

WEB SERVİS GÜVENLİĞİNDE TOKEN BAZLI YENİ

YAKLAŞIM

Mehmet CİNCİ

201402202

YÜKSEK LİSANS TEZİ

Bilgisayar Mühendisliği Anabilim Dalı

Bilgisayar Mühendisliği Tezli Yüksek Lisans Programı

Danışman: Dr. Öğr. Üyesi Ceren ÇUBUKÇU CERASİ

İstanbul

T.C. Maltepe Üniversitesi

Lisansüstü Eğitim Enstitüsü

Eylül, 2022

 WEB SERVİS GÜVENLİĞİNDE TOKEN BAZLI YENİ

YAKLAŞIM

Mehmet CİNCİ

201402202

ORCID: 0000-0003-4256-9388

YÜKSEK LİSANS TEZİ

Bilgisayar Mühendisliği Anabilim Dalı

Bilgisayar Mühendisliği Tezli Yüksek Lisans Programı

Danışman: Dr. Öğr. Üyesi Ceren ÇUBUKÇU CERASİ

İstanbul

T.C. Maltepe Üniversitesi

Lisansüstü Eğitim Enstitüsü

Eylül, 2022

i

JÜRİ VE ENSTİTÜ ONAYI

Bu belge, Yükseköğretim Kurulu tarafından 19.01.2021 tarihli “Lisansüstü Tezlerin

Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge”

ile bildirilen 6698 Sayılı Kişisel Verilerin Korunması Kanunu kapsamında gizlenmiştir.

ii

ETİK İLKE VE KURALLARA UYUM BEYANI

Bu belge, Yükseköğretim Kurulu tarafından 19.01.2021 tarihli “Lisansüstü Tezlerin

Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge”

ile bildirilen 6698 Sayılı Kişisel Verilerin Korunması Kanunu kapsamında gizlenmiştir.

iii

TEŞEKKÜR

Bu çalışmanın gerçeklemesinde, yardımlarını esirgemeyen, değerli bilgilerini benimle

paylaşan ve yönlendiren, her zaman yanımda olan ve sonsuz desteğini hissettiren, çok

kıymetli danışmanın Dr. Öğr. Üyesi Ceren ÇUBUKÇU ÇERASİ’ye şükranlarımı

sunarım.

Tez çalışmam için her zaman yanımda olan akademik başarımının devamında bana yol

gösteren ve teşvik eden AR-GE Müdürüm Dr. Muaz GÜLTEKİN’ne çok teşekkür

ederim.

Son olarak tüm kalbi ile beni destekleyen eşim Şenay’a ve her zaman benim yanımda

olan sevgili aileme sonsuz teşekkürler.

Mehmet CİNCİ

Eylül 2022

iv

ÖZ

WEB SERVİS GÜVENLİĞİNDE TOKEN BAZLI YENİ YAKLAŞIM

Mehmet Cinci

Yüksek Lisans Tezi

Bilgisayar Mühendisliği Anabilim Dalı

Bilgisayar Mühendisliği Tezli Yüksek Lisans Programı

Danışman: Dr. Öğr. Üyesi Ceren Çubukçu Çerasi

Maltepe Üniversitesi Lisansüstü Eğitim Enstitüsü, 2022

Günümüzde internetin yaygınlaşması ile kurumlar arasında verilerin iletilmesinde web

servisler yoğun bir şekilde kullanılmaktadır. Web servisler ile veri transferlerinde üçüncü

kişilerin erişimini önlemek için SSL / TLS kullanılmaktadır. Bu güvenlik çözümü

sayesinde istemci ile sunucu arasındaki haberleşme güvenliği sağlanmış olunacaktır. Web

servislerin üçüncü kişiler tarafından zafiyet saldırılarına uğradıkları gözlemlenmiştir. Bu

atakların en popüler olanları XML Injection, XPath Injection, SQL Injection, Spoofing

ve Denial of Service günümüzde de devam etmektedir. Bu saldırılara karşı bizim tavsiye

etiğimiz XAdES tabanlı çözüm olacaktır. Burada karşılaştığımız en büyük problem; talep

edilen Envelope’un istenilen XML formatı, Dijital imza ve imza türüne göre hazırlanıp

sunucu tarafına iletilmesidir. Ayrıca XAdES oluşturmada en büyük problem, dijital

imzalamada bulunan ve imzalama sırasında kullanılan Private Key’in satıcı kurum

tarafından asimetrik olarak güvenlik nedenlerinden dolayı açık sunulmamasıdır.

Genellikle kurumun sunduğu veya üçüncü şahıslar tarafından üretilen API’lere ihtiyaç

duymaktadırlar. API’lerin kullandığı imzalama algoritmaları veya yapıların bazen

yetersiz olduğu gözlemlenmiştir. Bundan dolayı kurumlar arasında özel kütüphaneler ile

çözüme gidilmeye çalışılmıştır. Kurumlar arasındaki yapılan veri aktarımları istemci ile

sunucu arasında Geliştirme, Test, Kalite Kontrol ve Canlı süreçlerinin zaman

planlamasının yapılamamasından kaynaklanmaktadır. Ayrıca SOAP mesajının içerisinde

yer alan Timestamp bilgisinin ömrünün çok kısa olması, konum, yer ve zaman farklılığın

olmasından dolayı proje maliyetinin de hesaplanamadığı gözlemlenmiştir. Bu sistemlerin

devlet kurumları tarafından zorlama yolu ile özel kurumlarda yaygınlaştırılması

sağlanmıştır.

Anahtar Sözcükler: Web Servis Güvenliği; Dijital İmza; XAdES; SOAP; WSG-Prefiks

v

ABSTRACT

TOKEN BASED NOVEL APPROACH TO WEB SERVICE SECURITY

Mehmet Cinci

Master Thesis

Department of Computer Engineering

Computer Engineering Arts Masters Programmer

Advisor: Asst. Prof. Ceren Çubukçu Çerasi

Maltepe University Graduate School, 2022

Today, with the widespread use of the internet, data exchange between institutions has

started to be done with web services. SSL / TLS was started to be used to prevent third

party access in data transfers and only communication security between client and server

was ensured. It has been observed that web services have been subjected to vulnerability

attacks by third parties. The most popular of these attacks as of today are XML Injection,

XPath Injection, SQL Injection, Spoofing, Denial of Service. Our recommendation

against these attacks would be XAdES. The biggest problem faced here is that the

requested Envelope is prepared according to the desired XML format, digital signature

and signature type and transmitted to the server side. In addition, the biggest problem in

creating XAdES is that the Private Key used in digital signing and used during signing is

not presented asymmetrically by the vendor for security reasons. They usually need APIs

provided by the institution or produced by third parties. Signing algorithms or structures

used by APIs have sometimes been observed to be insufficient. For this reason, it has

been tried to reach a solution with private libraries among institutions. Data transfers

between institutions are due to the inability to schedule DEV, TEST, QA and PROD

processes between the client and server. It has been observed that the project cost cannot

be calculated due to the short life of the Timestamp information in the SOAP message, in

addition to the location and time difference.

Keywords: Web Service Security; Digital Sign; XAdES; SOAP; WSS-Prefix

vi

İÇİNDEKİLER

JÜRİ VE ENSTİTÜ ONAYI ... i

ETİK İLKE VE KURALLARA UYUM BEYANI .. ii

TEŞEKKÜR ... iii

ÖZ .. iv

ABSTRACT .. v

İÇİNDEKİLER .. vi

TABLOLAR LİSTESİ ... ix

ŞEKİLLER LİSTESİ .. x

KISALTMALAR ... xi

1. GİRİŞ .. 1

1.1 Web Servis ... 1

1.2 XML ... 4

1.3 SOAP.. 6

1.3.1 Zarf (Envelope) ... 7

1.3.1.1 Başlık (Header) .. 7

1.3.1.2 Gövde (Body) .. 8

1.3.1.3 Hata (Fault) .. 8

1.4 WSDL .. 9

1.5 UDDI .. 11

1.6 Servis Odaklı Mimari (SOA) ... 14

1.6.1 SOA faydaları ... 17

vii

1.6.2 SOA sınırlamaları ve sorunları ... 18

1.7 Web Servis Güvenliği .. 19

1.8 Web Servis Güvenliğinde Saldırı Türleri ... 19

1.8.1 XML enjeksiyon ... 19

1.8.2 XML bombası ... 20

1.8.3 SQL enjeksiyon ... 20

1.8.4 Ortadaki adam saldırısı (MITM) ... 21

1.8.5 Hizmet reddi (DoS) ... 22

1.8.6 Sahtekarlığı (Spoofing) ... 22

1.9 Web Servis Güvenliğinde Sınırlıkları .. 22

1.10 Amaçlana Araştırmanın Özeti .. 22

2. YÖNTEM ... 24

2.1 Web Servis Güvenliğinde Envelope Belirlenmesi ... 24

2.1.1 Body hazırlama ... 25

2.1.2 X.509 v3 dijital sertifikasının e-imza üzerinden alınası 27

2.1.3 Header bilgisinin tanımlanması .. 27

2.1.4 Body’nin hazırlanması .. 28

2.1.5 Timestamp belirlenmesi .. 28

2.1.6 E-İmzanın belirlenmesi ... 29

2.1.7 İmzalama ... 29

2.1.8 İmzalama doğrulama ... 29

2.1.9 Schematron kontrolü ... 30

viii

2.2 Sunucu’ya İletilmesi ... 30

2.3 Web Servis Güvenliğinde Sonuçlar ... 30

2.4 Web Servis Güvenliğinde Literatür Karşılaştırması .. 32

3. BULGULAR VE YORUMLAR .. 34

3.1 Web Servis Güvenliği için Klasik ve Geliştirilmiş Yöntem İşleyişi................ 34

3.1.1 Birinci modül .. 34

3.1.2 İkinci modül .. 35

3.2 Geliştirilmiş ve Klasik Önerimiz Hakkında ... 37

3.3 Aldığımız Veriler ve Verilerin Yorumlanması .. 38

3.4 Lokasyon ve Çalışma Vardiyası Sorunu .. 40

4. SONUÇ ve ÖNERİLER ... 43

4.1 Özet .. 43

4.2 Yargı ... 43

4.3 Öneriler .. 44

4.4 Çalışma Kısıtları ve Gelecekteki Çalışmamız .. 44

KAYNAKLAR ... 46

ÖZGEÇMİŞ .. 50

ix

TABLOLAR LİSTESİ

Tablo 2. 100 adet SOAP zarf mesaj tablosu .. 39

Tablo 2. 1.000 adet SOAP zarf mesaj tablosu ... 39

Tablo 3. 10.000 adet SOAP zarf mesaj tablosu ... 40

Tablo 4. 6 ülke seçilerek bir gündeki mesai tablosu .. 42

x

ŞEKİLLER LİSTESİ

Şekil 1. Web Servis Mimarisi (Haviluddin, Edy, & Nur, 2019) 2

Şekil 2. Web Hizmetleri Mimarisi (Yongxin & Qin, 2016) ... 3

Şekil 3. İki kullanıcı bilgisinin bulunduğu basit bir XML dosyası 5

Şekil 4. Id, Ad ve Soyad bilgileri bulunan basit bir XMLSchema dosyası 5

Şekil 5. Tarih kontrolü içeren basit bir Schematron dosyası .. 6

Şekil 6. Basit bir SOAP Zarfı ... 7

Şekil 7. Basit bir hatalı bilgisi içeren SOAP Zarfı ... 8

Şekil 8. WSDL Bileşenlerinin Hiyerarşisi (Booth, 2007). ... 11

Şekil 9. Dağıtılmış UDDI sisteminin bilgi etkileşimi (Yongxin & Qin, 2016). 12

Şekil 10. Merkezileştirilmiş UDDI sistem mimarisinin tasarımı (Yongxin & Qin, 2016)

 .. 14

Şekil 11. NVivo 10 yazılımı tarafından oluşturulan ağırlıklı odak bulutu (Niknejad, 2020)

 .. 15

Şekil 12. SQL Enjeksiyon ile yapılan bir saldırı örneği. .. 21

Şekil 13. Boş bir Zarf ve SOAP versiyon 1.2’den oluşur. .. 24

Şekil 14. Muhasebe’ye web servis güvenliği üzerinden gönderilen zarf. 25

Şekil 15. Finans’sa web servis güvenliği üzerinden gönderilen zarf. 25

Şekil 16. İstemci tarafından iletilecek satış faturası Zarf. .. 26

Şekil 17. İstemci tarafından iletilen satış faturası sonuç sorgulama Zarf. 26

Şekil 18. E-imza tanımlamasında bulunan ve Body tagı ile referans edilmiş ds:Referans.

 .. 26

Şekil 19. Timestamp zaman aralığının belirlenmesi. ... 27

Şekil 20. Tekil paket sorgulama. .. 28

Şekil 21. Klasik referans tanımlanması kullanımı. ... 36

Şekil 22. Gelişmiş referans tanımlanması kullanımı. ... 37

.

xi

KISALTMALAR

API : Uygulama Programlama Arayüzü

BS : Bilgi Sistemi

BT : Bilgi Teknolojisi

HP : Hewlett-Packard

HTTP : Hiper-Metin Aktarım İletişim Protokolü

HTTPS : Güvenli Hiper Metin Aktarım İletişim Protokolü

HSM : Donanım Güvenlik Modülü

IBM : Uluslararası İş Makineleri Merkezi

JAVA : Programlama Dili

JAX-RS : Jakarta RESTful Web Servis

JAX-WS : Jakarta XML Web Servis

MathML : Matematiksel Biçimlendirme Dili

Microsoft : Microsoft Corporation

OASIS : OASIS Konsorsiyum

REST : Temsili Durum Transferi

RPC : Uzaktan yordam çağrısı

RSS : Zengin Site Özeti

SGML : Standart Genelleştirilmiş İşaretleme Dili

SOA : Servis odaklı mimari

xii

SOAP : Basit Nesne Erişim Protokolü

UDDI : Evrensel Tanımlama, Keşif ve Entegrasyon

UTC : Eşgüdümlü Evrensel Zaman

W3C : World Wide Web Consortium

WS : Web Servis

WSDL : Web Servisleri Tanımlama Dili

XML : Genişletilebilir İşaretleme Dili

XPATH : XML dokümanındaki bilgiyi bulmak için kullanılan bir dildir.

XSD : XML Şema Tanımı

XSLT : Genişletilebilir Biçimlendirme Dili Dönüşümleri

X.509 : Açık anahtar sertifikalarının formatını tanımlayan bir standarttır

1

1. GİRİŞ

1.1 Web Servis

Web servis, bir ağ üzerinden makineler arası birlikte çalışabilen ve etkileşimi

desteklemek için tasarlanmış bir yazılım sistemidir. (Debasish & Sristy, 2017). XML,

SOAP, WSDL, UDDI gibi açık standartları kullanarak, internet protokolü omurgası

üzerinden web tabanlı uygulamaları bütünleştiren bir hizmettir. XML verileri

işaretlemek, SOAP verileri aktarmak, WSDL mevcut hizmetleri tanımlamak ve UDDI

kullanılabilir hizmetleri listelemek için kullanılmaktadır (Haviluddin, Edy, & Nur, 2019;

Debasish & Sristy, 2017). Web servis çözümlerinde açık standartlar kullanılmasından

dolayı yazılım ve işletim sistemi bağımsızdır. İnternet veya intranet üzerinden farklı

uygulamalar arasında iletişim kurmak için ortam sağlayan bir uygulamadır. Gevşek

bağlantılıdır, dinamiktir ve platformlar arası ortamı destekler (Debasish & Sristy, 2017).

Web servislerde veri değiş tokuşu XML tabanlı olan SOAP protokolü üzerinden yapılır.

SOAP iletişim protokolü OASIS, Microsoft, IBM, HP ve vb. konsorsiyumlar, firmalar ve

kurumlar tarafından desteklenmektedir. SOAP protokol geliştirmeleri ve dokümanları bu

konsorsiyumlar tarafından yayınlanmaktadır. Günümüz de popüler olarak kullanılan iki

tür web servisi vardır. Bunlar SOAP ve REST tabanlı web servisler olarak

belirtilmektedir.

SOAP web servislerinin birbirleriyle nasıl etkileşime girebileceğini tanımlayan bir

protokoldür. SOAP protokolü XML tabanlıdır. Kesin olarak belirlenmiş katı standartları

mevcuttur. REST web servis çözümleri SOAP web servisleri gibi katı standartları takip

etmemektedir. Ancak Roy Fielding tarafından tezinde de açıkladığı kısıtlamaları takip

eder (Roy, 2000). SOAP tabanlı web servislerin dilden ve platformdan bağımsız

olmasından dolayı, güvenlikleri WS-Security'de tanımlanmaktadır.

REST, web servisleri geliştirmek için bir mimari tarzdır. REST web servisinde, istemci

kaynakları kullanarak istek gönderir ve sunucu istemciye yanıt verir fakat yanıt verme

zorunluluğu yoktur, veri tek yönlü olarak iletilebilir. Bu iletişim standart bir yaklaşım

olmamasından dolayı tek taraflıdır. REST web servisleri herhangi bir protokole bağlı

değildir, ancak hemen hemen her REST servisi, kaynaklar üzerindeki işlemleri

2

düzenlemek için kullanılan HTTP yapısının kullanımını sağlar. REST web servislerinde,

veri transferinde kaynaklar; videolar, web sayfaları, resimler gibi bilgisayar tabanlı

sistemde izin verilen her şey olabilir. SOAP’ta Envelope kullanılmaktadır fakat REST’te

böyle bir zorunluluk yoktur. REST servisler SOAP servislere göre daha hızlıdır fakat

daha güvensizdir.

Her iki çözümde de iletişim için çok hızlıdır, ancak bu ikisi arasında küçük bir fark vardır.

SOAP, REST 'in web servislerini geliştirmek için mimari bir stil olduğu bir protokolü

takip eder. JAX-RS ve JAX-WS, sırasıyla REST ve SOAP için Java API’leridir. Her iki

hizmetin de operasyonun karakteristiğine göre avantajları ve dezavantajları vardır. Bu

nedenle, hangi durumda daha iyi sonuçlar elde etmek için hangi hizmetin

kullanılabileceğini bulmak daha iyidir (Haviluddin, Edy, & Nur, 2019).

Web servisler, farklı platformlarda çalışan uygulamaları bir araya getirerek veri

alışverişini mümkün kılar. Web servislerin platform bağısız olması bu sistemin en büyük

tercih nedenlerinden birisidir. Web servislerin platform bağımsız olarak çalışabilmesinin

en büyük nedeni XML, SOAP, WSDL ve UDDI standartlarını kullanmasıdır.

Şekil 1. Web Servis Mimarisi (Haviluddin, Edy, & Nur, 2019)

Web servis mimarisi Şekil 1’deki gibi sırasıyla HTTP, SOAP, WSDL ve UDDI şeklinde

sırasıyla islenmektedir. Bu süreç günümüzde kullanılan tüm güncel servis türleri için

geçerlidir.

3

Web servis modelinin standart uygulaması, hizmet sağlayıcının, hizmet açıklamasını

tanımlayan ve ardından açıklamayı hizmet kayıt defterinde yayınlayan bir ağ yazılım

modülü aracılığıyla erişilebilir olmasıdır. Hizmet talep eden, hizmet açıklamasını almak

için hizmet kayıt merkezini bulur, bilgileri hizmet sağlayıcı ile olan bağlantıyı

tamamlamak için kullanır, etkileşimini sağlar ve işlemleri çağırır. Web servis sisteminde,

tüm uygulamalar, üç rol ve üç tür işlem içeren hizmetlere soyutlanır. Aşağıdaki şekilde

Web Servislerinin mimarisini göstermektedir (Yongxin & Qin, 2016).

Şekil 2. Web Hizmetleri Mimarisi (Yongxin & Qin, 2016)

Web hizmetleri mimarisi Şekil 2’deki gibi hizmet sağlayıcısı, hizmet talep eden ve servis

kayıt merkezi birbirleri ile olan bağlantı verilmiştir.

Hizmet sağlayıcı: ticari açıdan bakıldığında, hizmet sağlayıcı, hizmetlerin

geliştirilmesinde ticari bir varlıktır; Mimari açısından hizmet sağlayıcı, yönetilen erişim

hizmetleri için bir platform veya hizmet çalıştıran bir ortamdır (Yongxin & Qin, 2016).

Hizmet talep eden: mimari açıdan bu, hizmetleri bulmak ve çağırmak için bir

uygulamadır (Yongxin & Qin, 2016).

Servis kayıt merkezi: Servis sağlayıcılar kendi tarif ettikleri servisleri bunun üzerinde

yayınlar (Yongxin & Qin, 2016).

4

Yayınlama: Hizmeti kullanılabilir hale getirmek için hizmet sağlayıcıların, hizmet

kullanıcılarının bulabilmesini sağlamak için hizmet açıklamasını yayınlaması gerekir.

Sorgulama: Sorgulama işleminde, hizmet talebinde bulunan kişi doğrudan hizmet

tanımını alabilir veya hizmet kayıt merkezinde gerekli hizmet türünü sorgulayabilir.

Bağlama: bağlama işleminde, hizmet talebinde bulunan kişi, hizmetleri bulmak, iletişim

kurmak ve çağırmak için hizmet açıklamasıyla ilgili bağlama ayrıntılarını kullanır,

böylece çalışma zamanında hizmetle etkileşimi başlatır (Yongxin & Qin, 2016).

1.2 XML

XML, HTML’le çok benzeyen bir dildir. HTML’den çok daha esnektir çünkü kendi özel

etiketlerinizi oluşturmanıza olanak tanır. Ancak, XML’in sadece bir dil olmadığını

anlamak önemlidir. XML bir meta dildir: diğer dilleri yaratmamıza veya tanımlamamıza

izin verir. Örneğin; XML ile RSS, MathML (bir matematiksel biçimlendirme dili) gibi

başka diller ve hatta XSLT gibi araçlar oluşturabiliriz (Prof., 2017).

1970 yılında IBM, SGML’yi (Standart Genelleştirilmiş İşaretleme Dili) tanıttı. SGML,

1960'ların sonlarında IBM tarafından geliştirilen Genel İşaretleme Dili'nden (GML)

geliştirilmiştir. SGML, metin belgeleri için anlamsal ve yapısal bir dildir ancak çok

karmaşıktır. HTML, SGML’nin bir alt kümesidir (Prof., 2017).

1996 yılında W3C altında XML çalışma grubu kuruldu. World Wide Web Konsorsiyumu

(W3C), üye kuruluşların, tam zamanlı bir personelin ve halkın Web standartlarını

geliştirmek için birlikte çalıştığı uluslararası bir konsorsiyumdur. W3C, 1989'da World

Wide Web'i de icat eden Tim Berners-Lee tarafından 1994'te oluşturuldu. 1998'de W3C,

XML 1.0'ı tanıttı (Prof., 2017).

5

Şekil 3. İki kullanıcı bilgisinin bulunduğu basit bir XML dosyası

XML dosyası Şekil 3’te ki gibi kullanıcılar listesi içerisinde iki farklı kullanıcını Id(tekil

numatası), Ad ve Soyad bilgilerinin tutulduğu Ahmet Ayaz ve Hasan Tok bilgileri

bulunan bir örnektir.

XML, yazılımlar arası veri transferi yapmak için kullanılan ve hiyerarşik bir yapıya sahip

olan bir yazım dilidir. XML oluşturulmasında serialize ve deserialize işlemi çok sıklıkla

kullanılır hale gelmiştir. Her XML’in XMLSchema özeliği vardır. XML yapısı ve veri

tipi için XMLSchema kullanılır.

Şekil 4. Id, Ad ve Soyad bilgileri bulunan basit bir XMLSchema dosyası

XMLSchema Şekil 4’te oluşturulacak XML dosyasının yapı taşlarını belirlemektedir.

XML’lin Kullanıcılar baş elemanından oluşarak, içerisinden birden fazla Kullanıcı

bilgisinin oluştuğu ve her kullanıcısının tekil bilgileri Id, Ad ve Soyad bilgilerinden

oluştuğu ve alfanumerik berisinin girilebileceğini açıklamaktadır.

6

Schematron, bir XML doğrulama dilidir. Belgeleri XML kalıplarının varlığına veya

yokluğuna göre doğrulayan kuralları tanımlar. Bu kurallar kısadır, basittir ve kullanıcı dostu

mesajların yazdırılmasına izin verir. Schematron'un sözdizimi nispeten basittir. Doğrulama

yeteneği kurallara dayanmaktadır. Schematron modeli en az bir tane kural içermelidir. Her

kuralın, iddiaları çalıştırdığı bir bağlamı olmalıdır. Schematron iki tür iddia içerir olumlu

(iddia) ve olumsuz (iddia-raporu) olarak sınıflandırılır. Bir kuralın herhangi bir iddiası

başarısız olursa kural başarısız olur ve belge geçersiz olarak rapor ile işaretlenir. En önemli

özeliği de Schematron doğrulana bilgisinin de kuralların XML içerisinde tanımlanmış

olmasıdır.

Schematron temel görevi; veri bağımlılıklarını doğrulamak, veri kardinalitesini kontrol

etmek ve veri algoritmasını kullanır. Kullanıldığı alanlar; finans, sigorta, devlet kurumları

ve teknik yayıncılar olarak örnek verilebilir.

Şekil 5. Tarih kontrolü içeren basit bir Schematron dosyası

Schematron Şekil 5’te anlatılmak istenilen bir tarih kuralıdır. Buradaki kontrol Sözleşme

tarihinin işlem yapılacak bir olayın sözleşme tarihinden önce olmaması kuralıdır. Örnek

vermemiz gerekirse; Cep telefonu numarası almadan ve sözleşme imzalanmada o cep

telefona fatura kesilmemesi gerektiğinden eğer böyle bir eylem gerçekleştirilmek

istenirse buna sistem izin vermemesi sağlanmış olur ve kontroller için maliyet

azaltılmasına gidilmiş olur.

Schematron en büyük amaçlarından bir tanesi de iletilecek verilerin talep edilen şekilde

olup olmaması ve veri kirliliğin azaltılmasını sağlar.

1.3 SOAP

SOAP web servis, uygulamalar arasında XML formatında iletişim için kullanılan bir

protokoldür. Standart ve daha etkili bir web iletişim yolu ve kurumsal web

7

uygulamalarının diğer sistemler veya kuruluşlarla daha esnek bir şekilde iletişim kurması

için kullanılır. SOAP’ın en büyük dezavantajı ağır mesaj alışverişi ve düşük performans

sağlayan yüklü işlevleridir. Performansını iyileştirmek, onu en çok kabul gören iletişim

çözümlerinden biri haline getirebilir (Abdul & Ahmed , 2017). SOAP gövde bloğunda

teslim edilecek gerçek bildirim mesajını içerir.

Şekil 6. Basit bir SOAP Zarfı

SOAP Envelope Şekil 6’te gösterildiği gibi Header ve Body kısımlarından oluşmaktadır.

Header kısmında birinci özelik seviyesi 1 olarak ve son Envelope’un son kullanım tarihi

verilmiştir. Body kısmında ise son kullanım tarihine kadar yapılması gereken olay bilgisi

verilmiştir. Bu olay da Berker’in saat 2’de okuldan alınması işlem talimatıdır.

1.3.1 Zarf (Envelope)

SOAP mesajında ne olduğunu ifade etmek için genel bir çerçeve tanımlar. Kiminle

iletişime geçecek veya zorunlu olup olmadığı ile ilgili bilgiler bulunur. Envelope

SOAP’ın en dış katmanıdır. Header, Body ve sunucu tarafından iletilen hatalı iletiler için

Fault parçalarını da barındırır.

1.3.1.1 Başlık (Header)

Header parçası, SOAP’ın ilk alt öğesi olarak kodlanmıştır. Başlık ögesinin tüm acil alt

öğeleri başlık girişleri olarak adlandırılır. Bu kısımda metadata denilen belge bilgi

bulundurulur.

8

1.3.1.2 Gövde (Body)

Body kısmı SOAP mesajındaki en önemli kısmı oluşturur. Bu kısım web servisteki

metotların adları, parametreleri ve geri dönüş değerleri gibi hayati öneme sahip bilgileri

taşımaktadır. Mesajın alıcısına yönelik zorunlu bilgi alışverişinde bulunmak için basit bir

mekanizma sağlar. Header parçasının tipik kullanımları arasında marshalling RPC

çağrıları ve hata raporlamayı barındırır.

1.3.1.3 Hata (Fault)

Sunucu tarafından iletilen hata mesajıdır. İçerisinde detail(detay), reason(sebep) ve

code(kod) içerisinde hata mesajları döndürür.

Şekil 7. Basit bir hatalı bilgisi içeren SOAP Zarfı

Sunucu tarafından iletilen Şekil 7’da hata mesajında hata kodu olarak soapend:Client,

hata açıklaması bilgileri Varlık vEntityName Kaydı hata zaten ver bilgisi verilmektedir.

Ayrıca detay açıklama fonksiyon bilgisi olarak MP0085, hatanın kaynağı

com.myapp.EnttiyAlreadyExistsException, hatanın sebep kodu 1 ve hata mesajı Zaten

var bilgisi ile hata mesajında hata bilgisi ve detayı en açık bir şekilde sunucu tarafından

9

iletilmiştir. Her hata mesajının yapısı aynı olmamakla beraber Body kısmı vazgeçilmez

ve zorumlu Envelope için vazgeçilmez bir durum olarak karşımıza çıkmaktadır.

1.4 WSDL

Web Servisleri Tanımlama Dili (Web Services Description Language (WSDL)), bir web

hizmetini tanımlamak için bir XML gösterimidir. Bir WSDL tanımı, bir istemciye bir web

hizmeti isteğinin nasıl oluşturulacağını söyler ve web hizmeti sağlayıcısı tarafından

sağlanan arabirimi tanımlar. SOAP ve REST servislerde WSDL kullanılmaktadır. Web

servislerde WSDL metadata olarak kullanılmaktadır. Her SOAP web servisin WSDL

dosyası olma zorunluluğu yoktur fakat olması istemci tarafından yapılacak istekler için

bir gösterge olarak tanımlanır. Sunucu tarafında bulunan WSDL sayesinde sadece

istenilen veya izin verilen bilgilere ulaşım, WSDL özelleştirilmesi ile sağlanabilmektedir.

Günümüzde modern uygulamalar web servis yapısına göre otomatik olarak WSDL

dosyasını oluşturmaktadır.

WSDL dosyalarının esas kullanım amacı bir web servisi tarif etmektir. Web serviste bulunan

fonksiyonlar, bu fonksiyonların aldığı parametreler, bu parametrelerin tipleri ve

alabilecekleri değerler gibi bütün bilgiler WSDL dosyalarında mevcuttur. WSDL

dosyalarının web servisin bir ara yüzü olarak tanımlanabilir (Chinnici R. e., 2007).

İletişim protokolleri ve mesaj formatları web topluluğunda standartlaştıkça, iletişimleri

yapısal bir şekilde tanımlayabilmek giderek daha mümkün ve önemli hale getirmektedir.

WSDL, ağ hizmetlerini mesaj alışverişi yapabilen iletişim uç noktaları koleksiyonları olarak

tanımlamak için bir XML dilbilgisi tanımlayarak bu ihtiyacı giderir. WSDL hizmet

tanımları, dağıtılmış sistemler için belgeler sağlar ve uygulama iletişiminde yer alan

ayrıntıları otomatikleştirmek için bir reçete görevi görür.

WSDL belgesi, hizmetleri ağ uç noktaları veya bağlantı noktaları koleksiyonları olarak

tanımlar. WSDL de, uç noktaların ve mesajların soyut tanımı, somut ağ dağıtımlarından

veya veri formatı bağlamalarından ayrılır. Bu, soyut tanımların yeniden kullanılmasına

izin verir. Değiş tokuş edilen verilerin soyut açıklamaları olan mesajlar ve soyut işlem

koleksiyonları olan belirli bir bağlantı noktası türü için somut protokol ve veri biçimi

belirtimleri, yeniden kullanılabilir bir bağlama oluşturur. Bir bağlantı noktası, bir ağ

adresini yeniden kullanılabilir bir bağlamayla ilişkilendirerek tanımlanır ve bir bağlantı

10

noktası koleksiyonu bir hizmeti tanımlar. Bu nedenle, bir WSDL belgesi, ağ hizmetlerinin

tanımında aşağıdaki öğeleri kullanır:

 Türler (Types): bazı tür sistemlerini (XSD gibi) kullanan veri türü tanımları

için bir kapsayıcı.

 Mesaj (Message): iletilen verilerin soyut, yazılı tanımı.

 Operasyon (Operation): hizmet tarafından desteklenen bir eylemin soyut bir

açıklaması.

 Bağlantı Noktası Türü (Port Type): bir veya daha fazla uç nokta tarafından

desteklenen soyut bir işlemler kümesi.

 Bağlama (Binding): belirli bir bağlantı noktası türü için somut bir protokol ve

veri biçimi belirtimi.

 Bağlantı noktası (Port): bir bağlama ve bir ağ adresinin birleşimi olarak

tanımlanan tek bir uç nokta.

 Servis (Service): ilgili uç noktaların bir koleksiyonu (E., F., G., & S., 2001).

W3C tarafında oluşturulan WSDL in temel amacı web servislerde bir standart

oluşturulmasıdır. WSDL tıpkı XML de olduğu gibi hiyerarşik (parent-children) bir yapıya

sahiptir ve kendi içerisinde belirli gruplar halindedir. Her grubun kendine has bir işlevi

bulunmaktadır (Booth, 2007).

11

Aşağıdaki Şekil 8’deki şema WSDL bileşenlerinin hiyerarşik yapısına genel bakışı

göstermektedir.

Şekil 8. WSDL Bileşenlerinin Hiyerarşisi (Booth, 2007).

1.5 UDDI

Evrensel Tanımlama, Keşif ve Entegrasyon (Universal Description, Discovery, and

Integration (UDDI)) kayıt merkezidir. Büyük miktarda veri için paralel işleme yeteneğini

12

artıran ve ayrıca verilerin doğruluğunu sağlayan hizmet sağlayıcı ve hizmet talep eden

arasında hayati bir bağlantıdır. UDDI, SOA'nın önemli bir bileşenidir.

Şekil 9. Dağıtılmış UDDI sisteminin bilgi etkileşimi (Yongxin & Qin, 2016).

Kullanıcılar bir yan kuruluş UDDI-SUB(n) ile İstemci tarafı kayıt sisteminde oturum

açarlar, UDDI-SUB(n) İstemcisinin hizmet yönetim modülü, kapsüllenmiş talebi XML

biçimindeki SOAP mesajına paketler, daha sonra açılış ile Web Hizmetini yayınlar veya

sorgular ve ardından iletir. HTTP protokolü aynı zamanda, UDDI-SUBI İstemcisi,

UDDI-SUB 1 Sunucu düğümünün API’lerini çağırır veya UDDI-SUB 1 Sunucusu,

UDDI-ROOT Sunucusuna sorgulama hizmeti talebini başlatır. UDDI-ROOT Sunucusu

ayrıca HTTP protokolü aracılığıyla SOAP isteği iletir ve paketleri yanıtlar (Yongxin &

Qin, 2016).

13

UDDI, WSDL dosyasının URI'sini sağlayarak işletmelerin, kuruluşların ve diğer web

hizmetleri sağlayıcılarının hizmetleri keşfetmelerine ve bunlara erişmelerine yardımcı

olur. Bu durum, kalitesine göre bir web hizmeti seçmek için bir mekanizma sunmaz.

Ayrıca standart web servislerinin içeriğinde yeterli semantik tanımlamadan yoksundur,

bu eksiklik analiz, arama ve eşleştirme süreçlerinde uygun web servislerinin bulunmasını

ve oluşturulmasını zorlaştırmaktadır. Ek olarak, merkezi bir UDDI, tek bir merkezi nokta

sorunu ve yüksek bakım maliyetinden muzdariptir.

Web servislerin ana teknik desteği olan Evrensel Tanımlama, Keşif ve Entegrasyon

(UDDI), SOA'da (Hizmet Odaklı Mimari) giderek daha önemli bir rol oynamaktadır.

Blok zincirine dayalı akıllı sözleşme teknolojisi, UDDI kayıtları arasında veri çoğaltma

ve paylaşma sorununu çözmek için kullanılır. UDDI kaydı, yalnızca basit hizmet tanımı

ve blok zincirine referans bilgilerini depolar ve kimlik yönetimi, yetki yönetimi ve diğer

işlevleri sağlar. Servis sağlayıcının ve sunduğu hizmetlerin detaylı bilgileri blok

zincirinde saklanır. UDDI kaydının maliyeti büyük ölçüde azalır ve verilerin paylaşımı

ve depolanması kolayca gerçekleştirilebilir. Bu arada, verilerin güvenliği ve denetlene

bilirliği, blok zincirinin özellikleri tarafından garanti edilir (Zhao, 2018).

Şu anda, kayıt sistemlerinin uygulanması çoğunlukla merkezi bir tasarıma

dayanmaktadır. Bir sunucu ve bir istemciden oluşur ve tüm ağ boyunca kayıtlı tüm hizmet

bilgilerini sunucu veri tabanında saklar. Merkezileştirilmiş UDDI sistem mimarisi

aşağıda Şekil 10’da gösterilmektedir.

14

Şekil 10. Merkezileştirilmiş UDDI sistem mimarisinin tasarımı (Yongxin & Qin, 2016)

Bu sistemde, hizmet sağlayıcı ve hizmet talebinde bulunan kişi genellikle hizmet yayını

veya hizmet keşfini işlemek için UDDI Sunucusu tarafından sağlanan SOAP API'sini

çağırması gereken UDDI İstemcisinde hizmet yayını veya hizmet bulma işlemlerini

uygular. UDDI Sunucusu, API UDDI Sorgulama, API UDDI Yayını, API UDDI

Güvenliği, API UDDI Gözetim Aktarımı, API UDDI Aboneliği ve UDDI Aboneliği

UDDI Çoğaltma dahil olmak üzere altı SOAP API'sinde uygulanabilir. Bu altı çeşit API

işlevinde en yaygın olarak kullanılanlar UDDI Security, UDDI Publication ve UDDI

Inquiry'dir (Feng).

1.6 Servis Odaklı Mimari (SOA)

Yazılım dünyasında, Servis Odaklı Mimari (SOA) hizmetlerden oluşur ve tipik olarak

İnternet veya İntranet üzerinde diğer bileşenlere koordineli bir şekilde hizmet eder.

SOA’nın hizmet verdiği temel yapı taşları servislerdir. Bu servisler birbirleri ile mimarisi

gereği gevşek bağlıdır. SOA en büyük özeliği yazılım ve platform bağımsız olmasıdır.

Günümüzde SOA mimarisini desteklemeyen modern yazılım dili kalmamıştır. Kullanılan

yazılım dilleri (C#, Java ve vb.) olarak örnek verilebilir. Cross Platform ile işletim sistemi

bağımlılığı SOA tarafından bağımsız bir şekilde çalışılması sağlanmıştır. İşletim

sistemleri olarak da günümüzde en popüler kullanılan (Windows, Linux, macOS ve vb.)

işletim sistemlerini sayabiliriz. SOA mimarisi devlet kurumları, özel/tüzel kurumlarda

15

hatta kullandığımız cep telefon uygulamalarında da vazgeçilmez bir mimari olarak

karşımıza çıkmaktadır. Kurumlar için eski uygulamaların SOA mimarisine geçişi

sırasında yazılım dili ve işletim sistemi bağımlılığı olmamasından maliyet, hız ve süre

problemlere bu anlamda SOA tarafından çözümler sunulmuştur. Yazılım dünyasında ve

insanlar için hız ve sonuç kavramı önemli olmasından vazgeçilmez bir mimari olarak

günümüzde kullanılmaya devam etmektedir. SOA mimarisini kullanmayan yazılım

firması yok denilecek kadar az duruma gelmiştir. Kurumlar için SOA mimarisi her zaman

avantajlı hale gelmemiştir, bazı bakım durumlarında da dezavantajlar gözlemlenmiştir,

bu konuda örnek olarak hizmet bakımlar örnek olarak verilebilir.

Şekil 11. NVivo 10 yazılımı tarafından oluşturulan ağırlıklı odak bulutu (Niknejad,

2020)

Kuruluşların yazılım sistemini çağdaşlaştırmak için eski bir sistemden SOA tabanlı bir

sisteme geçiş ana akım bir trend haline geldi (Abdellatif, 2018; Gupta, 2018). Birçok

çalışmada Nesnelerin İnterneti (IOT), Bulut Bilişim (CC) ve Mikro Servisler (MS) gibi

dünya lideri yeni teknolojilerin geliştirilmesinde SOA'nın kullanılmasının faydalarını

vurgulanmıştır. Bunun nedeni, SOA'nın hizmet tabanlı modüler mimarisi nedeniyle esnek

entegrasyon ve hizmetlerin yeniden kullanılabilirliği sağlamasıdır. SOA, birçok

uygulamayı ve veri kaynağını bir kara kutu biçiminde kapsadığı için şeffaflık da

sunmaktadır. Bu şekilde, çeşitli teknolojilerin, dil kodlarının, işlevlerin ve platformların

varlığına rağmen, bütünleşmiş bir Bilgi Teknolojisi (BT) kaynakları havuzuna hala

erişilebilir durumdadır (Niknejad, 2020).

Endüstriyel sektörlerle ilgili olarak, şimdiye kadar, SOA'nın bankacılık, sağlık, ulaşım

vb. gibi birçok sektörde kilit bir paradigma olduğu kanıtlanmıştır. Birçok faydasının yanı

sıra, tanımlanan birincil çalışmaların bazıları, kuruluşların gerçekleştiremediğini ortaya

16

koymuştur. SOA'nın benimsenmesinin tüm faydaları, çeşitli nedenlerden dolayı. Pek çok

engel arasında, SOA'nın benimsenmesi ve uygulanması için kritik başarı faktörleri

hakkında bilgi ve belge eksikliği başarısızlığın temel nedenleriydi (Sima & Raziye,

2013). Ancak, başarılı SOA'nın benimsenmesi ve uygulanması için kritik etkili kriterleri

paylaşan ayrıntılı bir sistematik çalışma yoktur. Bu boşluğu doldurmak için, kuruluşlarda

SOA'nın benimsenmesinin önemli faktörlerinin araştırılmasının hayati olduğuna

inanmışlardır, çünkü bu faktörlerin anlaşılması, bu kuruluşların SOA uygulamasının

faydalarını en üst düzeye çıkarmasına yardımcı olacaktır (Niknejad, 2020).

Birçok araştırmacı SOA'yı farklı bakış açılarına göre (teknoloji, işletme ve mimari gibi)

tanımlamıştır, dolayısıyla bu terimin kesin bir tanımı yoktur. SOA, BT'nin

karmaşıklığının üstesinden gelebilecek bir teknoloji, ürün veya hızlı bir çözüm değildir.

Ayrıca SOA, mevcut tüm Bilgi Teknolojisi (BT) / Bilgi Sistemi (BS) zorluklarını ele

alabileceğini garanti etmez. Yine de SOA'nın bir bütün olarak işletmelerde, BT’de, BS’de

ve işletmelerde avantajlı olarak kullanılabilecek bir kavram olduğu söylenebilir (Marks,

2008).

Bir arayüz tanımı ile başlayan ve tüm uygulama topolojisini ara yüzler, ara yüz

uygulamaları ve ara yüz çağrılarının bir topolojisi olarak oluşturan bir yazılım

mimarisidir. SOA, hizmetler ve hizmet tüketicilerinin bir ilişkisidir, her iki yazılım

modülü de eksiksiz bir iş işlevini temsil edecek kadar büyüktür (Natis, 2003).

SOA, kurumsal iş çözümlerini tasarlamanın, inşa etmenin ve oluşturmanın temel birimi

olarak iş odaklı kurumsal hizmet kavramını destekleyen bir mimari tarz olarak

tanımlanabilir (Lublinsky, 2007).

SOA, değişen iş önceliklerini ele almak için yeniden kullanılabilen ve birleştirilebilen

güvenli, standartlaştırılmış bileşenler-hizmetler olarak iş süreçlerini entegre etmek ve BT

altyapısını desteklemek için bir çerçevedir. SOA, sistemler arasında gevşek bağlantı,

yeniden kullanım ve birlikte çalışabilirliği destekleyen kurumsal çapta bir BT mimarisidir

(Bieberstein, 2006).

17

Servis yönelimi, yaptığınız şeyi çerçeveleyen bir paradigmadır. Servis yönelik mimari

(SOA), hizmet yöneliminin uygulanmasından kaynaklanan bir mimari türüdür.

Kuruluşların değişen iş ihtiyaçları doğrultusunda artan çeviklik ve maliyet etkinliği ile

sürekli olarak sürdürülebilir iş değeri sunmalarına yardımcı olmak için hizmet odaklılık

mimaridir (A. Arsanjani, 2009).

1.6.1 SOA faydaları

Küreselleşme, daha sıkı ekonomiler, iş süreçlerinde dış kaynak kullanımı, sürekli artan

düzenleyici ortamlar ile bilgili tüketiciler, büyük işletmeleri işlerini ve hizmetlerini

sağlama biçimlerini değiştirmeye zorlamaktadır. İşletmelerin çevik ve esnek olmaları

gerekiyor ve BT yöneticilerinden mevcut BT yatırımından yararlanırken gelişmiş

işlevsellik sağlamaları isteniyor. Bu ortamda SOA, Kurumsal Uygulama Entegrasyonu

ve aradıkları diğer çözümler için çekici bir yaklaşım olduğunu kanıtlıyor. SOA, BT'nin iş

ile daha iyi uyumlaştırılması, etkin yeniden kullanım, birlikte çalışabilirlik ve daha düşük

geliştirme maliyetleri vaat ediyor. Bununla birlikte, herhangi bir yaklaşım gibi,

sınırlamaları vardır ve bu nedenle birtakım zorluklara sahiptir.

Windows Servis (WS) teknolojisi ve SOA, azaltılmış maliyetler, daha kolay bakım, daha

fazla esneklik ve iyileştirilmiş ölçeklenebilirlik gibi ek avantajlarla birlikte kurumsal

uygulama entegrasyonu için daha iyi fırsatlar sunar. SOA, gevşek bağlı yapısıyla,

işletmelerin yeni hizmetler eklemesine veya mevcut hizmetleri yükseltmesine ve iş

çevikliğini artırma ve talep üzerine yanıt verebilme fırsatı sunar. İşletmelerin ve BT

sistemlerinin iş ve çevre değişikliklere karşı daha çevik olmalarını sağlar.

SOA, değişen teknolojilere ve iş gereksinimlerine uyum sağlama esnekliği sunarken,

geniş ölçekli birlikte çalışabilirlik elde etme fırsatı sağlar. Doğru şekilde uygulanırsa,

SOA aşağıdaki faydaları sunar:

• Gevşek bağlı uygulamalar ve konum şeffaflığı

• Uygulama bağlantısı ve birlikte çalışabilirlik

• BT'nin işin ihtiyaçları etrafında hizalanması

• Mevcut varlıkların ve uygulamaların geliştirilmiş yeniden kullanımı

18

• Süreç merkezli mimari

• Paralel ve bağımsız gelişme

• Daha iyi ölçeklenebilirlik ve zarif evrimsel değişiklikler

• Uygulama geliştirme ve entegrasyon maliyetlerinin düşürülmesi

• Daha kolay bakım

• Azaltılmış satıcı kilitlenmeleri (Mahmood, 2007)

1.6.2 SOA sınırlamaları ve sorunları

SOA, dağıtılmış istemci sunucu mimarisine kıyasla çok daha iyi bir mimaridir ve kodun

yeniden kullanımı, daha iyi entegrasyon ve iş gereksinimlerine daha iyi yanıt verme

biçiminde büyük faydalar sağlayabilir. Bununla birlikte, esneklik ve verimlilik arasındaki

sonsuz savaş, her zaman olduğu gibi aynı şekilde mevcuttur. SOA ayrıca teknoloji ve

geliştirme yoluyla büyük bir ön yatırım gerektirir. Çok pahalıya mal olabilir ve yatırım

getirisinin gerçekleşmesi uzun zaman alabilir (Overall, 2006).

SOA’nın aşağıda olumsuz yönlerine değinelim:

• Herhangi bir hizmet diğerini çağırabileceğinden, her hizmetin her giriş parametresini

tamamen doğrulaması gerekir. Bunun yanıt süresi ve genel makine yükü açısından etkileri

olacaktır.

• İyi kullanılan bir hizmette ortaya çıkan bir hata veya bozulmanın, yalnızca tek bir

uygulamayı değil, tüm sistemi etkilemesi mümkündür.

Hizmet meta verilerini yönetmek, bir başka bariz zorluktur. Servisler, görevleri yerine

getirmek için mesaj alışverişinde bulunmaya devam ettikçe, bu mesajların sayısı tek bir

uygulama için bile milyonları bulabilmektedir. Web Servisleri mantıklı bir uygulama

platformu sağlasa da birçok altyapı servisi (ör. güvenlik, sistem yönetimi, arayüz

sözleşmeleri) henüz tam olarak tanımlanmamıştır. Doğru soyutlama düzeyinde bir hizmet

bulmak da bir zorluktur (Mahmood, 2007).

19

1.7 Web Servis Güvenliği

İnternetin yaygınlaşmadı ve web servislerin hemen hemen her alanda kullanılması ile

önemli ve gizli bilgilerin paylaşılması sırasında kullanılmasından dolayı güvenlik

zafiyetleri oluşturmuştur. Kuruluşların veya bireylerin hizmetler arası işlevselliği yeniden

kullanmalarına yardımcı olan bir ağ üzerinden farklı verileri aktarmanın bir yolunu sağlar.

Web servisler çeşitli uygulamaları sağlık, bankacılık ve e-ticaret operasyonlarından

oluşmaktadır. Web servislerinin geliştirilmesinde yer alan çeşitli protokoller ve

çerçeveler nedeniyle, genellikle saldırılara karşı savunmasızdır. Bunları sırasıyla saymak

gerekirse XML Enjeksiyonu (XML Injection), SQL Enjeksiyonu (SQL Injection), XPath

Enjeksiyonu (XPath Injection), Ortadaki Adam Saldırısı (Man in The Middle Attack

(MITM)), Hizmet Reddi (Denial of Service (DOS)) ve Sahtekarlığı (Spoofing) içerir.

Web servis güvenliği için OASIS, Microsoft, IBM vb. konsorsiyumlar tarafından

geliştirdikleri gözlemlenmiştir.

Günümüzde SOA yaklaşımını kullanan birçok uygulama geliştirme aşamasındadır. Bu

yaklaşımın uygulanması, birbirleri arasında kolayca bilgi alışverişi yapmak için web

servislerini kullanmaktır. Web servisler, kuruluşların veya bireylerin hizmetler arası

işlevselliği yeniden kullanmalarına yardımcı olan bir ağ üzerinden farklı verileri

aktarmanın bir yolunu sağlar. Web servislerinin geliştirilmesinde yer alan çeşitli

protokoller ve çerçeveler nedeniyle, genellikle saldırılara karşı savunmasızdır. (Eriyanto

& Fadhil, 2020). Bundan dolayı web servislerde güvenlik gün geçtikçe sorunlu hale

gelmiştir.

1.8 Web Servis Güvenliğinde Saldırı Türleri

Günümüzde web servisler için pek çok saldırı türü vardır. Bu saldırı türlerini sırasıyla

inceleyelim.

1.8.1 XML enjeksiyon

İstemci tarafında iletilen veri güvenlik protokolleri yok ile sunucuya iletilen XML

verisinin değiştirilerek sunucu tarafından farklı algılanması ve farklı sonuçlara

sonuçlanması anlamına gelmektedir. Genellikle bu saldırı durumları güvensiz web

20

servislerde yapılan bir saldırı türüdür. Bu saldırı sonucu ön görülmeyen sonuçlara neden

olacaktır.

1.8.2 XML bombası

XML bombası, XML dosyalarını ayrıştıran programı ezmek amacıyla oluşturulan ve

gönderilen küçük ama tehlikeli bir mesajdır. XML ayrıştırıcısı bir XML bombasını

işlemeye çalıştığında, veriler kendi kendini besler ve katlanarak büyür. Bu, bir Web

sitesini veya ISP'yi (İnternet servis sağlayıcısı) kapatabilir ve bilgisayar korsanları

tarafından hizmet reddi saldırılarını gerçekleştirmek için kullanılan birçok yöntemden

biridir.

1.8.3 SQL enjeksiyon

En yaygın web servis saldırıları SQL Enjeksiyon saldırısıdır ve bu saldırı yoluyla

bilgisayar korsanları belirli bir web servisin veritabanı üzerinde yetkisiz kontrol elde

etmeye çalışır ve tüm önemli veriler veritabanından alabilir. Web servisler tarafından

kullanılan popüler verirabanlarından olan MySQL, Oracle, SQL Server gibi veritabanı

kullanan web siteleri SQL Enjeksiyon güvenlik açığından etkilenebilir. Saldırganlar SQL

sorgularını manipüle ederek tüm veritabanına erişebilir ve kullanıcıyla ilgili tüm önemli

bilgileri alabilir, SQL Enjeksiyon saldırganları bir web servisin veritabanındaki kayıtları

listeleme, silme, ekleme ve değiştirme CRUD (Oluşturma, Okuma, Güncelleme ve Silme)

işlemi yapıldığı gözlemlenir. Bu nedenle, SQL Enjeksiyon, diğer web servisleri güvenlik

açıkları arasında en eski ve en yaygın web servis saldırıları olarak kabul edilir (Ankit,

Sharma , Sharma , Kaushik, & Bhushan , 2019).

Aşağıda bir SQL Enjeksiyon örneği verilmiştir. Budata web servisi kullanarak

veritabanında erişen kullanıcının yetkilerine göre saldırı yapılabilir. Bu saldırılar web

servisine değil doğrudan veritabanında olan saldırı olarak düşünülür.

SQL enjeksiyon saldırısı, saldırganın SQL sorgularına bazı sahte komutlar ekleyerek

hatalı çalışmaya neden olduğu saldırı türüdür. Aşağıda Şekil 12’de örnek bir saldırı

verilmiştir.

21

Şekil 12. SQL Enjeksiyon ile yapılan bir saldırı örneği.

XPath Language (XPATH) XML dokümanları içinde sorgu yapmak için kullanılan

yorumlayıcı sorgulama dilidir. Web servis uygulamaları genellikle veri, konfigürasyon

veya parametre verilerini saklamak için XML dosyalarını kullanır. XML dosyaları

üzerinde işlem yapılırken XPath enjeksiyon saldırıları için önlem alınmamışsa;

düğümlere erişmek için kullanılan sorgu komutları ile XML veritabanındaki tüm verilere

ulaşmak mümkün olacaktır. XML verilerine ulaşıldıktan sonra hak yükseltme ve diğer

veritabanlarına erişim gibi daha yıkıcı saldırılar ile karşı karşıya kalınmaktadır (Daş &

Burak, 2020).

1.8.4 Ortadaki adam saldırısı (MITM)

MITM saldırısı, kullanıcıların gerçek güvenli bağlantıya mı yoksa benzer bir güvenli

olmayan bağlantıya mı bağlandıklarını anlamalarını zorlaştıracak şekilde çalışır.

Kullanıcı ağ ile bağlantı kurmaya çalıştığında, önce kullanıcı cihazı ile ilgili bilgileri

içeren paketleri gerekli ağa gönderir. Ardından ağ, şifrelenmiş bağlantı anahtarını ve

kullanıcı cihaz adresini içeren bir dijital sertifika oluşturur. Bağlantı başlatma sırasında

geçirilen sertifika güvensiz olduğundan, saldırgan dijital sertifikaya kolayca erişebilir ve

sertifikanın onayını kullanıcıya bırakarak sertifikadaki bilgileri değiştirebilir. Pek çok

kullanıcı, sahte ve mükerrer sertifikaların nerede olduğunu ve bunlara karşılık gelen

saldırıları kontrol etmek için yeterli bilgiye sahip değildir, bu nedenle sertifikaları kabul

eder ve saldırganların saldırıyı gerçekleştirmesini sağlamak için güvenli olmayan ağa

bağlantıya izin verir (Kapil, Manoj, & Jay, 2016).

22

1.8.5 Hizmet reddi (DoS)

Birçok biçimde ortaya çıkan DoS saldırıları, sistem kullanılabilirliğini azaltarak meşru

kullanıcıların sistem erişimini engellemeye yönelik açık girişimlerdir. Bu girişimler

genellikle Web servislerin internet bant genişliğinde geçen veri boyutunun azaltılmasında

karşılaşılmaktadır.

 Yazılım yaması bazı saldırılara karşı koruma sağlasa da İnternet paketlerinin düzensiz

iletilmesinden yararlanan DoS sel saldırılarına karşı koruma sağlamaz. Hem saldırı tespiti

hem de karşı önlemleri içeren ikincil bir savunma gereklidir (Carl, Kesidis, Brooks, & &

Rai, 2006).

1.8.6 Sahtekarlığı (Spoofing)

Spoofing: Bilgisayarda başkalarını taklit etmek ve başka bir kullanıcının kimlik

doğrulama mesajına (kullanıcı adı ve parola gibi) yasa dışı olarak erişmek ve bunları

kullanmak anlamına gelir (JIANG, CHEN, DENG, & ZHONG, 2011).

1.9 Web Servis Güvenliğinde Sınırlıkları

Bu çalışmada kullanılan XAdES yapısının JAVA ortamında daha aktif kullanıldığı

gözlemlenmiştir. Fakat yaptığımız çalışmada .Net veya diğer modern dillerde de

kullanabileceği ön görülmüştür. Bundan dolayı bu çalışmada .Net dili kullanılmıştır.

Fakat bundan sonraki çalışmalar .Net yerine başka dilleri kullanarak bu çalışmayı tekrar

edebilir veya geliştirebilirler.

1.10 Amaçlana Araştırmanın Özeti

Web servisler kurumlar tarafından veri transferi ve sorgulamada en yaygın kullanılan

yöntemdir. Web servislerin İnternet’te açık olmasından dolayı ister istemez bazı

durumlarda saldırılara uğramaktadır. Saldırılar sonucunda kurumların web servis

güvenliği açıklarından dolayı, veri hırsızlığı, veri kaybı ve öngörülmeyen maliyetler

oluşması kaçınılmaz bir durum olarak gözlemlenmiştir. Bundan dolayı web servis

güvenliğinde klasik (prefiks’siz) ve gelişmiş (prefiks’li) hakkında Bölüm 2 de ayrıntılı

bilgi verilecektir. Ayrıca gelişmiş (prefiks’li) yapılan çalışmada karşımıza çıkan

23

problemler hakkında ve aldığımız önlemler ve yaptığımız geliştirmeler hakkında detaylı

bilgi verilecektir.

Yaptığımıza çalışma sonucunda web servis güvenliği kurumlar arasında

yaygınlaşmamasının en büyük sebebi Geliştirme, Test, Kalite Kontrol ve Ürünün canlı

sisteme alınmasındaki sürecin kurumlar arasında hesaplanamamasıdır.

Hesaplanamamasının en büyük bir diğer nedeni de birbirleri ile çalışacak kurumların

buna hazır olup olmaması durumudur.

Ayrıca bu çalışmada kullandığımız Uygulama Programlama Arayüzü (Application

Programming Interface (API))’lerin gelişmiş (prefiks’li) yapılara uygun olmamasından

dolayı geliştirdiğimiz yapı üzerinden anlatılması hedeflenmektedir.

24

2. YÖNTEM

Web servisler mimarisi nedeniyle İnternet’te herkese açık ya da kurumlara özel olarak

yayınlanmaktadır. Bu durum kurumların belirlediği çalışma şeklinden

kaynaklanmaktadır. Kurumların çalışma şekillerine göre ister istemez web servislerde

bazı güvenlik zafiyetleri getirmektedir. Güvenlik zafiyetleri kurumun belirlediği

politikalara göre değişmektedir.

Web servisler İnternet’te açık olmasından dolayı ister istemez art niyetli saldırılar

yapılmaktadır. Yapılan veya yapılabilecek saldırılardan kaçınmak için bizim tarafımızdan

önerdiğimiz XAdES teknolojisi kullanarak, E-İmza ile imzalayarak OASIS tarafından

tavsiye edilen klasik (prefiks’li) ve geliştirilmiş (prefiks’siz) yöntemler kullanılarak

kurumlar için oluşabilecek maliyetleri en aza indirilmesi hedeflenmektedir.

2.1 Web Servis Güvenliğinde Envelope Belirlenmesi

Günümüzde aktif olarak kullanılan SOAP versiyonları SOAP versiyon 1.1 ve SOAP

versiyon 1.2’dir. Bu çalışmada tercih edilen versiyon SOAP versiyon 1.2’dir. Envelope

boş olarak Şekil 13’teki gibi oluşur. Bu çalışmada yapılacak işlemler Şekil 13’teki boş

Envelope üzerinden devam edilecektir. SOAP 1.1 ve SOAP 1.2 veri transferleri için

kullanılan kodlama Text ve Mesaj İletim Optimizasyon Mekanizması (Message

Transmission Optimization Mechanism (MTOM)) olarak iki farklı tür kullanılmaktadır.

MTOM kodlama Text kodlamadan farkı verinin taşınması veya verinin sorgulanması

base64 formatında olmaksındır. MTOM network trafiği, boyut ve kodlama problemlerin

oluşmamasından dolayı kurumların maliyetlerini düşürmektedir. Web servisler üzerinden

gönderilecek PDF, XML, DOCX vb. dosyaların büyük boyutta olmasından dolayı

MTOM kodlama kullanılarak oluşabilecek veri transferi zaman ve maliyet kazanımı

sağlamış olacaktır.

Şekil 13. Boş bir Zarf ve SOAP versiyon 1.2’den oluşur.

Boş olarak oluşturulan Envelope Şekil 13’te ki gibi sadece SOAP versiyon bilgisi

içermektedir. İstemci ile sunucu arasında hangi kodlama (Text, MTOM) ile verinin

25

iletileceği bilgisi içermemektedir. Kodlama bilgisi istemciden sunucuya veri gönderme

veya sorgulama sırasında tanımlanır. Kodlama konusunu verinin sunucuya iletilmesi

sırasında tanımlanmaktadır. Text ve MTOM seçimi sunucu tarafından yapılmaktadır.

İletilecek dosya boyutuna göre de karar verilebilir. Küçük boyuttaki bilgiler Text web

servisten iletilirken, büyük boyuttaki dosyalar için genellikle MTOM web servisleri

seçilmektedir. Aynı web servis hem Text ve MTOM olarak çağırılması mümkündür.

Kurum tarafından talep edilen Envelope farklı projelerde kullanılıyorsa bunun için proje

adı ve kurum adı bilgileri kullanılarak farklılaştırama gidilebilir. Bu özellik zorunlu

olmamakla beraber ayırt edici bir özelliktir.

Şekil 14. Muhasebe’ye web servis güvenliği üzerinden gönderilen zarf.

Şekil 15. Finans’sa web servis güvenliği üzerinden gönderilen zarf.

Muhasebe ve Finans güvenli web servislerini kullanılmak istenildiğinde gönderilen zarf

hatalı bir servise gönderilip gönderilmediğini ayırt etmek için kullanılır. Bu kontrol

imzalama ve imza doğrulama maliyetli olmasından dolayı öncelikle Schematron

kontrolünde yapılmaktadır. Schematron kontrolünde yapılarak sunucu tarafında kuşkusuz

oluşabileceği network trafiği ve IO kullanımlarından doğacak maliyetleri azaltmak için

kullanılabilir. Ayırt edici özellik zorunlu olmamasına rağmen birden fazla serviste

kullanılması durumunda bunu maliyetleri azaltmak için önerilmektedir. Ayırt edici

attribute tanımlaması Body kısmında da kullanıldığı gözlemlenmiştir.

2.1.1 Body hazırlama

Body kısmı istemci tarafından iki farklı yöntem için kullanılır. Birinci yöntem istemci

tarafından veri iletilmesi ikinci yöntem ise sunucudan veri talep etmektir. Her iki durum

için de imzalama sırasında klasik (prefiks’li) ve güncel (prefiks’siz) yöntem kullanılarak,

imzalama sırasında referans edilerek imzalanan değerleri alınarak imza içerisinde

referans numarası ile saklanacaktır.

26

Şekil 16. İstemci tarafından iletilecek satış faturası Zarf.

Zarf içerisinde buluna Body tag Şekil 16’te bir satış faturasının 55XXXXXXX74 kişi

veya kurum tarafından BIN2022000000001 satış faturasının base64 formatta sunucuya

iletilmesi için kullanılacaktır prefiks’li wsu:Id:”BodyId” imzalama sırasında referans

olarak BodyId tanımlaması yapılmıştır. İmza referansı için aşağıdaki gibi

URI=”#BodyId“ imza içerisinde tekil bir değer olarak saklanmıştır.

Şekil 17. İstemci tarafından iletilen satış faturası sonuç sorgulama Zarf.

Zarf içerisinde bununa Body tag Şekil 17’te istemci tarafından başarılı bir şekilde

iletilmiş olan faturanın sonuç bilgilerini ve durumunu öğrenmek için sorgulanan Zarf

örneğidir. Bu örnekte 55XXXXXXX74 kişi veya kurum tarafından

BIN2022000000001faturanın durum bilgisi alınır. Bu talep web servis güvenliği ile

yapılması, üçüncü kişi tarafından bilgi gizliliği oluşturmuştur.

E-imza ve X.509 sertifikası kullanarak imzalanmak istenilen ve imzalamada referans

edilen Body tag aşağıdaki gibi imza bilgileri içerisinde bulunur. Her referansın dijital

değeri ve dijital algoritması DigitsMethod ve DigitsValue değerlerinde tutulur.

Şekil 18. E-imza tanımlamasında bulunan ve Body tagı ile referans edilmiş ds:Referans.

Body tag için Şekil 18’da imza referans bilgisi verilmiştir. Bu bilgiler Schematron ve E-

imza doğrulama sırasında kullanılacaktır. Daha önceden de bahsettiğimiz

URI=”#BodyId” imza içerisindeki referans değeri ile bağlanılmıştır. Bir e-imzada birden

27

fazla referans bulunabilmektedir. Burada önemli olan referanslar arasında kopuk

olmamasıdır.

2.1.2 X.509 v3 dijital sertifikasının e-imza üzerinden alınası

Her E-imza üzerinde X.509 sertifikası bulunmaktadır. İki farklı e-imza türü vardır,

nitelikli ve niteliksiz. Her iki e-imza türü aynı e-imza da bulunmamaktadır. Sertifika

ayrıca Açık Anahtar (Public Key) olarak da tanımlanır. X.509 sertifikası imzalanacak

Zarf üzerinde veya imzalanan imza bilgileri üzerinde bulunmaktadır. Bu sertifika ile e-

imza doğrulaması yapılmaktadır ve her zarf üzerinde en az bir tane X.509 sertifikası

bulunması zorunludur. X.509 sertifikaları seri ve paralel imzalamalarda da

kullanılmaktadır.

2.1.3 Header bilgisinin tanımlanması

Header tag’ı Zarf içerisine eklenmeden önce e-imza içerisinde bulunan sertifika

bilgilerine ulaşmak için PIN kodu ile e-imzaya giriş işlemi yapılarak sertifika bilgileri

alınır ve bu sertifika imzalama ve imzala doğrulamasında kullanılacaktır. Alınan sertifika

Security tag’ın altında bulunan BinarySecurityToken tag’ında base64 formatında

aklanılır. Saklanan sertifika bilgileri ile açık anahtar olarak kullanılmaktadır ve e-imza

doğrulaması yapılmaktadır. Header içerisinden en kritik tag’lar dan bir tanesi de zarfnin

geçerlilik zamanın belirleyen Timestamp özeliğidir. Bu zarfın oluşturma ve geçerlilik

süresini belirler. Bu verilen örnekte 50 saniye içerisinde tüketilesi gereken bir talep olarak

gözlemlenmektedir. Bu 50 saniye içerisinde XML’lin imzalanması ve iletilmesi süresi

olarak tanımlanır. Tanımlanan zaman dışında bir istek gönderilemez. Sunucu tarafından

hata zarfı ile istemci tarafından yapılan istek bilgilendirilir.

Şekil 19. Timestamp zaman aralığının belirlenmesi.

28

2.1.4 Body’nin hazırlanması

Body tagının hazırlanması sırasında aşağıdaki gibi bilgiler tanımlama yapılır ve imzalama

sırasında referans edilecek kısım olarak wsu:Id=”id-28” referansı tanımlanır. OASIS

tarafından wsu:Id tanımlanan prefiks’li bir yöntemdir. Fakat sunucu tarafından bu

yöntemin kabul edilmeden de Id üzerinden de gerçekleştirile bilinmektedir. Body tag’ı ve

alt tag’lar serbest olarak bırakılmıştır. Body tag’ın da en önemli özellik imzalayan ile

imzalanan verinin birbiri ile bir bağlantısının olup olmadığı tekilliğin tespit edilmesinin

sağlamaktır. Bu tekillik gönderilen verinin sorgulanmasında kullanılmaktadır.

Şekil 20. Tekil paket sorgulama.

2.1.5 Timestamp belirlenmesi

SOAP mesajının içerisinde yer alan Timestamp bilgisinin ömrü çok kısadır. Bu bilgi

istemci tarafından oluşturulan ve imzalanan zaman dilimi ve e-imza içerisinde bulunan

imza değerinin Londra saatine göre yapılarak Lokasyon farklılıklarında oluşan zamana

göre tanımlamaların, yanlış olacağından dolayı Londra saati ön görülerek zaman

hesabının yapılması sağlanmıştır. Türkiye’den imzalanarak iletilen Envelope 22:31 14

Mart 2022, Pazartesi (GMT+3) göstermesi ve Kanada Ottava’da 15:31 14 Mart 2022,

Pazartesi (GMT-4) ile iletilen zamanların farklı ve yanlış olmasından. Asıl olması

gereken Londra, Birleşik Krallık konumunda saat 19:31 14 Mart 2022, Pazartesi (GMT)

Timestamp içerisinde tanımlı olmamasından dolayı, istemci tarafından iletilen zarf

sunucu tarafından talep edilen zaman aralığında olmamasından 22:31 ve 15:31

beklenmemesinden dolayı sunucu tarafından Timestamp varidasyon 19:31

beklendiğinden hata vermektedir. Eğer 19:31 Timestamp içerisinde iletildiyse ve sunucu

tarafından belirlenen gecikme süresi aralındaysa, bir sonraki işleme geçer ve bu işlem için

başarılı sonuç dönecektir. Burada zarf oluşturma ve sonlandırma zaman aralığı hizmet

veren sunucu tarafından belirlenmektedir. 50 sn. veya 5 dakika olabileceği gibi zaman

uzaması durumunda sunucu tarafında saldırıların daha fazla olması kaçınılmaz bir

29

duruma sokacaktır. Bundan dolayı yaptığımız çalışmada 5 dakika bir iletilmesi ideal bir

zaman olarak öngörülmektedir.

2.1.6 E-İmzanın belirlenmesi

XAdES imzalamada kullanılacak imza türü günümüzde en çok kullanılan imzalama türü

Enveloped imzalama türüdür. Enveloping imzalama türü genellikle kullanılmamaktadır.

Fakat güvenli bir ayrım için de seçile bilinmektedir. Bizim tarafımızdan önerilen

imzalama türü Enveloped’tır. Çalışmamızda sadece Enveloped türü kullanılarak tüm

işlemlere devam edilecektir.

2.1.7 İmzalama

İmzalama günümüzde çok farklı türleri ve algoritma türleri içermektedir.

CADES, XAdES, PADES, ASiC olarak sınıflanmaktadır, e-imzalama türlerinin

desteklediği standartlar. ETSI TS 101 733 CADES standardında elektronik imza formatı

(ASN veri yapısı). ETSI TS 102 778 PADES standardında elektronik imza formatı

(PDFveri yapısı). ETSI TS 101 903 XADES standardında elektronik imza formatı (XML

veri yapısı). ETSI TS 102 918 ASiC standardında elektronik imza formatı olarak örnek

verilmiştir. Bu desteklenen standartlar iç içe ve bağımlı olarak da kullanılabilmektedir.

Örnek vermek gerekirse web servis güvenliği te iletilen veri XAdES olarak

kullanılmaktadır. Body içerisinde iletilen veri base64 formatında CADES, PADES, ASiC

olarak da kullaılmaktadır. Bu durum ayrıca CADES imzalama içerisinde PADES imzası

da bulunabilmektedir. Bu durum kullanım ve talep edilen duruma göre değişiklikler

göstermektedir.

2.1.8 İmzalama doğrulama

E-imza doğrulama birden fazla standart içermektedir. Her standart farklı algoritmalar

içermesinden talep edilen imza standardı ve algoritma türüne göre yapılmalıdır. Bu karar

sunucu tarafındadır. İmza algoritma güçlüğü de önemlidir. İmzalama da İnternet’te

ihtiyaç duyulduğundan imza doğrulama nispeten daha kolaydır. İmza doğrulamada da

internete gereksinim duyulmadığından nispetten daha hızlıdır. Bir e-imza ile yapılan

imzalama 1 ile 2 sn. alırken doğrulama ise 0,03 sn. gibi bir değer alması imza

doğrulamanın daha hızlı olduğundan bahsedilmiştir.

30

2.1.9 Schematron kontrolü

Schematron kontrolü imzalamadan önce en önemli kısımlarından biridir. Burada talep

edilen zarf istenilen formatta olup olmadığı, tagların boş olmadığı ve doğru bir sırada

olup olmadığı. Tag’ların içerisinde bulunan attribut’ların eksik olup olmadığı. Tag’ların

boş olup olmadığı. İmzalama sırasında kullanılan imza türünün doğru ve eksiksiz yazılıp

yazılmadığı. İmza XML’in imzasız XML’lin prefiks’li veya prefiks’siz referans Id’lerin

olup olmadığı. Referans edilen imza türü ile imzalanan e-imza türünün eş olup olmadığı

gibi kontrollerin yapılması için kullanılmaktadır. Bu işlem performans için vazgeçilmez

bir durumdur. Schematron tüm web servisler için önerilmiştir.

2.2 Sunucu’ya İletilmesi

Sunucuya iletilen her talep için bir başarılı veya başarısız bir cevap iletilmesi zorunlu

olmamasına rağmen beklenmektedir. Sunucu aldığı talebi yaptığı kontrol akışı sonucunda

iletilen talebi kabul veya reddeder. Bunun sonucunda istemci tarafından alınan sonuca

göre karar verilerek sunucu tarafından iletilen başarılı veya başarısız ileti istemci

tarafından yorumlanarak karar verilmektedir. Sunucu iletme işlemini istemci tarafından

iletilen ileti ile gerçekleştirilmektedir.

2.3 Web Servis Güvenliğinde Sonuçlar

E-imza kullanılarak; web servislerin güvenliği, sunucu ve istemci tarafında verilerin

asimetrik olarak iletilmesi şeklinde ifade edilebilir. Bu durumda veri paketlerinin

güvenliği sunucu tarafında sağlanmıştır. Bu durum teknik açıdan avantajlı olarak

görülmektedir. Fakat performans açısından istemci tarafında yapılacak olan

yorumlamalar teknik açıdan daha zordur ama daha avantajlıdır.

Veri gönderiminin yoğunlaşması durumunda veya isteklerin fazla olması durumunda

performans iyileştirilmesi adına istemci tarafında güvenlik kontrolünün yapılması

önemlidir. Ayrıca sunucu tarafında ölçeklendirilebilirlikten yararlanılarak bu

performanstan kazanç sağlanabileceği öngörülmüştür. Ama bu durum ek maliyet

kalemlerini beraberinde getirmektedir. Ayrıca operasyon ağının genişlemesinden dolayı

teknik olarak iyileştirmeler zorlaşacaktır.

31

Sunucu tarafına gönderilen verilerde asimetrik imzalama türü kullanılarak sunucu

tarafından basit bir zarf türünde istemciye iletilmesi daha uygun olarak gözükmektedir.

Bu durumun performans açısından yapılması uygundur.

Web servis güvenliğinde şifre kullanılması, konuşacak birimlerin sertifika ve anahtar

doğrulaması, güvenebilecekleri anahtarları bilmesi gibi işlerin halledilebilmesi için geniş

kapsamlı bir kurulum çalışmasını gerekmektedir. Ayrıca servis güvenliğinde birçok

durumda, bütünlük ve gizliliğin sağlanması için şifreleme imza ile birleştirilmiştir.

Güncel servis güvenliği çözümlerinde imzalayan anahtarlar şifreleyen anahtarlardan

farklıdır. Bu durumun ana kaynağı ise anahtarların hayat sürelerinin farklı olmasındandır.

İmzalayan anahtar sahipleri kalıcı anahtarlar oluşturulmuştur. Fakat şifreleyen anahtarlar

mesaj alış-verişinden sonra geçersiz hale gelebilmektedir.

E-imza içerisinde sertifika bulunmaktadır. Bu sertifikaların ise belli bir geçerlilik tarihi

vardır. Genellikle 1 ile 3 yıl olarak üretilmektedir. Bu bağlamda imzalama aşamasında

tarihe bağlı olarak sertifikaların doğrulanması gerekmektedir. E-imza içerisinde bulun

sertifika ve imzalama doğru hatta imza türü de doğru olmasına rağmen gönderilecek zarf

için de belirtilen zaman aralığının dışında ise bu ilgili mesajı başarısız olacaktır. Ayrıca

mesaj içerisinde belirtilen zaman aralıkları çok kısadır. Bu nedenle de bu işlemin istemci

tarafında yapılması operasyonun sağlıklı ilerletilebilmesi için büyük avantaj

sağlayacaktır.

Bu çalışma ile klasik OASIS tarafından önerilen SOAP zarf mesajı hazırlanmasında

öncelikle X.509 sertifika e-imza üzerinden alınıp referans edilmesi yerine, imzalama

sırasında eklenmesi ile zaman kazanılacağı öngörüldü. Bunu içinde gelişmiş yöntem

sunuldu. Ayrıca çalışma literatüre sunucu tarafından talep edilen SOAP zarf mesajın

farklılaşabileceği gözlemlenmiştir. Bu farklılaşmada güvenlikten taviz verilmeden SHA-

256, SHA-384 veya SHA-512 şifreleme yöntemlerinin kullanılabileceği gözlemlenmiştir.

32

2.4 Web Servis Güvenliğinde Literatür Karşılaştırması

Web servisler ve APİ’ler yazılım süreçlerinin en önemli parçalarından biridir. Özel ve

kamu kurumları müşteri ve kullanıcı ile olan veri alışverişlerinde bu çözümleri

kullanmaktadır. Bu bağlamda servislerin güvenliği ve performansı operasyonların

devamı adına hayati önem arz etmektedir.

Kamu kurumları özel kurumlara sundukları hizmetler için geliştirdikleri servislerin

güvenliğini sağlamak adına çeşitli çözümler geliştirmektedirler. Bu çözümler e-imza

tabanlı çözümlerden oluşabilmektedir. Bu çözümlerde imzalama doğrulaması sunucu

tarafında yapılmaktadır. Sunucuya gönderilen SOAP mesajının zarfın içinde belirtilen

tarihlerde geçerli olan e-imza eğer belirtilen zaman aralığında iletilmezse operasyonu

başarısız olmasına neden olabilmektedir. Bu durumda sunucu kaynaklarını gereksiz

kullanmış olmaktayız. Eğer bu kontrol istemci tarafında yapılıp ona göre mesaj iletilseydi

server kaynakları doğru bir şekilde kullanılmış olunulacaktır. Ayrıca veri güvenliği ve

bütünlüğü operasyonun başlaması ile garanti altına alınmış olacaktı. Fakat bu işlem teknik

açıdan zor ve karmaşıktır. Geliştirdiğimiz modelde prefix’siz tabanlı bir çözüm kullandık.

Bu işlemi başarılı bir şekilde gerçekleştirdik. Bu konuda yapılan çalışmalardan bazıları

bu bölümde kısaca açıklanmıştır.

Nils Engelbertz ve arkadaşları yapmış oldukları çalışmada DSS (Digital Signature

Services) yöntemini kullanarak, XML ve XAdES şifreleme yöntemini ile çalışan web

servis ve web servis güvenliği saldırılarının bertaraf ettiklerini öne sürmüşlerdir (Nils

Engelbertz, 2019). Fakat bizim yaptığımız çalışmada Body ile iletilen verinin imzalı ve

zaman damgalı validasyonları ile XAdES ile yapılan sahte kayıtlar için önlem

alınabileceği gözlemlenmiştir.

Wawrzyniak ve arkadaşları yaptıkları çalışmada E-imza imzalama ile yapılan

imzalamalarda referans bağlantı problemlerin ve zafiyetler hakkında bilgi verilmiştir

(Fray, 2020). Bizim yaptığımıza çalışmada referans bilgilerinin azaltarak, imza içerisinde

bulunan referans kopukluklarını en aza indirmektedir.

Eriyanto Adhi Setyawan ile arkadaşları 2020'de yaptıkları çalışmada web servis güvenliği

için dinamik analiz, statik analiz, filtreler kullanarak güvenlik mekanizması, kimlik

33

doğrulama, şifreleme veya güvenli kodlama ve model tabanlı teknikler hakkında bilgi

verilmişlerdir (Hidayat, 2020). Buradaki çalışmada kimlik doğrulası, şifreleme ve

kodlama teknikliliklerinin kullanıldığı tespit edilmiştir.

Bukovetskyi ve arkadaşları 2022'de yaptıkları çalışmada MITM saldırıların arttığı

gözlemlemişlerdir. Bu ataklar için analizler ve alınabilecek yöntemler hakkında bilgi

verilmiştir (Rizak., 2022). Bizim çalışmamızda, imza doğrulama ve Schematron kontrolü

ile oluşabilecek ataklar bertaraf edilmektedir.

Rohlmann ve arkadaşları yapmış oldukları çalışmada, Mircosoft Office ve DSS güvenli

olduklarını fakat yapmış oldukları 18 tane saldırıdan 16 tanesinin 66/66/6666 gibi bir

saldırıyı bile bertaraf edemediklerini gözlemişler (Simon Rohlmann, 2022). Bu çalışmada

wsu:Timestamp tagı içerisinde bulunan wsu:Created ve wsu:Expires bilgileri Schematron

sırasında kontrol ile bertaraf edilmiştir.

34

3. BULGULAR VE YORUMLAR

Web servis güvenliğinde OASIS konsorsiyum tarafından sunulan klasik (prefiks’li

(wsu:Id)) referans tanımlanması kullanılmıştır. Kullanılan klasik referans tanımlaması

yerine gelişmiş (prefiks’siz (Id)) referans tanımlamasının kullanılmasının geliştiriciler

için önemli kaynak kazanımının sağlayacağını öngörülmüştür. Bu önerimizin sebebi e-

imzadan alınan X.509 sertifikası sadece imzalama sırasında kullanılmasıdır. Fakat

OASIS tarafından imzalama yapılmadan önce zarf içerisinde tanımlanması ve daha sonra

imzalanması talebi olmasından T1 sürede yapılacak işlem ister istemez T1+T2 sürede

gerçekleştirilmiş olacaktır. Ayrıca günümüzde kullanılan üçüncü parti API’ler klasik

referans tanımlama imzalamalarında çok aktif olarak kullanılmadığından Geliştirme,

Test, Kalite Kontrol ve Canlı ortamında oluşan personel, zaman ve uzun süreç nedeniyle

maliyet artışından dolayı kurumlar tarafından pek kullanılmadığını gözlemlenmiştir.

Bizim önerdiğimiz gelişmiş yöntem ile imzalanan zarf da aynı güvenlik standartlarda

olacaktır.

3.1 Web Servis Güvenliği için Klasik ve Geliştirilmiş Yöntem İşleyişi

OASIS tarafından önerilen klasik referans tanımlama tabanlı çözüm gösterilmiştir. Bu

yöntem temelde iki ana modülden oluşmaktadır. Birinci modül istemci tarafındaki süreci

ifade etmektedir. İkinci modül ise sunucu tarafındaki süreci ifade etmektedir.

3.1.1 Birinci modül

ModulClient yedi temel ana adımdan oluşmaktadır.

 İlk adım, istemci tarafında zarf için veri yüklemenin veya sorgulamanın karar

verildiği adımdır.

 İkinci ve üçüncü adım, e-imza üzerinden X.509 sertifikasının alındığı ve

XML’in oluşturulduğu adımdır.

 Dördüncü adım, wsse:BinarySecurityToken tagına X.509 sertifikası için

base64 formatında oluşturulan verinin XML’e eklendiği adımdır.

 Beşinci ve altıncı adım, oluşturulan zarf XML’linin imzalandığı ve imza

değerinin kontrolünün yapıldığı adımdır.

35

 Son adım olan yedinci adımda ise zarf sunucuya iletilmeden önce Schematron

kontrolüne tabi tutulan adımdır.

Sunucuya Envelope request mesajı iletilir. Böylece istemci tarafındaki temel adımlar

tamamlanmış olur. İstemci tarafındaki işlemlerin tamamlanmasından sonra süreç sunucu

tarafında ikinci modül ile devam eder.

3.1.2 İkinci modül

İkinci modül sunucu tarafında yapılacak olan işlemlerin gerçekleştirildiği modüldür.

Temelde 7 adımdan oluşmaktadır.

 Birinci adım istemci tarafından iletilen istek (request) mesajının alındığı

adımdır.

 İkinci adımdan altıncı adımda kadar XML kontrolü, Schematron kontrolü,

imza doğrulam, istemci kontrolü (Authentication) kontrolleri yapılır.

 Son adımda ise Sunucu tarafından oluşturulan Envelope cevabı (response)

XML’li istemciye başarılı veya başarısız olarak döndürülür.

Bu modüldeki bütün süreçler server tarafında gerçekleştirilmiştir.

36

Şekil 21. Klasik referans tanımlanması kullanımı.

Klasik yöntem prefix’li yöntemdi. E-imza üzerinde bulunan X.509 sertifikası alınarak

zarf üzerine eklenmektedir. Eklenen X.509 sertifikası imzalama sırasında referans

edilmektedir. Bu işlem OASIS tarafından tavsiye edilen yöntemdir. Klasik yöntem

referans tanımlamada nispeten geliştirilmiş prefiks’siz yönteme göre daha karışık olarak

tanımlanmıştır.

37

Şekil 22. Gelişmiş referans tanımlanması kullanımı.

Bu çalışmada klasik yöntem daha karmaşık ve adımların daha çok olduğu

gözlemlenmiştir. Geliştirilmiş yöntem ile daha az adım ile güvenlikten taviz verilmeden

de tamamlanacağı gözlemlenmiştir.

3.2 Geliştirilmiş ve Klasik Önerimiz Hakkında

Bizim tarafımızda önerilen geliştirilmiş referans tanımlama tabanlı çözüm gösterilmiştir.

Bu yöntem klasik yöntem gibi iki ana modülden oluşmaktadır. Bizim modelimizde

istemci tarafında kullanılan klasik sistemde kullanılan Dijital İmza üzerinden X.509

sertifikasının alınması ve wsse:BinarySecurityToken tagına X.509 sertifikası için base64

formatında oluşturulan verinin XML’le eklendiği adımlar çıkartılarak oluşturulmuştur.

Birinci modül istemci beş temel ana adımdan oluşmaktadır.

 İlk adım, istemci tarafında Envelope için veri yüklemenin veya sorgulamanın

karar verildiği adımdır.

 İkinci adım, XML’in oluşturulduğu adımdır.

38

 Üçüncü ve dördüncü adım, oluşturulan Envelope XML’linin imzalandığı ve

imza değerinin kontrolünün yapıldığı adımdır.

 İstemci için klasik yöntemde kullanılan diğer adımlara devam edilmiştir.

İkinci modül sunucu tarafında yapılacak olan işlemlerin gerçekleştirildiği modüldür.

Temelde 7 adımdan oluşmaktadır. Bu adımlar klasik yöntemde ikinci modülde yapılan

işlemler ile aynıdır. İkinci modülde Schematron kontrol ve imza doğrulama kısımları

güncellenerek ds:Signature üzerinde ds:X509Certificate X.509 sertifika alınması

sağlanmıştır.

Günümüzde kullanılan API’lerin geliştirilmiş yöntemde kullanılan imzalamada daha

aktif kullanılmaktadır. API’ler yaydın olarak imzalama işlemi için geliştirilmiş referans

çözümü kullanılmaktadır. Geliştirilmiş çözümünde bakım masrafları daha azalacağını ön

görmekteyiz. Sunucu tarafında ise klasik sistemde kullanılan imzalama doğrulama ve

Schematron kontrolleri geliştirilmiş yöntem ile değişime uğrayacağını ön gördük. OASIS

tarafından sunulan yöntem imzalama sırasında bizim tarafımızdan önerilen yönteme göre

daha zor ve karmaşık olmasından dolayı, sunmuş olduğumuz yöntem Web servis

güvenliği için kullanabileceğini bütünlük ve güvenlik seviyesin de benzer olacağı tespit

ettik.

3.3 Aldığımız Veriler ve Verilerin Yorumlanması

Web servis güvenliğinde OASIS konsorsiyum tarafından klasik metot ile geliştirilmiş

metot arasındaki yaptığımız çalışma sonuçları Tablo 1, Tablo 2 ve Tablo 3’ te

verilmiştir.

39

Tablo 1. 100 adet SOAP zarf mesaj tablosu

100 ADET SOAP ZARF MESAJ TABLOSU

İstemci Etkinlikleri
100 SOAP Zarf

Klasik Geliştirilmiş

E-İmzadan X.509 Sertifikası Alınması 5,03 sn 0,00 sn

XML Üretimi 1,01 sn 1,01 sn

Zarfa X.509 Sertifikası Ekleme 1,00 sn 0,00 sn

Zarf İmzalama 120 sn 120 sn

Zarf İmza Doğrulama 0,30 sn 0,30 sn

Schematron Kontrol 0,20 sn 0,20 sn

Ortalama Toplam: 127,54 sn 121,51 sn

Tablo 1’de verilen değerler SOAP Envelope mesajının dosya boyutuna göre

değişmektedir. İstemci tarafında yaptığımız çalışmada klasik çözüm ile geliştirilmiş

çözüm arasında zaman farklılığı gözlemlenmiştir. Bu farklılık E-imza üzerinden alınan

X.509 sertifikasının SOAP Envelope mesajının klasik çözümde eklenmesidir. Fakat

geliştirilmiş çözümde bu işlemi yapılasına gereksinim olmadığından zaman kazanımı

oluşmuştur. Sonuç olarak klasik çözüm ile geliştirilmiş çözüm istemci tarafında yapılan

işlemlerde zaman farklılıkları gözlemlenmiştir. Sunucu tarafından ise her SOAP

Envelope mesajı için tüm aşamalar ortalama 0,03 saniyedir.

Tablo 2. 1.000 adet SOAP zarf mesaj tablosu

1.000 Adet SOAP Zarf mesaj TABLOSU

İstemci Etkinlikleri
1.000 SOAP Zarf

Klasik Geliştirilmiş

E-İmzadan X.509 Sertifikası Alınması 5,03 sn 0,00 sn

XML Üretimi 8,49 sn 8,49 sn

Zarfa X.509 Sertifikası Ekleme 5,78 sn 0,00 sn

Zarf İmzalama 1200 sn 1200 sn

Zarf İmza Doğrulama 3.00 sn 3.00 sn

Schematron Kontrol 2,00 sn 2,00 sn

Ortalama Toplam: 1221 sn 1210 sn

Tablo 2’de 1.000 tane SOAP Envelope mesajı üzerinden yapılan sonuçlar aktarılmıştır.

Buradaki zaman her SOAP Envelope mesajın E-imza ile imzalama sırasında geçen

zamandan kaynaklanmaktadır. Bu durum klasik ve geliştirilmiş süreçlerde aynıdır.

40

Tablo 3. 10.000 adet SOAP zarf mesaj tablosu

10.000 ADET SOAP ZARF MESAJ TABLOSU

İstemci Etkinlikleri
1.000 SOAP Zarf

Klasik Geliştirilmiş

E-İmzadan X.509 Sertifikası Alınması 5,03 sn 0,00 sn

XML Üretimi 79,58 sn 79,58 sn

Zarfa X.509 Sertifikası Ekleme 46,85 sn 0,00 sn

Zarf İmzalama 120,00 sn 120,00 sn

Zarf İmza Doğrulama 26,58 sn 3.00 sn

Schematron Kontrol 19,54 sn 19,54 sn

Ortalama Toplam: 3 saat 3 saat

Tablo 3’te 10.000 tane SOAP Envelope mesajı üzerinden yapılan sonuçlar aktarılmıştır.

1.000.0000 ve üzeri gönderimlerde imzalamadan uzun sürmesinden 3-5 gün arası bir süre

alacağından dolayı farklı bir yöntem ise bu süre kısaltılmıştır. Bunu için E-imza türü

değişikliğine gidilerek HSM (Hardware Security Module) cihazı kullanılması tasfiye

edilmiştir. HSM da yapılan imzalama, E-imza cihazında 50 ile 100 kat daha hızlı

yapılmaktadır. Bundan dolayı oluşabilecek yüksek veri transferlerinde HSM ile yapılması

tavsiye edilmiştir.

3.4 Lokasyon ve Çalışma Vardiyası Sorunu

Günümüzde kullanılan tüm E-imzalarda imzalama işlemi için X.509 sertifikaları

kullanılmaktadır. X.509 sertifikaları Public Key olarak da kabul edilmektedir. E-imza

sağlayıcıları, imzalama sırasında Private Key Infrastructure metodolojiden yararlanarak

imzalama hizmeti vermektedir. Bu işlem gerçekleştirilirken şifrelemede asimetrik

yaklaşımları kullanılmaktadır. E-İmza içerisinde bulunan Private Key 256-bitlik bir şifre

ile saklanmaktadır. Böylece üçüncü şahısların erişimi engellenmesi sağlanacaktır.

X.509 sertifikalarının geçerli olup olmadığı, E-imza sağlayıcıları tarafından

belirlenmektedir. E-imza ile XML dosyasını imzalamak için E-imza sağlayıcılarına

erişiliyor olmalıdır. E-imza sağlayıcısı tarafından sağlanan X.509 sertifikasının

geçerliliğine ihtiyaç duyulmaktadır. SOAP Envelope mesajını imzalamak için internette

gereksinim duyulmaktadır. Fakat X.509 sertifikası geçerli imza ile imzalanan SOAP

Envelope mesajını üzerinde dolayı internete ihtiyaç duyulmadan, imza doğrulaması

yapılabilmektedir. Bu işlem için de X.509 sertifikası Public Key olarak kullanılmaktadır.

41

Public Key imzalamadan sonra Envelope üzerinde olmasından internet ihtiyacı veya bir

kuruluşa başvurma zorunluluğu oluşmayacaktır.

Klasik yaklaşımda en önemli kısıtlamalarından bir tanesi Lokasyon ve ülkelerin çalışma

sürelerinin farklı olması durumudur. Devlet kurumlarında kullanılan servisler 7/24

prensibine göre çalışmaktadır. Fakat devlet kurumlarından alınacak destekler kurumun

belirlediği yöntem ve çalışma zamanı farklılığından ister istemez web servis güvenliği

için yapılan entegrasyonlarda zaman kaymasının olduğu gözlemlenmiştir. Geliştirme

yapan kurumlar için çalışma saatleri projedeki entegrasyona göre belirlenmelidir. Bu

durumda doğru planlama yapılmaması durumunda projenin uzaması ve maliyetlerin

artması kaçınılmaz olacaktır.

Kamu kurumlar ile yapılacak olan bu tür entegrasyonlarda en çok karşılaşılan

problemlerden bir tanesi de personellerin bu konuda yetersiz kalması durumudur.

Personellerin bilgisinin yetersiz kalması durumunda ve böyle bir entegrasyonun ilk defa

yapılması sürecinde tarafların birbirleri ile yaptıkları bilgi paylaşımında problemler

yaşanabilmektedir. Kullanılan teknolojinin de farklı olması durumunda da bilgi

transferinde zorluklar olacağı aşikardır. Ayrıca taraflar tarafında kullanılan güncel

teknolojilerin birbirleri ile uyumlu olması sürecin başarısı için önemlidir.

Web servis güvenliğinde en kritik süreç geliştirme sürecidir. Geliştirme sürecine

başlamadan önce bu süreci tamamlamış kurum ile çalışılması önerilmiştir. Web servis

güvenliğinin en yaygın olarak uygulandığı yerler devlet kurumları ve bankalardır. Bu

bağlamda bu kurumlar ile yapılacak olan entegrasyonlarda geliştirme süreci

tamamlandıktan sonra test, kalite kontrol ve canlı süreçleri geçişleri, geliştirme sürecine

göre daha hızlı bir şekilde gerçekleştirile bilinecektir.

42

Tablo 4. 6 ülke seçilerek bir gündeki mesai tablosu

Tablo 4’te Amerika Birleşik Devletleri’nde yapılan bir çalışmanın diğer ülkelerden

alacağı destek oraları verilmiştir. ABD, Rusya, Çin, İngiltere, Fransa ve Türkiye gibi

ülkelerin başkentleri tanımlanmıştır.

Amerika Birleşik Devletleri’nde, kurum tarafında 09:00 ile 17:00 günlük çalışma saati

olarak tanımlanmıştır. Bu çalışmamızda farklı ülkeler için web servis güvenliği

entegrasyonu alınabilecek ve verilebilecek destekler hakkında zaman çizelgesi

verilmiştir. Her ülke için UTC farklılıklarından dolayı destek oran farklılığı yüzdelik

olarak verilmiştir. Web servis güvenliği çalışmasında avantajlı olan kısım UTC±00.00'nin

zaman diliminin kullanılmasıdır. Dezavantajlı kısım ise iletilecek SOAP Envelope

mesajının wsu:Timestamp zaman aralığının beş ile on dakika gibi zaman aralığının çok

kısa olmasıdır.

Geliştiriciler tarafından karşılaşılan hatalar ve talep edilen bilgilerin kurumların çalışma

zamanı farklılıklarından dolayı uzayabilmektedir. Bu tür entegrasyonlarda çalışma

zamanı, çalışılacak ülkeye göre farklılık arz edebilecektir. Bu tür entegrasyonlarda

vardiyalı çalışma prensibinin kullanılması gerekmektedir. Planlamanın düzgün

yapılmaması durumunda da DEV, TEST, QA, PROD entegrasyon süreci uzayacaktır. Bu

nedenle zaman planlaması ve çalışacak kişi veya kişilerin vardiya planına göre çalışıyor

olması talep edilmektedir.

Bu çalışma sonucunda kullanılan web servis güvenliği klasik yöntem dışında geliştirilmiş

yöntem ile de aynı düzeyde başarıya ulaşabileceği ve hatta daha da yaygınlaşabileceği ön

görmekteyiz. Bu çalışma sonucunda Devlet kurumları ve Banka’lar dışında da çık büyük

maliyetlere gerek kalmadan geliştirilmiş yöntem ile de güvenlikten taviz verilmeden daha

az adımla da istenilen sonuçlara ulaşabileceği öngördük.

43

4. SONUÇ ve ÖNERİLER

4.1 Özet

Günümüzde kurumlar arasında veri değiş tokuşu ve sorgulama işlemi için en popüler

kullanılan yöntem kuşkusuz web servislerdir. Web servis türlerinde en popüler olan

SOAP ve REST’tir. Her iki servisinde çalışma şekilleri farklı olmasına rağmen veri değiş

tokuşu ve sorgulamada kullanılmasından dolayı amaçları aynıdır. Bu durum da

kullanılmak istenilen servis türünde avantajları ve dezavantajları mevcuttur. Web servisin

tür seçimi kurumların ihtiyaçlarına ve aldıkları politikalar ile belirlenmektedir. Bu

çalışmada devlet kurumları ile özel/tüzel kurumlar arasında kullanılacak web servislerin

güvenli çalışmaları gözlemlenmiştir. Sadece devlet ile değil aynı zamanda tüm

kurumların web servis güvenliğini tavsiye edilmiştir. Web servis güvenliği için de

XAdES ve e-imza ile zarf imzalanması önerilmiştir.

Web servisler saldırılara açık olarak günümüzde devam etmesinden dolayı XAdES ve e-

imza ile oluşturulan zarf bilgilerinin tekrar kullanılmaması için belirtilen Timestamp

özeliği ile zaman kısıtlaması yapılarak saldırıları en aza indirilmesi hedeflenmiştir. E-

imza ile imzalanan zarfın belirtilen zaman içerisinde sadece bir defa kullanılması

hedeflenmiştir. Web servis güvenliğinde istemci tarafından yapılan işlemlerin sunucu

tarafından kontrollerden daha uzun süreceğinden sunucu saldırılara karşı daha az işlem

yapmasını ve web servis güvenliğini kullanan kurumlar için maliyetleri azaltılması

hedeflenmiştir.

4.2 Yargı

Günümüzde kullandığımız bazı imzalama API’lerde tespit etmiş olunan referans

bilgilerinin prefiks’siz olarak kullanılırken, bazı referansların ise prefiks’li

kullanılmasından dolayı imzalama ve imzalama doğrulamasında talep edilen imzayı

oluşmadığı ve imzalama yapılmış olmasında rağmen doğrulanamadığı gözlemlenmiştir.

Bu durum ister isteme kurumların web servis güvenliğinde alacakları yöntem de önemli

hale gelmiştir. Kullanılacak yöntem klasik (prefiks’siz) ve gelişmiş(prefiks’li) kurumların

alacakları, karar verecekleri kabul yöntemi ister istemez tercih sebebi oluşturacaktır.

44

4.3 Öneriler

Kurumlar tarafından güvenli web servis geçişleri sırasında karşılaşılan en büyük problem,

talep edilen ve talep eden kuruluşlar arasında oluşturulan Geliştirme, Test, Kalite Kontrol

ve Canlıya geçiş aşamasında ilk maliyetlerin yüksek olmasından dolayı günümüzde

Devlet kurumlarında bu sistemlerin daha yaygın kullanıldığı gözlemlenmiştir. Devlet

kurumları dışından da en çok kullanılan kurumlar ise bankalardır. Bu tezimizde devlet

kurumları ve bankaları dışında özel/tüzel kurumalar ile de aralarında bu sistemi

geliştirmeleri gerektiğini gözlemlenerek, önerilmiştir.

Ayrıca web servisler günümüzde yazılım çözümlerinin en önemli parçasıdır. Yapılan bu

çalışma ile SOAP web servislerinin kamusal alandaki kullanımda karşılaşan zorlukların

üstesinden nasıl gelinebileceği konusunda yeni bir yaklaşım sunulmuştur. Sunulan bu

yaklaşım “klasik tabanlı” modeline aksine “geliştirilmiş modelin” kullanılmasına

dayanmaktadır. Önerilen yaklaşım firmaların uluslararası arenada kamu kurumları ile

entegre olunmasında önemli bir kolaylık getirmektedir. Bu yaklaşım ile Geliştirme, Test,

Kalite Kontrol ve Canlı ortamlarında kamu kurumları ile entegre olunması durumunda

sıklıkla karşılaşan Timestamp problemini çözülmesi başarılmıştır. E-imza ve HSM

cihazları tercihi hakkında da bilgi verilmiştir. Günümüzde kullanılan API’ler hakkına

daha efektif kullanım için alınması gereken yol hakkında bilgi verilmiştir. Web servis

güvenliği metodolojileri hakkında kurumlar aydınlatılmaya çalışılmıştır. Web servislerde

SSL/TLS sertifikaları sadece istemci ile sunucu arasındaki uç uca güvenlik için ideal

olduğu fakat saldırılara karşı güvensiz ve yetersiz olduğu bilgisi verilerek, web servis

güvenliği kullanımını yaygınlaştırılmasını önerilmiştir.

4.4 Çalışma Kısıtları ve Gelecekteki Çalışmamız

Bu çalışmada yapılan araştırma sonucunda; Devlet kurumları ve bankalarda yaygın olarak

kullanıldığı fakat özel/tüzel kurumlarda sık kullanılmadığı gözlemlenmiştir. Bu

çalışmada bu eksiklik gözlemlenmiştir. Buradaki amaç özel/tüzel kurumlarsa

yaygınlaştırarak web servis güvenliğini farklı yöntemler ile XAdES kullanımı artırmaktır.

45

Yapılan bu çalışmada, devlet kurumları ve bankalar dışında da özel kurumlar arasından

web servis güvenliğini artırılarak veri gönderme ve veri sorgulama işlemlerini daha hızlı

ve güvenli bir şekilde yapılmasının, ayrıca kurumlar tarafından, XAdES bilinçli bir

şekilde kullanımını sağlanması hedefleyerek oluşabilecek zaman ve maliyetleri kaybını

azaltmak için alınacak yöntemler hakkında bilgi verilmiştir.

Bu çalışma sonucunda; kurumlar tarafından web servis güvenliği için alacakları ve

izletecekleri yöntemler hakkında detaylı bilgi verilerek oluşabilecek ön maliyetin

zamanla daha avantajlı bir duruma geleceği anlatılmıştır. Bu çalışmada kurumların

karşılaşabileceği zorlukları nasıl bertaraf edilebileceğini ve karar aşamasında hangi

yöntem daha sağlıklı bir şekilde olduğu anlatılarak, çok karmaşık yapıların da aslında ne

kadar kolay bir şekilde gerçek hayata geçebileceğini gözlemlenmiştir.

En büyük hedef; web servislerde yapılan veri değiş tokuşu ve sorgulama işlemlerinin

inkâr edilememesi ve bu işlem için kurumların yöntemlerin en basit karmaşıklıktan uzak

bir şekilde gerçekleştirildiğini gözlemlemektir.

46

KAYNAKLAR

A. Arsanjani, G. B. (2009). SOA manifesto. 1 1, 2017 tarihinde http://www.soa-

manifesto.org/ adresinden alındı

Abdellatif, M. e. (2018). State of the practice in service identification for soa migration

in industry. (s. 634–650). International Conference on Service-Oriented

Computing. Springer, Cham, 2018.

Abdul, W. M., & Ahmed , M. Z. (2017). Web services SOAP optimization techniques. In

2017 4th IEEE International Conference on Engineering Technologies and

Applied Sciences (ICETAS), 1-5.

Ankit, S., Sharma , N., Sharma , A., Kaushik, I., & Bhushan , B. (2019). Taxonomy of

attacks on web based applications. In 2019 2nd International Conference on

Intelligent Computing, Instrumentation and Control Technologies (ICICICT) (s.

1231-1235). IEEE.

Bieberstein, N. e. (2006). Service-oriented architecture compass: business value,

planning, and enterprise roadmap. FT Press.

Booth, D. a. (2007). Web services description language (WSDL) version 2.0 part 0:

Primer. W3C recommendation 26, 39-41.

Carl, G., Kesidis, G., Brooks, R. R., & & Rai, S. (2006). Denial-of-service attack-

detection techniques. IEEE Internet computing 10(1), 82-89.

Chinnici, R. e. (2007). Web services description language (wsdl) version 2.0 part 1: Core

language. W3C recommendation 26.1, 19.

Daş, R., & Burak, B. (2020). Analysis of Different Types of Network Attacks on the

GNS3 Platform. Sakarya University Journal of Computer and Information

Sciences, 210-230.

47

Debasish, C., & Sristy, S. N. (2017). Web Service Performance Enhancement for

Portable. 20th International Conference of Computer and Information

Technology (ICCIT).

E., C., F., C., G., M., & S., W. (2001). Web services description language (WSDL) 1.1.

Eriyanto, A. S., & Fadhil, H. (2020). Web Services Security and Threats: A Systematic

Literature Review. In 2020 International Conference on ICT for Smart Society

(ICISS), 1-6.

Fray, G. W. (2020). New xml signature scheme that is resistant to some attacks. . IEEE

Access.

Gupta, P. e. (2018). Event-driven SOA-based IoT architecture. (s. 247-258). International

Conference on Intelligent Computing and Applications. Springer, Singapore,

2018.

Haviluddin, H., Edy, B., & Nur, F. H. (2019). A Database Integrated System Based on

SOAP Web Service. TEM Journal, 782-787.

Hidayat, E. A. (2020). Web services security and threats: A systematic literature review.

In 2020 International Conference on ICT for Smart Society (ICISS), 1–6.

JIANG, L., CHEN, H., DENG, F., & ZHONG, Q. (2011). A Security Evaluation Method

Based on Threat Classification for Web Service. JOURNAL OF SOFTWARE,

VOL. 6, NO. 4, 595-603.

Kapil, M. J., Manoj, V. J., & Jay, L. B. (2016). A Survey on Man in the Middle Attack.

IJSTE-International J. Sci. Technol. Eng, 2(09), 277-280.

Lublinsky, B. (2007). Defining SOA as an architectural style: Align your business model

with technology. Systems Journal, 1-12.

Mahmood, Z. (2007). Service oriented architecture: potential benefits and challenges.

Proceedings of the 11th WSEAS International Conference on COMPUTERS.

48

Marks, E. A. (2008). Service-oriented architecture: a planning and implementation guide

for business and technology. John Wiley & Sons.

Natis, Y. (2003). Service-oriented architecture scenario. http://dx.doi.org/ adresinden

alındı

Niknejad, N. e. (2020). Understanding Service-Oriented Architecture (SOA): A

systematic literature review and directions for further investigation. Information

Systems 91: 101491.

Nils Engelbertz, V. M. (2019). Nurullah Erinola, and Jorg Schwenk. Security analysis of

xades validation in the cef digital signature services (dss). . Open Identity Summit

2019.

Overall, D. (2006). Have we been there before.

Prof., S. B. (2017). Learning XML. An Imprint of Laxmi Publications Pvt. Ltd.

Rizak., V. B. (2022). Developing the algorithm and soft- ware for access token protection

using request signing with temporary secret. . Eastern-European Journal of

Enterprise Technologies, 1(9):115.

Roy, T. F. (2000). Anchitectural Style and the Design of Netword-based Software

Architectures. California: University Of California, Irvine.

Sima, E., & Raziye, H. H. (2013). Critical Factors in the Effective of Service-Oriented

Architecture. ACSIJ Advances in Computer Science: an International Journal,

Vol. 2, Issue 3, No. , 2013, 26-30.

Simon Rohlmann, C. M. (2022). Oops... code execution and content spoofing: The first

comprehensive analysis of opendocument signatures. . Ruhr University Bochum.

Yongxin, F., & Qin, L. (2016). The distributed UDDI system model based on service

oriented architecture. In 2016 7th IEEE International Conference on Software

Engineering and Service Science (ICSESS), 585-589.

49

Zhao, Y. W. (2018). Blockchain-based UDDI data replication and sharing. 2018 IEEE

22nd International Conference on Computer Supported Cooperative Work in

Design ((CSCWD)).

50

ÖZGEÇMİŞ

Mehmet CİNCİ

Eğitim

Derece Yıl Üniversite, Enstitü, Anabilim/Anasanat Dalı

Y.Ls. 2014 Maltepe Üniversitesi, Lisansüstü Eğitim Enstitüsü

 Bilgisayar Mühendisliği Anabilim Dalı

Ls. 2016 Anadolu Üniversitesi, İktisat Fakültesi

 İktisat

Ö.Ls. 2000 Trakya Üniversitesi, Edirne Meslek Yüksek Okulu

 Bilgisayar Programcılığı

Lise 1997 Kağıthane Lisesi

İş/İstihdam

Yıl Görev

2022 - Kıdemli Yazılım Mühendisi, Sovos Digital Planet A.Ş.

2019 – 2022 Yazılım Uzamanı, Barsan Global Lojistik A.Ş.

2018 – 2019 Kıdemli Yazılım Uzamanı, ATEZ Yazılım Teknolojileri A.Ş.

2013 – 2017 Kıdemli Yazılım Uzamanı, Güler Dinamik Gümrük Müşavirliği

Kongre/Sunum/Bildiri/Konferans

“Icecet 20-22 July 2022 Czech Republic ,” Token Based Novel Approach To

Web Service Security., 2022.

51

