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YÜKSEK LİSANS TEZİ
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(504191203)

Department of Electronics and Communication Engineering

Electronics Engineering Programme

Thesis Advisor: Prof. Dr. Sıddıka Berna Örs Yalçın
Co Advisor: Prof. Dr. Ali Emre Pusane

SEPTEMBER 2022
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İstanbul Teknik Üniversitesi

Prof. Dr. Tolga Mete Duman ..............................
Bilkent Üniversitesi
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Sayfa
ÖNSÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
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Tablo 5.1 : CNU Parametre Listesi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
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Tablo 5.7 : Kalan Katmanlar İçin Önerilen Erişim Sıralaması . . . . . . . . . . . . . . . . . . . . 42
Tablo 5.8 : LDPC Kod Çözücü Model ve Donanım Benzetimi Sonuçları . . . . . . . 43
Tablo 5.9 : LDPC Kod Çözücü Üst Seviye Giriş ve Çıkış İşaretleri . . . . . . . . . . . . . . 43
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FPGA ÜZERİNDE 5G UYUMLU
DÜŞÜK YOĞUNLUKLU EŞLİK DENETİM

KOD ÇÖZÜCÜ GERÇEKLENMESİ

ÖZET

Günümüzde giderek artan sayısal veri üretimi ve veri ihtiyacı, bu verilerin
iletilebilmesi için yüksek hızlı kablosuz haberleşme sistemlerini giderek daha önemli
hale getirmektedir. Taşınan veri miktarının artması yeni gereksinimleri de beraberinde
getirmektedir. Bunlardan ilki haberleşmenin daha hızlı yapılabilmesidir. İkincisi
ise bu verilerin kanaldaki bozulmalardan etkilenmeden alıcı tarafa iletilebilmesidir.
Haberleşme insanlar veya makineler arasında gerçekleşse de, hücresel ağlar veya uydu
üzerinden sağlansa da yeni gereksinimler eklenebilmesine rağmen bu iki gereksinim
değişmemektedir. Bu noktada üretilen standartlar belirtilen gereksinimleri karşılamaya
çalışmaktadır. Hücresel haberleşme için güncel bir standart olan 5G’de ileri hata
kodlama olarak Düşük Yoğunluklu Eşlik Denetim (Low Density Parity Check - LDPC)
kodları veri kanallarındaki bu gereksinimleri karşılamak için önerilmiştir. Uydu
haberleşmesinde ise İkinci Nesil Sayısal Video Yayını (Digital Video Broadcasting
- DVB S2) gibi standartlarda LDPC kodları kullanılmaktadır.

LDPC kodları yapıları itibariyle esnek tasarım ve uygulamalara uygun kodlardır.
Farklı blok boylarında ve paralel çalışmaya elverişli oldukları için Alanda
Programlanabilir Kapı Dizileri (Field Programmable Gate Array - FPGA) ile
gerçeklenmeleri avantajlı bir hale gelmektedir. LDPC kodları farklı kod çözme
algoritmalarıyla çalışabildikleri için FPGA gerçeklemeleri yapılmadan önce bu
algoritmalar performans ve gerçeklemeye uygunluk açısından incelenmelidir. Kod
çözücünün düşük alan kullanımına ve yüksek veri hacmine sahip olması gerektiği için
buna uygun bir algoritma seçilmelidir.

LDPC kodları genellikle bir eşlik denetim matrisi ile tanımlanırlar. Kod çözücü
tasarımında bu matris, veri depolama birimlerinin boyutlarını ve bağlantıları belirler.
Kod çözücüde algoritmanın çalıştığı asıl birim ise Denetim Düğümü Birimi ( Check
Node Unit - CNU) olarak tanımlanır. Bu çalışmada 5G Yeni Radyo (5G New Radio
- 5G NR) standardı temel alındığı için veri boyutları ve bağlantıları büyük oranda
belirlidir. Algoritma seçimi, paralelleştirme ve veri hacmini arttırma üzerine çalışmalar
yapılmıştır. Donanım gerçeklemesi yapılırken karşılaşılan veri depolama, adresleme
ve sıralama sorunlarına çözümler üretilmeye çalışılmıştır.

Döngüde FPGA (FPGA in the Loop - FIL), FPGA’de çalışması için bir donanım
tanımlama diliyle (Hardware Description Language - HDL) yazılmış kodları
MATLAB ortamı ile entegre ederek gerçek donanım üstünde çalışan kod ile
yazılımdaki kodların beraber benzetiminin yapılması sağlayan doğrulama programıdır.
HDL ile tasarım yaparken doğrulama yapmak çok önemli bir yer tutmaktadır ve FIL
kullanılmadığı durumda herhangi bir bloğun doğrulamasını yapmak için test dosyaları

xix



oluşturup veri grupları hazırlayarak benzetim yapılması gerekmektedir. FIL sayesinde
MATLAB ortamında oluşturulan veriler örnek modelle aynı anda gerçek donanım
üzerinde çalışan HDL koduyla kıyaslanarak sonuçları doğrulanabilmektedir.

5G NR standardındaki LDPC matrisleri farklı boyutlara ve farklı satır ağırlıklarına
sahip oldukları için bu çalışmada tasarlanan LDPC eşlik denetim biriminin farklı
sayıda giriş ile çalışabilmesi gerekmektedir. Bu nedenle FIL kullanılarak farklı sayıda
girişler için MATLAB ortamında doğrulama yapılmış ve FPGA üzerinde çalıştırılarak
test edilmiştir.

Bu çalışmada hem FIL ile doğrulama yaparak tasarım ve doğrulama süreçlerinin
hızlandırılması, hem de donanıma uygun algoritmalar seçilerek karmaşıklığı düşük
ve veri hacmi yüksek bir eşlik denetim birimi tasarlanması, eşlik denetim biriminin
çalışmasına örnek göstermek amacıyla 5G NR standardına uygun bir üst seviye
tasarımının yapılması amaçlanmıştır.
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IMPLEMENTATION OF 5G COMPATIBLE
LOW DENSITY PARITY CHECK DECODER ON FPGA

SUMMARY

Nowadays, the ever-increasing digital data production and data need make high-speed
wireless communication systems more and more important in order to transmit these
data. The increase in the amount of transmitted data brings new requirements with it.
The first of these requirements is to increase the speed of communication. The second
requirement is that the data is transmitted to the receiver without being affected by
the channel noise. These two requirements do not change, although new requirements
can be added whether communication takes place between humans or machines, or
via cellular networks or satellite. At this point, standards are established to meet the
specified requirements. In 5G, which is a current standard for cellular communication,
Low Density Parity Check (LDPC) codes as forward error coding have been proposed
to meet these requirements in data channels. These channels are Physical Uplink
Shared Channel (PUSCH) and Physical Downlink Shared Channel (PDSCH). On the
other hand, in satellite communication, there are LDPC codes in standards such as
Digital Video Broadcasting Satellite Second Generation (DVB-S2).

LDPC codes are defined by parity check matrices and consist of two types of base
units. These units are called bit nodes and check nodes. Each row in the parity check
matrix represents a check node, and each column represents a bit node. The parity
check matrix consists of ones and zeros. If the value at the intersection of any row and
column is 1, it means that there is a connection between the intersecting bit node and
the check node at this point. In the 5G NR standard, LDPC codes are defined with 2
base graphs. A large number of LDPC parity matrices are obtained from base graphs
by expanding them with lifting sizes to support different block lengths.

LDPC codes, by their nature, are suitable for flexible design and applications.
Since they are suitable for working in different block sizes and working in
parallel, their implementation with Field Programmable Gate Arrays (FPGA) becomes
advantageous. LDPC codes can work with different decoding algorithms, therefore
these algorithms should be examined for performance and compatibility with
implementation on FPGA before hardware design is made. Since the LDPC decoder
should have low utilization and high throughput, an appropriate algorithm should be
selected. Among the LDPC decoding algorithms, sum-product algorithm, min-sum
algorithm, offset min-sum algorithm and attenuated min-sum algorithm come to the
fore. The sum-product algorithm is also known as belief-propagation algorithm and
is the default decoding algorithm in the literature. In all of these algorithms, the
operation performed on the bit nodes is exactly the same, while the operation on the
control nodes differs. Although the sum-product algorithm is the algorithm that gives
the highest performance for LDPC codes, the use of the hyperbolic tangent function
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greatly increases both the computational complexity and the hardware implementation
complexity. Therefore, hardware implementations given in the literature generally use
the min-sum algorithm.

LDPC codes are usually defined by a parity check matrix. In the LDPC decoder design,
this matrix determines the area of the data storage units and connections between the
units in the design. The actual unit in the decoder where the algorithm runs is defined
as the Check Node Unit (CNU). Since this study is based on the 5G New Radio
standard, data sizes and connections are largely specific. Studies have been carried
out on algorithm selection, parallelization and increasing the throughput. Solutions
have been produced for data storage, addressing and scheduling problems encountered
during hardware implementation.

Input data of the LDPC decoder must be arranged in accordance with the matrix
structure and stored in the RAMs. Taking advantage of the adjustable RAM widths,
multiple messages can be stored and accessed together. In this way, high throughput
can be achieved with parallel working CNU designs. As a solution, bit shuffling
and circular shift methods have been proposed while accessing RAMs in studies in
the literature. By using the bit shift values stored in the ROMs according to the
connections in the matrix, the data stored together in the RAMs can be distributed
to the bit node units and check node units in the correct order during a single read.
While the processed data is writing back to the RAMs, it is written back to the correct
addresses by reverse shuffling or reverse bit shifting with the same values stored in
the ROM. Appropriate check node units and access sequences are suggested to avoid
conflicts in RAM access while performing these read and write operations. The work
of the check nodes should be sequenced, taking into account their latency. Conflicts
occur when trying to access the same address to read in the next layer before the data
is written to RAM after the previous layer has been processed. As a result of these
conflicts, the data that has not been updated is transferred to the next layer and the
results are overwritten in the same address in RAM. To avoid this situation, access
sequences need to be regulated. Access sequences vary for different LDPC matrices
and hardware implementations.

As a result of the studies on the literature, it has been decided that the most suitable
structure to be implemented in hardware can be obtained by using the min-sum
algorithm. This algorithm is suitable to be run on FPGA in terms of both having
low complexity and being suitable for sequential access. For the design to be made
with fixed points, keeping the messages 6 bit wide was found suitable as a result of
the performance tests made on the min-sum algorithm model. Since the check node
messages are collected at the bit nodes, the bit width is defined 2 bits more at the bit
nodes.

CNU receives messages from the bit nodes and check nodes sequentially. Messages are
indicated by the data valid signal. The end of the incoming message block is indicated
by the end-of-block sign. When the CNU is ready to receive data on its input, it sends
out a ready signal. A corresponding message output is sent to each of the bit node and
check node messages coming to the CNU input. In this way, both the bit node and
the control node can be updated simultaneously. In order for the updates between the
layers in the LDPC matrix to take place without interruption, the CNU must be able to
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accept new data from the input while sending the valid data to the output. Otherwise,
after updating the nodes of the previous layer, it is necessary to wait for all the inputs to
be received and processed again in order to update the next layer. While the messages
are given to the output, the new inputs received are processed in separate sequences,
thus making the CNU operation uninterrupted.

FPGA in the Loop (FIL) is a validation program that integrates the codes written in a
hardware description language (HDL) with the MATLAB environment to work in the
FPGA, allowing the code running on the real hardware to be simulated together with
the codes in the software. While designing with HDL, validation has a very important
place and in case of not using FIL, it is necessary to simulate by creating test files and
preparing data sets to validate any design block. By using the FIL, software model and
HDL design running on hardware can be tested simultaneously by applying the data
created in the MATLAB environment, and the results can be compared.

FIL can be used in different formats. By programming the FPGA via FIL with any
HDL code, and sending the data from the MATLAB environment to the FPGA, the
results can be observed and processed in the MATLAB environment. In this way,
the processing time for big data can be shortened by taking advantage of the parallel
operation feature of the FPGA. For validation and testing purposes, the model can be
created in the MATLAB environment and run simultaneously with the HDL code on
the FPGA, and the results of both the model and the hardware can be observed in the
MATLAB environment. FIL was used for validation and testing purposes in this study.

Since the LDPC matrices in the 5G NR standard have different sizes and different row
weights, CNU designed in this study should be able to work with different number
of inputs. For this reason, verification was made in the MATLAB environment for
different numbers of inputs using FIL and tested by running on FPGA.

In this study, it is aimed to accelerate the design and verification processes by verifying
with FIL, and to design a low complexity and high throughput CNU by choosing
algorithms suitable for the hardware, and to make a top-level design in accordance with
the 5G NR standard in order to illustrate the operation of CNU. After the CNU design
was validated with the FIL, a high-level architecture was designed for use within the
LDPC Decoder. If all connections are to be processed at the same time, as many CNUs
as the number of connections must be implemented on the FPGA. For this reason, the
LDPC matrix was examined in a layered structure and each row was processed in
serial layers. Reading and writing of each message in a layer is done serially. In order
to provide high throughput, when a layer has finished all its readings, the next layer’s
readings are started without waiting for it to finish writing. When working in the order
given in the 5G NR standard during the transitions between the layers, it is encountered
that the next layer tries to reach the same address and sends the outdated data to the
CNUs before the previous layer has updated the RAM yet. In this study, a different
access order is proposed to resolve conflicts in RAM accesses. The order of access to
addresses in reads within the layer does not affect the result. Based on this fact, the
addresses are sorted in a unique way, preventing the outdated data from being read in
the next layer.

Future studies will focus on error performance and try to implement more advanced
algorithms such as offset min-sum and attenuated min-sum, which are built on the
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min-sum algorithm. Since these improvements will only be made on the CNU, they
can be verified with the FIL and added to the LDPC decoder design without changing
the top-level architecture. The development and validation environment created with
FIL will be used by making customizations on the model.
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1. GİRİŞ

Bu bölümde konuya ilişkin bilgiler verilerek temel kavramlar açıklanmıştır ve bu

çalışmanın amacından bahsedilmiştir.

LDPC kodlarının kullanımı, günümüz kablosuz haberleşme sistemlerinde giderek

yaygınlaşmaktadır. Farklı uygulama alanları için oluşturulmuş standartlarda yer

alması, LDPC kodları ile daha esnek tasarım yapabilme ihtiyacını arttırmaktadır.

LDPC kodları eşlik denetim matrisleri ile tanımlanmaktadır. Bu matris değiştikçe

farklı tasarım gereksinimleri doğurmaktadır.

Sayısal haberleşme sistemlerinin en temel bloklarından biri kanal kodlama bloğudur

[1]. Kanal kodlama bloğunun amacı kanalda meydana gelen bozulmaları alıcı

tarafta tespit edip düzeltmektir. Katlamalı kodlar ve blok kodlar olmak üzere

sıklıkla kullanılan iki kanal kodlama çeşidi vardır. Katlamalı kodlar, çıkıştaki

bitlerin, veri akışındaki mevcut bit ve az sayıda önceki bit üzerindeki mantıksal

işlemlerle belirlendiği kodlardır. Blok kodlarda ise bilgi bitleri büyük bloklar

halinde kodlanarak eşlik bitlerine karar verilir. Katlamalı kodlar arasında iteratif

kod çözme özelliğiyle Turbo kodlar ön plana çıkmaktadır [2]. Kod çözme sırasında

kanaldan gelen bilgi bitlerine karar vermeden önce eşlik bitleriyle birlikte karar verme

algoritmaları geri beslemeli iterasyonlar halinde çalıştırılarak yüksek hata performansı

elde edilebilmektedir [3]. LDPC kodları, iteratif olarak çalışan blok kodlarıdır.

Bu sayede büyük veri bloklarının yüksek hata performansıyla çözülmesine imkan

sağlamaktadır [4].

LDPC kod çözme algoritmaları arasında toplam-çarpım algoritması, min-toplam

algoritması, dengelenmiş min-toplam algoritması ve zayıflatılmış min-toplam

algoritması ön plana çıkmaktadır [1].

Bu tezin amacı, LDPC kodlarının donanım gerçeklemesi sırasında ihtiyaç duyulan

en önemli birim olan eşlik denetim birimini 5G standardı için tasarlamaktır. 5G

1



NR standardında tanımlanan LDPC matrisleri kendi aralarında çeşitlilik gösterdikleri

için eşlik denetim biriminin de esnek bir yapıda tasarlanması gerekmektedir. Bu

esnek tasarım sayesinde farklı standartlar için de uyumlu çalışabilecek bir birim

tasarlanması amaçlanmaktadır. Tasarım sırasında doğrulamayı ve donanım testlerini

pratik bir şekilde yapabilmek için FIL kullanılarak tasarım ve doğrulama süreçlerinin

de hızlandırılması amaçlanmıştır [5].

Tezin ikinci bölümünde 5G NR LDPC kodlar ve kod çözücüler ilgili bilgiler

verilmiştir. Üçüncü bölümde donanım gerçekleme temelleri anlatılmıştır. Dördüncü

bölümde literatür analizi ve üzerine yapılan çalışmalar, beşinci bölümde ise FPGA

üzerinde kod çözücü tasarımı anlatılmıştır. Altıncı bölümde sonuçlardan ve gelecek

çalışmalardan bahsedilmiştir.
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2. 5G NR LDPC KODLAR VE KOD ÇÖZÜCÜLER

Bu bölümde LDPC kodlama ve kod çözme kavramları açıklanmıştır. 5G NR LDPC

kodlarının özelliklerinden bahsedilmiştir.

2.1 LDPC Kodlama ve Kod Çözme

LDPC kodları eşlik denetim matrisleriyle tanımlanır ve iki tip temel birimden oluşurlar.

Bu birimlere bit düğümleri ve denetim düğümleri denir. Eşlik denetim matrisindeki

her satır bir denetim düğümünü, her sütun ise bir bit düğümünü ifade eder. Eşlik

denetim matrisi 1’lerden ve 0’lardan oluşmaktadır. Herhangi bir satır ile sütunun

kesiştiği noktadaki değer 1 ise bu noktada kesişen bit düğümü ve denetim düğümü

arasında bağlantı olduğu anlamına gelir. Eşlik denetim matrisindeki bu bağlantılar

Tanner Çizgesi denilen çizgelerle Şekil 2.1 ve Şekil 2.2’de örnek verildiği şekilde

gösterilir [6]. Bit düğümleri sol tarafta daire biçiminde, denetim düğümleri sağ tarafta

kare biçiminde gösterilmiştir.

Şekil 2.1 : LDPC Eşlik Denetim Matrisi Örneği

LDPC kodlayıcının amacı giriş bitlerine bakarak kod cümleleri üretmektir. Eşlik

denetim matrisi H olmak üzere, üreteç matrisi G

G×HTranspoze = 0 (2.1)

biçiminde gösterilir. Giriş dizisi M, oluşturulacak kod cümlesi C olmak üzere

M×G =C (2.2)

şeklinde kodlama yapılır. Bu durumda kod cümlesinin

C×HTranspoze = 0 (2.3)
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Şekil 2.2 : Tanner Çizgesi Örneği

eşitliğini sağlaması gerekmektedir.

LDPC kod çözücü iteratif yapıda çalışmaktadır. Bit düğümleri ve denetim

düğümleri arasındaki mesaj aktarımları ile bu iterasyonlar gerçekleşmektedir.

Maksimum iterasyon sayısı, yapılacak olan mesaj aktarımlarının maksimum sayısını

belirler. İterasyonlar sırasında bit düğümlerindeki değerler üzerinden ara kararlar

verilerek Denklem 2.3’ü sağlayan geçerli bir kod cümlesine ulaşılırsa iterasyonlar

sonlandırılarak kod cümlesinin doğru olduğuna karar verilir. Bit düğümlerinden

denetim düğümlerine doğru olan mesaj aktarımı Şekil 2.3’te gösterildiği biçimdedir.

Şekil 2.3 : Bit Düğümlerinden Denetim Düğümlerine Mesaj Aktarımı

İterasyonlar başlamadan önce kanaldan gelen LLR değerleri bit düğümlerine

yazılır. Denetim düğümlerinin hepsine sıfır değeri atanır. İterasyonlar iki adımda
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gerçekleştirilir. İlk adımda bit düğümleri tuttukları mesajları bağlı oldukları denetim

düğümlerine aktarır. Şekil 2.3’te aktarılan mesajlar L1-1 (birinci bit düğümünden

birinci denetim düğümüne aktarılan mesaj), L2-2 (ikinci bit düğümünden ikinci

denetim düğümüne aktarılan mesaj) biçiminde örneklenmiştir. İkinci adımda ise

denetim düğümleri, bağlı olduğu bit düğümlerinden aldıkları mesajlara göre geri

gönderecekleri mesajlara karar verirler. Bu mesajlar LLR değerlerine bakarak bitleri

0 veya 1 olduğuna karar verilebilmesi için önemlidir. Denetim düğümlerinden

bit düğümlerine geri gönderilen mesajlar Şekil 2.4’te örneklenmiştir. Bu örnekte

R1-1 birinci denetim düğümünden birinci bit düğümüne gönderilen mesajı, R1-4

birinci denetim düğümünden dördüncü bit düğümüne gönderilen mesajı, R1-5 birinci

denetim düğümünden beşinci bit düğümüne gönderilen mesajı, R1-7 birinci denetim

düğümünden yedinci bit düğümüne gönderilen mesajı temsil etmektedir.

Şekil 2.4 : Denetim Düğümlerinden Bit Düğümlerine Mesaj Aktarımı

Geri gönderilecek mesajları belirlemek için kullanılan algoritmalar arasında en iyi hata

performansına sahip olanı Toplam-Çarpım Algoritmasıdır (Sum Product Algorithm -

SPA). Bu algoritma

R =−sign× tanh−1(|A|/2) (2.4)

biçiminde gösterilir. Mesajların pozitif veya negatif olmalarına göre işaretleri Denklem

2.4’te sign ile gösterilmiştir, mutlak değer ifadesinin içinde bulanan A ifadesi

A = tanh(|LLR1|/2)+ tanh(|LLR2|/2)+ . . . + tanh(|LLRN |/2) (2.5)

olarak gösterilebilir. Denklem 2.5’te logaritmik olasılık oranları LLR ifadesiyle

gösterilmiştir.
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2.2 5G NR LPDC Kodları

5G NR standardında, Fiziksel Yukarı Bağlantı Paylaşımlı Kanal (Physical Uplink

Shared Channel - PUSCH) ve Fiziksel Aşağı Bağlantı Paylaşımlı Kanal (Physical

Downlink Shared Channel - PDSCH) veri haberleşmesi kanallarında LDPC kodları

kullanılmaktadır [7]. LDPC kodları eşlik denetim matrisleriyle birlikte tanımlanır.

Bu eşlik denetim matrisleri düşük yoğunluklu olarak tasarlanır. Düşük yoğunluklu

olduklarından dolayı matristeki 1’lerin sayısı 0’larından sayısından oldukça azdır. 5G

NR standardında LDPC kodları, 2 adet temel çizge ile tanımlanmışlardır. Farklı

blok uzunluklarını destekleyebilmek için Tablo 2.1’de verilmiş olan Z yükseltme

çarpanlarıyla genişletilerek temel çizgelerden çok sayıda LDPC eşlik matrisi elde

edilmektedir [7].

Tablo 2.1 : Yükseltme Çarpanı Tablosu

İndis Yükseltme Çarpanı
0 2, 4, 8, 16, 32, 64, 128, 256
1 3, 6, 12, 24, 48, 96, 192, 384
2 5, 10, 20, 40, 80, 160, 320
3 7, 14, 28, 56, 112, 224
4 9, 18, 36, 72, 144, 288
5 11, 22, 44, 88, 176, 352
6 13, 26, 52, 104, 208
7 15, 30, 60, 120, 240

LDPC kodlama yapılırken gelen paketlere eşlik bitleri çizgelerin temel kodlama

oranlarına göre eklenir [8]. Eklenen eşlik bitlerinin sayısı değiştirilerek farklı kodlama

oranları elde edilir. Kod çözme tarafı standartta tanımlanmamıştır. Standartta verilen

temel çizgeler üzerinden, alıcı tarafta farklı algoritmalar kullanılarak kod çözme işlemi

uygulanabilir. Bu sayede farklı uygulamalar ve gerçeklemeler için uygun kod çözme

yöntemlerini kullanmaya imkan tanınmıştır.
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3. DONANIM GERÇEKLEME TEMELLERİ

Bu bölümde donanım gerçeklemesi için kullanılan temel yapılar ve işlemler

anlatılmıştır. Bu çalışmada donanım gerçeklemek ve test etmek için kullanılmış olan

FIL kavramı açıklanmıştır.

3.1 Donanım Yapısı

Donanım tanımlama dilleri (Hardware Description Language - HDL), elektronik

devrelerin ve sayısal mantık devrelerinin yapısını ve davranışını tanımlamak için

kullanılan bilgisayar dilleridir [9]. HDL kullanarak büyük tasarımları kolayca

oluşturmak mümkün hale gelmektedir. Küçük tasarımları bile hızlıca üretebilmek için

HDL kullanılmaktadır.

HDL tabanlı tasarımlar, gelişmelere ayak uydurmak için tasarımların değiştirilmesine

ve yeniden kullanmasına olanak tanır. Cihazların fiziksel boyutları küçüldükçe, HDL

tabanlı modelden daha iyi performansa sahip daha yoğun devreler sentezlenebilir [10].

Bu çalışmada yapılan tasarımlarda VHDL dili kullanılmıştır.

Günümüzde yeni tasarımları olabilecek en kısa sürede ürün haline getirmek çok

büyük bir öneme sahiptir. Bu nedenle geliştirme sürelerinin kısalması önemli

bir ihtiyaçtır. Bu ihtiyacı karşılamak için hızlı ve düşük maliyetli bir şekilde

prototipler geliştirilebilmesi gerekmektedir. Alanda Programlanabilir Kapı Dizileri

(Field Programmable Gate Array - FPGA), bu soruna çözüm oluşturmaktadır.

FPGA, programlanabilir mantık blokları, giriş-çıkış blokları ve ara bağlantılardan

oluşan sayısal tümleşik devrelerdir [11]. FPGA, HDL kullanılarak hızlı bir şekilde

programlanabildiği ve paralel çalışabilme özelliğine sahip olduğu için yaygın olarak

kullanılmaktadır.
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3.2 Veri Gösterimi ve İşlemesi

Bu çalışmada veri gösterimi için ikiye tümleyen gösterimi kullanılmıştır. Donanım

gerçeklemesi için kullanılan temel işlemler olan kuantalama ve bit kaydırma işlemleri

bu bölümde anlatılmıştır.

3.2.1 İkiye tümleyen gösterimi

Bu çalışmada tasarlanan eşlik denetim biriminde yapılan işlemlerde ikiye tümleyen

(Two’s Complement) veri gösterimi kullanılmıştır. İkiye tümleyen, bilgisayarların

sayıları ifade etme şeklidir. İkiye tümleyen gösteriminde bir sayının negatifini

göstermek için sayı ikili düzende yazılır, 1’ler 0’larla, 0’lar 1’lerle değiştirilir ve sonuca

bir eklenir [12]. Örneğin, -28 sayısını ifade etmek için önce 28 sayısı ikiye tümleyen

halinde yazılır ve aşağıdaki adımlar izlenir:

• 0 0 0 1 1 1 0 0

• 1’ler 0’larla, 0’lar 1’lerle değiştirilir.

• 1 1 1 0 0 0 1 1

• Sonuca bir eklenir.

• 1 1 1 0 0 1 0 0

İkiye tümleyen gösteriminde toplama ve çıkarma basit bir şekilde yapılabilir. Bu

sayede toplama ve çıkarma devreleri birleştirilebilir, aksi takdirde ayrı işlemler olarak

ele alınmaları gerekir [12].

3.2.2 Kuantalama işlemi

Eşlik denetim biriminde gerçekleşen işlemlerde veri hassasiyetini kaybetmemek için

ara çıktılarda bit genişliğinin artmasına izin verilecek şekilde bir tasarım yapılmıştır.

Veri depolamak için tasarımda ayrılan alanın büyüklüğü önceden belirlenmiş bir

miktara sahip olduğundan eşlik denetim birimi çıkışa veri gönderirken içerideki
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işlemlerde artan bit genişliğini kuantalamak zorundadır. Bunun için öncelikle

kuantalama işlemi uygulanacak verinin en anlamlı bitine bakılarak ikiye tümleyen

gösterimine göre pozitif mi yoksa negatif mi olduğuna karar verilir. Sonrasında sayının

mutlak değerine bakılarak sayı gösterimlerine göre ifade edilebilecek en büyük ve en

küçük sayıların sınırını aşıp aşmadığına bakılır. Aşıyorsa maksimum veya minimum

değer olarak ikiye tümleyen biçiminde çıkışa verilir. Diğer durumlarda ifade edilecek

sayı, tamsayı ve kesirli kısımları dikkate alınarak istenilen bit genişliğinde çıkışa

verilir.

3.2.3 Bit kaydırma işlemi

Tasarımdaki veri yerleşiminden dolayı eşlik denetim biriminin girişine veri depolama

birimlerinden doğru verileri aktarmak ve eşlik denetim biriminin çıkışındaki verileri

doğru bir şekilde yazmak için bit kaydırma işlemi uygulanması gerekmektedir.

Bu işlem için Barrel Shifter yapısı kullanılmıştır. Böylelikle ardışıl bir mantık

devresi kullanılmadan bit kaydırma işlemi kombinezonsal mantık devreleriyle

gerçeklenebilmiştir. İstenilen bit kaydırma miktarına göre girişine gelen bitleri sola

kaydırarak bu işlemi aşağıdaki gibi gerçekleştirmektedir:

• Girişe gelen dizi :

• 1 1 0 1 0 0 1 0

• Bit kaydırma miktarı : 3

• Yedinci bitten beşinci bite kadar olan bitler en sağa yerleştirilir ve kalan bitler

soluna birleştilir:

• 1 0 0 1 0 1 1 0

• Böylece üç bit kaydırma işlemi yapılır.

3.3 FPGA-in-the-Loop

FIL, mevcut herhangi bir HDL kodunu MATLAB veya Simulink ortamında

geliştirilmekte olan modellere entegre edebilen ve test senaryolarını FPGA üzerinde
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HDL tasarımına uygulayabilen bir benzetim aracıdır [5]. FIL benzetimi yapabilmek

için MATLAB ürünlerinin yanında bir FPGA tasarım yazılımı, FPGA kartı ve kart

ile bilgisayar arasındaki bağlantıyı sağlayacak ethernet, JTAG veya PCIe arayüzü

gerekmektedir [13]. Bu çalışmada Xilinx Zedboard kullanıldığı için bilgisayar

ile FPGA arasında JTAG bağlantısı kullanılmıştır. FPGA tasarım yazılımı olarak

kullanılan Vivado, MATLAB ortamına komut penceresinde aşağıdaki kod çalıştırılarak

entegre edilmiştir:
h d l s e t u p t o o l p a t h ( ’ ToolName ’ , ’ X i l i n x Vivado ’ , ’ T oo l P a t h ’ ,
’C : \ X i l i n x \ Vivado \ 2 0 2 1 . 1 \ b i n \ v i vad o . b a t ’ ) ;

FPGA tasarım yazılımı entegre edildikten sonra FILWizard açılarak benzetimi

yapılmak istenen HDL kodları eklenir ve üst seviyede bulunan dosya seçilir. Bir

sonraki adımda modülün giriş-çıkışları için veri, saat, saat seçme, sıfırlama türlerinden

biri seçilir. Sıfırlama ve saat seçme işaretleri aktif-düşük veya aktif-yüksek olarak

seçilebilir. Veri olarak seçilen tür dışındaki işaretleri MATLAB otomatik olarak

sürer. Veri türündeki sinyaller kullanıcı tarafından sürülür. Bu sayede modülün

bütün işaretler MATLAB ortamında kontrol edilebilir. Bir sonraki adımda çıkış

işaretlerinin veri türleri seçilir. Tüm seçimler yapıldıktan sonra FILWizard, FPGA

tasarım yazılımını kullanarak FPGA projesini oluşturur ve FPGA programlamak için

gerekli komut dosyası ile HDL tasarımını modelde kullanmak için gereken FIL sınıfını

çıktı olarak verir.

FIL, farklı biçimlerde kullanılabilir. Herhangi bir HDL kodu ile FIL aracılığıyla FPGA

programlanıp MATLAB ortamından gelen veriler FPGA’e gönderilerek sonuçlar yine

MATLAB ortamında gözlemlenip işlenebilir. Bu sayede FPGA’in paralel çalışabilme

özelliğinden yararlanılarak büyük veriler için işleme süresi kısaltılabilir. Doğrulama ve

test amaçlı kullanımda ise MATLAB ortamında model oluşturularak FPGA üzerindeki

HDL kodu ile aynı anda çalıştırılabilir ve hem modelin hem donanımın sonuçları

MATLAB ortamında gözlemlenebilir [14].

Bu çalışmada FIL doğrulama ve test amaçlı kullanılmıştır. Bu sayede tasarım

sırasında testlerin yapılması kolaylaşmıştır. Donanım tasarımına başlamadan önce

MATLAB ortamında model oluşturulmuş, yazılan HDL kodları FIL sayesinde
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modelle kıyaslanarak hatalar tespit edilmiştir. Kullanılan test senaryosu Şekil 3.1’de

gösterilmiştir.

Şekil 3.1 : FIL Test Senaryosu

FIL ile çalışılırken donanıma gönderilecek verilerin sabit noktalı olması

gerekmektedir. Bu nedenle MATLAB ortamında oluşturulan veriler HDL

kodunun girişlerinin bit genişliklerine uygun olacak şekilde sabit noktalı veri

tipine dönüştürülmelidir. Kontrol işaretleri de giriş verileriyle birlikte sürülerek çıkış

verileri MATLAB çalışma alanında incelenebilir veya işlenmeye devam edilebilir.
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4. DONANIM UYUMLU LDPC KOD ÇÖZME

LDPC kod çözücülerde donanım gerçeklemesi yapılırken teorik çalışmalarda

karşılaşılmayan sorunlar ortaya çıkmaktadır. Donanım mimarisine uygun tasarım

yapılırken bellek yönetimleri ve veri tipleri kod çözücünün çalışmasını etkilemektedir.

Bu bölümde LDPC kod çözücülerin donanım gerçeklemesi için uygun algoritmalar,

veri tipleri ve kod çözme çizelgeleri üzerine yapılan çalışmalar anlatılmıştır.

4.1 Literatürdeki Kod Çözme Algoritmaları

LDPC kodların çözümü konusunda literatürde sıklıkla kullanılan dört adet algoritma

bulunmaktadır: toplam-çarpım algoritması, min-toplam algoritması, dengelenmiş

min-toplam algoritması ve zayıflatılmış min-toplam algoritması [1,15]. Bunlar

arasında toplam-çarpım algoritması aynı zamanda kanı yayılımı algoritması olarak da

bilinir ve literatürde varsayılan kod çözme algoritmasıdır. Bu algoritmaların hepsinde

bit düğümlerinde yapılan işlem birebir aynı iken denetim düğümlerinde yapılan işlem

fark etmektedir. Buna göre, aşağıda da özetlendiği üzere, toplam çarpım algoritması

düğüme gelen mesajları 0.5 ile çarpıp hiperbolik tanjantını alır. Elde edilen mesajları

toplayarak ters hiperbolik tanjant alarak çıkış mesajını hesaplar. Bu işlem oldukça

karmaşık görünse de aslında gelen K-1 mesajı birleştirerek K. kenar için çıkış mesajını

hesaplar. Bu sırada, arka planda, K. kenarın bağlı olduğu bit düğümünün 0 veya 1

olması için gerekli tüm kombinasyonları değerlendirmiş olur. Örneğin, K. kenardaki

çıkış mesajının 0 olması için diğer K-1 girişin toplamının 0 olması gerekmektedir. Bu

da oldukça çok sayıda bit kombinasyonlarına karşılık gelmektedir. Toplam-çarpım

algoritmasındaki karmaşık giriş-çıkış ilişkisi bu kombinasyonların toplamlarına denk

gelmektedir.

Toplam-çarpım algoritması LDPC kodlar için en yüksek başarımı veren algoritma olsa

da hiperbolik tanjant işlevinin kullanımı hem hesap karmaşıklığını hem de donanım

gerçekleme karmaşıklığını çok arttırmaktadır. Bu nedenle, literatürde verilen donanım
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gerçeklemeleri genellikle min-toplam algoritmasını kullanır. Min-toplam algoritması

toplam-çarpım algoritmasındaki giriş-çıkış özelliklerini basitçe modellemeyi hedefler.

Şöyle ki, toplam-çarpım algoritmasının K-1 girişinin K. çıkış üzerine etkisi

incelendiğinde, K-1 girişten mutlak değer olarak en düşük olanının tüm işlemde baskın

olduğu ve K. çıkış için genellikle bu değerin çıktığı görülebilir. Bu gözleme dayanarak,

hiç hiperbolik tanjant hesabı yapılmadan girişler arasındaki en düşük değer doğrudan

çıkış mesajı olarak belirlenebilir. Min-toplam algoritması

R = sign× min
1≤i≤N

(|LLRi|) (4.1)

şeklinde ifade edilebilir. Bu şekilde kullanım yeteri kadar toplam-çarpım

algoritması başarımına benzemekteyken donanım gerçeklemesini çok büyük oranda

sadeleştirmektedir. Gelen mesajların karmaşık işlem devreleri veya tablolar

aracılığıyla hiperbolik tanjantları alınacağına sadece en küçük mutlak değere sahip

olanın belirlenmesi yetebilmektedir.

Min-toplam algoritmasının başarımını düşüren bir durum bulunmaktadır. Buna

göre, toplam-çarpım algoritmasına benzemesiyle ilgili olan gözlemde bir varsayım

bulunmaktadır. İlgili benzeme sadece gelen mesajlardan biri diğer K-2 mesaja göre

çok daha küçükse geçerlidir. Eğer en küçük mesaj değerine yakın olan başka mesajlar

da varsa bu durumda en küçük mesajı çıkış mesajı olarak seçmek aynı eşdeğerliği

sağlamamaktadır. Bu durumu düzeltmek için literatürde iki farklı algoritma daha

önerilmiştir. Bu algoritmalar, yine gelen mesajlardan en küçüğünü belirledikten sonra

hatayı en aza indirmek için bu mesajı birden küçük bir sayıyla çarparak veya bir değer

çıkararak zayıflatırlar. Böylece, algoritma çıkışının toplam-çarpım algoritmasına biraz

daha yaklaşmasını sağlarlar. Söz konusu algoritmalar dengelenmiş ve zayıflatılmış

min-toplam algoritmalarıdır. Dengelenmiş min-toplam algoritması

R = sign×max( min
1≤i≤N

(|LLR|−Co),0) (4.2)

ifadesiyle gösterilebilir. Denklem 4.2’de hatayı en aza indirmek için en küçük

mesajdan çıkarılan sayı Co ile gösterilmiştir. Zayıflatılmış min-toplam algoritması ise

R = sign×Ca× min
1≤i≤N

(|LLRi|) (4.3)
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biçiminde ifade edilir. Denklem 4.3’te en küçük mesaj ile çarpılan zayıflatma katsayısı

Ca ile gösterilmiştir. İlgili algoritmaların benzetimleri gerçekleştirilmiş ve örnek

olarak ele alınan bir LDPC kodu için blok hata oranının işaret gürültü oranına oranı

cinsinden Şekil 4.1’deki sonuçlara ulaşılmıştır.

Şekil 4.1 : Literatürdeki Kod Çözme Algoritmalarının Benzetim Sonuçları

Şekil 4.1’e göre, standart "Min-Toplam Algoritması" nın "Toplam-Çarpım

Algoritması" na göre kaybı yaklaşık 0.4 dB iken denenen diğer versiyonlar bu

kaybın 0.3 dB’lik kısmını geri kazanmaya izin vermekte ve çok daha düşük

karmaşıklıklarına rağmen toplam-çarpım algoritmasının başarımına göre sadece 0.1

dB kayıp göstermektelerdir. FPGA üzerinde donanım gerçeklemesi yapılırken

öncelikli olarak min-toplam algoritması değerlendirilecek olup bu tasarımın geçerlilik

testleri sonrasında dengelenmiş veya zayıflatılmış versiyona kolayca geçilebilecektir.

4.2 Kod Çözme Çizelgelerinin Karşılaştırılması

5G NR standardında tanımlanan LDPC kodların eşlik denetim matrisleri özel bir

yapıya sahiptir. Özellikle donanım gerçeklemesi sırasında paralel işleme özelliği

sağlasın diye ilgili matris öncelikle bir temel çizge olarak tanımlanır. Örneğin,

standartta tanımlanmış iki adet temel çizgeden biri 46 satır, 68 sütundan oluşur ve

Tablo 4.1’de gösterilmiştir. Şekil 4.2, Tablo 4.1’in mavi noktalar -1’den farklı olan

değerleri göstermek üzere görselleştirilmiş halidir.
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Şekil 4.2 : Tablo 4.1’de gösterilen 5G NR Temel Çizge 1 Matrisi

Bu temel çizgeden tam boyutlu bir eşlik denetim matrisi oluşturma, şekilde noktayla

gösterilmiş yerleri Z×Z boyutlu kaydırılmış birim matrislerle değiştirerek, boş yerleri

ise yine Z×Z boyutlu sıfır matrislerle değiştirerek elde edilir [16]. Örneğin, pratik

bir örnek için standartta belirlenen tablolardan Z=384 seçildiğinde Şekil 4.4’teki

tam boyutlu bir eşlik denetim matrisi elde edilir. Burada, görüleceği gibi her bir

kare ya 384×384 sıfır matrisini ya da 384×384 kaydırılmış birim matrisini gösterir.

Şekil 4.3’te, temel çizge matrisindeki ilk değer olan 307 değeri için 384 yükseltme

çarpanıyla elde edilen kaydırılmış 384×384 birim matris örnek olarak gösterilmiştir.

Elde edilen matrisin yapısına bakıldığında denetim düğümlerinin 46 adet, her biri

384 satırdan oluşan katmandan oluştuğu görülebilir. Bu katman içerisindeki 384

denetim düğümünün donanım tarafından eş zamanlı işlenebildiği varsayılır. Bu

konu göz önünde tutulduğunda kod çözme için birden fazla olanak elde edilir.

Bunlardan birincisi, literatürde paralel (parallel, flooding schedule) çizelge olarak

adlandırılan çizelgedir [17]. Paralel çizelgede kodun katmanlı yapısı göz ardı edilir

ve tüm 46×384=18.432 denetim düğümünün eş zamanlı olarak işlendiği varsayılır.

Bilgisayarda bu mümkün olsa da donanımda gerçekleştirmesi mümkün olmayan bir

çizelgedir. Bir diğer teknik ise kodun katmanlı yapısını göz önünde tutar ve her
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Şekil 4.3 : Tablo 4.1’de gösterilen 5G NR Temel Çizge 1 Matrisinin 384 Yükseltme
Çarpanı ve 307 Kaydırma Çarpanı ile Genişletilmiş (1,1) Elemanı

Şekil 4.4 : Tablo 4.1’de gösterilen 5G NR Temel Çizge 1 384 Yükseltme Çarpanı ile
Genişletilmiş Matris
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biri 384 denetim düğümünden oluşan katmanları birer birer işler. Bunu yaparken

eğer tüm katmanların paralel işlendiğini varsayarsak ortak bit düğümlerine erişmeye

çalışan katmanların mesajlarının çakışması nedeniyle kod çözücünün başarımı düşer.

Bunun yerine, donanımda gerçekleştirilmesi de daha makul olan ardışık katmanlı

çizelge düşünülebilir [18,19]. Bu çizelgede, bir katman işlendikten sonra elde edilen

mesajlar belleğe yazılır ve sonraki katmanın işlenmesine geçilir. Aynı yineleme

içerisinde, önceki katmanın ürettiği taze bilgi yeni katmanda da kullanıldığından bu

kod çözme çizelgesinin hata başarımı paralel çizelgeden bile iyidir. İlgili sonuçlar test

düzeneğinden bit hata oranının işaret gürültü oranına oranı cinsinden Şekil 4.5’teki

gibi elde edilmiştir:

Şekil 4.5 : Paralel, Paralel Katmanlı ve Seri Katmanlı Çizelge Karşılaştırılması

4.3 Kayan Noktalı ve Sabit Noktalı Kod Çözme Karşılaştırılması

LDPC algoritmaları genellikle kayan noktalı olarak belirtilmelerine rağmen donanım

üzerinde sabit noktalı olarak tasarlanmaları gerekmektedir [20]. Bu bölümde

gerçekleştirilen çalışmaların amacı kod çözücünün FPGA gerçeklemeleri sırasında

nasıl bir sabit noktalı veri gösteriminin tercih edilmesi gerektiğini ve nasıl bir

başarım beklenebileceğini önceden öngörebilmektir. FPGA gerçekleme sırasında

ikiye tümleyen veri gösterim formatı kullanılacaktır. Buna göre TCa.b biçiminde

tanımlayacağımız sistem bir sayıyı göstermek için toplam a tane bit kullanacak olup,

bu bitlerin b tanesi sayının kesirli kısmını göstermek, bir biti ise sayının işaretini
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göstermek için kullanılacaktır. Bu da tamsayı kısmı için a-b-1 tane bit bırakmaktadır.

Bit ve denetim düğümleri arasındaki mesajların TCa.b gösterimiyle kullanıldığı

kod çözücüde bit düğümlerin toplam mesajını göstermek için TCa+2.b gösterimi

kullanılacaktır. Böylece daha büyük tam sayılı mesajların da problemsiz gösterilmesi

amaçlanmaktadır. Min-toplam algoritmasının bit düğümlerinde gerçekleştirdiği

işlemlerde (5G standardına göre) yaklaşık 20 mesaj toplanabildiğinden, bu toplamı

sağlıklı gösterebilmek için bu ekstra iki bite izin verilmiştir. Çeşitli gösterim

biçimleri için kayan noktalı ve sabit noktalı bilgisayar benzetim sonuçları aşağıda

sunulmuş, her birinden sonra ilgili sonuçlar yorumlanmıştır. Bilgisayar benzetimleri

sırasında standartta belirtilen birinci temel çizge ele alınmış, kodlama oranı R=1/2

oranına uydurulmuş, Z=384 parametresi ile üretilmiştir. Bilgisayar benzetimleri BPSK

modülasyonu ile AWGN kanal üzerinde gerçekleştirilmiş ve kod çözücüye en fazla 70

yineleme yapma hakkı verilmiştir. Sonuçlar blok hata oranının işaret gürültü oranına

oranı cinsinden Şekil 4.6’da sunulmuştur.

Şekil 4.6 : 4 Bit Sabit Noktalı Kod Çözme

Şekil 4.6’da görüldüğü üzere toplam a=4 bit ile gösterilmeye çalışılan mesajlar kod

çözücüyü çok zayıflatmakta ve kayan noktalı kod çözücüye göre kabul edilemeyecek

derecede fazla hataya neden olmaktadır. Kod çözücünün çalışmadığı söylenebilir.

Bunun nedeni toplam 4 bitin nasıl dağıtılırsa dağıtılsın mesajları göstermeye
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yetmemesidir. Örneğin, TC4.1 gösteriminde gösterilebilecek en büyük sayı +4.5’tir

ve bu sayı kod çözücü içerisinde dolaşan mesajları çok ağır biçimde kısıtlamaktadır.

Şekil 4.7 : 5 Bit Sabit Noktalı Kod Çözme

Şekil 4.7’deki TC5.x gösterimine gelindiğinde görüldüğü gibi TC5.1 diğer aile

üyelerine göre kod çözücünün bir nebze çalışmasına olanak verse de yine kabul

edilemez kayıplar verdirmektedir.

Şekil 4.8’deki TC6.x gösterimine çıktığımızda ilk kez kabul edilebilir başarımlara

yaklaştığımızı görebiliriz. TC6.1 gösterimi kayan noktalı kod çözücüye göre yaklaşık

0.05 dB kayıp verse de en azından hata eğrisini takip edebilmektedir. TC6.2 ve TC6.3

gösterimleri eldeki 6 bitin çok fazla kısmını kesirli sayı için kullandıklarından dolayı

tamsayı kısmının kısıtlanmasını engelleyememektedirler.

Şekil 4.9’daki TC7.x gösterimlerinde TC7.1 ve TC7.2 gösterimlerinin kayan noktalı

sonuçlara yeteri kadar yakın oldukları gözlemlenmektedir. TC7.2 gösteriminin kayan

noktaya en yakın sonuçları vermesi bu kod için kod çözücünün 1 işareti biti + 4 tamsayı

biti + 2 kesir biti ile belirlenen sınırları beğendiğini göstermektedir. Bu gösterimde

gösterilebilecek en yüksek sayı +16.75’tir.

Şekil 4.10’da ve Şekil 4.11’de görülebileceği üzere TC8.x ve TC9.x ailelerinin

başarımları neredeyse aynıdır. Önceki TC7.x ailesiyle karşılaştırıldığında artık

TC8.2, TC8.3, TC9.2, ve TC9.3 gösterimlerinin yeterli hassasiyete sahip olup kayan
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Şekil 4.8 : 6 Bit Sabit Noktalı Kod Çözme

Şekil 4.9 : 7 Bit Sabit Noktalı Kod Çözme

noktalı kod çözücünün başarımı tamamen yakaladığı görülmektedir. TC8.1 ve TC9.1

gösterimlerinde tamsayılar için çok sayıda bit ayrılmış olmasına rağmen kesirli

kısım için tek bit ayrılmasının hata eğrisinde bir miktar kaymaya neden olduğu da

gözlenmiştir.
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Şekil 4.10 : 8 Bit Sabit Noktalı Kod Çözme

Şekil 4.11 : 9 Bit Sabit Noktalı Kod Çözme

Elde edilen bu benzetim sonuçlarına göre donanım gerçekleme sırasında elde

bulunacak imkanlara göre TC6.1 veya TC7.2 gösterimlerinden birinin seçilmesinin

hata başarımını korumak adına doğru olacağı sonucuna ulaşılmıştır.
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5. FPGA ÜZERİNDE KOD ÇÖZÜCÜ TASARIMI

Bu bölümde LDPC kod çözücünün donanıma uygun bir şekilde tasarımının yapılması

ve eşlik denetim biriminin FIL ile test edilmesi süreçleri anlatılmıştır. LDPC kod

çözücü yapısında bulunan bit düğümü güncellemeleri donanım gerçeklemesinde

mesajların toplanmasıyla yapılabildiği için eşlik denetim biriminin içinde

tasarlanmıştır ve bu bölümde anlatılan bellek erişim yöntemiyle gerçekleştirilmiştir.

5.1 Literatürdeki Donanım Gerçeklemeleri

LDPC kod çözücüler için literatürde önerilmiş farklı kablosuz haberleşme

standartlarına uygun donanım tasarımları bulunmaktadır. Bu tasarımların

odaklandıkları ortak noktalar verilerin bellekte saklanması, bellek erişimleri ve paralel

çalışma konularıdır. LDPC kod çözücünün girişine gelen verilerin matris yapısına

uygun olarak sıralanarak RAM’lerde saklanması gerekmektedir. RAM genişliklerinin

ayarlanabilir olmasından faydalanarak birden çok mesaj bir arada saklanabilir ve

erişilebilir [21]. Bu sayede paralel çalışan CNU tasarımlarıyla yüksek veri hacmi

sağlanabilir. RAM’leri verimli kullanmak için yapılan bu uygulama sonucunda bellek

erişimleri için yeni stratejiler kullanılması gerekmektedir. Çözüm olarak literatürdeki

çalışmalarda RAM’lere erişirken bit karıştırma ve çembersel bit kaydırma yöntemleri

önerilmiştir [22]–[24]. Matristeki bağlantılara göre ROM’larda saklanan bit kaydırma

değerleri kullanılarak RAM’lerde birlikte saklanan veriler tek okuma esnasında doğru

sıralamayla bit düğümü birimlerine ve denetim düğümü birimlerine dağıtılabilir.

İşlenen veriler RAM’lere geri yazılırken ise yine ROM’da saklanan aynı değerlerle ters

karıştırma veya ters bit kaydırma yapılarak tekrar doğru yerlere yazılır. Bu okuma ve

yazma işlemleri yapılırken RAM erişimlerinde çakışma olmaması için uygun denetim

düğümü birimleri ve erişim sıralamaları önerilmiştir [25]. Denetim düğümlerinin

gecikmeleri dikkate alınarak çalışmalarının sıralanması gerekmektedir. Bir katmanın

çalışması sonrası veriler yazılmadan önce bir sonraki katmandaki okumalarda aynı
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adrese erişilmeye çalışılıyorsa çakışmalar oluşur. Bunların sonucunda güncellenmemiş

veriler bir sonraki katmana aktarılır ve sonuçlar RAM’de aynı adresin üstüne

yazılır. Bu durumu önlemek için erişim sıralamalarının düzenlenmesi gerekir.

Farklı LDPC matrisleri ve donanım gerçeklemeleri için erişim sıralamaları değişiklik

göstermektedir.

5.2 Donanıma Uygun CNU Yapısı

Literatür üzerine yapılan çalışmalar sonucunda donanımda gerçeklemek için en uygun

yapının min-toplam algoritması kullanılarak elde edilebileceğine karar verilmiştir. Bu

algoritma hem düşük karmaşıklığa sahip olması hem de sıralı erişime uygun olması

açısından FPGA üzerinde çalıştırılmaya uygundur. Sabit noktalı yapılacak tasarım için

mesajların 6 bit genişliğinde tutulması modelde yapılan performans testleri sonucunda

uygun bulunmuştur. Bu bit genişliğine göre belirlenen parametreler Tablo 5.1’de

gösterilmiştir.

Tablo 5.1 : CNU Parametre Listesi

Parametre Değer Açıklama
SO_WIDTH 8 SO girişinin bit genişliği

EXT_WIDTH 6 Extrinsic girişinin bit genişliği

Bit düğümlerinden gelen mesajlar SO_WIDTH, denetim düğümlerinden gelen

mesajlar ise EXT_WIDTH olarak adlandırılmıştır. Denetim düğümü mesajları,

bit düğümlerinde toplandığı için bit düğümlerinde bit genişliği 2 bit daha fazla

tanımlanmıştır. Bu değerlerin parametrik tanımlanması sayesinde istenildiği durumda

arttırılıp azaltılarak performans-alan kullanımı arasında tercihler yapılabilmektedir.

CNU girişinde bit düğümlerinden ve denetim düğümlerinden gelen mesajları sıralı

bir şekilde almaktadır. Anlamlı mesajlar veri geçerli işaretiyle belirtilmektedir.

Gelen mesaj bloğunun sonuna gelindiği ise blok sonu işareti ile belirtilmektedir.

CNU girişine veri almaya hazır olduğunda dışarıya bir hazır işareti göndermektedir.

Sıfırlama sinyali asenkron ve aktif düşük olacak şekilde tasarlanmıştır. CNU

girişine gelen bit düğümü ve denetim düğümü mesajlarının her birini karşılık birer

SO ve mesaj çıkışı göndermektedir. Bu sayede hem bit düğümünün hem de

denetim düğümünün güncellemesi aynı anda yapılabilmektedir. Mesajlar üretilirken

26



bit düğümü güncellemesi için ayrı bir zaman planlaması yapılmasına ve donanım

harcamasına gerek kalmamaktadır.

CNU giriş ve çıkış işaretleri ve açıklamaları Tablo 5.2’de gösterilmiştir.

Tablo 5.2 : CNU Giriş ve Çıkış İşaretleri

İsim Yön Genişlik Açıklama
i_clk Giriş (I) 1 Saat işareti
i_rstn Giriş (I) 1 Sıfırlama işareti
i_eof Giriş (I) 1 Blok sonu işareti

i_valid Giriş (I) 1 Veri geçerli işareti
i_SO Giriş (I) SO_WIDTH Giriş verisi

i_extrinsic Giriş (I) EXT_WIDHT Giriş verisi
o_SO Çıkış (O) SO_WIDTH Çıkış verisi

o_message Çıkış (O) EXT_WIDHT Çıkış verisi
o_valid Çıkış (O) 1 Veri geçerli işareti
o_ready Çıkış (O) 1 CNU hazır işareti

Yüksek veri hacmi elde edebilmek için CNU içindeki işlemler belirli adımlarda

paralelleştirilerek tasarlanmıştır. Geçerli ilk giriş çifti CNU girişine geldikten sonra ilk

aşama bu iki girişin birbirinden çıkarılarak sonucun çıkarma dizisi olarak adlandırılan

dizide tutulmasıdır. İkinci aşamada, birinci aşamadaki işlemden sonra elde edilen

sonucun işareti biti işaret dizisinde tutulur. Bütün girişler alınırken bir sayaç tutularak

bu dizilerin hangi elemanında tutulacağı sayaca göre belirlenir. Elde edilen değerin

mutlak değeri alınır ve bu değer de mutlak değer dizinde tutulur ve böylece ikinci

aşama tamamlanmış olur. Üçüncü aşamada mutlak değerler arasından en küçük olan

iki tanesini bulmak için sürekli bir kıyaslama yapılır. Her giriş alındığında en küçük

mutlak değer elde edilip edilmediğine bakılır ve buna göre yazmaçlar güncellenir. Blok

sonu işareti gelene kadar bu şekilde işlemler ve kıyaslamalar yapılmaya devam edilir.

5G NR Temel Çizge 1 için en fazla 19 adet giriş kıyaslanmaktadır. Bu nedenle diziler

de 19 elemana sahip olacak şekilde tasarlanmıştır.

Blok sonu işareti geldikten ve girişlerin işlenmesi tamamlandıktan sonra çıkışların

üretilmesi aşamasına geçilir. En küçük değeri tutan yazmaçlardaki değer, her bir giriş

için tutulmuş olan mutlak değer dizisiyle kıyaslanarak hangi çıkışın en küçük değere

karşılık olan çıkış olduğu tespit edilir. Gelen bütün girişlerin işaretlerinin çarpımı, o
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anda çıkışa verilecek veri ile girişin işaret yazmacında tutulmuş işaretiyle çarpılarak

çıkışın işaretine karar verilir ve mesaj aşağıdaki biçimde oluşturulur:

• En küçük mutlak değere sahip giriş için oluşturulan mesaj :

• (İşaret biti)(En küçük ikinci mutlak değer)

• Diğer girişler için oluşturulan mesaj :

• (İşaret biti)(En küçük mutlak değer)

Denetim düğümü güncellemesi için üretilecek olan mesaj bir önceki adımdaki sonucun

kuantalanmasıyla elde edilmiş olur. Bu mesaj ilk aşama sonucunda elde edilen çıkarma

dizisindeki ilgili eleman ile toplanıp kuantalanarak bit düğümü güncellemesi için

gerekli mesaj da elde edilmiş olur.

Girişlerin alındığı sıraya uygun olarak oluşturulmuş olan mesajlar çıkışa verilir ve

geçerli işaretiyle belirtilir. Bu düzende çalışan CNU donanım yapısı Şekil 5.1’de

gösterilmiştir.

Şekil 5.1 : CNU Donanım Yapısı

LDPC matrisindeki katmanlar arasındaki güncellemelerin kesintisiz olarak

gerçekleşebilmesi için CNU çıkışa geçerli verileri gönderirken girişten yeni veri kabul

edebilmelidir. Aksi durumda ilk katmanın düğümleri güncellendikten sonra ikinci

katmanı güncelleyebilmek için tekrar bütün girişlerin alınıp işlenmesinin beklenmesi

gerekmektedir. Bu amaçla Şekil 5.2’deki durum makinesi oluşturulmuştur.

Her giriş alındığında değeri arttırılan sayaç yazmacında blok sonu işareti ile birlikte

elde edilen değer K sayacının değerini belirler ve çıkışlar üretilirken yazma sayacının
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Şekil 5.2 : CNU Durum Makinesi

sayacağı değeri hesaplamak için kullanılır. Bu sayede hem dizilerin elemanları bu

sayaca göre seçilir hem de uygun sayıda çıkış üretilmiş olur. Çıkış verilirken yeni

girişler alındığında bekleme işareti ile üçüncü bir giriş alınması engellenir ve hazır

işareti sıfır değerine çekilir. Bekleme durumu bittiğinde hazır işareti verilir ve yeni

girişler alınmaya devam edilir.

5G NR LDPC matrislerinin yapısından dolayı CNU girişe gelen blokların uzunlukları

farklılık göstermektedir. Örneğin, 5G NR Temel Çizge 1’de en fazla 19, en az

3 elemanlı bloklar gelebilmektedir. Arka arkaya gelen iki bloğun ilkinin eleman

sayısı 19, ikincisinin eleman sayısı 3 olduğu durumda daha ilk bloğun çıkışlarının

üretilmesi tamamlanmadan ikinci bloğun girişlerinin işlenmesi tamamlanmaktadır.

Böyle durumlarda verilerinin kaybolmaması için çıkışlar verilmeye başlamadan ilgili

yazmaçlar yedeklenir ve ikinci bloğun girişlerin işlenmesinin bittiğini ve dizileri

doldurduğu belirten bir bekleme işareti oluşturulur. Bu işaret aktif olduğu sürece

CNU hazır işareti düşürülür. İlk bloğun çıkışları tamamlanıp ikinci bloğun çıkışları

verilmeye başlandığında CNU hazır işareti tekrar aktif olur ve girişten geçerli veriler

alınabilir. Bu sayede bütün CNU, bütün LDPC matrisleriyle uyumlu çalışabilmesine

imkan sağlayacak bir kontrol mekanizmasına sahip olmuş olur.

5.3 FIL Destekli CNU Tasarımı

CNU tasarımı sırasında min-toplam algoritmasının ve zamanlama yapılarının

çalışmasını doğrulayabilmek için FIL kullanılmıştır. Bu sayede hızlı bir şekilde

doğrulama yapılarak tasarımın FPGA üzerinde çalışması gözlemlenebilmiştir.
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FILWizard başlatıldığında Şekil 5.3’te gösterilen ekranda konfigürasyonlar yapılmıştır.

FIL testleri için Zedboard kullanılmıştır. MATLAB ortamı ile FPGA arasındaki

bağlantı JTAG ile sağlanmıştır. FPGA sistem saat frekans 25 MHz olarak seçilmiştir.

FIL benzetimi, daha esnek bir çalışma ortamı sağladığından MATLAB sistem objesi

ile yapılmıştır.

Şekil 5.3 : FIL Birinci Adım

Bir sonraki adımda CNU için yazılmış olan VHDL kodları eklenerek üst seviyede olan

dosya Şekil 5.4’te gösterildiği gibi seçilmiştir.

Şekil 5.5’te gösterildiği şekilde CNU kodunun giriş çıkışları için veri tipleri seçilmiştir.

Saat işareti, sıfırlama işareti ve veri işareti olarak üç ayrı türde ayarlanmıştır. Sıfırlama

işareti tasarımda kullanıldığı şekilde aktif düşük olarak seçilmiştir. Bit genişliklerini

FIL tespit ederek göstermiştir.

Şekil 5.6’da CNU çıkışlarının veri tipleri ve işaretleri belirlenmiştir. Kesirli kısımlar

min-toplam algoritmasında bir değişiklik yaratmadığı için sıfır olarak bırakılmıştır.
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Şekil 5.4 : FIL İkinci Adım

Şekil 5.5 : FIL Üçüncü Adım
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Şekil 5.6 : FIL Dördüncü Adım

Son adımda ise Şekil 5.7’de görüldüğü gibi FIL kodlarının oluşturulacağı dosya

seçilerek kodlar üretilmiştir.

Zedboard bilgisayara JTAG kablosuyla bağlanarak MATLAB tarafından algılanmıştır.

FPGA programlamak için üretilen kod çalıştırılarak CNU kodu ve JTAG bağlantısı için

gerekli bloklar FPGA’e yüklenmiştir. Oluşturulan FIL sınıfı kullanılarak giriş üretmek

ve FIL ile test edip modelle kıyaslamak için gereken kod yazılmıştır. CNU FIL kodları

EK A’da paylaşılmıştır. Üretilen CNU FIL Sınıfı EK B’de, CNU FPGA Programlama

FIL Kodu ise EK C’de paylaşılmıştır.

CNU FIL kodları ile yapılan bir test için uygulanan girişler Şekil 5.8’de gösterilmiştir.

Girişler sabit noktalı olarak verilmiştir. İlk sütunda bulunan girişler bit düğümlerinden

gelen verilerdir. İkinci sütunda bulunan girişler ise denetim düğümlerinden gelen

verilerdir. Bu veriler her saat darbesinde sırayla ve geçerli işaretiyle CNU girişine

gönderilmiştir. Son verilerle birlikte blok sonu işareti de gönderilmiştir.

Şekil 5.9’da FIL sonuçları gösterilmiştir. Sonuçlar yine sabit noktalı olarak elde

edilmiştir. FPGA üzerinde gerçeklenmiş olan CNU, bit düğümlerinden ve denetim

düğümlerinden gelen verilerin farkını almıştır. Bu farkların mutlak değerleri üzerinden
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Şekil 5.7 : FIL Beşinci Adım

Şekil 5.8 : FIL Girişleri

çalışan min-toplam algoritması sonucunda en küçük mesaj 3, ikinci en küçük mesaj

ise 6 olarak belirlenmiştir. Girişlerin işaretlerine göre pozitif veya negatif olarak

belirlenen mesajlar üçüncü ve dördüncü sütunda gösterilmiştir. Üçüncü sütundaki

mesajlar FIL ile FPGA üzerinden gelen mesajlar, dördüncü sütundaki mesajlar ise

MATLAB modelinin sonucunda elde edilen mesajlardır. Bu mesajlar en başta elde

edilen bit düğümlerinin ve denetim düğümlerinin farklarıyla toplanarak bit düğümü

güncellemesi de yapılır. Bu sonuçlar donanım için birinci sütunda, model için ikinci

sütunda gösterilmiştir.
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Şekil 5.9 : FIL Sonuçları

MATLAB ekranında görülen Şekil 5.8’deki ve Şekil 5.9’daki girişler ve çıkışlar

incelendiğinde donanım üzerinde gerçeklenmiş CNU ile MATLAB ortamındaki

modelin birbirleriyle bit-uyumlu olarak çalıştığı doğrulanabilmektedir. Bu sayede

hem model tasarımı hem de model ve donanım doğrulama aynı ortamda

gerçekleştirilebilmiştir.

FIL ile CNU doğrulaması yapıldıktan sonra klasik yöntemlerle de doğrulama yapmak

için bir VHDL test dosyası oluşturulmuştur. Oluşturulan bu dosya EK D’de

paylaşılmıştır. VHDL test dosyası ile yapılan testlerde MATLAB modelinden dosyaya

yazılan girişler kullanılmıştır. MATLAB modeli sonuçları Şekil 5.10’da gösterilmiştir.

Donanım benzetimi sonuçları Şekil 5.11’de gösterilmiştir.

Şekil 5.10 : MATLAB Ortamında CNU Modeli Sonuçları

Şekil 5.10’da gösterilen MATLAB ortamında giriş ve çıkış verileri gözlemlenmiş ve

dosyalara yazılmıştır. Böylece donanım için gereken test dosyalarında kaynak olarak

bu dosyalar verilebilmektedir. MATLAB ortamı ile donanım benzetimi arasındaki

bağlantı bu şekilde kurulmaktadır. Bu yöntemle yapılan donanım benzetimi sonuçları

Şekil 5.11’de verilmiştir.
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Fonksiyonel doğrulaması tamamlanan CNU, Vivado ortamında 200 MHz saat

frekansında sentezlenerek alan kullanımı incelenmiştir. Sonuçlar Tablo 5.3’te

gösterilmiştir.

Tablo 5.3 : CNU Sentez Sonuçları

İsim LUT Yazmaç F7 Mux F8 Mux Bonded IOB BUFGCTRL
CNU 413 645 48 10 34 1

5.4 LDPC Kod Çözücü Üst Seviye Mimarisi

CNU tasarımı, FIL ile doğrulandıktan sonra LDPC Kod Çözücü içerisinde kullanılmak

üzere bir üst seviye mimarisi tasarlanmıştır. Bu tasarım için 5G NR LDPC Temel

Çizge 1, yükseltme çarpanı 4 olan matris seçilmiştir. Bu matristeki -1 dışında herhangi

bir değere sahip olan bütün elemanlar bir bağlantıyı işaret etmektedir. Eğer bütün

bağlantılar aynı anda işlenmek istenirse bağlantı sayısı kadar CNU, FPGA üzerinde

gerçeklenmelidir. Temel Çizge 1, yükseltme çarpanı 4 olan matriste bu bağlantı sayısı

1264’tür, en büyük yükseltme çarpanında ise bu sayı 121344 olabilmektedir. Bu

kadar fazla sayıda CNU gerçeklemek alan kullanımı açısından Tablo 5.3’te bir tane

CNU’nun alan kullanımı incelendiğinde uygulanabilir değildir. Bu nedenle LDPC

matrisi katmanlı bir yapıda incelenerek her bir satır seri katmanlar halinde işlenmiştir.

Yükseltme çarpanı 4 olduğu için temel çizgenin her bir satırı 4×4 boyutunda bir

matris oluşturmaktadır. Bu 4×4 boyutlu matrisin paralel olarak işlenmesi mümkündür.

Bu amaçla FPGA üzerinde sadece 4 adet paralel çalışan CNU gerçeklenmiştir. Bit

düğümlerindeki ve denetim düğümlerinde verileri depolamak için RAM kullanılmıştır.

CNU’ların paralel çalışabilmesi için hafıza erişimi önemli bir yer tutmaktadır.

Tasarlanan mimaride kanaldan gelen veriler dörtlü gruplar halinde birleştirilerek RAM

satırlarına yazılmıştır. Bu sayede aynı saat darbesinde okunan veriler ayrılarak CNU

girişlerine gönderilebilmektedir. LDPC matrisindeki 68 sütundan her biri RAM’de

bir satıra denk gelmektedir. 4 veri birleştirildiği için yükseltme çarpanı 4 ile oluşan

matristeki 272 sütun 68 satıra sığdırılabilmektedir. LDPC matrisi kaydırılmış birim

matrislerden oluştuğu için veriler RAM’den okunduktan sonra CNU’lara gönderilirken

bu birim matrislere göre bit kaydırma işlemi yapılması gerekmektedir. Bit düğümünde

saklanan veriler 8 bit olduğu için 4 tanesinin birleştirilmesiyle 32 bitlik bir veri elde
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edilmektedir. Bu verinin 2 kere kaydırılması gerekiyorsa aşağıda gösterildiği biçimde

bit kaydırma işlemi uygulanır:

• RAM’den okunan veri:

• 01010101000000001111111110101010

• LDPC matrisinde ilgili sütundaki sayı: 2

• Bit kaydırma miktarı:

• 2*8 = 16

• Bit kaydırma işleminin sonucu:

• 11111111101010100101010100000000

• Birinci CNU girişi:

• 11111111

• İkinci CNU girişi:

• 10101010

• Üçüncü CNU girişi:

• 01010101

• Dördüncü CNU girişi:

• 00000000

Denetim düğümlerinden gelen mesajlar ise aynı şekilde altılı bit grupları halinde

kaydırılırlar. RAM’leri ve CNU’ları içeren üst seviye mimarisi Şekil 5.12’de

gösterilmiştir.

LDPC kod çözücünün donanım gerçeklemesinde adres üretimi için seri katmanlı

çizelge uygulanmıştır. Temel çizgenin her katmanı 4 satır, 272 sütun içeren bir matrise

karşılık gelmektedir. Her katmandaki 4 satır, 4 CNU ile paralel olarak işlenmiştir. Bir
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Şekil 5.12 : LDPC Kod Çözücü Üst Seviye Mimarisi

katmandaki her girişin okunması ve yazılması seri olarak yapılmıştır. Bu 4 paralel

işlemde yapılacak okuma ve yazma işlemlerinin sayısı katman içinde birbirine eşittir.

5G NR LDPC Temel Çizge 1 için her bir katmandaki bağlantı sayısı Tablo 5.4’te ve

Tablo 5.5’te verilmiştir.

Temel çizgede her bağlantının kendi kaydırma miktarı bulunmaktadır. Bu miktara göre

bit kaydırma işlemi yapılarak CNU girişlerine veriler gönderilmektedir. Yüksek veri

hacmi sağlamak için bir katman bütün okumalarını bitirdiğinde yazmasını bitirmesini

beklemeden bir sonraki katmanın okumaları yapılmaya başlanmaktadır. Katmanlar

arasındaki geçişler sırasında 5G NR standardında verilen düzende çalışıldığında

bir önceki katman henüz RAM’i güncellemeden bir sonraki katmanın aynı adrese

erişmeye çalışması ve CNU’lara güncellenmemiş verileri göndermesi durumuyla

karşılaşılmaktadır. Bu çalışmada, RAM erişimlerindeki çakışmaları çözmek için

farklı bir erişim sıralaması önerilmiştir. Katman içindeki okumalarda adreslere erişim

sıralaması sonucu etkilememektedir. Bu sayede, adresler özgün bir biçimde sıralanarak

güncellenmemiş verilerin bir sonraki katmanda okunmalarının önüne geçilmiştir.

Önerilen erişim sıralaması Tablo 5.6’da ve Tablo 5.7’de verilmiştir.
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Tablo 5.4 : İlk 21 Katman İçin Temel Çizge 1 Bağlantı Sayıları

Katman Numarası Bağlantı Sayısı
1 19
2 19
3 19
4 19
5 3
6 8
7 9
8 7
9 10

10 9
11 7
12 8
13 7
14 6
15 7
16 7
17 6
18 6
19 6
20 6
21 6

Önerilen erişim sıralaması sayesinde beşinci katman dışındaki bütün katmanlardaki

çakışmalar önlenebilmektedir. Beşinci katmanda sadece üç okuma yapıldığı için de

sıralama yapmaya yetmemektedir. Bu değerler ROM yapılarında tutularak iterasyon

sırasında sırayla erişilmektedir. Çakışmalar yoğunluklu olarak ilk 21 katman arasında

gerçekleştiği için erişim sıralaması özellikle bu katmanlarda uygulanmıştır.

Denetim düğümü verileri her katman için ayrı üretildiğinden bit düğümlerinin verileri

gibi birbirlerinin üzerine yazılmamaktadır. Bu nedenle ayrı ayrı olarak RAM’de

316 satırda tutulmaktadır. Her bağlantının oluşturduğu mesajlar için bir adres

üretilmektedir. Bilgi bitlerinin ilk iki grubu kanaldan gönderilmediği için bu bitler

yerine sıfır değeri RAM’lere yazılır. LDPC kod çözücü çalışırken birinci iterasyon

denetim düğümlerinde henüz mesajlar bulunmamaktadır. İlk iterasyonda bu mesajlar

yerine sıfır değeri verilerek sonuçlar RAM’de tutulur. Sonraki iterasyonlar adres

üretilerek RAM’e erişilir ve denetim düğümü mesajları CNU’lara iletilir. İterasyonlar

tamamlandığı bit düğümlerinde güncellenen verilerin işaret bitlerine bakılarak sert
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Tablo 5.5 : Kalan Katmanlar İçin Temel Çizge 1 Bağlantı Sayıları

Katman Numarası Bağlantı Sayısı
22 6
23 5
24 5
25 6
26 5
27 5
28 4
29 5
30 5
31 5
32 5
33 5
34 5
35 5
36 5
37 5
38 4
39 5
40 5
41 4
42 5
43 4
44 5
45 5
46 4

karar mekanizması çalıştırılır. Karar verilen bitler 4 bit birleştirilerek LDPC kod

çözücü çıkışına verilir ve geçerli işaretiyle belirtilir.

LDPC kod çözücünün üst seviye kodlarını doğrulamak için bir VHDL test dosyası

oluşturulmuştur. Oluşturulan bu dosya EK E’de paylaşılmıştır. VHDL test dosyası ile

yapılan testlerde MATLAB modelinden dosyaya yazılan girişler kullanılmıştır. LDPC

kod çözücü iki iterasyon için ayarlanarak çalıştırılmıştır. Uygulanan giriş dosyası EK

F’de paylaşılmıştır. MATLAB modeli ve donanım sonuçları birbiriyle bit uyumlu

olarak elde edilmiş ve Tablo 5.8’de gösterilmiştir. Donanım benzetimi sonuçları ve

zamanlamaları Şekil 5.13, Şekil 5.14 ve Şekil 5.15’te gösterilmiştir.

Şekil 5.13’te LDPC kod çözücünün girişine gelen verileri RAM’e yazma aşaması

gösterilmiştir. Girişler bir saat darbesi geciktirilerek RAM’e yazma sinyali

ayarlanmaktadır ve blok sonu işareti gelene kadar yazılmaya devam etmektedir.
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Tablo 5.6 : İlk 21 Katman İçin Önerilen Erişim Sıralaması

Katman Numarası Bit Düğümü Sıralaması
1 1, 3, 6, 10, 16, 20, 7, 11, 14, 19, 21, 4, 12, 13, 17, 22, 23, 24, 2
2 5, 1, 3, 6, 10, 16, 20, 8, 9, 15, 18, 25, 4, 12, 13, 17, 22, 23, 24
3 2, 5, 1, 3, 6, 10, 16, 20, 8, 9, 15, 18, 7, 11, 14, 19, 21, 26, 25
4 4, 2, 5, 1, 12, 13, 17, 22, 23, 8, 9, 15, 18, 7, 11, 14, 19, 21, 26
5 1, 2, 27
6 4, 13, 1, 17, 22, 23, 28, 2
7 7, 11, 12, 1, 14, 18, 19, 21, 29
8 2, 5, 8, 9, 1, 15, 30
9 4, 2, 13, 17, 20, 1, 22, 23, 25, 31

10 11, 12, 2, 14, 18, 19, 21, 32, 1
11 3, 5, 8, 2, 9, 15, 33
12 1, 13, 17, 22, 2, 23, 24, 34
13 11, 1, 12, 14, 19, 35, 2
14 4, 8, 1, 21, 24, 36
15 13, 16, 17, 1 18, 22, 37
16 2, 11, 14, 19, 26, 38, 1
17 4, 12, 21, 23, 39, 2
18 1, 15, 17, 18, 22, 40
19 2, 13, 14, 19, 20, 41
20 1, 8, 9, 11, 42, 2
21 4, 10, 12, 23, 43, 1

Şekil 5.14’te LDPC kod çözücünün çıkışlarının oluşturulması aşaması gösterilmiştir.

RAM’de güncellenmiş mesajların işaretlerine bakılarak sert karar mekanizması

çalıştırılmaktadır. Dört adet mesaj bir arada saklandığı için tek okuma yapılarak her

seferinde dört bit çıkış verilebilmektedir.

Şekil 5.15’te LDPC kod çözücü iterasyonları sırasında RAM adreslerinin değişimi

gösterilmiştir. Tablo 5.6’da önerilen erişim sıralamasına uygun olarak adresleme

yapıldığı gözlemlenmektedir. RAM’deki ilk adres sıfırdan başladığı için Tablo 5.6’daki

ve Tablo 5.7’deki adreslerin bir eksiği biçiminde adresleme yapılmaktadır. RAM’de

okuma yapmak bir saat darbesi sürdüğü için CNU girişine geçerli işareti verilmeden 1

saat darbesi öncesinde adresler oluşturulmaktadır.

LDPC kod çözücü üst seviye giriş ve çıkış işaretleri ve açıklamaları Tablo 5.9’da

gösterilmiştir.

LDPC kod çözücü iki iterasyon yaparak çalıştırıldığında ilk geçerli girişi almasından

sonra geçerli çıkış vermesine kadar 1219 saat darbesi geçmiştir. Tek iterasyon yaptığı
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Tablo 5.7 : Kalan Katmanlar İçin Önerilen Erişim Sıralaması

Katman Numarası Bit Düğümü Sıralaması
22 2, 6, 17, 21, 22, 44
23 1, 13, 14, 18, 45
24 2, 3, 11, 19, 46
25 1, 4, 5, 12, 23, 47
26 2, 7, 8, 15, 48
27 1, 3, 5, 16, 49
28 2, 7, 9, 50
29 1, 5, 20, 22, 51
30 2, 15, 19, 26, 52
31 1, 11, 14, 25, 53
32 2, 8, 23, 26, 54
33 1, 13, 15, 25, 55
34 2, 3, 12, 22, 56
35 1, 8, 16, 18, 57
36 2, 7, 13, 23, 58
37 1, 15, 16, 19, 59
38 2, 14, 24, 60
39 1, 10, 11, 13, 61
40 2, 4, 8, 20, 62
41 1, 9, 18, 63
42 2, 4, 10, 19, 64
43 1, 5, 25, 65
44 2, 17, 19, 26, 66
45 1, 8, 10, 23, 67
46 2, 7, 11, 68

durumda kod çözme işlemi 655 saat darbesi sürmektedir. LDPC kod çözücünün

çıkışına verdiği toplam bilgi biti sayısı I ile gösterilirse

I = 22×Z (5.1)

şeklinde ifade edilebilir. Denklem 5.1’de yükseltme çarpanı Z ile gösterilmiştir.

Tasarlanan LDPC kod çözücü üst seviyesi mimarisi ile elde edilebilecek veri hacmi

VeriHacmi =
22×Z × f

655+(564× (IterasyonNo−1))
(5.2)

biçimde belirlenebilir. Denklem 5.2’de veri hacmi hesaplanırken saat frekansı f,

LDPC kod çözücünün yaptığı toplam iterasyon sayısı İterasyonNo ile ifade edilmiştir.

Karşılaştırma yapabilmek amacıyla 400 MHz saat frekansında, kodlama oranı 0.324
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Tablo 5.8 : LDPC Kod Çözücü Model ve Donanım Benzetimi Sonuçları

Satır Numarası Sonuç Bitleri
1 1100
2 1000
3 0110
4 1000
5 1100
6 1111
7 1001
8 0011
9 1110

10 1101
11 1001
12 1100
13 0100
14 0011
15 0111
16 1110
17 0100
18 0110
19 1011
20 1010
21 0110
22 1101

Tablo 5.9 : LDPC Kod Çözücü Üst Seviye Giriş ve Çıkış İşaretleri

İsim Yön Genişlik Açıklama
i_clk Giriş (I) 1 Saat işareti
i_rstn Giriş (I) 1 Sıfırlama işareti
i_eof Giriş (I) 1 Blok sonu işareti

i_valid Giriş (I) 1 Veri geçerli işareti
i_ready Giriş (I) 1 Hazır işareti
i_data Giriş (I) 32 Giriş verisi
o_eof Çıkış (O) 1 Blok sonu işareti

o_valid Çıkış (O) 1 Veri geçerli işareti
o_ready Çıkış (O) 1 Kod Çözücü hazır işareti
o_data Çıkış (O) 4 Çıkış verisi

ve 8 iterasyon seçilerek elde edilebilecek veri hacimlerinin [26] ile kıyaslaması Tablo

5.10’da verilmiştir. [27] bütün kod çözme zincirinin veri hacmini gösterdiği için 268

MHz saat frekansında, verilen en yüksek kodlama oranında ve 8 iterasyon için olan

sonuçlar paylaşılmıştır. Yükseltme çarpanı 4 için gerçekleme yapılmıştır. Yükseltme

çarpanının artması ile Şekil 5.12’de blok diyagramı gösterilen gerçeklemede paralel
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çalışan CNU sayısı artmaktadır. Frekansın düşmesine sebep olacak kritik yola

herhangi bir ek gelmeyecektir. Bu sebeple, frekans değeri korunarak yükseltme

çarpanının dörtten büyük olduğu diğer gerçeklemeler için Denklem 5.2 kullanılarak

veri hacmi hesabı yapılmıştır.

Tablo 5.10 : LDPC Kod Çözücü Veri Hacmi Kıyaslaması

Yükseltme Çarpanı Veri Hacmi (Gbps)

Bu çalışma

4 0.0076
12 0.0229
32 0.0612
64 0.1224

128 0.2447
192 0.3670
256 0.4894
384 0.7341

[26]

32 0.149
64 0.265

128 0.424
256 0.432
384 0.417

[27]
12 0.027

192 0.430
384 0.696

Tablo 5.10’da görüldüğü üzere FIL destekli bir şekilde tasarlanan CNU ile oluşturulan

mimari yükseltme çarpanının büyük olduğu durumlarda yüksek veri hacimlerine

ulaşabilmektedir. Şekil 5.16’da görüldüğü gibi 240’tan küçük yükseltme çarpanlarında

[26] gerçeklemesinden düşük veri hacimlerine sahip olmasına rağmen 240 yükseltme

çarpanından itibaren daha yüksek veri hacmine ulaşılabilmektedir. 192’den küçük

ve 288’den büyük yükseltme çarpanlarında [27] gerçeklemesinden daha yüksek veri

hacmine ulaşılabilmektedir.
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Şekil 5.16 : LDPC Kod Çözücü Gerçeklemelerinde Yükseltme Çarpanına Bağlı
Olarak Veri Hacminin Değişimi
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6. SONUÇLAR

Tez kapsamında 5G NR standardına uygun çalıştırılabilmek üzere CNU ve LDPC

kod çözücü tasarımı yapılmıştır. Tasarlanan CNU, FIL ile donanım üzerinde

doğrulanmıştır. Bu sayede doğrulama sonuçları MATLAB ortamında kolay bir şekilde

gözlemlenebilmiş ve MATLAB modeli ile karşılaştırılabilmiştir. Yüksek veri hacmi

ile çalışabilmesi için paralelleştirme çalışmaları yapılmıştır.

Donanım üzerinde gerçeklenecek kod çözücü için uygun kod çözme algoritmaları

ve çizelgeleri hakkında bilgi edinilmiştir. Farklı algoritmaların performansları ve

karmaşıklıkları kıyaslanarak gerçeklemeye uygunlukları belirlenmiştir. Gerçeklemek

için karar verilen algoritma min-toplam olarak seçilmiştir. Hem hata performansı hem

de karmaşıklık açısından incelendiğinde en uygun algoritma olarak ortaya çıkmaktadır.

Kod çözme çizelgeleri arasında FPGA üzerinde çalışmaya en uygun olanı seri-sıralı

çizelge olarak belirlenmiştir. Paralel çizelgeyi gerçeklemek için tam paralellik

gerekmektedir. Alan kullanımı açısından bu çizelge çok fazla ihtiyaç yaratması

açısında tercih edilmemiştir. Paralel-sıralı çizelge ise bellek erişimleri açısından sorun

yaratmaktadır ve güncel verilere erişimi kısıtlamaktadır. Seri-sıralı çizelge ile hem

yüksek paralellik hem de bu tezde yapılan sıralama sayesinde bellek çakışmalarına yol

açmadan bellek erişimleri sağlanabilmiştir.

5G NR Temel Çizge 1 yükseltme çarpanı 4 için yapılan üst seviye mimari tasarımı ile

bütün 5G LDPC matrislerinin gerçeklenebilmesi için uygun bir yapı oluşturulmuştur.

Bu yapıda elde edilen paralellik sayesinde büyük yükseltme çarpanlarıyla birlikte

artan yüksek veri hacimlerine ulaşılabilmiştir. Tasarlanan CNU, sadece 5G NR

standardındaki matrislerle değil, bütün LDPC matrisleriyle çalışabilmesi için esnek

bir yapıda tasarlanmıştır. Girişindeki veri geçerli işareti ve blok sonu işareti

sayesinde istenilen uzunluktaki blokları işleyebilir ve hazır sinyali ile zamanlamasını

ayarlayabilir. Böylece farklı standartlarda kullanılan LDPC kod çözücüler için temel

blok olarak kullanılmaya uygun hale getirilmiştir.
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Çalışmalar sonucunda ortaya çıkan CNU tasarımı geliştirmeye açıktır. Hata

performansına odaklanarak min-toplam algoritması üzerine kurulmuş olan

dengelenmiş min-toplam ve zayıflatılmış min-toplam gibi daha gelişmiş algoritmaların

gerçeklenmesine çalışılacaktır. Bu geliştirmeler sadece CNU üzerinde yapılacağı

için FIL ile doğrulanarak üst seviye mimarisini değiştirmeden LDPC kod çözücü

tasarımına eklenebilecektir. Model üzerinde özelleştirmeler yapılarak FIL ile

oluşturulan geliştirme ve doğrulama ortamı kullanılacaktır.

Bu çalışmada,

• 5G standardına uygun bir şekilde çalıştırılabilmek üzere CNU ve LDPC kod çözücü

tasarımı yapılmıştır.

• FPGA üzerinde ve MATLAB modeli ile karşılaştırmalı doğrulama ortamı

oluşturulmuştur.

• Donanıma uygun algoritmalar ve sabit noktalı bit genişlikleri belirlenmiştir.

Gelecek çalışmalarda,

• Dengelenmiş min-toplam ve zayıflatılmış min-toplam gibi algoritmaların

gerçeklenmesi,

• FIL ile doğrulanarak üst seviye mimarisini değiştirmeden LDPC kod çözücü

tasarımına eklenmesi hedeflenmektedir.
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EK A : CNU FIL Kodları

% FIL INSTANTIATION
cnu= f u n c t i o n a l _ u n i t _ f i l ;

% INPUT GENERATION
so_1= f i ( − 4 , 1 , 8 , 0 ) ;
so_2= f i ( 1 0 , 1 , 8 , 0 ) ;
so_3= f i ( 3 , 1 , 8 , 0 ) ;
so_pad = f i ( 0 , 1 , 8 , 0 ) ;

s o _ i n = [ so_pad ; so_1 ; so_2 ; so_3 ; so_pad ; so_pad ; so_pad ; so_pad ;
so_pad ; so_pad ; so_pad ] ;
so_model = [ so_1 ; so_2 ; so_3 ] ;

e x t _ 1 = f i ( − 1 , 1 , 6 , 0 ) ;
e x t _ 2 = f i ( 2 , 1 , 6 , 0 ) ;
e x t _ 3 = f i ( 9 , 1 , 6 , 0 ) ;
e x t _ p a d = f i ( 0 , 1 , 6 , 0 ) ;

e x t _ i n = [ e x t _ p a d ; e x t _ 1 ; e x t _ 2 ; e x t _ 3 ; e x t _ p a d ; e x t _ p a d ; e x t _ p a d ;
e x t _ p a d ; e x t _ p a d ; e x t _ p a d ; e x t _ p a d ] ;
ex t_mode l = [ e x t _ 1 ; e x t _ 2 ; e x t _ 3 ] ;

e o f = [ 0 ; 0 ; 0 ; 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ] ;

e o f = f i ( eof , 0 , 1 , 0 ) ;

v a l i d = [ 0 ; 1 ; 1 ; 1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ] ;

v a l i d = f i ( v a l i d , 0 , 1 , 0 ) ;

i n p u t s = [ s o _ i n e x t _ i n v a l i d e o f ] ;

% MATLAB MODEL
s t a r t _ a d d r e s s = 1 ;
e n d _ a d d r e s s =3;

s u b _ i n ( s t a r t _ a d d r e s s : e n d _ a d d r e s s ) = . . .
so_model ( s t a r t _ a d d r e s s : e n d _ a d d r e s s ) − . . .
ex t_mode l ( s t a r t _ a d d r e s s : e n d _ a d d r e s s ) ;
a b s _ v a l ( s t a r t _ a d d r e s s : e n d _ a d d r e s s ) = . . .
abs ( s u b _ i n ( s t a r t _ a d d r e s s : e n d _ a d d r e s s ) ) ;

[ min1 , min1pos ] = min ( a b s _ v a l ( s t a r t _ a d d r e s s : e n d _ a d d r e s s ) ) ;

min2 = min ( a b s _ v a l ( [ s t a r t _ a d d r e s s : ( s t a r t _ a d d r e s s +min1pos −2) . . .
( s t a r t _ a d d r e s s +min1pos ) : e n d _ a d d r e s s ] ) ) ;

m e s s a g e _ s i g n s ( s t a r t _ a d d r e s s : e n d _ a d d r e s s ) = . . .
s i g n ( s u b _ i n ( s t a r t _ a d d r e s s : e n d _ a d d r e s s ) ) ;
z e r o _ i n d e x e s = f i n d (~ m e s s a g e _ s i g n s ( s t a r t _ a d d r e s s : e n d _ a d d r e s s ) ) ;
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m e s s a g e _ s i g n s ( s t a r t _ a d d r e s s + z e r o _ i n d e x e s −1) =1;
p a r i t y = prod ( m e s s a g e _ s i g n s ( s t a r t _ a d d r e s s : e n d _ a d d r e s s ) ) ;

m e s s a g e _ b u f f e r ( s t a r t _ a d d r e s s : e n d _ a d d r e s s ) = min1 ;
m e s s a g e _ b u f f e r ( s t a r t _ a d d r e s s −1+ min1pos ) = min2 ;

m e s s a g e _ b u f f e r ( s t a r t _ a d d r e s s : e n d _ a d d r e s s ) = . . .
p a r i t y * m e s s a g e _ s i g n s ( s t a r t _ a d d r e s s : e n d _ a d d r e s s ) . * . . .
m e s s a g e _ b u f f e r ( s t a r t _ a d d r e s s : e n d _ a d d r e s s ) ;
m e s s a g e _ b u f f e r ( s t a r t _ a d d r e s s : e n d _ a d d r e s s ) = . . .
f i ( m e s s a g e _ b u f f e r ( s t a r t _ a d d r e s s : e n d _ a d d r e s s ) , 1 , 6 , 0 ) ;

SO_out ( s t a r t _ a d d r e s s : e n d _ a d d r e s s ) = . . .
s u b _ i n ( s t a r t _ a d d r e s s : e n d _ a d d r e s s ) . . .
+ m e s s a g e _ b u f f e r ( s t a r t _ a d d r e s s : e n d _ a d d r e s s ) ;
SO_out ( s t a r t _ a d d r e s s : e n d _ a d d r e s s ) = . . .
f i ( SO_out ( s t a r t _ a d d r e s s : e n d _ a d d r e s s ) , 1 , 8 , 0 ) ;

%REAL HARDWARE FIL
[ o_so , o_message , o _ v a l i d , o_ ready ] = cnu ( eof , v a l i d , so_ in , e x t _ i n ) ;
o u t p u t s = [ o_so o_message o _ v a l i d o_ ready ] ;

%RESULTS
SO_outpu t_compar i son = [ o_so ( 8 : 1 0 ) t r a n s p o s e ( SO_out ) ] ;
m e s s a g e _ o u t p u t _ c o m p a r i s o n = . . .
[ o_message ( 8 : 1 0 ) t r a n s p o s e ( m e s s a g e _ b u f f e r ) ] ;
mode l_ha rdware_compar i son = . . .
[ SO_ou tpu t_compar i son m e s s a g e _ o u t p u t _ c o m p a r i s o n ] ;
m o d e l _ a n d _ h a r d w a r e _ i n p u t s = . . .
[ i n p u t s ( 2 , 1 ) i n p u t s ( 2 , 2 ) ; i n p u t s ( 3 , 1 ) . . .
i n p u t s ( 3 , 2 ) ; i n p u t s ( 4 , 1 ) i n p u t s ( 4 , 2 ) ] ;
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EK B : CNU FIL Sınıfı

c l a s s d e f ( S t r i c t D e f a u l t s ) f u n c t i o n a l _ u n i t _ f i l <
h d l v e r i f i e r . F I L S i m u l a t i o n

%f u n c t i o n a l _ u n i t _ f i l i s a f i l W i z a r d g e n e r a t e d
% c l a s s used f o r FPGA−In − the −Loop
% s i m u l a t i o n wi th t h e ’ f u n c t i o n a l _ u n i t ’ DUT.
% f u n c t i o n a l _ u n i t _ f i l c o n n e c t s MATLAB
% wi th a FPGA and c o s i m u l a t e wi th i t by
% w r i t i n g i n p u t s i n t h e FPGA and r e a d i n g o u t p u t s from t h e FPGA .
%
% MYFIL = f u n c t i o n a l _ u n i t _ f i l
%
% Step method s y n t a x :
%
% [ out1 , out2 , . . . ] = s t e p (MYFIL , in1 , in2 , . . . )
% c o n n e c t t o t h e FPGA,
% w r i t e in1 , in2 , . . . t o t h e FPGA and r e a d out1 , out2 , . . . from
% t h e FPGA
%
% f u n c t i o n a l _ u n i t _ f i l methods :
%
% s t e p − See above d e s c r i p t i o n f o r use o f t h i s method
% r e l e a s e − Allow p r o p e r t y v a l u e and i n p u t c h a r a c t e r i s t i c s
% changes , and r e l e a s e c o n n e c t i o n t o FPGA board
% c l o n e − C r e a t e f u n c t i o n a l _ u n i t _ f i l o b j e c t w i th same
% p r o p e r t y v a l u e s
% i s L o c k e d − Locked s t a t u s ( l o g i c a l )
% programFPGA − Load t h e programming f i l e i n t h e FPGA
%
% f u n c t i o n a l _ u n i t _ f i l p r o p e r t i e s :
%
% DUTName − DUT t o p l e v e l name
% I n p u t S i g n a l s − I n p u t p a t h s i n t h e HDL code
% I n p u t B i t W i d t h s − Width i n b i t o f t h e i n p u t s
% O u t p u t S i g n a l s − Outpu t p a t h s i n t h e HDL code
% O u t p u t B i t W i d t h s − Width i n b i t o f t h e o u t p u t s
% Outpu tDa taTypes − Data t y p e o f t h e o u t p u t s
% O u t p u t S i g n e d − Sign of t h e o u t p u t s
% O u t p u t F r a c t i o n L e n g t h s − F r a c t i o n l e n g t h s o f t h e o u t p u t s
% OutputDownsampling − Downsampling f a c t o r and phase
% of t h e o u t p u t s
% O v e r c l o c k i n g F a c t o r − O v e r c l o c k i n g f a c t o r o f t h e ha rdware
% C o n n e c t i o n − P a r a m e t e r s f o r t h e c o n n e c t i o n
% wi th t h e boa rd
% FPGAVendor − Name of t h e FPGA c h i p vendor
% FPGABoard − Name of t h e FPGA board
% FPGAProgrammingFile − Pa th o f t h e Programming f i l e
% f o r t h e FPGA
% S c a n C h a i n P o s i t i o n − P o s i t i o n o f t h e FPGA i n t h e
% JTAG scan c h a i n
%
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% F i l e Name : f u n c t i o n a l _ u n i t _ f i l .m
% C r e a t e d : 05−May−2022 2 1 : 0 4 : 4 2
%
% G e n e r a t e d by FIL Wizard

%# codegen

p r o p e r t i e s ( Non tunab le )
DUTName = ’ f u n c t i o n a l _ u n i t ’ ;

end

methods
f u n c t i o n o b j = f u n c t i o n a l _ u n i t _ f i l

%THE FOLLOWING PROTECTED PROPERTIES
%ARE SPECIFIC TO THE HW DUT
%AND MUST NOT BE EDITED
%(RERUN THE FIL WIZARD TO CHANGE THEM)
o b j . I n p u t S i g n a l s = c h a r ( ’ i _ e o f ’ , ’ i _ v a l i d ’ , . . .
’ i _ s o ’ , ’ i _ e x t r i n s i c ’ ) ;
o b j . I n p u t B i t W i d t h s = [ 1 , 1 , 8 , 6 ] ;
o b j . O u t p u t S i g n a l s = c h a r ( ’ o_so ’ , ’ o_message ’ , . . .
’ o _ v a l i d ’ , ’ o_ ready ’ ) ;
o b j . O u t p u t B i t W i d t h s = [ 8 , 6 , 1 , 1 ] ;
o b j . C o n n e c t i o n = c h a r ( ’JTAG ’ , ’ l i b m w r t i o s t r e a m _ x j t a g ’ ,
’ FPGAInstr =000010; FPGAInstr2 =000011; FPGAInstr3 =100010; . . .
FPGAInstr4 =100011; I n s t r L e n B e f o r e =4; I n s t r L e n A f t e r =0 ; . . .
TckFrequency =66.000000 ’ , ’ ’ ) ;
o b j . FPGAVendor = ’ X i l i n x ’ ;
o b j . FPGATool = ’ X i l i n x Vivado ’ ;
o b j . FPGABoard = ’ ZedBoard ’ ;
o b j . S c a n C h a i n P o s i t i o n = 2 ;

%THE FOLLOWING PUBLIC PROPERTIES ARE RELATED
%TO THE SIMULATION
%AND CAN BE EDITED WITHOUT RERUNING THE FIL WIZARD
o b j . O u t p u t S i g n e d = [ t r u e , t r u e , f a l s e , f a l s e ] ;
o b j . Ou tpu tDa taTypes = c h a r ( ’ f i x e d p o i n t ’ , . . .
’ f i x e d p o i n t ’ , ’ f i x e d p o i n t ’ , ’ f i x e d p o i n t ’ ) ;
o b j . O u t p u t F r a c t i o n L e n g t h s = [ 0 , 0 , 0 , 0 ] ;
o b j . OutputDownsampling = [ 1 , 0 ] ;
o b j . O v e r c l o c k i n g F a c t o r = 1 ;
o b j . FPGAProgrammingFile = . . .
’C : \ Use r s \ b a r i s \ Desktop \ c n u _ f i l \ . . .
f u n c t i o n a l _ u n i t _ f i l \ f u n c t i o n a l _ u n i t _ f i l . b i t ’ ;

end
end

end

58



EK C : CNU FPGA Programlama FIL Kodu

f u n c t i o n f u n c t i o n a l _ u n i t _ p r o g r a m F P G A
%f u n c t i o n a l _ u n i t _ p r o g r a m F P G A i s a f i l W i z a r d
% g e n e r a t e d f u n c t i o n used t o l o a d t h e
% programming f i l e f o r t h e ’ f u n c t i o n a l _ u n i t ’
% HDL i n t h e ’ ZedBoard ’ FPGA board .
%
% F i l e Name : f u n c t i o n a l _ u n i t _ p r o g r a m F P G A .m
% C r e a t e d : 05−May−2022 2 1 : 0 4 : 4 2
%
% G e n e r a t e d by FIL Wizard

f i lProgramFPGA ( ’ X i l i n x Vivado ’ , . . .
’C : \ Use r s \ b a r i s \ Desktop \ c n u _ f i l \ f u n c t i o n a l _ u n i t _ f i l \ . . .
f u n c t i o n a l _ u n i t _ f i l . b i t ’ , 2 ) ;

end
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EK D : CNU VHDL Test Dosyası

l i b r a r y i e e e ;
use i e e e . S td_Logic_1164 . a l l ;
use i e e e . n u m e r i c _ s t d . a l l ;
use s t d . t e x t i o . a l l ;

l i b r a r y l d p c _ l i b ;
use l d p c _ l i b . f u n c t i o n a l _ u n i t _ c o m p _ p a c k . a l l ;

l i b r a r y common_lib ;
use common_lib . l d p c _ c o n s t a n t s _ p a c k . a l l ;

e n t i t y t b _ f u n c t i o n a l _ u n i t i s
g e n e r i c (

d i rname : s t r i n g := " . / t e s t c a s e s / c n u _ t e s t "
) ;

end e n t i t y ;

a r c h i t e c t u r e a r c h o f t b _ f u n c t i o n a l _ u n i t i s

f i l e f t ype_SO_in : TEXT open READ_MODE i s d i rname&" / SO_input " ;
f i l e f t y p e _ e x t _ i n : TEXT open READ_MODE i s d i rname&" / e x t _ i n p u t " ;
f i l e f t y p e _ k : TEXT open READ_MODE i s d i rname&" / k_numbers " ;
f i l e ftype_dmp_SO : t e x t open WRITE_MODE i s d i rname&" / SO_dmp . t x t " ;
f i l e ftype_dmp_msg : t e x t open WRITE_MODE i s d i rname&" / msg_dmp . t x t " ;

c o n s t a n t SYS_PERIOD : t ime := 10 ns ;

s i g n a l c l k : s t d _ l o g i c := ’ 0 ’ ;
s i g n a l r s t n : s t d _ l o g i c := ’ 1 ’ ;

s i g n a l t b _ e o f : s t d _ l o g i c := ’ 0 ’ ;
s i g n a l t b _ v a l i d : s t d _ l o g i c := ’ 0 ’ ;
s i g n a l tb_SO : s t d _ l o g i c _ v e c t o r (SO_WIDTH−1 downto 0 ) ;
s i g n a l t b _ e x t r i n s i c : s t d _ l o g i c _ v e c t o r (EXT_WIDTH−1 downto 0 ) ;
s i g n a l tb_SO_out : s t d _ l o g i c _ v e c t o r (SO_WIDTH−1 downto 0 ) ;
s i g n a l tb_message : s t d _ l o g i c _ v e c t o r (EXT_WIDTH−1 downto 0 ) ;
s i g n a l t b _ o u t _ v a l i d : s t d _ l o g i c ;
s i g n a l t b _ r e a d y : s t d _ l o g i c ;

b e g i n

c l k _ g e n : p r o c e s s
b e g i n

c lk <= ’1 ’ ;
w a i t f o r SYS_PERIOD / 2 ;
c lk <= ’0 ’ ;
w a i t f o r SYS_PERIOD / 2 ;

end p r o c e s s ;

s y s _ r s t n _ p r c : p r o c e s s
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b e g i n
w a i t f o r 5*SYS_PERIOD ;
r s t n <= ’ 0 ’ ;
w a i t f o r 5*SYS_PERIOD ;
r s t n <= ’ 1 ’ ;
w a i t ;

end p r o c e s s ;

t e s t _ p r o c e s s : p r o c e s s

v a r i a b l e l ine_SO : l i n e ;
v a r i a b l e l i n e _ e x t : l i n e ;
v a r i a b l e l i n e _ k : l i n e ;
v a r i a b l e i n t e g e r _ S O : i n t e g e r ;
v a r i a b l e i n t e g e r _ e x t : i n t e g e r ;
v a r i a b l e i n t e g e r _ k : i n t e g e r ;
v a r i a b l e i n t e g e r _ l a y e r : i n t e g e r ;

b e g i n
w a i t u n t i l r s t n = ’ 1 ’ ;
w a i t u n t i l c lk ’ e v e n t and c l k = ’ 1 ’ ;
r e a d l i n e ( f t y p e _ k , l i n e _ k ) ;
r e a d ( l i n e _ k , i n t e g e r _ l a y e r ) ;
t b _ e o f <= ’0 ’
f o r j i n 0 t o ( i n t e g e r _ l a y e r −1) loop

i f j = 4 t h e n
w a i t f o r 20*SYS_PERIOD ;

end i f ;
r e a d l i n e ( f t y p e _ k , l i n e _ k ) ;
r e a d ( l i n e _ k , i n t e g e r _ k ) ;
t b _ v a l i d <= ’ 1 ’ ;
r e a d l i n e ( f type_SO_in , l ine_SO ) ;
r e a d ( l ine_SO , i n t e g e r _ S O ) ;
tb_SO <= s t d _ l o g i c _ v e c t o r ( t o _ s i g n e d ( in t ege r_SO , SO_WIDTH) ) ;
r e a d l i n e ( f t y p e _ e x t _ i n , l i n e _ e x t ) ;
r e a d ( l i n e _ e x t , i n t e g e r _ e x t ) ;
t b _ e x t r i n s i c <= s t d _ l o g i c _ v e c t o r ( t o _ s i g n e d ( i n t e g e r _ e x t , EXT_WIDTH) ) ;
f o r k i n 0 t o ( i n t e g e r _ k −3) loop
w a i t f o r SYS_PERIOD ;
r e a d l i n e ( f type_SO_in , l ine_SO ) ;
r e a d ( l ine_SO , i n t e g e r _ S O ) ;
tb_SO <= s t d _ l o g i c _ v e c t o r ( t o _ s i g n e d ( in t ege r_SO , SO_WIDTH) ) ;
r e a d l i n e ( f t y p e _ e x t _ i n , l i n e _ e x t ) ;
r e a d ( l i n e _ e x t , i n t e g e r _ e x t ) ;
t b _ e x t r i n s i c <= s t d _ l o g i c _ v e c t o r ( t o _ s i g n e d ( i n t e g e r _ e x t , EXT_WIDTH) ) ;

end loop ;
w a i t f o r SYS_PERIOD ;
t b _ e o f <= ’ 1 ’ ;
r e a d l i n e ( f type_SO_in , l ine_SO ) ;
r e a d ( l ine_SO , i n t e g e r _ S O ) ;
tb_SO <= s t d _ l o g i c _ v e c t o r ( t o _ s i g n e d ( in t ege r_SO , SO_WIDTH) ) ;
r e a d l i n e ( f t y p e _ e x t _ i n , l i n e _ e x t ) ;
r e a d ( l i n e _ e x t , i n t e g e r _ e x t ) ;
t b _ e x t r i n s i c <= s t d _ l o g i c _ v e c t o r ( t o _ s i g n e d ( i n t e g e r _ e x t , EXT_WIDTH) ) ;
w a i t f o r SYS_PERIOD ;
t b _ v a l i d <= ’ 0 ’ ;
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t b _ e o f <= ’ 0 ’ ;
w a i t f o r 3*SYS_PERIOD ;

end loop ;
w a i t ;

end p r o c e s s ;

dump_process : p r o c e s s ( c l k )
v a r i a b l e l ine_dumped_SO : l i n e ;
v a r i a b l e l ine_dumped_message : l i n e ;

b e g i n
i f ( c lk ’ e v e n t and c l k = ’1 ’ ) t h e n

i f ( t b _ o u t _ v a l i d = ’1 ’ ) t h e n
w r i t e ( line_dumped_SO , t o _ i n t e g e r ( s i g n e d ( tb_SO_out ) ) ) ;
w r i t e l i n e ( ftype_dmp_SO , line_dumped_SO ) ;
w r i t e ( l ine_dumped_message , t o _ i n t e g e r ( s i g n e d ( tb_message ) ) ) ;
w r i t e l i n e ( ftype_dmp_msg , l ine_dumped_message ) ;

end i f ;
end i f ;
end p r o c e s s ;

d u t : f u n c t i o n a l _ u n i t p o r t map (
i _ c l k => c lk ,
i _ r s t n => r s t n ,
i _ e o f => t b _ e o f ,
i _ v a l i d => t b _ v a l i d ,
i_SO => tb_SO ,
i _ e x t r i n s i c => t b _ e x t r i n s i c ,
o_SO => tb_SO_out ,
o_message => tb_message ,
o _ v a l i d => t b _ o u t _ v a l i d ,
o_ ready => t b _ r e a d y
) ;

end a r c h i t e c t u r e ;
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EK E : LDPC Kod Çözücü Üst Seviye VHDL Test Dosyası

l i b r a r y i e e e ;
use i e e e . S td_Logic_1164 . a l l ;
use i e e e . n u m e r i c _ s t d . a l l ;
use s t d . t e x t i o . a l l ;

l i b r a r y l d p c _ l i b ;
use l d p c _ l i b . f u n c t i o n a l _ u n i t _ c o m p _ p a c k . a l l ;
use l d p c _ l i b . LDPC_decoder_top_comp_pack . a l l ;

l i b r a r y common_lib ;
use common_lib . l d p c _ c o n s t a n t s _ p a c k . a l l ;
use common_lib . common_comp_pack . a l l ;

e n t i t y t b _ t o p _ l e v e l i s
g e n e r i c (

d i rname : s t r i n g := " . / t e s t c a s e s / b g _ 1 _ i n p u t s "
) ;

end e n t i t y ;

a r c h i t e c t u r e a r c h o f t b _ t o p _ l e v e l i s

f i l e f t ype_SO_in : TEXT open READ_MODE i s
d i rname&" / t o p _ l e v e l _ i n p u t s " ;
f i l e f type_dmp_hd : t e x t open WRITE_MODE i s
d i rname&" / h a r d _ d e c i s i o n . t x t " ;

c o n s t a n t SYS_PERIOD : t ime := 10 ns ;

s i g n a l c l k : s t d _ l o g i c := ’ 0 ’ ;
s i g n a l r s t n : s t d _ l o g i c := ’ 1 ’ ;

s i g n a l t b _ e o f : s t d _ l o g i c := ’ 0 ’ ;
s i g n a l t b _ v a l i d : s t d _ l o g i c := ’ 0 ’ ;
s i g n a l tb_SO : s t d _ l o g i c _ v e c t o r (31 downto 0 ) :=
" 00000000000000000000000000000000 " ;
s i g n a l t b _ d a t a _ o u t : s t d _ l o g i c _ v e c t o r (3 downto 0 ) ;
s i g n a l t b _ o u t _ v a l i d : s t d _ l o g i c ;
s i g n a l t b _ r e a d y : s t d _ l o g i c ;
s i g n a l t b _ i n _ r e a d y : s t d _ l o g i c := ’ 1 ’ ;
s i g n a l t b _ o u t _ e o f : s t d _ l o g i c ;

b e g i n

c l k _ g e n : p r o c e s s
b e g i n

c lk <= ’1 ’ ;
w a i t f o r SYS_PERIOD / 2 ;
c lk <= ’0 ’ ;
w a i t f o r SYS_PERIOD / 2 ;

65



end p r o c e s s ;

−− System R e s e t g e n e r a t i o n
s y s _ r s t n _ p r c : p r o c e s s
b e g i n

w a i t f o r 5*SYS_PERIOD ;
r s t n <= ’ 0 ’ ;
w a i t f o r 5*SYS_PERIOD ;
r s t n <= ’ 1 ’ ;
w a i t ;

end p r o c e s s ;

t e s t _ p r o c e s s : p r o c e s s

v a r i a b l e l ine_SO : l i n e ;
v a r i a b l e l i n e _ k : l i n e ;
v a r i a b l e i n t e g e r _ S O : s t d _ l o g i c _ v e c t o r (31 downto 0 ) ;

b e g i n
w a i t u n t i l r s t n = ’ 1 ’ ;
w a i t u n t i l c lk ’ e v e n t and c l k = ’ 1 ’ ;
w a i t f o r 2 ns ;
t b _ e o f <= ’ 0 ’ ;
t b _ i n _ r e a d y <= ’ 1 ’ ;
w a i t f o r SYS_PERIOD ;
f o r j i n 0 t o ( 6 6 ) loop

t b _ v a l i d <= ’ 1 ’ ;
r e a d l i n e ( f type_SO_in , l ine_SO ) ;
r e a d ( l ine_SO , i n t e g e r _ S O ) ;
tb_SO <= i n t e g e r _ S O ;
w a i t f o r SYS_PERIOD ;

end loop ;
t b _ e o f <= ’ 1 ’ ;
r e a d l i n e ( f type_SO_in , l ine_SO ) ;
r e a d ( l ine_SO , i n t e g e r _ S O ) ;
tb_SO <= i n t e g e r _ S O ;
w a i t f o r SYS_PERIOD ;
t b _ v a l i d <= ’ 0 ’ ;
t b _ e o f <= ’ 0 ’ ;
w a i t ;

end p r o c e s s ;

dump_process : p r o c e s s ( c l k )
v a r i a b l e l ine_dumped_hd : l i n e ;

b e g i n
i f ( c lk ’ e v e n t and c l k = ’1 ’ ) t h e n

i f ( t b _ o u t _ v a l i d = ’1 ’ ) t h e n
w r i t e ( l ine_dumped_hd , t b _ d a t a _ o u t ) ;
w r i t e l i n e ( f type_dmp_hd , l ine_dumped_hd ) ;

end i f ;
end i f ;

end p r o c e s s ;
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d u t : LDPC_decoder_top p o r t map (
i _ c l k => c lk ,
i _ r s t n => r s t n ,

i _ e o f => t b _ e o f ,
i _ v a l i d => t b _ v a l i d ,
i _ r e a d y => t b _ i n _ r e a d y ,
i _ d a t a => tb_SO ,

o_eof => t b _ o u t _ e o f ,
o _ v a l i d => t b _ o u t _ v a l i d ,
o_ ready => t b _ r e a d y ,
o _ d a t a => t b _ d a t a _ o u t
) ;

end a r c h i t e c t u r e ;
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EK F : LDPC Kod Çözücü Üst Seviye Benzetimi Girişleri

00000000000000000000000000000000
00000000000000000000000000000000
00000100111111001111101000000001
11111011000000010000101100001001
11111010111111110000010000000001
00000000111110001111100011111110
11111010000000010000001111111010
00000001000000111111111000000001
11111010111111000000000100000011
11111010111110110000010111111001
11111101000000100000001011111011
11111101111111010000010000000111
00000110111111000000001000000101
00000011000010011111011011110111
00000010111111001111101111111011
11111110111110111111110100001100
00001000111111000000101000000110
00000110111110000000000000000100
11111001000001001111110000000001
11111110000000100000000100000011
00000001111110111111110000000101
11111011111111010000001011111111
11111011000001010000100111111010
11111111111110110000010100000001
11111100000000110000010111111001
11111110111110110000001111111101
11111001000000011111101011111101
00000001111101111111100111110110
11111011000000001111110111111000
11111100000000010000000011111011
00000100111101111111110111110111
11111001000000101111101100000001
11111111000001110000000011110100
00000011111110111111101000001010
00000011000000100000011000000000
00001001111111110000001011111101
00000110000000000000010111111100
00000010111110010000001011111110
00000101111110010000010011111000
00000001000001101111101000001010
00000110000001110000010011111100
00000111000000110000010011111100
00000100000000110000010100001001
11111011000001101111100111111001
00000010111110111111110011110111
00001000111101111111011100000101
11111011000000101111111000000010
11111111000001011111101011111000
11111010000001011111110100000111
00001011000001001111101011111100
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11111100111111011111110100001001
11111100111111010000001111111110
11110111111110111111101100000000
00000001000000011111110100000010
00000010111111010000010111111111
00000110111111111111110000001001
00000101111111101111101100000010
11111101111110100000011100000110
00000001000000001111110011111010
00001000000001010000000000000100
11111110000010100000001111111001
11111100000000100000100011111010
11110110000001000000001000000001
00000100111110101111101100000111
00000100000000101111110111111101
00000110111110111111101111111001
11111100111111000000010111111011
00000101000000100000000011111110
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