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ON SOME ENTROPY INEQUALITIES

ABSTRACT

In this thesis, we investigated some entropy­type inequalities in quantum

information theory. We gave a proof of a conjecture from the paper Besenyei & Petz

(2013) for a special case. This conjecture is a kind of partial subadditivity of quantum

Tsallis entropy. Moreover, we obtained some operator inequalities and results related

to this conjecture.

Keywords: Tsallis entropy, subadditivity, strong subadditivity, partial subadditivity,

trace inequalities, operator inequalities.
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BAZI ENTROPİ EŞİTSİZLİKLERİ ÜZERİNE

ÖZ

Bu tezde, kuantum bilgi teorisindeki bazı entropi tipi eşitsizlikleri araştırdık. Özel

bir durum için Besenyei & Petz (2013) makalesindeki bir varsayımın ispatını verdik.

Bu varsayım, kuantum Tsallis entropisinin bir tür kısmi alt eklenebilirliğidir. Ayrıca bu

varsayımla ilgili bazı operatör eşitsizlikleri ve sonuçları elde ettik.

Anahtar kelimeler: Tsallis entropisi, alt toplamsallık, güçlü alt toplamsallık, kısmi alt

toplamsallık, iz eşitsizlikleri, operatör eşitsizlikleri.
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CHAPTER ONE

INTRODUCTION

1.1 Introduction And The Statement Of The Problem

Entropy is an important notion in both classical and quantum information theories.

It is a measure of disorder or uncertainity in a system. From a classical point of view,

the first attempt to measure information was made by Hartley in 1927 [McMahon

(2007)]. Then, in his groundbreaking paper “The Mathematical Theory of

Communication” [Shannon (1948)], Shannon presented a probabilistic way to

measure the information content produced from an information source.

An information source is any physical devise sending messages (or signals)

consisting of a string of letters from any alphabet. Suppose that a message is taken

from an alphabet of n letters, say a1, ..., an where the probability of occurrence of the

letter ai is pi . The important step taken by Shannon is that he quantified the

information content of a message by taking the logarithm of the multiplicative inverse

of the message’s probability. It means that if the probability of a message is high, we

will not get much information from it. A message with a low chance of occurrence,

on the other hand, may include a considerable amount of information.

Shannon then defined information as the average of the probabilities of the

messages, i.e. H(X) = −
∑n
i=1pi log2pi where X is a discrete random variable with

probability distribution p1,p2, ...,pn (for more detail see McMahon (2007), Petz

(2007)).

One of the well­known properties of the Shannon entropy is the strong

subadditivity [Petz (2007)]. Strong subadditivity relates the entropies of three

subsystems to a bigger system where the probabilities of the subsystems are described

by the marjinal distributions. Subadditivity is implied by the strong subadditivity.

The Tsallis entropy is a one­parameter extension of the Shannon entropy, defined
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by the formula Hq(X) = −
∑n
i=1pi logq pi . Tsallis entropy has an important role in

non­extensive statistics and statistical physics [Furuci (2006)]. Similar to the Shannon

entropy, Tsallis entropy is strongly subadditive as well [Furuci (2006)] and hence is

subadditive.

In [Besenyei & Petz (2013)], a new type of inequality which can be considered as

“partial (strong) subadditivity” is introduced and proved for both Shannon and Tsallis

entropies. The importance of partial (strong) subadditivity is that it implies (strong)

subadditivity.

In this thesis, we are mostly intrested in quantum analogues of the above entropies.

Every quantum mechanical system is associated with a complex Hilbert space that is

called the state space. In the quantum world, instead of probability distributions, one

uses density matrices, and density matrices are in one­to­one corresponce with states.

A composite quantum mechanical system is described by the tensor product of the

corresponding Hilbert spaces and marginal distributions by the partial traces of the

density matrix [Petz (2007)].

The quantum analogue of the Shannon entropy is the von Neumann entropy, and

it is defined by the formula S(ρ) = −Trρ logρ where ρ is a density operator. John

von Neumann originally introduced this equality in 1932 in his groundbreaking paper

“Mathematische Grundlagen der Quantenmechanik” [Von Neumann (2013)].

One of the fundamental properties of von Neumann entropy is its strong

subadditivity. Lieb and Ruskai [Lieb & Ruskai (1973)] proved this fact in 1973.

Strong subadditivity is used in coding theory, topological entanglement theory,

conformal field theory and in some other research areas [Kim (2012)]. Due to the

non­commutativity of the density matrices, proving strong subadditivity in the

quantum case is more challenging than in the classical case. The strong subadditivity

implies subadditivity in the quantum case as well.

A one­parameter extension of the von Neumann entropy is the quantum Tsallis

entropy [Besenyei & Petz (2013), Petz & Virosztek (2014), Hiai & Petz (2014)].
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Quantum Tsallis entropy is defined by the formula Sq(ρ) = −Trρ logq ρ, where ρ is a

density operator. As q → 1, the von Neumann entropy is the limit of the Tsallis

entropy [Petz (2007)]. The Tsallis entropy is known to be subadditive [Audenaert

(2007)] but not strongly subadditive [Petz & Virosztek (2014)].

Almost at the same time as the paper Besenyei & Petz (2013) was published, Kim

proved an operator extension of the strong subadditivity of von Neumann entropy,

which is a kind of partial strong subadditivity [Kim (2012)]. In fact, this is the

operator version of the Shannon entropy’s partial strong subadditivity.

The following table summarizes all the cases:

Table 1.1 All Known Cases

Entropy SA PSA SSA PSSA
Shannon Yes Yes Yes Yes
Tsallis Yes Yes Yes Yes

Von Neumann Yes Yes Yes Partly
quantum Tsallis Yes ? No No

SSA: strong subaddivity
SA: subadditivty
PSSA: partial strong subadditivity
PSA: partial subaddivity

In [Besenyei & Petz (2013)], an inequality related to the partial subadditivity of the

quantum Tsallis entropy is conjectured when the real number q is greater than 1. This

conjecture was proved in the same article for the product states, and it is also proved

for 2 × 2 density matrices when q = 2. In this thesis, we investigate this conjecture

and some related inequalities. The following paragraphs explain how this thesis is

organized:

We begin with a quick overview of classical information theory in Chapter 2. We

give definitions and some important facts related to the Shannon entropy and Tsallis

entropy. Moreover, we give some simple results we obtained.

In Chapter 3, we give a brief explanation of quantum information theory’s
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mathematical formalism. The postulates of quantum mechanics are covered in this

chapter. Then we collect some important facts that will be useful for us.

In Chapter 4, we introduce the von Neumann entropy and collect some of its basic

properties. Then we introduce the concepts “matrix monotonicity” and “matrix

convexity”, which are essential tools for proving the fundamental theorems of

quantum entropy. In addition, we give some important theorems of von Neumann

entropy by making an analogy with the Shannon entropy.

In Chapter 5, we prove the inequality conjectured in the paper [Besenyei & Petz

(2013)] for arbitrary m and n when q = 2. This completes the table above when q =

2. Then, motivated by this proof and some numerical examples, we conjecture an

operator inequality which can be considered to be a kind of partial subadditivity of

quantum Tsallis entropy. We also obtain some new results related to the operators in

this inequality.
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CHAPTER TWO

ENTROPY AND INFORMATION

This chapter is devoted to the Shannon entropy and its one­parameter extension, the

Tsallis entropy. In this chapter we wil..l introd..uce some basic defini..tions, properties and

some important theorems related to these entropies. We will also provide proof of some

of these facts.

2.1 Shannon Entropy

Definition 2.1.1. Let X be a discr..ete rand..om variable with possible valu..es {x1, ...,xn}

and prob..ability distri..bution p(x) = P (X = x). Then the Shannon entr..opy of X.. is

defined as

H(X) = −
n∑
i=1

p(xi) logp(xi)

with 0log0 taken to be 0.

Note 2.1.2. Throughout this text all random variables are discrete unless otherwise

stated.

For two rand..om varia..bles, one can def..ine the joint entropy as follows:

Definition 2.1.3. Le..t X be a rand..om vari..able with possible values {x1, ...,xm} and Y

be another random variable with possible values {y1, ..., yn}. Then the jo..int entr..opy of

X an..d Y is defi..ned as

H(X,Y ) = ..−
m∑
i=1

n∑
j=1

p(xi , yj) logp(xi , yj)

where the joint distribution p(xi , yj) is defined by P (X = xi , ..Y = yj).

In the following we collect some important and useful facts related to the Shannon
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entropy:

Proposition 2.1.4. Let p(xi) represents the probability distribution of the random

variable X with possible values {x1, ...,xn} . Then 0 ≤ H(x) ≤ logn with equa..lity if

an..d only if X has a unif..orm distri..bution, that is p(xi) = 1
n for all i.

One of the main characteristics of the Shannon entropy is its additivity.

Proposition 2.1.5. If the rand..om variables X an..d Y are indepe..ndent ( that is p(x,y) =

p(x)p(y) ), then

H(X ×Y ) =H(X) +H(Y ). (2.1)

Suppose we have two ran..dom vari..ables, X an..d Y , and we know what the val..ue of Y

is. Then we know the infor..mation content H(Y ) of Y and in this case, we could make

the following definition :

Definition 2.1.6. (Conditional Entropy) The entropy of the random variable X with

respect to another random variable Y is defi..ned by

H(X |Y ) = ..−
∑
y

p(y)
∑
x

p(x|y) logp(x|y).

(The conditional probability is denoted by the notation p(x|y), which is defined by the

formula p(x|y..) = p(x,y)
p(y) .)

The following chain rule holds for the Shannon entropy :

Proposition 2.1.7. Let X and Y be two ran..dom varia..bles. Then

H(X,Y ) =H(X |Y ) +H(Y ). (2.2)

The chain rule is important in the way that it relates the conditional entropy to the

joint entropy.
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Proposition 2.1.8. For each X an..d Y , we have H(X |Y ..) ≥ 0 and hence H(X,Y ) ≥

H(Y ). Similarly, H(Y |X..) ≥ 0, so H(X,Y )..≥H(X).

The nonnegativity of conditional entropy is simple to prove. For more details, see

Nielsen & Chuang (2010). The other results of the proposition 2.1.8 follows

immediately from the identity (2.2).

2.2 Basic Inequalities Related To The Shannon Entropy

One of the main results of standard entropy is the subadditivity:

Proposition 2.2.1. (Subadditivity of Shannon entropy) If X,Y ..ar..e two ran..dom

variables, then

H(X,Y ) ≤H(X) +H(Y ) (2.3)

wit..h equal..ity if an..d only ifX an..d Y are indepe..ndent random variables, that is, p(x,y)..=

p(x)p(y).

Inequality (2.3) is called the subadditivity of Shannon entropy.

Remark 2.2.2. From Proposition 2.1.7 above, one can obtain the following inequality:

max
{
H(X),H(Y )

}
..≤H(X,Y ) ≤ ..H(X) +H(Y ).

Subadditivity is a spec..ial case of a gen..eral result known as strong subadditivity:

Theorem 2.2.3. (Strong Subadditivity of Shannon entropy) Le..t X,Y ,Z be three ran..

dom varia..bles with possible values {x1, ...,xm}, {y1, ..., yn} and {z1, ..., zr}. Then

H(X,Y ,Z) +H(Y ) ≤H(X,Y ) +H(Y ,Z) (2.4)
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wi..th equal..ity if an..d only if X −→ Y −→ Z forms a Mar..kov chain, that is p(x,y,z)..=

p(x)p(y|x)p(z|y).

Inequality (2.4) is called the strong subadditivity of Shannon entropy.

Remark 2.2.4. Consider the joint distribution

pijk = p(xi , yj , zk), 1 ≤ i ≤m,.. 1 ≤ j ≤ n, 1 ≤ k ≤ r

and the marginal distributions

pij− =
∑
k

pijk , p−j− =
∑
i,k

pijk , p−jk =
∑
i

pijk .

Then, by Definition 2.1.1, ineaquality (2.4) is equivalent to

∑
i,j,k

pijk(logpijk + logp−j− − logpij− − logp−jk) ≥ 0. (2.5)

Strong subadditivity is a much deeper result than the subadditivity. Because the

subadditivity is implied by the strong subadditivity. The following remark is about this

fact:

Remark 2.2.5. If the random variable Y takes only one value, that is if n = 1 in (2.4),

then we have two random variables and the strong subadditivity reduces to the

subadditivity

∑
i,k

pik(logpik − logpi− − logp−j) ≥ 0.

.

In most of this thesis, we will be interested in a new concept called “partial

subadditivity”, which is introduced in the paper [Besenyei & Petz (2013)]. One of the

main observations of this paper is the following theorem :
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Theorem 2.2.6. (Partial Strong Subadditivity of Shannon entropy) Supp..ose tha..t

X,Y ,Z are three ran..dom vari..ables with possible values {x1, ...,xm}, {y1, ..., yn}, and

{z1, ..., zr}. Then

∑
i

pijk(logpijk + logp−j− − logpij− − logp−jk) ≥ 0. (2.6)

This inequality is introduced and proved in [Besenyei & Petz (2013)]. In (2.6),

summing over j,k, one gets the SSA of Shannon entropy. Therefore the inequality

(2.6) can be safely called partial strong subadditivity (PSSA).

Moreover, if the random variable Y takes only one value then we have two ran..dom

vari..ables an..d the par..tial str..ong subadditivity, which is the inequality (2.6), reduces to

the partial subadditivity , that is

∑
i

pik(logpik − logpi− − logp−j) ≥ 0.

We close this section with one of the main concetps of the information theory: the

relative entropy. It is a kind of distance us..ed tomea..sure the close..ness of two probability

distri..butions.

Definition 2.2.7. Le..t p(x) an..d r(x) be two probab..ility distr..ibutions on the sa..me set.

The rela..tive entr..opy of p to r is defined by

S(p(x)||r(x)) =
∑
x

p(x)(logp(x)− ..logr(x))

with 0log0 = 0 and −p log0 =∞ when p , 0

Remark 2.2.8. The relative entropy is nonnegative. The subadditivity of Shannon

entropy can be proved by using this fact: Le..t X..and Y be tw..o probability
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distributions. Then the relative entr..opy of p(x,y)..to p(x)p(y) is

S(p(x,y)||..p(x)p(y)) =
∑
x,y

p(x,y)..(logp(x,y)− logp(x)p(y))

=
∑
x,y

p(x,y) logp(x,y)− ..
∑
x,y

p(x,y) logp(x)−
∑
x,y

p(x,y) logp(y)..

= −H(X,Y ) +H(X) +H(Y ) ≥ 0

which proves the subadditivity. Equality occurs if an..d only if p(x,y) = p(x)p(y), that

is X and Y are indep..endent random variables.

2.3 Tsallis Entropy

The Tsallis entr..opy is a q­extention (or one­para..meter exte..nsion) of the Shannon

entr..opy. Before giving the definition of the Tsallis entropy we define a function:

Definition 2.3.1. For q ∈R the q­logarithm function logq :R
+ −→R is defined by

logq x =
xq−1 − 1
q − 1

(q , 1).

Taking the limit when q→ 1 we obtain the natural logarithm function.

Related to the q­logarithm function one can define the q­entropy in the following

way:

Definition 2.3.2. Le..t X..be a ran..dom variable with possible val..ues {x1, ...,xn} and

probability distribution p(x) = P (X = x). Then the Tsal..lis entr..opy of X is defi..ned by

Hq(X) = −..
n∑
i=1

p(xi) logq p(xi) =
1

1− q

n∑
i=1

(p(xi)
q − p(xi)).

Note that the Shannon entropy is the limiting case of the Tsallis entropy when q→ 1,
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that is,

lim
q→1

Hq(X) =H(X).

Definition 2.3.3. (Tsallis Joint Entropy) Let X and Y be two random variables with

possible values {x1, ...,xm} and {y1, ..., yn}. Then the Tsallis joint entropy [Furuci

(2006)] of the pair (X,Y ) with joint distribution p(xi , yj) is

Hq(X,Y ) = ..−
m∑
i=1

n∑
j=1

p(xi , yj)..logq p(xi , yj).

In the followings we collect some important results of the Tsallis entropy:

Proposition 2.3.4. Tsallis entropy is nonnegative and it attains its maximum value

− logq
1
n when X is uniformly distributed over n outcomes, that is p(xi) = 1

n for all i.

Recall from the previous section that the Shannon entropy holds the additivity

property for two independent random variables. For the Tsallis entropy we have a

slightly different situation:

Proposition 2.3.5. Le..t X.., Y be two indep..endent ran..dom varia..bles. Then

Hq(X ×Y ) =Hq(X) +Hq(Y ) + (1− q)Hq(X)Hq(Y ), (2.7)

which is called the pseduo­additivity of the Tsallis entropy [Furuci (2006)]. The identity

(2.7) follows fr..om the fact th..at logq xy = logq x+ logq y + (q − 1)logq x logq y.

Definition 2.3.6. (Tsallis Conditional Entropy) Le..tX..and Y be two ran..dom variables.

Then, the Tsallis condi..tional ent..ropy of X wi..th resp..ect to Y is

Hq(X |Y ) = −
∑
y

p(y)q
∑
x

p(x|y) logq p(x|y). (2.8)

The following proposition is the q­analogue of the chain rule of Shannon entropy:
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Proposition 2.3.7. (Chain Rule For The Tsallis Entropy) Le..tX..and Y be tw..o different

rand..om variables. Then

Hq(X |Y ) +Hq(Y ) =Hq(X,Y ). (2.9)

There is a proof of (2.9) in Furuci (2006). In the following, we use a different

approach to prove this identity.

Proof. Let us denote the joi..nt distribution of X..,Y by p(x,y) and the marjinal

distributions of X an..d Y by p(x) =
∑
y p(x,y) and p(y) =

∑
x p(x,y) respectively.

Then we have

Hq(X,Y )−Hq(Y ) = −
∑
x,y

p(x,y)..logq p(x,y) + ..
∑
y

p(y) logq p(y)

=
∑
x,y

p(x,y)..
(
logq p(y)− logq p(x,y)

)

using the formula logq x − logq y = − logq
(
y
x

)
xq−1, we have

∑
x,y

p(x,y)
(
logq p(y)− logq p(x,y)

)
= −..

∑
x,y

p(x,y) logq

(
p(x,y)
p(y)

)
p(y)q−1

= −
∑
x,y

p(x|y)p(y) logq p(x|y)p(y)
q−1

= −
∑
x,y

p(y)qp(x|y) logq p(x|y)

= −
∑
y

p(y)q..
(∑

x

p(x|y) logq p(x|y)
)

=Hq(X |Y ).
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2.4 Basic Inequalities Related To The Tsallis Entropy

As for the Shannon entropy, Tsallis entropy is also subadditive:

Theorem 2.4.1. (Subadditivity of Tsallis entropy) I..f X, ..Y are two ran..dom vari..ables,

then

Hq(X,Y ) ≤Hq(X) +Hq(Y ) (2.10)

for q ≥ 1.

The inequality (2.10) is a special case of the following strong subadditivity:

Theorem 2.4.2. (Strong subadditivity of Tsallis entropy) Le..t X, ..Y and Z be three

rand..om vari..ables. Then

Hq(X,Y ,Z) +Hq(Y ) ≤Hq(X,Y ) +Hq(Y ,Z) (2.11)

for q ≥ 1.

Proof. See Furuci (2006), Petz & Virosztek (2014).

Note that the inequalities (2.10) and (2.11) are the q­analogues of the inequalities

(2.3) and (2.4) respectively.

If the random variable Y takes only one value then we have two random variables

and the strong subadditivity reduces to subadditivity, that is

Hq(X,Z) ≤Hq(X) +Hq(Z).

In the previous section, we introduced a new inequality which is called the partial

strong subadditivity, and we saw that it holds true for the Shannon entropy. The

following theorem is the q­extension of this inequality.
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Theorem 2.4.3. (Partial strong subaddivity of Tsallis entropy) Supp..ose that X,Y ,Z

are three rand..om varia..bles with possible values {x1, ...,xm}, {y1, ..., yn}, and {z1, ..., zr}.

Then

∑
i

pijk(logq pijk + logq p−j− − logq p−jk − logq pij−) ≥ 0 (2.12)

for q > 1.

In [Besenyei & Petz (2013)], there is a nice pro..of of the above the..orem. In the

following, we prove the theorem above by using a different approach:

Proof. In the followings we use a similar methods used in the papers Furuci (2006),

Petz & Virosztek (2014). The inequality (2.12) can be written as

−
∑
i

pijk(logq pijk − logq pij−) ≤ −
∑
i

pijk(logq p−jk − logq p−j−) (2.13)

using the following property

logq x − logq y = − logq
(y
x

)
xq−1

(2.13) can be written as

−
∑
i

pijk

(
− logq

(
pij−
pijk

)
p
q−1
ijk

)
≤ −

∑
i

pijk

(
− logq

(
p−j−
p−jk

)
p
q−1
−jk

)

or equivalently

∑
i

p
q
ijk logq

(
pij−
pijk

)
≤ pq−jk logq

(
p−j−
p−jk

)
. (2.14)

We have to show the inequality (2.14). At this step we intr..oduce the following function:

Logq x = −x logq x

observe that Logq x = xq logq
1
x . By using this identity, the left han..d side of (2.14) can
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be writ..ten as

∑
i

p
q
ijk logq

(
pij−
pijk

)
=

∑
i

p
q
ij−

(
pijk
pij−

)q
logq

(
pij−
pijk

)
=

∑
i

p
q
ij−Logq

(
pijk
pij−

)
=

∑
i

p
q
−j−

(
pij−
p−j−

)q
Logq

(
pijk
pij−

)

since
(
pij−
p−j−

)q
≤

(
pij−
p−j−

)
, for q > 1, we have

∑
i

p
q
−j−

(
pij−
p−j−

)q
Logq

(
pijk
pij−

)
≤

∑
i

p
q
−j−

pij−
p−j−

Logq

(
pijk
pij−

)
= pq−j−

(∑
i

pij−
p−j−

Logq

(
pijk
pij−

))

since Logq is concave we have

p
q
−j−

(∑
i

pij−
p−j−

Logq

(
pijk
pij−

))
≤ pq−j−Logq

(∑
i

pij−
p−j−

pijk
pij−

)
= pq−j−Logq

(
p−jk
p−j−

)
.

Now we have the following inequality

∑
i

p
q
ijk logq

(
pij−
pijk

)
≤ pq−j−Logq

(
p−jk
p−j−

)
.

Here we use the identity Logq x = xq logq
1
x again. Then we have

∑
i

p
q
ijk logq

(
pij−
pijk

)
≤ pq−j−Logq

(
p−jk
p−j−

)
= pq−j−

(
p−jk
p−j−

)q
logq

(
p−j−
p−jk

)
= pq−jk logq

(
p−j−
p−jk

)
which proves the inequality (2.14).
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If the random variable Y takes only one value then we have two random variables

and the inequality (2.12) reduces to the partial subadditivity inequality, that is

∑
i

pik(logq pik − logq pk − logq pi) ≥ 0.

We close this chapter with a diagram that represent the relations between the

inequalities we have seen so far.

Remark 2.4.4. The following diagram holds for both Shannon entropy and Tsallis

entropy

P SSA
��

+3SSA
��

P SA +3SA
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CHAPTER THREE

BASICS OF QUANTUM INFORMATION THEORY

In this chapter we sha..ll gi..ve a brief explanation of the mathematical formalism of

qua..ntum info..rmation theory. Most of this. chapter is based on the bo..oks Petz (2007)

and Nielsen & Chuang (2010).

3.1 Quantum States And Density Matrices

Every quantum mechanical system is associated to a complex Hilbert space that .is

called the .state .space. The sy..stem is ide..ntified by it..s sta..te vec..tor which is a unit vec..tor

in the Hil..bert spa..ce. I..n this thesis we will be mostly concerned with the finite quantum

systems whose associated Hilbert space is Cn.

In quantum mechanics a vector x is denoted by the notation |x〉 which is called a

‘ket’. The inner product between the vectors |x〉..an..d..|y〉 i..s den..oted b..y the notation

〈x|y〉 an..d it i..s .defi..ned. b..y

〈x|y〉..=
n∑
j=1

xjyj .

In this notation 〈x| is used for the dual vector of |x〉 and the in..ner pro..duct 〈x|y〉 i..s

cal..led the ‘bra­ket’ notation. Furthermore, the operator |x〉〈y| is linear and it is defined

a..s

(|x〉..〈y|)(|z〉) = ..|x〉〈y|z〉 = ..〈y|z〉|x〉.
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Hence

|x〉..〈y|..=



x1

x2
...

xn


[
y1, y2, ..· · · , yn

]
.

Example 3.1.1. The most widely used qua..ntum sys..tem in quan..tum infor..mation

theory is the qubit. Th..e sta..te spa..ce ..of a qub..it is desc..ribed by ..two dimens..ional Hilbert

space ..C2. ..The standard ba..sis vect..ors ..(1,0) and (0,1) of C2 are den..oted by |0〉, |1〉

respectively. A state vector |ϕ〉 can..be writ..ten as

|ϕ〉...= a0|0〉.+ ..a1|1〉

whe..re a0, a1 ∈C.

Similarly, any element |ψ〉 ∈ Cn can be written as

|ψ〉 = a0|0〉..+ a1|1〉+ ...+ ..an−1|n− 1〉

where a0, ..a1, ..., an−1..∈C and {|0〉, |1〉, ..., |n− 1〉} is the standard basis of Cn.

The se..t of n × n..matri..ces with comp..lex entries, denoted ..by Mn(C).., becomes a

Hilb..ert space wi..th respect to the.. Hilbert Schmidt inner pro..duct 〈A,B〉 = ..TrA∗B.

Furthermore the se..t of self adj..oint matr..ices inMn(C) is a real vec..tor spa..ce.

The..states of fin..ite quantum mechanical sys..tems are in one­to..­one corresp..ondence

with dens..ity matric..es. A density matrix ρ ∈ Mn(C) is a posi..tive (defi..nite) matrix

(denoted by ρ..≥ 0) wit..h Trρ..= 1 and it is defined on the Hilbert space of the quantum

system. When a positive definite matrix ρ is invertible we use the term strictly positive

(definite) and it is denoted by the notation ρ > 0.

If..we kn..ow the sta..te of the sys..tem, say |x〉, the..n the sys..tem is in ..a pu..re st..ate and

the density matrix of the system is |x〉〈x|. Otherwise the system is in a mix..ed state.
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Mixed sta..tes are repres..ented by th..e statistical mixture of pure states. More precisely

if th..e qua..ntum sys..tem is prepared in t..he sta..te |xi〉 with proba..bility pi then..the den..sity

ope..rator for the sys..tem is ρ..= .
∑n
i=1pi |xi〉〈xi | where

∑
i pi = 1.

A self adjoint matrix in the vector space M2(C) can be represented by the Pauli

matrices σ0,σ1,σ2,σ3. That is, if B ∈ M2(C) is a self adjoint matrix then B can be

written as

B = x0σ0 + x1σ1 + x2σ2 + x3σ3

where

σ0 =

1 0

0 1

 , σ1..=

0 1

1 0

 , σ2..=

0 −i

i 0

 , σ3..=

1 0

0 −1


and x0,x1,x2,x3 ∈R.

Let Sn(C) be t..he sta..te spa..ce of a qua..ntum sys..tem. Namely,

Sn(C) = {ρ ∈Mn(C) : ..ρ ≥ 0, Trρ...= 1 }.

Th..e se..t Sn(C) is con..vex. It is also closed and bounded. Convexity of Sn(C) is

obvious, so we show the boundedness and closedness of Sn(C):

Proof. (of boundednes of Sn(C)) :

Let ρ be a density matrix. Then sp(ρ) ⊂ [0,1] and Trρ = 1. The sup norm (or the

maximum norm ) of ρ is

||ρ|| =max
{
|λ| : λ ∈ sp(ρ)

}
= 1

Hence 0 ≤ ||ρ|| ≤ 1 and Sn(C) is bounded with respect to the sup norm. All norms are

equivalent in finite dimensional Hilbert spaces, hence Sn(C) is bounded.
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Proof. (of closedness of Sn(C)) :

LetA be..the s..et of posi..tive definite matrices inMn(C)..and h be..a function defined by

h : A −→R+,

B 7−→ TrB.

Consider the set:

M = h−1(1) =
{
B ∈ A : h(B) = 1

}
.

Since h is continuous, the setM(which is the se..t of dens..ity matric..es ) is closed.

A dens..ity matr..ix ρ ∈ S2(C)..can be repre..sented by

ρ =
1
2
(σ0 + x1σ1 + x2σ2 + x3σ3) (3.1)

whe..re σ0, ..σ1, ..σ2,σ3 are Pau..li matri..ces.

Formula (3.1) is equivalent to

ρ = ..
1
2

 1+ x3 x1 − ix2
x1 + ix2 1− x3,


where x1,x2,x3 ∈ R. The matrix ρ is a density matrix if and only if x21 + x

2
2 + x

2
3 ≤ 1.

Hence the state space of the qubit system can be described by the unit ball inR3 which

is called the Bl..och ba..ll. The pure states are the points that satisfy x21 + x
2
2 + x

2
3 = 1,

which describes the unit sphere in R3, and this un..it sph..ere is cal..led the..Blo..ch sphere.

Any mix..ed sta..te is..a con..vex combi..nation of pure sta..tes.

Let ρ ∈M2(C) be a density matrix. Then it has a Schmidt decomposition

ρ =
∑
j

µj |xj〉〈xj | (3.2)
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where 0 ≤ µj ≤ 1 ,
∑
j µj = 1 and xj are unit vectors. Since ρ is a self­adjoint matrix,

(3.2) is obtained from the spectral decomposition of ρ. Hence xj’s may be chosen as the

eigen..vectors of..ρ..and µj’s are the corresponding eigenvalues. If all µj’s are different,

then the Schmidt decomposition is unique.

3.2 Composite Systems

Suppose that we have n physical systems with corresponding Hil..bert spa..ces

H1, ..H2, ..,Hn respe..ctively. Th..en the Hibert spa..ce H of the composite system is

defined by

H =H1 ⊗H2 ⊗ ...⊗Hn.

If the dimension of the subsystemHi isNi then the dime..nsion of th..e compo..site system

H is th..e prod..uct of the dime..nsions of the subsystems, that is

dimH =
n∏
i=1

Ni .

For n = 2 we have two subsystems and the composite system H1 ⊗H2 is called a

bipartite system. If {ui}mi=1 is a basis ofH1 and {vj}nj=1 is a basis ofH2, then {ui⊗vj} is

a basis ofH1 ⊗H2, where i = 1.., ...,m, j = ..1, ...,n. The dime..nsion of..H1 ⊗H2 .is mn.

Let |ψ〉 ∈ H1 ⊗ H2 be a bipartite state. Then |ψ〉 can be writ..ten as a lin..ear

combination of th..e vec..tors fro..m the component systems. Tha..t is

|ψ〉 =
n∑
j=1

aj |xj〉 ⊗ |yj〉.

Let |x〉 ∈ H1, |y〉 ∈ H2 and A ∈ B(H1), B ∈ B(H2), then the operator A⊗ B acting
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on a vec..tor |x〉..⊗ |y〉 ∈ .H1 ⊗H2 is defi..ned by

(A⊗B)(|x〉 ⊗ |y〉) = A|x〉 ⊗B|y〉.

This definition can be extended to all elements ofH1 ⊗H2 in the following manner

(
A⊗B

)(∑
j

αj |xj〉 ⊗ |yj〉
)
=

∑
j

αjA|xj〉 ⊗B|yj〉.

3.3 Entanglement

Tensor product of quantum systems give rise to define on..e of the mos..t interesting

and stri..king idea of qua..ntum mech..anics: The entanglement. To understand the

entanglement let us look at an example:

Example 3.3.1. Let us look at the following two­qubit state

|ψ〉 = |00〉 − |11〉√
2

where |00〉 = |0〉⊗|0〉 and |11〉 = |1〉⊗|1〉. The sta..te |ψ〉 can n..ot be wri..tten as a product

of two sta..tes |x〉, |y〉 ∈ C2. To prove this le..t us assume that |ψ〉 = |x〉 ⊗ |y〉, where

|x〉 = a1|0〉+ a2|1〉

|y〉 = b1|0〉+ b2|1〉

then

|00〉 − |11〉
√
2

= (a1|0〉..+ a2|1〉)⊗ (b1|0〉..+ b2|1〉)

= a1..b1|00〉+ a1b2|01〉+ a2b1|10〉+ a2..b2|11〉

where a1b1 =
1√
2
, a1b2 = 0, a2b1 = 0, a2b2 =

−1√
2
.

If a1..b2 = 0, then a1 = 0 or b2 = 0 which contradicts the fact that a1b1 = 1√
2
or
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a2b2 =
−1√
2
. Therefore |ψ〉 can not be expr..essed as the pro..duct of two single states.

These type of sta..tes whi..ch can not be writ..ten as a produ..ct of states of its subsystems

like given in Example 3.3.1 are called entangled states. The other states are called

separable states.

One can formulate entanglement using of the density operator language. Let

Mm(C), Mn(C) be the matrix algebras defined on the Hilbert spaces Cm and Cn.

Then the matrix algebra of the composite system Cm ⊗Cn is

Mmn(C) =Mm(C)⊗Mn(C).

The..re are two ty..pes of positive matrices in Mm(C)⊗Mn(C). One consists of the

elements written in the following form

∑
j

Mj ⊗Nj

where Mj ∈ Mm(C), Nj ∈ Mn(C) are positive matrices. These matrices are cal..led

separable posi..tive matrices. Not every posi..tive matrix is separable. That is, there are

positive matrices inMm(C)⊗Mn(C) whose components are not positive.

A sta..te of a quantum sys..tem is called sepa..rable if its density matrix is separable

otherwise it is called enta..ngled. A pu..re state is sepa..rable if and only if it..is a product

sta..te.

Lemma 3.3.2. Suppose thatH1..and ..H2 are two Hil..bert spaces and {uj}mj=1 and {vi}
n
i=1

are bases of H1....and H2 respectively. Let ψ ∈ ..H1 ⊗ ..H2 be a unit vector with the

following expansion

ψ =
∑
i,j

xijuj ⊗ vi

and X be the matrix deter..mined by the entr..ies xij . Then (X∗X)T is a den..sity matrix
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and

〈ψ, (A⊗ I2)ψ〉 = Tr ..A(X∗X)T

for any A ∈ B(H1).

The above lemma enables us to define the reduced density matrix in the following

way:

Definition 3.3.3. Let ρ..be a den..sity matrix in Mm(C) ⊗Mn(C). Then the reduced

densities ρ1 ∈Mm(C) and ρ2 ∈Mn(C) of ρ are defined by

Tr(A⊗ I2)ρ = ..Tr(Aρ1), Tr(I1 ⊗B)ρ = ..Tr(Bρ2)

for A ∈Mm(C), B ∈Mn(C). In the above formulas, I1 ∈Mm(C) and I2 ∈Mn(C) are

the identity matrices.

One should note that the reduced densities are the qua..ntum ana..logue of themarginal.

distributions.

Remark 3.3.4. In Lemma 3.3.2, one ca..n see that the redu..ced density of the pure state

|ψ〉〈ψ| on the first subsystem is (X∗X)T and the reduced density of |ψ〉〈ψ| on the second

subsystem is XX∗. The lemma shows that if the tot..al sys..tem is in a pure sta..te then the

reduced densities have the same nonzero eigenvalues.

A matrix in the tensor product space Mm(C)..⊗Mn(C) can be written as a block

matrix with respect to the product basis. Let ρ..∈Mm(C)⊗Mn(C) be a density matrix.

The..n ρ can be writ..ten as

ρ..=
m∑

i,j=1

Eij ⊗Aij

where Eij ∈Mm(C), Aij ∈Mn(C), and Eij are called matrix units. For m = n = 2 we
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have

ρ =

A11 A12

A∗12 A22

 .
Then by Definition 3.3.3, the reduced densities of ρ can be written by the following

formulas

ρ1 =

TrA11 TrA12

TrA∗12 TrA22

 and ρ2 = A11 +A22.

It is possible to generalize these formulas for the density matrices inMm(C)⊗Mn(C):

ρ12 =



A11 A12 ... A1m

A∗12 A22 ... A2m
...

...

A∗1m A∗2m ... Amm


, (Aij ∈Mn(C), i, j = 1,2, ...,m).

Then the reduced densities ρ1 ∈Mm(C) and ρ2 ∈Mn(C) are defined as

ρ1 =



TrA11 TrA12 ... TrA1m

TrA∗12 TrA22 ... TrA2m
...

...

TrA∗1m TrA∗2m ... TrAmm


and ρ2 = A11 +A22 + ...+Amm.

Definition 3.3.5. The linear mappings Tr1 : Mm(C)⊗Mn(C..) −→Mn(C) a..nd Tr2 :

Mm(C)⊗Mn(C..) −→Mm(C) represented by the formulas

Tr1(C ⊗ ..D) = (TrC)D a..nd Tr2(C ⊗ ..D) = (TrD)C

on elementary tensors are called partial traces.

Remark 3.3.6. Partial traces can be extended linearly to any matrix T in the tensor

product spaceMm(C)⊗Mn(C). That is, for any matrix T ∈Mm(C)⊗Mn(C), partial
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traces of T are Tr1T = T2 and Tr2T = T1 .

In the followings we collect some useful facts of the partial trace:

1. For A ∈Mm(C)..⊗Mn(C) and B ∈Mm(C).., C ∈Mn(C) we ha..ve

Tr1(A(I ⊗C)) = (Tr1A)C, Tr1((I ⊗C)A)..= C(Tr1A),

similarly

Tr2(A(B⊗ I)) = (Tr2A)B, , Tr2((B⊗ I)A) = B(Tr2A).

One can observe from the above relations that

Tr1(A(I ⊗C)) , Tr1((I ⊗C)A),

Tr2(A(B⊗ I)) , Tr2((B⊗ I)A).

2. For A ∈Mm(C)⊗ ..Mn(C), B ∈Mm(C) and C ∈Mn(C) the following relations

hold

Tr2(A(I ⊗B)) = Tr2((I ⊗B)A),

Tr1(A(C ⊗ I)) = Tr1((C ⊗ I)A).

Remark 3.3.7. The reduced densities ρ1 ∈Mm(C) and ρ2 ∈Mn(C) of a density matrix

ρ ∈Mm(C)⊗Mn(C) can be defined by using the partial trace as following

Tr2ρ = ρ1, Tr1ρ = ρ2.

We close this chapter by defining the partial trace by using the operator language:

Definition 3.3.8. LetH1 a..ndH2 be fin..ite dimensional Hil..bert spaces with orthonormal

bases {ei}mi=1, {fj}
n
j=1 respectively. For T ∈ B(H1⊗H2) its partial trace T1 = TrH2

T =

26



Tr2T is an operator onH1 defined by the following equality

〈x,T1y〉 =
n∑
j=1

〈(x⊗ fj),T (y ⊗ fj)〉

for all x,y ∈ H1.

Similarly one can define the partial trace T2 = TrH1
T = Tr1T by the following formula

〈x,T2y〉 =
m∑
i=1

〈(ei ⊗ x),T (ei ⊗ y)〉

for all x,y ∈ H2.
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CHAPTER FOUR

ENTROPY IN QUANTUM INFORMATION THEORY

In Cha..pter 2, we investigated the entropies in the probability theory. By doing so, we

used the classical probability vector, that is (p1,p2, ...,pn) of pi ≥ 0 with
∑
pi = 1. The

quantum analogue of a probability vector is the density matrix. Recall from Chapter

3 that a dens..ity matrix ρ..∈Mn(C) is a pos..itive definite mat..rix with Tr ..ρ = 1 and it

is defined on the Hilb..ert space of the quantum system. This means that the vector

(µ1,µ2, ...,µn) consi..sting of the eigen..values of ρ..forms a probability vector. This fact

allows us to generalize the classical entropy to the density operators.

4.1 Definition And Some Basic Properties Of Von Neumann Entropy

Definition 4.1.1. Let ρ..∈Mn(C) be a den..sity matrix. The..n the von Neu..mann ent..ropy

of ρ is defined by

S(ρ) = −Trρ logρ (4.1)

The self adjoint matrix ρ logρ ∈Mn(C) is defined by using the spectral theorem.

Note th..at the Shannon entropy is a spe..cial case of the von Neu..mann entr..opy where

the density matrices in the formula (4.1) are diagonal.

In the followings we collect some important and useful facts related to the von

Neumann entropy:

Proposition 4.1.2. The von Neu..mann entro..py is basis independent, which means that

if we choose the basis consi..sting of the eigenve..ctors of the density matrix ρ, the formula

(4.1) is equivalent to

S(ρ) = −
n∑
i=1

λi logλi , λi ∈ sp(ρ) (4.2)
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with 0log0 = 0.

As wit..h the class..ical entropy, the quantum ent..ropy is nonnegative as well:

Proposition 4.1.3. Let ρ..∈Mn(C..) be a den..sity matrix. Then 0 ≤ S(ρ) ≤ logn. There

is equality on the left hand side if an..d only if ρ is the density matrix of a pure st..ate.

And S(ρ) = logn if and only if ρ = (1n )I , that is ρ is the density matrix of a completely

mixed state.

Remember from Remark 3.3.4 that the reduced densities of a pure state have the

same nonzero eigenvalues. The following proposition is related to this fact:

Proposition 4.1.4. If the comp..osite sys..tem is in a pure st..ate ρ12 with reduced densities

ρ1 and ρ2, (Note that reduced densities are defined in Section 3.3.) then S(ρ1) = S(ρ2).

Wehave seen in Section 2.1 that the Shannon entropy is additive for two independent

random variables. Analoguosly, von Neumann entropy is additive for product states:

Proposition 4.1.5. For a product state ρ1 ⊗ ρ2 ∈ Mm(C) ⊗Mn(C), von Neu..mann

entropy is addi..tive, that is

S(ρ1 ⊗ ρ2) = S(ρ1) + S(ρ2). (4.3)

In quantum information theory we use the functions of density matrices. Hence it

seems to be useful to define matrix monotonicity and matrix convexity.

Definition 4.1.6. Let (c,d) be an open interval of the set of real numbers and

g : (c,d) −→ R be a real­valued function. The function g is matrix mono..tone (or

operator mon..otone) if for eve..ry n ∈ N..and ev..ery self adjoint matrix C,D ∈Mn(C)

with the spectrum sp(C),sp(D) ⊂ (c,d)

C ≤D =⇒ g(C) ≤ g(D).

When −g is mat..rix monoto..ne, then g is matrix monotone decreasing.
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Also, the function g is said to be matrix con..vex (or oper..ator convex) if for every

n ∈N and every self adjoint matrix C,D ∈Mn(C) with sp(C),sp(D) ⊂ (c,d)

g(tC + ..(1− t)D) ≤ tg(C)..+ (1− t)g(D), 0 ≤ t..≤ 1.

When −g is matrix con..vex, then g is matrix con..cave.

Examples:

1. (Nielsen & Petz (2004)) The function g(x) = 1/x is matrix(operator) monotone

decre..asing and matrix(opera..tor) convex on (0,∞).

Let X ≤ Y an..d X, Y be two strictly positive matrices. To prove the fun..ction

g(x) = 1/x is matrix mono..tone decreasing one can start with a special case wher..e

X = I . Since Y and I commute they are simiultaneously diagonalizable. So the

result Y −1 ≤ I fol..lows fro..m the monotonically decreasing prop..erty of the real

func..tion f (x) = 1/x. The general result follows by taking Y = X−1/2..YX−1/2.

The operator convexity of the fun..ction 1/x can be pro..ved in a simi..lar way.

2. (Hiai & Petz (2014)) The function x 7−→ logx..is matrix mono..tone and matrix

concave on (0,∞)...

The proof of concavity foll..ows from the well known for..mula

logx =
∫ ∞
0

( 1
1+ t

− 1
x+ t

)
dt (4.4)

and the operator convexity of the function x 7−→ 1/x.

3. The function x 7−→ x logx is matr..ix conv..ex on (0,∞).

Proof. By (4.4) we ha..ve

x logx =
∫ ∞
0

( x
1+ t

− x
x+ t

)
dt (4.5)
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or equivalently

x logx =
∫ ∞
0

( x
1+ t

+
t

x+ t
− 1

)
dt (4.6)

Let A be a positive definite matrix. By the spectral theorem we have

A logA =
∫ ∞
0

(
(1 + t)−1A+ t(A+ tI)−1 − I

)
dt (4.7)

since the integrand in (4.7) is operator convex then the integral is also operator

convex.

4. (Hiai & Petz (2014), Carlen (2010)) The function x 7−→
√
x is operator monotone

and operator con..cave on (0,∞).

5. (Hiai (2017)) A power function f (x) = xm defined on (0,∞) is

• operator mono..tone and oper..ator concave when m ∈ [0,1],

• operator convex when m ∈ [1,2],

• operator convex and operator monotone decreasing when m ∈ [−1,0],

• when ∈ (−∞,−1)∪ (2,∞), xm is convex but not operator convex.

Related to the above definitions it is useful to give the following theorem:

Theorem 4.1.7. (Peierls Inequality) Le..t A ∈ Mn(C..) be a self adj..oint matrix and f

be a con..vex function on R. The following inequality holds for an..y orthonormal basis

{v1,v2, ...,vn} of Cn

n∑
i=1

f (〈vi ,Avi〉) ≤ Trf (A)

There is equality if each vi is an eigenvector of A.

Proof. See, Carlen (2010), Theorem 2.9.

An immediate consequence of the above theorem is the following proposition:
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Proposition 4.1.8. Let f : (a,b) 7−→ ..R be a continuous conv..ex function and

A ∈ Mn(C) be a sel..f adjoint matri..x with sp(A) ⊂ (a,b). Then the fun..ction

A 7−→ Trf (A) is operator conv..ex on the set of se..lf adjoint mat..rices.

Proof. Since the set of self adjoint matrices is convex, A can be writ..ten as a convex

combi..nation of two self adj..oint matrices A1 and A2, that is

A = αA1 + (1−α)A2, 0 ≤ α ≤ 1.

We will show that

Trf (αA1 + (1−α)A2) ≤ αTrf (A1) + (1−α)Trf (A2). (4.8)

Towards this end consider the orthonormal basis {v1,v2, ...,vn} of Cn consisting of the

eigenvectors of A. By the above theorem we ha..ve

Trf (A)..=
n∑
i=1

f (〈vi ,Avi〉)

=
n∑
i=1

f
(
〈vi , (αA1 + (1−α)A2)vi ..〉

)
=

n∑
i=1

f
(
α〈vi ,A1vi〉+ (1−α)〈vi ,A2vi〉

)
by the conve..xity of f we obt..ain

n∑
i=1

f
(
α〈vi ,A1vi〉+ (1−α)〈vi ,A2vi〉

)
≤

n∑
i=1

αf (〈vi ,A1vi〉) + (1−α)〈vi ,A2vi〉

= α
n∑
i=1

f (〈vi ,A1vi〉) + (1−α)
n∑
i=1

f (〈vi ,A2vi〉).

Using the above theorem again we obtain

α
n∑
i=1

f (〈vi ,A1vi〉) + (1−α)
n∑
i=1

f (〈vi ,A2vi〉) ≤ αTrf (A1) + (1−α)Trf (A2)

which proves (4.8).
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The above proposition can be generalized as a theorem :

Theorem 4.1.9. Let f : ..R −→ R..be cont..inuous and let n ∈N. Then if x 7−→ f (x) is

monotone then A 7−→ Tr(f (A)) is operator monotone on the se..t of self adj..oint matrices

in Mn(C)... Similarly, if x 7−→ f (x) is con..vex, then A 7−→ Tr(f (A)) is operator conv..ex

on the se..t of self adjoint matri..ces.

Proof. See, Carlen (2010), Theorem 2.10.

It is clear that the von Neu..mann ent..ropy is a concave function of the eigenvalues of

the density matrix ρ. But more is true:

Proposition 4.1.10. Von Neumann entropy is operator concave, that is

S(λρ1 + (1−λ)ρ2) ≥ λS(ρ1) + (1−λ)S(ρ2), 0 ≤ λ ≤ 1 (4.9)

where ρ1, ρ2 are density matrices in Mn(C).

Sin..ce the fun..ction x 7−→ ..−x logx is conc..ave, it is easy to prove the inequality (4.9)

by using the Theorem 4.1.9 .

4.2 Quantum Relative Entropy

In Section 2.2 we defined relative entropy for the classical probability distributions.

Now we will define it for density matrices:

Definition 4.2.1. Le..t ρ.., σ ∈Mn(C) be dens..ity matri..ces. The relative entropy of ρ to

σ is def..ined by

S(ρ||σ )..=

Trρ(logρ..− logσ ) if supp(ρ)..≤ supp(σ )

∞ otherwise...
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Let us show that if supp(ρ)..≤ supp(σ ) th..en S(ρ||σ ) < ∞ : Let the Schmidt

decomposition of ρ and σ be given by

ρ = ..
n∑
i=1

pi |ψi〉〈ψi |, ρ = ..
n∑
j=1

qj |ϕj〉〈ϕj |

then we have

Trρ logρ =
n∑
i=1

pi logpi , Trρ logσ =
∑
i,j

pi logqj |〈ψi |ϕj〉|2

and

S(ρ||σ ) =
∑
i

pi logpi −
∑
i,j

pi logqj |〈ψi |ϕj〉|2 (4.10)

suppose that |ψi〉 ∈ supp(ρ) then |ψi〉 ∈ supp(σ ) and we have

S(ρ||σ ) =
∑
i

pi logpi −
∑
i

pi logqi |〈ψi |ψi〉|2

=
∑
i

pi logpi − pi logqi (4.11)

since |ψi〉 in supp(ρ)∩ supp(σ ), the eigenvalues pi of ρ and qi of σ will be nonzero

which makes the sum (4.11) finite.

As wit..h the classi..cal relative entr..opy, the quan..tum relative entr..opy is also

nonnegative. One can show this fact by using Klein’s inequality:

Theorem 4.2.2. (Klein’s inequality) For all self adjoint matrices X,Y ∈Mn(C) and

all differentiable convex functions f :R..−→R we have

Tr[f (X)..− f (Y )− (X −Y )f ′(Y )] ≥ 0.

Proof. See, Carlen (2010), Theorem 2.11.

Note that replacing f by t log t in the above theorem, one obtains the following
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inequality

TrX(logX − logY )−Tr(X −Y )..≥ 0.

If X an..d Y are density matrices, say X = ρ, Y = σ the..n Tr(ρ − σ ) = ..0 and we have

Trρ(logρ − logσ ) ≥ 0, (4.12)

which shows the nonnegativity of the relative entropy:

Remark 4.2.3. Quantum relative entropy is nonnegative, that is

S(ρ||σ ) ≥ 0. (4.13)

4.3 Some Important Inequalities Of Von Neumann Entropy

Theorem 4.3.1. (Subadditivity of Von Neumann entropy) Let ρ12 be a density matrix

in Mm(C)⊗Mn(C) with reduced densites ρ1 ∈Mm(C) and ρ2 ∈Mn(C). Then

S(ρ12) ≤ S(ρ1) + S(ρ2) (4.14)

or equivalently

Trρ12(logρ12 − logρ1 − logρ2) ≥ 0.

Equality holds in (4.14) if and onl..y if ρ12..is a produ..ct state, tha..t is ρ12 = ..ρ1 ⊗ ρ2.

Proof. See Carlen (2010), Bhatia (2009), Petz (2008).

An extended version of quantum relative ent..ropy is the ‘rela..tive quasi­entr..opy’.

This concept was first introdu..ced by Dénes Petz (Petz, 1986), in the following sense:

Definition 4.3.2. Let..ρ, ..σ ∈Mn(C) be two inver..tible dens..ity matrices, K ∈Mn(C)
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and f : (0,∞)..−→ R be a real func..tion. The..n the relative quas..i­entrop..y (or

f­divergence) is def..ined by

SKf (ρ||σ ) = 〈Kρ
1/2, f (∆σ,ρ)Kρ

1/2〉 (4.15)

= TrK∗f (∆σ,ρ)Kρ

where 〈X,Y 〉 = TrX∗Y is th..e Hilbe..rt Schmi..dt inn..er product and ∆σ,ρ : Mn(C)..−→

Mn(C)..is the relative modular operator defi..ned by Araki (1976) as follows

∆σ,ρ(K) = LσR
−1
ρ (K) = σKρ−1.

The operators L and R in the above formula are called the superoperators and they

commute, that is, LR = RL.

Note that setting K = I and f (x) = − logx in (4.15) we obtain the quantum relative

entropy, namely S(ρ||σ ) = Trρ(logρ − logσ ). Thus the rela..tive entrop..y is a speci..al

case of the rela..tive quasi­entro..py.

The relative entropy is monotone in the following sense:

Theorem 4.3.3. (Monotonicity of the Relative Entropy) Let

ρ12,σ12 ∈ Mm(C) ⊗ Mn(C) be density matrices with reduced densities

ρ1,σ1 ∈Mm(C) respectively. Then

S(ρ12||σ12) ≥ S(ρ1||σ1). (4.16)

Proof. Adelicate proof of themonotonicity can be found in Nielsen& Petz (2004).

The monotonicity inequality (4.16) holds true not only for the function − logx but

also for all operator convex functions, that is, if f is an ope..rator conve..x functi..on then

Sf (ρ12||σ12) ≥ Sf (ρ1||σ1). (4.17)
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Moreover in Petz & Virosztek (2014) there is an extension of the inequality (4.17) in

the following way

ST⊗If (ρ12||σ12) ≥ STf (ρ1||σ1) (4.18)

where T is any matrix inMm(C) and..I is the iden..tity matri..x inMn(C).

The operator T ⊗ I in (4.18) can be replaced by the operator T ⊗V2, where V2 is a

unitary matrix:

Lemma 4.3.4. Let P12,Q12 ∈Mm(C)⊗Mn(C) be two strictly positive matrices and

V2 ∈Mn(C) be a unitary matrix. For any operator convex function f and any matrix

T ∈Mm(C) the following inequality holds

ST⊗V2f (P12||Q12) ≥ STf (P1||Q1). (4.19)

There is a proof of the above lemma in Jenčová & Ruskai (2010). In the following

we give another proof which is based on a technique due to Petz & Virosztek (2014).

Proof. Let U :Mm(C) −→Mm(C)⊗Mn(C) be a linear map defined by the formula

U (X) = (XP −1/21 ⊗V2)P
1/2
12 . (4.20)

Claim: U is an iso..metry:

Let X,Y ..inMm(C). Then

〈U (X), ..U (Y )〉 = 〈(XP −1/21 ⊗V2)P
1/2
12 , (Y P

−1/2
1 ⊗V2)P

1/2
12 〉

= Tr(P −1/21 X∗Y P −1/21 ⊗V ∗2V2)P12

= Tr(P −1/21 X∗Y P −1/21 ⊗ I2)P12

= TrP −1/21 X∗Y P −1/21 P1

= TrX∗Y = 〈X,Y 〉.
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Now we will find the operator U ∗ which is the adjoint of U :

〈Y , ..U (X)〉 = Tr(Y ∗..(XP −1/21 ⊗V2)P
1/2
12 )

= Tr(Y P 1/2
12 )∗(X ⊗ I)(P −1/21 ⊗V2)

= Tr(P −1/21 ⊗V2)(Y P
1/2
12 )∗(X ⊗ I)

= Tr
[(
(Y P 1/2

12 )(P −1/21 ⊗V ∗2 )
)∗
(X ⊗ I)

]
= Tr

[
Tr2

(
Y P 1/2

12 (P −1/21 ⊗V ∗2 )
)∗
X
]

= 〈Tr2
(
Y P 1/2

12 (P −1/21 ⊗V ∗2 )
)
,X〉

hence U ∗(Y ) = Tr2
(
Y P 1/2

12 (P −1/21 ⊗V ∗2 )
)
.

Moreover for any matrix X inMm(C), U satisfies the following identity:

U ∗∆Q12,P12U (X) =U ∗(Q12(XP
−1/2
1 ⊗V2)P

−1/2
12 )

= Tr2
(
Q12(XP

−1/2
1 ⊗V2)P

−1/2
12 P 1/2

12 (P −1/21 ⊗V ∗2 )
)

= Tr2
(
Q12(XP

−1
1 ⊗V2V

∗
2 )
)

= Tr2
(
Q12(XP

−1
1 ⊗ I)

)
=Q1XP

−1
1 = ∆Q1,P1(X).

By the formula (4.15)

STf (P1||Q1) = 〈T P 1/2
1 , f (∆Q1,P1)T P

1/2
1 〉

= 〈T P 1/2
1 , f (U ∗∆Q12,P12U )T P 1/2

1 〉.

Since f is operator convex and U is an isometry ( Lemma 2 of Nielsen & Petz (2004))

we have

f (U ∗∆Q12,P12U ) ≤U ∗f (∆Q12,P12)U
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which implies the following inequality

〈T P 1/2
1 , f (U ∗∆Q12,P12U )T P 1/2

1 〉 ≤ 〈T P
1/2
1 ,U ∗f (∆Q12,P12)U (T P 1/2

1 )〉.

In addition, U (T P 1/2
1 ) = (T P 1/2

1 P −1/21 ⊗V2)P
1/2
12 = (T ⊗V2)P

1/2
12 . Thus

〈T P 1/2
1 ,U ∗f (∆Q12,P12)U (T P 1/2

1 )〉 = 〈(T ⊗V2)P
1/2
12 , f (∆Q12,P12)(T ⊗V2)P

1/2
12 〉

= ST⊗V2f (P12||Q12).

This completes the proof.

On..e of the fundamental prope..rties of the von Neum..ann entro..py is the stro..ng

subaddi..tivity:

Theorem 4.3.5. Le..t ρ123 ∈Mm(C)..⊗Mn(C)⊗Mr(C) be a density matrix and ρ12 ∈

Mm(C)⊗Mn(C) , ρ2 ∈Mm(C), ρ23 ∈ ..Mn(C)⊗Mr(C) be its reduced densities. Then

S(ρ123) + S(ρ2) ≤ S(ρ12) + S(ρ23) (4.21)

or equivalently

Trρ123(logρ123 − logρ12 − logρ23 + logρ2) ≥ 0

whe..re ρ12 = Tr3ρ123, ρ23 = Tr1ρ123 and ρ2 = Tr1ρ12.

There are many different proofs of the above the..orem in the literature. The original

proof was d..ue to Lieb and Ruskai (see Lieb&Ruskai (1973)). Petz proved this theorem

by using themononicity of the relative entropy (Petz (1986)). In the following, we try to

explain how to obtain the strong subadditivity inequality (4.21) by usin..g the monoton..

icity of the relat..ive ent..ropy:

Proof. (based on a proof in Petz & Virosztek (2014)) By the monotonicity of relative
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entropy we have

S(ρ23||ρ2 ⊗ I3) ≤ S(ρ123||ρ12 ⊗ I3)

or equivalently

Trρ23(logρ23 − log(ρ2 ⊗ I3)) ≤ Trρ123(logρ123 − log(ρ12 ⊗ I3)). (4.22)

Writing the left and the right hand side of (4.22) explicitly, we have

Trρ23 logρ23 −Trρ23 log(ρ2 ⊗ I3) ≤ Trρ123 logρ123 −Trρ123 log(ρ12 ⊗ I3)

which implies the following strong subadditivity inequality

−S(ρ23) + S(ρ2) ≤ −S(ρ123) + S(ρ12).

Strong subadditivity is much deeper result than the subadditivity. TakingMn(C) to

be one dimensional in the inequality (4.21) we obtain the subadditivity, that is

S(ρ12) ≤ S(ρ1) + S(ρ2). (4.23)

Remember that in Chapter 2 we investigated a new type of inequality which is called

partial strong subadditivity. Analogous to the classical entropy it is possible to define

partial strong subaddivity for quantum entropies. In this case instead of probability

distributions we have density matrices :

Theorem 4.3.6. Let ρ123 ∈Mm(C)⊗Mn(C)⊗Mr(C) b..e a density mat..rix and ρ12 ∈

Mm(C)⊗Mn(C), ρ2 ∈Mn.., ρ23 ∈Mn ⊗Mr be its reduced densities. Then

Tr12ρ123(logρ123 − logρ12 − logρ23 + logρ2) ≥ 0. (4.24)
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The inequality (4.24) can be call..ed the partial stro..ng subaddit..ivity of von Neum..ann

entr..opy.

Proof. This theo..rem is proved by Kim (2012). He uses the results of Effros (2009)

based on convexity and functional analysis. For more details see Ruskai (2013) and

Kim (2012).

Remark 4.3.7. In (4.24), the partial traces of the operator ρ123(logρ123 − logρ12 −

logρ23+logρ2) with respect to the first component and the second component are not

even self­adjoint at all.

Remark 4.3.8. In the inequality (4.24), taking Mn(C) as one dimensional, one

obtains the partial subadditivity, which is the matrix version of the classical partial

subadditivity.
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CHAPTER FIVE

RESULTS ON QUANTUM TSALLIS ENTROPY

5.1 Definition And Some Basic Properties Of Quantum Tsallis Entropy

The on..e parameter extension of the von Ne..umann entropy is the qua..ntum Tsal..lis

entro..py. It is quantum analogue of the classical Tsallis entropy.

Definition 5.1.1. Le..t ρ..∈Mn(C) be a dens..ity matri..x. Then the quantum Tsal..lis entropy

of ρ is defi..ned by

Sq(ρ) = −Trρ logq(ρ). (5.1)

By definition of the function logq x (see definition 2.3.1), the above formula can be

written as

Sq(ρ) =
Tr(ρq − ρ)

1− q
(q > 1). (5.2)

In an analogy to the classical case, taking the limit as q→ 1 in (5.1) we obtain the

von Neu..mann entro..py.

Note that taking the density operator as a diagonal matrix in the equality (5.1) we

obtain the classical Tsallis entropy. Hence the classical Tsallis ent..ropy is a spe..cial case

of quantum Tsallis entr..opy.

For the sake of simplicity, from now on we will use the term ‘Tsallis entropy’ instead

of the term ‘quantum Tsallis entropy’. In the following, we collect some important

and useful facts of Tsallis entropy, most of which are analoguous to the von Neumann

entropy:

Proposition 5.1.2. Tsallis entropy is basis independent. If we choose the basis

consisting of the eigen..vectors of the density matrix ρ, we obtain the following
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formula:

Sq(ρ) =
∑
i λi

q − 1
1− q

.

Proposition 5.1.3. Tsallis entropy is nonnegative and its maximum value is − logq
1
n .

It attains its maximum value at the completely mixed state ρ = (1n )I , where ρ ∈Mn(C).

It is possible to prove this property in many different ways. Here we wi..ll use the

conc..avity of the func..tion x 7−→ −x logq x. The following proof is due to (Carlen, 2010):

Proof. Applying the function −x logq x to the term
∑n
i=1

1
nλi we obtain

(
−

n∑
i=1

1
n
λi

)
logq

( n∑
i=1

1
n
λi

)
.

Sin..ce the func..tion −x logq x is con..cave

(
−

n∑
i=1

1
n
λi

)
logq

( n∑
i=1

1
n
λi

)
≥ −

n∑
i=1

1
n
λi logqλi

−1
n
logq

1
n
≥ −1

n

n∑
i=1

λi logqλi

− logq
1
n
≥ Sq(ρ).

Equality occurs at the points λ1 = λ2 = ... = λn =
∑n
i=1

1
nλi , which means that ρ =

(1n )I .

Proposition 5.1.4. If the com..posite sys..tem is in a pu..re sta..te ρ12 with reduced densities

ρ1 and ρ2, then Sq(ρ1) = Sq(ρ2) . This property can be deduced from Remark 3.3.4.

Recall from Proposition 2.3.5 that the classical Tsallis entropy is pseduo­additive

for two independent random variables. Keeping in mind that the product states are

quantum analogous to the independent random variables, one can see the following

result immediately:

Proposition 5.1.5. For a product state ρ1⊗ρ2, Tsallis entropy is pseudo­additive (Petz
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& Virosztek (2014)), that is

Sq(ρ1 ⊗ ..ρ2) = Sq(ρ1) + Sq(ρ2) + (1− q)..Sq(ρ1)Sq(ρ2)

where ρ12 is a density matrix with reduced densities ρ1 and ρ2.

In Chapter 4, we saw tha..t the von Neu..mann entro..py is an operator conc..ave function

of the density matrix ρ. The same is true for the Tsallis entropy:

Proposition 5.1.6. Tsallis entropy is operator concave. That is

Sq(tρ1 + (1− t)ρ2) ≥ tSq(ρ1) + (1− t)Sq(ρ2) (5.3)

where 0 ≤ t ≤ 1 and ρ1,ρ2 ∈Mn(C) are density matrices.

Proof. The inequality (5.3) foll..ows fro..m the conca..vity of the function x 7−→ ..−x logq x

and fro..m theorem 4.1.9.

5.2 Subadditivity Of Quantum Tsallis Entropy

On..e of the remarkable results related to the Tsallis entropy is the follo..wing theorem:

Theorem 5.2.1. Le..t ρ12 ∈Mm(C)⊗Mn(C) be a density matrix and let ρ1 ∈Mm(C)

and ρ2 ∈Mn(C) be its reduced densities. For q > 1

Sq(ρ12) ≤ Sq(ρ1) + Sq(ρ2) (5.4)

From Definition 5.1.1, the inequality (5.4) can be written as

Trρ12 logq ρ12 ≥ Trρ1 logq ρ1 +Trρ2 logq ρ2
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or equivalently

Trρ12(log2ρ12 − log2ρ1 ⊗ I − I ⊗ log2ρ2) ≥ 0. (5.5)

The inequality (5.4) is called the subadditivity of Tsallis entropy and it is proved by

Audenaert (2007). Before giving the details of his proof it will be useful to give some

definitions.

For each A ∈Mn(C), A∗A is a positive definite matrix and the abso..lute val..ue of A

is defi..ned by |A| = ..(A∗A)1/2. The eigenvalues of ..|A| are called the singular values of

the matrix A.

Definition 5.2.2. (Bhatia (2013), Hiai & Petz (2014)) For any matrix A in Mn(C)

Schatten q­norm of A is defined by

||A||q =


(∑n

j=1 sj(A)
q

)1/q
= (Tr |A|q)1/q, (1 ≤ q <∞)

s1(A) = ||A|| , q =∞

where sj(A) are the singular values of A (or the eigenvalues of |A|). In part..icular,

||A||1..= Tr |A| is called the tra..ce nor..m (or Schatten 1­norm), ||A||2 = (TrA∗A)1/2 is

called the Hil..bert Schm..idt nor..m and..||A||∞ = ||A||..= s1(A) is called the oper..ator norm.

For x ∈R consider the foll..owing funct..ions

f+(x) = ..max{x,0},

f−(x) = ..max{−x,0}.

One can easily see that

f+(x), f−(x) ≥ 0, f+(x)− f−(x) = x and f+(x) + f−(x) = |x|. (5.6)
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Fo..r any self adjoint matrix B it is possi..ble to define the following functions

B+ = f+(B).., B− = f−(B)..,

B+ is cal..led the posi..tive par..t and..B− is called the nega..tive par..t of the matrix B. By

(5.6) we have

B+,B−..≥ 0, B+ −B−..= B and B+ +B−..= |B|

and B+ − B−..= B is called the Jordan decomposition of the matrix B. Before proving

the subadditivity, Audenaert first proved the following lemma:

Lemma 5.2.3. Le..t X ∈Mm(C) and Y ∈Mn(C) be positive definite matrices such that

||X ||q, ||Y ||q..≤ 1. Then the following inequality

||(X ⊗ In + Im ⊗Y − Im ⊗ In)+||q..≤ 1 (5.7)

hold..s for q ≥ 1.

Proof. (Audenaert (2007), Hiai & Petz (2014))

We will prove the case ||X ||q.., ||Y ||q..= 1. The case ||X ||q, ||Y ||q..< 1 follows immediately.

Let xi and yj be the ele..ments of the spectrum ofX an..d Y respectively, where i = 1, .....,m

and j = 1, .....,n. Since ||X ||q, ||Y ||q = 1 we have

m∑
i=1

x
q
i = 1 and

n∑
j=1

y
q
j = 1.

We will prove the following inequality

||(X ⊗ In + Im ⊗Y − Im ⊗ In)+||
q
q =

∑
i,j

((xi − ..yj − 1)+)q ≤ 1.

The func..tion a 7−→ ..(a+ b − 1)+ is a conv..ex function of a for an..y b ∈ R. Let us define
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a vector valued function f as

f (a) = (a+ y − 1)+

where y = (y1, y2, ..., yn). The function f is also convex in a. That is

f (ta1 + ..(1− t)a2) ≤ tf (a1)..+ (1− t)f (a2)

or equivalently

(ta1 + (1− t)a2 + y − 1)+..≤ t(a1 + y − 1)+ + (1− t)(a2 + y − 1)+.

By the monotonicity and convexity of the lq norm we have

||(ta1 + (1− t)a2 + y − 1)+||q ≤ ||t(a1 + y − 1)+ + (1− t)(a2 + y − 1)+||q

≤ t||(y + a− 1)+||q + (1− t)||(y + b − 1)+||q.

Hence the function

g(a) = ||(a+ y − 1)+||q =
∑

j

(a+ yj − 1)
q
+

1/q

is convex in a. Moreover g(0) = 0 and g(1) = 1 which means that g(a) ≤ a for 0 ≤ a ≤

1. Since 0 ≤ xi ..≤ 1 we hav..e

g(xi) =

∑
j

(xi + yj − 1)..
q
+

1/q ≤ xi ..
and summing over the index i we obtain

∑
i

g(xi)
q =

∑
i

∑
j

(xi + yj − 1)
q
+ ≤

m∑
i=1

x
q
i = 1

which proves the desired inequality.
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It is possible to prove Theorem 5.2.1 by using the above lemma. The following

proof is due to Hiai & Petz (2014):

Proof. (of Theorem 5.2.1) By (5.2) the inequality (5.4) can be written as

Trρq1 +Trρq2 ≤ Trρq12 +1

or equivalently

||ρ1||
q
q + ||ρ2||

q
q ≤ ||ρ12||

q
q +1. (5.8)

To prove (5.8) first we will prove the following inequality:

||ρ1||q + ||ρ2||q ≤ ||ρ12||q +1. (5.9)

Le..t q′..∈R be suc..h tha..t 1/q+1/q′..= 1. Then for any posi..tive matrix A we have

||A||..q =max
{
Tr ..AB : B ≥ 0, ||B||q′ ≤ 1

}
(This property is called the duality of Schatten q−norm.) Hence

||ρ1||q = TrXρ1 and ||ρ2||q = TrYρ2

for some positive matrices X,Y suc..h tha..t ||X ||q′ .., ||Y ||q′ ≤ 1... Then by Lem..ma 5.2.3 we

have

||(X ⊗ In + Im ⊗Y − Im ⊗ In)+||q′ ≤ 1.

From the Weyl’s monotonicity principle we can find a matrix Z ≥ 0 with ||Z ||q′ = 1

such that

Z ≥ X ⊗ In + Im ⊗Y − Im ⊗ In.
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Then

ρ1/212 (Z + Im ⊗ In)ρ1/212 ≥ ρ
1/2
12 (X ⊗ In + Im ⊗Y )ρ1/212

and

Tr[Zρ12] + 1 ≥ Tr[(X ⊗ In + Im ⊗Y )ρ12]

= Tr[Xρ1] + Tr[Yρ2]

= ||ρ1||q + ||ρ2||q.

Since ||ρ12||q ≥ Tr[Zρ12] we have

||ρ12||q +1 ≥ ||ρ1||q + ||ρ2||q

which proves (5.9).

Now we prove the inequality (5.8). To do this we use the function f (x,y) = xq + yq

for q > 1. Let us look at the maximum value of f in the domain

D =
{
(x,y) : 0 ≤ ..x ≤ 1, .. 0 ≤ y ≤ 1, x+ y ≤ ..1+ ||ρ12||q

}
.

Sinc..e f is a conv..ex function of x and y we examine only the extreme points

(0,0), (1,0), (0,1), (1, ||ρ12||q), (||ρ12||q,1). The value of f at these points are

f (0,0) = 0, f (1,0) = 1, f (0,1) = 1

f (1, ||ρ12||q) = 1+ ||ρ12||
q
q, f (||ρ12||q,1) = 1+ ||ρ12||

q
q.

Hence f (x,y) ≤ 1 + ||ρ12||
q
q. But the point (||ρ1||q, ||ρ2||q) ∈ D, so we have ||ρ1||

q
q +

||ρ2||
q
q ≤ ||ρ12||

q
q +1.

We saw in Section 4.3 tha..t von Neum..ann entr..opy is strongly subad..ditive. The

following exa..mple sho..ws tha..t this is no..t tru..e for Tsallis entr..opy:
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Example 5.2.4. Let

ρ123 =



0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0.1 0 0.1 0 0 0

0 0 0 0.4 0 0.4 0 0

0 0 0.1 0 0.1 0 0 0

0 0 0 0.4 0 0.4 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


It is easy to see that ρ123 ∈M2(C)⊗M2(C)⊗M2(C) is a positive matrix with a trace

equals to 1, that is, ρ123 is a density matrix.

Then the corresponding reduced densities are

ρ12 =



0 0 0 0

0 0.5 0.5 0

0 0.5 0.5 0

0 0 0 0


, ρ23 =



0.1 0 0 0

0 0.4 0 0

0 0 0.1 0

0 0 0 0.4


, ρ2 =

0.5 0

0 0.5

 .

For q = 2 we have S2(ρ123) = 0.32, S2(ρ12) = 0, S2(ρ2) = 0.5, S2(ρ23) = 0.66 which

shows that

S2(ρ123) + S2(ρ2) > S2(ρ12) + S2(ρ23).

Therefore Tsallis entropy does not satisfy the SSA property!

5.3 Partial Subadditivity Of Quantum Tsallis Entropy

In Chapter 2 we made a diagram to show the relations between the strong

subadditivity (SSA), partial strong subadditivity (PSSA), subadditivity (SA) and
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partial subadditivity (PSA) of classical entropies. The same diagram applies to

quantum analogues of these entropies:

P SSA
��

+3SSA
��

P SA +3SA

gdfdhdh

Remark 5.3.1. Recall from Example 5.2.4 that quantum Tsallis entropy is not strongly

subadditive and the above diagram shows that it can not be partially strong subadditive.

The table 1.1 of the introduction part (see page 3) summarizes all the cases we have

seen so far.

At the end of Chapter 4 we gave a theorem of partial str..ong subad..ditivity of von

Neu..mann entr..opy. We observe by the above remark that the partial str..ong subadditivity

is no..t in the case fo..r the Tsal..lis entr..opy.

In Besenyei & Petz (2013), the following inequality (which is related to the SSA of

quantum Tsallis entropy) was conjectured:

If ρ12 is a dens..ity ope..rator in B..(H)⊗B(K) with reduced densit..ies ρ1 and ρ2, one

has

Tr(T ⊗ I2)ρ12(logq ρ12 − logq ρ1 ⊗ I2 − I1 ⊗ logq ρ2) ≥ 0 (5.10)

whenever T ≥ 0 and q > 1.

The inequality (5.10) is a kind of partial subadditivity of Tsallis entropy and is quite

similar to the inequality (5.5).
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The above conjecture was proved in the same article for the following cases:

1. ρ12 = ρ1 ⊗ ρ2 (The case of product states), and

2. The case m = n = 2 when q = 2. (dim(H) =m and dim(K) = n)

The authors give the following example for the second case:

Example 5.3.2. Let ρ12 be a density matrix in M2(C)..⊗M2(C) and T ∈M2(C) be a

positive semidefinite matrix such that

ρ12 =

A B

B∗ C

 , T =

a b

b c


with the reduced densities

ρ1 =

TrA TrB

TrB∗ TrC

 , ρ2 = A+C.

The key point of the proof is the following inequality:

TrBB∗ −TrBTrB∗ −TrAC +TrATrC ≥ 0.

This inequality is proved in Besenyei (2013):

Theorem 5.3.3. (Trace Inequality For Positive Block Matrices): Let A,B,C be n×n

matri..ces with compl..ex entr..ies and the block matr..ix

A B

B∗ C

 ∈ M2n(C) be positive

semidefinite. Then

TrAC −TrBB∗ ≤ TrATrC −TrBTrB∗. (5.11)

We restate Besenyei’s proof :

Proof. Since trace function is unitarily invariant we can assume that the matrix A is
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diagonal. By simple calculations, (5.11) reduces to

n∑
i=1

aiicii −
∑

1≤i,j≤n
|bij |2 ≤

n∑
i=1

aii

n∑
i=1

cii −
∣∣∣∣∣ n∑
i=1

bii

∣∣∣∣∣2

or equivalently

2
∑
i>j

Re(biibjj)−
∑
i,j

|bij |2 ≤
∑
i>j

(aiicjj + ajjcii).

If we show that

2
∑
i>j

Re(biibjj) ≤ aiicjj + cjjcii

then we are done.

Since

A B

B∗ C

 ≥ 0, then all principal minors of ρ12 are nonnegative. Hence the

determinant of the matrix

aii bii

bii cii

 is nonnegative for all i = 1,2, ..,n. So

aiicii − |bii |2 ≥ 0.

Similarly,

a22c22 − |b22|2 ≥ 0.

By the arithmetic and geometric mean inequality we have

aiicjj + ajjcii ≥ 2
√
aiicjjajjcii ≥ 2

√
|bii |2|bjj |2 ≥ 2Re(biibjj)

and this proves the inequality (5.11).
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5.4 Some Obtained Results Related To The Quantum Tsallis Entropy

In the follo..wing theor..em we present a proof of the inequality (5.10) for arbitrarym

and n when q = 2. This completes Table 1.1 when q = 2.

Theorem 5.4.1. Let ρ12 ∈Mm(C)⊗Mn(C) be a density matrix, ρ1 ∈Mm(C), ρ2 ∈

Mn(C) be its reduced densities and 0 ≤ T ∈Mm(C). Then

Tr(T ⊗ I2)ρ12(log2ρ12 − log2ρ1 ⊗ I − I ⊗ log2ρ2) ≥ 0

or equivalently

TrT ρ1 +Tr(T ⊗ I2)ρ212 −TrT ρ
2
1 −Tr(T ⊗ ρ2)ρ12 ≥ 0. (5.12)

Before starting the proof it will be useful to give the following remark:

Remark 5.4.2. The inequality

TrT ρ1 +Tr(T ⊗ I2)ρ212 −TrT ρ
2
1 −Tr(T ⊗ ρ2)ρ12 ≥ 0

is unitarily invariant. That is, if UTU ∗ = D, whe..re D is diag..onal and U is unit..ary

and if ρ′12 = (U ⊗U )ρ12(U ∗⊗U ∗) with reduced densities ρ′1 = ..Uρ1U ∗, ρ
′
2 =Uρ2U

∗,

then we have

Tr(UTU ∗Uρ1U
∗) + Tr(U ⊗U )(T ⊗ I)(U ∗ ⊗U ∗)[(U ⊗U )ρ12(U

∗ ⊗U ∗)]q

= TrT ρ1 +Tr(T ⊗ I2)ρ
q
12

and

TrUTU ∗(Uρ1U
∗)q +Tr[(U ⊗U )(T ⊗ ρq−12 )(U ∗ ⊗U ∗)(U ⊗U )ρ12(U

∗ ⊗U ∗)]

= TrT ρq1 +Tr(T ⊗ ρq−12 )ρ12.
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Note that ρ′12 = (U ⊗U )ρ12(U ∗⊗U ∗) is a density matrix and Uρ1U
∗,Uρ2U

∗ are

reduced densities of ρ′12. Therefore in (5.12) we may assume that T is a dia..gonal matrix

with nonneg..ative diagonal elements.

Proof. (of Theorem 5.4.1) We will pro..ve the inequality (5.12). One can write the

density matrix ρ12 as a block matrix:

ρ12 =



A11 A12 A13 ... A1m

A∗12 A22 A23 ... A2m

A∗13 A∗23 A33 ... A3m
...

...
...

. . .
...

A∗1m A∗2m A∗3m ... Amm


.

Then

ρ1 =



TrA11 TrA12 TrA13 ... TrA1m

TrA∗12 TrA22 TrA23 ... TrA2m

TrA∗13 TrA∗23 TrA33 ... TrA3m
...

...
...

. . .
...

TrA∗1m TrA∗2m TrA∗3m ... TrAmm


, ρ2 = A11 +A22 + ...+Amm.

By Remark 5.4.2 we ma..y ass..ume that T is a diagonal matrix with nonnegative

diagonal entries t11, t22, ..., tmm. After some calculations we obtain the following

formulas:

TrT ρ1 =
m∑
i=1

tii TrAii (5.13)

Tr(T ⊗ I)ρ122 =
m∑
i=1

tii Tr(A
2
ii) +

∑
j>i

(tii + tjj)TrA
∗
ijAij (5.14)
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TrT ρ21 =
m∑
i=1

tii(TrAii)
2 +

∑
j>i

(tii + tjj)|TrAij |2 (5.15)

Tr(T ⊗ ρ2)ρ12 =
m∑
i=1

tii Tr(A
2
ii) +

∑
j>i

(tii + tjj)TrAiiAjj (5.16)

where i, j = ..1, ...,m. By using formulas (5.13), (5.14), (5.15), (5.16); the left han..d side

of the inequality (5.12) becomes

∑
j>i

(tii + tjj)
[
TrA∗ijAij − |TrAij |

2 −TrAiiAjj
]
+

m∑
i=1

tii

[
TrAii − (TrAii)2

]
.

Using the formula TrA11 + TrA22 + ... + TrAmm = 1 we obtain TrAii − (TrAii)2 =∑m
j=1
i,j

TrAii TrAjj , for all i. Then we substitute this formula into the sum

m∑
i=1

tii

[
TrAii − (TrAii)2

]
and we obtain

m∑
i=1

tii

[ m∑
j=1
i,j

TrAii TrAjj
]
=

∑
j>i

(tii + tjj)TrAii TrAjj .

Then,

TrT ρ1 +Tr(T ⊗ I2)ρ212 −TrT ρ
2
1 −Tr(T ⊗ ρ2)ρ12

is equal to

∑
j>i

(tii + tjj)
[
TrA∗ijAij − |TrAij |

2 −TrAiiAjj +TrAii TrAjj
]
.
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Now we will show that

(tii + tjj)
[
TrA∗ijAij − |TrAij |

2 −TrAiiAjj +TrAii TrAjj
]
≥ 0, j > i.

Since t11, t22, ..., tmm ≥ 0 then tii + tjj ≥ 0 for any i, j. Also since ρ12 ≥ 0, the

principal submatrix

Aii Aij

A∗ij Ajj

 ≥ 0. The proof of the trace inequality

TrA∗ijAij − |TrAij |
2 −TrAiiAjj +TrAii TrAjj ≥ 0, j > i

follows from Theorem 5.3.3. Hence,

∑
j>i

(tii + tjj)
[
TrA∗ijAij − |TrAij |

2 −TrAiiAjj +TrAii TrAjj
]
≥ 0.

This completes the proof.

Corollary 5.4.3. In the above theorem putting T = |ψ〉〈ψ|, where |ψ〉 ∈ Cm is any

vector, we obtain the following inequality

〈ψ|Tr2ρ12(log2ρ12 − log2ρ1 ⊗ I − I ⊗ log2ρ2)|ψ〉 ≥ 0

which means that the operator

Tr2ρ12(log2ρ12 − log2ρ1 ⊗ I − I ⊗ log2ρ2)

is positive semidefinite on Cm.

This corollary shows that the partial trace of the operator ρ12(log2ρ12 − log2ρ1 ⊗

I − I ⊗ log2ρ2) is positive semidefinite on Cm. In fact this operator has some other

properties not only for q = 2 but also for q ∈ (1,∞). Hence in the rest of this section

we concentrate on the operator

ρ12(logq ρ12 − logq ρ1 ⊗ I − I ⊗ logq ρ2) (q > 1) (5.17)
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which is equivalent to

1
q − 1

[ρq12 − ρ12(I1 ⊗ ρ
q−1
2 )− ρ12(ρ

q−1
1 ⊗ I2) + ρ12] (5.18)

by (5.2).

Lemma 5.4.4. Partial traces

Tr1ρ12(logq ρ12 − logq ρ1 ⊗ I − I ⊗ logq ρ2) ∈Mm(C) (5.19)

Tr2ρ12(logq ρ12 − logq ρ1 ⊗ I − I ⊗ logq ρ2) ∈Mn(C) (5.20)

of the operator (5.17) are Hermitian.

We need the following proposition to prove the lemma:

Proposition 5.4.5. Let ρ12 ∈Mm(C)..⊗Mn(C) be a density matrix, ρ1 ∈Mm(C), ρ2 ∈

Mn(C) be its reduced densities and q ∈ (1,∞). Then the operators Tr2ρ12(I1⊗ρ
q−1
2 ),

Tr1ρ12(ρ
q−1
1 ⊗ I2) are positive semidefinite.

Proof. We will show that

〈x,Tr2ρ12(I1 ⊗ ρ
q−1
2 )x〉 ≥ 0, ∀x ∈Cm.

Let {fj}nj=1 be an orthonormal basis of C
n. By Definition 3.3.8 we have

〈x,Tr2ρ12(I1 ⊗ ρ
q−1
2 )x〉 =

n∑
j=1

〈(x⊗ fj),ρ12(I1 ⊗ ρ
q−1
2 )(x⊗ fj)〉.

This defin..ition is indepe..ndent of the choice of the orthonormal basis. Thus we may

assume that the basis {fj}nj=1 consists of the eigenvectors of the density operator ρ2.
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Writing ρ2 =
∑
j λj |fj〉〈fj | we have

〈x,Tr2ρ12(I1 ⊗ ρ
q−1
2 )x〉 =

n∑
j=1

〈(x⊗ fj),ρ12(I1 ⊗ ρ
q−1
2 )(x⊗ fj)〉

=
n∑
j=1

〈(x⊗ fj),ρ12(x⊗ ρ
q−1
2 fj)〉

=
n∑
j=1

λ
q−1
j 〈(x⊗ fj),ρ12(x⊗ fj)〉

where 0 ≤ λj ∈ sp(ρ2) for all j. And 〈(x ⊗ fj),ρ12(x ⊗ fj)〉 ≥ 0 for all j since ρ12 is

positive. Hence

〈x,Tr2ρ12(I1 ⊗ ρ
q−1
2 )x〉 ≥ 0, ∀x ∈Cm.

The positivity of the operatorTr1ρ12(ρ
q−1
1 ⊗I2) can be proved in an analogous way.

Proof. (of Lemma (5.4.4)) In order to show the assertion, we will prove that the partial

traces of the operator (5.18) are Hermitian. Hence we will show that the operators

Tr1(ρ
q
12 − ρ12(I1 ⊗ ρ

q−1
2 )− ρ12(ρ

q−1
1 ⊗ I2) + ρ12) (5.21)

Tr2(ρ
q
12 − ρ12(I1 ⊗ ρ

q−1
2 )− ρ12(ρ

q−1
1 ⊗ I2) + ρ12) (5.22)

are Hermitian.

We will only prove that the operator (5.22) is Hermitian, the Hermitianness of (5.21)

can be proved in an anologous way. By the linearity of partial trace, the operator (5.22)

is equal to

Tr2ρ
q
12 −Tr2ρ12(I1 ⊗ ρ

q−1
2 )− ρq1 + ρ1. (5.23)

In (5.23) the operators Tr2ρ
q
12, ρ

q
1 and ρ1 are all Hermitian. So, we only have to show

that Tr2ρ12(I1 ⊗ ρ
q−1
2 ) is Hermitian. But in the above proposition we proved that
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Tr2ρ12(I1 ⊗ ρ
q−1
2 ) ≥ 0. Hence the operator (5.22) is Hermitian.
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CHAPTER SIX

CONCLUSION AND OPEN PROBLEMS

In this thesis we investigate the inequality Tr(T ⊗ I2)ρ12(logq ρ12 − logq ρ1 ⊗ I2 −

I1 ⊗ logq ρ2) ≥ 0, where ρ12 is a density matrix and 0 ≤ T ∈Mm(C). This inequality

was conjectured by Besenyei and Petz in 2013, where it was proved to hold for the

density matrices in M2(C)⊗M2(C) and for q = 2. Here we prove this inequality for

the density matrices inMm(C)⊗Mn(C) . We also obtain some new inequalities related

to the operators (matrices) in this inequality.

The most important problem that remains is to understand the case of q > 1 with

q , 2. It seems that some new ideas are needed for a general solution. Having this in

mind we performed some numerical computations in Wolfram Mathematica 12. These

examples suggest that the operators Tr2ρ12(logq ρ12 − logq ρ1 ⊗ I − I ⊗ logq ρ2) and

Tr1ρ12(logq ρ12 − logq ρ1 ⊗ I − I ⊗ logq ρ2) are not only Hermitian but also positive.

If it is true, this would imply the partial subadditivity of the Tsallis entropy. Hence our

future work will be to investigate this claim.
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