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OZET

SUDAN’IN GUNLUK REFERANS BiTKi SU TUKETIMININ DETERMINISTIiK
VE STOKASTIK YONTEMLERLE MODELLENMESI

Mawadda AHMED MOHAMMED ABDALLAH
Ondokuz May1s Universitesi
Lisansiistli Egitim Enstitiisii

Tarimmsal Yapilar Ve Sulama Ana Bilim Dali
Doktora, Ocak/2023
Danigsman: Prof. Dr. Bilal CEMEK

Bitki su tiiketimi bir sulama projesinin temel verisi ve sulama uygulamalarinin en
onemli unsurlarindan birisidir. Sulama sistemlerinin yatirnm maliyetleri ¢ok yiiksek olup bu
sistemlerin planlanmasinda bitkilerin su tiiketimlerinin belirlenmesinde iklim parametelerinin
dikkate alinmasi ¢ok 6nemlidir. Referans evapotranspirasyonu (ETo) tahmin etmek i¢in dogru
modellerin gelistirilmesi, 6zellikle su kaynaklarinin sinirli oldugu kurak ve yar1 kurak
bolgelerde etkin su yonetimi i¢in gereklidir. Bu ¢alismada referans bitki su tiikketimi (ET,)
ASCE Penman Monteith esitligi kullanilarak Sudandaki 120 istasyonun giinliik iklim verileri
g6zOniine alinarak heasplanmistir. Calismada ii¢ asmada gergeklestirilmistir. Birinci asamada
zaman serileri ile ET, tahmini, ikinci asamada farkli enterpolasyon teknikleri ile Sudan i¢in
ET, haritalari elde edilmistir. Ugiincii asamada ¢oklu regresyon ve yapay zeka ugulamalari ile
ET, tahmini gerceklestirilmistir. Sudan’in 33 ilinde Otoregresif Entegre Hareketli Ortalama
(ARIMA) modelleri ile analizler yapilmistir. ikinci ydntem’de, Enterpolasyon yontemlerinden
Ordinary Kriging, Basit Kriging, ve Ters Mesafe Agirligi (IDW) yontemlerini kullanilmagtir.
Jeoistatistik analiz sonuglarina gére Gaussian, Exponential, ve Spherical en iyi yar1 variogram
modelleri gikmistir. Ugiincii yontem’de goklu dogrusal regresyon, ok katmanli yapay sinir
aglar1 (CKYSA) ve Bulanik yapay sinir aglar1 sistemini (ANFIS) uygulanmistir. Girdi verileri
olarak hem yapay zeka modellerinde hem de geleneksel ¢oklu regresyon modellerinde bagil
nem, sicaklik, riizgar hiz1 ve giines radyasyonu degiskenlerini kullanilmis ve gikt1 verisi olarak
ETo tahmini basarili olarak yapilmistir. Deterministik ve stokastik modeller Sudan’in su

kaynaklar1 yonetimi ve sulama planlamasi i¢in yararl bir arag olacagi ortaya konmustur.

Anahtar Sozciikler: Referans bitki su tiikketimi, Zaman serisi, yapay sinir aglari, Bulanik
yapay sinir aglari, Sudan
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ABSTRACT

MODELING OF DAILY REFERENCE EVAPOTRANSPIRATION USING
DETERMINISTIC AND STOCHASTIC METHODS OF SUDAN

Mawadda AHMED MOHAMMED ABDALLAH
Ondokuz Mayis University
Institute of Graduate Studies
Department of Agricultural Structures and Irrigation
Ph.D., January/2023
Supervisor: Prof. Dr. Bilal CEMEK

Plant water consumption is the basic data of an irrigation project and one of the
most important elements of irrigation applications. The investment costs of irrigation
systems are very high, and it is very important to consider climate parameters for
determining the water consumption of plants in the planning of these systems. The
development of accurate models to predict reference evapotranspiration (ETo) is
necessary for effective water management, especially in arid and semi-arid regions
where water resources are limited. In this study, reference plant water consumption
(ETo) was calculated by considering the daily climate data of 120 stations in Sudan
using the ASCE Penman-Monteith equation. The study was carried out in three stages.
In the first stage, estimating of ETo by time series, and in the second stage, maps of
ETo for Sudan were obtained by different interpolation techniques. In the third stage,
the estimation of ETo was carried out with multiple regression and artificial
intelligence applications. Autoregressive Integrated Moving Average (ARIMA)
models were used for analyses in 33 provinces of Sudan. In the second method,
Ordinary Kriging, Simple Kriging, and Inverse Distance Weight (IDW) methods were
used from interpolation methods. According to the results of geostatistical analysis,
Gaussian, Exponential, and Spherical are the best semi-variogram models. In the third
method, multiple linear regression, multilayer artificial neural networks (MLP), and
fuzzy artificial neural network system (ANFIS) were applied. ETo estimation was
successfully performed using relative humidity, temperature, wind speed, and solar
radiation variables as input data in both artificial intelligence models and traditional
multiple regression models, and ETo was used as output data. Deterministic and
stochastic models will serve as useful tools for Sudan's water resource management
and irrigation planning.

Keywords: Reference, plant Water Consumption, Time Series, Artificial Neural Network,
Fuzzy Artificial Neural network, Sudan
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SIMGELER VE KISALTMALAR

ETo : Referans Bitki Su Tiiketimi (mm giin™)
ASCE : Amerikan Insaat Miihendisleri Dernegi
PM : Penman Montheith
Cd : Payda referans bitki tipi ve zamansal degisen katsay1 (sm™)
Cn * Pay referans bitki tipi ve zamansal degisen katsayt (K mm s 3mg "' d"!)
es : Doyma Buhar Basinci (kPa)
(es-ea) : Doyma Buhar Basinc1 A¢ig1 (kPa)
Rh : Bagil Nem (%)
Rn : Kirpma Yiizeyi Net Radyasyon (MJm-2 day-1)
Rs : Giines Radiasyon (MJm-2 day-1)
T : Ortalama Sicakligi (C°)
U2 : Rlizgar Hiz1 (2m yiikseklikte) (m/s)
W : Riizgar (m/s)
v : Psikrometrik Sabiti (kPa °C™")
: Buharlagsma Gizli Is1
A : Egim Buhar Basinci, (kPa)
YSA : Yapay Sinir Aglar1
ANFIS : Adaptif Sinirsel Bulanik Cikarim Sistemi
CKYSA : Cok Katmanli Yapay Sinir Aglar
LM : Levenberg-Marquardt
MAE : Ortalama Mutlak Hata
R? : Belirleme Katsayisi
RMSE : Tahmin Hatas1 Standart Sapmasi
AIC : Akaike Bilgi Kriteri
BIC : Bayesian Bilgi Kriteri
Xi : Gozlenen Deger
OK : Ordinary Kriging
PACF : Partial Otokorelasyon Fonksiyonu
ACF : Otokorelasyon Fonksiyonu
ARIMA : Otoregresif Enteger Hareketli Ortalama
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1. GIRIS

Su kisithgi, diinyadaki birgok gelismis ve gelismekte olan tilkeler i¢in 6nemli bir
sorundur. Genellikle bir gida krizinin ortaya ¢ikmasina neden olan ciddi bir tehditle
sonuclanmaktadir. Su kithgr arttikca, mevcut su kaynaklarin1 yonetme talebi ¢ok
onemli hale gelmektedir (Khan et al., 2011). Tarimda su kaynaklarinin verimli
planlanmasi, gelistirilmesi ve yonetimi i¢in, bitki su tiikketimi (ET)'nin tahmini oldukga
onemlidir. (V. Kumar, 2007).

ET, su dengesi ¢alismalar1 i¢cin en 6nemli hidrolojik bilesenlerden biridir ve
sulama suyu gereksinimlerinin tahmininde 6nemli bir rol oynamaktadir (Nikam et al.,
2010). ET, toprak ve bitki ylizeylerinden buharlagsmanin birlesik siirecleri ve bitki
terlemesi ile atmosfere su kaybidir (Rojas and Sheffield, 2013). ET'yi etkileyen cesitli
faktorler bulunmaktadir ve bu nedenle kolaylikla modellenmesi miimkiin degildir
(Bachour et al., 2016).

ET'yi etkileyen en onemli faktorler iklimsel parametrelerdir (Caminha et al.,
2017). Dogal bir siire¢ olan ET siireci, zamansal ve mekansal olarak degisen sicaklik,
giines radyasyonu ve nem gibi faktdrler tarafindan kontrol edilir ve ET, bu etkileyen
faktorler agisindan ifade edilir (Mohan and Arumugam, 1995).

ET bir lizimetre veya su biit¢esi yaklasimi ile Olgiilebilir veya klimatolojik
verilerden tahmin edilebilir. ET'nin bir lizimetre ile 6l¢iilmesi zaman alicidir ve bakim
gerektirir dikkatli planlama Lizimetreler kurulum ve bakim i¢in daha vasifli isgiicii
gerektirir, bu nedenle bu nedenlerden dolayi, ET'y1 tahmin etmek i¢in iklimsel verilere
dayanan dolayl yontemler kolay bir sekilde kullanilir (Jain et al., 2008).

Bitki su tiiketimi (ET.), referans bitki su tiiketimi (ETo)'nin ve referans ¢im
ylizeyi arasindaki ET farki ifade eden bir katsay1 olan K ile ¢arpilmasiyla hesaplanir.
Fark, tek bir katsay1 halinde birlestirilebilir veya her iki yiizey arasindaki buharlagma
ve terlemedeki farkliliklar1 ayr ayr1 agiklayan iki faktore ayrilabilir.

ETo cok yillik bir ¢im gibi bir referans mahsulden dogrudan olgiilebilir veya
sicaklik modelleri, radyasyon kullanilarak hava verilerinden hesaplanabilir tartim
modelleri ve kombinasyon modelleri lizimetreler, ETo ve ET.'yi dogrudan 6l¢mek i¢in
kullanilir.

Goci¢ et al. (2015)’ye gore bircok ampirik esitlik ETo modifiye edilerek
kullanilmaktadir. Penman Monteith (PM) denklemi saatlik, giinliik, ve aylik ETo dahil

olmak iizere farkli zaman adimlari i¢in kabul edilen ve Birlesmis Milletler Gida ve



Tarmm Orgiitii (FAO) Diinya Meteoroloji Orgiitii tarafindan tavsiye edilmistir (Dai et
al., 2009).

ET, sicaklik, bagil nem, giines radyasyonu, riizgar hizi, bitkinin biiyliime asamasi
gibi cesitli etkilesimli iklimsel faktorlere bagimliligr nedeniyle karmasik dogrusal
olmayan bir fenomendir (Nikam et al., 2010).

ETo, su ve enerji dengesi ¢alismalarinda ihtiyag duyulan 6nemli bir
parametredir. Ayrica, iklim, tarim ve ekoloji ile ilgili ¢esitli calismalarda gereklidir.

Bu ¢alismada Sudan genelinde 120 ana ve alt meteoroloji istasyonundan alinan
iklim verileri, bagil nem, sicaklik, riizgar hiz1 ve radyasyon gibi farkli parametreler
kullanilarak ETo degerlerini hesaplanmistir. Yapay zeka uygulamalar1 arasinda ETo,
jeoistatistik ve ARIMA modelleriyle karsilagtirilan makine 6grenimi teknikleri
kullanilarak tahmin edilmektedir. Bu ¢alisma ii¢ asamada degerlendirilmistir.

- Zaman serisi analiz modelleri,

- Enterpolasyon yontemleri,

- Yapay zeka uygulamalari.

ETo tahmini, hidrolik tasarimlarda ve sulama yoOnetiminde &nemli bir rol
oynamaktadir Bilindigi gibi, ET islemi, esas olarak yiiksek dogrusallik veya
duragansizlik tarafindan yonlendirilen karmasik bir islemdir. Ayrica, ETo zaman
serisinin duraganlik dis1 dogasi, gelecekteki degerlerin tahmin edilmesinde zorluklara
yol agmaktadir (Bachour et al., 2016) ve bu nedenle de, modellenmesi oldukca
karmagik ve zordur. Bu agisindan, ET'nin tahmin yontemleri ile degerlendirilmesi
calisgmanin ana amacidir. Ayrica, bu calismanin diger amaglar1 asagidaki gibi
siralanabilir.

- Sudan iilkesi 1ile 1ilgili meteorolojik verileri kullanarak giinlik ETo

hesaplanmasi,

- Deterministik ve stokastik yontemler ve farkli yapay sinir ag1 algoritmalart
kullanilarak giinliik giinliik ETo'nin tahmin edilmesi,

- Her bir yontem i¢in tahmin yetenekleri istatistiksel performans oSl¢iitleriyle
karsilastirarak ve gelecekteki degerleri tahmin etmek i¢in kullanilacak en iyi
modellerin belirlenmesi,

- Iklim verileri ile birlikte kullamlarak Sudan'da yetistirilen tiim bitkileri goz
Oniine alarak her bir bitkinin su tiiketimi belirlenmesi amaglanmistir.

Boylece iilkede su kaynaklarinin yeterli ve/veya kisith oldugu bolgelerde ve kurak

donemlerde su kaynaklar1 yonetimine 6nemli diizeyde katki saglanmig olacaktir.
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Hazirlanan bu tez ile, su yapilarmin, sulama sistemlerinin ve tarimsal alt yap1
tesislerinin projelendirilmesi ve isletilmesine saglayacagi katki ile hem Sudan
ekonomisine hem de dogal kaynaklarin siirdiiriilebilir bir bigimde kullanilmasina

cok biiytik katki saglayacaktir.



2. LITERATUR TARAMASI

Evapotranspirasyon siireci dogada stokastiktir. Stokastik modelleme teknikleri
bu tesadiifi ya da bilinmeyen degiskenlere dair olasiliklar1 kullanarak belirsizligi
modele katarlar. Deterministik kavramiyla “tam olarak belirlilik” kastedilmektedir.
Deterministik modellerde ilgili tiim girdi verilerin kesin ve tam olarak bilindigi kabul
edilir. Bu yiizden deterministik modeller evapotranspirasyonunu dogru bir sekilde
temsil etmeyebilir. Ote yandan, stokastik modeller zamana bagli varyasyonlara
dayanir ve siirece dahil olan rastgele etkileri gdzoniine alir. Stokastik modeller,
onceden gonderilen bir gozlemin ge¢mis gozlemlere bagimliligmnin derecesini
aciklanmaktadir. Bir stokastik model matematiksel soyutlamadir ampirik bir siire¢ ve
olasiliksal tarafindan yonetilir yasalardir (Pandey et al., 2009).

Stokastik modelin amaci1 temsil etmektir bir veya daha fazla zaman serisinin
onemli istatistiksel 6zellikleridir. Gergekten de, farkli stokastik model tiirleri siklikla
incelenip istatistiksel zaman serileriyle iiretilmektedir. Modeller stokastik kavram
tizerine formiile edilen kapsami aciklayip mevcut gozlemlerin gegmise bagimlilig
gozlemektedir. Evapotranspirasyon islemi esas olarak dogrusallik veya dogransizlik
tarafindan karmasik ve zor bir islemdir. Bu agidan evapotraspirasynu hesaplamak ve

tahmin etmek icin bir¢ok yontem kullanilmistir.

2.1. ASCE Penman-Monteith denklemi

Birinci boliimde daha 6nce de belirtildigi gibi, ETo degerlerini hesaplamak i¢in
saatlik, giinlik ve aylik olmak {izere farkli zaman adimlar1 i¢in yaygin olarak
kullanilan ETo degerlerini (Ampirik denklemler ve yapay zeka uygulamalari) tahmin
etmek icin farkli yontemler vardir. Arastirmacilar tarafindan ¢ok sayida ETo denklemi
gelistirilmis ve kullanilmigtir (Itenfisu vd., 2003). Bu denklemlerin arasinda en ¢ok
kullanilan ETo tahmin denklemleri Penman denklemi ve Penman-Monteith (PM)
denklemleridir. Ek olarak, ampirik Hargreaves denklemi de popiiler bir yontem olarak
kabul edilir.
Bu calismada hesaplamada en etkili ampirik denklemlerden biri olan ASCE Penman-
Monteith denklem yontemi kullanilmistir. ASCE-EWRI Penman-Monteith (ASCE
PM) denklemi, Amerikan Insaat Miihendisleri Dernegi Cevre ve Su Kaynaklari
Enstitiisii tarafindan ETo'y1 tahmin etmek icin standart denklem olarak 6nerildi (Rojas

ve Sheffield, 2013). Bitki su tiikketimi (ETc), gerceklesen bitki su tiiketimi (ETa) ve



kisa boylu bitki esasli referans bitki su tiiketimidir (ETo). Bunlarin disindaki diger
bitki su tiikketimi ifade bi¢imleri, kavram karisikligini 6nlemek i¢in bu rehberin
kapsami disinda tutulmustur. ETc, bir bitkinin ele alinan bir donem igin, her hangi bir
hastalik zararli etkisinin bulunmadigi, bitki besin elementi bakimindan eksiklik
cekmedigi ve su stresi olmadig standart kosullar altindaki su tiikketimidir. ETa, bir
bitkinin ele alinan bir dénem i¢in, standart olarak tanimlanan kosullardan farkli bir
ortamdaki su tiiketimidir. Buna gore ETa standart kosullarda ETc’ ye esit
olabilecekken, standart olmayan kosullarda daima ETc’ den daha diisiiktiir. ETo, kisa
boylu (ortalama 12 cm) ve tam Ortiiye sahip bir bitkinin (cogunlukla ¢im olarak kabul
edilir) ele alinan bir donemde, standart kosullar altindaki su tiiketimidir. Cim i¢in ETo
ve ETc birbirine esittir. Birgok ulusal ve uluslararas1 kaynakta, ETo bitkiler i¢in
atmosferin nem talebini gosteren bir parametre olarak da degerlendirilmektedir
(TAGEM.,2017).

Temesgen vd (2005) calismalarinda, Kaliforniya eyaletindeki 37 meteoroloji
istasyonundan toplanan iklim degiskenlerine dayanarak saatlik ve giinliik ETo
degerlerini degerlendirmek i¢cin Penman-Monteith yonteminin {i¢ farkli denklemini
kullanmislardir.

Amatya vd (1995) calismalarinda, Penman-Monteith, Priestley-Taylor,
Hargreaves-Samani, Makkink ve Thornthwaite yontemlerine ETo degerleri tahmin
etmek i¢in Penman-Monteith sonuglarina gore karsilastirmislardir. Sonug olarak en
iyi tahmin eden modelin Penman-Monteith oldugu belirlenmis ve arastirmacilar
Penman-Monteith yontemini tiim alanlar i¢in tavsiye etmislerdir.

Gavilan vd (2006) caligmalarinda, giinliik ETo degerleri giiney Ispanya'da
Hargreaves denklemi kullanilarak tahmin edilmis ve standart denklem olarak
kullanilan FAO Penman-Monteith denklemi ile karsilastirilmistir. Ek olarak, her bir
istasyon icin ayni degiskenlerin bir fonksiyonu olarak ampirik katsay1 i¢in ayarlanan
degerlerin dagilimini elde etmek icin kriging enterpolasyon yontemi kullanilmigtir.

Nandagiri ve Kovoor, (2006) yaptiklar1 ¢alismada Hindistan'daki kurak ve yar1
kurak bolgelerin ETo degerlerini degerlendirmek icin farkli modeller kullanmislardir.

Grazhdani vd (2010) calismalarinda ETo degerleri, standartlagtiriimis ASCE
Penman-Monteith ve ASCE Penman-Monteith  denklemleri  kullanilarak
Arnavutluk'un farkli yerlerinden toplanan saatlik ve giinliik iklim verilerine dayanarak
degerlendirilmistir. Bu ¢alismada giinliik ve saatlik ETo degerlerinin kombinasyonlari

yapilmis ve spesifik yonteme gore karsilastirilmistir.
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C-Y Xu and Singh (2002) caligmalarinda, (1) kiitle-transferine dayali yontemler
(Rohwer), (2) radyasyona dayali yontemler (Makkink ve Priestley-Taylor) ve (3)
sicakliga dayali yontemler (Hargreaves ve Blaney-Criddle) olmak iizere ii¢ kategoriye
dayanarak bes ampirik denklem tartigilmistir.

Ampirik Hargreaves denklemi, Bati Balkanlar ve Giineydogu Avrupa
bolgelerinde kullanilma olasiligint  gerceklestirmek i¢in (Trajkovic, 2007)
caligmasinda kalibre edilmistir. Hargreaves denklemi ile FAO-56 PM karsilagtirilmig
ve diizeltilmis Hargreaves denkleminin sonuglar1 ¢ogu yerde FAO-56 PM
tahminlerine yakin bulunmustur.

Hargreaves denklemini kalibre etmek i¢in bdyle bir yaklasimin (Martinez-Cob
and Tejero-Juste, 2004), aylik ETo degerlerini degerlendirmek iizere Ispanya'da yari
degisken kosullar altinda riizgar degiskenlerine dayali denklemi kalibre etmesi
onerilmistir. Hargraves denklemi FAO-PM denklemi ile karsilastirildi ve fazla tahmin
edilen ETo degerleri bulunmaktaydi (ortalama hatalar %14-20 arasinda degisiyordu),
bu da yar1 kurak kosullar altinda yerel kalibrasyon i¢in riizgarli kosullara ihtiyag
duyulmayacagi anlamina geliyordur.

Lopez-Urrea et al (2006)'ya gore saatlik ETo degerleri , FAO-56 ve Amerikan
Insaat Miihendisleri Dernegi (ASCE) Penman-Monteith (PM) denklemleri
kullanilarak Albacete eyaletinin (Ispanya) yar1 kurak kosullari altinda tahmin
edilmistir.

FAO-56 ve ASCE sonuglari 6l¢iilen lizimetre ETo degerleri ile karsilastirildiktan
sonra FAO-56 Penman-Monteith denklemi Albacete'de yar1 kurak hava kosullarinda
ASCE Penman-Monteith yontemine gore daha dogru sonuglar vermistir.

Bir¢ok calisma da, giinliik ve saatlik ETo degerleri tahmin etmek i¢in yeni
ampirik denklemler 6nerilmistir ve ASCE PM Monteith denklemi; diger yaygin olarak
kullanilan denklemler ile karsilagtirildiginda, riizgar, giines 15inimi, bagil nem olarak
daha az sayida degiskene bagli olarak en iyi model olarak kabul edilmistir (Alexandris

et al., 2006; Irmak et al., 2006).

2.2. Zaman serileri analiz teknikleri

Zaman serileri analizi istatistiksel tahminde 6nemli bir aragtir (Arca et al., 2003;
Box et al.,, 2008, 2015). Gelecekteki egilimleri tahmin edebilecek bir model

gelistirmek i¢in bir degiskenin ge¢mis gdzlemlerin toplanmasi ve analizine ihtiyag



duymaktadir. Bir zaman serisi, bir dizi esit aralikli zaman periyodu boyunca alinan bir
dizi y1, y2, ..., yn gozlemidir. Analiz, zaman serilerindeki noktalarin bir ¢izimi ile
baglar. Ayrica serinin otokorelasyonlart ve kismi otokorelasyonlar1 yapilmis olup
serideki her noktanin zaman serisindeki dnceki degerlerle nasil ve ne derece iliskili
oldugunu gostermektedir (Psilovikos and Elhag, 2013).

Zaman serileri analizi, hidroloji alaninda karmagik bir siire¢ olarak kabul edilen
ET stireci gibi en zor hidrolojik parametrelerin gelecekteki degerlerini analiz etmek ve
tahmin etmek icin son derece yararli bir yontemdir. Ek olarak, zaman serisi analizi,
gecmisten gelen yeniden yapilandirilmis hidrolojik akilarla hidrolojik ve iklimsel
modelleri test etmek i¢in ¢ok yararhidir (Palmroth et al., 2010). Zaman serisi
verilerinde ortaya ¢ikan en belirgin kaliplarin egilimler ve mevsimsellik oldugunu
belirtmek gerekmektedir (Box et al., 2015).

Hidrolojik zaman serilerinin analizinde kullanilan en yaygin stokastik
modellerden biri, gegmis davranig kaliplarini gelecege tahmin etmek i¢in kullanilan
otoregresif entegre hareketli ortalama (ARIMA) modeli stokastik modelleri olarak
adlandirilan Box-Jenkins modelidir (Mohan and Arumugam, 1995).

ARIMA, Box-Jenkins tarafindan tanitilan ilk yontemdir ve simdiye kadar tek
degiskenli zaman serisi verilerini tahmin etmek i¢in en popiiler model haline gelmistir
(Lee, 2011).

Zaman serisi analiz tekniginin birgok avantaji vardir. (Asteriou and Hall, 2007)
caligmalarinda, verileri temsil etmek i¢in varsayimsal bir olasilik modeli olusturmak
gereklidir. Uygun bir model grubu secildikten sonra, verilere uygunlugun iyi olup
olmadigini kontrol eden parametreleri tahmin etmek ve muhtemelen seriyi iireten
mekanizma hakkindaki anlayisimizi gelistirmek i¢in takili modeli kullanmak
miimkiindiir.

Ayrica, issizlik gibi ekonomik istatistikler i¢in mevsimsel bilesenlerin varligim
fark etmek ve bunlari uzun vadeli egilimlerle karistirmamak ¢ok dnemlidir. Zaman
serisi modelleri, parametreleri ayarlayarak serilerin gelecekteki degerlerini kontrol
etmek icin basvurabilmektedir. Ornegin, zaman serileri analizi, sicaklik verilerinin
kaydedilmesi bir serinin bagka bir popiilasyon verisinin gézlemlerinden tahmin
edilmesi kullanilarak kiiresel 1snmanin test hipotezi gibi gelecekteki degerlerin
tahmininde ana rolii oynamaktadir.

Landeras et al (2009)’ye gore haftalik ETo degerlerini tahmin etmek i¢in ARIMA

ve yapay sinir ag1 modelleri kullanilmistir.
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Ashrafzadeh et al (2020) tarafindan yapilan ¢alismada, ETo aylik 1993-2014
yillar1 aras1 Zaman Serileri Modelleri Iran'da, Destek Vektor Makineleri (SVM) ve
grup veri isleme yontemi(GMDH) farkli yontemler kullanilarak ETo tahmin edilmis
ve bu modeller (2013-2014) 2 yil ileriye doniik ETo tahmini i¢in kullanilmustir.

Luo et al (2014) calismalarin’da, Hargreaves-Samani modelini ve sicaklik
tahminlerini kullanarak kisa vadeli giinlik ETo tahmin etmek i¢in bir yontem
Onermistir. Hargreaves-Samani (HS) modelini kalibre etmek ve dogrulamak i¢in HS
modeli Penman-Monteith modeli ile karsilastiriimistir.

ARIMA modelleri, ETo zaman serilerini gelistirmek i¢in giinliik metrolojik
parametreleri kullanarak kurak iklimlerde aylik ETo tahmin etmek i¢in (Mossad and
Alazba, 2016) tarafindan yapilan calismada uygulanmistir. (Kim et al.,, 2011)
tarafindan yapilan ¢alismada, Mogolistan'daki zamansal-mekansal Yagislari
degerlendirmek ve tahmin etmek i¢cin mevsimsel ARIMA modellerini uygulanilmistir.

Han et al (2010) standartlastirilmis yagis endeksini (SPI endeksi) kullanarak
kuraklig1 tahmin etmek i¢cin ARIMA modelleri ve sonuglar, modelin SPI endeksi i¢in
nasil giiclii kisa vadeli tahminlere sahip oldugunu gosterilmistir.

ARIMA modelleri (Han et al., 2010) tarafindan yapilan calismada, VTCI
(vejetasyon sicaklik durum indeksi) serilerini simiile etmek ve tahmin etmek igin
uygulanmis ve Mekansal zamansal seriler i¢in yeni bir modelleme yoOntemi
kullanilmuastir.

G. P. Zhang (2003) calismalarina gore, dogrusal ve dogrusal olmayan
durumlarda tahmin dogrulugunu artirmak ve modellemenin giiciinii tahmin etmek i¢in
ARIMA ve yapay sinir aglar1 (YSA) modellerinin hibrit bir yontemini dnermistir.
Hibrit bir ARIMA ve sinir ag1 modelleri, farkli veri desenleri ¢ikarmak ve verilerdeki
dogrusallig1 yakalama yetenegini gostermek i¢in 6zellikle dnemlidir.

YSA, tahmin dogrulugunu gelistirmek ve zaman serisi verilerinde yiiksek
derecede model performansi elde etmek i¢in etkili bir aractir (Khashei and Bijari,
2010) ve (Kaur et al., 2015) ¢alismalarina gore, sinir aginin yontemini kullanarak
ARIMA ve dalgacik doniisiim modellerinin iki yontemi olarak kabul edilen hibrit bir
model uygulanmustir.

Bazrafshan et al (2015) ARIMA ve SARIMA modelleri aylik ve sezonluk
Olgeklerinde, hidrolojik kuraklik tahmini icin bilinen stokastik etkinligini
degerlendirdi ve tahmin siliresi modellerinden verim miktar1 belirlenmistir. Ayni

yontemlerle (Mishra and Desai, 2005) Hindistan'daki Kansabati nehri havzasinda
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standart yagis endeksini kullanarak kurakliklari tahmin etmek igin SARIMA modelini
kullanmiglardir (Grazhdani et al.) .

Juma and Fathi (2016.) yaptiklar1 c¢aligmalarinda Box- Jenkins modelleri
kullanilarak Irak'ta bolgeye ve verime gore pamuk liretimi dngoriilmiistiir. Riizgar
hizin1 tahmin etmek icin ARMA ve ARMA-ARCH (Otoregresif Kosullu
Heteroskedastisite) modelleri (Gao et al., 2009) tarafindan yapilan calismada,
onerilmis ve sonuglar ARMA-ARCH modelinin daha yiiksek dogruluga sahip
oldugunu gostermistir. Boyle bir yaklasimda (Ling-ling et al., 2011) riizgar hizim
tahmin etmek icin Dalgacik doniisimii analizi (WMA) ve ARIMA modeli
kullanilmistir. Dalgacik teorisi, tiim riizgar hizinin ayrigmasi yoluyla diisiik frekanslh
parcalart almak i¢in kullanilmstir.

Arca et al (2003) saatlik Penman-Monteith denklemi olan saatlik ve giinliik ETo
tahminlerinin dogrulugunu ve sayisal bir hava tahmini modelinden tahmin edilen hava
durumu verilerini ve iki zamanli seri tahmin modellerini degerlendirmek icin farkl
yontemler kullanilmistir.

Rana and Katerji (2000) Akdeniz iklimi altinda alaninda gergek bitki su tiiketimi
tahmin etmek i¢in On yontemleri gézden gegirildi ve bu yontemler, toprak su dengesi
vardt: lizimetre, enerji dengesi/Bowen orani, aerodinamik yontem, eddy kovaryans,
sap akig yontemi, chambers sistemi, CBS yaklasimlar1t modelleme Monteith model,

bitki katsayis1 yaklagimi ve toprak su dengesi agirliginda kullanilmistir.

2.3. Mekansal veya Konumsal Enterpolasyon Teknikleri

Uzamsal enterpolasyon tekniklerinin iki ana grubu vardir: deterministik ve
Jeoistatistik. Deterministik enterpolasyon teknikleri, Olciilen verilerden benzerlik
derecesine (ters mesafe agirlikli)) veya yumusatma derecesine (radyal temel
fonksiyonlar) dayali ylizeyler olusturmaktadir.

Deterministik bir enterpolasyon, Jeoistatistik teknikler, oOlgiilen noktalar
arasindaki uzamsal korelasyonu 6l¢gmekte ve tahmin yeri etrafindaki 6rnek noktalarin
uzamsal konfiglirasyonunu aciklamaktadir. Jeoistatistik enterpolasyon teknikleri,
raster haritalar tiretmek icin 6l¢iilen verilerin istatistiksel 6zelliklerini kullanmaktadir
(Matheron, 1963).

Citakoglu et al (2017) caligmalarinda Tiirkiye genelinde Olciilen aylik yagis

verilerini kullanarak mevsimsel yagislarin mekansal degisimi arastirilmistir. Gauss



yaklasimi ile analiz 200 yagis Olciilen en az 20 yillik kaydedilmis verilere dayali,
ulagilamayan cografi bolgelerdeki mevsimsel yagislarin biiylikliigliniin yeterli
dogrulukla kolayca tahmin edilmesini saglamistir.

Harcum and Loftis (1987) Thiessen poligonu, basit ortalama ve ters mesafe
agirhgim iceren giinliik ETo tahmin etmek i¢in ii¢ farkli enterpolasyon ydntemi
kullanmistir. Ek olarak, Kalman filtreleme yaklasimi, hatalar1 6lgmek ve hatalari
acik¢a modellemek i¢in stokastik bir islem olarak kullanilmaktadir. ET¢'y1 belirlemek
ve CBS tekniklerini kullanarak mekansal dagilim yapmak ig¢in iki yaklasim
uygulanmistir (Kamali et al., 2015). Ik ydéntemde, ETo meteoroloji istasyonunun
bulundugu yerdeki iklim verileri ve Hargreaves-Samani denklemi kullanilarak
hesaplanmis ve daha sonra enterpolasyona tabi tutulmustur. Ikinci ydntemde,
Hargreaves-Samani denkleminin bilesenleri enterpolasyon uygulandiktan sonra
CBS'de Hargreaves-Samani denklemi ve uygun yontemler uygulanarak ETo haritalar
hazirlanmastir.

Ayni yontemler ile (Ahmadi and Sedghamiz, 2008), 12 yilda farkli iklim
kosullar1 (kuru, 1slak ve normal) yasayan bir ovada yeralti suyu derinliginin
haritalanmasi i¢in kriging ve cokriging yontemlerini kullanmiglardir.

Ashraf et al (1997) c¢alismalarinda, Nebraska, Kansas ve Colorado
eyaletlerindeki farkli istasyonlar i¢in ETo degerlerini tahmin etmek icin farkli
enterpolasyon  yontemleri  kullanmistir.  Bolgesellestirilmis  degiskenlerin
konturlanmas1 ve haritalanmasi icin kriging gibi jeoistatistik teknikler kullanilarak
optimal enterpolasyon kullanmiglardir.

Bechini et al (2000) tarafindan yapilan arastirmaya gore kiiresel giines
radyasyonu verileri, Kuzey Italya icin giines radyasyonunun gelecekteki degerlerini
tahmin etmek icin enterpolasyon ve stokastik yontemler uygulanarak spesifik iklim
parametreleri kullanilarak simiile edilmistir.

Tabari et al (2012) calismalarinda kurak ve yar1 kurak iran'daki aylik ETo
degerlerindeki degisiklikleri tahmin etmek i¢in mekansal enterpolasyon yaklasimlarini
Onermislerdir.

V. Kumar (2007) y'e gore Universal kriging, yeralt1 suyu seviyelerini tahmin
etmek i¢in kuzeybati Hindistan'daki bir dizi kanal sulama projesine uygulanmaistir.

Dalezios et al (2002) Yunanistan'da aylik ve yillik ET¢ haritalanmasi i¢in kriging
gibi jeoistatistik teknikler kullanilarak enterpolasyon uygulanmistir. Ayrica, (Mardikis

et al.,, 2005) tarafindan yapilan ¢alisma, uzun vadeli bir dénemin ETy (Penman-
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Monteith) tahmin etmek icin dort enterpolasyon yoOntemini karsilastirmig ve
degerlendirmistir.

Vicente-Serrano et al (2007) tarafindan yapilan calisma, ETo parametresini
tahmin etmek i¢in farkli mekansal enterpolasyon teknikleri yoOntemlerini
karsilagtirmistir.

Chong-yu Xu et al (2006) tarafindan yapilan ¢alismada, ETy analiz edilerek,
meteorolojik degiskenler kullanilarak zamansal egilimlerin mekansal dagilimlarini
uygulanmaktadir. Bian et al (2020) ¢alismalarinda, Mogolistan'daki ETo egilimlerini
uzun vadeli veriler (1971-2016) kullanarak ve regresyon ve kismi korelasyon analizi
uygulayarak tahmin etmek i¢in mekansal dagilim tekniklerini kullanmistir. Ayni
sekilde (Ullah et al., 2001) ¢aligmalarinda, ETo'yi degerlendirmek i¢in mekansal
enterpolasyon yontemlerini tartismislardir.

Hart et al (2009) c¢alismalarinda, giinlilk ETo, Penman-Monteith denklemi
kullanilarak ve ETo degerlerinin enterpolasyonu i¢in ise uydu goriintii teknikleri
uygulanarak hesaplanmistir. Ayni yontemde (Naoum and Tsanis, 2003) tarafindan

yapilan ¢alismada, ETo tahmin etmek i¢in hidro bilisim sistemleri uygulamistir.

2.4. Yapay Sinir Aglar1 (YSA) Yontemleri
YSA, deneysel bilgiyi depolamak ve oOngoriilebilir modelleri kullanmak ig¢in
kullanilabilir hale getirmek i¢in dogal bir egilime sahip olan basit islem birimlerinden
olusan kitlesel olarak paralel dagitilmis bir islemcidir (Karunasinghe and Liong,
2006). Zaman serisi modelleri ve YSA algoritmalari ile birlikte dalgacik doniisiim
yontemleri gibi yeni gelistirilen yumusak hesaplama modellerini kullanarak ET
tahminlerini degerlendiren bir¢ok ¢alisma literatiirde mevcuttur.

Tiirkiye'de, farkli yontemler (Dalgacik Doniisiimii ve YSA algoritmalari), ETo
ve diger ornekler kullanarak giinliik yagis yontemlerin gelecekteki degerini tahmin
etmek icin sinirl bir siire kullanmistir (T Partal, 2007).

Ayrica bu calismada yagis degerlerini tahmin etmede kullanilan verileri segmek
ve hazirlamak i¢in veri madenciligi teknikleri kullanilmaktadir. Boyle bir yaklagimda
(Falamarzi et al., 2014), sicaklik ve riizgar hiz1 verilerini kullanarak ETo tahmin etmek
i¢in yapay ve dalgacik sinir aglarin1 énermistir. Ote yandan, (Nikam et al., 2010) ETo
tahmin etmek i¢in FFBP ve EBP (ileri besleme geri yayilimi ve Elman geri yayilimi
algoritmalar1) kullanarak YSA modelini uygulanmaistir.

Tahmin amaciyla kullanilan yapay zeka modellerinin yani sira, M5T veri
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madenciligi yontemini kullanarak ET¢ tahmin etmistir (Kaya et al., 2016 ).

Kisi (2011) ¢alismasinda bazi giinliik meteorolojik verileri kullanarak ET'yi
tahmin etmek i¢in dalgacik regresyon yaklasimi (WR) kullanilarak modelleme
yapilmistir. . Burada WR, ayrik dalgacik doniisiimleri (DWT) ve dogrusal regresyon
modeli olmak iizere iki ydntemin birlesimidir. Ote yandan, YSA kullanarak ET tahmin
etmek icin (M. Kumar et al., 2002) agirliklar1 ayarlamak icin bir geri yayilim egitim
yontemi dnermis ve hesaplanan hata sinyalleri ag lizerinden geriye dogru yayilmistir.

Boyle bir yaklasimda (Goci¢ et al., 2015) bu g¢alismada tahmin i¢in ETo
belirlemek ve FAO-56 Penman-Monteith denklemi kullanilir, ETo dort esnek
hesaplama yontemleri, Genetik programlama (GP), destek vektor makinesi (SVM-
FFA), ve destek vektor makinesi-dalgacik analiz (SVM-dalgacik) algoritmalarini
kullanilarak SVM dalgacik yontemi en iyi yontem bulunmustur.

Abghari et al (2012) ¢alismalarinin amacina gore, cok katmanli yapay sinir aglari
(MLP), Mexican hat ve Poli WOGI ana dalgacik NN algoritmalar1 olan dalgacik-Sinir
aglan tiirlerini kullanarak giinliik buharlagsma tahminiydi.Mexican Hat ve PolywoG1
islevleri adl1 bir dalgacik sinir aginin gelistirilmesi i¢in iki ana dalgacigin gz 6niinde
bulunduruldugu anlamina gelmektedir.

Lin and Wu (2009) ¢alismalarinda, iki farklt YSA kullanarak tayfun yagisinin
gelecekteki miktarimi tahmin etmek i¢in yapay sinir aglarin yontemleri kullanilmistir.
Bu ¢alismada, modelin dogrulugunu artirmak i¢in kendi kendini organize eden harita
ve MLP birlestirilmistir.

Turgay Partal (2009) yaptig1 ¢aligmada, ETo tahmini i¢in dalgacik dontisiimleri
ve ileri beslemeli sinir ag1 yontemlerinin kombinasyonunu Onermistir. Kullanilan
iklim verileri (hava sicakligi, giines radyasyonu, riizgar hizi, bagil nem) Amerika
Birlesik Devletleri'ndeki iki istasyondan alinmis iklim verileri kullanilmistir. Dalgacik
ve sinir ag1 (WNN) modeli i¢in, giris verileri dalgacik doniisiimii ile dalgacik alt zaman
serilerine ayristirilmistir. Ayni yontemler ile (Turgay Partal, 2016) tarafindan yapilan
caligmada, dalgacik tabanli radyal tabanli aglarin karsilastirmali performansi ve
glinliik referans evapotranspirasyon tahmininde iklimsel veriler (hava sicakligi, giines
radyasyonu, riizgar hiz1 ve bagil nem) kullanilarak ¢ok dogrusal regresyon lizerinde
calisilmigtir. Dalgacik tabanli regresyon modeli dalgacik doniisiimiinii ve ¢ok dogrusal
regresyonu birlestirirken, dalgacik tabanl radyal tabanli ag dalgacik doniistimiinii ve

radyal tabanli sinir agin1 birlestirmistir.
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Patil and Deka (2017) yaptiklar1 calismada, temel olarak Hindistan'in kurak
bolgelerinde ET tahmin etmek i¢cin YSA ve bulan1 yapay sinir ag1 sistemleri (ANFIS)
modellerinin dogrulugunu arttirmada dalgacik doniisiimiiniin yetenegini ortaya
koymuslardir.

Rahimikhoob (2010) calismasina gore, Hazar Denizi'nin kuzeyinde yer alan
Hazar Denizi'nin giiney kiyisindaki nemli subtropikal kosullar altinda hava sicaklig1
verilerine dayanarak ETo tahmin etmek i¢cin YSA kullanim potansiyelini incelenmistir.
Bilindigi gibi, ET siirecinin modellenmesiyle ilgili en biiyiik sorun, dogrusal olmayan
dinamik yiiksek karmasikligidir.

Bu nedenle, Arastirmacilar zengin ve zayif veri durumlarinda ETo tahmin
modelleri gelistirdiler (Traore et al., 2010) ve esas olarak Burkina Faso'nun Sudano-
Sahelian bolgesinde ETomodellemek i¢in YSA kullanmiglardir. Genellestirilmis
regresyon sinir aglart modeli (GRNN) ve radyal temel fonksiyon sinir ag1 (RBFNN),
Cezayir'de ilk kez referans ETo'1 tahmin etmek i¢in (Ladlani et al., 2012) tarafindan
yapilan ¢alismalarinda gelistirilip karsilagtirilmistir.

Kurak bolgelerdeki suyun kisithigini ¢6zmek i¢in bitki suyu gereksinimlerinin
tahmin edilmesinin 6zellikle 6nemli oldugunu belirtmek gerekir. Dolayisiyla,
hidrolojik dongii siirecinin ana bileseni oldugu i¢in ETo tahmini gereklidir. Ek olarak,
eksik meteorolojik parametreleri kullanarak ETo degerlendirmek icin YSA
kullaniminin etkinligi tizerinde ¢alisilmistir.

Dai et al (2009) tarafindan yapilan ¢alismada, Kuzeybati Cin'deki ii¢ istasyondan
50 yillik meteorolojik verileri ETo tahmin etmek i¢in YSA'm performansini
karsilagtirmak i¢in ¢oklu dogrusal regresyonlar (MLR), Penman denklemi ve iki
ampirik denklem kullanilmistir.

Benzer yaklasimda (Jahanbani and El-Shafie, 2011) Iran'in kuzey kesiminde
bulunan Rasht sehrinde giinliik ETo minimum ve maksimum giinliik sicakliklar
kullanarak tahmin etmek i¢in YSA gelistirmistir. YSA modellerinin, ¢ok fazla iklim
parametresine ihtiya¢ duymadan sadece maksimum ve minimum sicaklik ve giines
radyasyonu kullanarak giinliik ETy aylik zaman serilerini tahmin etmesi 6nerilmistir.

Ferreira and da Cunha (2020) tarafindan yapilan c¢aligmada, 53 meteoroloji
istasyonundan toplanan verileri ve Brezilya'nin Minas Gerais eyaletindeki 53
meteoroloji istasyonuna iliskin verileri kullanarak giinlilk ETo degerlerini tahmin
etmek i¢in Onerilmistir. Giinlik ETo tahmini dogrudan (ASCE PM denklemi

kullanilarak) ve dolayli olarak (saatlik tahmini ETo’nin toplami) kullanilmistir.
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Ayrica, RF, XGBoost, YSA ve CNN algoritmalari olan makine 6grenimi ve
derin 6grenme teknikleri uygulanilmistir. Ayni sekilde (M. Kumar et al., 2008)
caligsmalarinda, Turc, FAO-24 Blaney-Criddle (BC) ve ASCE PM yontemleri olan
ampirik denklemler kullanilarak hesaplanan giinliik referans evapotranspirasyon
degerlerini tahmin etmek i¢in YSA gelistirilmistir. ASCE PM degerlerine dayanan
YSA modelleri diger yontemlere gore en iyi sonuglart bulunmustur.

Dogan (2009) calismasina goére, Penman-Monteith denklemi kullanilarak
hesaplanan giinliik referans evapotranspirasyon degerlerini tahmin etmek i¢in bulanik
yapay sinir aglar1 (ANFIS) arastirilmistir. ANFIS Modelinin sonuglart ¢oklu dogrusal
regresyon ile karsilastirilarak ve istatistiksel kriterlere gore ANFIS modelini en iyi
tahmini gerceklestirmistir. Ayn1 yontemleri (Pour-Ali Baba et al., 2013) tarafindan
yapilan ¢alismalarinda kullanilmastir.

Walia et al (2015) tarafindan yapilan ¢caligmalarina gore ANFIS'in mimarisi ve
temel O6grenme siireci, dogrusal olmayan fonksiyonlarin modellenmesi, indiiksiyon
makinesinin en énemli parametrelerinden birinin kontrol edilmesi ve kaotik bir zaman
serisini tahmin etmek i¢in kullanilmistir. Hepsi daha etkili, daha hizli tepki veya
cOkelme stireleri saglar. Boyle bir yaklasimda, (Abyaneh et al., 2011) calismalarinda
Sarimsak bitkisi evapotranspirasyonunu tahmin etmek i¢in YSA ve ANFIS teknikleri

uygulanmis ve bu teknikler ile hesaplamali ET'yi simiile etmek i¢in uygun olmustur.
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3. MATERYAL VE METOT

3.1. Calisma Alam

Sudan, Afrika'nin kuzeydogusundadir. Sudan, kuzeyde Misir, kuzeybatida
Libya, batida Cad, giineybatida Orta Afrika Cumhuriyeti, Gilineyde Giiney Sudan,
giineydoguda Etiyopya, Doguda Eritre ve doguda Kizildeniz ile sinirlanmistir. Sudan,
12° 51.768' enleminde ve 30° 13.02° boylaminda, ayrica ortalama deniz seviyesinden
405 m yiikseklikte yer almaktadir. Calismada kullanilan meteorolojik verilerin elde
edildigi gézlem istasyonlarinin ¢alisma alan1 ve konumlar1 Sekil 3.1'de gosterilmistir.
Meteorolojik veriler 120 ana meteoroloji istasyonundan toplanmistir. Meteorolojik
verilerini  https://www.soda-pro.com/ sitesinden temin edilmistir. 1982-2020 yillar1

arasinda Sudan'in farkli bolgelerinden se¢ilmektedir.

3.2. Veri setlerinin Hazirlanmasi

Toplanan veriler giinlik ETo degerlerini tahmin etmek icin degerlendirilir.
Giinlik ETo hesaplanmasinda en onemli degiskenler psikrometrik ve atmosferik
degiskenler olan giinlik metrolojik verilerdir.  Caligmada, iklim verileri: (¥)
psikometrik sabite, (G) toprak 1s1 akis (U2) buhar basinci (ea) (s), Gergek buhar
basinci, riizgar hizi, doygun yogunluk, sicaklik (Ortalama, en diisiik ve en yiiksek
glinliik sicakliklar)- Sicaklik egrisi (D, Bagil nem, Net radyasyon (Rn), egim ve
doygunluk buhar basinc1) verilerini kullanilmaktadir. Ustelik, mekansal dagilimlarint
belirlemek ve giinliik ETo degerlerinin haritalarini olusturmak i¢in enlem, boylam ve

yukseklik degiskenleri kullanilmaktadir.
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N Map of Sudan

- Locations

Sekil 3. 1. Sudan'da meteorolojik gozlem istasyonlarinin dagilim

3.3. Tahmin Yontemleri
Bu calismada, referans evapotranspirasyonun degerlerini tahmin ve modelleri
olusturmak i¢in farkli yontemleri kullanilmistir. Bu yontemleri Sekil 3.2.’deki gibi

gosterilmektedir:

ASCE Penman Montieth
denklenmesi

Ham
<= iklim verileri = ;:::;:..‘;
ET0

EViews'12,
A ArcGIS
Zaman
sorles CKYSA ve
analizlerin ANTIS

modelleri

Modelleri

Sekil 3. 2. Tahmin yontemleri
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3.3.1. ASCE Penman-Monteith yontemi:
ETo"1 hesaplamak i¢in Amerikan insaat miihendisleri dernegi c¢evre (ASCE) su
kaynaklar1 enstitiisii'niin standartlastirilmis ETo yontemi kullanilmistir (Allen et al.,
2006). Bitki su tiiketimi tahmini amaciyla gelistirilmis c¢ok sayida esitlikten
bahsedilebilir. Bu esitliklerden giiniimiizde en yaygin olarak kullanilan1t FAO-Penman
Monteith yaklasimidir. S6z konusu yaklasimda ETo’ nun tahmini ASCE Penman-
Monteith esitligi olarak 2004 yilinda ASCE-EWRI tarafindan kullanima sunulmustur.
ASCE Standardize Penman-Monteith yaklagimi Sudan'daki giinliik iklim verilerinin

kullanilarak ETo tahmin edilmistir.

0.408 (Rn—G)y%+237 U2(es—e )

ETo =
A+y(1+C U2)

(3.2.1)

Esitlikte;

Rn = Bitki yiizeyi i¢in hesaplanan net radyasyon (MJ m-2 g-1),

G = Toprak 1s1 akis1 (MJ m-2 g-1),

T = Giinlik ortalama hava sicakligi, 1,5 ile 2,5m arasinda ylikseklikte 6l¢iilmiis, (°C),
u2 = Glinliik ortalama riizgar hizi, 2,0 m yiikseklikte 6l¢lilmiis, (m s-1),

es = Doygun buhar basinci, 1,5 ile 2,5m arasinda ylikseklik i¢in hesaplanmis, (kPa),
ea = Gergek buhar basinct, 1,5 ile 2,5m arasinda yiikseklik i¢in hesaplanmis, (kPa),

A = Doygun buhar basinci-sicaklik egrisinin egimi (kPa, 0C-1),

Y = Pisikrometrik sabite (kPa, 0C-1),

Cn = Referans bitki tipi ve hesaplamanin yapildig1 zaman dilimi i¢in sabit pay katsayisi,

(kisa boylu bitki ve giinliik hesaplama i¢cin Cn= 900,0)

Cd = Referans bitki tipi ve hesaplamanin yapildigi zaman dilimi i¢in sabit payda katsayisi,

(kisa boylu bitki ve giinliik hesaplama i¢in Cn= 0,34)

Kisa boylu bitki i¢in Esitlik 3.2.1” in kullanilmas1 durumunda standart kosullara iligkin

asagidaki varsayimlar gecerlidir.

e Bitki boyu 0,12 m’ dir.
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e Hava sicaklig1 ve oransal nem 6l¢timleri 1,5-2,5 m arasinda yapilmistir.
e Riizgar hiz1 6l¢iimii 2,0 m yiikseklikte yapilmistir.

e Sifir diizlemi yiiksekligi 0,08 m’ dir.

e Buharlasma gizli 1s1s1 2,45 MJ kg-1" dir.

e Yiizey direnci rs giinliik ortalama 70 s.m-1, giindiiz saatlerinde 50 s.m-1 ve gece

saatlerinde 200 s.m-1’ dir.

e Net radyasyon giindiiz saatlerinde sifirdan biiylik ve gece saatlerinde sifirdan

kiigtiktiir.

ETo’ nun hesaplanabilmesi i¢in gerekli olan asgari veriler hava sicakligi (T), oransal
nem (RH), giines radyasyonu (Rs), atmosferik basing (P) ve riizgar (u) hizidir.
Hesaplanan ETo degerinin dogrulugu biitiintiyle kullanilan iklim verilerinin kalitesine
dayanmaktadir. En dogru sonucun elde edilebilmesi i¢in bu iklim elemanlarinin,
zemini bitki ile kapli (tercihen bakimli ¢im bitkisi) meteoroloji istasyonlarinda

Olctlilmiis olmasi1 gereklidir.

3.3.2. Referans EvapotranspirasyonuN Hesaplanmasi
Giinliik gozlem degerlerine ait verilerden ¢calismada kullanilacak olan parametreler
(ortalama sicaklik, riizgar hizi, glines radyosunu, ve bagil nem) secilerek Ms Excel
formatinda kaydedilmistir. Her bir dosya igerisinde giinliik ortalama degerler ile
gozlem istasyonlarina ait il, enlem, boylam, yiikseklik, 6l¢lim siiresi bilgileri yer

almistir (Sekil 3.3.).

3.3.3. Zaman Serileri Analiz Teknikleri
Calismanin bu kisminda, ARIMA modelleri kullanilarak ETo tahmin etmek ve tahmin
etmek i¢cin zaman serisi analiz teknikleri kullanilmigtir. Ayrica Eviews 12 versiyon
programin {izerinde zaman seresi analizleri yapilmistir (Sekil 3.4). ARIMA modeli

asagidaki gibi gosterilen matematiksel fonksiyonlar1 kullanma (Box et al., 2015).

(i) Otokorelasyon Fonksiyonu (ACF)
Zaman serisi verilerindeki tiim noktalar arasindaki korelasyonu ayr1 ayri1 zaman
veya gecikme ile agiklayan matematiksel bir islem. Bu islemde gecikmeler, serinin

statik olarak anlamli m1 yoksa anlamli olmayan bir korelasyon mu oldugunu gdsteren

18



her gecikme i¢in Ljung-Box Q ve p-degerleri giiven araliklarin1 kullanarak serinin

duraganligini ve duraganligini géstermektedir.

(ii) Kismi Otokorelasyon Fonksiyonu (PACF)

Kismi otokorelasyon fonksiyonu (PACF) egilimleri ve mevsimselligi tespit
etmek icin kullanilir. Bu siirecte gecikmeler, otoregresif bir modeldeki gecikmenin
derecesini belirlemeyi amaglayan veri analizinde 6nemli bir rol oynamaktadir; burada
bu islevi ¢izerek, bir AR (p) modelinde veya genisletilmis bir ARIMA (p, d, q)
modelinde uygun “P” gecikmeleri uygulanabilir kismi otokorelasyon fonksiyonunu

(PACEF) belirlemek i¢in olacaktir (Chen vd., 2009).

3.3.3.1. ARIMA Modellerinin Asamalari

Istatistikte otoregresif entegre hareketli ortalama (ARIMA) modeli, otoregresif
hareketli ortalama veya ARMA modelinin genellestirilmesidir. Bu modeller, verileri
daha iyi anlamak veya serideki gelecekteki noktalar1 tahmin etmek i¢in zaman serisi
verilerine uyarlanmistir.

ARIMA modeli, verilerin duragan olmayan 6zelliklerin kanitin1 gosterdigi bazi
durumlarda uygulanir; burada duragan olmayan oOzellikleri kaldirmak igin bir
baslangi¢ farklandirma adimi (modelin “Tiimlesik” boliimiine karsilik gelir)
uygulanabilmektedir. Model genel olarak ARIMA (p, d, q) modeli olarak adlandirilir;
burada p, d ve q sifirdan biiyiik veya sifira esit tamsayilardir ve sirasiyla modelin
otoregresif, biitiinlesik ve hareketli ortalama parcalarinin sirasini ifade eder. ilk

(113

parametre “p* otoregresif gecikme sayisini (birim kokleri saymaz), ikinci parametre
”d* entegrasyon sirasini, ligiincli parametre ’q" ise hareketli ortalama gecikme sayisini
belirtir. ARIMA modelleri, Box-Jenkins'in zaman serisi modellemesine yaklagiminin
onemli bir pargasini olusturmaktadir (Box et al., 2015).

Bu calismada duragan durumda olan bazi veri serilerinde ARMA modeli
uygulanmistir.  ARMA modelinin siireci, tanimlayict1 denklemlerin duragan
¢Oziimlerinin varligin1 ve benzersizligini ve nedensellik ve tersine gevrilebilirlik

kavramlarini igeriyordur. Yansima serisi [y1] icin ARMA modelinin asagidaki alt

kategorileri agiklanmistir, ARMA modelinin sekli soyledir:

Xe-d1 Xe=1-...bp Xe-p = ze+O1ze- 1+.. . +Oyz-q (3.3.2)
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{Z}~= WN(0,6%), Polinomlar1 (1-¢1z-...-0pz°) ve (1+01z+...+04z%) ortak faktdrlere
sahip degildir. {Xt — p} bir ARMA (p, q) islemi ise {Xt} isleminin ortalama p olan
bir ARMA (p, q) islemi oldugu sdylenir. Denklemin daha 6zlii formunu kullanmak

icin uygundur. Parametrelerin degerleri olarak denklemi 3.2.3. ile gosterilmektedir.

o(B)Xt =0 (B)Zt, (3.3.3)

burada: ¢ (B) ,0 (B), pth ve qth dereceli polinomlardir.

0z)=1-@1z——0@pzpve 0(z)=1+01z++0q2z denklemelrde B, geriye
dogru kaydirma operatoriidiir. (B j X t=Xt—j, Bj Zt=7Zt—},j=0,+ 1, ...) {Xt} zaman
serisinin 0 (z) ise p (veya AR (p)) sirasinin otoregresif bir igslemi oldugu sdylenir) < 1

ve ¢ (z) < 1 ise hareketli ortalama orderi q (veya MA (q)) islemidir.

Ote yandan, veri serileri duragan olmadiginda, ARIMA modelleri farklilastirma
islemleri kullanilarak uygulanabilir ve gelecekteki degerleri tahmin etmek i¢in daha
uygun hale getirilebilir. Baska bir deyisle, ARIMA (p, d, q) modelleme yontemi,
gecmis veri serilerindeki duraganliga uygun degildir (Mohan and Arumugam, 1995).
Serilerin yansimasi [y1] i¢in asagidaki ARIMA modeli alt kategorileri agiklanmistir,
ARIMA modelinin sekli soyledir:

@ (B) (or-p) =0 (P) a (3.3.4)

Burada: t; zaman endeksi, = backshift operatorii su sekilde tanimlanir: yt =yr-1, o (-
(1-b)* yy; farkliliktan sonra tepki serisi, p; ortalama terimi, ® (B) ve © (B) otoregresif

operator ve hareketli ortalama operator sirasiyla gostermektedir.

(Box et al., 2015) tarafindan yapilan ¢alismalarina gére ARIMA model siirecini
yurlitmek i¢in belirli adimlar vardir. ARIMA model yontemi kullanilarak
gelistirilmistir. Bilindigi gibi ii¢ ana yinelemeli adimi i¢ceren Box-Jenkins prosediiriine
dayanan bir ARIMA modelinin olusturulmasindaki bu ana asamalar, Tanimlama
asamasinda, mevsimsel ve mevsimsel olmayan egilimleri ortadan kaldirmak igin

verilerin farklilik doniistimleri uygulanmaistir.
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3.3.3.2. ARIMA (Box-Jenkins) Modellerinin Degerlendirme Asamalari
Bu caligmada, Sudan'in farkli istasyonlar1 i¢in referans evapotranspirasyon
degerlerini zaman serisi analiz teknikleri kullanarak tahmin etmek ve zaman serisi

analiz adimlarimi asagida, yontemlere gore uygulamak i¢in ARIMA modelleri

kullanilmistir (Box et al., 2008):

>i) Verileri Tanimlama

Ilk olarak, farkli veri serileri icin ARIMA modellerini bulmak icin, orijinal
veriler, grafiklerin gecikmelerine dayanarak istatistiksel onemi gosteren hem ACEF,
PACF hem de iliskili korelogram grafiklerinin ¢izilmesiyle tanilandirmaktadir. Zaman
serilerinin duraganligimi bilmek i¢in farkli gliven diizeyleri uygulanarak Artirilmis
Dickey-Fuller testi veya birim kok testi (ADF) kullanildi. Bu test, seri verilerinin
gecerli mi yoksa sahte mi oldugunu belirlemek icin gereklidir. Meclis hukukunda
gegcerli veri liretebilmek i¢in hem degiskenlerin hem de hata teriminin duragan olmasi
gerekmektedir. Hata teriminin ortalama degerine geri donmenin bir yolu olmasi
gerektigi anlamina gelmektedir (Saravanan, 2015).

AZt: o+ 9t+}LZt- 1 +Zk Qi AZt-l + &t (335)

Null hipotezler Hn ; A =0 (Z t duragan degildir, Zt birim kok igerir) ve alternatif
hipotezler Ha = A <0 (Zt sabittir). Ornegin, hata teriminin araglar1 (i) ve varyansi (c2)
sabit olmalidir. ADF testi trendle birlikte alinmali ve once seviyede kesismelidir
(Orijinal veriler), Eger bos hipotez diismezse, ilk fark alinmalidir. ikinci fark, yalnizca

ilk fark 6nemli degilse test edilir (Ibrahim and Amin, 2005).

(ii) ARIMA Modellerinin Tahmini
ACF ve PACF korelasyon grafikleri en az deger belirleme kriteri ve en hassas model
ile degerlendirilerek ARIMA ve ARMA paternleri en hassas modeller olarak
degerlendirildi. En iyi model se¢imi i¢in anlamli olan karsilastirma en uygun modeli
en onemli faktorii, en az dalgalanma, en yiiksek diizeltilmis R2, P olan zaman serisi
analizinde dogruluk kriterlerine gore secildi-degerleri (0.05'den biiylik olmalidir), en
gliclii (Schwarz bilgi kriteri) (Akaike bilgi kriteri) ve SIC degerleri. Ek olarak, RMSE
ve MAE'NIN en kiiciik degerleri en iyi modeli segmek igin kriterler olarak kabul
edilmektedir.

(iii) Denetim

Bu asamada, otokorelasyonu test etmek icin Lunj-box testi yapilir ve buna
otokorelasyon testi de denir. Bu test, modelde heniiz yakalanmamis herhangi bir bilgi
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olup olmadigmi anlamak i¢in artiklarin korelasyonunu kontrol etmek igin
kullanilirken, ACF ve PACF grafiklerindeki diiz korelasyonda en ideal modele atifta
bulunulmustur. Ornegin, korelogram kalintilarini kontrol ederken asir1 uyumdan

kaginmak ¢ok énemlidir.

(iv)  Ongérii Degerleri

Tahmin siireci, orijinal veri kiimesinin ge¢mis degerlerini kullanarak serinin
gelecekteki degerlerini tahmin etmek icin bir ARIMA modeline uymanin 6ziidiir.
Tahmin se¢ilen modele dayanmaktadir. Bu adimda, tahmin grafikleri ¢izilir ve ne
kadar basarili oldugu dogrulanir ve tahmin serinin gelecekteki degerlerini tahmin

etmektedir.

3.3.4. Enterpolasyon Yontemleri

Bu kisimda, boylam, enlem ve yikseklik koordinatlari konum bilgisi
kullanilarak 120 ana ve alt ana istasyon degerine iliskin giinliik ETo elde edilen aylik
ETo degerleri kullanilarak mekansal dagilim haritalar1 olusturmak icin farklh
enterpolasyon yontemleri kullanilmistir. ArcGIS 10.7 version ve GS+ programlarin

lizerinde enterpolasyonun analizlerini yapilarak haritalar1 olusturulmaktadir.

Bu tezin kisminda, Iklim verilerinin konumsal dagilimlarinin belirlenmesi igin yapilan
calismalarda kullanilan ve sonugta en dogru sonucu veren yontemler degiskenlikler
gostermektedir. Bu calismada kullanilan interpolasyonun yontemleri su sekilde

agiklanmustir.

3.3.4.1. Ters Mesafe Agirhgi (IDW) Yontemi
Ters Mesafe Agirligi (IDW) yaygin olarak kullanilan hizli, deterministik, kesin
ve konumsal bir enterpolasyondur. Bir noktanin degerini, bu iki nokta arasindaki
mesafenin ters bir fonksiyonu ile agirliklandirilmig, 6rneklenmis bir veri noktasindaki
degerin dogrusal bir kombinasyonunu kullanarak tahmin eder. Yontem, tahmin
noktasina daha yakin olan gézlem noktalarinin daha uzak noktalar olarak daha fazla

oldugunu varsayar (Ahmadi and Sedghamiz, 2008).
IDW, her bir noktaya agirlik vererek noktalari enterpolasyonda geleneksel olarak

kullanilan deterministik bir yontemdir, bdylece noktadan uzaklik arttik¢a tahmin
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tizerindeki etkileri azalir (Adhikary and Dash, 2017). Matematiksel olarak, agirliklar
asagidaki gibi hesaplanir:

n X
Zi=1_B

Z(x0) = (3.3.11)
=1,B
ij

Z (x0) enterpolasyonlu degeri; n, 6rnek veri degerlerinin toplam sayisini temsil
eder; x1, 1th veri degerlerini, bu enterpolasyonlu deger ile 6rnek veri degeri arasindaki
ayirma mesafesidir ve b, agirliklandirma giiciidiir; agirliklandirma giicli, tahmin
kalitesini O6nemli Ol¢iide etkileyebilir. Optimum agirliklandirma giicli, verilerin
uzamsal yapisina baglidir ve verilerin varyasyon katsayisi (CV), carpiklik ve basiklik

katsayisindan etkilenir (Stroud et al., 2001).

3.3.4.2. Kriging Yontemleri

Bu c¢alismada ETo degerlerini enterpolasyonda stokastik yontem olarak kriging
teknikleri kullanilmistir. Kriging, kriging ile enterpolasyonda yar1 degisken grafikleri
(veya sadece variogramlar1) tanimlayan bir enterpolasyon yontemidir. Kriging, kesin
veya piiriizsiiz olabilen ¢ok esnek bir enterpolatordiir. Tahminler, tahmin standart
hatalar1 ve olasilik dahil olmak tiizere ¢esitli ¢ikt1 yiizeylerine izin verir (Johnston et
al., 2001). Kriging yontemlerinin jeoistatistik analizindeki ana aractir, komsu
gozlemler arasindaki mekansal korelasyonu ifade eden yar1 variogramdir.

Kriging yontemlerini analiz etmek ve tahmin etmek icin en ¢ok kullanilan
dogrusal, kiiresel, Gauss ve Ustel olarak adlandirilan yar1 variogram modelleri de dahil
olmak tizere dort Kriging modeli vardir. Ayrica, verilerin uzamsal korelasyonu
semivariogram degeri ile degerlendirilmelidir. Jeoistatistik tahminden 6nce, olasi
herhangi bir 6rnekleme araligi i¢in bir variogram degerinin hesaplanmasini saglayan
bir modele ihtiyacimiz vardir.

Yar1 degiskenlik degeri y (h), has ile ayrilan tiim noktalardaki 6znitelik degerleri

arasindaki farkin yarisinin varyansi olarak tanimlanabilir:

V)= s BP1Z00) = Z0x + ) (3.3.12)

Z (x), N degiskeninin biiylikliigiinii gosterir; (h), h mesafesiyle ayrilan 6znitelik

ciftlerinin toplam sayisidir. Kriging yontemlerini analiz etmek ve tahmin etmek i¢in
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en ¢ok kullanilan dogrusal, kiiresel, Gauss ve Ustel olarak adlandirilan yar1 variogram

modelleri de dahil olmak tizere dort Kriging modeli vardir.

3.3.4.3. Ordinary Kriging (OK)

OK, bir degiskenin degerini tek bir noktada veya blokta tahmin etmek i¢in
jeoistatistik caligmalarda kullanilan yaygin bir yontemdir. Verilerde egilim
olmadiginda siradan kriging yontemi kullanilabilir. Ek olarak, hatalarin beklenen
degerine tarafsiz olan dogrusal agirlikli ortalama bir tekniktir. Sabit bir rastgele alanin
bilinmeyen bir sabit ortalama ile dogrusal tarafsiz tahminini bulmak i¢in yaygin olarak

kullanilir ve asagidaki gibi ifade edilir:

Z(xo)= Xi=q Az (x:) (3.3.13)

Z (x0), x0 konumundaki kriging tahminidir; Z (xi), xi'de 6rneklenmis degerdir

ve A, Z (xi) ile iliskili agirliklandirma faktoriidiir. Tahmin hatasi su sekilde tanimlanir:

£ (x 0) Z(x0) =X, Aiz(x)) — 2(x,) (33.14)

Z (x0), x0 uzamsal konumundaki bdlgesellestirilmis degiskenin gercek
degeridir; € (x 0) tahmin hatasidir. Buna ek olarak, siradan karsilastirildiginda diisiik
yontemi kullanarak, veri serisi normal dagilim olmali o zaman; aksi takdirde, dogrusal
olmayan karsilastirildiginda diisiik kullanilmali ya da verileri kullanarak dogrusal
fonksiyonlar1 normal dagilim déniismek zorunda, ve sonra Lineer karsilastirildiginda
diisiik, bu Nedenle kullanilabilir, verilerin dagilim fonksiyonu kontrol edilmelidir
fazlalagmistir. Ornegin, siradan Kriging ve evrensel Kriging yontemlerinin her ikisi de
model se¢imi i¢in yar1 variogram parametrelerine baglidir. Ayrica, IDW yontemi gii¢

fonksiyonu se¢imine baghdir (Kamali et al., 2015).
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3.3.5. Coklu Dogrusal Regresyon Uygulamalari

Sebep sonug iligskisine dayanan regresyon analizi, iki ya da daha c¢ok degisken
arasindaki 1iliskiyi modellemek i¢in kullanilan yontemler arasindaki en ¢ok
kullanilanidir. Ciktiyr modellemek i¢in tek bir degisken kullaniliyorsa tek degiskenli
regresyon, birden ¢ok degisken kullaniliyorsa c¢ok degiskenli regresyon olarak
isimlendirilir. Basit bir dogrusal regresyon modeli ve bagimli degiskenin gergek ve
tahmin edilen degeri arasindaki iligski agsagidaki esitliklerde verilmistir. Basit dogrusal
regresyon bize normal dagilmis, hakkinda aralikli/oranli 6lgekle veri toplanmig iki
degisken arasindaki dogrusal iliski olup olmadigini test etme olanagi verir.

Degiskenlerden biri tahmin, biri sonug degiskenidir.

Y=a+bx (3.3.15)
Burada ; a ve b sabitleri en kiiciik kareler yontemi ile tahmin edilir. Coklu dogrusal
regresyon modeli birinci varsayimi basit dogrusal regresyon benzemektedir. Fakat iki
yontem arasindaki fark bagimli degiskenin bagimsiz bir degiskenden daha fazla
fonksiyonu bulunur. Coklu regresyon denkleminde birden fazla tahmin degiskeni
vardir. Asagida Coklu dogrusal regresyon esitliligi verilmistir.

Y= (bo + b1 x1 +b2 X2 +...bn Xn) *+ €l (3.3.16)
Burada; Y bagimh degisken, bo, regresyon egrisinin y eksenin kesim noktasi, blilk
tahmin degiskeninin x1 katsayisi, b2 ikinci tahmin degiskeninin x2 katsayis1 ve ei ise

1’inci 6rnek i¢in Y nin edilen degeriyle gozlenen degeri arasindaki farktir.

3.3.6. Yapay Zeka Uygulamalan

YSA bir¢ok bilimsel disiplinde geleneksel istatistiksel modelleme tekniklerine
faydali alternatifler olarak karsimiza ¢ikmaktadir. Bu tezin kisminda, yapay Sinir
Aglar1 (YSA), ETo modellemesinde iki farkli YSA teknigi uygulayarak giinliik ETo
tahmin etmek i¢in Sudan'daki iklimsel verileri kullanarak ETo dogrusal olmayan
karmagik islemi modellemek i¢in kullanilir. Bu teknikler ¢ok Katmanli algilayici
(MLP) ve uyarlamali ndro-bulanik sistem (ANFIS) aglaridir. MATLAB R2011a

version kullnilarak YSA uygulanmaktadir.
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3.3.6.1. Cok Katmanh Yapay Sinir Aglar1 (CKYSA)

CKYSA, girig verilerinin haritalarini ileriye doniik bir sekilde temel alan bir
yapay sinir agidir ve bu agin birbirine tamamen bagli olan birden fazla katmani (giris,
gizli ve ¢ikis katmanlari) vardir (C. Zhang et al., 2018). Tipik yapi, MLP'nin birden
cok katmandaki (giris, gizli ve ¢ikis katmanlari) birbirine bagh diigiimlerden olugmasi
ve her katmanin 6nceki katmana ve sonraki katmana tam olarak baglanmasidir (G. P.
Zhang, 2003).

CKYSA ag yapis1 Sekil 3.5.'de gosterilmistir. Bu ag1, bir veya daha fazla gizli katman
ekleyerek daha yiiksek istatistikler ¢ikarabilir (Kisi, 2008). Her diigiimiin ¢iktilar,
dogrusal olmayan verileri ayirt etmek i¢in dogrusal olmayan bir etkinlestirme islevi
tarafindan takip edilen agirlikli birimlerdir.

CKYSA yontemi, her digim ic¢in agirlikli birimlere dayali verilerin dogrusal
olmayanligini ayirt etmek i¢in kullanilir (Wang et al., 2009). Bu tezin kisiminda ¢ok
katmanli yapay sinir aglarin1 uygulanmaktadir (Sekil 3.6).

(1+1)

Matematiksel olarak, katmanindaki ¢ikis aktivasyonu al*V, giris aktivasyonu a!) ile

turetilir:

al™D=g(wl a» + b)) (3.3.15)
Burada 1 belirli bir katmana karsilik gelir, w(1) ve b(1), 1. katmanindaki agirligi ve
egimi gosterir ve dogrusal olmayan aktivasyon islemi islevini temsil eder (6rnegin,
sigmoid, hiperbolik teget, dogrultulmus dogrusal birimler). Bir m katmani ¢ok

katmanli algilayict igin, ilk giris katmani a (1) = x iken son ¢ikis katman:

hw, b (x) = a™ (3.3.16)

Bu denklemdeki (w) ve Onyargi (b) agirliklari, bilinmeyen bir girdi-¢ikt1 iliskisine
yaklasmak i¢in bir geri yayilim algoritmasi kullanilarak denetimli egitim ile 6grenilir.
Ek olarak, bu islev kullanilarak tahmin edilen ve ¢ikt1 arasindaki fark en aza indirilecek

ve ¢iktilar agagidaki gibi gosterilebilir:

2
J (W, b, X, y) = |hy,p (x) =y (3.3.17)
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Note: 72 is each pattem of training, s represents each iteration of training, and  is the learning rate.

Sekil 3. 3. Cok Katmanli Yapay Sinir Aginin yapis1 (Landeras et al., 2009).

3.3.6.2. Bulanik Yapay Sinir Aglar1 (ANFIS)

YSA ve bulanik mantigin tamamlayici bir sekilde bir fiizyon ANFIS modelini
vermektedir. YSA ile bulanik mantik entegrasyonu, azaltilmis yiirlitme zamaninda
hata toleransi azalma ile sonuglanir, ve adaptasyon biiyiik olcilide gelistirilmistir.

ANFIS, geri yayilim gradyam inis hatasi sindirimini ve en kii¢lik kare hata
yontemini birlestiren karma bir 6grenme kurali araciligryla bir parametre kiimesini
tanimlar. Bulanik ¢ikarim sistemleri i¢in baglica iki yaklagim vardir, yani Mamdani
(Mamdani, 1977) ve Sugeno'nun (Takagi and Sugeno, 1985) yontemleridir.

Iki yaklasim arasindaki farklar Mamdani'nin yaklasiminin ortaya ciktig1
kisimdan kaynaklanir Sugeno'nun yaklasiminda dogrusal veya sabit fonksiyonlar
kullanilirken bulanik {iyelik fonksiyonlarmi (MFs) kullanir. (Pour-Ali Baba et al.,
2013).

Bu kisimda, giinliik referans ETo degerlerini tahmin etmek i¢in Sugeno yontemi
uygulanmaktadir. Bulanik teorinin birlikte kullanimi YSA, bulanik kiimenin

anlagilabilir insan bilgisini temsil etme yetenegini 6§renme yetenegi ile birlestirir.
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ANFIS yapisi, Sekil 3.7.'de gosterildigi gibi bes katmanli ileri beslemeli bir sinir
ag1 icerir. Her ANFIS katmani, diigiim islevi tarafindan agiklanan birkag¢ diigiimden
olusur. Katman 1 ve 4'teki diigiimler, dikdortgen olarak temsil edilen uyarlanabilir
digtimlerdir. 2., 3. ve 5. Katmanlardaki diigiimler sabit diigimlerdir ve daireler olarak
temsil edilirler. Ik katmanda, her diigiim bir dilsel etiketin iiyelik notlarin1 olusturur
ve bir bulaniklagtirma uygulanir (Masoudi et al., 2018). Diigiim islevi su sekilde

tanimlanabilir;

O%i = pai (x) (3.3.18)

Burada, (x) diiglim i'e giristir ve A1, bu diiglim isleviyle iligkili dilsel etikettir (bulanik
kiimeler: kiiciik, biiyiik). ikinci katmanda, diigiimler kurallarin atesleme agirligim

hesaplar ve iiriinii gonderir. Ornegin:

wi = pAi (y) X uBi (y), i=1.2 (3.3.19)

Bu aragtirmanin boliimiinde, girdi verisi olarak ortalama sicaklik, riizgar hizi, giines
radyasyonu ve bagil nem olmak iizere dort parametre kullanilarak egitim siirecindeki
ETo tahmin etmek i¢in bir ANFIS modeli gelistirilmektedir (Sekil 3.8). Parametreler
standart min-max normallestirme teknigi kullanilarak 0 ve 1 aralik olarak
normallestirilmistir. Veri setleri iki gruba boliiniip, %50 egitim ve %30 test icin

kullanilmistir.

x1 X2
layer 1 layer 2 layer 3 layer 4 layer 5 layer 6

Sekil 3. 4 . Bulanik Yapay Sinir Aginin yapisi
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3.3.6.3. Matematiksel ve Istatistiksel Kriterleri

(1) Tahmin Hatas1 Standart Sapmas1 (RMSE):
" hi_pi2
RMSE = /mflp‘) (3.3.20)

(i1) Belirleme katsayis1 (R?):

2 _ ?=1(0i—pi)2
R2=1 Sy (3.3.21)

(iii))  Ortalama Mutlak Hatas1 (MAE)

MAE = M (33.22)

Pi, ETo'in tahmini degeridir; Oi, Penman-Monteith denklemi kullanilarak et0'in
gozlemlenen veya hesaplanan degeridir; 1 tahmini 6rnek sira numarasidir; i = 1,2, . . .
n; P, O0rnek sira numarasinin tahmin edilen ortalama degeridir; O, Ornek sira
numarasinin gdzlenen ortalama degeridir; ve n, tahmin edilen degerinin 6rnek

numarasidir.

(iv) Akaike Bilgi kriteri (AIC):
Akaike'nin entropiye dayali Bilgi Kriteri (AIC) istatistiksel model degerlendirme
problemlerinde temel bir etkiye sahiptir. Ayrica seri verilerin degerlerini tahmin etmek

i¢cin en uygun modeli se¢gmek dnemlidir (Ozaki and Oda, 1977):

~

A=nLnR+2Kn (3.3.23)
n, deneysel noktalarin veya gozlemlerin sayisi, ve R, karelerin toplamidir.  Ln;
denklem tarafindan hesaplanan log-olasilik fonksiyonudur (normalde dagitilmis

hatalar varsayilarak):

¢=—n2-(1+In(2-7) +In(1n-Yi=In(yi-y"i)2)) (3.3.24)

29



Secilecek modeldeki parametre sayisi, A'nin en az oldugu parametredir. Birgok
alternatif modeli karsilastirirken, minimum AIC degerine sahip olan model, iyi bir

uyum ve karmasiklik dengesi saglar (Webster and McBratney, 1989).

) Bayesian Bilgi kriteri (BIC)

Bayesian Bilgi kriteri, Schwarz Kriteri (SIC) olarak da bilinir zaman serisi
modelleri arasinda karsilastirmali degerlendirme icin baska bir istatistiksel 6l¢iidiir,
AIC ile yakindan iliskilidir (Profillidis and Botzoris, 2018).

BIC ve AIC arasindaki fark, modelin uyumunun iyiligini arttirmak i¢in K
parametrelerinin sayisini (regresorler veya / ve kesisme) ekledigimizde ortaya
cikmaktadir. BIC, parametrelerin artmasiyla daha fazla ilgilenir (AIC'ye kiyasla). BIC

asagidaki denklem ile hesaplanir:

SIC or BIC=—2-U/n + k'Inn/n (3.3.25)
BIC, AIC ile aymidir. farkl alternatif modellere gore tercih edilecek model minimum

BIC degerine sahip olan modeldir.

(vi) Nash—Sutcliffe model Efficiency Katsaysi (NSE)

Hidrolojik modellerin 6ngoriicii becerisini degerlendirmek i¢in kullanilir.

Olarak tanimlanir:

Y7=1(Q5—-0k)2
NSE =1 - —F—F7——% 3.2
27-1(Q5-05)2 (3.3.26)
Qo = Gozlenen degerlerin ortalamasi,
Qm= Tahmin edilen degeridir,

Qo= Gozlenen degeridir.

Nash-Sutcliffe verimliligi, modellenen zaman serisinin hata varyansinin,
gbdzlemlenen zaman serisinin varyansina boliinmesinin bir eksi orani olarak hesaplanir.
Sifira esit bir tahmin hatas1 varyansina sahip miikemmel bir model durumunda, elde
edilen Nash—Sutcliffe Verimliligi 1'e esittir (NSE = 1). Tersine, gdzlemlenen zaman
serisinin varyansina esit bir tahmin hatasi varyansi iireten bir model, Nash—Sutcliffe

Verimliligi 0.0 (NSE = 0). Gergekte, NSE = 0, modelin kare hatanin toplami agisindan
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zaman serilerinin ortalamasiyla ayni tahmin becerisine sahip oldugunu gosterir.
Gozlemlerin varyansindan 6nemli dl¢iide daha biiyiik bir tahmin hatasi varyansina
sahip modellenmis bir zaman serisi durumunda, NSE negatif hale gelir. G6zlemlenen
ortalama modelden daha iyi bir yordayici oldugunda sifirdan kii¢iik bir verimlilik
(NSE <0) olusur. NSE'nin 1'e yakin degerleri, daha 6ngoriicii beceriye sahip bir model
onerir. Farkli NSE degerlerinin yeterlilik esikleri olarak 6znel uygulamasi birkag yazar

tarafindan onerilmistir (McCuen et al., 2006).
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4. BULGULAR VE TARTISMA

Bu calismada bulgular ve tartisma {i¢ samada degerlendirilmistir. Birinci asamada
zaman serisi analizleri, ikinci agsmada enterpolasyom teknikleri ve iiglincii agmada ise
yapay zeka teknikleri ile ETo tahmin edilmistir. Sudanin 120 farkli istasyonundan elde
dilen veriler g6z oniine alinarak ETo tahmin etmede kullanilan iklim parametreleri ve
ETo tanimlayici istatistik verileri Tablo 4.1° de verilmistir.

Her bir ana istasyon i¢in ETo degerlerinin tanimlayici istatistikleri (Tablo 4.1 )'de
gosterilmektedir. Tablo 4.1.’da incelendiginde en yiiksek ETo degerlerin 14.01, 14.82,
ve 13.61 mm.d ! ile Atbara, Halfa Elgadida, ve Kassala istasyonlarinda ortaya ¢iktig
gozlenmektedir. En diisik ETo 0.57, 0.61 mm.d' ile Babanusa ve Kadugli
istasyonlarinda gosterilmistir. Goriildiigii gibi Al Damazin ve Niyala istasyonlarinda
gbzlemlenen en yiiksek standart sapma degerin 3.65 ve 6.17 ile en diisiik deger

sirastyla 0.66 ve 0.48 ile Al Neihud ve Singa istasyonlarinda elde edilmistir.
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Tablo 4. 1. Sudan’in 33 il merkezi igin ET, degerlerine ait Tanimlayici Istatistikler

Istasyon Boylam  Enlem Max. Min. Orta. Carpiklik Basiklik
Abuhamed 33.44 19.51 12.03 1.186 4.94 0.352 0.53
Abunaama 34.06 12.65 11.22 0.76 3.64 0.38 0.61
Al Damazin  34.337 11.78 8.49 1.19 3.12 -0.04 -0.93
Al Gadaref  35.31 14.21 5.19 1.35 3.5 -0.85 0.16
Al Genina 22.5 13.27 13.39 0.65 4.00 0.23 0.78
Aroma 35.94 15.77 8.40 0.78 3.63 -0.11 0.29
Atbara 33.75 17.64 14.01 3.55 10.52 0.56 3.14
Huddiba 33.93 17.56 11.67 1.05 4.58 0.39 0.73
Karima 31.88 18.58 11.13 1.04 5.08 -0.09 0.26
Kadugli 29.71 11 11.75 0.61 3.77 -0.65 0.70
Kassala 36.25 15.46 13.61 3.55 7.38 0.22 2.72
Khartoum 32.5 15.46 11.25 0.84 4.60 -0.29 0.43
Kosti 32.81 12.96 10.40 0.67 3.87 -0.43 0.48
Niyala 24.88 12.05 13.06 0.76 4.64 -0.87 0.40
Sennar 37.19 19.83 10.64 0.68 3.74 -0.21 2.71
Portsudan 33.61 13.55 8.56 0.71 2.81 0.78 1.02
Babanusa 27.817 11.33 11.67 0.57 4.16 -0.78 0.53
Dongola 30.63 19.2 11.81 1.10 5.15 0.01 0.19
Eddueim 32.19 13.89 13.45 3.55 8.5 0.56 3.14
Al Fashir 25.31 13.58 10.46 0.62 3.83 -0.50 0.42
Al Neihud 28.44 12.65 12.67 0.66 4.51 -0.78 0.46
Al Obeid 30.31 13.27 11.14 0.91 4.53 -0.54 0.43
Halfa 35.6 15.31 14.82 3.57 7.73 0.22 2.82
Hayya 26.32 18.2 6.23 2.60 5.09 0.15 -0.18
Shambat 32.53 15.66 11.22 0.97 4.62 -0.26 0.45
Shendi 33.44 16.7 10.73 0.75 4.36 0.54 0.74
Singa 34.06 12.96 4.37 0.48 3.27 -0.30 0.48
Station6 32.54 20.75 12.02 1.55 5.44 0.30 0.36
Um Benin 33.95 13.6 10.63 0.67 3.74 -0.21 0.48
Madani 33.44 14.52 10.82 0.73 3.97 -0.15 0.48
Zalingi 23.44 12.96 12.46 0.72 3.79 -0.26 0.44
Wadi halfa  31.48 21.81 11.47 1.10 5.02 0.61 0.31
Tokar 37.81 18.89 8.33 1.05 3.23 3.11 1.39

4.1. Otoregresif Entegre Hareketli Ortalama Modelleri (ARIMA)

Zaman serisi analiz yontemlerini, ARIMA (Otoregresif Entegre Hareketli
Ortalama Modelleri) uygulanarak referans evapotranspirasyon degerlerini tahmin
etmek i¢in kullanilmistir. Bu modellerini Box Jenkins modelleri olarak adlandirilir.
Bu boliimde, ARIMA modellerini kullanilarak giinliik ETo tahmin edilmesi i¢in
Sudan'daki 33 ana meteoroloji istasyonlarindan gerceklestirilen (1982'den 2020'ye
kadar) glinliik zamana dayali uzun verilerini kullanilmigtir. ARIMA modelleri, zaman
serisi analizi teknikleri kullanilarak ETo degerlerini degerlendirmek igin
olusturulmustur. Bu amagla, zaman serisi modellerini gelistirmek ve gelecekteki
degerleri tahmin etmek icin EViews version lite istatistiksel yazilim programi

kullantlmistir.
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4.1.1. Zaman Serisi Modellerinin Degerlendirilmesi (ARIMA modelleri)

[k olarak, ETo degerlerinin orijinal verilerinin grafiklerini ¢izilmektedir. Biitiin
istasyonlar1 duragan oldugu bulunmaktadir. Ornegin, Sekil 4.1° de meteorolojik
istasyonlarini incelendiginde zaman serisinde herhangi bir egilim veya trend
gdstermemistir (Box et al., 2015). Ustelik, ortalama ve varyans 1982’den 2020’ye
kadar sabit olup degismemistir. Gelecekteki degerleri tahmin etmek i¢in fark alma
islemlerine ihtiya¢ duymadigini anlamina gelmektedir.

Ayrica, orijinal serilerinin duragan oldugunu gdstermektedir. Verileri
duraganligin sabit halinde gelecekteki degerleri tahmin etmek i¢in uygun olabilecek

model belirlenmektedir.
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Gunlik ETo verileri, Box-Jenkins tahmin modelleri kullanilarak ACF ve PACF
grafiklerinde gecikmeler ile ilisikli oldugunu goéstermektedir. Sekil 4.2 de ACF ve
PACF grafiklerinde her istasyon icin orijinal verileri tanimlanmustir. Ideal modele
karar vermeden Once tiim bilgileri ve korelogram hatalarinin yakalandig1 i¢in kontrol
edilmesi gerekmektedir. Korelogramin artiklar1 ve hatalari, giiven sinirlari i¢inde diiz
olmalidir (Asteriou and Hall, 2007). Ayrica, Duragan olan ya da duragan hale
doniistiiriilen serinin ACF ve PACF grafiklerine gore seriye uygun olabilecek model
belirlenir. Sekil 4.2°de gosterildigi gibi, tiim istasyonlar ’"da hem ACF hem de PACF
grafiklerinde iligkili miktarinin azalis1 yavas oldugu i¢in otoregresif hareketli ortalama
modellerini olusturulmaktadir. Bu azalislarin hizli ya da yavas olduguna karar vermek

oldukca zor olup dogru karar1 vermek yillarin deneyimini gerektirmektedir.
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Sekil 4. 2. Her istasyon i¢cin ACF ve PACF grafikleri

Giinliik ETo degerlerini, en uygun ARIMA modeller ile 1982-2020 donemi i¢in
tahmin edilmektedir. Cizelge 4.2° de incelendiginde, en iyi modellerin en yiiksek
belirleme katsayis1 (R?) goriilmektedir. Bilindigi gibi, R? katsayis1 ger¢ek ve tahmin
edilen degerlerin arasindaki iliskili gosteren katsayisidir. Ayrica, ARIMA modellerin
sonuclarma gore, en kiigiik ortalama kare hatas1 (RMSE), Volatilite (Sigma?), AIC ve

SIC parametrelerin degerlerine sahip elde edilmektedir.

Tablo 4.2°de inceleceginde en iyi modeller, en biiyiikk R? degerlerine sahip
ARIMA (1,0,1), (1,0,2) ve (2,0,2) modellerinde gostermektedir. Ayrica, modellerin en
diisiik AIC ve SIC degerlerine sahip, gelecekteki ETo degerlerini tahmin etmek i¢in
uygun modeller olarak kabul edilebilmektedir. ARIMA modellerinde fark alma
islemleri yapildiginda belirleme katsayis1 (R?) degerleri azaltilip ve hata degerleri
arttirtlmistir. Bunun nedenle kullanilan verilerin duragan bir durumda oldugunu
aciklanmaktadir. Bu amagla, gelecekteki degerlerini tahmin edilebilmektedir.

Tablo 4.2°de gosterildigi gibi referans evapotranspirasyon igin en yiiksek R?
degerleri sirastyla 0.84,0.85, 0.83 ve 0.82 olan Kadugli, Babanusa, El neihud ve Niyala
istasyonlarinda elde edilmistir. En diisiik degerler sirasiyla 0.35, 0.38, 0.39, ve 0.38 ile
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Wadi Halfa, Atbara, Tokar, ve Station6 istasyonlarinda elde edilmektedir. Ote yandan,
en diisiik hata, AIC, SIC ve R? degerlerine sahip gelecekteki ETo degerlerini tahmin

etmek i¢in her istasyon i¢in en iyi modeller belirlenmistir.

Tablo 4. 2. Her istasyon i¢cin ARIMA modellerinin parametreleri

Istasyon Model R? RMSE AIC SIC P- degeri
Abuhamed  (1,0,2) 0.65 0.079 4.115 4.11 0.0000
Abunaama  (1,0,1) 0.60 0.024 3.25 3.26 0.0000
AlDamazin (1,0,1) 0.67 0.059 2.126 2.127 0.0000
Al Gadaref  (1,0,1) 0.67 0.060 2.529 2.531 0.0000
Al Genina  (1,0,1) 0.74 0.005 3.028 3.667 0.0000
Aroma (1,0,1) 0.49 0.032 3.291 3.293 0.0000
Huddiba (1,0,1) 0.49 0.038 3.622 3.624 0.0000
Karima (2,0,1) 0.47 0.036 3.559 3.561 0.0000
Kadugli (1,0,1) 0.84 0.001 3.325 3.324 0.0000
Kassala (1,0,2) 0.57 0.041 2.973 2.972 0.0000
Khartoum (1,0,1) 0.67 0.053 2.836 2.838 0.0000
Kosti (2,0,2) 0.63 0.061 2.854 2.855 0.0000
Niyala (1,0,1) 0.82 0.004 3.374 3.372 0.0000
Sinnar (1,0,1) 0.68 0.058 3.149 3.151 0.0000
Portsudan (1,0,2) 0.56 0.053 3.286 3.288 0.0000
Babanusa (2,0,1) 0.85 0.002 2.627 2.628 0.0000
Al Fashir (1,0,2) 0.68 0.052 2.676 2.675 0.0000
El Neihud (1,0,2) 0.83 0.004 3.319 3313 0.0000
Al Obied (1,0,2) 0.77 0.001 2.617 2.618 0.0000
Halfa (1,0,2) 0.56 0.042 3.090 3.092 0.0000
Haya (1,0,1) 0.56 0.034 0.243 0.243 0.0000
Shambat (1,0,2) 0.64 0.008 3.402 3.404 0.0000
Shendi (1,0,1) 0.48 0.036 3.474 3.477 0.0000
Singa (1,0,2) 0.53 0.024 2.172 2.174 0.0000
Um Benin  (1,0,2) 0.74 0.001 2.362 2.363 0.0000
Madani (1,0,2) 0.73 0.0011 2.499 2.501 0.0000
Zalingi (1,0,2) 0.69 0.0019 2.884 2.885 0.0000
Wadi Halfa (1,0,2) 0.345 1.69 3.366 3.368 0.0000
Dongola (1,0,2) 0.46 0.038 3.539 3.541 0.0000
Atbara (1,0,1) 0.38 1.472 2.201 2.202 0.0000
Edduim (1,0,2) 0.69 0.073 3214 3.216 0.0000
Tokar (2,0,1) 0.39 1.47 2.931 2.933 0.0000
Station6 (1,0,1) 0.38 1.48 3.631 3.630 0.0000

Sekil 4.2.°de ger¢cek ve tahmin ETo degerlerinin daglim grafiklerini
gosterilmektedir. Bu grafiklerde, tahmin edilen referans evapotranspirasyonun

degerleri, gergek degerleri ile ne kadar uyumlu ve bagli oldugunu gosterilmektedir.
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Sekil 4. 3. ASCE PM ETo ve tahmin referans evapotranpirasyon degerlerinin karsilastiriimasi

Cok degiskenli ARIMA modelleri, modelin uyum iyiligini diizeltilmis R? ve
hatay1 artiracaktir. Ayrica zayif tahmin edilen modeli yapilacaktir. Az parametreli
modeller, asir1 parametreli modellerden daha iyi sonuglar vermektedir.

Bagka deyisle, ARIMA modelleri, referans evapotranspirasyon parametresinde
tatmin edici sonuglar elde etmistir ancak, bir¢ok degiskene sahip ARIMA modellerinin
modelin uyum iyiligini etkiledigini ve onu kotii tahmin edilen bir model haline
getirdigini ve bunun da modellerin performansini diisilirdiigiinii belirtmek gerekir. Bu

nedenle, parsimonious modeller asir1 parametreli modellerden daha i1yi sonuglar verir.

4.2. Enterpolasyon Teknikleri

Bu béliimde, giinliik referans evapotranspirasyondan elde edilen giinliik referans
evapotranspirasyon degerleri, boylam, enlem ve yiikseklik koordinatlar1 olan konum
bilgileri kullanilarak (Tablo 4.3.) sunulan 120 istasyon ile ilgili mekansal dagilim
haritalar1 olusturmak i¢in farkli enterpolasyon yontemleri kullanilmigtir. Jeoistatistik
analizin sonuglar1 asagida verilmistir.

Bu boliimde Yar1 variogram parametreleri (Nugget CO, sill CO+C ve range A)
kullanilarak noktalarin uzamsal otokorelasyonunu gosteren siradan kriging
modellerini tahmin etmek i¢in Yar1 variogram modellerinin uydurma testleri
uygulanmaktadir (Vieira et al., 1983).

Onceki boliimde belirtildigi gibi, Kriging enterpolasyon ydéntemlerini kullanmak
icin verilerin dagilim fonksiyonu analiz edilmis ve tiim verilerin Sudan'daki 33 ana
konum bilgilerine dayanarak ET0'a dayali normal bir olasilik dagilimina sahip oldugu
bulunmustur. Daha sonra verilerin semivariogram degerleri hesaplanmis ve en uygun

modeller en yiiksek diizeltilmis R? ve RSS degerlerinin artik toplamlarinin en diisiik

58



degeri esas aliarak belirlenmistir. Verilerin uzamsal otokorelasyonu, ETO verilerinin
uzamsal korelasyonunu gosteren Tablo 4.3.'de gosterildigi gibi Nugget, Sill, ve Range
parametrelerine gore incelenmistir.

Ote yandan, Mayis, Temmuz, Agustos, Eyliil, Ekim ve Kasim aylarinda
gozlemlere ¢ok yakin noktalar arasindaki en kiigiik mesafelerin, konumsal olarak

iligkili olan ve birbirinden ayrilan gézlemlerden daha benzer degerlere sahip oldugu

gozlenmistir.
Tablo 4. 3. ETy degerlerine ait izotropik yarivariogram bilesenleri
Aylar Model Nugget (C%) Sill(C°+C) Range(A) R? RSS
Ocak Spherical 0.522 2.05 106.61 0.22 1.97
Subat Spherical 2.944 8.823 404.20 0.231 1.78
Mart Linear 2.523 2.523 10.89 0.66 0.577
Nisan Gaussian 2.37 4.457 12.09 0.243 1.28
Mayis Spherical 1.297 3.152 12.68 0.958 0.119
Haziran Spherical 0.067 1.431 1.01 0.163  0.069
Temmuz  Spherical 0.800 2.222 28.13 0.840  0.096
Agustos Exponential  1.146 2.293 6.360 0.68 0.221
Eyliil Gaussian 0.802 1.825 4.550 0.98 0.013
Ekim Spherical 0.820 2.654 7.640 0.89 0.299
Kasim Exponential ~ 0.970 4.157 1.660 0.68 1.530
Aralik Spherical 3.289 7.553 74.90 0.154 1.03

Gosterildigi gibi, en énemli indeksler R? ve RSS degerleri olup, gozlemler ile
yar1 degerler arasindaki mesafeye (ETo) gore yar1 degiskenlik parametrelerinin
cizilmesiyle ETo degerleri arasindaki uzamsal otokorelasyonu gostermistir.

En yiiksek R? degerleri Eyliil, Mayis, Ekim ve Temmuz aylarinda 0.98, 0.95,
0.84 ve 0.89 iken, orta degerler Mart, Agustos ve Kasim aylarinda sirasiyla 0.66,0.68
ve 0.68 olarak gozlenmistir. Her ayin yar1 variogram modelleri Sekil 4.3.'de gorildiigii
gibi yar1 variogram parametrelerinin degerleri ile ¢izilmistir. Ayrica Eyliil, Haziran,
Ocak, Temmuz, ve Mayis aylarinda sirastyla modellerle 0.013, 0.069, 0.085, 0.069 ve
0.11 olan en diisiik RSS degerleri elde edilmistir. Bu béliimde R? ve RSS degerlerine
gore gaussian ve spherical modelleri en iyi modeller olarak kabul edilmektedir.

Sekil 4.4.'de goriildigii gibi, Ocak ayindaki yar1 degiskenlik degerlerinin, yari
degiskenligin artmay1 biraktig1 mesafeyi gosteren daha karmasik veya giiriiltiilii bir
model gostermesi muhtemeldir ve bu, daha az benzer degerlere sahip daha uzak
noktalar1 gostermistir; bu, mesafenin mekansal olarak otokorelasyon olmadigi
anlamina gelmektedir. Ayni sey Subat, Mart, Nisan, ve Aralik aylarinda da agikca

goriilmiistiir. Asagidaki grafiklerine gore, konumsal mesafelerin daha uzak
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Ozelliklerin belirli bir mesafede daha biiyiik bir yar1 degiskenlige veya daha az iliskili

degerlere sahip oldugunu anlamina gelmistir.
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Sekil 4. 4. Yarivariogram modellerinin parametreleri
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4.2.1. Ordinary Kriging Yonteminin Degerlendirilmesi

kriging yontemi, ETo degerlerini enterpolasyon Modelleri olan yar1 degiskenlik
parametrelerine dayanarak siradan kriging modellerini tahmin etmek ig¢in
kullanilmistir. Bu modeller aylik ETy verileri i¢in uygulanmistir. Her ay i¢cin RMSE,
MAE ve MBE hata degerlerine sahip modellerin gdsterildigi Tablo 4.4.'de sunuldugu
gibi, M.E'nin en diisiik degeri Subat ayinda -0.00135, en yliksek degeri Nisan ayinda
1.30 idi. Diger taraftan en diisiik degerler sirasiyla Ocak, Subat, Nisan, Haziran ve
Aralik aylarinda 0.034, 0.24, 0.22, 0.16 ve 0.04 olarak gdzlenmistir. RMSE'NIN en
diisiik degeri Nisan ayinda 0.059, en yiliksek degeri ise Mart ayinda 2,59 olarak
gerceklesmistir. MSE'in en diisiik degeri Temmuz ayinda -0.003, en yiiksek degeri
Nisan ayinda 1.0095 ortaya ¢ikmustir.

Tablo 4. 4. Referans evapotranspirasyonun Ordinary kriging yontemi ile tahminin i¢i,n modeller ve
hata degerleri

Ay Model M.E RMSE M.S. E
Ocak Spherical 0.034 0.878 0.022
Subat Spherical -0.013 1.668 -0.010
Mart Linear 0.100 2.59 0.0228
Nisan Gaussian 1.30 0.059 1.0095
May1s Spherical -0.026 1.28 -0.001
Haziran Spherical 0.07 1.168 0.041
Temmuz Spherical -0.037 0.956 -0.003
Agustos Exponential -0.015 1.35 -0.017
Eyliil Gaussian 0.009 1.039 0.0131
Ekim Spherical -0.004 1.216 -0.003
Kasim Exponential 0.0138 1.528 0.0085
Aralik Spherical 0.0329 1.694 0.017

Sekil 4.4. ve 4.5.'de gosterildigi gibi, hesaplanan ET) ile karsilastirilarak tahmin
edilen degerlerin dogrulugunu tahmin etmek i¢in hata diyagramlariin sayisi tiim aylar
boyunca Kok Ortalama Kare Standart Hatas1 (RMSE) temel alinarak ¢izilmis ve

hesaplanmustir.
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Aylik ETo verilerinin mekansal dagilim haritalar1, farkli meteoroloji istasyonlarinin
boylami, enlemi ve yiiksekligi olan konum bilgilerine gore olusturulmaktadir (Sekil
4.6).

Mekansal haritalara gore, Ocak, Subat ve Mart aylarinda Sudan'in Kuzey, giiney
ve dogu kesiminde yliksek oranda ET¢ vardi. Nisan ayinda, ETo degerleri kuzeybati,
uzak bat1 ve Sudan'in merkezinde elde edildi. Tiim dogu kismu Mayis, Haziran ve
Temmuz aylarinda ¢ok yiiksek ETy oranlarindan etkilenmektedir. Agustos ayinda, en
yiiksek oranlar kuzey ve dogu bolgelerinde yogunlasti. Ote yandan uzak kuzey ve
batida Eyliil ve Ekim aylarinda yiiksek degerler gézlenmektedir.

Sudan'in merkezi Kasim ayinda en yiiksek ETo degerlerini gézlemlerken, Kuzey
ve giiney bati kisimlart Aralik ayinda yiiksek degerler elde etti. Tiim bu farkl
degisiklikler, ETo degerini hesaplamak ve tahmin etmek i¢in ana degiskenler olarak
sicaklik, rlizgar, giines radyasyonu ve bagil nem parametrelerini kullanan ASCE PM
denklemini kullanarak ETo degerlerini hesaplamak i¢in kullanilan iklimsel

degiskenlere baghdir.
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Sekil 4. 7. Ordinary Kriging haritast (Ocak )
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Sekil 4. 13. Ordinary Kriging (Temmuz)
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Sekil 4. 15. Ordinary Kriging (Eyliil)
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4.2.2. Basit Kriging Yonteminin Degerlendirilmesi

Sudan 1 ETy basit kriging yontemiyle haritalanmasinda semivariogram degerleri
ve hata degerleri Tablo 4.5.'te verilmistir.  Secilen semivariogram modellerinin
performans gdstergesi R? degerlerine gore, en yiiksek degerler Eyliil 0.68 olan 0.961,
0,90 ve orta degerleri Agustos ayinda gozlendi 0.834 ise, ve Kasim aylari, 0.682
sirastyla; en degerleri 0.02 olan, Eyliil, Haziran, Ocak ve Temmuz aylarinda 0.069,
0,085 elde edilirken, ve 0.099 ocak alani olan, May1s, Ekim ve Temmuz aylarinda elde
edilmistir. Diger taraftan, hata degerleri Tablo 4.5.'te gosterildigi gibi ay bazinda
modellerin dogruluguna da belirtilmistir. M.E'nin en diisiik degeri Subat ayinda -0.22,
en yiiksek degeri Mayis ayinda 0.057 olarak elde eilmistir. Ocak ayinda en diisiik
RMSSE degeri 0.918, Mart ayinda en yiiksek deger 1.71 iken, Eyliil ve Aralik
aylarinda sirasiyla 1.086 ve 0.002 olan en diisiik ve en yiiksek RMSSE degerleri elde

edilmektedir.

Tablo 4. 5.Yar1 variogram parametrelerine gore basit Kriging modelleri

Aylar Model R? RSS M.E RMSE  RMSSE
Ocak Spherical 0.22 1.97 0.0086 0918 0.904
Subat Exponential ~ 0.231 1.78 -0.22 1.63 0.822
Mart Gaussian 0.000 0.577 0.0013 1.68 0971

Nisan Spherical 0.243  1.28 -0.003 1.270 0.91
Mayis Gaussian 0.961  0.109 0.057 1.280 1.066
Haziran Gaussian 0.163  0.069 0.025 1.191 0.955
Temmuz  Exponential 0.834  0.099 -0.004  0.95 0.905
Agustos  Exponetial 0.68 0.221  -0.003 1.33 0.96

Eyliil Spherical 0.982  0.020 0.00008 1.033 1.086
Ekim Gaussian 0.900 0.295 -0.0043 1.126 1.08
Kasim Exponential  0.689  1.53 -0.020 1.22 1.07
Aralik Spherical 0.154 1.13 0.051 1.71 0.002

Penman -Montieth ETo ve ongoriilen degerler Sekil 4.8.'de goriildiigii gibi ¢izilmistir.
Bu, modellerin gelecekteki degerleri tahmin etmeye daha uygun hale getirmek igin
modellerin dogrulugunu tahmin eden tahminlerin hatalarmi degerlendirmek igin

modellerin hatalarini sekil 4.7’ de gosterilmistir.
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Sekil 4.20. ET0'1n gergek ve 6ngoriilen degerlerinin dagilim grafikleri
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Sekil 4.9.°da Aylik ETo verilerinin mekansal dagilim haritalarmin, farkl
meteoroloji istasyonlariin boylami, enlemi ve yiiksekligi olan konum bilgilerine gore
olusturuldugunu gostermektedir. Dagilim haritalaria gére Ocak ve Subat aylarinda
Sudan'in Kuzey, giiney ve dogu kesimlerinde ayni aylarda daha yiiksek olan normal
kriging haritalarina kiyasla yiiksek oranda ETo goriilmemistir. Mart, Nisan ve May1s
aylarinda kuzeybati, uzak bat1 ve Sudan'in merkezinde ETO degerleri elde edildi ve bu
normal Kriging yonteminde ayni etkilenen oranlardi. Tiim dogu kism1 Mayis, Haziran
ve Temmuz aylarinda ¢ok yiiksek ETO oranlarindan etkilenmektedir. Agustos ayinda,
en yiiksek oranlar kuzey ve dogu bélgelerinde yogunlasti. Ote yandan uzak kuzey ve

batida Eyliil ve Ekim aylarinda ytiksek degerler gézlenmektedir.
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Ocak Haritasi
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Sekil 4. 21. Basit kriging haritasi (Ocak)
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Subat Hantasi
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Sekil 4.22. Basit Kriging Haritasi (Subat)
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Sekil 4. 23. Basit Kriging haritas1 (Mart)
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Nisan Haritasi
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Sekil 4. 24. Basit kriging haritas1 (Nisan)
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Sekil 4. 25. Basit kriging (May1s)
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Haziran Haritasi
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Sekil 4. 26. Basit kriging (Haziran)
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Temmuz Haritas:
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Sekil 4. 27. Basit Kriging (Temmiz)
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Agustos Haritasi
Exponential Modeli

Basit Kriging

Value

High : 7.94413
7.51799
' 7.09185
- 666571
- 6.23958
0 70 140 280 420 560 581344
N e e Viles 513873

Low - 4.96116

Sekil 4. 28. Basit Kriging haritasi (Agustos)
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Eyliil Haritasi
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Sekil 4. 29. Basit Kriging haritasi (Eyliil)
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Ekim Haritas:
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Sekil 4. 30. Basit Kriging haritas1 (Ekim)
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Kasim Haritas:
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Sekil 4. 31. Basit Kriging haritas1 (Kasim)
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Arahk Haritas:

Spherical Modeli
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Sekil 4. 32. Basit Kriging haritas1 (Aralik)

Sekil 4.10. ve 4.11.'a gore, ETo ger¢ek ve ongoriilen degerleri arasindaki hatalar
ve karsilagtirmalar ¢izildi; bu, tiim noktalar arasindaki korelasyonu gozlemleyen

regresyon ¢izgisi etrafindaki degerlerin dagilimini agik¢a gosterilmistir.
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4.2.3. Ters Mesafe Agirhgimin Yonteminin Degerlendirilmesi (IDW)
Ters mesafe agirhigi yontemin RMSE degerleri ¢ok yiiksek oldugunu
gosterilmistir (Tablo 4.6). Basit kriging modellerine kiyasla her ay i¢in en diisiik
RMSE degerlerini gosterir, bu da IDW yonteminin 6ngoriilebilir modeller olmak
icin uygun oldugu anlamina gelir. Ayrica, M.E degerleri de siradan ve basit kriging

modellerinin ortalama hatalarindan daha diisiiktiir.

Tablo 4. 6. Ters mesafe agirligi modelinin parametreleri (IDW)

Ay RMSE M.E
Ocak 0.95 0.147
Subat 0.295 1.70
Mart 0.176 1.726
Nisan 0.197 1.266
Mayis 0.325 1.268

Haziran 0.211 1.17
Temmuz 0.113 0.980
Agustos 0.214 1.343
Eyliil 0.199 1.326
Ekim 0.223 1.304
Kasim 0.218 1.301
Aralik 1.66 0.02

Sekil 4.10. ve 4.11.'a gore, ETo gercek ve ongoriilen degerleri arasindaki hatalar
ve karsilagtirmalar ¢izildi; bu, tim noktalar arasindaki korelasyonu gozlemleyen

regresyon ¢izgisi etrafindaki degerlerin dagilimini agikg¢a gosterilmistir.
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Sekil 4. 33. Hatalarin aylara gore dagilim grafikleri
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Sekil 4.34. ET,'in ve 6ngoriilen degerlerinin dagilim grafikleri
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Mekansal haritalar1 olusturuldu ve Sudan'in farkli bolgelerinde ETo degerlerinde
farkli degisiklikler gosterdi(Sekil 4.13). Mekansal haritalara gore Ocak ayinda
Sudan'in tiim bolgelerinde mantiksal ETo degerleri en az deger olarak goriilmiistiir.
En yiiksek degerler Subat, Mart ve Nisan aylarinda daha diisiik degerler elde eden uzak
dogu kismi hari¢ tiim Sudan'da elde edilmistir. May1s ayinda giineybati kismi1 Sudan'in
diger bolgelerine gore daha yiiksek degerler gosterirken, en yiiksek degerler Haziran
ve Temmuz aylarinda uzak kuzey ve uzak dogu'da (kizildeniz eyaleti) elde edilmistir.
En ytiksek degerler Agustos ayinda Sudan'in uzak kuzeyindeydi. Kuzey eyaletlerinde,
orta kesimlerde ve kuzeybatida (C6l) daha yiiksek ETO degerleri ile eyliil ve Ekim
aylar1 gdzlenmistir. Ote yandan, Sudan'm ¢ogu eyaleti, hem Kasim hem de Aralik
aylarinda uzak dogu ve orta Sudan'da en az degerler elde edilmesi disinda yiiksek

degerlerden etkilenmistir.
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Sekil 4. 35. Ters Mesafe Agirligin haritasi (Ocak)
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Subat
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Sekil 4. 36. Ters Mesafe Agirligin haritasi ( Subat)
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Sekil 4. 37. Ters Mesafe Agirligin haritas: (Mart)
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Nisan
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Sekil 4. 38. Ters Mesafe Agirligin haritast (Nisan)
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Sekil 4. 39. Ters Mesafe Agirhigin (Mayis)
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Sekil 4. 40. Ters Mesafe Agirligin haritas1 (Haziran)

123




Temmuz

0 70 140 280 420
- e e s lViles

IDW Method

Value
High : 8.7691

8.17514
7.58117
6.98721
6.39325
5.79929
5.20532
Low :4.61136

Sekil 4. 41. Ters Mesafe Agirligin haritas1 (Temmuz)
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Sekil 4. 42. Ters Mesafe Agirligin haritasi (Agustos)
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Sekil 4. 43. Ters Mesafe Agirligimin haritasi ( Eyliil)
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Sekil 4. 44. Ters Mesafe Agirligin haritasi (Ekim)
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Sekil 4. 45. Ters Mesafe Agirligin haritasi (Kasim)
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Sekil 4. 46. Ters Mesafe Agirligin haritasi (Aralik)
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4.2.4. Mekansal Enterpolasyon Yontemlerinin En iyi Modelleri

Tablo 4.7. ve 4.8."ye gore, jeostatik analiz yontemlerinin en iyi modelleri kisaca
her ay i¢in en yiiksek R? ve en azindan RSS degerlerine dayali semivariance modelleri
gosterdi ve Siradan karsilastirildiginda diisiik, basit kriging ve IDW ydntemleri olan
ara degerleme yontemleri sunulmustur.

Ilk olarak, Tablo 4.7.'de sunulan yar1 degiskenlik parametreleri kullanilarak
referans evapotranspirasyon degerlerinin uzamsal otokorelasyonunu gostermek i¢in
yar1 degiskenlik modelleri kullanilmistir. Her ay icin en yiiksek R? ve en diisiik RSS
degerlerine dayanan uzamsal otokorelasyon yonteminin en iyi modellerini gosterir.
Genel olarak, Spherical ve Gaussian modelleri diger modellere gore daha iyi sonuglar
gosterip en iyl modeller olarak kabul edilmistir.

En yiiksek R? degerleri 0.958,0.84, 0.98,0.89, en diisiik RSS degerleri ise Mayzs,
Temmuz, Eyliil ve Ekim aylaria gore 0.119, 0.096, 0.013, 0.299 bulunmustur.

Tablo 4. 7. R? ve RSS degerlerine dayali yar1 varyans parametrelerini kullanan mekansal
otokorelasyon yontemlerinin en iyi modelleri

Ay Model Nugget (C) Sill (C'+C) Range(A) R? RSS
Mayis Spherical 1.297 3.152 12.68 0.958 0.119
Temmuz Spherical 0.800 2.222 28.13 0.84 0.096
Eylil Gaussian 0.802 1.825 4.550 0.98 0.013
Ekim Spherical 0.820 2.654 7.640 0.89 0.299

Ayrica, en iyi konumsal enterpolasyon yontemleri, her ay i¢in en az RMSE ve MSE
degerlerine gore secilmistir. Modellerin  ¢ogunun  gosterildigini  belirtmek

gerektirmektedir. En iyi sonuclar Spherical ve Gaussian modelleriydi.
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Tablo 4. 8. RMSE ve MSE degerlerine dayali en iyi uzamsal enterpolasyon yontemleri

Ay Secilen Model RMSE M.E
Ocak Ordinary Kriging/Spherical 0.87 0.034
Subat IDW 0.295 1.70
Mart IDW 0.176 1.72
Nisan Ordinary Kriging/Gaussian 0.059 1.30
Mayis IDW 0.325 1.266
Haziran Basit Kriging/Gaussian 1.191 0.025
Temmuz IDW 0.113 0.98
Agustos IDW 0.214 1.343
Eyliil Basit Kriging/Spherical 1.033 -0.003
Ekim IDW 0.223 1.304
Kasim IDW 0.218 1.301
Aralik IDW 0.166 0.02

Sekil 4.13.'de, farkli meteoroloji istasyonlarinin boylami, enlemi ve yiiksekligi
olan konum bilgilerine gore Sudan'daki farkli konumlarm aylik ETo degerlerinin
dagilimin1 gostermek i¢in mekansal haritalar olusturulmustur. Farkli yontemlere
iliskin haritalara gore, Ocak, Subat ve Mart aylarinda Sudan'in Kuzey, giiney ve dogu
kesiminde yiiksek oranda ETo vardi. Nisan ayinda, ETo degerleri kuzeybati, uzak bati
ve Sudan'in merkezinde elde edildi. Tiim dogu kismi Mayis, Haziran ve Temmuz
aylarinda c¢ok yiiksek ETo oranlarindan etkilenmektedir.

Agustos ayinda, en yiiksek oranlar kuzey ve dogu bélgelerinde yogunlasti. Ote
yandan uzak kuzey ve batida Eyliil ve Ekim aylarinda yiiksek degerler gozlenmistir.
Sudan'in merkezi Kasim ayinda en yiiksek ETo degerlerini gézlemlerken, Kuzey ve
gliney bat1 kisimlar1 Aralik ayinda yiiksek degerler elde etmektedir. Enterpolasyon
yontemleri arasindaki farklar farkli konumlara, zaman araliklarina, veri sayisina,
enterpolasyon islevlerine ve her yontem icin farkli dogruluklari gosteren diger
degiskenlere baghdir (Kamali et al., 2015). Sudan'da Ocak ayin boyunca, genellikle
ortalama maksimum sicaklik 23 ° C ile yiiksek ila 36 ° C ile ¢ok yiiksek ila 36 ° C ile
cok yiiksek arasinda degisir, bu da kisin bile havanin giin ortasinda sicak oldugu ve
gece vaktinde sicakligi yaklagik 19 © C'ye diismeye baslamaktadir. Bu nedenle ETy
oranlar1 giin ortasinda artmaktadir. Enterpolasyon teknikleri, farkli sicakligin

degisikliklerinden dolay1 etkilenmistir.
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Sudan'nin iklimi ¢ok farkli oldugu icin enterpolasyon tekniklerindeki degisiklikleri
olmustur. Sudan tropikal bodlgede yer bulunmaktadir. Bu nedenle Sudan iklim
bolgeleri genellikle ¢61 ikliminden tropikal iklime kadar degismistir. Dagilimi1 kuzey
Sudan'daki sicak ¢6l iklimine benzemektedir. Iklim, Kizildeniz kiyisindaki Akdeniz
iklimine, kuzey-orta Sudan'daki yar1 ¢6l iklimine, Giiney-Orta ve bat1 Sudan'daki zayif
savan iklimine, ardindan Giiney Sudan'daki zengin savan iklimine ve Giliney Sudan'in
asir1 tropikal iklimine sahip oldugu i¢in enterpolasyon yontemleri arasindaki farklar
farkli aylara gore degismistir. Sudan’da Ocak ayinda yaklasik 31 °C derece yiiksek
sicakliklarla kis bile sicaktir, ancak bazen geceleri soguk olabilir, aslinda rekor soguk
1°C derecedir ve ilkbaharda sicakliklar hizla yiikselir ve 40 °C dereceye zaten Nisan
aymda ve Nisan-Mayis aylarinda sicaklik bazen 47 °C dereceye ulagir. Temmuz ve
Agustos aylarinda (Sonbahar mevsimi) yagmurla birlikte mevsimsel riizgarin etkisi
altinda sicaklik biraz diiser, ancak yaklasik 38-39 °C derecede oldukga yiiksek kalir,
ardindan sonbaharin sonunda Ekim ve Kasim aylar1 arasinda hafifce yiikselir. Bu
acisindan, Sudan’in farkli iklimsel bélgeleri oldugu icin ETo degerlerini degisip

enterpolasyonun tekniklerin parametreleri etkilenmistir.

4.3. Coklu Dogrusal Regresyon Yontemi
Bu c¢aligmanin  bélimiinde, modellerin performansini istatistiksel olarak
degerlendirmek icin yapay zeka yontemleri ile karsilastirmak amaciyla ¢oklu dogrusal
regresyon yontemi uygulanarak standart hata, T-testi, F, ve P degerlerine gore
modelleri degerlendirilip T- degerinden bu iliskinin istatistiksel agidan anlamli
oldugunu gosterilmistir. Ayrica, istatistiksel agidan anlamli pozitif dogrusal bir iliski

vardir (Tablo 4.15).
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Tablo 4. 9. Sudan'da ET, i¢in ¢oklu dogrusal regresyonun parametrlerin dzeti

Egitim
Girdi Katsay1 Standart T degeri Olasilik F R?
Hata P-degeri
Intercept 49.59 0.461 107.37 0 5613.97 0.70
Tort -0.83 0.0097 -85.64 0
Rn -2.11 0.0199 -105.96 0
Intercept 16.76 0.168 99.47 0 15875.7 0.93
Tort -0.272 0.002 -94.12 0
U2 1.1008 0.006 158.42 0
Rn -0.883 0.0093 -95.01 0
Intrcept 5.628 0.093 59.96 0 73663.79 0.98
Tort -0.123 0.001 -83.68 0
U2 0.996 0.0030 329.50 0
RH -0.045 0.0002 -185.05 0
Rn 0.037 0.0063 5.840 0
Test
Intercept 24.42 0.453 53.85 0 1031.94 0.60
Tort -0.35 0.008 -43.19 0
Rn -1.03 0.026 -38.99 0
Intercept 15.14 0.238 63.40 0 6680.34 0.92
Tort -0.24 0.004 -58.88 0
U2 1.08 0.010 107.183 0
Rn -0.79 0.013 -60.27 0
Intercept 4.827 0.118 40.67 0 3764.31 0.98
Tort -0.106 0.001 -56.49 0
U2 1.029 0.003 259.21 0
RH -0.04 0.000 -141.68 0
Rn 0.051 0.0078 6.53 0

Ayrica, R?2, MAE, RMSE ve NSE degerlerine gére modelleri tablo 4.16'te gosterildigi
gibi degerlendirilmistir. Egitim ve test veri setlerindeki tiim degiskenlerin dayali
modeli en iyi ¢ikmigtir. Bagka bir deyisle, en diisiik RMSE ve MAE degerlerine sahip
tiim degiskenlerine dayali modelini secilmistir. Egitim ve test veri setlerinde R? degeri
0.97 ¢ikmustir. Ote yandan, 0 ile 1 arasindaki NSE degeri, coklu dogrusal regresyon
modeli iyi tahmin edici oldugunu gostermistir (Ritter and Munoz-Carpena, 2013)
Bagka bir ifadeyle, daha Ongoriicii beceriye sahip bir modeldir. Egitim ve test
verilerinde Tablo 4.16’da tiim kombinasyonlarina dayanan modelin NSE degerleri

0.99 olarak elde edilmistir.
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Tablo 4. 10. Egitim ve test asamalarindaki ¢oklu dogrusal regresyon modellerinin MAE, RMSE ve R2

istatistikleri
Girdi Egitim
MAE RMSE NSE R2
Tort,Rn 1.49 1.80 0.84 0.51
Tort,U2,Rn 0.52 0.64 0.98 0.86
Tort,,U2,Rn,RH 0.20 0.27 0.99 0.97
Test

Tort,Rn 1.01 1.24 0.91 0.60
Tort,U2,Rn 1.51 0.62 0.98 0.85
Tort,U2,Rn,RH 0.38 0.43 0.99 0.97

Sekil 4.29.'de gosterildigi gibi, egitim ve test veri setlerinde sicaklik, gilines
radyasyonu, riizgar hizi ve nem parametrelerinin kombinasyonlarina dayanan
modellerin regresyonun grafiklerini gosterilmistir. Coklu regresyon tahmini ve ASCE
hesaplanan referans evapotranspirasyonun degerleri arasindaki korelasyonu
bulunmustur. Coklu lineer regresyon modeli, yapay zeka yontemleri ile
karsilandiginda, sonuglarin dogruluklar1 ¢ok iyi bulunmustur. Coklu lineer regresyon
modeli istatistiksel olarak c¢ok iyi sonuglar gostermistir. Baska bir ifadeyle, iyi

Ongoriicli bir modeldir.
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Sekil 4. 47. Farkli iklim kombinasyounlarma dayali modellerle tahmin edilen ETo ve ASCE PM ETo
karsilastirilmasi (Egitim ve test)
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4.4. Yapay Zeka Uygulamalan

Sudanin ETo degerlerinin tahmininde yapay zeka uygulamalar1 olarak c¢ok
katmanli yapay sinir aglari, Bulanik yapay sinir aglar1 yontemleri kullanilmistir.
Calismanin bu boéliimiinde ETodegerlerini tahmin etmek kullanilan degiskenler
ortalama sicaklik (Tort), riizgar hizi (W m/s), giines radyasyonu (Rs MJ/m2/giin), ve
bagil nemdir (RH%). Referans evapotranspirasyon degerleri, Sudan'in farkl
bolgelerinden 38 yil iligkin toplanan giinlilk meteorolojik veriler kullanilarak
hesaplanmistir (1982-2020). Referans evapotranspirasyon degerlerini hesaplamak igin
ASCE Penman-Monteith denklemi kullanilmistir. Referans bitki su tiiketimi tahmin
etmek icin veriler egitim ve test veri setlerine ayrilmistir. Egitim ve test verileri i¢in

her bir degiskenin tanimlayici istatistikleri Tablo 4.9'da gosterilmistir.

Tablo 4. 11. Egitim ve Test i¢in Iklim Degiskenlerinin Tanimlayici Istatistikleri

Egitim
Degisken Ortalama  Maksimum Minimum SD Basikilk  Carpiklik
Sicaklik 28.04 40.07 18.23 3.166 -0.092 -0.095
Riizgar 3.72 10.25 0.316 4.01 3.99 4.45
Bagil Nem 39.21 90.94 4.44 22.6 -1.29 0.31
Giines Radyosnu 8.12 11.28 4.07 1.54 -0.6 0.55
Test
Sicaklik 30.04 38.07 19.45 3.33 -0.15 -0.41
Riizgar 3.45 6.70 0.86 1.03 -0.24 0.09
Bagil Nem 38.01 89.5 9.12 19.84  -0.77 0.63
Giines Radyosnu 9.54 12.14 6.63 1.03 -0.59 -0.10

4.4.1. Cok Katmanh Yapay Sinir Aglar1 Yontemi
Her bir degiskenin ETo parametresi lizerindeki etkinligini gostermek ic¢in sicaklik,
riizgar, glines radyasyonu, ve bagil nem olan ayrilmis degiskenlere dayanarak dort
model iiretilmistir (Tablo 4.10). Ayrica, diger modeller giinliik referans degerlerini
tahmin etmek i¢in degisken kombinasyonlarin1 gostermektedir. Gizli ve ¢ikti
katmanlarinda, tansing ve purelin fonksiyonlar1 kullanilmis ve egitim algoritmasi
Levenberg-Marquardt algoritmasi uygulanilmistir. Tablo 4.10.'da gosterildigi gibi,
giinliik referans evapotranspirasyonun tahmin edilmesinde sicaklik tahmin siirecinde
orta etkinlik gdsteren digerlerdir ve ayrilmis degiskenlere kiyasla deger degiskenler
giiclii bir sekilde etkilenmistir. Sicaklik modelin egitim ve test verilerin R? degerleri
sirastyla 0.74 ve 0.73 1. Riizgar modeli i¢in egitim ve test veri setinin R? degerleri 0.612

ve 0.563 bulunmustur. Giines radyosunu modeli i¢in R? degerleri sirastyla 0.72 ve
0.717 dir.
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Sicaklik ve Giines radyosunu R? degerleri, egitim ve test verileri igin sirasiyla

0.863 ve 0.8315tir. Sicaklik, Riizgar ve Bagil nem R? degerleri sirasiyla 0.959 ve 0.955

tir. Biitiin degiskenlerin kombinasyonlari, giinliikk referans evapotranspirasyonu

tahmin etmek i¢in en iyi model gosterilmistir. Egitim ve test R?> degerleri sirasiyla

0.9991 ve 0.9996 elde edilmistir.

Gilines radyasyonun parametresine dayanan model, modelin dogrulugunu

azaltmis, boylece giines radyasyonu parametresi yerine girdi parametresi olarak giines

siirelerinin kullanilmas1 tahmin giiciinii artirmistir (Pour-Ali Baba et al., 2013).

Tablo 4. 12. Egitim ve test veri sitelerindeki CKYSA modellerinin istatistikleri

Gizli Cikis RMSE R2 RMSE R?
Tort. Tansig Purelin 1 1.2 0.734 1.21 0.731
U2 Tansig Purelin 1 0.83 0.612 0.88 0.563
Rn Tansig Purelin 1 1.12 0.72 1.13 0.717
Tort, Rn Tansig Purelin 3 0.904 0.863 0.982 0.832
T, U2, Rn Tansig Purelin 5 0.7 0.956 0.701 0.959
T,U2,Rn,andRH  Tansig Purelin 5 0.0021 0.9991 0.0008 0.9996

Sekil 4.14.'de gosterildigi gibi, sicaklik modelinde, YSA tahmini ETo ve ASCE

Penman—Monteith ET, degerleri dogrusal regresyon grafikleri olarak ¢izilmistir. Her

veri kiimesi i¢cin Penman—Monteith ETo degerleri ile sicaklik modelin tahmin edilen

ETo degerleri arasindaki regresyon iligkisini gostermistir.
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Sekil 4. 48 CKYSA ile tahmin edilen ET, (mm / giin) ve ASCE Penman—Monteith karsilastiriimasi

Riizgar parametresinin girdi olarak kullanildigi model Sekil 4.15.'de YSA
tahmin edilen ETo ve ASCE Penman Monteith ET, degerleri arasindaki regresyon
grafigi cizilmistir. Regresyon grafigine gore, Sudan'in kurak ve yari kurak bir iklime
sahip oldugu ve rlizgara dayali modelin sonuglarini net bir sekilde etkiledigi bilinen

bir parametre oldugu seklinde gosterilmistir.
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Rizgar Egitim Modeli
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Sekil 4. 49. CKYSA ile tahmin edilen ET, (mm / giin) ve ASCE Penman—Monteith karsilastiriimasi

Sekil 4.16'ye gore, giines radyasyonun modelinde YSA tahmin edilen ETo ve

ASCE Penman—Monteith ETy degerlerin arasindaki korelasyonu gosterilmistir.
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Sekil 4. 50. CKYSA tahmin ET edilen ET, (mm / giin) ve ASCE Penman Monthith ET,
karsilagtirlmasi

Diger taraftan, Sekil 4.17.'te gosterildigi gibi, orta sicaklik ve riizgar hizi
kombinasyonun modelinde, YSA tahmin edilen ETo ve ASCE Penman Monthith ET,
degerlerin arasindaki regresyonu gosterilmistir. R? degerlere gore, sicaklik ve riizgar

modeli daha gii¢lii olup etkilendigi gdsterilmistir.
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Sekil 4. 51. CKYSA tahmin edilen ET, ve ASCE Penman Monthieth ET, degerlerinin
Karsilagtirlmast

Sekil 4.18.'da gosterildigi gibi. sicaklik, riizgar, ve bagil nem modelinde YSA
tahmin edilen ve ASCE Penman Monthieth ET, degerleri arasinda daha yiiksek bir

iliski gostermistir.
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T,U2,ve Rn modeli (Egitim)
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Sekil 4. 52. CKYSA tahmin edilen ET, ve ASCE Penman Monthith ET, karsilastiriimasi

Sekil 4.19.'ye gore. Tiim degiskenlere dayanan model, ASCE Penman Monthieth
ve ongoriilen ETo degerlerinden yiiksek R? degerlerinin elde edildigini gdsteren iyi

modeldir.
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T,U2,RH, ve Rn Modeli (Egitim)
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Sekil 4. 53. CKYSA tahmin edilen ET, ve ASCE Penman Monthith ET, karsilastirilmasi

4.4.2. Bulanik Yapay Sinir Aglar1 (ANFIS)

Farkli degisken kombinasyonlar1 kullanilarak Tablo 4.11'da gosterildigi gibi
ANFIS modelleri uygulanmistir. RMSE ve R? degerlerine dayanan en iyi modelleri
gozlemlenmistir. Her bir degiskenin ETo parametresi tizerindeki etkinligini gostermek
icin sicaklik, riizgar, giines radyasyonu, ve bagil nem olan ayrilmis degiskenlere
dayanarak dort model tiretilmistir. Ayrica, diger modeller giinliik referans degerlerini
tahmin etmek icin degisken kombinasyonlarin1 gdsterilmistir. Sicaklik modelin R?
degerleri, egitim ve test kiimesi i¢in sirasiyla 0.76 ve 0.74'dir. Riizgara dayali
modelinde R? degerleri 0.579 ve 0.54dir. Ayrica, Giines radyasyonu dayali modelinde
R? degerleri sirastyla egitim ve test veri setleri icin 0.652 ve 0.63 idi. Sicaklik ve giines
radyasyonu modeli, diger degiskenlerin modellerine gore ¢ok iyi sonuclar ve yliksek
sonuclar elde edilmistir. Egitim ve test R? degerleri sirasiyla 0.8736 ve 0.8296dur.

Ancak sicaklik, riizgar ve bagil nem modelin R? degerleri sirastyla 0.96 ve 0.94 tir.
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Biitiin degiskenlerin kombinasyonlari, giinliik referans evapotranspirasyonu tahmin

etmek igin en iyi model ¢ikmistir. Egitim ve test R? degerleri sirasiyla 0.9947 ve
0.9926 dir.

Tablo 4. 13. Egitim ve test degerlenme veri kiimelerinde ANFIS modellerinin istatistikleri

Girdi Model Aktivasyon Egitim Test
Fonksyonu

RMSE R? RMSE R?
Tort GP,Trimf3mf Lineer 1.017 0.76 1.156 0.74
U2 GP,Gauss3mf Lineer 1.212 0.579 1.197 0.549
Rn GP,Gauss3mf Lineer 0.88 0.652 1.127 0.63
Tort, Rn GP,Gauss33mf Constant 0.834 0.874 0.96 0.836
Tort, U2, Rn GP,Trimf333mf Lineer 0.257 0.96 0.344 0.942
Toruzrnrr  GP,Gaussf3333mf Lineer 0.005 0.9947 0.017 0.9926

Sekil 4.20.'de gosterildigi gibi. ANFIS tahmini ETo ve Sicaklik modelinde ASCE
PM ET, degerleri dogrusal regresyon grafikleri olarak ¢izilmistir. R? degetlerine gore,
sicaklik parametresinin tek degisken etkili olmadigin1 gdsterilmistir. Referans
evapotranspirasyonu tahmin etmek i¢in deger iklim degiskenleri ile kombinasyon

edilmesi gerekmektedir.
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Sekil 4. 54. ANFIS tahmini ET, (mm / giin) ve ASCE PM ET, (mm/giin) karsilagtirilmas1

Sekil 4.21.'de gosterildigi gibi riizgar modelinde, referans evapotranspirasyon
degerleri tlizerinde ¢ok etkili olmustur. Korelasyon grafigine gore, riizgara dayanan
modelinde tahmin edilen referans evapotranspirasyon degerleri ve ASCE PM referans
evapotranspirasyon degerleri arasindaki korelasyon yliksek oranda birbiriyle iliskili
oldugunu gosterilmistir. Ayrica, referans evapotranspirasyonu tahmin etmek igin

rlizgar parametresi etkili oldugu goriilmektedir.
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Riizgar Modeli (Egitim verileri)
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Sekil 4. 55. ANFIS tahmini ET, (mm / giin) ve ASCE PM ET o(mm/giin) karsilastirilmasi

ANFIS tahmini, CKYSA tahmine gére performansi daha az yiiksekti, bagka
klemlerle ANFIS modeli, ANNS’tan daha iyidir. Grafige gore, giines radyasyonuun
modelinde CKYSA tahmin edilen ET, ve ASCE Penman monthieth ET, degerlerin
arasindaki korelasyonu gosterilmistir (Sekil 4.22). Giines radyasyonun parametresine
dayanan model, modelin dogrulugunu arttirmak i¢in radyasyonu parametresinin yerine

kaydedilen giines saatleri kullanilabilmektedir (Pour-Ali Baba et al., 2013).
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Sekil 4. 56. ANFIS tahmini ET, (mm / giin) ve ASCE PM ET,(mm/giin) karsilastiriimasi

Diger taraftan, degiskenlerin kombinasyonlar1 genel olarak grafikler ’de
gosterildigi  gibi referans evapotranspirasyon oranlari iizerinde daha etkili
gosterilmistir.  Sekil 4.23.’ya gore, sicaklik ve giines radyasyonu parametrelerinin
tahmin edilen ETo degerleri ve ASCE PM hesaplanan ETo’nin degerlerin arasindaki
iliski cizilmistir. Egitim ve test R? degerlerine gére, sicaklik ve riizgar modeli giiglii

oldugunu ¢ikmustir.
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Sicakhk ve Gunes Radyosunu Modeli (Egitim)
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Sekil 4. 57. Sicaklik (CO) ve Giines radyosunu dayali model, ASCE PM ET g ve ET ( tahmini
(mm/giin) karsilastiritlmasi

Sekil 4.24.'de gosterildigi gibi, sicaklik, riizgar ve giines radyasyonu
parametrelerinin kombinasyonuna dayanan model, tahmin edilen ve ASCE hesaplanan

ETo degerleri arasinda daha ytiksek bir iliski bulunmustur.
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Sekil 4. 58. Sicaklik, Riizgar, ve giines radyosununa dayali model, tahmin ve ASCE heaplanan ET,
karsilastirilmasi

Sekil 4.25.°de tiim degiskenlere dayanan modelinde, ASCE PM hesaplanan ve
ongoriilen ETo’nin degerlerin arasindaki iliskinin grafigi ¢izilmistir. R* degerine gore,

en iyi bir model bulunmustur.
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T,U2,RH,ve Rn Modeli (Egitim)
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Sekil 4. 59. Sicaklik, riizgar, giines radyosunu, ve bagil nem dayali model, gercek ve tahmin ETO
karsilastirilmasi

Antonopoulos and Antonopoulos (2017) sinirli meteorolojik degiskenler kullanarak
YSA ile tahminler yapmis ve sonuglar1 farkli ampirik yontemlerle karsilagtirmistir.
Farkli girdi varyasyonlari ile optimum girdi kombinasyonu belirlenmistir. Bes yillik
giinliik verilerin normallestirilmesi sonucunda YSA modeli ve diger deterministik
modellerin sonuglari, yaygin olarak kabul goéren Penman & Monteith yonteminin
sonuglar1 dikkate alinarak degerlendirilmistir. Tahminler i¢in en uygun YSA yapisi (4-
6-1) elde edilmis ve daha az sayida sicaklik ve giines radyasyonu degiskenin
kullanilmastyla daha iyi tahminler elde edilebilecegi sonucuna varilmistir. Buna gore,
elde edilen sonuglar1 karsilastiinda bu anlamda c¢ok iyi sonuglar1 gostermistir.
Ozellikle, sicaklik, giines radyasyonu, riizgar, ve nem bagil bir araya getirince bir
modeli olusturularak yiiksek regresyon katsayisi verilmistir. Modelin R 2 99%
degerini verilmistir. Ayrica, tiim degiskenlerine dayanan modelin hatalar1 egitim ve
test veri setlerinde ¢ok diistiktiir. Bu yiizden, modelin performansinin ¢ok iyi oldugunu

anlamina gelmektedir (Tbalo 4.11).
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4.4.2.1. ANFIS Analizileri

ANFIS modelinde ayni1 giris ve ¢ikis degiskenleri ve ayni giris kombinasyonlari
kullanilmistir. Benzer sekilde, liyelik fonksiyonlarinin sayist ve en uygun transfer
fonksiyonlar1 deneme yanilma yoluyla tanimlanmistir. Trimf, Trapmf ve gaussmf giris
tiyelik fonksiyonlar1 olarak ve lineer ve sabit ¢ikis iiyelik fonksiyonlar1 olarak
secilmistir. Uyelik islevlerinin sayis1 3, yineleme sayis1 ise 1 ile 5 arasinda degisim
gostermistir. Birgcok kombinasyon olusturuldu ve karsilastirilmistir. Deneme yanilma,
ANFIS giris ve ¢ikislart i¢cin optimum iiyelik fonksiyonlarini tanimlamak ig¢in
kullanilmistir. En iyi performansa sahip ANFIS kombinasyonlar1 tiim modeller igin
Tablo 4.12 'de verilmistir. Bagka bir deyisle, ANFIS'te en diisiik RMSE degerlerini
iireten modeller segilmistir. Ornek olarak Matlab arayiizde ETo tahmin olusturulan
model tiggen iiyelik fonksiyonlu ortalama sicaklik ve giines radyosunu se¢imi ve analiz

goriiniimi Sekil 4.26 ‘de verilmistir.
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plot points: 181

FIS Variables Membership function plots
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Sekil 4. 60. Matlab arayiizde referans evapotranspirasyounu tahmin olusturulan model gériiniimii

Tablo 4. 14. ANFIS (Takagi- Sugeno) bulanik mantik Kurallar1 ve parametreleri

Kurallar Girdi Cikt1
Sicaklik (C?) Giines Referans Evapotranspirasyounu (mm/giin)
Radyosunu
(J/m?) Parameters
1 Diisiik Diisiik -8.35 -49.47 784.8
2 Diisiik Orta 0.93 -1.182 -2.23
3 Diisiik Yiiksek -31.47 -7.81 632
Orta Diisiik 14.23 12.55 -461
5 Orta Orta -0.24 13.42 -116
6 Orta Yiiksek -30.61 14.81 651.6
7 Yiiksek Diisiik 14.6 -58.01 -165.9
8 Yiiksek Orta -0.026 -57.06 548.3
9 Yiiksek Yiiksek -27.19 -42.16 1609

ANFIS ile ETo modellenmesinde Tablo 4.12 goriildiigii gibi lineer model se¢ilmistir.
Bu se¢im sonucunda 9 adet kural ve tiim kurallarin genel yapisi1 sozel olarak ifade
edilmistir. Bulanik modellemenin temel karakteristik 6zelligi, sayisal degiskenler
yerine veya bunlara ek olarak dilsel degiskenlerin kullanilmasidir. Gelistirilen sistem,
bulanik degiskenler arasindaki baglantilar1 belirlemek icin bazi e§er/sonra bulanik

kurallar igerir. Birinci dereceden Sugeno'nun tarzinin bulanik kurali asagidaki bigime

ifade edilir:
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Rule 1: If (X1 is in 1mf1) and (X2 is in 2mf1) then (Y is outlmfl)
Rule 2: If (X1 is in 1mf1) and (X2 is in 2mf2) then (Y is outlmf2)

Burada X1 (ortalama sicaklik) ve X2 (Gilines radyosunu), bulanik anlami olan
dilbilimsel terimlerdir ve X ve Y sirasiyla giris ve ¢ikis degiskenleridir. p, q ve r
sonugta ortaya ¢ikan parametrelerdir (Jang, 1993). Matlab’dan elde edilen iiggen
tiyelik fonksiyonu segilerek elde edilen parametreler Tablo 4.12°de verilmistir. En
yiiksek belirleme katsayis1 (R?) ve en diisiik RMSE degerlerine sahip en iyi tahmin
modeli Gauss iiyelik fonksiyonuna sahip modelden elde edilmistir. Egtim veri setin’de
tic modelin Tablo 4.13’te gorildiigii gibi belirleme katsayilart R2 sirasiyla 0.90, 0.89

ve 0.89 Trimf, Tramf, ve Guassimf modellerinde ¢ikmistir.

Tahmin hatasinin standart sapma RMSE degeri en diisiik deger Gauss modelinde elde
edildigi icin secilmistir. Test seti olarak 3 modeli igcin ANFIS analizleri Tablo 4.14’°te
verilmistir. Test veri sitin’de en iyi tahmin modeli gauss iiyelik fonksiyonu olarak ’ta
secilen linear modelde elde edilmistir. Belirleme katsayilar1 R2 sirastyla 0.87, 0.86 ve

0.86 Trimf, Tramf, ve Guassimf modellerinde ¢ikmustir.

Tablo 4. 15. Egitim asamalarindaki ANFIS modellerinin MAE, RMSE ve R ? istatistikleri

Girdi Membership Egitim

Kombinasyonu  function

Girdi Cikt1 MAE RMSE NSE R2
Tort (C%) Trimf Linear 0.81 0.79 0.966 0.902
Rn (J/m?) Trapmf Linear 0.78 0.83 0.96 0.898

Gaussmf Linear 0.77 0.82 0.965 0.896

Tablo 4.1. Test asamalarindaki ANFIS modellerinin MAE, RMSE ve R2 istatistikleri

Girdi Membership Test
Kombinasyonu function
Girdi Cikt1 MAE RMSE NSE R2
Tort (C% Trimf Linear 0.80 0.78 0.966  0.877
Rn (J/m?) Trapmf  Linear 0.77 0.81 096  0.866
Gaussmf  Linear 0.79 0.80 0.965  0.865
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Sekil 4.27.'de gosterildigi gibi, egitim verisinde sicaklik ve giines radyasyonu
parametrelerinin kombinasyonuna dayanan model, Trimf, Tramf, ve Gauss Anfis
modellerin tahmin edilen ve ASCE hesaplanan referans evapotranspirasyonun

degerleri arasindaki iliski gosterilmistir.
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tahmini karsilastirilmasi (Egitim)

Sekil 4.28.'de gosterildigi gibi, test verisinde sicaklik ve giines radyasyonu

parametrelerinin kombinasyonuna dayanan model, Trimf, Tramf, ve Gauss Anfis
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modellerin tahmin edilen ve ASCE hesaplanan referans evapotranspirasyonun

degerleri arasindaki iligki gosterilmistir.

Tort ve Rn Trimf modeli (Test)
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5. SONUC VE ONERILER

Su kitligi, diinyanin birgok gelismis ve gelismekte olan tilkesi i¢in biiyiik bir
sorundur ve bu da genellikle bir gida krizinin yasanmasina yol agan ciddi bir tehditle
sonuglanir. Su kithg1 arttikca, mevcut su kaynaklarini yonetme talebi ¢ok onem
kazanmaktadir. Bu nedenle, evapotranspirasyon (ET) tahminleri, hidrolik tasarim ve
sulama yoOnetiminde ©6nemli bir rol oynamaktadir. Bu tez calismasinda farkh
lokasyonlarda ve zaman dilimlerinde ETo degerlerini tahmin etmek i¢in bir¢ok farkli
deterministik ve stokastik yaklagim kullanilmistir.

Bitki su tiikketimi yliksek dogrusallik veya duragansizlik tarafindan yonlendirilen
karmasik bir siirectir, bu da bir¢ok iklim degisikliginin i¢inde biiyiik bir karmagikliga
neden olabilecegi anlamina gelir. ETo zaman serisinin duraganlik dis1 dogasi,
gelecekteki degerleri tahmin etmede zorluklara yol agar. Bu nedenlerden dolayi, bu
calisma Sudan ile ilgili iklimsel verileri kullanarak gilinlik referans
evapotranspirasyonu tahmin etmeyi amaglamistir.

Bu calismada, Sudan'in farkli bolgelerinde tarimsal siireci yoneterek ve planlayarak
tarimsal verimi gelistirmek ve artirmak igin stokastik ve deterministik yontemler
uygulanmistir. Bu arastirmada kullanilan yOntemleri, zaman serileri analizi,
enterpolasyon teknikleri, yapay zekd uygulamalari ve ¢oklu dogrusal regresyon
tekniklerinden olugmaktadir. Calismada Sudan’in 120 istasyonu 1982-2020 yillar
arast iklim verileri kullanilmistir. Bu yontemler, ETo'in gelecekteki degerlerini tahmin
etmek icin modeller olusturmak igin uygulanmistir. Ilk yéntemde, Sudan’in 33
istasyonu gozonline alinarak zaman serisi analizi gergeklestirlmistir. ARIMA
modellerini uygulanarak ve kriterlerin belirlenmesine gore en iyi modeller segilerek
kullanilan zaman serisi analizi yapilmistir. Zaman serisi model sonuclar1 belirleme
katsayis1 R? degerleri 0.35 ile 0.84 arasinda degisim gdstermistir. Model sonuglarina
gore en iyi istatistiksel performans kriterleri Kadugli, Alneihud, Niyala, ve Babanusa
sehirlerinde elde edilmistir. Tiim 33 istasyon g6z oniine alindiginda diizeyde duragan
bulunmustur. Belirleme katasyis1 R? degerleri yiiksek cikan istasyonlar genellikle
Sudanin batisinda gézlenmistir.

Ikinci  yontemde, enterpolasyon teknikleri  kullanilmistir.  Enterpolasyon
yontemlerinden Ordinary Kriging, Basit Kriging, ve Ters Mesafe Agirligi (IDW)
yontemlerini kullanilmistir. Enterpolasyon teknikleri 120 istasyon g6zoniine alinarak

aylik ortalama degerler elde edilerek  haritalandirilmistir. Jeoistatistik analiz
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sonuglarma gore en iyi modeller semivariogram modelleri Gaussian, Exponential, ve
Spherical modelleri ¢ikmistir.

Uciincii yontem’de yapay sinir aglar1 tekniklerinden ¢ok katmanli yapay sinir aglart
(CKYSA) ve Bulanik yapay sinir aglar1 sistemini (ANFIS) uygulanmistir. Yapay sinir
aglari, bulanik yapay sinir aglar1 ve ¢oklu regresyon modelleri olusturulurken girdi
parametresi olarak sicaklik, gilines radyosunu, bagil nem ve riizgdr hizi farkl
kombinasyonlar1 kullanilarak ETo tahmin modelleri olusturulmustur. Cok katmanl
yapay sinir aglari, bulanik yapay sinir aglar1 ve ¢oklu dogrusal regresyon modelleri
karsilastirildiginda {ic modelde tiim girdi degiskenlerinin kullanildigi modellerde en
iyi tahmin gerceklestirilmistir. U¢ yontemde karsilastirildiginda en iyi bulanik yapay
sinir aglar1 en iyi tahmin modelleri vermis bunu sirasiyla ¢ok katmanli yapay sinir
aglar ve ¢oklu dogrusal regresyon modelleri takip etmistir.

Iklim degiskenleri olarak riizgar ve bagil nem tek girdi olarak model sonuglari
istatistiksel performans kriterlerinin diisiik oldugu ortaya ¢ikmistir. Sicaklik ve giines
radyasyonu g6z Oniine alindiginda daha yiiksek ve daha dogru sonuglarla gézlenmistir.
Baska bir deyisle, Sudan'da referans evapotranspirasyon parametrelerinin tahmininde
sicaklik ve Giines radyosunu etkili degiskenlerdir. Bilindigi gibi Sudan iklimi, ekvator
ormanlar ile riizgarli sicak ¢olleri arasinda bulunan gecici bir iklim tiiriidiir, bu
nedenle sicaklik sadece bitki su tiiketimi {izerinde en etkili degisken degildir.

Bu aragtirmanin bulgulari, tarimsal tiretimi dogrudan etkileyen gelecekteki su
tilketimi Ongoriilerinden biiyiik beklentilerle elde edilebilecek modellerde yiiksek
istatistiksel performans elde edilmistir. Bu nedenle, bu ¢alisma ziraat miihendisleri, su
yoneticileri ve giftcilerin tarimsal uygulamalarla ilgili tiim stirecleri farkli konumlara
gore gergeklestirmeleri icin son derece yararli olabilmektedir. Ek olarak, bu
arastirmanin bir kisminda, jeoistatistik analiz tekniklerini uygulanarak belirli bir yere
gore referans evapotranspirasyon degisikliklerini tartistigini belirtmek gerekmektedir.
Bu nedenle, farkli modellerden elde edilen sonuglara gore, arastirma hedeflerine
yaklasik olarak gercek hayatta uygulanacak sekilde ulasilmistir. Bir ziraat miithendisi
olarak kisisel diisiincem, farklt modellerin miktarina, zamanina, iklim kosullarina ve
cografi konumlara gore degisince sonuclarin kalitesini ve dogrulugunu giiclii bir
sekilde etkileyebilmektedir. Ustelik, gelecekteki degisen iklim kosullarinda olumsuz
etkilerini azaltmak icin buharlagmayi, terlemeyi ve evapotranspirasyonu anlamak
onemlidir. Arastirmacilar, su tutma kapasitesi yiiksek topraklarin ve olumsuz etkilere

toleranslt bitki ¢esitlerinin birlikte yonetim stratejilerinin uygulanmasinin kurakligin
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etkisiyle yiizlesmek i¢in daha 1yi olacaktir. Sulanan alanlar1 artirabilirsek, toplam bitki
tiretimi, artan niifusun gida giivenligine yiikseltilebilecektir.

Sudan da yetistirilen bitkilerin ekim , dikim biiyiime, gelisme ve verim gibi
fizyolojik yetisme evreleri goz ontine alinarak FAO 56 da verilen bitki katsayilar1 (Kc)
belirlenmesi gerekir. Daha sonra bu ¢alismada elde edilen modeller gozoniine alinarak
gercek bitki su tiiketimlerinin ETc nin belirlenmesi Sudan su kaynaklarinin
planlanmasi kiiresel iklim ve kuraklik agisindan gergek su tiiketimlerinin belirlenmesi
acisindan gelecekteki ¢aligsmalara faydali olacaktir. Sudan'in Kizildeniz kiyisi, kuzeyi,
merkezi ve giineyi olmak {izere dort iklimsel bolgesi vardir. Sudan tropikal bolgelerde
yer alir, iklim kuzeyde asir1 kurak, uzak giineybatida tropikal 1slak ve kurak arasinda
degisir. Sicakliklar herhangi bir yerdeki mevsime gore biiyiik dl¢iide degismez; En
onemli iklim degiskenleri yagis ve yagish ve kurak mevsimlerin uzunlugudur. Bu
nedenle, referans evapotranspirasyonun tahmini ile Sudan’da yetistirilen bitkilerin
bitki su ihtiyacinin belirlenmesi su kaynaklarmin planlamas1 ve gelistirilmesi

acisindan ¢ok dnemlidir.
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