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ABSTRACT

APPLICATION OF MESHFREE EFG METHOD IN PLATE PROBLEMS

BARBAR, Mustafa
M.Sc. in Mechanical Eng.
Supervisor: Assist. Prof. Dr. O. Yavuz BOZKURT
Nov 2014, 119 pages

In this work, the effects of selectable parameters of Element-Free Galerkin
Method (EFGM); such as type of weight functions, size of support domain, number of
gauss points, number of monomials and value of penalty coefficient, on the solution

accuracy of the Reissner-Mindlin plate bending problems are investigated.

An EFGM source code using MATLAB has been written for the solutions of
plate bending problems. Several plate bending problems were solved using the
MATLAB source code and the results of EFGM solutions are compared with the

results of analytical solutions.

Keywords: Meshfree Methods, Element Free Galerkin Method, Moving least squares,
EFGM, plate bending.


http://www.ias.ac.in/sadhana/Pdf2004Jun/Pe1155.pdf

OZET

PLAKA PROBLEMLERI iCiN ELEMAN BAGIMSIZ GALERKIN
YONTEMIi UYGULAMASI

BARBAR, Mustafa
Yiksek Lisans Tezi, Mak Mih. Bolumu
Tez Yoneticisi: Yrd.Dog.Dr. Omer Yavuz BOZKURT
Kasim 2014, 119 sayfa

Bu caligmada, Eleman Serbest Galerkin Y 6nteminin (EFGM) agirlik fonksiyon
tlrd, destek etki biiyiikliigli, arka plan hiicrelerindeki entegrasyon nokta sayist,
monomiyallerin derecesi ve ceza katsayisi degeri gibi segilebilir parametrelerinin

plaka biikme problemlerinde ¢6ziim dogruluguna etkisi arastirilmistir.

MATLAB kullanarak, plaka biikme problemlerinin ¢éztimleri icin bir EFGM
kaynak kodu yazilmistir. Cesitli plaka biikkme problemleri, MATLAB kaynak kodu
kullanilarak ¢oziilmiis ve EFGM c¢oziimlerinin sonuclar1 analitik sonuglart ile

karsilastirilmistir.

Keywords: Agsiz yontemler, Eleman Bagimsiz Galerkin Yontemi, Hareketli en kiigiik
kareler yontemi, EFGM, plaka biikme.



To my parents. . .



ACKNOWLEDGEMENTS

| want to express my honest respect to my supervisor Assist. Prof. O. Yavuz
BOZKURT for his advises and suggestions to have this thesis.

Finally I want to thanks my mother, my father, my brothers (Mohammed Omeed
EZZULDDIN and Taha) and especially thanks to my friend Research Asst. Ozkan
OZBEK. Also I like to thank my friends (Omer ALI and Mustafa KAMAL) for their

reassurance and support.

viii



TABLE OF CONTENTS

Page
ABSTRACT ..t bbbttt bbb %
(074 = Vi
ACKNOWLEDGEMENTS ...ttt viii
TABLE OF CONTENTS ...ttt e IX
LIST OF FIGURES ..ottt et st xi
LIST OF TABLES ...t e XVi
CHAPTER 1 ..ottt bbbttt bbbttt 1
INTRODUCTION ..ottt sttt steste st sneena e eneenees 1
1.1. General INtrodUCTION .......ccuveviiiiieee e 1
1.2. Research Objectives and TasKS.........ccceiveieiiiieeie e 2
1.3 LAYOUL OF TRESIS......iiiiiiieiieieie sttt 2
CHAPTER 2 ..ottt bbbttt bbbt n et nns 3
LITERATURE SURVEY ..ottt 3
P00 [ oo L1 T A o) S OTRUPORRRR 3
2.2. General Review of Some Mesh-free Methods..........ccccccevveviiieiicce e 3
2.2.1. Smoothed Particle Hydrodynamics Method .............ccccccceiveiieie e, 3
2.2.2. Diffuse Element Method...........ccoooviieiieice e 3
2.2.3. Point Interpolation Method ...........ccccoveiiiieiiciece e, 4
2.2.4. Meshless Local-Petrov Galerkin............ccccoovveiveveiieieeic e 5
2.3. Element-Free Galerkin Method ..........ccoooeiieiiiiiieee e 5
2.4. Element-Free Galerkin Method in the Solution of Plate Bending
PIODIEMS. ... e 7
2.5. Conclusions 0N LITErature SUIVEY .........cooeieriierineeieieese et 8
CHAPTER 3 ..ottt ettt sttt ettt e bt be e e n e ne e e 9
PLATE THEORIES ..ottt st 9
300 R 191 (o T [N o1 1 o] o ISP 9
3.2. Review of The Plate Theories........cccccviiiiiiii e 9
3.2.1. Kirchhoff Plate TREOIY .....c.coiiiiie it 9
3.2.2. Reissner-Mindlin Plate Theory ... 12
CHAPTER 4 ..ottt sttt e e es 17
ELEMENT FREE GALERKIN METHOD FOR MINDLIN-REISSNER
PLATE BENDING PROBLEMS .........ci i 17



4.1 INEFOTUCTION ..ttt bbbttt bbbt 17
4.2. Short Description of Implementation Procedure for Galerkin Meshfree

IMEBENOAS. ...t r ettt nee e 17
4.2.1. Basic Definitions for Meshfree Methods ..........cccovvviineneieniiicceenn 18
4.2.1.1. Local Domains (Support and Influence Domains) ...........c.ccccveuvennee. 18
4.2.1.2. Background CelIS.........cveiiiiiiieiiiie e e 18

4.3. Formulation of Moving least-squares (MLS) shape functions ..................... 19
4.4. Governing equations and Weak fOrm ... 21
CHAPTER S ..ottt ettt e e es 26
NUMERICAL EXPERIMENTS AND DISCUSSIONS.......cccooiiiiiiieninisieeeeens 26
5.1, INTrOAUCTION ...ttt nreas 26
5.2. Simply supported square plate under transverse centric point load............... 26
5.3. Simply supported square plate under uniform load. .........c.ccccccovevivievinenenne. 45
5.4. Clamped circular plate under uniform load. .........ccccooeieiiiiniiinincee, 79
(08 1A I O USRS 112
CONCLUSIONS AND RECOMMENDATIONS .....cooiiiiieieniese e 112
REFERENGCES........oo ottt sttt st sne e 113



LIST OF FIGURES

Page

Figure 3.1. Plate subjected to transverse 10ads...............cooeeiiiiiiiiiiii e, 9
Figure 3.2. Deformation according to Kirchhoff plate cross-section

a)y—zplaneb)x —zplane..........cocoiii 10
Figure 3.3. Free body diagram of the plate element ........................oooiinen. 12
Figure 3.4. A typical Reissner-Mindlinplate ................oooiiiiiiiiiinie, 13
Figure 3.5. Deformation according to Reissner-Mindlin cross-section

a)y—zplaneb)x —zplane..........cooooi i 13
Figure 4.1. Support Domain; the centre is a quadrature point ...................c.....e... 19
Figure 5.1. Simply supported square plate under transverse centric point load..........27
Figure 5.2. The EFGM models for a) regular node distributions,

b) irregular node distribDULIONS..........ccooiiiiiieie e 27
Figure 5.3. Variations of normalized central deflections w./(pL*/100D)

against n, for simply supported square plate under transverse centric

point load using cubic spline weight functions and regular node

distribution With @, = 6. 30
Figure 5.4. Variations of normalized central deflections w./(pL*/100D)

against n, for simply supported square plate under transverse centric

point load using cubic spline weight functions and irregular node

distributionwith a, = 6. 32
Figure 5.5. Variations of normalized central deflections w./(pL*/100D)

against a,, for simply supported square plate under transverse centric

point load using cubic spline weight functions and regular node

distributionwithng, = 5. 34
Figure 5.6. Variations of normalized central deflections w./(pL*/100D)

against a,, for simply supported square plate under transverse centric

point load using cubic spline weight functions and irregular node

distributionwithng, = 5. 36

Figure 5.7. Variations of normalized central deflections w./(pL*/100D)
against n, for simply supported square plate under transverse centric

Xi



point load using quartic spline weight functions and regular node
distributionwith o, = 6................ 38

Figure 5.8. Variations of normalized central deflections w./(pL*/100D)
against n, for simply supported square plate under transverse centric
point load using quartic spline weight functions and irregular node
distributionwith e, = 6. 40

Figure 5.9. Variations of normalized central deflections w./(pL*/100D)
against a,, for simply supported square plate under transverse centric
point load using quartic spline weight functions and regular node
distribution withmg, = 5. 42

Figure 5.10. Variations of normalized central deflections w./(pL*/100D)
against a,, for simply supported square plate under transverse centric
point load using quartic spline weight functions and irregular node
distribution withmg, = 5. 44

Figure 5.11. Simply supported square plate under uniform load........................ 45

Figure 5.12. The EFGM models for a) regular node distributions,
b) irregular node distributions..............ccooiiiiiiiiiii 45

Figure 5.13. Variations of normalized central deflections w./(pL*/100D)
against n, for simply supported square plate subjected to uniform
load using cubic spline weight functions and regular node
distributionwith a, = 6. 48

Figure 5.14. Variations of normalized central moments M./ (pL?/10)
against n, for simply supported square plate subjected to uniform
load using cubic spline weight functions and regular node
distributionwith e, = 6. 50

Figure 5.15. Variations of normalized central deflections w./(pL*/100D)
against n, for simply supported square plate subjected to uniform
load using cubic spline weight functions and irregular node
distributionwith e, = 6. 52

Figure 5.16. Variations of normalized central moments M./ (pL2/10)
against n,, for simply supported square plate subjected to uniform
load using cubic spline weight functions and irregular node
distributionwith e, = 6. 54

Figure 5.17. Variations of normalized central deflections w./(pL*/100D)
against a,, for simply supported square plate subjected to uniform
load using cubic spline weight functions and regular node
distributionwithng, = 5. 56

Figure 5.18. Variations of normalized central moments M./ (pL?/10)
against a,, for simply supported square plate subjected to uniform

xii



load using cubic spline weight functions and regular node

distributionwithng = 5.

Figure 5.19. Variations of normalized central deflections w./(pL*/100D)
against a,, for simply supported square plate subjected to uniform
load using cubic spline weight functions and irregular node

distribution with Ty = S

Figure 5.20. Variations of normalized central moments M./ (pL?/10)
against a,, for simply supported square plate subjected to uniform
load using cubic spline weight functions and irregular node

distribution withng = 5.

Figure 5.21. Variations of normalized central deflections w./(pL*/100D)
against n, for simply supported square plate subjected to uniform
load using quartic spline weight functions and regular node

distribution With @, = 6...............iii

Figure 5.22. Variations of normalized central moments M./ (pL?/10)
against n,, for simply supported square plate subjected to uniform
load using quartic spline weight functions and regular node

distribution With @, = 6.

Figure 5.23. Variations of normalized central deflections w./(pL*/100D)
against n,, for simply supported square plate subjected to uniform
load using quartic spline weight functions and irregular node

distribution witha, = 6.

Figure 5.24. Variations of normalized central moments M./ (pL?/10)
against n, for simply supported square plate subjected to uniform
load using quartic spline weight functions and irregular node

distribution with (p = 6o

Figure 5.25. Variations of normalized central deflections w./(pL*/100D)
against a,, for simply supported square plate subjected to uniform
load using quartic spline weight functions and regular node

distribution with Ty = Dottt

Figure 5.26. Variations of normalized central moments M./ (pL2/10)
against a;,, for simply supported square plate subjected to uniform
load using quartic spline weight functions and regular node

distribution withng = 5.

Figure 5.27. Variations of normalized central deflections w./(pL*/100D)
against a,, for simply supported square plate subjected to uniform
load using quartic spline weight functions and irregular node

distribution withng = 5.

xiii

.70



Figure 5.28. Variations of normalized central moments M./ (pL?/10)
against a;,, for simply supported square plate subjected to uniform
load using quartic spline weight functions and irregular node

distribution with Ty = 5

Figure 5.29. Clamped circular plate under uniform load.............................

Figure 5.30. The EFGM models for a) regular node distributions,

b) irregular node distributions...............cooiiiiiii i

Figure 5.31. Variations of normalized central deflections w./(pL*/100D)
against n, for clamped circular plate subjected to uniform load using
cubic spline weight functions and regular node distribution with

ap= ................................................................................

Figure 5.32. Variations of normalized central moments M./ (pL?/10)
against n, for clamped circular plate subjected to uniform load
using cubic spline weight functions and regular node distribution

WIith @, = 6.,

Figure 5.33. Variations of normalized central deflections w./(pL*/100D)
against n, for clamped circular plate subjected to uniform load using
cubic spline weight functions and irregular node distribution

WIth @, = 6.,

Figure 5.34. Variations of normalized central moments M./ (pL?/10)
against n, for clamped circular plate subjected to uniform load
using cubic spline weight functions and irregular node distribution

With @, = 6.,

Figure 5.35. Variations of normalized central deflections w./(pL*/100D)
against a,, for clamped circular plate subjected to uniform load
using cubic spline weight functions and regular node distribution

with Tlg = D

Figure 5.36. Variations of normalized central moments M./ (pL?/10)
against a,, for clamped circular plate subjected to uniform load
using cubic spline weight functions and regular node distribution

with Tlg = D

Figure 5.37. Variations of normalized central deflections w./(pL*/100D)
against a,, for clamped circular plate subjected to uniform load using
cubic spline weight functions and irregular node distribution

Withmg = 5.

Figure 5.38. Variations of normalized central moments M./ (pL?/10)
against a,, for clamped circular plate subjected to uniform load
using cubic spline weight functions and irregular node distribution

Withng = 5.

Xiv



Figure 5.39. Variations of normalized central deflections w./(pL*/100D)
against n, for clamped circular plate subjected to uniform load
using quartic spline weight functions and regular node distribution

Figure 5.40. Variations of normalized central moments M./ (pL?/10)
against n, for clamped circular plate subjected to uniform load
using quartic spline weight functions and regular node distribution

WIth @, = 6.,

Figure 5.41. Variations of normalized central deflections w./(pL*/100D)
against n, for clamped circular plate subjected to uniform load using
quartic spline weight functions and irregular node distribution

WIth @, = 6.,

Figure 5.42. Variations of normalized central moments M./ (pL?/10)
against n, for clamped circular plate subjected to uniform load
using quartic spline weight functions and irregular node distribution

With @, = 6.,

Figure 5.43. Variations of normalized central deflections w./(pL*/100D)
against a,, for clamped circular plate subjected to uniform load using
quartic spline weight functions and regular node distribution with

Figure 5.44. Variations of normalized central moments M./ (pL?/10)
against a,, for clamped circular plate subjected to uniform load
using quartic spline weight functions and regular node distribution

with Ty = S

Figure 5.45. Variations of normalized central deflections w./(pL*/100D)
against a,, for clamped circular plate subjected to uniform load using
quartic spline weight functions and irregular node distribution with

ng= .............................................................................

Figure 5.46. Variations of normalized central moments M./ (pL2/10)
against a,, for clamped circular plate subjected to uniform load
using quartic spline weight functions and irregular node distribution

XV



LIST OF TABLES
Page

Table 5.1. Normalized central deflections w../(pL*/100D) of simply
supported square plate under transverse centric point load for
regular node distribution using cubic spline weight function

Table 5.2. Normalized central deflections w,./(pL*/100D) of simply
supported square plate under transverse centric point load for
irregular node distribution using cubic spline weight function
WIth @, = 6. 31

Table 5.3. Variations of normalized central deflections w./(pL*/100D)
of simply supported square plate under transverse centric point
load using regular node distribution using cubic spline weight
functionwithmn, = 5. 33

Table 5.4. Variations of normalized central deflections w./(pL*/100D)
of simply supported square plate under transverse centric point
load using irregular node distribution using cubic spline weight
functionwithmng, = 5. 35

Table 5.5. Variations of normalized central deflections w./(pL*/100D) of
simply supported square plate under transverse centric point load
using regular node distribution using quartic spline weight function
WIith @, = 6., 37

Table 5.6. Variations of normalized central deflections w./(pL*/100D) of
simply supported square plate under transverse centric point load
using irregular node distribution using quartic spline weight function

Table 5.7. Variations of normalized central deflections w./(pL*/100D)
of simply supported square plate under transverse centric point
load using regular node distribution using quartic spline weight
functionwithmny, = 5. 41

Table 5.8. Variations of normalized central deflections w./(pL*/100D)
of simply supported square plate under transverse centric point
load using irregular node distribution using quartic spline weight
functionwithmng, = 5. 43

Table 5.9. Normalized central deflections w,/(pL*/100D) of simply
supported square plate subjected to uniform transverse load for
regular node distribution using cubic spline weight function
WIth @ = 6. 47

Table 5.10. Normalized central moments M./ (pL?/10) of simply
supported square plate subjected to uniform transverse load for

XVi



regular node distribution using cubic spline weight function
With @, = 6.,

Table 5.11. Normalized central deflections w./(pL*/100D) of simply
supported square plate subjected to uniform transverse load for
irregular node distribution using cubic spline weight function
WIth @, = 6.0

Table 5.12. Normalized central moments M./ (pL?/10) of simply
supported square plate subjected to uniform transverse load for
irregular node distribution using cubic spline weight function
WIth @, = 6.,

Table 5.13. Variations of normalized central deflections w./(pL*/100D)
of simply supported square plate subjected to uniform transverse load
using regular node distribution using cubic spline weight function
Withng = 5.

Table 5.14. Variations of normalized central moments M./ (pL?/10)
of simply supported square plate subjected to uniform transverse load
using regular node distribution using cubic spline weight function
Withmg = 5.

Table 5.15. Variations of normalized central deflections w./(pL*/100D)
of simply supported square plate subjected to uniform transverse load
using irregular node distribution using cubic spline weight function
WIith g = 5.

Table 5.16. Variations of normalized central moments M./ (pL?/10)
of simply supported square plate subjected to uniform transverse load
using irregular node distribution using cubic spline weight function
WIith g = 5.

Table 5.17. Variations of normalized central deflections w./(pL*/100D)
of simply supported square plate subjected to uniform transverse load
using regular node distribution using quartic spline weight function
WIth @, = 6.,

Table 5.18. Variations of normalized central moments M./ (pL?/10)
of simply supported square plate subjected to uniform transverse load
using regular node distribution using quartic spline weight function
WIth @, = 6.

Table 5.19. Variations of normalized central deflections w./(pL*/100D)
of simply supported square plate subjected to uniform transverse load
using irregular node distribution using quartic spline weight function
WIth @, = 6.,

XVii



Table 5.20. Variations of normalized central moments M./ (pL?/10)
of simply supported square plate subjected to uniform transverse load
using irregular node distribution using quartic spline weight
functionwitha, = 6. 69

Table 5.21. Variations of normalized central deflections w./(pL*/100D)
of simply supported square plate subjected to uniform transverse load
using regular node distribution using quartic spline weight function
Withng = 5. 71

Table 5.22. Variations of normalized central moments M./ (pL?/10)
of simply supported square plate subjected to uniform transverse load
using regular node distribution using quartic spline weight
functionwithmny, = 5. 73

Table 5.23. Variations of normalized central deflections w./(pL*/100D)
of simply supported square plate subjected to uniform transverse load
using irregular node distribution using quartic spline weight function

Table 5.24. Variations of normalized central moments M./ (pL?/10) of
simply supported square plate subjected to uniform transverse load
using irregular node distribution using quartic spline weight function
WIth 1y = 5. 77

Table 5.25. Normalized central deflections w./(pL*/100D) of
clamped circular plate subjected to uniform transverse load
for regular node distribution using cubic spline weight function

Table 5.26. Normalized central moments M./ (pL?/10) of
clamped circular plate subjected to uniform transverse load
for regular node distribution using cubic spline weight function

Table 5.27. Normalized central deflections w./(pL*/100D) of
clamped circular plate subjected to uniform transverse load
for irregular node distribution using cubic spline weight function
WItN @) = 6o 84

Table 5.28. Normalized central moments M./ (pL?/10) of
clamped circular plate subjected to uniform transverse load
for irregular node distribution using cubic spline weight function
WIith @, = 6. 86

Table 5.29. Variations of normalized central deflections w./(pL*/100D)
of clamped circular plate subjected to uniform transverse load
using regular node distribution using cubic spline weight function
Withmg = 5. 88



Table 5.30. Variations of normalized central moments M./ (pL?/10)
of clamped circular plate subjected to uniform transverse load
using regular node distribution using cubic spline weight function

with Tlg = 5

Table 5.31. Variations of normalized central deflections w./(pL*/100D)
of clamped circular plate subjected to uniform transverse load
using irregular node distribution using cubic spline weight function

with Thg = 5

Table 5.32. Variations of normalized central moments M./ (pL?/10)
of clamped circular plate subjected to uniform transverse load
using irregular node distribution using cubic spline weight function

with Tl = 5

Table 5.33. Variations of normalized central deflections w./(pL*/100D)
of clamped circular plate subjected to uniform transverse load
using regular node distribution using quartic spline weight function

WIth @) = 6.

Table 5.34. Variations of normalized central moments M./ (pL?/10)
of clamped circular plate subjected to uniform transverse load
using regular node distribution using quartic spline weight function

WIth @, = 6.,

Table 5.35. Variations of normalized central deflections w./(pL*/100D)
of clamped circular plate subjected to uniform transverse load
using irregular node distribution using quartic spline weight function

Table 5.36. Variations of normalized central moments M./ (pL?/10)
of clamped circular plate subjected to uniform transverse load
using irregular node distribution using quartic spline weight function

Table 5.37. Variations of normalized central deflections w./(pL*/100D)
of clamped circular plate subjected to uniform transverse load
using regular node distribution using quartic spline weight function

with Thg = Dt

Table 5.38. Variations of normalized central moments M./ (pL?/10)
of clamped circular plate subjected to uniform transverse load
using regular node distribution using quartic spline weight function

Withmg = 5.

Table 5.39. Variations of normalized central deflections w./(pL*/100D)
of clamped circular plate subjected to uniform transverse load
using irregular node distribution using quartic spline weight function

Withng = 5. .,

XiX



Table 5.40. Variations of normalized central moments M./ (pL?/10)
of clamped circular plate subjected to uniform transverse load
using irregular node distribution using quartic spline weight function
With g = 5. .

XX



CHAPTER 1
INTRODUCTION

1.1 General Introduction

The Finite Element Method (FEM), Boundary Element Method (BEM), and
Finite Difference Method (FDM) are the popular methods in the field of numerical
simulation methods. These methods are successfully used in the solutions of several
engineering and scientific problems. The most important reasons behind this success
are unified formulations for different approximation schemes, ability to tackle
problems with irregular boundaries, ability to deal with complex boundary conditions,
easy modifications to improve solution quality and handling non-linear problems with

linear approximations.

Despite these impressive features, FEM and BEM has the following

shortcomings;

- Inadequate results near the boundary of the problem domain,

- Requirement of re-meshing for the regions enclosing geometry changes,

- Discontinuities for derivatives of field variables at the boundaries of elements,
and

- Mesh quality dependent solution.

The discretization scheme of FEM and BEM is the origin of these
shortcomings. Meshfree methods are the recently developed numerical methods to
eliminate/alleviate the issues mentioned above using a new discretization approach. In
Meshfree methods, the problem domain and its boundaries are defined by a set of
arbitrarily scattered nodes. The interpolation of field variables are carried out using
momentarily selected field nodes for construction of local domains. Obtaining a
numerical method superior over the conventional numerical methods, by means of
removing errors caused by the mesh, is the aim of Meshfree methods. However, these
methods are new and in the development stage. They have some issues such as

stability, efficiency, etc. to be solved.



1.2 Research Objectives and Tasks

The main objective of this study is the investigation of effects of selectable
parameters of EFGM, such as weight functions, size of support domain, number of
gauss points in a background cell, value of penalty coefficient and order of monomials,

on the accuracy of plate bending problems.

The research tasks can be shown as follows:

l. Revise of the Element-Free Galerkin methods in the literature.

Il. Revise of the Moving Least Squares approximation scheme in the
literature.

I Construction of shape functions using the Moving Least Squares.

V. Implementation of the MLS shape functions to EFG method.

V. Development of a MATLAB source code to implement the EFGM in
plate problems.

VI.  Solution of plate bending problems using the EFG method.

VII.  Investigation of effects of the selectable parameters.

1.3 Layout of Thesis

A short literature review about the Meshfree methods and a special review for
element free Galerkin method are presented in chapter two. The basic concepts of
element free Galerkin method is summarized in chapter three. In chapter four,
solutions of some benchmark problems using different values of selectable parameters
and the discussions of the results are presented. The conclusions are introduced in

chapter five.



CHAPTER 2
LITERATURE SURVEY

2.1 Introduction

A brief literature review related with Meshfree methods is given in this section.
According to the interpolation and integration techniques used in, several types of
meshfree methods can be found in the literature. Some of them are Smoothed Particle
Hydro-dynamics (SPH) [1,2], Diffuse Element Method (DEM) [3], Element-Free
Galerkin Method [4], Reproducing Kernel Particle Method (RPKM) [5], Point
Interpolation Method (PIM) [6], Meshless Local-Petrov Galerkin (MLPG) [7], Natural
Element Method [8] and Finite Particle Method (FPM) [9].

The brief reviews of the SPH method, the DEM, the PIM and the MLPG
method are presented in Section 2.2. The literature review of EFGM, subject of the

study, is represented in Section 2.3.

2.2 General Review of Some Mesh-Free Methods

2.2.1 Smoothed Particle Hydrodynamics Method

The SPH method which can be considered as the ancestor of meshfree methods
was proposed by Lucy [1], Gingold and Monaghan [2]. It was developed to understand
the astrophysical phenomena by means of numerical simulation. A set of moving
particles which doesn’t have any predefined relations are used to represent physical
problem domain. The mathematical model of physical problem is constructed using
partial differential equations which are transformed into selected finite integral form
to compute integral over the particles [10]. Since its inception, SPH has a constantly
evolving application areas such as fluid dynamics [11], explosion [12], large
deformations and fracture in solid continuums [13]. However, SPH method is not

foolproof; it has stability and consistency problems, especially in solid mechanics [14].

2.2.2 Diffuse Element Method

The DEM proposed by Nayroles et al [3] is the initial example of meshfree
methods based on Galerkin weak form. The difference between FEM and DEM is the



field approximation. The field approximation of the DEM is obtained for local
domains using Moving Least Squares (MLS) approximation and these local domains

contain varying numbers of nodes [3].

2.2.3 Point Interpolation Method

PIM is a meshfree method which was firstly proposed by Liu [6]. The field
variables at a point are interpolated from the field values of local domain of the point.
The interpolation functions are constructed using polynomials selected from the
Pascal’s triangle [15]. The interpolation functions possess the delta Kronecker
property which simplifies the enforcement of boundary conditions by eliminating extra
algorithm requirements for implementation of boundary conditions as in some
meshfree methods [16]. This simplifies the computation procedure of the PIM and it
also increases the computational efficiency of the PIM.

Besides the advantages of PIM, singularity of moment matrix is the gap of PIM
which avoids the construction of interpolation functions [17]. Some algorithms have
been proposed to overcome the singularity problem such as transformation of
coordinates of points in a local domain [18], matrix triangularization algorithm [19]
and diagonal offset algorithm [20]. However, these methods cannot guarantee the

elimination of singularity problem permanently.

The replacement of polynomial basis function with radial basis function is
another method to handle the singularity problem of PIM [21]. The PIM based on
radial basis function is called as Radial Point Interpolation Method (RPIM) [22]. It
solves the singularity problem and some order of monomials can be added to guarantee
the elimination of singularity problem permanently. However, the accuracy and
computational efficiency of RPIM is less than the PIM.

The applications of PIM to various engineering problems, such as 2D and 3D
problems [22], beams and shells [22], static deformation problems [22], buckling [23],
thermoplastic problems [24], plate bending problems [25], dynamic response of thin
and thick plates [26] and composite laminated plates [27] are found in the literature.



2.2.4 Meshless Local-Petrov Galerkin

Meshless local Petrov-Galerkin method (MLPG) is a real meshfree method
which doesn't require any background cells (or elements) for interpolation or
integration process. This method was proposed by Atluri and Zhu [7], and later
developed by Atluri and Shen [28]. The replacement of global weak form with the
local weak forms generated by using overlapping local domains is the main difference
between (MLPG) and finite element method. Integration of the weak form is
performed on the local sub-domains with ordinary geometrical shapes, therefore there
is need to background cells (or elements) for integration or interpolation purposes.
Element connectivity is not a necessity and only nodal information is required, which
leads to a simple and suitable pre-processing. Because of this, wide range of
engineering applications of the MLPG can be found in the literature, such as 2-D
elasto-statics [22], plate problems [29]; 2-D elasto-dynamics [30], fluid mechanics
[31], large deformation problems [32]; convection-diffusion problems [31], fracture

mechanics, [33]; analyses of shell deformations [22]; and dynamics problems [21].
2.3 Element-Free Galerkin Method

The original EFG method was proposed by Belytschko et al. [4]. The
approximation procedure of EFGM is based only on nodes, so it doesn't require any
mesh generation or remeshing operations. However, a set of background cells is used
to take integral of Galerkin weak form. By comparing this method with the finite
element method, it's shown that the EFG method has the advantages of rapid
convergence [34, 36], and also a smooth stress solution can be obtained without post-
processing. However, the computational cost of EFG method is higher than of FEM
[28]. This is because the node searching has to be performed and a set of algebraic
equations should be solved to compute the MLS shape functions for each sampling
point and also the requirement of more nodes for the construction of the MLS shape
functions lead to larger band width for the resultant system matrix [22].

In the EFGM, the problem domain and its boundaries are represented by a set
of arbitrary distributed nodes. The irregularity of node distribution does not suffer
much degradation in accuracy [22]. Because of that, EFGM becomes one of the
promising meshfree methods. The accuracy of the EFGM have been reported as good

by scientists [21].



Despite the above significant advantages, the Kronecker delta criterion cannot
be satisfied by MLS approximation and there is no resemblance between the essential
boundary conditions in the EFG method and the conventional FEM. To solve this
problem, in the last previous years, many specified techniques for the enforcement of
essential boundary conditions in mesh-free methods have been proposed. Such as the
penalty method [36], the Lagrange multiplier method [37], coupling of EFGM with
FEM [38], and employment of singular weight functions [39].

The EFGM has been successfully applied to a large assortment of problems,
including solid mechanics, fluid mechanics, heat transfer, and electromagnetic field
problems. In solid mechanics, a variety of elastic and plastic applications of EFG
method can be found for two-dimensional (2-D) and three-dimensional (3-D)
problems such as; plane stress [40], plane strain [41], axisymmetric [42], beams [43],
shell [44] and plate problems [45]. Fluid-structure interaction problems [46],
incompressible flow problems [48], free surface flow [49] problems are some of the
fluid mechanics applications of EFG method. The successful applications of heat
transfer problems can be summarized as steady state and transient heat conduction
analyses [2, 5], axisymmetric heat transfer problems [10], heat transfer of composite
slabs [12], heat flow [11], and moving heat source problems [13]. The simple list of
electromagnetic field applications are 3D electromagnetic field [50], static and quasi-
static electromagnetic field [51], 2D electromagnetic wave scattering [52],
electromagnetic scattering [53], axisymmetric electromagnetic [54] problems.

EFGM serves high convergence rates, stable solutions, and, application
flexibility by the elimination of mesh requirement. Because of these, EFGM has
become one of the best choice to solve fracture mechanics and crack propagation
problems. In the EFGM, a growing crack can be modelled easily by extending the
surfaces that match to the crack without the need for remeshing. Several fracture
mechanics and crack growth analysis [55, 56] using EFGM can be found in the
literature. Also, many arguments on the implementation advantages of the EFG and
other meshfree methods over FEM in solving crack propagation problems have been
reported [57]. For example, Belytschko et al. [58] state that, in the recent years, finite

element schemes with remeshing have been used to solve growing crack problems.



In addition, many techniques have been proposed of coupling EFG method
with FEM [38]. All these applications and extensions denote that the EFG method is
progressively becoming a mature and practical computational approach within the
group of computational mechanics, the benefit behind using the MLS approximation
Is to achieve stability in function approximation, and use of Galerkin procedure to
provide stable and well behaved discretized global system equations.

2.4  Element-Free Galerkin Method in the Solution of Plate Bending Problems

The plate structures have a variety of engineering applications with several
geometries and loading conditions. Because of this, the analysis of plates are very
important for engineers. The analytical solutions of plate’s structures for complex
geometries and complex loading conditions are very difficult. The numerical solutions
have been developed using different schemes such as; FEM, BEM, and meshfree

methods.

The EFG method is one of the meshfree methods that widely used in the
analysis of plate structures. Krysl and Belytschko have used it for the static analysis
of thin plates [45]. The EFG method has been also used for the bending analysis of
Kirchhoff plates [59], Mindlin-Reissner plates [60], laminated composite plates [61],
and thick plates [62]. The buckling [63], vibration [64], elasto-plastic [65], and crack

[66] analysis of plates are found in the literature.

The EFG method has shear locking issue for the higher order plate theories
[67]. To eliminate shear locking issue, several techniques were proposed such as; use
of higher order basis [68] and use of first derivatives of shape functions as shape

functions for rotations [69]
2.5  Conclusions on Literature Survey

The literature review shows that the EFG method has some selectable

parameters that affect the accuracy of solutions such as;

- size of support domain,

- number of polynomial basis,

- type of weight function,

- number of integration points and

- value of penalty coefficient.



The effects of these selectable parameters on the accuracy of the solution of Reissner-
Mindlin plate bending are not well defined and examined.



CHAPTER 3
PLATE THEORIES
3.1 Introduction

A plate is a flat structure and has a very small thickness in comparison to the
other two dimensions. The applied forces of a plate are transverse loads through

bending.

Figure 3.1. Plate subjected to transverse loads.

In the literature, several theories are present to analyse the deflections and
stresses in plates. However, in this section, short reviews of two plate theories are

presented about bending of the plates. These theories are as follows;

- Kirchhoff plate theory,
- Reissner-Mindlin plate theory.

The Kirchhoff and Reissner-Mindlin plate theories are presented with

governing equations in the following parts of the chapter.
3.2 Review of The Plate Theories
3.2.1 Kirchhoff Plate Theory

The Kirchhoff plate theory is also known as the classical plate theory (CPT). It is
used for thin plates. It is based upon assumptions initiated for beams by Bernoulli but



first applied to plates and shells by Kirchhoff. Basically, three assumptions are used to

reduce the equations of three dimensional theory of elasticity to two dimensions [70]:

- Normal to the mid-plane before deformation remain straight and normal to the
mid-plane after deformation.
- Transverse direct and shear stress effects are negligible.

- Deflections are small compared with the plate thickness.

ow
ox

a) b)
Figure 3.2. Deformation according to Kirchhoff plate cross-section

a) y — z plane, b) x — z plane

The displacements of in-plane axes x and y are u and v that can be expressed

as
= ad 3.1
u Zi ()
v(X Z) = —Z id 3.2
(’y’) ay (')

where z is the direction of the plate thickness.

Since transverse shear deformations are neglected, the strains can be written as
{€x €y Vay } = —2{Ky K, Ky, } (3.3)

where K, is the curvature,
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{K}Tz{Kx K, ny}z{axz d9y? 2

(3.4)

From substituting EQq.(3.3) into equation of {o} =[D]{e} is the plane stress

constitutive equation for an isotroppic material; the equation becomes in following

form

{0} = —z[D{K}

inwhich{o } = {6, 0, 7,,}and [D] is the material property matrix,

1 v 0

E v 1 o0
[D]zl_vz 1—v

0 0 >

Moments are defined as

/
(M} = fhz{a}zdz

~h/2
where { M } = { M, M,, M,, }and h is the thickness of plate.
Substituting of Eq. (3.5) into Eq. (3.7),

{M} = —[DNK}
where

3
[D]= 3510

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

Equilibrium equations are obtained from the free body diagram as shown in Fig. 3.2.

Moment equilibriums about the y — and x —axes and force equilibrium about the

z —axis, after neglecting higher order terms, can be written as

oM, N M,
d0x dy

—0Qx=0

oM, M,

ax oy =0

90; , 90y
0x dy

11

(3.9)

(3.10)

(3.11)



where Q, and Q,, are the shear forces and p is the distributed pressure load.
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Figure 3.3. Free body diagram of the plate element
The shear forces are neglected from Eq. (3.9) and Eq. (3.11) gives

9*M, _0*M,, 0°M,
5z T2 oxoy T oy +p=0 (3.12)

When combining of Eq. (3.4), Eq. (3.8) and Eg. (3.12), the biharmonic governing
equation for plate bending is produced in terms of the transverse displacement w.
0w o'w  d*w p

+2 = (3.13)
dx* d0x?dy? dy* D,

where D, = Eh? 5 is the rigidity of the plate.

12(1-v
3.2.2 Reissner-Mindlin Plate Theory

Reissner-Mindlin plate theory can be also called as the first shear deformation
theory (FSDT). It is used for thick plates. In thick plates, Kirchhoff hypothesis cannot
supply efficient solution in the analysis since Kirchhoff plate element cannot rotate
independently of the position of the mid-surface. In Reissner-Mindlin plate theory, the

shear deformations become significant and must be included in the analysis.

12



Figure 3.4. A typical Reissner-Mindlin plate

The Reissner—Mindlin plate theory, as shown in Fig. 3.3, is used for analysis of
thick plates, where the shear deformations are considered, rotation and lateral
deflections are decoupled. It does not need the cross-sections to be perpendicular to

the axial forces after deformation. It basically depends on following assumptions [70]:

- Normal to the mid-plane before deformation remain straight but not necessarily
normal to the mid-plane after deformation.
- Stresses normal to the mid-plane may be neglected.

- Deflections are small compared with the plate thickness.

ow w
Ox

dy Z,W

ZW /—\,
1

A 1

|

\ ,

= y — X

Figure 3.5. Deformation according to Reissner-Mindlin plate cross-section

a) y — z plane b) x — z plane

The internal energy equation of the Reissner-Mindlin plate have to include transverse

shear energy and bending energy.
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K
0= [ olrtendr +5 [ eyiea (319)

where bending stresses and strains are
{0} ={0x 0y Ty )" (3.15)
{en}={€x € 12y}’ (3.16)
and transverse shear components are
{os} = {7z Ty} (3.17)
{es} = {vaz Wy )" (3.18)

also K, is the shear energy correction factor, equals to 5/6. Substituting the
constitutive equations, getting

1 K
U=3 fn {en}' [Dp]{ep}dV + = fﬂ {es}T[Ds){es}dv (3.19)
in which
1 v O
Dyl =15[" L 9, (3.20)
0 0 —
and
G 0
D=1y ¢ (3.21)

The displacements of parallel to the undeformed neutral surface, u and v, can be

expressed by
u=—z0,(x,y) (3.22)
v =—2z0,(x,y) (3.23)

where 6, and 6,, are the normal rotations of the cross section of the plate about the y —

and x —axis and can be expressed as

Or === Vxz (3-24)
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9y = E - yyz (325)

The transverse displacement can be written as
w=w(x,Yy) (3.24)
The strains are expressed as
e=[€ € Yy Yaz Vyz 1" (3:25)

where the curvatures are given as

20,
= —— 3.26
and
a6
€, =——= (3.27)
dy
and the twisting curvature is
26, 06
y x
=—=Z+== 2
The shear strains are expressed as
aw
Vxz = (a - Hx) (3.29)
and
ow
Yy = (@ - ey) (3.30)

The constitutive relationships are given in the form

og=De (3.31)
where

o =[My My My, Qx Q1" (3.32)
in which M, and M,, are the direct bending moments and M,,, is the twisting moment.

The quantities @, and Q,, are the shear forces in the x — z and y — z planes.
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For an isotropic material D is given as

D vuD 0 0 0
vD D 0 0 0
1—-v)D
D=|0 o0 ( > ) 00 (3.33)
0 0 0 S 0
L0 0 0 0 S
in which for a plate of thickness t
p=_ ¥ (3.34)
T 12(1 —v?) '
and
S = Gt 3.35
1.2 (3:35)
where G is the shear modulus and the factor 1.2 is a correction term.
The form of the body force can be expressed as
b=[q 00]" (3.36)

where q is the distributed loading per unit area. The boundary tractions are not

considered.
An elemental plate area is given as

dQ = dxdy (3.37)
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CHAPTER 4

ELEMENT FREE GALERKIN METHOD
FOR MINDLIN-REISSNER PLATE BENDING PROBLEMS

4.1 Introduction

Element free Galerkin method, developed by Belytschko et al. [4], is a popular
meshfree method. The problem domain and its boundaries are described by arbitrary
scattered nodes. The moving least square (MLS) approximation scheme is used for the
interpolation field variables. The MLS shape functions do not possess the Kronecker
delta function property which requires extra algorithms for the application of boundary
conditions. Several algorithms have been developed for the implementation of

boundary conditions.

In this chapter, implementation procedure of meshfree methods for the solution
of solid mechanic problems is briefly described in section 2.2. The construction of
MLS shape functions is reviewed in section 2.3. The solution of Mindlin-Reissner

plate problems using EFGM is described in section 2.4.

4.2 Short Description of Implementation Procedure for Galerkin Meshfree
Methods

The application of Galerkin meshfree methods can be divided into four steps.
These steps are representation of the problem domain, interpolation of field variables,
formulation of system equations, and solution of system equations for field variables.
The representation of problem and its boundary are carried out using arbitrary scattered
nodes which don't have any predefined relation. This is the main difference between
the discretization of FEM and meshfree methods. Shape functions (interpolation
functions) are constructed to interpolate field variables at any point within the problem
domain. To construct shape functions, a local domain of a point of interest is formed
by the selection of any number of neighbour nodes. The formation of local domain is
different from the element structure of FEM. It is carried out without using any

predefined relation, and the selection of nodes only depends on closeness of nodes to
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point of interest. Meshfree methods formulate the system equations for local domains
and then combine them to obtain global system equations. The formation of system
equations for a local domain can be different for different meshfree methods. Some
meshfree methods use strong form system equations and some use weak form system
equations. The solution of system equations is similar to that for FEM. However, it
must be considered that system equations of meshfree methods can be asymmetric.

4.2.1 Basic Definitions for Meshfree Methods

The local domain and the background cell are terms that are always
encountered in the application of meshfree methods. Short explanations of these terms

are given in the below.

4.2.1.1 Local Domains (Support and Influence Domains)

A local domain determines the nodes used for the approximation of field
variables. It is similar to element structure of FEM and BEM. However, three
important differences found between the elements of FEM and BEM, and the local
domain phenomena. First of all, elements are used for interpolation and integration
purposes, but local domains are only used for interpolation. Secondly, elements have
to be predefined regular shapes but this is not a condition for the local domains. Lastly,

the local domains don't have any predefined nodes as the elements.
The size of a local domain is determined by
Iy = g X I, (4.1)

where r. is the average nodal spacing and oy is the dimensionless size of support

domain.

4.2.1.2 Background cells

In Galerkin meshfree methods, the global problem domain is discretized into
cells to carry out numerical integration. Generally, the background cell term is used
instead of cell. The background cells can be rectangular or triangular for a two-
dimensional domain. By looking at the appearance of background cells and elements,
it may be considered that they are analogous. However, they are not same. The
background cells are only used for integration purpose. The background cells and local

domains are shown in Fig. 4.1.
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x: quadratire or sampling point
o: field node

Figure.4.1.Support Domain; the centre is a quadrature point

4.3 Formulation of Moving Least-Squares (MLS) Shape Functions

The MLS approximation for the function of a field variable u(x) in a local

domain Q is defined at a point x as

W) = ) p@a = pTak (42)
i=1

where m is the number of basis terms, pT(x) = {p;(x), p,(X), p3(X), -+, P (X)} is the
vector of monomial basis functions, a™(x) = {a;(x), a,(x), a;(x),*+, a,, (x)} is the
vector of coefficients to be determined, and xT = [x, y] is the position vector for 2D
problems. The monomials providing minimum completeness are selected from the
Pascal triangle to build the basis function pT(x). For example, the linear and quadratic

basis functions in 2D problems can be given by

pT(X) = [Lx,)’], m=3 (43)
PT® =[1,xyx%xy,y?, m=6 (4.4)

The difference between the function u(x) and its local approximation u™(x) must be

minimized by weighted discrete L, norm to obtain the vector of coefficients a(x).
n
] = wix=x)[p" (a0 — w]’ (45)
i=1
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where n is the number of nodes in the support domain of point x, u; is the nodal value
of u at x = x;, w(x — x;) is the weight function associated with the influence domain
of node i. The weight function must be greater than zero for all nodes in the support

domain of point x.

The minimization of weighted residual with respect to a(x) at any arbitrary point x

gives

6]_
da

which can be written as a set of linear equations.

0 (4.6)

A(®)a(x) = BX)U, 4.7

where Ug = {uy,uy,us, -+, u,}7T is the vector of nodal values of field function for the

nodes of support domain. The matrices A and B have the following forms

AG) = ) wi@pCp" (), w09 = wx—x) (48)
B = [wi(®)p(x1) w,(®px2) - wp@p(xn)] (4.9)

The matrix A is called as weighted moment matrix of MLS and if it is non-singular

a(x) can be written as

a(x) = A" 1(x)B(x)U, (4.10)

The local approximation u"(x) can be rewritten by substituting Eq. (3.10) into Eq. (2)
n

w0 = Y ¢ = BT Us (4.11)
i=1

where @7 is the vector of MLS shape functions and it can be expressed as

PT(x) = {$1(0) 20 - ()} =p VA (X)B(x) (4.12)

The partial derivatives of shape function can be achieved by the following equation.

®; = (p"A'B); =p;A"'B+p"A;'B+p'A'B; (4.13)

where
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A'=-ATAAT (4.14)

The spatial derivative are designated with index i following a comma. The derivation
procedure of MLS shape functions indicates that weight functions are one of key points
of the MLS approximation. The continuity and locality features of the MLS
approximation are mainly based on weight functions. The basic features of the MLS
approximation such as continuity and locality, are mainly based on weight functions
[10]. Weight functions characterize the basic features of the MLS approximation such
as continuity and locality. The weight function must be positive inside the support
domain by taking its maximum value at the centre of support domain and must be zero
outside the support domain using a monotonically decrease. There are various weight
functions in literature [10]. The cubic spline and quartic spline weight functions are

used in this work and are given by

2/3 — 47% + 4773 7, <0.5
wi(x—x;) =w() ={4/3 — 47, + 47> —4/37° 05<F <1 (4.15)
0 n>1

1-672+87° -3 1<1

A O (4.16)

wi(x = x) = w(rD) = |

For rectangular influence domain in 2-D problems, weight functions can be obtained

by

w(m) = W(T‘x)W(T'y) = Wyw,, (4.17)
X — X; -y
Ty = | d andr, = = ¥il (4.18)
Twx Twy

where 7, and r,,,,, are the size of support domain in the x and y direction.

4.4 Governing equations and weak form

A typical Mindlin-Reissner plate with mid-plane lying in the x-y plane of
Cartesian coordinate system is depicted in Fig. 3.2. The displacement field of a point

at a distance z to the mid-plane can be written as

u = z60,and v =2z0, (4.19)

where u and v are the displacements of the plate in x and y directions, respectively.

0, and 6, are the rotations of cross-section of the plate about y and x axes,
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respectively. The lateral deflection of mid-plane is indicated by w. The vector of

displacements can be denoted as

u 0 z 0O](¥W
{v} = [0 0 z] {Bx} =L,u (4.20)
w/ 11 o ollfy

where u={w 6, 6,}T is the vector of independent field variables. The linear

strains in the Mindlin-Reissner plate are as follows

( 06,
Z_

(Exx) Z3

e, |
Evy 20, a6,
&y p=1z——+z—— =Lsu (4.21)

L)’xz |
Vyz} 0 +6_W

where

Ly=|z— 0 z— 1 0 (4.22)

Figure 4.2. A typical Mindlin-Reissner plate

The stresses using the Generalized Hooke’s law for isotropic linear elastic materials is

obtained with ¢ = De.
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E Ev
(Oxx\ [1—v2 1-—v2 0 0 0 [ Exx
L oyy | Ev E o 0 0 l€yy |
logb =109 132 Jew | (4.23)
Lo-sz 0 0 G 0 0 lysz
Oyz 0 0 0 kG 0 Vyz
0 0 0 0 keGl

where E is Young’s modulus, v is Poisson’s ratio, G = E/(2(1 + v)) is shear

modulus, kg, is shear correction factor often 5/6 is used for Mindlin-Reissner plates.

The stress resultants, moments and shears per unit of length, can be obtained using the

stresses as

h/2 Oxx
M= j z|%y|dz (4.24)
h/2 | Oxy
O'
V= f "Z (4.25)
h/2 yZ

where h is the thickness of the plate.

The Galerkin weak form for Mindlin-Reissner plates can written as

j 5(Lau)"DLyudQ — j 5 (L, u)ThdQ — J S(L,u)TtrdS =0 (4.26)
T
where I} is the edge surface of the plate where natural boundary condition is specified,
b is the body force vector and ¢t is traction on the edge of the plate. By considering
only transverse load, the body force vector can be definedas b ={0 0 b,}T. The
external traction on the edge of the plate t can be expressed in terms of stresses on
the surface of the edge:

Uxx
n 0 0 n, 0]]o, OxxNy + Ox Ny
tr=10 mn, ny 0 0]{0xy 3 ={0xn,+0,n, (4.27)
0 0 0 n, n Oxz OxzMyx + OyzMy

\oy.)

The penalty method is used to implement the essential boundary conditions and is
applied to the EFGM by the addition of following term to Galerkin weak form.

23



o) J. %(ub - uF)Ta(ub - u[-)dl" (4‘28)
Iy

where uy, is the prescribed essential boundary conditions, ur is the approximation
function of the prescribed essential boundary conditions, I, is the domain of nodes in
the essential boundary, « is a diagonal matrix of penalty factors with dimensions equal
to the number of DOF per node. The penalty factors are constant values for the whole
problem domain.

Inserting Eq. (4.28) into Eq. (4.26) leads to the following the Galerkin weak form
f S(Lyu)TDL udQ — f 5(L,u)ThdQ — f S(L,uw)TtrdS
Q Q T:
1
+6 ff(ub —up)Ta(u, —ur)dl =0 (4.29)
Ty

The discrete system equation can be written as

(K + K9)U = (F + F%) (4.30)

where K is the global stiffness matrix and is obtained by assembling the point stiffness

matrices
K = j B;"DB,dQ (4.31)
Q
in which
0 0g, i
dx Jdy
|99 d¢;
Bi=|o— 0 3y ¢; O (4.32)
op; 0¢;
9 Wb
dy Ox |
and
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Et3 Et3 0 0 0
12(1—v2) 1201 —v?)
Et3 Et3 0 0 0
v
p=| 1201—v®) 12(1—v?) (4.33)
0 1-v 0
2
0 0 0 kg6 O
0 0 0 0 ke,G.

The K% is the matrix of penalty factors defined by

Iy

where ¢; is a diagonal matrix. If the relevant DOF is free, the diagonal elements of ¢;

are equal to 0, otherwise equal to 1.

The force vector F in Eq. (4.30) is the global force vector assembled using the nodal

force vector of

F;, = f (L, ®;)ThdQ + f (L, ®)TtrdS (4.35)
Q Q
where ®@; is a diagonal matrix of shape functions.

The F* vector shows the forces obtained by the implementation of essential boundary

conditions and can be obtained as follows

F& =f @;Tauprdl (4.36)
r

u
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CHAPTERS
NUMERICAL EXPERIMENTS AND DISCUSSIONS
5.1 Introduction

In order to investigate the effects of selectable parameters of the EFG method
on the solution accuracy of the Reissner-Mindlin plate bending problems, three
numerical examples have been performed. The numerical examples are simply
supported square plate under transverse centric point load, simply supported square
plate under uniform transverse load, clamped circular plate under uniform transverse
load. Analytical solutions and solutions of EFG method are compared to determine the

effects of different values of parameters on the accuracy of EFG method.

The results of the numerical examples are given in the table form, however,
some of the results found in these tables are beyond being wrong. Also, these results
are invalid results. Several figures are given after the tables to increase readability of
the effects of selectable parameters. The invalid/unacceptable results are not
introduced into figures because they obstruct to follow the variations of
displacements/moments against the values of selectable parameters on the figures. The
value of penalty coefficient is presented in the form of 10%7. The number of gauss
points in a background cell, central deflections and moments of plates are symbolized

with ng, w,, and M, respectively.
5.2 Simply supported square plate under transverse centric point load

The simply supported square plate is loaded with transverse centric point load
as shown in Fig.5.1. The material properties are as follows; Young’s modulus E of
material is 10920 Pa and Poisson's ratio isv = 0.3. The thickness and length of the
plate are given by h =0.01 m and L = 1 m, respectively. The value of applied
transverse load P is 16.3527 N. Due to symmetry, only one quarter of the plate can be
used in EFGM solutions. The EFGM models used in the solutions are shown in Fig.

5.2. In the model of quarter square plate, 1089 field nodes and 1024 background cells
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are used for regular and irregular node distributions. The normalized deflection values

at the centre of square plate are used as the critical value for the evaluation of accuracy.

Figure 5.1. Simply supported square plate under transverse centric point load

Figure 5.2. The EFGM models for a) regular node distributions, b) irregular node

distributions

The results obtained using the selectable parameters with different values are
presented in Table 5.1 to Table 5.8. Since, the simply supported square plate under
transverse centric point load has stress singularity problem at the centre of plate, only
displacement results are used for accuracy performance investigations. The variations
of displacement against the number of gauss points in a background cell are given in
Table 5.1, Table 5.2, Table 5.5 and Table 5.6. The effect of value of penalty coefficient
on the displacement is given in Table 5.3, Table 5.4, Table 5.7 and Table 5.8. Table
5.1to Table 5.4 is achieved by the utilization of cubic spline weight function and Table

5.5 to Table 5.8 is provided using quartic spline weight function.

According to Fig. 5.3, there are some fluctuations found in results for the value
of ag = 3.5, ag = 4 and ag = 4. However, it is not shown for value of o5 = 2.5 and
as = 3.0. In Fig. 5.4, several variations are observed in the accuracy of displacement
results for the different values of ag at number of gauss points in a background equals
to 4 except ag = 2.5 and ag = 3.0. However, if the number of gauss points is selected
between 5 and 8, no variation is observed for different values of oy at the same figure.
From Fig. 5.5 and Fig. 5.6, the value of penalty coefficient between 1 x 10° and 1 X

101° does not cause any variation in results. But, the value of penalty coefficient
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greater than 10 shows a deviation in results. The solutions obtained using cubic spline
weight function are given in Fig. 5.3, Fig. 5.4, Fig. 5.5 and Fig. 5.6. The same
configurations of these figures are given for the quartic spline weight function in Fig.
5.7 to Fig. 5.10. The results obtained using quartic spline weight function show less
variation comparing to the results obtained using cubic spline weight functions. The

increase in number of monomials cause accuracy loss in results.
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Table 5.1. Normalized central deflections w./ (%) of simply supported square plate under transverse centric point load for regular node

distribution using cubic spline weight function with a,, = 6.

Number of monomials Number_of Dimensionless size of support domain (o) Exact
gauss points 25 3.0 35 4.0 45
3 4x4 0.011608 0.011631 0.011648 0.011609 0.011711  0.011600
5x5 0.011608 0.011630 0.011666 0.011651 0.011576
6x6 0.011608 0.011630 0.011641 0.011639 0.011652
7x7 0.011608 0.011630 0.011628 0.011613 0.011639
8x8 0.011609 0.011630 0.011651 0.011656 0.011664
6 4x4 0.011626 0.011628 0.011647 0.011700 0.011678
5x5 0.011625 0.011628 0.011647 0.011677 0.011654
6x6 0.011625 0.011628 0.011646 0.011673 0.011682
7x7 0.011625 0.011628 0.011647 0.011658 0.011691
8x8 0.011625 0.011629 0.011647 0.011737 0.011638
10 4x4 0.000104 0.011630 0.011648 0.011703 0.011712
5x5 0.000123 0.011631 0.011647 0.011696 0.011708
6x6 0.000320 0.011630 0.011647 0.011722 0.011706
73 0.000088 0.011630 0.011647 0.011704  0.011707
8x8 0.000003 0011631  0.011648  0.011707  0.011707

29



. 10140
o
5 10120
§ 1.0100
2 1.0080 —HF—as=25
B o 1.0060 —6—0s=3.0
S 3 1.0040 4s=3.5

()
£ & 10020 e 5240
oo
2 1.0000 —¥—0s=4.5
g 09980 Exact
= 0.9960
£ 4 5 6 7 8
o
z Number of Gauss points in a background cell

m=6
. 10140
o
s 1.0120
S
8 1.0100
@ —E—as=2.5
S 10080 T ——
5 . as=3.0
£ & 1.0060
g2 as=3.5
@ @ 1.0040
3 S ——05=4.0
S & 1.0020 _Lt—————f————xg
5 H—as=4.5
-  1.0000
N Exact
= 0.9980
£ 4 5 6 7 8
o
z Number of Gauss points in a background cell
m=10

. 10140
o
5 1.0120
8 10100 e~
o . N——
) e o L —— =X
£ 10080 —e —6—as=3.0
13+
£ £ 1.0060 as=3.5
g o
g & 1.0040 —>—05=4.0
< S @ _
S 5 1.0020 ¥ qs=4.5
= 10000 Exact
S 09980
£ 4 5 6 7 8
o
z Number of Gauss points in a background cell

4
Figure 5.3. Variations of normalized central deflections w./ (%) against n, for
simply supported square plate under transverse centric point load using cubic spline

weight functions and regular node distribution with a,, = 6.
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Table 5.2. Normalized central deflections w,/ (—D) of simply supported square plate under transverse centric point load for irregular

pL
100

node distribution using cubic spline weight function with a,, = 6.

Number of monomials

10

Number of

gauss points
4x4
5x5
6%6
<7
8x8
4x4
5x5
6x6
<7
8x8
4x4
5x5
6%6
77
8x8

2.5
0.011659
0.011634
0.011631
0.011629
0.011630
0.011686
0.011636
0.011635
0.011635
0.011635
0.000721
0.000045
0.000108
0.000438
0.002536

Dimensionless size of support domain (o)

3.0
0.011708
0.011656
0.011646
0.011638
0.011633
0.011685
0.011636
0.011636
0.011635
0.011636
0.011756
0.011641
0.011640
0.011637
0.011637

31

3.5
0.012028
0.011734
0.011665
0.011644
0.011640
0.011709
0.011643
0.011639
0.011637
0.011637
0.011768
0.011642
0.011639
0.011638
0.011638

4.0
0.012305
0.011866
0.011717
0.011671
0.011648
0.011809
0.011658
0.011645
0.011640
0.011639
0.011835
0.011656
0.011647
0.011640
0.011639

4.5
0.012560
0.011797
0.011708
0.011678
0.011648
0.011973
0.011687
0.011657
0.011646
0.011642
0.011951
0.011673
0.011654
0.011645
0.011643

Exact

0.011600
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Figure 5.4. Variations of normalized central deflections w./ (%) against ng for
simply supported square plate under transverse centric point load using cubic spline

weight functions and irregular node distribution with a,, = 6.
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Table 5.3. Variations of normalized central deflections wc/(%) of simply supported square plate under transverse centric point load

using regular node distribution using cubic spline weight function with n, = 5.

Number of monomials = Value of penalty Dimensionless size of support domain (o) Exact
coefficient 2.5 3.0 3.5 4.0 45

3 6 0.011608 0.011630 0.011666 0.011651 0.011576 0.011600
7 0.011608 0.011630 0.011621 0.011639 0.011634
8 0.011608 0.011630 0.011618 0.011628 0.011654
9 0.011608 0.011629 0.011651 0.011657 0.011630
10 0.011609 0.011620 0.011669 0.011520 0.011249
11 0.011596 0.011757 -0.005365 0.011210 0.010949

6 6 0.011625 0.011628 0.011647 0.011677 0.011654
7 0.011625 0.011628 0.011650 0.011616 0.011698
8 0.011624 0.011628 0.011630 0.011609 0.011675
9 0.011623 0.011627 0.012068 0.011639 0.011512
10 0.011602 0.011615 0.011900 0.010187 0.011287
11 0.011751 0.011082 0.011605 0.046484 0.011575

10 6 -0.000209 0.011631 0.011647 0.011696 0.011708
7 -0.001322 0.011631 0.011648 0.011697 0.011708
8 0.000390 0.011631 0.011644 0.011784 0.011686
9 0.000190 0.011632 0.011723 0.011661 0.011708
10 0.000140 0.011648 0.012131 0.011501 0.011365
11 -0.000332 0.011686 0.009992 0.012668 0.013610
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Figure 5.5. Variations of normalized central deflections wc/(%) against a,, for
simply supported square plate under transverse centric point load using cubic spline

weight functions and regular node distribution with n, = 5.
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pL
100

4
Table 5.4. Variations of normalized central deflections w./ (—D) of simply supported square plate under transverse centric point load

using irregular node distribution using cubic spline weight function with n, = 5.

Number of monomials

10

Value of penalty

coefficient

2.5

0.011634
0.011634
0.011634
0.011635
0.011629
0.011555
0.011636
0.011636
0.011636
0.011633
0.011665
0.011791
0.002575
-0.000099
-0.000081
0.000094
0.000706
0.000165

Dimensionless size of support domain (o)

3.0

0.011656
0.011656
0.011656
0.011657
0.011673
0.028047
0.011636
0.011636
0.011636
0.011635
0.011639
0.011721
0.011641
0.011641
0.011641
0.011651
0.011696
0.012081

35

3.5

0.011734
0.011735
0.011732
0.011721
0.011850
0.011431
0.011643
0.011643
0.011643
0.011643
0.011782
0.009100
0.011642
0.011642
0.011642
0.011643
0.011624
0.006998

4.0

0.011866
0.011867
0.011838
0.011819
0.011781
0.009145
0.011658
0.011659
0.011657
0.011621
0.012890
-0.005537
0.011656
0.011656
0.011655
0.011661
0.010894
0.009700

4.5

0.011797
0.011791
0.011796
0.011582
0.011813
0.011257
0.011687
0.011686
0.011661
0.011661
0.011496
-0.002784
0.011673
0.011672
0.011673
0.011693
0.011369
0.005584

Exact

0.011600
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Figure 5.6. Variations of normalized central deflections w./ (%) against o, for
simply supported square plate under transverse centric point load using cubic spline

weight functions and irregular node distribution with n, = 5.
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Table 5.5. Variations of normalized central deflections w./ (—D) of simply supported square plate under transverse centric point load

pL
100

using regular node distribution using quartic spline weight function with a,, = 6.

Number of monomials

10

Number of
gauss points
4x4
5x5
6%6
<7
8x8
4x4
5x5
6x6
<7
8x8
4x4
5x5
6%6
77
8x8

2.5
0.011613
0.011600
0.011604
0.011603
0.011603
0.011626
0.011625
0.011625
0.011625
0.011625
0.000062
0.000132
0.000097
0.000262

Dimensionless size of support domain (o)

3.0
0.011624
0.011624
0.011624
0.011624
0.011624
0.011629
0.011630
0.011630
0.011630
0.011630
0.011631
0.011631
0.011631
0.011630
0.011631

37

3.5
0.011631
0.011628
0.011629
0.011628
0.011629
0.011662
0.011662
0.011660
0.011661
0.011661
0.011665
0.011666
0.011665
0.011665
0.011666

4.0
0.011632
0.011632
0.011632
0.011632
0.011633
0.011639
0.011639
0.011639
0.011639
0.011639
0.011671
0.011670
0.011670
0.011670
0.011670

4.5
0.011639
0.011637
0.011640
0.011639
0.011639
0.011658
0.011657
0.011657
0.011657
0.011658
0.011685
0.011682
0.011681
0.011681
0.011682

Exact

0.011600
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Figure 5.7. Variations of normalized central deflections w./ (i) against n, for
100D g
simply supported square plate under transverse centric point load using quartic spline

weight functions and regular node distribution with a;,, = 6.
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Table 5.6. Variations of normalized central deflections w./ (—D) of simply supported square plate under transverse centric point load

pL
100

using irregular node distribution using quartic spline weight function with o, = 6.

Number of monomials

10

Number of
gauss points
4x4
5x5
6x6
<7
8x8
4x4
5x5
6x6
<7
8x8
4x4
5x5
6%6
=7
8x8

2.5
0.011692
0.011632
0.011628
0.011625
0.011625
0.011691
0.011639
0.011636
0.011635
0.011635
0.011963
0.000049
0.011727
0.007144

Dimensionless size of support domain (o)

3.0
0.011759
0.011652
0.011637
0.011633
0.011632
0.011713
0.011640
0.011638
0.011636
0.011636
0.011822
0.011654
0.011647
0.011639
0.011638

39

3.5
0.011773
0.011662
0.011641
0.011637
0.011636
0.011812
0.011652
0.011641
0.011638
0.011637
0.011963
0.011657
0.011644
0.011641
0.011639

4.0
0.011866
0.011682
0.011646
0.011638
0.011637
0.011820
0.011660
0.011645
0.011639
0.011639
0.012021
0.011664
0.011650
0.011642
0.011640

4.5
0.012094
0.011742
0.011663
0.011641
0.011639
0.011885
0.011675
0.011653
0.011642
0.011639
0.011947
0.011669
0.011648
0.011643
0.011642

Exact

0.011600
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Figure 5.8. Variations of normalized central deflections w./ (i) against n, for
100D g
simply supported square plate under transverse centric point load using quartic spline

weight functions and irregular node distribution with a,, = 6.
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Table 5.7. Variations of normalized central deflections WC/(_D) of simply supported square plate under transverse centric point load

pL
100

using regular node distribution using quartic spline weight function with n, = 5.

Number of monomials

10

Value of penalty
coefficient
6
7
8
9
10
11

10
11

10
11

2.5
0.011508
0.011508
0.011508
0.011508
0.011506
0.010910
0.011533
0.011533
0.011533
0.011534
0.011551
0.011092
0.001816
0.000162
0.001090
0.000014
0.001959
0.000434

Dimensionless size of support domain (o)

3.0
0.011529
0.011529
0.011529
0.011529
0.011496
0.011573
0.011534
0.011534
0.011534
0.011535
0.011560
0.011046
0.011535
0.011535
0.011536
0.011540
0.011533
0.010755

41

3.5
0.011532
0.011532
0.011521
0.011533
0.011566
0.011898
0.011551
0.011551
0.011549
0.011249
0.011440
0.011636
0.011556
0.011556
0.011564
0.011528
0.011156
0.007045

4.0
0.011536
0.011536
0.011534
0.011537
0.011501
0.012166
0.011539
0.011539
0.011535
0.011531
0.011593
0.001501
0.011558
0.011558
0.011558
0.011557
0.011426
0.010245

4.5
0.011539
0.011533
0.011533
0.011540
0.011682
0.011505
0.011549
0.011550
0.011536
0.011553
0.011654
0.010940
0.011565
0.011564
0.011383
0.011540
0.011345
0.012292

Exact

0.011600
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Figure 5.9. Variations of normalized central deflections w./ (i) against a,, for
100D p
simply supported square plate under transverse centric point load using quartic spline

weight functions and regular node distribution with n, = 5.
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Table 5.8. Variations of normalized central deflections w./ (—D) of simply supported square plate under transverse centric point load

pL
100

using irregular node distribution using quartic spline weight function with n, = 5.

Number of monomials

10

Value of penalty

coefficient

6

© 00

2.5
0.011634
0.011634
0.011634
0.011635
0.011629
0.011555
0.011636
0.011636
0.011636
0.011633
0.011665
0.011791

0.002575
-0.000099
-0.000081

0.000094

0.000706

0.000165

Dimensionless size of support domain (o)

3.0
0.011656
0.011656
0.011656
0.011657
0.011673
0.028047
0.011636
0.011636
0.011636
0.011635
0.011639
0.011721
0.011641
0.011641
0.011641
0.011651
0.011696
0.012081
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3.5
0.011734
0.011735
0.011732
0.011721
0.011850
0.011431
0.011643
0.011643
0.011643
0.011643
0.011782
0.009100
0.011642
0.011642
0.011642
0.011643
0.011624
0.006998

4.0
0.011866
0.011867
0.011838
0.011819
0.011781
0.009145

0.011658
0.011659
0.011657
0.011621
0.012890
-0.005537
0.011656
0.011656
0.011655
0.011661
0.010894
0.009700

4.5
0.011797
0.011791
0.011796
0.011582
0.011813
0.011257
0.011687
0.011686
0.011661
0.011661
0.011496
-0.002784
0.011673
0.011672
0.011673
0.011693
0.011369
0.005584

Exact

0.011600
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Figure 5.10. Variations of normalized central deflections w./ (i) against a,, for
100D p
simply supported square plate under transverse centric point load using quartic spline

weight functions and irregular node distribution with n, = 5.
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5.3 Simply supported square plate under uniform transverse load.

Simply supported square plate under transverse uniform distributed load is
shown in Fig.5.11. It is analysed by using different values for the selectable
parameters. The thickness and length of the plate are given by h = 0.01 mandL =
1 m, respectively. The Young's modulus E of material is 10920 Pa and Poisson's ratio
is v = 0.3. Due to symmetry, only one quarter of the plate, shown in Fig. 5.12, is used
in EFGM solutions. In the model of quarter square plate, 1089 field nodes and 1024
background cells were used for regular and irregular node distributions. The value of
applied load P is 1.0 Pa. The normalized deflection and normalized moment values at
the centre of square plate were taken as the critical value for assessment of accuracy.
The results obtained using different values for the selectable parameters are presented
in Table 5.9 to Table 5.24. Table 5.9 to Table 5.16 is obtained by the usage of cubic
spline weight function and Table 5.17 to Table 5.24 is provided with the use of quartic
spline weight function.

Figure 5.11. Simply supported square plate under uniform load.

Figure 5.12. The EFGM models for a) regular node distributions, b) irregular node

distributions

From Fig. 5.13, Fig. 5.15, Fig. 5.21 and Fig. 5.23, the variations in displacement results
against number of gauss points in a background cell are less than 0.2% of exact result.
However, it is not possible to say same thing for moment. The variations in moment
results are important and the number of gauss points in a background cell equals 5 is

suitable to decrease variations with a reasonable computation cost. The variations in
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displacement and moment results are observed for different values of penalty
coefficient. The variations in displacements and moments are shown for the values of
penalty coefficient greater than 1 x 108 and 1 x 10°, respectively. The value of
penalty coefficient is selected as 1 x 10° to reduce fluctuations in results. By
comparing the results for regular and irregular node distributions, it can be pointed that
the results of irregular node distributions are smoother. It is shown that an increase in
number of monomials cannot guaranteed any increase in results. The review of results
for cubic and quartic spline weight functions indicate that the results of quartic spline
weight function are smoother than results of cubic weight function. The accuracy of

solutions for ag = 3 are higher than the other ones.
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Table 5.9. Normalized central deflections w./ (—:) of simply supported square plate subjected to uniform load for regular node

distribution using cubic spline weight function with a;, = 6.

Number of monomials

10

Number of
gauss points
4x4
5x5
6x6
<7
8x8
4x4
5x5
6%6
7x7
8x8
4x4
5x5
6x6
<7
8x8

pL
100

2.5
0.406125
0.406124
0.406127
0.406122
0.406126
0.406448
0.406436
0.406440
0.406438
0.406439
0.000504

0.000094
0.002630

Dimensionless size of support domain (o)

3.0
0.406447
0.406419
0.406427
0.406425
0.406426
0.406441
0.406442
0.406442
0.406442
0.406442
0.406456
0.406454
0.406453
0.406453
0.406453
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3.5
0.406393
0.406544
0.406370
0.406139
0.406452
0.406593
0.406593
0.406587
0.406590
0.406584
0.406602
0.406591
0.406594
0.406592
0.406592

4.0
0.406216
0.406286
0.406575
0.406295
0.406633
0.407067
0.406840
0.406799
0.406669
0.407450
0.407074
0.407029
0.407265
0.407110
0.407127

4.5
0.407077
0.405935
0.406616
0.406523
0.406710
0.406862
0.406661
0.406981
0.407065
0.406604
0.407162
0.407138
0.407121
0.407134
0.407127

Exact

0.4064
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Figure 5.13. Variations of normalized central deflections w./ (—;) against n, for

pL
100

simply supported square plate subjected to uniform load using cubic spline weight

functions and regular node distribution with a;,, = 6.
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Table 5.10. Normalized central moments MC/(%) of simply supported square plate subjected to uniform load for regular node

distribution using cubic spline weight function with a,, = 6

Number of monomials

10

Number of
gauss points
4x4
5x5
6x6
<7
8x8
4x4
5x5
6%6
7x7
8x8
4x4
5x5
6x6
<7
8x8

2.5
0.465908
0.465861
0.465962
0.465868
0.465916
0.478715
0.476724
0.477565
0.477247
0.477316
0.047502

0.009211
0.440787

Dimensionless size of support domain (o)

3.0
0.477236
0.477124
0.477132
0.477156
0.477134
0.475355
0.475148
0.475239
0.475199
0.475208
0.473487
0.473020
0.472050
0.471502
0.471477
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3.5
0.478844
0.490604
0.481406
0.466563
0.486288
0.476658
0.476658
0.476750
0.476842
0.476471
0.464784
0.467739
0.466511
0.467141
0.467166

4.0
0.468530
0.476325
0.479368
0.475205
0.486924
0.533247
0.508265
0.509770
0.492523
0.567429
0.553512
0.567587
0.551792
0.557828
0.528077

4.5
0.492989
0.474944
0.481487
0.479422
0.485117
0.473470
0.490959
0.508166
0.512757
0.485658
0.551347
0.560778
0.553217
0.558613
0.556545

Exact

0.4789
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Figure 5.14. Variations of normalized central moments MC/(%) against n, for

simply supported square plate subjected to uniform load using cubic spline weight

functions and regular node distribution with a;,, = 6.
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Table 5.11. Normalized central deflections WC/(_D) of simply supported square plate subjected to uniform load for irregular node

distribution using cubic spline weight function with a,, = 6.

Number of monomials

10

Number of
gauss points
4x4
5x5
6x6
<7
8x8
4x4
5x5
6%6
7x7
8x8
4x4
5x5
6x6
<7
8x8

pL
100

2.5
0.406510
0.406339
0.406282
0.406255
0.406254
0.406542
0.406459
0.406445
0.406440
0.406437
0.099456
0.008230
0.002251
0.486834
0.003929

Dimensionless size of support domain (o)

3.0
0.407413
0.406818
0.406572
0.406415
0.406331
0.406556
0.406471
0.406455
0.406447
0.406447
0.406742
0.406526
0.406511
0.406470
0.406463

51

3.5
0.413576
0.408303
0.407042
0.406627
0.406529
0.406977
0.406580
0.406511
0.406477
0.406465
0.406980
0.406542
0.406491
0.406477
0.406471

4.0
0.419243
0.410831
0.407971
0.407131
0.406676
0.408746
0.406896
0.406620
0.406533
0.406515
0.407986
0.406790
0.406622
0.406520
0.406501

4.5
0.421976
0.409785
0.407881
0.407222
0.406721
0.411523
0.407403
0.406828
0.406631
0.406567
0.409514
0.407075
0.406756
0.406616
0.406573

Exact

0.4064
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Figure 5.15. Variations of normalized central deflections w./ (%) against n, for
simply supported square plate subjected to uniform load using cubic spline weight

functions and irregular node distribution with a;, = 6.
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Table 5.12. Normalized central moments MC/(%) of simply supported square plate subjected to uniform load for irregular node

distribution using cubic spline weight function with a;, = 6.

Number of monomials

10

Number of
gauss points
4x4
5x5
6x6
<7
8x8
4x4
5x5
6%6
7x7
8x8
4x4
5x5
6x6
<7
8x8

2.5
0.462163
0.484287
0.469131
0.476790
0.473940
0.454368
0.488675
0.454355
0.488484
0.468165
133.3553
1.898563
0.549946
18.72356
2.391880

Dimensionless size of support domain (o)

3.0
0.452059
0.491661
0.479985
0.477586
0.479066
0.485642
0.485269
0.470597
0.480897
0.475295
0.379987
0.509234
0.427753
0.472461
0.457493

53

3.5
0.586793
0.549301
0.468504
0.477429
0.476112
0.402171
0.484494
0.479163
0.473508
0.480348
0.456289
0.487986
0.460868
0.468415
0.485846

4.0
0.788000
0.485057
0.486260
0.484557
0.483704
0.335533
0.492242
0.467722
0.485336
0.477380
0.577763
0.510251
0.468436
0.487375
0.468485

4.5
1.233154
0.541503
0.480093
0.495301
0.480869
0.899370
0.528780
0.479242
0.486683
0.482623
0.618072
0.390230
0.500102
0.467321
0.472815

Exact

0.4789
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Figure 5.16. Variations of normalized central moments MC/(%) against n, for

simply supported square plate subjected to uniform load using cubic spline weight

functions and irregular node distribution with a;, = 6.
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Table 5.13. Variations of normalized central deflections WC/(_D) of simply supported square plate subjected to uniform load using

pL
100

regular node distribution using cubic spline weight function with n, = 5.

Number of monomials

10

Value of penalty
coefficient

6

© 00

2.5
0.406124
0.406124
0.406125
0.406135
0.406156
0.405627
0.406436
0.406436
0.406426
0.406383
0.405441
0.411339
0.005101
-0.006104
0.008291
0.004782
0.007121
-0.004692

Dimensionless size of support domain (o)

3.0
0.406419
0.406419
0.406424
0.406396
0.406113
0.413570
0.406442
0.406443
0.406436
0.406372
0.405901
0.398761
0.406454
0.406454
0.406455
0.406530
0.407200
0.409140
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3.5
0.406544
0.406173
0.406136
0.406556
0.408414
0.303081
0.406587
0.406665
0.406445
0.426644
0.425925
0.407843
0.406591
0.406618
0.406467
0.409589
0.427764
0.336089

4.0
0.406286
0.406511
0.406379
0.407010
0.405107
0.385763
0.406840
0.406507
0.406323
0.406621
0.347944
1.161832
0.407029
0.407070
0.407763
0.408196
0.402099
0.418981

4.5
0.405935
0.406447
0.406661
0.406176
0.403696
0.386330
0.406661
0.407531
0.407429
0.401259
0.395093
0.406219
0.407138
0.407220
0.407196
0.408115
0.393411
0.507675

Exact

0.4064
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Figure 5.17. Variations of normalized central deflections w./ (%) against a,, for
simply supported square plate subjected to uniform load using quartic spline weight

functions and regular node distribution withn, = 5.
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Table 5.14. Variations of normalized central moments MC/(%) of simply supported square plate subjected to uniform load using

regular node distribution using cubic spline weight function with n, = 5.

Number of monomials

10

Value of penalty
coefficient

6

© 00

25
0.465861
0.465861
0.465862
0.465898
0.466449
0.465259
0.476724
0.476719
0.476706
0.476676
0.477879
0.473519
-1.898563
-0.779907
-1.355116
-0.965741
-0.061856
-0.220529

Dimensionless size of support domain (o)

3.0
0.477124
0.477131
0.477274
0.476066
0.542014
0.593314
0.475148
0.475145
0.475232
0.476350
0.177135
7.118890
0.473020
0.473035
0.472708
0.475136
0.474889
0.537894

57

3.5
0.490604
0.476854
0.476025
0.475138
0.482575
0.099355
0.476696
0.480891
0.477623
0.702373
0.080488
1.535408
0.467739
0.466115
0.464424
0.689665
0.809296
2.098230

4.0
0.476325
0.484699
0.480848
0.488999
0.470388
0.208429
0.508265
0.479825
0.464833
0.516292
1.396184
18.904350
0.567587
0.499341
0.554111
0.457188
1.500415
3.548006

4.5
0.474944
0.477998
0.480860
0.487681
0.464470
0.477018
0.490959
0.541073
0.481892
0.771494
0.658199
0.265464
0.560778
0.552515
0.763799
1.310356
20.92811
6.556247

Exact

0.4789
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Figure 5.18. Variations of normalized central moments MC/(%) against a,, for

simply supported square plate subjected to uniform load using quartic spline weight

functions and regular node distribution with n, = 5.
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Table 5.15. Variations of normalized central deflections WC/(_D) of simply supported square plate subjected to uniform load using

pL
100

irregular node distribution using cubic spline weight function with n, = 5.

Number of monomials

10

Value of penalty
coefficient

6

© 00

2.5
0.406339
0.406339
0.406342
0.406362
0.406363
0.407814
0.406459
0.406459
0.406434
0.406579
0.405013
0.387544
0.008230
0.010900
0.016128
0.001619
0.005487
0.000430

Dimensionless size of support domain (o)

3.0
0.406818
0.406818
0.406820
0.406769
0.409116
0.226611
0.406471
0.406472
0.406468
0.406583
0.408022
0.416706
0.406527
0.406527
0.406570
0.406568
0.404763
0.386955

59

3.5
0.408304
0.408303
0.408486
0.407661
0.407741
0.408141
0.406580
0.406579
0.406577
0.406600
0.426530
0.227181
0.406542
0.406545
0.406529
0.406714
0.409905
0.374940

4.0
0.410834
0.410790
0.410406
0.409504
0.411189
0.381858
0.406897
0.406896
0.407816
0.406350
0.425535
0.911252
0.406790
0.406790
0.407110
0.406545
0.399975
11.074030

4.5
0.409786
0.409024
0.408707
0.408980
0.406833
0.399561
0.407401
0.407530
0.408537
0.423195
0.609899
0.521799
0.407074
0.407082
0.406912
0.400725
0.435560
0.441067

Exact

0.4064
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Figure 5.19. Variations of normalized central deflections w./ (%) against a,, for
simply supported square plate subjected to uniform load using quartic spline weight

functions and irregular node distribution withn, = 5.

60



2
Table 5.16. Variations of normalized central moments MC/(%) of simply supported square plate subjected to uniform load using

irregular node distribution using cubic spline weight function with n, = 5.

Number of monomials

10

Value of penalty
coefficient

6

© 0o

2.5
0.484287
0.484206
0.484303
0.481672
0.485118
0.938223
0.488675
0.488475
0.489361
0.485903
0.659297
0.032074

Dimensionless size of support domain (o)

3.0
0.491661
0.491508
0.491721
0.501556
1.032503
8.490625
0.485269
0.485232
0.483544
0.483757
0.470658
0.047749
0.473020
0.473035
0.472708
0.475136
0.474889
0.537894

61

3.5
0.549301
0.549034
0.550993
0.470179
0.753860
0.204448
0.484494
0.484243
0.474901
0.421949
62.297360
6.969470
0.467739
0.466115
0.464424
0.689665
0.809296
2.098230

4.0
0.485057
0.484946
0.484046
0.428830
0.518583
0.410389
0.492242
0.491473
0.506475
0.468657
0.880942
206.150000
0.567587
0.499341
0.554111
0.457188
1.500415
3.548006

4.5
0.541503
0.528225
0.474842
0.492756
0.414814
0.406419
0.528780
0.582196
1.535594
0.742513
3.077730
4.105061
0.560778
0.552515
0.763799
1.310356
20.92811
6.556247

Exact

0.4789
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Figure 5.20. Variations of normalized central moments MC/(%) against a,, for

simply supported square plate subjected to uniform load using quartic spline weight

functions and irregular node distribution with n, = 5.
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Table 5.17. Variations of normalized central deflections WC/(_D) of simply supported square plate subjected to uniform load using

regular node distribution using quartic spline weight function with o, = 6.

Number of monomials

10

Number of
gauss points
4x4
5x5
6x6
<7
8x8
4x4
5x5
6%6
7x7
8x8
4x4
5x5
6x6
<7
8x8

2.5
0.406038
0.405621
0.405753
0.405711
0.405723
0.406453
0.406432
0.406437
0.406435
0.406436
0.002882
0.003296
0.004063
0.000251

pL
100

Dimensionless size of support domain (o)

3.0
0.406323
0.406313
0.406315
0.406316
0.406316
0.406456
0.406458
0.406458
0.406457
0.406457
0.406458
0.406454
0.406453
0.406452
0.406452

63

3.5
0.406388
0.406303
0.406325
0.406323
0.406320
0.406734
0.406734
0.406720
0.406720
0.406719
0.406771
0.406775
0.406759
0.406754
0.406759

4.0
0.406437
0.406437
0.406439
0.406439
0.406438
0.406529
0.406529
0.406528
0.406527
0.406528
0.406800
0.406794
0.406794
0.406794
0.406794

4.5
0.406506
0.406479
0.406499
0.406498
0.406489
0.406700
0.406683
0.406686
0.406687
0.406687
0.406933
0.406913
0.406891
0.406899
0.406893

Exact

0.4064
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Figure 5.21. Variations of normalized central deflections w./ (%) against n, for
simply supported square plate subjected to uniform load using quartic spline weight

functions and regular node distribution with a;,, = 6.
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Table 5.18. Variations of normalized central moments MC/(%) of simply supported square plate subjected to uniform load using

regular node distribution using quartic spline weight function with a,, = 6.

Number of monomials

10

Number of
gauss points
4x4
5x5
6%6
%7
8x8
4x4
5x5
6%6
=7
8x8
4x4
5x5
6%6
<7
8x8

2.5
0.474955
0.474722
0.474776
0.474744
0.474770
0.479195
0.475777
0.477068
0.476537
0.476699
0.244558
0.011884
0.611912
0.028622

Dimensionless size of support domain (o)

3.0
0.475765
0.475776
0.475814
0.475815
0.475813
0.471815
0.471669
0.471664
0.471658
0.471635
0.476271
0.475173
0.474485
0.474033
0.473952

65

3.5
0.478047
0.478018
0.478044
0.478010
0.478042
0.480843
0.480843
0.480491
0.480443
0.480289
0.500018
0.508968
0.505329
0.506119
0.507093

4.0
0.478991
0.478998
0.478993
0.479012
0.478990
0.475026
0.475361
0.475338
0.475282
0.475294
0.483480
0.489483
0.489959
0.489406
0.489326

4.5
0.480130
0.480092
0.480687
0.480405
0.480379
0.480291
0.479640
0.480184
0.479814
0.479645
0.501804
0.504555
0.502493
0.504481
0.503133

Exact

0.4789
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Figure 5.22. Variations of normalized central moments MC/(%) against n, for

simply supported square plate subjected to uniform load using quartic spline weight

functions and regular node distribution with a;,, = 6.
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Table 5.19. Variations of normalized central deflections WC/(_D) of simply supported square plate subjected to uniform load using

irregular node distribution using quartic spline weight function with a,, = 6.

Number of monomials

10

Number of
gauss points
4x4
5x5
6%6
<7
8x8
4x4
5x5
6%6
=7
8x8
4x4
5x5
6%6
<7
8x8

2.5
0.406926
0.406160
0.406066
0.406018
0.406004
0.406667
0.406496
0.406461
0.406438
0.406427
0.411965
0.001206
0.001237
0.285492
0.269857

pL
100

Dimensionless size of support domain (o)

3.0
0.407955
0.406663
0.406404
0.406341
0.406319
0.407029
0.406541
0.406482
0.406456
0.406452
0.407610
0.406740
0.406625
0.406498
0.406484

67

3.5
0.408515
0.406884
0.406538
0.406466
0.406434
0.408037
0.406724
0.406531
0.406489
0.406472
0.409147
0.406761
0.406581
0.406520
0.406493

4.0
0.410224
0.407259
0.406642
0.406493
0.406458
0.408138
0.406888
0.406613
0.406516
0.406503
0.408592
0.406908
0.406672
0.406550
0.406518

4.5
0.413500
0.408343
0.406964
0.406574
0.406514
0.409672
0.407140
0.406739
0.406560
0.406510
0.409139
0.406985
0.406657
0.406579
0.406546

Exact

0.4064
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Figure 5.23. Variations of normalized central deflections w./ (%) against n, for
simply supported square plate subjected to uniform load using quartic spline weight

functions and irregular node distribution with a,, = 6.
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Table 5.20. Variations of normalized central moments MC/(%) of simply supported square plate subjected to uniform load using

irregular node distribution using quartic spline weight function with a,, = 6.

Number of monomials

10

Number of
gauss points
4x4
5x5
6%6
<7
8x8
4x4
5x5
6%6
=7
8x8
4x4
5x5
6%6
<7
8x8

2.5
0.500941
0.487774
0.474766
0.476700
0.477039
0.436144
0.488024
0.448284
0.494882
0.468516
4.252219
0.443840
0.133912
21.898450
98.188270

Dimensionless size of support domain (o)

3.0
0.510744
0.498832
0.478865
0.476526
0.477445
0.525295
0.470448
0.474818
0.479647
0.473432
0.518256
0.455181
0.473568
0.456527
0.474986

69

3.5
0.519388
0.510473
0.479829
0.479432
0.479317
0.191414
0.470466
0.471619
0.472074
0.473805
0.763737
0.568449
0.436037
0.472774
0.491722

4.0
0.633194
0.497286
0.489514
0.478829
0.479033
0.233889
0.502900
0.473901
0.473989
0.477381
0.497792
0.497086
0.447018
0.487005
0.466110

4.5
0.772233
0.535530
0.502671
0.480024
0.479634
0.624271
0.510002
0.478424
0.480477
0.478062
0.758090
0.498329
0.465614
0.487260
0.469057

Exact

0.4789
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Figure 5.24. Variations of normalized central moments MC/(%) against ng for

simply supported square plate subjected to uniform load using quartic spline weight

functions and irregular node distribution with a;, = 6.
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Table 5.21. Variations of normalized central deflections WC/(_D) of simply supported square plate subjected to uniform load using

pL
100

regular node distribution using quartic spline weight function with n, = 5.

Number of monomials

10

Value of penalty
coefficient
6
7
8
9
10
11

2.5
0.405069
0.405069
0.405069
0.405082
0.405021
0.405595
0.406432
0.406432
0.406425
0.406454
0.407387
0.420549
0.000090
0.003644
0.001025
0.000149
0.000565
0.010702

Dimensionless size of support domain (o)

3.0
0.406245
0.406245
0.406244
0.406230
0.406222
0.399518
0.406439
0.406438
0.406438
0.406518
0.406121
0.350452
0.406461
0.406462
0.406462
0.406575
0.406438
0.368051

71

3.5
0.406169
0.406169
0.406168
0.406052
0.406125
0.402957
0.406658
0.406656
0.406650
0.406438
0.410978
0.394587
0.406651
0.406647
0.406663
0.416249
0.404399
0.587419

4.0
0.406428
0.406429
0.406421
0.406420
0.406529
0.402484
0.406555
0.406553
0.406559
0.407196
0.407688
0.139971
0.406782
0.406784
0.406782
0.406858
0.406543
0.417085

4.5
0.406472
0.406464
0.406425
0.406370
0.407933
0.407624
0.406716
0.406716
0.407218
0.406922
0.406072
0.378275
0.406989
0.406983
0.406988
0.405604
0.407764
0.439110

Exact

0.4064
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Figure 5.25. Variations of normalized central deflections w./ (%) against a,, for
simply supported square plate subjected to uniform load using quartic spline weight

functions and regular node distribution with n, = 5.
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Table 5.22. Variations of normalized central moments MC/(%) of simply supported square plate subjected to uniform load using

regular node distribution using quartic spline weight function with n, = 5.

Number of monomials

10

Value of penalty
coefficient

10
11

10
11

2.5

0.474406
0.474406
0.474404
0.474435
0.474279
0.469205
0.476007
0.476008
0.475991
0.475796
0.478325
0.495293
-0.010357
0.129741
0.014068
0.032385
0.024393
-0.207908

Dimensionless size of support domain (o)

3.0

0.475655
0.475654
0.475604
0.475605
0.476157
0.497267
0.474167
0.474170
0.474140
0.473611
0.465400
0.994706
0.476495
0.476508
0.476452
0.476181
0.477495
0.545043

73

3.5

0.477373
0.477363
0.477390
0.506951
0.477331
0.440079
0.479295
0.479186
0.478270
0.465516
0.811708
4.080440
0.481383
0.480983
0.483248
2.337011
0.335882
19.189340

4.0

0.478328
0.478215
0.478737
0.478845
0.479676
0.442223
0.476484
0.476505
0.476312
0.505158
0.732157
15.008180
0.490768
0.490931
0.491120
0.493356
0.542988
1.045473

4.5

0.479166
0.478602
0.476812
0.476696
0.462304
0.522211
0.478854
0.478825
0.569628
0.478359
0.474307
1.097208
0.495233
0.494938
0.495976
0.504126
0.559046
3.320348

Exact

0.4789



m=3

w 11
- 108
S 106
o
2 1.04 —H=—05=2.5
= % 1.02 —&—05=3.0
A Q_ "“i £
é % ! & = 0s=3.5
ES 098
g Z 096 = 05=4.0
N 094 —¥— 05=4.5
@
% 0.92 Exact
2 W 6 7 8 9 10 1
Penalty coefficient
m=6

. 2000
= 1.800
S 1600
E 1.400 —H—45=2.5
5 & 1.200 /\ o 0s=3.0
£21.000 & = = =L g a5
E 5 0.800 8=
_g 2 0.600 = 05=4.0
E 0.400 —¥—qs5=4.5
©
£ 0.200 Exact
§ 0.000

6 7 8 9 10 11

Penalty coefficient
m=10

. 2000
= 1.800
S 1600
E 1.400
= 2 1.200 S —6—05=3.0
= E? 1.000 # = = = % as=3.5
E 5 0.800 —— a5=4.0
E 2 0.600 e
& 0.400 o
g 0.200 Exact
<Z3 0.000

6 7 8 9 10 11

Penalty coefficient

2
Figure 5.26. Variations of normalized central moments MC/(%) against a,, for

simply supported square plate subjected to uniform load using quartic spline weight

functions and regular node distribution withn, = 5.
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Table 5.23. Variations of normalized central deflections wc/(—;) of simply supported square plate subjected to uniform load using

irregular node distribution using quartic spline weight function with n, = 5.

Number of monomials

10

Value of penalty
coefficient

6

© 0o

2.5
0.406160
0.406160
0.406154
0.406140
0.406406
0.410263
0.406496
0.406496
0.406493
0.406589
0.405775
0.410250
0.000164
0.000027
0.002892
0.000824
0.001105
0.000832

3.0
0.406663
0.406663
0.406661
0.406653
0.407082
0.390615
0.406541
0.406541
0.406552
0.406340
0.405738
0.797125
0.406740
0.406743
0.406701
0.406369
0.399881
0.408988

75

3.5
0.406884
0.406884
0.406878
0.407263
0.403233
0.397850
0.406724
0.406723
0.406715
0.406732
0.406930
0.418938
0.406761
0.406758
0.406772
0.406219
0.402341
2.046256

Dimensionless size of support domain (o)

4.0
0.407259
0.407259
0.407271
0.407275
0.406768
0.408035
0.406887
0.406889
0.406859
0.406868
0.406493
0.158991
0.406908
0.406903
0.406917
0.406655
0.401290
0.386997

4.5
0.408340
0.408367
0.408532
0.408434
0.408135
0.376149
0.407140
0.407141
0.407144
0.412941
0.401575
0.372854
0.406984
0.406982
0.406967
0.406810
0.392903
1.485735

Exact

0.4064
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Figure 5.27. Variations of normalized central deflections w./ (%) against a,, for
simply supported square plate subjected to uniform load using quartic spline weight

functions and irregular node distribution with ny = 5.
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Table 5.24. Variations of normalized central moments MC/(%) of simply supported square plate subjected to uniform load using

irregular node distribution using quartic spline weight function with n, = 5.

Number of monomials

10

Value of penalty
coefficient
6
7
8
9
10
11

2.5
0487777
0.487719
0.487386
0.480718
0.463171
1.609723
0.488044
0.488293
0.488077
0.484345
0.450247
0.555949
-0.028252
-0.104334
-0.048502
0.555588
0.443912
1.133775

Dimensionless size of support domain (o)

3.0
0.498836
0.498959
0.498971
0.485348
0.099233
0.006072
0.470402
0.470451
0.471394
0.454101
0.543436
0.994598
0.454212
0.453278
0.447237
0.125224
1.683166

7.702520

77

3.5
0.510496
0.510468
0.512029
0.632008
0.834846
0.224897
0.470146
0.469549
0.481768
0.480443
0.007022
3.813639
0.568492
0.574682
0.514597
1.352816
11.354310

5346.3000

4.0
0.497278
0.497331
0.495936
0.512237
0.128121
0.268324
0.502782
0.503575
0.494887
0.453891
0.428636
2.254813
0.495713
0.492612
0.491597
0.779891
0.856711

64.356670

4.5
0.535784
0.539101
0.521160
0.563054
0.390597
0.592333
0.509977
0.509719
0.518118
0.176384
1.516732
2.125904
0.498427
0.505043
0.539705
0.381794
5.488006

86.438590

Exact

0.4789
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Figure 5.28. Variations of normalized central moments MC/(%) against a,, for

simply supported square plate subjected to uniform load using quartic spline weight

functions and irregular node distribution with n, = 5.
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5.4 Clamped circular plate under uniform load

A clamped circular plate is subjected to uniform transverse load as shown in
Fig. 5.29. The thickness, radius, Young's modulus and Poisson's ratio of the problem
areh=1,R=5,10.92 and v = 0.3, respectively. Due to the symmetry, one quarter
of the circular plate is modelled. In the models of quarter circular plate, 817 field nodes
and 768 background cells were used for regular and irregular node distributions. The
value of applied uniform transverse load P is 1 Pa. The normalized deflection and

normalized moment values for the use of cubic spline weight function are provided

from Table 5.25 to Table 5.32. Also, the utilization of quartic spline weight function
is presented from Table 5.33 to Table 5.40.

Figure 5.30. The EFGM models for a) regular node distributions, b) irregular node

distributions

Fig. 5.31 to Fig. 5.46 are used to depict the results of displacements and
moments. The survey of results show that displacements and moments do not exhibit
any fluctuations, except the moment values obtained using a, = 1 x 10'° for regular
node distribution, shown in Fig. 5.36 and Fig.5.44. Also, it is shown that the accuracy
of oy =3 is higher than the other values ofa,. The variations of
displacements/moments against number of gauss points in a background cell are small
so the variations can be neglected and any values between 4 and 8 can be used for
number of gauss points in a background cell. The number of gauss points in a

background cell is selected as 5 to increase the accuracy of the results.
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Table 5.25. Normalized central deflections wc/(%) of clamped circular plate subjected to uniform load for regular node distribution

using cubic spline weight function with a,, = 6.

Number of monomials Number_ of Dimensionless size of support domain (o) Exact
gauss points 25 3.0 35 4.0 45

3 4x4 0.184962 0.185032 0.185283 0.185462 0.185478 0.184821
5x5 0.184963 0.185033 0.185283 0.185453 0.185486
6x6 0.184963 0.185033 0.185288 0.185460 0.185478
77 0.184963 0.185033 0.185281 0.185460 0.185483
8x8 0.184962 0.185032 0.185285 0.185459 0.185524

6 4x4 0.184969 0.184976 0.185094 0.185484 0.185553
5x5 0.184968 0.184976 0.185087 0.185487 0.185551
6x6 0.184969 0.184976 0.185092 0.185485 0.185555
7x7 0.184969 0.184976 0.185089 0.185485 0.185550
8x8 0.184968 0.184975 0.185089 0.185484 0.185552

10 4x4 0.014055 0.171670 0.185078 0.185561 0.185747
5x5 0.012204 0.016623 0.185084 0.185548 0.185726
6x6 0.014806 0.033808 0.185075 0.185549 0.185731
=7 0.000114 0.016053 0.185079 0.185550 0.185729
8x8 0.001214 0.817412 0.185076 0.185549 0.185726
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Figure 5.31. Variations of normalized central deflections wc/(

100D

) against n, for

clamped circular plate subjected to uniform load using cubic spline weight functions

and regular node distribution with a,, = 6.
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Table 5.26. Normalized central moments MC/(%) of clamped circular plate subjected to uniform load for regular node distribution

using cubic spline weight function with a,, = 6.

Number of monomials

10

Number of
gauss points
4x4
5x5
6x6
<7
8x8
4x4
5x5
6%6
7x7
8x8
4x4
5x5
6x6
<7
8x8

2.5
0.803680
0.803677
0.803752
0.803742
0.803733
0.808700
0.806172
0.807652
0.806739
0.807389
96.711680
159.87640
231.55416
40.369640
3.2632990

Dimensionless size of support domain (o)

3.0
0.806758
0.806782
0.806785
0.806785
0.806755
0.796474
0.796241
0.796330
0.796369
0.796252
397.45560
113.93760
68.746000
26.492380
1643.1324

82

3.5
0.830426
0.830392
0.830788
0.830156
0.830739
0.793807
0.792974
0.793558
0.793311
0.793320
0.754975
0.749735
0.751476
0.750867
0.751800

4.0
0.846829
0.847048
0.847678
0.847701
0.847640
0.883111
0.884294
0.883861
0.883997
0.884050
0.962686
0.956152
0.955871
0.957365
0.957184

4.5
0.835969
0.836797
0.836002
0.836552
0.837486
0.909413
0.915492
0.913206
0.913641
0.913174
1.003314
0.984276
0.993536
0.986871
0.988544

Exact

0.812520
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Figure 5.32. Variations of normalized central moments MC/(%) against n, for

clamped circular plate subjected to uniform load using cubic spline weight functions

and regular node distribution with a, = 6.
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Table 5.27. Normalized central deflections w./ (—D) of clamped circular plate subjected to uniform load for irregular node

distribution using cubic spline weight function with a,, = 6.

Number of monomials

10

Number of
gauss points
4x4
5x5
6x6
<7
8x8
4x4
5x5
6%6
7x7
8x8
4x4
5x5
6x6
<7
8x8

pL
100

2.5
0.184961
0.184954
0.184956
0.184955
0.184954
0.184966
0.184963
0.184962
0.184962
0.184961
0.188267
0.185844
0.185682
0.185487
0.185302

Dimensionless size of support domain (o)

3.0
0.184999
0.184973
0.184965
0.184968
0.184964
0.184966
0.184965
0.184965
0.184965
0.184964
0.184985
0.184972
0.184970
0.184970
0.184968

84

3.5
0.185052
0.185003
0.184983
0.184981
0.184977
0.184987
0.184989
0.184972
0.184972
0.184971
0.184986
0.184982
0.184980
0.184979
0.184978

4.0
0.185027
0.185002
0.184990
0.184990
0.184987
0.185008
0.184991
0.184991
0.184987
0.184988
0.185033
0.185016
0.185013
0.185010
0.185010

4.5
0.185085
0.185039
0.185011
0.185013
0.185010
0.185038
0.185006
0.185000
0.185004
0.185001
0.185091
0.185046
0.185042
0.185035
0.185036

Exact

0.184821
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Figure 5.33. Variations of normalized central deflections w./ (%) against n, for
clamped circular plate subjected to uniform load using cubic spline weight functions

and irregular node distribution with a,, = 6.
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Table 5.28. Normalized central moments MC/(%) of clamped circular plate subjected to uniform load for irregular node distribution

using cubic spline weight function with a,, = 6.

Number of monomials

10

Number of
gauss points
4x4
5x5
6x6
<7
8x8
4x4
5x5
6%6
7x7
8x8
4x4
5x5
6x6
<7
8x8

2.5
0.810929
0.808365
0.811051
0.809719
0.810014
0.806641
0.814408
0.817937
0.819794
0.814991
14.83234
5.042916
2.420183
1.393982
0.975245

Dimensionless size of support domain (o)

3.0
0.808854
0.812443
0.809849
0.810609
0.810338
0.811434
0.810984
0.811097
0.810510
0.810326
0.840634
0.824141
0.809614
0.814234
0.805078
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3.5
0.795776
0.814607
0.811728
0.810031
0.811581
0.800688
0.812821
0.807876
0.807278
0.808130
0.814480
0.771214
0.794258
0.787720
0.792068

4.0
0.805922
0.808698
0.813395
0.809654
0.811285
0.788342
0.821233
0.813258
0.810308
0.812057
0.762316
0.815158
0.790916
0.795260
0.794044

4.5
0.809077
0.810368
0.811228
0.811775
0.812268
0.795006
0.811036
0.808849
0.809998
0.809152
0.799567
0.826136
0.804838
0.811654
0.806382

Exact

0.812520
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Figure 5.34. Variations of normalized central moments MC/(%) against n, for

clamped circular plate subjected to uniform load using cubic spline weight functions

and irregular node distribution with a,, = 6.
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100

4
Table 5.29. Variations of normalized central deflections WC/(_D) of clamped circular plate subjected to uniform load using regular

node distribution using cubic spline weight function with n, = 5.

Number of monomials

10

Value of penalty
coefficient
6
7
8
9
10
11

2.5
0.185249
0.185249
0.185249
0.185249
0.185250
0.185251
0.185256
0.185256
0.185256
0.185256
0.185257
0.185259
0.012204
0.293270
0.031030
0.144117
0.012006
0.000414

Dimensionless size of support domain (o)

3.0
0.185321
0.185321
0.185321
0.185321
0.185321
0.185323
0.185264
0.185264
0.185264
0.185264
0.185264
0.185261
0.016623
1.829059
0.019366
0.178680
0.150918
5.429067
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3.5
0.185573
0.185573
0.185573
0.185573
0.185590
0.185776
0.185378
0.185378
0.185378
0.185378
0.185375
0.185382
0.185365
0.185365
0.185365
0.185365
0.185366
0.185368

4.0
0.185747
0.185747
0.185746
0.185811
0.185802
0.186681
0.185772
0.185772
0.185772
0.185771
0.185777
0.185763
0.185837
0.185837
0.185837
0.185838
0.185837
0.185763

4.5
0.185768
0.185769
0.185770
0.185977
0.185436
0.185336
0.185841
0.185841
0.185840
0.185830
0.185822
0.185288
0.186014
0.186014
0.186014
0.186015
0.186021
0.186054

Exact

0.184821
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Figure 5.35. Variations of normalized central deflections w./ (L) against a,, for
100D p
clamped circular plate subjected to uniform load using cubic spline weight functions

and regular node distribution with n, = 5.
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Table 5.30. Variations of normalized central moments MC/(%) of clamped circular plate subjected to uniform load using regular node

distribution using cubic spline weight function with n, = 5.

Number of monomials = Value of penalty Dimensionless size of support domain (c) Exact
coefficient 2.5 3.0 3.5 4.0 45

B 6 0.793561 0.796388 0.825787 0.850086 0.838228 0.81252
7 0.793562 0.796388 0.825789 0.850072 0.838263
8 0.793563 0.796388 0.825777 0.849728 0.838316
9 0.793565 0.796380 0.825856 0.857181 0.846872
10 0.793692 0.796490 0.826983 0.893778 0.800843
11 0.793583 0.795175 0.861890 0.836395 0.817878
6 6 0.805522 0.792724 0.786690 0.881132 0.914100
7 0.805523 0.792724 0.786688 0.881133 0.914108
0.805518 0.792723 0.786698 0.881098 0.913649
9 0.805474 0.792770 0.786643 0.880908 0.913589
10 0.805580 0.792700 0.787733 0.878576 0.986539
11 0.807486 0.798771 0.789675 0.860875 0.568828
10 6 1.013229 -0.396900  0.748127 0.954821 0.989044
7 -6.858128 -57.192240  0.748127 0.954814 0.989024
8 -0.039958 -0.658937 0.748126 0.954852 0.988741
9 1.337568 2.697877 0.748397 0.955136 0.990875
10 0.555053 0.653587 0.747854 0.949300 1.016872
11 0.312506 26.801572  0.733828 0.943248 0.779644
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Figure 5.36. Variations of normalized central moments MC/(%) against a, for

clamped circular plate subjected to uniform load using cubic spline weight functions
and regular node distribution with n, = 5.
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Table 5.31. Variations of normalized central deflections WC/(_D) of clamped circular plate subjected to uniform load using irregular

pL
100

node distribution using cubic spline weight function with n, = 5.

Number of monomials

10

Value of penalty
coefficient

6

© 0

2.5
0.184954
0.184954
0.184954
0.184954
0.184954
0.184954
0.184963
0.184963
0.184963
0.184963
0.184962
0.184965
0.194294
0.194956
0.193388
0.225898
0.612754
3.991302

Dimensionless size of support domain (o)

3.0
0.184973
0.184973
0.184973
0.184973
0.184973
0.184974
0.184965
0.184965
0.184965
0.184965
0.184965
0.184967
0.184972
0.184972
0.184972
0.184972
0.184971
0.184966

92

3.5
0.185003
0.185003
0.185003
0.185003
0.185002
0.185000
0.184973
0.184973
0.184973
0.184973
0.184973
0.184972
0.184982
0.184982
0.184982
0.184982
0.184982
0.184977

4.0
0.184579
0.185002
0.185002
0.185002
0.185001
0.184989
0.184991
0.184991
0.184991
0.184991
0.184991
0.184988
0.185016
0.185016
0.185016
0.185017
0.185015
0.185007

4.5
0.185039
0.185039
0.185039
0.185040
0.185982
0.185074
0.185006
0.185006
0.185006
0.185005
0.185016
0.185195
0.185046
0.185046
0.185046
0.185046
0.185044
0.185061

Exact

0.184821
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Figure 5.37. Variations of normalized central deflections w./ (%) against a,, for

clamped circular plate subjected to uniform load using cubic spline weight functions

and irregular node distribution with n, = 5.
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Table 5.32. Variations of normalized central moments MC/(%) of clamped circular plate subjected to uniform load using irregular

node distribution using cubic spline weight function with n, = 5.

Number of monomials

10

Value of penalty
coefficient

6

© 00

2.5
0.806297
0.806298
0.806298
0.806256
0.806448
0.802864
0.815844
0.815844
0.815848
0.816026
0.814844
0.818396
-4.873900
-4.834712
-5.647452
-15.31885
99.782560

Dimensionless size of support domain (o)

3.0
0.807521
0.807521
0.807531
0.807446
0.807646
0.813909
0.809876
0.809876
0.809918
0.809768
0.808537
0.819513
0.805180
0.805181
0.805126
0.804704
0.803400
0.791174

94

3.5
0.809430
0.809431
0.809428
0.809409
0.808948
0.808067
0.807320
0.807320
0.807326
0.807197
0.807092
0.804920
0.791402
0.791399
0.791389
0.790996
0.794435
0.765158

4.0
0.808711
0.808711
0.808708
0.808713
0.808606
0.812605
0.810871
0.810871
0.810819
0.810514
0.809416
0.799838
0.793544
0.793561
0.793772
0.793589
0.794284
0.775530

4.5
0.810942
0.810942
0.810939
0.810897
0.808491
0.816746
0.807294
0.807294
0.807301
0.807252
0.808359
0.821350
0.805440
0.805439
0.805431
0.805426
0.802448
0.805649

Exact

0.81252
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Figure 5.38. Variations of normalized central moments MC/(%) against a,, for

clamped circular plate subjected to uniform load using cubic spline weight functions

and irregular node distribution with n, = 5.
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Table 5.33. Variations of normalized central deflections w./(pL*/100D) of clamped circular plate subjected to uniform load using

regular node distribution using quartic spline weight function with o, = 6.

Number of monomials

10

Number of
gauss points
4x4
5x5
6x6
<7
8x8
4x4
5x5
6%6
7x7
8x8
4x4
5x5
6x6
<7
8x8

2.5
0.184979
0.184982
0.184980
0.184981
0.184980
0.184968
0.184967
0.184967
0.184967
0.184966
0.073116
0.587254
0.255416
0.001037
0.001275

Dimensionless size of support domain (o)

3.0
0.185018
0.185022
0.185021
0.185021
0.185020
0.185002
0.185002
0.185002
0.185002
0.185001
3.204494
0.018966
0.881927
0.088467
0.207537

96

3.5
0.185092
0.185099
0.185093
0.185097
0.185094
0.185203
0.185198
0.185202
0.185199
0.185200
0.185167
0.185164
0.185159
0.185161
0.185159

4.0
0.185065
0.185065
0.185064
0.185065
0.185063
0.185209
0.185210
0.185209
0.185210
0.185208
0.185542
0.185533
0.185534
0.185533
0.185531

4.5
0.185230
0.185237
0.185236
0.185236
0.185263
0.185281
0.185270
0.185275
0.185272
0.185272
0.185588
0.185573
0.185575
0.185575
0.185574

Exact

0.184821



. 10030
o
& 10025 X
& H— ¥ ¢ %
o 1.0020 —HE—0s=2.5
=
® o 1.0015 —6—05=3.0
J==
% ; 10010 é =, =] & £l 0s=3.3
< 3 1.0005 ¢ as=40
2'C —
S 1.0000 T os=AS
@ Exact
= 0.9995
£ 4 5 6 7 8
o
z Number of Gauss points in a background cell

m=6
- 1.0030
3 1.0025 —S— ¢ 3 X
c
§ 1.0020 = = —F—0s=2.5
=
® o 1.0015 —6—05=3.0
J=R
g 210010 < < < 0s=3.5
8 "_:U = = = =) £] 3_4 O
< o 1.0005 = as=4.
2'C —
S " 10000 T os=AS
g Exact
= 0.9995
£ 4 5 6 7 8
o
z Number of Gauss points in a background cell

m=10
. 10
o 10— o % % X
i
L
g .
5 g 1.0 as=3.5
g_g_lﬂ ~
£ 10 —>—as=4.0
2310 —¥—05=4.5
o .=
2°10 Exact
§ 1.0
= 10
IS 4 5 6 7 8
o
z Number of Gauss points in a background cell

4
Figure 5.39. Variations of normalized central deflections w./ (i) against n, for
100D 9
clamped circular plate subjected to uniform load using quartic spline weight functions

and regular node distribution with a, = 6.
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Table 5.34. Variations of normalized central moments MC/(%) of clamped circular plate subjected to uniform load using regular node

distribution using quartic spline weight function with a,, = 6.

Number of monomials Number of Dimensionless size of support domain (o) Exact
gauss points 2.5 3.0 35 4.0 45

3 4x4 0.803216 0.807935 0.812038 0.811658 0.815952 0.812520
5x5 0.803409 0.808044 0.812407 0.811622 0.816192
6x6 0.803395 0.808066 0.812097 0.811561 0.816113
=7 0.803357 0.808029 0.812311 0.811604 0.816105
8x8 0.803412 0.808028 0.812171 0.811592 0.816606

6 4x4 0.808403 0.785755 0.816451 0.812367 0.826805
5x5 0.803875 0.785271 0.815545 0.813038 0.826578
6x6 0.806252 0.785532 0.816040 0.812943 0.826437
7x7 0.804720 0.785431 0.815930 0.812971 0.826502
8x8 0.805755 0.785372 0.815736 0.812914 0.826489

10 4x4 31.251156  -839.6852 0.805688 0.965372 0.906891
5x5 4.7317120 -1.231550 0.806454 0.951697 0.899088
6%6 244.81044  213.328960 0.803503 0.949618 0.902025
=7 -15.090472  321.223240 0.805454 0.953758 0.900464
8x8 -12.727712  388.400040 0.805672 0.952396 0.900643
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Figure 5.40. Variations of normalized central moments M./ (%) against n, for

clamped circular plate subjected to uniform load using quartic spline weight functions

and regular node distribution with a,, = 6.
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Table 5.35. Variations of normalized central deflections WC/(_D) of clamped circular plate subjected to uniform load using irregular

pL
100

node distribution using quartic spline weight function with a,, = 6.

Number of monomials

10

Number of
gauss points
4x4
5x5
6x6
<7
8x8
4x4
5x5
6%6
7x7
8x8
4x4
5x5
6x6
<7
8x8

2.5
0.184954
0.184957
0.184952
0.184953
0.184951
0.184974
0.184965
0.184963
0.184964
0.184962
0.188686
0.186088
0.185740
0.185560
0.185348

Dimensionless size of support domain (o)

3.0
0.184991
0.184973
0.184966
0.184968
0.184965
0.184976
0.184969
0.184968
0.184969
0.184967
0.185024
0.184983
0.184979
0.184976
0.184974

100

3.5
0.184997
0.184981
0.184972
0.184972
0.184970
0.184998
0.184983
0.184980
0.184980
0.184979
0.185021
0.185015
0.185005
0.185002
0.185000

4.0
0.185010
0.184978
0.184975
0.184973
0.184972
0.185022
0.185007
0.185002
0.185000
0.185000
0.185083
0.185037
0.185031
0.185026
0.185026

4.5
0.185061
0.184994
0.184987
0.184984
0.184984
0.185043
0.185007
0.185001
0.185000
0.184998
0.185098
0.185062
0.185053
0.185050
0.185049

Exact

0.184821
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Figure 5.41. Variations of normalized central deflections w./ (i) against n, for
100D 9
clamped circular plate subjected to uniform load using quartic spline weight functions

and irregular node distribution with a,, = 6.
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Table 5.36. Variations of normalized central moments MC/(%) of clamped circular plate subjected to uniform load using irregular

node distribution using quartic spline weight function with a,, = 6.

Number of monomials

10

Number of
gauss points
4x4
5x5
6x6
<7
8x8
4x4
5x5
6%6
7x7
8x8
4x4
5x5
6x6
<7
8x8

2.5
0.804040
0.811428
0.808846
0.809623
0.808738
0.802242
0.809645
0.816418
0.819568
0.811520
0.800306
0.731032
0.772068
0.758465
0.766742

Dimensionless size of support domain (o)

3.0
0.802575
0.811770
0.808862
0.809502
0.809311
0.791169
0.802359
0.798713
0.798002
0.797916
0.800306
0.818052
0.804206
0.817425
0.796136

102

3.5
0.808092
0.811144
0.811272
0.811158
0.810990
0.803957
0.801746
0.801013
0.799454
0.800636
0.851540
0.731032
0.772068
0.758465
0.766742

4.0
0.813732
0.810076
0.812296
0.810939
0.811592
0.790910
0.812815
0.805444
0.806072
0.805559
0.751181
0.814384
0.795138
0.795084
0.793900

4.5
0.819422
0.811360
0.813214
0.812107
0.812608
0.806595
0.807682
0.808402
0.808520
0.807921
0.816967
0.804134
0.791816
0.799176
0.792316

Exact

0.812520
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Figure 5.42. Variations of normalized central moments M./ (%) against n, for

clamped circular plate subjected to uniform load using quartic spline weight functions

and irregular node distribution with a,, = 6.
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Table 5.37. Variations of normalized central deflections WC/(_D) of clamped circular plate subjected to uniform load using regular

pL
100

node distribution using quartic spline weight function with n, = 5.

Number of monomials

10

Value of penalty
coefficient

6

© 00

2.5
0.184982
0.184982
0.184982
0.184982
0.184982
0.184982
0.184967
0.184967
0.184967
0.184967
0.184967
0.184966
0.587254
0.046057
0.030590
0.032774
0.201877
0.062664

Dimensionless size of support domain (o)

3.0
0.185022
0.185022
0.185022
0.185022
0.185022
0.185018
0.185002
0.185002
0.185002
0.185002
0.185002
0.185001
0.018966
0.000554
0.131359
0.034070
0.056659
0.038410

104

3.5
0.185099
0.185099
0.185099
0.185099
0.185099
0.185101
0.185198
0.185198
0.185198
0.185198
0.185200
0.185198
0.185164
0.185164
0.185164
0.185164
0.185164
0.185164

4.0
0.185065
0.185065
0.185065
0.185065
0.185066
0.185063
0.185210
0.185210
0.185210
0.185210
0.185210
0.185205
0.185533
0.185533
0.185533
0.185532
0.185534
0.185545

4.5
0.185237
0.185237
0.185237
0.185238
0.185259
0.185009
0.185270
0.185270
0.185270
0.185270
0.185278
0.185299
0.185573
0.185573
0.185573
0.185574
0.185573
0.185577

Exact

0.184821
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Figure 5.43. Variations of normalized central deflections w./ (—D) against a,, for

clamped circular plate subjected to uniform load using quartic spline weight functions

and regular node distribution with n, = 5.
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Table 5.38. Variations of normalized central moments MC/(%) of clamped circular plate subjected to uniform load using regular node

distribution using quartic spline weight function with n, = 5.

Number of monomials = Value of penalty Dimensionless size of support domain (o) Exact

coefficient 25 3.0 35 4.0 45

3 6 0.793561 0.796388 0.825787 0.850086 0.838228 0.81252
7 0.793562 0.796388 0.825789 0.850072 0.838263
8 0.793563 0.796388 0.825777 0.849728 0.838316
9 0.793565 0.796380 0.825856 0.857181 0.846872
10 0.793692 0.796490 0.826983 0.893778 0.800843
11 0.793583 0.795175 0.861890 0.811790 0.817878
6 6 0.805522 0.792724 0.786690 0.881132 0.914100
7 0.805523 0.792724 0.786688 0.881133 0.914108
8 0.805518 0.792723 0.786698 0.881098 0.913649
9 0.805474 0.792770 0.786643 0.880908 0.913589
10 0.805580 0.792700 0.787733 0.878576 0.986539
11 0.807486 0.798771 0.789675 0.860875 0.568828
10 6 4731712 -1.231550 0.748127 0.954821 0.989044
7 -4.077584 -14.86779 0.748127 0.954814 0.989024
8 10.518148  372.40796  0.748126 0.954852 0.988741
9 27.793320  55.000480  0.748397 0.955136 0.990875
10 960.83960  130.99592  0.747854 0.949300 1.016872
11 -88.41152 -3.352686 0.733828 0.943248 0.779644
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Figure 5.44. Variations of normalized central moments MC/(%) against a,, for

clamped circular plate subjected to uniform load using quartic spline weight functions

and regular node distribution withn, = 5.
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Table 5.39. Variations of normalized central deflections WC/(_D) of clamped circular plate subjected to uniform load using irregular

pL
100

node distribution using quartic spline weight function with n, = 5.

Number of monomials

10

Value of penalty
coefficient

6

© 0o

2.5
0.184957
0.184957
0.184957
0.184957
0.184957
0.184957
0.184965
0.184965
0.184965
0.184965
0.184965
0.184966
0.186088
0.184983
0.184983
0.184983
0.184983
0.184979

Dimensionless size of support domain (o)

3.0
0.184973
0.184973
0.184973
0.184973
0.184973
0.184973
0.184969
0.184969
0.184969
0.184969
0.184969
0.184968
0.184983
0.184983
0.184983
0.184983
0.184983
0.184979

108

3.5
0.184981
0.184981
0.184981
0.184981
0.184981
0.184981
0.184983
0.184983
0.184983
0.184983
0.184983
0.184984
0.185015
0.185015
0.185015
0.185015
0.185014
0.185019

4.0
0.184978
0.184978
0.184978
0.184978
0.184978
0.184979
0.185007
0.185007
0.185007
0.185007
0.185007
0.185007
0.185037
0.185037
0.185037
0.185037
0.185039
0.185011

4.5
0.184994
0.184994
0.184994
0.184994
0.184994
0.184990
0.185007
0.185007
0.185007
0.185007
0.185006
0.185008
0.185062
0.185062
0.185062
0.185062
0.185062
0.185076

Exact

0.184821
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Figure 5.45. Variations of normalized central deflections w./ (%) against a,, for
clamped circular plate subjected to uniform load using quartic spline weight functions

and irregular node distribution withn, = 5.
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Table 5.40. Variations of normalized central moments MC/(%) of clamped circular plate subjected to uniform load using irregular

node distribution using quartic spline weight function with n, = 5.

Number of monomials

10

Value of penalty
coefficient

6

© 0o

2.5
0.806297
0.806298
0.806298
0.806256
0.806448
0.802864
0.815844
0.815844
0.815848
0.816026
0.814844
0.818396
-7.026600
-6.999436
-6.925176
-3.056648
12.080536
256.58380

Dimensionless size of support domain (o)

3.0
0.807521
0.807521
0.807531
0.807446
0.807646
0.813909
0.809876
0.809876
0.809918
0.809768
0.808537
0.819513
0.805180
0.805181
0.805126
0.804704
0.803400
0.791174

110

3.5
0.809430
0.809431
0.809428
0.809409
0.808948
0.808067
0.807320
0.807320
0.807326
0.807197
0.807092
0.804920
0.791402
0.791399
0.791389
0.790996
0.794435
0.765158

4.0
0.808711
0.808711
0.808708
0.808713
0.808606
0.812605
0.810871
0.810871
0.810819
0.810514
0.809416
0.799838
0.793544
0.793561
0.793772
0.793589
0.794284
0.775530

4.5
0.810942
0.810942
0.810939
0.810897
0.808491
0.816746
0.807294
0.807294
0.807301
0.807252
0.808359
0.821350
0.805440
0.805439
0.805431
0.805426
0.802448
0.805649

Exact

0.81252
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Figure 5.46. Variations of normalized central moments MC/(%) against a,, for

clamped circular plate subjected to uniform load using quartic spline weight functions

and irregular node distribution with n, = 5.
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CHAPTER 6
CONCLUSIONS AND RECOMMENDATIONS

The effects of selectable parameters: size of support domain, number of
monomials, type of weight function, number of integration points in a background cell
and value of penalty coefficient, on the accuracy of the EFGM solution of the Reissner-
Mindlin plate bending are investigated. Three plate bending problems which are
accepted as benchmark problems are solved using regular and irregular node
distributions. The results of the problems show that small support domains give more
accurate and more stable results. It is shown that the number of gauss points in a
background cell, at the examined range, don't have so much effect on the accuracy of
results. Also, the value of penalty coefficient does not exhibit any accuracy loss or
fluctuation up to 1 x 108. There are some differences found between cubic spline and
quartic spline weight functions and it seems that quartic spline weight function is more
stable and less sensitive to values of selectable parameters. These assessments are valid
for both displacement and moment. However, it is shown that the accuracy of

displacement results are higher than the accuracy of moment results.

According to the results of problems; 3.0, 5 x 5, 1 x 10° can be suggested for
dimensionless size of support domain , number of gauss points in a background cell,
and value of penalty coefficient, respectively. These values may not be the optimum
values for every situation, however, in general, give the results with sufficient

accuracy.
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