
MODELING PRICE AND DEMAND INTERACTION IN INVENTORY SYSTEMS

by

Bekir Turgut İşlier
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ABSTRACT

MODELING PRICE AND DEMAND INTERACTION IN

INVENTORY SYSTEMS

In this thesis, we examine the impact of price on demand in inventory systems

with one and two suppliers. We present two models. In the first model, price determines

the probability of demand occurrence. In case demand occurs, its amount is random

and independent of the price. In the second model, price determines the distribution

of the amount of demand by governing the purchasing probability of each potential

customer. In both models, we try to find the order amount and the price that maximize

the average one-period profit. We discuss how the optimal policy and the profit change

with respect to the parameters related to cost, demand and the relationship between

price and demand. Under each of the models, we present a variation in order to account

for supply uncertainty. We discuss the benefit of taking the capacity constraints into

account, and demonstrate the effect of parameters related to the capacity constraint

on the optimal policy and profit.
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ÖZET

ENVANTER SİSTEMLERİNDE FİYAT VE TALEP

İLİŞKİSİNİN MODELLENMESİ

Bu tezde, fiyatın talep üzerindeki etkisi bir ve iki tedarikçi ile çalışılan envan-

ter sistemlerinde incelenmiştir. Bu amaçla iki model sunulmuştur. İlk modelde fiyat,

talebin varolma olasılığını belirlemektedir. Talep varolduğunda fiyattan bağımsız bir

olasılık dağılımını takip emektedir. İkinci modelde ise fiyat, her potansiyel müşterinin

satın alma olasılığını belirlemek suretiyle toplam talep miktarını etkilemektedir. Her

iki modelde de, ortalama dönem karını enbüyükleyen sipariş miktarı ve fiyat belirlenm-

eye çalışılmıştır. En iyi kararın maliyet, talep ve fiyat talep ilişkisi parametrelerine göre

değişimi de ayrıca incelenmiştir. Ayrıca, her iki model için birer alt model sunularak

tedarik konusundaki belirsizliğin etkisi sorgulanmıştır. Kapasite kısıtını dikkate al-

manın sağladığı fayda gösterilmiş ve kapasite kısıtına ilişkin parametrelerin en iyi kararı

ve karı nasıl etkilediği tartışılmıştır.
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1. INTRODUCTION

Inventory systems have been thoroughly studied in the literature. Decision mak-

ing on volume and frequency of orders, and the rules that drive these decision are

analyzed. The impact of cost structure, including inventory holding cost, fixed and

variable ordering costs, lost sales or backorder costs on optimal ordering policy are

examined. The effect of the nature of demand on inventory decisions has also been

investigated.

In another area of research, the effect of price on customer behavior is studied.

The literature on pricing is quite wide as it involves researches from various disciplines

including operations research, management, economics and psychology. The researches

on this subject that are relevant to our study include studies on reservation price and

willingness to pay, and discrete choice models.

Reservation price and willingness to pay refer to the maximum amount that a

person would pay for a good or a service. They are widely studied in the context

of auctions. Another lines of study on these two concentrate on methods to measure

willingness to pay and willingness of people to pay for public goods. Discrete choice

models, on the other hand, are used to examine settings where customers are to make

choices out of a finite set of alternatives in order to maximize the utility they ac-

quire from their choices. The structures of the models in this area differ from each

other in whether there exists a correlation between alternatives, and how to model the

correlation, if any.

Separate researches on inventory and pricing have been useful to a certain extent.

However, starting in 1950s, a new line of research arose. Joint consideration of the

decisions on inventory and price is offered in order to outperform the policies driven

by separate consideration of these two. Papers regarding joint decision making on

inventory and price typically suppose that price affects the volume of the demand.
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These papers vary in how they model the way price defines the volume, and whether

they assume deterministic or probabilistic demand as a function of price.

In this thesis, we study the interaction of price and demand in inventory systems.

Our first model differs from the literature in that we model not the volume of the

demand, but the probability of demand occurrence as a function of price. In case

demand occurs, its amount follows a certain probability distribution independent of

price. The contribution of our second model is that we model the demand volume as

a function of the purchasing decision of each potential customer, and this decision is

probabilistically determined by price. In other words, we incorporate a price-driven

choice model into an inventory system.

Our first and second models allow adjustment of price elasticity of probability

of demand occurrence and the volume of demand, respectively. Therefore, we study

the impact of this elasticity on both pricing and ordering decisions. We also examine

how cost parameters, such as holding, lost sales and ordering costs change the optimal

policy of price and ordering.

Another aspect of inventory systems that this thesis features is uncertainty in

supply. We first present a review of the literature on supply uncertainty. We mainly

discuss three groups of papers. First group include papers that focus on yield un-

certainty. Second group of studies examine the uncertainty of availability of supplier,

some of them regarding the randomness of the length of the duration the supplier is

available. Finally, the last group analyzes the multiple supplier settings.

We offer two sub-models for each of our two settings. In the first sub-models for

each setting, we examine a retailer working with a single supplier, and assume that

the capacity of the supplier is infinite. In the second sub-models, however, we impose

an uncertainty in the supply process. The retailer works with two suppliers where one

of them offers a low unit cost and the other one offers a higher unit cost. The low-

cost supplier has a finite capacity following a probability distribution, therefore when
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the order the retailer places exceeds that capacity, the excess amount is met by the

high-cost supplier, which has an infinite capacity. In this way, we incorporate supply

uncertainty into an inventory system in which demand is probabilistically determined

by price.

We investigate the effect of supply uncertainty on the decisions of the retailer.

We examine the change in the optimal ordering and price decisions with respect to

three aspects of the underlying uncertainty. First factor is how much more expensive

the high-cost supplier compared to the low-cost one. Second factor is the expectation

of capacity of the low-cost supplier compared to the expected demand. Last one is the

variability of the capacity. After observing the effects of these three parameters on the

decision variables, we continue the analysis by comparing the profit earned in optimal

policy to the profit of other two approaches. First approach is to assume infinite capac-

ity for the low-cost supplier, and making inventory and price decisions accordingly. By

comparing the profit made in this approach to the profit in optimal policy, the benefit

of accounting for the supply uncertainty is observed. Second approach is to determine

the price on revenue-maximizing basis and to decide of order amount given that price.

Comparison of this method to the optimal strategy enables us to observe the impact

of cost structure on the profit in an inventory system with price-driven demand and

supply uncertainty.

The thesis is structured as follows. In Chapter 2, we review the literature on

pricing including reservation price and willingness to pay, discrete choice models, price

effect of demand volume. We also review the literature on supply uncertainty types

including multiple supplier settings and uncertainties on availability and amount of

supply. In Chapter 3, we present our model that regards the impact of price on

probability of demand occurrence in an inventory system, and then discuss the results.

There are two sub-models in this chapter, and the second one incorporates supply

uncertainty into the current setting. In Chapter 4, we present our model in which

price probabilistically determines the purchase decision of each potential customer in

an inventory system, and then discuss the results. This chapter as well includes two
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sub-models second one of which is designed to account for supply uncertainty. Finally,

conclusions are drawn and directions for future research are offered in Chapter 5.
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2. LITERATURE REVIEW

The focus of this study is on the interaction between price and demand. We

first present paper regarding this subject. We examine these papers in three groups.

First group regards the papers that investigate the impact of price on the volume of

the demand in inventory systems. The second group consists of the papers that study

reservation price and willingness to pay. Finally, the third group of papers examine

discrete choice models.

We also incorporate supply uncertainty into the models that we establish in exam-

ining the relation between price and demand. The papers regarding supply uncertainty

also consist of three groups. These groups examine yield uncertainty, availability of

supply, and multiple supplier settings, respectively.

2.1. Pricing

2.1.1. Price Determining Demand Volume

In the first effort in the literature to analyze pricing and inventory decisions

jointly, Whitin (1955) states that economic theorists study price-demand relationship in

order to maximize profit, and businessmen focus on inventory control to minimize cost,

but a model to incorporate these two concerns would be more realistic and therefore

useful. To this end, he adds price as a variable to existing inventory models and offers

solutions to the problem of jointly determining inventory and price for various settings.

Elmaghraby and Keskinocak (2003) state that dynamic pricing has been used in

industries with perishable products or services for a long time; but recently, its usage

in industries with storable products emerged as well because demand data became

more available, price changes became easier with new technologies and opportunity to

use decision-support tools to utilize demand information for pricing arose. Along with
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an extensive review of literature and practices, they offer three criteria to classify the

settings in pricing with inventory concerns.

First criterion is whether there is a chance to replenish inventory during planning

horizon. Some products with short life cycles may not be possible to replenish within

the season because of long supply lead times whereas some other types can be replen-

ished periodically. Second measure to consider is the time dependency of demand.

Total demand over time for a durable good may be fixed, either being known or un-

known, or repeated purchases may be limited. If this is the case, then sales in a period

implies less sales in following periods. Another factor causing time-dependent demand

may be accumulated customer knowledge on product, which results in differing demand

patterns through the life cycle. On the other hand, products that are to be purchased

repeatedly, or products with selling periods not long enough to let accumulation of

customer knowledge can be assumed to have time-independent demand. Last criterion

in the classification is whether the customers of the product of interest tend to make

myopic or strategic decisions. Myopic customers consider only current price, however

strategic customers regard the future path of the price thus forcing the seller to take

into account the impact of current and future prices on customer behavior.

There are two widely used types of random demand functions relating price to

demand. Additive demand function models randomness of the demand as a noise added

to mean demand, and therefore variance of demand is constant in mean. Multiplicative

demand, on the other hand, models randomness as a multiplicative factor thus making

the variance increasing in mean.

Chen and Simchi-Levi (2004) consider a model involving both pricing and in-

ventory decisions for a finite horizon. Objective function is the expected profit over

the finite horizon, and setup cost is positive. They conclude that for additive demand

models, the profit-to-go functions are k-concave, making (s, S, p) policy optimal where

(s, S) has its standard meaning in the contexts with only inventory decision, and p is

determined regarding the inventory position at the beginning of each period. However,
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this conclusion does not apply to demand functions consisting of both additive and

multiplicative parts as the profit-to-go function is no more k-concave. Also, they point

out that it is not possible to include any capacity constraints into this solution because

(s, S) policy is not optimal when capacity is finite.

Federgruen and Heching (1999) incorporate the additive and multiplicative de-

mand functions. Under full backlogging, they examine both finite and infinite horizon

models. They offer two variations with the first one allowing increasing and decreasing

the price, and the second one allowing only decreasing. They offer a value iteration

method to find optimal inventory levels and prices.

There is also a line of research trying to incorporate capacity constraint into

the joint decision on price and inventory. Yao et al. (2006) try to unify existing

demand models to get rid of the necessity of using some specific demand functions

to solve the problems involving inventory and price decisions, and come up with an

easily interpretable general demand model. Considering demand functions consisting

of the mean and random demand, they conclude that as long as the mean demand

has increasing price elasticity and the random demand has generalized strict increasing

failure rate, then the expected profit function is unimodal or quasi-concave.

In Klemperer and Meyer (1989), an oligopoly is studied under supply uncertainty.

The authors come up with a ’supply function’ to relate quantity to price, which, they

state, helps the firm to act better than the cases where either quantity or price is

fixed. Uncertainty significantly reduces the number of equilibria, and the paper shows

the existence of a Nash equilibrium under a symmetric oligopoly with a homogeneous

product, and finds the conditions that guarantee uniqueness. As the number of firms

decrease, or the differentiation between products increase, the supply functions in equi-

libria becomes steeper. As the steepness of the supply functions in equilibria increases,

the competition gets closer to the case with fixed quantities whereas decreasing steep-

ness brings the competition closer to the case with fixed prices.
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In Tang and Yin (2007), no responsive pricing and responsive pricing is compared

for a retailer where supply yield is uncertain and product demand is linear in price.

In the former policy, the retailer decides on order quantity and the retail price before

observing the supply yield. In the latter one, however, order quantity is determined

first, and the retail price is set after the supply yield is realized. The conclusion is

that the responsive pricing policy always creates higher expected profit as it enables

the retailer to utilize pricing in responding to the uncertainty in supply. They also

analyze two extensions with the first one involving a chance for the retailer to place an

emergency order after observing the yield, and the second one obliging the retailer to

distribute the order between more than one suppliers.

In Deng and Yano (2006), under deterministic demand functions and capacity,

there is a positive setup cost associated with a production run, in addition to the cost

per unit produced. Both the demand function and the capacity are allowed to change

over periods. They draw four main conclusions. First, they state that optimal prices

are not necessarily decreasing in capacity even for constant capacity settings. Second,

the marginal returns sometimes increase in increasing capacity. In addition, the authors

compare their method to a sequential procedure in which price is determined first and

then decision on production is made accordingly. It turns out that in order for the

sequential method to create a near-optimal solution, the price decision-makers should

be informed on details much better than they usually are; otherwise the procedure with

simultaneous decision making significantly outperforms it. Last, the authors suggest

firms to use pricing more actively than common practice to manage demand in the

following fashion: When demand patterns vary over periods, firms should aggressively

suppress demand by increasing price, and produce at capacity to increase supply for

periods with higher incremental profit.

In this subsection, we covered papers that examine the interaction between price

and demand in inventory systems and offer various ways of modeling this interaction.

The aim, in general, is to figure out the optimal policy of ordering and pricing. They

typically relate the price to the volume of the demand. Some of them use a deter-
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ministic model to represent this relation whereas the others model this interaction

probabilistically.

2.1.2. Reservation Price and Willingness to Pay

Reservation price and willingness to pay (WTP) refer to the maximum amount

that a person would pay for a good or a service. They are relevant to this study as

they certainly impact the probability of a potential customer to make a purchase for a

given price.

Reservation price is studied in the literature in the context of auctions. Levin

and Smith (1996) examine optimal reservation prices in auctions. Under risk-neutral

independent private values, seller is better off by puzzling bidders by announcing a

reservation price higher than the true value, no matter how many bidders are involved

in. However, when information is correlated, optimal reservation price to announce

converges to true value as the number of bidders increase.

Elyakime et al. (1994) focus on first-price sealed-bid auctions and show that

strategy of public reserve price is better for seller than strategy of secret reserve price,

and propose a method to evaluate the gain from moving from secret to public reserve

price.

Lizzeri and Persico (2000) study first price auction, the combination of first and

second price auctions, war of attrition, and the all pay auction. They prove the unique-

ness and existence of equilibrium in auctions with a reserve price.

Wertenbroch and Skiera (2002) categorize methods to measure WTP regarding

whether they give the customers an incentive to tell their true WTP and whether

they ’simulate actual point-of-purchase contexts’. They test the incentive-compatible

method proposed by Becker et al. (1964) and show that it gives lower WTP estimates

than methods that are not incentive-compatible, such as open-ended contingent valu-



10

ation. In the end, they conclude that the differences in WTP estimates are caused by

whether the facilitator provides an incentive to reveal the true WTP, rather than how

much effort the respondents spend in responding.

Another group of papers focuses on WTP for public goods. Kahneman et al.

(1993) question the assumptions of the contingent valuation method. In a survey,

people state how much they are willing to pay to avoid a problem related to public

health or environment, and WTP turns out to be strongly correlated with the other

measures of attitudes, e.g. rating of the importance of the issue. Authors conclude

that the results of a survey on people’s WTP for public goods reflect their attitudes

rather than economic valuations.

Flores and Carson (1997) examine the income elasticity of WTP for environmental

and public goods and show that it is not necessarily in accordance with income elasticity

of demand. They state that the reason is that the income elasticity of WTP is affected

remarkably by some unobservable factors.

In this subsection, we presented papers that regard reservation price and WTP.

The papers from the perspective of the seller try to figure out how the seller should

make the pricing decisions. Other papers investigate what impacts the decisions of the

customers or how to measure their WTP.

2.1.3. Discrete Choice Models

In this thesis, we examine systems where potential customers are to make choices

between purchasing and not purchasing given the price of the product offered. There-

fore, in this subsection, we present papers that regard situations where the customers

make choices depending on the attributes of the products offered.

In random utility models, a customer is to make choice out of a set of alterna-

tives. She desires to maximize the utility she acquires from this decision, and this
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utility consists of a part that is observable to the researcher and the other part that is

unobservable.

Observable part of the utility gathered by a customer from a particular alterna-

tive can be computed given the attributes of the alternative and the customer. The

unobserved part, on the other hand, is considered a random variable. Categorization

of random utility models is based on the choice situation of interest, and they are

specified by which distribution they attribute to the random part of the utility.

Multinomial logit is the most commonly used model because of its simplicity.

It took its current form with the contribution from number of researchers. A study

by Thurstone (1927) in a psychological context was utilized in economics by Marchak

(1960), and a fundamental property called “independence from irrelevant alternatives”

was developed by Luce (1959). The model assumes that the random part follows

independent and identical extreme value distribution. Therefore, it is suitable for

choice situations where alternatives have uncorrelated unobservable parts with equal

variances.

In order to account for the dependence between the unobservable parts of the

utilities of the alternatives, models that are more complex are developed. Nested logit,

for instance, groups alternatives such that correlation of unobserved factors is the same

for the alternatives within a group (nest) and is zero for alternatives in different nests.

Forinash and Koppelman (1993), for instance, apply this model to a transportation

problem. Generalized nested logit allows alternatives to belong to more than one nest,

and they can belong to these nests to different degrees, as instructed by Train (2009).

Probit models dependence in a different fashion. Unobserved factors are consid-

ered to have a joint normal distribution, thus allowing the researcher to specify the

correlation between each pair of alternatives. Hausman and Wise (1978) and Daganzo

(1979) contributed to the earlier works of Thurstone and Marchak for the probit model

to take its current form, as recognized by Train (2009). The main restriction of the
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probit model is that the normal distribution assumption may not be always appropri-

ate.

Mixed logit is the most general discrete choice model and was used first by Boyd

and Mellman (1980) and Cardell and Dunbar (1980) for automobile industry. In mixed

logit, unobserved utility consists of a part that has independent and identical extreme

value distribution, and the other part with any distribution, to account for correlation.

In this subsection, we covered papers that study discrete choice models. The way

the models of this subsection are established depends mainly on whether there exists

a correlation between the alternatives, and how this correlation is represented, if any.

Researcher is to select the appropriate discrete choice model for the situation of interest

under the usual tradeoff between generality and tractability.

2.2. Supply Uncertainty

There are three important surveys on supply uncertainty. Tajbakhsh et al. (2007)

review works on both lead-time and yield uncertainty. Minner (2003), on the other

hand, focuses on multi-supplier settings with lead-time uncertainty. Yano and Lee

(1995) present an extensive overview of works on yield uncertainty. They categorize

the types of uncertainties in yield into five groups.

The first type of models assume that production of a conforming unit of product

is a Bernoulli process, thus making the distribution of number of conforming units in a

batch a Binomial distribution with parameters Q and p. This approach is advantageous

in that it is enough to specify p. However, it is realistic only when it makes sense to

assume that the production process is stationary and qualities of the units in a batch

are not autocorrelated.

The second approach is to specify the fraction conforming; therefore, it allows one

to specify the variance of the fraction conforming as well as the mean, as opposed to
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the first approach. However, the assumption that the fraction good is independent of

the batch size remains. This model is reasonable when batches are large and relatively

stable from production run to production run.

The third approach allows modeling the dependence of the distribution of the

fraction good on the batch size. It is appropriate to use this approach to model pro-

cesses in which the fraction conforming changes over production runs. It may decrease

as in the case of increasing failure rate caused by tool wear, breakage etc., or increase

as in the cases with a startup processes. Henig and Gerchak (1994), cited by Yano and

Lee, introduce the interrupted geometric model in which the process produces only

conforming units until it goes “out of control”, i.e. the state where it produces only

nonconforming units; and the time to go out of control is distributed geometrically.

Yano and Lee offer reversing this approach to model the cases with decreasing failure

rate.

The fourth type of model involves the uncertainty of the capacity. The output

quantity is the minimum of input quantity and the random capacity; and the decision-

makers are to determine the input quantity.

The last type of model is the most general one. It involves specifying the probabil-

ities of each possible output quantity to occur for each possible batch size. Obviously,

it necessitates a great effort in collecting data for a wide spectrum of batch sizes,

including the ones that are not frequently used.

Papers dealing with yield uncertainty will be classified as ones with continuous

and discrete time models like Yano and Lee do. Regarding continuous models, Silver

(1976), models yield uncertainty as a result of defective units, administrative errors,

damage etc. Expected amount received is proportional to lot size, and there is a positive

probability of amount received being larger than amount ordered. Two variations are

the one with amount received having standard deviation independent of lot size, and

with a standard deviation proportional to lot size. Shih (1980) narrows the reasons of
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uncertainty to only defections; and both Silver and Shih end up with optimal order

expressions slightly different from standard EOQ formula.

Kalro and Gohil (1982) offer an extension to Silver’s model by allowing backlog-

ging of demand either completely or partially. Mak (1985) relaxes the assumption of

Kalro and Gohil that the fraction that can be backlogged is constant, and makes it a

random variable. The optimal lot size and optimal duration to stay stocked out turns

out to be the functions of the first two moments of fraction conforming and fraction of

demand that can be backlogged.

Under Poisson demand, Moinzadeh and Lee (1987) examine yield uncertainty un-

der continuous review. They approximate the operating characteristic to find optimal

or near-optimal solutions for ordering policy.

In discrete time, Karlin (1958) initiates the research by a single period model. He

proves for a model allowing only a fixed amount of order that if holding and shortage

costs are increasing and convex, then there is a certain inventory level such that an

order should be placed if on-hand inventory is below that level, and otherwise it is

better not to order. In a more general model allowing several ordering levels, under

the assumption that the likelihood of distribution of delivery amount is monotone, he

shows that there are intervals of on-hand inventory levels corresponding to intervals

where a particular order level is optimal.

Parlar and Berkin (1991) focus on uncertainty regarding the length of the duration

of the availability and unavailability of supply. They try to evaluate the best quantity

to order. They conduct a numerical study for cases for two special distribution of

length of availability and unavailability periods.

Güllü et al. (1999) examine an inventory system in which supply is either avail-

able or completely unavailable. Under deterministic dynamic demand, they prove the

optimality of order-up-to level policy and provide a newsboy-like formula for optimal
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order-up-to levels. For a model that also allows partial availability of supply, they

present a numerical study.

In Anupindi and Akella (1993), inventory policies are examined for a buyer with

two uncertain suppliers. The authors mention three different models as follows. In

Model I, contracts oblige the full amount of order to be delivered at once. It is deliv-

ered in the current period with a certain probability and in the next period with the

remaining probability. In Model II, however, uncertainty is related to the fraction of

the order to be delivered rather than delivery time. A random fraction of the order is

delivered in the current period, and the remainder is cancelled. Model III is rather an

extension of Model II as the remainder is delivered in the next period.

In Kouvelis and Milner (2002), supply uncertainty is studied along with demand

uncertainty to determine how they affect capacity and outsourcing decisions. The

impact of supply uncertainty on investment levels is investigated for both single and

multi-period settings in cases where the market is affected by that particular firm’s

investments. They conclude that the need for vertical integration increases in increasing

uncertainty in supply process.

Burke et al. (2007) study the decision on working with single or multiple suppliers.

In a single period, single product setting, they involve supplier reliabilities and firm-

specific inventory costs; and conclude that the single supplier strategy is better only

when the capacity of the supplier is large compared to the demand and there is no

benefit from diversification to the firm. In all other cases, multiple sourcing performs

better.

In Serel (2007), a risk-reducing approach to handle supply uncertainty is offered.

With uncertainty of the quantity of input available in the spot market, the paper

studies a capacity reservation contract in a multi-period setting. The contract obliges

the supplier to make available a predetermined amount of input, and the manufacturer

pays a fixed amount to the supplier at each period. The manufacturer is also allowed to
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purchase from the spot market. The paper offers an analytical solution to the optimal

policy for the manufacturer. It concludes that the uncertainty in the market increases

the percentage of input bought in advance, and the capacity reservation contracts

increase the capacity utilization of the supplier.

We covered three types of papers in this section. The first group of papers focus

on yield uncertainty. The second group examines the uncertainty of availability of

supplier, some of them regarding the randomness of the length of the duration the

supplier is available. Finally, the last group analyzes the multiple supplier settings.

The first model we present in this thesis differs from the literature in that in

the inventory systems we present, we model not the volume of the demand but the

probability of demand occurrence as a function of price. Demand follows a probability

distribution independent of the price, in case it occurs. Our second model, on the other

hand, represents the volume of the demand as a result of a choice model for potential

customers. In the extensions of both of the models, we represent the uncertainty in

supply in settings with two suppliers where the capacity of the lower-cost supplier is

finite and random.
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3. AN INVENTORY MODEL WITH PRICE EFFECT ON

THE PROBABILITY OF DEMAND OCCURRENCE WITH

ONE AND TWO SUPPLIERS

3.1. Model

In this section, we present an inventory system in which the price determines

the probability of demand occurrence. In case demand occurs, it follows a probability

distribution independent of price. In Section 3.1.1, the retailer of interest works with a

single supplier who has an infinite capacity. In Section 3.1.2, on the other hand, there

are two suppliers. First one of these suppliers offers a low unit cost and has a finite

random capacity whereas the second one offers a higher unit cost and has an infinite

capacity.

3.1.1. One Supplier Setting

In this model, an inventory system is considered. A retailer holds inventory for a

single product for which there is demand Dn that occurs only in some periods. When

it occurs, it is represented by ∆, and ∆ follows a known probability distribution with

probability density and cumulative distribution functions f(.) and F (.), respectively.

For each unit of inventory hold, the retailer incurs a holding cost h per unit time.

Any unsatisfied demand is lost, and costs the retailer a given shortage cost b. Also,

there is a given cost c for ordering one unit of product. Capacity of the supplier the

retailer works with is assumed to be infinite.

At the beginning of each period, the retailer has the information on his inventory

In, price pn for the current period, and jn, indicating whether there will be demand

in the current period. Then she is to decide on what price to announce for the next

period, and how much to order for the current period.
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Inventory models in the literature that examine the interaction of price and de-

mand typically suppose that price determines the volume of the demand, either deter-

ministically or probabilistically. In this study, however, we present a model in which

the price determines the probability of demand occurence. In case the demand occurs,

its volume is random and independent of price. The price determines the probability

of demand occurrence by the following function.

Π1 (pn) = e−βpn (3.1)

where β is a parameter to account for the price elacticity of the probability of de-

mand occurence. The probability of not having demand is represented by Π0 (pn), and

computed as

Π0 (pn) = 1− e−βpn (3.2)

Lead time is assumed to be zero. That is, inventory increases right at the period the

order is placed. No setup cost is incurred for ordering. The system is examined for

infinite horizon.

Since inventory level at the beginning of period n is In, by ordering un units, the

retailer reaches the level yn before the demand for that period is observed. Therefore,

yn = In + un (3.3)

Denoting the demand for period n by Dn, the number of units sold in a period is the

minimum of yn and Dn. Obviously,

In = (yn−1 −Dn−1)+ (3.4)

Jn(pn) represents the binary random variable indicating whether or not there is demand

for period n. The probability mass fucntion of this random variable is determined by
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pn via Equation 3.1. jn is the actualized value of this random variable.

Jn (pn) ∈ {0, 1} (3.5)

jn ∈ {0, 1} (3.6)

∆ represents the volume of the demand in case demand occurs. Dn(.). on the other

hand, represents the demand whether or not it occurs. Therefore,

Dn (0) = 0 (3.7)

Dn (1) = ∆ (3.8)

Since the retailer knows at the beginning of a period whether demand is to occur for

that period, jn is used instead of Jn(pn) for the formulations that regard the calculations

for the current period.

L(yn, jn) is defined as the total cost of holding and lost sales for period n. Then

taking the expectations over both the probability of demand occurrence and the volume

of the demand,

L (yn, jn) = hE
[
(yn −Dn (jn))+]+ bE

[
(Dn (jn)− yn)+] (3.9)

R(yn, jn, pn) is the one-period revenue, calculated as

R (yn, jn, pn) = pnE [min (yn, Dn (jn))] (3.10)

= pn
(
yn − E

[
(yn −Dn (jn))+]) (3.11)
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Then, V (yn, jn, pn) is defined to be

V (yn, jn, pn) = R (yn, jn, pn)− L (yn, jn)− cyn (3.12)

= (pn − c) yn − (pn + h)E
[
(yn −Dn (jn))+]− bE [(Dn (jn)− yn)+]

(3.13)

Profit for period 1 is

P1 (y1, j1, p1) = E [V (y1, j1, p1)] + cI1 (3.14)

Profit for period 2, discounted to period 1, is

P2 (y1, j1, p1, y2, J2(p2), p2) = α
(
E [V (y2, J2 (p2) , p2)] + cE

[
(y1 −D1 (j1))+]) (3.15)

Then, sum of the discounted profits for all periods is

P (y,J(p),p) = cI1 +
∞∑
n=1

αn−1
{
E [V (yn, Jn (pn) , pn)] + αcE

[
(yn −Dn (Jn (pn)))+]}

(3.16)

Under the assumption that the retailer applies a base stock policy with a fixed

price, yn and pn are replaced by y and p. Then the expression in the curly brack-

ets in Equation 3.16 can be considered a fixed one-period profit whose maximization

maximizes the total profit as well. That function is called H(y, p), therefore,

H (y, p) = E [V (y, J (p) , p)] + αcE
[
(y −D (J (p)))+] (3.17)
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That expression can be expanded as

H (y, p) = −y (h+ c− αc) (3.18)

+ Π1 (p)

(p+ b+ h− αc)

y (1− F (y)) +

y∫
0

xf (x)dx

− bE [∆]

 (3.19)

The first derivative of H(y, p) with respect to y is

∂H (y, p)

∂y
= − (h+ c− αc) + e−βp (p+ b+ h− αc) (1− F (y)) (3.20)

(3.21)

Then, the second derivative is

∂2H (y, p)

∂y2
= −e−βp (p+ b+ h− αc) f (y) (3.22)

Since the second derivative is negative as long as p + b + h > αc, y value that makes

the first derivative 0 for the current p maximizes profit.

y∗ = F−1

(
−
(
(h+ c (1− α)) eβp

)
p+ b+ h− αc

+ 1

)
(3.23)

Derivative of H(y, p) with respect to p is

∂H (y, p)

∂p
= Π0

′ (p) [y (1− α) (−h− c)] + Π1 (p)
{
y − E

[
(y −∆)+]} (3.24)

+Π1
′ (p)

{
(p− c) y − (p+ h− αc)E

[
(y −∆)+]− bE [(∆− y)+]} (3.25)
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Considering

Π1
′ (p) = −βe−βp (3.26)

= −βΠ1 (p) (3.27)

Π0
′ (p) = βe−βp (3.28)

= βΠ1 (p) (3.29)

E
[
(∆− y)+] = E

[
(y −∆)+]+ E [∆]− y (3.30)

the derivative turns out to be

∂H (y, p)

∂p
= Π1 (p)

{
[1− β (h+ b+ p− αc)]

{
y − E

[
(y −∆)+]}+ βbE [∆]

}
(3.31)

Then, the second derivative is

∂2H (y, p)

∂p2
= −βΠ1 (p)

{
[2− β (h+ b+ p− αc)]

{
y − E

[
(y −∆)+]}+ βbE [∆]

}
(3.32)

Since the second derivative of H(y, p) with respect to p is not necessarily negative,

H(y, p) is not necessarily concave in p but its concavity depends on parameters. Then,

it is not jointly concave, either.

In this subsection, we considered a price-driven demand model with no restriction

on supply. In the next subsection, we will consider a model with supply uncertainty.
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3.1.2. Two Supplier Setting

In this subsection, the inventory described in the previous subsection is examined

under supply uncertainty. In order to account for possible capacity constraints in the

supply process, this model differs from the previous one in the structure and the cost

of procurement. In this model, there are two suppliers. The low-cost supplier has a

finite capacity Q and charges ca per unit whereas the high-cost supplier has infinite

capacity and has unit cost cb with cb > ca. Before observing the demand, retailer places

an order. If the size of this order is less than Q, then it is completely fulfilled by the

low-cost supplier. Otherwise, the remainder is met by the high-cost supplier.

To establish the profit function for the two-supplier case, a similar procedure to

the one-supplier setting is followed. R(yn, jn, pn) and L(yn, jn) representing revenue

and cost of holding and lost sales for period n, as before, V II(yn, jn, pn) is defined as

V II (yn, jn, pn) = R (yn, jn, pn)− L (yn, jn) (3.33)

Then profit for the first period is computed as

P II
1 (y1, j1, p1) = V II (y1, j1, p1)− kII (y1 − I1) (3.34)

where the function kII(.) represents the total cost of ordering.

Similarly, profits for following periods discounted to the first period are

P II
2 (y1, j1, p1, y2, J2(p2), p2) (3.35)

= α
(
E
[
V II (y2, J2 (p2) , p2)

]
− kII (min (D1 (J1 (p1)) , y1))

)
(3.36)

P II
3 (y1, j1, p1, y2, J2(p2), p2, y3, J3(p3), p3) (3.37)

= α2
(
E
[
V II (y3, J3 (p3) , p3)

]
− kII (min (D2 (J2 (p2)) , y2))

)
(3.38)
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Therefore, total profit over all periods is

P II (y,J(p),p) = −kII (y1 − I1) (3.39)

+
∞∑
n=1

αn−1
{
E
[
V II (yn, Jn (pn) , pn)

]
− αkII (E [min (Dn (Jn (pn)) , yn)])

}
(3.40)

which equals, under the assumption that inventory and price is hold constant over time

P II (y,J(p),p) = −kII (y − I1) (3.41)

+
1

1− α
{
E [R (y, j, p)− L (y, j)]− αkII (E [min (D (J (p)) , y)])

}
(3.42)

where

kII (y − I1) = caEQ [min (y − I1, Q)] + cbEQ
[
(y − I1 −Q)+] (3.43)

= ca
(
y − I1 − EQ

[
(y − I1 −Q)+])+ cbEQ

[
(y − I1 −Q)+] (3.44)

= (cb − ca)EQ
[
(y − I1 −Q)+]+ ca (y − I1) (3.45)

and kII (min (D (J (p)) , y)) is computed as follows.

kII (min (D (J (p)) , y)) = E [caEQ [min (min (D (J (p)) , y) , Q)]] (3.46)

+cbEQ
[
(min (D (J (p)) , y)−Q)+] (3.47)

Expanding the outside min() function,

kII (min (D (J (p)) , y)) = E
[
caEQ

[
min

(
y − (y −D (J (p)))+, Q

)]]
(3.48)

+cbEQ
[
(min (D (J (p)) , y)−Q)+] (3.49)
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Expanding the inside min() functions,

kII (min (D (J (p)) , y)) = E
[
ca

{
y − (y −D (J (p)))+ − EQ

[(
y − (y −D (J (p)))+ −Q

)+
]}

+cbEQ

[(
y − (y −D (J (p)))+ −Q

)+
]

Rearranging terms,

kII (min (D (J (p)) , y)) = E
[
(cb − ca)EQ

[(
y − (y −D (J (p)))+ −Q

)+
]

+ca
(
y − (y −D (J (p)))+)

Taking the constants out of the expectations,

kII (min (D (J (p)) , y)) = (cb − ca)E
[
EQ

[(
y − (y −D (J (p)))+ −Q

)+
]]

(3.50)

+ca
(
y − E

[
(y −D (J (p)))+]) (3.51)

Therefore, the overall profit function is

P II (y,J(p),p) = − (cb − ca)EQ
[
(y − I1 −Q)+]− ca (y − I1)

+ 1
1−α

{
E [R (y, J (p) , p)− L (y, J (p))]− α

{
(cb − ca)E

[
EQ

[(
y − (y −D (J (p)))+ −Q

)+
]]

+ca
(
y − E

[
(y −D (J (p)))+])

which can be expanded as

P II (y,J(p),p) = − (cb − ca)

(
(y − I1)F (y − I1)−

y−I1∫
0

xf (x) dx

)
− ca (y − I1)

+ 1
1−α

(
− (1− Π1 (p))hy + Π1 (p)

(
− (p+ b+ h− αca)

(
yF (y)−

y∫
0

xf (x) dx

)
+y (p+ b− αca)− bE [∆]− α (cb − ca)

(
(1− Π1 (p))

(
yFQ (y)−

y∫
0

xfQ (x) dx

)
+Π1 (p)

(
y∫
0

xFQ (x) f (x)dx+ yFQ (x) (1− F (y))−
y∫
0

z∫
0

xfQ (x) f (z) dxdz

)

The price that maximizes not the profit but the revenue is calculated in order to
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find out how much difference it creates to account for the cost structure compared to

focusing only on revenue maximization. The revenue-maximizing price pr is calculated

as follows, under the assumption that all of the demand can be met. Expected revenue

is found by multiplying the price with the demand as a function of price.

E [pD (J (p))] = pΠ1 (p)

∞∫
0

xf (x) dx (3.52)

= pe−βpE[∆] (3.53)

To maximize the revenue, the first derivative of expectation with respect to p is equated

to 0,

∂E [pD (J (p))]

∂p
=
(
e−βp − βpe−βp

)
E[∆] (3.54)

=
(
e−βp (1− βp)

)
E[∆] (3.55)

= 0 (3.56)

⇒ pr =
1

β
(3.57)

Checking out the second derivative,

∂2E [pD (J (p))]

∂p2
= −βe−βp (1− βp)− βe−βp (3.58)

= βe−βp (βp− 2) (3.59)

It turns out that 1/β maximizes revenue as long as βp < 2, which holds by definition.

In this section, we incorporated a capacity constraint into an inventory system

with price-driven demand probability. In the next section, we present the way the

computations are conducted and discuss the results for our models with and without

supply uncertainty.
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3.2. Computation and Numerical Results

In this section, we present the procedure followed in computations in MATLAB

for both models presented so far. The first subsection regards the setting without a

capacity constraint whereas in the second one the capacity costraint is involved as well.

After explaining the procedure in each subsection, we discuss the interpretation of the

numerical results.

3.2.1. One Supplier Setting

Since the concavity of H(y, p) with respect to (y, p) is not guaranteed, numerical

methods are employed to find y∗ and p∗. Two different methods are utilized to this end.

First one is simultaneous optimization and the second one is iterative optimization.

3.2.1.1. Simultaneous Optimization. In simultaneous optimization of (y, p), the fol-

lowing procedure is employed. In order to compute the profit, Equation 3.19 is coded

as in Figure 3.1.

function result = profit1(xx,h,b,c,alpha,beta,k,mu)

result=-((-xx(1))*(h+c-alpha*c)+PI(xx(2),beta)*((xx(2)+b+h

-alpha*c)*(xx(1)*(1-gamcdf(xx(1),k,mu))+quad(@(x)

(x.*gampdf(x,k,mu)),0,xx(1)))-b*(k*mu)));

end

Figure 3.1. Fixed one-period profit function.

Note that the value computed is actually the negative of the profit as the opti-

mization function fmincon in MATLAB minimizes its argument. Having the profit

function, optimization is performed using the function fmincon as follows. First, the

constraints are defined. Both decision variables are constrained to be non-negative.

Then come the equality constraints that the function fmincon requires. There is no

equality constraint in our model, therefore the corresponding matrices are defined to be
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null. Upper and lower bound are also defined to be null. The reason is that although

all of the decision variables actually have the lower bound 0, we already define them

via the matrices A and bb. There is no nonlinear constraint, either. Therefore, it is null

as well. In MATLAB, all these constraints are expressed in matrix form as in Figure

3.2.

A=[-1 0;0 -1];

bb=[0;0];

Aeq=[];

beq=[];

lb=[];

ub=[];

nonlcon=[];

Figure 3.2. Constraints.

Two different starting points for each decision variable is used in order to check

whether the solution found depends on the starting point. For all instances that this

comparison is carried out, no significant difference is spotted.

There are two alternative algorithms that can be used by fmincon for our study.

They are called Sequential Quadratic Programming(SQP) and Interior Point. For all

the parameter sets that the outputs given by these algorithms are compared, it turned

out that they practically give the same results. Therefore, one of them, Interior Point,

is arbitrarily chosen and all calculations are performed based on it for the sake of

consistency.

The parameters are assigned with their respective values. Then, fmincon is used

as in Figure 3.3. Execution of that code assigns the optimal values of the decision vari-

ables found in the solution to the variable xx1, and the corresponding profit function

to the varible fval1.
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[xx1,fval1]= fmincon(@(xx)profit1(xx,h,b,c,alpha,beta,k,mu),

xx01,A,bb,Aeq,beq, lb,ub,nonlcon,options);

Figure 3.3. Use of fmincon.

3.2.1.2. Iterative Optimization. In iterative optimization of (y, p), the profit is maxi-

mized over y and p in the following way. For a fixed p, y∗(1) is found by derivation as

follows.

∂H (y, p)

∂y
= − (h+ c− αc) + e−βp (p+ b+ h− αc) (1− F (y)) (3.60)

∂2H (y, p)

∂y2
= −e−βp (p+ b+ h− αc) f (y) (3.61)

Since the second derivative is negative as long as p + b + h > αc, y value that makes

the first derivative 0 for the current p maximizes profit.

y∗(1) = F−1

(
−
(
(h+ c (1− α)) eβp

)
p+ b+ h− αc

+ 1

)
(3.62)

Then, using this equation, y∗(1) is computed as in Figure 3.4.

function result = find y for fixed p(h,b,c,alpha,beta,k,mu,p)

result = gaminv(-(((h+c-alpha*c)*(exp(beta*p)))

/(p+b+h-alpha*c))+1,k,mu); end

Figure 3.4. Finding y for a fixed p.

Then fixing y∗(1), value of p∗(1) is found as follows. First, the function to calculate

the negative of the profit for the current values of the decision variables is defined as

in Figure 3.5.

Then, this function is minimized by the code in Figure 3.6.



30

function result = profit for fixed y(h,b,c,alpha,beta,k,mu,

y,pprice)

result = -(((-y))*(h+c-alpha*c)+PI(pprice,beta)*((pprice+b

+h-alpha*c)

*(y*(1-gamcdf(y,k,mu))+quad(@(x)(x.*gampdf(x,k,mu)),0,y))

-b*(k*mu))); end

Figure 3.5. Profit for a fixed y.

[p1,fval1]= fmincon(@(pprice)profit for fixed y(h,b,c,alpha,

beta,k,mu,y,pprice),p01,A,bb,Aeq,beq,lb,ub,nonlcon,options)

Figure 3.6. Use of fmincon to find p.

Continuing iteratively, convergence is sought for y∗ and p∗ values.

The simultaneous and iterative optimizations gave practically the same results

for all the parameter sets they were run. Therefore, we present the results of only one

procedure, the simultaneous optimization, which is chosen arbitrarily.

3.2.1.3. Numerical Results and Interpretation. The behaviors of the optimal values

of decision variables y and p, and the one-period profit function H(y, p) are observed

under different values of parameters h, b, c, α and β. To this end, the default values for
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the parameters are defined as follows.

h = 1 (3.63)

b = 5 (3.64)

c = 2 (3.65)

α = 0.8 (3.66)

β = 0.05 (3.67)

∆ ∼ Gamma (k∆, µ) (3.68)

k∆ = 2 (3.69)

µ = 10 (3.70)

Then, in order to observe the impact of a particular parameter on y, p, and

H(y, p), the value of that parameter is changed keeping all other parameters constant.

Tables 3.1-6 present sample outputs for this setting.

An increase in h decreases y∗ in a decreasing rate. The reason is that ending up

with leftover inventory becomes more costly, and this fact drives the retailer to stock

less. As h increases further, the marginal effect it creates reduces, therefore the decrease

in y slows down as well. A higher h brings about a lower p∗ since a lower p∗ means

a higher chance of observing demand, thus a lower expectation for unsold inventory.

However, p∗ responds to a change in h in a different way for high values of b. Following

an initial decrease, p∗ starts to rise as h increases further. Because there is another

factor that acts in favor of a higher p∗. High costs imply reduced profitability, and the

retailer needs to increase p∗ in order to compensate for this effect. Thus, when b is high

as well as h, the need for this compensation becomes strong enough to dominate the

necessity of lowering the probability of demand occurring, therefore causes a higher p∗.

In both cases, the retailer gains less as h increases, and the marginal decrease in profit

diminishes as h increases further.
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Table 3.1. The impact of h on y∗, p∗ and H(y∗, p∗).

h y∗ p∗ H(y∗, p∗)

1.0 33.070 21.138 79.203

1.5 29.336 20.855 66.748

2.0 26.466 20.586 55.848

2.5 24.134 20.331 46.161

3.0 22.169 20.091 37.460

3.5 20.470 19.868 29.589

4.0 18.971 19.665 22.428

4.5 17.628 19.483 15.886

5.0 16.407 19.326 9.891

5.5 15.284 19.199 4.386

A higher b yields a higher y∗ because it implies that it is more costly to fail to meet

the demand. Therefore, the retailer tends to stock more in order to reduce that risk.

Since the probability of demand occurring can be lowered by increasing p∗, an increase

in b increases p∗ as well, aiming a lower risk of experiencing shortfall. Obviously, a

higher cost for lost sales causes the retailer to gain less. Changes in y∗, p∗ and profit

with respect to b all slow down for further increase in b.

An increase in c implies a less profitable environment for the retailer to operate in,

therefore she reduces y∗ to trade in smaller volumes. p∗, on the other hand, increases

in an increasing rate for the following two reasons. First, the same motive as in the

case of y∗ applies: The retailer tends to decrease the volume she trades in. This motive

results in the decision to increase p∗ to end up with a lower probability of observing

demand. Second, p∗ needs to be raised in order to compensate for the reduction in

profitability caused by an increasing c. In this more costly conditions, profit reduces.

β determines how strongly the probability of demand occurrence depends on price.
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Table 3.2. The impact of b on y∗, p∗ and H(y∗, p∗).

b y∗ p∗ H(y∗, p∗)

5 33.070 21.138 79.203

6 33.557 21.218 78.542

7 34.022 21.292 77.909

8 34.467 21.360 77.300

9 34.894 21.423 76.715

10 35.304 21.481 76.152

11 35.700 21.536 75.608

12 36.081 21.587 75.083

13 36.450 21.635 74.575

14 36.806 21.680 74.083

15 37.151 21.722 73.606

Table 3.3. The impact of c on y∗, p∗ and H(y∗, p∗).

c y∗ p∗ H(y∗, p∗)

2.0 33.070 21.138 79.203

2.5 31.898 21.598 73.487

3.0 30.774 22.062 67.968

3.5 29.690 22.531 62.642

4.0 28.643 23.005 57.504

4.5 27.627 23.485 52.550

5.0 26.638 23.970 47.776

5.5 25.672 24.463 43.179

6.0 24.727 24.963 38.757

6.5 23.798 25.471 34.507

7.0 22.884 25.990 30.427
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Therefore, a higher β results in a lower p∗ as the retailer needs to care more about the

effect of p∗ on the probability of observing demand. Since p∗ is lower, profitability

is lower as well, and this drives the retailer to reduce the volume of the business by

lowering y∗. Working with a smaller volume under a decreased price, profit decreases

as well. The changes in y∗, p∗ and profit with respect to β all slow down for further

increase in β.

Table 3.4. The impact of β on y∗, p∗ and H(y∗, p∗).

β y∗ p∗ H(y∗, p∗)

0.02 46.754 51.111 299.512

0.03 42.207 34.523 181.527

0.04 39.019 26.267 123.456

0.05 36.569 21.344 89.147

0.06 34.579 18.087 66.623

0.07 32.901 15.782 50.783

0.08 31.443 14.073 39.088

0.09 30.147 12.762 30.139

0.10 28.972 11.731 23.100

0.11 27.888 10.904 17.442

0.12 26.872 10.232 12.815

The parameter α is employed in order to account for the time value of money, and

it is inversely related to the interest rate. An increase in α implies a smaller interest

rate, which reduces the loss caused by ordering and paying in a period to sell in a later

period. This means that there is now less to hesitate about ending up with leftover

inventory, which will be sold in following periods, therefore the retailer decreases the

probability of demand occurrence by increasing p∗. For the same reason, starting a

period with a high level of inventory becomes less risky, therefore the base stock level

y∗ increases as well. As a higher α means a lower interest rate, the environment

becomes more stable and thus safe, and this fact increases profit. All the changes in
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y∗, p∗ and profit with respect to α occur with an increasing rate, which corresponds to

a decreasing rate with respect to the interest rate.

Table 3.5. The impact of α on y∗, p∗ and H(y∗, p∗).

α y∗ p∗ H(y∗, p∗)

0.725 31.828 21.052 75.275

0.75 32.228 21.081 76.564

0.775 32.642 21.109 77.874

0.8 33.070 21.138 79.203

0.825 33.514 21.167 80.553

0.85 33.974 21.196 81.926

0.875 34.451 21.226 83.320

0.9 34.948 21.255 84.739

0.925 35.465 21.284 86.182

0.95 36.004 21.314 87.651

0.975 36.569 21.344 89.147

When µ increases, it is expected to have a higher demand, in case demand occurs.

Therefore, y∗ linearly increases in order to meet the increasing demand. p∗, on the other

hand, remains the same because price determines the probability of demand occurrence,

and not the amount of demand. As a result, profit linearly increases as well.
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Table 3.6. The impact of µ on y∗, p∗ and H(y∗, p∗).

µ y∗ p∗ H(y∗, p∗)

10 46.754 51.111 299.512

12 56.105 51.111 359.415

14 65.455 51.111 419.317

16 74.806 51.111 479.220

18 84.157 51.111 539.122

20 93.508 51.111 599.024

22 102.858 51.111 658.927

24 112.209 51.111 718.829

26 121.560 51.111 778.732

28 130.911 51.111 838.634

30 140.262 51.111 898.537

In this subsection, we discussed the method in computations and the meaning of

outputs for the price-driven demand model with no supply uncertainty.

3.2.2. Two Suppliers Setting

3.2.2.1. Simultaneous Optimization. The profit function for the two suppliers setting

is not concave with respect to y or p. Therefore, in simultaneous optimization with

respect to (y, p), the following procedure is employed. In order to compute the profit,

func1 and func2 defined as in Figure 3.7.

Then the negative of the profit function of the two suppliers setting is coded as

in Figure 3.8.

This function is minimized over y and p simultaneously by the code in Figure 3.9.
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function result = func1(I1,kQ,lambda,x)

result=(x(1)-I1)*gamcdf(x(1)-I1,kQ,lambda)-quad(@(t)

t.*gampdf(t,kQ,lambda),0,x(1)-I1); end

function result = func2(beta,k,mu,kQ,lambda,x)

result=PI(x(2),beta)*((1-gamcdf(x(1),k,mu))*(x(1)*gamcdf

(x(1),kQ,lambda)

-quad(@(t)t.*gampdf(t,kQ,lambda),0,x(1)))

+gamcdf(x(1),k,mu) *(quadl(@(t)

t.*gamcdf(t,kQ,lambda).*gampdf(t,k,mu),0,x(1))

-dblquad(@(t,z)t.*gampdf(t,kQ,lambda).*gampdf(z,k,mu),

0,x(1),0,z))); end

Figure 3.7. Defining func1 and func2.

As in the case with one supplier, different starting points are used, and solutions

are confirmed to be the same, in order to make sure that the solution found does not

depend on the starting point.
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function result = profit two sup(h,b,ca,cb,I1,alpha,beta,k,

mu,kQ,lambda,x)

result=-(-(cb-ca)*func1(I1,kQ,lambda,x)-ca*(x(1)-I1)

+(1/(1-alpha)) *(-(1-PI(x(2),beta))*h*x(1)+PI(x(2),beta)

*(-(x(2) +b+h-alpha*ca) *(x(1)*gamcdf(x(1),k,mu)-quad(@(t)

t.*gampdf(t,k,mu), 0,x(1)))+x(1)*(x(2)+b-alpha*ca)

-b*(k*mu) -alpha*(cb-ca)*func2(beta,k,mu,

kQ,lambda,x)))); end

Figure 3.8. One-period profit for two supplier setting.

[xx1,fval1] = fmincon(@(x)profit two sup(h,b,ca,cb,I1,alpha,

beta,k,mu,kQ,lambda,x),xx01,A,bb,Aeq,beq,lb,ub,nonlcon,

options);

Figure 3.9. Use of fmincon in two suppliers setting.

3.2.2.2. Iterative Optimization. The other method employed in optimization over (y, p)

is as follows. First, using func1 and func2 presented previously, the profit function is

defined as in Figure 3.10.

Then, y∗(1) is computed by optimizing this following function in fmincon for an

arbitrary initial p as in Figure 3.11. Then using y∗(1), the corresponding value of p,

namely p∗(1) is found by optimizing the profit function over p in fmincon as in Figure

3.12. Continuing iteratively, convergence is sought for y∗ and p∗ values.

The simultaneous and iterative optimizations gave practically the same results

for all the parameter sets they were run. Therefore, we present the results of only one

procedure, the simultaneous optimization, which is chosen arbitrarily.
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function result = profit two sup fixed p(h,b,ca,cb,I1,alpha,

beta,k,mu,kQ,lambda,y,pprice)

x(1)=y;

x(2)=pprice;

result=-(-(cb-ca)*func1(I1,kQ,lambda,x)-ca*(y-I1)

+(1/(1-alpha))*(-(1-PI(pprice,beta))

*h*y+PI(pprice,beta)*(-(pprice+b+h-alpha*ca)*(y*gamcdf(y,k,

mu) -quad(@(t)t.*gampdf(t,k,mu),0,y))+y*(pprice+b-alpha*ca)

-b*(k*mu) -alpha*(cb-ca)*func2(beta,k,mu,kQ,lambda,x))));

end

Figure 3.10. Profit for a fixed price in two suppliers setting.

[y1,fval1]= fmincon(@(y)profit two sup fixed p(h,b,ca,cb,I1,

alpha,beta,k,mu,kQ,

lambda,y,pprice),y01,A,bb,Aeq,beq,lb,ub,nonlcon,

options);

Figure 3.11. Use of fmincon to find p in two suppliers setting.

3.2.2.3. Numerical Results and Interpretation. The changes in optimal inventory level,

price and profit are examined for different values of cb/ca, E[Q]/E[∆], and coefficient of

variation of capacity CV (Q). The y∗ and p∗ values and corresponding profit for certain

values of cb/ca, E[Q]/E[∆] and CV (Q) are then compared to those of two other ap-

proaches. Calling the original method Approach 1 and the corresponding profit Profit

1,

• Approach 2: y∗ and p∗ values are computed under the assumption that there is

only one supplier with infinite capacity as in one supplier setting, charging ca per

unit. Then these values are used to calculate the actual profit (Profit 2).

• Approach 3: Fixing the price to the revenue maximizing price pr found in 3.57,

and assuming that all the demand can be met, the inventory level that maximizes
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[p1,fval1]= fmincon(@(pprice)profit two sup fixed y(h,b,ca,

cb,I1,alpha,beta,k,mu,kQ,lambda,y,pprice),p01,A,bb,Aeq,beq,

lb,ub,nonlcon,options);

Figure 3.12. Maximizing profit over p.

the profit for this price is found and called yr. Using these values, the actual profit

is then computed (Profit 3).

Percentage deviation from the optimal solution are calculated for both approaches,

and called Ratio 1 and Ratio 2, respectively. The default values for the parameters for

all computations of this subsection are

h = 1 (3.71)

b = 5 (3.72)

ca = 2 (3.73)

cb = 3 (3.74)

α = 0.8 (3.75)

β = 0.05 (3.76)

∆ ∼ Gamma (k∆, µ) (3.77)

k∆ = 2 (3.78)

µ = 10 (3.79)

Q ∼ Gamma (kQ, λ) (3.80)

kQ = 2 (3.81)

λ = 7.5 (3.82)
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The impact of a particular parameter is observed by optimizing the profit for

different values of that parameter while keeping all the other parameters constant.

Tables 3.7-9 present the corresponding numerical results.

Note that the optimal inventory level and price in Approach 1 are independent

of cb/ca, E[Q]/E[∆] and (CV (Q)) as they all are to define capacity of the low-cost

supplier, and Approach 1 assumes infinite capacity for it.

A higher cb/ca ratio lowers y∗ while increasing p∗. Because a higher cb/ca ratio

implies that it is more costly to procure when order exceeds the capacity of the low-cost

supplier, which drives the retailer to be less confident about ordering in high volumes.

Therefore, he lowers the order, and increases price to end up with a lower demand. In

these more costly conditions, profit decreases as well, in a decreasing rate. Profit 2 also

decreases, but linearly, unlike Profit 1. The reason is that the order and price decisions

in Approach 2 cannot be modified, therefore the impact of increasing cb/ca ratio does

not diminish, instead, Profit 2 keeps decreasing proportionally to the increase in this

ratio. As a result, Ratio 1, a measure of difference between Profit 1 and Profit 2,

increases. As for Approach 3, even though the price is fixed, order amount can be

adjusted according to the new conditions, and therefore yr decreases in cb/ca, as y∗

does. Profit 3 decreases in a decreasing rate, not linearly, as this approach allows at

least a partial adjustment of decisions by modifying stock level. Ratio 2, as can be

expected, increases since the cost structure now has a greater effect, implying that

making decisions aiming only revenue maximization is bound to perform worse.

An increase in E[Q]/E[∆] ratio increases y∗ while decreasing p∗. Because a higher

E[Q]/E[∆] ratio implies that a larger proportion of demand is expected to be met by

the low-cost supplier, thus driving the retailer to trade in larger volume by increasing

demand by a lower p∗, and keeping a higher level of inventory. Profit increases as a

result of this higher volume of business caused by a more advantageous environment.

Though inventory and price decisons are fixed for Approach 2, Profit 2 increases due to

the shift of orders from high-cost to low-cost supplier. Ratio 1 decreases as E[Q]/E[∆]



42

Table 3.7. The impact of cb/ca ratio on the decision variables, profits and ratios.

cb/ca y∗ p∗ Profit 1 Profit 2 Ratio 1 yr Profit 3 Ratio 2

1 33.070 21.138 396.014 396.014 0.000 33.218 394.965 0.265

1.1 32.674 21.204 391.596 391.552 0.011 32.826 390.424 0.299

1.2 32.290 21.268 387.265 387.089 0.045 32.445 385.967 0.335

1.3 31.917 21.332 383.017 382.626 0.102 32.074 381.589 0.373

1.4 31.554 21.394 378.851 378.163 0.182 31.714 377.290 0.412

1.5 31.201 21.456 374.765 373.701 0.284 31.364 373.066 0.453

1.6 30.858 21.517 370.755 369.238 0.409 31.022 368.916 0.496

1.7 30.524 21.576 366.819 364.775 0.557 30.690 364.837 0.540

1.8 30.198 21.635 362.956 360.312 0.728 30.366 360.829 0.586

1.9 29.881 21.693 359.163 355.850 0.922 30.050 356.887 0.634

2 29.573 21.750 355.438 351.387 1.140 29.742 353.012 0.682

increases since the the impact of the high-cost supplier is now less observable. The

value of yr behaves in parallel to y∗, The profit of the revenue-maximizing approach,

Profit 3, increases as well. Ratio 2 decreases, reflecting the fact that the cost structure

is now less significant and focusing only on revenue maximization hurts less.

An increase in CV (Q) increases p∗ since the variability in the cost of procurement

becomes higher, and the retailer desires to reduce the probability of demand occurence

by increasing the price. She also tends to stock more as she needs to be more cautious

about the high ordering prices in the future, and prefers guaranteeing the supply in an

earlier time. Profit decreases as as result of these more volatile conditions. yr increases

for the same reason as y∗. Profits of the Approaches 2 and 3 decrease acting parallel

to Profit 1. Since the capacity is more volatile now, the impact of taking the capacity

into account deteriorates. Therefore, the gap between optimal decision and the decision

based on one supplier assumption, represented by Ratio 1, decreases.
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Table 3.8. The impact of E[Q]/E[∆] ratio on the decision variables, profits and ratios.

E[Q]/E[∆] y∗ p∗ Profit 1 Profit 2 Ratio 1 yr Profit 3 Ratio 2

0.50 31.041 21.549 369.105 367.829 0.346 31.212 367.179 0.522

0.55 31.063 21.529 370.328 369.085 0.336 31.232 368.452 0.507

0.60 31.091 21.510 371.510 370.306 0.324 31.258 369.682 0.492

0.65 31.124 21.491 372.645 371.485 0.311 31.290 370.863 0.478

0.70 31.161 21.473 373.731 372.618 0.298 31.325 371.992 0.465

0.75 31.201 21.456 374.765 373.701 0.284 31.364 373.066 0.453

0.80 31.243 21.440 375.746 374.733 0.270 31.405 374.085 0.442

0.85 31.287 21.424 376.676 375.713 0.256 31.448 375.051 0.432

0.90 31.332 21.410 377.556 376.643 0.242 31.492 375.963 0.422

0.95 31.378 21.396 378.387 377.524 0.228 31.537 376.824 0.413

1.00 31.424 21.384 379.171 378.356 0.215 31.582 377.637 0.405

Table 3.9. The impact of CV (Q) on the decision variables, profits and ratios.

CV (Q) y∗ p∗ Profit 1 Profit 2 Ratio 1 yr Profit 3 Ratio 2

0.50 31.096 21.444 375.569 374.391 0.314 31.253 373.900 0.444

0.55 31.124 21.446 375.416 374.268 0.306 31.282 373.741 0.446

0.60 31.150 21.449 375.233 374.115 0.298 31.310 373.552 0.448

0.65 31.175 21.452 375.026 373.935 0.291 31.337 373.337 0.450

0.70 31.198 21.455 374.798 373.731 0.285 31.360 373.101 0.453

0.75 31.218 21.459 374.554 373.508 0.279 31.382 372.848 0.456

0.80 31.237 21.463 374.296 373.270 0.274 31.401 372.580 0.458

0.85 31.253 21.467 374.028 373.018 0.270 31.419 372.302 0.461

0.90 31.267 21.471 373.752 372.755 0.267 31.434 372.016 0.465

0.95 31.279 21.475 373.469 372.485 0.264 31.447 371.723 0.468

1.00 31.290 21.479 373.183 372.209 0.261 31.459 371.426 0.471
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In this subsection, we covered the method employed in the computations for the

capacity constrained inventory system where the price determines the probability of

demand occurrence.
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4. AN INVENTORY MODEL INVESTIGATING THE

PRICE EFFECT ON INDIVIDUAL CUSTOMERS WITH

ONE AND TWO SUPPLIERS

4.1. Model

In this chapter, we present an inventory model in which the price determines

the volume of the demand by governing the probability of each potential customer to

make a purchase. In Section 4.1.1, we present this model with no restriction on supply.

In Section 4.1.2, on the other hand, the retailer works with two suppliers, where the

low-cost supplier has a finite random capacity and the high-cost supplier has an infinite

capacity.

4.1.1. One Supplier Setting

In this model, a single product inventory system is examined. A retailer holds

inventory for a product for which holding cost h incurs per a unit of product per unit

time. Any unsatisfied demand is lost, costing the retailer b per unit. Cost of ordering

one unit of product is c.

The system is investigated for two periods. At the beginning of period n, the

on-hand inventory In is known to the retailer. Then, she makes two decisions simul-

taneously. First decision is the order amount, denoted by un, to reach the inventory

level yn.

yn = In + un (4.1)

The other decision she faces is the price to charge for that period, denoted by pn. The

decision on price impacts the demand to be realized in the following fashion. Potential

sales (or number of potential customers) has a certain probability distribution, and each
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potential customer independently decides whether or not to make a purchase. Price

determines the probability that a potential customer will make a purchase. Therefore,

it determines the parameter or parameters of the distribution of demand realized. In

this way, we integrate a choice model based on price into the inventory system of

interest. In our model, the probability of a potential customer making a purchase is

Π (pn) = e−βpn (4.2)

Then, the demand is denoted as Di(Π(pn)). It is assumed that the demand in a period

is distributed uniformly over time. That is, for a given total demand in a period,

purchases occur at a constant rate through the period. Lead time for order arrival is

assumed to be zero. It is also assumed that there is no fixed cost for ordering. The

retailer works with a supplier with infinite capacity.

As a result of the uniform distribution of demand over a period, the average level

of inventory durind the period is the average of the inventory levels at the beginning

and end. Therefore, denoting the length of period n by Tn, the holding cost for period

n is found as

H i (yn,Π (pn)) = hTn
yn + E

[
(yn −Di

n (Π (pn)))
+
]

2
(4.3)

The lost sales cost is

Bi (yn,Π (pn)) = bE
[((

Di
n (Π (pn))

)
− yn

)+
]

(4.4)

= b
(
E
[(
yn −Di

n (Π (pn))
)+
]

+ E
[
Di
n (Π (pn))

]
− yn

)
(4.5)

Revenue is the price multiplied by demand, which is

Ri (yn, pn,Π (pn)) = pnE
[
min

(
yn, D

i
n (Π (pn))

)]
(4.6)

= pn

(
yn − E

[(
yn −Di

n (Π (pn))
)+
])

(4.7)
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The inventory level at the beginning of the period 2 before ordering is

I2 = E
[(
y1 −Di

1 (Π (p1))
)+
]

(4.8)

which equals

I2 = y1F
i (y1|Π(pn))−

y1∫
0

xf i (x|Π(pn)) dx (4.9)

Then, the profit function is written as

P i
n (yn, pn,Π (pn)) = Ri (yn, pn,Π (pn))−H i (yn,Π (pn))−Bi (yn,Π (pn))− c (yn − In)

(4.10)

which can be expanded as

P i
n (yn, pn,Π (pn)) = pn

(
yn − E

[(
yn −Di

n (Π (pn))
)+
])

(4.11)

− hTn
yn + E

[
(yn −Di

n (Π (pn)))
+
]

2
(4.12)

− b
(
E
[(
yn −Di

n (Π (pn))
)+
]

+ E
[
Di
n (Π (pn))

]
− yn

)
− c (yn − In) (4.13)

which equals

P i
n (yn, pn,Π (pn)) = yn

(
pn + b− hTn

2
− c
)
− bE

[
Di
n (Π (pn))

]
(4.14)

−
(
pn + b+

hTn
2

)ynF i (yn|Π (pn))−
yn∫

0

xf i (x|Π (pn)) dx

+ cIn (4.15)
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The total profit for two periods is

P i (y,p,Π (p)) = P i
1 (y1, p1,Π (p1)) + P i

2 (y2, p2,Π (p2)) (4.16)

The first derivative of the total profit, P i (y,p,Π (p)) with respect to yn is

∂P i (y,p,Π (p))

∂yn
= pn + b− hTn

2
−
(
pn + b+

hTn
2

)
F i (yn) (4.17)

The second derivative is

∂2P i (y, p,Π (p))

∂y2
n

= −
(
pn + b+

hTn
2

)
f i (yn) < 0 (4.18)

Therefore, P i (y,p,Π (p)) is concave with respect to yn . Then, for a fixed pn, y∗n can

be found by equating the first derivative to 0. Therefore,

y∗n = F−1

(
1− hTn

pn + b+ hTn
2

)
(4.19)

However, the concavity of P i (y,p,Π (p)) with respect to pn is not guaranteed. The

reason is that pn is involved in the distribution function of the demand. Therefore, no

generalization on the concavity with respect to pn can be made, instead, the concavity

depends on the type of the distribution. As a result, joint concavity with respect to yn

and pn is not guaranteed, either.

In this subsection, we covered an inventory system where the price probabilisti-

cally determines the volume of the demand by governing the purchasing probability of

each potential customer, without a restriction on supply. In the next subsection, we

present our model that incorporates a capacity constraint into this model.
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4.1.2. Two Suppliers Setting

In two suppliers setting, there is a supplier with a finite random capacity Q,

charging ca per unit, and another supplier with infinite capacity, charging cb per unit

where cb > ca. Naturally, when the amount of order is less than Q, it is met solely

by the low-cost supplier. Otherwise, the remainder is met by the high-cost supplier.

Therefore, ordering cost can be written as

ki,II (yn,Π (pn)) = caEQ [min (yn − In, Qn)] + cbEQ
[
(yn − In −Qn)+] (4.20)

Rearranging the terms,

ki,II (yn,Π (pn)) = ca (yn − In) + (cb − ca)EQ
[
(yn − In −Qn)+] (4.21)

Expressing the one-period profit as

P i,II
n (yn, pn,Π (pn)) = R (yn, pn,Π (pn))− L (yn, pn,Π (pn))− ki,II (yn,Π (pn)) (4.22)

Expanding the cost and revenue functions, we get

P i,II
n (yn, pn,Π (pn)) = pn

(
yn − E

[
(yn −Dn (Π (pn)))+])

−hTn
yn+E[(yn−Dn(Π(pn)))+]

2
− b
(
E
[
(yn −Dn (Π (pn)))+]

+E [Dn (Π (pn))]− yn − ca (yn − In)− (cb − ca)EQ
[
(yn − In −Qn)+]
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which equals

P i,II
n (yn, pn,Π (pn)) = yn

(
pn + b− hTn

2
− ca

)
− bE [Dn (Π (pn))] (4.23)

−
(
pn + b+

hTn
2

)ynF (yn) +

yn∫
0

xf (x) dx

 (4.24)

+ caIn − (cb − ca)

(yn − In)FQ (yn − In)−
yn−In∫

0

xfQ (x) dx

 (4.25)

The total profit for two periods is

P i,II (y,p,Π (p)) = P i,II
1 (y1, p1,Π (p1)) + P i,II

2 (y2, p2,Π (p2)) (4.26)

The price that maximizes not the profit but the revenue is calculated in order to

find out how much difference it creates to account for the cost structure compared to

focusing only on revenue maximization. The revenue-maximizing price pr is calculated

as follows, under the assumption that all of the demand can be met. Expected revenue

is found by multiplying the price with the demand as a function of price.

E
[
pDi (Π (p))

]
= p

∞∫
0

xf i (x|Π(p)) dx (4.27)

Regardless of the distribution of the demand, it can be stated that since the price

determines the purchasing probability of a potential customer, it impacts the expected

demand in the following way.

E
[
pDi (Π (p))

]
= pΠ (p)

∞∫
0

xf i (x|Π(0)) dx (4.28)

To maximize the revenue, the first derivative of expectation with respect to p is equated
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to 0,

∂E [pD (J (p))]

∂p
=
(
e−βp − βpe−βp

)
E[∆] (4.29)

=
(
e−βp (1− βp)

)
E[∆] (4.30)

= 0 (4.31)

⇒ pr =
1

β
(4.32)

Checking out the second derivative,

∂2E [pD (J (p))]

∂p2
= −βe−βp (1− βp)− βe−βp (4.33)

= βe−βp (βp− 2) (4.34)

It turns out that 1/β maximizes revenue as long as βp < 2, which holds by definition.

In this subsection, we integrated a capacity constraint into the inventory system

of Section 4.1.1 with price-driven demand.

4.2. Computation and Numerical Results

As the profit is not necessarily jointly concave in yn and pn, numerical methods

are employed in order to maximize the profit. As iterative optimization of the order-

up-to level and the price did not give any better results than simultaneous optimization

in Chapter 3, only simultaneous optimization is performed in this Chapter.

In this section, we present the procedure followed in computations in MATLAB

for both models presented in this chapter. First, we present the part of the procedure

that is used in both of the models with and without the capcity constraint.

Revenue and the sum of holding and lost sales costs are computed as in Figure

4.1.
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function result=R(parameters,y,p)

result=p*(y*(1-cumulative(parameters,y))+integ(parameters,

(y))); end

function result=Holding(h,parameters,y,T)

result=T*h*((y+y*cumulative(parameters,y)-integ(parameters,

y))/2); end

function result=LostSales(b,parameters,y)

result=b*(mean(parameters)+y*(cumulative(parameters,y)-1)

-integ(parameters,y)); end

function result=L(h,b,parameters,y,T)

result=Holding(h,parameters,y,T)+LostSales(b,parameters,y);

end

Figure 4.1. Revenue and costs.

function result=integ(parameters,y)

result=quad(@(t)t.*gampdf(t,parameters(1),parameters(2)),

0,y);end

Figure 4.2. Defining the function integ.

In order to represent the expression
y1∫
0

xf (x) dx, the function integ is defined as

in Figure 4.2.

Before using the minimization function fmincon, the constraints are defined. All

four decision variables are constrained to be non-negative. Then comes the equality

constraint that the function fmincon requires. There is no equality constraint in our

model, therefore the corresponding matrices are defined to be null. Upper and lower

bound are also defined to be null. The reason is that although all of the decision

variables actually have the lower bound 0, we already define them via the matrices A

and bb. There is no nonlinear constraint, either. Therefore, those matrices are null as

well. In MATLAB, all these constraints are expressed in matrix form as in Figure 4.3.
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A=[-1 0 0 0;0 -1 0 0;0 0 -1 0;0 0 0 -1];

bb=[0;0;0;0];

Aeq=[];

beq=[];

lb=[];

ub=[];

nonlcon=[];

Figure 4.3. Constraints.

Two different starting points for each decision variable is used in order to check

whether the solution found depends on the starting point. For all instances that this

comparison is carried out, no significant difference is spotted.

Now that the procedure common for the models with and without the capacity

constraint is presented, will explain the details specific to the respective models. The

first subsection regards the setting without a capacity constraint whereas in the second

one the capacity costraint is involved as well. After explaining the procedure in each

subsection, we discuss the interpretation of the numerical results. Note that for both

models, we use the average profit unit time as the objective function.

4.2.1. One Supplier Setting

4.2.1.1. Optimization Procedure. Based on the common framework presented for two

models of this chapter, the following procedure is employed for the numerical study for

the model without the capacity constraint. Ordering cost for this setting is coded as

in Figure 4.4. Therefore, the negative of the profit can be computed by the function

in Figure 4.5.

Having the profit function, optimization is performed using the function fmincon

as follows. Out of two possible algorithms that MATLAB can use, Interior Point is
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function result=ordering one sup(c,y,I)

result=c*(y-I); end

Figure 4.4. Ordering cost for one supplier setting.

function result=profit one sup(xx,h,b,c,beta,T1,T2,kD)

lambda=10;

I1=0;

parameters=[kD*T1,PI(beta,xx(2))*lambda];

I2=xx(1)*cumulative(parameters,xx(1))-integ(parameters,

xx(1));

profit1=-(R(parameters,xx(1),xx(2))-L(h,b,parameters,xx(1),

T1)

-ordering one sup(c,xx(1),I1));

parameters=[kD*T2,PI(beta,xx(4))*lambda];

profit2=-(R(parameters,xx(3),xx(4))-L(h,b,parameters,xx(3),

T2)

-ordering one sup(c,xx(3),I2));

result=(profit1+profit2)/2; end

Figure 4.5. Profit for one supplier setting.

selected arbitrarily as the results are not influenced by this selection.

For practical purposes, a maximum number of iterations for fmincon is defined

in options in order to let the code break in case it takes too long to converge. After all

the parameters are assigned with their respective values, fmincon is used as in Figure

4.6. Execution of that code assigns the optimal values found in the solution to the

variable xx1, and the corresponding profit function to the varible fval1.



55

[xx1,fval1]= fmincon(@(xx)profit one sup(xx,h,b,c,beta,T1,

T2,kD), xx01,A,bb,Aeq,beq,lb,ub,nonlcon,options);

Figure 4.6. Use of fmincon for one supplier setting.

4.2.1.2. Numerical Results and Interpretations. The behaviors of the optimal values

of decision variables y∗1, p∗1, y∗2 and p∗2, and the profit are observed under different values

of parameters h, b, c, α, β and T1. To this end, the default values for the parameters

are defined as follows.

h = 1 (4.35)

b = 5 (4.36)

c = 2 (4.37)

β = 0.05 (4.38)

Di(Π(pn)) ∼ Gamma (k∆, µΠ(pn)) (4.39)

k∆ = 2 (4.40)

µ = 10 (4.41)

T1 = 1 (4.42)

T2 = 1 (4.43)

The impact of a particular parameter is observed by optimizing the profit for

different values of that parameter while keeping all the other parameters constant.

Tables 4.1-5 present the corresponding numerical results.

As unit cost of leftover inventory increases, the retailer tends to stock less to

avoid that cost. Therefore, y∗1 and y∗2 decrease in h. The values of p∗1 and p∗2, on the

other hand, increase in order to compensate for the decrease in profitability caused by

a higher h. As a result of the more costly conditions, profit decreases.
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Table 4.1. The impact of h on the decision variables and profit.

h y∗1 p∗1 y∗2 p∗2 Profit

1.000 15.295 24.231 10.727 26.094 109.456

1.500 13.422 25.040 9.985 26.702 104.633

2.000 12.084 25.773 9.347 27.284 100.319

2.500 11.047 26.453 8.791 27.844 96.395

3.000 10.204 27.094 8.300 28.386 92.789

3.500 9.498 27.702 7.861 28.911 89.449

4.000 8.891 28.284 7.465 29.422 86.335

4.500 8.363 28.844 7.106 29.921 83.420

5.000 7.895 29.386 6.778 30.408 80.679

5.500 7.478 29.911 6.477 30.885 78.095

6.000 7.101 30.422 6.199 31.352 75.650

A higher b yields higher y∗1 and y∗2 values since failing to meet demand becomes

more costly and the retailer stocks more to reduce that risk. p∗1 and p∗2 also increase in b

because a reduced demand by higher prices decreases the risk of experiencing shortfall.

Since the business environment is now more costly due to higher b, profit decreases.

All these changes occur at a decreasing rate.

An increase in c decreases y∗1 and y∗2 since it implies a less profitable setting, and

this fact drives the retailer to reduce the volume she trades in. p∗1 and p∗2 both increase

in c, but in different ways because of the reason that follows. Any leftover inventory

from period 1 can be carried to and sold in period 2, therefore a decreased demand

in period 1 does not hurt as much as a decreased demand in period 2. Therefore, the

retailer does not hesitate to decrease demand by increasing price for period 1. As a

result, p∗1 increases linearly in order to compensate for the effect of increasing c on

profitability. For p∗2, on the other hand, decresaing demand by increasing p∗2 may result

in more leftover inventory that cannot be sold in the future, either. Therefore, the
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Table 4.2. The impact of b on the decision variables and profit.

b y∗1 p∗1 y∗2 p∗2 Profit

5 15.295 24.231 10.727 26.094 109.456

6 15.397 24.267 10.789 26.195 109.243

7 15.495 24.302 10.847 26.292 109.039

8 15.590 24.335 10.904 26.384 108.842

9 15.681 24.367 10.958 26.471 108.652

10 15.769 24.397 11.010 26.555 108.469

11 15.854 24.426 11.062 26.634 108.295

12 15.936 24.453 11.108 26.711 108.120

13 16.016 24.480 11.155 26.784 107.954

14 16.093 24.505 11.200 26.855 107.794

15 16.168 24.529 11.244 26.923 107.638

increase in p∗2 with respect to c is not as fast as that of p∗1, but it occurs in a decreasing

rate. Under these more costly conditions, profit decreases.

An increase in β decreases both p∗1 and p∗2 since a higher dependence of demand on

price forces the retailer to be more cautious on pricing. In this less profitable setting,

the retailer is less eager to operate, therefore y∗1 and y∗2 decrease as well. As a result

of operating with a smaller volume under a lower price, profit also decreases. All the

mentioned changes occur at a decreasing rate.

An increase in the length of a period results in a higher total demand for that

period. Therefore, at the beginning of the period, the retailer stocks more to meet this

demand. On the tradeoff between a higher volume of demand and higher profitability,

she shifts towards higher profitability since the volume of the demand is already high.

Therefore, the price increases as well. Both of the changes in inventory level and price

occur at a decreasing rate. Since the inventory and price decisions can be made only
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Table 4.3. The impact of c on the decision variables and profit.

c y∗1 p∗1 y∗2 p∗2 Profit

2.00 15.295 24.231 10.727 26.094 109.456

2.50 14.917 24.731 9.860 26.952 105.446

3.00 14.549 25.231 9.116 27.784 101.672

3.50 14.189 25.731 8.468 28.594 98.107

4.00 13.839 26.231 7.895 29.386 94.728

4.50 13.497 26.731 7.385 30.161 91.516

5.00 13.164 27.231 6.926 30.922 88.458

5.50 12.839 27.731 6.511 31.671 85.541

6.00 12.522 28.231 6.133 32.408 82.752

6.50 12.213 28.731 5.788 33.135 80.084

7.00 11.911 29.231 5.471 33.852 77.528

Table 4.4. The impact of β on the decision variables and profit.

β y∗1 p∗1 y∗2 p∗2 Profit

0.02 20.170 54.584 15.319 57.044 321.451

0.03 18.071 37.748 13.301 39.913 202.638

0.04 16.527 29.306 11.855 31.291 144.078

0.05 15.295 24.231 10.727 26.094 109.456

0.06 14.263 20.841 9.803 22.617 86.725

0.07 13.374 18.417 9.020 20.127 70.743

0.08 12.590 16.597 8.342 18.256 58.951

0.09 11.889 15.180 7.745 16.800 49.933

0.10 11.254 14.046 7.212 15.634 42.844

0.11 10.674 13.118 6.732 14.679 37.147

0.12 10.140 12.344 6.297 13.884 32.488
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at the beginning of a period, a longer period implies less frequent time points in which

the decisions can be updated. As a result, policies of the retailer becomes less flexible,

and profit is reduced by this fact.

Table 4.5. The impact of T1 on the decision variables and profit.

T1 y∗1 p∗1 y∗2 p∗2 Profit

1 15.295 24.231 10.727 26.094 109.456

2 20.947 24.850 10.727 26.094 109.151

3 26.010 25.416 10.727 26.094 107.368

4 30.662 25.955 10.727 26.094 105.136

5 34.983 26.478 10.727 26.094 102.757

6 39.020 26.990 10.727 26.094 100.343

7 42.803 27.494 10.727 26.094 97.944

8 46.356 27.993 10.727 26.094 95.581

9 49.694 28.489 10.727 26.094 93.265

10 52.830 28.982 10.727 26.094 91.000

11 55.778 29.473 10.727 26.094 88.790

This subsection covered the method employed for the computations of the model

with price and demand interaction with no uncertainty in supply, and then a discus-

sion of the numerical results. In the next subsection, we present the procedure for

computational study and a discussion of the results for the model with a capacity

constraint.

4.2.2. Two Suppliers Setting

4.2.2.1. Optimization Procedure. Based on the common framework presented for two

models of this chapter, the following procedure is employed for the numerical study for

the model with the capacity constraint. Ordering cost for the two suppliers setting is

calculated as in Figure 4.7.
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function result=ordering two sup(ca,cb,y,I,kQ,mu)

result=(cb-ca)*((y-I)*gamcdf(y-I,kQ,mu)-quad(@(t)

t.*gampdf(t,kQ,mu),0,y-I))+ca*(y-I); end

Figure 4.7. Ordering cost for two suppliers setting.

Therefore, the profit can be computed by the function in Figure 4.8.

function result=profit two sup(xx,h,b,ca,cb,beta,T1,T2,kQ,

mu,kD)

lambda=10;

I1=0;

parameters=[kD,PI(beta,xx(2))*lambda*T1];

I2=xx(1)*cumulative(parameters,xx(1))-integ(parameters,

xx(1));

profit1=-(R(parameters,xx(1),xx(2))-L(h,b,parameters,xx(1),

T1)

-ordering two sup(ca,cb,xx(1),I1,kQ,mu));

parameters=[kD,PI(beta,xx(4))*lambda*T2];

profit2=-(R(parameters,xx(3),xx(4))-L(h,b,parameters,xx(3),

T2)

-ordering two sup(ca,cb,xx(3),I2,kQ,mu));

result=(profit1+profit2)/(T1+T2); end

Figure 4.8. Profit for two suppliers setting.

4.2.2.2. Numerical Results and Interpretations. The changes in optimal inventory level,

price and profit are examined for different values of cb/ca, E[Q]/E[Di], and coefficient

of variation of capacity CV (Q). The y∗1, y∗2, p∗1 and p∗2 values and the corresponding

profit for certain values of cb/ca, E[Q]/E[Di] and CV (Q) are then compared to those of

two other approaches. Calling the original method Approach 1 and the corresponding

profit Profit 1,
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• Approach 2: y∗1, y∗2, p∗1 and p∗2 values are computed under the assumption that

there is only one supplier with infinite capacity as in one supplier setting, charging

ca per unit. Then these values are used to calculate the actual profit (Profit 2).

• Approach 3: Fixing the price for both periods to the revenue maximizing price

pr, and assuming that all of the demand can be met, the inventory levels that

maximizes the profit for this price is found and called yr1 and yr2. Using these

values, the actual profit is then computed (Profit 3).

Note that since the volume of the demand depends on price as opposed to the

case in Chapter 3, the following convention is adopted. The value of pr is used in

the calculation of expected demand. That is, the quantity represented by the ratio of

expected capacity to the expected demand, E[Q]/E[Di], is actually E[Q]/E[Di(Π(pr))],

but shortened for convenience.

Percentage deviation from the optimal solution are calculated for both approaches,

and called Ratio 1 and Ratio 2, respectively. The default values for the parameters for

all computations of this subsection are as follows.
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h = 1 (4.44)

b = 5 (4.45)

ca = 2 (4.46)

cb = 3 (4.47)

β = 0.05 (4.48)

Di(Π(pn)) ∼ Gamma (k∆, µΠ(pn)) (4.49)

kD = 2 (4.50)

µ = 10 (4.51)

Q ∼ Gamma (kQ, λ) (4.52)

kQ = 2 (4.53)

λ = 7.5 (4.54)

T1 = 1 (4.55)

T2 = 1 (4.56)

The impact of a particular parameter is observed by optimizing the profit for

different values of that parameter while keeping all the other parameters constant.

Tables 4.6-8 present the corresponding numerical results.

Note that the optimal inventory level and price in Approach 1 are independent

of cb/ca, E[Q]/E[Di] and CV (Q) as they all are to define capacity of the low-cost

supplier, and Approach 1 assumes infinite capacity for it.

Since leftover inventory of period 1 can be sold in period 2, y∗1 is higher than y∗2.

However, an increase in E[Q]/E[Di] reduces this advantage of period 1. The reason

is that a higher E[Q]/E[Di] implies that a greater proportion of order is to be met

by the low-cost supplier, and as this ratio increases, the operating conditions become

safer. Fearing less about experiencing high ordering costs in the future, the need for



63

ordering high in period 1 diminishes. Therefore, the relative advantage of operating in

period 1 over operating in period 2 also deteriorates. This results in a shift of business

towards period 2. This shift is carried out by increasing p∗1 to lower the first period

demand and decreasing y∗1, and doing the opposite for p∗2 and y∗2. Profit increases

in E[Q]/E[Di] since a higher value of this ratio implies better operating conditions.

Though in Approach 2 inventory and price are fixed and there is no chance to adapt to

the change in E[Q]/E[Di], Profit 2 also increases due to the improved conditions. As

for Approach 2, prices are fixed, however, yr1 and yr2 behave in the similar fashion as y∗1

and y∗2 to the same end of shifting the operations from period 1 to period 2. Ratio 2

decreases in E[Q]/E[Di] since the cost structure becomes less significant, and therefore

focusing only on maximizing revenue becomes less disadvantageous.

cb/ca ratio reflects how much more costly it is to order beyond the capacity of the

low-cost supplier. An increase in this ratio implies more disadvantageous conditions,

and therefore the retailer decides to reduce the volume of the business by increasing p∗1

and p∗2 to lower the demand, and decrease y∗1 and y∗2. As a result, profit decreases in

a decreasing rate. Profit 2, on the other hand, decreases linearly since in Approach 2

there is no chance to adjust order amount or price, and therefore the change in ordering

cost is directly reflected to the profit. Increasing cb/ca ratio means that the impact of

having to work with a high-cost supplier is greater, therefore working under one low-

cost supplier assumption performs even worse, resulting in a higher Ratio 1. yr1, y
r
2 and

Profit 3 behave in parallel with y∗1, y
∗
2 and Profit 1, respectively. As the cost structure

is more considerable with a higher cb/ca, performance of the approach of focusing only

on revenue now performs worse, and this fact yields a higher Ratio 2.



Table 4.6. The impact of E[Q]/E[Di] ratio on the decision variables, profit and ratios.

E[Q]/E[Di] y∗1 p∗1 y∗2 p∗2 Profit 1 Profit 2 Ratio 1 yr1 yr2 Profit 3 Ratio 2

0.50 12.724 25.864 10.004 26.802 104.231 103.610 0.596 16.421 12.755 98.114 5.869

0.55 12.671 25.881 10.051 26.753 104.437 103.797 0.613 16.333 12.798 98.346 5.832

0.60 12.631 25.891 10.096 26.708 104.635 103.980 0.626 16.257 12.838 98.571 5.795

0.65 12.602 25.895 10.137 26.666 104.826 104.161 0.634 16.191 12.876 98.790 5.757

0.70 12.584 25.894 10.175 26.627 105.008 104.337 0.639 16.134 12.911 99.003 5.718

0.75 12.575 25.887 10.212 26.591 105.182 104.510 0.639 16.087 12.944 99.209 5.679

0.80 12.574 25.876 10.246 26.557 105.348 104.678 0.637 16.048 12.976 99.408 5.638

0.85 12.579 25.862 10.277 26.525 105.506 104.841 0.631 16.016 13.006 99.601 5.598

0.90 12.590 25.844 10.307 26.496 105.657 104.999 0.622 15.991 13.034 99.786 5.556

0.95 12.607 25.825 10.334 26.469 105.800 105.152 0.612 15.973 13.061 99.964 5.515

1.00 12.627 25.803 10.360 26.444 105.935 105.300 0.600 15.960 13.086 100.136 5.474



Table 4.7. The impact of cb/ca ratio on the decision variables, profit and ratios.

cb/ca y∗1 p∗1 y∗2 p∗2 Profit 1 Profit 2 Ratio 1 yr1 yr2 Profit 3 Ratio 2

1.0 15.295 24.231 10.727 26.094 109.456 109.456 0.000 18.168 13.554 105.213 3.876

1.1 14.514 24.618 10.673 26.145 108.503 108.467 0.034 17.584 13.461 103.945 4.201

1.2 13.905 24.967 10.580 26.232 107.610 107.478 0.123 17.123 13.345 102.717 4.547

1.3 13.399 25.290 10.467 26.340 106.764 106.488 0.258 16.734 13.216 101.520 4.911

1.4 12.962 25.596 10.342 26.461 105.956 105.499 0.431 16.393 13.082 100.352 5.289

1.5 12.575 25.887 10.212 26.591 105.182 104.510 0.639 16.087 12.944 99.209 5.679

1.6 12.225 26.167 10.079 26.725 104.439 103.520 0.879 15.807 12.806 98.089 6.080

1.7 11.906 26.438 9.946 26.862 103.723 102.531 1.149 15.547 12.669 96.990 6.491

1.8 11.612 26.701 9.814 27.001 103.032 101.542 1.447 15.305 12.532 95.912 6.911

1.9 11.339 26.956 9.684 27.140 102.366 100.552 1.771 15.077 12.398 94.853 7.339

2.0 11.084 27.204 9.557 27.280 101.721 99.563 2.121 14.861 12.265 93.813 7.774
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An increase in CV (Q) increases y∗1 and decreases p∗1 in order to shift the business

towards period 1. The motivation is similar to that of the case of E[Q]/E[Di]. y∗1

is higher than y∗2 due to the the advantage of the period 1 created by the fact that

carrying inventory to period 2 is possible. A higher CV (Q) implies less stable con-

ditions to operate in, therefore avoiding higher ordering cost in the future becomes

more important, resulting in an even greater advantage for period 1. Therefore, the

retailer decides to conduct an even larger proportion of the business in period 1, and

achieves this objective by increasing order amount and decreasing price for period 1,

and acting in the opposite way for period 2. Profit decreases due to this more volatile

environment. Taking the capacity constraint into account becomes less beneficial since

the capacity is more variable, causing a decrease in the quality of the decisions made.

Therefore, the percentage difference between profits with and without capacity consid-

eration, Ratio 1, decreases. The inventory levels for Approach 3, yr1 and yr2 move in

parallel with y∗1 and y∗2.

In this subsection, we presented the way the computations are carried out for the

capacity constrained inventory model with a price-driven demand, and then discussed

the interpretation of the numerical results.



Table 4.8. The impact of CV (Q) on the decision variables, profit and ratios.

CV (Q) y∗1 p∗1 y∗2 p∗2 Profit 1 Profit 2 Ratio 1 yr1 yr2 Profit 3 Ratio 2

0.50 12.304 26.027 10.334 26.469 105.374 104.562 0.770 15.892 13.022 99.402 5.667

0.55 12.371 25.992 10.301 26.502 105.333 104.555 0.738 15.939 13.001 99.359 5.672

0.60 12.438 25.957 10.271 26.532 105.288 104.545 0.706 15.986 12.982 99.313 5.675

0.65 12.503 25.924 10.242 26.560 105.240 104.531 0.674 16.033 12.964 99.266 5.677

0.70 12.566 25.892 10.215 26.587 105.190 104.513 0.644 16.080 12.947 99.216 5.679

0.75 12.627 25.861 10.190 26.613 105.136 104.490 0.614 16.127 12.931 99.165 5.680

0.80 12.685 25.831 10.165 26.637 105.081 104.464 0.587 16.174 12.915 99.112 5.681

0.85 12.742 25.804 10.142 26.661 105.024 104.435 0.561 16.220 12.900 99.057 5.682

0.90 12.796 25.778 10.119 26.684 104.966 104.402 0.538 16.266 12.886 99.001 5.683

0.95 12.847 25.753 10.097 26.706 104.908 104.366 0.516 16.310 12.872 98.943 5.685

1.00 12.897 25.730 10.076 26.728 104.848 104.328 0.496 16.354 12.859 98.885 5.688
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5. CONCLUSION

In this thesis, we study the effect of price on demand in inventory systems. We

develop two models. In the first model, price determines the probability of demand

occurrence. When demand occurs, its volume is random and independent of the price.

In the second model, price determines the distribution of the amount of demand by

governing purchasing probability of each potential customer. In both models, we try to

find the order amount and the price that maximize the average one-period profit. We

examine how the optimal policy and the profit change in response to the parameters

related to cost, demand and the relationship between price and demand.

For each of our models, we present a variation in order to consider supply un-

certainty. We discuss the benefit of taking the capacity constraints into account, and

demonstrate the effect of parameters related to the capacity constraint on the optimal

policy and profit. We also investigate the performance of the decision based on revenue

maximization compared to the profit earned in the optimal policy.

We take one step further from the existing literature on the price and demand

interactions in inventory systems. We use a choice model based on price. We con-

clude that the incorporation of this choice model into an inventory system provides

remarkably useful insights on how the joint decision on inventory and price should be

made.

We observe that an increase in holding cost drives the retailer to stock less in

order to avoid the cost caused by leftover inventory, and decrease the price so as to

have a higher demand amount or probability, which results in a decreased leftover

stock. Increasing lost sales cost, on the other hand, brings about decisions on higher

inventory levels which reduces the risk of a shortfall, and a higher price, which reduces

the amount or probability of demand to the same end.
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A higher ordering cost implies a less profitable environment; therefore the retailer

reduces the amount she orders. She increases the price for two reasons. First, as she

tends the decrease the volume of the business, she reduces the volume or the probability

of demand by increasing the price. Second, a higher ordering cost results in a lower

profitability, and therefore she increases the price to compensate for that decrease.

As the dependence of the amount or probability of demand on the price becomes

stronger, the retailer tends to make pricing decisions more cautiously, and this results

in a lower price. Since a lower price decreases the profitability, she starts reducing the

volume of investment, which is the volume of orders placed. Under a higher interest

rate, the disadvantage caused by ordering in a period to sell in the following periods in-

creases, therefore the retailer decides to order less. She decreases the price to boost the

demand, with the same aim of ending up with a smaller amount of leftover inventory.

In the sub-models with supply uncertainty, we examine the effect of three factors

on the optimal decision and the corresponding profit. We also investigate the per-

formance of the decision based on a low-cost supplier with an infinite capacity, and

decision with the aim of revenue maximization, compared to the profit earned in the

optimal policy. The impact of an increased ratio of ordering cost for the high-cost sup-

plier to the ordering cost for the low-cost supplier affects the decisions of the retailer in

a similar way to the case of a higher ordering cost in the one supplier case. She reduces

the order amount and increases the price. As the impact of the capacity constraint of

the low-cost supplier is now higher, the quality of the decision based on the assumption

that the low-cost supplier has infinite capacity deteriorates. The performance of the

inventory and price decisions based on the revenue maximization also diminishes as

the cost structure is now more relevant.

An increase in the capacity of the low-cost supplier results in a higher ordering

amount and a lower price. The reason is that knowing the operating conditions are

now safer; the retailer increases the volume of the business by increasing the order

amount and boosting the volume or the probability of the demand by lowering the
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price. The advantage of taking the capacity constraint into account decreases since a

larger proportion of the demand is actually to be met by the low-cost supplier. As

the overall cost is expected to decrease as that proportion increases, the impact of the

overall cost structure decreases. Therefore, the decision based on revenue maximization

becomes performing better.

As the capacity of the low-cost supplier becomes more volatile, the retailer be-

comes acting more cautiously. This results in a higher order amount in order to avoid

a possible high ordering cost in the future. It also causes the optimal price to increase

as the retailer is not confident about the supply, and therefore she needs to reduce the

amount or the probability of demand. The benefit of taking the capacity constraint

into account deteriorates since the estimations on the capacity is now less reliable. The

relative performance of the revenue maximization compared to the optimal solution,

on the other hand, decreases as the overall cost structure is now more relevant.

Future research based on our study may be conducted in several areas. First, the

way the price determines the purchasing probability of the customers can be elaborated.

A model to regard the choice out of multiple alternatives can be incorporated into an

inventory system.

A second possible way to go beyond this study by making use of the framework

provided here is examine the behavior of the optimal policy and the profit under a finite

horizon for the first model that would create an opportunity to observe the difference

of the optimal policies around the beginning and the end of the working horizon.

Another direction of research based on this study may feature a different aspect

in supply uncertainty. The impact of a random lead time may be incorporated into

the current model so as to make the model even more realistic.
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APPENDIX A: MATLAB CODE FOR THE INVENTORY

MODEL WITH PRICE EFFECT ON THE PROBABILITY

OF DEMAND OCCURRENCE WITH ONE AND TWO

SUPPLIERS

function result = PI(p,beta) result = exp(-beta*p);

end

A.1. One Supplier Setting

A.1.1. Simultaneous Optimization of y and p

For simultaneous optimization of y and p.

function result = profit1(xx,h,b,c,alpha,beta,k,mu)

result = -((-xx(1))*(h+c-alpha*c)+PI(xx(2),beta)*((xx(2)

+b+h-alpha*c) *(xx(1)*(1-gamcdf(xx(1),k,mu))+quad(@(x)

(x.*gampdf(x,k,mu)),0,xx(1)))-b*(k*mu)));

end

MAIN

clear all;

A=[-1 0;0 -1];

bb=[0;0];

xx01=[10;10];

xx02=[100;100];

Aeq=[];

beq=[];

lb=[];

ub=[];

nonlcon=[];
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options=optimset(’Algorithm’,’interior-point’);

hvector=[1,1.5,2,2.5,3,3.5,4,4.5,5,5.5,6];

bvector=(5:15);

cvector=[2,2.5,3,3.5,4,4.5,5,5.5,6,6.5,7];

alphavector=[0.975,0.95,0.925,0.90,0.875,0.85,0.825,0.80,

0.775,0.75,0.725];

betavector=[0.02,0.03,0.04,0.05,0.06,0.07,0.08,0.09,

0.10,0.11,0.12];

CVDvector=[0.50,0.55,0.60,0.65,0.70,0.75,0.80,0.85,

0.90,0.95,1];

kvector=CVDvector. (̂-2);

muvector=[10,12,14,16,18,20,22,24,26,28,30];

maxitvector=[1,1,1,1,1,10,10];

counter8=1;

for counter1=1:maxitvector(1)

h=hvector(counter1);

for counter2=1:maxitvector(2)

b=bvector(counter2);

for counter3=1:maxitvector(3)

c=cvector(counter3);

for counter4=1:maxitvector(4)

alpha=alphavector(counter4);

for counter5=1:maxitvector(5) beta=betavector(counter5);

for counter6=1:maxitvector(6)

k=kvector(counter6);

for counter7=1:maxitvector(7)

mu=muvector(counter7);

xx1,fval1

= fmincon(@(xx)profit1(xx,h,b,c,alpha,beta,k,mu),xx01,A,bb,

Aeq,beq,lb,ub, nonlcon,options);
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xx2,fval2

= fmincon(@(xx)profit1(xx,h,b,c,alpha,beta,k,mu),xx02,A,bb,

Aeq,beq,lb,ub, nonlcon,options);

if (-fval1>-fval2) xx=xx1;

fval=-fval1;

else

xx=xx2;

fval=-fval2;

end

resultmatrix1=[h,b,c,alpha,beta];

resultmatrix(1:2)=xx;

resultmatrix(3)=fval;

xlswrite(’output.xlsx’,resultmatrix1,sprintf(’A%d:E%d’,

counter8,counter8));

xlswrite(’output.xlsx’,resultmatrix,sprintf(’F%d:H%d’,

counter8,counter8));

counter8=counter8+1;

end

end

end

end

end

end

end

A.1.2. Iterative Optimization of y and p

function result = findyforfixedp(h,b,c,alpha,beta,k,mu,p)

result = gaminv(-(((h+c-alpha*c)*(exp(beta*p)))/(p+b+h-alpha*c))

+1,k,mu); end
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function result = profitforfixedy(h,b,c,alpha,beta,k,mu,y,pprice)

result = -(((-y))*(h+c-alpha*c)+PI(pprice,beta)*((pprice+b+h

-alpha*c) *(y*(1-gamcdf(y,k,mu))+quad(@(x)

(x.*gampdf(x,k,mu)),0,y))-b*(k*mu)));

end

clear all;

A=-1;

bb=0;

p01=10;

p02=100;

Aeq=[];

beq=[];

lb=[];

ub=[];

nonlcon=[];

hvector=[2,3,4,5,6];

bvector=[5,7.5,10,12.5,15];

cvector=[2,3,4,5,6];

alphavector=[0.90,0.90,0.85,0.80,0.75];

betavector=[0.05,0.05,0.075,0.1,0.125];

kvector=[2,4,10,20];

muvector=[10,15,20,25,30];

maxitvector=[1,1,1,1,1,10,10];

critgapp=0.001;

critgapy=0.001;

MaxIt=100;

options=optimset(’Algorithm’,’interior-point’);

counter8=1;

for counter1=1:maxitvector(1)

h=hvector(counter1);

for counter2=1:maxitvector(2)
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b=bvector(counter2);

for counter3=1:maxitvector(3)

c=cvector(counter3);

for counter4=1:maxitvector(4)

alpha=alphavector(counter4);

for counter5=1:maxitvector(5)

beta=betavector(counter5);

for counter6=1:maxitvector(6)

k=kvector(counter6);

for counter7=1:maxitvector(7)

mu=muvector(counter7);

p=1/beta;

y=PI(p,beta)*k*mu;

for NumIt = 1:MaxIt

pprev=p;

yprev=y;

p1,fval1

= fmincon(@(pprice)profitforfixedy(h,b,c,alpha,beta,k,mu,y,

pprice),p01,A,bb,Aeq,beq, lb,ub,nonlcon,options);

p2,fval2

= fmincon(@(pprice)profitforfixedy(h,b,c,alpha,beta,k,mu,y,

pprice),p02,A,bb,Aeq,beq, lb,ub,nonlcon,options);

if(abs(p1-p2)<0.1)

p=p1;

fval=fval1;

else

message6=sprintf(’Inconsistent p values’);

disp(message6);

break;

end
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y=findyforfixedp(h,b,c,alpha,beta,k,mu,p);

message0=sprintf(’Iteration %d’,NumIt);

message2 = sprintf(’y = %f’,y);

message4 = sprintf(’p = %f’,p);

message5=sprintf(’***’);

disp(message0);

disp(message2);

disp(message4);

disp(message5);

gapp=abs(p-pprev);

gapy=abs(y-yprev);

if ((gapp<critgapp) (gapy<critgapy))

break;

end

end

profitfinal=-profitforfixedy(h,b,c,alpha,beta,k,mu,y,p);

if profitfinal<0

y=0;

p=1000;

profitfinal=0;

end

resultmatrix1=[h,b,c,alpha,beta];

resultmatrix(1:2)=[y,p];

resultmatrix(3)=profitfinal;

xlswrite(’output.xlsx’,resultmatrix1,sprintf(’A%d:E%d’,

counter8,counter8));

xlswrite(’output.xlsx’,resultmatrix,sprintf(’F%d:H%d’,

counter8,counter8));

counter8=counter8+1;

end

end
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end

end

end

end

end

A.2. Two Suppliers Setting

function result = func1(I1,kQ,lambda,x)

result=(x(1)-I1)*gamcdf(x(1)-I1,kQ,lambda)

-quad(@(t)t.*gampdf(t,kQ,lambda),0,x(1)-I1); end

function result = func2(beta,k,mu,kQ,lambda,x)

result=PI(x(2),beta)*( (1-gamcdf(x(1),k,mu))*(x(1)*gamcdf(x(1),

kQ,lambda) -quad(@(t)t.*gampdf(t,kQ,lambda),0,x(1)))

+ gamcdf(x(1),k,mu)*(quadl(@(t)t.*gamcdf(t,kQ,lambda)

.*gampdf(t,k,mu),0,x(1)) -dblquad(@(t,z)t.*gampdf(t,kQ,lambda).

*gampdf(z,k,mu),0,x(1),0,z)) );

end

A.2.1. Simultaneous Optimization of y and p

function result = profittwosup(h,b,ca,cb,I1,alpha,beta,k,mu,

kQ,lambda,x)

result=-( -(cb-ca)*func1(I1,kQ,lambda,x) -ca*(x(1)-I1)

+(1/(1-alpha)) *(-(1-PI(x(2),beta))*h*x(1) + PI(x(2),beta)

*(-(x(2)+b+h-alpha*ca) *(x(1)*gamcdf(x(1),k,mu)-

quad(@(t)t.*gampdf(t,k,mu),0,x(1))) +x(1)*(x(2)+b-alpha*ca)

-b*(k*mu) -alpha*(cb-ca)

*func2(beta,k,mu,kQ,lambda,x) ) ) );
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end

MAIN

clear all;

A=[-1 0;0 -1];

bb=[0;0];

xx01=[10;10];

xx02=[100;100];

xx=[0 0];

A1=-1;

bb1=0;

Aeq=[];

beq=[];

lb=[];

ub=[];

nonlcon=[];

h=1;

b=5;

ca=2;

cbvector=[3,2.2,2.4,2.6,2.8,3,3.2,3.4,3.6,3.8,4];

I1=0;

alpha=0.80;

beta=0.05;

kvector=[2,5];

CVQvector=[0.50,0.55,0.60,0.65,0.70,0.75,0.80,0.85,0.90,0.95,1];

kQvector=CVQvector. (̂-2);

Qmeanvector=(10:20);

y=10;

pprice=10;

options=optimset(’Algorithm’,’sqp’);

options.MaxFunEvals=500;

counter5=1;
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for counter6 = 1:1

for counter1 = 1:1

for counter2 = 1:1

for counter3 = 1:11

k=kvector(counter6);

mu=20/k;

cb = cbvector(counter1);

kQ=kQvector(counter2);

lambda=Qmeanvector(counter3)/kQvector(counter2);

xx1,fval1

= fmincon(@(x)profittwosup(h,b,ca,cb,I1,alpha,beta,k,mu,kQ,

lambda,x),xx01,A,bb,

Aeq,beq,lb,ub,nonlcon,options);

xx2,fval2

= fmincon(@(x)profittwosup(h,b,ca,cb,I1,alpha,beta,k,mu,kQ,

lambda,x),xx02,A,bb,

Aeq,beq,lb,ub,nonlcon,options);

if((fval1>0.1) (fval2>0.1))

xx(1)=0;

xx(2)=1000;

fval=0;

else if(-profittwosup(h,b,ca,cb,I1,alpha,beta,k,mu,kQ,lambda,xx1)

>=-profittwosup(h,b,ca,cb,I1,alpha,beta,k,mu,kQ,lambda,xx2))

xx=xx1;

fval=fval1;

else

xx=xx2;

fval=fval2;
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end

end

profit1=fval;

resultmatrix(1)=xx(1);

resultmatrix(2)=xx(2);

resultmatrix(3)=-profit1;

xx3,fval3

= fmincon(@(x)profittwosup(h,b,ca,ca,I1,alpha,beta,k,mu,kQ,

lambda,x),xx01,A,bb, Aeq,beq,lb,ub,nonlcon,options);

xx4,fval4

= fmincon(@(x)profittwosup(h,b,ca,ca,I1,alpha,beta,k,mu,kQ,

lambda,x),xx02,A,bb, Aeq,beq,lb,ub,nonlcon,options);

if((fval3>0.1) (fval4>0.1)) xx(1)=0;

xx(2)=1000;

fval=0;

else if(-profittwosup(h,b,ca,ca,I1,alpha,beta,k,mu,kQ,lambda,xx3)

>=-profittwosup(h,b,ca,ca,I1,alpha,beta,k,mu,kQ,lambda,xx4))

xx=xx3;

fval=fval3;

else

xx=xx4;

fval=fval4;

end

end

profit2=profittwosup(h,b,ca,cb,I1,alpha,beta,k,mu,

kQ,lambda,xx);

if(profit2>0.1) profit2=0;

end

resultmatrix(4)=xx(1);

resultmatrix(5)=xx(2);
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resultmatrix(6)=-profit2;

ratio1=(profit1-profit2)/profit1;

resultmatrix(7)=100*ratio1;

pprice=1/beta;

xxa,fval1

= fmincon(@(y)profittwosupfixedp(h,b,ca,cb,I1,alpha,beta,k,mu,

kQ,lambda,y,pprice),

xx01(1),A1,bb1,Aeq,beq,lb,ub,nonlcon,options);

xxb,fval2

= fmincon(@(y)profittwosupfixedp(h,b,ca,cb,I1,alpha,beta,k,mu,

kQ,lambda,y,pprice),

xx02(1),A1,bb1,Aeq,beq,lb,ub,nonlcon,options);

if((fval1>0.1) (fval2>0.1)) xxc=0;

fval=0;

else if(-profittwosupfixedp(h,b,ca,cb,I1,alpha,beta,k,mu,

kQ,lambda,xxa,pprice)

>=-profittwosupfixedp(h,b,ca,cb,I1,alpha,beta,k,mu,

kQ,lambda,xxb,pprice)) xxc=xxa;

fval=fval1;

else xxc=xxb;

fval=fval2;

end

end

profit3=profittwosupfixedp(h,b,ca,cb,I1,alpha,beta,k,mu,

kQ,lambda,xxc,pprice);

if(profit3>0.1) profit3=0;

end

resultmatrix(8)=xxc;

resultmatrix(9)=pprice;

resultmatrix(10)=-profit3;
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ratio2=(profit1-profit3)/profit1;

resultmatrix(11)=100*ratio2;

cboverca=cb/ca;

EQoverED=Qmeanvector(counter3)/(k*mu);

CV=1/sqrt(kQ);

xlswrite(’output.xlsx’,k,sprintf(’A%d:A%d’,counter5,counter5));

xlswrite(’output.xlsx’,kQ,sprintf(’B%d:B%d’,counter5,counter5));

xlswrite(’output.xlsx’,Qmeanvector(counter3),sprintf(’C%d:C%d’,

counter5,counter5));

xlswrite(’output.xlsx’,cboverca,sprintf(’D%d:D%d’,counter5,

counter5));

xlswrite(’output.xlsx’,CV,sprintf(’E%d:E%d’,counter5,

counter5));

xlswrite(’output.xlsx’,EQoverED,sprintf(’F%d:F%d’,counter5,

counter5));

xlswrite(’output.xlsx’,resultmatrix,sprintf(’G%d:Q%d’,counter5,

counter5));

counter5=counter5+1;

end

end

end

end

A.2.2. Iterative Optimization of y and p

function result = profittwosupfixedp(h,b,ca,cb,I1,alpha,beta,

k,mu,kQ,lambda,y,pprice)

x(1)=y;

x(2)=pprice;

result=-( -(cb-ca)*func1(I1,kQ,lambda,x) -ca*(y-I1) +(1/(1-alpha))*
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(-(1-PI(pprice,beta))*h*y + PI(pprice,beta)*(-(pprice+b+h-alpha*ca)

*(y*gamcdf(y,k,mu)

-quad(@(t)t.*gampdf(t,k,mu),0,y))

+y*(pprice+b-alpha*ca)-b*(k*mu)

-alpha*(cb-ca)*func2(beta,k,mu,kQ,lambda,x) ) ) );

end

clear all;

A=-1;

bb=0;

p01=10;

p02=100;

y01=10;

y02=100;

Aeq=[];

beq=[];

lb=[];

ub=[];

nonlcon=[];

h=1;

b=5;

ca=1;

cbvector=[1,1.25,1.5,1.75,2];

I1=0;

alpha=0.9;

beta=0.05;

kvector=[2,5];

kQvector=[100,4,2];

Qmeanvector=[4,10,20];

critgapp=0.001;

critgapy=0.001;

MaxIt=100;
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pprice=20;

options=optimset(’Algorithm’,’interior-point’);

options.MaxFunEvals=500;

counter5=1;

for counter6 = 1:1

for counter1 = 2:5

for counter2 = 1:3

for counter3 = 1:3

k=kvector(counter6);

mu=20/k;

cb = cbvector(counter1);

kQ=kQvector(counter2);

lambda=Qmeanvector(counter3)/kQvector(counter2);

p=1/beta;

y=PI(p,beta)*k*mu;

for NumIt = 1:MaxIt pprev=p;

yprev=y;

p1,fval1

= fmincon(@(pprice)profittwosupfixedp(h,b,ca,cb,I1,alpha,beta,

k,mu,kQ,lambda,y,pprice),

p01,A,bb,Aeq,beq,lb,ub,nonlcon,options);

p2,fval2

= fmincon(@(pprice)profittwosupfixedp(h,b,ca,cb,I1,alpha,beta,

k,mu,kQ,lambda,y,pprice),

p02,A,bb,Aeq,beq,lb,ub,nonlcon,options);

if(abs(p1-p2)<0.1) p=p1;

fval=fval1;

else message6=sprintf(’Inconsistent p values’);

disp(message6);

break;
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end

y1,fval1

= fmincon(@(y)profittwosupfixedp(h,b,ca,cb,I1,alpha,beta,k,mu,

kQ,lambda,y,pprice),

y01,A,bb,Aeq,beq,lb,ub,nonlcon,options);

y2,fval2

= fmincon(@(y)profittwosupfixedp(h,b,ca,cb,I1,alpha,beta,k,mu,

kQ,lambda,y,pprice),

y02,A,bb,Aeq,beq,lb,ub,nonlcon,options);

if(abs(y1-y2)<0.1) y=y1;

fval=fval1;

else message6=sprintf(’Inconsistent p values’);

disp(message6);

break;

end

message0=sprintf(’Iteration %d’,NumIt);

message2 = sprintf(’y = %f’,y);

message4 = sprintf(’p = %f’,p);

message5=sprintf(’***’);

disp(message0);

disp(message2);

disp(message4);

disp(message5);

gapp=abs(p-pprev);

gapy=abs(y-yprev);

if ((gapp<critgapp) (gapy<critgapy)) break;

end

end

profitfinal=-profittwosupfixedp(h,b,ca,cb,I1,alpha,beta,k,mu,

kQ,lambda,y,p);
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if profitfinal<0 y=0;

p=1000;

profitfinal=0;

end

cboverca=cb/ca;

EQoverED=Qmeanvector(counter3)/(k*mu);

CV=1/sqrt(kQ);

resultmatrix=[y,p,profitfinal];

xlswrite(’output.xlsx’,k,sprintf(’A%d:A%d’,counter5,counter5));

xlswrite(’output.xlsx’,kQ,sprintf(’B%d:B%d’,counter5,counter5));

xlswrite(’output.xlsx’,Qmeanvector(counter3),sprintf(’C%d:C%d’,

counter5,counter5));

xlswrite(’output.xlsx’,cboverca,sprintf(’D%d:D%d’,counter5,

counter5));

xlswrite(’output.xlsx’,CV,sprintf(’E%d:E%d’,counter5,

counter5));

xlswrite(’output.xlsx’,EQoverED,sprintf(’F%d:F%d’,counter5,

counter5));

xlswrite(’output.xlsx’,resultmatrix,sprintf(’G%d:I%d’,counter5,

counter5));

counter5=counter5+1;

end

end

end

end
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APPENDIX B: MATLAB CODE FOR THE INVENTORY

MODEL INVESTIGATING THE PRICE EFFECT ON

INDIVIDUAL CUSTOMERS WITH ONE AND TWO

SUPPLIERS

function result = PI(beta,p)

result = exp(-beta*p);

end

function result=mean(parameters)

result=parameters(1)*parameters(2);

end

function result=density(parameters,x)

result=gampdf(x,parameters(1),parameters(2));

end

function result=cumulative(parameters,x)

result=gamcdf(x,parameters(1),parameters(2));

end

function result=sigma(parameters,y)

result=quad(@(t)t.*gampdf(t,parameters(1),parameters(2)),0,y);

end

function result=Holding(h,parameters,y,T)

result=T*h*((y+y*cumulative(parameters,y)-sigma(parameters,y))/2);

end

function result=LostSales(b,parameters,y)

result=b*(mean(parameters)+y*(cumulative(parameters,y)-1)

-sigma(parameters,y));

end

function result=L(h,b,parameters,y,T)

result=Holding(h,parameters,y,T)+LostSales(b,parameters,y);
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end

function result=R(parameters,y,p)

result=p*(y*(1-cumulative(parameters,y))+sigma(parameters,(y)));

end

B.1. One Supplier Setting

function result=orderingonesup(c,y,I)

result=c*(y-I);

end

function result=profitwopar(xx,h,b,c,beta,T1,T2,kD)

lambda=10;

I1=0;

parameters=[kD*T1,PI(beta,xx(2))*lambda];

I2=xx(1)*cumulative(parameters,xx(1))-sigma(parameters,xx(1));

profit1=-(R(parameters,xx(1),xx(2))-L(h,b,parameters,xx(1),T1)

-orderingonesup(c,xx(1),I1));

parameters=[kD*T2,PI(beta,xx(4))*lambda];

profit2=-(R(parameters,xx(3),xx(4))-L(h,b,parameters,xx(3),T2)

-orderingonesup(c,xx(3),I2));

result=profit1+profit2;

end

MAIN

clear all;

A=[-1 0 0 0;0 -1 0 0;0 0 -1 0;0 0 0 -1];

bb=[0;0;0;0];

xx01=[10;10;10;10];

xx02=[100;100;100;100];
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Aeq=[];

beq=[];

lb=[];

ub=[];

nonlcon=[];

options=optimset(’Algorithm’,’interior-point’);

options.MaxFunEvals=500;

hvector=[1,1.5,2,2.5,3,3.5,4,4.5,5,5.5,6];

bvector=(5:15);

cvector=[2,2.5,3,3.5,4,4.5,5,5.5,6,6.5,7];

betavector=[0.05,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.10,

0.11,0.12];

T1vector=(5:11);

T2vector=(1:11);

CVDvector=[0.50,0.55,0.60,0.65,0.70,0.75,0.80,0.85,0.90,0.95,1];

kDvector=CVDvector. (̂-2);

maxitvector=[1,1,1,1,1,10,10];

counter9=1;

for counter1 1̄:maxitvector(1)

h=hvector(counter1);

for counter2=1:maxitvector(2)

b=bvector(counter2);

for counter3=1:maxitvector(3)

c=cvector(counter3);

for counter4=1:maxitvector(4)

beta=betavector(counter4);

for counter5=1:maxitvector(5)

T1=T1vector(counter5);

for counter6=1:maxitvector(6)

T2=T2vector(counter6);

for counter7=1:maxitvector(7)
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kD=kDvector(counter7);

xx1,fval1

= fmincon(@(xx)profitwopar(xx,h,b,c,beta,T1,T2,kD),xx01,A,bb,

Aeq,beq,lb,ub,nonlcon,options);

xx2,fval2

= fmincon(@(xx)profitwopar(xx,h,b,c,beta,T1,T2,kD),xx02,A,bb,

Aeq,beq,lb,ub,nonlcon,options);

if (-fval1>-fval2)

xx=xx1;

fval=-fval1;

else

xx=xx2;

fval=-fval2;

end

resultmatrix(1:4)=xx;

avgprofit=fval/(T1+T2);

resultmatrix(5)=avgprofit;

xlswrite(’output.xlsx’,h,sprintf(’A%d:A%d’,counter9,counter9));

xlswrite(’output.xlsx’,b,sprintf(’B%d:B%d’,counter9,counter9));

xlswrite(’output.xlsx’,c,sprintf(’C%d:C%d’,counter9,counter9));

xlswrite(’output.xlsx’,beta,sprintf(’D%d:D%d’,counter9,counter9));

xlswrite(’output.xlsx’,T1,sprintf(’E%d:E%d’,counter9,counter9));

xlswrite(’output.xlsx’,T2,sprintf(’F%d:F%d’,counter9,counter9));

xlswrite(’output.xlsx’,kD,sprintf(’G%d:G%d’,counter9,counter9));

xlswrite(’output.xlsx’,resultmatrix,sprintf(’H%d:L%d’,counter9,

counter9));

counter9=counter9+1;

end

end

end
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end

end

end

end

B.2. Two Suppliers Setting

function result=orderingtwosup(ca,cb,y,I,kQ,mu)

result=(cb-ca)*((y-I)*gamcdf(y-I,kQ,mu)-quad(@(t)

t.*gampdf(t,kQ,mu),0,y-I))

+ca*(y-I);

end

function result=profitwopartwosup(xx,h,b,ca,cb,beta,T1,T2,

kQ,mu,kD) lambda=10;

I1=0;

parameters=[kD,PI(beta,xx(2))*lambda*T1];

I2=xx(1)*cumulative(parameters,xx(1))-sigma(parameters,xx(1));

profit1=-(R(parameters,xx(1),xx(2))-L(h,b,parameters,xx(1),T1)

-orderingtwosup(ca,cb,xx(1),I1,kQ,mu));

parameters=[kD,PI(beta,xx(4))*lambda*T2];

profit2=-(R(parameters,xx(3),xx(4))-L(h,b,parameters,xx(3),T2)

-orderingtwosup(ca,cb,xx(3),I2,kQ,mu));

result=(profit1+profit2)/(T1+T2);

end

MAIN

clear all;

A=[-1 0 0 0;0 -1 0 0;0 0 -1 0;0 0 0 -1]; bb=[0;0;0;0];

xx01=[10;10;10;10];

xx02=[100;100;100;100];

Aeq=[];
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beq=[];

lb=[];

ub=[];

nonlcon=[];

options=optimset(’Algorithm’,’sqp’);

options.MaxFunEvals=500;

hvector=[1,2,3,4,5,6];

bvector=[5,7,9,11,13];

cavector=[2,3,4,5,6];

cbvector=[3,2.2,2.4,2.6,2.8,3,3.2,3.4,3.6,3.8,4];

betavector=[0.05,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.10,

0.11,0.12];

T1vector=(1:10);

T2vector=(1:10);

CVQvector=[0.50,0.55,0.60,0.65,0.70,0.75,0.80,0.85,0.90,0.95,1];

kQvector=CVQvector. (̂-2);

kD=2;

lambda=10;

avgdemand=kD*lambda;

avgcapvector=avgdemand*[0.50,0.55,0.60,0.65,0.70,0.75,0.80,

0.85,0.90,0.95,1];

maxitvector=[1,1,1,1,1,1,1,10,10];

counter10=1;

for counter1=1:maxitvector(1)

h=hvector(counter1);

for counter2=1:maxitvector(2)

b=bvector(counter2);

for counter3=1:maxitvector(3)

ca=cavector(counter3);

for counter4=1:maxitvector(4)

cb=cbvector(counter4);
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for counter5=1:maxitvector(5)

beta=betavector(counter5);

for counter6=1:maxitvector(6)

T1=T1vector(counter6);

for counter7=1:maxitvector(7)

T2=T2vector(counter7);

for counter8=1:maxitvector(8)

kQ=kQvector(counter8);

for counter9=1:maxitvector(9) mu=(avgcapvector(counter9)

*exp(-1))/kQ;

xx1,fval1

= fmincon(@(xx)profitwopartwosup(xx,h,b,ca,cb,beta,T1,T2,

kQ,mu,kD),xx01,A,bb,

Aeq,beq,lb,ub,nonlcon,options);

xx2,fval2

= fmincon(@(xx)profitwopartwosup(xx,h,b,ca,cb,beta,T1,T2,

kQ,mu,kD),xx02,A,bb,

Aeq,beq,lb,ub,nonlcon,options);

if (-fval1>-fval2)

xx=xx1;

fval=-fval1;

else

xx=xx2;

fval=-fval2;

end

profit1=fval;

resultmatrix(1:4)=xx;

resultmatrix(5)=profit1;

xx1,fval1

= fmincon(@(xx)profitwopartwosup(xx,h,b,ca,ca,beta,T1,T2,



94

kQ,mu,kD),xx01,A,bb,

Aeq,beq,lb,ub,nonlcon,options);

xx2,fval2

= fmincon(@(xx)profitwopartwosup(xx,h,b,ca,ca,beta,T1,T2,

kQ,mu,kD),xx02,A,bb,

Aeq,beq,lb,ub,nonlcon,options);

if((fval1>0.1) (fval2>0.1))

xx(1)=0;

xx(3)=0;

xx(2)=1000;

xx(4)=1000;

fval=0;

else if(-profitwopartwosup(xx1,h,b,ca,ca,beta,T1,T2,

kQ,mu,kD)

>=-profitwopartwosup(xx2,h,b,ca,ca,beta,T1,T2,

kQ,mu,kD))

xx=xx1;

fval=-fval1;

else

xx=xx2;

fval=-fval2;

end

end

profit2=-profitwopartwosup(xx,h,b,ca,cb,beta,T1,T2,kQ,mu,kD);

if(profit2<0.1)

profit2=0;

end

resultmatrix(6:9)=xx;

resultmatrix(10)=profit2;

ratio1=(profit1-profit2)/profit1;

resultmatrix(11)=100*ratio1;
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xx03=[10;1/beta;10;1/beta];

xx04=[100;1/beta;100;1/beta];

xx1,fval1

= fmincon(@(xx)profitwopartwosupfixedp(xx,h,b,ca,cb,beta,T1,T2,

kQ,mu,kD),xx03,A,bb,

Aeq,beq,lb,ub,nonlcon,options);

xx2,fval2

= fmincon(@(xx)profitwopartwosupfixedp(xx,h,b,ca,cb,beta,T1,T2,

kQ,mu,kD),xx04,A,bb,

Aeq,beq,lb,ub,nonlcon,options);

if((fval1>0.1) (fval2>0.1))

xx(1)=0;

xx(3)=0;

xx(2)=1000;

xx(4)=1000;

fval=0;

else if(-profitwopartwosupfixedp(xx1,h,b,ca,cb,beta,T1,T2,kQ,mu,kD)

>=-profitwopartwosupfixedp(xx2,h,b,ca,cb,beta,T1,T2,kQ,mu,kD))

xx=xx1;

fval=-fval1;

else

xx=xx2;

fval=-fval2;

end

end

ddd=fval;

profit3=-profitwopartwosup(xx,h,b,ca,cb,beta,T1,T2,kQ,mu,kD);

if(profit3<0.1)

profit3=0;

end
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resultmatrix(12:15)=xx;

resultmatrix(16)=profit3;

ratio2=(profit1-profit3)/profit1;

resultmatrix(17)=100*ratio2;

cratio=cb/ca;

CV=1/sqrt(kQ);

EQoverED=(kQ*mu)/(avgdemand*exp(-1));

resultmatrix1=[h,b,ca,cb,beta,T1,T2,kQ,mu,cratio,CV,EQoverED];

xlswrite(’output.xlsx’,resultmatrix1,sprintf(’A%d:L%d’,

counter10,counter10));

xlswrite(’output.xlsx’,resultmatrix,sprintf(’M%d:AC%d’,

counter10,counter10));

counter10=counter10+1;

end

end

end

end

end

end

end

end



97

REFERENCES

Anupindi, R., and R. Akella, 1993, “Diversification Under Supply Uncertainty”, Man-

agement Science, Vol. 39, No. 8, pp. 944-963.

Boyd, J., and J. Mellman, 1980, “The Effect of Fuel Economy Standards on the U.S.

Automotive Market: A Hedonic Demand analysis”, Transportation Research, Vol.

14, pp. 367-378.

Burke, G. J., J. E. Carillo, and A. J. Vakharia, 2007, “Single Versus Multiple Supplier

Sourcing Strategies”, European Journal of Operational Research, Vol. 182, No. 1, pp.

95-112.

Cardell, S., and F. Dunbar, 1980, “Measuring the Societal Impacts of Automobile

Downsizing”, Transportation Research, Vol. 14, pp. 423-434.

Chen, X., and D. Simchi-Levi, 2004, “Coordinating Inventory Control and Pricing

Strategies with Random Demand and Fixed Ordering Cost: The Finite Horizon

Case”, Operations Research, Vol. 52, No. 6, pp. 887-896.

Daganzo, C., 1979, Multinomial Probit: The Theory and Its Application to Demand

Forecasting, Academic Press, New York, NY, USA.

Deng, Y., and C. A. Yano, 2006, “Joint Production and Pricing Decisions with Setup

Costs and Capacity Constraints”, Management Science, Vol. 52, No. 5, pp. 741-756.

Elmaghraby, W., and P. Keskinocak, 2003, “Dynamic Pricing in the Presence of Inven-

tory Considerations:Research Overview, Current Practices, and Future Directions ”,

Management Science, Vol. 49, No. 10, pp. 1287-1309.

Elyakime, B., J. -J. Laffont, P. Loisel, and Q. Vuong, 1994, “First-Price Sealed-Bid

Auctions with Secret Reservation Prices”, Annales d’Economie et de Statistique,

Vol. 34, pp. 115-141.

Federgruen, A., and A. Heching, 2004, “Combined Pricing and Inventory Control Under

Uncertainty”, Operations Research, Vol. 47, No. 3, pp. 454-475.



98

Flores, N. E., and R. T. Carson, 1997, “The Relationship Between the Income Elastic-

ities of Demand and Willingness to Pay”, Journal of Environmental Economics and

Management, Vol. 32, pp. 287-295.

Forinash, C., and F. Koppelman, 1993, “Application and Interpretation of Nested Logit

Models of Intercity Mode Choice”, Transportation Research Record, Vol. 1413, pp.

98-106.
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