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“On all essential problems,

there are probably but two methods of thought:

The method of La Palisse and the method of Don Quizote.
Solely the balance between evidence and lyricism can

allow us to achieve simultaneously emotion and lucidity.”

Albert Camus
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ABSTRACT

PERTURBATIVE AND NON-PERTURBATIVE PHYSICS
FROM SINGULARITIES

A function that representing a physical quantity has singularities which con-
tain perturbative or non-perturbative information about the physical system under
investigation. Moreover, the theory of resurgence tells us that these perturbative and
non-perturbative parts are intimately connected and it is possible to use one of them
to obtain the other one. In this thesis, we combine these two ideas with a focus
on the functions formulated in integral representations. Specifically, first consider-
ing two different examples on the semi-classical expansion in quantum mechanics and
the pair production problem in electromagnetic backgrounds, we will concentrate on
the quantum action which we express in the Schwinger’s integral representation. We
will show that the perturbative and non-perturbative information about the physical
system is hidden in singularities of the propagator TrU(t). The way we obtain the
non-perturbative one is very similar to the Borel method which is used to handle the
divergent perturbation series. Contrary to the Borel method, by probing the singular-
ities of TrU(t) directly and using the ie prescription, we will be able to prevent the
Borel ambiguity problem in the physical cases that it leads to the violation of the uni-
tarity. Later, we will turn our attention to the renormalon problem in non-relativistic
quantum mechanics. After presenting the existence of the renormalon divergence in a
scattering problem with a background potential consisting of 2D d-potential perturbed
with a tilted 1D J-potential, we will argue that the Borel ambiguity in the summation
of the divergent series can be prevented again by a careful application of the ic pre-
scription and the resulting non-perturbative contribution due to the renormalon obeys

the causality condition.
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OZET

TEKILLIKLERDEN ELDE EDILEN PERTURBATIF VE
PERTURBATIF OLMAYAN FIZIK

Fiziksel bir niceligi temsil eden bir fonksiyon, incelenmekte olan fiziksel sis-
tem hakkinda pertiirbatif veya pertiirbatif olmayan bilgiler iceren tekilliklere sahip-
tir. Bununla birlikte resurgence teorisi bize bu tedirgin ve tedirgin olmayan kisimlarin
yakindan baglantili oldugunu ve bunlardan birinin digerini elde etmek i¢in kullaniminin
miimkiin oldugunu soyler. Bu tezde, integral temsillerinde formiile edilen fonksiy-
onlara odaklanarak bu iki fikri birlestiriyoruz. Spesifik olarak, oncelikle kuantum
mekanigindeki yari-klasik agilim ve elektromanyetik arkaplaninda cift tretim prob-
lemi ile ilgili iki farkli 6rnegi ele alarak, Schwinger’in integral temsilinde ifade ettigimiz
kuantum eylemine odaklanacagiz. Fiziksel sistem hakkindaki pertiirbatif ve pertiirbatif
olmayan bilginin TrU (¢)'nin tekilliklerinde sakli oldugunu gosterecegiz. Pertiirbatif ol-
mayan kismi elde etme yontemimiz, iraksak pertiirbasyon serilerini iistesinden gelmek
i¢in kullanilan Borel yontemine ¢ok benzemektedir. Borel yonteminin aksine, TrU (£)'in
tekilliklerini dogrudan arastirarak ve ic regetesini kullanarak, tiniterligin ihlal edildigi
fiziksel sistemlerde Borel belirsizligi sorununun éniine gegebilecegiz. Daha sonra dikka-
timizi relativistik olmayan kuantum mekanigindeki renormalon problemine ¢evirecegiz.
Renormalon 1raksamasinin, egilmis bir 1D J-potansiyeliyle pertiirbe edilmis 2D §-
potansiyelinden olugan bir arka plan potansiyeline sahip bir sacilma probleminde var
oldugunu gosterdikten sonra, iraksak serilerin toplaminda ortaya c¢ikan Borel belir-
sizliginin yine 7€ recetesinin dikkatli bir gsekilde uygulanmasiyla onelenebilecegini ve
renormalon sebebiyle ortaya cikan pertiirbatif olmayan katkilarin nedensellik kogulunu

sagladiklarin iddia edecegiz.
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1. INTRODUCTION

Physics is an experimental and observational science which can only be under-
stood by using the language of mathematics. The underlying mathematics of physical
theories can be used to understand the physical phenomenon known to exist or to make
predictions for future experiments. On the other hand, often than not it is better to
analyze the mathematical structure of a theory beyond its predictive scheme. In this
way, we might further appreciate the beauty of the physical phenomenon. In addi-
tion to that, it is also possible to uncover previously unnoticed relations and solve the
completeness and consistency problems already exists in a physical theory. Motivated
from the intimate relationship between perturbative and non-perturbative sectors in
quantum theories, this thesis is about such a journey which focuses on obtaining both
perturbative and non-perturbative physical information from the singularities of quan-

tum propagators.

The association of the analytical structure of a function to some physical informa-
tion is not a new concept for quantum physics. It is well known that the singularities
of the Green’s function, G(\) = (A — H)™!, which also serves as quantum propaga-
tor, are associated to the eigenvalues of the Hamiltonian. Similarly, in a scattering
problem, bound states (or masses in QFT) can be probed by looking to the analytical
structure of S-matrix. The latter one is, in fact, the main approach of S-matrix the-
ory which was initiated in early days of relativistic quantum theories [1,2]. However,
knowing these facts does not help in practical considerations since obtaining the com-
plete Green’s function or the S-matrix is not possible except in very few special cases.
At this point, one might think that approximation methods might help to compute
physical quantities. However, a perturbative expansion is just a polynomial series, so
only its summation can probe the singularities of the functions that they suppose to
represent. While this is an option which we will use in this thesis, it is also possible to

devise other formulations for quantum theories.



In both non-relativistic and relativistic quantum theories, there are several ap-
proaches which transform the problem in a more favorable form. For example in
non-relativistic regimes, we have the Schrodinger equation whose solutions provide all
the information about the spectrum. On the relativistic side, with the help of LSZ
reduction, we can obtain physical information about masses or coupling constants by
computing correlation functions of relativistic fields. However, again except few special
cases, approximation methods would be needed. At least in these cases, perturbative
techniques yield physical information directly but they hide non-perturbative informa-
tion such as the mass gap in non-abelian gauge theories, topological effects or bound

states.

One way to obtain non-perturbative information is using specialized approxima-
tion methods based on the underlying classical motion associated to the Lagrangian
of the physical system [3-5]. In this way, it is possible to associate non-perturbative

information with the action of the classical motion of real or pseudo particles.

Another way to get the non-perturbative information is summing the perturbation
series, which is one of the main focuses of this thesis. This is possible due to the fact
that the perturbative and non-perturbative sectors of a physical theory are intimately
connected. This connection exists because, as we will see in different examples in this
thesis, both sectors arise from the same (or at least related) singularities of the function
representing a physical quantity. In this sense, we can interpret the perturbative and
non-perturbative parts as different aspects of the information arising from the same
singularity. Moreover, using this connection, it is also possible to obtain one of these

sectors from the other one.

To digest this observation, let us examine the perturbative series of a physical
observable: f(\) = > f, A", where X is a coupling constant. Since Freeman Dyson’s
elegant paper [6], it is known that consistency in physical systems forces the function
f(A) to have a singularity, more specifically a branch point, at A = 0. This leads to

the perturbation series to be divergent. Thus, it can not represent the observable fully



as it makes no sense mathematically.

Later studies [7,8] showed that such a perturbation series diverges factorially,
i.e. f, ~ nl. While this behaviour indicates a pathology of the perturbation theory, it
contains much more information than it shows at first sight. One way to extract the
hidden information is taming the factorial divergence using the Borel method which
removes the branch point in the A plane. In this method, the original observable f(\)

is represented by an integral

F) = / dbe B [f(V)] (b). (L1)

where B[f(A)] (s) is called the Borel transform of f(\) and the singularity information
is transfered to a singularity of B[f(A)] (b) in the complex b-plane, i.e. Borel plane.
Then, integration over the singularity leads to an exponentially suppressed complex

1

contribution, i.e. +ie '/*, which is associated to the non-perturbative sector of the

theory.

The Borel method shows first signals of a deeper relationship between pertur-
bative and non-perturbative sectors. This is the subject of resurgence theory which
provides a framework to obtain complete and consistent information about the whole
quantum spectrum [9,10]. At the next step, we observe that while curing the divergence
pathology, the Borel method leads to another pathology, called a Borel ambiguity, that
non-perturbative information obtained from perturbative data is complex and multi-
valued. Complex values might be acceptable in some cases. But for example, when
they appear in energy eigenvalues of a stable quantum mechanical system, it is sign of

a disaster.

The disaster can be prevented when direct non-perturbative computations via
instantons are considered. Based on the separate works of Bogomolny [11] and Zinn-
Justin [12], in different settings [13-19], it was precisely shown that the contribu-
tions of multi-instanton configurations to the spectrum cancels the imaginary part

that arises from the Borel procedure. Then, the resulting expression becomes a real



quantity with no pathology. In fact, this cancellation mechanism can be extended to
all non-perturbative orders and the end result after cancellations would contain no

pathology [16,20].

It is also possible to obtain the perturbative data from the non-perturbative one.
Suppose that we get the non-perturbative imaginary contribution Imf(\) ~ e /X from
instantons first. Then, via the dispersion relation [21,22] a term at order k is related

to the imaginary part as

Je= . /OO dA Imf(A). (1.2)

T plan’

This relation is due to the branch cut, which we assumed to be on positive real axis,
associated to the singularity at A = 0. Although, we will not use it in this thesis,
it shows another aspect of the connection between perturbative and non-perturbative

sectors arising from the singularity of f(\).

Along with the connection between perturbative and non-perturbative sectors,
the lesson of the above discussion is that when divergent perturbation series are
carefully handled and considered together with the contributions coming from non-
perturbative approximations, the resulting expressions lead to a consisted and com-
plete physical picture. However, cancellations between the two sectors can only work
for the system with stable vacua or more generally, when an imaginary contribution

should not survive in the full expression.

The main problem in such problems is the multivalued nature of the imaginary
non-perturbative terms, +ic~!*, obtained from the Borel method. In physical prob-
lems, this is not acceptable as one of the signs violates unitarity or causality of the
theory. Therefore, we need to reconsider the Borel method such that only the sign
which preserves unitarity /causality appears, i.e. there would be no Borel ambiguity at
all. This would be possible if the analytical continuation direction in (1.1) would be

pre-determined by construction of the problem.



Long ago in [23,24], it was show that it is possible to formulate (1.1) such that
the Borel summation B [f(\)] corresponds to the propagator of the physical theory in
consideration. This suggests that it is possible to compute the propagator directly and
its singularities coincide with the Borel plane singularities we discussed. In addition to
that formulating the theory in real time determines the possible analytical continuation
directions to the propagator by the ic prescription and in this way, the Borel ambiguity
problem resolves as it arises from the freedom of the analytical continuation directions

in the first place.
1.1. About the Thesis

In this thesis, we will first put the arguments of [23,24] on a more concrete basis
and define an unambiguous physical observable. Our derivation is based on the spectral

problem where we consider the logarithm of the Fredholm determinant, i.e.
['(u) = Indet(u — H), (1.3)

as the main spectral function which will call the quantum action.! In this form, the
spectral information is hidden in the logarithmic singularities of I'(u). It is possible to
extract this information by formulating it in the Schwinger’s integral form, i.e.

I(u) = / dt e Tre't, (1.4)

0

Note that this integral is very similar to the Borel integral (1.1). Then, the singularities
of Tre'!* can be used to obtain the non-perturbative part of I'(u). On the other hand,
Equation (1.4), even without any singularity, is not finite when the integral is computed
on the original contour. It can be made finite by setting u — u + ie or equivalently
rotating ¢ contour in counter clockwise direction. This is the essence of the resolution

of the Borel ambiguity.

!Note that the naming comes from the usage of the Fredholm determinant in QFT and many-body
theories to calculate the effective actions [25] but in addition to that as an achievement of this thesis,
we will also show that in one dimensional non-relativistic quantum mechanics, I'(u) corresponds to
the WKB action.



Note that it is known that [1] the poles of an integrand are associated to the
branch points of the function represented by that integral. Therefore, probing the
poles of the integrand in (1.1) is equivalent to probing branch points of I'(u). In this
sense, this is very similar to the discussion of the analytical structure of f(\) above
but in this case, the problem is formulated on the u-plane and it is more direct, as we
introduced the logarithmic singularity from the beginning instead of observing it from

a divergent perturbation series.

Along with resolving the ambiguity problem, as the expression (1.4) is based
on the spectral theory, the analytical properties of I'(u) can also be used to obtain
perturbative data as well. This is indeed the case, as we will show in Chapter 3, in
one dimensional quantum mechanics settings, the discontinuity at the branch cut of
I'(u) corresponds to the WKB action. It is well-known that in the WKB setting, the
discontinuity appears on the position space and the spectral information arises from

closed line integrals, such that

AT ~ j{dx\/u —V(x), (1.5)

which corresponds to the leading order WKB action in the semi-classical expansion and
where V() is the classical potential of the quantum mechanical system. Formulating
['(u) in the time dependent setting as in (1.4), we transfer this information to the ¢
plane. In addition to that this formulation enables practical calculations for systems
in arbitrary dimensions rather than one dimension where the standard WKB method

is effective.

In addition to the spectral problem that is based on the definition in (1.3), we
will also discuss a scattering problem in Chapter 5. This problem involves renormalons
which are artifacts of the renormalization of logarithmically divergent diagrams and
present themselves as factorial divergence in perturbation series. Although the sources
the divergences of perturbative expansions of the renormalon problem and the spectral
problem, which we will discuss briefly in Section 2.1, and the construction of these two

problems are different, we will show that the renormalon divergence is also associated



to an integral singularity:.

1.2. Outline of the Thesis

The main part of this thesis consists of the application of the above ideas to
three problems which was published in three separate papers [26-28]. Each of these
papers will constitute a chapter in the thesis. We complement these chapters with
a background discussion on the role of the singularities in both the perturbative and

non-perturbative sectors of quantum physics.

e In Chapter 2, we will present the preliminary discussions. We will start with the
type of divergences that appear in physical problems and after a technical review
of the divergent expansions, we will discuss the connection between perturbative
expansions and non-perturbative contributions using the Borel method. Then,
we will present how the Borel summation leads to unambiguous results via the
cancellation mechanism of Bogomolny and Zinn-Justin. Finally, we will discuss
the preliminary discussion with a formal discussion on the singularities of function
expressed via an integral. This will be the basis of the computations the following
chapters. We will finish the chapter with a brief discussion on the WKB method
and the geometry behind it as the discussions in Chapters 3 and 4 presents the
same physical structure from a different and more general point of view.

e As the first application, in Chapter 3, we will present how the semi-classical
expansion can be obtained from the Schwinger’s integral (1.4) which was origi-
nally published in a research paper with the title “Recursive Generation of The
Semi-Classical Expansionin Arbitrary Dimension” [26]. We will show that the
gap Al'(u) of the quantum action I'(u) due to the singularity of TrU(¢) at t =0
leads to the perturbative WKB action in one dimensions and the time-dependent
formalism we will provide a generalization to higher dimensions. The main com-
putations will be carried out via a recursion relation that will also be derived in

this chapter.



e In Chapter 4, which was originally published in a research paper with the ti-
tle “Pair Production in Real Proper Time and Unitarity Without Borel Am-
biguity” [27], we will focus on obtaining the non-perturbative pair production
probability without any Borel ambiguity. We will show that although the non-
perturbative information is extracted from a singularity of TrU(t), contrary to
the perturbative case we discuss in Chapter 3, it arises from the singularities at
finite t. While, the treatment of this singularity is similar to the integration of the
Borel method, using i€ prescription we will be able to obtain the non-perturbative
part with a fixed sign. We will also explain the connection with the singularities
of TrU(t) appear in the time dependent formalism with the WKB cycles. Finally,
we will explain the non-existence of the Borel ambiguity from using the Lefschetz
thimbles.

e Finally, in Chapter 5, we will focus on a non-relativistic scattering problem that
involve the renormalon divergence in the perturbative expansion of S-matrix. Re-
ducing the many body scattering problem to one dimensional quantum mechanics,
we will be able to obtain the renormalons in one particle quantum mechanics in
3 dimensions with a background potential of 2D d-potential perturbed with 1D
O-potential that corresponds to a plane in 3D space. In addition to that in a simi-
lar way to Chapter 4, we will obtain the non-perturbative information associated
to the renormalon divergence without any Borel-like ambiguity. The content we
will present in this chapter was originally published in a research paper with the

title “Renormalons in quantum mechanics” [28].



2. PRELIMINARY DISCUSSION

2.1. Divergence of Perturbation Series in Physics

In this section, we will briefly discuss the divergent perturbative expansion that
we encounter in physical problems. There are two known sources for the divergent
behaviour. One source is associated to the number of Feynman diagrams and their
proliferation as the order of the perturbative expansion increases [7,8]. The other
one, on the other hand, arises as an artifact of the renormalization procedure and it
is associated to the dominant parts of the loop integrals over logarithmic momentum
dependent quantities which are results of the renormalization procedure [29-31]. Due
to its relation to the renormalization process, this divergence source is called “renor-

malon”.

Both proliferation of diagrams and renormalons result in the same type of diver-
gences in their corresponding perturbative series, i.e. at higher orders, the series is
dominated by a factorial growth. This is a serious problem for the consistency of the
theory as the perturbation series is not well-defined. In Section 2.2, we will discuss
how this problem is resolved by the Borel summation procedure. This will also enable
us to obtain consistent non-perturbative information about the theory by probing ex-
ponentially suppressed terms that are ignored in the original perturbative expansion.

Before that, in the following, we will elaborate on both type of divergence sources.

Let us first discuss the proliferation of Feynman diagrams. Consider Feynman
diagrams at a given order in a perturbation series. While it is possible to get different
types of diagrams, most of them are related to each other by a permutation symmetry
and their contributions are equal to each other. However, as higher order diagrams
are analyzed, the number of diagrams symmetric to each other also increases. There-
fore, although the contribution of an individual diagram does not increase on average,

the overall contribution at high orders increases due to the number of diagrams. By
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counting the number of diagrams by statistical methods [7,8], it was found that the

growth is a factorial one and the term f, in the perturbation series at order n behaves

as f, ~ A7"nl.

As an example, instead of using statistical methods, we will consider the ordinary
integrals that count the number of diagrams contributing to the partition function
[32,33]. This will help us to understand the analytical background of the divergent
behaviour. Take the quartic anharmonic oscillator

2

V(z) = % + Azt

Then, the large order estimation of the number of diagrams is given by

22
dr e~z ", (2.1)

-l

Expanding the exponential in A\, we get

1 < <_/\>n/oo an —=
I(\) = drx™e 7, 2.2
W== (22)

which can be easily computed in terms of Gamma functions by setting 1—22 =t

15 )" ot -t _ L 2R ()" 1
N = o z% /0 dt ¢ > Cin+o|. (23)

S or n!
However, since we are interested in the high order estimations, let us use the saddle

2n+

l\')\b—‘

k=0

point approximation by re-writing (2.2) as

I\ = \/12_7T Z (_n);) /_Z dz e~ 9@, (2.4)

where g(z) = % — 41Inz. For large n, the integral is dominated by the saddle point of
g(z) at 2% = 4n and at the leading order, we get

\/]‘_ g i ﬁe—2n+2nln4n — 2\1/7_-( ni;o (

4 nl
— -1 — 1IA", 2.
-2 219 Py (25)

—16A)"

—n+nlnn
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where we used the Stirling approximation n! = v/2mn e~"*?n" This result verifies the

factorially divergent behaviour of the perturbation series.

Note that in addition to counting the number of Feynman diagrams, (2.1) helps us
to understand another critical aspect of the quartic oscillator: For A < 0, the integral is
not well-defined. This is related to the instability of the vacuum at = = 0 for negative
A-values. As Dyson indicated in [6], this means that /(\) should be problematic on
the negative real axis in the A-plane. Specifically, it can be shown by an analytical
continuation in the A plane that I(\) has a branch cut along the real negative axis
which connects the branch points at A = 0 and A\ = —oo. In the perturbation series
(2.5), the branch point at A = 0 leads to the factorial divergence and as a result the

lack of mathematical definition of the series itself.

Now, let us focus on the renormalon problem. The main difference with the
proliferation of Feynman diagrams is that the divergent behaviour associated to the
renormalon arises from a single type of diagram. Here we will sketch how this divergent
behaviour arises. More detailed discussions with explicit examples in QED, QCD and

¢4 can be found in [32,34-37].

Consider a loop diagram with logarithmic momentum dependence I(p?) = log (’;—12)
where p is an energy scale introduced in the renormalization procedure. Then, put its n
consecutive insertion in a larger loop as in Figure 2.1. The whole diagram is represented

by an integral of the form

I, = /def(p) <,\ 1n%2)n. (2.6)

Let us assume that in f(p) ~ p® in high or low energy limits. Then, we can

separate the radial part and

2 n
I, :/dﬂp_l/dppA_l (/\lnp—> , A=D+«a (2.7)
1

and evaluate the radial part by saddle point approximation. If we set y = In %2, the
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radial part transforms as
A ?\" A A
dpp” " (In— | — pzdyy"e2¥, (2.8)
1
which is dominated by the saddle point y = —QX" and the leading order approximation

around this point leads to

I, ~p? (-%)n (n—1)L. (2.9)

1og7i—j /def(p) (ln ’i—f)n x n!

Figure 2.1. Left: A renormalized 1-loop diagram with logarithmic momentum

dependence. Right: n renormalized diagram inserted in a larger loop.

This is the renormalon divergence. Note that depending on A, there are two

different renormalon types:

e IfA>0,asn — o0, y = ln%2 — —oo and the radial momentum integral in
(2.7) is dominated by low energy region and the divergence is associated to the
IR renormalons

e [fA<0,asn —o00,y=1In %2 — oo and the divergence is related to the dominant

region high energies and it is associated to the UV renormalons.
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2.2. Divergent Series and Borel Summation
2.2.1. An Analysis of Divergent Series:

Let us consider the Taylor expansion of a function f(z) around z =0

flo)=>_faa" ; z€R, (2.10)
n=0

where we assume the series diverges as n — oo. It is possible to truncate the series at
the (N 4+ 1)™ term and analyze the partially summed series

N

(@) = fa" (2.11)

n=0
Since the original series diverges, although the partial summation makes an estimation
possible for the original function f(x), there is always a difference between f(z) and

its partial sum f®) ()

f(x) =) far®

n=0

N
‘ < CngaleVH (2.12)

where Cy.1 > 0 is some constant that it shows the accuracy of the partial summation.
It is possible to minimize Cy by finding the optimal truncation point and get the best
possible estimation from the partial summation but there would always be some part

of f(z) that can not be probed by its Taylor expansion.

Let us consider the physical cases we discussed in Section 2.1. In both cases, the
perturbative expansions diverges factorially for large orders. Then, in the following, we

will assume Cy ~ A=V N!. To find the optimal truncation order, we minimize Cy|z|":

aiN(CN|$’N> :aiN<e(NlogN—N+Nlog[jg])) —0,

where we used the Stirling approximation log N! ~ Nlog N — N. Then, we get the

optimal truncation order as

N, = — (2.13)
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and the minimum possible deviation from the original function f(x) as

CN* X

Ne _ (m) N, N — e(logN*!-i-N* 1og%)
A
~ o(Nxlog Nu=N.—N.log N.) _ e_%. (2.14)
Note that this is the smallest possible error we can achieve with a partial summation.
It is always possible to find some function of order e T for k > A and add to the orig-
inal function f(z). The resulting function would have the same asymptotic expansion
with f(x). Therefore, the minimum error bound indicates that as one can expect, no

divergent expansion can define a unique function.

However, this is not end of the story. In fact, it is possible to reconstruct the
function uniquely using the original asymptotic series [38]. First step of this recon-
struction, which we will focus on in this thesis, is probing the exponentially suppressed
information using the divergent series. The most common way to do this is the Borel
summation method. We will discuss this Borel summation method in Section 2.2.3.
Before that in the next subsection, we will elaborate the connection between the ex-
ponentially suppressed terms and the divergent power series by discussing a specific

example, i.e. Euler’s equation.
2.2.2. The Euler Equation

Euler’s equation is a 1% order ordinary differential equation:

xQ% = A(f(x) — x). (2.15)

Although, it contains a rich structure related to Stoke’s phenomenon and Resurgence
theory [39], in this and next subsections following the analysis in [40], we will re-
strict ourselves with a brief discussion on the solution of the Euler’s equation and the
emergence of exponentially suppressed terms as a part of the full solution, via Borel

summation.
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First, we are interested in the series solution to (2.15) and its properties. Using

the ansatz
fla)=>" fur®, (2.16)
k=0
we get

i kfra®tt = A (i fox® — /\> : (2.17)
k=0

The first two terms of the series are fy = 0 and f; = 1 and rest of the series coefficients

satisfies the following recursion relation:
fi=Ak=1Dfi1 k> 2. (2.18)
From this relation, the &* term is found as
fo=ADE 1) | E>1 (2.19)

and the expansion of the function f(x) is found as
flo) = AFkla* (2.20)
k=0

The series diverges factorially for £ > 1 and as we have shown above, the best possible
estimation of f(x) with this series leads to an error on the order of e~% and the
asymptotic series can not be the unique solution as any exponentially suppressed term

can be added to the solution.

In fact, this is not a surprise as the solutions of ODEs should depend on an arbi-
trary integration constant, which is determined by the initial or boundary conditions
specific to the problem. In the case of Euler’s equation, the arbitrary parameter arises

from the associated homogeneous differential equation

:c?#;—ff) = Afu(2), (2.21)
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whose solution is
fu(x) = Ce= A2, (2.22)
Then, the full solution is written as

=Y AR 4 Ce M (2.23)
k=0

where C' is an arbitrary constant.

Note that both parts of the solution in (2.23) have a common problem: Neither
of them is defined at = = 0. Specifically, the first part is a divergent expansion around
x = 0, which shows that its radius of convergence is zero. The second part, on the
other hand, blows up as x — 0~. This is not surprising as x = 0 is a singularity for
the differential equation (2.15). However, the connection between inhomogeneous and
homogeneous solutions is much deeper than this and in the next subsection using the
Borel summation method, we will show how the homogeneous part arises from the

inhomogeneous part represented by the divergent series.
2.2.3. Borel Summation

Recall the divergent expansion in (2.20)
=D fed" oy fe=ATRRL
k=0

To tame the divergent behaviour, we will utilize k! = fo dbb"e b and by multiplying

and dividing the series with k!, re-write f(z) as

[e'e] o) k
:Z/ db e~ bk fkil? Z/ db e (_) LR (2.24)
n=0 0

However, a serious problem arises when we want to exchange the summation and the

integration. This is not allowed since the series is divergent. Instead, we define a new
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function B[f(z)] as
= (bx\"
Bf@)®) =) () (2.25)
k=0
which is called the Borel transform of the original function f(x). Then, we can intro-
duce the inverse Borel transformation
BUBIf@) = [ dbe Bl (2.26)
0

and return to the original domain. In this way, we obtain the Borel summation of f(z),

which we denote as S [f(z)]:

S[f(x)]:/Ooodbe‘bx;(%)k:/omdbe‘bl_mb_x. (2.27)

A

The radius of convergence of the integrand is Repn, = é. This means that by using the
Borel summation method, we exchanged the singularity at x = 0 of f(z) with another
singularity on the Borel plane at b = % which as we will see contains non-trivial

information about S [f(x)].

Imb g

Y61

th
02

|
Reb

8 ¢

0.

Figure 2.2. Contours for the Borel summation integral.

Let us assume that A > 0. Then, the singularity b = é lies on the integration
path and the integral contour should be analytically continued to the complex plane

as in Figure 2.2. We have two choices for analytical continuation: Counter-clockwise
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direction or clockwise direction. These are represented by paths vy, and 7y, in the

figure and corresponding integrals are written as

Slf) = [ avet
Y61 A

CoSala) = [ aver o
V0, A

Both Sy, [f(x)] and Sy, [f(z)] are well-defined along their integration contours. How-

ever, the limits §; — 0 and A — 0 leads to complex conjugate results since they

encircle the singularity in different directions as shown in Figure 2.3. This leads to a

difference between two analytical continuation choices which is given by

AS[F(@)] = Sor [f (2)] = So- [f(x)] = / et =omidet (229)

A

Note that this exponentially suppressed term is a solution to homogeneous Euler’s
equation in (2.21), i.e. AS[f(z)] ~ fu(z). This is not surprising since both summations
written in (2.28) are solutions to the inhomogeneous Euler’s equation. To see this, after

re-scaling b — 4% in (2.27), take the derivative of S [f(z)]:

= (s17e)

I

D
o\
8

a

(o

o
5 e
VR
_ ('bl
| ol
Q., o
~_

T T

_ A(l _ M) (2.30)

which is indeed re-scaled version of the Euler’s equation in (2.15). This shows that
So+ [f(2)], So- [f(z)] and their linear difference AS[f(x)] = Sp+ [f(x)] — So- [f(z)] are

also solutions to the Euler’s equation.

This analysis shows us that the divergent series solution in (2.20) indeed contains
more information than it shows at first sight. In fact, although the divergent series

is meaningless on first sight, via Borel summation, it leads to the full solution to the
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Euler’s equation which can now be written as

x A

+Ce 7, (2.31)

f(x) = A dbe™® N

_ bz
o A

where 7y corresponds to the integration line on the positive real axis without the

singular point.

Im(b)A

Yo b=3
e, S
. o

—/ Re(b)

70

Figure 2.3. The Borel summation integral contours in the limit #; — 0 and 6, — 0.

2.2.4. Borel Ambiguity and Its Resolution

The main lesson of our analysis is that investigation of the asymptotic solution
f(x) =" fra® leads to the full solution of the Euler’s equation which contains infor-
mation beyond the polynomial series. The same analysis can be carried to the physical
problems we briefly mentioned in Section 2.1 where the perturbative expansion of a
physical observable can be utilized to obtain non-perturbative information about the
problem by using the Borel summation. This presents an intimate connection between

perturbative and non-perturbative physics.

One main problem of the Borel analysis is the freedom of choice in the analytical
continuations we made in the inverse Borel transformations in (2.27). As we showed,
this leads to a multi-valued exponential contribution to the solution. While this is not
a problem in Euler’s equation analysis where a convenient initial condition determines

the pre-factor of the exponential term, it becomes a crucial problem in physics when
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the exponentially suppressed terms carry important physical information.

Having multi-valued exponential factors in non-perturbative sectors is called the
Borel ambiguity problem. Let us elaborate it and discuss its solution in a specific quan-
tum mechanical setting. We will consider the double-well potential in one-dimension:

(See Figure 2.4.)
1, 2
V(z) = 57 (14 gz)”. (2.32)

Its spectral properties and its resurgent structure is well-studied in [13,16] and we
will briefly explain the resolution of the Borel ambiguity by using the results in those

studies.

A /

Figure 2.4. Double-well potential.

Energy levels for each well can be computed perturbatively and expressed in an
asymptotic expansion in g as
un(g) =Y e g™ (2.33)
k=0
Since both wells are locally equivalent to each other, at all order perturbative energy
levels are degenerate. The degeneracy is broken when non-perturbative effects which
are induced by tunneling between the wells are considered. This can be computed by

the WKB approximation [41] or instantons methods [5] and leads to a non-perturbative
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contribution to the spectrum, i.e. Augap(g) ~ e~1/69°  Then, naively, we can write the
energy eigenvalues for the ground state as

1
wolg) = S0 g -
k=0

e U8 (2.34)
mg?

Equation (2.34), however, can not be the complete energy for the ground state since, as
we expect from the discussion in Section 2.1, the perturbative expansion is a divergent
one. For high orders, i.e. & > 1, the expansion diverges as 520) ~ %3'““15!. This is
similar to the behaviour we studied in Section 2.2. Then, handling the divergence by
Borel summation leads to the ambiguous imaginary contribution to the spectrum as
S [uo(g)] ~ iWLngl/?)gz. (2.35)
First of all this leads to a multi-valued function representing the ground state energy
eigenvalue ug(g). Moreover, it makes the energy of a stable state complex. None of

them is acceptable and should be resolved to get a consistent picture.

Resolution to this problem comes from the two instantons level. At this order,
the instanton contribution to the non-perturbative spectrum acquires an imaginary
part and it is found as [13, 16]

Imul? = ;%e*/&qz. (2.36)

g

Note that this imaginary contribution arises from a combination of instanton anti-
instanton solutions which requires analytical continuation in the variable g2 similar
to the one we encounter in the Borel summation and the freedom of choice in the
analytical continuation direction leads to the multi-valued result in (2.36). However, it
comes with an opposite sign with the one we get from the Borel summation in (2.35).
Therefore, if these two contributions are considered together, they would cancel each

other and the resulting ground state eigenvalue g (g?) would be real and unambiguous.

The cancellation of the Borel ambiguity at perturbative level is just a small
part of the whole resurgence structure associated to the eigenvalue u(g) of all levels

in the spectrum. In fact, at each instanton order, there is a divergent perturbation
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series associated to fluctuations around the instantons and these series leads to a Borel
ambiguity as well. The cancellation of these ambiguities comes from the imaginary
parts of the higher order instanton contributions and this leads to well-defined unique

eigenvalues. In this thesis, we will not discuss this structure.

Remark: While this analysis leads to a complete and consistent picture for the
spectral problem for stable systems, when there is an instability in the system, the
cancellation procedure is not suitable to resolve the ambiguity as the imaginary contri-
butions should survive. This motivates us to investigate the analytical structure of the
physical observables from a different point of view. Integral representations of physical
functions, which we will focus on throughout this thesis, allow us to investigate this

structure in a more direct way and solve the ambiguity problem once and for all.
2.3. Physics from Analytic Structure

As we discussed earlier, the main subject of this thesis is extracting physical
information out of singularities of a function which is formulated in an integral repre-
sentation. In the following chapter, we will encounter two different types of integral

representations.

First, in Chapters 3 and 4, we will formulate the spectral problem in non-
relativistic quantum mechanics and the pair production of scalar particles in a time

dependent formalism based on Schwinger’s integral

I'(u) = /000 % e TrU(t), (2.37)

where T'(u) is the quantum action and U(t) = e is the time-dependent propagator.
As we will see in Chapter 3, this integral is closely related to the semi-classical
expansion that we are familiar from the WKB method. To see this connection, let

us consider a Hamiltonian in one dimension H = %2 + V(z). The propagator can

be expressed in terms of commutators between kinetic and potential terms via the
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Zassenhaus formula which gives
'L'tp2 .
Ut) e 5 e V@ (2.38)

at the leading order. Then, after properly projecting TrU(t) onto the phase space
and taking p and t-integrals, which we will discuss in Chapter 3, the quantum action

becomes

Al(u) = ﬁjgdx\/u —V(x), (2.39)

This is the well-known Bohr-Sommerfeld integral and it gives the leading order WKB
action in the semi-classical expansion. We represented it as AI' since over a closed

loop, only the branch point at u = V(z) contributes to the integral.

Note that since the integral (2.39) comes from Schwinger’s integral in (2.37),
the same information should be hidden somewhere in the time-dependent formalism
as well. As we will show in Section 2.3.1, the branch point information is hidden in

_Tr[t] @) In Chapter 3, we will show

the singularities of the integrand in (2.37), i.e.
that the quantum action is associated to the perturbative sector that arises from the
singularity at ¢ = 0. In addition to that TrU(t¢) also contains information about the
non-perturbative sector which is hidden in singularities at finite . As we will show

in Chapter 4, this singularity is in fact equivalent to the Borel singularity that we

discussed in Section 2.2.3.

In addition to the integral representation of the quantum action, in Chapter 5, we
will formulate the renormalon problem in momentum space and investigate integrals
of the form

T(Ps,Pi) = / dg F(q; Py, Pi), (2.40)

—00
where 7(pys, p;) is the on-shell T-matrix of a scattering process that we will define
in Chapter 5. In this case, the non-perturbative information that is carried by the
renormalon again arises from a singularity of F'(¢; ps, p;) and it is handled in the same

fashion with the Borel singularity.
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Remark: In all three cases, we will utilize the i prescription and as a result,
the gap arising from the singularities would have no ambiguity. This is possible due
to the relationship between the ie prescription and the time flow direction, which is
manifest in Schwinger’s integral and well-known for the energy dependent description

of scattering processes [42].

In the next subsection, following [1], we will discuss the relation between the
singularities of integrands and the analytical properties of the function represented by
the integral. We will also elaborate on their connection with the i prescription and

the analytical continuation of the Borel summation integral. Due to the connection

TrU(t)
t

between the semi-classical expansion and the singularity at ¢ = 0 of , we will finish

this chapter with a discussion on the WKB method and its geometric background.
2.3.1. Integrals and Their Singularities

Let us consider an integral along a finite sized contour C':  — [ where «, 3 are

fixed end points:

fA) :/Cdzg()\,z). (2.41)

Suppose that g(A, z) has simple poles at z = z,(\), where p =1,...,n. As long as the
contour C' does not pass through any of these singularities, f(\) remains an analytical
function. On the other hand, as A varies it is possible one of the poles to reaches the
contour C'. Then, an analytical continuation would be needed to keep f(\) analytic.
However, in certain situations, there is no way to escape from the singularities and in

these cases, f(\) would have singularities associated to the poles of g(\, z) on z-plane.

In the following, we will investigate end-point singularities, i.e. a singularity of
g(A, z) coincides with one of the end points of integral contour C'. Suppose A, is a
point such that z;(\.) = « is an end-point singularity. Let us consider a circle path

around A, of radius e: A = A, + |¢|e?, 6 € [0, 27]. This would correspond to a similar
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circle around the end point:

dA on,

21( A +8) 2 a+|ele (2.42)

where we assumed the first derivative of z; exists and non-zero at A = \,. Then, if we
start at a point on the circle in the A\-plane and go along the circle for one complete
round, we would to the same for the circle in z-plane. As illustrated in Figure 2.5, by
Cauchy theorem, this would lead to a difference between f(\) and f(Ae?*™) which is
equal to the contour integral around the singularity at zj, i.e. the residue of g(}, z) at

z = z;. This indicates a logarithmic singularity of f(A) at point the A = \,.

Figure 2.5. Deformation of contour as the singularity at z; moves on a circle.

As an example, consider the integral

FO) = /Om dz QZ(A_ ? . AeRUO. (2.43)

It is an elementary example. We know that the pole at z = X can be easily handled by
the residue theorem and as a result, an imaginary part for f(\) arises. In the context
of our discussion, however, now we know that this gap is resulting from a branch cut
of f(A) on X plane. More specifically, the pole z = X coincides with the end point
z=a=0as A — A\, = 0. Therefore, a circle around the pole at z = A for finite A

corresponds to a circle around A = A\, = 0 and the residue of the integrand corresponds

to the gap of f(\) due to its branch point at A = 0.
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Instead of considering rotations in A plane, we might utilize i prescription by
defining

FEO) = lim f(X\ £ ie).

e—0

Then, the gap arising from encircling the singularity would simply be

Af(A) =T = (V). (2.44)

Equivalently, we might rotate the contour to avoid the singularity at z = z;(A) = A.
The latter one is what we have done in Borel analysis. Now we see that the imaginary
exponential term arising via summation is indeed a result of passing through the branch

cut of the original function.

In Chapter 3, we will encounter another type of integral where the end-point
singularities are fixed:

) = / T e, (2.45)

z

The denominator is already zero at the end-point z = 0. We can slightly move the

singularity of the denominator by defining

* dz

F(N) = lim f(A,Q) = lim i me“ng(z). (2.46)

In this way, we return to the problem in (2.43). However, in this form, the relation
between the singularity at 2 = 0 and the function f(\) is not explicit. On the other
hand, for A € R, due to the oscillatory behaviour of the exponential, the integral is
not well defined at the other end-point z = oo as well. This second problem indicates
that f(\) in (2.46) is not well-defined on the real axis in the A-plane. The oscillatory
behaviour can be handled by the ic prescription and by re-defining f(\) for A > 0 and
A < 0 regions separately as

FEO) =lim f(A+ig) , A>0,

e—0

f-) =limf(A—ie) , A<0. (2.47)
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Then, the integrals for f=()\) can be written as

> dz
+ —
=) ity

e:l:iz()cl:ia)qb(z)7 (248)

where A > 0 in both cases. Equivalently, we can put the analytical continuations
information to the contour:

ocotie
f:l:(/\) — lim % e:l:iz)\

e—0 .
Q-0 Qtie <

o(2). (2.49)

In this form, it is clear that encircling the singularity at z = 0 is associated to the
difference Af(A) = f(A\) — f~(A) which is equal to the residue of f(\,§2) at Q@ =0
and f(A) has a branch point at A = 0.

2.3.2. Geometry and WKB Method

The WKB approximation is well-known textbook material widely used to express
the semi-classical approximation of the wave-function by the Bohr-Sommerfeld integral,
which we introduce in (2.39), and to compute tunneling rates in one dimensional quan-
tum mechanics. A less known but important aspect of the WKB approximation is that
it can be made exact by extending the semi-classical series to all orders and investi-
gating the analytical properties of (2.39) and its quantum corrections. It is called the
exact WKB method [43-45] and used to obtain the resurgence structure we discussed
in Section 2.2. The analytical structure of (2.39) has also a topological basis from
which the resurgent structure can be derived in terms of cycles on a torus or n-tori.
We will first discuss this basis and its relation to the resurgence theory briefly. Then

discuss the derivation of the all order WKB expansion.

Any quantum theory can be written as a spectral problem written as an eigenvalue

equation of an Hamiltonian H

H(p,x)1 = uy. (2.50)

It is possible to have the Hamiltonian as a general function of two canonical vari-

ables p and x. For example, in Chapter 3 we will consider H(p,x) = T(p) + V(x),
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where T corresponds to generalized kinetic term, and in Chapter 4 we will study
H = $(p.— eA,(x))?. In this section, we will consider the standard Hamiltonian
in one dimension

H(p,z) = %2 + V(2). (2.51)
We know that the classical Hamiltonian corresponds to the total energy, i.e. H = w.

Equivalently, the momentum can be written as a function of the position
p’(z) =2(u—V(z)). (2.52)

In this form, p(z) defines a Riemann surface, ¥, which has two sheets due to the branch

points given by

While the number of branch points determines the topology of ¥, they also play an
important role in quantization of the Hamiltonian (2.51). To see how this relation
takes place, let us examine the double well potential in (2.32).

1
3297

Focusing on low energies 0 < u < it is easy to see that there are four turning
points, given by u = V(x), corresponding to the branch points on . There are two
branch cuts on each Riemann surface . We know that crossing these cuts means
traveling from one Riemann sheet to the other one. Then, we can connect each cut by
a tube and by compactifying each Riemann surface, we get a torus. See Figure 2.6 for

an illustration.

On the torus, there are two independent cycles. We identify them as « and f
cycles. In our construction, the « cycle is associated to the branch cuts connecting
the singularities on . On the other hand, the 8 cycles connect different branch cuts.
If we return to the standard double-well potential, we identify a cycle with a closed
loop in one of the wells of the potential. 5 cycle, on the other hand, corresponds to
a closed loop under the barrier. These are the closed paths of the Bohr-Sommerfeld

integral in (2.39). Then, the above identifications shows that « cycle is associated to



29

the perturbative sector of the theory, while the £ cycle represents tunneling effects and

is linked to the non-perturbative sector.

(751 u2 u3

Figure 2.6. Formation of torus from a two sheeted Riemann surface.

Let us consider actions, a(u) and a”(u), associated to the cycles o and 3 respec-

tively and their formal Taylor series of A:

a(u) = Z am K™, aP(u) = Z al . (2.53)
m=0 m=0
Then, on the perturbative side, the leading order Bohr-Sommerfeld quantization is
written as

a0<u>:¢§j€¢m: (N+1>n

2

and on the non-perturbative side, the tunneling probability between two wells is given

by P~ e~ lman (),

As we showed in Section 2.2, these two pieces of information should be connected.
In fact, the connection goes beyond this, the series in (2.53) are connected to each
other term by term. In addition to that terms in each series are also connected among
themselves. One way to see this connection is the Picard-Fuchs differential equation

[46-50] which are derived by using the geometry of the Riemann surface. For genus
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1 potentials, the Picard-Fuchs equation is a second order differential equation and at
the classical level, the actions ag(u) and al (u) correspond to its solution. Then, the

solutions ag and a{’ are connected by the Wronskian condition

W(a,a”) = ao(u)dag—ziu) — aOD(u)dzO—Q(Lu) = 2iS/T, (2.54)

where Sy is one instanton action and 7 is the period of the harmonic oscillator at the
well [47]. On the other hand, using the same geometry it is also possible to derive
differential operators [49,50], D*", whose action onto ay and af yield the quantum

corrections at order A%", i.e.
agn = D™May , ab =D™ab. (2.55)

Note also that in [47], it was also shown that the Wronskian relation generalizes to all
orders in the semi-classical expansion and this shows the generalization of the connec-

tion between a(u) and aP(u) to all quantum levels.

The Picard-Fuchs equations present a geometric picture for the resurgence rela-
tion between perturbative and non-perturbative sectors at all orders in semi-classical
expansion which we discussed in Section 2.2. Another way to obtain the same picture is
using the holomorphic anomaly equations known from topological string theory [51,52].
In this approach, the anomaly equations provide the free energy, i.e. prepotential in
string theory language, as a function of the action a(u) and the connection between
the perturbative and non-perturbative parts are given by the simple relation

_ OF (a(w)

aP(u) = Balu) (2.56)

Note that the topological strings are related to one dimensional quantum mechanics

via the Nekrasov-Shatashvili limit [53]. Therefore, (2.56) is also another resurgence

relation for the potential V' (z) as well.

Remark: Another aspect of the Picard-Fuchs equation and the Holomorphic equa-
tion approaches is their recursive nature which is akin to topological recursion [54,55]. It

simplifies the computations of quantum corrections to the classical actions ag(u) and
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a(u). In standard quantum mechanics, we can get the same recursive nature from

the all orders WKB method. However, all of these methods are restricted to one di-
mensional problems. As we have implied, one of the main achievements of this thesis
is the generalization of the application realm of the recursion relation to arbitrary di-
mensional problems. In Chapter 3, we will show that using Schwinger’s integral, we
can indeed find an equivalent recursion relation and generate the quantum corrections
without any restriction on the dimension of the theory. For completeness, let us finish
this chapter with a brief presentation of the all order semi-classical expansion using

the WKB method.

Consider the one dimensional Schrodinger equation in the following form

*p(x) __ p(a)
dz2 — B2 1/}(1‘), (257)

where we again use p?(z) = 2(u — V(z)). The WKB ansatz for this equation is
l

(@) ~ exp {ﬁ / ’ dx’Q(m’,h)}, (2.58)

where we assume Q(z, h) is a formal series in h
Qz,h) = Qu(x)h" (2.59)
n=0

Inserting the ansatz in (2.57), we get the Ricatti equation

dQ(z, )

i

Q*(z,h) — ik = p*(x), (2.60)

which is written in terms of the formal series as

(Z Qn(a:)h”> —ihy_ Q(x)h" = p*(x). (2.61)

Then, at order h°, we get

Qp () = £p(2). (2.62)



32

Higher order terms are given by the recursive expression

Z@k ) Quolr) —iQ 4 (1) =0 . n>1 (2.63)
or equivalently
n—1
2Q0(2)Qu(2) = Q1 (2) = Y Qu(2)Qu-i(z) . n=1. (2.64)
k=0

Here we used

<ZQn(7)hn> Z(ZQk ) Qn—k( )) (2.65)

to obtain the recursive expression. This is the recursion relation we mentioned above.

Note that there are two solutions for the leading order in (2.62). Since higher
orders are determined from this term, the same is true for higher orders and the Ricatti

equation has two independent solutions:
AR (2.66)
n=0

However, for odd terms, i.e. n = 2N + 1, the + signs cancel each other and these terms

are the same in both solutions. Then, we can separate the formal series into two parts:
D=3 Qi D £ 5 Q)" = Quaa 1) % Qe B). (2:67)
n=0 n=0
If we put these solutions into the Ricatti equation, we get
Q.+ Q)] 40 Qs + Q] =570, (269
Quaae:) ~ Qe )] 0.8 [t )~ Qunte)] =22 (209

These equations lead to

7 QQeven (2, 1)

2Qoad (7, h)Qeven(z, h) = dz

(2.70)
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and consequently
ih d

Qoaa(z, h) = oW log Qeven(z, h). (2.71)

As a result, we can re-write the WKB ansatz (2.58) as

l

exp {:I:— / " Queen(a, h)} . (2.72)

1
wi(l‘) N V Qeven h

When the integral in the exponent is taken along closed loops, it corresponds to the
quantum action we discussed above, i.e. a(u) and a”(u) depending on the integration

contour:

a(u) = j{dx Qeven(z, B) , aP(u) = idz Qeven (T, h). (2.73)

For future reference, we also present the well-known first two terms in the h expansion:

ap(u) = ﬁ]{dx Vu—V(z), (2.74)

V2 [ (V@)

> o (2.75)

as(u) = —i
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3. THE SEMI-CLASSICAL EXPANSION IN ARBITRARY
DIMENSION

In this chapter, starting from the definition of the quantum action as the loga-

rithm of the Fredholm determinant, i.e.
I'(u) = logdet (v — H), (3.1)

we will discuss how the semi-classical expansion of the quantum action I" can be ob-
tained recursively using Schwinger’s integral

I*(u) = — /00 % e T UE(t). (3.2)

0

The perturbative semi-classical expansion is obtained from the pole of its integrand
%(t) at t = 0. As we explained in Section 2.3 it is associated to the logarithmic
branch point of I'(u), whose appearance is also clear from the logarithm in (3.1), and
equivalent to the branch points that appear in the WKB method. In this chapter,
by obtaining the recursion relation for the semi-classical expansion, we will be able to

provide a generalization of the WKB method and its geometric counter parts that we

discussed in Section 2.3.2.

The content of this chapter was originally published by the author of this thesis as
a research paper with the title “Recursive Generation of The Semi-Classical Fxpansion
in Arbitrary Dimension” [26]. The rest of this chapter is identical to that paper with

appropriate modifications.

Before start the discussion on the recursive expansion, let us outline the content
of this chapter. In Section 3.1, we start with its relation to spectral functions and
derive an integral representation of the so-called WKB action. Then, in Section 3.2,
which is the main section of this chapter, we discuss the perturbative expansion of
the propagator by utilizing a small time expansion and derive the recursion relation

we were looking for. Note that at first, the time dependent formulation might ap-
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pear to have a disadvantage for practical purposes despite its applicability to higher
dimensional problems. However, the construction we describe in Section 3.2, the main
computational task reduces to the integration of ordinary integrals and basic complex
analysis. In Section 3.3, we will apply our method to anharmonic oscillators in arbi-
trary dimensions. The numerical results for this part are presented in Appendix C.

Finally, in Section 3.5, we finish the chapter with a discussion of our analysis.
3.1. Spectral Problem

In this section, we will briefly review the spectral problem of a Hermitian oper-
ator H acting on a Hilbert space. From elementary linear algebra, we know that the

spectrum of H is given by the zeroes of the Fredholm determinant, i.e.,
D(u) = det(u —H) =0, (3.3)

where u represents the elements of the spectrum. Instead of dealing with D(u) directly,

we focus on another spectral function, which is the quantum action,
['(u) = Indet(u — H) = Trln(u — H). (3.4)

Now, the branch point of this new function carries the spectral information.
One way to handle the singularity is introducing the resolvent G(u) = (u — H) !
as
I'(u) = / dzTr G(z), (3.5)
uQ
where uq is an arbitrary regular point of G(z) on the complex z plane. Note that the
simple poles of G(z), where the (discrete) spectrum appears, correspond to the branch
points of I'(u) as demanded by construction [1]. The information around the branch
point can be obtained by employing the ic prescription [13] and defining a gap for the

action I'(u) as

AT (u) =T (u) — T (u), (3.6)
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where we defined the actions in different branches as

= (u) = lim['(u + i¢) = lim {/:E dz TrG(z)}. (3.7)

e—0 e—0

It is well-known that the resolvent approach connects the classical dynamics and the
quantum spectrum of H [56,57]. However, in perturbative calculations, it may become
impractical. For this reason, it is more convenient to introduce its Fourier integral
representation

G(u) = +i /0 dt eFiu=H1, (3.8)

where t corresponds to a flow-time parameter conjugate to the eigenvalue w.

Near the branch cut, I'*(u) becomes

% (u) = —lim % eFHEE) Ty (1), (3.9)

e—0 0

where U%(t) = eTM is the propagator 2 which governs the flow generated by H. It is
also possible to incorporate the analytical continuations into integration contours,
cotic g4
I*(u) = —lim — T Ty US(¢). (3.10)
£20 Jotie

In this form, the spectral information arises from the singularities on the complex
t-plane, which are intimately related to periods of classical orbits [58]. Note that
the integrand in (3.10) is already singular at ¢ = 0, which corresponds to stationary
classical motion. In Section 3.3, for quantum anharmonic oscillators, we will explain
how the spectral information for a perturbative sector, which is related to the stationary

classical motion, emerges from this singularity. First we will continue our discussion

with the perturbative expansion of TrU* and its recursive structure.
3.2. Expansion in D Dimensions

Before describing our recursive scheme for the perturbative expansion of Tr U* (1),

let’s first investigate its general perturbative structure for a Hermitian operator H given

2For simplicity in future calculations, the % factor in the exponential is canceled by scaling ¢t — Ft.
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in the following form:
H(p,x) = T(p) + V(x), (3.11)

where T and V are operator valued functions of appropriately chosen canonical variables
x and p such that they form a 2D dimensional phase space. From the quantum
mechanical point of view, H can be considered as a generalized Hamiltonian. Moreover,
from ordinary QM, we know that projecting H onto x-space, the operator p starts acting

as a derivative operator and vice versa. From this fact, one can easily deduce
[p, V(x)] = —ihAVV(x) , [x, T(p)] = ihV,T(p), (3.12)
and the well-known commutation relation between the canonical variables,
[z, p’] = ihdY. (3.13)
The general structure of the perturbative expansion of U* can be examined by using
the Zassenhauss formula,

UE(t) = 7T TG0 (5 TE)VE0] 47 (VCTENVCIHTELTENEN) (3 1)
Together with (3.12), it is easy to see that the sequence of exponents in (3.14) corre-
spond to a derivative expansion. Besides this, expanding these exponentials, we can
get another expansion which we call coupling expansion. This simple observation shows

that a perturbative analysis of U*(¢) with an operator H as in (3.11) should be treated

as a double expansion.

Despite the simplicity of the discussion above, the Zassenhauss formula is not a
convenient way for practical calculations. Instead, we take a step back and re-write

the propagator as a time ordered exponential,

U*(t) = Texp {:Fz' /Ot dt’ H(p,x)} , (3.15)

which simplifies to an ordinary one when H is ¢ independent. Note that (3.15) is the
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solution of

:I:z'dU;(t) — H(p, x)U*(1). (3.16)

One way to compute (3.15) is by introducing a Fourier transformation between the
canonical variables and eliminate one of them [59-61]. In the following, we will present
a perturbative expansion for TrU® inspired by this approach. However, instead of
eliminating one of the variables, we will work on the phase space and integrate out
x and p after computing the perturbative expansion. This approach was initiated
in [62,63] however, in these papers, the recursive structure behind the expansion of the
time-ordered exponential (3.15) and its relation to the semi-classical expansion were

not mentioned.

Let us start by separating the T(p) part as

UE(t) = eTTRIT%(1) (3.17)
and re-write (3.16) as
AUS(t) _\us
i = VEUH(@), (3.18)

where we introduced the interaction picture potential,
V;E — o TiT(p) V(x) eTitT(P).
With these definitions, U=(t) is expressed as
) t
UE(t) = T TP Texp {:Fz/ dt’ Vli}
0

_ TS (fi!)” / t f[ at, T {V}E(tl) o VIi(tn)}. (3.19)

n

The next step is projecting the operator valued functions onto a 2D dimensional phase

space using 3

Vix)lx) =V(x)lx) , T(p)lp)=T(p)lp) (3.20)

3See Appendix A for conventions.
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and re-writing

+o dPzdPp iT(p)t (F)" [T + +
00 = [ o " S [ Lo ip eI V) - Vil
(3.21)

n=0

This allows us to exchange the commutators with a derivative expansion. In order to

do this, we insert an identity operator for each V/(¢;),

(x|p>(p]Vf(ti) = <X|p>eiiT(p)ti /dD:v’ (px)(x'|V CFiT(P)t:

_ eiiT(p)ti/ dPa’ 6—whl—x)‘/(xl)<x,| e:l:iT(p)ti (3 22)
(2mh)P ' '
At this point, instead inserting a second identity operator for e*T®)%  we expand
V(x') around x' = x,
1 k
V) =Y ((x' ~x)- vx) V(x). (3.23)

This enables us to take z’ integral using integration by parts. Then, removing the part

we introduced as identity element, we get

(xIp)(p|Vi(t:) = > _ W W, (x[p)(pl, (3.24)
k=0
where
+ V) (x) k -
E = b:l:(p7 Vp, tl) 5 bi(p, Vp, tl) = va + va(p)tl + VpT(p)t (325)

k!
Finally, we can express Tr U+ as a time-ordered exponential,

TrUi(t):/% <Texp{:|:z'/0tdt’ thw,f}> , (3.26)

+

where

(..« :/de...quiT(p)t.
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3.2.1. Recursion Relation

Equation (3.26) is still impractical for perturbative calculations. In addition to
that, depending on the functions V' (x) and 7'(p), the volume integrals might lead to
infinities which have no physical implications and they are handled by a normalization
technique. In the following, we propose a method that can be used for practical calcu-
lations and only infinities we encounter will be related to the physical spectrum. We

will extract this physical information without a need to normalize.

We start by making use of the time-ordered exponential in (3.26). It enables us

to re-write (3.16) as

dU*(t)
g
Tt

=Y RWETH (). (3.27)

k=0

Let us write U in an A expansion as well
U*(t) => U ()h
l
Then, matching orders in (3.27), we get

AUZ() ¢ >
i = > WEUL (1), (3.28)

At order m = 0, the solution is
UZE(t) = Texp {;i / t dt’ Woi(t’)} =TVt (3.29)
0
For m > 1, after multiplying (3.28) with ((73[)_1, we get
G0 = 70050 [t (057 R0, (3.0
where

Ry (t) =Y WiEBU5 (1),

Note that each UZ (t) is written in terms of U, ém(t). This makes the recursive behaviour
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of the perturbative expansion evident. To utilize this recursive behaviour, we express

ﬁm in terms of Uo and W, only as

Up(t) = UE()Y  Uni(t), (3.31)

0% () = (i) / dt, / dty- - / Aty WE (1) .. W (8).  (3.32)

at,.. Otk 1
(a1 +...cp,=m)

In (3.32), we have used (UF)"'WXUZF = W2, which was possible since Us" = TV is

p independent. Finally, let us define the sum of products as

o, — Zm: Wi (t) ... W5 (ty). (3.33)

O,y Otkzl
(a1+...ak:m)

For each m and k, Qi x can be written as a product of two lower order terms. For

example, let us separate W,, from the rest. Then, we get

mk_E: mal,kl

W1 —1,k—1 + W2 (’Ll) m—2,k—1 +ot Wr::—(k—l)(tl)QI:ct—l,k—l
m—k+1

Z QllQm Lk—1> (3.34)

where we set Q.0 = 04,0. This is the recursion relation we were looking for. Using this
recursion relation, we can explicitly express (3.32) as

m—k+1

U i(t) = Z / Aty Wi(t) Ui (1) (3.35)

m—k+1
1740) ~
= > V&) / dt; b'(p, VP, t1) U141 (t1). (3.36)

v
— I 0

Assuming ﬁm—l,k—l is already computed, for each (jmk, we only need to compute one
™™ order differentiation and one t;, integral. This is a crucial point to speed up practical

calculations.
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Combining all of these, we write the actions in an A expansion,

ookie (¢ dPx =
+ : m +iut :Fz[/(x
I'*(u) = —llr% I /0 N 5 e / 2 g . (3.37)

m=0 k=1

Note that in (mek, k represents the number of potentials, i.e. the order of coupling
expansion, while m represents the total number of derivatives acting on these potentials.
In our arrangement, at any order £ < m. Higher order terms in the coupling expansion
comes from the expansion of 03[ = T4V if the x integral could not be taken directly.

In addition to generating additional terms for the coupling expansion, 0§ = itV
in (3.37) also enables us to obtain finite results for the x integration as long as we
compute it around a minimum of V' (x). For example, in Section 3.3, we will compute
the expansion for quantum anharmonic oscillators around their harmonic minima. In
those cases, the x integrals will be Gaussian and with a proper analytical continuation
of in complex ¢ plane, they lead to finite results. However, this would not be possible
if we use the time-ordered exponential in (3.26) directly. Note also that due to the
separation in (3.17), the p integrals do not need a further treatment to prevent non-

physical infinities.
At this point let us states some remarks about the above discussion:

e Instead of the definition in (3.17), we can split the original propagator as
UE(t) = eTVOrTE(1). (3.38)

This is an equivalent definition and the only difference would be the roles of T(p)
and V(x) in the double expansion. Following the same procedure, we get the
following recursion relation

m—k+1

Pr(t) Z /dfl Ri(t1) D1 (te), (3.39)
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"t 11 "t —1
PEm = S () /0 dt, /0 dty - /0 Aty RE (1) ... RE (1) (3.40)

a,...,op=1
(a1+...a=n)

R, = ) (%, Vi ts)  ca(X, Vi, t;) =iV £ V, V(X)t; F Vi V(X)L
(3.41)

In this case, the actions I'* becomes

M =t Yo | T / o wrer (S pe)) . (342)
5 A (2h)D £tk o

n=0 +ie i

where

(..)x= /dD:E...ejFiV(x)t.

In both of (3.37) and (3.42), the order A counts the number of derivatives. But
the difference is in the first one, it is the number of derivatives on V'(x), while in
the latter, it is the one on 7'(p). This difference indicates that (3.37) and (3.42)
are different expressions of same object. However, as long as we do not truncate
one of these expansions, results coming from both approaches would be equal.
The recursion relation (3.34) is in the same form with the well-known WKB recur-
sion relation [64]. However, as stated before, since we consider the contributions
of branch points through the ¢ integral, we will take x and p integrals directly
and this will be our ticket to go to higher dimensions. For completeness, we will
also show the equivalence between our method and the standard WKB in one
dimension in Section 3.4.

Finally, note that the recursive behaviour is an intrinsic property of the iterated
integrals, which stem from the time-ordered exponential, and it is independent
of the functions 7'(p) and V(x). This indicates the topological nature of the
derivative expansions, and it is totally consistent with the conjectured equivalence

of topological recursion and WKB expansion [54,55].
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3.3. An Example: Anharmonic Oscillators in Quantum Mechanics

Up to this point, we have constructed a recursive expansion formula for the
quantum action I" and expressed each term by a number of integrals. In this section,
as an illustrative example, we will demonstrate how the spectral information of the D

dimensional quantum anharmonic oscillator is obtained.

Let us start with setting

T(p) = = (3.43)
and
V(x) = X? + (%), (3.44)

where v(x) is a higher degree polynomial. Then, the quantum actions in (3.37) are

written as

m

ocotie D
, dt ., dP2dPp (22 v Z
rt | m +iut :F + o( )

(u) i 2.7 /OﬂE £ / (2mh)P

m=0 =1

We carried out the computations in three separate stages:

(i) Iterated Integrals: We first need to compute the iterated time integrals using the
recursion relation in (4.28).

e In these computations, the operator,
bi(p, Vp,ti) =iV, £ pt; F pt

serves as a generator of polynomials in p by acting on both the polynomials
generated in the lower orders and eT%5". We carried out this procedure by
using the Nest function in Mathematica.

e Note that the x dependent functions are not affected by this procedure.
Their multiplication leads to the polynomials in x.

e The t; terms in by also form polynomials. They can easily be integrated

at each order. Note that they will also contribute to the next order in the
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iteration.
(ii) Phase Space Integrals: At this point, each term in the expansion is written as a
polynomial of p, x and ¢.
e Note that ejFipT% is already in Gaussian form and e™" ™) can be made Gaus-
sian by expanding it for small A. Then, we can integrate out x and p using

the standard Gaussian integrals,

I, = / APz 5 Tl 4 M
D ) n D 2”
kli[l/ % g “k +2it 1£[1 nk' \/ ( )

where we set n; +...np = n and in order to prevent divergences in the
2 integrals, the analytical continuation of ¢ in appropriate directions is
assumed.

e For example, at the leading order in the derivative expansion, we get

cokie qp o\ % /\t
I (u,\) = —lim e / Z (Fidivlx
=0 Josie 1 +it (27 i
ootie +iut A(O)
— lim dt_c 2n (V) (3.46)

=0 Jouse (Fith)P &= (i)

where Ag,?(A) is a polynomial of A originating from the Gaussian integral of
the x> term of v*(x).

e For the higher order terms, additional contributions to both x and p polyno-
mials come from the recursive procedure in stage 1. This makes the general
expression more complicated but it is still easy to handle by a computer.

e Observe that higher order poles at ¢t = 0 appear in (3.46). They are critical
for us since in our setting they are associated with the spectrum of H.

(iii) From Singularities to Spectrum: The singularity at t = 0 is usually handled by
zeta function regularization [65]. However, instead we will show that the basic
contour integration techniques together with the ic prescription we mentioned in
Section 3.1 are sufficient.

e To explain how we handle these singularities, let us continue with (3.46).

We start with introducing a cutoff €2 at the lower limit of the ¢ integral.



46

This allows us to express (3.46) as

ED+n+1 (Q + ZE)

+ _ _$-D (0) _ \D+n 1;

Lo, A) = =177 7 Ay (A) (~w)P*" lim Grigpm (647

n=0 0—0

where we used the generalized exponential integral [66],

o0 e—t

E.(2) = zal/ dt gt (3.48)
e For a € N, it can be expressed as
Batz) = T gy 4 H(a— k= 2))(—2)* (3.49)
. (a—DI T (a—1)! & T ‘

The second part of (3.49) is regular at z = 0, while the first part has a
branch cut due to the branch points of Ei(z) at 2 = 0 and z = oco. This

branch cut leads to
Ey(ze*™™) — B (2) = —2mmi  ;  mEeEZ (3.50)
Note that to use (3.50) in (3.47), we interpret the analytical continuation as
Q —ie = (Q +ie)e’™.

Then, at the leading order we have

27 x— A (\uPtr
n=0

e Same technique can be applied to the higher orders and AI'(u) can be ex-

pressed as

AT (u, A, h) =) ATy (u, AR, (3.52)

m=0
where each AT, (u, \) corresponds to a series in u and A. In Appendix
C, we will provide numerical results for several anharmonic oscillators in

D =1, 2,3 dimensions.

At this point let us make a comment on quantization conditions. Setting A = 1

for convenience, (3.52) allows us to express Al as a series in v and h. However, as
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we reviewed in Section 3.1, the original spectral quantity is u itself, so it is natural to
investigate a method for obtaining a perturbative series for u starting from AI'. In
one dimension, this can be achieved by imposing the Bohr-Sommerfeld quantization

condition for (an)harmonic oscillators. In our formulation, it is expressed as
_ 1
AT'(u, h) = 2mi (N + 5) . (3.53)

For a simple harmonic oscillator in one dimension, we have

2T

Al(u, h) = .

(3.54)

and it is obvious that (3.53) and (3.54) lead to correct cigenvalues, i.e. u =k (N + 3).
For anharmonic cases, we will have a series in u for each Al'y,, in (3.52). In these cases,
the perturbative expansion of w is achieved by inverting the series in (3.52) [48,67,68].
On the other hand, it appears that a meaningful generalization of the Bohr-Sommerfeld
quantization condition to higher dimensions remains lacking and further investigation

is needed.
3.4. WKB Expansion = Derivative Expansion

Here, for completeness, we compute the first two non-zero terms in the expan-
sions of the one dimensional non-relativistic quantum mechanics, i.e., T'(p) = %2, for
a general potential V' (x). This will show the equivalence between the standard WKB
approximation and the derivative expansion in our formalism. In addition to that we
will also observe how the “physical” singularities transfer from the ¢ integral to the x

integral.

We already derived the leading order WKB integral from the Schwinger’s integral
in Section 2.3. Here we present its complete derivation. For mm = 0 and D = 1, (3.37)

simplifies to

©dt [dedp Lo
F(;_L(u):—lim / ;ﬁhp T gkt (3.55)
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Performing the p integral, rotating the ¢ integral contour by et% and re-scaling

t

foy—
utic — V(x)

we get

7 o0 —t
Py = <2 [ Y G Jatie— V(). (3.56)
0 hJo ort3

Note that the t integral is still divergent at the lower boundary. Remark that the
branch cut information is now carried to points giving u = V' (x) in x space. Handling

the divergence at ¢t = 0 by zeta-regularization, we get
i\ 2
AT (u) = T+ (u) — T~ (u) = ZT Z]{ dz /u— V() (3.57)

where the each contour «; is taken around the singularities at u = V (), i.e the turning

points. Finally, combining with the quantization condition (3.53), we get

ﬁj{dx Vu—V(z)=2r <N + 1) h, (3.58)

2

which matches the Bohr-Sommerfeld formula (2.74).

At the next to the leading order, for m = 1, the action is given as
cdt . , dx . t
+ — T +it(utie) FiVt /< / >
T (u) = —lim h/o —e /—%h e /0 at' ((t)) . (3.59)

where <I/V1>i = <V’(x) by (p)>jE = 0. Thus, at order h there is no contribution to the

action.

Similarly, for m = 2, we have

dt L :
Il _o(u) = —lim h2/ Tei“(“i’g)/d:c etV
0

e—0

{‘/O't dt, V”2(x> (belta)bu(tn)) :F./: dt, /Ot Aty (V' (2))* {be(12)b = (t2)>i} ,
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Following the same arguments as for the leading order, we get

P,y = 1 Z 7{ {24 ;/ — v))3/2 i 32EZ/£$‘)/))25/2}

_ 2 '(x)
= —ih o 96 Z% 5/27

which is the first quantum correction to the WKB approximation in (2.75).

3.5. Discussion

In this chapter, we investigated the recursive nature of the derivative expansion
of the quantum action and showed how to implement it in practical calculations for
quantum anharmonic oscillators in arbitrary dimensions. In quantum mechanics, the
semi-classical expansion, which is represented by a derivative expansion in our lan-
guage, can also be obtained via WKB methods in one dimension, or path integrals in
arbitrary dimensions. However, our method has advantages over both methods since
perturbative calculations using path integral becomes cumbersome very quickly and

the WKB method is only applicable to effectively one dimensional problems.

Besides this practical advantage, the method we used separates the spectral in-
formation into two distinct parts. The first part, which is identified as the recursion
relation and iterated integrals, is universal. It is the same for all quantum mechan-
ical systems. Moreover, despite some differences in the details, we expect the same
structure to be present in many-body systems and effective quantum field theories
as well. This reveals a general relation between the classical action and its quantum
corrections at different orders in a wide range of quantum theories. As we mentioned
in Section 2.3.2, this relation has been well studied for one dimensional quantum me-
chanical models via Picard-Fuchs differential equations and the holomorphic anomaly
equation [46-52]. Thus, the method that discussed in this chapter can also be inter-
preted as an extension of those methods to higher dimensions and possibly to more

complicated theories.
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On the other hand, the second part, which is identified as the phase-space in-
tegrals, depends on the particular system chosen, and therefore it carries information
specific to that system. One important piece of information is the divergent large order
behaviour of the semi-classical expansion. Our systematic construction allows an effi-
cient computation of high orders and allows us to examine its hidden non-perturbative

structure.

As we have described, the perturbative spectrum gets contribution from the sin-
gular part of the small ¢ expansion in (3.37). However, each order in the derivative
expansion in (3.37) contains finite contributions as well. Note that their order by order
integration leads to a divergent series. Although, this was not important in our con-
struction one could, before taking ¢ integral, obtain a function by summing the finite
part and it would be interesting to examine its contribution to the non-perturbative
sector of the spectrum through ¢ integration. We will apply these ideas in Chapter 4 to
obtain the non-perturbative pair production probability from the recursive expansion

we discussed here.

Finally, let us finish with some apparent downsides of the method we proposed.
The first is the lack of expansions related to non-perturbative sector. In WKB re-
lated approaches, these expansions are obtained by integrating along classically non-
allowed paths, but we get the spectral information from the singularity at ¢ = 0 plane
and so no non-perturbative term emerges in our calculations. However, as the resur-
gence theory indicates there should be intimate connection between perturbative and
non-perturbative sectors. For genus one potentials this is described by Matone’s re-
lation [47,69,70]. Adapting this to our formalism could be useful to understand the
emergence of non-perturbative terms and it can be used to verify the connection be-

tween perturbative and non-perturbative sectors in more complicated theories.
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4. PAIR PRODUCTION WITHOUT BOREL AMBIGUITY

In this chapter, we will use the recursive approximation scheme that we developed
in Chapter 3 to obtain the non-perturbative pair production probability of general
electromagnetic background potentials in arbitrary dimensions. The main difference
with Chapter 3 is that in this case, we will probe the singularities of TrU(t) at finite ¢
instead of the one at ¢ = 0. While the way we extract the non-perturbative information
is similar to the Borel summation method of Section 2.2.3, in this chapter, using real
time formalism and the ie prescription, we will be able to bypass the ambiguity problem
and obtain an unambiguous non-perturbative pair production probability which does

not cancel through an additional non-perturbative contribution.

In addition to this perturbation theory based approach, to get more insight about
the calculations we pursued in this chapter and the previous one, we will also discuss
its relation to the WKB method and Lefschetz thimbles in the periodic background
electromagnetic field. The comparison with the WKB method enables us to associate
the singularities of TrU(t) with the WKB cycles and this reveals a version of elec-
tromagnetic duality m terms of the singularities of TrU(¢). On the other hand, the
Lefschetz thimble approach will demonstrate how the unambiguous pair production

arises from the path integral perspective.

The content of this chapter was originally published by the author of this thesis
as a research paper with the title “Pair Production in Real Proper Time and Unitarity
Without Borel Ambiguity” [27]. The rest of this chapter is identical to that paper with

appropriate modifications.

4.1. Background Discussion

Particle pair production is one of the fundamental predictions of relativistic quan-

tum theories. Early on, it was noticed that this can be explained by modifications in
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the effective Lagrangian of constant electromagnetic fields [71]. Later, in [59], using
proper time formalism, Schwinger systematically showed that in the presence of con-
stant electromagnetic backgrounds, the effective Lagrangian (or action) develops an
imaginary part which indicates the vacuum instability so that particle creation. Since
then, the particle production in background electromagnetic fields has been investi-

gated thoroughly for different types of background potentials using different methods.

From a mathematical perspective, a consequence of the vacuum instability, so
that the particle creation, presents itself in the perturbation theory [6]: In QED, an
expansion in the fine structure constant a should be divergent, as the theory is ill-
defined for negative values of «. As we discussed in Section 2.2, the divergence can
be handled by the Borel summation method which also probes the non-perturbative

information about the system.

For the pair production problems, this method was used in [72] for a solvable
background electromagnetic field to obtain the pair production probability from the
imaginary part of the 1 loop QED effective action. However, as we know from Section
2.2.4 in details, the standard Borel summation method possesses a pathology: The
imaginary contribution is multi-valued. Although it has a resolution for problems with
stable vacua by the cancellation mechanism of Bogomolny and Zinn-Justin, when the
vacua of a physical system is not stable one needs to found another solution since
the imaginary contribution should survive. In letter cases, the main problem is the
multi-valued pair production probability since one of them violates the unitarity of the

theory.

To see how this violation presents itself in the effective action, let us review
vacuum-vacuum amplitude, i.e. A = (0]|0). In a time dependent setting, this amplitude

is expressed as
A = (04]U(o0, —00)|0-), (4.1)

where |01) are the vacua at infinite past and future while U is the unitary time prop-
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agator connecting these two states. In general, the amplitude is a pure phase, i.e.,
A=e", (4.2)

where I is the effective action of the theory. AslongasI' € R, the transition probability
|A|? = 1 and the vacuum is a stable one, i.e. there is no creation of particles. However,

when I' € C, the transition probability becomes
|A]2 =72 < 1. (4.3)

Obviously, whenever ImI" # 0, the vacuum is not stable and there is a probability of

particle creation which is defined as
P=1-|A]* ~ 2ImT. (4.4)

Note that since the theory is unitary, ImI" should not be negative. At first, this seems
to be a trivial statement. However, for consistency and completeness, the ImI" > 0
condition should be implicit in methods we use, which should also cover the stable

cases on an equal footing.

In the context of the pair production problem, the unitarity problem was first
noticed in [23] and it was shown that the consistent treatment can be achieved with
the Schwinger proper time integral but only when the proper time is chosen to be real.

This approach was motivated from two observations:

(i) Schwinger’s proper time integral at 1 loop order and the Borel integral have the
same form.
(ii)) When the proper time is chosen real, possible analytical continuation directions

of the integral are defined by construction.

In general, the divergent series for the perturbative effective action is found first,
then the Borel procedure is applied to tame the divergence and probe the singularity
which leads to the non-perturbative information, i.e the pair production probability

in our case. Instead of following this standard path, the first point suggests that it
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is possible to probe these singularities before taking the proper time integral. While
the two approaches are equivalent, in this way, the crucial analytical continuation

information would be kept.

The predefined analytical continuation, on the other hand, stems from utilization
of the ie prescription. In addition to [23], its relation with the resolution of the Borel
ambiguity was also discussed in [24,28]. Let us summarize the idea briefly: It is known
that propagator(resolvent) G=(u) = (u— H)~! of a quantum theory is not well defined
on the real u line [42]. Instead, it is defined by an analytical continuation on the upper
or lower half of the complex plane by redefining G*(u) = lim._o(u 4 ie — H)™'. Then,
any observable computed using these redefined propagators have a certain predefined
analytical continuation which prevents any ambiguity in directions of the limit € — 0.
The analytical continuation information is also transferred the integral contour of the

1 loop effective action when the proper time is taken real instead of imaginary.

In this chapter, we will first reformulate this real time approach by providing
an unambiguous definition of the pair production probability which is coherent with
the time dependent scattering amplitude description we discussed above. This refor-
mulation is based on the well-known fact that ¢ prescription which is associated to
the forward/backward time flow directions in the scattering process and puts the ideas
in [23], where only one time direction for the electric case was discussed, on a more
rigorous basis. After discussing this reformulation in Section 4.2, we will present its ap-
plication to uniform electric and magnetic backgrounds in Section 4.2.1 and show that
how the emerging imaginary contributions are consistent with the unitarity condition

and properties of their associated vacua.

In Section 4.3, we will extend our discussion to arbitrary background gauge po-
tentials in arbitrary dimensions and using the Pade summation of the perturbative
expansion of the propagator, we will extract the leading order non-perturbative pair
production probabilities for general space dependent and time dependent electric fields

under very general assumptions. These results will be a generalization of the ones
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found for specific background potentials using exact solutions [72, 73] or direct non-
perturbative methods [74-79]. In order to get the perturbative expansion, we will
use a perturbative scheme developed in [26] for non-relativistic quantum mechanics
and adapt it to arbitrary background gauge potentials, which are suitable for pair
production problems. The perturbative scheme we will use is analogous to the small
time expansion of heat kernels [60,61,80] and string inspired methods [81-83], but it

organizes the expansion via a recursion relation.

Along with extracting the non-perturbative pair production probability, the dis-
cussion in Section 4.3 indicates that the perturbative expansion of the propagator can
be separated in two parts. As shown in [26], one part corresponds to the perturbative
semi-classical series which can obtained by WKB approximation. Application of this
method to the pair production problems in QED shows us that this series is originated
from the same source with the UV divergences, which are handled by the renormal-
ization methods in this context. On the other hand, the pair production probability
emerges from the second part which is an originally convergent expansion. Its direct
summation with the Pade approximation leads to an unambiguous imaginary part
which represents the pair production rate. We will further investigate the nature of
these singularities and associated perturbative /non-perturbative information in Section

4.4.1 by expressing the actions in WKB formalism.

Finally, in Section 4.4, we will connect the real time approach to two semi-classical
approaches to the pair production problem by investigating periodic background po-
tential. One approach is the WKB method, which treats the pair production problem
as a tunnelling problem [84-91]. As we stated, connecting the time dependent per-
turbative scheme to the WKB method in Section 4.4.1 will help us to understand the
real nature of the perturbative calculations in Section 4.3 by indicating that the vacua
of electric and magnetic cases correspond to peaks and valleys of the background po-
tential. This observation will also enable us to associate the two types of expansion
governing the effective action, which we discuss in Section 4.3, with the perturbative

and non-perturbative information represented by WKB cycles and show us that there



o6

is a duality between electric and magnetic cases which can be understood from the

geometric properties of the potential.

The other approach we will focus on in Section 4.4 is path integrals, which iden-
tify the pair production probability with the action of the classical equation of motion
governed by the Hamiltonian of the system. In pair production problems, the most
common path integral approach is the worldline instanton method [74-79,92-94]. It
has been shown [95,96] that the worldline instanton method is equivalent to the semi-
classical construction of Gutzwiller [97, 98], which has also been linked to Lefschetz
thimbles recently [99]. While our construction can be adapted to any of these tech-
niques, in Section 4.4.2, we will use the real time Lefschetz thimble description, which
was shown to be an effective way to define semi-classical path integrals in various
contexts [100-103] including the pair production problem [104]. With the help of the
recursive construction in Section 4.3, we will only deal with an ordinary integral, which
corresponds to the exact leading order limit of the full effective action; therefore, it
carries the full information at this order. In this way, using complex steepest descent
paths, which correspond to the classical paths at the leading order, we will demonstrate

the Borel ambiguity resolution from a geometric point of view.
4.2. Pair Production Problem and Resolution of Ambiguity

In this chapter, we will only consider the pair production of bosonic matter as
the fermionic matter production can be handled equivalently and only constant pref-
actors would differ in their results. For bosonic matter fields in the presence of an

electromagnetic background, the effective action at 1 loop order is expressed as
2 i 2
['(m*) = §1ndet(m —H), (4.5)

where m is the mass of bosonic matter particles and

H= %(pﬂ _eA,) (4.6)
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is the Hamiltonian operator governing the motion of the bosonic particles. Note that

in this paper, we use g, = diag(— + +...) metric convention.

In a time-independent setting, the 1-loop effective action (4.5) can be expressed

as

i 2

I*(m?) = /m dz TrG*(2), (4.7)

2
my

where G*(2) = (2 +ie — H)7! is the Green’s operator, which should be defined via

the ie prescription and T'*(m?) are defined as limits lim. ,o ['(m? £ig). G*(z) is not

continuous in € — 0 limit. We define a gap function which represents the discontinuity
AT =TH(m?) — T~ (m?) (4.8)

as our physical quantity and its imaginary part, InAI'(m?), becomes the pair produc-

tion probability.

If we go to the time-dependent setting, the action in different branches is written

as
Fi(mZ):—@‘/ — e Ty T (4.9)
0

where we assumed the ¢ — 0 limit is already taken in respective branches. Note
that it is also possible to analytically continue t instead of m?2. This is a much more
convenient approach in the time-dependent case and we will adapt it throughout the
paper to extract the imaginary contributions by rotating the contour in appropriate

directions, i.e. upper half-plane for I'* and lower half-plane for I'".

The gap AT'(m?) originates from a branch cut of I'(m?) on the complex m? plane,
which is associated to simple poles of the integrand in (4.9) [1]. There is already a pole
at t = 0, which corresponds to the UV divergence in quantum fields theories and
through the renormalization procedure, they lead to the energy scale dependence of
physical quantities. In non-relativistic quantum mechanics [26], the author showed

that t = 0 also acts as a source for the semi-classical expansion which is intimately
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related to the perturbative spectrum of the theory. On the other hand, the integrand

has other possible singularities at ¢ # 0 which will be our focus in this paper.

Note that the time evolution operator in (4.9) indicates that T'* correspond to
effective actions for two different time evolutions, i.e, forward time evolution for I'"
and backward time evolution for I'". The latter can simply be seen by setting ¢t — —t
and re-writing it as

O dt :
[~ (m?) = z/ — ity et (4.10)
o b
Now, the action is described by forward time evolution between t = —oo and ¢t = 0.

Moreover, in this form the gap equation in (4.8) becomes

< dt . ,
AT (m?) = —z’/ — Mt Tt (4.11)
o t
which defines an action of transition between infinite past and future. Therefore, (4.11)
justifies the definition of the pair production probability as in (4.8) in an unambiguous
way Note that since the integration contour should be rotated in different directions

for t > 0 and ¢ < 0, throughout the paper we will use the integrals defined in (4.9)
together with the definition (4.8).

4.2.1. Ambiguity and Its Resolution in Uniform Electromagnetic Back-

ground

Before considering general electromagnetic backgrounds, we are going to discuss
how the unambigous pair production rate emerges from the exact effective action in
both uniform electric and magnetic backgrounds and precisely show that the real proper
time approach leads to unambiguous results, which are consistent with the unitarity

condition.

Before addressing the problem in real time, for completeness, let us first look at

the imaginary time case and show how the ambiguity arises. The 1 loop effective action
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in Euclidean proper time for the bosonic fields in an electromagnetic background is

1 [*ds e (se&)(seB)
872 ), 3 sin(se&)sinh(seB)’

T(m) (4.12)

Note that in the literature, sometimes the prefactor appears as ﬁ. The difference is

due to 3 factor in the Hamiltonian (4.6).

Real time: argt > 0 -

> Imaginary Time: argt <0

/ /

Real Time: argt <0
Figure 4.1. Complex ¢ planes. (Left) Real time cases. (Right) Imaginary time case.

Similar to the real time case that we described above, one can always deform the
mass term as m? — m?£¢ and allow complexification of the proper time while keeping
the integral finite. However, this is not equivalent to the ie deformation in the real
time description and important information, which will allow us to keep unitarity, is
lost. The main reason behind this is that when we start with the Euclidean time, the
allowed /forbidden regions for forward and backward time evolutions are merged. This
is illustrated in Figure 4.1. Therefore, the distinction between forward and backward
time evolutions vanishes and the expression (4.12) represents the effective action for

both cases. This also prevents from defining the gap AI' unambiguously as in (4.8).
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This shows the origin of the ambiguity in the Euclidean case and why its resolution

needs a real time approach.

Let us review the standard picture for the pair production to emphasize its prob-
lem. In (4.12), the poles related to the background electric field lie on the real axis at
t = +27 while the poles corresponding to magnetic background are on the imaginary
axis t = "%, where n € N for both cases. It is possible to compute the imaginary
contributions using standard contour integration. Common lore is that the electric
poles lead to emergence of ImI" while the magnetic ones are not relevant since they do

not lie on the integration contour in (4.12).

Consider the contribution of the first electric pole. There are two possible ways
to analytically continue which leads to two distinct integration paths, i.e. J;” and J;
as in Figure 4.2. There is no guideline for choosing any of these paths and this leads
to complex conjugate results:

m21'r

ImI" ~ Fe ez . (4.13)

We know that the pair production probability is defined by P ~ 2ImI" and can only be
positive. Therefore, we can just choose the result with + sign in (4.13). However, this
is an ad-hoc approach and does not hide the fact that the result is ambiguous. This
is equivalent to the Borel ambiguity and as we mentioned it can be overcome by real
proper time approach which provides us an ambiguous definition of the pair production

probability as we described above.

Let us now return to the real proper time case. The effective action is

1 /°° dt eFtm* (te&)(teB)

MHm =z = '
(M) =522 |, 7 sinb(ic€) sin(teB)

(4.14)

Note that the location of the poles related to electric and magnetic fields exchanged and
for both I'* the possible analytical continuation directions are determined by definition.
In the following, for simplicity of discussion, we are going to continue with pure electric

field and pure magnetic field backgrounds.
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Im(t) A

° = |
> Re(t)

Figure 4.2. Possible paths to probe the singularity on the real axis. This picture
describes for the electric poles in the Euclidean case and the magnetic poles in the

real time case.

To get the uniform electric background case, let us take B — 0 limit. Then, the

effective action (4.14) becomes

1 [dt e (tef)
ar \ _ A8 N e
m) = 87T2/ 3 sinh(tef) (4.15)

and the integrand has poles at

inEW

e ’

tE::t HEEN+.

While all the poles can be treated collectively, the pair production rate of first particle
and anti-particle pair is only linked to the first order non-perturbative term [105, 106].
Therefore, only this part needs to satisfy the unitarity condition without any ambiguity

and we will consider the first poles at tgp = :I:;;—Tgr in our analysis.

For both I'" and I'", both poles at :I:é—;r exist in the complex t plane. However,
since the analytical continuation of ¢ is allowed only in one direction by construction, I'*

and ['” can only get contributions from one of the poles, i.e., +2_§ or —i—g respectively.

First, we consider I'"(m). To get the contribution from the pole at z—g, we simply

rotate the contour as in the left of Figure 4.3 and using [ 5T B ;- =0, we re-write
/2
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=7

Re(t

Figure 4.3. Contours for the real time integrals in Electric case. Left: Contours for

I'". Right: Contours for I'".

the effective action as

el dt e-tm?

rHm?) = -2 [ L
(m’) 82 J ;- 12 sin(te€)’
2

(4.16)
where J7T_/2 corresponds to the contour along the positive imaginary axis with a pre-

defined analytical continuation direction. Then, the contour integral in (4.16) leads to

the imaginary contribution

ImI'*(m?) = +

e TeE . (4.17)

82

T

In the same way, we can extract the imaginary part of I'"(m?) from the pole a —.
This time, we rotate the contour as in the right of Figure 4.3 and re-write the effective

action as

2

e dt e tm

I~ (m?) = — e
(m”) 82 )+ t2sin(tef)
-2

(4.18)

This is the same integral with only difference is that the direction of the contour J' .
2

is now along the negative real axis. Then, we get the imaginary part of ['~ as

e€)?  am?
(Sﬁg 5 (4.19)

Im[~ (m?) = —
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Combining these two results, we get the imaginary part of the gap
AL(m?) =T*(m?) = I~ (m?),

so that the pair production rate as

2 2
P = InAD(m?) = (&) =2t (4.20)

472

¢~ 2mW with an unam-

which recovers the standard pair production probability P ~
bigous sign. Note that along with the individual results for ImI'*, the unambigous
definition of AT is also a primary factor for the unambiguous end result. Without this
definition, the ambiguity would be persistent in the real time case in the same way

with the Euclidean case.

Note that the rotations of the initial contours in both cases are equivalent to
respective proper Wick rotations and the resulting integrals are the same with the ones
written in the imaginary proper time (4.12). However, since we started with the real
time, contrary to the imaginary proper time case, the analytical continuation directions
around the poles are pre-determined, so there can not be any ambiguity in the signs of
the imaginary parts of I'*(m?) arising from them. Moreover, with these proper Wick
rotations, we can match the Euclidean time contours in Figure 4.2 with the real time

contours in Figure 4.3 as J; «— Jx and J; <— J ..
2 2

Now we will focus on the uniform magnetic case. Although it does not yield pair
production, it is important to see how the unambiguous definition of AI fits in this
case. In F — 0 limit, (4.14) reduces to

1 [ dt e (teB)

F:I: 2y
(m’) 812 J, t3 sin(teB)

(4.21)

Now the poles are on the real axis and the treatment is similar to the standard Borel
integral. However, again as in the electric background case, the restriction on the
analytical continuation directions for both I'" and I'~ prevents ambiguous results.

Taking the integrals using the appropriate contours as pictured in Figure 4.2, we find
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the gap AT'(m) = I'* (m) — I'"(m) due to the pole at tp = 5 as

(eB)? m?

=i 5 cos ( B > : (4.22)

The gap is again imaginary with a sign that keeps the theory unitary but now it repre-

eB , .
AP:@ (—um) el —(—t—m)?e <B

(€B) z‘ﬂ'm2 eB _iﬂ'm2:|
sents an oscillatory contribution. This is fine as the oscillatory behaviour indicates that
the stable vacuum is alive and there are successive particle creations and annihilations
as expected from any relativistic quantum theory but effectively this process leads to
no pair creation at the end of the scattering process. Therefore, there is no need for

the cancellation of this contribution by Bogomolny Zinn-Justin mechanism.
4.3. Unambiguous Pair Production from Perturbative Expansions

In physics, exact solutions are very rare. Therefore, while the discussion in Sec-
tion 4.2.1 explicitly show how the pair production rate in the presence of a uniform
electromagnetic field emerges in a way that the unitarity is preserved, it is also impor-
tant to show how the same information can be achieved when an exact solution is not

possible.

In absence of an exact solution, perturbative techniques allow us to compute the
coefficients in a perturbation series, which form generically divergent series. The non-
perturbative information is encoded in this divergent series and can be extracted using
Borel-Pade techniques [73,107-109]. However, the Borel-Pade summation leads to the
same ambiguity that we discussed in the Fuclidean case in the previous section and
whenever there is a persistent instability of the vacuum. As in the uniform case, to get
an unambiguous result, we will use the real time approach and probe the poles of the
propagator directly, i.e. we need to sum the perturbative expansion of the propagator

U(t) = Tre* in (4.9) before taking the proper time integral.

For this reason, we are going to adapt the recursive perturbative scheme intro-
duced in [26] which is based on the construction in [62,63] to problems with background

gauge potentials. In [26], it was shown that the non-commutativity of phase-space vari-
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ables acts as a source for a derivative expansion which is identified as the semi-classical
expansion. In the present context, the non-commutativity again produces a derivative
expansion which corresponds to the deviation from the uniform field # . At each or-
der of the derivative expansion, there is also another expansion which depends on the
electromagnetic field strength and using this one the non-perturbative pair production
probability at each order in the derivative expansion can be obtained. Note that this
approach has already been applied to an exactly solvable case in [72]. The perturba-
tive scheme we will present in this section provides a generalization of this result to

arbitrary strongly coupled background potentials in arbitrary dimensions.

In this section, we will investigate pure electric fields. The Hamiltonian is written

in general as

H =~ (o — c o)’ + (b~ A(w0))* = —5m3(p0.%) + 37 (p. 7o) (42)

We assume that the gauge potential has the following form

Ay (zg,%x) = ¢ (Ho(wx), H(w o)), (4.24)

W

so that the electric field is E = & (%IOO) + VHy(w x)) Since we are mainly interested
in the locally uniform fields, we assume that both Hy(wx) and H(wzy) are slowly
varying functions of x and xg respectively. For the same reason, we also assume that

m? > e€ > w throughout this section. This will guide us in our calculations.

The effective action for the Hamiltonian in (4.23) is written as

. > dt im dp dp it(—Lm x)+im T
L) = - / d 2t/ (2(;)4 (po, pleT (- 3mEx 3 b0)) 1 ). (4.25)
0

Note that since my and 7 do not commute with each other, the propagator does not

factorize trivially. To get the perturbative expansion, we can either redefine the prop-

4 Although, the derivative expansion we will consider in this paper is not the semi-classical ex-
pansion as in [26], these two expansions are related to each other with a redefinition of expansion
parameters. See e.g. [110].
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agator U(t) = TreTi as

2
thrO ~ 'Ltﬂ'2 ~

2 U(t) or U(t)=eT 2 U(t). (4.26)

U(t) = e*

As shown in [26], both choices are equivalent. Solving the time dependent Schrodinger
equation for redefined propagators and following the steps in [26], we reach a recur-
sive expansion for U(t) for each case and express the effective action in terms of this

recursive expansion.

Let us consider pure time dependent and pure space dependent electric fields. For
the time dependent case, where Ag(x) = 0 and w9 = py, the perturbative expansion is

written as

At iz [ dpodzo d’p it ipjt
i) - [ e [ e o S o, o

where U* is given by the recursion relation

m—k+1

gE = 3 o

ROm [ an b ), (429
: 0

=1

with the initial value U&EO = 1 and the operator valued function

b:l: (pOJ 817()7 ) &Opo + Po t + pO (429)

Note that equations (4.27) - (4.29) indicate that the problem is effectively a one di-

mensional one regardless the details of the background gauge field.

If the background field, on the other hand, is space dependent, then the problem
might be a multi-dimensional one. In this case, A(zy) = 0, @ = p and the perturbative

expansion becomes

m

dt dpo d®p dPx i ~ ip2t
space / = —1 Z/ et t/ p0<27_‘1.)) G:FTO ZUi7k(t) et 2 , (430)

k=1
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where U™ is

m— k+1
Z 0 " Gt / dty by(p, Vi, t1) Uiy, (1), (4.31)
with 0&0 =1 and
bi(p, Vp.ti) =iV, £ pt; Fpt. (4.32)

Note that the dimension D of the space integral depends on the dimensionality of Ag(x).
Even though it does not change the general structure of pair production probability, it

plays a role in prefactors. We will elaborate this, when we discuss the space dependent

fields.

Equations (4.28) and (4.31) shows that the expansion is a semi-classical one.
However, in this section, we set h = 1, since the only expansion parameters we are
interested in are w and e£. When the pair production problem is considered as a
semi-classical approximation after redefining parameters h,w, e£, the pair production
probability is given by the classical action, i.e. h° term in (4.27) and (4.30) [110]. We
will use this information Section 4.4, when we compare our method to the semi-classical

approaches.

Using the recursive formula, we can now compute the perturbative expansion of

d TreFiHt

the integran ’

in powers of w and g = e£. This is a double expansion which is

formally expressed as

T FitH
ret _ Z Oémm(t) w2m(]2n- (4‘33)

The poles of the integrand at ¢t # 0 are related to the summation of this double series.
This poses a problem of summation order. The order of summation should be chosen
according to the dominance of the expansion variables w and g. Since m > g > w
while summing the series in (4.33), we keep the order of w constant and sum over the

¢ expansion.
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In the following, we will analyze general time dependent and space dependent
cases in 4 dimensional space-time dimensions and compute the leading order non-
perturbative pair production probability, which is obtained from the series at O(w°),

while postponing the analysis of corrections to this leading order for the future.
4.3.1. Time Dependent Electric Fields:

We first consider time dependent electric fields for
&

As we stated above, this is effectively a one-dimensional problem. Although this has
already been treated by the exact WKB method [91], here using the recursion relation
and the Pade summation of perturbative expansion of the propagator, we will obtain

unambiguous version of the pair production probability.

Using the recursion formula (4.28), we compute the expansion at order O(w®) up

to z( integral:

1 tH)?  7(gtH)* 31 (gtH)\® 127 (gtH)?®
S g 47" _ (gtH)" | 7o) 31 (gfH)" | 127 (gtH)
n=0

T An2if 24 5760 067680 ' 154828300 @ ]
(4.35)

where H' = %ﬂ‘;’;o). In (4.27), before integrating over p, we rescaled the momentum as
p — p + A(xg) and in this way, all momentum integrals become Gaussian. Note that

due to the sign change in Lorentzian metric, prefactor of the Gaussian integrals comes

up as % t)lg — = 477212.9 rather than standard prefactor of 4 dimensional Gaussian
V &T \V — 4T
4

integrals (\/ﬁ) = —1=7. Overall imaginary factor is important as it contributes

to the effective action directly.

Note that first two terms in the expansion are singular at ¢ = 0. They correspond
to the UV divergent terms and can be treated by renormalization. On the other hand,

from the spectral theory point of view, this singularity contains the information about
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the perturbative part of the quantized spectrum [26]. In this context, the gap, AT,
associated to the singularity at ¢ = 0 corresponds to the perturbative part of the
quantum action, which is also known as the WKB action. The perturbative expansion
of the action can be obtained by order by order integration of the terms which are
singular at ¢t = 0. In one dimensional problems, it is known that imposing the Bohr-
Sommerfeld quantization condition to this expansion would lead to the perturbative

spectrum of the theory [13,16].

On the other hand, the series consists of the non-singular terms in (4.35) is
associated to singularities at ¢ # 0 upon their summation. Note that this series is a
convergent one. It becomes divergent if we take the proper time integral directly. This
is in fact the divergence predicted by Dyson in [6] and it would need to be treated by
the Borel procedure. Instead, similar to the uniform case in Section 4.2.1, it is possible
to probe the singularity structure represented by this series directly by using the Pade

summation before taking the proper time integral.

Apparently, the nature of these poles are quite different, one at t = 0 is associated
to the perturbative information, while the other at ¢ # 0 contains non-perturbative
information. We will elaborate this separation and investigate their nature in Section
4.4.1. Now we turn back to our discussion on the extracting pair production probability

for arbitrary background potentials.

It is possible to ignore them in Pade approximation when probing the poles at
finite ¢, however, we observe that they play a role in the constant part of the prefactor
of the effective action. Although it does not have a physical implication, we prefer to

keep them in the calculations for completeness. Then, we write the effective action at

order O(w°) as

df +im?2t
wO = /dajo / ¢ aOn (gtH') (4.36)

C4m3
n=0
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Pade summation of term up to O(g?®) leads non-zero singularities at
gH't, = £m {1.0000¢, 2.0000¢, 2.9994¢} . (4.37)

As we indicated in the previous section, only the first pole is linked to the pair pro-

duction probability. Therefore, we express the effective action as

dt e:l:zm t 1
~— | d . 4.
Lo / xo/ Am2t3 (im)? — (gH't)” 438)

As in the uniform case, we compute the imaginary parts by rotating the initial contour

for ¢ integral in appropriate directions as in Figure 4.3. Then, we find the imaginary

part as

T, (m?) = + / dag (H (wz))” it (4.39)
@ R 873

This form of the effective action at the leading order of the derivative expansion is

already known as local field approximation [111,112] and can be evaluated for specific

cases for H' (See e.g. [72]). Instead, we handle the integral by saddle point approxi-

mation, which is possible since m > g and H(wzy) is chosen to be slowly varying. For

this reason, we make the following general assumptions for H around the saddle point:
VH' (wxl) =hy , @) H (waf) =0 , i) H” (waf) = —how? , hy #0, (4.40)

where second assumption simply follows from the saddle point approximation while
first one states that clectric field E is constant, i.e. independent of w, at the saddle
point zf so the field is locally uniform as we assumed at the beginning. Finally, third
assumption indicates deviation from the uniform case while assuring the saddle point
x§ is non-degenerate and hy is a constant differs for different backgrounds. With these

assumptions, we get the leading order pair production probability as

\/§(|h0|9)5/2 —m?n

Iholg 4.41
47r3m|h2|1/2we o (4.41)

AT o (m?) ~

where hg and hy can be determined for specific background fields.
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4.3.2. Space Dependent Electric Fields:

Now, we will consider space-dependent pure electric backgrounds for

&
Ap(x) = —Hp(wx). (4.42)

w
Since the effective dimensionality of this case depends on the details of the function
Hy, its treatment with WKB methods is not always tractable. Therefore, the (proper)

time dependent method we present here is much more convenient for applications.

Using the recursive relations (4.28), we get the coupling expansion at order O(w°)

as

= An2it 24 5760 967680

1 tVH)? T7(gtVHy* 31(gtVH,)S
Zao,ng% (9 0) A (9 0) - (9 0) (4.43)
n=0

This is the same expansion in (4.35) up to space dependence via VH, terms. Then,
the singularities of the integrand in (4.30) is the same as in the time dependent case

and we get the imaginary parts of Ff)o as

(9VHy(x)" e (4.44)

Iml'5,(m?) =+ [ dPx
w JRD 871'3

We make assumptions similar to (4.40):
i) VHy(wx*) = hg , i) V2Hy(wx*) = 0, iii) V? Ho(wx*) = —hyw?, hg # 0.  (4.45)

The dimensionality play a role in the saddle point approximation as it determines the
dimension of the space integral. In general, the saddle point approximation of (4.44)

for m > ¢ and slowly varying Hy(wx) leads to

(gho)® [ 2mghe \"7* _mi
AT o ~ 50 \m2aznhn e sho (4.46)

where D = 1,2, 3 depends on the function Hy(wx). Note that when D = 1, we recover

(4.41).
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4.4. Connection to Semi-Classics

The strong field pair production is a non-perturbative effect and it has been stud-
ied by more direct non-perturbative methods, such as WKB and worldline instantons.
These methods are semi-classical in nature and relate the pair production process to the
underlying classical dynamics of the quantum mechanical system. Here we will explain
the connection between these non-perturbative pictures and the real time approach we

are using. In this way, we will explain the following:

e A duality between magnetic and electric cases in terms of perturbative and non-
perturbative WKB cycles.

e The resolution of the ambiguity problem from a path integral point of view.

For concreteness, in this section, we focus on a specific problem and choose the

alternating electric and magnetic fields in x5 direction, i.e.
E .
A,=10,0,0, - sin(wxo) (4.47)
for the electric case and
E .
A,=10,0, - sin(wz1), 0 (4.48)

for the magnetic case. In addition we keep py for the electric case and p; for the
magnetic case and set the other components of momenta to zero as they only play a

role in the prefactor. Then, the corresponding Hamiltonians are written as

Py, i
Hg = —?O + 2—52 sin®(wxg) , gg = €€ (4.49)
for the electric case and
i, 9B
Hg = 51 + 2—w28in2(waz1) , gg=¢eB (4.50)

for the magnetic case. The semi-classical aspects of this system are well studied in both
worldline formalism [74,75] and WKB formalism [85,110]. In fact, in these settings, the

exponent of the pair production probability is just the classical action of the system,
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ie. Sy~ ”;—Z“ In the following, for simplicity, we will set ¢ = v/2 and w = 1, as they

don’t play a role in the following discussion.

Recall from (4.27),(4.30) and (4.28), (4.31) that the classical actions for electric
and magnetic backgrounds are respectively

.00 . 2

+_ . de +im?t dﬂ?odpo Fitsin?(xo) +20t

I'g =— —e —e e 2
Jo 2T

. &0 dt 44 2t i 2
= —1 —_— T da, eFitsin”(zo) 4.51
/0 t\/F2mit R 0 ( )

and

odt o, dad o ip2t
= —i / 7eﬂm2t / _21 PL itsin?(ar) 7 2
0 ™

. g dt 44 2t 4 in2
= —4 g dx, eFitsin®(@1) 4.52
/0 tv/E2mit > (452)

These integrals will be the basis of the following discussion on WKB and path integral

approaches.
4.4.1. Duality from WKB Cycles:

In order to see the equivalence to the standard WKB integrals, we first take the

t integral after rotating its contour by 7. Then, we find

ATg(m?) = ﬁjéda:l m? — sin®(x;) (4.53)
and

ATg(m?) = iﬁ%dxo m?2 — sin®(z). (4.54)

In these expressions, the main difference between the electric and magnetic cases is
the imaginary prefactor. In fact, (4.53) and (4.54) can be thought as action and dual
action of the same theory which are intimately related [47,49-52]. To see the duality

clearly, let us take the imaginary factor in (4.54) into the square root term and express
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it as

AT'g(m?) = V2 % dzo \/—m2 + sin?(xg)
— ﬂ%dxo m? — cos?(x), (4.55)

where m? = 1 — m2  Because of the phase difference between sin?(z) and cos?(z),
the perturbative and non-perturbative WKB cycles in electric and magnetic cases ex-

change.

This observation suggests us that the actions Al'g and Al'g can be expressed as
WKB actions of different cycles of the potential V(z) = sin®(x). We will denote these

actions as a(u) and ap(u) with the following definitions:

a(u) = \/5%; day/u — sin?(z), (4.56)
ap(u) = \/ifgdx\/u — sin®(z), (4.57)

where integration cycles av and 3 corresponds to WKB cycles at the valley and barrier
of the potential respectively. In this way, we have reached the tunneling interpretation
of the pair production problems. Now, the pair production probability is related to the
imaginary part of the dual action as P ~ exp [—élm ap (u)] = exp [—\%Im ap (u)]

Using the identity [113]

arcsin \/x In—1
/ 10 cos ((2n — 1)0) _ f2F1<1 —n,n;l,lli), (4.58)
B x —sin’ 0 2

and integrated it once, we compute a(u) and ap(u) as
11
alu) = 4\/§{E(u) +(u— 1)K(u))} = V2usFy (5, 5 Q,u) (4.59)

and

11

ap(u) = i4\/§{E(1 —u) —m*K(1 — u)} = i7‘(\/§(1 —u) oy (5’ 5

21— u) (4.60)

where K and E are complete elliptic integrals and to obtain the action in terms of
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hypergeometric function we have used the following identities [66]:

K(k*) = ngl (% %; 1; kz) . E(k?) = gQFl ( - % %; 1; k:2> (4.61)

and
k*(c —b) gFl(a, b;c+ 1; /{:2) =co by (a —1,b;¢; kz) +e(z—1)2F (a, b; c; kz). (4.62)

Note that up to the imaginary prefactor, the actions in (4.59) and (4.60) are related
to each other by modular transformation m? — 1 — m? and this is indeed how a
perturbative WKB action is transformed to its dual, which is associated to the non-

perturbative information, for genus 1 potentials [47].

To understand how this perturbative/non-perturbative information is related to
the time dependent formalism and the singularities of the propagator, let us expand

a(u) for u < 1:

1 (w< 1) +u+3u+25u+245u+
alu =u+-+—+— R
T2 8 64 1024 16384

(4.63)

This is the action of the cycles corresponding to the wells of the potential V' (z) = sin®(z)
[13,16,67]. If we were stuck with the time dependent formalism, we would find the same
expansion ° by probing the singularity at + = 0 in (4.52) and following the guidelines
in [26].

On the other hand, in order to relate the electric action to the pair production

probability for strongly coupled electric fields, we expand ap(u) around u = 1:

1 1 , 3 , 25 )
iwﬂaD(UNl):—(U—1)+§(u—l) ——(u—1)0"4+—(u—-1)"+.... (4.64)

64
Then, with the identification m? = 1 — u, we get the pair production probability as

P ~ exp|—m?’n],

which matches with the result in (4.41) for ¢ = /2. This is what we get from the

®Note that same expansion with alternating signs would have been obtained from (4.51). This
would corresponds to the perturbative action for the region under the barrier.
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non-zero singularity of the propagator in Section 4.3 and our analysis identifies this

non-perturbative singularity with the dual action at the peak of the barrier.

In summary, these results shows that the observation that AT'g/AT'g correspond
to the valley/peak of the potential. This shows a duality between electric and mag-
netic cases. Another way to understand this duality is making the observation that the
electric potential corresponds to the inverted magnetic potential with an unimportant
scaling. The connection between inverting the potential and the duality was investi-
gated in [51] using the connection between one dimensional quantum mechanics and
holomorphic anomaly equations, where the authors showed that the analysis for the
dual case is done around the top of the inverted potential. In our setting, the source
of this inversion, and therefore the duality, is the Minkowskian metric. Moreover, this
observation shows that the perturbative analysis in Section 4.3 was done around the

dual (non-perturbative) vacuum which corresponds to the top of the inverted potential.

Note that this is known for the uniform case as the uniform electric field back-
ground corresponds to the inverted harmonic oscillator. However, our description indi-
cates that this is also valid for more general background potentials. Although, we used
simple cos?(z) = 1 — sin?(z) relationship in (4.55) and re-scaled m? — 1 — m?, these
transformations have a geometric origin related to the duality between the two action
and similar transformations can be used for other potentials to relate WKB action and
its dual. A detailed discussion can be found in [52]. We will use this information in

our analysis of the path integral perspective.

4.4.2. Non-cancellation from Lefschetz Thimbles:

Now, turning back to the integrals in (4.51) and (4.52), we will show how the
imaginary contributions for electric and magnetic cases arises from path integral per-
spective. Note that in (4.51) and (4.52), the space integrals are one dimensional not
infinite dimensional. This is not introduced for any simplification; instead, they corre-

spond to the exact leading order in the derivative expansion of the theory.
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The space integral is the same for both magnetic and electric cases:
I* = / da et (@) (4.65)
JR

where we set ¢ = w = 1 as they don’t play a role in the following discussion. Note that
this integral form was investigated in [17] in a finite region and the cancellation of the
Borel ambiguity was explained. Their analysis corresponds to the imaginary proper
time version of our discussion. We will follow similar arguments for (4.65) but also use
the lessons of previous sections which will lead us to the resolution of the ambiguity.

Then, at the end of the section, we will compare these two analyses.

The critical point is on the initial contour, the integral in (4.65) is not convergent
due to the oscillating behaviour of its exponent. To prevent this problem, we should

—tsin*(@) a5 || — oco.

express this path integral in terms of paths which behaves as e
Among all possible such paths, we will choose the steepest descent ones since they have
the most dominant contributions. In the following, we will label these paths with J
and we will label the other paths, which don’t converge exponentially as |z| — oo, with
IC. These are called the Lefschetz thimbles and they are closely related to the Morse
theory. We will not discuss their construction since we are only interested in their roles

in cancellation mechanism in the pair production problems. For details on the subject

see [114,115].

Due to the periodic nature of the potential, we can focus only on the region [—7, 7]
and investigate contribution of the paths passing through the extremum point = = 0,
which represents stable/unstable vacuum of theory, to the integral (4.65) for different
values of argt. Remember that for electric and magnetic cases, the singularities on
the complex proper time plane appear in different regions and we needed to deform
the proper time integral accordingly. We will use this information here as our guide to
investigate the behaviour of the spatial integral on complex x plane and in this way,

we will describe the resolution of the ambiguity in path integral perspective.
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Figure 4.4. Lefschetz thimbles for the magnetic case.

Let us start with the magnetic field background. We know that in this case, the
non-perturbative information arises from argt = 0% for ['#(m?). Since the integrands
have oscillating behaviours in both cases, the real part of the exponent should be

constant along the integration path:
Resin®(z) = const. (4.66)

The imaginary parts should behave differently along these paths due to the sign differ-

ence in the exponent. Therefore, as |x| — oo, the conditions

Im [¢sin®(z)] < 0 (4.67)
for argt = 0" and

Im [¢ sin®(z)] > 0 (4.68)

for argt = 0~ should be satisfied. Corresponding regions and associated contours Jg
and IC§ are shown in Figure 4.4. Despite the allowed paths are different for two cases,
their tails directing to imaginary infinities cancel each other. Therefore, both of the
are well defined and the remaining parts are just the original integral (4.65). Moreover,
the gap Al'y = I'; — 'y corresponds to the perturbative WKB cycle. All of these are

consistent with the expected oscillatory behaviour.
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Now, we turn to the electric field background and focus on the behaviour of the

integrals around argt = +5 7. Around these regions, the spatial integral becomes
It = / dr et 0@ (4.69)
R

which can be interpreted as inverted potential case.

=]
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Figure 4.5. Lefschetz thimbles for the electric case.

The integrand in (4.69) is real. Then, in this case, the imaginary part should
be constant along the integration contour, i.e. Imsin®*(z) = const. In both cases, as

|z| — oo, the integration paths should pass through regions corresponding to
Re [tsin®(z)] < 0. (4.70)

The integration paths jEi and IC:Et are shown in Figure 4.5. Contrary to the magnetic
case, here the allowed regions are the same and the Lefschetz thimbles pass through
the same regions in opposite directions. Therefore, their contribution to AT' = T'f; — 'y
is a constructive one rather than a destructive one as we observed in Sections 4.2.1 and

4.3. This explains the ambiguity resolution from a geometric perspective.

These two examples are illustrations of how real time approach resolves the Borel

ambiguity from path integral point of view. Note that the electric case is very similar
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to the one in [17], where
/ dt e~te s’ (@) (4.71)

was considered. Main difference between two analysis is that the roles of regions in
complex space exchanged. This is because the electric case corresponds to the inverted
potential version, i.e. V ~ —sin?(z), as we discussed in WKB approach. In [17], paths
represented by K in Figure 4.5 are the Lefschetz thimbles corresponding to analytical
continuations from argtg and the integral is convergent along these paths. Note that
their behaviour around infinities are very different. This is due to a jump at argtg = 0,

which is called the Stokes phenomenon and it is the source of the Borel ambiguity.

In our case, on the other hand, both J7 and J approach to imaginary axis as
argt — £57, which corresponds to argtg = 0 for the Euclidean case as we discussed
in Section 4.2.1. They flow towards opposite directions. This is analogous to the
Stokes phenomenon but due to the prescription we used throughout the paper, their

contribution to Al is not ambiguous.
4.5. Discussion

In this chapter, we have analyzed how the non-perturbative pair production prob-
ability in background electric fields can be obtained from the poles of the time evolution
propagator. For this reason, we have put the real time approach discussed in [23] in a
rigorous basis by providing a definition of pair production probability from the analyt-
ical properties of the effective and adapted the perturbative scheme introduced in [26]
to pair production problems. While this approach enabled us to compute the pair
production probability for arbitrary background potentials in arbitrary dimensions, a
careful investigation of the perturbative scheme helps us to connect our analysis to the

semi-classical approaches such as WKB methods and Lefschetz thimbles.

On the one hand, by analyzing the emergence of pair production problem from

Lefschetz thimbles perspective, we have put the resolution of ambiguity in a more
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geometric basis. Our analysis supports the idea that the Lefschetz thimble approach
mimics the standard Borel summation method [17]. On the other hand, comparison to
WKB methods allowed us to associate the perturbative series we computed in Section
4.3 and perturbative /non-perturbative information extracted from it with the WKB
cycles. A similar investigation of spectral problems in quantum mechanics with both
stable and unstable ground states in the light of the lessons we learned here would be

an interesting problem.

In addition to this, the analysis we pursued in this chapter indicates future direc-
tions that can be addressed using the time dependent formalism: One of these direc-
tions is the investigation of possible interpretation of resurgence theory as connecting
singularities. The resurgence theory investigates the intimate connection between the
perturbative and non-perturbative sectors of a quantum theory. Although it is well
understood in one dimensional quantum mechanics, in multidimensional problems our
knowledge is still primitive. In our setting, which treats problems in different di-
mensions in the same way, the perturbative non-perturbative connection demonstrates
itself as the connection between the expansion around ¢t = 0 and the singularties at
t # 0. To understand this let us review our findings: As we implied in Section 4.3,
the propagator has a singularity at ¢ = 0 and its connection to the perturbative sector
of the theory was shown in [26]. More precisely, as we showed in a specific example
in Section 4.4.1 in the semi-classical context, it yields the perturbative part of the
action, which carries information of the perturbative WKB cycles. These cycles are
linked to the non-perturbative ones via underlying topology which also determines the
resurgence relations [47,49,50]. Therefore, it is natural to suggest that these geometric
relations can be related to the analytical structure of the propagator. In other words,
the perturbative non-perturbative connection can be interpreted as a connection be-
tween the singularities at t = 0 and ¢ # 0. This was briefly discussed in [58] but a
detailed description of this connection appears to be still lacking. An explanation of
the resurgence relations in this approach would be very valuable for investigations of

multidimensional problems.
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Another interesting future direction is the investigation of the possible connection
between renormatization procedure and WKB actions. The pair production problem
is a relativistic one. However, as often done in the literature for 1 loop order, we made
our analysis by reducing it to a non-relativistic quantum mechanical one. Despite
this reduction, the UV divergence of the full theory still exists and they need to be
handled by renormalization techniques. In Schwinger integral, this divergence arises
from the singularity at ¢ = 0. On the other hand, as we stated above, t = 0 is also
a source for the perturbative part of the WKB actions. This suggests a connection
between these two phenomena which, to our knowledge, has not been discussed in the
literature. In addition to that the idea of connecting the singularities also suggests
that the other singularities, which are associated to the non-perturbative sector of the
theory, might also play a role in renormalization scheme, possibly in the renormalization

group context.
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5. RENORMALONS IN QUANTUM MECHANICS

In this chapter, we will discuss the renormalon problem in non-relativistic quan-
tum mechanics. Since renormalization is often associated with QFT, the renormalon
divergence is mostly considered in QFT settings. However, the 2D d-potential contains
Feynman diagrams with logarithmic momentum dependence [116]. Still this model does
not exhibit a renormalon divergence. On the other hand, considering a non-relativistic
scattering problem in a background potential that consists of 2D d-potential and an
additional part, we will show that the S-matrix has a divergent perturbative expansion
associated to the renormalon. Through the Borel summation, this divergent behaviour
leads to an ambiguous non-perturbative contribution to the S-matrix. In a similar
fashion with Chapter 4, we will show that by identifying the renormalon divergence
with a singularity of S-matrix in the momentum plane and using the i prescription,

the ambiguity disappears.

The content of this chapter was originally published by the author of this thesis
in a collaboration with Dieter Van den Bleeken as a research paper with the title
“Renormalons in quantum mechanics” [28]. The rest of this chapter is identical to

that paper with appropriate modifications.

5.1. Background Discussion

In QFT, there is no restriction on the loop diagrams. Therefore, it is not hard
to get a renormalon diagram that we discussed in Section 2.1. Then, from scattering
perspective, diagrams like the one on the left of Figure 5.1 can appear in 2 particle
scattering, but this is not the case in QM as such a diagram would violate particle num-
ber conservation. But from this limitation it is at the same time clear that it can be
evaded by considering the 4 particle scattering as in the right of Figure 5.1 so that par-
ticle number is indeed conserved. This illustrates that quantum mechanics has all the

ingredients for renormalons, at least if one chooses a potential that gets renormalized
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and that is interactive enough to allow for non-trivial multi-particle scattering.

One can further simplify the setup considering all particles to have the same mass
and interpreting the coordinates of the additional particles as extra spatial dimensions
associated to a single particle. This brings us then to a model where, instead of multi-
particle scattering, a single particle scatters of a background potential that has a part,
say the 2D o-potential, that gets renormalized and an additional part that couples it
to a third direction. That this idea is correct and that such models do really have
a non-vanishing renormalon divergence in their perturbative S-matrix is what we will
show in Sections 5.3 and 5.4. It could be very interesting to look for renormalons in

other QM observables of similar models but we leave this for future work.

4 4

Figure 5.1. Left: Renormalon type diagrams in 2-particle scattering violate particle
number conservation. Right: In 4-particle scattering particle number can be

conserved.

Due to the simplicity of our model we are able to rigorously show, by explicit
calculation, the existence of a renormalon divergence of the perturbative series of its S-
matrix. This is important, as for 4d field theories it has so far been impossible to exclude
a cancellation between various renormalon diagrams. Interestingly we will see that
in our model indeed some cancellations take place, but a total non-zero contribution
remains. This reflects itself in a growth o< (n—3)! in the order n of perturbation theory,
rather than the naively expected o< (n — 1)!. Additionally we use the formal tools of

quantum mechanical scattering theory to compare the diverging perturbative series to
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the exact non-perturbative result. This reveals that Borel summation, using the correct
prescription to evade poles, does indeed reconstruct the correct answer including the
non-perturbative contribution. The nature of this non-perturbative effect, for example
a possible semi-classical realization, would be interesting to further investigate in the

future.

Let us outline the content of this chapter. In Section 5.2 we recall the quantum
mechanics of the 2D d-potential and its renormalization, which is well-established but
maybe not as well-known. We then continue in Section 5.3 by presenting the compu-
tation of a simple renormalon diagram in quantum mechanics. We focus on a simple
example based on coupling the 2D d-potential to a 1D ¢ potential supported along a
third direction.

The main results of our paper are in Section 5.4. We consider there a potential of
the form V' = A\gd(x)d(y)+~Vi. The physical quantity we study is %%S(pf, pi; A, K) |n:o
i.e. the S-matrix exact in the renormalized coupling A and second order in k. We’ll
discuss under which conditions on V, we expect renormalons to appear and work out
in detail the case V, = d(cosfz — sinfy). The angle 6 allows us to interpolate between
the case 6 = 0, where the model factorizes and the renormalon contributions are forced
to cancel out among themselves, and the case 0 < § < 7 where non-trivial interaction
takes place and a non-zero renormalon contribution remains once all diagrams at a
given order are summed. We compute the leading growth of the series coefficients due
to the total renormalon contribution and discuss how this leads to a pole on the real axis
in the Borel plane, resulting in a summation ambiguity. Alternatively one can sum the
diagrams before performing the outer-loop momentum integral, which reproduces the
same ambiguity. We point out that in this second summation procedure the ambiguity
is naturally resolved by re-introducing the Feynman e prescription. This illustrates
that in this case the summation ambiguity orginates from the limits e — 0 and n — oo
not commuting. The link between renormalons and the ie¢ prescription was already
suggested in some of the earliest studies on renormalons [24]. In the Borel plane this

corresponds to a deformation of the integration contour below the renormalon pole. In
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Section 5.5 we use the operator formalism and exact knowledge of the Green’s opera-
tor /resolvent of the 2D d-potential to rederive the perturbative result without exanding
in the coupling A. This calculation confirms the absence of further non-perturbative
effects that could potentially have cancelled the non-perturbative contribution to the
imaginary part due to the summation prescription. The exact calculation also makes

the role of the ie prescription fully transparent.

5.2. Quantum Mechanics with a 2D J/-potential

In this section we review some aspects of quantum mechanics with a 2D 0-
potential, see e.g. [116] for a more complete discussion. As we will discuss this model
requires renormalization, has a non-trivial, but 1-loop exact, S-function and a renor-
malization invariant energy scale A = ue% which is the energy of a non-perturbative
bound state E, = —A. What makes this model extra appealing is that the pertur-
bative renormalization matches perfectly with a non-perturbative definition through
the method of self-adjoint extension [117], as we will shortly recall at the end of this
section. Since in the next sections we will couple this model to an additional third
direction we will from the beginning discuss it in a 3 dimensional context but, at least
in this section, the third direction trivially factorizes. More precisely, we will consider
Sap(Pr, Pi) = 2m0(qr — ¢;)Sap(ve, vi). The reader interested only in a review of the 2D

0 interaction can simply ignore all prefactors 2w (g — ¢;) in this section.

The starting point is the Hamiltonian 6
H =p* + A\ Vi(x) Vi(x) = 0(x)d(y). (5.1)

We will proceed in a rather pedestrian way with the presentation reflecting a QFT
treatment. Our aim is to compute the S-matrix of the model (5.1), describing the

scattering of the particle off the background potential V,. It is standard practice to

6See Appendix A for our position and momentum space notation and conventions.
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rewrite

S(pe,pi) = 53(Pf —pi) — 27 5(19? - pf) 7(Ps, Pi)- (5.2)

The perturbative series for the on-shell T-matrix 7(p¢, p;) is the familiar Born-series

and it is fully determined by the Fourier transform of the potential:

N

Vi(p) = 2md(q)- (5-3)

At n'" order in ) there is a single diagram made of n vertices connected by n — 1

propagators with the Feynmann rules

~ dgpk 1
* 0 AoVi(Pr1 — Pr) 4 / (2m)3 p? + ie — p2 (5.4)

More precisely we have (py = pg, Pn = Pi)

n Y 0 d°py o
’—k— . —x = T )(pf,pi) —)\o/ <k1;[1 @m0 + 2)> (H‘/*(Pk—l—Pk)>-

The first order is the so-called Born-approximation, which in this case evaluates to

*x = T(1)<pf, pl) = 27TA() 6(qf - ql) (56)

5.2.1. One Loop

The need for renormalization in this model manifests itself at the next order,

which is the 1-loop order, where a UV-divergent momentum integral appears:

*x—x = 73 ) =271 (qr — ))\—(2)/oc>d—v2 (5.7)
- Pt, Pi) = qs qi A o ’Uf2+7:€—U2. .

One deals with this divergent integral in textbook fashion. First we regularize by

introducing a UV momentum cutoff €2

1 [ dv? 1 1 :
I = — —=—1 ——1 Q) — . .
o) =3 [ T = g lows — g log (e(2 - 2) 5.9
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To proceed we replace the bare coupling Ay by a physical coupling A at some fixed

energy scale p through g = A + \2A (%) + O()\3). Observing that

Q 1
Ao+ A la(2) + ON) = A+ N2 (A (;) + E(logz — log(z — Q))> + 0\ (5.9)
tells us to choose
Alz) = 1 (5.10)
z) = ppm 0g z, .
so that
Jim (Mo + M a(z) + O(A)) = A+ A2H(2) + O(N?), (5.11)

where for future convenience we introduced the function

1 i
I(2) = . log eﬂz. (5.12)

Note that of course we could add an arbitrary (complex) constant to A, however from
(5.18) it follows that A — A+c can be absorbed by A — 2. The choice we make has
the advantage that real A corresponds to a unitary S-matrix. This directly follows form
(5.13) and the fact that a unitary S-matrix requires the first order on-shell T-matrix
to satisfy 7 (pg, pi) = 7V (pi, Pr)*. Of course this requirement only fixed ¢ to be real,
but non-zero real ¢ amounts only to a rescaling of the momentum scale p, which is

arbitrary in any case.

The outcome of this renormalization procedure is to replace (5.6, 5.7) by

* =70 (pr, pi) = 27\ (qr — 1), (5.13)

* —x =73 (pg, i) = 27 6(qr — ) N 1(u?). (5.14)

Imposing the result to be independent of the arbitrary scale p leads to the 1-loop

[-function

B(N) = g OO, (5.15)
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5.2.2. All Order

This theory is so simple that the higher orders are easily analysed and can be
directly summed. Indeed, note that

“00 2 n—1
*— =% = 7" (pg, pi) = 210(qe — ;) A ( ! / L) . (5.16)

dm Jo v +ie—0?
This suggests that higher order renormalization simply amounts to repeating the 1-loop
procedure via

1 [ dv?
At Jo 2z — v?

)\0—>>\ 5

S (2). (5.17)

It can be verified that this is indeed equivalent to the all order definition of the physical

coupling

_ g [A (%)}n_l A" = @. (5.18)

In summary, after renormalization one finds
*— =% = 7™ (pg,pi) = 21 6(qr — ) A" 1 (vD)" . (5.19)

So all order perturbation theory takes the simple form of a geometric series and the

total answer is thus

2w 0(qe — q;) A
(prop) ZT (pr. po) = 27 8(as — )t (u) = — LU= BA (5 09)
1 — 7-(log = + i)

where for later convenience we separately define

(15 (s L — (5.21)
n=0 u

A
1 —+log m

Let us now interpret the results of the calculation performed above. Via the all

order definition of the physical coupling (5.18) one can compute the all order S-function

Bx) =

o (5.22)
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It is interesting to note that this coincides with (5.15), implying the S-function is

one-loop exact. From (5.22) one computes the running coupling

_ A 47
A(p?) = = , (5.23)
1—2logZ log
which reveals a renormalization invariant scale
A=yu e (5.24)

In accord with renormalization theory the dependence of (5.20) on the energy scale

goes purely through the running coupling;:

7(pt, Pi) = 2m0(qr — 1) (5.25)

Interestingly this theory is both UV and IR free without being trivial. Although the
running coupling (5.23) has a Landau pole at energy A, the S-matrix (5.2, 5.25) remains
perfectly finite at this energy. It does have a pole however at negative energy Ey, = —A,
showing that the proper physical interpretation of A is that of the energy of a non-
perturbative bound state. Interestingly, and contrary to the 1D d-potential, the bound
state exists both for positive and negative X. Let us stress, as this is important for
the correct interpetation of the following sections, that the model is well defined if and

only if A is real, or equivalently for all positive real values of A.

Surprisingly one is able to extract non-perturbative information of the model, the
bound state energy, through a purely perturbative calculation enhanced with renormal-
ization. Note that so far the perturbative series considered was perfectly convergent
so the non-pertrubative boundstate is not connected to any divergence In the next
sections we will see that it can be linked to the divergence of the perturbative S-matrix

once we couple the particle to an additional potential.
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5.2.3. Exact Solution

Although the non-perturbative bound state emerged out of the perturbative treat-
ment above one might wonder if the S-matrix could not get additional non-perturbative
contributions that are missed perturbatively. Due to the simplicity of the 2D d-model
one can actually solve it exactly which not only confirms the renormalized perturbative
calculations above but additionally shows that that answer is complete. The advan-
tage of QM compared to QFT is that we have an explicit non-perturbative definition
provided by the Schrodinger equation with a self-adjoint Hamiltonian. Although they
will not be applied in the remainder of of the paper, we shortly mention the results
obtained by treating the model through the method of self-adjoint extensions as they
are quite beautiful and put the work in this and the following sections on firmer footing.

For further details including a more precise mathematical treatment see [117].

The idea is to replace (5.1), which is a Hamiltonian defined on all of R?® | by
the free Hamiltonian on R3\R, the line being removed is the origin of the zy-plane,
supplemented by a boundary condition at + = y = 0. The condition that the ’free’
Hamiltonian H = p? be self-adjoint with respect to this boundary condition strongly
restricts the options, so much so that all posibilities can be classified. Although a
priory this could lead to point-interactions which are not described by a d-potential,
as indeed in general it does this is not the case in this setting. To be precise let us
decompose the wavefunction as (x = r cos ¢, y = rsin ¢)

[e.9]

v = [ 58 valngee. (526)

m=—00
For m # 0 the only allowed boundary condition is simply that the wave-function
remain finite as r — 0, but the boundary condition on (7, q) can be non-trivial.
Those boundary conditions that lead to a self-adjoint Hamiltonian are parameterized

by a positive real parameter A and read

lim —%(T’Q) —lo VAr
r—0 Tarw()(rv Q) & 2

=7, (5.27)
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where 7 is the Euler-Mascheroni constant. One can then solve the time-independent
Schrodinger equation with these boundary conditions to find scattering states and a

bound state:

N 2mo(q — gV A
Vowq(ryq) = in + log %| wYo(vr) + log 2 Jo(vr) |, (5.28)
Umwg(1,4) = 210(q — ¢ )Wo Jm(vr) . m#0, (5.29)

y(r, q) = 276(q \/71(0 VAT). (5.30)

The scattering states have energy E,, , , = v*+¢* = p* while the bound-state has energy
Ey, = —A. Matching the bound state energy with the perturbative calculation above
allows to identify the parameter A of the self-adjoint extension with the renormalization
invariant scale (5.24). The non-trivial test is then to compare the scattering amplitude
as defined by the scattering states (5.28,5.29) with the perturbative on-shell T-matrix
(5.25). A short calculation, since only m = 0 leads to non-trivial scattering, provides

perfect agreement.

5.3. A Renormalon Diagram in Quantum Mechanics

This section discusses a first diagram for an example potential. In the next section
we will discuss the totality of all diagrams, both for more general potentials as well as

the example considered here.

With the aim to generate a renormalon and motivated by the discussion of Section
2.1, we add to the 2D J-potential an extra potential that couples non-trivially to the

3t direction:
H =p* + ANV, + KV (5.31)

A simple choice is to take as the extra piece a 1D 0 potential. To make sure the theory

does not simply factorize we put the support of the 1D § at an angle to the xy-plane
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as in Figure 5.2 and choose the potential as
V. =0(cosfz —sinfy). (5.32)

Keeping the angle 6 a free parameter will allow a check on our results since through

the limit 6 — 0 we can compare to the case where the S-matrix factorizes:

So—o(Pt, Pi) = S1p6(q, i) Saps(Ve, Vi) - (5.33)

By adding a new part to the potential and introducing a second coupling x we introduce
a whole new set of diagrams to the calculation of the perturbative S-matrix. For
our discussion, in this and the following sections, it will be sufficient to focus only

diagrams quadratic in k. Formally we could say that the observable of our interest

is % 88—;S(pf, Pi; A, K) , in practice it means we will work to all order in A and at
0

K=

second order in k.

Figure 5.2. Support of our example potential. The blue line, which coincides with the
z-axis, corresponds to V, = §(z)d(y), while the red plane corresponds to

V. =0(cosfz —sinfy).

In this two parameter perturbation theory there are two types of vertices: x and

*. The Feynmann rules (5.4) get extended by

A

* L Ii‘/*(pk_l —pk) (534)
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Given the (logv?)" behaviour of the diagram x — x — ... — % established in (5.19),
one expects a renormalon might appear once this diagram finds itself inside a bigger
loop. This can be done by squeezing the diagram between two additional x vertices,
see also figure 5.3, and explains why it is the second order in k where we expect the

phenomenon to first appear.

K—Kh—k—. . . —k—xX

Figure 5.3. A renormalon-type diagram. On the left the diagram describing
one-particle scattering off a potential. On the right a corresponding diagram in the

language of 4-particle scattering.

Let us now show that indeed this intuition is correct by explicit computation.

For the example (5.32) one has (p = (r,w, q))
x 0 kK (2m)20(rp_1 — 73)0 (cos O(wy_y — wy,) +sinO(qge_1 — qi)) - (5.35)

Applying the Feynmann rules, performing some integration and applying the renor-

malization (5.17) it follows that

2 2\n-1
f—k—k— ... —k—k = )\”m2cos20/% ~l(pf‘ 7) po —,
2m ((gr — 9)(q + ) +i€) (6 — 9) (g + &) + ie)
(5.36)
where we used the shorthand
Go = €0s 20 q,, — sin 20 w, , (o =1,1). (5.37)

We remind the reader that the function [ is essentially the logarithm, see (5.12). Equa-
tion (5.36) is indeed of the generic renormalon type integral. The logarithm becomes
large when ¢* ~ p? or ¢> — oo. A careful analysis, see Appendix B, reveals that

factorial contributions to the integral (5.36) around |q| = ps cancel each other while
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this is not the case at large momentum. Using that the rational part of the integrand
in (5.36) decays like ¢~* = ¢~2%21 for large ¢ and via formula (B.1) we find that for

large n

*—*—*—...—*—*N2K2COSQ(9,U,_3<)\) (n—1)!, (5.38)

6
where the factor 67 = % X 47 is to be interpreted as a multiple of the (inverse of
the) [-function coefficient (5.15). The appearance of % is no coincidence and set by
dimensional analysis. In 3D the on-shell T-matrix ¢t has dimension of length while
has dimension of inverse length. So the only way the other scale p, with dimension of

inverse length squared, can appear is with a power —%, fixing p = % in (B.1).

The result (5.38) is important in that it manifestly shows that also in non-
relativistic 1-particle QM renormalon diagrams appear and that they lead to factorial
growth through exactly the same mechanism as in QF T, i.e. integration in momentum
space over an integrand that includes a high power of a logarithmic momentum de-
pendence due to a large number of renormalized 1-loop diagrams inside a larger loop.
Given the discussion in Section 2.2, we conclude there is a pole at s = 67 in the Borel
plane when summing all the * — x — % — ... — x — % diagrams. When A is positive this

will lead to an ambiguity of the form

amb (Z k— ok — ok — ... — ok — *) = F2mi K2 00829;{%6_é (5.39)

n

= F2mi k2 cosO A2, (5.40)

It is interesting to note that while (5.38) appears not manifestly renormalization in-
variant, the corresponding ambiguity (5.40) obtained from ressumation is manifestly
renormalization invariant as it can be expressed purely in terms of the renormalization

invariant scale A, defined in (5.24).

Before one draws conclusions it should be realized that the diagrams considered

above form only a subset of all the diagrams contributing to the S-matrix, and so
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one cannot directly extrapolate these results to the actual physical observable. Indeed,
note that the growth (5.38) and the corresponding non-perturbative contribution (5.40)
do not vanish as § — 0. But because in that limit the full S-matrix is simply the
product of the 1D and 2D ¢ S-matrices there should be no divergence nor an extra
non-perturbative contribution. This indicates that there are further factorially growing
sets of diagrams in the theory and that, at least at 8 = 0, these will cancel the growth
(5.38). This motivates us to carefully work through all diagrams in the next section,
which will confirm such a cancellation at # = 0 but will also show that when 6 # 0 the

cancellation is not complete and a total factorial growth remains.

5.4. Renormalons: All Order Perturbation Theory

As illustrated in the last section, renormalon diagrams leading to factorial growth
appear also in 1-particle QM. In this section we investigate this in more detail, carefully
working out all diagrams for the model (5.31). We will start with the potential Vj
arbitrary so we can understand more generally under which conditions renormalons
can appear. We then specialize again to (5.32) to provide an explicit fully worked out
example. After exhibiting the factorial growth we will consider the Borel summation
and its ambiguity, show how it can be rephrased as an ambiguity of a momentum
space integral and how that ambiguity is naturally resolved through the Feynman e
prescription. An exact treatment in the next section confirms the perturbative results

of this section.

5.4.1. First Order in &

We'll analyze all diagramatic contributions to the on-shell T-matrix to arbitrary
order in A and second order in &, using the Feynman rules (5.4, 5.34) together with the
renormalization (5.17). Although our interest is in the part of the S-matrix quadratic
in x it will be useful to first consider the linear part, as some structures appearing

there will have a role to play at second order. The first order consists of all diagrams



97

with a single * vertex, they can be easily listed and computed to be

x = kVi(pt — Pi) (5.41)

*— o=k —x = [(O))"TIN R I (g, pr) (5.42)

s —x— ... —x = L))" Nk I (g, pe)* (5.43)

ok —x— =k = )" (WD) TN R TV (g, q),  (5.44
o mxm ke = L T A R 10 (g g, (5.44)

where the complex conjugate of the integral in (5.43) should be performed without

changing the sign of the ie term.

Here two integrals appear:

A2v Vi(Va — V., qa — q3)
JLEBY) h :/ #\Va y o B) 5.45
(p 7q,3) (27’[’)2 p% _al qg 4 ode — 2 ( )
d>v &>V V(V—V' do — qp)
102 (gu. 45 :/ N » 1o 5 . (5.46
0:05) = | e n R B = & T e —B)(p? G5 + ie —v”) 240

In the particular example (5.32) these integrals evaluate to

cos 6

1% (pg, qs) = : 5.47
(Pas ) = S G =) + (@ — 0@ + 00) (5.47)
701.2) cos 6 | 2\/<pf2 —q2) (7 — qg)
(0, 85) = 2r|q3 — g3 F B — 2 — ¢2 + sec2 0]q2 — 3| F — tan 0(qo — qs)?’
(5.48)
where
F = |1— asin?g 082 PE 05”0 (5.49)
(g1 + ¢2)?

and ¢ was defined in (5.37).
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5.4.2. Second Order in ~

This is the order where we expect renormalon diagrams to appear. As a starting
point for our discussion we present the integral expressions for all diagrams with two
x vertices and an arbitraty number n of x vertices in Table 5.1, where, along with the

definitions in Equations 5.45 and 5.46, IV 122 and I®?) are defined as

d?v V(v —V,q —q)V(V—V q—qs)
2.1 . *\ YV y Yo * B> B
I )(pmp&q) = / 2y (p? — @ +ic — v?) ) (5.50)
d?v; d?v V(V — Vg, (. —q)V(VQ—V q—qs)
722 o :/ 1 2 Vx\V1 2, 4o * B> B 551
(2, Vg1 4) (2m)2 (2m)? (pf — a2 + i€ — v})(Pf — ¢ +ie —13) o2

~

1 / d2V1d2V2d2V3V*(V1 — V2, G0 — q)Vi(Va — V3,4 — q3)
2m)8 ) (F — @@ +ic —v}) (P} — ¢* +ie — v3)(pf — qf +ie —v3)

(5.52)

1(273) (Q(;w qs, Q) = (

The first four types of diagrams are given in the first four rows of Table 5.1. These
diagrams cannot grow factorially in n, since the integrands of the ¢ integral are n
independent. This implies we can safely ignore them at large n and so we will not
consider them further. We are interested in the four remaining types that are given
in the last four rows in Table 5.1. They contain an integral over g of an integrand
containing (log %)” and can lead to factorial growth in n. Indeed the diagrams in the
fifth row are the ones we worked out in an example in the previous section confirming

this factorial growth.

First let us point out that the loop integrals in Table 5.1 containing the logarithms
is over ¢, the momentum associated to the z-direction. Now observe that if we would
choose the potential V, to be independent of this direction, so that V. x d(q), then
this loop integral, via (5.45, 5.46), would become trivial and no factorial growth is
generated. This shows that although the renormalization of the 2D ¢ potential V, is
crucial, so is the coupling to an additional potential that depends on a 3*¢ direction. It
appears to be the analog in one-particle mechanics of the need for more than 2 particles
to generate renormalons in a multi-particle scattering setup, which is due to particle

number conservation in QM (as opposed to QFT).
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To understand if factorial growth does in fact appear one needs to be more precise
about the non-logarithmic parts of the integrands. These are formed by products of
the first order integrals (5.45, 5.46) which are in term determined through V. Possible
factorial growth for large n originates in the momentum regions where the logarithm is
large, either ¢* & p? or ¢> > p. As we show in Appendix B there is no net contribution
from the first region while the contribution of the second region is fully determined by
the large momentum behaviour of the non-logarithmic part of the integrand:

[ St -~ 2 (2] - (5.53)

0 2T (dma)™ \ p

when for large |g| the function f(q) decays as

f(@) ~ lg|*"(log ¢*). (5.54)

The upshot is that the presence of renormalons is a feature of the large |gs| behaviour
of the integrals (5.45, 5.46) which in turn is fully determined by the large |¢| behaviour
of the potential ‘Zk(v, q). For this reason we expect the presence of renormalons to be
a robust feature, not at all specific to the concrete example (5.32) that we will analyze
in detail below. Indeed, if one would slightly change (5.32) in a way that that the
second o-function in (5.35) is replaced by another function, say a Gaussian, that is
peaked around |¢| ~ |v| then this will not drastically change the large |¢| behaviour
of the integrals (5.45, 5.46) and one would expect renormalons to remain present.
Understanding the precise mathematical conditions on V*(V, q) for which a non-zero,
non-cancelling set of renormalons appears would be interesting, but we leave it for

future work.
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5.4.3. Concrete Example

Let us now specialize to the specific example (5.32), for which we computed the

expressions (5.47, 5.48). Their large |¢| decay is given by

1Y (p,, qs) = — cos b q[f + O(qﬁ_?’) (5.55)

cosf _ T —3
109(go, ) = = 0> (log f — 4w l(p? — ¢2) + log cos? «9) +O(q5°). (5.56)

Note that in the second line we also included a first subleading term as this will come
to play a role. Using these formulas and (5.53, 5.54) it is straightforward to compute
the growth of the 4 relevant diagrams in Table 5.1:

*— ok — ... — Kk — %

~Cp(n=1)! (1+0(n™) , C, = 2cos Ok 2 <6i7r) (5.57)
Xk ok L — ok —k

N—— \q_,_/

~ —Cpl(v)* ! <(n —a)! — (67 1(vf) + glog cos>0)(n —a — 1)!) (1+0(n™))

(5.58)

~ —C, l(v?) ((n —a)! — (67 1(v7) + glog cos>0)(n —a — 1)!) (1+0(n™)

(5.59)

~ Co L) (W) (n—a—b+ 1)l — (67 1(v]) + 67 L(v]) + 3log cos® ) (n — a — b)!
3 3
+ (67 I(vf) + 5 log cos® 0) (6 [(v?) + 3 logcos®f)(n—a—b—1)1) (1+O(n™)).
(5.60)
The common factor (1 +O(n1)) is due to 1/n corrections to (5.53), but these will be

irrelevant when we sum the 4 types of diagrams and keep only the leading contribution.

We already presented (5.57) in (5.38) but now have all other contributions listed as
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well. This allows us to finally analyze the growth of 7% (p, p;) oc A"«? by summing
the contributions from the various diagrams. The leading growth goes like (n — 1)!,
we get contributions from (5.57), (5.58, 5.59) with a = 1 and (5.60) with a = b = 1,
but in such a way that their sum cancels! So instead we should look for growth of
order (n — 2)!. There are contributions from (5.58, 5.59) with a = 2 and (5.60) with
a=2,b=1and a =1,b= 2, but also from the subleading terms in (5.58, 5.59) with
a =1 and (5.60) with @ = b = 1. Again their sum vanishes. Without being discouraged
we investigate growth of the form (n — 3)!. Now there are quite a few contributions:
(5.58, 5.59) with @ = 3 and (5.60) witha=3,0=1,a=1,b=3 and a = 2,b = 2, the
subleading term of (5.58, 5.59) with @ = 2 and (5.60) witha =2,b=1anda = 1,b=2
and also the subsubleading term of (5.60) with @ = b = 1. When we sum them again

various cancellations happen but finally a non-zero contribution remains. The result is

3

)\ n
7 (pg, pi) ~ g(cosé log cos® 0)*k*u~ 2 (6_> (n—3)L (5.61)

™

This formula for the asymptotic growth of the on-shell T-matrix of the model (5.31)
is the key technical result of this paper. It establishes that non-relativistic 1-particle
QM can exhibit a renormalon divergence in its perturbative series. In our derivation
we saw that the (n — 1)! growth of (5.38) gets cancelled against diagrams with similar
growth. As we remarked earlier this is as expected since (5.38) doesn’t vanish at § = 0
while the total result should, due to factorization and obvious absence of divergence
at this value. Now observe that indeed the total result (5.61) vanishes at 6 = 0, thus

passing an important consistency check.
5.4.4. Borel Summation: Ambiguity and Resolution
The factorial growth (5.61), which for positive A is non sign-oscillating, leads to

a pole on the positive real axis of the Borel plane leading to an ambiguity in the Borel

summation of 7?), the on-shell T-matrix at all order in A and second order in x. Then,
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the ambiguity due to (5.61) is

) 2
amb 7% (py, p;) = $%(COSH log cos® 0)2 k% 2¢™ % (i> (5.62)

A\ 2
= F2mi(cos f log cos? 0)2/@'2/\% (4—) ) (5.63)

7

Given this ambiguity of the Borel summation procedure one needs to identify a physical

principle to either decide the sign or cancel this extra imaginary part.

To (re-)introduce this principle, let us revisit the terms that lead to the growth
(5.61). Let us collect those diagrams in Table 5.1 with integration of the m’th power
of the logarithm. We can write their sum as follows

o0

73 (pg, ps) = /

2 2

A @ =p\"
dq f(g; ;s pr. pi) (Elog . f) : (5.64)

o0

As we argued above such an integral grows like (m — 3)!. Instead of performing the
integrals and then summing over m we could consider first summing and then integrat-

ing:

%(2)(pf,pi)=/ dq fla: AP i) (5.65)

- PN P 4
> 4m log 1%

The divergence of the series of 72 is now reflected in the divergence of the above

integral. To make this a bit more explicit let us rewrite the integral above as

#O) (g, pi) = * dE  2f(\/E+p; N pr,pi)
e VE TP 1— 2 logZ ’

where fo(¢) = 3(f(q)+f(—¢)). The divergence is then due to the simple pole at E = A

(5.66)

and so can be avoided by moving it slightly below or above the real axis:

O (o0 ) = © dE  2f(\/E+pi X pe i) (5.67)
SOoR) S VErR - RlogEE |

Of course this also introduces an ambiguity, which, as we’ll now discuss, is the same

as the ambiguity of the Borel summation. Apart from regularizing the integral as a

principal value the ie prescription in (5.67) also introduces an extra positive/negative
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imaginary part proportional to half the residue at £ = A. This leads to

VA + D}

In the limit A — 0" the renormalization invariant scale grows large, A — oo, and the

amb 7 (pg, p;) = F2miA

ambiguity (5.68) is fully determined by the large ¢, small A behaviour of f.(¢; \; p, pi)-
Using (5.55, 5.56) and accounting for various cancellations, identical to those observed
previously, the result is

-2

K
Fe(a X P pi) ~ o (cos §log cos® 0)” ¢~ (log ¢%) 2. (5.69)

Combining this expression with (5.68) reproduces the Borel ambiguity (5.63) and shows
explicitly that Borel summation with a prescription for the contour is in this case

equivalent to a momentum integral with e prescription.

The key point is that the 7e regularization introduced above is really that of
Feynman. The physical choice, which corresponds to the correct choice of ingoing-
outgoing scattering boundary conditions, is p? + i€ in the propagator and translates to
—ie in (5.67), since E = ¢* — p?. Although we reintroduced i in (5.67) it was in some
sense always there, in that if we would have kept the z¢ of our original Feynman rules
(5.4) it would have appeared just like in (5.67) with the minus choice. Although at a
given order it might have seemed to be perfectly valid to take the limit ¢ — 0 since
this provided a sensible finite answer, we now see that this is more subtle and actually
causes the renormalon pole to be on the positive real axis. In other words this limit

does not commute with summation of the series:
i [ dg S anla. 00 # 3t [ dgan(a N (5.70)

The left hand side provides a finite answer while the right hand side is a factorially
diverging series. Omne can equivalently recover the finite answer on the left from the
diverging series on the right by Borel summation, where the prescription in the Borel

plane corresponding to the physical choice —ie in (5.67) is to integrate along a contour
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that deforms the real axis below the renormalon pole, selecting the + sign in (5.63).

This observation indicates that renormalons of the perturbative on-shell T-matrix
lead to an extra imaginary non-perturbative contribution to this on-shell T-matrix, that
will not get canceled by additional non-perturbative corrections, but whose presence
on the contrary is required by causality, i.e. outgoing waves only after scattering. In
the next section we will recalculate 7 (pg, p;), exact and fully non-perturbatively in
A. As we will see this reproduces the results discussed here and also highlights more

directly the role of the ie prescription.

5.5. Rederivation Using Exact Green’s Operator

In this section we will recompute 7)(p¢, pi), the part of the on-shell T-matrix
quadratic in x, but now using operator formalism to do this exactly in A\. We first
shortly review the relation between the operator formalism and the Born series in the
standard perturbative setting and then point out how this can be easily adapted to
find a series for the S-matrix which is perturbative in x but exact in A\. The key step
is replacing the free Green’s operator by the Green’s operator of the 2D § potential,

which can be computed exactly.

5.5.1. Operator Formalism and the Born Series

We start by reminding the reader of the relation between the on-shell T-matrix

7 and the off-shell T-operator T [42]:

(P, i) = (Pe|T(PF + i€)[ps).- (5.71)

The off-shell T-operator, defined for an arbitrary complex number z not on the positive
real axis, is in turn determined in terms of the Green’s operator/resolvent G(z) and

the potential V = H — p*:

T(2) =V+VGENV . Glz)=(2—H)™ (5.72)
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To connect to the standard perturbative Born series, used in the previous sections, one
first rewrites the Green’s function for the interacting Hamiltonian in terms of that of

the free Hamiltonian:
G(2) = (1 — Go(2)V) Gy , Go=(z—pH 1. (5.73)

It follows that T(z) = V(1—Gg(2)V) . Inserting this expression in (5.71) and expanding
the inverse as a geometric series then yields the Born-series:

o0

(b i) = S (pelV (Gow? +i0)V)" [p). (5.74)

n=0
5.5.2. Operator Formalism and the \-Exact Series

Let us now consider our model (5.31), where V = V, + V,. Note that in this
section, for notational simplicity, we absorb in this subsection the coupling constants
Ao and k into V, and V, respectively. Because we know the exact Green’s operator G,
of the 2D ¢ Hamiltonian, see below, we might consider expressing the Green’s function

of the total Hamiltonian in terms of G, and V, rather than Gy and V:
G(z)=(1- G*(z)V*)_lG* , Gi(2) = (2 — p? — V*)_l. (5.75)

The expression for the T-operator obtained by inserting this formula in the definition
(5.72) is a bit more involved:
T(2) =Tu(2) + Vo(1 — G (2)V,) 4+ Vo (1 — G (2)V.) 1 GL(2)V,
+ (1= V.G (2)) VLG, (2)V, + Vo (1 — G.(2)V)1GL(2)VLGL VL, (5.76)

where T,(z) is the off-shell T-operator of the 2D ¢ potential. As before we can now

expand the inverses as geometric series, with the important and crucial difference that
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now this will give an expansion only in V,, i.e. s, while being exact in A. The result is

T(2) =Tu(2) + Vo D (Gu(2)Va)" + Vo Y (Gil(2)V.)"

Ly (V*G*(z))”V*+V*i(G*(z)V*)”G*(z)V*. (5.77)

n
The above might be more clear when expressed in diagrammatic language. Apart from
T, there is a contribution from each diagram made out of an arbitrary number of vertices
connected by propagators ~ representing G,, with each vertex being a *, except the

first or last vertex, which can also be . One has the following set of diagrams:

ko~ X ko~vok LY X

N NE TRV WV (5.78)

We stress again that this is a calculation perturbative in £ while being exact in A. By
further expanding G, in terms of V, and G one recovers the double expansion of the

previous sections. The expansion of G, has the diagramatic form
~ = — + — % — + — % — %k — ‘I— e . (579)
The above, computed via the renormalized Feynmann rules (5.4, 5.17), is a series that

converges to

(27)%6%(p1 — P2) Lo a1 — q2)

(PGPl = ERFaeRrE:

)T*(Z — @), (5.80)

where we refer to (5.21) for the definition of 7,. That this is indeed the exact Greens
function of the 2D 6 model can be checked by comparing to results obtained through

the non-perturbative definition of that model through self-adjoint extension.

We have now collected all ingredients to work out an alternative perturbation

theory in x, which is exact in A. It consists of the diagrams (5.78) with the Feynmann
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rules:

~

* 27?)\5(%_1 — qk) s * 0 /{V*(pk_l — pk) (581)
S G2+ i 5.82
~ o W<pk—l| «(pF +i€)|Pr)- (5.82)

Using the above rules one readily computes the four diagrams of order x*:

dq « -
Kk = /— (I (pr, pi, ) + IV (pr ) IV (pi, q) 7 (7 — ¢° + i) -

2T
dg

*N*N*:T*(u?‘>/2 (I(2’2)<qf7pi7Q)
™

+10D (g, ) T (pi, @) T (pF — ¢ + iE))-

dg r
kAU ok Aok = T*(U,?) / %(I(QQ)(Qiapf?(I)

H102(q, )10 (pr, g)ri (0 — o +ic) ).
dg
* Ak AUk~ ok = T*(u?)T*(U?) / %<[(2’3)(Qfa %, q)
+1M (g, ) 10 (q, 55 2) 7 (pF — ¢° + Z'E))

Let us now focus on the parts of the above result containing an integral over 7,. Col-

lecting the four contributions we can write them as

) > A
7@ (pr, p1) =/ dq f(g; /\7pf7pi)1 = (5.83)

This reproduces (5.65, 5.67) and confirms the resolution of the summation ambiguity by
the ie prescription discussed there, making it fully transparent via (5.71) and (5.82).
Additionally it shows that there are no further non-perturbative effects that could

cancel the extra imaginary contribution the e prescription introduces.
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6. CONCLUSION

In this thesis, we investigated how both perturbative and non-perturbative physi-
cal information arises from the sing8ularities of integrals. Upon a technical introduction
that we presented in Chapter 2 on how the singularity on coupling plane plays a role in
the perturbative and non-perturbative sectors of a quantum theory and the intimate
connection between them, which is the subject of resurgence theory, in three separate
chapters, which constitutes the main part of the thesis, we presented three different

examples that previously published in [26-28].

First two of these examples [26, 27|, which are the contents of Chapters 3 and
4, are centered around the spectral problem and its application to the semi-classical
expansion and the pair-production problem. In both cases, focusing on the quantum
action, we showed that the physical information, which is perturbative in the previous
one and non-perturbative in the latter one, can be obtained from the singularities of
the integrals that represent the action. In this way, in Chapter 3, focusing on the
perturbative sector, we provide a generalization of the WKB related methods, which
was discussed in Chapter 2.3.2, to arbitrary dimensions. In addition to that in Chapter
3, we complement the perturbative expansion discussion in Chapter 4, by obtaining

the non-perturbative pair-production probabilities.

The ie prescription provided us a guideline for handling the singularities and in
this way, in Chapter 4, we have been able to obtain the pair production probability
without any Borel-like ambiguity. We presented this resolution both using perturbative
expansions and their summations via the recursion relation that presented in Chapter
3 and using Lefschetz thimbles associated to the exact leading order approximation in

the derivative expansion.

In Chapter 5, on the other hand, we focused on a scattering problem in 3 dimen-

sions centered around 2D J-potential. We showed that the perturbative expansion of
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the S-matrix of this non-relativistic model has renormalon divergences that leads to
a non-perturbative contribution to the full S-matrix. We also showed that this diver-
gence is, in fact, associated to a singularity on the momentum space, and again using
the ie prescription, it is possible to obtain the non-perturbative information without

any ambiguity.
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APPENDIX A: NOTATIONS AND CONVENTIONS

Our conventions for the Fourier transform in D dimensions are the followings

(x|p) = ™" (x|x) = 6" (x — X)), (A1)
e—ix-p/h
(plx) = ozl (plp") = (2xh)76” (p — p'). (A.2)

Then, the identity operator is

D dPp
1= [ d7z[x)(x[= W|p><p|' (A.3)
and trace of an operator is
D d"p
TrO = [ d7z (x|0]x) = @rh)D (p|O|p). (A.4)

In Chapter 5, we set h = 2m = 1 which implies that only the length dimension remains

and some objects appearing in this chapter have the following dimensions:

M =N=1 . W=L" . [=[2=L" (A.5)
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APPENDIX B: ASYMPTOTICS OF A KEY
RENORMALON INTEGRAL

In this appendix, we will discuss the integral appears in the renormalon discussion

in Chapter 5. The following content is identical to Appendix B of [28].

For large n there is the following asymptotic formula
[e'e) n n a
I [ d0s(o) Qogle? - ) +0)" ~ e () (B
o p
where the parameters p and o are determined by the large |g| behaviour of f, gy a
positive constant and a a complex number. More precisely the formula above is valid

when f decays for large |q| as

fl@) ~ lal=*" (log ¢*)" . (B.2)

Let us sketch how this formula is derived and why only the large |g| region contributes

while the contributions around ¢* ~ ¢ cancel.

One starts by rewriting the integral as an integral over the even part of f and
splitting it over the regions [0, qo], [q0. vV200], [V240, 00]. In the first two regions one
changes integration variables as ¢ = go\/1 + et while in the third region ¢ = gov/1 + €,
so that [ = I; + I, + I3 with

I = —/ dte g(t)(@a—t)" a=a+logq, (B.3)
0

—im

I = /Ooo dt et g(#) (G — )"

I3 = /OO dt e h(t) (@ +t)" . h(t) = D/e

where fo = 3(f(q) + f(—q)) is the even part of f. Each of these integrals will at large

n be dominated by the large ¢ region. Note that the first two integrals are very similar,

except that the first is over a complex contour parallel to the real axis. Although



125

each of this integrals grows like n! these contributions cancel each other. One way to
see this is that both integrals together are equal to a closed contour integral — up to
two vertical pieces which can be estimated not to grow factorially — and the resulting

residue contributions will only grow only with a powerlaw in n.

This leaves us with the third contribution, using the assumed decay (B.2) for f

one reproduces (B.1) by standard saddle point evaluation:

I3 ~ qo_Qp/ dt e P17 (a 4+ )" ~ ePt p~ 1+ D (E> n!. (B.6)



126

APPENDIX C: NUMERICAL RESULTS

Here, we present the results for several anharmonic oscillators in one, two and
three dimensions. The computations are done by the implementation of the recursive
formula in (4.28) to Mathematica. The results for one dimension match exactly with
the ones in the literature [49,51,68] and for two and three dimension, to our knowl-
edge, these results appeared for the first time in [26] and this appendix is identical to

Appendix C of that paper.
C.1. Cubic Oscillator:
We consider V (x) = X; + A\ %2

e 1 Dimension:

15u?\? n 1155u3 A n 255255u*\° n 66927861u’\®
4 16 128 1024
A7 1365ult | 285285u%X\0 121246125u3)®

Alg(u) =u+

ATy (1) = 2

2(u) 16 + 6 + 57 + 5018

AT () = 119110A° | 156165009u)® | 67931778915u’ A"
AT 9048 16384 65536 '

e 2 Dimensions:

2
ATy (u) = % + 20BN + 30utA + 67205 N6 + 18480u0N°,

1 u)? 1120u3 )\
ADy(u) = == + UT 100N + % + 15400u*\®.
1A 92u\S
AT 4(u) = o5+ g‘ + 32400 \® + 265408u A0 + 19347328u* A2,

e 3 Dimensions:

ud  35uA? 3003uPAt 46189uSA® 26558675u" A

Al =5+ =g+ 730 " 256 | o

Aly(u) = — = — 5u’A? N (TN N 36465u*\6 N 37182145u°\8
s 9 128 1024 24576

ATy (u) = 23690 2869u)'  265551u\° N 30808063u3>\8.
80640 5120 28672 294912
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C.2. Quartic Oscillator:

We consider V(x) = £ + \(x?)2.

e 1 Dimension:

B 3ul\  35uA? B 1155u*A®  45045u°\* B 969969u’\°

ATy (u) =
o(w) =u———+— 6 T 64 128
3\ 85u)?  2625u2M\3 165165uSAY 10465455ui)\5
AFQ (LL) = ——: ‘I‘ - + — .
8 16 32 128 512
ATy () — 19953 N 400785u\!  26249223u’\° N 141971129303\
T 956 1024 2048 4096
e 2 Dimensions:
2 43N\ 179208\
ATy(u) = % - u3 + 8u*A? — 64u’\® + 79+
1 2u\ 3200303 4480ui)\!
ATy (u) = —— — 22 2)2 _ .
o (u) B 5 + Su“A 3 + 5
4X2 275203 17536uAt 19251203\
ATy(u) = —=— — + b .
9 105 21 9

e 3 Dimensions:

wd o Buth 63uPA? 1001uwSN? 36465u"\?

A= s e 32 18
ATy(w) = % S2A | 455027 8085utAT | A35435u°)¢
8 16 96 128 13
AT, () = 29 523u)’  6TAT9uINY | T501923u’)!
4480 T 1280 2560 10240

C.3. Quintic Oscillator:

We consider V(x) = x; + Ay (x%)? .



e 1 Dimension:

ATy(u)
AT'5(u)

ATy (u)

e 2 Dimensions:

128
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2
ATy(u) = % + 8uA? + 1440uP\* + 465920u' ' \® 4 198451200u*\®.
1 3)\2 1793792002 \6
AT5(u) = - 561; 1 9408ub )\t + % 142137804801 2\,
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ATy(u) = —22 4 20704u>t + - ~ 4 - v
e 3 Dimensions:
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