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Katmanlı yapılar mühendislik alanlarında giderek önem kazanmaktadır. Bu yapılar sayesinde 
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sahiptir. Bir yapı doğal frekans(lar)ında tahrik edildiğinde titreşim genliği aşırı artmakta, bu durum yapıya 

zarar verebilmektedir. Bu tez çalışmasında, bal peteği katmanlı yapıların titreşim genliğini azaltmak için 

ayrık elemanlar yönteminden faydalanmıştır. Parçacıkların birbiri ve hücre yüzeyi ile teması Hertz temas 

modeli ve Coulomb sürtünme modeli ile belirlenmiştir. Farklı dolum oranı, titreşim genliği gibi 

parametrelerle yapının frekans tepki fonksiyonları elde edilmiş ve yapının titreşim genliğinin başarı bir 
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ÖZET 

 

Sönümleyici Parçacık Yerleştirilmiş Sandviç Yapıların Dinamiği ve Titreşim 

Özelliklerinin İncelenmesi 
 

Osman YİĞİD 

 

Doktora Tezi 

 

Fırat Üniversitesi 
Fen Bilimleri Enstitüsü 

Makina Mühendisliği Anabilim Dalı 

Temmuz 2023,   Sayfa:  xvi  + 105 

 

 

Bilgisayar teknolojilerinin gelişmesiyle daha önce imkânsız veya zor olan mühendislik analiz ve 

simülasyonları daha kolay hale gelmiştir. Bu amaçla geliştirilen araçlardan birisi de çok sayıda küçük boyutlu 

parçacıktan oluşan süreksiz malzemelerin simülasyonuna izin veren, sayısal bir modelleme tekniği olan ayrık 

elemanlar yöntemi’dir. Bu yöntem, sistemdeki her bir parçacığı katı elastik bir cisim olarak modelleyerek 

küçük bir zaman adımında her parçacığın konumunu ve hızını hesaplamak için Newton'un ikinci yasasını 

kullanır. Parçacıklar birbiri ve yüzeylerle çarpıştığında elastik deformasyona uğrayarak hafifçe üst üste 

binerler ve bu örtüşme, her bir parçacığı bir yay gibi ele alarak temas kuvvetlerini hesaplamak için kullanılır. 

Bu tez kapsamında ayrık elemanlar yöntemi kullanarak zeminden tahrikli tek eksende hareket eden 

farklı geometride hücrelere sahip yapıların titreşim analizi yapılmıştır. Farklı parçacık sayısı, hücre boyutları 

gibi parametrelerin yapının sönümü üzerindeki etkileri incelenmiştir. Daha sonra Euler-Bernoulli teorisi ile 

modellenen ankastre-serbest sınır şartlarına sahip sürekli bal peteği katmanlı çubuğun titreşim analizi 

Matlab® paket programı yardımıyla yapılmıştır. Katmanlı çubuğun modal parametreleri Ansys® APDL 

paket programından elde edilmiştir. Çubuğun uç kısmından belirli bir bölge sönümleyici parçacık 

yerleştirmek için belirlenmiştir. Çubuk uygun noktasından rastgele tahrik kuvveti ile tahrik edilerek frekans 

tepki fonksiyonu hesaplanmıştır. Parçacıkların çubuğun sönümü üzerindeki etkisini hesaplamak için ilk 4 

titreşim modu yeterli sayılmıştır. En son aşamada ise sabit bir eksen etrafında dönen ankastre-serbest sınır 

şartlarında kabul edilen katmanlı çubuğun parçacıklı titreşim analizi yapılmıştır. Farklı dönme hızlarının 

titreşim genliğine etkisi incelenmiştir. 

Çalışmanın sonucunda parçacıkların yapının titreşim genliğini önemli ölçüde azalttığı 

gözlemlenmiştir. Parçacıkların genel yerine yerel konumlara yerleştirilmesi ile doğal frekans(lar)ı çok az 

değişime uğramaktadır. 

 

Anahtar Kelimeler: Ayrık elemanlar yöntemi, Hertz temas modeli, parçacık sönümleme 
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ABSTRACT 

 

Investigation of Dynamics and Vibration Properties of Sandwich Structures 

filled with Particle Damper 
 

Osman YİĞİD 

 

Ph.D. Thesis  
 

Fırat University 
Graduate School of Natural and Applied Sciences 

Department of Mechanical Engineering 

July 2023,   Pages:  xvi  + 105 

 

 

With the development of computer technologies, engineering analysis and simulations, which were 

impossible or difficult before, have become easier. One of the tools developed for this purpose is the discrete 

element method, which is a numerical modeling technique that allows the simulation of discontinuous 

materials consisting of many small particles. This method uses Newton's second law to calculate the position 

and velocity of each particle in a minor step by modeling each particle in the system as a rigid body. When 

particles collide with each other and with surfaces, they undergo elastic deformation and overlap slightly, 

and this overlap is used to calculate contact forces, treating each particle like a spring. 

In this thesis, vibration analysis of the structures with cells of different geometries moving on a horizontal 

axis excited from the base was carried out using the discrete element method. The effects of parameters such 

as different particle numbers and cell sizes on the damping of the structure were investigated. Then, vibration 

analysis of continuous honeycomb layered beam with fixed-free boundary conditions modeled using Euler-

Bernoulli theory was done with the help of Matlab® package program. The modal parameters of the layered 

beam were obtained from the Ansys® APDL package program. A specific region from the end of the beam 

is designated to place the particle dampers. The frequency response function was calculated by exciting the 

beam from its appropriate point with a random input force. The first four vibration modes are considered 

sufficient to calculate the effect of the particles on the damping of the beam. In the last stage, vibration 

analysis of the layered beam, which is assumed having fixed-free boundary conditions and rotates around a 

fixed hub, was carried out. The effect of different rotational speeds on vibration amplitude was investigated. 

As a result, it was observed that the impact particles significantly reduced the vibration amplitude of the 

structure. By placing the particles in local rather than general positions, their natural frequency changes very 

little. 

 

Keywords: Discrete element method, Hertz contact model, particle damping                                        
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1. GİRİŞ 

Günümüz mühendislik alanlarındaki problemlerin en önemlisi titreşimdir. Titreşim, fiziksel 

bir sistemin denge konumu etrafında yaptığı tekrarlı hareketlerdir. Titreşim bazı durumlarda istenen 

bir hareket olmasına rağmen çoğu zaman istenmeyen bir olgudur ve dinamik yükler altında 

kendiliğinden oluşabilmektedir. Titreşimin en tehlikeli hali yapının doğal frekanslarından biri ile 

tahrik frekansının çakışması halinde meydana gelen rezonans durumudur. Rezonansa giren makine 

elemanları yüksek genlikte titreşimler yapmaktadır. Bu durum makine elemanlarında hasar ve 

kırılmalara sebep olmaktadır. Uzun süreli titreşime maruz kalan makine elemanları yorularak 

çalışma ömrü kısalır. Titreşimle beraber ortaya çıkan bir diğer problem de çalışma ortamını 

olumsuz etkileyen gürültüdür. Özetle, titreşim hareketi sistemin performansını zayıflatmakta, 

güvenli bir şekilde çalışmasına engel olmakta ve maliyetini artırmaktadır. Endüstride kullanılan 

birçok yapı elemanının dinamik yükler altında nasıl bir davranış gösterdiğinin bilinmesi sistemin 

güvenli bir şekilde çalışabilmesi açısından oldukça önemlidir. Sistemin cevabının bilinmesi, 

titreşimleri yok etmek veya seviyesini indirgemek için kullanılabilir. Sistem davranışı üzerindeki 

titreşim kaynağının olumsuz etkilerini azaltmak için uygulanan birçok aktif ve pasif titreşim kontrol 

yöntemleri vardır. Sönüm kabiliyeti yüksek malzemeler ile titreşim yalıtımı, ayarlı titreşim 

yutucular ve dinamik titreşim yutucular pasif titreşim yutuculardan bazılarıdır. Pasif titreşim 

yutucular dışarıdan güç gereksinimi duymazlar, bakım istemezler. Aktif titreşim yutucular hidrolik, 

pnömatik, piezo-elektrik gibi uyarıcılara, sensörlere ve kontrol algoritmalarına gerek duyar, daha 

maliyetlidirler. 

Kompozit katmanlı malzemeler günümüz modern dünyasında yüksek direngenlik gerektiren 

ağırlık hassasiyeti olan hava, uzay ve gemi yapılarında yaygın olarak kullanılmaktadır. Yeni 

malzemelerin, üretim tekniklerinin ve güncel uygulama alanlarının ortaya çıkmasıyla birlikte, 

kompozit malzemeler mühendisliğin en ilgi çekici alanlarından biri haline gelmiştir. Bir kompozit 

malzeme, iki veya daha fazla malzemenin, kendisini oluşturan malzemelerin özelliklerinin 

benzersiz bir kombinasyonunu vermek üzere birleştirilmesiyle üretilir. Kompozitler hiçbir 

bileşenin sahip olmadığı bazı nitelikleri sergileyebilmektedirler. Bu yapılar sayesinde mukavemet, 

rijitlik, korozyon direnci, aşınma direnci, yorulma ömrü vs. gibi malzeme özellikleri 

iyileştirilebilmektedir. 

Bal peteği katmanlı yapılar özel bir katmanlı kompozit türüdür ve geniş kabul ve kullanıma 

ulaşan ilk kompozit yapı biçimlerinden biridir. Hemen hemen tüm ticari uçaklar ve helikopterler 

ve neredeyse tüm askeri hava ve uzay araçları sektörü bu malzemeleri yaygın olarak kullanırlar. 

Hava ve uzay araçlarının yanı sıra, otomobil ve kara taşıtı endüstrisinde, rüzgâr panellerinde, askeri 

gemi iç aksamları, küçük tekne ve yatlar ve üretim parçalarının imalatında yaygın olarak 

kullanılmaktadır [1]. Bu yapılar, yüksek rijitliğe sahip ince alt ve üst tabakaların düşük yoğunluklu 
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gözenekli çekirdek adı verilen hücresel yapının üzerine yapıştırılmasıyla elde edilmektedir.  Yüzey 

tabakalarının birincil işlevi eksenel, eğilme ve düzlem içi kayma yükünü taşımaktır. Çekirdek, 

tabakalara dik yönde etki eden yüklere dayanacak kadar sağlam olmalı ve yüzey tabakalarının 

birbiri üzerinde kaymasını önlemek için kesme yönünde yeterince sert olmalıdır. Alt ve üst 

tabakalar ile aradaki çekirdek yapı alüminyum veya kompozit malzemelerden olabilmektedir. 

Yapıştırıcı katman, kayma ve çekme gerilimlerini taşıyabilecek epoxy gibi kuvvetli 

yapıştırıcılardan meydana gelmektedir. Bu yapılar belirli statik ve dinamik şartlar altında 

çalışabilecek şekilde tasarlanırlar. Gerçek çalışma ortamında bu yapılar çok farklı dinamik yükler 

altında kalabilmektedirler. Bu yapıların mekanik özelliklerinin iyileştirilmesi için birçok yöntem 

kullanılmaktadır. Bu yapıların kütle ve direngenlik gibi dinamik özellikleri uygun malzeme ve 

gözenekli hücreler seçilerek istenilen değerlerde elde edilebilmektedir. Bu panellerde zayıf olan 

yapışma direncini artırmak için gözenekli yapı poliüretan (PU) köpük ile doldurulabilmektedir. 

Ancak bu dolgu yapının dinamik özelliklerini de büyük ölçüde değiştirmektedir. Bal peteği gibi 

gözenekli katmanlı yapılar hafif ve doğası gereği düşük sönümleme özelliği sergilerler. Bu 

yapılarda titreşim büyük bir sorun teşkil etmektedir. Rezonans halinde titreşim genliği oldukça 

artmakta hatta yapıyı kararsız hale getirebilmektedir. Bu da sisteme ciddi zararlar vererek büyük 

maddi ve manevi kayıplara neden olabilmektedir.  

Katmanlı yapılarda titreşim probleminden kaçınmak için, son zamanlarda araştırmacıların 

üzerinde çalıştığı, maliyet, zaman ve uygulanabilirlik açısından birçok avantaj sağlayan Darbe 

Sönümleme (Impact Damping) yönteminin kullanılması dikkat çekmektedir. Bu yöntemde 

katmanlı panellerin boş hücrelerinin içerisine katı parçacık(lar) eklenerek pasif olarak sönümleme 

performansının iyileştirilebilir olduğu bildirilmiştir. Bu teknikle sistemdeki titreşim enerjisi çarpma 

ve sürtünme yoluyla ısı, elastik dalga, ses vb. olarak dağıtılır. Darbe sönümleme tekniği, ya 

sönümleyici parçacık yerleştirilmiş taşıyıcı muhafazanın ana yapıya monte edilmesiyle ya da ana 

yapı üzerinde uygun delik açılarak yerleştirilmesiyle elde edilir. Geleneksel olarak, bu teknikte tek 

bir küresel kütle ya iki tapa arasında ya da bir oyuk içeresinde hareket eder. Bu yöntemin hem 

teorik hem de deneysel olarak yapısal tepki üzerindeki etkisi kapsamlı bir şekilde çalışılmıştır. 

Kütle oranı, açıklık, malzeme, parçacık boyutu, tahrik titreşiminin frekansı ve genliği gibi 

parametrelerin yapının kararlılık ve doğrusal olmayan davranışına etkileri incelenmiştir. Böyle bir 

sistemde çarpma kuvveti çok büyüktür ve yüzey aşınmasının yanı sıra sistemde şok ve gürültüye 

sebep olmaktadır. Birden çok, küçük boyutlu ve elastik taneciklerin kullanılması çarpma yükünü 

ve yapı üzerindeki gürültü gibi istenmeyen etkileri azaltabilir. Bir tek iri parça yerine tanecikli çok 

sayıda parçacıkların kullanıldığı bu yönteme Parçacık Darbe Sönümleme (PDS) denir. PDS 

kurulumu kolay, çevreye duyarsız, düşük maliyetli ve geniş sıcaklık ve frekans bant aralığında 

etkilidir ve en önemlisi sistemin yapısal özelliklerini çok az değiştirmektedir. Viskoz damperlerin 

özellikle yüksek ve düşük sıcaklıklarda farklı özellik göstermelerinden dolayı bu yönüyle PDS‘ler 
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özellikle zor şartlar altındaki geleneksel viskoz ve viskoelastik damperlerin yerini alabilir. PDS’ler 

binalarda rüzgâra ve depreme karşı, türbin kanatlarında, takım tezgâhlarında, uzay mekiklerinde, 

uzay yapılarında titreşimin azaltılmasında başarılı bir şekilde uygulanmıştır. PDS’de enerji yitimi 

oldukça nonlineer ve ağırlıklı olarak ana yapının parametrelerine bağlıdır. Parçacıkların boyut, 

şekil, sayı, malzemesi, açıklığın geometrisi ve malzemesi, kütle oranı, yapısal moda nispeten 

PDS’nin konumu ve tahrik kuvvetinin seviyesi sistemin yapısını önemli ölçüde etkilemektedir.  

Literatür incelendiğinde parçacık sönümleme yönteminin bal peteği katmanlı yapılara 

uygulandığı sınırlı çalışma mevcuttur. Bu tez çalışmasında, PDS’nin tek serbestlik dereceli 

sistemlerde sönüm üzerindeki etkisi ispatlandıktan sonra bal peteği yapılı çubuklarda etkinliği 

incelenmiştir.  AEY kullanılarak tanecikli parçacıkların taşıyıcı ana yapı ile birlikle matematiksel 

modeli elde edilmiştir. Tek serbestlik dereceli ve ankastre-serbest sınır şartlarındaki çubuğun 

dinamik yükler altındaki davranışı incelenmiştir. Dikdörtgen, silindirik ve altıgen prizması (bal 

peteği) şeklinde hücrelere sahip tek serbestlik dereceli sistemlere sönümleyici elastik parçacıklar 

yerleştirilerek ana yapının davranışı üzerindeki özellikle rezonans frekansındaki titreşim davranışı 

analitik ve sayısal olarak incelenmiştir. Bal peteği yapılı çubuğun PDS’li titreşim cevabı parçacık 

sayısı, tahrik kuvveti gibi parametrelere bağlı olarak analiz edilmiştir. 

Dönen sistemlerde hem dönmeden hem de dış etkenlerden dolayı titreşim meydana 

gelebilmektedir. Böyle yapılarda titreşimi azaltmak için çoğu aktif kontrol olmak üzere çeşitli 

yöntemler uygulanmaktadır. Son yıllarda PDS yönteminin dönen çubuklara uygulandığı birkaç 

deneysel çalışma vardır. Bu tez kapsamında sabit bir eksen etrafında dönen ankastre-serbest sınır 

şartlarındaki bal peteği gözenekli katmanlı çubuğun AEY ile titreşim analizi yapılmıştır. 

Sönümleyici parçacıkların dönen çubuğun titreşimine etkisi incelenmiştir. Dönen çubukların AEY 

ile analitik incelenmesi ilk defa bu tezde uygulanmıştır. Bu şekilde, dönen sandviç çubuk 

sistemlerinde titreşim problemlerinin çözümüne katkı sağlanması hedeflenmiştir. 

1.1. Tezin Amacı 

Katmanlı malzemelerin kullanım alanları gün geçtikçe artmaktadır. Bu malzemeler birçok 

üstün özelliklere sahip olmasına rağmen sönüm kabiliyetleri çok düşüktür. Bu çalışmada bal peteği 

katmanlı yapının yapısal karakteristiğini çok az etkileyecek şekilde içerisine sönümleyici 

parçacıklar yerleştirilerek sönüm kapasitelerinin iyileştirilmesi amaçlanmaktadır. Ana yapının 

hareket denklemi parçacıkların hareketi ile beraber ayrık elemanlar yöntemi kullanılarak 

modellenmiştir. Parçacıkların birbiri ve düzlemlerle temasından kaynaklanan temas kuvvetleri 

Hertz temas modeli ve Coulomb sürtünme modeli yardımıyla elde edilmiştir. Hücre geometrisi, 

boyutları, parçacık sayısı, malzemesi, tahrik frekansının genliği ve frekansı gibi parametrelerin ana 

yapının titreşim genliği üzerindeki etkisi analiz edilmiştir. 



4 

Karmaşık sistemlerin analizinde, geliştirilen bilgisayar analiz yazılımları mühendislere 

büyük bir zaman ve hız kazandırmıştır. Analitik ve deneysel çalışmaların olumsuzlukları bu şekilde 

azaltılabilmektedir. Gelişmiş analiz programları uygun kullanıldığı takdirde gerek tek başına, 

gerekse analitik ve deneysel çalışmalara destek olarak bilimsel çalışmalarda da büyük kolaylık 

sağlamaktadır. Bu sebeple bu tezdeki tasarım ve analiz çalışmaları ağırlıklı olarak bilgisayar 

destekli paket programları (Matlab, ANSYS vs.) kullanılarak yapılmıştır. 

1.2. Tezin Kapsamı 

Mekanik sistemlerde sönüm, titreşimleri sınırlayarak sistemi koruyan ve titreşimin 

istenmediği durumlarda varlığı gerekli bir faktördür. Sönümün az olduğu sistemler özellikle 

rezonans frekans(lar)ında dış tahriğe maruz kalırlarsa genlikleri aşırı artmaktadır. Bu durum bazı 

istenmeyen durumlara sebep olabilmektedir. Titreşimi azaltmak için geliştirilen pasif yöntemlerden 

biri parçacık darbe sönümleme tekniğidir. Bu yöntem endüstrinin birçok alanında yaygın olarak 

kullanılan katmanlı yapılar için oldukça elverişlidir. Bal peteği gibi katmanlı bir yapı hafif olmasına 

rağmen yük dayanımı oldukça fazladır. Ağırlık/mukavemet oranı yüksek olmasına rağmen sönüm 

kabiliyetleri düşüktür. Bu yapıların karakteristik özelliklerini fazla etkilemeden bölgesel 

konumlarına sönümleyici parçacıklar yerleştirilerek titreşim genlikleri azaltılabilmektedir. Bu 

amaçla, bu çalışmada aşağıdaki çalışmalar yapılmıştır: 

i. Tanecikli elastik parçacıkların yerleştirildiği hücre geometrisi (dörtgen, silindir, altıgen 

gibi) ve ölçülerinin tek serbestlik dereceli sistemlerin titreşim genliğine etkisi 

incelenmiştir. 

ii. Parçacık darbe sönümleyicili bal peteği katmanlı yapıların matematiksel modelleri 

oluşturulmuştur. 

iii. Farklı malzeme, geometrik boyut ve sayıdaki parçacıkların sistemin dinamik 

karakteristikleri üzerindeki etkisini, 

iv. Parçacık darbe sönümleme yöntemi dönen konsol kirişler için güncellenmiş ve farklı 

dönme hızları için çubuğun genliği üzerindeki etkisi incelenmiştir. 

Bu tez çalışmasında, ilk aşamada tek serbestlik dereceli zeminden tahrikli yatay hareket eden 

bir yapı üzerinde parçacık darbe sönümleme yönteminin etkinliği incelenmiştir. Daha sonra 

ankastre-serbest sınır şartlarındaki bal peteği katmanlı çubuğun parçacık sönümlemeli titreşim 

analizi yapılmıştır. Parçacık darbe sönümleme yöntemi sayısal olarak ilk defa bu çalışmada sabit 

bir eksen etrafında dönen çubuklara uygulanmıştır. 

Bölüm 2’de, mühendislik uygulamalarında parçacık darbe sönümlemesi kapsamında 

günümüze kadar bu alanda yapılmış bazı önemli akademik çalışmalara yer verilmiştir. Bu yöntemin 

başarılı bir şekilde uygulandığı bazı çalışmalar ve uygulamalar özetlenmiştir. Bölüm 3’de tez 

çalışmasıyla yakından alakalı olan ve çalışmaların temelini oluşturan bazı temel bilgiler verilmiştir. 
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Fiziksel sistemlerin titreşimle olan ilişkisi, hareket denklemleri, frekans tepki fonksiyonları ve 

modal analiz yöntemleri ve uygulamaları ile ilgili çok kısa bilgiler verilmiştir. Bölüm 4’te parçacık 

darbe sönümleme yönteminin temelini oluşturan ayrık elemanlar yöntemi ele alınmıştır. 

Parçacıkların teması, bu temastan doğan temas kuvvetlerinin nasıl hesaplanması gerektiği ifade 

edilmiştir Bölüm 5’te, adı geçen yöntemin geçerliliğini gösterebilmek için Matlab® programı 

kullanılarak tek serbestlik dereceli sistemlerde sayısal benzetim çalışmaları yapılmıştır. Farklı 

geometrik hücreli yapılarda yöntemin sistemin titreşim genliğine etkisi incelenmiştir. Bölüm 6’da 

yöntem katmanlı sürekli sistemler üzerinde sayısal olarak irdelenmiştir. Parça sayısının, boyutunun, 

tahrik frekansının sönüme etkisi karşılaştırmalı olarak verilmiştir. Bölüm 7’de yöntem sabit bir 

eksen etrafında sabit hızla dönen katmanlı çubuk için sayısal benzetim çalışmaları yapılmıştır. 

Dönme hızının titreşim genliğine etkisi grafiklerle sunulmuştur. Bölüm 8’de, tüm tez çalışması 

kapsamında yapılan çalışmalar ve elde edilen sonuçlar yorumlanarak özetlenmiş ve bu konuda 

bundan sonra yapılabilecek bazı çalışmalar ve öneriler sunulmuştur. 



 

 

2. LİTERATÜR ARAŞTIRMASI 

Bu çalışmanın temel konusu parçacık darbe sönümlemesi olduğu için bu bölümde bu alanda 

bugüne kadar yapılmış bazı literatür çalışmaları özetlenmiştir. 

Günümüzde pasif kontrol [2, 3], aktif kontrol [4, 5], yarı aktif kontrol [6, 7] ve hibrit kontrolü 

[8, 9] içeren yapısal titreşim kontrolü yaklaşımları deprem ve rüzgâr direnci gibi alanlarda hayati 

bir rol oynamaktadır. Bu yöntemlerden pasif kontrol teknolojisi geniş bir kabul görmektedir. 

Aralarında sismik izolasyon [10, 11] viskoz sönümleyiciler [12], viskoelastik sönümleyiciler [13], 

metal sönümleyiciler [14], sürtünme sönümleyicileri [15], ayarlı sıvı sönümleyiciler [16, 17] ve 

ayarlı kütle sönümleyicileri [18–21] gibi birçok başarılı örnek mevcuttur. Bununla birlikte, lamine 

kauçuk mesnet gibi sismik izolasyon teknikleri, izolasyon mesnetinin aşırı yatay yer değiştirmesi 

nedeniyle faya yakın depremlerde etkinliğini kaybedebilir. Viskoelastik malzemeler sıcaklığa 

duyarlıdır ve bu nedenle aşırı yüksek veya düşük sıcaklıklarda etkinliklerini kaybetme ve bozulma 

eğilimi gösterirler. Sürtünme sönümleyicileri yüksek sıcaklıktaki ortamlara (türbin kanatları gibi) 

uyum sağlasa da performansları, etkileşim halindeki iki nesnenin temasının karmaşıklık derecesi 

ile yakından ilişkilidir. Bu nedenle, yüzey durumunun değişmesi nedeniyle etkinlikleri azalacaktır. 

Ayrıca, çeşitli dinamik hareket türleri altında, malzeme özellikleri bozulma eğilimi gösterir ve 

yorulma etkilerine neden olur. Ayarlı sıvı damperler, sızıntı problemleri ve zorlu ortamlarda (aşırı 

sıcaklık gibi) uygulamanın zorluğu ile karşı karşıyadır. Ayarlı kütle sönümleyicileri, rezonans 

frekansı civarında küçük bir aralıkta etkilidir ve çalışma koşullarına duyarlıdır [22]. Pasif bir 

sönümleme yöntem olan darbe sönümleme teknolojisi özel avantajları nedeniyle, havacılık, uzay 

ve makine endüstrisinde geniş bir uygulama yelpazesi ve iyi bir gelişme potansiyeline sahiptir. 

Sönümleyici parçacık olarak tek bir katı parçacığı içeren darbe sönümleyiciler çarpışma 

işlemi sırasında yüksek gürültü seviyelerine ve önemli darbe kuvvetlerine neden olur ve belirli 

parametrelerdeki (tahrik genliği ve eski haline getirme katsayısı gibi) değişime duyarlı hale gelme 

eğilimindedir. Parçacık sönümleme kavramının doğuşu, Paget [23]'in türbin kanatlarının titreşim 

sönümleme problemini incelediği ve bu sırada darbe sönümleyiciyi icat ettiği 1937 yılına dayanır.  

Daha sonra, 1945'te Lieber ve Jensen  [24], darbe sönümleyici biçimine dönüşen mekanik 

sistemlerin titreşimini ortadan kaldırmak için bir boş hücrenin iki duvarı arasında hareket eden bir 

kütle kullanma kavramını önerdiler. Tek parçacık darbe sönümleyicideki çeşitli kusurlar nedeniyle, 

daha fazla alanda uygulanması ve geliştirilmesi sınırlıdır. Bu nedenle, sonraki araştırmacılar, tek 

parçacığı eşdeğer toplam kütleye sahip, çok sayıda daha küçük parçacıkla değiştirmiş ve böylece 

parçacık sönümleyici kavramı doğmuştur. 
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Şekil 2.1. Geleneksel darbe sönümleyiciler a) Darbe sönümleyici, b) Çok üniteli darbe sönümleyici c) 

Parçacık sönümleyici d) Çok üniteli parçacık sönümleyici 

Parçacık sayısı ve ünite başına parçacık temelinde, geleneksel parçacık sönümleyiciler Şekil 

2.1'de gösterildiği gibi dört ana gruba ayrılırlar: darbe sönümleyici [24], çok üniteli darbe 

sönümleyici [25, 26], parçacık sönümleyici [27, 28] ve çok üniteli parçacık sönümleyici [29, 30]. 

Parçacık sönümleyici tipinin geliştirilmesi ve evrimi, geleneksel tek parçalı sönümleyici tasarım 

kavramı düşüncesini geri plana atmış ve devamında çok taneli parçacık sönümleyicilerin 

geliştirilmesi için sağlam bir temel oluşturmuştur. 

Çok üniteli darbe sönümleyiciler, darbe sönümleyicilerin devamında gelişmiştir. 1969'da 

Masri [26], sayısal simülasyon ve deneylerle doğrulanan, harmonik olarak uyarılmış tek serbestlik 

dereceli sisteme bağlı çok üniteli bir darbe sönümleyicinin karalı durum hareketi için kesin 

çözümünü elde etmiştir. Eşdeğer toplam kütleye sahip darbe sönümleyici ile karşılaştırıldığında, 

titreşimi ve özellikle sönümleyicinin çarpma işlemi sırasında oluşan gürültüyü azaltmak açısından, 

uygun şekilde tasarlanmış çok üniteli darbe sönümleyicilerin daha etkili olduğunu bulmuştur. 

Parçacık sönümleyicinin araştırmacıların dikkatini çekmesi, Araki [27]'nin tek bir parçacık içeren 

geleneksel darbe sönümleyicinin yerine tanecikli malzeme kullandığı 1985 yılına dayanmaktadır. 

Basit harmonik tahrik altında tek serbestlik dereceli sistemin titreşimini azaltmak için bu tür darbe 

sönümleyicinin etkinliğini inceledi ve kütle oranı ve hücre boşluğunun sönümleyicinin performansı 

üzerindeki etkisini belirledi. 1991 yılında Panossian [31], istenen herhangi bir mod için maksimum 

sönümleme sağlayacak şekilde titreşimli yapı üzerindeki uygun konumlarda küçük oyuklar açarak 

ve içerisine parçacıklar yerleştirerek alüminyum kiriş üzerinde modal deneyler yapmıştır. Parçacık 

darbe sönümleme yönteminin kirişin titreşim genliğini azalmamada başarılı olduğunu belirlemiştir. 

Çok üniteli parçacık sönümleyici ilk olarak 2005 yılında Saeki [29] tarafından ortaya atılmıştır. 

Parçacık sönümleyicinin sönümleme performansının hücre boşluğunun boyutuna bağlı olduğunu 

bulmuştur. Pratik tasarım açısından optimum boşluk boyutunun çok büyük olması, aşırı boşluğa 

(a) (b) (c) (d) 
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yol açacak ve sönümleme performansı üzerinde olumsuz etkileri olan parçacıklar ile duvar 

arasındaki etkili çarpışma sayısını azaltacaktır. Bu nedenle Saeki, hücre boşluğunu uygun sayıda 

çok sayıda küçük boşluğa ayırmış ve boşlukların sayısının ve boyutunun sönümleme performansı 

üzerindeki etkisini incelemiştir. 

Etkili bir pasif titreşim önleme teknolojisi olan parçacık sönümleme özellikle havacılık, 

savunma, uzay gibi alanlarda gün geçtikçe daha fazla önem kazanmaktadır. Parçacık sönümleme 

teknolojisi, ana yapının titreşim cevabını azaltmak için birden fazla metal, tungsten, seramik, karbür 

veya diğer küçük tanecikli parçacıkların titreşimli yapının boşluklarına veya titreşimli yapı 

üzerindeki muhafazalara yerleştirildiği bir yardımcı kütle tipi titreşim yutucudur [31, 32]. Titreşim 

yapan ana yapının kinetik enerjisi parçacık-parçacık ve parçacık-duvar arasında meydana gelen 

elastik olmayan çarpışmaların ve sürtünme kayıplarının birleşik etkileri yoluyla önemli ölçüde 

yutulur ve ana yapıda önemli ölçüde sönüm oluşturur [33–36]. Parçacık sönümleme teknolojisi 

basitliği, makul maliyeti, dayanıklılığı ve sıcaklığa duyarsızlığı nedeniyle yaygın olarak 

kullanılmaktadır. Çalışma sıcaklığının parçacıkların metal erime noktasının altında kalması 

şartıyla, verimli bir şekilde çalışmayı sürdürebilir. Tungsten tozu gibi yüksek erime sıcaklığına 

sahip malzemeler yaklaşık 2.000°C gibi yüksek sıcaklıklara dayanabilir. Ayrıca, uygun şekilde 

tasarlanmış parçacık sönümleyiciler, geniş bir frekans aralığında etkili olabilir [31, 37–39]. Az 

bakım gerektiren parçacık sönümleyiciler, diğer sönümleme yöntemlerinin uygun veya verimli 

olmadığı yüksek sıcaklık, şiddetli soğuk ve yağ kirliliği gibi uzun süreli zorlu ortamlarda kullanım 

için de uygundur. Geleneksel pasif sönümleme teknolojisiyle karşılaştırıldığında, parçacık 

sönümleme teknolojisi, ana yapının kütlesinde veya sertliğinde önemli değişikliklere neden 

olmadan uygulanabilir veya monte edilebilir [29, 40].  

Bu titreşim azaltma teknolojisi, havacılık, uzay ve makine endüstrisinde yaygın olarak 

kullanılmaktadır ve birçok türde endüstriyel uygulama alanı mevcuttur. Örneğin kesme aletlerinin 

[41], uzay mekiğindeki motor türbin sisteminin [31, 42] ve anten yapılarının [43, 44] titreşimini 

azaltmada kullanılmaktadır. Ayrıca parçacık sönümleme teknolojisi rüzgâr türbinleri [45], enerji 

nakil kuleleri [46, 47] ve deniz altı isale hatları [48, 49] gibi yaşam hattı mühendisliğindeki titreşim 

ve gürültü kontrolünde de üstünlüğünü göstermiştir. Mekanik malzeme ablasyonu için cerrahi ve 

dişçilik aletlerinin performansı için büyük bir sorun olan titreşimlerin etkisini azaltmak için birkaç 

makale yürütüldüğünü belirtmekte fayda vardır [50]. Parçacık sönümleme teknolojisinin 

mükemmel titreşim azaltma performansı sağlayabildiği gözlemlenmiştir. Ancak, oldukça doğrusal 

olmayan özellikleri [51, 52] nedeniyle titreşim sönümleme mekanizması tam olarak anlaşılamamış 

ve kapsamlı bir optimum tasarım yöntemi şu ana kadar oluşturulamamıştır [39]. 

Parçacık darbe sönümlemesinde enerji yitimi oldukça nonlineer ve ağırlıklı olarak ana 

yapının parametrelerine bağlıdır. Parçacıkların boyut, şekil, sayı, malzemesi, hücre boşluğunun 

geometrisi ve malzemesi, kütle oranı, yapısal moda nispeten parçacıkların konumu ve tahrik 
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kuvvetinin seviyesi sistemin yapısını önemli ölçüde etkilemektedir. Tüm bu parametreleri kapsayan 

bir model geliştirmek oldukça zordur. Bu amaçla literatürde parçacıkların ana yapı ile birlikte 

hareketini incelemek için geliştirilen mevcut teknikler aşağıda özetlenmiştir: 

a) Çok fazlı akış metodu [53]: Sönümleyici katı parçacıkların hareketi gazların hareketine 

benzetilir. Gazlardaki sürüklenme kuvveti, parçacıkların temasından kaynaklanan viskoz sönüm ve 

Coulomb sürtünme kuvvetine eşdeğer kabul edilerek parçacık sönümleyicilerini incelemek ve 

modellemek için kullanılmıştır.  

b) Tek serbestlik dereceli (TSD) kütle-yay-sönüm modeli [34, 54]: Parçacık sönümleme 

etkisi, ana yapıya eşdeğer direngenlik, viskoz sönüm ve kütleden oluşan TSD’li bir titreşim yutucu 

bağlanmış gibi kabul edilir ve modellenir. 

c) Ayrık elemanlar yöntemi (AEY): Yapıdaki her bir parçanın hareketini ve temas noktalarını 

izleyerek parçacıkların birbiriyle ve çevreleyen yüzeylerle olan çarpışmasından kaynaklanan 

sönümlemeyi tahmin eder. Cundall ve Strack [55]’ın kılavuz niteliğindeki çalışmasından sonra 

farklı yükler ve sınır şartları altındaki parçacıkların dinamik davranışını analiz etmek için kullanılan 

bir araç haline gelmiştir. 

Parçacık sönümlemenin teorik analiz ve sayısal simülasyonunun zorluğuna rağmen birçok 

bilim insanı parçacık sönümleme konusunda kapsamlı deneysel çalışmalar sayesinde parçacık 

sönümünün teorik analizini gerçekleştirmiştir. Sadek ve ark. [56, 57], yerçekiminin darbe 

sönümleyici üzerindeki etkisini incelemiş ve sönümleyicinin sıfır yerçekimi ortamında daha iyi 

etkiye sahip olduğu sonucuna varmışlardır. Cempel ve Lotz [58], bir hücreye parçacıklar 

doldurarak titreşim sönümlemesini incelemişler ve darbe sönümlemesinde enerji yitiminin yalnızca 

parçacıkların birbiri ile çarpışmasına bağlı olmadığını, aynı zamanda dış çarpışmayla da 

(parçacıklar ile hücre duvarı arasındaki temas) ilgili olduğunu bildirmişlerdir. Ayrıca sürtünme de 

darbe sönümlemesinde enerji yitimini etkileyen bir faktördür. Hollkamp ve Gordon [38] metal ve 

seramik parçacıkları sönümleyici cisimler olarak kullanmış ve bunları yapısal boşluklara 

yerleştirmiştir. Ana yapı titreştiğinde, titreşim enerjisinin parçacıklar arasındaki çarpışmalarla 

azaltılabileceği sonucuna varmışlardır. Xu ve ark.'nın araştırması [59] yapının uzunluğu boyunca 

gerinimi tarafından meydana getirilen kayma sürtünmesinin sönümlemeye katkısına odaklanmıştır. 

Deneysel sonuçlar, parçacık sönümleyicilerin geniş bir frekans aralığında önemli ek sönümleme 

sağlayabildiğini ve darbe, sürtünme ve kayma mekanizmaları hesaba katıldığında, çoklu 

parçacıklar kullanılarak optimum sönümlemenin elde edilebileceğini göstermişlerdir. 

Dış tahrik kuvvetlerinin parçacık sönümlemesi üzerindeki performansı bazı araştırmacılar 

tarafından araştırılmıştır. Serbest tahrik altında dikey çok parçacıklı bir darbe sönümleyicinin 

deneysel bir çalışması Trigui ve arkadaşları tarafından yapılmış [60] ve bu çalışmayla boşluk ve 

tahrik şiddetinin etkisini incelemişlerdir. Jadhav ve ark. [61] tek hücreli ve çok hücreli parçacık 

sönümleyicilerin sönümleme performansını birçok deneyle karşılaştırmışlardır. Ayrıca, boyutsal 



10 

analiz yöntemini kullanarak tek hücreli ve çok hücreli parçacık sönümleyicilerinin modellerini 

oluşturmuşlar ve bunların uyumluluğunu deneysel çalışmalarla doğrulamışlardır. Rongong ve ark. 

[51, 62], parçacık sönümleyicilerin genliğe bağlı davranışı üzerine çeşitli deneysel çalışmalar 

yürütmüştür. 

Bazı araştırmacılar, parçacık sönümleyicilerin sistemin titreşimi üzerindeki etkisini 

parametrik analiz yoluyla incelemişler ve pratik uygulamalar için rehber niteliğinde çalışmalar 

yapmışlardır. Veluswami ve ark. [63, 64], parçacık sönümleyici içindeki çarpma levhasının 

kaplaması olarak üç tür malzeme kullanmışlardır. Küçük geri getirme katsayısına sahip yumuşak 

malzemelerin rezonans frekansında hafif sönümleme sağladığı sonucuna varılmıştır. Yokomichi ve 

arkadaşları [65] ve Saeki [40], harmonik uyarım altında parçacık sönümleyicinin tepkisini 

incelemişler ve daha büyük kütleye sahip sönümleyici parçanın ana yapıya daha fazla sönüm 

sağlama eğiliminde olduğunu bulmuşlardır. Daha hafif kütleye sahip sönümleyici parçanın, 

titreşimin başlangıcında hızlı sönümleme eğiliminde olduğunu ispatlamışlardır. En fazla sönüm 

sağlayacak şekilde hücre boşluğunu belirlemek üzere optimizasyon çalışması yapmışlardır. Yang 

[66], parçacık sönümleyicinin sönümleme özelliklerini tahmin etmek için bir dizi tasarım eğrisini 

özetlemiştir. Li [67], çok serbestlik dereceli bir yapıya bağlı darbe sönümleyicinin özelliklerini 

incelemek için bir dizi deney yapmıştır. Parçacıkların kütlesinin arttırılmasının, tüm modlar için 

ana yapının sönüm kabiliyetini mutlaka iyileştirmediği belirtilmiştir. Parçacık tipi, parçacık 

konumu ve dolum oranı gibi parçacık sönümleyicilerin çeşitli tasarım parametreleri ile ilgili olarak, 

Hollkamp ve diğerleri tarafından bir dizi test gerçekleştirilmiştir [38]. Üç katlı çelik çerçeve 

tamponlu parçacık sönümleyicili [68, 69] ve beş katlı çelik çerçeve parçacık ayarlı kütle 

sönümleyicili [70] sistemin sarsma masası testleri Lu ve ark. tarafından gerçekleştirilmiştir. 

Yardımcı kütle oranı ve boşluk açıklığı gibi çeşitli tasarım parametreleri analiz edilmiştir. 

Sathishkumar ve ark. [71] bir delme çubuğunu farklı metal parçacıklarla doldurmuş ve parçacık 

boyutu, yoğunluk ve sertlik gibi belirli parçacık parametrelerinin işlenmiş yüzeyin yüzey 

pürüzlülüğü üzerindeki etkilerini araştırmıştır.  

Bal peteği katmanlı yapıları çok sayıda küçük boşluktan oluştuğundan ve parçacıkların yapı 

içindeki dağılımı belirlenebildiğinden parçacık sönümleyici alanında büyük umut vaat 

etmektedirler. Bu nedenle, seçilen bazı titreşim modlarının genliklerini ayrı ayrı azaltmak mümkün 

olabilmektedir. Son zamanlarda bal peteği sandviç panellerinin boş hücrelerinin içerisine 

sönümleyici parçacıklar eklenerek sönümleme performansının iyileştirilebilir olduğu gözlenmiştir 

[54, 72–74]. Sönümleyici parçacıklarla doldurulmuş bal peteği sandviç panellerinin sönüm ve tepki 

davranışıyla alakalı literatürde çok az çalışma vardır [31, 54, 73, 75, 76]. Wang ve Yang [73] lehim 

toplarıyla doldurulmuş katmanlı bal peteği yapısını deneysel olarak analiz etmişlerdir. Hücre 

duvarlarına ve yapışma yüzeylerine zarar vermeden sistemin tepkisinin azaldığını 

gözlemlemişlerdir. Michon ve ark. [54] viskoelastik toplarla doldurulmuş parçacık sönümleyicinin, 
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ankastre-serbest katmanlı yapının sönümleme karakteristiği üzerindeki etkisini incelemişler ve 

deneysel olarak eşdeğer dinamik titreşim yapan sistemin parametrelerini elde etmişlerdir. 

Bajkowski ve ark. [77], katmanlı bir kirişi farklı şekillerdeki parçacıklarla doldurup, yüksek 

düzeyde sönüm gerektiğinde keskin parçacıkların tercih edilmesi gerektiğini bildirmişlerdir. 

Ahmad ve ark. [78] uç kısımları doldurulmuş ankastre bal peteği katmanlı yapının tepki davranışını 

ayrık elemanlar metodu yardımıyla incelemişlerdir. Parçacıkların birbiriyle ve hücre duvarıyla olan 

etkileşimini modelleyip deneysel ve matematiksel modelin yakın uyumlu olduğunu bildirmişlerdir. 

Parçacık sönümlemeli bal peteği katmanlı yapılarının uygulaması ile alakalı literatürde sınırlı 

çalışma mevcuttur. Koch ve ark. [79] araç karterinin en fazla titreşim yapan parçasının bir kısmını 

bal peteği sandviç panellerinden imal edip içerisine farklı boyutlarda ve miktarlarda kum tanecikleri 

yerleştirip titreşim ve ses sönümlemesini başarılı şekilde gerçekleştirmişlerdir. 

Katmanlı panellerin çekirdek hücreleri üçgen, kare, eşkenar dörtgen veya altıgen (bal peteği) 

şeklinde olabilirler. Endüstride en çok talep gören katmanlı yapı bal peteği hücreli katmanlı 

yapılardır. Bal peteği yapıları metal, ahşap, polimer, seramik ve kompozit gibi farklı materyallerin 

iki veya daha fazla kombinasyonundan üretilebilirler. Şekil 2.2’de gösterilen bal peteği yapısının 

alt ve üst tabakaları izotropik, homojen bir yapıda iken çekirdek yapı altıgen şeklinde hücresel ve 

ortotropik bir yapıya sahiptir. Bu yapıların özellikle çekirdek kısımlarının SE yöntemi ile birebir 

modellenmesi oldukça zordur. Bilgisayarda çeşitli mühendislik yazımları ile analiz edilmesi 

zahmetli ve zaman alıcı olmaktadır. Eleman sayısı, düğüm sayısının artması ile birlikte çözüm 

süresi de oldukça uzamaktadır. Bal peteği katmanlı yapıların daha basit ve hızlı modellenebilmesi 

için birkaç eşdeğer model teorisi bulunmaktadır [80, 81].  

 

 

 

Şekil 2.2. Balpeteği sandviç panel 

Bal peteği için geliştirilen eşdeğer modeller yaklaşık çözüm vermektedir. Alt-üst plakalar ile 

çekirdek yapı arasındaki bağlantının kusursuz olduğunu varsaymaktadır. Bu sebeple elde edilen 

çözümler, gerçek çözümlerden büyük ölçüde sapmalar içerebilir. 

 Uydu güneş panelleri, rüzgâr türbini kanatları ve helikopter rotorları gibi mekanik yapılar, 

dönen esnek konsol kirişler olarak modellenebilir. Bu tür yapılar, karmaşık dinamik davranışlara 

sahip oldukları için modellenmesi oldukça zordur. Bununla birlikte, sistemi dinamik bir rijit-esnek 
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bağlantı modeline indirgeyen birçok basitleştirilmiş model geliştirilmiştir. Southwell ve Gough 'un 

[82] ufuk açıcı çalışmasından sonra birçok araştırmacı, sabit bir göbek etrafında dönen konsol 

kirişin titreşim özelliğini araştırmak için analitik bir takım yöntem geliştirmişlerdir. Son 

zamanlarda, hibrit koordinat yaklaşımını kullanan yeni bir dinamik modelleme geliştirilmiştir. Bu 

model ile dönme kaynaklı katılık değişimi de dâhil olmak üzere ankastre yapının lineer hareket 

denklem seti elde edilebilir [83–87]. Bu yöntem daha basittir ve daha makul dinamik sonuçlar verir. 

Dönen yapılarda ana sorunlardan biri, güç aktarımı ve çevresel etkilerden kaynaklanan titreşimdir. 

İstenmeyen titreşimi azaltmak için genellikle aktif veya pasif titreşim kontrol yaklaşımları 

kullanılır. Aktif titreşim kontrol sistemleri, ek güç kaynağı, sensörler, tahrik elemanları vb. 

gerektirir [88–91]. Bu nedenle bu sistemler maliyetlidir. Öte yandan, pasif titreşim kontrol 

sistemleri uygun maliyetli ve az bakım gerektirir [92–94]. Son zamanlarda parçacık darbe 

sönümleme yöntemi ile dönen yapıların titreşimini azaltmak amacıyla birkaç akademik çalışma 

gerçekleştirilmiştir. Daniel [95] dönen esnek çelik ankastre-serbest çubuğun uç kısmına 

sönümleyici parçacıklar taşıyan bir muhafaza yerleştirmiş ve deneysel olarak sönümleyici 

parçacıkların çubuğun titreşim genliği üzerindeki etkisini incelemiştir. Xia ve ark. [96] bir fren 

tamburundaki dönme esnasında oluşan titreşim ve gürültüyü kontrol etmek için parçacık 

sönümleme yöntemini kullanmayı önermişlerdir. Fren tamburundaki parçacık sönümünü 

modellemek ve hesaplamak için ayrık eleman yöntemine ve sonlu eleman yöntemine dayalı bir 

hibrit simülasyon algoritması kullanmışlardır. 

Yukarıdaki literatür incelendiğinde parçacık darbe sönümleme yönteminin birçok sisteme 

başarılı bir şekilde uygulandığı anlaşılmaktadır. Bu yöntem dönen birkaç sistemde deneysel 

uygulanmış fakat dönen çubuklar için sayısal bir çalışma yapılmamıştır. Bu çalışmada literatüre 

katkı olarak bir göbek etrafında sabit hızla dönen bal peteği katmanlı konsol kirişin parçacık darbe 

sönümlemeli hareket denklemleri türetilmiş ve titreşim analizi sayısal olarak yapılmıştır. 

 



 

 

3. ÇUBUKLARIN TİTREŞİMİ 

Titreşim, genel olarak cisimlerin sabit bir referans etrafında yaptığı tekrarlı hareketler olarak 

ifade edilir. Titreşim hareketi düzgün bir harmonik hareket olabileceği gibi, yapının fiziksel ve 

mekanik özelliklerine göre rastgele de olabilir. Titreşim bazı durumlarda örneğin titreşimli 

eleklerde, telli müzik aletlerinde, titreşimli karıştırıcılarda, darbeli delici ve kırıcılarda istenen bir 

durum olmasına rağmen pek çok durumda istenmeyen bir olgudur. Mekanik sistemlerde gürültü, 

aşınma, bağlantıların gevşemesi, performans kaybı, konfor kaybı, yorulma ya da kırılma gibi birçok 

probleme neden olabilmektedir. Titreşim mühendislik tasarımlarının yapısını etkileyen ve her yerde 

mevcut olan bir olgudur. Mühendislik tasarımları için belirleyici faktörlerden birisidir. Titreşim 

ister zararlı ister yararlı olsun her iki durumda da titreşimin nasıl ölçüleceği, analiz edileceği ve 

kontrol edileceği mühendislik için dikkate alınması gereken önemli bir konudur.  

Mekanik titreşimler Newton'un klasik mekaniğin temel prensiplerini geliştirdiği ve bunları 

matematiksel ifadelerle formüle ettiği 17. yüzyılda ortaya çıkmıştır. Daha sonra Euler, Bernoulli, 

D’Alambert, Lagrange, Rayleigh, Hamilton gibi araştırmacılar tarafından yeni kuramlar 

geliştirilerek, titreşim yapan yapıların dinamik davranışı araştırılmıştır. Mekanik problemlerinin 

çözümü için geliştirilen vektörel mekanik, analitik mekanik ve sonlu elemanlar gibi birçok yöntem 

mevcuttur. Vektörel mekanik yönteminde Newton kanunlarına dayalı kuvvet, yer değiştirme gibi 

vektörel büyüklükler kullanılır. Bağ kuvvetlerini de içerdiğinden çok serbestlik dereceli sistemler 

için uygun değillerdir. Analitik mekanik yönteminde sistemin hareketini ifade etmek için vektörel 

büyüklükler yerine iş ve kinetik enerji ifadeleri gibi skaler büyüklükler kullanılır. Sistemin iç ve 

dış bağ kuvvetleri ihmal edilir. Skaler büyüklükler sayesinde sistem her hangi bir koordinat 

sisteminden bağımsız hale gelir. Karmaşık sistemlerin hareketini çözme ve sistemlerin denge 

durumlarını analiz etme konusunda güçlü bir araçtır. Analitik mekanik, mekanik problemlerin daha 

kolay anlaşılmasına, sistemin matematiksel olarak daha kolay modellenmesine ve sistemin 

hareketini tahmin etmemize yardımcı olan güçlü bir yöntemdir. Sonlu elemanlar yöntemi, karmaşık 

mühendislik problemlerini analiz etmek ve yaklaşık, kabul edilebilir seviyede çözmek için 

kullanılan bir sayısal analiz yöntemidir. Bu yöntem, büyük yapıların davranışını daha küçük ve 

daha yönetilebilir parçalara (elemanlara) böler ve bu elemanlar üzerindeki denklemleri çözerek 

yapının davranışını tahmin etmeye çalışır. Her bir eleman, matematiksel denklemlerle temsil edilir 

ve bu denklemler birleştirilerek genel sistem davranışı analiz edilir. 

Mühendislik alanlarında yaygın olarak kullanılan pek çok taşıyıcı sistem çubuk ve plak 

elemanları olarak modellenmektedir. Bu yapılar mühendislik alanında yapısal dinamiklerin analizi 

için kullanılmaktadır. Çubukların titreşim özellikleri, otomobillerde süspansiyon sistemleri, 

titreşim önleyici cihazlar ve mekanik titreşim yalıtımı gibi birçok mekanik sistem ve cihazın 

tasarımında dikkate alınır. Bina veya köprülerin titreşim analizi yapılırken plaklar üzerinde yapılan 
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çalışmalar, yapıların dayanıklılığını ve titreşime karşı direncini belirlemeye yardımcı olur. Yüksek 

hızlı trenler, uçaklar veya araçlar gibi yapılar üzerindeki titreşimlerin incelenmesi, tasarımların 

optimize edilmesi ve dayanıklılığın artırılması plak yaklaşımları ile mümkün olmaktadır.  

Çubukların titreşim hareketi, bir çubuğun bir noktasının veya bir bölümünün belirli bir 

frekansta ileri-geri (boyuna titreşim) veya yukarı-aşağı (enine titreşim) hareket etmesidir. Bu 

hareket genellikle bir başlangıç noktasında başlar ve titreşim modları olarak adlandırılan sistemin 

yapısına özgü mod biçimlerinde devam eder. Bir çubuğun titreşimi, çubuğun şekline, boyutlarına, 

sınır şartlarına ve malzemesine bağlı olarak farklılık gösterir. Çubuğun titreşimi, birinci mod veya 

temel mod olarak adlandırılan en düşük frekanslı titreşim modunda başlar. Diğer modlar, çubuğun 

şekline ve sınır şartlarına bağlı olarak oluşur. Çubukların titreşim hareketi, matematiksel olarak 

dalga denklemleri ve titreşim teorisi kullanılarak açıklanabilir. Bu teoriler, çubukların titreşim 

frekanslarını, modlarını ve titreşim özelliklerini hesaplamak için kullanılır.  

Tez çalışmasında ankastre-serbest sınır şartlarında modellenen yapı çubuk olarak ele 

alınmıştır. Çubukların titreşim davranışının modellenmesi için yaygın olarak kullanılan ve tez 

çalışması kapsamında faydalanılan teorilerden aşağıda kısaca bahsedilmiştir. Bu çalışmada 

parçacık darbe sönümleme yöntemi eğilme titreşim hareketi yapan çubuklar üzerinde incelenmiştir.  

3.1. Çubukların Eğilme Titreşim Hareketi 

Çubukların eğilme titreşim hareketi, bir ucu ankastre diğer ucu serbest haldeyken çubuk 

boyunca gerçekleşen dalgalı harekettir. Dalgalanma, çubuğun eksenine göre doğrusal bir hareket 

olup, dalga boyu, frekans ve genlik gibi özelliklere sahiptir. Çubukların enine titreşim hareketi, 

mühendislik alanlarında geniş bir şekilde incelenir ve matematiksel modeller kullanılarak ifade 

edilir. Euler-Bernoulli çubuk teorisi, birçok mühendislik alanında önemli bir rol oynar. Özellikle 

yapısal analiz, köprü tasarımı, kirişlerin davranışı, çerçeve sistemleri ve diğer benzer 

uygulamalarda kullanılır. Bu teori, çubukların tasarımını optimize etmek ve çubukların taşıma 

kapasitesini belirlemek için kullanılmaktadır. 

Euler–Bernoulli çubuk teorisi en basit fakat en çok tercih edilen çubuk teorisidir. İnce ve 

elastik çubukların davranışını matematiksel olarak analiz etmek için geliştirilmiş bir teoridir. Bu 

teoride sadece eksenel eğilme hareketi dikkate alınır ve çubukların bu harekete nasıl tepki vereceği 

tahmin edilir.  Çubuğun kesit alanının şekil değişim sonrası aynı kaldığı kabul edilir. Bu 

varsayımlar çubuğun kesit eninin çubuğun uzunluğuna oranının 1/10’dan az olması durumunda 

geçerlidir. Çubukların uzunluğu boyunca homojen ve izotropik (her yönde aynı özelliklere sahip) 

olduğu kabul edilir. Ayrıca, çubukların küçük deformasyonlara maruz kaldığı ve plastik 

deformasyonların göz ardı edilebileceği varsayılır. Bu teoriye göre, çubuğun enine deformasyonu, 

eğilme momenti ve kesme kuvveti tarafından belirlenir. Euler-Bernoulli çubuk teorisinde, çubuğun 

eğilmesine ait davranışı bir diferansiyel denklem olan Euler-Bernoulli denklemiyle temsil edilir.  



15 

 

 

 

Şekil 3.1. Euler-Bernoulli çubuğunun eğilme şekil değişimi 

Şekil 3.1’de belirtilen ankastre-serbest çubuk için eğilme hareket denklemi ve sınır şartları 

aşağıda belirtilmiştir. 

𝑚(𝑥)
𝜕2𝑤(𝑥,𝑡)

𝑑𝑡2
+ 𝐸𝐼

𝜕4𝑤(𝑥,𝑡)

𝜕𝑥4
= 0   (Hareket Denklemi) (3.1) 

𝐸𝐼
𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2
𝛿 (

𝜕𝑤(𝑥,𝑡)

𝜕𝑥
) |0
𝐿 = 0 𝑣𝑒 𝐸𝐼

𝜕3𝑤(𝑥,𝑡)

𝜕𝑥3
𝛿𝑤(𝑥, 𝑡)|0

𝐿 = 0  (Sınır Şartları) (3.2) 

Burada 𝑚, 𝐸, 𝐼, 𝐿 sırasıyla çubuğun birim uzunluk kütlesini [m/L=𝜌A], elastisite 

modülünü, kütlesel atalet momentini ve uzunluğunu ifade etmektedir.  𝑤 çubuğun enine 

yerdeğiştirmesini,  𝑡 zamanı, 𝑥 ise ankastre uca göre eksenel uzaklığı belirtmektedir. Denklem (3.2) 

dördü x=0 ve dördü de x=L de olmak üzere 8 adet sınır şartını ifade etmektedir. Fakat fiziksel 

sistemler için sınırlarda öteleme, eğim, moment veya kesme kuvvetleri sınır şartları olarak tarif 

edilebilir. Bir ucu ankastre diğer ucu serbest çubuk için sınır şartları aşağıdaki gibi elde edilir. 

n mod sayısı olmak üzere ankastre-serbest çubuğun doğal frekansları denklem (3.4) 

yardımıyla hesaplanabilmektedir.  

Bu denklemde λn’ler ankastre-serbest çubuğun öz değerleridir ve modlarına bağlı olarak; 

x = 0’da →
𝜕𝑤(0,𝑡)

𝜕𝑥
= 0    ve    w(0, t) = 0  

x=L’de  →
𝜕2𝑤(𝐿,𝑡)

𝜕𝑥2
= 0    ve    

𝜕3𝑤(𝐿,𝑡)

𝜕𝑥3
= 0 

(3.3) 

ωn = √
𝐸𝐼

𝑚
∗ λn

2    𝑣𝑒𝑦𝑎    ωn = √
𝐸𝐼

𝑚𝐿4
∗ (λn𝐿)

2    𝑛 = 1,2,3, ….  (3.4) 

𝜕𝑤

𝜕𝑥
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 λ1L=1.8751 

 λ 2L=4.6941; 

 λ 3L=7.8548; 

 λ 4L=10.9955;  

 ve büyük n’yinci modlar için λnL≈(2n-1)π/2 

olarak elde edilir. Ankastre-serbest çubuğun modlarına ait şekil fonksiyonu öz değerlerine 

bağlı olarak aşağıdaki gibi elde edilebilir. 

 

 

 

Şekil 3.2. Ankastre-serbest sınır şartlarındaki çubuğun ilk dört titreşim modu 

Denklem (3.5)’e “n’yinci özfonksiyon” veya “n’yinci titreşim modu (biçimi)” denir. 

Ankastre-serbest çubuk için 𝑚 = 𝐿 = 𝐸𝐼 = 1 için ilk 4 titreşim modu Şekil 3.2’de gösterilmiştir. 

Böyle bir çubuğun mod biçimleri Denklem (3.5)’te verilen ifade ile hesaplanabileceği gibi Ansys 

gibi mühendislik programlarından da elde edilebilir.  

Ankastre-serbest çubuğun kütle ve katılık matrisleri modların diklik özelliğinden 

faydalanılarak mod biçimlerine bağlı olarak aşağıdaki ifadelerle hesaplanabilmektedir. 

Burada 𝛿𝑟𝑠 Kronecker Delta olarak adlandırılır ve aşağıdaki gibi temsil edilir. 

Φn(x) = (𝑠𝑖𝑛(λnx) − 𝑠𝑖𝑛ℎ(λnx)) +
cos(λnL)+cosh(λnL)

sin(λnL)−sinh(λnL)
(𝑐𝑜𝑠(λnx) − cosh (λnx))  (3.5) 

𝑴𝒓𝒔 = ∫ 𝑚Φ𝑠Φ𝑟(𝑥)𝑑𝑥
𝐿

0
= 𝛿𝑟𝑠  (r=s=1,2,….,n) (3.6) 

𝑲𝒓𝒔 = ∫ 𝐸𝐼 Φ𝑠
′′Φ𝑟

′′𝑑𝑥 = 𝜔𝑟
2𝐿

0
𝛿𝑟𝑠    (r=s=1,2,….,n) (3.7) 
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Kütle ve katılıkla orantılı sönüm kabulü yapılırsa çubuğun genel hareket denklemi aşağıdaki 

gibi yazılabilir. 

Tez kapsamında bal peteği katmanlı ankastre-serbest çubuğun Ansys programında modal 

analizi yapılarak eğilme öz vektörleri ve öz değerleri elde edilmiştir. Bu veriler sayısal integral 

alma yöntemi trapez kuralı uygulanarak, Denklem (3.6) ve (3.7) vasıtasıyla kütle ve katılık 

matrisleri oluşturulmuştur. 

3.2. Dönen Bir Konsol Kirişin Titreşim Analizi 

Dönen konsol kiriş, mühendislikte bir ucundan sabitlenmiş ve bu sabit uç etrafında serbestçe 

dönebilen bir kirişi ifade eder. Bu tip kirişler çeşitli mühendislik uygulamalarında kullanılır. Türbin 

kanatlarının, helikopter rotor kanatlarının, uçak kanatlarının ve uydu antenlerinin tasarımında 

yaygın olarak dönen konsol kirişlere rastlanılır. Dönen konsol kirişlerin dönme yükleri altındaki 

eğilme, gerilim dağılımı ve rezonans frekansları gibi dinamik davranışlarını anlamak ve analiz 

etmek büyük önem arz etmektedir. Bu bilgi, mühendislerin karşılaşacakları yüklere ve çevre 

koşullarına dayanabilecek yapılar ve bileşenler tasarlamasına olanak tanır. Mühendisler, dönen 

konsol kirişlerini doğru bir şekilde modelleyip analiz ederek tasarımlarını optimize edebilir, 

arızaları azaltabilir ve çeşitli mekanik sistemlerin güvenli ve verimli çalışmasını sağlayabilir. 

Aşağıda tez kapsamında yararlanılan, dönen konsol çubuğun titreşimine ait hareket 

denklemlerinin teorisi anlatılmıştır. 

 

 

 

Şekil 3.3. Bir göbek etrafında dönen konsol kiriş modeli 

Şekil 3.3’te rg yarıçapındaki göbek etrafında 𝜃̇ açısal hızı ile dönen konsol kiriş 

gösterilmektedir. Kiriş homojen ve izotropik malzeme özelliklerine sahiptir. Kirişin enkesitindeki 

𝛿𝑟𝑠 = |
1 𝑟 = 𝑠
0 𝑟 ≠ 𝑠

|  (3.8) 

𝑴𝑤̈ + 𝑪𝑤̇ + 𝑲𝑤 = 𝒇(𝒕)  (3.9) 

u1 

u2 
u3 

𝑟 = 𝑥𝑎 1 

Göbek 

rg O 

a1 

a2 

a3 

𝜃̇ 

P* 

P 

L 
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elastik ve merkez eksenleri çakışıktır, böylece eksantriklikten kaynaklanan etkiler dikkate 

alınmayacaktır. Kiriş ince bir şekle sahiptir, böylelikle kayma ve döner atalet hareketleri ihmal 

edilecektir. Kiriş sabit açısal hızda dönen bir göbeğe tutturulmuştur. Bu varsayımlara dayalı konsol 

kiriş için basitleştirilmiş hareket denklemleri oluşturulabilir. Bununla birlikte, gerekirse modelleme 

yönteminde daha karmaşık etkiler dâhil edilebilir. 

Dönen bir ankastre kirişin dinamik hareket denklemini elde etmek için Kane Metodu [83] 

kullanılmıştır. Kane metodunun, Newton-Euler ve Lagrange yöntemlerine göre avantajları vardır. 

Genelleştirilmiş kuvvetlerin kullanılmasıyla, uzuvlar arasındaki etkileşimli ve kısıtlayıcı bağ 

kuvvetlerinin incelenmesi ihtiyacı ortadan kalkar. Kane Metodu skaler kinetik ve potansiyel enerji 

fonksiyonlarını kullanmadığından, türev alma problem teşkil etmemektedir. Hızları ve 

ivmelenmeleri hesaplamak için gereken türev alma, vektörlere dayanan algoritmalar kullanılarak 

elde edilebilir. Kane Metodu, çok serbestlik dereceli sistemlerin dinamik denklemlerini elde etmek 

için mükemmel bir araçtır. Bu yöntem, virtüel iş prensibine dayanır ve bir sistemin hareketini 

tanımlamak için genelleştirilmiş koordinat kümesi ve hız ifadelerini kullanır. Karmaşık mekanik 

sistemlerin hareket denklemlerini elde etmek için sistematik ve tutarlı bir yaklaşım sağlar. Özellikle 

robotik manipülatörler, uzay araçları ve biyomekanik sistemler gibi çok gövdeli sistemlerin 

analizinde ve simülasyonunda yararlı sonuçlar verdiği kanıtlanmıştır. Bu yöntemle bir göbek 

etrafında dönen konsol kirişin hareket denkleminin elde edilişi aşağıda detaylı anlatılmıştır. 

Konsol kirişin elastik deformasyonu 𝑢⃗  olarak gösterilsin. Bu vektör, 3 boyutlu uzayda üç 

skaler değişkenle ifade edilen üç bileşene (𝑢⃗ = 𝑢1𝑎 1 + 𝑢2𝑎 2 + 𝑢3𝑎 3) sahiptir. Ancak, bu 

çalışmada, 𝑢1 (𝑎 1  ekseninde uzama) yerine yay boyundaki değişimi belirten, kartezyen olmayan 

değişken, 𝑠 parametresi kullanılmıştır. Bu durumda hareket denklemlerini elde etmek için 

kartezyen değişkenler 𝑢2 (𝑎 2 ekseninde eğilme) ve 𝑢3 (𝑎 3 ekseninde eğilme) ile kartezyen olmayan 

değişken 𝑠’den oluşan hibrid değişkenler kullanılmıştır. Rayleigh-Ritz varsayılan mod yöntemi bu 

değişken parametreleri yaklaşık olarak belirlemek için kullanılabilir. 

Burada; 𝜙1𝑗, 𝜙2𝑗ve 𝜙3𝑗 uzaysal fonksiyonlardır. Ankastre-serbest kirişin sınır şartlarını 

sağlayan her türlü fonksiyon kullanılabilir. Genellikle ankastre çubuk için denklem (3.5) ile verilen 

eşitlik kullanılır. 𝑞𝑗 ‘ler genelleştirilmiş koordinatlar, 𝑛 toplam modal koordinat sayısıdır. Sistemin 

dinamik hareket denklemi aşağıdaki ifadeden elde edilir. 

s(x, t) = ∑ 𝜙1𝑗(𝑥)𝑞1𝑗(𝑡)
𝑛
𝑗=1   (3.10) 

u2(x, t) = ∑ 𝜙2𝑗(𝑥)𝑞2𝑗(𝑡)
𝑛
𝑗=1   (3.11) 

u3(x, t) = ∑ 𝜙3𝑗(𝑥)𝑞3𝑗(𝑡)
𝑛
𝑗=1   (3.12) 
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Burada; 𝐹𝑗 genelleştirilmiş aktif kuvvetler, 𝐹𝑗
∗ genelleştirilmiş atalet kuvvetleridir. Sürekli 

sistemler için bu ifadeler aşağıdaki gibi hesaplanır. 

Burada; 𝑈 gerilme enerjisi, 𝜌 doğrusal kütle yoğunluğu (birim uzunluk başına kütle), 𝛼𝑃 P 

noktasının ivme vektörü, 𝑣𝑃 P noktasının hız vektörüdür. 

Yukarıda verilen varsayımlara dayanarak, çubuğun gerilme enerjisi eşitlik (3.16)’de 

verilmiştir. 

Burada; 𝐸 elastisite modülü, 𝐴 enkesit alanı, 𝐼2 ve 𝐼3 atalet momentleri, 𝐿 kirişin deforme 

olmamış uzunluğunu ifade etmektedir. 

Denklem (3.16)’daki ilk terim kirişin eksenel yerdeğiştirmesinden diğer terimler ise enine 

yer değiştirmesinden kaynaklanan enerjisini ifade etmektedir. Kiriş üzerindeki herhangi bir P 

noktasının konum, hız ve ivmesi; 

olarak hesaplanabilir. Burada; ( ̇ ) hız, ( ̈ ) ivmeleri ifade etmektedir. 

Bu denklemlerde 𝑢1ve 𝑢̇1 terimleri yer almaktadır. 𝑢1 yerine 𝑠 genelleştirilmiş koordinat 

seçildiğinden bu terimlerin 𝑢1, 𝑢2, 𝑠 ve bunların türevleri cinsinden ifade edilmesi gerekir. Yay 

boyu uzaması ile kartezyen değişkenler arasındaki geometrik ilişki aşağıdaki gibi verilebilir. 

Bu eşitlikteki integral ifadesinin binom açılımı kullanılırsa bu ifade sadeleştirilebilir. 

𝐹𝑗 + 𝐹𝑗
∗ = 0  (3.13) 

𝐹𝑗 = −
𝜕𝑈

𝜕𝑞𝑖
  (3.14) 

Fj
∗ = −∫ 𝜌𝛼𝑃

𝜕𝑣𝑃

𝜕𝑞̇𝑗

𝐿

0
𝑑𝑥  (3.15) 

U =
1

2
∫ 𝐸𝐴 (

𝜕𝑠

𝜕𝑥
)
2
𝑑𝑥 +

1

2
∫ 𝐸𝐼3 (

𝜕2𝑢2

𝜕𝑥2
)
2

𝑑𝑥 +
1

2
∫ 𝐸𝐼2 (

𝜕2𝑢3

𝜕𝑥2
)
2

𝑑𝑥
𝐿

0

𝐿

0

𝐿

0
  (3.16) 

𝑟 𝑝 = (𝑟𝑔 + 𝑥 + 𝑢1)𝑎 1 + 𝑢2𝑎 2 + 𝑢3𝑎 3  (3.17) 

𝑣 𝑝 = (𝑢̇1 − 𝜃̇𝑢2)𝑎 1 + (𝑢̇2 + (𝑟𝑔 + 𝑥 + 𝑢1)𝜃̇)𝑎 2 + 𝑢̇3𝑎 3  (3.18) 

𝑎 𝑝 = (𝑢̈1 − 2𝜃̇𝑢̇2 − 𝜃̇
2(𝑟𝑔 + 𝑥 + 𝑢1))𝑎 1 + (𝑢̈2 + 2𝜃̇𝑢̇1 − 𝜃̇

2𝑢2)𝑎 2 + 𝑢̈3𝑎 3  (3.19) 

𝑥 + 𝑠 = ∫ [(1 +
𝜕𝑢1

𝜕𝜎
)
2
+ (

𝜕𝑢2

𝜕𝜎
)
2
+ (

𝜕𝑢3

𝜕𝜎
)
2
]

𝑥

0

1

2

𝑑𝜎  (3.20) 
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Eşitlik (3.21) doğrusal hareket denklemlerinin türetilmesi için daha uygundur. Bu ifadenin 

zamana göre türevi alınırsa; 

halini alır. Bu ifadeler denklem (3.13)’e yerleştirilerek dönen konsol kirişin lineer hareket 

denklemleri elde edilebilir. 

Bu hareket denklemleri aşağıdaki gibi yeniden yazılabilir. 

Burada; 

o 𝑴𝑖𝑗
𝑎𝑏 = ∫ 𝜌𝜙𝑎𝑖𝜙𝑏𝑗𝑑𝑥

𝐿

0
 

o 𝑲𝑠 = ∫ 𝐸𝐴
𝐿

0
𝜙1𝑖
′ 𝜙1𝑗

′ 𝑑𝑥 

o 𝑲𝑖𝑗
𝐵2 = ∫ 𝐸𝐼3

𝐿

0
𝜙2𝑖
′′𝜙2𝑗

′′ 𝑑𝑥 

𝑠 = 𝑢1 +
1

2
∫ [(

𝜕𝑢2

𝜕𝜎
)
2
+ (

𝜕𝑢3

𝜕𝜎
)
2
] 𝑑𝜎 + 𝑌ü𝑘𝑠𝑒𝑘 𝑀𝑒𝑟𝑡𝑒𝑏𝑒𝑑𝑒𝑛 𝑇𝑒𝑟𝑖𝑚𝑙𝑒𝑟

𝑥

0
  (3.21) 

𝑠̇ = 𝑢̇1 + ∫ [(
𝜕𝑢̇2

𝜕𝜎

𝜕𝑢2

𝜕𝜎
)
2
+ (

𝜕𝑢̇3

𝜕𝜎

𝜕𝑢3

𝜕𝜎
)
2
] 𝑑𝜎 + 𝑌ü𝑘𝑠𝑒𝑘 𝑀𝑒𝑟𝑡𝑒𝑏𝑒𝑑𝑒𝑛 𝑇𝑒𝑟𝑖𝑚𝑙𝑒𝑟

𝑥

0
  (3.22) 

∑ [(∫ 𝜌𝜙1𝑖𝜙1𝑗𝑑𝑥
𝐿

0
) 𝑞̈1𝑗 − 2𝜃̇ (∫ 𝜌𝜙1𝑖𝜙2𝑗𝑑𝑥

𝐿

0
) 𝑞̇2𝑗 −

𝑛
𝑗=1

𝜔2 (∫ 𝜌𝜙1𝑖𝜙1𝑗𝑑𝑥
𝐿

0
) 𝑞1𝑗 + (∫ 𝐸𝐴

𝐿

0
𝜙1𝑖
′ 𝜙1𝑗

′ 𝑑𝑥) 𝑞1𝑗] = 𝜃̇
2 ∫ 𝜌(𝑟𝑔 +

𝐿

0

𝑥)𝜙1𝑖𝑑𝑥  

(3.23a) 

∑ [(∫ 𝜌𝜙2𝑖𝜙2𝑗𝑑𝑥
𝐿

0
) 𝑞̈2𝑗 + 2𝜃̇ (∫ 𝜌𝜙2𝑖𝜙1𝑗𝑑𝑥

𝐿

0
) 𝑞̇1𝑗 −

𝑛
𝑗=1

𝜃̇2 (∫ 𝜌𝜙2𝑖𝜙2𝑗𝑑𝑥
𝐿

0
) 𝑞2𝑗 + 𝜃̇

2 (∫ 𝜌(𝑟𝑔 + 𝑥)(∫ 𝜙2𝑖
′ 𝜙2𝑗

′𝑥

0
𝑑𝜎)

𝐿

0
𝑑𝑥) 𝑞2𝑗 +

(∫ 𝐸𝐼3
𝐿

0
𝜙2𝑖
′′𝜙2𝑗

′′ 𝑑𝑥) 𝑞2𝑗] = 0  

(3.23b) 

∑ [(∫ 𝜌𝜙3𝑖𝜙3𝑗𝑑𝑥
𝐿

0
) 𝑞̈3𝑗 + 𝜃̇

2 (∫ 𝜌(𝑟𝑔 + 𝑥)(∫ 𝜙3𝑖
′ 𝜙3𝑗

′𝑥

0
𝑑𝜎)

𝐿

0
𝑑𝑥) 𝑞3𝑗 +

𝑛
𝑗=1

(∫ 𝐸𝐼2
𝐿

0
𝜙3𝑖
′′𝜙3𝑗

′′ 𝑑𝑥) 𝑞3𝑗] = 0  
(3.23c) 

∑ [𝑴𝑖𝑗
11𝑞̈1𝑗 + (𝑲𝑠 − 𝜃̇

2𝑴𝑖𝑗
11)𝑞1𝑗 − 2𝜔𝑴𝑖𝑗

12𝑞̈2𝑗] = 𝑷𝑎𝑖
𝑛
𝑗=1   (3.24a) 

∑ [𝑴𝑖𝑗
22𝑞̈2𝑗 + (𝑲𝑖𝑗

𝐵2 + 𝜃̇2(𝑲𝑖𝑗
𝐺2 −𝑴𝑖𝑗

22)) 𝑞2𝑗 + 2𝜃̇𝑴𝑖𝑗
21𝑞̈1𝑗] = 0

𝑛
𝑗=1   (3.24b) 

∑ [𝑴𝑖𝑗
33𝑞̈3𝑗 + (𝑲𝑖𝑗

𝐵3 + 𝜃̇2𝑲𝑖𝑗
𝐺3)𝑞3𝑗] = 0

𝑛
𝑗=1   (3.24c) 
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o 𝑲𝑖𝑗
𝐵3 = ∫ 𝐸𝐼2

𝐿

0
𝜙3𝑖
′′𝜙3𝑗

′′ 𝑑𝑥 

o 𝑲𝑖𝑗
𝐺𝑎 = ∫ 𝜌(𝑟𝑔 + 𝑥)(∫ 𝜙𝑎𝑖

′ 𝜙𝑎𝑗
′𝑥

0
𝑑𝜎)

𝐿

0
𝑑𝑥 

o 𝑷𝑎𝑖 = ∫ 𝜌(𝑟𝑔 + 𝑥)𝜙𝑎𝑖𝑑𝑥
𝐿

0
 

Tez çalışmasında dönen çubuğun sadece düzlem içi (a2 doğrultusundaki) eğilme titreşimi 

dikkate alınmıştır. Denklem (3.24b) incelendiğinde bu ifadenin a1 düzlemiyle bağdaşık olduğu 

görülmektedir. Bir Euler kirişinin ilk eksenel uzama doğal frekansının, ilk eğilme doğal 

frekansından çok büyük olması sebebiyle bu ifadedeki 𝑞̈1𝑗’yi içeren terim ihmal edilerek bu 

düzlemdeki eğilmesine ait hareket denklemi kütle ve katılık orantılı sönüm varsayımı ile aşağıdaki 

gibi yazılabilir. 

Burada,  

𝑴 = ∫ 𝜌𝜙2𝑖𝜙2𝑗𝑑𝑥
𝐿

0
  

𝑲 = ∫ 𝐸𝐼3
𝐿

0
𝜙2𝑖
′′𝜙2𝑗

′′ 𝑑𝑥 + 𝜃̇2 [∫ 𝜌(𝑟𝑔 + 𝑥)(∫ 𝜙2𝑖
′ 𝜙2𝑗

′𝑥

0
𝑑𝜎)

𝐿

0
𝑑𝑥 − ∫ 𝜌𝜙2𝑖𝜙2𝑗𝑑𝑥

𝐿

0
]  

olarak elde edilir. K’nın ikinci terimi merkezkaç kuvvetinden kaynaklanmaktadır. Bu terim ihmal 

edilirse çubuk normal ankastre-serbest çubuk problemine dönüşmektedir. 

3.3. Frekans Tepki Fonksiyonları 

Ayrık fiziksel sistemlerde hareketin çözümü için serbestlik derecesi kadar hareket denklemi 

elde edilir [97]. Sürekli sistemler ise sonsuz sayıda titreşim modlarından oluşmaktadır. Ancak 

karmaşık olmayan sürekli sistemlerde çözüm için ilk birkaç titreşim modlarının kombinasyonu 

çözüm için gayet başarılı sonuçlar vermektedir. Dolayısı ile sürekli sistemlerin titreşim analizinde 

ilk birkaç mod ele alınır. Sistemlerin hareket denklemleri elde edilirken Newton prensibi, Lagrange 

fonksiyonu, enerji yöntemleri ve Hamilton gibi varyasyon prensibi tabanlı yaklaşımlar veya sonlu 

elemanlar yöntemi kullanılabilir.  Aşağıda, çok serbestlik dereceli veya ayrıklaştırılmış sürekli bir 

sisteme ait dış tahrikli hareket denklemi verilmiştir. 

Burada, [M], [C] ve [K] sırasıyla sisteme ait kütle, sönüm ve katılık matrislerini ifade 

etmektedir. Sistemdeki genelleştirilmiş koordinatlar ya da cevap koordinatları {x(t)} ve sisteme 

etki eden dış kuvvet ise {f(t)} ile gösterilmiştir. Bir fiziksel sistemin kütle [M] ve katılık [K] 

matrisleri sistemin "uzaysal modeli" olarak adlandırılır [98]. Denklem  (3.26)’da, kuvvet dengesi 

altındaki sisteme ait, serbestlik derecesi sayısı kadar sabit katsayılı, homojen olmayan adi 

diferansiyel denklemler bulunmaktadır.  

𝑴𝑞̈2 + 𝑪𝑞̇2 +𝑲𝑞2 = 𝟎  (3.25) 

[𝑀]{𝑥̈(𝑡)} + [𝐶]{𝑥̇(𝑡)} + [𝐾]{𝑥(𝑡)} = {𝑓(𝑡)}       (3.26) 
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Eşitlik  (3.26) ile tanımlanan sistemin serbest titreşim hareketi yapması durumunda, 

çözümün {x(t)}={X}eiωt şeklinde harmonik olduğu varsayımı ile analizi yapılabilir. Söz konusu 

ifadeler sönümsüz hareket denklemine yerleştirilir ve birkaç ara işlemden sonra aşağıdaki denklem 

elde edilmektedir 

Burada {X} ifadelerinin sıfırdan farklı değerleri için çözümlerin elde edilebilmesi eşitliğin 

sol tarafındaki parantez içindeki ifadenin tersinir olmamasını gerektirir. Bu da ancak bu ifadenin 

determinantının sıfır olmasıyla mümkün olmaktadır. 

Bu determinant ifadesi serbestlik derecesi kadar 𝜔2’ye bağlı polinom verir. Sistemin 

karakteristik denklemi olan bu polinomun çözümünden sistemin doğal frekansları elde edilir. Elde 

edilen doğal frekanslar denklem (3.27)’ya yerleştirilerek her bir doğal frekans için {X} mod 

biçimleri elde edilir. 

Tahrik kuvvetinin de {f(t)}= {F}ejωt şeklinde harmonik olduğu kabul edilir ve denklem  

(3.26) yeniden düzenlenirse: 

halini alır. Bu denklemin sol tarafındaki parantez içi dinamik direngenlik (Z) olarak 

adlandırılmaktadır. 

Bir sistemin uygulanan tahrik kuvvetine karşılık verdiği cevaba Frekans Tepki Fonksiyonu 

(FTF) denir ve denklem (3.29) için aşağıdaki gibi ifade edilir [98]. 

Sistemin dinamik direngenliğinin tersi olan ve sistem cevabının yer değiştirme olduğu bu 

özel FTF formatı dinamik esneklik (Reseptans: Receptance) tipindeki FTF olarak adlandırılmakta 

ve 𝛼 ile gösterilmektedir.  

Sistemin reseptans tipindeki FTF’si sistem ile alakalı hem faz hem de genlik bilgilerini içeren 

karmaşık bir fonksiyondur. Sistem cevabının hız olduğu (
𝑉

𝐹
= 𝜔

𝑋

𝐹
) FTF tipine mobilite ve sistem 

cevabının ivme olduğu (
𝐴

𝐹
= 𝜔2

𝑋

𝐹
) FTF tipine ise akselarans denmektedir.  

(−𝜔2[𝑀] + [𝐾]){𝑋} = {0}  (3.27) 

𝑑𝑒𝑡(−𝜔2[𝑀] + [𝐾]) = 0  (3.28) 

(−𝜔2[𝑀] + 𝑗𝜔[𝐶] + [𝐾]){𝑋} = {𝐹}  (3.29) 

𝑋

𝐹
= (−𝜔2[𝑀] + 𝑗𝜔[𝐶] + [𝐾])−1  (3.30) 

[𝛼(𝜔)] = (−𝜔2[𝑀] + 𝑗𝜔[𝐶] + [𝐾])−1  (3.31) 
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3.4. Modal Analiz 

Bir önceki bölümde bahsedilen FTF’lerin hesaplanması oldukça zaman alan zahmetli bir 

yöntemdir. Bu yöntem ile her bir 𝜔 değeri için denklem (3.31)’in hesaplanması gerekir. Modal 

analiz yöntemiyle çok serbestlik dereceli bir sistemin FTF’leri daha hızlı ve verimli bir şekilde elde 

edilebilmektedir [99]. Bu yöntem ile fiziksel koordinatlardan modal koordinatlara geçiş yapılıp 

serbestlik derecesi kadar ayrık denklemler elde edilerek her mod için ayrı ayrı çözüm 

yapılabilmektedir. Ayrıca sistemin dinamik özellikleri (doğal frekans, titreşim biçimi, sönüm) 

kullanılarak FTF’ler daha hızlı bir şekilde hesaplanabilmektedir. 

Denklem (3.27)’yi n serbestlik dereceli bir sistem için ele alalım. Sistemin öz vektörleri (mod 

şekilleri) {𝜓}𝑛 ve doğal frekansları (öz değerleri)  𝜔𝑛 ile ifade edilecek olursa: 

denklemi elde edilir. n’yinci modun öz değeri, o moddaki doğal frekansının karesi (λ𝑛 = 𝜔𝑛
2) ile 

gösterilebilir. Öz vektörler, her bir doğal frekansa karşılık gelen ve modların birbirine göre bağıl 

yer değiştirmesinden oluşan matristir. Sistemin tüm modlarının toplamı şeklinde sisteme ait modal 

model oluşturulabilir. Öz değerler ve öz vektörler nxn boyutunda kare matrisler haline gelir. 

Öz değer ve öz vektör çözümlerinin hesaplanması için bazı sayısal yöntemler mevcuttur. 

Özellikle serbestlik derecesi artıkça öz değer ve öz vektörlerin hesaplanması zaman alıcı bir iş 

haline gelmektedir. Modların ortagonallik (diklik) özelliği sistemin analizini büyük ölçüde 

basitleştirmektedir. Mod şekillerinin ortagonallik özelliğinden faydalanılarak aşağıdaki ifadeler 

elde edilebilir. 

Böylece sistemin kütle ve katılık matrisleri, modal kütle (𝑚𝑛) ve modal katılık (𝑘𝑛) şeklinde 

köşegen matris haline gelir. Denklem (3.32) modların ortagonallik özelliği kullanılarak yeniden 

düzenlenirse: 

(−𝜔2[𝑀] + [𝐾]){𝜓}𝑛 = {0}      𝑛 = 1,2, … . , 𝑛 (3.32) 

[
⋱

𝜔𝑛
2

⋱

] = [
⋱

𝜆𝑛
⋱

]

𝑛𝑥𝑛

  (3.33) 

[𝜓]𝑛𝑥𝑛 = [
{𝜓}11 … {𝜓}𝑛1
⋮ … ⋮

{𝜓}1𝑛 … {𝜓}𝑛𝑛

]

𝑛𝑥𝑛

  (3.34) 

[𝜓]𝑇[𝑀][𝜓] = [
⋱

𝑚𝑛
⋱

]  ,     [𝜓]𝑇[𝐾][𝜓] = [
⋱

𝑘𝑛
⋱

] (3.35) 
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halini alır. FTF’lerin hesaplanması sırasında işlemlerde kolaylık olsun diye genellikle öz vektör 

ifadeleri aşağıdaki gibi kütle ile normalize edilirler.  

Burada Φ kütleye göre normalize edilmiş öz vektörleri ifade etmektedir. Bu ifadelerle 

normalizasyon sonucu denklem (3.35)’te verilen ifadeler aşağıdaki gibi basitleştirilebilir. 

{𝑥(𝑡)} = [Φ]{𝑞(𝑡)} ilişkisi ve denklem  (3.26)’in [Φ]𝑇 ile çarpılmasıyla, x(t) fiziksel 

koordinatlardan q(t) modal koordinatlara geçiş yapılabilir. 

Burada, 𝜁𝑛 n’yinci modal sönüm oranını ifade etmektedir. Bu ifadenin elde edilmesi sönüm 

katsayısının kütle ve katılık matrisine göre aşağıdaki gibi orantılı olması ile mümkündür.  

𝛼 ve 𝛽 sabit katsayılardır. Modal sönüm oranı bu ifadelere bağlı olarak aşağıdaki gibi 

yazılabilir. 

 𝑓𝑞(𝑡) modal kuvvet vektörüdür ve fiziksel kuvvetle ilişkisi: 

şeklindedir. Sönümsüz bir sistemin reseptans tipindeki FTF matrisi baştan [Φ]𝑇 ile sondan [Φ] ile 

çarpılırsa aşağıdaki gibi yazılabilir. 

Denklem (3.38)’deki ifadeler bu denkleme yerleştirilirse aşağıdaki gibi sadeleştirilebilir. 

[
⋱

𝜆𝑛
⋱

] = [
⋱

𝑚𝑛
⋱

]

−1

[
⋱

𝑘𝑛
⋱

]  (3.36) 

{𝜙}𝑛 =
1

√𝑚𝑛
{𝜓}𝑛  ,      [Φ]𝑛 = [

⋱
𝑚𝑛

⋱

]

1

2

 [𝜓] (3.37) 

[Φ]𝑇[𝑀][Φ] = [𝐼] ,   [Φ]𝑇[𝐾][Φ] = [
⋱

𝜆𝑛
⋱

] (3.38) 

𝑞̈𝑛(𝑡) + 2𝜁𝑛𝜔𝑛𝑞̇𝑛(𝑡) + 𝜔𝑛
2𝑞𝑛(𝑡) = 𝑓𝑞(𝑡)  (3.39) 

[𝐶] = 𝛼[𝑀] + 𝛽[𝐾]  (3.40) 

𝜉𝑛 =
𝛼+𝛽𝜔𝑛

2

2𝜔𝑛
  (3.41) 

{𝑓𝑞(𝑡)} = [Φ]
𝑇{𝑓(𝑡)}  (3.42) 

[Φ]𝑇[𝛼(𝜔)]−1[Φ] = [Φ]𝑇[−𝜔2[𝑀] + [𝐾]][Φ]  (3.43) 
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Bu denklem, bazı cebirsel işlemlerden sonra öz vektörlere ve doğal frekanslarına bağlı olarak 

aşağıdaki halini alır. 

Reseptans tipindeki FTF matrisinin hesaplanması dinamik direngenlik matrisinin tersinin 

alınmasını gerektirdiği için zahmetli bir iştir. Ama denklem (3.45)’de köşegen bir matrisin tersinin 

alınması söz konusudur. Dolayısıyla modal analiz yöntemi FTF’lerin hesaplanması için oldukça 

avantajlıdır. 

i ve j sırasıyla r’yinci moda ait cevap ve tahrik koordinatları olmak üzere bu iki koordinat 

için dinamik esneklik tipindeki FTF’ler aşağıdaki gibi n tane modun toplamı şeklinde ifade 

edilebilir. 

Burada Φ𝑖𝑟 ve Φ𝑗𝑟 sırasıyla r’yinci modun cevap ve tahrik koordinatlarına ait öz vektörler, 

𝜔𝑟 r’yinci moda ait doğal frekans ve 𝜔 tahrik kuvvetinin frekansını ifade etmektedir. 

[Φ]𝑇[𝛼(𝜔)]−1[Φ] = [
⋱

(𝜔𝑛
2 − 𝜔2)

⋱

]  (3.44) 

[𝛼(𝜔)] = Φ [
⋱

(𝜔𝑛
2 − 𝜔2)

⋱

]

−1

Φ𝑇  (3.45) 

𝛼𝑖𝑗(𝜔) = ∑
Φ𝑖𝑟Φ𝑗𝑟

𝜔𝑟
2−𝜔2

𝑛
𝑟=1   (3.46) 



 

 

4. TEMAS MEKANİĞİ 

Klasik Mekanik (Newton Mekaniği), genellikle gerçek dünyadaki nesneleri nokta 

parçacıklar (ihmal edilebilir boyuttaki nesneler) olarak modeller. Bir nokta parçacığın hareketi, o 

parçacığın konumu, kütlesi ve ona uygulanan kuvvetler gibi az sayıda parametre tarafından 

belirlenir.  

Temas mekaniği ise yüzey ve geometrik kısıtlamaları dikkate alan nesnelerin kitlesel 

özellikleriyle ilgilenir. Yerel elastik deformasyon üzerindeki geometrik etkiler, Hertz Elastik 

Deformasyon Teorisi ile 1880 gibi erken bir tarihte ortaya çıkmıştır [100]. Bu teori Hertz’in, birden 

çok üst üste yerleştirilmiş merceğin optik özelliklerinin, onları bir arada tutan kuvvetle nasıl 

değişebileceğini incelerken doğmuştur. Hertz temas gerilimi, iki eğimli yüzey temas ettiğinde ve 

uygulanan yükler altında hafifçe deforme olduğunda meydana gelen yerel gerilimleri ifade eder. 

Normal temas kuvvetinin bir fonksiyonu olarak temas gerilimi, her iki cismin eğrilik yarıçapına ve 

her iki cismin elastisite modülüne bağlı olarak elde edilir. Başka bir ifadeyle bu teori, bir kürenin 

bir düzlemle (veya daha genel olarak iki küre arasındaki) dairesel temas alanını, malzemelerin 

elastik deformasyon özellikleriyle ilişkilendirir. Bu teoride Van der Waals veya temas yapışma 

(adhesive) etkileşimleri gibi yüzey etkileşimleri ihmal edilir. 

Yaklaşık yüz yıl sonra Johnson, Kendall, Roberts (JKR) tarafından temasın yapışkan olduğu 

varsayımı ile Hertz teorisi güncellenmiştir [101]. Bu teori, temas alanını elastik malzeme 

özelliklerinin yanı sıra ara yüzey etkileşim mukavemeti ile ilişkilendirir. Temasın yapışkan 

özellikte olması nedeniyle, ayrılma rejiminde ve yükün kaldırılması sırasında da temaslar 

oluşabilir. Hertz teorisi gibi, JKR tarafından önerilen bu çözüm de elastik küresel malzeme 

temaslarını incelemiştir. Bradley modelinde, çekici etkileşim kuvvetlerinin etkisinden kaynaklanan 

herhangi bir elastik malzeme deformasyonu ihmal edilir ve temas tamamen Van der Waals modeli 

ile modellenir. Daha kapsamlı bir teori olan DMT (Derjaguin, Muller, Toporov) teorisi [102], 

elastik temas rejimi dışında ek bir yüke neden olan Van der Waals etkileşimlerini de dikkate alır. 

İki yüzey birbirinden ayrılmışsa ve önemli ölçüde uzakta ise, bu teori Bradley modelinin 

basitleştirilmiş halidir. Bu temas mekaniği modelleri Şekil 4.1’de görsel olarak verilmiştir. Temas 

mekaniği modelleri ile ilgili ayrıntılı detaylar kaynak [100]’da mevcuttur. Kısaca bu modeller 

aşağıdaki gibi özetlenebilir. 

 Hertz: Temas eden cisimler tamamen elastik kabul edilir. 

 JKR: Temas eden cisimler tamamen elastik ve temas bölgesinde yapışma olduğu kabul 

edilir. 

 Bradley: Katı küre-küre teması için tamamen Van der Waals modeli dikkate alınır. 

 DMT: Temas eden cisimler tamamen elastik, yapışkan ve Van der Waals modeli dikkate 

alınır. 
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Şekil 4.1. Temas mekaniği modelleri 

İki elastik katı cisim birbirine temas ettirildiğinde, temas başlangıçta tek bir noktada veya bir 

çizgi boyunca gerçekleşir. Uygulanan kuvvetin etkisi altında, ilk temas noktalarının çevresinde 

deforme olurlar, böylece iki cismin boyutlarına kıyasla küçük ama sonlu bir alanda temas ederler 

(Şekil 4.2) . Bu temas alanının şeklini ve artan yük ile boyutunun nasıl değiştiğini, ara yüz boyunca 

iletilen normal ve teğetsel yüzey kuvvetlerinin büyüklüğünü ve dağılımını tahmin etmek temas 

mekaniğinin ilgi alanıdır. Ayrıca, her iki katı cisimdeki deformasyon ve gerilme bileşenlerinin 

temas bölgesi çevresinde hesaplanması önemli konudur. 

 

 

 

Şekil 4.2. İki elastik cismin teması ve deformasyonu 

Bu tez çalışmasında parçacıkların teması için Hertz temas modeli kullanıldığından bu 

modelden aşağıda bahsedilmiştir. 

4.1. Hertz Elastik Temas Modeli 

Hertz temas teorisi, mühendisler ve araştırmacılar için birçok kolaylık sağlayan klasik bir 

temas mekaniği teorisidir. Teorinin türetilmesi nispeten zor olsa da, nihai çözüm, temas 

noktasındaki etkileşimleri cisimler arasında oluşan gerilime bağlayan bir dizi basit analitik denklem 

verir. Eliptik, küresel ve silindirik yüzey temasları için Hertz temas denklemleri detaylı 

tanımlanmıştır. Bu çalışmada sadece küresel yüzey temasları dikkate alınmıştır.  

Hertz temas modelinde her yüzeyin hem mikro hem de makro ölçekte topografik olarak 

pürüzsüz olduğu kabul edilir. Mikro ölçekte bu durum, süreksiz temasa veya temas gerilmelerinde 

yerel değişimlere yol açabilecek küçük yüzey düzensizliklerinin yokluğu veya dikkate alınmaması 
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anlamına gelir. Makro ölçekte ise, yüzey profilleri, temas bölgesindeki ikinci türevlerine kadar 

sürekli olduğu kabul edilir. Ayrıca bu modelde cisimlerin birbirine yapışması ve aralarında bağ 

oluşturması dikkate alınmamaktadır. Temas alanı uygulanan kuvvete ve cisimlerin geometrisine 

bağlıdır. Elastik cisimlerin teması sonrası bir miktar deformasyona uğradığı kabul edilir. Bu 

varsayımlara dayalı küresel cisim temasları için temas kuvvetlerini elde etmek üzere geliştirilen 

Hertz temas modeli aşağıda açıklanmıştır. 

4.2. Elastik cisimlerin teması 

Şekil 4.3’te gösterildiği gibi iki küresel elastik katı cisim birbirine temas ettiğinde uygulanan 

kuvvete oranla parçacıklar elastik deformasyona maruz kalırlar. Bir miktar birbiri üzerine binerler. 

Cisimlerin üst üste binmesine girinti miktarı adı verilmektedir ve şekilde (𝛿) harfi ile gösterilmiştir. 

Cisimlerin temas halinde olması durumunda girinti miktarı aşağıdaki formül ile hesaplanabilir. 

 

 

 

Şekil 4.3. İki parçacığın çarpışma modeli 

Burada, 𝑟𝐴, 𝑟𝐵 A ve B parçacığının yarıçapı, 𝑹𝐴 ve 𝑹𝐵 sırasıyla A ve B parçacıklarının 

ağırlık merkezlerinin referans noktasına göre konum vektörüdür. Kalın yazı tipi ile verilen terimler 

vektörleri belirtmektedir.  |𝑹𝐴 − 𝑹𝐵| ifadesi (𝑹𝐴 − 𝑹𝐵) vektörünün normudur. 𝛿’nın sıfırdan 

büyük olması halinde parçacıklar arasında temas gerçekleşmiştir demektir.  Parçacıkların konumu 

hücre boşluğunun merkezi referans alınarak elde edilebilir. A parçacığının hızı VA, B parçacığının 

hızı VB olsun. Hertz temas mekaniğinde temas kuvvetleri bağıl hızlar kullanılarak hesaplanır. 

Dolayısıyla, B parçacığının A parçacığına göre bağıl hızı 𝑽𝐵/𝐴 = 𝑽𝑟𝑒𝑙 = 𝑽𝐵 − 𝑽𝐴 ile hesaplanır. 

Parçacıkların açısal hızları (𝝎𝐴, 𝝎𝐵) da hesaba katılırsa (Şekil 4.4) temas noktasının bağıl hızı 

aşağıdaki gibi hesaplanabilir. 

 

𝛿 = (𝑟𝐴 + 𝑟𝐵) − |𝑹𝑨 − 𝑹𝑩|  (4.1) 
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Şekil 4.4. Temas noktasının hız bileşenleri. 

Temas noktasının bağıl hızının normal 𝒏⃗⃗  düzlemine izdüşümünü hesaplamak için skaler 

çarpım kullanılabilir. 

𝜹̇𝑛 temas noktasının bağıl hızının normal düzlem bileşenidir. 𝒏⃗⃗  ve 𝒕  sırasıyla B cisminin 

merkezinden A cisminin merkezine doğru birim vektör ve bu vektöre dik birim vektörü ifade 

etmektedir. Temas noktasının bağıl hızının teğetsel düzlem bileşeni (𝜹̇𝑡) aşağıdaki gibi vektörel 

elde edilebilir.  

B parçacığının merkezinden A parçacığının merkezine doğru olan normal birim vektör; 

ile hesaplanır. Temas noktasının bağıl hızının teğetsel düzlem bileşeni denklem (4.4)’ün normu 

alınarak ve teğetsel birim vektörü ise normalize edilmesi ile bulunabilir.  

Parçacıkların hücre yüzeyi ile temasını hesaplayabilmek için yüzey denklemlerine ihtiyaç 

vardır. Şekil 4.5’te herhangi bir üç noktası bilinen bir düzlem verilmiştir. Bu noktalardan herhangi 

biri referans alınarak bu noktadan diğer iki noktaya olan vektörler aşağıdaki gibi yazılabilir. 

 

𝑽𝑟𝑒𝑙
𝑝
= 𝑽𝑟𝑒𝑙 + (𝑟𝐴𝝎𝐴 + 𝑟𝐵𝝎𝐵) × 𝒏⃗⃗   (4.2) 

𝜹̇𝑛 = 𝑽𝑟𝑒𝑙
𝑝
∙ 𝒏⃗⃗   (4.3) 

𝜹̇𝑡
⃗⃗⃗⃗ = 𝑽𝑟𝑒𝑙

𝑝
− (𝑽𝑟𝑒𝑙

𝑝
∙ 𝒏⃗⃗ )𝒏⃗⃗   (4.4) 

𝒏⃗⃗ =
𝑹𝐴−𝑹𝐵

|𝑹𝐴−𝑹𝐵|
  (4.5) 

𝒕 =
𝜹̇𝒕
⃗⃗⃗⃗ 

|𝜹̇𝒕
⃗⃗⃗⃗ |

  (4.6) 
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Aynı düzlem üzerinde bulunan bu iki vektörün vektörel çarpımı bu düzleme dik vektörü 

verecektir. 

Sonuç olarak, bu yüzeye dik vektör (𝑛⃗ ) aşağıdaki gibi elde edilir. 

 

 

 

Şekil 4.5. Üç noktası bilinen bir düzlem 

3 boyutlu uzayda bir düzlemin denklemi normal vektör (düzleme dik) ve düzlem üzerinde 

bilinen bir nokta ile tanımlanır. Bir düzlemin normal vektörü 𝒏⃗⃗  ve düzlemdeki bilinen noktası P1 

olsun (Şekil 4.6). Düzlem üzerindeki herhangi bir noktayı P olarak kabul edelim. Düzlem üzerinde 

bulunan P1'den P'ye bağlanan bir vektör tanımlayabiliriz. 

 

Şekil 4.6. 3B uzayda düzlem grafiği 

𝑃𝑄 = 𝑄 − 𝑃 = (𝑥2 − 𝑥1, 𝑦2 − 𝑦1, 𝑧2 − 𝑧1)  

𝑃𝑅 = 𝑅 − 𝑃 = (𝑥3 − 𝑥1, 𝑦3 − 𝑦1, 𝑧3 − 𝑧1)  

(4.7) 

𝑃𝑄 𝑥 𝑃𝑅 = (𝑏1𝑐2 − 𝑏2𝑐1,  𝑎2𝑐1 − 𝑎1𝑐2,  𝑎1𝑏2 − 𝑏1𝑎2)  (4.8) 

𝑛⃗ = (𝑎, 𝑏, 𝑐)   (4.9) 

𝑷 − 𝑷1 = (𝑥 − 𝑥1, 𝑦 − 𝑦1, 𝑧 − 𝑧1)  (4.10) 
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Bu düzlemdeki 𝑷 − 𝑷1 vektörü ile 𝒏⃗⃗   normal vektörü birbirine dik olduğundan, bu iki 

vektörün skaler çarpımı 0 olmalıdır. 

Skaler çarpım neticesinde aşağıdaki eşitliliği elde edilir. 

Eğer eşitlik (4.12)’deki sabit olan kısım 𝑑 = −(𝑎𝑥1 + 𝑏𝑦1 + 𝑐𝑧1) olarak tanımlanırsa üç 

boyutlu uzayda düzlem denklemi aşağıdaki gibi ifade edilir. 

𝒏⃗⃗  normal vektör normalleştirilirse (birim vektör), o zaman düzlem denkleminin sabit terimi 

d referans noktasından uzaklık olur. Dolayısı ile A(xA, yA, zA)  parçacığının yukarıda ifade edilen 

düzleme olan dik uzaklığı aşağıdaki denklem ile hesaplanır. 

 

Şekil 4.7. Parçacık-düzlem temas modeli 

Bir A cisminin düzlemle temas modeli Şekil 4.7’de gösterilmiştir. A cisminin düzlem ile 

teması halinde girinti miktarı aşağıdaki formül ile hesaplanabilir. 

Düzlemin Vd hızıyla doğrusal hareket ettiği varsayımı ile düzlemin A parçacığına göre bağıl 

hızı 𝑽𝑑/𝐴 = 𝑽𝑏𝑎ğ𝚤𝑙 = 𝑽𝑑 − 𝑽𝐴 ile hesaplanır. Düzlem üzerindeki temas noktasından A cisminin 

merkezine doğru olan birim vektör denklem (4.14) yardımıyla hesaplanabilir. 

𝒏⃗⃗  ∙ (𝑷 − 𝑷1) = 0  (4.11) 

(𝑎, 𝑏, 𝑐) ∙ (𝑥 − 𝑥1, 𝑦 − 𝑦1, 𝑧 − 𝑧1) = 0  

𝑎(𝑥 − 𝑥1) + 𝑏(𝑦 − 𝑦1) + 𝑐(𝑧 − 𝑧1) = 0  

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 − (𝑎𝑥1 + 𝑏𝑦1 + 𝑐𝑧1) = 0  

(4.12) 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0  (4.13) 

𝑑𝑑 =
𝑎𝑥𝐴+𝑏𝑦𝐴+𝑐𝑧𝐴+𝑑

√𝑎2+𝑏2+𝑐2 
  (4.14) 

𝛿 = (𝑟𝐴 − 𝑑𝑑)  (4.15) 

A 

δ 

VA 

V
d
 

r
A
 

R
A
 

ω
A
 

n 

t 

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 

𝑉𝐴
𝑝
 P 
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Temas noktasının hızını hesaplamak için A parçacığının açısal dönmesi de dâhil edilir. 

Temas noktasının normal düzleme iz düşümü Denklem (4.3), teğetsel izdüşümü Denklem 

(4.4) ve teğetsel birim vektörü Denklem (4.6) ile hesaplanır. 

4.3. Temas Kuvvetleri 

 

 

 

Şekil 4.8. İki katı cismin temas modeli ve oluşan kuvvetler [103]. 

İki katı cismin teması esnasında ortaya çıkan kuvvetler Şekil 4.8’de gösterildiği gibi normal 

ve teğetsel kuvvetler olarak iki bileşene ayrılır. Normal kuvvetler parçacıklarda ötelemeye, teğetsel 

kuvvetler ise açısal dönmeye sebep olmaktadır. Hertz temas teorisinde, temas kuvvetinin normal 

bileşeni, temas eden cisimlerin malzeme ve geometrik özelliklerine bağlı olarak yay ve sönüm 

kuvveti olarak modellenmektedir. Teğetsel kuvvet ise Coulomb sürtünme kuvveti olarak 

modellenebilmektedir. Bölüm 4.1’de bahsedilen varsayımlar sonucu bu kuvvetler aşağıdaki 

formüllerle ifade edilmişlerdir. 

Burada; 𝑭𝑛 normal doğrultuda oluşan kuvvet, 𝑘𝑛 Hertz yay sabiti, 𝛿 girinti miktarı, 𝑐𝑛 sönüm 

sabiti, 𝜹̇𝑛, 𝜹̇𝑡 sırasıyla parçacıkların bağıl hızının normal ve teğetsel vektöre izdüşümüdür. 𝒏⃗⃗  B 

parçacığının merkezinden A parçacığının merkezine doğru olan birim vektör, 𝜇 sürtünme 

katsayısını ifade etmektedir. Normal kuvvetin ilk terimi yay kuvveti ikinci terimi ise sönüm kuvveti 

𝒏⃗⃗ =
𝑎𝒊+𝑏𝒋+𝑐𝒌

√𝑎2+𝑏2+𝑐2
  (4.16) 

𝑽𝑟𝑒𝑙
𝑝
= 𝑽𝑑/𝐴 + (𝑟𝐴𝝎𝐴) × 𝒏⃗⃗   (4.17) 

𝑭𝑛 = (𝑘𝑛𝛿
3

2 + 𝑐𝑛𝛿
1

4𝜹̇𝑛) 𝒏⃗⃗    (4.18) 

𝑭𝑡 = 𝜇𝑭𝒏
𝜹̇𝒕

|𝜹̇𝒕|
   (4.19) 

A 

B 

A B 

kn 

cn 

µ 

Fn 

Ft Rijitlik 

Sürtünme Sönüm 
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olarak modellenmiştir. Hertz yay sabiti (𝑘𝑛) cisimlerin mekanik ve fiziksel özelliklerine bağlıdır 

ve temas eden iki küresel elastik cisim için aşağıdaki gibi ifade edilir. 

Burada; 𝑟𝑒ş cisimlerin eşdeğer yarıçapı ve 𝐸𝑒ş eşdeğer elastisite modülü olup aşağıdaki gibi 

hesaplanır. 

Burada 𝜈 Poisson oranıdır ve alt indis d düzlemi simgelemektedir. 𝑐𝑛 sönüm sabiti de 

cisimlerin mekanik ve fiziksel özelliklerine bağlı olmakla beraber 𝑘𝑛’nin fonksiyonu olarak 

aşağıdaki gibi hesaplanır. 

Burada meş eşdeğer kütle olup aşağıdaki gibi ifade edilir:  

𝛼 çarpışma sönümleme katsayısı olarak ifade edilir ve geri getirme (restitution) katsayısına 

(en) bağlıdır. Geri getirme katsayısı çarpışmanın esnekliği hakkında bilgi veren cismin malzemesine 

özgü bir terimdir. Cismin çarpışma sonrası hızının çarpışma öncesi hızına oranıdır. Başka bir ifade 

ile çarpışma esnasındaki kinetik enerjinin ne kadarının işe dönüştürüldüğüdür. 0 ile 1 arasında bir 

değerdir. Çarpışma öteleme kinetik enerjisinin dönme kinetik enerjisine, plastik deformasyona ve 

ısıya dönüştürülmesi nedeniyle bu değer neredeyse her zaman birden küçüktür. 1 olması 

durumunda temas tamamen elastiktir, diğer durumlarda elastik olmayan temas durumu söz 

konusudur. 

Şekil 4.9’da gösterildiği gibi her bir cisim aynı anda birden fazla cisim ve çevreleyen 

düzlemle temas edebilir. A cisminin n1 adet cisim ve n2 adet düzlem ile temas halinde olduğu 

durumda bu cisme etkiyen toplam kuvvetler ve momentler aşağıdaki gibi ifade edilir. 

𝑘𝑛 =
4

3√
𝑟𝑒ş𝐸𝑒ş  (4.20) 

İki Küresel Cisim Küresel Cisim –Düz Düzlem  

𝑟𝑒ş =
𝑟𝐴 ∗ 𝑟𝐵
𝑟𝐴 + 𝑟𝐵

 𝑟𝑒ş = 𝑟𝐴 

(4.21) 
𝐸𝑒ş =

𝐸𝐴𝐸𝐵

(1 − 𝜈𝐴
2)𝐸𝐵 + (1 − 𝜈𝐵

2)𝐸𝐴
 𝐸𝑒ş =

𝐸𝐴𝐸𝑑

(1 − 𝜈𝐴
2)𝐸𝑑 + (1 − 𝜈𝑑

2)𝐸𝐴
 

𝑐𝑛 = 𝛼√𝑚𝑒ş𝑘𝑛  (4.22) 

𝑚𝑒ş =
𝑚𝐴𝑚𝐵

𝑚𝐴+𝑚𝐵
     veya cisim-düz düzlem teması için    𝑚𝑒ş = 𝑚𝐴 (4.23) 

𝛼 = −𝑙𝑛 (𝑒𝑛)√
5

𝑙𝑛(𝑒𝑛)
2+𝜋2

  (4.24) 
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Şekil 4.9. A parçacığına etki eden toplam kuvvetler. 

Burada, 𝑭𝑨𝒋
𝒏 , 𝑭𝑨𝒋

𝒕  A cisminin j cismi ile ve 𝑭𝑨𝒅
𝒏 , 𝑭𝑨𝒅

𝒕  A cisminin d düzlemi ile temasından 

doğan normal ve teğetsel kuvvetleri; 𝒏⃗⃗ 𝑨𝒋 j cismi ile A cisminin merkezleri arasındaki ve 𝒏⃗⃗ 𝑨𝒅 d 

düzlemi ile A cisminin merkezi arasındaki birim vektörü ifade etmektedir. 

4.4. Ayrık Elemanlar Yöntemi 

Sürekli ortamlar yaklaşımında, tanecikli maddenin temel davranışı, genellikle kuvvet, stres 

gibi mekanik alan değişkenlerini ilişkilendiren diferansiyel denklemler biçiminde ifade edilen fizik 

yasaları tarafından tanımlanır. Bir maddenin bu yaklaşımla modellenmesi, maddenin sürekli olduğu 

ve kapladığı alanı tamamen doldurduğu varsayımıyla mümkündür. Sonuç olarak, bireysel 

parçacıkların davranışı göz ardı edilir. Ortaya çıkan hareket denklemleri analitik veya sonlu 

elemanlar yöntemi gibi sayısal olarak çözülür. 

Sürekli ortamlar yaklaşımının aksine, ayrık ortamlar yaklaşımı her bir parçacığı ayrı bir 

varlık olarak modeller ve tanecikli malzemeyi parçacıkların idealize edilmiş bir birleşimi olarak 

temsil eder. Genel sistem davranışı, bireysel parçacık etkileşimlerinden kaynaklanır. Ayrık 

ortamlar yaklaşımı, granüler ölçekte meydana gelen olayları araştırmak ve parçacıkların toplu 

davranışını simüle etmek için çok uygun bir yöntemdir.   

Ayrık elemanlar yöntemi (discrete element method - DEM) Cundall ve Strack [55] tarafından 

geliştirilmiş, çok sayıda küçük parçacığın hareketini ve bu hareketin etkisini hesaplamak için 

kullanılan bir sayısal yöntemdir. Bilgi işlem teknolojisindeki ilerlemeler ve gelişmiş sayısal 

algoritmalarla bilgisayarlarda çok sayıdaki parçacığı sayısal olarak simüle etmek mümkün hale 

gelmiştir. Günümüzde AEY, özellikle granüler akışlar, toz mekaniği ve kaya mekaniği olmak üzere 

𝑭𝑨 = ∑ 𝑭𝑨𝒋
𝒏𝑛1

𝑗=1 + ∑ 𝑭𝑨𝒅
𝒏𝑛2

𝑑=1   (4.25) 

𝑻𝑨 = −∑ 𝒓𝑨𝒏⃗⃗ 𝑨𝒋 × 𝑭𝑨𝒋
t − ∑ 𝒓𝑨𝒏⃗⃗ 𝑨𝒅 × 𝑭𝑨𝒅

𝑡𝑛2
𝑑=1

𝑛1
𝑗=1   (4.26) 
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granüler boyuttaki mühendislik problemlerini ele almanın etkili bir yöntemi olarak yaygın bir 

şekilde kabul görmektedir. Son birkaç yılda, AEY parçacık sönümleyicilerin analizinde geniş çapta 

kullanılmaktadır [29, 40, 104, 105]. 

AEY, çok çeşitli taneli akış ve kaya mekaniği hareketlerini simüle etmek için kullanılabilir. 

Fiziksel deneylere nazaran taneli parçacıkların hareketinin mikro dinamiklerinin daha ayrıntılı bir 

şekilde incelenmesine izin verir. Tanecikli bir ortamda oluşturulan kuvvet ağları, AEY kullanılarak 

görselleştirilebilir. Küçük ve çok parçacıklı deneylerde bu tür ölçümler neredeyse imkânsızdır. 

Bunun yanında AEY’nin en büyük dezavantajı maksimum parçacık sayısı ve simülasyon 

süresinin hesaplama kapasitesi ile sınırlı kalmasıdır. Hesaplamalı mühendislik alanlarında ve 

endüstrisinde sürekli yaklaşımlar kadar kolay ve yaygın bir şekilde benimsenmemesinin nedeni 

hesaplama açısından çok zaman almasıdır. 

AEY’nin teorisi tek serbestlik dereceli bir sistem üzerinde aşağıda anlatılmıştır. 

 

 

Şekil 4.10. Parçacık darbe sönümleyici mekanik modeli 

Parçacık sönümleyicinin sönümleme mekanizması, temel olarak parçacıklar arasındaki 

enerji yitimini ve parçacıklar ile ana yapı arasındaki darbe enerjisi dağılımını kapsar. Şekil 4.10’da 

gösterilen tek serbestlik dereceli bir sistemdeki parçacıkların hücre düzlemleri ile temasından 

kaynaklanan kuvvetlerin hareket doğrultusunda tekil kuvvetler olduğu kabul edilmektedir. n 

düzlem ile temas eden parçacık sayısı olmak üzere sistemdeki toplam eşdeğer temas kuvveti bu 

temas kuvvetlerinin bileşkesi olarak elde edilir. 

𝐹𝑝 hareket doğrultusundaki toplam bileşke temas kuvvetidir.  Şekil 4.10’da gösterilen 

sistemin hareket denklemi temas kuvveti varlığında aşağıdaki gibi yazılabilir. 

𝐹𝑝 = ∑ 𝐹𝑖𝑑
𝑥𝑛

𝑖=1   (4.27) 

k c 

m 

x 
F 

Fp 
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m, c, k sırasıyla sistemin kütle (parçacıkların kütlesi dahil değil), sönüm ve katılık 

değerleridir, F ise sisteme etkiyen tahrik kuvvetini ifade etmektedir. Bu denklemin çözümü ile 

sönümleyici parçacıkların sistemin titreşim genliği üzerindeki etkisi incelenebilir. 

Ana sistemin hareketini ayrıntılı olarak analiz etmek için tüm parçacıkların hareketi dikkate 

alınmalıdır. Bir parçacığının üç boyutlu uzaydaki hareketi, yerçekim etkisi g de dikkate alınarak 

aşağıda verilen denklemlerle ifade edilebilir. Parçacığın dönmesi 

denklemi ile hesaplanır. TA parçacık üzerine etki eden bileşke temas momenti, I parçacığın kütlesel 

atalet momenti, 𝜶 ise açısal ivmesidir. Parçacığın öteleme hareketi için ise aşağıdaki formül 

kullanılır. 

a parçacığın ivmesi, (𝑭𝑔 = −𝑚𝒈) parçacık üzerine etki eden bileşke yerçekimi kuvveti, FA 

ise A parçacığına etki eden parçacık-parçacık ve/veya parçacık-düzlem arasındaki bileşke temas 

kuvvetlerdir. İvmeler, parçacık hızlarını ve konumlarını güncellemek için belirli bir zaman 

adımında sayısal olarak aşağıdaki gibi integre edilebilir. 

Burada, x parçacık konumu, 𝜽 açısal konumu, V  hızı, 𝜶 açısal ivmesi, ∆𝑡 ise zaman adımıdır. 

AEY’de parçacıkların hareketini hesaplamak için yaygın olarak kullanılan bir yöntem de Verlet 

İntegrali yöntemidir. Verlet integrali, Newton'un hareket denklemlerini integre etmek için 

kullanılan sayısal bir yöntemdir [106]. Moleküler dinamik simülasyonlarında ve bilgisayar 

grafiklerinde parçacıkların yörüngelerini hesaplamak için sıklıkla kullanılır. Verlet integrali, 

oldukça iyi bir sayısal kararlılıkla birinci mertebe adi diferansiyel denklemlerin çözümünü daha az 

hesaplama maliyeti ile çözer. Verlet integrali yönteminde kullanılan algoritma aşağıda verilmiştir. 

1. Yarım zaman adımında parçacığın hızı hesaplanır. 

2. Yarım zaman adımında bulunan hız ifadesi kullanılarak parçacığın konumu hesaplanır. 

𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝐹 + 𝐹𝑝  (4.28) 

𝑻𝑨 = 𝐼𝜶  (4.29) 

𝑚a = 𝑭𝑔 + 𝑭𝐴  (4.30) 

𝑥(𝑡 + Δ𝑡) = 𝑥(𝑡) + 𝑉(𝑡)∆𝑡   ve     𝜃(𝑡 + Δ𝑡) = 𝜃(𝑡) + 𝜔(𝑡)∆𝑡 (4.31a) 

𝑉(𝑡 + Δ𝑡) = 𝑉(𝑡) + a(𝑡)∆𝑡     ve     𝜔(𝑡 + Δ𝑡) = 𝜔(𝑡) + 𝛼(𝑡)∆𝑡 (4.31b) 

𝑉 (𝑡 +
1

2
∆𝑡) = 𝑉(𝑡) +

1

2
a(𝑡)∆𝑡 ve  𝜔 (𝑡 +

1

2
∆𝑡) = 𝜔(𝑡) +

1

2
𝛼(𝑡)∆𝑡 (4.32) 



37 

3. Hesaplanan konum ve hız bilgileri kullanılarak parçacıkların hareketi analiz edilir. 

Denklemler (4.29) ve (4.30) yardımıyla ivmeler a(𝑡 + ∆𝑡) hesaplanır. 

4. Son olarak parçacığın tam zaman adımındaki hızı hesaplanır. 

Parçacıkların birbiri veya düzlem ile çarpışmasından kaynaklanan kuvvetlerin doğru 

hesaplanabilmesi ve gerçeğe yakın sonuçlar elde edilebilmesi için zaman aralığının dikkatli 

seçilmesi gerekir. Zaman adımı (∆𝑡)’nin seçimi, AEY simülasyonlarında kritik öneme sahiptir. 

Gerçekçi olmayan yüksek kuvvetlerle sonuçlanan aşırı üst üste binmeleri önlemek için yeterince 

küçük seçilmelidir. Uygun zaman adımı (Rayleigh zaman adımı), Rayleigh yüzey dalgası yayılma 

hızından yaklaşık olarak hesaplanabilir. Rayleigh Zaman Sabiti formülü aşağıdaki gibi hesaplanır. 

Burada, TR Rayleigh zaman sabiti, r parçacık yarıçapı, 𝜌 parçacık yoğunluğu ve G parçacık 

kayma modülüdür. Gerçekçi kuvvet iletim hızlarını sağlamak ve sayısal istikrarsızlığı önlemek için 

genellikle zaman aralığı bu değerin %10 ile %30’u arasında bir değer seçilir (0.1𝑇𝑅 < ∆𝑡 <

0.3𝑇𝑅). AEY’de zaman adımı malzeme özelliklerine bağlı olarak 10-4 ile 10-6 saniye aralığında 

olabilmektedir. 

Şekil 4.11’de akış şeması verilen, AEY ile analiz edilen bir parçacık sönümleyicili sistemin 

titreşim cevabı hesaplanırken şu aşamalar takip edilir: 

1. İlk olarak, parçacıkların başlangıç konumları belirlenir. İstenen sayıda parçacık yapı 

içerisindeki boşluğa rastgele yerleştirilir. Ana yapı ve parçacıklar serbest düşmeye maruz 

bırakılarak belirli bir süre analiz yapılır ve parçacıkların kararlı konuma geçmesi beklenir. 

Parçacıkların kararlı konumları kaydedilerek daha sonraki analizler için kullanılır.  

2. Ana yapının hareket denklemi başlangıç şartlarına göre hesaplanarak konum ve hızları 

elde edilir. Parçacık-parçacık ve parçacık-düzlem arası temas olup olmadığı kontrol 

edilir. δ>0 ise temas oluşmaktadır ve parçacığa etki eden temas kuvveti denklem (4.18) 

ve (4.19)'den hesaplanabilirken, δ≤0 ise temas kuvveti oluşmayacaktır. 

𝑥(𝑡 + ∆𝑡) = 𝑥(𝑡) + 𝑉 (𝑡 +
1

2
∆𝑡) ∆𝑡  ve   𝜃(𝑡 + ∆𝑡) = 𝜃(𝑡) + 𝜔 (𝑡 +

1

2
∆𝑡) ∆𝑡 (4.33) 

𝑉(𝑡 + ∆𝑡) = 𝑉 (𝑡 +
1

2
∆𝑡) +

1

2
a(𝑡 + ∆𝑡)∆𝑡  ve 

 𝜔(𝑡 + ∆𝑡) = 𝜔 (𝑡 +
1

2
∆𝑡) +

1

2
𝛼(𝑡 + ∆𝑡)∆𝑡  

(4.34) 

𝑇𝑅 = 𝜋𝑟√
𝜌

𝐺
  (4.35) 
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3. Eğer parçacığa etki eden birden çok temas kuvvetleri varsa toplam parçacık-parçacık 

temas kuvvetleri Denklem (4.25) ve (4.26) ve toplam parçacık-düzlem temas kuvveti 

Denklem (4.27) kullanılarak hesaplanır. 

4. Parçacığın hareket denklem (4.29) ve (4.30) ile elde edilir. 

5. Parçacıkların konumları Denklem (4.31) ile güncellenir. 

6. 1-4 adımları sistemdeki tüm parçacıklar için tek tek gerçekleştirilir. 

7. Ana sistemin hareket denklemi (denklem (4.28)) Fp temas kuvveti dâhil edilerek çözülür. 

8. Bu işlemler döngü halinde analiz süresince tekrarlanarak ana yapının yerdeğiştirme 

cevabı elde edilir. 

 

 
Şekil 4.11.  Ayrık elemanlar yöntemi simulasyon algoritması akış şeması. 

Bölüm 5-6-7’de ayrık elemanlar yönteminin uygulandığı çeşitli sayısal benzetim çalışmaları 

yapılmıştır. Bölüm 5’te AEY’nin tek serbestlik dereceli dikdörtgen, silindirik, bal peteği şeklindeki 

hücrelere sahip yapılar üzerindeki etkisi incelenmiştir. Bölüm 6’da yöntem bal peteği katmanlı 

ankastre-serbest sınır şartlarındaki çubuk üzerinde, bölüm 7’de ise bal peteği katmanlı ankastre-

serbest sınır şartlarındaki dönen çubuk üzerinde sayısal uygulamalar gerçekleştirilmiştir. 

 

𝛿̇
𝑛
, 𝛿̇
𝑡
 𝛿̇

𝑛
, 𝛿̇
𝑡
 



 

 

5. PARÇACIK SÖNÜMLEYİCİLİ TEK SERBESTLİK DERECELİ 

SİSTEMLER 

Bu bölümde yatay doğrultuda hareket eden (diğer doğrultularda hareketi kısıtlanmış) tek 

serbestlik dereceli yapılar ele alınmıştır. Yapı üzerinde çeşitli geometrilerde parçacıkların 

yerleştirileceği hücreler bulunmaktadır. Yapı harmonik olarak tahrik edilerek boş hücreli ve 

parçacık sönümlemeli frekans titreşim cevabı sayısal olarak elde edilmiştir. Parçacık sayısı, hücre 

boyutu, tahrik genliği gibi parametrelerin yapının titreşim genliği üzerindeki etkisi incelenmiştir. 

Analiz ve simülasyonlar için Matlab yazılımı kullanılmıştır. Bu amaçla birçok program ve alt 

programlar hazırlanmıştır. 

Analiz için kullanılan tek serbestlik dereceli sistem Şekil 5.1’de verilmiştir. Yapı dört yaprak 

yay üzerinde duran eşdeğer kütlesi M, sönüm katsayısı c ve yay katsayısı k‘dır. Sistem zeminden 

harmonik u hareketi ile tahrik edilmekte ve yalnızca x yönünde hareket etmektedir. Bu sistemin 

hareket denklemi matematiksel olarak aşağıdaki gibi ifade edilir. 

 

 

 

  

Şekil 5.1. Zeminden tahrikli sistem ve dinamik modeli 

b genliği ve 𝜔 tahrik frekansı olmak üzere 𝑢 = 𝑏 sin(𝜔𝑡) ile ifade edilen harmonik bir 

harekettir. Bu ifade ve türevi yukarıdaki denkleme yerleştirilirse; 

denklemi elde edilir. Bu ifaden anlaşılacağı üzere zeminden harmonik olarak tahrik edilen sistem, 

zorlanmış titreşim problemine dönüşmektedir. Bu ifade aşağıdaki gibi yeniden düzenlenebilir. 

M𝑥̈ + 𝑐(𝑥̇ − 𝑢̇) + 𝑘(𝑥 − 𝑢) = 0  (5.1) 

M𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝑘𝑏 sin(𝜔𝑡) + 𝑐𝑏𝜔 cos(𝜔𝑡)  (5.2) 

M𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = uz  (5.3) 
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Burada 𝑢𝑧 = ℝsin(𝜔𝑡 − 𝜗) olarak tanımlanmıştır. Bu ifadedeki parametreler yapının 

özelliklerine ve zemin hareketine bağlı olarak; 

şeklinde hesaplanmaktadır. Sonuç olarak, zemin hareketi genliği ℝ ve faz açısı 𝜗 olan harmonik 

bir eşdeğer kuvvete dönüşür. Denklem (5.3)’ün sıfır başlangıç şartları için kararlı durum cevabı; 

olarak yazılabilir. 𝜙 faz açısı olup aşağıdaki gibi hesaplanır. 

Sistemin cevabı aşağıdaki gibi de yazılabilir. 

Burada; 

olarak hesaplanır. 

Tablo 5.1. Sistemim mekanik özellikleri  

Parametre Değer 

M [kg] 0.293 

c [Ns/m] 0.116 

k [N/m] 1602.7 

 

Bu sistemin analizlerde kullanılacak eşdeğer mekanik özellikleri Tablo 5.1’de verilmiştir. 

Tek serbestlik dereceli sistemin doğal frekansı kısaca 𝜔𝑛 = √𝑘/𝑀 ifadesi ile elde edilebilir. Bu 

sistemin doğal frekansı yaklaşık olarak 11.8 Hz’e denk gelmektedir. Eğer bu sistem bu frekansta 

tahrik edilirse titreşim genliği aşırı artacaktır.  

Bu tek serbestlik dereceli sistem durum-uzay matrisine aşağıdaki gibi indirgenebilir. 

ℝ = 𝑏√𝑘2 + (𝑐𝜔)2     ve     𝜗 = tan−1 (
−𝑐𝜔

𝑘
) (5.4) 

𝑥(𝑡) =
ℝ

√(𝑘−𝑚𝜔)2+(𝑐𝜔)2
sin (𝜔𝑡 − 𝜗− 𝜙)  (5.5) 

𝜙 = tan−1(
𝑐𝜔

𝑘−𝑚𝜔2
)  (5.6) 

𝑥(𝑡) = 𝕏sin (𝜔𝑡 − Φ)  (5.7) 

𝕏 =
𝑏√𝑘2+(𝑐𝜔)2

√(𝑘−𝑚𝜔)2+(𝑐𝜔)2
     ve     𝑡𝑎𝑛Φ =

𝑚𝑐𝜔3

𝑘(𝑘−𝑚𝜔2)+(𝑐𝜔)2
 (5.8) 

𝑧 = 𝑨𝑧̇ + 𝑩𝑢𝑧
𝑦 = 𝑪𝑧

  (5.9) 
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𝑧 = {𝑥, 𝑥̇}𝑇 şeklinde durum değişkenleri, 𝐴 = [
0 1

−𝑘/𝑀 −𝑐/𝑀
], 𝐵 = [

0
1/𝑀

], C = [1 0] 

olması durumunda sistemin çıktısı (y) olarak yapının yerdeğiştirmesi elde edilmektedir. Sistem b=1 

mm tahrik genliği ile 30 s boyunca 9-15 Hz arasında 0.01 frekans adımıyla Runge-Kutta yöntemi 

ile çözülmüştür. Zaman adımı 10-6 sn olarak belirlemiştir. Her frekans değerinde hareket 

denkleminin çözülmesiyle sistemin titreşim genliği elde edilmiştir. Yapının sadece hareket 

doğrultusunda öteleme hareketi yaptığı varsayılmış, yapının dönmesi ihmal edilmiştir. Zemin 

tahrik frekansı F=10.0 ve 11.8 Hz iken yapının yerdeğiştirme cevabı Şekil 5.2’de verilmiştir. Yapı 

yaklaşık 25 sn de kararlı duruma geçmektedir. Sistem kararlı duruma geldikten sonra maksimum 

genliğinin rms (ortalama karekök, harmonik hareket için = genlik/√2) değeri hesaplanarak Şekil 

5.3 çizilmiştir. Bu grafikten açıkça görüldüğü gibi rezonans halinde sistemin genliği aşırı 

artmaktadır. 

 

 

  

Şekil 5.2. İki farklı tahrik frekansı için yapının yerdeğiştirme cevabı. 

 

Şekil 5.3. Zeminden harmonik olarak tahrik edilen sistemin frekans-titreşim genliği grafiği (b=1 mm). 
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5.1. Dikdörtgen Prizması Hücreli Yapıda PDS’nin Etkisi 

 

Şekil 5.4. a) Dikdörtgen prizması hücreli parçacık sönümleyicili sistem ve b) Dinamik modeli 

Yukarıda matematiksel modeli oluşturulan sistemin rezonans çevresindeki titreşim genliğini 

sönümleyici parçacıklar kullanarak azaltmak için Şekil 5.4’te gösterildiği gibi üzerinde dikdörtgen 

prizması şeklinde hücre açılarak bu hücrelerin içerisine çok sayıda parçacık yerleştirilmiştir. Bu 

hücrenin eni W=50 mm, boyu L=50 mm ve yüksekliği H=30 mm‘dir. Sistemim mekanik 

özelliklerinin değişmediği varsayılmıştır. Sistemin hareketi ile parçacıklar hücre duvarlarına 

çarparak temas kuvvetlerini oluşturur. Sönüme katkı sağlayan kuvvetler sadece sistemin hareket 

doğrultusunda olan bileşkesidir. Hareket doğrultusundaki bütün yüzey temas kuvvetlerinin 

bileşkesi Şekil 5.5’te gösterildiği gibi hücre merkezine etki eden bir tekil eşdeğer kuvvet (Fp) olarak 

modellenmiştir. Bu durumda denklem (5.1) aşağıdaki gibi yeniden düzenlenebilir. 

 

 

 

Şekil 5.5. Yüzey temas kuvvetleri ve eşdeğer modeli 

M𝑥̈ + 𝑐(𝑥̇ − 𝑢̇) + 𝑘(𝑥 − 𝑢) = 𝐹𝑝  veya

M𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝑢𝑧 + 𝐹𝑝
   (5.10) 

u 
U 

fp 

c 

k 

x 

(a) 
(b) 

u 

H 

L 

W 

Fp Fid 

Hareket yönü 
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Sönümleyici parçacık olarak akrilikten üretilmiş homojen küresel toplar seçilmiş ve bu 

topların fiziksel ve mekanik özellikleri Tablo 5.2’de verilmiştir. Saeki [29] aynı ağırlıktaki akrilik 

parçacıkların kurşun ve çelik parçacıklara nazaran sönüm veriminin daha iyi olduğunu bildirmiştir. 

Tablo 5.2. Sönümleyici parçacıkların fiziksel ve mekanik özellikleri [29]. 

Parametre Değer 

Yarıçap (m) 0.003 

Yoğunluk (kg/m3) 1190 

Kayma modülü (Pa) 0.125x109 

Sürtünme Katsayısı (𝜇) 0.52 

Sönüm Katsayısı (𝛼) 0.077 

Hertz Yay Katsayısı (N/m3/2)  

 Parçacık-Parçacık (Kn) 1.0x107 

 Parçacık-Düzlem (Kn) 1.3x107 

 

Dikdörtgen prizması 6 adet yüzeye sahip ve bu yüzeylere ait düzlem denklemleri ile normal 

birim vektörler (düzlemden parçacık merkezlerine dik) hücre merkezi referans alınarak Şekil 5.6’da 

verilmiştir. 

 

 

(𝑥 − 𝑥𝑠𝑖𝑠𝑡𝑒𝑚) ∓
L

2
= 0

y ∓
W

2
= 0

𝑧 ∓
H

2
= 0

 

{
 
 

 
 
𝑛1
𝑛2
𝑛3
𝑛4
𝑛5
𝑛6}
 
 

 
 

=

[
 
 
 
 
 
−1 0 0

1 0 0

0 −1 0

0 1 0

0 0 −1

0 0 1 ]
 
 
 
 
 

 

Şekil 5.6. Dikdörtgen prizması yüzeyleri, bu yüzeylere ait düzlem denklemleri ve normal birim vektörler. 

Hücre merkezi referans noktası olmak üzere, 𝑥𝑠𝑖𝑠𝑡𝑒𝑚 yapının yer değiştirmesini ifade 

etmektedir ve denklem (5.10)’un çözümü ile elde edilir. x yönünde hareket olduğu için sadece bu 

doğrultuda referans noktası kayacaktır. 

Parçacıkların başlangıç konumlarını belirlemek için hücre içerisine istenen sayıda parçacık 

yerleştirilerek serbest düşmeye maruz bırakılmışlardır. 10 sn’lik bir analiz sonucunda parçacıklar 

kararlı konuma erişmişlerdir. n hücreye yerleştirilmiş parçacık sayısı olmak üzere parçacıkların bu 

konumları [x;y;z]3xn şeklinde vektörel kaydedilerek daha sonraki analizler için kullanılmıştır. 

Parçacıkların başlangıç hız, ivme, açısal konum, açısal hız ve açısal ivme değerleri sıfır olarak 

alınmıştır. Zaman adımı Denklem (4.35) kullanılarak 5x10-6 sn olarak belirlenmiştir. Durum-uzay 

modeli ile tanımlanan ana yapının hareket denklemi Matlab programında çözülerek, sistemin çıktısı 

olarak konum (x) ve hız (𝑥̇) ifadeleri elde edilmiştir. Yapının hareketi sonrası parçacıkların birbiri 

x 

y 

z 

1 

2 

3 
4 

5 

6 
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ve hücre yüzeyleri ile temasları kontrol edilerek etkileşimleri halinde Bölüm 3’te detayları verilen 

temas kuvvetleri, parçacıkların ivmeleri ve açısal ivmeleri hesaplanmıştır. Parçacıkların 

ivmelerinin zamana göre integrali alınarak konum ve hız ifadeleri güncellenmiştir. 

 

 

 

Şekil 5.7. Parçacıkların yüzeylerle temasından kaynaklanan kuvvetler. 

𝐹𝑝 hesaplanırken sadece parçacıkların hücre yüzeyleri ile teması dikkate alınır.  Şekil 5.7’de 

gösterildiği gibi A, B, C parçacıkları 1, 3 ve 4 nolu yüzeylerle temas ediyor olsun. Bütün temas 

noktalarında normal ve teğetsel temas kuvvetleri oluşacaktır. Bu temas kuvvetlerinden hareket 

yönünde olanlar toplanarak (𝐹𝑝 = 𝐹𝐴4
𝑡 + 𝐹𝐴1

𝑛 + 𝐹𝐵1
𝑛 + 𝐹𝐶1

𝑛 + 𝐹𝐶3
𝑡 ) ana yapıya etki eden kuvvet 

bulunur. 

 

 

Şekil 5.8. Fp’nin zaman adımına bağlı değişimi.  
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Şekil 5.9. Farklı zaman adımı için PDS’li sistemde oluşan temas kuvveti Fp a) Δt=1e-5 sn b) Δt=1e-6 sn 

20x12x16 (LxWxH) boyutlarındaki dikdörtgensel hücreye 30 adet yarıçapı 2 mm olan 

parçacıklar yerleştirilerek genliği 1 mm ve frekansı 11.5 Hz olan zemin hareketi ile tahrik 

edilmiştir. Zaman adımı 10-5 ile 10-7 sn arasında seçilerek her bir zaman adımında yapının cevabı 

ve yüzeylerle olan toplam temas kuvveti elde edilmiştir. Yüzeylerle olan toplam temas kuvveti 

Fp’nin rms değeri hesaplanarak zaman adımına göre değişimi Şekil 5.8’de verilmiştir. Zaman adımı 

Δt=10-5 ve 10-6 sn için elde edilen Fp kuvveti Şekil 5.9’da verilmiştir. Zaman adımı 10-5 sn’den daha 

büyük seçilmesi durumunda aşırı temas kuvvetleri meydana gelmiş ve parçacıklar hücrelerden 

ayrılmışlardır. Parçacıkların hücreden ayrılması durumunda analiz sonlandırılmıştır. Zaman adımı 

5x10-6 sn’den sonra Fp değişmemekte fakat çözüm süresi hayli uzamaktadır. Bu sebeple zamandan 

kazanmak için zaman adımı 5x10-6 sn seçilmiştir. 

Ayrık elemanlar yöntemi parçacıkların hareketini modellemek için kullanılmıştır. 

Parçacıkların ve ana yapının hareketi aşağıdaki süreçler takip edilerek analiz edilmiştir. 

 

Şekil 5.10. Parçacıkların (a) birbiriyle ve (b) yüzeylerle temas modeli 

 M𝑥̈ + c𝑥̇ + 𝑘x = 𝑢𝑧 + 𝐹𝑝 denklemi çözülerek  𝑥 ve 𝑥̇ elde edilir. 

 Temas problemi iki başlık altında analiz edilir. 

1. Parçacık-parçacık teması 

RBA 
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 Sistemdeki bütün parçacıkların ağırlık merkezleri arasındaki vektörler hesaplanır. 

Şekil 5.10.a’da verilen 3 parçacıktan A parçacığı için  

𝑹𝐵𝐴 = 𝑹𝐴 − 𝑹𝐵 = [(𝑥𝐴 − 𝑥𝐵), (𝑦𝐴 − 𝑦𝐵), (𝑧𝐴 − 𝑧𝐵)] ifadesiyle hesaplanır. 

 Parçacıkların yarıçapları toplanır. 

𝑟𝑡𝑜𝑝𝑙𝑎𝑚 = 𝑟𝐴 + 𝑟𝐵 = 2𝑟 (yarıçapları aynı).  

 Merkezler arası vektörlerin normu alınarak  

(𝑟𝐴𝐵 = √(𝑥𝐵 − 𝑥𝐴)
2 + (𝑦𝐵 − 𝑦𝐴)

2 + (𝑧𝐵 − 𝑧𝐴)
2) parçacıklar arası mesafe 

bulunur.  

 Temas  

𝛿𝐴𝐵 =  2𝑟 − 𝑟𝐴𝐵 ifadesi ile kontrol edilir. 

 Temas varsa 2𝑟 − 𝑟𝐴𝐵 > 0 ise parçacıklar arası normal birim vektör hesaplanır. 

𝒏⃗⃗ 𝐴𝐵 =
[(𝑥𝐵−𝑥𝐴),(𝑦𝐵−𝑦𝐴),(𝑧𝐵−𝑧𝐴)]

𝑟𝐴𝐵
  

 Temas noktası bağıl hızı hesaplanır 

𝑽𝑟𝑒𝑙
𝑝
= 𝑽𝐵 − 𝑽𝐴 = [(𝑉𝐵

𝑥 − 𝑉𝐴
𝑥), (𝑉𝐵

𝑦
− 𝑉𝐴

𝑦
), (𝑉𝐵

𝑧 − 𝑉𝐴
𝑧)]  

 Parçacıkların dönme hızları da hesaba katılırsa 

𝑽𝑝 = 𝑽𝑟𝑒𝑙
𝑝
+ (𝑟𝐴𝝎𝐴 + 𝑟𝐵𝝎𝐵) × 𝒏⃗⃗ 𝐴𝐵 olarak elde edilir. 

 Normal düzleme teğet düzlem vektörel elde edilir. 

𝑹𝐵𝐴
𝑡 = 𝑽𝑝 − (𝑽𝑝 ∙ 𝒏⃗⃗ 𝐴𝐵)𝒏⃗⃗ 𝐴𝐵  

 Teğetsel birim vektör bu ifadenin normu alınarak hesaplanır. 

𝒕 𝐴𝐵 =
𝑹𝐵𝐴
𝑡

|𝑹𝐵𝐴
𝑡 |

  

 Birim vektörler elde edildikten sonra temas noktasının hızının bu birim vektörlere 

iz düşümü skaler çarpım ile hesaplanır. 

𝜹̇𝐴𝐵
n = 𝑽𝑝 ∙ 𝒏⃗⃗ 𝐴𝐵  ve   𝜹̇𝐴𝐵

t = 𝑽𝑝 ∙ 𝒕 𝐴𝐵 

 Bu işlemler RAC, RBA, RBC, RCA ve RCB için tekrarlanır. Parçacık-parçacık teması 

bütün sistemlerde aynı şekilde hesaplanır. 

2. Parçacık-düzlem teması 

 Sistemdeki bütün yüzeylerden parçacıkların ağırlık merkezlerine olan uzaklıklar 

hesaplanır. Şekil 5.10.b’de A parçacığı için  

𝒅1𝐴 =
𝑎1𝑥𝐴+𝑏1𝑦𝐴+𝑐1𝑧𝐴+𝑑1

√𝑎1
2+𝑏1

2+𝑐1
2 

  

𝒅2𝐴 =
𝑎2𝑥𝐴+𝑏2𝑦𝐴+𝑐2𝑧𝐴+𝑑2

√𝑎2
2+𝑏2

2+𝑐2
2 

  

𝒅3𝐴 =
𝑎3𝑥𝐴+𝑏3𝑦𝐴+𝑐3𝑧𝐴+(𝑑3−𝑥)

√𝑎3
2+𝑏3

2+𝑐3
2 

 (x yönünde hareket var) 
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𝒅4𝐴 =
𝑎4𝑥𝐴+𝑏4𝑦𝐴+𝑐4𝑧𝐴+(𝑑4−𝑥)

√𝑎4
2+𝑏4

2+𝑐4
2 

  (x yönünde hareket var) olarak hesaplanır.  

 Bütün yüzeylerle temas 

𝛿1𝐴 = 𝑟𝐴 − ∑ 𝑑𝑖𝐴
4
𝑖  ifadesi ile kontrol edilir. 

 Temas varsa 𝑟𝐴 − 𝑑1𝐴 > 0 ise temas noktasının bağıl hızı hesaplanır. Düzlem 

parçacık arası normal birim vektörler Şekil 5.6’da verilmiştir. 

𝑽𝑟𝑒𝑙
𝑝
= 𝑥̇ − 𝑽𝐴 = [(𝑥̇ − 𝑉𝐴

𝑥), (0 − 𝑉𝐴
𝑦
), (0 − 𝑉𝐴

𝑧)]  

 Parçacıkların dönme hızları da hesaba katılırsa 

𝑽𝑝 = 𝑽𝑟𝑒𝑙
𝑝
+ (𝑟𝐴𝝎𝐴) × 𝒏𝟏⃗⃗ ⃗⃗   olarak elde edilir. 

 Normal düzleme teğet düzlem vektörel elde edilir. 

𝑹1𝐴
𝑡 = 𝑽𝑝 − (𝑽𝑝 ∙ 𝒏𝟏⃗⃗ ⃗⃗  )𝒏𝟏⃗⃗ ⃗⃗    

 Teğetsel birim vektör bu ifadenin normu alınarak hesaplanır 

𝒕𝟏⃗⃗  ⃗ =
𝑹1𝐴
𝑡

|𝑹1𝐴
𝑡 |

  

 Birim vektörler elde edildikten sonra temas noktasının hızının bu birim vektörlere 

iz düşümü skaler çarpım ile hesaplanır. 

𝜹̇1
n = 𝑽𝑝 ∙ 𝒏𝟏⃗⃗ ⃗⃗    ve 𝜹̇1

t = 𝑽𝑝 ∙ 𝒕 𝟏 

 Bu işlemler B ve C parçacıkları için tekrarlanır. Düzlem-parçacık teması sistemden 

sisteme farklılık göstermektedir. Parçacık yerleştirilmiş hücrenin geometrisine ve 

yaptığı harekete bağlıdır. 

 Parçacık-parçacık teması durumunda temas kuvvetleri  

𝑭𝑛
AB = (𝑘𝑛𝛿𝐴𝐵

3

2 + 𝑐𝑛𝛿𝐴𝐵

1

4 𝜹̇𝐴𝐵
n ) 𝒏⃗⃗ 𝐴𝐵  

𝑭𝑡
AB = 𝜇𝑭𝒏

𝐴𝐵 𝒕 𝐴𝐵

|𝒕 𝐴𝐵|
  

 Parçacık-düzlem teması durumunda temas kuvvetleri  

 𝑭𝑛
1𝐴 = (𝑘𝑛𝛿1𝐴

3

2 + 𝑐𝑛𝛿1𝐴

1

4 𝜹̇1
n)𝒏𝟏⃗⃗ ⃗⃗   

𝑭𝑡
1A = 𝜇𝑭𝒏

1𝐴 𝜹̇1
t

|𝜹̇1
t |
   

 Ana yapı x doğrultusunda hareket ettiği için 𝑭𝑛
1𝐴 ve 𝑭𝑡

1A’nın x bileşkesi Fp kuvvetini 

hesaplamak için kullanılır. 

 A parçacığına etki eden bütün normal temas kuvvetleri FA ve teğetsel kuvvetler TA 

(𝑻𝑨 = 𝒓𝑨𝒏⃗⃗ 𝑨𝑩 × 𝑭𝑡
AB ve 𝑻𝑨 = 𝒓𝑨𝒏⃗⃗ 𝟏 × 𝑭𝑡

1A) olarak elde edilir. Newton’un ikinci yasası 

gereği yerçekimi (g=-9.81𝑘⃗  m/s2) de eklenirse A parçacığının ivme ve açısal ivmesi 

aşağıdaki formüllerle hesaplanır.  

𝑭𝑨 +𝑚𝒈 = 𝑚a  
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 𝑻𝑨 = 𝑰𝜶 

 Elde edilen ivmelerin aşağıdaki gibi sayısal integrali alınarak  

𝑉(𝑡 + Δ𝑡) = 𝑉(𝑡) + a(𝑡)∆𝑡,   𝜔(𝑡 + Δ𝑡) = 𝜔(𝑡) + 𝛼(𝑡)∆𝑡 

𝑥(𝑡 + Δ𝑡) = 𝑥(𝑡) + 𝑉(𝑡)∆𝑡,  𝜃(𝑡 + Δ𝑡) = 𝜃(𝑡) + 𝜔(𝑡)∆𝑡 

A parçacığının hız, konum, açısal hız ve açısal konum ifadeleri güncellenir. A 

parçacığının üç boyutlu uzayda hareketini tanımlamak için 3 öteleme ve 3 dönme olmak 

üzere toplam 6 adet denklem kullanılır. n tane parçacıktan oluşan sistemde 6n adet 

parçacıkların ve 1 adet ana yapının olmak üzere 6n+1 adet hareket denklemi elde edilerek 

çözüm yapılır.  

 Bu işlemler her bir zaman adımında sistemdeki bütün parçacıklar ve düzlemler için 

gerçekleştirilir ve döngü halinde analiz yapılır. 

Boyutları 50x50x30 (LxWxH) mm olan hücre içerisine 3 mm yarıçapındaki parçacıklardan 

yaklaşık 360 tane yerleştirildiğinde %100 doluluk oranına sahip olmaktadır. Çeşitli doluluk 

oranlarında parçacıklar hücreye yerleştirilerek parçacıkların yapının sönümüne etkisi incelenmiştir. 

Üç durum göz önüne alınmıştır.  

 90 parça (%25 doluluk oranı) 

 180 parça (%50 doluluk oranı)  

 270 parça (%75 doluluk oranı) 

Doluluk oranı hücreye yerleştirilen parça sayısının hücrenin alacağı toplam parçacık sayısına 

oranıdır. Yukarıdaki verilen adet kadar parçacıklar rastgele hücreye yerleştirilerek sistem serbest 

titreşime maruz bırakılmıştır. Belirli bir süre sonra sistem kararlı konuma geçince parçacıkların 

konumları kaydedilerek sonraki analizler için başlangıç konum değerleri olarak kullanılmıştır. 

Şekil 5.11’de bu doluluk oranlarına sahip dikdörtgen prizmalı hücrelerdeki parçacıkların kararlı 

durumları verilmiştir. 

  

 
Şekil 5.11. Farklı doluluk oranlarına sahip hücrelerdeki parçacıkların başlangıç konumları (a) 90 parça (b) 

180 parça (c) 270 parça. 

(a) 
(b) 

(c) 
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Ana yapının hareketi parçacıkların hareketleri ile birlikte 15 sn süresince 5x10-6 sn adım 

aralığı ile çözülmüştür. Zaman adımı Rayleigh zaman sabiti ile tespit edilmiştir. Parçacıkların 

mikro boyutta temasını yakalamak için gayet uygundur. Daha küçük alınması çözüm süresini 

oldukça uzatmakta ve büyük alınması durumunda ise fazla temas problemi ile birlikte aşırı temas 

kuvvetler meydana gelmekte ve parçacıklar hücreden ayrılabilmektedir. 90 ve 180 adet 

sönümleyici parçacık yerleştirilmiş yapının, zemin hareket genliği b=1 mm ve frekansı 11.4 ve 11.3 

Hz için yerdeğiştirme cevabı Şekil 5.12’de verilmiştir. İki durumda da ana yapı yaklaşık 10 sn’de 

kararlı konuma geçmektedir. Kararlı konuma geçtiği andan itibaren yapının cevabının karekök 

ortalama (rms) değeri hesaplanmıştır. 

 

 

 
 

Şekil 5.12. Parçacık sönümleyicili sistemin yerdeğiştirme cevabı a) 90 parçacık b)180 parçacık. 

 

Şekil 5.13. 90 adet parçacık yerleştirilmiş sistemde oluşan Fp yüzey temas kuvveti. 

Şekil 5.13’te 90 adet parçacık yerleştirilmiş sistemde hareket doğrultusunda oluşan yüzey 

temas kuvveti iki farklı tahrik frekansı için verilmiştir. Rezonans frekansında parçacıklar daha 

hareketli olduğundan 11.5 Hz tahrik frekansında oluşan yüzey temas kuvveti daha büyüktür. 

(a) (b) 
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Yapı üzerindeki hücreye sırasıyla 90, 180, 270 adet 3 mm yarıçapında sönümleyici 

parçacıklar yerleştirilerek yapı zeminden b=1 mm genlikte 10 s boyunca tahrik edilerek kararlı 

durum titreşim cevabı (yer değiştirmesi) rms olarak elde edilmiştir. 10 ile 13 Hz aralığında 0.2 Hz 

adımında her üç durum için yapının frekans cevabı elde edilerek Şekil 5.14’te verilmiştir. Yapının 

titreşim genliği granüler parçacıkların varlığında rezonans bölgesinde önemli ölçüde azalmıştır. 

Doluluk oranı artıkça yapının titreşim genliği azalmaktadır. Doluluk oranı %50 iken, doluluk oranı 

%25’e nazaran titreşim genliği daha fazla azalmaktadır. Doluluk oranı %50 den sonra genlikteki 

değişim daha az olmaktadır. Eklenen her bir parça sistemin kütlesini artırmaktadır. Bu nedenle 

doluluk oranı artıkça yapının doğal frekansları azalmaktadır. Yapının doğal frekans ve genlik 

değişimleri karşılaştırmalı olarak Tablo 5.3’te verilmiştir. 

 

 

 

Şekil 5.14. Farklı doluluk oranlarına bağlı dikdörtgen prizması hücreli yapının frekans cevabı 

Tablo 5.3. Farklı doluluk oranlarına bağlı dikdörtgen prizması hücreli yapının doğal frekans ve titreşim 

genliği değişimi 

 Doluluk Oranı 

 0% 25% %Değişim 50% %Değişim 75% %Değişim 

Doğal Frekans, Hz 11.77 11.5 -2.29% 11.3 -3.99% 11 -6.54% 

En Büyük Genlik, mm 129.0 41.3 -67.98% 20.5 -84.11% 18.6 -85.58% 

 

 

Bu boyutlardaki dikdörtgen prizması için optimum parçacık sayısını bulmak için elde edilen 

veriler kullanılarak parçacık sayısı-en büyük genlik grafiği oluşturulmuştur. Veriler Şekil 5.15.a’da 

gösterildiği gibi 2.  derecen bir polinom eğrisi oluşturmaktadır. Bu eğrinin en küçük değeri parçacık 

sayısı 234 iken gerçekleşmektedir. Bu durumda doluluk oranı %65 olmaktadır. Bu sayıdaki 

parçacık yerleştirilmiş PDS’li yapının titreşim frekans genliği Şekil 5.15.b’de verilmiştir. Bu 

durumda yapının rezonans genliği rms cinsinden 14.9 mm’ye kadar düşmüştür. 
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Şekil 5.15. a) Dikdörtgen prizmalı yapının parçacık sayısı-genlik eğrisi. b) Parçacık sayısı optimize edilmiş 

dikdörtgen prizması hücreli yapının frekans-titreşim cevabı 

Dikdörtgen hücreli yapı için optimum boyutları bulmak için doluluk oranı %50 (180 

parçacık) olan durum ele alınmıştır. Diğer bütün parametreler sabit kalmak şartıyla sadece hücrenin 

boyutları değiştirilmiştir. Burada belirtmek gerekir ki hücrenin boyutları değiştiği için doluluk 

oranları da değişmektedir. Bu durumda hacim yüzdesini değil de ağırlık yüzdesini kullanmak daha 

makul olmaktadır. Dolayısıyla hücre boyutları değiştiğinde yapının kütlesi aynı kaldığı 

varsayılmıştır. 3 mm yarıçapındaki her bir parçacığın kütlesi yaklaşık 0.135 gr gelmektedir. 

Doluluk oranlarını ağırlık referans alınarak ifade edilirse, 180 adet sönümleyici parçacık için 

λ=0.083 olmaktadır. λ eklenen toplam parçacıkların kütlesinin sistemin kütlesine oranıdır. λ=0.083 

olmak koşuluyla farkı hücre boyutları için yapının frekans titreşim cevabı 10 ile 13 Hz aralığında 

elde edilmiştir. Her durumda yapının en büyük genliği hesaplanarak Şekil 5.16-5.17-5.18’de 

grafikler halinde verilmiştir. Her durumda sadece hücrenin bir boyutu değiştirilmiş diğer boyutlar 

sabit tutulmuştur. Grafiklerden anlaşılacağı üzere belirli bir noktadan sonra genlikteki değişim 

yatay hale gelmektedir. Dikdörtgensel hücre için optimum boyutlar 40x40x60 mm (HxWxL) olarak 

belirlenmiştir. Bu boyuttaki hücreye sahip yapının PDS’li titreşim cevabı Şekil 5.19’da verilmiştir. 

Bu durumda λ=0.083 iken yapının en büyük genliği yaklaşık 8.2 mm (-%93.8) ye kadar düşmüştür. 

 

 

Şekil 5.16. Dikdörtgen prizması hücreli yapının yüksekliğinin yapının titreşim genliği üzerindeki etkisi, 

(λ=0.083, L=50 mm, W=50 mm) 
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Şekil 5.17. Dikdörtgen prizması hücreli yapının eninin yapının titreşim genliği üzerindeki etkisi, (λ=0.083, 

L=50 mm, H=30 mm) 

 

Şekil 5.18. Dikdörtgen prizması hücreli yapının uzunluğunun yapının titreşim genliği üzerindeki etkisi, 

(λ=0.083, W=50 mm, H=30 mm) 

 

Şekil 5.19. Optimum boyutlardaki dikdörtgen prizmalı hücrenin PDS’li frekans titreşim genliği (λ=0.083) 

Saeki [40] 38x38x58 (HxWxL)  mm boyutlarındaki yapının PDS’li analizini deneysel ve 

analitik yapmıştır. Doluluk oranını λ=0.092 (200 adet sönümleyici parçacık) olarak seçmesi 

durumunda PDS’li yapının en büyük titreşim genliğinin yaklaşık 8.1 mm’ye kadar düştüğünü 

bildirmiştir.  

Bu tez çalışmasında önerilen yöntemin ve oluşturulan bilgisayar programının doğruluğunu 

ispatlamak için Saeki’nin çalışması ile kıyaslama yapılmıştır. 38x38x58 (HxWxL) mm 

boyutlarındaki dikdörtgen prizması hücrenin içerisine yarıçapı 3 mm olan 200 adet parçacık 
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yerleştirilerek 9-15 Hz aralığında her 0.2 Hz frekans değerinde 15 sn boyunca analiz yapılmıştır. 

Şekil 5.20’de verildiği gibi bu aralıktaki rezonans genliğinin rms değeri yaklaşık 8.1 mm olarak 

elde edilmiştir. Bu değer Saeki’nin elde ettiği değerin aynısıdır. Sonuç olarak PDS’li yapının 

titreşim analizini incelemek için oluşturulan çözüm programının doğru sonuçlar verdiği 

söylenebilir. 

 

 

 

Şekil 5.20. 38x38x58 boyutlarındaki dikdörtgen prizmalı hücrenin PDS’li frekans titreşim genliği 

Şekil 5.21’de hücreye yerleştirilmiş 90 ve 180 adet parçacığın küçük bir zaman dilimindeki 

davranışları verilmiştir. Bu grafik açıkça gösteriyor ki zaman geçtikçe sönümleyici parçacıklar 

hücrenin iki ucu arasında hareket etmektedir. 

 

 

     

     

t=5.00 sn t=5.01 sn t=5.02 sn t=5.03 sn t=5.04 sn 

Şekil 5.21. Parçacıkların davranışı (b=1 mm, L=W=50mm, H=30 mm) a) f=11.5 Hz, 90 adet parçacık, b) 

f=11.3 Hz, 180 adet parçacık 

(a) 

(b) 

z 

x y 
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5.2. Silindirik Hücreli Yapıda PDS’nin Etkisi 

 

 

Şekil 5.22. a) Silindirik hücreli parçacık sönümleyicili sistem ve b) Dinamik modeli 

Şekil 5.22’de yarıçapı R ve yüksekliği H olan silindirik hücreye sahip PDS’li sistem 

verilmiştir. Boyutları R=30 mm ve H=30 mm olarak seçilmiştir. Yapı bir önceki bölümde belirtilen 

şartlarda tahrik edilmiş ve aynı dolum oranları için yapının frekans titreşim genlik değerleri 

belirlenmiştir. Bir önceki bölümde verilen AEY analizi bu geometrik hücreye sahip yapı içinde 

geçerlidir. Sadece hücre yüzeyleri ve bu yüzeylere ait düzlem denklemleri ile normal birim 

vektörler değişmektedir. Silindirik hücre 3 adet yüzeye (alt, üst ve yanal) sahip ve bu yüzeylere ait 

düzlem denklemleri hücre merkezi referans alınarak Şekil 5.23’te verilmiştir.  

 

 

 

𝑧 +
𝐻

2
= 0

𝑧 −
𝐻

2
= 0

√(𝑥 − 𝑥𝑠𝑖𝑠𝑡𝑒𝑚)
2+𝑦2 − 𝑅 = 0

 

Şekil 5.23. Silindirik hücre yüzeyleri ve bu yüzeylere ait düzlem denklemleri. 

 

Şekil 5.24. Silindirik hücrenin yan yüzeyine ait normal vektör.  

 

U 

fp 

c 
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Silindirik hücrenin alt ve üst yüzeylerine ait normal birim vektörler [
0 0 1
0 0 −1

]  olarak 

verilmiştir. Şekil 5.24’te üstten görünüşü verilen silindirik hücrenin yan yüzeyinin normal birim 

vektörü daima daire merkezine doğrudur ve;  

𝒏⃗⃗ 3 =
−𝑥+𝑥𝑠𝑖𝑠𝑡𝑒𝑚,−𝑦,0

√(−𝑥+𝑥𝑠𝑖𝑠𝑡𝑒𝑚)
2+(−𝑦)2

  

olarak elde edilebilir. A parçacığının yan yüzeye olan dik uzaklığı 

𝛿3𝐴 = |√(𝑥𝐴 − 𝑥𝑠𝑖𝑠𝑡𝑒𝑚)
2 + 𝑦𝐴

2 − 𝑅| formülü ile hesaplanır. 

Denklem (4.20) ile hesaplanan yay sabiti küresel-küresel veya küresel-düz düzlem arasında 

gerçekleşen temas için geçerli olduğu belirtilmişti. Şekil 5.25’te yay sabitinin dairesel yüzeylerde 

daire yarıçapına bağlı olarak nasıl değiştiği kesikli çizgi ile gösterilmiştir. Düz çizgi ise düz 

yüzeyler için yay sabitini vermektedir. Düz yüzeylerde yay sabiti sabit iken, dairesel yüzeylerde 

küçük yarıçaplarda çok büyük ve değişken olmasına rağmen belli bir yarıçaptan sonra 

sabitlenmektedir. Bu grafikten anlaşılacağı üzere daire yarıçapı 0.02 m den büyük olması 

durumunda dairesel yüzeyler düz yüzeyler olarak kabul edilebilir.  

 

 

 
Şekil 5.25. Yay sabiti (Kn)’nin silindirik hücre yarıçapına bağlı değişimi, r=3 mm [29]. 

Şekil 5.26’da farklı doluluk oranlarına sahip silindirik hücrelerdeki parçacıkların kararlı 

başlangıç konumları verilmiştir. 

 

 

 
 (a) (b) 
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Şekil 5.26. Farklı doluluk oranlarına sahip silindirik hücrelerdeki parçacıkların başlangıç konumları (a) 90 

parça (b) 180 parça (c) 270 parça. 

 

Şekil 5.27. 180 adet parçacık yerleştirilmiş sistemin yerdeğiştirme cevabı. 

 

Şekil 5.28. 180 adet parçacık yerleştirilmiş sistemde oluşan Fp yüzey temas kuvveti. 

Ana yapının hareketi parçacıkların hareketleri ile birlikte 15 sn süresince 5x10-6
 sn adım 

aralığı ile çözülmüştür. 180 adet sönümleyici parçacık yerleştirilmiş yapının, zemin hareket genliği 

b=1 mm ve frekansı 10.0 ve 11.1 Hz için yerdeğiştirme cevabı Şekil 5.27’de verilmiştir. İlk 

durumda ana yapı çok hızlı kararlı konuma geçerken rezonans bölgesinde yaklaşık 10 sn’de kararlı 

konuma geçmektedir. Kararlı konuma geçtiği andan itibaren yapının cevabının karekök ortalama 

(rms) değeri hesaplanmıştır. Şekil 5.28’de 180 adet parçacık yerleştirilmiş sistemde hareket 

doğrultusunda oluşan yüzey temas kuvveti iki farklı tahrik frekansı için verilmiştir. Rezonans 

frekansında parçacıklar daha hareketli olduğundan 11.1 Hz tahrik frekansında oluşan yüzey temas 

(c) 
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kuvveti daha büyüktür. Bu grafiklerden anlaşılacağı üzere yapının yerdeğiştirme cevabı ile oluşan 

yüzey temas kuvvetleri benzer eğilim göstermektedir.  

Titreşim genliği b=1 mm olacak şekilde 10 ile 13 Hz aralığındaki her üç doluluk oranı için 

yapının frekans cevabı Şekil 5.29’da verilmiştir. PDS’li yapının titreşim genliği rezonans 

bölgesinde önemli ölçüde azalmıştır. Doluluk oranı artıkça yapının titreşim genliği doğrusal olarak 

azalmaktadır. Eklenen her bir parça sistemin kütlesini artırdığından doluluk oranı artıkça yapının 

doğal frekansları azalmaktadır. Yapının doğal frekans ve genlik değişimleri karşılaştırmalı olarak 

Tablo 5.4’te verilmiştir. 

 

 

 

Şekil 5.29. Farklı doluluk oranlarına bağlı silindirik hücreli yapının frekans titreşim cevabı (r=3 mm) 

Tablo 5.4. Farklı doluluk oranlarına bağlı silindirik hücreli yapının doğal frekans ve titreşim genliği 

değişimi (r=3 mm) 

 Doluluk Oranı 

 0% 25% %Değişim 50% %Değişim 75% %Değişim 

Doğal Frekans, Hz 11.77 11.4 -3.14% 11.1 -5.69% 10.9 -7.39% 

En Büyük Genlik, mm 129.0 37.9 -70.62% 27.4 -78.76% 22.8 -82.33% 

 

3 mm yarıçapındaki her bir sönümleyici parçacığın kütlesi yaklaşık 0.135 gr gelmektedir. 

Doluluk oranları ağırlık referans alınarak ifade edilirse 90, 180 ve 270 adet parçacık için sırasıyla 

λ=0.042, 0.083, 0.107 olmaktadır. Bu oran sabit kalacak şekilde yarıçapı 4.5 mm ve 6.0 mm olan 

sönümleyici parçacıklar kullanılarak sistemin genliğinin parçacık yarıçapına göre değişimi 

incelenmiştir. Sonuçlar Şekil 5.30’da ve Tablo 5.5’te verilmiştir. Sabit λ oranları için parçacık 

yarıçapı artırıldıkça parçacık sayısı azalmaktadır. Bu durumda hücre yüzeyi ile temas eden parçacık 

sayısı azalmakta ve yüzeyler ile temas daha az gerçekleşmektedir. Böylece parçacıkların yapının 

sönümü üzerindeki etkisi azalmaktadır. Yüksek dolum oranlarında parçacıkların hareketi 

kısıtlanmakta, parçacıklar tekil kütle gibi hareket etme eğilimindedir. Bu sebepten yüksek dolum 
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oranlarında parçacıkların boyutunun önemi çok azdır.  Her durumda doluluk oranı artıkça sistemin 

genliği azalmaktadır.  

 
 

Şekil 5.30. Farklı doluluk oranlarına ve parçacık yarıçapına bağlı silindirik hücreli yapının frekans titreşim 

cevabı: (a) r=4.5 mm), (b) r=6.0 mm 

Tablo 5.5. Farklı parçacık yarıçaplarına bağlı silindirik hücreli yapının titreşim genliği değişimi 

 Doluluk Oranı 

En Büyük Genlik λ=0 λ=0.042 %Değişim λ=0.083 %Değişim λ=0.107 %Değişim 

r=3.0 mm 129 37.9 -70.62% 27.4 -78.76% 22.8 -82.33% 

r=4.5 mm 129 53.4 -58.60% 29.3 -77.29% 23.4 -81.86% 

r=6.0 mm 129 80.01 -37.98% 34.1 -73.57% 30 -76.74% 

5.3. Altıgen Prizması Hücreli Yapıda PDS’nin Etkisi 

  

Şekil 5.31. Altıgen prizması hücreli parçacık sönümleyicili sistem ve dinamik modeli 

Şekil 5.31’de yüksekliği H ve çevresel yarıçapı R olan ve üzerinde düzgün altıgen prizması 

şeklinde boşluk açılmış PDS’li sistem verilmiştir. Boyutları H=30 mm ve R=30 mm olarak 

belirlenmiştir. Yapı Bölüm 5.1’de belirtilen mekanik özelliklere sahip ve aynı şartlar altında tahrik 

edilmiş ve aynı dolum oranları için yapının frekans titreşim genlik değerleri belirlenmiştir. Altıgen 

prizması 8 adet yüzeye sahip ve bu yüzeylere ait düzlem denklemleri hücre merkezi referans 

alınarak Şekil 5.32’de ve normal birim vektörler Şekil 5.33’te verilmiştir.  

(b) (a) 

M 
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(𝑥 − 𝑥𝑠𝑖𝑠𝑡𝑒𝑚) ∓
√3

2
𝑅 = 0

(𝑥 − 𝑥𝑠𝑖𝑠𝑡𝑒𝑚) ± √3𝑦 − √3𝑅 = 0

(𝑥 − 𝑥𝑠𝑖𝑠𝑡𝑒𝑚) ∓ √3𝑦 + √3𝑅 = 0

𝑧 ∓
𝐻

2
= 0

 

Şekil 5.32. Altıgen prizması yüzeyleri ve bu yüzeylere ait düzlem denklemleri. 

 

𝑛1 𝑛2   𝑛3           𝑛4       𝑛5      𝑛6    𝑛7 𝑛8 

[
−1 1 −0.5 −0.5 0.5 0.5 0 0

0 0 −0.866 0.866 −0.866 0.866 0 0

0 0 0 0 0 0 −1 1

] 

Şekil 5.33. Altıgen hücrenin yüzeylerine ait normal birim vektörler [a;b;c]. 

Şekil 5.34’te farklı doluluk oranlarına sahip altıgen prizmalı hücrelerdeki parçacıkların 

kararlı konumları verilmiştir. 

 

 

  

 

Şekil 5.34. Farklı doluluk oranlarına sahip altıgen prizmalı hücrelerdeki parçacıkların başlangıç konumları 

(a) 90 parça (b) 180 parça (c) 270 parça. 

Ana yapının hareketi parçacıkların hareketleri ile birlikte 15 sn süresince 5x10-6
 sn adım 

aralığı ile çözülmüştür. 90 adet sönümleyici parçacık yerleştirilmiş yapının, zemin hareket genliği 

b=1 mm ve frekansı 11.0 ve 11.5 Hz için yerdeğiştirme cevabı  Şekil 5.35’te verilmiştir. İlk 

durumda ana yapı çok hızlı kararlı konuma geçerken rezonans bölgesinde yaklaşık 13 sn’de kararlı 

konuma geçmektedir. Kararlı konuma geçtiği andan itibaren yapının cevabının karekök ortalama 

 

 

(a) 
(b) 

(c) 
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(rms) değeri hesaplanmıştır. Şekil 5.36’da 90 adet parçacık yerleştirilmiş sistemde hareket 

doğrultusunda oluşan yüzey temas kuvveti iki farklı tahrik frekansı için verilmiştir. Rezonans 

frekansında parçacıklar daha hareketli olduğundan 11.5 Hz tahrik frekansında oluşan yüzey temas 

kuvveti daha büyüktür. Bu grafiklerden anlaşılacağı üzere yapının yerdeğiştirme cevabı ile oluşan 

yüzey temas kuvvetleri benzer eğilim göstermektedir. 

 

 

 

Şekil 5.35. 90 adet parçacık yerleştirilmiş sistemin yerdeğiştirme cevabı. 

 

Şekil 5.36. 90 adet parçacık yerleştirilmiş sistemde oluşan Fp yüzey temas kuvveti. 

Yapı titreşim genliği b=1 mm olacak şekilde 10 ile 13 Hz aralığında her üç doluluk oranı 

için analiz edilerek yapının elde edilen frekans cevabı Şekil 5.37’de verilmiştir. PDS’li yapının 

titreşim genliği rezonans bölgesinde önemli ölçüde azaldığı görülmektedir. Doluluk oranı artıkça 

yapının titreşim genliği azalmaktadır. Eklenen her bir parça sistemin kütlesini artırdığından doluluk 

oranı artıkça yapının doğal frekansları azalmaktadır. Yapının doğal frekans ve genlik değişimleri 

karşılaştırmalı olarak Tablo 5.6’da verilmiştir. 
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Şekil 5.37. Farklı doluluk oranlarına bağlı altıgen prizması hücreli yapının frekans titreşim cevabı 

Tablo 5.6. Farklı doluluk oranlarına bağlı altıgen prizması hücreli yapının doğal frekans ve titreşim genliği 

değişimi 

 Doluluk Oranı 

 0% 25% %Değişim 50% %Değişim 75% %Değişim 

Doğal Frekans, Hz 11.77 11.5 -2.29% 11.3 -3.99% 11.1 -5.69% 

En Büyük Genlik, mm 129.0 42.6 -66.98% 24.6 -80.93% 22.2 -82.79% 

 

Doluluk oranı %50 olduğu durumda bütün parametreler sabit kalacak şekilde farklı tahrik 

genliklerinde sönümleyici parçacıkların yapının titreşim genliğine etkisi incelenmiştir. Zemin 

titreşim genliği b=1, 1.5 ve 2 mm olacak şekilde seçilmiştir. Üç durum için yapının frekans titreşim 

grafiği karşılaştırmalı olarak Şekil 5.38’de verilmiştir. Tahrik genliği artıkça yapının cevabı da 

artmaktadır. Şekil 5.38’de kesikli çizgiler ile gösterilenler parçacıksız sistemin farklı tahrik 

genlikleri için titreşim cevabıdır. Düz çizgilerle belirtilenler %50 doluluk oranındaki farklı tahrik 

genlikleri için titreşim cevabıdır. Şekil 5.39’da farklı tahrik genliği için parçacıkların belirli zaman 

dilimindeki davranışları verilmiştir. Her durumda yapının doğal frekansı aynı kaldığı için 

parçacıklar aynı zaman diliminde hücrenin karşılıklı iki kenarları arasında hareket etmektedir. Şekil 

5.40’da 90 adet parçacığın farklı tahrik genliklerindeki davranışı verilmiştir. Parçacıklar aynı 

zaman diliminde düşük tahrik frekansında daha az mesafe kat ederken yüksek tahrik genliğinde 

daha fazla mesafe kat etmektedir. 
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Şekil 5.38. Farklı tahrik genliğine bağlı altıgen prizmalı yapının frekans titreşim cevabı (r=3 mm, Doluluk 

oranı=%50) 

     

     

     

t=5.00 sn t=5.01 sn t=5.02 sn t=5.03 sn t=5.04 sn 

Şekil 5.39. Parçacıkların davranışı (R=H=30mm, 180 parçacık, f=11.3 Hz) a) b=1.0 mm, b) b=1.5 mm, c) 

b=2.0 mm, 

   

(a) 

(b) 

z 

x 
y 

(c) 
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Şekil 5.40. Parçacıkların davranışı (R=H=30mm, 90 parçacık, f=11.2 Hz, t=14.50, 14.51, 14.52, 14.53, 

1.54) a) b=1.0 mm, b) b=1.5 mm, c) b=2.0 mm.

(a) 

(b) 

z 

x 
y 

(c) 



 

 

6. PARÇACIK SÖNÜMLEYİCİLİ BAL PETEĞİ KATMANLI 

YAPILAR 

Bu bölümde, AEY’nin performansı sürekli çubuklar üzerinde bazı sayısal uygulamalar ile 

incelenmiştir. Çubuk olarak alt, üst plakalar ile gözenekli çekirdekten oluşan bal peteği kompozit 

yapı ele alınmıştır. Bu yapılar parçacık darbe sönümleme yönteminin uygulanması için oldukça 

elverişlidirler. Çubuğun en fazla titreşim yapan uç bölgelerinde 50 mm içeriden seçilen 64 adet 

boşluğa sönümleyici parçacıklar yerleştirilmiştir. Bütün hücrelerin yerine belirli hücrelere 

yerleştirmekteki amaç çubuğun dinamik özelliklerini fazla etkilememekten kaçınmak içindir. 

Çubuk ankastre-serbest sınır şartlarında modellenmiş ve ankastre ucuna yakın bir konumdan 

gelişigüzel titreşimle tahrik edilmiştir. Çubuğun zorlamalı hareket denkleminden uç kısmının ivme 

değeri hesaplanarak cevap ve tahrik noktası arasındaki FTF’si elde edilmiştir. Farklı dolum oranı, 

malzeme, tahrik frekansı gibi parametreler için çubuğun FTF grafikleri elde edilmiş ve sönümleyici 

parçacıkların sönüm üzerindeki etkisi incelenmiştir. Bu grafikler parçacıksız çubuğun FTF’si ile 

karşılaştırmalı olarak verilmiştir. Konsol çubuğun PDS’li titreşim analizi ve simülasyonu için 

Matlab ve Ansys programları kullanılmış ve bu amaçla birçok program hazırlanmıştır. 

 

 

Şekil 6.1. Bal peteği katmanlı yapı 

Analiz için ele alınan bal peteği katmanlı yapı tamamen alüminyumdan oluşmaktadır. Şekil 

6.1’de gösterildiği gibi çubuk narinlik oranını (L/w>10) sağlayacak şekilde boyu L=850 mm, eni 

w=80 mm ve kalınlığı h=26.4 mm olarak seçilmiştir. Alt ve üst levhaların kalınlığı 0.5 mm ve 

çekirdek yapı kalınlığı 25.4 mm’dir. Çekirdek yapı düzgün altıgen hücrelidir. İzotropik alt-üst 

levhalar ile ortotropik çekirdek yapının malzeme ve fiziksel özellikleri Tablo 6.1’de verilmiştir.  

Tablo 6.1. Bal peteği yüzey levhaları ile çekirdek yapısının malzeme özellikleri [78]. 

Özellik Alt-Üst Levha Çekirdek 

Yoğunluk, kg/m3 2800 32 

Elastisite Modülü, N/m2 72x109 Exx=Eyy=Ezz=10x103 

Poisson Oranı 0.33 υxy=υyz=υxz=0.3 

Kayma Modülü, N/m2 - Gxy=1000 

  Gyz=0.89x108 

  Gxz=0.89x108 

Altıgen Çevresel Daire Çapı, mm  6 

 

L 

w 
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Şekil 6.2. Bal peteği yapısının enkesiti 

Şekil 6.2’de bal peteği katmanlı çubuğun enkesiti verilmiştir. Katmanlar simetrik olduğu için 

yapının nötr ekseni kaymayacaktır. Katmanlı çubuğun eşdeğer doğrusal kütle yoğunluğu: 

formülü ile meş=0.289 kg/m olarak hesaplanmıştır. Bu denklemde c ve f alt indisleri sırasıyla 

çekirdek yapıyı ve yüzey plakalarını temsil etmektedir. Yapının enkesiti dikdörtgensel olduğu için 

atalet momenti: 

formülü ile hesaplanır. Bu ifadede yn katmanın nötr eksenden uzaklığını ifade etmektedir. Kompozit 

yapının eşdeğer EI değeri aşağıdaki formülle EIeş=966 Nm2 olarak bulunmuştur.  

 

 

 

Şekil 6.3. Bal peteği katmanlı yapısının SE modeli. 

Tablo 6.1’de verilen değerler kullanılarak kompozit çubuk Şekil 6.3’te gösterildiği gibi 

Ansys APDL programında 4 düğümlü Shell 181 elemanı olarak katmanlı modellenmiştir. Shell 

181, kompozit kabukların veya sandviç yapının modellenmesi için katmanlı uygulamalar için 

kullanılabilmektedir. Çubuk eninden 5 mm ve boyundan 25 mm mesafeden mesh yapılmış olup 

toplam 544 sonlu elemandan oluşmaktadır. Ankastre-serbest sınır şartlarında modal analizi 

yapılarak doğal frekansları ve kütle ile normalize edilmiş mod biçimleri (eğilme yerdeğiştirme ve 

𝑚𝑒ş = 𝜌𝑐𝑏ℎ𝑐 + 2𝜌𝑓𝑏ℎ𝑓  (6.1) 

𝐼 =
𝑤ℎ3

12
+ 𝑤ℎ𝑦𝑛

2  (6.2) 

𝐸𝐼𝑒ş = 𝐸𝑐𝐼𝑐 + 2𝐸𝑓𝐼𝑓  (6.3) 

hc/2 

hf/2 

Ec, ρc 

Ef, ρf 

Ef, ρf 

w 
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eğimine ait) elde edilmiştir.  Çubuğun ilk 4 doğal frekansı denklem (3.4) yardımıyla analitik ve 

Ansys APDL programı ile SE yöntemi kullanılarak elde edilmiş ve Tablo 6.2’de referans ile 

karşılaştırmalı verilmiştir. İlk eğilme doğal frekansları birbirine yakın iken yüksek frekanslarda 

fark açılmaktadır. Ansys sonuçları referansa daha yakın olduğundan sonraki hesaplamalarda Ansys 

APDL programından alınan veriler kullanılacaktır. 

Tablo 6.2. Katmanlı çubuğun doğal frekanslarının karşılaştırılması. 

Doğal Frekans [Hz] Ref[78] Analitik Ansys APDL Sönüm Oranı[78] 

1. Eğilme Frekansı 44.8 44.8 44.2 0.014 

2. Eğilme Frekansı 240.1 280.6 253.3 0.016 

3. Eğilme Frekansı 576.6 785.8 633.5 0.011 

4. Eğilme Frekansı 860.8 1539.8 1093.9 0.017 

 

Zorlamalı titreşime maruz kalan bir çubuğun genel hareket denklemi aşağıdaki gibi 

türetilebilir. 

Burada, 𝒇𝒆 dış tahrik kuvvetidir. Ansys APDL programında katmanlı çubuğun yapılan modal 

analiz sonucu doğal frekansları ve öz vektörleri elde edilmiştir. Öz vektörler kütleye göre normalize 

edilmiştir. Ansys verileri kullanılarak çubuğun hareket denklemi fiziksel düzlemden modal 

düzleme aşağıdaki parametre değişimi ile dönüştürülebilir.  

Burada, 𝜓 kütle ile normalize edilmiş öz vektör, 𝑞 ise modal parametredir. Rayleigh orantılı 

sönüm kabulü ve modların diklik özelliği uygulanarak; 

[𝜓]𝑇[𝑀][𝜓] = [
⋱

1
⋱

], [𝜓]𝑇[𝐾][𝜓] = [
⋱

𝜔𝑛
⋱

], [𝜓]𝑇[𝐶][𝜓] = [
⋱

2𝜍𝑛𝜔𝑛
⋱

] 

çubuğun SE hareket denklemi modal düzlemde aşağıdaki gibi yazılabilir. 

𝜔 doğal frekans, 𝜍 modal sönüm oranıdır. 𝜓𝑖
𝑇(𝑦𝑒) tahrik kuvvetinin uygulandığı noktanın öz 

vektörünü ifade etmektedir. Bu denklem ile titreşim modları ayrıklaştırılmış oldu ve her biri tek 

serbestlik dereceli olarak dikkate alınabilir. 

Tahrik kuvveti olarak ilgilenilen frekans aralığında (ilk 4 doğal frekans bandını içeren) 

gelişigüzel Gauss titreşimi üretilmiştir. Geniş band aralığında üretilmesinin sebebi çubuğu bu 

[𝐌]ẅ + [𝑪]𝑤̇ + [𝑲]𝑤 = 𝒇𝒆  (6.4) 

𝑤 = 𝜓𝑖𝑞𝑖  (6.5) 

𝑞̈𝑖 + 2𝜍𝑖𝜔𝑖𝑞̇𝑖 + 𝜔𝑖
2𝑞𝑖 = 𝜓𝑖

𝑇(𝑦𝑒)𝑓
𝑒   (i=1,2,…,n) (6.6) 
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aralıktaki tüm frekanslarda tahrik ederek düzgün FTF grafiği elde etmektir. Tahrik kuvvetinin rms 

değeri 10 N olacak şekilde belirlenmiş ve Şekil 6.4’te 10 sn’lik kısmı verilmiştir. 

 

 

 

Şekil 6.4. Gelişigüzel tahrik kuvveti 

Bu tahrik kuvveti ile çubuk uzunluğu boyunca tahrik edilerek uç kısmının ivmesinin rms 

değerleri hesaplanmıştır. Elde edilen veriler Şekil 6.5’te verilmiştir. Ankastre ucuna yakın en fazla 

titreşim oluşturacak konum belirlenmiştir. Sonraki analizlerde çubuk ankastre ucundan y=275 mm 

mesafesinden tahrik edilmiştir. 

 

 

 

Şekil 6.5. Tahrik noktasına göre ankastre-serbest çubuğun uç kısmının ivmesi 

 

Şekil 6.6. Ankastre-serbest çubuğun ilk 4 mod biçimi 
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Ankastre-serbest çubuğun ilk 4 mod biçimi Şekil 6.6’da verilmiştir. Kuvvet uygulama 

noktası çubuğun hiçbir düğüm noktasına denk gelmemektedir. 4. titreşim modunun düğüm 

noktasına çok yakın fakat bu modun titreşim genliği üzerinde etkisi az olduğu için bu konumdan 

tahrik edildiğinde daha yüksek genlik elde edilebilmektedir. Çubuğun hareket denklemi çözülerek 

ivmesi elde edilmiştir. Cevap noktası çubuğun uç kısmıdır. Bu cevap ve tahrik noktaları arasındaki 

FTF’sini elde etmek için H1 tahmincisi kullanılmıştır. H1 tahmincisi giriş sinyalinde hiç gürültü 

olmadığını varsayan bir FTF sinyal tahmincisidir. H1 transfer fonksiyonu, giriş (tahrik kuvveti) 

sinyalinin çıkış (ivme) sinyali ile çapraz - güç spektral yoğunluğunun, giriş (tahrik kuvveti) 

sinyalinin otomatik güç spektral yoğunluğuna oranı olarak tanımlanmaktadır. 

Burada F tahrik kuvvetinin,  𝑊̈ ivmenin güç spektral yoğunluğudur. 𝐹̅, F’nin karmaşık 

eşleniğini (⋅) ise skaler çarpımı ifade etmektedir. Tahrik kuvvetinin ve cevap noktası ivmesinin güç 

spektral yoğunluğu Hanning pencerelemesi uygulanarak %50 örtüşme koşullarında Welch yöntemi 

ile elde edilmiştir. Çubuğun elde edilen FTF grafiği Şekil 6.7’de verilmiştir. Titreşim genlik birimi 

olarak g  (ivme/9.81) m/s2 kullanılmıştır. 

 

 

  

Şekil 6.7. Ankastre-serbest çubuğun uç kısmının akselarans FTF grafiği 

Tablo 6.3. Sönümleyici parçacıkların malzeme ve fiziksel özellikleri [78]. 

Özellik Değer 

Yarıçap, mm 1.25 

Yoğunluk, kg/m3 1180 

Elastisite Modülü, Pa 2.0 x 109 

Poisson oranı 0.35 

Sürtünme katsayısı, (akrilik-akrilik) 

                                 (alüminyum-akrilik) 

0.52 

0.45 

Geri getirme (restitution) katsayısı 0.9 

 

𝐻1 =
𝐹⋅𝑊̅̈

𝐹⋅𝐹̅
=
𝑊̈

𝐹
  (6.7) 
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Çubuğun bal peteği şeklindeki belirli hücrelerine çok sayıda küçük boyutlu sönümleyici 

parçacıklar yerleştirilerek sönüm özelliği iyileştirilecektir. Sönümleyici parçacıklar olarak 

özellikleri Tablo 6.3’te verilen akrilik toplar tercih edilmiştir. Zaman adımı Rayleigh zaman sabiti 

formülüne göre 10-6 sn olarak belirlenmiştir. Parçacıkların kararlı başlangıç konumları için hücre 

içerisine yerleştirilen parçacıklar serbest düşmeye maruz bırakılmışlardır. 10 sn sonunda 

parçacıklar sabit konuma geçmişlerdir. Parçacıkların bu konumları kaydedilerek daha sonraki 

analizler için kullanılmıştır. Bütün analiz 10 sn boyunca yapılmış ve ana yapının titreşim cevabı 

elde edilmiştir. Çubuğun titreşim hareketiyle birlikte parçacıklar birbirleri ve hücre duvarı ile 

etkileşime girecektir. Parçacıkların etkileşimi AEY ile hesaplanmıştır. Bu yöntemde sistemdeki her 

bir parçacığın anlık hareketi takip edilir. Böylece parçacıkların birbiri ve hücre duvarları ile olan 

teması belirlenir. Temas esnasında normal doğrultuda oluşan kuvvetleri hesaplamak için Hertz 

doğrusal olmayan temas modeli kullanılacaktır. Teğetsel doğrultuda ki temas kuvvetini hesaplamak 

için Coulomb kuru sürtünme kuvveti yeterince makul sonuçlar vermektedir. Bu modelde 

parçacıklar elastik varsayılır ve temas ilk olarak noktasal başlar sonra uygulanan kuvvetin şiddetine 

göre yüzey haline gelir. Bu durum depolanan elastik enerjinin parçacıkları birbirine doğru iten 

kuvveti yenmesine kadar devam eder. Bu noktadan sonra parçacıklar birbirinden uzaklaşmaya 

başlar. 

 

Şekil 6.8. PDS’li çubuk modeli 

Şekil 6.5’te açıkça gözüktüğü üzere çubuğun en fazla titreşim yapan kısmı serbest uç 

kısımlarıdır. Dolayısıyla serbest uç kısmından 50 mm içeriden 64 tane (4 sıra y, 16 sıra x 

doğrultusunda) hücre parçacıkları yerleştirmek için seçilmiştir (Şekil 6.8). Parçacık yerleştirmek 

için belirli bir alanın seçilmesi sistemin dinamiğini çok az etkilemektedir. Bir hücre toplam 33 tane 

1.25 mm yarıçapında parçacık alabilmektedir. Belirlenen hücrelere tam dolu halinde yaklaşık 2100 

adet parçacık yerleştirilebiliyor.  Uygun konumlarına sönümleyici parçacık yerleştirilmiş çubuğun 

genel hareket denklemi aşağıdaki gibi güncellenebilir. 

 

275 

50 

L 

w 
y 

x 

w(L) 

Parçacıkların 

Yerleştirildiği Alan 

Tahrik Noktası 

Cevap Noktası 
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Burada N parçacık yerleştirilmiş hücre sayısı olmak üzere 𝜓𝑖
𝑇(𝑦𝑗) ve 𝑓𝑗

𝑑 sırasıyla j hücre 

merkezinin öz vektörü ve bu hücredeki bileşke temas kuvvetini ifade etmektedir. j hücresinin 

konumları 𝑦𝑗=0.7818, 0.7870, 0.7922, 0.7974 mm dir. 

 

 

 

 

 

Şekil 6.9. (a) PDS’li hücre ve yüzeyleri (b) deformasyona uğramış hücre 

Yüzey tabakalarının deformasyon sonrası z düzleminde ötelendiği ve xy düzlemine paralel 

kaldığı varsayılmıştır. Yan yüzeyler z düzleminde öteleme ve x düzlemine göre dönme yapmaktadır 

(Şekil 6.9.b). Altıgen prizması toplam 8 yüzeye sahiptir. Bu yüzeyler Şekil 6.9.a’da verildiği gibi 

numaralandırılmıştır. Bu yüzeylere ait düzlem denklemleri deformasyon sonrası ankastre uç 

referans alınarak aşağıdaki gibi yazılabilir. 

𝑞̈𝑖 + 2𝜍𝑖𝜔𝑖𝑞̇𝑖 + 𝜔𝑖
2𝑞𝑖 = 𝜓𝑖

𝑇(𝑦𝑒)𝑓
𝑒 + ∑ 𝜓𝑖

𝑇(𝑦𝑗)𝑓𝑗
𝑑𝑁

𝑗=1   (6.8) 

𝑦 +
𝜕𝑤𝑗

𝜕𝑦
𝑧 − 𝑦𝑗 −

√3

2
𝑅 = 0

𝑦 +
𝜕𝑤𝑗

𝜕𝑦
𝑧 − 𝑦𝑗 +

√3

2
𝑅 = 0

√3𝑥 + 𝑦 +
𝜕𝑤𝑗

𝜕𝑦
𝑧 − 𝑦𝑗 − √3𝑅 = 0

−√3𝑥 + 𝑦 +
𝜕𝑤𝑗

𝜕𝑦
𝑧 − 𝑦𝑗 + √3𝑅 = 0

−√3𝑥 + 𝑦 +
𝜕𝑤𝑗

𝜕𝑦
𝑧 − 𝑦𝑗 − √3𝑅 = 0

√3𝑥 + 𝑦 +
𝜕𝑤𝑗

𝜕𝑦
𝑧 − 𝑦𝑗 + √3𝑅 = 0

𝑧 −
𝐻

2
− 𝑤𝑗 = 0

𝑧 +
𝐻

2
+ 𝑤𝑗 = 0

  (6.9) 

8 

x 

y 

z 

(a) 

7 

 

(b) 
wj 

𝜕𝑤𝑗

𝜕𝑦
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Burada R ve H sırasıyla altıgen hücrenin çevresel yarıçapı ve yüksekliğidir. 𝑦𝑗 j hücresinin 

ankastre uca göre konumunu, 𝑤𝑗 ve 
𝜕𝑤𝑗

𝜕𝑦
 sırasıyla j hücresinin yer değiştirmesi ve eğimini ifade 

etmektedir. 𝑤𝑗 ve 
𝜕𝑤𝑗

𝜕𝑦
 ifadeleri denklem (6.8)’in çözümünden 𝑤𝑗 = ∑ 𝜓𝑖(𝑦𝑗)𝑞𝑖(𝑦𝑡)

𝑛
𝑖=1  ve 

𝜕𝑤𝑗

𝜕𝑦
=

∑
𝜕𝜓𝑖(𝑦𝑗)

𝜕𝑦
𝑞𝑖(𝑦𝑡)

𝑛
𝑖=1  şeklinde elde edilmektedir. Benzer şekilde j hücresinin hızı 𝑤̇𝑗 =

∑ 𝜓𝑖(𝑦𝑗)𝑞̇𝑖(𝑦𝑡)
𝑛
𝑖=1  ifadesinden elde edilir. 

n yukarıda belirtilen yüzeylere dik birim vektörlerdir ve aşağıdaki gibi hesaplanır. 

A parçacığının düzlemlere olan dik uzaklığı 𝑑𝑑 =
𝑎𝑥𝐴+𝑏𝑦𝐴+𝑐𝑧𝐴+𝑑

√𝑎2+𝑏2+𝑐2 
 formülü ile hesaplanır. 

Düzlemlerle temas 𝛿 = (𝑟𝐴 − 𝑑𝑑) formülü ile kontrol edilir. Düzlem temas noktasının bağıl hızı 

𝑽𝒑 = 𝒘̇𝒋 − 𝑽𝐴 + (𝑟𝐴𝝎𝐴) × 𝒏⃗⃗  ile hesaplanır. Temas noktasının teğetsel bileşeni vektörel elde edilir. 

Temas noktası bağıl hızının normal ve teğetsel düzlemlere göre izdüşümü hesaplanır. Elde edilen 

sonuçlar kullanılarak temas kuvvetleri hesaplanır. Çubuğun titreşimine etki eden temas kuvvetleri 

hesaplanırken 8 nolu alt yüzeye dik bileşkeleri alınır ve toplanır. 

Çubuğun titreşim cevabını ayrık elemanlar yöntemi ile incelerken Şekil 6.10’da verilen akış 

şeması takip edilmiştir.  

 Her bir zaman adımında çubuğun hareket denklemi çözülür. Çubuğun hareketini ifade 

etmek için ilk dört modu yeterli kabul edilmiştir. 𝑞̈𝑖 + 2𝜍𝑖𝜔𝑖𝑞̇𝑖 + 𝜔𝑖
2𝑞𝑖 = 𝜓𝑖

𝑇(𝑦𝑒)𝑓
𝑒 +

∑ 𝜓𝑖
𝑇(𝑦𝑗)𝑓𝑗

𝑑𝑁
𝑗=1  denklemi çözülerek  𝑞 ve 𝑞̇ elde edilir. 

 Parçacık yerleştirilmiş hücrelerin yerdeğiştirme, eğim ve hızları hesaplanır. 

𝑤𝑗 = ∑ 𝜓𝑖(𝑦𝑗)𝑞𝑖(𝑦𝑡)
𝑛
𝑖=1 , 

𝜕𝑤𝑗

𝜕𝑦
= ∑

𝜕𝜓𝑖(𝑦𝑗)

𝜕𝑦
𝑞𝑖(𝑦𝑡)

𝑛
𝑖=1 , 𝑤̇𝑗 = ∑ 𝜓𝑖(𝑦𝑗)𝑞̇𝑖(𝑦𝑡)

𝑛
𝑖=1  

 Çubuğun hareketi neticesinde parçacık-parçacık ve parçacık-düzlem temasları kontrol 

edilir. Kontrol işlemi her bir zaman adımında her bir parçacık ve düzlem için ayrı ayrı 

yapılır. Temas problemi iki başlık altında analiz edilir. 

1. Parçacık-parçacık teması 

 Sistemdeki bütün parçacıkların ağırlık merkezleri arasındaki vektörler hesaplanır. 

A ile B parçacıkları için  

𝑹𝐵𝐴 = 𝑹𝐴 − 𝑹𝐵 = [(𝑥𝐴 − 𝑥𝐵), (𝑦𝐴 − 𝑦𝐵), (𝑧𝐴 − 𝑧𝐵)] ifadesiyle hesaplanır. 

 Parçacıkların yarıçapları toplanır. 

𝑟𝑡𝑜𝑝𝑙𝑎𝑚 = 𝑟𝐴 + 𝑟𝐵 = 2𝑟 (yarıçapları aynı).  

 Merkezler arası vektörlerin normu alınarak  

𝒏⃗⃗ =
〈𝑎,𝑏,𝑐〉

√𝑎2+𝑏2+𝑐2
  (6.10) 
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(𝑟𝐴𝐵 = √(𝑥𝐵 − 𝑥𝐴)
2 + (𝑦𝐵 − 𝑦𝐴)

2 + (𝑧𝐵 − 𝑧𝐴)
2) parçacıklar arası mesafe 

bulunur.  

 Temas  

𝛿𝐴𝐵 =  2𝑟 − 𝑟𝐴𝐵 ifadesi ile kontrol edilir. 

 Temas varsa 2𝑟 − 𝑟𝐴𝐵 > 0 ise parçacıklar arası normal birim vektör hesaplanır. 

𝒏⃗⃗ 𝐴𝐵 =
[(𝑥𝐵−𝑥𝐴),(𝑦𝐵−𝑦𝐴),(𝑧𝐵−𝑧𝐴)]

𝑟𝐴𝐵
  

 Temas noktası bağıl hızı hesaplanır 

𝑽𝑟𝑒𝑙
𝑝
= 𝑽𝐵 − 𝑽𝐴 = [(𝑉𝐵

𝑥 − 𝑉𝐴
𝑥), (𝑉𝐵

𝑦
− 𝑉𝐴

𝑦
), (𝑉𝐵

𝑧 − 𝑉𝐴
𝑧)]  

 Temas noktasında parçacıkların dönme hızları da etkilidir. 

𝑽𝑝 = 𝑽𝑟𝑒𝑙
𝑝
+ (𝑟𝐴𝝎𝐴 + 𝑟𝐵𝝎𝐵) × 𝒏⃗⃗ 𝐴𝐵 olarak elde edilir. 

 Normal düzleme teğet düzlem vektörel elde edilir. 

𝑹𝐵𝐴
𝑡 = 𝑽𝑝 − (𝑽𝑝 ∙ 𝒏⃗⃗ 𝐴𝐵)𝒏⃗⃗ 𝐴𝐵  

 Teğetsel birim vektör bu ifadenin normu alınarak hesaplanır. 

𝒕 𝐴𝐵 =
𝑹𝐵𝐴
𝑡

|𝑹𝐵𝐴
𝑡 |

  

 Birim vektörler elde edildikten sonra temas noktasının hızının bu birim vektörlere 

iz düşümü skaler çarpım ile hesaplanır. 

𝜹̇𝐴𝐵
n = 𝑽𝑝 ∙ 𝒏⃗⃗ 𝐴𝐵  ve   𝜹̇𝐴𝐵

t = 𝑽𝑝 ∙ 𝒕 𝐴𝐵 

 Bu işlemler sistemdeki her bir hücre ve bütün parçacıklar için tekrarlanır. 

2. Parçacık-düzlem teması 

 Sistemdeki bütün yüzeylerden parçacıkların ağırlık merkezlerine olan uzaklıklar 

hesaplanır. Denklem (6.9)’da verilen eşitlikler kullanılarak yüzey denklemleri 

güncellenir. A parçacığı için tüm yüzeylere olan dik uzaklığı 

𝒅1𝐴 =
𝑎1𝑥𝐴+𝑏1𝑦𝐴+𝑐1𝑧𝐴+𝑑1

√𝑎1
2+𝑏1

2+𝑐1
2 

  

𝒅2𝐴 =
𝑎2𝑥𝐴+𝑏2𝑦𝐴+𝑐2𝑧𝐴+𝑑2

√𝑎2
2+𝑏2

2+𝑐2
2 

  

                   ⋮  

𝒅8𝐴 =
𝑎8𝑥𝐴+𝑏8𝑦𝐴+𝑐8𝑧𝐴+𝑑8

√𝑎8
2+𝑏8

2+𝑐8
2 

   olarak hesaplanır.  

 Bütün yüzeylerle temas 

𝛿1𝐴 = 𝑟𝐴 − ∑ 𝑑𝑖𝐴
8
𝑖  ifadesi ile kontrol edilir. 

 Temas varsa 𝑟𝐴 − 𝑑1𝐴 > 0 ise temas noktasının bağıl hızı hesaplanır. Hücre 

yüzeyleri z ekseninde hareket etmektedir. 

𝑽𝑟𝑒𝑙
𝑝
= 𝑤̇𝑗 − 𝑽𝐴 = [(0 − 𝑉𝐴

𝑥), (0 − 𝑉𝐴
𝑦
), (𝑤̇𝑗 − 𝑉𝐴

𝑧)]  
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 Temas noktası hızı için parçacıkların dönme hızları da hesaba katılır 

𝑽𝑝 = 𝑽𝑟𝑒𝑙
𝑝
+ (𝑟𝐴𝝎𝐴) × 𝒏𝟏⃗⃗ ⃗⃗   olarak elde edilir. 

 Temas noktasındaki normal düzleme teğet düzlem vektörel elde edilir. 

𝑹1𝐴
𝑡 = 𝑽𝑝 − (𝑽𝑝 ∙ 𝒏𝟏⃗⃗ ⃗⃗  )𝒏𝟏⃗⃗ ⃗⃗    

 Teğetsel birim vektör bu ifadenin normu alınarak hesaplanır 

𝒕𝟏⃗⃗  ⃗ =
𝑹1𝐴
𝑡

|𝑹1𝐴
𝑡 |

  

 Birim vektörler elde edildikten sonra temas noktasının hızının bu birim vektörlere 

iz düşümü skaler çarpım ile hesaplanır. 

𝜹̇1
n = 𝑽𝑝 ∙ 𝒏𝟏⃗⃗ ⃗⃗    ve 𝜹̇1

t = 𝑽𝑝 ∙ 𝒕 𝟏  

 Bu işlemler sistemdeki her bir hücre için ayrı ayrı hesaplanır. 

 Parçacık-parçacık teması durumunda temas kuvvetleri  

𝑭𝑛
AB = (𝑘𝑛𝛿𝐴𝐵

3

2 + 𝑐𝑛𝛿𝐴𝐵

1

4 𝜹̇𝐴𝐵
n ) 𝒏⃗⃗ 𝐴𝐵  

𝑭𝑡
AB = 𝜇𝑭𝒏

𝐴𝐵 𝒕 𝐴𝐵

|𝒕 𝐴𝐵|
  

 Parçacık-düzlem teması durumunda temas kuvvetleri  

 𝑭𝑛
1𝐴 = (𝑘𝑛𝛿1𝐴

3

2 + 𝑐𝑛𝛿1𝐴

1

4 𝜹̇1
n)𝒏𝟏⃗⃗ ⃗⃗   

𝑭𝑡
1A = 𝜇𝑭𝒏

1𝐴 𝜹̇1
t

|𝜹̇1
t |
   

 Çubuk z doğrultusunda hareket ettiği için 𝑭𝑛
1𝐴 ve 𝑭𝑡

1A’nın z bileşkesi Fp kuvvetini 

hesaplamak için kullanılır. Bütün düzlemlerle etkileşim halinde olan parçacıkların 

hareket yönündeki bileşenleri toplanarak çubuğa hücre merkezinde etki ettiği varsayılan 

bileşke temas kuvveti elde edilir. 

 A parçacığına etki eden bütün normal temas kuvvetleri FA ve teğetsel kuvvetler TA 

(𝑻𝑨 = 𝒓𝑨𝒏⃗⃗ 𝑨𝑩 × 𝑭𝑡
AB ve 𝑻𝑨 = 𝒓𝑨𝒏⃗⃗ 𝟏 × 𝑭𝑡

1A) olarak elde edilir. Newton’un ikinci yasası 

gereği yerçekimi (g=-9.81𝑘⃗  m/s2) de eklenirse A parçacığının ivme ve açısal ivmesi 

aşağıdaki formüllerle hesaplanır.  

𝑭𝑨 +𝑚𝒈 = 𝑚a  

 𝑻𝑨 = 𝑰𝜶 

 Elde edilen ivmelerin aşağıdaki gibi sayısal integrali alınarak  

𝑉(𝑡 + Δ𝑡) = 𝑉(𝑡) + a(𝑡)∆𝑡,   𝜔(𝑡 + Δ𝑡) = 𝜔(𝑡) + 𝛼(𝑡)∆𝑡 

𝑥(𝑡 + Δ𝑡) = 𝑥(𝑡) + 𝑉(𝑡)∆𝑡,  𝜃(𝑡 + Δ𝑡) = 𝜃(𝑡) + 𝜔(𝑡)∆𝑡 

A parçacığının hız, konum, açısal hız ve açısal konum ifadeleri güncellenir. 

 Bu işlemler her bir zaman adımında sistemdeki bütün parçacıklar, düzlemler ve hücreler 

için gerçekleştirilir ve döngü halinde analiz yapılır. Analiz sonucunda çubuğun uç 
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kısmının yerdeğiştirme ve ivme değerleri elde edilir. İvme ifadelerinin H1 transfer 

fonksiyonu hesaplanarak akselerans FTF’si elde edilir. 

 

 

 

Şekil 6.10. Sürekli sistemler için ayrık elemanlar yöntemi simulasyon algoritması akış şeması 

Şekil 6.11’de seçilen her bir hücresine 15 adet parçacık yerleştirilmiş çubuğun tahrik genliği 

10 N iken uç kısmının yerdeğiştirme cevabı boş çubuk ile kıyaslamalı verilmiştir. Şekil 6.12’de ise 

15 adet parçacık yerleştirilmiş çubuğun tahrik genliği 56.2 N iken uç kısmının yerdeğiştirme cevabı 

boş çubuk ile kıyaslamalı verilmiştir. Her iki durumda çubuğun uç kısmının genliğinin azaldığı 

söylenebilir. 

 

Şekil 6.11. Çubuğun uç kısmının yerdeğiştirme cevabı, tahrik kuvveti 10 N 

Başla 

Çubuk hareket denklemi: 𝑞̈ + 2𝜍𝜔𝑞̇ + 𝜔2𝑞 = 𝜓𝑇(𝑦𝑒)𝑓
𝑒 + ∑ 𝜓𝑇(𝑦𝑗)𝑓𝑗

𝑑𝑁
𝑗=1           𝑞, 𝑞̇ 

Parçacık yerleştirilmiş hücre: 𝑤𝑗 = ∑ 𝜓𝑖(𝑦𝑗)𝑞𝑖(𝑦𝑡)
𝑛
𝑖=1 , 

𝜕𝑤𝑗

𝜕𝑦
= ∑

𝜕𝜓𝑖(𝑦𝑗)

𝜕𝑦
𝑞𝑖(𝑦𝑡)

𝑛
𝑖=1 , 𝑤̇𝑗 = ∑ 𝜓𝑖(𝑦𝑗)𝑞̇𝑖(𝑦𝑡)

𝑛
𝑖=1  

Düzlem denklemlerini ve normal birim vektörleri güncelle 

Temas kontrol 

Parçacık-parçacık Parçacık-düzlem 

𝑉𝑝, 𝑛, 𝑡, 𝛿̇
𝑛, 𝛿̇𝑡  𝑉𝑝, 𝑛, 𝑡, 𝛿̇

𝑛, 𝛿̇𝑡  

𝐹𝑛, 𝐹𝑡  𝐹𝑛, 𝐹𝑡  𝑔 

İvmeler 

a, 𝛼 

Konum, 

Hız 

𝐹𝑛
𝑧, 𝐹𝑡

𝑧  

𝑤̇𝑗 

Evet 
Hayır 

Evet 

𝑓𝑗
𝑑 
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Şekil 6.12. Çubuğun uç kısmının yerdeğiştirme cevabı, tahrik kuvveti 56.2 N 

Şekil 6.13’te seçilen her bir hücresine 6 ve 15 adet parçacık yerleştirilmiş çubuğun tahrik 

genliği 10 N iken yüzeylerle hareket doğrultusunda yj = 0.7974 mm hücresinde meydana gelen 

temas kuvveti verilmiştir. Ana yapıyla en fazla etkileşim alt yüzeyle olduğu için aşağı yönlü temas 

kuvveti daha fazladır.  

 

 

 
 

Şekil 6.13. İki farklı dolum oranı için meydana gelen yüzey temas kuvvetleri 

6.1. Doluluk Oranının Ankastre-Serbest Çubuğun Sönümüne Etkisi 

Geleneksel tabiri ile doluluk oranı, parçacıkların hacminin hücrenin toplam hacmine oranı 

olarak tanımlanır. Fakat PDS’li sistemlerde doluluk oranı hücreye yerleştirilen parçacıkların 

sayısının hücrenin alacağı toplam parçacık sayısına veya hücreye yerleştirilen parçacıkların 

ağırlığının sistemin toplam ağırlığına oranı olarak ifade edilir. Farklı dolum oranları için PDS’li 

çubuğun sayısal analizi yapılmıştır. Parçacıksız boş çubuk için kullanılan parametreler aynı kalmak 

koşuluyla çubuğun hareket denklemi çözülerek konum ve ivme değerleri elde edilmiştir. Sonuçlar 

grafik ve tablo olarak aşağıda verilmiştir. İlk olarak çubuğun uç kısmında belirlenen 64 tane (16 
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adet x, 4 adet y yönünde) hücreye 6’şar adet toplam 384 adet sönümleyici parçacık yerleştirilmiştir. 

6 parçacık için dolum oranı yaklaşık %18 olmaktadır. 6 parçacıklı PDS’li sistemin akselerans 

FTF’si Şekil 6.14’te verilmiştir. Daha sonra her bir hücreye sırasıyla 10’ar (toplam 640 adet 

parçacık, doluluk oranı %30), 15’şer (toplam 960 adet parçacık, doluluk oranı %45), 20’şer (toplam 

1280 adet parçacık, doluluk oranı %60) ve 30’ar (toplam 1920 adet parçacık, doluluk oranı %90) 

sönümleyicili parçacık yerleştirilerek analiz yapılmıştır. Sonuçlar Şekil 6.15’te grafik olarak 

verilmiştir.  

 

 

 

Şekil 6.14. Her bir hücresinde  6 parçacık bulunan PDS’li ankastre-serbest çubuğun akselerans FTF’si. 

  

 
 

Şekil 6.15. Farklı doluluk oranındaki PDS’li ankastre-serbest çubuğun akselerans FTF’si. 
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Farklı doluluk oranları için ankastre-serbest çubuğun doğal frekansları değişimi Tablo 6.4’te 

belirtilmiştir. Doluluk oranına bağlı olarak çubuğun bütün doğal frekansları azalmaktadır. En fazla 

doğal frekans değişimi birinci titreşim modunda gerçekleşmektedir. İkinci ve üçüncü titreşim 

modlarında doğal frekansları doluluk oranlarına bağlı olarak az miktarda azalmaktadır. Dördüncü 

titreşim modunda doğal frekansları doluluk oranlarına bağlı olarak neredeyse değişmemektedir. 

Parçacıklar birinci titreşim modunda daha aktif iken dördüncü titreşim modunda çok az aktif 

oldukları anlaşılmaktadır. 

Tablo 6.4. Farklı doluluk oranlarına göre çubuğun doğal frekanslarının değişimi 

  %0 %18 %değişim %30 %değişim %45 %değişim %60 %değişim %90 %değişim 

1. mod 44.2 43.1 -2.49% 42.5 -3.85% 41.9 -5.20% 41.3 -6.56% 40 -9.50% 

2. mod 253.3 252.9 -0.16% 251.9 -0.55% 250.8 -0.99% 249 -1.70% 245.6 -3.04% 

3. mod 633.5 633.4 -0.02% 632.8 -0.11% 632.1 -0.22% 631.6 -0.30% 630.3 -0.51% 

4. mod 1093.9 1093.9 0.00% 1093.6 -0.03% 1093.6 -0.03% 1092.9 -0.09% 1093.6 -0.03% 

 

Yarım güç bant genişliği yöntemi [107] yapının frekans tepki fonksiyonundan modal sönüm 

oranını tahmin etmek için kullanılmıştır. Farklı doluluk oranlarına göre çubuğun sönüm oranları 

değişimi Tablo 6.5’te verilmiştir. En fazla sönüm yitimi ikinci ve en az sönüm yitimi dördüncü 

titreşim modunda gerçekleşmektedir. Birinci titreşim modunda az dolum oranlarında sönüm 

katsayısı değişimi daha fazla iken yüksek dolum oranlarında daha azdır. Diğer titreşim modlarında 

doluluk oranlarına bağlı olarak sönüm katsayısı artmaktadır. 

Tablo 6.5. Farklı doluluk oranlarına göre çubuğun sönüm oranları değişimi 

Doluluk oranı  %0 18% % değişim 30% % değişim 45% % değişim 60% % değişim 90% % değişim 

1. mod 0.014 0.0182 30% 0.0189 35% 0.0164 17% 0.0162 16% 0.017 21% 

2. mod 0.016 0.0211 32% 0.0239 49% 0.028 75% 0.035 119% 0.0407 154% 

3. mod 0.011 0.0123 12% 0.0134 22% 0.0144 31% 0.016 45% 0.0206 87% 

4. mod 0.017 0.017 0% 0.0175 3% 0.0178 5% 0.0184 8% 0.0189 11% 

 

Doluluk oranının ankastre-serbest çubuğun FTF’si üzerindeki etkisi Şekil 6.16’da 

karşılaştırmalı olarak verilmiştir.  
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Şekil 6.16. Dolum oranının ankastre-serbest çubuğun FTF’si üzerindeki etkisi. 

Farklı dolum oranları için ankastre-serbest çubuğun ilk 4 eğilme titreşim moduna ait 

akselerans titreşim genliği Tablo 6.6’da ve parçacıksız ankastre-serbest çubuğun FTF’si ile 

kıyaslaması da Şekil 6.17’de verilmiştir. Şekil 6.17’de çubuk grafik üzerindeki % ile ifade edilen 

değerler genliğin boş çubuğun genliğine göre yüzdesel değişimidir. Doluluk oranı arttıkça eklenen 

sönümleyicili parçacıkların sayısı ve kütlesi de artmaktadır. İlk titreşim modunda dolum oranı 

%30’a kadar titreşim genliği azalmakta, %45 iken bir önceki doluluk oranına göre bir miktar 

artmakta sonra tekrar düşmektedir. Birinci titreşim modunda doluluk oranı %30 iken parçacıkların 

daha aktif olduğu anlaşılmaktadır. İkinci ve üçüncü titreşim modlarında titreşim genlikleri doluluk 

oranlarına bağlı olarak doğrusal azalmaktadır. Dördüncü titreşim modunda titreşim genliği çok az 

değişmektedir.  

Tablo 6.6. Farklı doluluk oranları için ankastre-serbest çubuğun titreşim genliği [g/N] 

Doluluk oranı %0 %18 %30 %45 %60 %90 

1. titreşim modu 9.68 7.06 6.67 7.18 7.03 6.39 

2. titreşim modu 30.08 22.20 19.24 16.19 12.71 10.31 

3. titreşim modu 47.34 42.55 38.49 35.50 31.69 24.15 

4. titreşim modu 2.86 2.86 2.77 2.74 2.65 2.48 
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Şekil 6.17. Farklı doluluk oranları için ankastre-serbest çubuğun akselerans titreşim genliği ve değişimi 

6.2. Kütle Oranının Ankastre-Serbest Çubuğun Sönümüne Etkisi 

PDS’li sistemlerde kütle oranı, hücrelere yerleştirilen sönümleyicili parçacıkların toplam 

kütlesinin çubuğun toplam kütlesine oranı olarak tanımlanmaktadır. Katmanlı çubuğun toplam 

eşdeğer kütlesi 0.250 kg ve 1.25 mm yarıçapındaki akrilik bir topun kütlesi (𝑚𝑝 =
4

3
𝜋𝑟𝑝

3𝜌𝑝) 

yaklaşık 9.65x10-6 kg’dır. Belirlenen her bir hücreye 10 adet sönümleyicili parçacık yerleştirildiği 

zaman kütle oranı yaklaşık 0.025 olmaktadır. Kütle oranı 0.025 ile 0.200 arasında değiştirilerek 

kütle oranının ankastre-serbest çubuğun FTF’si üzerindeki etkisi incelenmiştir. Kütle oranının 

etkisini incelemek için sadece sönümleyici parçacıkların yoğunluğu artırılmış (2x, 4x, 8x) diğer 

bütün parametreler aynı kalmıştır. Yani aynı fiziksel özelliklerde farklı malzemelerden yapılmış 

parçacıkların etkisi olarak düşünülebilir. Yoğunluktaki değişiklik parça sayısının dolayısıyla dolum 

oranının sabit kalması demektir. Sonuç olarak, transfer fonksiyonunda gözlemlenen değişimler 

sadece kütle oranındaki değişime bağlanabilir. Kütle oranının ankastre-serbest çubuğun akselerans 

FTF’si üzerindeki etkisi Şekil 6.18 ve Tablo 6.7’de verilmiştir. Artan kütle oranına bağlı olarak 

çubuğun ilk 3 doğal frekansları doğrusal azalmaktadır. Dördüncü titreşim modundaki değişim 

ihmal edilecek kadar küçüktür. Kütle oranlarına bağlı olarak çubuğun ilk 4 modu için akselerans 

titreşim genliği Tablo 6.8 ve Şekil 6.19’da verilmiştir. Benzer şekilde ankastre-serbest çubuğun 

rezonans titreşim genliği ilk 3 titreşim modu için doğrusal azalmaktadır. Dördüncü titreşim modu 

için genlik çok az etkilenmektedir. Aynı fiziksel özellikteki sönümleyici parçacıklardan kütlesi ağır 

olan yapının sönümünün azaltılmasında daha etkilidir. 
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Şekil 6.18. Kütle oranının ankastre-serbest çubuğun genliğine etkisi. 

Tablo 6.7. Farklı kütle oranlarına göre ankastre-serbest çubuğun doğal frekansları 

Kütle oranı 1. mod 2. mod 3. mod 4. mod 

0 44.2 253.3 633.5 1093.9 

0.025 (m) 42.5 251.9 632.8 1093.6 

0.05 (2m) 41.2 250.0 631.7 1093.9 

0.1 (4m) 39.0 246.5 628.5 1093.5 

0.2 (8m) 35.6 240.9 620.2 1092.3 

Tablo 6.8. Kütle oranlarına göre ankastre-serbest çubuğun akselerans genliği 

Kütle oranı 0 m 2m 4m 8m 

1. titreşim modu 9.68 6.67 6.29 4.72 3.6 

2. titreşim modu 30.08 19.24 13.84 9.08 6.92 

3. titreşim modu 47.34 38.49 31.49 22.48 14.42 

4. titreşim modu 2.86 2.77 2.72 2.74 2.43 
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Şekil 6.19. Farklı kütle oranları için ankastre-serbest çubuğun akselerans titreşim genliği ve değişimi 

6.3. Sabit Kütleli Doluluk Oranının Ankastre-Serbest Çubuğun Sönümüne Etkisi 

Sabit kütleli doluluk oranının çubuğun FTF’si üzerindeki etkisini incelemek için sönümleyici 

parçacığın yoğunluğu hariç diğer bütün parametreler sabit tutulmuştur. Parçacığın yoğunluğu 

değiştirilince kütlesi değişmiş oldu. Parçacıkların toplam kütlesini sabit tutmak için yarıçapı sabit 

kalmak koşulu ile parçacık sayısı değiştirilmiştir. Dolayısı ile hücre doluluk oranı değişmiş oldu. 3 

durum dikkate alınmıştır. Yarıçapı 1.25 mm ve yoğunluğu 1180 kg/m3 olan ve her bir hücresine 30 

adet akrilik top yerleştirilmiş PDS’li sistem referans alınmıştır. Yoğunluğu 2 katı olan 

parçacıklardan yaklaşık 15 adet ve yoğunluğu 4 katı olan parçacıklardan yaklaşık 8 adet her bir 

hücreye yerleştirilirse toplam parçacık kütlesi aynı olmaktadır. Her durumda çubuk rms değeri 10 

N’luk gelişigüzel kuvvetle tahrik edilmiştir. Bu durumlar için ankastre-serbest çubuğun transfer 

fonksiyonu grafiği Şekil 6.20 ve akselerans genliği Tablo 6.9’da verilmiştir. Kütle oranı sabit 

kaldığı için 3 durum için doğal frekansları hemen hemen aynı kalmaktadır. Akselerans genlikleri 

çok az miktarda değişmektedir. Şekil 6.21’de yoğunluğu iki katına çıkartılmış her bir hücresinde 

15 adet parçacık bulunan hücrenin iki farklı zaman dilimindeki davranışı veriliştir. Grafikten 

anlaşılacağı üzere rms değeri 10 N olan tahrik kuvveti hücreleri çok az hareket ettirmektedir. 

Parçacıklar hemen hemen bir bütün halinde kalmaktadır. Bu sonuçlardan, belirtilen koşullarda 

parçacıkların katmanlı bal peteği yapısının sönümü üzerindeki verimliliğini etkileyen en önemli 

parametrenin parçacıkların toplam kütlesi olduğu anlaşılmaktadır.  
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Şekil 6.20. Sabit kütleli yoğunluk oranının ankastre-serbest çubuğun genliğine etkisi. 

Tablo 6.9. Yoğunluk oranlarına göre ankastre-serbest çubuğun akselerans genliği 

Yoğunluk oranı 0 ρ %değişim 2ρ %değişim 4ρ %değişim 

1. titreşim modu 9.68 6.39 -34% 6.61 -32% 5.25 -46% 

2. titreşim modu 30.08 10.31 -66% 10.50 -65% 10.65 -65% 

3. titreşim modu 47.34 24.15 -49% 27.37 -42% 24.87 -47% 

4. titreşim modu 2.86 2.48 -13% 2.61 -9% 2.85 0% 

 

 

  

t=2.5 sn t=7.5 sn 

Şekil 6.21. Yoğunluğu 2 katına çıkartılmış 15 adet parçacığın iki farklı zaman dilimindeki davranışları. 

6.4. Tahrik Genliğinin Ankastre-Serbest Çubuğun Sönümüne Etkisi 

Tahrik sinyalinin genlik düzeyinin ankastre-serbest çubuğun titreşim genliği üzerindeki 

davranışını incelemek için, gelişigüzel giriş sinyalinin rms (karekök ortalama) değeri, aynı bant 

genişliğini koruyarak, 3.2, 10.0, 31.6 ve 56.2 N olmak üzere dört durum dikkate alınmıştır. Diğer 
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tüm parametreler sabit tutulmuştur. Ankastre-serbest çubuğun her bir hücresine10’ar adet parçacık 

yerleştirilerek elde edilen FTF grafiği Şekil 6.22’de verilmiştir. Tüm modlarda rezonans zirvesinde 

bir azalma meydana gelmiştir. En fazla genlik azalması 1. titreşim modunda gerçekleşmektedir. Bu 

titreşim modunda en fazla enerji yitimi tahrik frekansının rms değeri 31.6 N iken meydana 

gelmektedir. Diğer titreşim modlarında genlik farkı çok azdır.  

 

 

 

Şekil 6.22. Tahrik genliğinin ankastre-serbest çubuğun titreşim genliğine etkisi 

Dört konumda hücrelere yerleştirilmiş parçacıkların iki farklı zaman adımındaki anlık 

görüntüleri Şekil 6.23’te gösterilmektedir. 3.2 N rms tahrik sinyali için parçacıklar çok az hareket 

etmektedir. Parçacıkların çoğu yüzeylerle temas halindedir. Sönümleme en fazla alt yüzeye 

temastan kaynaklanmaktadır. 32 N rms tahrik sinyalinde parçacıklar bir bütün halinde hareket 

etmekte ve bir miktar alt yüzeyden ayrılmaktadır. 56.2 N rms tahrik sinyali için parçacıkların bir 

kısmının üst yüzeye çarpmadan hücre içerisinde boşlukta kaldığı görülmektedir. Sonuç olarak, 

hücre yüzeyleri ile etkileşim daha azdır ve dolayısıyla sönümleyici parçacıkların modal kütleye 

katkısı az olduğundan frekans kayması da ihmal edilebilir hale gelmekledir.   

 

 

 
(a) 
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t=2.5 s t=7.5 s 

Şekil 6.23. Sönümleyici parçacıkların anlık görüntüleri: a) tahrik genliği (rms) 3.2 N, b) tahrik genliği (rms) 

32 N, c) tahrik genliği (rms) 56.2 N.

(b) 

(c) 



 

 

7. PARÇACIK SÖNÜMLEYİCİLİ DÖNEN BAL PETEĞİ 

KATMANLI YAPILAR 

Bu bölümde, PDS yönteminin dönen kompozit konsol çubuklar üzerindeki verimliliğinin 

incelenmesi için bazı sayısal uygulamalar yapılmıştır. Çubuk bal peteği şeklinde gözenekli 

hücrelere sahip katmanlı yapıdadır. Çubuk sabit açısal hızla dönmekte ve sadece bir eksende 

titreşim hareketi yaptığı kabul edilmiştir. Çubuğun kalınlığının, boyuna oranla oldukça küçük 

olduğu varsayılmıştır. Böylece dönme ataleti ve kayma şekil değiştirme etkileri ihmal edilmiştir. 

Sabit kesitli, belirli bölgelerine sönümleyici parçacık yerleştirilmiş dönen konsol çubuğun düzlem 

içi eğilme (x doğrultusunda) titreşimleri incelenmiştir. Yapının hareket denklemi analitik olarak 

elde edilmiştir. Çubuğun en fazla titreşim yapan uç bölgelerinde seçilen bazı hücrelerine 

sönümleyici parçacıklar yerleştirilmiştir. Ankastre ucuna yakın bir konumdan gelişigüzel titreşimle 

tahrik edilmiştir. Dönen konsol çubuğun zorlamalı hareket denkleminden uç kısmının ivme değeri 

hesaplanarak cevap ve tahrik noktası arasındaki FTF’si elde edilmiştir. Farklı dolum oranı, 

malzeme, tahrik frekansı gibi parametreler için çubuğun FTF grafikleri elde edilmiş ve sönümleyici 

parçacıkların sönüm üzerindeki etkisi incelenmiştir. Bu grafikler parçacıksız çubuğun FTF’si ile 

karşılaştırmalı olarak verilmiştir. Konsol çubuğun PDS’li titreşim analizi ve simülasyonu için 

Matlab programı kullanılmış ve bu amaçla birçok program hazırlanmıştır. 

Şekil 7.1’de bir göbeğe sabitlenmiş katmanlı çubuk verilmiştir. Bu çubuk göbek etrafında 

dönen ankastre-serbest sınır şartlarına sahip olarak modellenebilmektedir.  

 

 

 

Şekil 7.1. Bal peteği katmanlı dönen çubuk 

x 

y 

z 

𝜃̇ 
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Sabit bir eksen etrafında dönen konsol çubuğun kütle ve katılık matrislerinin aşağıdaki gibi 

hesaplanabildiği daha önce ifade edilmişti.  

Burada, rg göbek yarıçapıdır. Bu katmanlı çubuk için kütle ve katılık orantılı sönüm kabulü 

yapılırsa, hareket denklemi aşağıdaki gibi modal koordinatlarda ifade edilir.  

Bir önceki bölümde özellikleri verilen bal peteği katmanlı çubuk ele alınmıştır. Göbek 

yarıçapı rg=100 mm olarak belirlenmiştir. Bu şartlar altında parçacıksız sistemin dönme hızına bağlı 

olarak elde edilen doğal frekansları Tablo 7.1’de verilmiştir. 

Tablo 7.1. Dönme hızına bağlı olarak konsol çubuğun doğal frekansları. 

 Dönme Hızı 𝜽̇ (𝒓𝒂𝒅/𝒔) 

Doğal Frekans [Hz] 𝟎 5 50 500 

1. Eğilme Frekansı 44.8 44.9 45.1 66.3 

2. Eğilme Frekansı 280.6 280.7 281.4 346.3 

3. Eğilme Frekansı 785.8 785.9 786.6 861.9 

4. Eğilme Frekansı 1539.8 1540.0 1540.7 1622.3 

 

PDS’li dönen çubuk modeli Şekil 7.2’de verilmiştir. Bir önceki bölümde konsol çubuk için 

belirtilen durumlar dönen çubuk içinde geçerlidir. Çubuk ankastre ucundan 275 mm mesafeden rms 

değeri 10 N olan gelişigüzel Gauss titreşimi ile tahrik edilmiştir. Farklı dönme hızları için (𝜃̇ =

[0, 5, 50, 500] 𝑟𝑎𝑑/𝑠) çubuğun uç kısmının H1 transfer fonksiyonu Şekil 7.3’te verilmiştir. Dönen 

çubuğun doğal frekansları dönme hızının karesi ile orantılı olduğundan düşük dönme hızlarında 

doğal frekanslarda değişim az iken yüksek dönme hızlarında oldukça fazladır.  

 

 

𝑀 = ∫ (𝜌𝐴)𝑒𝑞𝜑
𝑇𝜑𝑑𝑦

𝐿

0
  (7.1) 

𝐾 = ∫ (𝐸𝐼)𝑒𝑞𝜑
′′𝑇𝜑′′𝑑𝑦 + 𝜃̇2 [∫ (𝜌𝐴)𝑒𝑞(𝑟𝑔 + 𝑦)(∫ 𝜑′

𝑇
𝜑′𝑑𝜎

𝑦

0
)

𝐿

0
𝑑𝑦 −

𝐿

0

∫ (𝜌𝐴)𝑒𝑞𝜑
𝑇𝜑𝑑𝑦

𝐿

0
]  

(7.2) 

𝑞̈𝑖 + 2𝜍𝑖𝜔𝑖𝑞̇𝑖 + 𝜔𝑖
2𝑞𝑖 = 𝜓𝑖

𝑇(𝑦𝑒)𝑓
𝑒 + ∑ (𝜓𝑖

𝑇(𝑦𝑗)𝑓𝑗
𝑑)𝑛

𝑗=1   (7.3) 
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Şekil 7.2. PDS’li dönen çubuk modeli 

 

 

Şekil 7.3. Farklı dönme hızları için konsol çubuğun uç kısmının transfer fonksiyonu 

Şekil 7.2’de gösterildiği gibi çubuğun uç kısmından 50 mm içeriden 64 tane hücre (4 adet y 

doğrultusunda 16 adet z doğrultusunda) sönümleyici parçacık yerleştirmek için seçilmiştir. 

Özellikleri Tablo 6.3’te verilen akrilik parçacıklar kullanılmıştır. Titreşime maruz kalan hücrelerin 

yüzey tabakalarının YZ düzlemine paralel kalacak şekilde X doğrultusunda öteleme yaptığı, yan 

yüzeylerinin ise X de öteleme ve Z eksenine göre dönme hareketi yaptığı varsayılmıştır. Daha sonra 

bu yapı göbeğin dönmesine bağlı olarak 𝜃 açısı ile Z ekseni etrafında dönmektedir (Şekil 7.4.a). 

Dönen hücre içeresinde meydana gelen tüm temas kuvvetlerinin toplamı alt yüzeye dik tekil bir 

kuvvet olarak modellenmiştir (Şekil 7.4.b). 

 

 

 

275 

50 

L 

w 
y 

z 

w(L) 

Parçacıkların 

Yerleştirildiği Alan 

Tahrik Noktası 

Cevap Noktası 

𝜃̇ 
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Şekil 7.4. (a) Deformasyona uğramış dönen hücre, (b) Dönen hücrede meydana gelen temas kuvveti 

Şekil 7.4.a’da XYZ ve xyz koordinatları sırasıyla sabit ve referans koordinat sistemi olarak 

tanımlanmıştır. Altıgen hücrenin xyz referans düzlemine göre düzlem denklemleri ankastre uca 

göre aşağıda verilmiştir.  

Burada R ve H sırasıyla altıgen hücrenin çevresel yarıçapı ve yüksekliğidir. 𝑦𝑗 j hücresinin 

ankastre uca göre konumunu, 𝑤𝑗 ve 
𝜕𝑤𝑗

𝜕𝑦
 sırasıyla j hücresinin titreşim kaynaklı yer değiştirmesi ve 

eğimini ifade etmektedir. 𝑤𝑗 ve 
𝜕𝑤𝑗

𝜕𝑦
 ifadeleri hareket denkleminin çözümünden 𝑤𝑗 =

∑ 𝜓𝑖(𝑦𝑗)𝑞𝑖(𝑦𝑡)
𝑛
𝑖=1  ve

𝜕𝑤𝑗

𝜕𝑦
= ∑

𝜕𝜓𝑖(𝑦𝑗)

𝜕𝑦
𝑞𝑖(𝑦𝑡)

𝑛
𝑖=1   şeklinde elde edilmektedir. Benzer şekilde j 

hücresinin titreşim kaynaklı hızı 𝑤̇𝑗 = ∑ 𝜓𝑖(𝑦𝑗)𝑞̇𝑖(𝑦𝑡)
𝑛
𝑖=1  ifadesi ile elde edilir. 

Çubuk Z ekseni etrafında döndüğü için RZ dönme matrisi aşağıdaki gibi tanımlanabilir.  

𝑃𝑥𝑦𝑧 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝜕𝑤𝑗
𝜕𝑦

1 0

𝜕𝑤𝑗

𝜕𝑦
1 0

𝜕𝑤𝑗

𝜕𝑦
1 √3

𝜕𝑤𝑗

𝜕𝑦
1 −√3

𝜕𝑤𝑗

𝜕𝑦
1 −√3

𝜕𝑤𝑗

𝜕𝑦
1 √3

1 0 0
1 0 0⏟        
𝑎        𝑏        𝑐 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

{
𝑥
𝑦
𝑧
} +

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−𝑦𝑗 −

√3

2
𝑅

−𝑦𝑗 +
√3

2
𝑅

−𝑦𝑗 − √3𝑅

−𝑦𝑗 + √3𝑅

−𝑦𝑗 − √3𝑅

−𝑦𝑗 + √3𝑅

−𝑤𝑗 −
ℎ

2

−𝑤𝑗 +
ℎ

2⏟      
𝑑 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

= 0  (7.4) 

𝑅𝑧 = [
𝑐𝑜𝑠 (𝜃) −𝑠𝑖𝑛 (𝜃) 0
𝑠𝑖𝑛 (𝜃) 𝑐𝑜𝑠 (𝜃) 0
0 0 1

]  (7.5) 

𝜃 

(a) 

y 

z 

x 
 

7 

8 

𝑓ҧ𝑗
𝑑 

(b) 
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𝜃 göbeğin açısal yer değiştirmesidir. t süre olmak üzere; 𝜃 = 𝑡 ∗ 𝜃̇ formülü ile hesaplanır. 

Hücre duvarlarının sabit koordinat sistemine göre düzlem denklemleri aşağıdaki gibi 

hesaplanabilir.  

j hücre merkezinin hem titreşimden hem de dönmeden kaynaklanan doğrusal hızı aşağıdaki 

gibi hesaplanabilir. 

Burada 𝑖 = √−1, 𝑦𝑗 j hücre merkezinin ankastre uca göre konumu, 𝑤̇𝑗 j hücresinin doğrusal 

hızını ifade etmektedir. 𝑉𝑗 karmaşık sayı olmak üzere gerçel kısmı temas noktasının hızının y 

bileşenini sanal kısmı ise x bileşenini vermektedir. Dolayısı ile temas noktasının bağıl hızı, i yüzey 

ile temas eden parçacık olmak üzere  𝑉𝑏𝑎ğ𝚤𝑙 = 𝑉𝑗 − 𝑉𝑖 + (𝑟𝐴𝝎𝐴) × 𝒏⃗⃗  ile hesaplanır. Hücre 

yüzeylerine ait birim vektörler 𝑃𝑋𝑌𝑍 yüzeylerine dik olan vektörlerdir ve aşağıdaki gibi hesaplanır. 

 
Şekil 7.5. Dönen çubuk için ayrık elemanlar yöntemi simulasyon algoritması akış şeması 

𝑃𝑋𝑌𝑍 = 𝑅𝑍 × 𝑃𝑥𝑦𝑧(𝑎; 𝑏; 𝑐) + 𝑑 = 𝐴𝑋 + 𝐵𝑌 + 𝐶𝑍 + 𝐷 =  0  (7.6) 

𝑉𝑗 = 𝑖𝑦𝑗𝜃̇𝑒
𝑖𝜃 − 𝑤̇𝑗𝑠𝑖𝑛𝜃 + 𝑖𝑤̇𝑗𝑐𝑜𝑠𝜃  (7.7) 

𝒏⃗⃗ =
〈𝑎,𝑏,𝑐〉

√𝑎2+𝑏2+𝑐2
  (7.8) 

Başla 

Çubuk hareket denklemi: 𝑞̈ + 2𝜍𝜔𝑞̇ + 𝜔2𝑞 = 𝜓𝑇(𝑦𝑒)𝑓
𝑒 + ∑ 𝜓𝑇(𝑦𝑗)𝑓𝑗

𝑑𝑁
𝑗=1           𝑞, 𝑞̇ 

Parçacık yerleştirilmiş hücre: 𝑤𝑗 = ∑ 𝜓𝑖(𝑦𝑗)𝑞𝑖(𝑦𝑡)
𝑛
𝑖=1 , 

𝜕𝑤𝑗

𝜕𝑦
= ∑

𝜕𝜓𝑖(𝑦𝑗)

𝜕𝑦
𝑞𝑖(𝑦𝑡)

𝑛
𝑖=1 , 𝑤̇𝑗 = ∑ 𝜓𝑖(𝑦𝑗)𝑞̇𝑖(𝑦𝑡)

𝑛
𝑖=1  

Düzlem denklemlerini (𝑃𝑥𝑦𝑧) güncelle 

Temas kontrol 

Parçacık-parçacık Parçacık-düzlem 

𝑉𝑝, 𝑛, 𝑡, 𝛿̇
𝑛, 𝛿̇𝑡  𝑉𝑝, 𝑛, 𝑡, 𝛿̇

𝑛, 𝛿̇𝑡  

𝐹𝑛, 𝐹𝑡  𝐹𝑛, 𝐹𝑡  𝑔 

İvmeler 

a, 𝛼 

Konum, 

Hız 

𝐹𝑛
𝑧, 𝐹𝑡

𝑧  

𝑉𝑗 

Evet 
Hayır 

Evet 

𝑓𝑗
𝑑 

Çubuk dönmesini (𝑅𝑧) dâhil et: (𝑃𝑋𝑌𝑍, normal birim vektörler ve 𝑉𝑗) 
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Dönen çubuğun titreşim hareketini ayrık elemanlar yöntemi ile incelerken Şekil 7.5’te 

verilen akış şeması takip edilmiştir.  

Her bir zaman adımında çubuğun hareket denklemi çözülür. Çubuğun hareketini ifade etmek 

için ilk dört modu yeterli kabul edilmiştir. Parçacık yerleştirilmiş hücrelerin yerdeğiştirme, eğilme 

ve hızları hesaplanır. Bu sonuçlara göre hücre yüzey denklemleri referans düzleme göre elde edilir. 

Çubuğun dönmesi dikkate alınarak düzlem denklemleri sabit düzleme göre güncellenir. Çubuğun 

hareketi neticesinde parçacık-parçacık ve parçacık-düzlem temasları kontrol edilir. Kontrol işlemi 

her bir zaman adımında her bir parçacık, düzlem ve hücre için ayrı ayrı yapılır. Temas 

gerçekleşmişse bağıl hızlar, normal, teğetsel vektörler hesaplanır. Bağıl hızın normal ve teğetsel 

düzleme izdüşümü skaler çarpımla elde edilir. Her bir parçacığa etki eden temas kuvvetleri 

bulunarak parçacıkların ivmeleri hesaplanır. İvmelerin integrali alınarak parçacıkların konum ve 

hızları güncellenir. Düzlemlerle temas gerçekleşmişse temas edilen düzlemin hem titreşimden hem 

de dönmeden kaynaklı hızı ve temas noktalarında oluşan normal ve teğetsel kuvvetlerin hareket 

yönündeki bileşeni hesaplanır. Bütün düzlemlerle etkileşim halinde olan parçacıkların hareket 

yönündeki bileşenleri toplanarak çubuğa hücre merkezinde etki ettiği varsayılan bileşke kuvvet 

elde edilir. Bu işlemler döngü halinde analiz süresince yapılır. 

 

 

  

Şekil 7.6. Çubuğun uç kısmının ivme cevabı, tahrik kuvveti 10 N, 𝜃̇=5 rad/sn 

Şekil 7.6’da seçilen her bir hücresine 15 adet parçacık yerleştirilmiş çubuğun tahrik genliği 

10 N ve dönme hızı 5 rad/s iken uç kısmının ivme cevabı boş çubuk ile kıyaslamalı verilmiştir. 

Şekil 7.7’de ise 15 adet parçacık yerleştirilmiş çubuğun tahrik genliği 10 N ve dönme hızı 50 rad/s 

iken uç kısmının ivme cevabı boş çubuk ile kıyaslamalı verilmiştir. Her iki durumda çubuğun uç 

kısmının ivme genliğinin azaldığı söylenebilir. Düşük dönme hızında genlikteki azalma daha 

fazladır. 
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Şekil 7.7. Çubuğun uç kısmının ivme cevabı, tahrik kuvveti 10 N, 𝜃̇=50 rad/sn 

Şekil 7.8’de seçilen her bir hücresine 15 adet parçacık yerleştirilmiş çubuğun tahrik genliği 

10 N iken yüzeylerle hareket doğrultusunda yj = 0.7974 mm hücresinde meydana gelen temas 

kuvveti iki farklı dönme hızı için verilmiştir. Ana yapıyla en fazla etkileşim alt ve üst yüzeylerle 

olduğu için bu yüzeylerle oluşan temas kuvvetleri daha fazladır. Şekildeki hareket yönünde oluşan 

temas kuvvetlerindeki zirveler alt ve üst yüzeylerle etkileşimde olduğu durumlardır. Zirve noktaları 

düşük dönme hızında daha yüksek olduğu görünmektedir. 

 

 

  

Şekil 7.8. İki farklı dönme hızı için konsol çubukta meydana gelen yüzey temas kuvvetleri a) 𝜃̇=5 rad/s, b) 

𝜃̇=50 rad/s 

7.1. Doluluk Oranı ve Dönme Hızının Dönen Konsol Kirişin Sönümüne Etkisi 

Bir göbek etrafında sabit hızla dönen çubuğun uç noktasının akselerans cevabı farklı doluluk 

oranları için incelenmiştir. Doluluk oranları %18 (6 adet parçacık), %30 (10 adet parçacık), %45 

(15 adet parçacık), %60 (20 adet parçacık) ve %90 (30 adet parçacık) olarak seçilmiştir. Açısal hız 

için iki durum ele alınmıştır: 5 rad/s ve 50 rad/s. Dönme hızının 5 rad/s olması durumunda farklı 

(a) (b) 
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doluluk oranları için çubuğun uç kısmının FTF grafiği Şekil 7.9’da verilmiştir. Konsol çubuğun 

doğal frekansları değişimi ise Tablo 7.2’de verilmiştir.  

 

 

  

  

 

Şekil 7.9. Farklı dolum oranının konsol çubuğun FTF’si üzerindeki etkisi (𝜃̇=5 rad/s). 

Dönen çubuğun doğal frekansları sönümleyici parçacıkların miktarına bağlı olarak çok az 

değişmektedir.  En fazla değişim 1. doğal frekansında olmaktadır. Diğer 3 doğal frekansları dolum 
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oranına bağlı olarak %1’in altında değişmektedir. Göbek dönme hızı 5 rad/s iken farklı doluluk 

oranlarına bağlı olarak dönen çubuğun uç kısmının titreşim genliği Tablo 7.3 ve Şekil 7.10’da 

karşılaştırmalı olarak verilmiştir. İlk üç titreşim modlarında çubuğun genliği dolum oranına bağlı 

olarak doğrusal azalmaktadır. 4. titreşim modunda genlikteki değişim dolum oranına bağlı olarak 

çok az seviyededir.  

Tablo 7.2. Farklı doluluk oranlarına göre çubuğun doğal frekansları değişimi (𝜃̇=5 rad/s) 

  %0 %18 %değişim %30 %değişim %45 %değişim %60 %değişim %90 %değişim 

1. mod  44.9 44.1 -1.78% 43.5 -3.12% 42.9 -4.45% 41.8 -6.90% 42.4 -5.57% 

2. mod  280.7 280.1 -0.21% 279.4 -0.46% 278.4 -0.82% 276.9 -1.35% 276.1 -1.64% 

3. mod  785.9 785.6 -0.04% 785.2 -0.09% 784.4 -0.19% 783.5 -0.31% 782.9 -0.38% 

4. mod  1540.0 1539.7 -0.02% 1539.5 -0.03% 1539.1 -0.06% 1538.9 -0.07% 1538.6 -0.09% 

 

Tablo 7.3. Farklı doluluk oranlarına göre çubuğun titreşim genliği [g/N], (𝜃̇=5 rad/s) 

  %0 18% %değişim 30% %değişim 45% %değişim 60% %değişim 90% %değişim 

1. mod  9.06 5.24 -42.16% 4.06 -55.19% 3.19 -64.79% 2.99 -67.00% 2.64 -70.86% 

2. mod  29.53 23.53 -20.32% 20.44 -30.78% 17.87 -39.49% 15.31 -48.15% 14.81 -49.85% 

3. mod  55.53 51.43 -7.38% 47.86 -13.81% 43.84 -21.05% 39.61 -28.67% 39.67 -28.56% 

4. mod  13.18 13.11 -0.53% 12.94 -1.82% 12.67 -3.87% 12.41 -5.84% 12.07 -8.42% 

 

 

Şekil 7.10. Farklı doluluk oranları için dönen çubuğun akselerans titreşim genliği ve değişimi (𝜃̇=5 rad/s) 
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Çubuğun açısal hızının 50 rad/s olması durumunda farklı doluluk oranları için çubuğun uç 

kısmının FTF grafiği Şekil 7.11’de verilmiştir. Çubuğun doğal frekansları değişimi ise Tablo 7.4’te 

verilmiştir.  

 

 

 
 

 

 

 

Şekil 7.11. Farklı dolum oranının çubuğun FTF’si üzerindeki etkisi (𝜃̇=50 rad/s). 
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50 rad/s hızla dönen çubuğun doğal frekansları sönümleyici parçacıkların miktarına bağlı 

olarak en fazla 1. titreşim modunda değişmektedir. Diğer 3 doğal frekansları dolum oranına bağlı 

olarak çok az değişmektedir. Dolum oranı arttıkça çubuğun doğal frekansları azalmaktadır. 

Çubuğun dönme hızı 50 rad/s iken farklı doluluk oranlarına bağlı olarak dönen çubuğun uç kısmının 

titreşim genliği Tablo 7.5 ve Şekil 7.12’de karşılaştırmalı olarak verilmiştir.  

Tablo 7.4. Farklı doluluk oranlarına göre çubuğun doğal frekansları değişimi (𝜃̇=50 rad/s) 

  0% 18% %değişim 30% %değişim 45% %değişim 60% %değişim 90% %değişim 

1. mod  45.1 43.8 -2.88% 42.7 -5.32% 38.8 -13.97% 39.5 -12.42% 38.7 -14.19% 

2. mod  281.4 278.5 -1.03% 278.5 -1.03% 274.9 -2.31% 269.4 -4.26% 267.5 -4.94% 

3. mod  786.6 785.3 -0.17% 785.1 -0.19% 775.1 -1.46% 763.5 -2.94% 771 -1.98% 

4. mod  1540.7 1539.9 -0.05% 1540.5 -0.01% 1540.2 -0.03% 1540 -0.05% 1525.9 -0.96% 

 

Tablo 7.5. Farklı doluluk oranlarına göre çubuğun titreşim genliği [g/N], (𝜃̇=50 rad/s) 

  0% 18% %değişim 30% %değişim 45% %değişim 60% %değişim 90% %değişim 

1. mod  9.08 7.77 -14.43% 8.1 -10.79% 6.05 -33.37% 7.19 -20.81% 7.75 -14.65% 

2. mod  29.56 21.78 -26.32% 18 -39.11% 26.27 -11.13% 23.06 -21.99% 21.15 -28.45% 

3. mod  55.53 43.37 -21.90% 37.32 -32.79% 53.13 -4.32% 24.43 -56.01% 49.77 -10.37% 

4. mod  13.19 12.56 -4.78% 12.17 -7.73% 12.9 -2.20% 11.25 -14.71% 10.32 -21.76% 

 

 

Şekil 7.12. Farklı doluluk oranları için dönen çubuğun akselerans titreşim genliği ve değişimi (𝜃̇=50 rad/s) 
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Göbeğin dönmesinden kaynaklı merkezkaç kuvveti parçacıkları iç duvarda dönme 

ekseninden uzağa doğru iter. Bu nedenle, enerji dağılımı kanunu dönmeyen çubuk ile aynı 

olmayabilir çünkü enerji dağılımının elastik olmayan çarpışma ve sürtünme ile dağılımı 

değişecektir. Sabit durumda enerji elastik olmayan çarpışma ile dağılırken, dönme durumunda ana 

hareket yuvarlanma sürtünmesi olacaktır. Bundan dolayı dönen sistemlerde çarpışma 

sönümlemesinin yalnızca küçük bir etkiye sahip olduğu ve sürtünmenin PDS'nin performansındaki 

ana itici güç olduğu söylenebilir. Şekil 7.13’te parçacıkların iki dönme hızında farklı zaman 

dilimlerindeki davranışları verilmiştir. Düşük dönme hızında parçacıklar hücrenin iki ucu arasında 

hareket ederken bazen boşlukta kalabilmektedir. Yüksek dönme hızında ise daima karşı duvar 

üzerinde kaymakta ve sürekli temas olmaktadır. Bu yüzden düşük dönme hızında doğal 

frekanslardaki değişim yüksek dönme hızına göre daha azdır. Düşük dönme hızında çubuğun 

enerjisi hem çarpma hem sürtünme yoluyla emilirken, yüksek dönme hızında sürtünme daha 

etkilidir. Bu sebepten düşük dönme hızlarında genlikteki düşüş daha fazladır. 

 

 

  

   
t=2.0 sn t=8.0 sn 

Şekil 7.13. Sabit hızla dönen konsol kiriş üzerindeki parçacıkların davranışı (10 parçacık) a) 𝜃̇=5 rad/s, b) 

𝜃̇=50 rad/s

(a) 

(b) 

X
 

X
 

X
 

X
 



 

 

8. SONUÇ VE ÖNERİLER 

Bu tez çalışması kapsamında, sisteme küçük boyutlu tanecikli parçacıklar ekleyerek mekanik 

sistemlerdeki titreşimleri ve salınımları sönümlemek veya azaltmak için kullanılan bir teknik olan 

parçacık darbe sönümleme yönteminin bazı mühendislik yapılarında verimliliği araştırılmıştır. Bu 

yöntemde sistemdeki her bir parçacığın hareketi taşıyıcı yapının hareket denklemi ile çok küçük 

bir zaman adımında hesaplanarak temas ve temas kuvvetleri tayin edilir. Sistemde enerji, 

parçacıkların hücre yüzeylerine çarpması ve sürtünmesi yoluyla yutulur. Temas kuvvetinin normal 

bileşeni Hertz doğrusal olmayan temas modeli, teğetsel bileşeni ise Coulomb sürtünme yasaları 

yardımıyla modellenmiştir. Enerji yutumunu etkileyen parçacık sayısı, boyutu, malzemesi, hücre 

geometrisi, tahrik kuvveti gibi birçok parametre vardır. Her birini içeren bir optimizasyon yapmak 

çok zordur. Bu açıdan, bu yöntemde optimizasyon bir parametre hariç diğerlerini sabit tutarak 

değişken parametre için yapılabilir. Bu yöntem tek serbestlik dereceli sistemler için kullanılabildiği 

gibi, sürekli sistemler için de kullanılabilmektedir. 

Parçacık darbe sönümlemesi zeminden harmonik olarak tahrik edilen, yatay tek bir yönde 

hareket eden sistemlere uygulanmıştır. Üç farklı geometrik şekilli hücrelere sahip yapılar ele 

alınmıştır: silindirik, dikdörtgen prizması ve altıgen prizması. Yapının hareket denklemi 

parçacıkların hareketi ile beraber çözülerek titreşim genliği karakök ortalama cinsinden elde 

edilmiştir. Her yapı aynı mekanik ve malzeme özelliklerine sahip olarak belirlenmiştir. Üç farklı 

dolum oranları için titreşim genlikleri karşılaştırılmıştır. Granüler parçacıkların varlığında yapının 

sönümü etkili bir şekilde iyileştirilmiştir. Yerleştirilen parça sayısına bağlı olarak yapıların titreşim 

genliklerinin rezonans bölgesinde önemli ölçüde azaldığı gözlemlenmiştir. Eklenen her bir parça 

sistemin toplam kütlesini artırdığı için doğal frekansları azalmaktadır. Sabit kütle oranlarında daha 

büyük boyutlarda parçacık kullanmak çarpışma sayısının azalması anlamına gelmektedir. Bu 

durumda yapıdan enerji yutumu küçük boyutlu parçacıklara göre daha az olmaktadır. Sabit kütle 

oranında dikdörtgen prizmalı hücrenin boyutlarını değiştirerek optimum hücre boyutu 

belirlenmiştir. Parçacık sayısı ile rezonans genliği grafiğinin ikinci dereceden bir polinom ile ifade 

edilebildiği belirlenmiştir. Yaklaşık dolum oranı %65’e kadar sistemin rezonans genliği düşerken 

bu noktadan sonra etkisi azalmaktadır.  Fazla doluluk oranlarında parçacıklar bir bütün halinde 

hareket etme eğilimindedir. Bu yüzden hücre duvarları ile daha az şiddetli çarpışma olmakta ve 

yapının sönümüne daha az katkı sağlamaktalar.  

Mühendislik uygulamalarında gün geçtikçe kullanım alanları artan bal peteği katmanlı 

yapıların, parçacık darbe sönümleme yönteminin uygulaması için oldukça elverişli ve pratik olduğu 

söylenebilir. Bu yapılar sönüm kabiliyetini iyileştirmek için parçacıkların yerleştirileceği gerekli 

boşluklara sahiptir. Bu çalışmada, bal peteği katmanlı yapılarda parçacık darbe sönümleme yöntemi 

ile titreşim genliğinin nasıl etkilendiği sayısal olarak incelenmiştir. Çubuğun modal parametreleri 
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Ansys® APDL programından elde edilmiştir. Ankastre-serbest sınır şartlarındaki çubuk en fazla 

titreşime sebep olacak şekilde ankastre ucuna yakın yerden gelişigüzel titreşim ile tahrik edilmiştir. 

Çubuğun dinamik özelliklerini fazla etkilememek için çubuğun en fazla titreşim hareketi yapan uç 

kısmından bir bölge parçacıkların yerleştirilmesi için belirlenmiştir. Ankastre çubuğun hareket 

denklemi parçacıkların hareketi ile beraber Matlab® programında çözülerek çubuğun uç kısmının 

FTF’si elde edilmiştir. Konsol çubuğun ilk 4 eğilme titreşim modal verileri çubuk dinamiğini temsil 

etmek için yeterli kabul edilmiştir. Farklı doluluk oranı, farklı kütle oranı, farklı tahrik frekansı gibi 

parametrelerin çubuğun titreşim genliğine etkisi belirlenmiştir. Doluluk oranına bağlı olarak 

çubuğun rezonans genlikleri farklı titreşim modları için farklı oranlarda başarılı şekilde azalmıştır. 

İlk üç titreşim modunda genlikler hemen hemen doğrusal azalmakta iken dördüncü titreşim 

modunda genlik değişimi çok az olmaktadır. Doluluk oranı artıkça çubuğun doğal frekansları 

azalmaktadır. En fazla değişim birinci titreşim modunda doluluk oranına bağlı olarak %2.5 ile %9.5 

arasında bulunmuştur. Diğer modlarda, 2. titreşim modunun yüksek dolum oranları hariç doğal 

frekans değişimi hemen hemen %1’in altındadır. İncelenen katmanlı yapıda %30 doluluk oranında 

aynı yarıçap fakat farklı kütlelerdeki sönümleyici parçacıklardan kütlesi ağır olanlar daha fazla 

sistemden enerji emilimi sağlamaktadırlar. Tahrik kuvvetinin rms değeri 10 N olduğu durumda 

parçacıkların toplam kütlesi sabit kalmak koşuluyla aynı yarıçap fakat farklı yoğunluklarda 

parçacıkların yapının sönümü üzerinde etkisi hemen hemen aynıdır. Beklendiği gibi, artan 

yoğunlukla birlikte sabit kütle oranında çubuğun rezonans frekanslarında kayma 

gerçekleşmemiştir. Hücre alanlarının çok küçük olduğu ve parçacıkların hareketinin hücre 

yüzeyleri tarafından ziyadesiyle kısıtlandığı bir bal peteği katmanlı yapı için frekans kaymasının 

yalnızca eklenen kütle ile ilgili olduğu sonucuna varılabilir. Tahrik kuvvetinin genliği düşük olması 

halinde parçacıkların hemen hemen bir bütün halinde hareket ettiği, birbirinden uzaklaşmadığı, 

yüksek tahrik genliğinde ise birbirinden ve hücre yüzeylerinden ayrılabildiği görsel olarak 

belirlenmiştir. 

Yatay hareket eden tek serbestlik dereceli ve katmanlı ankastre-serbest sınır şartlarındaki 

sürekli sistemlerde parçacık darbe sönümleme yönteminin doğruluğu ve verimliliği teyit edildikten 

sonra yöntem benzer şekilde bir göbek etrafında dönen ankastre-serbest çubuğa uygulanacak 

şekilde geliştirilmiştir. Çubuğun parçacıklarla birlikte matematiksel modeli oluşturulmuştur. 

Parçacık darbe sönümleme yöntemi sayısal olarak ilk defa bu çalışmada dönen çubuklara 

uygulanmıştır. Çubuk hem dönmeden hem de dış tahrikten dolayı titreşim hareketi yapmaktadır.  

Çubuk bal peteği katmanlı yapıda olup sabit açısal hız ile dönmektedir.  Bu çubuğun parçacık darbe 

sönümlemeli titreşim cevabı farklı dönme hızları için incelenmiştir. Elde edilen sonuçlar tablo ve 

grafiklerle sunulmuştur. Dönen çubuklarda parçacıkların hareketini etkileyen en önemli faktör 

dönme hızıdır. Bu sebeple düşük (5 rad/s) ve yüksek (50 rad/s) sabit hızla dönen katmanlı konsol 

çubukta farklı dolum oranları için çubuğun titreşim analizi yapılmıştır. Dönme durumunda 
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merkezkaç kuvvetleri etkili olmaktadır. Dönmeyen yapıda sistemden enerji elastik olmayan 

çarpışma ve sürtünme ile uzaklaştırılırken dönme halinde yuvarlanma sürtünmesi aktif rol 

oynamaktadır. Düşük dönme hızlarında merkezkaç kuvveti zayıf olduğundan parçacıklar hücrenin 

iki ucu arasında hareket edebilmektedir. Yüksek dönme hızlarında bu kuvvet baskın olmakta ve 

parçacıkları karşı duvara doğru itmektedir.  

PDS’li sürekli sistemlerde titreşim genliği parametrelere bağlı olarak farklı modlarda farklı 

oranda azalmaktadır. Parçacık darbe sönümlemenin yapının dinamiğini fazla etkilemeden sürekli 

sistemlerde titreşim genliğinin azaltılmasında etkili bir şekilde kullanılabileceği sayısal olarak 

ispatlanmıştır. Yapılan sayısal benzetim çalışmalarının verildiği tablo ve grafikler incelendiğinde 

sunulan yöntemin yapıların rezonans titreşim genliğini indirgeme çalışmalarında kullanılabileceği 

söylenebilir. Bu amaçla hazırlanan bilgisayar programı tanecikli parçacıkların hareketini analiz 

etmede ve temas kuvvetlerinin hesaplanmasında gayet başarılı sonuçlar vermektedir.  

Tez kapsamında hedeflenen amaçlara ulaşılmakla birlikte halen yapılması ve devam 

ettirilmesi gereken bazı çalışmalar vardır. Bunlar aşağıda maddeler halinde özetlenmeye 

çalışılmıştır: 

 Sunulan yöntemin gerçek sistemler üzerinde doğrulanabilmesi için bazı deneysel 

çalışmalar yapılabilir. 

 Daha fazla parametrenin dâhil edildiği bir optimizasyon çalışması başka bir araştırma 

konusu olabilir. 

 Dönen çubukların deneysel analizi hem zor hem de yüksek bütçeli olduğundan bu 

çalışma esnasında yapılamamıştır. Parçacık darbe sönümleme yönteminin sönüm 

üzerindeki etkisi gerçek bir dönen yapıda deneysel incelenebilir. 

 Parçacık sayısına bağlı olarak analiz süresi çok uzun sürmektedir. Analiz süresini 

azaltmak için yeni yöntemler geliştirilebilir. 

 Geliştirilen yöntemler için hazırlanan bilgisayar programları MATLAB’da hazırlanmış 

birçok alt programdan oluşmaktadır. Bu durum son kullanıcıların programı 

anlayabilmelerini ve kullanabilmelerini oldukça zorlaştırmaktadır. Bu nedenle öncelikle 

geliştirilen programların pratikte kullanılmasını sağlamak amacıyla kullanıcı dostu olan 

bir ara yüz geliştirilebilir. Bunun için yapılan çalışmalar devam etmektedir. 
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EKLER 1 

EK- 1: DİKDÖRTGEN PRİZMALI TSD’Lİ PDS’Lİ SİSTEMİN ANALİZİ İÇİN 2 

YAZILAN PROGRAM KODLARI 3 

% Dikdörtgen prizmalı parçacık sönümleyicili sistemin analizini yapar. 4 
% Parçacıkların başlangıç konumları daha önceden belirlenmiş ve kaydedilmiştir. 5 
tic % Analiz süresini verir 6 
clear; clc; close all; 7 
ts = 5e-6; % zaman adımı 8 
sure = 15; % analiz süresi 9 
tspan = 0:ts:sure; 10 
m = 0.293; % kütle, m 11 
c = 0.116; % sönüm katsayısı, Ns/m  12 
k = 1602.7; % yay katsayısı, N/m 13 
b = 1e-3; % zemin tahrik genliği 14 
f_zemin = 11.5; % zemin tahrik frekansı, Hz 15 
h_L = 50e-3; % hücre boyu, m 16 
h_w = 50e-3; % hücre eni, m 17 
h_h = 30e-3; % hücre yüksekliği, m 18 
% çözüm için durum-uzay matrisleri 19 
L = length(tspan); 20 
Ac = [0 1;-k/m -c/m];  21 
A = expm(Ac*ts); 22 
Bc = [0;1/m]; 23 
B = Ac\(A-eye(2))*Bc; 24 
C = [1 0;0 1]; 25 
% Zemin tahrik hareketi 26 
R = b*sqrt(k^2+(c*2*pi*f_zemin)^2); 27 
alpha = atan(-c*2*pi*f_zemin/k); 28 
u = R*sin(2*pi*f_zemin*tspan-alpha); % harmonik zemin hareketi 29 
%% Başlangın Parametreleri 30 
anim.cizim = 1; % Sonuçları grafiğe dökmek için 1 aksi  halde 0  31 
anim.kaydet = 0; % Sonuçları kaydetmek için 1 aksi  halde 0 32 
anim.adim = ts; %s İterasyon Zaman Adımı 33 
anim.alan = [-0.1 0.1 -h_w/2 h_w/2 -h_h/2 h_h/2]; % Animasyon Görüntü Alanı 34 
anim.data_adim = 1000; % Dataların kaydedilme aralığı                    35 
anim.kaydet_dosya = 'Sonuclar'; % Sonuçların Kaydedileceği Dosya Adı 36 
anim.g = [0; 0; -9.81]; %m/s2 Yerçekim ivmesi [g_x g_y g_z]            37 
%Parçacık Malzeme Özellikleri 38 
E = 0.34e9; % Pa Elastisite Modulü 39 
v = 0.35; % Poisson's oranı 40 
e = 0.9; % Restitution (eski haline gelme) katsayısı 41 
G = E./(2*(1+v)); % Pa Kayma modülü  42 
rho = 1190; % kg/m3 Yoğunluk 43 
mu = [0.52; 0.52]; % Sürtünme Katsayısı, [parçacık-parçacık parçacık-düzlem] 44 
%Duvar Malzeme Özellikleri 45 
E_d = 0.3e9; 46 
v_d = 0.31; 47 
G_d = E_d./(2*(1+v_d)); 48 
duvar.dir=[-1 1 0 0 0 0;0 0 -1 1 0 0;0 0 0 0 -1 1]; % Düzlemden parçaya doğru birim vektörler 49 
duvar.konum = [h_L/2 -h_L/2; % Hücre merkezine göre duvarların konumu [d1_x d2_x;d3_y d4_y;d5_z 50 
d6_z] 51 
    h_w/2 -h_w/2; 52 
    h_h/2 -h_h/2]; 53 
duvar.denklem = [1 0 0 -h_L/2; % Duvarlara ait düzlem denklemleri ax+by+cz+d [a b c d] 54 
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    1 0 0 h_L/2; 55 
    0 1 0 -h_w/2; 56 
    0 1 0 h_w/2; 57 
    0 0 1 -h_h/2; 58 
    0 0 1 h_h/2]; 59 
duvar.denklem2 = duvar.denklem; % Güncellenecek düzlem denklemleri 60 
duvar.malz = ones(1,length(duvar.denklem)); % Duvar malzemeleri aynı. Farklı malzeme atanabilir 61 
%Parçacık dizilimleri ve başlangıç konumları 62 
load("StableKonum90r3.mat"); %Parçacıkların Başlangıç Konumları 63 
parca.konum = konum; % [x_0;y_0;z_0] 64 
parcaN = size(parca.konum,2); % Parçacık sayısı 65 
parca.id = 1:parcaN; % Parçacık Dizilimleri [1 2 3 .... parcaN] 66 
parca.r = 3e-3.*ones(1,parcaN); % Parçacıkların yarıçapları 67 
parca.hiz = zeros(3,parcaN); % Parçacıkların başlangıç hızları [V_x;V_y;V_z] 68 
parca.ivme = zeros(3,parcaN); % Parçacıkların başlangıç ivmeleri [a_x;a_y;a_z] 69 
parca.theta = zeros(3,parcaN); % Parçacıkların başlangıç açısal konumları [theta_x;theta_y;theta_z] 70 
parca.acisal_hiz = zeros(3,parcaN); % Parçacıkların başlangıç açısal hızları [omega_x;omega_y;omega_z] 71 
parca.acisal_ivme = zeros(3,parcaN); % Parçacıkların başlangıç açısal ivmeleri [alpha_x;alpha_y;alpha_z] 72 
parca.malz = ones(1,parcaN); % Parçacık malzemeleri aynı 73 
clear konum 74 
if anim.kaydet == 1 % Sonuçlar kaydedilecekse t_0 anındaki parametrelerini kaydeder 75 
    mkdir(anim.kaydet_dosya); % Sonuçlar Dosyası Oluşturulur 76 
    delete(strcat(anim.kaydet_dosya,'/*.mat')); % Sonuçlar dosyası içerisindeki dosyaları siler 77 
    %1:zaman 2:parçacık numarası 3:yarıçap 4:konum_x 5:konum_y 6:konum_z 7:hiz_x 8:hiz_y 78 
    %9:hiz_y 10:açısal_hiz_x 11:açısal_hiz_y 12:açısal_hiz_z 13:theta_x 79 
    %14:theta_y 15:theta_z 16:KE 17:PE 18:RE 80 
    data = [zeros(parcaN,1) parca.id' parca.r' parca.konum(1,:)' parca.konum(2,:)' parca.konum(3,:)' 81 
parca.hiz(1,:)' parca.hiz(2,:)' parca.hiz(3,:)' ... 82 
        parca.acisal_hiz(1,:)' parca.acisal_hiz(2,:)' parca.acisal_hiz(3,:)' parca.theta(1,:)' parca.theta(2,:)' 83 
parca.theta(3,:)' zeros(parcaN,1) zeros(parcaN,1) zeros(parcaN,1)]; 84 
    save(strcat(anim.kaydet_dosya,'/0.mat'),'data'); 85 
end 86 
duvar.x = [0;0]; % Yapının başlangıç konum ve hızı [x;dx/dt] sadece x yönüde hareket var 87 
if anim.cizim == 1 % Grafik çizer 88 
    h = figure(1); 89 
    anim_parca_kare(parca,duvar,anim.alan,h); 90 
end 91 
parca.m = (4/3)*pi()*parca.r.^3.*rho(parca.malz); % Parçacık kütleleri 92 
parca.I = (2/5)*parca.m.*parca.r.^2; % Parça Atalet (Eylemsizlik) Momentleri 93 
parca.alpha = -log(e(parca.malz)).*sqrt(5./(log(e(parca.malz)).^2+pi^2)); % Çarpışma sönümleme katsayısı 94 
parca.E = E(parca.malz); % Herbir parçacığın elastisite modülü 95 
parca.v2 = v(parca.malz).^2; % Herbir parçacığın Poisson oranı karesi 96 
parca.mu = mu(:,parca.malz); % Herbir parçacığın sürtünme katsayısı 97 
duvar.E = E_d(duvar.malz); % Herbir düzlemin elastisite modülü   98 
duvar.v2 = v_d(duvar.malz).^2; % Herbir düzlemin Poisson oranı karesi 99 
T_R = pi()*parca.r(1).*sqrt(rho/G); % zaman adımını kontrol eder 100 
if anim.adim<0.1*max(T_R) || anim.adim>0.3*min(T_R) 101 
    error('Rayleigh Zaman aralığı Şartını Sağlamıyor!!! "Adim" şu aralıkta olmalı %e and 102 
%e',0.1*max(T_R),0.3*min(T_R)); 103 
end 104 
x_box = zeros(2,length(tspan)); % sistemin cevap matrisi [x;dx/dt] 105 
Fx = zeros(1,L); % sisteme etki eden temas kuvveti matrisi 106 
x2 = [0;0]; % çözüm başlangıç şartları 107 
% Yapının hareket denkleminin çözümü 108 
for k = 1:L 109 
    x_box(:,k) = C*x2; 110 
    duvar.x = x_box(:,k); 111 
    [Fx(k), parca, duvar] = DEM_kare_analiz(anim,parca,duvar,tspan(k),k); 112 
    x2 = A*x2 + B*(u(k)+Fx(k)); 113 
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end 114 
toc 115 
function [Fx, parca, duvar] = DEM_kare_analiz(anim,parca,duvar,t,k) 116 
%ilk kullanıma hazırlama 117 
dt_a = anim.adim; 118 
dt_a2 = 0.5*anim.adim; % yarım zaman adımı 119 
eski_hiz = parca.hiz; 120 
eski_acisal_hiz = parca.acisal_hiz; 121 
parca.hiz = parca.hiz+dt_a2*parca.ivme; % yarım zaman adımında hızı hesapla 122 
parca.acisal_hiz = parca.acisal_hiz+dt_a2*parca.acisal_ivme; % yarım zaman adımında açısal hızı hesapla 123 
parca.konum = parca.konum+eski_hiz*dt_a+0.5*parca.ivme*dt_a^2; % yarım zaman adımında konum 124 
hesapla 125 
parca.theta = parca.theta+eski_acisal_hiz*dt_a+0.5*parca.acisal_ivme*dt_a^2; % yarım zaman adımında 126 
açısal konum hesapla 127 
alan_disi = find(parca.konum(1,:)<anim.alan(1) | parca.konum(1,:)>anim.alan(2) | ... 128 
parca.konum(2,:)<anim.alan(3) | parca.konum(2,:)>anim.alan(4) | ... 129 
parca.konum(3,:)<anim.alan(5) | parca.konum(3,:)>anim.alan(6)); % parçacıkların çalışma alanı dışına 130 
çıkmasını kontrol eder 131 
if ~isempty(alan_disi) 132 
error('%d Nolu Parça Alan Dışı!!!', parca.id(alan_disi(1))); 133 
end 134 
[temas_parca,temas_duvar] = temas_tespit(parca,duvar); % Teması belirler 135 
[parca.ivme,parca.acisal_ivme,Fx]= HertzTemasModel(parca,temas_parca,temas_duvar,anim.g,duvar); % 136 
Temas kuvvetlerini ve ivmeleri hesaplar 137 
parca.hiz = parca.hiz+dt_a2*parca.ivme; % Parçacıkların hızını güncelle 138 
parca.acisal_hiz = parca.acisal_hiz+dt_a2*parca.acisal_ivme; % Parçacıkların açısal hızını güncelle 139 
if rem(k,anim.data_adim)==0 140 
if anim.kaydet == 1 141 
n_parca = length(parca.id);         142 
KE = 0.5*parca.m.*(parca.hiz(1,:).^2+parca.hiz(2,:).^2+parca.hiz(3,:).^2); % parçacıkların kinetik enerjisi 143 
PE = parca.konum(3,:)*anim.g(3,1).*parca.m; % parçacıkların potansiyel enerjisi 144 
RE = 0.5*parca.I.*sum(parca.acisal_hiz.^2); % parçacıkların dönme enerjisi 145 
data = [t*ones(n_parca,1) parca.id' parca.r' parca.konum(1,:)' parca.konum(2,:)' parca.konum(3,:)' 146 
parca.hiz(1,:)' parca.hiz(2,:)' parca.hiz(3,:)' ... 147 
parca.acisal_hiz(1,:)' parca.acisal_hiz(2,:)' parca.acisal_hiz(3,:)' parca.theta(1,:)' parca.theta(2,:)' 148 
parca.theta(3,:)' KE' PE' RE']; 149 
save(strcat(anim.kaydet_dosya,'/',num2str(t),'.mat'),'data'); % verileri dosyaya kaydet 150 
end 151 
if anim.cizim == 1 % sonuçları çiz 152 
h = figure(1); 153 
anim_parca_kare(parca,duvar,anim.alan,h); 154 
end         155 
end  156 
end 157 
% temas kuvvetlerini ve ivmeleri hesaplar 158 
function [ivme, acisal_ivme, Fx] = HertzTemasModel(parca,temas_parca,temas_duvar,g,duvar) 159 
ivme = zeros(3,length(parca.id)); 160 
acisal_ivme = zeros(3,length(parca.id)); 161 
Fx = 0; 162 
if ~isempty(temas_parca{1}) 163 
for i = 1:length(temas_parca)         164 
eleman = temas_parca{i}.eleman; 165 
iid = temas_parca{i}.id; 166 
igirinti_n = temas_parca{i}.girinti_n; 167 
irel_v_n = temas_parca{i}.rel_v_n; 168 
irel_v_t = temas_parca{i}.rel_v_t; 169 
igirinti_n_dir = temas_parca{i}.girinti_n_dir; 170 
igirinti_t_dir = temas_parca{i}.girinti_t_dir; 171 
r_eq = parca.r(iid)*parca.r(eleman)./(parca.r(iid)+parca.r(eleman)); 172 
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E_eq = parca.E(iid)*parca.E(eleman)./(parca.E(iid)*(1-parca.v2(eleman))+parca.E(eleman)*(1-173 
parca.v2(iid))); 174 
m_eq = parca.m(iid)*parca.m(eleman)./(parca.m(iid)+parca.m(eleman)); 175 
K1 = 4/3*sqrt(r_eq).*E_eq; % Hertz yay sabiti 176 
Fn = [K1.*igirinti_n.^(3/2).*igirinti_n_dir(1,:); ... 177 
K1.*igirinti_n.^(3/2).*igirinti_n_dir(2,:); ... 178 
K1.*igirinti_n.^(3/2).*igirinti_n_dir(3,:)];         179 
K2 = parca.alpha(eleman).*sqrt(m_eq.*K1).*igirinti_n.^(1/4).*irel_v_n; 180 
Fnd = [K2.*igirinti_n_dir(1,:); K2.*igirinti_n_dir(2,:); K2.*igirinti_n_dir(3,:)];         181 
Fn_v = Fn+Fnd; 182 
Fn_net = [sum(Fn(1,:)+Fnd(1,:)); sum(Fn(2,:)+Fnd(2,:)); sum(Fn(3,:)+Fnd(3,:))]; 183 
ivme(:,eleman) = round(Fn_net./parca.m(eleman),4); 184 
Ft_net = parca.mu(1,eleman).*sqrt(sum(Fn_v.^2)).*sign(irel_v_t); 185 
Ft_net = Ft_net.*igirinti_t_dir; 186 
M = cross(-igirinti_n_dir,Ft_net); 187 
M = [sum(M(1,:));sum(M(2,:));sum(M(3,:))]; 188 
acisal_ivme(:,eleman) = M*parca.r(eleman)/parca.I(eleman); 189 
end 190 
end 191 
if ~isempty(temas_duvar{1}) 192 
for i = 1:length(temas_duvar)         193 
eleman = temas_duvar{i}.eleman; 194 
iid = temas_duvar{i}.id;          195 
igirinti_n = temas_duvar{i}.girinti_n; 196 
irel_v_n = temas_duvar{i}.rel_v_n; 197 
irel_v_t = temas_duvar{i}.rel_v_t; 198 
igirinti_n_dir = temas_duvar{i}.girinti_n_dir; 199 
igirinti_t_dir = temas_duvar{i}.girinti_t_dir; 200 
r_eq = parca.r(eleman); 201 
E_eq = duvar.E(iid)*parca.E(eleman)./(duvar.E(iid)*(1-parca.v2(eleman))+parca.E(eleman)*(1-202 
duvar.v2(iid))); 203 
m_eq = parca.m(eleman); 204 
K1 = 4/3*E_eq.*sqrt(r_eq); 205 
Fn = [K1.*igirinti_n.^(3/2).*igirinti_n_dir(1,:); ... 206 
K1.*igirinti_n.^(3/2).*igirinti_n_dir(2,:); ... 207 
K1.*igirinti_n.^(3/2).*igirinti_n_dir(3,:)];          208 
K2 = parca.alpha(eleman).*sqrt(m_eq.*K1).*igirinti_n.^(1/4).*irel_v_n; 209 
Fnd = [K2.*igirinti_n_dir(1,:); ... 210 
K2.*igirinti_n_dir(2,:); ... 211 
K2.*igirinti_n_dir(3,:)]; 212 
Fn_v = Fn+Fnd; 213 
Fn_net = [sum(Fn(1,:)+Fnd(1,:)); ... 214 
sum(Fn(2,:)+Fnd(2,:)); ... 215 
sum(Fn(3,:)+Fnd(3,:))]; 216 
ivme(:,eleman) = round(ivme(:,eleman)+Fn_net./parca.m(eleman),4); 217 
Ft = parca.mu(2,eleman).*sqrt(sum(Fn_v.^2)).*sign(irel_v_t); 218 
Ft_v = Ft.*igirinti_t_dir; 219 
Ft_net = sum(Ft_v,2); 220 
M = cross(-igirinti_n_dir,Ft_v); 221 
M = [sum(M(1,:));sum(M(2,:));sum(M(3,:))]; 222 
acisal_ivme(:,eleman) = acisal_ivme(:,eleman)+M*parca.r(eleman)/parca.I(eleman); 223 
Fx = Fx-Fn_net(1)-Ft_net(1); % yüzeylerle temas kuvvetinin x bileşkesi 224 
end 225 
end 226 
ivme = [ivme(1,:)+g(1,:); ivme(2,:)+g(2,:); ivme(3,:)+g(3,:)]; % yerçekim ivmesini ekle 227 
end 228 
%% Parçacıkların birbirleriyle ve duvarla etkileşimini hesaplar 229 
function [temas_parca, temas_duvar] = temas_tespit(parca,duvar) 230 
n_parca = length(parca.id); % parça sayısı 231 
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parca_temas_adet = 0; 232 
duvar_temas_adet = 0; 233 
temas_parca = cell(1,1); 234 
temas_duvar = cell(1,1); 235 
for i = 1:n_parca    236 
d = sqrt((parca.konum(1,:)-parca.konum(1,i)).^2+(parca.konum(2,:)-237 
parca.konum(2,i)).^2+(parca.konum(3,:)-parca.konum(3,i)).^2); 238 
% parçacıkların i parçacığına olan uzaklıkları 239 
sum_r = parca.r+parca.r(i);     240 
d(i) = inf;     241 
cakisma = sum_r-d; % Temas halinde positif olur.  242 
temas_kontrol = cakisma>0; 243 
if sum(temas_kontrol)>0 244 
parca_temas_adet = parca_temas_adet+1; 245 
temas_parca{parca_temas_adet}.eleman = i; % Temas eden parça 246 
temas_parca{parca_temas_adet}.id = parca.id(temas_kontrol); % Temas edilen parça 247 
temas_parca{parca_temas_adet}.girinti_n = cakisma(temas_kontrol); % Parçacıkların temas miktarı 248 
temas_parca{parca_temas_adet}.girinti_n_dir = [(parca.konum(1,i)-249 
parca.konum(1,temas_kontrol))./d(temas_kontrol); ... 250 
(parca.konum(2,i)-parca.konum(2,temas_kontrol))./d(temas_kontrol); ... 251 
(parca.konum(3,i)-parca.konum(3,temas_kontrol))./d(temas_kontrol)]; % Birim vektor ri-rj  252 
hiz_rel = [parca.hiz(1,temas_kontrol)-parca.hiz(1,i); ... % Temas eden parçacıkların kütle merkezinin bağıl 253 
hızı [Vji_x;Vji_y] 254 
parca.hiz(2,temas_kontrol)-parca.hiz(2,i); ... 255 
parca.hiz(3,temas_kontrol)-parca.hiz(3,i)]; 256 
sign_rot = cross(temas_parca{parca_temas_adet}.girinti_n_dir,hiz_rel); 257 
sign_rot = sign(sign_rot); 258 
sign_rot(sign_rot==0) = 1;  259 
temas_parca{parca_temas_adet}.rel_v_n = 260 
temas_parca{parca_temas_adet}.girinti_n_dir(1,:).*hiz_rel(1,:)+temas_parca{parca_temas_adet}.girinti_n_261 
dir(2,:).*hiz_rel(2,:) ... 262 
+temas_parca{parca_temas_adet}.girinti_n_dir(3,:).*hiz_rel(3,:); 263 
hiz_rel2 = sign_rot.*hiz_rel; 264 
V_control = 265 
parca.r(temas_kontrol).*[parca.acisal_hiz(2,temas_kontrol).*temas_parca{parca_temas_adet}.girinti_n_dir266 
(3,:)-parca.acisal_hiz(3,temas_kontrol).*temas_parca{parca_temas_adet}.girinti_n_dir(2,:);... 267 
-parca.acisal_hiz(1,temas_kontrol).*temas_parca{parca_temas_adet}.girinti_n_dir(3,:) 268 
+parca.acisal_hiz(3,temas_kontrol).*temas_parca{parca_temas_adet}.girinti_n_dir(1,:);... 269 
parca.acisal_hiz(1,temas_kontrol).*temas_parca{parca_temas_adet}.girinti_n_dir(2,:)-270 
parca.acisal_hiz(2,temas_kontrol).*temas_parca{parca_temas_adet}.girinti_n_dir(1,:)]; 271 
V_i = -parca.r(i).*[parca.acisal_hiz(2,i).*temas_parca{parca_temas_adet}.girinti_n_dir(3,:)-272 
parca.acisal_hiz(3,i).*temas_parca{parca_temas_adet}.girinti_n_dir(2,:);... 273 
-parca.acisal_hiz(1,i).*temas_parca{parca_temas_adet}.girinti_n_dir(3,:) 274 
+parca.acisal_hiz(3,i).*temas_parca{parca_temas_adet}.girinti_n_dir(1,:);... 275 
parca.acisal_hiz(1,i).*temas_parca{parca_temas_adet}.girinti_n_dir(2,:)-276 
parca.acisal_hiz(2,i).*temas_parca{parca_temas_adet}.girinti_n_dir(1,:)]; 277 
V_temas = hiz_rel2+V_control-V_i; 278 
rel_v_t=V_temas-279 
dot(V_temas,temas_parca{parca_temas_adet}.girinti_n_dir).*temas_parca{parca_temas_adet}.girinti_n_di280 
r; 281 
temas_parca{parca_temas_adet}.girinti_t_dir=rel_v_t./norm(rel_v_t); 282 
temas_parca{parca_temas_adet}.girinti_t_dir(isnan(temas_parca{parca_temas_adet}.girinti_t_dir))=0; 283 
V_temas = hiz_rel+V_control-V_i; 284 
temas_parca{parca_temas_adet}.rel_v_t = 285 
temas_parca{parca_temas_adet}.girinti_t_dir(1,:).*V_temas(1,:)+temas_parca{parca_temas_adet}.girinti_t286 
_dir(2,:).*V_temas(2,:) ... 287 
+temas_parca{parca_temas_adet}.girinti_t_dir(3,:).*V_temas(3,:); 288 
end 289 
duvar.denklem2(1:2,4) = duvar.denklem(1:2,4)-duvar.x(1); % düzlem denklemlerini güncelle 290 
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B = duvar.denklem2(:,1).*parca.konum(1,i)+duvar.denklem2(:,2).*parca.konum(2,i)+ ... 291 
duvar.denklem2(:,3).*parca.konum(3,i)+duvar.denklem2(:,4); 292 
K = sqrt(duvar.denklem2(:,1).^2+duvar.denklem2(:,2).^2+duvar.denklem2(:,3).^2); 293 
d_duvar = (B./K)'; 294 
d_duvar = abs(d_duvar);      295 
girinti_duvar = parca.r(i)-d_duvar; 296 
kontrol_duvar = girinti_duvar>0; 297 
if sum(kontrol_duvar)>0 298 
duvar_temas_adet = duvar_temas_adet+1; 299 
temas_duvar{duvar_temas_adet}.eleman = i; 300 
temas_duvar{duvar_temas_adet}.id = find(kontrol_duvar == 1); 301 
temas_duvar{duvar_temas_adet}.girinti_n = girinti_duvar(kontrol_duvar); 302 
temas_duvar{duvar_temas_adet}.girinti_n_dir = duvar.dir(:,kontrol_duvar); 303 
hiz_rel = [duvar.x(2);0;0]-parca.hiz(:,i); 304 
sign_rot = 305 
cross(temas_duvar{duvar_temas_adet}.girinti_n_dir,repmat(hiz_rel,1,size(temas_duvar{duvar_temas_adet306 
}.girinti_n_dir,2))); 307 
sign_rot = sign(sign_rot); 308 
sign_rot(sign_rot==0) = 1; 309 
temas_duvar{duvar_temas_adet}.rel_v_n = 310 
temas_duvar{duvar_temas_adet}.girinti_n_dir(1,:).*hiz_rel(1,:)... 311 
+temas_duvar{duvar_temas_adet}.girinti_n_dir(2,:).*hiz_rel(2,:) ... 312 
+temas_duvar{duvar_temas_adet}.girinti_n_dir(3,:).*hiz_rel(3,:); 313 
hiz_rel2 = sign_rot.*repmat(hiz_rel,1,size(temas_duvar{duvar_temas_adet}.girinti_n_dir,2)); 314 
V_i = -parca.r(i).*[parca.acisal_hiz(2,i).*temas_duvar{duvar_temas_adet}.girinti_n_dir(3,:)-315 
parca.acisal_hiz(3,i).*temas_duvar{duvar_temas_adet}.girinti_n_dir(2,:);... 316 
-317 
parca.acisal_hiz(1,i).*temas_duvar{duvar_temas_adet}.girinti_n_dir(3,:)+parca.acisal_hiz(3,i).*temas_duv318 
ar{duvar_temas_adet}.girinti_n_dir(1,:);... 319 
parca.acisal_hiz(1,i).*temas_duvar{duvar_temas_adet}.girinti_n_dir(2,:)-320 
parca.acisal_hiz(2,i).*temas_duvar{duvar_temas_adet}.girinti_n_dir(1,:)]; 321 
V_temas = hiz_rel2-V_i; 322 
rel_v_t=V_temas-323 
dot(V_temas,temas_duvar{duvar_temas_adet}.girinti_n_dir).*temas_duvar{duvar_temas_adet}.girinti_n_d324 
ir; 325 
temas_duvar{duvar_temas_adet}.girinti_t_dir=rel_v_t./norm(rel_v_t); 326 
temas_duvar{duvar_temas_adet}.girinti_t_dir(isnan(temas_duvar{duvar_temas_adet}.girinti_t_dir))=0; 327 
V_temas = hiz_rel-V_i; 328 
temas_duvar{duvar_temas_adet}.rel_v_t = 329 
temas_duvar{duvar_temas_adet}.girinti_t_dir(1,:).*V_temas(1,:)+temas_duvar{duvar_temas_adet}.girinti_330 
t_dir(2,:).*V_temas(2,:) ... 331 
+temas_duvar{duvar_temas_adet}.girinti_t_dir(3,:).*V_temas(3,:); 332 
end 333 
end 334 
end 335 
%% 336 
function anim_parca_kare(parca,duvar,alan,h) 337 
% dikdörtgensel hücre ve parçacıkları çizer. 338 
figure(h); 339 
set(h,'visible','off'); 340 
clf; 341 
hold on; 342 
axis(alan); 343 
daspect([1 1 1]); 344 
view(45,20) 345 
% Hücre merkezine göre duvarların konumunu güncelle 346 
duvar.konum(1,:) = duvar.konum(1,:)+duvar.x(1); % duvarlar sadece x yönünde ötelenir 347 
% Hücre duvarlarını çiz 348 
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plot3(ones(1,5)*duvar.konum(1,1),[duvar.konum(2,2) duvar.konum(2,1) duvar.konum(2,1) 349 
duvar.konum(2,2) duvar.konum(2,2)],[duvar.konum(3,2) duvar.konum(3,2) duvar.konum(3,1) 350 
duvar.konum(3,1) duvar.konum(3,2)],'k') 351 
plot3(ones(1,5)*duvar.konum(1,2),[duvar.konum(2,2) duvar.konum(2,1) duvar.konum(2,1) 352 
duvar.konum(2,2) duvar.konum(2,2)],[duvar.konum(3,2) duvar.konum(3,2) duvar.konum(3,1) 353 
duvar.konum(3,1) duvar.konum(3,2)],'k') 354 
plot3([duvar.konum(1,1) duvar.konum(1,2) duvar.konum(1,2) duvar.konum(1,1) 355 
duvar.konum(1,1)],ones(1,5)*duvar.konum(2,1),[duvar.konum(3,2) duvar.konum(3,2) duvar.konum(3,1) 356 
duvar.konum(3,1) duvar.konum(3,2)],'k') 357 
plot3([duvar.konum(1,1) duvar.konum(1,2) duvar.konum(1,2) duvar.konum(1,1) 358 
duvar.konum(1,1)],ones(1,5)*duvar.konum(2,2),[duvar.konum(3,2) duvar.konum(3,2) duvar.konum(3,1) 359 
duvar.konum(3,1) duvar.konum(3,2)],'k') 360 
% Parçacıkları çiz 361 
for i = 1:length(parca.id)     362 
kure(parca.konum(:,i),parca.r(i),[0 0.4470 0.7410]); % parçacıkları çizer 363 
xyz= konum3D(parca.theta(:,i),parca.konum(:,i),parca.r(i)); 364 
kure(xyz',1e-3,[1 0 0]); % parçacıkların dönmeleri anlaşılsın diye kırmızı küreleri çizer 365 
end 366 
xlabel("X") 367 
ylabel("Y") 368 
zlabel("Z") 369 
grid 370 
set(h,'visible','on'); 371 
hold off 372 
end 373 
%% 374 
function H=kure(merkez,radus,renk) 375 
% merkezi ve yarıçapı verilen küre çizer 376 
[xu,yu,zu] = sphere; 377 
x = xu*radus + merkez(1); 378 
y = yu*radus + merkez(2); 379 
z = zu*radus + merkez(3); 380 
H = surf(x,y,z); 381 
set(H,'FaceColor',renk, 'FaceAlpha','1','FaceLighting','gouraud','EdgeColor','none') 382 
End 383 
%% 384 
function xyz= konum3D(aci,konum,r) 385 
% Parçacıkların açısal dönmelerine bağlı olarak dönmesi hesaplar. 386 
% R=[RotZ*RotY*RotX]*V 387 
R = [cos(aci(3,1)) -sin(aci(3,1)) 0; 388 

sin(aci(3,1)) cos(aci(3,1)) 0; 389 
0 0 1] ... 390 
*[cos(aci(2,1))  0 sin(aci(2,1)); 391 
0 1 0; 392 
-sin(aci(2,1)) 0 cos(aci(2,1))] ... 393 
*[1 0 0; 394 
0 cos(aci(1,1))  -sin(aci(1,1)); 395 
0 sin(aci(1,1)) cos(aci(1,1))]; 396 

P0 = r.*R*[1;0;0]; 397 
xyz = konum+P0; 398 
end 399 

 400 
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EK- 2: ANKASTRE-SERBEST ÇUBUĞUN PDS’Lİ ANALİZİ İÇİN YAZILAN 1 

PROGRAM KODLARI 2 

%% Ankastre-serbest çubuğun analzini yapar 3 
clear;clc;close all 4 
tic 5 
% Çubuğun özellikleri 6 
L_beam = 850e-3; % [m] Çubuğun uzunluğu 7 
w_beam = 80e-3; % [m] Çubuğun eni 8 
t_beam = 25.4e-3; % [m] Çubuğun yüksekliği 9 
load shell_80x850x25.mat % ankastre çubuk ansys datalarını yükler 10 
fn = shell_80x850x25.f'; % Doğal frekanslar [Hz) 11 
wn = 2*pi*fn; % Doğal frekanslar [rad/sn) 12 
Lin = shell_80x850x25.phiZ(:,1); % Düğüm noktaları 13 
phiZ = shell_80x850x25.phiZ(:,2:end); % Yerdeğiştirme öz vektörleri 14 
phiRotX = shell_80x850x25.phiRotX; % Eğim öz vektörleri 15 
n = size(phiZ,2); % Mod sayısı 16 
zeta = [0.014 0.016 0.011 0.017]; % Sönüm oranları 17 
M = eye(n); % Kütle matrisi 18 
K = diag(wn.^2); % Katılık matrisi 19 
C = diag(2*zeta.*wn); % Sönüm matrisi 20 
anim.cizim = 1; % Sonuçları çizdirmek için 1 aksi  halde 0  21 
anim.kaydet = 0; % Sonuçları kaydetmek için 1 aksi  halde 0 22 
anim.data_adim = 1000; % Dataların kaydedilme aralığı  23 
ts = 1e-6; % Zaman adımı 24 
sure = 10; % Toplam süre 25 
%Başlangın Parametreleri 26 
malz.L = L_beam; 27 
malz.t = t_beam; 28 
malz.w = w_beam; 29 
anim.sure = sure; % [s] Animasyon Süresi 30 
anim.adim = ts; % [s] İterasyon Zaman Aralığı 31 
anim.alan = [-(malz.w+0.01) malz.w+0.01 -(malz.L+0.01) malz.L+0.01 -(malz.L+0.01) malz.L+0.01];% 32 
Animasyon Görüntü Alanı [min(x) max(x) min(y) max(y)]                   33 
anim.kaydet_dosya = 'Sonuclar'; % Sonuçların Kaydedileceği Dosya Adı 34 
anim.g = [0;0;-9.81]; %m/s2 Yerçekim ivmesi [g_x g_y g_z]            35 
%Parçacık Malzeme Özellikleri 36 
malz.E = 2e9; % [Pa] Elastisite Modulü 37 
malz.v = 0.35; % Poisson's oranı 38 
malz.e = 0.9; % Restitution (eski haline gelme) katsayısı 39 
malz.G = malz.E./(2*(1+malz.v)); % [Pa] Kayma modülü  40 
malz.rho = 1180; % [kg/m3] Yoğunluk 41 
malz.mu = [0.52; 0.45]; %  Sürtünme Katsayısı, [parçacık-parçacık parçacık-düzlem] 42 
%Duvar 43 
duvar.E = 72e9; 44 
duvar.v = 0.33; 45 
duvar.G = duvar.E./(2*(1+duvar.v)); 46 
duvar.cell_t = t_beam; % Hücre yüksekliği 47 
duvar.cell_R = 3e-3; % Altıgen çevresel adaire yarıçapı 48 
duvar.konumO = [malz.w/2 malz.w/2 malz.w/2 malz.w/2 -malz.w/2 -malz.w/2 -malz.w/2 -malz.w/2; % 49 
Çubuk duvar konum 50 
    0 malz.L malz.L 0 0 malz.L malz.L 0; 51 
    -malz.t/2 -malz.t/2 malz.t/2 malz.t/2 -malz.t/2 -malz.t/2 malz.t/2 malz.t/2]; 52 
duvar.cell_C = 800e-3-[sqrt(3)/2*duvar.cell_R 3*sqrt(3)/2*duvar.cell_R 5*sqrt(3)/2*duvar.cell_R 53 
7*sqrt(3)/2*duvar.cell_R]; % Parçacık yerleştirilmiş hücre konumları 54 
% duvar.cell_C = 800e-3-sqrt(3)/2*duvar.cell_R; 55 
cellN = size(duvar.cell_C,2); % y doğrultusundaki hücre sayısı 56 
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for i=1:cellN 57 
    duvar.konumC(:,:,i) = [duvar.cell_R/2 -duvar.cell_R/2 -duvar.cell_R/2 duvar.cell_R/2 -duvar.cell_R -58 
duvar.cell_R/2 -duvar.cell_R/2 -duvar.cell_R duvar.cell_R/2 duvar.cell_R duvar.cell_R duvar.cell_R/2; 59 
        duvar.cell_C(i)+sqrt(3)/2*duvar.cell_R duvar.cell_C(i)+sqrt(3)/2*duvar.cell_R 60 
duvar.cell_C(i)+sqrt(3)/2*duvar.cell_R duvar.cell_C(i)+sqrt(3)/2*duvar.cell_R duvar.cell_C(i) 61 
duvar.cell_C(i)-sqrt(3)/2*duvar.cell_R duvar.cell_C(i)-sqrt(3)/2*duvar.cell_R duvar.cell_C(i) 62 
duvar.cell_C(i)-sqrt(3)/2*duvar.cell_R duvar.cell_C(i) duvar.cell_C(i) duvar.cell_C(i)-63 
sqrt(3)/2*duvar.cell_R; 64 
        -duvar.cell_t/2 -duvar.cell_t/2 duvar.cell_t/2 duvar.cell_t/2 -duvar.cell_t/2 -duvar.cell_t/2 65 
duvar.cell_t/2 duvar.cell_t/2 -duvar.cell_t/2 -duvar.cell_t/2 duvar.cell_t/2 duvar.cell_t/2]; 66 
    duvar.denklemC(:,:,i) = [0 1 0 -duvar.cell_C(i)-duvar.cell_R*sqrt(3)/2; 67 
        0 1 0 -duvar.cell_C(i)+duvar.cell_R*sqrt(3)/2; 68 
        sqrt(3) 1 0 -duvar.cell_C(i)-sqrt(3)*duvar.cell_R; 69 
        -sqrt(3) 1 0 -duvar.cell_C(i)+sqrt(3)*duvar.cell_R; 70 
        -sqrt(3) 1 0 -duvar.cell_C(i)-sqrt(3)*duvar.cell_R; 71 
        sqrt(3) 1 0 -duvar.cell_C(i)+sqrt(3)*duvar.cell_R; 72 
        0 0 1 -duvar.cell_t/2; 73 
        0 0 1 duvar.cell_t/2]; % % Duvarlara ait düzlem denklemleri ax+by+cz+d [a b c d] 74 
    duvar.dir(:,:,i) = [0,0,-sqrt(3)/2,-sqrt(3)/2,sqrt(3)/2,sqrt(3)/2,0,0;-1,1,-0.5,0.5,-0.5,0.5,0,0;0,0,0,0,0,0,-1,1]; 75 
% Düzlemden parçaya doğru birim vektörler 76 
end 77 
duvar.malz = ones(1,length(duvar.denklemC)); % Duvar malzemeleri aynı 78 
load('stablekonum15_c4.mat'); %Parçacıkların Başlangıç Konumları 79 
parca.konum = Konum; % [x_0;y_0;z_0] 80 
parcaN = size(parca.konum,2);  % Parçacık sayısı 81 
parca.id = 1:parcaN; % Parçacık Dizilimleri [1 2 3 .... parcaN] 82 
parca.r = 1.25e-3.*ones(1,parcaN); % Parçacıkların yarıçapı 83 
parca.hiz = zeros(3,parcaN,cellN); % Parçacıkların Başlangıç Hızları [V_x;V_y;V_z] 84 
parca.ivme = zeros(3,parcaN,cellN);  % Parçacıkların Başlangıç İvmeleri [a_x;a_y;a_z] 85 
parca.theta = zeros(3,parcaN,cellN);  % Parçacıkların Başlangıç Dönme Açıları [theta_x;theta_y;theta_z] 86 
parca.acisal_hiz = zeros(3,parcaN,cellN); % Parçacıkların Başlangıç Açısal Hızları 87 
[omega_x;omega_y;omega_z] 88 
parca.acisal_ivme = zeros(3,parcaN,cellN); % Parçacıkların Başlangıç Açısal İvmeleri 89 
[alpha_x;alpha_y;alpha_z] 90 
parca.malz = ones(1,parcaN); % Parçacık malzemeleri aynı 91 
clear Konum 92 
if anim.kaydet == 1 93 
    mkdir(anim.kaydet_dosya); % Sonuçlar Dosyası Oluşturulur 94 
    delete(strcat(anim.kaydet_dosya,'/*.mat')); % Sonuçlar dosyası içerisindeki veriler silinir 95 
    %1:zaman 2:parçacık numarası 3:yarıçap 4:konum_x 5:konum_y 6:konum_z 7:hiz_x 8:hiz_y 96 
    %9:hiz_y 10:açısal_hiz_x 11:açısal_hiz_y 12:açısal_hiz_z 13:theta_x 97 
    %14:theta_y 15:theta_z 16:KE 17:PE 18:RE 98 
    data = [zeros(parcaN*cellN,1) (1:parcaN*cellN)' parca.r(1).*ones(parcaN*cellN,1) parca.konum(1,:)' 99 
parca.konum(2,:)' parca.konum(3,:)' parca.hiz(1,:)' parca.hiz(2,:)' parca.hiz(3,:)' ... 100 
        parca.acisal_hiz(1,:)' parca.acisal_hiz(2,:)' parca.acisal_hiz(3,:)' parca.theta(1,:)' parca.theta(2,:)' 101 
parca.theta(3,:)' zeros(parcaN*cellN,1) zeros(parcaN*cellN,1) zeros(parcaN*cellN,1)]; 102 
    save(strcat(anim.kaydet_dosya,'/0.mat'),'data'); % Başlangıç parametrelerinin kaydedilmesi 103 
end 104 
if anim.cizim == 1 105 
    h = figure(1); 106 
    duvar.konum = duvar.konumO; % Çubuk konum 107 
    duvar.konum2 = duvar.konumC; % Hücre konum (Dönme ve titreşim) 108 
    duvar.konum3 = duvar.konumC; % Hücre konum (Sadece dönme) 109 
    anim_HC(parca,duvar,anim.alan,h); 110 
end 111 
parca.m = (4/3)*pi()*parca.r.^3.*malz.rho(parca.malz); % Parçacık kütleleri 112 
parca.I = (2/5)*parca.m.*parca.r.^2; % Parça Atalet (Eylemsizlik) Momentleri 113 
parca.alpha = -log(malz.e(parca.malz)).*sqrt(5./(log(malz.e(parca.malz)).^2+pi^2)); % Çarpışma 114 
sönümleme katsayısı 115 
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parca.E = malz.E(parca.malz); % Herbir parçacığın elastisite modülü 116 
parca.v2 = malz.v(parca.malz).^2; % Herbir parçacığın Poisson oranı karesi 117 
parca.mu = malz.mu(:,parca.malz);% Herbir parçacığın sürtünme katsayısı 118 
duvar.E = duvar.E(duvar.malz); % Herbir düzlemin elastisite modülü   119 
duvar.v2 = duvar.v(duvar.malz).^2; % Herbir düzlemin Poisson oranı karesi 120 
T_R = pi()*parca.r.*sqrt(malz.rho(parca.malz)./malz.G);  % zaman adımını kontrol eder 121 
if anim.adim<0.1*max(T_R) || anim.adim>0.3*min(T_R) 122 
    error('Rayleigh Zaman aralığı Şartını Sağlamıyor!!! "Adim" şu aralıkta olmalı %e and 123 
%e',0.1*max(T_R),0.3*min(T_R)); 124 
end 125 
x = 275e-3; % Kuvvet uygulama konumu 126 
ind = Lin == x; 127 
Fe = phiZ(ind,:)'; % Kuvvet uygulama noktası öz vektörü 128 
x = duvar.cell_C'; % Hücre ağırlık merkezi konumu 129 
for j=1:cellN 130 
    for i=1:n 131 
        P = InterX([Lin';phiZ(:,i)'],[x(j) x(j);-max(phiZ(:,i)) max(phiZ(:,i))]); 132 
        Prot = InterX([Lin';phiRotX(:,i)'],[x(j) x(j);-max(phiRotX(:,i)) max(phiRotX(:,i))]); 133 
        phi_c(i,j) = P(2); % Hücre ağırlık merkezi yerdeğiştirme öz vektörü 134 
        phi_c_s(i,j) = Prot(2); % Hücre ağırlık merkezi eğim öz vektörü 135 
    end 136 
end 137 
t = 0:ts:sure; % Çözüm aralığı 138 
len_t = length(t); 139 
load('U_10rms_10s.mat'); % Tahrik kuvveti 140 
q = zeros(2*n,len_t); % Genelleştirilmiş koordinatlar (displacement) 141 
q0 = zeros(1,2*n)'; % Başlangıç şartları 142 
q_a = zeros(n,len_t); % Genelleştirilmiş koordinatlar (acceleration) 143 
Fz = zeros(cellN,len_t); % Herbir hücre için parçacık bileşke temas kuvveti  144 
Cq = eye(2*n); % Çıktılar (Konum ve hızlar) 145 
% çözüm için durum-uzay matrisleri 146 
Ac = [zeros(n) eye(n);-M\K -M\C]; 147 
A = expm(Ac*ts); 148 
Bc = [zeros(n,1);M\Fe]; 149 
B = Ac\(A-eye(2*n))*Bc; 150 
Bc2 = [zeros(n,size(phi_c,2)); M\phi_c]; 151 
B2 = Ac\(A-eye(2*n))*Bc2; 152 
C2 = [-M\K -M\C]; % Çıktılar (İvmeler) 153 
for k = 1:len_t 154 
    q(:,k) = Cq*q0; 155 
    wc = zeros(1,cellN); % Hücre yerdeğiştirme 156 
    ws = zeros(1,cellN); % Hücre eğim 157 
    wv = zeros(1,cellN); % Hücre hız 158 
    for i = 1:n 159 
        wc  = wc+phi_c(i,:).*q(i,k); % Hücre yerdeğiştirme 160 
        ws  = ws+phi_c_s(i,:).*q(i,k); % Hücre eğim 161 
        wv  = wv+phi_c(i,:).*q(n+i,k); % Hücre hız 162 
    end 163 
    duvar.hiz = wv; % Hücre yüzeyleri hızı z yönünde 164 
    for i=1:cellN 165 
        duvar.denklemC(:,:,i) = [0 1 ws(i) -duvar.cell_C(i)-duvar.cell_R*sqrt(3)/2; 166 
        0 1 ws(i) -duvar.cell_C(i)+duvar.cell_R*sqrt(3)/2; 167 
        sqrt(3) 1 ws(i) -duvar.cell_C(i)-sqrt(3)*duvar.cell_R; 168 
        -sqrt(3) 1 ws(i) -duvar.cell_C(i)+sqrt(3)*duvar.cell_R; 169 
        -sqrt(3) 1 ws(i) -duvar.cell_C(i)-sqrt(3)*duvar.cell_R; 170 
        sqrt(3) 1 ws(i) -duvar.cell_C(i)+sqrt(3)*duvar.cell_R; 171 
        0 0 1 -duvar.cell_t/2-wc(i); 172 
        0 0 1 duvar.cell_t/2-wc(i)]; % Hücre duvar denklemini güncelle 173 
        duvar.dir(:,:,i) = [0 0 -sqrt(3) -sqrt(3) sqrt(3) sqrt(3) 0 0; 174 
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            -1 1 -1 1 -1 1 0 0; 175 
            -ws(i) ws(i) -ws(i) ws(i) -ws(i) ws(i) -1 1]; 176 
        duvar.dir(:,:,i) = duvar.dir(:,:,i)./vecnorm(duvar.dir(:,:,i)); % Hücre normal birim vektörleri güncelle 177 
        if rem(k,anim.data_adim)==0 178 
            duvar.konum2(:,:,i) = duvar.konumC(:,:,i)+wc(i).*[0;0;1]; % Yerdeğiştirme 179 
            duvar.konum2(:,[1 2 5 6 9 10],i) = duvar.konum2(:,[1 2 5 6 9 10],i)+duvar.cell_t/2*ws(i).*[0;1;0]; 180 
% Dönme 181 
            duvar.konum2(:,[3 4 7 8 11 12],i) = duvar.konum2(:,[3 4 7 8 11 12],i)-duvar.cell_t/2*ws(i).*[0;1;0]; 182 
% Dönme 183 
        end 184 
    end   185 
    [Fz(:,k), parca, duvar] = DEM_HC(anim,parca,duvar,t(k),k); % Temas kuvvetini hesapla, parçacık 186 
konumlarını güncelle 187 
    q0 = A*q0 + B*U(k) + 16*sum(B2.*Fz(:,k)',2); 188 
    q(:,k) = Cq*q0; % Yerdeğiştirme 189 
    q_a(:,k) = C2*q0+M\Fe.*U(k)+16*sum(M\phi_c.*Fz(:,k)',2); % İvme 190 
end 191 
toc 192 
save("q_p15_10rms_10s.mat",'q') 193 
save("Fz_p15_10rms_10s.mat",'Fz') 194 
sendEmail 195 
%% Ayrık Elemanlar Yöntemi 196 
function [Fz, parca, duvar] = DEM_HC(anim,parca,duvar,t,k) 197 
%Verlet İntegarasyonu - Parçacıkların yörüngelerini hesaplamak için Verlet Time Integration yöntemi 198 
kullanıldı  199 
% 1. Calculate v(t+0.5dt) 200 
% 2. Calculate x(t+dt) 201 
% 3. Calculate a(t+dt) 202 
% 4. Calculate v(t+dt) 203 
dt_a = anim.adim; 204 
dt_a2 = 0.5*anim.adim; 205 
    eski_hiz = parca.hiz; 206 
    eski_acisal_hiz = parca.acisal_hiz; 207 
    parca.hiz = parca.hiz+dt_a2.*parca.ivme; 208 
    parca.acisal_hiz = parca.acisal_hiz+dt_a2.*parca.acisal_ivme;     209 
    parca.konum = parca.konum+eski_hiz.*dt_a+0.5.*parca.ivme.*dt_a^2; 210 
    parca.theta = parca.theta+eski_acisal_hiz.*dt_a+0.5.*parca.acisal_ivme.*dt_a^2; 211 
    alan_disi = find(parca.konum(1,:)<anim.alan(1) | parca.konum(1,:)>anim.alan(2) | ... 212 
        parca.konum(2,:)<anim.alan(3) | parca.konum(2,:)>anim.alan(4) | ... 213 
        parca.konum(3,:)<anim.alan(5) | parca.konum(3,:)>anim.alan(6));     214 
    if ~isempty(alan_disi) 215 
        error('%d Nolu Parça Alan Dışı!!!', parca.id(alan_disi)); 216 
    end 217 
    [temas_parca, temas_duvar] = temas_tespit(parca,duvar);     218 
    [parca.ivme, parca.acisal_ivme, Fz]= HertzTemasModel(parca,temas_parca,temas_duvar,anim.g,duvar);     219 
    parca.hiz = parca.hiz+dt_a2*parca.ivme; 220 
    parca.acisal_hiz = parca.acisal_hiz+dt_a2*parca.acisal_ivme; 221 
    if rem(k,anim.data_adim)==0 222 
        if anim.kaydet == 1 223 
            parcaN = length(parca.id);  224 
            cellN = size(duvar.cell_C,2); 225 
            KE = 226 
0.5*parca.m(1).*ones(1,parcaN*cellN).*(parca.hiz(1,:).^2+parca.hiz(2,:).^2+parca.hiz(3,:).^2); 227 
            PE = parca.konum(3,:).*anim.g(3,1).*parca.m(1).*ones(1,parcaN*cellN); 228 
            RE = 0.5*parca.I(1).*ones(1,parcaN*cellN).*reshape(sum(parca.acisal_hiz.^2),[1 parcaN*cellN]); 229 
            data = [t*ones(parcaN*cellN,1)  (1:parcaN*cellN)' parca.r(1).*ones(parcaN*cellN,1) 230 
parca.konum(1,:)' parca.konum(2,:)' parca.konum(3,:)' parca.hiz(1,:)' parca.hiz(2,:)' parca.hiz(3,:)' ... 231 
                parca.acisal_hiz(1,:)' parca.acisal_hiz(2,:)' parca.acisal_hiz(3,:)' parca.theta(1,:)' parca.theta(2,:)' 232 
parca.theta(3,:)' KE' PE' RE']; 233 
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            save(strcat(anim.kaydet_dosya,'/',num2str(t),'.mat'),'data'); 234 
        end 235 
        if anim.cizim == 1 236 
            h = figure(1); 237 
            anim_HC(parca,duvar,anim.alan,h); 238 
        end         239 
    end     240 
end 241 
%%  242 
function [ivme, acisal_ivme, Fz] = HertzTemasModel(parca,temas_parca,temas_duvar,g,duvar) 243 
ivme = zeros(3,length(parca.id),size(parca.konum,3)); 244 
acisal_ivme = zeros(3,length(parca.id),size(parca.konum,3)); 245 
Fz = zeros(1,size(parca.konum,3)); 246 
for k=1:size(parca.konum,3) 247 
if ~isempty(temas_parca{k}) 248 
    for i = 1:sum(~cellfun('isempty',temas_parca(k,:)))    249 
        eleman = temas_parca{k,i}.eleman; 250 
        iid = temas_parca{k,i}.id;        251 
        igirinti_n = temas_parca{k,i}.girinti_n; 252 
        irel_v_n = temas_parca{k,i}.rel_v_n; 253 
        irel_v_t = temas_parca{k,i}.rel_v_t; 254 
        igirinti_n_dir = temas_parca{k,i}.girinti_n_dir; 255 
        igirinti_t_dir = temas_parca{k,i}.girinti_t_dir; 256 
        r_eq = parca.r(iid)*parca.r(eleman)./(parca.r(iid)+parca.r(eleman)); 257 
        E_eq = parca.E(iid)*parca.E(eleman)./(parca.E(iid)*(1-parca.v2(eleman))+parca.E(eleman)*(1-258 
parca.v2(iid))); 259 
        m_eq = parca.m(iid)*parca.m(eleman)./(parca.m(iid)+parca.m(eleman)); 260 
        K1 = 4/3*sqrt(r_eq).*E_eq; % Hertz Sabiti 261 
        Fn = [K1.*igirinti_n.^(3/2).*igirinti_n_dir(1,:); ... 262 
            K1.*igirinti_n.^(3/2).*igirinti_n_dir(2,:); ... 263 
            K1.*igirinti_n.^(3/2).*igirinti_n_dir(3,:)];         264 
        K2 = parca.alpha(eleman).*sqrt(m_eq.*K1).*igirinti_n.^(1/4).*irel_v_n; 265 
        Fnd = [K2.*igirinti_n_dir(1,:); K2.*igirinti_n_dir(2,:); K2.*igirinti_n_dir(3,:)];         266 
        Fn_v = Fn+Fnd; 267 
        Fn_net = [sum(Fn(1,:)+Fnd(1,:)); sum(Fn(2,:)+Fnd(2,:)); sum(Fn(3,:)+Fnd(3,:))]; 268 
        ivme(:,eleman,k) = round((Fn_net./parca.m(eleman))); 269 
        Ft_net = parca.mu(1,eleman).*sqrt(sum(Fn_v.^2)).*sign(irel_v_t); 270 
        Ft_net = Ft_net.*igirinti_t_dir; 271 
        M = cross(-igirinti_n_dir,Ft_net); 272 
        M = [sum(M(1,:));sum(M(2,:));sum(M(3,:))]; 273 
        acisal_ivme(:,eleman,k) = M*parca.r(eleman)/parca.I(eleman);   274 
    end 275 
end 276 
if ~isempty(temas_duvar{k}) 277 
    for i = 1:sum(~cellfun('isempty',temas_duvar(k,:)))        278 
        eleman = temas_duvar{k,i}.eleman; 279 
        iid = temas_duvar{k,i}.id; 280 
        igirinti_n = temas_duvar{k,i}.girinti_n; 281 
        irel_v_n = temas_duvar{k,i}.rel_v_n; 282 
        irel_v_t = temas_duvar{k,i}.rel_v_t; 283 
        igirinti_n_dir = temas_duvar{k,i}.girinti_n_dir; 284 
        igirinti_t_dir = temas_duvar{k,i}.girinti_t_dir; 285 
        r_eq = parca.r(eleman); 286 
        E_eq = duvar.E(iid)*parca.E(eleman)./(duvar.E(iid)*(1-parca.v2(eleman))+parca.E(eleman)*(1-287 
duvar.v2(iid))); 288 
        m_eq = parca.m(eleman); 289 
        K1 = 4/3*E_eq.*sqrt(r_eq); 290 
        Fn = [K1.*igirinti_n.^(3/2).*igirinti_n_dir(1,:); ... 291 
            K1.*igirinti_n.^(3/2).*igirinti_n_dir(2,:); ... 292 
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            K1.*igirinti_n.^(3/2).*igirinti_n_dir(3,:)];          293 
        K2 = parca.alpha(eleman).*sqrt(m_eq.*K1).*igirinti_n.^(1/4).*irel_v_n; 294 
        Fnd = [K2.*igirinti_n_dir(1,:); ... 295 
            K2.*igirinti_n_dir(2,:); ... 296 
            K2.*igirinti_n_dir(3,:)];          297 
        Fn_v = Fn+Fnd; 298 
        Fn_net = sum(Fn_v,2); 299 
        ivme(:,eleman,k) = round(ivme(:,eleman,k)+Fn_net./parca.m(eleman)); 300 
        Ft = parca.mu(2,eleman).*sqrt(sum(Fn_v.^2)).*sign(irel_v_t); 301 
        Ft_v = Ft.*igirinti_t_dir; 302 
        Ft_net = sum(Ft_v,2); 303 
        M = cross(-igirinti_n_dir,Ft_v); 304 
        M = [sum(M(1,:));sum(M(2,:));sum(M(3,:))]; 305 
        acisal_ivme(:,eleman,k) = acisal_ivme(:,eleman,k)+M*parca.r(eleman)/parca.I(eleman); 306 
        Fz(k) = Fz(k)-Fn_net(3)-Ft_net(3); 307 
    end 308 
end 309 
end 310 
ivme = [ivme(1,:,:)+g(1,:); ivme(2,:,:)+g(2,:); ivme(3,:,:)+g(3,:)]; 311 
end 312 
%% Parçacıkların birbirleriyle ve duvarla etkileşimini hesaplar 313 
function [temas_parca, temas_duvar] = temas_tespit(parca,duvar) 314 
n_parca = length(parca.id); 315 
    temas_parca = cell(size(parca.konum,3),1); 316 
    temas_duvar = cell(size(parca.konum,3),1); 317 
for k=1:size(parca.konum,3) 318 
    parca_temas_adet = 0; 319 
    duvar_temas_adet = 0; 320 
for i = 1:n_parca    321 
    d = sqrt((parca.konum(1,:,k)-parca.konum(1,i,k)).^2+(parca.konum(2,:,k)-322 
parca.konum(2,i,k)).^2+(parca.konum(3,:,k)-parca.konum(3,i,k)).^2); 323 
    % parçacıkların i parçacığına olan uzaklıkları 324 
    sum_r = parca.r+parca.r(i);     325 
    d(i) = inf;     326 
    cakisma = sum_r-d; % Temas halinde positif olur.  327 
    control = cakisma>0; 328 
    if sum(control)>0 329 
        parca_temas_adet = parca_temas_adet+1; 330 
        temas_parca{k,parca_temas_adet}.eleman = i; % Temas eden parça 331 
        temas_parca{k,parca_temas_adet}.id = parca.id(control); % Temas edilen parça 332 
        temas_parca{k,parca_temas_adet}.girinti_n = cakisma(control); % Parçacıkların temas miktarı 333 
        temas_parca{k,parca_temas_adet}.girinti_n_dir = [(parca.konum(1,i,k)-334 
parca.konum(1,control,k))./d(control); ... 335 
            (parca.konum(2,i,k)-parca.konum(2,control,k))./d(control); ... 336 
            (parca.konum(3,i,k)-parca.konum(3,control,k))./d(control)]; % Birim vektor ri-rj  337 
        hiz_rel = [parca.hiz(1,control,k)-parca.hiz(1,i,k); ... % Temas eden parçacıkların kütle merkezinin 338 
bağıl hızı [Vji_x;Vji_y] 339 
            parca.hiz(2,control,k)-parca.hiz(2,i,k); ... 340 
            parca.hiz(3,control,k)-parca.hiz(3,i,k)]; 341 
        sign_rot = cross(temas_parca{k,parca_temas_adet}.girinti_n_dir,hiz_rel); 342 
        sign_rot = sign(sign_rot); 343 
        sign_rot(sign_rot==0) = 1;  344 
        temas_parca{k,parca_temas_adet}.rel_v_n = 345 
temas_parca{k,parca_temas_adet}.girinti_n_dir(1,:).*hiz_rel(1,:)+temas_parca{k,parca_temas_adet}.girinti346 
_n_dir(2,:).*hiz_rel(2,:) ... 347 
            +temas_parca{k,parca_temas_adet}.girinti_n_dir(3,:).*hiz_rel(3,:); 348 
        hiz_rel2 = sign_rot.*hiz_rel; 349 
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        V_control = 350 
parca.r(control).*[parca.acisal_hiz(2,control,k).*temas_parca{k,parca_temas_adet}.girinti_n_dir(3,:)-351 
parca.acisal_hiz(3,control,k).*temas_parca{k,parca_temas_adet}.girinti_n_dir(2,:);... 352 
            -parca.acisal_hiz(1,control,k).*temas_parca{k,parca_temas_adet}.girinti_n_dir(3,:) 353 
+parca.acisal_hiz(3,control,k).*temas_parca{k,parca_temas_adet}.girinti_n_dir(1,:);... 354 
            parca.acisal_hiz(1,control,k).*temas_parca{k,parca_temas_adet}.girinti_n_dir(2,:)-355 
parca.acisal_hiz(2,control,k).*temas_parca{k,parca_temas_adet}.girinti_n_dir(1,:)]; 356 
        V_i = -parca.r(i).*[parca.acisal_hiz(2,i,k).*temas_parca{k,parca_temas_adet}.girinti_n_dir(3,:)-357 
parca.acisal_hiz(3,i,k).*temas_parca{k,parca_temas_adet}.girinti_n_dir(2,:);... 358 
            -parca.acisal_hiz(1,i,k).*temas_parca{k,parca_temas_adet}.girinti_n_dir(3,:) 359 
+parca.acisal_hiz(3,i,k).*temas_parca{k,parca_temas_adet}.girinti_n_dir(1,:);... 360 
            parca.acisal_hiz(1,i,k).*temas_parca{k,parca_temas_adet}.girinti_n_dir(2,:)-361 
parca.acisal_hiz(2,i,k).*temas_parca{k,parca_temas_adet}.girinti_n_dir(1,:)]; 362 
        V_temas = hiz_rel2+V_control-V_i; 363 
        rel_v_t=V_temas-364 
dot(V_temas,temas_parca{k,parca_temas_adet}.girinti_n_dir).*temas_parca{k,parca_temas_adet}.girinti_365 
n_dir; 366 
        temas_parca{k,parca_temas_adet}.girinti_t_dir=rel_v_t./norm(rel_v_t); 367 
        368 
temas_parca{k,parca_temas_adet}.girinti_t_dir(isnan(temas_parca{k,parca_temas_adet}.girinti_t_dir))=0; 369 
        V_temas = hiz_rel+V_control-V_i; 370 
        temas_parca{k,parca_temas_adet}.rel_v_t = 371 
temas_parca{k,parca_temas_adet}.girinti_t_dir(1,:).*V_temas(1,:)+temas_parca{k,parca_temas_adet}.girin372 
ti_t_dir(2,:).*V_temas(2,:) ... 373 
            +temas_parca{k,parca_temas_adet}.girinti_t_dir(3,:).*V_temas(3,:); 374 
    end 375 
    B = duvar.denklemC(:,1,k).*parca.konum(1,i,k)+duvar.denklemC(:,2,k).*parca.konum(2,i,k)+ ... 376 
        duvar.denklemC(:,3,k).*parca.konum(3,i,k)+duvar.denklemC(:,4,k); 377 
    K = sqrt(duvar.denklemC(:,1,k).^2+duvar.denklemC(:,2,k).^2+duvar.denklemC(:,3,k).^2); 378 
    d_duvar = (B./K)'; 379 
    d_duvar = abs(d_duvar);      380 
    girinti_duvar = parca.r(i)-d_duvar; 381 
    control_duvar = girinti_duvar>0; 382 
    if sum(control_duvar)>0 383 
        duvar_temas_adet = duvar_temas_adet+1; 384 
        temas_duvar{k,duvar_temas_adet}.eleman = i; 385 
        temas_duvar{k,duvar_temas_adet}.id = find(control_duvar == 1); 386 
        temas_duvar{k,duvar_temas_adet}.girinti_n = girinti_duvar(control_duvar); 387 
        temas_duvar{k,duvar_temas_adet}.girinti_n_dir = duvar.dir(:,control_duvar,k); 388 
        hiz_rel = [0;0;duvar.hiz(k)]-parca.hiz(:,i,k); % relative velocity 389 
        sign_rot = 390 
cross(temas_duvar{k,duvar_temas_adet}.girinti_n_dir,repmat(hiz_rel,1,size(temas_duvar{k,duvar_temas_a391 
det}.girinti_n_dir,2))); 392 
        sign_rot = sign(sign_rot); 393 
        sign_rot(sign_rot==0) = 1; 394 
        temas_duvar{k,duvar_temas_adet}.rel_v_n = 395 
temas_duvar{k,duvar_temas_adet}.girinti_n_dir(1,:).*hiz_rel(1,:)... 396 
            +temas_duvar{k,duvar_temas_adet}.girinti_n_dir(2,:).*hiz_rel(2,:) ... 397 
            +temas_duvar{k,duvar_temas_adet}.girinti_n_dir(3,:).*hiz_rel(3,:); 398 
        hiz_rel2 = sign_rot.*repmat(hiz_rel,1,size(temas_duvar{k,duvar_temas_adet}.girinti_n_dir,2)); 399 
        V_i = -parca.r(i).*[parca.acisal_hiz(2,i,k).*temas_duvar{k,duvar_temas_adet}.girinti_n_dir(3,:)-400 
parca.acisal_hiz(3,i,k).*temas_duvar{k,duvar_temas_adet}.girinti_n_dir(2,:);... 401 
            -parca.acisal_hiz(1,i,k).*temas_duvar{k,duvar_temas_adet}.girinti_n_dir(3,:) 402 
+parca.acisal_hiz(3,i,k).*temas_duvar{k,duvar_temas_adet}.girinti_n_dir(1,:);... 403 
            parca.acisal_hiz(1,i,k).*temas_duvar{k,duvar_temas_adet}.girinti_n_dir(2,:)-404 
parca.acisal_hiz(2,i,k).*temas_duvar{k,duvar_temas_adet}.girinti_n_dir(1,:)]; 405 
        V_temas = hiz_rel2-V_i; 406 



120 

        rel_v_t=V_temas-407 
dot(V_temas,temas_duvar{k,duvar_temas_adet}.girinti_n_dir).*temas_duvar{k,duvar_temas_adet}.girinti_408 
n_dir; 409 
        temas_duvar{k,duvar_temas_adet}.girinti_t_dir=rel_v_t./norm(rel_v_t);       410 
temas_duvar{k,duvar_temas_adet}.girinti_t_dir(isnan(temas_duvar{k,duvar_temas_adet}.girinti_t_dir))=0;   411 
        V_temas = hiz_rel-V_i; 412 
        temas_duvar{k,duvar_temas_adet}.rel_v_t = 413 
temas_duvar{k,duvar_temas_adet}.girinti_t_dir(1,:).*V_temas(1,:)+temas_duvar{k,duvar_temas_adet}.giri414 
nti_t_dir(2,:).*V_temas(2,:) ... 415 
            +temas_duvar{k,duvar_temas_adet}.girinti_t_dir(3,:).*V_temas(3,:); 416 
    end 417 
end 418 
end 419 
end 420 
%%  421 
function anim_HC(parca,duvar,alan,h) 422 
figure(h); 423 
set(h,'visible','off'); 424 
clf; 425 
axis off 426 
% axis(alan); 427 
daspect([1 1 1]); 428 
view(90,0) 429 
hold on; 430 
for i=1:size(duvar.konum2,3) 431 
%     plot3(duvar.konum3(1,[1:4,1],i),duvar.konum3(2,[1:4,1],i),duvar.konum3(3,[1:4,1],i),'b'); 432 
%     plot3(duvar.konum3(1,[5:8,5],i),duvar.konum3(2,[5:8,5],i),duvar.konum3(3,[5:8,5],i),'b'); 433 
%     plot3(duvar.konum3(1,[9:12,9],i),duvar.konum3(2,[9:12,9],i),duvar.konum3(3,[9:12,9],i),'b'); 434 
%     435 
plot3(duvar.konum3(1,[1,10,11,4,1],i),duvar.konum3(2,[1,10,11,4,1],i),duvar.konum3(3,[1,10,11,4,1],i),'b')436 
; 437 
%     438 
plot3(duvar.konum3(1,[6,9,12,7,6],i),duvar.konum3(2,[6,9,12,7,6],i),duvar.konum3(3,[6,9,12,7,6],i),'b'); 439 
%     plot3(duvar.konum3(1,[2,5,8,3,2],i),duvar.konum3(2,[2,5,8,3,2],i),duvar.konum3(3,[2,5,8,3,2],i),'b'); 440 
    plot3(duvar.konumC(1,[1:4,1],i),duvar.konumC(2,[1:4,1],i),duvar.konumC(3,[1:4,1],i),'b'); 441 
    plot3(duvar.konumC(1,[5:8,5],i),duvar.konumC(2,[5:8,5],i),duvar.konumC(3,[5:8,5],i),'b'); 442 
    plot3(duvar.konumC(1,[9:12,9],i),duvar.konumC(2,[9:12,9],i),duvar.konumC(3,[9:12,9],i),'b'); 443 
    444 
plot3(duvar.konumC(1,[1,10,11,4,1],i),duvar.konumC(2,[1,10,11,4,1],i),duvar.konumC(3,[1,10,11,4,1],i),'b445 
'); 446 
    447 
plot3(duvar.konumC(1,[6,9,12,7,6],i),duvar.konumC(2,[6,9,12,7,6],i),duvar.konumC(3,[6,9,12,7,6],i),'b'); 448 
    plot3(duvar.konumC(1,[2,5,8,3,2],i),duvar.konumC(2,[2,5,8,3,2],i),duvar.konumC(3,[2,5,8,3,2],i),'b'); 449 
    plot3(duvar.konum2(1,[1:4,1],i),duvar.konum2(2,[1:4,1],i),duvar.konum2(3,[1:4,1],i),'r'); 450 
    plot3(duvar.konum2(1,[5:8,5],i),duvar.konum2(2,[5:8,5],i),duvar.konum2(3,[5:8,5],i),'r'); 451 
    plot3(duvar.konum2(1,[9:12,9],i),duvar.konum2(2,[9:12,9],i),duvar.konum2(3,[9:12,9],i),'r'); 452 
    453 
plot3(duvar.konum2(1,[1,10,11,4,1],i),duvar.konum2(2,[1,10,11,4,1],i),duvar.konum2(3,[1,10,11,4,1],i),'r'); 454 
    plot3(duvar.konum2(1,[6,9,12,7,6],i),duvar.konum2(2,[6,9,12,7,6],i),duvar.konum2(3,[6,9,12,7,6],i),'r'); 455 
    plot3(duvar.konum2(1,[2,5,8,3,2],i),duvar.konum2(2,[2,5,8,3,2],i),duvar.konum2(3,[2,5,8,3,2],i),'r'); 456 
    for j = 1:length(parca.id)     457 
        kure(parca.konum(:,j,i),parca.r(j),[0 0 1]); 458 
        xyz= konum3D(parca.theta(:,j,i),parca.konum(:,j,i),parca.r(j)); 459 
        kure(xyz',5e-4,[1 0 0]); 460 
    end 461 
end 462 
% xlabel("X") 463 
% ylabel("Y") 464 
% pause(0.001); 465 
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set(h,'visible','on'); 466 
end 467 
%% 468 
function P = InterX(L1,varargin) 469 
%INTERX interpolasyon yöntemiyle gerekli noktaları bulur 470 
    narginchk(1,2); 471 
    if nargin == 1 472 
        L2 = L1; 473 
        x1  = L1(1,:)';  x2 = L2(1,:); 474 
        y1  = L1(2,:)';  y2 = L2(2,:); 475 
        dx1 = diff(x1); dy1 = diff(y1); 476 
        dx2 = diff(x2); dy2 = diff(y2);   477 
        S1 = dx1.*y1(1:end-1) - dy1.*x1(1:end-1); 478 
        S2 = dx2.*y2(1:end-1) - dy2.*x2(1:end-1); 479 
        C1 = D(dx1.*y2-dy1.*x2,S1)<0; 480 
        C2 = (D((y1.*dx2-(x1.*dy2))',S2')<0)'; 481 
    else 482 
        L2 = varargin{1}; 483 
        x1  = L1(1,:)';  x2 = L2(1,:); 484 
        y1  = L1(2,:)';  y2 = L2(2,:); 485 
        dx1 = diff(x1); dy1 = diff(y1); 486 
        dx2 = diff(x2); dy2 = diff(y2);    487 
        S1 = dx1.*y1(1:end-1) - dy1.*x1(1:end-1); 488 
        S2 = dx2.*y2(1:end-1) - dy2.*x2(1:end-1); 489 
        C1 = D(dx1.*y2-dy1.*x2,S1)<=0; 490 
        C2 = (D((y1.*dx2-(x1.*dy2))',S2')<=0)'; 491 
    end    492 
    [i,j] = find(C1 & C2);  493 
    if isempty(i),P = zeros(2,0);return; end 494 
    i=i'; dx2=dx2'; dy2=dy2'; S2 = S2'; 495 
    L = dy2(j).*dx1(i) - dy1(i).*dx2(j); 496 
    i = i(L~=0); j=j(L~=0); L=L(L~=0); 497 
    P = unique([dx2(j).*S1(i) - dx1(i).*S2(j), ... 498 
                dy2(j).*S1(i) - dy1(i).*S2(j)]./[L L],'rows')';          499 
    function u = D(x,y) 500 
        u = (x(:,1:end-1)-y).*(x(:,2:end)-y); 501 
    end 502 
end 503 
%% Çubuk FTF hesaplar 504 
tic 505 
clear;clc;close all 506 
L_beam = 850e-3; % [m] Çubuk uzunluğu 507 
w_beam = 80e-3; % [m] Çubuk eni 508 
t_beam = 25.4e-3; % [m] Çubuk yüksekliği 509 
load shell_80x850x25.mat 510 
fn = shell_80x850x25.f'; 511 
wn = 2*pi*fn; 512 
Lin = shell_80x850x25.phiZ(:,1); 513 
phiZ = shell_80x850x25.phiZ(:,2:end); 514 
phiRotX = shell_80x850x25.phiRotX; 515 
n = size(phiZ,2); 516 
zeta = [0.014 0.016 0.011 0.017];  517 
M = eye(n); 518 
K = diag(wn.^2); 519 
Z = diag(2*zeta.*wn); 520 
t_son = 10; % sn 521 
tsam = 1e-6; 522 
Wt = 0:tsam:t_son; % Çözüm aralığı 523 
% U = wgn(1,length(Wt),35); %10, 20, 30, 35 524 
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% rms(U) 525 
% plot(Wt,U) 526 
load('U_10rms_10s.mat'); 527 
x = 0.850; % Uç konum 528 
ind = Lin == x; 529 
W_uc = phiZ(ind,:)'; % Cevap Noktası öz vektör 530 
x = 275e-3; % Kuvvet uygulama noktası  öz vektör  531 
ind = Lin == x; 532 
Fe = phiZ(ind,:)'; % Kuvvet Noktası şekil fonksiyonu 533 
q0 = zeros(1,2*n)'; % Başlanğıç şartları 534 
q_0 = zeros(n,length(Wt)); % Konum 535 
q_a = zeros(n,length(Wt)); % İvme 536 
% C = eye(2*n); 537 
C = [diag(ones(1,n)) zeros(n)]; % sadece yerdeğiştirme 538 
Ac = [zeros(n) eye(n);-M\K -M\Z]; 539 
A = expm(Ac*tsam); 540 
Bc = [zeros(n,1);M\Fe]; 541 
B = Ac\(A-eye(2*n))*Bc;  542 
C2 = [-M\K -M\Z]; % sadece ivme 543 
for k = 1:length(Wt) 544 
    q0 = A*q0 + B*U(k); 545 
    q_0(:,k) = C*q0;  546 
    q_a(:,k) = C2*q0+M\Fe.*U(k);  547 
end 548 
wL_acc = 0; % Uç ivme 549 
for k=1:n 550 
    wL_acc = wL_acc+W_uc(k).*q_a(k,:); % Tip Displacement 551 
end 552 
% figure 553 
% plot(Wt,wL_acc) 554 
N = length(U); 555 
wind = hann(round(N/4)); 556 
Fs = 1/tsam; 557 
[H1,ft] = tfestimate(U',wL_acc',wind,[],[],Fs); 558 
figure 559 
loglog(ft,abs(H1)./9.81,'k') 560 
grid 561 
xlabel('Frekans [Hz]') 562 
ylabel('Akselerans FTF [g/N]') 563 
xlim([10 1150]) 564 
%%  565 
load(pwd+"\q_p15_10rms_10s.mat") % çubuk datalarını yükle 566 
wL2 = 0; 567 
for k=1:n 568 
    wL2 = wL2+W_uc(k).*q(k,:); % Uç yerdeğiştirme 569 
end 570 
% plot(Wt,wL2) 571 
wind = hann(round(N/4)); 572 
[H1_f,ft] = tfestimate(U',wL2',wind,[],[],Fs); 573 
f10 = find(abs(ft-1150)<.11) 574 
ft = ft(10:f10,:); 575 
H1_f = (H1_f(10:f10,:)); 576 
hold on 577 
loglog(ft,abs(H1_f).*(2*pi.*ft).^2./9.81,'b') 578 
% legend('Boş çubuk','15 PDS''li çubuk') 579 
 580 



 

ÖZGEÇMİŞ 

Osman YİĞİD 

 

 

  

  

   

   

   

  

 

 

  

  

 

 

  

       

 

 

  

 

  

 

 

  

  

  

 

AKADEMİK FAALİYETLER  

Makaleler: 

1.  Kalkan, N., Yigid, O. (2016). Mühendislik Problemlerinde Boyut Analizi ve Buckingham Pi 

Teoremi’nin Önemi, Sinop Üniversitesi Fen Bilimleri Dergisi, 1(1), ss. 1–6 

2.  Hüseyinoğlu, M., Şen, M., Yigid, O., Çakar, O. (2019). Dynamic Analysis Of Uniform And Non-

Uniform Cross-Section Cantilever Sandwich Beams, European Journal of Technique (EJT), 9(2), 

ss. 286–297 

3. Yigid, O., Çakar, O. (2019). Parçacık Darbesi ile Titreşim Sönümleme Üzerine Bir Çalışma, 

Konya Journal of Engineering Sciences, 7(Özel Sayı), ss. 875–886 



 

4. Şen, M., Yigid, O., Çakar, O. (2023). FRF Based Structural Modification Of A Mechanical System 

By Adding Masses And Utilizing The Grey Wolf Optimization Technique, Turkish Journal of 

Science and Technology, 18(1), ss. 1–10 

5. Kara, S.E., Yiğid, O., Şen, M., Hüseyinoğlu, M. (2023). Model Predictive Trajectory Tracking 

Control of 2 DoFs SCARA Robot under External Force Acting to the Tip along the Trajectory, 

Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 14(2), ss. 325–332 

6. Yiğid, O., Şen, M. (2023). Optimum Design and Control of a Quick-Return Mechanism Used in a 

Jewelry Welding Powder Production Machine, European Journal of Technique (EJT), 13(1), ss. 

61–67 

Bildiriler: 

1. Yigid, O., Çakar, O. (2019). Parçacık Darbesi Ile Titreşim Sönümleme Üzerine Bir Çalışma, 19. 

Ulusal Makine Teorisi Sempozumu-UMTS2019, ss. 337–344, İskenderun 

2. Şen, M., Çakar, O., Yigid, O. (2022). Dynamic Analysis Of A Dual Rotor System, VI-International 

Europen Conference on Interdisciplinary Scientific Research, ss. 1448–1546, Bucharest, Romania 

3. Şen, M., Çakar, O., Yigid, O. (2022). Model Reduction And Dynamic Analysis Of A Rotor 

System, VI-International Europen Conference on Interdisciplinary Scientific Research, ss. 317–

329, Bucharest, Romania 

4. Yigid, O., Çakar, O. (2022). Analytical Study Of A Horizontally Vibrating System Filled With 

Particle Dampers, 2nd International Congress on Modern Sciences, ss. 903–911, Tashkent, 

Uzbekistan 




