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ÖZET

¡Operatörü ve Sturm-Liouville Problemi

Bu tez üç bölümden oluşmaktad¬r.

Birinci bölümde, ¡fark operatörleri ile ilgili genel bir tarihçe verilmi̧stir.

·Ikinci bölümde, ¡ fark operatörü, ¡ fonksiyonlar ve ¡ fonksiyonlar uzaylar¬n¬n

özellikleri incelenmi̧stir. Konuyla ilgili temel tan¬m ve teoremler verilmi̧stir.

Üçüncü bölümde, 2
(0 )Hilbert uzay¬nda ¡Sturm-Liouville Problemi verilmi̧stir.

Bu problem ile ilgili genel spektral özellikler incelenmi̧stir. Ayr¬ca (  ) Green

fonksiyonunun özellikleri verilip bununla ilgili temel tan¬m ve teoremler ispatlar¬yla

birlikte detayl¬ olarak verilmi̧stir. Özfoksiyonlar¬n¬n aç¬l¬m formülleri incelenmi̧stir.

Anahtar Kelimeler. ¡Fark operatörü, ¡Sturm-Liouville problemi, (  )

Green fonksiyonu, ¡Lagrange özdeşli¼gi, aç¬l¬m formülü.
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SUMMARY

 ¡Operator and Sturm Liouville Problem

This thesis consists of three chapters.

In the …rst chapter, a general history related to ¡ di¤erence operators is given.

In the second chapter, properties of ¡ di¤erence operator, ¡ functions and ¡

functions spaces are analyzed. Basic de…nitions and theorems related to the subject

are given.

In the third chapter, ¡ Sturm-Liouville Problem in 2
(0 ) Hilbert space is given.

General spectral properties related to this problem are analyzed. Also, properties of

(  ) Green functions are given and basic de…nitions and theorems related to this

subject is given with proofs in detailed. Finally, expansion formulas of eigenfunctions

of this problem are investigated.

Key words. ¡Di¤erence operator, ¡Sturm-Liouville problem, (  )Green’s

function, ¡Lagrange’s identity, expansion formula.
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SEMBOLLER L·ISTES·I

Bu çal¬̧smada kullan¬lan baz¬ simgeler, aç¬klamalar¬ ile birlikte aşa¼g¬da sunulmuştur.
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1. G·IR·IŞ

Matematiksel …zi¼gin, mühendisli¼gin ve birçok bilimin pek çok probleminin mo-

dellenmesi diferansiyel denklemlerden oluşan s¬n¬r de¼ger problemleri içermektedir. Bu

problemlerin çözümü, 1830 ’lu y¬llara kadar analitik olarak ifade edilebilmesi ile s¬n¬rl¬

kalm¬̧st¬r fakat 1836 y¬l¬nda iki yak¬n arkadaş olan ·Isveçli matematikçi Charles François

Sturm (1803-1855) ve Frans¬z matematikçi Joseph Liouville çözümlerin analitik olarak

ifade edilemedi¼gi durumlarda bu çözümlerin özelliklerinin bulunmas¬ ile ilgili çal¬̧smalar

yapm¬̧s ve Sturm-Liouville teorisini kurmuşlard¬r.

Klasik bir Sturm-Liouville diferansiyel denklemi genel olarak sonlu veya sonsuz

     aral¬¼g¬nda tan¬ml¬  fonksiyonlar¬ için,





·
 ()





¸
+ [ () +  ()]  = 0

şeklinde tan¬ml¬ ikinci mertebeden lineer bir diferansiyel denklemdir. Bu denklemde

 ()   () ve  () verilen fonksiyonlard¬r. Bu fonksiyonlar¬n reel de¼gerli ve ayr¬ca

( ) aral¬¼g¬nda parçal¬ sürekli oldu¼gu varsay¬lmaktad¬r. Bununla birlikte  () ve

 () fonksiyonlar¬n¬n ( ) aral¬¼g¬nda daima pozitif oldu¼gu varsay¬lmaktad¬r. Bu denk-

lemdeki  say¬lar¬ da parametrelerdir [21].

Sturm ve Liouville diklik, özde¼gerlerin gerçelli¼gi ve Fourier katsay¬lar¬n¬n belirlen-

mesi gibi baz¬ teoremleri ortak kullan¬yorlarsa da Sturm özde¼gerlerin özellikleri, özde¼ger

ve özfonksiyonlar¬n nitel davran¬̧slar¬na yönelirken, Liouville key… fonksiyonlar¬n, öz-

fonksiyonlar¬n bir sonsuz seri aç¬l¬m¬na a¼g¬rl¬k vermi̧stir. Sturm, homojen olmayan ince

bir teldeki ¬s¬ iletimi problemini göz önüne alm¬̧s ve bu problemin çözümü için k¬smi

diferansiyel denklemi de¼gi̧skenlerine ay¬rma metodu kullanarak adi diferansiyel denk-

leme dönüştürmüştür. Sturm-Liouville kuram¬n¬n geli̧smesinde D’Alembert, Fourier ve

Poisson’un çal¬̧smalar¬ öncülük etmi̧s ve katk¬ sa¼glam¬̧st¬r. Fourier, homojen ortam-

larda ¬s¬ iletim problemlerini silindirik ve küresel koordinatlar¬ kullanarak incelemi̧s

ve ¬s¬ teorisi ile ilgili önemli sonuçlar elde etmi̧stir. Bu sonuçlar Poisson taraf¬ndan

devam ettirilmi̧s ve geli̧stirilmi̧stir. Homojen ve homojen olmayan bir teldeki titreşim

problemini ilk kez D’Alembert ve ayn¬ dönemde Euler incelemi̧stir.

Sturm’un ikinci önemli çal¬̧smas¬ spektral kuram¬ üzerine olmuştur. Liouville’nin

çal¬̧smas¬ ise key… fonksiyonlar¬n, özfonksiyonlar¬ cinsinden Fourier serisine aç¬l¬m¬,



ortogonallik özellikleri ile farkl¬ tipteki ve yüksek mertebeden denklemlere, kuram¬n

genelleştirilmesi üzerine olmuştur. Ard¬̧s¬k yaklaş¬mlar yöntemini kullanarak bir dife-

rensiyel denklemin çözümlerinin varl¬¼g¬n¬ ilk kez Liouville kan¬tlam¬̧st¬r.

1880’lerde, L. Rayleigh ve G. Kirchho¤ titreşim problemini incelerken Sturm’un

teoremlerinin benzerini yüksek basamaktan s¬n¬r de¼ger problemlerine uygulam¬̧slard¬r.

F. Klein diferansiyel denklemlerin polinom tipi çözümlerini s¬n¬r de¼ger problemleri ku-

ram¬ ile birleştirmi̧stir. 1908’de Birko¤ özde¼ger parametresine ba¼gl¬ adi diferansiyel

denklemlerin temel çözümleri için asimptotik eşitlikler elde etmi̧s, regüler s¬n¬r şart-

lar¬n¬ tan¬mlam¬̧s ve regüler s¬n¬r-de¼ger problemleri için özfonksiyonlar ve özfonksi-

yonlara ba¼gl¬ fonksiyonlar sisteminin taml¬¼g¬ ile ilgili teoremler ispatlam¬̧st¬r. 1946

y¬l¬nda Titchmarsh do¼gru ekseninde tan¬ml¬ azalan (artan) potansiyelli  = ¡ 2

2
+

 () Sturm-Liouville operatörleri için özde¼gerlere göre ayr¬̧s¬m formülünü vermi̧stir.

Ayr¬ca Naimark, Atkinson, Rietsz, Neumann, Friedrichs, Wintner, Leighton, Levitan

Tamarkin gibi birçok matematikçi bu teorinin geli̧smesini sa¼glam¬̧st¬r.

Eskiden beri fark denklemleri ve ¡fark denklemlerinin incelenmesine matematikçiler

ve …zikçiler taraf¬ndan büyük ilgi duyulmaktad¬r. ¡ fark denklemleri bir taraftan

diferansiyel denklemleri diskritleştirerek (ayr¬klaşt¬rarak) yakla̧s¬k çö-

zerken, di¼ger taraftan da birçok pratik olay¬n matematiksel modelleri olarak kendi

baş¬na ortaya ç¬karmas¬ aç¬s¬ndan oldukça büyük önem taş¬maktad¬r. ¡fark denk-

lemlerinin teorisi beraberinde çok çeşitli konular¬ getirmi̧stir. Bunlardan en önemlisi

¡Sturm-Liouville Problemi olarak ele al¬nm¬̧st¬r [3]. Daha sonra Al-Salam ve Agarwal

¡Riemann Liouville integralini ve  kesirli türevlerini tan¬mlad¬lar [3]. Daha sonra

 kesirli hesaplamalar geli̧stirilmi̧s ve Caputo  kesirli türevi ve Weyl kesirli türevleri

tan¬mlanm¬̧st¬r [3]. Bunlar¬n ard¬ndan kesirli  Leibniz kural¬ ve uygulamalar¬ verilmi̧s

 kesirli fark denklemleri için önemli bir parametre olan  Mittag-Le­er fonksiyonlar¬

tan¬mlanm¬̧st¬r ve  kesirli fark denklemleri için varl¬k teklik teoremleri ispatlanm¬̧st¬r.

Annaby ve Mansour taraf¬ndan yaz¬lan kitap [3] ¡analizine önemli bir yön vermi̧stir.

Bu konuda çal¬̧smalar devam etmektedir [11-20]. Adi fark ve ¡ fark denk-lemleri

kolayl¬kla algoritmala̧st¬r¬larak, bilgisayarda çözmek için çok uygundurlar.
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2. GENEL KAVRAMLAR

2.1 Temel Tan¬mlar ve Teoremler

Tan¬m 2.1.1.  ve  bo̧s olmayan kümeler ve  ½  olsun. ’nin her eleman¬na

 ’nin bir eleman¬n¬ karş¬l¬k getiren bir kurala ’den  ’ye bir operatör veya dönüşüm

denir.  operatörünün ’e karş¬l¬k getirdi¼gi eleman () ile gösterilir.  operatörünün

 2 ’yi () 2  ’ye dönüştürdü¼günü belirtmek için,  :  !  gösterimi kullan¬l¬r

[1].

Tan¬m 2.1.2.  bir Hilbert uzay ve  ¤ 2 () (() = ()) olsun. E¼ger

 = ¤ veya 8  2  için    = ¤  ise bu operatöre self adjoint

operatör ya da Hilbert adjoint operatör denir [1].

Tan¬m 2.1.3. Bir ( ,k  k) normlu uzaydaki her Cauchy dizisi X içinde bir limite

yak¬ns¬yorsa, bu (,k  k) normlu uzay¬na tam normlu uzay veya Banach uzay ad¬

verilir [1].

Tan¬m 2.1.4. Bir ( ,   ) iç çarp¬m uzay¬ndaki her Cauchy dizisi X içinde bir

limite yak¬ns¬yorsa, bu (,   ) iç çarp¬m uzay¬na Hilbert uzay ad¬ verilir [1].

Tan¬m 2.1.5.   1 bir sabit reel say¬ ve

Z = f :  2 Zg = f ¡2 ¡1 0 1 2 g

şeklinde tan¬mlan¬r [2].

Tan¬m 2.1.6. 0    1 olmak üzere  pozitif bir say¬d¬r.  2 N = f0 1 2 g

 2 Z+ = f1 2 3 g  2 C olmak üzere ¡rotasyon faktöriyeli

(; ) =

8
><
>:

1  = 0
¡1Q
=0

(1¡ )  2 N
(2.1.1)

ile tan¬mlan¬r. Burada  ! 1 iken (; ) nin limiti var ve (; )1 ile tan¬mlan¬r.

1 2   kompleks say¬lar¬ için ¡rotasyonel faktöriyeli aşa¼g¬daki gibi olur [3],

(1 2  ; ) =

Y

=1

( ; )



Tan¬m 2.1.7.  bir kompleks say¬ olsun. ¡binom katsay¬lar¬

·




¸



=

8
<
:

1  = 0

(1¡)(1¡¡1)(1¡¡+1)
(;)

  2 N
(2.1.2)

ya da daha genel bir ifadeyle
·




¸



=
[]!

[ ¡ ]![]!

şeklinde tan¬mlan¬r [4].

(; ) ve (; )1 ( 2 N0) için aşa¼g¬daki seri formlar¬ yaz¬labilir,

(; ) =
X

=0

(¡1)
·




¸




(¡1)

2  (2.1.3)

(; )1 =
1X

=0

(¡1)
(¡1)

2


(; )
 (2.1.4)

Tan¬m 2.1.8. 1 2   , 1 2   kompleks say¬lar¬ için ©, ¡hipergeometrik

serileri

©(1 2  ; 1 2  ;  ) =
1X

=0

(1 2  ; )
( 1 2  ; )

(¡ ¡1
2 )(+1¡) (2.1.5)

şeklinde tan¬mlan¬r.

© fonksiyonunun seri aç¬l¬m¬ e¼ger  ·  ise 8  2 C için kesinlikle yak¬nsakt¬r.

E¼ger  = + 1 ise yaln¬zca jj  1 için yak¬nsakt¬r [3].

Tan¬m 2.1.9.

[] =
1¡ 

1¡ 
  2 Cnf1g (2.1.6)

olmak üzere ¡ faktöriyel fonksiyonu

[]! =
Y

=1

[]

= [1][2][¡ 1][]

=
1¡ 

1¡ 

1¡ 2

1¡ 

1¡ ¡1

1¡ 

1¡ 

1¡ 


= 1(1 + )(1 +  + ¡2)

=
(; )
(1¡ )

 (2.1.7)

şeklindedir.
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Tan¬m 2.1.10.  2 R sabit bir say¬ ve her bir  2  için  2  ise C nin  alt

kümesi ¡geometrik olarak adland¬r¬l¬r. E¼ger C nin  alt kümesi ¡geometrik ise her

fg1=0 geometrik dizileri  2  y¬ kapsar [3].

Tan¬m 2.1.11. ¡ diferensiyel

() = ()¡ ()

şeklinde tan¬mlan¬r [5].

Tan¬m 2.1.12.  reel ya da kompleks de¼gerli fonksiyonu Z üzerinde tan¬ml¬ olsun.

"¡ fark operatörü" 

 () =
()¡  ()

 ¡ 
  2 Z (2.1.8)

şeklinde tan¬mlan¬r [2].

() fonksiyonuna () fonksiyonunun ¡fark türevi denir, ¡fark operatörü

Jackson ¡fark operatörü, Euler Jackson ¡fark operatörü ya da Euler-Heine Jackson

¡fark operatörü olarak adland¬r¬l¬r. E¼ger 0 2  ise jj  1 için s¬f¬rda ¡türev,

(0) = lim
!1

 () ¡  (0)


  2 nf0g için

olarak tan¬mlan¬r. Buna göre s¬f¬rda ¡ türev jj  1 için

(0) = ¡1(0)

olur.

Teorem 2.1.1. , ¡türev operatörü olmak üzere

( ¨ )() = ()¨()

eşitli¼gi sa¼glan¬r.

·Ispat.

( ¨ )() =
( ¨ )()¡ ( ¨ )()

¡ 

=
 ()¨ ()¡ ()¨ ()

¡ 

=
 ()¡ ()¨ ()¡ ()

¡ 

=
 ()¡ ()

¡ 
¡ ()¡ ()

¡ 

= ()¨()
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Teorem 2.1.2. D, ¡türev operatörü olmak üzere ve c2 R olsun, bu takdirde

( )() = ()

eşitli¼gi vard¬r.

·Ispat.

( )() =
()¡ ()

¡ 
= 

()¡ ()

¡ 
= ()

Teorem 2.1.3. , ¡türev operatörü olmak üzere

()() = ()() + ()()

ya da

()() =  ()() + () ()

eşitli¼gi sa¼glan¬r.

·Ispat.

()() =
()()¡ ()()

¡ 


=
()()¡  ()() + ()()¡  ()()

¡ 


=
()[()¡ ()] + ()[ ()¡ ()]

¡ 


=
()[()¡ ()]

¡ 
+

()[ ()¡ ()]

¡ 


= ()() + ()()

ayn¬ zamanda aşa¼g¬daki eşitlikler sa¼glan¬r,

()() =
()()¡ ()()

¡ 


=
()()¡  ()() + ()()¡  ()()

¡ 


=
()[() ¡ ()] + ()[ ()¡ ()]

¡ 


=
()[() ¡ ()]

¡ 
+

()[ ()¡ ()]

¡ 


= ()() + ()()
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Teorem 2.1.4. ( ¡ Leibniz Kural¬) 
  n. mertebeden ¡ türev operatörü olmak

üzere


 ()() =

X

=0

·




¸



¡
¡

 
¢
()

 ()

eşitli¼gi sa¼glan¬r.

 = 1 için yukar¬daki eşitli¼gin do¼grulu¼gunu gösterelim.

()() =

1X

=0

·
1



¸



¡
1¡

 
¢
()

 ()

=

·
1

0

¸



¡
1


¢
(0)0

() +

·
1

1

¸



¡
0


¢
(1)1

()

= ()() +
1¡ 

1¡ 
()()

= ()() + ()()

olup verilen eşitlik  = 1 için do¼grudur.

Teorem 2.1.5. , ¡türev operatörü olmak üzere e¼ger () 6= () 6= 0 ise

()() =
()()¡  ()()

()()

eşitli¼gi vard¬r.

·Ispat.

()() =
()()¡ ()()

¡ 


=

()
()

¡ ()
()

¡ 


=
()()¡ () ()

()()(¡ )


=
()()¡ ()() + ()()¡ ()()

()()(¡ )


=
[ ()¡ ()]()¡ ()[()¡ ()]

()()(¡ )


=
[ ()¡ ()]()

()()(¡ )
¡ [()¡ ()]()

()()(¡ )


=
() ()

()()
¡ ()()

()()


=
() ()¡ ()()

()()

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Teorem 2.1.6. 
  n. mertebeden ¡türev operatörü olmak üzere  fonksiyonunun

 mertebeden ¡türevi


 () = (¡1)¡(1¡ )¡¡

¡(¡1)
2

X

=0

(¡1)
·




¸




(¡1)

2 (¡)

şeklindedir.

Teorem 2.1.7. E¼ger bir  : Z ! C fonksiyonunun ¡fark türevi özdeş olarak s¬f¬r ise

bu fonksiyon sabittir.

·Ispat. () = 0 8 2 Z olsun. O halde

()¡ ()

¡ 
 8 2 Z

Buradan da

() ¡ () = 0veya () = () 8 2 Z

elde edilir. Burada  yerine s¬ras¬yla

0 = 1 1 =  2 3 

yazarsak

() = (1)

(2) = () = (1)

(3) = (2) = () = (1)  () = (1) 8 = 1 2 3 

bulunur.  yerine

¡1 ¡2 ¡3 ¡4 

ifadeleri yaz¬larak

(¡1) = (1)

(¡2) = (¡1) = (1)

(¡3) = (¡2) = (¡1) = (1)  (¡) = (1) 8 = 1 2 3 

bulunur. Böylece 8 2 Z için () = (1) oldu¼gu ispatlan¬r. Bu ise () fonksiyonunun

Z üzerinde sabit olmas¬ demektir. Böylece teoremin ispat¬ tamamlan¬r.
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Tan¬m 2.1.13. 0     olsun. ¡integral

Z



 () = (1¡ )
1X

=0

() (2.1.9)

şeklinde tan¬mlan¬r [3].

Tan¬m 2.1.14. E¼ger   0 ve  , ¡ geometrik  kümesinde tan¬ml¬ bir fonksiyon ise

[1) aral¬¼g¬nda  fonksiyonunun Hahn ¡integrali
1Z



() =
1X

=1

¡(1¡ ) (¡)

şeklinde tan¬mlan¬r.

[01) aral¬¼g¬nda  fonksiyonu için ¡ integrasyonu

1Z

0

() = (1¡ )
1X

=1
()

olarak tan¬mlan¬r. Ayr¬ca [01) aral¬¼g¬nda tan¬ml¬

1
Z

0

 () =
1¡ 



1X

=¡1
 ()()  (  0)

ifadesine Matsuo ¡ integrasyonu denir.

R de tan¬ml¬ bir  fonksiyonunun ¡integrasyonu
1
Z

¡1


() =
1¡ 



1X

¡1
[(()) + (¡())] (  0)

olarak tan¬mlan¬r. Bu seriler yak¬nsakt¬r [3].

Tan¬m 2.1.15.  fonksiyonu ¡geometrik  kümesinde tan¬ml¬ iken, 0 2  olsun.

E¼ger,

lim
!1

() =  (0) 8  2  için

ise  fonksiyonuna s¬f¬rda ¡ regülerdir denir. E¼ger,  kümesi ¡1¡ geometrik ise 

sonsuzda ¡regülerdir [3].
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Tan¬m 2.1.16. E¼ger  µ R kümesi ¡ geometrik ve 0 da tan¬ml¬  fonksiyonu

s¬f¬rda ¡ regüler ise  (0+) ve  (0¡)

(0+) = lim
!1
Â0

()  (0¡) = lim
!1
Á0

()

olarak tan¬mlan¬r [3].

E¼ger  , s¬f¬rda ¡regüler ise

(0) =  (0+) = (0¡) dir.

S¬f¬rda ¡ regülerlik baz¬ yerlerde klasik anlamda süreklili¼gin rolünü oynar. S¬f¬rda

süreklilik s¬f¬rda ¡ regülerli¼gi gerektirir. Fakat tersi do¼gru olmayabilir. Örne¼gin;

 : [0 1]! R fonksiyonu

() =

8
<
:

1  =  =
1p

  asal ise

 di¼ger durumlarda

rasyonel  lar için s¬f¬rda ¡regülerdir. Fakat s¬f¬rda sürekli de¼gildir.

Tan¬m 2.1.17. ¡ geometrik  kümesinde tan¬ml¬  fonksiyonunun ¡ türevi s¬f¬rd¬r

gerek ve yeter şart 8 2  için () =  () dir. Bu fonksiyonlar ¡periyodik fonksi-

yonlard¬r.

Teorem 2.1.8.  s¬f¬r¬ içeren ¡geometrik  kümesinde tan¬ml¬ ve s¬f¬rda ¡regüler

olsun, bu takdirde

 () =

Z



() ( 2 )

eşitli¼gi vard¬r. Burada  sabit bir noktad¬r.  fonksiyonu s¬f¬rda ¡ regülerdir. Ayr¬ca

 () 8 2  için vard¬r ve

 () =  () 8 2  (2.1.10)

ise
Z



() =  ()¡  () (2.1.11)

olur.
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·Ispat.  fonksiyonunun s¬f¬rda ¡regüler oldu¼gunu gösterelim. Bunun için

lim
!1

 () =  (0)

eşitli¼gini göstermemiz yeterlidir.

 () =

Z



 ()

 () =

Z



 ()

= (1¡ )
1X

=0

+(+)

lim
!1

 () = lim
!1

(1¡ )
1X

=0

+(+)

= (1¡ )
1X

=0

lim
!1

+(+)

lim
!1

 () = 0 (2.1.12)

 (0) =

0Z



() = (1¡ )0

1X

=0

(0) = 0 (2.1.13)

(2112) ve (2113) eşitli¼ginden

lim
!1

 () =  (0)

elde edilir. Yani  () fonksiyonu s¬f¬rda ¡regüler oldu¼gunu söyleriz. Şimdi de (2110)

eşitli¼ginin sa¼gland¬¼g¬n¬ gösterelim.

 () =

Z



 () = (1¡ )
1X

=0

()
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 () =
 ()¡  ()

 ¡ 


=
1

( ¡ 1)

2
4

Z



 ()¡
Z



 ()

3
5 

=
1

( ¡ 1)

"
(1¡ )

1X

=0

 ()¡ (1¡ )
1X

=0

()

#


=
1

( ¡ 1)
(1¡ )

" 1X

=0

+1(+1)¡
1X

=0

()

#


=
1X

=0

 ()¡
1X

=0

+1(+1)

=
1X

=0

 ()¡
1X

=1

()

= 0 (0) + ( () + 2(2) + )¡ ( () + 2(2) + )

=  ()

 () = (),

Dolay¬s¬yla (2110) eşitli¼gi sa¼glan¬r. Şimdi de

 () = ()

eşitli¼ginde her iki taraf¬n ¡ türevi al¬n¬rsa

Z



 () =

Z



( ()) =  () = () =  ()¡  ()

Z



() = ()¡ () ,

yani (2111) eşitli¼gi sa¼glan¬r.

Teorem 2.1.9. 0    1 olsun. j ()j  baz¬ 0 ·   1 için (0 ] aral¬¼g¬nda

s¬n¬rl¬d¬r.
Z

0

 () = (1¡ )
1X

=0

 ()

ile tan¬ml¬ Jackson ¡ integrali (0 ] aral¬¼g¬nda  () ’ e yak¬nsar ki bu ise () in ¡

türevini verir.
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·Ispat. Farzedelim ki j ()j   (0 1] olsun.  2 (0] için 8  ¸ 0 için

¯̄
 ()()

¯̄
 

¯̄
 ()

¯̄
 ()¡

olur. Her iki taraf¬  ile çarparsak

¯̄
 ()

¯̄
 ()¡

olur.  = 0 dan 1 a toplam al¬n¬rsa
¯̄
¯̄
¯
1X

=0

()

¯̄
¯̄
¯ 

1X

=0

¡(1¡) =
¡

1¡ 1¡
 1¡   0 0    1 iken

bulunur. Böylece Jackson integralindeki toplam yak¬nsak geometrik seri yard¬m¬yla

büyütülür. Bu toplam  () e yak¬nsar.

Teorem 2.1.10.  fonksiyonu 0 ·  ·  [ ] aral¬¼g¬nda tan¬ml¬ olsun. 0 ·   1

olmak üzere  vard¬r öyleki  (), [ ] aral¬¼g¬nda süreklidir ve

 () =

Z

0

()  2 [ ]

eşitli¼gi sa¼glan¬r. Burada  [ ] aral¬¼g¬nda sabit bir noktad¬r.  (), [ ] aral¬¼g¬nda

sürekli bir fonksiyondur.

·Ispat. () =  () , 8  2 [0 ] alal¬m. 0 2 [ ] ve 0 6= 0 olsun. Böylece

 ()¡  (0) = (1¡ )

1X

=0

()¡ (1¡ )

1X

=0

0
(0

)

= (1¡ )1¡
1X

=0

(1¡)
£
() ¡ (0

)
¤

+0
¡
1¡ ¡ 1¡0

¢
(1¡ )

1X

=0

(0
) (2.1.14)

elde edilir. () [ ] aral¬¼g¬nda sürekli oldu¼gunda [ ] aral¬¼g¬nda düzgün süreklidir.

Buradan 8  0 için 8   2 [ ] için   0 vard¬r öyleki j¡ j   ! j() ¡ ()j 

 dir. Bu nedenle e¼ger  2 [ ] ise j¡ 0j  
¯̄
 ¡ 0

¯̄
  8  2 N0 için ve

¯̄
()¡ (0

)
¯̄
  8  2 N0 için buradan

lim
!0

() = (0
)
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olur. (2.1.14) ko̧sulundaki serilerde  ! 0 yaklaş¬rken limiti hesaplayabiliriz. Bu

nedenle

lim
!0

 () =  (0)

elde edilir. 0 = 0 oldu¼gunu farzedelim,

 () ¡  (0) =

Z

0

() =

Z

0

1¡(()¡ (0))+
1¡ 

1¡ 2¡
2¡(0) olur.

bulunur. Sonuç olarak

j ()¡  (0)j ·
µ
max
2N0

¯̄
()¡ (0)

¯̄
+ (0)

¶
1¡ 

1¡ 2¡
2¡

0    1 oldu¼gundan ve 0 da  fonksiyonun süreklili¼ginden

lim
!0

 () =  (0)

elde edilir. Bu ise  () fonksiyonunun [ ] aral¬¼g¬nda sürekli oldu¼gunu gösterir.

Teorem 2.1.11. ( ) [0 ] £ [0 ] aral¬¼g¬nda tan¬ml¬ bir fonksiyon olsun. Öyleki

her bir  sabiti için


( ) ( = 0 1 2 3   ¡ 1)

fonksiyonlar¬ [0 ] aral¬¼g¬nda ¡ integrallenebilirdir. E¼ger  2 [0 ] ve  2 N için

( ) = 0 ( = 0 1 2 3   ¡ 1;  = 1 2  )




Z

0

( ) =

Z

0


( ) (2.1.15)

dir.

·Ispat. Teorem 2.1.6 ifadesinden


 () = (¡1)¡(1¡ )¡¡

¡(¡1)
2

X

=0

(¡1)
·




¸




(¡1)

2 (¡)

denkleminden yararlanarak




Z

0

( ) = (¡1)¡(1¡ )¡¡
¡(¡1)

2

X

=0

(¡1)
·




¸



¡Z

0

( ¡)

=

X

=0

(¡1)+
·




¸



¡
2+
2 

2¡
2

(1¡ )

¡Z

0

( ¡)

=
X

=0

(¡1)
·




¸




(+1)

2
¡

(1¡ )

Z

0

( ) , (2.1.16)
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elde edilir. Buradan

Z

0

( ) =

Z

0

( )  = 1 2  

eşitli¼ginin var oldu¼gunu gösterelim.

Z

0

( ) = (1¡ )

1X

=0

( )

= (1¡ )

1X

=0

+(+ )

= (1¡ )
1X

=0

( ) = 0 (2.1.17)

Z

0

( ) = (1¡ )
1X

=0

( ) = 0 (2.1.18)

bulunur. Dolay¬s¬yla (2117)ve (2118) eşitli¼ginden

Z

0

( ) =

Z

0

( )

yaz¬l¬r. Şimdi buldu¼gumuz eşitli¼gi (2116) numaral¬ denklemde yerine yazarsak




Z

0

( ) =

=X

=0

(¡1)
·




¸




(+1)

2
¡

(1¡ )

Z

0

( )

=

Z

0

Ã
=X

=0

(¡1)
·




¸




(+1)

2
¡

(1¡ )
( )

!


=

Z

0


( ) ,

elde edilir. Bu da (2115) denkleminin sa¼gland¬¼g¬n¬ gösterir.

Tan¬m 2.1.18.  pozitif bir say¬ ve z de kompleks bir say¬ olmak üzere ¡üstel

fonksiyon 

 =

1Y

=0

(1¡ (1¡ ))¡1 (2.1.19)

şeklinde tan¬mlan¬r [6].
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Tan¬m 2.1.19.  pozitif bir say¬ ve  de kompleks bir say¬ olmak üzere ¡üstel

fonksiyon 



 =

1Y

=0

(1 + (1¡ )) (2.1.20)

şeklinde tan¬mlan¬r [6].

Tan¬m 2.1.20.   ¡üstel fonksiyonunun seri aç¬l¬m¬

 =
1X

=0



[]!
 (2.1.21)

şeklinde ifade edilir [6].

Tan¬m 2.1.21. 
  ¡üstel fonksiyonunun seri aç¬l¬m¬


 =

1X

=0



[e]!  (2.1.22)

şeklinde ifade edilir [6]. Burada

[]! = [1] [2] [3][] [] = 1 +  + 2 + + ¡1

[e]! = [e1] [e2] [e3][e] [e] = 1 + 1

+ 1

2
+ + 1

¡1

eşitlikleri vad¬r. Burada []! ve [e]! aras¬ndaki ba¼g¬nt¬

[e]! = 
(1¡)

2 []! (2.1.23)

şeklindedir.

Tan¬m 2.1.22. ¡ sinüs ve ¡kosinüs fonksiyonlar¬
sin  =

 ¡¡

2
 cos =

 +¡

2
 j  j 1

Sin =

 ¡¡

2
 Cos =


 +¡

2
  2 C

şeklinde tan¬mlan¬r [3].

Tan¬m 2.1.23. ln fonksiyonunun  analizdeki kaŗs¬l¬¼g¬

ln  =
1¡ ¡ 1

1¡ 

şeklinde tan¬mlan¬r [7].

Teorem 2.1.12.  ve ’ nin çarp¬m¬n¬n ln fonksiyonu

ln() = ln + ln  + (1¡ )(ln )(ln )
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eşitli¼gini sa¼glar.

·Ispat. Eşitli¼gin sa¼g taraf¬n¬n do¼gru oldu¼gunu kabul edip sol taraf¬n¬n do¼grulu¼gunu

gösterelim,

ln + ln  + (1¡ )(ln )(ln )

=
1¡ ¡ 1

1¡ 
+

1¡ ¡ 1

1¡ 
+ (1¡ )

µ
1¡ ¡ 1

1¡ 

¶µ
1¡ ¡ 1

1¡ 

¶


=
1¡ ¡ 1 + 1¡ ¡ 1

1¡ 
+ (1¡ )

µ
1¡ ¡ 1

1¡ 

¶µ
1¡ ¡ 1

1¡ 

¶


=
1¡ + 1¡ ¡ 2

1¡ 
+

1¡1¡ ¡ 1¡ ¡ 1¡ + 1

1¡ 


=
1¡1¡ ¡ 1

1¡ 
=

()1¡ ¡ 1

1¡ 
= ln()

Tan¬m 2.1.24. 1 ·  1   0 ve  bir reel say¬ olsun. 
(0 ) uzay¬

Z

0

 j ()j  1

şart¬n¬ sa¼glayan fonksiyonlar¬n tüm denklik s¬n¬‡ar¬n¬n uzay¬d¬r. 
(0 ) uzay¬nda bir

 fonksiyonu alal¬m.

kk =

0
@

Z

0

 j ()j 

1
A

1




norm fonksiyonu ile birlikte 
(0 ) uzay¬ Banach uzay¬d¬r. E¼ger  = 2 ise

h i =
Z

0

()() (  2 2
(0 ))

iç çarp¬m ile birlikte 2
(0 ) uzay¬ ayr¬labilir bir Hilbert uzay¬d¬r [3].

Tan¬m 2.1.25. Bir  reel say¬s¬ ve bir pozitif  say¬s¬ için

kk = sup
2(0]

0
@

Z

0

 j()j 

1
A

1


1

şart¬n¬ sa¼glayan (0 ] aral¬¼g¬nda tan¬ml¬ tüm  fonksiyonlar¬n¬n uzay¬ olan L[0 ]

uzay¬ tan¬mlan¬r [3].
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Teorem 2.1.13.
³
L[0 ] kk

´
uzay¬ bir Banach uzay¬d¬r.

·Ispat.
³
L[0 ] kk

´
uzay¬ bir normlu uzayd¬r. Şimdi bu uzay¬n tam bir

uzay oldu¼gunu gösterelim. ()
³
L[0 ] kk

´
uzay¬nda bir Cauchy dizisi olsun.

Burada 8  0 için 0 2 N vard¬r öyleki 8 2 N için

  0 ! sup
2[0]

1X

=0

()+1(1¡ )
¯̄
(

)¡ (
)
¯̄
  (2.1.24)

olur. Buradan 
+1
 () (0 ] aral¬¼g¬nda Cauchy dizisi tektir. (0 ] aral¬¼g¬nda tan¬ml¬

bir  fonksiyonu vard¬r öyleki

lim
!1


+1
 () = 

+1
 () ,

lim
!1


+1
 () = 

+1
 () ,

bulunur.   0 ve   0 olsun (2.1.24) den

  0 !
X

=0

()+1(1¡ )
¯̄
(

)¡ (
)
¯̄
 8  2 (0 ] için (2.1.25)

!1 yaklaş¬rken limit hesaplan¬rsa 8   0 ve   0

X

=0

()+1(1¡ )
¯̄
(

)¡ ()
¯̄ ·  8  2 (0 ]

olmak üzere buradan k ¡ k ! 0 !1 iken 0+1¡ 2
³
L[0 ] kk

´
 0+1 2³

L[0 ] kk
´
oldu¼gundan  2

³
L[0 ] kk

´
olur. Bu da ispat¬ tamamlar.

Tan¬m 2.1.26. 
 [ ] , [ ] aral¬¼g¬nda ( ¡ 1) mertebeden sürekli ¡ türevlerle

birlikte tüm sürekli fonksiyonlar¬n uzay¬ olsun. 
 [ ] uzay¬,

kk =
¡1X

=0

max
0··

¯̄


  ()
¯̄

¡
 2 

 [ ]
¢

norm fonksiyonu ile birlikte Banach uzay¬d¬r [3].

Teorem 2.1.14.
¡

 [ ] kk

¢
uzay¬ Banach uzay¬d¬r.

·Ispat.
¡

 [ ] kk

¢
uzay¬ bir normlu uzayd¬r. Şimdi 

 [ ] nin tam oldu¼gunu

gösterelim. ()  
 [ ] aral¬¼g¬nda Cauchy dizisi olsun. 8  0 için 0 2 N vard¬r

öyleki 8  2 N için

  0 !
¡1X

=0

max
2[]

¯̄


()¡
 ()

¯̄
 
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ifadesi sa¼glan¬r. Buradan

  0 ! max
2[]

¯̄


()¡
 ()

¯̄
 

(
 )  = 0 1 2   ¡ 1 için [ ] de Cauchy dizisidir. Buna göre her bir

 2 f0 1 2  ¡ 1g için bir  2 [ ] fonksiyonu vard¬r öyleki

lim
!1

max
2[]

¯̄


 ()¡ ()
¯̄
= 0  = 0 1 2 3  ¡ 1

() = 
 0()  2 [ ]nf0g ( = 0 1 2 3   ¡ 1) (2.1.26)

tamd¬r. E¼ger 0 2 ( ) ise

lim
!0

() = lim
!0


0() = lim

!1


 0(
) 8  2 ( ) için,

 6= 0 olsun. Gerçekten ,

lim
!0

() = lim
!1

¡1
 0()¡¡1

 0(+1)

(1¡ )

= 
0(0) (2.1.27)

buradan ve 0 2 
 [ ] den dolay¬ (2126) eşitli¼gi her  2 [ ] için sa¼glan¬r. E¼ger

 = 0 ya da  = 0 ise s¬ras¬yla (2127) de  ! 0 yaklaş¬rken limit  ! 0+ ya da

! 0¡ ile yer de¼gi̧stirebilir.
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3. -STURM-LIOUVILLE PROBLEM·IN·IN SPEKTRAL TEOR·IS·I

3.1 -Sturm-Liouville Problemi

Tan¬m 3.1.1. 2
(0,), [0,] aral¬¼g¬nda tan¬ml¬ tüm kompleks de¼gerli fonksiyonlar uzay¬

olsun öyleki,

k  k=

0
@

Z

0

j () j2 

1
A

1
2

1

şeklinde tan¬mlan¬r. 2
(0,) uzay¬

   =

Z

0

 ()()   2 2
(0 )

iç çarp¬m ile birlikte ayr¬labilir Hilbert uzay¬d¬r [8].

Tan¬m 3.1.2. 2
 [ ] , [ ] aral¬¼g¬nda sürekli, birinci mertebeden ¡ türevlerle

birlikte tüm sürekli fonksiyonlar¬n uzay¬ olsun. 2
 [ ] uzay¬,

kk =
1X

=0

max
0··

¯̄


 ()
¯̄

¡
 2 2

 [ ]
¢


norm fonksiyonu ile birlikte Banach uzay¬d¬r. 2
 (0) uzay¬ 

2
(0,) Hilbert uzay¬n¬n bir

alt uzay¬d¬r [3].

Tan¬m 3.1.3.  herhangi bir elemanlar cümlesi üzerinde tan¬mlanm¬̧s bir operatör

olsun.  6= 0 olmak üzere  =  eşitli¼gini sa¼glayan   operatörünün özfonksiyonu,

 ise özde¼geri olsun.

 = ¡1

¡1() + ()() = () (0 ·  ·  1; 2 C) (3.1.1)

şeklinde tan¬ml¬ operatöre ¡ Sturm-Liouville operatörü denir. Burada (), [0,]

kapal¬ aral¬¼g¬nda tan¬ml¬ ve 0’da sürekli olan bir fonksiyondur. Ayr¬ca () 2 2
 (0)

olmak üzere () ve () fonksiyonlar¬ [0,) aral¬¼g¬nda sürekli ve  2 2
(0,) dir

[8].



Tan¬m 3.1.4.  , ¡ Sturm-Liouville operatörü için (311) denklemini ve

1() = 11(0) + 12¡1(0) = 0

2() = 21() + 22¡1() = 0 (3.1.2)

s¬n¬r şartlar¬n¬ göz önüne alal¬m. (3.1.1) ve (3.1.2) s¬n¬r de¼ger problemi literatürde

¡Sturm-Liouville problemi olarak bilinir. Burada () reel de¼gerli fonksiyonu 0’da

süreklidir ve f g   2 f1 2g key… reel say¬lard¬r [3].

Tan¬m 3.1.5.  ve  fonksiyonlar¬ sürekli ve ikinci mertebeden ¡ türevli fonksiyonlar

olsun.   2 2
 [0 ] ve  ve  fonksiyonlar¬n¬n ¡Wronskian determinant¬

( )() =

¯̄
¯̄
¯̄

() ()

() ()

¯̄
¯̄
¯̄   2 [0 ] (3.1.3)

şeklinde tan¬mlan¬r [8].

Tan¬m 3.1.6. Terimleri herhangi bir  µ  bölgesinde tan¬ml¬ olan 1() + 2() +

+ () +  fonksiyon serisinin k¬smi toplamlar dizisi f()g

() = 1() + 2() + + ()

olsun. Key… bir   0 say¬s¬na kaŗs¬l¬k, 0( )  0 olmak üzere, 8 2  için,

j()¡ ()j  

eşitsizli¼gi sa¼glanacak şekilde   0() say¬lar¬ bulunabiliyorsa,

1() + 2() + + () + 

serisine, X kümesinde düzgün yak¬nsak fonksiyon serisi ve ()’ e de serinin limiti denir

[9].

Tan¬m 3.1.7. () fonksiyonunun 0 noktas¬nda  0(0) türevi mevcut ve 0 noktas¬n¬n

bir (0) = f : j ¡ 0j  g komşulu¼gundaki her noktada türevi varsa bu durumda

f fonksiyonuna 0 noktas¬nda analitiktir denir [10].

Tan¬m 3.1.8. Kompleks düzlemin tamam¬nda analitik olan bir fonksiyona tam fonksiyon

denir [10].
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Teorem 3.1.1. (3.1.1) denkleminin,

(0 ) = 1 ¡1(0 ) = 2  2 C 1 2 2 C (3.1.4)

başlang¬ç şartlar¬n¬ sa¼glayan çözümü ( ) olsun. Bu takdirde  2 [0 ] olacak

biçimde 2
 (0) uzay¬nda bir tek ( ) çözümü vard¬r. Ayr¬ca,8 2 [0 ] için ( )

çözümü 0 ya göre bir tam fonksiyondur.

Teorem 3.1.2. 0 ·   1 olsun. E¼ger (311) denkleminde tan¬mlanan () fonksiyonu

[0 ] aral¬¼g¬nda sürekli reel de¼gerli bir fonksiyon ise (311) denklemi (314) başlang¬ç

şartlar¬n¬ sa¼glayan bir tek ( ) çözümüne sahiptir. Burada 1 ve 2 key… sabitlerdir.

Ayr¬ca,8 2 [0 ] için ( ) çözümü 0 ya göre bir tam fonksiyondur.

·Ispat. 1( ) = cos(; ) ve 2( ) =

8
<
:

sin(;)


  6= 0

  = 0

fonksiyonlar¬n¬ ele alal¬m. Burada  =
p
 olarak tan¬mland¬. 1( ) ve 2( )

fonksiyonlar¬
1


¡1() + () = 0

denkleminin çözümleridir ve 1( ) ve 2( ) fonksiyonlar¬n¬n ¡ Wronskian¬

(1( ) 2( )) ´ 1 oldu¼gunu gösterelim.

 = 0 olsun. Bu durumda

(1( ) 2( )) =

¯̄
¯̄
¯̄

1( ) 2( )

1( ) 2( )

¯̄
¯̄
¯̄

=

¯̄
¯̄
¯̄

cos(; ) 

 cos(; ) 

¯̄
¯̄
¯̄ =

¯̄
¯̄
¯̄

cos(; ) 

cos(;)¡cos(;)
¡ 1

¯̄
¯̄
¯̄

= cos(; )¡ 

µ
cos(; ) ¡ cos(; )

¡ 

¶

= cos(; )¡ (cos(; )¡ cos(; ))

 ¡ 1

=
 cos(; )¡ cos(; )¡ cos(; ) + cos(; )

 ¡ 1

=
 cos(; )¡ cos(; )

 ¡ 1
  = 0  =

p
)  = 0

=
 ¡ 1

 ¡ 1
= 1
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 6= 0 olsun.

(1( ) 2( )) =

¯̄
¯̄
¯̄

1( ) 2( )

1( ) 2( )

¯̄
¯̄
¯̄

=

¯̄
¯̄
¯̄

cos(; ) sin(;)


 cos(; ) 
sin(;)



¯̄
¯̄
¯̄ =

¯̄
¯̄
¯̄

cos(; ) sin(;)


cos(;)¡cos(;)
¡

sin(;)


¡ sin(;)


¡

¯̄
¯̄
¯̄

= cos(; )

Ã
sin(;)


¡ sin(;)



¡ 

!
¡ sin(; )



µ
cos(; )¡ cos(; )

¡ 

¶

=
cos(; ) sin(; )¡ cos(; ) sin(; )¡ sin(; ) cos(; ) + sin(; ) cos(; )

(¡ )

=
cos(; ) sin(; )¡ sin(; ) cos(; )

(¡ )

=
sin(¡ ; )

(¡ )
´ 1

Buradan  = 0 ve  6= 0 olmas¬ durumunda 1( ) ve 2( ) fonksiyonlar¬n¬n

¡ Wronskian¬ (1( ) 2( )) ´ 1 oldu¼gu gösterildi. Şimdi

1( ) = 11( ) + 22( ) (3.1.5)

+1( ) = 11( ) + 22( )

¡ 

Z 

0

f2( )1( )¡ 1( )2( )g()( ) (3.1.6)

şeklinde olsun. f( )g1=1 ard¬̧s¬k yaklaş¬mlar dizisi için  ! 1 iken ’nin her

bir  2 C sabitlenmi̧si için düzgün limitinin var oldu¼gunu ve (3.1.1) ve (3.1.4) Sturm-

Liouville probleminin bir çözümü oldu¼gunu ispatl¬yoruz.  2 C sabitlenmi̧s olsun.

() 2 [0 ] aral¬¼g¬nda sürekli oldu¼gu için s¬n¬rl¬d¬r.

Yani j () j·  d¬r. j 1(  j· e() ve j (  j·
q

()
2

 ( = 1 2;  2 [0 ])

olacak şekilde () e() ve  pozitif say¬lar¬ vard¬r.

Böylece  = 1 için (316) denklemi

2( ) = 1( )¡ 

Z 

0

f2( )1( )¡ 1( )2( )g()1( )

23



şeklinde olur. Bu nedenle

j2( )¡ 1( )j

=

¯̄
¯̄¡

Z 

0

f2( )1( )¡ 1( )2( )g()1( )
¯̄
¯̄

· 

Z 

0

jf2( )1( )¡ 1( )2( )gj j()j j1( )j 

· 

Z 

0

fj2( )1( )j+ j1( )2( )jg j()j j1( )j 

· () e()

Z 

0



= () e()(1¡ )
1X

=0

 = () e() (3.1.7)

elde edilir.

 = 2 için

3( ) = 1( )¡ 

Z 

0

f2( )1( )¡ 1( )2( )g()2( )

(3.1.8)

2( ) = 1( )¡ 

Z 

0

f2( )1( )¡ 1( )2( )g()1( )

(3.1.9)

(3.1.8) eşitli¼ginden (3.1.9) ç¬kar¬l¬p eşitli¼gin her iki taraf¬n¬n mutlak de¼geri al¬n¬rsa

j3( )¡ 2( )j

=

¯̄
¯̄¡

Z 

0

f2( )1( )¡ 1( )2( )g() [1( )¡ 2( )] 

¯̄
¯̄

· jj
Z 

0

jf2( )1( )¡ 1( )2( )gj j()j j[1( )¡ 2( )]j 

· jj
Z 

0

fj2( )1( ) j + j 1( )2( )jg

£
¯̄
¯̄
Z 

0

f2( )1( )¡ 1( )2( )g()1( )
¯̄
¯̄

· 32()2 e()

Z 

0



= 32()2 e()(1¡ )

1X

=0



= 32()2 e()(1¡ )2
1

1¡ 2

= 32()2 e()2
1

1 + 
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olur. Böylece bu süreci devam ettirirsek,

j+1( )¡ ( )j · e()
(+1)

2
(()(1¡ ))

(; )
 ( 2 N) (3.1.10)

sonucu bulunur. Buradan Weierstrass M- testi’nden

1( ) +
1X

=1

+1( )¡ ( ) (3.1.11)

serileri [0 ] aral¬¼g¬nda düzgün yak¬nsakt¬r. Serinin  k¬smi toplam¬ yaln¬zca +1

oldu¼gundan +1( ) !1 iken [0 ] aral¬¼g¬nda yak¬nsak bir ( ) fonksiyonuna

yaklaş¬r. Burada ( ) serilerin toplam¬d¬r. Teorem 2.1.10 0 kullanarak ( )

ve ( ) fonksiyonlar¬n¬n [0 ] aral¬¼g¬nda sürekli oldu¼gunu  de tümevar¬m ile

ispatlayabiliriz.

+1( ) = 11( ) + 22( )

¡
Z 

0

f2( )1( )¡1( )2( )g( )

 2 N. Bu nedenle hem ( ) hem de ( ) fonksiyonlar¬ [0 ] aral¬¼g¬nda sürek-

lidir. Buna göre ( ) 2 2
 (0) dir. Düzgün yak¬nsakl¬ktan dolay¬ (3.1.6)

0 da !1

olursa

( ) = 11( ) + 22( )

¡
Z 

0

f2( )1( )¡ 1( )2( )g( )

elde edilir. Aç¬kça ( ) fonksiyonu (311) ve (3.1.4)’ i sa¼glar. Tek çözüme sahip

(311) ve (3.1.4) problemini ispatlamak için ( )  = 1 2 fonksiyonunun (311) ve

(3.1.4)’ nin iki çözümü oldu¼gunu varsayal¬m.

( ) = 1( )¡ 2( )  2 [0 ]

olsun. ( ) fonksiyonu

(0 ) = ¡1(0 ) = 0

başlang¬ç şartlar¬na ba¼gl¬ (3.1.1) ’ in bir çözümüdür. (3.1.1)’ de iki defa ¡ integral

al¬n¬rsa,

( ) = ¡
Z 

0

(¡ )(¡ ())( ) (3.1.12)
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elde edilir. ( ) ve () fonksiyonlar¬ [0 ] aral¬¼g¬nda sürekli oldu¼gundan  , 

pozitif say¬lar¬ vard¬r öyleki

 = max
0··

j( )j   = max
0··

j¡ ()j  (3.1.13)

Buradan (3112) eşitli¼ginin her iki taraf¬n¬n mutlak de¼geri al¬n¬rsa

j( )j =

¯̄
¯̄¡

Z 

0

(¡ )(¡ ())( )

¯̄
¯̄

· j¡j
¯̄
¯̄
Z 

0

(¡ )(¡ ())( )

¯̄
¯̄

· 

Z 

0

j¡ j j¡ ()j j( )j 

· 

Z 

0



= 
2

1 + 


elde edilir. Bu ifadeyi  için genelleştirirsek

j( )j · 

 

2(1¡ )2
2

(; )2
 ( 2 N0;  2 [0 ] (3.1.14)

bulunur.

lim
!1





2(1¡ )2
2

(; )2
= 0

oldu¼gunda 8  2 [0 ] için ( ) = 0 dir. Bu da tekli¼gi ispatlar. Şimdi key… ve sabit

bir   0 say¬s¬n¬ alal¬m. ( ) çözümü  2 [0 ] ( )0 her bir ­ diskinde

analitik için  ’  tam oldu¼gunu göstermek yeterlidir. ­ = f 2 C : jj · dir.

8  2 [0 ] için ( ) ­ diskinde analitiktir. (3.1.15)

8  2 ­ için



( ) (0 ) aral¬¼g¬nda süreklidir. (3.1.16)

Aç¬kça , her bir sabit  2 [0 ] için 1( ) ve 2( ) fonksiyonlar¬ ’n¬n tam fonksiy-

onlar¬d¬r. Üstelik 

( ) her bir  2 C için (0 ) aral¬¼g¬nda süreklidir.  = 1

için (3115) ve (3116) sa¼glan¬r. Şimdi  2 N için (3.1.15) ve (3.1.16) ifadelerinin

sa¼gland¬¼g¬n¬ farzedelim. Sonra  2 [0 ] , 0 2 ­ için (3.1.6) denkleminin her iki

taraf¬n¬n ’ ya göre türevi al¬n¬rsa
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


+1(0 ) j =0 =




1(0 ) j=0

¡ 


2(0 ) j =0

0Z

0

1( )( )

+



1(0 ) j =0

0Z

0

2( )( )

¡2(0 )



(

0Z

0

1( )( )) j =0

+1(0 )



(

0Z

0

2( )( )) j =0 (3.1.17)

bulunur. (3.1.16) ifadesinden




(( )( )) (i=1,2)

sonucuna ula̧s¬l¬r. Bu (0 0) aral¬¼g¬nda süreklidir. Dolay¬s¬yla öyle bir  sabiti ve   0

say¬lar¬ vard¬r
¯̄
¯̄ 


((0
 )(0

 ))

¯̄
¯̄ ·  ( 2 N; j¡ 0j · 

olur. Buradan j¡ 0j   diskinde 8  için

0(1¡ )
¯̄
¯̄ 


((0
+1 )(0

+1 ))

¯̄
¯̄ · 0(1¡ ) ( 2 N0)

dir. Yani  integrallere kaŗs¬l¬k gelen seriler

0Z

0




(( )( )) ( = 1 2) (3.1.18)

 = 0’ ¬n bir komşulu¼gunda düzgün yak¬nsakt¬r. Böylece, türev ve (3.1.17) de

¡integrallerin yeri de¼gi̧stirebilir. 0 0 key… oldu¼gundan 8  2 [0 ]  2 ­ için




+1( ) =




1( )¡ 

Z

0




(2( )1( )( ))()

+

Z

0




(1( )2( )( ))() (3.1.19)
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elde edilir. (3.1.16) ifadesinden (3.1.19) eşitli¼gindeki integraller (0 ) aral¬¼g¬nda sürek-

lidirler. Buna göre 

+1( ) fonksiyonlar¬ da (0 ) aral¬¼g¬nda süreklidirler. 0 2

[0 ] key… noktas¬n¬ alal¬m. Sonra (0) , e(0)  0 vard¬r öyleki

j(0 )j ·
r

(0)

2
 ( = 1 2) 1( ) · e(0) ( 2 ­) d¬r.

olur. Son olarak (3.1.6) eşitli¼ginde her iki taraf¬n mutlak de¼gerini al¬p, tümevar¬m

metodu kullanarak bu eşitsizli¼gi bütün  2 N say¬lar¬ için genelleştirirsek

j+1(0 )¡ (0 )j · e(0)
(+1)

2
((0)(1¡ ))

(; )
 ( 2 N) (3.1.20)

eşitsizli¼gi bulunur. Buna göre (3.1.11) serileri  = 0 noktas¬nda ­ diskinde (0 )

fonksiyonuna düzgün yak¬nsakt¬r. Buradan (0 ) fonksiyonu­ diskinde analitiktir.

Yani (0 ) fonksiyonu ’ya göre tam fonksiyondur.

3.2. Self Adjoint Problem

Tan¬m 3.2.1. 8  2 2
(0 ) fonksiyonlar¬n¬ ele alal¬m. ¡Lagrange özdeşli¼gi

    ¡    =

Z

0

³
()()¡ ()()

´
 = [ ] ¡ lim

!1
[ ]()

(3.2.1)

şeklinde tan¬mlan¬r. Burada

[ ] = ()¡1()¡¡1()() (3.2.2)

şeklindedir [8].

Teorem 3.2.1. 2
(0 ) uzay¬nda  () ve () fonksiyonlar¬n¬ alal¬m. Bu fonksiyonlar

[0 ¡1] aral¬¼g¬nda tan¬ml¬ olsun.  2 (0 ¡1] çin a̧sa¼g¬daki ba¼g¬nt¬lar mevcuttur.

(
¡1) = ¡1(

¡1) = ¡1() (3.2.3)

   =  ()(¡1)¡ lim
!1

()(¡1)+  
¡1

¡1  (3.2.4)


¡1

¡1  = lim

!1
(¡1)()¡  (¡1)()+     (3.2.5)
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·Ispat. Şimdi (3.2.3) eşitli¼gini ispatlayal¬m.

¡1() =
(¡1)¡ (¡1)

¡1 ¡ ¡1
=

()¡ (¡1)

(1¡ ¡1)

=
(¡1)¡ ()

¡1(1¡ )
= (

¡1) = ¡1(
¡1)

Şimdi (3.2.4) eşitli¼gini k¬smi ¡integrasyon formülü olan
Z

0

()() = ()()¡ lim
!1

()()¡
Z

0

()()

eşitli¼ginden yararlanarak ispatlayal¬m.

   =

Z

0

()()

= ()()¡ lim
!1

 ()()¡
Z

0

()()

= ()()¡ lim
!1

 ()()¡
Z

0

()
1


¡1()

= ()()¡ lim
!1

 ()() + ¡1(1¡ )()¡1() +

Z

0

 ()
¡1

¡1()

= ()(¡1)¡ lim
!1

 ()(¡1)+  
¡1

¡1 

Dolay¬s¬yla (324) eşitli¼gi elde edilir.

Teorem 3.2.2. (3.1.1) ve (3.1.2) Sturm-Liouville özde¼ger problemi 2
 (0) \ 2

(0 )

uzay¬nda self adjointtir.

·Ispat. 2
(0 ) uzay¬nda () ve () gibi iki fonksiyonlar¬ için şunu ispatlayal¬m.

() ve () fonksiyonlar¬ için ¡Lagrange özdeşli¼gi

 () ()  ¡  () () =

Z

0

(()()¡ ()())

= [ ] ¡ lim
!1

[ ]()

elde edilir. (3.2.5) eşitli¼ginde () yerine () , ve () yerine () yazarsak


¡1

¡1() () 

= ¡((
¡1))() + lim

!1
((

¡1))()+   

= ¡¡1()() + lim
!1

¡1(
)()+    (3.2.6)
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elde edilir. (3.2.4) eşitli¼ginde () yerine () ve () yerine () yazarsak

  = ()(¡1)¡ lim
!1

()(¡1)+  
¡1

¡1 

= ()¡1()¡ lim
!1

()¡1()+  
¡1

¡1 

bulunur. Böylece


¡1

¡1() () = [ ] ¡ lim

!1
[ ]()+  ()

¡1

¡1() 

(3.2.7)

elde edilir. (3.2.1) ¡Lagrange özdeşli¼gi ( 3.2.7) eşitli¼ginin ve () fonksiyonunun reel

olmas¬n¬n sonucudur. 2
 (0) uzay¬nda () ve () gibi iki fonksiyon alal¬m. Farzedelim

ki bu fonksiyonlar (3.1.2) s¬n¬r şartlar¬n¬ sa¼glas¬n. Dolay¬s¬yla

11(0) + 12¡1(0) = 0 11(0) + 12¡1(0) = 0 (3.2.8)

eşitli¼gini buluruz. lim!1[ ](
) = [ ](0), olmas¬ demek () ve () fonksi-

yonlar¬n¬n sürekli oldu¼gunu gösterir. Bunu (3.2.7) eşitli¼ginde göz önüne ald¬¼g¬m¬zda


¡1

¡1() () = [ ] ¡ [ ](0)+  ()

¡1

¡1() 

eşitli¼gini elde edilir. 11 ve 12 ayn¬ anda s¬f¬r olmad¬¼g¬ndan

[ ](0) = (0)¡1(0)¡¡1(0)(0) = 0

eşitli¼gi (328)’den aç¬kça görülür. Benzer şekilde () ve () fonksiyonlar¬n¬ (312)

s¬n¬r şartlar¬nda yerine yazd¬¼g¬m¬zda

21() + 22¡1() = 0 21() + 22¡1() = 0

bulunur. Buradan da

[ ]() = ()¡1()¡¡1()() = 0

olur. () fonksiyonu reel oldu¼gundan

   =
¡1

¡1() + ()() () 

= 
¡1

¡1() ()  +  ()() () 

=  
¡1

¡1()  +   ()() =    
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bulunur. Bu da  operatörünün self adjoint operatör oldu¼gunu gösterir.

Tan¬m 3.2.2. (3.1.1) ve (3.1.2) problemini sa¼glayan ¤ kompleks say¬s¬ için e¼ger ¤()

aşikar olmayan çözüm var ise ¤ say¬s¬na (3.1.1) ve (3.1.2) probleminin özde¼geri denir.

¤() fonksiyonuna ise ¤ özde¼gerine kaŗs¬l¬k gelen ¡Sturm-Liouville probleminin öz-

fonksiyonu denir [3].

Teorem 3.2.3. (311)¡ (312) s¬n¬r de¼ger probleminin özde¼gerleri reeldir.

·Ispat. Bu teoremi, olmayana ergi metoduna göre ispatlayal¬m. Buna göre kabul

edelim ki 1 =  +  kompleks bir özde¼ger olsun. 2 = 1 = ¡  say¬s¬ da özde¼ger

olur. Bu özde¼gere kaŗs¬l¬k gelen özfonksiyon ( 1) = ( 1)
0
dir. Bu takdirde farkl¬

özde¼gerlere karş¬l¬k gelen özfonksiyonlar ortogonal oldu¼gundan

Z

0

( 1)( 1) = 0

olur. Yani,
Z

0

j( 1)j2  = 0

oldu¼gundan ( 1) = 0 olur. Halbuki ( 1) 6= 0 oldu¼gundan bu bir çeli̧skidir. O

halde özde¼ger kompleks olamaz. Bu da teoremin ispat¬n¬n tamamlar.

Teorem 3.2.4. Farkl¬   özde¼gerlerine karş¬l¬k gelen () ve () özfonksiyonlar¬

ortogonaldir.

·Ispat.  özde¼gerine kaŗs¬l¬k gelen özfonksiyon () ve  özde¼gerine kaŗs¬l¬k gelen

özfonksiyon () olsun. Bu takdirde

 () () = () () 



Z

0

()() = 

Z

0

()()



Z

0

()()¡ 

Z

0

()() = (¡ )

Z

0

()()

= 0
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olur. Buradan  6=  oldu¼gundan

Z

0

()() = 0

bulunur. Bu da () ve () fonksiyonlar¬n¬n ortogonal oldu¼gunu gösterir.

Teorem 3.2.5. Tüm özde¼gerler basittir.

·Ispat. 0 özde¼ger olsun. Bu özde¼gere karş¬l¬k gelen iki özfonksiyon ise 1() ve 2()

olsun. {1() , 2()g fonksiyonlar¬,  = 0 noktas¬nda ¡Wronskian¬ s¬f¬rland¬¼g¬ takdirde

bunlar¬n lineer ba¼g¬ml¬ olduklar¬ ispatlanabilir. Gerçekten, 1() ve 2() fonksiyonlar¬

(312) şartlar¬n¬ sa¼glad¬¼g¬ndan dolay¬

(1 2)(0) = 1(0)2(0)¡ 2(0)1(0)

= 1(0)¡12(0)¡ 2(0)¡11(0)

= [1 2] = 0

dir. Aşa¼g¬da özfonksiyonlara karş¬l¬k gelen özde¼gerlerin nas¬l elde edildi¼gini göstere-

ce¼giz. 1() ve 2() fonksiyonlar¬

¡1
 (0 ) =  (  = 1 2; 2 C)

başlang¬ç şartlar¬ ile belirli (3.1.1)’in lineer ba¼g¬ms¬z çözümleri olsun. Böylece,

1( ) 1 = 1 2 = 0  (3.1.5) ile belirtilir.

2( ) 1 = 0 2 = 1  (3.1.5) ile belirtilir.

Sonra (311) denkleminin her çözümü

( ) = 11( ) +22( )

formundad¬r. Burada 1 ve 2  ’e ba¼gl¬ de¼gildir. (3.1.1) denkleminin ( ) çözümü

e¼ger (3.1.1) ve (3.1.2) s¬n¬r şartlar¬n¬ sa¼glarsa yani,

11(1) +21(2) = 0

12(1) +22(2) = 0 (3.2.9)
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lineer sistemin aşikar olmayan çözümünü bulabilirsek ( ) çözümü bir özfonksiyon

olacakt¬r. Buradan  2 R bir özde¼ger olmas¬ için gerek ve yeter şart

¢() =

¯̄
¯̄
¯̄
1(1) 1(2)

2(1) 2(2)

¯̄
¯̄
¯̄ = 0 (3.2.10)

olmas¬d¬r. ¢() fonksiyonu (3.1.1) ve (3.1.2) Temel Sturm-Liouville Problemi ile ili̧sk-

ili karakteristik determinant anlam¬ndad¬r. ¢()’n¬n s¬f¬rlar¬ problemin tam özde¼ger-

leridir. 1( ) ve 2( ) al¬nd¬¼g¬nda, her bir  2 [0 ] için 0 analitiktir. O zaman

¢() analitiktir. Böylece, (311) ve (312) temel Sturm-Liouville sisteminin özde¼ger-

leri sonlu olmayan limit noktalar¬nda say¬labilirdir. Tüm bu özde¼gerler geometrik nokta

aç¬s¬ndan basittir. Böylece teorem ispatlanm¬̧s olur.

Teorem 3.2.6. (311) ve (312) ¡Sturm Liouville probleminin özde¼gerleri¢()’n¬n

basit s¬f¬rlar¬d¬r.

·Ispat. 1( ) ve 2( )

1( ) = 1(2)1( )¡ 1(1)2( )

2( ) = 2(2)1( )¡ 2(1)2( ) (3.2.11)

ba¼g¬nt¬lar¬ ile tan¬mlans¬n. Böylece 1( ) ve 2( ) (3.1.1)’in çözümleridir. Buna

göre

1(0 ) = 12¡11(0 ) = ¡11; 2( ) = 22 ¡12( ) = ¡21 (3.2.12)

dir. Ayr¬ca

(1( ) 2( ))() = ¢()(1( ) 2( ))() = ¢() (3.2.13)

eşitli¼gi de vard¬r. 0 (311) ve (312) ¡Sturm-Liouville probleminin özde¼geri olsun.

0 reel bir say¬d¬r. ( 0) , (  = 1 2) reel de¼gerli fonksiyonlar¬ ele alal¬m. (3213)

ba¼g¬nt¬s¬ndan 1( 0), 2( 0) fonksiyonlar¬n¬n lineer ba¼g¬ml¬ özfonksiyonlar oldu¼gu

aç¬kt¬r. Dolay¬s¬yla s¬f¬rdan farkl¬ 0 sabitleri için

1( 0) = 02( 0) (3.2.14)
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eşitli¼gi yaz¬labilir. (3211) ve (3212) ba¼g¬nt¬lar¬ndan

1( 0) = 022 = 02( )

¡11( 0) = ¡021 = 0¡12( ) (3.2.15)

elde edilir. (321) ¡Lagrange ba¼g¬nt¬s¬nda () yerine 1( ) ve () yerine 1( 0)

yaz¬l¬rsa

Z

0

(1( )1( 0)¡ 1( )1( 0))

=

Z

0

(1( )1( 0)¡ 1( )01( 0))

= (¡ 0)

Z

0

1( )1( 0)

= 1( )¡11( )¡¡11( )1( )

= 1( )0¡12( )¡ 02( )¡11( )

= 0 (1( )¡12( )¡ 2( )¡11( ))

= 0 (1( ) 2( )) (
¡1) = 0¢()

elde edilir. ¢(), ’da tam iken

(¡ 0)

Z

0

1( )1( 0) = 0¢()

¢
0
(0) = lim

!0

¢()

¡ 0
=

1

0

Z

0

21( ) 6= 0 (3.2.16)

dir. Dolay¬s¬yla 0, ¢()’n¬n basit s¬f¬r¬d¬r. Böylece teorem ispatlanm¬̧s olur.

3.3 Green Fonksiyonu

() 2 2
(0 ) olmak üzere

¡1

¡1()) + f¡ + ()g() = ()  2 [0 ]; 2 C (3.3.1)

şeklindeki homojen olmayan denkleminin bir çözümü bulunurken ¡ Green fonksiy-

onundan faydalan¬l¬r. Bu Green fonksiyonu (312) s¬n¬r şartlar¬n¬ sa¼glar.
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Lemma 3.3.1. E¼ger  (311) ve (312) ¡Sturm-Liouville probleminin bir özde¼geri

de¼gilse bu takdirde (331) denkleminin çözümü varsa tektir.

·Ispat. Farzedelim 1( ) ve 2( ) (331) homojen olmayan denkleminin iki

çözümü olsun. Dolay¬s¬yla 1( ) ¡ 2( ) da (311) ve (312) probleminin bir

çözümüdür. Bu yüzden  bir özde¼ger de¼gilse 1( ) ¡ 2( ) = 0 dir. ·Ispat¬ bir

sonraki teoremin ispat¬nda yer al¬r.

Lemma 3.3.2. 0n¬n (3.1.1) ve (3.1.2) probleminin bir özde¼geri olmad¬¼g¬n¬ kabul

edelim. ( ) fonksiyonu homojen olmayan ¡fark denklemini sa¼glas¬n ve (312)0 in

s¬n¬r şartlar¬ olsun. Burada () 2 2
(0 ) dir. Böylece

( ) =

Z

0

(  )() f 2 ; 2 N0g (3.3.2)

eşitli¼gi vard¬r. Burada (  ) fonksiyonu (311) ve (312) ¡ Sturm-Liouville prob-

leminin Green fonksiyonudur ve aşa¼g¬daki şekilde tan¬mlan¬r.

(  ) =
¡1
¢()

8
<
:

2( )1( ) 0 ·  · 

1( )2( )    · 
(3.3.3)

tersine (3.3.2) ile tan¬mlanan ( ) fonksiyonu (331) ve (311) ve (312)’i sa¼glar.

E¼ger bu şekilde tan¬ml¬ bir başka e(  ) fonksiyonu varsa (  ) tektir yani

(  ) = e(  ) 8  2 f :  2 N0g

dir. E¼ger () fonksiyonu s¬f¬r noktas¬nda ¡regüler ise bu takdirde (3.3.2) denklemi

her  için sa¼glan¬r.

·Ispat. Sabitlerin de¼gi̧simi metodununun bir  benzerini kullanarak, homojen ol-

mayan (331) denkleminin özel bir çözümü

( ) = 1()1( ) + 2()2( )

şeklinde verilebilir. Burada 1(), 2() birinci derece ¡fark denklemlerinin çözüm-

leridir. Burada 1() ve 2() fonksiyonlar¬ için

1() =
¡
¢()

2( ) ()

2() =


¢()
1( ) () (3.3.4)
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eşitliklerinin var oldu¼gunu kabul edelim. E¼ger () ,  = 1 2 fonksiyonlar¬ [0 ]

aral¬¼g¬nda ¡ integrallenebilir ise

lim
!1

(
+1 )(+1) = 0 ( = 1 2)

dir. ¡geometrik  kümesi

 = f 2 [0 ]; lim
!1

 j ()j2 = 0g (3.3.5)

şeklinde tan¬mlan¬r.  kümesi f; 2 N0g kümesini kapsayan ¡geometrik bir

kümedir. Burada  2 2
(0 ) dir. Buradan () ,  = 1 2 , 8  2  için [0 ]

aral¬¼g¬nda ¡integrallenebilirdir ve (334) denkleminde eşitli¼gin her iki taraf¬n¬n ¡

integralini al¬rsak, (334) denkleminin uygun çözümleri

Z

0

1() =

Z

0

¡
¢()

2( ) () ( 2  )

1() = 1(0) +


¢()

Z

0

2( ) () (3.3.6)

Z



2() =

Z



¡
¢()

1( ) () ( 2  )

2() = 2() +


¢()

Z



1( )() (3.3.7)

şeklindedir. (331) denkleminin genel çözümü

( ) = 11( ) + 22( ) +


¢()
1( )

Z

0

2( ) ()

+


¢()
2( )

Z



1( ) () (3.3.8)

olur. Burada  2  ve 1 ve 2 key… sabitlerdir. 1, 2 sabitlerini göz önüne ald¬¼g¬m¬zda

( ) çözümünde (312) s¬n¬r şartlar¬n¬ yazarsak

(0 ) = 11(0 ) + (2 +


¢()

Z

0

1( )())2(0 )
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¡1(0 ) = lim
!12

( )¡ (0 )



= 1¡11(0 ) +

0
@2 +



¢()

Z

0

1( )()

1
A¡12(0 )

elde edilir.

11(0 ) + 12¡1(0 ) = 0

s¬n¬r şart¬ 0
@2 +



¢()

Z

0

1( )()

1
A(1 2)(0) = 0

eşitli¼gini gerektirir. Böylece

2 = ¡


¢()

Z

0

1( )()

bulunur. Buradan

( ) = 11( ) +


¢()

Z

0

(1( )2( )¡ 2( )1( )) () (3.3.9)

dir. Şimdi ( ) ve¡1( ) ’ y¬ hesaplayal¬m. Gerçekten, Tan¬m 2.1.14 ¡integral-

leme ve (338) ba¼g¬nt¬s¬ndan

( ) = 11( ) +


¢()

Z

0

(1( )2( )¡ 2( )1( )) ()

= 11( ) +


¢()

¡1Z

0

(1( )2( )¡ 2( )1( )) ()

ve

¡1( ) = ¡11( )

0
B@1 +



¢()

¡1Z

0

2( ) ()

1
CA

¡ 

¢()
¡12( )

¡1Z

0

1( )()

elde edilir.

212( ) + 22¡12( ) = 0

37



s¬n¬r şart¬ 0
B@1 +



¢()

¡1Z

0

2( )()

1
CA(1 2)() = 0

eşitli¼gini gerektirir. Böylece

1 = ¡


¢()

¡1Z

0

2( ) ()

elde edilir. Buna göre  2  için

( ) = ¡ 

¢()
2( )

Z

0

1( ) ()¡


¢()
1( )

¡1Z



2( ) ()

= ¡ 1

¢()
2( )

Z

0

1( )()¡
1

¢()
1( )

Z



2( )()

= ¡ 1

¢()
2( )

Z

0

1( )()¡
1

¢()
1( )

Z



2( )()

(3.3.2)- (3.3.3) sa¼glan¬r. Di¼ger taraftan do¼grudan hesaplama ile e¼ger ( ) (3.3.2)

eşitli¼gi ile verilirse (3.3.1) denkleminin bir çözümü olur ve (3.1.1) s¬n¬r şartlar¬n¬ sa¼glar.

(  ) fonksiyonunun tekli¼gini ispatlamak için farzedelimki e(  ) gibi ba̧ska
bir fonksiyon var olsun. Buna göre,

( ) =

Z

0

e(  ) () (3.3.10)

fonksiyonu (3.1.1) s¬n¬r şartlar¬n¬ sa¼glayan (3.3.1) denkleminin bir çözümüdür. Buna

göre,

(  ) =

8
<
:

1(  ) 0 ·  · 

2(  )  ·  · 
 e(  ) =

8
<
:
f1(  ) 0 ·  · 

f2(  )  ·  · 

olsun. Ç¬karma i̧slemi ile her  () 2 2
(0 ) fonksiyonlar¬ için

Z

0

³
(  )¡ e(  )

´
 () = 0 8 2 f; 2 N0g (3.3.11)

elde edilir.

 () = (  )¡ e(  ) ( = ; 2 N0)
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fonksiyonunu göz önüne alal¬m.

Z

0

¯̄
¯(  )¡ e(  )

¯̄
¯
2



=

Z

0

¯̄
¯1(

  )¡ e1(
  )

¯̄
¯
2



+

Z



¯̄
¯2(

  )¡ e2(
  )

¯̄
¯
2



= (1¡ )
1X

=0


¯̄
¯1(

 + )¡ e1(
 + )

¯̄
¯
2

+(1¡ )
1X

=0


¯̄
¯1(

  )¡ e1(
  )

¯̄
¯
2

 + =  al¬rsak ,

= (1¡ )
1X

=0


¯̄
¯(  )¡ e(  )

¯̄
¯
2

= 0 (3.3.12)

bulunur. Bu nedenle (3.3.12) eşitli¼ginden

(  ) = e(  ) f 2 N0

eşitli¼gini elde ederiz. Bu da gösteriyor ki (  ) Green fonksiyonu tektir. E¼ger ()

fonksiyonu s¬f¬r noktas¬nda ¡regüler ise  = [0 ] olmak üzere (332) denklemi her

 2 [0 ] için tan¬mlan¬r.

Teorem 3.3.3. (  ) Green fonksiyonu aşa¼g¬daki özellikleri sa¼glar.

i. (  ) Green fonksiyonu (0 0) noktas¬nda süreklidir.

ii. (  ) = (  ) dir.

iii. Her bir  2 [0 ] noktas¬ için ’in bir fonksiyonu(  ) fonksiyonu [0 ] [ ]

aral¬klar¬nda (3.1.1) ¡Sturm denklemini ve (3.1.2) s¬n¬r şartlar¬n¬ sa¼glar.

iv. 0 ¢() karakteristik denkleminin s¬f¬r¬ olsun. 0 (  ) fonksiyonunun bir

basit kutbu olabilir ve bu durumda

(  ) = ¡0()0()

¡ 0
+ e(  )

eşitli¼gi vard¬r. e(  ) 0’¬n bir komşulu¼gunda ’n¬n analitik fonksiyonudur ve 0(),

0’a kaŗs¬l¬k gelen bir normal özfonksiyondur.
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·Ispat.

i.Her bir  2 C noktas¬ için (  ) Green fonksiyonunun (0 0) noktas¬nda sürekli

oldu¼gu 1(.,) 2( ) fonksiyonlar¬n¬n o noktas¬ndaki süreklili¼ginden aç¬kt¬r.

ii. (  ) = (  ) eşitli¼gi (3.3.3.) denkleminden kolayca görülür.

iii. Bir  2 [0 ] noktas¬ alal¬m. E¼ger  2 [0 ] ise,

(  ) =
1

¢()
1( )2( )

dir. Buna göre

(  ) =
1

¢()
2( )1( ) =



¢()
2( )1( ) = (  )

dir. E¼ger  2 [ ] ise yine benzer i̧slemler yap¬l¬r. (3.2.12) ve (3.3.3) denklemlerinden

11(0  ) + 12¡1(0  )

=
2( )

¢()
f111(0 ) + 12¡11(0 )g = 0

21(  ) + 22¡1(  )

=
1( )

¢()
f211( ) + 22¡11( )g = 0

elde edilir.

iv. 0 (  ) fonksiyonunun bir kutbu olsun ve  = 00 da ( ) (  )

fonksiyonunun bir kalan¬ olsun. (3.2.14) (3216) ba¼g¬nt¬lar¬ndan yararlanarak

( ) = lim
!0

(¡ 0)(  ) = ¡10 1( 0)1( 0) lim
!0

¡ 0
¢()

= ¡1( 0)1( 0)Z

0

j1( )j2 

= ¡0( 0)1( 0)

elde edilir. Böylece iv ispatlanm¬̧s olur.

3.4 Özfonksiyonlar¬n Aç¬l¬m Formülleri

Tan¬m 3.4.1.

L : L ! 2
(0 )

operatörü

L = 8 2 L için
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tan¬mlan¬r. Burada L , (3.1.2) şartlar¬n¬ sa¼glayan  kompleks de¼gerli fonksiyonlardan

oluşan 2
(0 ) uzay¬n¬n alt uzay¬d¬r.

Buna göre() fonksiyonu 0’ da regülerdir ve2
() fonksiyonu 

2
(0 ) uzay¬nda

tan¬ml¬d¬r. Böylece L ¡ fark operatörü ve (3.1.2) s¬n¬r şartlar¬ ile , ¡ fark ope-

ratörünü üretir. L =  eşitli¼gi, (3.1.2) s¬n¬r şartlar¬n¬ sa¼glayan  fonksiyonu,  = 

anlam¬ndad¬r. L operatörü (3.1.1)-(3.1.2) Temel Sturm-Liouville Problemi ile benzer

özde¼gerlere sahiptir. Böylece kerL = f0g’dir.

Tan¬m 3.4.2.

(L)() = () ( 2 2
(0 )) (3.4.1)

probleminin çözümü 2
(0 ) uzay¬nda

() =

Z

0

( ) () (3.4.2)

olarak verilir. Burada (3.4.1) denkleminde () fonksiyonu () ile yer de¼gi̧stirirse,

( ) = (  0) =

½
1()2() 0 ·  · 

1()2()  ·  · 
 = ¡ 1

(1 2)


Tan¬m 3.4.3.

(L)() = () (3.4.3)

özde¼ger problemi

() = 

Z

0

( )()  2 f; 2 N0g (3.4.4)

şeklinde ikinci tür Fredholm integral denklemine denktir.

Teorem 3.4.1. ¡ integral operatörü olmak üzere

 : 2
(0 )! 2

(0 ) ()() =

Z

0

( )() (3.4.5)

olsun. Bu takdirde

(L) =  ( 2 2
(0 )) (3.4.6)

(L)() =  ( 2 L) (3.4.7)
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ifadeleri mevcuttur.

·Ispat. Öncelikle  2   2 L alal¬m. (3.4.4) ve (3.4.5)’den

() = ( )() = 2()1() + 1()2()

yaz¬l¬r. Buradan

1() = 

Z

0

1() () ve 2() = 

Z



2()()

dir. 8 2  için

() = 2()1() +1()2()

2
() = ¡()()¡ () 2 2

(0 ) (3.4.8)

elde edilir. ( ) ()  = 1 2 fonksiyonlar¬ 0 noktas¬nda ¡ regülerdir. Bu

nedenle () ve

¡1(0) = (0) = lim
!12

()¡ (0)


= ¡12(0)2(0)

bulunur.

1(0) = 0 2() = 0

olarak al¬n¬rsa

(11(0) + 12¡1(0)) = (111(0) + 12¡11(0)) 2(0) = 0

ve

(21() + 22¡1()) = (212() + 22¡12()) 1() = 0

elde edilir. Dolay¬s¬yla  2 L ’ dir. (3.4.8) ifadesinden

L = (L)() = 

eşitli¼gini buluruz. Şimdi de (3.4.6) ifadesinden yararlanarak (3.4.7) ifadesini ispatlay-

al¬m. Dolay¬s¬yla (3.4.6) ifadesinde L yerine  yaz¬l¬rsa L = LL elde edilir. L ’nin

birebir oldu¼gu kabul edilirse  = L elde edilir.

(3.4.6) ve (3.4.7) ifadelerinden ker = f0g oldu¼gu görülür. ,  özde¼geri ile bir-

likte 0 nin özfonksiyonudur gerek ve yeter şart , 1

özde¼geri ile birlikte L0 nin bir

özfonksiyonudur.
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Tan¬m 3.4.4.  :  !  s¬n¬rl¬ lineer bir operatör,  Banach uzay¬ olmak üzere e¼ger

 uzay¬ndaki  () kümesinin vektörlerinin cümlesi s¬n¬rl¬ ise  operatörüne kompakt

operatör denir. Yani f :  2 g cümlesi kompaktt¬r.

Tan¬m 3.4.5.  bir Hilbert uzay¬ olmak üzere  operatörü  :  !  şeklinde

tan¬ml¬ olsun. E¼ger  operatörü

 =
X

=1

 h i

şeklinde yaz¬labilirse  operatörü kompaktt¬r denir. Burada 1 ·  ·1 ’d¬r. 1 2  

ve 1 2   ortonormal cümlelerdir. 1 2   pozitif say¬lard¬r.

Teorem 3.4.2. ¡ integral operatörü kompakt ve self adjointtir.

·Ispat.   2 2
(0 ) olsun. [0 ][0 ] aral¬¼g¬nda tan¬mlanan reel de¼gerli ( )

fonksiyonu ( ) = ( ) oldu¼gunu göz önüne al¬n¬rsa

h() i =

Z

0

( )()() =

Z

0

Z

0

( )()()

=

Z

0

 ()

0
@

Z

0

( )()

1
A = h ()i 

 operatörünün self adjoint oldu¼gunu görürüz. Şimdi de  integral operatörünün kom-

pakt oldu¼gunu gösterelim.

( ) = ()() (  2 N)

2
((0 )(0 )) uzay¬n¬n bir ortonormal taban¬ olsun. Bu nedenle

 =

1X

=1

­
 

®


 =
X

=1

­
 

®
 ( 2 N)

ve , 2
(0 ) uzay¬nda tan¬ml¬ sonlu rank integral operatörü olsun.

( )() =

Z

0

( )()  2 f0 ; 2 N0g
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şeklindedir. Buradan da  operatörünün 8  2 N için kompaktt¬r. Cauchy Schwartz

eşitsizli¼ginden

k(¡ )()k =

0
@

Z

0

j(¡ )()j2 

1
A

1
2

=

0
@

Z

0

¯̄
¯̄
¯̄

Z

0

(¡)( ) ()

¯̄
¯̄
¯̄

2



1
A

1
2

·

0
@

Z

0

Z

0

j(¡)( )j2 

1
A

1
2
0
@

Z

0

j()j2 

1
A

1
2

= k¡k2 kk 

!1 halinde ,

k(¡ )( )k · k¡k2 ! 0

d¬r. Böylece teoremin ispat¬ tamamlam¬̧s olur.

Uygulama 1.

¡1

¡1() = () (3.4.9)

¡ Sturm-Liouville s¬n¬r de¼ger problemini

1() = (0) = 0 2() = (1) = 0 (3.4.10)

¡Dirichlet şartlar¬ ile göz önüne alal¬m. (3.4.9) probleminin çözümlerinin temel

kümesi

1( ) = cos(
p
; )

2( ) =
sin(
p
; )p


 (3.4.11)

şeklindedir. (3.4.9) probleminin özde¼gerleri

¢() =

¯̄
¯̄
¯̄
1(1) 2(1)

1(2) 2(2)

¯̄
¯̄
¯̄ = 2(1 ) =

sin(
p
; )p




determinant¬n¬n s¬f¬rlar¬d¬r. Burada fg1=1 özde¼gerleri, sin(
p
; ) fonksiyonunun

özde¼gerleridir.

 = 2 =
¡2

(1¡ )2
(1 +()) ( 2 N)
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cümlesi
n

sin(
p
;)p


o1
=1

özfonksiyonlar¬n¬n kümesine kaŗs¬l¬k gelen ve yeterince büyük

 için 2
(0 1) uzay¬n¬n bir ortogonal taban¬d¬r.

1( ) =
sin(
p
; )p




2( ) =
sin(
p
; )p


cos(
p
; ) + cos(

p
; )

sin(
p
; )p




fonksiyonlar¬n¬ göz önüne alal¬m. E¼ger  bir özde¼ger de¼gilse Green fonksiyonu

(  ) =
sin(
p
; )

sin(
p
; )

Ã
p
; )

sin(
p
; )p


¡ cos(
p
; )

sin(
p
; )p


!
 0 ·  · 

(  ) =
sin(
p
; )

sin(
p
; )

Ã
cos(
p
; )

sin(
p
; )p


¡ cos(
p
; )

sin(
p
; )p


!
  ·  · 1

şeklinde verilir.  = 0 bir özde¼ger de¼gil iken ( )  fonksiyonu s¬f¬rd¬r fakat

( ) = (  0) =

8
<
:

(1¡ ) 0 ·  · 

(1¡ )  ·  · 1

şeklindedir. Dolay¬s¬yla (3.4.9)-(3.4.10) s¬n¬r de¼ger problemi

() = 

1Z

0

( )()

temel Fredholm integral denklemine denktir.

Uygulama 2. (3.4.9) ¡ Sturm-Liouville s¬n¬r de¼ger problemini

1() = ¡1(0) = 0 2() = ¡1(1) = 0 (3.4.12)

¡ Neumann s¬n¬r şartlar¬ ile birlikte göz önüne alal¬m. Bu durumda uygun

1( ) = cos(
p
; )

2( ) = cos(
p


¡1
2 ; ) cos(

p
; ) +

p
 sin(

p


¡1
2 ; ) sin(

p
; )

fonksiyonlar¬n¬ alal¬m.

¢() =
p
 sin(

p


¡1
2 ; )

iken, 0 = 0 olmak üzere özde¼gerler

 = ¡12 =
¡2+1

(1¡ )2
(1 +()) ( 2 N)
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şeklinde verilir. Böylece
©
1 cos(

p
; )

ª1
=1

cümlesi 2
(0 1) uzay¬n¬n bir ortogonal

taban¬d¬r. E¼ger  bir özde¼ger de¼gilse (  )  fonksiyonu   2 [0 1][0 1]

olmak üzere

(  ) = ¡ cos(
p
; )

p
 sin(

p


¡1
2 ; )

³
cos(
p


¡1
2 ; ) cos(

p
; )+

p
 sin(

p


¡1
2 ; ) sin(

p
; )

´
 0 ·  · 

(  ) = ¡ cos(
p
;)

p
 sin(

p

¡1
2 ;)

³
cos(
p


¡1
2 ; ) cos(

p
; )+

p
 sin(

p


¡1
2 ; ) sin(

p
; )

´
  ·  · 1

şeklinde verilir.

Uygulama 3. (3.4.9) ¡ Sturm-Liouville s¬n¬r de¼ger problemini

1() = (0) = 0 2() = (1) +¡1(1) = 0 (3.4.13)

s¬n¬r şartlar¬ ile beraber göz önüne alal¬m.

¢() = 2(1 ) +¡12(1 ) =
sin(
p
; )p


+ cos(
p


¡1
2 ; )

şeklindedir. Bu s¬n¬r de¼ger probleminin fg1=1 özde¼gerleri

sin(
p
; )p


= ¡ cos(
p


¡1
2 ; )

denkleminin çözümleridir ve özfonksiyonlara kaŗs¬l¬k gelenler
n

sin(
p
;)p


o1
=1

cümlesidir.

1( ) ve 2( ) fonksiyonlar¬n¬ ele al¬rsak

1( ) =
sin(
p
; )p




2( ) = (cos(
p


¡1
2 ; ) +

sin(
p
; )p


) cos(
p
; )¡ (¡

p
 sin(

p


¡1
2 ; )

+ cos(
p
; ))

sin(
p
; )p


ifadeleri göz önüne alal¬m. E¼ger  bir özde¼ger de¼gilse (  )  fonksiyonu

(  ) =
¡1

sin(
p
;  +

p
 cos(

p


¡1
2 ; )

8
<
:

sin(
p
; )2( ) 0 ·  · 

sin(
p
; )2( )  ·  · 1

ve

( ) = ¡1
2

8
<
:

(2¡ ) 0 ·  · 

(2¡ )  ·  · 1
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olarak tan¬mlan¬r. (3.4.9) s¬n¬r de¼ger problemi (3.4.13) s¬n¬r şartlar¬ ile birlikte

() = 

1Z

0

( )()

temel Fredholm integral denklemine denktir.
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4. SONUÇ

² Bu tez, Annaby ve Mansour’un yazm¬̧s olduklar¬ kitaptan ve farkl¬ kaynaklardan

derlenerek haz¬rlanm¬̧st¬r [3]. ·Ikinci bölümde ¡ fark operatörü ile ilgili detayl¬ bir

araşt¬rma yap¬lm¬̧st¬r. ¡ analizinin reel analiz ve fonksiyonel analiz ile ili̧skileri

irdelenmi̧stir. ¡ fark denklemlerine …zik, mühendislik, teknik bilimlerde s¬kça

karş¬la̧s¬lm¬̧s olup, bu denklemler uygulamal¬ bilimcilerin çal¬̧st¬klar¬ bir dal olarak

ortaya ç¬km¬̧st¬r.

² Son bölümün birinci k¬sm¬nda ¡SturmLiouville problemi ele al¬nm¬̧st¬r. ¡Sturm

Liouville teorisinde potansiyel fonksiyonun …ziksel olarak önemi büyüktür. Bu an-

lamda tezde ele al¬nan problem ilerde yap¬lacak olan çal¬̧smalarda etkili sonuçlar

al¬nabilecek düzeydedir.

² ·Ikinci k¬s¬mda ¡Sturm Liouville probleminin self adjointli¼gi gösterilmi̧stir. Ayr¬ca

spektral teoride temel teşkil eden özde¼gerlerin reelli¼gi, özfonksiyonlar¬n ortogo-

nalli¼gi ve özde¼gerlerin basitli¼gi bu operatör için ispatlanm¬̧st¬r.

² Üçüncü k¬sm¬nda homojen olmayan ¡Sturm Liouville denkleminin bir çözümünü

ararken ¡Green fonksiyonunun nas¬l elde edildi¼gi gösterilmi̧stir. Ayr¬ca bu

fonksiyonun baz¬ özellikleri irdelenmi̧s, i̧slemler detayland¬r¬lm¬̧st¬r.

² Bu bölümün son k¬sm¬nda ise ¡ fark denklemlerinin çözümlerini bulmaya çal¬̧s-

mak uzun u¼graşlar gerektirdi¼ginden çözümlerin spektral analizi hakk¬nda bilgiler

paylaş¬lm¬̧st¬r. Genel bir derleme yap¬lm¬̧st¬r.
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