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ABSTRACT

OBLIQUE RANDOM FOREST ALGORITHM USING
LASSO REGRESSION FOR WIND POWER
FORECASTING

With the increasing trend towards the use of renewable energy sources, wind
power has been the subject of many researches. Wind power has stochastic nature due
to uncertainties in atmospheric conditions, especially in wind speed, which makes it
hard to forecast accurately. To solve the problem, statistical methods using Numerical

Weather Prediction (NWP) models as inputs are proposed in the literature.

Random Forest is a statistical model frequently used in wind power forecasting
with proven success. Random Forest ensembles decision trees that partition the feature
space over a single variable at each node. However, partitions based on a single vari-
able may fail to provide a proper distinction. Thus, oblique decision tree algorithms
evaluating the partitions over linear combinations of variables are proposed in the lit-
erature, especially on classification problems. There are a limited number of studies in
the literature on oblique decision tree-based methods applied in time series regression

problems.

This thesis proposes a novel strategy to be applied in regional wind power fore-
casting tasks that ensembles oblique decision trees. The proposed method is compared
with its univariate counterparts in three wind power forecasting tasks. Computational

results show that the proposed method performs better on all tasks.



OZET

RUZGAR ENERJISI TAHMINI ICIN LASSO
REGRESYONU KULLANAN EGIK RASSAL ORMAN
ALGORITMASI

Yenilenebilir enerji kaynaklarina yonelimin artmasiyla birlikte riizgar enerjisi
bircok arastirmaya konu olmustur. Riizgar enerjisi, atmosferik kosullardaki, czellikle
rizgar hizindaki belirsizlikler nedeniyle, dogru bir sekilde tahmin etmeyi zorlagtiran
stokastik bir yapiya sahiptir. Bu problemi ¢ozmek igin literatiirde Sayisal Hava Tahmini

modellerini girdi olarak kullanan istatistiksel yontemler onerilmistir.

Rassal Orman, riizgar enerjisi tahmininde siklikla kullanilan bagarisi kanitlanmig
istatistiksel bir modeldir. Rassal Orman, veriyi her diigiimde tek bir degigken {izerinden
bolen karar agaclarimmi bir araya getirmektedir. Ancak tek bir degisken iizerinden
yapilan boliinmeler dogru bir ayrim saglamayabilir. Bu nedenle literatiirde, ozellikle
siniflandirma problemlerinde uygulanan ve veriyi dogrusal degisken kombinasyonlari
iizerinden bolen egik karar agaci algoritmalar: onerilmektedir. Literatiirde zaman serisi
regresyon problemlerinde uygulanan egik karar agaci tabanli yontemler ile ilgili sinirlh

sayida calisma bulunmaktadir.

Bu tez, egik karar agaclarini bir araya getiren bolgesel riizgar enerjisi tahmin
probleminde uygulanacak yeni bir strateji énermektedir. Onerilen yontem, ii¢ rizgar
enerjisi tahmin probleminde tek bir degisken iizerinden bolmeler yapan muadilleri ile
kargilagtirilmigtir. Hesaplanan sonuclara gore onerilen yontem 1i¢ veri setinin hepsinde

daha iyi performans gostermektedir.
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1. INTRODUCTION

In recent years, the negative effects of traditional fuels on the environment have
become an important agenda with the fast-growing energy need. The trend towards re-
newable energy sources has also increased from year to year to decelerate the problems
posed by traditional fuels. Although it is a clean source of energy, the main chal-
lenge with renewables is their stochastic nature due to many uncontrollable factors,
especially the uncertainties in the atmospheric conditions. The stochasticity creates
a need for forecasting, especially for production planning, energy supply and trade
operations. Wind energy also has an important share in renewables. Therefore, wind

power forecasting is a subject that a lot of research is carried out today [1].

In wind power forecasting, the main aim is to predict the amount of electricity
produced in a given time interval under certain weather conditions [2]. The key driver

of the wind power is wind speed because the power of wind is formulated as

Pz%Xprxwxrzxv3 (1.1)
theoretically where P is the wind power in Watts, £ is the efficiency factor in percentage,
p is the air density in kg/m3, r is the radius of the wind turbine blade in m and V is
the wind velocity in m/s [3]. However; in practice, the power output can be estimated
using a power curve that is specific for each turbine [4]. Figure 1.1 illustrates the power
curve of the wind turbine branded “Nordex-N90” that has blades with 45-meter radius
and rated power of 2300 kWh [5].

It can be observed in Figure 1.1 that the power production starts at cut-in speed
and reach its maximum at the rated speed [4]. Until cut-out speed, the power produc-
tion is limited to rated power and does not increase with wind speed [4]. After cut-out
speed, the production is interrupted due to safety issues [6]. Moreover, it is worth

mentioning that the power output of a wind turbine is approximately proportional to
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Figure 1.1. Power curve of Nordex-N90.

the cube of wind speed between cut-in and rated speed because the power curve is

close to the theoretical power with a 40% efficiency factor.

Although the production for a single turbine can be predicted using its power
curve, the aggregated production forecast for multiple turbines in a specific region
requires more effort [7]. It is not always possible to reach turbine level information [7].
It can be technically erroneous, costly and labor-intensive to collect data from each
turbine especially when the number of turbines in the region is large [7,8]. Also, actual
wind speed information at turbine locations is not always available for forecasting tasks.
To overcome the absence of perfect information, Numerical Weather Prediction (NWP)
models can be used to receive wind speed forecasts for spatial grid points [1,9,10]. The
spatial grid points (see Figure 1.2) are the intersection of equally spaced longitudes
and latitudes that are subject to a specific region [11]. It is also clear that wind

speed forecasts are needed since actual wind speed information is not available for



the forecasting of future production. The regional wind power forecasting problem is
summarized in Figure 1.2. Suppose y; is the production at wind turbine 7, the aim
is to develop a statistical model that predicts the sum of y;’s using NWP wind speed
forecasts acquired at regular grid without knowing information about single y;’s. In

the thesis, regional wind power forecasting task is chosen as a field of study.
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Figure 1.2. Regional wind power forecasting.

To forecast wind power, both physical and statistical approaches are proposed in
the literature. The physical approaches derive wind power forecasts by applying power
curve transformation of wind speed forecast at the exact location of wind turbines.
However, statistical approaches predict wind power by building statistical models over
historic wind power data and weather forecasts. Auto-regressive time series models,
deep learning methods and tree-based ensembles are the widely used methods for wind

power forecasting task [1,12-15].



Random Forest (RF) [16] is a tree-based statistical model that is frequently used
in wind power forecasting tasks because of its high accuracy and robustness compared
to other methods and RF has proven success in wind power forecasting according
to several experiments [12-15]. In addition, RF is powerful in modeling nonlinear
relationships and it has embedded feature selection procedure. Therefore, RF seems
suitable for the wind power forecasting task. RF works on the principle of ensembling
univariate decision trees [16]. However, the split based on a single variable are not
always optimal [17]. In order to compensate the disadvantages, tree-based methods

utilizing more than one variable in the splitting have been proposed [18-20].

Oblique Decision Trees (ODT) are the methods that split data based on a linear
combination of features [18-20]. Moreover, Oblique Random Forest (ORF) is a special
type of RF that ensembles oblique decision trees [21,22]. It has been observed in the
several studies that tree-based methods with oblique splits are more successful than the
univariate ones in terms of prediction accuracy [18-20]. However, oblique tree methods
have generally been studied in classification tasks [22]. [22] claims that there is only

one oblique tree study performed on time series tasks.

In the light of all these observations, a new oblique random forest method is
proposed to be applied on the time series task. The new proposed method is referred
to as Random Forest using LASSO regression (RF-LASSO) to find oblique splits and
it ensembles multiple DT-LASSO’s.  As defined in the thesis, DT-LASSO is a spe-
cial oblique decision tree method that uses Least Absolute Shrinkage and Selection
Operator (LASSO) regression to find oblique splits at each node. LASSO is a penal-
ized linear regression method that uses L; regularization [23]. The main purpose of
choosing LASSO regression is to produce an affine hyperplane in a supervised manner
because the output of linear regression is an affine hyperplane. Moreover, LASSO is
more robust to multicollinearity as opposed to standard linear regression [23-27]. The
robustness to multicollinearity is important for finding a proper affine hyperplane in

splitting process especially for data with a highly correlated feature set.



Although it is possible to apply RF-LASSO to all regression problems, first of
all, the study is carried out on the regional wind power forecasting task. The purpose
of choosing the regional wind power forecasting task is that conventional RF method
gives successful results in this domain and the task includes multivariate time series
nature with high correlation between the series. [12-15]. The selection of the task allows
for a valid and meaningful comparison between the proposed method RF-LASSO and
conventional RF, while contributing to research on oblique tree methods for time series

tasks.

This thesis is organized as follows: Section 2 provides the detailed literature
review on tree-based models with oblique splits besides wind power forecasting methods
with special interest on RF. Section 3 compiles the background information about the
models used in the proposed method together with the performance metrics and NWP
models. Section 4 starts with the motivation behind RF-LASSO. Then, the basics of
RF-LASSO algorithm is explained. Lastly, the specialization of RF-LASSO for wind
power forecasting task is described. Section 5 introduces experiments together with

data and model results. Section 6 concludes the observations in the thesis.



2. LITERATURE REVIEW

In this section; firstly, the studies in the literature about tree-based learning
methods utilizing oblique splits are summarized. Then, wind power forecasting lit-
erature is briefly introduced with emphasis on tree-based methods especially random
forest. Lastly, the objective of the proposed method in the thesis is clarified alongside

the existing studies in the literature.

2.1. Tree-Based Methods with Oblique Splits

The first oblique decision tree algorithm is named as Classification and Regression
Trees with Linear Combinations (CART-LC) [28]. CART-LC finds the local optimum
values for hyperplane coefficients in an iterative way by employing deterministic hill-
climbing algorithm. Starting from the best orthogonal split option, CART-LC perturb
the coefficients and stop when the increase in the goodness value of the split is lower
than the predefined threshold at each iteration. Moreover, CART-LC applies backward
selection method by eliminating the most irrelevant features one by one while keeping

the goodness value in order to make a split simple and interpretable.

CART-LC can be stuck at local optima because it uses a deterministic hill-
climbing heuristic. To escape local optimum, [29] proposes Simulated-Annealing Deci-
sion Trees (SADT) that applies random perturbations to coefficients at each iteration
by the principles of simulated-annealing heuristic. The common problem of SADT that
it is time-consuming to apply simulated-annealing heuristic at each node and it is an

inefficient algorithm in terms of the time complexity.

To overcome the efficiency issue in SADT, [18] proposes Oblique Classifier 1
(OC1) algorithm that combines the idea of SADT and CART-LC. OC1 searches the
local optimum at each iteration as CART-LC does and if it is stuck at local optimum,

it perturbs the coefficients as SADT does. Moreover, OC1 introduce randomness by re-



peating the search with different initial solutions. Lastly, OC1 uses the best orthogonal

split if it fails to find a better split option.

The aforementioned oblique decision tree methods find the split by applying
heuristic algorithms. However, it is possible to find a linear hyperplane used for split-
ting in a supervised manner at each node. For example in [30], the proposed algorithm
Sparse Multivariate Tree (SMT) solves the classification problem with logistic regres-
sion using L; regularization at each node to find a linear combination of the features

for split evaluation.

Morever; Linear Machine Decision Trees (LMDT) [31], Weighted Oblique De-
cision Trees (WODT) [32], Householder CART (HHCART) [20], Continuous Opti-
mization of Oblique Splits (CO2) [33] and Fast Algorithm for Classification Trees
(FACT) [34] are the other examples of oblique decision trees in the literature.

Along with the oblique decision trees, the ensemble of them is also addressed in
the literature. In [21]; Oblique Random Forest (ORF) method is proposed, influenced
by [35] and [36]. The method differentiates from conventional RF [16] in the process
of split search at each node. The bagging and random feature selection procedure is
the same as in [16]. At each node, the method solves the classification problem with
regression using Lo regularization and randomly selected feature set. The penalization
factor A is chosen according to the performances on out-of-bag sample. Then, a possible
split is searched on the fitted value of the ridge regression model by considering the

maximum decrease in Gini impurity measure.

Heterogeneous ORF [37], Manifold ORF [38], ORF based on partial least squares
[39], Robust Oblique Forests with Linear Matrix Operations (ROFLMAO) [40] and
Sparse Projection ORF (SPORF) [41] are the other alternatives that ensemble oblique

decision trees in order to get more robust and accurate predictions.



Although there are several oblique tree ensemble algorithms, almost all of them
are applied and compared for classification tasks. It is claimed in [22] that their pro-
posed method ORF via Least Square Estimation is the single ORF method in the scope
of time series forecasting. The proposed method in [22] transforms the regression task
to classification problem by labeling the target value as -1 if it is below the median
value and +1 if it is above the median at each node. Then, least square estimation is
applied to find linear hyperplane and the observations are separated into child nodes
according to this hyperplane. There is no extra split point selection procedure applied
on the fitted value. As it is also stated in [22], the proposed method has some limi-
tations. The method uses historical data points as features and it is tested only for
univariate time series problems. In practice, time series can be affected by other time
series variables. So, the further investigation on multivariate time series forecasting

models is suggested.

2.2. Wind Power Forecasting

With the growing interest in renewable energy sources, a vast amount of research
has emerging on wind power forecasting. In [1], the studies on wind power forecasting
are explained and compiled comprehensively. See [1] for comprehensive background on

wind power forecasting task.

Wind power forecasting methods can be divided into two categories as physical
and statistical approaches. The physical approaches aim to derive wind speed at the
exact locations of wind turbines with the help of numerical weather prediction models
and terrain characteristics. Then, wind power is estimated by predefined power curve

transformations of the wind turbines [1].

On the other hand, statistical approaches intend to estimate the wind power
by constructing statistical models that represent the relation between historical wind
power observations and weather forecasts. In the literature, there are both paramet-

ric and non-parametric approaches applied for wind power forecasting such as auto-



regressive time series models, deep learning methods and tree-based ensembles [1].
For time series models, Auto-Regressive Integrated Moving Average (ARIMA) models
are widely applied especially for short term wind power forecasting [42—44]. Artificial
Neural Network (ANN), Convolutional Neural Network (CNN) and Long Short-Term
Memory (LSTM) are deep learning methods that are widely used for wind power fore-

casting due to their capability of learning complex nonlinear relations [45-47].

Tree-based ensembles such as random forests and gradient-boosted trees are also
in the mainstream of wind power forecasting. The proposed method in this thesis is
a random forest method with oblique splits. In [12-15], random forest algorithms are
compared with alternative methods such as ANN, support vector machines, polynomial
regression, gradient-boosted trees and Bayesian networks. Random forest proves its
predictive strength in the wind power forecasting domain according to the performance

comparisons in [12-15].

In addition to conventional random forest algorithm [16], [48] proposes the opti-
mized version of RF which employs dimensionality reduction and weighted ensembling
of resulting trees. Optimized RF uses wind speed forecasts generated from neural net-
work model and the feature selection is applied by correlation elimination algorithm
which is referred as Max Relevance-Min Redundancy (MRMR). The performances are
compared for at most one day-ahead forecast. [48] concludes that RF has ability to
forecast wind power more precisely compared to conventional wind power forecasting

methods due to its ensembling capability.

In [49], an improved RF algorithm utilizing 2-stage feature selection obeying
MRMR and the elimination of decision trees with weak generalization performance
in the ensembling phase is proposed. The performances of both conventional and im-
proved RF are compared against support vector machine with radial basis function and
neural network model. [49] concludes that RF is more successful in terms of accuracy,

efficiency, and robustness as compared to the alternatives.
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In [50], RF algorithm using Poisson sampling instead of random bootstrapping
in the bagging phase is proposed. Moreover, [50] transform wind power regression task
into a classification task by discretizing target variable into several bins using chi-square
test. Then, the target bin of a new observation is estimated by using weighted k-nearest
neighborhood method based on wind speed and direction values. Lastly, RF model
using Poisson sampling is built upon train data that falls into estimated target bin. The
performances are compared against gradient-boosted trees and neural networks. [50]
shows that both conventional RF using random sampling and the proposed RF perform

better than two opponents.

Lastly; [51] proposes generalized random forest algorithm that ensembles honest
regression trees introduced in [52]. Honest regression trees use each observation either
for building the tree or determining the weights [52]. According to the performance
evaluations on five different wind farm located in France and Turkey, both conven-
tional and generalized RF algorithms show significant performance in comparison with
gradient-boosted trees, Gaussian process regression and several support vector machine

models using different kernel functions.

As a consequence of all these studies in tree-based learning with oblique splits and
wind power forecasting, there is a clear lack of research on the oblique tree applications
for time series problems [22]. On the other hand, RF proves its success in wind power
forecasting tasks and it is widely used in several studies [12-15]. Therefore, the aim of
this thesis to propose a new oblique random forest method RF-LASSO for a time series
problem and measure its capability by comparing with conventional RF algorithm in
wind power forecasting domain. Wind power forecasting is a proper domain for the
comparison because of its multivariate time series nature and conventional RF is an

appropriate method for the power forecast.
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3. BACKGROUND

In this section, the background information about the proposed methodology

including models, input set and performance metrics is provided.

3.1. Regression Methods

The main aim of regression methods is to find a proper function using statistical
techniques that can explain and generalize relationship between the target and ex-
planatory variables. There are parametric and non-parametric approaches for finding
the explanatory function in regression. Parametric approaches such as least squares
regression make several assumptions about the model and try to find model parameters
under these assumptions. However, non-parametric approaches such as decision tree

learn the model structure from data itself without given prior assumptions [53,54].

3.1.1. Least Squares Regression

Least squares fitting is a parametric method to find best-fitted curve for given
data points [24,55-57]. The best-fitted curve is defined as the curve with the least
sum of squares error. Least squares method aims at finding model parameters B of the

explanatory function fz such that

B = a%gergpin E(B) (3.1a)
B(B) =Y _(Yi = f5(X:))’ (3.1b)

where Y € R™! is a target vector with size n equal to the number of observations,
X € R™P? is a feature matrix with p equal to the number of features. Y; denotes the

1th observation of Y and X, denotes the ¢th row of X where i =1,2,....n — 1, n.
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3.1.1.1. Ordinary Least Squares. Ordinary Least Squares (OLS) is a special type of

least squares method with the assumption of linearity and fs given as

f3(X) = X5 (3.2)

where 8 € RP*! is the regression coefficients vector. OLS is also called as a linear re-
gression and tries to find the best-fitted linear line for given data [24]. It is a fast, simple
and interpretable method. However, linear regression suffers from multicollinearity if
there are correlated explanatory features [24]. Moreover; with the increasing p when
n is kept constant, the space becomes more sparse and this sparsity may cause to

problems in fitting [24]. This phenomenon is called as the curse of dimensionality [24].

3.1.1.2. Regularized Least Squares. To reduce the effects of the problems with OLS,

the regularization term R(f) is introduced into the error function E(g) [23-27]. The

error function is formulated as

n

E(B) =Y (Yi = f5(X.))* + R(B). (3.3)

i=1
R(p) is a function of # and the idea of regularization is that the complexity of the
model can be controlled by proper R(/3). Regularized Least Squares method is also

referred to as penalized regression.
Least Absolute Shrinkage and Selection Operator, namely LASSO is a penalized

linear regression method utilizing L; norm for regularization [23-25]. The parameters

f5(X) and R(B) of LASSO regression are given as
fo(X) = X85 R(B) =AY |5 (3.4)
j=1

where A > 0 is a penalization factor. LASSO regression penalizes the sum of the

absolute value of the model coefficients. So, the coefficients of some features with
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less extra information tend to be zero [23-27]. LASSO regression has an embedded
feature selection capability and it is more robust to multicollinearity as opposed to

OLS [23-27]. To be more generic in definition, R(3) can be extended into
p
R(B)=A>_0;1; 6= DB (3.5)
j=1

where D € R**P is a penalization matrix with z which is a custom dimension parameter
[58-60]. This extension is called as generalized LASSO regression [58-60]. For simple

LASSO regression, the penalization matrix is an identity matrix where D = 1.

2-Dimensional (2D) Fused LASSO is a special type of generalized LASSO regres-
sion where the absolute coefficient differences between neighbor features are penalized
by custom D [58-60]. For OLS, explanatory features are assumed to be independent
but in practice, features may have spatial or temporal relations. For example, an im-
age data has pixel values as features and each pixel has specific position on the image.

Consider the 2 x 2 image data I” and penalization matrix D as

-1 +1 0 0
0 0 -1 +1
pP— P1 D2 D= (36)
D3 P4 -1 0 41 0
0O -1 0 +1

for 2D Fused LASSO. Also, f3; is the coefficient of p; where i = 1,2, 3,4. |0| becomes

162 — 6]

PR [ .
185 — Bi|
15 - 5

in the regularization component. So, it can be observed that the absolute coefficient

differences between neighbor pixel values are penalized during parameter learning.
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3.1.2. Tree-based Learning

Tree-based learning is a non-parametric learning method that tries to approx-
imate the explanatory function between target and features via the combination of
if-then-else rules [28,61-63]. The resulting relationship between target and features
is represented as a tree structure. Tree-based learning methods can be used both for
classification and regression tasks [28]. Moreover, trees are generally easy to interpret

because of the simple splitting rules.

3.1.2.1. Decision Tree. Decision tree (DT) is a greedy recursive partitioning algorithm

that aims to minimize the variance in data at each partition [28]. Decision tree used for
regression tasks is also called as a regression tree [28]. In general, decision tree employs
the univariate split which is a split based on the value of a single feature [64, 65].
Therefore, the univariate decision tree divides feature space into rectangular regions
and each split is orthogonal to the one of the features at each partition. Eventual regions
after the consecutive splits are terminal nodes. Prediction for a new observation is the
mean of the observations in the corresponding terminal node that the new observation
falls into [28]. The univariate regression tree searches for the best splitting option of a
single feature that maximize the reduction in the sum of squared errors (SSE) which

is defined as

SSE = Yics, (yi — 1) + Bies, (yi — 1)’ (3.8)

at each partition where S; and Sy are the samples after the split, 4; and ¢, are cor-
responding sample averages [24,28,62]. Although decision tree methods utilize the
univariate split in general, it is possible to find splits based on multiple feature val-
ues [17]. This type of decision tree methods are called as the multivariate decision
tree [17]. Oblique Decision Tree (ODT) is an example of the multivariate decision tree
where linear or affine combinations of multiple features are evaluated for the splitting

option at each partition [18-20].
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Because decision tree is a greedy algorithm, it is prone to over-fitting [24,66,67].
To prevent over-fitting, several stopping conditions can be introduced such as maximum
tree depth, minimum number of the observations in a node for further split. Without
any stopping condition, it is possible to get complete discrimination in train set where

each terminal node has single observation.

3.1.2.2. Random Forest. The good estimator can be defined as an estimator with low

bias and low variance [24]. However, decision trees have low bias but high variance
and they are prone to over-fitting because of the greedy nature [24,66,67]. Because the
averaging reduces the variance, Random Forest (RF) ensembles multiple decision trees
in a randomized manner to obtain an estimator with lower variance by keeping the
low bias [16]. To ensemble multiple trees, random forest utilize bootstrap aggregating,
namely bagging [68]. For each tree, random subset of observations are sampled and the
tree is built upon this subset. Moreover, random forest algorithm evaluates random m
features for split selection at each node in order to diversify the trees [16]. Figure 3.1

shows the overall schema of RF.

3.2. Numerical Weather Prediction (NWP)

Numerical Weather Prediction (NWP) is a physical simulation method used for
weather forecasting by solving a set of differential equations numerically regarding
the flow of fluids and atmospheric dynamics [69, 70]. NWP predicts future weather
occurrences according to given initial conditions [69, 70]. In general, NWP models
provide forecasts for various weather parameters including wind speed, temperature,
pressure at different levels of the atmosphere such as surface, 10-meter above ground,
100-meter above ground [69-72]. Moreover, they provide forecasts on spatio-temporal
grid points which are the intersections of equally spaced longitudes and latitudes for
time indices of particular resolution [69,70]. Figure 3.2 shows an example for the scope

of a general NWP model.
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Figure 3.1. Overall schema of Random Forest.

Global Forecasting System (GFS) is a NWP model that provides weather fore-
casts on global scale with 0.25° spatial and hourly temporal resolution up to 120 hour
ahead for each model run [71,72]. GFS 0.25° hourly model is updated four times a
day and each update is called as a model run [71,72]. In the study for wind power
forecasting, GFS model is used as a source of wind speed forecasts in this thesis. For

each time point, forecasts from the latest model run of GF'S are used as feature values.
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Figure 3.2. The scope of a NWP model.

3.3. Performance Metrics

This section introduces various performance measures used to compare and eval-

uate the models proposed in the study.

3.3.1. Mean Absolute Error (MAE)

Mean Absolute Error (MAE) measures the performance of predictor by its close-

ness to actual value in original scale and the formula is given as

MAE = M (3.9)

n

where 1; and ¢; denotes the actual and the predicted value of the ith observation.
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3.3.2. Mean Squared Error (MSE)

Mean Squared Error (MSE) measures the performance of predictor by penalizing
the error with its square. MSE avoids larger errors as compared to MAE. It is a measure
of variance for the predictor and a general loss function of both linear regression and

regression trees. MSE is calculated as

n

02
MSE — Zi:l(yl yz)

n

(3.10)
where y; and y; denotes the actual and the predicted value of the ith observation.
3.3.3. Weighted Mean Absolute Percentage Error (WMAPE)

Weighted Mean Absolute Percentage Error (WMAPE) is a measure in percentage
as compared to MAE which is a measure in original scale of the actual values. So,
WMAPE is more interpretable and generic measure for the performance of the predictor

compared to MAE. WMAPE is formulated as

WMAPE — 2zizt Y = Uil

T (3:11)

where y; and g; denotes the actual and the predicted value of the ith observation.
3.3.4. Bias

The quality of an estimator is a function of bias and variance. So, good estima-
tor can be defined as having unbiased and low variance estimations. Bias metric is

formulated as

BIAS = 2=iz1l¥i = 6) (3.12)
> i1 Uil

where 7; and ; denotes the actual and the predicted value of the ith observation.
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4. METHODOLOGY

This section summarizes the motivation and basics of the proposed method,
namely RF-LASSO. Additionally, the specialization of RF-LASSO on regional scale

aggregate wind power forecasting task is discussed in detail.

4.1. Motivation

In the wind power forecasting task, there is a nonlinear relationship between
wind speed and wind power. Moreover, there are multiple wind speed forecast features
at neighbor grid points. Therefore, it is important to have a model that is capable of
learning nonlinear relationships between target and selected features. DT is an effective
learning method used for both classification and regression tasks [28]. DT is capable
of learning nonlinear relationships between target and explanatory variables [61-63].
Moreover, DT employs a built-in feature selection method when evaluating possible

splits [61-63]. So, DT seems a proper choice for regional wind power forecasting.

Although its capability for finding nonlinear relations, the most widely used DT
algorithms consider univariate splits in which single feature at each node is used [64,65].
Univariate decision trees employ orthogonal hyperplanes to feature space at each node,
but orthogonal hyperplanes may not be suitable in some cases [17]. For example,
Figure 4.1 shows the performances of oblique and orthogonal splits for a simple classi-

fication task where each class is indicated by different colors [24].

To show the deficiency of orthogonal split in the regression task, a simple regres-
sion problem is proposed where Y ~ X; + X5 + ¢ and X7, Xy ~ U(—1,1);¢ ~ N(0, 1).
Figure 4.2 shows both orthogonal and oblique splits and their performances for a syn-
thetic dataset. It can be observed that orthogonal splits are not the best option to
reduce impurity in data because MSE when utilizing oblique splits is decreasing more

sharply compared to the case with orthogonal splits.
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Figure 4.1. Oblique vs orthogonal split for classification task.

To avoid potential problems with orthogonal splits; Oblique Decision Tree (ODT)
algorithm utilizing multivariate splits is proposed [18-20]. In ODT; oblique splits in-
volving multiple features, which are affine hyperplanes, are evaluated at each node
[18—20]. To find a proper reference hyperplane, which is a hyperplane that is perpen-
dicular to candidate hyperplanes used for splitting, multivariate linear regression can
be used because its output is also an affine hyperplane [24]. Figure 4.3 illustrates two
perpendicular affine hyperplanes; the reference hyperplane with purple and a possible

hyperplane that can be used for splitting with light grey.

The use of standard linear regression to find reference hyperplane can be problem-
atic when there are multiple highly correlated features [24]. It is shown in Figure 4.4
that the wind speed feature set is highly correlated and this may create an issue of
multicollinearity when finding a proper oblique hyperplane. Therefore, penalized re-
gression algorithms can be used instead of standard linear regression because penalized
regression algorithms are more robust to multicollinearity by penalizing the complexity

of the model [23-27].

LASSO is a penalized regression method that uses L, regularization [23-27]. L,
regularization penalizes the sum of absolute values of coefficients and this force some
coefficients of the model to be zero. Therefore, LASSO can be a convenient candidate
for finding affine hyperplane because it is more robust to multicollinearity and it has

also an embedded feature selection procedure as decision tree does [23-27].
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Despite the aforementioned advantages; tree constructing algorithms are gener-
ally greedy heuristics, where the best splitting option is found at each node [66,67].
The common problem with greedy heuristic algorithms is that it is possible to be stuck
at the local optimum. In order to avoid this problem, randomization may be intro-
duced [73]. Moreover, DT algorithms are prone to over-fitting because it is theoretically
possible to reach complete discrimination in the train set by a fully-grown tree [24].
In the light of these problems, Random Forest (RF) algorithm is proposed [16]. RF
is a tree-based ensemble method that utilizes bootstrap aggregating, or bagging [68];
in order to reduce over-fitting, improve accuracy and stability by decreasing variance
with ensembling multiple trees [16]. In addition to bagging, RF selects random feature
subset at each node for split evaluation in order to reduce dependency between trees

by introducing randomization [16].

Oblique Random Forest (ORF) algorithm is the special type of RF that ensem-
bles multivariate decision trees with oblique splits instead of the univariate trees with
orthogonal ones [21,22]. Consequently, the proposed method RF-LASSO is also a
specialized ORF algorithm that ensembles decision trees with oblique splits found by
LASSO regression.

4.2. Description of RF-LASSO Algorithm

RF-LASSO is a random forest method that ensembles multivariate trees with

oblique splits in order to find empirical function f for problem formulated as

Y=f(X)+e¢ (4.1)

where Y € R™! is a target vector with size n equal to the number of observations,
X € R™? is a feature matrix with p equal to the number of features and e € R**! is a
random error component vector that follows standard normal distribution. Lastly; in
general, A; ; denotes the entry at 7th row and jth column of a matrix A, and B; is the

1th entry of a vector B.



24

RF-LASSO algorithm can be divided into two parts. The first one is the multivari-
ate regression trees with oblique splits. Each multivariate tree is a learning algorithm
on its own, namely DT-LASSO. DT-LASSO integrates LASSO regression that uses
L, regularization in the splitting process [23,24]. However, LASSO is a powerful tool
if target and explanatory variables have a linear relationships but it has difficulty if
the relationship is nonlinear [24]. Thus, DT-LASSO has an option to utilize nonlinear
transformation of feature space by P in penalized regression fitting phase. P¢is a poly-
nomial function with a concatenation operator, degree ¢ and all terms equal to 1 except
for the constant term which is 0. It can be defined as P¢: X — [X, X2, ... X1 X¢]

where P! is the identity function.

Unlike the classical decision tree methods that search at each node for the best
splitting point of a single feature that maximize the reduction in the sum of squared

errors; DT-LASSO firstly solves the problem
n cp cp
Minimize: » (Y; = Y P(X;;)8;)> + A > _ 18] (4.2)
i=1 j=1 j=1

at each node in order to find regression coefficients vector 5 € R?*! for \* value

k k
A" = argmax{\ | iz Fi i (Z’_—l) or } (4.3)
A

chosen by using k-fold cross-validation (CV) from candidates of possible A values se-
quence where E; is the mean square error (MSE) in the ith fold for the corresponding

A value and o is the standard deviation of E; where 7 is from 1 to k. A* is also denoted

as A\ .se [74].

After finding £, the best splitting point that maximizes the reduction in SSE
is searched on the fitted value which corresponds to P¢(X)fS. In this way, the linear
combination of features is used as a reference hyperplane that is perpendicular to the
possible candidate affine hyperplanes in order to divide feature space. For the stopping

criteria, maximum depth parameter d is used. Trees are grown until maximum depth is
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reached. There is no restriction on the minimum number of observations in leaf nodes.
The complexity is also controlled by maximum depth parameter d. In Figure 4.5, the

pseudo-code of DT-LASSO algorithm is depicted.

Input:

D : Input data

e p: Dimension of feature space

P¢ : Polynomial transformation function

e m : Number of random features selected at each node, p as default

r : Repetition times for random selection of features, 1 as default
e d : Maximum tree depth
Output:
e 7T Terminal nodes of the tree
1: for j=1tor do
2:  Randomly select m features out of p features
3:  Fit LASSO on the current node of D using m features transformed by P°¢
4:  Find A\ value for LASSO using k-fold CV
5. Fj; « fitted values of LASSO model for A\; 4 value at step 4
6: end for
7: Find the best split point F* over Fi, F5, ... F, that maximizes SSFE reduction
8: Split current node of D into 2 child nodes according to F™*
9: Repeat steps 1-8 for each child node until the tree is grown with depth d.

10: T; < Keep terminal nodes of tree ¢

11: return 7;

Figure 4.5. DT-LASSO algorithm.
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The second part of RF-LASSO algorithm is based on the ensembling of multi-
variate oblique decision trees in order to dilute the greedy behaviour of decision trees
and prevent over-fitting by applying bagging [16,68]. RF-LASSO builds v independent
oblique regression trees on a randomly selected s data point that is sampled without
replacement where % ~ 0.632 [68]. In the random sampling process, data points are

selected with probabilities proportional to the weight vector w € R™*!.

Input:
e n : Number of observations in data
e p : Dimension of feature space
e Y : Target vector
e X : Feature Matrix

e v : Number of Tree

w : Weight vector
e s : Number of randomly selected observations for each tree
e m : Number of random features selected at each node
e 7 : Repetition times for random selection of features
e d : Maximum tree depth
Output:
o 11,15,... T,_1,T, Terminal nodes of each of v trees
1: fori=1tor do
2:  S; « Sample s out of n from [Y, X| without replacement considering w
3: T, < DT-LASSO(D = S;,p=p,m=m,r =r,d=d)

4: end for

5. return Ty,715,... 1T, 1,71,

Figure 4.6. RF-LASSO algorithm.

Introducing random noise into ensemble modeling improves accuracy if the cor-
relations between individual learners are minimized while the prediction powers of the

learners are kept significant [16]. To introduce randomness in the ensembling process,
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in addition to bagging, m random features are selected at each node of trees to find the
split point [16]. In RF-LASSO algorithm, m random features are selected and LASSO
regression is fitted over these m features. This process is repeated r times at each
node. Consequently, the split point is evaluated on r fitted value. In Figure 4.6, the
pseudo-code of RF-LASSO algorithm is depicted.

Lastly, RF-LASSO algorithm produces prediction over v trees for the new obser-
vation ¥,., by two consequent aggregation functions g; and g, such as mean, median,

etc. The predicted output is formulated as

Unew = 91(92(10(7}))); Ynew € 77/)(TJ) (4.4)

where T is the terminal node observations at jth tree for j = 1,2,...,v and ¢ is a
function returning the observations of terminal nodes that the new instance fall into
together. g¢2(¢)(7})) is a vector of size v. Figure 4.7 illustrates the prediction process

of RF-LASSO for the new observation v,,c..

T T T,
\, ,
yu @ yu o ‘vu‘ y. ” : 2 y Yu a g @ y.
) o ®
il I y ‘o o o,
= Woew § iz Peog - :Ynew ¢ Yo ® Yner? v v
v [ . 0 =g 0o s v v
J ~ ; ® XY .
vz \J vr vz ’ Vs v: @ Vs
17 ) 0. ’ ° y. )
" o % ™ w0 v uoe LI
LI e . g
¥(T1) = {Ye, Y7, Ys, Yo } W(T2) = {ys, Y9, Y13, Y14} Y(Ty) = {3, Y4, Y5, Y10, Y11, Y12}
'y = 92({ys, y7, s, Yo }) Iy = 92({ys, 9, y13, y14}) T, = 92({y3, ¥4, ¥5, Y10, Y11, y12})

Qnew = gl({l“l,l"z, . ,FV})

Figure 4.7. The prediction process of RF-LASSO.
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4.3. RF-LASSO for Wind Power Forecasting Tasks

The basics of RF-LASSO algorithm have been explained in Section 4.2. In this
part, the specialization of RF-LASSO algorithm on wind power forecasting task is
discussed in detail. Firstly, the data used in determining the specifications of RF-
LASSO algorithm is described. Then, the details of multivariate decision tree with
oblique splits and ensembling parts of RF-LASSO are clarified respectively.

4.3.1. Data

The studies for determining RF-LASSO specifications are conducted on unli-
censed wind power production data in the responsibility area of Uludag Electricity
Consumption Company [75]. Although there are multiple wind turbines in this region,
data only includes hourly aggregated wind production values in MWH from 2018-05-01
to 2021-09-30. There is no available information about the exact locations and pro-
ductions of single turbines but, it is known that all turbines are located between 39.5 -
40.75 North latitudes and 25.75 - 29.75 East longitudes [75]. This boundary box is the
minimal rectangle that covers the region. Data from 2021-01-01 to 2021-09-30 is used
as a test and evaluation period and the rest is used for training possible alternatives.
In Figure 4.8, hourly wind production values over time in the interested region are

depicted.

The main driver of wind power is the wind speed variable [3]. Therefore; for
explanatory variables, wind speed forecasts at 80 m above ground with the hourly
resolution are retrieved from GFS 0.25° Hourly model [71,72]. GFS 0.25° hourly
model provides forecasts with a spatial resolution of 0.25° [71,72]. Therefore; there are
6 x 17 = 102 forecast points that cover 39.5 - 40.75 North latitudes and 25.75 - 29.75

East longitudes. Table 4.1 shows the structure of data used in the experiments.



Table 4.1. Sample Data Structure.

Time Indices Target Features: Wind Speed at Lat_Lon
Date | Hour | Wind Power | 39_25.5 | 39_26 | 39.5_25.5 | 39.5_26
5/2/2018 0 5.07 5.20 3.93 3.90 5.11
5/2/2018 1 3.19 5.12 3.63 3.51 4.64
5/2/2018 2 2.28 5.04 3.34 3.15 4.18
5/2/2018 3 3.17 4.97 3.04 2.81 3.74
5/2/2018 4 4.43 5.20 3.06 2.60 3.50
5/2/2018 5 4.98 5.43 3.10 2.40 3.27
5/2/2018 6 4.58 5.66 3.18 2.22 3.04
5/2/2018 7 3.27 5.76 3.16 2.13 2.84
5/2/2018 8 3.13 5.86 3.14 2.06 2.67
5/2/2018 9 2.18 5.96 3.12 2.01 2.54
5/2/2018 | 10 2.35 5.67 2.73 1.62 2.08
5/2/2018 | 11 3.71 5.42 2.44 1.28 1.80
5/2/2018 | 12 5.03 5.23 2.30 1.03 1.77
5/2/2018 | 13 6.27 5.20 2.56 0.59 1.74
5/2/2018 | 14 6.15 5.25 3.03 0.81 1.93
5/2/2018 | 15 5.97 5.37 3.64 1.41 2.27
5/2/2018 | 16 7.33 5.98 3.80 1.28 2.06
5/2/2018 | 17 6.52 5.81 4.01 1.32 1.86
5/2/2018 | 18 5.76 6.06 4.28 1.52 1.68
5/2/2018 | 19 3.83 5.66 3.76 1.15 1.23
5/2/2018 | 20 6.33 5.31 3.32 0.86 0.84
5/2/2018 | 21 5.90 5.01 2.99 0.77 0.62
5/2/2018 | 22 5.44 3.82 2.12 1.37 1.86
5/2/2018 | 23 3.82 3.06 2.37 2.67 3.30

29
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Figure 4.8. Hourly wind production values in Uludag region.

4.3.2. Multivariate Decision Tree with Oblique Splits

RF-LASSO algorithm ensembles multivariate oblique decision trees. At each node
of the decision tree, linear combinations of feature values, which is affine hyper-plane,
are evaluated for splitting. So, this combination is determined by applying LASSO
regression at that node [23]. In this part, input transformations and parameter selection
for LASSO regression are discussed. Moreover, 2D Fused LASSO and linear regression
are tested as alternative methods for LASSO [24,58-60]. In the experiments; R [76]
software packages ”glmnet” [74],"rpart” [77],” genlasso” [58] and "ranger” [78] are
used for LASSO, DT, 2D Fused LASSO and RF respectively.

4.3.2.1. Determination of P¢. There is a nonlinear relation between wind speed and

wind production (see Figure 1.1). Therefore, it is expected that nonlinear transfor-
mation of feature space provides better learning because LASSO is a linear regression
method and its capability for learning nonlinear relations is weak [24]. In order to test
the feature transformation effect, LASSO regression is applied to full data using P¢
transformation for ¢ = 1,2, 3,4,5. A\i . determined by 5-fold CV out of 50 candidate A
values. Figure 4.9 shows WMAPE performances on test data. The minimum WMAPE

is reached with ¢ = 3 which is in accordance with the wind power formula.
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Figure 4.9. Polynomial input transformation LASSO regression performances.

4.3.2.2. Alternatives to LASSO. As alternative methods for finding reference affine

hyperplanes in the splitting process; 2D Fused LASSO and standard multivariate linear
regression are also tested against LASSO regression [24,58-60]. The reason behind
proposing 2D Fused LASSO as an alternative is that the feature set is a 2D grid with
neighbor points. 2D Fused LASSO penalizes coefficient differences between neighbor
points and this may lead to neater fitted values [58-60]. It is shown in Figure 4.4
that there are strong correlations between features which may lead to multicollinearity
problem in finding the proper affine hyperplane. The main aim is to validate the effect
of L regularization on reducing multicollinearity issue by comparing it with alternative
linear models [23-27]. Moreover, how the integration of linear models into the splitting
process performs is analyzed. In order to test the effects; DT-LM algorithm which is
the generic version of DT-LASSO that can use alternative linear regression models in
addition to LASSO in splitting is proposed. DT-LM algorithm builds a single decision
tree on full data using all of the feature set which corresponds to the default setting
with m = p and r = 1. Table 4.2 shows WMAPE performances of the following models

on test data:

e DT : Conventional decision tree evaluates orthogonal splits [28]
e DT — LASSO1 : DT using LASSO and P! transformation
e DT'— LASSO2: DT using LASSO and P? transformation
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e DT — LASSO3 : DT using LASSO and P? transformation
e DT — LR : DT using linear regression with I’? transformation

e DT —2DFL : DT using 2D Fused LASSO with P! transformation

Table 4.2. WMAPE performances of alternative models.

Model d=2 | d=4 | d=6 d=38 d=10 | d=12
DT 30.33% | 23.33% | 21.53% | 21.11% | 21.42% | 21.84%
DT-LASSO1 | 23.66% | 18.12% | 18.02% | 18.18% | 17.97% | 17.98%
DT-LASSO2 | 22.77% | 18.00% | 17.92% | 17.90% | 17.87% | 18.05%
DT-LASSO3 | 22.60% | 17.95% | 17.98% | 17.65%™ | 17.99% | 17.89%
DT-LR 23.08% | 19.69% | 22.51% | 26.69% | 28.25% | 28.29%
DT-2DFL | 23.68% | 18.64% | 18.58% | 18.70% | 18.99% | 19.32%

According to results in Table 4.2, the integration of LASSO into decision tree
increases test performance significantly. The best performance is achieved by DT —
LASSO3 with 17.65% which is in accordance with the inference from the polynomial
degree selection part where the best result is reached with ¢ = 3. It can be seen that
DT — LR performs poorly with increasing tree depth. Multicollinearity issue may
cause comparably poor performance for DT — LR because there is no penalization in
linear regression [23-27]. Also, DT — 2DF'L performance is decreasing with increas-
ing depth but it is still better than classical orthogonal DT. Lastly; DT — LASSO1,
DT —LASSO2 and DT — LASSO3 have close performances in contrast to pure LASSO
regression performances that differ significantly for cases ¢ = 1, 2,3 as shown in Fig-
ure 4.9. So, it can be derived that DT — LASSO model is more robust as compared

to LASSO in terms of ¢ when the deep trees are grown.

4.3.2.3. Family Selection. In linear regression, it is assumed that E[Y|X] = X753,

which is the conditional expectation of the target equals to the affine combination of
features [79-82]. However; for cases where Y has no linear relationship with X, this

assumption can be generalized into E[Y|X] = G~'(X?3) where G is a one-to-one
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and monotonic link function and Y is from the exponential family [79-82]. For linear
regression, G is an identity link function. In the wind power forecasting case, it is known
that there is no direct linear relationship between our feature and target variables.
So, using alternative link functions can improve the goodness of fit. Therefore, logit
function, the inverse of the sigmoid function, can be used for the link function because

the shape of the sigmoid is similar to the wind power curve as shown in Figure 4.10.

> 050+

Figure 4.10. Sigmoid function.

Generalized Linear Models (GLM) with binomial and quasi-binomial families are
the proper alternative choices to ordinary linear regression because they utilize logit
link function [79-82]. In order to use binomial family models, the target variable
should lie between 0 and 1 because binomial GLM can be used if Y is defined as
Nsuccess | Motal [83,84]. Tt is possible to reduce the wind production to [0,1] by applying
the following transformation YA1 =Y, 1/max(Y, ). Table 4.3 shows WMAPE perfor-
mances of different GLM families on test data for DT"— LASSO3 model. According
to data, Gaussian family still performs better. Gaussian family is the ordinary regres-
sion with identity link function and assuming error component distributed with normal

distribution [79-82].



Table 4.3. WMAPE performances of alternative GLM families.

Family d=2 | d=4 | d=6 d=38 d=10 | d =12
Gaussian 22.60% | 17.95% | 17.98% | 17.65%* | 17.99% | 17.89%
Binomial 22.77% | 18.03% | 18.03% | 18.24% | 17.95% | 18.23%

Quasibinomial | 22.77% | 17.95% | 18.22% | 18.14% | 17.98% | 18.08%

4.3.2.4. Temporal Feature Integration.

34

In wind power forecasting task, both target

and features have a time series nature. So, it is reasonable to integrate auto-regressive

components into the modeling phase. In order to include temporal effects, it is shown

in Figure 4.11 that the feature set is extended to [X; o, X; 1, Xy, Xi11, Xyio] where

X; is the wind speed forecasts for time ¢. Table 4.4 shows WMAPE performances

of DT — LASSO3 algorithm with two different feature sets on test data. It can be

deduced that the integration of temporal features improves model performance.
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(a) Spatial feature set.

Longitude

(b) Spatio-temporal feature set.

Figure 4.11. Temporal extension of feature set.
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Table 4.4. WMAPE performances of temporal extension in feature set.

Feature d=2 d=14 d=26 d=28 d=10
Spatial 22.60% | 17.95% | 17.98% | 17.65% | 17.99%
Spatio-temporal | 22.12% | 17.40% | 17.53% | 17.46% | 17.24%*

4.3.3. Ensembling

This section specifies bagging and ensembling strategies of RF-LASSO algorithm

for wind power forecasting.

4.3.3.1. Aggregation Method. To get predictions over trained weak learners, RF uses

the mean operator for both g; and g, in Equation (4.4) [16,24,68]. However, mean
operator is suitable for symmetrical distributions and it has disadvantages if the dis-
tribution is skewed. For skewed distributions, median is a better measure of central
tendency [85,86]. Figure 4.12 shows that production values have right-skewed dis-
tribution and there is a gap between mean and median values. Therefore, different
combinations of g; and go are tested using RF with v = 100, m = 24 and spatio-
temporal feature set as input. Additionally, quantile random forest (QRF) is trained
for comparison purposes [87]. In QRF; ¢(7}) for v trees are united under a single vec-
tor and the prediction is the median value of that vector for the new observation [87].
Table 4.5 summarizes WMAPE results for the combinations of ¢g; and g, and QRF
strategies in aggregation. The results show that using the median operator for both
g1 and g9 performs the best in the test period. Also, it can be concluded that com-
bining terminal nodes under a single vector and applying the median operator over a
combined set is less effective because the local distributions of terminal node observa-
tions are ignored in this case contrary to the best scenario where each terminal node

distribution is evaluated separately by applying median operator over each of them.

4.3.3.2. Temporal Bagging. In random forest algorithm; the probability of being cho-

sen is distributed uniformly for each data point [16,24,68]. In other words, observa-
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Figure 4.12. Production distribution.
Table 4.5. WMAPE performances of aggregating functions.
Model g1 g2 d=4 | d=6 | d=8 | d=10 d=12

RF Mean Mean | 19.71% | 18.26% | 17.60% | 17.22% | 17.08%
RF Mean | Median | 18.96% | 17.83% | 17.35% | 17.07% | 17.00%
RF | Median | Mean | 19.46% | 18.13% | 17.47% | 17.05% | 16.85%
RF | Median | Median | 18.95% | 17.83% | 17.32% | 16.98% | 16.83%*
QRF - 19.10% | 17.88% | 17.45% | 17.15% | 16.97%

tions are randomly selected in the bagging phase when building v independent decision
trees [16,24,68]. In time series nature, more recent observations have a larger proba-

bility of carrying useful information for forecasting of future [88].

The wind power forecasting task also includes temporal effects as it is discussed

in the previous section. So, giving more weight to recent observations in the bagging
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phase may help to extract more information. ”T-Bagging” algorithm which employs
temporal bagging for time series problems is proposed in [88]. In this part, ” T-Bagging”
alternatives have been experimented for wind power forecasting. Weights that change
according to the time index for alternative strategies are depicted in Figure 4.13 [88].
The probability of being selected in bagging is proportional to weight magnitude. The
sampling is applied without replacement. In order to test the strategies, RF algo-
rithm with v = 100, m = 24 and spatio-temporal feature set as input is trained for
different tree depths. For aggregation, median function is used for both ¢g; and gs.
Table 4.6 summarizes WMAPE results for six types of bagging strategies. According
to the results, all strategies giving more weight to recent data perform better than
Typel strategy which corresponds to pure random selection. Also, strategies with
exponentially increasing weights to recent observations perform slightly better than
logarithmically increasing ones. With minimum average WMAPE over different tree

depths, Typed strategy is selected for bagging operation.
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Figure 4.13. Temporal weights for bagging.



Table 4.6. WMAPE performances of weighting strategies for bagging.

Bagging | d=4 | d=6 | d=8 | d=10 | d=12 Mean
Typel | 18.95% | 17.83% | 17.32% | 16.98% | 16.83% | 17.58%
Type2 | 18.79% | 17.75% | 17.13% | 16.88% | 16.67% | 17.44%
Type3 | 18.83% | 17.64% | 17.12% | 16.81% | 16.73% | 17.43%
Typed | 18.63% | 17.66% | 17.18% | 16.85% | 16.74% | 17.41%*
Typeb5 | 18.72% | 17.66% | 17.14% | 16.89% | 16.76% | 17.43%
Type6 | 18.84% | 17.77% | 17.25% | 16.95% | 16.84% | 17.53%

38
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5. EXPERIMENTS AND RESULTS

In this section, datasets used in the experiments and the experimental setup are
explained. Then, the results of the experiments are presented. Finally, future works

about the possible improvements for the proposed method are discussed.

5.1. Descriptions of the Datasets

The experiments are conducted with a total of three different datasets, with two
new datasets containing the total production of multiple wind farms in addition to
the data described in Section 4.3.1 (Dataset 1). The first of the additional datasets
(Dataset 2) consists of the following 12 wind farms; Mazi, Aliaga Bergama, Somal2,
Zeytineli, Pitane, Bergres, Kuyucak, Kirkagac, Yuntdag, Kocadag, Geres and Diizova.
The second (Dataset 3) consists of 6 wind farms; Bares, ngmar, Kocalar, Kizilcaterzi,
Edincik and Sadilli. In the selection of the datasets, factors such as having different
production levels, being located in different regions and having different data lengths
are taken into consideration. The additional datasets are accessed through the EPTAS

Transparency Platform [89].

In all three datasets, the main aim is to estimate the hourly total wind production.
As the explanatory features, GF'S 80-meters above ground wind speed forecasts at each
0.25° point in a boundary box are used [71,72]. The boundary box is defined as the
smallest rectangle covering the interested region. Although wind speed forecasts are in
hourly resolution as of now, they are presented in 3-hour resolution before 2020-10-05.
The wind speed forecast data in the 3-hour resolution period are converted into hourly

resolution by linear interpolation method.

In the experiments, each dataset is divided into two parts as train and test.
Model learning studies are carried out on the train data, and the performances of the

corresponding models are evaluated on the test set. Figure 5.1 shows the boundary
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boxes covering the respective datasets. In Figure 5.2, hourly wind productions over

time are shown with additional information about the train and test periods.
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Figure 5.1. Boundary boxes of the datasets.
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5.2. Experimental Setup

The experiments are primarily designed to measure the predictive performance of
the proposed RF-LASSO algorithm against the conventional RF algorithm. Therefore,
the performances of each model over the test periods of each datasets are accepted as an
anchor point. WMAPE is selected as the primary performance metric in comparisons.
The main purpose of this selection is to facilitate comparisons on different datasets,

since the WMAPE metric is scale-free.

In the experiments, the performance of the DT-LASSO algorithm compared to
the conventional DT and LASSO regression algorithms is also evaluated. Moreover, an
extended version of RF algorithm called RF-EXT is proposed to measure the effects
of alternative aggregation functions and temporal bagging. So, the models given with

the following details are used in the experiments:

e LASSO: Penalized linear regression model with L; regularization [23]

(i) X, P3(X), [Xi—9, Xi—1, X4, Xi11, Xiao], and
P3([Xy—2, Xi—1, X, Xpi1, Xy 40]) are used for the experiments as an input
data. X; is the wind speed forecasts for time t¢.

(ii) A1se is used for prediction. Aj 4 is determined by 5-fold CV out of 50
candidate A values.

(iii) Gaussian family is chosen for the GLM family parameter.
(iv) "glmnet” [74] package is used for training.
e DT: Conventional decision tree evaluates orthogonal splits [28]

(i) X and [X; o, X} 1, X4, Xy11, Xi1o] are used for the experiments as an input
data.

(ii) Trees are grown until maximum depth parameter d is reached without ad-
ditional limitation on complexity.

(iii) d ={2,4,6,8,10,12} are selected for the experiments.
(iv) "rpart” [77] package is used for training.

e DT-LASSO: The proposed ODT algorithm
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(i) X, P3(X), [Xi—9, X1, Xt, Xi11, Xi4o], and
P3([ X2, Xi 1, X4, Xpi1, Xpio]) are used for the experiments as an input
data.

(ii) m = p and r = 1 default settings are used. All features are the input for
LASSO regression at each split without random selection.

(iii) A1 .se is used for acquiring fitted values in splitting process. A g is determined
by 5-fold CV out of 50 candidate A values. Gaussian family is chosen for the
GLM family parameter.

(iv) Trees are grown until maximum depth parameter d is reached without ad-
ditional limitation on complexity.

(v) d=1{2,4,6,8,10, 12} are selected for the experiments.

(vi) It is implemented in R software [76]. The implementation can be found in
the author’s repository [90].

e RF: Conventional RF algorithm that ensembles univariate DT’s [16]

(i) The feature set X is extended to [X; o, Xy—1, X¢, Xit1, Xito]

(ii) v = 100 trees are ensembled.

(i) d = {4,6,8,10,12,16,24} and m = {8,16,24,32,64} are selected for the
experiments.

(iv) Both g; and g are the mean operator.

(v) Random sampling is applied with replacement in the bagging. The proba-
bility of being chosen for each observation is equal.

(vi) "ranger” [78] package is used for training.

e RF-EXT: The extended version of RF algorithm except that:

(i) Both g; and g are the median operator.

(i) Random sampling s observation out of n without replacement is applied
in the bagging. The probability of being chosen for each observation is
proportional to Type4 strategy.

(iii) "ranger” [78] package is used for training. But, the prediction function
utilizing median operators is implemented additionally in R.

e RF-LASSO: The proposed ORF algorithm
(i) The feature set X is extended to [X; o, X; 1, Xy, X1, Xiio]
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(i) P? transformation is applied in LASSO regression.

(iii) A1 .se determined by 5-fold CV out of 50 candidate A values. Gaussian family
is chosen for the GLM family parameter.

(iv) v = 100 trees are ensembled.

(v) d=1{4,6,8,10} and (m,r) = {(p, 1), (16,1),(24,1), (32,1), (4,16), (4, 24),
(4,32),(8,16),(8,24), (8,32), (16, 16), (16, 32), (32, 16), (32,32)} are selected
for the experiments.

(vi) Both g; and g, are the median operator.

(vii) Random sampling s observation out of n without replacement is applied
in the bagging. The probability of being chosen for each observation is
proportional to Type4 strategy.

(viil) It is implemented in R software [76]. The implementation can be found in

the author’s repository [90].

5.3. Results

In this section, first of all, the performances of DT-LASSO, LASSO and DT
models are compared over the test period of each dataset. Afterwards, detailed perfor-
mance analysis of RF and RF-EXT models is performed. In addition, a comprehensive
comparison of the RF-LASSO model with RF and RF-EXT is conducted. Finally, the

results of all models with the best working parameter versions are summarized.

5.3.1. DT-LASSO Comparisons

In this section, the forecasting performances of DT-LASSO, LASSO and DT
models are reported and discussed. The main purpose of comparing these three models
is that the proposed model DT-LASSO is an oblique decision tree method and uses
LASSO regression when finding oblique splits. Therefore, the performance of DT-
LASSO against the conventional orthogonal decision tree method is also be determinant
for the random forest models that ensemble these trees. Figures 5.3, 5.4 and 5.5 show

the performance of the models in terms of WMAPE on all three datasets, respectively.
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Figure 5.3. DT-LASSO performance comparisons for Dataset 1.

DT-LASSO model performs best in all three datasets and all input combinations.
The best results are achieved with DT-LASSO using P3([X;_2, X; 1, Xy, Xi11, Xi19))
as an input. Moreover, the performance of LASSO for no input transformation setting
lags significantly behind the case with P? polynomial transformation setting. However,
this situation is not the same for DT-LASSO. Although DT-LASSO utilizes LASSO
regression with no input transformation, it still seems to be successful especially for
the capturing of nonlinearity. Additionally, the integration of temporal dimension into
feature set improves the predictions for all models. While DT-LASSO has preserved
the strength of conventional DT method for learning nonlinear relations, It has also

preserved the predictive power of LASSO regression.



X [xl—ﬂ Kioq X X, x(+r,.1]
o B
.35 “3""'1‘ "?I':.
\\ \\
0.30 v e . 55
X -
al@ r‘,ﬁ. do A i\
s = o \o e de
1 = g, o o oo : & a0
02 P - Vg - s CE’ ‘bq; ‘L?gr | :‘E’r? w2 B A y
- | e do Ve T g | | R T oy - - -y
020 L T - > 03 o Rl é,““ " e ,{;\“
20+ S e e R~ %
e » el ~ E"—--—-:S‘i~---'ﬁ-—~-'3’-'-
L
o
=
=
=
0.354
0.30 4
0.254
0.204

Models —=- DT -e- DT-LASSO -+ LASSC

Figure 5.4. DT-LASSO performance comparisons for Dataset 2.
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5.3.2. RF and RF-EXT

This section compares the results of RF and RF-EXT models. In time series
tasks, current observations are more informative than previous ones for forecasting [88].
Based on this assumption, RF-EXT model gives more weight to current observations
in the bagging , unlike RF model which gives equal weight to each observation [16].
Therefore, the probability of using current observations in individual decision trees is
higher for RF-EXT as compared to RF. Moreover, the median operation estimates the
central tendency better than the mean operation for non-symmetrical distributions [86].
Therefore, RF-EXT model uses median values instead of mean in the prediction process
in addition to temporal bagging. To analyze the effects of extensions of RF-EXT,
the performances of RF and RF-EXT model over the test period of each dataset are
compared in terms of WMAPE. Then, BIAS and WMAPE values at different wind
power levels are reported to analyze the distributional effects of wind power data for
prediction . Figures 5.6, 5.7 and 5.8 show the performance of the models for different
d and m values for all three datasets, respectively. Table 5.1 summarizes the best

performing RF and RF-EXT with corresponding parameter setting for each dataset.

RF-EXT outperformed RF in all parameter combinations for each dataset. Es-
pecially for Dataset 2 and Dataset 3, the performance difference between the best
parameter combinations of RF and RF-EXT is significant. To evaluate the perfor-
mance of median as compared to mean in aggregation, wind power is divided into five
equal quantiles after sorting. Quantile ranges of the productions are denoted as groups.
Then, BIAS and WMAPE values of RF and RF-EXT in the quantiles are analyzed.
Table 5.2 summarizes the quantiles with their corresponding group number and Ta-
ble 5.3 shows the performances of the models in each range. As observed, BIAS of
RF-EXT model is closer to 0 compared to BIAS of RF, especially in the low and high
wind power ranges. The results indicate that median operation estimates the central

tendency of wind power distribution better than mean operation does.
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Input Model d | m | WMAPE

RF-EXT | 16 | 64 16.65%

Dataset 1
RF 16 | 64 17.01%
RF-EXT |24 | 24 16.68%

Dataset 2
RF 24 | 64 17.45%
RF-EXT | 24 | 64 21.19%

Dataset 3
RF 24 | 64 22.22%

Table 5.1. Parameter settings of the best RF and RF-EXT.
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Table 5.2. Wind power quantile intervals of the datasets.

Wind Power Intervals in MWH
Group

Dataset 1 Dataset 2 Dataset 3
1 [0.019, 2.140) [0, 44.640) [0, 17.550)
2 [2.140, 5.500) [44.640, 141.952) [17.550, 56.444)
3 [5.500, 10.217) | [141.952, 306.392) | [56.444, 137.780)
4 [10.217, 16.364) | [306.392, 487.670) | [137.780, 225.600)
5 [16.364, 25.299] | [487.670, 645.870] | [225.600, 295.940]

Table 5.3. RF vs RF-EXT performance comparison for wind power intervals.

RF RF-EXT
Input Group

BIAS | WMAPE | BIAS | WMAPE

1 -69.66% 81.71% | -43.33% | 67.29%

2 -12.82% 33.17% -7.13% 33.23%

Dataset 1 3 -0.96% 20.48% 0.42% 20.84%

4 3.79% 16.42% 3.18% 17.04%

bt 7.34% 9.49% 5.97% 8.91%

1 -70.60% 90.31% | -28.13% | 65.03%

2 -18.24% 42.88% -3.93% 40.25%

Dataset 2 3 -3.41% 27.02% -0.86% 28.58%
4 6.13% 15.76% 4.44% 16.22%

bt 7.12% 8.42% 4.78% 6.99%

1 -165.47% | 170.22% | -98.72% | 120.04%

2 -20.91% 52.01% -3.97% 49.27%

Dataset 3 3 4.06% 33.33% 7.83% 35.59%
4 8.70% 18.80% 7.30% 19.09%

bt 10.21% 12.25% 7.92% 10.85%
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5.3.3. RF-LASSO Comparisons

In this section, the performances of RF-LASSO model are compared with other
tree-ensembling algorithms RF and RF-EXT. The detailed comparison of RF and RF-
EXT models is conducted in the previous section. As a result, it is observed that RF-
EXT algorithm outperforms RF. As the method proposed in this thesis, RF-LASSO
model combines oblique decision trees instead of univariate ones unlike the other two
algorithms,. Additionally, RF-LASSO uses median operation like RF-EXT in aggrega-
tion phase. Moreover, temporal weighting of the observations is applied in the bagging
phase like RF-EXT does. For this reason, RF-EXT results are reported as a bench-
mark in detailed analysis. In Tables 5.4, 5.5, and 5.6; RF-LASSO performances for all
parameter settings for the three datasets are reported in WMAPE, respectively. At
the same time, the best performances of RF and RF-EXT models at the corresponding
tree depth are also included in these tables. In Table 5.7, together with RF-EXT, the
best RF-LASSO parameter setting and related WMAPE performance in each dataset

are reported.

RF-LASSO outperforms RF and RF-EXT at the same depth in all datasets.
Because RF-LASSO is a multivariate tree ensembling method, it achieves better per-
formances at less depths as compared to univariate alternatives. Also, the best RF-
LASSO model in all three datasets outperforms the best RF-EXT version. While this
difference is minimal for Dataset 3, it is significant for Dataset 1. Since RF-LASSO
algorithm is coded from scratch, it does not yet have an efficient implementation like
other random forest algorithms. Therefore, experiments on deeper trees could not be
performed as the time complexity changes with depth. The situation is discussed in
more detail in the discussion section. In addition, Table 5.8 shows the performances of
RF-LASSO and RF-EXT in each wind power range. As observed, BIAS of RF-LASSO
model is closer to 0 compared to BIAS of RF-EXT, especially in the low wind power

ranges.



Table 5.4. RF-LASSO performance results for Dataset 1.

RF-LASSO d
m T 4 6 8 10
D 1 16.72% | 16.61% | 16.60% | 16.61%
4 16 17.71% | 17.11% | 16.82% | 16.78%
4 24 17.72% | 17.03% | 16.72% | 16.61%
4 32 17.58% | 16.96% | 16.66% | 16.59%
8 16 17.40% | 16.73% | 16.55% | 16.52%
8 24 17.38% | 16.76% | 16.49% | 16.46%
8 32 17.32% | 16.69% | 16.44% | 16.43%
16 1 17.35% | 16.88% | 16.83% | 16.88%
16 16 16.98% | 16.46% | 16.39% | 16.35%
16 32 16.93% | 16.44% | 16.33% | 16.28%
24 1 17.00% | 16.67% | 16.64% | 16.64%
32 1 16.83% | 16.58% | 16.55% | 16.55%
32 16 16.59% | 16.36% | 16.21% | 16.21%
32 32 16.56% | 16.22% | 16.17% | 16.15%
RF 19.40% | 18.13% | 17.55% | 17.18%
RF-EXT | 18.63% | 17.66% | 17.11% | 16.84%
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Table 5.5. RF-LASSO performance results for Dataset 2.

RF-LASSO d
m T 4 6 8 10
D 1 17.65% | 17.44% | 17.47% | 17.45%
4 16 19.81% | 18.03% | 17.39% | 17.12%
4 24 19.66% | 18.01% | 17.30% | 17.05%
4 32 19.61% | 18.00% | 17.23% | 16.95%
8 16 18.60% | 17.41% | 16.96% | 16.85%
8 24 18.51% | 17.36% | 16.82% | 16.74%
8 32 18.46% | 17.34% | 16.88% | 16.64%
16 1 18.39% | 17.61% | 17.50% | 17.48%
16 16 17.79% | 16.87% | 16.69% | 16.68%
16 32 17.72% | 16.82% | 16.53% | 16.54%
24 1 17.86% | 17.29% | 17.22% | 17.25%
32 1 17.55% | 17.07% | 17.06% | 17.09%
32 16 17.13% | 16.60% | 16.49% | 16.48%
32 32 17.10% | 16.53% | 16.42% | 16.44%
RF 23.43% | 20.46% | 18.83% | 18.01%
RF-EXT | 21.88% | 19.51% | 18.10% | 17.34%
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Table 5.6. RF-LASSO performance results for Dataset 3.

RF-LASSO d
m T 4 6 8 10
D 1 22.47% | 22.38% | 22.40% | 22.34%
4 16 24.26% | 22.67% | 22.07% | 21.89%
4 24 24.05% | 22.53% | 22.00% | 21.64%
4 32 23.95% | 22.32% | 21.70% | 21.70%
8 16 23.13% | 21.93% | 21.67% | 21.54%
8 24 23.08% | 21.86% | 21.52% | 21.44%
8 32 23.00% | 21.77% | 21.41% | 21.28%
16 1 23.10% | 22.32% | 22.31% | 22.29%
16 16 22.21% | 21.55% | 21.29% | 21.42%
16 32 22.13% | 21.36% | 21.13% | 21.21%
24 1 22.45% | 22.03% | 21.93% | 21.91%
32 1 22.22% | 21.81% | 21.78% | 21.75%
32 16 21.70% | 21.26% | 21.26% | 21.17%
32 32 21.57% | 21.24% | 21.13% | 21.16%
RF 26.37% | 24.57% | 23.43% | 22.81%
RF-EXT | 25.57% | 23.73% | 22.62% | 21.88%
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Table 5.7. Parameter settings of the best RF-LASSO and RF-EXT.

Input Model d m|r | WMAPE

RF-EXT 16 | 64 | - 16.65%

Dataset 1
RF-LASSO | 10| 32| 32 16.15%
RF-EXT 24 | 24 | - 16.68%

Dataset 2
RF-LASSO | 8 | 32| 32 16.42%
RF-EXT 24 | 64 | - 21.19%

Dataset 3
RF-LASSO | 8 | 16 | 32 21.13%

Table 5.8. RF-LASSO performance comparison for wind power intervals.

RF-EXT RF-LASSO
Input Group

BIAS | WMAPE | BIAS | WMAPE

1 -43.33% | 67.29% | -40.34% | 63.58%

2 -7.13% 33.23% -5.01% 31.70%

Dataset 1 3 0.42% 20.84% 1.06% 20.61%

4 3.18% 17.04% 2.57% 16.21%

5 5.97% 8.91% 6.03% 8.87%

1 -28.13% | 65.03% | -21.43% | 62.15%

2 -3.93% 40.25% 0.70% 39.73%

Dataset 2 3 -0.86% 28.58% 0.38% 28.47%
4 4.44% 16.22% 3.85% 15.99%

5 4.78% 6.99% 4.24% 6.79%

1 -98.72% | 120.04% | -88.55% | 107.67%

2 -3.97% 49.27% -0.17% 50.56%

Dataset 3 3 7.83% 35.59% 7.68% 37.65%
4 7.30% 19.09% 6.27% 19.01%

5 7.92% 10.85% 6.92% 10.27%




5.3.4. Model Performances with Best-Performing Parameters
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In this section, the performances of the models for the parameter setting in which

they show the best performance are summarized. Firstly, the best performances are

obtained with P3([X; o, X; 1, X;, X411, Xi40]) input data for all models. Table 5.9

reports the results of the models in all datasets in WMAPE and MAE.

Table 5.9. Performance summary with best performing parameters.

Input Model WMAPE | MAE
DT 20.88% 1.915
DT-LASSO 17.24% 1.580
LASSO 17.56% 1.610
Datasetl
RF 17.01% 1.559
RF-EXT 16.65% 1.527
RF-LASSO 16.15% 1.480
DT 22.19% 56.985
DT-LASSO 17.69% 45.445
LASSO 19.38% 49.772
Dataset2
RF 17.45% 44.819
RF-EXT 16.68% 42.857
RF-LASSO 16.42% 42.189
DT 26.36% 30.603
DT-LASSO 22.64% 26.276
LASSO 23.32% 27.070
Dataset3
RF 22.22% 25.793
RF-EXT 21.19% 24.597
RF-LASSO 21.13% 24.533

RF-LASSO stands out as the model with the best performance in all three

datasets. Additionally, RF-EXT model performs better than RF model.

All tree
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ensembling methods give more successful results compared to other alternatives such
as DT, LASSO and DT-LASSO. Although DT-LASSO model grows a single tree, it
performs close to RF. On the other hand, DT shows the worst performance in all

datasets according to the relevant metrics.

Table 5.10. Daily WMAPE performances of the best performing models.

Input Model Q10 Q25 Q50 Q75 Q90
DT 10.62% | 15.25% | 26.92% | 39.62% | 66.05%
DT-LASSO | 9.18% | 13.32% | 20.77% | 33.83% | 48.44%
LASSO 8.68% | 12.89% | 21.05% | 34.27% | 58.75%
Datasetl
RF 8.14% | 12.32% | 21.65% | 32.23% | 49.92%
RF-EXT 7.60% | 12.29% | 21.32% | 32.19% | 47.00%
RF-LASSO | 7.76% | 12.24% | 19.99% | 31.53% | 45.59%
DT 9.81% | 17.11% | 29.56% | 48.52% | 70.24%
DT-LASSO | 7.09% | 13.19% | 23.68% | 38.41% | 53.27%
LASSO 8.44% | 13.63% | 24.62% | 43.68% | 80.42%
Dataset2
RF 7.35% | 12.93% | 23.18% | 37.92% | 55.83%
RF-EXT 6.60% | 12.80% | 22.73% | 35.64% | 50.17%
RF-LASSO | 6.08% | 12.22% | 21.92% | 36.32% | 48.70%
DT 13.57% | 19.39% | 38.17% | 56.37% | 82.76%
DT-LASSO | 11.30% | 16.23% | 28.11% | 47.19% | 67.08%
LASSO 12.49% | 17.06% | 28.62% | 48.44% | 84.55%
Dataset3
RF 11.15% | 16.09% | 29.32% | 44.60% | 72.05%
RF-EXT 9.85% | 15.04% | 28.45% | 46.45% | 70.35%
RF-LASSO | 9.13% | 15.04% | 26.90% | 45.52% | 64.24%

The results in Table 5.9 are calculated over the whole period. However, it is im-
portant to analyze the performance of the models on a daily basis in order to compare
their robustness. For this purpose, daily WMAPE values of each model are calculated.
Then, the daily WMAPE values in different quantiles are reported. Table 5.10 re-
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ports 10%, 256%, 50%, 75% and 90% quantile performances of the models. RF-LASSO

outperforms other models for different quantile ranges, especially in 50% and 90%.

5.4. Discussion

RF-LASSO and DT-LASSO outperform their univariate counterparts for the re-
gional wind forecasting problem in the selected datasets. Moreover; median aggregation
and temporal bagging, which are proposed as an extension to RF, also show more suc-
cessful results. These methods can also be applied and tested in different time series
regression problems. Considering the lack of research on oblique decision tree-based
methods especially in time series regression problems, the successful performance of
the proposed models shows that alternative oblique decision tree-based model studies

can be made.

Although RF-LASSO gives satisfactory performance, it lags behind RF in terms
of running times. This is due to the fact that the time complexity of finding a supervised
multivariate split at each node is higher than finding a split based on a single variable.
Therefore, improvements in the multivariate split searching directly affect the efficiency
of the model. Therefore, suggestions that can be studied as future work are summarized

as follows:

e The proper A value in LASSO regression is determined using k-fold cross vali-
dation. As an alternative, performances of different A options on the out-of-bag
sample can be taken as a basis instead of using k-fold cross validation. Thus,
multiple model fitting required by cross validation can be avoided.

e In addition, the proper \ value determined in the previous node can be used as
the initial point for the next node.

e It is observed that decision trees using oblique split achieve better performances
at lower depth values as compared to orthogonal trees. Therefore, oblique splits
can be utilized up to a certain depth, and then orthogonal splits can be used. A

faster and more accurate convergence can be achieved with a hybrid method.
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6. CONCLUSION

This thesis proposes a new oblique tree-based ensembling algorithm RF-LASSO
for the regional wind power forecasting task. RF-LASSO ensembles oblique decision
trees, namely DT-LASSO which splits data at each node over a linear combination
of features found in a supervised manner using LASSO regression. Because there is
a lack of research in oblique tree-based algorithms applied in time series regression
tasks, the main aim is to compare RF-LASSO with RF that has proven success in
wind power forecasting domain in order to validate that oblique tree-based algorithms

can be applied for time series regression.

First of all, DT-LASSO algorithm is compared with the conventional decision
tree and LASSO regression methods in the experiments. It is observed that while
DT-LASSO maintain the success of decision trees in learning nonlinear relationships,
it shows more successful results compared to the other two models. Afterwards, the
analyzes of median aggregation and temporal bagging, which are presented as an ex-
tension to random forest method, are performed. It is observed that the extensions to
random forest method significantly improve model performance and better represent
local distributions. Finally, the proposed model RF-LASSO is compared with other
methods used in the experiments. In these comparisons, RF-LASSO outperforms the
others. Moreover, RF-LASSO model shows better results at less depths, hence multiple
variables are used in each split. So, RF-LASSO offers a faster convergence in terms
of tree depth compared to other univariate alternatives. As a result, it is shown that
oblique decision tree-based methods can also produce successful results in time series

regression problems.

Although RF-LASSO produces successful results in regional wind power estima-
tion, it can also be applied to different time series regression problems. Additionally,
the time efficiency of RF-LASSO can be improved with the enhancements in the op-

timization problem solved for multivariate split search. In the light of this thesis,
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alternative oblique decision tree-based methods that can be applied in time series re-
gression problems, together with the improvements that can be made on RF-LASSO

model, can be suggested as possible future works.
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