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Bu tezde simetrik ve asimetrik kripto sistemler tanitilmis ve bu sistemlere 6rnekler
verilmistir. Sayisal imza ifade edilerek sayisal imza algoritmalarina ve 6rneklerine yer

verilmistir. Hash fonksiyonlar1 ve kriptolojik hash fonksiyonlar1 tanitilmigtir.
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1. GIRIS

Kriptoloji bir verinin sifrelenmesi (kriptografi) ve sifrelenmis metinin analizini
(desifreleme) igeren matematigin bir dalidir. Teknolojideki hizli gelismeler verilerin
giivenli bir sekilde iletilmesinin énemini artirmustir. Ik olarak yaklasik 4000 yil dnce
kullanilmistir. Kripto tarihgisi David Kahn’a gére ilk kriptografik belge M.O 1900’lere
dayanan bir lordun hayatini anlatan bir hiyegroliftir. 2000 y1l 6énce Roma imparatoru
Julius Ceasar tarafindan olusturulan ve simetrik anahtar sifrelemenin ilk 6rnegi sayilan
Ceasar sifresi alfabedeki harfleri kendinden ii¢ sonraki harfe gétiiren basit yerine koyma
sifresidir. Diplomasi ve askeri haberlesmelerde kullanilan gizli haberlesme 6zellikle 2.

Diinya savasinda biiylik rol oynamustir.

Sanayi devrimine kadar ilkel yontemlerle olusturulan sifreleme sistemleri, makinelerin
icad1 ile boyut degistirmis ve teknolojinin hizi ile dogru orantili olarak kirllamayacak

sifreleme sistemleri olusturma ¢abalar1 devam etmistir.

1970’de ABD ileri teknoloji enstitiisi  NIST tarafindan gelistirilen DES (Data

Encryption Standart) tarihte en iyi bilinen sistemdir.

1970’lerde bilgisayar ve matematigin etkin bir sekilde kullanilmaya baslanmasi ile

sifreleme sistemleri Simetrik ve Asimetrik sifreleme sistemleri olarak ikiye ayrildi.

Simetrik anahtarli sistemlere gizli anahtarli sifreleme de denebilir. Bu sistemlerde
kullanicilar 6nceden bir araya gelerek ortak bir anahtar iizerinde anlasirlar veya giivenli
bir araci ile anahtar paylasimi yaparlar. Bu simetrik anahtar sifrelemenin en biiyiik

dezavantajidir.

Diffie ve Hellman tarafindan yayinlanan “New Directions In Cryptology” adli makale
kriptoloji de bir donlim noktasi olmustur. Yayinladiklar1 makale ile anahtar degisimi

problemine ¢oziim getirmislerdir. 1978 de Rivest, Shamir ve Adleman yayinladiklari



makale ile RSA olarak ifade edilen ilk pratik acik anahtar sifreleme tasarisini One
stirmiislerdir. RSA modiiler aritmetigi kullanarak iis alma iglemine dayanirken; El
Gamal 1985’de ayrik logaritma problemine dayanan bir agik anahtar kriptosistem
gelistirmistir. Daha sonralar1 ayrik logaritma problemi sonlu cisimler {izerinde tanimli
eliptik egrilerde kullanilarak acik anahtar sistemlere yeni bakis acilar1 kazandirilmistir.
Daha farkli agik anahtar ve gizli anahtar sistemler vardir. Bunlardan biri de 2011 yilinda
F. Chen, X. Liao, T. Xiang, H.Zheng tarafindan yayinlanan Chebysev Polinomlarina
dayali agik anahtar sistemdir (Kocarev et al. 2005).

Teknolojinin hizla ilerlemesi ve internet kullanimimin her alanda yayginlagmasi
kriptolojinin 6nemini giderek artirmistir. Baslangigta gizlilik igin kullanilan kriptoloji
internet kullaniminin yayginlasmasi ile kimlik ve veri dogrulamada sayisal imza ile
kullanim alani gelismistir. Sayisal imzalar acik anahtar sistemler ile olusturulur. Bir
verinin dogrulugu, gondericinin dogrulanmasi ya da gonderilen veriye gondericinin
haberi diginda bilgi eklenmesi ya da bilgi silinmesini 6nlemek i¢in sayisal imza

kullanilir. Sayisal imzalarda 6zet(hash fonksiyonlar1) fonksiyonlarindan yararlanilir.



2. KURAMSAL TEMELLER

2.1. Temel Matematiksel Kavramlar

Bu boliimde bu ¢alismada kullanacagimiz bazi tanim, teorem, lemma ve Orneklere yer

verilecektir.

Tanmm 2.1.1: A ve B bostan farkli iki kiime olsun. f € A X B asagidaki sartlari

sagliyorsa bu f bagintisina fonksiyon denir;

1) Her a € A igin 6yle bir b€ B vardir ki (a, b) € f dir.
2) (a,by) € fve (a,by) € fise by = b, dir.

Burada A kiimesine f fonksiyonun tanim kiimesi, B kiimesine de deger kiimesi denir.

Tammm 2.1.2: f: A - B fonksiyonu b € B igin 6n goriintiisii f(a) = b olacak sekilde
bir a € A vardir. B de en az bir 6n goriintiiye sahip tim elemanlarin kiimesine f*’nin

goriintii kiimesi denir ve Im(f) veya f(A) ile gosterilir.

Tanmm 2.1.3: f: A - B fonksiyon olsun. Eger, her x4, x, € A i¢in f(x;) = f(x,) iken

x, = x, oluyorsa f fonksiyonuna bire-bir fonksiyon denir.

Tanmm 2.1.4: f: A — B fonksiyon olsun. f (4A) = B oluyorsa f fonksiyonuna Orten

fonksiyon denir.

Tamim 2.1.5: Bir fonksiyon hem bire-bir hem de 6rten ise bu fonksiyona bire-bir ve

orten fonksiyon denir.



Tanm 2.1.6: f:A - B bire-bir ve 6rten bir fonksiyon olsun. V b € B igin g(b) =
a,a € A olacak sekilde g: B — A bire-bir ve orten fonksiyonu bulunabilir. f den elde

edilen bu g fonksiyonuna f ’nin ters fonksiyonu denir ve f~1 ile gosterilir.

Tammm 2.1.7: f: A — B fonksiyon olsun. Eger V a € A i¢in f(a) hesaplamak kolay
fakat tim b € Im(f) igin f(a) = b olacak sekilde a € A bulmak kolay hesaplanabilir
degilse f "ye tek yol fonksiyon denir.

Tanim 2.1.8: f:A - B tek yol fonksiyon olmak tizere f(a) = b olacak sekilde
herhangi bir b € Im(f) i¢cin; a € A bulmay: kolaylastiran bazi ek bilgiler verilmis ise

bu tek yol fonksiyona trapdoor tek yol fonksiyon denir.

Tanmm 2.1.9: a ve b tam sayilar olmak iizere eger b = a.c olacak sekilde ¢ tam sayisi

varsa a, b’yi boler denir ve alb ile gosterilir.

Teorem 2.1.1: a, b, c,d € Z* olmak iizere asagidaki ifadeler dogrudur.

i) 1]a ve a|a dir.

ii) Eger a|b ise a < b dir.

iii) a|b ve b|c ise a|c dir.

iv) a|b ve b|a ise a = b dir.

V) Eger a|b ve c|d ise ac|bd dir.

vi) Eger a|b ve a|cise V x,y € Z igin a|(bx + cy) dir.

vii) (b, ¢) = 1 olmak iizere; ab|c ise a|c dir.

Tamim 2.1.10: Pozitif tam say1 bolenleri yalniz 1 ve kendisi olan ve 1 den biiyiik tam

sayilara asal say1 denir.

Teorem 2.1.2 (Bolme Algoritmasi): Her a,b € Z olmak lizere b = qa+rve 0 <r <

a olacak sekilde bir tek g, r € Z tam sayi ¢ifti vardir.



Tamm 2.1.11 (En Biiyiik Ortak Bélen): a ve b sifirdan farkli tam sayilar olmak iizere

d|a ve d|b olacak sekilde bir d > b tam sayis1 varsa d’ye a Ve b’nin ortak boleni denir.
a ve b’nin ortak bolenlerinin en biiyiigiine a ve b sayilarinin en biiyiikk ortak bdéleni

denir ve (a, b) ile gosterilir. (a, b) = d ise d asagidaki iki sart1 saglar;

i) d|a ve d|b

i) c|la ve c|b ise, c|d olmalidir.

Tamm 2.1.12: iki tam saymin en biiyiik ortak béleni 1 ise yani (a,b) = 1ise aveb

tam sayilarina aralarinda asaldir denir.

Tamm 2.1.13 (En Kiigiik Ortak Kat): Asagida verilen iki 6zelligi saglayan d, d > 0

sayisina a Ve b tam sayilarinin en kiigiik ortak kati denir ve [a, b]ile gosterilir.

i) a|d ve b|d

i) a|c ve b|c ise, 0 zaman d|c olmalidir.

Teorem 2.1.3 (Aritmetigin Temel Teoremi): n > 2 olan her n tam sayisi ya asaldir ya
da asallarin ¢carpimi seklinde (carpanlarin sira degisikligi haric) tek tirlii yazilir. Yani p;

ler farkl asallar ve e; ler dogal sayilar olmak lizere n = p;°1p,°2p3® ... p.°t dir.

Teorem 2.1.4 (Euclid Algoritmasi): a ve b, b < a olacak sekilde pozitif tam sayilar
olsun. Eger b|a ise (a,b) = b olur. Eger b a’ y1 bolmezse; Bolme Algoritmasi ard arda

asagidaki gibi uygulanirsa;

a=qob+1,0<1r,<b
b=qryg+1,0<1r <1y
To=qr1 +15,0< 1, <n

H=q3r, +13,0<13<n,



ifadeleri elde edilir. Bu durumda r, > r; > 15 ... seklinde negatif olmayan tam sayilarin

bir dizisi ve adimlarin sonlu bir sayisindan sonra sifir kalan1 elde edilecektir, yani

Thez = QxTh—1 + 1, 0 <1 <74

The1 = qQi+17k T 0, 741 =0

olacak sekilde bir pozitif k tam sayisi vardir. Son sifir olmayan 13, kalani a ile b’nin en

biiyiik ortak bolenidir.

Tanim 2.1.14: n > 1 i¢in ¢ (n), [1, n] araliginda n ile aralarinda asal olan tam sayilarin

sayilarini gostersin.¢ fonksiyonuna Euler’in ¢ fonksiyonu denir.
Tanmm 2.1.15: f 6zdes olarak sifir olmayan bir fonksiyon ve (m,n) =1 olsun.
f(m.n) = f(m).f(n) ise f fonksiyonuna ¢arpimsaldir denir. Eger Vm,n i¢in

f(m.n) = f(m). f(n) oluyorsa f fonksiyonu komple ¢arpimsaldir denir.

Teorem 2.1.5: Euler ¢ fonksiyonu asagidaki 6zellikleri saglar;

i)pasalise p(p) =p—1
i) ¢ (n) carpimsaldir yani p(m.n) = @(m).p(n)

see _ e e e e - — _ l — i J— l
ii)n = p,%1p,%2p3% ....pct ise @p(n) = n.(l pl)'(l pz) (1 pt) dir.
Tamim 2.1.16: a ve b tam sayilar ve m sifirdan farkli bir tam say1 olmak tizere

m|(a — b) ise a tam sayist b tam sayina m modiiliine gore kongiirenttir(denktir) denir

ve a = b(modn) ile gosterilir.



Teorem 2.1.6: a, b, ¢, d ve 0 # m tam sayilar olmak iizere;

i) a = a(modm)

ii) a = b(modm) ise b = a(modm) dur.

iii) a = b(modm) ve b = c(modm) ise a = c(modn) dir.
IV) a = b(modm) ise a + ¢ = b + c(modm)

V) a = b(modm) ve ¢ = d(modm) ise ac = bd(modn) dir.
vi) ac = bc(modm) ve (c, m) =1 ise a = b(modm)

vii) a = b(modm) ise Vn € Z* a™ = b™(modm) dir.

Teorem 2.1.7 (Cin Kalan Teoremi): mq, m,, ..., m,. ikiser ikiser aralarinda asal pozitif

tam sayilar olsun. Bu durumda;

x = a,(modm,)

X = a,(modm,)

x = a,(modm,.)

lineer kongiirans sistemi M = my;m, ... m, modiiliine gore bir tek ¢dziime sahiptir.

Teorem 2.1.8:

i) Euler Teoremi: (a,m) = 1 olmak iizere a®™ = 1(modm) dir.

ii) Fermat Teoremi: p asal ve p a’nun bir carpani olmasin. Bu takdirde a?~1 =
1(modp) dir.

Teorem 2.1.9: p asal say1 olsun;



i) Va€Zicinr =s(mod(e(p)) ise a” = a’*(modp)
i) Va € Zigin a? = a(modp)

Tanmm 2.1.17: Bostan farkli bir A kiimesi tlizerinde bir ikili islem *: A X A — A seklinde

bir dontistimdiir.

Tanmm 2.1.18: G bostan farkli bir kiime ve bu kiime iizerinde bir ikili islem = olsun.

Buna gore asagidaki sartlar saglanirsa (G, *) cebirsel yapisina grup denir.

i)Va,b,c €Giginax* (b*c)=(ax*b)*c (Birlesme dzelligi)
ii)Vae€Gigina*e =ex*a = aolacak sekilde bir e € G vardir. (Etkisiz eleman)
iii) G kiimesinde her bir a i¢in e, G'nin birim eleman1 olmak iizere;a * a™t = a1 *

a = e olacak sekilde a~! € G vardir (Ters eleman 6z.).

Eger bu sartlara ilave olarak V a,b € G igin a* b = b xa ise G grubuna degismeli

(abelyen) grup denir.

Gruplar grup isleminin toplamsal veya carpimsal 6zelligine gore toplamsal grup ya da
carpimsal grup olarak adlandirilir. Toplamsal gruplarda bir a elemani i¢in na a’nin
kendisi ile n kez isleme sokulmasi ve ¢arpimsal gruplarda a elemaninin n kez kendisi

ile isleme sokulmasi a™ ile gosterilir.

Tamm 2.1.19: (G,*) bir grup olsun. Eger G kiimesi sonlu ise gruba sonlu grup denir.
Eger G grubu sonlu grup degilse (G,*) grubuna sonsuz grup denir. Sonlu bir grubun
eleman sayisina grubun mertebesi ya da kardinalitesi denir ve o(G) veya |G| ile

gosterilir.

Tanim 2.1.20: G bir grup olmak tizere G de G = {a™: n € N} olacak sekilde bira € G
varsa G’ ye devirli grup denir. Boyle bir a elemanina G’nin lireteci denir ve G =< a >

ile gosterilir.



Tamm 2.1.21: G bir grup ve a € G i¢in a™ = 1 olacak sekilde en kiiglik pozitif n tam
sayisina a elemaninin mertebesi denir o(a) ile gosterilir. Eger boyle bir n sayisi yoksa a

elemaninin mertebesi sonsuzdur denir.

Tamm 2.1.22: Z,, de ¢arpimsal tersleri olan elemanlarin olusturdugu kiime Z,,“¢arpma
islemine goére bir grup olusturur. Z," = {a € Z,: (a,n) = 1} dir. Z,," ¢arpimsal
grubunu mertebesi ¢ tanim 2.1.14. verilen Euler fonksiyonu olmak iizere |Z,,"| = ¢ (n)
dir.

Tamm 2.1.23: a ile m aralarinda asal tam sayilar olsun. a® = 1(modm) olacak sekilde
en kiiclik t tam sayisina a’nin m modiiliine gore mertebesi ya da a’nin m modiiliine ait

issii denir. Ord,,a = t seklinde gosterilir.

Tamim 2.1.24: Eger a’nin m modiiliine gére mertebesi ¢ (m) ise a ya m modiiliine gore

ilkel(primitif) kok denir.

Ornek 2.1.1: 3% = 1(mod7) ve ¢(7) = 6 oldugundan Ord,3 = ¢(7) olup 3, mod7
de bir ilkel koktiir.

2.1.25 Tammm: a € Z,,” olsun o(a) = @(n) ise a'ya Z," da bir ilkel kok ya da iireteg

denir.

Teorem 2.1.10: n > 0 tam sayist ilkel koke sahip ise ilkel koklerinin sayisi @ (¢(n))

tanedir.

Tamm 2.1.26 (Kuadratik Rezidii) : 0 < x < n i¢in x? = g(modn) olacak sekilde bir
X tam sayis1 varsa q'ya modn’ye gore bir kuadratik rezidii(karesel kalan) aksi takdirde
modn de kuadratik rezidii(karesel kalan) degildir denir. modn’ye gore kuadratik

rezidiilerin kiimesi Q,, ve kuadratik olmayan rezidiilerin kiimesi Q,, ile gosterilir.
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Ornek 2.1.2: modll’a gore kuadratik rezidii ve kuadratik rezidii olmayan sayilari

bulalim.

12 = 1(mod11)

22 = 4(mod11)

32 = 9(mod11)

4?2 = 5(mod11)

52 = 3(mod11)

62 = 3(mod11)

72 = 5(mod11)

82 = 9(mod11)

92 = 4(mod11)

102 = 1(mod11) olup modl1 de kuadratik rezidiilerin kiimesi Q,; = {1,3,4,5,9} ve
kuadratik rezidii olmayanlarin kiimesi 011 ={2,6,7,8,10} dur.

Teorem 2.1.11: p, bir tek asal say1 olmak iizere p nin kuadratik rezidiilerin sayisi ile

kuadratik olmayan rezidiilerinin sayisi esit olup (p — 1)/2 tanedir.

Teorem 2.1.12: p tek asal ve a, Z,," bir iireteci olsun. x € Z,," nin modn’ye gore

kuadratik rezidii olmasi i¢in gerek ve yeter sart i bir ¢ift tam say1 olmak {izere;

x = a'(modp) olmasidir.

Tamm 2.1.27: a € Q,, olsun, x € Z,," eger x? = a(modn) ise x'e a(modn)’nin bir

karekoki denir.

Tamim 2.1.28 (Legendre Sembolii): p, bir tek asal ve a da p ile bolinemeyen bir tam

say1 olsun.
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(E) _ 1, aeE Qp
p) -1 a€e Q,
olarak tanimlanir.

Tamm 2.1.29 (Halka): R, bos olmayan bir kiime olsun. R iizerinde her a, b € R igin

+:(a.b) > a+b, .:(a,b) - a.b bi¢iminde tanimli ve sirasiyla, toplama ve ¢arpma

(134

denilen “+” ve ikili islemleri verilsin. Eger asagidaki sartlar saglanirsa (R, +)

cebirsel yapisina halka denir.
I. (R, +) degismeli bir grup,

i.Va,b,c €Rigin(a.b).c = a.(b.c)

iii. Va,b,c €R igin,
a.(b+c)=a.b+a.c ve (a+b).c=a.c+b.c

(R, +,.) halkas1 verilsin. Eger ikinci islem degismeli ise halka degismeli, ikinci islem
birimli ise halka birimli olur. Halkada toplama isleminin birim elemanina halkanin
sifirt denir ve Og ile gosterilirken ¢arpma isleminin birim elemanina halkanin birim

elemani1 denir 1 ile gosterilir.

Tammm 2.1.30 (Karakteristik): Eger R halkasinda Vr € R igin nr = 0z olacak
bicimde bir pozitif n tam sayis1 varsa bu n sayilariin en kii¢ligline R nin karakteristigi
denir. Eger boyle bir pozitif tam say1 yoksa R nin karakteristigi 0 olarak tanimlanir. R

nin karakteristigi kar(R) ile gosterilir.
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Ornek 2.1.3: R,Z, Q halkalarinin karakteristigi 0 dir. m pozitif bir tam say1 olmak

tizere kar(Z,,) = m dir.

Tamim 2.1.31: R birimli ve degismeli bir halka O # 15 olsun. Eger R’nin sifirdan

farkli her elemani tersinir ise R’ye cisim denir.

2.2. Kriptolojide Kullanilan Temel Kavramlar

Kriptografi (cryptography): Anlasilir bir mesaji anlasilmaz sekle doniistirme ve

mesaji1 orijinal haline doniistiirme prensipleri ve yontemlerini igeren sanat veya bilimdir.

Acik metin (plaintext-P): Anlasilir orijinal metin.

Sifreli metin (ciphertext-C): Doniistiiriilen metin.

Sifreleyici (cipher): Anlasilir bir metni, yerlerini degistirme ve/veya yerine koyma

yontemlerini kullanarak anlagilmaz sekle dontistiirmek i¢in kullanilan bir algoritma.

Anahtar (key-K): Sadece gonderici ve alicinin bildigi sifreleyici tarafindan kullanilan
kritik bilgiler.

Sifreleme (encipher (encode)-E): A¢ik metni bir sifreleyici ve bir anahtar kullanarak

sifreli metne doniistiirme siireci.

Sifre ¢ozme (decipher (decode)-D): Sifreli metni bir sifreleyici ve bir anahtar

kullanarak ac¢ik metne dontistiirme siireci.

Kriptoanaliz (cryptanalysis): Bilgi ve anahtar olmaksizin anlasilmaz mesaji1 anlagsilir
mesaj olarak geri doniistiirme prensipleri ve yontemleridir. Ayn1 zamanda kod kirma

(codebreaking) olarak da adlandirilir.
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Kriptoloji (cryptology): Kriptografi ve kriptoanalizin her ikisi.

E doniistimler ailesinden secilen birebir ve orten bir fonksiyon olmak iizere sifreleme

islemi, anahtar ailesinin bir elemani ile m mesajindan E (m) = ¢ olacak sekilde bir ¢
sifreli mesajini elde etme islemi iken, E’nin tersi olan D fonksiyonu ile Dy (c) = m

olacak sekilde c sifreli metninden m mesajina ulagsmaya desifreleme denir.
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3. MATERYAL ve YONTEM

3.1. Kriptolojik Sistemler

Kriptoloji sifrelemede desifrelemede kullanilan anahtarlarin 6zelliklerine goére agik
anahtar (asimetrik kriptoloji) veya gizli anahtar kriptoloji (simetrik kriptoloji) olarak

ikiye ayrilir.

3.1.1 Simetrik (Gizli anahtarh) Kripto Sistemler

Simetrik anahtarli kripto sistemler sifreleme anahtarindan (¢), desifreleme anahtar1 (d)
ve desifreleme anahtarindan sifreleme anahtar1 kolaylikla elde edilebilmektedir.
Cogunlukla sifreleme ve desifreleme anahtar1 aynidir. Haberlesecek iki grup ortak bir
anahtar belirler. Gonderici girdi olarak bir m mesajin1 ve e anahtarini kullanarak c sifreli
metni elde eder, sifreli metni alan alici d anahtar1 yardimi ile m mesajin1 elde eder
burada e den d ve d den e kolaylikla elde edilebilir.(cogunlukla d=e) Simetrik anahtar
sifrelemede sistemin giivenligi anahtara baghidir. Simetrik anahtar sifrelemenin en
bliylik dezavantaji anahtar paylasimidir. Simetrik anahtar sifreleme bilginin gizliligine
hizmet eder ancak teknolojinin gelismesiyle bilgi gizliliginin yani sira sayisal imza ve
kimlik dogrulamada biiyiik 6nem kazanmistir. Bilinen en eski simetrik anahtar sifreleme

Ceasar sifresidir.

Simetrik anahtar kripto sistemler akis sifreleri ve blok sifreler olarak ikiye ayrilir.

Blok Sifreleme: Sifreleme ve desifreleme islemi metnin sabit uzunluklu bloklara
boliinerek blok blok isleme tutulmasiyla yapilir. En iyi bilinen blok sifre olan DES(Data
Encryption System) blok boyu 64 bit olarak belirlenmistir. Blok sifre sistemleri yerine
koyma(substitution) ve yer degistirme (transposition) sifreleri ve bu ikisinin birlikte

kullanildig1 ¢arpim sifreleri olarak ii¢ kisimda incelenebilir
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Yerine Koymah (Substitution) Kripto Sistem

Yerine koymali kripto sistemler metindeki karakterin (ya da bir grup karakterin ) diger

bir grup karakterle yer degistirdigi blok sifrelerdir.

i . Basit Yerine Koymal Sifreleme

Tanmm 3.1: A bir alfabe , M ; A lizerindeki tiim t seritlerinin kiimesi olsun, X ise A
tizerindeki tlim permiitasyonlarin kiimesi; her m € X i¢in, E sifreleme doniisiimii olmak

lizere basit yerine koyma siftre;

E.(m) = (m(my)n(my) ..t(m;)) = (c1¢4 ... ¢;) olarak tanimlanir. Burada

m € (my, m,, ..., m;) dir. Diger bir deyisle t — seritlerdeki her bir sembol, sabit bir =

permiistasyonu ile A daki bagka sembollerin yerini alir. Ceasar sifresi basit yerine

koyma sifresine drnek olarak verilebilir.

Ceasar Sifresi:

Julius Ceasar tarafindan kullanilmis, alfabedeki her harfi kendisinden ii¢ sonraki harfe

doniistiiren bir sifreleme sistemidir. Sifre ¢c6zerken de bu islemin tersi uygulanir.

Ceasar Sifresi Tiirk alfabesine uygularsak mod 29 gore ¢alismamiz gerekir. Sifrelemek
istedigimiz metni C = P + 3(mod29),0 < P < 28 bagntisina gore agik metni
(plaintext), sifreli metne (ciphertext)’e doniistiiriir. Desifreleme islemi i¢in ise P = C —

3(mod29),0 < P < 28 kullanilarak sifreli metinden a¢ik metin elde edilir.

Ornek 3.1: “MATEMATIK BOLUMU>’ mesajim Ceasar sifresini kullanarak
sifreleyelim. Alfabedeki harfler 0 ile 28 arasinda kendisine karsilik gelen sayisal

denkliklere doniistiirtiliir.
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15116 |17 |18 |19 |20 |21 |22 |23 |24 |25 |26 |27 |28

Mesajin kolay anlasilmasini 6nlemek icin 3’erli bloklara ayiralim ve mesajimizi sayisal

olarak ifade edelim;

MAT EMA TiIK BOL UMU, her harfin sayisal karsiligin1 yazarsak

15023 5150 231113 11814 251525 olur. C =P + 3(mod29) bagmtisini

kullanilarak

18326 8183 261416 42117 28 18 28 olusturulur, sayilar harflere

dontstiiriliirse sifreli metin

OCV GOC VLC DSO ZON olarak elde edilir.

P = C — 3(mod29) kullanilarak elde edilen sayisal degerlerin harf olarak karsiliklart

yazilir ve bloklar birlestirilerek agik metine ulagilir.

ii. Coklu Alfabetik Yerine Koymah Sifreleme

Tanmm 3.2: Bir ¢oklu alfabetik sifre A alfabesi tlizerindeki t uzunluklu bloklarin
asagidaki sartlar1 sagladig blok sifredir:

1) F Anahtar uzayi, p; A kiimesi {lizerinde tanimli permiitasyonlar olmak iizere t-nin

(p1, 02, .-, ) biitiin sirali permiitasyonlarindan olusur.
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2) m = (mym,..m;) mesajinin sifreleme islemi e = (py,p, P3, ..., P:) anahtari

altinda sifrelenmesi E,(m) = (p,(my)p,(m,) ...p.(m;)) ile verilir.

Desifreleme anahtar1 e = (py,p,, ..., p;) anahtarma karsiik d = (p7Lp3L, ...,p31Y)

anahtaridir.

Coklu anahtarli sistemlerde agik metindeki her harf ayr1 bir alfabe ile sifrelenir.

Vigenere sifresi ¢oklu alfabetik sifreye 6rnektir.

Ornek 3.2 (Vigenere Sifresi) : «A=(A, B, ...V,Y,Z) olsun ve t =4 olsun e =
(p1, P2, P3,P4) olmak iizere p; her harfi kendisinin 3 harf sagindaki harfe, p, her harfi
kendisinin 5 sagindaki harfe, p;her harfi kendisinin 4 harf sagina, p, her harfi

kendisinin 7 harf sagina gotiirsiin.

m= CEBIR VE SAYILAR TEORISI mesajini sifreleyelim 6ncelikle mesaji dorderli

bloklara ayiralim.

CEBI RVES AYIL ARTE ORIS 1, her bir bloga p;, p,, p3, s Uygularsak sifreli

metin

c=EIEY TCHZ CCLS CUYJ RUMZ L olarak elde edilir.

Yer Degistirme (Transposition) Sifreler:

Tammm 3.3: t blok uzunluklu simetrik anahtar blok sifreleme sistemi diislinelim
K,{1,2,3, ...t} kiimesindeki tiim permiitasyonlarin kiimesi olsun. Her eeX igin

sifreleme fonksiyonu
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E,(m) = (Mg(1yMe(2) - Me(py) ile tammlanir. Burada meM dir. Boyle doniisiimlerin

kiimesi basit yer degistirme sifreleme olarak adlandirilir. Desifreleme anahtar1 e

permiitasyonun tersi olan d=e " dur.

Basit yer degistirme sifreleme bir blogun i¢indeki sembollerin sayini korur bu yiizden

kolaylikla kriptoanaliz edilir.

Ornek 3.3: t=5 ve e=(13524) olsun. m= BU SISTEM KOLAY KIRILABILIR
MESAJINI sifrelemek igin dncelikle mesaji 5 erli bloklara ayiralim. Istenilirse eksik
kalan bloklar mesajin anlamin1 bozmayacak harflerle doldurulabilir. Eksik kalan son

bloga mesajin anlami bozmayacak sekilde A eklendi.

BUSIS TEMKO LAYKI RILAB ILIRA mesaja e uygulanirsa;

E.(m) = SISBU MKOTE YKILA LABRI IRAIL sifreli metni elde edilir. Desifreleme
icim ise d=(14253) kullanilir.

Daha yiiksek giivenlik saglamak i¢in yer degistirme ve yerine koymali sifre sistemleri
bir sistemde kullanilabilir. Boéylece daha giivenilir bir sistem elde edilir. Bu sistemler
carpim sifreleri olarak adlandirilir. Carpim sifreleri en giivenilir simetrik anahtar

sifrelerdir. Bir yerine koyma ve yer degistirme sifresinin bileskesine devir denir.

3.1.1.a. DES (Data Encryption Standart)

DES 1976 yilinda IBM tarafindan tasarlanmis ve NIST(ABD Teknoloji Enstitiisii )
tarafindan 4 yilda bir giivenirliligi onaylanan bir algoritmadir. DES de blok uzunlugu 64
bit, anahtar uzunlugu ise 56 bittir. Gelistirildigi donemde ¢ok gilivenli olmasina karsin
bilgisayar teknolojisindeki ilerlemeler sebebiyle yetersiz kalmistir. DES asir1 glivenlik

gerektirmeyen uygulamalarda rahatlikla kullanilabilir.
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DES algoritmas1 16 déngiiden olusan Feistel yapisidir. Ilk déngiiye girmeden &nce

baslangi¢ permiitasyonu uygulanir.

64 bitlik bloklar 32 bitlik iki kisma ayrilir ve 16 déngii bu ayrilan pargalara uygulanir
sonunda baslangictaki pemiitasyonun tersi uygulanir. Desifreleme isleminde de ayni

algoritma kullanilir.

DES biinyesinde bulunan tiim yerine koyma islemleri ve XOR islemleri ¢ok hizli bir
yapiya sahip olmalidir. DES algoritmasinin RSA laboratuvarlarinda gergeklestirilen
aragtirmalarda, DES’in RSA’ya oranla yazilim seklindeki testlerde 100 kat, donanim
seklindeki testlerde 1000 kat daha hizli oldugu goriilmistiir (Frosen 1995).

Akas Sifreleri(Stream Ciphers):

Akis sifreleri simetrik anahtar sifrelemenin Onemli bir sinifidir. Akis sifreleri blok
uzunlugu birbirine esit olan basit blok sifreler olarak diisiiniilebilir. Sifrelenen metnin
her bir sembolii i¢in desifreleme doniisiimii degisebilir olmasi bu sistemleri daha

avantajl kilar.

Akan sifre sistemleri mesajin her bir karakterini (bitini) ayr1 ayn sifreler. Sifreleme
islemi mesaj uzunlugunda bir anahtar segilerek yapilir. Anahtarin her biti mesajin her

biti ile mod2 de toplanir. Bu isleme XOR islemi denir ve @ ile gosterilir.

m=mym,ms..m; mesajimi k = k k, ks ... k; anahtari ile sifreleme islemi

c; = m; @ k; seklinde yapilir.

Sifreleme isleminde kullanilan iki tip anahtar dizisi vardir .
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i) Tam Rastgele(true random) Dizi: Dizideki her bir bit birbirinden bagimsiz olarak
elde edilir.

i) Pseudo Rastgele (Pseudo Random) Dizi: Dizinin her biti kendinden 6nce gelen

bitlere baghdir ayn1 zamanda her bit kendinden sonra gelen bitleri etkiler.

3.1.2 Asimetrik Anahtarh Kripto sistemler

Asimetrik (a¢ik anahtar) kripto sistemler her kullanicinin biri gizli (private key),digeri
acik(public key) iki anahtar kullanildigi sifreleme sistemidir. Gizli anahtar sadece

kullanici tarafindan bilinirken acik anahtar herkes tarafindan bilinebilir.

Acik anahtarli kripto sistemler ile bir veriyi giivenli sekilde gondermek icin metni
alicinin agik anahtari ile sifreler, sifrenin ¢6ziimii sadece bu agik anahtara karsilik gelen

gizli anahtar ile miimkiindiir.

Asimetrik anahtarli kripto sistemler, simetrik sistemlerin en biiylik dezavantaji olan

anahtar paylasimi problemini ¢6zmiistiir.

3.1.2.a. RSA Acik Anahtar Sifreleme

En ¢ok bilinen acik anahtarli kripto sistemlerden biri olan Ron Rivest, Adi Shamir ve
Len Adelman tarafindan, 1978 yilinda “Dijital Imza Elde Etme Metodu ve Agik
Anahtarli Kripto Sistemler” adli bir makale ile yaymlanmistir. RSA gizliligin yani sira
sayisal imza saglamak icin kullanilabilir. Bu sistemin giivenirligi tam sayilarda

carpanlara ayirma probleminin ¢dziimiiniin zorluguna dayanir.

RSA sisteminde sifreleme yaparken alicinin agik anahtari ile mesaj sifrelenir ve mesajin

desifrelenmesi sadece alicini kendisinin bildigi 6zel anahtar1 yapilir. Boylece anahtar
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paylagimi sorunu ortadan kalkar. Bu sistemde bir B kisisi A kisisine mesaj gondermek

istesin Oncelikle anahtar olusturma algoritmasini verelim(Rivest et al.1978),

A sahs1 anahtarini olustururken;

1) Her biri birbirinden farkli ve yeterince biiyiik p ve g asallarini olusturur.
2)n=p.qve p(n) = (p — 1)(q — 1)’ i hesaplar.

3) (e, <p(n)) = 1 olacak sekilde 1 < e < ¢@(n) tam sayis1 seger.

4) Genisletilmis Euclid algoritmasini kullanarak ed = 1(mod ¢(n)) olacak sekilde bir
tek 1 < d < ¢(n) tam sayisini bulur.

5) A’nin agik anahtar1 (n, e) ve gizli anahtar1 d dir.

B sahs1 A ya sifreli mesaj gonderirken sifreleme igin;

1) A ‘nin agik anahtar1 (n, e) alir.
2) M mesajini [0, n — 1] araliginda ifade edilir.

3) ¢ = m®(modn) hesaplar ve c sifreli metni A ya gonderir.

Desifreleme icin A, kendi 6zel anahtari ile m = c¢%(modn) ile agik metni elde eder.

Ornek 3.4: p = 7 ve q = 13 asallarin1 segelimn = 7.13 =91 ¢@(n) = 6.12 = 72 ve
1<e< @) (e @) =1 olacak sekilde e =5 segelim 5.29 = 1(mod72) olacak
sekilde d = 29 sayist secelim. Agik anahtarimiz (n,e) = (91,5) ve gizli anahtar
d = 29 olur. Sifrelenecek mesajimiz m = 15 olsun. Sifreli metin ¢ = 15°(mod91)
hesaplanarak ¢ = 71(mod91) bulunur. Desifreleme i¢in m = 712°(mod91)

hesaplanarak m = 15 olarak bulunur.
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3.1.2.b. Ayrik (Discrete) Logaritma Problemi

Sayilar teorisinde hesaplanmasi kolay fakat tersinin hesaplanmasi zor olan problemler
vardir. Oregin RSA, farkl1 ve yeterince biiyiik p ve q asallarindan n=p.q sayisin1 elde
etmek kolay iken; n bilinirken p ve q elde etmenin zorluguna dayanir. Bunun gibi diger

bir problem ise sonlu cisimlerde kuvvet alma problemidir.

Ayrik logaritma problemi p bir asal say1 @, Zy, de bir primitif kok iken g € Zy, olmak

tizere a* = f(modp) olacak sekilde 0 < x < p — 2 tam sayisin1 bulma problemidir.

3.1.2.c. Diffie Hellman Anahtar Paylasimi

Diffie-Hellman 1976 de yayinladiklar1 “New Directions In Cryptography” adli makale
ile anahtar paylasimi problemine ilk pratik ¢oziimii getirmislerdir. Ayrik logaritma
probleminin ¢dziimiiniin zorluguna dayanan bu sistem ile taraflarin daha 6nce bir araya
gelmesine gerek duyulmadan agik bir kanal tlizerinden mesajlarini birbirlerine

gondererek ortak anahtar olusturmalarini saglanir ( Diffie and Hellman 1976).

p yeteri kadar biiylik bir asal say1 ve g, Z, de bir primitif kok olsun. p ve g herkes

tarafindan bilinsin A ve B kisileri anahtar olustururken;

1) A, 0 < a < p — 2 sartin1 saglayan rastgele bir a tam sayisi seger ve ¢ = g*(modp)
hesaplar ve B’ ye gonderir.
2) B, 0 < b < p — 2 sarti1 saglayan rastgele bir b tam sayis1 secer ve d = g?(modp)
hesaplar ve A’ya gonderir.
3) A ortak anahtar olarak; k=d® = (g?)® hesaplar, B de aym sekilde k=c? = (g%)?

hesaplar. A ile B ortak k anahtarinda anlasmis olurlar.
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3.1.2.d. El Gamal A¢ik Anahtar Sifreleme

1985 de ElI Gamal; Diffie ve Hellman anahtar paylagimini kullanarak yeni bir agik
anahtar kripto sistem Onerdi. Her iki sistemin de giivenligi sonlu cisimlerde ayrik

logaritma probleminin ¢6ziimiiniin zorluguna dayaniyordu.

El Gamal agik anahtar sifreleme algoritmasi igin Oncelikle anahtar olusturma

algoritmasini verelim;

A sahs1 anahtar olustururken;

p; yeterince biiyiik ve rastgele bir asal say1 olmak lizere Z,, carpimsal gurubunun bir a

pirimitif kokiini (tiretecini) bulur ve,

1) 1 < a < p — 2 olacak sekilde bir a tam sayisi seger ve a? (modp) degerini hesaplar.

2) A’ nin agik anahtari (p, &, a®) ve A’nin gizli anahtar1 a olur.

El Gamal Sifreleme;

B sahs1 mesaj1 sifrelerken:

A nin agik anahtari (p, @, a?) alir ve,

1) Mesaj1 {0,1,2, ...,p — 1} araliginda bir m tam sayis1 ifade eder.
2) 1 < k < p — 2 olacak sekilde rastgele bir k tam sayisi1 seger.
3) ¢; = a¥(modp) ve c, = m(a?)X(modp) yi hesaplar.

4) c=(cy, ¢) sifreli metnini A’ ya gonderir.

A mesaj1 desifrelerken;
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1) a gizli anahtari kullanarak (c;) 2 (modp) yani a=3¥(modp) degerini hesaplar.

(¢c1)™?. cz(modp)

hesaplayarak m degerini bulur. Burada ( (c;)™2. cy(modp) = a~*ma®*(modp) =

m(modp)) dir.

3.2. Eliptik Egri Kripto Sistemler

Bu boliimde eliptik egri kavrami genel olarak tanitilacak ve kriptolojide kullanilan
eliptik egriler hakkinda bilgi verildikten sonra eliptik egriler iizerinde ayrik logaritma

problemine dayali eliptik egri kripto sistemler ifade edilecektir.

3.2.1. Eliptik Egriler

Herhangi bir F cismi {izerindeki eliptik egriler 3. Dereceden homojen polinom olan

Weistrass esitligi yardimu ile;

y?z + axyz + byz? = x3 + cx?z + dxz? + ez? (3.1)

y2+axy+by=x3+cx*+dx+e (3.2)

seklinde tanimlanir. Burada katsayilar F cisminin elemanidir. Eger Kar(F) = 2 ise

3.2. denklem,

y2+ay=x3+bx+c (3.3)

seklinde olup; Kar(F) = 3 ise
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y2=x3+ax?+bx+c (3.4)

sekline doniisiir. Eger Kar (F) # 2 veya 3 ise bu denklem

y2=x3>+ax+b (3.5)

olur.

Biz bundan sonra reel sayilarda tanimli eliptik egrilerle ilgilenecegiz. Reel sayilarda
taniml eliptik egriler (3.5) esitligindeki gibi olup a, b € R’dir. Kriptolojide eliptik
egrilerin kullanilmasi i¢in eliptik egri tizerindeki noktalarin bir grup olusturmasi gerekir.
Bir eliptik egri ¢ok katli koke sahip degilse (singiiler degil) yani A= 4a® + 27b% # 0
ise eliptik egri iizerindeki noktalar sonsuzdaki nokta ile birlikte toplamsal bir grup teskil

ederler.

Eliptik Egri Uzerinde Toplama Islemi (Geometrik Yaklasim):

Eliptik egri lizerindeki toplama islemi geometrik olarak tanimlanmistir. Eliptik egri
tizerindeki bir P(x,y) noktasinin negatifi P noktasinin x eksenine gore simetrigi olan

—P(x, —y) noktasidir. E eliptik egrisi iizerindeki P ve Q noktalarin1 toplam1 asagidaki
gibidir;

I)P # QuveQ # —P iken; P ve Q noktalarindan gegen dogru egriyi iiciincii
bir noktada keser ve bu noktaya —R denirse P ile Q’nun toplami1 bu noktanin

x eksenine gore simetrigi olan R noktasidir.
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Sekil 3.1. P+Q=R(Toplama iglemine geometrik yaklagim)

1) P ve —P noktalarini birlestiren dogru egriyi {liglincii bir noktada kesmez. P + (—P) =
0 olup sonsuzluk noktasi denilen O noktasina esittir. P+ 0 = P olup O noktasina

toplamsal grubun birim elemani denir.

2) P noktasin1 kendisi ile toplamaya P noktasmin c¢iftlenmesi denir. P(x,y) noktasini
kendisi ile toplarken y # 0 icin P noktasindan ¢izilen teget egriyi ikinci bir noktada

keser. Bu noktaya —R noktasi dersek P + P = 2P = R olur.
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Sekil 3.2. P+P=2P (P noktasinin ¢iftlenmesi)
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y = 0 durumunda egriye cizilen teget dikey bir dogru olup egriyi ikinci bir noktada

kesmez. Bu durumda P + P = 2P = O olur.

Eliptik Egrilerde Toplama Islemi (Cebirsel Yaklasim):

Eliptik egrilerde toplama islemi cebirsel olarak asagidaki gibi ifade edilir.

1)P#+QuveQ +# —P iken P + Q = R toplam1 P ve Q noktalarindan ge¢en dogrunun

egimi
Yp~¥

P ]
Xp~XQ

olmak Uzere;

xp =s%—xp—xp Ve Ve = —yp + s(xp — xg)
olur.

2) P noktasinin ¢iftlenmesi (yp # 0) iken;

y?2 =x3+ax+ b ile verilen denklemin P noktasinda cizilen tegetin egimi

_ 3(xp)?+a
2yp

olmak tizere;

xg = s — 2x,
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ve

Yr = —Yp + S(xp — XR)

olur.

Ornek 3.5:

y? =x3 —x + 4 eliptik egrisi A# 0 olup reel sayilar iizerinde bir grup olusturur. Bu

eliptik egri tizerindeki P(0,-2) ve Q(—1,2) noktalar1 i¢in;

S_yp_yQ
Xp — Xq
2—(-2)

:—:—4

ST 10

xgp =s%—xp—xq

xp=16—-0—(-1) =17

Ve = —yp +s(xp — xg)

V=24 (-4)(0-17) =70 >

P+Q =R =(17,70)

dir.
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Ornek 3.6:
y? =x3—x+4 eliptik egrisi iizerindeki P(—1,2) noktas1 i¢in P+P=2P hesaplayalim;

3(xp)%+a
s = (xp)
2yp

olup;

_3(-1%-1 _ 1
22 2

Xp = §% — 2x,

9

xp=()2-2(-1) =2

ve
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3.2.2. Sonlu Cisimler Uzerinde Tanimh Eliptik Egriler

Kriptolojik agidan daha hizli ve hassas hesaplamalar yapmak i¢in sonlu cisimler
tizerinde tanimli eliptik egriler daha kullanighdir. Sonlu cisimler iizerinde tanimlanan
eliptik egriler sayesinde gercgel sayilar ilizerinde yuvarlamadan kaynaklanan hatalarin

Oniine ge¢ilmis olur.

p bir asal say1 olmak {lizere F, lizerinde tanimli bir eliptik egri modp ye gore tanimli
tam sayilardan olusur. F, lizerinde tamiml eliptik egrilerdeki islemler gergel sayilar
lizerinde tammli iglemlere benzer sekilde modp de yapilir. F, lizerinde tanimli bir

eliptik egri

y*=x3+4+ax + b(modp) ab €E, (3.6)

seklindedir. Eger A= 4a3+ 27b? degeri modp ’de sifirdan farkli ise bu egri

tizerindeki noktalar sonsuzluk noktasi ile birlikte bir grup olusturur.

E, de tamimli eliptik egri lizerinde sonlu sayida nokta vardir. Bu noktalar agagidaki gibi

teskil edilir;

0 <x <p-—1 arahgindaki x degeri igin x3+ ax + b(modp) degeri hesaplanur.
Sonug modp ye gore cift katli koke sahipse(karesel kalan ise) P(x,y) E (F,) nin bir
noktasidir. Bu durumda her x degeri i¢in iki y degeri olur. Aksi takdirde P noktas1 E

(F,) nin bir eleman: degildir.

Ornek 3.7:

p=11 igin y? = x3 + x — 1 eliptik egrisi i¢in A= 4.13 + 27.1% = 31 = 9(mod11) A
0’ dan farkli oldugundan F;4 de bir grup olusturur. (1,1) eliptik egri denklemini saglar.
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12(mod11) = (13 + 1 — 1)(mod11) olup (1,1) eliptik egri iizerindedir.

Sonlu Cisimlerde Tamimh Eliptik Egrilerde Aritmetik

F, tizerinde tanimli ve A= 4a> 4 27b*degeri 0°dan farkli olma sartin1 saglayan eliptik
egri tizerindeki noktalar bir toplamsal degismeli grup olusturur. F, de tanimli bir eliptik
egri iizerindeki bir P(x,y) notasinin negatifi —P(x, (—y(modp)) dir. Iki noktanmn
toplanmasi ve nokta ciftlenmesi islemleri modp de yapilir. P ve Q € E(F,) olmak lizere
nokta toplama ve nokta ciftleme islemi asagidaki gibi yapilir;

1)P #Q ;P # —Q olmak iizere P + Q = R igin;

s = u(modp)
Xp ~ X

olmak iizere;

xg = (s — xp — x¢)(modp)
YR=—Yp + s(xp — xR)(modp)

2) P noktasinin ¢iftlenmesi y, # 0 ise ;
P+P=2P=R

y? = (x3 + ax + b)(modp) ile verilen denklemin P noktasinda ¢izilen tegetin egimi

__ 3(xp)?+a
- d
s 2yn (modp)
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olmak tizere;
xp = (s% — 2xp)(modp)

YR = —Yp + S(xp - xR)(modp)
3P+ (—=P)=0

olur.

Ornek 3.8:

F;; de y?2 =x3+x —1 eliptik egrisi iizerindeki P(1,1) ve Q(2,8) noktalar1 icin
P + Q = R hesaplayalim;

s = i = 7(mod11)

xg = (s — xp — x¢)(modp)

xg = (72 — 1 —2) = 2(mod11)
YR=—Yp + s(xp — xR)(modp)
yr =—1+7(1-2) =3(mod11)

olup;

P+Q=R=(23)
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olur.

Eliptik egrilerde skaler ¢carpma olarak adlandirilan k. P; P noktasinin kendisi ile k defa
toplanmas1 demektir. Bu islem P’nin k katinin alinmasi olarak da ifade edilebilir.F,
tizerinde taniml bir eliptik egri icin eliptik egri lizerinde olan herhangi bir P noktasi

sonsuzdaki nokta elde edilene kadar kendisi ile toplanmasi ile eliptik egri lizerindeki

noktalar elde edilebilir.

Ornek 3.9:

F;; de y2 =x3+4+x —1 eliptik egrisi iizerindeki P(1,1) baslangic noktas1 olarak

aliirsa sonsuzdaki nokta ile birlikte eliptik egri lizerinde 5 nokta vardir. Bu noktalar;
P=(1,1) , 2P=(2,8) , 3P=(2,3) , 4P=(1,-1)
seklindedir.

Sonlu cisimler iizerinde tanimli eliptik egriler {izerindeki toplam nokta sayisini

belirlememizde yardimci olacak Hasse teoremi asagida verilmistir.

3.1. Teorem (Hasse Teoremi):

E, sonlu cismi lizerinde tanimli eliptik egri tizerindeki toplam nokta sayisi n olmak

lizere;

In—(@-DI<2/p 3.7)

olup n degeri Es.(3.7) ile siirlandirilir (Washigton 2003).
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3.2.3. Eliptik Egriler Uzerinde Ayrik Logaritma Problemi (ECDLP)

Eliptik egrilerde ayrik logaritma problemi bir skaler ¢arpma islemine dayanir. P eliptik
egri lizerinde bir nokta iken kP = Q esitliginde P ve Q verilmisken k skalerinin
bulunmasinin zorluguna dayanir. Bu isleme @ noktasinin P tabanin gore ayrik
logaritmasini bulma da denir. Eliptik egriler tizerindeki ayrik logaritma problemi; klasik
ayrik logaritma probleminden daha zordur. Yine de sonlu abelyen gruplarda bu
problemin kolay ¢oziilebilmesini dnlemek i¢in (r grubun mertebesini bdlen en biiyiik
asal iken yaklasik v/r islem gerekir); E ve p dikkatli segilmelidir. Boylece N = |Fp (E )|
biiyiik bir asala boliinebilir.

Ornek 3.10 :

p = 11 igin; F;; de y? = x3 + x + 6 eliptik egrisi lizerinde P(10,2) ve Q(5,9) noktalar
icin; Q nun P tabaninda ayrik logaritmasini bulalim. Bunun i¢in k.P = Q esitligini

saglayan k degeri bulunmalidir. P, Q elde edilene kadar kendisi ile toplayalim.

P+P=2P

3x2+1

(mod11) P noktasindan gecen tegetin egimi olmak lizere;

_ 3.10%+1

§=—0 (mod11)

= (3 + 1)(4)"'(mod11)

= 4.3(mod11) = 1

X2p = (1 —2.10)(mod11) = —19(mod11) = 3
yop = (=24 1.(10 — 3))(mod11) = 7 olup;

2P = (3,5) olur. P + 2P = 3P hesaplayalim;
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s=(5-2)(3—-10)"1(mod11)

s =3.(=7)"Ymod11 = 3.4 Y(mod11) = 3.3(mod11) =9
X3p = (92 = 10 — 3)(mod11) = —9(mod11) = 2

y3p = (=24 9.(10 — 2))(mod11) = 4

3P = (2,4)

olur.

P+ 3P = 4P

hesaplayalim;

s=(4-2)(2-10)"1(mod11) = 2.(—8)"(mod11)
s = 2.371(mod11) = 2.4(mod11) = 8

X4p = (82 — 10 — 2)(mod11) = 8(mod11) = 8

ysp = (=2 + 8.(10 — 8))(mod11) = 3

olup;

4P = (8,3),5P = (7,2),6P = 0

olup; Q’nun P tabaninda ayrik logaritmasi 6 dir.

Kriptolojik uygulamalarda kolay desifrelemeyi onlemek igin hesaplanmasi daha ¢ok

zaman alan noktalar kullanilmalidir.
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3.2.4. Eliptik Egrilerde Diffie -Hellman Anahtar Paylasimi

Eliptik egri kriptoloji acik anahtarli bir kripto sistemdir. Giivenirliligi eliptik egri ayrik
logaritma probleminin ¢dzlimiiniin zorluguna dayanir. Eliptik egrinin tanimlandig1 asal
cisim F, P baslangi¢ noktasi ve skaler ¢arpim sonucu elde edilen Q noktasi ve E eliptik
acik anahtar; k skaleri gizli anahtardir. Burada n.P = 0 sartim1 saglayan en biiyiik n
olacak sekilde baslangi¢ noktas1 segmeye dikkat edilmelidir. Anahtar degisimi yapacak
A ve B kisileri asagidaki islem basamagini izler (Koblitz 1987),

1) A, k, <nolacak sekilde bir k4 tam sayis1 seger ve ky. Pyi hesaplar. Burada kg4,
A’nin gizli anahtari, k4. P = P, da A’ nin agik anahtaridir.

2) B, kg < nolacak sekilde bir kg tam sayisi seger ; kg. P = Pg hesaplar. B nin agik
anahtar1 kg. P ve gizli anahtar1 kg dir.

3) A; B’nin agik anahtarini alarak ky4. Pg Yi; B ise ayni sekilde kg. P, hesaplar.

kA'PB = kA(kBP) = kB(kAP) = kB'PA OIUr

3.2.5. Eliptik egrilerde sifreleme ve desifreleme

Eliptik egrilerde sifrelenecek bir mesajin eliptik egri iizerinde bir nokta olarak ifade

edilmesi gerekir. Ancak; her nokta eliptik egri lizerinde olmayabilir.

Bir A kisisi M mesajimni B kisisine gondermek istesin. P; E eliptik egrisi lizerinde bir

baslangi¢ noktasi olsun. Sifreleme islemi asagidaki gibi yapilir (Koblitz 1987),

A rastgele bir n, tam sayisi seger ve Py, mesajindan sifreli C,,, = (n4. P, By, + nyPg)

seklinde elde eder ve B ye gonderir.

Sifreli metni alan B sifreli metinden agik metini asagidaki gibi elde eder;
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P, =P, +nyPg — PB(nA-P) elde eder.

Ornek 3.11:

p=17 igin, y? = x3 — x + 4 eliptik egrisi iizerinde P = (1,2) noktasim baslangi¢ nokta
olarak alalim. B nin acik anahtar1 P, = 4P = (2,1) olsun. A eliptik egri iizerindeki

Py = (11,10) mesajini sifrelemek istesin; A rastgele bir ny = 5 segsin;

A sifreli metni;

Cy = (5(1,2), (11,10) + 5(12,13))
Cy = ((15,13), (11,10) + (13,4))

Cy = ((15,13),(11,7)) olarak elde eder ve B ye gonderir. B ise sifreli metinden agik

metini

P, = B, + nyPg — ng(ny.P)
= (11,7) — 4(5(1,2))

= (11,7) — 4(15,13)

= (11,10)

elde eder.

3.3. Sayisal imza

Sayisal imza elektronik ortamda bir mesajin imzalanmasi islemi olup geleneksel
imzanin elektronik ortamdaki karsiligi olarak diisiiniilebilir. Sayisal imza elektronik
ortamdaki bir mesaja bazi algoritmalar ile eklenir. Sayisal imza imzalanan metne gore

degisiklik gosterir. Sayisal imza {i¢ temel 6zellige sahiptir. Bunlar;
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1. Veri Biitlinliigii: Verinin izinsiz degistirilmesinin dnlenmesi.
ii. Kimlik Dogrulama: Mesaj1 alan ve gonderen kisilerin kimliklerinin dogrulanmasi.
iii. Inkar Edilemezlik: Bireylerin elektronik ortamda gerceklestikleri islemleri inkar

etmelerini Onlenmesi.

Sayisal imza; imzanin olusturulmasi ve imzanin dogrulanmasi olarak iki kisimdan
olusur. Bir A kisisi bir m mesajinin sayisal imzasini elde etmek i¢in bolim 3.5 de
verilen hash fonksiyonlar1 yardimi ile mesajin bir 6zeti ya da mesaj belirteci denilen
say1y1 kendi gizli anahtar ile sifreler ve mesaja ekleyerek mesaj1 gonderir(gerekiyorsa
mesaj1 da sifreler). Mesaji alan B kigisi (eger mesaj sifrelenmisse mesaj1 desifreler)
mesajin igindeki sayisal imzayr A’nin agik anahtari ile desifreleyerek 6zet mesaj1 elde
eder ve orijinal mesaja A’nin uyguladig1 6zet fonksiyonu uygulayarak bir 6zet elde
eder. Imzanm icindeki 6zet ile B’nin buldugu 6zet aymi ise mesaj gondericisinin

dogrulugu ve mesajin gonderilme esnasinda degismedigi anlamina gelir.

Iki tiir imza sistemi vardir. Bunlar;

1) Sonuna Eklemeli Sayisal Imza Sistemi:

Bu tiir sayisal imza sistemlerinde imzay1 dogrulamak i¢in orijinal mesaj dogrulama
algoritmasiin girislerinden biri olmalidir. Bu sistemler daha ¢ok kriptografik hash
fonksiyonlarina dayalidir. Bu sistemlere 6rnek olarak DSA, El-Gamal imza sistemleri

verilebilir.

2) Mesajin Geri Almabildigi Sayisal imza Algoritmalar:

Mesajin geri alinabildigi sayisal imza algoritmalarinda orijinal mesajin dogrulama
algoritmasinda bir giris olarak verilmesine gerek yoktur. Mesaj imzanin kendisinden
elde edilebilir. Bu sistemlere 6rnek olarak RSA, Rabin imza sistemleri verilebilir
(Menezes et al. 1978).
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3.4. Sayisal Imza Algoritmalar:

M sonlu sayida mesajlarin kiimesi, S sonlu sayida olas1 tiim imzalarin kiimesi, K
anahtar uzay1 sonlu sayida anahtarlarin kiimesi olmak {izere sayisal imza imzalama
doniistimii Sg ve dogrulama donisimii Vg olsun( Sg:M —» § ve VM X § -
{dogru,yanlis}) . Sy imzalama dontsimi imza Uretmek ic¢in kullanmilir ve gizli
tutulurken; Vi dogrulama doniisiimii {iretilen imzalari dogrulamak i¢in kullanilir ve

dogru veya yanlis gibi ¢iktilar verir ve agiktir.

Sayisal imza geleneksel imzadan farkli olarak tek kullanimlik olabilir. Eger bir A kisisi
bir B kisisinin imza sadece bir defaya mahsus kullanmasin1 istiyorsa imzaya tarih gibi

eklentiler yaparak daha fazla kullanimini 6nleyebilir.

3.4.1. RSA Sayisal Imza Algoritmasi

A, B’ye gonderecegi bir m mesajin1 RSA algoritmasi ile imzalamak istesin. Bu

takdirde;

M mesaj uzayi,

M; imzalama uzayi,

S, imza uzayi,

R, M’ den My’ye 1-1 fonksiyon,
Mg=Im(R) olup R nin goriintii kiimesidir.

RSA i¢in M ve My Z,, dir ve bir R: M- Z,

secilir ve R herkese aciktir.

A anahtar olustururken;

1) Yeterince biiyiik birbirinden farkli p ve q asallar1 seger.
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2)n=p.qve ¢(n) = (p — 1).(q — 1) degerlerini hesaplar.

3)1<e< @) ve (e e(n)) =1 olacak sekilde bir e tam sayisi seger.

4) Oklid algoritmasi kullanarak 1 < d < @(n) ve e.d = 1(mod¢(n)) olacak sekilde d
sayisint hesaplar.

5) A’nin agik anahtar1 (n, e), gizli anahtari ise d olur.

A imzalama isleminde;

1) m’ = R(m) hesaplar, m’ [1,n — 1] araliginda bir tam sayidir.
2) s = (m')*(modn) hesaplar.

3) A’nin m mesajinin imzasi s olur.

B imzay1 dogrularken;

1) A’ nin agik anahtari (n,e) alir ve m’ = s®(modn) hesaplar.
2) m' € My oldugunu dogrular eger degilse imzay1 reddeder.
3)m = R™1(m’) elde eder.

Ornek 3.12:

Anabhtar olusumu;

A, p =7927 ve q = 6997 asallarin1 se¢sin, n = p.q = 55465219 ve p(n) = 7926 X
6996 = 5545029 olur. A e =5 olarak segsin ve e.d = 1(mod5545029) olacak
sekilde d = 44360237 elde eder. A’nin gizli anahtar1 d = 44360237 olur.

Imzalama;

R: M- Z, kolaylik acisindan R olarak birim fonksiyonu R(x) = x secelim. m =

31229978 mesajin1 imzalamak i¢in;
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m’ = R(m), m’ = 31229978 ve

s = (m")%(modn) = 31229978*430237(1m0d55465219) = 30729435

Dogrulama;

m' = s¢(modn) = 30729435°(mod5545029) = 31229978

ve son olarak;

R™1(m’) = R-1(31229978) = 31229978

RSA Sayisal Imza Sistemine Olabilecek Ataklar:

Eger bir saldirgan n’ yi carpanlarina ayirabilirse, ¢ (n) elde edebilir. Genisletilmis
Oklid algoritmast ile @ (n)’den agik anahtar e’yi kullanarak e.d = 1(modn) olacak
sekilde d elde eder. Bu sekilde gizli anahtar1 ele gecgiren saldirgan sistemin tiimiinii
kirabilir. Bu ataktan kaginmak icin A p ve q secerken carpanlara ayrilmasi zor olacak

sekilde segmelidir.

RSA imza sistemi garpimsal ozellige sahiptir. Yani eger s; = m;%(modn) ve s, =

m,%(modn) sirastyla m; ve m, gibi iki mesajin imzas1 iken; s = s,5,(modn)

s = (m;m,)%(modn) ézelligine sahiptir.(m = m,.m,(modn) ; m € My). Bdylece s
bir imza degeri olabilir. Bu yiizden R fonksiyonu segilirken carpimsal olmamasina

dikkat edilmelidir(a,b € M,R(a.b) # R(a).R(b)).
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3.4.2. DSA (Digital Signature Algorithm) Sayisal Imza Algoritmasi

DSA 1991 yilinda NIST tarafindan DSS (Digital Signature System) de kullanilmak

tizere Onerilmistir. DSA El-Gamal gibi ayrik logaritma problemine dayanir.
Oncelikle DSA algoritmasinda kullanilacak alan parametrelerini ifade edelim.
Her iki taraf agsagidaki gibi kendi alan parametrelerini olusturur.

1) q|p — 1 olacak sekilde yeterince biiyiik p ve q asallar1 seger.

p-1

2)Bir h€Z,icing =h 7 (modp) hesaplanir.(g # 1)

3) Boylece g, p, q alan parametreleri olur.
DSA anahtar gifti tretilitken g, p, q parametrelerine sahip A kisisi;

1) 1 < x < q — 1 olacak sekilde rastgele bir x tam sayis1 segilir.
2) y = g*(modp) hesaplanir.

3) A’ nin agik anahtar1 y, gizli anahtari x olur.
DSA imza iiretilmesi;

1) 1 < k < q — 1 olacak sekilde rastgele bir k tam sayis1 segilir.

2) x = g*(modp) ve r = x(modq) hesaplanir.

3) h, m mesajinin bir 6zet fonksiyon yardimi ile elde edilmis 6zeti (NIST, DSA da
ozet fonksiyon olarak SHA-1 kullanilmasini nermistir) ve k~! k nin modq ya gére tersi
olmak tizere;

s = k7 (h + x.r)(modq) hesaplanir. Eger s=0 ise 1. Adima geri doniiliir.

4) A’nin imzasi (r,s) olur.
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DSA imza dogrulama algoritmast;

B, A’nin gonderdigi imzay1 dogrulamak i¢in g, p, q alan parametreleri ve A’nin agik

anahtar y ile;

1) r ve s nin [1,q — 1] arasinda tam sayilar oldugu dogrular.

2) A nin kullandig1 6zet fonksiyon ile mesajin 6zetini h hesaplar.

3) w = s~ (modq) hesaplar ve u; = h.w(modq) ile u, = r.w(modq) hesaplar.
4) x = g1ry“2(modp) ve v = x(modq) degerlerini hesaplar.

5) v = r kosulu saglaniyorsa imza dogrudur.

DSA’nm giivenligi ayrik logaritma probleminin zorluguna dayanir. DSA sadece
imzalama icin kullanilir, bir sifreleme algoritmasi degildir. imzalama hizlar1 ayn1 olsa

bile dogrulamada RSA, DSA’dan 10 ile 40 kat daha hizlidir (Kaliski 1991).

3.4.3. Eliptik egri sayisal imza (ECDSA) algoritmasi

Eliptik egri sayisal imza algoritmasina gegmeden Once eliptik egri alan parametrelerini
verelim. q bir asal say1 olmak lizere F; lizerinde tanimli y? = x3 + ax + b eliptik egrisi,

P eliptik egri tizerindeki herhangi bir nokta, n P’ nin mertebesi (n. P = 0) ve h 6zet

fonksiyon olmak tizere alan parametreleri;

D = (q,F,(E),a,b,P,n,h)

dir (Khalique et all 2010).

ECDSA Anahtar Olusturma;

D = (q,F,(E),a,b,P,n, h) alan parametreleri ile birlikte her A kisisi asagidaki gibi

anahtar olusturur,
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1) [1,n — 1] araligindan rastgele bir d tam say1si seger.
2) Q = dP hesaplar.

3) A’ nin agik anahtar1 Q, gizli anahtar1 d olur.

ECDSA Imza Algoritmast;

A m mesajin1 imzalamak i¢in yukarda verilen alan parametreleri ile agagidaki gibi imza

olusturur,

1) 1 < k < n — 1 olacak sekilde rastgele bir k tam sayis1 seger.

2) kP = (x1,y1) ver = x;(modn) (x; 0 ile ¢ — 1 arasinda bir tam say1 oldugu kabul
edilir.) hesaplar. Eger r sifir ise 1. Adima geri doniiliir.

3) k~Ymodn hesaplar.

4) s = k~1(h(m) + dr)(modn) hesaplar (Eger s=0 ise 1. Adima geri doniiliir).

5) m mesajinin imzasi (r, s) olur.

ECDSA Imza Dogrulama Algoritmast;

B A’ nin gonderdigi imzay1 dogrulamak igin D = (g, Fy (E),a,b,P,n,h) bilgileri ve
acik anahtar Q ile birlikte asagidakileri yapar,

1) rve s’nin [1,n — 1] araliginda oldugunu kontrol eder.
2) w = s~ (modn) ve h(m) hesaplar.

3) u; = h(m)w(modn), u, = rw(modn) hesaplar.

4) u P + uy,Q = (x9,Yo) Ve v = xo(modn) hesaplar.

5) v = r ise imza dogru olarak kabul edilir.
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Ornek 3.13:

Fj; de tanimli y? = x3 + x + 6 eliptik egrisi iizerinde P(2,7) noktasin1 alalim. P
noktasimin mertebesi 13P = 0 olupn = 13, q = 11 ve h 6zet fonksiyonu olmak iizere

m mesajinin 6zeti h(m) = 5 olsun. A kisisi bir m mesajint imzalamak istesin;

Anabhtar olusturma;

1) A [1,12] arasinda d = 7 segsin.
2) Q =7P = (7,2) olur. A’nin gizli anahtar1 d=7ve agik anahtar1 Q olur.

Imzalama,;

1) 1 < k < 12 olacak sekilde k = 9 segsin.

2) k~'mod(13) = 3 ve r = x; (modn) = 7(mod13)

3) s = k™1(h(m) + dr)(modn)

= 3(5+ 7.7)(mod13) = 6 olup s = 6 olur.

4) m mesajinin imzasi (t, s) = (7, 6) olur.

Dogrulama;

1) Imzay1 alan B (r, s) = (7,6) rile s nin [1, 12] oldugunu kontrol eder.
2) w = s (modn) = 6 1(mod13), w = 11 ve h(m) = 5 bulunur.
3) u; = h(m)w(modn) = 5.11(mod13) =3, u; =3

u, = rw(modn) = 7.11(mod13) = 12 hesaplar.

4) u;P +u,Q =3P +12Q = (8,3) + (5,2) = (7,9) ve v = 7(mod13) hesaplar.



46

5) v = r olup imza dogrudur.

DSA ve ECDSA her ikisi de El-Gamal sistemine dayanir ve her ikisinde de ayni
imzalama algoritmasi s = k=1 (h(m) + dr)(modn) kullanilir ve 6zet fonksiyon olarak
SHA-1 kullanilmas1 onerilir. ECDSA gizli anahtar d ve her imza igin secilen k degeri
istatiksel olarak tektir ve tahmin edilemezken DSA daki sadece rastgeledir ( Johnsan et
al.2007).

Simdi sayisal imzada kullanilan hash(6zet) fonksiyonlari tanitalim.

3.5. Hash Fonksiyonlari

Kriptografik hash fonksiyonlari modern kriptolojide dnemli bir yer tutar. Genel anlamda

hash fonksiyonu genis tanim kiimelerini daha kisa goriintiilere doniistiiriir.

Hash fonksiyonlar1 girdi olarak bir mesaji alir ve ¢ikt1 olarak hash kod, hash degeri,
mesaj Ozeti ya da kisaca hash denilen degeri iiretir. Tam olarak h fonksiyonu sonlu

keyfi uzunluklu degerleri sabit uzunluklara doniistiirir.

Hash fonksiyonlari sayisal imzada kullanilir. Bir mesajin hash degeri bulunur ve mesaj
yerine hash degeri imzalanir. En ¢ok bilinen hash fonksiyonlari SHA, MD4, MD5 dir.
Hash fonksiyonlarimin farkli bir grubu olan mesaj dogrulama kodlar1 (MACs) simetrik

sistemlerde mesaj dogrulanmasina izin verir.

Tamm 3.1: (Hash Fonksiyonu):

Bir hash fonksiyonu asagidaki iki 6zelligi saglayan h fonksiyonudur;

1) Sikistirma (Compression): Keyfi ve sonlu bit uzunlugundaki bir x girdisini sabit bit

uzunlugundaki (n — bit) ¢iktiya doniistiirme.
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2) Hesaplama Kolayligi: Bir x girdisi ve h fonksiyonu verildiginde h(x) hesaplamak
kolaydir.

Hash fonksiyonu mesajin 6zetidir. Hash fonksiyonunda h(x)’i hesaplamak kolay iken

h(x) verilmisken x hesaplamak zor olmalidir.

Hash fonksiyonlar1 fonksiyonel olarak birgok siniflandirmaya ayrilabilir ama biz bu

boliimde iki kisim hash fonksiyonlarindan bahsedecegiz.

Hash fonksiyonlari1 genel siniflandirilmasi Sekil 3.3’deki gibidir.

HASH
ANAHTARSIZ ANAHTARLI HASH
HASH FONKSIYONLARI
Diger MAC
MDCs Diger uvgulamalar
TYHF CDHF
v v
.On goriinti .On goriinti direnci

direnci G
kinci 6n goriinti direnci

JIkinci 6n gériinti

. Cakisma direnci

Sekil 3.3. Hash fonksiyonlarinin siniflandirilmasi (Menezes et al. 1996)
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1) Degisiklik Bulma Kodlari( MDCs) (Modification Detection Codes)

Manipulation Detection (Hile Tespiti) Kodlar1 veya mesaj biitiinleme kodlar1 olarak da
bilinirler. MDCs’1n amac1 bir temsilci goriintii ya da hash degeri saglamaktadir. MDCs

anahtarsiz hash fonksiyonlarinin bir siifidir.

2) Mesaj Kamitlama Kodlar1 (MACs) (Mesage Authentication Codes)

MACs’in amaci herhangi ilave bilgi kullanmadan mesajin dogrulanmasi ve mesaj
biitiinliigiiniin saglanmasidir. MACs mesaj ve gizli anahtar gibi iki parametreye sahiptir

ve anahtarli hash fonksiyonlarinin bir siifidir.

MDCs ile MACs kodlart arasindaki fark anahtardir. Kodlama algoritmalar1 herkese
aciktir; ancak girdi olarak bir mesaj verildiginde MDCs i¢in herhangi biri hash degerini
hesaplayabilirken; MACs ile sadece gizli anahtar1 bilen bir kisi hash degerini
hesaplayabilir.

3.5.1. Temel Ozellikler ve Tammlar

Hash fonksiyonlar i¢in 6nemli ti¢ 6zelligi verelim. Anahtarsiz hash fonksiyonu h, x; ve

X, girdi ve y;ve y, ¢iktilar olsun.

1) On Gériintii Direnci:

Olas1 tiim ¢iktilar i¢in hash degeri bu olan bir x girdisi hesaplanabilir olmamalidir. Yani
herhangi bir y ¢iktis1 verildiginde h(x) = y olacak sekilde x 6n goriintiisii bulmak

kolay olmamalidir.
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2) ikinci On Gériintii Direnci:

Ayni ¢ikt1 degerine sahip farkli iki girdi bulunmasi hesaplanabilir olmamalidir. Yani
h(x;) = h(x;) iken x; # x, olacak sekilde ikinci On goriintii bulunmasi kolay

olmamalidir.

3) Cakisma Direnci:

Ayni c¢ikti degeri igin x; Ve x, gibi farkli iki girdi bulmanin hesaplanmasi kolay
olmamalidir. Yani h(x;) = h(x;) olacak sekilde herhangi x;, x,iki girdisi bulmak kolay

olmamalidir.

On goriintii direnci yerine tek yol fonksiyonu, ikinci n gériintii direnci yerine zayif
cakisma direnci, ¢akisma direnci yerine ise gli¢lii cakisma direnci ifadeleri de

kullanilabilir.

Tamim 3.2 (Tek Yol Hash Fonksiyonu)(TYHF) :

Bir tek yol hash fonksiyonu Tanim 3.1 deki 6zelliklere ilave olarak 6n goriintii direnci
ve ikinci 6n goriintii direncine sahip olan hash fonksiyonudur. Tek yol fonksiyona zayif

tek yol fonksiyon da denilebilir.

Tanim 3.3 (Cakisma Direncli Hash Fonksiyonu)(CDHF):

Cakisma direncli bir hash fonksiyonu Tanim 3.1°e ek olarak ¢akigsma direnci ve ikinci
On goriintli direncine sahip olan hash fonksiyonudur. Cakisma direncgli hash fonksiyon

yerine gii¢lii tek yol hash fonksiyonu da denilebilir.
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Ornek 3.13:

g(x) = x?(modn) fonksiyonu 6n goriintii direncine sahip olmasina ragmen ikinci 6n

goriintii direncine sahip degildir.

g(x) = x?(mod5) diisiinelim x = 7 i¢in g(7) = 4 oup ; g(x) = 4 olacak sekilde x = 2

degeri bulmak kolaydir. Bu ise ikinci 6n goriintii direnci ile geligir.

3.5.2. Ozellikler Arasindaki Iliskiler

Teorem 3.2:

Hash fonksiyonlarinda ¢akisma direnci ikinci 6n goriintii direncini gerektirir (Menezes

et al.1996).

Ispat: h gakisma direncine sahip bir hash fonksiyonu olsun. Eger h ikinci 6n goriintii
direncine sahip degilse bir x; girdisi i¢in, h(x;) = h(x,) olacak sekilde x, bulunabilir.
Bu durumda ayni h ¢iktisina sahip farkli (xq,x,) degerleri bulunmus olur. Bu ise

cakisma direnci ile gelisir.

“Cakigma direnci 6n goriintli direncini garanti etmez.” Bunu bir drnek ile agiklayalim.

Ornek 3.14:

Reel sayilarda tanimhi f(x) = x + 1 fonksiyonu cakigsma direnci 6zelligine sahiptir

ancak 6n goriintii direnci yoktur.
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Tekrarhh Hash Fonksiyonlarina Genel Bir Bakis

Anahtarsiz hash fonksiyonlarinin bir¢ogu girdi ve ¢iktt uzunlugu sabit olan bir f hash
fonksiyonunun tekrarli olarak uygulanmasi ile elde edilir. Sonlu ve keyfi uzunluklu bir
x girdisi sabit r uzunluklu bloklara(x;)bdliiniir. Genellikle x” in uzunlugunu r’nin kati
yapmak i¢in belli bir kurala bagli olarak x’e bit ekleme (padding) yapilir. Her r
uzunluklu x; girdisi f fonksiyonuna sokulur. f ’nin ilk ¢iktis1 x;,, tekrar f

fonksiyonuna sokulur ve son girdi bloguna kadar bu islem devam eder.

X = X1X,X3 ... X, girdisi ile birlikte tekrarli hash fonksiyonlarinin bir modellemesi

asagidaki gibi verilebilir;

Ho=IV; H; = f(H;—1,%;),1 < i < t; h(x) = g(Hy)

H;_;i—1 ile i arasinda n — bitlik zincir degiskeni gorevi gorir. H, 6nceden
tanimlanmis bir baslangic degeridir. Keyfi bir g doniisiimii n —bitlik zincir degerlerini

m bitlik g(H;) degerlerine doniistiirmek i¢in kullanilir.

Herhangi bir c¢akisma direngli sikistirma fonksiyonu f , c¢akisma direngli bir h

fonksiyonuna genisletilebilir.

Algoritma 3.1 (Ozetlemede Merkle’nin Meta Metodu):

Girdi: Cakisma direngli sikistirma fonksiyonu f

Cikti: Anahtarsiz ¢cakisma direncli hash fonksiyonu h

1) Farz edelim ki f, n+r bitlik girdileri n bitlik ¢iktilara doniistiirsiin.(6rnegin
n=128ver = 512)
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2) b bit uzunluklu x girdilerin x = x;x,x5 ...x; gibi her biri r uzunluklu bloklara
ayrralim. Gerekirse son blok 0 bit ile r bite tamamlanur.

3) Dogrulugu kanitlanmis b’nin ikili temsilini elde etmek i¢in ekstra bir final blogu
X4+, tammlayalim.(b < 2" kabul edelim)

4) 0’m j bitlik seridini 0/ ile gosterelim. x’in n — bitlik hash degeri olan h(x) =
Hiiq = f(H¢||xe41) SONUCU Hy = 0™, H; = f(H;_1]1x;),1 < i <t + 1 hesaplanur.

h’nin ¢akisma direnclidir ¢iinkii h’1n ¢akisma direngli olmamasi herhangi bir i. adimda

f’nin de cakigma direncli olmamasi1 demektir.

Algoritma 3.2 (Merkle- Damgard Giiclendirmesi):

b bit uzunlugundaki x = x;x,x53 ... x; (x; ler r uzunluklu bloklar) kabul edelim mesaji

Ozetlemeden 6nce dogrulugu kanitlanmig b’nin ikili temsilini i¢eren bir final x;,, parca

blogu eklenir.( b < 2" kabul edilir.)

Hash fonksiyonlarin1 uygulamada kullanilan bi¢imlendirme ve baslangi¢c degerlerinden

bahsedelim.

Blok blok o6zetleme(hashing) metotlarinda genellikle 6zetlemeden once ilgili blok
uzunlugunun bir kati olacak sekilde girdiye bit eklenir. Bu isleme doldurma(padding)

denir.

Bir x girdisine( n —bit blok uzunlugu) uzunlugunun kati olacak sekilde gereken sayida
0 bit eklenerek yapilabildigi gibi; x’e sadece 1 bit eklenir ve bit uzunlugu n’nin kati

olacak sekilde 0 bit (belki hic) x’e eklenir.
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3.5.3. Anahtarsiz Hash Fonksiyonlar1 (MDCs)

Anahtarsiz hash fonksiyonlar1 kullandiklar1 sikistirma fonksiyonunun yapisina gore ii¢

kisimda incelenebilir.

i. Blok Sifrelere Dayanan Hash Fonksiyonlari

fterasyonda kullanilan f fonksiyonu herhangi bir blok sifre sistemi olarak segilir. Bir
(n,7) blok sifresi; r bitlik anahtar kullanarak n bitlik agik metinden n bitlik sifreli
metne; terslenebilir bir fonksiyon tanimlar, eger E boyle bir fonksiyon ise Ey (x) x’in k

anahtar1 altinda sifrelenmesini gosterir.

n —bitlik blok sifreden hash fonksiyonu elde etme tek uzunluklu (n — bit) ve ¢ift
uzunluklu (2n — bit) hash degerleri iiretenler olmak iizere iki kisimda incelenir. 26*
islemin hesaplanmaz oldugu diisiincesinin dogrulugunu varsayarsak tek uzunluklu hash
fonksiyonlarinin amaci n = 64 bit blok uzunluklu sifreleri igin TYHF {iretmektir veya
n = 128 bit blok uzunluklu sifreler i¢in CDHF {iretmektir.

ii. Modiiler Aritmetige Dayali Hash Fonksiyonlar:

Modiiler aritmetige dayali hash fonksiyonlarmin ana fikri modm ye dayali sikistirma
fonksiyonlarimi iterasyonda fonksiyon olarak kullanmaktir. Carpanlara ayirma ve Ayrik
logaritma problemi kullanilabilir. MASH-1 ve MASH-2 bu tiir algoritmalardir.

iii. Ozellestirilmis(Customized) Hash Fonksiyonlari

Ozel olarak hash icin tasarlanmis ve optimize hiza sahip fonksiyonlardir. MD ailesi ve

SHA 0rnek olarak verilebilir
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Bazi1 Mesaj Ozet Fonksiyonlar1

MD4

MD-4 Ron Rivest tarafindan1990 yilinda tasarimlanmis olan bir tek yol hash

fonksiyonudur. MD mesaj dzetidir ve mesaj girdisi i¢in 128-bitlik hash degeri iiretir.

Rivest gelistirdigi algoritmada (Rivest 1991) 512 bitlik mesaj bloklarda tekrarli yap1
icinde her blok ii¢ farkli dongiide islemden gecirilir. Ayn1 hash degerine sahip iki mesaj
bulmak yaklasik 2% uygulama gerektirir. Daha 6nceden belirlenmis hash degerini
saglayan girdi bulmak ise 2'?® uygulama gerektirir. Ancak MD4 iiretildikten kisa bir

stire sonra kirilmis ve Rivest tarafindan MD4 gii¢lendirilerek MD5 gelistirilmistir.

MD5

MDS5, MD4’iin giiglendirilmis seklidir. MD4 {i¢ dongliden olusurken MDS5 dort
dongiiden olusur ¢alisma mekanizmalar1 benzerdir ve MD5 de 128-bitlik hash degerleri
iiretir. MD4’de mesaj 512 bitlik bloklarda 16.32 bitlik alt bloklar halinde isleme sokulur
ve dort tane 32 bitlik ¢ikti tiretilir.

SHA-1(Secure Hash Algorithm)

SHA, NSA tarafindan DSS icin iiretilmis olup 1994’de NIST tarafindan yaymlanmistir.
Bu standart SHA-1, SHA-256, SHA-384, SHA-512 gibi dort standart yayinlanmaistir.

SHA-1, DSA’nin giivenligini saglamak i¢in gereklidir. 264 bitten kiiciik boyutlu mesaj
uzunlugu i¢in SHA-1 160 bitlik bir ¢ikt1 Giretir. Bu mesaj 6zeti DSA i¢in bir girdi olur

ve DSA bu girdi ile birlikte sayisal imza tretir.
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SHA-1, Rivest tarafindan gelistirilen MD4’e benzer prensiplerle ¢alisir. SHA-1 dort
dongliden olusur ve her dongii 20 adimdir. Mesaj 512 bitlik bloklara ayrilir eger

gerekiyorsa bit doldurma islemi ile mesaj 512 bitin katlarina tamamlanur.

3.5.4. Anahtarh Hash Fonksiyonlar1 (MACs)

Anahtarli hash fonksiyonlarinin 6zel bir amaci bir mesaji kanitlamaktir. Bir¢ok sayida
MDC algoritmalar1 olmasina karsin MAC algoritmalar1 daha az sayidadir. MACs daha
once bahsettigimiz tek yol hash fonksiyonlar: ile ayn1 6zelliklere sahiptir ancak MACs
da bir anahtar da vardir. MACs simetrik sistemlerde mesaj dogrulamada kullanilabilir.
MACs sayisal imza sistemlerinde zayif oldugu icin giivenli simetrik sistemlerde
dogrulama i¢in kullanilir. MACs sadece dogrulama degil bir kullanicinin dosyasinin

degisip degismedigini belirlemesinde de kullanilir.

Blok Sifrelere Dayanan MACs

Blok sifrelere dayali en yaygin kullanilan MACs CBC(Cipher-Blok-Chaining)’e
dayanir. Blok sifre i¢in DES kullanilirsa blok uzunlugu n = 64 bit ve MAC anahtari
olarak 56 bit kullanilir.

Algoritma 3.3 (CBC-MAC:s):

Girdi: x bilgisi; E blok sifresi ve E blok sifresi i¢in gizli MAC anahtar1 k

Cikti: x iizerinde tanimli MAC (n, E” nin blok uzunlugu)

I)Doldurma ve Bloklama: Eger gerekiyorsa x bit doldurma islemi uygulanir ve
X, X1,X3,X3 ... X; gibi n blok uzunluklu bloklara ayrilir.
2) CBC islemi: Ex k anahtart ile birlikte sifreleme donilisimii olsun. H; bloklari

asagidaki gibi hesaplanir;
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H; « Ey(xy) ; H; <« Ex(H;_18®x;),2 < i < t (Bu standart CBC olup IV = 0 ve sifre

metin bloklar1 C; = H; alinir.)

3) MAC’1n giiciinii artirmak igin istege bagli islemler: k' # k olacak sekilde ikinci bir
gizli anahtar kullanarak H'; « Ek‘,1 (H,),H; < E;(H'}) hesaplanir.
4) MAC, n blokluk H; blogudur.

MDCs den iiretilen MACs, Hash’a dayali MACs lar gibi Anahtarli hash fonksiyonlar
tiretilebilir. MDC algoritmasindan MAC olusturma oneri gizli bir k anahtarini bir MDC
girdisinin bir kismi1 olarak dahil etme fikrine dayanirken, Hash’a dayanan anahtarli hash
fonksiyonu tiretmek i¢in Kriptolojik hash fonksiyonu (MD4, MD5, SHA-1 vb.) ve gizli

bir k anahtar1 gerekir.



57

4. ARASTIRMA BULGULARI ve TARTISMA

4.1. Chebyshev Polinomlarina Dayal Acik Anahtar Algoritmalar:

4.1.1. Chebyshev Polinomlari

Tammm 4.1: n >0 bir tam say1 ve x € R bir degisken n. dereceden Chebysev

Polinomu
T (X) =2X Ty—q (X) - Tn—2z (X) (4.1)
To (x)=1 Ty (X) =X

seklinde tanimlanir.

Tamimdan;

TO (X) = 1;

T; (X)=X,

T, (X) = 2x2-1,

T3 (X) = 4x3-3x,
T, (X)=8x*—8x%+1,

T,,(x) = cos (n arccos (x)) x €[-1,1]
T,,(x) = cosh (n arccosh(x)) x € (1, ) (4.2)
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Propozisyon 4.1:

1) T,.(Ty) = To(Ty)
AT, (x+x'1

2

) =2 (Chein etal. 2011)

Yeni bir agik anahtar algoritma insa etmek igin Kocarev arkadaslari tarafindan bu

ozellik calisild.

T,.(x), reel sayilarda kriptolojik agidan giivenli degildir. Bu yiizden Kocarev ve

arkadaslar1 bu tanimi1 asagidaki gibi genellestirmislerdir.

Tanmm 42:n>0 x€ Zy N pozitif tam say1 ve Ty(x) = 1 ve T;(x) = x olmak

uzere;

T,(x) = 2X Tp_1 (X) — Tp,_,(x)(modN) (4.3)

seklinde olur.

Propozisyon 4.1 Z, de de gegerlidir.

4.2. 7Ty Uzerindeki Chebyshev Polinomlarina Dayah A¢ik Anahtar Kriptoloji

Kocarev ve arkadaglar1 tarafindan onerilen agik anahtar algoritmasi asagidaki gibidir

(Kocarev et al. 2005).

Farz edelim ki Alice, Bob ile haberlesmek istesin;

1) Bob, biiyiikk bir s tam sayist olusturur, rastgele x € Zy secer ve Ty (x)(modN)

hesaplar (x, Ts (x) ) Bob’un agik anahtar1 “s” gizli anahtaridur.
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2) Bob’a mesaj gondermek igin Alice, Bob’un agik anahtart (x,Ts(x))’i alir ve
mesajint m € Zy , Zy deki bir say1 gibi temsil eder, biiylik ve rastgele bir r tam sayisi

uretir ve

Ci = T, (x)(modN), C, = M X T,(T,)(x)(modN) ifadesini hesaplayarak sifreli metin
(Cy,Cy) elde eder ve Bob’a gonderir.

1) Sifreli metni aldiginda Bob, gizli anahtar s ile

Ts(Cy) = T5(T (%)) = Tps(x) = T,(T5(x) ) (modN)

C2
Ts(T(x))

Hesaplayarak M = (modN) agik metnini elde eder.

Bu algoritma N asal iken dogru fakat N bilesik iken algoritma bazi zorluklarla
karsilasabilir. Tr(Ts(x))’in tersi her zaman olmayabilir ki bu Rabin’in agik anahtar
algoritmasi (Rabin 1979) ile aymi problemdir. Tr(TS(x))(modN) nin tersi yok ise M

tek degildir. Bunu ¢6zmenin iki basit yolu vardir.

1) Sifrelenecek metni belirlemek i¢in ekstra bilgi eklemek.
2) Sectigimiz r igin , T, (TS (x)) ile N’nin ortak boleni yeni bir r (aralarinda asal olacak

sekilde) secilir.

Ornek 4.1:

Bir A kisisi, B kisisine bir M mesajin1 gondermek istesin. N = 9797 = 97.101 ve
x = 32. B gizli anahtar olarak 4000’1 seg¢sin. Ty00(32)(mod9797) = 3637. Buradan
B’nin agik anahtari (32, 3637) olur. A’nin agik metni 601 olsun. Rastgele bir r = 5000
segsin ve C; = Ts000(32)(M0d9797) = 1213 Ts000(Ta000(32))(mMm0od9797) = 3637



60

C, = 601.3637(mod9797) = 1106 ve sonra sifreli metni C = (1213,1106 ) elde eder

ve B’ye gonderir.

4.3. Chebysev Polinomlarina Dayali Sayisal imza Sistemi

1) B, blyiikk bir s tam sayist olusturur, rastgele x € Zy seger ve Ty (x)(modN)

hesaplar (x, Ts (x) ) Bob’un ag¢ik anahtar1 ** s’” gizli anahtaridir.

Imzalama Algoritmasi

2) A imzalama i¢in, B’nin agik anahtar1 (x,Ts(x))’i alir ve m mesajinin h(m)
hesaplar, h(m) Zy deki bir say1 gibi temsil eder, biliylik ve rastgele bir r tam sayisi

uretir ve

Si =T, (x)(modN), S, = h(m) X T,.(Ts)(x)(modN) hesaplayarak mesaji (S;,S,)

elde eder ve imzay1 mesaja ekleyerek B’ ye gonderir.

Dogrulama algoritmasi

1) B, gizli anahtar1 s ile

Ts(S1) = Ts(T, (%)) = Ts(x) = T, (Ts(x) ) (nodN)

Sz

Hesaplayarak v = )

(modN) agik metnini elde eder.

2) Ayni 6zet fonksiyonu kullanarak r = h(m) elde eder.

3) v = rise imza dogrudur.
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Ornek 4.2:

N = 11 i¢in B anahtar olustururken s = 3 ve x = 2, 2 € Z,, olarak se¢sin bu durumda
B’ nin agik anahtarnt (x,Ts(x)) = (2,T3(2))(mod11) = (2,4) olur. B’nin gizli

anahtar1 ise s = 3 tir.

m mesajinin 6zeti h(m) = 4 olsun. A m mesajin1 imzalarken r = 5 olarak segsin. A,
B’nin agik anahtar (2,4) yardimi ile S; = Ts (2)(mod11) = 10(mod11), S; = 10 ve
S, =4 X T5(T3)(2)(mod11) = 4 X 10(mod11) = 7 olarak bulur. (S;,S,) = (10,7)

m mesajina ekleyerek B’ye gonderir.

Imzayr dogrulamak icin B, m mesajia aym 6zet fonksiyonu uygular r = h(m) =

4 hesaplar. Kendi gizli anahtari ile T5(S;) = T5(10)(mod11) = 10 ve

v = TS(TZ(X)) (modN)
7
v = E(modn) =7.10"1(mod11) = 7.10(mod11)
hesaplar,
v =4
olarak bulur.

v = r = 4 olup imza dogrudur.

Burada hesaplama kolayligi agisindan kiigiik sayilar kullanilmistir ancak gilivenlik

acisindan yeterince biiyiik sayilar kullanilmalidir.
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5. SONUC

Kriptoloji gelisen teknoloji ve internet kullaniminin yayginlagsmasi ile Onemini
artirmaya devam etmektedir. Teknolojideki bu gelismeler o6zellikle sayisal imza
algoritmalar1 kullanimin giderek artirmaktadir. Agik anahtar sifrelemede yeni arayislar
ve glivenli sistemler olusturma g¢abast devam etmektedir. Bu ¢alismada gizli ve agik
anahtar kripto sistemler tanitilmig ve son zamanlarda agik anahtar sifreleme igin
Kocarev ve arkadaslarmin onerdigi Zy Uzerindeki Chebyshev Polinomlarina Dayali
Acik Anahtar Kriptoloji tanitilmis ve Ornek verilmistir. Ayrica bu acgik anahtar
sistemden faydalanarak bir sayisal imza algoritmasi verilmis ve orneklendirilmistir. Bu
sistemlerde N asal olarak se¢ildigi zaman verilen algoritmalar dogrudur ancak N bilesik
oldugunda her zaman kullanilamayabilir. N bilesik iken Zy halkasinda Chebyshev
Polinomu tarafindan tretilen dizinin periyodu Chen ve arkadaslari tarafindan analiz
edilmistir. Yayinladiklar1 makalede periyot dagilimmi incelemek igin rekiirans
bagintisin1 elde etmede klasik cebirsel teorileri kullanilmistir. Buna goére eger N 6zenle
secilmezse, periyot dagilimmin zayif oldugu ortaya ¢ikmistir. Ataklari etkisiz kilmak
icin Chebyshev polinomlari tarafindan tretilen dizinin periyodunu yeterince yiiksek

kilmak gerekmektedir. Bu ylizden N dikkatli se¢ilmelidir.
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