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y2 =x"+a, a#0, n>5 afin denklemi ile verilen hipereliptik egrilerin aritmetik ézellikleri,

bu egrilerin otomorfizma gruplarinin yapisi kullanilarak ¢alisilmistir. Bu egrilerin, Lang’m ortii yarigapi
ile ilgili tahminini 6zel bir 6rtli doniigiimil icin dogruladig: gosterilmistir. Daha kiiglik cinsli egrilerin L —
serilerine gore, L ¥ (s) nin agik bir tanimin1 yapmak igin 6zel otomorfizmalarin sebep oldugu Jakobiyen
ayrigmasinin nasil oldugu gosterilmistir.
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v



ABSTRACT

Ph.D THESIS

ON THE ARITHMETIC PROPERTIES OF EQUATIONS
OF THE FORM )’ =x" +a

Kevser AKTAS

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCE OF
SELCUK UNIVERSITY
THE DEGREE OF DOCTOR OF PHILOSOPHY
IN MATHEMATICS

Adyvisor: Prof. Dr. Hasan SENAY
2013, 34 Pages

Jury
Adyvisor Prof. Dr. Hasan SENAY
Prof. Dr. Dursun TASCI
Prof. Dr. Durmus BOZKURT
Prof. Dr. Ahmet Sinan CEVIiK
Assoc. Prof. Dr. Ramazan TURKMEN

We study the arithmetic properties of hyperelliptic curves given by the affine equation

y2 =x"+a, a#0, n>5 by exploiting the structure of the automorphism groups. We show that these

curves satisfy Lang’s conjecture about the covering radius (for some special covering maps). We also
indicate how the decomposition of the Jacobian imposed by special automorphisms lead to an explicit

description of L ¥ (s) in terms of L — series of curves of lower genera.
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SIMGELER

Calismada asagidaki standart notasyon kullanilmistir.

: Kompleks sayilar cismidir.

C
D, = <a,b | a’=b"= (ab)2>: mertebesi n olan dihedral grupdur.

D(r)= {z eC:|7|< r} : yarigap1 r olan disktir.

g (A_’ na ) c X ..o €Erisinin cinsini gosterir.

G X ».o €Erisinin otomorfizma grubudur.

G : Aut(f na ) / <rh> seklinde verilen boliim grubudur.
Jy : X egrisinin Jakobiyenidir.

K : Herhangi bir say1 cismidir.

K : K cisminin sifirdan farkli elemanlar1 kiimesidir.
K : K cisminin cebirsel kapanisidir.

L, : X egrisinin L — serisidir.

Q : Rasyonel sayilar cismidir.

O : K cisminin tamsayilar halkasidir.

P'  : Projektif dogrudur.

T, : Hipereliptik egrinin hipereliptik involusyonudur.
)_(M : Derecesi n, sabit katsayist aeK olan ve y’=x"+a, a#0 afin

denklemi ile verilen hipereliptik bir egri belirtir.

Z : Tamsayilarin modn ye gore ¢arpimsal grubudur.

n

viil



1. GIRIS

Bu ¢alismanin amaci, n>5 ve K bir say1 cismi, a € K~ olmak iizere,
Y =x"+a (1.1)
denklemiyle verilen hipereliptik egrilerin aritmetik 6zelliklerinin incelenmesidir. Genel
olarak,
yi=r(x)=]](x-x) (1.2)
i=1
seklinde verilen hipereliptik egrilerin ¢ok 6zel bir smnifim1 (&, birimin n.kokii ve

1
n &, i=1,...,n) teskil eden bu egrilerin aritmetik 6zellikleri, egrinin otomorfizma

X, = |a
grubu kullanilarak arastirilmistir. Elde edilen temel sonug, bu egrilerin evrensel ortii
tasvirlerinin Lang tahminini sagladigmin ispatidir. Ayrica, incelenen egrinin,
otomorfizma grubunun alt gruplarmin etkisine boliinmesi yoluyla elde edilen egriler,
Jakobiyen varyetelerinin yapisini anlamakta kullanilmistir; bu klasik metot, 6zellikle
egrinin L -serisinin belirlenmesi agsamasinda 6nemli rol oynamistir.

Calismanin ikinci bdliimiinde konuyla dogrudan ilgili kaynaklar kisaca
aciklanmastir.

Ucgiincii boliimde, galismanm teorik agiklamasi yapilmis, konuyla ilgili teorik

bilgilere yer verilmistir.

a) Kompakt hipereliptik egrilerin insasi ile ilgili metot hatirlatilmais,
b) »’ =x"+a denklemi ile insa edilen egrinin Weierstrass noktalar1 ve

¢) Weierstrass noktalarindan  yararlanilarak  egrinin  otomorfizma grubu

belirlenmistir.

Dérdiincii boliimde, liciincii boliimde verilen teorik esaslara dayanarak, egrinin
indirgenmis otomorfizma grubu belirlenmis, otomorfizma grubu etkisi kullanilarak,
egrinin Jakobiyen varyetelerinin ve evrensel Ortiislinlin yapisi incelenerek, asagidaki

sonuglar elde edilmistir.



, _ S
Onerme 1.1. a,b €K icin, n ¢iftise, X,, ve X,,, K[(éj cismi iizerinde 7n tek
’ a

a a

NAIRY
ise, K (—] ,(—] cismi lizerinde izomorftur.

Onerme 1.2. indirgenmis otomorfizma grubu icin asagida verilen esitlik gegerlidir.

(1.3)

_ {Dn, n ¢ift say ise

Z , ntek saylise

Onerme 1.3. X, , egrisi bir Belyi yiizeyidir.
Onerme 1.4. X, egrisinin otomorfizma grubu “biiyiiktiir”.

Sonu¢ 1.5. CD(O), S Belyi doniisimiiniin bir dallanma noktasi olacak sekilde,

normalize edilmis
®:D(r)—>X,, (1.4)

ortii doniistimleri olmak iizere, Lang tahmini X na €Erisiigin gegerlidir.

Not: Otomorfizma grubu “biiyiiktiir” ifadesi, literatiirde yer alan “has many
automorphisms” kavramina karsilik olarak kullanilmistir. Bu kavram Tanim 3.2.4. de

aciklanmastir.
)_(M (n=2p, p tek asal say1) hipereliptik egrisinin L —serisini daha kii¢iik
dereceli egrilerin L —serilerinin bir ¢arpimi olarak yazmak igin Jakobiyen ayrismasi

kullamilmustir. Buna gore, igin agik olarak X 2p.af(c) egrisi X ».a OlUp,

a

J. ~J: (1.5)

Xz p.a

seklindedir. Buradan, X, nm L—serisi, X ba DI L — serisinin karesi olup,

2p.a

Lo (s)=L; (s) (1.6)

seklindedir.

a



2. KAYNAK ARASTIRMASI

x,y pozitif tamsayillar ve n>3 oldugu durumlarda x*+C=3", CeZ
seklindeki denklem yillarca calisilmis, fakat genel bir n degeri i¢in sonug¢ son

zamanlarda bulunmustur. Bu konuyla ilgili ilk kaynak Fermat’a aittir. Fermat, C =2 ve
C=3 i¢in x’+2=)" durumunda denklemin ¢dziimii iizerine iddia ortaya atnustir.
Bunun ispati Euler tarafindan yaymlanmistir. Genel bir n degeri i¢in ilk sonug
Lebesque tarafindan verilmistir. Lebesque (1850) ¢alismasinda, C =1 igin, x* +1=)"
denkleminin asikar ¢6ziimden baska c¢Oziimiiniin olmadigint gostermistir. C =3 ve
C=5 icin, X’ +3=)" ve x’+5=)" denklemleri srastyla Nagell’in (1923) ve (1948)
calismalarinda yer almistir. Cohn (1993) calismasinda, 1< C <100 araliginda olan 77
deger i¢in bu denklemin ¢oziimlerine calismuistr. Daha sonra x* +2° =" denklemi
Arif-Muriefah (1997), Cohn (1999) ve Mauhua Le (2002) tarafindan ¢alisilmistir. Liqun

Tao’ nun (2008) ve (2009) galismalarinda, x* +3* =" ve x* +5" = y" denklemleri yer
almaktadir. Calismalar daha sonra Luca (2002) tarafindan x*+23" =y", Luca ve
Togbe (2008) tarafindan x°+2°5" =", Goins, Luca ve Togbe (2008) tarafindan

x*+2°5°13 =" denklemlerinin ¢Oziimleri {izerine yapilan calismalarla devam
etmigtir. Biitiin bu caligmalarin amaci, C nin genel bir degeri i¢in bu tiir denklemin
cOziimlerinin olup olmayacagini tespit etmektir.

Daha genel bir problem olarak a € K~ olmak iizere
Y =x"+a (2.1)
denkleminin aritmetik Ozelliklerini ele almak dogaldir. Bu problem, yapist itibariyle
daha kavramsal geometri kullanilmasini gerektirmektedir. Afin diizlemde, n>5 ve
ae K" olmak iizere (2.1) denklemiyle verilen egri hipereliptik bir egridir.

Hipereliptik egrilerin genel teorisi, cebirsel egriler ve kompakt Riemann
yiizeyleri ile 1lgili hemen her kitapta detayli olarak incelenmistir.

Bu ¢alismada, Mumford’un (1981) kitabini ana kaynak olarak kullandik. Ayrica,
Litaka (1982) ve Farkas-Kra’nin (1981) kitaplarindan yararlandik. Bu kaynaklarda
hipereliptik egrilerin insasi, Weierstrass noktalarmin belirlenmesi ve Jakobiyen
varyetelerinin  yapist ele alinmistir.  Wolfart’in = (1997) c¢alismasinda Belyi

fonksiyonlarmin, Lang tahminine uygulamalar1 ile ilgili dnemli sonuglar yer almaktadir.



Tez calismasinda, Wolfart’in (1984) makalesinde, Wolfart’da (1997) tanimlanan
“bliytik” otomorfizma kavrammna iliskin Ornekler, Birkenhake ve Lange’nin (2004)
calismasinda acik denklemlerle verilmis hipereliptik egrilerden elde edilmistir.

Wolfart ve Wiistholz’un (1985) ¢alismalarinda, hipereliptik Riemann yiizeyleri
icinde Lang Tahmininin gegerli olabilecegi durumlar1 agiklayici bilgiler yer almastir.

Manin’in (2005) kitabinda, zeta fonksiyonlari, L —serilerinin elde edilmesi,
Jakobiyen ile ilgili ozellikler tanimlanmistir. Kompleks c¢arpmaya sahip egrilerin
Grossenkarakter yardimiyla tarif edilen L —serilerinin yazilabilmesi i¢in ihtiyag
duyulan Grossenkarakter yapisi, Adel halkast ve idel grubu tarif edilerek
tanimlanmistir. Ayrica Lang’in (1978) kitabinda da kompleks carpma ile ilgili bilgiler
yer almaktadir.

A.Weil’in (1952) calismasinda, 2 </<k olacak sekilde [,k eZ ve a,beK’
olmak iizere
v =ax" +b (2.2)
seklindeki biitiin egrilerde kompleks carpmanin var oldugu ve bdylece bu tip egrilerin
L —serilerinin, Grossenkarakter yardimiyla tarif edilen L —serileri ile yazilabilecegi
gosterilmistir. Inceledigimiz egrilerin L — serilerini Grossenkarakter yardmmiyla ifade
edebilmek i¢in, egrinin Jakobiyen varyetesi kullanilmistir. Bu noktada Jakobiyen
varyetesinin par¢alanabilmesi 6nemli kolayliklar saglamaktadir.

Paulhus’un (2007) tezinde, Kani ve Rosen (1989) tarafindan verilen bir teorem
yardimiyla bir egrinin Jakobiyeninin, daha kiiciik egrilerin Jakobiyenlerine

parcalanmasi suretiyle nasil yazilabilecegi ile ilgili durumlar verilmistir.

Ireland ve Rosen’in (1998) kitabinda, K :@(JS ) cismi iizerinde, kompleks

carpmaya sahip

Y =x+a (2.3)
seklinde verilen eliptik egrinin Grossenkarakter kullanarak tarif edilen L — serisinin
yazilabilmesi i¢in gerekli bilgiler yer almaktadir.

Silverman’m (2009) kitabinda, eliptik egrilerin aritmetik ozellikleri ile ilgili
bilgiler yer almaktadir. Eliptik egriler i¢in lokal ve global L —serilerinin yazilmasi,
Grossenkarakter kullanarak L — serilerinin yazilmasi konular1 tizerinde bilgi verilmistir.
Kompleks carpmanin tanimlanabilmesi i¢in gerekli endomorfizm halkasi tanimlanmus,

bir eliptik egri i¢in Grossenkarakter tanimi1 verilmistir.



Silverman’m (1994) kitabinda, Grdssenkarakter ile tanimlanan L — serilerinin
kompleks diizlem {izerinde aldig1 her deger icin analitik genislemesinin oldugu

belirtilmistir.



3. TEORIK ESASLAR
3.1. Hipereliptik Egriler ile Ilgili Genel Bilgiler

Bu bolimde kompakt hipereliptik egrilerin insast ile ilgili metotlar
hatirlatilmistir. Arastirma sonuglar1 kisminda iizerinde durulacak y* =x" +a denklemi

ile insa edilen egrinin Weierstrass noktalar1 ve egrinin indirgenmis otomorfizma grubu

yapist ile ilgili bilgiler verilmistir.

Tanmm 3.1.1. X ve Y diizgiin, projektif egriler olmak {izere, derecesi r olan Orten

f: X — Y morfizmasina r-katli 6rtii denir. Ozel olarak, iki kath rtilye ¢ift ortii denir

(Litaka, 1982, syf. 216).

Diizgiin projektif X egrisinin {izerindeki holomorfik 1- formlarin sonlu bir

vektor uzayr oldugu bilinmektedir. X in cinsi bu uzaym boyutu olarak tanimlanir.

g(X ) ile gosterilir.

Teorem 3.1.2. (Riemann-Hurwitz Formiilii)

Eger f: X > Y morfizmasmm r—kath ortisii varsa; e(p), f Ortisiinin p

noktasmdaki dallanma indeksi olmak tizere,

2g(X)—2:r(2g(Y)—2)+Z(e(p)—l) 3.1

peX

dir (Litaka, 1982, syf. 216-217).

Hatirlatma 3.1.3. Riemann-Hurwitz formiilii, Riemann yiizeylerinin bir ortiisii i¢inde

diger degismezler ile cins arasindaki bagmtiy1 verir.

Tamm 3.1.4. X)>2olmak iizere, f:X — P' ¢ift ortiisii varsa, X egrisine
g

hipereliptik egri denir.

X, . hipereliptik bir egri olmak lizere, asagida verilen 6zellikler, hipereliptik

egrilerin genel teorisinden bilinmektedir.



p:X,, > P

(x,y) N (3.2)

bi¢imindeki ¢ift orti tektir ve 7, € Aut(X ,.o) tarafindan belirlenir. Burada X ,q €2risini

1 boyutlu projektif bir dogruya tasimaktaki amag, sonsuzdaki noktalar1 da dahil

n

. 1 .
etmektir. Bu amagla, x'=— ve y' = lm olmak iizere, y* = f(x)=] [(x-x,) denklemi
X X

i=l1

yeniden yazilirsa,

RETRIES

xx') (3.3)

olup buradan,
n=2micin, (y') = n (1-xx")
i=1

n (3.4)
n=2m-1 igin, (y’)2 =x'TJ(1-xx")
i=l

bulunur. Buna gore, n ¢ift ise, x'=0, y' =+1 i¢in sonsuzda iki nokta vardir. n tek ise,

x"=0, y"'=0 igin sonsuzda bir nokta vardir (Mumford, 1984, syf. 12-13).
. Riemann-Hurwitz Formiili ile y* = f(x)=]](x—x,) hipereliptik egri

i=l1
denkleminden P’ projektif dogrusuna ¢ift ortii tanimlanabildiginden,
_ n+l
n=2m-1=2¢(X,,)-2=2(g(P')-2)+ 1
i=l1
=2g(X,,)-2=—4+2m

:g(fn’a):m—l

<

=g n,a)=n7_1 (3.5)

\



(3.6)

cinsleri elde edilir. Yani, derecenin tek veya ¢ift olma durumuna gore egrinin cinsleri bu

sckilde bulunur. Omegin, X, :»*=x"+p ve X, :»*=x"+p egrilerinin cinsleri

bulunurken Riemann-Hurwitz formiilii kullanilarak,

n=>5igin,
n+l
_2= Pl —
2¢-2 2(g( ) 2)+;1 57
g=2
n =06 i¢in,
2g—2=2(g([?")—2)+zn:1 59)
i=l1 .
g=2
bulunur. -

( 2 ik

n

o ¢ cift Ortiisii, m, :|a;e j (k=1,..,n) olmak iizere,

n ¢ift say1 iken, tam olarak (@,,0) Weierstrass noktalarinda dallanr.

n tek sayi1 iken, tam olarak (a)k,O) ve oo Weierstrass noktalarinda dallanr.

e 7,, X

n,a

nin otomorfizma grubunun merkezinin elemanidir.

Tamm 3.1.5. Indirgenmis otomorfizma grubu, G :Aut()_(n’a)/<rh> bolim grubu

seklinde tanimlanir.

Teorem 3.1.6. M , cinsi g >2 olan hipereliptik bir Riemann yiizeyi olsun. ¢ : M — P
hipereliptik morfizmasmin dallanma noktalar1 tam olarak M nin Weierstrass
noktalaridir. Cinsi g =2 olan hipereliptik Riemann yiizeylerinin tam olarak 2g+ 2 tane

Weierstrass noktasi vardir (Farkas ve Kra, 1981, syf. 95).



3.2. Belyi Yiizeyi ve Lang Tahmini

Tahmin 3.2.1. (Lang Tahmini) X, herhangi bir say1 cismi lizerinde tanimli cinsi

g22 olan projektif, diizgiin, bir egri; sabit ®(0)e X (Q) ve d®,:T,D, > T, X

(0)
diferansiyeli cebirsel olmak {izere, CD:D(r)—)X normalize edilmis evrensel Ortii

doniisiimii olsun. O halde,

i) r yarigapi transandant bir sayidir.

i) aeD (Q), a=0 igin ®(a)¢ X (Q) dir.

Lang’in bu tahmini X, , egrileri iizerinde incelemek igin dncelikle egri tizerinde

bir Belyi fonksiyonunun tanimli oldugunu ve bununla birlikte egrinin otomorfizma

grubunun “buiyiik” olmasi ile olan iligkisi incelenecektir.

Tamim 3.2.2. Eger f fonksiyonu, X kompakt Riemann yiizeyi iizerinde en fazla li¢
nokta tizerinde dallanan, sabitten farkli bir meromorfik fonksiyon ise, f fonksiyonuna

X iizerinde bir Belyi fonksiyonu denir (Wolfart, 1997, syf. 97).

Tanmm 3.2.3. Eger X kompakt Riemann yiizeyinin yukaridaki tanimda verilen
kosullar1 gergekleyen bir Belyi fonksiyonu varsa, X e Belyi yiizeyi denir (Wolfart,
1997, syf. 98).

Tanmm 3.2.4. X cinsi g>1 olan bir kompakt Riemann yiizeyi, Aut(X ) X in
otomorfizma grubu olsun. M, modill uzay: tizerinde X e karsilik gelen p noktasinin
bir U komsulugu i¢inde, her ¢ # p i¢in, g ya karsilik gelen Y Riemann yiizeyinin
otomorfizma grubu igin, ‘Aut(Y )‘<‘Aut(X )‘ esitsizligi gergekleniyorsa, X in

otomorfizma grubu “biiyiiktiir” denir (Wolfart, 1997, syf. 106).

Ornek 3.2.5. Aut(f 6,_1) egrisi “biiyiik” gruptur. Bu Riemann yiizeyi i¢in, Tanim 3.2.4.
deki gosterimde, p, ve p, noktalar: sirastyla y’ :x(x4 —1) ve y’ :x(x5 —1) egrileri

ile ilgili noktalar olmak iizere U=M,—{p,,p,} alt uzayr olarak alinir. Ciinkii
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Aut(/?é’_l), Yy = x(x4 —1) ve y’ = x(x5 —1) egrileri disindaki cinsi 2 olan tiim diger

egrilerin otomorfizma grubundan kesinlikle “biiyiiktiir” (Birkenhake ve Lange, 2004,

syf. 340).

Teorem 3.2.6. Cinsi g >1 olan kompakt bir X Riemann yiizeyinin otomorfizma grubu

Aut(X ) in “biiyiik” olmasi i¢in gerek ve yeter sart normal bir 6rtli olarak tanimlanan

bir f: X — P' Belyi fonksiyonunun var olmasidir (Wolfart, 1997, syf. 107).

3.3. Egrinin L-Serisi ve Jakobiyeni

Bir X egrisi i¢in asagidaki notasyon kullanilacaktir.
e X egrisi, bir K say1 cismi iizerinde tanimlidir.

o (., K cisminin tamsayilar halkasidur.

e pc, bir asal idealdir.

Tanim 3.3.1. Bir K cismi lizerindeki degismeli varyete, cisim iizerinde indirgenemez

projektif degismeli bir cebirsel gruptur.

Hatirlatma 3.3.2. Bilindigi gibi 4,8 degismeli varyeteleri arasinda sadece O,
elemanin1 0, elemanina gotiiren morfizmalar ele alinmaktadir. 2: 4 — B seklinde bir

varyete morfizmasmin grup yapilariyla uyumlu olmasi i¢in gerek ve yeter sart

2(0,)=0, olmasidur.

Tanmim 3.3.3. 4 ve B degismeli ve boyutlar1 ayn1 varyeteler olmak tizere, 1: 4 — B

orten morfizmasina izojeni, A ve B ye de izojenik degismeli varyeteler denir.

Tanim 3.3.4. 4 dan A ya tanimlanan (grup yapisiyla uyumlu) her morfizmaya 4 nin

bir endomorfizmasi denir ve End(A) ile gosterilir. Endomorfizma ciimlesi iizerinde

a,pe End(A) icin,
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(a+p)(x)=a(x)+B(x)
(@ p)(x)=a(B(x))

islemleri ile belirlenen tabii bir halka yapis1 vardir.

(3.9)

Tamm 3.3.5. Eger boyutu g olan 4 degismeli varyetesi icin derecesi 2g olan bir K
say1 cismi ve bir 1:K — End (A)®Q gdémmesi varsa, “4 degismeli varyetesinin K

cismi lizerinde kompleks ¢arpmasi vardir” denir (Silverman, 2009, syf. 69-70).

Ornek 3.3.6. £:)* =x"—x denklemi ile verilen E/K eliptik egrisi i¢in, char(K)#2
ve i’=-1 olmak iizere i€ K birimin ilkel dordiincii kékii olacak sekilde, [i] ile
gosterilen
[i]:(x,y)—)(—x,iy) (3.10)
dontistimii vardir. Bu doniisiim vasitasiyla tanimlanan
i:Q(i)—> End (E)®Q

(3.11)
i [i]

gommesi, £ eliptik egrisinin kompleks ¢arpmasi oldugunu gosterir (Silverman, 2009,

syf. 69-70).

Tanmm 3.3.7. Degismeli bir R halkasinin (Rden farkli) biitiin asal ideallerinin
kiimesine R nin spektrumu denir ve Spec(R) ile gdsterilir. x € Spec(R) elemanma

spektrumun bir noktas: denir ve bununla ilgili ideal p < R ile gosterilir (Manin, 2005,

syf. 193).

Hatirlatma 3.3.8. Bilindigi gibi herhangi bir p — R idealinin asal olmasi i¢in gerek ve

yeter sart R/p bolim halkasinin sifir blensiz olmasidir.

O, K cisminin tamsayilar halkasi olmak iizere, ¢J, nmn spektrumu Spec(C, )

ile gosterilir. Burada K cismi lizerinde tanimli, boyutu d olan projektif bir X egrisi

diisiinelim. Zeta fonksiyonu yardimiyla X {izerindeki K - rasyonel noktalar1 incelemek

i¢in, X — Spec(O, ) aritmetik semasi tanimlanir (Manin, 2005, syf. 196-197).
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X — Spec(O, ), tamsayilar halkast (), olan bir K sayi cismi iizerinde
X=4Q®, K, boyutu d olan dizgin, projektif bir varyete olacak sekilde bir
aritmetik sema ve X =X®, (O /p), X in bir maksimal p < ideali moduna
indirgenmesi olmak tizere, X varyetesinin zeta fonksiyonu; Xg, X, varyetesinin

kapali noktalarmin kiimesi olacak sekilde ve N (x)=|C)/p| olmak iizere,

1
- (S)Zl_xlom (3.12)

seklinde verilir. .t" semasinin Zeta fonksiyonu,

Se(s)=11¢x (5) (3.13)

dir (Manin, 2005, syf. 261).

Teorem 3.3.9. .1 in zeta fonksiyonu; dim.t', .t in boyutu olmak iizere,
Re(s) >dim.t" degerleri i¢in yakmsaktir (Manin, 2005, syf. 261).

K ( p) sonlu cismi lizerinde tamimli X -semasinin zeta fonksiyonu olan ¢ X, (s)

icin asagidaki ozellikler bilinmektedir.

. < (S)Zexp[iN(r)q_sr] (3.14)

r

e Holomorfik metotlar vasitastyla N(r) daha agik bir sekilde yazilirsa,

yukaridaki ifade,
2d (_])m

Cr, (5)=] 1Ly, (s) (3.15)
0

seklindedir ( Manin, 2005, syf. 291).

Tamm 3.3.10. X , pe Spec((?K) kapali noktalar1 lizerinde singiiler olmayan bir lif

ise iyi indirgenmesi vardir. X , singiiler bir lif ise kotii indirgenmesi vardir (Manin,

P

2005, syf. 212).
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Tanim 3.3.11. X egrisi, K cismi lizerinde tanimli diizgiin, projektif bir egri olsun. X
iizerinde, derecesi 0 olan dyle bir degismeli varyete vardir ki, bu degismeli varyeteye
X in Jakobiyeni denir ve J, ile gosterilir (Manin, 2005, syf. 228).
Bir egrinin Jakobiyeninin baz1 6zellikleri asagida verilmistir.
. dim(JX) =g (X egrisinin cinsi)
e K nmn her L cisim genislemesi i¢in J, (L) grubu, L ye genisleyen X
iizerinde, derecesi 0 olan bolen siniflarinin grubu ile kanonik olarak izomorftur.
e Eger X egrisinin cebirsel K say1 cismi lizerinde bir mod p < &, asal idealine
gore 1yi indirgenmesi varsa, J, in de 1yi indirgenmesi vardir (Manin, 2005, syf.
228-229).

e Kotii asallardan gelen faktorler thmal edilirse, X egrisinin L — serisinin, J,

Jakobiyen varyetesinin L — serisi ile cakistigi goriiliir.

Teorem 3.3.12. Herhangi bir X egrisi verilsin. i # j olmak tizere H, " H, =1, sartin1

saglayan H, <G altgruplari i¢in G=H U...UH, olacak sekilde G < Aut(X) sonlu

t

grubu olsun. O halde g :|G

, h,=|H,| ve J", J Jakobiyeninin m defa kendisi ile
carpimini gostermek lizere,
Ty )T ~ Ty xx Ty, (3.16)

izojeni bagmtist vardir (Kani ve Rosen, 1989).

G nin eslenik altgruplar1 ile ilgili bir sonu¢ kullanilarak bazi bolim

Jakobiyenlerini birlestiren 6nerme su sekildedir.

Onerme 3.3.13. H,ve H,, G nin altgruplar1 olmak iizere birbirlerinin eslenigi

olsunlar. O halde, X/H, = X/H, dir (Paulhus, 2007).

L, (s) serisinin meromorfik bir fonksiyon olarak verilmesi zor bir problemdir.
Ancak 6zel hallerde X egrisinin Jakobiyeni J, e ait L —serisi ile irtibatlandirilarak
acik ifadesi elde edilebilir. Bilindigi gibi,
V' =ax* +b (3.17)
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seklindeki biitiin egrilerde kompleks carpma vardir ve bdylece bu tip egrilerin L —
serisi, Grossenkarakter yardimiyla tarif edilen Hecke L —serisi vasitasiyla yazilabilir

(Weil, 1952, syf. 492).

Tanim 3.3.14. A, Adel halkasi, z indeks kiimesi K cisminin biitlin yerlerini

gostermek lizere, H K, c¢arpmmin alt halkasi olarak
VEZ

AXK{a(av)e I1k.

ey
seklinde tanimlanir (Manin, 2005, syf. 147).

o, € @ sonlu sayida, v harig:} (3.18)

Tamim 3.3.15. A, adel halkasmin tersinir elemanlarmin A, topolojik grubuna, K

cisminin idel grubu denir (Manin, 2005, syf. 149).

Tanim 3.3.16. l//(K *) =1 olacak sekildeki y : A, — C" siirekli homomorfizmasina K

say1 cismi lizerinde Grossenkarakter denir (Silverman, 1994, syf. 165).

Tamim 3.3.17. Bir v Grossenkarakterine karsilik gelen Hecke L — serisi, y : A, — C

Grossenkarakter olmak lUzere

L(s,(//):H(l—l//(p)N(p)_s)_] (3.19)

P

seklinde, Euler ¢carpimiyla tanimlanir (Silverman, 1994, syf.173).
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4. ARASTIRMA SONUCLARI VE TARTISMA

4.1. X ... Hipereliptik Egrisinin Otomorfizma Grubu

Hipereliptik egriler, aritmetik ve geometrik problemlerle ilgili calismalarda 6zel

bir yer tutmaktadir. Bunun nedeni, afin diizlemde
yi=f(x) (4.1)
seklinde ifade edilen bu egrilerin elementer tekniklerle incelenmesinin miimkiin

olmasidir. Ozellikle, otomorfizma gruplarinin birden fazla eleman i¢ermesi durumu,

calismalarda kolaylik saglamaktadir. Asagida ilk olarak, )_(n’a egrisinin otomorfizma

grubu belirlenmistir. Literatiirde ¢esitli kaynaklarda yer alan bu sonug,
p:X,, > P (4.2)

cift Ortiisti kullanilarak farkli bir yoldan elde edilmistir.

. _ _ P
Onerme 4.1.1. a,bc K igin, n ¢ift ise X,ave X, ,, K[(éj cismi iizerinde, n
| a

N AT
tek ise K (—] ,(—j cismi tizerinde izomorftur.
a a

Ispat:
WV A_’M - A_’n,b

(x,)— ngy x,(%]% y] ¢

dontistimii tanimlansin. Bu doniisiim,

Y n
{(2] x} +b:bx +b
a a

_b x"+a (4.4)
(x" +a)
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oldugundan, iyi tanimhdir. Bu doniislim tersinir bir doniisimdir ve n ¢ift ise

N/ NAIRY .
K (—] iizerinde; n tek ise, K (—] ,(—j iizerinde tanimhidir. Oyleyse bu

a a a

dontistim bir izomorfizmadir. |

Onerme 4.1.2. indirgenmis otomorfizma grubu igin asagida verilen esitlik gegerlidir.

~

— | D, , nciftsayiise
{" SLSY 4.5)

Z,, ntek say1ise

Ispat:

Onerme 4.1.1. den ispat 6zel olarak X .1 €grisi izerinden yapilacaktir.

n ¢ift ise, o € G olsun. O halde, c Weierstrass noktalar1 permiitasyon olarak

etki eder. Diger taraftan o, 7, ile degismeli oldugundan, o nmn x koordinati
uzerindeki etkisi bir 7 € Aut([Pl) eleman1 belirler. 7, lineer kesir transformasyonu
|x|:1 1 kendine donstiiriir.  Boylece, 7 doniistimiiniin birim diski kendi tizerine

gotirdiigiini kabul edebiliriz. Simdi, n-genin @, kdse noktalar ile ilgili permiitasyon

etkisinin bir dénme oldugunu sdylemek zor degildir. Oyleyse a(z)=— ve b(z)=¢,z
4

olmak tizere,

o € Aut(n—gen)=D, =<a,b:a2 =b" =(ab)2> (4.6)
dir. Bu durumda, G< D, elde edilir. G=D, oldugunu ispatlamak igin, her 4 e D,
elemaninin Aut(A_’n) icinde bir o, elemani tanimladigini kontrol etmek gerekir. Bu

durumda,

c,: X, > X,

(x.y) = (hx, )
seklindedir. Boylece,
D,-G

h-o 4.7
h
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bulunur. Bu tanimm dogru oldugunu gostermek i¢in, sadece D, kiimesinin tanimini
kullanarak a ve b elemanlarmi kontrol etmek yeterlidir. Buna gore, a,b e D, igin,
(x,y)e )?n’] olmak iizere,

(b(x)) +1=(&x)" +1=x"+1=)" (4.8)

olup, (b(x),y) e X,, dir.

(a(x))n+1:(l]n LS

X x
xn
y 2
(=) - @9)
x
oldugundan (a(x) ,y) e X,, dir.
Boylece,
G=D, (4.10)
dir.

n nin tek olmasi durumu, 7 nin ¢ift olmas1 durumuyla benzerdir. Oyleyse,
G<D, 4.11)

dir. Burada, b € D, i¢in, (x,y) € )_(n’] olmak iizere,

(b(x)) +1=(&x)" +1=x"+1=)" (4.12)

dir. Fakat a € D, i¢in,

olup, bu nokta bir Weierstrass noktast olmadigindan, (a(x) , y) g X .1 dir. Bu durumda,

aeD,, G boliim grubunun bir eleman: degildir. Boylece,

G=(b)=Z (4.14)

n

bulunur. -

Hatirlatma 4.1.3. Indirgenmis otomorfizma gruplar1 farkli oldugundan i # j ise, X,

ia

ve )_(j’b ler izomorf degildirler.
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4.2. X, , Egrisi ve Lang Tahmini

Lang’in 6rtii yarigapi ile ilgili tahmini X ..o €grileri i¢in incelenirken Wolfart’a

ait olan ve Teorem 3.2.6. de verilen sonu¢ kullanilmistir. Bunun icin oncelikle egri
iizerinde bir Belyi fonksiyonunun tanimli oldugu ve dolayisiyla egrinin Belyi yiizeyi

oldugu gosterilmistir.

Onerme 4.2.1. X n.a €Erisi bir Belyi yiizeyidir.
ispat: Onerme 4.1.1. den dolay1 ispat1 X .1 l¢in yapmak yeterlidir.
n sayisinin tek oldugu durumlarda:
b:X, , —>X,

’ ’ (4.15)
(x’y) —> (énx’y)

doniisiimiiniin Aut()?n,_l) nin bir eleman1 oldugu Onerme 4.1.2. de ifade edilmisti. O
halde, <b> =H, Aut()?n,_l) nin mertebesi 7 olan alt grubu olup, buradan

fiX, —>)?n’_]/H

4.16
(x2)—>[x] (416

holomorfik doniisimii elde edilir. Bu doniisim, A etkisinin 1ilgili yoriingesinin
uzunlugu n den kiiciikse, bir nokta iizerinde dallanir. Boylece f doniislimiiniin [x, y]
izerinde dallanmasi i¢in gerek ve yeter sart baz1 /,¢ sayilari i¢in s =/—¢ olmak iizere,
b (x,y)=b'(x.y) o (Exy)=(Exy)

ofx=£x

> Ex=x (4.17)
olmasidir. O halde, x=0 veya x =00 dur (x'=0).
Eger x=0 ise, y* =—1 dir. Eger, x =00 ise, y=o0 dur (' =0). Oyleyse / doniisiimii
[0,i],[0,—i],%0 olmak iizere ii¢ noktada dallanir. Bu dniisiim, A“f(/\_fn,_l) nin bir alt

grubunun etkisi tarafindan uyarildigindan normal ortiidiir.

X el / H nin cinsini belirlemek i¢in
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(0,i)=b(0,i) =b*(0,i) =..=b""(0,i)
(0,—i)=b(0,-i)=b>(0,—i)=...=b""(0,i) (4.18)
(0,0) =b(,68) =7 (0,00) =... = b7 (,0)

f doniistimiiniin ii¢ noktada dallandig1r gozlemlenir. Bu yiizden Riemann-Hurwitz

formulii yardimyla,
2(”7_1]—2:n(2g—2)+3(n—1) (4.19)

bulunur ve buradan g=0 oldugu goriiliir. Boylece f doniisiimii, )_(n’_] iizerinde bir

Belyi fonksiyonudur.

n sayisiin ¢ift say1 oldugu durumlarda:

b:X, —>X, (420)
(x.3) > (&%)

ve

T, X, >X, 421)
(x.3) = (x,-»)

doniigiimlerinin Aut(A_’ n,_l) nin elemanlar1 oldugunu Onerme 4.1.2. den hatirlayalim. O

halde, <b,r>:H, Aut(f _1) nin mertebesi 2n olan bir alt grubudur. 7,b=>0r, ve

n,

r} =b" =1 oldugundan,

H | =2n dir. Buradan

X  —>X /H
X > Xon/ (4.22)
(x,9)=>[xy]
holomorfik bir déniisim bulunur. f déniisiimiiniin [x,y] iizerinde dallanmasi igin

gerek ve yeter sart

(&x,y)=(&x,y) (4.23)
veya

(&x.y)=(&x.-y) (4.24)
olmasidir.

Eger (fix,y) = (é,jx,y) o (x,y)= (§jx,y) ise, x=0 veya x =00 dur.

Eger x=0 ise, y=i veya y=—i dir. Fakat [0,i]=[0,—i] dir.
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Eger (x'=0 olacak sekilde) x=o0 ise, ()'==%1 olacak sekilde) y =100 dur. Fakat
[00, +o0] = [o0,—00] dur.

Eger (éjx,y):(;:x,—y) ise, y=0 dir. y=0 oldugundan, k£ =1,2,...,n olmak iizere
x=¢F dir. Boylece f doniisiimii [0,i], [o0,00] ve [£,,0] noktalari olmak iizere 3
noktada dallanir.

f:X,_ —>X,_[H (4.25)

normal bir ortudir.

Riemann-Hurwitz formiilii yardimyla,

2(}1;2]—2=2n(2g—2)+2(n—1)+2(n_1)+n ve g =0 bulunur.

Béylece f doniisiimiiniin X .1 uzerinde bir Belyi fonksiyonu oldugu goriiliir. ]

Onerme 4.2.2. X, , erisinin otomorfizma grubu “biiyiiktiir”.
Ispat: Onerme 4.2.1. den )_(n,a egrisi bir Belyi ylizeyi olup Teorem 3.2.6. geregi

Aut(fn,a) “biiyiik” olmak sartini saglar. m
Sonu¢ 4.2.3. CD(O), S Belyi doniistimiiniin bir dallanma noktas1 olacak sekilde
normalize edilmis

®:D(r)—>X,, (4.26)
ortii doniisiimleri olmak tizere, Lang tahmini X ».o 1610 gegerlidir.

Ispat: Wolfart ve Wiistholz (1985)’un galismasinda “Satz 5” de verilen sonug
uygulandiginda Sonug 4.2.3. elde edilir. ]

Ornek 4.2.4. Wolfart (1984)’1n ¢alismasinda “Satz 2” de

¥ =w’, y=ut+V (4.27)
seklinde ifade edilen egriler igin verilen sonug, v=1 almarak y* =x°+1 egrisine
uygulanir ve

Q:D(r)—>X,, (4.28)

normalize edilmis Ortii donilisiimiinde » yarigapinin transandant bir say1 oldugu goriiliir.
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4.3. L, (s) Uzerine Hatirlatmalar

Oncelikle, y*=x"+a egri denkleminin bir p asal idealine gore
indirgenmesinin singiiler oldugu tiim durumlar1 inceleyelim.
*  pla ve n=2m ise, egri denklemi igin
2 2m
y =x
y2 _ (xm )2 — 0
(y—x"’)(y+x'")=0 (4.29)
oldugundan, bu durumda egri iki indirgenemez, diizgiin egrinin kesismesi seklinde
singiiler egridir.

» peZ, plp ve b=a(modp) olacak sekilde p|n ise, |(9K/p|=‘Fq‘:q:pr

olmak iizere b? =b(mod p) kullanilarak y* =x" +b” elde edilir. Denklemi
diizenlersek:
y = (x'" + b )p (4.30)

elde edilir ki, bu da singiiler bir egridir.

y* =x" +a seklindeki hipereliptik egrilerin L — serileri,

v, ()= 11 Lz, (s) T Lz (5) 431)

iyi asallar kotii asallar

L

seklindedir.

Kompleks carpmaya sahip bir egrinin Jakobiyeninin L — serisinin,
Grossenkarakter ile tanimlanan L —serisi oldugu bilinmektedir. Dolayisiyla, Silverman
(1994) daki Teorem 10.3 e gore, y Grossenkarakteri yardimiyla yazilan L(s,y)
serisinin kompleks diizlem boyunca biitiin s degerleri i¢in bir analitik genislemesi
vardir.

p tek bir asal say1 olmak iizere, n=2p i¢in Ly (s) nin L—serisini daha
disiik dereceli egrilerin L — serilerinin c¢arpimi seklinde yazmak i¢in Jakobiyenin

ayrismasi kullanilmistir. Bu amacla, Paulhus (2007)’un tekniklerinden yararlanilmistir.



22

Oncelikle p tek asal olmak iizere, n=2p durumu igin, X -1 €grisinin
Jakobiyeninin daha kiigiik cinsli egrilerin Jakobiyenlerinin ¢arpimi olacak sekilde nasil
ayristigii gézlemleyelim. Bu durumu 6rneklerle inceleyecegiz. Sonrasinda bu sonuglar

g=2,3,4i¢in X .1 €grisinin L — serisini belirlemek i¢in kullanilacaktir.
e n=6igin, X, ,:»" =x"—1 egrisinin otomorfizma gruplar 7, (x, ) =(x,—y) ve
o(x,y)=(-x,y) olsunlar. Burada Krh>‘ = Ka}‘ =2 olup Teorem 3.3.12. geregi,

J. xJ?2 ~J

Xo 1 )?6.—I/<Th ,G> )?6,—1/<711>

xJ

Xg1/(0) xJ

%, . /(00) (4.32)

elde edilir. 7,0 ve o ayni eslenik smifindan olduklarindan, )_(6’_] /<rh0'> ve )_(6’_] /<0'>
izomorftur. Ayrica )_(6’_] /<rh> egrisinin cinsi, 7, otomorfizmasinin hipereliptik bir

involusyon olmasindan dolayr 0 oldugundan, X /(c):3*=x’-1 seklinde verilen

eliptik egri olmak iizere,

J, =T (4.33)

X, Xe1/(o)
bulunur. Oyleyse, X, 61 €grisinin L —serisi, y* =x"—1 eliptik egrisinin L — serisinin
karesidir. C:y”=x"—1 eliptik egrisinin L —serisi, (), tamsayilar halkasinin bir p
asal, p|—6 ve p=(r), 7 =2(mod3) olmak iizere

Lyo(s)= T] (1+@6;THF }_] (4.34)

el asal T
7=2(mod3)

seklindedir. Oyleyse,

2

L, (s)=| TI (1{?17;‘-%-3}_] (4.35)

ey asal T
7=2(mod3)

ve C egrisinin j—invaryantt 0 oldugundan ve bundan dolay1r kompleks ¢arpmaya
sahip oldugundan s nin her degeri i¢in seri yakisaktir.

e n=28 icin, cinsi g =3 olan )_(8’_] :y> =x* —1 egrisinin indirgenmis otomorfizma
grubu
Aut(X,_,)/(z,)= D, (4.36)

dir. O halde,
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Aut(X, )=V, = <a,b ra*,b*,(ab)’ ,(a']b)2> (4.37)
olup,

2
i ")) ) 439

X 7 X[ (@00t

bulunur. Sag taraftaki bolim egrilerinin cinsi 1 oldugundan, J %, . in U¢ tane eliptik

egriye izojenik olmasi gerekir. a’b ve a’h’, Vi in ayn1 eslenik sinifinda olduklarindan,
X s €grisinin bolimlerinden meydana gelen bu egrilerin her biri izojeniktir. Boylece,

J-

v, ~El%E, (4.39)
b* otomorfizmasiyla elde edilen boliim egrisi E,, y° =x* -1 seklinde, cinsi 1 olan
y* =x’ +4x egrisine izomorf olan bir egridir. Bu egrinin j —invaryant1 1728 dir. a’b
otomorfizmasiyla bolimiinden elde edilen E, eliptik egrisi y* =x"-4¢/x* —2i
seklinde olup j—invaryant1 8000 dir (Paulhus, 2007).

)_(8’_] egrisinin L —serisi, £, egrisinin L — serisinin karesi ve E, egrisinin L —
serisinin ¢arpimina esittir. £, ve E, egrilerinin her ikisinde de kompleks ¢arpma olup,
bu durumda X s €grisinin L — serisi Grossenkarakter kullanilarak yazilabilir. Oyleyse,
her s degeri i¢in bu seri yakinsaktir.

e n=10 igin, cinsi g=4 olan X,,_ :3’ =x" -1 egrisinin otomorfizma grubu

V., aizomorftur. Teorem 3.3.12., a’ ve ab tarafindan iiretilen alt gruba uygulanarak

Jy XJ% 25~J* zXJ* SXJ* 2,5
Tt X g 8 ™ B ) B 5 B ()

elde edilir. @’ otomorfizmas1 hipereliptik involusyon oldugundan, X o1 / <a2> nin cinsi

(4.40)

0 dir. a’b” ve b’ aym eslenik smifindan olduklarmdan X, | / <b5 > ve X, <a2b5 >

egrileri de izomorftur. Oyleyse, (4.40) den X 101 €grisinin Jakobiyeninin cinsi 2 olan
bir egrinin Jakobiyeninin karesine izojenik oldugu goriiliir. Cinsi 2 olan bu egri,
otomorfizma grubu Z,, olan y*> =x’ —1 egrisine izomorftur.

_ (4.41)

)?IO,—I XS,—I

dir (Paulhus, 2007).
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Bu durumda, X, 101 €8risinin L — serisi, X 5y €grisinin L —serisinin Kkaresine
esittir. X s egrisinde kompleks carpma oldugundan L)?m,_l (s) , Grossenkarakter
kullanilarak yazilabilir ve bundan dolay1 her s degeri icin seri yakinsaktir.

Genel olarak Aut(fzp,a) i¢in, 7,(x,y)=(x,—y)ve o(x,y)=(-x,)olacak
sekilde 7, ve o otomorfizmalar1 olup Teorem 3.3.12. ya gore,

~J

)?217,11/<T/r>

J. xJ? (4.42)

Xy, XZp,a/<Th’G>

XI5 a2

sz’a/<71,z7>

elde edilir. 7,0 ve o ayn eslenik smifinda olduklarmdan ve X, pua /<rh> ile

X, v / <rh,0'> nin cinsleri 0 oldugundan

J)?zpva -~ J)z?zpva/<o_> (4.43)
dir. p tek asali igin, X, a / <0'> agik olarak X . Olmak lizere,
g, - J: (4.44)

seklindedir. Oyleyse, X 2pa DN L —serisi, X o N L —serisinin karesidir.

a

Ornek 4.3.1. E:)* = x’ +a seklinde verilen eliptik egrisi K = Q(\/—3) cismi lizerinde
O, tamsayilar halkasi olmak tizere kompleks ¢arpmaya sahip bir eliptik egri olsun.
p €O, asal elemani, p{6a seklinde bir asal say1 olsun. ¢J, tamsayilar halkasi bir esas

ideal bolgesi oldugundan, p =(7) olacak sekilde 7 =2(mod3) olmak iizere p asali

tarafindan tretilen bir tek 7 vardir.

a(Nép—l)/é E(gj (modﬂ) (4.45)

T
denklemini saglayan (gj , birimin 6. kokii olan 6. dereceden kalan sembolii olmak
T Je

lizere, modp ye gore indirgenmis eliptik egrinin F, cismi Uzerindeki rasyonel

noktalarin sayis1
~ 4 4
#E(Fp):ng+l+(—a] ﬂ+(—“j 7 (4.46)
T Je T Je

sekilde olup bu denklem Jakobi toplamlar1 kullanilarak Ireland ve Rosen (1998)’da

gosterilmistir.  Grossenkarakter — yardimiyla  tarif  edilen L —serisi, ya
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4a

4 . . .
Wik (p)= —(—a] m yada y..(p)= —(—] 7 seklinde verilir. Grossenkarakterin
n T )

6

dzelliklerinden, p=(7) ve 7 =2(mod3) olmak iizere, K nmn en azindan derecesi 1

olan biitiin p asallari i¢in, v, (p)= —(4—62] 7 oldugu goriiliir. v nin siirekliliginden
T Jg

ve (—j icin kalanlar kanunundan, bu formiiliin biitiin p asallar1 i¢in gecerli oldugu
T s

goriiliir. Kompleks ¢arpmaya sahip eliptik bir egrinin Gréssenkarakter kullanilarak L —

serisinin yazilmasi durumundan ve N('; n =nr olup, kalan sembolleri kullanilarak, K

ve Q cisimleri iizerindeki £ eliptik egrisinin L — serisi,

-1 _— -1
4 4
L (s)= T] (1{7‘1] 71”7?”] x[1+(7“] ﬂ-Sﬁ‘—S] (4.47)
mel asal 6 6

7=2(mod3)

LE/Q(S): H (14_(4_51] 71']_"‘7?_3] (4.48)

el asal T
7=2(mod3)

seklindedir (Silverman, 1994, syf. 177-178).
O halde, X 6.0 €EISININ L —serisi, £: y* =x’ +a egrisinin L — serisinin karesine

esit olup,

by )= (tea (O | TL (1) stam1"] (39

el asal
7=2(mod3)

bulunur.
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5. SONUCLAR VE ONERILER

5.1 Sonuclar

Hipereliptik egrilerin 6zel bir simfini teskil eden y*=f(x)=][(x-x)

i=1
seklindeki egrilerin aritmetik Ozellikleri, egrinin otomorfizma grubu kullanilarak
calistlmistir. Indirgenmis otomorfizma grubu tespit edilerek, )_(n’a egrisinin bir Belyi
yiizeyi oldugu gosterilmistir. Egrinin otomorfizma grubunun “biiyiik” olmasi ile Belyi
fonksiyonu arasindaki iliski incelenmistir. Bu egrilerin, Lang’m 0Ortii yaricapi ile ilgili
tahminini 6zel bir ortii doniistimii i¢in dogruladig gosterilmistir. L, (s) nin belirgin bir
tanimini, daha kiiciik cinsli egrilerin L —serileri yardimiyla yapmak icin, 6zel

otomorfizmalarin meydana getirdigi Jakobiyen ayrigsmasinin nasil oldugu gosterilmistir.

5.2 Oneriler

Elde edilen sonuglarin daha genel hipereliptik egrilere genellemesi yapilabilir.
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