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ONSOZ

Klasik Fourier Harmonik Analizinin ve onun uygulamalarinin ¢ok 6nemli tek-
nik aracglarindan biri Bessel potansiyelleridir. Bessel potansiyelleri, / birim operator ve
A Laplace diferansiyel operatorii olmak iizere, (I — A) diferansiyel operatoriiniin ne-
gatif "kesirsel" kuvvetleri olarak yorumlanan, konvolusyon tipli integral operatorlerdir.
Laplace-Bessel singiiler diferansiyel operatorii ile ilintili olan Fourier-Bessel Harmonik
Analizinin temel teknik araclarindan biri, Klasik Fourier Harmonik Analizinde oldugu
gibi, genellesmis kaymanin (Bessel kaymasinin) dogurdugu Bessel potansiyelleridir.

Bu calismada, genellesmis kaymanin dogurdugu Bessel ve Flett potansiyellerinin
her ikisini de genelleyen ve iki parametreye bagl olan potansiyel tipli integral operatorler
ailesi tanimlanarak, 6zel bir yarigrubun dogurdugu dalgacik (wavelet) tipli bir doniisiim
yardimiyla, s6z konusu potansiyel tipli integral operatorlerin tersleri bulunmustur.

Bu calisma boyunca bilgisini ve zamanin1 benimle paylasan, destegini esirgeme-
yen danismanim Sayn Prof. Dr. ilham ALIYEV e tesekkiirlerimi sunarim.
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GIRIS Sinem YUCEL

1. GIRIS

Harmonik Analizin fikir ve yontemleri, cagdas matematigin bir¢ok dallarinda kul-
lanim alan1 buldugu gibi, fizik ve miihendisli8in de ¢esitli alanlarinda uygulanmakta-
dir. Temelinde klasik Fourier Analizi yatan ¢agdas Harmonik Analizin gelistirdigi teknik
araglar icerisinde Fourier serileri, Fourier doniistimleri, potansiyel tipli integral operator-
ler, singiiler integraller, maksimal operatorler, ¢esitli fonksiyonel uzaylar v.b. 6nemli rol
oynamaktadir.

Bazi iinlii diferansiyel operatorlerin negatif kesirsel kuvvetleri olarak yorumlanan
potansiyel tipli operatorler i¢inde en iinliileri Bessel potansiyelleri, Riesz potansiyelleri,
parabolik Bessel potansiyelleri ve parabolik Riesz potansiyelleri olarak bilinmektedir.
Klasik Bessel potansiyelleri Fourier doniisiimii dilinde,

o
2

(S°)" (z) = (1 + |3:]2) P(x), (z € R", 0 < a < o0)

n
esitligi ile tanimlanmakta ve [ birim operator, A = > 88722 Laplace diferansiyel operatorii
k=1 "k

olmak iizere, (I — A) operatoriiniin (—%) kuvveti olarak yorumlanmaktadir. Bu potansi-
yeller, Sobolev uzaylar1 ve bagka fonksiyonel uzaylarin incelenmesinde ve genellestiril-
mesinde 6nemli rol oynamaktadir. Oklid kaymasinin dogurdugu girisim tipli integral ope-
rator seklinde ifade edilebilen Bessel potansiyellerinin bir 6nemli versiyonu da, Laplace-
Bessel diferansiyel operatorii ile ilintili olan Fourier-Bessel Harmonik Analizinde ortaya
cikar. Bu Harmonik Analizde, Oklid kaymasinin (6telemesinin) yerini genellesmis kayma
operatorii ve Fourier doniisiimiiniin de yerini Fourier-Bessel doniisiimii diye adlandirilan
doniistim almaktadir. Boylece, F,, Fourier-Bessel doniisiimii ve

"L 92 0% 2w 0
Ap = —+ B, | By, ==—+———,v>0,2, >0
b ; ox2 B ( " Ox2 * 0 Oz v )

Laplace-Bessel diferansiyel operatorii olmak iizere, genellesmis kaymanin dogurdugu
Bessel potansiyelleri

B (9°F) () = (1+ |21°) 2 B(f)@) = (T — Ap) % f(x)

esitligi ile tanimlaniyor. Bu potansiyel tipli operatorlerin cesitli 6zellikleri ve terslerinin
bulunmasi ile ilgili problemler, Gadjiev ve Aliev|(1988bjal), Aliev ve Eryigit (2002), Aliev
vd (2008) ve bagka makalelerde incelenmistir (Asagida, Boliimde, hem klasik Bessel
potansiyelleri ve hem de Laplace-Bessel diferansiyel operatoriiniin dogurdugu Bessel tipli
potansiyeller ve onlarin ¢esitli genellesmeleri ile ilgili ayrintili bilgi veriyoruz).

Bu tez calismasinda, genellesmis kaymanin dogurdugu Bessel potansiyelleri ve
Flett potansiyellerinin her ikisini de genellestiren ve formal olarak,

_a
B

(1+(=a0%) 7w

F(33¢) © = (14 1) Re)©
1



GIRIS Sinem YUCEL

seklinde tanimlanan, iki parametreye bagh 3 operatorleri ailesi ele alinarak incelenmis-
tir.

Tez, Giris dahil, yedi boliimden ibarettir. Ikinci boliimde, Klasik Fourier Harmonik
Analizinde temel kavram ve bilgiler verilmistir. Uciincii ve dérdiincii boliimlerde, Fourier-
Bessel Harmonik Analizinin bazi1 temel kavram ve teoremleri, sirasiyla, tek degiskenli ve
cok degiskenli durumlarda verilmistir. Besinci boliimde, Klasik Harmonik Analizdeki ve
genellesmis kaymanin dogurdugu Harmonik Analizdeki potansiyeller ve onlarin cesitli
genellestirilmis versiyonlar: tanitilarak, onlarla ilgili bilgiler kronolojik olarak verilmis-
tir. Tezin esas boliimlerinden biri olan altinci boliimde, genellesmis kaymanin dogurdugu
bir yarigrup (beta-yarigrup), bu yarigrubun dogurdugu bir dalgacik (wavelet) tipli do-
niisiim ve iki parametreye bagli Bessel tipli potansiyel operatorleri tanimlanmistir. Yine,
tezin esas boliimlerinden biri olan yedinci boliimde, bir 6nceki boliimde tanimlanmis olan
dalgacik tipli doniisiim yardimiyla, iki parametreye bagli Bessel tipli potansiyellerin ters-
leri bulunmustur. Yedinci boliimiin sonunda dalgacik tipli doniisiimiin tanimlanmasinda
onemli rol oynayan dalgacik tipli dl¢iime, ¢esitli ornekler verilmistir.



KURAMSAL BILGILER VE KAYNAK TARAMASI Sinem YUCEL

2. KURAMSAL BILGILER VE KAYNAK TARAMASI

Bu boliimde, Fourier Harmonik ve Fourier-Bessel Harmonik Analizinin bazi temel
kavram ve teoremlerine yer verilecektir.

2.1. Fourier Harmonik Analizinin Bazi1 Temel Kavram Ve Teoremleri

Oncelikle ¢cok boyutlu Oklid uzayinin ve onun bir alt kiimesinin tanimin1 hatirla-
talim:

R" = {x: x = (21,29, ..., T,), x lar reel sayilardir};
R? = {z: 2 € R" ve 2, > 0}.

R™’de kayma (6teleme) operatoriinii 7¥ ile gosterelim:
f : R™ — C bir n degigkenli fonksiyon olmak iizere,

T4f(x) = f(xz +y), (x,y € R").

R™de olgiilebilir fonksiyonlarin klasik Lebesgue uzayi soyle tanimlanir: 1 < p < o0
olmak tizere,

L, = L,(R")

= < fefll, = /|f(x)|p dr | < ooy, (de=dz;....dx,) 2.1

Benzer sekilde, R” *da 6l¢iilebilir fonksiyonlarin agirlikli Lebesgue uzaymm sdyle tanim-
layalim: 0 < v < co ve 1 < p < oo olmak lizere,

1

Ly = LB = 1 Sl = | [1f@Pa¥in| <ocb. @2
iy

C(R™) ile R™de siirekli ve sinirli fonksiyonlar uzayin1 gosterelim. Bilindigi gibi, f €

C(R™) olmak iizere, f ’in normu sdyle tanimlanur: || f|| = max |f(2)]-
TER™

Co(R™) ile C(R™)’nin agagidaki alt uzayini gosterelim:

CO(]R”):{f: feC®) ve lim f@):o},

|x|—o00

(Burada, |z| = (2 + 22 4 .... + 22)2 Oklid normudur).
3



KURAMSAL BIiLGILER VE KAYNAK TARAMASI Sinem YUCEL

Benzer sekilde, C'(R? ) ile R’ de siirekli ve sinirli fonksiyonlar uzayimi ve Cy(R"} )

ile de, C'(R"}) uzaymin ‘ l‘im f(z) = 0 saglanan alt uzayini gosterelim.
T|—00

C*>* = C*(RR") ile R™de her mertebeden kismi tiirevlere sahip fonksiyonlar uza-
ymi ve S = S(R") ile de asagidaki Schwarz test fonksiyonlar1 uzayini gosterelim:

xa%f(x)‘ < OO},

z€R™

S = {f : f e C®(R") ve Vo € Z7 igin sup

5 B+ B
(Burada, z% = 2{"xz5%...2%" ve ;Wf(x) = gz%l..wf(xl’ oy Tn) )

Ornegin; v € R™ olmak iizere, e~l2l” = o~(@i+ait. 4al) ¢ S(R™).

Daha genel olarak, P(x) herhangi n de8iskenli polinom ve k > 2 ¢ift tamsay1
olmak iizere f(z) = P(x)e”"" fonksiyonu S(R") uzayindandir.

S(R7) ile S(R™)’nin, sonuncu z,, degiskenine gore ¢ift olan fonksiyonlarindan
olusan alt uzayim gosterelim. Ornegin, k > 2 ¢ift tamsay1 ve P(z) = P(zy, ..., Tp_1, Tp)

polinomu z,,’e gore ¢ift fonksiyon ise, f(x) = P(a;)e"”“'k € S(R?) olur.
Simdi de L, ve L, , uzaylarinda iyi bilinen bazi esitsizlikleri hatirlatalim.
a) Holder Esitsizligi

Lise [|f - gll, < [IfIl, - llgll,s Benzer

fe€Lpgelyl<pg<oovei+?i=
+L=Tise|f-gl, <l lal,,

sekilde, f € L, ,, 9 € L,,, 1 <p,q < oo ve %

Not 2.1. Yukaridaki esitsizliklerde p = oo icin

[fllo = ess sup [f(z)] ve [|fll., = ess sup [f(z)]
z€R" z€R™

kullamlmigtir.

b) Genellestirilmis Minkowski Esitsizligi

¢(r,y) fonksiyonu, R} x R de dlgiilebilir olmak iizere,

/w(x,y)dy S/Hso(m,y)llL,,(Rg) dy
®p)

m
Yy
LP

(bakiniz: [Folland! (1984) ).
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Benzer sekilde, o(x,y) fonksiyonu R? x R de dlgiilebilir olmak iizere,

m

+

[etwmza)l < [letwl,, el @3
Rm
) +

LP,V(R1
esitsizligi saglanir.
¢) Young Egsitsizligi (Stein ve Weiss| (1971), [Folland| (1984) )

p,q,r > 1ve % = % + 1 — 1 olmak iizere, f € L,(R") ve g € L,(R") ise
h = f g e L,(R") saglanir. Dahas,

12l < 11£1l, - lgll, - (2.4)

Burada, f * g ifadesi, f ile g’nin klasik girisimi (konvolusyonu) olup,
(F+9)@) = [ Fwgta = )iy
]Rn

Biz, ileride, Oklid kaymasi (6telemesi) olarak bilinen 7% f(x) = f(z + y), (z,y € R")
kaymasindan farkli bir kayma kullanarak, yukaridaki esitsizligin benzerini f € L, (R"})
ve g € L., (R") fonksiyonlarinin genellesmis girisimi i¢in verecegiz.

d) Klasik Kayma Operatdriiniin L, Uzaylarinda Siirekliligi

Y f(xz) = f(z + y) seklinde tanimlanmig klasik kayma operatoriinii kisaca 7¢ ile
gosterelim:

TV f(z) = f(x +y).

f € Lyise, |[7f|, = [|fl, esitliginin saglandigini, integralde degisken degistirme ile
gosterebiliriz (Yani, 7¥ : L, — L,, sinirhi olup, normu 1°dir).

Bundan bagka,

lim [[7f — f][, =0 (2.5)
ly|—=0

saglanir.
e) Hardy-Littlewood Maksimal Operatorii (fonksiyonu)(Stein|(1970) )

L1 10c(R™) ile, R™ in her noktasinin her §-komsulugunda integrallenen fonksiyon-
lar uzayini gosterelim. 2, ile R uzayinda B = {y € R" : |y| < 1} birim yuvarinin 6l¢ii-

5
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miinii ("hacmini") gosterelim. f € L; ;,.(R™) olmak tizere,

(Mf)(x) = sup —

0<r<oco Qnrn

/ |f(z —y)|dy (2.6)

ly|<r

fonksiyonuna Hardy-Littlewood maksimal operatorii (fonksiyonu) denir. Yukaridaki for-
miilde, x — y = z denirse,

1
Q

(Mf)(e) = sup 1 Q/ ()] d @.7)

yazabiliriz. Burada, supremum, = merkezli tim Q, yuvarlar tizerinden alinmustir (|Q,|
ile, x merkezli yuvarin hacmi gosterilmistir).

Teorem 2.2. (Hardy-Littlewood, Stein (1970) ) f € L,(R"), (1 < p < 00) olsun.O halde,
dyle bir A = A(n, p) sabiti vardir ki,

IMfl, < Allfl, (2.8)

saglamir. Bagka ifadeyle, M operatorii giiclii (p, p) tipli operatérdiir. p = 1 durumunda,
M operatérii zayif (1, 1) tipli operatéordiir. Yani, her \ > 0 icin

Al
A

p{r e R": (Mf)(xz)> A} < (2.9)

saglamir. Burada, E C R™ bir dlgiilebilir alt kiime olmak iizere, j1(E) ile E kiimesinin
Lebesgue olciimii ("hacmi”) gosterilmigtir.

Not 2.3. Her A >0vel < p < xicin

pu{r e R": (Mf)(xz)> A} < (%)p (2.10)

esitsizligi de saglamir. Yani, M operatorii, her p € [1,00) icin zayif (p, p) tiplidir (Hatir-
latalim ki, giiclii (p, p) tipli bir operator, hem de zayif (p, p) tipli olur).

f) Klasik Fourier Doniistimii

f € L1 (R™) fonksiyonunun Fourier doniigiimii
(FA@) = fla) = [ fw)e vy @1
R’ﬂ

seklinde tanimlaniyor. Burada, x = (24, ....,x,) ve y = (y1, ..., ¥, ) olmak iizere,

6
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Ty =2x1Y1 + ... + Ty, dir

Ters Fourier doniistimiiniin ifadesi soyledir:

(F1f)(2)

/ Fly)e™vdy. 2.12)

Not 2.4. Bazi kaynaklarda (drnegin, |Stein| ((1970), Stein ve Weiss (1971) ), f fonksiyonu-
nun Fourier doniisiimii ve ters Fourier doniisiimii asagidaki gibi tanmimlanir:

(Ff)(@

/ f(y)e ™ dy, (2.13)

|||
Km

(F ' f)(@ / f(y)e®™vdy. (2.14)

Bazi kaynaklarda da, asagidaki gosterimler kullanilir.

(FF)) = 1) = o [ 1@ ay @.15)

~—
V|3

R
L
=
=
~—
Il
-

f(x) = ﬁ / fy)e™vdy. (2.16)
in

Fourier doniisiimiiniin asagidaki ozellikleri 1yi bilinmektedir (Stein ve Weiss|(1971))

@ || =,
(b) f € L;ise f fonksiyonu tiim R"’de diizgiin stireklidir.
(c) f € Lise, | l‘im f(x) = 0dur.

T|—00

Yukaridaki (b) ve (c) bir arada diisiiniiliirse, f € () oldugunu soyleyebiriz.
(d) f € LiNLyise, f € Ly olup,

f H = || f||, saglanir (Plancherel-Parseval esitligi).
2

Bundan yararlanilarak, Fourier doniisiimii, tiim L,’de izometri olacak sekilde,
Ly’ ye devam ettirilebilir ve her f € L, i¢in H f H = |||, saglanir.
2
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(a) ve (d) yardimiyla (Riesz-Thorin interpolasyon teoremi kullanilarak) asagidaki
Hausdorf-Young esitsizligi kanitlanabilir (Stein ve Weiss| (1971) ):

. 1 1
17 <nsl1sp<2—+2 =1
P p p

Bagka ifadeyle, Fourier doniigiimii, 1 < p < 2 i¢in L,’den L, ’ye simrli olup, operator
normu 1’dir.

Harmonik Analizin en 6nemli formiillerinden birisi, Fourier doniigiimii ile girisim
(konvolusyon) arasindaki iligki formiiliidiir. Yukarida da belirttigimiz tizere, iki f,g €
L1 (R™) fonksiyonunun girigimi $6yle tanimlanir:

(f % g)(x) = / f(Wg(a - y)dy.

Fourier doniisiimiiniin tanim1 kullanilarak ve integralde degisken degistirerek,

F(f+g)(x) = F(f)(x) - Fg)(x)

kisaca,

~

(f*g9)"=f-3 (2.17)
oldugu gosterilir.

Yani, Fourier doniisiimii zor bir islem olan * iglemini (konvolusyon "¢arpimin1"),
daha basit bir iglem olan, fonksiyonlarin noktasal ¢arpimina doniistiiriir. (2.17)’dan, ters
Fourier doniigiimii yardimiyla, f x g = (f - §)¥ elde edilebilir.

Harmonik Analizde, Fourier doniisiimiiniin bir diger 6nemli 6zelligi de, tiirev alma
islemi (diferansiyel operator) ile arasindaki iligki formiiliinde ortaya cikar.

F(f)(x) = / Fy)e = vdy

Rn

esitliginde x,’e gore (formal) kismi tiirevi alinirsa,

19) A
S F() ) = / F () (—ig)e vy,
]RTL
aa—x%w)(x) - / £ () (—y)e vy
ve buradan, o
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A = 88—;% + o + % (Laplace Diferansiyel operatorii) i¢in

(~A)F(f)(x) = / F) Iyl e vy

olur.
Genel olarak, £ herhangi pozitif tamsay1 ise,
(- F(P)a) = [l fw)e =y (2.18)
Rn
elde edilir.

Benzer sekilde, / birim operatorii olmak iizere,

(I = A)F(f)(x) = / (1+ [y f()e = vdy

Rn
ve genel olarak,
(1= D) F(P)a) = [+l F e =dy 2.19)
Rn

bulunur.

Yukaridaki (2.18) ve (2.19) formiillerinin f € S(R") fonksiyonlar1 igin dogru
oldugu kanitlanabilir.

Diferansiyel operator ile Fourier doniisiimii arasindaki ilging bagintilar: ifade eden
daha genel formiilleri vermek i¢in kisa bir hazirlik yapalim.

acZy, v e R, 2% =xl"x5”.. o0 ve

8a1+a2+....an a aq a a2 a Qn
D* = = —
0z 052 ....0z%n <8x1) (ax2> (817”)
gosterimlerini (kisaltmalar) kullanmilarak, P(z) = P(xy, 22, ..., T,,) herhangi polinom (n
degiskenli polinom) olmak iizere, P(D) diferansiyel operatoriinii $0yle tanimlayalim:

P(D):P(a 0 a).

Ox, Oxy’ 7 Oxy,
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Ornegin, x € R3 olup, © = (71, T2, 13) ve P(z) = 2}w9w3 — 2173 + 2% icin

P0) = (&) () () - () () + () o

Fourier doniigiimii ile P(D) diferansiyel operatorii arasindaki baginti formiilleri
asagidaki sekilde ifade edilebilir (Stein ve Weiss| (1971)) ):

@ PD)f(r) =

(P(=y)f(y)" (x)
(b) (P(D)f) P(i

(x) = P(iz)f(x), (f € S(R"))

2.2. Fourier-Bessel Harmonik Analizinin Baz1 Temel Kavram Ve Teoremleri: Tek
Degiskenli Durum

Analiz ve onun uygulamalarinda, Bessel diferansiyel operatorii olarak bilinen asa-
g1daki singiiler diferansiyel operatdr 6nemli rol oynamaktadir:

d? 2v d

B, = —
e T ar

(0 <t <o0) (2.20)
Burada, v > 0 verilmis bir sabittir. Bu diferansiyel operatoriin dogurdugu 6zel bir kayma
(oteleme) operatorii ile ilgilenecegiz. Bilindigi gibi, tek degiskenli f fonksiyonu tiirevle-
nen ise, ¢ = ¢(z,y) olmak iizere,

%=1
i Yy
¢ om0 = f(y) } (2.21)

Probleminin ¢oziimii ¢ = f(x + y)’dir.

TV f(x) = f(x + y) dersek, soz konusu problemin gézﬁmﬁnﬁn 7Y f(x) kaymasi
(Oklid kaymast) oldugu soylenebilir. Boylece, Oklid kaymasi 1le ; diferansiyel operatorii
arasinda siki bir baglant1 vardir. Aslinda, bu siipriz olmayip, beklenen bir seydir. Ciinkii,
tiirevin tammminda kayma operatorii istirak ediyor:

.1
f'(z) =lim— (" f(z) — f(x)) . (2.22)
Tiirevle Oklid kaymasi arasindaki bagka bir derin iligki de Taylor formiiliinde ortaya cikar:

f, x’in bir komgulugunda analitik ise,

= [()

hE. (2.23)
=0 K

7" f(z) =

Yukarida, (2.20) formiiliinde verdigimiz Bessel diferansiyel operatorii i¢in (2.21]) proble-
mine benzer bir sinir-deger problemi yazilirsa, bu problemin ¢6ziimii de bir kayma (ge-
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nellestirilmis kayma veya Bessel kaymas1) operatoriinii dogurur.

Daha dogrusu, B; =

t2 + 2:;;5’ (0 <t < o0)ve p=¢(z,y) olmak tizere

+® = Byo, (0 <z,y < oo) }
¢ lomo = f(), a%¢ l,eo =0

(2.24)
Simir-deger probleminin ¢oziimii

T l
o(z,y) = F((—Ql/f Va2 + 2 +2xycos<9> sin® ! 4dh
5

seklindedir (Delsarte (1938)), Levitan! (1951) )
Bu ¢6ziimii, SY f(z) ile gosterelim:

I l
Syf(x)zr(<—21/f V2 4 12 +2xycos€> sin® 1 9de.
(3)

(2.25)
(2.25) formiilindeki gibi tanimlanmis SY operatoriine genellesmis kayma (veya, Bessel
kaymasi) denir. (2.25)’da y = 0 koyarsak
7 r'@)r

f Sin2u—1 0do = ( ) (1 )

0 F(v+3)
esitliginden, S°f(z) = f(z) olur.

Bundan bagka, (2.25) ifadesindeki integralde, 6 = m — ¢, (0 < ¢ < 7) seklinde
degisken degistirirsek, cos (m — @) = — cos ¢ ve sin (m — @) = sin ¢ oldugundan

SYf(x) = (51 /f \/x2+y —2xycosg0>sm L odyp
3)
)

- Syf(

(2.26)

elde ederiz. Yani, SYf(z) = S~Yf(z) olur (Oklid kaymasinda 7% f(z) = f(x + y) fakat
“Vf(z) = f(x — y)’dir). Diger taraftan, (2.25)’ya gore, SYf(x) = S*f(y) saglanir
(Oklid kaymasinda da, 7V f(x) = f(x +y) = f(y + 2) = 7°f(y) saglandig1 agiktir)

Genellesmis kayma operatorii SY’nin bilinen bazi diger 6zellikleri asagidaki gibi-
dir (Levitan|(1951) ):

(a) Lineerlik: SY (af(z) + bg(z)) = aSYf(x) + bSYg(x)
(b) Porzitiflik: f > 0ise, SYf(z) > 0 olur

11
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(©)
(d)

(e)
®

(@)

SY1 =1
x >a>0igin f(z) = 0ise, |x — y| > asaglayanz > 0,y > 0i¢in SYf(z) =0
olur.

1SV f ()] < 5¥|f(2)] < iliglf(ﬂi)l

Vermek istedigimiz 6zelligi ifade edebilmek igin SY f(z) yerine SY f(z) gosteri-
mini kullanacagiz (Bu, ozellikle, SY f(x,t) seklindeki ifadede ise yarar ve genel-
lesmis kayma operatoriiniin hangi degiskene uygulandigini gosterir). S6z konusu
ozellik soyledir: SYS? f(v) = S;SYf(x) ve SpSYf(w) = S;SYf ().

Ilk esitlik, once x’e » kaymasi ve sonra da x’e y kaymas1 vermek ile, dnce z’e y
kaymast ve sonra da z’e » kaymasi vermenin aym sonuca getirdigini sdyler (Oklid
kaymasinda, bu, f(z +y + 2) = f(z + z + y) demek oluyor).

Ikinci esitlik ise, 6nce x’e y ve sonra da y’ye z kaymasi vermek ile, 6nce z’e y ve
sonra da x’e z kaymasi vermenin ayni sonuca getirdigini soyler.
g ve f fonksiyonlari [0, c0)’da dl¢iilebilir olup,

/]f(t)]t”dt < oo Ve/\g(t)]tQth < o,
0 0

/ SV (2)g(y)y?dy = / £ (0)S¥g(x)y* dy (2.27)
0 0

saglanir. f ve g’den biri sinirli ve digeri i¢in integral yakinsak ise, (2.27) esitligi
yine saglanir. Ozel halde, g = 1 alinirsa,

/ SYf(x)y* dy = / fy)y™dy (2.28)
0 0

olur. Yukaridaki (2.27) esitligi, klasik Oklid kaymasinin dogurdugu girisim (kon-
volusyon) icin f * g = g * f esitliinin, yani agik yazilirsa,

/ f(x —y)g(y)dy = / F)a(e — y)dy

esitlifinin genellesmis kayma (Bessel kaymasi) i¢in benzeridir. Yani,

(f®9)( / SYf(x)g(y)y* dy (2.29)

dersek, (2.27) soyle yazilabilir: f ® g = g ® f . Yukanidaki f ® ¢ fonksiyonuna,
f ile g’nin genellesmis (Bessel) girisimi denir.

Yukaridaki (2.28) esitligi de, klasik Oklid kaymas1 durumunda iyi bilinen ve her
12



KURAMSAL BILGILER VE KAYNAK TARAMASI Sinem YUCEL

x € (—00,00) i¢in saglanan

]Of(m[y)dy: 7f(t)dt

esitli§inin benzeridir.
(h) Klasik Fourier doniisiimii, girisim islemini, noktasal carpmaya doniistiiriiyor. Yani,

_ 7 F(z)e " dx

dersek, (f * g)"(t) = f"(t)g"(t) olur.

(2.29) ile tanimlanan Bessel girisimini, iki fonksiyonun noktasal ¢arpimina doniis-
tiiren 6zel bir integral doniisiim vardir. Fourier-Bessel doniisiimii diye adlandirilan
bu integral doniisiimii tanimlayalim. f fonksiyonu igin,

[ 1£(t)| t*dt < oo saglansin. O halde, onun Fourier-Bessel doniisiimii,
0

(Fsf)(z / F(1)g, 1 (@)t dt, (0 < 2 < o) (2.30)

formiiliiyle tanimlaniyor.

Burada, j,(t), (p > —3) fonksiyonu, normallestirilmis Bessel fonksiyonu olup,
0zel fonksiyonlar sinifinda iyi bilinen ve birinci tip Bessel fonksiyonu diye adlan-
dirtlan J,(¢) fonksiyonu yardimuyla ifadesi soyledir:

T, (t)

. o p p
]p(t) =2 F(p—l— 1) e

(0 <t < 00); j,(0) = 1. (2.31)

Normallestirilmis Bessel fonksiyonu j,(¢), aslinda, Bessel diferansiyel operatorii-
niin, j,(0) = 1, j,(0) = 0 kosullarin1 saglayan 6zvektoriidiir (6z fonksiyonudur).
Bagka ifadeyle her A > 0 i¢in

Byjp(A\t) = =A%jp(At), 5p(0) = 1, j,(0) = 0 (2.32)
(bakiniz: |Levitan (1951)) )

Not 2. 5 Klasik Fourier doniisiimiinde integral operatoriiniin cekirdegi olan e~ fonksi-

yonu, % < diferansiyel operatoriiniin dzvektoriidiir:

de~ivt = (—iz)e ™' . Ayrica, e w0 = 1 saglamr. Dolayisiyla, klasik Fo-

urier analizinde e~""*’nin oynadigi rolii, Bessel Harmonik Analizinde j,(xt) fonksiyonu
listlenmektedir.

—ixt |

13



KURAMSAL BIiLGILER VE KAYNAK TARAMASI Sinem YUCEL

(2.30) formiiliiyle tanimlanan Fourier-Bessel doniisiimii, (2.29) ile tanimlanan Bes-
sel girisimini noktasal carpmaya doniistiiriiyor (Levitan| (1951)) ):

Fg(f ®g)(t) = Fp(f)(t) - Fp(g)(t), (0 <t < o00). (2.33)
Bu formiil, kisaca, soyle yazilabilir: Fg(f ® g) = Fpf - Fg

2.3. Fourier-Bessel Harmonik Analizinin Baz1 Temel Kavram Ve Teoremleri: Cok
Degiskenli Durum

Bessel diferansiyel operatorii ile (veya, Bessel kaymasi ile) iliskilendirilen ve Fo-
urier Bessel Harmonik Analizi diye adlandirilan Harmonik Analizin cok boyutlu (cok
degiskenli) versiyonu soyle olusturulabilir:

Tiim degiskenlere gore Bessel diferansiyel operatorii uygulanarak veya k tane de-
giskene gore Bessel ve (n — k) de8iskene gore klasik Laplace diferansiyel operatorii
uygulanarak, uygun Harmonik Analiz olusturulabilir.

Kayma (6teleme) operatorii dilinde dersek, girisim olusturuldugu zaman, n de-
giskenin tamamina genellesmis (Bessel) kaymas1 uygulanarak, veya, k degiskenine gore
Bessel kaymasi ve (n — k) degiskenine gore de klasik Oklid kaymas1 uygulanarak "hibrit"
girisim operatorii elde edilebilir.

Buna uygun olarak da, n boyutlu Fourier-Bessel doniisiimiinii, degiskenlerin ta-
mamina (2.30)’deki doniisiim uygulayarak tanimlayabiliriz, veyahutta, k degigskene gore
’deki dontigiimii ve (n — k) degiskene gore klasik Fourier doniisiimii uygulayarak,
"hibrit" Fourier-Bessel doniisiimil tanimlariz.

Bahsi gecen genellesmelerin her ikisi ile ilgili ¢ok sayida makale ve kitap yazil-
migtir.

(bakiiz: Kipriyanov| (1967), |Lyakhov| (1983), Stempak] (1986), Gadjiev ve Aliev
(1988b)), Kipriyanov (1997), [Trimeche| (1997),|Aliev ve Bayrakci (1998), |Guliev| (2003)) )

Biz bu ¢calismamizda, R} = {z € R" : & = (21, 29, .., %,), ¥, > 0} uzayinda ta-
nimlanmis fonksiyonlarin, ilk (n — 1) degiskeni olan 2’ = (x1, x9, .., z,_1) degiskenine
klasik Oklid kaymas1 ve sonuncu z,, > 0 degiskenine de Bessel kaymas1 uygulayarak,
ortaya ¢ikan genellesmis kayma (6teleme) operatoriinii ve onun dogurdugu genellesmis
girigsim operatoriinii kullanacagiz.

Béylece, 1 < p < oo ve v > 0 olmak iizere L,,, = L, (R") uzay1 (2.2)’deki gibi
tanimlanmis olsun ve f € L, , fonksiyonu verilsin. Bu f fonksiyonuna asagidaki sekilde

14
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tanimlanmig genellesmis kayma ("hibrit" kayma) operatoriinii uygulayacagiz:

F(%

TS = Fo

/f ' —y 22 +yn—2xnyncosé’> sin® 1 6d#

l
2
(2.34)

Goriildiigii gibi, genellesmis kayma operatorii diye adlandiracagimiz 7Y operatorii, v =

(@ xn),y = (Y, yn)s (27 = (21, .., 20-1), ¥ = (Y1, Y2, -, Yn_1) Olmak iizere, ilk (n — 1)
degisken olan 2’ = (x4, s, .., 2, 1) degiskenine klasik Oklid kaymas1 ve sonuncu x,,
degiskenine (2.25)) ile tanimlanan Bessel kaymasi uygulanarak elde edilmistir.

Oklid kaymasinin ve Bessel kaymasinin bilinen 6zellikleri kullanilarak, onlarin
kompozisyonu (bileskesi) olarak ortaya ¢ikan 7Y —genellesmis 6teleme operatoriiniin sag-
ladig1 6zellikler yazilabilir.

Ornegin, f ve g fonksiyonlarimin genellesmis girisimi, (2.34)’de tanimlanmis 7Y
genellesmis kayma operatorii yardimiyla

(f®g)( /f VTV g(x)y2 dy, (v € R?) (2.35)

seklinde tanimlanirsa, f ® g = g ® f olduguve f € L, ,, g € L, i¢in Young esitsizligi
denilen

1 1 1

esitsizligi saglanir (Kipriyanov|(1997), Aliev ve Bayrakci (1998) ).
Bundan bagka, f € L;, fonksiyonunun hibrit Fourier-Bessel doniisiimii de, ilk

(n — 1) degiskene gore klasik Fourier doniigiimii ve sonuncu y,, degiskenine gore de
(2.30)’de verilen Fourier-Bessel doniisiimii uygulanarak, asagidaki sekilde tanimlanabilir:

/ F@)e ™Y j, 1 (@ayn)yi-dy, (v € RY). (2.37)

Burada, 2’ - ¢/ = x1y1 + .... + £,_1Yn_1 olup, =’ ve 3y’ vektorlerinin i¢ ¢arpimidir.

Uygun ters Fourier-Bessel doniisiimii de asagidaki sekilde tammlanir: z = (2, z,)
olmak tlizere,

(F ' f)(@) = co(n) (B, f) (=2, xn). (2.38)

15
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Burada,

e (n) = [(2@"—122”—1# (?)} o

Yukaridaki (2.37) formiiliiyle tanimlanan Fourier-Bessel doniisiimii, (2.35) yardimiyla ta-
nimlanan genellesmis girisim islemini, iki fonksiyonun noktasal ¢carpmasina doniistiirii-
yor:

E,(f ® g)(x) = (B, f)(2)(F.g)(x), (x € RY). (2.39)

F,.f = f' kisaltmasi kullanilirsa, yukaridaki esitlik, kisaca soyle yazilabilir:

~

(f®g)* =19

Fourier-Bessel doniisiimiiniin, diferansiyel operatorlerle iligkisi de iyi bilinmekte-
dir. S (Ri) , R uzayinda verilmis Schwarz test fonksiyonlar1 uzay1 olmak iizere,

F, : S(R%) — S(R?) bir otomorfizm oldugu bilinmektedir (Kipriyanov| (1967) ).
Bunun yanisira, n degigkenli olup, sonuncu degiskene gore ¢ift olan herhangi P(t1, .., t,_1,t2)
polinomu ele alinirsa ve B, = L+ 2488 notasyonu kullanilirsa, y = (y1, .., Yn—1, Yn) €

B 4 dyr% Yn dYn
]Rﬁ olmak tizere,

) o)
P(@wwm?lgyn) (F.) ()
= F,[P(—izq,...,—iz,_1, —2) f(2)] (y); (2.40)

0 0
F, {P (a_xl’ o Wn—l’an> f@)} (?J)
= P(iys, ... iyn-1,iy;) (F,.f)(y) (2.41)

esitliklerinin saglandig bilinmektedir (Kipriyanov|(1967),|Aliev ve Bayrakci| (1998) ).
Ozel halde,

PP (A I
P \oe? T T an2 ox2  w, 0,

n

Laplace-Bessel diferansiyel operatorii ve / da birim operator olmak iizere, her £ € N ve
f e SRY)igin

(~0) = F (™ (RN©)) (@) (242)

16
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veE

(I = Ap)* = FH (A + P (BHW)) (@) (2:43)
esitlikleri saglanir.

Klasik Fourier Harmonik Analizinde Hardy-Littlewood maksimal operatorii 5nemli
rol oynuyor. Fourier-Bessel Harmonik Analizinde de ayni rolii, genellesmis kaymanin do-
gurdugu Hardy-Littlewood maksimal operatorii oynamaktadir.

Yukarida verilmis olan L,,, = L, ,(R"} ) uzayinda, genellesmis Hardy-Littlewood
maksimal operatdrii $0yle tanimlanyor: f € L, ,,, (1 < p < 00) olmak iizere,

— 2v n
M, f(z) = sup W/ TV f(@)|y, dy, = € R (2.44)

Q
Burada, 2, = {y eRY :Jyl < 7’} vew(n,v) = /3/3de/~
Qp

1 <p<ooigin |M,fl,, <ellfll,, vep=1igin

/1y,

,u{acERi | M, f(x)] >)\} <y 3

, (VA >0)
saglanir. Burada, £ C R} i¢in pF = [22dx olarak tanimlanr.
B

Yukaridaki esitsizliklerden anlasilacag: iizere, klasik Fourier Harmonik Analizinde
oldugu gibi, genellesmis M/, maksimal operatorii de, (1 < p < oo) igin gii¢lii (p, p) tipli
ve p = 1 igin zayif (1, 1) tipli operatordiir (Guliev (2003)) ).
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3. MATERYAL VE METOT

Bu boliimde, Klasik Bessel potansiyelleri ve onlarin ¢esitli genellestirilmis versi-
yonlar1 tanitilarak, onlarla ilgili bilgiler yer alacaktir.

Genellesmis kaymanin dogurdugu bir yarigrup (beta-yarigrup), bu yarigrubun do-
gurdugu bir dalgacik (wavelet) tipli doniisiim ve iki parametreye bagl Bessel tipli potan-
siyel operatorleri tanimlanacaktir.

3.1. Klasik Bessel Potansiyelleri Ve Onlarin Genellestirilmis Versiyonlar:

Klasik Harmonik Analizde 6nemli uygulamalara sahip olan Bessel potansiyelleri
Fourier doniistimii dilinde, formal olarak soyle tanimlanir:

Jof = F L (1+1€f) 2 Ff (0 <a < oo & €RY). 3.1)

Bu potansiyeller, A Laplace operatorii ve I birim operator olmak iizere, (I — A) operato-
riiniin negatif "kesirsel kuvvetleri" olarak yorumlanabilirler. Yani, formal olarak,

Jf=I—=A)2f,0<a<o0) (3.2)

yazilabilir. Bunu da not etmek gerekir ki, o = 2k, (k € N) ve f € S(R") olursa, (3.1 ve
(3.2) esitliklerinin sag taraflar1 gergekten de gakisirlar.

Schwarz uzayinda (3.1)) formiili ile tanimlanmis J* f, (o > 0) Bessel potansiyel-
lerinin asagidaki sekilde "acik" integral gosterimleri bilinmektedir (Stein| (1970), Samko
vd (1993), Rubin| (1996)), Samko| (2002) ):

(D)) = 577 [ F Gl =) (3:3)
Rn
Burada,
An() :2%%(2 VeG /t et ﬁ. (3.4)

formiiliiniin sag tarafi, yalniz Schwarz uzaymdan olan f’ler i¢in degil, her f €
L,(R™), (1 < p < o0) i¢in de anlamlidir. Bundan yararlanilarak, her f € L,(R") i¢in
f’in Bessel potansiyeli formiiliiyle tanimlanabilir. Girisim tipli integral operator olan
Bessel potansiyelinin L,’den L,’ye smirl operator oldugu bilinir. Yani, her f € L,(R")
icin

1T fIl, < eI fIL, . ¢p > 0,1 < p < o0)

saglanir (Stein| (1970) ).
18
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Bessel potansiyellerinin, tinlii Gauss-Weierstrass integralleri yardimiyla, ¢ok kul-
lanigh olan tek katl integral gosterimi de vardir (bakiniz: Flett (1971), Samko vd| (1993),
Rubin| (1996)) ):

(JOf)(x) = Tlg)/tg_le_tmﬂx)dt, (0 < a < 00) (3.5)

Yukaridaki formiilde f € L,(R") olup, f’in Gauss-Weierstrass integrali (yarigrubu) diye
adlandirilan W, f, (0 < t < o) fonksiyonu asagidaki sekilde tanimlanir:

Wif(a) = / @yl 1) £z — y)dy. (3.6)

R

Burada,

w(lyl,t)=F" (6‘t'5'2> (y) = (47t) "% exp (—M> : 3.7)

Yukaridaki (3.5) formiilii, Bessel potansiyellerinin terslerini belirlemede 6nemli rol oyna-
maktadir (Rubin| (1986), Samko vd! (1993)), [Rubin| (1996) ).

Simdi de, Fourier Bessel Harmonik Analizinde 6nemli rol oynayan ve Laplace-
Bessel diferansiyel operatorii diye adlandirilan

el g2 1 (P 2w )
Ap = S = -
b ,;1 ox2 B, ,gl ox2 * (a[E% Ty &vn) (> 0)

operatorii yardimiyla tanimlanan genellestirilmis Bessel potansiyellerini ve onun da ge-
nellesmesi olan potansiyel tipli integral operatorleri tanimlayalim. Bu tez ¢alismasinin
esas konusu da bu potansiyel tipli operatorlerin incelenmesi ile ilgilidir.

Biz yukaridaki boliimlerde R"} ve L, , = L,, (R} ) uzaylarini, genellesmis kayma
(6teleme) ve genellesmis girisim (konvolusyon) operatorlerini; Fourier-Bessel ve ters Fourier-
Bessel doniisiimlerini tanimlamistik. Bu kavram ve gosterimleri kullanarak, Laplace-Bessel
diferansiyel operatoriiniin dogurdugu genellesmis Bessel potansiyellerini (veya, bagka is-
miyle, genellesmis kaymanin dogurdugu Bessel potansiyellerini) tanimlayalim. Klasik
Bessel potansiyellerinin tanimina benzer olarak, genellesmis Bessel potansiyelleri de, 1
birim operator ve A Laplace-Bessel diferansiyel operatorii olmak tizere,

(I — Ap) diferansiyel operatoriiniin negatif "kesirsel" kuvvetleri olarak yorumla-
niyor ve Fourier-Bessel doniisiimii dilinde

S =F (A4 EP) ERf) = —Ap) 2 f,(0 < a< ) (3.8)

seklinde tanimlanmiyor. Burada, f € S(R%) ve £ € RY.
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[ € S(R?%) fonksiyonlar1 igin tanimlanmig 3 f potansiyel operatorii asagidaki
integral gosterime sahiptir (Gadjiev ve Aliev| (1988b) ):

(3°f) =

/ fy) (TYGyo()) y2¥dy, (0 < a < 00). (3.9)

Burada,

Ve

an v 12dt
Go(z) = GV (2 /t #o—t=lr - (x e RY).
0

(3.9)°daki integral operatoriiniin ¢ekirdegi olan G (z) fonksiyonunun |z| — 0 ve || —
oo i¢in asimptotik davranisi asagidaki sekildedir (Stein (1970) ):

|z| = 0igin Gu(z) = O (|96|_n_2”+0‘) ve |z| — ooigin G, (z) = O (e‘é‘ﬂ)_

G (z)’in bu asimptotik davranisindan anlagilacagi iizere, (3.9) ile tanimlanan in-
tegral operator, yalmz, f € S(R’,) fonksiyonlari i¢in degil, her f € L, , fonksiyonlar:
icin de gecerlidir.

Not 3.1. Genellesmis Bessel potansiyellerinin, klasik Bessel potansiyellerinde oldugu
gibi, "tek boyutlu" integral gosterimi de vardir. Daha dogrusu,

1
2Vt nt2 ly|2

an (Il ) = B () () = gy mt) " Fe (3.10)

olmak iizere, her f € L, , i¢cin f’in genellesmis Gauss-Weierstrass integralini (yarigru-
bunu) W, f ile gosterirsek,

Wif(2) = Woof (2) = / wo (9], 1) (TVf(2)) 42 dy 3.11)

RY

seklinde tanimlanir. Bu yarigrup yardimiyla, genellesmis Bessel potansiyelleri icin baska
bir (bir boyutlu) integral gosterim yazilabilir (Gadjiev ve Aliev|(1988b), Aliev ve Uyhan-
Bayrakci (2002)), Aliev ve Eryigit (2002), |Aliev vd (2008) ):

o0

/t%‘l Wi f(x)dt, (z € R, a > 0). (3.12)
0

Qo f — 1
=1
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Not 3.2. Genellesmis Bessel potansiyelinin bu gosterimi, klasik Bessel potansiyeli icin
bilinen gosterime birebir benzer olup, operatorlerin kesirsel kuvvetleri icin Balakrish-
nan formiilii diye adlandirilan genel formiiliin benzeridir. Klasik Bessel potansiyellerinde
oldugu gibi, genellesmis Bessel potansiyellerinin terslerinin belirlenmesinde (3.12) gos-
terimi onemli rol oynamaktadir (Gadjiev ve Aliev| (1988b), \Aliev ve Eryigit (2002)), Aliev
ve Rubin|(2005)), |Aliev vd| (2008) ).

Aliev vd (2008)), Aliev| (2009)), Sezer ve Aliev|(2010) makalelerinde beta-yarigrup
diye adlandirilan agagidaki integral operator tanimlanmustir:

W f(a) = / WOyl 0)f @ — y)dy.
RTL
(x € R",0<t<o00,0<f<00) (3.13)

Burada, integral operatoriiniin radyal ¢ekirdegi olan w(®(|y|, t) fonksiyonu, exp(—t |z|”)
fonksiyonunun ters Fourier doniisiimiidiir:

Wyl 1) = F* (exp(~t]2l)) (y) = (2m) ™ / el vy, (3.14)

R

Bahsi gecen makalelerde, bu beta-yarigrup yardimiyla, Klasik Riesz ve Bessel potansi-
yelleri uzaylarinin yeni karakterizasyonlari verilmis ve Radon doniisiimil i¢in yeni ters
bulma formiilleri elde edilmistir.

Aliev ve Saglik (2016) makalesinde, F),"! operatorii ters Fourier-Bessel doniigiimii
olmak iizere, w'”’ Wy, t) = F;! (exp(—t |z|? )) (y) gekirdegi yardimiyla tanimlanan ve
genellesmis girisim (konvolusyon) operatorii olan

W F)(2) = @D (], 1) @ f) () = /wiﬂ)ﬂy‘ T f ()2 dy (3.15)

n
R%

operatorii (genellesmis beta-yarigrup) yardimiyla, genellesmis kaymanin dogurdugu Ri-
esz potansiyelleri i¢in yeni bir ters bulma formiilii elde edilerek, genellesmis Riesz potan-
siyelleri uzayinin yeni bir karakterizasyonu verilmistir.

Bu tez calismasinda (3.15))’teki genellesmis beta-yarigrubu kullanilarak, iki para-
metreye bagl bir integral operator tanimliyoruz. Parametrelerden birinin 6zel se¢imleriyle
genellesmis kaymanin dogurdugu Bessel potansiyelleri ve Flett potansiyelleri elde edile-
bilir.

Dolayisiyla, bizim tanimlayacagimiz yeni operatorler ailesi, genellesmis kayma-
nin dogurdugu Bessel ve Flett potansiyellerinin genellesmesidir. (3.15]) formiiliindeki Wt(ﬁ )
gosterimi yerine Bt(ﬁ ) notasyonunu kullanacagiz. Bunun nedeni, (3.13))’te verilmis yarig-
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rup ile (3.15)’teki yarigrubun ayn1 notasyonla gosterilmemesidir.
Boylece,
B () = By pla) = /wiﬁ)(lyl AT () dy (3.16)
R

diyelim. Burada, yukarida da bahsedildigi {izere,

WPyl ) = F (exp(-tl2l’)) (v)

cl,(n)/e_“mﬂem'yjy_é(xnyn)xi”dx (3.17)

R"

olup, ¢, (n) katsayisi yukarida verilmis (2.38) formiiliindeki gibidir.

B =1ve 3 = 2 6zel durumlarinda w’ )(\y| ,t) ¢ekirdeginin agik ifadeleri bilin-
mektedir:

a7 n+2v+41 ¢
wg,l)(wl at) = 721](-—‘ 22V+1 ) 9 nt2v+1 5 (318)
/8 (—2 ) (|y| +t2) 2
or*a 1y12
™ _nt2v _ |y|*
w?(ly| 1) = W (4mt) 2 e ar. (3.19)
2

Burada, 0 < ¢ < oo,y € R olup, w(yl)( ly|,t) genellesmis Abel-Poisson ¢ekirdegidir ve

w,@(\y[ ,t) de genellesmis Gauss-Weierstrass ¢ekirdegidir (Gadjiev ve Aliev (1988bla),
Aliev ve Bayrakci| (1998), |Aliev ve Rubin| (2005), Aliev vd|(2008) ).

ll formiiliiyle tanimladigimiz Béﬁ )gp($) genellesmis beta-yarigrubu yardimiyla
asagidaki integral operatorler ailesini tanimlayalim:

1 [ dt
%gw(:ﬂ) = %gﬂ/(p(:c) = /tﬂetBt(B)go(x)— (3.20)

r(5)4 t
Bu integral operatorler ailesi, iki parametreye bagli olup, 5 parametresinin 6zel se¢im-
leriyle, genellesmis kaymanin dogurdugu Bessel ve Flett potansiyelleri elde edilir. Daha
dogrusu, 8 = 2 alinirsa, 3§ (z) operatorii elde edilir, bu da genellesmig Bessel potansi-
yelidir. Benzer sekilde, 8 = 1i¢in 3¢y (z) operatorii de genellesmis kaymanin dogurdugu
Flett potansiyelidir (Klasik ve genellestirilmis Flett potansiyelleri ile ilgili Flett (1971),
Aliev vd (2006) kaynaklarina bakilabilir).
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Bizim bu ¢aligmadaki esas amacimiz, 3§, operatorlerinin L, , (R’ ) uzaylarinda
davranigini incelemek ve onlarin tersini ifade eden formiiller gelistirmektir. Bunun igin,
genellestirilmis beta-yarigrup diye adlandirdigimiz Bﬁﬁ ), (t > 0) yarigrup vasitasiyla bir
dalgacik (wavelet) tipli doniisiim tanimlayacagiz ve ters bulma islemini bu dalgacik do-
niisiimii yardimiyla elde edecegiz.

3.2. Genellestirilmis Beta-Yarigrup, iki Parametreye Bagh Bessel-Tipli Potansiyeller
Ve Bir Dalgacik Tipli Doniisiim

Eger g € L,,(R") fonksiyonu radyal bir fonksiyon (yani, yalmz |z|e bagli)
ise, onun Fourier-Bessel doniisiimii olan F),g fonksiyonu da radyaldir (Zasorin| (1986)),
Kipriyanov| (1997) ). O halde, F,*(exp(—t|z|”))(y) fonksiyonu da radyaldir (Burada,
z,y € R vet > 0).

Séz konusu radyal fonksiyonu w!’’ (lyl,t) ile gosterelim. Bu ¢ekirdek fonksiyon
ile ¢ € Ly, (R?}) fonksiyonunun genellesmis girisimi de, yukarida, (3.6) formiiliinde
belirttigimiz iizere, Bt(ﬁ )go ile gosterilsin:

BPo@) = WP (1.t @) ()

4 / WP (gl 1) TV ()2 dy.

&

Bahsi gecen wP (ly|,t), (v € R%, t > 0) gekirdeginin ve Bﬁ’B )go, (t > 0) operatorleri
ailesinin 6zelliklerini bir lemma seklinde verelim.

Lemma 3.3. (Aliev ve Saglik|(2016) ) wf (-] , t) fonksiyonunun ve Bt(ﬁ)go, (t > 0) ope-
ratorleri ailesinin asagidaki ozellikleri vardir:

(a) Her A > 0 icin

WPyl 1) = NFEuP (W [yl xt).

v

Ozel halde, N = % icin

WP (gl 1) = £ F P (5 yl 1), (3:21)

(b) 0 < B <2icin wf (ly|,t) cekirdegi pozitiftir.

(c) B = 2k (k € N)ise wf (|-],t) € S(R%). Burada, S(R?) ile Schwartz test
fonksiyonlart uzayr gosterilmektedir. (Bundan sonraki onermelerde, 0 < < 2
veya 8 = 2k, (k € N) oldugu varsayilacaktir).
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(d) Hert > 0 icin

/w(f) (lyl t)y2dy = 1 (3.22)

K}
(e) Ege” P € Lp,w (1 S p S oo, Loo,u = CO) iS€,
|87 <@l (3.23)

saglanir. Burada,

c@wz/w@mmﬂﬁ@<m
iy

olup, 0 < 8 < 2 igin c¢(B,v) = 1'dir. Bundan baska, Cy = Co(R7}) ile, S(RY})
uzaywmin, sub-norma gore kapanist gosterilmektedir.
(f) Her p € Ly, (1 < p < 00) igin

sup
>0

B p(a)| < eMyp(a), (= €RY) (3.24)

esitsizligi saglanmir. Burada, c bir sabit olup, M, p ile, © fonksiyonunun genellesti-
rilmis Hardy-Littlewood maksimal fonksiyonu (operatorii) gosterilmektedir (Aliev
ve Bayrakci|(1998), Guliev (2003) ):

1

M, = — [ 7" 2 dy; 3.25

o(z) D (.7 / T0(y)| v, dy (3.25)
B

burada, B} = {x eRY |z < 7"} vew(n,v) = /xiudm.

Bf
(g) Her p € Ly, (1 <p < o0)vehert > 0icin
_ n+42v
sup Bt(’g)go(x)) <ct” el (3.26)
z€RY

(burada, ¢ = c(n, 5, v, p) bir sabittir).
(h) (Yarigrup ozelligi)

Herpe L,,, (1 <p<o0, Ly, =Cy)vehert, 7 € (0,00) igin

B (BY ) = B . (3.27)
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(i) ¢ € Ly, (1 < p <00 Lo, = Cp) olsun. O halde,

lim Bgﬂ)gp(x) = p(x) (3.28)

t—0t

saglamir. Burada, limit L, ,, uzayimin metriginde, veya, noktasal (h.h v € R’} icin)
olarak diisiiniilmektedir. ¢ € L, = Cy durumunda, yakinsama tiim R’} 'da diiz-
glindiir.

Not 3.4. esitligini dikkate alarak, Bgﬁ )90 operatoriinii, t = 0 icin soyle
tamimlayabiliriz: B((]B )gp = .

Yukarida, (3.20) formiilityle tanimladigimiz, iki parametreye bagli potansiyel tipli
operatdrler ailesi olan I3, (0 < 8 < 00, 0 < av < 00) integral operatdrleri ailesinin bazi
temel Ozelliklerini, asagidaki teoremde ifade ederek kanitlayalim.

Teorem 3.5. ¢ € L, , (1 < p < 00; Lo, = Cy) olsun. O halde,

a) SG integral operatorleri ailesi iyi tamimlanmistir ve bundan baska,

1S50]|. . < e(B,v) el (3.29)

b,V

esitsizligi saglamir (yani, S5 : Ly, — Ly, sturldir). Burada,
c(8.0) = [ of? Iyl 1) 2y
RY

olup, 0 < B < 2igin ¢(B,v) = 1'dir.
b) a >0, B > 0 parametrelerinin sabit tutulmus her degeri i¢in S operatorii ge-

nellesmis kaymanin dogurdugu girisim (konvolusyon) tipli operator olup, Fourier-Bessel
carpant (multiplier)

m(e) = (1+1ef) " e ry)

seklindedir. Yani, F,, Fourier-Bessel doniisiimii olmak iizere,

F, (330) () = (1+ !£|ﬁ>_g E(#)(€). (€ € RY). (3.30)

c) Her o, 3 € (0, 00) icin 3§ operatorii S(R';) Schwarz uzayinda bir otomorfizm-
dir, yani, 35 : S(R’) — S(R?).

d) Sabit tutulmug her € (0, 00) parametresi icin { 3G 00 ailesi asagidaki ya-
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rigrup ozelligine sahiptir: her oy, o € [0,00) ve ¢ € Ly, icin

ogl (cxaz ) — %gﬁrazgo (331)

(Burada, %% = [ birim operatoriidiir).

Kanit. a)

o0

/ e B p(n) T
0

~a 1
\SBQO(JJ) = r (2)

B

ifadesine, integral i¢in genellesmis Minkowski esitsizligini uygulayalim:

1 a dt

H%a(p” < tHet B(ﬁ) U

B p,V t t

r(5)
0

-23) 1 i 4

< c(B,v) - [e't57dt | lell,,,
OF
= c(B,v) el

Lemma [3.3]deki (b) ve (d) ifadeleri dikkate alinirsa, 0 < 8 < 2 i¢in ¢(8,v) = 1 oldugu
goriiliir.

b) ¢ € S(R?) olsun. Bir g € S(R?) fonksiyonunun Fourier-Bessel doniistimiinii
F, g yerine, kisaca, g" ile gosterelim. Fubini teoremini kullanirsak,
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o0

- /t;‘—l —(1+16) gy

9
/3 0

=.|t=——
( =

= (1+1]¢7)75M).

— 3 seklinde degisken deg1§t1rehm> .

Boylece, ¢ € S(R?}) i¢in
(359)" (©) = (1 +[E1") P "(©)

olup, (1 + |£°)75, (¢ € R ") fonksiyonunun G operatoril igin Fourier-Bessel ¢arpani
oldugu goriiliir.

c) F, : S(R}) — S(R7) bir otomorfizma oldugunu yukarida yazmustir. ¢ €
S(R?) i¢in (3.30) formiiliine gore,

(359)" (&) = 1+ [61°)7FNE), € €RY)

saglanir. Buradan, her ¢ € S(R? ) i¢in

Soe(x) = F, (1 +1€17) 75 (Fe)(©))(@) (3.32)

saglanir.

Yukarldaki formiilde, » € S(R") oldugundan, F,p € S(R?) ve buradan da,
1+ 1€°) 5 (Fp) () € S(R™) olur. Sonug olarak,

F(L+1E17) 75 (Fup)(©)](x) € S(RY)

olur.

d) Yukaridaki (3.30) formiilii dikkate alinirsa, ¢ € S(R?) olmas1 halinde, (3.31)
esitliginin Fourier-Bessel carpanlari dilinde dogru oldugu acik sekilde goriiliir. Gergekten,
(3.31) esitliginin sol tarafina Fourier-Bessel doniigiimii uygulanirsa,

(39(359) (€)= (1+¢7) 7 (359)" ()
= 1+ ) Fa+1e’)FNe)

= 1+ TN ©);
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Simdi de (3.31)) esitliginin sag tarafina Fourier-Bessel doniisiimii uygularsak,

altag

(35720)" (&) = (L+1€) 7~ "(9).

Bu iki esitlikten istenen cikar.

Boylece her ¢ € S(R"}) ve a1, g € [0, 00) igin

_ +
CxO1 (C\OQ ) — %gl azgp
esitligi saglanir. Bu esitligin, ¢ € L, , durumunda saglanmasi, 33 operatorlerinin Ly, ,’den
L, ye smirl olmasinin ve S(R?) uzaymnin L,, uzaylarinda yogun olmasimin (yani,
S(R?}) uzaymn L, , normunda kapanisinin L, ,, uzayi ile cakigsmasinin) bir sonucudur.

Gergekten, bir (p,,) C S(R?) dizisi, L,, normunda f € L, fonksiyonuna ya-
kinsasin:

= 0.

22

n—oo
O halde, %g : L,, — L, smirh oldugundan, L, ,—normunda,

lim 3%, = 39

olur.
O halde, (3.31)) esitligini,
ST (S520,) = ST 0, (n=1,2,..) (3.33)

seklinde yazarsak, sag tarafin L, , limiti %glm? f olur.

(3.32)’nin sol tarafina bakalim. L, , normunda ¢, — f oldugundan, 33°¢, —

S3° f olacakur. g, = S3°p,, dersek, her n igin g, € S(R%) olup, L,, normunda g, —
S5° f saglanr.

%gl : Ly, — Ly, sirli (siirekli) oldugundan, L, ,—normunda, %glgn — %gl (%gg f )
saglanacaktir. Buradan, Vf € L, igin 35! (352 f) = S5 7 f olur. O

Not 3.6. esitligi dikkate aluursa, iki parametreye bagh 35 operatérler ailesi,

<] + (—Ay)g kesirsel diferansiyel operatoriiniin <—%) mertebeden negatif kesirsel

kuvveti olarak yorumlanabilir. Yani, formal olarak, her ¢ € S(R",) icin

@R

S50 = (1+(=A)F) ¢
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vazilabilir. Burada, I birim operator ve

n-l 9? * 2w 0
Au_zaxk+(8x2+ )

1 Ty, O,
operatorii de Laplace-Bessel diferansiyel operatoriidiir.

Bu formiilde, S = 2 alinirsa, genellesmis kaymanin dogurdugu Bessel potansiyeli
ve f = 1 alinirsa, genellesmis kaymanin dogurdugu Flett potansiyeli elde edilir. Dola-
yistyla, bizim tanimladigimiz S5 operatorleri, genellesmis kaymanin dogurdugu Bessel
ve Flett potansiyellerinin her ikisini de genellestiren, potansiyel tipli operatorlerdir.

Simdi de, formiiliiyle tanimlanmig ve genellesmis beta-yarigrup diye adlan-
dirilan Bgﬁ )go, (t > 0) ailesi yardimyla, bir dalgacik (wavelet) tipli operator tanimlayalim.
Tanimlayacagimiz bu dalgacik tipli doniigiim, bir sonraki bolimde, 35 ¢ potansiyellerinin
terslerini bulmak i¢in kullanilacaktir.

Tamim 3.7. p, [0, 00) araliginda verilmis sonlu Borel 6lgiimii olup, 11 {[0,00)} = 0 olsun.
Béyle i dlgiimiine, [0, 00) da verilmis bir dalgacik (wavelet) olgiimii diyecegiz.

Tamm 3.8. u bir dalgacik olciimii ve Bgﬁ )go, (t > 0) ailesi de ’da tammlannus,
genellesmis beta-yarigrup olsun. Asagidaki sekilde tanimlannmus operatore (doniisiime)
bir dalgacik tipli doniisiim denir:

(Ap)(z,m) = (AD)p) fe MBI () dpult). (3.34)

Burada, x € R'}, n € [0, 00) olup,

FCdu(t) = [ ()t (335)

[a,b)

olarak tamimlanir.

Dogal olarak, ortaya sdyle bir soru ¢ikar: (3.35) ile tanimlanan dalgacik tipli do-
niistimiin iyi tanimli olmasi igin ¢ iizerine hangi kosullar konulmahdir? Biz, L, , (R ),
(1 < p < o0; Lys = Cp) uzaylarinda ¢alisngimiz igin, ¢ € L, durumunda Ay do-
niigiimiiniin anlamli olup olmadigini inceleyelim. ¢ € L, , olsun. O halde, genellesmis
Minkowski esitsizligi kullanilirsa,

1AL Cslly,, = ’t"l’iﬁf)w(w)du(t)

<f6

p7V

D0 dlul)
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B23) o0
< c(B,v) llell,, Ofe_t"dWI (t)

< c(B,v) el 11{10,00)} < 00

Burada, |p| {[0,00)} = [d || (t) olup, p Sl¢iimiiniin [0, 0o) araligindaki tam varyasyo-
0

nudur.

Ornegin, E C [0,00) olmak iizere, u(E) = [h(t)dt seklinde tamimlanirsa, y

E
00

dl¢iimiiniin [0, co)’daki tam varyasyonu || {[0,00)} = [ |h(t)|dt olur.
0

Ornek olarak,

sint, 0<t<2mise
h(t)_{ 0, 27r<t<ooise}

b
alinirsa ve [a, b) C [0, 00) olursa, p {[a,b)} = [h(t)dt olarak tamimlayalim. Bu durumda,

p{[0,7)} = [sintdt = 2, p{[r,2m)} = —2; 1 {[0,00)} = 0 ve p’niin [0, co)’daki tam
0
oo 27

varyasyonu |u| {[0,00)} = [ |h(t)|dt = [ |sint|dt = 4 olur.
0 0

Cogu kaynakta, 1’ niin tam varyasyonu ||| ile gosterilir. Yani, ||u|| = |u| {[0, 00)}.

Not 3.9. Yukarida elde ettigimiz

o0

ARl < e(B) el [l 0

0

esitsizliginde, 1 — oo icin limite gecersek, Lebesgue baskin yakinsama teoremine gore,
Jim [|(A) (-, nll,,, = 0 olur
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4. BULGULAR VE TARTISMA

Bu béliimde, bir onceki boliimde tanimlanmis olan dalgacik tipli doniisiim yardi-
muyla, iki parametreye bagli Bessel tipli potansiyellerin tersleri bulunacaktir.

4.1. iki Parametreye Bagh Genellestirilmis Potansiyel Tipli 3% Operatorlerinin Ters-
lerinin Bulunmasi

Bu boliimde biz L, ,, (1 < p < o00) uzaylarinda potansiyel tipli 35¢ operator-
lerinin terslerinin bulunmasi ile ilgilenecegiz. Kullanacagimiz esas teknik ara¢, yukarida
Bolim [3.1fde tanimladigimiz dalgacik tipli doniisiim olacaktir.

Potansiyel tipli operatordeki 8 € (0, 00) parametresinin ve x Ol¢iimiiniin se¢imi
bizim elimizde oldugundan, onlari ¢esitli sekilde secerek farkl ters doniisiim formiilleri
elde edebiliriz.

S6z konusu potansiyel tipli operatorlerinin terslerini bulmak i¢in asagidaki Lemma
cok onemlidir. Bu Lemma, Rubin/in (1999) makalesindeki Lemma 1.3’{in 6zel halidir.

Lemma 4.1. y, [0,00) araliginda sonlu Borel olgiimii olsun ve bu dl¢iimiin (0 + 1) mer-
tebeden Riemann-Liouville kesirsel integrali soyle tanimlansin:

S

/ (s — 1) du(t), (s > 0,6 > 0). (4.1

0

(1) (s) = ﬁ

Kp(s) == (I"T'w) (s), (0 < s < o0) (4.2)

®w | =

diyelim. . ol¢gtimii asagidaki ozelliklere sahip olsun:

Bir v > 0 sayisi icin

oo

/ £ || (£) < oo (4.3)
1
/tjdu(t) =0;7=0,1,2,3...,[0] 4.4)

0

(burada, 0] ile 0 sayisinin tam kismu gosterilmigtir.)
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Bu durumda, Kj(s) fonksiyonu, azalan ve integrallenen majoranta sahip olup,

4 [e’e) )
N L(-6) [o'du(o). 041,23, ise
Co, = /Kg(S)dS = 0 . 4.5)
0 (—=1)% %/779 Inndu(n), 6=1,2,3,..ise
\ 0 J

esitligi saglanir. Ayrica, fi ile p Ol¢tiimiiniin Laplace doniisiimii gosterilirse, yani,

o0

t) = / e du(n)

0

seklinde tanimlanirsa,

o0

Co, = / t 10 (t)dt (4.6)

0

esitligi saglanir.

Not 4.2. Ozel durumda, 0 < 0 < 1 alirsak, yukaridaki , kosullart ve
ifadesi ¢cok daha basit sekil alir.

o0

[l ) < ox; @7

1

/ du(t) = 0; (4.8)

0

Co, = / Ky(s)ds =T (—6) / n’du(n). (4.9)
0 0

Not 4.3. Asagida, her yerde Cy, # 0 oldugunu varsayacagiz. Bu kosulu saglayan [
olciimlerine cegitli ornekler bu boliimiin sonunda verilecektir.
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Lemmad4.4. n > 1, a >0, 8 > 0 olsun. O halde,

n a

2y oy r(s) 1 5

JrEt -3 e = — T - 1
J r (1 + B) U

(Bu esitlik, \Gradshteyn ve Ryzhik (1994) kaynagindaki 3.238(3) numarali formiilden elde

edilebilir.)

Lemma 4.5. 35 ve B,gﬁ) operatorleri Ly, = L, (R}), (1 < p < 00, Leey = Cp)
uzaylarinda komiitatif operatorlerdir (yani, degisme ozellikleri vardir: ¥f € L, , icin
338" f = B35/)

Kamt. Her ¢ € S(R?}) igin S‘sgl’p’t(ﬁ )gp = Bgﬁ )E‘sggp esitligi, her iki tarafa Fourier-Bessel
doniistimii uygulayarak elde edilebilir. Gergekten,

o

S5 @) = (1+ 1) 7 f()

ve
4118 A
(BPp) (@) = e p(x)
oldugundan,
A o
(93870) ()= (14 1al”) " e )
ve

_a
B

(57350) " (0) = " (14 1a") 7 ()

saglanir. Yukaridaki iki esitli§in sag taraflar1 ayn1 oldugundan, sol taraflar1 da ayni ola-
caktir.

Buradan da, her ¢ € S(R’) igin SgB,f’B )gp = B,Eﬁ )%ggo saglanir.

S6z konusu esitligin, her ¢ € L, , igin saglanmasi, Schwartz’mn S(R"} ) uzayimnin,
L, ,’de yogun olmasinin bir sonucudur. Yani, A = %ng’g ) ve B = Bt(ﬁ )%g operatorlerini

tammlarsak, 33 : Ly, — Ly, ve Bgﬂ ) L,, — L,, siirh oldugundan, A ve B’nin her
ikisi de L, ,’den L, ,’ye sinirl operatorlerdir.

O halde, fonksiyonel Analizin bilinen teoreminden, L, ,’niin yogun alt kiimesi

olan S(R? )’dan alinmig her ¢ i¢in Ay = By saglandigia gore, her ¢ € Ly, (1 < p <
00; Lo, = Cp) igin Ap = By saglanir. [
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Simdi, calismamizin esas teoremlerinden birini ifade edelim.

Bu teoremde, potansiyel tipli 33 operatdrleri ailesinin tersleri, Bolim te ta-

nimladigimiz A = .A,% dalgacik tipli doniisiimler ailesi yardimiyla bulunacaktir..

S6z konusu teoremin ispati, I.Aliev ve B.Rubin tarafindan |Aliev ve Rubin| (2005)
makalesinde gelistirilmis olan genel bir metoda dayanacaktir (Bu metodun bagka uygula-
malar icin Aliev vd (2008)), Aliev| (2009), Aliev ve Saglik (2016) makalelerine bakilabi-
lir).

S0z konusu teoremin ispatinda, Reel Analizin, noktasal yakinsama ile ilgili agag1-
daki tinlii lemmasina ihtiyacimiz olacaktir.

Lemma 4.6. (Stein ve Weiss (1971)), |Duoandikoetxea (2001) ) (X, m) bir dlgiim uzayt
olsun. {1.}_., lineer operatorler ailesi L,(X,m), (1 < p < 00) uzaymnda tammlanmus
olsun. f € L,(X, m) olmak iizere,

sup [(T2f)(2)| = (T"f)(x)

e>0

diyelim. T* sub-lineer operatériiniin zayif (p, q) tipli oldugunu, yani, her \ > 0 icin

4 cllfll,\*

ply e X (7)) > Ay = | —
saglandigini varsayalim. Eger X ’in yogun bir alt kiimesinden alinmis her x icin

lim(72f)(z) = f(x)
saglanmirsa, o halde, hemen hemen her x € X icin

(T2 f)(z) = f(x)

e—0
saglanr.
Teorem 4.7. G ifadesi, p € Ly, (R’}r), (1 < p < o) fonksiyonunun genellestirilmis
ve iki parametreye bagli potansiyeli olsun. Dalgacik tipli doniisiim olarak adlandirilan
A=A£ﬁ,), operatorii Sformiiliindeki gibi tamimlansin. Ayrica, [0, 00) araliginda veril-

mig sonlu Borel élgiimii ji Lemma . 1] deki (4.3) ve (4.4) kosullarini saglasn.

O halde, C' = Cs , sayist @)@) Sformiilleriyle tamimlanmak iizere,

[ e dt
/ t75 (ASGe) (z,t) = Co(x) (4.10)

0
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esitligi saglanir. Burada,

[ it [oa, dt
t75 (ASGe) (x,t) = ll_r}[l) t75 (ASGe) (2, 1) n (4.11)
0 €

olup, séz konusu limit L, , uzayimin normu anlaminda, veya, h.h.x € R} icin noktasal
limit olarak diisiiniilmektedir. Bundan bagska, p € Cy ise, yakinsama tiim R’} uzayinda
diizgiin yakinsamadir.

Sonuc¢ 4.8. 3 > « olsun. Bu durumda, [%} = 0 olacagindan (4.10) formiilii, . iizerine

daha az kosul konularak saglanir:

a) / td || (£) < oo;
1

b) 7du(t) = 0.

Sonuc 4.9. Sformiiliiniin bir baska yorumu, integral denklemler ile ilgilidir:

Sonlu Borel ol¢iimii i, Lemma ’deki ve kosullarint saglasin. Bﬁﬁ )30
yarigrubu da (3.16) formiiliindeki gibi tanimlansin. Asagidaki sekilde integral denklemine

bakalim:

[e.9]

/ e BT = f(a), (v € RY).
0

Burada, f € Ly, (R") verilmis fonksiyon olup,

o0

iy [+ (A7) (0.0) T

limiti h.h.x € RY icin var olsun. O halde, C' = C's ,, olmak iizere, h.h.x € R} i¢in

oo = 1 (%) 7 £F (Af) () &

saglanir.

Sonug 4.10. Teoremde 3 = 2 koyarsak, Laplace-Bessel diferansiyel operatoriiniin do-
gurdugu Bessel potansiyelleri ve § = 1 koyarsak, yine Laplace-Bessel diferansiyel ope-
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ratoriiniin dogurdugu Flett potansiyelleri icin ters bulma formiilii elde edilir.

Not 4.11. 0 < o, B < o0 olmak iizere, 1 olciimii icin

t5d|u|(t) <ocoveC_a, =T (g) t 5 du(t) # 0
/ »=rG)]

kosullart saglandiginda, iki parametreye bagl 3G, (p € Ly, 1 < p < 00) potansiyeller
ailesi, yukarida formiiliinde tamimladigimiz dalgacik tipli doniisiimiin kullanildig
bir integral gdsterime sahiptir. Daha dogrusu, A operatorii, Sformiiliindeki dalgacik
tipli doniisiim olmak iizere, h.h. v € R’} icin

o0

77% 4.12)

590

esitligi saglanir.

Gergekten (3.34) formiilii ve Fubini teoremi kullanilirsa,

5~ (Ap)(z,n)dn = /”g_l /e_tngﬁf)ﬁo(x)d“(” di
0 . y
:/ /6—tnn(§18§5)<,0(w)d77 dp(t)
0 0

(n yerine 1/t koyuyoruz)

(e o] o0

| [ taue | [ [emp B swan

0 0

—r (%) /tgdu(t) e "5 BB p(x)dn
0 g (%> 0

= C_3,S50()

Simdi de Fubini teoreminin uygulanabilirligini gdsterelim.

for (e B oo | atul ) d

0

< sup B0 p(o)| fos~ (Jealul @) an

s 0 0
< ((3.24) esitsizligini kullaniyoruz ve 7 yerine 1)/t yaziyoruz)
<

cM,o(z)T (%) ft_%d \p| (t) < oo, (hh. z € RY igin).
0
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Boylece, yukarida kath integral yakinsak oldu. Dolayisiyla, Fubini teoremi uygulanabilir.

Not 4.12. ([{.12)) formiilii ile (4.10) formiilii kryaslanirsa, (4.10) formiiliiniin, ({#.12) de, o

parametresi yerine, formal olarak (—a) koyarak elde edildigi gozlemlenebilir.
Simdi, ¢calismamizin esas teoremlerinden biri Teorem 4.7 nin kanitina gecelim.

Kamt. ¢ € Ly, (R") olsun. Lemma ’1 kullanarak, asagidakileri yazabiriz.
(AS50) (2,0) = [e ' BY SGp(w)dp(s)
0
= [¢ 358, o (a)du(s)
0

-20) 1 °°

e (]9 e BOBD ayir ) dus)
=10 0

—
/N
I

e ([ e B ptaar ) auts
rs)e o
(degisken degistirme: 7 yerine, 7 — st koyuyoruz.)
dT) dpu(s).

-1

e B ()
0 0

- (1>70(T<r—st>§

£-1 a_ . 51
Burada, 7 > st ise, (T —st)] = (7 —st)? ' ver < stise, (T —st)] = 0 olarak
tanimlanmustir.

Simdi, Fubini teoremi kullanilirsa, verilmis € > 0 i¢in

1 oo o0 o0 o
= / /e_TB$B)¢(x) /t 5 (1 —st)? Yat | dr du(s)
I 3) o \o e
U T oo | T [(Jrsmr(m o
= e "B p(x) SB t7s (——t) dt | du(s) p dr
g0 )
BJ) o 0 €
o
( <Z — t) ’ fonksiyonunun tanimini kullaniyoruz)
S +
R — [ | [ras 5
= /e B p(x) /sﬁ /t s (— —t) dt | du(s) p dr
r (%) 0 0 € i

(7 yerine €7 koyuyoruz)
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0o T s

]_ [ [ Z-1
=¢ /e”Béf)go(x) /sﬂ_l /t_ﬂ_ (6—7— — t) ©odt | duls) p dr
T <a 4 S

B8]0

(t yerine et koyuyoruz)

T
s

1 oo T . . gil
= —/ BB (1) /361 /tﬁl (g — t) Todt | du(s) b dr
I (E) 0 0 1
(Lemma{.4]yi kullamyoruz)
1 T J— % S /T 3
= BP p(x — (— - t) du(s) p dr
a a T \S
T (3) 0 0 1+ B
(@.1)) ve (@.2) ifadelerini kullamyoruz)
= / e T BY p(x)Ka (1)dr (4.13)

0

olur. Burada, (4.2)) tanimlamasina uygun olarak,

T

Ka(r) = 1;/ (r— )% du(s).

TF(1+%)O

Teoremin ispatinin kalan kismi; Lemma [3.3]1 kullanarak elde edilir. Daha dogrusu, (4.5)
ve formiiliindeki

=Co, = /Kg(T)dT
0

notasyonuna dayanarak (.13)) formiiliinden sunlar1 yazabiliriz:
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Minkowski esitsizligi kullanilirsa,

o0

[r3 sz 0dt - Cet
€ D,V
< [er 820 -l |Ks(r)]ar
0
+||<,0||p7y/(1—6_”:) K%(T)‘dT. (4.14)

0

Bundan sonraki asamada, Lebesgue Baskin Yakinsama Teoremini kullanacagiz (Folland
(1984)) ).

O<e™<L;|l—eT" <2

[e.9]

/‘Ka 'dT<OO

0

1By — SOH,,V—HB ol|, +Hs0||py < CﬁH%Opr

B

Lebesgue teoremme gore, (4.14) e§1ts1zhg1n1n sag tarafinin ¢ — 0 i¢in limiti sifira esit
olur. O halde,

oldugundan ve 11m ‘

= 0; hr%( — e~ ™) = 0 esitlikleri saglandigindan,

o

lim /t_g_l(ASggo)( tydt — Co|l =0 (4.15)

e—0

€ DV

saglanir.

Bu sonuncu esitlik sdyle de yazilabilir:

o0

(Lpo) = lim [ 757 (ASG) (2, 1)dt = Cp(x).

Burada, p = oo durumunda, L., = Cj kabul ettigimizden, (4.15)’e gore ¢ € Cj igin
yakinsama diizgiin yakinsamadir.
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Simdi de, £ > 0 parametresine bagl olan

o0

/t‘%‘—l(A%%@)(x,t)dt, (z €RL: 0 € Lyy)

€

fonksiyonlar ailesinin ¢ — 0 igin C'¢(x) degerine noktasal yakinsakligini inceleyelim.

Reel analizin temel teoremlerinden bilindigi iizere, boyle durumlarda maksimal
operator teknigi uygulanir. Daha dogrusu, Lemma[4.6] y1 uygulayacagiz.

Lemma ’y1 uygulayabilmemiz i¢in, Lemmada bahsi gecen {7.}__ , lineer ope-
ratorler ailesini soyle tanimlayalim:

>0
(To0) (@) = / 51 (ASS0) (2, )t (@ € R @ € Ly).

o0

sup (T.i) (2)| = sup | {37 (AS5) (. )
e>0 e>0
@13)

D / B () K5 (r)dr
e>0

<sup‘8(6) ‘/‘Ka

t>0

? cM,p(z)

elde edilir.

Burada, M, ¢, genellesmis kaymanin dogurdugu Hardy-Littlewood maksimal ope-
ratoriidiir.

M, :L,, — L,,, (1 <p<oo)giglive M, : L, — Ly, zayif tipli oldugun-
dan,

T"p(x) = sup [(Tep) ()]

e>0

dersek, 1™ operatoriiniin L,,, — L, , giiclii tipli, L, — L, zayif tipli ve dolayisiyla,
1 <p<ooiginL,, = L,, zayif tipli operator oldugunu sdyleyebiliriz.

Simdi, Ly, ,, (1 < p < 0o) uzayinin yogun alt kiimesi olan CyN L,, , uzaymda T ¢,
(¢ > 0) ailesi ¢’ye diizgiin (dolayistyla, noktasal) yakinsadigindan, Lemma.4f e gore bu
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aile ¢ — 0 i¢in ’ye h.h.her yerde yakinsak olacaktir.

Yani, h.h.z € RY, i¢in

lim [¢5 7 (ASGp) (2, t)dt = Cp(a), [ C=Ca, = /Ka(s)ds
e—0 B’ B
€ 0
saglanacaktir. Teoremin ispat1 bitti. 0

Not 4.13. Teorem .7 nin kullanisli olmast icin, oradaki p ol¢ciimii, C' = C%,u katsayist
stfirdan farkly olacak sekilde alinmalidir. Biz burada, bu teoremin tiim kogullarini (C' =
C%,u = 0 dahil) saglayan 1 dlgiimiine drnekler verelim.

(a) mtamsayisini, m > % olacak sekilde secelim. h = h(t) Schwarz test fonksiyonunu
oyle alalim ki,

a) herk =0,1,2,...icin h®)(0) = 0 olsun;
D) ft%_mh(t)dt # 0 olsun.
0

(Ornegin, h(t) = exp (—t* — %), h(0) = 0 fonksiyonu bunu saglar).
Simdi, ju olgiimiinii soyle tammlayalm: du(t) = h™ (t)dt

b
(Yani, érnegin, her [a,b) € RY araligu igin ju{[a,b)} = [RU™(t)dt).

Kismi integralleme uygulanirsa,

/tkdu(t) = /t’“h“”) (t)dt = t*pm=D | k/tk_lh(m_l)(t)dt
0 0 0

8

= —k [t A4 dt

‘|| O Y~

0,

Yani, her k = 0,1, ..., [%] icin Oftkd,u(t) =0olur. C' = C%# # 0 oldugunu gos-
terelim. Bunun i¢in, C%,u 'niin ifadesini kullanacagiz: C’%# = 51 f(t)dt;
0

() = Je )

Simdi,
() = / e du(n) = / R ()i
0 0

= ...(m defa kismi integralleme uyguluyoruz). ..
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= tm/et”h(n)dn
0
ifadesini, yukaridaki formiilde yerine koyarsak,

o0 o0

Cop = [r57em | [emtapan | a
0 0
= /h(n) /tmgle_t"dt dn
0 0
(icerideki integralde, t yerine t/n koyalim)
= /h(n)r]g_mdn/tm_g_le_tdt
0 0

= W (m - %) O/h(n)ngmdn # 0.

Sonug: ju 6lgiimii, yukaridaki gibi, du(t) = hU (t)dt olarak tamimlansin. O halde,
Cc=rT (m — %) th(n)n%fmdn olmak iizere, her ¢ € L, (R"}) icin

[e3
0

esitligi h.h.x € R", icin saglanir.
(b) Simdi, u dlgz‘imu’ olarak, Dirac d-fonksiyonelinin kullamildig tinlii bir ayrik dlciim
alalim: m > % olmak lizere,

p=y (m)(—l)j%

3=0 \'J

E\Q

) (z,t)dt = Cop(x)

burada, ¢ ; fonksiyoneli, her siirekli f fonksiyonuna soyle etki ediyor:

Herk =0,1,2,...,m — Ligin [g(t)du(t) = > ( )(=1)g(j) oldugunu kulla-
0 7=0
nalim.

/t’“du = i(@)(—l)j<5jatk>
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oldugu iyi biliniyor (Samko vd (1993) ).
Simdi, C = C%,u # 0 oldugunu gorelim.
Yine, ({.6) formiiliinii kullanacagiz.

Cay = /t_g_lﬂ(t)dt

— /t—g—l / e Mdu(n) | dt
_ 77:-5—1 (ijo (’;?)(_1)Je—w) dt

_ /t‘él (1—e)™dt >0
0
oldugu goriiliir. Yani, Teoremd.7'nin tiim kosullar: saglanr.

O halde,

C=Cop= ;fotgl (1—e")™dt

olmak iizere, her ¢ € L, (R"}) icin

ft—"l( %) (z,t)dt = Cop(z), (h.h.x € RY) (4.16)
olur.
Yukaridaki v 6lgiimiiniin dogurdugu dalgacik tipli doniisiim, Sformiiliine
gore,

(ANet) = [ B fa)dutn

_ m —jtg(B) (8) .
_ z(j)< e B f(a), (B f(x) = F(x)

Jj=0

olur. Bunu, @)’da kullanirsak, h.h.x € R} icin

715—%—1 <]§jo (?‘) (—1)je—jt5§f>sg¢(x)> dt = Cp(x)

saglanir.

(c) B > « olmast durumunda, [%] = 0 oldugundan, Sonug ’a’e belirtildigi iizere,

W tizerine konulan kosullar ¢cok daha zayif olur:
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(i) /tdm] (1) < o0,
1

(ii) / du(t) = 0.
0

Buna uygun olarak, (4.9) formiiliine gire, C' sabiti de

o a
C= O%# =T (_B) !tﬁdﬂ(t)

Sformiiliiyle hesaplanir.

Bu ozellige sahip 1 ol¢giimii ornekleri cok sayida kurulabilir.

Ornegin,

1) du(t) = (1 —t)etdt, (0 < t < o) seklinde tamimlanmg olgiim yukaridaki
ozellikleri saglar.

2)0 < a < b < oo ve h(t) fonksiyonu |a, b| araliginda siirekli, pozitif fonksiyon

olmak iizere,

b
1

T b—ua

g(t) = h(t) h(s)ds, (a <t <b)

vet € R\ [a,b] icin g(t) = O tamumlanrsa, du(t) = g(t)dt seklindeki élciim de soz
konusu ozellikleri saglar (Baska ornekler icin |Aliev ve Saglik (2016) makalesine
bakilabilir).

Ornegin, du(t) = (1 —t)e 'dt, (0 < t < oo) dlgiimii alimirsa, Teorem ’a’eki
C katsayisi, 5 > « kosulu altinda asagidaki gibi olur:

C=Csy=T (—%) O/tg(l —t)e tdt # 0.

3) Tdu(t) =0 ve Td || (t) < oo kosullarimi saglayan olgiim drneklerinin genig
sm?ﬁm soyle elde eldebiliriz:

0 < t < oo olmak iizere, a(t) > 0 ve b(t) > 0 fonksiyonlari siirekli olup
Ta(t)dt =a < oo Tb(t)dt = b < oo saglansin. o(t) = ba(t) — ab(t) diye-
?im. O halde, ’

du(t) = (ba(t) — ab(t)) dt, (0 <t < o)
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dersek, [du(t) =0ve [d|p|(t) <bfa(t)dt + a[b(t)dt = 2ab saglanr:
0 1 0 0

Ornegin, a(t) = e™"; b(t) = e * aliursa, [a(t)dt =1; [b(t)dt = % oldugundan
0 0

du(t) = (3e" — e7) dt blgiimii igin [du(t) = 0ve [d|u| (t) < 1 saglanr.
0 1
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5.SONUC

Bu calisma kapsaminda, Laplace-Bessel diferansiyel operatoriiniin dogurdugu Bes-
sel potansiyellerinin genellesmesi olan, iki parametreye bagh 35 operatorleri ailesi ta-
mimlanarak, agirhikli L, , (R ) uzaylarinda davranigi incelenmis ve onlarin tersini ifade
eden formiiller gelistirilmistir. Bunun icin, genellestirilmis beta-yarigrup diye adlandiri-
lan Bt(ﬁ ), (t > 0) yarigrubu vasitastyla bir dalgacik (wavelet) tipli doniisiim tanimlanmustir.
Tanimlanan bu dalgacik tipli doniigiim, 33 potansiyellerinin terslerini bulmak i¢in kulla-
nilmistir.
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