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ÖZET 

MATRİS GRUPLARININ LİE TEORİSİ AÇISINDAN İNCELENMESİ 

Matris grupları, matematiğin birçok alanında ve uygulamalarda önemli bir role 

sahiptir. Matris grupları özellikle cebirsel (soyut cebir ve lineer cebir anlamında)  

yapıları ile ele alınmakla birlikte, bu tez çalışmasında matris gruplarının topolojik 

yapısı da ele alınmıştır. Daha önceki yıllarda yapılan çalışmalarda da görülmüştür ki, 

matris grupları cebir ve geometrinin matematiksel olarak ilginç bir şekilde iç içe 

geçmiş bir örneği olarak görülebilir. 

Lie teorisi, Lie grupları ve Lie cebirleri ile bunların uygulamalarından oluşan 

matematiğin bir alt dalıdır ve 19. yüzyılın sonlarında Norveçli matematikçi Sophus 

Lie tarafından ortaya atılmıştır. Temelde sürekli ya da diferansiyellenebilir soyut 

grupların teorisine dayanır. Bu tez çalışmasında n-boyutlu Euclid uzayı üzerinde lineer 

dönüşümlere karşılık gelen matrislerin gruplarını ele alınmıştır. Bunun için çeşitli 

kaynaklardan matris gruplarının yapıları ve bunlar üzerindeki ilgili önerme ve 

teoremleri kullanılmıştır. Diğer taraftan, Lie teorisi temel olarak topoloji ve 

diferansiyellenebilir manifoldların grup yapısına dayanmaktadır. Bu sebeple bütünlük 

açısından, diferansiyellenebilir manifoldların teorisindeki ilgili tanım ve teoremler ile 

ilgili topolojik temellere değinilmiştir. Bir Lie grubu kendisine ilişik bir yapı olan Lie 

cebiri kavramı ile birlikte anılır. Lie grupları ile Lie cebirleri arasındaki ilişki üstel 

tasvir ile sağlanır. Bazı çalışmalarda Lie grupları ile çalışırken, bunlar yerine Lie 

cebirleri ile çalışmak daha pratik ve uygun olabilir. 

Herhangi bir matris grubunu, üzerinde kurduğumuz diferansiyellenebilir yapı 

ile birlikte bir manifold ve işlem ile birlikte bir Lie grup yapısına sahiptir. Bu tez 

çalışmasında özel olarak genel lineer grup, özel lineer grup ve ortogonal grup ele 

alınarak bunların Lie cebirleri de ayrıntılı incelenmiştir. 

Anahtar Kelimeler: Lie grubu, Lie cebiri, matris grubu. 
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ABSTRACT 

A SURVEY OF MATRİX GROUPS İN LİE THEORY 

Matrix groups have an important role in many fields of mathematics and its 

applications. Matrix groups are discussed especially with their algebraic structures (in 

the sense of abstract algebra and linear algebra), in this thesis the topological structure 

of matrix groups is also discussed. It has also been seen in previous studies that matrix 

groups can be seen as an interesting mathematically intertwined example of algebra 

and geometry. 

Lie theory is a subbranch of mathematics consisting of Lie groups and Lie 

algebras and their applications, and was introduced by the Norwegian mathematician 

Sophus Lie in the late 19th century. It is basically based on the theory of continuous 

or differentiable abstract groups. In the thesis, groups of matrices corresponding to 

linear  transformations on n-dimensional Euclidean space are discussed. For doing this, 

the structures of matrix groups from various sources and their related propositions and 

theorems are used. On the other hand, Lie theory is mainly based on topology and 

group structure of properly differentiable manifolds. For this reason, for the sake of 

completeness, topological foundations related to the related definitions and theorems 

in the theory of differentiable manifolds are mentioned.  

A Lie group is associated with its associated structure, the concept of Lie 

algebra. The relationship between Lie groups and Lie algebras is provided by 

exponential map. In some studies, when working with Lie groups, it may be more 

practical and appropriate to work with Lie algebras instead. Any matrix group has a 

manifold and a Lie group structure with the operation, along with the differentiable 

structure we build on it. In this thesis, the general linear group, the special linear group 

and the orthogonal group have been dealt with and their Lie algebras have been 

examined in detail. 

Keywords: Lie groups, Lie algebras, matrix groups. 
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1. GİRİŞ

Lie teorisi, Lie grupları teorisi ve Lie cebirleri teorisi ile bunların 

uygulamalarından oluşan matematiğin bir alt dalıdır ve 19. yüzyılın sonlarında 

Norveçli matematikçi Sophus Lie tarafından ortaya atılmıştır. Lie teorisi, klasik, 

diferansiyel ve cebirsel geometri, topoloji, adi ve kısmi diferansiyel denklemler gibi 

ihtiva ettiği zengin matematiksel içerikle ve yakın ilişki de olduğu fizik ve mühendislik 

alanlarıyla disiplinler arası bir konudur. Temelde sürekli ya da diferansiyellenebilir 

grupların yani sürekli ya da diferansiyellenebilir bir işlem ile birlikte soyut grupların 

teorisine dayanır. Bu tez çalışmasında özel olarak n-boyutlu Euclid uzayı üzerinde 

lineer dönüşümlere karşılık gelen matrislerin grupları ele alınmıştır. Bunun için çeşitli 

kaynaklardan matris gruplarının yapıları ve bunlar üzerindeki ilgili önerme ve 

teoremleri kullanıldı. Matris gruplarını Lie teorisi açısından incelenerek Lie grubu ve 

Lie cebiri yapılarını ortaya koymaktadır. Böylelikle matris gruplarının cebirsel 

yapısının yanında, topolojik yapısını da incelemek amaçlanmıştır. Ayrıca, Lie grubu 

ile Lie cebiri arasındaki ilişkiyi açıklamak ve bazı spesifik matris Lie grubu örneklerini 

incelemek tezin hedeflerinden biridir.  

Tez çalışması beş bölümden oluşmaktadır. Birinci bölüm giriş kısmına ayrılmış 

ve Lie teorisinin matematikteki yeri ve önemine vurgu yapılmıştır. İkinci bölümde; 

matris grupları başlığında genel lineer grup, özel lineer grup, ortogonal grup 

incelenmiş ve ayrıca matris grupları için topolojik kavramlar ve özellikler 

irdelenmiştir. 

Üçüncü bölümde; manifoldlar, Lie cebirleri ve Lie grupları ile üstel tasvir 

başlıkları altında, ikinci bölümde bahsi geçen matris gruplarının Lie cebirleri 

incelenmiştir. Matrisler için üstel tasvir tanımlanarak, üstel tasvir yardımıyla matris 

grupları ile Lie cebiri ilişkisi ortaya konmuştur. 

Dördüncü bölüm olan matris Lie grupları başlığında ise Lie cebirinden alınan 

bir elemanın üstel tasvir vasıtasıyla Lie grubu elemanına nasıl dönüştürüldüğü konusu 

ayrıntılarıyla ispatlanmıştır. Sonuç olarak tüm matris gruplarının bir manifold yapısına 

sahip olduğu ve bu yapı ile birlikte Lie grubu olduğu ispatlanmıştır. 
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2. MATRİS GRUPLARI

Bu tez çalışmasının amaçları doğrultusunda, bileşenleri sadece reel sayılar olan 

matrisler ile çalışacağız. Benzer şekilde kompleks sayılar veya quaterniyonlar gibi 

değişik cisimler üzerinde matris grupları oluşturmak mümkün olmakla birlikte bunlar 

tez konumuz dışına kalmaktadır. Bileşenleri reel sayılar olan, 𝑛 × 𝑛 tipindeki tüm kare 

matrislerin kümesi 𝑀𝑛(ℝ) ile gösterilsin. 

2.1. Genel Lineer Grup 

Tanım: ℝ üzerinde bir 𝐺𝐿𝑛(ℝ) grubu aşağıdaki gibi tanımlanır.

𝐺𝐿𝑛(ℝ) ={𝐴 ∈ 𝑀𝑛(ℝ)|∃B ∈ 𝑀𝑛(ℝ) 𝐴𝐵 = 𝐵𝐴 = 𝛪𝑛}

Burada, 𝛪𝑛 matrisi 𝑛 × 𝑛 boyutlu birim matristir. 𝐺𝐿𝑛(ℝ) grubu tersi alınabilir

𝑛 × 𝑛 tipindeki tüm matrislerden oluşur. 

Lemma: 𝐺𝐿𝑛(ℝ) matris çarpma işlemi altında bir gruptur.

İspat: 𝑛 ∈ ℕ keyfi olsun ve 𝐺𝐿𝑛(ℝ) grubunu düşünelim.  𝐴, 𝐵 ∈ 𝑀𝑛(ℝ) kare

matrisleri için det(𝐴)𝑑𝑒𝑡 (𝐵) = 𝑑𝑒𝑡(𝐴𝐵) dir. Ayrıca, 𝑋, 𝑌 ∈ 𝐺𝐿𝑛(ℝ) olduğunda

𝑑𝑒𝑡(𝑋) ≠ 0 ≠ 𝑑𝑒𝑡(𝑌) olup 

𝑑𝑒𝑡(𝑋𝑌) = det(𝑋) det (𝑌) ≠ 0      (2.1) 

dir. Böylece 𝑋𝑌 ∈ 𝐺𝐿𝑛(ℝ) olduğu gösterilir.

Dolayısıyla 𝐺𝐿𝑛(ℝ) matris çarpma işlemi altında kapalıdır. Şimdi 𝐺𝐿𝑛(ℝ)’nin

üç özellik ile grup olduğunu gösterelim. 

Birleşme özelliği: 

𝐴 = (𝑎𝑖𝑗), 𝐵 = (𝑏𝑖𝑗) ve 𝐶 = (𝑐𝑖𝑗) ∈ 𝑀𝑛(ℝ) olsun. 

(𝐴 ∗ 𝐵) ∗ 𝐶 = ((𝑎𝑖𝑗) ∗ (𝑏𝑖𝑗)) ∗ (𝑐𝑖𝑗)

 = (∑ 𝑎𝑖𝑘𝑏𝑘𝑗

𝑛

𝑘=1

) ∗ (𝑐𝑖𝑗) 
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 = (∑(∑ 𝑎𝑖𝑘𝑏𝑘𝑙

𝑛

𝑘=1

)

𝑛

𝑙=1

∗ (𝑐𝑙𝑗)) 

= (∑𝑎𝑖𝑙

𝑛

𝑙=1

∗ (∑ 𝑏𝑙𝑘

𝑛

𝑘=1

∗ 𝑐𝑘𝑗))  

= (𝑎𝑖𝑗) ∗ (∑ 𝑏𝑙𝑘

𝑛

𝑘=1

∗ 𝑐𝑘𝑗)  

= (𝑎𝑖𝑗) ∗ ((𝑏𝑖𝑗) ∗ (𝑐𝑖𝑗)) 

 = 𝐴 ∗ (𝐵 ∗ 𝐶)  (𝟐. 𝟐) 

Böylece matris çarpma işlemi birleşmelidir. Bu nedenle bu özellik 𝐺𝐿𝑛(ℝ)

grubu için geçerlidir. 

Birim eleman özelliği: 𝐴 ∈ 𝐺𝐿𝑛(ℝ) olsun.

𝐴 = [

𝑎11  𝑎12

𝑎21 𝑎22

⋯ 𝑎1𝑛

⋯ 𝑎2𝑛

⋮ ⋮
𝑎𝑛1 𝑎𝑛2

⋱ ⋮
⋯ 𝑎𝑛𝑛

] 

(2.3) 

𝛪𝑛 birim matrisi aşağıdaki gibi tanımlanır. 

𝛪𝑛 = [

1  0
0 1

⋯ 0
⋯ 0

⋮ ⋮
0 0

⋱ ⋮
⋯ 1

] 

(2.4) 

𝐴 ∙ 𝛪𝑛 = 𝛪𝑛 ∙ 𝐴 = 𝐴  ve det(𝛪𝑛) = 1, 𝛪𝑛 ∈ 𝐺𝐿𝑛(ℝ) olur.

Ters eleman özelliği: 𝐴 ∈ 𝐺𝐿𝑛(ℝ) olduğundan 𝐺𝐿𝑛(ℝ) grup tanımından 𝐴 matrisinin

tersi olduğu söylenir. Bu yüzden 𝐴 matrisinin tersi vardır. 𝐴−1 matrisi tersi alınabilir

olduğundan (𝐴−1)−1 = 𝐴 olur.

Dolayısıyla 𝐴−1 ∈ 𝐺𝐿𝑛(ℝ) dir. Daha sonra, 𝐺𝐿𝑛(ℝ) matris çarpma işlemi

altında bir gruptur. Bir reel sayı dizisinin yakınsaklığının tanımına benzer şekilde 

𝑀𝑛(ℝ)’da bir matris dizisinin yakınsaklığı da tanımlanabilir.
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Tanım: 𝐴𝑚 dizisi 𝑀𝑛(ℝ)’da matrislerin bir dizisi olsun. Eğer; 𝑚 sonsuza yaklaşırken

(𝑚 → ∞) 1 ≤ 𝑖, 𝑗 ≤ 𝑛 için, 𝐴𝑚 dizisinin her (𝑖𝑗). elemanı yani (𝐴𝑚)𝑖𝑗 değeri, bir 𝐴

matrisinin karşılık gelen (𝑖𝑗). bileşenine yani (𝐴)𝑖𝑗 değerine yakınsıyor ise 𝐴𝑚 matris

dizisi 𝐴 matrisine yakınsıyor denir. 

Tanım: 𝐺 ⊂ 𝐺𝐿𝑛(ℝ) herhangi bir alt grup olsun. Eğer 𝐴𝑚, 𝐺’deki herhangi bir matris

dizisiyse ve 𝐴𝑚 bir 𝐴 matrisine yakınsıyor ise, bu durumda 𝐴 ∈ 𝐺 özelliğini sağlayan 

genel lineer grubun tüm alt gruplarına matris grubu denir. 

Bu tanımdan bir matris grubunun topolojik anlamda kapalı bir küme olduğu 

sonucunu çıkartabiliriz. Bu ise matris gruplarının topolojisini incelediğimiz 2.4 nolu 

bölümdeki gibi matris gruplarının tüm limit noktalarını içerdiği anlamına gelir. 

Böylece bu bölümü 𝐺𝐿𝑛(ℝ) genel lineer grubun bir matris grubu olduğunu

söyleyerek bitirebiliriz. 

2.2. Özel Lineer Grup 

Tanım: ℝ üzerinde bir özel lineer grup 𝑆𝐿𝑛(ℝ) ile gösterilen, determinantı 1 olan 𝑛 ×

𝑛 boyutlu matrislerden oluşan kümedir. 

𝑆𝐿𝑛(ℝ) = {A ∈ 𝐺𝐿𝑛(ℝ)|𝑑𝑒𝑡 = 1}                                            (2.5)

Özel lineer grup bir matris grubudur. Bunu ispatlamak için öncelikle 

determinant fonksiyonun sürekli olduğunu göstermek gerekir. 

Teorem: Determinant fonksiyonu 𝑑𝑒𝑡:𝑀𝑛(ℝ) → ℝ süreklidir.

İspat: İspat 𝑛 üzerinde tümevarımla gösterilecektir. 𝑛 = 1 olsun. 1 × 1 boyutlu 

matrisin determinantı kendisidir. Bu nedenle girdileri kendisi olan determinant 

fonksiyonu süreklidir. Böylece 𝑀1(ℝ)’den ℝ’ye determinant fonksiyonu süreklidir.

Şimdi 𝑀𝑛(ℝ)’dan ℝ’ye determinant fonksiyonunun sürekli olduğunu

varsayalım. Amacımız determinant fonksiyonunun 𝑀𝑛+1(ℝ)’den ℝ’ye sürekli

olduğunu göstermektir. 

𝐴 ∈ 𝑀𝑛+1(ℝ) olsun.
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𝐴 = [

𝑎1,1  𝑎1,2

𝑎2,1 𝑎2,2

⋯ 𝑎1,𝑛+1

⋯ 𝑎2,𝑛+1

⋮ ⋮
𝑎𝑛+1,1 𝑎𝑛+1,2

⋱ ⋮
⋯ 𝑎𝑛+1,𝑛+1

] 

(𝟐. 𝟔) 

Determinantın tanımına göre; 

𝑑𝑒𝑡𝐴 = ∑(−1)𝑖+𝑗

𝑛+1

𝑖=1

𝑎𝑖,𝑗𝑀𝑖,𝑗   (𝟐. 𝟕) 

𝑀𝑖,𝑗 her 𝑖 için bir 𝑛 × 𝑛 boyutlu matrisinin determinantı olduğundan, 𝑗 ∈

{1,2,⋯𝑛 + 1}, 𝑑𝑒𝑡𝐴  reel bir sayı ile çarpılan sürekli fonksiyonların toplamı olarak 

tanımlanabilir. Bu yüzden 𝑑𝑒𝑡𝐴 fonksiyonu süreklidir. 

Böylece 𝑀𝑛+1(ℝ)’den ℝ’ye tanımlanan determinant fonksiyonunun sürekli

olduğu tümevarım yoluyla ispatlanmıştır. 

Teorem: 𝑆𝐿𝑛(ℝ) grubu bir matris grubudur.

İspat: 𝑛 ∈ ℕ keyfi olsun. İlk önce 𝑆𝐿𝑛(ℝ)’nin 𝐺𝐿𝑛(ℝ)’nin bir alt grubu olduğunu

gösterelim. 𝐴, 𝐵 ∈ 𝑆𝐿𝑛(ℝ) olsun.

𝑑𝑒𝑡(𝐴𝐵) = 𝑑𝑒𝑡(𝐴) ∙ 𝑑𝑒𝑡(𝐵) ve 𝑑𝑒𝑡(𝐴) = 1 = 𝑑𝑒𝑡(𝐵)                       (𝟐. 𝟖) 

olduğundan 𝐴, 𝐵 ∈ 𝑆𝐿𝑛(ℝ), 𝑑𝑒𝑡(𝐴𝐵) = det(𝐴) ∙ det(𝐵) = 1 ∙ 1 = 1. Böylece 𝐴𝐵 ∈

𝑆𝐿𝑛(ℝ) olur.

Dolayısıyla 𝑆𝐿𝑛(ℝ) matris çarpma işlemi altında kapalıdır. Ayrıca,

𝑑𝑒𝑡(𝛪𝑛) =1 olduğundan 𝛪𝑛 ∈ 𝑆𝐿𝑛(ℝ) olur. Son olarak

𝑑𝑒𝑡(𝐴𝐴−1) = det(𝛪𝑛) = 1 = det(𝐴) ∙ det(𝐴−1) ve det(𝐴) = 1, det(𝐴−1) = 1

olur. Bu yüzden 𝐴−1 ∈ 𝑆𝐿𝑛(ℝ) olacaktır. Böylece 𝑆𝐿𝑛(ℝ), 𝐺𝐿𝑛(ℝ)’nin alt grubu

olduğu görülür. 

(𝐴𝑚) dizisi her 𝑚 ∈ ℕ ve 𝐴𝑚 → 𝐴 için  𝐴𝑚 ∈ 𝑆𝐿𝑛(ℝ) matrisi dizisi olsun.

det 𝐴𝑚 = 1 olduğunda her 𝑚 ∈ ℕ için determinant fonksiyonu sürekli olduğundan bir 

önceki teorem ve 

𝑓: 𝐴 → ℝ fonksiyonu verilsin. Tüm 𝑛 ∈ ℕ için (𝑥𝑛) dizi olmak üzere
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𝑥𝑛 ∈ 𝐴 için 𝑥𝑛 → 𝑐 yakınsıyor ise 𝑓(𝑥𝑛) → 𝑓(𝑐) ve lim
𝑥→𝑐

𝑓(𝑥) = 𝑓(𝑐) teoremi

gereğince det(𝐴) = 1 dir. Böylece 𝐴 ∈ 𝑆𝐿𝑛(ℝ) olur. Böylece 𝑆𝐿𝑛(ℝ) grubu bir

matris grubudur. 

2.3. Ortogonal Grup 

Ortogonal grubu tanımlayabilmek için bazı terim, notasyon ve yardımcı 

teoremlere ihtiyaç vardır. 

Tanım: ℝ𝑛 uzayındaki standart iç çarpım ℝ𝑛 × ℝ𝑛 → ℝ ile tanımlanan

fonksiyondur. 

〈(𝑥1, 𝑥2, … , 𝑥𝑛), (𝑦1, 𝑦2, … , 𝑦𝑛)〉ℝ ≔ 𝑥1 ∙ 𝑦1 + 𝑥2 ∙ 𝑦2 + ⋯𝑥𝑛 ∙ 𝑦𝑛  (𝟐. 𝟗) 

şeklinde tanımlanır.     

Tanım: ℝ𝑛 uzayındaki standart norm (boy) ℝ𝑛 → ℝ+ ile tanımlanan fonksiyondur. 

|𝑥|ℝ = √〈𝑥, 𝑥〉ℝ                                                                (𝟐. 𝟏𝟎)

şeklinde tanımlanır. 

Tanım: 𝑥, 𝑦 ∈ ℝ𝑛 vektörler olmak üzere, eğer 〈𝑥, 𝑦〉 = 0 sağlanıyorsa ortogonal,

|𝑥| = 1 ise birim vektör olarak olarak adlandırılır. Ayrıca bir 𝐴 ∈ 𝑀𝑛(ℝ) matrisinin

sütun vektörleri ortogonal birim vektörler ise 𝐴 ya ortogonal denir. 

Bu tanımın tüm 𝑥, 𝑦 ∈ ℝ için 〈𝑥𝐴, 𝑦𝐴〉 = 〈𝑥, 𝑦〉 ile eşdeğer olduğu söylenebilir. 

Bu durum izometri koşulu olarak bilinir, bu ise bir ortogonal matrisin uzaklık koruyan 

lineer transformasyon olduğu anlamına gelir. Tanımdan her 𝐴 ∈ 𝑀𝑛(ℝ) ortogonal

matris için  

𝐴𝑇 ∙ 𝐴 = 𝛪𝑛 = 𝐴 ∙ 𝐴𝑇  (𝟐. 𝟏𝟏) 

eşitliği sağlanır. Burada 𝐴𝑇, 𝐴 matrisinin transpozesi olarak gösterilir. 𝑎𝑖𝑗, 𝐴 matrisinin

𝑖.satırı ve 𝑗.sütünu olmak üzere o halde 𝑎𝑖𝑗 𝐴𝑇 matrisinin 𝑖.sütünu ve 𝑗.satırı olarak

ifade edilir. 

Bir sonraki tanım ortogonalliği farklı üzerinde genelleştirir. 

Tanım: ℝ üzerinde ortogonal grup aşağıdaki gibi tanımlanır. 

𝑂𝑛(ℝ) = {𝐴 ∈ 𝐺𝐿𝑛(ℝ)|〈𝑥𝐴, 𝑦𝐴〉 = 〈𝑥, 𝑦〉 tüm 𝑥, 𝑦 ∈ ℝ𝑛 için}  (𝟐. 𝟏𝟐) 
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𝑂𝑛(ℝ) grubunun bir matris grubu olduğunun ispatı bölüm sonunda gösterilecektir. Bu

ispattan önce birkaç temel tanım ve kavram verilecektir. 

Tanım: ℝ𝑛 uzayının bir kümesi {𝑥1, 𝑥2 ⋯ , 𝑥𝑛} olmak üzere, eğer 𝑖 = 𝑗 olduğunda

〈𝑥𝑖 , 𝑥𝑗〉 = 1, 𝑖 ≠ 𝑗 olduğunda 〈𝑥𝑖, 𝑥𝑗〉 = 0 sağlanıyorsa kümesi ortonormal olarak

adlandırılır. 

Yardımcı Teorem: 𝐴, 𝐵 ∈ 𝑀𝑛(ℝ) ise (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇 eşitliği sağlanır.

İspat: 𝐴, 𝐵 ∈ 𝑀𝑛(ℝ) olsun.

𝐴 = [

𝑎11  𝑎12

𝑎21 𝑎22

⋯ 𝑎1𝑛

⋯ 𝑎2𝑛

⋮ ⋮
𝑎𝑛1 𝑎𝑛2

⋱ ⋮
⋯ 𝑎𝑛𝑛

] , 𝐵 = [

𝑏11  𝑏12

𝑏21 𝑏22

⋯ 𝑏1𝑛

⋯ 𝑏2𝑛

⋮ ⋮
𝑏𝑛1 𝑏𝑛2

⋱ ⋮
⋯ 𝑏𝑛𝑛

] 
(𝟐. 𝟏𝟑) 

şeklinde tanımlı olup aşağıdaki eşitlikler sağlanır. 

(𝐴𝐵)𝑇 = ([

𝑎11  𝑎12

𝑎21 𝑎22

⋯ 𝑎1𝑛

⋯ 𝑎2𝑛

⋮ ⋮
𝑎𝑛1 𝑎𝑛2

⋱ ⋮
⋯ 𝑎𝑛𝑛

] [

𝑏11  𝑏12

𝑏21 𝑏22

⋯ 𝑏1𝑛

⋯ 𝑏2𝑛

⋮ ⋮
𝑏𝑛1 𝑏𝑛2

⋱ ⋮
⋯ 𝑏𝑛𝑛

])

𝑇

= [

𝑎11 𝑏11 + ⋯+ 𝑎1𝑛𝑏𝑛1  𝑎11 𝑏12 + ⋯+ 𝑎1𝑛𝑏𝑛2

𝑎21 𝑏11 + ⋯+ 𝑎2𝑛𝑏𝑛1 𝑎21 𝑏12 + ⋯+ 𝑎2𝑛𝑏𝑛2

⋯ 𝑎11 𝑏1𝑛 + ⋯ + 𝑎1𝑛𝑏𝑛𝑛

⋯ 𝑎21 𝑏1𝑛 + ⋯+ 𝑎2𝑛𝑏𝑛𝑛

⋮ ⋮
𝑎11 𝑏11 + ⋯+ 𝑎1𝑛𝑏𝑛1 𝑎11 𝑏11 + ⋯+ 𝑎1𝑛𝑏𝑛1

⋱ ⋮
⋯ 𝑎11 𝑏11 + ⋯+ 𝑎1𝑛𝑏𝑛1

] 

= [

𝑏11  𝑏12

𝑏21 𝑏22

⋯ 𝑏1𝑛

⋯ 𝑏2𝑛

⋮ ⋮
𝑏𝑛1 𝑏𝑛2

⋱ ⋮
⋯ 𝑏𝑛𝑛

] [

𝑎11  𝑎12

𝑎21 𝑎22

⋯ 𝑎1𝑛

⋯ 𝑎2𝑛

⋮ ⋮
𝑎𝑛1 𝑎𝑛2

⋱ ⋮
⋯ 𝑎𝑛𝑛

] 

= 𝐵𝑇𝐴𝑇  (𝟐. 𝟏𝟒) 

Yardımcı Teorem: 𝐴, 𝐵 ∈ 𝑀𝑛(ℝ) ise (𝐴𝑛)𝑇 = (𝐴𝑇)𝑛

Tümevarım kullanalım. 𝑛 = 1 için (𝐴1)𝑇 = 𝐴𝑇 = (𝐴𝑇)1 olduğu görülür.

Herhangi bir 𝑛 ∈ ℕ için (𝐴𝑛)𝑇 = (𝐴𝑇)𝑛 olduğunu varsayalım. (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇

eşitliğinden  

(𝐴𝑇)𝑛+1 = (𝐴𝑇)𝑛 ∙ 𝐴𝑇 = (𝐴𝑛)𝑇 ∙ 𝐴𝑇 = (𝐴 ∙ 𝐴𝑛)𝑇 = (𝐴𝑛+1)𝑇  (𝟐. 𝟏𝟓) 

elde edilir. Daha sonra, 



8 

(𝐴𝑛)𝑇 = (𝐴𝑇)𝑛 eşitliğinin matematiksel tümevarım ilkesine göre doğru olduğu

gösterilmiş olur. 

Teorem: Tüm 𝐴 ∈ 𝐺𝐿𝑛(ℝ) için 𝐴 ∈ 𝑂𝑛(ℝ) olması için gerek ve yeter koşul

𝐴 ∙ 𝐴𝑇 = 𝛪𝑛 dur.

İspat: İspata başlamadan önce, 𝐴 ∈ 𝑀𝑛(ℝ) ve tüm 𝑥 ∈ ℝ𝑛 için  𝑅𝐴: ℝ𝑛 → ℝ𝑛

𝑅𝐴(𝑥) = 𝑥 ∙ 𝐴         (𝟐. 𝟏𝟔) 

fonksiyonunu tanımlayalım.  𝐴 = [𝑎𝑖𝑗]𝑛 ∈ 𝐺𝐿𝑛(ℝ) keyfi matrisini ele alalım.

Gerek koşul için; 𝐴 ∈ 𝑂𝑛(ℝ) olsun. ℝ𝑛 uzayının bir ortonormal bazı

{𝑒1 = (1,0,⋯ ,0), 𝑒2 = (0,1,⋯ ,0),⋯ , 𝑒𝑛 = (0, ,0⋯ ,1)} ve 〈𝑥 ∙ 𝐴, 𝑦 ∙ 𝐴〉 = 〈𝑥, 𝑦〉

olduğundan; 

{𝑅𝐴(𝑒1), 𝑅𝐴(𝑒2),⋯𝑅𝐴(𝑒𝑛)}                                                       (𝟐. 𝟏𝟕)

bir ortonormal vektörler kümesidir. Ayrıca {𝑅𝐴(𝑒1), 𝑅𝐴(𝑒2),⋯𝑅𝐴(𝑒𝑛)} vektörleri 𝐴

matrisinin satır kümesidir. Yani 𝑅𝐴(𝑒𝑖) 𝐴 matrisinin 𝑖.satırına karşılık gelir.

(𝐴 ∙ 𝐴𝑇)𝑖𝑗 = (𝐴 nın i. satırı) ∙ ( 𝐴𝑇 nınj. sütunu)  (𝟐. 𝟏𝟖) 

 = (𝐴 nın i. satırı) ∙ (𝐴 nın j. satırı) 

= 〈(𝐴nın i. satırı), (𝐴 nın j. satırı)〉 

Böylece, 𝑖 = 𝑗 olduğunda; 

〈(𝐴 nın i. satırı), (𝐴 nın i. satırı)〉 = 〈𝑅𝐴(𝑒𝑖), 𝑅𝐴(𝑒𝑖)〉 = 1  (𝟐. 𝟏𝟗) 

eşitliklerinden (𝐴 ∙ 𝐴𝑇)𝑖𝑗 = 1 ve 𝑖 ≠ 𝑗olduğunda;

〈(𝐴nın i. satırı), (𝐴 nın j. sütunu)〉 = 〈𝑅𝐴(𝑒𝑖), 𝑅𝐴(𝑒𝑗)〉 = 0  (𝟐. 𝟐𝟎) 

eşitliklerinden (𝐴 ∙ 𝐴𝑇)𝑖𝑗 = 0  ve böylece, 𝐴 ∙ 𝐴𝑇 = 𝛪𝑛 bulunur.

Yeter koşul için; 𝐴 ∙ 𝐴𝑇 = 𝛪𝑛 olsun. Bu 𝑖 = 𝑗 olduğunda 〈𝑅𝐴(𝑒𝑖), 𝑅𝐴(𝑒𝑖)〉 =

1 ve 𝑖 ≠ 𝑗 olduğunda  〈𝑅𝐴(𝑒𝑖), 𝑅𝐴(𝑒𝑗)〉 = 0 olduğu anlamına gelir.

𝑥 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛), 𝑦 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑛) ∈ ℝ𝑛 keyfi elemanlar olsun.

〈𝑥 ∙ 𝐴, 𝑦 ∙ 𝐴〉 = 〈𝑅𝐴(𝑥), 𝑅𝐴(𝑦)〉 
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= ⟨∑ 𝑥𝑖(𝐴 nın i. satırı),

𝑛

𝑖=1

∑𝑦𝑗(𝐴 nın j. satırı),

𝑛

𝑗=1

⟩ 

= ∑𝑥𝑖⟨(𝐴 nın i. satırı)

𝑛

𝑖=1

, (𝐴 nın i. satırı)⟩𝑦𝑖 

= 𝑥1 ∙ 𝑦1 + 𝑥2 ∙ 𝑦2 + ⋯𝑥𝑛 ∙ 𝑦𝑛 

= 〈𝑥, 𝑦〉 
(𝟐. 𝟐𝟏)  

Dolayısıyla 𝐴 ∈ 𝑂𝑛(ℝ) olduğu görülür.

2.4. Matris Gruplarının Topolojisi 

n-boyutlu Öklid uzayı ℝ𝑛 üzerindeki Öklid metriği tarafından indirgenen

metrik uzay, ℝ𝑛 üzerindeki Öklid topolojisi olarak bilinir. Şimdi amacımız ℝ𝑛 ile

𝑀𝑛(ℝ) matris kümesi arasında bir bağlantı oluşturmaktır. Bu bağlantı için de ℝ𝑛

üzerindeki Öklid topolojisini kullanacağız. 

ℝ𝑛 ile 𝑀𝑛(ℝ) matris kümesi arasında bir ilişki kurabilmek için bu kümeler arasında

aşağıdaki bir birebir eşleme tanımlayalım. 

𝜑:ℝ𝑛2
→ 𝑀𝑛(ℝ)

𝑥 → 𝜑(𝑥) = (𝑥11 , 𝑥12 , … , 𝑥1𝑛 , 𝑥21 , 𝑥22 , … , 𝑥2𝑛, … , 𝑥𝑛𝑛 )

𝜑(𝑥) = [

𝑥11  𝑥12

𝑥21 𝑥22

⋯ 𝑥1𝑛

⋯ 𝑥2𝑛

⋮ ⋮
𝑥𝑛1 𝑥𝑛2

⋱ ⋮
⋯ 𝑥𝑛𝑛

] 

(𝟐. 𝟐𝟐) 

Bu eşlemenin birebir ve örten bir fonksiyon olduğu açıktır. Bu fonksiyon 

sayesinde matrisler üzerinde çalışırken, ℝ𝑛2
 Öklid uzayı içinde kalarak Öklid metriği

ve Öklid topolojisine uygulanan altuzay topolojisi kullanarak matris gruplarının 

geometrisi ve topolojisini inceleyebileceğiz. 

Topolojik uzaylardan birkaç tanım ve yardımcı teoremi hatırlayalım. 
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Yardımcı Teorem: (𝑋, 𝜏) bir topolojik uzay, 𝑌 ⊆ 𝑋 ve 𝜏𝑌 = {𝑌 ∩ 𝑈| 𝑈 ∈ 𝜏} altuzay

topoloji olsun. 𝑌 de bir 𝐴 alt kümesinin kapalı olması için gerek ve yeter koşul 𝐴 nın 

𝑌 ile 𝑋 in bir kapalı alt kümesinin kesişimine eşit olmasıdır. 

İspat: Gerek koşul için, (𝑌, 𝜏𝑌) ikilisi (𝑋, 𝜏) topolojik uzayının alt uzayı ve 𝐴 kümesi

𝑌 de bir kapalı küme olsun. Böylece 𝑌 − 𝐴 bir açık küme olup 𝑌 − 𝐴 ∈ 𝜏𝑌 olur ve 𝜏𝑌  

tanımından 𝑌 − 𝐴 = 𝑌 ∩ 𝑈 olacak şekilde 𝑈 ∈ 𝜏 vardır. 𝑋 − 𝑈 kümesi 𝑋 de kapalı 

olduğundan 𝐴 = 𝑌 ∩ (X−𝑈) olup 𝐴 kapalı kümesi 𝑌 ile 𝑋 in bir kapalı alt kümesinin 

kesişimine eşit bulunur. 

Yeter koşul için, 𝐶 kümesi 𝑋 de kapalı bir küme olmak üzere 𝐴 = 𝐶 ∩ 𝑌 olsun. 

Buradan 𝑋 − 𝐶 ∈ 𝜏 ve 𝑌 ∩ (𝑋 − 𝐶)𝐴 ∈ 𝜏𝑌 çıkar. (𝑋 − 𝐶) ∩ 𝑌 = 𝑌 − 𝐴 olduğundan

𝑌 − 𝐴 ∈ 𝜏𝑌 ve böylece 𝑌 nin kapalı olduğu bulunmuş olur. 

Tanım: (𝑋, 𝜏) ve (𝑌, 𝜏′) topolojik uzaylar olsun. 𝑌 nin her açık 𝑉 alt kümesi için 

𝑓−1(𝑉) kümesi 𝑋 de açık ise 𝑓: 𝑋 → 𝑌 fonksiyonuna sürekli denir.

Yardımcı Teorem: (𝑋, 𝜏) ve (𝑌, 𝜏′) topolojik uzaylar ve 𝑓: 𝑋 → 𝑌 bir fonksiyon 

olsun. Eğer 𝑓 sürekli ise 𝑌 nin her 𝐵 kapalı alt kümesi için, 𝑓−1(𝐵) kümesi 𝑋 de

kapalıdır. 

İspat: (𝑋, 𝜏) ve (𝑌, 𝜏′) topolojik uzaylar ve 𝑓: 𝑋 → 𝑌 bir fonksiyon olsun. 𝑓 in sürekli 

olduğunu ve  𝐵 kümesinin 𝑌de kapalı olduğunu varsayalım. 𝑌 − 𝐵 ∈  𝜏′ ve 𝑓 sürekli 

olduğundan 𝑓−1(𝑌 − 𝐵) kümesi 𝑋 de açıktır. 𝑓−1(𝑌 − 𝐵) = 𝑓−1(𝑌) − 𝑓−1(𝐵) =

𝑋 − 𝑓−1(𝐵) olduğundan 𝑓−1(𝐵) kümesi 𝑋 de kapalıdır.

Teorem: 𝑂𝑛(ℝ) kümesi bir matris grubudur. 

İspat: 𝑛 ∈ ℕ sabit bir sayı olsun. Önce 𝑂𝑛(ℝ) kümesinin bir grup olduğunu 

gösterelim. Bunun için grup olma aksiyomlarını inceleyelim.  

i) 𝑂𝑛(ℝ) matris çarpma işlemine göre kapalıdır. Gerçekten 𝐴, 𝐵 ∈ 𝑂𝑛(ℝ)için

(𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇 olduğundan aşağıdaki eşitlikler gerçeklenir.

𝐴𝐵(𝐴𝐵)𝑇 = 𝐴𝐵𝐵𝑇𝐴𝑇 = 𝐴𝐼𝑛𝐴𝑇 = 𝐴𝐴𝑇 = 𝐼𝑛

(𝐴𝐵)𝑇𝐴𝐵 = 𝐵𝑇𝐴𝑇𝐴𝐵 = 𝐵𝑇𝐼𝑛𝐵 = 𝐵𝑇𝐵 = 𝐼𝑛
(𝟐. 𝟐𝟑) 

ii) Herhangi 𝑥, 𝑦 ∈ ℝ𝑛 için 〈𝑥𝐼𝑛, 𝑦𝐼𝑛〉 = 〈𝑥, 𝑦〉 olduğundan 𝑂𝑛(ℝ) birim

matrisi içerir.
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iii) Her 𝑀 ∈ 𝑂𝑛(ℝ) için 𝑀−1 = 𝑀𝑇 olduğundan ve

𝑀−1(𝑀−1)𝑇 = 𝑀𝑇(𝑀𝑇)𝑇 = 𝑀𝑇𝑀 = 𝐼𝑛

(𝑀−1)𝑇𝑀−1 = (𝑀𝑇)𝑇𝑀𝑇 = 𝑀𝑀𝑇 = 𝐼𝑛
(𝟐. 𝟐𝟒) 

eşitliklerinden 𝑀−1 ∈ 𝑂𝑛(ℝ) dir.

iv) Birleşme özelliği matris çarpma işlemi için aşikardır.

Her 𝑁,𝑀 ∈ 𝑀𝑛(ℝ) matrisleri için 𝑑𝑒𝑡 (𝑁) = 𝑑𝑒𝑡 (𝑁𝑇) ve 𝑑𝑒𝑡 (𝑁𝑀) =

𝑑𝑒𝑡 (𝑁)det (𝑀) olduğundan, eğer 𝐴 ∈ 𝑂𝑛(ℝ) ise

(det(𝐴))2 = det 𝐴𝑑𝑒𝑡 𝐴 = 𝑑𝑒 𝑡(𝐴𝐴) =𝑑𝑒𝑡 (𝐴)2 = 𝑑𝑒𝑡(𝐴𝐴𝑇) = 𝑑𝑒𝑡(𝐼𝑛) = 1

olup det 𝐴 = ±1 dir. Şimdi, 

𝑇: 𝐺𝐿𝑛(ℝ) → 𝐺𝐿𝑛(ℝ)  (𝟐. 𝟐𝟓) 

 𝑋 →  𝑇(𝑋) = 𝑋𝑋𝑇

şeklinde tanımlansın. Bu durumda 𝑇 süreklidir, gerçekten her 𝑋 ∈ 𝐺𝐿𝑛(ℝ) 𝑋 = [𝑥𝑖𝑗]

olmak üzere 𝑇(𝑋) in 𝑖𝑗. bileşeni 

∑ 𝑥𝑖𝑘𝑥𝑗𝑘   

𝑛

𝑘=1

(𝟐. 𝟐𝟔) 

şeklinde olup, bu da ℝ de bir polinom fonksiyonudur. 

𝑇−1({𝐼𝑛}) = 𝑂𝑛(ℝ)  (𝟐. 𝟐𝟕) 

olduğu görülür. ℝ𝑛2
 de tek nokta kümeler kapalı olduğundan ve yardımcı teorem ile

{𝐼𝑛} kümesi de 𝐺𝑛(ℝ) de kapalı olduğu söylenir. Yardımcı teoremden 𝑂𝑛(ℝ) grubu

𝐺𝑛(ℝ) de kapalıdır. Sonuç olarak 𝑂𝑛(ℝ) bir matris grubudur.
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3. MANİFOLDLAR, LİE CEBİRLERİ VE LİE GRUPLARI

Bir Lie grubu kısaca, cebirsel grup yapısına sahip diferansiyellenebilir bir 

manifoldtur. Bir manifold ise kabaca, her noktasının komşuluğunda Öklid uzayına 

benzeyen bir topolojik bir uzaydır. Dolayısıyla üzerinde çalıştığımız matris gruplarının 

Lie grubu olduğunu gösterebilmek için, öncelikle manifold, Lie grubu ve bunlarla ilgili 

kavram, tanım ve teoremleri inceleceğiz. 

3.1. Manifoldlar 

Tanım:  ℝ𝑛, n boyutlu Öklid uzayında bir açık küme 𝑈 olmak üzere, 𝑈 ⊂ ℝ𝑛, 𝑓: 𝑈 →

ℝ fonksiyonunun, 𝛼 ≤ 𝑘 ve k negatif olmayan tam sayı olmak üzere, k. mertebeden 

bütün kısmi türevleri 
𝜕𝛼𝑓

𝜕𝑥𝛼 
  var ve bu türevler sürekli ise, 𝑓 fonksiyonuna 𝐶𝑘-sınıfından

diferansiyellenebilirdir denir ve bu fonksiyonların kümesi 𝐶𝑘(𝑈, ℝ) ile gösterilir.

Özel olarak, 𝑓 sadece sürekli ise 𝐶0-sınıfındandır ve eğer 𝑓 tüm 𝑘 ≥ 0 için 𝐶𝑘-

sınıfından diferansiyellenebilir ise 𝑓,  𝐶∞- sınıfındandır denir ve 𝐶∞(𝑈, ℝ) ile

gösterilir (Warner, 1983). 

Tanım: (𝑋, 𝜏), (𝑌, 𝜏′) iki topolojik uzay ve 𝑓: 𝑋 → 𝑌 fonksiyonu tanımlansın. Eğer 𝑓

fonksiyonu birebir, örten, 𝑓  ve 𝑓−1 fonksiyonları sürekli ise 𝑓 fonksiyonuna

homeomorfizm (topolojik eş yapı dönüşümü) adı verilir. Bu durumda (𝑋, 𝜏) ve(𝑌, 𝜏′)

topolojik uzaylarına da homeomorf ( topolojik eş yapılı ) uzaylar denir.  

Tanım: 𝑎 ≠ 𝑏 olmak üzere, her 𝑎, 𝑏 ∈ (𝑋, 𝜏) için a ve b noktalarının açık 

komşulukları sırasıyla 𝑎 ∈ 𝑉 , 𝑏 ∈ 𝑈 olmak üzere, 𝑉 ∩ 𝑈 = ∅ olacak şekilde 𝑉,𝑈 ∈ 𝜏 

varsa (𝑋, 𝜏) uzayına 𝑇2-uzayı (Hausdorff uzayı), 𝜏 topolojisine de 𝑇2- (Hausdorff)

topolojisi denir. 

Tanım: M bir Hausdorff topolojik uzayı olsun. Eğer M nin her 𝑝 noktasının 𝜑: 𝑈 →

ℝ𝑛 dönüşümü bir homeomorfizma olacak şekilde bir 𝑈 komşuluğu var ise, yani M nin

her noktasının ℝ𝑛  e veya bir açık alt kümesine homeomorf olan bir komşuluğu var

ise, M uzayına n-boyutlu yerel Öklid uzayı denir. Burada 𝑈 kümesine koordinat 
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komşuluğu,  𝜑 tasvirine koordinat tasviri ve (𝑈, 𝜑) ikilisine de koordinat sistemi 

denir(Warner, 1983). 

Tanım: M bir yerel Öklid uzayı, α∈ 𝐴 için F; (𝑈𝛼 , 𝜑𝛼) koordinat sistemlerinin bir 

kolleksiyonu olsun. Eğer bu koleksiyon aşağıdaki üç özelliği sağlıyor ise, M üzerinde

𝐶∞- sınıfından bir diferansiyellenebilir yapı denir (Warner, 1983).

i. ⋃ 𝑈𝛼𝛼𝜖𝐴  = M

ii. Her 𝛼, 𝛽𝜖𝐴 için 𝜑𝛼 ∘ 𝜑𝛽
−1 bileşkesi 𝐶∞- sınıfındandır.

iii. Bu koleksiyon maksimaldir.

Tanım: 𝑀 n-boyutlu yerel Öklid uzayı ve ikinci sayılabilir bir Hausdorff uzayı olmak 

üzere, diferansiyellenebilir bir yapıya sahip ise 𝐶∞- sınıfından diferansiyellenebilir

manifold denir (Arvanitogeorgos, 2003). 

Önerme: Diferansiyellenebilir bir manifoldun açık alt kümeleri de 

diferansiyellenebilir manifoldtur.  

İspat: 𝑀 n-boyutlu bir manifold olsun. 𝑀 nin açık bir alt kümesi 𝐴 alalım. 𝑥 ∈ 𝐴 

olsun.  𝑈𝑥 ⊂ 𝑀 olmak üzere 𝑥 in bir 𝑈𝑥 komşuluğu vardır, öyle ki 𝑈𝑥, ℝ𝑛 nin açık bir

𝑉 alt kümesine homeomorfik olur. ℎ ∶  𝑈𝑥 → 𝑉 olmak üzere  

ℎ|𝐴∩𝑈𝑥
: 𝐴 ∩ 𝑈𝑥 → 𝑉 

(3.1) 

ℎ  ın 𝐴 ∩ 𝑈𝑥 ile kısıtlanışını düşünelim. Burada 𝑈𝑥 ve 𝐴 kümeleri açık olduğundan 

𝑈𝑥 ∩ 𝐴 kümesi de açıktır. 𝑥 ∈ 𝐴, 𝑥 ∈ 𝑈𝑥  ve 𝑥 ∈ 𝐴 ∩ 𝑈𝑥 olduğundan 𝐴 ∩ 𝑈𝑥 de 𝑥’in 

bir komşuluğudur. Eğer ℎ(𝐴 ∩ 𝑈𝑥)’in ℝ𝑛 ‘in bir açık alt kümesi olduğunu gösterirsek

ispat biter.  𝑈𝑥 açık,  𝐴 ∩ 𝑈𝑥 de açık, ℎ da bir homemorfizm olduğundan açık kümeleri 

açık kümelere taşır. ℎ(𝐴 ∩ 𝑈𝑥) ℝ𝑛 nin açık bir alt kümesidir.
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3.2. Lie Cebirleri ve Üstel Tasvir 

Tanım: 𝑀 ⊂ ℝ𝑚 ve  𝑥 ∈ 𝑀 olsun. 𝑀 manifoldunun 𝑥 noktasındaki tanjant uzayı

𝑇𝑥𝑀 ≔ {𝛾′(0)| 𝛾 ∶ (−𝜀, 𝜀) → 𝑀, 𝛾(0) = 𝑥 olmak üzere, diferansiyellenebilir bir

tasvir} şeklinde tanımlanır.  

Burada 𝛾: (−𝜀, 𝜀) → 𝑀 eğrisi genel olarak bir 𝑥 noktasından geçen bir yoldur. Yani, 

𝑀 ⊂ ℝ𝑚 manifoldunun 𝑥 noktasındaki tanjant uzayı, bu şekildeki tüm yolların

eğimlerinin bir koleksiyonudur, öyle ki her 𝛾 bileşen fonksiyonu, (−𝜀, 𝜀) aralığından 

ℝ ye bir diferansiyellenebilirdir. Tanjant uzay teğet uzay olarak da adlandırılabilir. 

Tanım:𝐺 ⊂ 𝐺𝐿𝑛(ℝ) matris grubunun Lie cebiri 𝛪𝑛 birim matristeki teğet 

uzaydır. 𝐺’nin Lie cebirini  𝑔 ≔ 𝑔(𝐺) ≔ 𝑇𝛪𝑛𝐺 olarak gösterilir.

Şekil 3.1. 𝑇𝑥𝑀 Tanjant Uzayının Şematize Edilmiş Hali 

Teoremde Matris gruplarının Lie cebirlerinin 𝑀𝑛(ℝ)’nin alt uzayları olduğunu 

ispatlanacaktır. Bu ispat için 𝑀𝑛(ℝ) daki eğriler için çarpım kuralına ihtiyaç vardır, 

aşağıdaki teoremde kısaca bu konu ispalanmıştır. 

Teorem: 𝛾, 𝛽 ∶ (−𝜀, 𝜀) → 𝑀𝑛(ℝ) diferansiyellenebilir olsun. O halde

(𝛾, 𝛽)(t) := 𝛾(𝑡). 𝛽(𝑡) çarpımı da diferansiyellenebilirdir. Öyle ki; 

İspat: 𝛾, 𝛽 ∶ (−𝜀, 𝜀) → 𝑀𝑛(ℝ) türevlenebilir olsun. 𝑛 = 1 olduğunda analizdeki

türevin çarpımı kuralından aşağıdaki gibi ifade edebiliriz. 

((𝛾. 𝛽)′(𝑡))
𝑖𝑗

= ∑𝛾(𝑡)𝑖𝑙

𝑛

𝑙=1

. 𝛽(𝑡)𝑙𝑗   (𝟑. 𝟑) 

(𝛾. 𝛽)′(𝑡) = 𝛾(𝑡). 𝛽′(𝑡) + 𝛾′(𝑡). 𝛽(𝑡)
  (3.2) 
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ve  𝛾(𝑡)𝑖𝑙. 𝛽(𝑡)𝑙𝑗 (−𝜀, 𝜀)  →  ℝ olan fonksiyonların çarpımıdır. Bur

((𝛾. 𝛽)′(𝑡))𝑖𝑗 = ∑𝛾(𝑡)𝑖𝑙

𝑛

𝑙=1

. 𝛽′(𝑡)𝑙𝑗 + 𝛾′(𝑡)𝑖𝑙 ∙ 𝛽(𝑡)𝑙𝑗  (𝟑. 𝟒) 

= (𝛾(𝑡). 𝛽′(𝑡))
𝑖𝑗

+ (( 𝛾′(𝑡) . 𝛽(𝑡))𝑖𝑗  (𝟑. 𝟓) 

Teorem: 𝐺 ⊂ 𝐺𝐿𝑛(ℝ) matris grubunun Lie cebiri 𝑔, 𝑀𝑛(ℝ)’nin bir reel alt uzayıdır. 

İspat: 𝐺 ⊂ 𝐺𝐿𝑛(ℝ) keyfi bir matris grubu olsun. 𝑔’nin 𝑀𝑛(ℝ)’nin bir alt uzayı 

olduğunu göstermek için 𝑔’nin skalerle çarpma ve matris toplama işlemi altında kapalı 

olduğunu göstermemiz gerekiyor. 

İlk adımda skaler ile çarpmayı gösterelim. 𝜆 ∈ ℝ  ve 𝐴 ∈  𝑔 olsun. 𝛾(0) = 𝛪𝑛 olmak

üzere, 𝛾 ∶ (−𝜀, 𝜀) → ℝ𝑛 diferansiyellenebilir eğrisi için 𝛾′(0) = 𝐴 dır.

Şimdi, 𝜎: (− 𝜆𝜀, 𝜆𝜀) →  ℝ𝑛  eğrisi bütün 𝑡 ∈ (− 𝜆𝜀, 𝜆𝜀) için  𝜎(𝑡) ≔  𝛾(𝜆. 𝑡) şeklinde

tanımlansın. 𝜎′(𝑡) = 𝜆. 𝛾′(𝜆. 𝑡) olduğundan 𝑡 = 0 için; 𝜎′(0) = 𝜆. 𝐴 bulunur. Ayrıca

𝜎(0)= 𝛾(𝜆. 0)= 𝛪𝑛 dır. Böylece 𝜆. 𝐴 ∈  𝑔 sonucuna varabiliriz.  İkinci adımda matris

toplama işlemi altında kapalı olduğunu gösterelim. 𝐴, 𝐵 ∈  𝑔 olsun. Yani  𝛾 ∶

(−𝜀1, 𝜀1) → ℝ𝑛 ve 𝛽 ∶ (−𝜀2, 𝜀2) → ℝ𝑛 diferansiyellenebilir eğriler olmak üzere

𝛾′(0) = 𝐴 ve 𝛽′(0) = 𝐵 dir, öyle ki 𝛾(0) = 𝛽(0) = 𝛪𝑛 dir.

Şimdi  𝜀 = min{𝜀1, 𝜀2}  olsun ve 𝜋 ∶ (−𝜀, 𝜀) → ℝ𝑛 eğrisi ise tüm 𝑡 ∈ (− 𝜀, 𝜀) için

𝜋(𝑡) ≔  𝛾(𝑡) ∙  𝛽(𝑡) şeklinde eğrilerin çarpımı olarak tanımlansın. 

Teoremden 𝜋 eğrisinin 𝐺 grubunda diferansiyellenebilir bir eğri olduğunu biliyoruz. 

Ayrıca, 

𝜋′(0) =  𝛾(0) ∙  𝛽′(0) + 𝛾′(0) ∙ 𝛽(0) = 𝛪𝑛∙𝐵 + 𝐴 ∙ 𝛪𝑛 = 𝐴 + 𝐵

olur. Öyleyse 

𝐴 + 𝐵 ∈  𝑔 dir. Bu ise 𝑔 nin 𝑀𝑛(ℝ)’nin bir alt uzayı olduğunu göstermiş olur. 

Lie cebirleri ℝ üzerinde vektör uzayları olduğundan matris gruplarını ve onların Lie 

cebirlerini vektör uzaylarının bazları yardımıyla sınıflandırabiliriz.  

Tanım: Bir 𝐺 matris grubunun boyutu onun Lie cebirinin boyutu ile tanımlanır. 
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𝐺 ⊂ 𝐺𝐿𝑛(ℝ) matris grubunun Lie cebiri 𝑔 ye örnekler verebilmek adına, her 𝐴 ∈ 𝐺 

için  𝛾(0) = 𝛪𝑛 ve 𝛾′(0) = 𝐴 eşitliklerini sağlayan 𝛾𝐴: (−𝜀, 𝜀) → 𝐺 eğrileri oluşturmak

gerekir. Bunu yapmanın en kolay yolu ise, matrisler için üstel tasvir olarak adlandırılan 

fonksiyonu kullanacağız. Fakat bunun için de birkaç kavram tanımlayacağız. 

Tanım: π: izdüşüm fonksiyonu olmak üzere, π: ℝ𝑚 → ℝ𝑚 şeklinde tanımlansın.

𝛼: (−𝜀, 𝜀) →  ℝ𝑚 eğrisi boyunca 𝐹 vektör alanı π ∘  𝐹 = 𝛼 olacak şekilde

𝐹: (−𝜀, 𝜀) →  ℝ𝑚 şeklinde tanımlı bir sürekli fonksiyondur.

Eğer 𝐹: (−𝜀, 𝜀) →  ℝ𝑚 fonksiyonu 𝐶∞- sınıfından ise,  𝐹 vektör alanına

𝐶∞- sınıfından (düzgün veya diferansiyellenebilir) vektör alanı denir (Warner, 1983 ).

Kısaca bir vektör alanı, her noktaya bir tanjant vektörü karşılık getiren bir 

fonksiyondur. 

Tanım: 𝐹 vektör alanı ℝ𝑚 manifoldu üzerinde 𝐶∞- sınıfından bir vektör alanı olsun.

𝐹 vektör alanının bir integral eğrisi, her t∈ (−𝜀, 𝜀) için, 

𝛼′(𝑡) = 𝐹(𝛼(𝑡)) olacak şekilde

𝛼: (−𝜀, 𝜀) → ℝ𝑚şeklinde tanımlı diferansiyellenebilir bir eğridir.

Bu tanımlardan anlaşılacağı gibi, bir vektör alanı bir eğri veya yol üzerindeki 

her noktaya bir teğet vektör karşılık getirir. Benzer şekilde, matrisler için üstel tasvir 

de matris grubunun Lie cebiri içindeki her eleman için bir integral eğrisi karşılık 

getirir. Bu ise bize bunlar arasındaki ilişkiyi kurmamız için bir yol gösterici olur. 

Matrisler için üstel tasvir konusu matrislerin kuvvet serileri yardımıyla 

tanımlandığı için 𝑀𝑛(ℝ) deki serileri için gerekli sonuç ve terimleri açıklanacaktır.

Tanım: 𝐴 ∈ 𝑀𝑛(ℝ) matrisi

𝐴 = [

𝑎11  𝑎12

𝑎21 𝑎22

⋯ 𝑎1𝑛

⋯ 𝑎2𝑛

⋮ ⋮
𝑎𝑛1 𝑎𝑛2

⋱ ⋮
⋯ 𝑎𝑛𝑛

] 

(𝟑. 𝟔) 

şeklinde verilsin. 𝐴 matrisinin |A| ile gösterilen Öklidyen normu aşağıdaki gibi 

tanımlanır. 

|A|= √(𝑎11)2 + ⋯+ (𝑎1𝑛)2 + (𝑎21)2 + ⋯+ (𝑎2𝑛)2 + ⋯+ (𝑎𝑛1)2 + ⋯ + (𝑎𝑛𝑛)2
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Yani, bir matrisin Öklidyen normu matris girdilerinin karelerinin toplamının karekökü 

olarak açıklanabilir. 

Tanım: Tüm 𝑖 ∈ ℕ için 𝐴𝑖 ∈ 𝑀𝑛(ℝ) olsun. Tüm 𝑖, 𝑗 ∈ ℕ için,

 (𝐴0)𝑖𝑗 + (𝐴1)𝑖𝑗 + (𝐴2)𝑖𝑗 + ⋯  toplamı herhangi bir  𝐴(𝑖𝑗) ∈ ℝ  sayısına yakınsıyor 

(mutlak yakınsıyor) ise, 

∑𝐴𝑖 = 𝐴0 + 𝐴1 + 𝐴2 + ⋯  (𝟑. 𝟕)

∞

𝑖=0

 

serisi yakınsaktır (mutlak yakınsaktır) denir ve 

∑𝐴𝑖 = 𝐴

∞

𝒊=𝟎

  (𝟑. 𝟖) 

şeklinde gösterilir. 

Bir serinin mutlak yakınsaklığına ilişkin sonucu göstermek için aşağıdaki 

lemmayı kullanacağız. 

Lemma: Tüm  𝑋, 𝑌 ∈ 𝑀𝑛(ℝ) için |𝑋𝑌| ≤ |𝑋| ∙ |𝑌|.

İspat: 𝑋, 𝑌 ∈ 𝑀𝑛(ℝ) herhangi matrisler olsun. Tüm  𝑥, 𝑦 ∈ ℝ𝑛 için |〈𝑥, 𝑦〉| ≤ |𝑥| ∙ |𝑦|

Schwarz eşitsizliğini kullanarak tüm 𝑖, 𝑗 indisleri için ,  

|(𝑋𝑌)𝑖𝑗|
2

= |∑𝑋𝑖𝑙𝑌𝑙𝑗

𝑛

𝑖=1

|

2

 (𝟑. 𝟗) 

= |〈(𝑋 𝑖. 𝑠𝑎𝑡𝚤𝑟𝚤), (𝑌 𝑗. 𝑠ü𝑡𝑢𝑛𝑢)𝑇〉|2

 ≤ |( 𝑋 𝑖. 𝑠𝑎𝑡𝚤𝑟𝚤)|2 ∙ (𝑌 𝑗. 𝑠ü𝑡𝑢𝑛𝑢)𝑇|2 

= ( ∑ |𝑋𝑖𝑙
𝑛
𝑙=1 |2) ∙ ( ∑ |𝑌𝑙𝑗

𝑛
𝑙=1 |2)

bulunur. Buradan da 

|𝑋𝑌|2 = ∑ |(𝑋𝑌)𝑖𝑗|
2

𝑛

𝑖,𝑗=1

≤ ∑ ((∑|𝑋𝑖𝑙

𝑛

𝑙=1

|2) ∙  (∑|𝑌𝑙𝑗

𝑛

𝑙=1

|2))

𝑛

𝑖,𝑗=1

 

 = (∑|𝑋𝑖𝑙

𝑛

𝑙=1

|2) ∙ (∑|𝑌𝑙𝑗

𝑛

𝑙=1

|2) 
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= |𝑋|2|𝑌|2
(3.10) 

elde ederiz. Bu denklemin de karekökünü alırsak |𝑋𝑌| ≤ |𝑋| ∙ |𝑌| istediğimiz 

eşitsizliği buluruz. 

Teorem:  𝑓(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥
2 + ⋯ = ∑ 𝑐𝑖𝑥

𝑖∞
𝑖=1

serisi,  

∑ 𝑐𝑘(𝑥 − 𝑥0)
𝑘

∞

𝑘=0

kuvvet serisinin |𝑥 − 𝑥0| < 𝑅 için yakınsak olduğu en büyük pozitif 𝑅 sayısına, bu 

kuvvet serisinin yakınsaklık yarıçapı denir. 

Yakınsaklık yarıçapı 𝑅 ve katsayıları 𝑐𝑖 ∈ ℝ olmak üzere bir kuvvet serisi 

olsun. Eğer 𝐴 ∈ 𝑀𝑛(ℝ) matrisi için |𝐴| < 𝑅  eşitsizliği sağlanıyorsa

𝑓(𝐴) = 𝑐0𝛪𝑛 + 𝑐1𝐴 + 𝑐2𝐴
2 + ⋯ = ∑𝑐𝑖𝐴

𝑖

∞

𝑖=1

serisi mutlak yakınsaktır. 

İspat:  𝑓(𝑥) = 𝑐0+𝑐1𝑥 + 𝑐2𝑥
2 + ⋯ = ∑ 𝑐𝑖𝑥

𝑖∞
𝑖=1  serisi, yakınsaklık yarıçapı 𝑅 ve

katsayıları 𝑐𝑖 ∈ ℝ olmak üzere bir kuvvet serisi olsun. |𝐴| < 𝑅 olmak üzere

𝐴 ∈ 𝑀𝑛(ℝ) olsun. . Herhangi bir 𝑖, 𝑗 indisi için

|(𝑐0𝛪𝑛)𝑖𝑗| + |(𝑐1𝐴)𝑖𝑗| + |(𝑐2𝐴
2)𝑖𝑗| + ⋯  (𝟑. 𝟏𝟏) 

toplamının yakınsak olduğunu göstermeliyiz. Herhangi 𝑘 ∈ ℕ  için Tüm 

𝑋, 𝑌 ∈ 𝑀𝑛(ℝ) için Lemması kullanılarak

|(𝑐𝑘𝐴
𝑘)𝑖𝑗| ≤ |𝑐𝑘𝐴

𝑘| = |𝑐𝑘| ∙ |𝐴𝑘| ≤ |𝑐𝑘| ∙ |𝐴|𝑘  (𝟑. 𝟏𝟐) 

olur.  |𝐴| < 𝑅 olduğundan  |(𝑐0𝛪𝑛)𝑖𝑗| + |(𝑐1𝐴)𝑖𝑗| + |(𝑐2𝐴
2)𝑖𝑗| + ⋯ toplamı

yakınsaktır. Bu yüzden 𝑓(𝐴) = 𝑐0𝛪𝑛 + 𝑐1𝐴 + 𝑐2𝐴
2 + ⋯ mutlak yakınsak olur.

Bu teoremi kullanarak matrislerde üstel tasvir tanımlanabilir. 

Tanım: 𝐴 ∈ 𝑀𝑛(ℝ) olsun. 𝐴 matrisinin üstel tasviri aşağıdaki gibi tanımlanır.
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𝑒𝐴 = exp(𝐴) = 𝛪𝑛 + 𝐴 +
1

2!
𝐴2 +

1

3!
𝐴3 + ⋯ = ∑

1

𝑖!
𝐴𝑖

∞

𝑖=1

  (𝟑. 𝟏𝟑) 

Temel analiz bilgilerimizden 𝑒𝑥 kuvvet serisinin yakınsaklık yarıçapının

sonsuz olduğunu biliyoruz. Böylece Teorem kullanılarak tüm 𝐴 ∈ 𝑀𝑛(ℝ) için 𝑒𝐴

serisi mutlak yakınsaktır diyebiliriz. 

𝛾(𝑡) = 𝑒𝑡𝐴 = 𝛪𝑛 + 𝑡𝐴 +
1

2!
(𝑡𝐴)2 +

1

3!
(𝑡𝐴)3 + ⋯ şeklinde tanımlanan 𝛾 ∶ (−𝜀, 𝜀) →

𝑀𝑛 eğrisi göz önüne alındığında 𝑡 = 0 için 

𝛾(0) = 𝑒0𝐴 = 𝛪𝑛 + 0𝐴 +
1

2!
(0𝐴)2 +

1

3!
(0𝐴)3 + ⋯ = 𝛪𝑛  (𝟑. 𝟏𝟒) 

olur. Böylece 𝛾(𝑡) = 𝑒𝑡𝐴 eğrisi bir yol olarak düşünülebilir. Aslında matris gruplarının

Lie cebirlerini tanımlamak için en kullanışlı yollardan biri 𝛾(𝑡) = 𝑒𝑡𝐴 eğrisini

kullanmaktır. Şimdi aşağıda verilen teoremler matrislerde üstel tasvirin daha iyi 

anlaşılmasına yardımcı olacaktır. 

Teorem: 𝐴 ∈ 𝑀𝑛(ℝ) olmak üzere 𝛾(𝑡) = 𝑒𝑡𝐴 = 𝛪𝑛 + 𝑡𝐴 +
1

2!
(𝑡𝐴)2 +

1

3!
(𝑡𝐴)3 + ⋯

eğrisi diferansiyellenebilirdir ve türevi 𝛾′(𝑡) = 𝐴. 𝑒𝑡𝐴 dir.

İspat: 𝐴 ∈ 𝑀𝑛(ℝ) olsun ve 𝛾 ∶ (−𝜀, 𝜀) → 𝑀𝑛(ℝ) eğrisi tüm 𝑡 ∈ (−𝜀, 𝜀) için

𝛾(𝑡) = 𝑒𝑡𝐴 = 𝛪𝑛 + 𝑡𝐴 +
1

2!
(𝑡𝐴)2 +

1

3!
(𝑡𝐴)3 + ⋯  (𝟑. 𝟏𝟓) 

fonksiyonu şeklinde tanımlansın. Teorem gereğince 𝛾(𝑡) eğrisinin mutlak yakınsak 

olduğunu biliyoruz. Böylece 𝛾(𝑡)’nin türevini alabiliriz. Yani terim terim türev 

alınırsa, tüm 𝑡 ∈ (−𝜀, 𝜀) için, 

𝛾′(𝑡) =
𝑑

𝑑(𝑡)
(𝛪𝑛 + 𝑡𝐴 +

1

2!
(𝑡𝐴)2 +

1

3!
(𝑡𝐴)3 + ⋯) = 𝐴 + 𝑡𝐴2 +

1

2!
𝑡2𝐴3 =  𝐴. 𝑒𝑡𝐴 

olur. 

Teorem: 𝐴, 𝐵 ∈ 𝑀𝑛(ℝ) olsun. Eğer 𝐴𝐵 = 𝐵𝐴 ise 𝑒𝐴+𝐵 = 𝑒𝐴 ∙ 𝑒𝐵 olur.

İspat : 𝐴𝐵 = 𝐵𝐴 olacak şekilde 𝐴, 𝐵 ∈ 𝑀𝑛(ℝ) olsun. 𝐴 ve 𝐵 değişmeli olduğundan

(𝐴 + 𝐵)𝑘 = (𝐴 + 𝐵)(𝐴 + 𝐵)(𝐴 + 𝐵)…(𝐴 + 𝐵) 

= (𝐴2 + 𝐴𝐵 + 𝐵𝐴 + 𝐵2)( 𝐴 + 𝐵)… (𝐴 + 𝐵) 
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= (𝐴2 + 2𝐴𝐵 + 𝐵2)( 𝐴 + 𝐵)… (𝐴 + 𝐵) 

 = (𝐴3 + 𝐴2𝐵 + 2𝐴𝐵𝐴 + 2𝐴𝐵2 + 𝐵2𝐴 + 𝐵3)… (𝐴 + 𝐵) 

⋮ 

= 𝐴𝑘 + 𝑘𝐴𝑘−1𝐵 + (
𝑘

2
)𝐴𝑘−2𝐵2 + ⋯+ (

𝑘

𝑘 − 1
)𝐴𝐵𝑘−1 

= ∑(
𝑘

𝑟
)

𝑘

𝑟=0

𝐴𝑘−𝑟𝐵𝑟 

Bu eşitliği kullanarak 

𝑒𝐴+𝐵 = 𝛪𝑛 + 𝐴 + 𝐵 +
1

2!
(𝐴 + 𝐵)2 +

1

3!
(𝐴 + 𝐵)3 + ⋯  (𝟑. 𝟏𝟔) 

= ∑
1

𝑖!
(𝐴 + 𝐵)𝑖

∞

𝑖=0

 

= ∑
1

𝑖!

∞

𝑖=0

(∑(
𝑖

𝑗
)

𝑖

𝑗=0

𝐴𝑖−𝑗𝐵𝑗) 

= ∑
1

𝑖!

∞

𝑖=0

(∑
𝑖!

(𝑖 − 𝑗)!

𝑖

𝑗=0

𝐴𝑖−𝑗𝐵𝑗) 

= ∑(∑
1

(𝑖 − 𝑗)! 𝑗!

𝑖

𝑗=0

𝐴𝑖−𝑗𝐵𝑗) 

∞

𝑖=0

= 𝛪𝑛 + 𝐴 + 𝐵 +
1

2!
𝐴2 + 𝐴𝐵 +

1

2!
𝐵2 +

1

3!
𝐴3 +

1

2!
𝐴2𝐵 +

1

2!
𝐴𝐵2 +

1

3!
𝐵3 + ⋯ 

= (∑
1

𝑘!
𝐴𝑘

∞

𝑘=0

)(∑
1

𝑘!
𝐵𝑘

∞

𝑘=0

) 

= 𝑒𝐴𝑒𝐵  (3.17) 

Şimdi teorem kullanarak  𝐺𝐿𝑛(ℝ), 𝑆𝐿𝑛(ℝ) ve 𝑂𝑛(ℝ) matris grupları için Lie

cebirini bulacağız. Bir matris grubunun Lie cebiri gösterilirken küçük harf kullanılır.        

Örneğin, 𝐺𝐿𝑛(ℝ)’nin Lie cebiri 𝑔𝑙𝑛(ℝ) ile gösterilir.
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Teorem: 𝐺𝐿𝑛(ℝ)’nin Lie cebiri 𝑀𝑛(ℝ) dir.

İspat: 𝐴 ∈ 𝑀𝑛(ℝ) olsun. Teorem kullanılarak 𝑒𝐴 ∙ 𝑒−𝐴 = 𝑒𝐴−𝐴 = 𝑒0 = 𝛪𝑛, bu yüzden

𝑒𝐴 matrisi terslenebilirdir ve böylece 𝑒𝐴 ∈ 𝐺𝐿𝑛(ℝ) olur.

Tüm 𝑡 ∈ (−𝜀, 𝜀) için 𝛾: (−𝜀, 𝜀) → 𝐺𝐿𝑛(ℝ)  eğrisi 𝛾(𝑡) = 𝑒𝑡𝐴 şeklinde tanımlansın.

Teorem kullanılarak  

𝑒𝑡𝐴 ∙ 𝑒−𝑡𝐴 = 𝑒𝑡𝐴−𝑡𝐴 = 𝑒0 = 𝛪𝑛

eşitliği yazılabilir böylece, 𝑒𝑡𝐴 ∈ 𝐺𝐿𝑛(ℝ) olur. 𝛾(0) = 𝛪𝑛 ve 𝛾′(0) = 𝐴 olduğundan,

buradan 𝐴 ∈ 𝑔𝑙𝑛(ℝ)  olduğunu gösterilmiş olur. Böylece 𝑀𝑛(ℝ) ⊂ 𝑔𝑙𝑛(ℝ) olur.

Diğer kapsamayı göstermek için, 𝛾(𝑡) eğrisi tüm 𝑛 × 𝑛 matrislerden oluşur. Bu 

matrislerin 𝑡 = 0 noktasındaki türevleri de 𝑛 × 𝑛 matrislerdir. Böylece 𝑔(𝐺𝐿𝑛(ℝ))  ⊂

𝑀𝑛(ℝ) elde edilir. Dolayısıyla 𝑀𝑛(ℝ) = 𝑔𝑙𝑛(ℝ) olduğu gösterilmiş olur.

Teorem: 

𝑜𝑛(ℝ) = { 𝐴 ∈ 𝑀𝑛(ℝ)|𝐴 + 𝐴𝑇 = 0}  (𝟑. 𝟏𝟖) 

şeklinde tanımlanmak üzere eğer 𝐴 ∈ 𝑜𝑛(ℝ) ise 𝑒𝐴 ∈ 𝑂𝑛(ℝ) dir.

𝑂(𝑛, ℝ) = {𝐴 ∈ 𝐺𝐿(𝑛, ℝ): 𝐴𝐴𝑇 = 𝐼𝑛}  (𝟑. 𝟏𝟗) 

kümesi matris çarpma işlemi altında bir Lie gruptur. Bu gruba “ortogonal grup” 

denir. 

İspat: Bu teoremin ispatında iki bilgiden faydalanacağız. 

Lemma: 𝐴, 𝐵 ∈ 𝑀𝑛(ℝ) ise aşağıdaki eşitlikler sağlanır.

a. (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇 eşitliği sağlanır.

b. (𝐴𝑛)𝑇 = (𝐴𝑇)𝑛

İspat: 

a. 𝐴, 𝐵 ∈ 𝑀𝑛(ℝ) olsun.

𝐴 = [

𝑎11  𝑎12

𝑎21 𝑎22

⋯ 𝑎1𝑛

⋯ 𝑎2𝑛

⋮ ⋮
𝑎𝑛1 𝑎𝑛2

⋱ ⋮
⋯ 𝑎𝑛𝑛

] , 𝐵 = [

𝑏11  𝑏12

𝑏21 𝑏22

⋯ 𝑏1𝑛

⋯ 𝑏2𝑛

⋮ ⋮
𝑏𝑛1 𝑏𝑛2

⋱ ⋮
⋯ 𝑏𝑛𝑛

] 

 (3.20) 

şeklinde tanımlı olup aşağıdaki eşitlikler sağlanır. 
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(𝐴𝐵)𝑇 = ([

𝑎11  𝑎12

𝑎21 𝑎22

⋯ 𝑎1𝑛

⋯ 𝑎2𝑛

⋮ ⋮
𝑎𝑛1 𝑎𝑛2

⋱ ⋮
⋯ 𝑎𝑛𝑛

] [

𝑏11  𝑏12

𝑏21 𝑏22

⋯ 𝑏1𝑛

⋯ 𝑏2𝑛

⋮ ⋮
𝑏𝑛1 𝑏𝑛2

⋱ ⋮
⋯ 𝑏𝑛𝑛

])

𝑇

= ([

𝑎11 𝑏11 + ⋯+ 𝑎1𝑛𝑏𝑛1  𝑎11 𝑏12 + ⋯+ 𝑎1𝑛𝑏𝑛2

𝑎21 𝑏11 + ⋯+ 𝑎2𝑛𝑏𝑛1 𝑎21 𝑏12 + ⋯+ 𝑎2𝑛𝑏𝑛2

⋯ 𝑎11 𝑏1𝑛 + ⋯ + 𝑎1𝑛𝑏𝑛𝑛

⋯ 𝑎21 𝑏1𝑛 + ⋯+ 𝑎2𝑛𝑏𝑛𝑛

⋮ ⋮
𝑎11 𝑏11 + ⋯+ 𝑎1𝑛𝑏𝑛1 𝑎11 𝑏11 + ⋯+ 𝑎1𝑛𝑏𝑛1

⋱ ⋮
⋯ 𝑎11 𝑏11 + ⋯+ 𝑎1𝑛𝑏𝑛1

])

𝑇

= [

𝑎11 𝑏11 + ⋯+ 𝑎1𝑛𝑏𝑛1  𝑎11 𝑏12 + ⋯+ 𝑎1𝑛𝑏𝑛2

𝑎21 𝑏11 + ⋯+ 𝑎2𝑛𝑏𝑛1 𝑎21 𝑏12 + ⋯+ 𝑎2𝑛𝑏𝑛2

⋯ 𝑎11 𝑏1𝑛 + ⋯ + 𝑎1𝑛𝑏𝑛𝑛

⋯ 𝑎21 𝑏1𝑛 + ⋯+ 𝑎2𝑛𝑏𝑛𝑛

⋮ ⋮
𝑎11 𝑏11 + ⋯+ 𝑎1𝑛𝑏𝑛1 𝑎11 𝑏11 + ⋯+ 𝑎1𝑛𝑏𝑛1

⋱ ⋮
⋯ 𝑎11 𝑏11 + ⋯+ 𝑎1𝑛𝑏𝑛1

] 

= [

𝑏11  𝑏12

𝑏21 𝑏22

⋯ 𝑏1𝑛

⋯ 𝑏2𝑛

⋮ ⋮
𝑏𝑛1 𝑏𝑛2

⋱ ⋮
⋯ 𝑏𝑛𝑛

] [

𝑎11  𝑎12

𝑎21 𝑎22

⋯ 𝑎1𝑛

⋯ 𝑎2𝑛

⋮ ⋮
𝑎𝑛1 𝑎𝑛2

⋱ ⋮
⋯ 𝑎𝑛𝑛

] 

= 𝐵𝑇𝐴𝑇  (𝟑. 𝟐𝟏) 

b. Tümevarım kullanalım. 𝑛 = 1 için (𝐴1)𝑇 = 𝐴𝑇 = (𝐴𝑇)1 olduğu görülür.

Herhangi bir 𝑛 ∈ ℕ için (𝐴𝑛)𝑇 = (𝐴𝑇)𝑛 olduğunu varsayalım. (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇

eşitliğinden  

(𝐴𝑇)𝑛+1 = (𝐴𝑇)𝑛 ∙ 𝐴𝑇 = (𝐴𝑛)𝑇 ∙ 𝐴𝑇 = (𝐴 ∙ 𝐴𝑛)𝑇 = (𝐴𝑛+1)𝑇  (𝟑. 𝟐𝟐) 

elde edilir. Daha sonra, 

(𝐴𝑛)𝑇 = (𝐴𝑇)𝑛 eşitliğinin matematiksel tümevarım ilkesine göre doğru olduğu

gösterilmiş olur.  

Şimdi Teorem ispatına dönersek 𝐴 ∈ 𝑜𝑛(ℝ) için

(𝑒𝐴)𝑇 = (∑
𝐴𝑛

𝑛!

∞

𝑛=0

)

𝑇

= ∑
(𝐴𝑛)𝑇

𝑛!

∞

𝑛=0

= ∑
(𝐴𝑇)𝑛

𝑛!

∞

𝑛=0

= 𝑒𝐴𝑇
 (𝟑. 𝟐𝟑) 

𝐴 ∈ 𝑜𝑛(ℝ) , 𝐴𝑇 = −𝐴. Böylece,

𝑒𝐴(𝑒𝐴)𝑇 = 𝑒𝐴 ∙ 𝑒𝐴𝑇
= 𝑒𝐴−𝐴 = 𝑒0 = 𝛪𝑛. Teorem kullanılarak 𝑒𝐴 ∈ 𝑂𝑛(ℝ) olduğu

gösterilir. 
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Teorem:  𝑂𝑛(ℝ) matris grubunun Lie cebiri 𝑜𝑛(ℝ) dir. 

İspat: 𝐴 ∈ 𝑜𝑛(ℝ) olsun. Lemması kullanılarak 𝛾(𝑡) = 𝑒𝑡𝐴 ∈ 𝑂𝑛(ℝ). 𝛾(0) = 𝛪𝑛 ve

𝛾′(0) = 𝐴, 𝐴 ∈ 𝑔(𝑂𝑛(ℝ)).  Böylece 𝑜𝑛(ℝ) ⊂ 𝑔(𝑂𝑛(ℝ)) olur.

Daha sonra 𝐵 ∈ 𝑔(𝑂𝑛(ℝ)) olsun.𝜎: (−𝜀, 𝜀) → 𝑂𝑛(ℝ) olacak şekilde tüm 𝑡 ∈

(−𝜀, 𝜀) için 𝜎(𝑡) ∈ 𝑂𝑛(ℝ) eğrisi vardır. 𝜎(0) = 𝛪𝑛 ve 𝜎′(0) = 𝐵 olduğunu kabul

edelim. Teorem ile çarpımın türev kuralı kullanılarak;  

𝑑

𝑑(𝑡)
(𝜎(𝑡) ∙ 𝜎(𝑡)𝑇) = 𝜎′(𝑡). 𝜎(𝑡)𝑇 + 𝜎(𝑡) ∙ 𝜎′(𝑡)𝑇  (𝟑. 𝟐𝟒) 

bulunur. 𝜎(𝑡) ∙ 𝜎(𝑡)𝑇 = 𝛪𝑛 olduğundan,

𝑑

𝑑(𝑡)
(𝜎(𝑡) ∙ 𝜎(𝑡)𝑇) =

𝑑

𝑑(𝑡)
(𝛪𝑛) = 0  (𝟑. 𝟐𝟓) 

𝑡 = 0 için, 

0 =
𝑑

𝑑(0)
(𝜎(0) ∙ 𝜎(0)𝑇) 

= 𝜎′(0). 𝜎(0)𝑇 + 𝜎(0) ∙ 𝜎′(0)𝑇

= 𝐵. 𝛪𝑛 + 𝛪𝑛. 𝐵𝑇

= 𝐵 + 𝐵 𝑇
(3.26) 

bulunur. Böylece 𝐵 ∈ 𝑜𝑛(ℝ), 𝑔(𝑂𝑛(ℝ)) ⊂ 𝑜𝑛(ℝ) olur. Bu da bize 𝑂𝑛(ℝ) matris

grubunun Lie cebirinin 𝑜𝑛(ℝ) olduğunu gösterir. 

Sıradaki Lemma kullanılarak 𝑆𝐿𝑛(ℝ) matris grubunun Lie cebiri bulunacaktır. 

İlk olarak aşağıda verilen notasyon Lemmanın ispatında kullanılacaktır. 

Öncelikle lemma ve ispatına başlamadan önce minör ve iz kavramlarını 

tanımlayacağız. 𝐴 karesel bir matris olmak üzere, 

𝑎𝑖𝑗 bileşeninin minörü 𝑀𝑖𝑗 ile gösterilir ve 𝐴 matrisinden 𝑖.satır ve 𝑗.sütun silindikten 

sonra kalan alt matrisin determinantı olarak tanımlanır.  

𝐴 ∈ 𝑀𝑛(ℝ) olsun. 𝐴 ∈ [𝑖, 𝑗] ∈ 𝑀𝑛(ℝ) matrisi minör ile elde edilen  𝑖 satır ve 𝑗

sütundan oluşan matris olarak gösterilir. 
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[

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

] ∙ [1,1] = [
𝑒 𝑓
ℎ 𝑖

] 

Daha sonra, iz kavramı tanımlanacaktır. 

𝐴 𝑛 × 𝑛 bir matris olmak üzere, 𝐴 matrisinin 𝑖𝑧(𝐴) aşağıdaki gibi tanımlanır. 

𝑖𝑧(𝐴) = ∑𝑎𝑖𝑖

𝑛

𝑖=1

= 𝑎11 + 𝑎22 + 𝑎33 + ⋯+ 𝑎𝑛𝑛 

olarak tanımlanır. Bu kavramlardan sonra Lemma verilecektir. 

Lemma: 𝛾: (−𝜀, 𝜀) → 𝑀𝑛(ℝ) eğrisi diferansiyellenebilir ve 𝛾(0) = 𝛪𝑛 ise

(
𝑑

𝑑(𝑡)
)
𝑡=0

det(𝛾(𝑡)) = 𝑖𝑧(𝛾′(0))  (𝟑. 𝟐𝟕) 

eşitliği sağlanır. 

(Burada 𝑖𝑧(𝛾′(0)), 𝛾′(0) köşegen elemanlarının toplamı demektir.)

İspat: 𝛾: (−𝜀, 𝜀) → 𝑀𝑛(ℝ) eğrisi diferansiyellenebilir ve  𝛾(0) = 𝛪𝑛 olsun.

(
𝑑

𝑑(𝑡)
)
𝑡=0

det(𝛾(𝑡)) = (
𝑑

𝑑(𝑡)
)
𝑡=0

∑(−1)𝑗+1 ∙

𝑛

𝑗=1

𝛾(𝑡)1𝑗 ∙ det(𝛾(𝑡)[1, 𝑗])

= ∑(−1)𝑗+1 ∙

𝑛

𝑗=1

(𝛾′(0)1𝑗 ∙ det(𝛾(0)[1, 𝑗]) + 𝛾(0)1𝑗 ∙ (
𝑑

𝑑(𝑡)
)

𝑡=0

det (𝛾(0)[1, 𝑗]) 

= 𝛾′(0)11 + (
𝑑

𝑑(𝑡)
)
𝑡=0

det(𝛾(0)[1,1])     (3.28) 

Aynı (
𝑑

𝑑(𝑡)
)
𝑡=0

det(𝛾(0))[1,1] determinant alma işlemi 𝑛 kez uygulanırsa 

(
𝑑

𝑑(𝑡)
)
𝑡=0

det(𝛾(𝑡)) = 𝛾′(0)11 + 𝛾′(0)22 + ⋯+ 𝛾′(0)𝑛𝑛  (𝟑. 𝟐𝟗) 

= 𝑖𝑧(𝛾′(0)) 
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Teorem: 𝑆𝐿𝑛(ℝ) nin Lie cebiri 

𝑠𝑙𝑛(ℝ) = {𝐴 ∈ 𝑀𝑛(ℝ)|𝑖𝑧(𝐴) = 0} şeklindedir.

İspat: 𝐴 ∈ 𝑔(𝑆𝐿𝑛(ℝ)) olsun. Bu durumda 𝛾: (−𝜀, 𝜀) →  𝑆𝐿𝑛(ℝ)  𝛾(0) = 𝛪𝑛 ve

𝛾′(0) = 𝐴 olacak şekilde bir 𝛾 eğrisi vardır. Lemmadan 𝑖𝑧(𝛾′(0)) = 𝑖𝑧(𝐴) = 0 olur.

Buradan 𝐴 ∈ 𝑠𝑙𝑛(ℝ) = {𝐴 ∈ 𝑀𝑛(ℝ)|𝑖𝑧(𝐴) = 0}. Dolayısıyla 𝑔(𝑆𝐿𝑛(ℝ)) ⊂ 𝑠𝑙𝑛(ℝ)

dır. Diğer taraftan,  

𝑖𝑧(𝐵) = 0 olacak şekilde 𝐵 ∈ 𝑀𝑛(ℝ) alalım. Şimdi 𝜎: (−𝜀, 𝜀) →  𝑆𝐿𝑛(ℝ)  şeklinde 

tanımlansın. 

𝜎(𝑡) =

[
 
 
 
 
 

𝑡𝑎11 + 1

det (𝐼𝑛 + 𝑡𝐵)

𝑡𝑎12 + 1

det (𝐼𝑛 + 𝑡𝐵)
 ⋯

𝑡𝑎12 + 1

det (𝐼𝑛 + 𝑡𝐵)
𝑡𝑎21 𝑡𝑎22 + 1  ⋯ 𝑡𝑎2𝑛 + 1

⋮ ⋮  ⋱ ⋮

𝑡𝑎𝑛1 𝑡𝑎𝑛2 + 1 ⋯ 𝑡𝑎𝑛𝑛 + 1 ]
 
 
 
 
 

şeklinde tanımlansın. 

Buradan türev alırsak, 

𝜎′(𝑡)

=

[
 
 
 
 
 
 𝑎11(𝑑𝑒𝑡(𝐼𝑛 + 𝑡𝐵) − (𝑡𝑎11 + 1)(

𝑑
𝑑𝑡

𝑑𝑒𝑡(𝐼𝑛 + 𝑡𝐵))

𝑑𝑒𝑡(𝐼𝑛 + 𝑡𝐵)2
 ⋯

𝑎1𝑛(𝑑𝑒𝑡(𝐼𝑛 + 𝑡𝐵) − (𝑡𝑎1𝑛 + 1)(
𝑑
𝑑𝑡

𝑑𝑒𝑡(𝐼𝑛 + 𝑡𝐵))

𝑑𝑒𝑡(𝐼𝑛 + 𝑡𝐵)2

𝑎21  ⋯ 𝑎2𝑛

⋮  ⋱ ⋮

𝑎𝑛1  ⋯ 𝑎𝑛𝑛 ]
 
 
 
 
 
 

𝜎(0) = 𝐼𝑛 ve lemma kullanılarak

𝜎′(0)

=

[
 
 
 
 
 
𝑎11(𝑑𝑒𝑡(𝐼𝑛 + (0)𝐵) − ((0)𝑎11 + 1)(𝑖𝑧(𝐵))

𝑑𝑒𝑡(𝐼𝑛 + (0)𝐵)2
 ⋯

𝑎1𝑛(𝑑𝑒𝑡(𝐼𝑛 + (0)𝐵) − ((0)𝑎1𝑛 + 1)(𝑖𝑧(𝐵))

𝑑𝑒𝑡(𝐼𝑛 + (0)𝐵)2

𝑎21  ⋯ 𝑎2𝑛

⋮  ⋱ ⋮

𝑎𝑛1  ⋯ 𝑎𝑛𝑛 ]
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𝜎′(0) =

[
 
 
 
 
 
𝑎11(1) − ((0)𝑎11 + 1)(0)

12
 ⋯

𝑎1𝑛(1) − ((0)𝑛 + 1)(0)

12

𝑎21  ⋯ 𝑎2𝑛

⋮  ⋱ ⋮

𝑎𝑛1  ⋯ 𝑎𝑛𝑛 ]
 
 
 
 
 

𝜎′(0) =

[
 
 
 
 
𝑎11   ⋯   𝑎1𝑛

𝑎21   ⋯ 𝑎2𝑛

⋮    ⋱ ⋮

𝑎𝑛1    ⋯ 𝑎𝑛𝑛 ]
 
 
 
 

= 𝐴 

bulunur. Ayrıca 

𝑑𝑒𝑡(𝐼𝑛 + 𝑡𝐵) = ∑(−1)𝑗+1 ∙ (𝐼𝑛 + 𝑡𝐵)1𝑗 ∙ 𝑑𝑒𝑡((𝐼𝑛 + 𝑡𝐵)[1, 𝑗])

𝑛

𝑗=1

olduğundan, 

det(𝜎(𝑡)) = ∑(−1)𝑗+1 ∙ (𝐼𝑛 + 𝑡𝐵)1𝑗 ∙
1

𝑑𝑒𝑡(𝐼𝑛 + 𝑡𝐵)
∙ det((𝐼𝑛 + 𝑡𝐵)[1, 𝑗])

𝑛

𝑗=1

 =
1

𝑑𝑒𝑡(𝐼𝑛 + 𝑡𝐵)
∙ (∑(−1)𝑗+1 ∙ (𝐼𝑛 + 𝑡𝐵)1𝑗 ∙ det((𝐼𝑛 + 𝑡𝐵)[1, 𝑗])

𝑛

𝑗=1

) 

=
1

𝑑𝑒𝑡(𝐼𝑛+𝑡𝐵)
∙ (𝑑𝑒𝑡(𝐼𝑛 + 𝑡𝐵))

=1                 (3.30) 

Böylece, her 𝑡 ∈ (−𝜀, 𝜀) için 𝜎(𝑡) ∈ 𝑆𝐿𝑛(ℝ) ve 𝜎′(0) = 𝐴, 𝐴 ∈ 𝑔(𝑆𝐿𝑛(ℝ)) .

Sonuç olarak,  𝑠𝑙𝑛(ℝ) ⊂ 𝑔(𝑆𝐿𝑛(ℝ)) olur ve  𝑠𝑙𝑛(ℝ) = 𝑔(𝑆𝐿𝑛(ℝ)) elde edilir.

3.3. Lie Grupları 

Tanım: 𝐺 diferansiyellenebilir 𝐶∞-sınıfından bir manifold ve soyut bir grup olmak

üzere, aşağıdaki 𝐶∞-sınıfından

𝜇 ∶ 𝐺 × 𝐺 → 𝐺 𝑖 ∶ 𝐺 → 𝐺  (𝟑. 𝟑𝟏) 

(𝑎, 𝑏) → 𝑎𝑏 𝑎 → 𝑎−1
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tasvirleri var ise 𝐺 ye bir Lie grubu denir. 

Bir 𝐺 Lie grubu cebirsel, topolojik ve geometrik yapıları bir arada bulunduran 

bir kümedir (Warner, 1983). 

Tanım: 𝐺 ve 𝐻 iki Lie grup olmak üzere, 

𝛾 ∶ 𝐺 → 𝐻 tasviri eğer diferansiyellenebilir bir grup homomorfizması ise, bu 

tasvire Lie grubu homomorfizması denir (Warner, 1983). 

Tanım: 𝐺 bir Lie grubu, 𝐻 ⊂ 𝐺 nin boştan farklı bir alt kümesi ve 𝛾 ∶ 𝐻 → 𝐺 bir tasvir 

olsun. Eğer 𝐻 kümesi, 𝐺 nin bir alt manifoldu ve 𝛾 tasviri de bir gup homomorfizması 

ise 𝐻 ye bir Lie alt grubu denir ve (𝐻, 𝛾) ile gösterilir. 

(𝐻, 𝛾), 𝐺 nin kapalı alt grubu ve 𝛾(𝐻) de 𝐺 nin kapalı alt kümesidir (Warner, 1983). 
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4. MATRİS LİE GRUPLARI

Matris grupları, Lie cebirleri, manifold ve Lie grubu tanımlarını inceledikten 

sonra bu bölümde matrisler için üstel tasvir yardımı ile herhangi bir Lie cebirden ilgili 

Lie grubuna nasıl geçiş yapılabildiğini inceleyeceğiz. 

Teorem: 𝐺 ⊂ 𝐺𝐿𝑛(ℝ) bir matris grubu olsun. 𝑔 ⊂ 𝑔𝑙𝑛(ℝ) Lie cebiri olmak üzere, her 

𝑋 ∈ 𝑔  için 𝑒𝑋 ∈ 𝐺 olur.

Bu teoremin ispatı için temel analiz derslerinden birkaç hatırlama ile 

başlayacağız.  

Tanım: ℝ 𝑛 üzerindeki standart topolojide  𝑈 ⊂ ℝ 𝑛 açık küme olsun ve 𝑓: 𝑈 → ℝ 𝑚

fonksiyonu verilsin. 𝑝 ∈ 𝑈 ve 𝑣 ∈ ℝ 𝑛 olmak üzere, 𝑓 fonksiyonunun 𝑝 noktasında, 𝑣

yönündeki yönlü türevi şu şekilde tanımlanır. 

𝑑𝑓𝑝(𝑣):= lim
𝑡→0

𝑓(𝑝 + 𝑡𝑣) − 𝑓(𝑝)

𝑡
 (𝟒. 𝟏) 

Ayrıca, ℝ𝑛 uzayında herhangi bir  𝛾(𝑡) diferansiyellenebilir bir eğrisi, 𝛾(0) =

𝑝 ve 𝛾′(0) = 𝑣 olmak üzere, 𝑑𝑓𝑝(𝑣), 𝛾(𝑡) nin 𝑓 altındaki görüntüsünün başlangıç hız

vektörüdür. 

Teorem (Ters fonksiyon teoremi) : 𝑓:ℝ 𝑛 → ℝ 𝑛 fonksiyonu 𝑥 ∈ ℝ 𝑛 in bir

komşuluğunda 𝐶  𝑟 sınıfından (𝑟 ≥ 1) ve 𝑑𝑓𝑥 terslenebilir lineer bir tasvir ise 𝑉 = 𝑓(𝑈)

ve 𝑓: 𝑈 → 𝑉 terslenebilir ve 𝐶  𝑟 sınıfındandır.

İspat: 𝑔  Lie cebiri olduğundan bir alt uzay yapısına sahiptir. {𝑥1, 𝑥2, ⋯ , 𝑥𝑘} 𝑔’nin bir

bazı olsun. Her 𝑖 = 1,2,⋯𝑘 için 𝛼𝑖: (−𝜀, 𝜀) → 𝐺, 𝛼𝑖(0) = 𝛪 , 𝛼𝑖′(0) = 𝑋𝑖 şeklinde

tanımlı 𝛼𝑖 diferansiyellenebilir eğrisini seçelim. Şimdi  

𝐹g ∶ ( g de 0 ın bir komşuluğu ) → 𝐺  (𝟒. 𝟐) 

𝐹g(𝑐1𝑋1 + ⋯+ 𝑐𝑘𝑋𝑘) = 𝛼1(𝑐1) ∙ 𝛼2(𝑐2)⋯𝛼𝑘(𝑐𝑘)

şeklinde tanımlansın. 
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Bu durumda, 

𝐹g(0) = 𝐹g(0 ∙ 𝑋1 + 0 ∙ 𝑋2 + ⋯+ 0 ∙ 𝑋𝑘) = 𝛼1(0) + 𝛼2(0) + ⋯+ 𝛼𝑘(0) = 𝛪

olur. Ayrıca 𝑑(𝐹𝑔)0 birim fonksiyondur. Gerçekten  

𝑑(𝐹𝑔)
0
(𝑋𝑖) = 𝑙𝑖𝑚

𝑡→0

𝐹𝑔(0 + 𝑡𝑋𝑖) − 𝐹𝑔(0)

𝑡

= lim
𝑡→0

𝐹𝑔(𝑡(0. 𝑋1 + ⋯+ 𝑋𝑖 + ⋯+ 0 ∙ 𝑋𝑘)) − 𝛪

𝑡

= lim
𝑡→0

𝛼1(𝑡 ∙ 0)⋯𝛼𝑖(𝑡 ∙ 1)⋯𝛼𝑘(𝑡 ∙ 0) − 𝛪

𝑡

= lim
𝑡→0

𝛼𝑖(0 + 𝑡) − 𝛼𝑖(0)

𝑡

= 𝛼𝑖
′(0)

= 𝑋𝑖  (1 ≤ 𝑖 ≤ 𝑘 olacak şekilde tüm 𝑖’ler için) 
(4.3) 

Şimdi 𝜌 ⊂ 𝑀𝑛(ℝ) alt uzayını seçelim. 𝜌 tamamlayıcı uzayı şöyle tanımlansın. 

{𝑥1, 𝑥2, ⋯ , 𝑥𝑘} kümesini 𝑀𝑛(ℝ)’nin bir bazına tamamlayalım ve 𝜌 eklenen baz

elemanlarının gerdiği uzay olsun. Böylece 𝑀𝑛(ℝ) = g × 𝜌 olur.

𝐹𝑔: 𝜌 → 𝑀𝑛(ℝ) fonksiyonu her 𝑉 ∈ 𝜌 için 𝐹𝑔(0) = 𝛪 ve 𝑑(𝐹𝜌)0(𝑉) = 𝑉

şeklinde tanımlansın. Örneğin, 𝐹𝜌(𝑉) ≔ 𝛪 + 𝑉 fonksiyonu bu özellikleri sağlar.

Buradan her 𝑋 ∈ g ve 𝑌 ∈ 𝜌 için 

𝐹: (g ×  𝜌 = 𝑀𝑛(ℝ) de 0’ın bir komşuluğu)→ 𝑀𝑛(ℝ) (𝟒. 𝟒) 

𝑋 + 𝑌   →   𝐹(𝑋 + 𝑌) =  𝐹𝑔(𝑋) ∙ 𝐹𝜌(𝑌) 

fonksiyonunu tanımlayalım. Burada 𝐹(0) = 𝛪 ve 𝑑𝐹0 ın birim olduğunu kullanırsak

𝑑𝐹0 = 𝑑(𝐹𝑔 ∙ 𝐹𝜌)
0

= 𝑑(𝐹𝑔)0 ∙ 𝐹𝜌(0) + 𝐹𝑔(0) ∙ 𝑑𝐹𝜌(0) = 𝑑(𝐹𝑔)
0
+ 𝑑𝐹𝜌(0)

eşitliğini elde ederiz ve böylece 

𝑑𝐹0(𝑋 + 𝑌) = 𝑑(𝐹𝑔)
0
(𝑋) + 𝑑(𝐹𝜌)

0
(𝑌) = 𝑋 + 𝑌

(4.5) 

olur. Burada 𝐹 in, iki diferansiyellenebilir fonskiyonun çarpımı olduğu için 

diferansiyellenebilir ve 𝑑𝐹0 ın da lineer ve terslenebilir olduğunu gördük. Ters 
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fonksiyon teoreminden 𝐹 in 𝛪 nın bir komşuluğunda tanımlı bir ters fonksiyonu 

olduğunu söyleyebiliriz. Bu ters fonskiyonu,   𝐴 ∈ 𝑀𝑛(ℝ) için  

𝐹−1(𝐴) = 𝑢(𝐴) + 𝑣(𝐴) ∈ 𝑔 × 𝜌        
(4.6) 

şeklinde tanımlayalım. Tanımdan 0’ın komşuluğunda tüm 𝑋 ∈ 𝑔, 𝑌 ∈ 𝜌 için 

𝑢(𝐹(𝑋 + 𝑌)) = 𝑋 ve 𝑣(𝐹(𝑋 + 𝑌)) = 𝑌  (𝟒. 𝟕) 

olur. Bu ise 𝑣’nin, 𝛪’nın bir komşuluğundaki 𝐴 ∈ 𝑀𝑛(ℝ) elemanının 𝐺’de olup 

olmadığını test ettiği anlamına gelir. Yani, 𝑣(𝐴) = 0 ise 𝐹−1(𝐴) = 𝑢(𝐴) ∈ 𝑔 ise olur.

Bu ise 𝐹(𝑢(𝐴)) = 𝐴 ∈ 𝐺 olur. 

Şimdi 𝑋 ∈ 𝑔 ve 𝐴(𝑡) = 𝑒𝑡𝑋 olsun. Herhangi bir 𝑡 için 𝑣(𝐴(𝑡)) = 0 olduğunu

göstererek 𝐴(𝑡)’nin 𝐺 içinde olduğunu göstermek istiyoruz.  

𝐴(0) = 𝛪 ∈ 𝐺 olduğundan 𝑣(𝐴(0)) = 0 olduğu açıktır. 
𝑑

𝑑𝑡
𝑣(𝐴(𝑡)) = 0  eşitliğinin 

sağlandığını göstermeliyiz. Bunun için, 

𝑑

𝑑𝑡
𝑣(𝐴(𝑡)) = 𝑑𝑣𝐴(𝑡)(𝐴

′(𝑡)) = 𝑑𝑣𝐴(𝑡)(𝑋 ∙ 𝐴(𝑡))  (4.8) 

eşitliğinden ve aşağıdaki Lemmadan istenen sonucu buluruz. 

Lemma: 𝛪’nın komşuluğunda her 𝐴 ∈ 𝑀𝑛(ℝ) ve her 𝑋 ∈ 𝑔 için 𝑑𝑣𝐴(𝑋 ∙ 𝐴) = 0 dır.

İspat: Her 𝑍 ∈ 𝑔, 𝑌 ∈ 𝜌 için 𝐴 matrisini  

𝐴 = 𝐹(𝑍 + 𝑌) = 𝐹𝑔(𝑍) ∙ 𝐹𝜌(𝑌) (4.9) 

olarak gösterelim. Bu durumda her 𝑊 ∈ 𝑔 için       

𝑣(𝐹𝑔(𝑍 + 𝑡𝑊) ∙ 𝐹𝜌(𝑌) = 𝑌        (4.10) 

olur. Bu ise 𝑣 nin 𝐴 yı bu yönde değiştirmediği anlamına gelir. Yani, 

0 =
𝑑

𝑑𝑡𝑡=0
𝑣 (𝐹𝑔(𝑍 + 𝑡𝑊) ∙ 𝐹𝜌(𝑌)) 

= 𝑑𝑣𝐴((𝑑 (𝐹𝑔)𝑍(𝑊)) ∙ 𝐹𝜌(𝑌)) 

= 𝑑𝑣𝐴((𝑑(𝐹𝑔)𝑍(𝑊)) ∙  𝐹𝑔(𝑍)−1 ∙ 𝐴)
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= 𝑑𝑣𝐴(𝑋 ∙ 𝐴) 
(4.11) 

olur. Burada, 𝑋 ≔  𝑑𝑣𝐴((𝑑(𝐹𝑔)𝑍(𝑊)) ∙  𝐹𝑔(𝑍)−1 olarak tanımlandı. Şimdi, geriye bu

𝑋 in 𝑔 nin keyfi bir elemanı olduğunu göstermek kaldı. Yönlü türevin tanımından 𝑋 

vektörü 

𝑡 → 𝐹𝑔(𝑍 + 𝑡𝑊) ∙ 𝐹𝑔(𝑍)−1                                                          (𝟒. 𝟏𝟐)

eğrisinin teğet vektörüdür. 𝑔 → 𝑔 lineer tasviri, 𝑍 = 0 için 𝑑(𝐹𝑔)0(𝑋𝑖) = 𝑋𝑖 ve

𝐹𝑔(0) = 𝛪 olduğundan

𝑊 → (𝑑(𝐹𝑔)𝑍(𝑊)) ∙ 𝐹𝑔(𝑍)−1  (𝟒. 𝟏𝟑) 

birim tasvirdir. Lineer tasvirin sürekliliğinden, determinantı 1 e yakınsar ve 𝑍 → 0 

iken bir izomorfizma olur. Dolayısıyla 𝑊 , 𝑔 nin herhangi bir elemanı olan 𝑋 olarak 

seçilebilir.  

Bu lemma ile, 𝑡 ∈ (−𝜀, 𝜀) için eğer 𝑋 ∈ 𝑔 ise 𝑒𝑡𝑋 ∈ 𝐺 olduğu görülür. Bu

sonuç tüm reel sayılara genelleştirilebilir ve 𝑛 ∈ ℤ+ için,

𝑒𝑛𝑡𝑋 = 𝑒𝑡𝑋+𝑡𝑋+⋯+𝑡𝑋 = 𝑒𝑡𝑋 ∙ 𝑒𝑡𝑋 ∙ … ∙ 𝑒𝑡𝑋 ∈ 𝐺  (𝟒. 𝟏𝟒) 

olur ve böylece her 𝑡 ∈ ℝ ve 𝑋 ∈ 𝑔 için 𝑒𝑡𝑋 ∈ 𝐺 bulunur ki bu da ispatı bitirir.

Şimdi her matris grubunun bir Lie grubu olduğu ispatlanacaktır. Bunun için 

öncelikle her hangi bir matris grubunun manifold olduğunu göstermek gerekir. 

Dolayısıyla birkaç tanım ve kavram açıklanacaktır.  

Tanım: 𝑋 ⊂ ℝ𝑛 ve 𝑌 ⊂ ℝ𝑛, 𝑓: 𝑋 → 𝑌 birebir-örten ve diferansiyellenebilir bir

fonksiyon olsun. Eğer 𝑓 in tersi de diferansiyellenebilir ise 𝑓 fonksiyonuna bir 

difeomorfizma denir. Ayrıca 𝑋 ve 𝑌 kümelerine de difeomorfiktir denir. 

Lemma: 𝐵𝒓: = {𝑊 ∈ 𝑀𝑛(ℝ)|  |𝑊| < 𝑟} kümesi tanımlansın. 𝐺 ⊂ 𝐺𝐿𝑛(ℝ) bir matris

grubu ve 𝑔 ⊂ 𝑔𝑙𝑛(ℝ) Lie cebiri olmak üzere; 

Yeteri kadar küçük bir 𝑟 > 0 için 𝑉 ≔ exp (𝐵𝑟 ∩ 𝑔) kümesi 𝐺 içinde 𝐼𝑛 nin bir 

komşuluğudur ve 𝑒𝑥𝑝: 𝐵𝑟 ∩ 𝑔 → 𝑉 fonksiyonu bir difeomorfizmadır.  

Teorem: Herhangi bir matris grubu manifoldtur. 
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İspat: 𝐺 ⊂ 𝐺𝐿𝑛(ℝ) bir matris grubu ve 𝑔 ⊂ 𝑔𝑙𝑛(ℝ) Lie cebiri olsun. Herhangi bir 

𝑥 ∈ 𝐺 ve tüm 𝐴 ∈ 𝐺 için 𝐿𝑥: 𝐺 → 𝐺 , 𝐿𝑥(𝐴) = 𝑥 ∙ 𝐴 fonksiyonu tanımlansın. 𝐿𝑥

birebirdir. Çünkü   𝐴, 𝐵 ∈ 𝐺 için eğer 𝑥 ∙ 𝐴 = 𝑥 ∙ 𝐵 ise, soldan 𝑥−1 ile çarparsak

𝐴 = 𝐵 dir. Ayrıca 𝐿𝑥 örtendir. Çünkü tüm 𝐶 ∈ 𝐺 için 𝐿𝑥(𝑥
−1 ∙ 𝐶) = 𝐶 dir. Bu yüzden

𝐿𝑥 fonksiyonu birebir ve örtendir. 

𝑀𝑛(ℝ) × 𝑀𝑛(ℝ) → 𝑀𝑛(ℝ) matris çarpımı 𝑛2 bileşenli fonksiyonların bir

fonksiyonu olarak düşünülebileceğinden 𝐿𝑥 her bileşen fonksiyonu ℝ üzerinde bir 

polinom olarak diferansiyellenebilirdir. Dolayısıyla tüm 𝑟.dereceden kısmi türevler 

mevcuttur ve 𝐺 üzerinde süreklidir. Ayrıca 𝐺 bir grup olduğundan 𝑥−1 de mevcuttur.

Böylece 𝐿𝑥 fonksiyonunun tersi 𝐿𝑥
−1(𝐵) = 𝑥−1 ∙ 𝐵 olur ki, aynı sebeplerden 𝐿𝑥

−1 de

diferansiyellenebilirdir. Buradan hareketle 𝐿𝑥 fonksiyonu  𝐺 den 𝐺 ye bir 

difeomorfizmadır ve özellikle  𝐿𝑥(𝑉) 𝐺 içinde 𝑥 in bir komşuluğudur öyle ki 𝐿𝑥 bir 

difeomorfizma olarak açık komşulukları açık komşulukları tasvir eder. Sonuç olarak 

(𝐿𝑥 ∘ exp ): 𝐵𝑟 ∩ 𝑔 → 𝐿𝑥(𝑉) fonksiyonu, difeomorfizmaların bir bileşkesi olarak 

difeomorfizmadır, bu ise 𝐺 nin bir manifold olduğunu ispatlar.  

Teorem: Tüm matris grupları Lie grubudur. 

İspat : 𝐺 ⊂ 𝐺𝐿𝑛(ℝ) bir matris grubu ise teoremden 𝐺 nin bir manifold olduğunu 

biliyoruz. Ayrıca yine teoremin ispatından, matris grupları üzerinde matris çarpımı bir 

diferansiyellenebilirdir. Yani  𝐺 nin grup işlemi diferansiyellenebilirdir.  

Şimdi 𝐺 nin grup yapısını oluşturacak ters fonksiyonu tanımlamak için, 𝐴 ∈ 𝐺 

ve 𝑎𝑑𝑗(𝐴) = 𝐴𝑇̅̅̅̅  olmak üzere, 𝑡: 𝐺 → 𝐺  ters fonksiyonu

𝑡(𝐴) =
1

det(𝐴)
𝑎𝑑𝑗(𝐴)  (𝟒. 𝟏𝟓) 

şeklinde tanımlanırsa; 𝑡(𝐴) değeri ℝ de bir polinom olarak diferansiyellenebilirdir. Bu 

lineer cebirin standart bir sonucudur. Sonuç olarak 𝐺 nin bir Lie grup olduğu ispatlanır. 
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5. SONUÇLAR ve ÖNERİLER

Matris grupları en genel anlamda terslenebilir matrislerin grubu olarak 

tanımlanır. Bu tanım tamamen cebirsel olmakla birlikte geometrik olarak da birçok 

özelliklere sahip olduğundan matematikte önemli bir yeri vardır. Bu tez çalışmasında, 

temel analiz derslerinden, lineer cebir ve topolojiden bilinen süreklilik, yakınsaklık, 

limit noktaları, üstel tasvir gibi kavramlar elemanları matrisler olan matris gruplar için 

tanımlanmıştır. Matris gruplarının manifold yapısına ve üzerindeki cebirsel işlemle 

birlikte Lie grubu yapısına sahip olduğu ispatlanmıştır. Herhangi bir matris grubunun 

Lie cebiri ile Lie grubu arasındaki ilişki ortaya konmuştur. 

Tüm bu çalışmalar reel sayılar üzerinde tanımlı matris grupları için yapılmıştır. 

Ayrıca kompleks sayılar veya quaterniyonlar üzerinde de benzer çalışmalar yapılabilir. 

Son olarak, herhangi bir Lie grubunun Lie cebiri ile bir matris grubunun Lie cebiri 

arasında bir izomorfizma kurulabileceği ileri çalışma önerileri olarak verilebilir.  
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