ISTANBUL TEKNIK UNIVERSITESI % LISANSUSTU EGITIM ENSTITUSU

FPGA UZERINDE 5G UYUMLU
DUSUK YOGUNLUKLU ESLiK DENETIM
KOD COZUCU GERCEKLENMESI

YUKSEK LISANS TEZI

Baris BILGILI

Elektronik ve Haberlesme Miihendisligi Anabilim Dah

Elektronik Miihendisligi Program

EYLUL 2022

ISTANBUL TEKNIK UNIVERSITESI % LISANSUSTU EGITIM ENSTITUSU

FPGA UZERINDE 5G UYUMLU
DUSUK YOGUNLUKLU ESLiK DENETIM
KOD COZUCU GERCEKLENMESI

YUKSEK LISANS TEZI

Banis BILGILI
(504191203)

Elektronik ve Haberlesme Miihendisligi Anabilim Dal

Elektronik Miihendisligi Programi

Tez Damismani: Prof. Dr. Siddika Berna Ors Yalcin
Es Damisman: Prof. Dr. Ali Emre Pusane

EYLUL 2022

ISTANBUL TECHNICAL UNIVERSITY % GRADUATE SCHOOL

IMPLEMENTATION OF 5G COMPATIBLE
LOW DENSITY PARITY CHECK DECODER ON FPGA

M.Sc. THESIS

Baris BILGILI
(504191203)

Department of Electronics and Communication Engineering

Electronics Engineering Programme

Thesis Advisor: Prof. Dr. Siddika Berna Ors Yalcin
Co Adyvisor: Prof. Dr. Ali Emre Pusane

SEPTEMBER 2022

ITU, Lisansiistii Egitim Enstitiisii’niin 504191203 numaral Yiiksek Lisans Ogrencisi
Baris BILGILI, ilgili yonetmeliklerin belirledigi gerekli tiim sartlar1 yerine getirdikten
sonra hazirladig1 “FPGA UZERINDE 5G UYUMLU DUSUK YOGUNLUKLU ESLIK
DENETIM KOD COZUCU GERCEKLENMESI” baslikli tezini asagida imzalar1 olan
jiiri Oniinde basari ile sunmustur.

Tez Damismani :

Es Danmisman :

Jiiri Uyeleri :

Teslim Tarihi :

Savunma Tarihi :

Prof. Dr. Siddika Berna Ors Yalem ..o,
Istanbul Teknik Universitesi

Prof. Dr. Ali Emre Pusane @ ..
Bogazigi Universitesi

Prof. Dr. Ece Olcay Giines ...,
Istanbul Teknik Universitesi

Prof. Dr. Tolga Mete Duman ...
Bilkent Universitesi

Dr. Ogr. Uyesi Semiha Tedik Basaran
Istanbul Teknik Universitesi

9 Eyliil 2022
12 Eyliil 2022

Vil

Anneme,

ONSOZ

Tez calismam boyunca bilgi ve tecriibeleriyle bana her zaman yardimci olan degerli
hocalarim Prof. Dr. Siddika Berna Ors YALCIN ve Prof. Dr. Ali Emre PUSANE’ye,
Yonga Teknoloji Mikroelektronik biinyesinde deneyim kazanmamda biiyiik pay sahibi
olan Dr. Hayrettin AYAR ve Rifat DEMIRCIOGLU na, hep yanimda olan ve beni
destekleyen aileme tesekkiirlerimi sunarim.

Eyliil 2022 Baris BILGILI
(Elektronik ve Haberlesme Miihendisi)

X

ICINDEKILER

Sayfa

ONSOZ ... ix
ICINDEKILER. ... xi
KISALTMALAR . ..o xiii
TABLO LISTESL. ... e XV
SEKIL LISTESL. ... Xvil
O ZE T e Xix
SUMMARY ... xxi
L GIRIS ..o 1
2. 5G NR LDPC KODLAR VE KOD COZUCULER 3
2.1 LDPC Kodlama ve Kod COZmeccooviiiiiiiiiiiiiiiiineeiinnan 3
22 S5GNRLPDCKodlartooii i 6
3. DONANIM GERCEKLEME TEMELLERIooooooiii. 7
3.1 Donanim YapIST ... euuee ettt ettt e 7
3.2 Veri Gosterimi ve Iglemesiccooooviiiii 8
3.2.1 Ikiye timleyen gOSteTimIoouuuuuneeeettiiiiiineeeeeeeiiinaennn. 8
3.2.2 Kuantalama islemioooeiiiiiiiiiiii i 8
323 Bitkaydirmaislemioooiiiiiiiiiii 9

3.3 FPGA-IN-the-Loop.......ooiiiiii e 9
4. DONANIM UYUMLULDPCKOD COZME 13
4.1 Literatiirdeki Kod Cozme Algoritmalart...................cooiiiiiiiii.t. 13
4.2 Kod Cozme Cizelgelerinin Karsilagtirilmast ..., 15
4.3 Kayan Noktal ve Sabit Noktal1 Kod C6zme Karsilastirilmasi 19
5. FPGA UZERINDE KOD COZUCU TASARIMI.............................. 25
5.1 Literatiirdeki Donanim Gergeklemeleri............................. L. 25
5.2 Donanima Uygun CNU Yapist ... 26
5.3 FIL Destekli CNU Tasarimioviiiiiieineiiieeiieeiiaeaennnnns 29
5.4 LDPC Kod Coziicii Ust Seviye Mimarisi.........covvveeeiiiiiiiiinneeeeennn. 36
6. SONUCLAR ... e 47
KAYNAKLAR . e 49
ERKLER ... 53
EK A :CNUFIL Kodlartcoooiuniiii e 55
EK B :CNUFIL Smiftoooii i 57
EK C : CNU FPGA Programlama FIL Koduooooooiiiiiiiiit. 59
EK D : CNU VHDL TeSt DOSYaSs!.coviniiiiiiiiiiiiiii 61
EK E : LDPC Kod Coziicii Ust Seviye VHDL Test Dosyast 65
EK F : LDPC Kod Coziicti Ust Seviye Benzetimi Girigleri....................... 69
OZGECMISo 71

X1

KISALTMALAR

AWGN
SG NR
CNU
FIL
FPGA
HDL
LDPC
PUDCH
PUSCH
SPA
VHDL

: Additive White Gaussian Noise

: Fifth Generation New Radio

: Check Node Unit

: FPGA in the Loop

: Field Programmable Gate Array

: Hardware Description Language

: Low Density Parity Check

: Physical Downlink Shared Channel
: Physical Uplink Shared Channel

: Sum Product Algorithm

: Very High speed Integrated Circuit Hardware Description Language

Xiii

TABLO LISTESI

Tablo 2.1 :
Tablo 4.1 :
Tablo 5.1 :
Tablo 5.2 :
Tablo 5.3 :
Tablo 5.4 :
Tablo 5.5 :
Tablo 5.6 :
Tablo 5.7 :
Tablo 5.8 :
Tablo 5.9 :
Tablo 5.10 :

Sayfa
Yiikseltme Carpant Tablosu............ooviiiiinriiiiiiiiiiineeanean 6
5G NR Temel Cizge 1 Matrisi Kaydirma Carpanmi Degerleri.......... 17
CNU Parametre LiStesi.....ouuuuuieieiiiiiiiiie i 26
CNU Giris ve Cikis Isaretleriooiiiiiiiiiiiiinn, 27
CNU Sentez Sonuglartoooviiiiiiiiiiiii i 36
[k 21 Katman I¢in Temel Cizge 1 Baglant: Sayilart 39
Kalan Katmanlar i¢cin Temel Cizge 1 Baglant1 Sayilar1 40
Ik 21 Katman I¢in Onerilen Erisim Siralamasi....................... 41
Kalan Katmanlar igin Onerilen Erigim Stralamasi.................... 42
LDPC Kod Coziicii Model ve Donanim Benzetimi Sonuclari 43
LDPC Kod Céziicii Ust Seviye Giris ve Cikis Isaretleri.............. 43
LDPC Kod Coziicii Veri Hacmi Kiyaslamast 44

XV

SEKIL LISTESI

Sekil 2.1 :
Sekil 2.2 :
Sekil 2.3 :
Sekil 2.4 :
Sekil 3.1 :
Sekil 4.1 :
Sekil 4.2 :
Sekil 4.3 :

Sekil 4.4 :

Sekil 4.5 :
Sekil 4.6 :
Sekil 4.7 :
Sekil 4.8 :
Sekil 4.9 :
Sekil 4.10 :
Sekil 4.11 :
Sekil 5.1 :
Sekil 5.2 :
Sekil 5.3 :
Sekil 5.4 :
Sekil 5.5 :
Sekil 5.6 :
Sekil 5.7 :
Sekil 5.8 :
Sekil 5.9 :
Sekil 5.10 :
Sekil 5.11 :
Sekil 5.12 :
Sekil 5.13 :
Sekil 5.14 :
Sekil 5.15 :
Sekil 5.16 :

Sayfa
LDPC Eslik Denetim Matrisi Ornegi................ccoeeevinininn... 3
Tanner Cizgesi OMMegi.........oovvieiii i 4
Bit Diigtimlerinden Denetim Diigiimlerine Mesaj Aktarimu 4
Denetim Diigiimlerinden Bit Diigiimlerine Mesaj Aktarimu 5
FIL TeSt Senaryosuovuuuuuiieeeet it eeeaans 11
Literatiirdeki Kod C6zme Algoritmalarinin Benzetim Sonuglart 15
Tablo 4.1°de gosterilen 5G NR Temel Cizge 1 Matrisi 16

Tablo 4.1°de gosterilen SG NR Temel Cizge 1 Matrisinin 384
Yiikseltme Carpam1 ve 307 Kaydirma Carpani ile Genisletilmis

QI =1 1511 F: 1 18
Tablo 4.1°de gosterilen 5SG NR Temel Cizge 1 384 Yiikseltme

Carpani ile Genigletilmis Matrisc.cooviiieeeiiiiiiiiiineeeeean 18
Paralel, Paralel Katmanl ve Seri Katmanli Cizelge Karsilastirilmas1 19
4 Bit Sabit Noktali Kod Cozme ..., 20
5 Bit Sabit Noktali Kod COzmec.c.ooiiiiiiiiiiiiiiiinn i, 21
6 Bit Sabit Noktali Kod COzmeccooviviiiiiiiiiiinnnennian, 22
7 Bit Sabit Noktali Kod COzmecoooiieiiiiiiiiiiiineennann, 22
8 Bit Sabit Noktali Kod Cozmeccooviiiiiiiiiiiiiiinn.... 23
9 Bit Sabit Noktal1 Kod Cozme ..., 23
CNU Donanim YapisT «.ceeeeuuniineee it iiiiae e eeeeanns 28
CNU Durum MaKinesiooovviiieiiiiiiiiiiiie e 29
FIL Birinci Adim ... 30
FIL IKinci AdIm ..o 31
FIL Uglincti Adim ..ot 31
FIL DOrdiincti Adim......ooouniiiiii i 32
FIL Besinci Adimoooouuiiiiii i 33
| 515 1] 1S o P 33
FIL SONUCIATT ...t e e 34
MATLAB Ortaminda CNU Modeli Sonuglari 34
CNU Donanim Benzetimi Sonuglart ... 35
LDPC Kod Coziicii Ust Seviye Mimarisicccen.... 38
LDPC Kod Coziiciide Verilerin Alinmast 45
LDPC Kod Coziiciide Cikislarin Olusturulmast 45
LDPC Kod Coziicii Adreslerin Olusturulmast 45
LDPC Kod Coziicii Gergeklemelerinde Yiikseltme Carpanina

Bagli Olarak Veri Hacminin Degisimi...............ccoooviiiiiiiiinn, 46

XVvil

Xviii

FPGA UZERINDE 5G UYUMLU
DUSUK YOGUNLUKLU ESLiK DENETIM
KOD COZUCU GERCEKLENMESI

OZET

Gliniimiizde giderek artan sayisal veri iiretimi ve veri ihtiyaci, bu verilerin
iletilebilmesi i¢in yiiksek hizli kablosuz haberlesme sistemlerini giderek daha onemli
hale getirmektedir. Taginan veri miktarinin artmasi yeni gereksinimleri de beraberinde
getirmektedir. Bunlardan ilki haberlesmenin daha hizli yapilabilmesidir. likincisi
ise bu verilerin kanaldaki bozulmalardan etkilenmeden alic1 tarafa iletilebilmesidir.
Haberlesme insanlar veya makineler arasinda gerceklesse de, hiicresel aglar veya uydu
tizerinden saglansa da yeni gereksinimler eklenebilmesine ragmen bu iki gereksinim
degismemektedir. Bu noktada iiretilen standartlar belirtilen gereksinimleri karsilamaya
caligmaktadir. Hiicresel haberlesme icin giincel bir standart olan 5G’de ileri hata
kodlama olarak Diisiik Yogunluklu Eslik Denetim (Low Density Parity Check - LDPC)
kodlar1 veri kanallarindaki bu gereksinimleri karsilamak icin Onerilmistir. Uydu
haberlesmesinde ise Ikinci Nesil Sayisal Video Yaymm (Digital Video Broadcasting
- DVB S2) gibi standartlarda LDPC kodlar1 kullanilmaktadir.

LDPC kodlart yapilar itibariyle esnek tasarim ve uygulamalara uygun kodlardir.
Farkli blok boylarinda ve paralel calismaya elverigli olduklar i¢cin Alanda
Programlanabilir Kap1 Dizileri (Field Programmable Gate Array - FPGA) ile
gerceklenmeleri avantajli bir hale gelmektedir. LDPC kodlar1 farkli kod ¢6zme
algoritmalartyla caligabildikleri icin FPGA gerceklemeleri yapilmadan Once bu
algoritmalar performans ve gerceklemeye uygunluk agisindan incelenmelidir. Kod
coziicliniin diigiik alan kullanimina ve yiiksek veri hacmine sahip olmasi gerektigi icin
buna uygun bir algoritma se¢ilmelidir.

LDPC kodlar1 genellikle bir eslik denetim matrisi ile tanimlanirlar. Kod ¢oziicii
tasartminda bu matris, veri depolama birimlerinin boyutlarim1 ve baglantilar1 belirler.
Kod ¢oziiciide algoritmanin ¢aligti81 asil birim ise Denetim Diigiimii Birimi (Check
Node Unit - CNU) olarak tanimlanir. Bu c¢alismada 5G Yeni Radyo (5G New Radio
- 5G NR) standardi temel alindig1 icin veri boyutlar1 ve baglantilar1 bilyiik oranda
belirlidir. Algoritma se¢imi, paralellestirme ve veri hacmini arttirma iizerine ¢alismalar
yapilmistir. Donanim gerceklemesi yapilirken karsilasilan veri depolama, adresleme
ve siralama sorunlarina ¢oziimler iiretilmeye ¢aligilmistir.

Dongiide FPGA (FPGA in the Loop - FIL), FPGA’de ¢aligmasi i¢in bir donanim
tanimlama diliyle (Hardware Description Language - HDL) yazilmis kodlari
MATLAB ortami ile entegre ederek gercek donanim iistiinde calisan kod ile
yazilimdaki kodlarin beraber benzetiminin yapilmasi saglayan dogrulama programidir.
HDL ile tasarim yaparken dogrulama yapmak ¢ok onemli bir yer tutmaktadir ve FIL
kullanilmadig1 durumda herhangi bir blogun dogrulamasini1 yapmak icin test dosyalar1

X1X

olusturup veri gruplar1 hazirlayarak benzetim yapilmasi gerekmektedir. FIL sayesinde
MATLAB ortaminda olusturulan veriler 6rnek modelle ayni anda gercek donanim
iizerinde calisan HDL koduyla kiyaslanarak sonug¢lari dogrulanabilmektedir.

5G NR standardindaki LDPC matrisleri farkli boyutlara ve farkli satir agirliklarina
sahip olduklart i¢in bu calismada tasarlanan LDPC eslik denetim biriminin farkh
sayida giris ile ¢aligsabilmesi gerekmektedir. Bu nedenle FIL kullanilarak farkli sayida
girisler icin MATLAB ortaminda dogrulama yapilmis ve FPGA iizerinde ¢alistirilarak
test edilmigtir.

Bu calismada hem FIL ile dogrulama yaparak tasarim ve dogrulama siire¢lerinin
hizlandirilmasi, hem de donanima uygun algoritmalar secilerek karmasiklig: diisiik
ve veri hacmi yiiksek bir eglik denetim birimi tasarlanmasi, eslik denetim biriminin
calismasina ornek gostermek amaciyla 5G NR standardina uygun bir iist seviye
tasariminin yapilmasi amaclanmisgtir.

XX

IMPLEMENTATION OF 5G COMPATIBLE
LOW DENSITY PARITY CHECK DECODER ON FPGA

SUMMARY

Nowadays, the ever-increasing digital data production and data need make high-speed
wireless communication systems more and more important in order to transmit these
data. The increase in the amount of transmitted data brings new requirements with it.
The first of these requirements is to increase the speed of communication. The second
requirement is that the data is transmitted to the receiver without being affected by
the channel noise. These two requirements do not change, although new requirements
can be added whether communication takes place between humans or machines, or
via cellular networks or satellite. At this point, standards are established to meet the
specified requirements. In 5G, which is a current standard for cellular communication,
Low Density Parity Check (LDPC) codes as forward error coding have been proposed
to meet these requirements in data channels. These channels are Physical Uplink
Shared Channel (PUSCH) and Physical Downlink Shared Channel (PDSCH). On the
other hand, in satellite communication, there are LDPC codes in standards such as
Digital Video Broadcasting Satellite Second Generation (DVB-S2).

LDPC codes are defined by parity check matrices and consist of two types of base
units. These units are called bit nodes and check nodes. Each row in the parity check
matrix represents a check node, and each column represents a bit node. The parity
check matrix consists of ones and zeros. If the value at the intersection of any row and
column is 1, it means that there is a connection between the intersecting bit node and
the check node at this point. In the 5G NR standard, LDPC codes are defined with 2
base graphs. A large number of LDPC parity matrices are obtained from base graphs
by expanding them with lifting sizes to support different block lengths.

LDPC codes, by their nature, are suitable for flexible design and applications.
Since they are suitable for working in different block sizes and working in
parallel, their implementation with Field Programmable Gate Arrays (FPGA) becomes
advantageous. LDPC codes can work with different decoding algorithms, therefore
these algorithms should be examined for performance and compatibility with
implementation on FPGA before hardware design is made. Since the LDPC decoder
should have low utilization and high throughput, an appropriate algorithm should be
selected. Among the LDPC decoding algorithms, sum-product algorithm, min-sum
algorithm, offset min-sum algorithm and attenuated min-sum algorithm come to the
fore. The sum-product algorithm is also known as belief-propagation algorithm and
is the default decoding algorithm in the literature. In all of these algorithms, the
operation performed on the bit nodes is exactly the same, while the operation on the
control nodes differs. Although the sum-product algorithm is the algorithm that gives
the highest performance for LDPC codes, the use of the hyperbolic tangent function

XX1

greatly increases both the computational complexity and the hardware implementation
complexity. Therefore, hardware implementations given in the literature generally use
the min-sum algorithm.

LDPC codes are usually defined by a parity check matrix. In the LDPC decoder design,
this matrix determines the area of the data storage units and connections between the
units in the design. The actual unit in the decoder where the algorithm runs is defined
as the Check Node Unit (CNU). Since this study is based on the 5G New Radio
standard, data sizes and connections are largely specific. Studies have been carried
out on algorithm selection, parallelization and increasing the throughput. Solutions
have been produced for data storage, addressing and scheduling problems encountered
during hardware implementation.

Input data of the LDPC decoder must be arranged in accordance with the matrix
structure and stored in the RAMs. Taking advantage of the adjustable RAM widths,
multiple messages can be stored and accessed together. In this way, high throughput
can be achieved with parallel working CNU designs. As a solution, bit shuffling
and circular shift methods have been proposed while accessing RAMs in studies in
the literature. By using the bit shift values stored in the ROMs according to the
connections in the matrix, the data stored together in the RAMs can be distributed
to the bit node units and check node units in the correct order during a single read.
While the processed data is writing back to the RAMs, it is written back to the correct
addresses by reverse shuffling or reverse bit shifting with the same values stored in
the ROM. Appropriate check node units and access sequences are suggested to avoid
conflicts in RAM access while performing these read and write operations. The work
of the check nodes should be sequenced, taking into account their latency. Conflicts
occur when trying to access the same address to read in the next layer before the data
is written to RAM after the previous layer has been processed. As a result of these
conflicts, the data that has not been updated is transferred to the next layer and the
results are overwritten in the same address in RAM. To avoid this situation, access
sequences need to be regulated. Access sequences vary for different LDPC matrices
and hardware implementations.

As a result of the studies on the literature, it has been decided that the most suitable
structure to be implemented in hardware can be obtained by using the min-sum
algorithm. This algorithm is suitable to be run on FPGA in terms of both having
low complexity and being suitable for sequential access. For the design to be made
with fixed points, keeping the messages 6 bit wide was found suitable as a result of
the performance tests made on the min-sum algorithm model. Since the check node
messages are collected at the bit nodes, the bit width is defined 2 bits more at the bit
nodes.

CNU receives messages from the bit nodes and check nodes sequentially. Messages are
indicated by the data valid signal. The end of the incoming message block is indicated
by the end-of-block sign. When the CNU is ready to receive data on its input, it sends
out a ready signal. A corresponding message output is sent to each of the bit node and
check node messages coming to the CNU input. In this way, both the bit node and
the control node can be updated simultaneously. In order for the updates between the
layers in the LDPC matrix to take place without interruption, the CNU must be able to

XXil

accept new data from the input while sending the valid data to the output. Otherwise,
after updating the nodes of the previous layer, it is necessary to wait for all the inputs to
be received and processed again in order to update the next layer. While the messages
are given to the output, the new inputs received are processed in separate sequences,
thus making the CNU operation uninterrupted.

FPGA in the Loop (FIL) is a validation program that integrates the codes written in a
hardware description language (HDL) with the MATLAB environment to work in the
FPGA, allowing the code running on the real hardware to be simulated together with
the codes in the software. While designing with HDL, validation has a very important
place and in case of not using FIL, it is necessary to simulate by creating test files and
preparing data sets to validate any design block. By using the FIL, software model and
HDL design running on hardware can be tested simultaneously by applying the data
created in the MATLAB environment, and the results can be compared.

FIL can be used in different formats. By programming the FPGA via FIL with any
HDL code, and sending the data from the MATLAB environment to the FPGA, the
results can be observed and processed in the MATLAB environment. In this way,
the processing time for big data can be shortened by taking advantage of the parallel
operation feature of the FPGA. For validation and testing purposes, the model can be
created in the MATLAB environment and run simultaneously with the HDL code on
the FPGA, and the results of both the model and the hardware can be observed in the
MATLAB environment. FIL was used for validation and testing purposes in this study.

Since the LDPC matrices in the 5G NR standard have different sizes and different row
weights, CNU designed in this study should be able to work with different number
of inputs. For this reason, verification was made in the MATLAB environment for
different numbers of inputs using FIL and tested by running on FPGA.

In this study, it is aimed to accelerate the design and verification processes by verifying
with FIL, and to design a low complexity and high throughput CNU by choosing
algorithms suitable for the hardware, and to make a top-level design in accordance with
the 5G NR standard in order to illustrate the operation of CNU. After the CNU design
was validated with the FIL, a high-level architecture was designed for use within the
LDPC Decoder. If all connections are to be processed at the same time, as many CNUs
as the number of connections must be implemented on the FPGA. For this reason, the
LDPC matrix was examined in a layered structure and each row was processed in
serial layers. Reading and writing of each message in a layer is done serially. In order
to provide high throughput, when a layer has finished all its readings, the next layer’s
readings are started without waiting for it to finish writing. When working in the order
given in the 5G NR standard during the transitions between the layers, it is encountered
that the next layer tries to reach the same address and sends the outdated data to the
CNUs before the previous layer has updated the RAM yet. In this study, a different
access order is proposed to resolve conflicts in RAM accesses. The order of access to
addresses in reads within the layer does not affect the result. Based on this fact, the
addresses are sorted in a unique way, preventing the outdated data from being read in
the next layer.

Future studies will focus on error performance and try to implement more advanced
algorithms such as offset min-sum and attenuated min-sum, which are built on the

XX1i1

min-sum algorithm. Since these improvements will only be made on the CNU, they
can be verified with the FIL and added to the LDPC decoder design without changing
the top-level architecture. The development and validation environment created with
FIL will be used by making customizations on the model.

XX1V

1. GIRIS

Bu boliimde konuya iliskin bilgiler verilerek temel kavramlar aciklanmistir ve bu

calismanin amacindan bahsedilmistir.

LDPC kodlarinin kullanimi, giiniimiiz kablosuz haberlesme sistemlerinde giderek
yayginlagsmaktadir. Farkli uygulama alanlar1 i¢in olusturulmus standartlarda yer
almasi, LDPC kodlar1 ile daha esnek tasarim yapabilme ihtiyacini arttirmaktadir.
LDPC kodlar eglik denetim matrisleri ile tanimlanmaktadir. Bu matris degistikce

farkli tasarim gereksinimleri dogurmaktadir.

Sayisal haberlesme sistemlerinin en temel bloklarindan biri kanal kodlama blogudur
[1]. Kanal kodlama blogunun amaci kanalda meydana gelen bozulmalar1 alici
tarafta tespit edip diizeltmektir. Katlamali kodlar ve blok kodlar olmak iizere
siklikla kullanilan iki kanal kodlama cesidi vardir. Katlamali kodlar, c¢ikistaki
bitlerin, veri akisindaki mevcut bit ve az sayida Onceki bit iizerindeki mantiksal
islemlerle belirlendigi kodlardir. Blok kodlarda ise bilgi bitleri biiyiik bloklar
halinde kodlanarak eglik bitlerine karar verilir. Katlamali kodlar arasinda iteratif
kod ¢ozme 0zelligiyle Turbo kodlar 6n plana ¢ikmaktadir [2]. Kod ¢dzme sirasinda
kanaldan gelen bilgi bitlerine karar vermeden once eslik bitleriyle birlikte karar verme
algoritmalar1 geri beslemeli iterasyonlar halinde ¢alistirilarak yiiksek hata performansi
elde edilebilmektedir [3]. LDPC kodlari, iteratif olarak calisan blok kodlaridir.
Bu sayede biiyiik veri bloklarinin yiiksek hata performansiyla ¢oziilmesine imkan

saglamaktadir [4].

LDPC kod ¢6zme algoritmalar1 arasinda toplam-carpim algoritmasi, min-toplam
algoritmasi, dengelenmis min-toplam algoritmas1 ve zayiflatilmis min-toplam

algoritmasi 6n plana ¢ikmaktadir [1].

Bu tezin amaci, LDPC kodlarinin donanim gerceklemesi sirasinda ihtiya¢ duyulan

en onemli birim olan eglik denetim birimini 5G standard: i¢in tasarlamaktir. 5G

NR standardinda tanimlanan LDPC matrisleri kendi aralarinda ¢esitlilik gosterdikleri
icin eslik denetim biriminin de esnek bir yapida tasarlanmasi gerekmektedir. Bu
esnek tasarim sayesinde farkli standartlar icin de uyumlu c¢aligsabilecek bir birim
tasarlanmasi amaglanmaktadir. Tasarim sirasinda dogrulamay1 ve donanim testlerini
pratik bir sekilde yapabilmek i¢in FIL kullanilarak tasarim ve dogrulama siireclerinin

de hizlandirilmasi amaclanmistir [5].

Tezin ikinci boliimiinde 5G NR LDPC kodlar ve kod c¢oziiciiler ilgili bilgiler
verilmistir. Ugiincii boliimde donamim gercekleme temelleri anlatilmistir. Dérdiincii
boliimde literatiir analizi ve lizerine yapilan calismalar, besinci boliimde ise FPGA
tizerinde kod ¢oziicli tasarimi anlatilmigtir. Altinci boliimde sonuglardan ve gelecek

calismalardan bahsedilmistir.

2. 5G NR LDPC KODLAR VE KOD COZUCULER

Bu boliimde LDPC kodlama ve kod ¢ozme kavramlar1 aciklanmistir. SG NR LDPC

kodlariin 6zelliklerinden bahsedilmistir.

2.1 LDPC Kodlama ve Kod Cozme

LDPC kodlari eglik denetim matrisleriyle tanimlanir ve iki tip temel birimden olusurlar.
Bu birimlere bit diigiimleri ve denetim diigiimleri denir. Eslik denetim matrisindeki
her satir bir denetim diigiimiinii, her siitun ise bir bit diigiimiinii ifade eder. Eslik
denetim matrisi 1’lerden ve 0’lardan olugsmaktadir. Herhangi bir satir ile siitunun
kesistigi noktadaki deger 1 ise bu noktada kesisen bit diigiimii ve denetim diigiimii
arasinda baglanti oldugu anlamina gelir. Eglik denetim matrisindeki bu baglantilar
Tanner Cizgesi denilen cizgelerle Sekil 2.1 ve Sekil 2.2°de ornek verildigi sekilde
gosterilir [6]. Bit diigtimleri sol tarafta daire bi¢ciminde, denetim diigtimleri sag tarafta

kare biciminde gosterilmistir.

Sekil 2.1 : LDPC Eslik Denetim Matrisi Ornegi
LDPC kodlayicinin amaci giris bitlerine bakarak kod ciimleleri iiretmektir. Eglik

denetim matrisi H olmak {iizere, iirete¢ matrisi G
G x HTranspoze — () 2.1)
biciminde gosterilir. Giris dizisi M, olusturulacak kod ciimlesi C olmak iizere
MxG=C (2.2)
seklinde kodlama yapilir. Bu durumda kod ciimlesinin

C x HTM ™o = (2.3)

Sekil 2.2 : Tanner Cizgesi Ornegi
esitligini saglamasi gerekmektedir.

LDPC kod c¢oziicii iteratif yapida c¢alismaktadir. Bit diigtimleri ve denetim
diigiimleri arasindaki mesaj aktarimlar1 ile bu iterasyonlar gerceklesmektedir.
Maksimum iterasyon sayisi, yapilacak olan mesaj aktarimlarinin maksimum sayisini
belirler. Iterasyonlar sirasinda bit diigiimlerindeki degerler iizerinden ara kararlar
verilerek Denklem 2.3’1i saglayan gecerli bir kod climlesine ulasilirsa iterasyonlar
sonlandirilarak kod ciimlesinin dogru olduguna karar verilir. Bit diigiimlerinden

denetim diigiimlerine dogru olan mesaj aktarimi Sekil 2.3’te gosterildigi bicimdedir.

Kanaldan
gelen
bitler

Sekil 2.3 : Bit Diigiimlerinden Denetim Diigiimlerine Mesaj Aktarimi

Iterasyonlar baslamadan o6nce kanaldan gelen LLR degerleri bit diigiimlerine

yazilir. Denetim diigiimlerinin hepsine sifir degeri atanir. Iterasyonlar iki adimda

gerceklestirilir. Tk adimda bit diigiimleri tuttuklar1 mesajlar1 bagli olduklar1 denetim
digtimlerine aktarir. Sekil 2.3’te aktarilan mesajlar L1-1 (birinci bit diigiimiinden
birinci denetim dii§iimiine aktarilan mesaj), L2-2 (ikinci bit diigiimiinden ikinci
denetim diigiimiine aktarilan mesaj) bi¢iminde orneklenmistir. Ikinci adimda ise
denetim diigiimleri, bagh oldugu bit diiglimlerinden aldiklar1 mesajlara gore geri
gonderecekleri mesajlara karar verirler. Bu mesajlar LLR degerlerine bakarak bitleri
0 veya 1 olduguna karar verilebilmesi icin Onemlidir. Denetim diigiimlerinden
bit diigiimlerine geri gonderilen mesajlar Sekil 2.4’te orneklenmistir. Bu Ornekte
R1-1 birinci denetim diigiimiinden birinci bit dii§iimiine gonderilen mesaji, R1-4
birinci denetim diigiimiinden dordiincii bit diiglimiine gonderilen mesaji, R1-5 birinci
denetim diigtimiinden besinci bit diigiimiine gonderilen mesaji, R1-7 birinci denetim

diigtimiinden yedinci bit diigiimiine gonderilen mesaj1 temsil etmektedir.

O— R

——

Sekil 2.4 : Denetim Diigiimlerinden Bit Diigiimlerine Mesaj Aktarim1

Geri gonderilecek mesajlar belirlemek icin kullanilan algoritmalar arasinda en iyi hata
performansina sahip olan1 Toplam-Carpim Algoritmasidir (Sum Product Algorithm -
SPA). Bu algoritma

R = —sign x tanh™'(|A|/2) (2.4)

biciminde gosterilir. Mesajlarin pozitif veya negatif olmalarina gore isaretleri Denklem

2.4’te sign ile gosterilmistir, mutlak deger ifadesinin i¢cinde bulanan A ifadesi
A =tanh(|LLR|/2) +tanh(|LLR,|/2) + ... +tanh(|LLRy|/2) (2.5)

olarak gosterilebilir. Denklem 2.5’te logaritmik olasilik oranlar1 LLR ifadesiyle

gosterilmisgtir.

2.2 5G NR LPDC Kodlan

5G NR standardinda, Fiziksel Yukar:1 Baglanti Paylasimli Kanal (Physical Uplink
Shared Channel - PUSCH) ve Fiziksel Asag1 Baglanti Paylasimli Kanal (Physical
Downlink Shared Channel - PDSCH) veri haberlesmesi kanallarinda LDPC kodlari
kullanilmaktadir [7]. LDPC kodlar1 eslik denetim matrisleriyle birlikte tanimlanir.
Bu eslik denetim matrisleri diisiik yogunluklu olarak tasarlanir. Diisiik yogunluklu
olduklarindan dolayr matristeki 1’lerin sayis1 0’larindan sayisindan oldukc¢a azdir. 5G
NR standardinda LDPC kodlari, 2 adet temel cizge ile tanimlanmiglardir. Farkli
blok uzunluklarini destekleyebilmek i¢in Tablo 2.1°de verilmis olan Z yiikseltme
carpanlartyla genisletilerek temel cizgelerden cok sayida LDPC eslik matrisi elde
edilmektedir [7].

Tablo 2.1 : Yiikseltme Carpani Tablosu

Indis Yiikseltme Carpani
0 2,4,8,16, 32, 64, 128, 256
1 3,6,12, 24,48, 96, 192, 384
2 5, 10, 20, 40, 80, 160, 320
3 7, 14, 28, 56, 112, 224
4 9, 18, 36, 72, 144, 288
5 11,22, 44, 88, 176, 352
6 13, 26, 52, 104, 208
7 15, 30, 60, 120, 240

LDPC kodlama yapilirken gelen paketlere eslik bitleri cizgelerin temel kodlama
oranlarina gore eklenir [8]. Eklenen eslik bitlerinin sayis1 degistirilerek farkli kodlama
oranlar1 elde edilir. Kod ¢cozme tarafi standartta tanimlanmamustir. Standartta verilen
temel ¢izgeler tizerinden, alici tarafta farkli algoritmalar kullanilarak kod ¢6zme islemi
uygulanabilir. Bu sayede farkli uygulamalar ve gerceklemeler icin uygun kod ¢dzme

yontemlerini kullanmaya imkan taninmisgtir.

3. DONANIM GERCEKLEME TEMELLERI

Bu bolimde donanim gerceklemesi i¢in kullanilan temel yapilar ve islemler
anlatilmistir. Bu ¢alismada donanim gerceklemek ve test etmek i¢in kullanilmig olan

FIL kavrami agiklanmigtir.

3.1 Donanim Yapisi

Donanim tanimlama dilleri (Hardware Description Language - HDL), elektronik
devrelerin ve sayisal mantik devrelerinin yapisint ve davranisimi tanimlamak icin
kullanilan bilgisayar dilleridir [9]. HDL kullanarak biiyiik tasarimlar1 kolayca
olusturmak miimkiin hale gelmektedir. Kiigiik tasarimlari bile hizlica iiretebilmek icin

HDL kullanilmaktadir.

HDL tabanl tasarimlar, gelismelere ayak uydurmak i¢in tasarimlarin degistirilmesine
ve yeniden kullanmasina olanak tanir. Cihazlarin fiziksel boyutlar kii¢iildiikce, HDL
tabanli modelden daha iyi performansa sahip daha yogun devreler sentezlenebilir [10].

Bu calismada yapilan tasarimlarda VHDL dili kullanilmistir.

Giintimiizde yeni tasarimlar1 olabilecek en kisa siirede iiriin haline getirmek ¢ok
biiyiik bir oneme sahiptir. Bu nedenle gelistirme siirelerinin kisalmas1 onemli
bir ihtiyactir. Bu ihtiyaci karsilamak i¢in hizli ve diisiik maliyetli bir sekilde
prototipler gelistirilebilmesi gerekmektedir. Alanda Programlanabilir Kap:1 Dizileri
(Field Programmable Gate Array - FPGA), bu soruna ¢oziim olusturmaktadir.
FPGA, programlanabilir mantik bloklari, giris-cikis bloklar1 ve ara baglantilardan
olusan sayisal tiimlesik devrelerdir [11]. FPGA, HDL kullanilarak hizli bir sekilde
programlanabildigi ve paralel ¢alisabilme 6zelliine sahip oldugu i¢in yaygin olarak

kullanilmaktadir.

3.2 Veri Gosterimi ve Islemesi

Bu calismada veri gosterimi i¢in ikiye tiimleyen gosterimi kullanilmistir. Donanim
gerceklemesi icin kullanilan temel islemler olan kuantalama ve bit kaydirma islemleri

bu boliimde anlatilmagtir.

3.2.1 ikiye tiimleyen gosterimi

Bu calismada tasarlanan eslik denetim biriminde yapilan islemlerde ikiye tiimleyen
(Two’s Complement) veri gosterimi kullanilmigtir. Ikiye tiimleyen, bilgisayarlarin
sayilar1 ifade etme seklidir. Ikiye tiimleyen gosteriminde bir saymin negatifini
gostermek i¢in say1 ikili diizende yazilir, 1’ler O’larla, O’lar 1’lerle degistirilir ve sonuca
bir eklenir [12]. Ornegin, -28 sayisim ifade etmek icin once 28 sayist ikiye tiimleyen

halinde yazilir ve asagidaki adimlar izlenir:

00011100

I’ler 0’larla, 0’lar 1’lerle degistirilir.

11100011

e Sonuca bir eklenir.

11100100

Ikiye tiimleyen gosteriminde toplama ve c¢ikarma basit bir sekilde yapilabilir. Bu
sayede toplama ve ¢ikarma devreleri birlestirilebilir, aksi takdirde ayr1 islemler olarak

ele alinmalar gerekir [12].

3.2.2 Kuantalama islemi

Eslik denetim biriminde gerceklesen islemlerde veri hassasiyetini kaybetmemek i¢in
ara ciktilarda bit genisliginin artmasina izin verilecek sekilde bir tasarim yapilmistir.
Veri depolamak icin tasarimda ayrilan alanin biiyiikliigii 6nceden belirlenmis bir

miktara sahip oldugundan eslik denetim birimi ¢ikisa veri gonderirken igerideki

islemlerde artan bit genisligini kuantalamak zorundadir. Bunun i¢in Oncelikle
kuantalama islemi uygulanacak verinin en anlamli bitine bakilarak ikiye tiimleyen
gosterimine gore pozitif mi yoksa negatif mi olduguna karar verilir. Sonrasinda sayinin
mutlak degerine bakilarak say1 gosterimlerine gore ifade edilebilecek en biiyiik ve en
kiictik sayilarin sinirini agip agmadigina bakilir. Asiyorsa maksimum veya minimum
deger olarak ikiye tiimleyen bi¢iminde ¢ikisa verilir. Diger durumlarda ifade edilecek
say1, tamsay1 ve kesirli kisimlar1 dikkate alinarak istenilen bit genisliginde cikisa

verilir.

3.2.3 Bit kaydirma islemi

Tasarimdaki veri yerlesiminden dolay1 eslik denetim biriminin girisine veri depolama
birimlerinden dogru verileri aktarmak ve eslik denetim biriminin ¢ikisindaki verileri
dogru bir sekilde yazmak icin bit kaydirma islemi uygulanmasi gerekmektedir.
Bu igslem icin Barrel Shifter yapisi kullanilmistir. Boylelikle ardigil bir mantik
devresi kullanilmadan bit kaydirma islemi kombinezonsal mantik devreleriyle
gerceklenebilmistir. Istenilen bit kaydirma miktarma gore girisine gelen bitleri sola

kaydirarak bu iglemi asagidaki gibi gerceklestirmektedir:

Girise gelen dizi :

11010010

Bit kaydirma miktar1 : 3

Yedinci bitten besinci bite kadar olan bitler en saga yerlestirilir ve kalan bitler

soluna birlestilir:

10010110

Boylece li¢ bit kaydirma islemi yapilir.

3.3 FPGA-in-the-Loop

FIL, mevcut herhangi bir HDL kodunu MATLAB veya Simulink ortaminda

gelistirilmekte olan modellere entegre edebilen ve test senaryolarint FPGA {izerinde

HDL tasarimina uygulayabilen bir benzetim aracidir [5]. FIL benzetimi yapabilmek
icin MATLAB iiriinlerinin yaninda bir FPGA tasarim yazilimi, FPGA kart1 ve kart
ile bilgisayar arasindaki baglantiy1 saglayacak ethernet, JTAG veya PCle arayiizii
gerekmektedir [13]. Bu calismada Xilinx Zedboard kullanildig1 i¢in bilgisayar
ile FPGA arasinda JTAG baglantis1 kullanilmistir. FPGA tasarim yazilimi olarak
kullanilan Vivado, MATLAB ortamina komut penceresinde asagidaki kod ¢alistirilarak

entegre edilmisgtir:

hdlsetuptoolpath (’ToolName’,’ Xilinx Vivado’, ToolPath’,
’C:\ Xilinx\Vivado\2021.1\bin\vivado.bat’);

FPGA tasarim yazilimi entegre edildikten sonra FILWizard acilarak benzetimi
yapilmak istenen HDL kodlar1 eklenir ve iist seviyede bulunan dosya secilir. Bir
sonraki adimda modiiliin giris-cikiglari icin veri, saat, saat segme, sifirlama tiirlerinden
biri secilir. Sifirlama ve saat se¢me isaretleri aktif-diisiik veya aktif-yiiksek olarak
secilebilir. Veri olarak secilen tiir disindaki isaretleri MATLAB otomatik olarak
stirer. Veri tiirtindeki sinyaller kullanici tarafindan siiriilii. Bu sayede modiiliin
biitiin isaretler MATLAB ortaminda kontrol edilebilir. Bir sonraki adimda cikis
isaretlerinin veri tiirleri secilir. Tiim secimler yapildiktan sonra FILWizard, FPGA
tasarim yazilimini kullanarak FPGA projesini olusturur ve FPGA programlamak i¢in
gerekli komut dosyasi ile HDL tasarimint modelde kullanmak i¢in gereken FIL sinifini

cikti olarak verir.

FIL, farkli bicimlerde kullanilabilir. Herhangi bir HDL kodu ile FIL aracilifiyla FPGA
programlanip MATLAB ortamindan gelen veriler FPGA’e gonderilerek sonuglar yine
MATLAB ortaminda gozlemlenip islenebilir. Bu sayede FPGA’in paralel ¢aligabilme
ozelliginden yararlanilarak biiyiik veriler icin isleme siiresi kisaltilabilir. Dogrulama ve
test amagli kullanimda ise MATLAB ortaminda model olusturularak FPGA iizerindeki
HDL kodu ile ayni anda calistirilabilir ve hem modelin hem donanimin sonuclari

MATLAB ortaminda gézlemlenebilir [14].

Bu calismada FIL dogrulama ve test amacli kullamilmistir. Bu sayede tasarim
sirasinda testlerin yapilmasi kolaylagsmistir. Donanim tasarimina baglamadan Once

MATLAB ortaminda model olusturulmug, yazilan HDL kodlar1 FIL sayesinde

10

modelle kiyaslanarak hatalar tespit edilmistir. Kullanilan test senaryosu Sekil 3.1°de

gosterilmigtir.

MATLAB modeli

MATLAB ortaminda
sonuglarin
gozlemlenmesi

MATLAB ortaminda
retilen veriler

FPGA ortamindaki
JTAG Araylzi tasarim JTAG Araylzu

)0

Sekil 3.1 : FIL Test Senaryosu

FIL ile calisilirken donanmima gonderilecek verilerin sabit noktali olmasi
gerekmektedir. Bu nedenle MATLAB ortaminda olusturulan veriler HDL
kodunun giriglerinin bit genisliklerine uygun olacak sekilde sabit noktali veri
tipine doniistiiriilmelidir. Kontrol isaretleri de giris verileriyle birlikte siiriilerek ¢ikis

verileri MATLAB c¢alisma alaninda incelenebilir veya igslenmeye devam edilebilir.

11

4. DONANIM UYUMLU LDPC KOD COZME

LDPC kod coziicilerde donamim gerceklemesi yapilirken teorik calismalarda
karsilasilmayan sorunlar ortaya ¢ikmaktadir. Donanim mimarisine uygun tasarim
yapilirken bellek yonetimleri ve veri tipleri kod ¢oziiciiniin ¢aligmasini etkilemektedir.
Bu boliimde LDPC kod coziiciilerin donanim gerceklemesi i¢in uygun algoritmalar,

veri tipleri ve kod ¢ozme cizelgeleri lizerine yapilan calismalar anlatilmigtir.

4.1 Literatiirdeki Kod Cozme Algoritmalar:

LDPC kodlarin ¢oziimii konusunda literatiirde siklikla kullanilan dort adet algoritma
bulunmaktadir: toplam-carpim algoritmasi, min-toplam algoritmasi, dengelenmis
min-toplam algoritmas1 ve zayiflatilmis min-toplam algoritmasi [1,15]. Bunlar
arasinda toplam-carpim algoritmasi ayni zamanda kam yayilimi algoritmasi olarak da
bilinir ve literatiirde varsayilan kod ¢ozme algoritmasidir. Bu algoritmalarin hepsinde
bit diigiimlerinde yapilan islem birebir ayni iken denetim diigiimlerinde yapilan islem
fark etmektedir. Buna gore, asagida da 6zetlendigi iizere, toplam ¢arpim algoritmasi
diigtime gelen mesajlar1 0.5 ile carpip hiperbolik tanjantini alir. Elde edilen mesajlari
toplayarak ters hiperbolik tanjant alarak c¢ikis mesajini hesaplar. Bu islem oldukca
karmasik goriinse de aslinda gelen K-1 mesaj1 birlestirerek K. kenar icin ¢ikis mesajini
hesaplar. Bu sirada, arka planda, K. kenarin bagli oldugu bit diigiimiiniin O veya 1
olmas! igin gerekli tiim kombinasyonlar1 degerlendirmis olur. Ornegin, K. kenardaki
cikis mesajinin 0 olmasi i¢in diger K-1 girisin toplaminin O olmasi gerekmektedir. Bu
da oldukc¢a ¢ok sayida bit kombinasyonlarina karsilik gelmektedir. Toplam-carpim
algoritmasindaki karmasik girig-cikis iligkisi bu kombinasyonlarin toplamlarina denk

gelmektedir.

Toplam-¢arpim algoritmasi LDPC kodlar i¢in en yiiksek basarimi veren algoritma olsa
da hiperbolik tanjant islevinin kullanimi hem hesap karmagikligini hem de donanim

gercekleme karmagikligini ¢ok arttirmaktadir. Bu nedenle, literatiirde verilen donanim

13

gerceklemeleri genellikle min-toplam algoritmasini kullanir. Min-toplam algoritmasi
toplam-carpim algoritmasindaki giris-cikis 6zelliklerini basitce modellemeyi hedefler.
Soyle ki, toplam-carpim algoritmasinin K-1 girisinin K. ¢ikis {iizerine etkisi
incelendiginde, K-1 giristen mutlak deger olarak en diisiik olaninin tiim iglemde baskin
oldugu ve K. ¢ikis i¢in genellikle bu degerin ¢iktig1 goriilebilir. Bu gozleme dayanarak,
hi¢ hiperbolik tanjant hesab1 yapilmadan girisler arasindaki en diisiik deger dogrudan

cikis mesaj1 olarak belirlenebilir. Min-toplam algoritmasi
R=si in (|LLR; 4.1
signx min (|LLRi|) 4.1

seklinde ifade edilebilir. Bu sekilde kullanim yeteri kadar toplam-carpim
algoritmasi basarimina benzemekteyken donanim gerceklemesini ¢ok biiyiik oranda
sadelestirmektedir. Gelen mesajlarin karmagsik islem devreleri veya tablolar
aracilifiyla hiperbolik tanjantlar1 alinacagina sadece en kiiciik mutlak degere sahip

olanin belirlenmesi yetebilmektedir.

Min-toplam algoritmasinin bagsarimini diisiiren bir durum bulunmaktadir. Buna
gore, toplam-carpim algoritmasina benzemesiyle ilgili olan gozlemde bir varsayim
bulunmaktadir. Tlgili benzeme sadece gelen mesajlardan biri diger K-2 mesaja gore
cok daha kiiciikse gecerlidir. Eger en kiiciik mesaj degerine yakin olan baska mesajlar
da varsa bu durumda en kiiciik mesaj1 ¢ikis mesaji olarak secmek ayni esde8erligi
saglamamaktadir. Bu durumu diizeltmek icin literatiirde iki farkli algoritma daha
onerilmistir. Bu algoritmalar, yine gelen mesajlardan en kii¢iigiinii belirledikten sonra
hatay1 en aza indirmek i¢in bu mesaji birden kiigiik bir say1yla carparak veya bir deger
cikararak zayiflatirlar. Boylece, algoritma ¢ikisinin toplam-¢arpim algoritmasina biraz
daha yaklagmasini saglarlar. S6z konusu algoritmalar dengelenmis ve zayiflatilmis
min-toplam algoritmalaridir. Dengelenmis min-toplam algoritmasi

R = sign X max(1r<ni<rlN(]LLR] —Co),0) 4.2)
<i<

ifadesiyle gosterilebilir. Denklem 4.2’de hatay1 en aza indirmek icin en kiiciik

mesajdan ¢ikarilan say1 Co ile gosterilmistir. Zayiflatilmis min-toplam algoritmasi ise

R = sign x Ca X (ILLR;|) (4.3)

min
1<i<N

14

biciminde ifade edilir. Denklem 4.3’te en kiiciik mesaj ile carpilan zayiflatma katsayisi
Ca ile gosterilmistir. Ilgili algoritmalarin benzetimleri gerceklestirilmis ve 6rnek
olarak ele alinan bir LDPC kodu icin blok hata oraninin isaret giiriiltii oranina orani

cinsinden Sekil 4.1°deki sonuglara ulagilmistir.

=8=Toplam-Carpim Algoritmasi
Zayiflatilmis Min-Toplam Algortimasi ||

0L
10
[.\\-0- Dengelenmis Min-Toplam Algoritmasi ||
=8=Min-Toplam Algoritmasi

Blok Hata Orani

10 £ I I I I I B
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
isaret Giiriiltii Orani (dB)

Sekil 4.1 : Literatiirdeki Kod C6zme Algoritmalarinin Benzetim Sonuclari

Sekil 4.1’e gore, standart "Min-Toplam Algoritmasi" nin "Toplam-Carpim
Algoritmas1" na gore kaybi yaklasik 0.4 dB iken denenen diger versiyonlar bu
kaybin 0.3 dB’lik kismmi geri kazanmaya izin vermekte ve cok daha diisiik
karmagikliklarina ragmen toplam-carpim algoritmasinin bagarimina gore sadece 0.1
dB kayip gostermektelerdir. FPGA iizerinde donanim gerceklemesi yapilirken
oncelikli olarak min-toplam algoritmas1 degerlendirilecek olup bu tasarimin gecerlilik

testleri sonrasinda dengelenmis veya zayiflatilmis versiyona kolayca gecilebilecektir.

4.2 Kod Cozme Cizelgelerinin Karsilagtirilmasi

5G NR standardinda tanimlanan LDPC kodlarin eslik denetim matrisleri 6zel bir
yapiya sahiptir. Ozellikle donanim gerceklemesi sirasinda paralel isleme 6zelligi
saglasin diye ilgili matris oncelikle bir temel cizge olarak tamimlamr. Ornegin,
standartta tanimlanmis iki adet temel cizgeden biri 46 satir, 68 siitundan olusur ve
Tablo 4.1’de gosterilmistir. Sekil 4.2, Tablo 4.1°in mavi noktalar -1’den farkli olan

degerleri gostermek iizere gorsellestirilmis halidir.

15

...................

Matrisin Satirlar

40— o o o . . —
.

L* | ! | I |
0 10 20 30 40 50 60
Matrisin Sttunlari

Sekil 4.2 : Tablo 4.1°de gosterilen 5G NR Temel Cizge 1 Matrisi

Bu temel cizgeden tam boyutlu bir eglik denetim matrisi olusturma, sekilde noktayla
gosterilmis yerleri ZxZ boyutlu kaydirilmis birim matrislerle degistirerek, bos yerleri
ise yine ZxZ boyutlu sifir matrislerle degistirerek elde edilir [16]. Ornegin, pratik
bir ornek icin standartta belirlenen tablolardan Z=384 secildiginde Sekil 4.4’teki
tam boyutlu bir eslik denetim matrisi elde edilir. Burada, goriilecegi gibi her bir
kare ya 384 %384 sifir matrisini ya da 384 <384 kaydirilmis birim matrisini gosterir.
Sekil 4.3’te, temel c¢izge matrisindeki ilk deger olan 307 degeri i¢cin 384 yiikseltme
carpantyla elde edilen kaydirilmis 384 x 384 birim matris 6rnek olarak gosterilmistir.

Elde edilen matrisin yapisina bakildiginda denetim diigiimlerinin 46 adet, her biri
384 satirdan olusan katmandan olustugu goriilebilir. Bu katman igerisindeki 384
denetim diiglimiiniin donanim tarafindan es zamanl iglenebildigi varsayilir. Bu
konu g6z oOniinde tutuldugunda kod cozme icin birden fazla olanak elde edilir.
Bunlardan birincisi, literatiirde paralel (parallel, flooding schedule) ¢izelge olarak
adlandirilan ¢izelgedir [17]. Paralel ¢izelgede kodun katmanli yapist gbz ardi edilir
ve tiim 46x384=18.432 denetim diigiimiiniin es zamanh olarak islendigi varsayilir.
Bilgisayarda bu miimkiin olsa da donanimda gerceklestirmesi miimkiin olmayan bir

cizelgedir. Bir diger teknik ise kodun katmanli yapisini géz Oniinde tutar ve her

16

0 I-1-1-1-1- -1 1I- - 1-1 -0 1= 1= 1 1I- -1 1 - [- - - I- ¢¢er 1=
-0 1I-1-1-1- -1 1 - 1-1 -0 1111 -1 1 - - - €91 - I- 1- 08
-1-0 1I- 1 I - 1-1I- - 1-1 | Sl Sl S Sl S - 1- 1 I- - - I- - I- €Ir 1I-
I-1-1-0 I-1I- - 1- I - 1-1 - 0= 0= 1- 1= 1I- - 1- I 8I¢ - - I- - 1= 1- €Il
- I-1-1-0 I -1 1 - 1-1 -0 1= 1= 1 1I- -1 1 - 1 - 131 vig 1- ¢ 1-
-I-1-1-1-0 -1 1 -1 1 | Sl Sl Sl Gl G O -1 1 - - - - - 1- 1- 6.1
-1 0= 1= 1= 0= - 1- I - 1- I | Sl Sl o Sl S - 1- I I- - - I- €6 I- 86T 1I-
-0 1= 1= 1= 1I- -1 1 - 1-1 -0 0= 1= 1= 1I- -1 1 13 [414 LLT - I- 1- ¢8I
-0 1= 1= 1= 1 | Sol Sl Gl G G Gl | -0 1111 -1- 1= 1-1- 0 - - - - - 1- 69¢ 1-
| Sl Sl S Sl S | Sl S - 1-1 -1 - 1-1I- | Sl S | S S - - I- - 1- 1- 0I¢
- 1- - 1-1I- - 1- I - 1-1 - 1I- - 1- I - 1- I -1 I- I- [I- - 1- 0c¢ 1I-
-0 1= 1= 1= 1I- -1 1 - 1-1 -0 0= 1= 1= 1I- -1 1I- -1 - [- - - I- 1- 0€C
-0 1111 -1 1 -1 1 -1 -1 I -1 1 - 1= 1= 1- 1- s0l 1I- - 19¢ 1- 1- - 8 ¢€te 1
-1 0= 1= 1= 1= - 1- I - 1- I - 1= - 1- I - 1- I - 1- L8C 1I- - I - I- 1- 201
- 1I- | G G 0 I- 1 - 1-1 - 1I- -1 1I- B G - 9s¢ 1- 1I- - I - - 001 I-
-0 1= 1= 11 -0 I- -1-1 -1 -1 1I- -1- 1= 1-1- 1- 06 1I- 6cC 1~ - I- 1- 6SI
| Sl Sl S Sl S -1-0 - 1- 1 -1 - 1- 1 -1 1 - 8 1- 1- - I | S S Y/
- 0= 0= 1= 1= 1= - 1- I - 1-1 - 1I- - 1- I - 1- I - - 1= 1I- - I [- I- 1- Tt
-0 1= 1= 1= 1I- - 1- 1 0 I-1 -1 -1 1I- -1 1I- -1 - I [- - I- p6r 1-
-1 111 -1 1 -0 1I- -1 -1 1 B Sl O - 1= 1 1 | S - 18 1- 1L
-1- 0= 1= 1= 1= - 1- I I-1-0 - 1= - 1- I - 1- I - - 1= 1I- - I - I1- TL 1-
-0 0= 1= 1= 1I- - 1- 1 - 1-1 -1 -1 1I- -1 1I- -1 - I I - 8S1 I- 1- 86C
-0 1= 1= 1= 1I- -1 1 - 1-1 -1 -1 1I- -1 1I- -1 - I 9 I - 68 V¢ 1-
| Sl S Sl Sl G O -1 1 -1 1 0 1I- - 1- I -1 1 | Sl S S O | S - 1- 1- 0¢
- 1I- - 1- I B S - 1-1 -0 - 1- I B S -1 - I - 8¢ 1 - I [I- I- - S0T 1I-
-0 0= 1= 1= 1I- -1 1 - 1-1 -1 -1 1I- - 1- 1 -1 - I - ¥9T 90C 1- 1= L8]
o011 11 -1 1 -1-1 -1 0 I-1- -1 1 -1 | S L6l 1- - 1I- €IT Syl
-1 0= 1= 1= 1= - 1- I - 1- I - 1= -0 1I- - 1- I - - 1= I - I - I- 0¢r 1I-
-0 0= 1= 1= I -1 1 - 1-1 - 1I- -1-0 - 1= 1I- -1 - I- 1- 6Lg 1 - I I - - I- 1- 09C
-0 1= 1= 1= 1I- i Gl O - 1-1 -1 -1 1I- i Gl O - 1= 1= 1- LS - I - I 8¢e I- €1 1I-
| Sl Sl Sl Sl G O -1 1 -1 1 -1 - 1- 1 -1 1 I-69C 1- 1- 1- - ¢S 0lc 1- | S 1§44
- 1= - 1- I - 1- I - 1-1 - 1= - 1- I - 1- I -1 | S G - I [I- - I wl
-0 0= 1= 1= 1I- -1 1I- - 1-1 -0 0= 1= 1= 1I- - 1- 1 -1 - 0Le 1- - I I - LLT 1- 1- €I¢
-1 1= 1= 1 -1 1 - 1-1 -0 1111 e = | -1 - 1= 1 - v PLT 1- - I- 981 LL
-1 0= 1= 1= 1= - 1- I - 1- 1 -1 - 1- I - 1- I [- 1~ I- CSIT ve€ 881 - 1- 1I- - I - 1- 20l 8%
- 1I- - 1-1I- - 1- I - 1-1 - 1I- - 1- I - 1- I -1 - - 1I- | G G - I [- 6¢¢ 101 1I-
-1 -1 1I- -1 1 - 1-1 -1 -1 1I- -1 1 -1 | S S 8 1= €9 Ice 1- [- I- T€T 99¢
-1 -1 1 -1 1 -1 1 -1 | ol Gl 0 I- 1 I- 1- OL1T 1- L9 89¢ 1- v 1- | S S91 1- 6L1 LOE
- 1= - 1- I - 1- I - 1-1 - 1= - 1- I -0 I- -1 | S S S S S S G [I- - 1I- 9 6
-1 -1 1I- -1 1 - 1-1 -1 -1 1I- -1- 0 -1 - I- 1- 1- ¢t 1- 81 I - I- 1- 8LT
-1 -1 1I- -1 1 -1-1 -1 -1 1I- -1 1 -1 - I- 461 16 1- 1= 1- 1- 1¥e 1- 1- 1- 991 | S SIT _1- ¥l 61
-1 - 1-1I- - 1-1I- - 1- 1 -1 - 1- 1 | Sl S o I~ r- 1= 1- 1= I~ 1- 1I- 1I- - 1= 1= 1 - I - I- 18I Tee
- 1I- - 1-1I- - 1- I - 1-1 - 1I- - 1-1I- - 1= 1I- - 0 I- I- 1T LS¢ 6¢€ 1- 1LT 00€ vO€ 1- TIT Ipe 1€C SO€ Tl I- 0 I- 18 9T
-0 1= 1= 1= 1I- -1 1 - 1-1 -0 1= 1= 1 1I- -1 1 - 0 0 I- 1- 1- €I 0T ObC 1€l 1- €5 88 00C 1I- 1- 6C1 €9 091 L9T 191 96T Tee 1- 8CTE 0ST SOT
o011 11 -1 1 -1 1 -1 111 -1 1 - 1- 0 0 0 eIt 1I- 1ee 1I- ¥IT ¥S€ 66 LIT 1- cTve S6C 1- 8LI I€e T1e€€ 1- ¥l 88C €L 9L 1- 9L
-1 0= 1= 1= 0= - 1- I - 1- I -1 0= 1= 1= 0= - 1- I - I- 1I- 0 19y 0¢€ 081 TPC 1- 901 SIT 1- LSE€ LI 601 88C LI€ 1- 1- 9IT I81 1I- 69¢ 0S 61 LOE

LI9[1089(] tuedie)) ewliipARy ISLIRIA [9SZI)) [QWRL, YN DS : 'y OIqeL

17

50 - N -

200 M 4

Matrisin Satirlan

250 |- 4

300 4

350

L L I I I [I
0 50 100 150 200 250 300 350
Matrisin Siitunlar

Sekil 4.3 : Tablo 4.1°de gosterilen SG NR Temel Cizge 1 Matrisinin 384 Yiikseltme
Carpani ve 307 Kaydirma Carpani ile Genisletilmis (1,1) Eleman1

R AL RN DS
RIS
}} AT OUEN ORI NN NN
2000 XX N\ N\ N AR -
\i RN R AN
NN NONEREORE
4000—\?{\‘ A NN B \ N\ “ A s B
N N <« D N«
N N Y NI AN NN
6000 NN\ . N \N : N g
RN N O AN NN
- N R BN
5 N N ASSEN N N
5 8000 (N N AN N N —
= \ N R AN AN
£ \.\\ A \
] N ! N N
& 10000 \\\\ N ANN N -
= \\\ N \\ N \
> N : AN
N N N N \\\
12000 = N\ Q S \\ N N > \\\ —
RSN Y N
\\; \\\\ NN A N
14000 1 \\\‘ N N < -
\\ SO \\\ N
R .
O s X \‘\ Q \\
16000 7\‘\ \\ O N R N
\\\ ’ N SN N
N N\
A N \ \ \ \ \
0 0.5 1 15 2 25

Matrisin Siitunlari x10%

Sekil 4.4 : Tablo 4.1°de gosterilen 5G NR Temel Cizge 1 384 Yiikseltme Carpani ile
Genisletilmis Matris

18

biri 384 denetim diigiimiinden olusan katmanlar: birer birer isler. Bunu yaparken
eger tiim katmanlarin paralel islendigini varsayarsak ortak bit diigiimlerine erismeye
calisan katmanlarin mesajlarinin ¢akigsmasi nedeniyle kod ¢oziiciiniin basarimi diiser.
Bunun yerine, donanimda gerceklestirilmesi de daha makul olan ardisik katmanlh
cizelge diisilintilebilir [18,19]. Bu cizelgede, bir katman islendikten sonra elde edilen
mesajlar belle§e yazilir ve sonraki katmanin islenmesine gecilir. Aym yineleme
icerisinde, Onceki katmanin iirettigi taze bilgi yeni katmanda da kullanildigindan bu
kod ¢6zme cizelgesinin hata basarimi paralel ¢izelgeden bile iyidir. Ilgili sonuglar test

diizeneginden bit hata oraninin isaret giiriiltii oranina orani cinsinden Sekil 4.5’teki

gibi elde edilmistir:
100 =+=Paralel Gizelge L
E =o=Ardigik Katmanl Cizelge -
=4=Paralel Katmanl Cizelge
107 N 5) + E
_ 102
c
o
(¢] L
©
w107
I =
[[
104 =
107
10-6 E | | =
8 8.2 8.4 8.6 8.8 9 9.2

isaret Giiriiltii Orani (dB)

Sekil 4.5 : Paralel, Paralel Katmanli ve Seri Katmanh Cizelge Karsilastirilmasi

4.3 Kayan Noktal ve Sabit Noktal1 Kod C6zme Karsilastirilmasi

LDPC algoritmalar1 genellikle kayan noktali olarak belirtilmelerine ragmen donanim
tizerinde sabit noktali olarak tasarlanmalar1 gerekmektedir [20]. Bu bdliimde
gerceklestirilen caligmalarin amaci kod ¢oziiciiniin FPGA gerceklemeleri sirasinda
nasil bir sabit noktali veri gosteriminin tercih edilmesi gerektiini ve nasil bir
basarim beklenebilecegini onceden Ongorebilmektir. FPGA gercekleme sirasinda
ikiye tiimleyen veri gosterim formati kullamilacaktir. Buna gore TCa.b biciminde
tanimlayacagimiz sistem bir say1y1 gostermek i¢in toplam a tane bit kullanacak olup,

bu bitlerin b tanesi saymin kesirli kismin1 gostermek, bir biti ise saymnin isaretini

19

gostermek i¢in kullanilacaktir. Bu da tamsayr kismi icin a-b-1 tane bit birakmaktadir.
Bit ve denetim diigtimleri arasindaki mesajlarin TCa.b gosterimiyle kullanildigi
kod ¢oziiciide bit diigiimlerin toplam mesajint gostermek icin TCa+2.b gdsterimi
kullanilacaktir. Boylece daha biiyiik tam sayili mesajlarin da problemsiz gosterilmesi
amaglanmaktadir. Min-toplam algoritmasinin bit diigtimlerinde gerceklestirdigi
islemlerde (5G standardina gore) yaklasik 20 mesaj toplanabildiginden, bu toplami
saglikli gosterebilmek icin bu ekstra iki bite izin verilmistir. Cesitli gosterim
bicimleri icin kayan noktali ve sabit noktali bilgisayar benzetim sonuglar1 asagida
sunulmus, her birinden sonra ilgili sonuclar yorumlanmigtir. Bilgisayar benzetimleri
sirasinda standartta belirtilen birinci temel ¢izge ele alinmis, kodlama oram1 R=1/2
oranina uydurulmus, Z=384 parametresi ile liretilmigtir. Bilgisayar benzetimleri BPSK
modiilasyonu ile AWGN kanal iizerinde gerceklestirilmis ve kod ¢oziiciiye en fazla 70
yineleme yapma hakki verilmistir. Sonuglar blok hata oraninin isaret giiriiltii oranina

orani cinsinden Jekil 4.6’da sunulmusgtur.

Blok Hata Oram

1 1 1 1 1 1 1
1 11 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
isaret Giiriiltii Orani (dB)

Sekil 4.6 : 4 Bit Sabit Noktali Kod C6zme

Sekil 4.6’da goriildiigii iizere toplam a=4 bit ile gosterilmeye ¢alisilan mesajlar kod
coziiciiyii ¢cok zayiflatmakta ve kayan noktali kod ¢oziiciiye gore kabul edilemeyecek
derecede fazla hataya neden olmaktadir. Kod c¢oziiciiniin ¢alismadigi sdylenebilir.

Bunun nedeni toplam 4 bitin nasil dagitilirsa dagitilsin mesajlar1 gostermeye

20

yetmemesidir. Ornegin, TC4.1 gosteriminde gosterilebilecek en biiyiik say1 +4.5’tir

ve bu say1 kod coziicii icerisinde dolasan mesajlar1 cok agir bicimde kisitlamaktadir.

Blok Hata Oram

1 1
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
isaret Giiriiltii Oram (dB)

Sekil 4.7 : 5 Bit Sabit Noktali Kod C6zme

Sekil 4.7°deki TCS5.x gosterimine gelindiginde goriildiigii gibi TCS5.1 diger aile
tiyelerine gore kod ¢oziiciiniin bir nebze calismasina olanak verse de yine kabul
edilemez kayiplar verdirmektedir.

Sekil 4.8’deki TC6.x gosterimine ciktigimizda ilk kez kabul edilebilir bagarimlara
yaklastigimizi gorebiliriz. TC6.1 gosterimi kayan noktali kod ¢oziiciiye gore yaklagsik
0.05 dB kayip verse de en azindan hata egrisini takip edebilmektedir. TC6.2 ve TC6.3
gosterimleri eldeki 6 bitin ¢ok fazla kismini kesirli say1 i¢in kullandiklarindan dolay:
tamsay1 kisminin kisitlanmasini engelleyememektedirler.

Sekil 4.9°daki TC7.x gosterimlerinde TC7.1 ve TC7.2 gosterimlerinin kayan noktali
sonuclara yeteri kadar yakin olduklar1 gozlemlenmektedir. TC7.2 gosteriminin kayan
noktaya en yakin sonuglari vermesi bu kod i¢in kod ¢oziiciiniin 1 igareti biti + 4 tamsay1
biti + 2 kesir biti ile belirlenen sinirlar1 begendigini gostermektedir. Bu gosterimde
gosterilebilecek en yiiksek say1 +16.75tir.

Sekil 4.10’da ve Sekil 4.11°de goriilebilecegi lizere TC8.x ve TC9.x ailelerinin
basarimlari neredeyse aymdir. Onceki TC7.x ailesiyle karsilastirildiginda artik

TC8.2, TC8.3, TCI.2, ve TCI.3 gosterimlerinin yeterli hassasiyete sahip olup kayan

21

Blok Hata Orami

1 1 1
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
isaret Giiriiltii Oram (dB)

Sekil 4.8 : 6 Bit Sabit Noktali Kod C6zme

Bagﬁraph i Codeggte_o.5_l‘iftingSiz%KGBQ_MoguIag;on_BPSK_MaxIter_?G_Quantization
10 . "~ % H T 3
; —©—-No ||
. ——TC7.1 &
TC7.2| |
101 F —TC7.3
102 F 7
E 1
g
o
]
o
3 09
3 oy 1
[
107
10-5 1 1 L 1 1 1 L +
1 1.1 1.2 13 1.4 1.5 1.6 1.7 1.8 1.8

isaret Giiriiltii Orani (dB)

Sekil 4.9 : 7 Bit Sabit Noktali Kod C6zme

noktal1 kod ¢oziiciiniin bagarimi tamamen yakaladig1 goriilmektedir. TCS8.1 ve TC9.1
gosterimlerinde tamsayilar i¢in ¢ok sayida bit ayrilmis olmasina ragmen kesirli

kisim icin tek bit ayrilmasinin hata egrisinde bir miktar kaymaya neden oldugu da

gbzlenmistir.

22

Blok Hata Oram

1 1 1 1 1
1 1.1 1.2 1.3 1.4 15 1.6 1.7 1.8
isaret Giiriiltii Oram (dB)

Sekil 4.10 : 8 Bit Sabit Noktali Kod C6zme

150 aseGraph_1,CodeRate_0.5_LiftingSize_384_Modulation_BPSK_Maxlter_70_Quantization
2 T K5 T T T T ! 1

107 F

Blok Hata Orani

108 I | | |
1 11 1.2 13 1.4 15 1.6 1.7 1.8
isaret Giiriiltii Orani (dB)

Sekil 4.11 : 9 Bit Sabit Noktali Kod Cézme

Elde edilen bu benzetim sonuclarina goére donanim gercekleme sirasinda elde
bulunacak imkanlara gore TC6.1 veya TC7.2 gosterimlerinden birinin secilmesinin

hata bagarimini korumak adina dogru olacagi sonucuna ulagilmisgtir.

23

5. FPGA UZERINDE KOD COZUCU TASARIMI

Bu boliimde LDPC kod ¢oziiciiniin donanima uygun bir sekilde tasariminin yapilmasi
ve eslik denetim biriminin FIL ile test edilmesi siirecleri anlatilmistir. LDPC kod
coziicii yapisinda bulunan bit diigiimii giincellemeleri donanim gerceklemesinde
mesajlarin toplanmasiyla yapilabildigi icin eglik denetim biriminin iginde

tasarlanmistir ve bu boliimde anlatilan bellek erisim yontemiyle gerceklestirilmistir.

5.1 Literatiirdeki Donanim Gerceklemeleri

LDPC kod coziiciiler igin literatirde Onerilmis farkli kablosuz haberlesme
standartlarina uygun donanim tasarimlar1 bulunmaktadir. Bu tasarimlarin
odaklandiklar1 ortak noktalar verilerin bellekte saklanmasi, bellek erisimleri ve paralel
calisma konularidir. LDPC kod ¢6ziiciiniin girigsine gelen verilerin matris yapisina
uygun olarak siralanarak RAM’lerde saklanmas1 gerekmektedir. RAM genisliklerinin
ayarlanabilir olmasindan faydalanarak birden cok mesaj bir arada saklanabilir ve
erigilebilir [21]. Bu sayede paralel calisan CNU tasarimlariyla yiiksek veri hacmi
saglanabilir. RAM’leri verimli kullanmak icin yapilan bu uygulama sonucunda bellek
erisimleri i¢in yeni stratejiler kullanilmasi gerekmektedir. Coziim olarak literatiirdeki
calismalarda RAM’lere erisirken bit karistirma ve ¢cembersel bit kaydirma yontemleri
onerilmistir [22]-[24]. Matristeki baglantilara gére ROM’larda saklanan bit kaydirma
degerleri kullanilarak RAM’lerde birlikte saklanan veriler tek okuma esnasinda dogru
siralamayla bit diigiimii birimlerine ve denetim diigiimii birimlerine dagitilabilir.
Islenen veriler RAMlere geri yazilirken ise yine ROM’da saklanan ayn1 degerlerle ters
karistirma veya ters bit kaydirma yapilarak tekrar dogru yerlere yazilir. Bu okuma ve
yazma iglemleri yapilirken RAM erisimlerinde ¢akisma olmamasi i¢in uygun denetim
diigiimii birimleri ve erisim siralamalar1 Onerilmistir [25]. Denetim diigiimlerinin
gecikmeleri dikkate alinarak ¢aligmalarinin siralanmasi gerekmektedir. Bir katmanin

calismas1 sonrasi veriler yazilmadan Once bir sonraki katmandaki okumalarda aym

25

adrese erisilmeye calisiliyorsa cakismalar olusur. Bunlarin sonucunda giincellenmemis
veriler bir sonraki katmana aktarilir ve sonuglar RAM’de ayni adresin iistiine
yazilir. Bu durumu Onlemek icin erisim siralamalarinin diizenlenmesi gerekir.
Farkli LDPC matrisleri ve donanim gergeklemeleri icin erisim siralamalar1 degisiklik

gostermektedir.

5.2 Donanima Uygun CNU Yapis1

Literatiir lizerine yapilan calismalar sonucunda donanimda gerceklemek icin en uygun
yapinin min-toplam algoritmasi kullanilarak elde edilebilecegine karar verilmistir. Bu
algoritma hem diisiik karmagikliga sahip olmas1 hem de sirali erisime uygun olmasi
acisindan FPGA iizerinde ¢alistirilmaya uygundur. Sabit noktali yapilacak tasarim i¢in
mesajlarin 6 bit genisliginde tutulmas1 modelde yapilan performans testleri sonucunda

uygun bulunmustur. Bu bit genisligine gore belirlenen parametreler Tablo 5.1°de

gosterilmisgtir.
Tablo 5.1 : CNU Parametre Listesi
Parametre Deger Aciklama
SO_WIDTH 8 SO girisinin bit genisligi
EXT_WIDTH 6 Extrinsic girisinin bit genigligi

Bit diigimlerinden gelen mesajlar SO_WIDTH, denetim diigiimlerinden gelen
mesajlar ise EXT_WIDTH olarak adlandirilmistir. Denetim diigiimii mesajlari,
bit diiglimlerinde toplandigr i¢in bit dii§iimlerinde bit genisligi 2 bit daha fazla
tanimlanmistir. Bu degerlerin parametrik tanimlanmasi sayesinde istenildigi durumda

arttirihip azaltilarak performans-alan kullanimi arasinda tercihler yapilabilmektedir.

CNU girisinde bit diigtimlerinden ve denetim diigiimlerinden gelen mesajlar1 sirali
bir sekilde almaktadir. Anlamli mesajlar veri gecerli isaretiyle belirtilmektedir.
Gelen mesaj blogunun sonuna gelindigi ise blok sonu isareti ile belirtilmektedir.
CNU girigine veri almaya hazir oldugunda disariya bir hazir isareti gondermektedir.
Sifirlama sinyali asenkron ve aktif diisiik olacak sekilde tasarlanmistir. CNU
girisine gelen bit diigiimii ve denetim diigiimii mesajlarinin her birini karsilik birer
SO ve mesaj c¢ikisi gondermektedir. Bu sayede hem bit diigiimiiniin hem de

denetim diiglimiiniin giincellemesi ayn1 anda yapilabilmektedir. Mesajlar iiretilirken

26

bit diigiimii giincellemesi i¢in ayr1 bir zaman planlamasi1 yapilmasina ve donanim

harcamasina gerek kalmamaktadir.

CNU giris ve cikis isaretleri ve agiklamalar1 Tablo 5.2°de gosterilmistir.

Tablo 5.2 : CNU Giris ve Cikis Isaretleri

Isim Yon Genislik Aciklama
i_clk Giris (I) 1 Saat isareti
i_rstn Giris (I) 1 Sifirlama isareti
i_eof Giris (I) 1 Blok sonu isareti
i_valid Giris (I) 1 Veri gecerli isareti
iSO Giris (I) SO _WIDTH Giris verisi
1_extrinsic Giris (I) EXT _WIDHT Giris verisi
0_SO Cikis (O) SO_WIDTH Cikis verisi
0_message Cikis (O) EXT_WIDHT Cikas verisi
o_valid Cikis (O) 1 Veri gegerli isareti
o_ready Cikis (O) 1 CNU hazir isareti

Yiiksek veri hacmi elde edebilmek i¢in CNU icindeki islemler belirli adimlarda
paralellestirilerek tasarlanmistir. Gegerli ilk giris ¢ifti CNU girisine geldikten sonra ilk
asama bu iki girigin birbirinden ¢ikarilarak sonucun ¢ikarma dizisi olarak adlandirilan
dizide tutulmasidir. Ikinci asamada, birinci asamadaki islemden sonra elde edilen
sonucun isareti biti isaret dizisinde tutulur. Biitiin girisler alinirken bir saya¢ tutularak
bu dizilerin hangi elemaninda tutulacagi sayaca gore belirlenir. Elde edilen degerin
mutlak degeri alinir ve bu deger de mutlak deger dizinde tutulur ve bdylece ikinci
asama tamamlanmis olur. Uciincii asamada mutlak degerler arasindan en kiiciik olan
iki tanesini bulmak i¢in siirekli bir kiyaslama yapilir. Her giris alindiginda en kiigiik
mutlak deger elde edilip edilmedigine bakilir ve buna gore yazmaclar giincellenir. Blok
sonu isareti gelene kadar bu sekilde islemler ve kiyaslamalar yapilmaya devam edilir.
5G NR Temel Cizge 1 icin en fazla 19 adet giris kiyaslanmaktadir. Bu nedenle diziler

de 19 elemana sahip olacak sekilde tasarlanmugtir.

Blok sonu isareti geldikten ve giriglerin islenmesi tamamlandiktan sonra cikiglarin
tiretilmesi agamasina gecilir. En kiigiik degeri tutan yazmaclardaki deger, her bir giris
icin tutulmusg olan mutlak deger dizisiyle kiyaslanarak hangi ¢ikisin en kiiciik degere

karsilik olan ¢ikis oldugu tespit edilir. Gelen biitiin girislerin isaretlerinin ¢carpimi, o

27

anda c¢ikisa verilecek veri ile girisin isaret yazmacinda tutulmus isaretiyle carpilarak

cikisin isaretine karar verilir ve mesaj asagidaki bicimde olusturulur:

* En kiiciik mutlak degere sahip giris i¢in olusturulan mesaj :
. (1§aret biti)(En kii¢iik ikinci mutlak deger)
* Diger girigler icin olusturulan mesaj :

» (Isaret biti)(En kii¢iik mutlak deger)

Denetim diigiimii giincellemesi i¢in iiretilecek olan mesaj bir 6nceki adimdaki sonucun
kuantalanmasiyla elde edilmis olur. Bu mesaj ilk asama sonucunda elde edilen ¢ikarma
dizisindeki ilgili eleman ile toplanip kuantalanarak bit diigiimii giincellemesi i¢in

gerekli mesaj da elde edilmis olur.

Giriglerin alindig1 siraya uygun olarak olusturulmus olan mesajlar ¢ikisa verilir ve
gecerli isaretiyle belirtilir. Bu diizende calisan CNU donanim yapist Sekil 5.1°de
gosterilmistir.

SO gikigi

SO girisi

Mesaj girisi ;

Mesaj ¢ikisi

Sekil 5.1 : CNU Donanim Yapisi

LDPC matrisindeki katmanlar arasindaki giincellemelerin kesintisiz olarak
gerceklesebilmesi icin CNU c¢ikisa gecerli verileri gonderirken giristen yeni veri kabul
edebilmelidir. Aksi durumda ilk katmanin diigtimleri giincellendikten sonra ikinci
katman1 giincelleyebilmek icin tekrar biitiin giriglerin alinip islenmesinin beklenmesi
gerekmektedir. Bu amacla Sekil 5.2’deki durum makinesi olusturulmustur.

Her girig alindiginda degeri arttirilan saya¢ yazmacinda blok sonu isareti ile birlikte

elde edilen deger K sayacinin degerini belirler ve ¢ikiglar iiretilirken yazma sayacinin

28

blok sonu veya bekleme =0 yazma sayaci = K sayaci

blok sonu veya bekleme =1

yazma sayaci = K sayaci

Sekil 5.2 : CNU Durum Makinesi

sayacagl degeri hesaplamak ic¢in kullanilir. Bu sayede hem dizilerin elemanlar1 bu
sayaca gore secilir hem de uygun sayida cikis iiretilmis olur. Cikis verilirken yeni
girisler alindiginda bekleme isareti ile iiclincii bir giris alinmasi engellenir ve hazir
isareti sifir degerine ¢ekilir. Bekleme durumu bittiginde hazir isareti verilir ve yeni

girigler alinmaya devam edilir.

5G NR LDPC matrislerinin yapisindan dolay1 CNU girise gelen bloklarin uzunluklar
farklihk gostermektedir. Ornegin, 5G NR Temel Cizge 1’de en fazla 19, en az
3 elemanli bloklar gelebilmektedir. Arka arkaya gelen iki blogun ilkinin eleman
sayis1 19, ikincisinin eleman sayisi 3 oldugu durumda daha ilk blogun c¢ikislarinin
tiretilmesi tamamlanmadan ikinci blogun girislerinin islenmesi tamamlanmaktadir.
Boyle durumlarda verilerinin kaybolmamasi i¢in ¢ikiglar verilmeye baslamadan ilgili
yazmagclar yedeklenir ve ikinci blogun giriglerin islenmesinin bittigini ve dizileri
doldurdugu belirten bir bekleme isareti olusturulur. Bu isaret aktif oldugu siirece
CNU hazir isareti diisiiriiliir. 11k blogun ¢ikislar1 tamamlamp ikinci blogun cikislart
verilmeye baglandiginda CNU hazir isareti tekrar aktif olur ve giristen gecerli veriler
alinabilir. Bu sayede biitiin CNU, biitiin LDPC matrisleriyle uyumlu ¢aligsabilmesine

imkan saglayacak bir kontrol mekanizmasina sahip olmus olur.

5.3 FIL Destekli CNU Tasarimmi

CNU tasarimi sirasinda min-toplam algoritmasinin ve zamanlama yapilarinin
calismasimi dogrulayabilmek i¢in FIL kullanilmistir. Bu sayede hizli bir sekilde

dogrulama yapilarak tasarimin FPGA {izerinde calismasi gdzlemlenebilmistir.

29

FILWizard baglatildiginda Sekil 5.3 te gosterilen ekranda konfigiirasyonlar yapilmustir.

FIL testleri i¢in Zedboard kullanilmigtir.

MATLAB ortamu ile FPGA arasindaki

baglant1 JTAG ile saglanmistir. FPGA sistem saat frekans 25 MHz olarak secilmistir.

FIL benzetimi, daha esnek bir calisma ortami sagladigindan MATLAB sistem objesi

ile yapilmagtr.

FPGA-in-the-Loop Wizard

Steps Actions
-> FIL Options Specify options for FPGA-in-the-Loop.
Source Files) . .
FIL simulation with
DUT I/O Ports
Output Types @ MATLAB System Object
Build Options O simulink
Board Options

Board Name: ZedBoard

FPGA Device: Zynq XC7Z7020-1-CLG484

FPGA-in-the-Loop Connection: |JTAG

¥ Advanced Options

FPGA system clock frequency (MHz)

Status

= | |Launch Board Manager

Help Cancel

Next >

Bir sonraki adimda CNU i¢in yazilmis olan VHDL kodlar1 eklenerek iist seviyede olan

Sekil 5.3 : FIL Birinci Adim

dosya Sekil 5.4°te gosterildigi gibi secilmistir.

Sekil 5.5’te gosterildigi sekilde CNU kodunun giris ¢ikislari igin veri tipleri se¢ilmistir.
Saat igareti, sifirlama isareti ve veri isareti olarak ii¢ ayri tiirde ayarlanmistir. Sifirlama

isareti tasarimda kullanildig1 sekilde aktif diisiik olarak se¢ilmistir. Bit genigliklerini

FIL tespit ederek gostermistir.

Sekil 5.6’da CNU cikislarinin veri tipleri ve isaretleri belirlenmisgtir. Kesirli kisimlar

min-toplam algoritmasinda bir degisiklik yaratmadig1 i¢in sifir olarak birakilmigtr.

30

FPGA-in-the-Loop Wizard X
Steps Actions
FIL Options Specify the source files for the HDL design. The FIL Wizard will attempt to identify the file type; change the file type in the File Type column if it is
-> Source Files SEED) P :
Enter a check next to the file name that contains the top-level module. Change the module name if it is incorrect in the Top-level module name field.
DUT /O Ports The Tel scripts and QSF files will be sourced in the order they are listed.
Output Types
Build Options Source Files: [Show full paths to source files
File Type Top-level
functional unit.vhd
quantize. vnd ez -|O
Top-level module name: |functional _unit
Status
° 3y .
Sekil 5.4 : FIL Ikinci Adim
FPGA-in-the-Loop Wizard g
Steps Actions
FIL Options Specify port type for all I/O ports in the top-level DUT. If necessary, add, remove, or modify other port information such as name, direction, and width.
Source Files

-> DUT/OPorts @ Automatically generate /O port name, direction and width from top-level module
Output Types () Manually enter [/ port information

Build Options
DUT 1/0 Ports:
Port Name jlf:‘:::mn ,ff;th Port Type

In v 1 Clock -
In v Reset -
In - Data -
In . Data -
In -8 Data -
In ~|e Data -
out v|e Data -
out ~|e Data B
out -1 Data -
out v Data -

Reset asserted level: Active-low ~ Clock enable asserted level: Active-high =

Status.

Error: For sequential design, there must be one set of clack and reset port.

Sekil 5.5 : FIL Uciincii Adim

31

FPGA-in-the-Loop Wizard *
Steps Actions
FIL Options Specify the output data types.
source Files
DUT /O Ports
-> Output Types
Build Options.

Output Data Types:

ixedpoin
i xedpoin
ixedpoin
ixedpoin

mmwm
2lalale| 5

;)
T EEE
2 EE R
g g |q g
g9 g fg|
oo oo U
4 4 4 4

Status

Sekil 5.6 : FIL Dordiincii Adim

Son adimda ise Sekil 5.7°de goriildiigii gibi FIL kodlarinin olusturulacagi dosya
secilerek kodlar tiretilmistir.

Zedboard bilgisayara JTAG kablosuyla baglanarak MATLAB tarafindan algilanmustir.
FPGA programlamak i¢in iiretilen kod ¢alistirilarak CNU kodu ve JTAG baglantisi i¢in
gerekli bloklar FPGA’e yiiklenmistir. Olusturulan FIL siifi kullanilarak giris iiretmek
ve FIL ile test edip modelle kiyaslamak icin gereken kod yazilmistir. CNU FIL kodlar1
EK A’da paylasiimistir. Uretilen CNU FIL Sinifi EK B’de, CNU FPGA Programlama
FIL Kodu ise EK C’de paylasiimistir.

CNU FIL kodlari ile yapilan bir test i¢in uygulanan girigler Sekil 5.8’de gosterilmistir.
Girisler sabit noktali olarak verilmistir. Ilk siitunda bulunan girisler bit diigiimlerinden
gelen verilerdir. Ikinci siitunda bulunan girisler ise denetim diigiimlerinden gelen
verilerdir. Bu veriler her saat darbesinde sirayla ve gecerli isaretiyle CNU girisine
gonderilmigtir. Son verilerle birlikte blok sonu isareti de gonderilmistir.

Sekil 5.9°da FIL sonuglar1 gosterilmistir. Sonuclar yine sabit noktali olarak elde
edilmistir. FPGA iizerinde gerceklenmis olan CNU, bit diigiimlerinden ve denetim

diigiimlerinden gelen verilerin farkini almigtir. Bu farklarin mutlak degerleri tizerinden

32

FPGA-in-the-Loop Wizard
Steps Actions
FIL Options
Source Files

Specify folder for output files and begin build process.

DUT 1/0 Ports Output folder: |.\funct\ona\7un\'tjwl

Output Types
-> Build Options

Summary

User top-level source file:
C:\Users\baris\Desktop\enu_fil\functional_unit.vhd

The following files are generated at the end of this build process:
FPGA project file: Afunctional_unit_fil\fpgaproj\functional_unit_fil.xise

FPGA programming file: .\functional_unit_fil\functional_unit_fil.bit

The FIL Simulink block will be generated in a new model.

Status

Browse ...

Help Cancel

< Back

Build

Sekil 5.7 : FIL Besinci Adim

model and hardware inputs =

-4 -1
10 2
3]

DataTypeMode:
Signedness:
WordLength:

FractionLength:

Fixed-point:
Signed

binary point scaling

0

Sekil 5.8 : FIL Girisleri

calisan min-toplam algoritmast sonucunda en kiiciik mesaj 3, ikinci en kiigiik mesaj

ise 6 olarak belirlenmistir.

Giriglerin isaretlerine gore pozitif veya negatif olarak

belirlenen mesajlar iiciincii ve dordiincii siitunda gosterilmistir. Uciincii siitundaki

mesajlar FIL ile FPGA lizerinden gelen mesajlar, dordiincii siitundaki mesajlar ise

MATLAB modelinin sonucunda elde edilen mesajlardir. Bu mesajlar en basta elde

edilen bit diigiimlerinin ve denetim diigiimlerinin farklariyla toplanarak bit diigimii

giincellemesi de yapilir. Bu sonuclar donanim i¢in birinci siitunda, model i¢in ikinci

stitunda gosterilmistir.

33

model hardware comparison =

-4 -4 -a -a
11 11 3 3
-9 -3 -3 -3

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 8
FractionLength: 0O

Sekil 5.9 : FIL Sonuclari

MATLAB ekraninda goriilen Sekil 5.8’deki ve Sekil 5.9’daki girigler ve cikiglar
incelendiginde donanim {iizerinde gerceklenmis CNU ile MATLAB ortamindaki
modelin birbirleriyle bit-uyumlu olarak calistifi dogrulanabilmektedir. Bu sayede
hem model tasarimi hem de model ve donanim dogrulama ayni ortamda

gerceklestirilebilmisgtir.

FIL ile CNU dogrulamasi yapildiktan sonra klasik yontemlerle de dogrulama yapmak
icin bir VHDL test dosyasi olusturulmustur. Olusturulan bu dosya EK D’de
paylasiimistir. VHDL test dosyasi ile yapilan testlerde MATLAB modelinden dosyaya
yazilan girisler kullanilmigti. MATLAB modeli sonuglar1 Sekil 5.10°da gosterilmistir.

Donanim benzetimi sonuglar1 Sekil 5.11°de gosterilmistir.

+

154
131,8839-24-7.7.7)
[IARRREURAR)|

1

1
1-2,71,55,103,100,0-6,103,..

140,68,84,127,94,-31,-36.91...

Sekil 5.10 : MATLAB Ortaminda CNU Modeli Sonuglart

Sekil 5.10’da gosterilen MATLAB ortaminda giris ve ¢ikis verileri gozlemlenmis ve
dosyalara yazilmigtir. Boylece donanim icin gereken test dosyalarinda kaynak olarak
bu dosyalar verilebilmektedir. MATLAB ortami ile donanim benzetimi arasindaki
baglant1 bu sekilde kurulmaktadir. Bu yontemle yapilan donanim benzetimi sonuglari

Sekil 5.11°de verilmistir.

34

e[dnuog runoezuag wrueuod NAND : IT°S MRS

Z - = 3 TE
3 T 5 T 6 7zt 7) (i3

T TE) [B5 Y

3 BI 7 T

o] 0T Eal TZ]

ipealo

afessauo
050
pieiTo
urgns
JlsUgXET|
o5

40571
pieAT
wsi|

¥F 1

35

Fonksiyonel dogrulamasi tamamlanan CNU, Vivado ortaminda 200 MHz saat
frekansinda sentezlenerek alan kullanimi incelenmistir. Sonuglar Tablo 5.3’te

gosterilmistir.

Tablo 5.3 : CNU Sentez Sonuclar1

Isim LUT Yazmag F7Mux F8Mux BondedlOB BUFGCTRL
CNU 413 645 48 10 34 1

5.4 LDPC Kod Coziicii Ust Seviye Mimarisi

CNU tasarimi, FIL ile dogrulandiktan sonra LDPC Kod Coziicii i¢erisinde kullanilmak
izere bir {list seviye mimarisi tasarlanmistir. Bu tasarim i¢in 5G NR LDPC Temel
Cizge 1, yiikseltme carpani 4 olan matris secilmistir. Bu matristeki -1 disinda herhangi
bir degere sahip olan biitiin elemanlar bir baglantiy1 isaret etmektedir. Eger biitiin
baglantilar ayn1 anda islenmek istenirse baglant1 sayis1t kadar CNU, FPGA iizerinde
gerceklenmelidir. Temel Cizge 1, yiikseltme carpani 4 olan matriste bu baglanti sayisi
1264’tiir, en biiyiik ylikseltme carpaninda ise bu say1r 121344 olabilmektedir. Bu
kadar fazla sayida CNU gerceklemek alan kullanimi agisindan Tablo 5.3’te bir tane
CNU’nun alan kullanimi incelendiginde uygulanabilir degildir. Bu nedenle LDPC
matrisi katmanl bir yapida incelenerek her bir satir seri katmanlar halinde islenmistir.
Yiikseltme carpani 4 oldugu icin temel ¢izgenin her bir satir1 4x4 boyutunda bir
matris olugturmaktadir. Bu 4 x4 boyutlu matrisin paralel olarak islenmesi miimkiindiir.
Bu amacla FPGA iizerinde sadece 4 adet paralel ¢alisan CNU gerceklenmisgtir. Bit
diigtimlerindeki ve denetim diigiimlerinde verileri depolamak i¢cin RAM kullanilmistir.
CNU’larin paralel caligabilmesi i¢in hafiza erigimi onemli bir yer tutmaktadir.
Tasarlanan mimaride kanaldan gelen veriler dortlii gruplar halinde birlestirilerek RAM
satirlarina yazilmistir. Bu sayede ayni saat darbesinde okunan veriler ayrilarak CNU
girislerine gonderilebilmektedir. LDPC matrisindeki 68 siitundan her biri RAM’de
bir satira denk gelmektedir. 4 veri birlestirildigi icin yiikseltme carpani 4 ile olusan
matristeki 272 siitun 68 satira sigdirilabilmektedir. LDPC matrisi kaydirilmig birim
matrislerden olustugu i¢in veriler RAM’den okunduktan sonra CNU’lara gonderilirken
bu birim matrislere gore bit kaydirma iglemi yapilmasi gerekmektedir. Bit diiglimiinde

saklanan veriler 8 bit oldugu icin 4 tanesinin birlestirilmesiyle 32 bitlik bir veri elde

36

edilmektedir. Bu verinin 2 kere kaydirilmas1 gerekiyorsa agsagida gosterildigi bigimde

bit kaydirma islemi uygulanir:

RAM’den okunan veri:

* 01010101000000001111111110101010

* LDPC matrisinde ilgili siitundaki say1: 2

* Bit kaydirma miktart:

» 2%8 =16

* Bit kaydirma isleminin sonucu:

* 11111111101010100101010100000000

* Birinci CNU girisi:

e 11111111

» Ikinci CNU girisi:

* 10101010

» Uciincii CNU girisi:

* 01010101

* Dordiincti CNU girisi:

* 00000000

Denetim diigiimlerinden gelen mesajlar ise ayni sekilde altili bit gruplari halinde
kaydirilirlar. RAM’leri ve CNU’lant iceren iist seviye mimarisi Sekil 5.12°de
gosterilmigtir.

LDPC kod ¢oziiciiniin donanim gerceklemesinde adres iiretimi icin seri katmanlh

cizelge uygulanmistir. Temel ¢izgenin her katmani 4 satir, 272 siitun i¢eren bir matrise

karsilik gelmektedir. Her katmandaki 4 satir, 4 CNU ile paralel olarak islenmistir. Bir

37

CNU O

32 bit giris kaydir&ayir CNU 1 birlestir&kaydir
Adres Adres
4 bit cikis S CNU 2 s
CNU 3

Yiikseltme
Faktoéri ROM

Sekil 5.12 : LDPC Kod Coziicii Ust Seviye Mimarisi

katmandaki her girisin okunmasi ve yazilmasi seri olarak yapilmistir. Bu 4 paralel
islemde yapilacak okuma ve yazma islemlerinin sayis1 katman icinde birbirine esittir.
5G NR LDPC Temel Cizge 1 i¢in her bir katmandaki baglanti sayis1 Tablo 5.4’te ve

Tablo 5.5’te verilmistir.

Temel ¢izgede her baglantinin kendi kaydirma miktari bulunmaktadir. Bu miktara gore
bit kaydirma iglemi yapilarak CNU girislerine veriler gonderilmektedir. Yiiksek veri
hacmi saglamak icin bir katman biitiin okumalarin1 bitirdiginde yazmasin bitirmesini
beklemeden bir sonraki katmanin okumalar1 yapilmaya baglanmaktadir. Katmanlar
arasindaki gecisler sirasinda 5G NR standardinda verilen diizende calisildiginda
bir onceki katman heniiz RAM’i giincellemeden bir sonraki katmanin ayni adrese
erismeye calismasi ve CNU’lara giincellenmemis verileri gondermesi durumuyla
karsilasilmaktadir. Bu calismada, RAM erisimlerindeki cakismalari ¢ézmek igin
farkl bir erigsim siralamasi 6nerilmistir. Katman i¢indeki okumalarda adreslere erigim
siralamasi sonucu etkilememektedir. Bu sayede, adresler 6zgiin bir bigimde siralanarak
giincellenmemis verilerin bir sonraki katmanda okunmalarinin Oniine gecilmistir.

Onerilen erisim siralamasi Tablo 5.6°da ve Tablo 5.7°de verilmistir.

38

Tablo 5.4 : Ik 21 Katman I¢in Temel Cizge 1 Baglant1 Sayilari

Katman Numaras1 ~ Baglant1 Sayis1

1 19
2 19
3 19
4 19
5 3
6 8
7 9
8 7
9 10
10 9
11 7
12 8
13 7
14 6
15 7
16 7
17 6
18 6
19 6
20 6
21 6

Onerilen erisim siralamas1 sayesinde besinci katman disindaki biitiin katmanlardaki
cakismalar onlenebilmektedir. Besinci katmanda sadece tic okuma yapildig: i¢in de
siralama yapmaya yetmemektedir. Bu degerler ROM yapilarinda tutularak iterasyon
sirasinda sirayla erisilmektedir. Cakismalar yogunluklu olarak ilk 21 katman arasinda

gerceklestigi icin erisim siralamasi ozellikle bu katmanlarda uygulanmustir.

Denetim diigiimii verileri her katman icin ayr iiretildiginden bit diigtimlerinin verileri
gibi birbirlerinin {izerine yazilmamaktadir. Bu nedenle ayr1 ayri olarak RAM’de
316 satirda tutulmaktadir. Her baglantinin olusturdugu mesajlar ic¢in bir adres
tretilmektedir. Bilgi bitlerinin ilk iki grubu kanaldan gonderilmedigi icin bu bitler
yerine sifir degeri RAM’lere yazilir. LDPC kod ¢oziicii calisirken birinci iterasyon
denetim diigiimlerinde heniiz mesajlar bulunmamaktadir. IIk iterasyonda bu mesajlar
yerine sifir degeri verilerek sonuclar RAM’de tutulur. Sonraki iterasyonlar adres
iiretilerek RAM e erisilir ve denetim diigiimii mesajlart CNU’lara iletilir. Iterasyonlar

tamamlandig1 bit diigiimlerinde giincellenen verilerin isaret bitlerine bakilarak sert

39

Tablo 5.5 : Kalan Katmanlar i¢in Temel Cizge 1 Baglant1 Sayilari

Katman Numaras1 ~ Baglant1 Sayisi
22 6
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

BNV IRV, I C NV I SNV BV I C NV TV, TV, BV, IV, BV, BV, BV, BV, I SRV, BV e SRV, BV

karar mekanizmasi calistirilir. Karar verilen bitler 4 bit birlestirilerek LDPC kod

coziicii ¢ikigina verilir ve gegerli isaretiyle belirtilir.

LDPC kod ¢oziiciiniin iist seviye kodlarin1 dogrulamak i¢in bir VHDL test dosyasi
olusturulmustur. Olusturulan bu dosya EK E’de paylagilmistir. VHDL test dosyast ile
yapilan testlerde MATLAB modelinden dosyaya yazilan girigler kullanilmistir. LDPC
kod c¢oziicii iki iterasyon i¢in ayarlanarak calistirilmigtir. Uygulanan girig dosyast EK
F’de paylasilmisti. MATLAB modeli ve donanim sonuglart birbiriyle bit uyumlu
olarak elde edilmis ve Tablo 5.8’de gosterilmistir. Donanim benzetimi sonuglar1 ve
zamanlamalart Sekil 5.13, Sekil 5.14 ve Sekil 5.15’te gosterilmistir.

Sekil 5.13’te LDPC kod ¢oziiciiniin girisine gelen verileri RAM’e yazma asamasi
gosterilmigtir. Girigler bir saat darbesi geciktirilerek RAM’e yazma sinyali

ayarlanmaktadir ve blok sonu isareti gelene kadar yazilmaya devam etmektedir.

40

Tablo 5.6 : Ik 21 Katman I¢in Onerilen Erisim Siralamasi

Katman Numarasi Bit Diigiimii Siralamasi
1 1,3,6,10, 16,20,7, 11, 14, 19, 21, 4, 12, 13, 17, 22, 23, 24, 2
2 5,1,3,6,10, 16, 20, 8,9, 15, 18, 25, 4, 12, 13, 17, 22, 23, 24
3 2,5,1,3,6,10, 16, 20, 8,9, 15, 18, 7, 11, 14, 19, 21, 26, 25
4 4,2,5,1,12,13,17,22,23,8,9, 15,18, 7, 11, 14, 19, 21, 26
5 1,2,27
6 4,13,1,17,22,23,28,2
7 7,11,12,1, 14, 18, 19, 21, 29
8 2,5,8,9,1,15,30
9 4,2,13,17,20, 1, 22, 23, 25, 31
10 11,12,2,14, 18,19, 21, 32, 1
11 3,5,8,2,9,15,33
12 1,13,17,22,2,23,24, 34
13 11,1,12, 14,19, 35,2
14 4,8,1,21,24,36
15 13,16, 17,1 18, 22, 37
16 2,11, 14,19, 26, 38, 1
17 4,12,21,23,39,2
18 1, 15,17, 18, 22, 40
19 2,13, 14,19, 20, 41
20 1,8,9,11,42,2
21 4,10, 12, 23,43, 1

Sekil 5.14°te LDPC kod ¢oziiciiniin ¢ikislarinin olusturulmasi asamasi gosterilmistir.
RAM’de giincellenmis mesajlarin isaretlerine bakilarak sert karar mekanizmasi
calistirilmaktadir. Dort adet mesaj bir arada saklandigi icin tek okuma yapilarak her

seferinde dort bit ¢ikis verilebilmektedir.

Sekil 5.15°te LDPC kod ¢oziicii iterasyonlart sirasinda RAM adreslerinin degisimi
gosterilmigtir. Tablo 5.6’da Onerilen erisim siralamasina uygun olarak adresleme
yapildig1 gozlemlenmektedir. RAM’deki ilk adres sifirdan basladigi icin Tablo 5.6’daki
ve Tablo 5.7°deki adreslerin bir eksigi biciminde adresleme yapilmaktadir. RAM’de
okuma yapmak bir saat darbesi siirdiigii icin CNU girisine gegerli isareti verilmeden 1

saat darbesi oncesinde adresler olusturulmaktadir.

LDPC kod ¢oziicii iist seviye giris ve cikis isaretleri ve agiklamalar1 Tablo 5.9°da

gosterilmigtir.

LDPC kod ¢oziicii iki iterasyon yaparak calistinnldiginda ilk gecerli girisi almasindan

sonra gecerli ¢ikis vermesine kadar 1219 saat darbesi gecmistir. Tek iterasyon yaptigi

41

Tablo 5.7 : Kalan Katmanlar i¢in Onerilen Erisim Siralamast

Katman Numaras1 Bit Diigiimii Siralamasi

22 2,6,17,21,22,44
23 1,13, 14, 18, 45
24 2,3,11,19, 46
25 1,4,5,12, 23,47
26 2,7,8,15,48
27 1,3,5,16,49
28 2,7,9,50
29 1,5, 20, 22,51
30 2, 15,19, 26,52
31 1,11, 14, 25, 53
32 , 8,23,26,54
33 1,13, 15,25,55
34 2,3,12,22,56
35 1, 8,16, 18, 57
36 2,7,13,23,58
37 1,15, 16, 19, 59
38 2,14, 24, 60
39 1,10, 11, 13, 61
40 2,4,8, 20,62
41 1,9, 18, 63
42 2,4, 10, 19, 64
43 1,5,25,65
44 2,17, 19, 26, 66
45 1, 8,10, 23, 67
46 2,7, 11, 68

durumda kod ¢6zme islemi 655 saat darbesi siirmektedir. LDPC kod c¢oziiciiniin

cikisina verdigi toplam bilgi biti sayisi I ile gosterilirse

[=2x%xZ 5.1

seklinde ifade edilebilir. Denklem 5.1°de yiikseltme carpanit Z ile gosterilmisgtir.

Tasarlanan LDPC kod ¢oziicii iist seviyesi mimarisi ile elde edilebilecek veri hacmi

22X Z X f

VeriH | =
Crimacm = 655 1 (564 x (IterasyonNo — 1))

5.2)

bicimde belirlenebilir. Denklem 5.2°de veri hacmi hesaplanirken saat frekansi f,
LDPC kod ¢oziiciiniin yapti§1 toplam iterasyon sayis1 IterasyonNo ile ifade edilmistir.

Karsilagtirma yapabilmek amaciyla 400 MHz saat frekansinda, kodlama oran1 0.324

42

Tablo 5.8 : LDPC Kod Coziicii Model ve Donanim Benzetimi Sonuglari

Satir Numarasi Sonug Bitleri
1 1100
2 1000
3 0110
4 1000
5 1100
6 1111
7 1001
8 0011
9 1110
10 1101
11 1001
12 1100
13 0100
14 0011
15 0111
16 1110
17 0100
18 0110
19 1011
20 1010
21 0110
22 1101

Tablo 5.9 : LDPC Kod Céziicii Ust Seviye Giris ve Cikis Isaretleri

Isim Yon Genislik Aciklama
i_clk Giris (I) 1 Saat isareti
i_rstn Giris (I) 1 Sifirlama isareti
i_eof Giris (I) 1 Blok sonu isareti
i_valid Giris (I) 1 Veri gecerli isareti
i_ready Giris (I) 1 Hazir isareti
1_data Giris (I) 32 Giris verisi

o_eof Cikis (O)
o_valid Cikis (O)
o_ready Cikis (O)
o_data Cikis (O)

Blok sonu isareti
Veri gecerli isareti
Kod Coziicii hazir isareti
Cikis verisi

QU

ve 8 iterasyon secilerek elde edilebilecek veri hacimlerinin [26] ile kiyaslamas1 Tablo
5.10’da verilmistir. [27] biitiin kod ¢6zme zincirinin veri hacmini gosterdigi i¢in 268
MHz saat frekansinda, verilen en yiiksek kodlama oraninda ve 8 iterasyon icin olan
sonuclar paylasilmigtir. Yiikseltme carpani 4 i¢in gercekleme yapilmistir. Yiikseltme

carpaninin artmasi ile Sekil 5.12’de blok diyagrami gosterilen gerceklemede paralel

43

calisan CNU sayist artmaktadir. Frekansin diismesine sebep olacak kritik yola
herhangi bir ek gelmeyecektir. Bu sebeple, frekans degeri korunarak yiikseltme
carpaninin dortten biiyiik oldugu diger gerceklemeler icin Denklem 5.2 kullanilarak

veri hacmi hesab1 yapilmugtir.

Tablo 5.10 : LDPC Kod Coziicii Veri Hacmi Kiyaslamasi
Yiikseltme Carpani Veri Hacmi (Gbps)

4 0.0076

12 0.0229

32 0.0612

64 0.1224

Bu calisma 128 0.2447
192 0.3670

256 0.4894

384 0.7341

32 0.149

64 0.265

[26] 128 0.424
256 0.432

384 0.417

12 0.027

[27] 192 0.430
384 0.696

Tablo 5.10°da goriildiigii iizere FIL destekli bir sekilde tasarlanan CNU ile olusturulan
mimari yiikseltme carpaninin biiyiik oldugu durumlarda yiiksek veri hacimlerine
ulagabilmektedir. Sekil 5.16°da goriildiigii gibi 240’tan kiiciik yiikseltme ¢arpanlarinda
[26] gerceklemesinden diisiik veri hacimlerine sahip olmasina ragmen 240 yiikseltme
carpanindan itibaren daha yiiksek veri hacmine ulasilabilmektedir. 192°den kiiciik
ve 288’den biiyiik yiikseltme carpanlarinda [27] gerceklemesinden daha yiiksek veri

hacmine ulagilabilmektedir.

44

IsewnInISn[O ULIR[SAIPY NONZo) pod DdA'1

P SIS IS

TTTTT] 0000

il 941

0000

0000

I T

000000

TITIT] 0000

i 199 S 1441

00000
00000000

00 Z0

00

ed Bz 00

2] a0

=] +0

£0 =]

o4

00

¥ Pl

[g

(sT9MDIS

)

0

ToResayl

)

isewrnImSn[Q ULe[SHL) 9pnonzo) poy DdA'1 : $1°S MRS

| S [B N [B B B S .

10T

[[811]

{3 TIot

[(513] 0010

(333

[4511]

1100

[{[1]4] [{[1]43

1001

T0T1 [1333

1100

1001

Tt

00TE

0ooE [\541] 0001

(STYHDIS 1NdLNO)

S

=

EOSp pEq] S0

ISBWUITY ULID[LIA 9pnonzo) poy] DdAT : €1°S IS

N N L S I S C D

0000400 | o000

33002050

|

LT

CLrx

LT

LT

LT

X

LT

|

|

CLrx

LT

N

00000000

1

[

(SWNSIS v 05)

30020

of £ f T 1

IR

Ly

Lt

LT

I

|

Lt

T

1

LY

L e rrd

| oo00aa00

—

]

L

[SR

(SIWNOIS LNdNI)

TG

ey Sl

muuruy

Uuyuyunruyuuaugy

gupipupiy

00FF DOTT9&

| dhpeano @
0 TRy o
oag [
oqg gos o g
6549 LEtom'at 3
=0 gosTy @
0 opE Y @

o eIy
STWNDIS N4 4

opL s53ppe”peay T @
3pt s @

T w1 4

1 EEal

ERES RENREY)

+

=mep o 6 m
1 Apeai o @
0 presTo @
o j0370 Q

STYNDIS 1NdLN0 4 =

osTop
osip @
05 e @
STWNDIS Wiy 05 € =
=ep ﬁu 9l
ApeaiT 4F
prent @
TP 403
P70
0571 §F
STWNSIS LrichT 4+ =1
e
wsil ‘.n
Eal o

45

Veri Hacmi (Gbps)

—— Bu galisma /
—[26]

3
T

102~

| | | | | | |
0 50 100 150 200 250 300 350 400
Yiikseltme Garpani

Sekil 5.16 : LDPC Kod Coziicii Ger¢ceklemelerinde Yiikseltme Carpanina Bagh
Olarak Veri Hacminin Degisimi

46

6. SONUCLAR

Tez kapsaminda 5G NR standardina uygun caligtirilabilmek tizere CNU ve LDPC
kod c¢oziicii tasartmi yapilmugtir. Tasarlanan CNU, FIL ile donanim iizerinde
dogrulanmistir. Bu sayede dogrulama sonuglart MATLAB ortaminda kolay bir sekilde
gozlemlenebilmis ve MATLAB modeli ile karsilagtirilabilmistir. Yiiksek veri hacmi

ile caligsabilmesi i¢in paralellestirme ¢alismalar1 yapilmustir.

Donanim {iizerinde gerceklenecek kod coziicii icin uygun kod ¢dzme algoritmalari
ve cizelgeleri hakkinda bilgi edinilmistir. Farkli algoritmalarin performanslar1 ve
karmasikliklar1 kiyaslanarak gerceklemeye uygunluklar belirlenmistir. Ger¢eklemek
icin karar verilen algoritma min-toplam olarak secilmistir. Hem hata performansi1 hem
de karmasiklik acisindan incelendiginde en uygun algoritma olarak ortaya ¢ikmaktadir.
Kod ¢ozme cizelgeleri arasinda FPGA iizerinde ¢alismaya en uygun olani seri-sirali
cizelge olarak belirlenmistir. Paralel cizelgeyi gerceklemek icin tam paralellik
gerekmektedir. Alan kullanimi agisindan bu cizelge ¢ok fazla ihtiya¢ yaratmasi
acisinda tercih edilmemistir. Paralel-sirali ¢izelge ise bellek erisimleri agisindan sorun
yaratmaktadir ve giincel verilere erisimi kisitlamaktadir. Seri-sirali cizelge ile hem
yiiksek paralellik hem de bu tezde yapilan siralama sayesinde bellek ¢akismalarina yol

acmadan bellek erigimleri saglanabilmigtir.

5G NR Temel Cizge 1 yiikseltme ¢arpani 4 i¢in yapilan {ist seviye mimari tasarimi ile
biitiin 5G LDPC matrislerinin ger¢eklenebilmesi icin uygun bir yap1 olusturulmustur.
Bu yapida elde edilen paralellik sayesinde biiyiik yiikseltme carpanlariyla birlikte
artan yliksek veri hacimlerine ulagilabilmistir. Tasarlanan CNU, sadece 5G NR
standardindaki matrislerle degil, biitiin LDPC matrisleriyle ¢aligsabilmesi icin esnek
bir yapida tasarlanmistir. Girisindeki veri gecerli isareti ve blok sonu isareti
sayesinde istenilen uzunluktaki bloklar: igleyebilir ve hazir sinyali ile zamanlamasini
ayarlayabilir. Boylece farkli standartlarda kullanilan LDPC kod ¢oziiciiler i¢in temel

blok olarak kullanilmaya uygun hale getirilmistir.

47

Caligmalar sonucunda ortaya cikan CNU tasarimi gelistirmeye aciktir. Hata
performansina odaklanarak min-toplam algoritmasi {izerine kurulmus olan
dengelenmis min-toplam ve zayiflatilmig min-toplam gibi daha geligmis algoritmalarin
gerceklenmesine calisilacaktir. Bu gelistirmeler sadece CNU iizerinde yapilacagi
icin FIL ile dogrulanarak iist seviye mimarisini degistirmeden LDPC kod c¢oziicii
tasarimina eklenebilecektir. Model {izerinde Ozellestirmeler yapilarak FIL ile

olusturulan gelistirme ve dogrulama ortami kullanilacaktir.

Bu calismada,

* 5G standardina uygun bir sekilde ¢alistirilabilmek tizere CNU ve LDPC kod ¢oziicii

tasarimi yapilmustir.

* FPGA iizerinde ve MATLAB modeli ile kargilagtirmali dogrulama ortami

olusturulmustur.

* Donanima uygun algoritmalar ve sabit noktal1 bit genislikleri belirlenmistir.

Gelecek calismalarda,

* Dengelenmis min-toplam ve zayiflatilmig min-toplam gibi algoritmalarin

gerceklenmesi,

* FIL ile dogrulanarak iist seviye mimarisini degistirmeden LDPC kod c¢oziicii

tasarimina eklenmesi hedeflenmektedir.

48

KAYNAKLAR

[1] Marchand, C. (2010). Implementation of an LDPC decoder for the DVB-S2,
-T2 and -C2 standards, Université de Bretagne Sud, https://hal.
archives—ouvertes.fr/tel-01151985.

[2] Ryan, W.E. ve digerleri (1998). A turbo code tutorial.

[3] Berrou, C., Glavieux, A. ve Thitimajshima, P. (1993). Near Shannon limit
error-correcting coding and decoding: Turbo-codes. 1, Proceedings of

ICC 93 - IEEE International Conference on Communications, cilt 2,
$.1064-1070 vol.2.

[4] Gallager, R.G. (1963). Low-density parity-check codes, Ph.D. dissertation, MIT,
Cambridge, MA.

[5] URL-1. https://www.mathworks.com/help/hdlverifier/ref/
hdlverifier.filsimulation-system-object.html, erisim
tarihi: 06.05.2022.

[6] Tanner, R. (1981). A recursive approach to low complexity codes, /EEE
Transactions on Information Theory, 27(5), 533-547.

[71 3GPP (2022). NR; Multiplexing and channel coding, Technical Specification
(TS) 38.212, 3rd Generation Partnership Project (3GPP), https:
//portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=3214,
version 17.1.0.

[8] Olmos, P., Liu, Y. ve Mitchell, D. (2021). Low-Density Parity-Check (LDPC)
Codes for 5G Communications, s.1-23.

[9] Hartenstein, R.W. (1987). Hardware description languages, North-Holland.

[10] Ciletti, M.D. (2011). Advanced Digital Design with the Verilog HDL Second
Edition, Pearson.

[11] Brown, S.D., Francis, R.J., Rose, J. ve Vranesic, Z.G. (2012).
Field-programmable gate arrays, cilt180, Springer Science & Business
Media.

[12] Finley, T. Two’s Complement (2000), URL https://www. cs. cornell. edu/~
tomf/notes/cps104/twoscomp. html.

49

[13] URL-2. https://www.mathworks.com/help/hdlverifier/ug/
verify-hdl-implementation-of-pid-controller-using/
-fpga-in-the-loop.html, erisim tarihi: 06.05.2022.

[14] Zadek, P., Koczor, A., Golek, M., Lukasz Matoga ve Penkala, P. (2015).
Improving Efficiency of FPGA-in-the-Loop Verification Environment,
IFAC-PapersOnlLine, 48, 180—-185.

[15] Asakura, S., Tanahashi, M., Nakamura, M., Okano, M. ve Tsuchida, K.
(2016). Hardware implementation of spatially coupled LDPC codes for
broadcasting, 2016 International Symposium on Information Theory and
Its Applications (ISITA), s.211-215.

[16] Bae, J., Abotabl, A., Lin, H.P., Song, K.B. ve Lee, J. (2019). An overview of
channel coding for 5G NR cellular communications, APSIPA Transactions
on Signal and Information Processing, 8.

[17] Chang, Y.M., Casado, A.LV., Chang, M.C.F. ve Wesel, R.D. (2008).
Lower-Complexity Layered Belief-Propagation Decoding of LDPC
Codes, 2008 IEEE International Conference on Communications,

s.1155-1160.

[18] Hocevar, D. (2004). A reduced complexity decoder architecture via layered
decoding of LDPC codes, IEEE Workshop onSignal Processing Systems,
2004. SIPS 2004., s.107-112.

[19] Marchand, C., Conde-Canencia, L. ve Boutillon, E. (2013). HIGH-SPEED
CONFLICT-FREE LAYERED LDPC DECODER FOR THE DVB-S2,
-T2 AND -C2 STANDARDS, 2013 IEEE Workshop on Slgnal
Processing Systems (SISP’2013), France, s.1-6, https://hal.
archives—-ouvertes.fr/hal-00848822.

[20] Shaker, S.W. (2011). DVB-S2 LDPC finite-precision decoder, /3th International
Conference on Advanced Communication Technology (ICACT2011),
s.1383-1386.

[21] Chen, X., Kang, J., Lin, S. ve Akella, V. (2011). Memory System Optimization
for FPGA-Based Implementation of Quasi-Cyclic LDPC Codes Decoders,

IEEE Transactions on Circuits and Systems I: Regular Papers, 58(1),
98-111.

[22] Loi, K. ve Ko, S.B. (2011). Improvements on the design and implementation
of DVB-S2 LDPC decoders, Computers Electrical Engineering, 37,
1137-1146.

[23] Gomes, M., Falcao, G., Silva, V., Ferreira, V., Sengo, A. ve Falcao, M.
(2007). Flexible Parallel Architecture for DVB-S2 LDPC Decoders,
IEEE GLOBECOM 2007 - IEEE Global Telecommunications Conference,
$.3265-3269.

50

[24] Petrovi¢, V.L., Markovi¢c, M.M., Mezeni, D.M.E., Saranovac, L.V. ve
RadoSevi¢, A. (2020). Flexible High Throughput QC-LDPC Decoder
With Perfect Pipeline Conflicts Resolution and Efficient Hardware

Utilization, IEEE Transactions on Circuits and Systems I: Regular Papers,
67(12), 5454-5467.

[25] Marchand, C., Dore, J.B., Conde-Canencia, L. ve Boutillon, E. (2009). Conflict
resolution for pipelined layered LDPC decoders, 2009 IEEE Workshop on
Signal Processing Systems, s.220-225.

[26] Xilinx. LogiCORE IP Product Guide LDPC Encoder/Decoder v2.0 for
Vivado Design Suite, https://docs.xilinx.com/v/u/en-US/
pb052-1dpc, erisim tarihi: 19.05.2022.

[27] Intel. 5G LDPC-V Intel® FPGA IP User Guide Updated for Intel® Quartus®
Prime Design Suite: 22.1 IP Version: 4.0.0, https://www.intel.
com/content/www/us/en/docs/programmable/ 683670/
22-1-4-0-0/about-the-5g-1dpc-v.html, erisim tarihi:
26.05.2022.

51

EKLER

EK A : CNU FIL Kodlar1

EK B : CNU FIL Smifi

EK C : CNU FPGA Programlama FIL Kodu

EK D : CNU VHDL Test Dosyast

EK E : LDPC Kod Céziicii Ust Seviye VHDL Test Dosyas1
EK F : LDPC Kod Coziicii Ust Seviye Benzetimi Girisleri

53

EK A : CNU FIL Kodlan

cnu= functional_unit_fil;

so_l= fi(-4,1,8,0);
so_2= fi(10,1,8,0);
so_3= fi(3,1,8,0);

so_pad= fi(0,1,8,0);

so_in = [so_pad; so_1; so_2; so_3; so_pad; so_pad; so_pad; so_pad;
so_pad; so_pad; so_pad];
so_model = [so_1; so_2; so_3];

ext_1= fi(-1,1,6,0);
ext_2= fi(2,1,6,0);
ext_3= fi(9.,1,6,0);
ext_pad= fi(0,1,6,0);

ext_in = [ext_pad; ext_l; ext_2; ext_3;ext_pad;ext_pad;ext_pad;
ext_pad;ext_pad;ext_pad;ext_pad];

ext_model = [ext_1; ext_2; ext_3];

eof = [0; O; O0; 1;0;0;0;0;0;0;0];

eof = fi(eof,0,1,0);

valid = [0; 1; 1; 1;0;050;0;0;0;0];

valid = fi(valid ,0,1,0);

inputs = [so_in ext_in valid eof];
start_address = 1;
end_address =3;

sub_in(start_address:end_address) =
so_model(start_address:end_address) —
ext_model(start_address:end_address);
abs_val(start_address:end_address) =
abs(sub_in(start_address:end_address));

[minl , minlpos] = min(abs_val(start_address:end_address));

min2 = min(abs_val ([start_address :(start_address+minlpos—2)
(start_address+minlpos):end_address]));

message_signs(start_address:end_address) =

sign(sub_in(start_address:end_address));
zero_indexes=find (~message_signs(start_address:end_address));

55

message_signs(start_address+zero_indexes —1)=1;

parity = prod(message_signs(start_address:end_address));
message_buffer(start_address:end_address) = minl;
message_buffer(start_address —1+minlpos) = min2;

message_buffer(start_address:end_address) = .
parity +message_signs(start_address:end_address) .
message_buffer(start_address:end_address);
message_buffer(start_address:end_address) = .

fi (message_buffer(start_address:end_address) ,1,6,0);

SO_out(start_address :end_address)=
sub_in(start_address:end_address)
+message_buffer(start_address:end_address);
SO_out(start_address :end_address) = .

fi (SO_out(start_address:end_address) ,1,8,0);

[o_so, o_message, o_valid, o_ready] = cnu(eof,valid ,so_in,ext_in);
outputs = [o_so o_message o_valid o_ready];

SO_output_comparison = [o0_so(8:10) transpose(SO_out)];
message_output_comparison = .

[o_message (8:10) transpose(message_buffer)];
model_hardware_comparison =

[SO_output_comparison message_output_comparison |;
model_and_hardware_inputs =

[inputs (2,1) inputs(2,2); inputs(3,1)

inputs (3,2); inputs(4,1) inputs(4,2)];

56

EK B : CNU FIL Sinifi

classdef (StrictDefaults)functional_unit_fil <
hdlverifier.FILSimulation
Yfunctional_unit_fil is a filWizard generated

% class used for FPGA-In-the -Loop

% simulation with the ’functional unit’ DUT.

% functional _unit_fil connects MATLAB

% with a FPGA and cosimulate with it by

% writing inputs in the FPGA and reading outputs from the FPGA.
%o

% MYFIL = functional unit_fil

%

% Step method syntax:

%

% [outl, out2, ...] = step(MYFIL, inl, in2, ...)

% connect to the FPGA,

% write inl, in2, ... to the FPGA and read outl, out2, ... from
% the FPGA

%

% functional_unit_fil methods:

%o

% step — See above description for use of this method
% release — Allow property value and input characteristics
% changes, and release connection to FPGA board
% clone — Create functional_unit_fil object with same
% property values

% isLocked — Locked (logical)

% programFPGA - Load the programming file in the FPGA

%

% functional_unit_fil properties:

%o

% DUTName DUT top level name

% InputSignals Input paths in the HDL code

% InputBitWidths Width in bit of the inputs

% OutputSignals Output paths in the HDL code

% OutputBitWidths Width in bit of the outputs

% OutputDataTypes Data type of the outputs

% OutputSigned Sign of the outputs

% OutputFractionLengths Fraction lengths of the outputs
% OutputDownsampling Downsampling factor and phase

% of the outputs

% OverclockingFactor Overclocking factor of the hardware
% Connection Parameters for the connection

% with the board

% FPGAVendor Name of the FPGA chip vendor

% FPGABoard Name of the FPGA board

% FPGAProgrammingFile Path of the Programming file

% for the FPGA

% ScanChainPosition Position of the FPGA in the

% JTAG scan chain

%o

57

Jo
.

Yo
C %

%

File
Created:

Name: functional unit_fil .m

05-May-2022 21:04:42

Generated by FIL Wizard

Jottcodegen

end

properties (Nontunable)

end

methods
function obj = functional_unit_fil

end

end

DUTName = ’functional_unit’;

9%THE FOLLOWING PROTECTED PROPERTIES

%ARE SPECIFIC TO THE HW DUT

9%AND MUST NOT BE EDITED

%(RERUN THE FIL WIZARD TO CHANGE THEM)
obj.InputSignals = char(’i_eof’,’i_valid’, ...
’i_so’,’i_extrinsic’);

obj . InputBitWidths = [1,1,8,6];
obj.OutputSignals = char(’o_so’,’o_message’, ...
>o_valid’,’o_ready’);

obj.OutputBitWidths = [8,6,1,1];

obj.Connection = char(’JTAG’,’ libmwrtiostream_xjtag’,

>FPGAInstr=000010; FPGAInstr2=000011;FPGAInstr3=100010; ...

FPGAInstrd=100011;InstrLenBefore=4;InstrLenAfter=0; ...
TckFrequency=66.000000","");

obj .FPGAVendor = ’Xilinx ’;

obj . FPGATool = ’Xilinx Vivado’;

obj .FPGABoard = 'ZedBoard’;

obj.ScanChainPosition = 2 ;

%THE FOLLOWING PUBLIC PROPERTIES ARE RELATED
%I0O THE SIMULATION

9AND CAN BE EDITED WITHOUT RERUNING THE FIL WIZARD
obj . OutputSigned = [true ,true, false , false];
obj.OutputDataTypes = char(’fixedpoint’, ...
*fixedpoint’,’ fixedpoint’,’ fixedpoint’);

obj . OutputFractionLengths = [0,0,0,0];

obj . OutputDownsampling = [1,0];
obj.OverclockingFactor = 1;

obj .FPGAProgrammingFile =
’C:\Users\baris\Desktop\cnu_fil\ ...
functional_unit_fil\functional_unit_fil.bit’;

58

EK C : CNU FPGA Programlama FIL Kodu

function functional_unit_programFPGA
Y%functional_unit_programFPGA is a filWizard

% generated function used to load the

% programming file for the ’functional_unit’
% HDL in the ’ZedBoard’ FPGA board.

Yo

% File Name: functional_unit_programFPGA .m
%o Created: 05-May-2022 21:04:42

%

% Generated by FIL Wizard
filProgramFPGA (’ Xilinx Vivado’,

C:\Users\baris\Desktop\cnu_fil\functional_unit_fil\
functional_unit_fil.bit’ ,2);

end

59

EK D : CNU VHDL Test Dosyasi

library ieee;

use ieee.Std_Logic_1164.all;
use ieee.numeric_std. all;
use std.textio.all;

library ldpc_lib;
use ldpc_lib.functional_unit_comp_pack. all;

library common_lib;
use common_lib.ldpc_constants_pack. all;

entity tb_functional_unit is
generic (
dirname : string := "./testcases/cnu_test"
)

end entity;

architecture arch of tb_functional_unit is

file ftype_SO_in : TEXT open READ_MODE is dirname&"/SO_input";
file ftype_ext_in : TEXT open READ_MODE is dirname&"/ext_input";
file ftype_k : TEXT open READ MODE is dirname&"/k_numbers";

file ftype_dmp_SO : text open WRITE MODE is dirname&"/SO_dmp.txt";
file ftype_dmp_msg : text open WRITE MODE is dirname&"/msg_dmp.txt";

constant SYS_PERIOD : time := 10 ns;
signal clk : std_logic = ’07;
signal rstn : std_logic = 17
signal tb_eof : std_logic = ’07;
signal tb_valid : std_logic = ’0’;
signal tb_SO : std_logic_vector (SO_WIDTH-1 downto 0);
signal tb_extrinsic : std_logic_vector (EXT_WIDTH-1 downto 0);
signal tb_SO_out : std_logic_vector (SO_WIDTH-1 downto 0);
signal tb_message : std_logic_vector (EXT_WIDTH-1 downto 0);
signal tb_out_valid : std_logic;
signal tb_ready : std_logic;
begin
clk_gen: process
begin
clk<="1";
wait for SYS_PERIOD/2;
clk <=’0";

wait for SYS_PERIOD/2;
end process;

sys_rstn_prc: process

61

begin
wait for 5%SYS_PERIOD;
rstn <= ’07;
wait for 5%SYS_PERIOD;
rstn <= 17
wait ;

end process;

test_process : process

variable line_SO : line;
variable line_ext : line;
variable line_k : line;
variable integer_SO : integer;
variable integer_ext : integer;
variable integer_k : integer;
variable integer_layer : integer;

begin

wait until rstn = ’1°7°;

wait until clk ’event and clk = ’17°;

readline (ftype_k , line_k);
read (line_k ,integer_layer);
tb_eof <= 0’
for j in 0 to (integer_layer —1) loop
if j = 4 then
wait for 20xSYS_PERIOD;
end if;
readline (ftype_k , line_k);
read (line_k ,integer_k);
tb_valid <= ’17;
readline (ftype_SO_in, line_SO);
read (line_SO ,integer_SO);
tb_SO <= std_logic_vector(to_signed (integer_SO ,SO_WIDTH)) ;
readline (ftype_ext_in, line_ext);
read (line_ext ,integer_ext);
tb_extrinsic <=std_logic_vector (to_signed (integer_ext ,EXT WIDTH)) ;
for k in 0 to (integer_k -3) loop
wait for SYS_PERIOD;
readline (ftype_SO_in, line_SO);
read (line_SO ,integer_SO);
tb_SO <= std_logic_vector(to_signed (integer_SO ,SO_WIDTH)) ;
readline (ftype_ext_in, line_ext);
read (line_ext ,integer_ext);
tb_extrinsic <=std_logic_vector(to_signed (integer_ext ,EXT WIDTH)) ;
end loop;
wait for SYS_PERIOD;
tb_eof <= ’1°;
readline (ftype_SO_in, line_SO);
read (line_SO ,integer_SO);
tb_SO <= std_logic_vector(to_signed (integer_SO ,SO_WIDTH)) ;
readline (ftype_ext_in, line_ext);
read (line_ext ,integer_ext);
tb_extrinsic <=std_logic_vector(to_signed(integer_ext ,EXT WIDTH)) ;
wait for SYS_PERIOD;
tb_valid <= ’0’;

62

tb_eof <= ’0’;

wait for 3%SYS_PERIOD;
end loop;
wait ;
end process;

dump_process: process(clk)

variable line_dumped_SO : line;
variable line_dumped_message : line;
begin
if (clk’event and «clk =’1") then
if (tb_out_valid = "1’) then

write (line_dumped_SO ,to_integer (signed (tb_SO_out)));
writeline (ftype_dmp_SO ,line_dumped_SO);
write (line_dumped_message ,to_integer (signed (tb_message)));
writeline (ftype_dmp_msg ,line_dumped_message) ;
end if;
end if;
end process;

dut : functional_unit port map(
i_clk => clk,
i_rstn => rstn ,
i_eof => tb_eof,
i_valid => tb_valid ,
i_SO => tb_SO,
i_extrinsic => tb_extrinsic ,
o_SO => tb_SO_out,
o_message => tb_message,
o_valid => tb_out_valid ,
o_ready => tb_ready
)

end architecture ;

63

EK E : LDPC Kod Coziicii Ust Seviye VHDL Test Dosyas1

library ieee;

use ieee.Std_Logic_1164.all;
use ieee.numeric_std. all;
use std.textio.all;

library ldpc_lib;
use ldpc_lib.functional_unit_comp_pack.all;
use ldpc_lib.LDPC_decoder_top_comp_pack. all;

library common_lib;
use common_lib.ldpc_constants_pack. all;
use common_lib.common_comp_pack. all;

entity tb_top_level is
generic (
dirname : string = "./testcases/bg_Il_inputs"
)

end entity ;
architecture arch of tb_top_level is

file ftype_SO_in : TEXT open READ_MODE is
dirname&" /top_level_inputs";
file ftype_dmp_hd : text open WRITE MODE is
dirname&"/hard_decision. txt";

constant SYS_PERIOD : time := 10 ns;
signal clk : std_logic = ’07;
signal rstn : std_logic = 17
signal tb_eof : std_logic = ’07;
signal tb_valid : std_logic := ’07;
signal tb_SO : std_logic_vector(31 downto 0) :=
"00000000000000000000000000000000";
signal tb_data_out : std_logic_vector (3 downto 0);
signal tb_out_valid : std_logic;
signal tb_ready : std_logic;
signal tb_in_ready : std_logic := ’17;
signal tb_out_eof : std_logic;
begin
clk_gen: process
begin
clk<="1";
wait for SYS_PERIOD/2;
clk <="0";

wait for SYS_PERIOD/2;

65

end process;

sys_rstn_prc: process
begin
wait for 5%SYS_PERIOD;
rstn <= 0’
wait for 5xSYS_PERIOD;
rstn <= ’17;
wait ;
end process;

test_process : process
variable line_SO : line;
variable line_k : line;
variable integer_SO : std_logic_vector(31 downto 0);
begin
wait until rstn = ’1°;
wait until clk’event and clk = ’17;
wait for 2 ns;
tb_eof <= ’07;

tb_in_ready <= ’17;

wait for SYS_PERIOD;

for j in 0 to (66) loop
tb_valid <= ’17;
readline (ftype_SO_in, line_SO);
read (line_SO ,integer_SO);

tb_SO <= integer_SO;
wait for SYS_PERIOD;

end loop;

tb_eof <= ’17;

readline (ftype_SO_in, line_SO);
read (line_SO ,integer_SO);

tb_SO <= integer_SO;
wait for SYS_PERIOD;
tb_valid <= 07,
tb_eof <= ’07;

wait ;

end process;

dump_process: process(clk)

variable line_dumped_hd : line;
begin
if (clk’event and <clk =’1") then

if (tb_out_valid = ’1’°) then

write (line_dumped_hd , tb_data_out);
writeline (ftype_dmp_hd ,line_dumped_hd);
end if;
end if;
end process;

66

dut : LDPC_decoder_top port map (

i_clk
i_rstn

i_eof
i_valid
i_ready
i_data

o_eof
o_valid
o_ready
o_data

)

end architecture;

=>
=>

=>

clk,
rstn ,

tb_eof ,
tb_valid ,
tb_in_ready ,
tb_SO,

tb_out_eof ,
tb_out_valid ,
tb_ready ,
tb_data_out

67

EK F : LDPC Kod Coziicii Ust Seviye Benzetimi Girisleri

00000000000000000000000000000000
00000000000000000000000000000000
00000100111111001111101000000001
11111011000000010000101100001001
11111010111111110000010000000001
00000000111110001111100011111110
11111010000000010000001111111010
00000001000000111111111000000001
11111010111111000000000100000011
11111010111110110000010111111001
11111101000000100000001011111011
11111101111111010000010000000111
00000110111111000000001000000101
00000011000010011111011011110111
00000010111111001111101111111011
11111110111110111111110100001100
00001000111111000000101000000110
00000110111110000000000000000100
11111001000001001111110000000001
11111110000000100000000100000011
00000001111110111111110000000101
11111011111111010000001011111111
11111011000001010000100111111010
11111111111110110000010100000001
11111100000000110000010111111001
11111110111110110000001111111101
11111001000000011111101011111101
00000001111101111111100111110110
11111011000000001111110111111000
11111100000000010000000011111011
ooooo100111101111111110111110111
11111001000000101111101100000001
11111111000001110000000011110100
00000011111110111111101000001010
00000011000000100000011000000000
00001001111111110000001011111101
00000110000000000000010111111100
00000010111110010000001011111110
00000101111110010000010011111000
00000001000001101111101000001010
00000110000001110000010011111100
00000111000000110000010011111100
00000100000000110000010100001001
11111011000001101111100111111001
00000010111110111111110011110111
00001000111101111111011100000101
11111011000000101111111000000010
11111111000001011111101011111000
11111010000001011111110100000111
00001011000001001111101011111100

69

11111100111111011111110100001001

11111100111111010000001111111110
11110111111110111111101100000000
00000001000000011111110100000010
00000010111111010000010111111111

00000110111111111111110000001001

00000101111111101111101100000010
11111101111110100000011100000110
00000001000000001111110011111010
00001000000001010000000000000100
11111110000010100000001111111001

11111100000000100000100011111010
11110110000001000000001000000001
00000100111110101111101100000111
00000100000000101111110111111101
00000110111110111111101111111001
11111100111111000000010111111011
00000101000000100000000011111110

70

OZGECMIS

Adi SOYADI: Baris BILGILI

OGRENIM DURUMU:

o Lisans: 2019, Istanbul Teknik Universitesi, Elektrik Elektronik Fakiiltesi,
Elektronik ve Haberlesme Miihendisligi Boliimii

MESLEKI DENEYIMLER VE ODULLER:

* 2020 yilindan beri Yonga Teknoloji Mikroelektronik firmasinda sayisal tasarim
izerine ¢aligtyor.

DiGER YAYINLAR, SUNUMLAR VE PATENTLER:

* B. Bilgili, C. Yamaneren, K. Vatansever, U. Coltu and B. Ors, "System on
Chip Design with Vivado High-Level Synthesis Tool," 2019 11th International
Conference on Electrical and Electronics Engineering (ELECO), 2019, pp.
1047-1050, doi: 10.23919/ELEC0O47770.2019.8990595.

71

uluhatun
Rectangle

