olmayan, integrallenebilir agirhik

fonksiyonu w,(x)= = olmak iizere,

1-x



21

1

2(1,)= { [ o R 2 (@)wy (x)dx < oo} (2.25)
-1

uzayindaki i¢ carpim ve norm sirastyla,

= [ £()g (x)wy (x)dx (2.26)

|7

1 1/2
§ ={ | fz(x)wT(x)dx} (2.27)
-1
olarak verilmistir (Quarteroni ve ark., 2007).
w,(x) agrrhk fonksiyonu ve (2.26) de verilen i¢ ¢arpima gore ortogonal olan

Chebyshev polinomlarinin ortogonallik bagntisi ise,

x=cosf = 0 =arccosx = d0 =— dx
1-x°
- 0, m#n
j (x) (x) j cos(n0) cos(m0)do j cos(nf)cos(m@)dd =z, m=n=0 (2.28)
-1 4
E, m=n=0
2
dir. Ayrica neN igin T, (x),
(A=x)T,"(x)—xT, (x)+n’T,(x)=0 (2.29)

Sturm-Liouville denkleminin 6z fonksiyonlaridir.

Tanim 2.2.4. (Rasyonel Chebyshev polinomu) Birinci ¢esit Chebyshev polinomu

-1 .
T (y) ve y= x_l olmak iizere, rasyonel Chebyshev polinomlari,
X+

bagintisi ile tanimhidir (Guo ve ark., 2002).
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-1 .
R,(x)=1, R(x)= x_l olmak {izere n>1 1i¢in rasyonel Chebyshev
X+

polinomlarini veren rekiirans bagintisi
R, () =2R, ()R, (x) = R, (x) (2.30)

dir.

I, = {x :0<x< oo} iizerinde negatif olmayan, integrallenebilir agirhik

fonksiyonu w,(x) = olmak iizere,

1t
x/;(x+1)

e, (IR):{f:IR —>R:If2(x)wk(x)dx<oo} (2.31)
0
uzayindaki i¢ carpim ve norm sirasiyla,

(f.8),, =] ()2 (x)wy(x)dx (2.32)

|7

= {sz(xm (x)dx} @33)

olarak verilmistir.
(2.32) de verilen i¢ c¢arpima gore ortogonal olan, I, ’da tanimli rasyonel

Chebyshev polinomlarmin ortogonallik bagntisi ise,

. 0, m#n
[R,()R, (x)w, (x)dx={7, m=n=0 (2.34)
0 T

—, m=n#0

2

dir (Guo ve ark, 2002).

Tanim 2.2.5. (Eksponansiyel Chebyshev fonksiyonu) Birinci cesit Chebyshev

X

e f—
li T =
polinomu 7, (y) ve y 1

olmak iizere, eksponansiyel Chebyshev fonksiyonlari,
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E,(x)=T,(»)

bagintisi ile tanimhdir (Kaya ve ark., 2011).

-1
E,(x)=1, E(x)= ex " olmak tiizere n>1 i¢in eksponansiyel Chebyshev
e+
fonksiyonlar1
E . (x)=2E(0)E, (x)-E,,(x) (2.35)

rekiirans bagintis1 yardimiyla elde edilebilir.

{En (x)};v eksponansiyel Chebyshev fonksiyonlari ailesi,

4L2En" (x) —( 2 __ len’(x) +n’E, (x)=0 (2.36)
(e"+1) e +1

Sturm-Liouville denkleminin 6z fonksiyonlarindan olusur.

X

I, = {x 1—0 <X < oo} uzerinde w,(x) = negatif olmayan, integrallenebilir,

X

e +1

agirlik fonksiyonu olmak {izere
£o(1,)= {f I > R: [ 2 (0w, (x)dx < oo} (2.37)
uzayindaki i¢ carpim ve norm sirastyla,

(£.8), = [ 2 (x)we(x)dx (2.38)

|7

wg

= { T f? (xX)w, (x)dx} (2.39)

olarak verilmistir.

I, iizerinde, cksponansiyel Chebyshev fonksiyonlarmm (f,g) ¢ ¢arpima

wg

gore ortogonallik bagintisi,
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. \/7 0, m#n
[ E,0E, () xlex {7, m=n=0 (2.40)
e e +

dir.

2.2.2. Cok degiskenli ortogonal polinomlar

Tanmmm 2.2.6. (Tensor ¢carpim) x:(x],...,x p) olmak tiizere, R ’de tanimli araliklar

1,1,,..1,¢inx,el, x,€l,, ..., x,el, ise xeQ ’dirve
Q=1,81,8..01,, (QcR”") (2.41)

tensor ¢carpimdir.

Tamm 2.2.7. (Cok degiskenli agirhk fonksiyonu) Swasiyla R’deki /,,7,,...,1,
araliklarinda negatif olmayan tek degiskenli w;, w,,...,w, agirlik fonksiyonlarmin tensér

carpimi
w(x):w](x])wz(xz) ...Wp(xp) (2.42)

olup w(x) de (2.41) de verilen bdlgede bir agirlik fonksiyonudur (Baudin ve Martinez,
2013).

Tamm 2.2.8. (Cok degiskenli £ (Q) uzayl) (2.42) de tanimlanan agirlik fonksiyonu
w(x) olmak iizere karesi integrallenebilir fonksiyonlarin uzay1 £ (Q)’dir. Yani her

ge L} (Q) igin jgz (x)w(x)dx =III g’ (x)w(x)dxdx,...dx, integrali sonludur.
Q 1

I 1 p

Tamm 2.2.9. Bir g € £ (Q) fonksiyonunun Lebesgue normu
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lg], = \/I g (x)w(x)dx (2.43)

olarak tanimlidir.

Tamm 2.2.10. Herhangi g,he L (Q) fonksiyonlarmnin i¢ ¢arpima,
(&) =] 2 (x)h(x) w(x)dx (2.44)
Q

seklindedir.

Tanim 2.2.11. (2.42) de tanimlanan agirlik fonksiyonu w(x), tek degiskenli ortogonal

polinomlar ailesi ¢a(k) (xl.) , {a = (ocl. )M ,Q, € {0,1, 2,...}, oc| < oo} ve d= iai(k) olmak
i N i=l1

iizere, d . dereceden ¢ok degiskenli polinomu

L (X):H(ba_(k) (xl.) ’ (kzl,z,___,PdP ve B/ :(p;d] ] (2.45)

tensor ¢arpimu ile tanimhidir. Bu tanima gore verilen ¥, (x) ve ¥, (x) cok degiskenli

polinomlar1 ortogonaldir. Dolayisiyla (2.45) da tanimlanan fonksiyonlar ayn1 zamanda
cok degiskenli ortogonal polinomlar1 olarak adlandirilir (Baudin, Martinez, 2013).
Birinci tip Chebyshev polinomlarindan hareketle, iki degiskenli Chebyshev

polinomlar1 da tanitilmistir.

Tamm 2.2.12. x degiskenine gore m. dereceden birinci ¢esit Chebyshev polinomu
T, (x) ve y degiskenine gore n. dereceden birinci gesit Chebyshev polinomu 7, ( y)

olmak tizere iki degiskenli Chebyshev polinomu,
T,, (x,y):Tm (x)Tn(y) (2.46)

olarak tanimlidir (Basu, 1973).
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Q= {(x, y) =1<x,y< 1} iizerinde negatif olmayan integrallenebilir agirlik

fonksiyonu w; (x,y)=1/ \/(l—xz)(l— yz) olmak {iizere iki degiskenli Chebyshev

polinomlar1 arasindaki ortogonallik,

2

7, i=j=k=1=0
2

-z i=k#0, j=1%0

4
11 77:2
IfTi,,(x,y)Tk,,(x,y)wr(x,y)dxdy= R i=k=0, j=1#0 (2.47)
-1-1

ya da

i=k+#0,j=1=0
0, diger tiim i, j, k,l degerleri.

bagintis1 ile verilmistir.
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2.3. Yaklasim Teorisi ve Polinom interpolasyonu

Bir fonksiyona baska bir fonksiyon ile yaklasim sayisal analizin ana

konularindan biridir. F fonksiyonlar uzayindan secilen bir f (x) fonksiyonuna uygun

ve hemen hemene esit £, (x) fonksiyonuna f(x) fonksiyonunun yaklasim fonksiyonu

denir. Bir fonksiyonun yaklasim fonksiyonu elde etme problemi 3 temel siirecten
olusur. Bunlar, yaklasimin formunun belirlenmesi, fonksiyonun yapisina uygun baz
fonksiyonunun sinifinin se¢imi ve son olarak yaklagimin fonksiyona olan yakinligmni
skaler olarak veren normun belirlenmesidir. En uygun se¢imler kullanilarak basarili bir
yaklasim elde edilebilir.

Yaklasim fonksiyonu, kullannom amacina baghh olmakla birlikte, siklikla
1, =¢(x.ay,4a,,...,a,) formunda a, (z’ = O(I)n) parametrelerine bagl olarak secilir ve
secgilecek bir kritere gore de bu parametreler belirlenir. Yaklasimin formu, f (x) ’In

muhtemel yaklasim fonksiyonlarindan olusan bir A ailesi tanimlar. Bir 6rnegi,

A=P :{f*(x):pn (x):a0+a]x+...+anx"}

n

seklinde tanimli polinomlar ailesidir. A ailesi, F fonksiyonlar uzaymin alt sinifidir
(AcF).
Yaklasim fonksiyonunun, a, parametrelerine dogrusal olarak bagli olmasi

durumunda, yaklasim fonksiyonu 6nceden segilen ¢, (x) baz fonksiyonlarmin dogrusal

kombinasyonu olan

n

f(x) ~ fn* (x) = a,P, (x) +a,¢, (x) +..+a,0, (x) = Zaiqbi (x) (2.48)

i=0

formunda segilir.
Baz fonksiyonu olarak, tek terimliler (xi), trigonometrik fonksiyonlar, iistel
fonksiyonlar, ortogonal polinomlar ve Fibonacci polinomlar: gibi basit fonksiyonlar

secilir. Fonksiyonun tanimli oldugu bolge ya da arallk X olmak iizere, baz

fonksiyonlarmin bagli oldugu ailelerden bazilar1
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C (X) : (X) iizerinde siirekli fonksiyonlar

L, (X) : (X) tizerinde smurli fonksiyonlar

L,(X) :(X) iizerinde karesi integrallenebilir fonksiyonlar
L,(X) : (X) tizerinde £, integrallenebilir fonksiyonlar

seklindedir (Mason ve Handscomb,2003).

Yaklasim fonksiyonundaki parametrelerin belirlenmesinde kullanilan farkl
kriterler vardir. En c¢ok kullanilan kriterlerden biri yaklasim egrisinin verilen
noktalardan ge¢mesi ve bu noktalarda fonksiyon ile yaklasim fonksiyonunun ilk »
tiirevinin birbirine esit olmasidir. Bu durumda yaklasim egrisine interpolasyon egrisi
denir. ikinci bir kriter, verilen noktalarda fonksiyon ile yaklagim fonksiyonu arasindaki
farklarin karelerin toplaminin en kii¢iik olmasidir. Bu kriter, en kii¢iik kareler kriteri
olarak adlandirilir. Diger bir kriter ise fonksiyon ile yaklasim fonksiyonu arasindaki

farklarin en biiylik degerinin en kiiciik yapilmasidir (Bakioglu, 2004).

Yaklasim fonksiyonu probleminde kriterler kullanilirken, f (x) fonksiyonunun

ayrik noktalarda f'(x,) seklinde verilmesi ya da siirekli bir f'(x) fonksiyonu seklinde

verilmesi durumlar1 da gz oniinde bulundurulur.

Yaklasim fonksiyonu f* ’in, yaklasilacak fonksiyon f ‘e olan yakmligmin
skaler Olgiisiinii norm belirler ve H f-f *H ile gosterilir. Yakmligin skaler degerleri

kullanilacak norm ile de iliskilidir. Fonksiyon uzaylar: i¢in segilebilecek normlardan

bazilar1 su sekilde verilebilir (Mason ve Handscomb,2003):

e [ norm (Sonsuz norm, Maksimum norm, Chebyshev normu)

[71= 171 = max

as<x<b

/(%)

e L norm (En kiiciik kareler normu, Euclidean norm)

b

L1111 (oo

a
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e [ norm (1-normu, Temel norm, Manhattan norm)

b

A=l = [w(ols () e

a

e L, norm (Holder norm)

1

t »
=4, = ool o] 0250
e Agirlikli minimaks norm

|71 maxw(x)| £ (x)

asx<b
(w(x), negatif olmayan agirlik fonksiyonu)
Fonksiyonlar uzay1r F, bir vektor uzayr olup iizerinde tanimlanan norma gore

normlu vektor (lineer) uzaydir.

Yaklasim problemindeki fonksiyon smifi, yaklasgimm formu ve yaklasimin

yakinlik 6l¢iisii olan H f—f *H normu belirlendikten sonra yaklasimin 6l¢iisiiniin kalitesi

asagidaki ti¢ tanimdan biri ile ifade edilir.

Tanmim 2.3.1. Normlu lineer uzay1 F de bir fonksiyon f (x) ve F ’in bir alt uzayi olan

yaklagim fonksiyonlar1 ailesi A olmak iizere, asagidaki tanimlamalar (Mason ve

Handscomb, 2003) da verilmistir.

1. Istenen mutlak dogruluk seviyesi £ > 0 i¢in
lr-7<e (2.49)

olacak sekilde bir /" (x) varsa, /" (x) ’e A ’da bir iyi yaklasimdir denir.

2. A dakiher f7(x) yaklagimi i¢in,
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|71 (2.50)

<)y-r

esitsizligini gergekleyecek sekilde bir f; (x) varsa, f, (x) yaklasimma A da bir en iyi

yaklagimdir denir.

3. p pozitif gergel say1 ve f, (x) yaklasimi A ’da bir en iy1 yaklasim olmak

lzere,
|- £ (+0)|f- 1) (2.51)

esitsizligini gergekleyen bir f,, (x) varsa, f, (x) yaklasimma A ’da p uzakliginda en
iyiye yakm bir yaklasimdir denir.
Verilen (|| .

S 9 ||OO gibi) herhangi bir norma |||| gore, bir fonksiyon i¢in

(2.50) de tanimlanan en 1y1 yaklasim,

mir}jra}iseu vl (2.52)

probleminin ¢oziimiidiir.

2.3.1. Cok terimli interpolasyonu

Yaklasim fonksiyonunun, verilen noktalardan ge¢me ve verilen noktalarda

tiirevlerinin esitligi kriteri altinda,

p.(X)=a,+ax+a,x’ +..+a,x" = Zn:aixi (2.53)
i=0

seklinde bir ¢ok terimli olarak se¢ilmesi islemine ¢ok terimli interpolasyonu denir.

Interpolasyon ¢ok terimlisinin bagli oldugu a, parametrelerinin belirlenmesi igin, n+1

ayrik noktada diizenlenmis n+1 lineer denklemden olusan

po(x) =, (%), (k=1(1)n+1) (2.54)
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sistemini ¢ozmek gerekir. (2.54) sistemi, ayrik noktalarda kuruldugundan bu sistemin

katsayilar matrisinin determinant1

1 x x5 -
1 x x5 e X"
det| . 2 71 7 =[T(x-x,)=0 (2.55)
. . . . . l>]
1 xn+] X]2 xrrll+l
olacaktir.

Teorem 2.3.1. f(x)e( [a,b] olmak iizere, [a,b] araliginda segilen n+1 ayrik nokta

igin, bu noktalara karsilik gelen f(x,) degerleri ile kurulabilecek bir p,(x) ¢ok

terimlisi vardir ve P ailesinde tektir (Mason ve Handscomb, 2003).

2.3.2. Siirekli verilerde ortogonal 6zfonksiyon yaklasimi

I= {x a<x< b} iizerinde negatif olmayan, integrallenebilir bir fonksiyon

b
w(x) agirlk fonksiyonu olmak iizere, (f,g) :jf(x)g(x)w(x)dx i¢c carpimma

b
gore L zﬁfv_(l):{le—ﬂ& Ifz (x)w(x)dx<oo} uzay1 ve |f] :<f,f>1i2 normu

tanimlansin. Bir f € £ fonksiyonu ¢, (x) ortogonal ¢ok terimlilerinin kombinasyonu

olarak
£(x)=Y et (x) (2.56)

seri formda yazilabilir. Burada ¢, (x) fonksiyonlarma baz fonksiyonu denir. En kiiclik

kareler yaklagim teorisinde yaklagimm hatasinin £, ’de minimum yapilmas: ilkesi ve

ortogonallik bagintilarmdan hareketle seri formda ¢, parametreleri i¢in
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= </”[ q’f")w , n=0,1,... (2.57)

k

formiilii elde edilir (Quarteroni,2007).

Eger baz fonksiyonu, ortonormal fonksiyon ailelerinden biri olarak secilirse c,

katsayilarini veren baginti,

¢ =(f2d,), (2.58)

bagintisina indirgenir.

2.3.3. Ayrik halde ortogonal 6zfonksiyon yaklasimi

I= {x ra<x< b} uzerindeki x,,x,,...,x, € noktalar1 i¢in ayrik halde bir
f:1— R fonksiyonu i¢in interpolasyon fonksiyonu, ortogonal polinomlar1 {gbr}io ile
N
Dy (x) :za,(b,(x) (2.59)
r=0

seri formda yazilir.

Gauss integrali ile x,,x,,...,x, €I noktalar1 i¢in ayrik halde i¢ ¢arpim

(f.g), =

k

S (%) g () w(x) (2.60)

N
=0

ve ortogonallik bagntilar
<¢i’¢j>w:Z(bi(xk)(bj(xk)w(xk):o’ (iij) (2-61)

olarak tanimhidir. Ayrik halde ortogonallik bagintilar1 yardimiyla

ZW(%){J’2 (xk)—ﬁaf# (xk)} (2.62)
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hata degerinin minimum yapilmasi ilkesinden hareketle a, parametreleri,

a, =40 ,r=0,1..,N (2.63)

formiili ile belirlenir.

2.3.4. Polinom tiirii yaklasim teorisi

Herhangi bir f(x)e C[a,b] fonksiyonuna n. dereceden bir polinom yaklagimi

elde etmenin en basit yolu, fonksiyonun tanimli oldugu araligin alt araliklarindan uygun
secilmis, bilinen n+1 ayrik noktadaki fonksiyon degerleri arasinda interpolasyon
kurmaktir.

Klasik Weiestrass teoremi, siirekli fonksiyonlara polinom tiirii yaklasimlar i¢in

temel prensiptir ve f (x) fonksiyonuna bir polinom ile istenen duyarllikta

yaklagilabilecegini gosterir (Atkinson, 1989). Dolayisiyla segilen bir fonksiyonun tanim
araliginda yeterince yliksek dereceden bir polinomla iyi bir yaklasim elde

edilebilecegini gosterir.

Teorem 2.3.3. (Weiestrass Yaklasim Teoremi) Bir f (x) el [a,b] fonksiyonu ve
herhangi & >0 olmak iizere, her x €[a,b] i¢in Hf(x) —p(x)”oo < ¢ olacak sekilde bir

p(x) polinomu vardur.

oo - Normda en iyi yaklasim

n>0 sabit say1 olmak iizere, bir f (x)eC[a,b] fonksiyonu igin

|7 ()= . (x)], =inf

g€,

|/ —dl|. (2.64)

probleminden elde edilecek polinom, co-normda # . dereceden en iyi yaklasimdir.
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Teorem 2.3.4. Bir f(x) e [a,b] fonksiyonu i¢in,
|7 ()= p, (x)], = min] £ -], (2.65)

esitligini ger¢ekleyen bir p, € P polinomu vardir (Siili ve Mayers, 2003).
q€P, polinomu g,(x)=c,+..+¢,x" formunda yazildiginda istenen ¢,

j=0,...,n katsayilari,

E(¢pssc,) =]/ .

:max‘f(x)—co —...—C X

xefa,b] "

(2.66)

n

doniisimii ile tanimli E:(c,,...,c,) > E(cy,....c,) fonksiyonunu mimimize edecek

sekilde belirlenir. Boylece en iyi yaklasim polinomu, f (x) -q (x) hatasmin maksimum

degerini minimize eden polinomdur. Buradan hareketle c- normu altinda en iyi

yaklagim polinomu, minimaks polinomu olarak da adlandirilir.

Teorem 2.3.5. [a,b] araligi reel eksende sinirh bir aralik olmak iizere, her f € C[a,b]

fonksiyonu, [a,b] iizerinde tek bir minimaks polinomuna sahiptir (Siili ve Mayers,

2003).

2 -Normunda en iyi yaklasim

f€L(a,b) fonksiyonu igin,

|7 p.]l, =inf /-, (2.67)

probleminden elde edilecek p, polinomu, 2-normunda n. dereceden en 1yi yaklasimdir.

Teorem 2.3.6. Her /'€ £’ (a,b) fonksiyonu igin,

I/ - P,

= min| f -q|
2 q<F, f (]2

ifadesini ger¢ekleyen tek bir p, € P polinomuna sahiptir (Siili ve Mayers, 2003).
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Teorem 2.3.7. Bir p, €P, polinomunun, bir f e/’ (a,b) fonksiyonu igin 2-
normunda n. dereceden en 1yi yaklasim olabilmesi, ancak ve ancak, P ailesindeki her
elemanin f - p, ile ortogonal yani Vge P igin < f- pn,q> =0 olmas1 durumunda

miimkiindiir (Siili ve Mayers, 2003).

Teorem 2.3.8. Bir f eﬁz(a,b) fonksiyonunun 2 -normunda n. dereceden en iyi

yaklagima, {gbl }l": , ortogonal polinom ailesinin elemanlar1 yardimyla,

pf =G4 (2.68)

(/-9)
(¢-4)

formunda yazilabilir. Burada ¢, =

dir (Mason ve Handscomb, 2003).

=

Teorem 2.3.9. f(x)e( [a,b] fonksiyonu ve bir [a,b] arahginda negatif olmayan
agirhik fonksiyonu w(x) ’e gore ortogonal olan polinomlar sistemi {¢1 (x),i :0,1,...}
olmak iizere eger f(x) fonksiyonunun, ¢, (x)’in koklerindeki interpolasyon

polinomu p, (x) ise,

n—0

tim (1 () p, (x)],) =tim [w(x)(/ ()= p, (x)) dr=0 (2.69)
dir (Mason ve Handscomb, 2003).

Tamm 2.3.4. Bir Q= {(x,y) 1< x<;-1<y< 1} iizerinde f(x,y) iki degiskenli
fonksiyonu tanimlansm. x, =y, =-1 ve x, =y, =+1 olmak iizere »=0,1,....,n i¢in
n+1 degerli {x} ve {y,} dizileri monoton azalmayan olsun. n>0 olmak iizere olas

her {x,} ve {y,} dizileri igin,

ZI:Zn]:‘f(xr’yr)_f(xr—]’yr—])‘
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toplamlar1 sinirh ise f (x, y) fonksiyonu, Q iizerinde sinirli varyasyonudur (Mason ve

Handscomb, 2003).

Teorem 2.3.10. Eger bir f(x,y) fonksiyonu, sirekli S={-1<x<I;-1<y<l}
iizerinde sinirli varyasyonu ve kismi tiirevlerinden biri S’de smirli ise f (x,y)

fonksiyonu,

formunda S ’de L -yakinsak bir, ¢ift degiskenli Chebyshev ac¢ilimina sahiptir (Mason
ve Handscomb, 2003).



2.4. Fibonacci Polinomlari
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Bu boliimde, tezde verilecek ikinci metoda baz teskil eden iki degiskenli

polinom ailesinin kurulmasida kullanilacak Fibonacci polinomlarina dair temel tanim

ve teoremler (Koshy, 2001; Falcon ve Plaza, 2007; Falcon ve Plaza, 2009)

kaynaklarindan faydalanilarak verilecektir.

Tamm 2.4.1. (k£ -Fibonacci dizisi) Herhangi pozitif reel k& sayisi i¢in, k -Fibonacci

dizisinin elemanlari
0, n=0

Fen=11 n=1 (2.70)
ka,n + Fk,n_] , n>1

bagintisindan elde edilir.

Tamm 2.4.2. (Fibonacci polinomlarr) Fibonacci dizisinde, pozitif reel £ sayisi yerine

reel degisken x alinirsa, yani F, = F, olmasi halinde elde edilecek poinom ailesi

1, ifn=0,
F+,(x): X, ifn=1,
an(x)+Fn_](x), ifn>1

Fibonacci polinomlari olarak adlandirilir.

Bu polinomlardan ilk birkag1 su sekildedir:

F](x)zl
F,(x)=nx,
Fy(x)=x"+1,
ﬂ(x):x3+2x,
Fy(x)=x"+3x" +1,

2.71)

Fibonacci polinomlarina dayali ¢oziim metodu tanitilirken diferansiyel denklemdeki

tirev islemleri yerine, g¢esitli mertebeden diferansiyellenmis seri acilimin katsayilari
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arasindaki bagintidan hareketle, operasyonel tiirev matrisleri kullanilacaktir. Kismi
tiirev i¢cin operasyonel matrisin elde edilisi ise, Falcon ve Plaza (2009) tarafindan ispat1
verilen asagidaki bagintilar kullanilarak Boliim 3.3 de verilecektir. Belirtilen bagintilar
kullanilarak, daha 6nce tarafimizdan {iretilen adi tiirev operasyonel matrisi i¢in (Kog ve

ark.,2013) ¢alismas1 incelebilir.
Teorem 2.4.1. (Falcon ve Plaza,2009) Fibonacci polinomu ile tiirevi arasindaki baginti

:_[ " () +EL (%)] (2.72)

ve Fibonacci polinomu ile integrali arasindaki baginti
1
2. [F(x)dx= ;{FH, (x)+F,., (x)-F,, (0)-F,_ (0)} (2.73)

seklindedir. Denklem (2.73) de #’in ift say1 olmasi durumunda F,, (0)=F,  (0)=1

n—1

ve n’in tek say1 olmasi durumunda ise F,,, (0)=F,  (0)=0 olacaktur.
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3. REEL DUZLEMDE SIRALAMA TABANLI SPEKTRAL METOTLAR

Bu boliimde, iki farkli tanim bolgesindeki karigik sarth lineer kismi denklemler
icin ¢0ziim metotlar1 gelistirilecektir. Bunun i¢in oncelikle, Boliim 3.1 de, ¢Oziimii
arastirilacak problem genel formda ortaya konulacaktir. Daha sonra problem, sirasiyla,
Bolim 3.2 de reel diizlemde ve Boliim 3.3 de reel diizlemin alt bolgelerinde ele
almacaktir. Calisilmak istenen tanim bdlgesine gore eksponansiyel Chebyshev ve
Fibonacci polinomlarina dayali baz fonksiyonlar1 da tanitilarak, temel oOzellikleri
verilecektir. Siralama tabanli matris metotlary, bu iki baz fonksiyon ailesi i¢in elde
edilecek operasyonel matrisler ile, ¢6ziimii aranan problemin ele alinisina uygun sekilde
yapilandirilacak ve iki metot olarak sunulacaktir.

Bolgeye bagli baz se¢imi yoniiyle uygulamada birbirinden ayrilan her iki metot
da, problem i¢in -kolokayon noktalarini kullanarak- rezidiiyii minimize edecek sekilde
kurulan (1.8) deki temel algoritmay1 kullanir. ilgili baz fonksiyonu cinsinden seri

formda ¢0ziim arayan metotlarin temel ¢alisma algoritmasi su sekilde 6zetlenebilir:
1. Problemin € tanim bolgesine gore (pm,n(x, y) baz fonksiyonu ve

{(xl., y)i(x,y;)€ Q} kolokasyon (siralama) noktalar: belirlenir.

2. [llgili baz fonksiyonu yardimiyla operasyonel tiirev matrisleri belirlenir.

ho R
3. Coziim fonksiyonu u X,y ;zz mnq)mn X, y formunda ele alinir.

m= n=0

4. Kolokasyon noktalar1 kullanilarak, problemdeki diferansiyel denklem ve
kosullari, spektral katsayili cebirsel denklemler sitemine karsilik gelen temel
matris denklemine doniistiiriilir. DOniisiim esnasinda, tiirev operatorleri

yerine operasyonel tiirev matrisleri kullanilir.

5. Matris denkleminin bilinmeyen spektral katsayilara karsilik gelen katsayilar
¢cOziim vektorti, lineer denklem sistemleri igin gelistirilen yontemlerden biri

kullanilarak elde edilir.

Cozliimleme islemleri i¢in Maple, Matlab, veya benzeri bir bilgisayar
programindan faydalanilmasi, kolokasyon nokta sayilar1 ve hane sayilarmnin istenildigi
kadar biiyiik se¢ilmesine olanak tanir. Boylece istenilen duyarhilikta ¢oziim elde

edilebilir.
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Burada hatirlatilmalidir ki, baz fonksiyonunun belirlenmesinde, Galerkin
metodunda oldugu gibi, bazin problemin kosullarini saglamasi hususu dikkate alinmaz.
Bunun yerine, kosullara ait temel matris denkleminin, KDD i¢in elde edilen matris

denklemine yerlestirilmesi yoluyla, kosullar ¢6zlime etki etmis olur.
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3.1. Problemin Tanitim

Bir Q bdlgesi lizerinde tanimli ikinci mertebeden degisken katsayili lineer kismi
diferansiyel denklemi

)4 r

2.2 4 (xy)u” (x,y)=g(x.y)

i=0 j=0

(3.1)
formunda verilsin. Burada, negatif olmayan i ve j degerleri i¢in

g ai+j
u % (x,y)zu(x,y), u' J)(X,y): o ayj “(X,y)

olarak gosterilir. Denklemin degisken katsayilarini ifade eden ql.,j(x, y) ile g(x, y)
fonksiyonlar1 Q ’da tanimli bilinen fonksiyonlardir.
Akytliz-Dascioglu (2009) tarafindan, Q’nin sinir1 olan 0Q Tlizerinde ii¢ olasi

durum i¢in tanimlanan kosullar su sekilde ele alinacaktir:

* o,71, b, , A bilinen sabitler ve (®,,m,) € 2Q olmak iizere, kosullar

i b b u® (@,n,)=4 (3.2)
=l i=0 j=0
oy, sabit ve (x,7,) € dQ olmak iizere, kosullar
L V4 r o
2.2 ¢, (x)u""(xr)=g(x) (3.3)
=1 i=0 j=0
o ¢, sabit ve (x,7,)€dQ olmak iizere, kosullar
$ p r o
222, d, ()u"(e.y)=h(y). (3.4)
=1 i=0 j=0

Verilen kosullara gore (3.1) denkleminin, baz fonksiyonu ¢, , (x, y) cinsinden

ho R
i(x,y)=>.> a,,0,,(x,y) seklindeki ¢dziimiini elde etmek igin farkli baz

m=0 n=0
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fonksiyonlarmin kullanildig1 siralama tabanli spektral metotlardan tiiretilen iki matris
metodu sirasiyla Boliim 3.2 ve Boliim 3.3 de tanitilacaktir.

Ele alinan kismi diferansiyel denklem i¢in, metotlarin dayanak noktasi olan

R =3 q,, (2 2)7") (x.7) - g (x.) (3.5)

i=0 j=0

rezidii fonksiyonu kullanilacaktir. Bolgedeki kolokasyon noktalari (x,,y,) ve test

fonksiyonu W, =6&(x,,y,) olmak iizere, problemin sayisal ¢dziimil igin verilecek

metotlar,

<Wm,n’R(an’)>:0 = <5(xk,y,),R(x,y)>=0

R =0 ) (i) _ (k=0,1,...,7) 36
< (xk’yl) sz qi,f(xk’yl)“ (xk’yl)_g(xk’yl)’ (1201 K) (3.6)

i=0 j=0
siralama tabanli spektral bagmtilar iizerinden yapilandirilacaktir. Bu iglemler sirasinda,
problem kosullar1 da benzer prosediire tabi tutulur. Boylece elde edilecek iki lineer
sistemin, operasyonel matrisler kullanilarak matris denklemine doniistiiriilmesi ile

problem, elemanlar1 a,, bilinmeyen katsayilari olan vektorii bulma problemine

dontisecektir. Bu iki matris denkleminin birlikte ¢6zimii ise, katsayilar vektoriini

verecektir.
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3.2. Ikinci Mertebeden Degisken Katsayih Lineer Kismi Diferansiyel Denklemlerin
Eksponansiyel Chebyshev Seri Coziimii

Q, = {(x,y) 1= <X,y < oo} bolgesinde tanimli (3.1) denkleminin (3.2)-(3.4)
kosullarindan birine ya da farkli kombinasyonlarmma uyan u(x, y) bilinmeyen ¢odziim

fonksiyonuna seri formda bir yaklasim bulabilmek igin [-1,1]x[-1,1] bolgesinde

tanimli ve ortogonal olan Chebyshev polinomlar: ile yar1 sonlu bolgede tanimlh ve
ortogonal olan Rasyonel Chebyshev polinomlar1 yeterli degildir ve ¢6ziim icin daha
genis bolgede calisma olanagi sunacak bir baz fonksiyonuna ihtiya¢ vardir. Problemin
¢Ozlimiine gecmeden 6nce, reel diizlemde tanimli ve ortogonal olan bdyle bir alternatif

baz fonksiyonu asagida tanitilacaktir.

3.2.1. Cift degiskenli eksponansiyel Chebyshev fonksiyonu

Bu kisimda, ikinci boliimde yer verilen Basu’nun (1973) cift degiskenli
Chebysev polinomlar1 c¢alismasindan hareketle, reel diizlemde tanimli bir baz
fonksiyonu ve bazi ozellikleri verilecektir (Ko¢ ve Kurnaz, 2012a; Ko¢ ve Kurnaz,
2013).

x degiskenine gore r. dereceden eksponansiyel Chebyshev fonksiyonu

Er(x):Tr(e ] ve y degiskenine gore s. dereceden eksponansiyel Chebyshev

e +1

-1
fonksiyonu E (y)=T, (ey 1] olmak tizere, ¢ift degiskenli eksponansiyel Chebyshev
e’ +

fonksiyonu (EC),
E, (x,y) = E,(x)-E,()) (3.7)

formunda tanimlanir.

Farkli r ve s indislerii¢in E, (x,y) polinomlari

X

E.,  (x,y)= {2(6 _1]EV(X)—EH (x) }E »), rz1, (3.8)
’ e"+1
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e’ —1
Er,s+](x’y):Er(x). 2 y
e’ +1

]Es(y)—Es_](y) } s>1. (3.9)

Ucli tekrarlama bagmtilar1 yardimiyla belirlenir. Eger i+ j>m+n ise E (x, y)

polinomunun derecesinin £, , (x,y) polinomunun derecesinden biiylikk oldugu

sOylenebilir. Bu iki fonksiyonun ¢arpimini

1
Em,n ('x’ y) ' Ei,j (x’ y) = Z{Em+i,n+j (x’ y) + Em+i,‘n—j‘ (x’y) + Qm—i‘,n+j (x’y) + Qm—i‘,‘n—j‘ (x’y)}

bagintis1 verir.
Br Q.= {(x,y) 1= <X,y < oo} bolgesi ilizerinde negatif olmayan

integrallenebilir agirlik fonksiyonu

ex+y
w(x,y)=———"—"— 3.10
( y) (e"+D)(e" +1) ( )
olmak iizere,
2(Q,)= {f 1Q, > R: [ £, p)wix, y)ddy < oo} (3.11)
Qg
uzay1 tanimlansin. Tanimlanan uzaydaki i¢ carpim ve norm sirasiyla,
(1.8), =[] £(x.3)g (x.y) w(x, y)dxdy (3.12)
Qg
ve
1/2
171, = { [[ 77 y)w(x,y)dxdy} (3.13)
Qg
seklindedir.

{Er,s (x, y)}rzo EC fonksiyonlar ailesi, (3.12) altinda ortogonaldir ve ortogonallik

520

bagintilarindan hareketle



o0 0

j .[ El'J (x, y)Ek,l (x, y)w(x,y)dxdy =

—00 —00

esitlikleri gerceklenir.
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n’, i=j=k=1=0
2
. i=k#0, j=1%0
4

77:2
—, i=k=0, j=1%0
5 J

yada

i=k=#0,j=1=0
0, diger tiim i, j, k,/ degerleri.

{Em(x, y)}rzo EC fonksiyonlar ailesi, £ (Q;) de tamdir. Herhangi

520

ue L] (Q) fonksiyonu,

u (x,y) = zz a. E, (x,y) (3.14)
r=0 s=0
agilimina sahiptir. A¢ilimdaki bilinmeyen a, | katsayilarini
(w5,
= (3.15)
‘ EV,S w
formiilii verir. (3.14) seri formu » =m ve s = n indisli teriminde kesilirse,
u(x,y)=@(x,y)=2.> a,E, (xy)=E(x.y) A (3.16)
r=0 s=0
kesikli seri agilim i¢in matris formu yazilabilir. Matris formda,
E(x’y) = [Eo,o (x’y) E,, (xay)"'Eo,n (x’J/) E (x,y) E, (x’y)“'El,n (x,y)--- (3.17)
E, ,(xy)E, (xy)E,, (x,y)]
Ix(m+1)(n+1) tipinde EC fonksiyonlar vektorii ve
T
A= [ao,o oy oy o Ay yy -y “.am,n] (3.18)
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(m+1)(n+1)x1 tipinde bilinmeyen EC katsayilar vektoriidiir. Kesikli seri formdaki

fonksiyonun (z’, i ) . mertebeden kismi tiirevi

m

u( ZZ a, E" (x,y) (3.19)

r=0 s=0

ve matris formu
7(7) (x, y) ) (x, y) A (3.20)

olacaktir. Burada ise E” = E,__ olup, E“” (x,y)

E(i’j)(x,y):[Eéfg,j) (x,9) ESD (x,9)ESD (x,9) ES) (x, )+ EED (x, )+

. . o (3.21)
ESD (x.y) ELY (xy) - EL (x.7)]

seklinde tiirevli EC fonksiyonlarinin 1x (m +1)(n +1) tipinde satir vektoridiir.

Lemma 3.2.1. Bir u(x,y) fonksiyonu ve bu fonksiyonun (i,) mertebeli tiirevi

sirasiyla (3.16) ve (3.20) matris formlarinda verilsin. Bu takdirde, EC fonksiyonlar

vektorii E(x,y) ile (i, /) mertebeden tiirevli polinomlar vektorii E* (x,y) arasinda

E® (x,y)=E(xy)(D,) (D,) (3.22)

bagintist mevcuttur. Oyle ki, D, ve D, (m+Dn+D)x(m+I)(n+1) tipinde

operasyonel tiirev matrisleri olup, sirastyla

D, =[c,,] - (dzag( 0——1]]T, @ =0L.m (3.23)
4 4 p=0,1,..,n
Ve
p 0 - 0]
e R A R YR
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dir. Burada I ve O ise (n+1)° tipinde birim ve sifir matrislerini temsil eder.

ispat . E,,, E, ve(3.8) bagintisiyla verilen £, (x,y) polinomlarinin x degiskenine

r+l,s

gore birinci mertebeden kismi tiirevleri, sirasiyla

EyY (x,y)= %Eo,s (x,y)=0 (3.25)

2 E(5) =SB () - E(OO)(x, ) (3.26)
(e"+1) 4

\(

0
El ) =—[2ESY B (6 0) = B (6, ) |

(3.27)
= 2B (x, MES” (x,3) +2E7 (6, ESY (%, ) - EL) (%, ), 520
dir. »=0,1,2,...,m i¢in (3.25)-(3.27) denklemleri kullanilarak,
E(()L,'O) (X, y) =0,
E(x,p) = E(OO) (x,y) - E(O 2 (x, ),
(3.28)

Ey)(x,y)= E(OO)(X y)- E(O V(X p),

E,)(x,y)= E(OO)(X y)— E(OO)(x,y), 520

m,s m—1,s m+l,s

sistemi elde edilir. Bu sistem yardimiyla D, matrisinin ¢, , elemanlarina ulasilir.

Benzer sekilde E,,, E,; ve (3.9) ile verilen E, (x,y) terimlerinin y

r,l

degiskenine gore kismi tiirevleri,

E (x,y)= ;Er,o (x.y)=0 (3.29)
v
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=3 — B3 (x, )~ E(O 7 (x, ) (3.30)

\

0
ELh (xy) = —[2E57 (o EL” (60) = ELS (6, ) ]

(3.31)
= 2ES (6, 7)E (x,) + 2E5° (1, ) ES (6, ) = E (x, ), 720
dir. s =0,1,2,...,n i¢in (3.29)-(3.31) bagintilari,
ESP(x,y) =0,
ESY(x,y) = E(OO)(X y)- E(OO)(X »), (3.32)

) (x,y) = i?f’i (%)= i‘Lf? (), 720

sistemini verir. Son olarak bu sistemden D, operasyonel matrisinin elemanlar elde
edilir.

Burada, r>m terimleri i¢in E.” (x,y)=E%” (x,y)=0 ve s>n terimleri
igin £V (x,y)=E” (x,y) =0 olduguna dikkat edilmelidir.

Denklem (3.28) ve (3.32) dan, i =0,1,2,... ve j=0,1,2,... i¢cin
") (x,y) = E(x,y)Dx
E2? (x,y) =g™ (x,y)Dx = (E(x,y)DX)DX = E(x,y)(Dx )2 (3.33)

E (x,y)=E"" (x,y)D, =E(x,y)(D,)

\
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E® (x,y) = E(x,y) D,

2

E® (x.y) =E" (x.y)D, =(E(x.)D, )D, =E(x.y)(D, (334

J

E(O’j) (x,y) = E(O’j'l) (x,y) Dy = E(x,y)(Dy)
denklemlerinin saglandig1 goriiliir. I, (m+1)(n+1) tipinde birim matris olmak iizere
(Dx )O = (Dy )O =1 ve E® (x,y) = E(x,y) dir.

Boylece, (3.33) ve (3.34) esitlikleri birlikte ele alindiginda, ¢ift degiskenli EC

fonksiyon vektorii ile tiirevleri arasindaki temel matris bagintisi

E®/ (X,J’) =E" (x,y)(Dy )j - (E(O,O) (x’y)(Dx )i)(Dy )j - E(x,y)(])x )i (Dy )j (3:35)
ya da

E (x,9)=E* (x.3)(D,) =(E*" (x.»)(D,))(D,) =E(x)(D,) (D) (.36

olarak elde edilir.

Sonu¢ 3.2.1. i. mertebeden operasyonel tiirev matrisi (Dx )i ile j. mertebeden

operasyonel tiirev matrisi (Dy )j carpimsal olarak degismelidir. Yani bu matrisler ile

esitligi mevcuttur.

Sonu¢ 3.2.2. (3.22) matris denklemi, (3.20) tiirevli fonksiyon ag¢iliminda yerine
konuldugunda, bir fonksiyonun cesitli mertebeden tiirevleri icin EC fonksiyonlar1

cinsinden ag¢ilimi

()= (5,0) <) (9] (,) A 637

elde edilir.
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3.2.2. Cift degiskenli EC fonksiyonlari ile matris metodu

Bu kisimda, (3.1)-(3.4) problemi Q, = {(x,y):—oo <x,y< oo} bolgesinde ele

almarak, kesikli seri formdaki niimerik ¢6ziimiin elde edilmesinde kullanilabilecek
siralama tabanli spektral bir metot tanitilacaktir. Seri formun bilinmeyen katsayilari,
tanitacagimiz prosediiriin sonucunda elde edilecek A vektoriinliin elemanlarindan

olusacaktir.

Metot igin test fonksiyonu olarak W =& (x,,y,) ve baz olarak (3.7) de verilen
E, (x,y) cift degiskenli eksponansiyel Chebyshev fonksiyonlar1 kullanilacaktir.

(xk,yl) kolokasyon noktalari, bélgenin i¢inde £ =1,2,...m—1 ve [ =1,2,...,n—1 i¢in

1+ cos(kz / m) 1+ cos(I7 / n)
%, =In ,y, = In| LSO (3.38)
1-cos(kz /m) 1—-cos(I7 / n)

ve smirlarda
i) x, >0 vey —w
) x, > -0 ve y, —>—©

formunda segcilebilir. Burada hatirlatilmalidir ki, verilen her iki smirda da EC
fonksiyonlarmin degeri ya 1 ya da -1 olacaktir.

Kolokasyon noktalari, (3.37) tiirevli ¢6ziim fonksiyonuna uygulanirsa
(7 (x,31) | =E(x,2,)(D,) (D,) A (3.39)

elde edilir. Bu sistem ise,
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L_l(i’j) (xo’yo)

i) (xo’yn)
_| 7 (3:30) | o E(D,)(D,) A (3.40)

7 ( X, ¥, )

77(7) (xm,yn )_

matris formuna indirgenir. Burada E, kolokasyon noktalar1 ile verilmis, E(x, y) EC

fonksiyon vektorlerinden olusan

E :[E(xoayo) E('XO’yl) "'E(xo’yn) E(xlayo) E(xl’yl) "'E(xlayn)"'

E(x,. ) E(x,.0)E(x,.5,)]

seklindeki (m+1)(n+1)x(m+1)(n+1) tipinde, blok matrisidir. (3.40) esitliginde
i=j=01¢in U=EA du.

Benzer sekilde, kolokasyon noktalar1 (3.1) denklemine uygulanirsa,

o | (k=0.1,..om)
z ‘]u xk,y, ( )(Xk’yz):g(xk’yl)’ ([:0,1,...,11)

i=0 j=

(3.41)

denklem sistemi ve bu sistemden, Ql.,j notasyonu, elemanlari g, (xk,y,),
(kzO,l,...,m; l:O,l,...,n) olan kOsegen matrisi ve G notasyonu ise elemanlari
g(x.»), (k=0,1,...,m; [ =0,1,...,n) olan siitun matrisini temsil etmek iizere

> QU =G, (p<m, r<n) (3.42)

i=0 j=0

M

matris denklemi elde edilir. (3.42) matris denklemi, (3.40) de verilen U“” esitligi

kullanilarak yeniden diizenlenirse, (3.1) kismi diferansiyel denklemi icin, a

bilinmeyen EC katsayilarini igeren (m+1)(n+1) adet lineer pseudo-spektral denkleme

karsilik gelen
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( » Qi,,E(DJ(Dy)f]A:G (3.43)

temel matris denklemi elde edilir.

4 r
W= (ZZ Q. EMD,) (Dy)j] kabul edilirse, (3.43) sistemi kisaca

i=0 j=0
WA=G (3.44)

formunda yazilabilir ve eklemeli matris gosterimi

Wi W2 o WL (m+)m+1) : g(xo’yo)
Wai W), W) (m+1)n+1 4 O

[W:G]= z ’ s (, ) (3.45)
Wi+l Yooz Wonm+)(ms)n+), - & ('xm >V )

seklinde olacaktir.

Diferansiyel denklemin cebirsel sisteme doniistiiriildiigii prosediir, benzer
sekilde verilen kosullar i¢inde uygulanir.

Kolokasyon noktalari, (3.2)-(3.4) ile verilen kosullarda yerlerine yazilir ve

matris formlarina doniistiiriiliirse, sirasiyla

r

(izp‘,z b,ivl_E(a),,n,)(Dx)i(Dy)j]A =1, —0<@,n, <® (3.46)

=1 i=0 j=0

¢, (x)E(x,.7,)(D,) (D, )j]A =g, (x,),—0<y, <0, k=0,1,..,m (3.47)

sistemine ulasilir. (3.46), (3.47) ve (3.48) sistemlerinde esitliklerin sol yanlarindaki

parantez igleri sirasiyla V,, V, ve V, vektorleri ile, sag yanlari ise sirasiyla A, g, ve

h, ile ifade edilmek tizere kosullara ait genel matris denklemleri

VA=2, (3.49)
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VA=g, (3.50)
Ve
V,A=h, (3.51)

olarak yazilabilir. Kosullardan gelen [V, : 1], [V, : g, | ve [V; :h,] cklemeli matrisleri

ile kismi diferansiyel denklemden gelen [W : G] eklemeli matrisinin birlestirilmesiyle

W: G

R Vi A
(WG |= (3.52)

\o’ 4

V,: h,

matrisi elde edilir. Bu matris, denklem sayisinin bilinmeyen sayisindan fazla oldugu
WA=G (3.53)

denklem sisteminin karsiligidir. (3.53) sistemine Gauss satir indirgeme islemi uygulanir

ve sifirdan farkli satirlar1 silinerek [W : é} ile ifade edilirse, problemin ¢oziimiindeki

bilinmeyen EC katsayilarini
WA =G (3.54)

denkleminin ¢oziimii verir. Gauss eliminasyon, liggen matris metotlar1 gibi lineer

denklem sistemlerinin ¢oziimiinde kullanilan metotlardan biri yardimiyla ¢oziim
gergeklestirilir. Eger W matrisi tersinir degilse, kolokasyon noktalar, W tersinir
olacak sekilde degistirilir.

Denklemden gelen [W:G] matrisinin belli sayidaki satir1 silinip kosullardan

gelen eklemeli matrislerin bu matrise eklenmesiyle [VNVG} matrisi elde edilerek de

¢cOzlim gergeklestirilebilir.
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3.3. Ikinci Mertebeden Degisken Katsayih Lineer Kismi Diferansiyel Denklemlerin

Fibonacci Polinomlari Cinsinden Seri Coziimii

Denklem (3.1) ile verilen problemin
Q:{(x,y):xe[a,b]x[c,d]c RXR}

bolgesindeki ¢oziimii, bu bolgede tanimli bir baz cinsinden kesikli seri formda
aranacaktir. Bunun i¢in, baz fonksiyonu olarak Fibonacci polinomlar1 kullanilarak

meydana getirilen bir polinom ailesi kullanilacaktir.

Q, = {(x,y) :x e[a,b]x[c,d]c Rx R} seklinde verilen bir bolgede spektral
metotlar i¢in yardime1 fonksiyonun se¢imi ¢ok onemlidir. Daha 6nce belirtildigi gibi,
[-1,1]x[~1,1] diizleminde taniml1 Chebyshev ya da Legendre polinomlari ile bu tiir bir

bolgedeki problemi ¢ozebilmek icin bir doniisiim gereklidir. Ornegin, —3<x<3

araligmimn —1<r <1 araligina doniisiimii i¢in » =

seklinde bir doniisiime ihtiyag

vardr. Ayni islem, degisken sayis1 kadar tekrar edecektir. Bunun yerine, doniisiime
gerek kalmaksizin, her sonlu bolgede islem yapmaya olanak tamiyacak bir baz
fonksiyonu kullanmak, hem islem yiikiinii hafifletecek hem de uygulama giicliglinii
azaltacaktir. Bu amagla, Bolim 3.3 de reel eksenin tiim alt araliklarinda tanimli
Fibonacci polinomlarina dayanan, reel eksenin iki alt araliginin kronoker ¢arpimiyla
olusturulan bélgede tanimli iki degiskenli bir baz fonksiyonu tamimlanarak yeni bir

metot sunulacaktir (Kog¢ ve Kurnaz, 2012b; Kog¢ ve Kurnaz, 2014).

3.3.1. Fibonacci polinomlar yardimyla F, (x, y) polinomlarinin tanimlanisi

IX:{x:xe[a,b]cR} ve Iy:{y:ye[c,d]cR} olmak tizere Q=1 xI,

bolgesi ve

ﬁz(QF):{f:QF—>R:J'J.f2(x,y)dxdy<oo} (3.55)



55

uzayl tanimlansm. f(x,),g(x,y)e £ (Q,) olmak iizere, tammlanan uzaydaki i¢

carpim ve norm, sirastyla

(f.8)=[[ £Ce. )2 (x, y)dxdy (3.56)
A\
|71 = {” f? (x,y)dxdy} (3.57)

seklindedir. x degiskenine gore r. dereceden Fibonacci polinomu F, (x) ve y

degiskenine gore s. dereceden Fibonacci polinomu F, ( y) olmak iizere, bir polinom

ailesi, ,5 >0 i¢cin

F, (x.y)=F (x)F(») (3.58)

formunda tanimlanabilir (Kog ve Kurnaz, 2012b). Farkli » ve s indisleri i¢in F, (x, y)

polinomlar1
F (), r=0,

Fr (x0) =1 [¥]F (), r=1 (3.59)
[ F(x)+F ()]F (). r>1
F (x), s=0,

Fo (x,9) =[] (%), s=1, (3.60)

VR (»)+F L (¥)]F(x),  s>1

ticlii tekrarlama bagintilar1 yardimiyla belirlenir.

{Fm (x, y)}rzo ailesi (FP ailesi), (3.55) ile verilen £(€Q.) uzaymnda (3.57)

520

normu altinda tamdir. Herhangi u (x, y) € £* (Q;) fonksiyonu

0

u(x2)=3 Y a F, (x.y)

r=0 s=0
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seri formunda yazilabilir. Bu seri agilimin kesikli serisi,

M=

M
u(xy ;LT z

r=1 s

a, .F (x,y)=F(x,y)-A (3.61)

matris formunda yazilabilir, 6yle ki F (x, y) ,

[ xy) FI,N(xay) 12 (xay) Fz,z(xsy) FZ,N(x’y)"'
Fy, (x,y) Fy, (x,y) e By (x,y)]

1x(M)(N) tipinde F,(x,y) polinomlar vektériive A,

T
A:[al,] Ay e Gy Gy Gy oo Gy oee Gy g Gy e aM’N} (3.62)

(M)(N)x1 tipinde seri agilimdaki a, ; katsayilar vektoriidiir.

Kesikli seri formdaki fonksiyonun (i, i ) mertebeli kismi tiirevi

=SS aE (3.63)

r=1 s=l1

ve matris formu
il (x, y) _F (x, y) A (3.64)

bi¢imindedir. Burada a'*” =a _, u'®” (x,y)=u(x,y) olup A",

@) | 60 (lj) @n G5 L)) (%)) @n ) (i,))
A [a” ay” a4y ay)oay oay ayl aMN] (3.65)

tiirevli fonksiyonun kesikli seri agilimindaki katsayilardan olusan vektordiir.

Lemma 3.3.1 Bir u(x,y) fonksiyonu ve bu fonksiyonun (i, ;) mertebeli tiirevi

sirasiyla (3.61) ve (3.64) matris formlarinda verilsin. Bu takdirde, katsayilar vektorleri

A ile A“” arasimda

A" =(D.) (D)) A (3.66)
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bagmtist meveuttur. Oyle ki, D, ve D, (M)(N)x(M)(N) tipinde operasyonel tiirev

matrisleri olup, sirasiyla @ =1,2,...M , p=12,...,N igin

B . ( —OC)ﬂ'I
D.=[d,,|=1"" . B>a (3.67)
0, BZa
ve
L0 0] (5-a)
~ . (B-a)r
I e 5)
' - 0, f=La
100 B

dir. Burada I ve O ise swrasiyla (N)x(N) tipinde birim ve sifir matrislerini temsil

eder.

Ispat: Kog ve ark. (2013) tarafindan verilen, bir fonksiyonun ve herhangi mertebeden

adi tlirevinin Fibonacci polinomlar1 cinsinden seri acilimlarini belirleyen katsayilar

arasindaki iligki, iki degiskenli bir fonksiyon ve (i, i ) mertebeli kismi tlirevinin seri

acilimindaki katsayilar i¢in de gelistirilebilir.

Bunun i¢in once, seri formdaki fonksiyonun i=k+1 ve ;=0 mertebeli

tirevinde aff‘s’o) ile aff‘:]’o) katsayilar1 arasindaki bagint1
(k+10) _ N £ (k0)
a, ' =r) (=1) a.,, r<Mm
’ Z():( ) (3.69)
a*) = 0, r>M

r,s

seklinde kurulur. r=1(1)M ve s=1(1)N indisli elemanlar igin swrasiyla (3.69)

denklemi tek tek yazilir ve olusan denklem sistemi, katsayilar vektorleri yardimiyla

matris forma doniistiiriiliirse

A = p AR (3.70)
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elde edilir, oyle ki (3.69) bagntisinda aff‘s’o) elemanlarinin basinda ¢arpim durumundaki

r sabitlerine gore belirlenen [da, 5 :‘a:O(I)M elemanlari ile D, tiirev operatér matrisi
B=0(1)N

D.=[d,,]= ;b B>a (3.71)
0, BZa

dir. (3.70) rekiirans bagintisindan, A = A olmak iizere,

ve
k=i, A" =D.A" = =(D.) A (3.72)
oldugu agikca goriiliir.

Benzer siirecle, seri formdaki fonksiyon ve i =0 ve j=1[+1 mertebeli tiirevinde

(0.7+1)

a,, " ile aff)s’[) katsayilar1 arasinda
40 si(—l)t a" c<N
r,s r,s+2t+1° -
=0 (3.73)
afi,’l) =0, s>N
bagintis1 mevcuttur. Bu bagint1 yardimiyla afi’l”) ile afi’” katsayilarmi igeren vektorler

arasindaki

I=j, A =D,A")=..=(D,) A (3.74)
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matris denklemi elde edilir. (3.73) bagintisindaki afiﬁ” elemanlarinin basinda ¢arpim

durumunda bulunan s sabitlerine gore, (M )(N)x(M)(N) tipindeki D, tiirev

operator matrisinin elemanlar1

p oo 0

- 0O nu - 0 ~ asinﬂ B>a

D= " UL m=[e,]= 2 (375)
S 0, B<a
100 B

formunda belirlenir.
Boylece, (3.72) ve (3.74) matris bagintilar1 birlikte ele alindiginda, seri formdaki
bir fonksiyon ve kismi tiirevinin katsayilar vektorleri arasindaki baginti operasyonel

tiirev matrislerine gore

A" =(D.) (A")=(D.) (D) A (3.76)
ya da
A =(D,)' (A“)=(D,) (D) A (3.77)

seklinde elde edilmis olur.

Sonug 3.3.1 (3.66) esitliginde verilen i. mertebeden operasyonel tlirev matrisi (lN)x )i ile

j . mertebeden operasyonel tiirev matrisi ( D, ! carpimsal olarak degismelidir. Yani bu
g

matrisler ile
(D) (D) =(D,) (D) (3.78)
esitligi mevcuttur.

Sonu¢ 3.3.2. (3.66) matris denklemi, (3.64) tiirevli fonksiyon ag¢iliminda yerine
konuldugunda, bir fonksiyonun cesitli mertebeden tiirevleri icin EC fonksiyonlar1

cinsinden agilimi
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ﬁ(i’j)(x,y):F(x,y)(lN)x)i(lN)y)j A (3.79)

elde edilir.

33.2. F,, (x, y) polinomlan ile ¢6ziim metodu

Bu kisimda, Q. = {(x,y) xela,b]cR,yelec,d]c R} bolgesinde taniml1 bir

(3.1) denkleminin (3.2)-(3.4) kosullar1 altindaki ¢oziimiiniin (3.63) formunda elde

edilebilmesi i¢in bir metot sunulacaktir.

Metot igin test fonksiyonu olarak W =& (x,,,) ve baz olarak (3.58) de verilen,
Fibonacci polinomlart ile tiretilen F, (x, y) ¢ift degiskenli polinomlar1 kullanilacaktir.
a<x, <b,c<y <d,(k=12,..M) ve (I=12,..,N) olmak iizere,

b-a (k—l), y1:c+d_c

X, =a+ (l—l) (3.80)

esit aralikli kolokasyon noktalarmin (3.79) formundaki tiirevli ¢oziim fonksiyonuna

uygulanmastyla elde edilecek

[LT(IBJ‘) (xk,y,)] = F(xk,y,)(lN)x)i (]N)y )j A

sistemi,
| ’/T(i,j) (x]ay]) |
70 (3, 7,)
—(i.7) ~ NPy~ \J
U = u (.xza%) —FAG) :F(Dx) (Dy)J A (3.81)

ﬁ(w‘) (xz’yN)

_L—l(w‘) (xM’yN)
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matris denklemine indirgenir. Burada F, kolokasyon noktalar: ile verilmis, F(x, y)

vektorlerinden olusan

FZ[F(x],y])F(x],yz) "'F(xl’J’N) F(xz’yl) F(xz’yz)"'F(xPyN)

F(xM’yl) F(XM’y2) F(xM’yN)]T

seklindeki (M )(N)x(M)(N) tipinde, blok matrisidir. (3.81) esitliginde i= ;=0 i¢in
U=FA dr.
(3.80) deki kolokasyon noktalarmin tek tek (3.1) diferansiyel denkleminde

yerine konulmasiyla

IS

p .
Z ‘Iu %0 )8 (%, 31) = g (%01) (3.82)

0 j=

lineer denklem sistemi elde edilir. Buradan, Q, ; notasyonu, elemanlart g, (x,,y,) "lar

olan késegen matrisi ve G notasyonu ise elemanlar1 g(x,,y,) lar olan siitun matrisini

temsil etmek lizere

P
> QU =G, (p<M, r<N) (3.83)

matris denklemi yazilabilir. (3.81) ile verilen U"” esitligi kullanilarak (3.83) matris
denklemi yeniden dizenlenirse, a, ; bilinmeyen FP katsayilarini igeren (M )(N ) adet

lineer pseudo-spektral denkleme karsilik gelen

(ii Q F (IN)X)i(]N)y)j]A =G (3.84)

i=0 j=0

temel matris denklemi elde edilir. Parantez igindeki matris W ile temsil edilmek iizere,
WA =G (3.85)
denkleminin eklemeli matris formu

[W:G] (3.86)
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seklindedir.
Kolokasyon noktalar1 kosul denklemlerine de uygulanir ve matris formlarina
doniistiiriiliirse,
p.p
ZZZb F(w,n,)(D:)(Dy) |[A=4, a<w,<b, c<n,<d (3.87)
t=1 i=0 j=0

(i c, (xk)F xk,;/,)(D)(Dy)’]A F.(x), c<y, <d, k=1(1)M (3.88)

t=1 i=0 j=0

r

(ii d, g,,y,)(D)(Dy)’]A h(y), a<e <b, I=1(1)N (3.89)

i=0 j=0

...
Il

sistemleri elde edilir. (3.87), (3.88) ve (3.89) sistemlerinde esitliklerin sol yanlarindaki

parantez igleri sirasiyla V,, V, ve V, vektorleri ile, sag yanlari ise sirasiyla A, g, ve

h, ile ifade edilmek tizere kosullara ait genel matris denklemleri

VA=2, (3.90)
V,A=g, (3.91)
Ve

V,A =h, (3.92)

olarak yazilabilir. Kosullardan gelen [V, : 1], [V, : g, | ve [V; :h,] cklemeli matrisleri

ile kismi diferansiyel denklemden gelen [W : G] eklemeli matrisinin birlestirilmesiyle

W: G

R Vi A
(W6']- (3.93)

\oN’ 4

V,: h,

matrisi elde edilir. Bu matris, denklem sayisinin bilinmeyen sayisindan fazla oldugu

(3.94)
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denklem sisteminin karsiligidir. (3.94) sistemine Gauss satir indirgeme islemi uygulanir

ve sifirdan farkli satirlar1 silinerek [W : é} ile ifade edilirse, problemin ¢oziimiindeki

bilinmeyen Fibonacci katsayilarimi
WA =G (3.95)

denkleminin ¢Oziimii verir. Gauss eliminasyon, liggen matris metotlar1 gibi lineer

denklem sistemlerinin ¢oziimiinde kullanilan metotlardan biri yardimiyla ¢oziim
gerceklestirilir. Eger W matrisi tersinir degilse, kolokasyon noktalari, W tersinir
olacak sekilde degistirilir.

Denklemden gelen [W:G] matrisinin belli sayidaki satir1 silinip kosullardan gelen

eklemeli matrislerin bu matrise eklenmesiyle [W : é} matrisi elde edilerek de ¢6zim

gerceklestirilebilir.
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4. ARASTIRMA BULGULARI

Bu boliimde, tez kapsaminda tanimlanan sayisal yontemlerin dogruluk ve
etkinlikleri cesitli kismi diferansiyel denklem problemleri {izerinde test edilmistir.
Istenildigi kadar biiyiik kesme sinirlarinda calisabilmek i¢in, metotlara ait algoritmalar
Maple’da programlanarak problemlere uygulanmistir. Ayrica, kesme sinirlarinin yeterli
biiyiikliikte olmas1 halinde bile olusabilen bilgisayar kaynakli hatalar1 minimize
edebilmek admna, programlamalar esnasinda hane duyarliligi da dikkate almmustir.

Boylece elde edilen sonuglar ¢esitli tablo ve grafikler ile sunulmustur.

4.1. Cift Degiskenli Eksponansiyel Chebyshev Fonksiyon Yaklasim Uygulamasi

Ornek 4.1.1. ikinci mertebeden, degisken katsayil

2 4e"
v ——2 - (4.1)
T+l (e"+1)2(ey+1)2
lineer kismi diferansiyel denkleminin
u,(0,y)=0, u(x,0)=0 (4.2)

kosullar1 altindaki kesikli ¢ift degiskenli eksponansiyel Chebyshev seri ¢oziimii
bulunsun (Ko¢ ve Kurnaz,2013).

m=n=15 igin {(x,,y,)}r-o)n kolokasyon noktalari ile olusturulan
1=0(1)

n

“(]’])(xk » Vi ) - Q(xk ,)ﬁ) ”(]’O)(xk ’yl) = g(xk’yl) (4.3)

seklinde 16° adet lineer denklemden olusan sisteme karsilik temel matris denklemi

{E(Dx)(Dy)—Q],OE(DX)}A =G (4.4)

olarak kurulur. Burada E, 16” adet kolokasyon noktasi igin verilmis, E(x, y) polinom

vektorlerinden  olusan  16°x16°  tipinde blok matrisi; Q,,, elemanlar
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2 .. .. .
00 (%5 yl):y—l olan 16> x16° tipinde kdsegen matrisi ve G ise, elemanlar:
' e’ +

4e™

- ~ olan 16°x1 tipinde siitun vektdriidiir. Kolokasyon
(e"k +1) (eyf +1)

g(xk’yl):

noktalari ile kosullardan u (0, y) =0 i¢in

u®(0,,) =14, (4.5)
sisteminden
{E(0.,5,)(D,)fA=2, (4.6)

matris denklemi ve u(x,0)=0 igin

u(o,o) (xk,O) _ %,k 4.7)
sisteminden
E(x,0)A=2,, (4.8)

matris denklem sistemi elde edilir. Istenen ¢dziimdeki katsayilar1 iceren A katsayilar
vektort, (4.4), (4.6) ve (4.8) matris denklemlerinin ortak ¢6ziimiinden elde edilir.
Maple paket programi kullanilarak elde edilen sonuglara ait grafikler problemin
e —e"—e’ +1

u(x,y)= gercek ¢oziim fonksiyonu ile karsilastirmali olarak Sekil
(e" +1)(ey +1)

4.1.1 ve Sekil 4.1.2 de verilmistir. Farkli noktalardaki ‘u—uya,dwk‘ mutlak hata

fonksiyonuna ait degerler ise Tablo 4.1.1 de verilmistir.
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Sekil 4.1.1. (a) Ornek 4.1.1. in gergek ¢oziim fonksiyonuna ait —2 < x, y <10 araligmdaki
esylkselti grafigi

(b) Ornek 4.1.1. in niimerik ¢6ziim fonksiyonuna ait —2 < x, y <10 araligindaki
esylkselti grafigi

(c) Ornek 4.1.1. in gergek ¢oziim fonksiyonuna ait -3<x<3 ve -5<y <5
araligindaki egyiikselti grafigi

(d) Ornek 4.1.1. in niimerik ¢ziim fonksiyonuna ait -3<x<3 ve -5< y <5
araligindaki egyiikselti grafigi
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Tablo 4.1.1. Ornek 4.1.1 icin farkli kolokasyon noktalarindaki mutlak hatalar

X y m=n=15
4.5056 4.5056 3.31 E-08
4.5056 2.248 2.09 E-08
4.5056 1.618 1.48 E-08
4.5056 -2.248 3.18 E-08
4.5056 -4.5056 3.38 E-08
3.0970 4.5056 1.58 E-08
3.0970 1.618 6.00 E-10
3.0970 -0.209 1.90 E-10
2.248 3.0970 4.40 E-09
2.248 -3.0970 5.30 E-09
1.6183 -0.2098 3.50 E-10
0.2098 -0.2098 1.80 E-10
-0.2098 -0.2098 1.00 E-10
-2.248 -1.098 1.90 E-09
-3.0970 2.248 2.20 E-09
-3.0970 -2.248 1.30 E-09

Sekil 4.1.2. Ornek 4.1.1 de verilen problemin m =n =15 igin elde edilen niimerik ¢oziim ve gergek
¢ozlim grafikleri
(- ——: gergek ¢oziim fonksiyonu, e e : niimerik ¢dziim fonksiyonu)
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4.2. Fibonacci Polinomlan Cinsinden Yaklasim Uygulamasi

Ornek 4.2.1. Kesan (2003) tarafindan Chebyshev polinomlari ile
Q= {(x,y) :(x, ) e[-L1]x [—1,1]} bolgesinde yaklagim yapilan
u, —u_==6 (4.9)

yy XX

ikinci mertebeden lineer sabit katsayili diferansiyel denkleminin

u(x,0)=x>, u,(x,0)=4x (4.10)
M N
kosullar1 altindaki ¢oziimii, uya,dw L, y = z z a, SF, E =F (x, y) A formunda
r=l s=I
aransin.

M=m+1 ve N=n+1 olmak iizere, m=n=3 1i¢in esit aralikh

{(xk, Y, )}k:](])m+] kolokasyon noktalar1 ile olusturulan
I=1(1)n+1

u®? (xk’yl)_u(z,())(xk’yl):g(xk’yl) (4.11)

seklinde 4° adet lineer denkleminin seri formlarma karsilik, bilinmeyen katsayilar

iceren 4° x1 tipindeki A vektorii ile
{F(IN)y)z—F(lN)x)z}A:G (4.12)

2 ~ \2
genel matris denklemi elde edilir. Kisaca {F(Dy) —F(Dx) } =W olmak iizere

WA =G (4.13)

yazilabilir. W, 4*x4° tipinde bir matris; G ise 4° adet elemani 0 olan siitun

vektorudir.

Benzer sekilde u(x,0) = x* ve u,(x,0)=4x kosullar1 i¢in kolokasyon noktalar:

ile kurulan, her bir kosula ait 4 adet denklemden olusan sistem ve bu sisteme karsilik

gelen matris denklemleri sirasiyla,
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1" (x,,0)= g, (%) = {F(x.0}A=g,(x) = VA=¢, .19
ve
" (x,0)= F, (%) = {F(xk,())]N)y}A =% (%) = V,A=¢, (4.15)

olacaktir. Burada, &, (x,)=x; ve &, (x,)=4x dir. (4.13), (4.14) ve (4.15)

denklemlerinin ortak ¢oziimiiyle katsayilar vektorii

A= [—5,0,4, 0,0,4,0,0,1,0,0,0,0,0,0, O]T (4.16)
olarak bulunur. Boylece,

Uktasik = —SF],] (x,y) + 4FL3 (x,y) + 4F2’2 (x,y) + F3,1 (x,y) = 4y2 +4xy + x’ (4.17)

¢oziim fonksiyonu elde edilir ki ayn1 zamanda ger¢ek ¢oziim fonksiyonu

u (x,y) = (x + 2y)2 elde edilmis olur.

Ornek 4.2.2. Bir boyutlu, sabit katsayil1

o’u  0u B

homojen Laplace denklemi,

u(x,—l):u(x,l):cos(%j (4.19)
ve
u(l,y)=u(-1,y)=0 (4.20)

Dirichlet  smir  kosullar1 altinda ele alinsm. Problemin tam  ¢0ziimi

()
COs ey cosh Y
u (x, y) = olarak verilmistir (Doha ve Abd-Elhameed,2005).

cosh (ﬂj
2
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Fibonacci polinomlar1 cinsinden kesikli seri ¢O0ziimii aransm. Problemin

—1<x,y<1 tanim bolgesinde esit aralikli her bir kolokasyon noktast i¢in (4.18)

denkleminin yeniden diizenlenmesiyle elde edilecek sisteme ait temel matris denklemi
~ \2 ~ \2
{F(Dy) +F(D; ) }A:G (4.21)

~ \2 ~ \2
olup, W:F(Dy) +F(Dx) matrisi ve kolokasyon nokta sayisi adedince sifir

satirindan olusan G vektorii ile kisaca
WA =G (4.22)

yazilabilir. Ayn1 kolokasyon noktalar1 ile diizenlenmis kosullara ait denklem sistemleri

ve matris formlar

”(O’O)(xk’_l) =i (xk) = {F(xk’_l)} A= (xk) = VA=¢,
”(O’O)(xk’l) = %o (xk) = {F(xk’l)}A =S (xk) = V,A=¢,
u"(=Ly)=h,(3) = {F(-Ly,)}A=h,(») = V,A=h,

WLy,)=h,(n) = {F(Ly)jA=h, () = V,A=h,

seklinde elde edilir, dyle ki g, (x,) = g, (%) = cos(ﬂzx"j ve hy(v,)=h,,(y)=0

dir. Boylece elde edilen bes temel matris denkleminin birlikte c¢oziilmesiyle, A
bilinmeyen katsayilar vektorii elde edilir ki bu da problemin u,,,, ., (x,7)=F(x,y)A

seklinde kesikli seri ¢oziimiinii verir. Elde edilen ¢0ziime ait veriler c¢esitli tablo ve
grafikler lizerinden verilmistir.

Esit araliklh farkl sayidaki kolokasyon noktalar1 i¢in mutlak hata fonksiyonunun
sonsuz norm degerleri D=20 haneli ve D=30 haneli duyarlilikta Tablo 4.2.1 de

karsilagtirilmistir.



Tablo 4.2.1. Ornek 4.2.2 icin "u —u

yaklastk ||Qc

norm degerleri
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M=N=5 M=N=6 M=N=7 M=N=8

D=20  0.0445024177 0.16257797 E-03  0.12764070 E-03  0.92179417 E-05

D=30  0.0445024177 0.15953927 E-03  0.12378474 E-03  0.91215651 E-05
M=N=9 M=N=10 M=N=11 M=N=12

D=20  0.72895596 E-05  0.46072294 E-07  0.81582800 E-07  0.13350476 E-09

D=30  0.85967728 E-05  0.28615508 E-07  0.92190222 E-07  0.13210058 E-09
M=N=13 M=N=14 M=N=15 M=N=16

D=20 094510664 E-10  0.15523504 E-12  0.21036052 E-12  0.27673320 E-15

D=30 094492684 E-10  0.15564536 E-12  0.20975366E-12  0.28216683 E-15
M=N=17 M=N=20

D=20  0.27663185 E-15 0.59390799 E-18

D=30  0.28649883 E-15 0.13643958 E-20

M =N =8 icin esit aralikli kolokasyon noktalarindaki mutlak hata fonksiyon
degerleri Tablo 4.2.2 de verilmistir. M =N =5,10,15,20 i¢in mutlak hata fonksiyon

grafikleri Sekil 4.2.1 de karsilastirilmistir. M = N =10 i¢in mutlak rezidii fonksiyonuna

ait lic boyutlu grafigi ile esylikselti grafigi ise Sekil 4.2.2 de sunulmustur.

Tablo 4.2.2. Ornek 4.2.2 igin noktasal mutlak hata degerleri

Fibonacci tiirti

Fibonacci tiirti

X y yaklagim (D=20) yaklagim (D=30)
1 1 0.39932169 E-18 0.15789800 E-28
0.5 0.5 0.25859452 E-06 0.11347937 E-06
0.2 0.2 0.42820801 E-06 0.67754326 E-07
0 0 0.64241508 E-06 0.47611559 E-07
-0.2 -0.2 0.97693630 E-06 0.76312080 E-07
-0.5 -0.5 0.17751594 E-05 0.29505931 E-08

0.42932169 E-18

0.17789800 E-28
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Sekil 4.2.1. (a) Ornek 4.2.2. de N=M=5 i¢in mutlak hata fonksiyonu grafigi
(b) Ornek 4.2.2. de N=M=10 i¢in mutlak hata fonksiyonu grafigi
(¢) Ornek 4.2.2. de N=M=15 i¢in mutlak hata fonksiyonu grafigi
(d) Ornek 4.2.2. de N=M=20 i¢in mutlak hata fonksiyonu grafigi
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Sekil 4.2.2. (a) Ornek 4.2.2. de N=M=10 i¢in mutlak rezidii fonksiyonu grafigi
(b) Ornek 4.2.2. de N=M=10 i¢in mutlak rezidii fonksiyonu esyiikselti egri grafigi

M = N =10 i¢in niimerik ¢6ziim ve gercek ¢oziim fonksiyonlarna ait grafikler

ise Sekil 4.2.3 ile verilmistir. Grafikler D=30 haneli duyarlilikta ¢alisilmistir.

Sekil 4.2.3. Ornek 4.2.2. de N=M=10 i¢in elde edilen niimerik ¢6ziim ve gercek ¢oziim grafikleri

(———: gergek ¢oziim fonksiyonu, e e : niimerik ¢dziim fonksiyonu)
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Ornek 4.2.3. Ikinci mertebeden, bir boyutlu, sabit katsayil1

u, +4u, +2u=u_ (4.23)
Telgraf denklemini
u(x,0)=sinx, u,(x,0)=—sinx (4.24)

baslangic kosullar1 altindaki ¢6ziim problemi ele alinsm. Tam ¢oziimi

u (x, t) =e¢'sinx fonksiyonudur (Yousefi,2010). Fibonacci polinomlar1 cinsinden

niimerik ¢oziimi Q = {(x, y):x,ye [0,2]} bolgesinde arastirilsin. Probleme ait matris

denklemleri, Kisim 3.3.2 de verilen prosediir izlenerek

u, +4u, +2u-u_=0 =
u(o’z)(xk, )+ 4u(0’])(xk V) + 2”(0’0)(’% )= ”(2’0)(’%’ v)=g (x.7) (4.25)

2

= {F(f)y)2 +4F(D, )+ 2F F(D. }A -G

u(x,O):sinx = 4"’ (xk,) g/,k(xk)

(4.26)
= {F(xk, )} =% (%) > VA=¢,

u,(x,O):—sinx = (xk, ) g/Zk(xk)

4.27)
= {F(xkaO)Dy}A:g/z,k(xk) = VzA:g/z

seklinde elde edilir (Ko¢ ve Kurnaz, 2014). Problem, M =N =7,9,10,11,15 kesme

siirlar1 almarak temel matris denklemleri yardimiyla ¢oziilmiis ve sonsuz normdaki

sonuclar M =N =9,11 kesme sinirlar1 i¢in D=20 haneli ve D=30 haneli duyarhlikta
Tablo 4.2.3 da verilmistir. M =N =10,15 i¢cin mutlak hata fonksiyon grafikleri ve
M =N =15 kesme smr1 igin elde edilen u ,, (x,y)=F(x,y)A niimerik ¢oziimii ile

gergek ¢Oziim fonksiyonlarma ait yogunluk grafikleri Sekil 4.2.4 de sunulmustur.

M =N =7,15 i¢in mutlak rezidii fonksiyon grafikleri ise Sekil 4.2.5 de sunulmustur.
Grafikler D=25 haneli duyarlhilikta ¢caligilmistir.
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Tablo 4.2.3 . Ornek 4.2.3 icin Taylor, Bernoulli ve Fibonacci tiirii yaklasimlarm mutlak hatalarinm

kiyaslanmasi
M=N=9 M=N=11
Taylor . Taylor .
Polinom \]?elzrlloulll Fibonacci Polinom \]?elzrlloulll Fibonacci

(xr S, ) Yaklagimi (Ta h?(;lml Tiirt Yaklagim (Ta h?g.lml Tiirt

(Biilbiil ve Shi ° 2V612 Yaklasim (Biilbiil ve hi oTnd ve Yaklasim
Sezer, 2011) irazian,2012) Sezer, 2011) Shirazian,2012)

(0.,0.) 0 9.84 E-09 3.12E-23 0 2.49 E-10 3.13E-24
(0.1,0.1) 296 E-16 1,15 E-08 1.14 E-08 7.68 E-20 1.39 E-10 7.39 E-11
(0.2,0.2) 7.01 E-13 1,41 E-08 1.70 E-09 7.34 E-16 1.77 E-10 4.15 E-11
(0.3,0.3) 6.99E-11 1,86 E-09 9.38 E-09 1.66 E-13 4.68 E-11 2.52 E-11
(0.4,04) 1.90 E-09 7,21 E-08 7.67 E-09 8.12 E-12 2.38 E-09 2.12 E-11
(0.5,0.5) 2.53 E-08 2,08 E-07 1.09 E-09 1.71 E-10 7.81 E-09 1.66 E-11
(0.6,0.6) 2.15E-07 3,46 E-07 4.46 E-09 2.11 E-09 1.41 E-08 4.27 E-12
(0.7,0.7)  1.34 E-06 3,30 E-07 3.46 E-09 1.81 E-09 1.44 E-08 5.51 E-13
(0.8,0.8) 6.62 E-06 2.10 E-08 1.35 E-08 1.18 E-07 1.27 E-09 5.60 E-12
(0.9,09) 2.74E-05 7.08 E-07 2.41 E-09 6.30 E-07 3.95 E-08 6.47 E-12

(1.,1.) 9,69 E-07 4.46 E-09 9.81 E-08 1.42 E-11
(1.1,1.1) 2.74 E-06 2.94 E-07 1.94 E-07 2.75 E-09
(1.2,1.2) 2.36 E-05 2.00 E-06 5.48 E-07 3.37 E-08
(1.3,1.3) 1.05 E-04 7.95 E-06 2.35 E-06 2.08 E-07
(1.4,1.4) 3.79 E-04 2.42 E-05 1.04 E-05 8.99 E-07
(1.5,1.5) 1.19 E-03 6.21 E-05 4.13 E-05 3.08 E-06
(1.6,1.6) 3.43 E-03 1.40 E-04 1.45 E-04 8.98 E-06
(1.7,1.7) 9.13 E-03 2.88 E-04 4.65 E-04 2.31 E-05
(1.8,1.8) 2.26 E-02 5.47 E-04 1.36 E-03 5.38 E-05
(1.9,1.9) 5.31 E-02 9.70 E-04 3.74 E-03 1.16 E-04

(2.,2) 1.18 E-01 1.63 E-03 9.67E-03 2.32 E-04
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©) (@)

Sekil 4.2.4. (a) Ornek 4.2.3. de N=M=10 i¢cin mutlak hata fonksiyonu grafigi
(b) Ornek 4.2.3. de N=M=15 i¢in mutlak hata fonksiyonu grafigi
(¢) Ornek 4.2.3. de N=M=15 i¢in gercek ¢dziim fonksiyonu yogunluk grafigi
(d) Ornek 4.2.3. de N=M=15 igin niimerik ¢6ziim fonksiyonu yogunluk grafigi
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SESERREE

(a) (b)

Sekil 4.2.5. (a) Ornek 4.2.3. de N=M=7 i¢in mutlak rezidii fonksiyonu grafigi
(b) Ornek 4.2.3. de N=M=15 i¢in mutlak rezidii fonksiyonu grafigi

Ornek 4.2.4. Bir boyutlu, degisken katsayili, homojen

ou 1,0
2 2 a0 (+:28)

hiperbolik diferansiyel denkleminin

u(x,O) =X, u,(x,O) =x’ (4.29)

kosullar1 altindaki tam ¢6ziimii u(x,t)=x+x’sinh¢ fonksiyonudur (Jin, 2008).
Q= {(x,y) X,y € [0,1]} bolgesindeki  u,,,., (x,y)=F(x,y)A ¢oziimii igin esit

aralikl kolokasyon noktalar1 ile matris denklemleri

2

u, _%uxx =0 = “(0’2)(xkay1)_Q2,o“(2’0)(xk’yl):g (xk’y’)
o B (4.30)
- {F(Dy) —QZ’OF(DX) }A=G
u(x,O):x = u(o’o)(xk’o):g/l,k (xk) (4.31)
= {F(x.0}A=g, (%) = VA=¢
u, (x,0)=x> = u'"(x,,0)= X
(x,0) (%.0) = Z (%) 4.32)

= {F(xk,o)ﬁy}A:g/z,k(xk) = V2A=g/2
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olarak elde edilir. Problem M =N =5,6,7,8,9,10,11,12,13,14,15,16,17,20 alinarak

temel matris bagmtilar1 yardimiyla ¢oziilmiistiir. Sonsuz normdaki ¢6ziim hatalar1 D=20
haneli ve D=30 haneli duyarlilikta Tablo 4.2.4 de verilmistir. D=30 haneli duyarlilikta
calisitlan M =N =5,20 kesme smirlarindaki mutlak hata fonksiyon grafikleri Sekil

4.2.6 da, M =N =10,20 kesme sinirindaki mutlak rezidii fonksiyonlarmimn ii¢ boyutlu
grafikleri ile esyiikselti egri grafikleri ise Sekil 4.2.7 de sunulmustur.

Tablo 4.2.4. Ornek 4.2.4 icin "u —u norm degerleri

yaklastk || o

M=N=5 M=N=6 M=N=7 M=N=8
D=20  0.15035644 E-02  0.20640031 E-02  0.73015072 E-04  0.25003073 E-04
D=30  0.15035644 E-02  0.16121418 E-02  0.70907238 E-04  0.13015314 E-04
M=N=9 M=N=10 M=N=11 M=N=12
D=20  0.75949907 E-06  0.70179172 E-07  027643717E-07  0.24878215 E-08
D=30  0.38171485E-05  0.15430795E-06  0.26604715E-07  0.22846813 E-08
M=N=13 M=N=14 M=N=15 M=N=16
D=20  0.59732835E-10  0.19171218 E-10  0.10345220 E-10  0.25601901 E-11
D=30 098433976 E-10  0.10992167 E-10  0.10062110 E-12  0.15383719 E-12
M=N=17 M=N=20
D=20  0.18809020 E-10 0.22299377 E-12
D=30  0.35998881 E-14 0.64654392 E-19

(@)

(b)
Sekil 4.2.6. (a) Ornek 4.2.4. de N=M=5 i¢in mutlak hata fonksiyonu grafigi
(b) Ornek 4.2.4. de N=M=20 i¢in mutlak hata fonksiyonu grafigi
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Sekil 4.2.7. (a) Ornek 4.2.4. de N=M=10 i¢in mutlak rezidii fonksiyonu grafigi
(b) Ornek 4.2.4. de N=M=10 i¢in mutlak rezidii fonksiyonu esyiikselti grafigi
(¢) Ornek 4.2.4. de N=M=20 igin mutlak rezidii fonksiyonu grafigi
(d) Ornek 4.2.4. de N=M=20 i¢in mutlak rezidii fonksiyonu esyiikselti grafigi
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Ornek 4.2.5. Bir boyutlu, degisken katsayili, homojen olmayan

0’u 0’u .
¥’ §+x2 Pl =2x"y’e"

eliptik diferansiyel denkleminin,
u(x,0)=1,u(x,l)=e", u(0,y)=1, u(l,y)=e’

Dirichlet siir kosullar1 altindaki analitik ¢oziimii u (x, y) =e"’ dir (Isik ve ark., 2013).

Q:{(x, y):x, ye[O,l]} bolgesindeki esit aralikli kolokasyon noktalar: ile

yazilacak
, Ou , Ou 2.2 xy (2.0) (0,2)
X ?‘y §:2xye = GholU (xk’yl)+q0,2u (xk’yl):g(xk’yl)

= |Q.F(D.) +Q.F(D.)}a-G

u(x,O)zl = u(o’o)(xk,O)zg/,,k (xk)
= {F(x.0)jA=g,(x,) = VA=¢,

u(x,l) = = u(o’o)(xk,l) =% (xk)
= {F(x.,1)}A=g,(x) = V,A=¢,

u(O,y)zl = u(o’o)(O,yl)zh,J(y,)
= {F(—l,yl)}A:hu(y,) = V,A=h,

u(l,y):ey = u(o’o)(l,yl)zhz,l(yl)
= {F(Ly,)}A=h,,(») = V,A=h,

matris denklemlerinden olusan sistemin ¢oziimii ile u,,,, (x,y)=F(x,y)A
formundaki  ¢oziim elde edili. Matris  denklemlerinde ¢, (%, %) =X,

qO,Z(xk’yl):ylz’ g(xk’yl)zzxkzyIZexkyz’ g/]’k(xk)zl, Foi (xk):eXk’ hl,l(yl)zl ve

hz’l( yl):ey " dir. Farkli kolokasyon nokta sayisi ile elde edilen seri ¢ozlimlere ait
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maksimum hata degerleri D=20 haneli ve D=30 haneli duyarlilikta Tablo 4.2.5 da

verilmistir. D=30 haneli duyarlilikta cahsilan M =N =5,10,15 kesme sinirlar

kullanilarak elde edilen ¢6ziimlerine karsilik mutlak hata fonksiyonlarina ait esytikselti

egri grafikleri Sekil 4.2.8. de sunulmustur. M =N =5,10,15,20 kesme smirlarinin

kullanildigr mutlak

karsilagtirilmistir.

rezidii fonksiyonlarma ait

grafikler

ise Sekil 4.2.9. de

L/ *
v
[k} \/
Q;Qég;
(a) (b)
14 ) /I
ig’gjﬂ O
<§1§§

Sekil 4.2.8. (a) Ornek 4.2.5. igin N=M=5 kesme smirinda mutlak hata fonksiyonu esyiikselti grafigi

(b) Ornek 4.2.5. igin N=M=10 kesme smirmda mutlak hata fonksiyonu esyiikselti grafigi

(¢) Ornek 4.2.5. igin N=M=15 kesme smirinda mutlak hata fonksiyonu esyiikselti grafigi
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Sekil 4.2.9. (a) Ornek 4.2.5. icin N

5 kesme sinirinda mutlak rezidii fonksiyon grafigi

M

(b) Ornek 4.2.5. igin N

§i

M=10 kesme smirinda mutlak rezidii fonksiyon grafi

(c) Ornek 4.2.5. icin N

8i
§i

M=15 kesme smirinda mutlak rezidii fonksiyon grafi

M

(d) Ornek 4.2.5. igin N

20 kesme smirinda mutlak rezidii fonksiyon grafi



Tablo 4.2.5. Ornek 4.2.5 icin "u —u

yaklastk ||Qc

norm degerleri

83

M=N=5 M=N=6 M=N=7 M=N=8
D=20 0.52879249 E-05 0.20059075 E-06 0.51101377 E-08 0.11342271 E-09
D=30 0.52879249 E-05 0.20059075 E-06 0.46468218 E-08 0.11742078 E-09

M=N=9 M=N=10 M=N=11 M=N=12
D=20 0.28247502 E-11 0.2006389 E-13 0.7854 E-15 0.31629947 E-16
D=30 0.14742406 E-11 0.35363249 E-13 0.76046132 E-15 0.32095734 E-16

M=N=13 M=N=14 M=N=15 M=N=16
D=20 0.11537832 E-17 0.18 E-17 0.13 E-17 0.16376744 E-17
D=30 0.82478138 E-18 0.63314441 E-19 0.30827579 E-21 0.1500239 E-22

M=N=17 M=N=18 M=N=19 M=N=20
D=20 0.58367460 E-17 0.16999999 E-17 0.4089 E-17 0.26 E-17
D=30 0.97796492 E-25 0.12165415 E-25 0.60 E-27 0.39686264 E-27
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5. SONUCLAR

Bu tez calismasina baslarken, iki farkli tipte bolgede tanimli lineer kismi
diferansiyel denklemler i¢cin ¢6ziim metotlar1 gelistirilmesi amaglanmaistir.

Calisilan metotlar, pseudo-spektral tiirde matris metotlar1 olup, calisiimak
istenen tanim bdlgesine gore gelistirilen baz fonksiyonlari ile ¢6ziimii aranan problemin
ele alinigina uygun hale getirilmistir.

Calismanin sonunda, ¢esitli test problemleri {izerindeki uygulamalardan elde
edilen verilere dayanan grafik ve tablolar, Onerilen metotlarin basarili oldugunu,
boylece tezin amacma ulastigini gostermistir. Verilerin hizli ve saghkli elde
edilebilmesi icin Maple bilgisayar programimdan faydalanilmistir.

Iki farkli tamim bdlgesine gore, Boliim 3.2 ile Boliim 3.3 de dnerilen metotlara

ait sonuglar agsagida siniflandirilarak verilmistir.

Bélim 3.2. de Q, = {(x, y):i—0<x,y< oo} lizerindeki diferansiyel denklemin

0Q). deki kosullar1 altindaki ¢oziimii i¢in bir prosediir arastirilmistir. Bunun i¢in

oncelikle, eksponansiyel Chebyshev fonksiyonlar1 kullanilarak, c¢ift degiskenli
Chebyshev polinomlarinin tanim araligi reel diizleme tasinmis, boylece bu diizlemde
ortogonal olan yeni bir polinom ailesi iiretilmistir. Bu polinom ailesinin ortogonalligi,
rekiirans bagmtilar1 ve operasyonel tiirev matrisleri elde edilmistir. Uretilen polinom

ailesinin, matris metodunda baz fonksiyonu olarak kullanilmasiyla €2, tzerindeki

problemler i¢in ¢dziim prosediirii kurulmustur. Onerilen metodun bir uygulamasi Béliim
4.1 de verilmistir. Secilen baz fonksiyonu ile metoda ait su sonuglara varilmistir:

Cift degiskenli eksponansiyel Chebyshev fonksiyonlar1 icin bulunan tiirev
matrisinin ¢ok sayida sifir igermesi, tiirev matrisinin kuvvetlerinin alinmasini
kolaylastirmis, matrislerle ¢alisirken olusan islem yiikiinii azaltmis ve bdylece zaman
tasarrufu saglamistir. Elde edilen sayisal ¢6ziimiin farkli kolokasyon noktalarmdaki
mutlak hata tablo degerleri metodun test problemindeki dogrulugunu gostermistir.
Gergek ¢oziim fonksiyonu ile sayisal ¢éziimiin eslestirmeli olarak verildigi grafik,
sayisal ¢oziimiin, diizlemin bazi bolgelerinde daha tutarli oldugunu gostermistir. Sayisal

¢Ozlimiin dogrulugunu, farkli araliklardaki es yiikselti egri grafikleri de desteklemistir.
Bolim 3.3. de Q.= {(x,y) X e [a,b] X [c,d] c Rx R} tanim bolgesindeki

problemlerin ¢dziimii icin bir metot arastirilmigtir. Burada ise tiim reel eksende tanimli

olan Fibonacci polinomlar1 kullanilarak iki degiskenli polinom ailesi verilmistir. Bu
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ailenin elemanlar1 tarafindan gerceklenen rekiirans bagintilar1 ¢ikarilmig, Fibonacci tipi
polinomlar ile yaklasimda kullanilacak tiirev operasyonel matrisleri elde edilmistir.
Fibonacci tipi polinomlarin, matris metodunda baz fonksiyonu olarak kullanilmasiyla

Q, bolgesinde tammli problemler igin ¢dziim prosediirii kurulmustur. Onerilen

metodun uygulamalar1t Bolim 4.2 de, farkli kapali bolgelerde tanimli, homojen,
homojen olmayan, sabit ve degisken katsayili, baslangic ve smir deger kosullarina sahip
lineer kismi diferansiyel denklemler i¢in verilmistir. Secilen baz fonksiyonu ile metoda
ait su sonuglara varilmistir:

Fibonacci tipi iki degiskenli polinomlarin rekiirans bagintisindan elde edilen
tiirev matrisleri cok sayida sifir icermektedir. Bu durum ise, metodun en 6nemli 6zelligi
olan denklemlerdeki tiirev islemlerinin operasyonel tlirev matrisleri tarafindan
gerceklestirilmesi sirasinda gereken matris kuvvetleri alma islemini kolaylastirmis,
isleme ayrilan siireyi kisaltmistir.

Benzer avantaj Chebyshev matris metodunda da bulunmasima karsin, Chebyshev
polinomlarmin reel diizlemin alt bolgelerinde tanimli problemlere uygulanabilmesi igin

gereken bolge doniisiimii islem yiikiinii arttrmaktadir. Oysa Fibonacci polinomlari ile
islem yaparken bdyle bir doniisiime gerek yoktur. Ornegin Q= {(x, y)ix,ye [—3,3]}

bolgesinde problemin matris metodu ile ¢oziilmesi swrasinda baz fonksiyonu olarak
Chebyshev polinomunun secilmesi durumunda elde edilen dogruluk basarist ile
Fibonacci tipi polinomun secilmesi durumundaki ile hemen hemene ayni olmasina
karsm, Fibonacci tipi polinomu seg¢ilmesi iglem yiikii bakimindan Chebyshev
polinomlarma gore avantaj saglar.

Olusabilecek bilgisayar yuvarlama hatalarim1 azaltmak ic¢in, programlamalar
esnasimda hane duyarlilik sayisi olabildigince arttirilmalidir. Bu durum Ornek 4.2.2 i¢in
verilen Tablo 4.2.2 den goriiliir. Tablo 4.2.4 de de farkli kesme smirlarindaki islemler
icin D=20 hane duyarliliginda elde edilen hatalar ile D=30 hane duyarliligindakilerin
farkli oldugu goriilir. Ornegin, bu tabloda M=N=9 kesme sinirinda D=20 hane
duyarliliginda hata daha kiigiikken, D=30 da hata daha biiyiiktiir. Hane sayismnin
arttirilmasi, bazi kesme sinirlarinda sayisal bliyiikliik olarak hatayr arttirmis olsa da,
niimerik ¢oziimii daha dogru elde edilmesine olanak tanir. Hane duyarliligi ne kadar

yiiksek olursa, gercek ¢coziime gore hesaplanan hata, o 6lciide tutarh olacaktir.
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Gergek ¢oziim bir polinom ise, bu metotta uygun kesme sinir1 segilerek gercek
¢dziime ¢ok ¢ok yakim niimerik ¢oziim elde edilebilir. Ornek 4.2.1 de oldugu gibi, baz1
problemler i¢in, gercek ¢6ziim fonksiyonu bile elde edilebilir.

Genellikle, kesme smirinin artmasi, elde edilen ¢éziimiin hatasini azaltir. S6z
konusu azalma Sekil 4.2.8 de belirgin bir sekilde goriilmektedir. Hatanm biiyiikligi
Olciisiinde rengin koyulastigi sekilde, M=N=5 i¢in mutlak hata egyiikselti grafigi i¢
bolgede de yogunken, M=N arttikca hata yogunlugu da bolge i¢inde azalarak tanim
bolgesi sinirlarinda kalmistir. Rezidii hatas1 da kesme siniri ile iligkilidir. Kesme sinir1
ile rezidii hatas1 arasindaki ters orantili iliskiye ornek olarak, Sekil 4.2.9 verilebilir.
Ancak belirli bir kesme sinirindan sonra, smiri arttrmak, hatada c¢ok biyiik bir
degisiklige sebep olmayabilir. Bu durum, Ornek 4.2.2 e ait Tablo 4.2.1 de
gozlemlenebilir. Tabloda M=N=16 ye kadar ki kesme sinirlarinda hata hizla azalirken,

M=N=16 dan sonra smirin arttiritlmasi hatayr ¢ok etkilememistir. Kesme simirinin

artmas1 ayn1 zamanda islem yikini arttrrken W matrisinin kosul sayismi da
arttiracaktir ve problemin kotii kosullanmasiyla metodun hassasiyeti azalacaktir.
Dolayisiyla, ideal kesme smirmin belirlenmesi cok 6nemlidir.

Fibonacci tipi matris metoduyla, tanim bélgesinin tamaminda gegerli bir
polinom ile yaklasim yapildigindan, kompleks olmayan bdlgelerde sonlu fark ve sonlu
elemanlar metotlarina gore daha pratiktir.

Matris metodunun, problemde gecen tiirevleri matrisler yolu ile ifade etmesi ve
dogrudan integral islemini kullanmamasi, dogrudan integral isleminin karmasik ve zor
oldugu problemlerde Adomian ayrisim ve varyasyonel iterasyon gibi metotlara gore

matris metodunu avantajh kilacaktir.
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