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ABSTRACT

DEEP LEARNING-BASED OBJECT TRACKING SYSTEM BY USING VISUAL AND
THERMAL INFRARED FUSION

Tiirkoglu, Abbas
M.S., Department of Modeling and Simulation
Supervisor: Assoc. Prof. Dr. Elif Siirer

Co-Supervisor: Assoc. Prof. Dr. Erdem Akagiindiiz

August 2023, 51| pages

Object tracking in computer vision presents a formidable challenge, particularly when faced with ad-
verse conditions like occlusion, variations in illumination, and motion blur. In recent years, deep
learning has shown great promise for object tracking. However, the vast majority of deep learning-
based object trackers use only visible band images. This limits their performance in challenging
conditions, as thermal infrared electromagnetic waves can provide additional information about the
object, such as its temperature. This thesis proposes a deep learning-based object tracking system
that uses visual band (RGB) and thermal infrared (RGBT) fused images. The system consists of two
main components: a feature extractor and a tracker. The feature extractor extracts features from both
RGB and thermal infrared (TIR) images. The tracker then uses these features to track the object in
the next frame. The proposed system is evaluated on the RGBT234 and LasHeR datasets, which are
the mostly used RGBT object tracking datasets in the literature. The results show that the proposed
system outperforms state-of-the-art RGB object trackers on the RGBT234 and LasHeR datasets.

Keywords: Deep learning, object tracking, RGBT object tracking, computer vision, thermal and visual
fusion
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TERMAL KIZILOTESI VE GORUNUR BANT KAYNASTIRMA KULLANARAK DERIN
OGRENME TABANLI NESNE TAKIP SISTEMI

Tiirkoglu, Abbas
Yiiksek Lisans, Modelleme ve Simiilasyon Bolimii
Tez Yoneticisi: Dog. Dr. Elif Siirer

Ortak Tez Yoneticisi: Doc. Dr. Erdem Akagiindiiz

Agustos 2023, [51]sayfa

Nesne takibi, 6zellikle engeller (okliizyon), aydinlatma degisiklikleri ve hareket bulaniklig1 gibi zorlu
kosullarda bilgisayarla goriiniin zorlu bir problem olarak karsimiza ¢ikmaktadir. Son yillarda, derin 6g-
renme, nesne takibi i¢in bilylik umut vaat etmektedir. Ancak, cogu derin 6grenme tabanli nesne takip
modeli yalnizca goriiniir bant (RGB) goriintiileri kullanir. Bu nedenle zorlu kogullarda sinirh perfor-
mans gosterirler. Fakat termal kizil6tesi elektromanyetik dalgalar (TIR) nesne sicaklig1 gibi ek bilgiler
saglayabilmektedirler. Bu tez, kaynastirilmis RGBT goriintiilerini kullanan derin 6grenme tabanh bir
nesne izleme sistemi 6nermektedir. Sistem iki ana bilesenden olusur: 6znitelik ¢ikarici ve takip edici.
Oznitelik ¢ikarici, hem RGB hem de TIR goriintiilerinden 6zellikler ve nirengi noktalar cikarir. Ta-
kip edici daha sonra bir sonraki karedeki nesneyi izlemek igin bu 6zellikleri kullanir. Onerilen sistem,
yaygin olarak kullanilan RGBT nesne izleme veri kiimeleri olan RGBT234 ve LasHeR veri kiime-
leri iizerinde degerlendirilmistir. Sonuclar, 6nerilen sistemin RGBT234 ve LasHeR veri setlerinde son
teknoloji iiriinii RGB nesne izleyicilerinden daha iyi performans sergiledigini gostermektedir.

Anahtar Kelimeler: Derin 6grenme, nesne takibi, RGBT nesne takibi, bilgisayarl1 gorii, termal goriiniir
band kaynagtirma
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CHAPTER 1

INTRODUCTION

In computer vision, object tracking is a significant issue with wide-ranging applications, including
surveillance, autonomous vehicles, and human-computer interaction. The ability to accurately and
robustly track objects in complex and dynamic scenes is crucial for tasks such as object recognition,
activity analysis, and behavior understanding. Traditional tracking methods often rely on single-modal
data, such as RGB imagery, which may suffer from limitations such as poor visibility under challeng-
ing lighting conditions. In recent years, there has been a growing interest in fusing thermal images
and visual RGB images to leverage the complementary strengths of both modalities, enabling more
reliable and accurate object tracking. This thesis focuses on exploring and developing advanced fusion
techniques using deep learning approaches to enhance object tracking performance by leveraging the
benefits of RGB and TIR fusion.

Due to the intrinsic disparities between the two modalities, typical tracking approaches that seek to
combine thermal and visual pictures into a unified stream might not be the best option for RGBT
tracking in difficult conditions. RGB images collect visible light and provide precise color information,
whereas thermal images catch heat radiated by objects and provide vital temperature information. To
properly monitor objects under a variety of environmental situations, the fusion of various modalities
necessitates a careful evaluation of their individual properties.

Utilizing the complimentary properties of thermal and visual pictures to address the difficulties of
RGBT tracking has been made possible by recent developments in deep learning. Deep learning-based
approaches have the potential to learn and extract significant characteristics from both modalities,
allowing for more robust and accurate object tracking. We can improve object tracking performance
in difficult settings by leveraging the capabilities of deep learning and the rich information offered by
RGB and thermal images.

1.1 RGBT Tracking Challenges

To achieve accurate and dependable tracking of RGBT objects, a number of challenges must be solved.
One of the main challenges lies in the intrinsic contrast between RGB and thermal modalities. RGB
images record visual appearance and color information, whereas thermal images record temperature.
These modalities have diverse properties such as varying spatial resolutions, dynamic ranges, and
environmental sensitivity. Integrating these modalities efficiently necessitates resolving modality dif-
ferences, such as aligning spatial and temporal information, calibrating intensity values, and dealing
with variations in texture and appearance between RGB and thermal images. Robust fusion techniques



are needed to capitalize on the complementary strengths of RGB and thermal modalities, allowing for
effective object tracking in a variety of settings.

Handling occlusion is another key problem in RGBT tracking. When objects of interest are partially
or completely obscured by other objects in the scene, tracking problems occur. Because of the dis-
parities in appearance and temperature information, occlusion is especially difficult in RGBT settings.
When an object is occluded in one modality, the other modality may nevertheless give useful tracking
information. Appropriate occlusion management techniques must be employed in order to precisely
estimate the object’s position and follow it consistently even in obstructed parts. This can include
strategies such as using context information from both modalities, including motion cues, adopting ap-
pearance modeling techniques, and recovering from occlusion occurrences using temporal coherence.

Variations in illumination conditions also present a substantial barrier to RGBT tracking. Significant
alterations in the appearance and temperature patterns of objects can result from changes in illumina-
tion. The result is a warped view of the world that makes it difficult to predict the future. Addressing
illumination variations necessitates adaptive algorithms capable of handling changes in lighting con-
ditions while maintaining accurate object tracking. Techniques like adaptive feature selection, robust
fusion algorithms capable of handling variations in illumination, and learning-based systems capable
of adapting to changes in the appearance and temperature patterns of the tracked object are examples
of such techniques.

Scale and resolution variations might also provide challenges for RGBT tracking. Misalignment and
difficulty identifying comparable object regions between the two modalities may occur. To efficiently
handle size and resolution variations, strategies such as scale estimates, region alignment techniques,
and adaptive fusion processes must be employed.

Addressing these challenges in RGBT tracking is critical for improving the accuracy, resilience, and
efficiency of object tracking systems in a variety of contexts such as autonomous driving, surveillance,
and robotics.

There are datasets available in the literature to develop appropriate models for real-world challenges.
These datasets contain sequences with different challenge attributes. Information about these attributes
is given in Chapter 3] This study has been developed with these challenges in mind. While presenting
the results of the study, the achievements against the challenges are also discussed separately.

1.2 Problem Definition

In computer vision, object tracking is a significant issue that has significant applications in a wide
range of disciplines, including autonomous driving, security surveillance, and robotics. Traditional
object tracking methods frequently rely exclusively on visible band (RGB) images, which can be
limiting in difficult circumstances. In addition, RGB-based tracking methods may struggle to maintain
precision in a number of environmental conditions. To overcome these limitations, the integration of
thermal infrared data, which provides additional information about an object’s temperature, has shown
promise in improving object tracking performance in challenging scenarios.



RGBT tracking is difficult since RGB and thermal images are including different modalities. Tra-
ditional tracking methods typically fuse RGB and thermal images in a single stream, which can be
suboptimal in challenging scenarios.

The aim of this thesis is to find an effective method to fuse RGB and thermal modalities, enhanc-
ing RGBT tracking by incorporating deep architectures that combine high-level features with
precision and efficiency, ultimately providing a viable solution for achieving precise and robust
object tracking in challenging scenarios while minimizing parameter requirements and reducing
reliance on extensive training data.

This thesis investigates how to effectively perform RGBT object tracking by combining information
from thermal and RGB pictures. The objective is to develop a deep learning-based RGBT method
for object tracking that exploits the advantages of both modalities while overcoming their distinc-
tions. This requires effectively managing the differences between RGB and thermal images, such as
varying illumination conditions, scale and resolution differences. The goal is to accomplish accurate
and consistent object tracking despite occlusions and cluttered backgrounds, enabling reliable tracking
performance in real-world scenarios.

Finding an efficient method to combine the RGB and thermal modalities is an additional crucial aspect
of the issue. The challenge is to effectively integrate high-level features from both modalities in order
to increase tracking precision and efficiency. By utilizing fewer parameters, the suggested approach
aims to accomplish strong feature fusion and lessens the dependence on extensive training datasets.
This thesis aims to resolve these problems and develop RGBT object tracking methods by offering
insightful analysis and possible solutions for tracking objects in difficult situations.

We assess the efficacy of our method by comparing its results with those of other cutting-edge tech-
niques using benchmark datasets like RGBT234 [[1] and LasHeR [2]]. The ultimate goal is to demon-
strate that our work offers a promising solution for improving the accuracy and efficiency of RGBT
tracking systems in various applications, including autonomous driving, surveillance security, and
robotics.

1.3 Research Questions

In this section, we present a series of research questions that serve as the foundation of our investi-
gation, guiding our exploration into the depths of the subject matter. The following questions will be
meticulously examined to achieve a comprehensive understanding of the topic at hand:

e How can the integration of RGB and thermal modalities be used for object tracking in challeng-
ing scenarios?

e What are the limits of current tracking methods for RGBT and how can they be overcome?

e How can the distinctions between the RGB and thermal modalities be efficiently handled to
produce precise and reliable object tracking?

e What methods can be used to deal with occlusion and keep precise tracking even when objects
are partially or completely blocked?



e How can illumination variations be handled in an efficient manner to guarantee reliable object
tracking under varying lighting conditions?

o What methods can be used to deal with scale and resolution differences between thermal and
RGB images in RGBT tracking?

o How does the suggested RGBT tracking technique compared to current methods?

e How can we create a feature fusion technique that effectively fuses features from the thermal
and RGB modalities to improve overall tracking performance under challenging circumstances?

By addressing these research questions, our goals are to further RGBT tracking methods and provide
insights into the effectiveness and limitations of existing techniques.

1.4 Objectives of the Thesis

Within the framework of this thesis, we outline the core objectives that lay the groundwork for our
scholarly pursuit. The following articulates the primary objectives that will steer our investigation and
contribute to the broader understanding of the subject matter:

e Create an RGBT object tracking technique based on deep learning that effectively combines
thermal and visual data to enhance object tracking performance in difficult scenarios including
motion blur, occlusion, and lighting variations.

e Investigate and analyze the limitations of current RGBT tracking methods, highlighting the ma-
jor issues and drawbacks, and suggesting fresh approaches to address these issues.

o To ensure that the tracking system keeps accurate localization and tracking of objects even when
they are partially or entirely occluded from view, develop and test enhanced methods to deal
with occlusion.

e Assess the accuracy, robustness, and computational efficiency of the proposed RGBT tracking
technique by conducting thorough evaluations and comparisons with state-of-the-art tracking
methods.

By achieving these objectives, the goal of this thesis is to improve RGBT object tracking, offer
insightful information about how to overcome challenges and offer practical solutions to enhance
object tracking precision and reliability across a wide range of applications.

1.5 Contributions of the Study

With due consideration to the comprehensive literature survey presented in the previous subsections,
this section expounds on the substantial contributions of the thesis, accentuating their pertinence in
filling the existing research gaps and extending the boundaries of knowledge in the field. Each tech-
nical contribution is meticulously examined below, revealing their novel insights in the context of the
literature reviewed earlier:



e Enhanced RGBT Object Tracking Approach: This study proposes an enhanced deep learning-
based RGBT object tracking approach that efficiently fuses information from both RGB and
thermal modalities. By integrating the strengths of these two imaging sources, the proposed
method enhances tracking performance, especially in challenging scenarios characterized by
occlusion, changes in lighting, and motion blur.

e Handling Modalities Differences: A significant contribution lies in the investigation and imple-
mentation of techniques to address the distinctions between RGB and thermal modalities. The
study ensures that the tracking system can reliably and accurately track objects across diverse
imaging sources.

e Robust Occlusion Handling: This study introduces enhanced methods to effectively handle oc-
clusion, ensuring that the tracking system can maintain accurate localization and tracking of
objects even when they are partially or entirely obscured from view.

e Scale and Resolution Adaptation: A crucial contribution is the development and integration
of techniques to handle scale and resolution discrepancies in thermal and RGB images. This
adaptive approach ensures the tracking system’s ability to handle targets of different sizes and
resolutions.

e Thorough Evaluation and Comparison: The study evaluates the precision and success rate of
the proposed RGBT tracking technique through thorough evaluations and comparisons with
state-of-the-art tracking methods. This provides valuable insights into the performance and ef-
fectiveness of the proposed approach.

Overall, the contributions of this study advance the field of RGBT object tracking, offering enhanced
solutions to overcome challenges and improve tracking precision and success rate.

On the other hand, the results obtained with the RGBT object tracking model developed with this
thesis is also used in the preparation of the paper titled "EANet: Enhanced Attribute-based RGBT
Tracker Network" [3]]. This paper is accepted at The 16th International Conference on Machine Vision
(ICMV-2023).

1.6 Organization of the Thesis

This subsection elucidates the organizational structure of the thesis, providing an overview of how the
various components are interconnected to present a unified and comprehensive narrative. In the first
chapter, which is an introduction to the thesis’s subject matter, the problem is defined. The literature
related to the subject of the thesis is discussed in Chapter 2, along with the deep learning-based RGBT
fusion object tracking methods. The experimental design for the thesis is presented in Chapter 3.
Datasets, metrics for evaluation, and experimental setups are described in further depth. The technique
that is being proposed in this thesis is broken down in great length in Chapter 4, which is devoted to
elaborating on the methodology. Chapter 4 begins with an explanation of Network Architecture then
moves on to discuss Training. The tracking approach that is proposed in this thesis is then broken
down and explained. The results of the tests are presented in Chapter 5, together with an analysis of
the numerical results obtained from those experiments. This chapter also addresses the failure cases,
explains and investigates the consequences of the findings, and talks about the probable causes and



remedies. In the last chapter, discussion is provided regarding the results that were reported in Chapter
5.



CHAPTER 2

RELATED WORK

The incorporation of deep learning techniques into computer vision has resulted in significant ad-
vancements in RGB thermal fused tracking, particularly through the utilization of RGB imagery. RGB
thermal fused tracking combines thermal and RGB data to improve object detection and tracking in
challenging environments. By utilizing the complementary strengths of both modalities, this method
enhances tracking performance in scenarios with low visibility or poor lighting.

This chapter provides a comprehensive literature review on RGB thermal fused tracking, ranging from
pre-deep learning methods to the current era of deep learning. Beginning with traditional tracking
methods that rely on handcrafted features and simple algorithms, we examine the evolution of tech-
niques. Then, we examine the emergence of deep learning and its influence on the field, highlighting
early successes in object tracking.

The discussion then shifts to recent advancements in RGB thermal fused tracking based on deep learn-
ing. We investigate state-of-the-art architectures, network designs, and training methodologies, as well
as commonly employed benchmark datasets and evaluation metrics. This chapter seeks to establish a
foundation for our proposed approach by synthesizing existing knowledge, identifying research gaps,
and setting the stage for subsequent chapters.

2.1 RGBT Fusion Tracking In pre-Deep Learning Era

Handcrafted features, including Histogram Of Oriented Gradient (HOG), Scale Invariant Feature Trans-
form (SIFT), and Local Binary Patterns (LBP) have been used in previous RGB-infrared tracking fu-
sion methods [4} [5]. Mean shift and filters like Kalman or particle were utilized by several of the
methods as well [4} 1516} [7]. In contrast to Kalman filtering, which is only applicable to linear dy-
namics and Gaussian noise, particle filters can handle nonlinear and non-Gaussian visual tracking [[7]].
When it comes to recovering from a tracking failure, the mean shift approach can get stuck in a local
minimum [8]] and is therefore not ideal for use in RGB-infrared fusion tracking.

To characterize the human visual system, researchers have used sparse representation-based methods
in RGB-infrared fusion tracking [9]. Several approaches have been suggested for addressing this
matter, including [[10]] concatenating image patches and sparsely representing them; in order to create
similarity and probability functions, [[L1] uses a joint sparse representation as primary method of data
representation; [12] inducing generative multimodal feature models, and [13] designing modality-
correlation-aware sparse representation models [14]].
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Figure 1: Pipeline of CNN-based RGBT Trackers

In recent times, there has been a utilization of graph-based techniques in addressing the challenge
of RGB-infrared fusion tracking. With picture patches serving as nodes and weights indicating fore-
ground or background information, these methods describe the intended bounding box as a graph [14]].
During tracking, a dynamic learning process determines the weights and how they relate to individual
patches. Background noise is reduced and feature representation is enhanced with the help of graph-
based fusion trackers. By improving graph affinity, propagating patch weights, including cross-modal
ranking, and multi-graph descriptors, several research have demonstrated the efficacy of graph-based
methods [15} 16} [17]. Modality weights are also taken into account by some of these methods [1]] for
adaptive fusion of several modalities.

2.2 Deep Learning-based RGBT Fusion Object Tracking Methods

In this section, information about deep learning-based RGBT object tracking in the literature will be
given. We analyzed the models in three subsections. These are Convolutional Neural Network (CNN)
based models, Siamese-based models, and other models. The results of the models in the literature for
different benchmarks can be seen in Table[ll

2.2.1 Convolutional Neural Network (CNN) Based RGBT Fusion Object Trackers

The common pipeline of CNN-based RGBT Fusion Object Trackers can be seen in Figure[I] A well-
known visual tracking method built on the representations from discriminatively trained CNN is called
Multi- Domain Network (MDNet) [[18]. The proposed algorithm has shown superior performance
compared to existing tracking benchmarks. A distinct training sequence is associated with each do-
main, and MDNet is formed from a combination of common layers and many branches of domain-
specific layers. Each video is treated as a separate domain, and at the network’s end, domain-specific
layers are used. The layers before these for generic representation learning share data from all the
sequences. To distinguish between domain-specific and domain-independent information, the algo-



rithm also incorporates a multi-domain learning framework. The method has been successfully used
for visual tracking, where the CNN is updated online within the context of a new sequence after being
pre-trained using multi-domain learning. In experiments on the VOT2014 [19]], the algorithm outper-
formed state-of-the-art trackers. The vast majority of CNN-based RGBT object tracking algorithms
have used MDNet as a baseline.

FANet [20] explores the use of visual and thermal infrared data to conduct stable visual tracking
in difficult and unfavorable situations. As an alternative to traditional methods of RGBT fusion ob-
ject tracking, it offers a quality-aware Feature Aggregation Net (FANet) based system. To overcome
the difficulty of drastic visual shifts aggregates hierarchical deep features within each modality using
FANet. It offers a productive method for using every layer feature in a model that has been trained
and for picking up reliable target representations. Learns a nonlinear interaction among channels with
different modalities using a Fully Connected layer (FC). Subsequently, employing a secondary fully
connected layer (FC) alongside a SoftMax activation function, the model makes predictions regarding
the modality weights responsible for regulating the transmission of information between modalities
throughout the process of adaptive aggregation. In order to enhance the efficiency of feature aggre-
gation, FANet employs the methodologies of max pooling and 1x1 convolution to compress feature
dimensions. Adaptive aggregation additionally uses the activation functions SoftMax, fully connected
layer, and global average pooling to predict the weights of the modalities.

To produce more precise outcomes, DAPNet [21] fully leverages shallow-to-deep spatial and seman-
tic information and utilizes max pooling to normalize feature maps of varying widths and compress
feature channels to cut down on unnecessary data. DAPNet uses shared parameters for the RGB and
thermal backbone networks in order to minimize network parameters and capture common character-
istics across several modalities. Weighted random sampling and global average pooling techniques
are combined to achieve this. The DAPNet framework introduces a novel method for aggregating and
pruning features, which involves recursively combining deep features from all layers and compressing
feature channels. Similar to MDNet [18]], as the backbone network, VGG-M [22] is chosen.

Deep Adaptive Fusion Network for High Performance RGBT Tracking (DAFNet) [23] is a real-time
RGB and thermal tracking framework. It utilizes a recursive fusion chain to adaptively integrate fea-
tures from different modalities. The fusion of multi-layer features in DAFNet allows for the aggrega-
tion of information at different scales and the integration of the complementary advantages of different
levels of features. The adaptive weighting operations further improve performance.

MANet [24] is another deep neural network for a robust RGBT tracking. MANet consists of three
different network blocks that play crucial roles in the MANet network’s architecture. Remarkably, the
authors present convincing data to highlight the critical role played by the instance adapter and the
modality adapter components in the improvement of overall performance. Their research highlights
the importance of these particular adapters to the network’s performance.

Yang et al. [25] proposed a deep RGBT tracking method that is guided by dual visual attention. This
method makes use of two crucial attentional mechanisms to efficiently train deep classifiers. The ap-
proach uses local attention first, which is based on the shared visual attention present in both RGB and
thermal data. This allows the network to recognize important features and patterns for precise classifi-
cation. Second, the method makes use of target-driven global attention, which enhances local attention
by providing the classifier with global proposals. These global proposals work in conjunction with
localized proposals derived from prior tracking outcomes, fostering a comprehensive understanding of



the tracked object’s context and ensuring superior tracking performance. The researchers conducted
two different experiments on RGBT benchmarks and found that their approach achieved comparable or
better tracking performance compared to other methods, particularly when utilizing the local attention
mechanism. Global attention was also found to improve the results of visual trackers.

CMPP [26] framework facilitates the diffusion of instance patterns in both the spatial and temporal
domains by integrating past contexts over extended periods of time into the current framework, hence
improving information inheritance. The CMPP framework is also robust to modality loss, with reduced
performance degradation when a modality is lost. In practice, the CMPP framework has a frame rate
of 1.3 FPS on the RGBT234 [1]] dataset, making it suitable for real-time tracking applications.

Duality-gated mutual condition network (DMCNet) [27] is a neural network that can effectively sup-
press the effects of data noise and improve the discriminative abilities of target features. DMCNet is
a model that uses discriminative information from one modality to guide feature learning in another
modality. The researchers integrated a duality-gated mechanism to address the issue of noise stemming
from single and multiple modalities during information propagation.

MANet++ [28] concurrently engages in target representation learning that encompasses "modality-
shared", "modality-specific", and "instance-aware" aspects, all tailored for the demands of RGBT
tracking. Its purpose is to harness the distinct strengths of both visible and thermal data, resulting
in a resilient approach to object tracking. MANet++ is based on MANet and includes the previously
expanded functionality within each modality prior to fusion.

CBPNet [29], like other RGBT Trackers, includes a feature extractor. It is supported with attention to
increase the accuracy of object tracking. The channel attention mechanism selectively enhances infor-
mative features and suppresses less relevant ones in the channel dimension, contributing to improved
performance. The cross-layer bilinear pooling module facilitates hierarchical feature interaction and
effective information integration, capturing complex patterns and relationships. A robust representa-
tion is produced by the quality-aware fusion module, which integrates deep semantic information and
low textural information from several modalities. Leveraging these multimodal representations, the
three fully connected layers conduct accurate tracking decisions, making the model well-suited for
RGBT tracking tasks.

MPL [30] is based on deep metric learning, in which a loss function is used to optimize the distance
between samples in feature space. M°L employs a unique loss function known as the "Multi-modal
Multi-margin Structured Loss". The employed loss function successfully preserves the structured
information derived from samples acquired from both thermal and RGB images. Additionally, it
enhances the discrimination between perplexing positive signals and regular ones by incorporating
various margins. The system additionally incorporates a module that integrates features adaptively to
enable end-to-end training using a CNN.

After the cross-modal interactions, each of the trackers indicated above maintains a fused feature
representation. However, thermal and visual features are also kept in some approaches to maintain
the discriminative nature of the modality-specific properties.

To get beyond the limitations of single modality tracking, MaCNet [31] makes use of competitive
learning strategies and a modal-aware attention network. The technique consists of three different
modules for effective cross-modality attention and a classification network that is used to classify the
extracted features as either the target object or the background.

10



Trident Fusion Network (TFNet) [32] uses both thermal and RGB data to track certain instances across
a series of frames. For classification and regression, TFNet uses aggregated and modality-specific
features to thoroughly mine the data from both modalities. The network consists of an aggregation
module, feature pruning, and fusion module and is based on the VGG-M [22] network. The utilization
of the feature pruning technique aims to mitigate the issue of overfitting and improve the acquisition
of valuable feature representation.

Challenge-Aware RGBT Tracking (CAT) [33] comprises a CNN backbone, challenge branches that
share modalities, a module to aggregate adaptively for all branches, and architecture in layers. The
shared challenge branches in modality collaboration are employed to capture the target’s appearance
consistently across all modalities for cooperation, while the modality-specific branches are separate
branches for each modality that have different levels of granularity and complexity. The module for
aggregation adaptively combines challenge-aware target representations to form discriminative target
representations. The adaptive fusion module of the hierarchical design adaptively fuses various modal-
ity features, while the discriminative feature transfer module is responsible for transferring features
from one modality to another.

ADRNet [34] is another RGBT Tracker with high-speed computational efficiency with 25 fps. The
ADRNet is specifically built to simulate the target appearance in various characteristics by utilizing
the attribute-driven branch. This branch comprises a 3x3 convolutional layer, which is subsequently
followed by a ReL.U [33] activation function. The attribute-driven branches are then adaptively ag-
gregated via a summation and selection operations module. The ADRNet also includes a spatial-wise
ensemble network (SENet) to enhance feature representation and avoid drifting to similar surround-
ings.

Five difficulty attributes ("thermal crossover, illumination variation, scale variation, occlusion, and fast
motion") are being identified by APFNet [36]. Each attribute is trained one by one with a small subset
of training data with the corresponding attribute. This allows APFNet to use small-size data for each
branch, focusing on attribute-specific feature fusion.

A three-stage approach that is intended to be both efficient and effective is used to train APFNet.
APFNet includes an improvement transformer with two decoders and three encoders. APFNet can be
trained well with small data and can tackle a wide range of challenges.

2.2.2 Siamese-based RGBT Trackers

The common pipeline of Siamese-based RGBT Fusion Object Trackers can be seen in Figure 2] Be-
cause of the end-to-end training approach’s efficiency, the Siamese network is continued by the ground-
breaking work, SiamFC [37] in visual object tracking. Overall, it seeks to learn a broad similarity
evaluation measure. According to the figure, the RGB and TIR feature extractors used by the current
Siamese-based trackers are not equivalent. The published Siamese-based RGBT trackers’ feature ag-
gregation is accomplished through the usage of the multi-modal fusion module. Then, before each
of their separate heads, the same method for assessing similarity is applied to both regression and
classification.

Zhang et al. [38] is a tracking method at the pixel-level using Siamese Networks, which has been
demonstrated to be effective in RGB object tracking. The proposed Siamese network is used to perform
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Figure 2: Pipeline of Siamese-based RGBT Trackers

tracking after the fusion of visible and infrared images. This is the first work to use Siamese networks
for fusion tracking.

SiamFT [39] is also based on Siamese Networks. The method processes thermal and visual images
separately using two Siameses. Predicting image dependability using modality weight computation is
also proposed. The SiamFC [37] was used as the backbone of SiamFT. The framework of SiamFT is
generic and can be used with other Siamese network-based tracking methods. The modality weight
computation method adaptively predicts the reliability of thermal and RGB images in different expo-
sure conditions.

The dynamic Siamese networks and multi-layer feature fusion that form the foundation of DSiamMFT
[4Q] are responsible for the adaptive integration of multi-level deep features between the two networks.
The final response map, which is utilized to find the target, is formed by combining the response maps
that were produced from the various fused layer features using an elementwise fusion approach. When
compared to systems that are just based on images from a single modality, the tracking performance
of the proposed methodology is greatly improved.

DuSiamRT [4T]] is accomplished by utilizing a dual Siamese network to combine two modal projected
position maps. It is predicated on the notion that under challenging settings, such as poor light or
rainy weather, the target may be more clearly visible in thermal infrared photographs than in RGB
images. The information that is provided by both modalities is utilized by DuSiamRT through the
usage of handcrafted features and an attention mechanism. Additionally, the bounding box prediction
is improved through the utilization of a region proposal network.

SiamCDA another Siamese-based RGBT Tracker, aims to enhance tracking performance while
maintaining computational efficiency as its primary objective. To accomplish this objective, it in-

12



tegrates a multi-modal feature fusion module that is attuned to capturing complementarity between
modalities, alongside a region proposal selection module that is sensitive to the presence of distractors
[42]. The authors conducted extensive experiments on large-scale datasets consisting of visible and
infrared images.

2.2.3 Other Deep RGBT Fusion Object Trackers

Li et al. [43] make use of a two-stream architecture for building an adaptive representation of fea-
tures by fusing thermal and visual streams, which extract general information about objects. This is
accomplished through the process of learning an adaptive feature representation. After that, a multi-
channel correlation filter is applied in order to provide accurate predictions regarding the locations
of the objects using the fused feature maps. A fusion sub-network is one of the components of the
ConvNet design, which also includes generic sub-networks. ReLU [35]] serves as the non-linearity
in the fusion sub-networks, two independent convolutional layers that make up its architecture. The
proposed method incorporates features into a filter in order to locate the object and is able to manage
scale fluctuations and partial occlusions in an efficient manner.

mfDiMP [44] is a method using an end-to-end tracking mechanism. At several framework levels,
such as the pixel and feature levels, the authors take into account a number of fusion processes. The
proposed method is based on the Discriminative Model for Prediction (DiMP) [45] tracker.

(JMMAC) [46] is suggested as a joint model for motion and appearance cues. "Multimodal fusion"
and "motion mining" are included in the framework. Target and camera motions are included in the
motion cue, which is used to reinforce the tracker when the appearance cue is faulty. A tracker switcher
is also suggested so that the motion and appearance trackers can be switched around in a flexible
way. The framework uses the ECO [47] method as the base tracker and a novel late fusion method
called MFNet [48]]. The target motion prediction module in the motion mining component allows it to
dynamically choose which cue to utilize for the target position. The CME scheme is used to estimate
camera motion, and the TMP scheme is used to switch between the appearance and motion trackers.

2.3 Different Fusion Levels

Experimental findings of [50] demonstrate that combining thermal and RGB images can effectively
address a number of issues that become intractable when only one source image modality is used.
The outcomes of fusion tracking vary at different fusion levels due to the various methods of using
usable information. Pixel-level fusion is a simple way to introduce duplicate data, which could reduce
the tracking accuracy. Feature-level fusion is a technique that combines the distinctive characteristics
of images in order to improve the visibility and dependability of the target. Results gathered from
diverse modalities are tracked at the decision level, comprising two or more instances. Therefore,
when the accuracy of a single method is low, the benefit of decision-level fusion to monitoring may be
overlooked.
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Tracker GTOT [49] RGBT210 [I5] RGBT234[1] LasHeR [2]
PR SR PR SR PR SR PR SR

FANet [20] 0.891 0728 - - 0.787 0.553 0442 0.309
DAPNet [21] 0.882 0707 - - 0.766 0.537 0431 0314
DAFNet [23] 0.891 0712 - - 0.796 0544 0.449 0311
MANet [24] 0.894 0724 - ’ 0.777 0.539 0457 0.330
23] 0.843 0677 - - 0.787 0545 - -
CMPP [26] 0926 0738 - ; 0.823 0575 - -
DMCNet[27] 0909 0.733 0.797 0.555 0.839 0.593 0.491 0.357
MANet++ [28]  0.901 0.723 - - 0.800 0.554 0.467 0.317
CBPNet [29] 0.885 0716 - - 0.794 0541 - -
MSL [30] 0.896 0710 - 8 0.795 0.542 - -
MaCNet [31] 0.880 0714 - _ 0.790 0.554 0.483 0.352
TENet [32] 0.886 0729 0.777 0529 0.806 0.560 - .
CAT [33] 0.889 0717 0.792 0533 0.804 0.561 0451 0317
ADRNet [34] 0.904 0739 - - 0.809 0.571 - -

138] - - - - 0.610 0428 - -
SiamFT [39] 0.826 0.700 - - 0.688 0.486 - -
DSiamMFT [40] - . 0.642 0432 - - . .
DuSiamRT [41]  0.766 0.628 - - 0.567 0384 - .
SiamCDA [42]  0.877 0.732 - - 0.760 0.569 - -

[43] 0.852 0.626 - - - - - -
mfDiMP [44] - - 0.786  0.555 0.785 0.559 0.447 0.344
JMMAC [46] 0902 0732 - - 0.790 0.573 - -
APFNet [36] 0.905 0739 - - 0.827 0.579 0.500 0.362

Table 1: Results of Fusion Object Trackers on Different Benchmarks
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2.3.1 Pixel-level Fusion

The fusion-before-tracking strategy, also known as pixel-level fusion tracking, involves fusing images
from various modalities to create more informative images before conducting object tracking, as il-
lustrated in Figure 3] However, pixel-level picture fusion retains the majority of the information from
the original photos, making it very computationally expensive and may slow down the entire process.
Some RGBT tracking models [51} 52, 53] 54] used pixel-level fusion.

Thermal Image

Tracking Results

Fused Image Tracking

Figure 3: Pixel-level Fusion Tracking

2.3.2 Feature-level Fusion

The first step in feature-level fusion for tracking is feature extraction from the RGB and thermal pic-
tures. Then, a pre-established fusion rule is applied to combine these features into a fused feature.
This fused characteristic is then used for tracking. The performance can be enhanced since fused fea-
tures typically provide additional information. The simple architecture of feature-level fusion is shown
in Figure [d] The feature-level fusion method is simpler than the pixel-level method since it directly
creates multi-modal features. The extraction of RGB and thermal pictures, as well as their efficient
fusion, are the important elements of feature-level fusion. Feature-level fusion is used by the majority
of deep RGBT object trackers.
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Figure 4: Feature-level Fusion Tracking

2.3.3 Decision-level Fusion

The decision-level fusion, sometimes referred to as the tracking-before-fusion technique, is the highest
degree of fusion tracking. Tracking is carried out using different modalities, as indicated in Figure[5]
Fusion techniques at the decision-level have certain benefits. First, based on RGB and thermal images,
several trackers can be selected to do tracking. The bounding box surrounding the target is the sole
thing that the majority of decision-level fusion tracking techniques require. Second, compared to other
fusion tracking approaches, the computational cost is typically lower. The tracking speed might be
quicker than approaches for the fusion at other levels. Additionally, there are fewer criteria for the
alignment of thermal and RGB pictures in decision-level fusion tracking. Some tracking methods
focused directly on decision-level fusion to design a robust RGBT fusion object tracking system, such

as [55] and [56].
CNN — g ——» Tracking —
Feature
—
Fusion # Tracking Results
—
CNN f—> E— Tracking —
RGB Image Feature

Figure 5: Decision-level Fusion Tracking
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CHAPTER 3

EXPERIMENTAL SETUP

In this section, we describe the datasets used for experiments and the evaluation metrics.

3.1 Datasets and Benchmarks

This section provides detailed information about the benchmarks/datasets currently used in the litera-
ture. A summary of RGBT Fusion object tracking benchmarks/datasets and their contents can be seen
in Table 3l

3.1.1 VOT Challenges

VOT-TIR (Visual Object Tracking with Thermal Infrared) [S7] is a benchmark specifically designed
for evaluating the performance of tracking algorithms for objects in videos with thermal infrared (TIR)
channels. It includes a collection of video sequences with ground truth annotations and is designed
to test the performance of tracking algorithms in situations where the objects being tracked have TIR
information.

TIR imagery is often used in tracking applications because it can provide additional information about
the temperature and surface properties of objects, which can be useful for distinguishing between
different objects and improving tracking accuracy. The VOT-TIR benchmark is designed to test the
performance of tracking algorithms in these types of situations.

The VOT-TIR benchmark is commonly used in the research and development of tracking algorithms
and systems and can help researchers understand the strengths and limitations of different approaches
and identify areas for improvement.

Since this dataset is generally used for VOT Challenges, it is not used in this study, but it is included
in this section because it is widely used and has an important role in the literature.

3.1.2 GTOT

The GTOT [49] evaluation standard comprises 50 video sequences, which were taken using thermal
and grayscale cameras. These sequences encompass a range of challenging scenarios like low light,
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‘ Attr ‘ Description

NO No Occlusion.

PO Partial Occlusion - there is some obstruction in the path to the objective object.

HO Heavy Occlusion - more than 80% of object visibility is blocked.

LI Low Illumination - the amount of light that is present in the area being targeted is inad-
equate.

LR Low Resolution - the target region has a low resolution.

TC Thermal Crossover - indicates that the temperature of the target is comparable to that of
other objects or the background surroundings.

DEF Deformation - a deformation of an object that is not rigid.

FM Fast Motion - the ground truth moves more than 20 pixels in either direction between
the two frames that are immediately adjacent to one another.

SV Scale Variation - it has been determined that the ratio of the original bounding box to
the current bounding box does not fall within the range of [0.5,1].

MB Motion Blur - the blurred image data results from the moving target item.

CM Camera Moving - a moving camera catches the target item.

BC Background Clutter - the object is included in the disorganized background information.

Table 2: RGBT234 Dataset - List Of Attributes

swift movement, partial obstruction, and cluttered backdrops. In addition to the video sequences, the
GTOT [49] benchmark includes evaluation metrics where researchers can compare the performance of
their tracking algorithms. The GTOT [49]] benchmark has been used a lot to measure how well visual
tracking algorithms work that uses information from both grayscale and thermal modalities. It has been
shown to be a useful resource for researchers working on improving the robustness and adaptiveness
of object tracking algorithms in challenging scenarios.

3.1.3 RGBT210

RGBT210 [15]] has become a large RGBT dataset with 210 video pairs. RGBT210 [15] includes
aligned video pairs for object tracking in both night and day. It has the advantages of being large and
having a diverse set of challenging scenarios, such as deformity, partial occlusion, and scale estimation.
This dataset was later expanded to be named RGBT234 [1].

3.1.4 RGBT234

The RGBT234 [[1] dataset is an improvement upon previous RGBT datasets, such as RGBT210 [15],
because it contains a larger number of video pairs and includes videos captured on hot days, reducing
bias due to the temperature sensitivity of thermal sensors.

RGBT234 [1] has 234 RGBT videos, each of which has a color video (RGB) and a thermal video (T).
It has about 234K frames in total, and the largest video pair has an 8K frame. This is a benchmark
dataset that shows how to track objects well in difficult situations by using information from RGBT
videos in a flexible way.
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Benchmark Year Videos Frames Aligned Category Attributes Reference

GTOT 2016 50 158K N 9 7 [49]
RGBT210 2017 210 210K Y 22 12 [15]
RGBT234 2018 234 233.8K N 22 12 (1]
VOT-RGBT2020 2019 60 - 13 12 [57]
LasHeR 2021 2454979 730K Y 32 19 (2]

Table 3: RGBT Fusion Object Tracking Benchmarks/Datasets and Their Contents

Imaging equipment for RGBT234 [1]] includes a platform that can be turned, a thermal infrared camera,
and a charge-coupled device (CCD) camera. The collimator lines up the optical axes of two cameras
so that they point in the same direction.

The RGBT Fusion Object Tracking benchmark includes datasets that capture a variety of real-world
scenarios, such as:

Indoor and outdoor environments

Different lighting conditions (e.g., day, night, low light)

Occlusions and clutter

Multiple objects moving simultaneously

The challenging parts of object tracking are represented by the 12 attributes used by RGBT234 [l1]] to
annotate the sequences. List of attributes can be seen in Table@ RGBT234 [1] benchmark is intended
to provide a comprehensive and realistic evaluation of object tracking algorithms, and the authors hope
that it will become a widely used standard for evaluating the performance of object tracking systems.

3.1.5 LasHeR

LasHeR [2] is made up of 1224 pairs, or over 730,000 frame pairs, of videos taken in both the visible
and thermal infrared spectrums (245 for testing and 979 for training). Each frame has been carefully
aligned and given a bounding box by hand. This dataset will have a big effect on how advanced RGBT
fusion object trackers are trained and how thoroughly RGBT fusion object tracking methods are tested.

LasHeR [2] captures numerous item categories, camera angles, complicated scenes, and environmental
variables that span day and night, as well as seasons and weather. In data creation, various new issues
are taken into account as a result of real-world applications. It will encourage the development of
practical tracking algorithms.

In addition, an unaligned version of LasHeR [2]] is released to encourage research on alignment-free
RGBT fusion object tracking, which is more practical for real-world applications.
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3.2 [Evaluation Metrics

The RGBT Tracking evaluation metrics show variation depending on the selected benchmark. Preci-
sion rate (PR) and success rate (SR) are two metrics that are the same for the following benchmarks:
GTOT [49]], RGBT210 [15]], RGBT234 [, and LasHeR [2]. The difference between the projected
and ground-truth bounding boxes is measured by the Precision Rate (PR). On the other hand, the Suc-
cess Rate (SR) measures the proportion of tracking failures when the Intersection over Union (IoU)
value is less than a predefined threshold. Within the field of quantitative performance evaluation, the
one-pass evaluation (OPE) yields PR and SR values. Using the area under the curve, a representative
SR score is obtained, which represents the number of correctly tracked frames with overlaps exceeding
predetermined thresholds.

The metrics that are used in VOT-RGBT2019 [58] and VOT-RGBT2020 [57] include Accuracy, Ro-
bustness, and Excepted Average Overlap (EAO). Accuracy can be seen as the degree to which the
ground truth and the prediction are consistent with one another. The concept of robustness refers to
the ability to measure the proportion of unsuccessful tracking attempts relative to the total number of
image frames. EAO is widely regarded as the most crucial and provides an all-encompassing indica-
tion of the tracker’s superiority. Since VOT-RGBT2019 [58]] and VOT-RGBT2020 [57]] benchmarks
are not used in this study, these metrics are not explained in detail.

3.2.1 Precision Rate

Precision rate (PR) is a metric used to evaluate the performance of a deep object tracking algorithm.
It can be defined as the proportion of accurate detections to all detections the algorithm made. What
constitutes an acceptable PR is the percentage of frames in which the output location falls between a
predefined threshold and the ground truth. It calculates the average Euclidean distance between the
center coordinates of the tracked target and the manually annotated ground-truth positions of each
frame. The threshold is 20 pixels in order to determine the representative PR score.

In other words, it measures the proportion of detections that are correct. A high precision rate indicates
that the algorithm is able to accurately identify objects in the scene and makes correct detections, while
a low precision rate indicates that the algorithm is prone to making incorrect detections.

3.2.2 Success Rate

The success rate (SR) is a measure of the performance of a tracking algorithm. It is commonly ex-
pressed as the proportion of frames in a particular video sequence in which the algorithm properly
locates the tracked item. The formula can be expressed as:

Number of Success ful Outcomes
Total Number of Trials

Successrate =

ey

To compute the success rate, one needs to define a criterion for determining whether the object has
been correctly located in a given frame. This criterion could be based on the overlap between the
bounding box around the tracked object and the ground truth bounding box.
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One such criterion for evaluation could involve determining if the degree of overlap between the two
bounding boxes exceeds a specified threshold, such as 50%. In this scenario, the measure of success
would be determined by computing the ratio of frames in which the degree of overlap surpasses the
predetermined threshold to the overall number of frames encompassing the video sequence.

The success rate is an important metric for evaluating the performance of object tracking algorithms,
as it allows researchers and practitioners to compare the performance of different algorithms on the
same dataset.

3.3 Experimental Settings

The code for this thesis was written in Python, which has become the standard for deep learning in
recent years because of its higher-level syntax and interpretation, but especially because of the GPU
acceleration tools that it supports. PyTorch was used in this thesis because it is one of the most famous
deep learning frameworks that GPUs can speed up. Also, the tests were done on a computer system
including GPU (NVIDIA A4000), with 16 gigabytes of RAM.

Conducting a comprehensive assessment, our approach is thoroughly evaluated using the RGBT234
[1] benchmark, renowned as a premier benchmark for RGB and thermal object tracking. The pri-
mary objective behind evaluating our methodology on the RGBT234 [1] benchmark is to showcase its
exceptional precision and efficiency in tracking targets under challenging conditions.

In this study, we use GTOT [49] to train our proposed model, and RGBT234 [[1]] and LasHeR [2] to test
our proposed model, the details of which are given in the[3.1] The details of the training are explained
in detail in[4.2] Success rate and precision rate, details of which are given in[3.2] are used as evaluation
metrics.
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CHAPTER 4

METHODOLOGY

4.1 Network Architecture

Our research focuses on merging an aggregation module proposed by [59] with the attribute-specific
fusion influenced by [36]]. For fusion, APFNet uses the so-called "Attribute-based Progressive Fusion
Module". "Attribute-Specific Fusion Branch", "Attribute-based Aggregation", and "Attribute-based
Enhanced Fusion" [36] are the three primary parts of this module. This architecture shows to be an
effective RGBT tracker network, but in this study, we investigate methods for replacing the "Attribute-
based Enhanced Fusion Module" [36]] to simplify the system.

We adopt our idea from a different architecture, the ESKNet [59], which adds spatial attention tech-
niques to the SKNet [60] model. The network achieves precise calibration of the importance of dif-
ferent regions by employing spatial attention, which dynamically assigns more weights or emphasis
to specific spatial parts. Less informative regions are ignored or suppressed by the spatial attention
mechanism, which gives higher weights to significant regions and prioritizes them for tracking. The
model has the capability to enhance its depiction of the item’s visual attributes and effectively accom-
modate variations in its spatial orientation or visual characteristics by prioritizing the most significant
spatial regions. By calibrating the spatial dimension features through the integration of spatial atten-
tion, we hope to improve the model’s ability to pay attention to and follow the object accurately, even
in difficult environments. To enhance the model’s capacity to track the object precisely, particularly in
challenging circumstances, we calibrate the spatial dimension features by integrating spatial attention.

To extract features from thermal and visual pictures, we use VGG-M [22] as the backbone. As the net-
work architecture, we used the MDNet [18]] structure like most of deep learning-based object tracking
models.

We use a parallel network as our network’s backbone [43]] to account for the variations between the dif-
ferent imaging modalities and extract features separately from RGB and thermal infrared images. The
initial three convolutional layers of VGG-M, featuring kernel dimensions of 7x7, 5x5, and 3x3, serve
as the fundamental framework of our model. The convolution kernel parameters are initialized using
a pre-trained model on ImageNet-vid [18]]. Through the integration of the improved attribute-based
module at every tier of the backbone, we establish a hierarchical architecture that enables efficient
fusion of various modalities. Three fully connected layers are added after the final convolutional layer.
The FC layer at the end is modified for various domains, similar to the methodology used in [18].
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Figure 6: The architecture of the Enhanced Attribute-based Network.

As shown in Figure[6] while RGB and Thermal data are subjected to convolution as in MDNet [18],
a fusion process is applied to these data at the same time. The data first passes through enhanced
fusion branches that are specially trained for different attributes. Similar to [59], we employ En-
hanced Selective Kernel (ESK) for both branch data aggregation and fusion. The structure of the
proposed "Enhanced Fusion Branches" and "Enhanced Aggregation Module" can be seen in Figure [7]
and [8] respectively. Following the aggregation process, element-wise addition is applied to both the
convolutional and aggregation-derived data. At the end of the third layer, this process—which runs
concurrently for RGB and Thermal data—is concatenated.

The fusion branches that map to distinct features of the same structure are mapped in an attempt to
simplify the situation as much as possible. More precisely, we start by using a rectified linear unit
(ReLU) [35]], a convolutional layer to extract features from two modalities for each branch. Every
branch undergoes a repetition of this process. Next, we utilize the ESK [59] to choose the features in
an adaptable manner. Figure[§illustrates the hierarchical structure of our suggested network.

4.2 Training

During the training and the test phase, we adopt a similar strategy as defined in [36]]. As part of the
trials, we extract attribute-based training data from the GTOT [49] dataset using challenge labels in
order to prepare our attribute-specific fusion branches for testing on the RGBT234 [1]] and LasHeR
[2] datasets. After that, we train an attribute-based aggregation network and an enhancement fusion
transformer module using the full GTOT [49] dataset.
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Figure 7: The structure of the proposed “Enhanced Fusion Branch Module”.

A two-phase strategy is used for the training. Every branch is trained separately during the initial
stage. The VGG-M [22] parameters that are pre-trained on the ImageNet dataset are used to initialize
the dual-stream CNN, which consists of three convolutional layers and FC4 and FCS5 layers (see Figure
|§[). Next, we add the new FC6 classification branches and set their initial values for all fusion branches.
The learning rates for FC6 and fusion branches are 0.001 and 0.0005, respectively. There will be 200
total training epochs. To remove the FC layer’s impact, we have only been saving the parameters of
the attribute-specific fusion branches up to this point.

In step two, we correct the trained branches and use all available training data to improve the aggre-
gation fusion modules. There are 500 training epochs in this process. Everything else is configured
exactly as it was in the first stage. The aggregation fusion modules FC4 and FC5 parameters are stored.
The stochastic gradient descent (SGD) is employed for the purpose of optimizing the network with a
momentum of 0.9 and a weight attenuation of 0.0005. The learning rates for the convolutional and
fully-connected layers are set at 0.0001 and 0.001, respectively.

We randomly select eight image frames and the matching tracking object location from a video clip
for each training iteration. Gaussian sampling is then used to extract 256 positive samples and 768
negative samples from the previously mentioned eight image frames, where 32 positive samples and
96 negative samples are needed for each frame. A candidate box obtained using Gaussian sampling is
deemed as a positive sample if the overlap rate with the ground truth value is within the range of [0.7,
1]. When the range of values falls within the interval [0, 0.5], it is commonly interpreted as indicating
a negative outcome for the sample. Notably, we train our tracker on the GTOT [49]] dataset to evaluate
it on the RGBT234 [1]] and LasHeR [2] datasets.

4.3 Online Tracking

The tracking phase begins with the tracker establishing itself using the position of the target and the
first frame of the series, as most trackers do. Using Gaussian sampling in the first frame, 500 positive
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Figure 8: The structure of the proposed “Enhanced Aggregation Module”

samples of different scales around the object are collected. In order to train the regressor, 1000 samples
are randomly collected. The coordinates of the tracking findings are changed by the utilization of a
regressor, hence enhancing the accuracy of the subsequent tracking process. Importantly, we only
modify the fully-connected layers’ parameters during this phase. This approach we use is the same
approach that [18] use. The target is monitored in the ¢-th frame, and a collection of 256 samples
is obtained for the current frame using Gaussian sampling. These samples are based on the tracking
outcome from the ¢ — 1-th frame. Initially, the mean value is calculated for the top five samples with
the highest scores at the given point in time. This process is accomplished by employing the trained
model to calculate the scores for a total of 256 samples. The learned regressor is then used to modify
the target location. In line with [18]], we ensure the robustness of our approach by tracking faults
using both short- and long-term update settings. f~ (%) represents the negative scores, and fT(x%)
represents the positive scores for each sample. At time t, we choose the candidate region sample that
has the greatest score to represent the tracking result X/, and the equation for the formula is as follows:

X! =argmax fH(z)i=1,2,..,N 2)
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CHAPTER 5

RESULTS AND DISCUSSION

This section presents the experimental results and analyze the performance of the different RGB-TIR
fusion techniques and deep learning models and also compare the results with other state-of-the-art
methods in object tracking.

5.1 Evaluation on RGBT234 Dataset

On the RGBT234 dataset, our method performed admirably in terms of overall performance. The
precision rate (attained 83.5%, demonstrating the level of target tracking accuracy. Furthermore, the
success rate (SR) is 58.4%, suggesting the efficiency of our method in effectively tracking targets. Our
model is compared with with state-of-art models such as [24} 26, 28, [30} 133} 34} 136, 146]. A visual
comparison of EANet to three of these state-of-art trackers [24} [34} [36] on various sequences can
be seen in Figure [T1] Figure [0 and [I0] show the Precision Rate and Success Rate evaluation curves,
respectively.

We further analyzed our method’s effectiveness based on several dataset attributes to give a full analysis
of its performance. We are able to evaluate how well our method dealt with common object tracking
issues like occlusion, light changes, motion blur, and others thanks to our attribute-based study.

In terms of precision rate and success rate, our method displayed strong performance across the ma-
jority of attributes. We evaluate our attribute-based performance against the most advanced trackers
available. Table[d]shows our attribute-based performance findings.

Here are the attribute-based results:

Background clutter (BC): Our method obtained a success rate of 54.6% and a precision rate of 83.2%
in sequences with high background clutter. This demonstrates that it is efficient in precisely tracking
targets in crowded background environments. The evaluation curves of PR and SR curve for the
background clutter challenge on the RGBT234 dataset can be seen in Figure[T2]and[T3] respectively.

Camera moving (CM): Our method performed well in sequences where the camera is in motion,
achieving a precision score of 77.0% and a success rate of 54.9%. This demonstrates its ability to
handle camera motion and maintain accurate tracking. The evaluation curve of PR and SR curve for
the camera moving challenge on the RGBT234 dataset can be seen in Figure [I2]and [I3] respectively.
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Figure 9: Precision Rate evaluation curve on the RGBT234 dataset.
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Figure 10: Success Rate evaluation curve on the RGBT234 dataset.
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(c) soccermhand (d) redbag

Ground Truth Ours APFNet ADFNet MANet

Figure 11: Comparison of EANet to three state-of-the-art trackers on different sequences. (a) The
baketballwaliking sequence, which has challenge of heavy occlusion; (b) The man4 sequence, which
also has challenge of heavy occlusion (c) The soccerinhand sequence with the challenges of heavy
occlusion, scale variation, thermal crossover, and fast motion; and (d) the redbag sequence with partial
occlusion, deformation, and scale variation. The top row for each sequence displays the frames in
RGB, while the bottom row displays the frames in thermal. Different colored rectangles are used to
show the results of various trackers.
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Deformation (DEF): Our method performed well in sequences with target deformation, achieving a
precision score of 77.9% and a success rate of 55.4%. It demonstrates its capability to handle deformed
target shapes and maintain accurate tracking. However, additional enhancements are needed in other
aspects. The evaluation curve of PR and SR curve for the deformation challenge on the RGBT234
dataset can be seen in Figure[T6]and[T7} respectively.

Fast motion (FM): When faced with fast motion, our method achieved a precision score of 76.3% and a
success rate of 49.2%. Although the success rate is slightly lower, improvements can be made in other
areas to enhance overall performance. The evaluation curve of PR and SR curve for the fast motion
challenge on the RGBT234 dataset can be seen in Figure [I8|and[19] respectively.

Heavy occlusion (HO): The performance of our method was satisfactory even in situations when there
was significant occlusion, as evidenced by a precision rate of 76.0% and a success rate of 52.2%.
The findings of this study demonstrate that our methodology exhibits proficiency in handling complex
scenarios characterized by heavy occlusion of the target. The evaluation curve of PR and SR curve for
the heavy occlusion challenge on the RGBT234 dataset can be seen in Figure[20and [21] respectively.

Low illumination (LI): Under low illumination conditions, our method achieved a precision score of
84.1% and a success rate of 56.6%. This highlights the strength of our approach in such situations.
Nonetheless, there is room for improvement in other areas. The evaluation curve of PR and SR curve
for the low illumination challenge on the RGBT234 dataset can be seen in Figure [22]and 23] respec-
tively.

Low resolution (LR): With a success rate of 56.2% and a precision rate of 86.0%, our technique
performed well in low-resolution sequences. This suggests that our method can work in scenarios
when the target appears at a lesser resolution. However, additional improvements are required in other
aspects. The evaluation curve of PR and SR curve for the low resolution challenge on the RGBT234
dataset can be seen in Figure [24] and [25] respectively.

Motion blur (MB): Our approach achieved 55.7% success rate and 76.9% precision score under motion
blur circumstances. This demonstrates how well it tracks targets even when motion blur issues are
present. The evaluation curve of PR and SR curve for the motion blur challenge on the RGBT234
dataset can be seen in Figure 26]and 27} respectively.

No occlusion (NO): Our method achieved a precision score of 93.4% and a success rate of 67.2% in
sequences without occlusion. This demonstrates the resilience of our approach in properly tracking
targets in the absence of occlusion. However, improvements are needed in other aspects as well. The
evaluation curve of PR and SR curve for the no occlusion challenge on the RGBT234 dataset can be
seen in Figure 28] and [29] respectively.

Partial occlusion (PO): Our technique achieved 60.6% success rate and 86.6% precision score when
faced with partial occlusion. This demonstrates how our approach can handle targets that are partially
occluded while maintaining precise tracking. The evaluation curve of PR and SR curve for the partial
occlusion challenge on the RGBT234 dataset can be seen in Figure 30 and 3] respectively.

Scale variation (SV): With a success rate of 58.5% and a precision score of 83.1%, our approach
showed good performance in sequences with scale variation. This demonstrates how well it can adapt
to variations in target size and continue to track accurately. However, improvements are needed in
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other aspects to further enhance overall performance. The evaluation curve of PR and SR curve for the
scale variation challenge on the RGBT234 dataset can be seen in Figure 32| and [33| respectively.

Thermal crossover (TC): The precision rate of 82.8% and success rate of 59.2% is attained by our
approach in sequences that had thermal crossover. This demonstrates how well our method tracks
targets when the spatial modalities of RGB and thermal overlap. The evaluation curve of PR and SR
curve for the thermal crossover challenge on the RGBT234 dataset can be seen in Figure [34] and 35}
respectively.

The performance results based on attributes offer a thorough understanding of our method’s effec-
tiveness in addressing various difficulties within the RGBT234 dataset. The model exhibits a notable
improvement of nearly five highest scores across twelve attributes. Our methodology exhibited good
performance compared to the comparative trackers in terms of precision rate (PR) and success rate
(SR), hence showcasing its efficacy across diverse and demanding settings.
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Figure 12: PR score of the BC challenge

on the RGBT234 dataset
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Figure 16: PR score of the Deformation

challenge on the RGBT234 dataset
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Figure 13: SR score of the BC challenge

on the RGBT234 dataset
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Figure 15: SR score of the Camera Mov-
ing challenge on the RGBT234 dataset

Success Plot - D

----- APFNet[0.564]
09 — Ours[0.554]

= — CMPP[0.541]
0.8 CAT[0.541]
s JMMAC[0.529]
0.7 MANet[0.524]
So — MI5L[0.511]

Success Rate
°
&

0 L L L L h

0 01 02 03 04 05 06 07 08 09
Overlap Threshold

1
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Figure 24: PR score of the Low Resolu-
tion challenge on the RGBT234 dataset
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Figure 26: PR score of the Motion Blur

challenge on the RGBT234 dataset
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Figure 28: PR score of the No Occlusion

challenge on the RGBT234 dataset
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Figure 25: SR score of the Low Resolu-
tion challenge on the RGBT234 dataset
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Figure 27: SR score of the Motion Blur

challenge on the RGBT234 dataset
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Figure 29: SR score of the No Occlusion

challenge on the RGBT234 dataset



Precision Plot - Partial Occlusion

----- Ours{0.866]
0.9 [0.863]
e APFNe1[0.863]
08 CMPP[0.855]
e CAT[0.851]
07 JMMACI0.841]
10.816]

Precision Rate

10 15 20 25 30 35 40 45 50
Location Error Threshold

Figure 30: PR score of the Partial Occlu-
sion challenge on the RGBT234 dataset
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Figure 32: PR score of the Scale Varia-
tion challenge on the RGBT234 dataset
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Figure 34: PR score of the Thermal

Crossover challenge on the RGBT234
dataset

5.2 [Evaluation on LasHeR Dataset
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Figure 31: SR score of the Partial Occlu-
sion challenge on the RGBT234 dataset
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Figure 33: SR score of the Scale Varia-
tion challenge on the RGBT234 dataset
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Figure 35: SR score of the Thermal

Crossover challenge on the RGBT234
dataset

Furthermore, our technique is assessed on the LasHeR dataset in addition to the RGBT234 dataset, in

order to further analyze its performance.



The evaluation on the LasHeR dataset verifies the efficacy of our model while exhibiting marginally
inferior performance in comparison to the RGBT234 dataset. The performance outcomes on the Lasher
dataset can be summarized as follows:

Precision (PR): The precision rate attained by our approach is 50.6%. While the rate achieved by our
methodology is comparatively lower than that of the RGBT234 dataset, it outperforms other trackers,
hence showcasing the efficacy of our method in precisely localizing and tracking targets. Figure [36]
shows the Precision Rate evaluation curve.

Success rate (SR): Our technique achieves a 36.7% success rate. Although the obtained rate may
appear relatively lower, it is indicative of the difficulties inherent in the Lasher dataset and the consid-
erable capability of our approach to effectively address these obstacles. The success rate evaluation
curve is shown in Figure The SR score of our model exhibits the best value in comparison to other
trackers.

The evaluation conducted on the LasHeR dataset provides more evidence to substantiate the resilience
and adaptability of our approach in effectively addressing various tracking circumstances and ob-
stacles. Although the performance of our technique was significantly inferior in comparison to the
RGBT234 dataset, it demonstrated its efficacy in tracking targets across various conditions.
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Figure 36: Precision Rate evaluation curve on the LasHeR dataset.
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Figure 37: Success Rate evaluation curve on the LasHeR dataset..

5.3 Computational Efficiency

The computational efficiency of an object tracking model is a critical factor for its real-time applica-
bility. In this section, we compare our suggested model to various state-of-the-art RGB-T tracking
models in order to assess its computing efficiency.

The frame per second (fps) rate of our model is 1.5, which is far from real-time. This is because our
model does not use any Rol layers [61} [62]. Rol layers are a common way to accelerate the speed of
object tracking models by extracting features from a small region of interest (ROI) around the target
object. The crucial task of directly collecting features from feature maps for the area of interest of each
tracked object is performed by ROI layers. This method greatly lessens the computational load, which
quickens the model’s execution speed. ROI layers are known to increase frame rates by reducing the
number of unnecessary calculations made across the entire image and by concentrating exclusively on
pertinent object sections. Although our proposed model does not have enough fps rate for real-time
object tracking, it has a higher fps rate than other models that also do not use Rol layer, as can be seen
in Table[5] By not using Rol layers, our model has to extract features from the entire image, which is
more computationally expensive.

Some other RGB-T tracking models that use Rol layers have achieved higher fps rates. For example,
the DAFNet [23]] achieves a fps rate of 20, and the ADRNet [34] achieves a fps rate of 25. However,
these models also use more complex features and algorithms, which may sacrifice accuracy for speed.
Comparison of FPS Rates for state-of-art RGB-T Tracking Models in the literature can be seen in
Table
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Our proposed model is not as computationally efficient as some other RGB-T tracking models. How-
ever, it achieves good accuracy without using Rol layers, which makes it a promising approach for
real-time object tracking.

Table 5: Comparison of FPS Rates for RGB-T Tracking Models

Tracker Speed (fps) | Rol Layer
MANet++ | 25.4 Rol Align [61]
ADRNet 25 Rol Pooling [[62]
CAT 20 Rol Align [61]
DAFNet 20 Rol Align [61]
FANet 19 Rol Align [61]
mfDiMP 10.3 Rol Pooling [62]
MSL 9.75 Rol Align [61]]
Ours 1.5 -

CMPP 1.3 -

APFNet 1.3 -

MANEet 1.11 -

MaCNet 0.8 -

5.4 Experiments and Ablation Study

When we started working on this thesis, we chose APFNet as the baseline. We focused on discovering
what is open for improvement or what is missing from this model. In all experiments, we used GTOT
as the training dataset and RGBT234 as the test dataset. We trained the system in three steps with the
GTOT dataset as described in the paper. We also tested it on the RGBT234 dataset. APFNet performs
fusion with the "Attribute-Based Progressive Fusion Module". As mentioned in the paper, this mod-
ule has three primary components: "Attribute-Specific Fusion Branch", "Attribute-Based Aggregation
Fusion", and "Attribute-Based Enhanced Fusion" [36]. "Attribute-Based Enhanced Fusion" [36] is a
transformer structure consisting of three encoders and two decoders. Encoders and decoders contain
self single-head attention and cross single-head attention respectively, to keep the system simple [36].
We first tried to change the attention mechanism within the encoders and decoders from single-head
to multi-head. As can be seen in the "multi-head" column in Table[6] our PR score was 81.3% and our
SR score was 56.0%. Since this PR/SR value is lower than our baseline model with 82.7% and 57.9%,
we conclude that changing the single-head attention mechanism to multi-head does not contribute to
the model.

Our second experiment was based on a new fusion strategy different from the baseline model. As seen
in Figure @ we tried Attentional Feature Fusion (AFF) [63]] to fuse the features, where the data from
RGB and Thermal images were fused with AFF on each layer, and the data obtained from the fusion
on each layer was subjected to element-wise addition. With this model, we obtained PR and SR values
of 78.9% and 54.5% respectively. We assessed that this fusion strategy alone is not enough.

We then used this fusion strategy to aggregate data from Attribute-based Feature Branches. We called
the variation of the model "ABr+AFF" and the structure of this variation can be seen in Figure 39, We
obtained PR and SR values of 79.8% and 55.3% respectively. We found that AFF contributed to the
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success with the aggregate process, but this variation of the model was not sufficiently successful. We
used AFF again for aggregate operation and enhanced the attribute-based branches with ESK. With this
variation called "ESKBr+AFF", we obtained PR and SR values of 81.6% and 56.2%. The Structure of
"ESKBr+AFF" Variation can be seen in Figure[f0} Since we could not get enough efficiency from our
experiments with AFF, we focused on ESK. We had already used ESK in Attribute-based branches,
we thought we could also use it for Aggregate, so we used ESK. In this way, we reached the final form
of our model.

On the other hand, in order to evaluate how well the individual components of our model work together,
we carried out an ablation study. We removed the Enhanced Aggregation Module from the model in
order to determine how much of a role it played in the overall success of the model. To do this, we
aggregated the data coming from the Enhanced Fusion Branch Modules using element-wise addition.
In Table[6] we referred to this particular model iteration as "Var-AggESK." The *Var-AggESK’ version
obtained a PR score of 81.2% and an SR score of 56.4%. When we compare "Var-AggESK" with the
suggested model, as can be seen in Table 6] we concluded that the Enhanced Aggregation Module is a
crucial part of our approach and contributes to its success. In other words, the Enhanced Aggregation
Module is required for our model.

Table 6: Results of Ablation Study Evaluation on RGBT234 Dataset

AFF ABr+AFF | Multi-head | ESKBr+AFF | Var-AggESK | Ours
PR 0.789 | 0.798 0.813 0.816 0.812 0.835
SR 0.545 | 0.553 0.560 0.562 0.564 0.584
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5.4.1 Experiments on Robustness of Our Model

In this section, we evaluate the robustness of our deep learning-based object tracking system. We train
the model four times independently to evaluate its stability and consistency, and we observe varia-
tions in the precision rates and success rates throughout these experiments. We conduct four separate
training sessions, and the precision and success rates achieved in each experiment on RGBT234 and
LasHeR datasets can be seen in Table [7]and [

The variations in precision rates and success rates observed in these experiments offer valuable insights
into the robustness of our model. We notice a relatively steady range of precision rates across the four
experiments: values for the RGBT234 dataset range from 0.825 to 0.835, while for the LasHeR dataset,
values range from 0.497 to 0.506. This consistency suggests that, even under varying training sessions.
Like precision rates, success rates exhibit only minor variations, ranging from 0.577 to 0.584 for the
RGBT234 dataset and 0.363 to 0.369 for the LasHeR dataset. These minor variations imply that our
model consistently achieves a high level of tracking object success across various training sessions.
Our model is resilient to modifications in the training procedure, as seen by the minimal variations
in both success rates and precision rates. In conclusion, our experiments on the robustness of the
deep learning-based object tracking system show that it keeps up its performance consistently across
numerous training sessions.

Table 7: Results of Experiments on RGBT234 Dataset

Precisi
Experiment FEAASION | Mean | Variance jprecess Mean | Variance
Rate Rate
Experiment-1 | 0.835 0.584
Experiment-2 | 0.828 0.578
0.830 | 0.0000193 0.580 | 0,000009
Experiment-3 | 0.825 0.577
Experiment-4 | 0.832 0.581

Table 8: Results of Experiments on LasHeR Dataset

Procisi
Experiment eSO | Mean | Variance Success Mean | Variance
Rate Rate
Experiment-1 | 0.506 0.367
Experiment-2 | 0.506 0.369
0.503 | 0.000018 0.366 | 0.000007
Experiment-3 | 0.504 0.365
Experiment-4 | 0.497 0.363

5.5 Experiments on Other RGBT Tracking Models

The experimental findings from training and evaluating five different RGBT object tracking models
are presented in this section. The RGBT234 dataset is used to test these models after they are trained
on the GTOT dataset. The aim of the study is to evaluate these models’ performance in relation to the
findings presented in the corresponding papers.
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Table 9: Results of Experiments on Other RGBT Tracking Models Tested on RGBT234 Dataset

Model Experimental | Precision Rate | Experimental | Success Rate
Precision Rate | on Paper Success Rate | on Paper
APFNet [36]] 0.817 0.827 0.569 0.579
ADRNet [34] 0.807 0.809 0.570 0.571
MANet [24]] 0.798 0.777 0.560 0.539
MANet++ [28] | 0.795 0.800 0.559 0.554
DAFNet [23]] 0.794 0.796 0.540 0.544

The precision and success rates obtained from our experiments are compared to those reported in the
papers for each model. The results of the experiments are shown in Table 0]

Our experiments show that, on the RGBT234 dataset, the chosen RGBT tracking models’ performance
is largely in line with the findings published in the papers. Although there are small changes in success
rates and precision, these variations can be ascribed to a number of things, such as differences in the
preparation of the dataset, the optimization settings, and the tracking environment.

The resilience of the APFNet and ADRNet models in RGBT tracking was demonstrated by their pre-
cision rates, which were generally extremely close to the original research findings. Although their
success rates were slightly lower than those of the original study, MANet and MANet++ performed
admirably. The MANet model is considered to be developed after the first version of the article is pub-
lished. With a slightly lower success rate than the original article, DAFNet demonstrated competitive
performance.
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CHAPTER 6

CONCLUSION

In conclusion, our approach demonstrates exceptional efficacy in object tracking tasks, as evidenced
by its impressive performance on the RGBT234 and LasHeR datasets. The assessment conducted
on the RGBT234 dataset revealed the method’s notable accuracy and efficacy, yielding remarkable
outcomes in terms of precision and success rate. The robustness of the attribute-based analysis is
further demonstrated through its successful mitigation of many challenges, including but not limited
to motion blur, fluctuations in illumination, occlusion, and other factors.

While the performance scores obtained from evaluating the LasHeR dataset were marginally lower
compared to our results on the RGBT234 dataset, our model outperformed other trackers and reaf-
firmed the effectiveness of our model in accurately tracking targets across diverse scenarios. Taking
into account the difficulties that are unique to the LasHeR dataset, the success rate and precision rate
that we got suggest that our method is effective.

Overall, our approach demonstrates considerable promise in the domain of RGBT fusion object track-
ing. The accuracy, versatility, and capability of handling challenging scenarios of the model are sup-
ported by its performance on the RGBT234 and Lasher datasets. The findings of our assessment
make a valuable contribution to the progression of object tracking methodologies and establish a solid
groundwork for subsequent investigations and innovations in this domain.

Moving forward, we plan to continue refining our method and exploring ways to further enhance
its performance. We think that with continuous improvement, our approach can contribute to the
development of more accurate and robust RGBT object tracking systems, opening up new possibilities
for applications in various domains.
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