DOKUZ EYLUL UNIVERSITY
GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

ON SOME ENTROPY INEQUALITIES

by
Ayca ILERI

August, 2022
IZMiR



ON SOME ENTROPY INEQUALITIES

A Thesis Submitted to the
Graduate School of Natural And Applied Sciences of Dokuz Eyliil University
In Partial Fulfillment of the Requirements for the Degree of Doctor of

Philosophy in Mathematics

by
Ayca ILERI

August, 2022
IZMiR



Ph.D. THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “ON SOME ENTROPY INEQUALITIES”
completed by AYCA TLERI under supervision of PROF. DR. SELCUK DEMIR
and we certify that in our opinion it is fully adequate, in scope and in quality, as a

thesis for the degree of Doctor of Philosophy.

Prof. Dr. Selcuk DEMIR

Supervisor
Prof. Dr. Hasan KARABIYIK Assist. Prof. Dr. Secil GERGUN
Thesis Committee Member Thesis Committee Member
Prof. Dr. Miige KANUNI ER Assoc. Prof. Dr. Ahmet YANTIR
Examining Committee Member Examining Committee Member

Prof. Dr. Okan FISTIKOGLU
Director
Graduate School of Natural and Applied Sciences

1



ACKNOWLEDGEMENTS

Firstly, I would like to express my gratitude to Prof. Dr. Selguk Demir, my Ph.D.
supervisor, for his constant presence, generous guidance, and useful comments during
my study. His counsel, unwavering support, never-ending motivation, and academic
knowledge were vital in getting me through the difficult stages of my research. For my

Ph.D. study, I could not have asked for a better supervisor.

In addition to my advisor, I would like to thank Prof. Dr. Noyan Fevzi ER and Prof.

Dr. Halil ORUC for their critical reading and extremely useful ideas for my thesis and

paper.

I would also want to thank TUBITAK (The Scientific and Technological Research
Council of Turkey) for funding my Ph.D. thesis with a grant (BIDEB-2211).

Finally, I would like to thank my family for their endless patience and faith in me

throughout my life.

Ayca ILERI

il



ON SOME ENTROPY INEQUALITIES

ABSTRACT

In this thesis, we investigated some entropy-type inequalities in quantum
information theory. We gave a proof of a conjecture from the paper Besenyei & Petz
(2013) for a special case. This conjecture is a kind of partial subadditivity of quantum
Tsallis entropy. Moreover, we obtained some operator inequalities and results related

to this conjecture.

Keywords: Tsallis entropy, subadditivity, strong subadditivity, partial subadditivity,

trace inequalities, operator inequalities.

v



BAZI ENTROPI ESITSIZLIKLERI UZERINE

0z

Bu tezde, kuantum bilgi teorisindeki bazi entropi tipi esitsizlikleri arastirdik. Ozel
bir durum i¢in Besenyei & Petz (2013) makalesindeki bir varsayimin ispatini verdik.
Bu varsayim, kuantum Tsallis entropisinin bir tiir kismi alt eklenebilirligidir. Ayrica bu

varsayimla ilgili baz1 operator esitsizlikleri ve sonuclari elde ettik.

Anahtar kelimeler: Tsallis entropisi, alt toplamsallik, gii¢lii alt toplamsallik, kismi alt

toplamsallik, iz esitsizlikleri, operatdr esitsizlikleri.
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CHAPTER ONE
INTRODUCTION

1.1 Introduction And The Statement Of The Problem

Entropy is an important notion in both classical and quantum information theories.
It is a measure of disorder or uncertainity in a system. From a classical point of view,
the first attempt to measure information was made by Hartley in 1927 [McMahon
(2007)].  Then, in his groundbreaking paper “The Mathematical Theory of
Communication” [Shannon (1948)], Shannon presented a probabilistic way to

measure the information content produced from an information source.

An information source is any physical devise sending messages (or signals)
consisting of a string of letters from any alphabet. Suppose that a message is taken
from an alphabet of n letters, say a4, ..., a,, where the probability of occurrence of the
letter a; 1s p;. The important step taken by Shannon is that he quantified the
information content of a message by taking the logarithm of the multiplicative inverse
of the message’s probability. It means that if the probability of a message is high, we
will not get much information from it. A message with a low chance of occurrence,

on the other hand, may include a considerable amount of information.

Shannon then defined information as the average of the probabilities of the
messages, i.e. H(X) =-) i, p;log,p; where X is a discrete random variable with
probability distribution pq,py,...,p, (for more detail see McMahon (2007), Petz
(2007)).

One of the well-known properties of the Shannon entropy is the strong
subadditivity [Petz (2007)]. Strong subadditivity relates the entropies of three
subsystems to a bigger system where the probabilities of the subsystems are described

by the marjinal distributions. Subadditivity is implied by the strong subadditivity.

The Tsallis entropy is a one-parameter extension of the Shannon entropy, defined



by the formula H,(X) = -} I, p;log o Pi- Tsallis entropy has an important role in
non-extensive statistics and statistical physics [Furuci (2006)]. Similar to the Shannon
entropy, Tsallis entropy is strongly subadditive as well [Furuci (2006)] and hence is

subadditive.

In [Besenyei & Petz (2013)], a new type of inequality which can be considered as
“partial (strong) subadditivity” is introduced and proved for both Shannon and Tsallis
entropies. The importance of partial (strong) subadditivity is that it implies (strong)

subadditivity.

In this thesis, we are mostly intrested in quantum analogues of the above entropies.
Every quantum mechanical system is associated with a complex Hilbert space that is
called the state space. In the quantum world, instead of probability distributions, one
uses density matrices, and density matrices are in one-to-one corresponce with states.
A composite quantum mechanical system is described by the tensor product of the
corresponding Hilbert spaces and marginal distributions by the partial traces of the

density matrix [Petz (2007)].

The quantum analogue of the Shannon entropy is the von Neumann entropy, and
it is defined by the formula S(p) = —Trplogp where p is a density operator. John
von Neumann originally introduced this equality in 1932 in his groundbreaking paper

“Mathematische Grundlagen der Quantenmechanik™ [Von Neumann (2013)].

One of the fundamental properties of von Neumann entropy is its strong
subadditivity. Lieb and Ruskai [Lieb & Ruskai (1973)] proved this fact in 1973.
Strong subadditivity is used in coding theory, topological entanglement theory,
conformal field theory and in some other research areas [Kim (2012)]. Due to the
non-commutativity of the density matrices, proving strong subadditivity in the
quantum case is more challenging than in the classical case. The strong subadditivity

implies subadditivity in the quantum case as well.

A one-parameter extension of the von Neumann entropy is the quantum Tsallis

entropy [Besenyei & Petz (2013), Petz & Virosztek (2014), Hiai & Petz (2014)].



Quantum Tsallis entropy is defined by the formula S,(p) = —Trplog, p, where p is a
density operator. As g — 1, the von Neumann entropy is the limit of the Tsallis
entropy [Petz (2007)]. The Tsallis entropy is known to be subadditive [Audenaert
(2007)] but not strongly subadditive [Petz & Virosztek (2014)].

Almost at the same time as the paper Besenyei & Petz (2013) was published, Kim
proved an operator extension of the strong subadditivity of von Neumann entropy,
which is a kind of partial strong subadditivity [Kim (2012)]. In fact, this is the

operator version of the Shannon entropy’s partial strong subadditivity.

The following table summarizes all the cases:

Table 1.1 All Known Cases

Entropy SA | PSA | SSA | PSSA
Shannon Yes | Yes | Yes | Yes
Tsallis Yes | Yes | Yes | Yes

Von Neumann | Yes | Yes | Yes | Partly
quantum Tsallis | Yes | ? No No

SSA: strong subaddivity

SA: subadditivty

PSSA: partial strong subadditivity
PSA: partial subaddivity

In [Besenyei & Petz (2013)], an inequality related to the partial subadditivity of the
quantum Tsallis entropy is conjectured when the real number g is greater than 1. This
conjecture was proved in the same article for the product states, and it is also proved
for 2 x 2 density matrices when g = 2. In this thesis, we investigate this conjecture
and some related inequalities. The following paragraphs explain how this thesis is

organized:

We begin with a quick overview of classical information theory in Chapter 2. We
give definitions and some important facts related to the Shannon entropy and Tsallis

entropy. Moreover, we give some simple results we obtained.

In Chapter 3, we give a brief explanation of quantum information theory’s



mathematical formalism. The postulates of quantum mechanics are covered in this

chapter. Then we collect some important facts that will be useful for us.

In Chapter 4, we introduce the von Neumann entropy and collect some of its basic
properties. Then we introduce the concepts “matrix monotonicity” and “matrix
convexity”, which are essential tools for proving the fundamental theorems of
quantum entropy. In addition, we give some important theorems of von Neumann

entropy by making an analogy with the Shannon entropy.

In Chapter 5, we prove the inequality conjectured in the paper [Besenyei & Petz
(2013)] for arbitrary m and n when q = 2. This completes the table above when g =
2. Then, motivated by this proof and some numerical examples, we conjecture an
operator inequality which can be considered to be a kind of partial subadditivity of
quantum Tsallis entropy. We also obtain some new results related to the operators in

this inequality.



CHAPTER TWO
ENTROPY AND INFORMATION

This chapter is devoted to the Shannon entropy and its one-parameter extension, the
Tsallis entropy. In this chapter we will introduce some basic definitions, properties and
some important theorems related to these entropies. We will also provide proof of some

of these facts.

2.1 Shannon Entropy

Definition 2.1.1. Let X be a discrete random variable with possible values {x1, ..., x,,}
and probability distribution p(x) = P(X = x). Then the Shannon entropy of X is
defined as

with 0log 0 taken to be 0.

Note 2.1.2. Throughout this text all random variables are discrete unless otherwise

stated.

For two random variables, one can define the joint entropy as follows:

Definition 2.1.3. Let X be a random variable with possible values {x1,...,x,,} and Y
be another random variable with possible values {y1,...,y,}. Then the joint entropy of

X and Y is defined as

H(X,Y)= —Z p(xi,yj)logp(x;,y;)

m n
=1

j=1

where the joint distribution p(x;,y;) is defined by P(X = x;,Y = y;).

In the following we collect some important and useful facts related to the Shannon



entropy:

Proposition 2.1.4. Let p(x;) represents the probability distribution of the random
variable X with possible values {x,...,x,} . Then 0 < H(x) < logn with equality if

and only if X has a uniform distribution, that is p(x;) = 1 o Joralli.

One of the main characteristics of the Shannon entropy is its additivity.
Proposition 2.1.5. Ifthe random variables X and Y are independent ( thatis p(x,y) =

p(x)p(v) ), then

H(X xY)=H(X)+H(Y). (2.1)

Suppose we have two random variables, X and Y, and we know what the value of Y
is. Then we know the information content H(Y) of Y and in this case, we could make

the following definition :

Definition 2.1.6. (Conditional Entropy) The entropy of the random variable X with

respect to another random variable Y is defined by

H(X|Y) = ZP Zp xly)log p(xly).

(The conditional probability is denoted by the notation p(x|y), which is defined by the

formula p(x|y) = £ Xy).)

The following chain rule holds for the Shannon entropy :

Proposition 2.1.7. Let X and Y be two random variables. Then

H(X,Y)=H(X|Y)+H(Y). (2.2)

The chain rule is important in the way that it relates the conditional entropy to the

joint entropy.



Proposition 2.1.8. For each X and Y, we have H(X|Y) > 0 and hence H(X,Y) >
H(Y). Similarly, H(Y|X) >0, so H(X,Y) > H(X).

The nonnegativity of conditional entropy is simple to prove. For more details, see
Nielsen & Chuang (2010). The other results of the proposition 2.1.8 follows

immediately from the identity (2.2).

2.2 Basic Inequalities Related To The Shannon Entropy

One of the main results of standard entropy is the subadditivity:

Proposition 2.2.1. (Subadditivity of Shannon entropy) If X,Y are two random

variables, then
H(X,Y)<H(X)+H(Y) (2.3)

with equality if and only if X and Y are independent random variables, thatis, p(x,y) =

p(x)p(»)
Inequality (2.3) is called the subadditivity of Shannon entropy.

Remark 2.2.2. From Proposition 2.1.7 above, one can obtain the following inequality:

max{H(X), H(Y)} < H(X,Y) < H(X) + H(Y).

Subadditivity is a special case of a general result known as strong subadditivity:

Theorem 2.2.3. (Strong Subadditivity of Shannon entropy) Let X,Y,Z be three ran

dom variables with possible values {x1,...,x,,}, {v1,.... v} and {zy,...,z,}. Then

H(X,Y,Z)+H(Y)<H(X,Y)+H(Y,Z) (2.4)



with equality if and only if X — Y — Z forms a Markov chain, that is p(x,y,z) =
p(x)p(ylx)p(zly).

Inequality (2.4) is called the strong subadditivity of Shannon entropy.

Remark 2.2.4. Consider the joint distribution
Pijk :p(xi,yj,zk), 1<i<m, 1<j<mn, 1<k<r

and the marginal distributions

pij- = sz‘jkr pP-j-= Zpijk; P-jk = Zpijk-
k ik i
Then, by Definition 2.1.1, ineaquality (2.4) is equivalent to

Zpijk(logpijk +logp_j_ —logpij_ —logp_ji) = 0. (2.5)
i,jk

Strong subadditivity is a much deeper result than the subadditivity. Because the
subadditivity is implied by the strong subadditivity. The following remark is about this

fact:

Remark 2.2.5. If the random variable Y takes only one value, that is if n =1 in (2.4),
then we have two random variables and the strong subadditivity reduces to the

subadditivity

Zpik(logpik —logp;_~logp_j) 2 0.
ik

In most of this thesis, we will be interested in a new concept called “partial
subadditivity”, which is introduced in the paper [Besenyei & Petz (2013)]. One of the

main observations of this paper is the following theorem :



Theorem 2.2.6. (Partial Strong Subadditivity of Shannon entropy) Suppose that

X,Y,Z are three random variables with possible values {x1,...,x,,}, {v1,...,v,}, and

{z1,...,2,}. Then

Zpijk(logpijk +logp_j-—logpij- —logp_jx) > 0. (2.6)
;

This inequality is introduced and proved in [Besenyei & Petz (2013)]. In (2.6),
summing over j,k, one gets the SSA of Shannon entropy. Therefore the inequality

(2.6) can be safely called partial strong subadditivity (PSSA).

Moreover, if the random variable Y takes only one value then we have two random
variables and the partial strong subadditivity, which is the inequality (2.6), reduces to

the partial subadditivity , that is

Zpikﬂogpik —logp;_—logp_;) =0

We close this section with one of the main concetps of the information theory: the
relative entropy. Itis a kind of distance used to measure the closeness of two probability

distributions.

Definition 2.2.7. Let p(x) and r(x) be two probability distributions on the same set.

The relative entropy of p to r is defined by

0llr(x Zp )(logp(x) - logr(x))

with 0log0 = 0 and —plog 0 = co when p # 0

Remark 2.2.8. The relative entropy is nonnegative. The subadditivity of Shannon

entropy can be proved by using this fact: Let X and Y be two probability



distributions. Then the relative entropy of p(x,v) to p(x)p(y) is

S(p(xp)lpx)p) = ) _p(x,y)(logp(x,y) ~logp(x)p(y))

XY
=) p(xp)logp(xy)— ) p(xy)logp(x)= ) p(x,y)logp(y)
XY XY Xy

= —H(X,Y)+H(X)+H(Y)>0

which proves the subadditivity. Equality occurs if and only if p(x,v) = p(x)p(v), that

is X and Y are independent random variables.

2.3 Tsallis Entropy

The Tsallis entropy is a g-extention (or one-parameter extension) of the Shannon

entropy. Before giving the definition of the Tsallis entropy we define a function:

Definition 2.3.1. For g € R the g-logarithm function logq : R* — R is defined by

x171 -1

-1

log, x = (g=1).

Taking the limit when g — 1 we obtain the natural logarithm function.

Related to the g-logarithm function one can define the g-entropy in the following

way:

Definition 2.3.2. Let X be a random variable with possible values {xy,...,x,} and

probability distribution p(x) = P(X = x). Then the Tsallis entropy of X is defined by

H(X) == ) plx)log, plx) = 7= ) (pli)? =~ p(x.)
i=1

i=1

Note that the Shannon entropy is the limiting case of the Tsallis entropy when g — 1,

10



that is,

lim H,(X) = H(X).
q—1

Definition 2.3.3. (7sallis Joint Entropy) Let X and Y be two random variables with

possible values {xy,...,x,,} and {y1,..,v,}. Then the Tsallis joint entropy [Furuci
(2006)] of the pair (X,Y) with joint distribution p(x;,y;) is

iz p(xi,yj)log, p(xi, )

i=1 j=

In the followings we collect some important results of the Tsallis entropy:

Proposition 2.3.4. Tsallis entropy is nonnegative and it attains its maximum value

~log, 1 o when X is uniformly distributed over n outcomes, that is p(x;) = - o foralli.

Recall from the previous section that the Shannon entropy holds the additivity
property for two independent random variables. For the Tsallis entropy we have a

slightly different situation:

Proposition 2.3.5. Let X, Y be two independent random variables. Then
Hy(X xY)=Hy(X)+ Hy(Y)+ (1 —q)Hy(X)Hy(Y), 2.7)

which is called the pseduo-additivity of the Tsallis entropy [Furuci (2006)]. The identity
(2.7) follows from the fact that log, xy = log,x +log, v + (9 —1)log, xlog, .

Definition 2.3.6. (7sallis Conditional Entropy) Let X and Y be two random variables.

Then, the Tsallis conditional entropy of X with respect to Y is

Hy(X]Y) = Zp 1Y plrly)log, p(xy). (2.8)

The following proposition is the g-analogue of the chain rule of Shannon entropy:

11



Proposition 2.3.7. (Chain Rule For The Tsallis Entropy) Let X and Y be two different

random variables. Then

H,(X|Y)+H,(Y) = Hy(X,Y). (2.9)

There is a proof of (2.9) in Furuci (2006). In the following, we use a different

approach to prove this identity.

Proof. Let us denote the joint distribution of X,Y by p(x,y) and the marjinal
distributions of X and Y by p(x) = Zyp(x,y) and p(y) = ), p(x,v) respectively.

Then we have

Hy(X,Y)=Hy(Y)==) p(x,p)log,p(x,9)+ ) _p(y)log,p(y)
y

=) p(xy)(log,p(y) -log,p(x,y))

using the formula log, x —log, v = —log, (%)xq‘l, we have

Zp(x,y)(logqp( )—log, p(x,9)) ZP XY logq( (;;))p(y)‘f‘l
XY

=- Zp(xly)p(wlogq plxly)p()T!

X,y

—_ Zp(y)qp(xly)logqp(xly)

X,y

= Zp(y)q( Zp(XIy)logqp(xI;v))

%
= H,(X|Y).

12



2.4 Basic Inequalities Related To The Tsallis Entropy

As for the Shannon entropy, Tsallis entropy is also subadditive:

Theorem 2.4.1. (Subadditivity of Tsallis entropy) If X,Y are two random variables,
then

H,(X,Y) < Hy(X)+ H,(Y) (2.10)

forq>1.

The inequality (2.10) is a special case of the following strong subadditivity:

Theorem 2.4.2. (Strong subadditivity of Tsallis entropy) Let X,Y and Z be three

random variables. Then
Hq(X,Y,Z)+Hq(Y)qu(X,Y)+Hq(Y,Z) (2.11)

forg>1.

Proof. See Furuci (2006), Petz & Virosztek (2014). [

Note that the inequalities (2.10) and (2.11) are the g-analogues of the inequalities
(2.3) and (2.4) respectively.

If the random variable Y takes only one value then we have two random variables

and the strong subadditivity reduces to subadditivity, that is

H,(X,Z) < Hy(X)+H,(2).

In the previous section, we introduced a new inequality which is called the partial
strong subadditivity, and we saw that it holds true for the Shannon entropy. The

following theorem is the g-extension of this inequality.

13



Theorem 2.4.3. (Partial strong subaddivity of Tsallis entropy) Suppose that X,Y,Z
are three random variables with possible values {x1, ..., x,,}, {v1,..., ¥}, and {zy, ..., 2, }.

Then
) pijklog, piji+10g, p_j- ~log, p_ji ~10g,pj-) > 0 (2.12)
i
forg>1.

In [Besenyei & Petz (2013)], there is a nice proof of the above theorem. In the

following, we prove the theorem above by using a different approach:

Proof. In the followings we use a similar methods used in the papers Furuci (2006),

Petz & Virosztek (2014). The inequality (2.12) can be written as
- Zpijk(logq Pijk —log,pij-) < - Zpijk(logq p-jk —log,p-;j-) (2.13)
i i
using the following property

log, x—log, v = —logq(g)xq_1

(2.13) can be written as

or equivalently
1 1o (pi)s 1 o (pi) (2.14)
Z’p”k S0\ pije ) =P8\
We have to show the inequality (2.14). At this step we introduce the following function:
Log, x = —xlog, x

observe that Logq x = x1log g % By using this identity, the left hand side of (2.14) can

14



be written as

.. ..o \4 ..
q p1]— _ q pz]k) (p1]—)
E 1 1o = E 3 lo
- Piji gq(pijk) - p”_(Pij— i Dijk

Pijk
=Y rlos, )
q Pij- pijk)

= . |—] Lo
ZP_J_(P—]‘—) gq(Pij—

1

q
smce(p” ) S(%), for g > 1, we have
s

q [ Pij- i Pijk q Pij- Pijk
Zp_j_(P—j— kogg Pij- =P p-j- b o8 pij-
_q pl]— (pijk ))
=p?. Lo

p_]_(IZP—j— 84 pij-

since Log, is concave we have

q Pij- Pijk q Pij- Pijk
L pon G <ot L5
! IZP-J- Pij- ! ZP—]—Pz]—

1]

Now we have the following inequality

q P-jk
Y reton (1 <ot vos ()

—j-

Here we use the identity Log, x = x7log, % again. Then we have

which proves the inequality (2.14).

15



If the random variable Y takes only one value then we have two random variables

and the inequality (2.12) reduces to the partial subadditivity inequality, that is

Zpik(logqpik —log, px —log, pi) 2 0.
i

We close this chapter with a diagram that represent the relations between the

inequalities we have seen so far.

Remark 2.4.4. The following diagram holds for both Shannon entropy and Tsallis

entropy

PSSA—SSA

ﬂ M

PSA——SA

16



CHAPTER THREE
BASICS OF QUANTUM INFORMATION THEORY

In this chapter we shall give a brief explanation of the mathematical formalism of
quantum information theory. Most of this chapter is based on the books Petz (2007)
and Nielsen & Chuang (2010).

3.1 Quantum States And Density Matrices

Every quantum mechanical system is associated to a complex Hilbert space that is
called the state space. The system is identified by its state vector which is a unit vector
in the Hilbert space. In this thesis we will be mostly concerned with the finite quantum

systems whose associated Hilbert space is C".

In quantum mechanics a vector x is denoted by the notation |x) which is called a
‘ket’. The inner product between the vectors |x) and [p) is denoted by the notation

(x|y) and it is defined by

(x[y) = Z?jyj-

=1
In this notation (x| is used for the dual vector of |x) and the inner product (x|y) is

called the ‘bra-ket’ notation. Furthermore, the operator |x)(y| is linear and it is defined

as

() @N(I2)) = x)lz) = (yl2)|x).

17



Hence
X1

X2

B | A

Xn

Example 3.1.1. The most widely used quantum system in quantum information
theory is the qubit. The state space of a qubit is described by two dimensional Hilbert
space C%. The standard basis vectors (1,0) and (0,1) of C? are denoted by |0), |1)

respectively. A state vector |(p) can be written as

l9) = aol0) +a1]1)

where ay,a; € C.

Similarly, any element |) € C" can be written as

|l,b> = a0|0)+a1|1)+...+an_1|n— 1>

where ag,ay,...,a,_1 € C and {|0),|1),...,|n— 1)} is the standard basis of C".

The set of n x n matrices with complex entries, denoted by IM,,(C), becomes a
Hilbert space with respect to the Hilbert Schmidt inner product (A, B) = Tr A*B.

Furthermore the set of self adjoint matrices in IM,,(C) is a real vector space.

The states of finite quantum mechanical systems are in one-to-one correspondence
with density matrices. A density matrix p € IM,,(C) is a positive (definite) matrix
(denoted by p > 0) with Trp =1 and it is defined on the Hilbert space of the quantum
system. When a positive definite matrix p is invertible we use the term strictly positive

(definite) and it is denoted by the notation p > 0.

If we know the state of the system, say |x), then the system is in a pure state and

the density matrix of the system is [x){(x|. Otherwise the system is in a mixed state.
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Mixed states are represented by the statistical mixture of pure states. More precisely
if the quantum system is prepared in the state |x;) with probability p; then the density

operator for the systemis p = ) 7", p;lx;)(x;| where }_; p; = 1.

A self adjoint matrix in the vector space IM,(C) can be represented by the Pauli
matrices o0y, 01,03,03. Thatis, if B € IM,(C) is a self adjoint matrix then B can be

written as

B = Xg0p + X101 + X207 + X303

1 0 0 1 0 —1 1 0
O'O = y 0'1 = ) 02 = ) 0'3 =
01 1 0 i 0 0 -1

and x¢, x1,x,,x3 € R.

where

Let S,,(C) be the state space of a quantum system. Namely,
S)(C)={peMy(C): p=0, Trp =1}

The set S,,(C) is convex. It is also closed and bounded. Convexity of S,(C) is

obvious, so we show the boundedness and closedness of S,,(C):

Proof. (of boundednes of S,,(C)) :
Let p be a density matrix. Then sp(p) C [0,1] and Trp = 1. The sup norm (or the

maximum norm ) of p is

loll =max{IAl: A€ sp(p)}
=1

Hence 0 <||p|| <1 and S,,(C) is bounded with respect to the sup norm. All norms are

equivalent in finite dimensional Hilbert spaces, hence S,,(C) is bounded. [
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Proof. (of closedness of S,,(C)) :
Let A be the set of positive definite matrices in IM,,(C) and & be a function defined by

h: A— R,

B+ TrB.
Consider the set:
M=h"(1)={BeA: h(B)=1},

Since h is continuous, the set M (which is the set of density matrices ) is closed. [

A density matrix p € S,(C) can be represented by
1
p= 5(0‘0+x101+x202+x303) (3.1)
where 0y, 01, 07, 03 are Pauli matrices.
Formula (3.1) is equivalent to

1 1+X3 Xl—iXQ
P=5

2 X1+iX2 1—X3,

where x1, x5, x3 € R. The matrix p is a density matrix if and only if xf + x% + x% <1
Hence the state space of the qubit system can be described by the unit ball in R® which
is called the Bloch ball. The pure states are the points that satisfy x% + x% + x% =1,
which describes the unit sphere in IR?, and this unit sphere is called the Bloch sphere.

Any mixed state is a convex combination of pure states.

Let p € M, (C) be a density matrix. Then it has a Schmidt decomposition

p= Zﬂj|xj><xj| (3.2)
j
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where 0 < p; <1, ;u; =1 and x; are unit vectors. Since p is a self-adjoint matrix,

2

(3.2) is obtained from the spectral decomposition of p. Hence x;

s may be chosen as the
eigenvectors of p and y;’s are the corresponding eigenvalues. If all y;’s are different,

then the Schmidt decomposition is unique.

3.2 Composite Systems

Suppose that we have n physical systems with corresponding Hilbert spaces
Hq, H,,.., H, respectively. Then the Hibert space H of the composite system is
defined by

H=H oH,®..QH,.

If the dimension of the subsystem H; is N; then the dimension of the composite system

H is the product of the dimensions of the subsystems, that is
n
dimH = ]_[ N..
i=1

For n = 2 we have two subsystems and the composite system H; ® H, is called a
bipartite system. If {u;}!" | is a basis of ; and {vj};l:1 is a basis of H,, then {u; ®v;} is

a basis of H; ® H,, where i = 1,...,m, j = 1,...,n. The dimension of H; ® H, is mn.

Let [¢) € Hi ® H, be a bipartite state. Then [i)) can be written as a linear
combination of the vectors from the component systems. That is
n

[wy=) ajlx)®ly;).

=1

Let |x) € Hy, |ly) € H, and A € B(H;), B € B(H;), then the operator A ® B acting
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on a vector |x) ® [y) € H; ® H, is defined by
(A® B)(Ix)®1y)) = Alx) ® Bly).

This definition can be extended to all elements of H; ® H, in the following manner

(A®B)( Z(X]‘lxj>® ij>) = ZajA|xj>®B|yj>-

j j
3.3 Entanglement

Tensor product of quantum systems give rise to define one of the most interesting
and striking idea of quantum mechanics: The entanglement. To understand the

entanglement let us look at an example:
Example 3.3.1. Let us look at the following two-qubit state

00) - [11)
V2

where |00) = |0)®|0) and |11) = |1)®|1). The state |i) can not be written as a product

) =

of two states |x),|y) € C2. To prove this let us assume that |) = |x) ® |y), where

|x) = a110) + a5[1)

lv) = b1|0) + by|1)

then

% = (a110) + aa|1)) @ (b1]0) + by|1))

= a1b1|00> + a1b2|01) + a2b1|10> + a2b2|11>

where a;by = \/LE’ aib; =0, ayb; =0, ayb,= \_/_15

1

If a1by = 0, then a; = 0 or by = 0 which contradicts the fact that a1 by = or

S
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ayby = =, Therefore |) can not be expressed as the product of two single states.

V2

These type of states which can not be written as a product of states of its subsystems
like given in Example 3.3.1 are called entangled states. The other states are called

separable states.

One can formulate entanglement using of the density operator language. Let
M,,,(C), M,,(C) be the matrix algebras defined on the Hilbert spaces C" and C".

Then the matrix algebra of the composite system C” ® C" is

an(C) = Mm(c) & Mn((]:)

There are two types of positive matrices in IM,,,(C) ® M,,(C). One consists of the

elements written in the following form
ZM i® N i
j

where M; € M,,,(C), N; € M,,(C) are positive matrices. These matrices are called
separable positive matrices. Not every positive matrix is separable. That is, there are

positive matrices in IM,,,(C) ® M,,(C) whose components are not positive.

A state of a quantum system is called separable if its density matrix is separable
otherwise it is called entangled. A pure state is separable if and only if it is a product

state.

Lemma 3.3.2. Suppose that H, and H, are two Hilbert spaces and {u]-};-“:1 and {v;}_,
are bases of H, and H, respectively. Let { € Hy ® H, be a unit vector with the

following expansion
l,b = inj u]- ® Vi
ij
and X be the matrix determined by the entries x;;. Then (X*X )T is a density matrix
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and
(W, (A® L)) =Tr AX'X)T

forany A € B(H;).

The above lemma enables us to define the reduced density matrix in the following

way:
Definition 3.3.3. Let p be a density matrix in M,,(C) ® M,,(C). Then the reduced
densities py € M,,(C) and p, € M,,(C) of p are defined by

Tr(A®I)p = Tr(Apy), Tr(I; ® B)p = Tr(Bp,)

for Ae M,,(C), Be M,,(C). In the above formulas, I; € M,,,(C) and I, € M,,(C) are

the identity matrices.

One should note that the reduced densities are the quantum analogue of the marginal

distributions.

Remark 3.3.4. In Lemma 3.3.2, one can see that the reduced density of the pure state
[W)(| on the first subsystem is (X*X)T and the reduced density of |(){1| on the second
subsystem is XX*. The lemma shows that if the total system is in a pure state then the

reduced densities have the same nonzero eigenvalues.

A matrix in the tensor product space M,,(C) ® IM,,(C) can be written as a block
matrix with respect to the product basis. Let p € M,,,(C)®M,,(C) be a density matrix.

Then p can be written as

m
p= ZEij®Aij
ij=1

where E;; € M,,(C), A;; € M,,(C), and E;; are called matrix units. For m =n =2 we

24



have

A Ap
Aly A

Then by Definition 3.3.3, the reduced densities of p can be written by the following

formulas

Tl'All TI'A]Z

p1= and P2 =Ap1 +Ap.

TI'A;Z TI'A22

It is possible to generalize these formulas for the density matrices in IM,,,(C)®IM,,(C):

All Alz oo Alm

A Ay . A
pa=| 7 T o (A €M(C), i,j=1,2,..,m).

(Al Ao Amm

Then the reduced densities p; € IM,,,(C) and p, € IM,,(C) are defined as

_TrAll TrAlZ TI'Alm

TrA7, TrA .. TrA
Pl = ) 12 22 .Zm and pz :All +A22+"'+Amm'

| TrAY,, TrAy, .. TrAum,

Definition 3.3.5. The linear mappings Tr; : M,,,(C) ® M,,(C) — M,,(C) and Tr, :
M,,,(C)®M,,(C) — M,,,(C) represented by the formulas

T (C®D)=(TrC)D and Try(C®D)=(TrD)C

on elementary tensors are called partial traces.

Remark 3.3.6. Partial traces can be extended linearly to any matrix T in the tensor

product space M,,,(C)®M,,(C). That is, for any matrix T € M,,,(C)®M,,(C), partial
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tracesof T are Tri T =T, and Tr, T =T .
In the followings we collect some useful facts of the partial trace:

1. ForAeM,,(C)®M,,(C) and Be M,,(C), C € M,,(C) we have
Tri(A(I®C)) = (Tr; A)C, Tri(I®C)A) = C(Tr; A),
similarly
Try(A(B®I)) = (Tr, A)B, , Try((B®I)A)=B(Tr, A).
One can observe from the above relations that

Tri(A(I®C)) = Tri (I ® C)A),

2. ForAeM,,(C)®M,(C), Be M,,(C) and C € M,,(C) the following relations
hold

Trz(A(I ®B)) = TI'2((I ®B)A);
Remark 3.3.7. The reduced densities p1 € M,,,(C) and p, € M,,(C) of a density matrix

p € M,,,(C) ® M,,(C) can be defined by using the partial trace as following

Tryp = p1, Try p = po.

We close this chapter by defining the partial trace by using the operator language:

Definition 3.3.8. Let H| and H, be finite dimensional Hilbert spaces with orthonormal

bases {e;}",, {f]}]”:1 respectively. For T € B(Hy ®H,) its partial trace Ty = Try, T =
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Tr, T is an operator on 'H, defined by the following equality

(xTiy)= ) (x&f;), T(y®f))
i=1

]

SJorall x,v € H;.
Similarly one can define the partial trace T, = Try, T = Try T by the following formula

(x,Toy) =) ((e;®x),T(e;®Y))
i=1

Sfor all x,vy € H,.

27



CHAPTER FOUR
ENTROPY IN QUANTUM INFORMATION THEORY

In Chapter 2, we investigated the entropies in the probability theory. By doing so, we
used the classical probability vector, that is (py, p, ..., p,) of p; > 0 with }_p; = 1. The
quantum analogue of a probability vector is the density matrix. Recall from Chapter
3 that a density matrix p € IM,,(C) is a positive definite matrix with Trp = 1 and it
is defined on the Hilbert space of the quantum system. This means that the vector
(1, U2, ..., py) consisting of the eigenvalues of p forms a probability vector. This fact

allows us to generalize the classical entropy to the density operators.

4.1 Definition And Some Basic Properties Of Von Neumann Entropy

Definition 4.1.1. Let p € M,,(C) be a density matrix. Then the von Neumann entropy
of p is defined by

S(p) =-Trplogp (4.1)

The self adjoint matrix plog p € M,,(C) is defined by using the spectral theorem.

Note that the Shannon entropy is a special case of the von Neumann entropy where

the density matrices in the formula (4.1) are diagonal.

In the followings we collect some important and useful facts related to the von

Neumann entropy:

Proposition 4.1.2. The von Neumann entropy is basis independent, which means that
if we choose the basis consisting of the eigenvectors of the density matrix p, the formula

(4.1) is equivalent to

S(p) =- Z/\,- log A, A €splp) 4.2)
i=1

28



with 0log 0 = 0.

As with the classical entropy, the quantum entropy is nonnegative as well:

Proposition 4.1.3. Let p € M, (C) be a density matrix. Then 0 < S(p) < logn. There
is equality on the left hand side if and only if p is the density matrix of a pure state.
And S(p) = logn if and only if p = (%)I , that is p is the density matrix of a completely

mixed state.

Remember from Remark 3.3.4 that the reduced densities of a pure state have the

same nonzero eigenvalues. The following proposition is related to this fact:

Proposition 4.1.4. If the composite system is in a pure state p1, with reduced densities

p1 and p,, (Note that reduced densities are defined in Section 3.3.) then S(p1) = S(p2).

We have seen in Section 2.1 that the Shannon entropy is additive for two independent

random variables. Analoguosly, von Neumann entropy is additive for product states:

Proposition 4.1.5. For a product state p; ® p; € M,,(C) ® M, (C), von Neumann

entropy is additive, that is

S(p1®p2) = S(p1) + S(p2)- (4.3)

In quantum information theory we use the functions of density matrices. Hence it

seems to be useful to define matrix monotonicity and matrix convexity.

Definition 4.1.6. Let (c,d) be an open interval of the set of real numbers and
g : (c,d) — R be a real-valued function. The function ¢ is matrix monotone (or
operator monotone) if for every n € IN and every self adjoint matrix C,D € M,,(C)
with the spectrum sp(C),sp(D) C (c,d)

C <D= g(C) < g(D).

When —g is matrix monotone, then g is matrix monotone decreasing.
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Also, the function g is said to be matrix convex (or operator convex) if for every

n € IN and every self adjoint matrix C,D € M,,(C) with sp(C),sp(D) C (¢, d)
gtC+(1-t)D)<tg(C)+(1-t)g(D), 0<t<1.

When —g is matrix convex, then g is matrix concave.
Examples:

1. (Nielsen & Petz (2004)) The function g(x) = 1/x is matrix(operator) monotone

decreasing and matrix(operator) convex on (0, co).

Let X <Y and X, Y be two strictly positive matrices. To prove the function
g(x) = 1/x is matrix monotone decreasing one can start with a special case where
X =1. Since Y and I commute they are simiultaneously diagonalizable. So the
result Y1 < T follows from the monotonically decreasing property of the real
function f(x) = 1/x. The general result follows by taking Y = X~1/2yX~1/2,

The operator convexity of the function 1/x can be proved in a similar way.

2. (Hiai & Petz (2014)) The function x +— logx is matrix monotone and matrix

concave on (0, o).

The proof of concavity follows from the well known formula

| 1
logx_J; (— —)dt (4.4)

1+t x+t
and the operator convexity of the function x — 1/x.

3. The function x — xlog x is matrix convex on (0, o).

Proof. By (4.4) we have

xlogx:'[oo(i—i)dt 4.5)
0

1+t x+t
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or equivalently

X t

xlogx:J; (—+——1)dt (4.6)

1+t x+t

Let A be a positive definite matrix. By the spectral theorem we have
AlogA = J ((1 +t) TAL A+ )T - I)dt (4.7)
0

since the integrand in (4.7) is operator convex then the integral is also operator

convex. O]

4. (Hiai & Petz (2014), Carlen (2010)) The function x — +/x is operator monotone

and operator concave on (0, co).
5. (Hiai (2017)) A power function f(x) = x™ defined on (0, o) is

* operator monotone and operator concave when m € [0, 1],
* operator convex when m € [1, 2],
* operator convex and operator monotone decreasing when m € [—1,0],

* when € (—oo0,—1) U (2, 00), x™ is convex but not operator convex.

Related to the above definitions it is useful to give the following theorem:

Theorem 4.1.7. (Peierls Inequality) Let A € M,,(C) be a self adjoint matrix and f
be a convex function on R. The following inequality holds for any orthonormal basis

{vi,v9,...,v,,} of C"

n

Y Fvi Avy)) < Tr f(A)

i=1
There is equality if each v; is an eigenvector of A.

Proof. See, Carlen (2010), Theorem 2.9. [

An immediate consequence of the above theorem is the following proposition:
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Proposition 4.1.8. Let f : (a,b) — R be a continuous convex function and
A € M, (C) be a self adjoint matrix with sp(A) C (a,b). Then the function

A +—Tr f(A) is operator convex on the set of self adjoint matrices.

Proof. Since the set of self adjoint matrices is convex, A can be written as a convex

combination of two self adjoint matrices A; and A,, that is
A=aA1+(1-a)A,, 0<a<l.
We will show that
Trf(aA;+(1-a)Ay)) <aTrf(A)+(1-a)Tr f(A,). (4.8)

Towards this end consider the orthonormal basis {v{, v, ..., v,,} of C" consisting of the

eigenvectors of A. By the above theorem we have

=) f(viAv)
i=1

=Y F((wi(@A; +(1-a)A)w)

i=1

- Zf(a(vi,Alvi> +(1- a)(”i;szi>)
i=1

by the convexity of f we obtain

n

Y Flagvi Ay + (1 - @)@, Agv)) < ) af (v, Ayvg)) + (1 - a)(wi, Ayvy)
i=1 i=1

flwi Ay +(1-a Zf ((vi, Agvi)).

i=1

Using the above theorem again we obtain

Xf<vz,A1v> (1-a Zf<vz,sz><aTrf D)+ (1=a)Tr f(A))
which proves (4.8). O
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The above proposition can be generalized as a theorem :

Theorem 4.1.9. Let f : R — R be continuous and let n € IN. Then if x —> f(x) is
monotone then A — Tr(f (A)) is operator monotone on the set of self adjoint matrices
in M,,(C). Similarly, if x — f(x) is convex, then A — Tr(f (A)) is operator convex

on the set of self adjoint matrices.

Proof. See, Carlen (2010), Theorem 2.10. [

It is clear that the von Neumann entropy is a concave function of the eigenvalues of

the density matrix p. But more is true:

Proposition 4.1.10. Von Neumann entropy is operator concave, that is

S(Ap1 +(1=A)p2) = AS(p1) + (1= A)S(p2), 0<A<1 (4.9)

where py, p, are density matrices in IM,,(C).

Since the function x — —xlogx is concave, it is easy to prove the inequality (4.9)

by using the Theorem 4.1.9 .

4.2 Quantum Relative Entropy

In Section 2.2 we defined relative entropy for the classical probability distributions.

Now we will define it for density matrices:

Definition 4.2.1. Let p, 0 € M, (C) be density matrices. The relative entropy of p to
o is defined by

Trp(logp —logo) if supp(p) <supp(o)
S(pllo) =

00 otherwise.
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Let us show that if supp(p) < supp(o) then S(pllc) < oo : Let the Schmidt

decomposition of p and o be given by

p= ) pilvdwil  p=) aloe]l
i=1 =1

]

then we have

n
Trplogp=) pilogpi,  Trplogo =) p;logq;Kild)
i=1 ij

and
S(pllo) =) pilogpi— ) _pilogaq;Kilg;)
i 7]
suppose that |);) € supp(p) then [¢);) € supp(c) and we have

S(pllo) = ) pilogpi= ) pilogail(wilyp:)?

= sz- logp; —pilogy;

(4.10)

(4.11)

since [1p;) in supp(p) N supp(o), the eigenvalues p; of p and g; of o will be nonzero

which makes the sum (4.11) finite.

As with the classical relative entropy, the quantum relative entropy is also

nonnegative. One can show this fact by using Klein’s inequality:

Theorem 4.2.2. (Klein’s inequality) For all self adjoint matrices X,Y € M,,(C) and

all differentiable convex functions f : R — R we have

TY[f (X) ~ £(Y) ~ (X~ Y)f(Y)] 2 0.

Proof. See, Carlen (2010), Theorem 2.11.

Note that replacing f by tlogt in the above theorem, one obtains the following
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inequality

TrX(logX -logY)-Tr(X-Y) > 0.

If X and Y are density matrices, say X = p, Y = o then Tr(p — o) = 0 and we have

Trp(logp —logo) >0, (4.12)

which shows the nonnegativity of the relative entropy:

Remark 4.2.3. Quantum relative entropy is nonnegative, that is

S(pllo) > 0. (4.13)

4.3 Some Important Inequalities Of Von Neumann Entropy

Theorem 4.3.1. (Subadditivity of Von Neumann entropy) Let p,, be a density matrix
in M,,,(C) ® M,,(C) with reduced densites p; € M,,(C) and p, € M,,(C). Then

S(p12) < S(p1) + S(p2) (4.14)

or equivalently

Trp12(logpi, —logp; —logp,) > 0.

Equality holds in (4.14) if and only if p,, is a product state, that is p1; = p1 ® p2.

Proof. See Carlen (2010), Bhatia (2009), Petz (2008). [

An extended version of quantum relative entropy is the ‘relative quasi-entropy’.

This concept was first introduced by Dénes Petz (Petz, 1986), in the following sense:

Definition 4.3.2. Let p,0 € M, (C) be two invertible density matrices, K € IM,,(C)
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and f : (0,00) — R be a real function. Then the relative quasi-entropy (or

f-divergence) is defined by

SF (pllo) = (Kp'2, f (Mg )Kp'"?) (4.15)
= TrK*f(Ag,p)Kp

where (X,Y) = Tr X*Y is the Hilbert Schmidt inner product and A, , : M, (C) —
M, (C) is the relative modular operator defined by Araki (1976) as follows

Ag oK)= LeR, (K) = oKp™".

o,p

The operators L and R in the above formula are called the superoperators and they

commute, that is, LR = RL.

Note that setting K = I and f(x) = —logx in (4.15) we obtain the quantum relative
entropy, namely S(p|lo) = Trp(logp —logo). Thus the relative entropy is a special

case of the relative quasi-entropy.

The relative entropy is monotone in the following sense:

Theorem 4.3.3.  (Monotonicity of the  Relative  Entropy) Let
12,012 € M, (C) ® M, (C) be density matrices with reduced densities

p1,01 € M,,,(C) respectively. Then
S(p12llo12) = S(p1lloy). (4.16)

Proof. A delicate proof of the monotonicity can be found in Nielsen & Petz (2004). [

The monotonicity inequality (4.16) holds true not only for the function —log x but

also for all operator convex functions, that is, if f is an operator convex function then

St(p12llorz) = S¢(p1lloy). (4.17)
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Moreover in Petz & Virosztek (2014) there is an extension of the inequality (4.17) in

the following way

ST (p1allor2) = ST (palloy) (4.18)
f f

where T is any matrix in IM,,,(C) and I is the identity matrix in IM,,(C).

The operator T ® I in (4.18) can be replaced by the operator T ® V,, where V) is a

unitary matrix:

Lemma 4.3.4. Let P5,Qq, € M,,(C) @ M,,(C) be two strictly positive matrices and

V, € M,,(C) be a unitary matrix. For any operator convex function f and any matrix

T € M,,,(C) the following inequality holds

S22 (PiallQ1o) = S (PLIQy). (4.19)

There is a proof of the above lemma in Jencova & Ruskai (2010). In the following

we give another proof which is based on a technique due to Petz & Virosztek (2014).

Proof. Let U : M,,,(C) — M,,,(C) ® M,,(C) be a linear map defined by the formula
U(X) = (XP? @ V,)PY2. (4.20)

Claim: U is an isometry:

Let X,Y in M,,,(C). Then

(UX), U(Y)) = ((XP[2 @ V,)PY%, (YPTV2 @ V,)PY?)
=Tr(P,2X* Y P72 @ V5 Vo) Py,
=Tr(PTY2X*YP 2 ®@ )P,

- Ty Pl—l/ZX*Ypl—l/Zpl

=TrX'Y =(X,Y).
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Now we will find the operator U* which is the adjoint of U

(Y, U(X)) =Tr(Y(XP2 @ V,)P}%)
= Tr(YP) (X QI)(P[ 2 @ Vy)
=Tr(PT2 @ V,)(YPY?) (X &)
=Te[((YP)P 20 v3)) (X o)
= Tr[Try (YR (P2 @ V3)) X|

= (Try (Y2 (PT 2 @ V5)), X)
hence U*(Y) = Tr, (YPllz/z(Pl_l/2 ® Vz*))
Moreover for any matrix X in IM,,,(C), U satisfies the following identity:

U*Ag,,,p, UX) = U(QuaXPT 2 @ V)P, 7?)
=Tr, (Q12(XP; 2 @ Vo) P, P (P @ V7))
=Tr (Q12(XP ' ® V2 V3))
= sz(le(XPfl ®I))

= Q1 XP ! = Ag, p, (X).

By the formula (4.15)

S (PlIQ1) = (TP"% f(Ag,p)TP?)
=(TP!?, f(U"Ag,,p,,U)TP?).

Since f is operator convex and U is an isometry ( Lemma 2 of Nielsen & Petz (2004))

we have

f(U*Ale'Ple) < U*f(AQn’Plz)U
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which implies the following inequality
<TP11/2’f( U'Ag,,.p, U)TP11/2> = <TP11/2' U*f(Alerplz)U(Tpllﬁ))'
In addition, U(TP}?)=(TP*P['>®V,)Py> = (T ® V,)P}}>. Thus

(TP, U f(Agy,p,)U(TPY2)) = (T @ V2)P2, f(Aq,, (T ® Va)Ply2)

T
=S¢ ®Vz(Plz”le)-

This completes the proof. O

One of the fundamental properties of the von Neumann entropy is the strong

subadditivity:

Theorem 4.3.5. Let pq,3 € M,,(C) ® M,,(C) ® M,(C) be a density matrix and pi, €
M, (C)®@M,(C), p; € M,,(C), pp3 € M,,(C)® M,(C) be its reduced densities. Then

S(p123) +S(p2) < S(p12) + S(p23) 4.21)
or equivalently
Trp;23(logp123 —logpi, —logpas +logpy) >0

where 13 =Tr30123, P23 =Trip123 and py =Try p1>.

There are many different proofs of the above theorem in the literature. The original
proof was due to Lieb and Ruskai (see Lieb & Ruskai (1973)). Petz proved this theorem
by using the mononicity of the relative entropy (Petz (1986)). In the following, we try to
explain how to obtain the strong subadditivity inequality (4.21) by using the monoton

icity of the relative entropy:

Proof. (based on a proof in Petz & Virosztek (2014)) By the monotonicity of relative
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entropy we have

S(pasllp2 ®13) < S(p123llp12 ®13)

or equivalently

Tr py3(log a3 —log(p, ®13)) < Trp;z3(log p123 —log(p12 ® I3)). (4.22)

Writing the left and the right hand side of (4.22) explicitly, we have

Tr pp3log p23 —Tr po3log(pr ® I3) < Trpip3logpr23 — Trpr231log(p12 ® I3)

which implies the following strong subadditivity inequality

=5(p23) + S(p2) < =S(p123) + S(p12)-

Strong subadditivity is much deeper result than the subadditivity. Taking M,,(C) to

be one dimensional in the inequality (4.21) we obtain the subadditivity, that is

S(p12) < S(p1) + S(p2). (4.23)

Remember that in Chapter 2 we investigated a new type of inequality which is called
partial strong subadditivity. Analogous to the classical entropy it is possible to define
partial strong subaddivity for quantum entropies. In this case instead of probability

distributions we have density matrices :

Theorem 4.3.6. Let p1,3 € M,,,(C) ® M,,(C) ® M,(C) be a density matrix and p;, €
M,,(C)® M, (C), p2 € M,,, p23 € M, ® M, be its reduced densities. Then

TI'12 p123(10g p123 — log p12 — log p23 + log pz) > 0. (424)
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The inequality (4.24) can be called the partial strong subadditivity of von Neumann

entropy.

Proof. This theorem is proved by Kim (2012). He uses the results of Effros (2009)
based on convexity and functional analysis. For more details see Ruskai (2013) and

Kim (2012). O

Remark 4.3.7. In (4.24), the partial traces of the operator py,3(logpi,3 —logpi, —
log p23 +1og p,) with respect to the first component and the second component are not

even self-adjoint at all.

Remark 4.3.8. In the inequality (4.24), taking M,,(C) as one dimensional, one
obtains the partial subadditivity, which is the matrix version of the classical partial

subadditivity.
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CHAPTER FIVE
RESULTS ON QUANTUM TSALLIS ENTROPY

5.1 Definition And Some Basic Properties Of Quantum Tsallis Entropy

The one parameter extension of the von Neumann entropy is the quantum Tsallis

entropy. It is quantum analogue of the classical Tsallis entropy.

Definition 5.1.1. Let p € M,,(C) be a density matrix. Then the quantum Tsallis entropy
of p is defined by

Sq(p) =—Trplog,(p). (5.1)

By definition of the function log X (see definition 2.3.1), the above formula can be

written as

_Tr(p?-p)

S4(p) =,

; (g>1). (5.2)

In an analogy to the classical case, taking the limit as ¢ — 1 in (5.1) we obtain the

von Neumann entropy.

Note that taking the density operator as a diagonal matrix in the equality (5.1) we
obtain the classical Tsallis entropy. Hence the classical Tsallis entropy is a special case

of quantum Tsallis entropy.

For the sake of simplicity, from now on we will use the term “Tsallis entropy’ instead
of the term ‘quantum Tsallis entropy’. In the following, we collect some important
and useful facts of Tsallis entropy, most of which are analoguous to the von Neumann

entropy:

Proposition 5.1.2. Tsallis entropy is basis independent. If we choose the basis

consisting of the eigenvectors of the density matrix p, we obtain the following
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formula:
A1

Sq(p) 1-q

Proposition 5.1.3. Tsallis entropy is nonnegative and its maximum value is —logq %

It attains its maximum value at the completely mixed state p = (%)I, where p € M,,(C).

It is possible to prove this property in many different ways. Here we will use the

concavity of the function x — —xlog g X The following proof'is due to (Carlen, 2010):

Proof. Applying the function —xlog gX 10 the term ) ", %/\i we obtain

n n

(=) os, ()4

i:l 121
Since the function —xlog, x is concave

n n

(—Z%/\,’)logq(Z%/\i) > —Z%/\ilogq)\i

i=1 i=Il i=1

1
—long > S4(p)-

Equality occurs at the points A; = 1, =... = A, = Y. L. | which means that p=

i=1n

(4)I. 0

n

Proposition 5.1.4. If the composite system is in a pure state p, with reduced densities

p1 and py, then S4(p1) = S4(p2) - This property can be deduced from Remark 3.3.4.

Recall from Proposition 2.3.5 that the classical Tsallis entropy is pseduo-additive
for two independent random variables. Keeping in mind that the product states are
quantum analogous to the independent random variables, one can see the following

result immediately:

Proposition 5.1.5. For a product state p1 ® p,, T5allis entropy is pseudo-additive (Petz
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& Virosztek (2014)), that is
Sq(p1®p2) = Sy(p1) + S4(p2) + (1 —q)S4(p1)S4(p2)

where py, is a density matrix with reduced densities py and p;.

In Chapter 4, we saw that the von Neumann entropy is an operator concave function

of the density matrix p. The same is true for the Tsallis entropy:

Proposition 5.1.6. Tsallis entropy is operator concave. That is

Sq(tpr + (1 =1t)pa) 2 tS,(p1) + (1 —1)S4(p2) (5.3)

where 0 <t <1 and py,p, € M, (C) are density matrices.

Proof. The inequality (5.3) follows from the concavity of the function x — —xlog X

and from theorem 4.1.9. O]

5.2 Subadditivity Of Quantum Tsallis Entropy

One of the remarkable results related to the Tsallis entropy is the following theorem:

Theorem 5.2.1. Let p1, € M,,(C) ® M,,(C) be a density matrix and let py € M,,,(C)
and p, € IM,,(C) be its reduced densities. For q > 1

S4(p12) < S4(p1) + S4(p2) (5.4)

From Definition 5.1.1, the inequality (5.4) can be written as

Trpy,log, p12 > Trp log, p1 + Trpylog, pa
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or equivalently

Trpq,(log, p12 —log, p1 ® 1 -1 ®log, p,) > 0. (5.5)

The inequality (5.4) is called the subadditivity of Tsallis entropy and it is proved by
Audenaert (2007). Before giving the details of his proof it will be useful to give some

definitions.

For each A € M,,(C), A*A is a positive definite matrix and the absolute value of A
is defined by |A| = (A*A)'/2. The eigenvalues of |A| are called the singular values of

the matrix A.

Definition 5.2.2. (Bhatia (2013), Hiai & Petz (2014)) For any matrix A in IM,,(C)
Schatten qg-norm of A is defined by

1/q
oI s~<A>4) =(TrJAI)Y,  (1<q<oo)
1Al = (’”
s1(A) = [|All, g=oo

where sj(A) are the singular values of A (or the eigenvalues of |A|). In particular,
Ally = Tr|A| is called the trace norm (or Schatten I-norm), ||All, = (Tr A*A)? is

called the Hilbert Schmidt norm and ||Al| = ||A|| = s1(A) is called the operator norm.

For x € R consider the following functions

f+(x) = max{x, 0},

f_(x) = max{-x, 0}.
One can easily see that

i), f2(x) 20, fily)-f(x)=x and fi(x)+f(x)=x]. (5.6
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For any self adjoint matrix B it is possible to define the following functions

B, = f(B), B_=f(B),

B, is called the positive part and B_ is called the negative part of the matrix B. By
(5.6) we have

B,,B_>0, B,-B_=B and B, +B_=|B|
and B, — B_ = B is called the Jordan decomposition of the matrix B. Before proving
the subadditivity, Audenaert first proved the following lemma:
Lemma 5.2.3. Let X € M,,,(C) and Y € IM,,(C) be positive definite matrices such that
IXllg, IY1ly < 1. Then the following inequality

X®L,+1,®Y ~1,®L,),, <1 (5.7)

holds for q > 1.

Proof. (Audenaert (2007), Hiai & Petz (2014))
We will prove the case || X]|4, ||Yl; = 1. The case [|X[|,,[|Y]l, < 1 follows immediately.
Let x; and y; be the elements of the spectrum of X and Y respectively, wherei = 1,...,m

and j = 1,...,n. Since ||X||q,||Y||q =1 we have

ix?zl and Zygzl.

i=1 j=1

We will prove the following inequality

X @L+1,®Y -1, ® L)l = ) ((xi-3;-1),)7<1.
ij

The function a — (a+ b — 1), is a convex function of a for any b € R. Let us define
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a vector valued function f as
fla)=(a+y-1);
where v = (y1,v2,...,¥,,). The function f is also convex in a. That is
f(tay +(1—t)ay) <tf(ar) +(1-1t)f(as)
or equivalently
(tag+(1—-thay+y—-1), <tlag+y-1), +(1-t)(ay+y—-1),.
By the monotonicity and convexity of the I, norm we have

I(tay + (1 =t)az +y =1).lg <[lt(ar +y - 1) + (1 = t)(az +y - 1)l

<ty +a=1)lly+ @ =5l +b-1).ll

Hence the function

1/q
gla)=lla+y-1).ll; = (Zaw]—l )

]

is convex in a. Moreover g(0) = 0 and g(1) = 1 which means that g(a) <afor0 <a <

1. Since 0 < x; < 1 we have

1/q9
g(x;) = [Z(Xi +9— 1)3) < x;

j

and summing over the index i we obtain

which proves the desired inequality. [l
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It is possible to prove Theorem 5.2.1 by using the above lemma. The following

proof is due to Hiai & Petz (2014):

Proof. (of Theorem 5.2.1) By (5.2) the inequality (5.4) can be written as
Trp? + Trpl < Trpl, +1
or equivalently

lloallg + llpallg < llpr2llg +1. (5-8)

To prove (5.8) first we will prove the following inequality:
llp1lly +llp2lly < llp1ally + 1. (5.9)
Let g” € R be such that 1/g + 1/q” = 1. Then for any positive matrix A we have
|Allg = max{TrAB : B>0, |Blly < 1}
(This property is called the duality of Schatten g—norm.) Hence
llp1lly =TrXp; and  |lpsll; =TrYp,

for some positive matrices X, Y such that ||X||,/,[|Y|l,s < 1. Then by Lemma 5.2.3 we

have
IXRI,+1,8Y —Im®In)+||qf <1.

From the Weyl’s monotonicity principle we can find a matrix Z > 0 with ||Z]|,, = 1

such that

Z>X®I,+1,0Y 1,81,
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Then
172 172 < 172 172
P1é (Z +1y ®In)91é 2 Plé (XL, +1,,® Y)Plé
and

Tr[ZPIZ] +1 > TI'[(X ®ITZ + Im ® Y)plZ]
=Tr[Xp; ]+ Tr[Y p,]

=llp1llg + llp2lly-
Since [|py2lly > Tr[Zp;,] we have
llp12lly +1 = llpally + llp2ll

which proves (5.9).

Now we prove the inequality (5.8). To do this we use the function f(x,y) = x7 + 7

for g > 1. Let us look at the maximum value of f in the domain
D={(xy): 0<x<1, 0<y<l, x+y<Il+llppl,}

Since f is a convex function of x and y we examine only the extreme points

(0,0), (1,0), (0,1), (1,[lp12llg), (llp12llg, 1)- The value of f at these points are

f(0,0)=0, f(1,0)=1, f(0,1)=1
F(Lllpally) = 1+ llp1ally,  flprally 1) =1 +1p12ll3.

Hence f(x,p) < 1+ [lp12llf. But the point ([lp1lly llpall;) € D, so we have [lp; I +
||Pz||?1 5”012”2"‘1- O

We saw in Section 4.3 that von Neumann entropy is strongly subadditive. The

following example shows that this is not true for Tsallis entropy:
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Example 5.2.4. Let

00 0 0 0 0 00
00 0 0 0 0 00
0001 0 01 0 00
00 0 04 0 0400
P 001 0 01 0 0 0
00 0 04 0 0400
00 0 0 0 0 00
00 0 0 0 0 00

It is easy to see that p1,3 € M»(C) ® M,(C) ® M,(C) is a positive matrix with a trace

equals to 1, that is, p13 is a density matrix.

Then the corresponding reduced densities are

[0 0 0 o0 (01 0 0 0]

0 05 05 0 0 04 0 0 0.5 0
P12 = y P23 = ;7 P2 = .

0 05 05 0 0 0 01 0 0 05

0 0 0 0 (0 0 0 04

For q= 2 we have Sz(p123) = 032, SZ(PIZ) = 0, Sz(pz) = 05, Sz(ng;) =0.66 which

shows that

Sa(p123) + S2(p2) > S2(p12) + S2(p23)-

Therefore Tsallis entropy does not satisfy the SSA property!

5.3 Partial Subadditivity Of Quantum Tsallis Entropy

In Chapter 2 we made a diagram to show the relations between the strong

subadditivity (SSA), partial strong subadditivity (PSSA), subadditivity (SA) and
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partial subadditivity (PSA) of classical entropies. The same diagram applies to

quantum analogues of these entropies:

PSSA—SSA

ﬂ ﬂ

PSA——SA

Remark 5.3.1. Recall from Example 5.2.4 that quantum Tsallis entropy is not strongly
subadditive and the above diagram shows that it can not be partially strong subadditive.
The table 1.1 of the introduction part (see page 3) summarizes all the cases we have

seen so far.

At the end of Chapter 4 we gave a theorem of partial strong subadditivity of von
Neumann entropy. We observe by the above remark that the partial strong subadditivity

is not in the case for the Tsallis entropy.

In Besenyei & Petz (2013), the following inequality (which is related to the SSA of

quantum Tsallis entropy) was conjectured:

If p15 is a density operator in B(H) ® B(K) with reduced densities p; and p,, one
has

Tr(T®I2)p12(logq p12 —logq pl ®12 _Il ®10gq pz) >0 (510)

whenever T > 0 and g > 1.

The inequality (5.10) is a kind of partial subadditivity of Tsallis entropy and is quite

similar to the inequality (5.5).
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The above conjecture was proved in the same article for the following cases:

1. p12 = p1 ® p2 (The case of product states), and

2. The case m = n =2 when g = 2. (dim(H) = m and dim(K) = n)

The authors give the following example for the second case:

Example 5.3.2. Let p1; be a density matrix in IM»(C) ® M;,(C) and T € IM,(C) be a
a b
, T=

B p2:A+C.

positive semidefinite matrix such that

A B
B* C

P12 =

with the reduced densities

rA TrB
rB* TrC

P1 =

The key point of the proof is the following inequality:

TrBB*—TrBTrB"—=TrAC+TrATrC > 0.

This inequality is proved in Besenyei (2013):

Theorem 5.3.3. (Trace Inequality For Positive Block Matrices): Let A,B,C be nxn

B
matrices with complex entries and the block matrix € M,,,(C) be positive
B* C
semidefinite. Then
TrAC-TrBB*<TrATrC-TrBTrB". (5.11)

We restate Besenyei’s proof:

Proof. Since trace function is unitarily invariant we can assume that the matrix A is

52



diagonal. By simple calculations, (5.11) reduces to

aiiCii — |b1]|2 < all sz i
Y aisi- Y

i=1 1<i,j<n i=1

or equivalently
ZZRz iibjj) Zlbijlz < Z(aiicjj+ajjcii)'
i>] i#] i>]
If we show that
2 ZRZ(b”EU) < ajiCjj + CjiCii

i>]
then we are done.
: A L ; :

Since > 0, then all principal minors of p;, are nonnegative. Hence the

B* C

. i b : .
determinant of the matrix | is nonnegative foralli =1, 2,..,n. So

bii  cii
2
all i1 |bll| > O

Similarly,

2
Ap7C2p —|byp|” > 0.

By the arithmetic and geometric mean inequality we have

a;iCjj +ajjCij 2 2\/“11 jj4jjCii 2 2\/|b11|2|b]]|2 > 2Re(bj; ]]

and this proves the inequality (5.11). [
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5.4 Some Obtained Results Related To The Quantum Tsallis Entropy

In the following theorem we present a proof of the inequality (5.10) for arbitrary m

and n when g = 2. This completes Table 1.1 when g = 2.

Theorem 5.4.1. Let py;, € M,,,(C) ® M,,(C) be a density matrix, p; € M,,,(C), p, €
M,,(C) be its reduced densities and 0 < T € M,,,(C). Then

Tr (T ® 1) p12(log, p12 —log, p1 ® I - I ®log, p;) > 0
or equivalently

Tr Tpy + Tr(T @ L)pi, ~ Tr Tpi = Te(T ® pa)pi12 > 0. (5.12)

Before starting the proof it will be useful to give the following remark:
Remark 5.4.2. The inequality
Tr Tpy + Tr(T ® L)pt, — Tr Tt = Tr(T ® pa)p12 = 0
is unitarily invariant. That is, if UTU”* = D, where D is diagonal and U is unitary
and if p1, = (U®U)p1,(U* ® U*) with reduced densities p; = Up  U*, py = Up,U”,

then we have

Tr(UTU Up U+ Te(UQU)TQINU* QU (UU)p (U @ U]

=TrTp, + Tr(T®L,)p?,
and

TtUTU(Up, U) + Tr[(U U)NT @ pd YU @ U) U U)p1,(U* @ U]

-1
=Tr Tplf +Tr(T® pg )P12-
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Note that p1, = (U®U)p1,(U*® U*) is a density matrix and UpU*, Up,U" are
reduced densities of p1,. Therefore in (5.12) we may assume that T is a diagonal matrix

with nonnegative diagonal elements.

Proof. (of Theorem 5.4.1) We will prove the inequality (5.12). One can write the

density matrix p;; as a block matrix:

A A Az o A
P12 = A;?) AE?’ A33 A3m .
_A;m Azm Agm Amm
Then
[TrA;, TrA;, TrA;s .. TrAy,
TI'A?z TI'A22 TI'A23 TI'Azm
, p2 :A11+A22+...+Amm.

p1=|TrA}; TrA5; TrAss; ... TrAsz,

Tr A}, TrA5, TrA;, .. TrA,,

By Remark 5.4.2 we may assume that T is a diagonal matrix with nonnegative

diagonal entries tyq,f59,..., t,,;y- After some calculations we obtain the following

formulas:
m
Tt Tp; = Zt,-iTrA,-i (5.13)
i=1
m
TI'(T ®I)p122 = ZtiiTr(Aizi) + Z(tii + f]])TI'A’;]Al] (514)
i=1 j>i
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m
Tr Tp% = Ztii(TrAii)z + Z(tii + t]])lTI'Aljlz (515)
i=1

j>i

m

TI'(T ® p2)p12 = Ztii TI‘(Alzl) + Z(tii + t]])TI'AlZA]] (516)
i=1 j>i

where 1,j = 1,...,m. By using formulas (5.13), (5.14), (5.15), (5.16); the left hand side

of the inequality (5.12) becomes

m
Z(tii + t]])[TI'A:]Al] -3 |TI'141']'|2 = TI'A”A]]] + Ztii[TrAii - (TI‘141',')2 .
j>i i=1
Using the formula TrA;; + TrAy, +... + TrA,,,, = 1 we obtain TrA;; — (TrA;;)? =
7’:1 TrA;; TrA

i#]

ijs for all i. Then we substitute this formula into the sum

m
Ztii[TrAii - (TrAii)z]

=1

and we obtain

m m
Ztii[ TI‘A”TI‘A]]] = Z(tii + t]])TI‘A”TI‘A]]
i=1 j=1 j>i

]
Then,
Tr Tp, + Tr(T @ I)p3, — Tr Tpi — Tr(T ® p2)p12
is equal to
Z(tii+t]-j)[TrA’;jA,-j—|TrAi]-|2—TrAiZ~Aj]-+TrAZ-,-TrAj]- .

j>i
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Now we will show that
(tii + t]])[TI'A:]Al] - |TI'A1']‘|2 —TI'AZ'I'A]']' + TI'AI'Z'TI'A]']‘ >0, ] > 1.

Since t11, £33, by = 0 then ;; +¢;; > 0 for any 7,j. Also since p1p > 0, the
Ajj

Al Ajj

principal submatrix > 0. The proof of the trace inequality

TrA’;]A,] - |T1'Ai]'|2 - TI‘A”A]] +TrA;; TI'A]] >0, ] > 1
follows from Theorem 5.3.3. Hence,

Z(tii + t]])[TI'A:]Al] — |TI'A1']'|2 - TI'A”A]] + TI'AI'I' TI'A]] > 0.

j>i
This completes the proof. [

Corollary 5.4.3. In the above theorem putting T = |()(|, where |p) € C™ is any

vector, we obtain the following inequality

(P|Tr, pq2(log, p12 —log, p1 ® I —I®log, ps)lih) > 0

which means that the operator

Try p12(log, p12 —log, p1 ® I -1 ®log, p,)

is positive semidefinite on C™.

This corollary shows that the partial trace of the operator p;;(log, p1, —log, p1 ®
I — I ®log, p;) is positive semidefinite on C™. In fact this operator has some other
properties not only for g = 2 but also for g € (1,00). Hence in the rest of this section

we concentrate on the operator

p12(10gqp12—10gq()1®I—I®10gqp2) (q>1) (517)
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which is equivalent to

1 _ _
F[P?Z—Plz(h@’(?g 1)—912(0111 1®12)+012] (5.18)
by (5.2).

Lemma 5.4.4. Partial traces
Try p12(log, p12 —log, p1 @ I - I ®log, p;) € M,,(C) (5.19)
Tr; p12(log, p12 —log, p1 ® I - I ®log, p,) € M, (C) (5.20)

of the operator (5.17) are Hermitian.

We need the following proposition to prove the lemma:

Proposition 5.4.5. Let p1, € M,,,(C)®M,,(C) be a density matrix, p; € M,,,(C), p, €
M, (C) be its reduced densities and q € (1, 0). Then the operators Try p1,(I; ® pg_l),

i . . .
Try plz(p(f ® I,) are positive semidefinite.

Proof. We will show that
(x, Tryp12(L ® pg_l)x) >0, VxeC™.

Let { fj};?:1 be an orthonormal basis of C". By Definition 3.3.8 we have
1 - 1
(6 Trapra(l @03 )x) =) ((x®f),pra(li @p3 )(x® ).

=1

This definition is independent of the choice of the orthonormal basis. Thus we may

assume that the basis { fj};l:l consists of the eigenvectors of the density operator p,.
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Writing p, = Zj Ailfi){fil we have

(xTrpra(li®pd ¥y =) ((x@f)pralli ®p3 )(x®f))
j=1

=Y (e f)pnxep )
j=1

=) AT f)pra(x® f))
j=1

where 0 < A; € sp(p,) forall j. And ((x® f;), p12(x® f;)) > 0 for all j since py, is

positive. Hence
g-1 m
<X, TI'Z 912(11 ® () )x) >0, VxeC"”.

The positivity of the operator Tr; py z(p?_l ®I,) can be proved in an analogous way. [

Proof. (of Lemma (5.4.4)) In order to show the assertion, we will prove that the partial

traces of the operator (5.18) are Hermitian. Hence we will show that the operators

Try(p!, - p12(Iy ®p§’_1> - Plz(P{f—l ®1)+p12) (5.21)

Tra(p], — p12(I; ® Pg_l) - Plz(P?_l ®1I5)+p12) (5.22)

are Hermitian.
We will only prove that the operator (5.22) is Hermitian, the Hermitianness of (5.21)
can be proved in an anologous way. By the linearity of partial trace, the operator (5.22)

is equal to

Trypl, — Tryp1o(L @pd ) pl + 1. (5.23)

In (5.23) the operators Tr, ptliz, ptli and p; are all Hermitian. So, we only have to show

that Trp p1o(; ® pg_l) is Hermitian. But in the above proposition we proved that
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Tryp12(L ® pg_l) > 0. Hence the operator (5.22) is Hermitian.
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CHAPTER SIX
CONCLUSION AND OPEN PROBLEMS

In this thesis we investigate the inequality Tr(T ® I5) plz(logq P12~ logq p1®I, -
L ®logq p2) = 0, where py, is a density matrix and 0 < T € IM,,,(C). This inequality
was conjectured by Besenyei and Petz in 2013, where it was proved to hold for the
density matrices in IM,(C) ® IM,(C) and for g = 2. Here we prove this inequality for
the density matrices in M,,,(C)®M,,(C) . We also obtain some new inequalities related

to the operators (matrices) in this inequality.

The most important problem that remains is to understand the case of g > 1 with
q # 2. It seems that some new ideas are needed for a general solution. Having this in
mind we performed some numerical computations in Wolfram Mathematica 12. These
examples suggest that the operators Tr, plz(logq P12 — logq P1®1-1I® logq p2) and
Try plz(logq P12 — logq P1®I-I® logq p2) are not only Hermitian but also positive.
If it s true, this would imply the partial subadditivity of the Tsallis entropy. Hence our

future work will be to investigate this claim.
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