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ABSTRACT

SCATTERING FROM SINGULAR POTENTIALS

In this thesis, some well-known mathematical methods are applied to a new set
of problems as some bound state and scattering properties of singular potentials are
investigated quantum mechanically. Firstly, we work on the hybrid singular potential
systems consisting of circular and spherical delta potentials with additional point-
wise delta potentials which are outside of these circle and sphere in two and three
dimensional spaces. We also investigate the cases when there is a small deformation
in these shells in the normal direction. We apply the cut-off regularization method to
regularize the ill-defined Hamiltonian and perform a convenient renormalization process
for the singularity occurring in the self-interaction terms of the point defects. We show
that the first order correction to the bound state energies has a simple geometric
interpretation when the circle and the sphere that support the delta potentials are
slightly deformed. Secondly, we give a detailed study of scattering from linear Dirac-
delta potentials in two dimensions which are supported on infinitely long parallel lines
normal to the scattering axis. We also explore how the presence of these lines affect the
geometric scattering. We take the asymptotically flat Gaussian bump as a perturbation
to the line defects system and we calculate the scattering amplitude. We give plots
for one or two line defects and show that the presence of line defects, especially when
the bump is located between the defects, amplifies the geometric scattering effects. We
give a brief expression for the scattering amplitude for the case combining a finite size
linear defect and a point defect. Lastly, we introduce a distributional direct method
which is performed in momentum space to perform the bound and scattering state
analysis of the spherical and circular delta potentials. The results are compatible with

the standard partial wave approach.



OZET

TEKIL POTANSIYELLERDEN SACILMA

Bu tezde, bazi bilinen matematiksel yontemler bir dizi yeni probleme uygulan-
migtir ve kuantum mekanigi gercevesinde, tekil potansiyeller i¢in bagh durum ve sagil-
malarin bazi 6zellikleri incelenmistir. Ilk olarak, iki ve ii¢ boyutlu reel uzayda, cem-
bersel ve kiiresel delta potansiyeller ile bu ¢ember ve kiirenin diginda bulunan birer nok-
tasal delta potansiyelden olusan hibrid yapida potansiyellere bakilmigtir. Tekil potan-
sivellerle yazilan Hamiltonyenler eksik tanimli oldugundan, kesme noktasi regiilariza-
syonu kullanilmigtir.  Ayrica noktasal kusurlarim igsel etkilesim terimlerindeki tekil-
liklere uygun bir renormalizasyon da uygulanmigtir. Delta potansiyellerini ifade eden
¢emberde ve kiirede kiigiik gekil bozukluklar: olmasi durumunda, bagh durum ener-
jilerindeki birinci mertebeden degisimin basit bir geometrik yorumunun oldugu gos-
terilmistir. Ikincil olarak, goreli olmayan bir skaler parcacigin, sacilma eksenine dik,
cizgisel delta potansiyelleri ile ifade edilen sonsuz uzunlukta paralel ¢izgisel kusurlarin
var oldugu durumda Gaussiyen bir tiimsekten geometrik sa¢ilma kavrami ayrintili bir
bi¢gimde incelenmigtir. Gauss tiimsegi bir tedirgeme olarak alinmig, sagilma genligi
hesaplar1 yapilmigtir. Bir ve iki tane gizgisel kusurun grafikleri ¢izdirilmigtir ve ¢izgisel
kusurlarin, o6zellikle de tiimsek iki ¢izginin ortasindayken, geometrik sagilma etkilerini
arttirdigr gosterilmistir. Sonlu boyda bir ¢izgisel kusurla noktasal kusuru birlegtiren
durum ig¢in bir sagilma genligi ifadesi yazilmigtir. Son olarak, yine gember ve kiire-
sel delta potansiyeller i¢in baglh durumlar ve diisiik enerjili sagilmalar1 ¢6zmek tizere,
genellestirilmis fonksiyonlarin ve momentum uzayinin kullanildigi dogrudan bir yontem

geligtirilmigtir. Bulunan sonugclar, bilinen kismi dalga analizi sonuglar ile uyumludur.
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1. INTRODUCTION

Owing to works of great many scientists, 20th century had started with a crucial
improvement of our understanding of nature. Starting from the end of the 1900’s, as
physicists became more and more interested in essence of light and the dynamics of
smaller constituents of matter such as atoms, molecules (and even subatomic struc-
tures) as well as peculiar inter-connections between all these. At the same time, there
were many recent experimental results and observations that could not be explained by
the existing theories. Both these newly observed phenomena and evolving theoretical
suggestions gave birth to the quantum theory. As a result of this, a natural division
of the problems in physics as classical and quantum mechanical appeared. Hertz’s
observation of the photoelectric effect and Einstein’s theoretical interpretations of this
occurrence led to the ideas about the quantization of the energy of the electromagnetic
radiation. This work coincided with Planck’s famous formula of black body radiation
when he introduced Planck’s constant, which could be considered as a signature of
quantum phenomena, for the first time. Thus by the beginning of 20th century, the
nature of light was identified very differently than before as it displayed essentially
the particle characteristics in place of the wave characteristics within the frame of a
new physical concept, called photon. The discovery of the nucleus, in other words,
Rutherford’s experiment in 1907 with a— particles sent to a thin gold foil resulted in
the detection of unexpected scattering angles of the a— particles and brought a much
clearer picture of the atomic model. Compton, who was one of the first scientists who
used the term photon, discovered that the wavelength of a photon scattered from a
charged particle such as an electron was increased, in the same way, the energy of the
photon was reduced. This discovery was another validation of the quantum mechanical
interpretation of light which claims that there are discrete energy levels of light and
also led to the wave-particle duality. Meanwhile, Bohr’s examination of the discrete
photon energy ideas of Planck and Einstein, gave rise to Bohr atom model which ex-
plained in some sense the stability of the atom and relation between the energy of the

electrons and their orbital radius.



Mathematical progress in physics in the beginning of the 1900s also supported the
construction of the quantum theory. In 1923, de Broglie argued that if light quanta is a
good explanation to recent observations, could a subatomic particle also be considered
as a wave? de Broglie’s suggestion is confirmed with Davisson-Germer experiment,
which is the observation of the diffraction of electrons by scattering from crystals.
This suggestion was an introduction to the wave mechanics. Schrodinger contributed
the wave mechanics by writing the famous Schrodinger equation to establish the rela-
tion between the behaviour of the wave function which describes the particle and the
physical quantities such as the potential and Hamiltonian that describe the mechanical
properties of the system. A wave function is not an observable quantity and Heisenberg
argued that a theory should be conceivable in terms of observable entities. Heisenberg’s
studies on the relation between the energy states of the atom and the frequency of the
atomic radiation led to one of the most important perceptions in quantum mechan-
ics: uncertainty relation. He found out that some pairs of physical properties of the
subatomic nature can not be observed simultaneously, unlike in classical mechanics.
Born confirmed that Heisenberg’s formulae about observables can be recast into the
matrix formulation and using this idea Jordan and Born built up the matrix mechan-
ics accordingly. Additionally, Dirac depicted an abstract formulation combining the
matrix and wave mechanics. His advantageous bra-ket notation made the upcoming

challenging calculations of quantum mechanics more clear and extendable [1].

Understanding the nature of the quantum mechanical object is essentially based
on the results obtained from its spectroscopic analysis. This is inherently the main
reason why the scattering concept is a very important tool of quantum mechanics.
Spectroscopic data is basically obtained from the collision of two objects. The target
particles enter the analytic calculations as potentials and an energy spectrum that can
be used to describe both parties is observed from this collision [2]. However, the word
“scattering” is more convenient to use instead of “collision” since the solutions of the
dynamic equations of the scattered substance have a different characteristic than in
the classical case. Differing from a classical collision, in quantum scattering, there are

two cases, which are the bound and the scattering states, depending on whether the



scattered particle’s energy is greater or smaller than height of the scattering potential
respectively. In addition to spectroscopy as an experimental scattering application,
the high energy colliders are important facilities which are built up with the principles
of scattering and very useful sources of information to verify the answers reached in

nuclear and particle physics.

Theoretical aspects of the physical process of scattering is mathematically well-
developed and today is usually referred to as scattering theory. To obtain a physically
meaningful scattering solution, the scattering potential should have some mathematical
properties. For example, a spherically symmetric potential V' (r) should go to zero as r
goes to infinity and this convergence must be faster than the order of r—3 [3]. On the
other hand, the potentials which go to infinity faster than the order of r—3/2 as r goes
to zero are typically called singular potentials [3]. These potentials are the main con-
cern of this thesis. There are several mathematical concepts used by physicists while
dealing with scattering such as the spectral theory of operators. As the solution of the
scattering problem is usually decomposed into incoming and outgoing waves, any in-
coming wave in a particular state leads to a superposition of all possible outgoing states
multiplied with some coefficients. This transformation to the outgoing states define
the S—matrix [1]. S—matrix can be considered as an important instrument to describe
and solve many scattering problems. Green’s operator, better known as ’resolvent’ in
mathematical literature [3], is another essential tool adopted to solve scattering ex-
amples especially with singularities [1,4] and construct perturbative solutions for some
cases. The fundamental information about the scattering is contained in the T'—matrix
which basically describes the transition of the scattered particle between two states.
It also can be portrayed as an operator. Combining 7'—matrix with the resolvent for

singular cases is one way to reach to the Lippmann-Schwinger equation [3,5].

Scattering theory of quantum mechanics has a wide area of mathematical appli-
cations. As one of the primary collections on scattering theory, authors give a broad
range of these applications especially for low velocities in [5] and led physicists to

write other various important books [6-10] after many remarkable mathematical de-



velopments. Scattering theory is also adopted in applied mathematics. For an early
example, being mathematicians, authors of [11] give the representation theory formu-

lation of scattering.

In this thesis, we work on the elastic scattering properties of non-relativistic scalar
particles. We mainly discuss the mathematical framework of the process. We produce
the energy spectrum for the bound and scattering states for each case and calculate
the wave function solutions and scattering amplitudes in two or three dimensions. As
mentioned before, a target in the scattering process enters the Hamiltonian of the
system as the potential term and it is sometimes called “scatterer”. The scatterers
in this thesis are described as Dirac-delta functions. Dirac-delta functions can also
be called as singular potentials and they are used to represent the point interactions
between particles. Point interactions are considered as exactly solvable models in quan-
tum mechanics and reader can find a comprehensive analysis of the spectral properties
and analytic structure of the exact solutions of such potentials in [12,13]. Singular
potentials are also implemented to demonstrate the inhomogeneities in the molecular
structure of the materials such as impurities or dislocations. Therefore, the Dirac-delta

potentials are also called as “defects” in some parts of this thesis.

Working with Hamiltonians described for a curved space is another important
field for many physicists such as [14-18]. Therefore, quantum scattering from singular
potentials in a curved space is another important application of scattering theory. This
application leads to studies on some models about the quantum theory of gravity which
is a very interesting subject for recent decades [19-25]. Also the recent interest towards
the superfluidity and superconductivity technologies gave rise to condensed matter
studies which chase the dynamics of electrons in an effectively curved surface. In [26],
the curvature in the geometry acts as a scattering potential. There is a wide formulation
of the geometric scattering of a scalar particle which moves on an asymptotically flat
curved surface in [27]. Since the electron gas considered in such a problem could have
some impurities in it, the combination of the geometric scattering and singular potential

scattering is a valuable issue to look at. In reference [28], the authors investigate



how the presence of several point defects would affect the scattering amplitude of the

geometric scattering.

As an elementary example of the special geometries of the singular potentials,
spherical delta potentials and their various applications are covered in many quantum
mechanics books [29-31]. One can find an explicit construction of the mathematics of
the delta shell potentials in reference [32]. When the support of the delta potential is
codimension two or three, the problem needs a renormalization. In [33,34], reader can
find the discussions on the renormalization of Hamiltonians consisting of delta poten-
tials. Authors of [32] also discuss the case of the presence of a point-wise delta potential
placed at the center of the spherical shell for [ = 0 case, in other words, where the
angular momentum is zero. Later on, these results are extended to more general cases
where the delta potential supports are taken as curves or surfaces [35-38]. The gener-
alizations to delta functions supported on curves and surfaces embedded in manifolds
are presented in the works [39,40]. Such circular/spherical singular interactions, con-
sidered to be models for circular/spherical quantum billiards are studied analytically
and numerically recently [41,42]. The solutions for delta shell interactions in higher di-
mensions are also developed in [43] by implementing the partial wave analysis method.
Small deformations in the geometry of the support of the delta potential, which are
also considered as perturbations, is also an interesting problem to look at [44], since
the area of the deformed part can affect the energy eigenvalues. Another aspect of
deformations in the singular potentials is studied in [45] for a planar potential which

is locally deformed.

Although, in general not easier, there are some cases when it is more efficient to
study the quantum mechanics in momentum space. In [46], authors give a solution to
scattering problem from singular potentials in momentum space. Both in this work

and [47], wave function solutions are found by a distributional approach.

The organization of this thesis is as follows. In chapter 2, we give the brief

introductory calculation of our published papers. We provide the derivations of some



results used throughout the thesis.

Chapter 3 is based on our recent work [48] that combines two chosen geometries
of singular potentials. We describe the singular interactions in the Hamiltonian as rank
one perturbations on Hilbert space. We solve the Schrodinger equations and construct
their bound state and scattering spectrum for the following interaction scenarios: A
circular and a point-wise delta potential outside of this circle, a spherical and a point-
wise delta potential outside of this sphere, a small deformation of the circular delta
potential in the normal direction, a small deformation of the spherical delta potential
in the normal direction. We give the geometric interpretation of the change in the
bound state energies because of this perturbation in the shells. Then in 3.5 and 3.6,
we combine the deformed shells with point-wise delta potentials and look for the per-
turbative change in the bound state energies, which are not included in a published

work.

In chapter 4, we give the calculations and demonstrations accomplished in [49]. In
this work, we search for the effect of a collection of parallel line defects on the geometric
scattering amplitude. The scattering calculations of a non-relativistic scalar particle
are grounded on the Lippmann-Schwinger equation. The first part of the problem
is considered on a plane and the potential is taken as a collection of parallel linear
delta functions. Next, we examine the scattering problem on an asymptotically flat
surface that is embedded in a three dimensional manifold and has a curvature which
is considered as a perturbation. We take the space curved locally as a Gaussian bump
and give the plots for the scattering cross section. In Appendix A, we give the details of
some of the necessary mathematical results. We also give a calculation of the scattering
amplitude of a system combining a point-wise defect and a short line defect which is

not vet published.

Finally, in chapter 5, the content of our work [50] is shared. We proposed a di-
rect method, which we do not analytically solve the differential equations, but solve the

states directly in momentum space, for the calculations of the bound states and scat-



tering from circular and spherical delta shell potentials at low energies. Different from
the common way of putting the boundary conditions in integrals implicitly, i.e. i€
prescription, we use the outgoing boundary conditions explicitly. To reach the scat-
tering solutions, wave functions in momentum space are interpreted as distributional

functions.



2. A BRIEF SUMMARY OF THE PRELIMINARY
CALCULATIONS

To demonstrate the simplest case in quantum mechanics, the goal is to get
the complete wave function v (z) with energy eigenvalue E for some particular time-
independent potential V' (z) in one dimension. To achieve this, we basically solve the

Schrodinger equation:

82
— (@) + V(@)h(z) = B(a) (2.0.1)
Here and throughout this thesis, we use units when o = 2m = 1. If we want to

write the general scattering solution satisfying the outgoing boundary condition, or

also called Sommerfeld radiation condition [31,51,52], we have

S k) = N <eik~r + £k, 6) 2, 0( 1 )) : (2.0.2)

n-1 i —_
rz r2
for r — oo, where f(k,0) is the scattering amplitude, N is a normalization constant

and n = 2,3 is the dimension of space.

When the potential V' is a singular function of x, we need some new techniques to
obtain the wave function. The concern of this thesis is Dirac-delta type singularities for
the potentials. Dirac-delta functions satisfy the equation 6(x —a)f(x) = d(x —a)f(a)
for any function f(x). Below, we will give a brief derivation of the mathematical
techniques used in this thesis to solve Schrodinger equations with such Dirac-delta

potentials.
2.1. Lippmann-Schwinger Equation and Green’s Operator
An important tool for solution of the scattering problem for a singular potential

is the use of Lippmann-Schwinger equation. To derive the expression for this equation,

we start by writing the Schrodinger equation for a general potential V' (r) and we define



the linear differential operator L as

(=V24+E) ¢(r) =V(r) ¢¥(r) . (2.1.1)
L

For an E value which is away from the spectrum L' exists. Acting L' operator from

left on both sides of the equation (2.1.1):
P(r) = L7V (r) ¢(r) . (2.1.2)
The integral kernel is denoted by G (r,r’|E), which satisfies:
(r| LL7' |r') = (V2 + E) Gy(r,'|E) =(r — 1) (2.1.3)

and L~! is the Green’s function of this L. The sub index zero here indicates the
free Green’s function. Also, Green’s function is widely known as resolvent in the
mathematical literature. When the potential is zero, V(r) = 0, Schrodinger equation
is also called as Helmholtz equation and the solution of this equation is called as a

homogeneous solution:

L o (t) =0 . (2.1.4)

It is known that solutions of Schrodinger equation are additive (in Euclidean space).

Hence, we get the expression below

P(r) = Yo, (r) + /Go(r,r’|E) V(') (x')d3r’ (2.1.5)

which is the integral form of the Lippmann-Schwinger equation. We will use this
equation substantially throughout this thesis. This expression obviously gives a series
solution for the wave function. To see this, one can insert the right hand side to replace

¢(r) in the integral:

(E) =y (1) + / Go (¥ | EYV (1 )y (P
[ [ Goleur|B) V) Golx' 17 8) VI (1) 8 +

The result of this iteration is called the Born series. In Lippmann-Schwinger equation,

we take only the first term of this series which is known as the first Born approxima-
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tion. As another useful form of it, the Lippmann-Schwinger equation can be written

abstractly as [53]

) = 16) + Go(E) V. |4) (2.1.6)

in ket notation, where ¢ is the homogeneous part of the solution.

2.2. Krein’s Formula and the Principal Matrix

Throughout this thesis, we use another mathematical approach to find the Green’s
operator exactly. From now on it will be called as the resolvent operator of the Dirac-
delta type singular interactions in terms of the free resolvent operator. This method is
known as Krein’s formula in literature [12,13,38]. Here, we state briefly this formula
in the form that is used in this thesis.

Let H; be a free Hamiltonian operator in Hilbert space, . The resolvent of this
operator is Ry(E) = (Hy,— E)~! where the energy value E is away from the spectrum.
If we add a potential term to this free Hamiltonian, being H = H;, — V, we solve the

inhomogenous Shrodinger equation below

(H—E)[¢) = |p) (2.2.1)

for a function p(r) = (r|p) € #, to find R(E)~!. Resolvent operator of this Hamilto-
nian, R(E), is simply (H — E)~!. We can rewrite (2.2.1) as

(Hy—V = E)[¢) =lp)

(Hy = E) |) =V [¢) =lp)
(Ho— E)"'(Hy — E) [¢) =(Hy — E)~" |p) + (Hy — E)"'V [¢))
= [¢) =Ro(E) |p) + Bo(E)V ) (2.2.2)

Let us now specialize to delta type potentials. For this purpose we first introduce
a regularized form expressed as finite rank perturbation which means defining the
potential as a projection operator that that has a well-defined action on the vectors on

the Hilbert space. We can express the singular potential consisting of N Dirac-delta
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potentials as

v=> 17 ) (2:2.3)

=1

where \; being the positive and real interaction strength, |f;) = \/A;|f;) and |f;) is
an integrable function which goes to delta functions in the short distance limit. Hence
they describe the regularized form of the defects. Rewriting equation (2.2.2),

N

() =Ro(E) |p) + Ro(E) Y |f) (1) (2.2.4)

J=1

we end up with this expression. We need to project this equation onto ( fz| to obtain a

self-consistent equation

(fil) = (il Ro(E) |p) + ) (il Ro(E) |F;) (f; 1) (2.2.5)

Jj=1

and we separate the ¢ = j term since this term may lead to a divergence in the final

N
(1= (B Ro(B) 1F) ) (Filo) = D (Tl Ro(E)IF) (Filud = (B Ro(E) |}~ (2.2.6)
i#j=1

At this point, introduce the principal matrix, P as

~ 1_<fi|Ro<E>|fi> =7,
®;(E) = . . (2.2.7)
—(fil Ro(E) |fJ> i FJ
With the help of this operator, we can write equation (2.2.2) in a more compact form
as:
N ~
> @y(E) (File) = (FilRo(B)lp) - (2.2.8)
7j=1
Here, we assume that we are able to render the possible divergences of some of the
elements to well-defined expressions in principal matrix (in the proceeding section, we

will clarify this matter in detail) and the operator is invertible. Therefore, we write
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the solution in terms of this inverted operator as:

N

) =RyE) ) + RolB) 3 1F) (37(8)) (Bire(Bl) (220)

Now we put [1)) expression in equation (2.2.1) in terms of the general resolvent operator

back in the equation (2.2.9),

N ~
) = (= E) o) <o (B) o)+ By . 1, (8 1®) direl

(2.2.10)
and finally p being an arbitrary element in Hilbert space, we obtain
il ~ ~ ~
R(E) = Ry(E) + Ro(E) 3 IF) (¢—1<E>) (F| Bo(E) - (22.11)
— »

To go back and see the explicit dependence of this expression on the interaction
strength, we basically write the second term of the right hand side of the equation
(2.2.11) in terms of the trace of a matrix with operator entries as

1R () ) =me(Fi) 2212

1,5=1

where the F matrix is taken as ﬁij = | ﬁ) ( f]| Now we define a diagonal matrix as

= \/A; 9;; to make the decomposition F = DFD. For example, for N = 2,

( MU L VAR (ol
AN ) (R Aalfa) (ol

_ (W_ 0 ) (|f1> (1) ) (W 0 ) 22.13)
0 V&) \IRNAL 1R Vi

we reach to the regular form of the matrix F;; = |f:) <fj|, i.e., in a form which is
independent of the interaction strength. Now we can apply this relation to the matrix
form of the inverse of the principal matrix as D®'D = ! and multiplying both
sides with proper inverse operators we get &1 = D1¢-1D1. Then we can write

Tr(F&~Y) = Tr(DF DD-1®1D"1). As we can always change the order of the ma-
1

trices under trace operation, we reach to the equity Tr(F® 1) = Tr(F®1). So we
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can isolate the F-matrix from the interaction strengths and import it in the relation

between the forms of the principal matrix as (i)ij = /AP

;@;;- Finally, we write the ¢

matrix in terms of the interaction strengths explicitly as

CI)ij(E) _ X, <fi‘RO(E)|fi> =] (2'2'14)

—(filRo(E)f5) i
and obtain the final form of the equation (2.2.11) as below
N

R(E) = Ry(B)+ Ro(E) 3 1) ((8)) (61 R(E) (2:2.15)

ij=1 ij

Following these, in equation (2.2.9) taking Ry(F) |p) = |¢), a general wave function

can be written as

N
) = I+ RE) 15 (27(8)) (6l (2.2.16)

i,5=1 ij

These are two expressions that we use repeatedly in our applications henceforward.

It is well-known in scattering theory that the essential information is contained

in the T—matrix and it satisfies the following exact equation [3]
R = RO + RO T RO . (2217)

Comparing the well-known scattering solution in (2.0.2) with the Lippmann-Schwinger
equation above, we see that the scattering amplitude can also be written in terms of

T(FE), in two dimensions as

F(K k) = —i\/%(kﬂT(Eﬂk) , (2.2.18)

where |k) is the wave vector. Here, we exclude Vi factor, since the plane wave expansion
in two dimensions brings the phase factor ¢*™* also [54]. T(E) relates to the principal

matrix as below

1(5) =~ 3 I)|e®)] Ul (2:2.19
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2.3. Regularization of the Hamiltonians and Renormalization

The interactions defined by the singular potentials make the Hamiltonian ill-
defined since the resulting states after interaction will not remain in the Hilbert space
of the free Hamiltonian. Additionally, it is well-known in literature that renormaliza-
tion is needed (see e.g., [33,34] for the point interactions in two and three dimensions)
if the support of the interaction is codimension two or three. Therefore, as the prin-
cipal matrix assumed to be invertible, we need to regularize and possibly renormalize
the Hamiltonian when we are dealing with singular interactions. One method to reg-
ularize these types of ill-defined Hamiltonians is considered in our recent work [48].
In this approach, the interaction potentials are defined as finite rank projections onto
Hilbert space first. Then, one can write the regularized resolvent operators associated
with these regularized Hamiltonians. After that, considering the strong limit of these
regularized resolvents, i.e. the ¢ — 0 limit, where € is the regularization parameter,
one can then remove the regularization parameter. In this work, regularization does
not guarantee the self-adjointness, so we also show the self-adjointness of the resolvent
operator corresponding to these limits. If there is also a singularity codimension two
or three, to renormalize the divergent elements of the principal matrix, we need to
choose the interaction strengths as functions of the regularization parameter such that

the limit converges. This choice is called renormalization in that case.

Here, we give another regularization method, the cut-off regularization construc-
tion used in our paper [49] briefly. Since the derivations for the other cases are es-
sentially similar, only the structure of the regularization and renormalization of the

circular and point-point term of the principal matrix is derived in detail.

Let us consider the case when there is only one point defect at position a in the

system, i.e., the singular term of the principal matrix in two dimensions. The divergent
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part of the first diagonal term of the principal matrix is [3]
@lRy(Ea) = [ [ (alp) BlRS (E)p') (9]a) a0 @2
¢ia(p—p’) BB o d 2y
—//Wﬁﬂ o( )Ip") d*p d°p

ia:(p-P') §(p —p’
://6 (p p)d2pd2p/

(2m)2 p?—E +ic

d?*p 1
- 2.3.1
/(277)2p2—k2+ie (23.1)

where € here is not the regularization parameter, but the outgoing boundary condition

parameter that is inserted by hand at this stage and k> = E. Upper index + of
the resolvent also indicates that the outgoing resolvent operator is in subject. In two

dimensions
/ / 2 ) /
Rar(r,r |E) = (r|R6r(E)|r ) = —ZHSU(MI' —1'|) (2.3.2)

where Hél) is the zeroth order Hankel function of the first kind. To regularize the
integral given in (2.3.1), we calculate it with a cut-off parameter A as,

A

A
(a| R (E)la) = i/ L R N S (2.3.3)
0

p? —k%+ie Am

0

where we make the transformation p? — k? 4 ie = 22 and used J %‘L = Inx. Placing

the integral limits and writing —k? = e™"k2, we get
1 A? — k2 + e 1 A? — k2 + e
R (E =—hnh|l———|=—In|——]. 2.3.4
(al g (B)la) A ( —k? + i€ ) A ( e k2 + e ) ( )

For large A limit, we can simply ignore k2 in the numerator and ¢ already goes to zero.

Using the relation In (ab) = Ina + Inb, we have

1 A 1 A im 1 A i
+ = — = — — — | = — — —
(alRy (E)|a) = 5 In (ei;k) 27T|:ln(l€> + 2] 5 ln(k> —|—4 . (2.3.5)

We could calculate the integral, however, the result we have for ®,, term is divergent

in the limit A — oo. To renormalize this result, we pick an abstract momentum such

as (1, in other words a renormalization constant, and we shift this divergence into the
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interaction strength that we can choose freely:

1 1 A 1 k i
S PO () [y Y () [ 2.3.6
A 2Wn(u)+2ﬂn<u> 4 (236)
we need to keep finite already finite

Here, we call §+ — 5=1In (%) = i where R sub-index indicates that the interaction

strength is renormalized and finally obtain the renormalized principal matrix element

as

(2.3.7)

|

1 1 k
@11(E) = E —+ %ln (;) —

For the case when there are more then one point defects, the only thing in this cal-
culation that changes is the point defect state and the renormalization constant take

index n for the nth defect.
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3. HYBRID GEOMETRIES OF DELTA POTENTIALS
AND THEIR DEFORMATIONS

In this chapter, we give the spectrum of the bound state energy and scattering
state analysis via the calculation of the differential cross sections for systems of a circle
defect plus a point defect and a spherical shell defect plus a point defect. Additionally,
we study how some small deformations in the normal directions of the supports of the
delta potentials change the bound state energies in the first order of the deformation
parameter. Our observation here is remarkable: the change noted in the bound state
energy in the first order of the deformation is equal to the change in the bound state
energies in the first order of the deformation parameter when the radius of the circle
is increased by the amount of the average of the deformation over the support of the
defect. This method of calculation of the change in the bound state energies under
deformation in principle can be applied also to delta potentials supported by curves

and surfaces in general.

The organization of this chapter is follows. In Section 3.1, our concern is a system
of Dirac-delta potentials supported by a circle centered at the origin and a point outside
of this circle. We discuss the bound state analysis and the scattering properties for
this case in brief. In section 3.2, the concern is a Dirac-delta potential supported by a
sphere centered at the origin and a point outside of this shell. Similarly we deal with
the bound state spectrum and scattering states. After that, in 3.3 and 3.4, we look for
how the small deformations of the circle and sphere in the normal directions change
the bound state spectrum and scattering results. Finally, in sections 3.5 and 3.6, we
combine the deformed defects with the outer point defect and check the change in the

bound and scattering states similarly.

Now, let us give some expressions used in upcoming calculations. Dirac delta
function supported by a point a is defined on the test functions v by (J,|v) = (a|¢) :=
y(a). Similarly, the Dirac delta function 6y supported by the curve T' and the Dirac
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delta function dy, supported by the surface ¥ are defined by their action on v [56] as

(Orly) = Tly) = %T)/rw ds (3.0.1)
(O0s]t) = (Z[y) = ﬁ/ﬁwm, (3.0.2)

where L is the length of the curve, A is the area of the surface, ds is the integration

element over the curve I' and dA is the integration element over the surface >. For the
circle I' = S, ds = Rdf and L(I") = 2rR. For the sphere ¥ = 5%, dA = R?sin 0dfd¢

and A(X) = 47 R?, where both circle and sphere are considered to have radius R.
3.1. Delta Potential Supported by a Circle and a Point in 2D

The Hamiltonian for a setup consisting a circular and a point-wise defect can be

written as
H=HO—)\1|a>(a| —)\2|I‘><F| , (3.1.1)

where H, is the free Hamiltonian, A\; and )\, are the interaction strengths for the circle
and spherical shell defects respectively, a represents the point-wise defect at location
a and T" represent the circular defect centered at the origin with radius R with the

parametrization function I' — ~v(s) = Rn(#). We already have the renormalized term
11 v i 1 1 AN
o (B)= —+— X)Ly 2
1(F) >‘R+27TH</~L> 4 /\R+27Tn( H ) 4
1 1 v
=—+ —In|— 3.1.2
AR i om (H) ( )

where the energy is chosen to be in the negative part of the spectrum here, E = k? =

—v2, v > 0 as initially we are looking for the bound state solutions. We have the

definition

L
(pl") = ﬁ /0 e 1P|y (5)] ds (3.1.3)
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AY
Point Defect
wave —
4 Rn(9)
vj X
o >
Circle Defect

Figure 3.1. Circle and point defects in 2D setup where Rn(f) and a are the position

vectors of the defects respectively

where |7'(s)| = 1. Therefore, the second term of the principal matrix that we need to

construct can be written as
@15(—1?) = @y (—1?) = —{alRy(—+)|T) = — / (alp) (plRy(—)|T)
el e
~ T (2n) / /277 e giﬂi; pdp da

= ——/ Vﬁ pdp

= —2—K0 (av) I, (Rv) (3.1.4)

where J,(z) is the nth order Bessel function of the first kind. Zeroth order Bessel

function of the first kind has the integral representation below:

1 27 '
Jo(2) = 5 / e~zeosfqp (3.1.5)
0
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On the other hand, K, (z) and I, (z) are nth order modified Bessel functions. Here,

we used the integral relation between these functions that can be found in [61],

o0 x K, (ac)I, (bc) 0<b<a
/ J,(ax)J, (bxr) —— dz = , (3.1.6)
0

2 4 o2
e K, (bc)l,(ac) 0<a<b

for Re(n) > —1, assuming a > R.

Finally, for the second diagonal term of the principal matrix, we do not need

renormalization. We do the similar calculations and obtain

2
Bl 2) = j iy =2in) = 5~ [ EDCIR
1 1

Hence, the principal matrix ®(—v?2), looks like

ALR +5-1n (ﬁ) —3:K, (va) I (VR)
B(—1?) 1= (3.1.8)

—2:Ko (va) I (VR) 5> — 5. Ko(vR)[H(vR)

for this case. Recalling the resolvent operator, (2.2.15),
R(E) = Ry(E) + Ry(E Z i) ( i (1 Ro(B) (3.1.9)

for E = —v2. For the time being, we assume det ®(E) # 0. Again, here |f,) = |a) and
[f2) = ).

Now we reach to the point that we can project the expression given in (2.2.16)
onto the position space. In terms of energy, k2, we obtain the wave function below
which includes integrals that we need to deal with

2

Y(r) = ¢(r) + Y (x| Ry (K| f) [T (K)] {i19) (3.1.10)

t,5=1
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where
(3.1.11)

wld) = o) and{T10) = s [ o06s

Giving the other terms as
ip-(r—a) d2 ;
¢ P = aWkr—al), (3.1.12)

R ) = R = [ =

where H, (1) is the zeroth order Hankel function of the first kind. We also have
ip-r d2p
Ry (k2)|f,) = Rk;?r:/e—J R
(r[Ro (k)| f2) = (r| Ry (£7)[T) - D2 — k2 1 ic olp )(27r)2
h, / > pJo(pr)Jo(pR) dp
0 p? — k% +ie (27)

i (HY (kr) Jo(kR)O(R — 1) + Hy" (kR)Jy (kr)(r

—R)) (3.1.13)

where 6(x) is the step function here. We have evaluated the last integral by the
analytic continuation of the result (3.1.6) which means taking v to —ik. We also use

the relations between Bessel functions

Ky(2) = %Hél)(e”/zz) and  Iy(z) = e /2], (e/22) (3.1.14)

for —m < arg(z) < m/2, which can be found in [62]. Hence, we obtain set of wave

functions
v(r) =o(r) + §H3”<k|r ~al)
x([q) )], dla) + [B 1 (F) 12( /¢ ))
+ < (H§" (k) 1y (kR)O(R — 1) + Hy (kR) Jo(kr)8(r — R))
X ([q)—l(k?)]ﬂ ¢(a) + [D7H(E)],, (%Sl d(v(s)) ds>) (3.1.15)

for the positive energy values. The details of this discussion can be found in our

article [48].
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3.1.1. Bound State Analysis

For the bound state spectrum of this problem, we look at to the values ' =
—1? < 0. The poles of the resolvent operator R(—v?) given by (3.1.9) provide the
bound state spectrum of the problem and the poles of this operator can only appear if

the matrix ®(—v?) is singular, that is, if
det[®(—v%)] =0. (3.1.16)

This equation is not easy to solve. Therefore, at this point, we assume that we have a

bound state solution at v = v,. So we can write the eigenvalue equation below

—0.1}

02}

Figure 3.2. Plot of the eigenvalues of the principal matrix ®, w versus v for a cirle

and point defect with Ay =10, p =1, R =1, a = 2 settings.

2
Z P, (—2)A; =0, (3.1.17)
=1

where Aj is an eigenvector of the matrix ®(—v?2) with a zero eigenvalue. In our paper,

[48], we show that these normalized eigenvectors are unique. However, we will not go
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into details of that derivation here. Now we can write the eigenvalue and eigenfunction

equation with the eigenvalue w as,
PA=wA. (3.1.18)
The eigenvalues can be explicitly calculated as

1 1 1 1 v
wl(u) = E — EIO(VR)KO(VR) + — + — In (-)

20y A 7
1/2
n [(% In (E) + i) (%KO(VR)IO(VR) — i) — ﬁKé(vRﬂg(I/R)
(3.1.19)
and
() = i LI WR)K(vR) + 2%2 +o-In (%)
1/2
_ [(%m (%) + i) (%KO(VR)IO(VR) - i) — 4—71T2K§(VR>I§(VR)
(3.1.20)

Finding zeroes of the determinant of the matrix ® is equivalent to finding the zeroes of
its eigenvalues, w’s. Still, it is not easy to solve analytically. Therefore, we will look at
the behaviour of these eigenvalues with respect to v. We suppose that the eigenvectors
are normalized for simplicity. Then we can determine how the eigenvalues change with

respect to v according to the Feynman-Hellman theorem [65] which can be stated as

ow 50D
%= A 81/A , (3.1.21)

where the symbols * and T" denote the complex conjugation and transpose, respectively.

Here, we take the derivative of each element of ® matrix as below,

90, _ 1

ov 2y

8(1)12 - 8@21 _ / L ( d2p
ov - v - (21/) R2 <p2 _|_V2)2‘]0(pR> (271')2 ) (3122)
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0Pyy Ji(pR) d’p
8—52 = (2v) /RQ (p20+ S22 (2m)? (3.1.23)

So placing these into (3.1.21) we get

O 2 oL «T e'Pa d’p
T = AT g A AT [ o) g s,
T g eip-a d2p
+A2 (2V) ./[RZ (pg + VQ)QJO(pR) (27T>2A1

+ 43T (20) / Ji(pR) d’p (3.1.24)

R2 (p2 —+ 1/2)2 (27‘()2 2

We can write the right hand side of (3.1.24) in a more compact form and we can show

8w1,2
12 _ () /R 2
d

for all v > 0. We used the identity L]g)oo (7@2%;2% = 51> here. This positivity condition

that

2
d?p

(p? +v2)? (27)?

A eP2 4+ Ay Jy(pR) >0, (3.1.25)

means that all the eigenvalues of the principal matrix ® are strictly increasing functions
of v. Figure 3.2 shows how the eigenvalues behave with respect to v for the fixed values
of the other parameters and it is taken from our paper [48] which has a slightly different
®,, (there is an extra 1/\p term) element since the regularization method used is
different. However, this difference does not change the behaviour of the eigenvalues.
Therefore, we directly use the graphs given in [48] in the rest of this chapter. The
positivity condition (3.1.25) implies that there are at most two bound state energies
since both w; and w, can cross the v axis only once. In Figure 3.2, the zero of the
eigenvalue wy, in other words where the blue line crosses the v axis, corresponds to the
ground state energy since E = —v2. This bound state always exists for all values of the
other parameters of the problem since lim,, ;. w; = —oo and it is an increasing function
of v and positive for sufficiently large values of v. However, the second eigenvalue wy
may not have any zeroes if it is not negative around v = 0, in other words, it never
crosses the v axis if lim,,_,,- wy < 0 is not satisfied. We also numerically calculate the
bound state energies and plot them as a function of a and R, i.e. taking w; (ground
state) and w, (excited state) equal to zero and then releasing a and R values, for the
fixed given values of the parameters, as shown in Figure 3.3, 3.4, and Figure 3.5, 3.6

respectively.
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100k 2.5 3.0 3.5 4.0 45 50

-1.05¢

-1.10+

-1.15¢

120} / Es

Figure 3.3. Ground state energy versus a, where A =10, R=1, u = 1.

3.1.2. Stationary Scattering Problem

Stationary scattering problem for such singular potentials is well-defined and
many examples are known in literature. As we built the principal matrix, now we
can study the scattering amplitudes and related physically measurable quantities (e.g.,
cross section). For this reason, we use the operator T'(F) which is the operator form of

the T—matrix. The relation between the resolvent and the T'—matrix is given by [3]
R(E) = Ry(E) — Ry(E)T(E)Ry(E) . (3.1.26)

Since we have the explicit expression for the resolvent (3.1.9), we can read off the
matrix T'(E) as:

2
T(E)=—>_|f) [@‘I(E)] (£l - (3.1.27)
i,j=1 ij
The scattering amplitude denoted by f and the matrix T'(E) in two dimensions are

related by

Flk 5 k) = —i\/%(kﬂT(E)\k) , (3.1.28)
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Figure 3.4. Excited state energy versus a, where A =10, R =1, p = 1.
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Figure 3.5. Ground state energy versus R, where A =10, a = 5.1, p = 1.

where |k) is the wave vector and |k’| = |k|. Substituting the result (3.1.27) into (3.1.28)
we get

i - [

/ X=X (/| T (B |x) d2x d2a’ (3.1.29)
R2 JR2
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Eg

Figure 3.6. Excited state energy versus R, where A =10, a = 5.1, = 1.

where x is the position vector in two dimensions. Using the integral representation of

the Bessel function J,(z) given in (3.1.5) we find

(K |T(B)[k) =e" )2 (&7H(E)), | + Jo(kR) (e * + ) (271(E))
+ J5(kR) (271(E))

12

. (3.1.30)

where (¢~ (E)>23 is the ijth element of the inverse of the matrix ®(F) given in equation
(3.1.8) with —v2 = k2. So at this point, we can claim that the differential cross section
for the delta potential supported by a circle of radius R centered at the origin and by

the point at a outside of the circle is given by

do ,
o5 = [fk =K
= Gl @),
2
+ Jo(kR) (e7"a 4 ella) (07Y(E)),, + JR(kR) (B7Y(E)),,| - (3.1.31)

The graph that demonstrates the behaviour of the differential cross section as a function

of 6 is in Figure 3.7. Here we assume that 6 is the angle between k” and k. Also, the
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incoming wave is chosen to be along the positive x axis. We have also the plots of the

do

de

-3 -2

Figure 3.7. Differential Cross Section versus 6, where k =2, A\, =20, a =5, R =1,

=1

differential cross section as a function of k for different choice of parameters, as shown
in Figure 3.8 and Figure 3.9. These two graphs shows us that the behaviour of the
differential cross section near k = 0, in other words for the waves with low energies,
is consistent with the fact that the differential cross section for two dimensional low
energy scatterings blows up with decreasing energy, as emphasized in [106]. Also, in
these plots we see that as far as we place the point defect from the circular defect, we

see more fluctuation in the energy of the incoming wave.
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do

do

Figure 3.8. Differential Cross Section versus k,where § =0, A\, =20,a =2, R=1,
w=10.

3.2. Delta Potential Supported by a Sphere and a Point in 3D

In this section, we will consider the case that includes a spherical shell delta
potential and a point like delta potential outside of this shell in three dimensions. The
setup is demonstrated in Figure 3.10. Since all the techniques and results are similar
to the case discussed in the previous section, we will summarize some results without

giving detailed proofs. The regularized Hamiltonian for this model is given by

H = H,— X\ |a)(a] — A |2) (2], (3.2.1)
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do

de

0.5 1.0 1.5 2.0 2.5 3.0

Figure 3.9. Differential Cross Section versus k,where 6 = 0, Ay = 20, a = 20, R =1,
w = 10.
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Point Defect

wave —

Circle Defect

Figure 3.10. Spherical shell and point defects setup where Rn(f) and a are the

position vectors of the defects respectively.

where ¥ is the sphere centered at the origin with radius R. Here o : (0,27) x (0,7) —

S? is the local parametrization given by
o(0,¢) := (Rsinfcos ¢, Rsinfsing, Rcosh) . (3.2.2)

And we have the expressions

(al) = ¢(a) and ﬂWﬁzzéy/wd$Ms (3.2.3)

where A(X) is the area of the spherical shell. We follow the analogous calculations
to the two dimensional case and we obtain the resolvent operator in a similar sense.
In this case, the first diagonal element of the matrix ® for £ = —v2, v > 0 can be

calculated similarly:
]' / /
%&Mz;—@%(hﬁ—m//ﬂpmﬁ<WHIWMﬁ
¢t (p—p’) 5
// (pIR3 (E)|p") d’p d’p

_ A_l / i +V2 . (3.2.4)
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Using a cut-off A as an integral limit, we get

1 A v A
@11(—1/2) = )\—1 — W + m arctan (;) (325)

Now, taking the limit A — oo, the last term above converges as

. T ;
Th_{g) arctan x = 5 (3.2.6)

However, we need to adjust )\il accordingly to get rid of the divergence in the second

term. We make the choice of some renormalization parameter p as

1 A L
- = 3.2.7
Ay 2m? 47 ( )

where minus sign and the 47 in the denominator are just for simplicity. With this, we

arrive at

By (—17) = E(V —p) . (3.2.8)

To find the off-diagonal matrix elements of ®, we calculate the integral below by

choosing the position of the point defect along the z axis:

(1’12(_V2) = (1)21(_7/2) = —<a|Ro(—V2)|E> - _,43 <p2eziay2) SinZEZR> (gi']))g
- _4771}aR e sinh(vR) (3.2.9)
where we have used
1 . ) 1 2r om |
(pX) = m/e Po(s) g3y = 47rR2[ /) e~ PRSI R2 G0 0 40 dob
B SIDZE—ZR) (3.2.10)

and

sinx

/ e~ meosfging dj = 2 : (3.2.11)
0

T
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Similarly, the second diagonal term of ® is

1 1 1 sin®(pR) d3p
b, (—?) = — —(3|R —V2E=——/ )
22( > )\2 < | 0( )| > )\2 - pQ + V2 (pR)Q (27.‘,)3
1 1
= )\—2 — me"’R sinh(vR) . (3.2.12)

The matrix ® can be defined on the complex plane by an analytic continuation, im-
plying v = ik, again. To make the principal matrix look more similar to its two

dimensional analogy, we express the elements in terms of the Bessel functions using

the transformation relations I (2) = \/ = sinhz and K, 12(2) = /3577 and we
obtain the final form as:
wv—n) _—477\}@ Ky p(va) I, 5(vR)
P(—1?) = (3.2.13)

—irves Kiplva) L p(vR) 5 — Ky pp(VR) I p(VR)
3.2.1. Bound State Problem

Bound state of this case is similar to the circle4+point analysis. As we look at the
derivative of the principal matrix with respect to v, we see that positivity of the flow
of eigenvalues still holds in this case. There are at most two bound states and at least

one bound state of the system with a sphere and a point defect also.

Again, we have the plots of the behaviour of the eigenvalues of the principal
matrix with fixed parameters of the problem. Figure 3.11 and 3.12 show that the
strength of the spherical interaction has an important effect on the bound state energy.
As we look at these graphs, we notice that there is only one bound state, if we choose
the same values of the parameters including A, for the circular defect perturbed by a
point defect case. The reason for this may be based on the fact that the particle has
more freedom to escape from the spherical defect compared to the circular defect.
When we increase the strength of the spherical defect potential, Ay, from 10 to 20, we
see that w, also crosses the v axis which marks another bound state of this problem. We

also have the plots of the bound state energies changing with respect to the parameters
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w»

0.2

Figure 3.11. Eigenvalues of the principal matrix ® versus v, where A\, = 10, a = 2,

R=1and p=1.

R and a by numerically solving the zeroes of the eigenvalues w; and w, and these plots

are given in Figure 3.13, 3.14 and Figure 3.15, 3.16.

3.2.2. Stationary Scattering Problem

Scattering state analysis of this case is investigated similarly with using the an-

alytical continuation of ®-matrix

= (—ik — p) — e sin(kR)
O(F) = , (3.2.14)
— e sin(kR) )\lz — % sin(kR)
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Figure 3.12. Eigenvalues of the principal matrix ® versus v, where A\, = 20, a = 2,

R=1 and p=1.
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Figure 3.13. Ground state energy versus a, where A\, =20, R=1, p=1.
and writing the T-matrix element as below

2 o
KIT(E)k) = — 3 (K1) (@), (f51K) = - (e“k—k (@71 (E)),,
ij=1
(e—ik"a + ez'k‘a) SiIl(k’R) Sin2<l{iR)
—1 -1
+ R (e7H(E)),, + Rz (@ (E))22> :
(3.2.15)
So we have the scattering amplitude expression from the formula
1
flk=k') = (K'|T(E)|k) (3.2.16)

4r
and the graph of the differential cross section 42 = | f(k — k’)|? as a function of § which
is given in Figure 3.17. In Figures 3.18 and 3.19, we have the plot of the differential
cross section as a function of k for some fixed parameters except the strength of the
spherical interaction. It can be seen in these graphs that the energy of the scattered

wave gets more fluctuated as we increase the strength of the spherical interaction.
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Figure 3.14
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. Excited state energy versus a, where Ay =20, R =1, p = 1.
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Figure 3.15. Ground state energy versus R, where Ay, = 150, a = 10.1, p = 1.
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Figure 3.16. Excited state energy versus R, where A\, = 150, a = 10.1, pp = 1.

3.3. Small Deformations of a Circle

In this section, we give the answer of the question how would bound state spec-
trum and scattering properties of such singular potentials change under small defor-
mations of the support of these potentials. We will investigate the case of a deformed

circle as demonstrated in Figure 3.20.

First, we define the normal deformations of a general curve in two dimensions.
We consider a regular planar curve I' parametrized with its arc length s which is finite.
The Serret-Frenet equations that give the curvature properties for this curve, are given

by

J

dy _, dt dn

=t o = hm and i —kt (3.3.1)

where t is the tangent vector to the curve I', n is the normal vector, and & is the

curvature of the curve [68]. The small deformation along a normal direction to I' is
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do

dQ
0.35+

0.30

0.25

Figure 3.17. Differential cross section versus 0, where k =2, A\, =10, a =5, R =1,

w=1.

defined by
(3.3.2)

Y(s) = () +eh(s)n(s) ,

where h is assumed to be a smooth function of s. We note that € here is a small

deformation parameter, not the regularization parameter or the boundary condition
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Figure 3.18. Differential cross section versus k, where § =0, A\, =5, a =2, R=1,

w=1.

used earlier in the text. The length of the deformed curve r up to order € is given by
L ~ ~ 1/2
f:/ —d _/ (dl-ﬂ> ds
8 ds ds
o\ 1/2
dh
:/ ((1 — m(s)w(s))2 + €2 <ﬁ> ) ds
o ds

/OL ((1 — 26/@(3)/1(5))1/2 + O<€2>) ds

L

/ (1—er(s)h(s) + O(€?)) ds
0

L) —e /O k(s)h(s)ds + O(e2). (3.3.3)

If T is a circle of radius R, curvature of this circle is kK = 1/R. So the deformation can
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Figure 3.19. Differential cross section versus k, where § =0, Ay =20, a =2, R =1,

=1



42

be written as

¢ (L
L(T) =27R — E/ h(s)ds + O(e?) . (3.3.4)
0
AY
Rn(J)
9 X
¥ . >
Deformed Circle

Figure 3.20. The deformed circle setup where Rn(6) is the position vector of the

circle defect.

3.3.1. Perturbative First Order Calculation of the Bound State Energy

Now we consider only a small deformation in the normal direction which indicates
that the deformation function is a function of the angle only, i.e., A(s) — h(0). We will
follow the earlier arguments about the resolvent operator. However, in this case, the
d-matrix has only one term since there is only one singular potential. We can write

the general resolvent operator of a deformed circular defect as

mm=mﬂwwwm®@%@mwm, (3.3.5)

where we denote the deformation of the circle by . For finding the bound state, we

need to calculate

- - - a a 2
Bort) = 5= FRg Al = 5 - [ SRR Zh @ae
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where A is the interaction strength of the deformed circle and we have used

<ﬂm=ﬂ%£¢ﬁ“ﬂi@M& (3:3.7)
70], and
7(5) = 53() = 3(s) + e [h(s)n(s)] 3.3.5)
Using (3.3.1), we can write
5 (s)] = [t + %h(s)n —eh(s)t] =1— %h@) +0(e?) (3.3.9)

where Kk = % and t - n = 0, and we have also used the identity
eehsIPn(s) — 1 4 jeh(s)p - n(s) . (3.3.10)

We obtain a result for (C[p) by placing (3.3.8), (3.3.9) and (3.3.10) in (3.3.7). Putting
this result in (3.3.6), taking v(s) = () since the curve is a circle in our case and and

after some algebra, we have the following expression for ®:

G2 L N 27Th6d9 2w 27 Lip-(3(61)1(65))
A O R IRV

X (1 — %(h(&) + h(6y)) + ie((p - n(6,))h(6,) — (p’ - n<92>)h<92>)>

2
x d01d62)] (;lT’;z + O() (3.3.11)

where v(#) is the position vector of the circle defect. Next we calculate the first integral

in the square bracket:

2 2 ip- —
T 27 ip(1(01)—(02)) d’p
 d6.dh, | — 3.3.12
/Rz (/0 /0 Pt T () o

We can separately take the angular integrals

27
/ PO 49, — 27T (pR) (3.3.13)
0
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and we are left with the integration over the variable p only:

> J2(pR
277/ pgfyg pdp (3.3.14)
0

Thanks to the integral representation that can be found in [61]
<z
—J dr = I,(a)K, 3.3.15
| i@ = ko) (3:315)

we find

27 27Teip'<“r(91>—v(92))d6 » 2 -
/Rz /O /0 Top2 g2 2 —(Qw)z—(ﬂ) o(VR)K,(vR)  (3.3.16)

for the first term of the bracket. For the second integral in equation (3.3.11), it is
sufficient to consider the first term (the term with h(6,))

B G L NN N
/RZ / / - +V2 (o), | 55 (3.3.17)

This part a bit tricky and we need to be very careful with the angles. We should
note that the angle between p and v(6,) is not #;, let us call it ¢. Since there is no
0y dependence of the deformation function h, 6, integral results as the Bessel func-
tion, Jy(pR). Lastly, we need to calculate also the angle dependence in d?p since the
interaction between p and «(6;) is not symmetric anymore, the wave sees an angle
dependent deformation. Therefore, we need to write d?p as pdpd¢$ and the ¢ integral

brings another Bessel function, J,(pR). Writing these integrals more clearly we get

[e'e) 27 27 27 1 pdp
ip(6,) 4 / 1h(0.)d0 / Cipen g, | L
[ | ] e [ o, [ 2| o 2y

2nJy(pR) 2w Jy(pR)

_ / 0 / "o, (3318
0 0

p*+v?

With the help of (3.3.15), the above integral becomes

I,(vR)Ko(vR) ( /S 1 h(&)d@) (3.3.19)

and this result is exactly the same for the term which is multiplied by h(f,) instead of

h(6,) in equation (3.3.11).
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Finally, last integral in (3.3.11) can be computed similarly. We will calculate the

first term which includes h(6;). We first rewrite the exponential term as

D - ip(0) — —_ip-y(0)
ip-n(f)e SRC . (3.3.20)

Since there is no other R dependence in the integral, we can take the derivative out

and obtain

27 2 DA
) o ™ e'P 7(61) dzp
—ip(05) g _/  ho)de, P 3.3.21
/Rz/o ’ > OR b PP 1) ' (2m)? ( )

The same arguments which mention that the angle between p and () is not 6, are
still valid for the angle variables in (3.3.21). We use the derivative relation between

Bessel functions

_dﬁ)f) = () (3.3.22)

and find the p integral as

2 2 D~
w 5 27 ¢ip(6) P2
—ip-y(65) do / — h(0,)df, —— =
4[ ’ POR Jy p? 02 T Gy

00 2
p 2 9 o
- /O TR (pR) " dp. (3.3.23)
Now, we rewrite the term
2 2
P v
p2 i 2 as - m s (3324)
and using the formula (6.512) in [61] that is
o 1
/ J,(ax)J,_i(azx)de = — , (3.3.25)
0 2av

and the formula (6.577) in [61] which is

= Jo(pR)J1(pR) 1
[ PRy Snwm ) (3.526)



46

we find:

2m 2 i ((02) 3 (02) 010,68, )
/R([ /0 e Penl0)h(0,)do, 2><2ﬂ>2

27
_ (% - yIl(uR)KO(yR)> ( /0 h(&)d@) . (3.3.27)

Combining (3.3.16), (3.3.19), and (3.3.27), we finally obtain

B(—1?) =y — 5L WR)K (vR)

27
+ 2%2 (—% + vIo<vR>K1(vR)> ( / h(@)d&) +0(e?),  (3.3.28)

0

where we have used the Wronskian relation of the modified Bessel fuctions:
1
I (2)Ky(x) + Iy(z) K, (x) = 2 (3.3.29)

When there is no deformation (¢ = 0), to find the bound state energy we simply
take @ = 0 and see that we have only one bound state. This can be shown by simply

expressing the second term I,(vR)K,(rvR) using its integral representation (3.3.15):

11 I T )
T = 5o W RE(vR) = /0 R (3.3.30)
and then by taking the derivative of the right hand side with respect to v under the
integral sign. We see that the integrand and ® itself is a decreasing function of v for

given parameters A and R. Therefore, we can say that there is a unique solution of the

equation (3.3.28), let us say v,.

At this point, it is remarkable that small deformations satisfying the symmetry

fo% h(6)df = 0 do not change the bound state energies up to first order in e.

In [60,69] a general formula for perturbations of eigenvalues for small perturba-
tions of the principal matrix ® was derived, here we have a one-dimensional version of

this formula. Let v = v, + evy + O(e?), where v, denotes the bound state energy of



47

the original unperturbed circle case. Then, we see that the bound state energy
Ep=—(v, + en)? = —v} — 2ev,1 (3.3.31)

for the deformed circular defect can be found by the zeroes of the perturbed principal
matrix, d. We basically replace v with perturbed bound state energy, I/ and keep

the terms up to order ¢

1 1
N %L}((V* + ev1)R)Ko((v, + evy)R)

— # (% — (v, +ev) (v, + evy) R)K (v, + el/l)R)> (/0

27

h(@)d@) ~0.
(3.3.32)

We Taylor expand this expression around ev; 2. We see that there is no contribution
coming from the term with the derivative of the K (v, R) since it is of order of € and

then we get

[I,(v,R) + ey R I}(v,R)] |[K,(v,R) + evyR K|(v,R)| =
I,(v,.R)Ky(v,R) —evyR I,(v,R)K,(V,R) + ev; RI, (v, R)Ky(v,R) (3.3.33)
where we have used I)(z) = I;(z) and K{(z) = —K;(z). Putting (3.3.33) back into

(3.3.32), we find

11
1~ gl R Ko(v,R) + v It I,(v,R)K,(v,R) — EV;RIM*R)K()(V*R)

-5 (213 Iy R)K (1)) ( /O ” h(@)d@) —0. (3.3.34)

Here, we see that the zeroth order term in e cancels out % We extract v, from this

equation, replace it in E, and obtain

e (5% — v Iy(v,R)K;(V,R)) 2 ,
o= ’ R (v,R)Ky(v.R) — I)(v,R)K; (v, R) ([ h(0)do | + O(e) ,

(3.3.35)
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which can be further simplified into

1%

Ep=-—12—¢ Wi ( /O " h(@)d@) +0(e?) . (3.3.36)

The correction to the bound state energy in the first order of € seems very important
and gives a clue about the geometric interpretation of this problem: Let us suppose
that we consider a circle with radius R — eR; instead of the original circle with radius
R. Let the perturbation to the radius be defined as

1 2

R, = ——
“h 2R J,

¢ h(0)RdO (3.3.37)

where the normal vector that appears in the curvature in our parametrization is inward.

We replace v with v, + eR; and R with R — eR; in equation (3.3.30) and get

% - %L}((V* +evy)(R—eRy))Ko((v, + evy)(R—€Ry)) =0. (3.3.38)

We find the relation Rv; = v, R; when we expand all the terms to the first order of e.

On the other hand, if we use the equation
Ep=—(v, +evy)? = -2 —2ev,v, , (3.3.39)

we obtain exactly the same result. Subsequently, we state this observation as following:
A small deformation in the normal direction of a given circle, which supports an at-
tractive delta function, leads to a perturbation of the original bound state energy. This
perturbative change of the energy can be obtained up to first order in the perturbation
parameter as follows: increase the initial radius by an amount equal to the average of
the deformation over the given circle, then compute the first order perturbation of the
bound state energy corresponding to this new circle with the same coupling constant.
So we conclude that, in the case of a small deformation, we can consider the problem

as a delta function supported on the original circle plus a series of perturbations.

It would be interesting to take these analysis to the second order in € and see
if there is any geometric interpretation of the result. At the moment the calculations

seem to be rather lengthy.
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We can numerically plot the bound state energy Ep of the deformed circular
defect as a function of R with fixed values of A for a particular deformation. We
choose the deformation function to be as k() = sin® @ which is an easily integrable
function. With this deformation, we can plot how the bound state energy F5 changes
with respect to R numerically with the help of Mathematica, as shown in Figure 3.21.

The principal matrix of the deformed circle, &), demonstrates a decreasing function of

2.5 3.0 3.5 4.0 4.5 5.0

-0.05+
Eg for deformed circle
-0.101
Eg forcircle

-0.15

Figure 3.21. Bound state energy for the circular defect and for the first order

perturbative result of the deformed circle defect versus R, where ¢ = 0.1, A = 10.

A for all v > 0 which means that the bound state energies also decrease with increasing

interaction strength A, as expected.
3.3.2. Perturbative First Order Stationary Scattering Problem

Now we use analytical continuation of D, ie., taking v to ik, to see the scattering

behaviour of the deformed circle. When we evaluate é(E) in terms of the variable



20

k> 0, we get
B(E) = — LI (kR)HY (kR)
21
T (_% ?Jo(kz%)ﬂ (kR)) ( / h(&)d@) LO()  (3.3.40)

where E = k2. We take 6’ to be the angle between k’ and k, k being the momentum
vector of the incoming particle which is chosen to be parallel to the x axis for simplicity.

Then,

27
’ € —ikR cos(6—6’
(<[E) = Jy(kR) — 5 / e~ IkRcos(0-0') (9 46

: 27 o
b 22]‘7_6 el cos(0=0") cos(9 — 0" )h(0)dO + JO(kR)—R / h(0)dO + O(e?) .

T Jo
(3.3.41)

Hence, placing (3.3.40) and (3.3.41) in (3.1.28), the scattering amplitude of the de-

formed circle is given by

e 1) = 1/ 2 B ) (k)
YA (1 - 3J0<kR>H3<k:R>)

-1

4V rck\ XN 4

1

« {Jg(k:R) +e<§ J2(kR) / b0

27
— Jy(kR) / [e kR cos(0=0") (1 1 kR cos(0 — 0"))
0

do

4 eikReos(6)(] _ Zchos(é))]h(Q)ﬁ
T

+ J2(kR) <i - —JO(kR)H (k:R))

1

1 ik (1)

/27r h(&)d@)] +0(?) . (3.3.42)
0

Finally, using this result, we plot the differential cross sections as a function of
k for the circular defect and deformed circular defect for the particular deformation

h(0) = sin” 0 in Figure 3.22.
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Figure 3.22. Differential cross sections as a function of k from a circular defect and

deformed circular defect (red curve), where h(6) = sin>6, R =5, A = 40, ¢ = 0.1.
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3.4. Small Deformations of a Sphere

In this section, we consider deforming a sphere S? centered at the origin with

radius R, as pictured in Figure 3.23. We perturb the original shell with $ which is the

Deformed Sphere

Figure 3.23. The deformed sphere setup where Rn(6) is the position vector of the
spherical defect.

small deformation along the sphere’s normal direction. The location of the deformed

shell is defined by

50, 6) == 00, ¢) + eh(0, $)N(8, ¢) , (3.4.1)

where € is again a small deformation parameter, N is the normal vector of the sphere,
and h is a smooth deformation function on the sphere. If |¢| is sufficiently small, it is
well-known that the deformed sphere Sisa regular surface [70] and its surface area up

to order € is given by
5 2w
AS) = A(D) — 2 / / H(0, $)h(0, ) R2sin 0d0d + O(?),  (3.4.2)
0o o

where H is the mean curvature of the sphere. In our case H is a constant which is

1/R, so it will be taken out of the integral in (3.4.2). We will write the solid angle
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as df) instead of sin #dfd¢ for notational simplification and €2 as the argument of the

functions on the sphere.

We express the resolvent operator for this case as below
R(E) = Ry(E) + Ry(E)|8)® (E)(Z|Ry(E) | (3.4.3)

where the principal matrix has the form

(F) = % — (S|R,(E)|E) . (3.4.4)

3.4.1. Perturbative First Order Calculation of the Bound State Energy

For the bound state analysis, we use the expressions given in (3.3.7), (3.3.8),

(3.3.9), and (3.3.10) analogously to construct ®(E) as

1 d3p ( (/ ; INYE
X +el2 e (0(Q)=a () (i . N(Q)) h(Q deQ/>
p2+1/2 (zﬂ):z s o 2 <P ( )) ( )
1

1 d>p

5y
_ %/R (/SS (o @-a() p()) deQ/) p2+u2W>] +0(e) (3.4.5)

where o(€2) is the position vector of the spherical defect. These integrals can be cal-

culated similarly to the deformed circle case. We have already computed the integral

which gives the second diagonal term in equation (3.2.13) and found

3
(Z|Ry(—12)|8) = 1 /(/ eip-(a(ﬂ)—a(ﬂ’))deQ/> L d’p
(47T>2 R3 525 52 p2 + 12 (27‘1’)3
= K pWR) p(VR) . (3.4.6)

4R
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We will use the derivative equation

(ip - N(Q)) e o) = %eipﬂm (3.4.7)

for the second term. The exponential factors can be expressed in terms of the spher-

ical Bessel functions of the first kind and spherical harmonics using the well-known

expansion of plane waves in terms of the spherical harmonics [71]:

chr WZ Z { ]l pR lm )Yi'rn(Q) . (348)

Here Q,, and Q are the polar angles of the vector p and o, respectively. Using (3.4.7)
and (3.4.8), we obtain
1 d>p

/3 ( / (e Q)=o) (ip . N(Q)) h() deQ’) T

2p3Si2
00 l .
a2 [T [ (L2031 o Win(ne)

0 m=—1

lgjl/ pR) " , i dQ dep )
X Z Z )Y ()Y (Q)dQdD éTP . (3.4.9)

=0m/=

By the orthonormality relation of the spherical harmonics,

/ Y, ()Y, (Q)dQ = 6,5, , (3.4.10)
SQ

integrations over 2, and Q" of the left-hand side of equation (3.4.9) lead to

: / 1 d3p
i (0(D-0() (ip . N(Q)) h(Q) QY P
(L i N(Q) h(s) sy ) S
(471’)2 Sy ' 3
=7 ), Jo(pR)(—j1(pR)) 2+ ————dp Sgh(ﬂ)dQ : (3.4.11)
where we make use of Y,(2) = 1/v/4m and the identity
djy(x . .
% = —j,(z) . (3.4.12)

Replacing spherical Bessel’s by the Bessel functions of the first kind according to

1) = [ al®). 3413
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and decomposing

2 2
P v
=l1- = 4.14
p2 + V2 p2 + V2 (3 )
we obtain [61]

>~ 1

/ J1)2(PR)J35(pR)dp = SR (3.4.15)
0

> dp 1

J3/2(pR)J1 /2 (pR)— oy —1I (VR)K 5 (VR) . (3.4.16)
0

Using the results given in (3.4.15) and (3.4.16), we get

3 ’ 1 d3p
e @)) (jp - N(2)) h(Q2 deQ/>
/R?» </S2x52 ’ UBEN (D)) p? +v?(2m)3
1 1 [
TR (/52 h(Q)d’Q> <2R - VK1/2<VR)I3/2(VR)> . (3.4.17)

Following similar arguments, we can find the result of the last integral of the equation

(3.4.5) as

/ ( / BCORCRIINTS) deQ”) L&k
R3 92 % §2 k2 + V2 (27‘1’)3

:%K1/2<VR>11/2(VR) ( /S 2 h(ﬂ)dQ) . (3.4.18)

Combining the results in equations (3.4.6), (3.4.17) and (3.4.18), we obtain

H(—v?) = % _ #11 2(WR)K, 5(VR)
+ o (=5 VTV R p) ) ( /S 2 h(Q)dQ) , (3.4.19)

where we make use of the Wronskian relation Iy 5 (2) Ky o(x) + I50(2) Ky jo(2) = 1/

again.

We notice that the formula for the function ® is very similar to the one obtained
for the deformed circular defect case, however there is a difference. The eigenvalue flow
can be obtained again by first considering the unperturbed case, e = 0 and $ =0 and

then writing I 5(VR) K7 o (vR) in its integral form:

1 1
N dn RII/Q(VR)K1/2<VR)

1 > T 5
. 3.4.2
ATR /0 22 + V2 R2 Tipp(z)de (34.20)
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As we take the derivative of the right hand side of the above equation with respect to v,
we see that it is a decreasing function of v for given parameters \ and R. However, the
product Il/Q(I/R)Kl/Q(VR) is finite as v — 0T, so there may not always be a solution
if A is small enough. But if there is a solution then it is unique. To see how would the
bound state energy change if we perturb the bound state solution by some small term,

let us assume that there is a bound state solution v as
v=u, + e+ O(e?) . (3.4.21)

Then the bound state energy up to order € can be found by solving the zeroes of o by

expanding terms around v = v,. Therefore, we find

Ep=—v:—c1?

X

2y R I1/2(V R)K3/2(V R)
Ia/z(V*R)K1/2<V R)— 11/2<V*R>K3/2(V*R> ,/*_RII/Z(V*R>K1/2(V*R)

( y /52h >+0(62). (3.4.22)

Looking at this result, we see that this result has the same geometric interpretation
as in the case of circle: We replace the original sphere with another sphere of slightly

different radius R — eR;, with

— 1 2 ¢ .
By = /S (R0 (3.4.23)

and then look for the small change in the bound state energy because of this shrinking
of the sphere. Therefore, we can summarize our observation once more for the spherical
shell case: A small deformation in the normal direction of a given sphere, which sup-
ports an attractive delta function, leads to a perturbation of the original bound state
energy, to first order the resulting change can be obtained as follows: increase the ini-
tial radius by an amount equal to the average of the deformation over the given sphere,
then compute the first order perturbation of the bound state energy corresponding to

this new sphere with the same coupling constant.

Again, for a special deformation function such as h(f) = sin#, we numerically

plot how the bound state energies change with respect to R for a given A, as shown in
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Figure 3.24.

-0.10
-0.12

-0.14

-0.16

Figure 3.24. Bound state energy for the spherical defect and for the deformed

spherical defect (red curve) versus R, where e = 0.1, A = 10.

3.4.2. Perturbative First Order Stationary Scattering Problem

We use another analytical continuation of the function ® and obtain

~ 1 1
B(B) = 5 — g T2 (RR)H{jy(kR)

e(l itk

+ s (g + et ) ([ neyie) <o) @iz

for the scattering part of this case. We need to write the expression (i|k> in terms of

the deformation function h(€Q):

Sk) = Aé) /S ek () R2 (1 — %h(ﬂ)) s . (3.4.25)
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We expand the exponential term as
eeMOENQ) — 1 4 jeh(Q)k - N(Q) (3.4.26)

and expanding A(E) in €, we can easily show that

- € sin(kR) € 1.
(1 (Q)d - ileo(),
(X|k) ( + 5 R /S2 h(Q)dQ) ( Ne 5 R /52 e h(§2)dQ2

1€

— eik~0<“><k-N(Q))h(Q)dQ> +O0(e?) . (3.4.27)
A Joo

To simplify the integrals, we consider a particular class of deformations, where h(§2) =
h(6) only. Once more we take 6" to be the angle between k’ and k, and k is in the
direction of z coordinate. Then, using (3.4.24) and (3.4.27) and keeping only the terms

of the order of €, we get the explicit expression for the scattering amplitude for a

deformation h(#), given by

i = 1) = = (<9 (B(E)) (Sl
. -1
_ L4 (% _ ijl/g(mmﬁg(m))

™

.2 .2 . 4
sin” kR 4sin“ kR 1 sin kR . /
0)dO) — —ikR cos(6—6")
X{ 2R +E[ PR 47r/h( Jd = /0 [6

X (1 + ? cos(0 — 9’)) + gtk cosd (1 — ? cos@) } sin 6 h(6) do

sin® kR 1 1k
( 3/2

(1)

« (% _ éJl /2(kR>H§}§(kR>)_ i / h(Q)dQ} } +O()

(3.4.28)

Finally, the graphs of the differential cross sections as a function of k for the spherical
defect and deformed spherical defect for a particular deformation h(f) = sin 6 are given

in Figure 3.25.
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Figure 3.25. Differential cross sections as a function of k from a spherical defect and

deformed spherical defect (red curve), where h(f) = sinf, R =1, A = 100, and
e =0.1.
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3.5. Deformed Circle and a Point Defect

Now we add a point delta potential to the case in (3.3). The setup is basically

sketched in Figure 3.26. Let us remind ourselves the expressions of the circle defor-

AY
Point Defect

Deformed Circle

Figure 3.26. Deformed circle and point defects setup where Rn(#) and a are the

position vectors of the defects respectively.

mation. The position vector of the circle with radius R which is perturbed by eh(s)

3(s) = 1(s) + eh(s)ns) (3.5.1)

the magnitude of the derivative of this vector with respect to R is |7 (s)] = 1— Fh(s)+

O(€?), and we also have the total length of the deformed circle before in (3.3.4) as

- - 1 L R
L(T) :27TR——/ s)ds + O(€?) | and (p|I‘>:ﬁ/O PS5 (s)| ds .
(3.5.2)

We also have the approximate equation

1 1 1 ( ¢ /2” )
= _ - 14 ho)do' ) . (3.5.3)
L) 27R—e [ no)ag 2R 2nR Jy
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In this scenario, we already have the 1 x 1 element of the principal matrix which is the

point-point term from our earlier calculations. Therefore, what we need to find is
Dyp(—1?) = Dy (—1?) = — (a| Ry(—?) |T) = —/ (alp) (p|Ry(—?*)|T) d?

v ) a2 4
__/<27T)2 p2+1/2 <p| > p (35 )

where, again a is the position of the point delta potential. We take the Taylor expansion

of the exponential term, e~ *MOP0O) 1 _jeh(0)p - n(h), then we get

9 el ap 1
‘1’12(—’/ ):_/(27‘.)2 p2 + 12

X (L(lf“) /O 4 —ip~Rl1— h(@)—ieh(@)p-n(@)}Rd@) d2p

R
R e
) 0

— e PRE h() é o —WR)dé))dz (3.5.5)

where we write 7(6) = R. At this point, again we need to use the uniformly convergent

plane wave expansion in two dimensions

o0

e'Pa = Z i™J,,(pa) cos(me) (3.5.6)

m=—o0
for each of the exponential terms in (3.5.5) since there are two different angles (the
angle between the point defect and wave vector p; the angle between the position
vector of the circular defect and the wave vector p) to be integrated. Let us take the
angle between wave vector, p, and the position vector of the circular defect, R(#), as

¢. Rearranging these by getting rid of the terms of the order of €2,

1\ 1 m
(I)12<_V2> - _/ (2m)3 Z i J,, (pa) cos(me) m[/o e~ PRp

m=—0o0

27 27 27
—iPRjH__ / o)y | —e PR / h(6')de
v [ emmans ([ moar ) —een ([

27
+ %(/ h(&’)d&’) %e—ipk] d?p . (3.5.7)
0

Here, it is important to mention that in the third term in the bracket, the angle between

p and 7(f) = R is not the same as the angle variable in the deformation, h(#"). Then,
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in terms of the Bessel functions, we have

oo

bus(v?) == [ s Y ) costme) A e or)

m=—0o0

v5() " 030" ) | Toor) - kioo 0, (pR) cos(ko)

+ ﬁk:_mika(pR) cos(k¢)“ d?p . (3.5.8)

For the last term of (3.5.8), we use the derivative relation of the Bessel functions:

ddg:J"( )= %Uk—l(fﬂ) — (@), (3.5.9)
and obtain
Dy (—1?) = / (2711_)3 m(pa) cos(me) Zﬁ [27TJO(pR)
27 00
T R (/0 h(ﬁ/)de/) lJo(pR) - k:z_:oo i* J.(pR) cos (ko)
+ i k= Jk 1(pR) — J i1 (PR)] cos(kgb)” pdpdd (3.5.10)
k=—o00

Using the identity

2T
/ cos(ke) cos(me)dp = 76, (3.5.11)
0

1 > 1 € °r N oy
Diy(—) =~ /0 : 2[2wJo<pa>Jo<pR>+§( /0 h(o >d9)

pe+v

9 [Jo<pa>Jo<pR>+ S (pa)d, (pR)

At this point, we use the following summation formulae for the product of Bessel

functions that is given in [62]

Z (AT, (Ary) cosmb = J, (x\\/rl + 73 — 21,74 COS 6) (3.5.13)

m=
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cosmb cos &
Z emArg) T () = J,(A\d) (3.5.14)
sin m#é sin o

where d = 7,—2,, 0 indicates the angle between 7, and 7, o indicates the angle between

d and 7y and d = |d| = \/r2 + r2 — 2r rycosf. We can always take the angle between
the point defect position vector, a, and the position vector of the circular defect, R,
as zero because of the cylindrical symmetry of the circular defect. Therefore, we take

0 = o = 0 and rewrite the expression in (3.5.12) as

1 oo pdp € 27 ) )

UL
g

‘1’12(—’/2) =

pd d
Jy(pa JO(pR)ﬁJr/ Jo(pVa? + R? — 2aR) p+pV2
0

1 p2dp
5 p\/a2+R2—2 R)m
1 p2dp
— 24+ R?2—2aR . 3.5.15
v [ ghtoVe R =R (3515)

Finally, we are left with the p-integral only where we used the Bessel identity J_,,(2) =

(—1)™J,,(z). Using the relations given in [61] to calculate these integrals, we get

B y(—1?) = — 812[27«0(1/@)10@3) ;( /O%h(e’)de’)

X (KO(I/CL)IO(VR) + Ky(v(a—R)) +vK,(v(a— R)))} , (3.5.16)

using the assumption of R < a. We remark that a < R case can be worked out

analogously. We already have the 2 x 2 term of the principal matrix in equation

(3.3.28):

1 1
Pas( ) == 5 IR Ko R)

2
455 (—gp L WRIEWR)) ( / h<9>d9>. (3.5.17)

Eventually, we have all of the elements of the principal matrix in terms of the defor-
mation integral which is fozﬁ h(6)d#. So we can look for the bound state energies and

the scattering amplitude expression for this case.
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3.5.1. Perturbative First Order Calculation of the Bound State Energy

Analogously, we rewrite the principal matrix by perturbing the assumed bound
state energy v, by evy, ie., v = v, +ev; and Eg = —v2 — 2ev,v;. Again, we Taylor
expand its terms around v,. The first term is

€vy
MY,

Py (v, +evy) = i + % {ln (V—) - } + 0O(e?) (3.5.18)

I
where p is the renormalization constant. There is no contribution coming from the
terms with K/ (v,(a — R)) and K] (v,(a — R)) since they are of the order of O(€?) and

more, sO we have:

01y = g [ Kalna) v B) 4 R (v.a) 0 ) — vy () (v, )
27
v o[ ) (Kotvatlo.) + Ko=)
b o= 1)) | = 0n0n + ). (35.19)

for the off-diagonal elements. We already have ®,, term in (3.4.19) and expanding it

around v, we get

1 1 ev R ev1 R
Doy = )\—2 - %IO(V*R)KO(V*R) + 2; Iy(v,R)K (v, R) — 2;

2
_ # (% _ V*IO(V*R)KI(V*R)> (/ h(@)d&) . (3.5.20)

Through the standard perturbation theory, we can make the definition

L (v, R) Ko (v, R)

= &+00 (3.5.21)

and using this, we need to find an expression for v; through the equation

0
wq (v, + evy) + 0wy = wq(v,) + em% + 0w, =0 (3.5.22)
O V*

where

dwy = AT 60 A . (3.5.23)
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So we write the Feynman-Hellman equation once more:

ow, 0P
o =4 5, A 5.24
81/ u A 8]/ 5 (3 ) )

and then find
0P 1 1
«79%11 _ | L oy
A} By VA1 A} {QWV*H]Al, (3.5.25)
1 0P1 1 .7
AT =22 Ay == AT = aK () I (v, R) + REq(v.a)ly (v, R)| Ay, (3.5.26)
0P \ 1 R

AT 852 V Ay :AQT[_ = + ;I()(V*R)Kl(V*R)] A, . (3.5.27)

We find a normalized representative zero eigenvalue equation given below:
¢, @ A 0 A 1 —d
11 P12 1 _ 1| _ _ _ 2] (3.5.28)
Py Doy | Ay 0 Ay YASTRUR 5P ®yy
Replacing A; and A,, and multiplying with ev;, we obtain
5 2 24 —
w 1 1 1 v,
vy HV: = [(EKO(V*CL)IO(V*R)> + (E + o In (;)) ]
2
evy 1 1 €V 1
X {Z_;V*,u (EKO(V*G’>IO(V*R)) + 2_7_: (EKO(V*G)IO(V*R>>

. [aKl(V*a)IO(V*R) _ RE, (), (v, R)} ( i L (_)>

-4 Ll - QRIO(V*R)Kl(V*R)] (i + % In (%) ) 2} . (35.29)




66

Now we obtain dw; via the equation (3.5.23):

2 2
oy = [(immaﬂmm) ¥ (i - (ﬂ)

-1

X % ( /02” h(e/)d9/> { — ﬁKO(V*a)IO(V*R) V%R [KO(V*G)IO(V*R)
+ Ko(v(a— R)) + v, K (v,(a — R))] (i v % I (%))

2
1 1 1 1 v
I R K Il PO (a3 ] 35
o <2R v, Iy(v.R) 1(1/*R)> (/\R + 5 (N)) } (3.5.30)

Placing the expressions given in (3.5.29) and (3.5.30) into (3.5.22), we get an expression

for v, as

2
1 1 1
vy = [m <EK0(V*CL)10(V*R)> + - Eo(na)h(vR)

% [aK, (v,a)ly(v,R) — RKy(vea)l, (v, R)] (i n % In (%))

- Vl _ 2RIO(1/*R)K1(I/*R)1 (i + % In (%) ) 2]
9 [ / N @) { o (0, 0) | Kot oo )

0

+ Ky(v,(a— R)) + v, K, (v,(a — R))} (i + % . (%))

= (5~ bR v R)) (i o (ﬂ) 2}] (3.5.31)
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and for the bound state energy in terms of v, as

EBZ—I/2—€I/

* *

2
1 1 1
X [V*/L (EKO(V*G)IO(V*R>> + EKO(V*G)IO(V*R>

« :aKl(V*a)Io(V*R) - RK()(V*CL)E(V*R)] <— T <_>>

[t-emeicn] (i (2))|

27
>< [ / h<0’>de'{§Ko<u*a>Io<u*R> %[K()(v*a)fo(v*m

+ K, (v,(a— R)) + v.Ky(v,(a — R))} (E ¥ In (—))
4 (55—l RK . R)) (i +gmin (%) ) 2}] T s

3.6. Deformed Sphere and a Point Defect

In this section, we combine a point defect with a deformed spherical defect with

radius R. Let us remind ourselves that & is the position vector of the deformed sphere:

5(0,6) = o(0,) + eh(0, ))N(6, &) , (3.6.1)

where € is a small deformation parameter, N is the normal vector. As before, h is going
to be taken as a smooth function on the sphere. The area of the deformed sphere is

given by
- 2m ™
A(Y) =47 R? — 26/ H/ h(0, ¢)R? sin 8dOd¢ + O(€?) , (3.6.2)
0 0

where H = 1/R is the mean curvature of the sphere and we will use the notation d2
instead of sin 8dfd¢ to make our expressions more simple. Again, we have the diagonal

elements of the principal matrix in (3.4.19) and (3.4.19). The only expression we need
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Figure 3.27. Deformed sphere and point defects setup where Rn(f) and a are the

position vectors of the defects respectively.

to find is .5 = P,; element:

¢n<—v%::¢zm—v%::—wauax—v%|i>=—1/kam><pu%cﬂﬂni>cﬁp

__/&&p s (IS @
T ap e PO

We have a momentum state projected on a deformed sphere as

~ 1 L ,
¥y = —— / e~ P 15" Q)| R2d
(p[X) A5) 15 ()]

where

7 ()] =

R

We use the approximation

CEE /zﬂ/ﬁh(Q)dQ
A(S)  4nR? 47R Jy ’

and the Taylor expansion of the exponential term

eI hPNO) = | jeh(Q)p - N(9) .

%5(9)‘ — 1= eh(Q) = 1 — h(Q) .

(3.6.3)

(3.6.4)

(3.6.5)

(3.6.6)

(3.6.7)
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Substituting (3.6.4), (3.6.5), (3.6.6) and (3.6.7) in equation (3.6.3), we have

) 1 i ap 27
@12(_V):_E/( 3 ) +y2 / / el
27 27T,
h(Q)dSY e~ o) ()
vl [ o) [ ./0
27 % 27
+e/ / —e_“"’ (Q)dQ——/ / e_ip'“(Q)h(Q)dQ d>p
R Jy 0
L / el ap smpR (/27T hQ )
(277)3 p2 4+ 2 h J

2¢ et aP Sin(pR)dS € 0 / et ap

ArR | p2+1v2  pR P mor p? +v?

2¢ e —ip-o(2) 3 ‘
IR p2+y26 P dp| ¢, (3.6.8)

again, getting rid of the higher order terms and using the fact that the angle be-

e—?lpﬁ(Q)d?)p

tween o(€2) and p is not €, so we can separate all the deformation function inte-
grals. We can take the angle between (a — o(£2)) and p as ¢, the angle variable of
d?p = p*dpsin(¢)deda. Using (2.2.14), the final form of ®;5 = ®,(v, + €v;) is then,

1 2 va 2 / en —v
@12 S @T)S{ﬁe sinh (]/R (/ / h Q dQ ) !yaRQ % sinh <I/R>
27 oo 2 d
p —zp(a—R) COS @ o3
47r o5 / /0 / C 3¢ sin pdpda
%€ 2 T 00 p dp
. —zp(a—R) COS @ o} dod
47TR/0 /0 /o P2 +V2 sin pap a]}
1 27
= _47waRe sinh (VR) — ( / / )

€ o b (WR) + . —v(a—R) e e—u(a—R)
| 8e2var?® sinh (vR) + 167 2[ vla—R)+ ]( —R? R a—R
rston = ([ [ e )
= ]/a, 1%
TR 2 1/2( A
1
X € mKl/z(W)Il/z(VR)
N v+1/(a—R) m 2VK1/2< v(ia—R)) (3.6.9)
1672 R T vVa—R o
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where we used the integral result

o0
/ 212 i g sin(pz) dp = e—ua:% for x> 0. (3.6.10)
0

3.6.1. Perturbative First Order Calculation of the Bound State Energy

We write the bound state energy perturbed as Ep = —v2 — 2ev,v; by taking
v = v, + evy, and perform the similar Taylor expansion around v,. Since we already
have the expanded forms of ®1;(v, + evy) and Pyy(v, + €vy), we write Pq5(v, + €vy)

as:

27 s
b2 = = s Kl + o+ e Ry = ([ [ isyasy )
1
STRVaR
p <<V* +en)+1/(a=R) z) 2(v, + evy) Ky po((v, +evq)(a — R))
1672 R ™ Va—R
1

=— K, s(v.a)l (v, R)+ evyRK 5(v.a)ls,(Vv, R
Wa—R[ (B0, (v, R) + e RE 5(r.0) Iy 5 (v, )

- €V1QK3/2<7/*@>11/2<V*R>] - </027‘ /O7T h(Q’)dQ’) m
[ttty + (B M=)y [ sl )

1672

X € (v, + evy)a)ly (v, + evy)R)

(3.6.11)

Again, using the standard perturbation theory, we will find an expression for v; from

the equation

¢
= —dw; , where A*Té—

81/V

_ 0wy

A_81/

. The only term we need is

Vy

€V —
Lo
I/*
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0P,
ov

T
Al

2 2
1 L1
(mWGEKV“”@“ﬂ@f”) +<X;+5;m(g)>]

1 1
X ———=Kp(v,a)ly (v, R —aKs,(v.a)ly (v, R
K L B e | R s ()

+RK1/2(1/*a)13/2(V*R>] - (/0

Ay =
V*

X[—aKwﬂhwhm@Jﬁ+RKQA%®QQWJD

1 [2v, Kip(v(a—R)) N (V*—l—l/(a—R) 7T) 1

* 162V 7 va—R 1672 R 2,
y K1/2(V*(G—R))_ v,+1/(a—R) m —F
va— R 1672

X K3/2(1/*(a —R))

Now we write

K%MKW(” a)ly (v, R>> 2 + (i - %111 (’;))2] 1%
X { B ('/0.277 /0'7T h(Q’)dQ’) m |:K1/2(V*G)Il/2<V*R)

N <1/*+1/(a—R)_£> 2;*K1/2(2(%R>) (é+%1n (%))

1672 R
) 2
- ’/1% (2;{ v lo(v.R) K, (V*R)) (/02 h(9>d«9> (i + % In (%)) }

(3.6.13)
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and find the expression for v, as

” :{</2ﬂ/ﬂh (Q)d ')m{m/g(u o)1, (0. R)

(u +1/(a ) 2v, Ky pp(v(a — R))
1

1672 Va—R

N (% — v, I, (1,R)K (v, R)) (/02“ h(G)d9> (AlR + %ln <%)>2}

{2\/1_K1/2(V a4 a0, R){ﬁ[

€
+ RK ) R) / / )
1/2 v.a) 3/2 Yy ] ( 8m2RvaR
b {— aKyz o (v,a)ly oV R) + RK o (v.a)ls0 (v, R)

n 1 2v, Kl/z(y*(a,—R)) y v, +1/(a—R) s 1
1672V = Va—R 1672 R v,

Ky)(v.(a—R)) v,+1/(a—R) 2v,
T Va-R _< 1672 _E> O

X Ky(v,(a — R)) }(;R + 27T1 (’;))
— QP —2RI,(v,R)K, (v, R)] (;R + %ln (':—1))2} }1 : (3.6.14)

CLK3/2(V G)Il/z(V*R)
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Finally, using (3.5.22) and (3.5.23), we express the bound state energy in terms of v,

obtained above and get

29,
{ /)dQ’) m [Kl 2(r.0)] 5 (v, R)
(1/ +11é:— _%> 2;* Kl/Q%M) <A1R %h ( ))

n
N % (% - V*IO@*R)Kl(u*R)) ( /0 ) h<9>d9> (g oLl (%)) }

1
{2\/—K1/2(V a)Il/z(V R){—aR [ - CLKS/Q(V*CL)II/Z(V*R)

27
€
+ RK v,a)l. v,R / / )—
. A ] ( =
Y [ a0y (v R) + RE (040 Iy (v, )

1672 R

' Sl G e R

X Kyp5(v.(a—R))

9 [Vi - 2RIO(V*R)K1(V*R)] (i + % In (%) ) 2} }1 . (3.6.15)

1 2v, Ky )5(v(a— R)) v,+1/(a—R) = 1
"oV T T vaon +< __>

v,
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4. GEOMETRIC SCATTERING IN THE PRESENCE OF
LINE DEFECTS

In this chapter, we will concentrate on solely the scattering state of a scalar
particle which scatters from an asymptotically flat curved surface in the presence of
line defects. We will mention the concept of geometric scattering and as the singular
potentials, the scattering by infinitely long linear delta potentials. We will give the

calculations and graphs obtained in our work [49].

The research on the quantum mechanical problems on a curved surface is a very
interesting topic [19,21-25]. Consequently, studies on quantum scattering on a curved
surface are also very influential since they provide very important tools to quantum
gravitational theories. A relatively fundamental approach on this manner is analyzed in
[26]. In this paper, the scattering of a scalar particle freely moving on an asymptotically
flat surface S is examined. Following this work, we see that we can express the non-
trivial geometry to the Hamiltonian as a perturbation to the kinetic energy and a
correction to the potential because of the curvature effects. To realize such a system,
we can think of a dilute electron gas formed on bumpy surface. Therefore, adding
some singular potentials to the geometric problem is crucial since there could be some
defects in this gas. In their work [28], authors also do the calculations of the geometric
scattering of a scalar particle, an electron in particular, in the presence of many point-
like delta potentials and observe an amplification of the geometric scattering effects
by the point defects. For the study of the linear delta potentials, we will follow the

formulation obtained in [28]. We note that in this chapter we use the normalization

eikm
27

(x|k) = f/?;—; instead of the earlier chapter (which takes ) in one dimension.
4.1. Scattering by parallel line defects in a plane

First, we start with the case where the space is flat. We work in two dimensions

and the non-relativistic scalar particle scatters by N linear delta potentials which are
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pictured in Figure 4.1 and can be described as

%(33, y) =

hE

&,0(x—ay,) (4.1.1)

n=1
where £, is the interaction strength which can be either complex or real and a,,’s are

the locations of the linear defects.

AY

wave — Line Defects

Figure 4.1. Line Defects where a,, is the location of the defect.

The Hamiltonian of such a system can be written as below

N
H=Hy+V,=-V2+) ¢dx—a,) . (4.1.2)

n=1
Because of the definition of the potential does not have a polar symmetry, we will
work on the cartesian coordinates for this part of the problem. In position space, the

time-independent Schrodinger equation is

N
— 02— 2+ &.0(@ —a,) | Yyla,y) = Ky (r.y). (4.1.3)

where k2 = E. Now, to solve this equation, we can use the separation of variables
method since the potential is in terms of the z-coordinate only and we already know

that the momentum dependent scattering solution, (x,y|¢,(k)), should satisfy the
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Lippmann-Schwinger equation,

(@, ylvo(k)) = (z,ylk) + (z, y| Ry (E)Voliho(k)) (4.1.4)
where k is the incoming wavevector. We can express k as
k =k,e, +kye, = k(costye, +sintye,) (4.1.5)

where e, and e, are respectively the unit vectors along the x- and y-axes, |k| = k and

0, is the incidence angle. So we can write the solution to (4.1.3) as

Po(x) = Yo(7,y) = x(2)9p(y) (4.1.6)

where
Py) = e*¥ /21 (4.1.7)

since the potential is not y-dependent. For the x-component of the Schrodinger equa-
tion we have

02
@X(ﬂv) + k2 x(x) =

M=

£,0(x —a,)x(ay) - (4.1.8)

n=1
At this point, we need to make connection between momentum and position spaces
and obtain the full wave solution ,(k,x). To do that, we identify the Hilbert space
L?(R?) of square-integrable functions of x = (z,y) with H; ® H,, where H; and
I, are respectively the Hilbert space of the square-integrable functions of z and y.
This allows us to express the momentum dependent wave solution |1, (k)) as an inner

product of position functions:

[ho(k)) = Ix.0) = [x) ®19),
= ok, x) = x(@)o(y) - (4.1.9)

Similarly, we are now able to write V}; in the form,

N
Vo=> &la,)a,l® 1 (4.1.10)
n=1

where I, is the identity operator for 5. Now it is admissible to write the second term
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in the Lippmann-Schwinger equation directly as

NE

(@, YRy (E)Volvho(k)) = ) &, (x,yl Ry (E) |ay,) (an]x) [6)

3
1}
8

M-

c, / (4| RE(E) [ky k) (Klan) (an ) Ok, |0) db,dk,

3
I}
8

8

e thza,

tnﬂz

sn/ r.y| RS (E) |k

00 v biy) ﬁx(am (k,|o) dk,dk,

=

3
Il

_

(4.1.11)

Now we place the resolvent operator, Ry(E) = (E—p2) ! in the equation above where

Dy |ky) =k, [ky) and get

a 2 k/ k k" k —ik,a,
(@ RS EWolun() =6, | (eliz) Gl ol e

n=1
x x(ay,) (ky|¢) dk,dk,dk;,
o0 ezkxob 1 e —ik, a,

:;gn | \/%E—k:%—i—ie \/% (an) <y|¢>dk

Z

=6(y) > &uxla,)G(x —ay,), (4.1.12)

n=1
where G is the Green’s function for the z-component of the differential equation,
1 jetkalr—2']
G(x—1') = (| (=E + k2 +i¢) " |2) :_Tw, (4.1.13)
where it is important to note that, in this chapter, we take the signature of the Green’s
function opposite to the last chapter to stick to the notation in our relevant paper. Sub-

stituting these results in the Lippmann-Schwinger equation, we find the xz-component

of the solution as
‘ i X .
x(x) = ethet — T Z g, ethrle=anly(q, ) . (4.1.14)
T n

At this point, we do the similar calculation to the principal matrix calculation earlier:

We take ¢ = a,,, with m = 1,..., N, and arrive at the following system of linear
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equations for x(a,,).

N
S Tpr(ay) = et 115
n=1
where
. 1+ &n for n=m,
T, =3, + - ongikla,—a,l o, T (4.1.16)
nm nm . . o
2kil’ ;é'TT; ezkmlamia’n| for n # m’

plays the role of the principal matrix in this case. Hence, combining the equations
(4.1.7) and (4.1.14) and inserting the expression in (4.1.15), we can express the scat-
tering solution (4.1.6) of the Schrodinger equation (4.1.3) in the form,

™ . A .
(x[tho(k)) = o | e™> —i Y~ ethram AL eilkalomanlth) | (4.1.17)
s

mmn
m,n=1

where we make another simplification in the notation as we introduce A-matrix in

terms of T as

T, 2%, Geti for n=m,
A _ z-mn _ L omn Z-eikm|am—an — m (4.1.18)
mn gm Sm ieikuv'am_unl fOI‘ n # m.

We need to compare the solution in (4.1.17) with the well-known form of the
scattering solution in two dimensions which is

1 ] Jikr
’Qﬁ(k,X) = % €Zk.x + f(k/a k) \/F

to obtain the scattering amplitude expression, f(k’, k). Therefore, we should look at

for r— o0 (4.1.19)

the long distance behaviour of the solution in (4.1.17). To do that, we need to obtain

the asymptotic expression for the second term of the right-hand side of (4.1.17).

Let us start with writing the scattering part of the wave function as

. N
wscatt(x) = 2_Z Z €ik”am’A;Lln 6i(kw‘xia"‘+kyy). (4120)
™

m,n=1



79

We already know that the scattering part of the wave solution should look like

ikr
7vZ}scatt,(X> — 27Tﬁ f(k/7k> fOI" r— 00 (4121)

in two dimensions according to the expression in (4.1.19). So we need to compare
the right-hand side of (4.1.20) with (4.1.21). We can rewrite the scattering part by

expressing the magnitude term in the exponential as below

etkyy N ] .
wscatt(x> - o nz::l [t: @(ZL‘ — an>€Lk”“L + t; Q(an - x>€_LkIL]a (4122)
where
N .
t'rzg: [ _Z Z A%%n elkm(a"rrL:Farz) (4123)
m=1

and ©(z) is the step function. Because k, > 0 and the incidence angle 6, takes values

in the interval (—F,%). Therefore, the scattering angle 6 ranges over the interval

[—Z.3%) and we can define 6" and 6~ angles as:

ot :=146 for 0¢€(—3,5),
0~ :=m—0 for 6e(3,3).

We introduce these angles to be able to use the asymptotic expansion expression given

in Appendix A of the reference [85] which is
. . 2 . x , ™
etk yetik,w _y k_ﬂ [ez(kr—z)éwo — %) + ek D)5(0, — 0F + ) (4.1.24)
\ %r
as r — o0o. We need this expansion to write the exponential terms of (4.1.22) more

clearly. Putting (4.1.24) in (4.1.20), we obtain

i

wscatt (X) = 67;]67’ m

N
< 3 AL [eimam—anm(a—eo)+eikz<am+an>5(e+eo—ﬂ) , (4.1.25)

n,m=1
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which gives the scattering amplitude as

N
/ kl Z A1 1km(am—an)5<9 _ 90> T e?lk:m(am-i-an)(;(e + HO o 7'(')

\/; o t+ )0(6 =) + 7 (k)3(0 + 6y —7) |, (4.1.26)

where we have introduced

N
k)= =i Y Apheheonma) = - Z A coslky(a,, —ay)l,  (4.1.27)
n,m=1 n,m=1
N
(k)= =i Y Aphetteantan), (4.1.28)
n,m=1

and used the fact that A™1 is a symmetric matrix, i.e., A L = A-L As we look at
the expression in (4.1.26), we see that the scattering is determined at only two angles;
at 0 = 0, and 0 = m — 0,. This is an expected result since the potential is only z-
dependent and there is nothing to change the y-component of the momentum vector
and this is why our setup acts like the basic scattering problem in one dimension: there

are only reflected and transmitted parts of the incoming wave.
4.2. Geometric scattering as a perturbation to line defects

To see how the presence of the line defects affect the geometric scattering, we will
add the locally curved geometry of the space to the Hamiltonian as a perturbation.
We need to be careful when defining this space dependent perturbation. We need to
embed the locally curved surface in the flat space, R3, and force the scattering particle
to stay on this surface to obtain a problem in two dimensions. In this work, we follow
the calculations which model the effect of the confining forces in terms of the thin-layer
quantization scheme of Ref. [77]. The Hamiltonian operator written on a curved space
is

Heyrved = —920i(g ”91/2>3j + (MK + X M?), (4.2.1)

where ¢ is the metric tensor, K and M are the Gaussian and the mean curvatures of

the surface respectively and their couplings are A; and \,. According to da Costa [77],
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A1 = Ay = —1/2 and we give the plots for different values of the couplings such as 0,

1/2 and —1/2. In our case, the Hamiltonian can be written as
H = —g'20,(g"g"?)0; + (MK + \,M?) + V, (4.2.2)

where V}; is the potential defining the linear defects. Our claim that we can write this

Hamiltonian as

where H, is the free Hamiltonian and ( is the perturbation parameter that we will use
to keep track of the strength of the geometric contributions. We can use the standard
perturbation theory to write the scattering solution [28]

o0

(k) =D " (k)), (4.2.4)

n=0

and using the Lippmann-Schwinger equation we have

1—RI(EW,| " |k) for n =0,
o= “]1' > (4:2.5)
1—RS(E)V,| “ RS (EYVil¢, (k) for n>1,

where |k) is the plane wave solution. We can also write the total scattering amplitude

as a series as
FK k)= ¢"f, (K k). (4.2.6)
n=0

Combining (4.1.19) and (4.1.4), we know that we can write the scattering amplitude

for the potential V as

FIK) = —my /% 1|V (k) (4.2.7)

where we use a slightly different convention then the earlier chapter (as we keep Vi
term). So for the nth term of the scattering amplitude we can write

- k’'|V, k fi =0,
fuk k)= —m 2y Vol tien o (4.2.8)

L Wl () + (K Vi 1 (K)) for > 1.



82

We take the first Born approximation in our calculations and it implies ignoring all the
terms except of the order of (. Hence, we are interested in the n = 0 and n = 1 terms

only which are

ol 1) =~ [ 220 Vg (8, (129
and
AUl ) = =y [ [V () + RV )] - (4210

We note that the zeroth order wave solution and the scattering amplitude, |¢,(k)) and
fo(k’, k), are already calculated in section 4.1. Setting n = 1 in (4.2.5) and replacing
|11 (k)) with the obtained expression, we get

(K [Voley (k) + (K'[Vi [y (K)) =(K'[Vo[L — Ry (E)Vo] = Ry (E) V3| (k)
+ (K'[Vi o (k)
=(k'|(Vo[1 = R (E)Vo] ' Ry (E) + 1)Vi[g(k))

= (o (k) [Va o (K)), (4.2.11)
where we define
(o (k)| = (k| Vo[1 — R (B)Vg] ' Ry (E) + (K] (4.2.12)
Now using the series expansion
(1= R (E)Wy) ' =14 RH(E)V, + ... (4.2.13)

we obtain

Wo(l)| = (k| [Vo(1 + B (E)V; + .. )R (B) +1]

= (| [(1+ VORS (B) + . Vot (B) + 1]

= (K] [(1 = VoR{ (B)) WV RG (B) + (1 = VoRE ()11 = VyR§ (E))

= (k| (1 = VRS (E))™. (4.2.14)
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With this expression in (4.2.14), we can write f; as
, 2mi , ~ -,
1K) = = 2, 0 Vi 1)

—— 50 [ [ G Vi) i) axix . (a:215)

Subtracting the free part, H,, and V|, from the Hamiltonian given in (4.2.2), we can

write the (V; part of the potential as
(X' |Vy|x) = £, 6(x" — x), (4.2.16)

where £ is the differential operator,

L= g () — 69()] 0,0, %y (xgg;j@)] 0, + 2\ K () + 20, M (2)2, (4.2.17)
g(x

and géj are the components of the inverse of the Euclidean metric tensor g,. According
to our observation in section 4.1 which says that f,(k’, k) vanishes for angles 6 other

than 6, and m — 6, we can claim that

f(k/,k)NCfl(k/,k) for ‘9¢{‘9077T_60}'

Delta potential in (4.2.16) drops dx integral and we are left with the scattering ampli-

tude expression that we need to handle as below
’ 2mi 2.7 /.7 A /
CHOCK) = =y 2 [ () o s ). (42.18)
R2
So we need to compute <’l/?0(k) 1x). Projecting the equation (4.2.14) onto position space
(o(k)|x) = (k| (1 = VyR{ (E)) ! [x) (4.2.19)

which can be written as

(o (k) |x) = (k|x) + (k| VoR (E) |x) | (4.2.20)
then we have
~ 1| . N oo A
dolke.x) = - ekX i Y ethean ATLx iR lran Ry | (4.2.21)

m,n=1
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Finally, we substitute (4.1.17) and (4.2.21) in (4.2.18) to obtain

/ 1 Z . N ’_ _
Cfi(k’. k) =— 3V 3k [IO —1 Z (Am%]mn + Amlnjmn)
m,n=1
N
o Z AWZT}”L/AT_L}L/Imm/nn’] ) (4.2.22)
m,n,m’ ,n'=1

/ . .
where A, ! stands for A, ! with k, replaced with k, and I, I,,,,,, Jun, and I, ..,
are complex coefficients given by
-1,/ ’ - ’
I, := / d*x’ e K x £, ethx (4.2.23)
R2
ik —ik’ oy ik | — G
I ::/dQX’ (e s Gy TR Y ik | “"|) £ etkx (4.2.24)
|R2
1./ o/ . Y . /
Jmn ::/d2xle—zk X £x/ <€zkmzam ezk:y/y ezkm/|m —a”|)7 (4225)
R2
Imm/nn’ 3:/d2X/ <€—ik;,am/ e—ik;/y/e—z‘k;,|m/—am|)
|R2
% ’Cx’ (eikwlan/ eiky/yleikw/|x’—an|>_ (4226)

4.3. Scattering by a Gaussian Bump with Line Defects

Let us take the asymptotically flat surface S considered here as it has a cylindrical
symmetry. The setup of such a system is pictured in Figure 4.2. In other words, we

have a surface defined by
z= f(r), (4.3.1)
where (7,0, 2) are the cylindrical coordinates in R® and f is a smooth function satisfying

lim f(r) =lim f(r) =0 (4.3.2)

r—00 r—0
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wave —

Line Defects

Gaussian Bump

O.[.'an

Figure 4.2. Line Defects and a Gaussian Bump.

being f(r) = 2 f(r) [27]. We need to write operator £ accordingly. The components

r

of the metric tensor take the form [26]:

g11 =1+ 12, 912 = g21 =0, oo =12, (4.3.3)

and also we can express the Gaussian and mean curvatures of the surface S as

K = %, M= (Q + G) : (4.3.4)
r 2\ r

respectively, where we define G as

/

G = (4.3.5)
V14 f?
We insert the expressions given in (4.3.3) and (4.3.4) into £ and obtain
: : 2
£, = G2 [aﬁ+%(1+%)a,,+2jf+§722(1+%)]. (4.3.6)

To describe a local Gaussian bump, we take

flry=4 e /27 (4.3.7)
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where § and o are real and indicate the height and width of Gaussian bump respectively.
We assume that (§/0)? = n < 1, i.e., the bump is very low. We will ignore the terms
higher orders of 7 in our calculations. We choose Ak = k — k” lies along the z’-axis

for simplicity.

If we use © (respectively #) to denote the angle between k and k" (respectively
k” and the z’-axis), we can show that §# = (7 + ©)/2 and |k" — k| = 2ks, where we
define

s =sin(©/2).

We use all these and calculate the integral in (4.2.23), we find [27,28]:

—SZRZ
I, = % (4X;s% — )R + My (181 + 2)| + O(n?). (4.3.8)

where 8 := ko. The rest of the coefficient integrals in (4.2.24), (4.2.25) and (4.2.26) are
a bit more difficult to calculate since they involve functions of Cartesian coordinates
(z’,y"). We therefore perform a coordinate transformation to express the right-hand
side of (4.3.6) in Cartesian coordinates. Using the Cartesian £ various properties of

Bessel functions and the identities,

d| x|

d2 e
A = sgn(x), 12

dx?

= 26(a),

we can compute I . J  and I

mns I mnm/n i1 terms of the error and complementary error

functions with the help of Mathematica. The results of these integrals are given in
Appendix A since they are very long and complicated. So in principle, we have an
explicit expression for the scattering amplitude of the Gaussian bump (4.3.7) in the
presence of N parallel line defects located at x = a,, with n = 1,.., N. We will look
at the behaviour of the scattering amplitude with the help of plots since it is very

complicated to examine analytically. So we need to set some numbers.
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We take the delta function potential £,,6(x — a,,) as a barrier potential,

Vy, for |z —a, |<p/2,
V(z,y)=1< " | nl <2/ (4.3.9)

0 for |z—a,|>p/2,
where Vj, := §,,/p and p are respectively the height and width of the barrier. We
compare V, with the energy of the incoming electron E = k2. V; must be much larger
than k2 to be able to behave as a delta potential. Also p must be much smaller than

the length scales of the problem which are the de Broglie wavelength Ay = 27 /k and

the width of the Gaussian bump o , i.e.,
Vo> E, P < AB> p L o. (4.3.10)

Since we want our system to be sensitive to the non-trivial local geometry, we consider
the scattering of the particles with wavelengths A\;z which are of the same order of
magnitude as o. This means that 8 = ko should be of the order of 1. For these waves,
we only need to satisfy the first two of the conditions listed in (4.3.10). We can express
the first of these condition as &, > k%p. Therefore it will be fulfilled, if o€, > kp.

Note also that the second condition in (4.3.10) is equivalent to kp < 1.
In our numerical settings, we take

Vo~ 1eV, p =~ 1nm, 3, =0 1 (4.3.11)

and suppose that the effective mass of the electron is given by m ~ 10~2m,, since it is
a part of a dilute electron gas. Then it is easy to show that I/ <« V[, will imply kp < 1.
For example, for £ ~ 1072 eV we find kp ~ 0.02.

We have the differential cross section, |f(k’, k)|?, plots for a Gaussian bump when

there are none, one or two line defects as a function of & = ko.

In Figure 4.3, we plot the differential cross section versus £ when there is only
one line defect accompanies the Gaussian bump with fixing the other parameters. As

we can see, the scattering effect is more sensible when the line defect is not located on
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the center of the Gaussian bump, but before or after the bump. We see that locating
the line defect before or after the bump, i.e., taking x = 30 or r = —30, does not make
any difference on the cross section plot. Also when we look at our numerical results,
we see that the values for the cross section are not identical but very close which are
not visible in our plots. In Figure 4.4, there are two line defects. We see that when
we locate the bump between the line defects, the amplification in the differential cross
section seems drastic. There is still an amplification, which does not seem identical this
time, when we locate one of the line defects on the center of the bump, and the other
before or after the bump (first and second plots in Figure 4.4). However, as we look at
the numerical values, we see that the boost is much larger in the geometric scattering
demonstrated in the third plot of Figure 4.4 and we can make the interpretation that
when line defects located symmetrically to the bump, they function as a resonator. We
also see that, the amplification seems higher at the relatively small angles, # = 5° and

0 =30°.

In Figures 4.5 and 4.6, we plot | f(k’, k)|? versus 6 for a Gaussian bump with one
or two line defects, respectively. In this case, we fix 8 = ko = 1 and take different
values of the curvature coefficients A; and \,. These graphs are compatible with the
observations in Figures 4.3 and 4.4. For the one line defect, the plots seem identical
and the values are a bit higher then the case when the line is located on the center of
the bump. Also, there is a sharp amplification in the third plot of Figure 4.6, which is
the case when the bump is located between the lines and this points to the resonance

effect.

We also have the graph when there is no line defects, but the Gaussian bump
only which is given in Figure 4.7. Comparing the numerical values, we see that the
presence of line defects indeed magnify the geometric scattering effects. Despite to
the case when there are point defects which have effects on the cross section at every
scattering angle 6 [28], line defects only produce reflected and transmitted waves at
angles 0 = 0, and m — 0, as we calculated earlier. Therefore, we see the effects of the

line defects on the scattering from the bump at angles other than 6, and = — 6,.
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Figure 4.3. Plots of |f(k',k)|?/o as functions of ko for the Gaussian bump (4.3.7)
with a line defect at x = —30 (on the left), z = 0 (in the middle), and = = 3¢ (on the
right) for 8, =0°, n = 0.1, 03, = 1, Ay = =Xy = 1/2, and different values of 6,
namely 6 = 5° (black), § = 30° (dashed purple), 45° (blue), 60° (dashed green), 90°
(orange), and 175° (dashed red).
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Figure 4.4. Plots of |f(k’,k)|?/o as functions of ko for the Gaussian bump (4.3.7)
with two line defects at * = —30 and x = 0 (on the left), x = 0 and = 30 (in the
middle), and x = £30 (on the right) for §, =0°, n =0.1, 03, = 1, Ay = =X, = 1/2,
and different values of #, namely 6 = 5° (black), 8 = 30° (dashed purple), 45° (blue),

60° (dashed green), 90° (orange), and 175° (dashed red).
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Figure 4.5. Plots of |f(k", k)|?/o as functions of 6 for the Gaussian bump (4.3.7) with
a line defect at x = —30 (on the left), x = 0 (in the middle), and = = 3¢ (on the
right) for 6, = 0°, n = 0.1, 03; = ko = 1, and different values of \; and \,, namely
AL = —Ay = 1/2 (black), Ay = 0 and A\, = —1/2 (dashed blue), A\; =1/2 and A\, =0
(green), and A\; = Ay = 1/2 (dashed red).
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Figure 4.6. Plots of | f(k", k)|?/o as functions of 6 for the Gaussian bump (4.3.7) with
two line defects at © = —30 and x = 0 (on the left), z = 0 and = = 30 (in the
middle), and x = £30 (on the right) for §, = 0°, n = 0.1, 03; = ko = 1, and different
values of A\; and \,, namely A\; = —\, = 1/2 (black), \; =0 and A\, = —1/2 (dashed
blue), Ay = 1/2 and A\, = 0 (green), and A\; = Ay = 1/2 (dashed red).



91

0.009¢ 0.0045¢

0.006¢ 0.003f

|f|%/o
If|%/o

0.003¢ 0.0015¢

Figure 4.7. Plots of |f(k’, k)|?/o as functions of & = ko (on the left) and # (on the
right) for the Gaussian bump (4.3.7) in the absence of the line defects with the same
values of the physical parameters as in Figures 4.3 and 4.4. The graphs in the left
panel correspond to the scattering angles: § = 5° (black), § = 30° (dashed purple),
45° (blue), 60° (dashed green), 90° (orange), and 175° (dashed red). Those in the
right panel correspond to the curvature coefficients: \; = —\, = 1/2 (black), A; =0
and Ay = —1/2 (dashed blue), \; = 1/2 and Ay = 0 (green), and \; =\, = 1/2
(dashed red).

4.4. Scattering From a Line Segment and a Point Defect

Following these calculations, we want to combine the cases when there are line
defects and point defects. However, we could not succeed to obtain an analytical
solution of this problem since Mathematica can not calculate the integrals containing
the product of two Hankel functions. So instead, we will make an approximation.
In [55], authors also give another approximate solution to this problem. We will use a
line “segment” with length L approximation on the line defect (kL is small compared
to the wavelength) to search for the scattering on a flat space, as pictured in Figure

4.8. The principal matrix, ®, for a general curve defect and a point defect is
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Figure 4.8. Line segment and a point defect.

b —

L (AIRIE)R)  (HIRGE) ) } (1.4.1)

(LIRG(E)IF) g — (fal RO (E) |f2)

Here |f;) = |a) represents the point defect and |fy) = |I') is the curve defect. We

already have ®,; renormalized

1 1 k ]
o, (E) = oo (ﬁ) - i (4.4.2)

and we introduce the renormalized coupling as
———lIn(=)=— (4.4.3)

where A is the cut-off regularization parameter, u is the renormalization constant and
&R is the renormalized interaction strength. The off-diagonal terms of the ® matrix
are not divergent. To get the elements of the ®-matrix we consider the definition of
the resolvent operator as Rl = (E —k?)~1. The general resolvent of this case in terms

of the T-matrix is:

R(E) = R{(E) + R (E) T(E) R (E) (4.4.4)
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where, R} has the integral kernel which is the free Green’s function in two dimensions

which is
+ ’ i (1) ’
Rj(x,x") = é_lHO (klx —x'|) . (4.4.5)
We can write T —matrix as
T =|f;) @5 (f;l (4.4.6)

where the inverse of the ®-matrix is given by

- 11 k i1 Lo y o dsds’
ot = [(5—%1 (2)-D -1/ [ mowne = 5

o/ " (k) — a7 ) ] p

(é_ﬂﬁﬂé”(’fh@)—7(8’)|)d35€»8/> (f HY (k|y(s _a|)%>
| (rmen-ar) ()0

(4.4.7)

Here L is the length of the curve, (s) represents the position vector of the curve T,
s € [0, L], a is the position vector of the point defect. We already have the form of the
solution to Lippmann-Schwinger equation in terms of the T-matrix as

sz~x

ve) = o

- i / HY (kx —x|) (x| T |k) 2’ (4.4.8)

when k is a two dimensional vector. Hankel function has the following asymptotic

expansion:

2

e—zk x —1r 1kr

HO (k= |) = | =

as r — 00. (4.4.9)

Here r = |x| and |x| >> |x'|. Now for 7 — oo

[ 7 W = [\ 2 i
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where k/ = kx’/r. One can compare this expression with the general form of the

scattering expression, L\/’; f(k, k:/), and get the scattering amplitude as

f(k k/>——2 1 2 / —ik/-x/< /|T(E)| //> eik'X”dQ /d2 ” (4410)
§ N = 7T4\/7Tk' (& X X 5 X X 4.

™

where we exclude v/, since the plane wave expansion in two dimensions brings the
phase factor e/%, [54]. Now we take the I function as a line segment. Corresponding
potential contains a delta function in two dimensions. The line defect is located at
x = 0 and along y = [—L/2,L/2]. We will take the small distance approximation
of the Hankel functions to calculate the elements of the T'—matrix. Even though we
will do the scattering amplitude calculations for only one point and one line defects,
here we will write the Hankel integral for the case where there is N point and M line

defects. There are two terms we need to handle in (4.4.7):

-, dsds’

. . ,ds b,
Hy (bl — 73D 7 and  Hg" (7, — 97 =55 - (4.4.11)

Here, we write the location of the a’th point defect as a, and position of the j'th
line defect as 7; where « = 1,2,---, N and j = 1,2,---, M. First, we start with the
calculation of the term H,(k|a,, — 7J|)% As mentioned above, the mid points of the
lines are along the x-axis for simplicity. We write the argument of the Hankel function

as

g, — (& 4y, 1% = ldn, — (& + y)] - [dy — (§ +y,7)]

= [a, — & —y;lla, — & — ;4] (4.4.12)
_j—/
d

aj

where, 5] represents the vector which is the projection of the position vector of the
7’th line defect onto z-axis and d;j is the vector giving the distance between the point
defect and the mid point of the line defect. First, we ignore the (D(yjz-) term since the

length of the line segment is small compared to the distance d:

— —

— g I - 2 — — 2da4'y4 N da..y.
|%—(€j+yﬂ)|2 ’idaj _Qdaj'yj gdaj(l_—dj -7)1/2 gdaj(]__ CZ .7)
%] aj
= doj = doy - vy = doy — lan — €y, (4.4.13)
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Therefore we get

HYY (kd,; — ky;(a, — &) = H (kdy) — HO (kdy) (kyj(aq — ). (4.4.14)

Now if we take the integral of the second term in (4.4.14) which is in the order of y:
1 L/2 "
Therefore, the contribution coming from the first order of y correction to the distance

between the defects turns out to be zero. We need to look at the higher order. We will

keep the y? correction to the leading term:

= ~ N 2d._ . Gy Y
(Ao + Y3012 = d3; — 2d; - Jy; + yF = da; (1 - % + d%) (4.4.16)
aj

N 2, Fuy |\
= |d,; +y;dl = d., (1 e i TJ> : (4.4.17)
To consider the case where there is only one point and one finite line defects, we take

d;j = d and y; =y and we get:

2d -Gy 42\ Y2 17 2d-7 11 1 2d - 2
(1— jy+y—> 21+—{— Jy+y—}+——(——1)( jy+y>
22'2
)2y?

2 3 2 2 3 2 3
d-jy 1y* 1(d

d-j
=1—-—4+ == —_— 4.4.18
2 21 @ (4.4.18)
Here, we ignore the higher orders of 32 and we have:
d-yj | Ly*  1(d- )% d-yj  1y* 1(d- )y
dil ————+ - —-——"-F—|=d——F——+ = — —————. (44.1
- [ 2 22 4 4 d 2d 41 & (4.4.19)

We put this expression back in the Hankel function and use the expansion below:

1Tky? 1 - = ky
HY (kd—d-jky+ =" —~(d -
( i v+ 4( 7)? )

4
small
~ B (kd) — HV Thy? 1o aoky?
= 13" ht) — 11 0d) (0 T b+ 50— 3
1 1-5)2
+5 HY (kd) <%ky2> (4.4.20)

(H 1Y) (kd)
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where d is the unit vector along d. We take the integral of the correction:

L/2 4 2 2
y (1) 72 Lhy” 1.5 ~oky
SO YR (d- T ky+ =2 — (-2
/L/2L|: 1 ( )( Jky+ 5 4( 7) d
1 d- )2
+3 1Y (kd) (—( dj) ky2>]

(HY—H) (kd)
kL
- L24d

~ ~

=) (1= (@97 + B )57 - 1 a7
(4.4.21)

and we get the expression below for the first term of (4.4.11):

3 ds kL3 1. -
Hyka =) G =H () + 5o | = 11 ) (1= 507

~

+ HY (kd)(d - §)* — HY (kd)(d - j)?}. (4.4.22)

dsds’

The integral in the second diagonal term of @, Hél)(kﬁ —]) 5,

is a bit tricky:

1 , , 1 dy,dy
SH8 (k1 7(5) = () dsds’ = 5 [ Y bl — 3o)) 2572

. L2
i 2 k dy,dy,
~ _ — | In(— — A 1 ==

1 (B2 k i | dy,dy
=——/ [111(—|y1—y2!)+7—— ~T5

small

T )L 2 2
1Rk dy,dy, 1 im, L?
o G e o

L/2

constant term

(4.4.23)

Here we used the fact that H(()l)(z) ~12/m[In(z/2) +~v]+1 2z — 0" where v is the
Euler’s constant. Now we change the variables © = y; — vy, v = y; + y,, therefore we

have dy,dy, = % dudv. So let us calculate the integral in the right-hand side of the
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equation (4.4.23) in the new frame:

! /L/th(kly y |>dy1dy2 /0 1/

- a 1_12 = a

T pp 2 L? .2
1
2

L u k
+ / / dvIn(=|u|)du
Jo 2 2

L+u

dv 111(§|u])du

L+u
u
L—

0 L
:ZL(u—L)ln(gMDdu-I—/o (L—u)ln(gwl)du
0 1 k2
:/L§(u—L) ln(zzﬂ)du

4 /0 ’ S(E—u) ln(%QuQ)du | (4.4.24)

If we let u — —u for the first integral in the last line of (4.4.24), then the whole sum
in (4.4.24) becomes:

L kQ
—/ uln(—u?) du . (4.4.25)
- 4
Then we have

1 L2 L )
_ _/ [111(E|yl _y2|)dy1dyz _ / uln(%u?) du
40

T )1 2" ‘ L2 L?m
14 1[k o, K EoL1" 4k = k2
= G m(Cu?) — Cw)?| = (R L) In(S L) - 2
kaLQQ[(Qu) n(7u) <2“>]0 sz P L) = S
(4.4.26)

and we combine this result with the constant term:

1 ORI 1 1 dm 1 KL
_ L,y Ly e 4.4.27
2= ae Tar 20T ) T g ) (44.27)

we obtain

— — —In[~——]. (4.4.28)
2
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We assume for this case 1/¢, is also large enough (&, is small enough) to compensate

for this. For the scattering amplitude, f(k,k’), we get the expression below:

) 1 /2 1 1 k i1 1 k2L%ei™
[k, k) =—2m— f[(g—%h(;)—;l)(g—gl [W])

1 kL? 1, ~ = ~ A
# oo (B 4 S| = HP ) (1= 3057 + B ) @57

a2 ) ] e [ )=
gt (% <H<§1)<kd) + %% [ — Hy" (kd) <1 - l(ci. j)2>
H{' (kd)(d - ) = Hy (kd)(d - ] D)M

wkL
+ 2—Sin(:,/£/2> (; ( HY (kd) + %L—d [ — H{" (kd) (1 - %(J. j)Z)
" . e?ﬁk-a
HY k) d 37 - 1 k7] ) )5
sin(k'L/2) 1 1 k i sin(kL/2)

As a simpler example, to look at the case when the line segment is perpendicular to

the y—axis, we take d- j = 0 in this expression, we get:

, 1 /20,1 1. (k\ i1 1. KL%
[k k') =—2m— [[(g—%l (;>—i)(g—glﬂ[4€1—+;”

o —1 . .
1 (1) kL2 (1) ik 1 1 k2L2eim 1\ eika
_ 1 a o _l

* 16[ o (kd) = 5gth (kd) ‘ 5w )5

kE L? (1) sin(kL/2)

L21ah <’fd>>—ﬂz@
SiIl(k/L/Q)i (1) E L? (1) etka
i Skl it = kd) | ——

TEL 4(H0 (kd) = T oaqth (k) |5

sin(k’'L/2) 1 1 k i sin(kL/2)

+ e—ik“a% (Hé”(k:d) -

If we look at the &, and kL — 0 limit where the wavelength is large to compare this
expression with the known two point defects result, we get the exact same result. For

this limit to make sense k is also taken small.
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5. A DIRECT METHOD FOR THE LOW ENERGY
SCATTERING OF DELTA SHELL POTENTIALS

In this chapter, we will give the idea provided in [50] briefly. The approach
discussed here is solving the bound state and scattering problems of some singular
potentials with a direct method rather to the conventional partial wave analysis. We
will work in momentum space and study the distributional solutions. We will extend
the ideas for point-like Dirac delta potentials given in [46]. In this approach, the
boundary conditions explicitly take place instead of the ie prescription of the partial

wave analysis.

First, we start with reminding ourselves that we can express the Hamiltonian

with a spherical delta shell potential as
H:HO—A|552><552| ) (501)

where H is the free Hamiltonian, and A is the interaction strength. The Dirac delta

function §4 supported on the sphere S? with the radius R is defined by the relation [56]

(8g2]1)) W d?S (5.0.2)

7 ),
A(S?) Jg2
where d?S = R?dQ) = R?sinfdfd¢ and the area of the shell is A(S?) = 4wR?. We

note that this definition of the Hamiltonian corresponds directly to the [ = 0 sector of

the usual differential equation approach in spherical coordinates.
5.1. Bound State Results
We consider one of the most basic cases of the singular interactions at first: the
Dirac delta potential supported by a point. The bound state and scattering state of

the point defect can be solved in momentum space as well, as discussed in [46].

In one dimension, we can write the time-independent Schoédinger equation with
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the attractive point-like Dirac delta potential V(z) = —Ad(x) in momentum space as
(P2 + v2)ib(p) = Ab(0) . (5.1.1)
where E = —12 and 1(p) is the Fourier transform of the solution of ¢(x) which is
oo R dp
T) = IPT 1.2
o) = | i) e (512)
We can divide both sides of equation (5.1.1) by p? + 2, and we get
~ Ah(0)
=7 5.1.3
Y(p) e (5.1.3)

where we can consider 1(0) just as a number. To find v, let us impose the following
consistency condition which means that the inverse Fourier transform of the above

wave function (5.1.3) evaluated at = 0 should be equal to ¥(0):

F o~ dp [T X(0) dp
0) = — = — . 5.1.4
vor= [ G5t = [ S (514)
We find the bound state energy by evaluating the above elementary integral and solving
for v. The result is v = % Hence
)\2
E=——. 5.1.5
- (5.1.5)

It follows from the consistency condition (5.1.4) that the bound state energy exists as
long as A > 0 since if A < 0, it is not an attractive potential anymore. We can check if
this result is true by easily taking the inverse Fourier transformation of J(p) given in
Equation (5.1.3). The inverse Fourier transformation of zZAJ(p) integral can be computed

by the residue theorem [100] and we get

W(x) = \/é ealel (5.1.6)

which is the well-known bound state wave function [31] indeed.
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Secondly, the wave function in momentum space for a spherical interaction is

—~

(P*+ ) Y(p) = Xplog2)(ds:[0)

_ 4:R i ( /Sze—ip"’RQdQ> ( /52w<a>R2dﬂ), (5.1.7)

where again
o(0,¢) := (Rsinfcos ¢, Rsinfsin ¢, R cosb) . (5.1.8)

We calculate the momentum space wave function as

~ X sin(pR) ( ; _
(p) = R ( s (o) R dQ) . (5.1.9)

Imposing the consistency condition given in (5.1.4) in three dimensions, we find,
/ W) R2dQ = ( z/z(a)R%lQ)
52 52

1 ) v d3
p / (/ A sm(Pmezp‘a(e ¢) —pg) R?dQY . (5.1.10)
o2 \Jgs P? + 12 pR (2m)

Integrating over the angular variables [100] and using the identities

00 . 2 .
R h(vR
/ = » 2> dp = ¢~rw TS 1) (5.1.11)
y DtV 2v
and
sinhz = % , (5.1.12)
we are left with the equation below
2
(1—e2Rv) = 7’/ (5.1.13)

for the bound state energy. This equation says that there is always one solution as
long as the slope of the left hand side is greater than the slope of the right hand side

around v = 0 which leads to the condition

1
— <1 5.1.14
g < (5.1.14)

to have at least one bound state.
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Isolating v in the equation (5.1.13), we solve (5.1.13) as

e e 2BV (RX 4+ 2Rv) = e AR
= R\ +2Rv = —W(—ARe )

=Sv=—"—"W(=ARe ") (5.1.15)

where W is the Lambert W function which is the solution of x of equation xe® = ¢ as

W (c) [102]. We write the bound state energy in terms of the Lambert W function

2
A1
E=-1t= (2 + ﬁW(—/\Re—AR)> . (5.1.16)

The position space wave function of this bound state is obtained by the inverse Fourier

transformation of ¥ (p).

And lastly, our concern is a circular Dirac delta potential in two dimensions when

the circle is centered at the origin with radius R and it’s parametrization is given by
() := (R cos(6), Rsin(6)) . (5.1.17)

So the Schrodinger equation in momentum space can be written as

27 27
(p® +12)Y(p) = L(;‘, 1 ( / e—ip*/<9>Rd0> ( /O zp(y(e))Rde) (5.1.18)

which has the following solution

)(p) = /\Jo pR) (/zﬂw Rd@) . (5.1.19)

P
By following the similar approach as in the spherical shell case, we obtain

1

R = I,(vVR)K,(VvR) (5.1.20)

for the bound state energy. we cannot solve this transcendental equation analytically.
However, there is a unique solution v for given A and R. This can be seen by simply
going back to the integral representations of the modified Bessel’s and taking the

derivative of it with respect to v. The derivation gives a monotonically decreasing
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function. Therefore, the solution always exists for all A’s and R’s. Assuming v, is the

bound state energy, using v, we can write the wave function in position space.
5.2. Scattering State Analysis

For the scattering case of the point interaction, we have F = k2, v = ik, then

the Schrodinger equation in momentum space is
(p* — k2)1h(p) = Mp(0) . (5.2.1)

Now since dividing both sides by p? — k? leads to singularities as p = +k, we cannot
solve this equation directly as it was in the bound state. As usual we add some —ie term
in the denominator to calculate the integral which corresponds to putting the outgoing
boundary condition by hand [86]. So instead, we will use generalized functions [56]
which are also called as distributions. Distributions, which are denoted as T’s in this
chapter, can be described as continuous linear functionals acting on functions. They

take test functions and give real numbers as the output. The rigorous calculations on

condition of continuity of distributions can be found in [56] and [101].

The point interaction can be defined as a Dirac delta distribution as [31,86]
b= [ dtpte)ie = v(0). (522
Fourier transform of 7" acting on a test function can be defined as [56]
(F(T), ) =T, T () - (5.2.3)
We will use the distributional solution for an equation like
(22 —a®)T(x) =0, (5.2.4)
which is

T(z) = AS(x — a) + BS(x +a) + pv (ﬁ) , (5.2.5)
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given in [56], where a > 0, A and B are arbitrary complex numbers. The principle

value has the property

(o) - () (20)) e

which is also given in [56]. Therefore, using this property in (5.2.5), we can write the

equation (5.2.1) as

D(p) = AS(p — k) + Bb(p + k) + Ab(0)pv (ﬁ) . (5.2.7)

Substituting this back into inverse Fourier transformation, we find

Y(@) = et 2

5.2.
2T 27r6 (O 8)

—ikx + )\w(()) pv /OO e’ip:v d_p
o PP —K? 27

Using residue theorem, the integral in the last term above can be calculated. Implying

the continuity of the wave function at x = 0,

A+ B
0) = 5.2.9
(o) = == (5.2.9)
we find
%éﬁkm + %e—ikm _ M(;lT;B) (eikm _ e—ikm) forz <0,
W(x) = (5.2.10)
%eikm + %e—ikx + i/\(silTZB) <eikx _ e—ika:) forz > 0.

for the wave function in position space and this result is compatible with the well-known

results given in the literature [31].

For the scattering from spherical shell, we write the Schrodinger equation as

(p* = k2)h(p) = alp) , (5.2.11)

where

s

W(o(0, ) R?sin 9d0d¢> . (5.2.12)

2
=
Il
S|
<%
=8
3
=
7 N
C\
Y
<:\
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Then the distributional expression for the wave function in momentum space is
_ a(p)

The first two terms coming from (p?—k?)§(p+k) = 0 are similar to the one dimensional

case. However, since we work in three dimensions now, we need to add the term coming

from the magnitude of the wave vector, (p?> — k?)6(p — k) = 0, where k > 0. Then,

taking the inverse Fourier transformation of the above distributional solution

. : ipr 3
A B 2Ck sin(kr) N V/ e®PTa(p) d°p (5.2.14)
R

_ ikr —ikr
V) = ™ e (e =R (2

and imposing the consistency condition, we obtain the position space wave function.

And lastly, distributional wave solution for the circular interaction in momentum

space can be expressed as

AJy(pR)

2m
1h(p) =Ad(p — k) + BS(p + k) + Co(p — k) + (/O ¢(7(9))Rd9> pv (W)

(5.2.15)

similarly. We get the position space wave solution as

. B . Ck
(r) = (2m)2 etkT 4 Wezk-r + EJOUW)

o Mo(R)Y ipe d%p
([ o) [ (SRR e 2

by taking the Fourier transform of (5.2.15). Using the consistency condition, i.e., taking

the line integral of both sides of (5.2.16), we find the term in the bracket in (5.2.16) and
we have the explicit form of the scattering wave function under the out going boundary

conditions [50].
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6. CONCLUSION

In this thesis, we study the scattering properties and bound state energies of
some hybrid systems of Dirac-delta potentials. We apply a proper regularization to
the problem for each case and use renormalization for the necessary components of the
Hamiltonians. The Dirac-delta potentials are supported by a circle/sphere together
with potentials supported by a point outside of the circle/sphere in R? and R3. We
give the plots describing the behaviour of the bound state energies and scattering cross
sections. We provide also analytical expressions for scattering amplitudes. We also
look at the cases where the circular or spherical delta shells are deformed. We give
the important result that the first order change in the bound state energies under
small deformations of the shells is equal to the first order perturbative solution of the
bound state energy when the volume of the support is increased by the average of
the deformation over the shell. We also give the change in the bound state energy

analytically when we add the point defects to the deformed shells.

The second main part of this thesis is about scattering from linear Dirac-delta
potentials in two dimensions and geometric scattering problem on an asymptotically
flat curved surface. We express the curved surface as a potential and take it as a
perturbation. We search for the effect of the linear delta potentials on geometric
scattering properties as these kinds of defects are seen in such dilute electron gas
scattering setups. From the graphs we produced, we observe that placing the center
of the curvature, which is a bump, between a pair of parallel line defects produce
an effective resonator capable of achieving much larger amplification of the geometric
scattering effects. We also obtain an analytic formulation when there are IV line defects.
Scalar particle scatters along two directions when the line defects are placed on a
Euclidean surface. The scattering amplitude vanishes expect for the scattering angles
0y and 180° — 6,, where 6, is the angle of incidence. We also state an analytical
expression for the case combining a point defect and a line defect in two dimensions

using a short line segment approximation.



107

In the third part of the thesis, we use a direct formal operator approach to solve
the bound state and stationary scattering problems of circular and spherical delta shell
potentials for the [ = 0 sector. Using the distributional solutions, we obtain the same
results with the standard partial wave analysis for scattering problem. The interaction
is expressed as a rank one operator and in two dimensions as a circle and in three

dimensions as a sphere.
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APPENDIX A: Formulas for I,,,,J,,,, and I,

mns Yr nnm’n’

The following are the formulas we have obtained for I, J,,,. and I, ../, by

performing the integrals in (4.2.24) - (4.2.26). Here a,, := a,, /0, and Erf[z] and Erfc[z]

are respectively the error and complementary error functions.!

1 - | |
I.. =§776_5R(_“"m+“"n+3ﬁ){ﬁsﬁe<5ﬁ+"“'t)2 [ —2ia2 Ny — 2a,( Ny — 2)sK

i (8Ay + Ay — 2>\232ﬁ2)] + 2nErfla, — isf] [2)\2 +Aystl

+ ﬁ2(4)\152 — 1)] — ZWErfC[an]<ﬁ2 _a 2)\2)63ﬁ(sﬁ+2ian)

+on [2)\2 st AL 4 R2(4) 82 — 1)] } +O?),

1. r A

T :§newmm\/% {Qe—sﬁ@aﬁsmﬁ [R2 (=1 +482X\)) + 22, + s18%),]
x Brfcla,, — isf] — 253 /m(R? — 2)\,)Erfla,, ]| + e~ (@n=is%) [(—260‘"2
X VT (R2 —2),) —isR(—4 + 8\ — 2ia,, sR(—2 + \y) + Ay + 252K\,

—20,2(1+ \y))] } +00P),

I

mm/nn’ —9Imm’nn’ + ®<m - n>hmm/nn’ + @(TL - m)kmm’nn/ + lmm’nn’?

where

Qom/nn/  fOT m=n,
Imm/nn’ *= N Smm/nn’ for m>n,
tom/nn  fOT m <n,

!By definition, Erfc[z] := 1 — Erf[x].
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1 . 7 7 . 2
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1 .
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