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ABSTRACT

DEVELOPMENT OF A NON-ORDINARY STATE-BASED
PERIDYNAMICS SOLVER

Rico Morasata
M.S. in Mechanical Engineering

Advisor: Ali Javili
September 2019

Damage prediction is crucial in the design process of engineering structures to ensure struc-
tural integrity. The limitations of empirical methods and the high costs associated with
experimental analyses have prompted the development of numerical methods to predict the
initiation and/or propagation of cracks under prescribed loading conditions. While various
methods exist for failure prediction, their formulations rely on partial differential equations
with spatial derivatives. As a result, these methods require special treatments in order to
accurately capture the underlying failure mechanisms. To overcome these limitations, the
peridynamic theory has been introduced as a novel, nonlocal continuum formulation. In
contrast to the other methods, it is expressed as an integro-differential equation devoid of
spatial derivatives, hence applicable to structural analyses involving discontinuities. This
project aims to elaborate on the development of a solver based on a specific variant of the
peridynamic formulation to investigate the behavior of two- and three-dimensional structures
under certain loading conditions. The current code is developed to solve quasi-static prob-
lems related to damage initiation and propagation. In addition, it is aimed to show that
peridynamics can capture local, hyperelastic deformations. The overall structure of the code
is reviewed and the potential extensions of the current work are discussed.

Keywords: Damage Prediction, Peridynamics, Cracks, Nonlocal Continuum Formulation.
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ÖZET

TİPİK OLMAYAN DURUM BAZLI PERİDİNAMİK YÖNTEMİ
ÇÖZÜCÜSÜNÜN GELİŞTİRİLMESİ

Rico Morasata
Makine Mühendisliği, Yüksek Lisans

Tez Danışmanı: Ali Javili
Eylül 2019

Hasar tahmini mühendislik yapılarının tasarım sürecinde yapısal bütünlüğü sağlamak için
kritiktir. Ampirik yöntemlerin sınırlamaları ve deneylerin yüksek maliyetleri yüzünden, çat-
lakların başlatması ve/veya yayılmasını verilen yükleme koşulların altında tahmin edebilmek
için, sayısal yöntemlerin geliştirmesi teşvik edilmiştir. Hasar tahmini için çeşitli yöntem-
ler mevcut olmasına rağmen, onların formülasyonları gerilme tensörün bileşenlerin türev-
leri ile kısmi diferansiyel denklemlere dayanır. Bu sınırlamaları atlatmak için, peridinamik
teorisi yeni yerel olmayan bir denklem olarak tanıtılmıştır. Diğer yöntemlerin aksine, ger-
ilme tensörün bileşenlerin türevlerini içermeyen bir integro-diferansiyel denklem olarak ifade
edilmiştir. Bu yüzden süreksizlikler içeren yapısal analizlere uygulanabilir. Bu projenin
amacı iki ve üç boyutlu yapıların öngörülen yükleme koşulları altında davranışlarını araştır-
mak için, peridinamik yöntemin spesifik bir çeşitine dayanan bir çözücünün geliştirilmesini
açıklamaktır. Mevcut kod hasar başlatması ve yayılması ile ilgili statik problemleri çözmek
için geliştirilmiştir. Ve, mevcut yöntemin yerel deformasyonların yakalabileceği gösterilmiştir.
Kodun genel yapısı gözden geçilir ve mevcut çalışmanın potansiyel uzantıları tartışılmıştır.

Anahtar sözcükler: Hasar tahmini, Peridynamics, Çatlaklar, Nonlocal Continuum Formülasy-
onu .
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Chapter 1

Introduction

1.1 Fracture Mechanics Overview
Prediction of material damage and failure by means of numerical simulations remains a chal-
lenge in Computational Mechanics. Numerical methods for structural analysis are essentially
based on the governing equations of Classical Continuum Mechanics (CCM) which are par-
tial differential equations with spatial derivatives. As a result, difficulties emerge when the
physical body under consideration contains discontinuities such as cracks. Inglis [1] proposed
empirical relations to evaluate the stress concentrations in the vicinity elliptical holes using
the linear elasticity theory. Since the latter assumes a continuous displacement field, these re-
lations yield non-physical stress values at sharp crack tips. Aware of these results, Griffith [2]
introduced an energy-based approach to predict fracture strength in brittle materials. His
pioneering works laid the foundation of Linear Elastic Fracture Mechanics (LEFM). As noted
in [3], LEFM is only applicable if the body under consideration has a pre-existing crack. Fur-
thermore, crack growth requires the definition of external criteria. The application of LEFM
into the Finite Element Method (FEM) necessitates special treatments such as remeshing
the body after an incremental crack growth, so that the crack lies on element boundaries. In
addition, the crack growth is defined a priori by means of a mathematical relation. These
requirements affect the adequacy of the traditional FEM for practical applications involving
cracks.
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Various techniques have been developed to address these shortcomings including the cohesive
zone concept [4, 5, 6], then the cohesive zone model (CZM) [7] as well the eXtended Finite
Element Method (XFEM) [8] which is based on the concept of partition of unity method [9].
Nonetheless, these techniques have drawbacks: for the CZM, mesh quality significantly affects
crack propagation and remeshing the body is necessary [10]. Although the XFEM allows
for crack propagation across elements, it was observed that the method yields inaccurate
solutions for problems involving complex crack interactions due to partial element enrichment
around the crack tip [11]. Eringen [12] noted that the CCM formulation does not possess
an internal length scale parameter that enables multiscale modeling. In contrast, due to
the drastic differences in the associated length and time scales, Molecular Dynamics (MD)
simulations are impractical for real-world problems at the macroscale. Consequently, nonlocal
continuum theories have been introduced to account for long-range effects [13].

As indicated in [3], despite their ability to capture phenomena across different length scales,
nonlocality in nonlocal theories is accounted for by means of strain averaging, i.e., their
formulations still involve spatial derivatives, which is problematic when discontinuities are
present in the domain.

To circumvent the difficulties associated with the aforementioned theories, Silling [14] in-
troduced peridynamics as a novel continuum formulation, mathematically expressed as an
integro-differential equation without spatial derivatives.

1.2 Aspects of the Peridynamics Theory
The first peridynamics (PD) formulation is referred to as bond-based peridynamics (BB-PD).
Its fundamental assumption is that a continuum body is subdivided into infinitely many
points of finite volume called material points, each of which interacts with those within its
neighborhood through pairwise interactions of equal magnitude. As a result, several restric-
tions are imposed on material properties [3]. As a remedy, an improved version of the PD
formulation called state-based peridynamics (SB-PD) has been introduced [15]. There are two
main types of SB-PD formulations: ordinary state-based peridynamics (OSB-PD) and non-
ordinary state-based peridynamics (NOSB-PD) formulations. In the OSB-PD formulation,
the forces between the material points act along the same line of action but are of unequal
magnitudes. In contrast, in the NOSB-PD formulation, the forces have different magnitudes
and can act in arbitrary directions. Therefore, the NOSB-PD formulation encompasses the
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BB-PD and OSB-PD formulations and is the main focus of the current work. Since its in-
troduction, PD has been attractive to researchers across a plethora of disciplines. Recently,
Javili et al. [16] identified the main applications of PD up to date in various domains. Upon
examining the literature, it is noted that the main applications of PD are problems involving
damage and failure prediction. These analyses are generally carried out using the BB-PD
or the OSB-PD formulations. Notably, Liu et al. [17] developed a highly parallel, three-
dimensional BB-PD code to simulate the behavior of ductile and brittle materials. Hu et
al. [18] developed a BB-PD model to investigate progressive damage in composite laminates.
Oterkus et al. [19] incorporated heat conduction within the OSB-PD framework and analyzed
the deformation of pre-cracked structures subjected to thermal and mechanical loads.

It is worth mentioning that multiple material behaviors have been simulated by incorporat-
ing classical continuum models into the NOSB-PD formulation. In particular, Warren et
al. [20] implemented an isotropic elastic–plastic linear hardening constitutive model to ana-
lyze three-dimensional structural deformations under transient dynamics. Foster et al. [21]
extended their work and implemented a viscoplastic constitutive model within the peridy-
namic framework. Furthermore, the Johnson-Cook plasticity model has been incorporated
into the NOSB-PD formulation in [22], then in the work of Amani et al. [23] in the context
of thermoplastic fracture. Recently, Lai et al. [24] used the modified Johnson-Holmquist
material model to analyze impact-induced fracture in quasi-brittle materials.

1.3 Motivation
Given the importance of damage prediction in structural design and the costs associated
with experimental procedures, tremendous efforts have been dedicated to the development
of robust and accurate numerical methods.

Recently, it is noted that there has been a growing interest in meshless methods for compu-
tational mechanics problems due to their flexibility in handling problems with large deforma-
tions and evolving discontinuities [25]. In contrast to the FEM which requires nodal connec-
tivity, the discretization does not require an underlying structure but consists of nodes only;
hence they are not affected by mesh distortion, mesh reconstruction and the challenges asso-
ciated with the discretization of three-dimensional geometries [26, 25]. Among the most com-
mon meshless methods are the Smoothed Particle Hydrodynamics, the Reproducing Kernel
Particle Method, the element-free Galerkin method and the Meshless Local Petrov-Galerkin
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method. In the literature, applications of meshless methods to solid mechanics problems
include metal forming [27, 28], hyperelastic deformations [29], fracture modeling [30, 31].

Marder [32] reviewed the analytical theories and numerical simulations associated with the
use of particle methods in fracture modeling. PD is described as “one of the first and cer-
tainly the best-developed particle method in which the particles are not atoms”. Indeed,
PD has been successfully applied to a wide range of problems as shown in [16]. Further-
more, significant advances have been made in the numerical implementation of PD. The
earliest contribution regarding the numerical implementation of PD is the code called EMU
developed by Silling [33]. It is noted that Parks et al. [34] implemented PD within the MD
code LAMMPS [35]. Macek and Silling [36] implemented the discretized BB-PD within the
ABAQUS commercial finite element (FE) code. The authors emphasized the importance
of a PD-FE coupling for damage prediction problems in terms of computational efficiency.
To date, the most effective numerical implementation of PD is the open-source, massively
parallel code Peridigm [37], developed by Sandia National Laboratories. It implements the
OSB-PD and NOSB-PD formulations and has been used in numerous problems involving pro-
gressive damage, high-velocity impact and fragmentation. Also, the code may be extended to
include custom constitutive models. Despite its remarkable features, the available documen-
tation on user-defined material models is limited and the potential definition of user-defined
damage models has not been indicated. The possibility to incorporate material models from
CCM into the NOSB-PD formulation is highly advantageous for more realistic simulations
of structural behaviors. The aforementioned contributions have motivated the present work
in developing a computational framework for the qualitative and quantitative predictions of
material damage and failure as well as hyperelastic deformations under prescribed loading
conditions. The code is written following an object-oriented design approach.

1.4 Research Objectives and Outline
The main purpose of this project is to develop an object-oriented, extensible structural solver
for the analysis of elastic deformations under various loading conditions. The code develop-
ment aims to:

• provide a deeper insight into the NOSB-PD formulation,

• elaborate on all aspects of its numerical implementation,
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• highlight the solver’s potentials for material modeling and coupling strategies.

This manuscript is organized as follows: Chapter 2 provides a detailed description of the
major peridynamic formulations. Chapter 3 elaborates on the material and damage models
considered herein. Chapter 4 discusses the different aspects of the numerical implementation,
particularly the discretization of equations, the construction of the tangent stiffness matrix
and integration schemes. Also, it expounds on elements of the solver design namely the
neighbor search and the matrix assembly technique. Finally, Chapter 5 provides an overview
of the code and highlights the potential extensions of the current project.
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Chapter 2

Theoretical Background

2.1 Fundamental Concepts
PD is a continuum mechanics theory in which the physical body is subdivided into material
points of finite volume. As a result, PD is, to some extent, similar to MD. MD deals with
discrete entities, i.e., atoms and molecules, at the nano- or microscale. The mutual inter-
actions between these particles are governed by the parameter known as cutoff radius δ. In
CCM, the state of a point within a body B is influenced by its immediate neighbors only.
Therefore, the concept of nonlocality does not arise. In contrast, in PD, each material point
within the continuum body B interacts with its neighbors located within a neighborhood Hx

delimited by the horizon δ.

Figure 2.1: Comparison of MD, CCM and PD.
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2.2 Governing Equation

2.2.1 Bond-based formulation

The peridynamic theory has been introduced in terms of the BB-PD formulation.

Figure 2.2: Kinematics of a peridynamic continuum.

For material points x and x′ in the reference configuration with x′ in the neighborhood of
x, let y and y′ denote their respective position vector in the current configuration. Let u

and u′ denote their respective displacements. The following quantities are defined

ξ = x′ − x , (2.1)

η = u′ − u , (2.2)

y = x+ u , (2.3)

y′ − y = ξ + η , (2.4)

s =
|ξ + η| − |ξ|

|ξ|
, (2.5)

where ξ denotes the relative position vector or bond, η the relative displacement vector and
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s the bond stretch. An alternative representation of the peridynamic formulation has been
introduced in [38] based on CCM kinematics.

The governing equation in the BB-PD formulation is

ρ ü(x, t) =

∫
H
f(η, ξ) dVx′ + b(x, t) , (2.6)

where ρ is the density of material point x, ü its acceleration, f a vector-valued pairwise force
function of unit N/m6, H the neighborhood and b the prescribed body force density of unit
N/m3. The pairwise force function is such that

f(−η, −ξ) = −f(η, ξ) ∀η, ξ , (2.7)

(η + ξ)× f(η, ξ) = 0 ∀η, ξ , (2.8)

where Eq. (2.7) is a restriction due to the Newton’s third law of motion and Eq. (2.8) is the
conservation of angular momentum [14].

A microelastic material [39] is a material for which there exists a scalar micropotential func-
tion w such that

f(η, ξ) =
∂w

∂η
(η, ξ) (2.9)

It is indicated that for a microelastic material, the two material points of a bond are “con-
nected by a (possibly nonlinear) spring”. Furthermore, the micropotential function w is such
that

ŵ(y, ξ) = w(η, ξ) ∀η, ξ (2.10)

The pairwise force function in Eq. (2.6) is of the form

f(η, ξ) =
ξ + η

|ξ + η|
f(|ξ + η|, ξ) ∀η, ξ (2.11)

f(|ξ + η|, ξ) = ∂ŵ

∂(|ξ + η|)
(|ξ + η|, ξ) ∀η, ξ (2.12)

Within the context of small deformations, Silling [14] defined the linearization of f(η, ξ) as

f(η, ξ) = C(ξ)η ∀η, ξ , C(ξ) =
∂f

∂η
(0, ξ) , (2.13)
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where C(ξ) is defined as the micromodulus tensor.

The material properties for the BB-PD formulation have been derived by Madenci and
Oterkus [3] and will be succinctly presented herein: For the BB-PD formulation, account-
ing for the pairwise interaction between material points, the force density vector t can be
expressed as

t(η, ξ, t) =
1

2
f(η, ξ, t) =

1

2
C

ξ + η

|ξ + η|
, (2.14)

t(−η, −ξ, t) = −1

2
f(η, ξ, t) = −1

2
C

ξ + η

|ξ + η|
, (2.15)

where C is a parameter dependent on material constants.

Let xk denote a material point in the reference configuration, xj a material point in the
neighborhood of xk and tkj the force density vector exerted by xj on xk. Using Eq. (2.1)
through (2.5), the peridynamic strain energy density at xk is given by

Wk = a θ2k − a2 θk ∆Tk + a3 (∆Tk)
2

+ b
N∑
j=1

wkj ((|yj − yk| − |xj − xk|)− α∆Tk |xj − xk|)2 Vj ,
(2.16)

where a, a2, a3, b are material parameters, θk the dilatation, α the thermal expansion coeffi-
cient, Vj the volume of material point xj, N the total number of neighbors of xk and ∆Tk the
temperature change at xk. wkj will be referred to as the influence function, a dimensionless
parameter in SB-PD.

The dilatation is defined as

θk = d
N∑
j=1

wkj (skj − α∆Tk)
yj − yk

|yj − yk|
· (xj − xk)Vj + 3α∆Tk , (2.17)

where d is a parameter such that θk is dimensionless and skj is the stretch of the bond
connecting xj and xk .

The force density vector tkj is

tkj =
1

Vj

∂Wk

∂(|yj − yk|)
yj − yk

|yj − yk|
(2.18)
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Plugging Eq. (2.17) into Eq. (2.16) and using Eq. (2.18), tkj is obtained as

tkj (uj − uk, xj − xk, t) =
1

2
A

yj − yk

|yj − yk|
, (2.19)

where

A = 4wkj

{
d

yj − yk

|yj − yk|
· xj − xk

|xj − xk|
(a θk −

1

2
a2∆Tk) + b ((|yj − yk| − |xj − xk|)

−α∆Tk |xj − xk|)}
(2.20)

Similarly
tjk(uk − uj, xk − xj, t) = −

1

2
B

yj − yk

|yj − yk|
, (2.21)

where
B = 4wjk

{
d

yk − yj

|yk − yj|
· xk − xj

|xk − xj|
(a θj −

1

2
a2∆Tj)

+b ((|yk − yj| − |xk − xj|)− α∆Tj|xk − xj|)
} (2.22)

Since tjk and tkj have equal magnitude, A = B. Therefore

ad = 0 (2.23)

As a result
C = 4 bwkj ((|yj − yk| − |xj − xk|)− α∆Tk |xj − xk|) (2.24)

Inserting Eq. (2.24) into Eq. (2.14) yields

f(uj − uk, xj − xk, t) = 4 bwkj |xj − xk| (skj − α∆Tk)
yj − yk

|yj − yk|
, (2.25)

which may be written as

f(uj − uk, xj − xk, t) = c (skj − α∆Tkj)
yj − yk

|yj − yk|
, (2.26)

where c is the bond constant [39].
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From dimensional analysis on Wk, it can be established that

c

b
= 4δ , (2.27)

The constraint arises from the explicit form of the influence function

wkj =
δ

|ξ|
(2.28)

The peridynamic material parameters are determined using simplifying assumptions on the
structure’s dimensions and by evaluating the strain energy density in Eq. (2.16) from a CCM
standpoint. The analysis is carried out considering simple loading cases, specifically isotropic
expansion and simple shear.
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Table 2.1: Material parameters evaluation in BB-PD.
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Additionally, derivations of the BB-PD bond constants for plane stress and plane strain
conditions have been presented in [40].

Thus, the traditional BB-PD model has several drawbacks in terms of modeling capabilities
due to the constraints on material parameters. Silling and Askari [39] introduced a failure
criterion at the bond level such that, beyond a specified limit referred to as the critical stretch,
the bond is permanently broken. This variant of the BB-PD model is known as the prototype
microelastic brittle (PMB) model.

Various attempts have been made to extend the BB-PD model. As observed by Han et
al. [41], overcoming the limitation on the Poisson’s ratio [42] has been a major research
focus. Furthermore, improved models account for particle rotations and shear deformations
for beams, bending of plates [43] as well as material anisotropy [44].

Despite its success in different types of problems, many challenges are still present. Notably,
the improved models are tailored to specific problems. Also, more advanced constitutive
models that can capture geometrically nonlinear deformations need to be developed.

2.2.2 State-based formulation

The state-based formulation was then proposed as a remedy to the limitations of BB-PD.
Specifically, the two forms of the state-based formulation relax the assumption of pairwise
interactions between material points: In the OSB-PD, the forces act in opposite directions
but have different magnitude. In the NOSB-PD, the forces between the material points can
act in arbitrary directions.

Central to the SB-PD theory is the concept of states. These objects are defined as mappings
of a vector ξ to a tensor of order m, m ∈ Z and m ⩾ 0. The mathematical properties of
states are thoroughly described in [15].

The following quantities are defined

X⟨ξ⟩ = ξ , (2.29)

Y ⟨ξ⟩ = y′ − y = (x′ + u′)− (x+ u) = ξ + η , (2.30)
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where X⟨ξ⟩ is referred to as the initial deformation state and Y ⟨ξ⟩ the current deformation
state.

Figure 2.3: Illustration of the BB-PD, OSB-PD and NOSB-PD formulations.

The governing equation of the NOSB-PD is expressed as

ρ ü(x, t) =

∫
H
{T [x, t]⟨ξ⟩ − T [x′, t]⟨−ξ⟩} dVx′ + b(x, t) , (2.31)

where T denotes the force state.

The linear peridynamic solid (LPS) [39] is one of the main constitutive models in the OSB-
PD theory. A material is said to be ordinary if there exist a scalar force state t and a vector
state M such that

T = tM , (2.32)
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where M⟨ξ⟩ = ξ + η

|ξ + η|
.

The force scalar state is given by

t =
3κ θ

m
ω |ξ|+ 15µ

m
ω ed , (2.33)

where ω is a spherical influence function and e denotes the extension scalar state given by

e[x, t]⟨ξ⟩ = |ξ + η| − |ξ| , (2.34)

The isotropic and deviatoric parts of e are respectively

ei =
θ |ξ|
3

, ed = e− ei. (2.35)

m is referred to as the weighted volume and is defined as

m[x] =

∫
H
ω (|ξ|)2 dVξ (2.36)

θ is the dilatation defined as

θ[x, t] =
3

m[x]

∫
H
ω |ξ| e[x, t]⟨ξ⟩ dVξ (2.37)

Seleson et al. [45] have shown that, for ν = 1/4, the LPS model recovers the PMB model
with

µ =
3

5
κ , (2.38)

t[x, t] ⟨ξ⟩ = 1

2

(
18κ

π δ4

)
s (2.39)

The main differences between the NOSB-PD and the CCM formulations are the definitions
of the balance laws. The term divσ is replaced by the integral operator in the NOSB-PD,
which permits a discontinuous displacement field (Table 2.2).
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Balance law PD CCM

Linear momentum
balance ρ ü(x, t) =

∫
H
{T [x, t]⟨ξ⟩ − T [x′, t]⟨−ξ⟩} dVx′ + b(x, t) ρ ü(x, t) = divσ + b(x, t)

Angular momentum
balance

∫
H
Y ⟨ξ⟩ × T ⟨ξ⟩ dVξ = 0 σ = σT

Table 2.2: Comparison of balance laws between PD and CCM.

The force state T ⟨ξ⟩ acts on a bond ξ and is expressed as

T ⟨ξ⟩ = ω(|ξ|)PK-1ξ , (2.40)

where ω(|ξ|) is referred to as the influence function, P the Piola stress tensor and K the
shape tensor defined as

K =

∫
H
ω(|ξ|) ((x′ − x)⊗ (x′ − x)) dV ′ , (2.41)

where the symbol ⊗ indicates the dyadic product of two vectors.

It is worth noting that the balance laws in the state-based theory are satisfied over a bounded
body B.

The shape tensor K acts as a volume-averaging quantity and was shown to be a function of
the horizon volume and size [3]. It is worth mentioning that the shape tensor K is symmetric
positive definite.

An interesting concept is that of the correspondence material model: for a given CCM elastic
material model, the peridynamic constitutive model yields the same physical properties under
affine deformations through the nonlocal deformation gradient tensor F . In the NOSB-PD,
the approximate nonlocal deformation gradient tensor is

F =

[∫
H
ω(|ξ|) ((y′ − y)⊗ (x′ − x)) dV ′

]
K-1 (2.42)

In the context of the correspondence material model, P = P (F ) is obtained using a consti-
tutive model from CCM.
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2.3 Influence Function
The influence function ω is a scalar state that is crucial in SB-PD. It acts as a weight
parameter on the contribution of the individual bonds withinH to the computation of related
quantities. Specifically, bond termination can be achieved by means of the influence function
in fracture simulations. A non-negative scalar state ω is referred to as spherical if it is solely
a function of |ξ| [15]. The proper choice of the influence function remains an open question
in PD. In this case, a Gaussian influence function is chosen

ω⟨ξ⟩ = e−|ξ|2/δ2 (2.43)

2.4 Zero-Energy Modes Control
Despite its convenience for modeling material behaviors, the peridynamic correspondence
model, in its original form, is inherently affected by zero-energy mode instability. Silling [46]
recently showed that the latter emerges due to material instability. By means of an en-
ergy minimization approach, he demonstrated that, in the correspondence material models,
multiple deformations of a neighborhood can be associated with the same F for a radially
symmetric influence function. In other words, the zero-energy modes stem from the erroneous
computation of the approximate deformation gradient tensor.

For a practical understanding of their origin, the explanation of Breitenfeld [47] will be
reported herein:

Within a neighborhood H of radius δ, let the material point x be displaced by a small
perturbation while its neighbors are fixed. Thus, the new deformation state is

Y ′⟨ξ⟩ = Y ⟨ξ⟩ − u′ (2.44)

The new deformation gradient is

F ′ = F − u′ ⊗
(∫

H
ω(|ξ|) ξ dVx′

)
K-1 = F (2.45)

since the integral is evaluated inside a sphere in a within a three-dimensional context. Breit-
enfeld noted that the existence of zero-energy modes in the correspondence models are “due
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to the weak coupling of each point to its own family”.

In a meshless discretization, the manifest effects of zero-energy modes are oscillations in the
displacement, stress and strain fields, that is, numerical instabilities. Therefore, they must
be completely suppressed or at least mitigated since they induce incorrect results.

Various methods have been developed to control the effects of zero-energy modes. No-
tably, Breitenfeld [47] and Silling [46] proposed the addition of a supplemental force state to
Eq. (2.40). Although these techniques reduce the zero-energy modes, they require a parame-
ter adjustment which may cause practical issues; for instance, the supplemental forces could
dominate the total force state term if the coefficients were chosen to be large. Yaghoobi et
al. [48] proposed a technique based on higher-order approximations of the nonlocal defor-
mation gradient tensor to control the zero-energy modes. Following the approach presented
in [46], Li et al. [49] introduced a stabilized NOSB-PD formulation free of parameter adjust-
ment; the supplemental force state is derived according to an energy-based approach. It is
also noted that in a recent contribution, Gu et al. [50] presented an alternative formulation
of the NOSB-PD internal force density vector.

In this project, the supplemented force state described in [49] is used for simplicity. The
zero-energy modes control technique is based on the non-uniform deformation state z⟨ξ⟩
defined as

z⟨ξ⟩ = Y ⟨ξ⟩ − Fξ (2.46)

In the Prototype Microelastic Brittle (PMB) material model, a variant of the BB-PD formu-
lation, the micromodulus tensor is given by

C(ξ) = c ξ ⊗ ξ/|ξ|3 , (2.47)

where c is the bond constant
c = 18κ/πδ4 , (2.48)

where κ denotes the bulk modulus

κ = E/(3(1− 2ν)) (2.49)
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The stabilizing term is defined as

T s⟨ξ⟩ =
1

2
ω(|ξ|)C z⟨ξ⟩ (2.50)

Using Eq. (2.40) and (2.50), the total force state is therefore

T ⟨ξ⟩ = ω(|ξ|)PK-1ξ +
1

2
ω(|ξ|)C z⟨ξ⟩ (2.51)

2.5 Boundary Conditions
The enforcement of boundary conditions (BCs) in PD is drastically different from that of
other numerical methods based on CCM such as the FEM: As explained by Silling [14],
natural boundary conditions do not appear when deriving the Euler-Lagrange equations
from the potential energy functional. Moreover, no traction forces in the CCM sense are
present.

Figure 2.4: Application of boundary conditions in PD.

In the above figure, DBCs including displacements and velocities are applied to all the mate-
rial points in Rc which will be reflected to the material points within the body B. Regarding
tractions and other external forces, they cannot be directly applied to a peridynamic contin-
uum but must be expressed as force densities enforced through a material layer Rl near the
domain boundary [14, 3].
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2.6 Correction Procedures

2.6.1 Volume correction

In order to improve the accuracy of the solutions, a volume correction procedure is applied
to the material points lying on the horizon [3] by implementing partial volume algorithms.
Let ∆ denote the spacing between material points in a uniform grid and r = ∆/2.

As proposed by Hu, Ha and Bobaru [51], an improved algorithm to compute the volume
correction factor is as follows

vc =


1 if l < δ − r ,

δ + r − l

2r
if l ≤ δ + r ,

0 otherwise ,

(2.52)

where l = |ξ|.

Figure 2.5: Illustration of full and partial volumes within a neighborhood.

In Fig. (2.5), the material points in white have full volumes whereas the ones in orange have
partial volumes since they are located at the limit of the neighborhood.

2.6.2 Surface correction

In the BB-PD and OSB-PD formulations, the material models are derived assuming that
the material points located in the bulk, i.e., having a full neighborhood. This assumption
is no longer valid in the vicinity of free surfaces and/or material interfaces, where material
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points have incomplete neighborhoods due to truncated horizons. This phenomenon affects
the accuracy of the solution as it alters the material properties in these regions. As a result,
corrective procedures are required.

Figure 2.6: Material points’ neighborhoods near free surfaces and interfaces.

Fig. (2.6) depicts the states of neighborhoods within the bulk; near the domain boundary,
where the neighborhood is incomplete and across material interfaces, at which a neighborhood
consists of material points of different properties. For the BB-PD and OSB-PD formulations,
given that the values of the parameters b and d in Eqs. (2.16) and (2.17) are dependent on the
integration domain, i.e., the neighborhood, corrective procedures are required. To address
these surface effects, various techniques have been developed to compute surface correction
factors [52, 3]. According to the technique described in [3], surface correction factors are
obtained by computing the ratio of the CCM strain energy density with the PD strain
energy density assuming simple loading cases in each spatial direction. Such a procedure is
not required in the context of the NOSB-PD formulation. For a correspondence material
model, the evaluation of F need not be over a full neighborhood.
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Chapter 3

Material and Damage Models

3.1 Constitutive Model
The state-based formulation of PD allows the generalization of the initial bond-based model
by accounting for volumetric changes and rotations [15]. It is shown that Eq. (2.31) satisfies
the linear momentum balance for any bounded body B, regardless of the evaluation of T .
Indeed, rearranging Eq. (2.31)and integrating over the body B gives∫

B
(ρ ü(x, t)− b(x, t)) dVx =

∫
H
{T [x, t]⟨ξ⟩ − T [x′, t]⟨−ξ⟩} dVx′ dVx (3.1)

Given that T [x, t] = 0 when x′ /∈ Hx, changing the domain of integration from Hx to B and
applying change of variables such that x′ = x, Eq. (3.1) becomes∫

B
(ρ ü(x, t)− b(x, t)) dVx =

∫
B

∫
B
{T [x, t]⟨ξ⟩ − T [x, t]⟨ξ⟩} dVx′ dVx = 0 (3.2)

According to [15], for any deformation of B associated with the constitutive model defined
by T , the angular momentum balance holds∫

B
y(x, t) × (ρ ü(x, t)− b(x, t)) dVx = 0 (3.3)

22



The constitutive model is such that∫
H
Y ⟨ξ⟩ × T ⟨ξ⟩ dVξ = 0 ∀Y ∈ V (3.4)

It is noted that T is assumed to be bounded and Riemann-integrable on H.

Indeed, using Eqs. (2.1) through (2.4), (2.30), (2.31),∫
B
y × (ρ ü− b) dVx =

∫
B
(x+ u) × (ρ ü− b) dVx

=

∫
B

∫
B
(x+ u) × (T [x, t]⟨ξ⟩ − T [x′, t]⟨−ξ⟩) dVx′ dVx

=

∫
B

∫
B
(x+ u) × T [x, t]⟨ξ⟩ dVx′ dVx

−
∫
B

∫
B
(x+ u) × T [x′, t]⟨−ξ⟩ dVx′ dVx

=

∫
B

∫
B
(x+ u) × T [x, t]⟨ξ⟩ dVx′ dVx

−
∫
B

∫
B
(x′ + u′) × T [x, t]⟨ξ⟩ dVx dVx′ (variable change)

= −
∫
B

∫
B
((x′ + u′)− (x+ u)) × T [x, t]⟨ξ⟩ dVx′ dVx

= −
∫
B

∫
B
((y′ − y) × T [x, t]⟨ξ⟩ dVx′ dVx

= −
∫
B

∫
H
Y ⟨ξ⟩ × T ⟨ξ⟩ dVξ dVx = 0

For practical applications, it is desired that the peridynamic material response is analogous
to that of a CCM material model. The NOSB-PD formulation allows the incorporation
of a material model from CCM into the constitutive relation to evaluate the force state.
Through the deformation gradient tensor F based on the deformation state Y , the following
correspondence may be established, within the context of homogeneous deformations

Ω(Y ) = W (F (Y )) , (3.5)

where Ω denotes the strain energy density of the peridynamic material model and W that of
the CCM material model. Numerous studies dealing with quasistatics in NOSB-PD employ
a linear elastic material model.
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In this work, it is desired to investigate the behavior of structures undergoing large defor-
mations. In order to account for geometric nonlinearity, hyperelastic material models are
considered. For such materials, the constitutive relation derives from a strain energy density
(SED) function. In particular, the Neo-Hookean material model is employed. The following
SED function is considered

W =
1

2
λ (ln J)2 +

1

2
µ (F :F − 3− 2 ln J) , (3.6)

where J = det(F ) denotes the determinant of F , λ and µ the Lamé parameters.

From Eq. (3.6), the Piola stress tensor is obtained as

P =
∂W

∂F
= λ ln J F -T + µ (F − F -T) (3.7)

3.2 Damage Models
Owing to its formulation and meshfree discretization, the peridynamic theory has been
successfully used to analyze crack initiation and propagation under various loading condi-
tions [22, 18]. A major feature of PD is that damage initiation and propagation are achieved
through irreversible bond rupture, the latter is governed by a pre-defined damage criterion. In
the case of pre-cracked bodies, the analysis is carried out such that, prior to the integration,
all bonds passing through crack surfaces are permanently terminated.

Several criteria are available including the critical stretch, the equivalent and averaged volu-
metric strain failure criteria [20], the energy-based criterion [53] and the cumulative damage
model for rate-dependent constitutive models [22, 23].

Within the context of quasi-static analysis, the damage criteria are associated with the critical
energy release rate Gc, i.e. based on the Griffith theory. The critical stretch sc has originally
been derived within the BB-PD theory [39] and is expressed as

sc =

√
5Gc

9κ δ
(3.8)
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For state-based material models [3], the critical stretch is

sc =



√√√√√ Gc(
6

π
µ+

16

9π2
(κ− 2µ)

)
δ

in 2D ,

√√√√√√
Gc(

3µ+

(
3

4

)4(
κ− 5

3
µ

))
δ

in 3D
(3.9)

At every time step, the deformation of a bond is monitored and compared to sc by means of
a history-dependent, scalar-valued function µ such that

µ(ξ, t) =

1 if s < sc ∀t > 0 ,

0 otherwise
(3.10)

The damage state of a material point is quantified by a quantity referred to as the local
damage index given by

φ(x, t) = 1−

∫
H
µ(ξ, t) dV ′∫
H

dV ′
, 0 ⩽ φ(x, t) ⩽ 1 (3.11)

A local damage index of 1 means that all the bonds associated with the material point are
broken.

The energy-based damage criterion [53] is such that

µ(ξ, t) =

1 if wξ < wc ∀t > 0 ,

0 otherwise ,
(3.12)

where wξ = (T [x, t]⟨ξ⟩ − T [x′, t]⟨−ξ⟩) · η is the energy density in a bond and wc =
4Gc

πδ4
denotes the critical energy density.

In this work, the critical stretch and energy-based damage models are considered.
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Chapter 4

Numerical Implementation

4.1 Discretization of Equations
At a material point xk, the discretized form of Eq. (2.31) is

ρ ü(xk, t) =
m∑
j=1

(T [xk, t]⟨xj − xk⟩ − T [xj, t]⟨xk − xj⟩)(vcVj) + b(xk, t) , (4.1)

where m denotes the total number of material points in the neighborhood of xk, Vj the
volume of material point xj and vc is the volume correction factor for the material points
lying on the limit of the neighborhood.

It is worth mentioning that, for each material point, the partial volumes of all its neighbors
are computed and stored as an array. These partial volumes will then be retrieved by the
appropriate routines for the computations of K, F and the internal force density vector.

Furthermore, the shape tensor is approximated as

K =
m∑
j=1

ω(|xj − xk|)((xj − xk)⊗ (xj − xk))(vcVj) (4.2)

26



Using the distributive property of the dyadic product and Eq. (2.30), the approximate de-
formation gradient tensor is evaluated as

F =

[
m∑
j=1

ω(|xj − xk|)((uj − uk)⊗ (xj − xk))(vcVj)

]
K−1 + I , (4.3)

where I is the identity matrix.

4.2 Internal Force Density Computation
Within the context of quasi-static analysis with implicit time integration, the routine that
evaluates the internal force density (IFD) vector is the principal component of a PD code.

For the implicit time integration, a nonlinear solver which uses the Newton-Raphson method
calls the IFD routine for the tangent stiffness matrix assembly and the residual vector eval-
uation.

The internal force density routine is designed such that:

• The evaluation of T [xk, t] is not repeated when computing the summation in Eq. (4.1).
Hence, a direct approach to evaluating the summation may lead to incorrect entries in
the IFD vector.

• The implementation accounts for potentially different material models at each material
point in a bond.

The algorithm for the evaluation of the IFD vector is attached in the Appendix.

4.3 Tangent Stiffness Matrix Approximation
The tangent stiffness matrix (TSM) is crucial for the solution of nonlinear systems of equa-
tions using Newton-based methods. The entries of the TSM are approximated using the
central difference method. The entries of K are defined as

Kij =
∂f int

i

∂uj

, (4.4)
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where f int
i denotes the i-th component of the global IFD vector and uj the j-th component

of the global displacement vector u.

Based on the approach presented in [54], the following strategies were adopted:

• The entries in K are computed by means of the central difference method. The partial
derivative in Eq. (4.4) is approximated as

Kij ≈
f int
i (u+ ϵj)− f int

i (u− ϵj)

2ϵ
, (4.5)

where ϵ is the unique nonzero entry corresponding to the j-th degree of freedom in ϵj,
the global perturbation vector.

• The perturbation value must be carefully chosen; it should be sufficiently small relative
to the quantities of interest (in this case the displacement values) but not excessively
small to avoid subtractive cancellation.

• The perturbed displacement vector is constructed based on the displacements of a
material point and its neighbors only.

• A submatrix is used to account for the contribution of each material point into the
global stiffness matrix K using a vector of global indices.

Despite the large body of literature on PD, the structural properties of K namely its sparsity
pattern as well as its symmetry, are not fully understood. The current work aims to provide
a deeper insight into the peridynamic tangent stiffness matrix.
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4.4 Time Integration
When inertial effects are negligible, the problem is considered quasi-static. Therefore,
Eq. (2.31) becomes∫

H

{T [x, t]⟨x′ − x⟩ − T [x′, t]⟨x− x′⟩} dVx′ + b(x, t) = 0 (4.6)

In contrast to explicit methods, implicit methods are more stable despite their higher com-
putational cost. Given that the governing equation Eq. (4.6) is a nonlinear function of
displacement, the implicit integration scheme requires a nonlinear solver.

Eq. (4.6) is linearized as follows

m∑
j=1

(T [xk, t]⟨xj − xk⟩ − T [xj, t]⟨xk − xj⟩)(vcVj)︸ ︷︷ ︸
f int

+ b(xk, t)︸ ︷︷ ︸
fext

= 0 (4.7)

f int(un) +
∂f int

∂u

∣∣∣∣
un︸ ︷︷ ︸

K(un)

∆u+ f ext = 0 (4.8)

Therefore, at every iteration n, the following system of equations is solved

K(un)∆u = −r , r = f int + f ext , (4.9)

where K denotes the TSM and r the residual vector.

An efficient and correct assembly of the K matrix is thus crucial for the solver to yield correct
results.

Prior to the solution, specific operations must be carried out on the system in Eq. (4.9):

• When DBCs are enforced, if their values are zero, the contributions of the corresponding
degrees of freedom (DOFs) are omitted, i.e., the appropriate rows and columns in K

may be deleted or set to zero.

• The diagonal entries in K and the elements of the right-hand-side vector corresponding
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to the DOFs of nonzero DBC values are modified so as to stabilize the behavior of the
system during the iteration process.

The standard Newton-Raphson method is in general locally convergent; its convergence rate is
quadratic provided that the initial guess is close enough to the solution and that the Jacobian
matrix is not ill-conditioned. However, in practice, these conditions may not be met due to
the nature of the problems. As a result, the Newton-Raphson method may exhibit poor
performance.

Given the aforementioned issues, the Newton-Raphson method is enhanced with a backtrack-
ing line search algorithm so as to achieve global convergence [55]. The next displacement
iterate after solving Eq. (4.9) is therefore

un+1 = un + λ∆u , (4.10)

where λ is the line search parameter that adjusts the Newton step ∆u.

4.5 Solver Design
The solver is developed in C++ and exploits the main features of the language including
data encapsulation, inheritance, polymorphism as well as dynamic memory allocation. The
design is focused on minimal complexity, reduced number of dependencies, maintainability
and extensibility. Specific computations and data processing are carried out by means of
libraries and utilities. The architecture of the code is depicted in the Appendix.

4.5.1 Neighbor search

The meshfree nature of the discretization requires the construction of a neighbor list for each
material point in the domain. Such an operation is crucial since the neighbor list will be
used in all subsequent computations. Given the potentially large number of material points,
the brute-force approach is inefficient since it has an O(N) time complexity, where N is the
size of the data; in this case, the total number of material points.

A more efficient approach is the use of space-partitioning data structures such as k-d trees for
which the nearest neighbor search for all the material points takesO(logN) on average [56]. In
this project, the neighbor search is carried out with the KDTREE2 library which implements
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a k-d tree algorithm on Euclidean spaces.

Tool Functions

Armadillo [57] • Provides MATLAB®-like routines

• Used for constraint region generation

Boost Provides auxiliary containers for data manage-
ment

KDTREE2 [56] • Implements a spatial data structure

• Used for neighbor list construction

PARDISO [58, 59, 60] Used for the solution of linear systems

gnuplot-iostream Used for data visualization

Table 4.1: Dependencies of the solver

4.5.2 Representations of sparse matrices

Sparse matrices are often encountered in scientific and engineering problems during the nu-
merical solution of differential equations. Given their structures - the number of nonzero
elements is significantly smaller than the matrix size - it is essential to use appropriate data
structures to store only the nonzero entries as well as particular algorithms to manipulate
them.

4.5.2.1 Storage schemes

Various storage schemes are available for sparse matrices including the Compressed Sparse
Row (CSR), Compressed Sparse Column, Coordinate and Block Compressed Sparse Row
formats. These storage schemes are static data structures since they are defined in terms of
fixed-size arrays.

In contrast, dynamic data structures are more flexible due to run-time memory allocation.
Vectors of the C++ Standard Template Library, linked lists and binary search trees are
among the most common dynamic data structures.

In this project, the tangent stiffness matrix assembly is carried out in a two-stage process:
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the incremental matrix assembly with a dynamic data structure followed by the conversion
of the latter into the more compact CSR format.

4.5.2.2 Incremental matrix assembly

The approach adopted herein is similar to that proposed by Jansson [61] who proposed a
stack-based representation for sparse matrix assembly. In this project, the tangent stiffness
matrix is populated by means of a hash table. To reduce the complexity of the implementa-
tion, the hash table is implemented as an array of singly linked lists. The data structure has
been designed such that only the nonzero elements are stored.

The output of the assembly, after the necessary modifications, is the global stiffness matrix
stored in the CSR3 format.

The latter consists of three arrays:

• Let n denote the number of rows of the square matrix and nnz the number of nonzero
entries. a is an array of length nnz that stores the nonzero entries.

• ja is an array of length nnz which stores the column indices of the nonzero entries in
the original matrix.

• ia is an array of length n + 1 which stores the indices in a corresponding to the first
nonzero entries in each row. It is noted that the last element in ia must be nnz and
that the number of nonzero entries per row is ia[i+1]− ia[i], i = 0, · · · , n, following
a zero-based indexing.

For example, given a sparse matrix A

A =


1 −1 0 −3
−2 5 0 0

0 0 4 6

−4 0 0 7


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Using the zero-based indexing, the CSR3 representation of A is thus

a =
(
1 −1 −3 −2 5 4 6 −4 7

)
,

ja =
(
0 1 3 0 1 2 3 0 3

)
,

ia =
(
0 3 5 7 9

)
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Chapter 5

Discussion and Conclusion

5.1 Discussion
Various features of the peridynamic theory have been considered within the scope of the
current work. Notably, the enforcement of BCs is one of the most challenging aspects of the
problem considering the nature of the formulation; constraints are applied through material
layers. Since the minimum thickness of the constraint region (Fig. (2.4)) is the horizon
size, there is no restriction on the number of material points within the constraint regions.
Therefore, the total number of DOFs in the system depends on the implementation. For the
aforementioned reasons, the performance of a PD solver may be improved by exploiting the
symmetry of the geometry whenever applicable [62].

Since PD simulations are computationally expensive, it is necessary to implement techniques
that reduce storage requirements and computation time. For instance, a knowledge of the
features of the TSM can be exploited to boost the efficiency of the solver; if the TSM possesses
numerical symmetry, only its upper or lower triangular part needs to be stored and passed
to the linear solver. The TSM assembly is a major bottleneck during the simulation given
the method used to compute its entries along with the required modifications prior to the
solution of the linear system of equations. Therefore, cache-friendly data structures should
be used to store the sparse matrix; for example, containers with contiguous memory storage.
Furthermore, parallelization is required for all practical applications to render the simulations
less expensive. Moreover, preallocation of the TSM may be advantageous.
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It is also noted that more advanced algorithms may be used for the volume correction proce-
dure, at the expense of increased complexity [63]. It has been demonstrated that the volume
correction procedure greatly affects the convergence of the solution [64, 63].

On the physical significance of the horizon, it is worth mentioning that, at the macroscale,
a material modeled with the peridynamic formulation is assumed to possess an underlying
microstructure [65] since the interactions between the material points within a body need
not be physically meaningful; the horizon is a mathematical quantity that appears in the
governing equation and may be calibrated with other parameters including grid spacing to
reproduce the material properties. However, the horizon δ must reflect the appropriate length
scale dictated by the physics of the problem; nonlocal effects are prominent for problems
including nanoscale structures and fracture [66].

Figure 5.1 illustrates the deformation of a unit cube calculated by the peridynamic code
developed here subjected to a displacement loading of magnitude d = 0.2 along its front face
and fixed along its back face. The material parameters are E = 2.5 and ν = 0.45. The cube
is discretized into 25 material points along each edge and the horizon size is chosen such that
δ = 1.5∆.
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Figure 5.1: Cube under tension
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5.2 Concluding Remarks
The present work is concerned with providing a deeper insight into the NOSB-PD formula-
tion and its numerical implementation. A Lagrangian, object-oriented application has been
developed in order to simulate structural responses under quasi-static loading conditions.
Since CCM material models can be directly incorporated in to the NOSB-PD formulation,
the Neo-Hookean hyperelastic material model is used, aiming to investigate the large de-
formations of a peridynamic continuum. The aforementioned test case, despite the coarse
discretization, illustrates promising capabilities of the solver, i.e., hyperelastic deformations
may be captured by the NOSB-PD formulation and there is no restriction on the material
properties.

In contrast to the bond-based and ordinary state-based formulations, the NOSB-PD formula-
tion does not require the estimation of surface correction factors; however, in its original form,
the NOSB-PD formulation suffers from zero-energy mode instabilities due to the erroneous
computation of the approximate deformation gradient tensor. Their effects are suppressed
by adding a stabilizing term to the force state expression.

The numerous aspects of the numerical implementation namely the boundary conditions,
TSM assembly, volume correction procedures have been addressed and multiple strategies
have been proposed to enhance the performance of the solver.

5.3 Outlook
From the preliminary results of the test case, a thorough investigation of structural responses
under different loading conditions will be examined. Notably, finite deformations will be
investigated and comparisons of PD solutions with those from the FEM will be carried out.

Furthermore, it is aimed to design a more efficient pre-processor and post-processor. In
particular, the pre-processor is required to process the user-defined input data and generate
the peridynamic grid along with the constraint regions accordingly.

Moreover, the investigation of crack initiation and propagation for quasi-static as well as dy-
namic loading conditions is envisaged. In that regard, a dynamic solver will be implemented
as future work.
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Also, it is desired to boost the performance and enhance efficiency of the program by using
different quadrature rules as well as implementing adequate parallelization strategies.

In addition, given the object-oriented nature of the language, it is aimed to implement dif-
ferent types of constitutive and damage models to analyze various structural responses.

Ideally, the current code is to be coupled with a finite element solver so that potential damage
initiation and propagation will be confined within the PD domain and the remainder of the
domain is treated with the FEM.
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Appendix A

Sample input file

Listing A.1: Input file structure
#/∗Copyright (C) 2019. Rico Morasata. All rights reserved.∗/

#This is an input f i l e for a peridynamics case study.
#The geometry is a rectangular plate with a hole at its center .
#The quantities involved in the analysis are assumed to be in SI units .
#The input f i l e is structured in the subsequent manner:

#Define domain dimensions
Dimensions

geometry_type = plate_with_cutout
length = 0.05
width = 0.05
thickness = 0.0005
diameter = 0.01

End dimensions

Material properties
E = 192e9
nu = 0.333
rho = 8000

End material properties

Spatial discretization
Divisions_along_x = 50
Divisions_along_y = 50
Spacing_between_points = 0.001
Horizon_size_factor = 3.015

End spatial discretization

#Specify boundary conditions : constraints(velocity and/or displacement) and/or force .
#Free edge is also a boundary condition .
Top edge

Type = velocity
V_x = 0
V_y = 2.7541e−7

End top edge

Bottom edge
Type = velocity
V_x = 0
V_y = −2.7541e−7

End bottom edge
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Left edge
Type = free

End left edge

Right edge
Type = free

End right edge

#Specify init ial conditions on interior points
#Initial displacement gradient
# Displacement_gradient = 0 0 0 0
#End init ial displacement gradient

#Initial velocity gradient
# Velocity_gradient = 0 0 0 0
#End init ial velocity gradient

#Define analysis type. A quasistatic analysis is carried out via implicit time integration
Analysis

Analysis_type = quasistatic
Consitutive_model = saint_venant_kirchhoff
Damage_model = critical_stretch
Damage_parameter = 0.02
Time_step = 1
Total_number_of_steps = 1000

End analysis
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Algorithm 1 Routine for computing the global internal force density vector for the NOSB-
PD formulation

▷ Initialize the force vector to zero
1: for each material point i do
2: f i = 0
3: end for

▷ Compute K-1 and F
4: for each material point i do ▷ loop over all the material points
5: K ← 0
6: F ← 0
7: for each material point j in the neighborhood of i do
8: dij ∈ {0.0, 1.0} ▷ 0.0 if the bond is broken and 1.0 if intact
9: ξ ← xj − xi

10: η ← uj − ui

11: ω ← ω(|ξ|) ▷ Evaluate influence function
12: K ←K + (dij vc ∆Vj)(ξ ⊗ ξ) ▷ vc is a volume correction factor
13: H ←H + (dij vc∆Vj)(η ⊗ ξ) ▷ H is an auxiliary tensor
14: end for
15: F ←HK-1 + I ▷ I is the second-order identity tensor
16: end for

▷ Compute pairwise contributions to the global internal force density vector
17: for each material point i do ▷ loop over all the material points
18: for each material point j in the neighborhood of i do
19: ξ ← xj − xi

20: S = ∂W (E)/∂E ▷ Obtain S from a hyperelastic material model
21: P = FS
22: T ⟨ξ⟩ = ω(|ξ|)P K-1 ξ ▷ Stabilization term is optional
23: f i ← f i + dij vc∆Vj T ⟨ξ⟩
24: f j ← f j − dij vc∆Vi T ⟨ξ⟩
25: end for
26: end for

48



Algorithm 2 Routine for the tangent stiffness matrix assembly by means of the central
difference method
Require: ε ▷ value of the perturbation parameter
Require: nDOFs ▷ total number of DOFs in the system
Require: an instance of a class that implements a dynamic data structure. Its constructor

takes nDOFs as argument.
▷ Loop over all material points

1: for each material point i in the domain do
2: Construct the “transversal list” consisting of material point i and all its neighbors
3: Let m denote the size of the “transversal list”
4: Define a vector of global indices of size 2m
5: Allocate a “local stiffness matrix” Klocal of size 2m× 2m
6: for each material point j in the “transversal list” do
7: for each displacement DOF c at material point j do
8: Let u denote the displacement of material point j
9: u[c] += ε ▷ Apply positive perturbation

▷ Compute the subset of the internal force density vector
▷ Let f+ε

int and f−ε
int be vectors of size 2m

10: Update auxiliary tensors at i
11: Compute force state at i under positive perturbation
12: T+ε⟨ξ⟩ = ω(|ξ|)P i Ki

-1 ξ
13: Evaluate f+ε

int as per Algorithm 1
14: Restore the unperturbed value of the entry in u
15: u[c] −= ε ▷ Apply negative perturbation
16: Repeat the aforementioned steps and compute f−ε

int

17: Restore the unperturbed value of the entry in u
18: Fill Klocal column-wise with the tangent values
19: for k ← 0 to m− 1 do
20: for d← 0 to 2 do
21: Klocal[2k + d][2j + c] = (f+ε

int [2k + d]− f−ε
int [2k + d])/2ε

22: end for
23: end for
24: end for
25: end for
26: Place Klocal into K using the vector of global indices ▷ K is the global stiffness

matrix
27: end for
28: Modify K to reflect the BCs
29: Convert the dynamic data structure into the CSR3 storage format
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Figure A.1: Solver architecture
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