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YUKAWA-TYPE SCREENING INHERENT IN
HIGHER DIMENSIONAL GRAVITY AND COSMOLOGY

SUMMARY

At the intersection of gravitation and cosmology, a study of the large-scale structure of
the Universe, and particularly, the search for a general relativistic scheme appropriate
for formulating structure formation at all-scales makes up the principle objective of
this thesis. Given the shortcomings of the Newtonian cosmological approximation
at large scales, it appears inconvenient to keep employing Newtonian equations
of motion in N-body codes of cosmological simulations, especially now when the
upcoming surveys are promising high-precision scans of regions ever approaching
the Hubble-scale. As the linear (relativistic) perturbation theory fails to describe
gravitational interactions in the nonlinear regime, it is quite interesting to work on
a scheme that incorporates the essential relativistic effects at large-enough regions, but
also works well below the scale of nonlinearity.

The present work initially introduces a scheme that combines the characteristics
of such an approach, namely, the cosmic screening approach towards all-scale
cosmological perturbations, with the screening of gravity emerging through a distinct
mechanism as part of the relativistic perturbation theory. Subsequently, it presents
an effective screening length (the effective interaction range of Yukawa gravity)
for gravitational interactions at cosmological scales, which matches the size of
the largest-yet-observed cosmic structure, and thereby, argues for homogeneity
and isotropy in the Universe not from few hundred megaparsecs, but from a few
gigaparsecs on. The analysis is first carried out for the flat ACDM model, but later
it is extended to involve curved spaces with the same energy components. The role
of peculiar velocities, which is the key element in the developed scheme, is also
investigated in detail beyond the scale of nonlinearity.

Elaborating further on Yukawa gravity in the cosmological framework, this thesis also
presents a comparison of Newtonian approximation and Yukawa behaviour in terms of
single particle gravitational force calculations performed in simulations of structure
formation. Additionally, it investigates the impacts of periodicity on the Yukawa
force to reveal the extent of deviations from the free-boundary problem. Apart from
the N-body codes, which are generally run for cubic boxes replicated periodically
in three dimensions, the motivation to study periodic boundaries also comes from
theoretical grounds, from the fact that a multiply connected Universe (contrary to what
is suggested by concordance cosmology, that is, the Universe is simply connected)
would allow for flat space shaped as a finite-size three-torus. In this connection, the
possible alternative expressions for the periodic gravitational potential and force have
recently been studied in a comparative analysis in view of computational efficiency.
With reference to the results therein, in the present work, the role of the effective
screening length in the periodic formulation is discussed extensively to reveal that
the associated effects are reduced for large-enough simulation boxes compared to the
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screening length. On the other hand, small values of the interaction range to the box
size ratio are also favoured by observational constraints on the considered topology,
which place an upper bound of the order of 10~! on the rescaled screening length in a
cell with dimensions rescaled to unity.

Meanwhile, Yukawa potentials also emerge in higher dimensional Kaluza-Klein
theories, albeit now as correction terms in metric coefficients.

Testing the compatibility of modified theories of gravity with gravitational tests
performed in the solar system is an important part of evaluating their viability. In
this connection, this thesis includes an extensive analysis of nonlinear f(R) gravity in
higher-dimensional space with spherical compactification of extra dimensions, where
some nonlinear perfect fluid is considered to be the matter responsible for the curved
background.

First, metric corrections are derived in the weak field limit, which acquire the form
of two summed Yukawa potentials subject to constraints form the inverse-square law
experiments. Motivated by the fact that two distinct scalar degrees of freedom are
inherent in nonlinear f(R) models (the scalaron) and in multidimensional gravity (the
gravexciton/radion) separately, the relationship between these and the Yukawa masses
emergent in the obtained metric corrections for several limiting cases are investigated.
Additionally, constraints on the free parameters of the model are introduced and
the formulas relating the four- and multi-dimensional gravitational constants to one
another are presented so that an agreement with solar system experiments is reached
and that the gravitational potential asymptotically tends to the Newtonian potential.
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YUKSEK BOYUTLU KUTLECEKIM VE KOZMOLOJi CERCEVESINDE
YUKAWA TIiPI DAVRANISIN INCELENMESI

OZET

Kiitlecekim ve kozmolojinin kesisiminde yer alan evrenin biiyiik dl¢ekteki yapisinin,
genel gorelilik cercevesinde, ufuk alti ve ufuk Otesi mesafelerde incelenmesi bu
tezin baglica amacini olusturmaktadir.  Yapr olusumunu modelleyen kozmolo-
jik simiilasyonlarin bir¢cogu, hareket denklemlerini ¢dzen N-parcacik kodlarinda
Newton yaklagikligina bagvurmaktadir. Ancak gozlemsel calismalarin giiniimiizde
Hubble-ufkuna gittikce yaklasan mesafeler icin gittikce artan ¢oziiniirliikte veriler
sunduklar1 g6z Oniinde bulunduruldugunda, kiitlecekim hesaplarinda kullanilan bu
yaklagiklik yetersiz kalir, ¢iinkii bu formiilasyon biiyiik Olceklerde 6nem kazanan
relativistik etkileri icermez. Ote yandan, relativistik pertiirbasyon teorisi de kiigiik
Olceklerde, yani enerji yogunlugundaki dalgalanmalarin ortalama degere yaklastigi
mesafelerde gecerliligini kaybeder. Kiitlecekimsel etkilesimleri modellemek icin
biitiin 6l¢eklerde etkin olan bir yaklagim arayisi bu yonden oldukga ilging bir problem
olarak karsimiza cikar.

Bu calismada, oncelikle, Hubble ufkunun altinda ve otesinde gecerliligini koruyan
kozmik perdeleme yaklasumi ile relativistik pertiirbasyon teorisinden tiiretilmis bir
diger kiitlecekimsel perdeleme mekanizmasini harmanlayan bir yontem sunulmaktadir.
Bu sayede, evrende gozlenmis en biiyilk yapinin boyutlariyla tutarli, Yukawa
kiitlecekiminin etkin etkilesim alanina karsilik gelen bir etkin perdeleme mesafesi
tiretilmisti.  Bu uzunlugun bugiinkii degeri, evrenin homojen ve izotropik
yapisinin alt sinirim belirleyen ve literatiirde daha onceki cesitli ¢aligmalarda birkag
yliz megaparsec mertebesinde hesaplanan ol¢egin, birka¢ gigaparsec mertebesinde
olabilecegine isaret etmistir. Baslangi¢ olarak ACDM modelinin 6ngordiigii diiz uzay
icin gelistirilen model, sonrasinda ayni enerji kompozisyonuyla egri uzaylar, yani
kapali ve acik evrenler i¢in genellestirilmistir. Homojen olmayan gravitasyonel alanin
kaynagi olan parcaciklarin hizlarinin, s6z konusu modelin 6nemli bir parcasi olarak
biiyiik 6lgeklerde ihmal edilemeyecekleri gosterilmistir.

Kozmik perdeleme yaklasiminda skaler potansiyel icin birinci mertebeden alan
denklemleri bir Helmholtz denklemi verir. Yeterince kiiciik Ol¢eklerde beklendigi
tizere bu denklem, Newton potansiyelinin Poisson denklemine indirgenir. Biiyiik
Olceklerde ise Helmholtz denkleminin c¢oziimii noktasal kiitlelere ait Yukawa
potansiyellerinin toplami seklinde bulunur. Buradaki Yukawa terimleri bir esik
uzaklifin iizerinde -ki bu da soz edilen perdeleme mesafesine karsilik gelir-
gravitasyonel potansiyelin ve bunu takiben de kuvvetin, eksponansiyel olarak
soniimlendigine isaret eder. Alan denklemleri kullanilarak ede edilen bu sonug, bu
cercevede relativistik bir etki olarak yorumlanmaktadir. Kiitlecekim kuvvetinin belirli
bir esigin iizerinde hizla etkisini kaybetmesi, kozmolojik yapilarinin boyutlarina ait,
etkilesim menziliyle karakterize bir iist sinirin varligina isaret ederek, kozmolojik
ilkenin ongordiigii, yeterince biiyiik olceklerde evrenin homojen ve izotropik oldugu
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kabuliinii desteklemektedir. S6z konusu yaklasimdaki potansiyel ifadesinin bir diger
onemli ozelligi de, birinci mertebedeki metrik pertiirbasyonun saglamasi beklendigi
izere, konum iizerinden alinan ortalamasinin sifira esit olmasidir.

Kozmolojik cercevede perdeleme yaklagimindan gelen kiitlecekimin Yukawa
davranigi, yine tez kapsaminda tek kaynak parcacia ait alan ve kuvvet i¢in, yapi
olusumu simiilasyonlariyla uyumlu bir kiibik periyodik hiicrede Newton yasasinin
davranisiyla karsilastinlmistir.  Ilgili bagil farkin hiicrenin yiizde birinden daha
kiiciik bir mesafede 10~ mertebesine geldigi, ve maddenin dominant oldugu, yap:
olusumuyla karakterize daha erken evrelere gidildikgce aymi bagil farkin kaynak
parcaciga daha da yaklastig1 goriilmiistiir.

Simiilasyonlarda kullanilan N-parcacik kodlarimin haricinde periyodik problem iiz-
erinde caligma motivasyonu evrenin ¢oklu-baglantili olabileceginden de gelmektedir.
Boyle bir evrende, sonlu boyutlar1 olan ii¢ boyutlu bir torus da diiz uzaya karsilik
gelebilir. Bu baglamda, kozmik perdeleme yaklasiminin karakteristik denklemi olan
gravitasyonel potansiyele ait Helmholtz-denklemi literatiirde kiibik torus topolojisi
icin calisilmig, ¢oziime ait alternatif potansiyel ve potansiyelden tiiretilmis kuvvet
ifadeleri, niimerik hesaplamalarda saglayacaklar1 performanslar bakimindan incelen-
migtir. Periyodik sinir kosullarinda baglangigta simiilasyon hiicresinin merkezinde
bulunan kaynak parcacik i¢in bulunan ¢oziimler, siiperpozisyon ilkesiyle hiicre
icinde rastgele yerlestirilmis parcaciklar icin de genellestirilebilmekte, bu baglamda
da N-parcacik simiilasyonlartyla uyumlu bir formiilasyona izin vermektedirler.
Kargilagtirilan ifadelerden kaynak parcacik ve periyodik goriintiilerine ait Yukawa
potansiyellerinin toplamindan olusan ¢oziim, gézlemsel limitlerle uyumlu on ve yiiz
gigaparsec mertebesindeki hiicreler i¢cin en iyi sonuclari vermektedir. Kozmolojik
simiilasyonlarda siklikla kullanilan bugiin 1 gigaparsecten kiiciik hiicrelerde ise
Yukawa potansiyellerinin Ewald toplamlar1 seklinde ifade edilen ¢oziim daha iistiin
performans sergiler. Bunlar géz oOniinde bulunduruldugunda Yukawa kuvvetinin
etkin perdeleme mesafesinin periyodik formiilasyondaki roliinii incelemek ©nem
kazanmaktadir. Bu tez kapsaminda da periyodik sinirlarin Yukawa kuvveti iizerindeki
etkisi incelenmis ve simiilasyon hiicresinin boyutlar1 etkin perdeleme mesafesine
kiyasla yeterince biiyiik tutuldugunda, bu etkilerin zayifladig1 belirlenmistir. Yine tek
kaynak parcacik i¢in, periyodik sinirlar olan kiibik hiicrede, periyodik ve serbest sinir
kosullarinda hesaplanan kuvvetlere ait bagil farkin secilmis bazi sabit degerlerinin,
gittikce kiiciilen etkin perdeleme mesafesi i¢in hiicre icerisinde kaynak parcaciktan
uzaklastig1 gosterilmistir.

Kozmik perdeleme yaklasimi, baslangicta, metrik pertiirbasyonlarin kaynagi delta
fonksiyonlartyla ifade edilen noktasal, relativistik olmayan kiitleler olacak sekilde
ortaya atilmig, literatiirdeki cesitli calismalarda lineer ve lineer olmayan ideal
akigkanlar icin genellestirilmistir. Ne var ki ikinci durumda akigkanlarin enerji
yogunlugu kontrastlarinin her yerde kiiciik oldugu kabul edilmistir. Bu calismada ise
birinci-mertebede alan ve korunum denklemleri, en bastan lineer olmayan akigkanlarin
da yogunluk kontrastlar gelisigiizel biiyiikliikte degerler alabilecek sekilde yazilmis ve
skaler ve vektor potansiyelleri icin Helmholtz denklemleri elde edilmistir. ivmelenerek
genigslemeyi Chaplygin gazi gibi modellerle aciklayan calismalara ait kozmolojik
simiilasyonlarda kullanilabilecek tam bir formiil seti sunulmustur.

Yukawa potansiyelleri yliksek boyutlu gravitasyon teorilerinde metrik pertiirbasyon-
larina gelen diizeltme terimleri olarak da karsimiza ¢ikmaktadir. Alternatif gravitasyon
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teorilerinin Giines sistemi testleriyle olan uyumlulugunu smamak, gecerliliklerini
test etmede Onemli bir asama teskil etmektedir. Bu tez kapsaminda da kompakt
ekstra boyutlarin 2-boyutlu kiire secildigi yiiksek boyutlu uzayda lineer olmayan f(R)
modelleri incelenmistir. Arka plandaki uzayin egriligi lineer olmayan bir ideal akiskan
ile saglanmistir.

Calisilan modeldeki homojen arka plan noktasal bir kiitle ile pertiirbe edilmis ve metrik
diizeltmelerin zayif gravitasyonel alan limitinde iki Yukawa potansiyelinin toplami
seklinde ¢oziimleri oldugu gosterilmistir. Lineer olmayan f(R) modelleri ve yiiksek
boyutlu kiitlecekime ait iki ayr1 skaler serbestlik derecesi (sirasiyla skalaron ve radyon
kiitleleri) bulundugundan bu ikisi ile metrik diizeltme terimlerindeki Yukawa kiitleleri
arasindaki iligki bazi limit durumlar icin arastirilmistir. Incelenen durumlar 6zelinde,
yiiksek boyutlu kiitlecekim sabiti icin Newton kiitlecekim sabiti ile modelin serbest
parametreleri cinsinden ifadeler tiiretilmistir. Yukawa potansiyeli i¢in ters kare yasasi
deneylerinden gelen kisitlamalar goz 6niinde bulundurularak f”(Ry) = 0 durumunda
Giines sistemi testleriyle uyumluluk icin Yukawa kiitlesi yeterince biiyiik olursa, ki
bu yiiksek boyutla iligkili radyon kiitlesine karsilik gelmektedir, noktasal kiitlenin hal
denklemindeki ek uzaya ait () parametresinin rastgele segilebilecegi, aksi durumda
ise, yani rastgele bityiikliikteki Yukawa kiitlesi i¢in bu parametrenin {2 = —1/2 olmasi
gerektigi gosterilmistir.

xxiii






1. INTRODUCTION

1.1 Introduction

In the cosmological setting and the framework of cosmic screening approach, Yukawa
behaviour comes into play as the principal form of interaction between gravitating
sources. The cosmic screening approach is originally based on the scheme of
discrete cosmology and relies on the theory of general relativity (GR) together
with the concordance (ACDM) model of cosmology [1]. Here, in the weak-field
limit, the sources of small metric corrections are considered to be mass density
fluctuations associated with point-like bodies. The mass density is handled in a
non-perturbative manner so that the density contrast may exceed unity in small
scales characterized by nonlinear dynamics. From the linearized Einstein equations,
one obtains a Helmholtz-type equation for the gravitational potential which admits
a solution containing summed Yukawa-terms associated with discrete particles that
represent galaxies, clusters etc. For small enough regions, the equation is reduced
to the Poisson equation for the Newtonian potential and at large cosmological scales,
gravitational interaction undergoes exponential cutoff, conveniently prohibiting further

growth of individual structures as expected in view of the cosmological principle.

As stated above, the cosmic screening approach, i.e. Yukawa-type screening of gravity
in the cosmological setting, was introduced in [1], initially within the scheme of
discrete cosmology, where sources of the inhomogeneous gravitational field were
considered as discrete delta-shaped nonrelativistic bodies. Later, it was generalized to
models containing perfect fluids [2, 3, 4, 5], to curved space [6], nonlinear f(R) gravity
[7] and the phantom braneworld model [8]). Subsequently, with particular attention
to the role of peculiar motion at large scales, it was combined with the screening
mechanism proposed in [9] within the relativistic perturbation theory, which led to
the derivation of an effective screening length [10], interpreted as the upper limit for

the possible dimensions of an individual cosmic structure. Again, the scheme was



revisited for curved spaces [11] as well as for periodic boundaries [12, 13, 14] that are

essential to simulations of structure formation [15, 16, 17, 18].

On the other hand, higher dimensional Kaluza-Klein (KK) theories [19, 20],
investigated in their weak-field limit, exhibit the property that for nonlinear f(R)
models [21, 22, 23, 24, 25, 26] with flat background as well as for linear models
with certain curved background geometries, metric perturbations introduced by a
delta-shaped/compact gravitating source admit corrections in the form of the Yukawa
potential[27, 28, 29, 30, 31]. Though negligible at distances much larger than the
interaction range, in each case these terms reflect the additional scalar degree of
freedom inherent in the theory, through the Yukawa mass, which indeed corresponds
to the scalaron [22, 32, 33] and the radion [34, 35] mass, respectively. The additional
degree of freedom in the first type of models emerges as a characteristic feature of
f(R) gravity whereas in the latter case, it relates to variations in the internal space
volume. In all mentioned models, compactness of the d-dimensional internal space of
the background manifold M = M, x M, is required in order to recover the Newtonian

potential far enough from the massive body.

In nonlinear f(R) models, implementing the solutions for the perturbed metric
coefficients in the three-dimensional space, i.e. setting d = 0, and considering a
compact gravitating source with dust-like equation of state (EoS), it becomes possible
to place constraints on the free parameters of the model [27]. The inverse square law
(ISL) experiments set upper bounds for the Yukawa contribution to the gravitational
potential [36]; so revealing the explicit expression for such corrections in terms of
the free parameters, one may restrain their values. Straightforwardly, this allows to
compare the largest possible range of Yukawa interaction to distances relevant to the
gravitational tests in the solar system. A negligible correction term then means that
the theory, in its weak field limit, behaves in the same way as GR [37, 38, 39, 40].
On the other hand, investigating cases where d # 0, one considers the asymptotic
regions where the exponential function in the Yukawa term is either vanishing, or
equal to unity [28]. As is typical of an astrophysical object, the gravitating source
is assigned dust-like EoS in the three-dimensional external space and the EoS in the
internal space is constrained by imposing the requirement that in these regions, the

gravitational potential tends to the Newtonian potential.



Linear KK models of type R x R? x S9, i.e. in which the internal space is described
by a d-dimensional sphere, naturally admit the presence of some background fluid,
responsible for the curved geometry of the spatial background. Introducing a source
with the properties defined in the previous case, one reveals that the gravitational
potential again acquires a Yukawa correction, subject to restrictions from the ISL
experiments [29, 31]. Then, given the form of the correction term, constraints from
experiments in the solar system may be satisfied either for a sufficiently large Yukawa
mass, or by fine-tuning of the EoS parameter of the gravitating source in the internal

space [29, 30, 31].

In the context of multidimensional KK models, the weak-field limit of linear gravity
with spherical compactification of the internal space was studied in [29, 30, 31, 41, 42].
The more general nonlinear f(R) models were investigated in [27, 28], where a flat
internal space was assumed and hence, extra dimensions were toroidally compactified
instead. For both classes of models, the linearized field equations were solved for the
perturbed metric coefficients to reveal that they admit correction terms with Yukawa
potentials. Then, viability of the models were investigated in view of experimental

constraints from tests of gravity in the solar system.

1.2 Purpose of Thesis

This thesis aims to further investigate the Yukawa behaviour of gravity both in the

higher dimensional setting and in the context of cosmological perturbations.

First, within the cosmic screening approach, the effective screening length will be
derived, and the role of peculiar velocities will be explored at scales beyond the scale of
nonlinearity. Curved spaces will also be considered for completeness. The formulation
will be generalized to the case in which metric perturbations are sourced by energy
density fluctuations of nonlinear perfect fluids that are not necessarily small. Still based
on the cosmic screening approach, gravitational interactions will be studied in the
periodic domain in view of the relationship between the extent of deviations from the
free-boundary force and the effective screening length. With respect to single particle
force calculations in cosmological simulations, Yukawa and Newtonian behaviours

will be compared in cubic boxes with periodic boundaries.



Then, within the context of higher dimensional f(R) gravity, the KK model with
spherical compactification of the internal space and with some nonlinear prefect fluid
as the background matter will be investigated. Introducing a delta-shaped gravitating
source, perturbed metric coefficients will be studied in the weak field limit to see
whether they receive Yukawa-type corrections in such setting. Concurrently, the
viability of the model will be assessed based on the resulting form of the gravitational

potential.



2. OVERTURE

2.1 Notation

Throughout the manuscript, the spacetime coordinates =¥, k = 0, 1,2, 3, are marked
by Latin indices (except in Chap. (7) they run from O to an arbitrary number D of
spatial dimensions) and spatial vectors x* are marked by Greek indices, or in certain
contexts by boldface symbols such as B or r. Partial derivatives 9/0, are denoted by
0,. Symbols such as the prime, the dot etc. are used in different meanings is different

contexts, therefore, each time they appear in text their roles are specified explicitly.

Einstein notation with repeated indices is used for demonstrating summations of
vectors and tensors. Everywhere in the text the metric is represented by ¢** and the
signature is (4, —, —, —). In the context of cosmological perturbations, the metric
perturbation is denoted by d¢** whereas in the last chapter, for higher dimensional

gravity, it is denoted by h*.

The speed of light ¢, together with constants such as the Newtonian gravitational

constant GG v, are shown explicitly wherever necessary.

2.2 A Crude Review of the Relativistic Perturbation Theory

Rooted in the Copernican principle, arguing for the absence of special observes
in physics, cosmological studies conventionally rely on the hypothesis that over
large-enough distances, the universe is homogeneous and isotropic. Namely, it appears
1sotropic about all points [43, 44]. This is referred to as the cosmological principle.
Though the statistical distribution of matter, i.e. of galaxies, favour a homogeneous
pattern over large- enough scales [45, 46, 47, 48], the formation of cosmic structures
themselves is associated with the growth of perturbations in the matter density, the

information of which is contained in deviations from the homogeneous background.



Relativistic perturbation theory [49, 50] provides a solid framework for formulating
perturbations at the linear level and at large scales; however, it breaks down when
the density contrast approaches unity. Nonlinear dynamics relevant to later times are
often modelled via Newtonian simulations, albeit with the drawback that Newtonian

description of cosmological processes is insensitive to relativistic effects now.

2.2.1 The perturbed metric

In agreement with the cosmological principle, at the background level, the
geometry of the homogeneous and isotropic Universe is described by the

Friedmann-Robertson-Walker (FRW) metric
ds?® = a* (dn2 — 5a5dxo‘dxﬁ) , a,Bf=1,2,3, (2.1)

for the particular case of flat space favoured by the ACDM model. Above and hereafter
7 represents the conformal time defined via cdt = adn (where ¢ and ¢ are the speed
of light and the cosmic time, respectively), a is the scale factor and 2 stand for the

comoving coordinates.

Introducing small perturbations about the background metric in (2.1), so that
Gik = Gik + 09k, |0gix| < 1, the line element of the inhomogeneous universe, in its

most general form, may be expressed as
ds® = a® [(1+24) dn® — 2Bada®dn — 645 (1 + 20) da“da’ — 2hapdada’] |
2.2)
where A (n,z%) and C (n,z*) transform as scalars, B, (n,2%) as a 3-vector and

hop (0, %) as a rank-2 tensor under

. . . 1 0
=Xk, XV = [ a] . (2.3)
k k 0 Rﬂ’
Here Rg is the rotation matrix satisfying (5agR,‘$Rf = 0Jy,. The coordinate

transformation described in (2.3) has the sought-for property that it preserves the
symmetries of the background, i.e. it respects the slicing of spacetime into

constant-time spacelike hypersurfaces with Euclidean metric [51].

Performing a scalar-vector-tensor decomposition, it is possible to split B, into zero
curl and zero divergence components, that yield a scalar B and a divergence-free vector
BY:
B, =0,B+ B\ (2.4)
6



Similarly, the symmetric traceless tensor /s may be decomposed to obtain a scalar h,

a divergence-free vector hY) and a symmetric traceless divergence-free tensor h;?:
1 1 (V) W 4 5@
has = ( 0a03 = 50asls | h+ 5 (08" + 05007 ) + 1 2.5)

By that means, the ten degrees of freedom in dg;;, shows in the four scalar, four vector
and two tensor modes, which are separated into 2 physical + 2 gauge degrees of

freedom for the scalar and vector perturbations.

In the first order, scalar vector and tensor perturbations may be studied separately in
three distinct categories as the corresponding field equations are decoupled at this
level. Scalar perturbations are coupled to the energy density and pressure contrasts
through Einstein equations, and thus, structure formation in the universe is studied
with respect to the evolution of these quantities. The remaining two scalar degrees of
freedom in the perturbed energy-momentum tensor (EMT) are the velocity potential
of irrotational flow and anisotropic stress, the latter being absent for perfect fluids.
A, B, C and h, along with vector perturbations, vanish in the absence of matter. Only
tensor modes survive in vacuum and they represent gravitational waves propagating
across the homogeneous background. Vector perturbations, on the other hand, are

associated with vorticity which decays quickly over time as the universe expands.

2.2.2 Longitudinal/conformal-Newtonian gauge

Perturbations introduced in the previous section depend on the choice of coordinates.
Four of the ten degrees of freedom in dg;; may be removed by gauge fixing, or by
switching to gauge-invariant formalism [52, 53, 44] as these so-called gauge degrees
of freedom merely correspond to perturbations in the coordinates with no physical

COI‘I'CSpOI’ldCl’lCC.

Under the generic coordinate transformation 2% — 2% = 2% + £* (n,2¥), where
&% (n,x¥) is a first-order quantity, the set of functions below, the Bardeen variables,

remain unchanged [52]:

d=A+H(B-E)+(B-E), \pz—c—H(B—E’)JF%AE, (2.6)

«

Ca=h,—BY, h). 2.7)
It is clear from (2.7) that the tensor mode h((xTﬁ) is already gauge-invariant.

7



On super-horizon scales, working with gauge-dependent quantities appears cumber-
some as it is difficult to clarify physical interpretations of perturbation variables.
Even if the results obtained in a certain gauge may eventually be processed to meet
observable quantities, there is also the possibility that gauge modes may provoke errors
in numerical computations [54]. Nevertheless, there exists a particular gauge in which
the two scalar fields A and C coincide with the Bardeen potentials in (2.6): ® = A and
U = —(\. It is the conformal-Newtonian gauge (also referred to as the longitudinal
gauge) [49], with € = —B+E’"and ¢ = E. The scalar  is defined via &, = 0a£+€év).
The off-diagonal scalars B and h vanish in this case (see Egs. (2.33)-(2.39) of [44] for
explicit expressions corresponding to the transformations of the full set of perturbation

variables).

In the sub-horizon limit, where typical velocities are much smaller than the speed
of light and general relativistic corrections are negligible (provided that the study is
confined to the weak field limit), ® corresponds to the Newtonian potential. Moreover,
® and ¥ become identical to one another because the source of their difference, the
anisotropic stress associated with the cosmic neutrino and microwave backgrounds of

the early universe, becomes negligible here.

Taking into account scalar perturbations only, the line element in the

conformal-Newtonian gauge may then be written as

ds® = a® [(1+2®) dn® — 6,5 (1 — 20) dz*da”] . (2.8)

For an all-inclusive treatment of metric perturbations, it is possible to resort to the
Poisson gauge [54], which generalizes the longitudinal gauge by taking into account

the vector and tensor modes as well.

2.2.3 Perturbations in the matter sector

The background EMT for perfect fluids has the generic form
Ty = (E+p) 't — P, (2.9)

where the energy density € and pressure p are functions of time only, as implied by

homogeneity. Given that %, u* = 1, the background four-velocity %, = (a,0,0,0)

from (2.1) for the comoving observer.



Introducing perturbations in the matter sector, T} = T; + 0T}, where now
T = (e + p) v'uy — pdy, — L, , (2.10)

and v’ = dz'/ds, the explicit expressions for the EMT components read

1) = &+6¢,
TS = - (§+]_)) (6a+Ba) )
Ty = — (P + dp) o — 113, 2.11)

up to first order. Unlike the average quantities, the energy density and pressure
perturbations here, d¢ and dp, may depend both on time and position. The 3-vector
U, corresponds to the peculiar velocity (or, the coordinate velocity) defined as
U = dz®/dn. Similar to (2.4), a decomposition of the form v, = 0,7 + 179/) allows to
introduce the velocity potential, the scalar v, of the irrotational flow. As for the stress
tensor 1%, it is possible to set u'Il;; = 0 (which implies TIJ = TI% = 0) so that the
only nonzero contribution comes from its spatial part - the traceless anisotropic stress

tensor. It may also be decomposed into scalar, vector and tensor parts like the metric

perturbation h,4:
1 1
Mas = <aaaﬁ - §5a5A> [+ 5 (21 + 0,11 ) + 118y (2.12)

It is important to note that perfect fluids do not have anisotropic stress, and thereby, no

tensor modes in the perturbed EMT.

Gauge degrees of freedom are also present in the EMT perturbations. There are
four scalars, de, dp, v, and II, two divergence-free vectors from v, and II%, and a
symmetric, divergence-free traceless 3-tensor from 1I5. Again, only six are physical.
Given the way each variable transforms (see Eqs. (2.77)-(2.83) of [44] for the
complete set of corresponding formulae) under the generic infinitesimal coordinate
transformation introduced the previous section, one may obtain gauge-invariant
quantities by combining matter perturbations with one another, and as well by

combining those with metric perturbations (see Sect. (2.2.4) of [44]).

On the other hand, in the conformal-Newtonian gauge, the four scalars are

$¢=06c+8(B—E), sp=0p+P (B—E), o=0v+E, M=1. (2.13)

9



Despite the gauge-dependent formulation of perturbations here, the variables &
and 0, the energy density and velocity potential, respectively, acquire Newtonian
characteristics in the sub-horizon limit, where the Bardeen potential ¢ also coincides

with the Newtonian gravitational potential.

All hatted quantities in (2.13) and in the rest of this chapter refer to perturbation

variables expressed in the conformal-Newtonian gauge.

2.2.4 Scalar sector field equations in the conformal-Newtonian gauge

Substituted in Einstein field equations G', = KT} (see, e.g., Chap. (3) of [55] for a full
derivation of the Einstein tensor Gfc from the metric), Egs. (2.1) and (2.9) yield the

Friedmann equations governing the dynamics of the background universe:

B—HQ = KE
a2
, ka®>

Here, as well as in the chapters that follow, H = a'/a = (da/dn)/a, so that
H = aH/c, where H is the Hubble constant, and x = 87Gy/c?, where Gy stands

for the Newtonian gravitational constant.

According to the ACDM model, the energy content of the universe today consists
mainly of vacuum energy (the cosmological constant), followed by pressureless
nonrelativistic matter in the form of cold dark matter (CDM) and baryons (the latter
roughly equals 1/5 of the CDM density). Radiation contribution is negligible. The
energy density € and pressure p values in the above set, however, correspond to
the added contribution of all species for the moment in order to present a general

formulation of cosmic dynamics.

Going to first order and considering scalars only, 0G% = x0T} yields [51]
5G0 = AU 3H (U + HD) = ga25é,
6Gh = 0a (V4 HP) = —Za® F+) dad

(Trace) 6G§ — W' +H (P +20)+ (2H +H?) D + %A (®— )
K

= 2a25}3. (2.15)

from (2.8) and (2.11). The traceless piece of the 0G equation has been omitted from

the last expression. Converted to Fourier space, it reveals the relation (® — W) oc IT
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(see Sect. (10) of [51] for a detailed demonstration), which means, disregarding

anisotropic stress, the two Bardeen potentials become identical:

5GY o AD— 3H (P + HD) = ~a6e,

K
2
3G <I>’+H<I>=—ga2(§+ﬁ)x

(Trace) 0GS — " +3H + (2H +H?) ® = gazéﬁ. (2.16)

Anisotropic stress is associated with free-streaming of relativistic species. Photons
decouple from the cosmic plasma (at = ~ 1000 — 1200 [56]) already after the
matter-radiation equality (z ~ 3400 [56]), i.e. when matter density begins to dominate,
thus neglecting their contribution here is well justified. However, it is worth noting that
neutrino decoupling takes place as early as z ~ 6 x 10° [56], and one should beware of
the problematic aspects of such a simplification from neutrinos’ side, especially when
high precision is targeted in calculations. Meanwhile, gradients of the scalars in the
dGY equation have been replaced by these functions themselves for spatial averages of

perturbations vanish in the first-order.

2.2.5 Energy-momentum conservation

Assuming a perfect fluid and neglecting anisotropic stress in (2.11), still in the

conformal- Newtonian gauge, energy-momentum conservation equations V;7TF = 0

follow as
i=0— (Background) = —-3H(z+Dp),
N D D~ 0D
i=0— (1**order) & = (1 + g) (39" — AD) + 3H (gé — ?p) :
, ) A i op
i=a— (1%*order) o' = —Hb <1 - 3:,) ——— -9, (2.17)
€ E+Dp

with respect to the line element (2.8). The first-order continuity equation (1 = 0)
is expressed in terms of the energy density contrast, defined via 5 = dEJE.
These equations also hold for each (non-interacting) species separately, once the
corresponding EoS parameter w = /Z is substituted. The ¢ = « component of the

conservation equation corresponds to the Euler equation.

It is worth noting that for adiabatic perturbations, the squared speed of sound

2 =6p/de =7p /.
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2.2.6 Evolution of perturbations and structure growth

The sets of equations (2.16) and (2.17), together with the background Friedmann

equations in (2.14), determine the evolution of perturbation variables.

When studying cosmological perturbations, horizon is defined as the time-dependent
Hubble scale, i.e. 1/H. Expressed in Fourier space, the k—modes of perturbations that
satisfy k= < H ™! correspond to sub-horizon scales and those for which £~1 > H ™1,
correspond to super-horizon scales. In the radiation-dominated and matter-dominated
epochs, H ' x aand H! x al/?, respectively, and modes outside the horizon become

sub-horizon modes in time as the physical wavelengths \,pys o a fall behind aH~!.

Originated in the early universe, all modes of ® and 6 that are outside the horizon are

frozen, that is, @,5 = const (for w = const).

During the radiation-dominated period, sub-horizon modes of the metric perturbation
® oscillate with decaying amplitude, and following the transition to the matter era,

again, they remain constant.

On the other hand, throughout the radiation era, sub-horizon modes of the radiation
density contrast 6, oscillate about the point 5T_eq = 0 with constant amplitude. At
this epoch, baryonic matter is tightly coupled to photons, and thereby, is affected by
radiation pressure that prevents gravitational collapse. In other words, perturbations
of the photon-baryon fluid oscillate inside the horizon, i.e. below the critical scale
characterized by the Jeans’ length \; = c; \/m , until matter-radiation equality
takes place at z., = 3400. In the matter era, perturbations in o, keep oscillating with
constant amplitude, only now about a shifted point 3r,eq. Meanwhile, the speed of
sound gets smaller to allow for the growth of perturbations and eventually, following
recombination, baryonic matter gets trapped in the potential wells of the CDM density
field. Dark matter density contrast d¢, which grows  Ina during the radiation era,
evolves oc a after z.,. As fluctuations grow further to enter the nonlinear regime,
the scheme of relativistic perturbation theory breaks down. The ongoing process of

structure growth needs to be studied numerically from that point on.

An explicit mathematical demonstration of the above explained processes can be found
in various references on cosmological perturbations. Some useful lecture notes with

comprehensive narration include, e.g. [51, 56].
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3. THE COSMIC SCREENING APPROACH

Cosmic screening approach, formulated within discrete cosmology, aims to describe
gravitational interactions at all scales, from distances relevant to nonlinear dynamics

to super-horizon cosmological scales.

The weak field limit of GR at sub-horizon scales admits Newtonian interaction
between nonrelativistic bodies. Nonlinear dynamics relevant to small distances,
where linear perturbation theory breaks down, is hence well described by the
Newtonian cosmological approximation, which is often employed in N-body codes
for modelling the growth of cosmic structures. The scheme of cosmic screening relies
entirely on non-perturbative approach to the mass density. Therefore, at sub-horizon
scales, the analytical expression for the scalar potential complies with the Newtonian
approximation. Meanwhile, it also addresses also the question of how the form of
gravitational interaction is altered at scales where the cosmological principle disfavours

structure growth.

At large-enough scales, the gravitational force of the cosmic screening approach
undergoes exponential decay. In other words, Yukawa-type screening of gravity
comes into play to restrain interactions beyond the corresponding screening length.
The underlying equations follow from GR and the ACDM model of cosmology,
disregarding the contribution of relativistic species. As the scheme is based on discrete
cosmology, inhomogeneous matter distribution is modelled via distinct point-like
bodies, which represent pressureless nonrelativistic matter sources such as galaxies,

groups of galaxies etc.

3.1 The Inhomogeneous Gravitational Field of Discrete Cosmology

The information of the inhomogeneous Universe, limited to the weak gravitational

field limit and in the Poisson gauge, is contained in the perturbed metric [44, 52]
ds®> = a® [(1+ 2®) dy” + 2B,dz*dn — (1 — 2®) ,5dz*da”] (3.1
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in the absence of anisotropic stress. Functions ®(n,r) and B,(n,r) (satisfying
VB = §*99;3B,, = 0) are the first-order scalar and vector perturbations, respectively.
Investigation of tensor modes in the first-order lies beyond the scope of this approach,

hence the corresponding perturbation variable has been omitted in (3.1).

Subsequently, the linearized Einstein equations §G, = 4T} read

AD —3H (P +HP) = %m%Tg , (3.2)
iABa + 0y (D' 4+ HP) = %maQ(STg : (3.3)

" + 3HD + (2H +H?) D =0, (3.4)
(050By + 040Bg) + 2H (050B, + 0,0Bs) =0, (3.5)

where the fluctuations of the matter EMT 67} = T} — T, are obtained from the tensor

components [38, 57, 58]

V=4 d77 d_ndsn

appropriate for a collection of discrete point-like nonrelativistic particles with masses

2 7 k
T =y T T W s r ) 6.6

my,. In Eq. (3.6), ¢ = det|g;] and r,, indicates the comoving radius vector of the n—th
particle. Metric corrections are sourced by fluctuations in the mass density dp = p—p,
treated in a nonperturbative manner. Therefore, even though the smallness of ® and
B, is an essential aspect, the condition |0p| < p is not imposed this approach. The

rest mass density in the comoving coordinates is expressed as

p:Zmné(r—rn):an, (3.7

so arranging their right-hand sides (RHS) accordingly, Egs. (3.2) and (3.3) may be cast

into a set of Helmholtz equations for ® and B, that are [1]

1 Kpc? Kc? . _
ZAB — 2% B= —% ( E PnVn — V:) s (38)
3kpc? Kc? 3P H _
AD — 2’; = dp— L E, (3.9)
where
_ 1 Z (r—r,) Vv,
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The auxiliary function =, associated with the comoving peculiar velocities v,, of the
particles, is introduced in order to facilitate the decoupling of equations for the scalar

and vector perturbations. Egs. (3.8) and (3.9) admit the solutions [1]

HCQZ MV (3+2V3q, + 4q;) exp (—2¢0/V3) — 3

B = :
8ra & ||r —r,| 4
M [V (T — 1,)] ( ) 9 — (9+6v3q, + 4¢2) exp (—2¢,/V/3)
r — I‘n * )
lr —r,|? a
(3.11)
1 Kc? m
d=—-— n —q
3 87m;|r—rn|eXp( )
3kc? M|V (r—10) [ 1 —(1+ ) exp(—qn)
ov . 3.12
b 8MHZ E— 2 : (3.12)
for
3Kkpc?
qn (nvr) = 2 (I‘—I‘n) ) Gn = |qn’ (313)

Owing to the form of (3.6), and for the metric introduced in (3.1), energy-momentum
fluctuations to be substituted in the RHS of the linearized field equations (3.2)-(3.5),
up to first-order, have the forms

2

3D 2
5T = 0—36p+ e
a

o 5T°——C—22 @a+ﬁ—CQB T =0 (3.14)
CL3 ) o 0/3 p’nn 0/3 (o) ﬁ_ . .

The terms o< @, B later contribute to the left-hand side (LHS) of Egs. (3.8) and (3.9)
for the scalar and vector potentials. In return, the solutions given in (3.11) and (3.12)
admit exponentially decaying pieces, which hint at the Yukawa behaviour of these

quantities.

The parameter ¢,, specifies the interaction range of Yukawa gravity via [1]

a(r—ry,)

b\ 5 (3.15)

dn (777 r) =

where A\ = /2a3/(3kpc?) represents the time-dependent screening length in the

cosmological setting.

The Yukawa behaviour of gravitational interactions is also manifest in the equation of

motion of individual particles, which are composed entirely of exponentially decaying
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terms:
(a{’k)/ = —a (v¢)|r:rk + HB|r:rk)
k2 [my(r — 1,
- AR g el

8 | r—r,P

n#k
My [V (r —1,)]
+ H PR (r—r,)
9(1+4 g+ ¢2/3) exp(—gy) — (9 + 6V3q, + 4¢2) exp (—2¢,,/V/3)
X q2
Ly (3 +2V/3qn + 4¢2) exp (—2¢n/v/3) = 3(1 + ¢n) exp(—qn)
|I' - rn| Q%

(3.16)

The RHS of (3.12) is reduced to the Newtonian potential at small scales, i.e. when
¢n < 1, and well describes the nonlinear dynamics relevant to structure growth at
the sub-horizon level. Beyond the interaction range, however, the gravitational force
is subject to exponential cutoff, which may be attributed to the relativistic effects
inherent in the cosmic screening approach. Suppression of gravitational interactions at
large-enough scales agrees with the cosmological principle as it implies the existence
of an upper bound for the sizes of individual cosmic structures. Based on the Planck

2015 data [59], Eq. (3.5) of [1] yields A = 3.7 Gpc today.

3.2 The Effective Screening Length

3.2.1 The scheme of linear perturbation theory

Beyond the scale of nonlinearity, i.e. at large-enough scales, cosmological
perturbations are often studied within the scope of the relativistic perturbation theory.
A similar demonstration of screening is also present therein, provided that the scalar
potential is only weakly dependent on time. This approach, i.e. cosmological screening
from linear perturbation theory, was presented in [9], where the authors obtained a
physical screening length al, interpreted in a similar way as its counterpart from the

cosmic screening approach of discrete cosmology.

Linearized Einstein equations of the relativistic perturbation theory for the FRW

spacetime and the flat ACDM model with solely nonrelativistic species have the form

AD — 3H (D' + HD) = %mﬁag, (3.17)
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1
O +HD = —§f<¢a2§1/, (3.18)
"+ 3HP + (2H +H*) ® =0, (3.19)

which coincides with (2.16) up to p = dp = 0 and v — v. The latter substitution
merely follows from notation. Throughout the large-enough spatial regions relevant to
this scheme, the energy density fluctuation de always remains small in comparison to

the background energy density €.

In [9], the function ® (7, r) is decomposed as
D

d="p, (3.20)
a

where ¢ = ¢(r) and D;(n) is the linear growth factor with the two solutions [50]
H [ da o H
Dng)O(z/ﬁ, Dghxg, (3.21)
for the growing and decaying modes, respectively. The Helmholtz equation in this
scheme, which again follows from the linearized Einstein equations, reads [9]
D; 1
AD — 3H—-LD = ——ka?0e, (3.22)
D, 2

with its own comoving screening length defined as

1 dln Dy

[ = .
3H2f / dlna

g

(3.23)

It is important to note that the term (D’ /D;)® in Eq. (3.22) is related to the velocity
potential v(n, r) via
Dj 1

D—icp = —§/<aa25y. (3.24)

3.2.2 Combining the screening mechanisms of discrete cosmology and

linear perturbation theory

The Helmholtz-type equation in (3.22) has a single source proportional to the energy
density fluctuation. Meanwhile, its counterpart from discrete cosmology has one term
proportional to the mass density fluctuation and one proportional to the function =,
which is associated with peculiar velocities. Looking back at (3.9) for comparison
purposes, one realizes that the scalar potential contributes to the energy density
perturbation through the relation

3pc?

a3

02
a
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whereas the velocity potential, since it is no longer a source of the Helmholtz equation

(3.22), is converted to the scalar perturbation itself as explicitly shown in (3.24).

Linear perturbation theory breaks down at sub-horizon distances where density
fluctuations exceed the average value. Meanwhile, here the peculiar velocities and
hence the = term of discrete cosmology become insignificant and the Helmholtz
equation (3.9) is safely reduced to the standard Poisson equation (given that, of course,
the term oc ® on the LHS is also negligible). This is a key feature in accurately
describing nonlinear dynamics governing small-scale cosmological processes. Based
on this, i.e. the fact that peculiar motion is only relevant to large scales and that
the screening ranges of both approaches are both much larger than the scale of
nonlinearity (of the order of 10! Mpc today), the source term o = in (3.9) may be
safely re-expressed via the velocity potential of the relativistic theory, as shown in

[10], which eventually yields the novel Helmholtz equation

a? Kc?
AN — —b=—9 3.26
where )
1 1 1 B da\
= 4 == — . 3.27
)\gﬁ A2 + a?[? aH (/ 7-[3) ( )

Eq. (3.26) has a single velocity-free source proportional to the mass density fluctuation,
which is analytically determined by the positions of gravitating bodies. Its exact

solution follows as [10]

q)_l Aeft 2_/%22 Mn__ _M (3.28)
EERWD) 8ma 4 v — 1, P Aeff ' )

The effective physical screening length Ao is calculated via the relation in (3.27),

§+) in

provided that one employs the growing mode of the linear growth factor D
(3.21). Using recent Planck data [60], i.e. Hy = 67.4kms 'Mpc™t, Qy = 0.315,
and 2, = 0.685, for

kpct Ac?

= — = — 3.29
3Hga(3)) ) A SHg ; ( )

H= HO\/QM (a0>3+QA, Oy

a
the effective screening length today is found to be 2.57 Gpc. As seen in Fig. (3.1), it

agrees perfectly with the size of Hercules-Corona Borealis Great Wall (Her-CrB GW),

the largest cosmic structure yet observed, with a reported size of 2 to 3 Gpc [61, 62].

18



A ) al ) >‘ef'f [GpC]

St
: Y
: —\
ar
i al
3 C I
2t
1 _ Hercules—Corona Borealis
I Great Wall
I a
0 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 J —_—
) 0.2 0.4 0.6 0.8 1.0 1.2 Qo

Figure 3.1 : The physical screening lengths of discrete cosmology, the relativistic
perturbation theory, and that of the combined scheme of both approaches, i.e. A, al,
and \.g, respectively, plotted against the normalized scale factor a/ag [10].

3.2.3 Structure growth and the effective screening length

During the matter dominated epoch, i.e. setting 2, = 0 in (3.29) so that H o a3/,

Aot = \/2/15(c/ H) appears to be smaller than both interaction ranges from combined
approaches: g < A = v/2/3(c/H) < al = 1/v/3(c/H). Meanwhile, according to
Egs. (35)-(37) of [10], density fluctuations in Fourier space grow proportional to
k¢, [a + 5kpc? /(2k*)]. This relation specifies the comoving scale below which, in
the matter era, dp;, grows significantly: k=1 = \/W . As ak™! = \g, one
may deduce that the effective screening length, which indicates the Yukawa range of
the combined approach, sets an upper limit on the sizes of domains in which structure

growth takes place.

3.3 On the Importance of Peculiar Velocities in the Screening Approach

The equation of motion of the k—th particle in the system (3.16) shows that the force
per unit mass, induced by the n-th (n # k) particle, consists solely of terms with
exponentially decaying functions. This expression well confirms that force decreases

exponentially with distance from the gravitating source.

19



Further elaborating on this formula, one may consider the possibility of neglecting
the somewhat complex velocity-dependent terms here. Indeed, in terms of the current
values of the Hubble parameter, the screening length and typical peculiar velocities,
that are Hy ~ 70kms~"Mpc~t, X\g &~ 3.7 Gpc and (av,,), ~ 250 —500km s, where
av, = cvu,, the ratio of the overall velocity-dependent part to the single term without
V., which is of the order of 3H Aav, /c? [10], is ~ 2 — 4 x 1073, Moreover, the ratio
of the velocity-dependent last term in the scalar perturbation (3.12) to the term without
v,, always remains small within the typically used cosmological simulation boxes: it is
about 1 — 2% for ¢, < 3, which corresponds to physical distances less than or equal to
11 Gpc [1, 10, 45]. Consequently, one might come to the conclusion that it is actually
possible to lose the velocity dependence in Egs. (3.12) (and (3.16)). It amounts to

limiting oneself to the velocity-free piece of the scalar perturbation ®, obtained by

solving the Helmholtz equation (3.9), now without the source containing =.

Nevertheless such an estimation is misleading. Neglecting the velocity dependent term
in ® results in a faulty description of structure growth at large scales (see Sect. (3) of
[10] for a detailed discussion). Indeed, the gravitational field generated by a solitary
delta-shaped mass and that of some continuous mass distribution cannot be handled
identically. Modelling the finite-size mass overdensity as some ball of comoving radius
7y, and uniform mass density p,, the velocity-free Helmholtz equation gives the first
piece of the potential expression labeled d,,, sourced solely by the mass overdensity

[10]:

B 2)\3 _ =
5 _m;a4 pbr p [% cosh (%) _ sinh (%ﬂ exp <_%) . (3.30)

Only the regions outside the ball are meaningful, so the expression holds only for
distances greater than the radius of the ball - for > 7. Considering the motion of the
ball to be along the direction of the position vector r, one obtains the second piece of

the scalar perturbation ®,,;, as [10]

o 3CEHN® pyTy
W T T o g2
A 5 [t (5 s ()] e (5}

(3.31)

sourced instead by the =—term and again, valid for distances outside the mass

distribution only.  The ratio of ®,, to ®, is proportional to the product
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(3HADy/a) (po/(py — P)). The previously calculated “small" prefactor, of the order
of 1073, is compensated here by the ratio (py/(p» — p)), which increases with the
increasing size of the ball as p, approaches p for large r,. Thereby, it appears that
ignoring peculiar motion leads to an incorrect formulation of gravitational interactions

at larger distances.

3.4 Peculiar Velocity Contributions in Curved Space

In [6], the original scheme of cosmic screening [1] was revisited to study the behaviour
of the gravitational potential in curved space, i.e. in open and closed universes.
Peculiar velocities of discrete sources were entirely disregarded in the formulation.
It was revealed that in an open universe, the potential would undergo an exponential
decay with increasing distance from the source, as in flat space, though the 1/r
prefactor in the zero curvature case would be replaced by 1/sinhl, [ indicating the
geodesic distance from the location of the source. In a closed universe, the shape of
the gravitational potential would depend on the scale factor to take on different forms

with growing a - but no exponential decay in any epoch.

The Planck 2018 combined cosmic microwave background (CMB) and baryon
acoustic oscillations measurements strongly favour a flat universe [60]. However, the
combined Planck temperature and polarization power spectra data reports a mildly
closed hypersurface with Qx = —0.04470 012, where Q2 indicates the spatial curvature
parameter in the homogeneous and isotropic universe. Given the ambiguity in
observational results regarding the curvature parameter, it appears to be a nontrivial
task to revisit the effective screening length, that readily incorporates the effect of

peculiar velocities, in curved space in search of a broader picture of gravitational

interactions in the cosmological setting.

3.4.1 The background for constant curvature spaces

The background FRW metric has the form

ds® = a*(n) [dn* — Yag d:vo‘dxﬁ] = a’(n)[dn® — dx* — Z*(x)dQ*], (3.32)
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for the most general constant-curvature space, for which the function () is defined

as
siny, X € [0, 7] for £ = +1

X(x) =4 X X € [0, +00) for K =0 (3.33)
sinhy, X € [0, +00) for K = —1

and dQ? = df* + sin®6dg®. Open, flat and closed universes are represented by

K = —1,0,+1, respectively.
From this metric, one obtains the Friedmann equation

3(H? 4+ K)

> = KkE+ A, (3.34)

a

or, in terms of the dimensionless cosmological parameters defined in (3.29),

o

H:HO\/QM (%>3+(1—QM—QA) (;)2+QA (3.35)

for a universe that consists of pressureless nonrelativistic matter in the presence of the

cosmological constant.

3.4.2 The scalar potential

In curved space, the expression for the comoving mass density of discrete

inhomogeneities is modified as
! > m; o ) det[yas] (3.36)
pP=—F= mio\r —r;), 7 =det|Yasl, .
V4 ’

and in the presence of these gravitating bodies, the perturbed spacetime is described
by the metric
ds®> = a’[(1 +2®)dn® — (1 — 2®)y,p dz®da’ ] , (3.37)

when the vector and tensor perturbations are disregarded. Einstein equations of the

linear perturbation theory follow as [49]

1

A® — 3H (' + HO) + 3K® = Sra’de, (3.38)
! 1 2—,

Q'+ HD = —§/m gv, (3.39)

"+ 3HPY + (2H' +H* - K) P =0, (3.40)

where the Laplace operator A = (1/,/7) 9a (/7 7*%03).
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Once again, using the ansatz given by (3.20) together with the relation

de = 2dp/a’ + 3pc*® /a3, Eq. (3.38) yields [11]

/ 2
AD -3 (’HD | e /c) o — ﬁap, (3.41)
Dl 2a
or,
a? Kc?
AP — — b =—)p. 42

The 1/)\2; term is decomposed in the same way as in (3.27), however, now the 1/[
term is re-defined due to the additional contribution of nonzero spatial curvature:

1 D’ dln D,
— =3H—=L — 3K = 3H>?
2 % D, H dlna

—3K. (3.43)

The first term on the RHS is associated with peculiar velocities of gravitating
sources and in [10], it was shown that when peculiar velocities were included in
the formulation, the cutoff range of Yukawa interactions decreased from 3.74 Gpc to
2.57Gpe. It is seen clearly here that they have a similar impact in curved spaces
as well. However, extra curvature term itself does not significantly affect Aog. In
fact, substituting the growing solution (3.21) in (3.43), and employing the Friedmann

equation (3.34), one finds that
BRI R R U
Ay 243 a? | H? H3 da H

3 da \ !
= Hoz (/ a3H3) , (3.44)

which is identical in form to (3.27) obtained previously for K = 0.

In terms of a new parameter v = a?/\?; introduced in (25) of [11], solutions of (3.42)

were also obtained for the K = —1, 41 cases:
ArG G i
$ = Nep - TNN T exp(—\/l/—i—lli) CK=—1, (345
ct "~ 2q 4~ sinh [
and
47TGN

Gy Z sinh Vv —1(r = 1;)]
c2a i sinh (\/I/ — 17T) sinl; ’

where [; specifies the geodesic distance between the test point and the i—th particle

d = BN K=+1, (3.46)

with mass m; .

In [6], for £ = +1, three different expressions were obtained for the gravitational

potential for growing a, which brought along the requirement that these solutions be
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connected smoothly to one another. In [11], taking into account peculiar velocities,
and thereby, adopting a more complete approach, it has been shown that there exists a
single expression for the potential ® in a closed universe for all the values of a relevant

to structure growth.
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4. GRAVITATIONAL POTENTIAL AND FORCE IN PERIODIC
BOUNDARIES

The theory of GR does not specify whether the space is flat, open or closed.
Neither does it favour a simply connected universe over a multiply connected one.
Indeed, certain features of CMB temperature patterns are studied broadly in search of
topologies other than that of the infinite simply-connected universe with flat spatial
geometry [63, 64, 65, 66, 67, 68], as is the predicted shape of the universe in
concordance cosmology. In a multiply connected universe, negative and zero curvature
spaces could have finite volume. The cubic toroidal topology sets an interesting
example for this for the zero-curvature case, given that it would be possible to
relate the quadrupole moment suppression at large angular scale CMB observations
to the existence of sufficiently compact spaces with dimensions of the same order of

magnitude [69, 70].

On the other hand, fully periodic boundaries are essential to the N-body codes to
properly simulate the infinite universe of the ACDM model. Conventionally, these
codes make use of cubic domains replicated along three dimensions while solving for

the gravitational force [15, 16, 17, 18].

Based on such motivations, the Helmholtz equation in (3.26) was revisited in [12] and
it was solved for the periodic potential for the cubic toroidal topology. The resulting
alternative expressions (together with the expressions for the gravitational force) were

then studied in view of numerical efficiency.

4.1 Helmholtz Equation in the Fully Periodic Cubic Domain

A

Re-expressing the Helmholtz equation (3.26) in terms of the shifted potential P,
defined as [12]

KC
P=Pd— N\ —p 4.1
eff 2a3p7 ( )
one obtains
-~ a2 -~ IiC2
AP — —d=—p. 4.2



Now, the source on the RHS is the mass density instead of the mass density fluctuation
dp, and thereby, from the superposition principle, the solution for this equation for a
single particle at z = y = 2z = 0 may be generalized to express the potential due to a

collection of randomly positioned point sources as well.

For the cubic torus topology 7" x T x T', and placing a single delta-shaped mass at the
origin, one way to express the solution of (4.2) is to add the Yukawa potentials sourced

by the original mass and its infinitely many periodic images, that is [12]

jd . GNm -t ~
(bexp - (_ C2(1,l ) (I)exp
W k2= —oo k37—oo 2+ (§ — ko) + (2 — k3)

b . (_ VG — k)2 + (@_ w + (G- w) | s

)\eff

Alternatively, Ewald summations may be employed so that the Yukawa potentials in
periodic boundaries can be formulated as two distinct series in real and Fourier spaces

with good convergence properties [12]

-1
Cbmix = (_ GNm) (/I;mix

c2al
too oo D <\/(:i-—k1)2+ G —Fa)? 1 F— k)% Xeﬁ)
- kl_zoo kz_zoo kg_zoo 2\/(j o kl)z + (@ - k2)2 + (2 - k3)2

' exp [— <4772k2 - S\;f_?) /(4042)}

4+ dmwcos |21 (ki@ + koy + k3Z = , 4.4
(27 (k1 2y + k3 PRTE e 4.4)
where k? = k2 + k2 + k2, and
D <\/(3~7 — k1)2 + (3] - /{72)2 + (5 — k3)2; Q) 5\eg>
N2 4 (7 — )2 (5 — k)2
— exp V(@ = F1)? + (G = ka2)* + (£ — ky)
)\eff
= = — 1
x erfc (a\/(x—k1)2+(y—k2)2+(z—k3)2+ . )
2@)\65
e V2 4 (7 — B2 - (5 — Fa)2
v oexp [ - V(& = k1)? + (§ = F2)? + (£~ ky)
)\eff
1
x erfe (a\/(f — k)24 (U — k2)? + (2 — k3)? — —= ) . 4.5)
205)\eﬁ"
The rescaled quantities with tilde are defined via 2l = x, yl = y, Z2l = z and

alS\eg = Aetf, Where a and [ are the scale factor and the period of the cubic torus,
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respectively. In (4.5), erfc denotes the complementary error function [71] and the
a-parameter of Ewald formulation, when assigned an optimal value, allows for rapid
convergence and good precision at low computational cost. For the range of Aetr studied

in [12], this optimal value was found to be 2.

N-body simulations based on the Newtonian approximation usually resort to this
formulation [72, 73] because using Ewald sums, the force series with bad convergence
becomes manageable in numerical calculations. Ewald sums are also encountered in
studies investigating electrostatic interactions characterized by the Yukawa law, and
within such context, the fully periodic Yukawa-Ewald potential was derived previously

in [74].

4.1.1 Comparing the two formulas

Owing to periodicity, both expressions (4.3) and (4.4) include infinite series. In order
to numerically determine P at a given point to good accuracy and with minimum
computational effort, it is important to know which of these formulas require the
least number n of summands in the series. In [12], such a comparison was performed
based on the numbers ey, and n.y,ix, and it was revealed that for S\fo < 1, both the
Yukawa (4.3) and Yukawa-Ewald (4.4) formulas required the same number of image
contributions to reach the targeted accuracy at points (Z, 7, Z) of interest. However,
given the much simpler form of (4.3), it was concluded that this formula would be
more preferable for computational purposes. Meanwhile, when Aet > 1, it was
the Yukawa-Ewald potential (4.4) that provided the best results, especially after Aot

exceeded the box size.

It is worth highlighting that the potential expressions presented above are both sensitive
to Aer. As previously indicated, this quantity is defined as Mg = et/ (al). Currently,
Aet ~ 2.6 Gpc according to the concordance model [10], and the dimensions al for
the studied 7° geometry are bounded from below by Planck 2015 results by ~ 27 Gpc
[75], which brings along the constraint At < 1 for a physically relevant analysis.
However, most N-body simulations are run in cells with dimensions smaller than
1 Gpc, therefore, for completeness, the cases where S\eff > 1 have also been considered

in the work [12].
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Performing a similar comparison with respect to numbers n for the x—components of
the gravitational forces 0; Q:JCOS, Oz @exp and 9;P .., same ranking of performances was
observed as that of gravitational potentials [12]. The Yukawa force was a better choice
in view of its plainness because the numbers ney, and 7., remained the same up to
S\fo = 0.1. The Yukawa-Ewald formula has a rather complex structure and thus, in

general, more computation time is required to numerically calculate the force in this

case.

4.1.2 Remarks on the relation between periodic formulation and the Yukawa

range

In the above formulation, periodicity manifests itself in the contribution of replicated
images of the gravitating source. It is quantified by the numbers n calculated for
the potential and force formulas. In [12], it was pointed out that particularly for
the Yukawa-type solutions, the number 7., decreased for smaller values of the ratio
Aot/ (al). In other words, using boxes that are large-enough compared to the screening
length, impacts of periodicity will show less in the potential (and thereby, force)

calculations.

Assuming an infinite universe, periodic boundaries turn out to be merely artificial
adjustments in N-body codes. From that perspective, employing the Yukawa law in the
equations of motion solved in these codes as well as using a large-enough simulation
box, one may better describe the interactions in the actual physical setting, i.e. the

infinite space which also agrees with the ACDM model.

4.2 Comparison of Yukawa and Newtonian Laws of Gravitation in Cubic

Domain with Periodic Boundaries

With the intention of introducing Yukawa gravity in future simulations of structure
formation as an alternative to the Newtonian approximation, the distances at which the
Yukawa and Newtonian gravitational forces began to diverge from one another were
investigated lately in the work [76]. Fully periodic boundaries in a cubic domain were

assumed to mimic the typical structure of most of the available simulation codes.
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For a single particle in a cubic box with three-dimensional periodicity, x —component

of the rescaled Yukawa-Ewald force FYE, derived from (4.4), reads

where,

kl—foo ko=—00 kz=—00

T+~ k) + G~ ks)’s 0 Xeﬁ)
(= k)2 + (2 — kg)2*?

(m- — R )2+ () — ka2t (2 — @)2)

exp [— (47r2k2 + X;ﬁ) /(4042)]

].671‘2]{}1 sin [27’{' (k’lj + k’gﬂ + ]{?32)] 47-‘-2]{;2 T :\gHQ s (46)
O =C- (J(:z TR2 (G — k)Pt G — k) Xeﬂ)

= 2oy [ (o ERPT G RP T E R F )
ﬁ 205)\eﬁ”

+ L erfc (Oé\/(i’ — k1)2 + (?j - k2)2 + (2 — ]{?3)2 + 1~ ) . (47)
Aeff 200\

On the other hand, its Newtonian counterpart which is already used in N-body codes,

has the form [72, 73]

- 8(i)NE

FNE = 8~ =

exte (an/TF— k)2 + (5 — B2l + (2 — Fa)?)

T — kl
Z Z Z { (& = k)2 + (5 — ko)? + (2 — ko)

k1=—00 ko=—00 kg=—00

2c0 {l~f—/€1

VT (@ = k)24 (§ — ka)2 + (2 — k3)?
[~ (5 = kP + (= ko) + (= k)|

= exp (— 7Tq2/0é)
2> Y Z q18in 27 (17 + @23 + ¢32)]

g

exp

q1=—00 q2=—00 g3=—00
q7#0

C=q+6+a- (4.8)
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For free boundaries, the two forces are

- 0Dy i T/ Nt NIRRT
Y="07 = T |im2. 724 5232 2 2 2| P~ 3 ’
x (22 + 92 + 22) T+ yt+z Aeff
(4.9)
. 0Dy i
_ _ __ 4.10
YT oi (@2 432 + 22)°? *10

again, for the single mass located at the origin. The rescaled quantities with tilde are
defined in the same way as those introduced in Sect. (4.1). Here also, for simplicity,

calculations are restricted to the the x—components of the force expressions only.

In Fig. (4.1), plain and periodic Yukawa and Newtonian force curves are plotted
simultaneously against the distance & from the source for four different values of the
rescaled screening length. In Figs. (5.1a) and (5.1b), where S\eg < 1, two sets of
curves that belong to different laws remain well separated from one another, excluding
the region that marks the immediate neighbourhood of the source and near z = 0.5,
where both periodic forces tend to zero. Periodic forces do not differ much from
the free-boundary forces of the same law throughout. Meanwhile, in Figs. (5.1c) and
(5.1d), i.e. for larger :\eﬁv, the Yukawa-Ewald and Newton-Ewald curves coincide (or,
differ very slightly), and so do the non-periodic Yukawa and Newtonian curves, and

now it is the periodic and plain forces sets that are separated.

For small values of the effective screening length, which is the parameter specifying
the range of the exponentially decaying Yukawa force, behaviours of Yukawa and
Newtonian forces begin to differ at small scales (of course, with respect to the box
size) as expected. In this case, periodicity does not have a significant impact on the
behaviour of the Yukawa force as it decays very fast to join the Yukawa-Ewald curve,
which goes to zero moving towards the edge of the box (¥ = 0.5), irrespective of
how large/small S\eff is. However, when S\eff is comparable to the box size, in the
free-boundary case, the larger screening length prevents rapid decay within the range
of interest and periodicity requires otherwise. Consequently, the plain and and periodic
forces differ from one another. For the same reason, Yukawa and Newtonian curves
behave similarly even about z = 0.5, i.e. the edge of the box, which is a small enough

distance compared to the cutoff scale now.
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Figure 4.1 : z-components of the plain and periodic gravitational forces F =09 /0%
on the y = z = 0 line for (a) )\eﬁ“ = 0.1, (b) )\eﬁ =1,(c) )\eff = 1 and (d) )\eﬁc = 21[76].

Introducing the relative difference ](ﬁYE — FNE) / FYE\, it was shown in [76] that,
for instance, when A is set to 0.1, the 1% difference is encountered slightly past
v = 0.01 (as demonstrated in Fig. (5.2a)) and for smaller values of the screening
length, it appears even closer to the gravitating body. In a box with a physical
size of apl = 1.3Gpc today (at z = 0), S\eﬂ‘ should be set to 2 according to
Aet = (a/ ao)(aol)j\eg, given that \og ~ 2.6 Gpc today [10]. In such configuration,
the 1% difference takes place at x ~ 530 Mpc and going down to 0.001%, the distance
gets as small as z ~ 12 Mpc, which corresponds to the point £ = 0.00898 on the
y—axis in Fig (5.2b). Earlier in [15], the error associated with the plain Newtonian
and Newton-Ewald forces was studied to reveal the impact of periodicity involved in
cosmological simulations. It was shown that 0.001% error appeared at about z = 0.011.
In [76], with respect to Yukawa and Newtonian laws of gravity in periodic boundaries,
the same percent difference was found at a distance less than 1% of the box size
(12 Mpc away from the source in a 1.3 Gpc box), highlighting the somewhat stronger
discrepancy between the two forces. Moreover, the difference grew stronger looking

back into the matter-dominated era: at z = 119, which is the leftmost point on the
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r—axis of Fig. (5.2b), at S\fo = 0.2, location of the 1% difference is found to be
7 = 0.000896, i.e. ~ 9.71 x 10~3Mpc in a ~ 10.8 Mpc simulation box.

ﬁYE VS. FNE
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Figure 4.2 : (a) Relative difference calculated with respect to the z-components of
the Yukawa-Ewald and Newton-Ewald forces for Aeg = 0.1 on the y =z = 0 line.
From left to right, the two dots mark the positions of the 1% (Z = 0.0148) and
10% (Z = 0.0504) differences, respectively. (b) Locations of four percent differences
in the box plotted as functions of S\fo for the FYE VSs. FNE forcesonthe y =2 =0
line. Moving downwards from the 1% difference, the curves lie between the points
0.0297-0.408 (1%), 0.00909-0.0938 (0.1%), 0.00284-0.0287 (0.01%),
0.000896-0.00898 (0.001%) on the y—axis. [76]

It is worth noting that larger percent differences like the 1% curve in Fig. (5.2b), which
appear rather far from the gravitating body, do not count as viable illustrations of the
actual physical setting. Forces here are calculated for a single particle in the box, so
naturally, the forces due to neighbouring particles in the real universe do not show in
the differences. Moving away from the source, larger percent differences do appear in
the current analysis, however, in a muti-particle setup, the force at those points would
be sourced dominantly by the neighbouring particles instead, and the force associated

with the particle at the origin would be negligible in the first place.

4.2.1 Effect of periodic boundaries on the Yukawa force - revisited

As mentioned earlier, for the concordance cosmological model, periodic boundary
conditions result in artificial effects unsupported by theory. It this connection, it
appears interesting to see the extent of their influence on force calculations. The
relative difference |(Fyp — Fy)/Fyg| is illustrated in Figs. (5.3a) and (5.3b), both
of which clearly show that contrary to the previous analysis on periodic forces, the

fixed percent differences move away from the body for smaller Aei. The results
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also support the conclusions of Sect. (4.1.2), which indicate that using large-enough
boxes (which make As smaller) and employing Yukawa gravity in cosmological
simulations, impacts of periodicity may be weakened. Table (4.1) provides yet
another demonstration of the relationship between the relative difference and the
rescaled effective screening length, zooming into four points in the box that are

# = 0.005,0.01,0.02 and 0.2.

Fy}; VS. F\'
‘F'vr. - Fy'
Fy §
1%
014
107"+ b
" 0.1%
o “ ¥
008 0.01%
0.06
0.001%
0.04
1072 L
1% (& = 0.133) .
002 i 0.5 1.0 1.5 20
. 1% (& = 0.138) . ) - -
015 020 025 030 Aeft

(a) (b)

Figure 4.3 : (a) Relative difference calculated with respect to the z-components of
the Yukawa-Ewald and Yukawa forces for :\eff =1,2onthe y = Z = 0 line. (b)
Locations of four percent differences in the box plotted as functions of Aeir for the
FYE VS. Fy forces on the § = Z = 0 line. Moving downwards from the 1% difference,
the curves lie between the points 0.222-0.133 (1%), 0.123-0.0628 (0.1%),
0.0611-0.0292 (0.01%), 0.0289-0.0136 (0.001%) on the y—axis. [76]

Table 4.1 : Relative difference with respect to the free-boundary (4.9) and periodic
Yukawa forces (4.6) at four points in the box when Ao = 0.05 (left chart), 0.1
(middle chart) and 1 (right chart).

Aeit = 0.005 Aot = 0.1 Aot = 1
o |(Fye—Fy)/Fye|l | & |(Fye—Fy)/Fyel | & |(Fve = Fv)/Fyal
0.005 2.069 x 10713 0.005 1.163 x 107° 0.005 4.416 x 1077
0.01 1.692 x 1072 0.01 9.357 x 107 0.01 3.534 x 1076
0.02 1.453 x 10~ 0.02 7.644 x 1078 0.02 2.830 x 1079
0.2 1.296 x 1076 0.2 4.335 x 1074 0.2 0.0327
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S. COSMIC SCREENING APPROACH GENERALIZED TO
CONTINUOUS MATTER SOURCES

In the presence of an additional perfect fluid with the EMT

- dx’ dx* ,
ik zk
T% = (e +p) Is ds (5.1
the linearized Einstein equations (3.2)-(3.5) take on the form [2, 3]
, 1 c? 30
AP — 3H (P +7{<I>):2 5 + —& +0¢ (5.2)
1 0 ,
A_LABQ - 9z (O + HD)
1
= E/ia (——an —|——B — (e +p)o° +(5+p)B>, (5.3)
"+ 3HY + (2H +H*) © = %m%p, (5.4)
0B\’ OB,  0Bg\ _
(6ma> —1—27-[((%5 axa) =0, (5.5)

given, again, the metric (3.1). In the earlier work [3], ¢ was separated into two
components, €; and €7, which represented continuous perfect fluids characterized by
linear and nonlinear EoS, respectively. Indeed, arbitrary number of such components
were allowed, only with the condition that energy density and pressure contrasts
of nonlinear perfect fluid(s) were small everywhere: dc;/2;,0p;/p;, < 1. On
the other hand, just like the point-like pressureless matter, the energy density €;
and pressure p; of the w; = const # 0 components admitted fluctuations of arbitrary
magnitude, in agreement with the general scheme of the cosmic screening approach.
Peculiar velocities contribute to metric perturbations only through the terms oc pvy,
x ev* and < pv® , i.e. when combined with the mass density, energy density
and pressure, hence such products appear automatically as first order quantities. In
this connection, replacements such as s0® — Ev* were omitted contrary to the
indispensable substitutions of the form p,e,p x ®, B, — p,€,p x ®, B,. Situation
was, of course, different for the “.J"-components with respect to the terms with peculiar
velocities: products such as € ;05, p;05 were replaced by €,;05,p,;05.
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In the case of a linear perfect fluid, the energy density was decomposed as [3]

_A z A 0A; 3(1+wi)As
S e T 3(14+wr)e® = 230+wn) | g30twn) TR (5.6)
so that
s _ A A 3L+ w)A
T q3(1+wr) oy = a3(+wr) 3(Fwr) ) 5.7)

for A; = const and A; = A; + §A;. Additionally, regarding the “J"-component, it
was assumed that

deg =250, +3(E;+D,)P. (5.8)

The function J; satisfies (2.22) of [3], which follows from the conservation equation

of the corresponding fluid in the first-order approximation (given by (2.18) therein).

Using (5.7) and (5.8), Egs. (5.2) and (5.3) may be rearranged to yield

o

3I€p62 3k (1 —+ (U[)A[ 3K
A 2 = —_
[ f2a3 2 7 a3(1+m1) 2 §J : (EJ }:J)

Kc? Kka? JA; ka? B
= 2200+ g D e * g 25

3¢PH . 3HE—~1+w 3 ke . N
22 ~ 2 Z a1+3wf€f D) Z Er+D1) ¢ (5.9)
J

[1]

fore = Y ,er+>. ;50— > ;pr+ >, psabove and hereafter, and

1 a? | 3kpc* 3k (14+w)Ar 3k -
ZAB—g [ 203 +7 d W‘f'?zj:(eJ‘f'pJ) B
KC? . _ K 1+wy .
:—% (anvn— :) —EZW(AIV[—ij)
n I
Ka? L
— > (4D (3= V) (5.10)
J
Functions &; and (; are defined via the relations [3]
AV =V + (Avi = V&), V(Avy) = A, (5.11)
{IJ:VCJ+({’J_V<J), v'{’J:ACJ. (5.12)

Above expressions are obtained by decomposing the velocity-dependent terms into
zero-grad and zero-curl pieces. The function &; is interpreted as the effective velocity
potential of the “I”—component, just like the function = defined in (3.10) for
point-like nonrelativistic particles and (; are the velocity potentials of nonlinear perfect

fluids.
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For® =®y + >, 0,4+ > ;®5,and B =By, + >, B;+ >, B, both (5.9) and

(5.10) may be expressed as sets of separate equations for individual components, that

are
a? Kc? 3kcPH
NGy — —=DPyy = —0p — = 5.13
M \2 M % 1Y 2% ) ( )
ka® 0A; 3HK 1+ wr
£ = E(I)I 9 @30twn) 9 glider o G149
ka? 3Hka?
AD; — Eq)(] = 75J5J - 5 ( pJ) Cr, (5.15)
and
1 a? c? By
TOBy - WBM o <Z PV — v:) : (5.16)
1 a? kl4+w
1OBr = o5Br=—2 - o (Avi = V&) (5.17)
a? ka?
_ABJ—wBJ —T(&]—i—pj)(VJ—VCJ). (518)

Naturally, with the addition of extra components in the form of linear and nonlinear
perfect fluids, the original screening length introduced in Sect. (3.1) is re-defined and
now admits two additional terms for each type of the new components [3]:

—1/2

3kpc® Bk (L+wp)Ar | Bk _ | _
A= 25 T3 : WJr?XJ:(aﬂer) . (5.19)

The potentials @, By, 7, By and @5, B, then, correspond to perturbations sourced
by pressureless matter composed of discrete sources (CDM in the form of galaxies,
clusters etc.) and by perfect fluids with linear and nonlinear EoS (which may be

attributed to the dark energy), respectively.

5.1 Nonlinear Perfect Fluids with Arbitrarily Large Density Contrasts

To enhance the compatibility of the cosmic screening approach with a wider class of
models that address the late acceleration of the universe, such as the Chaplygin gas
model [77, 78, 79, 80], the set of equations for the scalar and vector potentials were
re-considered for nonlinear perfect fluids in the work [5], now for the more general

case of arbitrarily large density contrasts.

Herein, the relation p; = f(£,) no longer holds as density and pressure fluctuations

are not treated as small quantities. Upon introducing a new function F; = F; + 6 F},
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the energy density of the nonlinear perfect fluid was expressed in [5] as

EJ:FJ+3(€J+pJ)(I), (520)
so that for || < 1,
e; = Fy+3[F;+ fi(F))]®, (5.21)
0
b= LE)HISE IR ). 622)
€J ej=Fjy

Substituting the above set into the conservation equation ((A.20) in [3]) and
rearranging the resulting terms, the following equations were obtained in the

background and first order, respectively:
F +3: (Fy + [5(F) =0, (5.23)

OF;) +3H (6F;+6f7) + V{(Fy+ fi(Fy) v, =0. (5.24)

In deriving (5.24), certain estimations were taken into consideration such as
(1356J/€J ~ 172 [81], Ci = 5]?]/(58] ~ 8]‘}/85(] ,S 1, 58]/8] ~ (5fJ/fJ, 5fJB < fJ@J

as well as & ~ B ~ ¥ ~ e < 1 at large scales and ® ~ ¢, B ~ v® in small spatial

regions. Moreover, the function f; has been decomposed as f;(F) = f;(Fy) +0f;.

On the other hand, based on (5.21), the density fluctuation for such component reads

5€J:€J_gj:5FJ+3<FJ+JCJ(FJ))®. (525)

Instead of Eq. (5.12) of the previous section, the v terms were spit into transverse and

longitudinal pieces in the form [5]

(Fy+ f1(F)) vy =VCy+ [(Fy+ fi(Fy) vy — V],
VI(E;+ f1(F)) vy = Alay, (5.26)
where (»; has no analytical solution (neither does &; of (5.11)), but to be treated

numerically. Now, according to (5.21), (5.22), (5.25) and (5.1), the Helmholtz
equations (5.15) and (5.18) are replaced by the set

a? ka? 3Hka?

Ad; — )\Q@J = T(SFJ I Car s (5.27)
1 a? ka? 5
ZABJ - WBJ =T (Fy+ f1(Fy) vy — V], (5.28)
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where

. —1/2
A= [37 (FJ + fJ(FJ))l (5.29)

for a single-component universe. Above equations apply to the general-most case as
they are compatible with any p = f(e), which also involves the class of linear perfect
fluids with density contrasts of arbitrary magnitude. It is important to note that even
though they lack analytical solutions, these equations, together with (5.23), (5.24),
the background Friedmann equation (i.e. (1) of [5] for the considered component(s))
and the momentum conservation equation ((34) of [5]), serve as a complete set of

ready-to-use formulas to be employed in numerical simulations.
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6. MULTIDIMENSIONAL f(R) GRAVITY IN THE WEAK-FIELD LIMIT
OF KALUZA-KLEIN MODELS

Einstein field equations for f(R) gravity in D = 1 4+ D > 4 dimensional spacetime
have the form [21, 22, 23]

SpG
f’(R)Rz-k—%f(R)gik—[f’(R)];i;ﬁgik (R)] i g™ = 250Co

ct

ik = 0,1,...D, (6.1)

where D is the number of spatial dimensions and the total solid angle
Sp = 2xP/2/T(D/2). Gp represents the D-dimensional gravitational constant,
"=d/dR for R = R;;.g"* and the semicolon indicates covariant derivatives with

respect to coefficients g;; of the metric
ds® = goo (dx0)2 + 2goadx’dx® + gagdmadxﬁ , a,f=12,...,D. (6.2)

In the absence of background matter, the unperturbed spacetime with d-dimensional
internal compact space has a flat metric and may be assigned a topology R x R? x T
[27, 28, 37, 82, 83, 84]. A curved background geometry, on the other hand, is possible
when there is matter present and in the (D = 3 + d)-dimensional KK models with
spherical compactification of the internal space, it admits a topology R x R3 x S¢
[29, 30, 31, 41, 42]. For static background metrics, as in the current configuration,

g(()z) = 0 so in the latter case, the EMT of the background matter reads

i\ (0 . — _ —_ _ _
(1) = diag | 2, —Po, —Po» —Po, —Prs - —D1 | - (6.3)
d—ti
The overline as well as zero superscripts indicate background quantities. Employing
(6.1) at the background level, one obtains Wy = p,/€ = —1 and the parameter w; =

P, /Z of the internal space may be determined once the form of f(R) is specified.

Introducing a static point-like mass induces slight perturbations in the background
metric so that the coefficients in (6.2) take on the form g;;. ~ ggj) + h;i, where hyy,

stand for small corrections of the order 1/c?. From this point on, the first-order metric
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corrections will be denoted by A, B! and G and the number of extra dimensions will

be limited to two for simpler demonstration:

3
ds* = (1+ A") dt* — (1 - BY) Z (dz®)* — (1 — G") (d€* + d¢?) (6.4)

a=1

on the product manifold M = R x R? x T2 and

3
ds’ = (L+ AY) Pdt® — (1 - B") Y (da®)® = (> = G") (d€* +sin® £d(®)  (6.5)

a=1

on M = R x R3 x S2. The constant b denotes the radius of the sphere describing
internal space. As will be presented explicitly below, the pressure associated with
this massive body is isotropic in each of the individual factor manifolds. Therefore,
the block-diagonal form of the background metric tensor is unaltered by perturbations

[41] in (64) and (65), where hll = h22 = h33 = B1 and h44 = h55 = Gl.

Provided that the gravitating source is uniformly smeared over the extra dimensions,

its mass density reads p(rs) = md(rs)/Viy (ensuring g = gix (r3), r3 = |r3| =

v/ (21)% 4 (22)2 + (23)? for spherically symmetric perturbations with respect to the
external space [85]). In the flat background, internal space volume Vi, = Hlebi,
where b; are periods of the tori and as for the compactification on S?, Vi, = 4wb?,
which corresponds to the surface area of the 2-sphere. In the external space, the source
obeys a dust-like EoS, as is typical of astrophysical objects with weak gravitational
fields. The EoS parameter in the internal space remains unspecified, so one treats the
corresponding parameter € as a free parameter of the model. The nonzero components

of the EMT are, then, approximated as

~

1Y) ~ pc*, TH=~—5"Qpc®, pv=4,5 (6.6)
within the adopted accuracy.

Taking into consideration the fluctuations of the scalar curvature R, which may be
decomposed in terms of the background contribution and the first order correction,

respectively, as R = Ry + Ry, the function f(R) is Taylor- expanded about Ry:
f(R) = [f(Ro)+ ['(Ro)Ry + O (RY) ,
F'(R) = ['(Ro)+ f"(Ro)R: + O (R]) . 6.7)

The LHS of the field equations (6.1) are then determined in the first-order using (6.4)

(or (6.5)) together with (6.7). Eventually, these equations are to be solved for the metric
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perturbations A', B! and G*'. The first-order contribution to the RHS of (6.1) comes
not only from (6.6), but also from the nonzero elements of the perturbed background

EMT - of course, only when the model includes background matter - that are
5Ty = d¢ 0Ty =~ —0pody , 0T} =~ —0p10y, . (6.8)

Through (6.8), the model admits two more free parameters wy = dpy/de and

w1 = dp1/0e.

The first coefficient A' represents the gravitational potential, therefore it is natural
to expect that in the limit (r3 — o0), it would take on the Newtonian form,
ie. A'(rs — c0) = —2Gym/(c?r3). This condition defines the relation between

constants GD and G in terms of the free parameters.

In comparison to (6.4) and (6.5), the form the static, spherically symmetric metric

[39, 40]

3
ds? = (1 ’ QGW) 2 — (1 ¥ WZGNT”> S (@) 69

c2r cAr —
in PPN formalism implies ¥ = B! /A!. To achieve good agreement with observational
constraints from solar system tests of gravity, this ratio should be equal to one as in
GR. Such requirement serves as a tool to determine the viable combinations of the free

parameters which appear in the expressions for B! and A!.

Evidently, the scheme applies also to the study of linear models (which correspond
to the particular case of f”(R) = 0) and one may as well investigate a more general

model in which the extra dimensions consist of multiple product spaces.

6.1 The d = 2 Case in the Presence of a Nonlinear Background Fluid

Assuming a perfect fluid in the background, with the EMT in (6.3) for d = 2, and thus

for the metric (6.5), linearized field equations from (6.1) may be cast into the form

00— / (50) (A3A" = Ry) — (AsRy) f"(Ro) = & (6e + pc) . (6.10)
oo T (A By R+ (00R) £7(R) = e, (6.11)
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(Ro) ( , 26" 2R
- IO (05 vam) 4 ) B+ 2 att) ()
) 20 -
= F (RO)?—F%; (5p1+Qpc ) , (6.12)
1
afi— %f’(R ) ( A+ B!+ 2%) = ["(Ro)Ry =0 (6.13)

upon introducing a point mass with the previously discussed properties (up to the
replacement r3 — 7 for notation-wise consistency with the work [86]). Of course,
it has been taken into consideration that metric perturbations and the scalar curvature

all tend to zero as r — 0.

A useful expression may be obtained by combining the equations in the set above, that
is
51" (Ro)(Bsts) + 2 (Ro) By + " (Ro) Py
= —f (Ro)b%1 + K [—0e + dpo + 20p; — pc*(1 —2Q)] . (6.14)
The trace of (6.1) for this configuration follows as
— 2f'(Ro) Ry + f"(Ro) (RoRy — 5A31%y)
= k [0 — 36po — 26p1 + pc*(1 —2Q)] , (6.15)

which, when combined with (6.14), provides an expression that relates dp, of the

perfect fluid to the metric coefficient G*:

f'(Ro)
kb4

In the external and internal spaces, the squared speed of sound for the perfect fluid are

Spo = — G'. (6.16)

defined via dpy = wgde and dp; = wqde, respectively, so that (6.16) also implies

B SE)eng g (6.17)

Se —
c kY wo kb4 wo

Substituting (6.16) and (6.17) in Egs. (6.10)-(6.12), one obtains the set of master

equations

f (fo)A gl <R0>R + ["(Ro)AyRy + f/(bR )60, (6.18)
SR g - P E) - onpoyngry + PE) Lon s (6.19)

2 2 bt wo

f'(Ro) J'(Ro) J"(Ro)

T iy et

i+ L0 (19 61 e (620
0

44



which, together with Eq. (6.13) is to be solved for the metric coefficients A, B!, G*
and the curvature perturbation R' (see Sect. (2) of [86] for an explicit derivation of

Eqgs. (6.10)-(6.13) and (6.15)).

The perfect fluid responsible for the curved background geometry is chosen to be
nonlinear, which means, wy # Wy and w; # w;. At this point, it is also worth
noting that the equations derived in this section require f'(R;) # 0. To avoid the
ghost graviton, negative values of this function should also be eliminated so that the

constraint becomes f'(Ry) > 0.

6.1.1 Solutions for the perturbation variables

It has been shown in [86] that the solutions for the generic setup f”(Ry) # 0, Wy # 0
need to be worked out for two distinct cases, that is, when the Yukawa masses y; and
(1o are different from one another and when the solutions admit a single Yukawa mass.

For the former, the analytical solutions have been found as

A7) =[5 185+ raosp (yur) + aop ()], (62D
Bl(r) = \/?% (85 + Bip exp (—pur) + Bap exp (—par)] , (6.22)
G'(r) = \/g % [Bra exp (=) + Bac exp (—par)] (6.23)
R(0) =[5 3 Binep (ur) + nep ()] . (628

where the parameters [Sx are given by (37), (38), (40), (41) and (45) of [86] and
Ll [—bQ f'(Ro) B (1 + 3wp + 3wy)

e = 5 [ R =
:Fm (41 (Ro)ew + 0 £'(Ro) " (Ro)(=3 + wo — dwn o
+ f"(Ro) (19wg + 2wo(—2 + 9wy) + (1 + 3wy)?)] ”2] v (6.25)

From (6.21) and (6.22), one immediately sees that A'(r — co) = B'(r — o). The

corresponding expression is given by [86]

adr Vi 1
21" (Ro)b” [ + wo) — wi] + 41" (Ro)wo
f'(Ro) [2f"(Ro)(wo — 1) = V2 f"(Ro)(1 4 wo + 2w1)] -

(6.26)
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As the metric perturbation A’ represents the gravitational potential [38], it is natural
to expect that A'(r — o0) = —2G ym/c*r, which helps in determining the relation
between ép and the Newtonian gravitational constant G y:

SDGD Qf,(Ro)bQ [Q(l -+ (JJo) — (JJl] -+ 4f”(R0)UJO

Ve (o) 2" (Ro) (w0 — 1) — P (B) (L +wio + 207)] 7o (02D

6.1.2 The f(R) = R + £ R? example for 11 # juy

For the particular example f(R) = R + £R?, the previously introduced constraint
1"(Ro) > 0 requires b* > 4¢. Considering the case |¢| ~ b?, it has been found that the

masses /i1, (t2, Which have the general form
1 1[ v 2(1+wy+3w)

Hi12 = —mg ¢ .

1
F 57 [b4w§ — 2b%€(3 + 3wp + 4wy )w
0
1 1/2
+ 482 (21w2 + wo(2 + 26w1) + (1 + 3w1)?)] , (6.28)

become ~ 1/b provided that wy,w; ~ O(1). The scalaron [27] and radion masses are
also ~ 1/b for [£] ~ b*:

Miyad ~ 1/b, (6.29)

L (2P0 )”2 - (. Iﬂ)“
Mgcal = \/g < f”(RO> + RO - 5|§| b2 € . (630)

Same relations hold when |¢] > b? (and wy,w; ~ O(1)), for which the full form of

Yukawa masses read [86]

11
Hi2 ~ \/5 b
1 3 1 1/2
X {—( o + 3w1) T LIns 21002 + (2 + 2601 )wo + (1 + 3w;)?] 1/2}
Wo § wo
(6.31)
On the other hand, in the limit |¢| < b2, mgea ~ (—1/€)"? for € < 0, and [86]
1 1] b |w|b? ( §3+3w0+4w1>]1/2
N —-|——F—— (1 - — : 6.32
1,2 T0b { ¢ + wo € 12 o ( )
Proceeding with the negative values of the parameter wy, (6.32) yields
11 3+3w0+4w1)1/2 1
~ —_ — ~ — N~ mra 5 6.33
i V 10 b ( Wo b d ( )
11 b2) 1/2 1
~ - R = — X msca (6.34)
SN ( ¢ 5lE] 1
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As follows from the above set as well as the condition \/E < b, the exponential
terms o< exp(—por) in (6.21)-(6.24) may be dropped and left with a single Yukawa
term, one may employ the results of ISL experiments to estimate a lower limit for j;
(under, of course, some assumptions on the orders of the free parameters contained in

the coefficient 514 of (6.21)).

Now, from p1(b — o0) = 0, and pz(b — 00) = Mmgea = v/ —1/(5&), one obtains [86]
oy [Tl 2043 (20-1)

Al(r) = \/;Tli [ 5t 10 exp (—par)| , (6.35)
o Tl 201 (1-20)

B (r) = \/grli [ ) + 10 exp (—uar)| (6.36)

which straightforwardly show that in order to restore A'(r — oo) = B'(r — o), one

should set {2 = —1/2, and thereby, SpGop [Vine = 471G .

6.1.3 f(R) = R+ £R? revisited for the degenerate case

When there is a single Yukawa mass, i.e. for 1y = s = p in (42) of [86], instead of

the set (6.21)-(6.24), one obtains

Al(r) = \/g 71, {73 - (m + _um> exp (— ,ur)} : (6.37)
B'(r) = \/2% {73 + (713 + _um) exp (—m)] , (6.38)
G(r) = \/% (%c + im) exp (—pur) (6.39)
Ri(r) = g% (’hR + 57213) exp (—pr) | (6.40)

where the coefficients vx in (6.37)-(6.40) are given by (75) of [86], and

(071 () (1 + 3&)0 + 3&)1)
=4/ —— . 6.41
20[4 \/ f” bQWO ) ( )

Substituting f(R) = R + £R?, the Yukawa mass becomes

L (el +wot3w 1IN
=—=— - ——= (6.42)
|§| b? 5&)0 10 f
Re-considering the limiting cases in the previous section, one finds the relations
1 /14wy + 3w\ 2 1
p= -\ ——— ~ Mgcal ™~ Mrad ™~ 7, (643)
b —5WO b
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1
Mseal ~ 1/ €], £ <0, p= m T Mseal (6.49)

for [€] > b? and |¢| < b, respectively.

6.1.4 The cases with f”(Ry, = 0), wy # 0 and the linear model f(R) = R + 2rx/Aq

Imposing f'(Ry) # 0, metric perturbations for models with f”(Ry = 0),w # 0 take

on the form
1
Al(r) = \/E_ {% (2 %) exp (—w)] : (6.45)
2r 6 (671 (073
1
Bl(r) = /2= {% i (% _ %) exp (—ur)} : (6.46)
2r 6 Qs (e%3

Gl(r) = \/% KO;L:) exp(—,ur)} , (6.47)
Ri(r) = (27T>3/25<r)%: + \/gl [ C2R MR %> exp (—m)] . (648)

Specifying the value of the non-vanishing first derivative, i.e., setting f'(Ry) = 1, one
may perform a more detailed analysis on a specific group of models which also include

f(R) = R+ 2k/Ag. In this case, the above set becomes

AI(T>:\/§1H/{2[Q(1+WO)_W1] {3+2§2 2[9(1+w0)—w1]}

r (14w +2w1) (1 + wo + 2wn)

1(1 2
X exp _\/__( +C<J0+ wl

+ I+

5 (6.49)
B'(r) = \/Elﬁl 2[Q(1 +wo) —wn] [1-202  2[Q(1 +wo) —w]
2r (1 + wp + 2wy) 2 (1+w0—|—2w1)
oxp | — 1+ wp+2wi) 7 6.50)
2 Wo b

1 1 1(1 2
00 = (3 +0) e _\/‘5( =) e

r 4b2w0 2 Wo b



For wy = wWo = —1, wy = w1 = Ag/[1/(kb?) — Ag], one exactly recovers

f(R) = R+ 2k, and now A'(r — oo) = B'(r — o0o) indicates

SpGp 2 [—Q(1 + wp) + wi] B SpGp
Vgnt (1 + Wwo + 2w1) Mnt

=4rGy . (6.53)

For the form of A! in (6.49), ISL experiments set an upper bound of ~ 1072 ¢cm for
the internal space radius provided that wy = —1 and that one makes the reasonable
assumption |2|,w; ~ O(1). This shows that at distances comparable to the radius of

the Sun, which is ~ 10'° ¢cm, the Yukawa contribution may be neglected safely.

Meanwhile, the particular EoS 2 = —1/2 (accompanied by the condition wy # 0 and
taking into consideration (6.53)) yields A'(r) = B'(r) = —2Gxm/c?r, as the Yukawa

corrections vanish immediately owing to zero prefactors.
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7. CONCLUSIONS

In this thesis, an extensive study on gravitational interactions has been presented in
the cosmological setting and within the framework of the cosmic screening approach
[1,2,3,4,5,6, 10, 11, 12, 13, 14], which provides a general relativistic formulation

for all-scale cosmological perturbations.

First, Helmholtz equations of discrete cosmology and relativistic perturbation theory
for the scalar potential have been combined to obtain the effective screening length
[10], which corresponds to the cutoff range of Yukawa-type interactions, equal to
2.57 Gpc today for the ACDM model. The novel Helmholtz equation is reduced to
the Poisson equation at small-enough scales, incorporates the contribution of peculiar
velocities essential to large-scale dynamics, and via the effective screening length,
introduces an upper bound for dimensions of distinct cosmic structures. Unlike the
previously suggested values for the scale of homogeneity of the order of few hundred
Mpc (e.g, as in [87]), the 2.57 Gpc interaction range coincides with the size of the
largest cosmic structure observed, Her-CrB GW, with reported dimensions of 2—3 Gpc
[61, 62]. This supports the argument that the effective screening length of combined

approaches defines the bounds of the domain in which structures may grow.

Later on, the novel approach has been adapted to spaces with nonzero curvature [11],
and analytical expressions for the scalar potential have been obtained for open and
closed universes together with the formula for the effective screening length, which

was identical in form to its counterpart in the flat universe [10].

A comparison of the free-boundary and periodic Newtonian forces was performed
previously in [15] to mark the distances at which a notable deviation took place in
the box from the gravitating source. In [76], Yukawa and Newtonian forces have
been studied for a single particle in the cubic periodic domain to reveal that a relative
difference of 0.001% already took place at a distance less than 1% of the box size. In a
1.3 Gpc box today, this corresponded to a distance of 12 Mpc. The relative difference

point got closer to the gravitating body moving back into the matter-dominated epoch,
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towards the redshift = = 119. In the same setting, and based on the formulae
presented in [12] for the gravitational potential in the 7% topology, the impact of
periodic boundaries on the Yukawa force has been analyzed and it has been revealed
that when the ratio of the effective screening length to the dimensions of the box is

kept small-enough, effects of periodicity showed less in the calculations.

The cosmic screening approach was initially introduced in [1], where the sources of
the inhomogeneous gravitational field were considered to be discrete delta-shaped
bodies-only. In the following work [2, 3] the scheme was extended to include
perfect fluids with linear and nonlinear EoS, however, density contrasts of the latter
components were considered to be small everywhere. Within the scope of this thesis,
the Helmholtz equations for the scalar and vector potentials were revisited for the case
where energy density and pressure contrasts of nonlinear perfect fluids were allowed
to approach the order of unity 6 ~ 1, which is crucial to formulating interactions at
small distances. Consequently, a complete set of formulas has been presented in [5],
which may be employed in cosmological simulations to study a variety of models that
address the accelerated expansion of the universe, like, for instance, the Chaplygin gas

model [77, 78, 79, 80].

Finally, in the higher-dimensional setting, Yukawa corrections in nonlinear f(R)
models have been studied within the framework of KK models with spherical
compactification of the d = 2 dimensional internal space [86]. For some nonlinear
perfect fluid in the background, responsible for the curved geometry, it has been shown
that metric perturbations admitted correction terms which consisted of two summed
Yukawa potentials with characteristic ranges p{é. The point-like source perturbing the
background had zero pressure in the external space and some EoS (2 in the internal

space that was initially unspecified.

For the specific case f(R) = R+¢R?, the relationship between i 5 and the two scalar
degrees of freedom [22, 32, 33, 34, 35] inherent in multidimensional and nonlinear
f(R) models have been explored for certain limiting cases. The explicit expression
for the higher dimensional gravitational constant has been specified in terms of G
and the free parameters in the setup. Explicit forms of metric corrections have been
presented also for the degenerate case p; = po = p for the generic model f”(Ry) # 0

and a similar analysis has been performed considering the example f(R) = R + ¢ R%
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As for the models f”(R,) = 0, effects of the nonlinear background perfect fluid have
been investigated and it has been deduced that an agreement with Solar system tests
may be achieved either for large-enough values of m,,q ~ 1/b, where b is the internal
space radius and my,q s the scalar degree of freedom associated with multidimensional

models, with arbitrary €2, or for {2 = —1/2 with arbitrary m,,4.

In future work, first and foremost, it would be an interesting task to adapt the available
codes of cosmological simulations to the scheme of screening to perform various
analyses as in [88]. Then, elaborating further on the combined approach introduced
in Sect. (3), one could also extend the formulation to cover the second-order theory,
as was done for the original screening approach in [89, 90]. Spatial averages of
potential expressions presented in this thesis vanish in the first order. However, in the
second-order, nonzero average values of metric perturbations provoke backreaction
effects (see, e.g. [91, 92, 93, 94, 95]), due to which a disparity arises between
the background universe described by the FRW metric and the actual description of
spacetime and matter at the zero-th order. For that reason, it appears a particularly
nontrivial task to verify to what extent the second-order order quantities contribute
to the overall perturbative scheme and whether the formulation may be limited to
first-order in the absence of backreaction to a good approximation. Additionally,
higher-order velocity contributions could be taken into consideration in the next steps
so that the observable effects of relativistic species on the large-scale structure may be

also addressed.
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