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ABSTRACT

CONSERVED CHARGES IN VARIOUS THEORIES OF GRAVITY

Ozsahin, Hikmet
Ph.D., Department of Physics

Supervisor: Prof. Dr. Bayram Tekin

SEPTEMBER 2022, pages

The first law of black hole thermodynamics in the presence of a cosmological constant
A can be generalized by introducing a term containing the variation dA. Similar to
other terms in the first law, which are variations of some conserved charges like mass,
entropy, angular momentum, electric charge etc and it has been shown in [1] that the
new term has the same structure: A is a conserved charge associated with a gauge
symmetry. In this work, first we propose and prove the generalized Smarr relation
in this new paradigm. Then, we reproduce systematically the “effective volume"
of a black hole which has been introduced before in the literature as the conjugate
of pressure. Our construction removes the ambiguity in the definition of volume.
Finally, we apply and investigate this formulation of “A as a charge" on a number of
solutions to different models of gravity for different spacetime dimensions. Specially,
we investigate the applicability and validity of the analysis for black branes, whose

enclosed volume is not well-defined in principle

Keywords: Black Holes, thermodynamics of black holes, covariant phase space for-

malism, Wald entropy



0z

CESITLI KUTLECEKIM TEORILERINDE KORUNUMLU YUKLER

C)Z§ahin, Hikmet
Doktora, Fizik Bolimii

Tez Yoneticisi: Prof. Dr. Bayram Tekin

Eyliil 2022 ,[102] sayfa

Kara delik termodinamiginin birinci yasasi, kozmolojik sabit A’nin mevcut oldugu
durumlarda yeni bir 6 A terimi ile genellestirilebilir. [1]]’de gosterildigi tizere kara de-
lik termodinamiginin birinci yasasindaki bu yeni terim, diger terimlerde oldugu gibi
korunumlu bir yiikiin varyasyonu seklinde yazilir. Bu formulasyonda A ayar simet-
rilerine karsilik gelen korunumlu yiik iken, birinci yasadaki rolii elektrik kuvvetiyle
benzerdir. Bu calismada, oncelikle genellestirilmis Smarr esitligini ispatladik ve lita-
ratiirde daha dnceden tanimlanmis olan "efektif hacim"i yeniden ¢ikardik. Bu sekilde
yapildiginda hacimin tanimindaki belirsizliklerden kurtuldugunu gosterdik. Son ola-
rak, kozmolojik sabiti korunumlu yiik olarak tanimlayan bu formulasyonu cesitli kiit-

lecekim teorilerinin ¢oziimlerine uyguladik.

Anahtar Kelimeler: Karadelikler, karadelik termodinamigi, kovaryant faz uzay1 for-

malizmi, Wald entropisi
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CHAPTER 1

INTRODUCTION

Einstein introduced the cosmological constant A in order to explain, within General
Relativity, the "apparent” staticity nature of the universe [2]. But, after the discovery
of the expansion of the universe in the late 1920s, the idea of a static universe was
essentially put to rest together with the cosmological constant by the majority of the
researchers in the field. However, in a rather ironic piece of scientific history, A has
taken center stage in cosmology since the discovery of accelerating expansion of the
universe [3, 4] and the AdS/CFT correspondence [5, [7]. In the Einstein’s method
of introducing cosmological constant, A is considered as a constant parameter in the
Lagrangian, i.e. as a part of the definition of the theory. Mathematically, denoting the
Lagrangian by £, A is incorporated in the Lagrangian via the shift £ — £— # where
G is the Newton constant. Alternatively, in a less known route, one can introduce a
new gauge field in the Lagrangian [ [9] in which makes A to be a free parameter
in the solution. This approach was introduced in early 80s, and was studied in more
details in a series of papers by M. Henneaux and C. Teitelboim [10, [11} 12, [14] who
studied Hamiltonian dynamics of this new gauge field and identified its canonical
variables (canonical field and its momentum conjugate), and constants of integration.
Continuing this research-line, it is shown that not only A is a constant of integration
in the solution, but also (its square-root) is a conserved charge (denoted by (') associ-
ated with the global part of the gauge symmetry of this gauge field [1]]. In addition, its
conjugate chemical potential associated with a black hole horizon (denoted by O)
was introduced for the first time. This formulation brings a new perspective to A: it
becomes a conserved charge as a property of the solution; and can naturally contribute
to the first law of black hole thermodynamics just like other conserved charges. This

can also be considered as a continuation of the seminal work by R.M. Wald [15} 16]



who recognized the entropy in the black hole thermodynamics is a conserved charge.
Consequently, this approach resolves some conceptual, physical and mathematical
issues in regard to the generalization of first law with variation of cosmological con-
stant and the issues with the Smarr formula. We will come back and summarize these

issues later in this section.

For the sake of completeness, in what follows, we briefly review the “A as a conserved
charge" approach [1]. We shall use the following conventions: [yt . . . i1,] Will be
used to denote anti-symmetrization over the set of indices within the bracket normal-
ized by the factor o The exterior derivative of a p-form a = am ppdTPY N NdxPP

is defined as

da = (p+1) Oy, apy. ) ™ A -+ A da?ot

Considering a gravitational theory described by a Lagrangian £ without cosmological
constant in D dimensional spacetime, the action and gravitational equation of motion

can be represented as

= /dD:c\/—_g,C, E,.. Sv=9L) _ 0, (1.1)

ogHv

in which d¢g"” is variations of the inverse metric. In order to introduce a cosmological
constant, one can add a gauge field Lagrangian (a term similar to the electromagnetic

Lagrangian) to the gravity sector as

1 2 D 2
£—>£¢87TGF = /d T/ — <£¢8GF> (1.2)

A F

2 _
where F' LoD

= 5 Fri-vp [ is a top-form (i.e. having D antisymmetric in-

dices), and is the field strength of a gauge field F' = dA, i.e.

1

ﬁqu-MD = a[mAmmuD]‘ (1.3)

We note that the new term in the Lagrangian (1.2) is quite similar to Maxwell La-
grangian, and the only difference is that A and F" have D — 1 and D indices (instead
of 1 and 2 indices) respectively. In general, the top-form F' can be an arbitrary scalar
function times the volume form, i.e. F),, ., = ¢(z*)\/—g€pu,..up» With the conven-

tion €91 p—1 = +1 for the Levi-Civita tensor density. In another words, the most

generic F'is Hodge dual to a scalar field ¢. Variation of the action ((1.2)) with respect

2



to g,,, and [",one finds the following two field equations:

+1 (D —1)!
By = s (B B 07 = 2 =2 P, ), 1.4
W 8aG(D — DI\ een 2 e (14
vV FrrzeEb — ), (1.5)
The latter equation is easy to solve, and the result is
FMl---MD =V =9Cu..up (1.6)

for a constant c. We assume 0 < ¢ for later convenience; and ¢ should not be confused
with the speed of light which is set to 1. It is easy to see why is the generic
solution for the equation of motion (1.3)), because in terms of the Hodge dual field
(), (1.5) is simply dp(z*) = 0 which admits ¢(z#) = ¢ = constant as its most

generic solution.

The solution can be put in the field equation in order to reproduce the

standard field equation with a cosmological constant,

1
E,, +——=Ag, =0, A=+ 1.7
wt T6nG 9 ¢ (1.7)
To derive the above equation, the identities €, ,, €"**P = —D!and €, ,,€,* P =

—(D — 1)!g,, have been used, in which P~ =

—1. This procedure of introduc-
ing A as a parameter of the solution (instead of a constant in the Lagrangian) can be

applied in any gravity theory, i.e. it is independent of the £ in the analysis above.

In a U(1) gauge theory with the gauge symmetry A, — A, + 0, \(z*), the conserved
charge (such as the electric charge) is associated with the global part of the symmetry

d,A = 0. Similarly, the Lagrangian (I.2)) has a gauge symmetry
Aﬂlm#D—l - AlilmﬂDfl + 8[#1)‘/@---#1)71}' (1.8)
It was shown in [1] that the conserved charge of the global part of this symmetry

Oy A\ys..pp_1) = 0, which we denote it as C, is equal to

Al

C:iélﬁG'

(1.9

The signs correspond to those in the Lagrangian (I.2)), and are associated with de

Sitter (upper sign which here is plus) and Anti de Sitter (lower sign which here is

3



minus) sectors. These =+ signs (upper/lower signs) and their correspondence with the
dS and AdS sectors will continue to be valid in the rest of this work. We shall call the
conserved charge as cosmological charge in order to distinguish C' from A (which is
called cosmological constant). Moreover, we shall call the cosmological gauge field

and the cosmological field strength for A, and F),, ,, respectively.

e BD—1

Identification of C' as the cosmological charge turns out to be very useful in the black
hole thermodynamics. The first law of thermodynamics for an electrically charged
black hole in asymptotic flat spacetimes reads as M = 1,05 + ,0J + ©,0Q [18]],
where (M, S, J, () are mass/energy, entropy, angular momentum and electric charge
of the black hole respectively. All of these quantities, whose variations appear in the
first law, are conserved charges associated with a symmetry. In addition, these quan-
tities are all extensive thermodynamic quantities. On the other hand, (7, Q,,, ®,,) are
the temperature, angular velocity and the electric potential of the black hole all of
which can be calculated using the metric on the black hole horizon, hence the sub-
script H. These quantities are all intensive quantities. Let us note that the electric
potential is defined with &, = (¢, A) = &, - A calculated on the horizon, in which
&, 1s horizon-generating null Killing vector field and A is the electromagnetic gauge

field A,,.

According to the analysis above, C' is a new conserved charge for black hole solutions
in asymptotically (A)dS spacetimes, which naturally should appear in the first law in
equal footing with the other charges. This generalization has been elaborated in [1]]

and the modified first law reads
OM =T,05+Q,0J + ®,0Q +0,0C, (1.10)
with
0, = ng A, (1.11)
H
where A is the cosmological gauge field A,, ,, ,, and the integration is taken over
the horizon which is a codimension 2 null hypersurface. In (I.11]) one has (£ -
A)

electric potential ®; which was given above. So, it is appropriate to use the name

pipins = EnAum . up - This definition was inspired by the definition of the

cosmological potential for ©,,.

The new term ©,0C in the first law resolves some issues related to the volume-

4



pressure term V' 0 P which has been used before in the literature [[12, [14](review [19])).

Let us elaborate on this.

e O, is a property of the event horizon similar to the other horizon parameters
(T, 82, ®,), in contrast with the volume V' which conceptually cannot be a
property of the horizon, if it is considered to be some volume inside the black

hole.

e )C is variation of a charge which is a parameter in the solution similar to
(M, S, J,Q), and in contrast with 6 P which has been considered to be pro-

portional to §A, i.e. variation of a parameter in Lagrangian.

e O, and (' are intensive and extensive quantities respectively, and they are on
the same foot as other terms in the first law. This is in contrast with V') P where

V and P are extensive and intensive respectively.

e Noting the order of intensive and extensive quantities in © z0C, the M in the
first law (I.10) would be the energy/mass, in agreement with being conserved
charge associated with time translation. This resolves the problem of promoting
M to be enthalpy [23, 20] (as a result of the inverse order of extensive/intensiv-
ity of V9 P) which is inconsistent with M as the conserved charge of the time

translation symmetry.

e The conceptual problem with the negative pressure for de-Sitter spacetime is re-
solved, because the charge C', which is conceptually and mathematically similar

to the electric charge, can be positive or negative.

The layout of this thesis is as follows: In the first two chapter we discuss the covariant
phase space formalism and the black hole thermodynamics. These chapters will serve
as a background information on what follows. In the following chapters, we continue
analysis in [1] in three aspects: Firstly, we revisit Smarr formula in the presence of
the cosmological charge C'. Secondly, we show that the definition of ©,, in (I.TT]) re-
produces successfully an ad-hoc (but successful) volume term introduced in Ref.[23]]
called effective volume. And finally, we fix a freedom/ambiguity in the definition of
effective volume in the literature, which will be discussed in details, by fixing the

gauge freedom in the cosmological gauge field A such that mass and other charge

5



variations are reproduces correctly when the solution is perturbed by A — A + JA.
The rest of the paper is devoted to case study of different black hole solutions in dif-
ferent dimensions and theories. Using examples, we examine the reliability of the
©,0C" as a universal generalization of the first law. Besides, we enhance all black

hole solutions by finding the cosmological gauge field A, for them, and pre-

< D—1
senting complete solutions as a reference for the interested readers. We will also see
that studying these examples sheds light on the universality of the Smarr formula for

all D > 3 dimensions.



CHAPTER 2

COVARIANT PHASE SPACE FORMALISM

2.1 Symplectic Structure

In this chapter, an overview of the symplectic structure in the Hamiltonian formula-
tion will be given. We first investigate the symplectic structure in the particle me-
chanics and define basic concepts. Definitions of Symplectic manifold and how it is
related to the phase space of mechanical systems will be studied and properties of

symplectic form will be studied.

2.1.1 The Symplectic Manifold

Definition: Let M/ be a manifold of dimension 2n, with n > 1. A symplectic struc-

ture on M can be defined by giving a closed and non-degenerate 2-form w € Ay(M)

dw =0 (closed),

VE#0,36:w(e,n) #0 (non-degenerate).

The manifold M endowed with this symplectic structure (M, w) is called a symplec-

tic manifold.

The symplectic structure defined in this way has its use in both finding the Hamilto-

nian vector flow (which we will define momentarily) and providing a natural choice

1 This section is based on [80], and we claim no novelty.
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for the volume element in the symplectic manifold. If one considers n times the exte-
rior product of the two-form w, the object obtained this way can provide a 2n- form

on M,thatisw Aw---=w"

Let’s us recall the definition of the cotangent bundle [[76] on the manifold as

"M = | ] T; M,
zeM

where 17 M denotes the cotangent space at point . The contangent bundle con-

structed this way is a differential manifold of dimension 2n.

Elements of 7" M are one-forms on 7. M, the tangent space at the point . If we
choose ¢ = (¢1, ¢2, --, ¢ to be the local coordinate of the configuration manifold M,
then the n components of a such one-form can be given with respect to this choice
of coordinates p = (p1,po, ..., pn). Recalling that 7*M is a cotangent bundle, 2n

coordinates (p, ¢) provides a local coordinate system for this manifold.

An example of the symplectic structure can be given, following the discussion above,

by considering the vector space R?" with coordinates (p;, ¢;)

N
w = dei A dg;.

i=1

It is clear that this two-form is both closed and non-degenerate.

The cotangent bundle 7" M defined above is naturally endowed with a symplectic

structure. In local coordinates, it is given by

w = dj A dqg, 2.1)

=dp; Ndq, + ...+ dp, N\ dqg,. (2.2)

To show this, one needs to observe that on 7™M, one can always take a one-form of

the following:



Then defining the symplectic structure as w = df2 guarantees that w is closed and

non-degenerate.

Let us consider (M, w) which is assumed to be a connected manifold. The dimension
of this manifold is 2n. Any point of M has an open neignorhood which is the domain
of a chart whose local coordinates, denoted as (p1,p2, ..., Pn, ¢n) are such that the

form w has the expression

w=Y dp Adg, (2.3)

=1

such a chart is called canonical or Darboux.From this one can infer that in the neigh-
borhood of each point, the symplectic manifold is isomorphic to a cotangent bundle
and two symplectic manifolds of the same dimension are locally isomorphic to each

other.

We have defined the symplectic manifold and the symplectic structure. From the
above discussion, we can see that the cotangent bundle provides a natural setting for
a system evolving along its position and momenta. In order to understand how these

change, however, we will need the generator of these "evolutions’.

Collection of all possible positions, or configurations, constitute the configuration
space which is a manifold called the configuration manifold.

A trajectory t on this manifold can be defined as a function ¢t : R — M. At each
point z on ¢, velocity is an element of the 7, M, the tangent space to M at z. In the
local coordinates, velocity can be expanded in the basis (%, %, S %) The mo-

mentum, however, is a function of velocity, so it is an element of the cotangent space.

Just as the metric on a spacetime manifold provides an isomorphism between tangent
vectors and one-forms, the symplectic structure w also provides a similar isomor-

phism. For each tangent vector £ of a symplectic manifold (M, w ) at point x, there is

9



an associated one-form wg on 1'M,,, which is giving by the formula

we(n) = w(n,§) (2.4)

For any n € T,M. In other words, just as one can use the metric tensor to raise
and lower spacetime indices, the symplectic structure can be used to raise and lower

indices in the phase space manifold as well.

We denote the isomorphism provided by the symplectic structure as I : T°M —
T.M. Now, let us consider a differentiable function H : M — R, a one-form dH
on M can be obtained and we can find the associated tangent vector at every point
using the isometry provided by the symplectic structure. Since w is non-degenerate,

the vector field defined in this way is unique.

I(dH) = Xy. (2.5)

The vector field I(dH ) is called a Hamiltonian vector field,  is called a Hamiltonian
function. If we wanted to find the H in terms of Xy, and w, we integrate from ¢t = (

tot = 1.

dH(tz)r = w? (Xy(tz), ),

from this, we obtain the following

H(z) — H(0) = /01 w (Xy(tx), x) dt. (2.6)

Having defined both the Hamiltonian vector field and symplectic structure, we now
turn our attention to the effect of transformations of these Hamiltonian vector fields.
Consider a symplectic manifold (M, w) and a function H : M — R. The vector field

I(dH) = X4 corresponding to H gives a group of diffeomorphisms:

10



g M — M,

d

a “z) = Xu (¢'(2)),

go = ZdM

The group ¢' is called the Hamiltonian phase flow of the Hamiltonian function H.
The generator of this group, the Hamiltonian vector X, is tangent to the curve g* at

every point. One can write the group element in terms of the generator as

gt = et¥H, (2.7)

A Hamiltonian phase flow preserves the symplectic structure.
*
(') w=w,

where (g')" denotes the pullback of w under the action of the group element g‘. This

means that the w is independent of the group parameter t.

d t\* 2 d

P wp=—w" =0.

)=

This result is a generic case of the Liouville theorem which states that, in the phase
manifold, Hamiltonian flow preserves the volume. Here we can see how this works.
We note again that w is invariant under the action of the group. So using the sym-

plectic structure, one can construct the invariant volume element by taking n exterior

multiplication of w. In order to show this, we start by the following definition:

Definition: A differential form w of degree £ is called invariant under the action of

the group g if the integrals of w on any k-chain and on its image by ¢ are the same.

[ [

The two-form w? giving the symplectic structure is an integral invariant of a Hamil-

fom fre-[o

11

tonian phase flow gt.



By the same token, one can show that exterior power of w, (cu)2 = w A w etc, are
also integral invariants of the Hamiltonian phase flow. Therefore, one can obtain an

invariant volume form on M by taking the n'* exterior power of w.

2.2 Covariant Form of the Symplectic Structure

After finishing the summary of the phase space and its symplectic structure in parti-
cle mechanics, we can now turn our attention to the covariant phase space method.
One might notice that our treatment in the previous section is not covariant. Indeed,

looking at the Hamilton’s equations of motion

.  OH
q —a—paa
N |
pai_aqa7

one can see that split of coordinates into momentum and spatial coordinates, and
choosing a time frame on the phase space breaks the covariance of the theory. So
reformulation the phase space and its symplectic structure in such a way that no men-
tion of having a preferred time frame or split of the coordinates is desired. Another
aspect of the treatment we gave in the previous section is that it deals with a system
with many-particles. Meaning that this naive formulation would not explain the ge-
ometry of the field theories. Hence, our task in this section is to discuss and construct

the covariant symplectic geometry for field theories.

On the face value, promoting the naively constructed phase space formulation for the
field theories seems trivial. Fields are considered as a continuum limit for many-
particle systems and the value of each field of a given position is interpreted as the
density of particles at that point. So the field theory generalization seems to be a
simple procedure where one takes everything to field limit. However, looking at the
underlying mathematical structures, one sees that this is not a trivial job. For example,

a trajectory ¢ : R — M for a particle takes a single parameter and maps out position

12



on the configuration manifold M. A field, however, takes the spacetime points as

parameters and its output is field values on C. [

So how one can generalize the phase space method in this desired way while retaining
the manifest covariance? The answer to this is to re-interpret the phase space in
the following way [70]: Phase space of a dynamical system is the set of solutions
to the equations of motion. While traditional definition sees the phase space as a
set of initial conditions (gps and pgs) on a given time slice, this new definition does
not mention nor require any chosen time. For the initial value problem, these two
definitions of the phase space are in one-to-one correspondence. One thing to note is
that this construction suffers when the theory possesses local continuous symmetries.
For the current discussion, however, we will assume no such symmetry is present and

postpone the discussion about gauge degrees of freedom until section

After having laid down the basic groundwork, we are now in a position to make the

discussion more concrete. Starting with the following action

5= /M L) + /8 160 2.8)

Where L is a top-from obtained from the Lagrangian density as L. = %L. ¢ denotes all
the dynamical fields whose variations are of interest, while x denotes the rest of the
non-dynamical parts. A boundary term [, which is a (d — 1)-form over the boundary
O0M, is included for generality. By saying L or [ is a form, we note that they transform
as differential forms under the diffeomorphisms which act on both the dynamical and

non-dynamical fields.

The basic principle of the Lagrangian formalism is that the action defined in (2.8])
must be stationary for a set of field configurations ¢, under arbitrary variations. In
addition to this, one must make the variation principle well defined, so the appropiate

boundary conditions are required.

Boundary of the spacetime manifold M can be decomposed as OM = X U where
Y.+ are the temporal boundaries while I' denotes the spatial boundary. We note that

the boundary conditions on >, and I" have different meanings, in which the former

2 For example C' = R for a real scalar theory

13



determines a state or solution within the theory while the latter is a part of the defi-
nition of the theory. Therefore, imposing boundary conditions on >, would be too
much of a restriction while on I' one needs boundary conditions to specify the theory.
Therefore, the action must be stationary up to boundary conditions at future and past

boundaries >...

S :/ Y — . (2.9)
Yy Y

Where 9 is a local function of field variables ¢ and y at >1. This is also a good place
to define the configuration space C, which is a set of dynamical field configurations
that obey the boundary conditions at I', but not necessarily the equations of motion.
The configuration space C is the domain in which the variational principle works, and

where the path integral quantization of fields takes place.

Considering the variation of the Lagrangian in (2.8), one can always put it in the

following form

5L = E,6¢" + dO©. (2.10)

Where ¢ is the variation of the dynamical field in C, © is a local functional of fields
and their derivatives, and field variations d¢. The index a runs over the dynamical
fields ¢°. The boundary term d© is a (d — 1) form over the spacetime and it is the

symplectic potential. Then, the variation of (2.8)) becomes,

652/ E 00" + {©+ 4}, (2.11)
M oM
where the use of Stokes’ theorem on the second term is understood. For this to obey

the (2.9), we see that the field configurations inside M/ must obey the equations of

motion

E,=0. (2.12)



Also, for the variation to be stationary up to boundary terms at >, the second term
in the equation (2.11) must only have a contribution from X .. It seems that requiring
the term © + 6/ to vanish at I' might be necessary for this, but it turns out that this
requirement is too strong to begin with. From (2.10) we see that the boundary term
©(¢, d¢) has an ambiguity up to a total differential term in which we can redefine as
© — O + dY. Hence given this freedom of shift in O, it is more natural to require

that the second term of (2.11)) be equal to a total derivative at I

(© + ) = dC, (2.13)

where C' is the d — 2 form constructed from both dynamical and background fields,
their variations and derivatives. It is also clear that C' has the same shift ambiguity as

©. Having found the suitable boundary conditions, we put (2.13)) use in 2.11)).

68 = / E,0¢° +/ (©+6l) + /(@ + 0l) (2.14)
M Y4 r

:/ Ea6¢a+/ CEXNE: C. (2.15)
M pONT or

Although C' is defined on the spatial boundary I', we can arbitrarily extend it into >

since only the values of C' on 9%, contribute. Hence, we can put the action variation

into the form of (2.10)

0S = / E,0¢" + / (© 46l —dC), (2.16)
M pIEN

where £, = 0 and ) = © 4 0l — dC' is understood.

At this point we have a well defined action principle with the stated suitable boundary
conditions. In order to switch to the Hamilton formalism and the symplectic struc-
ture, we now need to define the phase space without breaking the covariance. In
accordance with our previous discussion, we define the phase space P to be the set

of field configurations ¢ that satisfy the equations of motion. We note that by this
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definition, phase space P is a sub-space of the configuration space C and therefore

has no reference to preferred time slice.

In defining the symplectic form, it will be very useful to first note that there is a
convenient change of notation which allows us to re-interpret quantities like © and C
as one-forms on C. The idea is that we view quantities like d¢ not like as infinitesimal
transformations, but as like coordinate differentials on C. With this new interpretation
at hand, ¢ denotes the exterior derivative for differential forms defined over C. The

action of §¢(x) on a vector field is given as

56°() < [t o) %) = f(6,0). 2.17)

With this construction at hand, we are now ready to define the pre-symplectic current

as the pullback of 41 to P

W= 0|y = 6(0 —dC)|, . (2.18)

Where we used 62 = 0 to eliminate the §/ term. w is bi-closed, meaning that it is
closed both on P and on the spacetime manifold M. The former property is self-
evident from the definition of w as the variation of © on P. For the latter, it is easy to

show

dw = d{5(© — dC)}
= 6dO
=6 (6L — E,60%)
= —6E, AS¢" =0, (2.19)

where we used the fact that the exterior derivatives d and § commute and /L =

E,6¢* + dO. In the last line, £, = 0 since w is defined on P in which the equations
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of motion are satisfied. We can finally define the symplectic form over P

Q= / w, (2.20)
>

where 3 is a Cauchy surface of M. From (2.18]) one can show that {2 defined this
way is independent of choice of the Cauchy surface. To show this, we consider the

difference of two symplectic form, evaluated over two different Cauchy surfaces

AQ = / w.
ol 34

To show this, consider a volume of spacetime M bounded by 0M = X U X UT. By

the Stokes’ theorem

/ w:/ dw—/w. (2.21)
0% M r

The first integral is zero by (2.19) and the second integral vanishes since w vanishes

on I by definition (2.13).

We have now finished the basic definitions of the covariant phase space method. This
formalism is rather useful when the theory in consideration possesses invariance un-
der some continuous group of diffeomorphisms. Let us then consider a variation of a

general tensor field under some diffeomorphism generated by the vector field £

Sed = Leo, (2.22)

09" (x) = Lx, 0" (x) = X¢ - 60" (). (2.23)
More generally, infinitesimal diffeomorphisms of any tensor defined on the configu-

ration space is given by

6T = LT (224)
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where in contrast with the notation defined earlier, the vector field X, on configuration

space can be written as

o
dp*

Xe = / Az Le¢"(z) (2.25)
We are now ready to introduce covariant tensors as follows: Consider a tensor 7'(¢, &),
defined on the configuration space C and constucted out of dynamical and non-dynamical

fields. This is said to be covariant under the action of diffeomorphism generated by

the vector field & if

0T = LT, (2.26)

where the Lie derivative L, is performed over the spacetime and needs to be dis-
tinguished from the configuration-space Lie derivative Ly,. The action of the two
operations are different in the sense that £, implements diffeomorphisms on dynami-
cal and non-dynamical fields while the configuration-space version do the same only
on the dynamical fields.This distinction is important since the symmetry variations
are only allowed to act upon dynamical fields. So an arbitrary tensor 7" constructed
out of both dynamical and non-dynamical field must have the correct transformation

rule for it to be covariant.

There are couple of ways for a generic tensor, which is constructed out of dynamical
and non-dynamical fields ¢ and x, T'(¢, x) to be covariant under the diffeomorphism
generated by the vector field &: The simplest way for this to happen is all the non-
dynamical fields x“ to be individually invariant under the said diffeomorphisms. In

the mathematical form, this corresponds to the following

Lex* =0, (2.27)

where index a runs over all the non-dynamical fields. Another example of covariance
is the case in which the Lagrangian or the tensor, here 7'(¢, x) in this discussion, is

trivially independent of such non-dynamical fields. A detailed example of this case
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will be shown in section (2.2.2.2). More generally, it will be enough for T'(¢, x) to

be invariant if the combination of y“s that appear in 7'(¢, x) is invariant under &.

Now, let’s consider the variation of the action (2.8) under an infinitesimal diffeomor-

phism generated by &

5552/ 5§L+/ 5l
M oM

_ / (€L +5l), (2.28)
oM

where and the Cartan’s formula £¢L = & - dL + d(§ - L) and the fact that L is
a top-form is used. Covariance requirement of the Lagrangian dictates that variation
be invariant up to a boundary term at >,.. But this is not sufficient for the
diffeomorphism generated by the £ to be a symmetry of the theory. The variation

must also respect the boundary conditions, especially at the spatial boundary I':

8¢S :/E (€ L+ 0el) + /F (E.L+6¢l). (2.29)

The first integral is the allowed contribution at the temporal boundaries >, while the
second integral must vanish if £ is to be a symmetry generator. So we first require that
the normal component of £ be vanish at I'. This ensures that the term & - L vanishes.
We also require [ to be covariant under £ so that at I no contributions present and
boundary rules of the variation are respected. With these constraints imposed, the

variation (2.29)) is stationary up to a boundary term at >, just as discussed before.

We are now ready to finally construct the Hamiltonian /¢ which is the generator of the
flow in the phase space that corresponds to the diffeomorphism symmetry generated

by £. We begin by finding a function H on the phase space that satisfies

§He = —X. - Q. (2.30)
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We note that since €2 is non-degenerate we can write

Xe(f) =07 (6f,0He), (2.31)

where f is a function over the phase space P. Note that this the Hamiltonian equation.
We now need to compute the right-hand side of the Eq. (2.30), but before that if will

be useful to define the Noether current

The Noether current J¢ is a closed (d — 1) form over the spacetime if the Lagrangian

L is covariant under &

dJe = d{X: - ©—¢-L} .

Using (2.10), invariance of L and the Cartan’s formula

dJe = X - (6L — E,6¢°) — LeL

= X¢ 0L — Ll +¢-dL
— 0. (2.33)

We are now ready to compute the right hand side of (2.30)
ng:Xg(S(@—dC)
= X¢-{© —diéC}. (2.34)

Using the Cartan’s formula Lx,© = X - 60 + 6 (X¢ - 0) on P in the first term
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Xg'wzﬁXE@—5(X€'@) —d{Xg(SC}
=Lx,0—-6(Xe-0)—d{Lx.C—-0(X:-O)}. (2.35)

Where we again made use of the Cartan’s formula on M. Using the covariance of ©
and substituting (2.32))

Xe-w=1LO—6J—0(EL)—d{Lx,C—0(Xe-O)}
=& di+d(§-0)—6Je —&- 0L —d{Lx.C —6(Xe-C)}

=—0J; —d{Lx.C—6(Xc-C)—¢-0}, (2.36)
where we yet again used the Cartan’s formula on M and made use of the fact that on
‘P equations of motion are satisfied, i.e £, = 0. We are beginning to see that the right

hand side can be put into the form of variation ¢ of something. Let us continue with

the computation and use (2.20)

—X5~Q:/5J5+ [ €04 Lx.C—8(Xc O))
> oz
:/5J€+ (—€-04€-dC +d(E-C) — Xe - 8C)
> ox

_6/J§+ (€ (dC = ©) — X, - 5C}
b ox

:5{/2J5+/82(§~Z—X§-O)}, (2.37)

where we used the covariance of C' on I', Cartan’s formula on M and (© + 6l)|, =

dC'. Hence, finally we obtain the Hamiltonian in term of the Noether charge with an
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additional boundary term

ng/Jﬁ/ (E-1—Xe-C). (2.38)
% ox

2.2.1 Gauge Degrees of Freedom

Phase space constructed in section makes use of the one-to-one correspondence
betwen solutions to the equations of motion and the initial values of a physical system.
In the case of gauge freedom, this correspondence breaks down since the phase space
will be degenerate, in the sense that there will be more than a single field configuration
that correspond to the same physical state. Assuming field configurations ¢ and ¢’
describe the same physical state, a vector field V' spanning between these two point
in the phase space is said to be a degeneracy direction. Then the Hamiltonian flow

generated by this vector will be unphysical in the following sense

V-Q=0. (2.39)

Therefore we see that when there are gauge degrees of freedom, the phase space and
the symplectic manifold have degeneracy. We will refer this initial construction as

the pre-phase space P and every object defined on this space will be denoted by a hat.

Solution to this degeneracy problem comes from the observation that the "zero modes"
of (2, i.e vectors V' € TP that satisfy form a Lie algebra which generates a
group of unphsyical degrees of freedom. If X and Y are vectors fields which are
annihilated by ), then their commutator [X,Y] = £ X}Af will also be a zero-mode of

-~

Q;

o
<)
=D
I
IS
>
=
=
|
=D
o
>
)

(2.40)

Hence zero modes of vector fields of () will form a Lie algebra.Then, the physical
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phase space P can be obtained by taking the quotient of this group of zero-modes

from the pre-phase space P

P="P/G. (2.41)

Thus the action of group of gauge symmetries G leaves no trace in the actual phase
space P. The work is not done, as we also need a symplectic form €). In order to
do this, we proceed as follows: Let 7 : P — Pbea map that sends all points ¢ in
P to its é orbit. Let us consider a point p in P and vectors X, Y € T"P. Then we
can always find a point ¢ in P and a pair of vectors X and Y such that X and Y are

pushforwards of XandY by the map 7. Hence we can define

QX,Y) = QX,Y). (2.42)

For (2.42) to be the true symplectic form, it must be both independent of the choice
of vectors X , Y and non-degenerate. We can prove the former by considering two
vectors X and X' which map to the same vector X in 7"P. Then, from these
two vectors X and X' are connected along the degeneracy direction by another vector

Z, which is annihilated by Q. Thus, this ambiguity has no imprint on the actual

symplectic form (2.42).

For the non-degeneracy of the symplectic form, let us assume that for some p in P,
there exists a vector X # 0 for which X - 2 = 0. Then X must be a pushforward of
avector X € TP by the map 7 and by we have X - Q). We can then extent X
to a vector field that is annihilated by Q. The pushforward of this vector field by the
map 7 must vanish which contradicts our initial assumption. So the symplectic form

is non-degenerate.
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2.2.2 Examples
2.2.2.1 Maxwell Theory

The first example is the Maxwell theory in which the theory has unphysical degrees of
freedom. Here quotient from pre-phase to phase space is non-trivial. The Lagrangian

of the Maxwell theory, written in the differential form language is

1
L = —§F A *xF, (2.43)

where F' is the field strength tensor defined as F' = dA and A is the one-form poten-
tial. Taking the variation of (2.43)

L = —%(5{F A *xF'}

= —6ANd* F —d(§AN%F), (2.44)

Here the first term is the obvious equations of motion, while the second term is the

boundary term in (2.11) with [ = 0. Hence, we have

© = —5A A «F. (2.45)

Recalling the stationarity requirement (2.13)), it is obvious that fixing the value of the
one-form potential A at the boundary I' with C' = 0 would be sufficient. Then, the

symplectic potential and the pre-symplectic form will be as follows

w =00
= SA N *OF, (2.46)
and,
Q= / (8A N *0F). (2.47)
b
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This pre-symplectic form constructed in this way would have zero modes because
of the degrees of freedom the theory possesses. In order to find the quotient, we
need to find the vector field X, which generates the flows corresponding to gauge

transformations.

X, = / d*z (9,)) 5%, (2.48)
1L

and

XA-Q:/E(d)\A*éF)
:/Ed()\/\*cSF)

= / AN #0F, (2.49)
()

where we used dF’ = 0 in the second line. The boundary condition we imposed, i.e
A is constant at I', dictates that d)\ be zero at . Therefore A must be a constant on I".
Since *F' is allowed to vary on I', X, will be a zero mode of Qif and only if )\ is zero
on I'. Therefore, in order to construct the true phase space, we must only quotient

those gauge transformations which vanish at the spatial boundary I'.

2.2.2.2 Gravity

For the next example, we now consider the General Relativity with the following

action

S:/L+/l
M oM

1
167G

1
R —2A —_— K 2.50
/M( Jenr + $7G Jos €oM (2.50)
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here R is the scalar curvature, A is the cosmological constant, K is trace of the ex-

trinsic curvature and e is the volume form. Using §,/—g = %\ /—9g""dg,., variations

of volume forms can be written as

1
den = 5g“”égw,eM,

1
deanr = §’Yﬂv<59uv€aM-

The other relevant variations are [[77]

1 v
5FZ@’ - 59# {va(sgﬁu s Vﬁagau - Vu(;gaﬁ} ,
SR = —R"38g,, + V'V 69, — VAV 9" 69,

1
0 = 51" (52 =) 09ap.

(2.51)

1 1 1 1
0K = —§K’“’(5gw, -+ ig“”n)‘vxégw - 577“V5(59a5 — §Du (YN 0gua) ,

(2.52)

where D, is the covariant derivative defined on the hypersurface M. With these, the

action variation can be put into the following form:

L = E™§g,, + d6,

where F, and O are as follows

1 1
E, = — w_ ZRo" — Ag™ \ B
= T 160G {R 519 g } M
and,
O =0-ey, 0" = L { 9"V 3g0r — ™"V 0905}
) 16’]'('G oV o )
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with the choice of orientation of the hypersurface OM as €); = n A €gps We can write

© on the hypersurface:

®|1" =0- €M
= 10" eanr. (2.56)
Similarly, for the boundary term [
5l = 5 (Kepnr} 2.57)
811G com '

B 1
T 16nG

6l {(EA" — K") 89, + (9*" VA = 1°V"?) §gas

—Dy (v""11%0gva) } €0 (2.58)

Using (2.58) and (2.56)), we compute (2.13)) as follows:

1

Ol + dl T

{TIQVVngau - gaﬁnuvuégaﬁ - (K’V'LW - K'W) 6g;w

—i—go‘ﬁn)‘v)\égag — navﬁégaﬁ -D, (5“”n0‘(5gm)} €oM

= ny RV 2N o , 25
e Y™ = K7) 890+ Dy (710000 ot (2:59)
which can be written as
1
= _—— = (KM _ K~Mv y , 2.60
Olp 48l = — = ( ) eoridgu + dC (2.60)

where

C=c-eyy, ' =— H'n%0 e (2.61)

167rG,y
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For (2.60) to satify (2.13), the first term must vanish at the spatial boundary I"

(K" — Ky") 09y |p = 0. (2.62)

Then, according to this analyses we have two options: one would be fixing the value
of g,, at I'. This corresponds to requiring the tangential components of the metric

variation be zero

V256 gas) = 0. (2.63)

We make note of the (2.63) only restricts the tangential components of the metric
variation, while boundary term C' in (2.61)) contains variation of the metric with mixed
components. Hence we have non zero C' term. With the choice of (2.63) as a boundary

condition, let us now find the Hamiltonian H,. We begin by computing each term
appearing in (2.38)

Using the results of [79], J¢ is a closed form and hence can be written as J; = dQ)s,

where

1
Qe = — 16:C * dE, (2.64)

here ¢ is a one-form over spacetime and « is the Hodge duality operator. In component

form,

1
*d€ = Eeia(dg)l“’

—mqw)\g (v,ué-u — V”f") . (265)

Using yet again €y, = 1 A 7 A €gpr, One has

1

Q.= - 167G

{r°0® — 7P} Vaseon. (2.66)
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Next, for the term X - C, we note that the dot - here indicates the inner product in the
phase space P, in contrast with the usual meaning of the term in which it indicates

the contraction with the spacetime index. Using (2.61) and egns = —7 A €9y

C=c-(—TNegx)

= —c'T eom

1
= 167TG7“”n°‘Tueag5gm. (2.67)

As per our earlier discussion, the vector field generator of diffeomorphisms X,

Xe = Leg, (2.68)

or in component form:

&Zngﬂ (2.69)
nv

then we finally have

) 1

= 167TG/V n T/A‘Cﬁguaeaﬂ

1
= 16nC (TFn” + 7"n") eanV 1€, (2.70)

And for the last term, one would obtain

1

f = —%KfuTuﬁaz. (271)

Collecting all these we obtain,
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He =

1

B 167G oy

1

1
&G ox

{=7¢"Vans + £ 7K} con.

He =

1
8rGG oy

TO(SB {—Kaﬁ + ’-)/a,BK} 662‘
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CHAPTER 3

BLACK HOLE THERMODYNAMICS

The aim of this chapter is to provide a brief, yet comprehensive overview of the
thermodynamics of black holes. At a first glance, thermodynamics and black hole
mechanics seem to be two subjects that have no particular connection between them.
Thermodynamics is a field of study that describes thermal systems in terms of their
macroscopic properties and investigates how these thermal systems undergo changes
accordingly. The laws of thermodynamics describes the state of such systems in

equilibrium.

The zeroth law of thermodynamics defines a state function called temperature 6 and
proposes a transitivity property between thermal systems which are in thermal con-
tact. If A and B are two thermal systems which are in thermal equilibrium with a third
system (), then this law states that both system A and B are in thermal equilibrium as

well.

The first law of thermodynamics is energy conservation law which describes how the
energy of a system is allowed to change. The change in the energy of the system can
be attributed to different ways of transfer such as heat transfer, thermodynamic work
or matter transfer. In general, for an infinitesimal change in the energy of the system

we have

dE = dW +dQ, (3.1

where dV is the work done on the system while d() denotes the heat transfer into the

system.
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The second law of thermodynamics defines the entropy (5) of a system and dictates

the change in the entropy and in turn, direction of heat transfer in various cases.

dQ = Tds. 3.2)

And finally, the third law of thermodynamics states that the entropy of an isolated sys-
tem at equilibrium tends to a constant value as the temperature approaches to absolute

Z€ro.

With this brief reminder, we note that thermodynamic laws are observations rather
than mathematical proofs or derivations from more simple principles. When we talk
about thermodynamics of a system, we often think of the temperature, volume, pres-
sure or various other internal and external properties of the system, which emerge

from the collective motion of its constituents.

Then how, can we apply these laws to the mechanics of black holes or other objects
that appear in the study of gravitation? Indeed, the laws of thermodynamics sum-
marized above consider the thermal system in a fixed spacetime whereas it becomes

much more complex if one takes gravity into account.

In this chapter, we review generalized laws of thermodynamics for Black Holes. We
begin by briefly summarizing black hole solutions and investigate their properties
such as Killing horizons, and some important theorems like no-hair theorem, which

will become important in our understanding of the Black Hole Thermodynamics.

3.1 Review of Black Holes

We begin reviewing black holes by considering the simplest black hole solution,
which is namely the Schwarzschild solution. The metric of the Schwarzschild so-

lution of General Relativity without the cosmological constant is

ds* = —f(r)dt* + f(r)"'dr* 4 r*d$?, (3.3)

where (2 is the line element of 2-Sphere and
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f<r):(1—¥>.

We immediately note that » = 2M is a singularity where the metric blows up. How-

ever, this is only a coordinate singularity and can be removed by the choice of appro-

priate coordinates.

Let us, for the purpose of this discussion, adopt the Kruskal-Szekeres coordinates [6].

Defining

u:t+r*7

V=1— T,

r, 18 the so-called tortoise coordinate defined as

r dr
7‘*:7“+2M1n<m—1>, dr, = )

The Kruskal-Szekeres coordinates then are defined as follows:

The metric can be then be written as

32M3
r

ds? = — eTPMAUAV + r2dQ,,

with,

2M

—2M
UV:—GT*/QM,OTUV:—(—T )eT/QM.

33

3.4)

(3.5)

(3.6)

(3.7)

(3.8)



(3.7)) is the Schwarzschild metric written in the Kruskal-Szekeres coordinates (U, V, 0, ¢).
The coordinate singularity at » = 2M corresponds to UV = 0 and we see that the
metric is no longer singular at » = 2)/. The singularity at 7 = 0, on the other hand
corresponds to UV = 1, which is still a singularity even in these coordinates. One
important property of these coordinates is that they are maximal, in other words all

the geodesics can be extended to infinity or end at the curvature singularity at » = 0.

The black hole solutions are characterized by their one important property which we
will discuss. A black hole is a localized region of spacetime from which nothing can
escape. This implies the notion of a boundary which acts like a one-way membrane,
allowing anything from the exterior of the black hole to pass though but not vice
versa. This boundary, the horizon as it is generally called, must be a hypersurface in
the spacetime. Then the question of what kind of hypersurface would the black hole

horizon be arises. It turns out that the black hole horizon must be a null hypersurface.

Let us then discuss the geometries of null hypersurfaces. We begin by defining the
null hypersurfaces as follows: Let S(x) be a smooth function of space time coordi-
nates x*. Then, S(x) =constant defines a family of hypersurfaces. We then define

the following vector fields

L= f(@)g" By (3.9)

oz

where f(x) is an arbitrary function [22]. Vector fields [ will be, by construction,
normal to the hypersurface. If, for any given hypersurface AN the vector [ satisfies
[2 = 0 then the hypersurface N is said to be a null hypersurface. Null hypersurfaces
have the strange property that their normal vectors are also tangent to the hypersurface
as well. Consider a vector ¢ tangent to N\, which is to say that ¢ - [ = 0 is true. Since
[2 = 0 by definition, meaning that [ is also the tangent vector for the null hypersurface

and can be written as

dz*
_ 3.10
d\’ ( )

[H

where z#(\) is an arbitrary null curve in A/. Curves z#(\) are said to be the genera-

tors of null hypersurface /. In our example of Schwarzschild metric (3.7)), the null
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hypersurface is the defined by U = constant and its normal vector (3.9) becomes

0
o Vv .
l—ﬂﬂg(@U%V,
3203 G,
= f(z) (—TeT/2M> PR (3.11)
At the event horizon r = 2M:

fe 0

"= ~Torav (3.12)

and choosing the function f(z) = —32M?3c™!, we get
[ = —. 3.13
Bl (3.13)

Here V is the affine parameter of the generator of this null hypersurface. We also note

that it easy to see that at the horizon, [2 = 0 as expected.

A special type of null hypersurfaces, which are called Killing horizons will be special
interest of us; If £ is Killing vector which is normal to the null hypersurface NV, then
the null hypersurface is said to be a Killing Horizon [22]. Vectors normal to the null

hypersurfaces satisfy the geodesics equation

[-DI* =0, (3.14)

where D is the covariant derivative defined on the hypersurface and affine parametriza-

tion is assumed. If V' is a Killing horizon we can write in general

§=fl, (3.15)

where f is an arbitrary function of spacetime coordinates. Substituting this into (3.14])
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§-DE"+&-(fof ) =0,
¢ DEr = ket (3.16)

where we identified x = & - dlnf. This is the geodesic equation for the Killing
vector field £ and is true over the entire horizon N. The quantity  is called surface
gravity and has a physical meaning that it is the gravitational acceleration, observed
by an observer at infinity, which is required to hold a particle at the horizon. Surface
gravity has also the property of being constant on the orbits of £&. To show this, we

make use of the following identity

K2 = —%(D%”)(Dygy). (3.17)

Then, we look at the change of x? along the direction of &

¢ Dr* = — (D"¢") €\ DAD,&, |,
= — (D"€") €°€” Ryvap
_o, (3.18)

where in the last line we used 1,3 = —I?,,,3.. Hence we see that x does not change
along the orbits generated by the Killing vector £&. Now let us consider an orbit of £ on
which the surface gravity « is non-zero. This orbit covers only a part of the generators

of A/. We can see this by choosing a coordinate system on which we have

£= (3.19)

In other words, the group parameter « coincides with one of the coordinates. In terms

of the affine parameter \

i

5_%@'

(3.20)
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By comparing with (3.15), identify

d\
f %7
d
[ =—. 3.21
™ (3.21)
Surface gravity in this context is
0
=—I 22
h= ol f], (3.22)
then we have
dz—A = /QQ (3.23)
do?  do’ '
and,
d\
— = foe", (3.24)
da

with the ambiguity in the choice of origin in o, we can set the f, = £x. Then finally

we have

dA\
— = £kre™, \ = £e". (3.25)
do

As it is evident from (3.23)), specific orbit of £ does not cover the generators of A/. As
a varies from —oo to oo, it covers either of two regions A < 0 or A > (. The point

where A\ = 0 corresponds to a special region of spacetime called bifurcation 2-sphere.

After this brief review of the horizon geometry, we can apply the results we have
summarized to the example of (3.7)). In the Kruskal-Szekeres coordinates, the Killing

horizon is the union of the two hypersurfaces U = 0and V' =0

N ={U=0}u{V =0} (3.26)
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Since the (3.7) is a static solution, the Killing vector on the horizon corresponds to

one which generates time translations. To find the form of Killing vector, we consider

t — t+a where a is a constant. Under the infinitesimal version of this transformation,

Kruskal-Szekeres coordinates (3.6) transform as

r 1/2 Ee(r+t)/4M €
0 = (o) P ey <y
U IM AM v 4MU
r 1/2 ee(rft)/le —€
v = — (s o) e Ly
! IM AM v 4MV

The Killing vector which generates these transformations

1 0 0
52@@%”%)'

Again, by comparing with (3.15)), we identify

VvV o0
V=0 = "nrav

U 0
V=080= o

The surface gravity

Klu—o = £ Ovin| f],
K,|V:0 = £U8Uln\f\

Thus we find

1

flo=o = =3
1

flv=o = a1
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(3.28)

(3.29)

(3.30)

(3.31)



And we obtain 2 = 1/(4M)? which is indeed constant.

This concludes the brief discussion of the horizon properties of black holes. We see
that the black holes possess a closed region of spacetime called horizons from which
nothing can escape. On horizons, the surface gravity is constant for a stationary black

hole. This gives us the first clue about the thermodynamical properties of black holes.

3.2 Thermodynamics of Black Holes

Properties of a classical black hole have similarities to thermodynamics. The horizon
radius of a black hole is proportional to the mass of the black hole. The Schwarzschild

solution, for example has the radius r;; = 2M. The horizon area then

A =167 M? (3.32)

For matter falling into the horizon of a black hole, nothing can escape from it and
consequently the mass of the black hole must only increase. Then, by (3.32) horizon
area of a black hole must be a non-decreasing quantity. This property suggests that

black holes can have a notion of entropy.

Existence of an entropy like quantity is not the only similarity between black hole
mechanics and thermodynamics. Indeed, there exists a theorem, called no-hair theo-
rem, stating that stationary black holes can be described only by few parameters such
as mass or angular momenta. This is again in contrast with the thermodynamics of a

system which describes it by its macroscopic quantities.

3.2.1 The Zeroth Law

We saw in section [3.1] that the surface gravity  is constant over the horizon for a
stationary black hole. A thermal system in equilibrium also possesses constant tem-
perature everywhere. The surface gravity x can then be thought of a temperature
parameter of the black hole in equilibrium. Also, both temperature and ~ are non-

negative parameters. Hence, we can consider the surface gravity defined over the
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horizon as a temperature. Therefore, the zeroth law of black hole thermodynamics

can be stated as follows:

The Zeroth Law: The surface gravity « is a constant over the horizon of stationary

black holes [[18]].

3.2.2 The First Law

We already see that the mass of a black hole is proportional to its horizon area. Rela-
tion (3.32)) indicates that if a black hole with mass M were to be perturbed and settles
into another black hole with mass M + §M, the horizon area must also change in
proportion to the mass. i,e 0M = JA. Then we expect the first law of black hole

thermodynamics to tell us how changes in the parameters of the black hole happens.

To obtain a general relation, consider a stationary black hole with mass M and angular

momentum J. By the no-hair theorem [[17]], we have

M = M(A,J). (3.33)

Both A and J have dimensions of M? so M (A, J) must be a homogeneous function

of degree 1/2. By the Euler’s theorem

1 oM oM
M =A57 T %r

— DAt (3.34)
81

where we used the Smarr relation [21] in the second line. Thus, we have

oM kK oM

Since A and J are free parameters of the black hole, we identify
oMk OM

A " sm oy (330
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Then, the general form of the first law can be written as:
AM = 8idA +QpdJ. (3.37)
T

3.2.3 The Second Law

We have stated the zeroth and first laws of black hole thermodynamics, but the treat-
ment given is nothing more than making observations and analogies. We observed
the similarities between thermodynamics and black hole mechanics to establish these
but one must be careful to take these proposed laws to literal meaning. Indeed, we
immediately encounter problems if we consider black holes as thermal systems. For
one, black holes must have thermal radiation if black holes really possess tempera-
ture. But this contradicts the notion of a classical black hole from which nothing can
escape. Problems also arises when we assign the horizon area to the entropy, since
their dimensions don’t match. Entropy is a dimensionless quantity while the horizon

area is not.

Solutions to these problems come through by considering the quantum nature of black
holes. Black holes are not isolated objects and made by the interactions of matter,
and matter obeys quantum mechanics on microscopic scale. These considerations
lead to the celebrated area theorem which states that black holes indeed emit thermal

radiation, whose temperature is given as [S3]]

kgT = —. 3.38

g 2m ( )
In order to derive this we assume a smooth Euclidean spacetime with periodic imagi-
nary time [13]]. Temperature is then defined as the inverse of this periodicity 3. Taking

tgp = it, a generic metric of a stationary black hole becomes

dr?
f(r)

ds% = f(r)dts + + - (3.39)
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Near the Horizon r =~ ry, the metric above can be expanded as

dr?
dSz = f' (ru) (r — ry) dty + (3.40)
E f(H)( H) E f/(TH)(T_TH)
To simplify this, let us introduce a coordinate transform p = 2 (}“,?: If))
fora), \’
ngE:dp2+pzd< . tE) | (3.41)

In this coordinate the metric takes the form of plane in polar coordinates with the

following identification of period

I (;H)tE — o, (3.42)
this leads to
_ Ar [ (rw)
B = —f’ )’ orT = y— (3.43)

substituting £ = £ would yield (3.38).

The relation (3.38) is clearly a quantum effect since temperature is proportional to A.
Using this temperature definition we can find an explicit relation between the entropy

and horizon area. From (3.37))

AM = 244
&

ks
— T2 4A. 3.44
ih (3.44)

Comparing this with dE = T'dS, we identify the entropy of a black hole as

Al A1
S=1— =2 3.45
Ahks A%k (345)

which is the celebrated Hawking-Bekenstein entropy [S3l].
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3.2.4 The Third Law

In contrast with the mechanic counterpart, which states that the entropy of a systems
goes to a constant as the temperature approaches to zero, third law of black hole
thermodynamics [18] states that it is impossible to reduce the surface gravity x to

zero by a finite sequence of operations.
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CHAPTER 4

SMARR FORMULA AND THE EFFECTIVE VOLUME

4.1 Smarr formula in the presence of a cosmological charge

The first law of black hole thermodynamics is a universal constraint between the
variations of conserved charges. It is universal, in the sense that it is independent
of the spacetime dimension, theory and the Lagrangian, asymptotic conditions and
the topology of the black hole. There is another constraint in black hole thermody-
namics, a constraint between conserved charges (not their variations) which is called
the Smarr relation [21]]. This relation is not a universal one. Specially, it explicitly
depends on the dimensions of spacetime. Here, we show that in the presence of a

cosmological charge, this relation becomes

(D —3)M = (D —2)T,S + (D — 2)Q,J + (D — 3)®,Q — 0,C. 4.1)

In order to obtain this relation, we use the "scaling method" which is well-known way
to derive the Smarr formula (see e.g. [22] or [23]]). In this method, M is considered to
be a homogeneous function of other charges (S, J, @, C). Using the Euler theorem,
for a function f(p1,pe,...) homogeneous in the variables (pi,po,...), i.e. for a

constant « one has o” f(p1, p2, ...) = f(a®py,a®p,, ... ), one can show that
of
r el ) = i\ = ) 221,2, 4.2
f(p1,p2s .. .) E q (api)p (4.2)

We can find the degree of homogeneity in M = M (S, J,Q, C) (i.e. the r and g; in the
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above equation) using dimensional analysis. The Newton’s constant is dimensionful
and hence plays a role in the scaling of charges, but as a convenient convention, we
set G = 1 hereafter. By dimensional analysis, M ~ (P73, S ~ [P=2/ J ~ [P72
Q ~ P73, and C' ~ [~! where [ is a length scale. Therefore, after scaling [ — al,

one has

aPPM(S, J,Q,C) = M (o725, 72 J,a”72Q, a7 C) . 4.3)
Using (4.2)) and (@.3), one gets

(D—3)M — (D—2) (%{) S+(D—2) (%—]‘j) J+(D—3) (G—M) 0- (%) c

9Q
(4.4)

Finally, using the first law (I.10), we find the Smarr relation (@.T). Needless to say
that the analysis above is not a rigorous proof but only a heuristic justification. The
Smarr relation may fail in some cases, especially if there are dimensionful quantities
other than the conserved charges, as we shall see in some massive gravity theories

below.

4.2 Reproducing the effective volume

Since the realization of A as a pressure term in the first law, it has been a challenge
how to find its thermodynamic conjugate, a “volume" for a black hole. One way to
circumvent this problem in the literature has been defining the volume by the first law
itself, sometimes called “thermodynamic volume." However, in [23] an ad-hoc but
successful (and, importantly, independent from the first law) definition for a viable
black hole volume, called “the effective volume" was proposed. It is defined at the

horizon by the formula
Vg = j{ *W, V' =&y 4.5
H

Notice that w is defined by the latter equation, i.e. {; = V, w"”, and is ambiguous;
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one can deform it by w — w + w’ with an arbitrary divergence free term: V ,w'*" = 0
(see examples in [24]). { is the Killing vector at the horizon, and the 2-form w,,,, is
called “the Killing potential," and its Hodge dual xw is a (D — 2)-form which appears
in the integrand of (4.5).

Here, we show how the potential © in (1.11)) reproduces the V.4 via the equation

On = £V/[A[Vesr. (4.6)

To this end, we begin from the definition of O in (I.11), denoting the Hodge dual of

the integrand in it by @, i.e.
*w0 = &y - A. 4.7)

By taking an exterior derivative of both sides,

dx@ = d(Ey - A) (4.8)
= Lo, A— &y - dA (4.9)
= &y - dA. (4.10)

In the first equation, we used the Cartan identity Lca = £ - da + d(§ - @) which is
correct for any differential form a and any vector field £. In the second equation, the
isometry/Killing relation £¢, A = 0 was used. Using F' = dA, the on-shell relation
(L.6)), and definition of the Hodge duality, we find from @.10)

d* & = +/JA[(xn). (4.11)

Applying the Hodge duality to both sides, and using the identities (xd x ©)" =
(—=1)PV, 0" and ¥*¢y = (—1)P&y (see (A.19) and (A.29) in the Appendix A of
[25]), then

VoM = /A€y, (4.12)
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Comparing this result with the “Killing potential" £, = V w*” in [23], one finds
G = +/[Aw” = 7{*@ = ++/[A] f{ 0, (4.13)
H H
From this result, and using (I.11)), (4.5)) and (.7)), one arrives at the desired result:

On = £V |A|Vegr.

An astute reader might wonder about the extra factor +4/|A| appearing in the equa-
tion above. This factor is not unexpected because the charge C' and A are quadratically
related in (1.9)), so

+0A

C = . (4.14)
81/ |A|

By the relation % = /P, we realize that 6C = \i/%. So, the extra factor £4/|A| in
Oy = £+/|A|Veg is cancelled with the extra factor L in §C, yielding same final

VAl
result, i.e. ©,0C = V50 P.

4.3 Fixing the gauge freedom

As was mentioned in the previous section, the effective volume has an ambiguity: a

divergence-free 2-form can be added to the Killing potential

W = Wy + W),y V,w™ = 0. (4.15)

Using the @ to relate the equations (4.7)) and (@.13)), it is easy to see that this ambiguity
is related to the gauge freedomin A — A + dA as

W =% <5Hi'fA> . (4.16)

As a result, one can fix )\ in the “charge formulation of A" in order to remove the w’
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ambiguity in the definition effective volume. To this end, we notice that the cosmo-
logical gauge field and its variations appear explicitly in the covariant formulation of
charges (see Appendix [A.I). In order to reproduce the variations of mass, angular
momentum and other conserved charges with respect to dA, the gauge fixing plays an

important role, as we will clarify this issue with different examples.

Summarizing this section, we generalized the Smarr relation to include the contri-
bution from the cosmological conserved charge © ;7 C'. Moreover, it was shown how
©,0C in the cosmological charge formulation reproduces V0 P, while resolving its
conceptual and computational problems, as well as removing its ambiguity by gauge
fixing. In particular, the ©y reproduces the Vg as the potential associated with the
gauge field A on the horizon. In the rest of the paper, we examine the power of this
formulation by studying different examples explicitly. Importantly, we provide the

cosmological gauge field A, and the corresponding black hole cosmological

1---UD—1
potential O, for all of these black hole/brane solutions, and check the first law and

the Smarr relation for all of them.
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CHAPTER 5

EXAMPLES: SOLUTIONS IN 3 DIMENSIONS

We start our analysis of explicit solutions in 3 + 1 dimensions with the simplest ex-
ample, the BTZ black hole [26]. We give the details of the calculations for the BTZ
black hole, but we will only give the results of the computations for other examples

to avoid repetition.

5.1 BTZ black hole in the cosmological Einstein gravity

Theory: Einstein-A theory in 3-dim

1

L=
167

(R —2A). (6.1

Solution: The metric in the coordinates 2 = (t,r, ) is [26]

d?”Q 7,2 j2 ]

2 _ _Aqp2 YT o, 2 — T, J J
ds* = —Adt” + A + r°(dyp — wdt)?, A= m+€2+4r2, W=5 5
(5.2)

-1 ,
where A = R The outer and inner horizons are located at 2r% = (?(m+4/m? — %—z)
The cosmological gauge field for this black hole solution can be found to be (see Ap-
pendix [A] for more details)

2

,
A= ——dt Ndo. 5.3
57 N dp (5.3)

Notice that one can add a term f(m, j, {)dt A dy to A, which clearly does not change
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the field strength F' = dA if f is not a function of space-time coordinates. This is a
simple example of the gauge freedom that we have discussed before. Nonetheless, the
A and its variations with respect to m, j, ¢ appear explicitly in the charge calculations
(mass, angular momentum and cosmological charge). To see this, the Appendix{A.T]
is provided.. Requesting the charges to be reproduced correctly in the new paradigm
(in comparison to the usual paradigm of A being a constant in Lagrangian) fixes the

gauge freedom for our example to be what it is already in Eq.(5.3).

Properties:
M= gl g oTE o JTETTR g T sy
T8 X =y =7 orer,’ =779

The horizon Killing vectors are £ = 0y + Q.0,,. Using A from (5.3)) in the definition
of ©, in (T.TT)), we get

O, = / (0 + Q10,) - (Wdt A dqb)

T+

/ " / Q.
T dyp — . (5.5)
T+ T+ 2t

However, the last integral vanishes because the pull-back of the dt to the surface of in-
tegration (which is the bifurcation point of the horizon parametrized by the coordinate

) vanishes. So,

2
/ —dgo SLES (5.6)
, i

The cosmological charge C' can be read from (1.9) with the lower sign (which is the

one for negative A) to be

C=—17 (5.7

The first law and the Smarr formula:

The generalized first law and the Smarr formula for the BTZ black hole read
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OM =T.05:+ +§Q40J +040C, (5.8)

0=T.5+ +0Q.J —06,C (5.9

respectively. One can check the validity of these two relations explicitly which we do
next. Let us check the Smarr formula first. Substituting (5.4) and (5.6) to (5.9) one
has

Tl 3 L S S Y (o U A
2ml3ry 2 Iry 8 {  Axl 402 0r
(5.10)

which is satisfied for 272 = (2 (m +4/m? — %—2) . Hence, the Smarr formula holds.

Now, let us look at the validity of the first law of black hole thermodynamics (5.8).
This solution has three independent parameters m, j, £. Notice that / is a free param-
eter of the solution, if the Lagrangian (I.2)) is the Lagrangian describing the theory
of gravity. In other words, £ is related to A by A = ;—21, and A is related to ¢ in (1.6)
(which is a free parameter of the solution), by the relation (1.7). We calculate vari-
ations to nearby black hole solutions with respect to each of these three parameters.
This method of variation can be called parametric variations [27]. We can begin with

variation in m parameter
b = S5 0nSe = Soare, S =0, 5,C=0, (51D

where 9,7+ reads as follows

O V268 (me £ \/mPP P

O’y = —0m = %

om 4y/m202 — 2

(5.12)

Substituting (5.11)), (5.12)) in the first law (5.8)), one finds
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Sm rd —r2 \/263 ml £ \/m2(? — j2) 5.13)
8 ( 21l ) 2 4\/m2% = j2 ’
2
T+ \/%<mi \/ m2_52_2)
= — ==+ , (5.14)
L —Tx 2 /m2 — ;—;
which is satisfied by r. Similarly, for the variation of j
T 0j
5]-M = 0, 5mS:|: = 55]‘7“:‘:, (SJJ = g, 5]0 = 0, (515)
in which
5
Sy = F V2L jij - (5.16)
4y/m20? — 72(ml — \/m20% — j?)
Inserting in the first law (5.8), we find
0 ri -2 _ V20§65 L rE ]
2ml2ry 2 4~/ m202 — j m€ + \/m?2?2 — f?":t 8’
= F -4 V2l (5.17)

2
RUTE s mr P = Pt e =
Using the relations +(1/m?(? — j2 = (ri —r%) and f\/m +/m2 —2/02 = \/2r,

in the denominator of the right hand side, the result in (5.17) simplifies to 4r,ry =

2(7 which is the correct equation, admitting the first law to be satisfied.

We should also check the first law for the variation with respect to ¢. To this end we
have

Y4

T
5@M = 0, 5@Si = 5(5@Ti, §gJ = 0, (SzC = m,

(5.18)
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in which

— 3% & 2ml\/m22 — j2) M (5.19)
4\/ m202 — j2)(ml £ /m20? — 5?)

Putting these in the first law (3.8)), it follows that

2 _ .2 202 2
O:(Ti er) iz (2m20% — §2 4 2ml\/m?202 — 52)6¢ N E)( Y4 )

2 lPry 2 4\/5 m202 — §2)(ml £ /m22 — j2) S
3 2 + 2ml\/m20% —
N T 0(2m20% — j2 & 2ml\/m2(2 — j2) (5.20)

ri—r ? 4\/ m20? — j2)(ml £ \/m2(? — 52

Using the relations +(/m?(? — j2 = (r1 —r%) and 8\/m + \/m? — j2/02 = \/2ry
in the denominator of the right hand side, it reduces to 4ri = (?(2m2(* — j2 +
2ml+/m?(? — 52), which is the correct equation.

According to the analysis above, we deduce that the generalized first law in (5.8) and
the Smarr formula in (5.9), which include the new term © z5C and © ;C, are correct

relations for this example and confirm the results of the analysis in this paper.

5.2 Charged static BTZ black hole

Theory: Einstein-Maxwell-A theory in 2 + 1 dimensions

1
2A — F, F* 21
L= 167T(R H ) (-21)

Solution: The metric and the Maxwell gauge field in the coordinates x* = (t,r, ¢)

are [28]]
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dr? r? ¢ r
2 _ A2 2 2 - S T P
ds® = —Adt* + A + redy*, A= m—{—g2 2logg, (5.22)
q r
A= —=log(- 2
> loa () dt. (5.23)
with A = ;—2 Horizons are at A = 0. For this solution, the cosmological gauge

field A (denoted bold in order to be distinguished from the Maxwell field A,) in an
appropriate gauge is (see Appendix [A])

4r? — @22

A=-—%

)dt A dep. (5.24)
The gauge freedom of A is fixed such that it reproduces the variation of the mass and
the other charges with respect to ¢ correctly. To see this, one can use the covariant
phase space formulation of charges. The details of the formulation are described in
[29, 30, [1]. However, for the sake of completeness, we have added Appendix{A.T]

which provides the final formula to perform such charge calculations.

Properties: Horizon Killing vectors are £ = J,. Using A from (5.24)) in the defini-
tion of O, in (I.T1)), we get

on— [ @ (U gy pay
f o0 (T )

Y Bl C e B
—[J——gr—ﬂw

r(drdy — g0?)
= - 5.25
10 (5.25)

For the other properties, including C' from (1.9), we find
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m q 1 m(4ry — ¢*0%)
M = — _ — = —_—— —_ —
s 9= me O 40
_ 4, TH _ Ay - _mTH
(I)H 5 lOg / > TH = 87TT'H£2 y SH = 9 . (526)

The generator of the entropy as a conserved charge is 7, = Ti{at, -, } [29,130].

The first law and the Smarr formula:

The generalized first law and the Smarr formula for this solution are

SM = TSy + ®56Q + 045C, (5.27)

0=TySy —OxC (5.28)

respectively. The Smarr relation can be checked easily using (5.26). To check the first

law, notice that the solution has three free parameters m,q and ¢. Using the relations

2021 g dm 5 2q0%r  log(“L)dq
2 THO R
412 — q20%’ an dr2 — 202

6mrH -

Sy = TTHM, (5.29)

and following the same steps as in the example 3.1, the first law can also be checked.

The result is affirmative, and the first law holds for the charged static BTZ black hole.

5.3 Lifshitz z = 3 black hole
Theory: New Massive Gravity (NMG) theory in 2 4 1 dimensions [31]

1 1 3
= — (R—2A+ —(R,R" — “R%) ). .
L= 1o (R + 5 (RuR 83)) (5.30)
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Solution: The metric in the coordinates z* = (t,r, ) is [32}33]

2 T2 mé* dr? 27 2
ds® = _(Z) (1—?) dt —l—m—i—r dy (5.31)
for z = 3, one has A = —213 and m? = -L;. Notice that m and m are different

o 202"

parameters: the former is a parameter in the Lagrangian, and the latter is a parameter
of the solution. The event horizon is at 7y = vm¢?. The Cosmological gauge field
in an appropriate gauge for this solution is (see appendix

4

3m? r

Properties:

For this black hole, one can find [34, 35, 36, 137, |30

2 13 1 E
M="" o= 2 = E Sy =2rry.  (5.33)
2 A7l T

Using the horizon Killing vector £ = 0; and A from (5.32) in (I.T1)), we find

4

3m?2 r
= /TH\/ \A|(8—A - @)dso

2
= [ e, (5.34)

where, in the last equality, we used A = —% and rg = vVmi?.

The First law and the Smarr formula:

This solution has two free parameters m and ¢. The horizon radius in terms of these
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two parameters is 7y = Vm/l?, which makes the calculations very simple. Using

(5.33) and (5.34), the generalized first law and Smarr formula for this solution

SM = TSy + OpsC, (5.35)

0=TySy —OC (5.36)

can be checked easily for variations with respect to m and ¢. Hence, for this example

the first law and Smarr formula hold.

5.4 BTZ black hole in the New Massive Gravity
Theory: The theory is again the NMG theory in 3 dimensions [31]

1
uy o 2
L= <R 2A + —(RWR R )> : (5.37)

Solution: The solution is exactly the same BTZ solution reviewed in Example 5.1

i.e. in coordinates x* = (t,, ¢) the metric is [26} 38]

2

dr ]
ds? = —Ad? + T + 12 (dp —wit)?, A= —m + g—Q + j # (5.38)

but for A = ;—21 + 424 > and we assume also A < 0. Horizons are at 27“i = 62(m +

m? — —) Cosmological gauge field for this black hole solution can be found to be

(see appendix [A])

2

r m?

The gauge freedom (i.e. the second term in the parenthesis) is fixed such that using the
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covariant phase space formulation of charges (see Appendix{A.T)), or other methods
such as the ADT formulation 39,40} 41]], yields correct mass variations with respect

to ¢ as well as other solution parameters.

Properties: Although this black hole is exactly the same as the BTZ black hole in
Example 3.1, it is solution to a different theory which affects the charges M, J, and

S (38 142]

1 m 1

M: _— ) — ]_ _— )=

( Jr2521112)8’ T= +2€2m2)8’

0 = % v Sl S (14— (5.40)
=T L =7 oreep, S 202m?2’ 2 '

Horizon Killing vectors are £, = 0; + €2.0,. Cosmological charge and horizon

potential for this solution are

VA 2 m{?
C=- s @i = -7 |A| ry — m . (541)
First law and Smarr formula:

The generalized first law for this solution is

OM =T:054+ +Q4.0J +0O40C, (5.42)

which can be checked to be a correct relation by using variations with respect to three
free parameters of this solution m, 7 and ¢. On the other hand, the generalized Smarr
formula is not satisfied for this solution. To satisfy the Smarr formula one needs to
take into account the dimensionful quantity m in a suitable way which we have not

been able to do so far.
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5.5 Horndeski BTZ-like black hole
Theory: A Horndeski gravity in 3 dimensions [44]] has the Lagrangian

1
-~ (p_9A_ _ 1 TV
L ™ (R 20N — 2(agu — VG w)VH OV qﬁ), (5.43)

where G, = R, — 3Rg,, is the Einstein tensor.

Solution: The metric in the coordinates z# = (t,r, ) is [45]]

dr? '
ds® = —fdt* + % + r?(dy® — %dt),

ar? 52 [ =(a+~A)

- _ — - = d 5.44
f m + +r2’ d¢ 0] r (5.44)

where v < 0 and (m, j) are free parameters of the solution. The cosmological gauge

field for this solution can be found to be (see appendix [A)

2
A=—/A| (% - g) dt A dy. (5.45)

The gauge is fixed such that the covariant formulation of conserved charges (see Ap-

pendix produces correct mass variation with respect to A, i.e. the 5, M.

Properties: For this solution, the charges and the chemical potentials are computed
to be [46]




Notice that o < 0 in order to have finite and positive horizon radii. Note also that the
temperature is different from the usual 5= (i.e. the standard Hawking temperature)

by a factor

“4;:’ which is a result of the fact that in Horndeski gravities, the effective

speed of the graviton can be (as in our example here) different from 1 [46]]. The

cosmological charge and the horizon potential, using (I.11)) and (5.45)), are

V1Al 2 m
= — = — A - —). 47
First law and Smarr formula:
This solution has three free parameters m, 7 and A. The generalized first law for this

solution is

OM =T.65: +Q40J + 040C, (5.48)

which can be checked to be a correct relation by using variations with respect to three
free parameters of this solution. For this solution, the generalized Smarr formula is
not satisfied as in the previous example. So one should find the correct formula taking

into account all the dimensionful parameters in the theory.
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CHAPTER 6

SOLUTIONS IN 4 DIMENSIONS

6.1 (A)dS-Kerr-Newman black hole

Theory: Einstein-Maxwell-A theory in 4 dimensions [47,, 48], 149, 50, 51}, 152]

1
L=—(R—-2A—F,F"). 6.1
167r( H ) ©.1
Solution: The metric in the coordinates z* = (t, 7,0, ) is
_ A2 p? P2
ds? = —Ag(—=2 — Apf)dt* + A—dﬁ + A—d92 — 27 fasin’® 6 dtdy
= r 0
2, 2
+ <T ;L ¢ + fa®sin® 9) sin? 6 dy? (6.2)
where
2 2 2 .2 2 2 Ar? 2
p°=r°+a“cos“0, A= (r +a)(1—T)—2mr+q,
_ Aa? _ Aa? _2mr — ¢
Agzl—i—Tcos 0, ::14—?, f= =
In these coordinates, the Maxwell gauge field is
A =T (Agdt — asin?6d 6.3
—p2E( pdlt — asin® 6 dy) . (6.3)
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For positive and negative signs of A, the solution is de Sitter or Anti de Sitter Kerr-
Newman black hole respectively. The analysis here is independent of this sign, and
we leave it to be either positive or negative. We denote the cosmological gauge field
by A, in order to distinguish it from the Maxwell gauge field A. For this solution, A
can be found to be (see appendix [A)

VIA(r® + 3ra? cos? 6 + ™) sin §
AY(r” + 3ra e S0 by n o d. (6.4)

A=—

Similar to the other solutions described above, the gauge is fixed if one demands that
the mass, angular momentum and other charges to be reproduced correctly by the

covariant formulation of charges.

Properties: One can find the thermodynamic variables for this solution irrespective

of the sign of A as [54]155]]

m ma q qra
M=z J== 97z "Tanae
r2 Aa? 2 a?
"= r2 +a? A= 4 (r2 + a?) P = ’ ’

in which r, is the radius of the considered horizon. The cosmological charge and

potential can also be found by the equations (I.9) and (I.11)

[AJ4m(rd, + ra® + ™)

— — . .

The upper and lower signs are for de Sitter and Anti de Sitter black holes respectively.

First law and Smarr formula:
This solution has four free parameters (m, a, ¢, A). Using (6.5) and (6.6)), the gener-

alized first law and Smarr formula for this solution
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OM =TyoSy + QpdJ + PpoQ + OxC, (6.7)

M = 2TySy + 205 J + ®5Q — 650, (6.8)

can be checked for variations with respect to the parameters p; € {m, a, ¢, A}. Hence,
for this example the generalized first law and Smarr formula hold. In appendix [A.2]
the method of checking the first law and Smarr formula are described, if the horizon

radii cannot be found explicitly in terms of the parameters p; of the solution.

6.2 A black hole in Horndeski gravity

Theory: The Lagrangian of the theory is [44]

1
L= 16—7T<(1 4 BV—X)R — 2A + nX —

s

509 = (VuVu0)) - 69

B, n are constants. A black hole solution for this theory is introduced in [56] with the

metric
ds* = —f(r)dt* + m + 7r*(df” + sin® 0dp*), (6.10)
and
2 2 A 2 2
le__m_ﬁ___’”, dp = V2 (6.11)
roo 2t 3 v

The cosmological gauge field for this solution is (see appendix [A])

VA
A= —%r?’ sinfdt A df A dy, (6.12)
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which is fixed in a gauge such that it reproduces the mass correctly using the covariant

formulation of charges in appendix [A.T]

Properties: The mass, temperature and entropy for this solution are [46]

B 2m(rl — Ary)

_ 2
M =m, T, - S =mry, (6.13)
and the cosmological charge and potential are
VA V| A4rrs
o= _L’ [a) :_M' (6.14)
4 3

First law and Smarr formula:
This solution has two free parameters m, A. The generalized first law for this solution

18
OM =TydéSy + OpdC, (6.15)

which can be checked to be a correct relation by using variations with respect to the
two free parameters of this solution. For this solution, the generalized Smarr formula

is not satisfied as in some of the examples above.

6.3 A black brane in Horndeski gravity

Theory: The Lagrangian of the theory is [44]

1
R B 2 B o
L= o (R 20 = B " = 2(agu = 3G ) ViV ¢> (6.16)

in which G,,, = R,,, — 1 Rg,, is the Einstein tensor.
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Solution: The metric in the coordinates z* = (t,r, z,y) is

d 2
ds® = —h(r)dt® + —— + r2(dz? + dy?), 6.17)
f(r)
r?  m 4q* 4q*0?

TET T U Bt

f= (4 + B)*r®h
(222 _ (44 p)r1)*

B— 2q252 q 24302
dp = | —3—d A= (- — ——)dt. 6.18
¢ 4y f " (7‘ 15(4 + B)r5) (6.18)
with [57]
3(1+9) 3y

It is easy to see that in order to vary A while keeping the « fixed, one can simply
take variations with respect to 3. So, in order to check the first law we will use
variations with respect to § which appears explicitly in the solution, instead of the A.

The cosmological gauge field for this solution is (see appendix

r3 2q%0* mi?
A=—/IAl|—= — dt N df A do. 6.20
| |<3+3T(4+ﬁ) 6) AATA dg (6.20)

The first two terms in the parenthesis are determined by the equation F' = dA and
Eq.(1.6), while the last term in the parenthesis is a gauge fixing term, i.e. it does not
contribute to F' by the equation F' = dA. This gauge fixing term is determined by
putting the A and its variations into the covariant formulation of charges to reproduce

mass correctly.

Properties: The mass, electric charge, and entropy “densities" for this solution are
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[46]

M=""2" =21  g='H 6.21)

By densities it is understood that the charges are calculated without performing the in-
tegration over the x and y coordinates. Besides, surface gravity and electric potential

on the horizon are

3 2 2 362
R S S . (6.22)

T T 4y Ay e 15(A+ B)r%

This example is a very special example in this work, because the standard (as well
as the generalized) first law and Smarr formula do not hold if one uses the Hawking
temperature 7y = 5= as the temperature of the black brane. However, in the Ref.[46]
it is shown that this a generic feature in Horndeski gravity (and any model of gravity
in which the speed of graviton differs from ¢ = 1). The physical temperature in
Hawking radiation is dominated by the gravitons, and it is related to the Hawking
temperature by an overall factor which is a function of the parameters of the solution.
The interested reader is invited to study the original paper [46] for the details. Here,
we only report the final result for the example under considerations. The physical

temperature is related to the 7 by

34+ B)rly — 24202
TH:(( 55{4 g )To. (6.23)

The cosmological charge and potential for this solution are

A 3 292 2
o - YAl @H——\/\A|(T—H+ 20 —mg) (6.24)

A 3 3rp(d+p) 6

First law and Smarr formula:
This solution has three free parameters m, ¢, and 3. This latter parameter is represen-

tative of the A in the solution. The generalized first law for this solution is
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SM = TydSy + ®6Q + Oy éC, (6.25)

which can be checked to be a correct relation by using variations with respect to the
three free parameters of this solution. For this solution, the generalized Smarr formula

is not satisfied as like as some of the previous examples.

6.4 MTZ black hole

Theory: The Lagrangian has the metric g,,, a scalar field ¢, and the Maxwell gauge
field A, as dynamical fields [58, 60]

1

L=—
167

(R —2A — F,,F" — 2V ,¢V* ) — %R& — a¢4> : (6.26)

Solution: The dynamical fields in the coordinates x* = (¢, r, 0, ¢) are [58,160]

2 2

d
ds® = — fdi* + % Fr2(d +sin?0dg?),  f=(1- )2 2—2
.

3 2 _ 42

A= 6= M’ (6.27)
r r—m
where
3 o 9 2A
A= @=mPl+oo). (6.28)

Horizon radii are at r. = g(:i:l F4/1F 47m), and cosmological horizon is at r. =
%(1 +4/1 - 47m) It is clear that in order to have black holes, the conditions 0 < m <

ﬁ and a < _TQA should be satisfied. Moreover, 0 < A to have de Sitter asymptotics
for this solution. In our analysis, we will focus on ry = r,, i.e. the black hole

event horizon. However, the analysis applies to the other horizons by inserting an
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appropriate sign for the temperature. The cosmological gauge field A in a gauge

which is fixed similar to the other examples mentioned above, can be found to be (see

appendix [A])

A= —

A 3
\/;" dt A df A d. (6.29)

Properties: The mass, electric charge and horizon potential, temperature and entropy

of MTZ black hole can be found respectively as 158,159, 160]]

M:m7 QZQ7 CDH:i?
TH

Ty = v Sy =2 (6.30)

271y, 6m

miry —m) _ Ary JERLEL A

We notice that the temperature is the standard Hawking temperature which can be

1 df

found by the relation Ty = -

on the horizon, while the entropy is the Bekenstein-
Hawking entropy ’%H multiplied by the factor of scalar curvature R in the Lagrangian,

re. 1 — %2 The cosmological charge and potential are

VA B VA3,

6.31
47 3 ( )

First law and Smarr formula:
This solution has three parameters m, ¢, and ¢, but ¢ is not an independent parameter,
and is related to the other two parameters by the relation (6.28). The generalized first

law for this solution is
OM =TgéSyg + ProQ + OxoC, (6.32)
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which can be checked to be a correct relation by using variations with respect to the
two free parameters of this solution. For this solution, the generalized Smarr formula

is not satisfied.
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CHAPTER 7

SOLUTIONS IN 5 AND HIGHER DIMENSIONS

7.1 (A)dS-Myers-Perry black hole

The (A)dS-Myers-Perry black hole solution is generalization of (A)dS-Kerr black
hole to 5 (and higher dimensions) [61].

Theory: Einstein-A gravity in 5 dimension

1

Solution: The metric in the coordinates z# = (t,7,0,¢,v) with § € [0,%] and

v, € 10,27 is
Ap(1 = A2)\dt2  2m Aydt d d
ds? = — Al . ) +—?(H0~ —azsin20:w—6200829_—¢)2
iy Y ZaZp Za Zp
2 dr2 2 162 2 2 2 4 p?
L e T e O + - T cos? 0dy?®,  (1.2)
AT AG ':‘(l ':‘b
where
2 2)(r2 4 p2)(1 — Ar? 2\ b2A
ATI(T + a”)(r* + b°)( 6)—2m, A9:1+a—cos29+—sin29,
r2 6 6
2A b*A
p2:r2+a200329+b2sin20, Eazl—l—%, Eb:1+?. (7.3)

Horizons of Myers-Perry black hole are situated at 75 which are the roots of A, = 0.

The cosmological gauge field can be found to be (see appendix
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gV |A]sin 6 cos 6 {r4 + 272(a® cos? O + b? sin? 0)

. %ﬂm}dwuwAd@Adm

Sab

(7.4)

where -
a?b?*  m(a® + 0 + %)

4 EaZh

Qg =

The constant oy, which is a gauge fixing term, is determined by the covariant formu-

lation of charges in the appendix [A.T]

Properties: Denoting the angular momenta associated with the axial symmetries of

the coordinates ¢ and ¢ by J, and Jy:

™m (25, + 25, — Z.Z) Tam whm
M = = : Jo = 5=, Jp = c=—=3>
4:3:% ¢ 2=2E, w Q:Q:E
Ar? Ar?
o=yt
T (g +a?)” T+
Ty — rill — 2(2ry + a® + b%)] — a?b? Sy — 2[(ry + a®)(r% + b?)] (75)
2rry((ry +a?)(ry +0%)] 7 252,57l R

The cosmological charge and potential can be read from (1.9) and (I.11):

C:iaw, (7.6)

Alr2 2 2 (-2 2 2 4 p2 4 Aa??
6, VA ((rH+a><rH+b>+m<a i >)’ a7

—_ —

2 0

with the positive and negative C' for the solutions with dS and AdS asymptotics.

First law and Smarr formula:

This solution has four free parameters (m, a, b, A). Using (7.3) and (7.7), the gener-
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alized first law and Smarr formula for this solution

oM = TgdSy + Q%6J, + Q58J, + 050C, (7.8)
M = 3Ty Sy + 305, + 3Q%J, — 05C, (7.9)

can be checked for variations with respect to the parameters p; € {m, a, b, A}. Hence,
for this example the generalized first law and Smarr formula hold. For the solutions
whose horizon may not be found analytically in terms of the parameters of the solu-
tion (like Myers-Perry solutions), we refer the reader to the appendix in order to

find how to check the first law and Smarr formula easily.

7.2 (A)dS-Reisner-Nordstrom-Tangherlini black hole

This family of black holes is generalization of the (A)dS-Reisner-Nordstrom black
hole to higher D dimensions, which are spherically symmetric solutions with electric

charges.

Theory: With the dynamical fields as the metric g,,, and Maxwell gauge field A, the
theory is described by the Lagrangian of Einstein-Maxwell-A gravity in D dimen-

sions, the metric reads

1
— — (R—2A—F, F™), 7.1

where F,, = 0,A, — 0, A, is the field strength.

Solution: Denoting the time and radius coordinates by ¢ and r, for these black holes

in D dimensions

dr? (D—-2) ¢
2 2 - 2 QQ A=
ds fdt* + 7 + 7202, 20D 3) rD_3dt,
2m (]2 2Ar? 27r%
=1- - Q = 7.11
/ 703 205 (D 1)(D - 2) P (2 .11

where () is the area of the D — 2 dimensional unit sphere, and I" is the gamma

function. Horizons are situated at the radii which can be found as roots of f(ry) = 0.
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The cosmological gauge field for this family of solutions is (see appendix

VA
A= —%W—l dt NdSY,_,. (7.12)

Properties: For these black holes, mass, electric charge and potential, temperature

and entropy are

D20 m L2290, ,q
N 8 ’ N 47 ’
T 1 (2(D-=3)m 2(D - 3)¢* AAry
T\ g T A T (D-1)(D-2))
D—2 q 7"3*291372
b, = IS — e 7.13
H 2(D _ 3) 7"13737 H 4 ( )

The temperature is the standard Hawking temperature which can be found by the

relation Ty = ﬁj—f; on the horizon, while the entropy is the Bekenstein-Hawking

entropy 2. Using (T.9) and (T:TT)), the cosmological charge and potential are found

o= <V

Am

as:

Al b
On = —p— 1r§ 'Q, ., (7.14)

with the positive and negative C' for the solutions with dS and AdS asymptotics.

First law and Smarr formula:

The RNT black holes have three free parameters (m, ¢, A). Using (7.13) and (7.14),

and variations with respect to three parameters, the generalized first law and Smarr

formula for this family of solutions are satisfied as

OIM =TyoSy + PrdQ + Ol (7.15)
(D—-3)M = (D —-2)TySy + (D —3)oyQ — OxC. (7.16)
For these solutions the horizon radii may not be found analytically in terms of the

parameters of the solution. We refer the reader to the appendix [A.2] in order to find

how to check the first law and Smarr formula without having the explicit form of rp.
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7.3 Charged rotating black hole in minimal gauged supergravity

Theory: Lagrangian of the minimal gauged supergravity in 5 dimensions is

1 2
E = 16_7T(R - 2A - FHVFMV + _3\/__Seuluz"'HSFﬂllLQFMBIMANS)’ (717)

where €, ,,.. s 18 the 5 dimensional Levi-Civita symbol with components +1 or —1.

The last term in the Lagrangian above is the Chern-Simons term.

Solution: The metric in the coordinates z# = (t,7,0,¢,v) with § € [0,%] and
v, €10, 2n] is [62]

Ng[(1 — A2 24t + 2qu]dt 2 Agdt 2dr? prde?
4e = Al i)fQ v +q1;w+i4ﬁeﬁ_ 2y A
SaZbp p P7 =a=b Ar AG
2 | 2 2 4 p2
! j & sin? fdp?® + r :L cos? Odi)?, (7.18)
“a =b
where
d d
v = bsin® 0dy + a cos® Odv), w = asin’ 9_—<'0 + b cos® 9_—¢,
Sa =b
2 2\ (2 2 Ar? 2
+ +0°)(1 — =) + ¢+ 2ab
a2 AR b 2y
r
a’A b2A
> =1r?+a*cos? 0 + b?sin’ 0, Eazl—l—T, Eb:1+?u
A 2\ b2A
f=2mp*—q¢*— gabqu, Ag =1+ % cos® 0 + e sin? 6. (7.19)
The Maxwell gauge field in this solution is
3q , Agdt
A= Q( W), (7.20)

20% 2,5,
In the special cases of ¢ = 0 and a = b = 0, one recovers the (A)dS-Myers-Perry and
the (A)dS-Reisner-Nordstrom-Tangherlini black holes in 5 dimensions. However,
in its general form, it is not a solution to Einstein-Maxwell-A theory. Instead, it is

a solution to a theory which is supersymmetric, and has a Chern-Simons term in it.
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Having in mind that conserved charges depend on the Lagrangian, it is worth studying

this solution separately. The horizon radii are

2 2 —

The cosmological gauge field can be found to be (see appendix [A))

V/|A|sinf cos (7"4 + 2r%(a® cos? 0 + b? sin? 0)
A= +

— . ao) dt AdO A dgp A di,

Sasb

(7.22)

> m(a®+b* + @) abq(Z, + Zp)

g0 = 2.2, 3=,

The constant «y, which is a gauge fixing term, is determined by the covariant formu-

lation of charges in the appendix [A.T]

Properties:[62]
= = A=
M = 71'771(2ua + 2._5 3 Ha:b)_‘; QWabQE(‘—‘a + Hb)’ Q - \/ngq :
4725 25,50
_ m(2am + gb(1 TA)) I = 7 (2bm + ga(1l — %))
. 4228, ’ v 42,22 ’
Ar r
qe _ WrE (- +bg o, bR +a?)(L - ) +ag
H p 5 H p 5
rill — 2(2ry + a® + b)) — (ab + ¢)* o
Ty = ; S ==
2T o 25,5
3 2
Oy = Vi (7.23)
20

and 0 = (1% + a®)(r% + b?) + abg. The cosmological charge and potential by the

equations (1.9) and (I.11)) are
o L VIAl

Am
o \/WTI‘Q (r% + a®)(r% + b%) N m(a® + b* + Aa b ALY 4 2abq(Z, + Zp)
A== = 2 3%% ’

(7.24)

with the positive and negative C' for the solutions with dS and AdS asymptotics.
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First law and Smarr formula:
This solution has five free parameters (m,a,b,q,A). Using (7.23) and (7.24)), the

generalized first law and Smarr formula for this solution

SM = TydSy + Q50J, + Q46.Jy + @6Q + ©4C, (7.25)
2M = 3Ty Sy + 305 J, + 305 Jy + 205Q — O5C, (7.26)

can be checked for variations with respect to the parameters p; € {m,a,b,q, A}.

Hence, for this example the generalized first law and Smarr formula hold.

7.4 Lifshitz » = 2 black brane

Theory: The Lagrangian contains second order terms in curvature as follows:

1

L= T (R—2A+ aR?+ BR,, R" 4+ y(R* — AR, R" + R,,,,R"°")) .
(7.27)
The last term is the Gauss-Bonnet term, and the coupling constants are
2197 16¢2 158442 221142
= =———, f[= = (7.28)

T sz YT T s P T asms 7T 110200

Solution: The metric in the coordinates z* = (t,r, z,y, z) is [33,36]

03 dr?
ds? = —(0)=(1 - 2y e N
¢ r2 Z_j(l — me2)

+r?(de® + dy* + dz*)  (7.29)

for z = 2. The horizon is a brane located at rz; = m3 (. The cosmological gauge field

for this solution is (see appendix [A)

5 13121m?2e4
A=—\/IAl(= - ———)dt Nd dy N dz. 7.30

The last term is a gauge fixing term which is fixed by using the covariant charge
method of charges (see appendix |A.1]) to reproduce the 6, M correctly.

Properties: Using the solution phase space method in [29, 30] or other methods
(34,135, 36, 37] we find

207Tm2¢? _ 5ms 99ms
T 176321 B gnp” B 9004

(7.31)
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M and Sy denote mass and entropy densities of the black brane. Using the equations

(L.9) and (L.T1), the cosmological charge and potential are:

V—A S 13121m204
- _ — AR - 222, 32
¢ Ar Ou | |(5€ 87880 ) (7.32)

First law and Smarr formula:

This solution has two free parameters m, ¢. The generalized first law and Smarr

formula for this solution are

OM =TyéSy + OydC, (7.33)
2M = 3Ty Sy — OxC, (7.34)

which can be checked to be a correct relation by using variations with respect to the
two free parameters of this solution. We note that the couplings («, 3,7) are not
independent from the A. So, we could expect to have the Smarr formula without

contributions from these parameters.

7.5 AdS-Schwarzschild black holes in higher curvature gravity

Theory: The Lagrangian which we consider as the last example in this work is the

Einstein-A gravity with higher curvature terms in arbitrary D > 2 dimensions

— 1 2 N7
L= <R 2A + aR? + AR, R ) (7.35)

in which « and f are arbitrary constants.

Solution: The metric is simply generalization of AdS-Schwarzschild black hole to D

dimensions, which is

2m r?

dr?
ds* = —fdt? + N +r2dQ f=1- S5+

(7.36)

—02(D%-3D+2)+(aD+8)(D—4)(D—1)2

where ¢ satisfies A = 20

. The cosmological gauge field

for this family of solutions is (see appendix [Al)

D—-1

A=—/A] <1§ — +ao> dt AdQ,

4ml*(aD + B)
2(D—1)(D—4)(aD + ) — (D =2)¢%"

(7.37)

og =
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The o0y is a gauge fixing term which can be fixed by covariant formulation of charges
which is described in the appendix [A.T]

Properties: Conserved charges, such as the mass and entropy, depend on the solution
as well as the theory. As a result, although these black holes are simply the AdS-
Schwarzschild solutions, but the theory differs from the Einstein-A theory. The new

charges associated with these solutions are different, and can be found to be [30]

(D—-2)Q,_, (D —1)rP=2 4+ (D —3)¢*rP~
M= 4% 81 =, T = H47T€27"£*3 —
D—QQ
&f;XXELZBi. (7.38)
in which
2 —-92D(D —1a—2(D -1 on
X = ( 22 ( B : Oy, = =5t (7.39)
['(==)

and horizons are determined by the equation =1 + (?#P=3 — 2m(* = (0. By the

equations (1.9) and (I.1T)), the cosmological charge and potential are:

/— A D-1
C=-"=  On=—VAlFS+00)Q. .. (7.40)

First law and Smarr formula:

This family of solutions have two free parameters in the solution, (m, ¢). These pa-
rameters should not be confused with the («, #) which are free parameters/couplings
in the Lagrangian. In case of @« = [ = 0, we recover the AdS-Schwarzschild black
holes in Einstein-A theory which we have already studied in the example (by set-
ting ¢ = 0). So, in this case, we have already shown that the generalized first law and
Smarr formula hold. If at least one of the o or (3 is non-zero, one can check that the

first law is still satisfied, using and and the method which is described

in the appendix [A.2]as
OM =TyéSy +0Ox0C. (7.41)

However, the Smarr formula fails to be satisfied which is to be expected as one needs
to incorporate the other dimensionful parameters e and/or S which is an outstanding

problem at this stage.
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CHAPTER 8

UNIVERSALITY OF THE SMARR FORMULA

In the black hole physics literature, the Smarr formula is not considered as a universal
relation. Clearly, it does depend on the dimension of space-time DD. However, one
can still inquire if the Smarr relation (4.1]) is a generic relation. In spite of the fact
that in some of the examples that we have analyzed, this relation fails, one can see a
suggestive pattern in it: this relation only fails for the Lagrangians which contain at
least one free dimensionful parameter/coupling constant (in addition to the A). This
observation suggests that this generalized Smarr formula should be extended such that
it contains the contributions from those dimensionful parameters. In this regard, and
based on our case-by-case study and the proof in .1, we would like to put forward

the following conjecture.

Conjecture: The Smarr formula in @.1)) can always be generalized to include con-

tributions from dimensionful coupling constants in the Lagrangian.

In order to do this generalization, one may probably use a similar method as the one
used for A. However, this is a subject of research beyond the scope of this paper and
needs more investigations. Some guidelines for such an approach could be: 1) if the
dimensionful parameter is a parameter in the Lagrangian, it should be promoted to be
a parameter in the solution (not in the Lagrangian), probably as a conserved charge,
2) its conjugate chemical potential in the first law should be a (well)-defined property
of the horizon, i.e. it could be found using only the information in the vicinity of the

horizon.

Let us assume that such an analysis has been successfully done, yielding new con-

k()

served charges K; with dimensionality K; ~ [® " and their associated chemical po-
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tentials \Iﬂﬁ, with the following contribution to the first law:
SM =T,68 +Q.,6J +®,0Q +06,0C + VK, (8.1)
Following the steps in section 4. 1| verbatim, after scaling [ — «l, one has
aP3N(S, J,Q,C, K:) = M (aD_2S, aP=2J aP3Q, a0, " KZ) .82

Using the Euler relation (4.2)) and the equation (8.2), one gets

(D — 3)M =(D — 2) <8—M)S+(D—2) (a—M)J

oS oJ
o (OMY (M W (OM
+(D 3)((%2)@ <80)O+k <3Ki>K’ (8.3)

in which the sum over 7 is understood. At the end, using the generalized first law

(8.1)), we find the generalized Smarr relation

(D —3)M = (D —2)T,,S + (D —2)Q,J + (D - 3)®,Q — 6,C + kD% K.
(8.4)

Having the general structure of the generalized Smarr formula, one may be interested
to investigate and find ¥* and K; for the examples which failed to satisfy the non-
generalized Smarr relation 4.1} This is a very interesting subject for research in the
future, and is beyond the scope of this paper. Nonetheless it is important to emphasize,
in order to find the correct contributions from dimensionful parameters to the Smarr
relation, one needs to find a systematic and a precise description of these parameters

as conserved charges (or at least as parameters of the solution); this is because:

e variation of a Lagrangian coupling constant in the first law is conceptually prob-

lematic,

e the dimensional analysis may not determine K; uniquely. As an example, we
remind the reader the difference of pressure P in V.zd P compared to C' in
©ydC. The pressure (which is proportional to A) has dimension /=2, while C
(which is proportional to \/K) is of dimension [~!. Nonetheless, both of V.0 P

and ©46C are allowed by the dimensional analysis,

e in the absence of a precise definition for the ¥, the first law (and consequently,
the Smarr relation) could act only as a definition for it. Therefore, such relations

would be trivially satisfied.
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Accordingly, generalization of the first law and the Smarr relation for the problematic
examples in this paper (without systematic notion of charges and chemical poten-
tials) can yield misleading outcomes, and thus we postpone their full study to later

investigations.
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CHAPTER 9

CONCLUSIONS

The cosmological constant A can be considered as a conserved charge C' associated
with the gauge symmetry of a gauge field A. The conserved charge C' is analogous
to electric charge: 1) it is a parameter of the solution, 2) it is extensive, and 3) can be
positive or negative. Besides, its conjugate Oy is a property of the horizon. These
properties resolve problems with the V¢ P formulation of A in the first law of black
hole thermodynamics. In this paper, we generalized the Smarr formula to include a
contribution from the ©yC' term, and provided a proof for it. However, the proof
which is based on dimensional analysis, does not capture the free dimensionful pa-
rameters in the Lagrangian. We analyzed a handful number of examples to study this

issue case-by-case.

In addition, we showed that the ©y reproduces the “effective volume" successfully.
Besides, we showed how the ambiguity of the effective volume can be removed by the
role of gauge fixing in determination of © ;. Studying different examples in this paper
collects a fair number of black holes with non-zero A, and can provide a reference for

the readers about the cosmological gauge field A as a part of the black hole solutions.

The successful generalization of the first law for all of the examples, not only sup-
ports the © ;0C' formulation of A, but also it confirms the “modified temperature" for

Horndeski gravities which has been recently proposed in [46].

87






(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

REFERENCES

D. Chernyavsky and K. Hajian, “Cosmological constant is a conserved charge,” Class. Quant.

Grav. 35, no. 12, 125012 (2018) [arXiv:1710.07904].

A. Einstein, “Kosmologische Betrachtungen zur allgemeinen Relativititstheorie,” Sitzungs-
berichte der Koniglich PreuBischen Akademie der Wissenschaften (Berlin), Seite 142-152,
(1917).

S. Perlmutter et al. [Supernova Cosmology Project Collaboration], “Measurements of Omega
and Lambda from 42 high redshift supernovae,” Astrophys. J. 517, 565 (1999), [arXiv:astro-
ph/9812133].

A. G. Riess et al. [Supernova Search Team], “Observational evidence from supernovae for an
accelerating universe and a cosmological constant,” Astron. J. 116, 1009 (1998), [arXiv:astro-

ph/9805201].

J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity,” Int. J.
Theor. Phys. 38, 1113 (1999) [Adv. Theor. Math. Phys. 2, 231 (1998)] [arXiv:hep-th/9711200].

E. Poisson, A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics. Cambridge:
Cambridge University Press, 2004. doi: 10.1017/CB0O9780511606601.

J. D. Brown and M. Henneaux, “Central Charges in the Canonical Realization of Asymptotic
Symmetries: An Example from Three-Dimensional Gravity,” Commun. Math. Phys. 104, 207
(1986).

A. Aurilia, H. Nicolai and P. K. Townsend, “Hidden Constants: The Theta Parameter of QCD
and the Cosmological Constant of N=8 Supergravity,” Nucl. Phys. B 176, 509 (1980).

M. J. Duff and P. van Nieuwenhuizen, “Quantum Inequivalence of Different Field Representa-

tions,” Phys. Lett. 94B, 179 (1980).

M. Henneaux and C. Teitelboim, “The Cosmological Constant As A Canonical Variable,” Phys.
Lett. 143B, 415 (1984).

M. Henneaux and C. Teitelboim, “Asymptotically anti-De Sitter Spaces,” Commun. Math. Phys.
98 (1985), 391-424

C. Teitelboim, “The Cosmological Constant As A Thermodynamic Black Hole Parameter,” Phys.
Lett. 158B, 293 (1985).

89


http://arxiv.org/abs/1710.07904
http://arxiv.org/abs/astro-ph/9812133
http://arxiv.org/abs/astro-ph/9812133
http://arxiv.org/abs/astro-ph/9805201
http://arxiv.org/abs/astro-ph/9805201
http://arxiv.org/abs/hep-th/9711200

[13]

[14]

Natsuume, M. (2015). AdS/CFT duality user guide (Vol. 903). Springer.

M. Henneaux and C. Teitelboim, “The Cosmological Constant and General Covariance,” Phys.

Lett. B 222, 195 (1989).

R. M. Wald, “Black hole entropy is the Noether charge”, Phys. Rev. D, 48, 3427-3431, (1993),
[arXiv:gr-qc/9307038].

V. Iyer and R. M. Wald, “Some properties of Noether charge and a proposal for dynamical black
hole entropy”, Phys. Rev. D, 50, 846-864, (1994), [arXiv:gr-qc/9403028].

Thorne, K. S., Misner, C. W., & Wheeler, J. A. (2000). Gravitation. San Francisco, CA: Freeman.

J. M. Bardeen, B. Carter and S. W. Hawking, “The Four laws of black hole mechanics,” Commun.
Math. Phys. 31, 161-170, (1973).

D. Kubiznak, R. B. Mann and M. Teo, “Black hole chemistry: thermodynamics with Lambda,”
Class. Quant. Grav. 34 (2017) no.6, 063001 [arXiv:1608.06147].

B. P. Dolan, “The cosmological constant and the black hole equation of state,” Class. Quant.

Grav. 28 (2011), 125020 [arXiv:1008.5023].
L. Smarr, “Mass formula for Kerr black holes,” Phys. Rev. Lett. 30, 71-73, (1973).
P. K. Townsend, “Black holes: Lecture notes,” [arXiv:gr-qc/9707012].

D. Kastor, S. Ray and J. Traschen, “Enthalpy and the Mechanics of AdS Black Holes,” Class.
Quant. Grav. 26, 195011 (2009) [arXiv:0904.2765].

M. Cvetic, G. W. Gibbons, D. Kubiznak and C. N. Pope, “Black Hole Enthalpy and an Entropy
Inequality for the Thermodynamic Volume,” Phys. Rev. D 84 (2011), 024037 [arXiv:1012.2888].

K. Hajian, “On Thermodynamics and Phase Space of Near Horizon Extremal Geometries”, Ph.D

thesis, (2015), [arXiv:1508.03494],

M. Banados, C. Teitelboim and J. Zanelli, “The Black hole in three-dimensional space-time,”

Phys. Rev. Lett., 69, 1849, (1992), [arXiv:hep-th/9204099].

K. Hajian, A. Seraj and M. M. Sheikh-Jabbari, “Near Horizon Extremal Geometry Pertur-
bations: Dynamical Field Perturbations vs. Parametric Variations,” JHEP 10, 111 (2014)
[arXiv:1407.1992].

C. Martinez, C. Teitelboim and J. Zanelli, “Charged rotating black hole in three space-time di-
mensions,” Phys. Rev. D, 61, 104013 (2000), [arXiv:hep-th/9912259].

K. Hajian and M. M. Sheikh-Jabbari, “Solution Phase Space and Conserved Charges: A Gen-
eral Formulation for Charges Associated with Exact Symmetries”, Phys. Rev. D, 93, 4044074,
(2016), [arXiv:1512.05584].

90


http://arxiv.org/abs/gr-qc/9307038
http://arxiv.org/abs/gr-qc/9403028
http://arxiv.org/abs/1608.06147
http://arxiv.org/abs/1008.5023
http://arxiv.org/abs/gr-qc/9707012
http://arxiv.org/abs/0904.2765
http://arxiv.org/abs/1012.2888
http://arxiv.org/abs/1508.03494
http://arxiv.org/abs/hep-th/9204099
http://arxiv.org/abs/1407.1992
http://arxiv.org/abs/hep-th/9912259
http://arxiv.org/abs/1512.05584

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

M. Ghodrati, K. Hajian and M. R. Setare, “Revisiting Conserved Charges in Higher Curvature
Gravitational Theories,” Eur. Phys. J. C 76, no. 12, 701 (2016) [arXiv:1606.04353].

E. A. Bergshoeff, O. Hohm and P. K. Townsend, “Massive Gravity in Three Dimensions,” Phys.
Rev. Lett., 102, 201301, (2009), [arXiv:0901.1766].

E. Ayon-Beato, A. Garbarz, G. Giribet and M. Hassaine, “Lifshitz Black Hole in Three Dimen-
sions,” Phys. Rev. D, 80, 104029, (2009), [arXiv:0909.1347].

E. Ayon-Beato, A. Garbarz, G. Giribet, and M. Hassaine, “Analytic Lifshitz black holes in higher
dimensions”, JHEP, 04, 030, (2010), [[arXiv:1001.2361].

O. Hohm and E. Tonni, “A boundary stress tensor for higher-derivative gravity in AdS and Lif-
shitz backgrounds,” JHEP, 1004, 093, (2010), |[arXiv:1001.3598].

H. A. Gonzalez, D. Tempo and R. Troncoso, “Field theories with anisotropic scaling in 2D,
solitons and the microscopic entropy of asymptotically Lifshitz black holes,” JHEP 11 (2011),
066 [arXiv:1107.3647].

Y. Gim, W. Kim, and Sang-Heon Yi, “The first law of thermodynamics in Lifshitz black holes
revisited”, JHEP, 07, 002, (2014), [arXiv:1403.4704].

E. Ay6n-Beato, M. Bravo-Gaete, F. Correa, M. Hassaine, M. M. Judrez-Aubry and J. Oliva, “First
law and anisotropic Cardy formula for three-dimensional Lifshitz black holes,” Phys. Rev. D 91,

no.6, 064006 (2015) [arXiv:1501.01244].

G. Clement, “Warped AdS(3) black holes in new massive gravity,” Class. Quant. Grav. 26 (2009),
105015 [arXiv:0902.4634].

L. F. Abbott and S. Deser, “Stability of Gravity with a Cosmological Constant”, Nucl. Phys. B,
195, 76-96, (1982).

S. Deser and B. Tekin, “Gravitational energy in quadratic curvature gravities”, Phys. Rev. Lett.,

89, 101101, (2002), |[arXiv:hep-th/0205318].

S. Deser and B. Tekin, “Energy in generic higher curvature gravity theories”, Phys. Rev. D, 67,
084009, (2003), |[arX1v:hep-th/0212292].

G. Alkac and D. O. Devecioglu, “Covariant Symplectic Structure and Conserved Charges of New
Massive Gravity,” Phys. Rev. D 85 (2012), 064048 |[arXiv:1202.1905].

S. Detournay and C. Zwikel, “Phase transitions in warped AdSs gravity,” JHEP, 1505, 074,
(2015), [arXiv:1504.00827].

G. W. Horndeski, “Second-order scalar-tensor field equations in a four-dimensional space,” Int.

J. Theor. Phys. 10 (1974), 363-384

91


http://arxiv.org/abs/1606.04353
http://arxiv.org/abs/0901.1766
http://arxiv.org/abs/0909.1347
http://arxiv.org/abs/1001.2361
http://arxiv.org/abs/1001.3598
http://arxiv.org/abs/1107.3647
http://arxiv.org/abs/1403.4704
http://arxiv.org/abs/1501.01244
http://arxiv.org/abs/0902.4634
http://arxiv.org/abs/hep-th/0205318
http://arxiv.org/abs/hep-th/0212292
http://arxiv.org/abs/1202.1905
http://arxiv.org/abs/1504.00827

[53]

[54]

F. F. Santos, “Rotating black hole with a probe string in Horndeski Gravity,” Eur. Phys. J. Plus
135 (2020) no.10, 810, [arXiv:2005.10983].

K. Hajian, S. Liberati, M. M. Sheikh-Jabbari and M. H. Vahidinia, “On Black Hole Temperature
in Horndeski Gravity,” Phys. Lett. B 812 (2020), 136002, [arXiv:2005.12985].

Roy P. Kerr. Gravitational field of a spinning mass as an example of algebraically special metrics.

Phys.Rev.Lett., 11:237-238, 1963.

E.T. Newman and A.L. Janis. Note on the Kerr spinning particle metric. J.Math.Phys., 6:915—
917, 1965.

E T. Newman, R. Couch, K. Chinnapared, A. Exton, A. Prakash, et al. Metric of a Rotating,
Charged Mass. J.Math.Phys., 6:918-919, 1965.

B. Carter. Hamilton-Jacobi and Schrodinger separable solutions of Einstein’s equations. Com-

mun.Math.Phys., 10:280, 1968.

B. Carter, “The commutation property of a stationary, axisymmetric system,” Commun. Math.

Phys., 17, 233-238, (1970).

B. Carter; in: C. DeWitt, BS DeWitt (Eds.), Les Astre Occlus, Proceedings of 1972 Les Houches
Summer School (2nd ed.), Gordon and Breach, New York (1973).

S. W. Hawking, “Particle Creation by Black Holes,” Commun. Math. Phys., vol. 43, pp. 199-220,
1975, doi: 10.1007/BF02345020.

G. W. Gibbons and S. W. Hawking, “Cosmological Event Horizons, Thermodynamics, and Par-
ticle Creation,” Phys. Rev. D, 15, 2738-2751, (1977).

K. Hajian, “Conserved charges and first law of thermodynamics for Kerr—de Sitter black holes,”

Gen. Rel. Grav. 48, no. 8, 114 (2016), |[arXiv:1602.05575].

E. Babichev, C. Charmousis and A. Lehébel, “Asymptotically flat black holes in Horndeski the-
ory and beyond,” JCAP 04 (2017), 027 |[arX1v:1702.01938].

X. H. Feng, H. S. Liu, H. Lii and C. N. Pope, “Thermodynamics of Charged Black
Holes in Einstein-Horndeski-Maxwell Theory,” Phys. Rev. D 93, no. 4, 044030 (2016)
[arXiv:1512.02659].

C. Martinez, R. Troncoso and J. Zanelli, “De Sitter black hole with a conformally coupled scalar

field in four-dimensions,” Phys. Rev. D 67 (2003), 024008 [arXiv:hep-th/0205319].

E. Winstanley, “Classical and thermodynamical aspects of black holes with conformally coupled

scalar field hair,” Conf. Proc. C 0405132 (2004), 305-323 [arXiv:gr-qc/0408046].

A. M. Barlow, D. Doherty and E. Winstanley, “Thermodynamics of de Sitter black holes with a
conformally coupled scalar field,” Phys. Rev. D 72 (2005), 024008 |[arXiv:gr-qc/0504087].

92


http://arxiv.org/abs/2005.10983
http://arxiv.org/abs/2005.12985
http://arxiv.org/abs/1602.05575
http://arxiv.org/abs/1702.01938
http://arxiv.org/abs/1512.02659
http://arxiv.org/abs/hep-th/0205319
http://arxiv.org/abs/gr-qc/0408046
http://arxiv.org/abs/gr-qc/0504087

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

R. C. Myers and M. J. Perry, “Black Holes in Higher Dimensional Space-Times,” Annals Phys.
172 (1986), 304

Z.-W. Chong, M. Cvetic, H. Lu and C. N. Pope, “General non-extremal rotating black holes in
minimal five-dimensional gauged supergravity,” Phys. Rev. Lett. 95, 161301 (2005) |[arXiv:hep-
th/0506029].

R. L. Arnowitt, S. Deser, and C. W. Misner, “Dynamical Structure and Definition of Energy in
General Relativity”, Phys. Rev., 116, 1322-1330, (1959).

R. L. Arnowitt, S. Deser, and C. W. Misner, “Canonical variables for general relativity”, Phys.

Rev., 117, 1595-1602, (1960).

R. L. Arnowitt, S. Deser, and C. W. Misner, “The Dynamics of general relativity”, Gen. Rel.
Grav., 40, 1997-2027, (2008), [arXiv:gr-qc/0405109].

T. Regge and C. Teitelboim, “Role of Surface Integrals in the Hamiltonian Formulation of Gen-

eral Relativity”, Annals Phys., 88, 286, (1974).

J. D. Brown and J. W. York Jr., “Quasilocal energy and conserved charges derived from the

gravitational action”, Phys. Rev. D, 47, 1407-1419, (1993), [arXiv:gr-qc/9209012].

A. Ashtekar, L. Bombelli, and R. Koul, “Phase space formulation of general relativity without a

3+1 splitting”, Lect. Notes Phys., 278, 356-359, (1987).

A. Ashtekar, L. Bombelli, and O. Reula, “The covariant phase space of asymptotically flat grav-
itational fields”, in M. Francaviglia (ed.), Mechanics, Analysis and Geometry: 200 Years after

Lagrange, 417-450, (1990).

C. Crnkovic and E. Witten, “Covariant Description Of Canonical Formalism In Geometrical
Theories”, In Hawking, S.W. (ed.), Israel, W. (ed.): Three hundred years of gravitation, 676-684,
(1987).

J. Lee and R. M. Wald, “Local symmetries and constraints”, J. Math. Phys., 31, 725-743, (1990).

R. M. Wald and A. Zoupas, “A General definition of ’conserved quantities’ in general relativity

and other theories of gravity”, Phys. Rev. D, 61, 084027, (2000), |[arXiv:gr-qc/9911095].

A. Seraj, “Conserved charges, surface degrees of freedom, and black hole entropy”, Ph.D thesis,

(2016), [arXiv:1603.02442].

H. Adami, M. R. Setare, T. C. Sisman and B. Tekin, “Conserved Charges in Extended Theories
of Gravity,” Phys. Rept. 834 (2019), 1

A. Corichi, I. Rubalcava-Garcia, and T. Vukasinac, “Actions, topological terms and boundaries in

first-order gravity: A review”, Int. J. Mod. Phys. D, 25, 041630011, (2016), |[arXiv:1604.07764].

93


http://arxiv.org/abs/hep-th/0506029
http://arxiv.org/abs/hep-th/0506029
http://arxiv.org/abs/gr-qc/0405109
http://arxiv.org/abs/gr-qc/9209012
http://arxiv.org/abs/gr-qc/9911095
http://arxiv.org/abs/1603.02442
http://arxiv.org/abs/1604.07764

[76]

M. Nakahara, Geometry, Topology and Physics, 2nd ed. Boca Raton: CRC Press, 2017. doi:
10.1201/9781315275826.

S. M. Carroll, Spacetime and Geometry. Cambridge University Press, 2019.
Wald, R. M. (2010). General relativity. University of Chicago press.

Iyer, V., & Wald, R. M. (1994). Some properties of the Noether charge and a proposal for dy-
namical black hole entropy. Physical review D, 50(2), 846.

Harlow, D., & Wu, J. Q. (2020). Covariant phase space with boundaries. Journal of High Energy
Physics, 2020(10), 1-52.

94



APPENDIX A

HOW TO FIND THE COSMOLOGICAL GAUGE FIELD

In this section, we present a heuristic method to find the cosmological gauge field.

Let us denote the coordinates by (¢,r, z!, ..., xP72)

for the time, radius, and some
other coordinates z*. For black hole solutions which are stationary, components of
the metric g, can be chosen to be independent of ¢. So, the determinant of the metric
g, could be a function of coordinates (r,z'). According to the equation (T.6), the

cosmological gauge field strength is equal to
F = /|Al\/=gdt Ndr Ndz* A --- A dxP 72 (A.1)

The question is how to find a gauge field A such that F' = dA. Up to a gauge

transformation, the cosmological gauge field A can be suggested to be

A= —/INgdt Ndx* A+ A dzP2 = /dm/_—g. (A.2)

It can be easily checked that F' = d A is satisfied. Besides, the constant of integration
in g, which can be a function of parameters of the solutions as well as all coordinates
except the r, is a part of the gauge freedom. This gauge freedom can be fixed by the

covariant method of charges which is described in the next section.

One could ask about other components for A, which are in general a linear com-
bination of terms dt A dr A dx' A --- A dzP~2 with a missed dz’, and the term
dr A dx' A --- A dzP~2. The short answer is that such a component does not con-
tribute to the Oy defined in equation (I.11]), because pull back of such a term in the
expression g - A to the horizon vanishes, because such a term inevitably misses either
a direction along dt to be contracted by £y, or one of dz' to be integrated over the

horizon.
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A.1 Covariant calculation of charges

In gravity theories, there are different methods for calculating conserved charges.
Amongst the methods, one can mention some of the well-established methods like
the ADM formulation [63, 164} 65] continued by Regge-Teitelboim [66], Brown-York
formulation [67]], and ADT formulation of charges [39, 40, 41]]. In this paper, we
have used a method which is called “covariant formulation of charges" and has been
introduced in the late 80s - early 90s [70, 168, 169, [71, [15, 16} [72]. Interested reader
can find reviews on this method in e.g. [25, 73,74} [75]. In this appendix, we briefly
review the basics of this method, and provide the final formula by which the charges

are calculated.

Phase space is a manifold with a 2-form, which is called symplectic form and is
donoted by 2. The covariant phase space formulation of charges is based on a phase
space which is built covariantly; instead of fields and their momentum conjugates in
a time slice, the phase space is built by the fields over all of the spacetime which we
denote them collectively by ®(z#). So, we do not need to consider their momentum
conjugates in the phase space. The symplectic 2-form of such a phase space is built
as follows. Given a Lagrangian density £, the surface term ® can be read by the

variation of the Lagrangian dual L
dL = (E.o.M)dP + dO (6P, D), (A.3)

in which E.o.M denotes the equations of motions. Having the ® as a 1-form on the
space of fields, and a D — 1-form on space time, the symplectic current w is defined
by

w (01D, 0P, P) = 0:0(52P, D) — 5,0(6, P, D), (A4)
which is just the exterior derivative of ® on the field configuration space. The the

symplectic 2-form which makes the field configuration space a phase space is

Q((Slq),égq),q)) E/w(61<l>,5261>,61>) (AS)
3

where X is a Cauchy surface. It can be shown that using appropriate boundary condi-

tions, the result would not depend on the choice of this hypersurface.

On the covariant phase space which is built by the procedure above, one can asso-

ciate a charge variation § H, to a generator €. The generator can be a combination of
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diffeomorphisms and gauge transformations € = {£#, A, A}. The diffeomorphism is
xt — ot —EH while A — A+d)and A — A+ d are gauge transformations of the
Maxwell field and cosmological gauge field respectively. Using standard definition
of charge variations in a phase space whichis 0 H, = 6. - (2,

(5H€(<I>)E/ (3O (5.2, @) — 5.©(5, D)) :/dke((SCI),(I)):?{ k. (60, ®).

)

(A.6)
In the equations above, the first equation is a result of dw = 0 (on-shell and for
linearized perturbations), and the Poincare Lemma which admits w = dk for some
k. The last equation is the Stokes’ theorem. The last equation is practically the
most useful term for charge calculation in covariant formulation: for any solution
& (z#) in any given theory £, and for any generator ¢ and linearized perturbation §®,
the k. (®,®) can be found. Then, §,. k. (0P, P) gives the dH.(P) as the charge
variation inside the hypersurface 3. If 0% is chosen to be the asymptotics, then d H.,

would be the charge variation associated with the whole geometry.

The charge variation 6 H, in may or may not be integrable, conserved, and finite.
These conditions are fully discussed in the literature (e.g. see [29]). Here we report
only the k. for the Lagrangian densities we studied in this paper, which is the most
important tensor for performing the calculations. The details can be found in [30].

Let us consider the following Lagrangian density as the theory under considerations.

1
= — v uvaf
L=t (F(R,0)+ 2Ry R¥+ DRyyos )
1
- <cangyF”W+2d,(,v“¢fvu¢°’ + 2F2>. (A7)

In this Lagrangian, R" R,,,, and R are Riemann tensor, Ricci tensor, and Ricci

vaf? UV

scalar, respectively. F'* = dA® are some Maxwell fields labeled by index a. The ¢’
are some scalar fields labeled by /, and F' is the cosmological field strength. The co-
efficients a(¢), b(¢), cq(¢), and d,,(¢) can be arbitrary functions of ¢!. For clarity,

let us give a name for each one of the six parts in the Lagrangian respectively as:
L=Ls+ Lo+ Ly +Le+Ly+ LF. (A.8)
Using the notation k. = %k, then k. has a contribution from each one of these parts:
B = R R R R R R, (A.9)
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where can be calculated to be found as

1 1
uv ;Lav v vu vo eV / J1%e3 j2%e7

1
— OVH*h + Vo VAV gh™P — V*(Ragh®?) + §V“R h)g”f”

« I/af/ 17 af/
AT WLV + SRV O — 0 S
1 4 v gl L 1/8 !
+ (Ragh®® = VaVaho? 4+ OR) (VH€" [ = 2VFRE" [ — 2V¥o! ¢ 57];1)
I J v an/ I yaf//
+ 200V € o + 200! VIR E S
— (f/(Vaht® = V'h) — Vo f B 4+ VH f’h)g”} u e v, (A.10)

k1Y (50, ) = % [(vaRaﬂh — Vo RRM® —VH(Rash®?) + VAV 4V 5h? — V“Dh) %
— 2RMBV ghY, — 2VH Rogh"P — VIV oV h — VsV o h"P + OhY, — VPV hap)
+ VERY b+ 2Rﬂﬂv"haﬁ)§a + (vav% — VVah® — VAV hos + OhH,

2
+ 2(Ragh® + B hag) — RGh) Vo€ +2 (VA RY,E" — VR €) 60!

Ry
— (2RagV*hPH—R: NV h + VORM h — RagV*h*? +VF Ragh®P) ¥ }
— [p < v, (A.11)
v b v v L V " v L v (03
K00, 0) = [ (2R, 5~ Bl B4R h= R 1 ] =TV oy 474V b, 0P

+ (Rﬂﬂ(vah”ﬁ — Vah") + RS VTRS + iRWM(VﬁhBV — V)

+2(VgR, — VFRap)h"P + VYV h"P — VHOLY, + V* R, h + V*R%h [

2
—_ VH* By o3 - a pUY poavf
VH (R0, b)) 26 4+ £ (VR 5 €7 = R vafg)a¢,5¢
(V"R“Wﬁhaﬂ — R VRPN | = s v, (A12)
v 1 —h a pv a oy v apy a a v a pb b
ot (5@,@):87[(7%1? M2 Py = OF =0 b i) (€7 AL + AP)—
Cap FOM €4 AL — 2¢,p FO Wg”aAg} ey (A.13)
1
KL (00,0) = —[€"d,, V¥ 667 | = [ & 1] (A.14)
I8
+1 —he
22 @ v D B v D __ v D o
kFe_ 87r(D—2)![( 5 FHYP3-PD 4 QpH Fﬁ P3P SFHvP3--p )(5 Ao'pgu.pD_‘_Apg...pD)

- FMVPSWPDEU(;AUPJ op T (D - 2)haBFa#Vp4mpD (gaAffﬁmmpD + )‘Bm..-po)

+ rFﬂpz PDEVSA, ,,pD} —[u o v, (A.15)
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with the notation h* = §g* = gr*g"P§gas, OFP PP =gl . gPPHDSF and

H1.-- kD
SFH = ghogvP§F, 5 for the metric, cosmological and Maxwell field strength varia-
tions respectively. Besides, the notations h = A%, abd f' = % have been used. We
notice that the cosmological gauge field appears explicitly in (A.15) and its gauge

fixing is important for calculation of charges like mass.

A.2 How to check first law and Smarr formula if 7 is not known

Whenever the ry is not known in terms of the parameters of the solution p;, one
may find checking the Smarr formula and the first law to be difficult, because the
entropy is usually an explicit function of ry. Here, we describe how to check these
equations, for black hole solutions whose 7 is not explicitly known in terms of the
free parameters p; of the solution. The horizon radii are the roots of the equation
A, = ¢ = 0. In order to check the Smarr formula, instead of solving A, = 0
to find ry as a function of p;, one can solve this equation to find the parameter m
as a function of the {ry, p;}, which is simpler to be solved. By the p; we mean all
parameters p; except the m. Then in the Smarr formula, the parameter m is replaced
by its dependency on {rg,p;}, and the formula can be checked to hold or not. In
order to check the first law, in addition to this procedure, one need to know variations
of ry w.r.t the parameters p;, i.e. the J,,ry. This can also be found easily by the
A, JOA,

Z=r calculated

relation 9,,A, = 0 (at the horizon), which provides d,, 7y = — oo or

on the horizon (so r will be replaced eventually by 7).
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