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Doç. Dr. Merve İLKHAN KARA
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Sayfa No
SİMGELER ............................................................................................ vi
ÖZET ...................................................................................................... vii
ABSTRACT ............................................................................................ viii
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ÖZET

BAZI UZAYLARDA JORDAN TOTIENT MATRİSİNİN ETKİ ALANI VE
JORDAN TOTIENT ÇEKİRDEĞİ

Gizemnur ÖRNEK
Düzce Üniversitesi

Lisansüstü Eğitim Enstitüsü, Matematik Anabilim Dalı
Yüksek Lisans Tezi

Danışman: Doç. Dr. Merve İLKHAN KARA
Temmuz 2023, 22 sayfa

Bu çalışmada regüler bir matrisin etki alanı olarak bir uzay elde etmek için hemen hemen
yakınsama kavramı kullanılmıştır. Karmaşık terimli diziler için yeni bir çeşit kore kavramı
tanımlandıktan sonra çeşitli kapsama teoremleri ispat edilmiştir.

Anahtar sözcükler: Jordan Totient Fonksiyonu, Regüler Matris, Hemen Hemen
Yakınsama.
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In this study, the concept of almost convergence is utilized to introduce a space as the matrix
domain of a regular matrix. After defining a new type of core theorem for complex-valued
sequences, some inclusion theorems are demonstrated.
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1. GİRİŞ

Klasik toplanabilirlik teorisi, yakınsak olmayan seriler veya diziler için bir limit atayarak

seriler veya diziler için yakınsaklık kavramının genelleştirilmesi ile ilgilenir. Bu amaçla

sonsuz özel matrisler kullanılır. Toplanabilirliğin temel konularından biri, dizi uzayları

teorisinin incelenmesidir. Bir dizi uzayı derken gerçel veya karmaşık terimlere sahip tüm

dizilerden oluşan ω uzayının alt uzayı kastedilmektedir. Bazı klasik dizi uzayları aşağıda

verilmiştir.

c0 =
{

u = (u j) ∈ ω : lim
j

u j = 0
}
,

c =
{

u = (u j) ∈ ω : lim
j

u j mevcut
}
,

ℓ∞ =
{

u = (u j) ∈ ω : sup
j
|u j|< ∞

}
,

cs =
{

u = (u j) ∈ ω :

(
j

∑
i=1

ui

)
∈ c
}
,

bs =
{

u = (u j) ∈ ω :

(
j

∑
i=1

ui

)
∈ ℓ∞

}
.

Dizi uzayları teorisinde, Banach limiti kavramı ünlü Hahn-Banach genişleme teoreminin

büyüleyici bir uygulaması olarak ortaya çıkmıştır. Banach limiti c üzerindeki limit

fonksiyonelinin ℓ∞ uzayına genişlemesi olarak bilinir. Bu kavram Lorentz [1] tarafından

hemen hemen yakınsama adı verilen yeni bir yakınsama türünü tanıtmak için kullanılmıştır.

Hemen hemen yakınsak ve hemen hemen sıfıra yakınsak f ve f0 uzayları şu şekilde

tanımlanır:

f =
{

u = (u j) ∈ ℓ∞ : lim
i→∞

i

∑
p=0

u j+p

i+1
=A, j ye göre düzgün olarak

}

ve

f0 =

{
u = (u j) ∈ ℓ∞ : lim

i→∞

i

∑
p=0

u j+p

i+1
= 0, j ye göre düzgün olarak

}
.
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Yakınsak bir dizinin, limiti ve genelleştirilmiş limiti eşit olacak şekilde hemen hemen

yakınsak olduğu bilinen bir gerçektir. Hemen hemen yakınsama ve Banach limiti hakkında

daha fazla bilgi için bkz. [2-10].

Literatürde matris etki alanı kavramı yardımıyla birçok yeni dizi uzayları tanımlanmış ve

bu uzayların çeşitli geometrik, topolojik özellikleri çalışılmıştır. Son zamanlarda İlkhan ve

Kara [11], Euler totient fonksiyonu yardımıyla tanımlanmış regüler matrisi kullanarak bu

matrisin klasik dizi uzaylarında etki alanı üzerine çalışmışlardır. Bu matris Euler totient

matrisi olarak adlandırılmıştır. Daha sonra Demiriz ve ark. [10] tarafından hemen hemen

yakınsak dizilerin uzayında Euler totient matrisinin etki alanı olarak yeni bir dizi uzayı

elde edilmiştir. Matris alanları ve yeni dizi uzayları hakkında daha fazla bilgi için [12-27]

bkz.

İlkhan ve ark. [28] tarafından Jordan totient fonksiyonu yardımıyla yeni bir regüler matris

tanımlanmıştır. Bu çalışmada, hemen hemen yakınsak dizilerin uzayında Jordan totient

matrisinin etki alanı olarak yeni bir dizi uzayı tanıtılması ve incelenmesi amaçlanmıştır.

Ayrıca, bir dizinin Jordan totient çekirdeği tanımlanacaktır ve çeşitli kapsama bağıntıları

araştırılacaktır.
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2. TEMEL KAVRAMLAR

Bu bölümde tez boyunca ihtiyaç duyulan temel kavramlara yer verilecektir.

Tanım 2.1. U boştan farklı bir küme K gerçel veya karmaşık sayılar cismi olsun.

+ : U ×U →U

· : K×U →U

ikili işlemleri için aşağıdaki özellikler sağlanıyorsa U kümesine K cismi üzerinde bir lineer

uzay adı verilir.

Her u,v,w ∈U için

L1)u+ v ∈U ,

L2)u+(v+w) = (u+ v)+w ,

L3) u+θ = θ +u = u olacak şekilde θ ∈U vardır,

L4) u+(−u) = (−u)+u = θ olacak şekilde −u ∈U vardır,

L5) u+ v = v+u,

Her u,v ∈U ve her β ,γ ∈ K için

K1) βu ∈U ,

K2) β (u+ v) = βu+βv,

K3) (β + γ)u = βu+ γu,

K4) β (γu) = (βγ)u,
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K5)ιu = u, ι ∈ K [29].

Tanım 2.2. U , K cismi üzerinde bir lineer uzay ve A ⊂ U olsun. Her u,v ∈ A ve her

α,β ∈ K için αu+βv ∈ A oluyorsa A, U uzayının bir lineer alt uzayı olarak adlandırılır

[29].

Tanım 2.3. U bir lineer uzay, u,v ∈U ve β ∈ K olmak üzere

N1) ∥u∥ ≥ 0,

N2) ∥u∥= 0 ⇐⇒ u = θ ,

N3) ∥βu∥= |β |∥u∥,

N4) ∥u+ v∥ ≤ ∥u∥+∥v∥

şartları sağlanıyorsa ∥·∥ fonksiyonuna U üzerinde bir norm ve (U,∥·∥) ikilisine bir normlu

uzay denir [29].

Örnek 2.4. 1 ⩽ p < ∞ olmak üzere u = (un) ∈ ℓp olsun. Eğer ∥u∥ = (∑∞
n=1 |un|p)1/p

biçiminde tanımlanırsa (ℓp,∥.∥) iklisi bir normlu uzay olur [29].

Tanım 2.5. (U,∥.∥) bir normlu uzay olmak üzere U uzayındaki her bir Cauchy dizisi

yakınsak oluyorsa U uzayı normun doğurduğu metriğe göre tamdır ve Banach uzayı olarak

adlandırılır [29].

Tanım 2.6. N ve N′ aynı K cismi üzerinde iki lineer uzay olsun. M:N → N′ operatörü her

u,v ∈ N ve her α ∈ K için

M(u+ v) = M(u)+M(v) (2.1)

M(αu) = αM(u) (2.2)

aksiyomlarını sağlıyorsa M operatörüne N uzayından N′ uzayına bir lineer operatör denir

[29].

Tanım 2.7. M : N → N′ lineer operatör olsun.

ÇekM = {u ∈U : Mu = θ
′} (2.3)
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kümesine M operatörünün çekirdeği veya sıfır uzayı denir. Burada θ ′, N′ uzayının sıfır

vektörüdür [29].

Teorem 2.8. M lineer operatörünün bire-bir olması için gerek ve yeter koşul ÇekM = {θ}

olmasıdır [29].

Tanım 2.9. U ve V normlu uzaylar olmak üzere M : U →V lineer bir operatör olsun. Her

u ∈U için

∥M(u)∥ ≤ c∥u∥ (2.4)

olacak şekilde c > 0 gerçel sayısı varsa M operatörüne sınırlı lineer operatör denir [29].

Tanım 2.10. U ve V normlu uzaylar olmak üzere, M : U →V lineer operatör olsun.

∥M∥= sup{∥M(u)∥
∥u∥

: u ∈U,u ̸= θ}= sup{∥M(u)∥ : u ∈U,∥u∥⩽ 1} (2.5)

olmak üzere ∥M∥ değerine M operatörünün normu denir [29].

Tanım 2.11. U normlu uzayından V normlu uzayına lineer bir izometrik izomorfizm,

normu koruyan yani her u ∈U için,

∥M(u)∥V = ∥u∥U (2.6)

olan bire-bir ve örten M : U → V lineer operatörüdür. Bu durumda U ve V uzaylarına

lineer izomorfiktirler denir ve U ∼=V ile gösterilir. [29].

Tanım 2.12. Gerçel veya karmaşık terimli tüm dizilerinin kümesi

ω = {u = (un) : u : N → K,n → u(n) = un} (2.7)

şeklinde tanımlanır.

u = (uk),v = (vk) ∈ ω ve α ∈ K olsun.

((uk),(vk))→ (uk + vk) (2.8)

(α,(uk))→ (αuk) (2.9)

şeklinde tanımlı işlemlere göre ω bir lineer uzaydır [30].
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Tanım 2.13. ω uzayının herhangi bir alt vektör uzayına dizi uzayı denir [30].

Tanım 2.14. U bir lineer dizi uzayı ve her n ∈ N için pn : U → K, u 7→ pn(u) = un olsun.

Her n ∈ N için pn ler sürekli ise U dizi uzayına K-uzayı denir.

Eğer U bir K−uzayı ve U tam lineer metrik uzay ise U dizi uzayına FK-uzayı denir.

Eğer U bir FK-uzayı ve U uzayınınn metriği normlanabiliyorsa U dizi uzayına BK-uzayı

denir [30].

Örnek 2.15. ℓ∞, c ve c0 uzayları ∥u∥∞ = supk|uk| normuna göre, 1 ⩽ p < ∞ için ℓp uzayı

∥u∥p = (∑n
k=0 |uk|p)1/p normuna göre birer BK-uzayıdırlar [30].

Teorem 2.16. BK-uzayları arasında tanımlanan lineer dönüşümler süreklidirler [30].

Tanım 2.17. U ve V iki dizi uzayı ve S = (si j) sonsuz bir matris olsun. Her u = (u j) ∈U

dizisi için Su = {(Su)i}=
(

∑ j si ju j
)
∈V oluyorsa S matrisi U uzayından V uzayına bir

matris operatörü olur. Bu tür tüm matrislerin sınıfı (U : V ) ile gösterilir. S ∈ (U : V ) ve

her u ∈U için lim j(Su) j = lim j u j ise S matrisine regülerdir denir. Bu S ∈ (U : V )reg ile

gösterilir [30].

Teorem 2.18. (Silverman Toeplitz) Bir S = (si j) matrisinin regüler olması için gerek ve

yeter şartlar:

1) Her i için ∑
∞
j=1 |si j|< G olacak şekilde bir G sabiti vardır.

2) Her j için limi→∞si j = 0 dır.

3) limi→∞ ∑
∞
j=1 si j = 1 dir [30].

Tanım 2.19. US ile U uzayında sonsuz bir S matrisin matris etki alanı yani

US =
{

u = (u j) ∈ ω : Su ∈U
}
.

uzayı tanımlanmaktadır [30].
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Tanım 2.20. n bir pozitif tam sayı için,

µ(n) =


1 , n = 1 ise ,

0 , p2|n, p asal ise ,

(−1)r , n = P1P2...Pr, i ̸= j için Pi ̸= Pj ise

(2.10)

şeklinde tanımlı µ fonksiyonuna Mobius fonksiyonu denir [31].

n ̸= 1 için

∑
k|n

µ(k) = 0 (2.11)

eşitliği sağlanır.

Aşağıda Mobius fonksiyonunun bazı değerleri verilmiştir.

µ(1) = 1,µ(2) =−1,µ(3) =−1,µ(4) = 0,µ(5) =−1, (2.12)

µ(6) = 1,µ(7) =−1,µ(8) = 0,µ(9) = 0,µ(10) = 1, ....

Tanım 2.21. n ∈ N ve 1 ≤ k < n için (k,n) = 1 olan k tam sayılarının sayısını veren

fonksiyona Euler totient fonksiyonu denir. ϕ(n) ile gösterilir [31].

Her n ∈ N için

n = ∑
k|n

ϕ(k) (2.13)

eşitliği sağlanır.

Aşağıda Euler totient fonksiyonunun bazı değerleri verilmiştir.

ϕ(1) = 1,ϕ(2) = 1,ϕ(3) = 2,ϕ(4) = 2,ϕ(5) = 4, (2.14)

ϕ(6) = 2,ϕ(7) = 6,ϕ(8) = 4,ϕ(9) = 6,ϕ(10) = 4, ....

7



Euler totient matrisi Φ = (φnk)

φnk =


ϕ(k)

n , k | n ise

0 , k ∤ n ise
(2.15)

şeklinde tanımlanmıştır [11].

r pozitif bir tam sayı olmak üzere r. mertebeden Jordan fonksiyonu Jr : N → N aritmetik

bir fonksiyondur. Jr(n) değeri, n ile birlikte bir eş asal (r+1)-demet oluşturan, tümü n

den küçük veya ona eşit olan pozitif tam sayıların r-demetlerinin sayısına eşittir.

Yakın zamanda yapılan bir makalede, İlkhan ve ark. [28] her bir r ∈ N için yeni bir

ϒr = (υr
nk) matrisini

υ
r
nk =


Jr(k)

nr , k | n ise

0 , k ∤ n ise

şeklinde tanımlamışlardır. Bu özel matris dönüşümünün regüler olduğu görülmüştür. Yani

c den c ye limiti koruyan bir dönüşümdür. Tersi (ϒr)−1 = ((υr
nk)

−1)

(υr
nk)

−1 =


µ( n

k )

Jr(n)
kr , k | n ise

0 , k ∤ n ise

olarak hesaplanmıştır.

Alışılmış matris çarpımı kullanılarak bir u = (u j) ∈ ω dizisinin ϒr dönüşümü

v = ϒ
ru = ((ϒru) j) =

(
1
jr ∑

d| j
Jr(d)ud

)

şeklindedir.

Tanım 2.22. Banach limiti L, ℓ∞ üzerinde tanımlı L(Pu) =Lu ve L(e) = 1 olacak şekilde

negatif olmayan lineer bir fonksiyoneldir. Burada e = (1,1, ...,1, ...) ve P : ω −→ ω ,

P j(u) = u j+1 öteleme operatörüdür. Bir u = (u j) dizisinin tüm Banach limitleri çakışıyor

ve A değerine eşitse, u = (u j) dizisi genelleştirilmiş limiti A dır ve u = (u j) dizisi hemen

hemen yakınsaktır denir. Bu f − limu j =A ile gösterilir [1].
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P p, P nin kendisiyle p defa birleşimi ise aşağıdaki gösterim kullanılır:

ai j(u) =
1

i+1

i

∑
p=0

(P pu) j her i, j ∈ N.

Lorentz [1] f − limu j = A olması için gerek ve yeter koşulun j ye göre düzgün olarak

limi→∞ ai j(u) =A olması gerektiğini ispatlamıştır.

u = (u j) ∈ ω ve C j, her bir j ∈ N = {1,2, ...} için u j,u j+1,u j+2, . . . leri içeren karmaşık

düzlemdeki en küçük dışbükey kapalı bölge olsun. Knopp Çekirdeği veya u=(u j) dizisinin

K− core kümesi tüm C j lerin kesişimi olarak tanımlanır [32]. Eğer u ∈ ℓ∞ ise

K− core(u) =
⋂

w∈C

{
w̃ ∈ C : |w̃−w| ≤ limsup

j
|u j −w|

}
olur [33].

Knopp Çekirdek Teoremi [p. 138][32], gerçel terimli diziler u ve S ∈ (c : c)reg pozitif

matrisi için K − core(Su) ⊂ K − core(u) kapsamının sağlandığını ifade eder. Çekirdek

teoremleri ile ilgili daha fazla çalışma için bkz. [34-38].

İstatiksel yakınsaklık, olağan yakınsaklığın başka bir genellemesidir. N deki bir alt

kümenin doğal yoğunluğunun yardımıyla tanımlanır. Bir N kümesinin doğal yoğunluğu,

limitin mevcut olması koşuluyla

δ (N) = lim
j

1
j
|{i ≤ j : i ∈ N}|

ile tanımlanır. Burada |...| kümenin kardinalitesini (eleman sayısını) verir.

Her ε > 0 için

{ j ∈ N : |u j −D| ≥ ε}

kümesinin doğal yoğunluğu sıfıra eşitse, u = (u j) dizisinin D ye istatiksel olarak yakınsak

olduğu söylenir. st − limu =D ile gösterilir [39]. st0 ve st ile sırasıyla istatistiksel olarak

sıfıra yakınsak ve istatistiksel olarak yakınsak tüm dizilerin uzayı gösterilmektedir.
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İstatiksel olarak sınırlı bir u dizisinin istatiksel çekirdeği kavramı, Fridy ve Orhan [40]

tarafından

st − core(u) =
⋂

w∈C

{
w̃ ∈ C : |w̃−w| ≤ st − limsup

j
|u j −w|

}
şeklinde tanımlanmıştır.
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3. f UZAYINDA ϒr MATRİSİNİN ETKİ ALANI VE JORDAN

TOTIENT ÇEKİRDEĞİ

Bu bölümde, ϒr dönüşümleri f uzayında olan tüm dizilerden oluşan f̂ (ϒr) uzayı

tanımlanacaktır. Bu uzay

f̂ (ϒr) =

{
u = (u j) ∈ ℓ∞ : lim

i→∞

i

∑
p=0

(ϒru) j+p

i+1
=A, j ye göre düzgün

}

şeklindedir.

f̂ (ϒr) ve f uzaylarının lineer izomorfik olduğu kanıtlanabilir.

Bir U uzayının β -duali tüm u = (u j) ∈ U için ua = (u ja j) ∈ cs olacak şekilde tüm a =

(a j) ∈ ω dizilerinden oluşur. f̂ (ϒr) uzayının β− dualini belirlemek için aşağıdaki sonuca

ihtiyaç vardır.

Yardımcı Teorem 3.1. S = (si j) ∈ ( f : c) olması için gerek ve yeter koşul

sup
i∈N

∑
j
|si j|< ∞, (3.1)

lim
i→∞

si j = s j ∈ C her j ∈ N, (3.2)

lim
i→∞

∑
j

si j = s ∈ C, (3.3)

lim
i→∞

∑
j

∣∣∆(si j − s j)
∣∣= 0 (3.4)

koşullarının sağlanmasıdır [41].

Teorem 3.2. f̂ (ϒr) dizi uzayının β−duali aşağıdaki kümelerin kesişimidir.

B1 =

{
t = (t j) ∈ ω : sup

i∈N

i

∑
j=1

∣∣∣∣ i

∑
d= j, j|d

µ(d
j )

Jr(d)
jtd

∣∣∣∣< ∞

}
,

B2 =

{
t = (t j) ∈ ω : lim

i→∞

i

∑
d= j, j|d

µ(d
j )

Jr(d)
jrtd mevcuttur

}
,
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B3 =

{
t = (t j) ∈ ω : lim

i→∞

i

∑
j=1

[ i

∑
d= j, j|d

µ(d
j )

Jr(d)
jrtd

]
mevcuttur

}
,

B4 =

{
t = (t j) ∈ ω : lim

i→∞
∑

j

∣∣∣∣∆[ i

∑
d= j, j|d

µ(d
j )

Jr(d)
jrtd −α j

]∣∣∣∣= 0
}
.

İspat. Herhangi bir t = (t j) ∈ ω için B = (b ji) matrisi her j, i ∈ N için

b ji =


i

∑
d= j, j|d

µ(d
j )

Jr(d)
jrtd , 1 ≤ j ≤ i,

0 , j > i

(3.5)

şeklinde tanımlanmak üzere

i

∑
j=1

t ju j =
i

∑
j=1

t j

(
∑
d| j

µ( j
d )

Jr( j)
drvd

)

=
i

∑
j=1

( i

∑
d= j, j|d

µ(d
j )

Jr(d)
jrtd

)
v j

= Bi(v); (i ∈ N) (3.6)

eşitliği sağlanır. (3.6) eşitliğinden u = (u j) ∈ c iken tu = (t ju j) ∈ cs olması için gerek ve

yeter koşul v = (v j) ∈ f iken Bv ∈ c olmasıdır sonucuna varılır. Yani t = (t j) ∈ { f̂ (ϒr)}β

olması için gerek ve yeter koşul B ∈ ( f : c) olmasıdır. Böylece Yardımcı Teorem 3.1

kullanılarak istenen elde edilir.

Şimdi, Jordan totient çekirdeğini veya bir diğer ifadeyle karmaşık değerli bir dizinin

ϒr−çekirdeğini tanımlayalım.

Tanım 3.3. C j, (ϒru) j,(ϒ
ru) j+1... dizilerini içeren en küçük kapalı konveks kabuk (hull)

olsun. Bu durumda u dizisinin ϒr − core kümesi tüm C j kümelerinin arakesiti olur, yani

ϒ
r − core(u) =

∞⋂
j=1

C j

olur.

Bir u dizisinin ϒr − core kümesi ϒru dizisinin K− core kümesi olduğundan aşağıdaki

sonuç açıktır.
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Teorem 3.4. Herhangi bir u ∈ ℓ∞ için

ϒ
r − core(u) =

⋂
w∈C

{
w̃ ∈ C : |w̃−w| ≤ limsup

j
|(ϒru) j −w|

}

olur.

İlkhan ve ark. [42] tarafından Jordan totient fonksiyonu yardımıyla aşağıdaki uzaylar

tanımlandı.

c0(ϒ
r) =

{
u = (u j) ∈ ω : lim

j

(
1
jr ∑

d| j
Jr(d)ud

)
= 0

}
ve

c(ϒr) =

{
u = (u j) ∈ ω : lim

j

(
1
jr ∑

d| j
Jr(d)ud

)
mevcuttur

}
.

Bir sonsuz S = (si j) matrisinin (c : c(ϒr))reg ve (st(S)∩ℓ∞ : c(ϒr))reg sınıflarına ait olması

için gerek ve yeter koşulları verebilmek için öncelikle bazı temel sonuçlara ihtiyaç vardır.

Yardımcı Teorem 3.5. S = (si j) ∈ (ℓ∞ : c(ϒr)) olması için gerek ve yeter koşul

sup
i

∑
j

∣∣∣∣∣ 1ir ∑
j|i

Jr( j)si j

∣∣∣∣∣< ∞, (3.7)

lim
i

1
ir ∑

j|i
Jr( j)si j = γ j her bir j için, (3.8)

lim
i ∑

j

∣∣∣∣∣ 1ir ∑
j|i

Jr( j)si j − γ j

∣∣∣∣∣= 0 (3.9)

koşullarının sağlanmasıdır.

Yardımcı Teorem 3.6. S = (si j) ∈ (c : c(ϒr))reg olması için gerek ve yeter koşul (3.7), her

bir j için γ j = 0 olmak üzere (3.8) ve

lim
i ∑

j

1
ir ∑

j|i
Jr( j)si j = 1 (3.10)

koşullarının sağlanmasıdır.
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Yardımcı Teorem 3.7. S = (si j) ∈ (st ∩ ℓ∞ : c(ϒr))reg olması için gerek ve yeter koşul

S ∈ (c : c(ϒr))reg ve

lim
i ∑

j∈N,δ (N)=0

∣∣∣∣∣ 1ir ∑
j|i

Jr( j)si j

∣∣∣∣∣= 0 (3.11)

olmasıdır.

İspat. c ⊂ st ∩ ℓ∞ olduğu açıktır. Dolayısıyla S ∈ (c : c(ϒr))reg elde edilir. δ (N) = 0

ve u ∈ ℓ∞ olsun. j ∈ N için ũ j = u j ve j /∈ N için ũ j = 0 olmak üzere ũ = (ũ j) dizisi

tanımlansın. ũ ∈ st0 dır. Böylece Sũ ∈ c0(ϒ
r) olur. Ayrıca

∑
j

1
ir ∑

j|i
Jr( j)si jũ j = ∑

j∈N

1
ir ∑

j|i
Jr( j)si ju j

eşitliğinden

ŝi j =

 1
ir ∑ j|i Jr( j)si j , j ∈ N ise

0 , j /∈ N ise

olmak üzere Ŝ = (ŝi j) ∈ (ℓ∞ : c(ϒr)) elde edilir. Böylece Yardımcı Teorem 3.5 den

lim
i ∑

j∈N,δ (N)=0

∣∣∣∣∣ 1ir ∑
j|i

Jr( j)si j

∣∣∣∣∣= 0 (3.12)

elde edilir.

Karşıtı için st − limu =D olmak üzere u ∈ st ∩ ℓ∞ alınsın. Herhangi ε > 0 için δ (N) =

δ ({ j : |u j −D| ≥ ε}) = 0 olur.

∑
j

1
ir ∑

j|i
Jr( j)si ju j = ∑

j

1
ir ∑

j|i
Jr( j)si j(u j −D)+D∑

j

1
ir ∑

j|i
Jr( j)si j (3.13)

eşitliğinden i → ∞ iken∣∣∣∣∣∑j

1
ir ∑

j|i
Jr( j)si j(u j −D)

∣∣∣∣∣≤ ∥u∥ ∑
j∈N

∣∣∣∣∣ 1ir ∑
j|i

Jr( j)si j

∣∣∣∣∣+ ε ∑
j

∣∣∣∣∣ 1ir ∑
j|i

Jr( j)si j

∣∣∣∣∣ ,
eşitsizliği ve (3.11) ile (3.10) den

lim
i ∑

j

1
ir ∑

j|i
Jr( j)si ju j =D
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elde edilir. Bu ise S ∈ (st ∩ ℓ∞ : c(ϒr))reg olduğunu ispat eder.

Yardımcı Teorem 3.8. S = (si j) matrisi için ∑ j |si j|< ∞ ve limi si j = 0 olsun. Bu durumda

∥u∥ ≤ 1 olmak üzere u ∈ ℓ∞ için

limsup
i

∑
j

si ju j = limsup
i

∑
j
|si j|

olur [34].

Şimdi esas bazı sonuçlar verilecektir.

Teorem 3.9. S ∈ (c : c(ϒr))reg ve u ∈ ℓ∞ olsun. ϒr − core(Su)⊆K− core(u) kapsamının

sağlanması için gerek ve yeter koşul

lim
i ∑

j

∣∣∣∣∣ 1ir ∑
j|i

Jr( j)si j

∣∣∣∣∣= 1 (3.14)

olmasıdır.

İspat. Yardımcı Teorem 3.6 ve Yardımcı Teorem 3.8 birleştirilerek ∥u∥ ≤ 1 olmak üzere

u ∈ ℓ∞ için{
w̃ ∈ C : |w̃| ≤ limsup

i
∑

j

1
ir ∑

j|i
Jr( j)si ju j

}
=

{
w̃ ∈ C : |w̃| ≤ limsup

i
∑

j

∣∣∣∣∣ 1ir ∑
j|i

Jr( j)si j

∣∣∣∣∣
}

eşitliği elde edilir.

ϒ
r − core(Su)⊆K− core(u)⊆ {w̃ ∈ C : |w̃| ≤ 1}

kapsamları sağlandığından, (3.14) ifadesi{
w̃ ∈ C : |w̃| ≤ limsup

i
∑

j

∣∣∣∣∣ 1ir ∑
j|i

Jr( j)si j

∣∣∣∣∣
}

⊆ {w̃ ∈ C : |w̃| ≤ 1} .

kapsamından elde edilir.

w̃ ∈ ϒr − core(Su) olsun. Herhangi w ∈ C için

|w̃−w| ≤ limsup
i

|(ϒr(Su))i −w| (3.15)
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= limsup
i

∣∣∣∣∣w−∑
j

1
ir ∑

j|i
Jr( j)si ju j

∣∣∣∣∣
≤ limsup

i

∣∣∣∣∣∑j

1
ir ∑

j|i
Jr( j)si j(w−u j)

∣∣∣∣∣+ limsup
i

|w|

∣∣∣∣∣1−∑
j

1
ir ∑

j|i
Jr( j)si j

∣∣∣∣∣
= limsup

i

∣∣∣∣∣∑j

1
ir ∑

j|i
Jr( j)si j(w−u j)

∣∣∣∣∣
olur. limsup j |u j −w|= l olsun. Herhangi ε > 0 için j ≥ j0 iken |u j −w| ≤ l + ε olacak

şekilde j0 vardır. Böylece

∣∣∣∣∑
j

1
ir ∑

j|i
Jr( j)si j(w−u j)

∣∣∣∣ =

∣∣∣∣∣∑j< j0

1
ir ∑

j|i
Jr( j)si j(w−u j)+∑

j≥ j0

1
ir ∑

j|i
Jr( j)si j(w−u j)

∣∣∣∣∣ (3.16)

≤ sup
j
|w−u j| ∑

j< j0

∣∣∣∣∣ 1ir ∑
j|i

Jr( j)si j

∣∣∣∣∣+(l + ε) ∑
j≥ j0

∣∣∣∣∣ 1ir ∑
j|i

Jr( j)si j

∣∣∣∣∣
≤ sup

j
|w−u j| ∑

j< j0

∣∣∣∣∣ 1ir ∑
j|i

Jr( j)si j

∣∣∣∣∣+(l + ε)∑
j

∣∣∣∣∣ 1ir ∑
j|i

Jr( j)si j

∣∣∣∣∣ .
elde edilir. (3.15) ve (3.16) eşitsizliklerinden

|w̃−w| ≤ limsup
i

∣∣∣∣∣∑j

1
ir ∑

j|i
Jr( j)si j(w−u j)

∣∣∣∣∣≤ l + ε

bulunur. Bu w̃ ∈ K− core(u) olmasını gerektirir. Dolayısıyla istenen kapsam sağlanır.

Teorem 3.10. S ∈ (st ∩ ℓ∞ : c(ϒr))reg ve u ∈ ℓ∞ olsun. ϒr − core(Su) ⊆ st − core(u)

kapsamının sağlanması için gerek ve yeter koşul (3.14) sağlanmasıdır.

İspat. st − core(u) ⊆ K− core(u) kapsamı sağlandığından Teorem 3.9 gereği ϒr −

core(Su)⊆ st − core(u) kapsamı (3.14) ifadesini gerektirir.

w̃ ∈ ϒr − core(Su) olsun. Benzer şekilde (3.15) elde edilir. st − limsup |u j −w|= l̂ olsun.

Herhangi ε > 0 için δ (Ñ) = δ ({ j : |u j −w|> l̂ + ε}) = 0 elde edilir (bkz. [43]). Böylece

∣∣∣∣∑
j

1
ir ∑

j|i
Jr( j)si j(w−u j)

∣∣∣∣ =

∣∣∣∣∣∑
j∈Ñ

1
ir ∑

j|i
Jr( j)si j(w−u j)+ ∑

j/∈Ñ

1
ir ∑

j|i
Jr( j)si j(w−u j)

∣∣∣∣∣
≤ sup

j
|w−u j| ∑

j∈Ñ

∣∣∣∣∣ 1ir ∑
j|i

Jr( j)si j

∣∣∣∣∣+(l̂ + ε) ∑
j/∈Ñ

∣∣∣∣∣ 1ir ∑
j|i

Jr( j)si j

∣∣∣∣∣
16



≤ sup
j
|w−u j| ∑

j∈Ñ

∣∣∣∣∣ 1ir ∑
j|i

Jr( j)si j

∣∣∣∣∣+(l̂ + ε)∑
j

∣∣∣∣∣ 1ir ∑
j|i

Jr( j)si j

∣∣∣∣∣ .
elde edilir. Sonuç olarak (3.11) ve (3.14) den

limsup
i

∣∣∣∣∣∑j

1
ir ∑

j|i
Jr( j)si j(w−u j)

∣∣∣∣∣≤ l̂ + ε (3.17)

bulunur. (3.17) ile (3.15) kullanılarak

|w̃−w| ≤ st − limsup
j

|u j −w|

elde edilir. Yani w̃ ∈ st − core(u) olur. Dolayısıyla istenen kapsama bağıntısı ispat edilmiş

olur.
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4. SONUÇLAR VE ÖNERİLER

Bu çalışmada [10] nolu çalışmada verilen sonuçlar daha genel ve kapsamlı bir

alana genişletilmiştir. Hemen hemen yakınsama, bir dizinin olağan yakınsamasının

genellemesinden biridir. Jordan totient fonksiyonu tarafından türetilen bir matris dönüşümü

yardımıyla bazı tür hemen hemen yakınsak dizi uzayları sunulmuştur. Ortaya çıkan

dizi uzayının, hemen hemen yakınsak dizi uzayına lineer olarak izomorfik olduğu

gözlemlenmiştir. Son olarak, bir dizinin Jordan totient çekirdeği tanımlanmış ve bazı

kapsama teoremleri ispat edilmiştir.

Çalışmada tanımlanacak uzayların özel durumda Demiriz ve ark. tarafından [10] nolu

çalışmada tanımlanan uzaylara dönüştüğü görülür. Dolayısıyla bu çalışmada elde edilecek

Banach uzayları [10] nolu çalışmadaki uzayların da genel halidir. Benzer yöntem izlenerek

yeni tipte hemen hemen yakınsak dizi uzayları tanımlanabilir ve bu uzaylar üzerinde

çekirdek teoremleri verilebilir.
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