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ABSTRACT

APPROXIMATE FORMULA FOR THE PERFORMANCE
-MEASURES OF BUFFERLESS PRODUCTION LINES

Shohreh ROSHANI
M.Se, Department of Industrial Engineering
Supervisor: Prof. Sencer YERALAN

July 2014, 74 Pages

Production lines with unreliable machines have received a great amount of
attention in the literature. This research presents an analytical method for
approximating formula for the performance measures of bufferless production
lines. It is essential to analyze the expected production rate as a function of line
characteristics because this performance measure is one of the most important and
effective system behavior indicatdrs. Approximating formula is useful to find the

relation between the production rates of production lines and the failure and repair

“probabilities. In this study, curve-fit method is used to establish simple and useful

formulas for production rate over failure and repair probabilities for lines

consisting three, four and five identical stations.

Before approximating formula, Markovian analysis of production lines is
presented using steady-state probability matrix, for two-station production line.
Markov chain analysis pfoduces an exact analysis of such lines. We conducted
non-linear regression method in thé computational environment MATLAB.
Numerical analysis and error analysis show that the approximated formula is

effective and useful to estimate production rate of production lines.

Keywords:  Multi-Station Production Lines,  Curve-fitting  Method,

Approximation, Discrete-Time Markov Chain, Non-linear Regression.



OZET

STOKSUZ URETIM HATLARINDA PERFORMANS OLCUMU
ICIN YAKLASIK FORMULLER

Shohreh ROSHANI

Yiiksek Lisans Tezi Endiistri Miihendisligi Bslimii

Danisman: Prof. Sencer yeralan

Temmuz 2014, 74 Sayfa

Uretim hatlarinda  giivenilmez makineler ile ilgili literatiirde cok calisma
yapﬂmistir. Bu aragtirma tampon stoksuz iiretim hatlarinda performans: 6lgmek
amagcl yaklagik formiil i¢in analitik bir yontem sunuyor. Ortalama iiretim oranin
hat 6zelliklerin bir fonksiyonu olarak analiz etmek, bu performans &lgiisii sistem
davranig gostergelerinin en Gnemli ve etkili 6lgiitlerinden birisi oldugu igin
onemlidir. Yaklagtirma formiilii iiretim hatlarinin {iretim oranlari ile makine
bozulma ve onarim olasiliklari arasindaki iliskiyi bulmak igin yararlidir. Bu
calismada, curve-fit yontemi ile, iig, dért ve bes istasyonlar1 igin makine bozulma
ve onarim olasiliklar kullamlafak, iiretim oranimni yaklagik hesaplamak igin

kullanish formiiller olusturulmustur.

Yaklasim formiilii sunulmadan 6nce, iiretim hatlarinda, iki istasyonlu iiretim
hatlar1 i¢in Markov zinciri analizi, kararli durum olasilik matrisi kullanilarak
sunulmaktadir. Markov zincir yontemi bu tiir hatlarin tam bir analizini iiretir.
Bilgisayar ortaminda MATLAB araciligi ile dogrusal olmayan regresyon yontemi
kullamlmistir.  Yapilan sayisal analiz ve hata analizi, ©nerilen yaklasim
formiiliiniin tampon stoksuz iiretim hatlarinin iiretim oranini tahmin etmek i¢in

yararli oldugunu gostermektedir.

Anahtar Keliméler: Cok- Istasyonlu Uretim Hatlar, Egri uydurma yontemi,

Ayri-Zaman Markov Zinciri, Dogrusal Olmayan Regresyon.
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CHAPTER 1: INTRODUCTION

Production lines are sets of machines or workstations arranged in a serial
structure to produce finished products or components. A workstation is a group of
machines or operators, performing one or more operations on the jobs. In another
word, a production line is a materials handling and processing device in industry.
Production lines with unreliable machines have received a great amount of
attention in the literature. Much of the past work has involved the dévelopment of
analytical models, empirical formulas, and simulation programs to evaluate
several performance measures in order to improve the design and planning of
productibn lines. The production rate is one of the main performance measures of

production lines.

It is essential to predict the expected production rate as a function of line
characteristics. One method to predict the production rate is by approximation.
Approximating formulas are useful to find the relation between the production
rate of production lines and the failure and repair probabilities. Curve-fit analysis
is used to develop formulas to find the production rate. Curve-fitting is the process
of constructing a curve, or mathematical function, that has the best fit to a series

of data points.

1.1 SCOPE OF THE THESIS

In this thesis the aim is to develop approximate formula for performance measures
of production lines. Simple and useful empirical formulas for lines consisting of
three, four and five identical stations are developed. First a general structure for a
suitable model is sought. The general model contains parameters which will be
chosen through a curve-fitting process. The general model is inspired by the exact
analytical solution of the two-station case. The model is in the form of a ratio of
two multinomial involving the breakdown and repair probabilities. Afterwards
the model is generalized for N-station production lines. Numerical analysis will
show that the suggested and approximate formulas give acceptable results for N-

station production lines. After all, error analysis for the production rate function,

1



is conducted to analyze the estimates and results. The purpose is to have a simple
analytical result that shows the mathematical relationships between the
performance measures of production lines. In another words, the aim is detecting
equations and hidden mathematical relationships in a set of data, and identifying
the simplest mathematical formulas.- A formula with a simple structure is helpful
in several ways. It helps provide an intuitive understanding of the underlying
model, so that analysts and decision makers can use the model with confidence.
This study starts with two station production line then generalizes the formula to a

line of any length.

The focus here is on discrete part production lines where each part produced is
distinct. From here on, when reference is fnade to production lines, discrete part
production lines will be understood. In a production or flow line, all jobs are
required to pass through each station in the same sequence once. These production
lines are usually associated with scale rather than scope, and a major advantage of
production lines is the associated simple materials handling requirements. A
production line consists of work-stations, materials, human resources, and inter-
work-station storage facilities. Randomness is introduced due to random
processing times and the random behavior of work-stations in relation to failure
and repair. In terms of classical queuing theory, production lines would be
described as finite buffer tandem queuing systems where the work-stations are the
servers, storage facilities are the buffers or the waiting lines, and the jobs are the

customers.

In this study, curve-fitting methods are used. There are many statistical packages
such as R, Minitab and numerical software such as the GNU Scientific Library,
MATLAB, SciPy and OpenOpt which include commands for curve-fitting in a

variety of scenarios.

The production rate is the most important performance measure in production
system. This project uses MATLAB software to show the relation between the
expected production rates of production lines and the failure and repair
probabilities and also, it is used for approximation, numerical analysis and curve
fitting. MATLAB is a high-performance language for technical computing.

MATLAB is a multi-paradigm numerical computing environment and fourth-

2



generation programming language. It integrates computation, visualization, and
programming in an easy-to-use environment where problems and solutions are

expressed in familiar mathematical notation.
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CHAPTER 2: LITERATURE REVIEW

Production lines and queuing systems have been the object of much study in
the past. As a literature review, we refer to some related works. To begin with, the
production rate of lines with and without intermediate buffers has been studied
starting from the mid-fifties. Kerbache and Smith is the important study
conducted for Generalized Expansion Method (GEM), for queuing systems. GEM
was used as the f)rime performance evaluation tool. GEM transforms the queuing
network in to an equivalent Jackson network, which can be decomposed so that
each node can be solved independently of each other. This method is similar to a
product form solution approach. GEM is an effective and robuét approximation
technique to .measure the performance of open finite queuing systems. The
generalized expansion method is prevalent in most systems, such as production
systems and manufacturing, transportation and other similar systems. This
approximation method has become an appealing approximation technique for
performance evaluation of queuing networks due to its accuracy and relative
simplicity. GEM is basically a combination of two approximation methods. The
name of two approximation methods are: the “repeated trials” and the “node by
node” decomposition. In order to evaluate the performance of a queuing network,
the method first divides the network into single nodes with revised service and
arrival parameters. Blocked customers are registered into an artificial “holding
node” and are repeatedly sent to this node until they are serviced. The addition of
the holding node expands the network and transforms the network into an
equivalent Jackson network in which each node can be solved independently. The
effectiveness of GEM as a performance evaluation tool has been presented in

many papers, such as Kerbache and Smith.

We can divide production lines in to two categories: production lines with
intermediate buffers and production lines without buffering. A part of
manufacturing systems that employ long lines typically contain several automated
workstations tightly coupled without intermediate buffers. Cetinay analyzed the
system performance measures of production lines with no intermediate buffers. In
that research, the common approach to model tightly coupled lines is to consider

each workstation as an individual machine. The characteristics of these composite
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machines need to be derived from the characteristics of the individual stations that
comprise the workstation. This study evolves with the purpose of developing the
composite workstation characteristics from the individual station characteristics.
Note that the composite workstation will have the same processing time as the
other stations in the line. Cetinay developed software to calculate the transition
probability matrices to allow the analysis of system behavior. Analyzing the
system behavior in manufacturing environments is very important for production
efficiency. The purpose of the project was to analyze the system performance
measures such as starvation and blockage times of stations, production rate and
work-in-process. The starvation and blocking conditions on stations are idle times,
which are defined and studied by many researches. When one machine in the
system fails then the rest of the line is prone to stop, especially if there is no
intermediate buffer present. A failure may cause the preceding machine to be
blocked, while at the same time, the downstream machines may be starved
because there is no input available. Furthermore the production rate and the work-
in-process measures over failure and repair probabilities are approximated for

lines consisting three, four and five stations, Cetinay.

Blumenfeld, analyzed the system throughput of a line dependent on the size of the
buffers. As we know, an important measure of performance for a production line
is the system throughput, or the average number of jobs produced per hour. In the
mentioned study, they derived a simple formula for the throughput (jobs produced
per unit time) of a serial production line with workstations that are subject to
random failures. The derivation is based on equations developed for a line flow
model that takes into account the impact of finite buffers between the
workstations. The obtained formula applies in the special case of a line with
identical workstations and equal size of buffers. In that research they expressed
the mathematical relationships between the system parameters, that can be used to
gain basic insight into system behavior at the initial design. The aim of the
Blumenfeld research is to obtain a simple formula for throughput from general
equations. The model considers a two-station line and provides a building block
for modeling longer lines. It analyzes the flow of jobs through a line of stations
and derives analytical equations for line performance. In general, in the model,

which stations can have different speeds and reliabilities, and the buffers can have
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different sizes. The developed model, can be used to compute throughput for
general serial lines very efficiently, and allows quick and fast comparisons. The
approximated equations are suited for conveniently computing numerical results
rather than providing insight from their functional form. The purpose was to have
a simple formula that shows the mathematical relationships between the key
system parameters. The result of this research is useful in the initial design stage,
when basic insight into system behavior is needed before detailed numerical
analysis are performed. The paper starts with the basic model for a general two-
station line developed and uses the model to derive a throughput formula in the
special case of identical machines. After that, the paper extends the formula to
apply to a line of any length. The extended formula is compared with numerical

results obtained from simulation studies.

Most studies that are mentioned above are based on operation-dependent failures.
Yeralan and Muth approximated formula for production line with finite N
intermediate buffer size. They found a simple representation of production rate as
a function of buffer size that would approximately hold over a substantial portion
of the space of variables. They offered a general model for a class of production
lines with two unreliable stations, a finite capacity inter-station buffer, discrete
items, constant cycle time, and synchronous transfer. A production line consisting
of two work stations in series and intermediate buffer of size m is modeled. The
mentioned system is modeled as a discrete parameter Markov chain. In this
research, the steady-state probabilities are obtained by the successive solution of
systems of four simultaneous equations. This study is presented with a model and
its solution, of a two-station line with an intermediate buffer of arbitrary size. The
results of this research, that they are for two-station line, can form the basis for

approximations of the production rate of lines comprising more than two stations.

One method which has rproved practically robust fbr production lines with finite
buffers and unreliable machines is decomposition which was introduced by
Gershwin. Under the same assumption, a decomposition method Was introduced
by many researchers. Gréshwin considered a two-machine and one buffer,
production line with discreté time, which isa generalization of earlier models. The

machines in the system have multiple up and down states. When a machine is not
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blocked or starved, the transitions among its up and down states are described by a
Markov chain. The system operates in discrete time and produces discrete
material. The buffer in the system is finite. An analytical solution of the transition
equations is formulated and numerical results are shown in this research. They
have briefly summarized a solution method for two-machine lines whose
machines states are described by arbitrary Markov chains. Finally they have
demonstrated that the method works for buffers of size up to 100, even though the

line's state space is large and complex. -

Dallery and David presented an approximate method for the analysis of transfer
lines with unreliable machines and finite buffers. In the system blocking and
starvation states, which occur as a consequence of machine failures, are important |
phenomena. They first considered homogeneous lines, which means lines for all
machines have the same processing times. The behavior of the line was
approximated by a continuous flow model. Then they used a decomposition
technique which enables one to decompose the analysis of the line into the
analysis of a set of two-machine lines. This leads to a simple and fast algorithm
which provides performance parameters such as production rate and average
buffer levels. Final results showed that this approximate technique is very
accurate. Then they considered the transfer lines with machines that having
different processing times. A simple transformation was introduced which
replaced the line by a homogeneous line. In this study, the approximate

transformation provided good results for a large class of systems.

Senanayake developed an approximate analytical method to evaluate the
performance of production lines that can manufacture multiple part-types. The
manufacture of multiple products in a common production facility allows one to
share resources, such as processing machines, among the part-types. However, the
sharing of resources often hinders the efficient management and planning of
production due to the difficulty of evaluating the many production policies and
system configurations that are possible. Production policies determine when to
switch processing of part-types on shared machines and which part-type to switch
to the next. The performance of the manufacturing system will vary depending on

the policy used. Random disturbances, for example, machinery failures, inherent



in manufacturing systems further impedes the accurate performance evaluation of
production systems. In addition, one needs to properly account for the phenomena
specifically observed in the manufacture of multiple part-types, such as machine
setups, routing with bypass, shared machines, part-type dependent machine
processing times etc. In this research study, to emulate real manufacturing
systems, it is assumed that machines are unreliable and buffers are finite. The
main contribution of this research is the incorporation of key system phenomena
observed in industry including machine setups, routing with bypass, and stations
with parallel machines. Recently, the authors proposed a decomposition based
analytical approach to evaluate the performance of these complex systems. A two
machine building block was first constructed based on the continuous material
approximation, and decomposition equations were then developed to
approximately capture the dynamics of multiple part—tyi)e flow behavior. In this
paper, the authors show the simplicity of extending the model to analyze systems
with part-type dependent machine processing times and cyclic production
policies. Numerical comparison with simulation results shows the good accuracy
of the method in evaluating the performance of several example manufacturing
systems including a system based on a real production line. This paper analyzed
the systems with part-type dependent (unequal) machine processing times by
applying the principle of homogenization that is mentioned in Dallery and David.
The processing times of machines are not all equal. The simple extension to
systems with unequal and part-type dependent machine processing times and the
ability to model different production policies increases the flexibility of the model
and its applicability to real manufacturing systems. In addition, they showed the
ease of incorporating different production policies into the model by extending the

methodology to systems operating on a cyclic production policy.

Several researchers have attempted to evaluate the performance of multiple part-
type manufacturing systems using approximate analytical methods. Nemec
extended the large body of literature that focused on the decomposition analysis of
single part-type production lines to systems prbducing two part-types. He presents
the analysis of two separate manufacturing systems, using two different
approximation procedures, contained in two stand-alone parts. In this study he

presents an analysis of the system by decomposing it into smaller sub-systems. He
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formulated a deterministic single failure multi-part type line. He assumed that
machines were unreliable and intermediate buffer space was finite. However, he
was only able to investigate two part-type production lines with up to six
processing stations connected in series. This formulation worked only for small
two-part lines, and there is no specific way of generalizing his equations for
longer lines. Jang extended this work study to multiple part-type systems and
reported satisfactory accuracy in the prediction of production rates of systems
with up to six stations and three part-types. Both authors considered systems
where each station consisted of only one shared machine and assumed a

production policy where switching between part-types was based on a fixed

priority policy.

Tolio proposed a way of analyzing two-part type lines with multiple failure modes
with Markov model. He present an analytical method for evaluating the
performance of production lines with a finite buffer and two unreliable machines.
The model that they present, evaluates the steady state probabilities of the states
of the system with a computational effort that depends only on the number of
failure ﬁodes considered and not on the capacity of the buffer. The expression
‘multiple failure modes‘ means that each machine of the line can fail in different
ways. Each mode of failure is characterized by a specific MTTF (mean time
between two successive failures) and MTTR (mean time to repair a failure). In
earlier papers, each machine can fail in more than one way. For each failure mode,
geometrically distributed times to failure and times to repair are specified. In this
research, the method evaluates the steady-state probabilities of the states of the
system with a computational effort that depends only on the number of failure
modes considered and not on the capacity of the buffer. A comparison of
performance of the method with those obtained with existing techniques that

consider only one failure mode is reported.

Cetinay established reliable forecasts with simple formulas. In this study the
relation of the production rate of an N-station production line with the failure and
the repair probabilities was found with curve fitting method. Curve-fitting was
realized to develop a reasonably accurate equation in order to establish reliable

forecasts with simple formulas. The formula for the production rate and work-in-



process is represented as rational function. The same curve-fitting methodology is
performed for three, four and five station production lines to calculate the specific
parameters.

Least Squares approximation is used to determine approximate solutions for a
system of equation or to fit an approximate function to a set of data points. As the
nonlinear least square will be used in this study to fit an approximate formula for
three, four and five station production line, we will show different methods in this
part. Seber, and Wild introduced the list of computational methods for nonlinear

least squares.
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Figure 2.1 Computational Methods for Nonlinear Least Squares

Most studies are restricted to two or three station production lines. Production line
with two stations are easy to analyze and model rather than more stations.
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Complexity increases for the evaluation and analysis of production lines longer
than two stations. This study brings a novelty for analyzing the performance

measures of bufferless production lines.
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CHAPTER 3: THE MARKOV CHAIN MODEL

Markov chains are well-known in engineering. There are several basic,
direct and iterative methods for steady-state analysis of Markov chains, such as:
Gaussian Elimination method and Grassman method, as well as Power, Jacobi.s
and Gauss-Seidel.s methods. Algorithms for computation of steady-state
probability vector for finite Markov chains must be developed. Performance and
depéndability measures for systems can be derived and evaluated with steady-
state analysis of Discrete-Time Markov Chains (DTMC) and Continuous-Time
Markov Chains (CTMC). For a review see Markov chains book is written by
Norris J. R.

3.1 SYSTEM PARAMETERS

As machines are unreliable, in the stochastic model, each machine has a unique
failure probability. Each machine if it is operating during the current period, has a
unique probability of fail at the end of the periods. Also, the machine failures
occur at the end of periods, after the station completes its operation on the work-
piece. As Schick and Gershwin (1978) assumed, the repair of a failed machine
starts at the beginning of the next period after the failure happened. The
probability of repair for failed machines are constant during the periods. For

machine (i), where 1 <i <N, the failure and repair parameters are defined as:
qi : The failure probability of a working machine (i)

1; : The repair probability of a failed machine (i)

(gi=1-gand 7;=1-1)

3.2 STATION STATES

In the production line each station can be in one of the five station states. Each
state represents the condition of the station throughout a period from the start of
the period. All the station states remain the same during the period. The change in
the station states happens at the end of the periods because station state transitions
occur at the end of the periods. The time that a unit is processed by the stations, is

defined as a period. These are the five possible station states:
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1) Up (U)

In Up state at the beginning of the period, the machine operates and processes the
work-piece during the period and completes processing the piece at the end of the
period. By definition, as machine breakdowns occur at the end of periods, the
machine can either fail or can be in good condition after it completes processing
the work piece at the end of the period. In another words, end of the period is at

the beginning of the next period.

2) Down (D)

In Down state at the beginning of the period, the machine can either be repaired or

not be repaired during the period.

3) Blocked (B)

The machine becomes blocked when a machine in up condition in the beginning
of the period, finishes processing a work-piece at the end of the period and does
not fail. If the downstream machine is down or blocked, then the machine cannot
pass the item to the next station . If a machine is blocked at the beginning of the
“period, for the next period it can still be blocked or not depending on the

downstream station state. Note that a blocked machine does not fail.

4) Down-Blocked (DB)

The machine becomes down and blocked when a machine with up condition in the
beginning of the period, finishes processing a work piece and then fails at the end
of the period, while the downstream machine is full, then the machine cannot pass
the item that is completed. So the machine needs repair to operate again. A down-
blocked machine at the beginning of the period can either be repaired or not
during the period and it can either pass the finished item or not to the downstream,
which demonstrates the possible station states of the machine at the beginning of

the next period.
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5) Starved (S)

In starved state, a machine in good working condition is not fed by the upstream.

A starved machine does not fail.

Station N can never be blocked or down-blocked. In addition, station 1 is never
starved due to infinite supply. All possible states for the stations are summarized
in Figure3.1. As the figure shows, all five station states are valid for stations in the

line except the first and the last one.

Work Work
—>  Station [—>--—> BetweenWork L s..._ 5l gation >
1 Stations N
U | U U
D | D D
B B S
DB DB
S

Figure 3.1 Station States

We can define K as a number of station state. Table 3.1, shows different station

states of the production line.
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Table 3.1 Different Station States

Station State Number of Station State (k)
Up o 1
Down 2
Blocked 3
Down-Blocked 4
. Starved 5

Table 3.2, shows the possible number of system states in the production line.

Table 3.2° System states in the production line

Station 1 Station 2 . Station N System State (J)
Up Up Up 1
Up Down Down 2
Up Starved s Starved
Down Up Starved
Down-Blocked Down Starved g

The goal to evaluative the models is to calculate a performance measure of the

system under study, such as the production rate.

3.3 ASSUMPTIONS

First we make some assumptions for the discrete-time Markov chain model.
Gershwin and Schick, studied discrete-time Markov chains in modeling
manufacturing lines. In their model they defined some assumptions, the relevant

assumptions are given by:

1. The processing time for stations is constant and equal for all stations, so the

model considers homogenous lines.

2. Transportation time between stations is too small and negligible.
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3. Only one unit can be processed at a time, so machine capacities are limited to

one.
4. Time is scaled so that the station periods take one time unit.

5. An infinite supply of material is available to the station 1, and an unlimited
storage area is considered for the station N. As a result, station 1 is never starved,

and station N is never blocked.

6. The failure probability of a starved or blocked machine is zero, because only
operation dependent failures of machines are considered, which means that

machines can only fail while they are processing a work-piece.
7. We have no intermediate buffer between machines in production line.

8. Whenever a machine is processing a work-piece, there is a unique probability
(q;) that the machine fails. By convention, machine breakdowns occur at the end

of periods after machines complete their operations on the work-piece.

9. There is a unique probability (r;) that given a failed machine at the beginning of

any period can be repaired during the period.

We adopt the same assumptions.

3.4 PRODUCTION RATE

Production rate is one of the most important performance measure in production
line. The system under study, with serial-connected stations without intermediate

buffer is efficient only when all stations are up and operating.

We can define sets of system states as below:

Qp = { System states j 3 The last station N is in statek = 1 (Up)} 1)
Where:

N: Number of stations

17



k : State of station (i), fori:1,2,3,...,N

j : State of the system

The production rate will be equal to:

Productionrate = Yjeq, M = Xj i T ' 2)
Where:

7; . The probability of the system in state J, 7; = P [X = j]

X: System state
L = { System states ] 3 station iisinstate k = 1 (Up)} (3)

3.5 ALGEBRAIC SOLUTION OF THE TWO-STATION CASE

The two-station production line which is the minimum number of stations in a

production line is shown in Figure 3.2.

Station Station
5 1 2 S
U U
D D
B S
DB

Figure 3.2 Two-Station Line
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The system states consists of the various allowable combinations of the station

states. All possible system states of the two-station production line are enumerated

in Table 3.3.
Table 3.3 System States of the Two-Station Production Line

Station 1 Station 2 System States (J)
Up ‘ Up 1
Up Down 2
Up ' Starved 3
Down Up B
Down Down ' B
Down Starved 6
Blocked Down 7
Down-Blocked Down 8

In this section, Markovian analysis of production lines is presented using the
underlying queuing system structure of production lines. It produces an exact

analysis of such lines.

In this chapter a two-station production line is considered. We calculate the

production rate in closed form as an analytical expression in model parameters.

To calculate the exact relation between performance measures for two-station
production line with Markov chain method, we construct transition probability
matrix. In total, dimensions of the steady-state probability matrices is obtained

with this formula (Cenitay):
Dimensions of the steady-state probability matrix = 22 1x2¥!

N: Number of stations
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221 . Total number of system states

Considering the above formula, for two-station production line we will have 8x8
transition probability matrix. The resulting transition probability matrix is

presented in Table 3.4.
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Table 3.4 Transition Probability Matrix

To
vu | vp | DU | DD | BD | DS | US |D-BD
From '
vuU
-9*| 0 |q0q| O |(q@gq| O 0 q
L T qr 0 |(-q. | o0 0 | g
(1-r)
H L 0 r.q 0 (1-n).q 0 (1-). r.(1-q) 0
(1'51)
] DD\ 5 lran| o || o |amr| 2 0
B BD r 0 0 0 | (In | o 0 0
i De 0 0 0 0 0 | o | = 0
1 4 USs
‘ '_ (1-q) | © q 0 0 0 0 0
DBB| 2 0 |gor| 0 |rdn| o 0 | (12
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With considering two conditions in Markov chain method, we can find the
relationships between failure probability (q), repair probability (r) and production
rate (P).

The steady-state probability vector v, is a row vector, whose entries are non-
negative and sum to 1. The row vector is unchanged by the operation of transition

probability matrix M.

The solution in our case is shown in Table 3.5, using the transition probability

matrix given in Table 3.4.

Table 3.5 Steady-state Probability Vector

System State . Steady-state Probability

uu —gr+qr? —r?+2r
gr —r2 + 2r + 4q — 2g?%r — qr? + g?

UD g
qr—r? 4+ 2r +4q — 2g%r —qr? + g2

DU gr(2 —r)
gr —r? + 2r + 4q — 2q%r — qr? + g2

DD a —i
gr—r?+2r+4q— 2q°r —qr? + g

BD qZ—-r—gq)
gr—r2+ 2r + 4q — 2¢2r — qr2 + g2

DS qZ=r=—qr)
gr—r?2 4+ 2r+4q— 2¢%r—qr2 + g2

uUs . qgr(2—r—q)
gr—r2+2r+4q— 2g°r—qr? + g2

D-BD PE
gr—r2+2r+4q— 2g°r—qr? +¢?

The production rate is calculated with summation of some probabilities from

steady-state probability vector. Specifically,
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Production rate: P[UU] + P[DU] = P[UU] + P[US] + r.P[DB D] €Y

Production rate for two-station production line with identical stations is simplified
to be:
qr+2r-r?

P._.

" gqr-r2+2r+4g-2q2r-qri+q?

&)

The analysis of the system behavior is an important issue to find the relation
between different’ performance measures in the system. In the next chapter,
analysis of the system behavior will be conducted. The relation between
production rate (P) and repair probability (r) in specific failure probability (q) for

different number of stations in production line will be shown in the next chapter.
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CHAPTER 4: ANALYSIS OF THE SYSTEM
BEHAVIOR

4.1 ANALYSIS OF THE DATA

The performance measures were available (Cetinay), for specific failure and repair
probabilities for three, four and five station production lines. A sample of the data
is provided in Appendix A. For the failure probability, the interval of [0.01, 0.1]
and for the repair probability, the interval of [0.05, 1] were taken as the intervals

of interest.

4.2.1 ANALYSIS OF PRODUCTION RATE

One of the most important performance measure for production line efficiency, is
the production rate. Figure 4.1 illustrates the relationship between the production
rate and the repair probability and the failure probability for different failure
probabilities. |

8-

7+

&6

G5F

production rate

0.4

V4 ‘ ey g={1 k
£3 V;

g2~ 4 J

01 ] 1 | ] | 1 1 1 1

Figure 4.1 Production Rate versus Repair Probability (3-station)
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Figure 4.1 shows that the production rate increases with increasing the repair
probability, while, the production rate decreases with increasing the failure

probability.

Analyzing the system behavior shows that in a production line as the number of
stations increases, the production rate decreases feIatively. Figufe 4.2 illustrates
the relation between production rate and fepair probability for the failure
probability of 0.1. The figure depicfs that the production rate in two-station

production line is more than the production rate in three-station production line

and so on.
0.8
0.7
o6 e =T
@ -
©
= Db
c
§e]
©
'g 0.4
8 ¢
a )
03 e 2 station
’ 3 station
"""""" 4 station
0.2 5 station |
l‘/’

L I d [ £

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05

Figure 4.2 Production Rate versus Repair Probability (2, 3, 4, 5-station)

In the next chapter, numerical analysis for three, four and five station production
lines will be shown, according to the formula that was obtained for two-station
production lines. In another words, the formula for two-station production lines
will be generalized for other lengths of lines and then curve-fitting will be

conducted to develop a reasonably accurate equation in order to establish reliable
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- forecasts with the formula. After that approximated formula will be suggested and
- the numerical analysis for two, three, four and five station production lines will be

conducted with an approximated formula.
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CHAPTER 5: NUMERICAL ANALYSIS

5.1 METHODOLOGY

A curve-fit analysis is conducted in order to develop useful formulas. The
aim of curve-fit analysis is to formulafe simple functions that provide forecasts of
the important performance measures with a reasonable accuracy. Although linear
regression is an important tool for statistical analysis, but it also has limitations
that must always be considered. In this study according to our data, we cannot use
linear regression. By conducting linear regression our results will not be good.
The error analysis will show that linear regression is not appropriate method for
this research. So non-linear regression is selected as a solution method for this

study.

There are many cases in engineering aﬁd science where nonlinear models must be
fit to data. In the present context, these models are defined as those that have a
nonlinear dependence on their parameters. For example in this study the relation
between the production rate (P), failure probability (q) and repair probability (r) is

defined as a quadratic ratio formula (5).

As with linear least-squares, nonlinear regression is based on determining the
values of the parameters that minimize the sum of the squares of the residuals.

However, for the nonlinear case, the solution must proceed in an iterative fashion.

There are techniques expressly designed for nonlinear regression. For example,
the Gauss-Newton method uses a Taylor series expansion to express the original
nonlinear equation in an approximate, linear form. Then least-squares theory can
be used to obtain new estimates of the parameters that move in the direction of

minimizing the residual.

An alternative is to use optimization techniques to directly determine the least-
squares fit. The approximation formula, can be expressed as an objective function

to compute the sum of the squares of the errors:

f(a) = Yo [f(q, 1) — B1"2 (6)
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m : Number of data points

P; : The real output

We can also define f(a) as:
f(a) = r(@)"r(a) , (7
Thatrisa vectoxj—valued function:

r(a) = [y (a), (), .., 13 (@)]T L @®)

The gradient of f is defined as: .
Vf(a) = Vr()r(a) = J(2)"r(a) ' €))
Where J (a) is the Jacobian of r(a).

The Hessian of a least-squares objective function is a sum of two terms:
V3(a) = Vr(2)Vr(a)T+ X ri(a)Viri(a) = J(@)7J(@) + Q) (10)

For unconstrained nonlinear optimization problems, MATLAB software has a
command that is called fminsearch. This command uses the Nelder-Mead simplex
algorithm. The Nelder-Mead algorithm is used to determine the values of the
parameters that minimize the function.

MATLAB code for non-linear regression method with fminsearch command is
shown in appendix 5, also the Nelder-Mead algorithm procedure is shown in

appendix 6.

5.2 A QUADRATIC RATIO FORMULA

In chapter 3, we obtained the exact formula (5) for two-station production line
with identical stations. In this section we want to assume the formula that we
obtained for two-station production line, works for the three, four and five station
prdduction lines. So we must generalize the formula for different number of

stations of production lines.
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If we insert parameters in a quadratic ratio formula (5), the equation will be

defined as:

agqr+a,r+a,r?

P(q,r) = (11)

asqr + asr? + asr + agq + a,q%r +ag qr? + agq?
where ag, a1, ay a3 a4 as_ag, a7 ag and ag are the parameters that need to be

solved.

We want to show how the above formula (11), fits the data for three, four and five
station production lines. In the quadratic ratio formula (11), we have 10
parameters as a constants that must be calculated. After several runs in MATLAB,
the best constants for three, four and five station production lines is calculated.
The below table shows the constants of the formula for the production rate, failure

and repair probabilities for different number of stations of production line.

Table 5.1 Constants for a Quadratic Ratio Formula

5-Station

Constants 3-Station 4-Station

ay 10.69 25.29 51.36
a 6.117 9.6 15.47
a, -1.546 -1.913 -3.694
a3 6.283 16.33 30.92
a4 -1.507 -1.857 -3.559
as 6.096 9.583 15.45
ag 18.56 38.8 77.69
a,; 3.278 1.362 2.43

ag -1.383 -0.7172 -4.96
a9 5.846 17.58 24.57

As we can see in the table 5.1, when the number of stations increases, the amount

of positive constants also increases. But with increasing the number of stations,

the amount of negative constants will decrease.
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To depict the relation between the production rates of production lines and the
failure and repair probabilities, three-dimensional plot was generated with
MATLAB software. Figure 5.1 illustrates the relation between the production rate
(p), the failure (q) and repair probabilities (r), for three-station production lines

according to the exact formula and quadratic ratio formula.

. Bxact ‘ Approximated

Figure 5.1 Production Rate versus g and r (3-station)

Figure 5.2, illustrates the production rate versus failure and repair probabilities for

four-station production lines.
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e F.igure 5.2 Production Rate versus q and r (4-station) -

According to the quadratic ratio formula (11), the relation between production
rate, failure and repair probabilities for five-station production line is shown in the
three-dimensional plot. Figure 5.3 illustrates the prodﬁction rate versus failure and
repair probability for five-station production lines according to the exact formula

and quadratic ratio formula.
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Exact ~ Approximated

Figure 5.3 Production Rate versus q and r (5-station)

The table 5.2 shows the mean absolute error for three, four and five station
production lines. Mean absolute errors is obtained with the summation of absolute
differences between real production rate and approximated production rate over

the number of data.
The below equation shows the mean absolute error:

) | Preal“Pappraximatel
2 (12)

Mean Absolute Error =

Table 5.2 Mean Absolute Error

No. of Station
3-Station 4-Station 5-Station
Error
Mean Absolute 0.00043 0.00035 0.00024
Error
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5.3 THE SIMPLIFIED FORMULA

In this part, we derive a simple formula for the throughput of a serial production
line with work-stations that are subject to random failures. In a quadratic ratio
formula (11), we can eliminate some terms, because the amounts that will obtain
are_’tod small. Although, with eliminating some terms of formula, the errors
maybe increase a little bit, but analyzing the ‘s'.ystem will become more
comfortablle.-_It is clear that for production lines with a largé number of stations, it
is not possible to develop exact numerical results due ‘tE') the complexity of the
numerical calculations involved. As a resuit of this restriction, approximate

solutions were conducted.

Here we suggest a simplified formula:

Rl s O 13)

axqr+ asr+ asq

Coefficients of the simplified formula (13), is optimized with nonlinear least-

square method in MATLAB.

We analyzed the approximated production rates according to the formula (13), for

two, three, four and five station production lines.

Constants of a simplified formula (13) were calculated with nonlinear least-square
method in MATLAB. The determined constants for two-station production line

are represented in the Table 5.3.

Table 5.3 Constants for the simplified Formula (2-Station)

Constants 2-Station

a, 3.774
a ' 11.33
ay 12.36
a3 1i.36
ay ‘ ' 22.96
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To depict the relation between the expected production rates of production lines
and the failure and repair probabilities, three-dimensional plot was generated with
MATLAB software. Figure 5.4 illustrates the relation between the expected
produbtion rate and the failure and repair probabilities for two-station production

lines according to the exact formula and the simpliﬁéd formula (13).

Exact ' ' : Approximated

Figure 5.4 Production Rate versus q and r (2-station)

Coefficients of the production rate functions was calculated with nonlinear least-
square method in MATLAB. The solution of the determined constants are
explained in the part of Methodology (5.1). The determined constants are
represented in the Table 5.4.

Table 5.4 Constants of the simplified Formula (3, 4 and 5 station)

Constants 3-Station 4-Station 5-Station
2 6.902 9.585 13.71
a 6.016 4994 4.969
a2 5328 | ~ 7721 | 1063
a3 6.038 T5.017 5.004
ag 18.15 20 24.84
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Based on the results of the three-dimensional plots, curve-fitting was realized to
develop a reasonably accurate equation in order to establish reliable forecasts with

.simple formula.

The relation between the expected production rate and the failure and repair

probabilities for three-station production lines is shown in Figure 5.5.

Exact ' . . Approximated

Figure 5.5 Production Rate versus g and r (3-station)

e

Figure 5.6 shows the relation between the expected production rate and the failure
and repair probabilities for four-station production lines based on the exact and

the simplified formula (13).
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Exact Approximated

Ly peis

Figure 5.6 Production Rate versus q and r (4-station)

Figure 5.7;_ illustrates the Production Rate versus failure and repair probabilities

for five-station production lines.

Exact Approximated

Figure 5.7 Production Rate versus q and r (5-station)

36



In the next chapter, error analysis will show according to the quadratic ratio

formula and the approximated formula for the different number of stations.
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CHAPTER 6: ERROR ANALYSIS

6.1 ERROR ANALYSIS FOR THE PRODUCTION RATE
FUNCTION

In order to measure the accuracy of the approximated equation for the

production rate the error statistics have been analyzed.

In addition to minimum and maximum absolute error statistics, mean absolute
error, the mean of error, and variance of error were collected. Furthermore, the
mean absolute percent error (MAPE) and mean standard error percent (MSEP)

were calculated for further insight in terms of accuracy and precision of the fit.

In this section first we analyze the error statistics for the production rate according
to the quadratic ratio formula (5). The error statistics was conducted for three, four

and five station production lines.

Table 6.1 summarizes the error statistics collected for the production rate based on

the quadratic ratio formula (5).
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Table 6.1 Production rate Error Statistics According to the Quadratic Ratio Formula

Stations
3-Station 4-Station 5-Station
Line Line Line
Errors
Min. Absolute 1.5-10° 1.0- 10° 2.6-10°
Error
Max. Absolute 0.0019 0.0020 0.0010
Error
Mean Absolute 0.0004 0.0003 0.0002
Error
Mean of Error 0.0061 0.0035 0.0024
Variance of 3.97¢ 107 125 « 157 5.79 - 10°
Error
Min.Abs.Percent 0.0001 0.0002 0.0011
Error ‘
Max,Abs.Percent 0.0014 0.0006 0.0023
Error
Mean Percent -0.0016 -0.0023 -0.0011
Error
MAPE (%) 8- 10™ 2.3-10° LI: 16~
MSEP (%) 0.020 0.048 0.033

Table 6.2 shows the error statistics collected for the production rate forecasts
based on the approximated formula (13). The statistics, collected in Table 6.2,

show that the approximations perform well when compared to the real outputs.
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Table 6.2 Production rate Error Statistics According to Simplified Approximation

Stations |-
Errors 2-Station 3-Station 4-Station 5-Station
Line Line Line Line
Min. Absolute 1.7- 107 4,02 107 1.7-10° 49-10°
Error .
Max. Absolute 0.0052 0.0039 0.0019 0.0021
Error
Mean Absolute 0.0010 0.0007 0.0005 0.0006
Error
Mean of Error 0.0146 0.0113 0.0016 0.0063
"Variance of 2.1 +107 1.9 107 2.69-107 4.01- 107
~ Error
Min.Abs.Percent 0.0036 0.0033 0.0009 0.0025
Error
Max.Abs.Percent 0.039 0.090 0.068 0.022
' Error
Mean Percent -0.0018 -0.0014 -0.0015 -0.0017
‘Error
MAPE (%) 1.6-107 1.5-10° 9.8-107 22-107
MSEP (%) 0.027 0.013 0.073 0.081

As we can see in Table 6.2, the amount of errors are too small and the
approximated numbers are very close to real ones. Error analysis shows that the

approximated function provides reliable estimates.

In the above table, the Mean Absolute Percent Error (MAPE) is calculated as:

MAPE = _];Z l (True value )-(Forecast value)
n (True value)

. 100%)| (14)

In Table 6.2, the Mean Standard Error Percent (MSEP) is calculated as:

MSEP = 1 Z RMS (True value )—(Forecast value) . 100%
n (True value)

(15)
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Where the Root-Mean-Square (RMS) of the forecast error is equal to the square
root of the variance (or standard deviation) of the error as presented in the above

tables.

Although by comparing Table 6.1 and Table 6.2, we will realize that the error
statistics of a quadratic ratio formula is less than the error statistics of a linear
approximation formula but in this study, we suggest a linear approximated
formula, it is more simple than the first one and calculations will more
comfortable. The error statistics of Table 6.2 are small and good enough, so we

can use the linear approximation formula that is suggested in this research.

6.2 COMPARISON OF ERROR STATISTICS

After calculating the error statistics for different number of stations of production
lines, in this part we want to show the errors in a plot. Error analysis for two types
of formula was conducted. First the error analysis was calculated according to the
quadratic ratio formula. After that the error statistic analysis was conducted for the

approximated formula.

Figure 6.1, illustrates the error statistics for three, four and five station production

line according to a quadratic ratio formula (5).

41



2.5 T T

1.5F

Error

4
it
r i
i
i Il
,.{\‘ 1
£ X ra ﬁ'! I fi y
; . f/ RV »“.!{\ (TANY 2N
."L‘\E"-."r‘{ \'f:!ﬁ‘\/‘/-" %‘\L{" il

40 50 60 70
Number of points

Figure 6.1 Errors according to a Quadratic Ratio Formula

Figure 6.2, shows the error statistics for three, four and five station production line

according to the approximated formula that is proposed in this research.
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Figure 6.2 Errors according to the Approximated Formula
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6.3 ERROR PLOT FOR THE PRODUCTION RATE FUNCTION

In this part, we will show the error sequences according to the approximated

function. The error sequence for every station is illustrated separately. Error

sequence for a three-station production line versus number of points, is shown in

Figure 6.3. The amount of samples in three-station production line is equal to 200.

Figure 6.3 illustrates the amount of errors are between 0 to 0.004.

Every point relates to a specific combination of failure and repair probability

values. The failure probability is varied over the whole sample range, whereas the

repair probability is variable over every value of failure probability.
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Figure 6.3 Error Plot for the Production Rate Function (3-station)

Figure 6.4 illustrates the error sequence for four-station production line versus

number of points. The amount of data points in four-station production line is

equal to 100. Figure 6.4 shows, the amount of errors are between 0 to 0.002.

43



0.01

0.008

0.006

0.004

0.002

-0.002

Production Rate Error
[}

-0.004
-0.006

-0.008

-0.01
0

T

[

T

\ A A - i
Dvmma e Nema VTS VY

7
-

I

4 A & 4 - RApen  Ars Ars e
- , N/ \ 7

N WA VAR AN,

r L L I [ L r d L.

10 20 30 40 50 60 70 80 90 100
Number of points

Figure 6.4 Error Plot for the Production Rate Function (4-station)

The sequence of errors for the production rate function for five-station production

line is shown in Figure 6.5. The amount of data points in five-station production

line is equal to 100. Figure 6.5 illustrates, the amount of errors are between 0 to

0.002.
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Figure 6.5 Error Plot for the Production Rate Function (5-station)

Above figures demonstrate the forecast error sequence for a three, four and five
station production line versus number of points. Each sample relates to a specific

combination of failure and repair probability values.

Figure 6.6 demonstrates that the failure probability is varied over the whole
number of points, also the repair probability is variable over every value of failure

probability.
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The accuracy of the obtained rational fit is considered more than adequate. As a
result, the error analysis showed that the approximated formula yield very

effective approximations.

6.4 RATIONAL-FIT FORECASTING

Conducting analysis on exact results that were gathered, shows that the important
performance measures can also be estimated by relatively easy rational equations
as a function of particular line characteristics, namely the failure probabilities and
repair probabilities. In this research, all stations have the same failure and repair
probability because, only lines with identical machines are considered.
Consequently, it is shown that the approximated function to forecast the expected
production rate is effective. As the error analysis shows, the approximate formula
can be used most adequately and computationally more effective instead of the

exact solutions for lines with identical machines.
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CHAPTER 7: CONCLUSION

7.1 CONCLUDING REMARKS

This research study is focused on approximating formula for the performance

measures of bufferless production lines. Discrete-time Markov chain method is

conducted to find exact formula for two-station production line. In order to find

exact formula, transition probability for two-station production line is found.

To find the production line system behavior, the results for three, four and five-
station production lines were analyzed in detail. Production rate that is one of
critical performance measures of production line were analyzed to establish valid

formulas in accordance with the system parameters.

In this research, we approximated a linear formula for different number of
stations. Also a curve-fit analysis was conducted to forecast the production rate a

reasonable accuracy.

Error analysis showed that linear regression is not an appropriate method for such
data, so nonlinear least-square method is conducted. Results of the error analysis
for nonlinear least-square method was so good. In this study all steps such as:
curve-fitting, 3D plots, nonlinear least-square method and etc... is conducted in

MATLAB software.

7.2 FUTURE WORK

This study provided exact formula for two-station production line by constructing
transition probability matrix of Markov chain method. In addition, formula for
three, four and five station production line is approximated. The formula shows
the relation between production rate, failure and repair probability. Lines with
identical machines are curve-fitted to obtain useful approximate equations for the

production rate measures.

Further research can be devoted to include intermediate storage (buffers) between
the stations. Approximating formula for the production lines with non-identical
machines also can be conducted. Moreover, according to the analysis of the

system behavior of three, four and five station production lines, the model for
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more than five station production lines can be simulated with appropriate

simulation methods.
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APPENDIX 1

SAMPLE OF ANALYSIS RESULTS FOR TWO-STATION

Failure Repair Production Rate | Production Rate Error
Probability (q) Probability (r) (real) (Linear
Approximation
Formula)
0.01 0.05 0.709810596 0.707142502 0.002668095
0.02 0.05 0.550864046 0.548572473 0.002291573
0.03 0.05 0.450542699 0.44863409 0.001908609
0.04 0.05 0.381459899 0.379882471 0.001577428
0.05 0.05 0.330988829 0.329689736 | 0.001299093
6.06 0.05 0.292499782 0.291434826 0.001064956
0.07 0.05 0.262177632 0.26131145 0.000866182
0.08 0.05 0.237671522 0.236976009 0.000695513
0.09 0.05 0.217453871 0.216906566 0.000547305
0.1 0.05 0.200488998 0.200071775 0.000417222
0.01 0.1 0.826911421 0.824968794 0.001942626
0.02 0.1 0.705571072 0.704076745 0.001494327
0.03 0.1 0.615787123 0.614605667 0.001181455
0.04 0.1 0.546663661 0.545714503 0.000946158
0.05 0.1 0.491803279 0.491035041 0.000768237
0.06 0.1 0.447202701 0.446580827 0.000621875
0.07 0.1 0.410228645 0.409728878 0.000499767
0.08 0.1 0.37907796 0.378682675 0.000395285
0.09 0.1 0.352474406 0.352170423 0.000303983
0.1 0.1 0.329489292 0.329266509 0.000222782
0.01 0.15 0.875033323 0.873482947 0.001550376
0.02 0.15 0.778453085 0.777547403 0.000905682
0.03 0.15 0.701571071 0.701057417 0.000513655
0.04 0.15 0.638916434 0.638644792 0.000271642
0.05 0.15 0.586872587 0.586750773 0.000121814
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APPENDIX 2

SAMPLE -OF ANALYSIS RESULTS FOR THREE-STATION

Failure | Repair | Production Production Error Production Error (Linear
Probab | Probabi | Rate (real) Rate (Quadratic Rate (Linear Approximation
ility (q) | ity () (Quadratic Formula) Approximation Formula)
Formulza) Formula)
0.01 0.05
0.627778 0.62676865 | 0.00100935 | 0.625948435 0.001829565
0.02 0.05 ) ;
. 0.46039 0.459241915 | 0.001148085 0.459100485 0.001289515
0.03 0.05
0.365228 0.36446686 0.00076114 0.36418061 0.00104739
0.04 0.05
0.303833 0.303493451 0.000339549 0.302924445 0.000908555
0.05 0.05
0.260936 0.260965481 2.94814E-05 0.260120878 0.000815122
0.06 0.05 )
0.229266 0.229605317 | 0.000339317 0.22852346 0.00074254
0.07 0.05 ) ]
0.204924 0.205518917 | 0.000594917 0.204240853 0.000683147
0.08 0.05 '
0.185627 0.186434181 0.000807181 0.184996496 0.000630504
0.09 0.05
0.169952 0.170936122 | 0.000984122 0.169369738 0.000582262
0.1 0.05
0.156966 0.158097536 | 0.001131536 0.156428152 0.000537848
0.01 0.1
0.771386 0.771300176 | 8.58237E-05 0.769643878 0.001742122
0.02 0.1
0.630645 0.629910229 | 0.000734771 0.629597649 0.001047351
0.03 0.1
0.535267 0.534586089 | 0.000680911 0.534496738 0.000770262
0.04 0.1
0.466356 0.465951665 | 0.000404335 0.465696404 0.0006595%96
0.05 0.1
0.414229 0.414161388 6.76116E-05 0.413611714 0.000617286
0.06 0.1
0.373415 | 0.373682139 | 0.00026713% 0.37281072 0.00060428
0.07 0.1
0.340588 0.34116516 0.00057716 0.339985018 0.000602982
0.08 0.1
0.313608 0.314464956 | 0.000856956 0.313004426 0.000603574
-0.09 0.1 : :
0.291037 0.292143402 | 0.001106402 0.290435366 0.000601634
0.1 0.1 :
0.271875 0.273200413 0.001325413 0.271277629 0.000597371
0.01 0.15 g g
0.835063 0.835440529 | 0.000377529 0.83341825 0.00164475
0.02 - 0.15 . ' ’
0.71932 0.718953168 | 0.000366832 0.718547129 0.000772871
0.03’ 0.15 ) ’
] ‘ 0.633606 0.633100015 | 0.000505985 0.633207297 0.000398703
0.04 0.15
0.567566 0.567183512 | 0.000382488 0.567307% 0.0002581
0.05 0.15
0.515117 0.514967785 | 0.000149215 0.514885385 0.000231615
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"APPENDIX 3

SAMPLE OF ANALYSIS RESULTS FOR FGUR-STATION

Failure | Repair Production Production Error Production Error (Linear
Probab | Probabili | Rate (real) Rate (Quadratic Rate (Linear | Approximation
ility (q) | ty (r) (Quadratic Formula) Approximation Formula)
Formula) Formula)
0.01 0.4
0.911099 0.911032787 6.62132E-05 | 0.909842498 0.001256502
0.02 0.4
0.839921 0.840043416 0.000122416 0.84027663 0.00035563
0.03 0.4
0.781602 0.781721439 0.000119439 0.782610693 0.001008693
0.04 0.4 .
' 0.732907 0.732923123 1.61235E-05 0.734031865 0.001124865
0.05 0.4
0.691607 0.691465952 0.000141048 0.692549079 0.000942079
0.06 0.4
0.656111 0.655787328 0.000323672 0.656713355 0.000602355
0.07 0.4
0.625256 0.624739061 0.000516939 0.625445075 0.000189075
0.08 0.4
0.598169 0.597458527 0.000710473 0.597923335 0.000245665
0.09 0.4 :
0.574187 0.573285077 0.000901923 0.573512837 0.000674163
0.1 0.4
0.552791 0.551704196 0.001086804 0.55171423 0.00107677
0.01 0.45
0.920246 0.920026328 0.000219672 0.918968687 0.001277313
0.02 0.45
0.855318 0.85537148 5.34803E-05 0.855682457 0.000364457
0.03 0.45 .
0.801388 0.801464378 7.63779E-05 0.802427746 0.001039746
0.04 0.45 :
0.755844 0.755800898 4,3102E-05 0.756994558 0.001150558
0.05 0.45 -
0.716841 0.71659919 - 0.00024181 0.717777653 0.000936653
0.06 0.45 ‘ ‘ )
0.68304 0.682556772 0.000483228 0.68358293 0.06054293
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0.07 0.45

0.653444 | 0.652699482 | 0.000744518 | 0.65350372 5.97196E-05
0.08 0.45 _ |

0.627297 | 0.626284153 | 0.001012847 |- 0.626839211 | 0.000457789
0.09 0.45

0.604015 | -0.602733972 | 0.001281028 | 0.603039161 | 0.000975839
0.1 0.45

0.583139 | 0.581594396 | 0.001544604 | 0.581665525 | 0.001473475
0.01 0.5

0.9277 0.927300821 | 0.000399179 | 0.926402522 | 0.001297478
0.02 0.5

0.868058 | 0.868010821 | 4.71791E-05 | 0.868419907 | 0.000361907
0.03 0.5

0.817974 | 0817972974 | 1.02615E-06 | 0.819018923 | 0.001044923
0.04 0.5

0.775284 | 0.775149474 | 0.000134526 | 0.776425675 | 0.001141675
0.05 0.5 ‘

0.738434 | 0.738060431 | 0.000373569 0.000889657

0.739323657
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APPENDIX 4

Production

Failure | Repair Production Error Production Error (Linear
Probabili | Probabi | Rate (real) Rate (Quadratic Rate (Linear Approximation
tv (q) lity (r) ; (Quadratic Formula) Approximation Formula)
Formula) Formula)
0.01 0.4 ;
0.892435 0.891886821 0.000548179 0.890914801 0.001520199
0.02 0.4 i 7
0.811092 0.811205433 0.000113433 0.811816802 0.000724802
0.03 0.4
0.747299 0.747554004 0.000255004 0.748730152 0.001431152
0.04 0.4 _
0.695836 0.696022313 0.000186313 0.697240055 0.001404055
0.05 0.4
0.653373 0.653422618 4.96178E-05 0.654418147 0.001045147
0.06 0.4
0.617682 0.61759525 8.67497E-05 0.618245479 0.000563479
0.07 0.4
0.58722 0.587025085 0.000194915 0.58728492 6.49204E-05
0.08 0.4
0.560881 0.560617781 0.000263219 0.560485659 0.000395341
0.09 0.4
0.537853 0.537563183 0.000289817 0.537061569 0.000791431
0.1 0.4
' 0.517524 0.517248699 0.000275301 0.516412804 0.0011111%96
0.01 0.45
0.90333 0.902556821 0.000773179 0.901771365 0.001558635
0.02 0.45
0.82879 0.8288621 7.20997E-05 0.829541499 0.000751499
0.03 0.45
0.769438 0.76974384 0.00030584 0.770938113 0.001500113
0.04 0.45
0.720969 0.721234167 0.000265167 0.722437543 0.001468543
0.05 0.45
0.680569 0.680685848 0.000116848 0.681634621 0.001065621
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0.06 0.45

0.646323 | 0.646265052 | 5.79482E-05 | 0.646831513 | 0.000508513
0.07 0.45

0.616879 | 0.616661222 | 0.000217778 | 0.616795497 | 8.35027E-05
0.08 0.45

0.591258 | 0.590912856 | 0.000345144 | 0.590609908 | 0.000648092
0.09 0.45

0.568733 | 0.568298555 | 0.000434445 | 0.567578944 | 0.001154056
0.1 0.45

054875 | 0.548266469 | 0.000483531 | 0.547164926 | 0.001585074
0.01 05

0.912246 | 0911224075 | 0.001021925 | 0.910648999 | 0.001597001
0.02 05

0.843533 | 0.843539737 | 6.73692E-06 | 0.844288429 | 0.000755429
0.03 0.5

0.788148 | 0.788487104 | 0.000339104 | 0.789676075 | 0.001528075
0.04 0.5 |

0.742466 | 0.742800135 | 0.000334135 0.74394585 0.00147985
0.05 05

0.70407 | 0.704249704 | 0.000179704 | 0.705093834 | 0.001023834
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APPENDIX 5

NON-LINEAR REGRESSION WITH MATLAB

function f= fSSR(a,q,r,p)
yp = (a(1)*q*r'+a(2)*r)/(a(3)*q*r'+a(4)*r+a(5)*q);

= sum((p-yp)."2);

cle

clear all

st3 = xlsread('P3.x1sx");
q3=st3(:,1)}
r3=st3(:,2)}

p3=st3(:,3)}

a=fminsearch(@fSSR, [1, 1, 1, 1, 11, [1, 3,13, p3)

%a=fminsearch(@fSSR, [7, 6, 5, 6, 20], [], q3.13, p3)
%a=fminsearch(@fSSR, [al, a2, a3, a4, a5], [], q3.13, p3)
yp = (a(1)*q3*r3'+a(2)*r3)/(a(3)*q3*r3'+a(4)*r3+a(5)*q3);
ee = sum((p3-yp)."2)

e_mean=ee/200
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APPENDIX 6

NELDER-MEAD ALGORITHM PROCEDURE

Nelder-Mead algorithm uses a simplex of n+1 points for n-dimensional vectors x.

The algorithm first makes a simplex around the initial guess xq by adding 5% of

each component x(i) to Xo, and using these n vectors as elements of the simplex

in addition to xg. Then, the algorithm modifies the simplex repeatedly according

to the following procedure.

1.
2.

Letx(i) for:i=1,...,n+1. _
Order the points in the simplex from lowest function value f(x(1)) to

highest f(x(n+1)). At each step-in the iteration, the algorithm discards the

~ current worst point x(n+1), and accepts another point into the simplex.

Generate the reflected point
r=2k—x(n+1),

Where
k=Y %)y 1:1,2; .40
And calculate f{r).

If f(x(1)) < 1(r) < f(x(n)), accept r and terminate this iteration. Reflect

5. If f(r) < f(x(1)), calculate the expansion point s

s=k+2(k-x(ntl)),

and calculate f{s).

5.1. If f(s) <f{(r), accept s and terminate the iteration. Expand
5.2. Otherwise, accept r and terminate the iteration. Reflect

If f(r) = f(x(n)), perform a contraction between m and the better of x(n+1)

and r:
6.1 If f(r) < f(x(n+1)), calculate
c=k+(@-k)2

and calculate f(c). If f(c) <f(r), accept ¢ and terminate the iteration.

Contract outside Otherwise, continue with Step 7 (Shrink).
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6.2 If f(r) = f(x(n+1)), calculate
cc=m+ (x(n+1)—k)/2

and calculate f(cc). If f(cc) <f(x(n+1)), accept cc and terminate the

iteration. Contract inside Otherwise, continue with Step 7 (Shrink).
. Calculate the n points
v(i) =x(1) + (x(1) —x(1))/2
and calculate f(v(i)), i = 2,...,n+1. The simplex at the next iteration is x(1),

V(2),...,v(n+1). Shrink.
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APPENDIX 7

MATLAB CODE FOR PRODUCTION RATE VERSUS REPAIR
PROBABILITY PLOT FOR THREE STATION

cle
clear all

r3_01=[0.05;0.1;0.15;0.2;0.25;0.3;0.35;0.4;0.45,0.5,0.55;0.6;0.65;0.7,0.75;0.8;0.8

50.9:0.95:11;

p3_01=[0.627778;0.771386;0.835063;0.871016;0.894115,0.910209;0.922065;0.9
31164;0.938368;0.944213;...

0.949051;0.953123;0.956597;0.959598;0.962215;0.964519;0.966563;0.968389;0.
970032;0.971517];

p3_1=[0.156966;0.271875;0.359663;0.428944:0.485038;0.531403;0.57039;0.603
65,0.632379;0.657461;...

0.679569;0.699221 ;0.716825;0.732705;0.747123;0.760294;0.772396;0.78358;0.7
93971;0.803681]; '

plot(r3_01,p3 01,%--,'LineWidth',2);
hold on

plot(r3 01,p3 1.%k-.",'LineWidth',2);
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%axis([0 20 -1 1)
Y%grid on .

legend('q=0.01','q=0.1",'n=5");%, Non-optimal Solution','Equation (35)");

xlabel('r ','fontsize',12)

ylabel('production rate','fontsize’,12)

. ¥ e 1 %
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APPENDIX §

MATLAB CODE FOR PRODUCTION RATE VERSUS REPAIR
PROBABILITY PLOT FOR 2, 3, 4, AND 5 STATION

cle

clear all

r2_01=[0.05;0.1;0.15;0.2;0.25;0.3;0.35;0.4;0.45;0.5];

p2_01=[0.709810596;0.826911421,0.875033323;0.901259772;0.917766074;0.92
9112182;0.937391599;0.94370036;0.948667878;0.952681388];

p2_1=[0.200488998;0.329489292;0.419505199;0.485933504;0.53701016;0.5775
40107;0.610515824;0.637898687;0.661028266;0.680851064];

r3 01=]0.05;0.1;0.15;0.2;0.25;0.3;0.35;0.4;0.45;0.5];

p3_01=[0.627778;0.771386;0.835063;0.871016;0.894115,0.910209;0.922065;0.9
31164;0.938368;0.944213];

p3_1=[0.156966:0.271875;0.359663;0.428944;0.485038;0.531403;0.57039;0.603
65;0.632379;0.657461]:
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r4_01=[0.05;0.1;0.15;0.2;0.25;0.3;0.35;0.4;0.45;0.5];

p4_01=[0.560537;0.718496;0.792988;0.836347,0.864719;0.884732;0.899607;0.9
11099;0.920246;0.92771; |

pS_01=[0.507507;0.673476;0.75588:0.805144:0.837917;0.861295;0.878815;0.89
2435;0.90333;0.912246];

p4_1=[0.129988;0.230797;0.3113;0.377106;0.431938;0.478359;0.518198;0.5527
91;0.583139;0.610007];

p5_1=[0.113733;0.2051 ]4;0.280187;0.343003;0.396376;0.442326;0.482336;0.51
7524;0.54875;0.576681];

figure (1)

Y%plot(r2_01,p2_01,'b-", LineWidth',2);

hold on
plot(r2_01,p2_1,'b-.",'LineWidth',2);
hold on

Yoplot(r3_01,p3 01,k-','LineWidth',2);
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hold on

plot(r3_01,p3 1,k-\'LineWidth',2);
hold on
%plot(r4_01,p4_01,%k-.",'LineWidth',2);
hold on
plot(r4_01,p4_1,%-.",'LineWidth',2);
hold on

%plot(r4 01,p5_01,'%k--",'LineWidth',2);
hold on

plot(r4 01,p5 1,k--''LineWidth',2);

Y%axis([020 -1 1])
Yogrid on

legend('q=2 station','q=3 station','q=4 station','q=5 station");%, Non-optimal
Solution','Equation (35)");

xlabel('r','fontsize',12)

ylabel('production rate','fontsize',12)

% figure (2)

% plot(r4_01,p4 1,k-',LineWidth',2);
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% hold on

% plot(r4 -01,p5_1,k-.",'LineWidth',2);
Y%axis([0 20 -1 1])

%grid on

%legend('q=4 station','q=5 station");%, Non-optimal Solution','Equation (35)");
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APPENDIX 9

MATLAB CODE FOR ERROR PLOT FOR THE PRODUCTION
RATE FUNCTION (THREE-STATION)

cle

clear all

st3 = xlsread('P3.xls");
err=st3(:,7);
s=1:length(err);

plot(s,err,'k--','LineWidth',2);

axis([0 200 -0.01 0.01])

%grid on

Yolegend("); %,

xlabel('Samples ','fontsize’,12)

ylabel('Production Rate Error','fontsize',12)
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APPENDIX 10

MATLAB CODE FOR ERROR PLOT FOR THE PRODUCTION
RATE FUNCTION (FOUR-STATION)

cle

clear all

st4 = xlsread('P4 x1s");
err=st4(:,7);

- s=1:length(err);
plot(s,err,'k——','LiﬁeWidth‘,Z);
axis([0 100 -0.01 0.01])
%grid on

%legend(™);%,

xlabel('Samples ','fontsize',12)

ylabel('Production Rate Error','fontsize',12)
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APPENDIX 11

‘MATLAB CGDE FOR GENERATION OF DATA SAMPLES

cle

clear all

st3 = xlsread('P3.xls";
q3=st3(:,1);

%st4 = xlsread('P4.xIsx");
%qd=st4(:,1);

%st5 = xlsread('P5.x1s");
%q5=st5(:,1);

s=1:100;

plot(s,q3(1:100),'k-', LineWidth',2);
% hold on

% plot(s,q4,'k-.", LineWidth',2);

% hold on

% plot(s,q5, k-, LineWidth',2);
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plot(s,q3(1:100),k-",'LineWidth',2);
% hold on

% plot(s,q4,'k-.",'LineWidth',2);

% hold on

% plot(s,q5,k--", LineWidth',2);
xlabel("Samples ','fontsize',12)

ylabel('q','fontsize’,12)

st3 = ‘xlsread(‘PB xlsx');
r3=st3(:,2);

st4 = xlsread('P4.x1sx");
rd=st4(:,2);

st5 = xlIsread('P5.x1sx");
r5=st5(:,2);

s=1:100;

plot(s,r3(1: 100),'k—','LiﬁeWidth',2);
% hold on

% plot(s,r4,k-.", LineWidth',2);
% hold on

% plot(s,r5,'k--",'LineWidth',2);

70



xlabel('Samples ','fontsize',12)

ylabel('r','fontsize',12)
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APPENDIX 12

MATLAB CODE FOR ERROR PLOT FOR THE PRODUCTION
RATE ACCORDING TO A QUADRATIC APPROXIMATION
FORMULA

cle

clear all

st3 = xIsread('p3 Markov .xls");

err3=st3(:,7);

T MU

st4 = xlsread('p4 Markov.xlsx");

i errd=std(:,7);

st5 = xIsread('p5S Markov.xlsx");
err5=st5(:,7);

s=1:100;

plot(s,err3(1:100),'k-",'LineWidth',2);
hold on

plot(s,errd,'k-.",'"Line Width',2);

hold on

plot{s,err5,'k--",'LineWidth',2};
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Yoaxis([0 200 -0.1 0.17)
Yogrid on

legend('3','4",'5");%,

xlabel("Samples ','fontsize',12)

ylabel('Error','fontsize',12)
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APPENDIX 13

MATLAB CODE FOR ERROR PLOT FOR THE PRODUCTION
RATE ACCORDING TO A LINEAR APPROXIMATION
FORMULA

> e

L vevm——

SS———

cle

clearall

%ost3 = xlIsread('P3.x1s");
Y%err3=st3(:,8);
err3= importdata('P3.txt");

st4 = xlIsread('P4.x1sx");
errd=std(:,7);

st5 = xlIsread('P5.x1sx");
err5=st5(:,7);
s=1:100;

plot(s,err3(1:100),k-','LineWidth',2);
hold on
plot(s,err4,’k-.",'LineWidth',2);

hold on
plot(s,err5,'’k--','"LineWidth',2);

%oaxis([0 200 -0.1 0.1])
%ogrid on
legend('3','4",'5");%,

xlabel('Samples ','fontsize',12)

ylahel("Error','fontsize',12)
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