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GENELLEŞMESİ
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edilmiştir.
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incelenmiş ve özel bir dalgacık tipli dönüşüm yardımıyla bu operatörlerin tersleri bulun-
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Assoc. Prof. Dr. Simten BAYRAKÇI
Asst. Prof. Dr. Zafer ŞANLI
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ÖNSÖZ

Klasik Fourier Harmonik Analizinin ve onun uygulamalarının çok önemli tek-
nik araçlarından biri Bessel potansiyelleridir. Bessel potansiyelleri, I birim operatör ve
∆ Laplace diferansiyel operatörü olmak üzere, (I −∆) diferansiyel operatörünün ne-
gatif "kesirsel" kuvvetleri olarak yorumlanan, konvolusyon tipli integral operatörlerdir.
Laplace-Bessel singüler diferansiyel operatörü ile ilintili olan Fourier-Bessel Harmonik
Analizinin temel teknik araçlarından biri, Klasik Fourier Harmonik Analizinde olduğu
gibi, genelleşmiş kaymanın (Bessel kaymasının) doğurduğu Bessel potansiyelleridir.

Bu çalışmada, genelleşmiş kaymanın doğurduğu Bessel ve Flett potansiyellerinin
her ikisini de genelleyen ve iki parametreye bağlı olan potansiyel tipli integral operatörler
ailesi tanımlanarak, özel bir yarıgrubun doğurduğu dalgacık (wavelet) tipli bir dönüşüm
yardımıyla, söz konusu potansiyel tipli integral operatörlerin tersleri bulunmuştur.

Bu çalışma boyunca bilgisini ve zamanını benimle paylaşan, desteğini esirgeme-
yen danışmanım Sayın Prof. Dr. İlham ALİYEV’e teşekkürlerimi sunarım.
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iv



GİRİŞ Sinem YÜCEL

1. GİRİŞ

Harmonik Analizin fikir ve yöntemleri, çağdaş matematiğin birçok dallarında kul-
lanım alanı bulduğu gibi, fizik ve mühendisliğin de çeşitli alanlarında uygulanmakta-
dır. Temelinde klasik Fourier Analizi yatan çağdaş Harmonik Analizin geliştirdiği teknik
araçlar içerisinde Fourier serileri, Fourier dönüşümleri, potansiyel tipli integral operatör-
ler, singüler integraller, maksimal operatörler, çeşitli fonksiyonel uzaylar v.b. önemli rol
oynamaktadır.

Bazı ünlü diferansiyel operatörlerin negatif kesirsel kuvvetleri olarak yorumlanan
potansiyel tipli operatörler içinde en ünlüleri Bessel potansiyelleri, Riesz potansiyelleri,
parabolik Bessel potansiyelleri ve parabolik Riesz potansiyelleri olarak bilinmektedir.
Klasik Bessel potansiyelleri Fourier dönüşümü dilinde,

(=αϕ)∧ (x) =
(
1 + |x|2

)−α
2 ϕ̂(x), (x ∈ Rn, 0 < α <∞)

eşitliği ile tanımlanmakta ve I birim operatör, ∆ =
n∑
k=1

∂2

∂x2k
Laplace diferansiyel operatörü

olmak üzere, (I −∆) operatörünün
(
−α

2

)
kuvveti olarak yorumlanmaktadır. Bu potansi-

yeller, Sobolev uzayları ve başka fonksiyonel uzayların incelenmesinde ve genelleştiril-
mesinde önemli rol oynamaktadır. Öklid kaymasının doğurduğu girişim tipli integral ope-
ratör şeklinde ifade edilebilen Bessel potansiyellerinin bir önemli versiyonu da, Laplace-
Bessel diferansiyel operatörü ile ilintili olan Fourier-Bessel Harmonik Analizinde ortaya
çıkar. Bu Harmonik Analizde, Öklid kaymasının (ötelemesinin) yerini genelleşmiş kayma
operatörü ve Fourier dönüşümünün de yerini Fourier-Bessel dönüşümü diye adlandırılan
dönüşüm almaktadır. Böylece, Fν Fourier-Bessel dönüşümü ve

∆B =
n∑
k=1

∂2

∂x2
k

+Bxn ,
(
Bxn =

∂2

∂x2
n

+
2ν

xn

∂

∂xn
, ν > 0, xn > 0

)
Laplace-Bessel diferansiyel operatörü olmak üzere, genelleşmiş kaymanın doğurduğu
Bessel potansiyelleri

Fν (=αf) (x) =
(
1 + |x|2

)−α
2 Fν(f)(x) ≡ (I −∆B)−

α
2 f(x)

eşitliği ile tanımlanıyor. Bu potansiyel tipli operatörlerin çeşitli özellikleri ve terslerinin
bulunması ile ilgili problemler, Gadjiev ve Aliev (1988b,a), Aliev ve Eryigit (2002), Aliev
vd (2008) ve başka makalelerde incelenmiştir (Aşağıda, 3.1. Bölümde, hem klasik Bessel
potansiyelleri ve hem de Laplace-Bessel diferansiyel operatörünün doğurduğu Bessel tipli
potansiyeller ve onların çeşitli genelleşmeleri ile ilgili ayrıntılı bilgi veriyoruz).

Bu tez çalışmasında, genelleşmiş kaymanın doğurduğu Bessel potansiyelleri ve
Flett potansiyellerinin her ikisini de genelleştiren ve formal olarak,

Fν
(
=αβϕ

)
(ξ) =

(
1 + |ξ|β

)−α
β
Fν(ϕ)(ξ) ≡

(
I + (−∆ν)

β
2

)−α
β
ϕ(ξ)

1



GİRİŞ Sinem YÜCEL

şeklinde tanımlanan, iki parametreye bağlı =αβ operatörleri ailesi ele alınarak incelenmiş-
tir.

Tez, Giriş dahil, yedi bölümden ibarettir. İkinci bölümde, Klasik Fourier Harmonik
Analizinde temel kavram ve bilgiler verilmiştir. Üçüncü ve dördüncü bölümlerde, Fourier-
Bessel Harmonik Analizinin bazı temel kavram ve teoremleri, sırasıyla, tek değişkenli ve
çok değişkenli durumlarda verilmiştir. Beşinci bölümde, Klasik Harmonik Analizdeki ve
genelleşmiş kaymanın doğurduğu Harmonik Analizdeki potansiyeller ve onların çeşitli
genelleştirilmiş versiyonları tanıtılarak, onlarla ilgili bilgiler kronolojik olarak verilmiş-
tir. Tezin esas bölümlerinden biri olan altıncı bölümde, genelleşmiş kaymanın doğurduğu
bir yarıgrup (beta-yarıgrup), bu yarıgrubun doğurduğu bir dalgacık (wavelet) tipli dö-
nüşüm ve iki parametreye bağlı Bessel tipli potansiyel operatörleri tanımlanmıştır. Yine,
tezin esas bölümlerinden biri olan yedinci bölümde, bir önceki bölümde tanımlanmış olan
dalgacık tipli dönüşüm yardımıyla, iki parametreye bağlı Bessel tipli potansiyellerin ters-
leri bulunmuştur. Yedinci bölümün sonunda dalgacık tipli dönüşümün tanımlanmasında
önemli rol oynayan dalgacık tipli ölçüme, çeşitli örnekler verilmiştir.
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KURAMSAL BİLGİLER VE KAYNAK TARAMASI Sinem YÜCEL

2. KURAMSAL BİLGİLER VE KAYNAK TARAMASI

Bu bölümde, Fourier Harmonik ve Fourier-Bessel Harmonik Analizinin bazı temel
kavram ve teoremlerine yer verilecektir.

2.1. Fourier Harmonik Analizinin Bazı Temel Kavram Ve Teoremleri

Öncelikle çok boyutlu Öklid uzayının ve onun bir alt kümesinin tanımını hatırla-
talım:

Rn = {x : x = (x1, x2, ..., xn), xk lar reel sayılardır};

Rn
+ = {x : x ∈ Rn ve xn > 0}.

Rn’de kayma (öteleme) operatörünü τ yx ile gösterelim:

f : Rn → C bir n değişkenli fonksiyon olmak üzere,

τ yxf(x) = f(x+ y), (x, y ∈ Rn).

Rn’de ölçülebilir fonksiyonların klasik Lebesgue uzayı şöyle tanımlanır: 1 ≤ p < ∞
olmak üzere,

Lp ≡ Lp(Rn)

=

f : ‖f‖p =

∫
Rn

|f(x)|p dx

 1
p

<∞

 , (dx = dx1....dxn) (2.1)

Benzer şekilde, Rn
+’da ölçülebilir fonksiyonların ağırlıklı Lebesgue uzayını şöyle tanım-

layalım: 0 < ν <∞ ve 1 ≤ p <∞ olmak üzere,

Lp,ν ≡ Lp,ν(Rn
+) =

f : ‖f‖p,ν =

∫
Rn+

|f(x)|p x2ν
n dx


1
p

<∞

 . (2.2)

C(Rn) ile Rn’de sürekli ve sınırlı fonksiyonlar uzayını gösterelim. Bilindiği gibi, f ∈
C(Rn) olmak üzere, f ’in normu şöyle tanımlanır: ‖f‖ = max

x∈Rn
|f(x)|.

C0(Rn) ile C(Rn)’nin aşağıdaki alt uzayını gösterelim:

C0(Rn) =

{
f : f ∈ C(Rn) ve lim

|x|→∞
f(x) = 0

}
,

(Burada, |x| = (x2
1 + x2

2 + ....+ x2
n)

1
2 Öklid normudur).
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KURAMSAL BİLGİLER VE KAYNAK TARAMASI Sinem YÜCEL

Benzer şekilde,C(Rn
+) ile Rn

+’de sürekli ve sınırlı fonksiyonlar uzayını veC0(Rn
+)

ile de, C(Rn
+) uzayının lim

|x|→∞
f(x) = 0 sağlanan alt uzayını gösterelim.

C∞ ≡ C∞(Rn) ile Rn’de her mertebeden kısmi türevlere sahip fonksiyonlar uza-
yını ve S ≡ S(Rn) ile de aşağıdaki Schwarz test fonksiyonları uzayını gösterelim:

S =

{
f : f ∈ C∞(Rn) ve ∀α,β ∈ Zn+ için sup

x∈Rn

∣∣∣xα ∂β

∂xβ
f(x)

∣∣∣ <∞},

(Burada, xα = xα1
1 x

α2
2 ...x

αn
n ve ∂β

∂xβ
f(x) = ∂β1+....+βn

∂x
β1
1 ...∂x

βn
n

f(x1, .., xn) ).

Örneğin; x ∈ Rn olmak üzere, e−|x|
2

= e−(x21+x22+....+x2n) ∈ S(Rn).

Daha genel olarak, P (x) herhangi n değişkenli polinom ve k ≥ 2 çift tamsayı
olmak üzere f(x) = P (x)e−|x|

k

fonksiyonu S(Rn) uzayındandır.

S(Rn
+) ile S(Rn)’nin, sonuncu xn değişkenine göre çift olan fonksiyonlarından

oluşan alt uzayını gösterelim. Örneğin, k ≥ 2 çift tamsayı ve P (x) = P (x1, ..., xn−1, xn)

polinomu xn’e göre çift fonksiyon ise, f(x) = P (x)e−|x|
k ∈ S(Rn

+) olur.

Şimdi de Lp ve Lp,ν uzaylarında iyi bilinen bazı eşitsizlikleri hatırlatalım.

a) Hölder Eşitsizliği

f ∈ Lp, g ∈ Lq, 1 ≤ p, q < ∞ ve 1
p

+ 1
q

= 1 ise ‖f · g‖1 ≤ ‖f‖p · ‖g‖q; Benzer
şekilde, f ∈ Lp,ν , g ∈ Lq,ν , 1 ≤ p, q <∞ ve 1

p
+ 1

q
= 1 ise ‖f · g‖1,ν ≤ ‖f‖p,ν · ‖g‖q,ν

Not 2.1. Yukarıdaki eşitsizliklerde p =∞ için

‖f‖∞ = ess sup
x∈Rn
|f(x)| ve ‖f‖∞,ν = ess sup

x∈Rn+
|f(x)|

kullanılmıştır.

b) Genelleştirilmiş Minkowski Eşitsizliği

ϕ(x, y) fonksiyonu, Rn
x × Rm

y de ölçülebilir olmak üzere,∥∥∥∥∥∥∥
∫
Rmy

ϕ(x, y)dy

∥∥∥∥∥∥∥
Lp(Rnx)

≤
∫
Rmy

‖ϕ(x, y)‖Lp(Rnx) dy

(bakınız: Folland (1984) ).
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KURAMSAL BİLGİLER VE KAYNAK TARAMASI Sinem YÜCEL

Benzer şekilde, ϕ(x, y) fonksiyonu Rn
+ × Rm

+ de ölçülebilir olmak üzere,∥∥∥∥∥∥∥
∫
Rm+

ϕ(x, y)y2ν
n dy

∥∥∥∥∥∥∥
Lp,ν(Rn+

)

≤
∫
Rm+

‖ϕ(x, y)‖Lp,ν(Rn+) dy (2.3)

eşitsizliği sağlanır.

c) Young Eşitsizliği (Stein ve Weiss (1971), Folland (1984) )

p, q, r ≥ 1 ve 1
q

= 1
p

+ 1
r
− 1 olmak üzere, f ∈ Lp(Rn) ve g ∈ Lr(Rn) ise

h = f ∗ g ∈ Lq(Rn) sağlanır. Dahası,

‖h‖q ≤ ‖f‖p . ‖g‖r . (2.4)

Burada, f ∗ g ifadesi, f ile g’nin klasik girişimi (konvolusyonu) olup,

(f ∗ g)(x) =

∫
Rn

f(y)g(x− y)dy.

Biz, ileride, Öklid kayması (ötelemesi) olarak bilinen τ yxf(x) = f(x + y), (x, y ∈ Rn)
kaymasından farklı bir kayma kullanarak, yukarıdaki eşitsizliğin benzerini f ∈ Lp,ν(Rn

+)
ve g ∈ Lr,ν(Rn

+) fonksiyonlarının genelleşmiş girişimi için vereceğiz.

d) Klasik Kayma Operatörünün Lp Uzaylarında Sürekliliği

τ yxf(x) = f(x + y) şeklinde tanımlanmış klasik kayma operatörünü kısaca τ y ile
gösterelim:

τ yf(x) = f(x+ y).

f ∈ Lp ise, ‖τ yf‖p = ‖f‖p eşitliğinin sağlandığını, integralde değişken değiştirme ile
gösterebiliriz (Yani, τ y : Lp → Lp sınırlı olup, normu 1’dir).

Bundan başka,

lim
|y|→0
‖τ yf − f‖p = 0 (2.5)

sağlanır.

e) Hardy-Littlewood Maksimal Operatörü (fonksiyonu)(Stein (1970) )

L1,loc(Rn) ile, Rn’in her noktasının her δ-komşuluğunda integrallenen fonksiyon-
lar uzayını gösterelim. Ωn ile Rn uzayında B = {y ∈ Rn : |y| ≤ 1} birim yuvarının ölçü-

5



KURAMSAL BİLGİLER VE KAYNAK TARAMASI Sinem YÜCEL

münü ("hacmini") gösterelim. f ∈ L1,loc(Rn) olmak üzere,

(Mf)(x) = sup
0<r<∞

1

Ωnrn

∫
|y|≤r

|f(x− y)| dy (2.6)

fonksiyonuna Hardy-Littlewood maksimal operatörü (fonksiyonu) denir. Yukarıdaki for-
mülde, x− y = z denirse,

(Mf)(x) = sup
Qx

1

|Qx|

∫
Qx

|f(z)| dz (2.7)

yazabiliriz. Burada, supremum, x merkezli tüm Qx yuvarları üzerinden alınmıştır (|Qx|
ile, x merkezli yuvarın hacmi gösterilmiştir).

Teorem 2.2. (Hardy-Littlewood, Stein (1970) ) f ∈ Lp(Rn), (1 ≤ p <∞) olsun.O halde,
öyle bir A = A(n, p) sabiti vardır ki,

‖Mf‖p ≤ A ‖f‖p (2.8)

sağlanır. Başka ifadeyle, M operatörü güçlü (p, p) tipli operatördür. p = 1 durumunda,
M operatörü zayıf (1, 1) tipli operatördür. Yani, her λ > 0 için

µ {x ∈ Rn : (Mf)(x) > λ} ≤ A ‖f‖1

λ
(2.9)

sağlanır. Burada, E ⊂ Rn bir ölçülebilir alt küme olmak üzere, µ(E) ile E kümesinin
Lebesgue ölçümü ("hacmi") gösterilmiştir.

Not 2.3. Her λ > 0 ve 1 ≤ p <∞ için

µ {x ∈ Rn : (Mf)(x) > λ} ≤
(
A ‖f‖p
λ

) 1
p

(2.10)

eşitsizliği de sağlanır. Yani, M operatörü, her p ∈ [1,∞) için zayıf (p, p) tiplidir (Hatır-
latalım ki, güçlü (p, p) tipli bir operatör, hem de zayıf (p, p) tipli olur).

f) Klasik Fourier Dönüşümü

f ∈ L1(Rn) fonksiyonunun Fourier dönüşümü

(Ff)(x) ≡ f̂(x) =

∫
Rn

f(y)e−ix·ydy (2.11)

şeklinde tanımlanıyor. Burada, x = (x1, ...., xn) ve y = (y1, ..., yn) olmak üzere,

6



KURAMSAL BİLGİLER VE KAYNAK TARAMASI Sinem YÜCEL

x · y = x1y1 + ...+ xnyn’dir.

Ters Fourier dönüşümünün ifadesi şöyledir:

(F−1f)(x) ≡ f̌(x) =
1

(2π)n

∫
Rn

f(y)eix·ydy. (2.12)

Not 2.4. Bazı kaynaklarda (örneğin, Stein (1970), Stein ve Weiss (1971) ), f fonksiyonu-
nun Fourier dönüşümü ve ters Fourier dönüşümü aşağıdaki gibi tanımlanır:

(Ff)(x) ≡ f̂(x) =

∫
Rn

f(y)e−i2πx·ydy, (2.13)

(F−1f)(x) ≡ f̌(x) =

∫
Rn

f(y)ei2πx·ydy. (2.14)

Bazı kaynaklarda da, aşağıdaki gösterimler kullanılır.

(Ff)(x) ≡ f̂(x) =
1

(2π)
n
2

∫
Rn

f(y)e−ix·ydy, (2.15)

(F−1f)(x) ≡ f̌(x) =
1

(2π)
n
2

∫
Rn

f(y)eix·ydy. (2.16)

Fourier dönüşümünün aşağıdaki özellikleri iyi bilinmektedir (Stein ve Weiss (1971)

(a)
∥∥∥f̂∥∥∥

∞
≤ ‖f‖1

(b) f ∈ L1 ise f̂ fonksiyonu tüm Rn’de düzgün süreklidir.
(c) f ∈ L1 ise, lim

|x|→∞
f̂(x) = 0’dır.

Yukarıdaki (b) ve (c) bir arada düşünülürse, f̂ ∈ C0 olduğunu söyleyebiriz.
(d) f ∈ L1∩L2 ise, f̂ ∈ L2 olup,

∥∥∥f̂∥∥∥
2

= ‖f‖2 sağlanır (Plancherel-Parseval eşitliği).

Bundan yararlanılarak, Fourier dönüşümü, tüm L2’de izometri olacak şekilde,
L2’ye devam ettirilebilir ve her f ∈ L2 için

∥∥∥f̂∥∥∥
2

= ‖f‖2 sağlanır.

7
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(a) ve (d) yardımıyla (Riesz-Thorin interpolasyon teoremi kullanılarak) aşağıdaki
Hausdorf-Young eşitsizliği kanıtlanabilir (Stein ve Weiss (1971) ):∥∥∥f̂∥∥∥

pp
≤ ‖f‖p , 1 ≤ p ≤ 2,

1

pp
+

1

p
= 1

Başka ifadeyle, Fourier dönüşümü, 1 ≤ p ≤ 2 için Lp’den Lpp’ye sınırlı olup, operatör
normu 1’dir.

Harmonik Analizin en önemli formüllerinden birisi, Fourier dönüşümü ile girişim
(konvolusyon) arasındaki ilişki formülüdür. Yukarıda da belirttiğimiz üzere, iki f, g ∈
L1(Rn) fonksiyonunun girişimi şöyle tanımlanır:

(f ∗ g)(x) =

∫
Rn

f(y)g(x− y)dy.

Fourier dönüşümünün tanımı kullanılarak ve integralde değişken değiştirerek,

F (f ∗ g)(x) = F (f)(x) · F (g)(x)

kısaca,

(f ∗ g)∧ = f̂ · ĝ (2.17)

olduğu gösterilir.

Yani, Fourier dönüşümü zor bir işlem olan ∗ işlemini (konvolusyon "çarpımını"),
daha basit bir işlem olan, fonksiyonların noktasal çarpımına dönüştürür. (2.17)’dan, ters
Fourier dönüşümü yardımıyla, f ∗ g = (f̂ · ĝ)∨ elde edilebilir.

Harmonik Analizde, Fourier dönüşümünün bir diğer önemli özelliği de, türev alma
işlemi (diferansiyel operatör) ile arasındaki ilişki formülünde ortaya çıkar.

F (f)(x) =

∫
Rn

f(y)e−ix·ydy

eşitliğinde x1’e göre (formal) kısmi türevi alınırsa,

∂

∂x1

F (f)(x) =

∫
Rn

f(y)(−iy1)e−ix·ydy,

∂2

∂x2
1

F (f)(x) =

∫
Rn

f(y)(−y2
1)e−ix·ydy

ve buradan,

8
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4 = ∂2

∂x21
+ ......+ ∂2

∂x2n
(Laplace Diferansiyel operatörü) için

(−4)F (f)(x) =

∫
Rn

f(y) |y|2 e−ix·ydy

olur.

Genel olarak, k herhangi pozitif tamsayı ise,

(−4)kF (f)(x) =

∫
Rn

|y|2k f(y)e−ix·ydy (2.18)

elde edilir.

Benzer şekilde, I birim operatörü olmak üzere,

(I −4)F (f)(x) =

∫
Rn

(1 + |y|2)f(y)e−ix·ydy

ve genel olarak,

(I −4)kF (f)(x) =

∫
Rn

(1 + |y|2)kf(y)e−ix·ydy (2.19)

bulunur.

Yukarıdaki (2.18) ve (2.19) formüllerinin f ∈ S(Rn) fonksiyonları için doğru
olduğu kanıtlanabilir.

Diferansiyel operatör ile Fourier dönüşümü arasındaki ilginç bağıntıları ifade eden
daha genel formülleri vermek için kısa bir hazırlık yapalım.

α ∈ Zn+, x ∈ Rn, xα = xα1
1 x

α2
2 ....x

αn
n ve

Dα =
∂α1+α2+....αn

∂xα1
1 ∂x

α2
2 ....∂x

αn
n

=

(
∂

∂x1

)α1
(

∂

∂x2

)α2

....

(
∂

∂xn

)αn
gösterimlerini (kısaltmaları) kullanılarak, P (x) = P (x1, x2, ..., xn) herhangi polinom (n
değişkenli polinom) olmak üzere, P (D) diferansiyel operatörünü şöyle tanımlayalım:

P (D) = P

(
∂

∂x1

,
∂

∂x2

, ....,
∂

∂xn

)
.

9
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Örneğin, x ∈ R3 olup, x = (x1, x2, x3) ve P (x) = x5
1x2x3 − x1x

2
2 + x7

3 için

P (D) =
(

∂
∂x1

)5 (
∂
∂x2

)(
∂
∂x3

)
−
(

∂
∂x1

)(
∂
∂x2

)2

+
(

∂
∂x3

)7

olur.

Fourier dönüşümü ile P (D) diferansiyel operatörü arasındaki bağıntı formülleri
aşağıdaki şekilde ifade edilebilir (Stein ve Weiss (1971) ):

(a) P (D)f̂(x) = (P (−y)f(y))∧ (x)
(b) (P (D)f)∧ (x) = P (ix)f̂(x), (f ∈ S(Rn))

2.2. Fourier-Bessel Harmonik Analizinin Bazı Temel Kavram Ve Teoremleri: Tek
Değişkenli Durum

Analiz ve onun uygulamalarında, Bessel diferansiyel operatörü olarak bilinen aşa-
ğıdaki singüler diferansiyel operatör önemli rol oynamaktadır:

Bt =
d2

dt2
+

2ν

t

d

dt
, (0 < t <∞) (2.20)

Burada, ν > 0 verilmiş bir sabittir. Bu diferansiyel operatörün doğurduğu özel bir kayma
(öteleme) operatörü ile ilgileneceğiz. Bilindiği gibi, tek değişkenli f fonksiyonu türevle-
nen ise, φ = φ(x, y) olmak üzere,

∂
∂x
φ = ∂

∂y
φ

φ |x=0 = f(y)

}
(2.21)

Probleminin çözümü φ = f(x+ y)’dir.

τ yf(x) = f(x + y) dersek, söz konusu problemin çözümünün τ yf(x) kayması
(Öklid kayması) olduğu söylenebilir. Böylece, Öklid kayması ile d

dt
diferansiyel operatörü

arasında sıkı bir bağlantı vardır. Aslında, bu süpriz olmayıp, beklenen bir şeydir. Çünkü,
türevin tanımında kayma operatörü iştirak ediyor:

f ′(x) = lim
h→0

1

h

(
τhf(x)− f(x)

)
. (2.22)

Türevle Öklid kayması arasındaki başka bir derin ilişki de Taylor formülünde ortaya çıkar:

f , x’in bir komşuluğunda analitik ise,

τhf(x) =
∞∑
k=0

f (k)(x)

k!
hk. (2.23)

Yukarıda, (2.20) formülünde verdiğimiz Bessel diferansiyel operatörü için (2.21) proble-
mine benzer bir sınır-değer problemi yazılırsa, bu problemin çözümü de bir kayma (ge-
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nelleştirilmiş kayma veya Bessel kayması) operatörünü doğurur.

Daha doğrusu, Bt = d2

dt2
+ 2ν

t
d
dt

, (0 < t <∞) ve φ = φ(x, y) olmak üzere,

Bxφ = Byφ, (0 < x, y <∞)
φ |x=0 = f(y), ∂

∂x
φ |x=0 = 0

}
(2.24)

Sınır-değer probleminin çözümü,

φ(x, y) =
Γ
(
ν + 1

2

)
Γ (ν) Γ

(
1
2

) π∫
0

f
(√

x2 + y2 + 2xy cos θ
)

sin2ν−1 θdθ

şeklindedir (Delsarte (1938), Levitan (1951) ).

Bu çözümü, Syf(x) ile gösterelim:

Syf(x) =
Γ
(
ν + 1

2

)
Γ (ν) Γ

(
1
2

) π∫
0

f
(√

x2 + y2 + 2xy cos θ
)

sin2ν−1 θdθ. (2.25)

(2.25) formülündeki gibi tanımlanmış Sy operatörüne genelleşmiş kayma (veya, Bessel
kayması) denir. (2.25)’da y = 0 koyarsak,

π∫
0

sin2ν−1 θdθ =
Γ (ν) Γ

(
1
2

)
Γ
(
ν + 1

2

)
eşitliğinden, S0f(x) = f(x) olur.

Bundan başka, (2.25) ifadesindeki integralde, θ = π − ϕ, (0 ≤ ϕ ≤ π) şeklinde
değişken değiştirirsek, cos (π − ϕ) = − cosϕ ve sin (π − ϕ) = sinϕ olduğundan,

Syf(x) =
Γ
(
ν + 1

2

)
Γ (ν) Γ

(
1
2

) π∫
0

f
(√

x2 + y2 − 2xy cosϕ
)

sin2ν−1 ϕdϕ

= S−yf(x) (2.26)

elde ederiz. Yani, Syf(x) = S−yf(x) olur (Öklid kaymasında τ yf(x) = f(x + y) fakat
τ−yf(x) = f(x − y)’dir). Diğer taraftan, (2.25)’ya göre, Syf(x) = Sxf(y) sağlanır
(Öklid kaymasında da, τ yf(x) = f(x+ y) = f(y + x) = τxf(y) sağlandığı açıktır).

Genelleşmiş kayma operatörü Sy’nin bilinen bazı diğer özellikleri aşağıdaki gibi-
dir (Levitan (1951) ):

(a) Lineerlik: Sy (af(x) + bg(x)) = aSyf(x) + bSyg(x);
(b) Pozitiflik: f ≥ 0 ise, Syf(x) ≥ 0 olur;

11
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(c) Sy1 = 1
(d) x ≥ a ≥ 0 için f(x) = 0 ise, |x− y| ≥ a sağlayan x ≥ 0, y ≥ 0 için Syf(x) = 0

olur.
(e) |Syf(x)| ≤ Sy |f(x)| ≤ sup

x≥0
|f(x)|

(f) Vermek istediğimiz özelliği ifade edebilmek için Syf(x) yerine Syxf(x) gösteri-
mini kullanacağız (Bu, özellikle, Syxf(x, t) şeklindeki ifadede işe yarar ve genel-
leşmiş kayma operatörünün hangi değişkene uygulandığını gösterir). Söz konusu
özellik şöyledir: SyxS

z
xf(x) = SzxS

y
xf(x) ve SzyS

y
xf(x) = SzxS

y
xf(x).

İlk eşitlik, önce x’e z kayması ve sonra da x’e y kayması vermek ile, önce x’e y
kayması ve sonra da x’e z kayması vermenin aynı sonuca getirdiğini söyler (Öklid
kaymasında, bu, f(x+ y + z) = f(x+ z + y) demek oluyor).

İkinci eşitlik ise, önce x’e y ve sonra da y’ye z kayması vermek ile, önce x’e y ve
sonra da x’e z kayması vermenin aynı sonuca getirdiğini söyler.

(g) g ve f fonksiyonları [0,∞)’da ölçülebilir olup,
∞∫

0

|f(t)| t2νdt <∞ ve

∞∫
0

|g(t)| t2νdt <∞ ise,

∞∫
0

Syf(x)g(y)y2νdy =

∞∫
0

f(y)Syg(x)y2νdy (2.27)

sağlanır. f ve g’den biri sınırlı ve diğeri için integral yakınsak ise, (2.27) eşitliği
yine sağlanır. Özel halde, g = 1 alınırsa,

∞∫
0

Syf(x)y2νdy =

∞∫
0

f(y)y2νdy (2.28)

olur.Yukarıdaki (2.27) eşitliği, klasik Öklid kaymasının doğurduğu girişim (kon-
volusyon) için f ∗ g = g ∗ f eşitliğinin, yani açık yazılırsa,

∞∫
−∞

f(x− y)g(y)dy =

∞∫
−∞

f(y)g(x− y)dy

eşitliğinin genelleşmiş kayma (Bessel kayması) için benzeridir. Yani,

(f ~ g)(x) =

∞∫
0

Syf(x)g(y)y2νdy (2.29)

dersek, (2.27) şöyle yazılabilir: f ~ g = g ~ f . Yukarıdaki f ~ g fonksiyonuna,
f ile g’nin genelleşmiş (Bessel) girişimi denir.

Yukarıdaki (2.28) eşitliği de, klasik Öklid kayması durumunda iyi bilinen ve her
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x ∈ (−∞,∞) için sağlanan

∞∫
−∞

f(x∓ y)dy =

∞∫
−∞

f(t)dt

eşitliğinin benzeridir.
(h) Klasik Fourier dönüşümü, girişim işlemini, noktasal çarpmaya dönüştürüyor. Yani,

f∧(t) =

∞∫
−∞

f(x)e−ixtdx

dersek, (f ∗ g)∧(t) = f∧(t)g∧(t) olur.

(2.29) ile tanımlanan Bessel girişimini, iki fonksiyonun noktasal çarpımına dönüş-
türen özel bir integral dönüşüm vardır. Fourier-Bessel dönüşümü diye adlandırılan
bu integral dönüşümü tanımlayalım. f fonksiyonu için,
∞∫
0

|f(t)| t2νdt <∞ sağlansın. O halde, onun Fourier-Bessel dönüşümü,

(FBf)(x) =

∞∫
0

f(t)jν− 1
2
(xt)t2νdt, (0 ≤ x <∞) (2.30)

formülüyle tanımlanıyor.

Burada, jp(t),
(
p > −1

2

)
fonksiyonu, normalleştirilmiş Bessel fonksiyonu olup,

özel fonksiyonlar sınıfında iyi bilinen ve birinci tip Bessel fonksiyonu diye adlan-
dırılan Jp(t) fonksiyonu yardımıyla ifadesi şöyledir:

jp(t) = 2pΓ (p+ 1)
Jp(t)

tp
, (0 < t <∞); jp(0) = 1. (2.31)

Normalleştirilmiş Bessel fonksiyonu jp(t), aslında, Bessel diferansiyel operatörü-
nün, jp(0) = 1, j′p(0) = 0 koşullarını sağlayan özvektörüdür (öz fonksiyonudur).
Başka ifadeyle her λ > 0 için

Btjp(λt) = −λ2jp(λt), jp(0) = 1, j′p(0) = 0 (2.32)

(bakınız: Levitan (1951) )

Not 2.5. Klasik Fourier dönüşümünde integral operatörünün çekirdeği olan e−ixt fonksi-
yonu, d

dt
diferansiyel operatörünün özvektörüdür:

d
dt
e−ixt = (−ix)e−ixt . Ayrıca, e−ixt |x=0 = 1 sağlanır. Dolayısıyla, klasik Fo-

urier analizinde e−ixt’nin oynadığı rolü, Bessel Harmonik Analizinde jp(xt) fonksiyonu
üstlenmektedir.
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(2.30) formülüyle tanımlanan Fourier-Bessel dönüşümü, (2.29) ile tanımlanan Bes-
sel girişimini noktasal çarpmaya dönüştürüyor (Levitan (1951) ):

FB(f ~ g)(t) = FB(f)(t) · FB(g)(t), (0 ≤ t <∞). (2.33)

Bu formül, kısaca, şöyle yazılabilir: FB(f ~ g) = FBf · FBg

2.3. Fourier-Bessel Harmonik Analizinin Bazı Temel Kavram Ve Teoremleri: Çok
Değişkenli Durum

Bessel diferansiyel operatörü ile (veya, Bessel kayması ile) ilişkilendirilen ve Fo-
urier Bessel Harmonik Analizi diye adlandırılan Harmonik Analizin çok boyutlu (çok
değişkenli) versiyonu şöyle oluşturulabilir:

Tüm değişkenlere göre Bessel diferansiyel operatörü uygulanarak veya k tane de-
ğişkene göre Bessel ve (n − k) değişkene göre klasik Laplace diferansiyel operatörü
uygulanarak, uygun Harmonik Analiz oluşturulabilir.

Kayma (öteleme) operatörü dilinde dersek, girişim oluşturulduğu zaman, n de-
ğişkenin tamamına genelleşmiş (Bessel) kayması uygulanarak, veya, k değişkenine göre
Bessel kayması ve (n−k) değişkenine göre de klasik Öklid kayması uygulanarak "hibrit"
girişim operatörü elde edilebilir.

Buna uygun olarak da, n boyutlu Fourier-Bessel dönüşümünü, değişkenlerin ta-
mamına (2.30)’deki dönüşüm uygulayarak tanımlayabiliriz, veyahutta, k değişkene göre
(2.30)’deki dönüşümü ve (n − k) değişkene göre klasik Fourier dönüşümü uygulayarak,
"hibrit" Fourier-Bessel dönüşümü tanımlarız.

Bahsi geçen genelleşmelerin her ikisi ile ilgili çok sayıda makale ve kitap yazıl-
mıştır.

(bakınız: Kipriyanov (1967), Lyakhov (1983), Stempak (1986), Gadjiev ve Aliev
(1988b), Kipriyanov (1997), Trimèche (1997), Aliev ve Bayrakci (1998), Guliev (2003) )

Biz bu çalışmamızda, Rn
+ = {x ∈ Rn : x = (x1, x2, .., xn), xn > 0} uzayında ta-

nımlanmış fonksiyonların, ilk (n − 1) değişkeni olan x′ = (x1, x2, .., xn−1) değişkenine
klasik Öklid kayması ve sonuncu xn > 0 değişkenine de Bessel kayması uygulayarak,
ortaya çıkan genelleşmiş kayma (öteleme) operatörünü ve onun doğurduğu genelleşmiş
girişim operatörünü kullanacağız.

Böylece, 1 ≤ p <∞ ve ν > 0 olmak üzere Lp,ν ≡ Lp,ν(Rn
+) uzayı (2.2)’deki gibi

tanımlanmış olsun ve f ∈ Lp,ν fonksiyonu verilsin. Bu f fonksiyonuna aşağıdaki şekilde
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tanımlanmış genelleşmiş kayma ("hibrit" kayma) operatörünü uygulayacağız:

T yf(x) =
Γ
(
ν + 1

2

)
Γ (ν) Γ

(
1
2

) π∫
0

f
(
x′ − y′,

√
x2
n + y2

n − 2xnyn cos θ
)

sin2ν−1 θdθ

(2.34)

Görüldüğü gibi, genelleşmiş kayma operatörü diye adlandıracağımız T y operatörü, x =
(x′, xn), y = (y′, yn), (x′ = (x1, .., xn−1), y′ = (y1, y2, .., yn−1) olmak üzere, ilk (n − 1)
değişken olan x′ = (x1, x2, .., xn−1) değişkenine klasik Öklid kayması ve sonuncu xn
değişkenine (2.25) ile tanımlanan Bessel kayması uygulanarak elde edilmiştir.

Öklid kaymasının ve Bessel kaymasının bilinen özellikleri kullanılarak, onların
kompozisyonu (bileşkesi) olarak ortaya çıkan T y−genelleşmiş öteleme operatörünün sağ-
ladığı özellikler yazılabilir.

Örneğin, f ve g fonksiyonlarının genelleşmiş girişimi, (2.34)’de tanımlanmış T y

genelleşmiş kayma operatörü yardımıyla

(f ~ g)(x) =

∫
Rn+

f(y)T yg(x)y2ν
n dy, (x ∈ Rn

+) (2.35)

şeklinde tanımlanırsa, f ~ g = g ~ f olduğu ve f ∈ Lp,ν , g ∈ Lq,ν için Young eşitsizliği
denilen

‖f ~ g‖r,ν ≤ ‖f‖p,ν ‖g‖q,ν , 1 ≤ p, q, r <∞,
1

r
=

1

p
+

1

q
− 1 (2.36)

eşitsizliği sağlanır (Kipriyanov (1997), Aliev ve Bayrakci (1998) ).

Bundan başka, f ∈ L1,ν fonksiyonunun hibrit Fourier-Bessel dönüşümü de, ilk
(n − 1) değişkene göre klasik Fourier dönüşümü ve sonuncu yn değişkenine göre de
(2.30)’de verilen Fourier-Bessel dönüşümü uygulanarak, aşağıdaki şekilde tanımlanabilir:

(Fνf)(x) =

∫
Rn+

f(y)e−ix
′y′jν− 1

2
(xnyn)y2ν

n dy, (x ∈ Rn
+). (2.37)

Burada, x′ · y′ = x1y1 + ....+ xn−1yn−1 olup, x′ ve y′ vektörlerinin iç çarpımıdır.

Uygun ters Fourier-Bessel dönüşümü de aşağıdaki şekilde tanımlanır: x = (x′, xn)
olmak üzere,

(F−1
ν f)(x) = cν(n)(Fνf)(−x′, xn). (2.38)
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Burada,

cν(n) =

[
(2π)n−122ν−1Γ2

(
2ν + 1

2

)]−1

.

Yukarıdaki (2.37) formülüyle tanımlanan Fourier-Bessel dönüşümü, (2.35) yardımıyla ta-
nımlanan genelleşmiş girişim işlemini, iki fonksiyonun noktasal çarpmasına dönüştürü-
yor:

Fν(f ~ g)(x) = (Fνf)(x)(Fνg)(x), (x ∈ Rn
+). (2.39)

Fνf = f̂ kısaltması kullanılırsa, yukarıdaki eşitlik, kısaca şöyle yazılabilir:

(f ~ g)∧ = f̂ · ĝ.

Fourier-Bessel dönüşümünün, diferansiyel operatörlerle ilişkisi de iyi bilinmekte-
dir. S

(
Rn

+

)
, Rn

+ uzayında verilmiş Schwarz test fonksiyonları uzayı olmak üzere,

Fν : S(Rn
+)→ S(Rn

+) bir otomorfizm olduğu bilinmektedir (Kipriyanov (1967) ).
Bunun yanısıra, n değişkenli olup, sonuncu değişkene göre çift olan herhangi P (t1, .., tn−1, t

2
n)

polinomu ele alınırsa veByn = d2

dy2n
+ 2ν
yn

d
dyn

notasyonu kullanılırsa, y = (y1, .., yn−1, yn) ∈
Rn

+ olmak üzere,

P

(
∂

∂y1

, . . . ,
∂

∂yn−1

, Byn

)
(Fνf)(y)

= Fν
[
P (−ix1, . . . ,−ixn−1,−x2

n)f(x)
]

(y); (2.40)

Fν

[
P

(
∂

∂x1

, ...,
∂

∂xn−1

, Bxn

)
f(x)

]
(y)

= P (iy1, . . . , iyn−1, iy
2
n)(Fνf)(y) (2.41)

eşitliklerinin sağlandığı bilinmektedir (Kipriyanov (1967), Aliev ve Bayrakci (1998) ).

Özel halde,

4B =

(
∂2

∂x2
1

+ . . .+
∂2

∂x2
n−1

)
+

(
∂2

∂x2
n

+
2ν

xn

∂

∂xn

)
Laplace-Bessel diferansiyel operatörü ve I da birim operatör olmak üzere, her k ∈ N ve
f ∈ S(Rn

+) için

(−4B)k = F−1
ν

(
|y|2k (Fνf)(y)

)
(x) (2.42)
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ve

(I −4B)k = F−1
ν

(
(1 + |y|2)k(Fνf)(y)

)
(x) (2.43)

eşitlikleri sağlanır.

Klasik Fourier Harmonik Analizinde Hardy-Littlewood maksimal operatörü önemli
rol oynuyor. Fourier-Bessel Harmonik Analizinde de aynı rolü, genelleşmiş kaymanın do-
ğurduğu Hardy-Littlewood maksimal operatörü oynamaktadır.

Yukarıda verilmiş olan Lp,ν ≡ Lp,ν(Rn
+) uzayında, genelleşmiş Hardy-Littlewood

maksimal operatörü şöyle tanımlanıyor: f ∈ Lp,ν , (1 ≤ p <∞) olmak üzere,

Mνf(x) = sup
r>0

1

rn+2νω(n, ν)

∫
Ωr

|T yf(x)| y2ν
n dy, x ∈ Rn

+. (2.44)

Burada, Ωr =
{
y ∈ Rn

+ : |y| ≤ r
}

ve ω(n, ν) =

∫
Ωr

y2ν
n dy.

1 < p <∞ için ‖Mνf‖p,ν ≤ c1 ‖f‖p,ν ve p = 1 için

µ
{
x ∈ Rn

+ : |Mνf(x)| > λ
}
≤ c2

‖f‖1,ν

λ
, (∀λ > 0)

sağlanır. Burada, E ⊂ Rn
+ için µE =

∫
E

x2ν
n dx olarak tanımlanır.

Yukarıdaki eşitsizliklerden anlaşılacağı üzere, klasik Fourier Harmonik Analizinde
olduğu gibi, genelleşmiş Mν maksimal operatörü de, (1 < p < ∞) için güçlü (p, p) tipli
ve p = 1 için zayıf (1, 1) tipli operatördür (Guliev (2003) ).
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3. MATERYAL VE METOT

Bu bölümde, Klasik Bessel potansiyelleri ve onların çeşitli genelleştirilmiş versi-
yonları tanıtılarak, onlarla ilgili bilgiler yer alacaktır.

Genelleşmiş kaymanın doğurduğu bir yarıgrup (beta-yarıgrup), bu yarıgrubun do-
ğurduğu bir dalgacık (wavelet) tipli dönüşüm ve iki parametreye bağlı Bessel tipli potan-
siyel operatörleri tanımlanacaktır.

3.1. Klasik Bessel Potansiyelleri Ve Onların Genelleştirilmiş Versiyonları

Klasik Harmonik Analizde önemli uygulamalara sahip olan Bessel potansiyelleri
Fourier dönüşümü dilinde, formal olarak şöyle tanımlanır:

Jαf = F−1
(
1 + |ξ|2

)−α
2 Ff , (0 < α <∞, ξ ∈ Rn). (3.1)

Bu potansiyeller, ∆ Laplace operatörü ve I birim operatör olmak üzere, (I −∆) operatö-
rünün negatif "kesirsel kuvvetleri" olarak yorumlanabilirler. Yani, formal olarak,

Jαf = (I −∆)−
α
2 f , (0 < α <∞) (3.2)

yazılabilir. Bunu da not etmek gerekir ki, α = 2k, (k ∈ N) ve f ∈ S(Rn) olursa, (3.1) ve
(3.2) eşitliklerinin sağ tarafları gerçekten de çakışırlar.

Schwarz uzayında (3.1) formülü ile tanımlanmış Jαf , (α > 0) Bessel potansiyel-
lerinin aşağıdaki şekilde "açık" integral gösterimleri bilinmektedir (Stein (1970), Samko
vd (1993), Rubin (1996), Samko (2002) ):

(Jαf)(x) =
1

λn(α)

∫
Rn

f(y)Gα(x− y)dy (3.3)

Burada,

λn(α) = 2nπ
n
2 Γ
(α

2

)
ve Gα(x) =

∞∫
0

t
α−n
2 e−t−

|x|2
4t
dt

t
. (3.4)

(3.3) formülünün sağ tarafı, yalnız Schwarz uzayından olan f ’ler için değil, her f ∈
Lp(Rn), (1 ≤ p ≤ ∞) için de anlamlıdır. Bundan yararlanılarak, her f ∈ Lp(Rn) için
f ’in Bessel potansiyeli (3.3) formülüyle tanımlanabilir. Girişim tipli integral operatör olan
Bessel potansiyelinin Lp’den Lp’ye sınırlı operatör olduğu bilinir. Yani, her f ∈ Lp(Rn)
için

‖Jαf‖p ≤ cp ‖f‖p , cp > 0, 1 ≤ p ≤ ∞)

sağlanır (Stein (1970) ).
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Bessel potansiyellerinin, ünlü Gauss-Weierstrass integralleri yardımıyla, çok kul-
lanışlı olan tek katlı integral gösterimi de vardır (bakınız: Flett (1971), Samko vd (1993),
Rubin (1996) ):

(Jαf)(x) =
1

Γ
(
α
2

) ∞∫
0

t
α
2
−1e−tWtf(x)dt, (0 < α <∞) (3.5)

Yukarıdaki formülde f ∈ Lp(Rn) olup, f ’in Gauss-Weierstrass integrali (yarıgrubu) diye
adlandırılan Wtf , (0 < t <∞) fonksiyonu aşağıdaki şekilde tanımlanır:

Wtf(x) =

∫
Rn

ω (|y| , t) f(x− y)dy. (3.6)

Burada,

ω (|y| , t) = F−1
(
e−t|ξ|

2
)

(y) = (4πt)−
n
2 exp

(
−|y|

2

4t

)
. (3.7)

Yukarıdaki (3.5) formülü, Bessel potansiyellerinin terslerini belirlemede önemli rol oyna-
maktadır (Rubin (1986), Samko vd (1993), Rubin (1996) ).

Şimdi de, Fourier Bessel Harmonik Analizinde önemli rol oynayan ve Laplace-
Bessel diferansiyel operatörü diye adlandırılan

∆B =
n−1∑
k=1

∂2

∂x2
k

+ Bxn =
n−1∑
k=1

∂2

∂x2
k

+

(
∂2

∂x2
n

+
2ν

xn

∂

∂xn

)
, (ν > 0)

operatörü yardımıyla tanımlanan genelleştirilmiş Bessel potansiyellerini ve onun da ge-
nelleşmesi olan potansiyel tipli integral operatörleri tanımlayalım. Bu tez çalışmasının
esas konusu da bu potansiyel tipli operatörlerin incelenmesi ile ilgilidir.

Biz yukarıdaki bölümlerde Rn
+ ve Lp,ν ≡ Lp,ν(Rn

+) uzaylarını, genelleşmiş kayma
(öteleme) ve genelleşmiş girişim (konvolusyon) operatörlerini; Fourier-Bessel ve ters Fourier-
Bessel dönüşümlerini tanımlamıştık. Bu kavram ve gösterimleri kullanarak, Laplace-Bessel
diferansiyel operatörünün doğurduğu genelleşmiş Bessel potansiyellerini (veya, başka is-
miyle, genelleşmiş kaymanın doğurduğu Bessel potansiyellerini) tanımlayalım. Klasik
Bessel potansiyellerinin tanımına benzer olarak, genelleşmiş Bessel potansiyelleri de, I
birim operatör ve ∆B Laplace-Bessel diferansiyel operatörü olmak üzere,

(I −∆B) diferansiyel operatörünün negatif "kesirsel" kuvvetleri olarak yorumla-
nıyor ve Fourier-Bessel dönüşümü dilinde

=αf = F−1
ν

(
(1 + |ξ|2)−

α
2Fνf

)
≡ (I −∆B)−

α
2 f , (0 < α <∞) (3.8)

şeklinde tanımlanıyor. Burada, f ∈ S(Rn
+) ve ξ ∈ Rn

+.
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f ∈ S(Rn
+) fonksiyonları için tanımlanmış =αf potansiyel operatörü aşağıdaki

integral gösterime sahiptir (Gadjiev ve Aliev (1988b) ):

(=αf) =
1

λn,ν(α)

∫
Rn+

f(y) (T yGα(x)) y2ν
n dy, (0 < α <∞). (3.9)

Burada,

λn,ν(α) = 2n+2ν−1π
n−1
2 Γ

(
ν +

1

2

)
Γ
(α

2

)
ve

Gα(x) ≡ G(ν)
α (x) =

∞∫
0

t
α−n−2ν

2 e−t−
|x|2
4t
dt

t
, (x ∈ Rn

+).

(3.9)’daki integral operatörünün çekirdeği olan Gα(x) fonksiyonunun |x| → 0 ve |x| →
∞ için asimptotik davranışı aşağıdaki şekildedir (Stein (1970) ):

|x| → 0 için Gα(x) = O
(
|x|−n−2ν+α) ve |x| → ∞ için Gα(x) = O

(
e−

1
2
|x|
)

.

Gα(x)’in bu asimptotik davranışından anlaşılacağı üzere, (3.9) ile tanımlanan in-
tegral operatör, yalnız, f ∈ S(Rn

+) fonksiyonları için değil, her f ∈ Lp,ν fonksiyonları
için de geçerlidir.

Not 3.1. Genelleşmiş Bessel potansiyellerinin, klasik Bessel potansiyellerinde olduğu
gibi, "tek boyutlu" integral gösterimi de vardır. Daha doğrusu,

ων (|y| , t) = F−1
ν

(
e−t|ξ|

2
)

(y) =
2πν+ 1

2

Γ
(
ν + 1

2

)(4πt)−
n+2ν

2 e−
|y|2
4t (3.10)

olmak üzere, her f ∈ Lp,ν için f ’in genelleşmiş Gauss-Weierstrass integralini (yarıgru-
bunu) Wtf ile gösterirsek,

Wtf(x) ≡ Wν,tf(x) =

∫
Rn+

ων (|y| , t) (T yf(x)) y2ν
n dy (3.11)

şeklinde tanımlanır. Bu yarıgrup yardımıyla, genelleşmiş Bessel potansiyelleri için başka
bir (bir boyutlu) integral gösterim yazılabilir (Gadjiev ve Aliev (1988b), Aliev ve Uyhan-
Bayrakci (2002), Aliev ve Eryigit (2002), Aliev vd (2008) ):

=αf =
1

Γ
(
α
2

) ∞∫
0

t
α
2
−1e−tWtf(x)dt, (x ∈ Rn

+, α > 0). (3.12)
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Not 3.2. Genelleşmiş Bessel potansiyelinin bu gösterimi, klasik Bessel potansiyeli için
bilinen gösterime birebir benzer olup, operatörlerin kesirsel kuvvetleri için Balakrish-
nan formülü diye adlandırılan genel formülün benzeridir. Klasik Bessel potansiyellerinde
olduğu gibi, genelleşmiş Bessel potansiyellerinin terslerinin belirlenmesinde (3.12) gös-
terimi önemli rol oynamaktadır (Gadjiev ve Aliev (1988b), Aliev ve Eryigit (2002), Aliev
ve Rubin (2005), Aliev vd (2008) ).

Aliev vd (2008), Aliev (2009), Sezer ve Aliev (2010) makalelerinde beta-yarıgrup
diye adlandırılan aşağıdaki integral operatör tanımlanmıştır:

W
(β)
t f(x) =

∫
Rn

ω(β)(|y| , t)f(x− y)dy,

(x ∈ Rn, 0 < t <∞, 0 < β <∞) (3.13)

Burada, integral operatörünün radyal çekirdeği olan ω(β)(|y| , t) fonksiyonu, exp(−t |x|β)
fonksiyonunun ters Fourier dönüşümüdür:

ω(β)(|y| , t) = F−1
(

exp(−t |x|β)
)

(y) = (2π)−n
∫
Rn

e−t|x|
β

eix·ydx. (3.14)

Bahsi geçen makalelerde, bu beta-yarıgrup yardımıyla, Klasik Riesz ve Bessel potansi-
yelleri uzaylarının yeni karakterizasyonları verilmiş ve Radon dönüşümü için yeni ters
bulma formülleri elde edilmiştir.

Aliev ve Saglık (2016) makalesinde, F−1
ν operatörü ters Fourier-Bessel dönüşümü

olmak üzere, ω(β)
ν (|y| , t) = F−1

ν

(
exp(−t |x|β)

)
(y) çekirdeği yardımıyla tanımlanan ve

genelleşmiş girişim (konvolusyon) operatörü olan

(W
(β)
t f)(x) =

(
ω(β)
ν (|·| , t) ~ f

)
(x) ≡

∫
Rn+

ω(β)
ν (|y| , t)T yf(x)y2ν

n dy (3.15)

operatörü (genelleşmiş beta-yarıgrup) yardımıyla, genelleşmiş kaymanın doğurduğu Ri-
esz potansiyelleri için yeni bir ters bulma formülü elde edilerek, genelleşmiş Riesz potan-
siyelleri uzayının yeni bir karakterizasyonu verilmiştir.

Bu tez çalışmasında (3.15)’teki genelleşmiş beta-yarıgrubu kullanılarak, iki para-
metreye bağlı bir integral operatör tanımlıyoruz. Parametrelerden birinin özel seçimleriyle
genelleşmiş kaymanın doğurduğu Bessel potansiyelleri ve Flett potansiyelleri elde edile-
bilir.

Dolayısıyla, bizim tanımlayacağımız yeni operatörler ailesi, genelleşmiş kayma-
nın doğurduğu Bessel ve Flett potansiyellerinin genelleşmesidir. (3.15) formülündekiW (β)

t

gösterimi yerine B(β)
t notasyonunu kullanacağız. Bunun nedeni, (3.13)’te verilmiş yarıg-
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rup ile (3.15)’teki yarıgrubun aynı notasyonla gösterilmemesidir.

Böylece,

B(β)
t ϕ(x) ≡ B(β)

ν,t ϕ(x) =

∫
Rn+

ω(β)
ν (|y| , t)T yϕ(x)y2ν

n dy (3.16)

diyelim. Burada, yukarıda da bahsedildiği üzere,

ω(β)
ν (|y| , t) = F−1

ν

(
exp(−t |x|β)

)
(y)

≡ cν(n)

∫
Rn

e−t|x|
β

eix
p·ypjν− 1

2
(xnyn)x2ν

n dx (3.17)

olup, cν(n) katsayısı yukarıda verilmiş (2.38) formülündeki gibidir.

β = 1 ve β = 2 özel durumlarında ω(β)
ν (|y| , t) çekirdeğinin açık ifadeleri bilin-

mektedir:

ω(1)
ν (|y| , t) =

2Γ
(
n+2ν+1

2

)
π
n
2 Γ
(

2ν+1
2

) t(
|y|2 + t2

)n+2ν+1
2

; (3.18)

ω(2)
ν (|y| , t) =

2π
2ν+1

2

Γ
(

2ν+1
2

) (4πt)−
n+2ν

2 e−
|y|2
4t . (3.19)

Burada, 0 < t < ∞, y ∈ Rn
+ olup, ω(1)

ν (|y| , t) genelleşmiş Abel-Poisson çekirdeğidir ve
ω

(2)
ν (|y| , t) de genelleşmiş Gauss-Weierstrass çekirdeğidir (Gadjiev ve Aliev (1988b,a),

Aliev ve Bayrakci (1998), Aliev ve Rubin (2005), Aliev vd (2008) ).

(3.16) formülüyle tanımladığımızB(β)
t ϕ(x) genelleşmiş beta-yarıgrubu yardımıyla

aşağıdaki integral operatörler ailesini tanımlayalım:

=αβϕ(x) ≡ =αβ,νϕ(x) =
1

Γ
(
α
β

) ∞∫
0

t
α
β e−tB(β)

t ϕ(x)
dt

t
(3.20)

Bu integral operatörler ailesi, iki parametreye bağlı olup, β parametresinin özel seçim-
leriyle, genelleşmiş kaymanın doğurduğu Bessel ve Flett potansiyelleri elde edilir. Daha
doğrusu, β = 2 alınırsa, =α2ϕ(x) operatörü elde edilir, bu da genelleşmiş Bessel potansi-
yelidir. Benzer şekilde, β = 1 için=α1ϕ(x) operatörü de genelleşmiş kaymanın doğurduğu
Flett potansiyelidir (Klasik ve genelleştirilmiş Flett potansiyelleri ile ilgili Flett (1971),
Aliev vd (2006) kaynaklarına bakılabilir).
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Bizim bu çalışmadaki esas amacımız, =αβϕ, operatörlerinin Lp,ν(Rn
+) uzaylarında

davranışını incelemek ve onların tersini ifade eden formüller geliştirmektir. Bunun için,
genelleştirilmiş beta-yarıgrup diye adlandırdığımız B(β)

t , (t ≥ 0) yarıgrup vasıtasıyla bir
dalgacık (wavelet) tipli dönüşüm tanımlayacağız ve ters bulma işlemini bu dalgacık dö-
nüşümü yardımıyla elde edeceğiz.

3.2. Genelleştirilmiş Beta-Yarıgrup, İki Parametreye Bağlı Bessel-Tipli Potansiyeller
Ve Bir Dalgacık Tipli Dönüşüm

Eğer g ∈ L1,ν(Rn
+) fonksiyonu radyal bir fonksiyon (yani, yalnız |x|’e bağlı)

ise, onun Fourier-Bessel dönüşümü olan Fνg fonksiyonu da radyaldır (Zasorin (1986),
Kipriyanov (1997) ). O halde, F−1

ν (exp(−t |x|β))(y) fonksiyonu da radyaldır (Burada,
x, y ∈ Rn

+ ve t > 0).

Söz konusu radyal fonksiyonu ω(β)
ν (|y| , t) ile gösterelim. Bu çekirdek fonksiyon

ile ϕ ∈ Lp,ν(Rn
+) fonksiyonunun genelleşmiş girişimi de, yukarıda, (3.6) formülünde

belirttiğimiz üzere, B(β)
t ϕ ile gösterilsin:

B(β)
t ϕ(x) =

(
ω(β)
ν (|·| , t) ~ ϕ

)
(x)

=

∫
Rn+

ω(β)
ν (|y| , t)T yϕ(x)y2ν

n dy.

Bahsi geçen ω(β)
ν (|y| , t), (y ∈ Rn

+, t > 0) çekirdeğinin ve B(β)
t ϕ, (t > 0) operatörleri

ailesinin özelliklerini bir lemma şeklinde verelim.

Lemma 3.3. (Aliev ve Saglık (2016) ) ω(β)
ν (|·| , t) fonksiyonunun ve B(β)

t ϕ, (t > 0) ope-
ratörleri ailesinin aşağıdaki özellikleri vardır:

(a) Her λ > 0 için

ω(β)
ν (|y| , t) = λ

n+2ν
β ω(β)

ν

(
λ

1
β |y| , λt

)
.

Özel halde, λ = 1
t

için

ω(β)
ν (|y| , t) = t−

n+2ν
β ω(β)

ν

(
t−

1
β |y| , 1

)
. (3.21)

(b) 0 < β ≤ 2 için ω(β)
ν (|y| , t) çekirdeği pozitiftir.

(c) β = 2k, (k ∈ N) ise ω(β)
ν (|·| , t) ∈ S(Rn

+). Burada, S(Rn
+) ile Schwartz test

fonksiyonları uzayı gösterilmektedir. (Bundan sonraki önermelerde, 0 < β ≤ 2
veya β = 2k, (k ∈ N) olduğu varsayılacaktır).
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(d) Her t > 0 için∫
Rn+

ω(β)
ν (|y| , t) y2ν

n dy = 1 (3.22)

(e) Eğer ϕ ∈ Lp,ν , (1 ≤ p ≤ ∞; L∞,ν ≡ C0) ise,∥∥∥B(β)
t ϕ

∥∥∥
p,ν
≤ c(β; ν) ‖ϕ‖p,ν (3.23)

sağlanır. Burada,

c(β, ν) =

∫
Rn+

∣∣ω(β)
ν (|y| , 1)

∣∣ y2ν
n dy <∞

olup, 0 < β ≤ 2 için c(β, ν) = 1’dir. Bundan başka, C0 ≡ C0(Rn
+) ile, S(Rn

+)
uzayının, sub-norma göre kapanışı gösterilmektedir.

(f) Her ϕ ∈ Lp,ν , (1 ≤ p ≤ ∞) için

sup
t>0

∣∣∣B(β)
t ϕ(x)

∣∣∣ ≤ cMνϕ(x), (x ∈ Rn
+) (3.24)

eşitsizliği sağlanır. Burada, c bir sabit olup, Mνϕ ile, ϕ fonksiyonunun genelleşti-
rilmiş Hardy-Littlewood maksimal fonksiyonu (operatörü) gösterilmektedir (Aliev
ve Bayrakci (1998), Guliev (2003) ):

Mνϕ(x) = sup
r>0

1

rn+2νω(n, ν)

∫
B+
r

|T xϕ(y)| y2ν
n dy; (3.25)

burada, B+
r =

{
x ∈ Rn

+ : |x| ≤ r
}

ve ω(n, ν) =

∫
B+

1

x2ν
n dx.

(g) Her ϕ ∈ Lp,ν , (1 ≤ p <∞) ve her t > 0 için

sup
x∈Rn+

∣∣∣B(β)
t ϕ(x)

∣∣∣ ≤ ct−
n+2ν
βp ‖ϕ‖p,ν (3.26)

(burada, c = c(n, β, ν, p) bir sabittir).
(h) (Yarıgrup özelliği)

Her ϕ ∈ Lp,ν , (1 ≤ p ≤ ∞, L∞,ν ≡ C0) ve her t, τ ∈ (0,∞) için

B(β)
t (B(β)

τ ϕ) = B(β)
t+τϕ. (3.27)
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(i) ϕ ∈ Lp,ν , (1 ≤ p ≤ ∞; L∞,ν ≡ C0) olsun. O halde,

lim
t→0+
B(β)
t ϕ(x) = ϕ(x) (3.28)

sağlanır. Burada, limit Lp,ν uzayının metriğinde, veya, noktasal (h.h x ∈ Rn
+ için)

olarak düşünülmektedir. ϕ ∈ L∞,ν ≡ C0 durumunda, yakınsama tüm Rn
+’da düz-

gündür.

Not 3.4. (3.28) eşitliğini dikkate alarak, B(β)
t ϕ operatörünü, t = 0 için şöyle

tanımlayabiliriz: B(β)
0 ϕ = ϕ.

Yukarıda, (3.20) formülüyle tanımladığımız, iki parametreye bağlı potansiyel tipli
operatörler ailesi olan =αβϕ, (0 < β <∞, 0 < α <∞) integral operatörleri ailesinin bazı
temel özelliklerini, aşağıdaki teoremde ifade ederek kanıtlayalım.

Teorem 3.5. ϕ ∈ Lp,ν (1 ≤ p ≤ ∞; L∞,ν ≡ C0) olsun. O halde,

a) =αβϕ integral operatörleri ailesi iyi tanımlanmıştır ve bundan başka,∥∥=αβϕ∥∥p,ν ≤ c(β, ν) ‖ϕ‖p,ν (3.29)

eşitsizliği sağlanır (yani, =αβϕ : Lp,ν → Lp,ν sınırlıdır). Burada,

c(β, ν) =

∫
Rn+

∣∣ω(β)
ν (|y| , 1)

∣∣ y2ν
n dy

olup, 0 < β ≤ 2 için c(β, ν) = 1’dir.

b) α > 0, β > 0 parametrelerinin sabit tutulmuş her değeri için =αβ operatörü ge-
nelleşmiş kaymanın doğurduğu girişim (konvolusyon) tipli operatör olup, Fourier-Bessel
çarpanı (multiplier)

m(ξ) =
(

1 + |ξ|β
)−α

β
, (ξ ∈ Rn

+)

şeklindedir. Yani, Fν Fourier-Bessel dönüşümü olmak üzere,

Fν
(
=αβϕ

)
(ξ) =

(
1 + |ξ|β

)−α
β
Fν(ϕ)(ξ), (ξ ∈ Rn

+). (3.30)

c) Her α, β ∈ (0,∞) için =αβ operatörü S(Rn
+) Schwarz uzayında bir otomorfizm-

dir, yani, =αβ : S(Rn
+)→ S(Rn

+).

d) Sabit tutulmuş her β ∈ (0,∞) parametresi için
{
=αβ
}
α≥0

ailesi aşağıdaki ya-
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rıgrup özelliğine sahiptir: her α1, α2 ∈ [0,∞) ve ϕ ∈ Lp,ν için

=α1
β (=α2

β ϕ) = =α1+α2
β ϕ (3.31)

(Burada, =0
β = I birim operatörüdür).

Kanıt. a)

=αβϕ(x) =
1

Γ
(
α
β

) ∞∫
0

t
α
β e−tB(β)

t ϕ(x)
dt

t

ifadesine, integral için genelleşmiş Minkowski eşitsizliğini uygulayalım:

∥∥=αβϕ∥∥p,ν ≤ 1

Γ
(
α
β

) ∞∫
0

t
α
β e−t

∥∥∥B(β)
t ϕ

∥∥∥
p,ν

dt

t

(3.23)

≤ c(β, ν)

 1

Γ
(
α
β

) ∞∫
0

e−tt
α
β
−1dt

 ‖ϕ‖p,ν
= c(β, ν) ‖ϕ‖p,ν

Lemma 3.3’deki (b) ve (d) ifadeleri dikkate alınırsa, 0 < β ≤ 2 için c(β, ν) = 1 olduğu
görülür.

b) ϕ ∈ S(Rn
+) olsun. Bir g ∈ S(Rn

+) fonksiyonunun Fourier-Bessel dönüşümünü
Fνg yerine, kısaca, g∧ ile gösterelim. Fubini teoremini kullanırsak,

(
=αβϕ

)∧
(ξ) =

∫
Rn+

e−ix
p·ξpjν− 1

2
(xnξn)=αβϕ(x)x2ν

n dx

=

∫
Rn+

e−ix
p·ξpjν− 1

2
(xnξn)x2ν

n

 1

Γ
(
α
β

) ∞∫
0

t
α
β e−tB(β)

t ϕ(x)
dt

t

 dx

=
1

Γ
(
α
β

) ∞∫
0

t
α
β
−1e−t

∫
Rn+

e−ix
p·ξpjν− 1

2
(xnξn)B(β)

t ϕ(x)x2ν
n dx

 dt

=
1

Γ
(
α
β

) ∞∫
0

t
α
β
−1e−tϕ∧(ξ)

(
ω(β)
ν (|·| , t)

)∧
(ξ)dt

(3.14)
= ϕ∧(ξ)

1

Γ
(
α
β

) ∞∫
0

t
α
β
−1e−te−t|ξ|

β

dt
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= ϕ∧(ξ)
1

Γ
(
α
β

) ∞∫
0

t
α
β
−1e−t(1+|ξ|β)dt

= ..

(
t =

τ

1 + |ξ|β
şeklinde değişken değiştirelim

)
..

= ϕ∧(ξ)(1 + |ξ|β)−
α
β

1

Γ
(
α
β

) ∞∫
0

τ
α
β
−1e−τdτ

= (1 + |ξ|β)−
α
βϕ∧(ξ).

Böylece, ϕ ∈ S(Rn
+) için(

=αβϕ
)∧

(ξ) = (1 + |ξ|β)−
α
βϕ∧(ξ)

olup, (1 + |ξ|β)−
α
β , (ξ ∈ Rn

+) fonksiyonunun =αβ operatörü için Fourier-Bessel çarpanı
olduğu görülür.

c) Fν : S(Rn
+) → S(Rn

+) bir otomorfizma olduğunu yukarıda yazmıştır. ϕ ∈
S(Rn

+) için (3.30) formülüne göre,(
=αβϕ

)∧
(ξ) = (1 + |ξ|β)−

α
βϕ∧(ξ), (ξ ∈ Rn

+)

sağlanır. Buradan, her ϕ ∈ S(Rn
+) için

=αβϕ(x) = F−1
ν [(1 + |ξ|β)−

α
β (Fνϕ)(ξ)](x) (3.32)

sağlanır.

Yukarıdaki formülde, ϕ ∈ S(Rn
+) olduğundan, Fνϕ ∈ S(Rn

+) ve buradan da,
(1 + |ξ|β)−

α
β (Fνϕ)(ξ) ∈ S(Rn

+) olur. Sonuç olarak,

F−1
ν [(1 + |ξ|β)−

α
β (Fνϕ)(ξ)](x) ∈ S(Rn

+)

olur.

d) Yukarıdaki (3.30) formülü dikkate alınırsa, ϕ ∈ S(Rn
+) olması halinde, (3.31)

eşitliğinin Fourier-Bessel çarpanları dilinde doğru olduğu açık şekilde görülür. Gerçekten,
(3.31) eşitliğinin sol tarafına Fourier-Bessel dönüşümü uygulanırsa,(

=α1
β (=α2

β ϕ)
)∧

(ξ) = (1 + |ξ|β)−
α1
β
(
=α2
β ϕ
)∧

(ξ)

= (1 + |ξ|β)−
α1
β (1 + |ξ|β)−

α2
β ϕ∧(ξ)

= (1 + |ξ|β)−
α1+α2
β ϕ∧(ξ);
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Şimdi de (3.31) eşitliğinin sağ tarafına Fourier-Bessel dönüşümü uygularsak,(
=α1+α2
β ϕ

)∧
(ξ) = (1 + |ξ|β)−

α1+α2
β ϕ∧(ξ).

Bu iki eşitlikten istenen çıkar.

Böylece her ϕ ∈ S(Rn
+) ve α1, α2 ∈ [0,∞) için

=α1
β (=α2

β ϕ) = =α1+α2
β ϕ

eşitliği sağlanır. Bu eşitliğin,ϕ ∈ Lp,ν durumunda sağlanması,=αβ operatörlerininLp,ν’den
Lp,ν’ye sınırlı olmasının ve S(Rn

+) uzayının Lp,ν uzaylarında yoğun olmasının (yani,
S(Rn

+) uzayının Lp,ν normunda kapanışının Lp,ν uzayı ile çakışmasının) bir sonucudur.

Gerçekten, bir (ϕn) ⊂ S(Rn
+) dizisi, Lp,ν normunda f ∈ Lp,ν fonksiyonuna ya-

kınsasın:

lim
n→∞

‖ϕn − f‖p,ν = 0.

O halde, =αβ : Lp,ν → Lp,ν sınırlı olduğundan, Lp,ν−normunda,

lim
n→∞

=αβϕn = =αβf

olur.

O halde, (3.31) eşitliğini,

=α1
β (=α2

β ϕn) = =α1+α2
β ϕn, (n = 1, 2, ...) (3.33)

şeklinde yazarsak, sağ tarafın Lp,ν limiti =α1+α2
β f olur.

(3.32)’nin sol tarafına bakalım. Lp,ν normunda ϕn → f olduğundan, =α2
β ϕn →

=α2
β f olacaktır. gn = =α2

β ϕn dersek, her n için gn ∈ S(Rn
+) olup, Lp,ν normunda gn →

=α2
β f sağlanır.

=α1
β : Lp,ν → Lp,ν sınırlı (sürekli) olduğundan,Lp,ν−normunda,=α1

β gn → =
α1
β

(
=α2
β f
)

sağlanacaktır. Buradan, ∀f ∈ Lp,ν için =α1
β

(
=α2
β f
)

= =α1+α2
β f olur.

Not 3.6. (3.30) eşitliği dikkate alınırsa, iki parametreye bağlı =αβ operatörler ailesi,(
I + (−∆ν)

β
2

)
kesirsel diferansiyel operatörünün

(
−α
β

)
mertebeden negatif kesirsel

kuvveti olarak yorumlanabilir. Yani, formal olarak, her ϕ ∈ S(Rn
+) için

=αβϕ =
(
I + (−∆ν)

β
2

)−α
β
ϕ

28



MATERYAL VE METOT Sinem YÜCEL

yazılabilir. Burada, I birim operatör ve

∆ν =
n−1∑
k=1

∂2

∂x2
k

+

(
∂2

∂x2
n

+
2ν

xn

∂

∂xn

)
operatörü de Laplace-Bessel diferansiyel operatörüdür.

Bu formülde, β = 2 alınırsa, genelleşmiş kaymanın doğurduğu Bessel potansiyeli
ve β = 1 alınırsa, genelleşmiş kaymanın doğurduğu Flett potansiyeli elde edilir. Dola-
yısıyla, bizim tanımladığımız =αβϕ operatörleri, genelleşmiş kaymanın doğurduğu Bessel
ve Flett potansiyellerinin her ikisini de genelleştiren, potansiyel tipli operatörlerdir.

Şimdi de, (3.16) formülüyle tanımlanmış ve genelleşmiş beta-yarıgrup diye adlan-
dırılan B(β)

t ϕ, (t > 0) ailesi yardımıyla, bir dalgacık (wavelet) tipli operatör tanımlayalım.
Tanımlayacağımız bu dalgacık tipli dönüşüm, bir sonraki bölümde,=αβϕ potansiyellerinin
terslerini bulmak için kullanılacaktır.

Tanım 3.7. µ, [0,∞) aralığında verilmiş sonlu Borel ölçümü olup, µ {[0,∞)} = 0 olsun.
Böyle µ ölçümüne, [0,∞)’da verilmiş bir dalgacık (wavelet) ölçümü diyeceğiz.

Tanım 3.8. µ bir dalgacık ölçümü ve B(β)
t ϕ, (t > 0) ailesi de (3.16)’da tanımlanmış,

genelleşmiş beta-yarıgrup olsun. Aşağıdaki şekilde tanımlanmış operatöre (dönüşüme)
bir dalgacık tipli dönüşüm denir:

(Aϕ)(x, η) ≡ (A(β)
µ,νϕ)(x, η) =

∞∫
0

e−tηB(β)
tη ϕ(x)dµ(t). (3.34)

Burada, x ∈ Rn
+, η ∈ [0,∞) olup,

b∫
a

(...)dµ(t) =
∫

[a,b)

(...)dµ(t) (3.35)

olarak tanımlanır.

Doğal olarak, ortaya şöyle bir soru çıkar: (3.35) ile tanımlanan dalgacık tipli dö-
nüşümün iyi tanımlı olması için ϕ üzerine hangi koşullar konulmalıdır? Biz, Lp,ν(Rn

+),
(1 ≤ p ≤ ∞; L∞ ≡ C0) uzaylarında çalıştığımız için, ϕ ∈ Lp,ν durumunda Aϕ dö-
nüşümünün anlamlı olup olmadığını inceleyelim. ϕ ∈ Lp,ν olsun. O halde, genelleşmiş
Minkowski eşitsizliği kullanılırsa,

‖(Aϕ)(·, η‖p,ν =

∥∥∥∥∞∫
0

e−tηB(β)
tη ϕ(x)dµ(t)

∥∥∥∥
p,ν

≤
∞∫
0

e−tη
∥∥∥B(β)

tη ϕ(·)
∥∥∥
p,ν
d |µ| (t)
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(3.23)

≤ c(β, ν) ‖ϕ‖p,ν
∞∫
0

e−tηd |µ| (t)

≤ c(β, ν) ‖ϕ‖p,ν |µ| {[0,∞)} <∞

Burada, |µ| {[0,∞)} =
∞∫
0

d |µ| (t) olup, µ ölçümünün [0,∞) aralığındaki tam varyasyo-

nudur.

Örneğin, E ⊂ [0,∞) olmak üzere, µ(E) =
∫
E

h(t)dt şeklinde tanımlanırsa, µ

ölçümünün [0,∞)’daki tam varyasyonu |µ| {[0,∞)} =
∞∫
0

|h(t)| dt olur.

Örnek olarak,

h(t) =

{
sint, 0 ≤ t ≤ 2π ise

0, 2π < t <∞ ise

}

alınırsa ve [a, b) ⊂ [0,∞) olursa, µ {[a, b)} =
b∫
a

h(t)dt olarak tanımlayalım. Bu durumda,

µ {[0, π)} =
π∫
0

sin tdt = 2, µ {[π, 2π)} = −2; µ {[0,∞)} = 0 ve µ’nün [0,∞)’daki tam

varyasyonu |µ| {[0,∞)} =
∞∫
0

|h(t)| dt =
2π∫
0

|sin t| dt = 4 olur.

Çoğu kaynakta, µ’nün tam varyasyonu ‖µ‖ ile gösterilir. Yani, ‖µ‖ = |µ| {[0,∞)}.

Not 3.9. Yukarıda elde ettiğimiz

‖(Aϕ)(·, η‖p,ν ≤ c(β, ν) ‖ϕ‖p,ν

∞∫
0

e−tηd |µ| (t)

eşitsizliğinde, η → ∞ için limite geçersek, Lebesgue baskın yakınsama teoremine göre,
lim
η→∞
‖(Aϕ)(·, η‖p,ν = 0 olur.
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4. BULGULAR VE TARTIŞMA

Bu bölümde, bir önceki bölümde tanımlanmış olan dalgacık tipli dönüşüm yardı-
mıyla, iki parametreye bağlı Bessel tipli potansiyellerin tersleri bulunacaktır.

4.1. İki Parametreye Bağlı Genelleştirilmiş Potansiyel Tipli=αβ Operatörlerinin Ters-
lerinin Bulunması

Bu bölümde biz Lp,ν , (1 ≤ p < ∞) uzaylarında potansiyel tipli =αβϕ operatör-
lerinin terslerinin bulunması ile ilgileneceğiz. Kullanacağımız esas teknik araç, yukarıda
Bölüm 3.1’de tanımladığımız dalgacık tipli dönüşüm olacaktır.

Potansiyel tipli operatördeki β ∈ (0,∞) parametresinin ve µ ölçümünün seçimi
bizim elimizde olduğundan, onları çeşitli şekilde seçerek farklı ters dönüşüm formülleri
elde edebiliriz.

Söz konusu potansiyel tipli operatörlerinin terslerini bulmak için aşağıdaki Lemma
çok önemlidir. Bu Lemma, Rubin’in (1999) makalesindeki Lemma 1.3’ün özel halidir.

Lemma 4.1. µ, [0,∞) aralığında sonlu Borel ölçümü olsun ve bu ölçümün (θ + 1) mer-
tebeden Riemann-Liouville kesirsel integrali şöyle tanımlansın:

(
Iθ+1µ

)
(s) =

1

Γ (θ + 1)

s∫
0

(s− t)θ dµ(t), (s > 0, θ > 0). (4.1)

Kθ(s) =
1

s

(
Iθ+1µ

)
(s), (0 < s <∞) (4.2)

diyelim. µ ölçümü aşağıdaki özelliklere sahip olsun:

Bir γ > θ sayısı için

∞∫
1

tγd |µ| (t) <∞ (4.3)

∞∫
0

tjdµ(t) = 0; j = 0, 1, 2, 3..., [θ] (4.4)

(burada, [θ] ile θ sayısının tam kısmı gösterilmiştir.)
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Bu durumda, Kθ(s) fonksiyonu, azalan ve integrallenen majoranta sahip olup,

Cθ,µ ≡
∞∫

0

Kθ(s)ds =


Γ (−θ)

∞∫
0

ηθdµ(η), θ 6= 1, 2, 3, . . .ise

(−1)θ+1 1
θ!

∞∫
0

ηθ ln ηdµ(η), θ = 1, 2, 3, ...ise


(4.5)

eşitliği sağlanır. Ayrıca, µ̃ ile µ ölçümünün Laplace dönüşümü gösterilirse, yani,

µ̃(t) =

∞∫
0

e−tηdµ(η)

şeklinde tanımlanırsa,

Cθ,µ ≡
∞∫

0

t−1−θµ̃(t)dt (4.6)

eşitliği sağlanır.

Not 4.2. Özel durumda, 0 < θ < 1 alırsak, yukarıdaki (4.3), (4.4) koşulları ve (4.5)
ifadesi çok daha basit şekil alır.

∞∫
1

td |µ| (t) <∞; (4.7)

∞∫
0

dµ(t) = 0; (4.8)

Cθ,µ ≡
∞∫

0

Kθ(s)ds = Γ (−θ)
∞∫

0

ηθdµ(η). (4.9)

Not 4.3. Aşağıda, her yerde Cθ,µ 6= 0 olduğunu varsayacağız. Bu koşulu sağlayan µ
ölçümlerine çeşitli örnekler bu bölümün sonunda verilecektir.
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Lemma 4.4. η > 1, α > 0, β > 0 olsun. O halde,

η∫
1

t−
α
β
−1 (η − t)

α
β
−1 dt =

Γ
(
α
β

)
Γ
(

1 + α
β

) 1

η
(η − 1)

α
β

(Bu eşitlik, Gradshteyn ve Ryzhik (1994) kaynağındaki 3.238(3) numaralı formülden elde
edilebilir.)

Lemma 4.5. =αβ ve B(β)
t operatörleri Lp,ν ≡ Lp,ν(Rn

+), (1 ≤ p ≤ ∞; L∞,ν ≡ C0)
uzaylarında komütatif operatörlerdir (yani, değişme özellikleri vardır: ∀f ∈ Lp,ν için
=αβB

(β)
t f = B(β)

t =αβf )

Kanıt. Her ϕ ∈ S(Rn
+) için =αβB

(β)
t ϕ = B(β)

t =αβϕ eşitliği, her iki tarafa Fourier-Bessel
dönüşümü uygulayarak elde edilebilir. Gerçekten,

(=αβf)∧(x) =
(

1 + |x|β
)−α

β
f̂(x)

ve

(B(β)
t ϕ)∧(x) = e−t|x|

β

ϕ̂(x)

olduğundan,(
=αβB

(β)
t ϕ

)∧
(x) =

(
1 + |x|β

)−α
β
e−t|x|

β

ϕ̂(x)

ve (
B(β)
t =αβϕ

)∧
(x) = e−t|x|

β
(

1 + |x|β
)−α

β
ϕ̂(x)

sağlanır. Yukarıdaki iki eşitliğin sağ tarafları aynı olduğundan, sol tarafları da aynı ola-
caktır.

Buradan da, her ϕ ∈ S(Rn
+) için =αβB

(β)
t ϕ = B(β)

t =αβϕ sağlanır.

Söz konusu eşitliğin, her ϕ ∈ Lp,ν için sağlanması, Schwartz’ın S(Rn
+) uzayının,

Lp,ν’de yoğun olmasının bir sonucudur. Yani, A = =αβB
(β)
t ve B = B(β)

t =αβ operatörlerini
tanımlarsak, =αβ : Lp,ν → Lp,ν ve B(β)

t : Lp,ν → Lp,ν sınırlı olduğundan, A ve B’nin her
ikisi de Lp,ν’den Lp,ν’ye sınırlı operatörlerdir.

O halde, fonksiyonel Analizin bilinen teoreminden, Lp,ν’nün yoğun alt kümesi
olan S(Rn

+)’dan alınmış her ϕ için Aϕ = Bϕ sağlandığına göre, her ϕ ∈ Lp,ν , (1 ≤ p ≤
∞; L∞,ν ≡ C0) için Aϕ = Bϕ sağlanır.
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Şimdi, çalışmamızın esas teoremlerinden birini ifade edelim.

Bu teoremde, potansiyel tipli =αβϕ operatörleri ailesinin tersleri, Bölüm 3.2’te ta-
nımladığımız A ≡ A(β)

µ,ν dalgacık tipli dönüşümler ailesi yardımıyla bulunacaktır..

Söz konusu teoremin ispatı, I.Aliev ve B.Rubin tarafından Aliev ve Rubin (2005)
makalesinde geliştirilmiş olan genel bir metoda dayanacaktır (Bu metodun başka uygula-
maları için Aliev vd (2008), Aliev (2009), Aliev ve Saglık (2016) makalelerine bakılabi-
lir).

Söz konusu teoremin ispatında, Reel Analizin, noktasal yakınsama ile ilgili aşağı-
daki ünlü lemmasına ihtiyacımız olacaktır.

Lemma 4.6. (Stein ve Weiss (1971), Duoandikoetxea (2001) ) (X,m) bir ölçüm uzayı
olsun. {Tε}ε>0 lineer operatörler ailesi Lp(X,m), (1 ≤ p < ∞) uzayında tanımlanmış
olsun. f ∈ Lp(X,m) olmak üzere,

sup
ε>0
|(Tεf)(x)| = (T ∗f)(x)

diyelim. T ∗ sub-lineer operatörünün zayıf (p, q) tipli olduğunu, yani, her λ > 0 için

µ {y ∈ X : (T ∗f)(y) > λ} ≤
(
c ‖f‖p
λ

)q
sağlandığını varsayalım. Eğer X’in yoğun bir alt kümesinden alınmış her x için

lim
ε→0

(Tεf)(x) = f(x)

sağlanırsa, o halde, hemen hemen her x ∈ X için

lim
ε→0

(Tεf)(x) = f(x)

sağlanır.

Teorem 4.7. =αβϕ ifadesi, ϕ ∈ Lp,ν
(
Rn

+

)
, (1 ≤ p ≤ ∞) fonksiyonunun genelleştirilmiş

ve iki parametreye bağlı potansiyeli olsun. Dalgacık tipli dönüşüm olarak adlandırılan
A=A(β)

µ,ν operatörü (3.34) formülündeki gibi tanımlansın. Ayrıca, [0,∞) aralığında veril-
miş sonlu Borel ölçümü µ Lemma 4.1’deki (4.3) ve (4.4) koşullarını sağlasın.

O halde, C = Cα
β
,µ sayısı (4.5)-(4.6) formülleriyle tanımlanmak üzere,

∞∫
0

t−
α
β
(
A=αβϕ

)
(x, t)

dt

t
= Cϕ(x) (4.10)
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eşitliği sağlanır. Burada,

∞∫
0

t−
α
β
(
A=αβϕ

)
(x, t)

dt

t
= lim

ε→0

∞∫
ε

t−
α
β
(
A=αβϕ

)
(x, t)

dt

t
(4.11)

olup, söz konusu limit Lp,ν uzayının normu anlamında, veya, h.h.x ∈ Rn
+ için noktasal

limit olarak düşünülmektedir. Bundan başka, ϕ ∈ C0 ise, yakınsama tüm Rn
+ uzayında

düzgün yakınsamadır.

Sonuç 4.8. β > α olsun. Bu durumda,
[
α
β

]
= 0 olacağından (4.10) formülü, µ üzerine

daha az koşul konularak sağlanır:

a)

∞∫
1

td |µ| (t) <∞;

b)

∞∫
0

dµ(t) = 0.

Sonuç 4.9. (4.10) formülünün bir başka yorumu, integral denklemler ile ilgilidir:

Sonlu Borel ölçümü µ, Lemma 4.1’deki (4.3) ve (4.4) koşullarını sağlasın. B(β)
t ϕ

yarıgrubu da (3.16) formülündeki gibi tanımlansın. Aşağıdaki şekilde integral denklemine
bakalım:

∞∫
0

t
α
β e−tB(β)

t ϕ(x)
dt

t
= f(x), (x ∈ Rn

+).

Burada, f ∈ Lp,ν(Rn
+) verilmiş fonksiyon olup,

lim
ε→0

∞∫
ε

t−
α
β (Af) (x, t)

dt

t

limiti h.h.x ∈ Rn
+ için var olsun. O halde, C = Cα

β
,µ olmak üzere, h.h.x ∈ Rn

+ için

ϕ(x) =
1

C
Γ

(
α

β

) ∞∫
0

t−
α
β (Af) (x, t)

dt

t

sağlanır.

Sonuç 4.10. Teoremde β = 2 koyarsak, Laplace-Bessel diferansiyel operatörünün do-
ğurduğu Bessel potansiyelleri ve β = 1 koyarsak, yine Laplace-Bessel diferansiyel ope-
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ratörünün doğurduğu Flett potansiyelleri için ters bulma formülü elde edilir.

Not 4.11. 0 < α, β <∞ olmak üzere, µ ölçümü için

∞∫
0

t−
α
β d |µ| (t) <∞ ve C−α

β
,µ ≡ Γ

(
α

β

) ∞∫
0

t−
α
β dµ(t) 6= 0

koşulları sağlandığında, iki parametreye bağlı=αβϕ, (ϕ ∈ Lp,ν , 1 ≤ p ≤ ∞) potansiyeller
ailesi, yukarıda (3.34) formülünde tanımladığımız dalgacık tipli dönüşümün kullanıldığı
bir integral gösterime sahiptir. Daha doğrusu,A operatörü, (3.34) formülündeki dalgacık
tipli dönüşüm olmak üzere, h.h. x ∈ Rn

+ için

=αβϕ(x) =
1

C−α
β
,µ

∞∫
0

η
α
β (Aϕ)(x, η)

dη

η
(4.12)

eşitliği sağlanır.

Gerçekten (3.34) formülü ve Fubini teoremi kullanılırsa,

∞∫
0

η
α
β
−1(Aϕ)(x, η)dη =

∞∫
0

η
α
β
−1

 ∞∫
0

e−tηB(β)
tη ϕ(x)dµ(t)

 dη

=

∞∫
0

 ∞∫
0

e−tηη
α
β
−1B(β)

tη ϕ(x)dη

 dµ(t)

(η yerine η/t koyuyoruz)

=

 ∞∫
0

t−
α
β dµ(t)

 ∞∫
0

e−ηη
α
β
−1B(β)

η ϕ(x)dη


=

Γ

(
α

β

) ∞∫
0

t−
α
β dµ(t)

 1

Γ
(
α
β

) ∞∫
0

e−ηη
α
β
−1B(β)

η ϕ(x)dη


= C−α

β
,µ=αβϕ(x)

Şimdi de Fubini teoreminin uygulanabilirliğini gösterelim.

∞∫
0

η
α
β
−1

(∞∫
0

e−tη
∣∣∣B(β)

tη ϕ(x)
∣∣∣ d |µ| (t)) dη

≤ sup
s>0

∣∣B(β)
s ϕ(x)

∣∣ ∞∫
0

η
α
β
−1

(∞∫
0

e−tηd |µ| (t)
)
dη

≤ ((3.24) eşitsizliğini kullanıyoruz ve η yerine η/t yazıyoruz)

≤ cMνϕ(x)Γ

(
α

β

) ∞∫
0

t−
α
β d |µ| (t) <∞, (h.h. x ∈ Rn

+ için).
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Böylece, yukarıda katlı integral yakınsak oldu. Dolayısıyla, Fubini teoremi uygulanabilir.

Not 4.12. (4.12) formülü ile (4.10) formülü kıyaslanırsa, (4.10) formülünün, (4.12)’de, α
parametresi yerine, formal olarak (−α) koyarak elde edildiği gözlemlenebilir.

Şimdi, çalışmamızın esas teoremlerinden biri Teorem 4.7’nin kanıtına geçelim.

Kanıt. ϕ ∈ Lp,ν(Rn
+) olsun. Lemma 4.5 ’i kullanarak, aşağıdakileri yazabiriz.

(
A=αβϕ

)
(x, t) =

∞∫
0

e−stB(β)
st =αβϕ(x)dµ(s)

=
∞∫
0

e−st=αβB
(β)
st ϕ(x)dµ(s)

(3.20)
=

1

Γ
(
α
β

)∞∫
0

e−st
(∞∫

0

τ
α
β
−1e−τB(β)

τ B
(β)
st ϕ(x)dτ

)
dµ(s)

(3.27)
=

1

Γ
(
α
β

)∞∫
0

e−st
(∞∫

0

τ
α
β
−1e−τB(β)

τ+stϕ(x)dτ

)
dµ(s)

(değişken değiştirme: τ yerine, τ − st koyuyoruz.)

=
1

Γ
(
α
β

)∞∫
0

(∞∫
0

(τ − st)
α
β
−1

+ e−τB(β)
τ ϕ(x)dτ

)
dµ(s).

Burada, τ > st ise, (τ − st)
α
β
−1

+ = (τ − st)
α
β
−1 ve τ ≤ st ise, (τ − st)

α
β
−1

+ = 0 olarak
tanımlanmıştır.

Şimdi, Fubini teoremi kullanılırsa, verilmiş ε > 0 için

∞∫
ε

t−
α
β
−1
(
A=αβϕ

)
(x, t)dt

=
1

Γ
(
α
β

) ∞∫
0


∞∫

0

e−τB(β)
τ ϕ(x)

 ∞∫
ε

t−
α
β
−1 (τ − st)

α
β
−1

+ dt

 dτ

 dµ(s)

=
1

Γ
(
α
β

) ∞∫
0

e−τB(β)
τ ϕ(x)


∞∫

0

s
α
β
−1

 ∞∫
ε

t−
α
β
−1
(τ
s
− t
)α
β
−1

+
dt

 dµ(s)

 dτ

(
(τ
s
− t
)α
β
−1

+
fonksiyonunun tanımını kullanıyoruz)

=
1

Γ
(
α
β

) ∞∫
0

e−τB(β)
τ ϕ(x)


τ
ε∫

0

s
α
β
−1


τ
ε∫
ε

t−
α
β
−1
(τ
s
− t
)α
β
−1

dt

 dµ(s)

 dτ

(τ yerine ετ koyuyoruz)
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= ε
1

Γ
(
α
β

) ∞∫
0

e−ετB(β)
ετ ϕ(x)


τ∫

0

s
α
β
−1


ετ
s∫
ε

t−
α
β
−1
(ετ
s
− t
)α
β
−1

dt

 dµ(s)

 dτ

(t yerine εt koyuyoruz)

=
1

Γ
(
α
β

) ∞∫
0

e−ετB(β)
ετ ϕ(x)


τ∫

0

s
α
β
−1


τ
s∫

1

t−
α
β
−1
(τ
s
− t
)α
β
−1

dt

 dµ(s)

 dτ

(Lemma 4.4’yi kullanıyoruz)

=
1

Γ
(
α
β

) ∞∫
0

e−τεB(β)
τε ϕ(x)


τ∫

0

s
α
β
−1

Γ
(
α
β

)
Γ
(

1 + α
β

) s
τ

(τ
s
− t
)α
β
dµ(s)

 dτ

((4.1) ve (4.2) ifadelerini kullanıyoruz)

=

∞∫
0

e−τεB(β)
τε ϕ(x)Kα

β
(τ)dτ (4.13)

olur. Burada, (4.2) tanımlamasına uygun olarak,

Kα
β
(τ) =

1

τ

1

Γ
(

1 + α
β

) τ∫
0

(τ − s)
α
β dµ(s).

Teoremin ispatının kalan kısmı; Lemma 3.3’i kullanarak elde edilir. Daha doğrusu, (4.5)
ve (4.6) formülündeki

C ≡ Cα
β
,µ =

∞∫
0

Kα
β
(τ)dτ

notasyonuna dayanarak (4.13) formülünden şunları yazabiliriz:

∞∫
ε

t−
α
β
−1(A=αβϕ)(x, t)dt− Cϕ(x)

=

∞∫
0

e−τεB(β)
τε ϕ(x)Kα

β
(τ)dτ −

∞∫
0

ϕ(x)Kα
β
(τ)dτ

=

∞∫
0

(
e−τεB(β)

τε ϕ(x)− ϕ(x)
)
Kα

β
(τ)dτ

=

∞∫
0

e−τε
(
B(β)
τε ϕ(x)− ϕ(x)

)
Kα

β
(τ)dτ + ϕ(x)

∞∫
0

(
1− e−τε

)
Kα

β
(τ)dτ .
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Minkowski eşitsizliği kullanılırsa,∥∥∥∥∥∥
∞∫
ε

t−
α
β
−1(A=αβϕ)(·, t)dt− Cϕ(x)

∥∥∥∥∥∥
p,ν

≤
∞∫

0

e−τε
∥∥B(β)

τε ϕ− ϕ
∥∥
p,ν

∣∣∣Kα
β
(τ)
∣∣∣ dτ

+ ‖ϕ‖p,ν

∞∫
0

(
1− e−τε

) ∣∣∣Kα
β
(τ)
∣∣∣ dτ . (4.14)

Bundan sonraki aşamada, Lebesgue Baskın Yakınsama Teoremini kullanacağız (Folland
(1984) ).

0 < e−τε < 1; |1− e−τε| < 2;

∞∫
0

∣∣∣Kα
β
(τ)
∣∣∣ dτ <∞,

∥∥B(β)
τε ϕ− ϕ

∥∥
p,ν
≤
∥∥B(β)

τε ϕ
∥∥
p,ν

+ ‖ϕ‖p,ν
(3.23)

≤ Cβ ‖ϕ‖p,ν
olduğundan ve lim

ε→∞

∥∥∥B(β)
τε ϕ− ϕ

∥∥∥
p,ν

= 0; lim
ε→0

(1− e−τε) = 0 eşitlikleri sağlandığından,

Lebesgue teoremine göre, (4.14) eşitsizliğinin sağ tarafının ε → 0 için limiti sıfıra eşit
olur. O halde,

lim
ε→0

∥∥∥∥∥∥
∞∫
ε

t−
α
β
−1(A=αβϕ)(·, t)dt− Cϕ

∥∥∥∥∥∥
p,ν

= 0 (4.15)

sağlanır.

Bu sonuncu eşitlik şöyle de yazılabilir:

(Lp,ν)− lim
ε→0

∞∫
ε

t−
α
β
−1(A=αβϕ)(x, t)dt = Cϕ(x).

Burada, p = ∞ durumunda, L∞,ν ≡ C0 kabul ettiğimizden, (4.15)’e göre ϕ ∈ C0 için
yakınsama düzgün yakınsamadır.
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Şimdi de, ε > 0 parametresine bağlı olan

∞∫
ε

t−
α
β
−1(A=αβϕ)(x, t)dt, (x ∈ Rn

+; ϕ ∈ Lp,ν)

fonksiyonlar ailesinin ε→ 0 için Cϕ(x) değerine noktasal yakınsaklığını inceleyelim.

Reel analizin temel teoremlerinden bilindiği üzere, böyle durumlarda maksimal
operatör tekniği uygulanır. Daha doğrusu, Lemma 4.6’yı uygulayacağız.

Lemma 4.6’yı uygulayabilmemiz için, Lemmada bahsi geçen {Tε}ε>0 lineer ope-
ratörler ailesini şöyle tanımlayalım:

(Tεϕ) (x) =

∞∫
ε

t−
α
β
−1(A=αβϕ)(x, t)dt, (x ∈ Rn

+; ϕ ∈ Lp,ν).

sup
ε>0
|(Tεϕ) (x)| = sup

ε>0

∣∣∣∣∣∣
∞∫
ε

t−
α
β
−1(A=αβϕ)(x, t)dt

∣∣∣∣∣∣
(4.13)
= sup

ε>0

∣∣∣∣∣∣
∞∫

0

e−τεB(β)
τε ϕ(x)Kα

β
(τ)dτ

∣∣∣∣∣∣
≤ sup

t>0

∣∣∣B(β)
t ϕ(x)

∣∣∣ ∞∫
0

∣∣∣Kα
β
(τ)
∣∣∣ dτ

(3.24)

≤ cMνϕ(x)

elde edilir.

Burada,Mνϕ, genelleşmiş kaymanın doğurduğu Hardy-Littlewood maksimal ope-
ratörüdür.

Mν : Lp,ν → Lp,ν , (1 < p ≤ ∞) güçlü ve Mν : L1,ν → L1,ν zayıf tipli olduğun-
dan,

T ∗ϕ(x) = sup
ε>0
|(Tεϕ) (x)|

dersek, T ∗ operatörünün Lp,ν → Lp,ν güçlü tipli, L1,ν → L1,ν zayıf tipli ve dolayısıyla,
1 ≤ p ≤ ∞ için Lp,ν → Lp,ν zayıf tipli operatör olduğunu söyleyebiliriz.

Şimdi, Lp,ν , (1 ≤ p <∞) uzayının yoğun alt kümesi olan C0∩Lp,ν uzayında Tεϕ,
(ε > 0) ailesi ϕ’ye düzgün (dolayısıyla, noktasal) yakınsadığından, Lemma 4.4’e göre bu
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aile ε→ 0 için ϕ’ye h.h.her yerde yakınsak olacaktır.

Yani, h.h.x ∈ Rn
+ için

lim
ε→0

∞∫
ε

t−
α
β
−1(A=αβϕ)(x, t)dt = Cϕ(x),

C ≡ Cα
β
,µ =

∞∫
0

Kα
β
(s)ds


sağlanacaktır. Teoremin ispatı bitti.

Not 4.13. Teorem 4.7’nin kullanışlı olması için, oradaki µ ölçümü, C = Cα
β
,µ katsayısı

sıfırdan farklı olacak şekilde alınmalıdır. Biz burada, bu teoremin tüm koşullarını (C ≡
Cα
β
,µ 6= 0 dahil) sağlayan µ ölçümüne örnekler verelim.

(a) m tamsayısını,m > α
β

olacak şekilde seçelim. h = h(t) Schwarz test fonksiyonunu
öyle alalım ki,

a) her k = 0, 1, 2, . . . için h(k)(0) = 0 olsun;

b)
∞∫
0

t
α
β
−mh(t)dt 6= 0 olsun.

(Örneğin, h(t) = exp
(
−t2 − 1

t2

)
, h(0) = 0 fonksiyonu bunu sağlar).

Şimdi, µ ölçümünü şöyle tanımlayalım: dµ(t) = h(m)(t)dt

(Yani, örneğin, her [a, b) ∈ R1 aralığı için µ {[a, b)} =
b∫
a

h(m)(t)dt).

Kısmi integralleme uygulanırsa,
∞∫

0

tkdµ(t) =

∞∫
0

tkh(m)(t)dt = tkh(m−1) |∞0 − k
∞∫

0

tk−1h(m−1)(t)dt

= −k
∞∫

0

tk−1h(m−1)(t)dt

= . . . = 0,

Yani, her k = 0, 1, . . . ,
[
α
β

]
için

∞∫
0

tkdµ(t) = 0 olur. C ≡ Cα
β
,µ 6= 0 olduğunu gös-

terelim. Bunun için,Cα
β
,µ’nün (4.6) ifadesini kullanacağız:Cα

β
,µ =

∞∫
0

t−
α
β
−1µ̃(t)dt;

µ̃(t) =
∞∫
0

e−tηdµ(η).

Şimdi,

µ̃(t) =

∞∫
0

e−tηdµ(η) =

∞∫
0

e−tηh(m)(η)dη

= . . . (m defa kısmi integralleme uyguluyoruz). . .
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= tm
∞∫

0

e−tηh(η)dη

ifadesini, yukarıdaki formülde yerine koyarsak,

Cα
β
,µ =

∞∫
0

t−
α
β
−1tm

 ∞∫
0

e−tηh(η)dη

 dt

=

∞∫
0

h(η)

 ∞∫
0

tm−
α
β
−1e−tηdt

 dη
(içerideki integralde, t yerine t/η koyalım)

=

∞∫
0

h(η)η
α
β
−mdη

∞∫
0

tm−
α
β
−1e−tdt

= Γ

(
m− α

β

) ∞∫
0

h(η)η
α
β
−mdη 6= 0.

Sonuç: µ ölçümü, yukarıdaki gibi, dµ(t) = h(m)(t)dt olarak tanımlansın. O halde,

C = Γ
(
m− α

β

) ∞∫
0

h(η)η
α
β
−mdη olmak üzere, her ϕ ∈ Lp,ν(Rn

+) için

∞∫
0

t−
α
β
−1
(
A=αβϕ

)
(x, t)dt = Cϕ(x)

eşitliği h.h.x ∈ Rn
+ için sağlanır.

(b) Şimdi, µ ölçümü olarak, Dirac δ-fonksiyonelinin kullanıldığı ünlü bir ayrık ölçüm
alalım: m > α

β
olmak üzere,

µ =
m∑
j=0

(
m

j

)
(−1)jδj;

burada, δj fonksiyoneli, her sürekli f fonksiyonuna şöyle etki ediyor:

〈δj, f〉 = f(j), (j = 0, 1, 2, . . . ,m).

Her k = 0, 1, 2, . . . ,m − 1 için
∞∫
0

g(t)dµ(t) ≡
m∑
j=0

(
m
j

)
(−1)jg(j) olduğunu kulla-

nalım.
∞∫

0

tkdµ(t) ≡
m∑
j=0

(
m

j

)
(−1)j

〈
δj, t

k
〉

=
m∑
j=0

(
m

j

)
(−1)jjk = 0
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olduğu iyi biliniyor (Samko vd (1993) ).

Şimdi, C ≡ Cα
β
,µ 6= 0 olduğunu görelim.

Yine, (4.6) formülünü kullanacağız.

Cα
β
,µ =

∞∫
0

t−
α
β
−1µ̃(t)dt

=

∞∫
0

t−
α
β
−1

 ∞∫
0

e−ηtdµ(η)

 dt

=

∞∫
0

t−
α
β
−1

(
m∑
j=0

(
m

j

)
(−1)je−tj

)
dt

=

∞∫
0

t−
α
β
−1
(
1− e−t

)m
dt > 0

olduğu görülür. Yani, Teorem 4.7’nin tüm koşulları sağlanır.

O halde,

C ≡ Cα
β
,µ =

∞∫
0

t−
α
β
−1
(
1− e−t

)m
dt

olmak üzere, her ϕ ∈ Lp,ν(Rn
+) için

∞∫
0

t−
α
β
−1
(
A=αβϕ

)
(x, t)dt = Cϕ(x), (h.h.x ∈ Rn

+) (4.16)

olur.

Yukarıdaki µ ölçümünün doğurduğu dalgacık tipli dönüşüm, (3.34) formülüne
göre,

(Af)(x, t) =

∞∫
0

e−tηB(β)
tη f(x)dµ(η)

=
m∑
j=0

(
m

j

)
(−1)je−jtB(β)

jt f(x), (B(β)
0 f(x) = f(x))

olur. Bunu, (4.16)’da kullanırsak, h.h.x ∈ Rn
+ için

∞∫
0

t−
α
β
−1

(
m∑
j=0

(
m

j

)
(−1)je−jtB(β)

jt =αβϕ(x)

)
dt = Cϕ(x)

sağlanır.
(c) β > α olması durumunda,

[
α
β

]
= 0 olduğundan, Sonuç 4.8’de belirtildiği üzere,

µ üzerine konulan koşullar çok daha zayıf olur:
43



BULGULAR VE TARTIŞMA Sinem YÜCEL

(i)

∞∫
1

td |µ| (t) <∞,

(ii)

∞∫
0

dµ(t) = 0.

Buna uygun olarak, (4.9) formülüne göre, C sabiti de

C ≡ Cα
β
,µ = Γ

(
−α
β

) ∞∫
0

t
α
β dµ(t)

formülüyle hesaplanır.

Bu özelliğe sahip µ ölçümü örnekleri çok sayıda kurulabilir.

Örneğin,

1) dµ(t) = (1− t) e−tdt, (0 ≤ t < ∞) şeklinde tanımlanmış ölçüm yukarıdaki
özellikleri sağlar.

2) 0 < a < b < ∞ ve h(t) fonksiyonu [a, b] aralığında sürekli, pozitif fonksiyon
olmak üzere,

g(t) = h(t)− 1

b− a

b∫
a

h(s)ds, (a ≤ t ≤ b)

ve t ∈ R\ [a, b] için g(t) = 0 tanımlanırsa, dµ(t) = g(t)dt şeklindeki ölçüm de söz
konusu özellikleri sağlar (Başka örnekler için Aliev ve Saglık (2016) makalesine
bakılabilir).

Örneğin, dµ(t) = (1− t) e−tdt, (0 ≤ t < ∞) ölçümü alınırsa, Teorem 4.7’deki
C katsayısı, β > α koşulu altında aşağıdaki gibi olur:

C ≡ Cα
β
,µ = Γ

(
−α
β

) ∞∫
0

t
α
β (1− t)e−tdt 6= 0.

3)
∞∫
0

dµ(t) = 0 ve
∞∫
1

d |µ| (t) < ∞ koşullarını sağlayan ölçüm örneklerinin geniş

sınıfını şöyle elde edebiliriz:

0 ≤ t < ∞ olmak üzere, a(t) ≥ 0 ve b(t) ≥ 0 fonksiyonları sürekli olup
∞∫
0

a(t)dt = a < ∞;
∞∫
0

b(t)dt = b < ∞ sağlansın. ϕ(t) = ba(t) − ab(t) diye-

lim. O halde,

dµ(t) = (ba(t)− ab(t)) dt, (0 ≤ t <∞)
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dersek,
∞∫
0

dµ(t) = 0 ve
∞∫
1

d |µ| (t) ≤ b
∞∫
0

a(t)dt+ a
∞∫
0

b(t)dt = 2ab sağlanır.

Örneğin, a(t) = e−t; b(t) = e−2t alınırsa,
∞∫
0

a(t)dt = 1;
∞∫
0

b(t)dt = 1
2

olduğundan

dµ(t) =
(

1
2
e−t − e−2t

)
dt ölçümü için

∞∫
0

dµ(t) = 0 ve
∞∫
1

d |µ| (t) < 1 sağlanır.
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5. SONUÇ

Bu çalışma kapsamında, Laplace-Bessel diferansiyel operatörünün doğurduğu Bes-
sel potansiyellerinin genelleşmesi olan, iki parametreye bağlı =αβ operatörleri ailesi ta-
nımlanarak, ağırlıklı Lp,ν(Rn

+) uzaylarında davranışı incelenmiş ve onların tersini ifade
eden formüller geliştirilmiştir. Bunun için, genelleştirilmiş beta-yarıgrup diye adlandırı-
lanB(β)

t , (t ≥ 0) yarıgrubu vasıtasıyla bir dalgacık (wavelet) tipli dönüşüm tanımlanmıştır.
Tanımlanan bu dalgacık tipli dönüşüm, =αβ potansiyellerinin terslerini bulmak için kulla-
nılmıştır.
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öğrenimini 2017 yılında tamamladı.


	ÖZET
	ABSTRACT
	ÖNSÖZ
	IÇINDEKILER
	GIRIS
	KURAMSAL BILGILER VE KAYNAK TARAMASI
	Fourier Harmonik Analizinin Bazı Temel Kavram Ve Teoremleri
	Fourier-Bessel Harmonik Analizinin Bazı Temel Kavram Ve Teoremleri: Tek Degiskenli Durum
	Fourier-Bessel Harmonik Analizinin Bazı Temel Kavram Ve Teoremleri: Çok Degiskenli Durum

	MATERYAL VE METOT
	Klasik Bessel Potansiyelleri Ve Onların Genellestirilmis Versiyonları
	Genellestirilmis Beta-Yarıgrup, Iki Parametreye Baglı Bessel-Tipli Potansiyeller Ve Bir Dalgacık Tipli Dönüsüm

	BULGULAR VE TARTISMA
	Iki Parametreye Baglı Genellestirilmis Potansiyel Tipli 0=x"010C0=x"010B Operatörlerinin Terslerinin Bulunması

	SONUÇ
	KAYNAKLAR
	ÖZGEÇMIS

