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YÜKSEK BOYUTLU KÜTLEÇEKİM VE KOZMOLOJİ ÇERÇEVESİNDE
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Ezgi YILMAZ
(509182105)

Fizik Mühendisliği Anabilim Dalı
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Istanbul Technical University
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YUKAWA-TYPE SCREENING INHERENT IN
HIGHER DIMENSIONAL GRAVITY AND COSMOLOGY

SUMMARY

At the intersection of gravitation and cosmology, a study of the large-scale structure of
the Universe, and particularly, the search for a general relativistic scheme appropriate
for formulating structure formation at all-scales makes up the principle objective of
this thesis. Given the shortcomings of the Newtonian cosmological approximation
at large scales, it appears inconvenient to keep employing Newtonian equations
of motion in N-body codes of cosmological simulations, especially now when the
upcoming surveys are promising high-precision scans of regions ever approaching
the Hubble-scale. As the linear (relativistic) perturbation theory fails to describe
gravitational interactions in the nonlinear regime, it is quite interesting to work on
a scheme that incorporates the essential relativistic effects at large-enough regions, but
also works well below the scale of nonlinearity.

The present work initially introduces a scheme that combines the characteristics
of such an approach, namely, the cosmic screening approach towards all-scale
cosmological perturbations, with the screening of gravity emerging through a distinct
mechanism as part of the relativistic perturbation theory. Subsequently, it presents
an effective screening length (the effective interaction range of Yukawa gravity)
for gravitational interactions at cosmological scales, which matches the size of
the largest-yet-observed cosmic structure, and thereby, argues for homogeneity
and isotropy in the Universe not from few hundred megaparsecs, but from a few
gigaparsecs on. The analysis is first carried out for the flat ΛCDM model, but later
it is extended to involve curved spaces with the same energy components. The role
of peculiar velocities, which is the key element in the developed scheme, is also
investigated in detail beyond the scale of nonlinearity.

Elaborating further on Yukawa gravity in the cosmological framework, this thesis also
presents a comparison of Newtonian approximation and Yukawa behaviour in terms of
single particle gravitational force calculations performed in simulations of structure
formation. Additionally, it investigates the impacts of periodicity on the Yukawa
force to reveal the extent of deviations from the free-boundary problem. Apart from
the N-body codes, which are generally run for cubic boxes replicated periodically
in three dimensions, the motivation to study periodic boundaries also comes from
theoretical grounds, from the fact that a multiply connected Universe (contrary to what
is suggested by concordance cosmology, that is, the Universe is simply connected)
would allow for flat space shaped as a finite-size three-torus. In this connection, the
possible alternative expressions for the periodic gravitational potential and force have
recently been studied in a comparative analysis in view of computational efficiency.
With reference to the results therein, in the present work, the role of the effective
screening length in the periodic formulation is discussed extensively to reveal that
the associated effects are reduced for large-enough simulation boxes compared to the
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screening length. On the other hand, small values of the interaction range to the box
size ratio are also favoured by observational constraints on the considered topology,
which place an upper bound of the order of 10−1 on the rescaled screening length in a
cell with dimensions rescaled to unity.

Meanwhile, Yukawa potentials also emerge in higher dimensional Kaluza-Klein
theories, albeit now as correction terms in metric coefficients.

Testing the compatibility of modified theories of gravity with gravitational tests
performed in the solar system is an important part of evaluating their viability. In
this connection, this thesis includes an extensive analysis of nonlinear f(R) gravity in
higher-dimensional space with spherical compactification of extra dimensions, where
some nonlinear perfect fluid is considered to be the matter responsible for the curved
background.

First, metric corrections are derived in the weak field limit, which acquire the form
of two summed Yukawa potentials subject to constraints form the inverse-square law
experiments. Motivated by the fact that two distinct scalar degrees of freedom are
inherent in nonlinear f(R) models (the scalaron) and in multidimensional gravity (the
gravexciton/radion) separately, the relationship between these and the Yukawa masses
emergent in the obtained metric corrections for several limiting cases are investigated.
Additionally, constraints on the free parameters of the model are introduced and
the formulas relating the four- and multi-dimensional gravitational constants to one
another are presented so that an agreement with solar system experiments is reached
and that the gravitational potential asymptotically tends to the Newtonian potential.
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YÜKSEK BOYUTLU KÜTLEÇEKİM VE KOZMOLOJİ ÇERÇEVESİNDE
YUKAWA TİPİ DAVRANIŞIN İNCELENMESİ

ÖZET

Kütleçekim ve kozmolojinin kesişiminde yer alan evrenin büyük ölçekteki yapısının,
genel görelilik çerçevesinde, ufuk altı ve ufuk ötesi mesafelerde incelenmesi bu
tezin başlıca amacını oluşturmaktadır. Yapı oluşumunu modelleyen kozmolo-
jik simülasyonların birçoğu, hareket denklemlerini çözen N-parçacık kodlarında
Newton yaklaşıklığına başvurmaktadır. Ancak gözlemsel çalışmaların günümüzde
Hubble-ufkuna gittikçe yaklaşan mesafeler için gittikçe artan çözünürlükte veriler
sundukları göz önünde bulundurulduğunda, kütleçekim hesaplarında kullanılan bu
yaklaşıklık yetersiz kalır, çünkü bu formülasyon büyük ölçeklerde önem kazanan
relativistik etkileri içermez. Öte yandan, relativistik pertürbasyon teorisi de küçük
ölçeklerde, yani enerji yoğunluğundaki dalgalanmaların ortalama değere yaklaştığı
mesafelerde geçerliliğini kaybeder. Kütleçekimsel etkileşimleri modellemek için
bütün ölçeklerde etkin olan bir yaklaşım arayışı bu yönden oldukça ilginç bir problem
olarak karşımıza çıkar.

Bu çalışmada, öncelikle, Hubble ufkunun altında ve ötesinde geçerliliğini koruyan
kozmik perdeleme yaklaşımı ile relativistik pertürbasyon teorisinden türetilmiş bir
diğer kütleçekimsel perdeleme mekanizmasını harmanlayan bir yöntem sunulmaktadır.
Bu sayede, evrende gözlenmiş en büyük yapının boyutlarıyla tutarlı, Yukawa
kütleçekiminin etkin etkileşim alanına karşılık gelen bir etkin perdeleme mesafesi
türetilmiştir. Bu uzunluğun bugünkü değeri, evrenin homojen ve izotropik
yapısının alt sınırını belirleyen ve literatürde daha önceki çeşitli çalışmalarda birkaç
yüz megaparsec mertebesinde hesaplanan ölçeğin, birkaç gigaparsec mertebesinde
olabileceğine işaret etmiştir. Başlangıç olarak ΛCDM modelinin öngördüğü düz uzay
için geliştirilen model, sonrasında aynı enerji kompozisyonuyla eğri uzaylar, yani
kapalı ve açık evrenler için genelleştirilmiştir. Homojen olmayan gravitasyonel alanın
kaynağı olan parçacıkların hızlarının, söz konusu modelin önemli bir parçası olarak
büyük ölçeklerde ihmal edilemeyecekleri gösterilmiştir.

Kozmik perdeleme yaklaşımında skaler potansiyel için birinci mertebeden alan
denklemleri bir Helmholtz denklemi verir. Yeterince küçük ölçeklerde beklendiği
üzere bu denklem, Newton potansiyelinin Poisson denklemine indirgenir. Büyük
ölçeklerde ise Helmholtz denkleminin çözümü noktasal kütlelere ait Yukawa
potansiyellerinin toplamı şeklinde bulunur. Buradaki Yukawa terimleri bir eşik
uzaklığın üzerinde -ki bu da söz edilen perdeleme mesafesine karşılık gelir-
gravitasyonel potansiyelin ve bunu takiben de kuvvetin, eksponansiyel olarak
sönümlendiğine işaret eder. Alan denklemleri kullanılarak ede edilen bu sonuç, bu
çerçevede relativistik bir etki olarak yorumlanmaktadır. Kütleçekim kuvvetinin belirli
bir eşiğin üzerinde hızla etkisini kaybetmesi, kozmolojik yapılarının boyutlarına ait,
etkileşim menziliyle karakterize bir üst sınırın varlığına işaret ederek, kozmolojik
ilkenin öngördüğü, yeterince büyük ölçeklerde evrenin homojen ve izotropik olduğu

xxi



kabulünü desteklemektedir. Söz konusu yaklaşımdaki potansiyel ifadesinin bir diğer
önemli özelliği de, birinci mertebedeki metrik pertürbasyonun sağlaması beklendiği
üzere, konum üzerinden alınan ortalamasının sıfıra eşit olmasıdır.

Kozmolojik çerçevede perdeleme yaklaşımından gelen kütleçekimin Yukawa
davranışı, yine tez kapsamında tek kaynak parçacığa ait alan ve kuvvet için, yapı
oluşumu simülasyonlarıyla uyumlu bir kübik periyodik hücrede Newton yasasının
davranışıyla karşılaştırılmıştır. İlgili bağıl farkın hücrenin yüzde birinden daha
küçük bir mesafede 10−5 mertebesine geldiği, ve maddenin dominant olduğu, yapı
oluşumuyla karakterize daha erken evrelere gidildikçe aynı bağıl farkın kaynak
parçacığa daha da yaklaştığı görülmüştür.

Simülasyonlarda kullanılan N-parçacık kodlarının haricinde periyodik problem üz-
erinde çalışma motivasyonu evrenin çoklu-bağlantılı olabileceğinden de gelmektedir.
Böyle bir evrende, sonlu boyutları olan üç boyutlu bir torus da düz uzaya karşılık
gelebilir. Bu bağlamda, kozmik perdeleme yaklaşımının karakteristik denklemi olan
gravitasyonel potansiyele ait Helmholtz-denklemi literatürde kübik torus topolojisi
için çalışılmış, çözüme ait alternatif potansiyel ve potansiyelden türetilmiş kuvvet
ifadeleri, nümerik hesaplamalarda sağlayacakları performanslar bakımından incelen-
miştir. Periyodik sınır koşullarında başlangıçta simülasyon hücresinin merkezinde
bulunan kaynak parçacık için bulunan çözümler, süperpozisyon ilkesiyle hücre
içinde rastgele yerleştirilmiş parçacıklar için de genelleştirilebilmekte, bu bağlamda
da N-parçacık simülasyonlarıyla uyumlu bir formülasyona izin vermektedirler.
Karşılaştırılan ifadelerden kaynak parçacık ve periyodik görüntülerine ait Yukawa
potansiyellerinin toplamından oluşan çözüm, gözlemsel limitlerle uyumlu on ve yüz
gigaparsec mertebesindeki hücreler için en iyi sonuçları vermektedir. Kozmolojik
simülasyonlarda sıklıkla kullanılan bugün 1 gigaparsecten küçük hücrelerde ise
Yukawa potansiyellerinin Ewald toplamları şeklinde ifade edilen çözüm daha üstün
performans sergiler. Bunlar göz önünde bulundurulduğunda Yukawa kuvvetinin
etkin perdeleme mesafesinin periyodik formülasyondaki rolünü incelemek önem
kazanmaktadır. Bu tez kapsamında da periyodik sınırların Yukawa kuvveti üzerindeki
etkisi incelenmiş ve simülasyon hücresinin boyutları etkin perdeleme mesafesine
kıyasla yeterince büyük tutulduğunda, bu etkilerin zayıfladığı belirlenmiştir. Yine tek
kaynak parçacık için, periyodik sınırları olan kübik hücrede, periyodik ve serbest sınır
koşullarında hesaplanan kuvvetlere ait bağıl farkın seçilmiş bazı sabit değerlerinin,
gittikçe küçülen etkin perdeleme mesafesi için hücre içerisinde kaynak parçacıktan
uzaklaştığı gösterilmiştir.

Kozmik perdeleme yaklaşımı, başlangıçta, metrik pertürbasyonların kaynağı delta
fonksiyonlarıyla ifade edilen noktasal, relativistik olmayan kütleler olacak şekilde
ortaya atılmış, literatürdeki çeşitli çalışmalarda lineer ve lineer olmayan ideal
akışkanlar için genelleştirilmiştir. Ne var ki ikinci durumda akışkanların enerji
yoğunluğu kontrastlarının her yerde küçük olduğu kabul edilmiştir. Bu çalışmada ise
birinci-mertebede alan ve korunum denklemleri, en baştan lineer olmayan akışkanların
da yoğunluk kontrastları gelişigüzel büyüklükte değerler alabilecek şekilde yazılmış ve
skaler ve vektör potansiyelleri için Helmholtz denklemleri elde edilmiştir. İvmelenerek
genişlemeyi Chaplygin gazı gibi modellerle açıklayan çalışmalara ait kozmolojik
simülasyonlarda kullanılabilecek tam bir formül seti sunulmuştur.

Yukawa potansiyelleri yüksek boyutlu gravitasyon teorilerinde metrik pertürbasyon-
larına gelen düzeltme terimleri olarak da karşımıza çıkmaktadır. Alternatif gravitasyon
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teorilerinin Güneş sistemi testleriyle olan uyumluluğunu sınamak, geçerliliklerini
test etmede önemli bir aşama teşkil etmektedir. Bu tez kapsamında da kompakt
ekstra boyutların 2-boyutlu küre seçildiği yüksek boyutlu uzayda lineer olmayan f(R)
modelleri incelenmiştir. Arka plandaki uzayın eğriliği lineer olmayan bir ideal akışkan
ile sağlanmıştır.

Çalışılan modeldeki homojen arka plan noktasal bir kütle ile pertürbe edilmiş ve metrik
düzeltmelerin zayıf gravitasyonel alan limitinde iki Yukawa potansiyelinin toplamı
şeklinde çözümleri olduğu gösterilmiştir. Lineer olmayan f(R) modelleri ve yüksek
boyutlu kütleçekime ait iki ayrı skaler serbestlik derecesi (sırasıyla skalaron ve radyon
kütleleri) bulunduğundan bu ikisi ile metrik düzeltme terimlerindeki Yukawa kütleleri
arasındaki ilişki bazı limit durumlar için araştırılmıştır. İncelenen durumlar özelinde,
yüksek boyutlu kütleçekim sabiti için Newton kütleçekim sabiti ile modelin serbest
parametreleri cinsinden ifadeler türetilmiştir. Yukawa potansiyeli için ters kare yasası
deneylerinden gelen kısıtlamalar göz önünde bulundurularak f ′′(R0) = 0 durumunda
Güneş sistemi testleriyle uyumluluk için Yukawa kütlesi yeterince büyük olursa, ki
bu yüksek boyutla ilişkili radyon kütlesine karşılık gelmektedir, noktasal kütlenin hal
denklemindeki ek uzaya ait Ω parametresinin rastgele seçilebileceği, aksi durumda
ise, yani rastgele büyüklükteki Yukawa kütlesi için bu parametrenin Ω = −1/2 olması
gerektiği gösterilmiştir.
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1. INTRODUCTION

1.1 Introduction

In the cosmological setting and the framework of cosmic screening approach, Yukawa

behaviour comes into play as the principal form of interaction between gravitating

sources. The cosmic screening approach is originally based on the scheme of

discrete cosmology and relies on the theory of general relativity (GR) together

with the concordance (ΛCDM) model of cosmology [1]. Here, in the weak-field

limit, the sources of small metric corrections are considered to be mass density

fluctuations associated with point-like bodies. The mass density is handled in a

non-perturbative manner so that the density contrast may exceed unity in small

scales characterized by nonlinear dynamics. From the linearized Einstein equations,

one obtains a Helmholtz-type equation for the gravitational potential which admits

a solution containing summed Yukawa-terms associated with discrete particles that

represent galaxies, clusters etc. For small enough regions, the equation is reduced

to the Poisson equation for the Newtonian potential and at large cosmological scales,

gravitational interaction undergoes exponential cutoff, conveniently prohibiting further

growth of individual structures as expected in view of the cosmological principle.

As stated above, the cosmic screening approach, i.e. Yukawa-type screening of gravity

in the cosmological setting, was introduced in [1], initially within the scheme of

discrete cosmology, where sources of the inhomogeneous gravitational field were

considered as discrete delta-shaped nonrelativistic bodies. Later, it was generalized to

models containing perfect fluids [2, 3, 4, 5], to curved space [6], nonlinear f(R) gravity

[7] and the phantom braneworld model [8]). Subsequently, with particular attention

to the role of peculiar motion at large scales, it was combined with the screening

mechanism proposed in [9] within the relativistic perturbation theory, which led to

the derivation of an effective screening length [10], interpreted as the upper limit for

the possible dimensions of an individual cosmic structure. Again, the scheme was
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revisited for curved spaces [11] as well as for periodic boundaries [12, 13, 14] that are

essential to simulations of structure formation [15, 16, 17, 18].

On the other hand, higher dimensional Kaluza-Klein (KK) theories [19, 20],

investigated in their weak-field limit, exhibit the property that for nonlinear f(R)

models [21, 22, 23, 24, 25, 26] with flat background as well as for linear models

with certain curved background geometries, metric perturbations introduced by a

delta-shaped/compact gravitating source admit corrections in the form of the Yukawa

potential[27, 28, 29, 30, 31]. Though negligible at distances much larger than the

interaction range, in each case these terms reflect the additional scalar degree of

freedom inherent in the theory, through the Yukawa mass, which indeed corresponds

to the scalaron [22, 32, 33] and the radion [34, 35] mass, respectively. The additional

degree of freedom in the first type of models emerges as a characteristic feature of

f(R) gravity whereas in the latter case, it relates to variations in the internal space

volume. In all mentioned models, compactness of the d-dimensional internal space of

the background manifold M = M4×Md is required in order to recover the Newtonian

potential far enough from the massive body.

In nonlinear f(R) models, implementing the solutions for the perturbed metric

coefficients in the three-dimensional space, i.e. setting d = 0, and considering a

compact gravitating source with dust-like equation of state (EoS), it becomes possible

to place constraints on the free parameters of the model [27]. The inverse square law

(ISL) experiments set upper bounds for the Yukawa contribution to the gravitational

potential [36]; so revealing the explicit expression for such corrections in terms of

the free parameters, one may restrain their values. Straightforwardly, this allows to

compare the largest possible range of Yukawa interaction to distances relevant to the

gravitational tests in the solar system. A negligible correction term then means that

the theory, in its weak field limit, behaves in the same way as GR [37, 38, 39, 40].

On the other hand, investigating cases where d 6= 0, one considers the asymptotic

regions where the exponential function in the Yukawa term is either vanishing, or

equal to unity [28]. As is typical of an astrophysical object, the gravitating source

is assigned dust-like EoS in the three-dimensional external space and the EoS in the

internal space is constrained by imposing the requirement that in these regions, the

gravitational potential tends to the Newtonian potential.
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Linear KK models of type R × R3 × Sd, i.e. in which the internal space is described

by a d-dimensional sphere, naturally admit the presence of some background fluid,

responsible for the curved geometry of the spatial background. Introducing a source

with the properties defined in the previous case, one reveals that the gravitational

potential again acquires a Yukawa correction, subject to restrictions from the ISL

experiments [29, 31]. Then, given the form of the correction term, constraints from

experiments in the solar system may be satisfied either for a sufficiently large Yukawa

mass, or by fine-tuning of the EoS parameter of the gravitating source in the internal

space [29, 30, 31].

In the context of multidimensional KK models, the weak-field limit of linear gravity

with spherical compactification of the internal space was studied in [29, 30, 31, 41, 42].

The more general nonlinear f(R) models were investigated in [27, 28], where a flat

internal space was assumed and hence, extra dimensions were toroidally compactified

instead. For both classes of models, the linearized field equations were solved for the

perturbed metric coefficients to reveal that they admit correction terms with Yukawa

potentials. Then, viability of the models were investigated in view of experimental

constraints from tests of gravity in the solar system.

1.2 Purpose of Thesis

This thesis aims to further investigate the Yukawa behaviour of gravity both in the

higher dimensional setting and in the context of cosmological perturbations.

First, within the cosmic screening approach, the effective screening length will be

derived, and the role of peculiar velocities will be explored at scales beyond the scale of

nonlinearity. Curved spaces will also be considered for completeness. The formulation

will be generalized to the case in which metric perturbations are sourced by energy

density fluctuations of nonlinear perfect fluids that are not necessarily small. Still based

on the cosmic screening approach, gravitational interactions will be studied in the

periodic domain in view of the relationship between the extent of deviations from the

free-boundary force and the effective screening length. With respect to single particle

force calculations in cosmological simulations, Yukawa and Newtonian behaviours

will be compared in cubic boxes with periodic boundaries.
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Then, within the context of higher dimensional f(R) gravity, the KK model with

spherical compactification of the internal space and with some nonlinear prefect fluid

as the background matter will be investigated. Introducing a delta-shaped gravitating

source, perturbed metric coefficients will be studied in the weak field limit to see

whether they receive Yukawa-type corrections in such setting. Concurrently, the

viability of the model will be assessed based on the resulting form of the gravitational

potential.
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2. OVERTURE

2.1 Notation

Throughout the manuscript, the spacetime coordinates xk, k = 0, 1, 2, 3, are marked

by Latin indices (except in Chap. (7) they run from 0 to an arbitrary number D of

spatial dimensions) and spatial vectors xα are marked by Greek indices, or in certain

contexts by boldface symbols such as B or r. Partial derivatives ∂/∂ν are denoted by

∂ν . Symbols such as the prime, the dot etc. are used in different meanings is different

contexts, therefore, each time they appear in text their roles are specified explicitly.

Einstein notation with repeated indices is used for demonstrating summations of

vectors and tensors. Everywhere in the text the metric is represented by gik and the

signature is (+,−,−,−). In the context of cosmological perturbations, the metric

perturbation is denoted by δgik whereas in the last chapter, for higher dimensional

gravity, it is denoted by hik.

The speed of light c, together with constants such as the Newtonian gravitational

constant GN , are shown explicitly wherever necessary.

2.2 A Crude Review of the Relativistic Perturbation Theory

Rooted in the Copernican principle, arguing for the absence of special observes

in physics, cosmological studies conventionally rely on the hypothesis that over

large-enough distances, the universe is homogeneous and isotropic. Namely, it appears

isotropic about all points [43, 44]. This is referred to as the cosmological principle.

Though the statistical distribution of matter, i.e. of galaxies, favour a homogeneous

pattern over large- enough scales [45, 46, 47, 48], the formation of cosmic structures

themselves is associated with the growth of perturbations in the matter density, the

information of which is contained in deviations from the homogeneous background.
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Relativistic perturbation theory [49, 50] provides a solid framework for formulating

perturbations at the linear level and at large scales; however, it breaks down when

the density contrast approaches unity. Nonlinear dynamics relevant to later times are

often modelled via Newtonian simulations, albeit with the drawback that Newtonian

description of cosmological processes is insensitive to relativistic effects now.

2.2.1 The perturbed metric

In agreement with the cosmological principle, at the background level, the

geometry of the homogeneous and isotropic Universe is described by the

Friedmann-Robertson-Walker (FRW) metric

ds2 = a2
(
dη2 − δαβdxαdxβ

)
, α, β = 1, 2, 3, (2.1)

for the particular case of flat space favoured by the ΛCDM model. Above and hereafter

η represents the conformal time defined via cdt = adη (where c and t are the speed

of light and the cosmic time, respectively), a is the scale factor and xα stand for the

comoving coordinates.

Introducing small perturbations about the background metric in (2.1), so that

gik = gik + δgik, |δgik| � 1, the line element of the inhomogeneous universe, in its

most general form, may be expressed as

ds2 = a2
[
(1 + 2A) dη2 − 2Bαdx

αdη − δαβ (1 + 2C) dxαdxβ − 2hαβdx
αdxβ

]
,

(2.2)

where A (η, xα) and C (η, xα) transform as scalars, Bα (η, xα) as a 3-vector and

hαβ (η, xα) as a rank-2 tensor under

xj′ = Xj′
k x

k , Xj′
k =

[
1 0
0 Rα′

β

]
. (2.3)

Here Rα
β is the rotation matrix satisfying δαβR

α
γR

β
τ = δγτ . The coordinate

transformation described in (2.3) has the sought-for property that it preserves the

symmetries of the background, i.e. it respects the slicing of spacetime into

constant-time spacelike hypersurfaces with Euclidean metric [51].

Performing a scalar-vector-tensor decomposition, it is possible to split Bα into zero

curl and zero divergence components, that yield a scalarB and a divergence-free vector

B
(V )
α :

Bα = ∂αB +B(V )
α . (2.4)
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Similarly, the symmetric traceless tensor hαβ may be decomposed to obtain a scalar h,

a divergence-free vector h(V )
α and a symmetric traceless divergence-free tensor h(T )

αβ :

hαβ =

(
∂α∂β −

1

3
δαβ4

)
h+

1

2

(
∂αh

(V )
β + ∂βh

(V )
α

)
+ h

(T )
αβ . (2.5)

By that means, the ten degrees of freedom in δgik shows in the four scalar, four vector

and two tensor modes, which are separated into 2 physical + 2 gauge degrees of

freedom for the scalar and vector perturbations.

In the first order, scalar vector and tensor perturbations may be studied separately in

three distinct categories as the corresponding field equations are decoupled at this

level. Scalar perturbations are coupled to the energy density and pressure contrasts

through Einstein equations, and thus, structure formation in the universe is studied

with respect to the evolution of these quantities. The remaining two scalar degrees of

freedom in the perturbed energy-momentum tensor (EMT) are the velocity potential

of irrotational flow and anisotropic stress, the latter being absent for perfect fluids.

A,B,C and h, along with vector perturbations, vanish in the absence of matter. Only

tensor modes survive in vacuum and they represent gravitational waves propagating

across the homogeneous background. Vector perturbations, on the other hand, are

associated with vorticity which decays quickly over time as the universe expands.

2.2.2 Longitudinal/conformal-Newtonian gauge

Perturbations introduced in the previous section depend on the choice of coordinates.

Four of the ten degrees of freedom in δgik may be removed by gauge fixing, or by

switching to gauge-invariant formalism [52, 53, 44] as these so-called gauge degrees

of freedom merely correspond to perturbations in the coordinates with no physical

correspondence.

Under the generic coordinate transformation xk → xk′ ≡ xk + ξk (η, xν), where

ξk (η, xν) is a first-order quantity, the set of functions below, the Bardeen variables,

remain unchanged [52]:

Φ ≡ A+H (B − E ′) + (B − E ′)′ , Ψ ≡ −C −H (B − E ′) +
1

3
4E , (2.6)

ζα ≡ h′α −B(V )
α , h

(T )
αβ . (2.7)

It is clear from (2.7) that the tensor mode h(T )
αβ is already gauge-invariant.
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On super-horizon scales, working with gauge-dependent quantities appears cumber-

some as it is difficult to clarify physical interpretations of perturbation variables.

Even if the results obtained in a certain gauge may eventually be processed to meet

observable quantities, there is also the possibility that gauge modes may provoke errors

in numerical computations [54]. Nevertheless, there exists a particular gauge in which

the two scalar fields A and C coincide with the Bardeen potentials in (2.6): Φ = A and

Ψ = −C. It is the conformal-Newtonian gauge (also referred to as the longitudinal

gauge) [49], with ξ0 = −B+E ′ and ξ = E. The scalar ξ is defined via ξα ≡ ∂αξ+ξ
(V )
α .

The off-diagonal scalars B and h vanish in this case (see Eqs. (2.33)-(2.39) of [44] for

explicit expressions corresponding to the transformations of the full set of perturbation

variables).

In the sub-horizon limit, where typical velocities are much smaller than the speed

of light and general relativistic corrections are negligible (provided that the study is

confined to the weak field limit), Φ corresponds to the Newtonian potential. Moreover,

Φ and Ψ become identical to one another because the source of their difference, the

anisotropic stress associated with the cosmic neutrino and microwave backgrounds of

the early universe, becomes negligible here.

Taking into account scalar perturbations only, the line element in the

conformal-Newtonian gauge may then be written as

ds2 = a2
[
(1 + 2Φ) dη2 − δαβ (1− 2Ψ) dxαdxβ

]
. (2.8)

For an all-inclusive treatment of metric perturbations, it is possible to resort to the

Poisson gauge [54], which generalizes the longitudinal gauge by taking into account

the vector and tensor modes as well.

2.2.3 Perturbations in the matter sector

The background EMT for perfect fluids has the generic form

T
i

k = (ε+ p)uiuk − pδik , (2.9)

where the energy density ε and pressure p are functions of time only, as implied by

homogeneity. Given that ukuk = 1, the background four-velocity uk = (a, 0, 0, 0)

from (2.1) for the comoving observer.
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Introducing perturbations in the matter sector, T ik = T
i

k + δT ik, where now

T ik = (ε+ p)uiuk − pδik − Πi
k , (2.10)

and ui ≡ dxi/ds, the explicit expressions for the EMT components read

T 0
0 = ε+ δε ,

T 0
α = − (ε+ p) (ṽα +Bα) ,

Tαβ = − (p+ δp) δαβ − Πα
β , (2.11)

up to first order. Unlike the average quantities, the energy density and pressure

perturbations here, δε and δp, may depend both on time and position. The 3-vector

ṽα corresponds to the peculiar velocity (or, the coordinate velocity) defined as

ṽα ≡ dxα/dη. Similar to (2.4), a decomposition of the form ṽα = ∂αṽ+ ṽ
(V )
α allows to

introduce the velocity potential, the scalar ṽ, of the irrotational flow. As for the stress

tensor Πi
k, it is possible to set uiΠik = 0 (which implies Π0

0 = Π0
α = 0) so that the

only nonzero contribution comes from its spatial part - the traceless anisotropic stress

tensor. It may also be decomposed into scalar, vector and tensor parts like the metric

perturbation hαβ:

Παβ =

(
∂α∂β −

1

3
δαβ4

)
Π +

1

2

(
∂αΠ

(V )
β + ∂βΠ(V )

α

)
+ Π

(T )
αβ . (2.12)

It is important to note that perfect fluids do not have anisotropic stress, and thereby, no

tensor modes in the perturbed EMT.

Gauge degrees of freedom are also present in the EMT perturbations. There are

four scalars, δε, δp, ṽ, and Π, two divergence-free vectors from ṽα and Πα
β , and a

symmetric, divergence-free traceless 3-tensor from Πα
β . Again, only six are physical.

Given the way each variable transforms (see Eqs. (2.77)-(2.83) of [44] for the

complete set of corresponding formulae) under the generic infinitesimal coordinate

transformation introduced the previous section, one may obtain gauge-invariant

quantities by combining matter perturbations with one another, and as well by

combining those with metric perturbations (see Sect. (2.2.4) of [44]).

On the other hand, in the conformal-Newtonian gauge, the four scalars are

δε̂ = δε+ ε′ (B − E ′) , δp̂ = δp+ p′ (B − E ′) , v̂ = ṽ +E ′ , Π̂ = Π . (2.13)
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Despite the gauge-dependent formulation of perturbations here, the variables ε̂

and v̂, the energy density and velocity potential, respectively, acquire Newtonian

characteristics in the sub-horizon limit, where the Bardeen potential Φ also coincides

with the Newtonian gravitational potential.

All hatted quantities in (2.13) and in the rest of this chapter refer to perturbation

variables expressed in the conformal-Newtonian gauge.

2.2.4 Scalar sector field equations in the conformal-Newtonian gauge

Substituted in Einstein field equations Gi
k = κT ik (see, e.g., Chap. (3) of [55] for a full

derivation of the Einstein tensor Gi
k from the metric), Eqs. (2.1) and (2.9) yield the

Friedmann equations governing the dynamics of the background universe:

3H2

a2
= κε

2H′ = −κa
2

3
(ε+ 3p) . (2.14)

Here, as well as in the chapters that follow, H ≡ a′/a ≡ (da/dη)/a, so that

H = aH/c, where H is the Hubble constant, and κ ≡ 8πGN/c
4, where GN stands

for the Newtonian gravitational constant.

According to the ΛCDM model, the energy content of the universe today consists

mainly of vacuum energy (the cosmological constant), followed by pressureless

nonrelativistic matter in the form of cold dark matter (CDM) and baryons (the latter

roughly equals 1/5 of the CDM density). Radiation contribution is negligible. The

energy density ε and pressure p values in the above set, however, correspond to

the added contribution of all species for the moment in order to present a general

formulation of cosmic dynamics.

Going to first order and considering scalars only, δGi
k = κδT ik yields [51]

δG0
0 → 4Ψ− 3H (Ψ′ +HΦ) =

κ

2
a2δε̂ ,

δG0
α → ∂α (Ψ′ +HΦ) = −κ

2
a2 (ε+ p) ∂αv̂ ,

(Trace) δGα
β → Ψ′′ +H (Φ′ + 2Ψ′) +

(
2H′ +H2

)
Φ +

1

3
4 (Φ−Ψ)

=
κ

2
a2δp̂ . (2.15)

from (2.8) and (2.11). The traceless piece of the δGα
β equation has been omitted from

the last expression. Converted to Fourier space, it reveals the relation (Φ−Ψ) ∝ Π
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(see Sect. (10) of [51] for a detailed demonstration), which means, disregarding

anisotropic stress, the two Bardeen potentials become identical:

δG0
0 → 4Φ− 3H (Φ′ +HΦ) =

κ

2
a2δε̂ ,

δG0
α → Φ′ +HΦ = −κ

2
a2 (ε+ p) v̂ ,

(Trace) δGα
β → Φ′′ + 3HΦ′ +

(
2H′ +H2

)
Φ =

κ

2
a2δp̂ . (2.16)

Anisotropic stress is associated with free-streaming of relativistic species. Photons

decouple from the cosmic plasma (at z ∼ 1000 − 1200 [56]) already after the

matter-radiation equality (z ∼ 3400 [56]), i.e. when matter density begins to dominate,

thus neglecting their contribution here is well justified. However, it is worth noting that

neutrino decoupling takes place as early as z ∼ 6×109 [56], and one should beware of

the problematic aspects of such a simplification from neutrinos’ side, especially when

high precision is targeted in calculations. Meanwhile, gradients of the scalars in the

δG0
α equation have been replaced by these functions themselves for spatial averages of

perturbations vanish in the first-order.

2.2.5 Energy-momentum conservation

Assuming a perfect fluid and neglecting anisotropic stress in (2.11), still in the

conformal- Newtonian gauge, energy-momentum conservation equations ∇kT
k
i = 0

follow as

i = 0→ (Background) ε′ = −3H (ε+ p) ,

i = 0→ (1storder) δ̂′ =

(
1 +

p

ε

)
(3Φ′ −4v̂) + 3H

(
p

ε
δ̂ − δp̂

ε

)
,

i = α→ (1storder) v̂′ = −Hv̂
(

1− 3
p′

ε′

)
− δp̂

ε+ p
− Φ , (2.17)

with respect to the line element (2.8). The first-order continuity equation (i = 0)

is expressed in terms of the energy density contrast, defined via δ̂ ≡ δε̂/ε.

These equations also hold for each (non-interacting) species separately, once the

corresponding EoS parameter ω ≡ p/ε is substituted. The i = α component of the

conservation equation corresponds to the Euler equation.

It is worth noting that for adiabatic perturbations, the squared speed of sound

c2
s = δp/δε = p′/ε′.
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2.2.6 Evolution of perturbations and structure growth

The sets of equations (2.16) and (2.17), together with the background Friedmann

equations in (2.14), determine the evolution of perturbation variables.

When studying cosmological perturbations, horizon is defined as the time-dependent

Hubble scale, i.e. 1/H. Expressed in Fourier space, the k−modes of perturbations that

satisfy k−1 � H−1 correspond to sub-horizon scales and those for which k−1 � H−1,

correspond to super-horizon scales. In the radiation-dominated and matter-dominated

epochs,H−1 ∝ a andH−1 ∝ a1/2, respectively, and modes outside the horizon become

sub-horizon modes in time as the physical wavelengths λphys ∝ a fall behind aH−1.

Originated in the early universe, all modes of Φ and δ̂ that are outside the horizon are

frozen, that is, Φ, δ̂ = const (for ω = const).

During the radiation-dominated period, sub-horizon modes of the metric perturbation

Φ oscillate with decaying amplitude, and following the transition to the matter era,

again, they remain constant.

On the other hand, throughout the radiation era, sub-horizon modes of the radiation

density contrast δ̂r oscillate about the point δ̂r−eq = 0 with constant amplitude. At

this epoch, baryonic matter is tightly coupled to photons, and thereby, is affected by

radiation pressure that prevents gravitational collapse. In other words, perturbations

of the photon-baryon fluid oscillate inside the horizon, i.e. below the critical scale

characterized by the Jeans’ length λJ = cs
√
π/ (GNε), until matter-radiation equality

takes place at zeq = 3400. In the matter era, perturbations in δ̂r keep oscillating with

constant amplitude, only now about a shifted point δ̂r−eq. Meanwhile, the speed of

sound gets smaller to allow for the growth of perturbations and eventually, following

recombination, baryonic matter gets trapped in the potential wells of the CDM density

field. Dark matter density contrast δ̂C , which grows ∝ ln a during the radiation era,

evolves ∝ a after zeq. As fluctuations grow further to enter the nonlinear regime,

the scheme of relativistic perturbation theory breaks down. The ongoing process of

structure growth needs to be studied numerically from that point on.

An explicit mathematical demonstration of the above explained processes can be found

in various references on cosmological perturbations. Some useful lecture notes with

comprehensive narration include, e.g. [51, 56].

12



3. THE COSMIC SCREENING APPROACH

Cosmic screening approach, formulated within discrete cosmology, aims to describe

gravitational interactions at all scales, from distances relevant to nonlinear dynamics

to super-horizon cosmological scales.

The weak field limit of GR at sub-horizon scales admits Newtonian interaction

between nonrelativistic bodies. Nonlinear dynamics relevant to small distances,

where linear perturbation theory breaks down, is hence well described by the

Newtonian cosmological approximation, which is often employed in N-body codes

for modelling the growth of cosmic structures. The scheme of cosmic screening relies

entirely on non-perturbative approach to the mass density. Therefore, at sub-horizon

scales, the analytical expression for the scalar potential complies with the Newtonian

approximation. Meanwhile, it also addresses also the question of how the form of

gravitational interaction is altered at scales where the cosmological principle disfavours

structure growth.

At large-enough scales, the gravitational force of the cosmic screening approach

undergoes exponential decay. In other words, Yukawa-type screening of gravity

comes into play to restrain interactions beyond the corresponding screening length.

The underlying equations follow from GR and the ΛCDM model of cosmology,

disregarding the contribution of relativistic species. As the scheme is based on discrete

cosmology, inhomogeneous matter distribution is modelled via distinct point-like

bodies, which represent pressureless nonrelativistic matter sources such as galaxies,

groups of galaxies etc.

3.1 The Inhomogeneous Gravitational Field of Discrete Cosmology

The information of the inhomogeneous Universe, limited to the weak gravitational

field limit and in the Poisson gauge, is contained in the perturbed metric [44, 52]

ds2 = a2
[
(1 + 2Φ) dη2 + 2Bαdx

αdη − (1− 2Φ) δαβdx
αdxβ

]
(3.1)
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in the absence of anisotropic stress. Functions Φ(η, r) and Bα(η, r) (satisfying

∇B ≡ δαβ∂βBα = 0) are the first-order scalar and vector perturbations, respectively.

Investigation of tensor modes in the first-order lies beyond the scope of this approach,

hence the corresponding perturbation variable has been omitted in (3.1).

Subsequently, the linearized Einstein equations δGi
k = κδT ik read

4Φ− 3H (Φ′ +HΦ) =
1

2
κa2δT 0

0 , (3.2)

1

4
4Bα + ∂α (Φ′ +HΦ) =

1

2
κa2δT 0

α , (3.3)

Φ′′ + 3HΦ′ +
(
2H′ +H2

)
Φ = 0 , (3.4)

(∂β∂Bα + ∂α∂Bβ)′ + 2H (∂β∂Bα + ∂α∂Bβ) = 0 , (3.5)

where the fluctuations of the matter EMT δT ik ≡ T ik−T
i

k, are obtained from the tensor

components [38, 57, 58]

T ik =
∑
n

mnc
2

√
−g

dxin
dη

dxkn
dη

dη

dsn
δ (r− rn) , (3.6)

appropriate for a collection of discrete point-like nonrelativistic particles with masses

mn. In Eq. (3.6), g ≡ det[gik] and rn indicates the comoving radius vector of the n−th

particle. Metric corrections are sourced by fluctuations in the mass density δρ ≡ ρ−ρ,

treated in a nonperturbative manner. Therefore, even though the smallness of Φ and

Bα is an essential aspect, the condition |δρ| � ρ is not imposed this approach. The

rest mass density in the comoving coordinates is expressed as

ρ =
∑
n

mnδ (r− rn) =
∑
n

ρn , (3.7)

so arranging their right-hand sides (RHS) accordingly, Eqs. (3.2) and (3.3) may be cast

into a set of Helmholtz equations for Φ and Bα, that are [1]

1

4
4B− κρc2

2a
B = −κc

2

2a

(∑
n

ρnṽn −∇Ξ

)
, (3.8)

4Φ− 3κρc2

2a
Φ =

κc2

2a
δρ− 3κc2H

2a
Ξ , (3.9)

where

Ξ =
1

4π

∑
n

mn
(r− rn) ṽn
|r− rn|3

. (3.10)
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The auxiliary function Ξ, associated with the comoving peculiar velocities ṽn of the

particles, is introduced in order to facilitate the decoupling of equations for the scalar

and vector perturbations. Eqs. (3.8) and (3.9) admit the solutions [1]

B =
κc2

8πa

∑
n

[
mnṽn
|r− rn|

·
(
3 + 2

√
3qn + 4q2

n

)
exp

(
−2qn/

√
3
)
− 3

q2
n

+
mn [ṽn (r− rn)]

|r− rn|3
(r− rn) ·

9−
(
9 + 6

√
3qn + 4q2

n

)
exp

(
−2qn/

√
3
)

q2
n

]
,

(3.11)

Φ =
1

3
− κc2

8πa

∑
n

mn

|r− rn|
exp (−qn)

+
3κc2

8πa
H
∑
n

mn|ṽn (r− rn) |
|r− rn|

· 1− (1 + qn) exp (−qn)

q2
n

, (3.12)

for

qn (η, r) ≡
√

3κρc2

2a
(r− rn) , qn ≡ |qn| . (3.13)

Owing to the form of (3.6), and for the metric introduced in (3.1), energy-momentum

fluctuations to be substituted in the RHS of the linearized field equations (3.2)-(3.5),

up to first-order, have the forms

δT 0
0 =

c2

a3
δρ+

3ρc2

a3
Φ , δT 0

α = − c
2

a3

∑
n

ρnṽ
α
n +

ρc2

a3
Bα , Tαβ = 0 . (3.14)

The terms ∝ Φ,B later contribute to the left-hand side (LHS) of Eqs. (3.8) and (3.9)

for the scalar and vector potentials. In return, the solutions given in (3.11) and (3.12)

admit exponentially decaying pieces, which hint at the Yukawa behaviour of these

quantities.

The parameter qn specifies the interaction range of Yukawa gravity via [1]

qn (η, r) ≡ a (r− rn)

λ
, (3.15)

where λ ≡
√

2a3/(3κρc2) represents the time-dependent screening length in the

cosmological setting.

The Yukawa behaviour of gravitational interactions is also manifest in the equation of

motion of individual particles, which are composed entirely of exponentially decaying
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terms:

(aṽk)
′ = −a (∇Φ|r=rk +HB|r=rk)

=
∑
n6=k

−κc
2

8π

[
mn(r− rn)

|r− rn|3
(1 + qn) exp(−qn)

+ Hmn[ṽn(r− rn)]

|r− rn|3
(r− rn)

×
9 (1 + qn + q2

n/3) exp(−qn)−
(
9 + 6

√
3qn + 4q2

n

)
exp

(
−2qn/

√
3
)

q2
n

+ H mnṽn
|r− rn|

(
3 + 2

√
3qn + 4q2

n

)
exp

(
−2qn/

√
3
)
− 3(1 + qn) exp(−qn)

q2
n

]
.

(3.16)

The RHS of (3.12) is reduced to the Newtonian potential at small scales, i.e. when

qn � 1, and well describes the nonlinear dynamics relevant to structure growth at

the sub-horizon level. Beyond the interaction range, however, the gravitational force

is subject to exponential cutoff, which may be attributed to the relativistic effects

inherent in the cosmic screening approach. Suppression of gravitational interactions at

large-enough scales agrees with the cosmological principle as it implies the existence

of an upper bound for the sizes of individual cosmic structures. Based on the Planck

2015 data [59], Eq. (3.5) of [1] yields λ ≈ 3.7 Gpc today.

3.2 The Effective Screening Length

3.2.1 The scheme of linear perturbation theory

Beyond the scale of nonlinearity, i.e. at large-enough scales, cosmological

perturbations are often studied within the scope of the relativistic perturbation theory.

A similar demonstration of screening is also present therein, provided that the scalar

potential is only weakly dependent on time. This approach, i.e. cosmological screening

from linear perturbation theory, was presented in [9], where the authors obtained a

physical screening length al, interpreted in a similar way as its counterpart from the

cosmic screening approach of discrete cosmology.

Linearized Einstein equations of the relativistic perturbation theory for the FRW

spacetime and the flat ΛCDM model with solely nonrelativistic species have the form

4Φ− 3H (Φ′ +HΦ) =
1

2
κa2δε , (3.17)
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Φ′ +HΦ = −1

2
κa2εν , (3.18)

Φ′′ + 3HΦ′ +
(
2H′ +H2

)
Φ = 0 , (3.19)

which coincides with (2.16) up to p = δp̂ = 0 and v̂ → ν. The latter substitution

merely follows from notation. Throughout the large-enough spatial regions relevant to

this scheme, the energy density fluctuation δε always remains small in comparison to

the background energy density ε.

In [9], the function Φ(η, r) is decomposed as

Φ =
D1

a
φ , (3.20)

where φ = φ(r) and D1(η) is the linear growth factor with the two solutions [50]

D
(+)
1 ∝ H

a

∫
da

H3
, D

(−)
1 ∝ H

a
, (3.21)

for the growing and decaying modes, respectively. The Helmholtz equation in this

scheme, which again follows from the linearized Einstein equations, reads [9]

4Φ− 3HD
′
1

D1

Φ = −1

2
κa2δε , (3.22)

with its own comoving screening length defined as

l ≡ 1√
3H2f

, f ≡ d lnD1

d ln a
. (3.23)

It is important to note that the term (D′1/D1)Φ in Eq. (3.22) is related to the velocity

potential ν(η, r) via
D′1
D1

Φ = −1

2
κa2εν . (3.24)

3.2.2 Combining the screening mechanisms of discrete cosmology and

linear perturbation theory

The Helmholtz-type equation in (3.22) has a single source proportional to the energy

density fluctuation. Meanwhile, its counterpart from discrete cosmology has one term

proportional to the mass density fluctuation and one proportional to the function Ξ,

which is associated with peculiar velocities. Looking back at (3.9) for comparison

purposes, one realizes that the scalar potential contributes to the energy density

perturbation through the relation

δε =
c2

a3
δρ+

3ρc2

a3
Φ, (3.25)
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whereas the velocity potential, since it is no longer a source of the Helmholtz equation

(3.22), is converted to the scalar perturbation itself as explicitly shown in (3.24).

Linear perturbation theory breaks down at sub-horizon distances where density

fluctuations exceed the average value. Meanwhile, here the peculiar velocities and

hence the Ξ term of discrete cosmology become insignificant and the Helmholtz

equation (3.9) is safely reduced to the standard Poisson equation (given that, of course,

the term ∝ Φ on the LHS is also negligible). This is a key feature in accurately

describing nonlinear dynamics governing small-scale cosmological processes. Based

on this, i.e. the fact that peculiar motion is only relevant to large scales and that

the screening ranges of both approaches are both much larger than the scale of

nonlinearity (of the order of 101 Mpc today), the source term ∝ Ξ in (3.9) may be

safely re-expressed via the velocity potential of the relativistic theory, as shown in

[10], which eventually yields the novel Helmholtz equation

4Φ− a2

λ2
eff

Φ =
κc2

2a
δρ , (3.26)

where
1

λ2
eff

≡ 1

λ2
+

1

a2l2
=

3

aH

(∫
da

H3

)−1

. (3.27)

Eq. (3.26) has a single velocity-free source proportional to the mass density fluctuation,

which is analytically determined by the positions of gravitating bodies. Its exact

solution follows as [10]

Φ =
1

3

(
λeff

λ

)2

− κc2

8πa

∑
n

mn

|r− rn|
exp

(
−a|r− rn|

λeff

)
. (3.28)

The effective physical screening length λeff is calculated via the relation in (3.27),

provided that one employs the growing mode of the linear growth factor D(+)
1 in

(3.21). Using recent Planck data [60], i.e. H0 = 67.4 km s−1Mpc−1, ΩM = 0.315,

and ΩΛ = 0.685, for

H = H0

√
ΩM

(a0

a

)3

+ ΩΛ , ΩM ≡
κρc4

3H2
0a

3
0

, ΩΛ ≡
Λc2

3H2
0

, (3.29)

the effective screening length today is found to be 2.57 Gpc. As seen in Fig. (3.1), it

agrees perfectly with the size of Hercules-Corona Borealis Great Wall (Her-CrB GW),

the largest cosmic structure yet observed, with a reported size of 2 to 3 Gpc [61, 62].
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Figure 3.1 : The physical screening lengths of discrete cosmology, the relativistic
perturbation theory, and that of the combined scheme of both approaches, i.e. λ, al,

and λeff , respectively, plotted against the normalized scale factor a/a0 [10].

3.2.3 Structure growth and the effective screening length

During the matter dominated epoch, i.e. setting ΩΛ = 0 in (3.29) so that H ∝ a−3/2,

λeff =
√

2/15(c/H) appears to be smaller than both interaction ranges from combined

approaches: λeff < λ =
√

2/3(c/H) < al = 1/
√

3(c/H). Meanwhile, according to

Eqs. (35)-(37) of [10], density fluctuations in Fourier space grow proportional to

k2φk [a+ 5κρc2/(2k2)]. This relation specifies the comoving scale below which, in

the matter era, δρk grows significantly: k−1 =
√

2a/ (5κρc2) . As ak−1 = λeff , one

may deduce that the effective screening length, which indicates the Yukawa range of

the combined approach, sets an upper limit on the sizes of domains in which structure

growth takes place.

3.3 On the Importance of Peculiar Velocities in the Screening Approach

The equation of motion of the k−th particle in the system (3.16) shows that the force

per unit mass, induced by the n-th (n 6= k) particle, consists solely of terms with

exponentially decaying functions. This expression well confirms that force decreases

exponentially with distance from the gravitating source.
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Further elaborating on this formula, one may consider the possibility of neglecting

the somewhat complex velocity-dependent terms here. Indeed, in terms of the current

values of the Hubble parameter, the screening length and typical peculiar velocities,

that are H0 ≈ 70 km s−1Mpc−1 , λ0 ≈ 3.7 Gpc and (avn)0 ∼ 250−500 km s−1, where

avn = cṽn, the ratio of the overall velocity-dependent part to the single term without

ṽn, which is of the order of 3Hλavn/c
2 [10], is ∼ 2 − 4 × 10−3. Moreover, the ratio

of the velocity-dependent last term in the scalar perturbation (3.12) to the term without

ṽn always remains small within the typically used cosmological simulation boxes: it is

about 1−2% for qn ≤ 3 , which corresponds to physical distances less than or equal to

11 Gpc [1, 10, 45]. Consequently, one might come to the conclusion that it is actually

possible to lose the velocity dependence in Eqs. (3.12) (and (3.16)). It amounts to

limiting oneself to the velocity-free piece of the scalar perturbation Φ, obtained by

solving the Helmholtz equation (3.9), now without the source containing Ξ.

Nevertheless such an estimation is misleading. Neglecting the velocity dependent term

in Φ results in a faulty description of structure growth at large scales (see Sect. (3) of

[10] for a detailed discussion). Indeed, the gravitational field generated by a solitary

delta-shaped mass and that of some continuous mass distribution cannot be handled

identically. Modelling the finite-size mass overdensity as some ball of comoving radius

rb, and uniform mass density ρb, the velocity-free Helmholtz equation gives the first

piece of the potential expression labeled Φ̃b, sourced solely by the mass overdensity

[10]:

Φ̃b = −κc
2λ3

2a4

ρb − ρ
r

[arb
λ

cosh
(arb
λ

)
− sinh

(arb
λ

)]
exp

(
−ar
λ

)
. (3.30)

Only the regions outside the ball are meaningful, so the expression holds only for

distances greater than the radius of the ball - for r > rb. Considering the motion of the

ball to be along the direction of the position vector r, one obtains the second piece of

the scalar perturbation Φvb as [10]

Φvb = −3κc2Hλ5

2a6

ρbṽb
r2

×
{
−1

3

(arb
λ

)3

+
(

1 +
ar

λ

) [arb
λ

cosh
(arb
λ

)
− sinh

(arb
λ

)]
exp

(
−ar
λ

)}
,

(3.31)

sourced instead by the Ξ−term and again, valid for distances outside the mass

distribution only. The ratio of Φvb to Φ̃b is proportional to the product
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(3Hλṽb/a) (ρb/(ρb − ρ)). The previously calculated “small" prefactor, of the order

of 10−3, is compensated here by the ratio (ρb/(ρb − ρ)), which increases with the

increasing size of the ball as ρb approaches ρ for large rb. Thereby, it appears that

ignoring peculiar motion leads to an incorrect formulation of gravitational interactions

at larger distances.

3.4 Peculiar Velocity Contributions in Curved Space

In [6], the original scheme of cosmic screening [1] was revisited to study the behaviour

of the gravitational potential in curved space, i.e. in open and closed universes.

Peculiar velocities of discrete sources were entirely disregarded in the formulation.

It was revealed that in an open universe, the potential would undergo an exponential

decay with increasing distance from the source, as in flat space, though the 1/r

prefactor in the zero curvature case would be replaced by 1/ sinh l, l indicating the

geodesic distance from the location of the source. In a closed universe, the shape of

the gravitational potential would depend on the scale factor to take on different forms

with growing a - but no exponential decay in any epoch.

The Planck 2018 combined cosmic microwave background (CMB) and baryon

acoustic oscillations measurements strongly favour a flat universe [60]. However, the

combined Planck temperature and polarization power spectra data reports a mildly

closed hypersurface with ΩK = −0.044+0.018
−0.015, where ΩK indicates the spatial curvature

parameter in the homogeneous and isotropic universe. Given the ambiguity in

observational results regarding the curvature parameter, it appears to be a nontrivial

task to revisit the effective screening length, that readily incorporates the effect of

peculiar velocities, in curved space in search of a broader picture of gravitational

interactions in the cosmological setting.

3.4.1 The background for constant curvature spaces

The background FRW metric has the form

ds2 = a2(η)
[
dη2 − γαβ dxαdxβ

]
= a2(η)

[
dη2 − dχ2 − Σ2(χ) dΩ2

]
, (3.32)
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for the most general constant-curvature space, for which the function Σ(χ) is defined

as

Σ(χ) =


sinχ, χ ∈ [0, π] for K = +1

χ, χ ∈ [0,+∞) for K = 0

sinhχ, χ ∈ [0,+∞) for K = −1

(3.33)

and dΩ2 ≡ dθ2 + sin2 θdφ2. Open, flat and closed universes are represented by

K = −1, 0,+1, respectively.

From this metric, one obtains the Friedmann equation

3(H2 +K)

a2
= κε̄+ Λ , (3.34)

or, in terms of the dimensionless cosmological parameters defined in (3.29),

H = H0

√
ΩM

(a0

a

)3

+ (1− ΩM − ΩΛ)
(a0

a

)2

+ ΩΛ (3.35)

for a universe that consists of pressureless nonrelativistic matter in the presence of the

cosmological constant.

3.4.2 The scalar potential

In curved space, the expression for the comoving mass density of discrete

inhomogeneities is modified as

ρ =
1
√
γ

∑
i

mi δ(r− ri) , γ ≡ det[γαβ], (3.36)

and in the presence of these gravitating bodies, the perturbed spacetime is described

by the metric

ds2 = a2
[
(1 + 2Φ)dη2 − (1− 2Φ)γαβ dx

αdxβ
]
, (3.37)

when the vector and tensor perturbations are disregarded. Einstein equations of the

linear perturbation theory follow as [49]

4Φ− 3H (Φ′ +HΦ) + 3KΦ =
1

2
κa2δε , (3.38)

Φ′ +HΦ = −1

2
κa2εv , (3.39)

Φ′′ + 3HΦ′ +
(
2H′ +H2 −K

)
Φ = 0 , (3.40)

where the Laplace operator4 =
(
1/
√
γ
)
∂α
(√

γ γαβ∂β
)
.
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Once again, using the ansatz given by (3.20) together with the relation

δε = c2δρ/a3 + 3ρc2Φ/a3, Eq. (3.38) yields [11]

4Φ− 3

(
HD

′
1

D1

+
κρc2

2a
−K

)
Φ =

κc2

2a
δρ , (3.41)

or,

4Φ− a2

λ2
eff

Φ =
κc2

2a
δρ . (3.42)

The 1/λ2
eff term is decomposed in the same way as in (3.27), however, now the 1/l2

term is re-defined due to the additional contribution of nonzero spatial curvature:

1

l2
≡ 3HD

′
1

D1

− 3K = 3H2d lnD1

d ln a
− 3K . (3.43)

The first term on the RHS is associated with peculiar velocities of gravitating

sources and in [10], it was shown that when peculiar velocities were included in

the formulation, the cutoff range of Yukawa interactions decreased from 3.74 Gpc to

2.57 Gpc. It is seen clearly here that they have a similar impact in curved spaces

as well. However, extra curvature term itself does not significantly affect λeff . In

fact, substituting the growing solution (3.21) in (3.43), and employing the Friedmann

equation (3.34), one finds that

1

λ2
eff

=
3κρc2

2a3
+

3H
a2

[
a

H2

(∫
da

H3

)−1

+

(
a
dH
da
−H− K

H

)]

=
3

Ha2c2

(∫
da

a3H3

)−1

, (3.44)

which is identical in form to (3.27) obtained previously for K = 0.

In terms of a new parameter ν ≡ a2/λ2
eff introduced in (25) of [11], solutions of (3.42)

were also obtained for the K = −1,+1 cases:

Φ =
4πGN

c4
ελ2

eff −
GN
c2a

∑
i

mi

sinh li
exp

(
−
√
ν + 1li

)
, K = −1 , (3.45)

and

Φ =
4πGN

c4
ελ2

eff −
GN
c2a

∑
i

mi

sinh
[√
ν − 1(π − li)

]
sinh

(√
ν − 1π

)
sin li

, K = +1 , (3.46)

where li specifies the geodesic distance between the test point and the i−th particle

with mass mi .

In [6], for K = +1, three different expressions were obtained for the gravitational

potential for growing a, which brought along the requirement that these solutions be
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connected smoothly to one another. In [11], taking into account peculiar velocities,

and thereby, adopting a more complete approach, it has been shown that there exists a

single expression for the potential Φ in a closed universe for all the values of a relevant

to structure growth.
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4. GRAVITATIONAL POTENTIAL AND FORCE IN PERIODIC
BOUNDARIES

The theory of GR does not specify whether the space is flat, open or closed.

Neither does it favour a simply connected universe over a multiply connected one.

Indeed, certain features of CMB temperature patterns are studied broadly in search of

topologies other than that of the infinite simply-connected universe with flat spatial

geometry [63, 64, 65, 66, 67, 68], as is the predicted shape of the universe in

concordance cosmology. In a multiply connected universe, negative and zero curvature

spaces could have finite volume. The cubic toroidal topology sets an interesting

example for this for the zero-curvature case, given that it would be possible to

relate the quadrupole moment suppression at large angular scale CMB observations

to the existence of sufficiently compact spaces with dimensions of the same order of

magnitude [69, 70].

On the other hand, fully periodic boundaries are essential to the N-body codes to

properly simulate the infinite universe of the ΛCDM model. Conventionally, these

codes make use of cubic domains replicated along three dimensions while solving for

the gravitational force [15, 16, 17, 18].

Based on such motivations, the Helmholtz equation in (3.26) was revisited in [12] and

it was solved for the periodic potential for the cubic toroidal topology. The resulting

alternative expressions (together with the expressions for the gravitational force) were

then studied in view of numerical efficiency.

4.1 Helmholtz Equation in the Fully Periodic Cubic Domain

Re-expressing the Helmholtz equation (3.26) in terms of the shifted potential Φ̂,

defined as [12]

Φ̂ ≡ Φ− λ2
eff

κc2

2a3
ρ̄ , (4.1)

one obtains

∆Φ̂− a2

λ2
eff

Φ̂ =
κc2

2a
ρ . (4.2)
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Now, the source on the RHS is the mass density instead of the mass density fluctuation

δρ, and thereby, from the superposition principle, the solution for this equation for a

single particle at x = y = z = 0 may be generalized to express the potential due to a

collection of randomly positioned point sources as well.

For the cubic torus topology T × T × T , and placing a single delta-shaped mass at the

origin, one way to express the solution of (4.2) is to add the Yukawa potentials sourced

by the original mass and its infinitely many periodic images, that is [12]

Φ̃exp ≡
(
−GNm

c2al

)−1

Φ̂exp

=
+∞∑

k1=−∞

+∞∑
k2=−∞

+∞∑
k3=−∞

1√
(x̃− k1)2 + (ỹ − k2)2 + (z̃ − k3)2

× exp

(
−
√

(x̃− k1)2 + (ỹ − k2)2 + (z̃ − k3)2

λ̃eff

)
. (4.3)

Alternatively, Ewald summations may be employed so that the Yukawa potentials in

periodic boundaries can be formulated as two distinct series in real and Fourier spaces

with good convergence properties [12]

Φ̃mix ≡
(
−GNm

c2al

)−1

Φ̂mix

=
+∞∑

k1=−∞

+∞∑
k2=−∞

+∞∑
k3=−∞

D
(√

(x̃− k1)2 + (ỹ − k2)2 + (z̃ − k3)2;α; λ̃eff

)
2
√

(x̃− k1)2 + (ỹ − k2)2 + (z̃ − k3)2

+ 4π cos [2π (k1x̃+ k2ỹ + k3z̃)]
exp

[
−
(

4π2k2 + λ̃−2
eff

)
/ (4α2)

]
4π2k2 + λ̃−2

eff

 , (4.4)

where k2 ≡ k2
1 + k2

2 + k2
3 , and

D
(√

(x̃− k1)2 + (ỹ − k2)2 + (z̃ − k3)2;α; λ̃eff

)
≡ exp

(√
(x̃− k1)2 + (ỹ − k2)2 + (z̃ − k3)2

λ̃eff

)

× erfc

(
α
√

(x̃− k1)2 + (ỹ − k2)2 + (z̃ − k3)2 +
1

2αλ̃eff

)
+ exp

(
−
√

(x̃− k1)2 + (ỹ − k2)2 + (z̃ − k3)2

λ̃eff

)

× erfc

(
α
√

(x̃− k1)2 + (ỹ − k2)2 + (z̃ − k3)2 − 1

2αλ̃eff

)
. (4.5)

The rescaled quantities with tilde are defined via x̃l = x, ỹl = y, z̃l = z and

alλ̃eff = λeff , where a and l are the scale factor and the period of the cubic torus,
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respectively. In (4.5), erfc denotes the complementary error function [71] and the

α-parameter of Ewald formulation, when assigned an optimal value, allows for rapid

convergence and good precision at low computational cost. For the range of λ̃eff studied

in [12], this optimal value was found to be 2.

N-body simulations based on the Newtonian approximation usually resort to this

formulation [72, 73] because using Ewald sums, the force series with bad convergence

becomes manageable in numerical calculations. Ewald sums are also encountered in

studies investigating electrostatic interactions characterized by the Yukawa law, and

within such context, the fully periodic Yukawa-Ewald potential was derived previously

in [74].

4.1.1 Comparing the two formulas

Owing to periodicity, both expressions (4.3) and (4.4) include infinite series. In order

to numerically determine Φ̃ at a given point to good accuracy and with minimum

computational effort, it is important to know which of these formulas require the

least number n of summands in the series. In [12], such a comparison was performed

based on the numbers nexp and nmix, and it was revealed that for λ̃eff � 1, both the

Yukawa (4.3) and Yukawa-Ewald (4.4) formulas required the same number of image

contributions to reach the targeted accuracy at points (x̃, ỹ, z̃) of interest. However,

given the much simpler form of (4.3), it was concluded that this formula would be

more preferable for computational purposes. Meanwhile, when λ̃eff ≥ 1, it was

the Yukawa-Ewald potential (4.4) that provided the best results, especially after λ̃eff

exceeded the box size.

It is worth highlighting that the potential expressions presented above are both sensitive

to λ̃eff . As previously indicated, this quantity is defined as λ̃eff = λeff/(al). Currently,

λeff ∼ 2.6 Gpc according to the concordance model [10], and the dimensions al for

the studied T 3 geometry are bounded from below by Planck 2015 results by ∼ 27 Gpc

[75], which brings along the constraint λ̃eff � 1 for a physically relevant analysis.

However, most N-body simulations are run in cells with dimensions smaller than

1 Gpc, therefore, for completeness, the cases where λ̃eff ≥ 1 have also been considered

in the work [12].
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Performing a similar comparison with respect to numbers n for the x−components of

the gravitational forces ∂x̃Φ̃cos, ∂x̃Φ̃exp and ∂x̃Φ̃mix, same ranking of performances was

observed as that of gravitational potentials [12]. The Yukawa force was a better choice

in view of its plainness because the numbers nexp and nmix remained the same up to

λ̃eff = 0.1. The Yukawa-Ewald formula has a rather complex structure and thus, in

general, more computation time is required to numerically calculate the force in this

case.

4.1.2 Remarks on the relation between periodic formulation and the Yukawa

range

In the above formulation, periodicity manifests itself in the contribution of replicated

images of the gravitating source. It is quantified by the numbers n calculated for

the potential and force formulas. In [12], it was pointed out that particularly for

the Yukawa-type solutions, the number nexp decreased for smaller values of the ratio

λeff/(al). In other words, using boxes that are large-enough compared to the screening

length, impacts of periodicity will show less in the potential (and thereby, force)

calculations.

Assuming an infinite universe, periodic boundaries turn out to be merely artificial

adjustments in N-body codes. From that perspective, employing the Yukawa law in the

equations of motion solved in these codes as well as using a large-enough simulation

box, one may better describe the interactions in the actual physical setting, i.e. the

infinite space which also agrees with the ΛCDM model.

4.2 Comparison of Yukawa and Newtonian Laws of Gravitation in Cubic

Domain with Periodic Boundaries

With the intention of introducing Yukawa gravity in future simulations of structure

formation as an alternative to the Newtonian approximation, the distances at which the

Yukawa and Newtonian gravitational forces began to diverge from one another were

investigated lately in the work [76]. Fully periodic boundaries in a cubic domain were

assumed to mimic the typical structure of most of the available simulation codes.
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For a single particle in a cubic box with three-dimensional periodicity, x−component

of the rescaled Yukawa-Ewald force F̃YE, derived from (4.4), reads

F̃YE ≡
∂Φ̃YE

∂x̃
= −1

2

+∞∑
k1=−∞

+∞∑
k2=−∞

+∞∑
k3=−∞

[
(x̃− k1)

×
D
(√

(x̃− k1)2 + (ỹ − k2)2 + (z̃ − k3)2;α; λ̃eff

)
[(x̃− k1)2 + (ỹ − k2)2 + (z̃ − k3)2]3/2

+
x̃− k1

(x̃− k1)2 + (ỹ − k2)2 + (z̃ − k3)2

× C− exp

(
−
√

(x̃− k1)2 + (ỹ − k2)2 + (z̃ − k3)2

λ̃eff

)
+

x̃− k1

(x̃− k1)2 + (ỹ − k2)2 + (z̃ − k3)2

× C+ exp

(√
(x̃− k1)2 + (ỹ − k2)2 + (z̃ − k3)2

λ̃eff

)

+ 16π2k1 sin [2π (k1x̃+ k2ỹ + k3z̃)]
exp

[
−
(

4π2k2 + λ̃−2
eff

)
/ (4α2)

]
4π2k2 + λ̃−2

eff

 , (4.6)

where,

C∓ = C∓

(√
(x̃− k1)2 + (ỹ − k2)2 + (z̃ − k3)2;α; λ̃eff

)
≡ 2α√

π
exp

[
−
(
α
√

(x̃− k1)2 + (ỹ − k2)2 + (z̃ − k3)2 ∓ 1

2αλ̃eff

)2
]

± 1

λ̃eff

erfc

(
α
√

(x̃− k1)2 + (ỹ − k2)2 + (z̃ − k3)2 ∓ 1

2αλ̃eff

)
. (4.7)

On the other hand, its Newtonian counterpart which is already used in N-body codes,

has the form [72, 73]

F̃NE ≡
∂Φ̃NE

∂x̃
=

−
+∞∑

k1=−∞

+∞∑
k2=−∞

+∞∑
k3=−∞

[
(x̃− k1)

erfc
(
α
√

(x̃− k1)2 + (ỹ − k2)2 + (z̃ − k3)2
)

[(x̃− k1)2 + (ỹ − k2)2 + (z̃ − k3)2]3/2

+
2α√
π

x̃− k1

(x̃− k1)2 + (ỹ − k2)2 + (z̃ − k3)2

× exp
[
−α2

(
(x̃− k1)2 + (ỹ − k2)2 + (z̃ − k3)2

)] ]
− 2

+∞∑
q1=−∞

+∞∑
q2=−∞

+∞∑
q3=−∞

q 6=0

q1 sin [2π (q1x̃+ q2ỹ + q3z̃)]
exp (−π2q2/α2)

q2
,

q2 ≡ q2
1 + q2

2 + q2
3 . (4.8)
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For free boundaries, the two forces are

F̃Y ≡
∂Φ̃Y

∂x̃
= −

[
x̃

(x̃2 + ỹ2 + z̃2)3/2
+

x̃/λ̃eff

x̃2 + ỹ2 + z̃2

]
exp

(
−
√
x̃2 + ỹ2 + z̃2

λ̃eff

)
,

(4.9)

F̃N ≡
∂Φ̃N

∂x̃
= − x̃

(x̃2 + ỹ2 + z̃2)3/2
, (4.10)

again, for the single mass located at the origin. The rescaled quantities with tilde are

defined in the same way as those introduced in Sect. (4.1). Here also, for simplicity,

calculations are restricted to the the x−components of the force expressions only.

In Fig. (4.1), plain and periodic Yukawa and Newtonian force curves are plotted

simultaneously against the distance x̃ from the source for four different values of the

rescaled screening length. In Figs. (5.1a) and (5.1b), where λ̃eff � 1, two sets of

curves that belong to different laws remain well separated from one another, excluding

the region that marks the immediate neighbourhood of the source and near x̃ = 0.5,

where both periodic forces tend to zero. Periodic forces do not differ much from

the free-boundary forces of the same law throughout. Meanwhile, in Figs. (5.1c) and

(5.1d), i.e. for larger λ̃eff , the Yukawa-Ewald and Newton-Ewald curves coincide (or,

differ very slightly), and so do the non-periodic Yukawa and Newtonian curves, and

now it is the periodic and plain forces sets that are separated.

For small values of the effective screening length, which is the parameter specifying

the range of the exponentially decaying Yukawa force, behaviours of Yukawa and

Newtonian forces begin to differ at small scales (of course, with respect to the box

size) as expected. In this case, periodicity does not have a significant impact on the

behaviour of the Yukawa force as it decays very fast to join the Yukawa-Ewald curve,

which goes to zero moving towards the edge of the box (x̃ = 0.5), irrespective of

how large/small λ̃eff is. However, when λ̃eff is comparable to the box size, in the

free-boundary case, the larger screening length prevents rapid decay within the range

of interest and periodicity requires otherwise. Consequently, the plain and and periodic

forces differ from one another. For the same reason, Yukawa and Newtonian curves

behave similarly even about x̃ = 0.5, i.e. the edge of the box, which is a small enough

distance compared to the cutoff scale now.
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Figure 4.1 : x-components of the plain and periodic gravitational forces F̃ ≡ ∂Φ̃/∂x̃
on the y = z = 0 line for (a) λ̃eff = 0.1, (b) λ̃eff = 1, (c) λ̃eff = 1 and (d) λ̃eff = 2 [76].

Introducing the relative difference |(F̃YE − F̃NE)/F̃YE|, it was shown in [76] that,

for instance, when λ̃eff is set to 0.1, the 1% difference is encountered slightly past

x̃ = 0.01 (as demonstrated in Fig. (5.2a)) and for smaller values of the screening

length, it appears even closer to the gravitating body. In a box with a physical

size of a0l = 1.3 Gpc today (at z = 0), λ̃eff should be set to 2 according to

λeff = (a/a0)(a0l)λ̃eff , given that λeff ∼ 2.6 Gpc today [10]. In such configuration,

the 1% difference takes place at x ∼ 530 Mpc and going down to 0.001%, the distance

gets as small as x ∼ 12 Mpc, which corresponds to the point x̃ = 0.00898 on the

y−axis in Fig (5.2b). Earlier in [15], the error associated with the plain Newtonian

and Newton-Ewald forces was studied to reveal the impact of periodicity involved in

cosmological simulations. It was shown that 0.001% error appeared at about x = 0.01l.

In [76], with respect to Yukawa and Newtonian laws of gravity in periodic boundaries,

the same percent difference was found at a distance less than 1% of the box size

(12 Mpc away from the source in a 1.3 Gpc box), highlighting the somewhat stronger

discrepancy between the two forces. Moreover, the difference grew stronger looking

back into the matter-dominated era: at z = 119, which is the leftmost point on the
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x−axis of Fig. (5.2b), at λ̃eff = 0.2, location of the 1% difference is found to be

x̃ = 0.000896, i.e. ∼ 9.71× 10−3Mpc in a ∼ 10.8 Mpc simulation box.
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Figure 4.2 : (a) Relative difference calculated with respect to the x-components of
the Yukawa-Ewald and Newton-Ewald forces for λ̃eff = 0.1 on the ỹ = z̃ = 0 line.

From left to right, the two dots mark the positions of the 1% (x̃ = 0.0148) and
10% (x̃ = 0.0504) differences, respectively. (b) Locations of four percent differences

in the box plotted as functions of λ̃eff for the F̃YE vs. F̃NE forces on the ỹ = z̃ = 0
line. Moving downwards from the 1% difference, the curves lie between the points

0.0297–0.408 (1%), 0.00909–0.0938 (0.1%), 0.00284–0.0287 (0.01%),
0.000896–0.00898 (0.001%) on the y−axis. [76]

It is worth noting that larger percent differences like the 1% curve in Fig. (5.2b), which

appear rather far from the gravitating body, do not count as viable illustrations of the

actual physical setting. Forces here are calculated for a single particle in the box, so

naturally, the forces due to neighbouring particles in the real universe do not show in

the differences. Moving away from the source, larger percent differences do appear in

the current analysis, however, in a muti-particle setup, the force at those points would

be sourced dominantly by the neighbouring particles instead, and the force associated

with the particle at the origin would be negligible in the first place.

4.2.1 Effect of periodic boundaries on the Yukawa force - revisited

As mentioned earlier, for the concordance cosmological model, periodic boundary

conditions result in artificial effects unsupported by theory. It this connection, it

appears interesting to see the extent of their influence on force calculations. The

relative difference |(F̃YE − F̃Y)/F̃YE| is illustrated in Figs. (5.3a) and (5.3b), both

of which clearly show that contrary to the previous analysis on periodic forces, the

fixed percent differences move away from the body for smaller λ̃eff . The results

32



also support the conclusions of Sect. (4.1.2), which indicate that using large-enough

boxes (which make λ̃eff smaller) and employing Yukawa gravity in cosmological

simulations, impacts of periodicity may be weakened. Table (4.1) provides yet

another demonstration of the relationship between the relative difference and the

rescaled effective screening length, zooming into four points in the box that are

x̃ = 0.005, 0.01, 0.02 and 0.2.
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Figure 4.3 : (a) Relative difference calculated with respect to the x-components of
the Yukawa-Ewald and Yukawa forces for λ̃eff = 1, 2 on the ỹ = z̃ = 0 line. (b)

Locations of four percent differences in the box plotted as functions of λ̃eff for the
F̃YE vs. F̃Y forces on the ỹ = z̃ = 0 line. Moving downwards from the 1% difference,

the curves lie between the points 0.222–0.133 (1%), 0.123–0.0628 (0.1%),
0.0611–0.0292 (0.01%), 0.0289–0.0136 (0.001%) on the y−axis. [76]

Table 4.1 : Relative difference with respect to the free-boundary (4.9) and periodic
Yukawa forces (4.6) at four points in the box when λ̃eff = 0.05 (left chart), 0.1

(middle chart) and 1 (right chart).

λ̃eff = 0.005 λ̃eff = 0.1 λ̃eff = 1

x̃ |(F̃YE − F̃Y)/F̃YE| x̃ |(F̃YE − F̃Y)/F̃YE| x̃ |(F̃YE − F̃Y)/F̃YE|
0.005 2.069× 10−13 0.005 1.163× 10−9 0.005 4.416× 10−7

0.01 1.692× 10−12 0.01 9.357× 10−9 0.01 3.534× 10−6

0.02 1.453× 10−11 0.02 7.644× 10−8 0.02 2.830× 10−5

0.2 1.296× 10−6 0.2 4.335× 10−4 0.2 0.0327
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5. COSMIC SCREENING APPROACH GENERALIZED TO
CONTINUOUS MATTER SOURCES

In the presence of an additional perfect fluid with the EMT

T ik = (ε+ p)
dxi

ds

dxk

ds
− pgik , (5.1)

the linearized Einstein equations (3.2)-(3.5) take on the form [2, 3]

4Φ− 3H (Φ′ +HΦ) =
1

2
κa2

(
c2

a3
δρ+

3ρc2

a3
Φ + δε

)
, (5.2)

1

4
4Bα +

∂

∂xα
(Φ′ +HΦ)

=
1

2
κa2

(
− c

2

a3

∑
n

ρnṽ
α
n +

ρc2

a3
Bα − (ε+ p) ṽα + (ε+ p)Bα

)
, (5.3)

Φ′′ + 3HΦ′ +
(
2H′ +H2

)
Φ =

1

2
κa2δp , (5.4)(

∂Bβ

∂xα

)′
+ 2H

(
∂Bα

∂xβ
+
∂Bβ

∂xα

)
= 0 , (5.5)

given, again, the metric (3.1). In the earlier work [3], ε was separated into two

components, εI and εJ , which represented continuous perfect fluids characterized by

linear and nonlinear EoS, respectively. Indeed, arbitrary number of such components

were allowed, only with the condition that energy density and pressure contrasts

of nonlinear perfect fluid(s) were small everywhere: δεJ/εJ , δpJ/pJ � 1. On

the other hand, just like the point-like pressureless matter, the energy density εI

and pressure pI of the ωI = const 6= 0 components admitted fluctuations of arbitrary

magnitude, in agreement with the general scheme of the cosmic screening approach.

Peculiar velocities contribute to metric perturbations only through the terms ∝ ρṽαn ,

∝ εṽα and ∝ pṽα , i.e. when combined with the mass density, energy density

and pressure, hence such products appear automatically as first order quantities. In

this connection, replacements such as εṽα → εṽα were omitted contrary to the

indispensable substitutions of the form ρ, ε, p × Φ, Bα → ρ, ε, p × Φ, Bα. Situation

was, of course, different for the “J"-components with respect to the terms with peculiar

velocities: products such as εJ ṽαJ , pJ ṽ
α
J were replaced by εJ ṽαJ , pJ ṽ

α
J .
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In the case of a linear perfect fluid, the energy density was decomposed as [3]

εI =
AI

a3(1+ωI)
+ 3 (1 + ωI) εIΦ =

AI
a3(1+ωI)

+
δAI

a3(1+ωI)
+

3(1 + ωI)AI
a3(1+ωI)

Φ , (5.6)

so that

εI =
AI

a3(1+ωI)
, δεI =

δAI
a3(1+ωI)

+
3(1 + ωI)AI
a3(1+ωI)

Φ , (5.7)

for AI = const and AI = AI + δAI . Additionally, regarding the “J"-component, it

was assumed that

δεJ = εJδJ + 3 (εJ + pJ) Φ . (5.8)

The function δJ satisfies (2.22) of [3], which follows from the conservation equation

of the corresponding fluid in the first-order approximation (given by (2.18) therein).

Using (5.7) and (5.8), Eqs. (5.2) and (5.3) may be rearranged to yield

4Φ− a2

[
3κρc2

2a3
+

3κ

2

∑
I

(1 + ωI)AI
a3(1+ωI)

+
3κ

2

∑
J

(εJ + pJ)

]
Φ

=
κc2

2a
δρ+

κa2

2

∑
I

δAI
a3(1+ωI)

+
κa2

2

∑
J

εJδJ

−3κc2H
2a

Ξ− 3Hκ
2

∑
I

1 + ωI
a1+3ωI

ξI −
3Hκa2

2

∑
J

(εJ + pJ) ζJ (5.9)

for ε→
∑

I εI +
∑

J εJ , p→
∑

I pI +
∑

J pJ above and hereafter, and

1

4
4B− a2

3

[
3κρc2

2a3
+

3κ

2

∑
I

(1 + ωI)AI
a3(1+ωI)

+
3κ

2

∑
J

(εJ + pJ)

]
B

= −κc
2

2a

(∑
n

ρnṽn −∇Ξ

)
− κ

2

∑
I

1 + ωI
a1+3ωI

(AI ṽI −∇ξI)

−κa
2

2

∑
J

(εJ + pJ) (ṽJ −∇ζJ) . (5.10)

Functions ξI and ζI are defined via the relations [3]

AṽI = ∇ξI + (AI ṽI −∇ξI) , ∇ (AI ṽI) = 4ξI , (5.11)

ṽJ = ∇ζJ + (ṽJ −∇ζJ) , ∇ṽJ = 4ζJ . (5.12)

Above expressions are obtained by decomposing the velocity-dependent terms into

zero-grad and zero-curl pieces. The function ξI is interpreted as the effective velocity

potential of the “I”−component, just like the function Ξ defined in (3.10) for

point-like nonrelativistic particles and ζJ are the velocity potentials of nonlinear perfect

fluids.
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For Φ = ΦM +
∑

I ΦI +
∑

J ΦJ , and B = BM +
∑

I BI +
∑

J BJ , both (5.9) and

(5.10) may be expressed as sets of separate equations for individual components, that

are

4ΦM −
a2

λ2
ΦM =

κc2

2a
δρ− 3κc2H

2a
Ξ , (5.13)

4ΦI −
a2

λ2
ΦI =

κa2

2

δAI
a3(1+ωI)

− 3Hκ
2

1 + ωI
a1+3ωI

ξI , (5.14)

4ΦJ −
a2

λ2
ΦJ =

κa2

2
εJδJ −

3Hκa2

2
(εJ + pJ) ζJ , (5.15)

and
1

4
4BM −

a2

3λ2
BM = −κc

2

2a

(∑
n

ρnṽn −∇Ξ

)
, (5.16)

1

4
4BI −

a2

3λ2
BI = −κ

2

1 + ωI
a1+3ωI

(AI ṽI −∇ξI) , (5.17)

1

4
4BJ −

a2

3λ2
BJ = −κa

2

2
(εJ + pJ) (ṽJ −∇ζJ) . (5.18)

Naturally, with the addition of extra components in the form of linear and nonlinear

perfect fluids, the original screening length introduced in Sect. (3.1) is re-defined and

now admits two additional terms for each type of the new components [3]:

λ =

[
3κρc2

2a3
+

3κ

2

∑
I

(1 + ωI)AI
a3(1+ωI)

+
3κ

2

∑
J

(εJ + pJ)

]−1/2

. (5.19)

The potentials ΦM ,BM , ΦI ,BI and ΦJ ,BJ , then, correspond to perturbations sourced

by pressureless matter composed of discrete sources (CDM in the form of galaxies,

clusters etc.) and by perfect fluids with linear and nonlinear EoS (which may be

attributed to the dark energy), respectively.

5.1 Nonlinear Perfect Fluids with Arbitrarily Large Density Contrasts

To enhance the compatibility of the cosmic screening approach with a wider class of

models that address the late acceleration of the universe, such as the Chaplygin gas

model [77, 78, 79, 80], the set of equations for the scalar and vector potentials were

re-considered for nonlinear perfect fluids in the work [5], now for the more general

case of arbitrarily large density contrasts.

Herein, the relation pJ = f(εJ) no longer holds as density and pressure fluctuations

are not treated as small quantities. Upon introducing a new function FJ = F J + δFJ ,

37



the energy density of the nonlinear perfect fluid was expressed in [5] as

εJ = FJ + 3 (εJ + pJ) Φ , (5.20)

so that for |Φ| � 1,

εJ = FJ + 3 [FJ + fJ(FJ)] Φ , (5.21)

pJ = fJ(FJ) + 3
∂fJ
∂εJ

∣∣∣∣
εJ=FJ

[FJ + fJ(FJ)] Φ . (5.22)

Substituting the above set into the conservation equation ((A.20) in [3]) and

rearranging the resulting terms, the following equations were obtained in the

background and first order, respectively:

FJ
′
+ 3H

(
FJ + fJ(FJ)

)
= 0 , (5.23)

δFJ
′ + 3H (δFJ + δfJ) +∇ [(FJ + fJ(FJ)) ṽJ ] = 0 . (5.24)

In deriving (5.24), certain estimations were taken into consideration such as

ΦδεJ/εJ ∼ ṽ2 [81], c2
s = δpJ/δεJ ∼ ∂fJ/∂εJ . 1, δεJ/εJ ∼ δfJ/fJ , δfJB � fJ ṽJ

as well as Φ ∼ B ∼ ṽ ∼ ε� 1 at large scales and Φ ∼ ε, B ∼ ṽΦ in small spatial

regions. Moreover, the function fJ has been decomposed as fJ(FJ) = fJ(FJ) + δfJ .

On the other hand, based on (5.21), the density fluctuation for such component reads

δεJ = εJ − εJ = δFJ + 3
(
F J + fJ(FJ)

)
Φ . (5.25)

Instead of Eq. (5.12) of the previous section, the ṽαJ terms were spit into transverse and

longitudinal pieces in the form [5]

(FJ + fJ(FJ)) ṽJ = ∇ζ2J + [(FJ + fJ(FJ)) ṽJ −∇ζ2J ] ,

∇ [(FJ + fJ(FJ)) ṽJ ] = 4ζ2J , (5.26)

where ζ2J has no analytical solution (neither does ξI of (5.11)), but to be treated

numerically. Now, according to (5.21), (5.22), (5.25) and (5.1), the Helmholtz

equations (5.15) and (5.18) are replaced by the set

4ΦJ −
a2

λ2
ΦJ =

κa2

2
δFJ −

3Hκa2

2
ζ2J , (5.27)

1

4
4BJ −

a2

3λ2
BJ = −κa

2

2
[(FJ + fJ(FJ)) ṽJ −∇ζ2J ] , (5.28)
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where

λ ≡
[

3κ

2

(
F J + fJ(FJ)

)]−1/2

(5.29)

for a single-component universe. Above equations apply to the general-most case as

they are compatible with any p = f(ε), which also involves the class of linear perfect

fluids with density contrasts of arbitrary magnitude. It is important to note that even

though they lack analytical solutions, these equations, together with (5.23), (5.24),

the background Friedmann equation (i.e. (1) of [5] for the considered component(s))

and the momentum conservation equation ((34) of [5]), serve as a complete set of

ready-to-use formulas to be employed in numerical simulations.
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6. MULTIDIMENSIONAL f(R) GRAVITY IN THE WEAK-FIELD LIMIT
OF KALUZA-KLEIN MODELS

Einstein field equations for f(R) gravity in D = 1 + D ≥ 4 dimensional spacetime

have the form [21, 22, 23]

f ′(R)Rik −
1

2
f(R)gik − [f ′(R)];i;k + gik [f ′(R)];m;n g

mn =
2SDG̃D
c4

Tik ,

i, k = 0, 1, ..., D , (6.1)

where D is the number of spatial dimensions and the total solid angle

SD = 2πD/2/Γ(D/2). G̃D represents the D-dimensional gravitational constant,
′ ≡ d/dR for R = Rikg

ik and the semicolon indicates covariant derivatives with

respect to coefficients gik of the metric

ds2 = g00

(
dx0
)2

+ 2g0αdx
0dxa + gαβdx

αdxβ , α, β = 1, 2, ..., D . (6.2)

In the absence of background matter, the unperturbed spacetime with d-dimensional

internal compact space has a flat metric and may be assigned a topology R×R3 × T d

[27, 28, 37, 82, 83, 84]. A curved background geometry, on the other hand, is possible

when there is matter present and in the (D = 3 + d)-dimensional KK models with

spherical compactification of the internal space, it admits a topology R × R3 × Sd

[29, 30, 31, 41, 42]. For static background metrics, as in the current configuration,

g
(0)
0α = 0 so in the latter case, the EMT of the background matter reads

(
T ik
)(0)

= diag

ε,−p0,−p0,−p0,−p1, ...,−p1︸ ︷︷ ︸
d−times

 . (6.3)

The overline as well as zero superscripts indicate background quantities. Employing

(6.1) at the background level, one obtains ω0 ≡ p0/ε = −1 and the parameter ω1 ≡

p1/ε of the internal space may be determined once the form of f(R) is specified.

Introducing a static point-like mass induces slight perturbations in the background

metric so that the coefficients in (6.2) take on the form gik ≈ g
(0)
ik + hik, where hik

stand for small corrections of the order 1/c2. From this point on, the first-order metric
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corrections will be denoted by A1, B1 and G1 and the number of extra dimensions will

be limited to two for simpler demonstration:

ds2 =
(
1 + A1

)
c2dt2 − (1−B1)

3∑
α=1

(dxα)2 −
(
1−G1

) (
dξ2 + dζ2

)
(6.4)

on the product manifold M = R× R3 × T 2 and

ds2 =
(
1 + A1

)
c2dt2 − (1−B1)

3∑
α=1

(dxα)2 −
(
b2 −G1

) (
dξ2 + sin2 ξdζ2

)
(6.5)

on M = R × R3 × S2. The constant b denotes the radius of the sphere describing

internal space. As will be presented explicitly below, the pressure associated with

this massive body is isotropic in each of the individual factor manifolds. Therefore,

the block-diagonal form of the background metric tensor is unaltered by perturbations

[41] in (6.4) and (6.5), where h11 = h22 = h33 = B1 and h44 = h55 = G1.

Provided that the gravitating source is uniformly smeared over the extra dimensions,

its mass density reads ρ̂(r3) = mδ(r3)/Vint (ensuring gik = gik (r3), r3 = |r3| =√
(x1)2 + (x2)2 + (x3)2 for spherically symmetric perturbations with respect to the

external space [85]). In the flat background, internal space volume Vint = Π2
i=1bi,

where bi are periods of the tori and as for the compactification on S2, Vint = 4πb2,

which corresponds to the surface area of the 2-sphere. In the external space, the source

obeys a dust-like EoS, as is typical of astrophysical objects with weak gravitational

fields. The EoS parameter in the internal space remains unspecified, so one treats the

corresponding parameter Ω as a free parameter of the model. The nonzero components

of the EMT are, then, approximated as

T̂ 0
0 ≈ ρ̂c2 , T̂ µν ≈ −δµνΩρ̂c2 , µ, ν = 4, 5 (6.6)

within the adopted accuracy.

Taking into consideration the fluctuations of the scalar curvature R, which may be

decomposed in terms of the background contribution and the first order correction,

respectively, as R = R0 +R1, the function f(R) is Taylor- expanded about R0:

f(R) = f(R0) + f ′(R0)R1 +O
(
R2

1

)
,

f ′(R) = f ′(R0) + f ′′(R0)R1 +O
(
R2

1

)
. (6.7)

The LHS of the field equations (6.1) are then determined in the first-order using (6.4)

(or (6.5)) together with (6.7). Eventually, these equations are to be solved for the metric
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perturbations A1, B1 and G1. The first-order contribution to the RHS of (6.1) comes

not only from (6.6), but also from the nonzero elements of the perturbed background

EMT - of course, only when the model includes background matter - that are

δT 0
0 ≈ δε , δTαβ ≈ −δp0δ

α
β , δT µν ≈ −δp1δ

µ
ν . (6.8)

Through (6.8), the model admits two more free parameters ω0 ≡ δp0/δε and

ω1 ≡ δp1/δε.

The first coefficient A1 represents the gravitational potential, therefore it is natural

to expect that in the limit (r3 → ∞), it would take on the Newtonian form,

i.e. A1(r3 →∞) = −2GNm/(c
2r3). This condition defines the relation between

constants G̃D and GN in terms of the free parameters.

In comparison to (6.4) and (6.5), the form the static, spherically symmetric metric

[39, 40]

ds2 =

(
1− 2GNm

c2r

)
c2dt2 −

(
1 + γ

2GNm

c2r

) 3∑
i=1

(
dxi
)2 (6.9)

in PPN formalism implies γ = B1/A1. To achieve good agreement with observational

constraints from solar system tests of gravity, this ratio should be equal to one as in

GR. Such requirement serves as a tool to determine the viable combinations of the free

parameters which appear in the expressions for B1 and A1.

Evidently, the scheme applies also to the study of linear models (which correspond

to the particular case of f ′′(R) = 0) and one may as well investigate a more general

model in which the extra dimensions consist of multiple product spaces.

6.1 The d = 2 Case in the Presence of a Nonlinear Background Fluid

Assuming a perfect fluid in the background, with the EMT in (6.3) for d = 2, and thus

for the metric (6.5), linearized field equations from (6.1) may be cast into the form

00− f ′(R0)

2

(
∆3A

1 −R1

)
− (∆3R1) f ′′(R0) = κ

(
δε+ ρ̂c2

)
, (6.10)

αα− f ′(R0)

2

(
∆3B

1 +R1

)
+ (∆3R1) f ′′(R0) = κδp0 , (6.11)
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µµ− f ′(R0)

2

(
∆3

2G1

b2
+ 2R1

)
+ f ′′(R0)

2R1

b2
+ 2 (∆3R1) f ′′(R0)

= −f ′(R0)
2G1

b4
+ 2κ

(
δp1 + Ωρ̂c2

)
, (6.12)

αβ− 1

2
f ′(R0)

(
−A1 +B1 + 2

G1

b2

)
− f ′′(R0)R1 = 0 (6.13)

upon introducing a point mass with the previously discussed properties (up to the

replacement r3 → r for notation-wise consistency with the work [86]). Of course,

it has been taken into consideration that metric perturbations and the scalar curvature

all tend to zero as r →∞.

A useful expression may be obtained by combining the equations in the set above, that

is

5f ′′(R0)(∆3R1) + 2f ′(R0)R1 +
2

b2
f ′′(R0)R1

= −f ′(R0)
2G1

b4
+ κ

[
−δε+ δp0 + 2δp1 − ρ̂c2(1− 2Ω)

]
. (6.14)

The trace of (6.1) for this configuration follows as

− 2f ′(R0)R1 + f ′′(R0) (R0R1 − 5∆3R1)

= κ
[
δε− 3δp0 − 2δp1 + ρ̂c2(1− 2Ω)

]
, (6.15)

which, when combined with (6.14), provides an expression that relates δp0 of the

perfect fluid to the metric coefficient G1:

δp0 = −f
′(R0)

κb4
G1 . (6.16)

In the external and internal spaces, the squared speed of sound for the perfect fluid are

defined via δp0 = ω0δε and δp1 = ω1δε, respectively, so that (6.16) also implies

δε = −f
′(R0)

κb4

1

ω0

G1 , δp1 = −f
′(R0)

κb4

ω1

ω0

G1 , ω0 6= 0 . (6.17)

Substituting (6.16) and (6.17) in Eqs. (6.10)-(6.12), one obtains the set of master

equations

f ′(R0)

2
∆3B

1 +
f ′(R0)

2
R1 + f ′′(R0)∆3R1 +

f ′(R0)

b4
G=0 , (6.18)

f ′(R0)

2
∆3A

1 − f ′(R0)

2
R1 − f ′′(R0)∆3R1 +

f ′(R0)

b4

1

ω0

G1 = κρ̂c2 , (6.19)

f ′(R0)

2b2
∆3G

1 +
f ′(R0)

2
R1 +

f ′′(R0)

b2
R1

+f ′′(R0)∆3R1 +
f ′(R0)

b4

(
1 +

ω1

ω0

)
G1 = κΩρ̂c2 , (6.20)
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which, together with Eq. (6.13) is to be solved for the metric coefficients A1, B1, G1

and the curvature perturbation R1 (see Sect. (2) of [86] for an explicit derivation of

Eqs. (6.10)-(6.13) and (6.15)).

The perfect fluid responsible for the curved background geometry is chosen to be

nonlinear, which means, ω0 6= ω0 and ω1 6= ω1. At this point, it is also worth

noting that the equations derived in this section require f ′(R0) 6= 0. To avoid the

ghost graviton, negative values of this function should also be eliminated so that the

constraint becomes f ′(R0) > 0.

6.1.1 Solutions for the perturbation variables

It has been shown in [86] that the solutions for the generic setup f ′′(R0) 6= 0, ω0 6= 0

need to be worked out for two distinct cases, that is, when the Yukawa masses µ1 and

µ2 are different from one another and when the solutions admit a single Yukawa mass.

For the former, the analytical solutions have been found as

A1(r) =

√
π

2

1

r
[β3 + β1A exp (−µ1r) + β2A exp (−µ2r)] , (6.21)

B1(r) =

√
π

2

1

r
[β3 + β1B exp (−µ1r) + β2B exp (−µ2r)] , (6.22)

G1(r) =

√
π

2

1

r
[β1G exp (−µ1r) + β2G exp (−µ2r)] , (6.23)

R1(r) =

√
π

2

1

r
[β1R exp (−µ1r) + β2R exp (−µ2r)] , (6.24)

where the parameters βX are given by (37), (38), (40), (41) and (45) of [86] and

µ1,2 =
1√
5

1

b

[
−b2 f

′(R0)

f ′′(R0)
− (1 + 3ω0 + 3ω1)

ω0

∓ 1

f ′′(R0)ω0

[
b4f ′2(R0)ω2

0 + b2f ′(R0)f ′′(R0)(−3 + ω0 − 4ω1)ω0

+ f ′′2(R0)
(
19ω2

0 + 2ω0(−2 + 9ω1) + (1 + 3ω1)2)]1/2]1/2

. (6.25)

From (6.21) and (6.22), one immediately sees that A1(r → ∞) = B1(r → ∞). The

corresponding expression is given by [86]

A1(r →∞) = − 2

c2

1

4π

SDG̃D
Vint

m

r

× 2f ′(R0)b2 [Ω(1 + ω0)− ω1] + 4f ′′(R0)ω0

f ′(R0) [2f ′′(R0)(ω0 − 1)− b2f ′(R0)(1 + ω0 + 2ω1)]
.

(6.26)
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As the metric perturbation A1 represents the gravitational potential [38], it is natural

to expect that A1(r → ∞) = −2GNm/c
2r, which helps in determining the relation

between G̃D and the Newtonian gravitational constant GN :

SDG̃D
Vint

2f ′(R0)b2 [Ω(1 + ω0)− ω1] + 4f ′′(R0)ω0

f ′(R0) [2f ′′(R0)(ω0 − 1)− b2f ′(R0)(1 + ω0 + 2ω1)]
= 4πGN . (6.27)

6.1.2 The f(R) = R + ξR2 example for µ1 6= µ2

For the particular example f(R) = R + ξR2, the previously introduced constraint

f ′(R0) > 0 requires b2 > 4ξ. Considering the case |ξ| ∼ b2, it has been found that the

masses µ1, µ2, which have the general form

µ1,2 =
1√
10

1

b

[
−b

2

ξ
− 2(1 + ω0 + 3ω1)

ω0

∓ 1

ξω0

[
b4ω2

0 − 2b2ξ(3 + 3ω0 + 4ω1)ω0

+ 4ξ2
(
21ω2

0 + ω0(2 + 26ω1) + (1 + 3ω1)2)]1/2 ]1/2

, (6.28)

become ∼ 1/b provided that ω0, ω1 ∼ O(1). The scalaron [27] and radion masses are

also ∼ 1/b for |ξ| ∼ b2:

mrad ∼ 1/b , (6.29)

mscal =
1√
5

(
−2f ′(R0)

f ′′(R0)
+R0

)1/2

=
1√
5|ξ|

(
2|ξ|
b2
− |ξ|

ξ

)1/2

. (6.30)

Same relations hold when |ξ| � b2 (and ω0, ω1 ∼ O(1)), for which the full form of

Yukawa masses read [86]

µ1,2 ≈
1√
5

1

b

×
[
−(1 + ω0 + 3ω1)

ω0

∓ |ξ|
ξ

1

ω0

[
21ω2

0 + (2 + 26ω1)ω0 + (1 + 3ω1)2
]1/2]1/2

.

(6.31)

On the other hand, in the limit |ξ| � b2, mscal ∼ (−1/ξ)1/2 for ξ < 0, and [86]

µ1,2 ≈
1√
10

1

b

[
−b

2

ξ
∓ |ω0|

ω0

b2

ξ

(
1− ξ

b2

3 + 3ω0 + 4ω1

ω0

)]1/2

. (6.32)

Proceeding with the negative values of the parameter ω0, (6.32) yields

µ1 ≈
1√
10

1

b

(
−3 + 3ω0 + 4ω1

ω0

)1/2

∼ 1

b
∼ mrad , (6.33)

µ2 ≈
1√
5

1

b

(
−b

2

ξ

)1/2

=
1√
5|ξ|
≈ mscal (6.34)
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As follows from the above set as well as the condition
√
|ξ| � b, the exponential

terms ∝ exp(−µ2r) in (6.21)-(6.24) may be dropped and left with a single Yukawa

term, one may employ the results of ISL experiments to estimate a lower limit for µ1

(under, of course, some assumptions on the orders of the free parameters contained in

the coefficient β1A of (6.21)).

Now, from µ1(b→∞) = 0, and µ2(b→∞) = mscal =
√
−1/(5ξ), one obtains [86]

A1(r) =

√
π

2

1

r
κ′
[
−2Ω + 3

2
+

(2Ω− 1)

10
exp (−µ2r)

]
, (6.35)

B1(r) =

√
π

2

1

r
κ′
[

2Ω− 1

2
+

(1− 2Ω)

10
exp (−µ2r)

]
, (6.36)

which straightforwardly show that in order to restore A1(r →∞) = B1(r →∞), one

should set Ω = −1/2, and thereby, SDG̃D/Vint = 4πGN .

6.1.3 f(R) = R + ξR2 revisited for the degenerate case

When there is a single Yukawa mass, i.e. for µ1 = µ2 = µ in (42) of [86], instead of

the set (6.21)-(6.24), one obtains

A1(r) =

√
π

2

1

r

[
γ3 +

(
γ1A +

r

2µ
γ2A

)
exp (−µr)

]
, (6.37)

B1(r) =

√
π

2

1

r

[
γ3 +

(
γ1B +

r

2µ
γ2B

)
exp (−µr)

]
, (6.38)

G1(r) =

√
π

2

1

r

(
γ1G +

r

2µ
γ2G

)
exp (−µr) , (6.39)

R1(r) =

√
π

2

1

r

(
γ1R +

r

2µ
γ2R

)
exp (−µr) , (6.40)

where the coefficients γX in (6.37)-(6.40) are given by (75) of [86], and

µ =

√
α5

2α4

=

√
−1

5

(
f ′(R0)

f ′′(R0)
+

(1 + 3ω0 + 3ω1)

b2ω0

)
. (6.41)

Substituting f(R) = R + ξR2, the Yukawa mass becomes

µ =
1√
|ξ|

(
−|ξ|
b2

1 + ω0 + 3ω1

5ω0

− 1

10

|ξ|
ξ

)1/2

. (6.42)

Re-considering the limiting cases in the previous section, one finds the relations

µ ≈ 1

b

(
1 + ω0 + 3ω1

−5ω0

)1/2

∼ mscal ∼ mrad ∼
1

b
, (6.43)
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mscal ∼ 1/
√
|ξ|, ξ < 0 , µ ≈

√
1

10|ξ|
∼ mscal , (6.44)

for |ξ| � b2 and |ξ| � b2, respectively.

6.1.4 The cases with f ′′(R0 = 0), ω0 6= 0 and the linear model f(R) = R + 2κΛ6

Imposing f ′(R0) 6= 0, metric perturbations for models with f ′′(R0 = 0), ω0 6= 0 take

on the form

A1(r) =

√
π

2

1

r

[
α3

α6

+

(
α2A

α5

− α3

α6

)
exp (−µr)

]
, (6.45)

B1(r) =

√
π

2

1

r

[
α3

α6

+

(
α2B

α5

− α3

α6

)
exp (−µr)

]
, (6.46)

G1(r) =

√
π

2

1

r

[(
α2G

α5

)
exp (−µr)

]
, (6.47)

R1(r) = (2π)3/2δ(r)
α1R

α5

+

√
π

2

1

r

[(
α2R

α5

− α1R

α5

· α6

α5

)
exp (−µr)

]
. (6.48)

Specifying the value of the non-vanishing first derivative, i.e., setting f ′(R0) = 1, one

may perform a more detailed analysis on a specific group of models which also include

f(R) = R + 2κΛ6. In this case, the above set becomes

A1(r) =

√
π

2

1

r
κ′
{

2 [Ω(1 + ω0)− ω1]

(1 + ω0 + 2ω1)
−
[

3 + 2Ω

2
+

2 [Ω(1 + ω0)− ω1]

(1 + ω0 + 2ω1)

]

× exp

−√−1

2

(1 + ω0 + 2ω1)

ω0

r

b

 , (6.49)

B1(r) =

√
π

2

1

r
κ′
{

2 [Ω(1 + ω0)− ω1]

(1 + ω0 + 2ω1)
−
[

1− 2Ω

2
+

2 [Ω(1 + ω0)− ω1]

(1 + ω0 + 2ω1)

]

× exp

−√−1

2

(1 + ω0 + 2ω1)

ω0

r

b

 , (6.50)

G1(r) = −
√
π

2

1

r
κ′b2

(
1

2
+ Ω

)
exp

−√−1

2

(1 + ω0 + 2ω1)

ω0

r

b

 , (6.51)

R1(r) = −κ′(2π)3/2δ(r)

(
1

2
− Ω

)

+

√
π

2

1

r
κ′

(2ω1 + 3ω0 − 1)(1 + 2Ω)

4b2ω0

exp

−√−1

2

(1 + ω0 + 2ω1)

ω0

r

b

 . (6.52)
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For ω0 = ω0 = −1, ω1 = ω1 = Λ6/[1/(κb
2) − Λ6], one exactly recovers

f(R) = R + 2κΛ6, and now A1(r →∞) = B1(r →∞) indicates

SDG̃D
Vint

2 [−Ω(1 + ω0) + ω1]

(1 + ω0 + 2ω1)
=
SDG̃D
Vint

= 4πGN . (6.53)

For the form of A1 in (6.49), ISL experiments set an upper bound of ∼ 10−3 cm for

the internal space radius provided that ω0 = −1 and that one makes the reasonable

assumption |Ω|, ω1 ∼ O(1). This shows that at distances comparable to the radius of

the Sun, which is ∼ 1010 cm, the Yukawa contribution may be neglected safely.

Meanwhile, the particular EoS Ω = −1/2 (accompanied by the condition ω0 6= 0 and

taking into consideration (6.53)) yieldsA1(r) = B1(r) = −2GNm/c
2r, as the Yukawa

corrections vanish immediately owing to zero prefactors.
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7. CONCLUSIONS

In this thesis, an extensive study on gravitational interactions has been presented in

the cosmological setting and within the framework of the cosmic screening approach

[1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14], which provides a general relativistic formulation

for all-scale cosmological perturbations.

First, Helmholtz equations of discrete cosmology and relativistic perturbation theory

for the scalar potential have been combined to obtain the effective screening length

[10], which corresponds to the cutoff range of Yukawa-type interactions, equal to

2.57 Gpc today for the ΛCDM model. The novel Helmholtz equation is reduced to

the Poisson equation at small-enough scales, incorporates the contribution of peculiar

velocities essential to large-scale dynamics, and via the effective screening length,

introduces an upper bound for dimensions of distinct cosmic structures. Unlike the

previously suggested values for the scale of homogeneity of the order of few hundred

Mpc (e.g, as in [87]), the 2.57 Gpc interaction range coincides with the size of the

largest cosmic structure observed, Her-CrB GW, with reported dimensions of 2−3 Gpc

[61, 62]. This supports the argument that the effective screening length of combined

approaches defines the bounds of the domain in which structures may grow.

Later on, the novel approach has been adapted to spaces with nonzero curvature [11],

and analytical expressions for the scalar potential have been obtained for open and

closed universes together with the formula for the effective screening length, which

was identical in form to its counterpart in the flat universe [10].

A comparison of the free-boundary and periodic Newtonian forces was performed

previously in [15] to mark the distances at which a notable deviation took place in

the box from the gravitating source. In [76], Yukawa and Newtonian forces have

been studied for a single particle in the cubic periodic domain to reveal that a relative

difference of 0.001% already took place at a distance less than 1% of the box size. In a

1.3 Gpc box today, this corresponded to a distance of 12 Mpc. The relative difference

point got closer to the gravitating body moving back into the matter-dominated epoch,
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towards the redshift z = 119. In the same setting, and based on the formulae

presented in [12] for the gravitational potential in the T 3 topology, the impact of

periodic boundaries on the Yukawa force has been analyzed and it has been revealed

that when the ratio of the effective screening length to the dimensions of the box is

kept small-enough, effects of periodicity showed less in the calculations.

The cosmic screening approach was initially introduced in [1], where the sources of

the inhomogeneous gravitational field were considered to be discrete delta-shaped

bodies-only. In the following work [2, 3] the scheme was extended to include

perfect fluids with linear and nonlinear EoS, however, density contrasts of the latter

components were considered to be small everywhere. Within the scope of this thesis,

the Helmholtz equations for the scalar and vector potentials were revisited for the case

where energy density and pressure contrasts of nonlinear perfect fluids were allowed

to approach the order of unity δ ∼ 1, which is crucial to formulating interactions at

small distances. Consequently, a complete set of formulas has been presented in [5],

which may be employed in cosmological simulations to study a variety of models that

address the accelerated expansion of the universe, like, for instance, the Chaplygin gas

model [77, 78, 79, 80].

Finally, in the higher-dimensional setting, Yukawa corrections in nonlinear f(R)

models have been studied within the framework of KK models with spherical

compactification of the d = 2 dimensional internal space [86]. For some nonlinear

perfect fluid in the background, responsible for the curved geometry, it has been shown

that metric perturbations admitted correction terms which consisted of two summed

Yukawa potentials with characteristic ranges µ−1
1,2. The point-like source perturbing the

background had zero pressure in the external space and some EoS Ω in the internal

space that was initially unspecified.

For the specific case f(R) = R+ξR2, the relationship between µ1,2 and the two scalar

degrees of freedom [22, 32, 33, 34, 35] inherent in multidimensional and nonlinear

f(R) models have been explored for certain limiting cases. The explicit expression

for the higher dimensional gravitational constant has been specified in terms of GN

and the free parameters in the setup. Explicit forms of metric corrections have been

presented also for the degenerate case µ1 = µ2 = µ for the generic model f ′′(R0) 6= 0

and a similar analysis has been performed considering the example f(R) = R + ξR2.

52



As for the models f ′′(R0) = 0, effects of the nonlinear background perfect fluid have

been investigated and it has been deduced that an agreement with Solar system tests

may be achieved either for large-enough values of mrad ∼ 1/b, where b is the internal

space radius andmrad is the scalar degree of freedom associated with multidimensional

models, with arbitrary Ω, or for Ω = −1/2 with arbitrary mrad.

In future work, first and foremost, it would be an interesting task to adapt the available

codes of cosmological simulations to the scheme of screening to perform various

analyses as in [88]. Then, elaborating further on the combined approach introduced

in Sect. (3), one could also extend the formulation to cover the second-order theory,

as was done for the original screening approach in [89, 90]. Spatial averages of

potential expressions presented in this thesis vanish in the first order. However, in the

second-order, nonzero average values of metric perturbations provoke backreaction

effects (see, e.g. [91, 92, 93, 94, 95]), due to which a disparity arises between

the background universe described by the FRW metric and the actual description of

spacetime and matter at the zero-th order. For that reason, it appears a particularly

nontrivial task to verify to what extent the second-order order quantities contribute

to the overall perturbative scheme and whether the formulation may be limited to

first-order in the absence of backreaction to a good approximation. Additionally,

higher-order velocity contributions could be taken into consideration in the next steps

so that the observable effects of relativistic species on the large-scale structure may be

also addressed.
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