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OZET

g—Operatorii ve Sturm-Liouville Problemi

Bu tez {i¢ boliimden olugmaktadir.

Birinci boliimde, g—fark operatorleri ile ilgili genel bir tarihge verilmistir.

Ikinci boliimde, g— fark operatorii, ¢— fonksiyonlar ve ¢— fonksiyonlar uzaylariin
ozellikleri incelenmigtir. Konuyla ilgili temel tanim ve teoremler verilmigtir.

Uciincii boliimde, L2(0, a) Hilbert uzaymda g—Sturm-Liouville Problemi verilmistir.
Bu problem ile ilgili genel spektral ozellikler incelenmigtir. Ayrica G(z,t, A\) Green
fonksiyonunun ozellikleri verilip bununla ilgili temel tanim ve teoremler ispatlariyla
birlikte detayh olarak verilmistir. Ozfoksiyonlarmm acilim formiilleri incelenmistir.

Anahtar Kelimeler. g¢—Fark operatorii, ¢g—Sturm-Liouville problemi, G(x,t, \)

Green fonksiyonu, g—Lagrange 6zdesligi, acilim formiilii.
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SUMMARY

g —Operator and Sturm Liouville Problem

This thesis consists of three chapters.

In the first chapter, a general history related to g— difference operators is given.

In the second chapter, properties of g— difference operator, g— functions and g—
functions spaces are analyzed. Basic definitions and theorems related to the subject
are given.

In the third chapter, ¢— Sturm-Liouville Problem in Lg(O, a) Hilbert space is given.
General spectral properties related to this problem are analyzed. Also, properties of
G(z,t,\) Green functions are given and basic definitions and theorems related to this
subject is given with proofs in detailed. Finally, expansion formulas of eigenfunctions
of this problem are investigated.

Key words. ¢— Difference operator, g—Sturm-Liouville problem, G(x,t, \) Green’s

function, ¢—Lagrange’s identity, expansion formula.
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1. GIRIS

Matematiksel fizigin, miihendisligin ve bircok bilimin pek ¢ok probleminin mo-
dellenmesi diferansiyel denklemlerden olusan sinir deger problemleri icermektedir. Bu
problemlerin ¢oziimii, 1830 ’lu yillara kadar analitik olarak ifade edilebilmesi ile sinirh
kalmistir fakat 1836 yilinda iki yakim arkadas olan Isvecli matematikci Charles Francois
Sturm (1803-1855) ve Fransiz matematik¢i Joseph Liouville ¢oziimlerin analitik olarak
ifade edilemedigi durumlarda bu ¢oziimlerin 6zelliklerinin bulunmasi ile ilgili caligmalar
yapmis ve Sturm-Liouville teorisini kurmuslardir.

Klasik bir Sturm-Liouville diferansiyel denklemi genel olarak sonlu veya sonsuz
a < x < b arahiginda tanimh y fonksiyonlari igin,

= @] +la@ @y o

seklinde tanimli ikinci mertebeden lineer bir diferansiyel denklemdir. Bu denklemde
p(z),q(z) ve w(x) verilen fonksiyonlardir. Bu fonksiyonlarin reel degerli ve ayrica
(a,b) araliginda parcal siirekli oldugu varsayilmaktadir. Bununla birlikte p (z) ve
w (x) fonksiyonlarimn (a, b) araliginda daima pozitif oldugu varsayilmaktadir. Bu denk-
lemdeki A sayilar1 da parametrelerdir [21].

Sturm ve Liouville diklik, 6zdegerlerin gergelligi ve Fourier katsayilarinin belirlen-
mesi gibi baz1 teoremleri ortak kullaniyorlarsa da Sturm 6zdegerlerin ¢zellikleri, 6zdeger
ve Ozfonksiyonlarin nitel davraniglarina yonelirken, Liouville keyfi fonksiyonlarin, 6z-
fonksiyonlarin bir sonsuz seri agilimina agirlik vermistir. Sturm, homojen olmayan ince
bir teldeki 1s1 iletimi problemini gz oniine almig ve bu problemin ¢ozlimii i¢in kismi
diferansiyel denklemi degiskenlerine ayirma metodu kullanarak adi diferansiyel denk-
leme doniistiirmiigtiir. Sturm-Liouville kuraminin gelismesinde D’Alembert, Fourier ve
Poisson’un g¢alismalar: onciiliikk etmis ve katki saglamistir. Fourier, homojen ortam-
larda 1s1 iletim problemlerini silindirik ve kiiresel koordinatlar: kullanarak incelemis
ve 131 teorisi ile ilgili énemli sonuglar elde etmistir. Bu sonuglar Poisson tarafindan
devam ettirilmis ve gelistirilmistir. Homojen ve homojen olmayan bir teldeki titregim
problemini ilk kez D’Alembert ve ayn1 dénemde Euler incelemistir.

Sturm’un ikinci énemli ¢alismasi spektral kurami iizerine olmustur. Liouville’nin

caligmasi ise keyfi fonksiyonlarin, ozfonksiyonlari cinsinden Fourier serisine agilimi,



ortogonallik 6zellikleri ile farkl tipteki ve yiiksek mertebeden denklemlere, kuramin
genellegtirilmesi iizerine olmugtur. Ardigik yaklagimlar yontemini kullanarak bir dife-
rensiyel denklemin ¢oziimlerinin varhigini ilk kez Liouville kanitlamigtir.

1880’lerde, L. Rayleigh ve G. Kirchhoff titresim problemini incelerken Sturm’un
teoremlerinin benzerini yiiksek basamaktan sinir deger problemlerine uygulamiglardir.
F. Klein diferansiyel denklemlerin polinom tipi ¢oziimlerini sinir deger problemleri ku-
rami ile birlestirmigtir. 1908’de Birkoff ¢zdeger parametresine bagh adi diferansiyel
denklemlerin temel coziimleri i¢in asimptotik esitlikler elde etmis, regiiler sinir sart-
larmi tamimlamis ve regiiler sinir-deger problemleri i¢in zfonksiyonlar ve 6zfonksi-
yonlara bagli fonksiyonlar sisteminin tamhligi ile ilgili teoremler ispatlamigtir. 1946
yilinda Titchmarsh dogru ekseninde tamiml azalan (artan) potansiyelli L = —j—; +
q (z) Sturm-Liouville operatorleri igin 6zdegerlere gore ayrisim formiiliinii vermistir.
Ayrica Naimark, Atkinson, Rietsz, Neumann, Friedrichs, Wintner, Leighton, Levitan
Tamarkin gibi bircok matematikci bu teorinin gelismesini saglamigtir.

Eskiden beri fark denklemleri ve g—fark denklemlerinin incelenmesine matematikgiler
ve fizikciler tarafindan biiyiik ilgi duyulmaktadir. ¢— fark denklemleri bir taraftan
diferansiyel ~ denklemleri diskritlestirerek (ayriklagtirarak) yaklagtk  ¢o-
zerken, diger taraftan da bircok pratik olaymm matematiksel modelleri olarak kendi
bagima ortaya cikarmasi agisindan oldukga biiyiik 6nem tagimaktadir. ¢—fark denk-
lemlerinin teorisi beraberinde cok ¢esitli konular1 getirmistir. Bunlardan en 6nemlisi
g—Sturm-Liouville Problemi olarak ele alimmigtir [3]. Daha sonra Al-Salam ve Agarwal
g—Riemann Liouville integralini ve ¢ kesirli tiirevlerini tammladilar [3]. Daha sonra
q kesirli hesaplamalar geligtirilmig ve Caputo q kesirli tiirevi ve Weyl kesirli tiirevleri
tanimlanmigtir [3]. Bunlarin ardindan kesirli ¢ Leibniz kurali ve uygulamalar1 verilmis
q kesirli fark denklemleri i¢in 6nemli bir parametre olan ¢ Mittag-Leffler fonksiyonlar:
tanmimlanmugtir ve ¢ kesirli fark denklemleri igin varlik teklik teoremleri ispatlanmigtir.
Annaby ve Mansour tarafindan yazilan kitap [3] ¢g—analizine énemli bir yon vermistir.
Bu konuda caligmalar devam etmektedir [11-20]. Adi fark ve g— fark denk-lemleri

kolaylikla algoritmalastirilarak, bilgisayarda ¢ozmek icin ¢ok uygundurlar.



2. GENEL KAVRAMLAR
2.1 Temel Tanimlar ve Teoremler

Tanim 2.1.1. X ve Y bos olmayan kiimeler ve D C X olsun. D’nin her elemanina
Y'nin bir elemanimi karsilik getiren bir kurala D’den Y ’ye bir operator veya doniistim
denir. A operatoriiniin z’e kargilik getirdigi eleman A(x) ile gosterilir. A operatoriiniin
x € D'yi A(x) € Y’ye doniistiirdiigiinii belirtmek igin, A : D — Y gosterimi kullanihir

[1].

Tanim 2.1.2. H bir Hilbert uzay ve A, A* € L(H), (L(H) = L(H, H)) olsun. Eger
A = A* veya Va,y € H i¢in < Ax,y >=< x, A*y > ise bu operatore self adjoint

operator ya da Hilbert adjoint operator denir [1].

Tanim 2.1.3. Bir (X,|| . ||) normlu uzaydaki her Cauchy dizisi X iginde bir limite
yakinsiyorsa, bu (X,|| . ||) normlu uzaymna tam normlu uzay veya Banach uzay adi

verilir [1].

Tanim 2.1.4. Bir (X,< .,. >) i¢ ¢arpim uzaymdaki her Cauchy dizisi X iginde bir

limite yaksiyorsa, bu (X,< .,.>) i¢ ¢arpim uzayma Hilbert uzay adi verilir [1].

Tanim 2.1.5. ¢ > 1 bir sabit reel say1 ve

={"neZy={..a%¢" ¢ ¢ ..}

seklinde tammlanir [2].

Tanim 2.1.6. 0 < ¢ < 1 olmak iizere ¢ pozitif bir sayidir. n € N = {0,1,2,...},
keZ"=1{1,2,3,..},a € C olmak iizere g—rotasyon faktoriyeli

1, n=>0
(@;q)n = n-t | (2.1.1)
[I(1—a¢), neN
=0
ile tammlanir. Burada n — oo iken (a;q), nin limiti var ve (a;¢) ile tammlanir.

ai, as, ..., a, kompleks sayilar1 igin g—rotasyonel faktoriyeli agagidaki gibi olur [3],

k

(ab ag, ..., Qk; q)n = H(ajﬂ q)

J=1



Tanim 2.1.7. « bir kompleks say1 olsun. g—binom katsayilari

“ b =0 2.1.2
k], N (1—qa)(1—q"(‘.1)---(1—qa"“+1)’ kcN (2.1.2)
Gk

ya da daha genel bir ifadeyle

seklinde tammlanir [4].

(a;9)n ve (a; )0, (n € Ny) igin agagidaki seri formlar1 yazilabilir,

0= 0[] o5 213

(40)e = > (~1)Fq 7 (q?q)k. (2.1.4)

Tanim 2.1.8. aq,as,...,a, , by, by, ..., b, kompleks sayilar i¢in ,®,, g—hipergeometrik

serileri

o0

3 (a1, a2, ..., ar; @n EE
T(I)S(alaa%‘“7a7‘;blab%“'7bs;q7z) = . Zn(_q 2 )Tb(8+ ") (215)
n—0 (qablab% '“7bsaq)n

seklinde tanimlanir.
»®, fonksiyonunun seri agilimi eger » < s ise V z € C icin kesinlikle yakinsaktir.

Eger r = s + 1 ise yalmzca |z| < 1 i¢in yakinsaktir [3].

Tanim 2.1.9.

[klq = ! __qq ,q € C\{1} (2.1.6)

[n]g! = H[k]q

k=1
= [1g[2]g---[n — 1q[n],,
1—ql—¢ 1—q¢"'1—¢g"
l1-¢ql—q  1—q 1—gq’
= 1(1+q)...(1+q+...¢"?),
(43 @)n

= W, (217)

seklindedir.



Tanim 2.1.10. p € R sabit bir say1 ve her bir z € A igin puz € A ise C nin A alt
kiimesi p—geometrik olarak adlandirilir. Eger C nin A alt kiimesi y—geometrik ise her

{zp™}22, geometrik dizileri z € A y1 kapsar [3].
Tanim 2.1.11. ¢— diferensiyel

dyf(x) = flqr) — f(x)

seklinde tammlanir [5].

Tanim 2.1.12. f reel ya da kompleks degerli fonksiyonu ¢Z {izerinde tanimh olsun.

"g— fark operatori" D,

Dy f(z) = %,z €q’ (2.1.8)

seklinde tammlanir [2].
D, f(z) fonksiyonuna f(z) fonksiyonunun g—fark tiirevi denir, g—fark operatorii
Jackson g—fark operatorii, Euler Jackson g—fark operatorii ya da Euler-Heine Jackson

q—fark operatorii olarak adlandirilir. Eger 0 € A ise |¢| < 1 igin sifirda g—tiirev,

D,f(0) = lim f(zq") = f(0)

n—00 zq”

, z € A\{0} igin,
olarak tanimlanir. Buna gore sifirda ¢— tiirev |g| > 1 igin

Dy f(0) = Dy-1(0)

olur.

Teorem 2.1.1. D,, g—tiirev operatorii olmak tizere

Dy(f F 9)(x) = Dyf (x) F Dyg()

esitligi saglanir.

ispat.
DJ(f Fg)(x) = (f ﬂFg)(q;)j - ;f T 9)()

_ fler) F glgz) — f(z) F 9(x)
qr — x

_ flgx) = () F g(gr) — g(2)
qr — x

_ flar) = f(x) _ g(gx) — g9(2)

qr — T qr — T

= Dyf(x) F Dyg(x)-

bt



Teorem 2.1.2. D,, g—tiirev operatorii olmak tizere ve c€ R olsun, bu takdirde

Dy(cf)(x) = eDy f(x)

esitligi vardir.

ispat .

Dy(ef)(x) = cf(qr) —cf(x) _ flar) — f()

qr — T qr — T

= cDy f(x).

Teorem 2.1.3. D,, q—tiirev operatorii olmak tizere

Dy(f-9)(x) = g(2) Dy f(x) + f(qz)Dyg(z)

ya da
Dqo(f-9)(x) = f(x)Dag(x) + g(q) Dy f (x)

esitligi saglanir.

Ispat.
D,(fo)(z) = (f-g)(q;g - :(Uf-g)(:v)’
_ flar)glar) = F(@)g(x) + flgw)e(x) — flaw)g(z)
Fan)gtar) = o) + o(o) ) — f(0))
Fan)ltar) = o), o(a)lae) = (o))

= +
qr — T qr — T

= 9(@)Dyf(x) + f(q2) Dog(),

ayni zamanda asagidaki egitlikler saglanir,

(f-9)(gz) — (f-g)(:v)’

Farlo(ar) ~ 1(a)os) + Sglar) = @lolar)
ﬂ@wm@—gmn+ﬁ£ﬁﬂm»—ﬂ@y
Fe)atar) = o) | olan)ae) — (o))

qr — qr —
= f(z)Dyg(x) + g(qz) Dy f ().

Dy(f.9)(x) =

6



Teorem 2.1.4. ( ¢g— Leibniz Kural1) D}, n. mertebeden ¢— tiirev operatorii olmak

lizere

n

Dyl =3 [}] (05 40) (Fonate)

esitligi saglanir.

k=0 q

n = 1 i¢in yukaridaki esitligin dogrulugunu gosterelim.

Dy(f.9)(x) =

> m (Dy*£) (¢"x) Dyg(=),

q

1 (D f) (¢°x)DYg(x) + E] (D°f) (¢'z)Dlg(x).

q

9(x) D,y f(x )+1—f(qx) Dag(a),
S DI(E) + F(a2)Dog )

olup verilen esitlik n = 1 i¢in dogrudur.

Teorem 2.1.5. D,, q—tiirev operatorii olmak iizere eger g(x) # g(qz) # 0 ise

Dy(f/9)(x) =

esitligi vardir.

ispat .

Dy(f/9)(x)

9(x)Dyf(x) — f(x)Dyg(x)
g9(z)g(qz)

(f/9)(gx) — (f/g)(:lf)’

qr — T
flgx) _ f(®)
g(qz) 9(z)

qr — T

flgx)g(x) — fla)g(x) + f(x)g(x) — g(qx) f(x)
9(qz)g(x)(qr — x) ’

[f(qz) = f(@)lg(x) — f(x)[g(gz) — g(x)]
9(qr)g(x)(qz — x) ’
[f(gz) — f(2)lg(x)  [g(gz) — g(2)]f(2)
g(qr)g(x)(qz —x)  glqz)g(z)(qz —x)’
9(@)Dyf(x)  f(x)Dyg()
9(qx)g(x)  g(qr)g(x)

(
_ 9(@)Dyf(2) — f(2)Dyg(a)




Teorem 2.1.6. D, n. mertebeden g—tiirev operatorii olmak tizere f fonksiyonunun

n. mertebeden g—tiirevi
n -n -n,.—n - | T rr=1 n—r
D) = (11— o) 7] )
q
seklindedir.

Teorem 2.1.7. Eger bir y : ¢ — C fonksiyonunun g—fark tiirevi 6zdes olarak sifir ise
bu fonksiyon sabittir.
Ispat. D,y(z) =0,Vx € ¢* olsun. O halde

y(gz) — y(x)
qr — T

,VxEqZ

Buradan da
y(qz) — y(x) = 0,veya y(qz) = y(x),Vz € ¢"

elde edilir. Burada z yerine sirasiyla
¢ =14q"=q,¢ ¢, ..

yazarsak

y(@®) = y(d®) =yl@) =y(1),....,y(¢") = y(1),Yn =1,2,3, ..

bulunur. x yerine

ifadeleri yazilarak

y(@?®) = v =yl ") =yQ),...y(¢") = y(1),Vn=1,2,3, ..

bulunur. Béylece Va € ¢” igin y(x) = y(1) oldugu ispatlanir. Bu ise y(z) fonksiyonunun

q” iizerinde sabit olmasi demektir. Boylece teoremin ispat1 tamamlanir.

8



Tanim 2.1.13. 0 < a < b olsun. g—integral

b

/ f@)dg = (1= > @ f(ah) (2.1.9)

a

seklinde tammlanir [3].

Tanim 2.1.14. Eger z > 0 ve f, g— geometrik A kiimesinde taniml bir fonksiyon ise

[z, 00) araliginda f fonksiyonunun Hahn g—integrali

/f(t)dqt = 2q (1 —q)f(zq™)

seklinde tanimlanir.

[0, 00) arahiginda f fonksiyonu i¢in ¢— integrasyonu

Ft)dgt = (1 =) Y q"f(q
olarak tamimlanir. Ayrica [0, 00) araliginda taniml

/ Fdt =103 B 6> 0

ifadesine Matsuo g— integrasyonu denir.

R de tanimh bir f fonksiyonunun g—integrasyonu

=B

f(t)d 1‘qzq (=" )] (b > 0)

=[8

olarak tamimlamr. Bu seriler yakinsaktir [3].

Tanim 2.1.15. f fonksiyonu ¢—geometrik A kiimesinde taniml iken, 0 € A olsun.
Eger,
lim f(z¢") = f(0) V z € A i¢in

ise f fonksiyonuna sifirda g— regiilerdir denir. Eger, A kiimesi ¢~'— geometrik ise f

sonsuzda g—regiilerdir [3].



Tanim 2.1.16. Eger A C R kiimesi g— geometrik ve A’ da tanmmmlh f fonksiyonu
sifirda g— regiiler ise f(07) ve f(07)
fF(0%) = lim f(q"), f(07) = lim f(zq")

k—oo
>0 <0

olarak tanmimlanr [3].

Eger f, sifirda g—regiiler ise

f(0) = f(0T) = f(07) dir.

Sifirda g— regiilerlik bazi yerlerde klasik anlamda siirekliligin roliinii oynar. Sifirda
siireklilik sifirda ¢— regiilerligi gerektirir. Fakat tersi dogru olmayabilir. Ornegin;
f:[0,1] — R fonksiyonu
4 —_ il g
1 z=a,= T asal ise

fz) =

x diger durumlarda
rasyonel ¢ lar i¢in sifirda g—regiilerdir. Fakat sifirda siirekli degildir.
Tanim 2.1.17. g— geometrik A kiimesinde tanmimli f fonksiyonunun g¢— tiirevi sifirdir

gerek ve yeter sart Vo € A igin f(z) = f(qx) dir. Bu fonksiyonlar g—periyodik fonksi-

yonlardir.

Teorem 2.1.8. f sifir1 iceren g—geometrik A kiimesinde tanimh ve sifirda g—regiiler

olsun, bu takdirde
F) = [ @tz e )

esitligi vardir. Burada c, sabit bir noktadir. F' fonksiyonu sifirda ¢— regiilerdir. Ayrica

D,F(z) Vz € A i¢in vardir ve

D,F(z) = f(2),Vz € A (2.1.10)
[ Data =56 - f(@ 2.1.11)
olur.
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Ispat. F fonksiyonunun sifirda g—regiiler oldugunu gésterelim. Bunun icin
lim F(zq") = F(0)

n—0o0

esitligini gostermemiz yeterlidir.

/Z f(t)dgt

Flzq") = / F(t)d,t

_ 1—q22q”+kf n+k
k=0

lim F(z¢") = lim(1—g¢q zZq”H“f k)
k=0

= (1- q)zz lim ¢" " f(2q"")
k=0

lim F(z¢") =0 (2.1.12)

0
= [ £t = = oY (0g") =0 (2.1.13)
n=>0
(2.1.12) ve (2.1.13) esitliginden
lim F(zq") = F(0)

elde edilir. Yani F'(z) fonksiyonu sifirda g—regiiler oldugunu styleriz. Simdi de (2.1.10)

esitliginin saglandigimi gosterelim.

—/f(t)dqt— (1- ) 24" f(=q")

11



D,F(z) = —F(qu; — 5(2),

B z(ql—l) -]qf(t)dqt/z‘f(t)dqt]’

— Z(ql_ 1| (1-4q) quq”f(zqq”) —(1—9) qunf(zqn)] ’

- y(1—a) [Z ¢ f(zq") Zq”f(zq”)] :
n=0

2(q —

= Z q"f(zq") Z " (=g
n=0

= > q"f(zq") - Z q"f(2q")
n=0 n=1

= P+ (af () + PGP + ) — (af (20) + ) + ),

esitliginde her iki tarafin ¢— tiirevi alinirsa

[ Put @iz = [ DUDF(d = DFG) = 1) = FO) - fla),

[ Putlde = 1) - fta)
yani (2.1.11) esitligi saglanir.

Teorem 2.1.9. 0 < ¢ < 1 olsun. |f(x)z®|, baz1 0 < a < 1 i¢in (0, A] araliginda

sinirhdir.
X

/ (gt = (1— ) S g (g

0

ile tanimh Jackson ¢— integrali (0, A] araliginda F'(z) ’ e yakinsar ki bu ise f(z) in g—

tiirevini verir.
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Ispat. Farzedelim ki |f(z)z®| < M, (0,1] olsun. z € (0, 4] i¢in V j > 0 i¢in
f(do) (@) < M
[f(d2)] < M(dz)™
olur. Her iki tarafi ¢/ ile carparsak
|[f(@2)d’| < Mq/ (¢z) ™

olur. j = 0 dan oo a toplam alinirsa

o0

> (@r)d

J=0

,1—a>0,0<q<1iken

- —a —a\J Mz
<D Ma Y =
=0 q

bulunur. Boylece Jackson integralindeki toplam yakinsak geometrik seri yardimiyla

biiyiitiiliir. Bu toplam F(z) e yakinsar.

Teorem 2.1.10. f fonksiyonu 0 < a < b,[a,b] arahginda tanimh olsun. 0 < o < 1

olmak iizere o vardir 6yleki z* f(z), [a, b] araliginda siireklidir ve
F(z) = /f(t)dqt,x € [a,b]
0

esitligi saglamir. Burada c, [a, b] araliginda sabit bir noktadir. F(z), [a,b] araliginda

siirekli bir fonksiyondur.
Ispat. g(z) = 2*f(z),V z € [0,a] alahm. zy € [a,b] ve zy # 0 olsun. Boylece
F(z)— F(z) = (1—q)) 2" f(2¢") — (1—q) > _ zoq" f(w0q")
k=0 k=0
= (11— Y 2¢" [g(aq") — g(z0d")]
k=0

+af (27— 257) (1 - ) Y d*g(wed") (2.1.14)
k=0

elde edilir. g(z), [a,b] araliginda siirekli oldugunda [a, b] araliginda diizgiin siireklidir.
Buradan Ve > 0i¢in V z,y € [a, b] icin § > 0 vardir dyleki |z — y| < § — |g(z) — g(y)| <
e dir. Bu nedenle eger z € [a,b] ise |v — zo| < 8, |[z¢" — mog¥| < 0 V k € Ny icin ve

|9(x¢*) — g(z0q*)| < &V k € Ny i¢in buradan

lim g(z¢") = g(z0q")

T—T0o
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olur. (2.1.14) kosulundaki serilerde * — xy yaklagirken limiti hesaplayabiliriz. Bu
nedenle

lim F(x) = F(xo)

T—T0o

elde edilir. zy = 0 oldugunu farzedelim,

T T . 1_ ‘ .
F(l‘) — F(O) = /f(t)dqt = /tl (g(t) - g(O))dqt + 1_7q2_al'2 g(O) olur.
0 0
bulunur. Sonug olarak

F) - )] < (maxlotar®) = 90)| +9(0)) 7=

0 < a < 1 oldugundan ve 0 da g fonksiyonun siirekliliginden
lim F(x) = F(xo)
r—xT0

elde edilir. Bu ise F'(x) fonksiyonunun [a, b] araliginda siirekli oldugunu gosterir.

Teorem 2.1.11. h(t,z), [0,a] x [0, a] arahginda tanimh bir fonksiyon olsun. Oyleki
her bir ¢ sabiti icin
DI h(t,z),(j =0,1,2,3, ...k — 1)

fonksiyonlar [0, a] araliginda g— integrallenebilirdir. Eger z € [0,a] ve k € N igin

haq  x?) =0,(r=0,1,2,3,....j —1;5 = 1,2, ... k)
Dtl;,x/h(t’x)dqt_ /D];,xh(taﬂf)dqt (2.1.15)
0 0
dir.

ispat. Teorem 2.1.6 ifadesinden

n —-n —n _—p —nn=l - r n r(r=1 n—r
D) = (171 = o) w7 0 )
r=0 q
denkleminden yararlanarak
T xgh—I
(k-1 k
D, / Mta)dgt = (=)0 —q) FahgT Z(—WH Wt 2¢")d,t,
0 J=0 Ha ]
: e
= e L [ b
pr PR Sak)
¢ K st w f
= -1 7/ht,xqj dt | 2.1.16
> )lJLx’“(l‘q>’“o (t24')d, (2110



elde edilir. Buradan

/h(t,xqj)dqt = /h(t, vq)dgt,j=1,2,....k
0 0

esitliginin var oldugunu gosterelim.

xq’ o
/h(t,xqj)dqt = (1-9))_zd¢"hzd’q" x’),
0 n=0
= (1—q)x Zanh ),
= (1-q) Z ¢"h(zq™, xq’) =0, (2.1.17)
m=0
/h(t,xqj)dqt =(1- q)xz q"h(zq", 2¢’) = 0 (2.1.18)
0 n=0

bulunur. Dolayisiyla (2.1.17)ve (2.1.18) esitliginden

/h(t, rq )d,t = /h(t,:cq”)dqt
0 0

yazilir. Simdi buldugumuz esitligi (2.1.16) numarali denklemde yerine yazarsak

x —
= ]+1 —k‘

DE, / h(t,x)dt = Z [ } m / h(t, zq’)d,t,
= / (ji(—lw’ m %h(m&)) dqt,

=0
_ / D
elde edilir. Bu da (2.1.15) denkleminin saglandigini gosterir.

Tanim 2.1.18. ¢ pogzitif bir say1 ve z de kompleks bir say1 olmak {iizere g—iistel

fonksiyon e
=J[a-a-qd" (2.1.19)
k=0

seklinde tammlanir [6].
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Tanim 2.1.19. ¢ pozitif bir say1 ve z de kompleks bir say1 olmak {izere g—iistel

fonksiyon £

o0

E:=T[+ (1 -q)q"),

k=0

seklinde tammlanir [6].

Tanmim 2.1.20. e7, ¢—{istel fonksiyonunun seri agilimi

_gw

seklinde ifade edilir [6].

Tamim 2.1.21. E7, g—tistel fonksiyonunun seri agilim

:ZW

n=0

seklinde ifade edilir [6]. Burada

[t =[] 2] B]--[n] Kl=1+q+¢+..+¢""
A= (0 @) Bl =141+ %+ 4
esitlikleri vadir. Burada [n]! ve [n]! arasindaki bagint:

n(l—n

(]! =q = [n]!
seklindedir.

Tanim 2.1.22. g— siniis ve q—kosinus fonksiyonlarl

. el —e 1% ez e "
— 4% _ citea”
sing z = -5"—, cosgz = t5—, |z[<1
. Eiz—E;"* Eiz 4 E 2
— q q — q q
Singz = 5, Cosgz = ——, 2¢€C

seklinde tammlanir [3].

Tanim 2.1.23. In fonksiyonunun ¢ analizdeki karsilig

seklinde tammlanir [7].

Teorem 2.1.12. z ve y’ nin ¢arpiminin In, fonksiyonu

Ing(z.y) = Ingz +Ingy + (1 — ¢)(Ing ) (Ing y)

16

(2.1.20)

(2.1.21)

(2.1.22)

(2.1.23)



esitligini saglar.

Ispat. Esitligin sag tarafinin dogru oldugunu kabul edip sol tarafinin dogrulugunu
gosterelim,

In,z+1In,y + (1 — q)(In, z)(In, ),

| 1-¢ _q p-1 1 l=¢ _q
- R () . ,
1—gq 1—gq 1—g¢q 1—g¢q

Tanim 2.1.24. 1 < p < 00,a > 0 ve 7 bir reel say1 olsun. Lf (0, a) uzay

a

(/ﬂva%#<w

0

sartini saglayan fonksiyonlarin tiim denklik simiflarinin uzayidir. Lfm(O, a) uzaymda bir

f fonksiyonu alalim.
a -
_ P
e = | [ 1001 dit)
0

norm fonksiyonu ile birlikte Lgm(O, a) uzay1 Banach uzayidir. Eger p = 2 ise

a

<ﬁm—1/wﬂwaﬂ%xﬁgeLam¢m

0

i¢ carpim ile birlikte L? (0, a) uzay1 ayrilabilir bir Hilbert uzayidir [3].

Tanim 2.1.25. Bir 7 reel sayist ve bir pozitif p sayisi icin

o =

T

!WM_S%]/WWMWJ < oo,
xe(0,a

sartin1 saglayan (0,a] arahginda tammh tiim f fonksiyonlarmin uzay1 olan £ [0, a

uzayl tammlanir [3].

17



Teorem 2.1.13. (ﬁg,n 0, a, H.HM) uzay1 bir Banach uzayidir.

Ispat. (ﬁg,n 0, al, H.HM) uzayl bir normlu uzaydir. Simdi bu uzaym tam bir
uzay oldugunu gosterelim. (f,)n, (ﬁfm 0, al, H.HM) uzayimda bir Cauchy dizisi olsun.

Burada Ve > 0 igin ng € N vardir 6yleki Vm,n € N igin

o0

n,m>mny — s%p] Z(qu)”“(l —q) | fulzd") — fm(qu)}p <e, (2.1.24)
xe|0,a k=0

olur. Buradan z7 fn(x), (0,a] arahginda Cauchy dizisi tektir. (0, a] araliginda tamimh

bir f fonksiyonu vardir oyleki

lim 2% fo(z) =2"% f(z) |
lim 2% f,(x) =2 f(z)
bulunur. M > 0 ve n > ng olsun (2.1.24) den
M
m > ng — Z(a:qk)”“(l —q) }fn(:ch) — fm(qu)}p <egVze(0,a]icin  (2.1.25)
k=0

m — oo yaklagirken limit hesaplanirsa V M > 0 ve n > nyg

M
> (@)1= q) | ful2g®) — fag")| < eV € (0,q]
k=0

olmak tizere buradan || f, — f||,, — 0,n — coiken fo,1—f € (ﬁg’m[O, al, H-HM) s frot1 €

(ﬁg,n 0, al, H.HM) oldugundan f € (ﬁfm 0, al, H.HM) olur. Bu da ispat1 tamamlar.

Tanim 2.1.26. C7[a,b] , [a,b] arahginda (n — 1). mertebeden siirekli g— tiirevlerle

birlikte tiim stirekli fonksiyonlarm uzay1 olsun. C7[a, b] uzayn,

n—1

11 = 3 max [DEF0)] (7 € 7l 1)
norm fonksiyonu ile birlikte Banach uzayidir [3].
Teorem 2.1.14. (C|a,b], ||.||) uzay: Banach uzayidir.

Ispat. (Cla, ], ||.||) uzayr bir normlu uzaydir. Simdi C'[a,b] nin tam oldugunu
gosterelim. (f,)m ,Cyla,b] araliginda Cauchy dizisi olsun. Ve > 0 i¢in ny € N vardir

oyleki V [, m € N i¢in

n—1
Lm>mng— max | Dy fi(w) = D§ frn()] < &
k=0 ’
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ifadesi saglanir. Buradan

I,m > ng — max |DFfi(z) — D} fu(z)| <€
z€la,b]

(Dgfm)m k =0,1,2,...,n — 1 i¢in Cfa,b] de Cauchy dizisidir. Buna gore her bir
ke€{0,1,2,...,n — 1} i¢in bir g;, € C|a,b] fonksiyonu vardir 6yleki

lim max }Dgf(x) —gk(x)} =0,k=0,1,2,3,....,n—1

k—o0 z€|a,b]
gr(z) = Digo(z),x € [a,b\{0}, (k =0,1,2,3,...,n — 1) (2.1.26)

tamdir. Eger 0 € (a,b) ise

lim gi(+) = lim Digo(r) = lim Dégo(ta”) ¥ 1 € (a,b) icin,

z—0
t # 0 olsun. Gergekten |,

D],;_lgo(tqr) _ D];_lgo (tqr—‘rl)

li = 1
oy 9k (z) s tq (1 —q)
= Dlgo(0), (2.1.27)

buradan ve gy € C7'[a,b] den dolay1 (2.1.26) esitligi her = € [a, ] igin saglanir. Eger
a =0 yadab =0 ise sirasiyla (2.1.27) de x — 0 yaklagirken limit z — 0" ya da

x — 07 ile yer degistirebilir.
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3. ¢-STURM-LIOUVILLE PROBLEMININ SPEKTRAL TEORISI

3.1 ¢-Sturm-Liouville Problemi

Tanim 3.1.1. Lg(O,a), [0,a] araliginda tamimh tiim kompleks degerli fonksiyonlar uzay:

olsun oyleki,

2

T / @) P dyr | < oo,
0

seklinde tanimlanir. Lg(O,a) uzayi

< fig>= /f 9@y, frg € L2(0, a),

i¢ carpim ile birlikte ayrilabilir Hilbert uzayidir [8].

Tanim 3.1.2. CZ[a,b] , [a,b] araliginda siirekli, birinci mertebeden g— tiirevlerle

birlikte tiim siirekli fonksiyonlarm uzay: olsun. C?2|a, b] uzay,

1

Ifll = Igag |DEF@)|, (f € C2a b)),

norm fonksiyonu ile birlikte Banach uzayidir. C?(0) uzay1 L2(0,a) Hilbert uzaymmn bir

alt uzayidir [3].

Tanim 3.1.3. L herhangi bir elemanlar ciimlesi tizerinde tanimlanmig bir operator
olsun. y # 0 olmak iizere Ly = Ay esitligini saglayan y, L operatoriiniin ¢zfonksiyonu,

A ise Ozdegeri olsun.

Ly= _épq_lpqy(x) +o(@)y(@) = M), (0 <z <a<osAeC)  (3.1.1)

seklinde tamimli operatore ¢— Sturm-Liouville operatorii denir. Burada v(x), [0,a]
kapal araliginda tanimh ve 0’da siirekli olan bir fonksiyondur. Ayrica y(z) € C2(0)
olmak iizere y(x) ve Dyy(x) fonksiyonlar: [0,a) arahigmmda siirekli ve Ly € L2(0,a) dir
8]-



Tanim 3.1.4. L , g— Sturm-Liouville operatorii i¢in (3.1.1) denklemini ve

Uily) = any(0) + a1aDyg-1y(0) = 0,

Us(y) = axnyl(a)+ anD,-1y(a) =0, (3.1.2)

sinr sartlarim goz oniine alalim. (3.1.1) ve (3.1.2) sinir deger problemi literatiirde
g—Sturm-Liouville problemi olarak bilinir. Burada v(.) reel degerli fonksiyonu 0’da

stireklidir ve { a;;}, 7,7 € {1, 2} keyfi reel sayilardir [3].

Tanim 3.1.5. f ve g fonksiyonlar siirekli ve ikinci mertebeden ¢— tiirevli fonksiyonlar

olsun. f,g € qu [0,a] ve f ve g fonksiyonlarmin g—Wronskian determinanti

Wy(f, 9)(x) = f@) 9() ,z €[0,a] (3.1.3)
Dy f(x) Dyg(x)

seklinde tammlanir [8].

Tanim 3.1.6. Terimleri herhangi bir X C D bolgesinde taniml olan wu; (x) + ug(z) +

<. F up(x) + ... fonksiyon serisinin kismi toplamlar dizisi {s,,(z)},
Sp(x) = up () + uz(x) + ... + uy(2)
olsun. Keyfi bir € > 0 sayisina karsilik, ng(e,z) > 0 olmak iizere, Vx € X igin,
|sn(z) — s(z)| < e
esitsizligi saglanacak gekilde n > ng(e) sayilar1 bulunabiliyorsa,
ur(z) + ug(z) + .o + up(x) + ...

serisine, X kiimesinde diizgiin yakinsak fonksiyon serisi ve s(x)’ e de serinin limiti denir

[9]-

Tanim 3.1.7. f(z) fonksiyonunun z, noktasinda f’(zy) tiirevi mevcut ve z, noktasinin
bir D.(z9) = {2 : |z — 20| < €} komgulugundaki her noktada tiirevi varsa bu durumda

f fonksiyonuna zy noktasinda analitiktir denir [10].

Tanim 3.1.8. Kompleks diizlemin tamaminda analitik olan bir fonksiyona tam fonksiyon

denir [10].
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Teorem 3.1.1. (3.1.1) denkleminin,

¢(0, )\) =1, Dq—1¢(0, )\) =3, N€EC, 1,60 C (314)

baglangi¢ sartlarim saglayan ¢oziimii ¢(x,\) olsun. Bu takdirde xz € [0,a] olacak
bigimde C?(0) uzaynda bir tek ¢(x,\) ¢oziimii vardir. Ayrica,Vz € [0,a] igin ¢(z, \)

¢oziimii \ ya gore bir tam fonksiyondur.

Teorem 3.1.2. 0 <y < 1olsun. Eger (3.1.1) denkleminde tanimlanan v(x) fonksiyonu
0, a] arahiginda siirekli reel degerli bir fonksiyon ise (3.1.1) denklemi (3.1.4) baglangig
sartlarini saglayan bir tek ¢(z, A) ¢oziimiine sahiptir. Burada ¢; ve ¢; keyfi sabitlerdir.

Ayrica,Vx € [0,a] i¢in ¢(x, \) ¢oziimii A’ ya gore bir tam fonksiyondur.

sin(saz;q)’ A 7& 0

aif A=0

fonksiyonlarim ele alalm. Burada s = v/A olarak tammlandi. ¢, (z,\) ve p,(x, )

Ispat. ¢,(z,\) = cos(sz;q) ve @z, \) =

fonksiyonlari

1
qu_quy(x) + Ay(z) =0

denkleminin ¢oziimleridir ve ¢,(z, ) ve @y(z,A) fonksiyonlarmm ¢— Wronskiam
W, (10, A), 09(, A)) = 1 oldugunu gosterelim.

A = 0 olsun. Bu durumda

©1(z,A) Pa(,A)

Wo(o1(z, A), 091, N)) = Do, (2,))  Dypy(z,\)
1 (z, P2\ T,

cos(s; q) x cos(sz; q) x
Dq COS(SJL‘; q) Dql' COS(sqx;;];:;OS(SJ;;q) 1
= cos(sz;q) — (COS(qu3 q) — cos(sz; Q))
qr — x

(cos(sqzx; q) — cos(sx;q))
qg—1

= cos(sx;q) —

qcos(sz; q) — cos(sz; q) — cos(sqx; q) + cos(sz; q)

qg—1
_ QCOS(S.T;Q)_COS(qu;q)’ )\:0’ S:\/X:>S:0
qg—1
-1
q—1
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A # 0 olsun.

o1(z,A) Pa(,A)

Walpr(e:A) ool ) = | (€, 7) Dypa(a, A)
q901 Z, q902 Z,

cos(sz; q) —Zsm(zx;q cos(sx; q) 75111(2””6’)
= . - sin(sqx;q sin(sx;q
. sin(sz;q) cos(sqx;q)—cos(sz;q) -
Dy cos(sr;q) Dy~ pr— P

sin(sqz;q)  sin(sz;q)
= cos(sz;q) 5 >

sin(sx; q) [ cos(sqz;q) — cos(sz;q)
qr — T

S qr — T

cos(sx; q) sin(sqx; q) — cos(sz; q) sin(sz; q) — sin(sx; q) cos(sqz; q) + sin(szx; q) cos(sz; q)

s(qr — )
_ cos(sx; q)sin(sqx; q) — sin(sz; q) cos(sqz; q)
B s(qz — x)
_ sin(sqr — szyq) _ 1

s(qr — )
Buradan A = 0 ve A # 0 olmasi durumunda ¢, (x, \) ve ¢,(z, A) fonksiyonlarinin

q— Wronskian1 W, (¢;(., A), ¢5(., A)) = 1 oldugu gosterildi. Simdi

yi1(x,\) = c1o1 (2, A) + capy(z, A) (3.1.5)

Ym+1 (l’, )‘) = 1, (l’, )‘) + 02902(377 )‘)

Ly / oa( Nepr (gt ) — o1 (2, Npalats N Jo(@t)ym(at Nyt (3.1.6)

bir A € C sabitlenmisi i¢in diizgiin limitinin var oldugunu ve (3.1.1) ve (3.1.4) Sturm-
Liouville probleminin bir ¢oziimii oldugunu ispathiyoruz. A € C sabitlenmig olsun.
v(x) € [0, a] arahginda siirekli oldugu i¢in smirhdir.

Yani | v(z) |[< A dir. | yy(2, A |[< K(A) ve | g;(z, A [< (/ER (6 =1,2; 2 € [0,a])

olacak sekilde K(\), K () ve A pozitif sayilar1 vardir.
Boylece m = 1 igin (3.1.6) denklemi

Y2(2, A) = (2, A) — ¢ /0 x{soz(ﬂf, N)@i(qt, A) — oy (7, Npa(gt, A) Yo(at)yi(qt, A)dgt
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seklinde olur. Bu nedenle

g, A) — (2, V)
—qA{%@»M%WRM—wﬂ%AMJWAﬂwwwﬂmAMJ

IN

q[ﬁ%@AMMmM—%@AMN%MWNWWM%MMJ

IN

q[h%m»%mA»H%m»%@Amwwm%@Amm

< GKONARW) [ dy

= gKWAK\)(1—q)z i ¢ = qK(\NAK Nz (3.1.7)

elde edilir.
m = 2 i¢in
ys(z,A) =y (z,\) — ¢ / {oa(z, N1 (qt, N) — o1 (z, Ny (gt, A) Jv(gt)ya(gt, N)dgt
0
(3.1.8)

ya(x, A) = ya(x, A) — Q/ {a (@, Npr(gt, A) = @1 (2, Aoy (g, A) Jolqt)y (gt, A)dgt
0
(3.1.9)
(3.1.8) esitliginden (3.1.9) gikarihip esitligin her iki tarafinin mutlak degeri alimirsa

ys(z, ) — g2z, )]
—q /0 {@a(z, M)y (gt, N) — oy (@, N)po(qt, \) Ju(at) [y (qt, A) — y2(qt, )] dgt

< |qf /Ox {pa (2, N1 (gt, A) — o1 (2, M)y (qt, M) [v(at)| [[yi(gt, A) — y2(qt, N)]| dgt
s|m4%%mAMMuwuw%m»%@Am

XA

qAQ%WAMMm»—%mAmmm»wmmm%»%t

< PEXNA2K(N) / adgt
0
= PKXNAKN(1-qz) oz
=0

- 1
= PR - 9t
1

— BR2NAK\)r——
¢ K*(\) ()$1+q
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olur. Boylece bu siireci devam ettirirsek,

mnin) (AK (A)z(1 — q))™

Ymst (2, A) = ym (1, V)] < K(A)g o) ,(m e N). (3.1.10)
sonucu bulunur. Buradan Weierstrass M- testi’'nden
yi(z, \) + Z Ymr1(T, A) — ym(x, A) (3.1.11)

m=1
serileri [0, a] araliginda diizgiin yakinsaktir. Serinin m. kismi toplami yalmizca 4,11
oldugundan y,,.1(.,\), m — oo iken [0, a] araliginda yakinsak bir ¢(., A) fonksiyonuna
yaklagir. Burada ¢(., \) serilerin toplamidir. Teorem 2.1.10 ‘u kullanarak y,,(z, \)
ve Dyypm(x, ) fonksiyonlarmin [0, a] araliginda stirekli oldugunu m de tiimevarim ile

ispatlayabiliriz.
Dyym+1 (377 )‘) = aDgpy (l‘, )‘) + CQDQSOQ(x7 )‘)
—a [ {Daglr Nilat: ) — Dupa(. Vgt ) byt At
0
m € N. Bu nedenle hem ¢(z, A\) hem de D,¢(x, \) fonksiyonlar [0, a] arahiginda siirek-

lidir. Buna gore ¢(., \) € CZ(0) dir. Diizgiin yakmsakliktan dolay (3.1.6) " da m — oo

olursa

¢($, )‘) = 01901(377 )‘) + 02902(377 )‘)
—0 [ s Nt 0) = il Vet ) olat Nt
0
elde edilir. Acik¢a ¢(x, A) fonksiyonu (3.1.1) ve (3.1.4)" i saglar. Tek ¢oziime sahip

(3.1.1) ve (3.1.4) problemini ispatlamak igin 1,(.,\),7 = 1,2 fonksiyonunun (3.1.1) ve

(3.1.4)’ nin iki ¢oziimii oldugunu varsayalim.

X(JL‘, )‘) = 1/}1(377 )‘) - 1/}2(377 )‘)737 € [O,CL]

olsun. x(z, A) fonksiyonu

X(07 )‘) = Dq_1X(07 )‘) =0

baglangi¢ sartlarina bagh (3.1.1) 7 in bir ¢oziimiidiir. (3.1.1)" de iki defa ¢— integral
almirsa,

\(@ ) = —g / (& — gt) (A — vlat)x(at Nyt (3.1.12)
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elde edilir. x(x,\) ve v(z) fonksiyonlar [0, a] araliginda siirekli oldugundan M, , Ny

pozitif sayilar vardir dyleki

N, = max |x(z,\)|, M, = max |\ —ov(z)|. (3.1.13)

0<z<a 0<z<a

Buradan (3.1.12) esitliginin her iki tarafinin mutlak degeri alinirsa

(e, V)] —'—qé7x—mxA—mw»nmAMJ

IN

|—q

A?x—mxA—Mm»nmAMJ

IN

q/|x—muA—mwnmmumw¢
0

IN

qM/\N/\ / l'dqt
0

T
2

T
= gM,\N
q AA1+q7

elde edilir. Bu ifadeyi k i¢in genellestirirsek

2k
Ix(z,\)| < NaMEqE (1 — ¢)** ,(k € Ng;z € [0,d] (3.1.14)
(45 9)2k
bulunur.
k k2(1 )Zk a?* 0
lim N,Myq —q =
k=00 g (4 @)ax

oldugunda V z € [0, a] igin x(z,A) = 0 dir. Bu da tekligi ispatlar. Simdi keyfi ve sabit
bir M > 0 sayisii alahm. ¢(x, \) ¢oziimii x € [0, a], ¢(x, \)'nan her bir ), diskinde
analitik i¢in A 7 da tam oldugunu gostermek yeterlidir. Q,, ={Ae C: |\ < M dir.

V x € [0,a] igin y,(z, A), Q diskinde analitiktir. (3.1.15)
.. 0 y e
VA€ Qy icin 53/”1(3:, A), (0,\) arahiginda siireklidir. (3.1.16)

Agikca , her bir sabit x € [0, a] igin ¢, (z, A) ve ¢,(x, \) fonksiyonlar1 A'min tam fonksiy-
onlaridir.  Ustelik & ¢;(z,A), her bir A € C i¢in (0, \) arahginda siireklidir. m = 1
icin (3.1.15) ve (3.1.16) saglanir. Simdi m € N i¢in (3.1.15) ve (3.1.16) ifadelerinin
saglandigimi farzedelim. Sonra x € [0,a] , Ag € Qy i¢in (3.1.6) denkleminin her iki

tarafinin \’ ya gore tiirevi alinirsa
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0 0
aymﬂ(xo,)\) | amx = 53/1(370,)\) Ia=xo

—q=<02(T0s N) | amag [ 1@t Nym(gt, N)dyt

oA

o

)
+q5901(:vo,k) | x| alat, Nym(gt, N)dgt

o —

6
—q5(T0, \) 57 /901 qt, Nym(qt, N)dgt) | a=x
8)\
0
0
Fap(ro, ) / Palat, Nt Nt) | o, (3.1.17)
0

bulunur. (3.1.16) ifadesinden

S (eilat Vet ). (=12)

sonucuna ulagihr. Bu (0, \g) araliginda siireklidir. Dolayisiyla 6yle bir C' sabiti ve § > 0

sayilar1 vardir
' 9,

A $i20d", Ay (20d™, A))' <O, (neN;A=X| <4

olur. Buradan |A — \g| < § diskinde V¥ A i¢in

zo(1 —q)q"

0
S0 g )| £ 201 = )" (0 € No)

dir. Yani ¢ integrallere karsilik gelen seriler

o

/86)\(g01(qt Nym(gt, N))d,t, (i=1,2) (3.1.18)

A = A m bir komgulugunda diizgiin yakmnsaktir. Boylece, tiirev ve (3.1.17) de
g—integrallerin yeri degistirebilir. xq, A\¢ keyfi oldugundan V = € [0, a], A € Q) igin

T

S @) = Senle ) = a [ e Venat Numlat Vol

0
T

4 [ 525 oot N at ol (3.1.19)
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elde edilir. (3.1.16) ifadesinden (3.1.19) esitligindeki integraller (0, \) araliginda siirek-

lidirler. Buna gore Zy,,+1(x, \) fonksiyonlar1 da (0, \) arahgmda siireklidirler. z, €

0, a] keyfi noktasim alalim. Sonra B(xg) , B(z) > 0 vardir dyleki

B(xo)
2

|Q01(.’L'0,)\)| S 7(2 = 172)73/1(377 )‘) S E('rO)a ()‘ € QM) dr.

olur. Son olarak (3.1.6) esitliginde her iki tarafin mutlak degerini alip, tiimevarim

metodu kullanarak bu esitsizligi biitiin m € N sayilar i¢in genellestirirsek

s (20, A) — g (20, M| < Blag)g™ 52 AB (f”((J;_Aq()l —)" eN).  (3.1.20)

esitsizligi bulunur. Buna gore (3.1.11) serileri © = xy noktasinda €2, diskinde ¢(zq, A)
fonksiyonuna diizgiin yakinsaktir. Buradan ¢(x¢, \) fonksiyonu €2, diskinde analitiktir.

Yani ¢(zo, A) fonksiyonu A’ya gore tam fonksiyondur.
3.2. Self Adjoint Problem

Tanim 3.2.1. Yy, z € Lg(O, a) fonksiyonlarmi ele alalim. ¢—Lagrange 6zdesligi

a

< Ly,z>—<vy,Lz>= / (Ly(a:)z(x) - y(a:)Lz(x)) dexr = [y, 2o — lim [y, 2](aq"™)
0
(3.2.1)
seklinde tanimlanir. Burada

9,2} = y(@)Dyr2(@) — Dyry(e)2(a) (322)
seklindedir [8].

Teorem 3.2.1. L2(0,a) uzaymda f(.) ve g(.) fonksiyonlarim alalim. Bu fonksiyonlar

0, ¢ ta] araliginda tammli olsun. x € (0, ¢ 'a| igin asagidaki bagintilar mevcuttur.

D,g(xq™") = Dyag-19(xq™") = Dy1g(x), (3.2.3)
< Dyf, 9 >= fla)glag™t) — lim f(ag")g(ag" )+ < f, %Dq—lg > (324
< %Dq_lfag >= lim f(aq" ")g(agq") — f(ag " )g(a)+ < f,Dyg >.  (3.2.5)
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Ispat. Simdi (3.2.3) esitligini ispatlayalim.

oglgeg) —glzqt)  glx) — glxg™)
Digla) = grqgt—xzqt x(l—q7Y)
g(zq™") — g(x)

rq (1 —q)

Simdi (3.2.4) esitligini kismi g—integrasyon formiilii olan

= Dyg(xq™") = Dyrqr9(zq™").

a

[oDu 0t = (£9)@) — lim (£9)aq") — [ Dag®rrat)at
0 0
esitliginden yararlanarak ispatlayalim.

< Dyf,g>= /Dmf(x)@dqaj
0

= f(a).g(a) — lim f(aq").g(ag®) — [ f(qt)Deg(t)dt

n—o0

o — .

qa

— f(a)gl@) — lim f(aq") glag") - / FO=D g0t
—_dr ) _ W - o
~ fla)g(@) - lim flaq")glaq) + a1 - )f(@)Dyig@) + [ £O—Dy gttt

— f()glag D) — lim f(ag").glag™ D)+ < f, %Dq-lg >

n—0o0

Dolayisiyla (3.2.4) esitligi elde edilir.

Teorem 3.2.2. (3.1.1) ve (3.1.2) Sturm-Liouville 6zdeger problemi C?(0) N L2(0, a)

uzayinda self adjointtir.

Ispat. L2(0,a) uzaymda y(.) ve z(.) gibi iki fonksiyonlar: i¢in sunu ispatlayalim.
y(.) ve z(.) fonksiyonlar1 i¢in g—Lagrange 6zdesligi

a

< Ly(x), 2(x) > = <y(x), Lz(z) >= /(Ly(x)% —y(x)L2(x))dgx

= [y, 2la — lim [y, z](ag")

elde edilir. (3.2.5) esitliginde f(z) yerine Dyy(x) , ve g(z) yerine z(x) yazarsak

—1
< 7Dq_1qu(3:),z(x) >
S —(qu(aq_l))z(a) + JLIIC)lO(qu(aq”_l))z(aq”)—i- < Dyy,D,z >

= —Dy,y(a)z(a) + im Dy-1y(aq™)z(aq®)+ < Dy, Dyz > (3.2.6)
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elde edilir. (3.2.4) esitliginde f(z) yerine y(z) ve g(x) yerine D,z(x) yazarsak
- - -1
< Dgy,Dyz >=y(a)Dyz(ag™") — lim y(ag")Dez(ag" ')+ <y, Dot Doz >
- - -1
= y(a)Dy-12(a) — lim y(ag")Dy-12(ag™)+ < y, 7Dq_1qu >

bulunur. Boylece

< 2Dy Dyy(o), 2(a) >= [y, 2l — lim [y, A(ag" )+ < y(e). — Dy Dyx(a) >
(3.2.7)
elde edilir. (3.2.1) ¢—Lagrange 6zdesligi ( 3.2.7) esitliginin ve v(x) fonksiyonunun reel
olmasmm sonucudur. C2(0) uzaymda y(.) ve z(.) gibi iki fonksiyon alalim. Farzedelim

ki bu fonksiyonlar (3.1.2) siir sartlari saglasin. Dolayisiyla
any(O) -+ alqu_ly(O) = O, allz(O) -+ alqu_lz(O) =0 (328)

esitligini buluruz. lim, [y, z|(aq™) = [y, 2](0), olmasi demek y(.) ve z(.) fonksi-

yonlarinin siirekli oldugunu gosterir. Bunu (3.2.7) esitliginde gtz oniine aldigimizda
-1 —1
< D Day(@), 2(@) >= [y, 2le = [y, 2)(0)+ < y(), —= D1 Dgz(2) >

esitligini elde edilir. aq; ve a;s ayni anda sifir olmadigindan

[y, 2)(0) = y(0)Dy-12(0) — Dy-1y(0)2(0) = 0

esitligi (3.2.8)’den acikga goriiliir. Benzer gekilde y(.) ve z(.) fonksiyonlarmni (3.1.2)

sinir sartlarinda yerine yazdigimizda
any(a) + axnD,1y(a) = 0,a212(a) + azeDy-12(a) =0

bulunur. Buradan da

[y, 2)(a) = y(a) Dy-12(a) = Dy-1y(a)z(a) = 0
olur. v(x) fonksiyonu reel oldugundan
< Ly, z>=< %Dq_quy(:c) +v(z)y(x), 2(x) >
= < %Dq—quy(x),z(x) >+ < v(@)y(z), z(x) >
1

= <uv, 7Dq_1qu(3¢) >+ <y, v(r)z(x) >=<y, Lz >.
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bulunur. Bu da L operatériiniin self adjoint operatoér oldugunu gosterir.

Tanim 3.2.2. (3.1.1) ve (3.1.2) problemini saglayan \* kompleks sayisi i¢in eger ¢ (.)
agikar olmayan ¢oziim var ise \* sayisina (3.1.1) ve (3.1.2) probleminin 6zdegeri denir.
¢*(.) fonksiyonuna ise A* 6zdegerine karsilik gelen g—Sturm-Liouville probleminin 6z-

fonksiyonu denir [3].
Teorem 3.2.3. (3.1.1) — (3.1.2) smur deger probleminin 6zdegerleri reeldir.

Ispat. Bu teoremi, olmayana ergi metoduna gore ispatlayalim. Buna gore kabul
edelim ki A\; = u + iv kompleks bir 6zdeger olsun. A\, = AN =u—iv sayisi da O6zdeger
olur. Bu 6zdegere karsilik gelen 6zfonksiyon y(x, \;) = y(z, )\1)/ dir. Bu takdirde farkli

ozdegerlere kargilik gelen 6zfonksiyonlar ortogonal oldugundan

a

(/M%AﬁM%Aﬂ%x—O,
0

olur. Yani,
[t ) dy =
0

oldugundan y(z, A;) = 0 olur. Halbuki y(z, A1) # 0 oldugundan bu bir geligkidir. O

halde 6zdeger kompleks olamaz. Bu da teoremin ispatinin tamamlar.

Teorem 3.2.4. Farkli A, u 6zdegerlerine kargiik gelen y(.) ve z(.) 6zfonksiyonlar:

ortogonaldir.

Ispat. ) 6zdegerine karsihk gelen ézfonksiyon y(.) ve p dzdegerine karsilik gelen

ozfonksiyon z(.) olsun. Bu takdirde

< Ay(@), 2(x) >=<y(x), pz(r) >,
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olur. Buradan A\ # u oldugundan
[vte)@d,e =0,
0

bulunur. Bu da y(.) ve z(.) fonksiyonlarinin ortogonal oldugunu gosterir.
Teorem 3.2.5. Tiim o6zdegerler basittir.

Ispat. \g 6zdeger olsun. Bu 6zdegere karsilik gelen iki dzfonksiyon ise 31 (.) ve y5(.)
olsun. {y1(.), y2(.)} fonksiyonlari, = 0 noktasinda ¢—Wronskiani sifirlandig: takdirde
bunlarimn lineer bagimh olduklar: ispatlanabilir. Gergekten, y1(.) ve y2(.) fonksiyonlar:

(3.1.2) sartlarim sagladigindan dolay1

Wo(y1,92)(0) = y1(0)Dyy2(0) — y2(0) Dyy1(0)
= 41(0)Dyg-142(0) — y2(0) Dy-131(0)

= [ylayQ] =0

dir. Asagida ozfonksiyonlara kargilik gelen 6zdegerlerin nasil elde edildigini gostere-

cegiz. ¢,(N) ve ¢y(\) fonksiyonlar:
DI7¢,(0,\) = 645, (i,j = 1,2, A € C)
baglangig sartlari ile belirli (3.1.1)’in lineer bagimsiz ¢oziimleri olsun. Boylece,
¢1(,A),c1 = 1,¢90 =0, 0larak (3.1.5) ile belirtilir.
¢9(., A),c1 = 0,¢0 = 1, 0larak (3.1.5) ile belirtilir.
Sonra (3.1.1) denkleminin her ¢oztimii
y(@, A) = A9y (2, A) + Aagy(, A)

formundadir. Burada A; ve Ay , x’e bagh degildir. (3.1.1) denkleminin y(., \) ¢tziimii

eger (3.1.1) ve (3.1.2) smur gartlarim saglarsa yani,

AU (¢y) + A2Un(9) = 0,
AUs(¢y) + A2la(¢p) = O, (3:2.9)
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lineer sistemin agikar olmayan ¢oziimiinii bulabilirsek y(., \) ¢oziimii bir 6zfonksiyon

olacaktir. Buradan A € R bir 6zdeger olmasi i¢in gerek ve yeter sart

apy | B0 T | 52.10)
U61) V(o)

olmasidir. A(\) fonksiyonu (3.1.1) ve (3.1.2) Temel Sturm-Liouville Problemi ile iligk-
ili karakteristik determinant anlamindadir. A(A)’nin sifirlar1 problemin tam 6zdeger-
leridir. ¢, (z, \) ve ¢(z, \) alindiginda, her bir x € [0, a] igin X'da analitiktir. O zaman
A(A) analitiktir. Boylece, (3.1.1) ve (3.1.2) temel Sturm-Liouville sisteminin 6zdeger-
leri sonlu olmayan limit noktalarinda sayilabilirdir. Ttim bu 6zdegerler geometrik nokta

acisindan basittir. Boylece teorem ispatlanmig olur.

Teorem 3.2.6. (3.1.1) ve (3.1.2), ¢—Sturm Liouville probleminin 6zdegerleri A(A) nin

basit sifirlaridir.
Ispat. 6,(.,)\) ve O5(., \)

01(x,N) = Ui(pg)@y(x, A) — Ur(y)gq(z, ),
Os(z, ) = Us(dg)d1(z, A) — Ua(py)pg(, N). (3.2.11)

bagmtilar: ile tanimlansm. Boylece 60;(., A) ve 03(.,\) (3.1.1)’in ¢oztimleridir. Buna

gore
91(0, )\) = a2, Dq—191 (0, )\) = —ai; 92(@, )\) = Q22, Dq_192(a, )\) = —a921 (3212)
dir. Ayrica
Wy(01(, A), 02, A))(2) = AW (1 (5 A), da(, M) () = AA) (3.2.13)

esitligi de vardir. A\ (3.1.1) ve (3.1.2) g—Sturm-Liouville probleminin 6zdegeri olsun.
Ao reel bir sayidir. 6;(z, Ag) , (i = 1,2) reel degerli fonksiyonlar ele alalm. (3.2.13)
bagmtisindan 6, (z, Ag), 02(x, o) fonksiyonlarinin lineer bagimh 6zfonksiyonlar oldugu

aciktir. Dolayisiyla sifirdan farkli kqy sabitleri igin

91(.’13', )\0) = ko@g(l’, )\0) (3214)
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esitligi yazilabilir. (3.2.11) ve (3.2.12) bagntilarimdan

91(a, )\0) = koagg = k092(a, )\)
Dq_lﬁl(a, )\0) = —koazl = kqu—lez(a, )\) (3215)

elde edilir. (3.2.1) g—Lagrange bagintisinda y(x) yerine 0, (z, \) ve z(z) yerine 6, (z, Ao)
yazilirsa

a

/(L91 (.’L‘, )\)91 (.’L‘, )\0) — 91(33', A)L@l (.’L‘, Ao))dql'

0
a

= /()\91(3:, A)01(x, M) — 01(x, \) A1 (7, Ao))dyw

0
a

= ()\ — )\0)/91(1‘, )\)91(1‘, Ao)dql'
0
= 0 (a7 )‘)Dq_lel (a7 )‘n) - Dq_lel(aa )‘)91 (a7 )‘n)

= 01(a, \)koDy-105(a, \) — koba(a, A\)D,-101(a, \)
= ko (91 (a, )\)Dq_lﬁg(a, )\) — 92(@, )\)Dq_191 (a, )\))
= koW, (01, M), 02(.,N)) (¢ ra) = koA(N).

elde edilir. A(X), A’da tam iken

a

(A = Ao) / 01z, N1 (2, \o)dr = koA(N)

0
: N
A (N) = >\h—>n>\lo)\—)\0 = 01(x, \)d,x # 0 (3.2.16)
0

dir. Dolaysiyla Ao, A(A)’nin basit sifiridir. Boylece teorem ispatlanmisg olur.

3.3 Green Fonksiyonu

f(.) € L2(0,a) olmak iizere

_épq_lpqy(x)) +{=A+o(@)y(z) = f(@),z € [0,al: A € C (3.3.1)

seklindeki homojen olmayan denkleminin bir ¢oziimii bulunurken ¢— Green fonksiy-

onundan faydalanihr. Bu Green fonksiyonu (3.1.2) sinir gartlarim saglar.
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Lemma 3.3.1. Eger A, (3.1.1) ve (3.1.2) ¢—Sturm-Liouville probleminin bir 6zdegeri

degilse bu takdirde (3.3.1) denkleminin ¢oziimii varsa tektir.

Ispat. Farzedelim y;(z,)\) ve xo(x,)) (3.3.1) homojen olmayan denkleminin iki
¢ozlimii olsun. Dolayisiyla x;(x, A) — x5(z,A) da (3.1.1) ve (3.1.2) probleminin bir
coztimiidiir. Bu yiizden \ bir 6zdeger degilse x,(x, \) — xo(x,\) = 0 dir. Ispat1 bir

sonraki teoremin ispatinda yer alir.

Lemma 3.3.2. Mnm (3.1.1) ve (3.1.2) probleminin bir 6zdegeri olmadigim kabul
edelim. ¢(., A) fonksiyonu homojen olmayan ¢—fark denklemini saglasin ve (3.1.2)" in

siur gartlar olsun. Burada f(.) € L2(0,a) dir. Boylece

a

oz, \) = /G(a:,t, N f(t)dgt, {z € ag™;m € No} (3.3.2)

esitligi vardir. Burada G(z,t, A) fonksiyonu (3.1.1) ve (3.1.2) ¢— Sturm-Liouville prob-

leminin Green fonksiyonudur ve agagidaki sekilde tanimlanir.

-1 O2(x, A\)01(t,A),0 <t <z,
Glat,\) = (3.3.3)
AN | 0y(z, Nt \), 2 < t < a,

IN

tersine (3.3.2) ile tammmlanan ¢(z, A) fonksiyonu (3.3.1) ve (3.1.1) ve (3.1.2)’i saglar.
Eger bu gekilde taniml bir bagka G (x,t, \) fonksiyonu varsa G(x,t, \) tektir yani

G(z,t,\) = G(z,t,\), Vo, t € {ag™ : m € No}

dir. Eger f(.) fonksiyonu sifir noktasinda g—regiiler ise bu takdirde (3.3.2) denklemi

her z i¢in saglanir.

Ispat. Sabitlerin degisimi metodununun bir ¢ benzerini kullanarak, homojen ol-

mayan (3.3.1) denkleminin &zel bir ¢oztimii
0, 2) = 1), A) + ex(2)a(, N

seklinde verilebilir. Burada c¢;(z), co(x) birinci derece g—fark denklemlerinin ¢oziim-

leridir. Burada ¢1(x) ve cz(z) fonksiyonlar: icin

—q
D, .ci(x) = AV 0s(qx, \) f(qz),
Dyaes(r) = ﬁmqm,w(qm, (3.3.4)
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esitliklerinin var oldugunu kabul edelim. Eger D, ,c;(z) , i = 1,2 fonksiyonlar [0, ]
araliginda g— integrallenebilir ise

lim tq"0;(tq" ™, \) f(tg"™) =0, (i = 1,2)

n—0o0

dir. g—geometrik A; kiimesi
Ay = {w € [0,a; lim 2" | f(xq")| = 0} (3.3.5)

seklinde tammlanir. Ay kiimesi {ag™;m € Ny} kiimesini kapsayan ¢—geometrik bir
kiimedir. Burada f € L2(0,a) dir. Buradan Dyc(.) , i = 1,2,V = € Ay icin [0, 7]
araliginda g—integrallenebilirdir ve (3.3.4) denkleminde esitligin her iki tarafinin ¢—
integralini alirsak, (3.3.4) denkleminin uygun ¢oziimleri

T

/Dq7x01 (x)dgr = /A_(i) O2(qx, \) f(qz)d,x, (x € Af)

T

e(z) = mowﬁ / Ba(gt, \) f(t)dt, (3.3.6)

a

[Prawia = [5ma . e A,

T

a

er(z) = cz(a)—l—ﬁ / b1 (gt \) f(qt)d,t (3.3.7)

T

seklindedir. (3.3.1) denkleminin genel ¢oziimii

G2, )) = 101(z,\) + cafo(w, \) + A(q)\)ﬁl(x,)\) / 05(qt, \) f (qt)d,t

a

30y [t N ) (338)

x
olur. Burada x € Ay ve ¢; ve ¢y keyfi sabitlerdir. ¢, ¢, sabitlerini géz oniine aldigimizda

¢(z, A) ¢oziimiinde (3.1.2) sinir sartlarin yazarsak

a

30, \) = c101(0, ) + (cs + ﬁ / 01(qt, \) £ (qt)d,t)05(0, \),
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D,1¢(0,\) = lim ¢(xq", A) — ¢(0,A)

n—00,zEA .fL'qn

= 1 D10,(0,\) + (02 v ﬁ / 01(qt, \) f(qt)dqt) D,-102(0, ),
0

elde edilir.
a11¢(07 )\) + alQDq_1¢(07 )\) = 07

siir sarti

(Cz + ﬁ/%(qt, A) f(qt)dgt ) Wq(01,02)(0) = 0,

esitligini gerektirir. Boylece

bulunur. Buradan

oz, \) = c101(z, \) + ﬁ/ (01(z, N)O2(qt, ) — Oa(x, N)01(qt, X)) f(gt)dst, (3.3.9)

dir. Simdi ¢(a, A) ve D,-1¢(a, A) * y1 hesaplayalim. Gergekten, Tanim 2.1.14 g—integral-
leme ve (3.3.8) bagintisindan

da,\) = cifi(a,\) + ?A / (01(a, \)0a(qt, ) — Bs(a, Oy (qt, N)) f(qt)d,t,
0

—la

= b1(a,\) + / (01(a, N)B2(qt, \) — O2(a, N)b1(qt, \)) f(qt)d,t,
0

ve

q—l

Dy16(a,)) = Dya6y(a,\) | e+ — | 6a(qt, ) f(qt)dyt
A(N)
0

_ﬁDq_ﬂz(a, )\)/Hl(qta A) f(qt)dgt,

elde edilir.
a2105(a, A) + agaDy-1¢5(a, A) = 0,

37



siir sarti

¢ ta

Cy+z%5!9ﬂ®Jﬁ@ﬂ%t‘%wh%X@_ )

esitligini gerektirir. Boylece

elde edilir. Buna gore x € Ay icin

o) = —glstale ) [Nt = 5@ ) [ ot V(i
. —ﬁeg(as, \) / 0u(t, \) F(£)d,t — ﬁ@l(:c, \) / Ba(t, N) £(£)d,

a

= el ) [N S0t~ o) [t N0

(3.3.2)- (3.3.3) saglanir. Diger taraftan dogrudan hesaplama ile eger ¢(z,\) (3.3.2)
esitligi ile verilirse (3.3.1) denkleminin bir ¢oziimii olur ve (3.1.1) sinir sartlarini saglar.

G(z,t,\) fonksiyonunun tekligini ispatlamak i¢in farzedelimki G (x,t, \) gibi bagka
bir fonksiyon var olsun. Buna gore,

a

W, \) = / Gz, t, ) f(t)d,t, (3.3.10)

0
fonksiyonu (3.1.1) sinir gartlarimi saglayan (3.3.1) denkleminin bir ¢oziimiidiir. Buna
gore,

Gi(z,t,\),0<t <z,  ~ Gi(z,t,)),0 <t

G(:L‘,t, )‘) = ) G(xata )\) = —
Go(z,t,N),z <t <a, Go(z,t,\),z <t

IN
IN

T,

IN
IN

a,

olsun. Cikarma iglemi ile her f(t) € L2(0,a) fonksiyonlar1 igin

a

/ (Ga.t.0) = Gla.1.0)) F(t)dyt = 0,9x  {ag™ m € Ny} (3.3.11)

elde edilir.

f(t) =Gz, t,\) — G(z,t,\), (x = ag™;m € Ny)

38



fonksiyonunu goéz oniine alalim.

2

d,t

q

/ ’G(aqm,t, A) — CNJ(aqm,t, A)
0
aq™

2

— /’Gl(aqm,t,)\)—él(aqm,t,)\) dgt

2

d,t

q

0
+ / ’G2(aqm7 2 )‘) - 62(aqm’ 2 )‘)
aq™

. ~ . 2
G(1 (aqm7 aqj+m7 )\) - G(1 (aqm7 aqj+m7 )‘)’

= (1-qag™) ¢
=0

. ~ . 2
Gl (aqm’ aqja )‘) - Gl (aqm’ aqja )‘)

+(1—qa) ¢
=0

j -+ m =n alirsak ,

= (1—q)a§:q”

bulunur. Bu nedenle (3.3.12) esitliginden

2
—0 (3.3.12)

G(aqm7 aqn’ )‘) - G(aqm7 aqn’ )‘)

G(aq™,aq", \) = G(aq™, aq™, \),{m,n € Ny

esitligini elde ederiz. Bu da gosteriyor ki G(z,t, \) Green fonksiyonu tektir. Eger f(.)
fonksiyonu sifir noktasinda g—regiiler ise Ay = [0, a] olmak tizere (3.3.2) denklemi her

x € [0, a] i¢gin tammlanr.

Teorem 3.3.3. G(z,t, ) Green fonksiyonu asagidaki ozellikleri saglar.

i. G(z,t,\) Green fonksiyonu (0, 0) noktasinda siireklidir.

il. G(z,t,\) = G(t,z, \) dir.

iii. Her bir ¢ € [0, ga] noktasi i¢in 2’in bir fonksiyonu G(z, t, A) fonksiyonu [0, ¢], [¢, a]
araliklarinda (3.1.1) ¢—Sturm denklemini ve (3.1.2) siir sartlarmni saglar.

iv. Ao, A(N) karakteristik denkleminin sifir1 olsun. g, G(z,t, A) fonksiyonunun bir

basit kutbu olabilir ve bu durumda

Gz, t,\) = _W + Gz, t, ),

esitligi vardir. G (x,t,\), Ao’ bir komgulugunda A'nin analitik fonksiyonudur ve v(.),

Ao’a kargilik gelen bir normal 6zfonksiyondur.
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ispat.

i.Her bir A € C noktasi i¢in G(z,t, \) Green fonksiyonunun (0, 0) noktasinda siirekli
oldugu 6, (.,\), 02(., \) fonksiyonlariin o noktasindaki siirekliliginden agiktir.

il. G(z,t,\) = G(t,z,\) esitligi (3.3.3.) denkleminden kolayca goriiliir.

iii. Bir ¢ € [0, qa] noktas1 alahm. Eger x € [0, t] ise,

Gz, t, \) = ——0, (2, \)0a(t, \)

b
A(N)
dir. Buna gore

A

gG(l’,t, )\) = m

ez(t, )\)591 (l’, )\) = ez(t, )\)91 (l’, )\) = )\G(l’, t, )\)

A(N)

dir. Eger x € [t, a ise yine benzer iglemler yapilir. (3.2.12) ve (3.3.3) denklemlerinden

allG(O, g )\) + alqu—l G(O, Uy )\)

o 92(t7)‘) _
— A0 {a1101(0,A) + a12D,-16:(0, \)} = 0,

aglG(a t, )\) -+ agqu_lG(a, t, )\)

0.(t, \)

o AV {a2101(a, ) + az2Dy-101(a, \)} =0

elde edilir.
iv. Ao, G(z,t,\) fonksiyonunun bir kutbu olsun ve A\ = \j da R(z,t), G(z,t,\)

fonksiyonunun bir kalani olsun. (3.2.14) (3.2.16) bagmtilarindan yararlanarak

A—A
JR— - — _— 1 0
Ria,t) = lim (A =20)G(z,t, %) = kg 0a(t; })0(z, Do) lim Zrss

_ @A) A) s ()

/|91u)\|du

elde edilir. Boylece iv ispatlanmig olur.

3.4 Ozfonksiyonlarin Acilim Formiilleri

Tanim 3.4.1.
L:D;— LX(0,a)
operatorii

Ly = ly,Yy € D, igin
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tanumlanir. Burada D, , (3.1.2) sartlarini saglayan y kompleks degerli fonksiyonlardan
olugan L2(0, a) uzaymin alt uzayidir.

Buna gore D,y (.) fonksiyonu 0’ da regiilerdir ve D?y(.) fonksiyonu L2 (0, a) uzaymda
tanmumhidir. Boylece £, g— fark operatorii ve (3.1.2) sir sartlar ile ¢, ¢— fark ope-
ratoriinii iiretir. Ly = Ay esitligi, (3.1.2) smur sartlarim saglayan y fonksiyonu, fy = Ay
anlamimdadir. £ operatorii (3.1.1)-(3.1.2) Temel Sturm-Liouville Problemi ile benzer

ozdegerlere sahiptir. Boylece kerl = {0} 'dir.

Tanim 3.4.2.
(Ly)(z) = f(2). (f € L3(0,a)) (3.4.1)
probleminin ¢éziimii L2(0,a) uzaymda

a

y(x) = /G(:c,t)f(t)dqt, (3.4.2)

0

olarak verilir. Burada (3.4.1) denkleminde f(.) fonksiyonu Ay(.) ile yer degistirirse,

cb1(t)02(x),0 <t <z, 1
t) = G(x,t,0) = e
Glo,t) = G&:1,0) {091(:1:)92(75),:1: <t<a,"  W,(01,05)
Tanim 3.4.3.
(Ly)(x) = Ay(x) (3.4.3)
ozdeger problemi
y(x) = )\/G(x,t)y(t)dqt,:c € {ag™;m € Ny} (3.4.4)
0
seklinde ikinci tiir Fredholm integral denklemine denktir.
Teorem 3.4.1. p— integral operatorii olmak {izere
s L3(0.0) = 0.0 (o)) = [Glr.0)f (@)t (3.45)
0
olsun. Bu takdirde
(Lo)f = [, (f € L3(0,a)), (3.4.6)
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ifadeleri mevcuttur.
Ispat. Oncelikle y € p, f € D, alalim. (3.4.4) ve (3.4.5)’den
y(@) = (pf)(@) = O2(2)yi(z) + 01(2)ya (),

yazilir. Buradan

yi(z) =c

o)
\ o
>
-
~~
~
N—
~
~~
~
N—
S
=}
\.Pt-
<
@
<
V)
o
8
N~—
\
<
>
[\
~~
~
N~—
-
~~
~
N~—
S
(s}
\.Pt-

dir. Vo € Ay icin

Dyy(z) = Dyb2(2)yi(qr) + Doy (7)y2(qx),

Diy(z) = —qu(gr)y(gr) —qf(qz) € L3(0,a), (3.4.8)

elde edilir. D,0;(x, \), y;(z), i« = 1,2 fonksiyonlar1 0 noktasinda g— regiilerdir. Bu
nedenle D,y(.) ve

Dyy(0) = Dy = tm L8O _ b g 0),00),

n—oo,xEAy .fL'qn

bulunur.

olarak alinirsa
(a11y(0) + a12Dy-1y(0)) = (@1101(0) + a12D4-101(0)) y2(0) =0
ve

(az1y(a) + ageDy-1y(a)) = (az10z(a) + azeDy-102(a)) y1(a) =0

elde edilir. Dolayisiyla y € D’ dir. (3.4.8) ifadesinden

Ly = (Lo)(f)=1f

esitligini buluruz. Simdi de (3.4.6) ifadesinden yararlanarak (3.4.7) ifadesini ispatlay-
alim. Dolayisiyla (3.4.6) ifadesinde Ly yerine f yazilirsa Ly = LpLy elde edilir. £ 'nin
birebir oldugu kabul edilirse y = pLy elde edilir.

(3.4.6) ve (3.4.7) ifadelerinden ker p = {0} oldugu goriiliir. ¢, p 6zdegeri ile bir-
likte @' nin dzfonksiyonudur gerek ve yeter sart ¢, i ozdegeri ile birlikte £’ nin bir

ozfonksiyonudur.
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Tanim 3.4.4. T : X — X sinirh lineer bir operator, X Banach uzayi olmak {izere eger
X uzaymdaki T'(S) kiimesinin vektorlerinin ciimlesi smirh ise 7' operatoriine kompakt

operator denir. Yani {T's : s € S} ciimlesi kompakttir.

Tanim 3.4.5. H bir Hilbert uzay: olmak {izere 1" operatorii 7' : H — H sgeklinde

tamimh olsun. Eger 7' operatorii

T=>" N (fur 9x)
h—1

seklinde yazilabilirse 7" operatorii kompakttir denir. Buradal < N < oo ’dir. fi, fo, ..., f&

ve g1, go, ..., gy ortonormal ciimlelerdir. Ay, Ao, ..., Ay pozitif sayilardir.
Teorem 3.4.2. p— integral operatorii kompakt ve self adjointtir.

Ispat. f h e L2(0,a) olsun. [0,a]z[0,a] arahgimda tanmmlanan reel degerli G(x,t)

fonksiyonu G(x,t) = G(t, z) oldugunu goz 6niine alinirsa

(p(f)h) = /(pf) d:c// (z,t) f(t)h(x)dgtd,a

_ /f /Gtxmmmﬂ-%t—umxmm

o operatoriiniin self adjoint oldugunu goriiriiz. Simdi de p integral operatoriiniin kom-

pakt oldugunu gosterelim.

¢y (2, 1) = ¢;(w)9;(t), (i,7 € N)

L2((0,a)x(0,a)) uzaymn bir ortonormal tabani olsun. Bu nedenle

G=> (G.¢;) ¢

ij=1

G, = Z <G7 ¢z‘j> ¢ij7 (n €N),

ij=1
ve ©n, Lg(O, a) uzayinda taniml sonlu rank integral operatorii olsun.

a

mﬁmw—/%@ﬁﬂWMJEWﬁﬂmmN&

0
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seklindedir. Buradan da g, operatoriiniin V n € N i¢in kompakttir. Cauchy Schwartz

esitsizliginden

N[

a

Io— o)A = /K@—@wﬂ@f%x

0

1
a a 2 2

_ / / (G — G, D f()dyt| dya

=
=

0 |0

< (G = G)(x,t)[ dgtdyz |f(@)* dgr
/! /

= G =Gl 111

n — oo halinde ,
(e = o) (DI <G = Gall; =0

dir. Boylece teoremin ispati tamamlamig olur.

Uygulama 1.
1
—qu—quy(:v) = \y(), (3.4.9)

q— Sturm-Liouville sinir deger problemini

Ui(y) = y(0) = 0,Us(y) = y(1) =0, (3.4.10)

gq—Dirichlet sartlar1 ile gz ©niine alalim. (3.4.9) probleminin ¢oziimlerinin temel

kiimesi

¢ (z,\) = cos(vVAz;q),
B sin(\/Xx;q)
by, \) = RV (3.4.11)

seklindedir. (3.4.9) probleminin 6zdegerleri

Apy | B0 o | stV

Ur(¢y) Us(dy) VA

determinantinm sifirlaridir.  Burada {\,}2, 6zdegerleri, sin(v/);q) fonksiyonunun

ozdegerleridir.
—2n

M=t = (1 + 0@, (e,
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M} ozfonksiyonlarinin kiimesine kargilik gelen ve yeterince biiyiik

climlesi { v
n igin L2(0,1) uzaymn bir ortogonal tabamdir.

n=1

O1(z,A) = %\/};xq)’
O2(z,\) = LWCOS(AJU; q) + cos(V'\; Q)%\gc;q),

fonksiyonlarini goz oniine alalim. Eger A bir 6zdeger degilse Green fonksiyonu

_sin(vVq) ‘ sin(\/X;Q)_COS ~ sin(vAz; q)
Gz, t,\) = n(g) (ﬁx,q)iﬁ (\@q)i\/X >,0§t§x,

_ sin(VAzg) (o p o sinVAig) s sin(VAE g)
Gz, t,\) = sin(\/X;q)< (ﬁt,q)iﬁ (\@q)i\/X >,x§t§1,

seklinde verilir. A\ = 0 bir 6zdeger degil iken G(z,t) Green fonksiyonu sifirdir fakat

t(l—2),0<t<z
G(z,t) = G(x,t,0) =
1

z(l—t),zr<t<

seklindedir. Dolayisiyla (3.4.9)-(3.4.10) siur deger problemi

1

y(z) = A / Gl Dy (D)t

0

temel Fredholm integral denklemine denktir.
Uygulama 2. (3.4.9) g— Sturm-Liouville sinir deger problemini
Ui(y) = Dy-1y(0) = 0,Uz(y) = Dg—1y(1) =0 (3.4.12)
g— Neumann sinir gartlar ile birlikte goz oniine alalim. Bu durumda uygun
01(z,)) = cos(vAx;q)
O3(x,0) = cos(vVAqT ;) cos(VAz; q) + /gsin(VAq® 5 q) sin(v/Az; q)

fonksiyonlarini alalim.
AN = V/grsin(VAg? 5 q)

iken, Ao = 0 olmak tizere 6zdegerler

—2n+1
1 9 q

T g

An =1 (1+0(¢")), (n € N)
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seklinde verilir. Boylece {1, cos(vV An; q)}zoz climlesi Lg(O, 1) uzaynin bir ortogonal

1
tabamdir. Eger A bir tzdeger degilse G(z,t,\) Green fonksiyonu z,t € [0,1]z[0, 1]

olmak {izere

cos(v/At; q) =1
Gla,t,\) = — “— (cos(VAg™ 5 ) cos(VAz; g)+
Varsin(vAqT ; q) (
Vasin(vAq” ; q) sin(v/Az; q)) 0<t<ua,
G(x,t, A :—M cos(VAqE ; M q)+
S ( (VAT=;4) (fs(‘f %)
Vasin(vVAg? ; q) sin(v/ Mt q)) o <t<1,

seklinde verilir.
Uygulama 3. (3.4.9) ¢— Sturm-Liouville sinir deger problemini
Ui(y) = y(0) = 0,Uz(y) = y(1) + Dg1y(1) =0 (3.4.13)

sinir gartlar: ile beraber goz oniine alalim.

sin(vV/\; ¢ -1
AX) = 651N + Dyrdy(L ) = VD 4o/ g
VA
seklindedir. Bu siir deger probleminin {\,} 7 | 6zdegerleri
sin(VA; ¢) =1
2Dl cos(VIAgT
D CRVER)

denkleminin ¢oziimleridir ve 6zfonksiyonlara kargilik gelenler { Sin(\/\//\i_";q } climlesidir.
n n=1

01(x, A) ve O2(x, \) fonksiyonlarmi ele alirsak

O1(z, ) = %\/};xq)’
Oa(x,N) = (cos(\/xq%l; q) + L\/X)\’q)) cos(v/z; q) — (—\/quin(\/Xq_Tl; 2
+cos(VA; q))L\/\/}x—,q)

ifadeleri goz oniine alalim. Eger A\ bir 6zdeger degilse G(z,t, \) Green fonksiyonu

_ in(V A q)02(2,0),0 < t <z,
ot \) = 1 sin( q)02(z,\),0<t <z
1

sin(v/A; ¢ + \/XCOS(\/XQ_Tl; q) | sin(vAz;q)0:(t,\),x <t <

ve

Gl ) 1| t(2—2),0<t<ux,
T, t) = —=
z(2—t),r <t <1
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olarak tanimlanmir. (3.4.9) smir deger problemi (3.4.13) siur sartlar ile birlikte

1

y(z) = A / G,y (D)t

0

temel Fredholm integral denklemine denktir.
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4. SONUC

e Bu tez, Annaby ve Mansour’un yazmig olduklar1 kitaptan ve farkl kaynaklardan
derlenerek hazirlanmustir [3]. Ikinci boliimde g— fark operatorii ile ilgili detayh bir
aragtirma yapilmigtir. ¢— analizinin reel analiz ve fonksiyonel analiz ile iligkileri
irdelenmigtir. ¢— fark denklemlerine fizik, miihendislik, teknik bilimlerde sikca
karsilasilmig olup, bu denklemler uygulamali bilimcilerin ¢aligtiklar: bir dal olarak

ortaya ¢ikmigtir.

e Son boliimiin birinci kisminda ¢g—Sturm Liouville problemi ele alinmigtir. ¢—Sturm
Liouville teorisinde potansiyel fonksiyonun fiziksel olarak énemi biiyiiktiir. Bu an-
lamda tezde ele alinan problem ilerde yapilacak olan ¢alismalarda etkili sonuglar

alinabilecek diizeydedir.

e Ikinci kisimda ¢g—Sturm Liouville probleminin self adjointligi gosterilmistir. Ayrica
spektral teoride temel tegkil eden 6zdegerlerin reelligi, 6zfonksiyonlarin ortogo-

nalligi ve 6zdegerlerin basitligi bu operator icin ispatlanmisgtir.

e Uciincii kisminda homojen olmayan ¢—Sturm Liouville denkleminin bir ¢oziimiinii
ararken ¢—Green fonksiyonunun nasil elde edildigi gosterilmistir. Ayrica bu

fonksiyonun baz 6zellikleri irdelenmis, iglemler detaylandirilmigtir.

e Bu boliimiin son kisminda ise g— fark denklemlerinin ¢oziimlerini bulmaya calig-
mak uzun ugraglar gerektirdiginden ¢oziimlerin spektral analizi hakkinda bilgiler

paylagilmigtir. Genel bir derleme yapilmigtir.
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