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ÖZET 
 

SUDAN’IN GÜNLÜK REFERANS BİTKİ SU TÜKETİMİNİN DETERMİNİSTİK 
VE STOKASTİK YÖNTEMLERLE MODELLENMESİ 

Mawadda AHMED MOHAMMED ABDALLAH 
Ondokuz Mayıs Üniversitesi 
Lisansüstü Eğitim Enstitüsü 

Tarımsal Yapılar Ve Sulama Ana Bilim Dalı  
Doktora, Ocak/2023  

Danışman: Prof. Dr. Bilal CEMEK 
 

Bitki su tüketimi bir sulama projesinin temel verisi ve sulama uygulamalarının en 

önemli unsurlarından birisidir. Sulama  sistemlerinin yatırım maliyetleri çok yüksek olup bu 

sistemlerin planlanmasında bitkilerin su tüketimlerinin belirlenmesinde iklim parametelerinin 

dikkate alınması çok önemlidir. Referans evapotranspirasyonu (ETo) tahmin etmek için doğru 

modellerin geliştirilmesi, özellikle su kaynaklarının sınırlı olduğu kurak ve yarı kurak 

bölgelerde etkin su yönetimi için gereklidir. Bu çalışmada referans bitki su tüketimi (ETo) 

ASCE Penman Monteith eşitliği kullanılarak  Sudandaki 120 istasyonun günlük iklim verileri 

gözönüne alınarak heasplanmıştır. Çalışmada üç aşmada gerçekleştirilmiştir. Birinci aşamada 

zaman serileri ile ETo tahmini, ikinci aşamada farklı enterpolasyon teknikleri ile Sudan için 

ETo haritaları elde edilmiştir. Üçüncü aşamada çoklu regresyon ve yapay zeka ugulamaları ile 

ETo tahmini gerçekleştirilmiştir. Sudan’ın 33 ilinde Otoregresif Entegre Hareketli Ortalama 

(ARIMA) modelleri ile analizler yapılmıştır. İkinci yöntem’de, Enterpolasyon yöntemlerinden 

Ordinary Kriging, Basit Kriging, ve Ters Mesafe Ağırlığı (IDW) yöntemlerini kullanılmıştır. 

Jeoistatistik analiz sonuçlarına göre Gaussian, Exponential, ve Spherical en iyi yarı variogram 

modelleri çıkmıştır. Üçüncü yöntem’de çoklu doğrusal regresyon, çok katmanlı yapay sinir 

ağları (ÇKYSA) ve Bulanık yapay sinir ağları sistemini (ANFIS) uygulanmıştır. Girdi verileri 

olarak hem yapay zeka modellerinde hem de geleneksel çoklu regresyon modellerinde bağıl 

nem, sıcaklık, rüzgar hızı ve güneş radyasyonu değişkenlerini kullanılmış ve çıktı verisi olarak 

ETo tahmini başarılı olarak yapılmıştır. Deterministik ve stokastik modeller Sudan’ın su 

kaynakları yönetimi ve sulama planlaması için yararlı bir araç olacağı ortaya konmuştur.  

 

 

 
Anahtar Sözcükler:   Referans bitki su tüketimi, Zaman serisi, yapay sinir ağları, Bulanık 
yapay sinir ağları, Sudan  
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ABSTRACT 
 

 MODELING OF DAILY REFERENCE EVAPOTRANSPIRATION USING 
DETERMINISTIC AND STOCHASTIC METHODS OF SUDAN  

Mawadda AHMED MOHAMMED ABDALLAH 
Ondokuz Mayıs University 

Institute of Graduate Studies 
Department of Agricultural Structures and Irrigation 

Ph.D., January/2023  
Supervisor: Prof. Dr. Bilal CEMEK 

 

Plant water consumption is the basic data of an irrigation project and one of the 
most important elements of irrigation applications. The investment costs of irrigation 
systems are very high, and it is very important to consider climate parameters for 
determining the water consumption of plants in the planning of these systems. The 
development of accurate models to predict reference evapotranspiration (ETo) is 
necessary for effective water management, especially in arid and semi-arid regions 
where water resources are limited. In this study, reference plant water consumption 
(ETo) was calculated by considering the daily climate data of 120 stations in Sudan 
using the ASCE Penman-Monteith equation.  The study was carried out in three stages. 
In the first stage, estimating of ETo by time series, and in the second stage, maps of 
ETo for Sudan were obtained by different interpolation techniques. In the third stage, 
the estimation of ETo was carried out with multiple regression and artificial 
intelligence applications. Autoregressive Integrated Moving Average (ARIMA) 
models were used for analyses in 33 provinces of Sudan. In the second method, 
Ordinary Kriging, Simple Kriging, and Inverse Distance Weight (IDW) methods were 
used from interpolation methods. According to the results of geostatistical analysis, 
Gaussian, Exponential, and Spherical are the best semi-variogram models. In the third 
method, multiple linear regression, multilayer artificial neural networks (MLP), and 
fuzzy artificial neural network system (ANFIS) were applied. ETo estimation was 
successfully performed using relative humidity, temperature, wind speed, and solar 
radiation variables as input data in both artificial intelligence models and traditional 
multiple regression models, and ET0 was used as output data. Deterministic and 
stochastic models will serve as useful tools for Sudan's water resource management 
and irrigation planning.  

 

 
Keywords:   Reference, plant Water Consumption, Time Series, Artificial Neural Network, 
Fuzzy Artificial Neural network, Sudan 
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SİMGELER VE KISALTMALAR 

ET0   : Referans Bitki Su Tüketimi (mm gün-1)  

ASCE   : Amerikan İnşaat Mühendisleri Derneği 

PM   : Penman Montheith 

Cd    : Payda referans bitki tipi ve zamansal değişen katsayı (sm-1) 

Cn  : Pay referans bitki tipi ve zamansal değişen katsayı (K mm s 3mg -1 d-1) 

es  : Doyma Buhar Basıncı (kPa) 

(es-ea)    : Doyma Buhar Basıncı Açığı (kPa) 

Rh  : Bağıl Nem (%) 

Rn    : Kırpma Yüzeyi Net Radyasyon (MJm-2 day-1) 

Rs   : Güneş Radiasyon (MJm-2 day-1) 

T   : Ortalama Sıcaklığı (C0) 

U2   : Rüzgar Hızı (2m yükseklikte) (m/s) 

W   : Rüzgar (m/s) 

γ   : Psikrometrik Sabiti (kPa °C-1) 

𝞴   : Buharlaşma Gizli Isı 

Δ   : Eğim Buhar Basıncı, (kPa) 

YSA   : Yapay Sinir Ağları 

ANFIS   : Adaptif Sinirsel Bulanık Çıkarım Sistemi 

ÇKYSA  : Çok Katmanlı Yapay Sinir Ağları 

LM   : Levenberg-Marquardt  

MAE   : Ortalama Mutlak Hata 

R2   : Belirleme Katsayısı 

RMSE   : Tahmin Hatası Standart Sapması 

AIC  : Akaike Bilgi Kriteri 

BIC   : Bayesian Bilgi Kriteri 

Xi  : Gözlenen Değer 

OK   : Ordinary Kriging 

PACF   : Partial Otokorelasyon Fonksiyonu 

ACF   : Otokorelasyon Fonksiyonu 

       ARIMA   : Otoregresif Enteger Hareketli Ortalama 
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1. GİRİŞ 

Su kısıtlığı, dünyadaki birçok gelişmiş ve gelişmekte olan ülkeler için önemli bir 

sorundur. Genellikle bir gıda krizinin ortaya çıkmasına neden olan ciddi bir tehditle 

sonuçlanmaktadır. Su kıtlığı arttıkça, mevcut su kaynaklarını yönetme talebi çok 

önemli hale gelmektedir (Khan et al., 2011). Tarımda su kaynaklarının verimli 

planlanması, geliştirilmesi ve yönetimi için, bitki su tüketimi (ET)'nin tahmini oldukça 

önemlidir. (V. Kumar, 2007).  

ET, su dengesi çalışmaları için en önemli hidrolojik bileşenlerden biridir ve 

sulama suyu gereksinimlerinin tahmininde önemli bir rol oynamaktadır (Nikam et al., 

2010). ET, toprak ve bitki yüzeylerinden buharlaşmanın birleşik süreçleri ve bitki 

terlemesi ile atmosfere su kaybıdır (Rojas and Sheffield, 2013). ET'yi etkileyen çeşitli 

faktörler bulunmaktadır ve bu nedenle kolaylıkla modellenmesi mümkün değildir 

(Bachour et al., 2016).  

ET'yi etkileyen en önemli faktörler iklimsel parametrelerdir (Caminha et al., 

2017). Doğal bir süreç olan ET süreci, zamansal ve mekânsal olarak değişen sıcaklık, 

güneş radyasyonu ve nem gibi faktörler tarafından kontrol edilir ve ET, bu etkileyen 

faktörler açısından ifade edilir (Mohan and Arumugam, 1995). 

ET bir lizimetre veya su bütçesi yaklaşımı ile ölçülebilir veya klimatolojik 

verilerden tahmin edilebilir. ET'nin bir lizimetre ile ölçülmesi zaman alıcıdır ve bakım 

gerektirir dikkatli planlama Lizimetreler kurulum ve bakım için daha vasıflı işgücü 

gerektirir, bu nedenle bu nedenlerden dolayı, ET'yı tahmin etmek için iklimsel verilere 

dayanan dolaylı yöntemler kolay bir şekilde kullanılır (Jain et al., 2008).  

Bitki su tüketimi (ETc), referans bitki su tüketimi (ETo)'nin ve referans çim 

yüzeyi arasındaki ET farkı ifade eden bir katsayı olan Kc ile çarpılmasıyla hesaplanır. 

Fark, tek bir katsayı halinde birleştirilebilir veya her iki yüzey arasındaki buharlaşma 

ve terlemedeki farklılıkları ayrı ayrı açıklayan iki faktöre ayrılabilir. 

ETo çok yıllık bir çim gibi bir referans mahsulden doğrudan ölçülebilir veya 

sıcaklık modelleri, radyasyon kullanılarak hava verilerinden hesaplanabilir tartım 

modelleri ve kombinasyon modelleri lizimetreler, ETo ve ETc'yi doğrudan ölçmek için 

kullanılır.  

Gocić et al. (2015)’ye göre birçok ampirik eşitlik ETo modifiye edilerek 

kullanılmaktadır. Penman Monteith (PM) denklemi saatlik, günlük, ve aylık ETo dahil 

olmak üzere farklı zaman adımları için kabul edilen ve Birleşmiş Milletler Gıda ve 
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Tarım Örgütü (FAO) Dünya Meteoroloji Örgütü tarafından tavsiye edilmiştir (Dai et 

al., 2009).  

ET, sıcaklık, bağıl nem, güneş radyasyonu, rüzgar hızı, bitkinin büyüme aşaması 

gibi çeşitli etkileşimli iklimsel faktörlere bağımlılığı nedeniyle karmaşık doğrusal 

olmayan bir fenomendir (Nikam et al., 2010). 

ETo, su ve enerji dengesi çalışmalarında ihtiyaç duyulan önemli bir 

parametredir. Ayrıca, iklim, tarım ve ekoloji ile ilgili çeşitli çalışmalarda gereklidir. 

Bu çalışmada Sudan genelinde 120 ana ve alt meteoroloji istasyonundan alınan 

iklim verileri, bağıl nem, sıcaklık, rüzgar hızı ve radyasyon gibi farklı parametreler 

kullanılarak ETo  değerlerini hesaplanmıştır. Yapay zeka uygulamaları arasında ETo, 

jeoistatistik ve ARIMA modelleriyle karşılaştırılan makine öğrenimi teknikleri 

kullanılarak tahmin edilmektedir. Bu çalışma üç aşamada değerlendirilmiştir. 

˗ Zaman serisi analiz modelleri, 

˗ Enterpolasyon yöntemleri, 

˗ Yapay zekâ uygulamaları. 

ET0 tahmini, hidrolik tasarımlarda ve sulama yönetiminde önemli bir rol 

oynamaktadır Bilindiği gibi, ET işlemi, esas olarak yüksek doğrusallık veya 

durağansızlık tarafından yönlendirilen karmaşık bir işlemdir. Ayrıca, ET0 zaman 

serisinin durağanlık dışı doğası, gelecekteki değerlerin tahmin edilmesinde zorluklara 

yol açmaktadır (Bachour et al., 2016) ve bu nedenle de, modellenmesi oldukça 

karmaşık ve zordur. Bu açısından, ET'nin tahmin yöntemleri ile  değerlendirilmesi 

çalışmanın ana amacıdır. Ayrıca, bu çalışmanın diğer amaçları aşağıdaki gibi 

sıralanabilir.  

˗ Sudan ülkesi ile ilgili meteorolojik verileri kullanarak günlük ET0 

hesaplanması, 

˗ Deterministik ve stokastik yöntemler ve farklı yapay sinir ağı algoritmaları 

kullanılarak günlük günlük ET0'nin tahmin edilmesi, 

˗ Her bir yöntem için tahmin yetenekleri istatistiksel performans ölçütleriyle 

karşılaştırarak ve gelecekteki değerleri tahmin etmek için kullanılacak en iyi 

modellerin belirlenmesi, 

˗ İklim verileri ile birlikte kullanılarak Sudan'da yetiştirilen tüm bitkileri göz 

önüne alarak her bir bitkinin su tüketimi belirlenmesi amaçlanmıştır.  

Böylece ülkede su kaynaklarının yeterli ve/veya kısıtlı olduğu bölgelerde ve kurak 

dönemlerde su kaynakları yönetimine önemli düzeyde katkı sağlanmış olacaktır. 
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Hazırlanan bu tez ile, su yapılarının, sulama sistemlerinin ve tarımsal alt yapı 

tesislerinin projelendirilmesi ve işletilmesine sağlayacağı katkı ile hem Sudan 

ekonomisine hem de doğal kaynakların sürdürülebilir bir biçimde kullanılmasına 

çok büyük katkı sağlayacaktır. 
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2. LİTERATÜR TARAMASI 

Evapotranspirasyon süreci doğada stokastiktir. Stokastik modelleme teknikleri 

bu tesadüfi ya da bilinmeyen değişkenlere dair olasılıkları kullanarak belirsizliği 

modele katarlar. Deterministik kavramıyla “tam olarak belirlilik” kastedilmektedir. 

Deterministik modellerde ilgili tüm girdi verilerin kesin ve tam olarak bilindiği kabul 

edilir. Bu yüzden deterministik modeller evapotranspirasyonunu doğru bir şekilde 

temsil etmeyebilir. Öte yandan, stokastik modeller zamana bağlı varyasyonlara 

dayanır ve sürece dahil olan rastgele etkileri gözönüne alır. Stokastik modeller, 

önceden gönderilen bir gözlemin geçmiş gözlemlere bağımlılığının derecesini 

açıklanmaktadır. Bir stokastik model matematiksel soyutlamadır ampirik bir süreç ve 

olasılıksal tarafından yönetilir yasalardır (Pandey et al., 2009).  

Stokastik modelin amacı temsil etmektir bir veya daha fazla zaman serisinin 

önemli istatistiksel özellikleridir. Gerçekten de, farklı stokastik model türleri sıklıkla 

incelenip istatistiksel zaman serileriyle üretilmektedir. Modeller stokastik kavram 

üzerine formüle edilen kapsamı açıklayıp mevcut gözlemlerin geçmişe bağımlılığı 

gözlemektedir. Evapotranspirasyon işlemi esas olarak doğrusallık veya doğransızlık 

tarafından karmaşık ve zor bir işlemdir. Bu açıdan evapotraspirasynu hesaplamak ve 

tahmin etmek için birçok yöntem kullanılmıştır.  

 
2.1. ASCE Penman-Monteith denklemi 

Birinci bölümde daha önce de belirtildiği gibi, ET0 değerlerini hesaplamak için 

saatlik, günlük ve aylık olmak üzere farklı zaman adımları için yaygın olarak 

kullanılan ET0 değerlerini (Ampirik denklemler ve yapay zekâ uygulamaları) tahmin 

etmek için farklı yöntemler vardır. Araştırmacılar tarafından çok sayıda ET0 denklemi 

geliştirilmiş ve kullanılmıştır (Itenfisu vd., 2003).  Bu denklemlerin arasında en çok 

kullanılan ET0 tahmin denklemleri Penman denklemi ve Penman-Monteith (PM) 

denklemleridir. Ek olarak, ampirik Hargreaves denklemi de popüler bir yöntem olarak 

kabul edilir.  

Bu çalışmada hesaplamada en etkili ampirik denklemlerden biri olan ASCE Penman-

Monteith denklem yöntemi kullanılmıştır. ASCE-EWRI Penman-Monteith (ASCE 

PM) denklemi, Amerikan İnşaat Mühendisleri Derneği Çevre ve Su Kaynakları 

Enstitüsü tarafından ET0'yı tahmin etmek için standart denklem olarak önerildi (Rojas 

ve Sheffield, 2013). Bitki su tüketimi (ETc), gerçekleşen bitki su tüketimi (ETa) ve 
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kısa boylu bitki esaslı referans bitki su tüketimidir (ETo). Bunların dışındaki diğer 

bitki su tüketimi ifade biçimleri, kavram karışıklığını önlemek için bu rehberin 

kapsamı dışında tutulmuştur. ETc, bir bitkinin ele alınan bir dönem için, her hangi bir 

hastalık zararlı etkisinin bulunmadığı, bitki besin elementi bakımından eksiklik 

çekmediği ve su stresi olmadığı standart koşullar altındaki su tüketimidir. ETa, bir 

bitkinin ele alınan bir dönem için, standart olarak tanımlanan koşullardan farklı bir 

ortamdaki su tüketimidir. Buna göre ETa standart koşullarda ETc’ ye eşit 

olabilecekken, standart olmayan koşullarda daima ETc’ den daha düşüktür. ETo, kısa 

boylu (ortalama 12 cm) ve tam örtüye sahip bir bitkinin (çoğunlukla çim olarak kabul 

edilir) ele alınan bir dönemde, standart koşullar altındaki su tüketimidir. Çim için ETo 

ve ETc birbirine eşittir. Birçok ulusal ve uluslararası kaynakta, ETo bitkiler için 

atmosferin nem talebini gösteren bir parametre olarak da değerlendirilmektedir 

(TAGEM.,2017).  

Temesgen vd (2005) çalışmalarında, Kaliforniya eyaletindeki 37 meteoroloji 

istasyonundan toplanan iklim değişkenlerine dayanarak saatlik ve günlük ET0 

değerlerini değerlendirmek için Penman-Monteith yönteminin üç farklı denklemini 

kullanmışlardır.  

Amatya vd (1995) çalışmalarında, Penman-Monteith, Priestley-Taylor, 

Hargreaves-Samani, Makkink ve Thornthwaite yöntemlerine ET0 değerleri tahmin 

etmek için Penman-Monteith sonuçlarına göre karşılaştırmışlardır.  Sonuç olarak en 

iyi tahmin eden modelin Penman-Monteith olduğu belirlenmiş ve araştırmacılar 

Penman-Monteith yöntemini tüm alanlar için tavsiye etmişlerdir.  

Gavilán vd (2006) çalışmalarında, günlük ET0 değerleri güney İspanya'da 

Hargreaves denklemi kullanılarak tahmin edilmiş ve standart denklem olarak 

kullanılan FAO Penman-Monteith denklemi ile karşılaştırılmıştır. Ek olarak, her bir 

istasyon için aynı değişkenlerin bir fonksiyonu olarak ampirik katsayı için ayarlanan 

değerlerin dağılımını elde etmek için kriging enterpolasyon yöntemi kullanılmıştır. 

Nandagiri ve Kovoor, (2006) yaptıkları çalışmada Hindistan'daki kurak ve yarı 

kurak bölgelerin ET0 değerlerini değerlendirmek için farklı modeller kullanmışlardır.  

 Grazhdani vd (2010) çalışmalarında ET0 değerleri, standartlaştırılmış ASCE 

Penman-Monteith ve ASCE Penman-Monteith denklemleri kullanılarak 

Arnavutluk'un farklı yerlerinden toplanan saatlik ve günlük iklim verilerine dayanarak 

değerlendirilmiştir. Bu çalışmada günlük ve saatlik ET0 değerlerinin kombinasyonları 

yapılmış ve spesifik yönteme göre karşılaştırılmıştır. 
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C-Y Xu and Singh (2002) çalışmalarında, (1) kütle-transferine dayalı yöntemler 

(Rohwer), (2) radyasyona dayalı yöntemler (Makkink ve Priestley-Taylor) ve (3) 

sıcaklığa dayalı yöntemler (Hargreaves ve Blaney-Criddle) olmak üzere üç kategoriye 

dayanarak beş ampirik denklem tartışılmıştır.  

Ampirik Hargreaves denklemi, Batı Balkanlar ve Güneydoğu Avrupa 

bölgelerinde kullanılma olasılığını gerçekleştirmek için (Trajkovic, 2007) 

çalışmasında kalibre edilmiştir. Hargreaves denklemi ile FAO-56 PM karşılaştırılmış 

ve düzeltilmiş Hargreaves denkleminin sonuçları çoğu yerde FAO-56 PM 

tahminlerine yakın bulunmuştur. 

Hargreaves denklemini kalibre etmek için böyle bir yaklaşımın (Martınez-Cob 

and Tejero-Juste, 2004), aylık ET0 değerlerini değerlendirmek üzere İspanya'da yarı 

değişken koşullar altında rüzgar değişkenlerine dayalı denklemi kalibre etmesi 

önerilmiştir. Hargraves denklemi FAO-PM denklemi ile karşılaştırıldı ve fazla tahmin 

edilen ET0 değerleri bulunmaktaydı (ortalama hatalar %14-20 arasında değişiyordu), 

bu da yarı kurak koşullar altında yerel kalibrasyon için rüzgarlı koşullara ihtiyaç 

duyulmayacağı anlamına geliyordur. 

Lopez-Urrea et al (2006)'ya göre saatlik ET0 değerleri , FAO-56 ve Amerikan 

İnşaat Mühendisleri Derneği (ASCE) Penman-Monteith (PM) denklemleri 

kullanılarak Albacete eyaletinin (İspanya) yarı kurak koşulları altında tahmin 

edilmiştir. 

FAO-56 ve ASCE sonuçları ölçülen lizimetre ET0 değerleri ile karşılaştırıldıktan 

sonra FAO-56 Penman-Monteith denklemi Albacete'de yarı kurak hava koşullarında 

ASCE Penman-Monteith yöntemine göre daha doğru sonuçlar vermiştir. 

Birçok çalışma da, günlük ve saatlik ET0 değerleri tahmin etmek için yeni 

ampirik denklemler önerilmiştir ve ASCE PM Monteith denklemi; diğer yaygın olarak 

kullanılan denklemler ile karşılaştırıldığında, rüzgar, güneş ışınımı, bağıl nem olarak 

daha az sayıda değişkene bağlı olarak en iyi model olarak kabul edilmiştir (Alexandris 

et al., 2006; Irmak et al., 2006). 

 

2.2.  Zaman serileri analiz teknikleri 

 
Zaman serileri analizi istatistiksel tahminde önemli bir araçtır (Arca et al., 2003; 

Box et al., 2008, 2015). Gelecekteki eğilimleri tahmin edebilecek bir model 

geliştirmek için bir değişkenin geçmiş gözlemlerin toplanması ve analizine ihtiyaç 
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duymaktadır. Bir zaman serisi, bir dizi eşit aralıklı zaman periyodu boyunca alınan bir 

dizi y1, y2, ..., yn gözlemidir. Analiz, zaman serilerindeki noktaların bir çizimi ile 

başlar. Ayrıca serinin otokorelasyonları ve kısmi otokorelasyonları yapılmış olup 

serideki her noktanın zaman serisindeki önceki değerlerle nasıl ve ne derece ilişkili 

olduğunu göstermektedir (Psilovikos and Elhag, 2013).  

Zaman serileri analizi, hidroloji alanında karmaşık bir süreç olarak kabul edilen 

ET süreci gibi en zor hidrolojik parametrelerin gelecekteki değerlerini analiz etmek ve 

tahmin etmek için son derece yararlı bir yöntemdir. Ek olarak, zaman serisi analizi, 

geçmişten gelen yeniden yapılandırılmış hidrolojik akılarla hidrolojik ve iklimsel 

modelleri test etmek için çok yararlıdır (Palmroth et al., 2010). Zaman serisi 

verilerinde ortaya çıkan en belirgin kalıpların eğilimler ve mevsimsellik olduğunu 

belirtmek gerekmektedir (Box et al., 2015).  

Hidrolojik zaman serilerinin analizinde kullanılan en yaygın stokastik 

modellerden biri, geçmiş davranış kalıplarını geleceğe tahmin etmek için kullanılan 

otoregresif entegre hareketli ortalama (ARIMA) modeli stokastik modelleri olarak 

adlandırılan Box-Jenkins modelidir (Mohan and Arumugam, 1995). 

ARIMA, Box-Jenkins tarafından tanıtılan ilk yöntemdir ve şimdiye kadar tek 

değişkenli zaman serisi verilerini tahmin etmek için en popüler model haline gelmiştir 

(Lee, 2011). 

Zaman serisi analiz tekniğinin birçok avantajı vardır. (Asteriou and Hall, 2007) 

çalışmalarında, verileri temsil etmek için varsayımsal bir olasılık modeli oluşturmak 

gereklidir. Uygun bir model grubu seçildikten sonra, verilere uygunluğun iyi olup 

olmadığını kontrol eden parametreleri tahmin etmek ve muhtemelen seriyi üreten 

mekanizma hakkındaki anlayışımızı geliştirmek için takılı modeli kullanmak 

mümkündür. 

Ayrıca, işsizlik gibi ekonomik istatistikler için mevsimsel bileşenlerin varlığını 

fark etmek ve bunları uzun vadeli eğilimlerle karıştırmamak çok önemlidir. Zaman 

serisi modelleri, parametreleri ayarlayarak serilerin gelecekteki değerlerini kontrol 

etmek için başvurabilmektedir. Örneğin, zaman serileri analizi, sıcaklık verilerinin 

kaydedilmesi bir serinin başka bir popülasyon verisinin gözlemlerinden tahmin 

edilmesi kullanılarak küresel ısınmanın test hipotezi gibi gelecekteki değerlerin 

tahmininde ana rolü oynamaktadır.  

Landeras et al (2009)’ye göre haftalık ET0 değerlerini tahmin etmek için ARIMA 

ve yapay sinir ağı modelleri kullanılmıştır.  
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Ashrafzadeh et al (2020) tarafından yapılan çalışmada, ET0  aylık 1993-2014 

yılları arası Zaman Serileri Modelleri İran'da, Destek Vektör Makineleri (SVM) ve 

grup veri işleme yöntemi(GMDH)  farklı yöntemler kullanılarak ET0 tahmin edilmiş 

ve bu modeller (2013-2014)  2 yıl ileriye dönük ET0 tahmini için kullanılmıştır. 

Luo et al (2014) çalışmaların’da, Hargreaves-Samani modelini ve sıcaklık 

tahminlerini kullanarak kısa vadeli günlük ET0 tahmin etmek için bir yöntem 

önermiştir. Hargreaves-Samani (HS) modelini kalibre etmek ve doğrulamak için HS 

modeli Penman-Monteith modeli ile karşılaştırılmıştır. 

ARIMA modelleri, ET0 zaman serilerini geliştirmek için günlük metrolojik 

parametreleri kullanarak kurak iklimlerde aylık ET0 tahmin etmek için (Mossad and 

Alazba, 2016) tarafından yapılan çalışmada uygulanmıştır. (Kim et al., 2011) 

tarafından yapılan çalışmada, Moğolistan'daki zamansal-mekânsal Yağışları 

değerlendirmek ve tahmin etmek için mevsimsel ARIMA modellerini uygulanılmıştır.  

Han et al (2010) standartlaştırılmış yağış endeksini (SPI endeksi) kullanarak 

kuraklığı tahmin etmek için ARIMA modelleri ve sonuçlar, modelin SPI endeksi için 

nasıl güçlü kısa vadeli tahminlere sahip olduğunu gösterilmiştir.  

ARIMA modelleri (Han et al., 2010) tarafından yapılan çalışmada, VTCI 

(vejetasyon sıcaklık durum indeksi) serilerini simüle etmek ve tahmin etmek için 

uygulanmış ve Mekânsal zamansal seriler için yeni bir modelleme yöntemi 

kullanılmıştır. 

G. P. Zhang (2003) çalışmalarına göre, doğrusal ve doğrusal olmayan 

durumlarda tahmin doğruluğunu artırmak ve modellemenin gücünü tahmin etmek için 

ARIMA ve yapay sinir ağları (YSA) modellerinin hibrit bir yöntemini önermiştir. 

Hibrit bir ARIMA ve sinir ağı modelleri, farklı veri desenleri çıkarmak ve verilerdeki 

doğrusallığı yakalama yeteneğini göstermek için özellikle önemlidir. 

YSA, tahmin doğruluğunu geliştirmek ve zaman serisi verilerinde yüksek 

derecede model performansı elde etmek için etkili bir araçtır (Khashei and Bijari, 

2010) ve (Kaur et al., 2015) çalışmalarına göre, sinir ağının yöntemini kullanarak 

ARIMA ve dalgacık dönüşüm modellerinin iki yöntemi olarak kabul edilen hibrit bir 

model uygulanmıştır.  

Bazrafshan et al (2015) ARIMA ve SARIMA modelleri aylık ve sezonluk 

ölçeklerinde, hidrolojik kuraklık tahmini için bilinen stokastik etkinliğini 

değerlendirdi ve tahmin süresi modellerinden verim miktarı belirlenmiştir. Aynı 

yöntemlerle (Mishra and Desai, 2005) Hindistan'daki Kansabati nehri havzasında 
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standart yağış endeksini kullanarak kuraklıkları tahmin etmek için SARIMA modelini 

kullanmışlardır (Grazhdani et al.) . 

Juma and Fathi (2016.) yaptıkları çalışmalarında Box- Jenkins modelleri 

kullanılarak Irak'ta bölgeye ve verime göre pamuk üretimi öngörülmüştür. Rüzgar 

hızını tahmin etmek için ARMA ve ARMA-ARCH (Otoregresif Koşullu 

Heteroskedastisite) modelleri (Gao et al., 2009) tarafından yapılan çalışmada, 

önerilmiş ve sonuçlar ARMA-ARCH modelinin daha yüksek doğruluğa sahip 

olduğunu göstermiştir. Böyle bir yaklaşımda (Ling-ling et al., 2011) rüzgar hızını 

tahmin etmek için Dalgacık dönüşümü analizi (WMA) ve ARIMA modeli 

kullanılmıştır. Dalgacık teorisi, tüm rüzgar hızının ayrışması yoluyla düşük frekanslı 

parçaları almak için kullanılmıştır.  

Arca et al (2003) saatlik Penman-Monteith denklemi olan saatlik ve günlük ET0 

tahminlerinin doğruluğunu ve sayısal bir hava tahmini modelinden tahmin edilen hava 

durumu verilerini ve iki zamanlı seri tahmin modellerini değerlendirmek için farklı 

yöntemler kullanılmıştır.  

Rana and Katerji (2000) Akdeniz iklimi altında alanında gerçek bitki su tüketimi 

tahmin etmek için On yöntemleri gözden geçirildi ve bu yöntemler, toprak su dengesi 

vardı: lizimetre, enerji dengesi/Bowen oranı, aerodinamik yöntem, eddy kovaryans, 

sap akış yöntemi, chambers sistemi, CBS yaklaşımları modelleme Monteith model, 

bitki katsayısı yaklaşımı ve toprak su dengesi ağırlığında kullanılmıştır. 

 
2.3. Mekânsal veya Konumsal Enterpolasyon Teknikleri 

 
Uzamsal enterpolasyon tekniklerinin iki ana grubu vardır: deterministik ve 

Jeoistatistik. Deterministik enterpolasyon teknikleri, ölçülen verilerden benzerlik 

derecesine (ters mesafe ağırlıklı) veya yumuşatma derecesine (radyal temel 

fonksiyonlar) dayalı yüzeyler oluşturmaktadır. 

Deterministik bir enterpolasyon, Jeoistatistik teknikler, ölçülen noktalar 

arasındaki uzamsal korelasyonu ölçmekte ve tahmin yeri etrafındaki örnek noktaların 

uzamsal konfigürasyonunu açıklamaktadır. Jeoistatistik enterpolasyon teknikleri, 

raster haritaları üretmek için ölçülen verilerin istatistiksel özelliklerini kullanmaktadır 

(Matheron, 1963).  

Citakoglu et al (2017) çalışmalarında Türkiye genelinde ölçülen aylık yağış 

verilerini kullanarak mevsimsel yağışların mekânsal değişimi araştırılmıştır. Gauss 
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yaklaşımı ile analiz 200 yağış ölçülen en az 20 yıllık kaydedilmiş verilere dayalı, 

ulaşılamayan coğrafi bölgelerdeki mevsimsel yağışların büyüklüğünün yeterli 

doğrulukla kolayca tahmin edilmesini sağlamıştır. 

Harcum and Loftis (1987) Thiessen poligonu, basit ortalama ve ters mesafe 

ağırlığını içeren günlük ET0 tahmin etmek için üç farklı enterpolasyon yöntemi 

kullanmıştır. Ek olarak, Kalman filtreleme yaklaşımı, hataları ölçmek ve hataları 

açıkça modellemek için stokastik bir işlem olarak kullanılmaktadır. ET0'yı belirlemek 

ve CBS tekniklerini kullanarak mekansal dağılım yapmak için iki yaklaşım 

uygulanmıştır (Kamali et al., 2015). İlk yöntemde, ET0 meteoroloji istasyonunun 

bulunduğu yerdeki iklim verileri ve Hargreaves-Samani denklemi kullanılarak 

hesaplanmış ve daha sonra enterpolasyona tabi tutulmuştur. İkinci yöntemde, 

Hargreaves-Samani denkleminin bileşenleri enterpolasyon uygulandıktan sonra 

CBS'de Hargreaves-Samani denklemi ve uygun yöntemler uygulanarak ET0 haritaları 

hazırlanmıştır.  

Aynı yöntemler ile (Ahmadi and Sedghamiz, 2008), 12 yılda farklı iklim 

koşulları (kuru, ıslak ve normal) yaşayan bir ovada yeraltı suyu derinliğinin 

haritalanması için kriging ve cokriging yöntemlerini kullanmışlardır. 

Ashraf et al (1997) çalışmalarında, Nebraska, Kansas ve Colorado 

eyaletlerindeki farklı istasyonlar için ET0 değerlerini tahmin etmek için farklı 

enterpolasyon yöntemleri kullanmıştır. Bölgeselleştirilmiş değişkenlerin 

konturlanması ve haritalanması için kriging gibi jeoistatistik teknikler kullanılarak 

optimal enterpolasyon kullanmışlardır. 

Bechini et al (2000) tarafından yapılan araştırmaya göre küresel güneş 

radyasyonu verileri, Kuzey İtalya için güneş radyasyonunun gelecekteki değerlerini 

tahmin etmek için enterpolasyon ve stokastik yöntemler uygulanarak spesifik iklim 

parametreleri kullanılarak simüle edilmiştir.  

Tabari et al (2012) çalışmalarında kurak ve yarı kurak İran'daki aylık ET0  

değerlerindeki değişiklikleri tahmin etmek için mekansal enterpolasyon yaklaşımlarını 

önermişlerdir.  

V. Kumar (2007) y'e göre Universal kriging, yeraltı suyu seviyelerini tahmin 

etmek için kuzeybatı Hindistan'daki bir dizi kanal sulama projesine uygulanmıştır. 

Dalezios et al (2002) Yunanistan'da aylık ve yıllık ET0 haritalanması için kriging 

gibi jeoistatistik teknikler kullanılarak enterpolasyon uygulanmıştır. Ayrıca, (Mardikis 

et al., 2005) tarafından yapılan çalışma, uzun vadeli bir dönemin ET0 (Penman-
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Monteith) tahmin etmek için dört enterpolasyon yöntemini karşılaştırmış ve 

değerlendirmiştir.  

Vicente‐Serrano et al (2007) tarafından yapılan çalışma, ET0 parametresini 

tahmin etmek için farklı mekansal enterpolasyon teknikleri yöntemlerini 

karşılaştırmıştır.  

Chong-yu Xu et al (2006) tarafından yapılan çalışmada, ET0 analiz edilerek, 

meteorolojik değişkenler kullanılarak zamansal eğilimlerin mekânsal dağılımlarını 

uygulanmaktadır. Bian et al (2020) çalışmalarında, Moğolistan'daki ET0 eğilimlerini 

uzun vadeli veriler (1971-2016) kullanarak ve regresyon ve kısmi korelasyon analizi 

uygulayarak tahmin etmek için mekânsal dağılım tekniklerini kullanmıştır. Aynı 

şekilde (Ullah et al., 2001) çalışmalarında, ET0'yi değerlendirmek için mekansal 

enterpolasyon yöntemlerini tartışmışlardır. 

 Hart et al (2009) çalışmalarında, günlük ET0, Penman-Monteith denklemi 

kullanılarak ve ET0 değerlerinin enterpolasyonu için ise uydu görüntü teknikleri 

uygulanarak hesaplanmıştır. Aynı yöntemde (Naoum and Tsanis, 2003) tarafından 

yapılan çalışmada,  ET0 tahmin etmek için hidro bilişim sistemleri uygulamıştır.  

 
2.4.  Yapay Sinir Ağları (YSA) Yöntemleri 

YSA, deneysel bilgiyi depolamak ve öngörülebilir modelleri kullanmak için 

kullanılabilir hale getirmek için doğal bir eğilime sahip olan basit işlem birimlerinden 

oluşan kitlesel olarak paralel dağıtılmış bir işlemcidir (Karunasinghe and Liong, 

2006). Zaman serisi modelleri ve YSA algoritmaları ile birlikte dalgacık dönüşüm 

yöntemleri gibi yeni geliştirilen yumuşak hesaplama modellerini kullanarak ET 

tahminlerini değerlendiren birçok çalışma literatürde mevcuttur.  

Türkiye'de, farklı yöntemler (Dalgacık Dönüşümü ve YSA algoritmaları), ET0 

ve diğer örnekler kullanarak günlük yağış yöntemlerin gelecekteki değerini tahmin 

etmek için sınırlı bir süre kullanmıştır (T Partal, 2007).  

Ayrıca bu çalışmada yağış değerlerini tahmin etmede kullanılan verileri seçmek 

ve hazırlamak için veri madenciliği teknikleri kullanılmaktadır. Böyle bir yaklaşımda 

(Falamarzi et al., 2014), sıcaklık ve rüzgar hızı verilerini kullanarak ET0 tahmin etmek 

için yapay ve dalgacık sinir ağlarını önermiştir. Öte yandan, (Nikam et al., 2010)  ET0 

tahmin etmek için FFBP ve EBP (ileri besleme geri yayılımı ve Elman geri yayılımı 

algoritmaları) kullanarak YSA modelini uygulanmıştır.  

Tahmin amacıyla kullanılan yapay zeka modellerinin yanı sıra, M5T veri 
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madenciliği yöntemini kullanarak ET0 tahmin etmiştir (Kaya et al., 2016 ). 

    Kişi (2011) çalışmasında bazı günlük meteorolojik verileri kullanarak ET'yi 

tahmin etmek için dalgacık regresyon yaklaşımı (WR) kullanılarak modelleme 

yapılmıştır. . Burada WR, ayrık dalgacık dönüşümleri (DWT) ve doğrusal regresyon 

modeli olmak üzere iki yöntemin birleşimidir. Öte yandan, YSA kullanarak ET tahmin 

etmek için (M. Kumar et al., 2002) ağırlıkları ayarlamak için bir geri yayılım eğitim 

yöntemi önermiş ve hesaplanan hata sinyalleri ağ üzerinden geriye doğru yayılmıştır.  

Böyle bir yaklaşımda (Gocić et al., 2015) bu çalışmada tahmin için ET0 

belirlemek ve FAO-56 Penman-Monteith denklemi kullanılır, ET0 dört esnek 

hesaplama yöntemleri, Genetik programlama (GP), destek vektör makinesi (SVM-

FFA), ve destek vektör makinesi-dalgacık analiz (SVM-dalgacık) algoritmalarını 

kullanılarak SVM dalgacık yöntemi en iyi yöntem bulunmuştur.  

Abghari et al (2012) çalışmalarının amacına göre, çok katmanlı yapay sinir ağları 

(MLP), Mexican hat ve Poli WOG1 ana dalgacık NN algoritmaları olan dalgacık-Sinir 

ağları türlerini kullanarak günlük buharlaşma tahminiydi.Mexican Hat ve PolywoG1 

işlevleri adlı bir dalgacık sinir ağının geliştirilmesi için iki ana dalgacığın göz önünde 

bulundurulduğu anlamına gelmektedir.  

Lin and Wu (2009) çalışmalarında, iki farklı YSA kullanarak tayfun yağışının 

gelecekteki miktarını tahmin etmek için yapay sinir ağların yöntemleri kullanılmıştır. 

Bu çalışmada, modelin doğruluğunu artırmak için kendi kendini organize eden harita  

ve MLP birleştirilmiştir.  

Turgay Partal (2009) yaptığı çalışmada, ET0 tahmini için dalgacık dönüşümleri 

ve ileri beslemeli sinir ağı yöntemlerinin kombinasyonunu önermiştir. Kullanılan 

iklim verileri (hava sıcaklığı, güneş radyasyonu, rüzgar hızı, bağıl nem) Amerika 

Birleşik Devletleri'ndeki iki istasyondan alınmış iklim verileri kullanılmıştır. Dalgacık 

ve sinir ağı (WNN) modeli için, giriş verileri dalgacık dönüşümü ile dalgacık alt zaman 

serilerine ayrıştırılmıştır. Aynı yöntemler ile  (Turgay Partal, 2016) tarafından yapılan 

çalışmada, dalgacık tabanlı radyal tabanlı ağların karşılaştırmalı performansı ve 

günlük referans evapotranspirasyon tahmininde iklimsel veriler (hava sıcaklığı, güneş 

radyasyonu, rüzgar hızı ve bağıl nem) kullanılarak çok doğrusal regresyon üzerinde 

çalışılmıştır. Dalgacık tabanlı regresyon modeli dalgacık dönüşümünü ve çok doğrusal 

regresyonu birleştirirken, dalgacık tabanlı radyal tabanlı ağ dalgacık dönüşümünü ve 

radyal tabanlı sinir ağını birleştirmiştir. 

 



13 
 

Patil and Deka (2017) yaptıkları çalışmada, temel olarak Hindistan'ın kurak 

bölgelerinde ET tahmin etmek için YSA ve bulanı yapay sinir ağı sistemleri (ANFIS) 

modellerinin doğruluğunu arttırmada dalgacık dönüşümünün yeteneğini ortaya 

koymuşlardır.  

Rahimikhoob (2010) çalışmasına göre, Hazar Denizi'nin kuzeyinde yer alan 

Hazar Denizi'nin güney kıyısındaki nemli subtropikal koşullar altında hava sıcaklığı 

verilerine dayanarak ET0 tahmin etmek için YSA kullanım potansiyelini incelenmiştir. 

Bilindiği gibi, ET sürecinin modellenmesiyle ilgili en büyük sorun, doğrusal olmayan 

dinamik yüksek karmaşıklığıdır.  

Bu nedenle, Araştırmacılar zengin ve zayıf veri durumlarında ET0 tahmin 

modelleri geliştirdiler (Traore et al., 2010) ve esas olarak Burkina Faso'nun Sudano-

Sahelian bölgesinde ET0modellemek için YSA kullanmışlardır. Genelleştirilmiş 

regresyon sinir ağları modeli (GRNN) ve radyal temel fonksiyon sinir ağı (RBFNN), 

Cezayir'de ilk kez referans ETo'ı tahmin etmek için (Ladlani et al., 2012) tarafından 

yapılan çalışmalarında geliştirilip karşılaştırılmıştır. 

Kurak bölgelerdeki suyun kısıtlığını çözmek için bitki suyu gereksinimlerinin 

tahmin edilmesinin özellikle önemli olduğunu belirtmek gerekir. Dolayısıyla, 

hidrolojik döngü sürecinin ana bileşeni olduğu için ET0 tahmini gereklidir. Ek olarak, 

eksik meteorolojik parametreleri kullanarak ET0 değerlendirmek için YSA 

kullanımının etkinliği üzerinde çalışılmıştır. 

Dai et al (2009) tarafından yapılan çalışmada, Kuzeybatı Çin'deki üç istasyondan 

50 yıllık meteorolojik verileri ET0 tahmin etmek için YSA'ın performansını 

karşılaştırmak için çoklu doğrusal regresyonlar (MLR), Penman denklemi ve iki 

ampirik denklem kullanılmıştır. 

Benzer yaklaşımda (Jahanbani and El-Shafie, 2011) İran'ın kuzey kesiminde 

bulunan Rasht şehrinde günlük ET0 minimum ve maksimum günlük sıcaklıkları 

kullanarak tahmin etmek için YSA geliştirmiştir. YSA modellerinin, çok fazla iklim 

parametresine ihtiyaç duymadan sadece maksimum ve minimum sıcaklık ve güneş 

radyasyonu kullanarak günlük ET0 aylık zaman serilerini tahmin etmesi önerilmiştir.  

Ferreira and da Cunha (2020) tarafından yapılan çalışmada, 53 meteoroloji 

istasyonundan toplanan verileri ve Brezilya'nın Minas Gerais eyaletindeki 53 

meteoroloji istasyonuna ilişkin verileri kullanarak günlük ET0 değerlerini tahmin 

etmek için önerilmiştir. Günlük ET0 tahmini doğrudan (ASCE PM denklemi 

kullanılarak) ve dolaylı olarak (saatlik tahmini ET0’nın toplamı) kullanılmıştır.  
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Ayrıca, RF, XGBoost, YSA ve CNN algoritmaları olan makine öğrenimi ve 

derin öğrenme teknikleri uygulanılmıştır. Aynı şekilde (M. Kumar et al., 2008) 

çalışmalarında, Turc, FAO-24 Blaney-Criddle (BC) ve ASCE PM yöntemleri olan 

ampirik denklemler kullanılarak hesaplanan günlük referans evapotranspirasyon 

değerlerini tahmin etmek için YSA geliştirilmiştir. ASCE PM değerlerine dayanan 

YSA modelleri diğer yöntemlere göre en iyi sonuçları bulunmuştur.  

Dogan (2009) çalışmasına göre, Penman-Monteith denklemi kullanılarak 

hesaplanan günlük referans evapotranspirasyon değerlerini tahmin etmek için bulanık 

yapay sinir ağları (ANFIS) araştırılmıştır. ANFIS Modelinin sonuçları çoklu doğrusal 

regresyon ile karşılaştırılarak ve istatistiksel kriterlere göre ANFIS modelini en iyi 

tahmini gerçekleştirmiştir. Aynı yöntemleri (Pour-Ali Baba et al., 2013) tarafından 

yapılan çalışmalarında kullanılmıştır.  

 Walia et al (2015) tarafından yapılan çalışmalarına göre ANFIS'in mimarisi ve 

temel öğrenme süreci, doğrusal olmayan fonksiyonların modellenmesi, indüksiyon 

makinesinin en önemli parametrelerinden birinin kontrol edilmesi ve kaotik bir zaman 

serisini tahmin etmek için kullanılmıştır. Hepsi daha etkili, daha hızlı tepki veya 

çökelme süreleri sağlar. Böyle bir yaklaşımda, (Abyaneh et al., 2011) çalışmalarında 

Sarımsak bitkisi evapotranspirasyonunu tahmin etmek için YSA ve ANFIS teknikleri 

uygulanmış ve bu teknikler ile hesaplamalı ETc'yi simüle etmek için uygun olmuştur. 
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3. MATERYAL VE METOT 

3.1. Çalışma Alanı 

Sudan, Afrika'nın kuzeydoğusundadır. Sudan, kuzeyde Mısır, kuzeybatıda 

Libya, batıda Çad, güneybatıda Orta Afrika Cumhuriyeti, Güneyde Güney Sudan, 

güneydoğuda Etiyopya, Doğuda Eritre ve doğuda Kızıldeniz ile sınırlanmıştır. Sudan, 

12° 51.768' enleminde ve 30° 13.02’ boylamında, ayrıca ortalama deniz seviyesinden 

405 m yükseklikte yer almaktadır. Çalışmada kullanılan meteorolojik verilerin elde 

edildiği gözlem istasyonlarının çalışma alanı ve konumları Şekil 3.1'de gösterilmiştir. 

Meteorolojik veriler 120 ana meteoroloji istasyonundan toplanmıştır. Meteorolojik 

verilerini  https://www.soda-pro.com/ sitesinden temin edilmiştir. 1982-2020 yılları 

arasında Sudan'ın farklı bölgelerinden seçilmektedir.  

  
3.2. Veri setlerinin  Hazırlanması 

Toplanan veriler günlük ET0 değerlerini tahmin etmek için değerlendirilir. 

Günlük ET0 hesaplanmasında en önemli değişkenler psikrometrik ve atmosferik 

değişkenler olan günlük metrolojik verilerdir.  Çalışmada, iklim verileri: (ˠ) 

psikometrik sabite, (G) toprak ısı akış (U2) buhar basıncı (ea) (s), Gerçek buhar 

basıncı, rüzgar hızı, doygun yoğunluk, sıcaklık (Ortalama, en düşük ve en yüksek 

günlük sıcaklıklar)- Sıcaklık eğrisi (D, Bağıl nem, Net radyasyon (Rn), eğim ve 

doygunluk buhar basıncı) verilerini kullanılmaktadır. Üstelik, mekansal dağılımlarını 

belirlemek ve günlük ET0 değerlerinin haritalarını oluşturmak için enlem, boylam ve 

yükseklik değişkenleri kullanılmaktadır.  
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Şekil 3. 1. Sudan'da meteorolojik gözlem istasyonlarının dağılımı 

 
3.3. Tahmin Yöntemleri 

Bu çalışmada, referans evapotranspirasyonun değerlerini tahmin ve modelleri 

oluşturmak için farklı yöntemleri kullanılmıştır. Bu yöntemleri Şekil 3.2.’deki gibi 

gösterilmektedir: 

 

 
Şekil 3. 2. Tahmin yöntemleri 
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3.3.1. ASCE Penman-Monteith yöntemi: 

ET0'ı hesaplamak için Amerikan inşaat mühendisleri derneği çevre (ASCE) su 

kaynakları enstitüsü'nün standartlaştırılmış ET0 yöntemi kullanılmıştır (Allen et al., 

2006). Bitki su tüketimi tahmini amacıyla geliştirilmiş çok sayıda eşitlikten 

bahsedilebilir. Bu eşitliklerden günümüzde en yaygın olarak kullanılanı FAO-Penman 

Monteith yaklaşımıdır. Söz konusu yaklaşımda ETo’ nun tahmini ASCE Penman-

Monteith eşitliği olarak 2004 yılında ASCE-EWRI tarafından kullanıma sunulmuştur.  

ASCE Standardize Penman-Monteith yaklaşımı Sudan'daki günlük iklim verilerinin 

kullanılarak ETo tahmin edilmiştir.   

 

𝐸𝑇𝑜 =
଴.ସ଴଼ (ோ௡ିீ)ఊ

಴೙

೅
ାଶଷ଻ ௎ଶ(௘௦ି௘ ) 

௱ାఊ(ଵା஼  ௎ଶ)
                                                         (3.2.1) 

 

Eşitlikte; 

Rn = Bitki yüzeyi için hesaplanan net radyasyon (MJ m-2 g-1), 

G = Toprak ısı akısı (MJ m-2 g-1), 

T = Günlük ortalama hava sıcaklığı, 1,5 ile 2,5m arasında yükseklikte ölçülmüş, (°C),  

u2 = Günlük ortalama rüzgar hızı, 2,0 m yükseklikte ölçülmüş, (m s-1), 

es = Doygun buhar basıncı, 1,5 ile 2,5m arasında yükseklik için hesaplanmış, (kPa),  

ea = Gerçek buhar basıncı, 1,5 ile 2,5m arasında yükseklik için hesaplanmış, (kPa),  

Δ = Doygun buhar basıncı-sıcaklık eğrisinin eğimi (kPa, 0C-1),  

ϒ = Pisikrometrik sabite (kPa, 0C-1), 

Cn = Referans bitki tipi ve hesaplamanın yapıldığı zaman dilimi için sabit pay katsayısı, 

(kısa boylu bitki ve günlük hesaplama için Cn= 900,0) 

Cd = Referans bitki tipi ve hesaplamanın yapıldığı zaman dilimi için sabit payda katsayısı, 

(kısa boylu bitki ve günlük hesaplama için Cn= 0,34) 

Kısa boylu bitki için Eşitlik 3.2.1’ in kullanılması durumunda standart koşullara ilişkin 

aşağıdaki varsayımlar geçerlidir. 

 Bitki boyu 0,12 m’ dir. 
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 Hava sıcaklığı ve oransal nem ölçümleri 1,5-2,5 m arasında yapılmıştır. 

 Rüzgar hızı ölçümü 2,0 m yükseklikte yapılmıştır. 

 Sıfır düzlemi yüksekliği 0,08 m’ dir. 

 Buharlaşma gizli ısısı 2,45 MJ kg-1’ dır. 

 Yüzey direnci rs günlük ortalama 70 s.m-1, gündüz saatlerinde 50 s.m-1 ve gece 

saatlerinde 200 s.m-1’ dir. 

 Net radyasyon gündüz saatlerinde sıfırdan büyük ve gece saatlerinde sıfırdan 

küçüktür. 

ETo’ nun hesaplanabilmesi için gerekli olan asgari veriler hava sıcaklığı (T), oransal  

nem (RH), güneş radyasyonu (Rs), atmosferik basınç (P) ve rüzgar (u) hızıdır. 

Hesaplanan ETo değerinin doğruluğu bütünüyle kullanılan iklim verilerinin kalitesine 

dayanmaktadır. En doğru sonucun elde edilebilmesi için bu iklim elemanlarının, 

zemini bitki ile kaplı (tercihen bakımlı çim bitkisi) meteoroloji istasyonlarında 

ölçülmüş olması gereklidir. 

 
3.3.2. Referans EvapotranspirasyonuN Hesaplanması 

      Günlük gözlem değerlerine ait verilerden çalışmada kullanılacak olan parametreler 

(ortalama sıcaklık, rüzgar hızı, güneş radyosunu, ve bağıl nem) seçilerek Ms Excel 

formatında kaydedilmiştir. Her bir dosya içerisinde günlük ortalama değerler ile 

gözlem istasyonlarına ait il, enlem, boylam, yükseklik, ölçüm süresi bilgileri yer 

almıştır (Şekil 3.3.). 

 
3.3.3. Zaman Serileri Analiz Teknikleri 

Çalışmanın bu kısmında, ARIMA modelleri kullanılarak ET0 tahmin etmek ve tahmin 

etmek için zaman serisi analiz teknikleri kullanılmıştır. Ayrıca Eviews 12 versiyon 

programın üzerinde zaman seresi analizleri yapılmıştır (Şekil 3.4). ARIMA modeli 

aşağıdaki gibi gösterilen matematiksel fonksiyonları kullanma (Box et al., 2015). 

 
(i) Otokorelasyon Fonksiyonu (ACF) 

Zaman serisi verilerindeki tüm noktalar arasındaki korelasyonu ayrı ayrı zaman 

veya gecikme ile açıklayan matematiksel bir işlem. Bu işlemde gecikmeler, serinin 

statik olarak anlamlı mı yoksa anlamlı olmayan bir korelasyon mu olduğunu gösteren 
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her gecikme için Ljung-Box Q ve p-değerleri güven aralıklarını kullanarak serinin 

durağanlığını ve durağanlığını göstermektedir. 

 

(ii) Kısmi Otokorelasyon Fonksiyonu (PACF) 

Kısmi otokorelasyon fonksiyonu (PACF) eğilimleri ve mevsimselliği tespit 

etmek için kullanılır. Bu süreçte gecikmeler, otoregresif bir modeldeki gecikmenin 

derecesini belirlemeyi amaçlayan veri analizinde önemli bir rol oynamaktadır; burada 

bu işlevi çizerek, bir AR (p) modelinde veya genişletilmiş bir ARIMA (p, d, q) 

modelinde uygun “P” gecikmeleri uygulanabilir kısmi otokorelasyon fonksiyonunu 

(PACF) belirlemek için olacaktır (Chen vd., 2009). 

 

3.3.3.1. ARIMA Modellerinin Aşamaları 

 
İstatistikte otoregresif entegre hareketli ortalama (ARIMA) modeli, otoregresif 

hareketli ortalama veya ARMA modelinin genelleştirilmesidir. Bu modeller, verileri 

daha iyi anlamak veya serideki gelecekteki noktaları tahmin etmek için zaman serisi 

verilerine uyarlanmıştır.  

ARIMA modeli, verilerin durağan olmayan özelliklerin kanıtını gösterdiği bazı 

durumlarda uygulanır; burada durağan olmayan özellikleri kaldırmak için bir 

başlangıç farklandırma adımı (modelin “Tümleşik” bölümüne karşılık gelir) 

uygulanabilmektedir. Model genel olarak ARIMA (p, d, q) modeli olarak adlandırılır; 

burada p, d ve q sıfırdan büyük veya sıfıra eşit tamsayılardır ve sırasıyla modelin 

otoregresif, bütünleşik ve hareketli ortalama parçalarının sırasını ifade eder. İlk 

parametre “p“ otoregresif gecikme sayısını (birim kökleri saymaz), ikinci parametre 

”d“ entegrasyon sırasını, üçüncü parametre ”q" ise hareketli ortalama gecikme sayısını 

belirtir. ARIMA modelleri, Box-Jenkins'in zaman serisi modellemesine yaklaşımının 

önemli bir parçasını oluşturmaktadır (Box et al., 2015).  

Bu çalışmada durağan durumda olan bazı veri serilerinde ARMA modeli 

uygulanmıştır. ARMA modelinin süreci, tanımlayıcı denklemlerin durağan 

çözümlerinin varlığını ve benzersizliğini ve nedensellik ve tersine çevrilebilirlik 

kavramlarını içeriyordur. Yansıma serisi [yı] için ARMA modelinin aşağıdaki alt 

kategorileri açıklanmıştır, ARMA modelinin şekli şöyledir:   

 

Xt-ϕ1 xt-1-…-ϕp xt-p = zt+ϴ1zt-1+…+ϴqzt-q                                              (3.3.2)        
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{Zt}~ = WN(0,σ2), Polinomları  (1-ϕ1z-...-ϕpzp) ve (1+ϴ1z+...+ϴqzq) ortak faktörlere 

sahip değildir.  {Xt − μ} bir ARMA (p, q) işlemi ise {Xt} işleminin ortalama μ olan 

bir ARMA (p, q) işlemi olduğu söylenir. Denklemin daha özlü formunu kullanmak 

için uygundur. Parametrelerin değerleri olarak denklemi 3.2.3. ile gösterilmektedir.  

 

         φ(B)Xt = θ (B)Zt,                                                                                       (3.3.3) 

 

burada: φ (B) ,θ (B), pth ve qth dereceli polinomlardır. 

 

φ(z) = 1 − φ 1 z −···− φ p zp ve   θ (z) = 1 + θ 1 z+···+ θq zq, denklemelrde      B, geriye 

doğru kaydırma operatörüdür. (B j X t = Xt−j, B j Zt = Zt−j, j = 0, ± 1, ...) {Xt} zaman 

serisinin θ (z) ise p (veya AR (p)) sırasının otoregresif bir işlemi olduğu söylenir) ≤ 1 

ve φ (z) ≤ 1 ise hareketli ortalama orderi q (veya MA (q)) işlemidir.    

Öte yandan, veri serileri durağan olmadığında, ARIMA modelleri farklılaştırma 

işlemleri kullanılarak uygulanabilir ve gelecekteki değerleri tahmin etmek için daha 

uygun hale getirilebilir. Başka bir deyişle, ARIMA (p, d, q) modelleme yöntemi, 

geçmiş veri serilerindeki durağanlığa uygun değildir (Mohan and Arumugam, 1995). 

Serilerin yansıması [yı] için aşağıdaki ARIMA modeli alt kategorileri açıklanmıştır, 

ARIMA modelinin şekli şöyledir:    

Φ (ꞵ) (ωT-µ) =ϴ (ꞵ) at                                                                               (3.3.4) 

Burada: t; zaman endeksi, ꞵ= backshift operatörü şu şekilde tanımlanır: yt =yr-1, ω r = 

(1-b)d yr; farklılıktan sonra tepki serisi, µ; ortalama terimi, Ф (ꞵ) ve ϴ (ꞵ) otoregresif 

operatör ve hareketli ortalama operatör sırasıyla göstermektedir.  

(Box et al., 2015) tarafından yapılan çalışmalarına göre ARIMA model sürecini 

yürütmek için belirli adımlar vardır.  ARIMA model yöntemi kullanılarak 

geliştirilmiştir. Bilindiği gibi üç ana yinelemeli adımı içeren Box-Jenkins prosedürüne 

dayanan bir ARIMA modelinin oluşturulmasındaki bu ana aşamalar; Tanımlama 

aşamasında, mevsimsel ve mevsimsel olmayan eğilimleri ortadan kaldırmak için 

verilerin farklılık dönüşümleri uygulanmıştır. 
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3.3.3.2. ARIMA (Box-Jenkins) Modellerinin Değerlendirme Aşamaları 

Bu çalışmada, Sudan'ın farklı istasyonları için referans evapotranspirasyon 

değerlerini zaman serisi analiz teknikleri kullanarak tahmin etmek ve zaman serisi 

analiz adımlarını aşağıda, yöntemlere göre uygulamak için ARIMA modelleri 

kullanılmıştır (Box et al., 2008):  

(i) Verileri Tanımlama 

İlk olarak, farklı veri serileri için ARIMA modellerini bulmak için, orijinal 

veriler, grafiklerin gecikmelerine dayanarak istatistiksel önemi gösteren hem ACF, 

PACF hem de ilişkili korelogram grafiklerinin çizilmesiyle tanılandırmaktadır. Zaman 

serilerinin durağanlığını bilmek için farklı güven düzeyleri uygulanarak Artırılmış 

Dickey-Fuller testi veya birim kök testi (ADF) kullanıldı. Bu test, seri verilerinin 

geçerli mi yoksa sahte mi olduğunu belirlemek için gereklidir. Meclis hukukunda 

geçerli veri üretebilmek için hem değişkenlerin hem de hata teriminin durağan olması 

gerekmektedir. Hata teriminin ortalama değerine geri dönmenin bir yolu olması 

gerektiği anlamına gelmektedir (Saravanan, 2015).  

∆Zt = α + θt + λZt - 1 + ∑k φi ∆Zt -1 + εt                                             (3.3.5) 

Null  hipotezler Hn ; λ = 0 (Z t durağan değildir, Zt birim kök içerir) ve alternatif 

hipotezler Ha = λ <0 (Zt sabittir). Örneğin, hata teriminin araçları (μ) ve varyansı (σ2) 

sabit olmalıdır. ADF testi trendle birlikte alınmalı ve önce seviyede kesişmelidir 

(Orijinal veriler), Eğer boş hipotez düşmezse, ilk fark alınmalıdır. İkinci fark, yalnızca 

ilk fark önemli değilse test edilir (Ibrahim and Amin, 2005). 

(ii) ARIMA Modellerinin Tahmini 

ACF ve PACF korelasyon grafikleri en az değer belirleme kriteri ve en hassas model 

ile değerlendirilerek ARIMA ve ARMA paternleri en hassas modeller olarak 

değerlendirildi. En iyi model seçimi için anlamlı olan karşılaştırma en uygun modeli 

en önemli faktörü, en az dalgalanma, en yüksek düzeltilmiş R2, P olan zaman serisi 

analizinde doğruluk kriterlerine göre seçildi-değerleri (0.05'den büyük olmalıdır), en 

güçlü (Schwarz bilgi kriteri) (Akaike bilgi kriteri) ve SIC değerleri. Ek olarak, RMSE 

ve MAE'NİN en küçük değerleri en iyi modeli seçmek için kriterler olarak kabul 

edilmektedir. 

(iii) Denetim 

Bu aşamada, otokorelasyonu test etmek için Lunj-box testi yapılır ve buna 

otokorelasyon testi de denir. Bu test, modelde henüz yakalanmamış herhangi bir bilgi 
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olup olmadığını anlamak için artıkların korelasyonunu kontrol etmek için 

kullanılırken, ACF ve PACF grafiklerindeki düz korelasyonda en ideal modele atıfta 

bulunulmuştur. Örneğin, korelogram kalıntılarını kontrol ederken aşırı uyumdan 

kaçınmak çok önemlidir.  

 
(iv) Önğörü Değerleri 

Tahmin süreci, orijinal veri kümesinin geçmiş değerlerini kullanarak serinin 

gelecekteki değerlerini tahmin etmek için bir ARIMA modeline uymanın özüdür. 

Tahmin seçilen modele dayanmaktadır. Bu adımda, tahmin grafikleri çizilir ve ne 

kadar başarılı olduğu doğrulanır ve tahmin serinin gelecekteki değerlerini tahmin 

etmektedir. 

 
3.3.4. Enterpolasyon Yöntemleri 

Bu kısımda, boylam, enlem ve yükseklik koordinatları konum bilgisi 

kullanılarak 120 ana ve alt ana istasyon değerine ilişkin günlük ET0 elde edilen aylık 

ET0 değerleri kullanılarak mekansal dağılım haritaları oluşturmak için farklı 

enterpolasyon yöntemleri kullanılmıştır. ArcGIS 10.7 version ve GS+ programların 

üzerinde enterpolasyonun analizlerini yapılarak harıtaları oluşturulmaktadır.  

 

Bu tezin kısmında, İklim verilerinin konumsal dağılımlarının belirlenmesi için yapılan 

çalışmalarda kullanılan ve sonuçta en doğru sonucu veren yöntemler değişkenlikler 

göstermektedir. Bu çalışmada kullanılan interpolasyonun yöntemleri şu şekilde 

açıklanmıştır. 

 

3.3.4.1. Ters Mesafe Ağırlığı (IDW) Yöntemi 

Ters Mesafe Ağırlığı (IDW) yaygın olarak kullanılan hızlı, deterministik, kesin 

ve konumsal bir enterpolasyondur. Bir noktanın değerini, bu iki nokta arasındaki 

mesafenin ters bir fonksiyonu ile ağırlıklandırılmış, örneklenmiş bir veri noktasındaki 

değerin doğrusal bir kombinasyonunu kullanarak tahmin eder. Yöntem, tahmin 

noktasına daha yakın olan gözlem noktalarının daha uzak noktalar olarak daha fazla 

olduğunu varsayar (Ahmadi and Sedghamiz, 2008). 

IDW, her bir noktaya ağırlık vererek noktaları enterpolasyonda geleneksel olarak 

kullanılan deterministik bir yöntemdir, böylece noktadan uzaklık arttıkça tahmin 



23 
 

üzerindeki etkileri azalır (Adhikary and Dash, 2017). Matematiksel olarak, ağırlıklar 

aşağıdaki gibi hesaplanır: 

 

Z(𝑥଴) =

∑
ೣ೔

೓೔ೕ
ಳ

೙
೔సభ

∑
భ

೓೔ೕ
ಳ

೙
೔సభ

                                                                                                     (3.3.11) 

Z (x0) enterpolasyonlu değeri; n, örnek veri değerlerinin toplam sayısını temsil 

eder; xı, ıth veri değerlerini, bu enterpolasyonlu değer ile örnek veri değeri arasındaki 

ayırma mesafesidir ve b, ağırlıklandırma gücüdür; ağırlıklandırma gücü, tahmin 

kalitesini önemli ölçüde etkileyebilir. Optimum ağırlıklandırma gücü, verilerin 

uzamsal yapısına bağlıdır ve verilerin varyasyon katsayısı (CV), çarpıklık ve basıklık 

katsayısından etkilenir (Stroud et al., 2001).  

 
3.3.4.2. Kriging Yöntemleri 

Bu çalışmada ET0 değerlerini enterpolasyonda stokastik yöntem olarak kriging 

teknikleri kullanılmıştır. Kriging, kriging ile enterpolasyonda yarı değişken grafikleri 

(veya sadece variogramları) tanımlayan bir enterpolasyon yöntemidir. Kriging, kesin 

veya pürüzsüz olabilen çok esnek bir enterpolatördür. Tahminler, tahmin standart 

hataları ve olasılık dahil olmak üzere çeşitli çıktı yüzeylerine izin verir (Johnston et 

al., 2001). Kriging yöntemlerinin jeoistatistik analizindeki ana araçtır, komşu 

gözlemler arasındaki mekansal korelasyonu ifade eden yarı variogramdır.  

Kriging yöntemlerini analiz etmek ve tahmin etmek için en çok kullanılan 

doğrusal, küresel, Gauss ve Üstel olarak adlandırılan yarı variogram modelleri de dahil 

olmak üzere dört Kriging modeli vardır. Ayrıca, verilerin uzamsal korelasyonu 

semivariogram değeri ile değerlendirilmelidir. Jeoistatistik tahminden önce, olası 

herhangi bir örnekleme aralığı için bir variogram değerinin hesaplanmasını sağlayan 

bir modele ihtiyacımız vardır.  

Yarı değişkenlik değeri γ (h), has ile ayrılan tüm noktalardaki öznitelik değerleri 

arasındaki farkın yarısının varyansı olarak tanımlanabilir: 

 

γ(h)=  
ଵ

ଶே(௛)
∑ [𝑍(𝑥௜) − 𝑍(𝑥௜ + ℎ)]

ே(௛)
௜ୀଵ                                                      (3.3.12) 

Z (x), N değişkeninin büyüklüğünü gösterir; (h), h mesafesiyle ayrılan öznitelik 

çiftlerinin toplam sayısıdır. Kriging yöntemlerini analiz etmek ve tahmin etmek için 
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en çok kullanılan doğrusal, küresel, Gauss ve Üstel olarak adlandırılan yarı variogram 

modelleri de dahil olmak üzere dört Kriging modeli vardır.  

 
3.3.4.3. Ordinary Kriging (OK) 

OK, bir değişkenin değerini tek bir noktada veya blokta tahmin etmek için 

jeoistatistik çalışmalarda kullanılan yaygın bir yöntemdir. Verilerde eğilim 

olmadığında sıradan kriging yöntemi kullanılabilir. Ek olarak, hataların beklenen 

değerine tarafsız olan doğrusal ağırlıklı ortalama bir tekniktir. Sabit bir rastgele alanın 

bilinmeyen bir sabit ortalama ile doğrusal tarafsız tahminini bulmak için yaygın olarak 

kullanılır ve aşağıdaki gibi ifade edilir: 

 
Ẑ(x0)= ∑ 𝜆௜𝑧(𝑥௜)

௡
௜ୀଵ                                                                                    (3.3.13)  

 
Z (x0), x0 konumundaki kriging tahminidir; Z (xi), xi'de örneklenmiş değerdir 

ve 𝞴i, Z (xi) ile ilişkili ağırlıklandırma faktörüdür. Tahmin hatası şu şekilde tanımlanır: 

 

ε (x 0) Z(x0) =∑ 𝜆௜𝑧(𝑥௜) − 𝑧(𝑥଴)௡
௜ୀଵ                                                          (3.3.14) 

Z (x0), x0 uzamsal konumundaki bölgeselleştirilmiş değişkenin gerçek 

değeridir; ε (x 0) tahmin hatasıdır. Buna ek olarak, sıradan karşılaştırıldığında düşük 

yöntemi kullanarak, veri serisi normal dağılım olmalı o zaman; aksi takdirde, doğrusal 

olmayan karşılaştırıldığında düşük kullanılmalı ya da verileri kullanarak doğrusal 

fonksiyonları normal dağılım dönüşmek zorunda, ve sonra Lineer karşılaştırıldığında 

düşük, bu Nedenle kullanılabilir, verilerin dağılım fonksiyonu kontrol edilmelidir 

fazlalaşmıştır. Örneğin, sıradan Kriging ve evrensel Kriging yöntemlerinin her ikisi de 

model seçimi için yarı variogram parametrelerine bağlıdır.  Ayrıca, IDW yöntemi güç 

fonksiyonu seçimine bağlıdır (Kamali et al., 2015). 
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3.3.5. Çoklu Doğrusal Regresyon Uygulamaları 

 
Sebep sonuç ilişkisine dayanan regresyon analizi, iki ya da daha çok değişken 

arasındaki ilişkiyi modellemek için kullanılan yöntemler arasındaki en çok 

kullanılanıdır. Çıktıyı modellemek için tek bir değişken kullanılıyorsa tek değişkenli 

regresyon, birden çok değişken kullanılıyorsa çok değişkenli regresyon olarak 

isimlendirilir. Basit bir doğrusal regresyon modeli ve bağımlı değişkenin gerçek ve 

tahmin edilen değeri arasındaki ilişki aşağıdaki eşitliklerde verilmiştir. Basit doğrusal 

regresyon bize normal dağılmış, hakkında aralıklı/oranlı ölçekle veri toplanmış iki 

değişken arasındaki doğrusal ilişki olup olmadığını test etme olanağı verir. 

Değişkenlerden biri tahmin, biri sonuç değişkenidir. 

 

             Y= a + bx                                                                                              (3.3.15) 

Burada ; a ve b sabitleri en küçük kareler yöntemi ile tahmin edilir. Çoklu doğrusal 

regresyon modeli birinci varsayımı basit doğrusal regresyon benzemektedir. Fakat iki 

yöntem arasındaki fark bağımlı değişkenin bağımsız bir değişkenden daha fazla 

fonksiyonu bulunur. Çoklu regresyon denkleminde birden fazla tahmin değişkeni 

vardır. Aşağıda Çoklu doğrusal regresyon eşitliliği verilmiştir. 

                  Y= (b0 + b1 x1 +b2 x2 +…bn xn) + ei                                              (3.3.16) 

Burada; Y bağımlı değişken, b0, regresyon eğrisinin y eksenin kesim noktası, b1ilk 

tahmin değişkeninin x1 katsayısı, b2 ikinci tahmin değişkeninin x2 katsayısı ve ei  ise 

i’inci örnek için Y’nin edilen değeriyle gözlenen değeri arasındaki farktır. 

 

3.3.6. Yapay Zeka Uygulamaları 

YSA birçok bilimsel disiplinde geleneksel istatistiksel modelleme tekniklerine 

faydalı alternatifler olarak karşımıza çıkmaktadır. Bu tezin kısmında, yapay Sinir 

Ağları (YSA), ET0 modellemesinde iki farklı YSA tekniği uygulayarak günlük ET0 

tahmin etmek için Sudan'daki iklimsel verileri kullanarak ET0 doğrusal olmayan 

karmaşık işlemi modellemek için kullanılır. Bu teknikler çok Katmanlı algılayıcı 

(MLP) ve uyarlamalı nöro-bulanık sistem (ANFIS) ağlarıdır. MATLAB R2011a 

version kullnılarak YSA uygulanmaktadır.  
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3.3.6.1. Çok Katmanlı Yapay Sinir Ağları (ÇKYSA) 

ÇKYSA, giriş verilerinin haritalarını ileriye dönük bir şekilde temel alan bir 

yapay sinir ağıdır ve bu ağın birbirine tamamen bağlı olan birden fazla katmanı (giriş, 

gizli ve çıkış katmanları) vardır (C. Zhang et al., 2018). Tipik yapı, MLP'nin birden 

çok katmandaki (giriş, gizli ve çıkış katmanları) birbirine bağlı düğümlerden oluşması 

ve her katmanın önceki katmana ve sonraki katmana tam olarak bağlanmasıdır (G. P. 

Zhang, 2003).  

ÇKYSA ağ yapısı Şekil 3.5.'de gösterilmiştir. Bu ağı, bir veya daha fazla gizli katman 

ekleyerek daha yüksek istatistikler çıkarabilir (Kisi, 2008). Her düğümün çıktıları, 

doğrusal olmayan verileri ayırt etmek için doğrusal olmayan bir etkinleştirme işlevi 

tarafından takip edilen ağırlıklı birimlerdir.  

ÇKYSA yöntemi, her düğüm için ağırlıklı birimlere dayalı verilerin doğrusal 

olmayanlığını ayırt etmek için kullanılır (Wang et al., 2009).  Bu tezin kısımında çok 

katmanlı yapay sinir ağlarını uygulanmaktadır (Şekil 3.6). 

Matematiksel olarak, katmanındaki çıkış aktivasyonu a(1+1), giriş aktivasyonu a(1) ile 

türetilir: 

 

a(l+1)= σ(w(1) a(1) + b(1))                                                                      (3.3.15)   

Burada l belirli bir katmana karşılık gelir, w(1) ve b(1), l. katmanındaki ağırlığı ve 

eğimi gösterir ve doğrusal olmayan aktivasyon işlemi işlevini temsil eder (örneğin, 

sigmoid, hiperbolik teğet, doğrultulmuş doğrusal birimler). Bir m katmanı çok 

katmanlı algılayıcı için, ilk giriş katmanı a (1) x iken son çıkış katmanı:      

 

  hw, b (x) = a(m)                                                                                           (3.3.16)            

Bu denklemdeki (w) ve önyargı (b) ağırlıkları, bilinmeyen bir girdi-çıktı ilişkisine 

yaklaşmak için bir geri yayılım algoritması kullanılarak denetimli eğitim ile öğrenilir. 

Ek olarak, bu işlev kullanılarak tahmin edilen ve çıktı arasındaki fark en aza indirilecek 

ve çıktılar aşağıdaki gibi gösterilebilir:        

J (W, b, x, y) =
ଵ

ଶ
หℎ௪,௕(𝑥) − 𝑦ห

ଶ
                                                              (3.3.17) 
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   Şekil 3. 3. Çok Katmanlı Yapay Sinir Ağının yapısı (Landeras et al., 2009). 

 
3.3.6.2. Bulanık Yapay Sinir Ağları (ANFIS) 

YSA ve bulanık mantığın tamamlayıcı bir şekilde bir füzyon ANFIS modelini 

vermektedir. YSA ile bulanık mantık entegrasyonu, azaltılmış yürütme zamanında 

hata toleransı azalma ile sonuçlanır, ve adaptasyon büyük ölçüde geliştirilmiştir.  

ANFIS, geri yayılım gradyanı iniş hatası sindirimini ve en küçük kare hata 

yöntemini birleştiren karma bir öğrenme kuralı aracılığıyla bir parametre kümesini 

tanımlar. Bulanık çıkarım sistemleri için başlıca iki yaklaşım vardır, yani Mamdani 

(Mamdani, 1977) ve Sugeno'nun (Takagi and Sugeno, 1985) yöntemleridir.  

İki yaklaşım arasındaki farklar Mamdani'nin yaklaşımının ortaya çıktığı 

kısımdan kaynaklanır Sugeno'nun yaklaşımında doğrusal veya sabit fonksiyonlar 

kullanılırken bulanık üyelik fonksiyonlarını (MFs) kullanır. (Pour-Ali Baba et al., 

2013).  

 Bu kısımda, günlük referans ET0 değerlerini tahmin etmek için Sugeno yöntemi 

uygulanmaktadır. Bulanık teorinin birlikte kullanımı YSA, bulanık kümenin 

anlaşılabilir insan bilgisini temsil etme yeteneğini öğrenme yeteneği ile birleştirir.  
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ANFIS yapısı, Şekil 3.7.'de gösterildiği gibi beş katmanlı ileri beslemeli bir sinir 

ağı içerir.  Her ANFIS katmanı, düğüm işlevi tarafından açıklanan birkaç düğümden 

oluşur. Katman 1 ve 4'teki düğümler, dikdörtgen olarak temsil edilen uyarlanabilir 

düğümlerdir. 2., 3. ve 5. Katmanlardaki düğümler sabit düğümlerdir ve daireler olarak 

temsil edilirler. İlk katmanda, her düğüm bir dilsel etiketin üyelik notlarını oluşturur 

ve bir bulanıklaştırma uygulanır (Masoudi et al., 2018). Düğüm işlevi şu şekilde 

tanımlanabilir: 

 

O1i = µAi (𝑥)                                                                                               (3.3.18) 

 

Burada, (x) düğüm i'e giriştir ve Ai, bu düğüm işleviyle ilişkili dilsel etikettir (bulanık 

kümeler: küçük, büyük). İkinci katmanda, düğümler kuralların ateşleme ağırlığını 

hesaplar ve ürünü gönderir. Örneğin: 

 

𝑤𝑖 = µ𝐴𝑖 (𝑦) ⤬ µ𝐵𝑖 (𝑦),  𝑖 = 1,2                                                              (3.3.19)       

 

Bu araştırmanın bölümünde, girdi verisi olarak ortalama sıcaklık, rüzgar hızı, güneş 

radyasyonu ve bağıl nem olmak üzere dört parametre kullanılarak eğitim sürecindeki 

ET0 tahmin etmek için bir ANFIS modeli geliştirilmektedir (Şekil 3.8). Parametreler 

standart min-max normalleştirme tekniği kullanılarak 0 ve 1 aralık olarak 

normalleştirilmiştir. Veri setleri iki gruba bölünüp, %50 eğitim ve %30  test  için 

kullanılmıştır.         

 

 
Şekil 3. 4 . Bulanık Yapay Sinir Ağının yapısı 



29 
 

 

3.3.6.3. Matematiksel ve İstatistiksel Kriterleri 

 

(i) Tahmin Hatası Standart Sapması (RMSE): 

  𝑅𝑀𝑆𝐸 = ට
∑ (ை௜ି௉௜)మ೙

೔సభ

௡
                                            (3.3.20)          

                                                             

(ii) Belirleme katsayısı (R2): 

 𝑅ଶ = 1 −
∑ (ை௜ି௣௜)మ೙

೔సభ

∑ (௉௜ି௉೔
ష)మ೙

೔సభ

                                                                                   (3.3.21)  

 
(iii) Ortalama Mutlak Hatası (MAE) 

            𝑀𝐴𝐸 =
ඥ|∑(୓୧ – ୔୧)|

୬
                                                   (3.3.22) 

 

Pi, ETo'ın tahmini değeridir; Oi, Penman-Monteith denklemi kullanılarak et0'ın 

gözlemlenen veya hesaplanan değeridir; i tahmini örnek sıra numarasıdır; i = 1,2, . . . 

n; P, örnek sıra numarasının tahmin edilen ortalama değeridir; O, örnek sıra 

numarasının gözlenen ortalama değeridir; ve n, tahmin edilen değerinin örnek 

numarasıdır.  

 
(iv) Akaike Bilgi kriteri (AIC):  

Akaike'nin entropiye dayalı Bilgi Kriteri (AIC) istatistiksel model değerlendirme 

problemlerinde temel bir etkiye sahiptir. Ayrıca seri verilerin değerlerini tahmin etmek 

için en uygun modeli seçmek önemlidir (Ozaki and Oda, 1977): 

 

Ȃ = n Ln R+ 2 Kn                                                                                   (3.3.23) 

n, deneysel noktaların veya gözlemlerin sayısı, ve R, karelerin toplamıdır.   Ln; 

denklem tarafından hesaplanan log-olasılık fonksiyonudur (normalde dağıtılmış 

hatalar varsayılarak):        

 

   ℓ=−n2·(1+ln(2·π) +ln(1n·∑i=1n(yi−yˆi)2))                                        (3.3.24) 
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Seçilecek modeldeki parametre sayısı, A'nın en az olduğu parametredir. Birçok 

alternatif modeli karşılaştırırken, minimum AIC değerine sahip olan model, iyi bir 

uyum ve karmaşıklık dengesi sağlar (Webster and McBratney, 1989). 

 

(v) Bayesian Bilgi kriteri (BIC) 

Bayesian Bilgi kriteri, Schwarz Kriteri (SIC) olarak da bilinir zaman serisi 

modelleri arasında karşılaştırmalı değerlendirme için başka bir istatistiksel ölçüdür, 

AIC ile yakından ilişkilidir (Profillidis and Botzoris, 2018).  

BIC ve AIC arasındaki fark, modelin uyumunun iyiliğini arttırmak için K 

parametrelerinin sayısını (regresörler veya / ve kesişme) eklediğimizde ortaya 

çıkmaktadır. BIC, parametrelerin artmasıyla daha fazla ilgilenir (AIC'ye kıyasla). BIC 

aşağıdaki denklem ile hesaplanır: 

 

SIC or BIC=−2·ℓ/n + k·ln n /n                                                           (3.3.25) 

BIC, AIC ile aynıdır. farklı alternatif modellere göre tercih edilecek model minimum 

BIC değerine sahip olan modeldir. 

 

(vi)  Nash–Sutcliffe model Efficiency Katsaysı (NSE) 

Hidrolojik modellerin öngörücü becerisini değerlendirmek için kullanılır. 

Olarak tanımlanır: 

 𝑁𝑆𝐸 = 1 −
∑೅సభ

೅ ൫ொబ
೟ିொ೘

೟ ൯ଶ

∑೅సభ
೅ ൫ொబ

೟ିொబ
ష൯ଶ

                                                (3.3.26) 

𝑄଴
ି = Gözlenen değerlerin ortalaması,  

Qm= Tahmin edilen değeridir, 

Qo= Gözlenen değeridir. 

Nash-Sutcliffe verimliliği, modellenen zaman serisinin hata varyansının, 

gözlemlenen zaman serisinin varyansına bölünmesinin bir eksi oranı olarak hesaplanır. 

Sıfıra eşit bir tahmin hatası varyansına sahip mükemmel bir model durumunda, elde 

edilen Nash–Sutcliffe Verimliliği 1'e eşittir (NSE = 1). Tersine, gözlemlenen zaman 

serisinin varyansına eşit bir tahmin hatası varyansı üreten bir model, Nash–Sutcliffe 

Verimliliği 0.0 (NSE = 0). Gerçekte, NSE = 0, modelin kare hatanın toplamı açısından 
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zaman serilerinin ortalamasıyla aynı tahmin becerisine sahip olduğunu gösterir. 

Gözlemlerin varyansından önemli ölçüde daha büyük bir tahmin hatası varyansına 

sahip modellenmiş bir zaman serisi durumunda, NSE negatif hale gelir. Gözlemlenen 

ortalama modelden daha iyi bir yordayıcı olduğunda sıfırdan küçük bir verimlilik 

(NSE <0) oluşur. NSE'nin 1'e yakın değerleri, daha öngörücü beceriye sahip bir model 

önerir. Farklı NSE değerlerinin yeterlilik eşikleri olarak öznel uygulaması birkaç yazar 

tarafından önerilmiştir (McCuen et al., 2006). 
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4. BULGULAR VE TARTIŞMA 

Bu çalışmada bulgular ve tartışma üç şamada değerlendirilmiştir. Birinci aşamada 

zaman serisi analizleri, ikinci aşmada enterpolasyom teknikleri ve üçüncü aşmada ise 

yapay zeka teknikleri ile ET0 tahmin edilmiştir. Sudanın 120 farklı istasyonundan elde 

dilen veriler göz önüne alınarak ET0 tahmin etmede kullanılan iklim parametreleri ve 

ET0 tanımlayıcı istatistik verileri Tablo 4.1’ de verilmiştir. 

Her bir ana istasyon için ET0 değerlerinin tanımlayıcı istatistikleri (Tablo 4.1 )'de 

gösterilmektedir. Tablo 4.1.’da incelendiğinde en yüksek ET0  değerlerin 14.01, 14.82, 

ve 13.61 mm.d -1 ile  Atbara, Halfa Elgadida, ve Kassala istasyonlarında ortaya çıktığı 

gözlenmektedir. En düşük ET0 0.57, 0.61 mm.d-1 ile Babanusa ve Kadugli 

istasyonlarında gösterilmiştir.  Görüldüğü gibi Al Damazin ve Niyala istasyonlarında 

gözlemlenen en yüksek standart sapma değerin 3.65 ve 6.17 ile en düşük değer 

sırasıyla 0.66 ve 0.48 ile Al Neihud ve Singa istasyonlarında elde edilmiştir. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 
 

Tablo 4. 1. Sudan’ın 33 il merkezi için ET0 değerlerine ait Tanımlayıcı İstatistikler 

İstasyon Boylam Enlem Max. Min. Orta. Çarpıklık Basıklık 
Abuhamed 33.44 19.51 12.03 1.186 4.94 0.352 0.53 
Abunaama 34.06 12.65 11.22 0.76 3.64 0.38 0.61 
Al Damazin 34.337 11.78 8.49 1.19 3.12 -0.04 -0.93 
Al Gadaref 35.31 14.21 5.19 1.35 3.5 -0.85 0.16 
Al Genina 22.5 13.27 13.39 0.65 4.00 0.23 0.78 
Aroma 35.94 15.77 8.40 0.78 3.63 -0.11 0.29 
Atbara 33.75 17.64 14.01 3.55 10.52 0.56 3.14 
Huddiba 33.93 17.56 11.67 1.05 4.58 0.39 0.73 
Karima 31.88 18.58 11.13 1.04 5.08 -0.09 0.26 
Kadugli 29.71 11 11.75 0.61 3.77 -0.65 0.70 
Kassala 36.25 15.46 13.61 3.55 7.38 0.22 2.72 
Khartoum 32.5 15.46 11.25 0.84 4.60 -0.29 0.43 
Kosti 32.81 12.96 10.40 0.67 3.87 -0.43 0.48 
Niyala 24.88 12.05 13.06 0.76 4.64 -0.87 0.40 
Sennar 37.19 19.83 10.64 0.68 3.74 -0.21 2.71 
Portsudan 33.61 13.55 8.56 0.71 2.81 0.78 1.02 
Babanusa 27.817 11.33 11.67 0.57 4.16 -0.78 0.53 
Dongola 30.63 19.2 11.81 1.10 5.15 0.01 0.19 
Eddueim 32.19 13.89 13.45 3.55 8.5 0.56 3.14 
Al Fashir 25.31 13.58 10.46 0.62 3.83 -0.50 0.42 
Al Neihud 28.44 12.65 12.67 0.66 4.51 -0.78 0.46 
Al Obeid 30.31 13.27 11.14 0.91 4.53 -0.54 0.43 
Halfa 35.6 15.31 14.82 3.57 7.73 0.22 2.82 
Hayya 26.32 18.2 6.23 2.60 5.09 0.15 -0.18 
Shambat 32.53 15.66 11.22 0.97 4.62 -0.26 0.45 
Shendi 33.44 16.7 10.73 0.75 4.36 0.54 0.74 
Singa 34.06 12.96 4.37 0.48 3.27 -0.30 0.48 
Station6 32.54 20.75 12.02 1.55 5.44 0.30 0.36 
Um Benin 33.95 13.6 10.63 0.67 3.74 -0.21 0.48 
Madani 33.44 14.52 10.82 0.73 3.97 -0.15 0.48 
Zalingi 23.44 12.96 12.46 0.72 3.79 -0.26 0.44 
Wadi halfa 31.48 21.81 11.47 1.10 5.02 0.61 0.31 
Tokar 37.81 18.89 8.33 1.05 3.23 3.11 1.39 

 
 
 

4.1. Otoregresif Entegre Hareketli Ortalama Modelleri (ARIMA) 

 
Zaman serisi analiz yöntemlerini, ARIMA (Otoregresif Entegre Hareketli 

Ortalama Modelleri) uygulanarak referans evapotranspirasyon değerlerini tahmin 

etmek için kullanılmıştır. Bu modellerini Box Jenkins modelleri olarak adlandırılır. 

Bu bölümde, ARIMA modellerini kullanılarak günlük ET0 tahmin edilmesi için 

Sudan'daki 33 ana meteoroloji istasyonlarından gerçekleştirilen (1982'den 2020'ye 

kadar) günlük zamana dayalı uzun verilerini kullanılmıştır. ARIMA modelleri, zaman 

serisi analizi teknikleri kullanılarak ET0 değerlerini değerlendirmek için 

oluşturulmuştur. Bu amaçla, zaman serisi modellerini geliştirmek ve gelecekteki 

değerleri tahmin etmek için EViews version lite istatistiksel yazılım programı 

kullanılmıştır. 
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4.1.1. Zaman Serisi Modellerinin Değerlendirilmesi (ARIMA modelleri) 

İlk olarak, ET0 değerlerinin orijinal verilerinin grafiklerini çizilmektedir. Bütün 

istasyonları durağan olduğu bulunmaktadır. Örneğin, Şekil 4.1’ de meteorolojik 

istasyonlarını incelendiğinde zaman serisinde herhangi bir eğilim veya trend 

göstermemiştir (Box et al., 2015). Üstelik, ortalama ve varyans 1982’den 2020’ye 

kadar sabit olup değişmemiştir.   Gelecekteki değerleri tahmin etmek için fark alma 

işlemlerine ihtiyaç duymadığını anlamına gelmektedir. 

Ayrıca, orijinal serilerinin durağan olduğunu göstermektedir. Verileri 

durağanlığın sabit halinde gelecekteki değerleri tahmin etmek için uygun olabilecek 

model belirlenmektedir. 
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Şekil 4. 1. 1982-2020   ETo zaman serisi grafikleri 

 
Günlük ET0 verileri, Box-Jenkins tahmin modelleri kullanılarak ACF ve PACF 

grafiklerinde gecikmeler ile ilişikli olduğunu göstermektedir. Şekil 4.2 ’de ACF ve 

PACF grafiklerinde her istasyon için orijinal verileri tanımlanmıştır. İdeal modele 

karar vermeden önce tüm bilgileri ve korelogram hatalarının yakalandığı için kontrol 

edilmesi gerekmektedir. Korelogramın artıkları ve hataları, güven sınırları içinde düz 

olmalıdır (Asteriou and Hall, 2007). Ayrıca, Durağan olan ya da durağan hale 

dönüştürülen serinin ACF ve PACF grafiklerine göre seriye uygun olabilecek model 

belirlenir. Şekil 4.2’de gösterildiği gibi, tüm istasyonlar ’da hem ACF hem de PACF 

grafiklerinde ilişkili miktarının azalışı yavaş olduğu için otoregresif hareketli ortalama 

modellerini oluşturulmaktadır. Bu azalışların hızlı ya da yavaş olduğuna karar vermek 

oldukça zor olup doğru kararı vermek yılların deneyimini gerektirmektedir. 
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Abuhamed  İstasyonu Al Damazin  

Al Gadaref 
istasyounu 

Al Genina  
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Dongola  İstasyonu El fashier  İstasyonu 

Aroma  İstasyonu Babanusa   
İstasyonu 
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El Obied  İstasyonu Halfa Elgadida 

Hayya İstasyonu Shambat  İstasyonu 
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  Umbenin İstasyonu Wad medani İstasyonu 

Shendi İstasyonu Singa İstasyonu 
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Zalingi İstasyonu Wadi halfa İstasyonu 

Atbara İstasyonu Edduim İstasyonu 
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Huddiba İstasyonu Karima İstasyonu 

Tokar İstasyonu Station 6  İstasyonu 



50 
 

                           

  

  

  

  

 

                            

Kadugli İsatsyonu Kassala İstasyonu 

Khartoum İstasyonu Kosti İstasyonu 
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Portsudan İstasyounu Abu naama İstasyonu 

Niyala İstasyounu Sinnar İsatsyonu 
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Şekil 4. 2. Her istasyon için ACF ve PACF grafikleri 

 
Günlük ET0 değerlerini, en uygun ARIMA modeller ile 1982-2020 dönemi için 

tahmin edilmektedir. Çizelge 4.2’ de incelendiğinde, en iyi modellerin en yüksek 

belirleme katsayısı (R2)  görülmektedir. Bilindiği gibi, R2 katsayısı gerçek ve tahmin 

edilen değerlerin arasındaki ilişkili gösteren katsayısıdır. Ayrıca, ARIMA modellerin 

sonuçlarına göre, en küçük ortalama kare hatası (RMSE), Volatilite (Sigma2), AIC ve 

SIC parametrelerin değerlerine sahip elde edilmektedir.  

Tablo 4.2’de inceleceğinde en iyi modeller, en büyük R2 değerlerine sahip 

ARIMA (1,0,1), (1,0,2) ve (2,0,2) modellerinde göstermektedir. Ayrıca, modellerin en 

düşük AIC ve SIC değerlerine sahip, gelecekteki ET0 değerlerini tahmin etmek için 

uygun modeller olarak kabul edilebilmektedir. ARIMA modellerinde fark alma 

işlemleri yapıldığında belirleme katsayısı (R2) değerleri azaltılıp ve hata değerleri 

arttırılmıştır. Bunun nedenle kullanılan verilerin durağan bir durumda olduğunu 

açıklanmaktadır. Bu amaçla, gelecekteki değerlerini tahmin edilebilmektedir.  

Tablo 4.2’de gösterildiği gibi referans evapotranspirasyon için en yüksek R2 

değerleri sırasıyla 0.84,0.85, 0.83 ve 0.82 olan Kadugli, Babanusa, El neihud ve Niyala 

istasyonlarında elde edilmiştir. En düşük değerler sırasıyla 0.35, 0.38, 0.39, ve 0.38 ile 
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Wadi Halfa, Atbara, Tokar, ve Station6 istasyonlarında elde edilmektedir. Öte yandan, 

en düşük hata, AIC, SIC ve R2 değerlerine sahip gelecekteki ET0  değerlerini tahmin 

etmek için her istasyon için en iyi modeller belirlenmiştir. 

Tablo 4. 2. Her istasyon için ARIMA modellerinin parametreleri 

İstasyon Model R2 RMSE AIC SIC P- değeri 
Abuhamed (1,0,2) 0.65 0.079 4.115 4.11 0.0000 
Abunaama (1,0,1) 0.60 0.024 3.25 3.26 0.0000 
AlDamazin (1,0,1) 0.67 0.059 2.126 2.127 0.0000 
Al Gadaref (1,0,1) 0.67 0.060 2.529 2.531 0.0000 
Al Genina (1,0,1) 0.74 0.005 3.028 3.667 0.0000 
Aroma (1,0,1) 0.49 0.032 3.291 3.293 0.0000 
Huddiba (1,0,1) 0.49 0.038 3.622 3.624 0.0000 
Karima (2,0,1) 0.47 0.036 3.559 3.561 0.0000 
Kadugli (1,0,1) 0.84 0.001 3.325 3.324 0.0000 
Kassala (1,0,2) 0.57 0.041 2.973 2.972 0.0000 
Khartoum (1,0,1) 0.67 0.053 2.836 2.838 0.0000 
Kosti (2,0,2) 0.63 0.061 2.854 2.855 0.0000 
Niyala (1,0,1) 0.82 0.004 3.374 3.372 0.0000 
Sinnar (1,0,1) 0.68 0.058 3.149 3.151 0.0000 
Portsudan (1,0,2) 0.56 0.053 3.286 3.288 0.0000 
Babanusa (2,0,1) 0.85 0.002 2.627 2.628 0.0000 
Al Fashir (1,0,2) 0.68 0.052 2.676 2.675 0.0000 
El Neihud (1,0,2) 0.83 0.004 3.319 3.313 0.0000 
Al Obied (1,0,2) 0.77 0.001 2.617 2.618 0.0000 
Halfa (1,0,2) 0.56 0.042 3.090 3.092 0.0000 
Haya (1,0,1) 0.56 0.034 0.243 0.243 0.0000 
Shambat (1,0,2) 0.64 0.008 3.402 3.404 0.0000 
Shendi (1,0,1) 0.48 0.036 3.474 3.477 0.0000 
Singa (1,0,2) 0.53 0.024 2.172 2.174 0.0000 
Um Benin (1,0,2) 0.74 0.001 2.362 2.363 0.0000 
Madani (1,0,2) 0.73 0.0011 2.499 2.501 0.0000 
Zalingi (1,0,2) 0.69 0.0019 2.884 2.885 0.0000 
Wadi Halfa (1,0,2) 0.345 1.69 3.366 3.368 0.0000 
Dongola (1,0,2) 0.46 0.038 3.539 3.541 0.0000 
Atbara (1,0,1) 0.38 1.472 2.201 2.202 0.0000 
Edduim (1,0,2) 0.69 0.073 3.214 3.216 0.0000 
Tokar (2,0,1) 0.39 1.47 2.931 2.933 0.0000 
Station6 (1,0,1) 0.38 1.48 3.631 3.630 0.0000 

 

Şekil 4.2.’de gerçek ve tahmin ET0 değerlerinin dağlım grafiklerini 

gösterilmektedir. Bu grafiklerde, tahmin edilen referans evapotranspirasyonun 

değerleri, gerçek değerleri ile ne kadar uyumlu ve bağlı olduğunu gösterilmektedir.  
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Şekil 4. 3. ASCE PM ETo ve tahmin referans evapotranpirasyon değerlerinin karşılaştırılması 

 
Çok değişkenli ARIMA modelleri, modelin uyum iyiliğini düzeltilmiş R2 ve 

hatayı artıracaktır. Ayrıca zayıf tahmin edilen modeli yapılacaktır. Az parametreli 

modeller, aşırı parametreli modellerden daha iyi sonuçlar vermektedir.  

 Başka deyişle, ARIMA modelleri, referans evapotranspirasyon parametresinde 

tatmin edici sonuçlar elde etmiştir ancak, birçok değişkene sahip ARIMA modellerinin 

modelin uyum iyiliğini etkilediğini ve onu kötü tahmin edilen bir model haline 

getirdiğini ve bunun da modellerin performansını düşürdüğünü belirtmek gerekir. Bu 

nedenle, parsimonious modeller aşırı parametreli modellerden daha iyi sonuçlar verir. 

 
4.2. Enterpolasyon Teknikleri 

Bu bölümde, günlük referans evapotranspirasyondan elde edilen günlük referans 

evapotranspirasyon değerleri, boylam, enlem ve yükseklik koordinatları olan konum 

bilgileri kullanılarak (Tablo 4.3.) sunulan 120 istasyon ile ilgili mekansal dağılım 

haritaları oluşturmak için farklı enterpolasyon yöntemleri kullanılmıştır. Jeoistatistik 

analizin sonuçları aşağıda verilmiştir.  

Bu bölümde Yarı variogram parametreleri (Nugget C0, sill C0+C ve range A) 

kullanılarak noktaların uzamsal otokorelasyonunu gösteren sıradan kriging 

modellerini tahmin etmek için Yarı variogram modellerinin uydurma testleri 

uygulanmaktadır (Vieira et al., 1983).  

Önceki bölümde belirtildiği gibi, Kriging enterpolasyon yöntemlerini kullanmak 

için verilerin dağılım fonksiyonu analiz edilmiş ve tüm verilerin Sudan'daki 33 ana  

konum bilgilerine dayanarak ET0'a dayalı normal bir olasılık dağılımına sahip olduğu 

bulunmuştur. Daha sonra verilerin semivariogram değerleri hesaplanmış ve en uygun 

modeller en yüksek düzeltilmiş R2 ve RSS değerlerinin artık toplamlarının en düşük 

R2= 0.57 R2= 0.64 
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değeri esas alınarak belirlenmiştir. Verilerin uzamsal otokorelasyonu, ET0 verilerinin 

uzamsal korelasyonunu gösteren Tablo 4.3.'de gösterildiği gibi Nugget, Sill, ve Range 

parametrelerine göre incelenmiştir. 

Öte yandan, Mayıs, Temmuz, Ağustos, Eylül, Ekim ve Kasım aylarında 

gözlemlere çok yakın noktalar arasındaki en küçük mesafelerin, konumsal olarak 

ilişkili olan ve birbirinden ayrılan gözlemlerden daha benzer değerlere sahip olduğu 

gözlenmiştir. 

 

Tablo 4. 3. ET0 değerlerine ait izotropik yarıvariogram bileşenleri 

Aylar Model Nugget (C0)  Sill(C0+C) Range(A) R2 RSS 
Ocak Spherical 0.522 2.05 106.61 0.22 1.97 
Şubat Spherical 2.944 8.823 404.20 0.231 1.78 
Mart Linear 2.523 2.523 10.89 0.66 0.577 
Nisan Gaussian 2.37 4.457 12.09 0.243 1.28 
Mayıs Spherical 1.297 3.152 12.68 0.958 0.119 
Haziran Spherical 0.067 1.431 1.01 0.163 0.069 
Temmuz Spherical 0.800 2.222 28.13 0.840 0.096 
Ağustos Exponential 1.146 2.293 6.360 0.68 0.221 
Eylül Gaussian 0.802 1.825 4.550 0.98 0.013 
Ekim Spherical 0.820 2.654 7.640 0.89 0.299 
Kasım Exponential 0.970 4.157 1.660 0.68 1.530 
Aralık Spherical 3.289 7.553 74.90 0.154 1.03 

 

 Gösterildiği gibi, en önemli indeksler R2 ve RSS değerleri olup, gözlemler ile 

yarı değerler arasındaki mesafeye (ET0) göre yarı değişkenlik parametrelerinin 

çizilmesiyle ET0 değerleri arasındaki uzamsal otokorelasyonu göstermiştir.  

 En yüksek R2 değerleri Eylül, Mayıs, Ekim ve Temmuz aylarında 0.98, 0.95, 

0.84 ve 0.89 iken, orta değerler Mart, Ağustos ve Kasım aylarında sırasıyla 0.66,0.68 

ve 0.68 olarak gözlenmiştir. Her ayın yarı variogram modelleri Şekil 4.3.'de görüldüğü 

gibi yarı variogram parametrelerinin değerleri ile çizilmiştir. Ayrıca Eylül, Haziran, 

Ocak, Temmuz, ve Mayıs aylarında sırasıyla  modellerle 0.013, 0.069, 0.085, 0.069 ve 

0.11 olan en düşük RSS değerleri elde edilmiştir. Bu bölümde R2 ve RSS değerlerine 

göre gaussian ve spherical modelleri en iyi modeller olarak kabul edilmektedir. 

Şekil 4.4.'de görüldüğü gibi, Ocak ayındaki yarı değişkenlik değerlerinin, yarı 

değişkenliğin artmayı bıraktığı mesafeyi gösteren daha karmaşık veya gürültülü bir 

model göstermesi muhtemeldir ve bu, daha az benzer değerlere sahip daha uzak 

noktaları göstermiştir; bu, mesafenin mekansal olarak otokorelasyon olmadığı 

anlamına gelmektedir. Aynı şey Şubat, Mart, Nisan, ve Aralık aylarında da açıkça 

görülmüştür. Aşağıdaki grafiklerine göre, konumsal mesafelerin daha uzak 
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özelliklerin belirli bir mesafede daha büyük bir yarı değişkenliğe veya daha az ilişkili 

değerlere sahip olduğunu anlamına gelmiştir.  
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Şekil 4. 4. Yarıvariogram  modellerinin  parametreleri 

 



64 
 

 
4.2.1. Ordinary Kriging Yönteminin Değerlendirilmesi 

 kriging yöntemi, ET0 değerlerini enterpolasyon Modelleri olan yarı değişkenlik 

parametrelerine dayanarak sıradan kriging modellerini tahmin etmek için 

kullanılmıştır. Bu modeller aylık ET0 verileri için uygulanmıştır. Her ay için RMSE, 

MAE ve MBE hata değerlerine sahip modellerin gösterildiği Tablo 4.4.'de sunulduğu 

gibi, M.E'nin en düşük değeri Şubat ayında -0.00135, en yüksek değeri Nisan ayında 

1.30 idi. Diğer taraftan en düşük değerler sırasıyla Ocak, Şubat, Nisan, Haziran ve 

Aralık aylarında 0.034, 0.24, 0.22, 0.16 ve 0.04 olarak gözlenmiştir. RMSE'NİN en 

düşük değeri Nisan ayında 0.059, en yüksek değeri ise Mart ayında 2,59 olarak 

gerçekleşmiştir. MSE'nin en düşük değeri Temmuz ayında -0.003, en yüksek değeri 

Nisan ayında 1.0095 ortaya çıkmıştır. 

 
Tablo 4. 4. Referans evapotranspirasyonun Ordinary kriging yöntemi ile tahminin içi,n modeller ve 

hata değerleri 

Ay Model M.E RMSE M.S. E 
Ocak Spherical 0.034 0.878 0.022 
Şubat Spherical -0.013 1.668 -0.010 
Mart Linear 0.100 2.59 0.0228 
Nisan Gaussian 1.30 0.059 1.0095 
Mayıs Spherical -0.026 1.28 -0.001 
Haziran Spherical 0.07 1.168 0.041 
Temmuz Spherical -0.037 0.956 -0.003 
Ağustos Exponential -0.015 1.35 -0.017 
Eylül Gaussian 0.009 1.039 0.0131 
Ekim Spherical -0.004 1.216 -0.003 
Kasım Exponential 0.0138 1.528 0.0085 
Aralık  Spherical 0.0329 1.694 0.017 

 

Şekil 4.4. ve  4.5.'de gösterildiği gibi, hesaplanan ET0 ile karşılaştırılarak tahmin 

edilen değerlerin doğruluğunu tahmin etmek için hata diyagramlarının sayısı tüm aylar 

boyunca Kök Ortalama Kare Standart Hatası (RMSE) temel alınarak çizilmiş ve 

hesaplanmıştır.  

 

 

 

 

 

 

 



65 
 

 

 

 

 

 

Ocak 

Şubat 

Mart 



66 
 

 

 

  

 

 

Nisan 

Mayıs 

Haziran 



67 
 

 

 

  

 

Temmuz 

Ağustos 

Eylül 



68 
 

 

 

 
Şekil 4. 5. Her ayın hata grafiklerinin dağılımları 
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Şekil 4. 6. ASCE PM ve tahmin edilen ET0’nın değerlerinin dağılım grafikleri 

Ekim 

Kasım 
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Aylık ET0 verilerinin mekansal dağılım haritaları, farklı meteoroloji istasyonlarının 

boylamı, enlemi ve yüksekliği olan konum bilgilerine göre oluşturulmaktadır (Şekil 

4.6). 

Mekansal haritalara göre, Ocak, Şubat ve Mart aylarında Sudan'ın Kuzey, güney 

ve doğu kesiminde yüksek oranda ET0 vardı. Nisan ayında, ET0 değerleri kuzeybatı, 

uzak batı ve Sudan'ın merkezinde elde edildi. Tüm doğu kısmı Mayıs, Haziran ve 

Temmuz aylarında çok yüksek ET0 oranlarından etkilenmektedir. Ağustos ayında, en 

yüksek oranlar kuzey ve doğu bölgelerinde yoğunlaştı. Öte yandan uzak kuzey ve 

batıda Eylül ve Ekim aylarında yüksek değerler gözlenmektedir. 

 Sudan'ın merkezi Kasım ayında en yüksek ET0 değerlerini gözlemlerken, Kuzey 

ve güney batı kısımları Aralık ayında yüksek değerler elde etti. Tüm bu farklı 

değişiklikler, ET0 değerini hesaplamak ve tahmin etmek için ana değişkenler olarak 

sıcaklık, rüzgar, güneş radyasyonu ve bağıl nem parametrelerini kullanan ASCE PM 

denklemini kullanarak ET0 değerlerini hesaplamak için kullanılan iklimsel 

değişkenlere bağlıdır. 

 

 

 

 

 

 

 

 

 

 

                                 

 

 

 

 

 

 

 

 



74 
 

 

 

 
                       Şekil 4. 7. Ordinary Kriging harıtası (Ocak ) 
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Şekil 4. 8. Ordinary Kriging harıtası (Şubat ) 
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           Şekil 4. 9. Ordinary Kriging harıtası (Mart ) 
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        Şekil 4. 10. Ordinary Kriging harıtası (Nisan) 
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Şekil 4. 11. Ordinary Kriging harıtası (Mayıs) 
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Şekil 4.12. Ordinary Kriging harıtası (Haziran) 
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Şekil 4. 13. Ordinary Kriging (Temmuz) 
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Şekil 4. 14. Ordinary Kriging (Ağustos) 
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Şekil 4. 15. Ordinary Kriging (Eylül) 
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Şekil 4. 16. Ordinary Kriging (Ekim) 
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Şekil 4. 17. Ordinary Kriging (Kasım) 
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Şekil 4. 18. Ordinary Kriging (Aralık) 
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4.2.2. Basit Kriging Yönteminin Değerlendirilmesi 

Sudan ın ET0 basit kriging yöntemiyle haritalanmasında semivariogram değerleri 

ve hata değerleri Tablo 4.5.'te verilmiştir.   Seçilen semivarioğram modellerinin 

performans göstergesi R2 değerlerine göre, en yüksek değerler Eylül 0.68 olan 0.961, 

0,90 ve orta değerleri Ağustos ayında gözlendi 0.834 ise, ve Kasım ayları, 0.682 

sırasıyla; en değerleri 0.02 olan, Eylül, Haziran, Ocak ve Temmuz aylarında 0.069, 

0,085 elde edilirken, ve 0.099 ocak alanı olan, Mayıs, Ekim ve Temmuz aylarında elde 

edilmiştir. Diğer taraftan, hata değerleri Tablo 4.5.'te gösterildiği gibi ay bazında 

modellerin doğruluğuna da belirtilmiştir. M.E'nin en düşük değeri Şubat ayında -0.22, 

en yüksek değeri Mayıs ayında 0.057 olarak elde eilmiştir. Ocak ayında en düşük 

RMSSE değeri 0.918, Mart ayında en yüksek değer 1.71 iken, Eylül ve Aralık 

aylarında sırasıyla 1.086 ve 0.002 olan en düşük ve en yüksek RMSSE değerleri elde 

edilmektedir. 

 
Tablo 4. 5.Yarı variogram parametrelerine göre basit Kriging modelleri 

Aylar Model R2 RSS M.E RMSE RMSSE 
Ocak Spherical 0.22 1.97 0.0086 0.918 0.904 
Şubat Exponential 0.231 1.78 -0.22 1.63 0.822 
Mart Gaussian 0.000 0.577 0.0013 1.68 0.971 
Nisan Spherical 0.243 1.28 -0.003 1.270 0.91 
Mayıs Gaussian 0.961 0.109 0.057 1.280 1.066 
Haziran Gaussian 0.163 0.069 0.025 1.191 0.955 
Temmuz Exponential 0.834 0.099 -0.004 0.95 0.905 
Ağustos Exponetial 0.68 0.221 -0.003 1.33 0.96 
Eylül Spherical 0.982 0.020 0.00008 1.033 1.086 
Ekim Gaussian 0.900 0.295 -0.0043 1.126 1.08 
Kasım Exponential 0.689 1.53 -0.020 1.22 1.07 
Aralık Spherical 0.154 1.13 0.051 1.71 0.002 

 

Penman -Montieth ET0 ve öngörülen değerler Şekil 4.8.'de görüldüğü gibi çizilmiştir. 

Bu, modellerin gelecekteki değerleri tahmin etmeye daha uygun hale getirmek için 

modellerin doğruluğunu tahmin eden tahminlerin hatalarını değerlendirmek için 

modellerin hatalarını şekil 4.7’de gösterilmiştir. 
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Şekil 4.19. Hataların aylara göre dağılım grafikleri 
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Şekil 4.20. ET0'ın gerçek ve öngörülen değerlerinin dağılım grafikleri 
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Şekil 4.9.’da Aylık ET0 verilerinin mekansal dağılım haritalarının, farklı 

meteoroloji istasyonlarının boylamı, enlemi ve yüksekliği olan konum bilgilerine göre 

oluşturulduğunu göstermektedir. Dağılım haritalarına göre Ocak ve Şubat aylarında 

Sudan'ın Kuzey, güney ve doğu kesimlerinde aynı aylarda daha yüksek olan normal 

kriging haritalarına kıyasla yüksek oranda ET0 görülmemiştir. Mart, Nisan ve Mayıs 

aylarında kuzeybatı, uzak batı ve Sudan'ın merkezinde ET0 değerleri elde edildi ve bu 

normal Kriging yönteminde aynı etkilenen oranlardı. Tüm doğu kısmı Mayıs, Haziran 

ve Temmuz aylarında çok yüksek ET0 oranlarından etkilenmektedir. Ağustos ayında, 

en yüksek oranlar kuzey ve doğu bölgelerinde yoğunlaştı. Öte yandan uzak kuzey ve 

batıda Eylül ve Ekim aylarında yüksek değerler gözlenmektedir. 
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Şekil 4. 21. Basit kriging harıtası (Ocak) 

Basit Kriging 
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Şekil 4.22. Basit Kriging Harıtası (Şubat) 

Basit Kriging 
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Şekil 4. 23. Basit Kriging harıtası (Mart) 

 

Basit Kriging 
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Şekil 4. 24. Basit kriging harıtası (Nisan) 

Basit Kriging 
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Şekil 4. 25. Basit kriging (Mayıs) 

Basit Kriging 
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Şekil 4. 26. Basit kriging (Haziran) 

Basit Kriging 
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Şekil 4. 27. Basit Kriging (Temmız) 

Basit Kriging 
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Şekil 4. 28. Basit Kriging harıtası (Ağustos) 

Basit Kriging 
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Şekil 4. 29. Basit Kriging harıtası (Eylül) 

Basit Kriging 
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Şekil 4. 30. Basit Kriging harıtası (Ekim) 

Basit Kriging 
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Şekil 4. 31. Basit Kriging harıtası (Kasım) 

Basit Kriging 
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Şekil 4. 32. Basit Kriging harıtası (Aralık) 

 

Şekil 4.10. ve 4.11.'a göre, ET0 gerçek ve öngörülen değerleri arasındaki hatalar 

ve karşılaştırmalar çizildi; bu, tüm noktalar arasındaki korelasyonu gözlemleyen 

regresyon çizgisi etrafındaki değerlerin dağılımını açıkça gösterilmiştir. 

 

 

 

Basit Kriging 
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4.2.3. Ters Mesafe Ağırlığının Yönteminin Değerlendirilmesi (IDW) 

Ters mesafe ağırlığı yöntemin RMSE değerleri çok yüksek olduğunu 

gösterilmiştir (Tablo 4.6). Basit kriging modellerine kıyasla her ay için en düşük 

RMSE değerlerini gösterir, bu da IDW yönteminin öngörülebilir modeller olmak 

için uygun olduğu anlamına gelir. Ayrıca, M.E değerleri de sıradan ve basit kriging 

modellerinin ortalama hatalarından daha düşüktür.  

 
 

Tablo 4. 6. Ters mesafe ağırlığı modelinin parametreleri (IDW) 

Ay RMSE M.E 
Ocak 0.95 0.147 
Şubat 0.295 1.70 
Mart 0.176 1.726 
Nisan 0.197 1.266 
Mayıs 0.325 1.268 

Haziran 0.211 1.17 
Temmuz 0.113 0.980 
Ağustos 0.214 1.343 

Eylül 0.199 1.326 
Ekim 0.223 1.304 
Kasım 0.218 1.301 
Aralık 1.66 0.02 

 

Şekil 4.10. ve 4.11.'a göre, ET0 gerçek ve öngörülen değerleri arasındaki hatalar 

ve karşılaştırmalar çizildi; bu, tüm noktalar arasındaki korelasyonu gözlemleyen 

regresyon çizgisi etrafındaki değerlerin dağılımını açıkça gösterilmiştir. 
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Şekil 4. 33. Hataların aylara göre dağılım grafikleri 

 

Ekim 

Kasım 

Aralık 
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Şekil 4.34. ETo'ın  ve öngörülen değerlerinin dağılım grafikleri 

 

Ekim 

Kasım 

Aralık 
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 Mekansal haritaları oluşturuldu ve Sudan'ın farklı bölgelerinde ET0 değerlerinde 

farklı değişiklikler gösterdi(Şekil 4.13). Mekansal haritalara göre Ocak ayında 

Sudan'ın tüm bölgelerinde mantıksal ET0  değerleri en az değer olarak görülmüştür. 

En yüksek değerler Şubat, Mart ve Nisan aylarında daha düşük değerler elde eden uzak 

doğu kısmı hariç tüm Sudan'da elde edilmiştir. Mayıs ayında güneybatı kısmı Sudan'ın 

diğer bölgelerine göre daha yüksek değerler gösterirken, en yüksek değerler Haziran 

ve Temmuz aylarında uzak kuzey ve uzak doğu'da (kızıldeniz eyaleti) elde edilmiştir. 

En yüksek değerler Ağustos ayında Sudan'ın uzak kuzeyindeydi. Kuzey eyaletlerinde, 

orta kesimlerde ve kuzeybatıda (Çöl) daha yüksek ET0 değerleri ile eylül ve Ekim 

ayları gözlenmiştir. Öte yandan, Sudan'ın çoğu eyaleti, hem Kasım hem de Aralık 

aylarında uzak doğu ve orta Sudan'da en az değerler elde edilmesi dışında yüksek 

değerlerden etkilenmiştir. 
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Şekil 4. 35. Ters Mesafe Ağırlığın harıtası (Ocak) 
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Şekil 4. 36. Ters Mesafe Ağırlığın harıtası ( Şubat) 
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Şekil 4. 37. Ters Mesafe Ağırlığın harıtası (Mart) 
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Şekil 4. 38. Ters Mesafe Ağırlığın harıtası (Nisan) 
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Şekil 4. 39. Ters Mesafe Ağırlığın (Mayıs) 
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Şekil 4. 40. Ters Mesafe Ağırlığın harıtası (Haziran) 
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Şekil 4. 41. Ters Mesafe Ağırlığın harıtası (Temmuz) 
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Şekil 4. 42. Ters Mesafe Ağırlıgın harıtası (Ağustos) 
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Şekil 4. 43. Ters Mesafe Ağırlığının harıtası ( Eylül) 
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Şekil 4. 44. Ters Mesafe Ağırlığın harıtası (Ekim) 
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Şekil 4. 45. Ters  Mesafe Ağırlığın harıtası (Kasım) 
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Şekil 4. 46. Ters Mesafe Ağırlığın harıtası (Aralık) 
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4.2.4. Mekansal Enterpolasyon Yöntemlerinin En iyi Modelleri 

 
Tablo 4.7. ve 4.8.’ye göre, jeostatik analiz yöntemlerinin en iyi modelleri kısaca 

her ay için en yüksek R2 ve en azından RSS değerlerine dayalı semivariance modelleri 

gösterdi ve Sıradan karşılaştırıldığında düşük, basit kriging ve IDW yöntemleri olan 

ara değerleme yöntemleri sunulmuştur. 

İlk olarak, Tablo 4.7.'de sunulan yarı değişkenlik parametreleri kullanılarak 

referans evapotranspirasyon değerlerinin uzamsal otokorelasyonunu göstermek için 

yarı değişkenlik modelleri kullanılmıştır. Her ay için en yüksek R2 ve en düşük RSS 

değerlerine dayanan uzamsal otokorelasyon yönteminin en iyi modellerini gösterir. 

Genel olarak, Spherical ve Gaussian modelleri diğer modellere göre daha iyi sonuçlar 

gösterip en iyi modeller olarak kabul edilmiştir. 

En yüksek R2 değerleri 0.958,0.84, 0.98,0.89, en düşük RSS değerleri ise Mayıs, 

Temmuz, Eylül ve Ekim aylarına göre 0.119, 0.096, 0.013, 0.299  bulunmuştur. 

 

Tablo 4. 7. R2 ve RSS değerlerine dayalı yarı varyans parametrelerini kullanan mekansal 
otokorelasyon yöntemlerinin en iyi modelleri 

  Ay          Model                 Nugget (C0)               Sill (C0+C)     Range(A)               R2              RSS 
Mayıs        Spherical                1.297                          3.152             12.68                  0.958           0.119 

Temmuz    Spherical                0.800                          2.222              28.13                  0.84             0.096 

Eylül         Gaussian                 0.802                          1.825              4.550                  0.98             0.013 

Ekim          Spherical                0.820                          2.654              7.640                  0.89            0.299 

 

Ayrıca, en iyi konumsal enterpolasyon yöntemleri, her ay için en az RMSE ve MSE 

değerlerine göre seçilmiştir. Modellerin çoğunun gösterildiğini belirtmek 

gerektirmektedir. En iyi sonuçlar Spherical ve Gaussian modelleriydi. 
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Tablo 4. 8. RMSE ve MSE değerlerine dayalı en iyi uzamsal enterpolasyon yöntemleri 

  Ay                                    Seçilen Model                                             RMSE                              M.E        
Ocak                          Ordinary Kriging/Spherical                                  0.87                                0.034 

Şubat                                              IDW                                                   0.295                              1.70 

Mart                                                IDW                                                  0.176                               1.72 

Nisan                          Ordinary Kriging/Gaussian                                   0.059                               1.30 

Mayıs                                             IDW                                                   0.325                               1.266 

Haziran                       Basit Kriging/Gaussian                                         1.191                               0.025 

Temmuz                                         IDW                                                   0.113                               0.98 

Ağustos                                          IDW                                                   0.214                               1.343 

Eylül                            Basit Kriging/Spherical                                        1.033                              -0.003 

Ekim                                              IDW                                                   0.223                                1.304 

Kasım                                            IDW                                                   0.218                                1.301 

Aralık                                            IDW                                                   0.166                                 0.02 

 

Şekil 4.13.'de, farklı meteoroloji istasyonlarının boylamı, enlemi ve yüksekliği 

olan konum bilgilerine göre Sudan'daki farklı konumların aylık ET0 değerlerinin 

dağılımını göstermek için mekansal haritalar oluşturulmuştur. Farklı yöntemlere 

ilişkin haritalara göre, Ocak, Şubat ve Mart aylarında Sudan'ın Kuzey, güney ve doğu 

kesiminde yüksek oranda ET0 vardı. Nisan ayında, ET0 değerleri kuzeybatı, uzak batı 

ve Sudan'ın merkezinde elde edildi. Tüm doğu kısmı Mayıs, Haziran ve Temmuz 

aylarında çok yüksek ET0  oranlarından etkilenmektedir.  

Ağustos ayında, en yüksek oranlar kuzey ve doğu bölgelerinde yoğunlaştı. Öte 

yandan uzak kuzey ve batıda Eylül ve Ekim aylarında yüksek değerler gözlenmiştir. 

Sudan'ın merkezi Kasım ayında en yüksek ET0 değerlerini gözlemlerken, Kuzey ve 

güney batı kısımları Aralık ayında yüksek değerler elde etmektedir. Enterpolasyon 

yöntemleri arasındaki farklar farklı konumlara, zaman aralıklarına, veri sayısına, 

enterpolasyon işlevlerine ve her yöntem için farklı doğrulukları gösteren diğer 

değişkenlere bağlıdır (Kamali et al., 2015). Sudan'da Ocak ayın boyunca, genellikle 

ortalama maksimum sıcaklık 23 ° C ile yüksek ila 36 ° C ile çok yüksek ila 36 ° C ile 

çok yüksek arasında değişir, bu da kışın bile havanın gün ortasında sıcak olduğu ve 

gece vaktinde sıcaklığı yaklaşık 19 ° C'ye düşmeye başlamaktadır. Bu nedenle ET0  

oranları gün ortasında artmaktadır. Enterpolasyon teknikleri, farklı sıcaklığın 

değişikliklerinden dolayı etkilenmiştir.  
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Sudan'nın iklimi çok farklı olduğu için enterpolasyon tekniklerindeki değişiklikleri 

olmuştur. Sudan tropikal bölgede yer bulunmaktadır. Bu nedenle Sudan iklim 

bölgeleri genellikle çöl ikliminden tropikal iklime kadar değişmiştir. Dağılımı kuzey 

Sudan'daki sıcak çöl iklimine benzemektedir. İklim, Kızıldeniz kıyısındaki Akdeniz 

iklimine, kuzey-orta Sudan'daki yarı çöl iklimine, Güney-Orta ve batı Sudan'daki zayıf 

savan iklimine, ardından Güney Sudan'daki zengin savan iklimine ve Güney Sudan'ın 

aşırı tropikal iklimine sahip olduğu için enterpolasyon yöntemleri arasındaki farklar 

farklı aylara göre değişmiştir. Sudan’da Ocak ayında yaklaşık 31 °C derece yüksek 

sıcaklıklarla kış bile sıcaktır, ancak bazen geceleri soğuk olabilir, aslında rekor soğuk 

1°C derecedir ve ilkbaharda sıcaklıklar hızla yükselir ve 40 °C dereceye zaten Nisan 

ayında ve Nisan-Mayıs aylarında sıcaklık bazen 47 °C dereceye ulaşır. Temmuz ve 

Ağustos aylarında (Sonbahar mevsimi) yağmurla birlikte mevsimsel rüzgarın etkisi 

altında sıcaklık biraz düşer, ancak yaklaşık 38-39 °C derecede oldukça yüksek kalır, 

ardından sonbaharın sonunda Ekim ve Kasım ayları arasında hafifçe yükselir. Bu 

açısından, Sudan’ın farklı iklimsel bölgeleri olduğu için ET0 değerlerini değişip 

enterpolasyonun tekniklerin parametreleri etkilenmiştir. 

 

4.3. Çoklu Doğrusal Regresyon Yöntemi 

Bu çalışmanın bölümünde, modellerin performansını istatistiksel olarak 

değerlendirmek için yapay zeka yöntemleri ile karşılaştırmak amacıyla çoklu doğrusal 

regresyon yöntemi uygulanarak standart hata, T-testi, F, ve P değerlerine göre 

modelleri değerlendirilip T- değerinden bu ilişkinin istatistiksel açıdan anlamlı 

olduğunu gösterilmiştir. Ayrıca, istatistiksel açıdan anlamlı pozitif doğrusal bir ilişki 

vardır (Tablo 4.15). 
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Tablo 4. 9. Sudan'da  ETo için çoklu doğrusal  regresyonun parametrlerin özeti 

    Eğitim    

Girdi Katsayı Standart 
Hata 

 T değeri Olasılık 
P-değeri 

F  R2 

Intercept 
Tort 
Rn 

   49.59 
   -0.83 
   -2.11 
 

0.461 
0.0097 
0.0199 

 107.37 
-85.64 

-105.96 
 

0 
0 
0 

5613.97 0.70 

Intercept 
Tort 
U2 
Rn 

16.76 
-0.272 
1.1008 
-0.883 

      
    

0.168 
0.002 
0.006 

0.0093 
 

 99.47 
-94.12 
158.42 
-95.01 

0 
0 
0 
0 
 

15875.7 0.93 

Intrcept 
Tort 
U2 
RH 
Rn 

5.628 
-0.123 
0.996 
-0.045 
0.037 

0.093 
0.001 

0.0030 
0.0002 
0.0063 

 59.96 
-83.68 
329.50 
-185.05 
5.840 

0 
0 
0 
0 
0 

73663.79 0.98 

    Test    

Intercept 
Tort 
Rn 

 
 

   24.42 
    -0.35 
    -1.03 

0.453 
0.008 
0.026 

 53.85 
-43.19 
-38.99              

0 
0 
0 

1031.94 0.60 

Intercept 
Tort 
U2 
Rn 

15.14 
-0.24 
1.08 
-0.79 

0.238 
0.004 
0.010 
0.013 

 63.40 
-58.88 

107.183 
-60.27 

0 
0 
0 
0 

   6680.34 0.92 

Intercept 
Tort 
U2 
RH 
Rn 

4.827 
-0.106 
1.029 
-0.04 
0.051 

0.118 
0.001 
0.003 
0.000 

0.0078 

 40.67 
-56.49 
259.21 
-141.68 

6.53 

0 
0 
0 
0 
0 

   3764.31        0.98 

 

Ayrıca, R2,  MAE, RMSE ve NSE değerlerine göre modelleri  tablo 4.16'te gösterildiği 

gibi değerlendirilmiştir. Eğitim ve test veri setlerindeki tüm değişkenlerin dayalı 

modeli en iyi çıkmıştır. Başka bir deyişle, en düşük RMSE ve MAE değerlerine sahip  

tüm değişkenlerine dayalı modelini seçilmiştir. Eğitim ve test veri setlerinde R2 değeri 

0.97 çıkmıştır. Öte yandan, 0 ile 1 arasındaki NSE değeri, çoklu doğrusal regresyon 

modeli iyi tahmin edici olduğunu göstermiştir (Ritter and Munoz-Carpena, 2013) 

Başka bir ifadeyle, daha öngörücü beceriye sahip bir modeldir. Eğitim ve test 

verilerinde Tablo 4.16’da tüm kombinasyonlarına dayanan modelin NSE değerleri 

0.99 olarak elde edilmiştir. 
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Tablo 4. 10. Eğitim ve test aşamalarındaki çoklu doğrusal regresyon modellerinin MAE, RMSE ve R2 
istatistikleri 

 
Girdi                      Eğitim 

MAE  RMSE  NSE R2 
Tort,Rn       1.49         1.80       0.84                      0.51 
Tort,U2,Rn       0.52                    0.64       0.98                      0.86 
Tort,,U2,Rn,RH       0.20           0.27       0.99                      0.97 
       
   Test    
Tort,Rn      1.01         1.24      0.91                      0.60 
Tort,U2,Rn      1.51         0.62      0.98                      0.85 
Tort,U2,Rn,RH      0.38         0.43      0.99                      0.97 

 
Şekil 4.29.'de gösterildiği gibi, eğitim ve test veri setlerinde sıcaklık, güneş 

radyasyonu, rüzgar hızı ve nem parametrelerinin kombinasyonlarına dayanan 

modellerin regresyonun grafiklerini gösterilmiştir. Çoklu regresyon tahmini ve ASCE 

hesaplanan referans evapotranspirasyonun değerleri arasındaki korelasyonu 

bulunmuştur. Çoklu lineer regresyon modeli, yapay zeka yöntemleri ile 

karşılandığında, sonuçların doğrulukları çok iyi bulunmuştur. Çoklu lineer regresyon  

modeli istatistiksel olarak çok iyi sonuçlar göstermiştir. Başka bir ifadeyle, iyi 

öngörücü bir modeldir. 
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Şekil 4. 47. Farklı iklim kombinasyounlarına  dayalı modellerle tahmin edilen ETo ve ASCE PM ETo 
karşılaştırılması (Eğitim ve test) 
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4.4. Yapay Zeka Uygulamaları 

Sudanın ET0 değerlerinin tahmininde yapay zeka uygulamaları olarak çok 

katmanlı yapay sinir ağları, Bulanık yapay sinir ağları yöntemleri kullanılmıştır. 

Çalışmanın bu bölümünde ET0değerlerini tahmin etmek kullanılan değişkenler 

ortalama sıcaklık (Tort), rüzgar hızı (W m/s), güneş radyasyonu (Rs MJ/m2/gün), ve 

bağıl nemdir (RH%). Referans evapotranspirasyon değerleri, Sudan'ın farklı 

bölgelerinden 38 yıl ilişkin toplanan günlük meteorolojik veriler kullanılarak 

hesaplanmıştır (1982-2020). Referans evapotranspirasyon değerlerini hesaplamak için 

ASCE Penman-Monteith denklemi kullanılmıştır. Referans bitki su tüketimi tahmin 

etmek için veriler eğitim ve test veri setlerine ayrılmıştır. Eğitim ve test verileri için 

her bir değişkenin tanımlayıcı istatistikleri Tablo 4.9'da gösterilmiştir. 

 
Tablo 4. 11. Eğitim ve Test için İklim Değişkenlerinin Tanımlayıcı İstatistikleri 

   Eğitim     
Değişken Ortalama Maksimum Minimum SD Basıkılık Çarpıklık 
Sıcaklık 28.04 40.07 18.23 3.166 -0.092 -0.095 
Rüzgar 3.72 10.25 0.316 4.01 3.99 4.45 
Bağıl Nem 39.21 90.94 4.44 22.6 -1.29 0.31 
Güneş Radyosnu 8.12 11.28 4.07 1.54 -0.6 0.55 
   Test    
Sıcaklık 30.04 38.07 19.45 3.33 -0.15 -0.41 
Rüzgar 3.45 6.70 0.86 1.03 -0.24 0.09 
Bağıl Nem 38.01 89.5 9.12 19.84 -0.77 0.63 
Güneş Radyosnu 9.54 12.14 6.63 1.03 -0.59 -0.10 

 

4.4.1. Çok Katmanlı Yapay Sinir Ağları Yöntemi 

 Her bir değişkenin ET0 parametresi üzerindeki etkinliğini göstermek için sıcaklık, 

rüzgar, güneş radyasyonu, ve bağıl nem olan ayrılmış değişkenlere dayanarak dört 

model üretilmiştir (Tablo 4.10). Ayrıca, diğer modeller günlük referans değerlerini 

tahmin etmek için değişken kombinasyonlarını göstermektedir. Gizli ve çıktı 

katmanlarında, tansing ve purelin fonksiyonları kullanılmış ve eğitim algoritması 

Levenberg-Marquardt algoritması uygulanılmıştır. Tablo 4.10.'da gösterildiği gibi, 

günlük referans evapotranspirasyonun tahmin edilmesinde sıcaklık tahmin sürecinde 

orta etkinlik gösteren diğerlerdir ve ayrılmış değişkenlere kıyasla değer değişkenler 

güçlü bir şekilde etkilenmiştir. Sıcaklık modelin eğitim ve test verilerin R2 değerleri 

sırasıyla 0.74 ve 0.731. Rüzgar modeli için eğitim ve test veri setinin R2 değerleri 0.612 

ve 0.563 bulunmuştur. Güneş radyosunu modeli için R2 değerleri sırasıyla 0.72 ve 

0.717 dir.  
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Sıcaklık ve Güneş radyosunu R2 değerleri, eğitim ve test verileri için sırasıyla 

0.863 ve 0.8315tir. Sıcaklık, Rüzgar ve Bağıl nem R2 değerleri sırasıyla 0.959 ve 0.955 

tir. Bütün değişkenlerin kombinasyonları, günlük referans evapotranspirasyonu 

tahmin etmek için en iyi model gösterilmiştir. Eğitim ve test R2 değerleri sırasıyla 

0.9991 ve 0.9996 elde edilmiştir.   

Güneş radyasyonun parametresine dayanan model, modelin doğruluğunu 

azaltmış, böylece güneş radyasyonu parametresi yerine girdi parametresi olarak güneş 

sürelerinin kullanılması tahmin gücünü artırmıştır (Pour-Ali Baba et al., 2013). 

 
Tablo 4. 12. Eğitim ve test veri sitelerindeki ÇKYSA modellerinin istatistikleri 

Girdi 
Aktivasyounun 

Fonksiyonu 
  

Sinir 
sayısı 

Eğitim   Test   

 Gizli Çıkış   RMSE R2 RMSE R2 

Tort. Tansig Purelin 1 1.2 0.734 1.21 0.731 

U2 Tansig Purelin 1 0.83 0.612 0.88 0.563 

Rn Tansig Purelin 1 1.12 0.72 1.13 0.717 

Tort, Rn Tansig Purelin 3 0.904 0.863 0.982 0.832 

T, U2, Rn Tansig Purelin 5 0.7 0.956 0.701 0.959 

T, U2, Rn, and RH Tansig Purelin 5 0.0021 0.9991 0.0008 0.9996 

 

Şekil 4.14.'de gösterildiği gibi, sıcaklık modelinde, YSA tahmini ET0 ve ASCE  

Penman–Monteith ETo değerleri doğrusal regresyon grafikleri olarak çizilmiştir. Her 

veri kümesi için Penman–Monteith ET0 değerleri ile sıcaklık modelin tahmin edilen 

ET0 değerleri arasındaki regresyon ilişkisini göstermiştir. 
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Şekil 4. 48  ÇKYSA ile tahmin edilen ETo  (mm / gün) ve ASCE Penman–Monteith  karşılaştırılması 

 
Rüzgar parametresinin girdi olarak kullanıldığı model Şekil 4.15.'de YSA 

tahmin edilen ET0 ve ASCE Penman Monteith ETo değerleri arasındaki regresyon 

grafiği çizilmiştir. Regresyon grafiğine göre, Sudan'ın kurak ve yarı kurak bir iklime 

sahip olduğu ve rüzgara dayalı modelin sonuçlarını net bir şekilde etkilediği bilinen 

bir parametre olduğu şeklinde gösterilmiştir.  
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Şekil 4. 49. ÇKYSA ile tahmin edilen ETo  (mm / gün) ve ASCE Penman–Monteith  karşılaştırılması 

 

Şekil 4.16'ye göre, güneş radyasyonun modelinde YSA tahmin edilen ET0  ve 

ASCE Penman–Monteith ET0 değerlerin arasındaki korelasyonu gösterilmiştir.  

 

 

 

 



141 
 

 

 

 
Şekil 4. 50.  ÇKYSA tahmin ET edilen ETo (mm / gün) ve ASCE Penman Monthith ETo  

karşılaştırlması 

 
Diğer taraftan, Şekil 4.17.'te gösterildiği gibi, orta sıcaklık ve rüzgar hızı  

kombinasyonun modelinde, YSA tahmin edilen ET0  ve ASCE Penman Monthith ETo  

değerlerin arasındaki regresyonu gösterilmiştir. R2 değerlere göre, sıcaklık ve rüzgar 

modeli daha güçlü olup etkilendiği gösterilmiştir. 
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Şekil 4. 51. ÇKYSA tahmin edilen ETo  ve ASCE Penman Monthieth ETo  değerlerinin 

Karşılaştırlması 

 
Şekil 4.18.'da gösterildiği gibi. sıcaklık, rüzgar, ve bağıl nem modelinde YSA 

tahmin edilen ve ASCE Penman Monthieth ETo  değerleri arasında daha yüksek bir 

ilişki göstermiştir.  
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Şekil 4. 52. ÇKYSA tahmin edilen ETo  ve ASCE Penman Monthith ETo karşılaştırılması 

 
Şekil 4.19.'ye göre. Tüm değişkenlere dayanan model, ASCE Penman Monthieth 

ve öngörülen ET0  değerlerinden yüksek R2 değerlerinin elde edildiğini gösteren iyi 

modeldir.  
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Şekil 4. 53. ÇKYSA tahmin edilen ETo  ve ASCE Penman Monthith ETo karşılaştırılması 

 
4.4.2. Bulanık Yapay Sinir Ağları (ANFIS)  

 
Farklı değişken kombinasyonları kullanılarak Tablo 4.11'da gösterildiği gibi 

ANFIS modelleri uygulanmıştır. RMSE ve R2 değerlerine dayanan en iyi modelleri 

gözlemlenmiştir. Her bir değişkenin ET0 parametresi üzerindeki etkinliğini göstermek 

için sıcaklık, rüzgar, güneş radyasyonu, ve bağıl nem olan ayrılmış değişkenlere 

dayanarak dört model üretilmiştir. Ayrıca, diğer modeller günlük referans değerlerini 

tahmin etmek için değişken kombinasyonlarını gösterilmiştir. Sıcaklık modelin R2 

değerleri, eğitim ve test kümesi için sırasıyla 0.76 ve 0.74'dir. Rüzgara dayalı 

modelinde R2 değerleri 0.579 ve 0.54dir. Ayrıca, Güneş radyasyonu dayalı modelinde 

R2 değerleri sırasıyla eğitim ve test veri setleri için 0.652 ve 0.63 idi. Sıcaklık ve güneş 

radyasyonu modeli, diğer değişkenlerin modellerine göre çok iyi sonuçlar ve yüksek 

sonuçlar elde edilmiştir. Eğitim ve test R2 değerleri sırasıyla 0.8736 ve 0.8296dır.  

Ancak sıcaklık, rüzgar ve bağıl nem modelin R2 değerleri sırasıyla 0.96 ve 0.94 tir. 
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Bütün değişkenlerin kombinasyonları, günlük referans evapotranspirasyonu tahmin 

etmek için en iyi model çıkmıştır. Eğitim ve test R2 değerleri sırasıyla 0.9947 ve 

0.9926 dir.   

 

Tablo 4. 13. Eğitim ve test değerlenme veri kümelerinde ANFIS modellerinin istatistikleri 

Girdi Model Aktivasyon  

Fonksyonu 

   Eğitim     Test  

   RMSE   R2 RMSE   R2 

Tort GP,Trimf3mf Lineer 1.017 0.76 1.156 0.74 

U2 GP,Gauss3mf Lineer  1.212 0.579 1.197 0.549 

Rn GP,Gauss3mf Lineer  0.88 0.652 1.127 0.63 

Tort, Rn GP,Gauss33mf Constant 0.834 0.874 0.96 0.836 

Tort, U2, Rn GP,Trimf333mf Lineer  0.257 0.96 0.344 0.942 

Tort,U2,Rn,RH GP,Gaussf3333mf Lineer  0.005 0.9947 0.017 0.9926 

 

Şekil 4.20.'de gösterildiği gibi. ANFIS tahmini ET0 ve Sıcaklık modelinde ASCE 

PM ET0 değerleri doğrusal regresyon grafikleri olarak çizilmiştir. R2 değerlerine göre, 

sıcaklık parametresinin tek değişken etkili olmadığını gösterilmiştir. Referans 

evapotranspirasyonu tahmin etmek için değer iklim değişkenleri ile kombinasyon 

edilmesi gerekmektedir.  
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Şekil 4. 54. ANFIS tahmini ETo  (mm / gün) ve ASCE PM ETo (mm/gün) karşılaştırılması 

 
Şekil 4.21.'de gösterildiği gibi rüzgar modelinde, referans evapotranspirasyon 

değerleri üzerinde çok etkili olmuştur. Korelasyon grafiğine göre, rüzgara dayanan 

modelinde tahmin edilen referans evapotranspirasyon değerleri ve ASCE PM referans 

evapotranspirasyon değerleri arasındaki korelasyon yüksek oranda birbiriyle ilişkili 

olduğunu gösterilmiştir. Ayrıca, referans evapotranspirasyonu tahmin etmek için 

rüzgar parametresi etkili olduğu görülmektedir. 
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Şekil 4. 55. ANFIS tahmini ETo  (mm / gün) ve ASCE PM ET o(mm/gün) karşılaştırılması 

 
ANFIS tahmini, ÇKYSA tahmine göre  performansı daha az yüksekti, başka 

klemlerle ANFIS modeli, ANNS’tan daha iyidir. Grafiğe göre, güneş radyasyonuun 

modelinde ÇKYSA tahmin edilen ETo   ve ASCE Penman monthieth ETo  değerlerin 

arasındaki korelasyonu gösterilmiştir (Şekil 4.22). Güneş radyasyonun parametresine 

dayanan model, modelin doğruluğunu arttırmak için radyasyonu parametresinin yerine 

kaydedilen güneş saatleri kullanılabilmektedir (Pour-Ali Baba et al., 2013). 
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Şekil 4. 56. ANFIS tahmini  ETo  (mm / gün) ve ASCE PM ETo(mm/gün) karşılaştırılması 

 

Diğer taraftan, değişkenlerin kombinasyonları genel olarak grafikler ’de 

gösterildiği gibi referans evapotranspirasyon oranları üzerinde daha etkili 

gösterilmiştir.  Şekil 4.23.’ya göre, sıcaklık ve güneş  radyasyonu parametrelerinin 

tahmin edilen ET0 değerleri ve ASCE PM hesaplanan ET0’nın değerlerin arasındaki 

ilişki  çizilmiştir. Eğitim ve test R2 değerlerine göre, sıcaklık ve rüzgar modeli güçlü 

olduğunu çıkmıştır. 
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Şekil 4. 57. Sıcaklık (C0) ve Güneş  radyosunu dayalı model, ASCE PM ET 0 ve ET 0 tahmini  

(mm/gün) karşılaştırılması 

 
Şekil 4.24.'de gösterildiği gibi, sıcaklık, rüzgar ve güneş radyasyonu 

parametrelerinin kombinasyonuna dayanan model, tahmin edilen ve ASCE hesaplanan 

ET0 değerleri arasında daha yüksek bir ilişki bulunmuştur.  
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Şekil 4. 58. Sıcaklık, Rüzgar, ve güneş radyosununa dayalı model, tahmin ve ASCE heaplanan  ETo 
karşılaştırılması 

  

Şekil 4.25.’de tüm değişkenlere dayanan modelinde, ASCE PM hesaplanan ve 

öngörülen ET0’nın değerlerin arasındaki ilişkinin grafiği çizilmiştir.  R2 değerine göre, 

en iyi bir model bulunmuştur.  

 

 

 

  

 

Tort,U2,ve Rn Eğitim Modeli 

Tort,U2, ve Rn Test Modeli 
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Şekil 4. 59. Sıcaklık, rüzgar, güneş radyosunu, ve bağıl nem dayalı model, gerçek ve tahmin    ET0 
karşılaştırılması 

 
 Antonopoulos and Antonopoulos (2017) sınırlı meteorolojik değişkenler kullanarak 

YSA ile tahminler yapmış ve sonuçları farklı ampirik yöntemlerle karşılaştırmıştır. 

Farklı girdi varyasyonları ile optimum girdi kombinasyonu belirlenmiştir. Beş yıllık 

günlük verilerin normalleştirilmesi sonucunda YSA modeli ve diğer deterministik 

modellerin sonuçları, yaygın olarak kabul gören Penman & Monteith yönteminin 

sonuçları dikkate alınarak değerlendirilmiştir. Tahminler için en uygun YSA yapısı (4-

6-1) elde edilmiş ve daha az sayıda sıcaklık ve güneş radyasyonu değişkenin 

kullanılmasıyla daha iyi tahminler elde edilebileceği sonucuna varılmıştır. Buna göre, 

elde edilen sonuçları karşılaştığında bu anlamda çok iyi sonuçları göstermiştir. 

Özellikle, sıcaklık, güneş radyasyonu, rüzgar, ve nem bağıl bir araya getirince bir  

modeli oluşturularak yüksek regresyon katsayısı verilmiştir. Modelin R 2   99% 

değerini verilmiştir. Ayrıca, tüm değişkenlerine dayanan modelin hataları eğitim ve 

test veri setlerinde çok düşüktür.  Bu yüzden, modelin performansının çok iyi olduğunu 

anlamına gelmektedir (Tbalo 4.11). 
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4.4.2.1. ANFIS Analizileri 

 
ANFIS modelinde aynı giriş ve çıkış değişkenleri ve aynı giriş kombinasyonları 

kullanılmıştır. Benzer şekilde, üyelik fonksiyonlarının sayısı ve en uygun transfer 

fonksiyonları deneme yanılma yoluyla tanımlanmıştır. Trimf, Trapmf ve gaussmf giriş 

üyelik fonksiyonları olarak ve lineer ve sabit çıkış üyelik fonksiyonları olarak 

seçilmiştir. Üyelik işlevlerinin sayısı 3, yineleme sayısı ise 1 ile 5 arasında değişim 

göstermiştir. Birçok kombinasyon oluşturuldu ve karşılaştırılmıştır. Deneme yanılma, 

ANFIS giriş ve çıkışları için optimum üyelik fonksiyonlarını tanımlamak için 

kullanılmıştır. En iyi performansa sahip ANFIS kombinasyonları tüm modeller için 

Tablo 4.12 'de verilmiştir. Başka bir deyişle, ANFIS'te en düşük RMSE değerlerini 

üreten modeller seçilmiştir. Örnek olarak Matlab arayüzde ET0 tahmin oluşturulan 

model üçgen üyelik fonksiyonlu ortalama sıcaklık ve güneş radyosunu seçimi ve analiz 

görünümü Şekil 4.26 ‘de verilmiştir. 
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Şekil 4. 60. Matlab arayüzde  referans  evapotranspirasyounu  tahmin oluşturulan  model görünümü 

 

Tablo 4. 14. ANFIS (Takagi- Sugeno) bulanık mantık Kuralları ve parametreleri 

Kurallar Girdi Çıktı 

Sıcaklık (C0) Güneş 
Radyosunu 
(J/m2) 

Referans Evapotranspirasyounu (mm/gün) 

Parameters 

1 Düşük Düşük -8.35 -49.47 784.8 

2 Düşük Orta  0.93 -1.182 -2.23 

3 Düşük Yüksek -31.47 -7.81 632 

4 Orta Düşük  14.23  12.55 -461 

5 Orta Orta -0.24  13.42 -116 

6 Orta Yüksek -30.61  14.81  651.6 

7 Yüksek Düşük  14.6 -58.01 -165.9 

8 Yüksek Orta -0.026 -57.06  548.3 

9 Yüksek Yüksek -27.19 -42.16 1609 

 

ANFIS ile ET0 modellenmesinde Tablo 4.12 görüldüğü gibi lineer model seçilmiştir. 

Bu seçim sonucunda 9 adet kural ve tüm kuralların genel yapısı sözel olarak ifade 

edilmiştir. Bulanık modellemenin temel karakteristik özelliği, sayısal değişkenler 

yerine veya bunlara ek olarak dilsel değişkenlerin kullanılmasıdır. Geliştirilen sistem, 

bulanık değişkenler arasındaki bağlantıları belirlemek için bazı eğer/sonra bulanık 

kurallar içerir. Birinci dereceden Sugeno'nun tarzının bulanık kuralı aşağıdaki biçime 

ifade edilir: 
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Rule 1: If (X1 is in 1mf1) and (X2 is in 2mf1) then (Y is out1mf1) 

Rule 2: If (X1 is in 1mf1) and (X2 is in 2mf2) then (Y is out1mf2) 

Burada X1 (ortalama sıcaklık) ve X2 (Güneş radyosunu), bulanık anlamı olan 

dilbilimsel terimlerdir ve X ve Y sırasıyla giriş ve çıkış değişkenleridir. p, q ve r 

sonuçta ortaya çıkan parametrelerdir (Jang, 1993). Matlab’dan elde edilen üçgen 

üyelik fonksiyonu seçilerek elde edilen parametreler Tablo 4.12’de verilmiştir. En 

yüksek belirleme katsayısı (R2) ve en düşük RMSE değerlerine sahip en iyi tahmin 

modeli Gauss üyelik fonksiyonuna sahip modelden elde edilmiştir. Eğtim veri setin’de 

üç modelin Tablo 4.13’te görüldüğü gibi belirleme katsayıları R2 sırasıyla 0.90, 0.89 

ve 0.89 Trimf, Tramf, ve Guassimf modellerinde çıkmıştır.  

Tahmin hatasının standart sapma RMSE değeri en düşük değer Gauss modelinde elde 

edildiği için seçilmiştir. Test seti olarak 3 modeli için ANFIS analizleri Tablo 4.14’te 

verilmiştir. Test veri sitin’de en iyi tahmin modeli gauss üyelik fonksiyonu olarak ’ta 

seçilen linear modelde elde edilmiştir. Belirleme katsayıları R2 sırasıyla 0.87, 0.86 ve 

0.86 Trimf, Tramf, ve Guassimf modellerinde çıkmıştır. 

Tablo 4. 15. Eğitim aşamalarındaki ANFIS modellerinin MAE, RMSE ve R 2  istatistikleri 

Girdi 

Kombinasyonu 

Membership 

function 

  Eğitim 

Girdi Çıktı  MAE RMSE NSE R2 

Tort (C0) 

Rn (J/m2) 

Trimf Linear  0.81 0.79 0.966 0.902 

Trapmf Linear  0.78 0.83 0.96 0.898 

Gaussmf Linear  0.77 0.82 0.965 0.896 

 

Tablo 4.1. Test aşamalarındaki ANFIS modellerinin MAE, RMSE ve R2 istatistikleri 

Girdi 

Kombinasyonu 

 Membership 

function 

  Test 

 Girdi Çıktı  MAE RMSE NSE R2 

Tort (C0) 

Rn (J/m2) 

 Trimf Linear  0.80 0.78 0.966 0.877 

 Trapmf Linear  0.77 0.81 0.96 0.866 

 Gaussmf Linear  0.79 0.80 0.965 0.865 
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Şekil 4.27.'de gösterildiği gibi, eğitim verisinde sıcaklık ve güneş radyasyonu 

parametrelerinin kombinasyonuna dayanan model, Trimf, Tramf, ve  Gauss Anfis 

modellerin tahmin edilen ve ASCE hesaplanan referans evapotranspirasyonun 

değerleri arasındaki ilişki gösterilmiştir. 
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Şekil 4. 61. Sıcaklık ve güneş radyosunu  dayalı model, ASCE PM ET 0  ve ANFIS  modelleri  
tahmini karşılaştırılması  (Eğitim) 

 
Şekil 4.28.'de gösterildiği gibi, test verisinde sıcaklık ve güneş radyasyonu 

parametrelerinin kombinasyonuna dayanan model, Trimf, Tramf, ve  Gauss Anfis 
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modellerin tahmin edilen ve ASCE hesaplanan referans evapotranspirasyonun 

değerleri arasındaki ilişki gösterilmiştir. 

 

 

 

 

Şekil 4. 62. Sıcaklık ve güneş radyosunu  dayalı model, ASCE PM ET 0 ve ANFIS  tahmin  edilen   
ET0’nın değerlerinin karşılaştırılması  (test) 
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5. SONUÇ VE ÖNERİLER 

Su kıtlığı, dünyanın birçok gelişmiş ve gelişmekte olan ülkesi için büyük bir 

sorundur ve bu da genellikle bir gıda krizinin yaşanmasına yol açan ciddi bir tehditle 

sonuçlanır. Su kıtlığı arttıkça, mevcut su kaynaklarını yönetme talebi çok önem 

kazanmaktadır. Bu nedenle, evapotranspirasyon (ET) tahminleri, hidrolik tasarım ve 

sulama yönetiminde önemli bir rol oynamaktadır. Bu tez çalışmasında farklı 

lokasyonlarda ve zaman dilimlerinde ET0 değerlerini tahmin etmek için birçok farklı 

deterministik ve stokastik yaklaşım kullanılmıştır.  

Bitki su tüketimi yüksek doğrusallık veya durağansızlık tarafından yönlendirilen 

karmaşık bir süreçtir, bu da birçok iklim değişikliğinin içinde büyük bir karmaşıklığa 

neden olabileceği anlamına gelir. ET0 zaman serisinin durağanlık dışı doğası, 

gelecekteki değerleri tahmin etmede zorluklara yol açar. Bu nedenlerden dolayı, bu 

çalışma Sudan ile ilgili iklimsel verileri kullanarak günlük referans 

evapotranspirasyonu tahmin etmeyi amaçlamıştır. 

Bu çalışmada, Sudan'ın farklı bölgelerinde tarımsal süreci yöneterek ve planlayarak 

tarımsal verimi geliştirmek ve artırmak için stokastik ve deterministik yöntemler 

uygulanmıştır. Bu araştırmada kullanılan yöntemleri, zaman serileri analizi, 

enterpolasyon teknikleri, yapay zekâ uygulamaları ve çoklu doğrusal regresyon 

tekniklerinden oluşmaktadır. Çalışmada Sudan’ın 120 istasyonu 1982-2020 yılları 

arası iklim verileri kullanılmıştır.   Bu yöntemler, ET0'ın gelecekteki değerlerini tahmin 

etmek için modeller oluşturmak için uygulanmıştır. İlk yöntemde, Sudan’ın 33 

istasyonu gözönüne alınarak zaman serisi analizi gerçekleştirlmiştir. ARIMA 

modellerini uygulanarak ve kriterlerin belirlenmesine göre en iyi modeller seçilerek 

kullanılan zaman serisi analizi yapılmıştır. Zaman serisi model sonuçları belirleme 

katsayısı R2 değerleri 0.35 ile 0.84 arasında değişim göstermiştir.  Model sonuçlarına  

göre en iyi istatistiksel performans kriterleri  Kadugli, Alneihud, Niyala, ve Babanusa 

şehirlerinde elde edilmiştir. Tüm 33 istasyon göz önüne alındığında düzeyde durağan 

bulunmuştur.  Belirleme katasyısı R2 değerleri yüksek çıkan istasyonlar genellikle 

Sudanın batısında gözlenmiştir.  

İkinci yöntemde, enterpolasyon teknikleri kullanılmıştır. Enterpolasyon 

yöntemlerinden Ordinary Kriging, Basit Kriging, ve Ters Mesafe Ağırlığı (IDW) 

yöntemlerini kullanılmıştır. Enterpolasyon teknikleri 120 istasyon gözönüne alınarak 

aylık ortalama değerler elde edilerek  haritalandırılmıştır. Jeoistatistik analiz 
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sonuçlarına göre en iyi modeller semivariogram modelleri Gaussian, Exponential, ve 

Spherical modelleri çıkmıştır.  

Üçüncü yöntem’de yapay sinir ağları tekniklerinden çok katmanlı yapay sinir ağları 

(ÇKYSA) ve Bulanık yapay sinir ağları sistemini (ANFIS) uygulanmıştır. Yapay sinir 

ağları, bulanık yapay sinir ağları ve çoklu regresyon modelleri oluşturulurken girdi 

parametresi olarak sıcaklık, güneş radyosunu, bağıl nem ve rüzgâr hızı farklı 

kombinasyonları kullanılarak ETo tahmin modelleri oluşturulmuştur. Çok katmanlı 

yapay sinir ağları, bulanık yapay sinir ağları ve çoklu doğrusal regresyon modelleri 

karşılaştırıldığında üç modelde tüm girdi değişkenlerinin kullanıldığı modellerde en 

iyi tahmin gerçekleştirilmiştir. Üç yöntemde karşılaştırıldığında en iyi bulanık yapay 

sinir ağları en iyi tahmin modelleri vermiş bunu sırasıyla çok katmanlı yapay sinir 

ağları ve çoklu doğrusal regresyon modelleri takip etmiştir.   

İklim değişkenleri olarak rüzgar ve bağıl nem tek girdi olarak model sonuçları 

istatistiksel performans kriterlerinin düşük olduğu ortaya çıkmıştır. Sıcaklık ve güneş 

radyasyonu göz önüne alındığında daha yüksek ve daha doğru sonuçlarla gözlenmiştir. 

Başka bir deyişle, Sudan'da referans evapotranspirasyon parametrelerinin tahmininde 

sıcaklık ve Güneş radyosunu etkili değişkenlerdir. Bilindiği gibi Sudan iklimi, ekvator 

ormanları ile rüzgârlı sıcak çölleri arasında bulunan geçici bir iklim türüdür, bu 

nedenle sıcaklık sadece bitki su tüketimi üzerinde en etkili değişken değildir. 

Bu araştırmanın bulguları, tarımsal üretimi doğrudan etkileyen gelecekteki su 

tüketimi öngörülerinden büyük beklentilerle elde edilebilecek modellerde yüksek 

istatistiksel performans elde edilmiştir. Bu nedenle, bu çalışma ziraat mühendisleri, su 

yöneticileri ve çiftçilerin tarımsal uygulamalarla ilgili tüm süreçleri farklı konumlara 

göre gerçekleştirmeleri için son derece yararlı olabilmektedir. Ek olarak, bu 

araştırmanın bir kısmında, jeoistatistik analiz tekniklerini uygulanarak belirli bir yere 

göre referans evapotranspirasyon değişikliklerini tartıştığını belirtmek gerekmektedir. 

Bu nedenle, farklı modellerden elde edilen sonuçlara göre, araştırma hedeflerine 

yaklaşık olarak gerçek hayatta uygulanacak şekilde ulaşılmıştır. Bir ziraat mühendisi 

olarak kişisel düşüncem, farklı modellerin miktarına, zamanına, iklim koşullarına ve 

coğrafi konumlara göre değişince sonuçların kalitesini ve doğruluğunu güçlü bir 

şekilde etkileyebilmektedir. Üstelik, gelecekteki değişen iklim koşullarında olumsuz 

etkilerini azaltmak için buharlaşmayı, terlemeyi ve evapotranspirasyonu anlamak 

önemlidir. Araştırmacılar, su tutma kapasitesi yüksek toprakların ve olumsuz etkilere 

toleranslı bitki çeşitlerinin birlikte yönetim stratejilerinin uygulanmasının kuraklığın 
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etkisiyle yüzleşmek için daha iyi olacaktır. Sulanan alanları artırabilirsek, toplam bitki 

üretimi, artan nüfusun gıda güvenliğine yükseltilebilecektir. 

Sudan da yetiştirilen bitkilerin ekim , dikim büyüme, gelişme ve verim gibi 

fizyolojik yetişme evreleri göz önüne alınarak FAO 56 da verilen bitki katsayıları (Kc) 

belirlenmesi gerekir. Daha sonra bu çalışmada elde edilen modeller gözönüne alınarak 

gerçek bitki su tüketimlerinin ETc nin belirlenmesi Sudan su kaynaklarının 

planlanması küresel iklim ve kuraklık açısından gerçek su tüketimlerinin belirlenmesi 

açısından gelecekteki çalışmalara faydalı olacaktır. Sudan'ın Kızıldeniz kıyısı, kuzeyi, 

merkezi ve güneyi olmak üzere dört iklimsel bölgesi vardır. Sudan tropikal bölgelerde 

yer alır, iklim kuzeyde aşırı kurak, uzak güneybatıda tropikal ıslak ve kurak arasında 

değişir. Sıcaklıklar herhangi bir yerdeki mevsime göre büyük ölçüde değişmez; En 

önemli iklim değişkenleri yağış ve yağışlı ve kurak mevsimlerin uzunluğudur. Bu 

nedenle, referans evapotranspirasyonun tahmini ile Sudan’da yetiştirilen bitkilerin 

bitki su ihtiyacının belirlenmesi su kaynaklarının planlaması ve geliştirilmesi 

açısından çok önemlidir.  
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