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OZET

BAZI UZAYLARDA JORDAN TOTIENT MATRISININ ETKi ALANI VE
JORDAN TOTIENT CEKIiRDEGI
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Lisansiistii Egitim Enstitiisii, Matematik Anabilim Dal1
Yiiksek Lisans Tezi
Danmisman: Dog. Dr. Merve ILKHAN KARA
Temmuz 2023, 22 sayfa

Bu calismada regiiler bir matrisin etki alan1 olarak bir uzay elde etmek i¢in hemen hemen
yakinsama kavrami kullanilmigtir. Karmasik terimli diziler i¢in yeni bir cesit kore kavrami
tanimlandiktan sonra cesitli kapsama teoremleri ispat edilmistir.

Anahtar sozciikler: Jordan Totient Fonksiyonu, Regiiler Matris, Hemen Hemen
Yakinsama.
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DOMAIN OF JORDAN TOTIENT MATRIX IN SOME SPACES AND JORDAN
TOTIENT CORE
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In this study, the concept of almost convergence is utilized to introduce a space as the matrix
domain of a regular matrix. After defining a new type of core theorem for complex-valued
sequences, some inclusion theorems are demonstrated.
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1. GIRIS

Klasik toplanabilirlik teorisi, yakinsak olmayan seriler veya diziler i¢in bir limit atayarak
seriler veya diziler i¢in yakinsaklik kavraminin genellestirilmesi ile ilgilenir. Bu amagla
sonsuz 6zel matrisler kullanilir. Toplanabilirligin temel konularindan biri, dizi uzaylari
teorisinin incelenmesidir. Bir dizi uzay1 derken gercel veya karmagik terimlere sahip tiim
dizilerden olusan @ uzayinin alt uzay: kastedilmektedir. Bazi klasik dizi uzaylar asagida

verilmistir.

co = {u=(uj)€w:limu;=0},
J

¢ = {u=(uj) € ®:limu; meveut },
J

lw = {u=(uj) € ®:supluj| <o},
J

cs:{u:(uj)ew: (gu,) Gc},
bs = {u:(uj) EwW: <§M,> eém}.

Dizi uzaylar teorisinde, Banach limiti kavrami tinlii Hahn-Banach genisleme teoreminin
biilyiileyici bir uygulamasi olarak ortaya ¢ikmigtir. Banach limiti ¢ iizerindeki limit
fonksiyonelinin /., uzayina genislemesi olarak bilinir. Bu kavram Lorentz [1] tarafindan
hemen hemen yakinsama ad1 verilen yeni bir yakinsama tiiriinii tanitmak i¢in kullanilmstr.
Hemen hemen yakinsak ve hemen hemen sifira yakinsak f ve fy uzaylart su sekilde
tanimlanir:

f= {u = (uj) € lo : lim Z u]j = A, jye gore diizgiin olarak}
ot 1

[—>oo 4=

veE
i

fo= {u = (uj) €l : lim E M{:’f =0, j ye gore diizgiin olarak }
1—ro0 l
p=0




Yakinsak bir dizinin, limiti ve genellestirilmis limiti esit olacak sekilde hemen hemen
yakinsak oldugu bilinen bir gercektir. Hemen hemen yakinsama ve Banach limiti hakkinda

daha fazla bilgi i¢in bkz. [2-10].

Literatiirde matris etki alan1 kavrami yardimiyla bircok yeni dizi uzaylar1 tanimlanmis ve
bu uzaylarin cesitli geometrik, topolojik 6zellikleri calisilmistir. Son zamanlarda Ilkhan ve
Kara [11], Euler totient fonksiyonu yardimiyla tantmlanmis regiiler matrisi kullanarak bu
matrisin klasik dizi uzaylarinda etki alan iizerine ¢alismiglardir. Bu matris Euler totient
matrisi olarak adlandirilmistir. Daha sonra Demiriz ve ark. [10] tarafindan hemen hemen
yakinsak dizilerin uzayinda Euler totient matrisinin etki alan1 olarak yeni bir dizi uzayi
elde edilmistir. Matris alanlar1 ve yeni dizi uzaylar1 hakkinda daha fazla bilgi icin [12-27]
bkz.

IIkhan ve ark. [28] tarafindan Jordan totient fonksiyonu yardimiyla yeni bir regiiler matris
tanimlanmugtir. Bu calismada, hemen hemen yakinsak dizilerin uzayinda Jordan totient
matrisinin etki alan1 olarak yeni bir dizi uzay: tanitilmas1 ve incelenmesi amaglanmistir.
Ayrica, bir dizinin Jordan totient ¢ekirdegi tanimlanacaktir ve ¢esitli kapsama bagintilar

arastirilacaktir.



2. TEMEL KAVRAMLAR

Bu boliimde tez boyunca ihtiya¢ duyulan temel kavramlara yer verilecektir.

Tanmm 2.1. U bostan farkl bir kiime K gercel veya karmagik sayilar cismi olsun.

+:UxU—=U

KxU—=U

ikili islemleri icin asagidaki 6zellikler saglaniyorsa U kiimesine K cismi iizerinde bir lineer

uzay ad verilir.

Her u,v,w € U icin

Lhu+veU,

L2)u+(v+w)=(u+v)+w,

L3) u+ 6 = 0 +u = u olacak sekilde 6 € U vardir,
L4) u+ (—u) = (—u) + u = 0 olacak sekilde —u € U vardir,
LS u+v=v-+u,

Her u,v € U ve her B,y € K igin

K1) Bue U,

K2) B(u+v) = Bu+ Bv,

K3) (B +7)u= Bu+ yu,

K4) B(yu) = (By)u,



KStu=u,1 € K[29].

Tanim 2.2. U , K cismi {izerinde bir lineer uzay ve A C U olsun. Her u,v € A ve her
o, B € Kigin o+ Bv € A oluyorsa A, U uzayinin bir lineer alt uzay1 olarak adlandirilir

[29].

Tanim 2.3. U bir lineer uzay, u,v € U ve 8 € K olmak iizere
ND) [[ul| =0,
N2) ||u|| =0 <= u=0,

N3) [[Bull = |B]lull,
N4) vl < fluf| 4 [v]]

sartlari saglaniyorsa || - || fonksiyonuna U iizerinde bir norm ve (U, || - ||) ikilisine bir normlu

uzay denir [29].

Ornek 2.4. 1 < p < o olmak iizere u = (u,) € £, olsun. Eger ||ul| = (X |u|P)/?

bi¢iminde tanimlanirsa (¢, ||.||) iklisi bir normlu uzay olur [29].

Tamm 2.5. (U, ||.||) bir normlu uzay olmak tizere U uzayindaki her bir Cauchy dizisi
yakinsak oluyorsa U uzay1 normun dogurdugu metrige gore tamdir ve Banach uzayi olarak

adlandirilir [29].

Tammm 2.6. N ve N’ aym1 K cismi iizerinde iki lineer uzay olsun. M:N — N’ operatorii her
u,v € N ve her o € Kigin
M(u+v)=Mu)+M(v) (2.1)

M(owm) = oM (u) (2.2)

aksiyomlarini sagliyorsa M operatoriine N uzayindan N’ uzayina bir lineer operatdr denir

[29].

Tamm 2.7. M : N — N’ lineer operator olsun.

CekM ={ucU:Mu=20'} (2.3)



kiimesine M operatoriiniin ¢ekirdegi veya sifir uzayi denir. Burada 6’, N’ uzayinn sifir

vektoridiir [29].

Teorem 2.8. M lineer operatoriiniin bire-bir olmasi i¢in gerek ve yeter kosul CekM = {0}

olmasidir [29].

Tamm 2.9. U ve V normlu uzaylar olmak iizere M : U — V lineer bir operator olsun. Her
u € U igin
M ()| < cllull (2.4)

olacak sekilde ¢ > 0 gercel sayis1 varsa M operatoriine sinirl lineer operator denir [29].

Tamm 2.10. U ve V normlu uzaylar olmak iizere, M : U — V lineer operator olsun.

1M ()

M| = sup{—r==uecU,uz 0} =sup{IM(u)|| :u € U, [u <1} (2.5

]

olmak iizere ||M|| degerine M operatoriiniin normu denir [29].

Tamm 2.11. U normlu uzayindan V normlu uzayina lineer bir izometrik izomorfizm,

normu koruyan yani her u € U igin,

M)y = [lulle (2.6)

olan bire-bir ve orten M : U — V lineer operatoriidiir. Bu durumda U ve V uzaylarina

lineer izomorfiktirler denir ve U =V ile gosterilir. [29].

Tanim 2.12. Gergel veya karmagik terimli tiim dizilerinin kiimesi

o={u=(u,):u:N—=>Kn—un)=u,} (2.7)

seklinde tanimlanir.

u=(ug),v= () €  ve o € K olsun.

(), (Vi) = (ure +vi) (2.8)

(o, (uk)) — (ovuy) 2.9)
seklinde tanimli iglemlere gore @ bir lineer uzaydir [30].

5



Tanim 2.13. ® uzaymin herhangi bir alt vektor uzayina dizi uzay1 denir [30].

Tanim 2.14. U bir lineer dizi uzay1 ve her n € N i¢in p,, : U — K, u +— p,(u) = u, olsun.

Her n € N icin p, ler siirekli ise U dizi uzayma K-uzay denir.
Eger U bir K—uzay1 ve U tam lineer metrik uzay ise U dizi uzayima F K-uzay1 denir.

Eger U bir FK-uzay1 ve U uzayminn metrigi normlanabiliyorsa U dizi uzayina BK-uzay1

denir [30].

Ornek 2.15. /.., ¢ ve ¢ uzaylari ||ul|. = supy|uz| normuna gore, 1 < p < e igin ¢, uzay1

lull, = (XF_o |ux|P)'/P normuna gore birer BK-uzayidirlar [30].
Teorem 2.16. BK-uzaylar1 arasinda tanimlanan lineer doniisiimler siireklidirler [30].

Tamm 2.17. U ve V iki dizi uzay1 ve S = (s;;) sonsuz bir matris olsun. Her u = (u;) € U
dizisi igin Su = {(Su);} = (¥ siju;) € V oluyorsa S matrisi U uzaymndan V uzayna bir
matris operatorii olur. Bu tiir tiim matrislerin sinifi (U : V) ile gosterilir. S € (U : V) ve
her u € U i¢in lim (Su); = lim u; ise S matrisine regiilerdir denir. Bu S € (U : V), ile

gosterilir [30].

Teorem 2.18. (Silverman Toeplitz) Bir § = (s;;) matrisinin regiiler olmast i¢in gerek ve

yeter sartlar:

1) Her i icin Z;":l |si j\ < G olacak sekilde bir G sabiti vardir.

2) Her j icin lim;_eos;j = O dir.

3) limje ¥ 7 8ij = 1 dir [30].

Tamm 2.19. Uy ile U uzayinda sonsuz bir S matrisin matris etki alan1 yani
Us={u=uj)cw:Sucl}.

uzay1 tanimlanmaktadir [30].



Tanim 2.20. n bir pozitif tam say1 icin,

, n=1ise,
p(n)=1q 0 . p*ln,pasal ise , (2.10)
(—=1)" , n=PP...Pi# jicin P, # Pj ise

seklinde tanimli 4 fonksiyonuna Mobius fonksiyonu denir [31].

n# 1 igin
Y uk)y=0 21D

kln

esitligi saglanir.

Asagida Mobius fonksiyonunun bazi degerleri verilmistir.

“(1) — 17“(2) = _17“(3) = _1;N(4) - 07“(5> =—1, (2.12)
[.1(6) — 17“(7) = _17“(8) = 0,#(9) = 0,#(10) =1,...

Tanmm 2.21. n € N ve 1 <k < n igin (k,n) = 1 olan k tam sayilarinin sayisini veren

fonksiyona Euler totient fonksiyonu denir. ¢(n) ile gosterilir [31].

Her n € N i¢in
n=Y ok (2.13)

kin

esitligi saglanir.

Asagida Euler totient fonksiyonunun bazi degerleri verilmistir.

o(1)=1,0(2) =1,03) =2,90(4) =2,0(5) =4, (2.14)
?(6)=2,0(7) =6,0(8) =4,¢0(9) =6,0(10) =4,....



Euler totient matrisi ® = (@)

owe=14 " (2.15)

seklinde tanimlanmustir [11].

r pozitif bir tam say1 olmak iizere r. mertebeden Jordan fonksiyonu J, : N — N aritmetik
bir fonksiyondur. J,(n) degeri, n ile birlikte bir es asal (r+ 1)-demet olusturan, tiimii n

den kiiciik veya ona esit olan pozitif tam sayilarin r-demetlerinin sayisina esittir.

Yakin zamanda yapilan bir makalede, Ilkhan ve ark. [28] her bir € N igin yeni bir

Y" = (v}, ) matrisini
Jr(k)

r n"

Uy =

, k|nise
, ktnise
seklinde tanimlamiglardir. Bu 6zel matris doniisiimiiniin regiiler oldugu goriilmiistiir. Yani

¢ den c¢ ye limiti koruyan bir déniisiimdiir. Tersi (Y")~! = ((v7,)™!)

(W) = ‘;r((gkr , k|nise

nk .
, ktnise

olarak hesaplanmustir.

Aligilmis matris ¢arpimi kullanilarak bir u = (u;) € @ dizisinin Y" doniistimii

v=Y"u= ((Yru)J) = (% ZJr(d)ud>

dlj
seklindedir.

Tamm 2.22. Banach limiti £, (. tizerinde tamimli £(Pu) = Lu ve L(e) = 1 olacak sekilde
negatif olmayan lineer bir fonksiyoneldir. Burada e = (1,1,...,1,...) ve P : ® — o,
Pj(u) = uji1 Steleme operatoriidiir. Bir u = (u;) dizisinin tiim Banach limitleri ¢akistyor
ve A degerine esitse, u = (u;) dizisi genellestirilmis limiti A dir ve u = (u;) dizisi hemen

hemen yakinsaktir denir. Bu f —limu; = A ile gosterilir [1].



PP, P nin kendisiyle p defa birlesimi ise asagidaki gosterim kullanilir:

1 ¢ -
aij(u) = l—l—_l Z (Ppu)j heri,j € N.
p=0

Lorentz [1] f —limu; = A olmasi i¢in gerek ve yeter kosulun j ye gore diizgiin olarak

lim; e a;j(u) = A olmasi gerektigini ispatlamustir.

u=(u;) € wveCj, herbir j€ N={1,2,...} igin uj,uj1,uj2,... leri iceren karmagik
diizlemdeki en kiiciik digbiikey kapal1 bolge olsun. Knopp Cekirdegi veya u = (u;) dizisinin

KC — core kiimesi tiim C; lerin kesisimi olarak tanimlanir [32]. Eger u € /. ise

IC — core(u) = ﬂ {WE C:|w—w| Slimsup|uj—w|}
weC J

olur [33].

Knopp Cekirdek Teoremi [p. 138][32], gercel terimli diziler u ve S € (c : ¢)eq pozitif
matrisi i¢in K — core(Su) C K — core(u) kapsaminin saglandigini ifade eder. Cekirdek

teoremleri ile ilgili daha fazla calisma i¢in bkz. [34-38].

Istatiksel yakinsaklik, olagan yakinsakligin bagka bir genellemesidir. N deki bir alt
kiimenin dogal yogunlugunun yardimiyla tanimlanir. Bir N kiimesinin dogal yogunlugu,

limitin mevcut olmasi kosuluyla
N T
O(N)=lim-|{i< j:ieN}
]
ile tanimlanir. Burada |...| kiimenin kardinalitesini (eleman sayisini) verir.
Her € > O i¢in
{jeN:|ju;—D|> ¢}

kiimesinin dogal yogunlugu sifira esitse, u = (u;) dizisinin D ye istatiksel olarak yakinsak
oldugu soylenir. st —limu = D ile gosterilir [39]. st ve st ile sirasiyla istatistiksel olarak

sifira yakinsak ve istatistiksel olarak yakinsak tiim dizilerin uzay1 gosterilmektedir.



Istatiksel olarak sinirlt bir u dizisinin istatiksel ¢ekirdegi kavrami, Fridy ve Orhan [40]

tarafindan
st —core(u) = ﬂ {W eC:w—w| < st—limsup|uj—w|}
weC J

seklinde tanimlanmuistir.

10



3. f UZAYINDA Y" MATRISININ ETKI ALANI VE JORDAN
TOTIENT CEKIiRDEGI

Bu boliimde, Y" doniisiimleri f uzayinda olan tiim dizilerden olusan fA(Yr) uzayi

tanimlanacaktir. Bu uzay

~ (xr
Y)=<qu=(u; : lim “) J +p = A, jye gore diizgiin
j)
0

i—o0 —
seklindedir.
f(Tr ) ve f uzaylariin lineer izomorfik oldugu kanitlanabilir.

Bir U uzaymnm B-duali tim u = (u;) € U i¢in ua = (u;a;) € cs olacak sekilde tim a =
(aj) € w dizilerinden olusur. f(Y’ ) uzaymnin 3— dualini belirlemek igin asagidaki sonuca

ithtiyag vardir.

Yardimei Teorem 3.1. S = (s;;) € (f : ¢) olmasi i¢in gerek ve yeter kosul

sup Y [s;j| < oo, (3.1
ieN
lims;; = s; € Cher j €N, 3.2)
i—oo0
1 i = C, 3.3
IE?OZSJ s € (3.3)
EELEZIA sij—s;j)| =0 (3.4)

kosullarinin saglanmasidir [41].

i

B = {t:(tj)ew:supz
ieN j=1

Lou(g)
L Tt

Teorem 3.2. f(Tr ) dizi uzayinin f —duali agagidaki kiimelerin kesisimidir.
d=j.jld

<o}
i (‘]_1_
B, = {t =(tj) cw: ilggd_%d J,(d)]rtd mevcuttur},

11



6_1

J't ] mevcuttur},

|[=o}

By = {t (tH) ew: hij[

u(d)
By = {t:(t])ea) hmZ ch’

i—so0

j

Ispat. Herhangi bir t = (t;) € o i¢in B = (bj;) matrisi her j,i € N i¢in

DR
DY

N o
Z J é " d > 1 S J>1
bji=1 aija’rid) (3.5)
0 , Jj>i

seklinde tanimlanmak iizere

Ly (v HE)
J;t, j = th(d“_]r T d)
(5

1
= Bi(v); (ieN) (3.6)

esitligi saglanir. (3.6) esitliginden u = (u;) € c iken tu = (t;u;) € cs olmast igin gerek ve
yeter kosul v = (v;) € f iken Bv € ¢ olmasidir sonucuna vartlir. Yani t = (¢;) € {F(x")}P
olmasi i¢in gerek ve yeter kosul B € (f : ¢) olmasidir. Boylece Yardimcr Teorem 3.1

kullanilarak istenen elde edilir. L]

Simdi, Jordan totient cekirde8ini veya bir diger ifadeyle karmagik degerli bir dizinin

Y —cekirdegini tanimlayalim.

Tanm 3.3. C;j, (Y"u);j, (X u) j4+1... dizilerini igeren en kiigiik kapali konveks kabuk (hull)

olsun. Bu durumda u dizisinin Y" — core kiimesi tiim C; kiimelerinin arakesiti olur, yani

olur.

Bir u dizisinin Y" — core kiimesi Y"u dizisinin K — core kiimesi oldugundan asagidaki

sonug agiktir.

12



Teorem 3.4. Herhangi bir u € /., i¢in

Y —core(u) = ﬂ {WEC W —w| < limsup [(Yu); w|}
weC J

olur.

Ilkhan ve ark. [42] tarafindan Jordan totient fonksiyonu yardimiyla asagidaki uzaylar

CQ(Y’):{u:(uj)ea) hm( ZJ ) }
dlj

c(X") = {u = (u;) € ®: lim ( =Y J(d ) mevcuttur}.

i \J dlj

tanimlandi.

veE

Bir sonsuz S = (s;;) matrisinin (¢ : ¢(X"))eg Ve (851(S) Nlo : (X)) e sinuflarina ait olmasi

icin gerek ve yeter kosullar1 verebilmek icin oncelikle bazi temel sonuglara ihtiya¢ vardir.

Yardimei Teorem 3.5. S = (s;;) € (¢ : ¢(Y")) olmasi igin gerek ve yeter kosul

ZJ Jsij| < ee, (3.7)
Jli
lim - ZJ j)sij=7v; herbir jigin, (3.8)
Jli
ZJ Nsij—vj| =0 (3.9)
Jli

kosullarinin saglanmasidir.
Yardimer Teorem 3.6. S = (s;;) € (¢ : ¢(Y")),eq olmast icin gerek ve yeter kosul (3.7), her

bir j i¢in y; = 0 olmak lizere (3.8) ve

hmz Y J(f)sij=1 (3.10)

T

kosullarinin saglanmasidir.
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Yardimcei Teorem 3.7. S = (s;;) € (st Nlo : c(Y"))eq 0lmasi igin gerek ve yeter kosul

Se(c:c(Y))reg ve

lim
' jEN,8(N)=0

ZJ s,j

Jli

(3.11)

olmasidir.

Ispat. ¢ C st Nle oldugu agiktir. Dolayisiyla S € (¢ : ¢(X"))q elde edilit. §(N) =0
ve u € U olsun. j € N icin ii; = u; ve j ¢ N igin ii; = 0 olmak lizere i = (ii;) dizisi

tanimlansin. i € st dir. Boylece Sii € co(Y") olur. Ayrica

Z ZJ s,]u] Z ZJ s,]u]

T jen v i
esitliginden
$io = i_l"zj|l‘] (.])Sl] s jeNiSC
ij —
0 , j#Nise

olmak iizere § = (§;;) € (¢ : ¢(X")) elde edilir. Bdylece Yardimci Teorem 3.5 den

(3.12)

elde edilir.

Karsit1 i¢in st — limu = D olmak iizere u € st Nl alinsin. Herhangi € > 0 i¢in §(N) =
0({j:|luj—D|>¢e})=0olur

1
25 Y Ir()sijuj = Z ZJ Jsij(uj=D)+DY ~ ZJ s (3.13)
ool ool
esitliginden i — oo iken

Z i ZJ S’/

Joool

<lull Y |

]EN

ZJ s,j

Jli

ZJ s,j

Jli

)

esitsizligi ve (3.11) ile (3.10) den

hmZ ZJ s,ju]

Jtol

14



elde edilir. Buise S € (st N 4o : ¢(Y")) e 0ldugunu ispat eder. N

Yardimci Teorem 3.8. S = (s;;) matrisi i¢in }_ ; |s;;| < oo ve lim; s;; = 0 olsun. Bu durumda

||lu|| <1 olmak iizere u € /o icin
limsusz,-juj = limsupz |sijl
i J i J
olur [34].

Simdi esas bazi sonuclar verilecektir.

Teorem 3.9. S € (¢ : c(X"))req Ve u € Lo olsun. X" — core(Su) C KC — core(u) kapsaminin

saglanmasi icin gerek ve yeter kosul

(3.14)

ZJ le

Jli

olmasidir.

Ispat. Yardimci Teorem 3.6 ve Yardimci Teorem 3.8 birlestirilerek ||u|| < 1 olmak iizere

}

u €l igin

ZJ s,J

Jli

{WGC |w|<hmsupz ZJ s,JuJ} {WEC

! FRRT

esitligi elde edilir.
Y — core(Su) C K —core(u) C{weC:|w <1}

kapsamlari saglandigindan, (3.14) ifadesi

ZJ S,j

! IR

{WGC |w|<hmsupz }Q{WEC:|W|§1}.

kapsamindan elde edilir.

w € X" — core(Su) olsun. Herhangi w € C i¢in

Ww—w| < limsup|(Y"(Su))i —w| (3.15)

1
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: 1 :
= llmsup W—Zi—rZJ,(])sijuj
! Jooli
: 1 :
< limsup Zi_rZJ’(])SU(W_”f) —|—11msup|w| I—erZJ )Sij
! ol Jli
: 1 .
= limsup Zi—rZJr(])s,-j(w—uj)
! Jooli

olur. limsup; [u;j —w[ = [ olsun. Herhangi € > 0 i¢in j > jo iken |u; —w| <[+ € olacak

sekilde jo vardir. Boylece

Z ZJ Dsiilw—uj)| = Z ZJ J)sij(w— ”J+Z ZJ J)sij(w—u;)| (3.16)
FRTT i<io Vi izt i
< sup|w—u]| Z —ZJ sij|+({+e€) Z ZJ 7)sij
J<jo Jli J=Jjo Jli
< sup\w—u]] Y —ZJ J)sij| + (1 +€) Z ZJ J)sijl-
J<jol|® jli J Jli
elde edilir. (3.15) ve (3.16) esitsizliklerinden
W — w|<11msup Z Y J(f)sijw—uj)| < I+
bl

bulunur. Bu w € K — core(u) olmasini gerektirir. Dolayisiyla istenen kapsam saglanir.

]

Teorem 3.10. S € (st N 4o : c(X"))seg Ve u € Lo oOlsun. X" — core(Su) C st — core(u)

kapsaminin saglanmasi i¢in gerek ve yeter kosul (3.14) saglanmasidir.

Ispat. st — core(u) C K — core(u) kapsami saglandigindan Teorem 3.9 geregi 1" —

core(Su) C st — core(u) kapsamui (3.14) ifadesini gerektirir.

W € X" — core(Su) olsun. Benzer sekilde (3.15) elde edilir. s — limsup |u; —w| = [ olsun.

Herhangi & > 0 igin §(N) = §({j : |u; —w| > [+ €}) = 0 elde edilir (bkz. [43]). Béylece

Z ZJ J)sij(w—uj)

Jooli

Z ZJ J)sij(w +Z ZJ J)sij(w—u;)

jeN Jli 1¢N Jli

sup|w—u]| Z ZJ 7)sij|+

JGN Jli

IN

ZJ S,j

Jli

J¢
16



ilVZJ (J)sij|-

Jli

ZJ s,J

Jli

+e))

J

< sup|w—uJ] Z
JGN

elde edilir. Sonug olarak (3.11) ve (3.14) den

hmsup <l+¢ (3.17)

Z ZJ Jsij(w—u;)

il

bulunur. (3.17) ile (3.15) kullanilarak

W —w| < st —limsup|u; —w|
J

elde edilir. Yani w € st — core(u) olur. Dolayisiyla istenen kapsama bagintisi ispat edilmig

olur. O]
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4. SONUCLAR VE ONERILER

Bu calismada [10] nolu calismada verilen sonuglar daha genel ve kapsamli bir
alana genigletilmistir. Hemen hemen yakinsama, bir dizinin olagan yakinsamasinin
genellemesinden biridir. Jordan totient fonksiyonu tarafindan tiiretilen bir matris dontisiimii
yardimiyla bazi tiir hemen hemen yakinsak dizi uzaylar1 sunulmustur. Ortaya ¢ikan
dizi uzayinin, hemen hemen yakinsak dizi uzayina lineer olarak izomorfik oldugu
gozlemlenmistir. Son olarak, bir dizinin Jordan totient ¢ekirde8i tanimlanmis ve bazi

kapsama teoremleri ispat edilmisgtir.

Calismada tanimlanacak uzaylarin 6zel durumda Demiriz ve ark. tarafindan [10] nolu
calismada tanimlanan uzaylara doniistiigii goriiliir. Dolayisiyla bu ¢alismada elde edilecek
Banach uzaylar1 [10] nolu ¢alismadaki uzaylarin da genel halidir. Benzer yontem izlenerek
yeni tipte hemen hemen yakinsak dizi uzaylar1 tanimlanabilir ve bu uzaylar {izerinde

cekirdek teoremleri verilebilir.
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