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ABSTRACT

Prediction of Gait Kinetics from Joint Angles Using Machine Learning in Patients with
Cerebral Palsy

Joint moment and ground reaction force (GRF) during gait provide valuable
information for clinical decision-making in patients with cerebral palsy (CP). Joint moments
are calculated based on GRF using inverse dynamics models. Obtaining GRF from patients
with CP is challenging. Typically developed (TD) individuals' joint moments and GRFs
were predicted from joint angles using machine learning (ML), but no such study has been
conducted on patients with CP. Accordingly, we aimed to predict the vertical GRF, dorsi-
plantar flexion, knee flexion-extension, hip flexion-extension, and hip adduction-abduction
moments based on the trunk, pelvis, hip, knee, and ankle kinematics during gait in patients
with CP and TD individuals using one-dimensional convolutional neural networks. The
anonymized retrospective gait data of CP and TD subjects were used. The data were
collected in the course of patient care over the last two decades in the Department of
Orthopedics and Traumatology of Heidelberg University. For broadening the ML study, we
trained specific ML models of ridge regression, random forest, multilayer neural network,
k-nearest neighbour, long short term memory neural network algorithms by using manually
extracted time domain features and automatically generated features of gait kinematics.
Their performances were evaluated and compared using isolated test subject groups based
on normalized root mean square error (nRMSE) and Pearson correlation coefficient (PCC).
Joint moments were predicted with nRMSE between 18.02% and 13.58% for the CP and
between 12.55% and 8.58% for the TD groups, whereas with PCC between 0.90 and 0.96
for the CP and between 0.96 and 0.99 for the TD groups. GRF was predicted with an nRMSE
of 7.47% for TD subjects and 11.75% for CP subjects, while with a PCC score of 0.98 for
the TD and 0.94 for the CP group. ML algorithms using time domain features and
automatically generated features showed similar performance. ML-based joint moment
prediction from kinematics could replace conventional moment calculation in CP patients in
the future, but the current level of prediction errors restricts its use for clinical decision-

making today.

Keywords: Machine Learning; Cerebral palsy; Gait; Ground reaction force; Joint
moment.
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OZET

Serebral Palsili Hastalarda Makine Ogrenmesi Kullanarak Eklem Agcilarindan Yiiriime
Kinetiginin Kestirilmesi

Serebral palsili (SP) hastalarda yiiriime sirasinda eklem momentleri ve yer reaksiyon
kuvveti (YTK), klinik karar verme siirecinde degerli bilgiler saglar. Eklem momentleri, ters
kinematik modeller kullanilarak YTK'ne dayali olarak hesaplanir. SP'li hastalardan YTK
elde etmek zorlu bir siirectir. Saglikli bireylerde eklem momentleri ve YTK'leri, makine
ogrenmesi (MO) kullanilarak eklem agilarindan tahmin edilmistir, ancak SP'li hastalar
tizerinde boyle bir ¢alisma heniiz yapilmamistir. Bu nedenle, bu ¢alismada SP'li hastalarda
ve saglikli bireylerde yiirlime sirasinda govde, pelvis, kalca, diz ve ayak bilegi kinematigi
temel alinarak dikey YTK, dorsi-plantar fleksiyon, diz fleksiyon-ekstansiyon, kalga
fleksiyon-ekstansiyon ve kalga addiiksiyon-abdiiksiyon momentlerinin bir boyutlu
konvoliisyonel sinir aglar1 kullanilarak tahmin edilmesi amaglandi. SP ve saglikli deneklerin
anonimlestirilmis geriye doniik yiiriime verileri kullanildi. Veriler, Heidelberg Universitesi,
Ortopedi ve Travmatoloji Boliimii'nde son yirmi yil i¢inde hastalarin klinik ¢aligmalari
sirasinda toplanmustir. MO ¢alismasini genisletmek icin, yiiriime kinematiginin zaman alani
ozniteliklerinin manuel ve otomatik olarak c¢ikarilmasi yontemleri kullanilarak ridge
regresyon, rastgele karar ormani, ¢ok katmanli sinir agi, k-en yakin komsu, uzun-kisa siireli
bellek sinir agi algoritmalarmin 6zellestirilmis MO modelleri egitildi. Performanslari,
normalize edilmis karesel ortalama hata (nKOH) ve Pearson korelasyon katsayis1 (PCC)
kullanilarak izole edilmis test ornegi gruplarinda degerlendirildi ve karsilastirildi. Eklem
momentleri, SP grubu i¢in %18,02 ila %13,58 arasinda nKOH ve sagliklilar grubu i¢in
%12,55 ila %8,58 arasinda nKOH ile tahmin edildi, SP grubu igin 0,90 ila 0,96 arasinda
PCC ve sagliklilar grubu i¢in 0,96 ila 0,99 arasinda PCC ile tahmin edildi. YTK, saglikli
bireyler i¢in %7,47 nKOH ve SP’li hastalar i¢in %11,75 nKOH ile tahmin edildi, sagliklilar
grubu icin 0,98 PCC ve SP grubu i¢in 0,94 PCC ile tahmin edildi. Makine 6grenimi
algoritmalari, manuel ve otomatik ¢ikarilmis Oznitelikleri kullanarak benzer performans
sergiledi. Makine 6grenimine dayali eklem momenti tahmini, SP’li hastalarda geleneksel
moment hesaplamanin yerine gegebilir, ancak mevcut diizeydeki tahmin hatalari, klinik
karar vermede bugiin kullanimini sinirlamaktadir.
Anahtar Sozciikler: Makine o6grenmesi; Serebral palsi; Yiiriiyiis; Yer tepki kuvveti; Eklem

momenti.
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1. INTRODUCTION

1.1 Background

Cerebral Palsy (CP), which is characterized by a variety of neurological and motor
impairments, encompasses a diverse group of disorders that significantly impact an
individual's neuromotor functions. The most obviously disordered neuromotor function

of CP patients is their natural walking, namely gait.

Gait analysis, recognized as a valuable adjunctive tool in the realm of clinical decision-
making, holds a crucial role in the assessment and management of various neurological
and musculoskeletal conditions. Its primary objective is to identify and characterize gait
abnormalities, providing healthcare professionals with comprehensive insights into an
individual's walking pattern.. Additionally, gait analysis serves as a reliable means to
continually monitor and evaluate the progress and effectiveness of treatment
interventions implemented over time, facilitating a more personalized and targeted

approach to patient care [1]-(Baker, 2013).

Motion capturing encompasses a comprehensive technology that enables to acquire a
substantial volume of high-dimensional 3D kinematics and kinetics data during gait.
This wealth of information is obtained through meticulous post-processing of images
captured by precisely calibrated cameras and sensors. By harnessing the power of
advanced imaging technology, gait analysis facilitates the acquisition of precise and
detailed measurements, enabling healthcare professionals to gain deeper insights into

the intricate biomechanics of an individual's walking pattern [2]-(Halilaj et al., 2018).



In clinical settings, the 3D data acquired through motion capturing is used for gait
analysis in order to derive kinematic and kinetic data of the subject. Human body models
like Plugin Gait Model (Oxford Metrics, Oxford, UK) is used for this purpose. The main

kinematic information gathered in gait analysis is joint angles.

1.2 Problem and importance of the problem

In addition to the joint angles in evaluating, tracking, and managing CP, particular
attention is also directed towards the ground reaction force (GRF) and joint moments.
Joint moment is a significant gait parameter as it plays a pivotal role in the
comprehensive assessment, ongoing monitoring, and effective therapeutic interventions
for individuals affected by CP [3,4,5,6,7]-(Lai et al., 1988; Gage, 1994; Ounpuu et al.,

1996; Lin et al., 2000; Novacheck and Gage, 2007).

Ground reaction force (GRF) stands as a distinctive and essential kinetic parameter
within the realm of gait analysis. What sets GRF apart is its ability to be directly
measured through experimental means. By employing force plates clinicians can
precisely capture the forces exerted between the foot and the ground during walking or
running. This direct experimental measurement of GRF plays a crucial role in
unraveling the intricate biomechanics of human locomotion, providing valuable insights

into the distribution, timing, and magnitude of forces acting on the body.

The joint moments offer tremendous potential in unraveling the intricate dynamics of
muscle behaviors during joint motion exertion. Notably, research has demonstrated that

the analysis of joint moments, both pre- and postoperatively, assumes a crucial role in



informing the decision-making process regarding the treatment of CP. Specifically, the
examination of joint moments within the sagittal plane of the lower extremities, as well
as the hip joint moment within the frontal plane, has been shown to exert a significant
influence on treatment strategies [5,8,9,10]-(Ounpuu et al., 1996; De Luca et al., 1997;
Kay et al., 2000, Rhodes et al., 2023). By incorporating these valuable insights,
healthcare professionals are equipped with a more comprehensive understanding of the
biomechanical intricacies underlying CP, enabling them to make informed and
personalized decisions to optimize the treatment outcomes for individuals affected by

this condition.

A prominent example of the significance of joint moments in clinical decision-making
lies in the context of crouch gait observed in patients with CP. In this case, the
insufficient strength of the quadriceps muscle group emerges as a primary contributing
factor [11]-(Lenhart et al., 2017). Consequently, the magnitude and pattern of the knee
extension moment play a pivotal role in reflecting the impact of quadriceps weakness
on crouch gait. The careful analysis of these knee extension moments assumes critical
importance when making surgical decisions for individuals presenting with CP and
crouch gait. By thoroughly evaluating the knee extension moments, healthcare
professionals gain crucial insights into the extent of quadriceps weakness, enabling them
to make informed surgical choices aimed at addressing this specific issue and optimizing
the gait biomechanics and functional outcomes for patients affected by CP [11,12]-

(Lenhart et al., 2017; Karabulut et al., 2021).



Joint moments also provide crucial information about the joint mechanics that may be
contributing to gait abnormalities in patients and for tailoring surgical interventions to
address specific issues and improve gait mechanics. For instance, if a patient with CP
exhibits excessive knee flexion during the stance phase of gait, surgical interventions
such as lengthening the hamstrings or transferring the rectus femoris can be carried out
to improve knee extension [10]-(Rhodes et al., 2023). Similarly, if a patient exhibits
excessive hip adduction during the stance phase of gait, surgical interventions such as
pelvic osteotomy or soft tissue release can be carried out to improve hip alignment and

reduce the risk of hip dislocation [30]-(Miller, 2020).

Obtaining joint moments and ground reaction forces in clinical gait analysis leads to
challenges. The measurement of ground reaction force (GRF) presents inherent
challenges when attempting to capture it during natural walking [13]-(Caldas et al.,
2020). Furthermore, these difficulties are compounded when dealing with deviated
gaits, particularly in cases of CP [14]-(White et al., 1999). The complexity lies in
accurately quantifying GRF in real-time while individuals exhibit variations in gait
patterns, such as altered foot placements and asymmetrical weight distribution. Such
deviations pose significant obstacles to obtaining precise and reliable GRF

measurements.

On the other hand, the calculation of joint moments necessitates the utilization of GRF
measurements. By employing the principles of inverse dynamics, the forces and
moments acting on the body segments can be determined based on the measured GRF

data [15,16]-(Winter, 2009; Whittle, 2014). This computational approach allows for the



computation of the joint moments at various joints throughout the body, providing
valuable insights into the dynamic forces and torques experienced during different
phases of the gait cycle. In addition to the problematic acquisition process of GRF
measurements, these models are not perfect and especially far from being so for widely
varying CP cases.

Machine Learning (ML) has emerged as a powerful tool in addressing various
challenges, especially when dealing with tasks that involve missing measurements or
the absence of comprehensive physical models. ML techniques excel in leveraging
patterns, correlations, and underlying structures within data to make predictions,
classifications, and decisions.

In situations where measurements are missing or incomplete, ML algorithms can
effectively analyze the available data and uncover hidden relationships. By training on
existing data, ML models can learn patterns and generalize from them, enabling them
to make informed predictions or fill in missing information. This ability to handle
missing measurements is particularly valuable when dealing with complex systems or

scenarios where data collection might be limited or challenging.

Furthermore, ML can be applied when there is a lack of well-defined physical models.
Instead of relying solely on explicit equations or models, ML algorithms can learn from
data to infer relationships, capture nonlinearities, and make accurate predictions. This
flexibility makes ML a versatile tool for solving problems across various domains, from
image and speech recognition to natural language processing and complex system

optimization.



By harnessing the power of ML, researchers and practitioners can overcome the
limitations posed by missing measurements or the absence of physical models. ML
enables them to leverage available data effectively, uncover hidden patterns, and make
reliable predictions or decisions, thus contributing to advancements in fields where

traditional approaches may fall short.

1.3 Aim and importance of the study

The exploration of predicting GRF during gait using (ML) techniques has been an active
research area. One of the pioneering attempts in this field dates back to 2013, where
conventional ML algorithms were employed for GRF prediction based on kinematics
[17]-(Oh et al., 2013). Subsequently, other studies have further expanded on this
research, investigating statistical approaches [18]-(Johnson et al., 2018) as well as deep
learning algorithms utilizing motion capture data [19]-(Mundt et al., 2020a) and

incorporating spatio-temporal information [20]-(Johnson et al., 2018).

ML algorithms have also been successfully applied to patients with CP, a condition
characterized by non-uniform gait characteristics. Researchers have leveraged ML
techniques for various tasks, including the detection of CP disease using video
recordings [21]-(Ihlen et al., 2020) or gait kinematics [22]-(Zhang and Ye, 2019), as
well as the classification of gait phases in CP patients using electromyography (EMG)
[23]-(Morbidoni et al., 2021) or marker data [24]-(Kim et al., 2022). These applications
demonstrate the potential of ML in assisting with the diagnosis, assessment, and
classification of gait abnormalities in CP patients, providing valuable insights for

clinical decision-making and personalized treatment interventions.



With the typically developed (TD) subjects, a few attempts have been made to predict
joint moments using ML during gait. For example, the above mentioned study of Mundt
et al. not only predicts the GRF but also the joint moments of TD subjects successfully
using kinematic data from three-dimensional motion capture by employing feed-
forward neural networks and long short-term memory neural networks [19]-(Mundt et
al., 2020a). Another study published by Ardestani et al. introduced a wavelet neural
network that considered frequency information to predict joint moments of TD subjects

using both kinematic and EMG data [25]-(Ardestani et al., 2014).

This highlighted a research gap and presented an opportunity for the investigations in
this thesis to apply ML techniques to predict GRF and joint moments in individuals with
CP, which will enhance clinicians’ understanding of CP’s gait mechanics and contribute

to personalized treatment interventions.

In this thesis, our main objective was to predict i) GRF and specific joint moments,
including dorsi-plantar flexion, knee flexion-extension, hip flexion-extension, and hip
adduction-abduction moments, using joint angles derived from marker data during gait

in patients with CP.

Furthermore, we aimed to compare the performance of different input-algorithm settings
for predicting these variables. The input sets comprised various types of kinematic
information such as kinematic features and kinematic signals, and we carefully selected
and developed appropriate conventional and deep ML algorithms accordingly. By

exploring different combinations of input data and ML algorithms, we aimed to identify



the most effective approach for predicting the GRF and joint moments in patients with
CP during gait.

Such a comprehensive analysis allowed us to evaluate and compare the predictive
capabilities of different input variables and ML techniques. The findings from this study
would contribute to advancing our understanding of the relationships between kinematic
information, GRF, and joint moments in CP patients, and provide valuable insights into

the optimal approaches for predicting these parameters.

1.4 Original contributions

To the best of our knowledge, prior to this thesis and the associated publications, no
other study has specifically focused on predicting GRF or joint moments in patients with
CP using ML algorithms. The prediction of such kinetic parameters in CP patients
during gait represents a novel and important research area, as it can provide valuable
insights into their biomechanical characteristics and aid in clinical decision-making.
By conducting this thesis and the associated publications, we addressed the existing
research gap and contribute to the field by exploring the prediction of GRF and joint
moments in CP patients. The unique challenges posed by CP, including non-uniform
gait characteristics, require specific attention and tailored approaches for accurate
prediction. Therefore, our work represents an important contribution to the
understanding and application of ML techniques in the context of CP gait analysis.
The results and findings obtained from this thesis and the associated publications will
help advance the knowledge and understanding of gait mechanics in CP patients, paving
the way for future research and clinical applications in this area. The identification of
effective prediction models and approaches for GRF and joint moments can have

significant implications for treatment planning, rehabilitation strategies, and
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personalized interventions for individuals with CP.

1.5 Organization of the Thesis

There are three concluded works within this thesis, namely

e Study I: Predicting ground reaction forces using one-dimensional convolutional
neural network based on kinematics during gait in patients with cerebral palsy (paper in
preparation).

e Study Il: Deep learning-based prediction of joint moments based on kinematics in
patients with cerebral palsy (published: Ozates, Musta Erkam, et al. "Machine learning-
based prediction of joint moments based on kinematics in patients with cerebral palsy."
Journal of Biomechanics (2023): 111668.)

e Study IlI: Predicting joint moments in patients with cerebral palsy using deep and
various conventional machine learning methods (paper in preparation).

The thesis is organized in the same order both in methodology and results sections.



2. MATERIALS AND METHODS

2.1 Subjects

The studies involved in this thesis received ethical approval from the local ethical
committee of the University Hospital of Heidelberg (S-227/2021), ensuring that it
adhered to the necessary ethical guidelines and considerations. For the research, a
comprehensive dataset of gait data was utilized, consisting of anonymized retrospective
information. The dataset included 329 TD subjects with typical gait characteristics and
917 patients with CP. The TD subjects had an average age of 26 years (+14), a mass of
70kg (£15), and a height of 167cm (£89). On the other hand, the CP patients had an
average age of 17 years (£9), a mass of 47kg (£19), and a height of 153cm (£36). The
data was obtained from routine patient care, ensuring a real-world and clinically

relevant context.

To capture the kinematic information, the Plugin Gait Model (Oxford Metrics, Oxford,
UK) was utilized, which involved the placement of 19 markers on the subjects. The data
was captured using a 12-camera motion capture system (Vicon Motion Systems Ltd.,
Oxfordshire, UK) while the subjects walked at their self-selected speed.
Simultaneously, GRF data was collected using force plates (Kistler Instruments,
Winterthur, Switzerland). To calculate joint moments, an inverse kinematics model,
based on the work by Harrison et al. was employed [26]-(Harrison et al., 2012). These
joint moments were then normalized by the body mass of the individuals, allowing for

standardized comparisons.

The inclusion criteria for the TD and CP subjects did not involve specific age or gender

10



requirements. For the TD subjects, those who walked barefoot and had complete

measurements were included in the study, as depicted in Figure 1 of the flowchart.

Typically developed subjects with
measured gait kinematics
n=329

Y

Included: Subjects walking
barefoot
n=217

v

Excluded: Subjects walking with
shoes
n=112

Y

Included: Only first visit of the
subjects
n=216

v

Excluded: Later visits of the
subjects
n=1

A 4

Included: Subjects without
missing gait kinetics (GRF and
Joint Moment)
n=132

v

Excluded: Subjects with missing
GRF measurements or Joint
Moment Calculations
n=84

Figure 2.1: Inclusion/exclusion flow of the typically developed subjects. GRF: Ground

reaction force

As for the CP subjects, their first visits were considered, and only those who were able

to walk without assistive devices and had complete measurements were included, as

illustrated in Figure 2 of the patient flowchart. Notably, the Gross Motor Function

Classification System (GMFCS) levels of the included CP patients were limited to

levels | and II.

After applying inclusion—exclusion criteria, 132 TD and 622 CP patients with spastic
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diplegia were selected.

Cerebral palsy patients with
measured gait kinematics
n=917

Y

v

Included: Subjects with spastic
diplegia
n=727

Excluded: Subjects with
hemiplegia or tetraplegia
n=190

Y

v

Included: Subjects walking
barefoot and without walking aid
n=716

Excluded: Subjects walking with
shoes or walking aid
n=11

Y

v

Included: Only first visit of the
subjects
n=693

Excluded: Later visits of the
subjects
n=23

Y

v

Included: Subjects without
missing gait kinetics (GRF and
Joint Moment)
n=622

Excluded: Subjects with missing
GRF measurements or Joint
Moment Calculations
n=71

Figure 2.2: Inclusion-exclusion flow of the subjects with cerebral palsy. GRF: Ground

reaction force

By utilizing this comprehensive dataset and implementing stringent inclusion criteria,

the study aimed to ensure accurate and representative results, contributing valuable

insights into the prediction of GRF and joint moments in both TD individuals and those

with CP.
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2.2 Data gathered from the subjects

A comprehensive set of kinematic and kinetic data was collected for analysis in this
study. The kinematic data encompassed measurements from various body segments,
including the trunk, pelvis, hip, knee, and ankle, in three planes of motion (sagittal,
coronal, and transverse). This resulted in a total of 15 angles that were considered.
Furthermore, the kinetic data included GRF, flexion-extension moments of the ankle,

knee, and hip, as well as the adduction-abduction moment of the hip.

To ensure reliable and representative results, the data from each subject was averaged
across 7-10 strides. This averaging process helped to minimize any potential variability
and provided a more robust representation of the individual's gait pattern. Additionally,
the data was normalized to a percentage gait cycle, where each time series consisted of

101-time points representing the entire gait cycle, ranging from 0% to 100%.

In addition to the averaged time series, the dataset also included the standard deviations
of the time series throughout the individual strides. This information provided
information of the variability of the kinematic and kinetic parameters within each gait

cycle.

To further refine the analysis, the time series were segmented into stance and swing
phases based on the temporal foot-off values. Since GRF data were not available during
the swing phase, only the stance phases of the time series were utilized. This allowed

for the inclusion of directly measured GRF and directly calculated moment data during
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the periods when the foot was in contact with the ground.

By incorporating this comprehensive dataset of kinematic and kinetic measurements,
along with the appropriate segmentation (stance and swing phases), the study is
designed to use the most appropriate data in prediction of GRFs and joint moments
during the gait cycle. These considerations ensured that the study focused on relevant
and meaningful data, contributing to a more accurate learning of the biomechanical

aspects of gait in both TD individuals and those with CP.

2.3 Predicting ground reaction forces using one-dimensional convolutional neural
network

As mentioned above, this study of the thesis aimed to predict the GRF during gait
without requiring force plates to measure it. The subjects and data explained above in

Sections 2.1 and 2.2 are used for this study.

Figure 2.3: Force platform, embedded in the ground, used in measurement of ground
reaction force [27]
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2.3.1 Pre-processing

To ensure uniformity in the data size for training the ML algorithms, a standardized
length of 60-time points was established for the stance segments of the time series. Since
each subject may have a different duration of stance time, a standard interpolation
technique was employed to adjust the time series to this standardized length. This
interpolation process allowed for consistent data size across all subjects, facilitating the

ML training process.

Furthermore, to ensure fair and unbiased learning, all time series values, regardless of
their unit or magnitude, were normalized within the range of 0 to 1. This normalization
technique prevented any particular time series with higher magnitudes from dominating
the learning process. By scaling the values within a standardized range, the ML
algorithms could effectively analyze and compare the patterns and relationships within

the data.

Following the normalization step, the 15 kinematic time series, along with their
corresponding standard deviations, were organized and stacked into a matrix format.
This matrix, namely the input matrix, had 30 rows, representing 15 time series and their
associated standard deviations, and 60 columns, corresponding to the standardized
length of the stance segments. This matrix format allowed for a structured and consistent

representation of the data.

In total, 132 matrices were created for training and testing the ML process in the case

of TD subjects, while 622 matrices were generated for patients with CP. These matrices
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served as the input data for the ML algorithms, enabling the learning and prediction of

GRFs and joint moments based on the kinematic information.

By standardizing the data size, normalizing the values, and organizing the time series
into matrices, the study aimed to establish a consistent and compatible format for the
ML algorithms to process the gait data effectively. This approach ensured that each
subject's data contributed equally to the training and testing processes, facilitating
accurate predictions of GRFs and joint moments in both TD individuals and those with

CP.

2.3.2 Machine learning approach

To effectively process the time series data and capture distinct features from each time
series, a one-dimensional convolution neural network (1D-CNN) model was utilized.
The 1D-CNN model employs convolutional layers specifically designed for processing
sequential data, such as the joint angles in our case. These convolutional layers extract
features from the time series data by considering different temporal ranges, enabling the
model to capture valuable information relevant to predicting another time series' data,
in our case, the GRFs and the joint moments [28,29]-(Hua et al., 2020; Malek et al.,

2018).

During the initial experimentation phase, various network sizes were assessed using a
separate development set. As the number of convolutional and densely connected layers
increased from a basic architecture comprising only one of each, there was a gradual

decrease in the calculated loss on the development set. The hyperparameters that best
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suited the selected network size were determined. It became clear that further increasing
the model's complexity did not yield significant improvements, but it considerably
increased the computational demands. So, the complexity of the 1D-CNN model was
manually defined to ensure optimal performance. The model's complexity was
gradually increased until no significant decrease in loss, a measure of prediction error,
was observed. This iterative process allowed for fine-tuning the model's architecture
and finding the optimal balance between complexity and performance. To determine
the model's effectiveness, a separate development set comprising 42 patients with CP
was used to evaluate the model's performance, making adjustments until the desired

accuracy and predictive power were achieved.

By incorporating the 1D-CNN model into the analysis, the study aimed to leverage its
ability to extract meaningful features from the time series data, thereby enhancing the
prediction accuracy of joint moments based on the corresponding joint angles. The
iterative optimization process ensured that the model's complexity was tailored to the
specific task, maximizing its effectiveness in capturing the intricate relationships and
patterns within the gait data of patients with CP. The details of the designated 1D-CNN
model as well as the evaluation metrics is explained below in Section 2.4 as similarly
used for Study I, including Figure 2.5 showing the pipeline of the data processing and

ML.

2.4 Deep learning-based prediction of joint moments based on kinematics in
patients with cerebral palsy

As mentioned above, the thesis aimed to predict the dorsi-plantar flexion, knee flexion-
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extension, hip flexion-extension, and hip adduction-abduction moments of patients with
CP during gait without requiring inverse dynamics models, which is used to calculate
joint moments based on GRFs measured by force plates. The subjects and data explained
in Sections 2.1 and 2.2 were used in this study. The ML approach explained for Study |
in Section 2.3.2. was followed. In the end, one 1D-CNN model was designed and used
for both studies, namely Study | (Predicting ground reaction forces using one-
dimensional convolutional neural network based on kinematics during gait in patients
with cerebral palsy) and Study Il (Deep learning-based prediction of joint moments

based on kinematics in patients with cerebral palsy) explained in Sections 2.3 and 2.4.

2.4.1 Designed one dimensional convolutional neural network model

The designated 1D-CNN model utilized in the study consisted of five convolutional
layers, each with a specific number of filters and 1D kernel sizes. These convolutional
layers had the following numbers of filters: [128, 128, 512, 1024, 2048]. The
corresponding 1D kernel sizes for these layers were [30, 15, 10, 5, 3]. This configuration
was chosen to gradually extract features over decreasing time intervals, as the ascending
number of filters and decreasing filter sizes allowed for capturing more detailed

information at finer time resolutions.

After the output of the convolutional layers was flattened, ten densely connected layers
were employed. These layers consisted of varying numbers of neurons, specifically
[10000, 8000, 6000, 4000, 3000, 2000, 1000, 500, 250, 100]. The descending number
of neurons in these layers was chosen to transform the information to the desired output

size throughout the learning process. By using this architecture, the model was able to
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effectively learn and extract meaningful features from the input data.

To introduce non-linearity and enhance the model's learning capabilities, a rectified
linear unit (ReLU) activation function was applied to all layers. Additionally, a dropout
layer with a 1% dropout fraction was attached to the output of each layer to prevent
over-fitting. The final output layer, which was densely connected, employed a linear
activation function and had a neuron size of 60, corresponding to the number of time

points in the stance phase of the interpolated joint moment time series.

During the learning process, the stochastic gradient descent (SGD) algorithm was used
as the optimization algorithm with a learning rate of 0.01. The loss criterion for
evaluating the training performance was based on the root mean squared error (RMSE)
and Pearson correlation coefficient (PCC) between the experimental and predicted time
series. The implementation of the 1D-CNN algorithm was carried out using Keras on

the Tensorflow framework.

To assess the model's performance and ensure robustness, a 10-fold cross-validation
algorithm was employed. The dataset was divided into ten equal parts, with nine parts
used for training and one part for testing in each fold. Range normalization was applied
separately to the training and testing sets to prevent any information leakage between
them. Each subject was included in only one of the ten subsets to avoid over-fitting the

model to specific walking patterns.
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2.4.2 Avoiding over-fitting

To monitor the training process and detect over-fitting, learning curves were plotted,
comparing the decrease in loss on the training set to that of an isolated test set. The
training process was limited to 500 epochs for each split, with batches of size 32. This
approach allowed for effective training and evaluation of the model's performance while
preventing over-fitting and ensuring generalizability.

Throughout the training phase, the model's parameters were adjusted via back
propagation exclusively using the training set's loss, without any modifications to the
hyper parameters. Consequently, the test set remained separate from the training process
and served the sole purpose of evaluating potential over-fitting. The validation set, also
known as the "development set," ceased to be utilized once the model was established.
The learning curves demonstrated that notable over-fitting did not occur on the training
set, as the loss on the test set decreased concurrently (though to a lesser extent) with the

loss on the training set at each epoch.

Figure 2.4 shows the learning curve for the training of the model for ankle dorsi-plantar
flexion moment as an example. The x-axis shows the number of epochs, while the light
blue line represents the loss for the test set and the dark blue line shows the loss for the
training set. The curve has been smoothed using the exponential moving average
algorithm to provide an easy-to-interpret overall shape while retaining the actual loss

values as a faded background.
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Figure 2.4: The learning curves plotted for the training of the model for the ankle dorsi-
plan flexion moment

The detailed data processing and ML pipelines used in the study were given in Figure
2.5, providing a comprehensive overview of the methodology employed to predict

GRFs and joint moments in patients with CP during gait.
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Figure 2.5: Data processing and machine learning pipeline. GRF: Ground reaction
force, JM: Joint moment, AF: ankle dorsi-plantar flexion moment, KF: knee flexion-
extension moment, HF: hip flexion-extension moment, HA: hip adduction abduction
moment, CNN: convolutional neural network, SGD: stochastic gradient descent,
NRMSE: normalized root mean square error, PCC: Pearson correlation coefficient.
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2.4.3 Evaluation Metrics

The evaluation of the predicted joint moment time series involved the utilization of two
widely recognized metrics: the normalized root mean square error (nRMSE (%)) and
the Pearson correlation coefficient (PCC). These metrics have gained widespread
acceptance in the field as reliable measures for assessing the accuracy and performance
of ML algorithms in predicting joint moments, as evidenced by previous studies [19,
25,31,32] (Mundt et al., 2020a; Ardestani et al., 2014; Mundt et al., 2020b; Ripic et al.,

2022).

The nRMSE metric quantifies the normalized magnitude difference between the
predicted and experimental joint moment time series at each time point. NRMSE was
calculated by dividing the RMSE value by the mean range of the experimental joint
moment (uRoM) across all subjects of the same group as stated in Equation (1). In the
equation, /M, and My denote predicted and experimental joint moments, respectively.

Sub-indices P and E denote predicted and experimental quantity, respectively.

mmmE=/ﬁ@Q;ﬂﬁ/MMM (1)

The Pearson correlation coefficient (PCC) metric calculates the degree of pattern
similarity between the experimental and predicted joint moments, providing a
guantitative measure of their correlation and alignment [33]-(Savelberg and Herzog,
1997), in which cross-covariance (cov(E, P)) of them and variance of each of them

(o, op) respectively were used (Equation (2)).
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cov(E,P)

PCC = 2)

ogop
In order to address the issue of strong skewness in the distribution of the Pearson
correlation coefficient (PCC) values, we employed Fisher's Z transformation. This
transformation serves to normalize the PCC values, making the distribution more
symmetric and suitable for statistical analysis. By applying the transformation, we were
able to alleviate potential biases and achieve a more robust assessment of the correlation
between the experimental and predicted joint moments. The transformed PCC values
were then used to compute the mean, which was computed based on these normalized
values. To interpret the results in the original PCC scale, we reversed the transformation
by applying the inverse of Fisher's Z transformation, following a well-established
approach outlined in the reference [34]-(Silver et al., 1987). This ensured that the final
PCC values accurately reflected the pattern similarity between the experimental and

predicted joint moments, providing a reliable measure of their association.

2.5 Predicting joint moments of patients with cerebral palsy using deep learning
and various conventional machine learning methods

In this phase of the study, our objective was to design and evaluate various input-
algorithm configurations to predict joint moments. We focused on constructing different
input sets that encompassed the same range of kinematic information. Specifically, two
sets of inputs

) one for deep learning including row kinematic time series

i) one for conventional ML algorithms that is composed of manually extracted

features
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were constructed for the prediction of the ankle dorsi-plantar flexion moment.

It is worth noting that conventional ML algorithms tend to be more straightforward to
train when the provided information is relevant and representative. In other words, when
the input features accurately capture the essential characteristics of the data,
conventional algorithms are typically better equipped to learn and make accurate
predictions. Therefore, in this study, careful consideration was given to selecting and
constructing input sets that encompassed pertinent and meaningful information from the
kinematic data, aiming to enhance the training process and optimize the performance of

the ML models.

Deep learning, in contrast, has the ability to automatically create and extract its own
features from the input data. It does not rely on handcrafted features like conventional
ML approaches. By doing so, deep learning models can explore a much wider solution

space, allowing them to capture complex patterns and relationships in the data.

However, deep learning algorithms typically require a larger amount of data to
effectively learn these complex representations. With a substantial amount of data
available for training, deep learning models can leverage their capacity to learn intricate
patterns and achieve remarkable performance on more challenging and complex
problems. The abundance of data enables the models to generalize well and make

accurate predictions or classifications.

Therefore, deep learning's success is highly dependent on the availability of sufficient

and representative data. When provided with enough data, deep learning models can
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excel in tackling intricate and multifaceted problems, surpassing the capabilities of

conventional ML methods.

2.5.1 Constructing Input Sets

In this study, two distinct types of input sets were created using the collected kinematic
data, as depicted in Figure 2.6. The first type of input set involved stacking the extracted
features from the kinematic time series, which were obtained following the Automated
Feature Assessment Workflow for Instrumented Gait Analysis [35]-(Wolf et al., 2006).
These extracted features captured relevant information from the time series to be used
in conventional ML algorithms. On the other hand, the second type of input set
comprised solely the stance segment of the raw kinematic time series themselves as

explained for the Study Il to be used in deep learning algorithms.
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Figure 2.6: The flowchart for constructing two input subsets.
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2.5.2 Extracting Features for Conventional ML Models

As conducted in the study of Wolf et al. [35]-(Wolf et al., 2006), two new time series
were derived from the mean time series for each joint angle: The first gradient time
series and the difference from the normative time series. The first gradient V" of the
mean time series “U” was calculated according to the Formula (3), where “k” is the data
point index within a gait cycle. A discrete derivation of the mean time series must be

done since the time series are in a discrete domain.

VI = S Ulk +1] - Ulk — 1]) 3)

The difference relative to a reference considered to be normal U,,,,-, hamely difference

from normative “DN" was calculated according to the Formula (4):

DN[k] = |U[k] = Unormlk]| (4)

For each joint angle, reference normal time series U,,,,-» Was calculated by averaging

the corresponding time series across all TD subjects.

For each joint angle, the computed scalar features from both derived and original time
series were as follows: Minimum and maximum values and their timings (i.e. temporal
position in the gait cycle; x-axis in Figure 2.7). Note that, for the standard deviation
time series, only the maximum value and its timing were considered as features since it
makes sense that strongly varying gait of subjects with CP may cause more differences

in the gait patterns among the strides. For the first gradient time series, the average
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difference from normative was additionally considered because the difference from the

normal gait pattern may contain meaningful information.
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Figure 2.7: Computed features of an example time series. The orange line shows the
ankle dorsi plantar flexion of the subject. The blue line shows the reference normal time
series for the ankle dorsi plantar flexion.

2.5.3 Machine Learning Algorithms

Two deep learning models, namely 1D-CNN (the same model as used in Study I1), long
short term memory network (LSTM) and four conventional ML models, namely ridge
regression (R-Regr), k-nearest neighbor (KNN), random forest (RF), and multilayer
neural network (MLNN) were developed and compared regarding the same evaluation

metrics described in Section 2.4.3 for Study I1.
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Based on the manual preliminary trials conducted on the development set, similarly
executed as described for the Study I in Section 2.3.2, the hyper-parameters of the
conventional ML algorithms, namely, R-Regr, KNN, and RF were carefully selected to
ensure their suitability for our specific case of predicting joint moments. The deep
learning model 1D-CNN is used same as developed in the Study |1, explained in Section
2.4. The deep learning model LSTM is used with the same densely connected structure
as in the 1D-CNN and the hyper parameters of the LSTM layers are selected with the
same approach described for the Study I in Section 2.3.2. The MLNN model is designed
to have the same structure as the densely connected layers of the 1D-CNN model. Table
2.1 below shows the hyper-parameters of the models.

Table 2.1: Hyper-parameters of the machine learning models

Model List of hyper-parameters

LSTM Number of LSTM layers, number of LSTM units at each layer, activation function,
drop-out ratio, number of densely connected layers

1D-CNN Number of convolutional layers, number of filter per each layer, size of the filters in
each layer, activation function, drop-out ratio, number of densely connected layers

R-Regr The regularization strength, the type of solver algorithm

KNN The type of distance metric, the type of weight function, the type of algorithm for
computing nearest neighbor, the size of leaf (for the requiring algorithms)

RF The number of trees in the forest, split quality criterion, the minimum required
samples for splitting a node, the minimum required samples for being a leaf node,
maximum depth of trees, the maximum number of features for splitting, the
existence of bootstrapping

MLNN  Number of densely connected layers, activation function, drop-out ratio

These architectures serve not only the best learning possible but also the purpose of
ensuring a fair and meaningful comparison between the deep learning approach (based-
on autonomously extracted features) and the conventional ML method (based-on
manually extracted features). By aligning the architecture of the MLNN model with the
densely connected layers of the 1D-CNN, we create a consistent framework that allows

us to directly evaluate the impact of feature extraction on the performance of the models.
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This approach enables a comprehensive analysis of the benefits and limitations
associated with both approaches, shedding light on the effectiveness of feature
extraction methods and their influence on the predictive capabilities of the models. The
models are trained following the same pipeline as previously described in Figure 2.5 for

the prediction of the ankle dorsi-plantar flexion moment.

2.6. Statistical Analysis

The resulting evaluation metrics for predicting GRF (Study 1) not only provided
valuable insights but also necessitated a comprehensive statistical analysis for a more
in-depth discussion and interpretation. This was particularly crucial given the presence
of two distinct groups in the study, namely TD individuals and those with CP. By
conducting statistical analyses on the evaluation metrics, we were able to explore and
uncover potential differences, patterns, and trends between these two groups in terms

of the predicted GRF.

Similarly, the same principle applies to the prediction study involving various ML
algorithms (Study I11). In this study, we explored the performance and effectiveness of
six different models for predicting the desired outcomes. With the presence of multiple
models to compare, it became necessary to employ statistical analysis techniques to

assess and compare their predictive capabilities.

We hypothesized that the performance metrics differ significantly, between each group

in Study I, and between the models in Study I11. Statistical analysis was conducted using
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SPSS software (Version 21.0; SPSS; Chicago, IL, USA) and the level of significance
was set at 0.05. The resulting evaluation metrics were checked with Kolmogorov-
Smirnov test whether they are normally distributed or not. They were both found not to
be normally distributed. The statistical significance between two subject groups in
Study | was checked with Mann-Whitney U test. The statistical significance between
the models in Study Il was checked with Friedman’s Anova test. A Bonferroni
correction was applied to adjust the p-value for multiple comparisons (p<0.016). A
Bonferroni correction was implemented to account for multiple comparisons, resulting

in an adjusted p-value threshold of 0.016.

The resulting evaluation metrics for predicting joint moments (Study Il) required
statistical analysis for further discussion, since there are four predicted joint moments
of two subject groups, namely TD and CP. Statistical analysis was conducted using
SPSS software (Version 21.0; SPSS; Chicago, IL, USA). We performed both inter-
comparisons (between patient with CP and TD subjects) and intra-comparisons (within
each group of subjects). In the inter-comparison, we hypothesized that the prediction
success rates for the joint moments differ significantly between the groups, namely
patients with CP and TD subjects. In the intra-comparison, we hypothesized that the
prediction success rates of the aforementioned joint moments differ significantly within
each group of subjects. The level of significance was set at 0.05. The Kolmogorov-
Smirnov test was used to test the normality of the data, which was found not to be
normally distributed. The predicted joint moments of the TD subjects and patients with
CP were statistically analyzed using the Mann-Whitney U-test. For the intra-

comparisons, Friedman’s ANOVA test was used. The Mann—Whitney U-test was used
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to identify significant differences between the methods. A Bonferroni correction was
applied to adjust the p-value for multiple comparisons (p<0.016). Please refer to
Appendix A for details on the intra- and inter-comparison groups and the type of

analysis.

3. RESULTS
3.1. Results of predicting ground reaction forces using one-dimensional
convolutional neural network
For TD subjects, the mean normalized root mean square error (nRMSE) value for
predicting GRF was found 7.47%+3.53 (Figure 3.1), indicating a relatively low level of
prediction error. On the other hand, patients with CP had a higher mean nRMSE value

of 11.75%+6.88 (Figure 3.1), showing a higher level of prediction error in their case.
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Figure 3.1: Normalized root mean square error (nRMSE) scores for ground reaction
force predictions of TD subjects and patients with CP.

In terms of the Pearson correlation coefficient (PCC), TD subjects exhibited a mean
PCC value of 0.98 (Figure 3.2), indicating a strong pattern similarity between the
predicted and experimental GRF values. Conversely, patients with CP had a slightly
lower mean PCC value of 0.94 (Figure 3.2), indicating a slightly weaker pattern

similarity between the predicted and experimental GRF values in their case.
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Figure 3.2: Pearson correlation coefficient (PCC) scores for ground reaction force
predictions of TD subjects and patients with CP.

Statistical analysis, as described in Section 2.6, was conducted to compare the CP and
TD subject groups. The resulting p-values for nRMSE and PCC values were found to
be 0.032 and 0.027, respectively. These p-values indicate significant differences
between the subject groups in terms of both magnitude (hnRMSE) and pattern similarity

(PCC).

Figure 3.3 provides a collection of representative predicted and experimental GRFs for
patients with CP, offering valuable insights into the predictive capabilities of the trained
models across different scenarios. The inclusion of these diverse examples aims to

enhance the understanding of how well the models perform in predicting GRFs with
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varying patterns. The upper row of the figure showcases predictions that have achieved
relatively high levels of success, evaluated with lower normalized root mean square
error (NRMSE) values and higher Pearson correlation coefficient (PCC) values
compared to the average performance of the model. These predictions demonstrate the
models' proficiency in successfully capturing the intricate dynamics of the GRFs. On
the other hand, the lower row of the figure presents predictions that are comparatively
less successful, exhibiting higher nRMSE values and lower PCC values than the
average. These examples highlight the challenges faced by the models in accurately
reproducing certain complex patterns within the GRF data. By including both successful
and less successful predictions, the figure provides a comprehensive representation of
the models' performance, enabling a nuanced evaluation of their overall predictive

capabilities.
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Figure 3.3: Secondary, representative results for aiding interpretations of Figure 3.1 and
Figure 3.2. Predictions of ground reaction force for representative typically developed
subjects and patients with cerebral palsy. CP: Cerebral palsy, TD: Typically developed.
(A) corresponds to above-average prediction success for patients with CP, (B)
corresponds to below-average prediction success for patients with CP, (C) corresponds
to above-average prediction success for TD subjects, (D) corresponds to below-average
prediction success for TD subjects. The blue line represents the experimental ground
reaction force, while the red line represents the predicted ground reaction force.

3.2. Results of deep learning-based prediction of joint moments based on
kinematics in patients with cerebral palsy

For TD subjects, all joint moments were predicted with mean nRMSE values less than
12.55%+5.08 (Figure 3.4). The knee flexion-extension moment is the least successfully
predicted joint moment in terms of nRMSE score (12.55%+5.08). The dorsi-plantar
flexion is the most successfully predicted joint moment (8.58%=3.87). The hip

adduction-abduction and hip flexion-extension moments were predicted with an

nRMSE value of 11.89%+4.72 and 10%=3.66 for TD subjects, respectively.

For patients with CP, all joint moments were predicted with mean nRMSE values less
than 18.02%+9.14 (Figure 3.4). The knee flexion-extension moment is the least
successfully predicted joint moment in terms of nRMSE (18.02%+9.14), while the hip
flexion-extension is the most successfully predicted joint moment (13.58%=5.36). The
hip adduction-abduction and dorsi-plantar flexion moments were predicted with an

nRMSE value of 17.2%+6.53 and 14.78%+7.17 for the CP group, respectively.
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Figure 3.4: Normalized root mean square error (nRMSE) scores for joint moment
predictions of TD subjects (red) and patients with CP (blue). Hip abd/add: hip adduction
abduction, Hip flex/ext: hip flexion extension, Knee flex/ext: knee flexion extension,
Dorsi/plant flex: dorsi plantar flexion.

For TD subjects, all joint moments were predicted with mean PCC scores higher than

0.96 (Figure 3.6). The dorsi-plantar flexion is the most successfully predicted joint

moment in terms of PCC score (0.99), while the others have the same PCC (0.96).

For the patient group, all joint moments were predicted with mean PCC scores higher
than 0.89 (Figure 3.6). The hip adduction-abduction moment is the least successfully
predicted moment in terms of PCC score (0.89), while the dorsi-plantar flexion is the

most successfully predicted one (0.96).
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Figure 3.5: Pearson correlation coefficient (PCC) scores for joint moment predictions
of TD subjects (red) and patients with CP (blue). Hip abd/add: hip adduction-abduction,
Hip flex/ext: hip flexion-extension, Knee flex/ext: knee flexion-extension, Dorsi/plant
flex: dorsi plantar-flexion.

Tables 3.1 and 3.2 present the statistical significance of the nRMSE and PCC scores
obtained for the joints of TD and patient groups, respectively. Within the TD group, the
dorsi-plantar flexion and hip flexion-extension moments exhibited significantly better
predictions than the hip abduction-adduction and knee flexion-extension moments in
terms of NRMSE (Table 3.1). When considering the PCC scores, the prediction rate for

the dorsi-plantar flexion moment was significantly higher than that for the knee flexion-

extension joint moment (Table 3.1).
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Table 3.1. P-values obtained for the nRMSE and PCC values of joint moment
predictions for healthy subjects. Significant differences were marked bold.
Hipaddabd: hip adduction-abduction, hipflexext: hip flexion-extension, kneeflexext:
knee flexion-extension, dorsiplanflex: dorsi-plantar flexion

nRMSE PCC
Hip add/abd Hip flex/ext 0.014 0.021
VS. Knee flex/ext 0.019 0.020
Dorsi/planflex 0.015 0.018
Hip flex/ext Hip add/abd 0.014 0.021
Vs. Knee flex/ext 0.012 0.019
Dorsi/planflex 0.020 0.016
Knee flex/ext Hip add/abd 0.019 0.020
Vs. Hip flex/ext 0.012 0.019
Dorsi/planflex 0.014 0.014
Dorsi/plan Hip add/abd 0.015 0.018
flex vs. Hip flex/ext 0.020 0.016
Knee flex/ext 0.014 0.014

Within the patient group, the dorsi-plantar flexion moment was significantly better
predicted than the hip abduction-adduction and knee flexion-extension moments in
terms of NnRMSE (Table 3.2). Furthermore, when taking the PCC scores into account,
the prediction rates for the dorsi-plantar flexion and hip flexion-extension moments
were significantly higher than those for the knee flexion-extension and hip abduction-

adduction moments (Table 3.2).
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Table 3.2. P-values obtained for the nRMSE and PCC values of joint moment
predictions for the patients with CP. Significant differences were marked bold.
Hipaddabd: hip adduction-abduction, hipflexext: hip flexion-extension, kneeflexext:
knee flexion-extension, dorsiplanflex: dorsi-plantar flexion

nRMSE PCC
Hip add/abd Hip flex/ext 0.016 0.015
VS. Knee flex/ext 0.018 0.032
Dorsi/planflex 0.014 0.011
Hip flex/ext Hip add/abd 0.016 0.015
VS, Knee flex/ext 0.014 0.013
Dorsi/planflex 0.018 0.028
Knee flex/ext Hip add/abd 0.018 0.032
Vs, Hip flex/ext 0.014 0.013
Dorsi/planflex 0.012 0.011
Dorsi/plan Hip add/abd 0.014 0.011
flex vs. Hip flex/ext 0.018 0.028
Knee flex/ext 0.012 0.011

Table 3.3 demonstrates the statistical significance of the scores between the TD

individuals and patient groups. In terms of nRMSE, all four joint moments were

predicted significantly higher in the TD group than in the CP group.

Table 3.3. P-values obtained for the comparison of the nRMSE and PCC
values of joint moment predictions for the healthy subjects and patients with CP.
Significant differences were marked in bold. Hipaddabd: hip adduction-abduction,
hipflexext: hip flexion-extension, kneeflexext: knee flexion-extension, dorsiplanflex:
dorsi-plantar flexion

nRMSE PCC
Healthy vs. Hip add/abd 0.041 0.033
Patients with Hip flex/ext 0.047 0.051
CP Knee flex/ext 0.038 0.037
Dorsi/plan flex 0.034 0.055
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Figures 3.6 and 3.7 show some representative predicted and experimental joint moments
of TD subjects and patients with CP, respectively. These figures are provided for a better
understanding of the trained models’ capability of predicting joint moments with
varying patterns. To ensure the representativeness of the models' capability in predicting
joint moments, the figures in the left column show relatively successful predictions
(with lower nRMSE and higher PCC values than the average), while the figures in the
right column show relatively less successful predictions (with higher nRMSE and lower

PCC values than the average).
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Figure 3.6: Secondary, representative results for aiding interpretations of Figure 3.4
and Figure 3.5. Joint moments of a) dorsi-plantar flexion, b) knee flexion-extension, c)
hip flexion-extension, d) hip adduction-abduction for representative typically
developed subjects. The predictions on the left column correspond to above-average
success rates, while those on the right column correspond to below-average success
rates. The blue line represents the experimental joint moment, while the red dashed
line represents the predicted joint moment.
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Figure 3.7: Secondary, representative results for aiding interpretations of Figure 3.4
and Figure 3.5. Joint moment predictions of a) dorsi-plantar flexion, b) knee flexion-
extension, c) hip flexion-extension, d) hip adduction abduction for representative
patients with cerebral palsy. The predictions on the left column correspond to above-
average success rates, while those on the right column correspond to below-average
success rates. The blue line represents the experimental joint moment, while the red
dashed line represents the predicted joint moment.
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3.3 Results of predicting joint moments of patients with cerebral palsy using deep
and various conventional machine learning methods

For the random forest algorithm, the mean nRMSE value was found 14.93% (+6.81%).
This suggests that, on average, the predicted ankle dorsi-plantar flexion values deviated
from the experimental values by approximately 14.93%. Similarly, the multilayer neural
network achieved a mean nRMSE value of 14.35% (+6.15%). The k-nearest neighbour
algorithm exhibited a slightly higher mean nRMSE value of 17.94% (+7.96%). The
ridge regression model achieved a mean NnRMSE value of 14.19% (+6.34%). The one-
dimensional convolutional neural network achieved a mean nRMSE value of 14.78%
(£7.17%), while the long short-term memory network obtained a mean nRMSE value
of 14.73% (£7.04%). See Figure 3.8 for a bar representation of the models’ successes

in terms of nRMSE values.
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Figure 3.8: Normalized root mean square error (nRMSE) scores for predicting ankle
dorsi-plantar flexion moment of patient with CP. RF: Random forest, MLNN:
Multilayer neural network, kNN: K-nearest neighbor, CNN: one dimensional
convolutional neural network, LSTM: Long short term memory neural network.

For ankle dorsi-plantar flexion prediction, the random forest, multilayer neural network,
and ridge regression models achieved high PCC values of 0.95. This indicates a strong
positive correlation between the predicted and experimental values, suggesting that
these models were successful in capturing the underlying patterns in the ankle dorsi-
plantar flexion data. The k-nearest neighbour algorithm achieved a slightly lower PCC
value of 0.92, indicating a slightly weaker correlation. The one-dimensional

convolutional neural network and long short-term memory network performed well,

with PCC values of 0.96 and 0.95, respectively, indicating strong correlations between
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the predicted and experimental ankle dorsi-plantar flexion values (Figure 3.9).
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Figure 3.9: Pearson correlation coefficient (PCC) scores for predicting ankle dorsi-
plantar flexion moment of patient with CP. RF: Random forest, MLNN: Multilayer
neural network, KNN: K-nearest neighbor, CNN: one dimensional convolutional neural
network, LSTM: Long short term memory neural network.

These results demonstrate the capabilities of the different ML algorithms in predicting
ankle dorsi-plantar flexion for patients with CP. The nRMSE values provide insights
into the magnitude of prediction errors, while the PCC values reflect the degree of
pattern similarity. Overall, the algorithms exhibited relatively low prediction errors and

strong correlations, indicating their potential usefulness in accurately predicting ankle

dorsi-plantar flexion for patients with CP.

48



Table 3.4 presents the p-values resulting from the statistical analysis approach described
in Section 2.6. These p-values provide a quantitative measure of the statistical
significance of the observed differences and enable a rigorous evaluation of the obtained
performance results of the six aforementioned ML models. Each row of the table
represents a specific model (KNN, LSTM, MLNN, RF, R-Regr, 1IDCNN), and each
column represents the model being compared against (KNN, LSTM, MLNN, RF, R-
Regr, 1IDCNN). For example, the first row indicates the p-values for comparing KNN

with other models in terms of nRMSE and PCC.

The obvious outcomes of the statistical significance results regarding the Table 3.4
should be noted as following. RF generally shows lower p-values compared to other
models, indicating significant differences in performance. MLNN and LSTM often
have higher p-values, suggesting less significant differences compared to other models.
1DCNN shows relatively higher p-values in some comparisons, implying less

significant differences compared to certain models.
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Table 3.4. p-values obtained for the comparison of the nNRMSE and PCC values of ankle
dorsi-plantar flexion moment predictions for the patients with CP. Significant
differences were marked bold. RF: Random forest, MLNN: Multilayer neural network,
KNN: K-nearest neighbour, CNN: one dimensional convolutional neural network,
LSTM: Long short term memory neural network

nRMSE PCC
KNN vs LSTM 0.0139 0.0131
MLNN 0.0132 0.0137
RF 0.0126 0.0131
R-Regr 0.0128 0.0136
1DCNN 0.0132 0.0127
LSTM vs KNN 0.0139 0.0131
MLNN 0.0169 0.0159
RF 0.0157 0.0172
R-Regr 0.0157 0.0161
1DCNN 0.0169 0.0158
MLNN vs KNN 0.0132 0.0137
LSTM 0.0169 0.0159
RF 0.0175 0.0152
R-Regr 0.0175 0.0173
1DCNN 0.0522 0.0149
RF vs KNN 0.0126 0.0131
LSTM 0.0157 0.0172
MLNN 0.0175 0.0152
R-Regr 0.0518 0.0148
1DCNN 0.0497 0.0151
R-Regr vs KNN 0.0128 0.0136
LSTM 0.0157 0.0161
MLNN 0.0175 0.0173
RF 0.0518 0.0148
1DCNN 0.0492 0.0142
1DCNN vs KNN 0.0132 0.0127
LSTM 0.0169 0.0158
MLNN 0.0522 0.0149
RF 0.0497 0.0151
R-Regr 0.0492 0.0142
p<0.016
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4. DISCUSSION

Since joint moments and GRFs are valuable assessment parameters in the management
of CP [3]-(Lai et al., 1988) and hard to capture experimentally, we predicted vertical
GRF and, dorsi-plantar flexion, knee flexion-extension, hip flexion-extension, and the
hip adduction-abduction moments of patients with CP during gait from joint angles
using 1D CNN in our study. We found that the joint moments of patients could be
predicted with nRMSE values less than 18.02% and PCC scores higher than 0.85 and
GRF of the patients with CP could be predicted with an average nRMSE value of
11.75% and an average PCC value of 0.94. In the TD group, all joint moments were
predicted with nRMSE values less than 12.55% and PCC scores higher than 0.94,
whereas GRF was predicted with an nRMSE of 7.47% and a PCC of 0.98. The
predictions mostly captured the patterns and magnitudes of the experimentally obtained

joint moments and GRF.

Mundt et al. predicted joint moments from joint angles of TD subjects using a densely
connected feed-forward and an LSTM neural network achieved nRMSE scores between
12.14% to 15.00% and PCC scores between 0.92 to 0.97 on cross validation splits [19]-
(Mundt et al., 2020a), whereas in our study the CNN model achieved nRMSE scores
between 8.58% to 12.55% and PCC scores between 0.94 to 0.98 for TD subjects
(Figures 4 and 5). There is another study predicting joint moments of TD subjects based
on EMG and GRF components using wavelet neural networks, which achieved higher
success in terms of NnRMSE (lower than 5.69%) and PCC (above 0.99) (Ardestani et
al., 2014). Using GRF as input information would increase the prediction success since

GRF and joint moments are biomechanically coupled. Thus, GRF that was leaked into
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the calculated joint moments was considered the golden standard in this study. In our
study, only the joint angles were used as input which were separately measured and
easily accessible information in routine gait analysis, hence there is no further need for

costly equipment like force plates.

4.1 Discussion for Study |

Comparing the prediction of GRF between TD subjects and those with CP, TD subjects
exhibited significantly higher success in terms of NRMSE and PCC (Section 3.1). The
presence of diverse gait deviations in CP cases poses challenges for the learning process
of CNN models, resulting in lower performance in predicting joint moments for patients
compared to TD subjects. This outcome was anticipated due to the increased complexity
of the coupled relationship between joint angles and GRFs in patients with CP. Despite
the TD group having a relatively smaller number of subjects in comparison to the CP
group, the models for TD subjects exhibited higher success rates in predicting joint
moments. This finding is noteworthy considering the commonly recognized
disadvantage of training machine learning models with a limited sample size, showing
that strongly varying gait characteristics of CP patients won’t allow ML models to gain
advantage from larger sample size when compared with TD prediction successes. The
GRF patterns depicted in Figure 3.3 serve as evidence that the models successfully
predicted GRFs with different characteristics. To assess the models' performance, blind
testing was conducted using randomly selected test splits across all participants,
indicating their potential for accurately predicting gait kinetics across a range of gait
patterns. This study presents a significant advancement by offering the potential to

enable motion analysis of patients with CP without the need for force plates, thus
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eliminating the reliance on costly equipment and simplifying the assessment process.

4.2 Discussion for Study 11

The prediction of joint moments for TD subjects was achieved with a significantly
higher success regarding nRMSE within all considered joint moments, whereby with a
significantly higher PCC within hip adduction-abduction and knee flexion-extension
moments (Table 3) when compared to those for subjects with CP. The varying deviation
of gait in CP cases makes the learning process of the CNN models harder, which caused
less moment prediction performance in the patient group compared to TD subjects. This
was expected due to the coupled relation between joint angles and joint moments
becoming more complex in patients with CP. The models for TD subjects have achieved
higher success rates despite having a relatively smaller number of subjects than the CP
group, which is a commonly recognized disadvantage when training ML models. The
sub-classification of CP groups based on altered gait patterns, such as crouch gait and
tip-toe, and training separate ML models for each subgroup could improve the
prediction accuracy. We consider this attempt as the next step in gait kinetics prediction

studies for CP patients.

One could argue that the prediction of moments in the joints that are closer to the ground
(distal joints) would be more successful than those that are further from the ground
(proximal joints) because the calculation of joint moments that is based on inverse
dynamics is performed in a stepwise fashion from bottom to the top resulting in
accumulating errors in calculations [16]-(Whittle et al., 2014). This was not totally

observable in our results however, the joint moment with the highest prediction success
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for TD subjects was the ankle dorsi-plantar flexion, which fits that expectation.

The representative joint moments presented in Figure 3.6 and Figure 3.7 indicate that
the models were able to predict joint moments with different profiles. The models were
blindly tested with randomly selected test splits across all included subjects, hence the
performance of the models is promising for predicting gait kinetics of varying gaits.
Although the results are promising, the fact that the gait analysis is used for surgical
decision-making in CP makes the use of ML-based joint moment predictions limited,
since the obtained error rates might still be critical for surgical decision-making. The
accuracy of obtaining kinematics data from markers directly affects the correctness of
joint moment prediction. Moreover, inaccurate recording of kinematics data, caused by
marker misplacement or soft tissue artifacts, can result in biomechanically inaccurate
joint moments (Fonseca et al, 2020). However, the successful application of this
workflow would facilitate the gait analysis of patients with CP by reducing laboratory
effort and eliminating the need for complex musculoskeletal models for calculating joint
moments. Furthermore, this workflow can help clinicians with the treatment protocol
by providing joint moments of the patients with CP, whose GRFs could not be correctly

measured at all due to using assistive devices or very short stride length.

4.3 Discussion for Study 111

In the part of the study aiming to predict joint moments of patients with CP using various
ML methods, six ML models were developed and evaluated for their prediction success
in ankle dorsi-plantar flexion. The models included kNN, LSTM, MLNN, RF, R-Regr,

and 1DCNN. This part of the study also focused on comparing two types of kinematic
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input data: manually extracted time domain features for conventional ML models and

automatically extracted features within the deep learning models.

Interestingly, all models, except for KNN, achieved similar levels of success with
relatively low standard deviations. This finding suggests that regardless of the specific
form of kinematic data representation, accurate predictions of gait kinetics can be
achieved if the models are trained with suitable ML algorithms. This implies that both
manually extracted time domain features and automatically extracted features within
deep learning models can provide sufficient information for predicting joint moments

in patients with CP.

The results of this study highlight the versatility and effectiveness of different ML
approaches in predicting gait kinetics. It emphasizes the importance of selecting the
appropriate algorithm based on the specific dataset and research objective. While
conventional ML models and deep learning models demonstrated comparable success
in this study, it is crucial to consider factors such as computational efficiency,
interpretability, and generalizability when choosing the most suitable ML approach for

a particular application.

Moreover, the finding that different forms of kinematic data representation yielded
similar prediction performance suggests that the choice between manual feature
extraction and automatic feature extraction can be based on practical considerations and
the availability of data. Manual feature extraction requires domain expertise and prior

knowledge of relevant features, whereas automatic feature extraction allows the model
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to learn complex patterns and representations directly from the raw input data. Both
approaches have their advantages and limitations, and the decision should be based on

the specific requirements and constraints of the study.

This part of the study demonstrates that accurate predictions can be achieved regardless
of the specific data representation method. This highlights the flexibility of ML
approaches in gait analysis and provides valuable insights for future research and

clinical applications in the field of CP management.

4.4 Limitations

Limitations of this study should be considered. Firstly, the models were limited to the
aforementioned vertical GRF and four joint moments, which are major Kinetic
parameters for the management of CP, however additional joint moments like hip
internal/external rotation and ankle inversion/eversion may also be taken into account
in monitoring CP. Secondly, the kinematics data included only the trunk from the upper
body, however further kinematics data from upper extremities like arms may provide
valuable information, thereby improving the ML models’ prediction success rates.
Thirdly, it is ambiguous if the model would be able to predict a marginal GRF or joint
moment from a CP patient with a novel form of deviation, which did not show up in our
subject dataset. Although the used dataset is large and has been collected over two
decades, the ML algorithm should always be further developed with potential new
cases’ data. For example, we did not include hemiplegic and tetraplegic subjects in the
study. The implementation of ML algorithms on such patients would improve the

applicability of the proposed joint kinetics prediction procedure.
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5. CONCLUSION AND FUTURE WORK

In conclusion, the findings from this study highlight the potential of ML-based
prediction of joint moments and GRF using kinematics as an alternative technique to
conventional joint moment calculation in the gait analysis of patients with CP in the
near future. The results demonstrate that ML models can successfully estimate joint
moments and GRFs based on kinematic data, offering a promising avenue for capturing

important Kinetic parameters in an accessible manner.

However, it is important to acknowledge that the current level of prediction errors may
still limit the immediate use of ML-based techniques for clinical decision-making today.
While the models achieved favourable prediction success rates, there is a limitation that
need to be addressed before these techniques can be seamlessly integrated into clinical
practice. This consideration is the clinical significance of prediction errors. Even though
the models showed promising performance regarding the well-accepted evaluation
metrics, the accuracy and reliability of the predicted joint moments may not meet the
critical thresholds required for making surgical decisions or implementing specific

treatment protocols.

On the other hand, to the best of our knowledge, the clinicians did not explicitly define
a specific threshold in their academic literature, indicating a gap in the existing
knowledge. This observation underscores the pressing need for stronger and more
collaborative partnerships between researchers and clinicians. By fostering closer
collaborations, we can bridge this gap and facilitate the exchange of expertise and

insights, ultimately enhancing the integration of scientific findings into clinical practice.
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Such collaborations would enable researchers and clinicians to collectively establish
meaningful thresholds and guidelines that can effectively inform decision-making

processes and improve patient care.

The limitations identified in this study open up possibilities for future research and
development in the field of predicting joint moments in patients with CP. Here are some

potential avenues for future work based on the limitations mentioned:

A potential avenue for future work in joint moment prediction studies for CP patients
involves the sub-classification of CP groups according to specific altered gait patterns,
such as crouch gait and tip-toe. By creating distinct subgroups based on these variations,
and subsequently training separate ML models for each subgroup, it is anticipated that
the prediction accuracy can be significantly improved. This approach represents a
logical progression in the field, and its implementation holds promise for advancing our
understanding of CP biomechanics and optimizing the accuracy of joint moment

predictions in clinical settings.

Expansion of joint moment analysis is possible. While this study focused on vertical
GRFs and four major joint moments, there is room for including additional joint
moments such as hip internal/external rotation and ankle inversion/eversion.
Considering these additional joint moments could provide a more comprehensive
understanding of the biomechanics of patients with CP and further improve the

monitoring and management of their condition.
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It is also a good idea to incorporate the upper extremity kinematics. The current study
primarily focused on kinematics data from the trunk and lower extremities. Future
research could explore the inclusion of kinematic data from the upper extremities,
particularly the arms. This additional information could provide valuable insights into
the overall movement patterns and contribute to improving the prediction success rates

of ML models.

It remains uncertain whether the developed models would be capable of predicting
marginal GRF or joint moments in patients with CP exhibiting novel forms of deviation
that were not present in the subject dataset used in this study. To address this limitation,
future work could involve collecting data from a broader range of patients, including
those with unique gait deviations or specific subtypes of CP, such as hemiplegia or
tetraplegia. By including diverse cases and continuously updating the ML algorithms
with new data, the applicability and robustness of the joint kinetics prediction procedure

can be enhanced.

The dataset used in this study was collected over two decades, providing a substantial
amount of information. However, to further improve the ML models and their
generalizability, it would be valuable to gather longitudinal data from patients with CP.
Long-term follow-up studies can help capture the progression of the condition, assess

treatment effectiveness, and refine the predictive capabilities of the models over time.

This study focused specifically on patients with CP. Future research could explore the

application of ML algorithms to other patient groups, such as individuals with different
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neuromuscular disorders or orthopaedic conditions. By adapting and fine-tuning the ML
models for specific patient populations, the joint kinetics prediction procedure can be
extended to a broader range of clinical scenarios, enabling personalized treatment

planning and evaluation.

In conclusion, future work in this field could involve sub classifying the CP groups,
expanding the analysis to include additional joint moments, incorporating upper
extremity kinematics, addressing novel forms of deviation, collecting longitudinal data,
and applying ML algorithms to diverse patient groups. These advancements would
contribute to a more comprehensive understanding of gait kinetics in various clinical
populations and further enhance the clinical utility of predictive models for joint

moment analysis.
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6. APPENDIX A: Details of the statistical analysis for the resulting evaluation

metrics of predicting joint moments (Study I1)

Table. Details of the statistical analysis

Type of analysis

Friedman’s ANOVA (for the intra-comparison)

Mann-Whitney U test (for the inter-comparison)

Intra-comparison

NRMSE values calculated between the predicted and
experimental hip abduction-adduction moment vs. NnRMSE
values calculated between the predicted and experimental
hip flexion-extension moment,

NRMSE values calculated between the predicted and
experimental hip abduction-adduction moment vs. NRMSE
values calculated between the predicted and experimental
knee flexion-extension moment,

NRMSE values calculated between the predicted and
experimental hip abduction-adduction moment vs. NnRMSE
values calculated between the predicted and experimental
dorsi-plantar flexion moment,

NRMSE values calculated between the predicted and
experimental hip flexion-extension moment vs. nRMSE
values calculated between the predicted and experimental
knee flexion-extension moment,

NRMSE values calculated between the predicted and
experimental hip flexion-extension moment vs. nRMSE
values calculated between the predicted and experimental
dorsi-plantar flexion moment,

NRMSE values calculated between the predicted and
experimental knee flexion-extension moment vs. NnRMSE
values calculated between the predicted and experimental
dorsi-plantar flexion moment,

PCC values calculated between the predicted and
experimental hip abduction-adduction moment vs. PCC
values calculated between the predicted and experimental
hip flexion-extension moment,

PCC values calculated between the predicted and
experimental hip abduction-adduction moment vs. PCC
values calculated between the predicted and experimental
knee flexion-extension moment,

PCC values calculated between the predicted and
experimental hip abduction-adduction moment vs. PCC
values calculated between the predicted and experimental
dorsi-plantar flexion moment,

PCC values -calculated between the predicted and
experimental hip flexion-extension moment vs. PCC values
calculated between the predicted and experimental knee
flexion-extension moment,
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e PCC values calculated between the predicted and
experimental hip flexion-extension moment vs. PCC values
calculated between the predicted and experimental dorsi
plantar flexion moment,

e PCC values calculated between the predicted and
experimental knee flexion-extension moment vs. PCC
values calculated between the predicted and experimental
dorsi-plantar flexion moment,

Inter-comparison e nRMSE values calculated between the predicted and
experimental hip abduction-adduction moment of the CP
patients vs. those calculated healthy subjects,

e nRMSE values calculated between the predicted and
experimental hip flexion-extension moment of the CP
patients vs. those calculated healthy subjects,

e nRMSE values calculated between the predicted and
experimental knee flexion-extension moment of the CP
patients vs. those calculated healthy subjects,

e nRMSE values calculated between the predicted and
experimental dorsi-plantar flexion moment of the CP
patients vs. those calculated healthy subjects,

e PCC values calculated between the predicted and
experimental hip abduction-adduction moment of the CP
patients vs. those calculated healthy subjects,

e PCC values calculated between the predicted and
experimental hip flexion-extension moment of the CP
patients vs. those calculated healthy subjects,

e PCC values calculated between the predicted and
experimental knee flexion-extension moment of the CP
patients vs. those calculated healthy subjects,

e PCC values calculated between the predicted and
experimental dorsi -plantar flexion moment of the CP
patients vs. those calculated healthy subjects.

CP: Cerebral palsy, nRMSE: normalized root-mean-square error, PCC: Pearson cross-
correlation coefficient.
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