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ABSTRACT 

 

 

APPLICATION OF MESHFREE EFG METHOD IN PLATE PROBLEMS 
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M.Sc. in Mechanical Eng. 

Supervisor: Assist. Prof. Dr. Ö. Yavuz BOZKURT 

Nov 2014, 119 pages 

 

 

 

In this work, the effects of selectable parameters of Element-Free Galerkin 

Method (EFGM); such as type of weight functions, size of support domain, number of 

gauss points, number of monomials and value of penalty coefficient, on the solution 

accuracy of the Reissner-Mindlin plate bending problems are investigated. 

An EFGM source code using MATLAB has been written for the solutions of 

plate bending problems. Several plate bending problems were solved using the 

MATLAB source code and the results of EFGM solutions are compared with the 

results of analytical solutions. 
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ÖZET 

 

 

PLAKA PROBLEMLERİ İÇİN ELEMAN BAĞIMSIZ GALERKİN 

YÖNTEMİ UYGULAMASI 
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Yüksek Lisans Tezi, Mak Müh. Bölümü 

Tez Yöneticisi: Yrd.Doç.Dr. Ömer Yavuz BOZKURT 

Kasim 2014, 119 sayfa 

 

 

 

Bu çalışmada, Eleman Serbest Galerkin Yönteminin (EFGM) ağırlık fonksiyon 

türü, destek etki büyüklüğü, arka plan hücrelerindeki entegrasyon nokta sayısı, 

monomiyallerin derecesi ve ceza katsayısı değeri gibi seçilebilir parametrelerinin 

plaka bükme problemlerinde çözüm doğruluğuna etkisi araştırılmıştır. 

MATLAB kullanarak, plaka bükme problemlerinin çözümleri için bir EFGM 

kaynak kodu yazılmıştır. Çeşitli plaka bükme problemleri, MATLAB kaynak kodu 

kullanılarak çözülmüş ve EFGM çözümlerinin sonuçları analitik sonuçları ile 

karşılaştırılmıştır. 
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CHAPTER 1 

INTRODUCTION 

1.1 General Introduction 

The Finite Element Method (FEM), Boundary Element Method (BEM), and 

Finite Difference Method (FDM) are the popular methods in the field of numerical 

simulation methods. These methods are successfully used in the solutions of several 

engineering and scientific problems. The most important reasons behind this success 

are unified formulations for different approximation schemes, ability to tackle 

problems with irregular boundaries, ability to deal with complex boundary conditions, 

easy modifications to improve solution quality and handling non-linear problems with 

linear approximations. 

Despite these impressive features, FEM and BEM has the following 

shortcomings; 

- Inadequate results near the boundary of the problem domain, 

- Requirement of re-meshing for the regions enclosing geometry changes, 

- Discontinuities for derivatives of field variables at the boundaries of elements, 

and 

- Mesh quality dependent solution. 

The discretization scheme of FEM and BEM is the origin of these 

shortcomings. Meshfree methods are the recently developed numerical methods to 

eliminate/alleviate the issues mentioned above using a new discretization approach. In 

Meshfree methods, the problem domain and its boundaries are defined by a set of 

arbitrarily scattered nodes. The interpolation of field variables are carried out using 

momentarily selected field nodes for construction of local domains. Obtaining a 

numerical method superior over the conventional numerical methods, by means of 

removing errors caused by the mesh, is the aim of Meshfree methods. However, these 

methods are new and in the development stage. They have some issues such as 

stability, efficiency, etc. to be solved. 
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1.2 Research Objectives and Tasks 

The main objective of this study is the investigation of effects of selectable 

parameters of EFGM, such as weight functions, size of support domain, number of 

gauss points in a background cell, value of penalty coefficient and order of monomials, 

on the accuracy of plate bending problems. 

The research tasks can be shown as follows:  

I. Revise of the Element-Free Galerkin methods in the literature. 

II. Revise of the Moving Least Squares approximation scheme in the 

literature. 

III. Construction of shape functions using the Moving Least Squares. 

IV. Implementation of the MLS shape functions to EFG method. 

V. Development of a MATLAB source code to implement the EFGM in 

plate problems. 

VI. Solution of plate bending problems using the EFG method. 

VII. Investigation of effects of the selectable parameters. 

1.3 Layout of Thesis 

A short literature review about the Meshfree methods and a special review for 

element free Galerkin method are presented in chapter two. The basic concepts of 

element free Galerkin method is summarized in chapter three. In chapter four, 

solutions of some benchmark problems using different values of selectable parameters 

and the discussions of the results are presented. The conclusions are introduced in 

chapter five. 
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CHAPTER 2 

LITERATURE SURVEY 

2.1 Introduction 

A brief literature review related with Meshfree methods is given in this section. 

According to the interpolation and integration techniques used in, several types of 

meshfree methods can be found in the literature. Some of them are Smoothed Particle 

Hydro-dynamics (SPH) [1,2], Diffuse Element Method (DEM) [3], Element-Free 

Galerkin Method [4], Reproducing Kernel Particle Method (RPKM) [5], Point 

Interpolation Method (PIM) [6], Meshless Local-Petrov Galerkin (MLPG) [7], Natural 

Element Method [8] and Finite Particle Method (FPM) [9]. 

The brief reviews of the SPH method, the DEM, the PIM and the MLPG 

method are presented in Section 2.2. The literature review of EFGM, subject of the 

study, is represented in Section 2.3. 

2.2 General Review of Some Mesh-Free Methods 

2.2.1 Smoothed Particle Hydrodynamics Method 

The SPH method which can be considered as the ancestor of meshfree methods 

was proposed by Lucy [1], Gingold and Monaghan [2]. It was developed to understand 

the astrophysical phenomena by means of numerical simulation. A set of moving 

particles which doesn’t have any predefined relations are used to represent physical 

problem domain. The mathematical model of physical problem is constructed using 

partial differential equations which are transformed into selected finite integral form 

to compute integral over the particles [10]. Since its inception, SPH has a constantly 

evolving application areas such as fluid dynamics [11], explosion [12], large 

deformations and fracture in solid continuums [13]. However, SPH method is not 

foolproof; it has stability and consistency problems, especially in solid mechanics [14]. 

2.2.2 Diffuse Element Method 

The DEM proposed by Nayroles et al [3] is the initial example of meshfree 

methods based on Galerkin weak form. The difference between FEM and DEM is the 
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field approximation. The field approximation of the DEM is obtained for local 

domains using Moving Least Squares (MLS) approximation and these local domains 

contain varying numbers of nodes [3]. 

2.2.3 Point Interpolation Method 

PIM is a meshfree method which was firstly proposed by Liu [6]. The field 

variables at a point are interpolated from the field values of local domain of the point. 

The interpolation functions are constructed using polynomials selected from the 

Pascal’s triangle [15]. The interpolation functions possess the delta Kronecker 

property which simplifies the enforcement of boundary conditions by eliminating extra 

algorithm requirements for implementation of boundary conditions as in some 

meshfree methods [16]. This simplifies the computation procedure of the PIM and it 

also increases the computational efficiency of the PIM. 

Besides the advantages of PIM, singularity of moment matrix is the gap of PIM 

which avoids the construction of interpolation functions [17]. Some algorithms have 

been proposed to overcome the singularity problem such as transformation of 

coordinates of points in a local domain [18], matrix triangularization algorithm [19] 

and diagonal offset algorithm [20]. However, these methods cannot guarantee the 

elimination of singularity problem permanently. 

The replacement of polynomial basis function with radial basis function is 

another method to handle the singularity problem of PIM [21]. The PIM based on 

radial basis function is called as Radial Point Interpolation Method (RPIM) [22]. It 

solves the singularity problem and some order of monomials can be added to guarantee 

the elimination of singularity problem permanently. However, the accuracy and 

computational efficiency of RPIM is less than the PIM. 

The applications of PIM to various engineering problems, such as 2D and 3D 

problems [22], beams and shells [22], static deformation problems [22], buckling [23], 

thermoplastic problems [24], plate bending problems [25], dynamic response of thin 

and thick plates [26] and composite laminated plates [27] are found in the literature. 
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2.2.4 Meshless Local-Petrov Galerkin 

Meshless local Petrov-Galerkin method (MLPG) is a real meshfree method 

which doesn't require any background cells (or elements) for interpolation or 

integration process. This method was proposed by Atluri and Zhu [7], and later 

developed by Atluri and Shen [28]. The replacement of global weak form with the 

local weak forms generated by using overlapping local domains is the main difference 

between (MLPG) and finite element method. Integration of the weak form is 

performed on the local sub-domains with ordinary geometrical shapes, therefore there 

is need to background cells (or elements) for integration or interpolation purposes. 

Element connectivity is not a necessity and only nodal information is required, which 

leads to a simple and suitable pre-processing. Because of this, wide range of 

engineering applications of the MLPG can be found in the literature, such as 2-D 

elasto-statics [22], plate problems [29]; 2-D elasto-dynamics [30], fluid mechanics 

[31], large deformation problems [32]; convection-diffusion problems [31], fracture 

mechanics, [33]; analyses of shell deformations [22]; and dynamics problems [21]. 

2.3 Element-Free Galerkin Method 

The original EFG method was proposed by Belytschko et al. [4]. The 

approximation procedure of EFGM is based only on nodes, so it doesn't require any 

mesh generation or remeshing operations. However, a set of background cells is used 

to take integral of Galerkin weak form. By comparing this method with the finite 

element method, it's shown that the EFG method has the advantages of rapid 

convergence [34, 36], and also a smooth stress solution can be obtained without post-

processing. However, the computational cost of EFG method is higher than of FEM 

[28]. This is because the node searching has to be performed and a set of algebraic 

equations should be solved to compute the MLS shape functions for each sampling 

point and also the requirement of more nodes for the construction of the MLS shape 

functions lead to larger band width for the resultant system matrix [22]. 

In the EFGM, the problem domain and its boundaries are represented by a set 

of arbitrary distributed nodes. The irregularity of node distribution does not suffer 

much degradation in accuracy [22]. Because of that, EFGM becomes one of the 

promising meshfree methods. The accuracy of the EFGM have been reported as good 

by scientists [21]. 
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Despite the above significant advantages, the Kronecker delta criterion cannot 

be satisfied by MLS approximation and there is no resemblance between the essential 

boundary conditions in the EFG method and the conventional FEM. To solve this 

problem, in the last previous years, many specified techniques for the enforcement of 

essential boundary conditions in mesh-free methods have been proposed. Such as the 

penalty method [36], the Lagrange multiplier method [37], coupling of EFGM with 

FEM [38], and employment of singular weight functions [39]. 

The EFGM has been successfully applied to a large assortment of problems, 

including solid mechanics, fluid mechanics, heat transfer, and electromagnetic field 

problems. In solid mechanics, a variety of elastic and plastic applications of EFG 

method can be found for two-dimensional (2-D) and three-dimensional (3-D) 

problems such as; plane stress [40], plane strain [41], axisymmetric [42], beams [43], 

shell [44] and plate problems [45]. Fluid-structure interaction problems [46], 

incompressible flow problems [48], free surface flow [49] problems are some of the 

fluid mechanics applications of EFG method. The successful applications of heat 

transfer problems can be summarized as steady state and transient heat conduction 

analyses [2, 5], axisymmetric heat transfer problems [10], heat transfer of composite 

slabs [12], heat flow [11], and moving heat source problems [13]. The simple list of 

electromagnetic field applications are 3D electromagnetic field [50], static and quasi-

static electromagnetic field [51], 2D electromagnetic wave scattering [52], 

electromagnetic scattering [53], axisymmetric electromagnetic [54] problems. 

EFGM serves high convergence rates, stable solutions, and, application 

flexibility by the elimination of mesh requirement. Because of these, EFGM has 

become one of the best choice to solve fracture mechanics and crack propagation 

problems. In the EFGM, a growing crack can be modelled easily by extending the 

surfaces that match to the crack without the need for remeshing. Several fracture 

mechanics and crack growth analysis [55, 56] using EFGM can be found in the 

literature. Also, many arguments on the implementation advantages of the EFG and 

other meshfree methods over FEM in solving crack propagation problems have been 

reported [57]. For example, Belytschko et al. [58] state that, in the recent years, finite 

element schemes with remeshing have been used to solve growing crack problems. 
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In addition, many techniques have been proposed of coupling EFG method 

with FEM [38]. All these applications and extensions denote that the EFG method is 

progressively becoming a mature and practical computational approach within the 

group of computational mechanics, the benefit behind using the MLS approximation 

is to achieve stability in function approximation, and use of Galerkin procedure to 

provide stable and well behaved discretized global system equations. 

2.4 Element-Free Galerkin Method in the Solution of Plate Bending Problems 

The plate structures have a variety of engineering applications with several 

geometries and loading conditions. Because of this, the analysis of plates are very 

important for engineers. The analytical solutions of plate’s structures for complex 

geometries and complex loading conditions are very difficult. The numerical solutions 

have been developed using different schemes such as; FEM, BEM, and meshfree 

methods. 

The EFG method is one of the meshfree methods that widely used in the 

analysis of plate structures. Krysl and Belytschko have used it for the static analysis 

of thin plates [45]. The EFG method has been also used for the bending analysis of 

Kirchhoff plates [59], Mindlin-Reissner plates [60], laminated composite plates [61], 

and thick plates [62]. The buckling [63], vibration [64], elasto-plastic [65], and crack 

[66] analysis of plates are found in the literature. 

The EFG method has shear locking issue for the higher order plate theories 

[67]. To eliminate shear locking issue, several techniques were proposed such as; use 

of higher order basis [68] and use of first derivatives of shape functions as shape 

functions for rotations [69] 

2.5 Conclusions on Literature Survey 

The literature review shows that the EFG method has some selectable 

parameters that affect the accuracy of solutions such as; 

- size of support domain, 

- number of polynomial basis, 

- type of weight function, 

- number of integration points and 

- value of penalty coefficient. 
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The effects of these selectable parameters on the accuracy of the solution of Reissner-

Mindlin plate bending are not well defined and examined. 
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CHAPTER 3 

PLATE THEORIES 

3.1 Introduction 

A plate is a flat structure and has a very small thickness in comparison to the 

other two dimensions. The applied forces of a plate are transverse loads through 

bending.  

 

Figure 3.1. Plate subjected to transverse loads. 

In the literature, several theories are present to analyse the deflections and 

stresses in plates. However, in this section, short reviews of two plate theories are 

presented about bending of the plates. These theories are as follows;  

- Kirchhoff plate theory, 

- Reissner-Mindlin plate theory. 

The Kirchhoff and Reissner-Mindlin plate theories are presented with 

governing equations in the following parts of the chapter. 

3.2 Review of The Plate Theories 

3.2.1 Kirchhoff Plate Theory 

The Kirchhoff plate theory is also known as the classical plate theory (CPT). It is 

used for thin plates. It is based upon assumptions initiated for beams by Bernoulli but 
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first applied to plates and shells by Kirchhoff. Basically, three assumptions are used to 

reduce the equations of three dimensional theory of elasticity to two dimensions [70]: 

- Normal to the mid-plane before deformation remain straight and normal to the 

mid-plane after deformation. 

- Transverse direct and shear stress effects are negligible. 

- Deflections are small compared with the plate thickness. 

 

                                             a)                                                               b) 

Figure 3.2. Deformation according to Kirchhoff plate cross-section 

 a) 𝑦 − 𝑧 plane, b) 𝑥 − 𝑧 plane 

The displacements of in-plane axes 𝑥 and 𝑦 are 𝑢 and 𝑣 that can be expressed 

as 

𝑢 = −𝑧
𝜕𝑤

𝜕𝑥
                                                             (3.1) 

𝑣(𝑥, 𝑦, 𝑧) = −𝑧 
𝜕𝑤

𝜕𝑦
                                              (3.2) 

where 𝑧 is the direction of the plate thickness. 

Since transverse shear deformations are neglected, the strains can be written as 

{ 𝜖𝑥  𝜖𝑦  𝛾𝑥𝑦 } =  −𝑧 { 𝐾𝑥  𝐾𝑦  𝐾𝑥𝑦 }                         (3.3) 

where 𝐾, is the curvature, 
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{𝐾}𝑇 = { 𝐾𝑥  𝐾𝑦  𝐾𝑥𝑦 } = { 
𝜕2𝑤

𝜕𝑥2
  
𝜕2𝑤

𝜕𝑦2
  2
𝜕2𝑤

𝜕𝑥𝜕𝑦
 }                  (3.4) 

From substituting Eq.(3.3) into equation of {𝜎} = [𝐷]{𝜖} is the plane stress 

constitutive equation for an isotroppic material; the equation becomes in following 

form 

{ 𝜎 } =  −𝑧[𝐷]{𝐾}                                               (3.5) 

in which { 𝜎 } =  { 𝜎𝑥   𝜎𝑦   𝜏𝑥𝑦} and [𝐷] is the material property matrix, 

[𝐷] =
𝐸

1 − 𝑣2
[

1 𝑣 0
𝑣 1 0

0 0
1 − 𝑣

2

]                                       (3.6) 

Moments are defined as 

{ 𝑀 } =  ∫ {𝜎}𝑧 𝑑𝑧       
ℎ/2

−ℎ/2

                                   (3.7) 

where { 𝑀 } = { 𝑀𝑥  𝑀𝑦  𝑀𝑥𝑦 } and ℎ is the thickness of plate. 

Substituting of Eq. (3.5) into Eq. (3.7), 

{ 𝑀 } =  −[𝐷]{𝐾}                                                  (3.8)  

where 

[ 𝐷 ] =  
ℎ3

12
[ 𝐷 ]                                                     (3.9) 

Equilibrium equations are obtained from the free body diagram as shown in Fig. 3.2. 

Moment equilibriums about the 𝑦 − and 𝑥 −axes and force equilibrium about the 

𝑧 −axis, after neglecting higher order terms, can be written as 

𝜕𝑀𝑥

𝜕𝑥
+
𝜕𝑀𝑥𝑦

𝜕𝑦
− 𝑄𝑥 = 0                                            (3.9) 

𝜕𝑀𝑥𝑦

𝜕𝑥
+
𝜕𝑀𝑦

𝜕𝑦
− 𝑄𝑦 = 0                                         (3.10) 

𝜕𝑄𝑥
𝜕𝑥

+
𝜕𝑄𝑦

𝜕𝑦
+ 𝑝 = 0                                             (3.11) 
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where 𝑄𝑥 and 𝑄𝑦 are the shear forces and 𝑝 is the distributed pressure load. 

 
Figure 3.3. Free body diagram of the plate element 

The shear forces are neglected from Eq. (3.9) and Eq. (3.11) gives 

𝜕2𝑀𝑥

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝜕𝑦2
+ 𝑝 = 0                                     (3.12) 

When combining of Eq. (3.4), Eq. (3.8) and Eq. (3.12), the biharmonic governing 

equation for plate bending is produced in terms of the transverse displacement 𝑤. 

𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+
𝜕4𝑤

𝜕𝑦4
=
𝑝

𝐷𝑟
                                          (3.13) 

where 𝐷𝑟 =
𝐸ℎ3

12(1−𝑣2)
 is the rigidity of the plate. 

3.2.2 Reissner-Mindlin Plate Theory 

Reissner-Mindlin plate theory can be also called as the first shear deformation 

theory (FSDT). It is used for thick plates. In thick plates, Kirchhoff hypothesis cannot 

supply efficient solution in the analysis since Kirchhoff plate element cannot rotate 

independently of the position of the mid-surface. In Reissner-Mindlin plate theory, the 

shear deformations become significant and must be included in the analysis.  
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Figure 3.4. A typical Reissner-Mindlin plate 

The Reissner–Mindlin plate theory, as shown in Fig. 3.3, is used for analysis of 

thick plates, where the shear deformations are considered, rotation and lateral 

deflections are decoupled. It does not need the cross-sections to be perpendicular to 

the axial forces after deformation. It basically depends on following assumptions [70]: 

- Normal to the mid-plane before deformation remain straight but not necessarily 

normal to the mid-plane after deformation. 

- Stresses normal to the mid-plane may be neglected. 

- Deflections are small compared with the plate thickness. 

 

Figure 3.5. Deformation according to Reissner-Mindlin plate cross-section 

  a) 𝑦 − 𝑧 plane b) 𝑥 − 𝑧 plane 

The internal energy equation of the Reissner-Mindlin plate have to include transverse 

shear energy and bending energy. 
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U =
1

2
∫{𝜎𝑏}

𝑇{𝜖𝑏}𝑑𝑉 +
𝐾

2

 

Ω

∫{𝜎𝑠}
𝑇{𝜖𝑠}𝑑𝑉

 

Ω

                          (3.14) 

where bending stresses and strains are 

 { 𝜎𝑏 } = { 𝜎𝑥  𝜎𝑦  𝜏𝑥𝑦 }
𝑇                                                       (3.15) 

{ 𝜖𝑏 } = { 𝜖𝑥  𝜖𝑦  𝛾𝑥𝑦 }
𝑇                                                        (3.16) 

and transverse shear components are 

{σ𝑠} = { 𝜏𝑥𝑧  𝜏𝑦𝑧  }
𝑇                                                     (3.17) 

{ϵ𝑠} = { 𝛾𝑥𝑧  𝛾𝑦𝑧  }
𝑇                                                      (3.18) 

also 𝐾, is the shear energy correction factor, equals to 5/6. Substituting the 

constitutive equations, getting 

U =
1

2
∫ {𝜖𝑏}

𝑇[𝐷𝑏]{𝜖𝑏}𝑑𝑉 +
𝐾

2

 

Ω

∫{𝜖𝑠}
𝑇[𝐷𝑠]{𝜖𝑠}𝑑𝑉

 

Ω

                  (3.19) 

in which 

 [𝐷𝑏] =
𝐸

1−𝑣2
[

1 𝑣 0
𝑣 1 0

0 0
1−𝑣

2

]                                       (3.20) 

and  

[𝐷𝑠] = [
𝐺 0
0 𝐺

]                                                         (3.21) 

The displacements of parallel to the undeformed neutral surface, 𝑢 and 𝑣, can be 

expressed by 

𝑢 = −𝑧𝜃𝑥(𝑥, 𝑦)                                                      (3.22) 

𝑣 = −𝑧𝜃𝑦(𝑥, 𝑦)                                                      (3.23) 

where 𝜃𝑥 and 𝜃𝑦 are the normal rotations of the cross section of the plate about the 𝑦 − 

and 𝑥 −axis and can be expressed as 

𝜃𝑥 =
𝜕𝑤

𝜕𝑥
− 𝛾𝑥𝑧                                                        (3.24) 
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𝜃𝑦 =
𝜕𝑤

𝜕𝑦
− 𝛾𝑦𝑧                                                        (3.25) 

The transverse displacement can be written as 

w = w(x, y)                                                            (3.24) 

The strains are expressed as 

𝜀 = [ 𝜖𝑥  𝜖𝑦  𝛾𝑥𝑦  𝛾𝑥𝑧  𝛾𝑦𝑧 ]
𝑇                                                    (3.25) 

where the curvatures are given as 

𝜖𝑥 = −
𝜕𝜃𝑥
𝜕𝑥

                                                                       (3.26) 

and 

𝜖𝑦 = −
𝜕𝜃𝑦

𝜕𝑦
                                                                       (3.27) 

and the twisting curvature is  

𝛾𝑥𝑦 = −(
𝜕𝜃𝑦

𝜕𝑥
+
𝜕𝜃𝑥
𝜕𝑦
)                                                   (3.28) 

The shear strains are expressed as  

𝛾𝑥𝑧 = (
𝜕𝑤

𝜕𝑥
− 𝜃𝑥)                                                            (3.29) 

and 

𝛾𝑦𝑧 = (
𝜕𝑤

𝜕𝑦
− 𝜃𝑦)                                                            (3.30) 

The constitutive relationships are given in the form  

𝜎 = 𝐷 𝜀                                                                            (3.31) 

where 

𝜎 = [𝑀𝑥  𝑀𝑦  𝑀𝑥𝑦  𝑄𝑥  𝑄𝑦]
𝑇                                        (3.32) 

in which 𝑀𝑥 and 𝑀𝑦 are the direct bending moments and 𝑀𝑥𝑦 is the twisting moment. 

The quantities 𝑄𝑥 and 𝑄𝑦 are the shear forces in the 𝑥 − 𝑧 and 𝑦 − 𝑧 planes. 
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For an isotropic material 𝐷 is given as 

𝐷 =

[
 
 
 
 
 
𝐷 𝜐𝐷 0 0 0
𝜐𝐷 𝐷 0 0 0

0 0
(1 − 𝜐)𝐷

2
0 0

0 0 0 𝑆 0
0 0 0 0 𝑆]

 
 
 
 
 

                              (3.33) 

in which for a plate of thickness t 

𝐷 =
𝐸𝑡3

12(1 − 𝜐2)
                                                               (3.34) 

and 

𝑆 =
𝐺𝑡

1.2
                                                                        (3.35) 

where 𝐺 is the shear modulus and the factor 1.2 is a correction term. 

The form of the body force can be expressed as 

𝑏 = [𝑞  0  0]𝑇                                                                    (3.36) 

where 𝑞 is the distributed loading per unit area. The boundary tractions are not 

considered. 

An elemental plate area is given as  

𝑑Ω = 𝑑𝑥𝑑𝑦                                                                      (3.37) 
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CHAPTER 4 

ELEMENT FREE GALERKIN METHOD 

FOR MINDLIN-REISSNER PLATE BENDING PROBLEMS 

4.1 Introduction 

Element free Galerkin method, developed by Belytschko et al. [4], is a popular 

meshfree method. The problem domain and its boundaries are described by arbitrary 

scattered nodes. The moving least square (MLS) approximation scheme is used for the 

interpolation field variables. The MLS shape functions do not possess the Kronecker 

delta function property which requires extra algorithms for the application of boundary 

conditions. Several algorithms have been developed for the implementation of 

boundary conditions. 

In this chapter, implementation procedure of meshfree methods for the solution 

of solid mechanic problems is briefly described in section 2.2. The construction of 

MLS shape functions is reviewed in section 2.3. The solution of Mindlin-Reissner 

plate problems using EFGM is described in section 2.4. 

4.2 Short Description of Implementation Procedure for Galerkin Meshfree 

Methods 

The application of Galerkin meshfree methods can be divided into four steps. 

These steps are representation of the problem domain, interpolation of field variables, 

formulation of system equations, and solution of system equations for field variables. 

The representation of problem and its boundary are carried out using arbitrary scattered 

nodes which don't have any predefined relation. This is the main difference between 

the discretization of FEM and meshfree methods. Shape functions (interpolation 

functions) are constructed to interpolate field variables at any point within the problem 

domain. To construct shape functions, a local domain of a point of interest is formed 

by the selection of any number of neighbour nodes. The formation of local domain is 

different from the element structure of FEM. It is carried out without using any 

predefined relation, and the selection of nodes only depends on closeness of nodes to 
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point of interest. Meshfree methods formulate the system equations for local domains 

and then combine them to obtain global system equations. The formation of system 

equations for a local domain can be different for different meshfree methods. Some 

meshfree methods use strong form system equations and some use weak form system 

equations. The solution of system equations is similar to that for FEM. However, it 

must be considered that system equations of meshfree methods can be asymmetric. 

4.2.1 Basic Definitions for Meshfree Methods 

The local domain and the background cell are terms that are always 

encountered in the application of meshfree methods. Short explanations of these terms 

are given in the below. 

4.2.1.1 Local Domains (Support and Influence Domains) 

A local domain determines the nodes used for the approximation of field 

variables. It is similar to element structure of FEM and BEM. However, three 

important differences found between the elements of FEM and BEM, and the local 

domain phenomena. First of all, elements are used for interpolation and integration 

purposes, but local domains are only used for interpolation. Secondly, elements have 

to be predefined regular shapes but this is not a condition for the local domains. Lastly, 

the local domains don't have any predefined nodes as the elements. 

The size of a local domain is determined by 

r𝑠 = α𝑠 × r𝑐                                                          (4.1) 

where r𝑐 is the average nodal spacing and α𝑠 is the dimensionless size of support 

domain. 

4.2.1.2 Background cells 

In Galerkin meshfree methods, the global problem domain is discretized into 

cells to carry out numerical integration. Generally, the background cell term is used 

instead of cell. The background cells can be rectangular or triangular for a two-

dimensional domain. By looking at the appearance of background cells and elements, 

it may be considered that they are analogous. However, they are not same. The 

background cells are only used for integration purpose. The background cells and local 

domains are shown in Fig. 4.1. 
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Figure.4.1.Support Domain; the centre is a quadrature point 

 

4.3 Formulation of Moving Least-Squares (MLS) Shape Functions 

The MLS approximation for the function of a field variable 𝑢(x) in a local 

domain Ω is defined at a point x as 

𝑢ℎ(x) =∑𝑝𝑖(x)𝑎𝑖(x)

𝑚

𝑖=1

= pT(x)a(x)                                         (4.2) 

where 𝑚 is the number of basis terms, pT(x) = {𝑝1(x), 𝑝2(x), 𝑝3(x),⋯ , 𝑝𝑚(x)} is the 

vector of monomial basis functions, 𝒂T(x) = {𝑎1(x), 𝑎2(x), 𝑎3(x),⋯ , 𝑎𝑚(x)} is the 

vector of coefficients to be determined, and xT = [𝑥, 𝑦] is the position vector for 2D 

problems. The monomials providing minimum completeness are selected from the 

Pascal triangle to build the basis function pT(x). For example, the linear and quadratic 

basis functions in 2D problems can be given by 

pT(x) = [1, 𝑥, 𝑦],                             𝑚 = 3                                           (4.3) 

pT(x) = [1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦, 𝑦2],         𝑚 = 6                                           (4.4) 

The difference between the function 𝑢(x) and its local approximation 𝑢ℎ(x) must be 

minimized by weighted discrete 𝐿2 norm to obtain the vector of coefficients a(x). 

𝐽 =∑𝑤(x − x𝑖)[p
T(x𝑖)a(x) − 𝑢𝑖]

2

𝑛

𝑖=1

                                            (4.5) 
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where 𝑛 is the number of nodes in the support domain of point x, 𝑢𝑖 is the nodal value 

of 𝑢 at 𝐱 = x𝑖, 𝑤(x− x𝑖) is the weight function associated with the influence domain 

of node 𝑖. The weight function must be greater than zero for all nodes in the support 

domain of point x. 

The minimization of weighted residual with respect to a(x) at any arbitrary point x 

gives 

𝜕𝐽

𝜕a
= 0                                                                   (4.6) 

which can be written as a set of linear equations. 

A(x)a(x) = B(x)U𝑠                                                                   (4.7) 

where U𝑠 = {𝑢1, 𝑢2, 𝑢3, ⋯ , 𝑢𝑛}
T is the vector of nodal values of field function for the 

nodes of support domain. The matrices A and B have the following forms 

A(x) =∑𝑤𝑖(x)𝑝(𝑥𝑖)𝑝
T(𝑥𝑖)

𝑛

𝑖=1

,                 𝑤𝑖(x) = 𝑤(x − 𝑥𝑖)                     (4.8) 

B(x) = [𝑤1(x)𝑝(𝑥1) 𝑤2(x)𝑝(𝑥2) ⋯ 𝑤𝑛(x)𝑝(𝑥𝑛)]                            (4.9) 

The matrix A is called as weighted moment matrix of MLS and if it is non-singular 

a(x) can be written as 

a(x) = A−1(x)B(x)U𝑠                                                      (4.10) 

The local approximation 𝑢ℎ(x) can be rewritten by substituting Eq. (3.10) into Eq. (2) 

𝑢ℎ(x) =∑𝜙𝑖(x)𝑢𝑖

𝑛

𝑖=1

= ΦT(x)US                                             (4.11) 

where Φ𝑇 is the vector of MLS shape functions and it can be expressed as 

𝚽T(x) = {𝜙1(x) 𝜙2(x) ⋯ 𝜙n(x)} = p
T(x)A−1(x)B(x)                  (4.12) 

The partial derivatives of shape function can be achieved by the following equation. 

Φ,i = (𝐩
T𝐀−1𝐁),i = p,𝑖

TA−1B+ pTA,𝑖
−1B+ pTA−1B,𝑖                             (4.13) 

where 
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A,𝑖
−1 = −A−1A,𝑖A

−1                                                      (4.14) 

The spatial derivative are designated with index 𝑖 following a comma. The derivation 

procedure of MLS shape functions indicates that weight functions are one of key points 

of the MLS approximation. The continuity and locality features of the MLS 

approximation are mainly based on weight functions. The basic features of the MLS 

approximation such as continuity and locality, are mainly based on weight functions 

[10]. Weight functions characterize the basic features of the MLS approximation such 

as continuity and locality. The weight function must be positive inside the support 

domain by taking its maximum value at the centre of support domain and must be zero 

outside the support domain using a monotonically decrease. There are various weight 

functions in literature [10]. The cubic spline and quartic spline weight functions are 

used in this work and are given by 

𝑤𝑖(𝐱 − 𝑥𝑖) = 𝑤(𝑟𝑖̅) = {

2 3⁄ − 4𝑟𝑖̅
2 + 4𝑟𝑖̅

3 𝑟𝑖̅ ≤ 0.5

4 3⁄ − 4𝑟𝑖̅ + 4𝑟𝑖̅
2 − 4 3⁄ 𝑟𝑖̅

3 0.5 < 𝑟𝑖̅ ≤ 1
0 𝑟𝑖̅ > 1

                  (4.15) 

𝑤𝑖(𝐱 − 𝑥𝑖) = 𝑤(𝑟𝑖̅) = {
1 − 6𝑟𝑖̅

2 + 8𝑟𝑖̅
3 − 3𝑟𝑖̅

4 𝑟𝑖̅ ≤ 1
0 𝑟𝑖̅ > 1

                            (4.16) 

For rectangular influence domain in 2-D problems, weight functions can be obtained 

by 

𝑤(𝑟𝑖̅) = 𝑤(𝑟𝑥)𝑤(𝑟𝑦) = 𝑤𝑥𝑤𝑦                                                   (4.17) 

𝑟𝑥 =
|𝑥 − 𝑥𝑖|

𝑟𝑤𝑥
and𝑟𝑦 =

|𝑦 − 𝑦𝑖|

𝑟𝑤𝑦
                                            (4.18) 

where 𝑟𝑤𝑥 and 𝑟𝑤𝑦 are the size of support domain in the 𝑥 and 𝑦 direction. 

4.4 Governing equations and weak form 

A typical Mindlin-Reissner plate with mid-plane lying in the 𝑥-𝑦 plane of 

Cartesian coordinate system is depicted in Fig. 3.2. The displacement field of a point 

at a distance 𝑧 to the mid-plane can be written as 

𝑢 = 𝑧𝜃𝑥and         𝑣 = 𝑧𝜃𝑦                                          (4.19) 

where 𝑢 and 𝑣 are the displacements of the plate in 𝑥 and 𝑦 directions, respectively. 

𝜃𝑥 and 𝜃𝑦 are the rotations of cross-section of the plate about 𝑦 and 𝑥 axes, 
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respectively. The lateral deflection of mid-plane is indicated by 𝑤. The vector of 

displacements can be denoted as 

{
𝑢
𝑣
𝑤
} = [

0 𝑧 0
0 0 𝑧
1 0 0

] {

𝑤
𝜃𝑥
𝜃𝑦
} = L𝑢u                                             (4.20) 

where u = {𝑤 𝜃𝑥 𝜃𝑦}T is the vector of independent field variables. The linear 

strains in the Mindlin-Reissner plate are as follows 

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧}
 
 

 
 

=

{
 
 
 
 
 

 
 
 
 
 𝑧

𝜕𝜃𝑥
𝜕𝑥

𝑧
𝜕𝜃𝑦

𝜕𝑦

𝑧
𝜕𝜃𝑥
𝜕𝑦

+ 𝑧
𝜕𝜃𝑦

𝜕𝑥

𝜃𝑥 +
𝜕𝑤

𝜕𝑥

𝜃𝑦 +
𝜕𝑤

𝜕𝑦 }
 
 
 
 
 

 
 
 
 
 

= L𝑑u                                        (4.21) 

where 

L𝑑 =

[
 
 
 
 
 
 0 0 0

𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝑧
𝜕

𝜕𝑥
0 𝑧

𝜕

𝜕𝑦
1 0

0 𝑧
𝜕

𝜕𝑦
𝑧
𝜕

𝜕𝑥
0 1

]
 
 
 
 
 
 
T

                                       (4.22) 

 

Figure 4.2. A typical Mindlin-Reissner plate 

The stresses using the Generalized Hooke’s law for isotropic linear elastic materials is 

obtained with σ = Dε. 
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{
 
 

 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦
𝜎𝑥𝑧
𝜎𝑦𝑧}

 
 

 
 

=

[
 
 
 
 
 
 

𝐸

1 − 𝜈2
𝐸𝜈

1 − 𝜈2
0 0 0

𝐸𝜈

1 − 𝜈2
𝐸

1 − 𝜈2
0 0 0

0 0 𝐺 0 0
0 0 0 𝑘𝑠ℎ𝐺 0
0 0 0 0 𝑘𝑠ℎ𝐺]

 
 
 
 
 
 

{
 
 

 
 
𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧}
 
 

 
 

                       (4.23) 

where 𝐸 is Young’s modulus, 𝜈 is Poisson’s ratio, 𝐺 = 𝐸 (2(1 + 𝜈))⁄  is shear 

modulus, 𝑘𝑠ℎ is shear correction factor often 5 6⁄  is used for Mindlin-Reissner plates. 

The stress resultants, moments and shears per unit of length, can be obtained using the 

stresses as 

M = ∫ 𝑧 [

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

] 𝑑𝑧
ℎ 2⁄

−ℎ 2⁄

                                                  (4.24) 

V = ∫ [
𝜎𝑥𝑧
𝜎𝑦𝑧

] 𝑑𝑧
ℎ 2⁄

−ℎ 2⁄

                                                      (4.25) 

where ℎ is the thickness of the plate. 

The Galerkin weak form for Mindlin-Reissner plates can written as 

∫𝛿(L𝑑𝑢)
TDL𝑑𝑢𝑑Ω

 

Ω

− ∫𝛿(L𝑢𝑢)
T𝑏𝑑Ω

 

Ω

− ∫𝛿(L𝑢𝑢)
T𝑡Γ𝑑𝑆

 

Γ𝑡

 = 0                   (4.26) 

where Γ𝑡 is the edge surface of the plate where natural boundary condition is specified, 

𝑏 is the body force vector and 𝑡Γ is traction on the edge of the plate. By considering 

only transverse load, the body force vector can be defined as 𝑏 = {0 0 𝑏𝑧}
T. The 

external traction on the edge of the plate 𝑡Γ can be expressed in terms of stresses on 

the surface of the edge: 

𝑡Γ = [

𝑛𝑥 0 0 𝑛𝑦 0

0 𝑛𝑦 𝑛𝑥 0 0

0 0 0 𝑛𝑥 𝑛𝑦

]

{
 
 

 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦
𝜎𝑥𝑧
𝜎𝑦𝑧}

 
 

 
 

= {

𝜎𝑥𝑥𝑛𝑥 + 𝜎𝑥𝑧𝑛𝑦
𝜎𝑥𝑦𝑛𝑥 + 𝜎𝑦𝑦𝑛𝑦
𝜎𝑥𝑧𝑛𝑥 + 𝜎𝑦𝑧𝑛𝑦

}                       (4.27) 

The penalty method is used to implement the essential boundary conditions and is 

applied to the EFGM by the addition of following term to Galerkin weak form. 
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𝛿 ∫
1

2
(𝑢𝑏 − 𝑢Γ)

Tα(𝑢𝑏 − 𝑢Γ)𝑑Γ

 

Γ𝑢

                                             (4.28) 

where 𝑢b is the prescribed essential boundary conditions, 𝑢Γ is the approximation 

function of the prescribed essential boundary conditions, Γu is the domain of nodes in 

the essential boundary, 𝛼 is a diagonal matrix of penalty factors with dimensions equal 

to the number of DOF per node. The penalty factors are constant values for the whole 

problem domain. 

Inserting Eq. (4.28) into Eq. (4.26) leads to the following the Galerkin weak form 

∫𝛿(𝐋𝑑𝑢)
T𝐷𝐿𝑑𝑢𝑑Ω

 

Ω

− ∫𝛿(𝐋𝑢𝑢)
T𝑏𝑑Ω

 

Ω

− ∫𝛿(𝐋𝑢𝑢)
T𝑡Γ𝑑𝑆

 

Γ𝑡

                                  

+ 𝛿 ∫
1

2
(𝑢𝑏 − 𝑢Γ)

T𝛼(𝑢𝑏 − 𝑢Γ)𝑑Γ

 

Γ𝑢

= 0                                           (4.29) 

The discrete system equation can be written as 

(K + K𝛼)U = (F + F𝛼)                                                     (4.30) 

where K is the global stiffness matrix and is obtained by assembling the point stiffness 

matrices 

𝐾𝑖𝑗 = ∫B𝑖
TDB𝑗𝑑Ω

 

Ω

                                              (4.31) 

in which 

B𝑖 =

[
 
 
 
 
 
 0 0 0

𝜕𝜙𝑖
𝜕𝑥

𝜕𝜙𝑖
𝜕𝑦

𝜕𝜙𝑖
𝜕𝑥

0
𝜕𝜙𝑖
𝜕𝑦

𝜙𝑖 0

0
𝜕𝜙𝑖
𝜕𝑦

𝜕𝜙𝑖
𝜕𝑥

0 𝜙𝑖 ]
 
 
 
 
 
 
T

                (4.32) 

and 
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D =

[
 
 
 
 
 
 
 
 

𝐸𝑡3

12(1 − 𝜈2)
𝜈

𝐸𝑡3

12(1 − 𝜈2)
0 0 0

𝜈
𝐸𝑡3

12(1 − 𝜈2)

𝐸𝑡3

12(1 − 𝜈2)
0 0 0

0 0
1 − 𝜈

2
0 0

0 0 0 𝑘𝑠ℎ𝐺 0
0 0 0 0 𝑘𝑠ℎ𝐺]

 
 
 
 
 
 
 
 

               (4.33) 

The K𝛼 is the matrix of penalty factors defined by 

(K𝛼)𝑖𝑗 = ∫ 𝜑𝑖
Tα𝜑𝑗𝑑Γ

 

Γ𝑢

                                                            (4.34) 

where 𝜑𝑖 is a diagonal matrix. If the relevant DOF is free, the diagonal elements of 𝜑𝑖 

are equal to 0, otherwise equal to 1. 

The force vector F in Eq. (4.30) is the global force vector assembled using the nodal 

force vector of 

𝐹𝑖 = ∫(𝐋𝑢Φ𝑖)
T𝑏𝑑Ω

 

Ω

+∫(𝐋𝑢Φ𝑖)
T𝑡Γ𝑑𝑆

 

Ω

                                    (4.35) 

where Φ𝑖 is a diagonal matrix of shape functions.  

The F𝛼 vector shows the forces obtained by the implementation of essential boundary 

conditions and can be obtained as follows 

𝐹𝑖
𝛼 = ∫ 𝜑𝑖

T𝛼𝑢Γ𝑑Γ
 

Γ𝑢

                                                           (4.36) 
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CHAPTER 5 

NUMERICAL EXPERIMENTS AND DISCUSSIONS 

5.1 Introduction 

In order to investigate the effects of selectable parameters of the EFG method 

on the solution accuracy of the Reissner-Mindlin plate bending problems, three 

numerical examples have been performed. The numerical examples are simply 

supported square plate under transverse centric point load, simply supported square 

plate under uniform transverse load, clamped circular plate under uniform transverse 

load. Analytical solutions and solutions of EFG method are compared to determine the 

effects of different values of parameters on the accuracy of EFG method. 

The results of the numerical examples are given in the table form, however, 

some of the results found in these tables are beyond being wrong. Also, these results 

are invalid results. Several figures are given after the tables to increase readability of 

the effects of selectable parameters. The invalid/unacceptable results are not 

introduced into figures because they obstruct to follow the variations of 

displacements/moments against the values of selectable parameters on the figures. The 

value of penalty coefficient is presented in the form of 10𝛼𝑝. The number of gauss 

points in a background cell, central deflections and moments of plates are symbolized 

with 𝑛𝑔, 𝑤𝑐, and 𝑀𝑐 respectively. 

5.2 Simply supported square plate under transverse centric point load 

The simply supported square plate is loaded with transverse centric point load 

as shown in Fig.5.1. The material properties are as follows; Young’s modulus E of 

material is 10920 Pa and Poisson's ratio is ν = 0.3. The thickness and length of the 

plate are given by h = 0.01 m and L = 1 m, respectively. The value of applied 

transverse load P is 16.3527 N. Due to symmetry, only one quarter of the plate can be 

used in EFGM solutions. The EFGM models used in the solutions are shown in Fig. 

5.2. In the model of quarter square plate, 1089 field nodes and 1024 background cells 
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are used for regular and irregular node distributions. The normalized deflection values 

at the centre of square plate are used as the critical value for the evaluation of accuracy. 

 

Figure 5.1. Simply supported square plate under transverse centric point load 

 

Figure 5.2. The EFGM models for a) regular node distributions, b) irregular node 

distributions 

The results obtained using the selectable parameters with different values are 

presented in Table 5.1 to Table 5.8. Since, the simply supported square plate under 

transverse centric point load has stress singularity problem at the centre of plate, only 

displacement results are used for accuracy performance investigations. The variations 

of displacement against the number of gauss points in a background cell are given in 

Table 5.1, Table 5.2, Table 5.5 and Table 5.6. The effect of value of penalty coefficient 

on the displacement is given in Table 5.3, Table 5.4, Table 5.7 and Table 5.8. Table 

5.1 to Table 5.4 is achieved by the utilization of cubic spline weight function and Table 

5.5 to Table 5.8 is provided using quartic spline weight function. 

According to Fig. 5.3, there are some fluctuations found in results for the value 

of αs = 3.5, αs = 4 and αs = 4. However, it is not shown for value of  αs = 2.5 and 

αs = 3.0. In Fig. 5.4, several variations are observed in the accuracy of displacement 

results for the different values of αs at number of gauss points in a background equals 

to 4 except αs = 2.5 and αs = 3.0. However, if the number of gauss points is selected 

between 5 and 8, no variation is observed for different values of αs at the same figure. 

From Fig. 5.5 and Fig. 5.6, the value of penalty coefficient between 1 × 106 and 1 ×

1010 does not cause any variation in results. But, the value of penalty coefficient 

𝐿 𝐿 ℎ 

𝐹 
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greater than 10 shows a deviation in results. The solutions obtained using cubic spline 

weight function are given in Fig. 5.3, Fig. 5.4, Fig. 5.5 and Fig. 5.6. The same 

configurations of these figures are given for the quartic spline weight function in Fig. 

5.7 to Fig. 5.10. The results obtained using quartic spline weight function show less 

variation comparing to the results obtained using cubic spline weight functions. The 

increase in number of monomials cause accuracy loss in results. 
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Table 5.1. Normalized central deflections wc (
pL4

100𝐷
)⁄  of simply supported square plate under transverse centric point load for regular node 

distribution using cubic spline weight function with 𝛼𝑝 = 6. 

Number of monomials Number of 

gauss points 

Dimensionless size of support domain (𝛂𝐬) 

2.5                3.0                 3.5                  4.0                4.5 

Exact 

3 4×4 

5×5 

6×6 

7×7 

8×8 

0.011608 0.011631 0.011648 0.011609 0.011711 

0.011608 0.011630 0.011666 0.011651 0.011576 

0.011608 0.011630 0.011641 0.011639 0.011652 

0.011608 0.011630 0.011628 0.011613 0.011639 

0.011609 0.011630 0.011651 0.011656 0.011664 

0.011600 

 

6 4×4 

5×5 

6×6 

7×7 

8×8 

0.011626 0.011628 0.011647 0.011700 0.011678 

0.011625 0.011628 0.011647 0.011677 0.011654 

0.011625 0.011628 0.011646 0.011673 0.011682 

0.011625 0.011628 0.011647 0.011658 0.011691 

0.011625 0.011629 0.011647 0.011737 0.011638 

 

10 4×4 

5×5 

6×6 

7×7 

8×8 

    0.000104     0.011630     0.011648     0.011703     0.011712 

    0.000123     0.011631     0.011647     0.011696     0.011708 

    0.000320     0.011630     0.011647     0.011722     0.011706 

    0.000088     0.011630     0.011647     0.011704     0.011707 

    0.000003     0.011631     0.011648     0.011707     0.011707 
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Figure 5.3. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against 𝑛𝑔 for 

simply supported square plate under transverse centric point load using cubic spline 

weight functions and regular node distribution with 𝛼𝑝 = 6. 
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Table 5.2. Normalized central deflections wc (
pL4

100𝐷
)⁄  of simply supported square plate under transverse centric point load for irregular 

node distribution using cubic spline weight function with 𝛼𝑝 = 6. 

Number of monomials Number of 

gauss points 

Dimensionless size of support domain (𝛂𝐬) 

       2.5        3.0         3.5                 4.0                   4.5 

Exact 

3 4×4 

5×5 

6×6 

7×7 

8×8 

0.011659 0.011708 0.012028 0.012305 0.012560 

0.011634 0.011656 0.011734 0.011866 0.011797 

0.011631 0.011646 0.011665 0.011717 0.011708 

0.011629 0.011638 0.011644 0.011671 0.011678 

0.011630 0.011633 0.011640 0.011648 0.011648 

0.011600 

 

6 4×4 

5×5 

6×6 

7×7 

8×8 

0.011686 0.011685 0.011709 0.011809 0.011973 

0.011636 0.011636 0.011643 0.011658 0.011687 

0.011635 0.011636 0.011639 0.011645 0.011657 

0.011635 0.011635 0.011637 0.011640 0.011646 

0.011635 0.011636 0.011637 0.011639 0.011642 

 

10 4×4 

5×5 

6×6 

7×7 

8×8 

0.000721 0.011756 0.011768 0.011835 0.011951 

0.000045 0.011641 0.011642 0.011656 0.011673 

0.000108 0.011640 0.011639 0.011647 0.011654 

0.000438 0.011637 0.011638 0.011640 0.011645 

0.002536 0.011637 0.011638 0.011639 0.011643 
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Figure 5.4. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against 𝑛𝑔 for 

simply supported square plate under transverse centric point load using cubic spline 

weight functions and irregular node distribution with 𝛼𝑝 = 6. 
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Table 5.3. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  of simply supported square plate under transverse centric point load 

using regular node distribution using cubic spline weight function with 𝑛𝑔 = 5. 

Number of monomials Value of  penalty 

coefficient 

Dimensionless size of support domain (𝛂𝐬) 

2.5             3.0               3.5               4.0                4.5 

Exact 

3 6 

7 

8 

9 

10 

11 

0.011608 0.011630 0.011666 0.011651 0.011576 

0.011608 0.011630 0.011621 0.011639 0.011634 

0.011608 0.011630 0.011618 0.011628 0.011654 

0.011608 0.011629 0.011651 0.011657 0.011630 

0.011609 0.011620 0.011669 0.011520 0.011249 

0.011596 0.011757 -0.005365 0.011210 0.010949 

0.011600 

 

6 6 

7 

8 

9 

10 

11 

0.011625 0.011628 0.011647 0.011677 0.011654 

0.011625 0.011628 0.011650 0.011616 0.011698 

0.011624 0.011628 0.011630 0.011609 0.011675 

0.011623 0.011627 0.012068 0.011639 0.011512 

0.011602 0.011615 0.011900 0.010187 0.011287 

0.011751 0.011082 0.011605 0.046484 0.011575 

 

10 6 

7 

8 

9 

10 

11 

-0.000209 0.011631 0.011647 0.011696 0.011708 

-0.001322 0.011631 0.011648 0.011697 0.011708 

 0.000390 0.011631 0.011644 0.011784 0.011686 

 0.000190 0.011632 0.011723 0.011661 0.011708 

 0.000140 0.011648 0.012131 0.011501 0.011365 

-0.000332 0.011686 0.009992 0.012668 0.013610 
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Figure 5.5. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against 𝛼𝑝 for 

simply supported square plate under transverse centric point load using cubic spline 

weight functions and regular node distribution with 𝑛𝑔 = 5. 
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Table 5.4. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  of simply supported square plate under transverse centric point load 

using irregular node distribution using cubic spline weight function with 𝑛𝑔 = 5. 

Number of monomials Value of  penalty 

coefficient 

Dimensionless size of support domain (𝛂𝐬) 

2.5             3.0                3.5                4.0                  4.5 

Exact 

3 6 

7 

8 

9 

10 

11 

0.011634 0.011656 0.011734 0.011866 0.011797 

0.011634 0.011656 0.011735 0.011867 0.011791 

0.011634 0.011656 0.011732 0.011838 0.011796 

0.011635 0.011657 0.011721 0.011819 0.011582 

0.011629 0.011673 0.011850 0.011781 0.011813 

0.011555 0.028047 0.011431 0.009145 0.011257 

0.011600 

 

6 6 

7 

8 

9 

10 

11 

0.011636 0.011636 0.011643  0.011658  0.011687 

0.011636 0.011636 0.011643  0.011659  0.011686 

0.011636 0.011636 0.011643  0.011657  0.011661 

0.011633 0.011635 0.011643  0.011621  0.011661 

0.011665 0.011639 0.011782  0.012890  0.011496 

0.011791 0.011721 0.009100 -0.005537 -0.002784 

 

10 6 

7 

8 

9 

10 

11 

0.002575 0.011641 0.011642 0.011656 0.011673 

-0.000099 0.011641 0.011642 0.011656 0.011672 

-0.000081 0.011641 0.011642 0.011655 0.011673 

0.000094 0.011651 0.011643 0.011661 0.011693 

0.000706 0.011696 0.011624 0.010894 0.011369 

0.000165 0.012081 0.006998 0.009700 0.005584 
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Figure 5.6. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against α𝑝 for 

simply supported square plate under transverse centric point load using cubic spline 

weight functions and irregular node distribution with 𝑛𝑔 = 5. 
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Table 5.5. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  of simply supported square plate under transverse centric point load 

using regular node distribution using quartic spline weight function with 𝛼𝑝 = 6. 

Number of monomials Number of 

gauss points 

Dimensionless size of support domain (𝛂𝐬) 

2.5             3.0              3.5               4.0                4.5 

Exact 

3 4×4 

5×5 

6×6 

7×7 

8×8 

0.011613 0.011624 0.011631 0.011632 0.011639 

0.011600 0.011624 0.011628 0.011632 0.011637 

0.011604 0.011624 0.011629 0.011632 0.011640 

0.011603 0.011624 0.011628 0.011632 0.011639 

0.011603 0.011624 0.011629 0.011633 0.011639 

0.011600 

6 4×4 

5×5 

6×6 

7×7 

8×8 

0.011626 0.011629 0.011662 0.011639 0.011658 

0.011625 0.011630 0.011662 0.011639 0.011657 

0.011625 0.011630 0.011660 0.011639 0.011657 

0.011625 0.011630 0.011661 0.011639 0.011657 

0.011625 0.011630 0.011661 0.011639 0.011658 

 

10 4×4 

5×5 

6×6 

7×7 

8×8 

           -         0.011631         0.011665         0.011671     0.011685 

0.000062 0.011631 0.011666 0.011670 0.011682 

0.000132 0.011631 0.011665 0.011670 0.011681 

0.000097 0.011630 0.011665 0.011670 0.011681 

0.000262 0.011631 0.011666 0.011670 0.011682 
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Figure 5.7. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against 𝑛𝑔 for 

simply supported square plate under transverse centric point load using quartic spline 

weight functions and regular node distribution with 𝛼𝑝 = 6.

0.9995

1.0000

1.0005

1.0010

1.0015

1.0020

1.0025

1.0030

1.0035

1.0040

4 5 6 7 8

N
o

rm
al

iz
ed

 d
is

p
la

ce
m

en
t 

at
 t

h
e 

ce
n

te
r 

o
f 

sq
u

ar
e 

p
la

te

Number of Gauss points in a background cell

𝑚=3

αs=2.5

αs=3.0

αs=3.5

αs=4.0

αs=4.5

Exact

0.9990

1.0000

1.0010

1.0020

1.0030

1.0040

1.0050

1.0060

4 5 6 7 8

N
o

rm
al

iz
ed

 d
is

p
la

ce
m

en
t 

at
 t

h
e 

ce
n

te
r 

o
f 

sq
u

ar
e 

p
la

te

Number of Gauss points in a background cell

𝑚=6

αs=2.5

αs=3.0

αs=3.5

αs=4.0

αs=4.5

Exact

0.9990

1.0000

1.0010

1.0020

1.0030

1.0040

1.0050

1.0060

1.0070

1.0080

4 5 6 7 8

N
o

rm
al

iz
ed

 d
is

p
la

ce
m

en
t 

at
 t

h
e 

ce
n

te
r 

o
f 

sq
u

ar
e 

p
la

te

Number of Gauss points in a background cell

𝑚=10

αs=3.0

αs=3.5

αs=4.0

αs=4.5

Exact



  

39 
 

Table 5.6. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  of simply supported square plate under transverse centric point load 

using irregular node distribution using quartic spline weight function with 𝛼𝑝 = 6. 

Number of monomials Number of 

gauss points 

Dimensionless size of support domain (𝛂𝐬) 

2.5             3.0             3.5               4.0              4.5 

Exact 

3 4×4 

5×5 

6×6 

7×7 

8×8 

0.011692 0.011759 0.011773 0.011866 0.012094 

0.011632 0.011652 0.011662 0.011682 0.011742 

0.011628 0.011637 0.011641 0.011646 0.011663 

0.011625 0.011633 0.011637 0.011638 0.011641 

0.011625 0.011632 0.011636 0.011637 0.011639 

0.011600 

6 4×4 

5×5 

6×6 

7×7 

8×8 

0.011691 0.011713 0.011812 0.011820 0.011885 

0.011639 0.011640 0.011652 0.011660 0.011675 

0.011636 0.011638 0.011641 0.011645 0.011653 

0.011635 0.011636 0.011638 0.011639 0.011642 

0.011635 0.011636 0.011637 0.011639 0.011639 

 

10 4×4 

5×5 

6×6 

7×7 

8×8 

0.011963 0.011822 0.011963 0.012021 0.011947 

0.000049 0.011654 0.011657 0.011664 0.011669 

      -              0.011647 0.011644 0.011650 0.011648 

0.011727 0.011639 0.011641 0.011642 0.011643 

0.007144 0.011638 0.011639 0.011640 0.011642 
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Figure 5.8. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against 𝑛𝑔 for 

simply supported square plate under transverse centric point load using quartic spline 

weight functions and irregular node distribution with 𝛼𝑝 = 6. 
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Table 5.7. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  of simply supported square plate under transverse centric point load 

using regular node distribution using quartic spline weight function with 𝑛𝑔 = 5. 

Number of monomials Value of  penalty 

coefficient 

Dimensionless size of support domain (𝛂𝐬) 

2.5               3.0              3.5              4.0               4.5 

Exact 

3 6 

7 

8 

9 

10 

11 

0.011508 0.011529 0.011532 0.011536 0.011539 

0.011508 0.011529 0.011532 0.011536 0.011533 

0.011508 0.011529 0.011521 0.011534 0.011533 

0.011508 0.011529 0.011533 0.011537 0.011540 

0.011506 0.011496 0.011566 0.011501 0.011682 

0.010910 0.011573 0.011898 0.012166 0.011505 

0.011600 

6 6 

7 

8 

9 

10 

11 

0.011533 0.011534 0.011551 0.011539 0.011549 

0.011533 0.011534 0.011551 0.011539 0.011550 

0.011533 0.011534 0.011549 0.011535 0.011536 

0.011534 0.011535 0.011249 0.011531 0.011553 

0.011551 0.011560 0.011440 0.011593 0.011654 

0.011092 0.011046 0.011636 0.001501 0.010940 

 

10 6 

7 

8 

9 

10 

11 

0.001816 0.011535 0.011556 0.011558 0.011565 

0.000162 0.011535 0.011556 0.011558 0.011564 

0.001090 0.011536 0.011564 0.011558 0.011383 

0.000014 0.011540 0.011528 0.011557 0.011540 

0.001959 0.011533 0.011156 0.011426 0.011345 

0.000434 0.010755 0.007045 0.010245 0.012292 
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Figure 5.9. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against 𝛼𝑝 for 

simply supported square plate under transverse centric point load using quartic spline 

weight functions and regular node distribution with 𝑛𝑔 = 5.
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Table 5.8. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  of simply supported square plate under transverse centric point load 

using irregular node distribution using quartic spline weight function with 𝑛𝑔 = 5. 

Number of monomials Value of  penalty 

coefficient 

Dimensionless size of support domain (𝛂𝐬) 

2.5              3.0               3.5                 4.0                  4.5 

Exact 

3 6 

7 

8 

9 

10 

11 

0.011634 0.011656 0.011734 0.011866 0.011797 

0.011634 0.011656 0.011735 0.011867 0.011791 

0.011634 0.011656 0.011732 0.011838 0.011796 

0.011635 0.011657 0.011721 0.011819 0.011582 

0.011629 0.011673 0.011850 0.011781 0.011813 

0.011555 0.028047 0.011431 0.009145 0.011257 

0.011600 

6 6 

7 

8 

9 

10 

11 

0.011636 0.011636 0.011643  0.011658 0.011687 

0.011636 0.011636 0.011643  0.011659 0.011686 

0.011636 0.011636 0.011643  0.011657 0.011661 

0.011633 0.011635 0.011643  0.011621 0.011661 

0.011665 0.011639 0.011782  0.012890 0.011496 

0.011791 0.011721 0.009100 -0.005537 -0.002784 

 

10 6 

7 

8 

9 

10 

11 

 0.002575 0.011641 0.011642 0.011656 0.011673 

-0.000099 0.011641 0.011642 0.011656 0.011672 

-0.000081 0.011641 0.011642 0.011655 0.011673 

 0.000094 0.011651 0.011643 0.011661 0.011693 

 0.000706 0.011696 0.011624 0.010894 0.011369 

 0.000165 0.012081 0.006998 0.009700 0.005584 
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Figure 5.10. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against 𝛼𝑝 for 

simply supported square plate under transverse centric point load using quartic spline 

weight functions and irregular node distribution with 𝑛𝑔 = 5. 
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5.3 Simply supported square plate under uniform transverse load. 

Simply supported square plate under transverse uniform distributed load is 

shown in Fig.5.11. It is analysed by using different values for the selectable 

parameters. The thickness and length of the plate are given by h = 0.01 m and L =

1 m, respectively. The Young's modulus E of material is 10920 Pa and Poisson's ratio 

is v = 0.3. Due to symmetry, only one quarter of the plate, shown in Fig. 5.12, is used 

in EFGM solutions. In the model of quarter square plate, 1089 field nodes and 1024 

background cells were used for regular and irregular node distributions. The value of 

applied load P is 1.0 Pa. The normalized deflection and normalized moment values at 

the centre of square plate were taken as the critical value for assessment of accuracy. 

The results obtained using different values for the selectable parameters are presented 

in Table 5.9 to Table 5.24. Table 5.9 to Table 5.16 is obtained by the usage of cubic 

spline weight function and Table 5.17 to Table 5.24 is provided with the use of quartic 

spline weight function. 

 

 

 

Figure 5.11. Simply supported square plate under uniform load. 

 

Figure 5.12. The EFGM models for a) regular node distributions, b) irregular node 

distributions 

From Fig. 5.13, Fig. 5.15, Fig. 5.21 and Fig. 5.23, the variations in displacement results 

against number of gauss points in a background cell are less than 0.2% of exact result. 

However, it is not possible to say same thing for moment. The variations in moment 

results are important and the number of gauss points in a background cell equals 5 is 

suitable to decrease variations with a reasonable computation cost. The variations in 

𝐿 𝐿 ℎ 
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displacement and moment results are observed for different values of penalty 

coefficient. The variations in displacements and moments are shown for the values of 

penalty coefficient greater than 1 × 108 and 1 × 106, respectively. The value of 

penalty coefficient is selected as 1 × 106 to reduce fluctuations in results. By 

comparing the results for regular and irregular node distributions, it can be pointed that 

the results of irregular node distributions are smoother. It is shown that an increase in 

number of monomials cannot guaranteed any increase in results. The review of results 

for cubic and quartic spline weight functions indicate that the results of quartic spline 

weight function are smoother than results of cubic weight function. The accuracy of 

solutions for αs = 3 are higher than the other ones. 
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Table 5.9. Normalized central deflections wc (
pL4

100𝐷
)⁄  of simply supported square plate subjected to uniform load for regular node 

distribution using cubic spline weight function with 𝛼𝑝 = 6. 

Number of monomials Number of 

gauss points 

Dimensionless size of support domain (𝛂𝐬) 

2.5                   3.0                  3.5                  4.0                 4.5 

Exact 

3 4×4 

5×5 

6×6 

7×7 

8×8 

0.406125 0.406447 0.406393 0.406216 0.407077 

0.406124 0.406419 0.406544 0.406286 0.405935 

0.406127 0.406427 0.406370 0.406575 0.406616 

0.406122 0.406425 0.406139 0.406295 0.406523 

0.406126 0.406426 0.406452 0.406633 0.406710 

0.4064 

 

6 4×4 

5×5 

6×6 

7×7 

8×8 

0.406448 0.406441 0.406593 0.407067 0.406862 

0.406436 0.406442 0.406593 0.406840 0.406661 

0.406440 0.406442 0.406587 0.406799 0.406981 

0.406438 0.406442 0.406590 0.406669 0.407065 

0.406439 0.406442 0.406584 0.407450 0.406604 

 

10 4×4 

5×5 

6×6 

7×7 

8×8 

0.000504 0.406456 0.406602 0.407074 0.407162 

         -                0.406454    0.406591    0.407029    0.407138 

         -          0.406453    0.406594    0.407265    0.407121 

0.000094 0.406453 0.406592 0.407110 0.407134 

0.002630 0.406453 0.406592 0.407127 0.407127 
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Figure 5.13. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against 𝑛𝑔 for 

simply supported square plate subjected to uniform load using cubic spline weight 

functions and regular node distribution with 𝛼𝑝 = 6. 
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Table 5.10. Normalized central moments Mc (
pL2

10
)⁄   of simply supported square plate subjected to uniform load for regular node 

distribution using cubic spline weight function with 𝛼𝑝 = 6 

Number of monomials Number of 

gauss points 

Dimensionless size of support domain (𝛂𝐬) 

2.5                 3.0                  3.5                  4.0                 4.5 

Exact 

3 4×4 

5×5 

6×6 

7×7 

8×8 

0.465908 0.477236 0.478844 0.468530 0.492989 

0.465861 0.477124 0.490604 0.476325 0.474944 

0.465962 0.477132 0.481406 0.479368 0.481487 

0.465868 0.477156 0.466563 0.475205 0.479422 

0.465916 0.477134 0.486288 0.486924 0.485117 

0.4789 

 

6 4×4 

5×5 

6×6 

7×7 

8×8 

0.478715 0.475355 0.476658 0.533247 0.473470 

0.476724 0.475148 0.476658 0.508265 0.490959 

0.477565 0.475239 0.476750 0.509770 0.508166 

0.477247 0.475199 0.476842 0.492523 0.512757 

0.477316 0.475208 0.476471 0.567429 0.485658 

 

10 4×4 

5×5 

6×6 

7×7 

8×8 

0.047502 0.473487 0.464784 0.553512 0.551347 

      -        0.473020 0.467739 0.567587 0.560778 

      -       0.472050 0.466511 0.551792 0.553217 

0.009211 0.471502 0.467141 0.557828 0.558613 

0.440787 0.471477 0.467166 0.528077 0.556545 
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Figure 5.14. Variations of normalized central moments Mc (
pL2

10
)⁄   against 𝑛𝑔 for 

simply supported square plate subjected to uniform load using cubic spline weight 

functions and regular node distribution with 𝛼𝑝 = 6. 
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Table 5.11. Normalized central deflections wc (
pL4

100𝐷
)⁄  of simply supported square plate subjected to uniform load for irregular node 

distribution using cubic spline weight function with 𝛼𝑝 = 6. 

Number of monomials Number of 

gauss points 

Dimensionless size of support domain (𝛂𝐬) 

2.5                  3.0                  3.5                  4.0                 4.5 

Exact 

3 4×4 

5×5 

6×6 

7×7 

8×8 

0.406510 0.407413 0.413576 0.419243 0.421976 

0.406339 0.406818 0.408303 0.410831 0.409785 

0.406282 0.406572 0.407042 0.407971 0.407881 

0.406255 0.406415 0.406627 0.407131 0.407222 

0.406254 0.406331 0.406529 0.406676 0.406721 

0.4064 

 

6 4×4 

5×5 

6×6 

7×7 

8×8 

0.406542 0.406556 0.406977 0.408746 0.411523 

0.406459 0.406471 0.406580 0.406896 0.407403 

0.406445 0.406455 0.406511 0.406620 0.406828 

0.406440 0.406447 0.406477 0.406533 0.406631 

0.406437 0.406447 0.406465 0.406515 0.406567 

 

10 4×4 

5×5 

6×6 

7×7 

8×8 

0.099456 0.406742 0.406980 0.407986 0.409514 

0.008230 0.406526 0.406542 0.406790 0.407075 

0.002251 0.406511 0.406491 0.406622 0.406756 

0.486834 0.406470 0.406477 0.406520 0.406616 

0.003929 0.406463 0.406471 0.406501 0.406573 
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Figure 5.15. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against 𝑛𝑔 for 

simply supported square plate subjected to uniform load using cubic spline weight 

functions and irregular node distribution with 𝛼𝑝 = 6. 
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Table 5.12. Normalized central moments Mc (
pL2

10
)⁄   of simply supported square plate subjected to uniform load for irregular node 

distribution using cubic spline weight function with 𝛼𝑝 = 6. 

Number of monomials Number of 

gauss points 

Dimensionless size of support domain (𝛂𝐬) 

2.5                 3.0                 3.5                 4.0                  4.5 

Exact 

3 4×4 

5×5 

6×6 

7×7 

8×8 

0.462163 0.452059 0.586793 0.788000 1.233154 

0.484287 0.491661 0.549301 0.485057 0.541503 

0.469131 0.479985 0.468504 0.486260 0.480093 

0.476790 0.477586 0.477429 0.484557 0.495301 

0.473940 0.479066 0.476112 0.483704 0.480869 

0.4789 

 

6 4×4 

5×5 

6×6 

7×7 

8×8 

0.454368 0.485642 0.402171 0.335533 0.899370 

0.488675 0.485269 0.484494 0.492242 0.528780 

0.454355 0.470597 0.479163 0.467722 0.479242 

0.488484 0.480897 0.473508 0.485336 0.486683 

0.468165 0.475295 0.480348 0.477380 0.482623 

 

10 4×4 

5×5 

6×6 

7×7 

8×8 

133.3553 0.379987 0.456289 0.577763 0.618072 

1.898563 0.509234 0.487986 0.510251 0.390230 

0.549946 0.427753 0.460868 0.468436 0.500102 

18.72356 0.472461 0.468415 0.487375 0.467321 

2.391880 0.457493 0.485846 0.468485 0.472815 
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Figure 5.16. Variations of normalized central moments Mc (
pL2

10
)⁄   against 𝑛𝑔 for 

simply supported square plate subjected to uniform load using cubic spline weight 

functions and irregular node distribution with 𝛼𝑝 = 6.
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Table 5.13. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  of simply supported square plate subjected to uniform load using 

regular node distribution using cubic spline weight function with 𝑛𝑔 = 5. 

Number of monomials Value of  penalty 

coefficient 

Dimensionless size of support domain (𝛂𝐬) 

2.5                  3.0                  3.5                  4.0                  4.5 

Exact 

3 6 

7 

8 

9 

10 

11 

0.406124 0.406419 0.406544 0.406286 0.405935 

0.406124 0.406419 0.406173 0.406511 0.406447 

0.406125 0.406424 0.406136 0.406379 0.406661 

0.406135 0.406396 0.406556 0.407010 0.406176 

0.406156 0.406113 0.408414 0.405107 0.403696 

0.405627 0.413570 0.303081 0.385763 0.386330 

0.4064 

6 6 

7 

8 

9 

10 

11 

0.406436 0.406442 0.406587 0.406840 0.406661 

0.406436 0.406443 0.406665 0.406507 0.407531 

0.406426 0.406436 0.406445 0.406323 0.407429 

0.406383 0.406372 0.426644 0.406621 0.401259 

0.405441 0.405901 0.425925 0.347944 0.395093 

0.411339 0.398761 0.407843 1.161832 0.406219 

 

10 6 

7 

8 

9 

10 

11 

0.005101 0.406454 0.406591 0.407029 0.407138 

-0.006104 0.406454 0.406618 0.407070 0.407220 

0.008291 0.406455 0.406467 0.407763 0.407196 

0.004782 0.406530 0.409589 0.408196 0.408115 

0.007121 0.407200 0.427764 0.402099 0.393411 

-0.004692 0.409140 0.336089 0.418981 0.507675 
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Figure 5.17. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against 𝛼𝑝 for 

simply supported square plate subjected to uniform load using quartic spline weight 

functions and regular node distribution with 𝑛𝑔 = 5.
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Table 5.14. Variations of normalized central moments Mc (
pL2

10
)⁄   of simply supported square plate subjected to uniform load using 

regular node distribution using cubic spline weight function with 𝑛𝑔 = 5. 

Number of monomials Value of  penalty 

coefficient 

Dimensionless size of support domain (𝛂𝐬) 

2.5                  3.0                 3.5                 4.0                 4.5 

Exact 

3 6 

7 

8 

9 

10 

11 

0.465861 0.477124 0.490604 0.476325 0.474944 

0.465861 0.477131 0.476854 0.484699 0.477998 

0.465862 0.477274 0.476025 0.480848 0.480860 

0.465898 0.476066 0.475138 0.488999 0.487681 

0.466449 0.542014 0.482575 0.470388 0.464470 

0.465259 0.593314 0.099355 0.208429 0.477018 

0.4789 

 

6 6 

7 

8 

9 

10 

11 

0.476724 0.475148 0.476696 0.508265 0.490959 

0.476719 0.475145 0.480891 0.479825 0.541073 

0.476706 0.475232 0.477623 0.464833 0.481892 

0.476676 0.476350 0.702373 0.516292 0.771494 

0.477879 0.177135 0.080488 1.396184 0.658199 

0.473519 7.118890 1.535408 18.904350 0.265464 

 

10 6 

7 

8 

9 

10 

11 

-1.898563 0.473020 0.467739 0.567587 0.560778 

-0.779907 0.473035 0.466115 0.499341 0.552515 

-1.355116 0.472708 0.464424 0.554111 0.763799 

-0.965741 0.475136 0.689665 0.457188 1.310356 

 -0.061856  0.474889  0.809296  1.500415  20.92811 

-0.220529 0.537894 2.098230 3.548006 6.556247 
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Figure 5.18. Variations of normalized central moments Mc (
pL2

10
)⁄  against 𝛼𝑝 for 

simply supported square plate subjected to uniform load using quartic spline weight 

functions and regular node distribution with 𝑛𝑔 = 5.
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Table 5.15. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  of simply supported square plate subjected to uniform load using 

irregular node distribution using cubic spline weight function with 𝑛𝑔 = 5. 

Number of monomials Value of  penalty 

coefficient 

Dimensionless size of support domain (𝛂𝐬) 

2.5                 3.0                 3.5                 4.0                 4.5 

Exact 

3 6 

7 

8 

9 

10 

11 

0.406339 0.406818 0.408304 0.410834 0.409786 

0.406339 0.406818 0.408303 0.410790 0.409024 

0.406342 0.406820 0.408486 0.410406 0.408707 

0.406362 0.406769 0.407661 0.409504 0.408980 

0.406363 0.409116 0.407741 0.411189 0.406833 

0.407814 0.226611 0.408141 0.381858 0.399561 

0.4064 

6 6 

7 

8 

9 

10 

11 

0.406459 0.406471 0.406580 0.406897 0.407401 

0.406459 0.406472 0.406579 0.406896 0.407530 

0.406434 0.406468 0.406577 0.407816 0.408537 

0.406579 0.406583 0.406600 0.406350 0.423195 

0.405013 0.408022 0.426530 0.425535 0.609899 

0.387544 0.416706 0.227181 0.911252 0.521799 

 

10 6 

7 

8 

9 

10 

11 

0.008230 0.406527 0.406542 0.406790 0.407074 

0.010900 0.406527 0.406545 0.406790 0.407082 

0.016128 0.406570 0.406529 0.407110 0.406912 

0.001619 0.406568 0.406714 0.406545 0.400725 

0.005487 0.404763 0.409905 0.399975 0.435560 

0.000430 0.386955 0.374940 11.074030 0.441067 
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Figure 5.19. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against 𝛼𝑝 for 

simply supported square plate subjected to uniform load using quartic spline weight 

functions and irregular node distribution with 𝑛𝑔 = 5.
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Table 5.16. Variations of normalized central moments Mc (
pL2

10
)⁄   of simply supported square plate subjected to uniform load using 

irregular node distribution using cubic spline weight function with 𝑛𝑔 = 5. 

Number of monomials Value of  penalty 

coefficient 

Dimensionless size of support domain (𝛂𝐬) 

2.5                  3.0                  3.5                  4.0                 4.5 

Exact 

3 6 

7 

8 

9 

10 

11 

0.484287 0.491661 0.549301 0.485057 0.541503 

0.484206 0.491508 0.549034 0.484946 0.528225 

0.484303 0.491721 0.550993 0.484046 0.474842 

0.481672 0.501556 0.470179 0.428830 0.492756 

0.485118 1.032503 0.753860 0.518583 0.414814 

0.938223 8.490625 0.204448 0.410389 0.406419 

0.4789 

 

 

6 6 

7 

8 

9 

10 

11 

0.488675 0.485269 0.484494 0.492242 0.528780 

0.488475 0.485232 0.484243 0.491473 0.582196 

0.489361 0.483544 0.474901 0.506475 1.535594 

0.485903 0.483757 0.421949 0.468657 0.742513 

0.659297 0.470658 62.297360 0.880942 3.077730 

0.032074 0.047749 6.969470 206.150000 4.105061 

 

10 6 

7 

8 

9 

10 

11 

      -       0.473020 0.467739 0.567587 0.560778 

      -        0.473035 0.466115 0.499341 0.552515 

      -        0.472708 0.464424 0.554111 0.763799 

      -       0.475136 0.689665 0.457188 1.310356 

      -        0.474889 0.809296 1.500415 20.92811 

      -        0.537894 2.098230 3.548006 6.556247 
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Figure 5.20. Variations of normalized central moments Mc (
pL2

10
)⁄  against 𝛼𝑝 for 

simply supported square plate subjected to uniform load using quartic spline weight 

functions and irregular node distribution with 𝑛𝑔 = 5.
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Table 5.17. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  of simply supported square plate subjected to uniform load using 

regular node distribution using quartic spline weight function with 𝛼𝑝 = 6. 

Number of monomials Number of 

gauss points 

Dimensionless size of support domain (𝛂𝐬) 

2.5                 3.0                 3.5                 4.0                 4.5 

Exact 

3 4×4 

5×5 

6×6 

7×7 

8×8 

0.406038 0.406323 0.406388 0.406437 0.406506 

0.405621 0.406313 0.406303 0.406437 0.406479 

0.405753 0.406315 0.406325 0.406439 0.406499 

0.405711 0.406316 0.406323 0.406439 0.406498 

0.405723 0.406316 0.406320 0.406438 0.406489 

0.4064 

 

6 4×4 

5×5 

6×6 

7×7 

8×8 

0.406453 0.406456 0.406734 0.406529 0.406700 

0.406432 0.406458 0.406734 0.406529 0.406683 

0.406437 0.406458 0.406720 0.406528 0.406686 

0.406435 0.406457 0.406720 0.406527 0.406687 

0.406436 0.406457 0.406719 0.406528 0.406687 

 

10 4×4 

5×5 

6×6 

7×7 

8×8 

      -       0.406458 0.406771 0.406800 0.406933 

0.002882 0.406454 0.406775 0.406794 0.406913 

0.003296 0.406453 0.406759 0.406794 0.406891 

0.004063 0.406452 0.406754 0.406794 0.406899 

0.000251 0.406452 0.406759 0.406794 0.406893 

 

 



  

64 
 

 

Figure 5.21. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against 𝑛𝑔 for 

simply supported square plate subjected to uniform load using quartic spline weight 

functions and regular node distribution with 𝛼𝑝 = 6.
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Table 5.18. Variations of normalized central moments Mc (
pL2

10
)⁄   of simply supported square plate subjected to uniform load using 

regular node distribution using quartic spline weight function with 𝛼𝑝 = 6. 

Number of monomials Number of 

gauss points 

Dimensionless size of support domain (𝛂𝐬) 

2.5                3.0                  3.5                 4.0                 4.5 

Exact 

3 4×4 

5×5 

6×6 

7×7 

8×8 

0.474955 0.475765 0.478047 0.478991 0.480130 

0.474722 0.475776 0.478018 0.478998 0.480092 

0.474776 0.475814 0.478044 0.478993 0.480687 

0.474744 0.475815 0.478010 0.479012 0.480405 

0.474770 0.475813 0.478042 0.478990 0.480379 

0.4789 

 

6 4×4 

5×5 

6×6 

7×7 

8×8 

0.479195 0.471815 0.480843 0.475026 0.480291 

0.475777 0.471669 0.480843 0.475361 0.479640 

0.477068 0.471664 0.480491 0.475338 0.480184 

0.476537 0.471658 0.480443 0.475282 0.479814 

0.476699 0.471635 0.480289 0.475294 0.479645 

 

10 4×4 

5×5 

6×6 

7×7 

8×8 

       -        0.476271 0.500018 0.483480 0.501804 

0.244558 0.475173 0.508968 0.489483 0.504555 

0.011884 0.474485 0.505329 0.489959 0.502493 

0.611912 0.474033 0.506119 0.489406 0.504481 

0.028622 0.473952 0.507093 0.489326 0.503133 
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Figure 5.22. Variations of normalized central moments Mc (
pL2

10
)⁄  against 𝑛𝑔 for 

simply supported square plate subjected to uniform load using quartic spline weight 

functions and regular node distribution with 𝛼𝑝 = 6.
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Table 5.19. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  of simply supported square plate subjected to uniform load using 

irregular node distribution using quartic spline weight function with 𝛼𝑝 = 6. 

Number of monomials Number of 

gauss points 

Dimensionless size of support domain (𝛂𝐬) 

2.5                   3.0                   3.5                   4.0                 4.5 

Exact 

3 4×4 

5×5 

6×6 

7×7 

8×8 

0.406926 0.407955 0.408515 0.410224 0.413500 

0.406160 0.406663 0.406884 0.407259 0.408343 

0.406066 0.406404 0.406538 0.406642 0.406964 

0.406018 0.406341 0.406466 0.406493 0.406574 

0.406004 0.406319 0.406434 0.406458 0.406514 

0.4064 

 

6 4×4 

5×5 

6×6 

7×7 

8×8 

0.406667 0.407029 0.408037 0.408138 0.409672 

0.406496 0.406541 0.406724 0.406888 0.407140 

0.406461 0.406482 0.406531 0.406613 0.406739 

0.406438 0.406456 0.406489 0.406516 0.406560 

0.406427 0.406452 0.406472 0.406503 0.406510 

 

10 4×4 

5×5 

6×6 

7×7 

8×8 

0.411965 0.407610 0.409147 0.408592 0.409139 

0.001206 0.406740 0.406761 0.406908 0.406985 

0.001237 0.406625 0.406581 0.406672 0.406657 

0.285492 0.406498 0.406520 0.406550 0.406579 

0.269857 0.406484 0.406493 0.406518 0.406546 
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Figure 5.23. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against 𝑛𝑔 for 

simply supported square plate subjected to uniform load using quartic spline weight 

functions and irregular node distribution with 𝛼𝑝 = 6.
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Table 5.20. Variations of normalized central moments Mc (
pL2

10
)⁄   of simply supported square plate subjected to uniform load using 

irregular node distribution using quartic spline weight function with 𝛼𝑝 = 6. 

Number of monomials Number of 

gauss points 

Dimensionless size of support domain (𝛂𝐬) 

2.5                 3.0                 3.5                   4.0                 4.5 

Exact 

3 4×4 

5×5 

6×6 

7×7 

8×8 

0.500941 0.510744 0.519388 0.633194 0.772233 

0.487774 0.498832 0.510473 0.497286 0.535530 

0.474766 0.478865 0.479829 0.489514 0.502671 

0.476700 0.476526 0.479432 0.478829 0.480024 

0.477039 0.477445 0.479317 0.479033 0.479634 

0.4789 

 

6 4×4 

5×5 

6×6 

7×7 

8×8 

0.436144 0.525295 0.191414 0.233889 0.624271 

0.488024 0.470448 0.470466 0.502900 0.510002 

0.448284 0.474818 0.471619 0.473901 0.478424 

0.494882 0.479647 0.472074 0.473989 0.480477 

0.468516 0.473432 0.473805 0.477381 0.478062 

 

10 4×4 

5×5 

6×6 

7×7 

8×8 

4.252219 0.518256 0.763737 0.497792 0.758090 

0.443840 0.455181 0.568449 0.497086 0.498329 

0.133912 0.473568 0.436037 0.447018 0.465614 

21.898450 0.456527 0.472774 0.487005 0.487260 

98.188270 0.474986 0.491722 0.466110 0.469057 
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Figure 5.24. Variations of normalized central moments Mc (
pL2

10
)⁄  against 𝑛𝑔 for 

simply supported square plate subjected to uniform load using quartic spline weight 

functions and irregular node distribution with 𝛼𝑝 = 6.

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

4 5 6 7 8N
o

rm
al

iz
ed

 m
o

m
en

t
at

 t
h

e 
ce

n
te

r 
o

f 

sq
u

ar
e 

p
la

te

Number of Gauss points in a background cell

𝑚=3

αs=2.5

αs=3.0

αs=3.5

αs=4.0

αs=4.5

Exact

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

4 5 6 7 8

N
o

rm
al

iz
ed

 m
o

m
en

t
at

 t
h

e 
ce

n
te

r 
o

f 

sq
u

ar
e 

p
la

te

Number of Gauss points in a background cell

𝑚=6

αs=2.5

αs=3.0

αs=3.5

αs=4.0

αs=4.5

Exact

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

4 5 6 7 8

N
o

rm
al

iz
ed

 m
o

m
en

t
at

 t
h

e 
ce

n
te

r 
o

f 

sq
u

ar
e 

p
la

te

Number of Gauss points in a background cell

𝑚=10

αs=3.0

αs=3.5

αs=4.0

αs=4.5

Exact



  

71 
 

Table 5.21. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  of simply supported square plate subjected to uniform load using 

regular node distribution using quartic spline weight function with 𝑛𝑔 = 5. 

Number of monomials Value of  penalty 

coefficient 

Dimensionless size of support domain (𝛂𝐬) 

2.5                  3.0                  3.5                 4.0                  4.5 

Exact 

3 6 

7 

8 

9 

10 

11 

0.405069 0.406245 0.406169 0.406428 0.406472 

0.405069 0.406245 0.406169 0.406429 0.406464 

0.405069 0.406244 0.406168 0.406421 0.406425 

0.405082 0.406230 0.406052 0.406420 0.406370 

0.405021 0.406222 0.406125 0.406529 0.407933 

0.405595 0.399518 0.402957 0.402484 0.407624 

0.4064 

 

6 6 

7 

8 

9 

10 

11 

0.406432 0.406439 0.406658 0.406555 0.406716 

0.406432 0.406438 0.406656 0.406553 0.406716 

0.406425 0.406438 0.406650 0.406559 0.407218 

0.406454 0.406518 0.406438 0.407196 0.406922 

0.407387 0.406121 0.410978 0.407688 0.406072 

0.420549 0.350452 0.394587 0.139971 0.378275 

 

10 6 

7 

8 

9 

10 

11 

0.000090 0.406461 0.406651 0.406782 0.406989 

0.003644 0.406462 0.406647 0.406784 0.406983 

0.001025 0.406462 0.406663 0.406782 0.406988 

0.000149 0.406575 0.416249 0.406858 0.405604 

0.000565 0.406438 0.404399 0.406543 0.407764 

0.010702 0.368051 0.587419 0.417085 0.439110 
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Figure 5.25. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against 𝛼𝑝 for 

simply supported square plate subjected to uniform load using quartic spline weight 

functions and regular node distribution with 𝑛𝑔 = 5.
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Table 5.22. Variations of normalized central moments Mc (
pL2

10
)⁄   of simply supported square plate subjected to uniform load using 

regular node distribution using quartic spline weight function with 𝑛𝑔 = 5. 

Number of monomials Value of  penalty 

coefficient 

Dimensionless size of support domain (𝛂𝐬) 

2.5                   3.0                   3.5                   4.0                  4.5 

Exact 

3 6 

7 

8 

9 

10 

11 

0.474406 0.475655 0.477373 0.478328 0.479166 

0.474406 0.475654 0.477363 0.478215 0.478602 

0.474404 0.475604 0.477390 0.478737 0.476812 

0.474435 0.475605 0.506951 0.478845 0.476696 

0.474279 0.476157 0.477331 0.479676 0.462304 

0.469205 0.497267 0.440079 0.442223 0.522211 

0.4789 

 

 

6 6 

7 

8 

9 

10 

11 

0.476007 0.474167 0.479295 0.476484 0.478854 

0.476008 0.474170 0.479186 0.476505 0.478825 

0.475991 0.474140 0.478270 0.476312 0.569628 

0.475796 0.473611 0.465516 0.505158 0.478359 

0.478325 0.465400 0.811708 0.732157 0.474307 

0.495293 0.994706 4.080440 15.008180 1.097208 

 

10 6 

7 

8 

9 

10 

11 

-0.010357 0.476495 0.481383 0.490768 0.495233 

 0.129741 0.476508 0.480983 0.490931 0.494938 

 0.014068 0.476452 0.483248 0.491120 0.495976 

 0.032385 0.476181 2.337011 0.493356 0.504126 

 0.024393 0.477495 0.335882 0.542988 0.559046 

-0.207908 0.545043 19.189340 1.045473 3.320348 
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Figure 5.26. Variations of normalized central moments Mc (
pL2

10
)⁄  against 𝛼𝑝 for 

simply supported square plate subjected to uniform load using quartic spline weight 

functions and regular node distribution with 𝑛𝑔 = 5.
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Table 5.23. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  of simply supported square plate subjected to uniform load using 

irregular node distribution using quartic spline weight function with 𝑛𝑔 = 5. 

Number of monomials Value of  penalty 

coefficient 

Dimensionless size of support domain (𝛂𝐬) 

2.5                   3.0                    3.5                4.0                 4.5 

Exact 

3 6 

7 

8 

9 

10 

11 

0.406160 0.406663 0.406884 0.407259 0.408340 

0.406160 0.406663 0.406884 0.407259 0.408367 

0.406154 0.406661 0.406878 0.407271 0.408532 

0.406140 0.406653 0.407263 0.407275 0.408434 

0.406406 0.407082 0.403233 0.406768 0.408135 

0.410263 0.390615 0.397850 0.408035 0.376149 

0.4064 

6 6 

7 

8 

9 

10 

11 

0.406496 0.406541 0.406724 0.406887 0.407140 

0.406496 0.406541 0.406723 0.406889 0.407141 

0.406493 0.406552 0.406715 0.406859 0.407144 

0.406589 0.406340 0.406732 0.406868 0.412941 

0.405775 0.405738 0.406930 0.406493 0.401575 

0.410250 0.797125 0.418938 0.158991 0.372854 

 

10 6 

7 

8 

9 

10 

11 

0.000164 0.406740 0.406761 0.406908 0.406984 

0.000027 0.406743 0.406758 0.406903 0.406982 

0.002892 0.406701 0.406772 0.406917 0.406967 

0.000824 0.406369 0.406219 0.406655 0.406810 

0.001105 0.399881 0.402341 0.401290 0.392903 

0.000832 0.408988 2.046256 0.386997 1.485735 
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Figure 5.27. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against 𝛼𝑝 for 

simply supported square plate subjected to uniform load using quartic spline weight 

functions and irregular node distribution with 𝑛𝑔 = 5.
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Table 5.24. Variations of normalized central moments Mc (
pL2

10
)⁄   of simply supported square plate subjected to uniform load using 

irregular node distribution using quartic spline weight function with 𝑛𝑔 = 5. 

Number of monomials Value of  penalty 

coefficient 

Dimensionless size of support domain (𝛂𝐬) 

2.5                   3.0                   3.5                   4.0                    4.5 

Exact 

3 6 

7 

8 

9 

10 

11 

0.487777 0.498836 0.510496 0.497278 0.535784 

0.487719 0.498959 0.510468 0.497331 0.539101 

0.487386 0.498971 0.512029 0.495936 0.521160 

0.480718 0.485348 0.632008 0.512237 0.563054 

0.463171 0.099233 0.834846 0.128121 0.390597 

1.609723 0.006072 0.224897 0.268324 0.592333 

0.4789 

 

 

6 6 

7 

8 

9 

10 

11 

0.488044 0.470402 0.470146 0.502782 0.509977 

0.488293 0.470451 0.469549 0.503575 0.509719 

0.488077 0.471394 0.481768 0.494887 0.518118 

0.484345 0.454101 0.480443 0.453891 0.176384 

0.450247 0.543436 0.007022 0.428636 1.516732 

0.555949 0.994598 3.813639 2.254813 2.125904 

 

10 6 

7 

8 

9 

10 

11 

-0.028252 0.454212 0.568492 0.495713 0.498427 

-0.104334 0.453278 0.574682 0.492612 0.505043 

-0.048502 0.447237 0.514597 0.491597 0.539705 

0.555588 0.125224 1.352816 0.779891 0.381794 

0.443912 1.683166 11.354310 0.856711 5.488006 

 1.133775 7.702520 5346.3000 64.356670 86.438590 
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Figure 5.28. Variations of normalized central moments Mc (
pL2

10
)⁄  against 𝛼𝑝 for 

simply supported square plate subjected to uniform load using quartic spline weight 

functions and irregular node distribution with 𝑛𝑔 = 5.
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5.4 Clamped circular plate under uniform load 

A clamped circular plate is subjected to uniform transverse load as shown in 

Fig. 5.29. The thickness, radius, Young's modulus and Poisson's ratio of the problem 

are h = 1 , R = 5 , 10.92  and v = 0.3, respectively. Due to the symmetry, one quarter 

of the circular plate is modelled. In the models of quarter circular plate, 817 field nodes 

and 768 background cells were used for regular and irregular node distributions. The 

value of applied uniform transverse load P is 1 Pa. The normalized deflection and 

normalized moment values for the use of cubic spline weight function are provided 

from Table 5.25 to Table 5.32. Also, the utilization of quartic spline weight function 

is presented from Table 5.33 to Table 5.40. 

 

Figure 5.29. Clamped circular plate under uniform load. 

 

Figure 5.30. The EFGM models for a) regular node distributions, b) irregular node 

distributions 

Fig. 5.31 to Fig. 5.46 are used to depict the results of displacements and 

moments. The survey of results show that displacements and moments do not exhibit 

any fluctuations, except the moment values obtained using αp = 1 × 10
10 for regular 

node distribution, shown in Fig. 5.36 and Fig.5.44. Also, it is shown that the accuracy 

of αs = 3 is higher than the other values of αs. The variations of 

displacements/moments against number of gauss points in a background cell are small 

so the variations can be neglected and any values between 4 and 8 can be used for 

number of gauss points in a background cell. The number of gauss points in a 

background cell is selected as 5 to increase the accuracy of the results.

ℎ 
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Table 5.25. Normalized central deflections wc (
pL4

100𝐷
)⁄  of clamped circular plate subjected to uniform load for regular node distribution 

using cubic spline weight function with 𝛼𝑝 = 6. 

Number of monomials Number of 

gauss points 

Dimensionless size of support domain (𝛂𝐬) 

2.5              3.0             3.5             4.0             4.5 

Exact 

3 4×4 

5×5 

6×6 

7×7 

8×8 

0.184962 0.185032 0.185283 0.185462 0.185478 

0.184963 0.185033 0.185283 0.185453 0.185486 

0.184963 0.185033 0.185288 0.185460 0.185478 

0.184963 0.185033 0.185281 0.185460 0.185483 

0.184962 0.185032 0.185285 0.185459 0.185524 

0.184821 

6 4×4 

5×5 

6×6 

7×7 

8×8 

0.184969 0.184976 0.185094 0.185484 0.185553 

0.184968 0.184976 0.185087 0.185487 0.185551 

0.184969 0.184976 0.185092 0.185485 0.185555 

0.184969 0.184976 0.185089 0.185485 0.185550 

0.184968 0.184975 0.185089 0.185484 0.185552 

 

10 4×4 

5×5 

6×6 

7×7 

8×8 

0.014055 0.171670 0.185078 0.185561 0.185747 

0.012204 0.016623 0.185084 0.185548 0.185726 

0.014806 0.033808 0.185075 0.185549 0.185731 

0.000114 0.016053 0.185079 0.185550 0.185729 

0.001214 0.817412 0.185076 0.185549 0.185726 
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Figure 5.31. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against 𝑛𝑔 for 

clamped circular plate subjected to uniform load using cubic spline weight functions 

and regular node distribution with 𝛼𝑝 = 6. 
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Table 5.26. Normalized central moments Mc (
pL2

10
)⁄   of clamped circular plate subjected to uniform load for regular node distribution 

using cubic spline weight function with 𝛼𝑝 = 6. 

Number of monomials Number of 

gauss points 

Dimensionless size of support domain (𝛂𝐬) 

2.5                  3.0                   3.5                  4.0                  4.5 

Exact 

3 4×4 

5×5 

6×6 

7×7 

8×8 

0.803680 0.806758 0.830426 0.846829 0.835969 

0.803677 0.806782 0.830392 0.847048 0.836797 

0.803752 0.806785 0.830788 0.847678 0.836002 

0.803742 0.806785 0.830156 0.847701 0.836552 

0.803733 0.806755 0.830739 0.847640 0.837486 

0.812520 

6 4×4 

5×5 

6×6 

7×7 

8×8 

0.808700 0.796474 0.793807 0.883111 0.909413 

0.806172 0.796241 0.792974 0.884294 0.915492 

0.807652 0.796330 0.793558 0.883861 0.913206 

0.806739 0.796369 0.793311 0.883997 0.913641 

0.807389 0.796252 0.793320 0.884050 0.913174 

 

10 4×4 

5×5 

6×6 

7×7 

8×8 

96.711680 397.45560 0.754975 0.962686 1.003314 

159.87640 113.93760 0.749735 0.956152 0.984276 

231.55416 68.746000 0.751476 0.955871 0.993536 

40.369640 26.492380 0.750867 0.957365 0.986871 

3.2632990 1643.1324 0.751800 0.957184 0.988544 
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Figure 5.32. Variations of normalized central moments Mc (
pL2

10
)⁄   against 𝑛𝑔 for 

clamped circular plate subjected to uniform load using cubic spline weight functions 

and regular node distribution with 𝛼𝑝 = 6. 
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Table 5.27. Normalized central deflections wc (
pL4

100𝐷
)⁄  of clamped circular plate subjected to uniform load for irregular node 

distribution using cubic spline weight function with 𝛼𝑝 = 6. 

Number of monomials Number of 

gauss points 

Dimensionless size of support domain (𝛂𝐬) 

2.5                   3.0                   3.5                    4.0       4.5 

Exact 

3 4×4 

5×5 

6×6 

7×7 

8×8 

0.184961 0.184999 0.185052 0.185027 0.185085 

0.184954 0.184973 0.185003 0.185002 0.185039 

0.184956 0.184965 0.184983 0.184990 0.185011 

0.184955 0.184968 0.184981 0.184990 0.185013 

0.184954 0.184964 0.184977 0.184987 0.185010 

0.184821 

6 4×4 

5×5 

6×6 

7×7 

8×8 

0.184966 0.184966 0.184987 0.185008 0.185038 

0.184963 0.184965 0.184989 0.184991 0.185006 

0.184962 0.184965 0.184972 0.184991 0.185000 

0.184962 0.184965 0.184972 0.184987 0.185004 

0.184961 0.184964 0.184971 0.184988 0.185001 

 

10 4×4 

5×5 

6×6 

7×7 

8×8 

0.188267 0.184985 0.184986 0.185033 0.185091 

0.185844 0.184972 0.184982 0.185016 0.185046 

0.185682 0.184970 0.184980 0.185013 0.185042 

0.185487 0.184970 0.184979 0.185010 0.185035 

0.185302 0.184968 0.184978 0.185010 0.185036 
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Figure 5.33. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against 𝑛𝑔 for 

clamped circular plate subjected to uniform load using cubic spline weight functions 

and irregular node distribution with 𝛼𝑝 = 6. 
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Table 5.28. Normalized central moments Mc (
pL2

10
)⁄   of clamped circular plate subjected to uniform load for irregular node distribution 

using cubic spline weight function with 𝛼𝑝 = 6. 

Number of monomials Number of 

gauss points 

Dimensionless size of support domain (𝛂𝐬) 

2.5                 3.0                 3.5                4.0                 4.5 

Exact 

3 4×4 

5×5 

6×6 

7×7 

8×8 

0.810929 0.808854 0.795776 0.805922 0.809077 

0.808365 0.812443 0.814607 0.808698 0.810368 

0.811051 0.809849 0.811728 0.813395 0.811228 

0.809719 0.810609 0.810031 0.809654 0.811775 

0.810014 0.810338 0.811581 0.811285 0.812268 

0.812520 

6 4×4 

5×5 

6×6 

7×7 

8×8 

0.806641 0.811434 0.800688 0.788342 0.795006 

0.814408 0.810984 0.812821 0.821233 0.811036 

0.817937 0.811097 0.807876 0.813258 0.808849 

0.819794 0.810510 0.807278 0.810308 0.809998 

0.814991 0.810326 0.808130 0.812057 0.809152 

 

10 4×4 

5×5 

6×6 

7×7 

8×8 

14.83234 0.840634 0.814480 0.762316 0.799567 

5.042916 0.824141 0.771214 0.815158 0.826136 

2.420183 0.809614 0.794258 0.790916 0.804838 

1.393982 0.814234 0.787720 0.795260 0.811654 

0.975245 0.805078 0.792068 0.794044 0.806382 
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Figure 5.34. Variations of normalized central moments Mc (
pL2

10
)⁄   against 𝑛𝑔 for 

clamped circular plate subjected to uniform load using cubic spline weight functions 

and irregular node distribution with 𝛼𝑝 = 6. 
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Table 5.29. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  of clamped circular plate subjected to uniform load using regular 

node distribution using cubic spline weight function with 𝑛𝑔 = 5. 

Number of monomials Value of  penalty 

coefficient 

Dimensionless size of support domain (𝛂𝐬) 

2.5                  3.0                 3.5                  4.0                 4.5 

Exact 

3 6 

7 

8 

9 

10 

11 

0.185249 0.185321 0.185573 0.185747 0.185768 

0.185249 0.185321 0.185573 0.185747 0.185769 

0.185249 0.185321 0.185573 0.185746 0.185770 

0.185249 0.185321 0.185573 0.185811 0.185977 

0.185250 0.185321 0.185590 0.185802 0.185436 

0.185251 0.185323 0.185776 0.186681 0.185336 

0.184821 

6 6 

7 

8 

9 

10 

11 

0.185256 0.185264 0.185378 0.185772 0.185841 

0.185256 0.185264 0.185378 0.185772 0.185841 

0.185256 0.185264 0.185378 0.185772 0.185840 

0.185256 0.185264 0.185378 0.185771 0.185830 

0.185257 0.185264 0.185375 0.185777 0.185822 

0.185259 0.185261 0.185382 0.185763 0.185288 

 

10 6 

7 

8 

9 

10 

11 

0.012204 0.016623 0.185365 0.185837 0.186014 

0.293270 1.829059 0.185365 0.185837 0.186014 

0.031030 0.019366 0.185365 0.185837 0.186014 

0.144117 0.178680 0.185365 0.185838 0.186015 

0.012006 0.150918 0.185366 0.185837 0.186021 

0.000414 5.429067 0.185368 0.185763 0.186054 
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Figure 5.35. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against 𝛼𝑝 for 

clamped circular plate subjected to uniform load using cubic spline weight functions 

and regular node distribution with 𝑛𝑔 = 5.
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Table 5.30. Variations of normalized central moments Mc (
pL2

10
)⁄   of clamped circular plate subjected to uniform load using regular node 

distribution using cubic spline weight function with 𝑛𝑔 = 5. 

Number of monomials Value of  penalty 

coefficient 

Dimensionless size of support domain (𝛂𝐬) 

2.5                 3.0                 3.5                4.0                 4.5 

Exact 

3 6 

7 

8 

9 

10 

11 

0.793561 0.796388 0.825787 0.850086 0.838228 

0.793562 0.796388 0.825789 0.850072 0.838263 

0.793563 0.796388 0.825777 0.849728 0.838316 

0.793565 0.796380 0.825856 0.857181 0.846872 

0.793692 0.796490 0.826983 0.893778 0.800843 

0.793583 0.795175 0.861890 0.836395 0.817878 

0.81252 

6 6 

7 

8 

9 

10 

11 

0.805522 0.792724 0.786690 0.881132 0.914100 

0.805523 0.792724 0.786688 0.881133 0.914108 

0.805518 0.792723 0.786698 0.881098 0.913649 

0.805474 0.792770 0.786643 0.880908 0.913589 

0.805580 0.792700 0.787733 0.878576 0.986539 

0.807486 0.798771 0.789675 0.860875 0.568828 

 

10 6 

7 

8 

9 

10 

11 

1.013229 -0.396900 0.748127 0.954821 0.989044 

-6.858128 -57.192240 0.748127 0.954814 0.989024 

-0.039958 -0.658937 0.748126 0.954852 0.988741 

1.337568 2.697877 0.748397 0.955136 0.990875 

0.555053 0.653587 0.747854 0.949300 1.016872 

0.312506 26.801572 0.733828 0.943248 0.779644 
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Figure 5.36. Variations of normalized central moments Mc (
pL2

10
)⁄  against 𝛼𝑝 for 

clamped circular plate subjected to uniform load using cubic spline weight functions 

and regular node distribution with 𝑛𝑔 = 5.
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Table 5.31. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  of clamped circular plate subjected to uniform load using irregular 

node distribution using cubic spline weight function with 𝑛𝑔 = 5. 

Number of monomials Value of  penalty 

coefficient 

Dimensionless size of support domain (𝛂𝐬) 

2.5                  3.0                   3.5                  4.0                  4.5 

Exact 

3 6 

7 

8 

9 

10 

11 

0.184954 0.184973 0.185003 0.184579 0.185039 

0.184954 0.184973 0.185003 0.185002 0.185039 

0.184954 0.184973 0.185003 0.185002 0.185039 

0.184954 0.184973 0.185003 0.185002 0.185040 

0.184954 0.184973 0.185002 0.185001 0.185982 

0.184954 0.184974 0.185000 0.184989 0.185074 

0.184821 

6 6 

7 

8 

9 

10 

11 

0.184963 0.184965 0.184973 0.184991 0.185006 

0.184963 0.184965 0.184973 0.184991 0.185006 

0.184963 0.184965 0.184973 0.184991 0.185006 

0.184963 0.184965 0.184973 0.184991 0.185005 

0.184962 0.184965 0.184973 0.184991 0.185016 

0.184965 0.184967 0.184972 0.184988 0.185195 

 

10 6 

7 

8 

9 

10 

11 

0.194294 0.184972 0.184982 0.185016 0.185046 

0.194956 0.184972 0.184982 0.185016 0.185046 

0.193388 0.184972 0.184982 0.185016 0.185046 

0.225898 0.184972 0.184982 0.185017 0.185046 

0.612754 0.184971 0.184982 0.185015 0.185044 

3.991302 0.184966 0.184977 0.185007 0.185061 
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Figure 5.37. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against 𝛼𝑝 for 

clamped circular plate subjected to uniform load using cubic spline weight functions 

and irregular node distribution with 𝑛𝑔 = 5. 
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Table 5.32. Variations of normalized central moments Mc (
pL2

10
)⁄   of clamped circular plate subjected to uniform load using irregular 

node distribution using cubic spline weight function with 𝑛𝑔 = 5. 

Number of monomials Value of  penalty 

coefficient 

Dimensionless size of support domain (𝛂𝐬) 

2.5                 3.0                  3.5                  4.0                  4.5 

Exact 

3 6 

7 

8 

9 

10 

11 

0.806297 0.807521 0.809430 0.808711 0.810942 

0.806298 0.807521 0.809431 0.808711 0.810942 

0.806298 0.807531 0.809428 0.808708 0.810939 

0.806256 0.807446 0.809409 0.808713 0.810897 

0.806448 0.807646 0.808948 0.808606 0.808491 

0.802864 0.813909 0.808067 0.812605 0.816746 

0.81252 

6 6 

7 

8 

9 

10 

11 

0.815844 0.809876 0.807320 0.810871 0.807294 

0.815844 0.809876 0.807320 0.810871 0.807294 

0.815848 0.809918 0.807326 0.810819 0.807301 

0.816026 0.809768 0.807197 0.810514 0.807252 

0.814844 0.808537 0.807092 0.809416 0.808359 

0.818396 0.819513 0.804920 0.799838 0.821350 

 

10 6 

7 

8 

9 

10 

11 

        -      0.805180 0.791402 0.793544 0.805440 

-4.873900 0.805181 0.791399 0.793561 0.805439 

-4.834712 0.805126 0.791389 0.793772 0.805431 

-5.647452 0.804704 0.790996 0.793589 0.805426 

-15.31885 0.803400 0.794435 0.794284 0.802448 

99.782560 0.791174 0.765158 0.775530 0.805649 
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Figure 5.38. Variations of normalized central moments Mc (
pL2

10
)⁄  against 𝛼𝑝 for 

clamped circular plate subjected to uniform load using cubic spline weight functions 

and irregular node distribution with 𝑛𝑔 = 5.
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Table 5.33. Variations of normalized central deflections wc (pL
4 100D⁄ )⁄  of clamped circular plate subjected to uniform load using 

regular node distribution using quartic spline weight function with 𝛼𝑝 = 6. 

Number of monomials Number of 

gauss points 

Dimensionless size of support domain (𝛂𝐬) 

2.5                   3.0                   3.5                   4.0                 4.5 

Exact 

3 4×4 

5×5 

6×6 

7×7 

8×8 

0.184979 0.185018 0.185092 0.185065 0.185230 

0.184982 0.185022 0.185099 0.185065 0.185237 

0.184980 0.185021 0.185093 0.185064 0.185236 

0.184981 0.185021 0.185097 0.185065 0.185236 

0.184980 0.185020 0.185094 0.185063 0.185263 

0.184821 

6 4×4 

5×5 

6×6 

7×7 

8×8 

0.184968 0.185002 0.185203 0.185209 0.185281 

0.184967 0.185002 0.185198 0.185210 0.185270 

0.184967 0.185002 0.185202 0.185209 0.185275 

0.184967 0.185002 0.185199 0.185210 0.185272 

0.184966 0.185001 0.185200 0.185208 0.185272 

 

10 4×4 

5×5 

6×6 

7×7 

8×8 

0.073116 3.204494 0.185167 0.185542 0.185588 

0.587254 0.018966 0.185164 0.185533 0.185573 

0.255416 0.881927 0.185159 0.185534 0.185575 

0.001037 0.088467 0.185161 0.185533 0.185575 

0.001275 0.207537 0.185159 0.185531 0.185574 
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Figure 5.39. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against 𝑛𝑔 for 

clamped circular plate subjected to uniform load using quartic spline weight functions 

and regular node distribution with 𝛼𝑝 = 6.
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Table 5.34. Variations of normalized central moments Mc (
pL2

10
)⁄   of clamped circular plate subjected to uniform load using regular node 

distribution using quartic spline weight function with 𝛼𝑝 = 6. 

Number of monomials Number of 

gauss points 

Dimensionless size of support domain (𝛂𝐬) 

2.5                  3.0                  3.5                  4.0                  4.5 

Exact 

3 4×4 

5×5 

6×6 

7×7 

8×8 

0.803216 0.807935 0.812038 0.811658 0.815952 

0.803409 0.808044 0.812407 0.811622 0.816192 

0.803395 0.808066 0.812097 0.811561 0.816113 

0.803357 0.808029 0.812311 0.811604 0.816105 

0.803412 0.808028 0.812171 0.811592 0.816606 

0.812520 

6 4×4 

5×5 

6×6 

7×7 

8×8 

0.808403 0.785755 0.816451 0.812367 0.826805 

0.803875 0.785271 0.815545 0.813038 0.826578 

0.806252 0.785532 0.816040 0.812943 0.826437 

0.804720 0.785431 0.815930 0.812971 0.826502 

0.805755 0.785372 0.815736 0.812914 0.826489 

 

10 4×4 

5×5 

6×6 

7×7 

8×8 

 31.251156 -839.6852 0.805688 0.965372 0.906891 

 4.7317120 -1.231550 0.806454 0.951697 0.899088 

 244.81044 213.328960 0.803503 0.949618 0.902025 

-15.090472 321.223240 0.805454 0.953758 0.900464 

-12.727712 388.400040 0.805672 0.952396 0.900643 
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Figure 5.40. Variations of normalized central moments Mc (
pL2

10
)⁄  against 𝑛𝑔 for 

clamped circular plate subjected to uniform load using quartic spline weight functions 

and regular node distribution with 𝛼𝑝 = 6.
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Table 5.35. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  of clamped circular plate subjected to uniform load using irregular 

node distribution using quartic spline weight function with 𝛼𝑝 = 6. 

Number of monomials Number of 

gauss points 

Dimensionless size of support domain (𝛂𝐬) 

2.5                   3.0                   3.5                  4.0                   4.5 

Exact 

3 4×4 

5×5 

6×6 

7×7 

8×8 

0.184954 0.184991 0.184997 0.185010 0.185061 

0.184957 0.184973 0.184981 0.184978 0.184994 

0.184952 0.184966 0.184972 0.184975 0.184987 

0.184953 0.184968 0.184972 0.184973 0.184984 

0.184951 0.184965 0.184970 0.184972 0.184984 

0.184821 

6 4×4 

5×5 

6×6 

7×7 

8×8 

0.184974 0.184976 0.184998 0.185022 0.185043 

0.184965 0.184969 0.184983 0.185007 0.185007 

0.184963 0.184968 0.184980 0.185002 0.185001 

0.184964 0.184969 0.184980 0.185000 0.185000 

0.184962 0.184967 0.184979 0.185000 0.184998 

 

10 4×4 

5×5 

6×6 

7×7 

8×8 

0.188686 0.185024 0.185021 0.185083 0.185098 

0.186088 0.184983 0.185015 0.185037 0.185062 

0.185740 0.184979 0.185005 0.185031 0.185053 

0.185560 0.184976 0.185002 0.185026 0.185050 

0.185348 0.184974 0.185000 0.185026 0.185049 
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Figure 5.41. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against 𝑛𝑔 for 

clamped circular plate subjected to uniform load using quartic spline weight functions 

and irregular node distribution with 𝛼𝑝 = 6.
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Table 5.36. Variations of normalized central moments Mc (
pL2

10
)⁄   of clamped circular plate subjected to uniform load using irregular 

node distribution using quartic spline weight function with 𝛼𝑝 = 6. 

Number of monomials Number of 

gauss points 

Dimensionless size of support domain (𝛂𝐬) 

2.5                  3.0                  3.5                 4.0                  4.5 

Exact 

3 4×4 

5×5 

6×6 

7×7 

8×8 

0.804040 0.802575 0.808092 0.813732 0.819422 

0.811428 0.811770 0.811144 0.810076 0.811360 

0.808846 0.808862 0.811272 0.812296 0.813214 

0.809623 0.809502 0.811158 0.810939 0.812107 

0.808738 0.809311 0.810990 0.811592 0.812608 

0.812520 

6 4×4 

5×5 

6×6 

7×7 

8×8 

0.802242 0.791169 0.803957 0.790910 0.806595 

0.809645 0.802359 0.801746 0.812815 0.807682 

0.816418 0.798713 0.801013 0.805444 0.808402 

0.819568 0.798002 0.799454 0.806072 0.808520 

0.811520 0.797916 0.800636 0.805559 0.807921 

 

10 4×4 

5×5 

6×6 

7×7 

8×8 

0.800306 0.800306 0.851540 0.751181 0.816967 

0.731032 0.818052 0.731032 0.814384 0.804134 

0.772068 0.804206 0.772068 0.795138 0.791816 

0.758465 0.817425 0.758465 0.795084 0.799176 

0.766742 0.796136 0.766742 0.793900 0.792316 
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Figure 5.42. Variations of normalized central moments Mc (
pL2

10
)⁄  against 𝑛𝑔 for 

clamped circular plate subjected to uniform load using quartic spline weight functions 

and irregular node distribution with 𝛼𝑝 = 6.
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Table 5.37. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  of clamped circular plate subjected to uniform load using regular 

node distribution using quartic spline weight function with 𝑛𝑔 = 5. 

Number of monomials Value of  penalty 

coefficient 

Dimensionless size of support domain (𝛂𝐬) 

2.5                  3.0                  3.5                  4.0                  4.5 

Exact 

3 6 

7 

8 

9 

10 

11 

0.184982 0.185022 0.185099 0.185065 0.185237 

0.184982 0.185022 0.185099 0.185065 0.185237 

0.184982 0.185022 0.185099 0.185065 0.185237 

0.184982 0.185022 0.185099 0.185065 0.185238 

0.184982 0.185022 0.185099 0.185066 0.185259 

0.184982 0.185018 0.185101 0.185063 0.185009 

0.184821 

6 6 

7 

8 

9 

10 

11 

0.184967 0.185002 0.185198 0.185210 0.185270 

0.184967 0.185002 0.185198 0.185210 0.185270 

0.184967 0.185002 0.185198 0.185210 0.185270 

0.184967 0.185002 0.185198 0.185210 0.185270 

0.184967 0.185002 0.185200 0.185210 0.185278 

0.184966 0.185001 0.185198 0.185205 0.185299 

 

10 6 

7 

8 

9 

10 

11 

0.587254 0.018966 0.185164 0.185533 0.185573 

0.046057 0.000554 0.185164 0.185533 0.185573 

0.030590 0.131359 0.185164 0.185533 0.185573 

0.032774 0.034070 0.185164 0.185532 0.185574 

0.201877 0.056659 0.185164 0.185534 0.185573 

0.062664 0.038410 0.185164 0.185545 0.185577 
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Figure 5.43. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against 𝛼𝑝 for 

clamped circular plate subjected to uniform load using quartic spline weight functions 

and regular node distribution with 𝑛𝑔 = 5.
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Table 5.38. Variations of normalized central moments Mc (
pL2

10
)⁄   of clamped circular plate subjected to uniform load using regular node 

distribution using quartic spline weight function with 𝑛𝑔 = 5. 

Number of monomials Value of  penalty 

coefficient 

Dimensionless size of support domain (𝛂𝐬) 

2.5                 3.0                  3.5                 4.0                 4.5 

Exact 

3 6 

7 

8 

9 

10 

11 

0.793561 0.796388 0.825787 0.850086 0.838228 

0.793562 0.796388 0.825789 0.850072 0.838263 

0.793563 0.796388 0.825777 0.849728 0.838316 

0.793565 0.796380 0.825856 0.857181 0.846872 

0.793692 0.796490 0.826983 0.893778 0.800843 

0.793583 0.795175 0.861890 0.811790 0.817878 

0.81252 

6 6 

7 

8 

9 

10 

11 

0.805522 0.792724 0.786690 0.881132 0.914100 

0.805523 0.792724 0.786688 0.881133 0.914108 

0.805518 0.792723 0.786698 0.881098 0.913649 

0.805474 0.792770 0.786643 0.880908 0.913589 

0.805580 0.792700 0.787733 0.878576 0.986539 

0.807486 0.798771 0.789675 0.860875 0.568828 

 

10 6 

7 

8 

9 

10 

11 

 4.731712 -1.231550 0.748127 0.954821 0.989044 

-4.077584 -14.86779 0.748127 0.954814 0.989024 

10.518148 372.40796 0.748126 0.954852 0.988741 

27.793320 55.000480 0.748397 0.955136 0.990875 

960.83960 130.99592 0.747854 0.949300 1.016872 

-88.41152 -3.352686 0.733828 0.943248 0.779644 
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Figure 5.44. Variations of normalized central moments Mc (
pL2

10
)⁄  against 𝛼𝑝 for 

clamped circular plate subjected to uniform load using quartic spline weight functions 

and regular node distribution with 𝑛𝑔  = 5.
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Table 5.39. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  of clamped circular plate subjected to uniform load using irregular 

node distribution using quartic spline weight function with 𝑛𝑔 = 5. 

Number of monomials Value of  penalty 

coefficient 

Dimensionless size of support domain (𝛂𝐬) 

2.5                  3.0                  3.5                   4.0                  4.5 

Exact 

3 6 

7 

8 

9 

10 

11 

0.184957 0.184973 0.184981 0.184978 0.184994 

0.184957 0.184973 0.184981 0.184978 0.184994 

0.184957 0.184973 0.184981 0.184978 0.184994 

0.184957 0.184973 0.184981 0.184978 0.184994 

0.184957 0.184973 0.184981 0.184978 0.184994 

0.184957 0.184973 0.184981 0.184979 0.184990 

0.184821 

6 6 

7 

8 

9 

10 

11 

0.184965 0.184969 0.184983 0.185007 0.185007 

0.184965 0.184969 0.184983 0.185007 0.185007 

0.184965 0.184969 0.184983 0.185007 0.185007 

0.184965 0.184969 0.184983 0.185007 0.185007 

0.184965 0.184969 0.184983 0.185007 0.185006 

0.184966 0.184968 0.184984 0.185007 0.185008 

 

10 6 

7 

8 

9 

10 

11 

0.186088 0.184983 0.185015 0.185037 0.185062 

0.184983 0.184983 0.185015 0.185037 0.185062 

0.184983 0.184983 0.185015 0.185037 0.185062 

0.184983 0.184983 0.185015 0.185037 0.185062 

0.184983 0.184983 0.185014 0.185039 0.185062 

0.184979 0.184979 0.185019 0.185011 0.185076 
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Figure 5.45. Variations of normalized central deflections wc (
pL4

100𝐷
)⁄  against 𝛼𝑝 for 

clamped circular plate subjected to uniform load using quartic spline weight functions 

and irregular node distribution with 𝑛𝑔 = 5.
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Table 5.40. Variations of normalized central moments Mc (
pL2

10
)⁄   of clamped circular plate subjected to uniform load using irregular 

node distribution using quartic spline weight function with 𝑛𝑔 = 5.

Number of monomials Value of  penalty 

coefficient 

Dimensionless size of support domain (𝛂𝐬) 

2.5                  3.0                  3.5                 4.0                 4.5 

Exact 

3 6 

7 

8 

9 

10 

11 

0.806297 0.807521 0.809430 0.808711 0.810942 

0.806298 0.807521 0.809431 0.808711 0.810942 

0.806298 0.807531 0.809428 0.808708 0.810939 

0.806256 0.807446 0.809409 0.808713 0.810897 

0.806448 0.807646 0.808948 0.808606 0.808491 

0.802864 0.813909 0.808067 0.812605 0.816746 

0.81252 

6 6 

7 

8 

9 

10 

11 

0.815844 0.809876 0.807320 0.810871 0.807294 

0.815844 0.809876 0.807320 0.810871 0.807294 

0.815848 0.809918 0.807326 0.810819 0.807301 

0.816026 0.809768 0.807197 0.810514 0.807252 

0.814844 0.808537 0.807092 0.809416 0.808359 

0.818396 0.819513 0.804920 0.799838 0.821350 

 

10 6 

7 

8 

9 

10 

11 

-7.026600 0.805180 0.791402 0.793544 0.805440 

-6.999436 0.805181 0.791399 0.793561 0.805439 

-6.925176 0.805126 0.791389 0.793772 0.805431 

-3.056648 0.804704 0.790996 0.793589 0.805426 

12.080536 0.803400 0.794435 0.794284 0.802448 

256.58380 0.791174 0.765158 0.775530 0.805649 
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Figure 5.46. Variations of normalized central moments Mc (
pL2

10
)⁄  against 𝛼𝑝 for 

clamped circular plate subjected to uniform load using quartic spline weight functions 

and irregular node distribution with 𝑛𝑔 = 5. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

The effects of selectable parameters: size of support domain, number of 

monomials, type of weight function, number of integration points in a background cell 

and value of penalty coefficient, on the accuracy of the EFGM solution of the Reissner-

Mindlin plate bending are investigated. Three plate bending problems which are 

accepted as benchmark problems are solved using regular and irregular node 

distributions. The results of the problems show that small support domains give more 

accurate and more stable results. It is shown that the number of gauss points in a 

background cell, at the examined range, don't have so much effect on the accuracy of 

results. Also, the value of penalty coefficient does not exhibit any accuracy loss or 

fluctuation up to 1 × 108. There are some differences found between cubic spline and 

quartic spline weight functions and it seems that quartic spline weight function is more 

stable and less sensitive to values of selectable parameters. These assessments are valid 

for both displacement and moment. However, it is shown that the accuracy of 

displacement results are higher than the accuracy of moment results. 

According to the results of problems; 3.0, 5 × 5, 1 × 106 can be suggested for 

dimensionless size of support domain , number of gauss points in a background cell, 

and value of penalty coefficient, respectively. These values may not be the optimum 

values for every situation, however, in general, give the results with sufficient 

accuracy. 
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