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ABSTRACT

Ali Berkol

THE TURKISH LIP READING USING DEEP LEARNING METHOD
Baskent Universitesi Science and Engineering

Electrical & Electronics Engineering

2023

Automated lip reading is a research problem that has developed considerably in recent years.
Lip reading is evaluated both visually and audibly in some cases. Detecting an unwanted word
from a security camera is an example of a visual lip-reading problem. Audio-visual datasets are
not applicable where such image-only data is involved. Therefore, we may not have audio input
in all cases. In certain cases, it is not feasible to obtain the audio input of the spoken word. In
this study, we have gathered a novel Turkish dataset consisting solely of images. The dataset
was generated using YouTube videos, which constitute an uncontrolled environment.
Consequently, the images present challenging parameters with respect to environmental factors
such as lighting conditions, angles, colors, and individual facial characteristics. Despite the
variations in facial attributes like mustaches, beards, and makeup, the visual speech recognition
problem was addressed using Convolutional Neural Networks (CNN) without making any
modifications to the data. The problem was formulated with 10 classes, comprising single words
and two-word phrases. While developing the study, comparisons were made with LSTM,
BGRU, and Dilated CNN. The proposed study using only-visual data obtained a model which
is automated visual speech recognition with a deep learning approach. In addition, since this
study uses only-visual data, the computational cost and resource usage is less than in multi-
modal studies. Also, we introduce introduced a novel approach called Concatenated Frame
Images, which involved combining image frames into a single large frame. It is also the first
known study to address the lip reading problem with a deep learning algorithm using a new

dataset belonging to the Ural-Altaic languages.

KEYWORDS : Lip Reading, Deep Learning, Image Processing, Convolutional Neural
Networks, LSTM, BGRU, Dilated CNN, Turkish, Concatenated Frame.



OZET

Ali Berkol

DERIN OGRENME YONTEMI iLE TURKCE DUDAK OKUMA
Baskent Universitesi Fen Bilimleri Enstitiisii

Elektrik-Elektronik Miihendisligi Anabilim Dah

2023

Otomatik dudak okuma, son yillarda énemli 6l¢lide gelisen bir aragtirma problemidir. Dudak
okuma bazen gorsel olarak, bazen de isitsel olarak degerlendirilmektedir. Gilivenlik
kamerasindan istenmeyen bir kelimenin tespiti, gorsel dudak okuma problemine bir 6rnektir.
Ilgili birimler sadece goriintii verilerinin oldugu durumlarda isitme-gorsel veri setlerinden
yararlanamazlar. Bu nedenle, tiim durumlarda ses girdisine sahip olmak miimkiin degildir.
Telaffuz edilen kelimenin ses girisini her zaman elde etmek miimkiin degildir. Bu ¢alismada
yalnizca goriintii kullanilarak yeni bir Tiirk¢e veri seti toplandi. Yeni veri seti, kontrolstz bir
ortam olan Youtube videolar1 kullanilarak olusturulmustur. Bu nedenle, goriintiiler 151k, ag1,
renk ve yiizlin kisisel ozellikleri gibi cevresel faktorler agisindan zor parametrelere sahiptir.
Biyik, sakal ve makyaj gibi farkli yiiz 6zelliklerine ragmen, gorsel konusma tanima problemi,
veri lizerinde herhangi bir miidahale olmadan Konvoliisyonel Sinir Aglar1 (CNN) kullanilarak
tek kelime ve iki kelime obeklerini iceren 100 siifta gelistirilmistir. Ote yandan ¢alisma
gelistirilirken LSTM, BGRU ve Dilated CNN ile karsilastirmalar yapilmistir. Yalnizca gorsel
veri kullanilarak yapilan 6nerilen ¢calisma, derin 6grenme yaklasimiyla otomatik gorsel konusma
tanima modeli elde etmistir. Ayrica, bu ¢alisma yalnizca gorsel veri kullandigindan ¢oklu
modalite caligmalarina gére hesaplama maliyeti ve kaynak kullanimi daha azdir. Ayrica,
Birlesik Imajlar Yénetimiyle, goriintii gergevelerini tek bir bilyiik cerceveye birlestirme islemine
dayandirarak klasik kesik yontemle karsilastirma yaptik. Ayrica, bu ¢alisma, Ural-Altay
dillerine ait yeni bir veri seti kullanarak derin 6grenme algoritmasiyla dudak okuma problemine

yonelik yapilan ilk bilinen ¢aligmadir.

ANAHTAR KELIMELER: Dudak okuma, Derin 6grenme, Goriintii isleme, Konvoliisyonel
Sinir Aglari, LSTM, BGRU, Dilated CNN, Tirkce, Birlesik.



TABLE OF CONTENTS

AB ST R A CT ettt e e I
L@ )4 i I PRSP P UPPUPTO i
TABLE OF CONTENTS ...t ii
LIST OF TABLES. . ...ttt b ettt e et e et e esbe e e beesbneanne e Vi
LIST OF FIGURES ...t Vil
LIST OF ABBREVIATIONS ...ttt IX
L INTRODUCTION ...ttt sttt b et e e e s e e neesnneenee e 1
1.1. History of Lip REAAING .......ccceiiiiiiiiiiiiiniieiee et 3
1.1.1. Ancient period and mMiddle agesS........ccceieiieiieiiiiie i 3

1.1.2. MOdern lP rAAING. ..ot 4

1.1.3. Lip Reading Techniques and Challenges:..........ccccovveiiiieiieiicne e, 5

2. URAL-ALTAIC LANGUAGES. ...ttt 7
2.1. The Ural-Altaic Language Family: History and Debates ...........c.cccccocevveiviiieceennenn, 8
2.1.1. Uralic languages and their featUresS..........ccooiiiiiiiiinieee e 8

2.1.2. Altaic languages and their features ...........ccccccevveii i 8

2.2. Debates and CritICISIMS .......coiiiiieieieiee ettt 9

3. CLASSICAL METHODOLOGY FOR LIP READING ......cccoiiiiieiiie e 10
3.1. Lip Reading By Machine Learining And Artificial Intelligence............c.ccocevvennen. 11
3.2. Visual Speech ReCOgNITION .........cciiiiiiiii e e 12
3.3. Lip Reading By Deep Learning ........ccocuvieieieiiiiie s 15
3.3.1. Lip reading in TUFKISN.........ooiiiiiic e 17

4. LIP READING OPEN SOURCE DATA SETS....oo o 20
A.1. GRID COFPUS ..iiiieiiie ettt sttt et e et e e srb e e e ss b e e e sbb e e e nbbeeabeeeasneeansneeas 20



4.2. LRW (Lip Reading in the Wild) COrpuUS .......cccooiiiiiiiniiieceee e 21

4.3, LRW-1000 COFPUS ....ciiiiiiiiiiiieiiiiieaiitiessieeesieeesbeeessseessssessssseessssesssssesssssesssssesssssssssenens 21
4.4, MIRACL-VECL COMPUS ...otiiiiiiiiiiieiieeie ettt 21
4.5, LRS3-TED COIPUS ...eiiiiiiiiiiiie ittt sttt e sbb e s sbn e e s be e e sbeeesnsne e 22

. LONG SHORT-TERM MEMORY (LSTM) ...ociiiiiiiiieiiesieeee e 23
. CONVOLUTIONAL NEURAL NETWORK (CNN) ..cccoiiiiniiieieieniese e 28
CDILATED CNN ettt e be e b e bt e s ae e et e e sbn e e beesnneennes 33
. THE PRESENTED STUDY ...ttt 35
8.1. The IMProved DAtaSEt..........ccciiiiiiiiieieeiiesie st 35
8.1.1. Dataset COIECTION ........ccuoiiiieeieriec e 39
8.1.2. Frame extraction from VIABOS ..........coeiueiiiriiiiiiiisiseeeee s 40

ST G o = 10 0 Lc B ol o] o] o1 o [ SRS 43
8.1.4. DEteCtioN OF LD .ooueeeeieieiie et 46

8.1.5. Lip representation .........ccccoviiiiie i 48
8.1.6. Data augMENTATION ......c..oiviiiiiiiiiiicieiee e 49

8.2. Our Study with Deep Learning MOodElS...........ccveiiiiiiiciciiese e 50
8.2.1. Applying classic CNN architecture for lip reading.........cccccevevivervnrirniennnn, 55

8.2.2. Applying LSTM model architecture for lip reading.........cccccccovvevvivieiinennenn, 56
8.2.3. Applying BGRU Model Architecture for lip reading ........cccoccevevevvienvennenn, 56

8.2.4. Comparative RESUILS .........ccociiiieiic e 58

8.2.5. Dilated CNN MOEL........ccoiiiiiiiiiee s 61
8.2.6. Recommended CNN MOTEI .........cooiiiiiiiiiiiieee s 66
8.2.7. CNN model with discrete frame mouths INPUL..........cccceveiiiiiinininicee, 67

8.2.8. CNN model with concatenated frame mouth input .............cccccoevieiiieinnenne. 68

8.2.9. THAINING ....eitiitiiiiiiiieie bbbt nb bbbttt e e 69



8.2.00. RESUITLS ..o e 70

8.2.11. Training Results with Discrete Frame LipS........cccocveveiiieniviiesee e, 71
8.2.13. Training results with concatenated frame lips ..........cccooeveiiiiniiiniiciciene, 74
8.2.14. Comparision for concatenated frame lips results and discrete frame lips
FESUITS. ...ttt bbb bbb bbbt 76
9. CONCLUSION AND SUGGESTIONS.......ooiiiiieiieie e 77
REFERENGCES ...ttt ettt et b et e s in e e beesnee s 82



LIST OF TABLES

Page
Table 3.1. Comparision of prominent Turkish lip reading studies.............cccccovvvrininiiicnenn, 19
Table 4.1. Comparison of the 0pen SOUrce datasets ...........ccecvveieereiiesieere e 22
Table 8.1. Number of instances in the dataSet. ... 41
Table 8.2. Total Dataset iINFOrMatioN.............ooiiiiiiiiiie e 48
Table 8.3. Size of the each class in the dataset. ...........ccceveiiiiniiii e 55
Table 8.4. Hyperparameters used in models. CCE: Categorical Cross Entropy. ..........cccecue...e. 57
Table 8.5. Model accuracy and their training time results. ...........cooveieieiencneseeeeee 58
Table 8.6. Comparision of Precision, recall, and f1 scores of models. ............ccccoevevieivennne. 59
Table 8.7. Dilated CNN VS CNN ......oiiiiiiiiiitiisiie e 62
Table 8.8. Data train-validation-test SPlit. ...........ccooe i 63
Table 8.9. Model Results for Dilated CNN ..........cooiiiiiiiieeee e 65
Table 8.10. Data Distribution Of CIaSSES.........ccciiiriiiiirieiiiiee e 66
Table 8.11. CNN model training Parameters..........ccoeerereieneseseeee e 70
Table 8.12. Number of test samples of each Class...........cccceeveiiiii i 71
Table 8.13. Accuracy and training time of two CNN MOodelS..........cccoevevveieiieniee e 76

Vi



LIST OF FIGURES

Page
FIgure 3.1. VSR @XAMPIE ......oiiiiiiiieee et 13
Figure 3.2. VSR in DEeP 18arNING ......ccceiveiiiiisie sttt sra e 14
FIQUIE 5.1, LSTIM SIIUCTUIE ....eveeieeie ettt sttt enbeeneesne e s e 23
Figure 6.1. Traditional structure 0F CNIN .........coiiiiiiieii e 28
Figure 7.1. Structure of dilated CNN .......ccoiiiiiiiie e 33
Figure 8.1. Data ChallENQES ........cooveiiiie it ne e 40
Figure 8.2. The directory architecture of the dataset............c.ccooeririniiiiiii e, 42

Figure 8.3. Frame number distribution for each word such as “hello” (merhaba), “hi” (selam),
“start” (basla), “finish” (bitir), and “good morning” (giinaydin) and phrases such
as “thank you” (tesekkiir ederim), “welcome” (hos geldiniz), “see you”
(goriismek tlizere), “sorry” (0zlir dilerim), and “enjoy your meal” (afiyet olsun). .44

Figure 8.4. Distance matrix for each class such as “hello” (merhaba), “hi” (selam), “start”
(basla), “finish™ (bitir), “good morning” (glinaydin), “thank you” (tesekkiir
ederim), “welcome” (hos geldiniz), “see you” (goriismek iizere), ’sorry” (Oziir

dilerim), and “enjoy your meal” (afiyet olsun) based on the image features. ........ 45
Figure 8.5. Face detection With HOGHSV M ........cccociiiiiiiiicce e 47
FIQUIe 8.6. LIP DELECTION.......iitiiiiiiiieeee e bbbt 47
Figure 8.7. Concatenated frame MOULNS...........cccooii i 49

Figure 8.8. Data augmentation techniques applied on visual lip reading in Turkish dataset. ...50

Figure 8.9. CNN model architeCtUre ..........ccooveiieiie et 56
Figure 8.10. LSTM model architeCture ..........c.cooiiiiiiiieiece e 56
Figure 8.11. BGRU model arChiteCtUre.........c.cooiiiiiiiie e 57
Figure 8.12. CNN model confuSion MAatriX .........ccooviirieiiiiieieieneses e 60
Figure 8.13. LSTM model confusion MatriX........ccccveiieiieeiieiii e 60
Figure 8.14. BGRU model confuSION MAaLIiX .......ccviiiieiiiieiieniesiesesieseeee e 61

vii



Figure 8.15.
Figure 8.16.
Figure 8.17.
Figure 8.18.
Figure 8.19.
Figure 8.20.
Figure 8.21.
Figure 8.22.

Figure 8.23.

Figure 8.24.

Figure 8.25.

Dilated CNN mModel arChiteCtUre..........ccovieriiiiiiiiisieeee e 63
Dilated CNN training and validation 10SS and aCCUracy ...........ccccevvevereeriesennenns 64
Confusion Matrix for Dilated CNN ........cccoiiiiiiniiineee e 66
CNN Model using discrete frame represented Mouths ...........ccccccvviniiiiiicnene, 68
CNN Model using concatenated frame represented mouths............ccccceeevevvenenne. 69
Training and validation accuracy and loss per epoch with discrete frame lips.....72
Confusion matrix of model trained with discrete frame lipsS..........ccccoovevvevvenenne. 73
Classification report of model trained with discrete frame lips.........ccccoovviennnee. 73
Training and validation accuracy and loss per epoch with concatenated frame

lips... N, A . R T W 74
Confusion Matrix of Model Trained with Concatenated Frame Lips................... 75
Classification Report of Model Trained with Concatenated Lips............ccccevenee. 75

viii



ADAM

ANN
BGRU/BiIGRU
CNN

LR

LRW

LSTM

RNN

VSR

LIST OF ABBREVIATIONS

Adaptive Moment Estimation

Atrtificial Neural Networks

Bidirectional Gated Recurrent Unit Neural Network
Convolutional Neural Networks

Lip Reading

Lip Reading in Wild

Long-Short Term Memory

Recursive Neural Networks

Visiual Speech Recognition



1. INTRODUCTION

Lip reading, also known as speechreading, refers to the ability to understand spoken
language by observing and analyzing the movements of the lips, without relying on auditory
input. Individuals with expertise in lip reading employ this skill to address legal matters, such
as comprehending statements made by individuals in security-related camera footage. The
advancements in deep learning techniques have generated significant interest among researchers
in this domain. The dataset used in deep learning applications, which leverage image processing
methods, plays a critical role in determining the real-world performance of such systems.
However, applications developed using fixed-angle lighting and controlled background data
may not adequately account for the variability encountered in real-life environments. Thus, the
objective of our study is to create a novel Turkish dataset that can facilitate the development of
a visual lip reading system capable of effectively addressing real-world challenges.

Brain-Computer Interface (BCI) is a research field that aims to develop the most
functional design and technology applications by focusing on the software components between
the user and computer. The human brain and computers can capture and learn visual patterns
through signals and process them to interpret meaningful conclusions based on previous
experiences. Visual speech recognition, also called lip reading, is a popular research area where
sound and visuals are used as data in BCI systems. Understanding what someone says just by
looking at the mouth movements is notably complex for people. Moreover, people’s lip reading
performance is deficient. For example, even for a small subset of 30 monosyllabic words, deaf
and hard-of-hearing adults attain an accuracy of just 17£12% percent and 21+11% for 30
complex words. Additionally, the distance between speakers is another crucial issue for lip
reading efficiently. According to experiments, the recommended distance is between 50
centimeters and 3 meters. [1]

Speech is the most commonly used method of communication between people. Although
speaking is carried out audibly, the sight also has a great impact on understanding spoken
expressions. Audio narration and vision are input data that support each other. Automated Visual
speech recognition is a more challenging problem in terms of ensuring generalizable word
variety and accuracy than voice speech recognition and audio-video speech recognition, so their

accuracy performance is lower. One of the troublesome situations in visual speech recognition



IS homophones with similar expressions, that is, expressions with similar lip movements. In
addition, the quality of the image, and the absence of the face and lips of the person in the image
are also challenging factors.

Problems such as dictating messages to smartphones in noisy environments, using visual
silent passwords, transcribing silent films, synthesizing sound based on lip movements for
speech-impaired people and analyzing lip appearances to help hearing-impaired people are
among the application areas of automated lip reading systems.

There is a remarkable number of works for lip reading with multi-model data. Although
working with multi-model data has its own benefits, there are crucial disadvantages. Separating
noise from data is a challenging problem if the sound source has come from a crowded daily
life environment, especially with many people. Deprecating the sound data will help improve
more accurate models for everyday life applications in lip reading. Moreover, using both visual
and sound data causes the excessive use of data and more training time. It is essential to consider
memory usage while training deep learning models.

Although voice-image-based lip reading showed remarkably good results, only-image-
based lip reading also proved its effectiveness. Like all deep learning applications, it has some
difficulties and easiness. Since it has only image data, adversities in distinguishing sounds with
similar lip movements are a challenging problem. Also, suppose there is more than one person.
In that case, it is hard to distinguish who is talking and whom the algorithm will consider in
real-world applications since the algorithm can process one person’s data in most applications.
However, as we wrote above, separating people’s information in images is relatively easier than
voice data. Moreover, in real-world problems, canceling white noise is another crucial problem.
Similarly, it is relatively hard to sound.

Also, in this work, we presented a pioneering methodology named Concatenated Frame
Images, which encompassed the amalgamation of multiple image frames into a unified, large-
scale frame. To construct our model, we employed a 2D/3D Convolutional Neural Network
(CNN) with the widely adopted VGG architecture serving as the frontend. By intertwining the
individual image frames within a singular frame, we effectively converted the temporal
information pertaining to each data point into spatial information. Subsequently, this
transformed representation was utilized as input for the CNN network to facilitate the task of

classification.



In this thesis, we introduce a lip reading model that relies solely on images to enhance the
classification accuracy. Additionally, we present a novel Turkish dataset for lip reading, which
is a part of the Ural-Altaic languages. The dataset we propose poses challenges due to variations
in camera angles, image quality, and physical characteristics of individuals' faces. Our main
contributions are listed below:

1) Multiclass classification of image sequence challenging in terms of diversity.

2) Benchmarking on the dataset containing natural images using the four most basic deep
learning algorithms

3) Evaluation of the innovative Turkish lip reading dataset without audio data.

4) A framework has been developed that incorporates hyperparameter tuning, utilizes the
CNN (Convolutional Neural Network) algorithm, and is tailored for a specific language group,
providing a foundation for future applications within this linguistic domain. This framework
employs deep learning techniques to recognize, model, and understand the unique features and
structures inherent to the language group. Hyperparameter tuning ensures the optimization of
parameters necessary to enhance the model's performance. The absence of similar examples
enhances the originality of the framework, facilitating a more accurate capture and learning of
language-specific characteristics. This infrastructure can contribute to various language analysis
tasks, such as text classification, sentiment analysis, and serve as a valuable resource for future

language-based research endeavors.

1.1. History of Lip Reading

Lip reading, also known as lipreading or speechreading, is a communication method used
to understand spoken words or sentences by observing the movements of a person’s lips. It has
historically emerged from the necessity of human beings to communicate, particularly among
individuals with hearing impairments. The history of lip reading dates back to ancient times;
however, a more systematic approach and instructional method were developed in more recent

history.

1.1.1. Ancient period and middle ages
The origins of lip reading can be traced back to ancient times. Even in Ancient Egypt,

there is evidence of attempts to communicate through lip shape and movements, as depicted by



symbols representing lips in hieroglyphs. Similarly, in ancient Greek and Roman civilizations,
some studies were conducted on interpreting lip movements. However, there is limited evidence
during this period to suggest that lip reading was systematically taught or widely used.

During the Middle Ages, the practice of lip reading continued, but there was still no
advanced method or educational system in place. Lip reading was commonly employed in silent
meetings or religious ceremonies, where understanding speech by observing lip movements was
prevalent. For example, in 17th-century English Puritan society, silent meetings were held, and
the skill of lip reading served as a significant means of communication. Nevertheless, detailed

records regarding lip reading during this period are scarce. [2]

1.1.2. Modern lip reading

The modern and more systematic approach to lip reading emerged in the 18th century.
French physician Charles-Michel de I'Epée developed a method to facilitate communication for
individuals with hearing impairments. L'Epée laid the foundations of sign language and worked
towards teaching lip reading to individuals with hearing disabilities. During this era, lip reading
was integrated as a component of sign language and further developed as a means of
communication.

In the 19th century, the practice of lip reading underwent further advancements. Alexander
Graham Bell conducted studies on understanding speech by observing lip movements, alongside
developing educational materials and methodologies. Bell was one of the pioneers who
recognized lip reading as a tool to enhance language skills and facilitate communication among
individuals with hearing impairments. [3]

Throughout the 20th century, lip reading education and application became more
widespread. Lip reading classes were introduced in educational institutions and private courses
specifically tailored for individuals with hearing impairments. Lip reading has evolved into a
crucial skill that aids individuals with hearing impairments in understanding spoken language
and engaging in communication. Additionally, research efforts and technological advancements
have contributed to the effective utilization of lip reading.

In contemporary times, lip reading continues to be a widely employed communication
method among individuals with hearing impairments. Speech therapists and language

instructors also provide support to individuals utilizing lip reading as a means to improve their



speech and language abilities. Technological progress has made lip reading more accessible and
has assisted in enhancing the communication skills of individuals with hearing disabilities. [4]

The skill of lip reading has been documented through an event that took place in Paris in
the mid-19th century. In the 1860s, French physician Edouard Séguin developed a method for
the improvement and teaching of lip reading. Séguin encouraged lip reading in a classroom
setting with students who had hearing impairments and suggested the use of mirrors for students
to mimic lip movements. During this period, lip reading became an important tool for enhancing
the communication skills of individuals with hearing impairments.

In the 20th century, lip reading gained increasing recognition and became more prevalent
among individuals with hearing impairments. Lip reading became a skill used not only for
language learning but also in areas such as elocution and theater. Technological advancements
contributed to the support of lip reading. For example, video analysis and artificial intelligence
technologies were employed to enhance the tracking and understanding of lip movements. These
technologies have assisted individuals with hearing impairments and others in improving their
lip reading skills and communication abilities. [5]

Today, lip reading is utilized not only by individuals with hearing impairments but also
by individuals with speech disorders or in situations where communication is challenging due
to noisy environments. Additionally, lip reading skills can be beneficial in areas such as empathy
development, language comprehension, and overall improvement of communication skills. Lip
reading continues to hold significance as a tool that strengthens communication between people

and facilitates understanding.

1.1.3. Lip Reading Techniques and Challenges:

Lip reading involves carefully observing lip movements, facial expressions, and body
language to understand speech. There are several fundamental techniques and challenges
associated with lip reading. Firstly, it is important to naturally observe the lips and coordinate
lip movements. Good lighting and close proximity may be necessary to clearly see the lips.
Additionally, focusing attention and practicing diligently are important for accurately tracking
lip movements.

However, lip reading also presents certain challenges. For instance, not everyone's lips

move in the same way, and lip movements can be influenced by different accents, speaking



rates, or individual habits of the speaker. Moreover, accurately reading certain sounds from the
lips can be difficult, as some sounds cannot be clearly articulated by the lips. Furthermore, lip
reading does not provide a complete understanding of speech, and it may not always be possible
to accurately infer specific words or sentences. Therefore, lip reading works most effectively
when used in conjunction with other communication methods.

Lip reading is a communication method that has evolved and developed throughout
history to meet the communication needs of individuals. This skill, which has existed since
ancient times, has been taught and utilized in a more systematic manner in the modern era. Lip
reading is widely used not only by individuals with hearing impairments but also by those with
speech disorders or in situations where communication is challenging due to noisy
environments. Technological advancements have facilitated the support of lip reading, making
it more accessible. Lip reading remains an important tool that enhances communication and

facilitates understanding between people.



2. URAL-ALTAIC LANGUAGES

The Ural-Altaic language family is a grouping of languages based on their linguistic
relatedness. However, due to the lack of consensus and its controversial nature among linguists,
it has not been fully recognized as a linguistic unit.

The term Ural-Altaic language family encompasses two main language families: Uralic
languages and Altaic languages.

Uralic Languages: Uralic languages are a language family spoken both to the east and
west of the Ural Mountains. The members of this language family include the Finno-Ugric
languages (such as Finnish and Estonian), Sami languages (such as Sdmi), Hungarian, and some
lesser-spoken languages. These languages are predominantly spoken in Northern Europe, the
Baltic countries, Russia, Finland, and Hungary. Uralic languages, particularly languages like
Finnish and Hungarian, share some common grammatical features.

Altaic Languages: Altaic languages are a language family spoken in Central and Eastern
Asia. The most well-known members of this language family are the Turkic languages (such as
Turkish, Kazakh, and Uzbek), Mongolian, Tungusic languages (such as Evenki and Manchu),
and Korean. Altaic languages are primarily spoken in Central Asia, Siberia, the Middle East,
and East Asia. The Turkic languages form the most widespread and largest subgroup within this
language family. There are shared grammatical features and lexical roots among the Turkic
languages. [6]

The concept of the Ural-Altaic language family has faced criticism from some linguists.
These criticisms stem from the argument that Uralic and Altaic languages do not constitute a
true language family and that there are insufficient linguistic connections among these
languages. Therefore, the notion of the Ural-Altaic language family remains a contentious topic
within the field of linguistics.

In conclusion, the Ural-Altaic language family is a term that encompasses the Uralic and
Altaic languages, but it has not gained full recognition as a valid linguistic unit. The Uralic and
Altaic languages comprise different languages spoken in various regions, sharing some common
grammatical features. However, there is no consensus on whether this language family is a valid

and accepted linguistic entity. [7]



2.1. The Ural-Altaic Language Family: History and Debates

The Ural-Altaic language family is a term used by researchers in linguistics to classify
languages. This term encompasses two major language families known as Uralic languages and
Altaic languages. The concept of the Ural-Altaic language family implies that these languages
share a common origin and are closely related to each other. However, opinions and debates
regarding the Ural-Altaic language family continue within the field of linguistics.

The fundamental proposition of the Ural-Altaic language family suggests that various
languages such as Finno-Ugric, Sami, Hungarian, Turkish, Mongolian, Tungusic, and Korean
are derived from a common ancestor and are closely related. The existence of shared
grammatical features and lexical roots among these languages is emphasized. This theory

attributes the origin of these languages to the Ural-Altaic language family. [8]

2.1.1. Uralic languages and their features

Uralic languages constitute a language family spoken both to the east and west of the Ural
Mountains. This language family includes Finno-Ugric languages (such as Finnish and
Estonian), Sami languages (such as Sami), Hungarian, and some lesser-spoken languages.
Uralic languages are predominantly spoken in Northern Europe, the Baltic countries, Russia,
Finland, and Hungary.

Among the common features of Uralic languages are similarities in grammatical rules
such as agglutination and vowel harmony. Additionally, there are observed similarities in certain
lexical roots and structural features. However, significant differences also exist among Uralic

languages, and there is no conclusive evidence proving their complete linguistic affinity. [9]

2.1.2. Altaic languages and their features

Altaic languages are a language family spoken in the central and eastern regions of Asia.
The prominent members of this language family include Turkic languages (such as Turkish,
Kazakh, and Uzbek), Mongolian, Tungusic languages (such as Evenki and Manchu), and
Korean. Altaic languages are primarily spoken in Central Asia, Siberia, the Middle East, and
East Asia.

The common features of Altaic languages include the use of agglutination, adherence to

specific vowel and consonant harmonies, and shared lexical roots and grammatical structures.



Turkic languages form the most widespread and largest subgroup within this language family,
exhibiting significant similarities in their grammatical features. However, there are also various

differences among Altaic languages.[10]

2.2. Debates and Criticisms

The concept of the Ural-Altaic language family is considered a contentious topic within
the linguistic community. Some linguists argue that Uralic and Altaic languages do not
constitute a genuine language family and lack sufficient linguistic connections. These criticisms
suggest that the linguistic evidence is inadequate and that the similarities among the languages
may be coincidental or influenced by external factors.

Furthermore, the boundaries of the Ural-Altaic language family are unclear. There are
different perspectives on which languages should be included or excluded from the Ural-Altaic
language family. For instance, the classification of Korean as part of the Altaic languages or as
an independent language family remains a subject of debate.

In conclusion, the Ural-Altaic language family is a term used in linguistics but has not
gained complete acceptance. While claims of linguistic affinity between Uralic and Altaic
languages exist, they are subject to debate, and differing opinions persist within the linguistic
community. Further research and detailed examination of linguistic evidence are necessary to

shed more light on the Ural-Altaic language family.



3. CLASSICAL METHODOLOGY FOR LIP READING

Lip reading entails the process of predicting and comprehending speech sounds through
the analysis of lip movements. Humans possess the ability to decipher speech content by
leveraging visual cues such as the shape of lips, their movements, and the utilization of facial
muscles. This ability plays a significant role in facilitating communication for individuals with
hearing impairments. Classical methodologies for lip reading refer to the traditional approaches
that encompass the fundamental principles and algorithms of lip reading. These methodologies
form the basis of computer-based lip reading systems, which are achieved through the fusion of
disciplines such as computer vision, signal processing, and machine learning. The classical
methodologies encompass a series of steps, including image processing techniques, lip region
detection and tracking, feature extraction, and classification. This paragraph provides a general
overview of the Classical Methodology for Lip Reading, serving as a fundamental reference
point in lip reading research. The steps of classical method as flows;

- Video Recording

- Video Processing

- Lip Movement Detection
- Linguistic Analysis

- Evaluation of Results

10



3.1. Lip Reading By Machine Learining And Artificial Intelligence

This body of research represents a wide research domain encompassing linguistic analysis,
video processing, neural networks, and machine learning technigques, showcasing how machine
learning and artificial intelligence methods are utilized in lipreading to understand and classify
lip movements.

Lip reading has been revolutionized through the integration of advanced technologies such
as machine learning and artificial intelligence. The limitations and complexities of traditional
lip reading methodologies have started to be overcome by the involvement of machine learning
and artificial intelligence techniques. Lip reading now represents a more powerful approach that
combines deep learning methods in areas such as image processing, pattern recognition, and
language models. These next-generation lip reading systems are supported by artificial neural
networks fueled by large datasets, encompassing richer linguistic and acoustic information.
Machine learning algorithms are capable of automating lip reading processes, including the
analysis of lip movements and the prediction of words or sentences. Artificial intelligence
techniques aim to enhance the accuracy of lip reading, making it a more effective means of
communication. This paragraph presents the evolution of Lip Reading by Machine Learning
and Avrtificial Intelligence and highlights key emphases in contemporary lip reading research.

Petridis et al. [11] proposes a method for classifying vocal outbursts by analyzing lip
movements using audio and visual data. The audio and visual information are processed using
machine learning algorithms and effectively utilized for classifying vocal outbursts in
spontaneous human interaction.

Potamianos et al. [12] examines how lip reading can be achieved for automatic speech
recognition using visual information processing methods. The image data representing lip
movements is combined with feature vectors used in speech recognition systems to improve
recognition performance.

Kiblbeck et al. [13] investigates how face recognition algorithms can be improved using
lip reading. The lip region of facial images is represented using global or component-based
approaches to enhance recognition accuracy.

Gurban et al. [14] explores how lip reading can be utilized for audio-visual speech
recognition using continuous hidden Markov models (HMM). HMM is employed to integrate

auditory and visual data to improve speech recognition performance.
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Gnecco et al. [15] investigates the use of particle filters for visual speech recognition based
on lip reading. Particle filters are utilized to track lip movements, update the speech production
model, and classify speech content.

Lee et al. [16] examines how visual speech recognition can be achieved by utilizing lip
information extracted using the active appearance model. The active appearance model is a
method used to track and analyze lip contours and movements.

Vargaetal. [17] investigates the utilization of hidden Markov models (HMM) for viseme
classification in visual speech recognition. HMM is used to recognize and classify visemes
representing lip movements, aiming to improve visual speech recognition accuracy.

Tariq et al. [18] explores the utilization of hidden Markov models for audio-visual speech
recognition based on lip reading. Audio and visual data are processed using HMM to enhance
speech recognition accuracy.

Alietal. [19] proposes a method for viseme classification using hidden Markov models.
Visemes represent the categorization of lip movements and are utilized in the process of speech
recognition.

Hasegawa-Johnson et al. [20] investigates how lip reading can affect speaker adaptation
for audio-visual speech recognition. It explores how images containing lip movements from
different speakers can be utilized in the adaptation process of a speech recognition system.

Garg et al. [21] proposed a novel approach named Concatenated Frame Images in their
study. This method involved merging multiple image frames into a single large frame. They
employed a 2D Convolutional Neural Network with the VGG architecture as the frontend of
their model. By incorporating temporal information into spatial information, the researchers
transformed each data point's temporal characteristics. This transformed representation was then
utilized as input for an LSTM network to perform classification tasks. The experiments
conducted by the researchers utilized videos from the MIRACL-VC1 dataset. Interestingly, they
discovered that optimal performance was achieved by freezing the parameters of the VGG
network and solely training the LSTM.

3.2. Visual Speech Recognition

Visual Speech Recognition (VSR), in Fig-1, is a research field that aims to understand

the content of speech using visual data. The primary objective in this field is to recognize spoken
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words by analyzing the movements of a speaker's mouth. VSR has various applications, such as
understanding speech in noisy environments, supporting non-verbal communication, and

enhancing speech recognition performance.

.ﬁ.ﬁ.d .d-#_ "How are you?”

“Thank you"

Figure 3.1. VSR example [22]

VSR studies typically involve two main components: image processing and speech
recognition. In the image processing stage, features are extracted from video frames to detect
the movements of the speaker's mouth. These features represent the speaker's lip movements,
mouth shape, and other relevant information. Subsequently, in the speech recognition stage,
deep learning or other machine learning methods are applied using these features to recognize
the spoken words.

Deep learning methods commonly used in VSR include, as in Fig-2, Convolutional Neural
Networks (CNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and
Transformer models. These models can be utilized in both the image processing stage and the
speech recognition stage. Particularly, CNN-based models are an effective choice for processing
video frames to represent lip movements. RNN and LSTM-based models enable the
consideration of time-dependent features.
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Figure 3.2. VSR in Deep learning [23]

VSR research is often conducted on large datasets. These datasets consist of videos where
different speakers speak in various languages. The datasets are enriched with diversities such as
speech recorded under different conditions, from different angles, and in varying lighting
conditions. This diversity enhances the model's generalization capabilities and enables better
adaptation to real-world conditions.

Visual Speech Recognition is an important research area in the field of language and
speech processing. With the use of deep learning techniques and large datasets, the performance
of VSR models is significantly improved and made applicable in real-world scenarios. Research
in this field offers intriguing applications and advancements in areas such as human-machine
interaction, understanding speech in noisy environments, and non-verbal communication

Visual Speech Recognition (VSR) is a research field that utilizes visual data to understand
the content of speech. The fundamental objective of VSR is to recognize spoken words by
analyzing the movements of a speaker's mouth. This requires extracting lip movements, mouth
shape, and other relevant information from video images and training a model to understand the

speech.
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VSR plays a crucial role in the field of language and speech processing. In situations
where audio is unavailable or insufficient, such as in non-verbal communication scenarios, VSR
systems provide an alternative by analyzing lip movements to extract and comprehend the
speech content. This encompasses various application areas, including speech understanding in
noisy environments, communication aids for individuals with hearing impairments, non-verbal
text transcription, and more.

In VSR, deep learning methods, particularly models such as Convolutional Neural
Networks (CNN) and Recurrent Neural Networks (RNN), are widely employed. CNN-based
models are effective in analyzing video frames to represent lip movements during the image
processing stage. RNN-based models assist in understanding speech content by considering
time-dependent features.

The datasets used in VSR research are typically large and diverse. These datasets comprise
videos where different speakers speak in various languages and are recorded under various
conditions. This diversity enhances the model's generalization capabilities and enables better
adaptation to real-world conditions. Additionally, the datasets are utilized for evaluating
accuracy and performance during the model training process.

In conclusion, Visual Speech Recognition is a research field that leverages visual data to
comprehend the content of speech. VSR models are developed using deep learning methods and
large datasets, making them applicable in various application domains. It is an area of significant
interest in the field of language and speech processing, holding potential for further

advancements and applications in the future.

3.3. Lip Reading By Deep Learning

Deep learning-based lip reading models are typically based on deep neural network
architectures such as convolutional neural networks (CNNSs) or recurrent neural networks
(RNNs). Here are some key points that provide more information about lip reading with deep
learning:

Data Collection: Deep learning models require a large amount of data for lip reading.
Therefore, large-scale lip reading datasets are typically collected. These datasets include videos

that contain various lip movements from different speakers.
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Data Preprocessing: Deep learning models require preprocessing steps to understand and
process input data. For lip reading, the lip regions in videos are extracted, resized, and
normalized. In some methods, optical flow or features based on optical flow, representing lip
movements, can be used.

Lip reading, also known as speechreading, is a fascinating area of research that aims to
understand and interpret spoken language by analyzing the movements of the lips and other
facial cues. While speech is primarily an auditory process, lip reading plays a crucial role in
enhancing communication, especially in situations where audio information is compromised or
unavailable, such as in noisy environments, for individuals with hearing impairments, or in
multilingual settings. Lip reading is not limited to a specific language but can be applied to
various languages and speech patterns across different cultures. Researchers and scientists have
been studying lip reading in different languages to explore the nuances and variations in lip
movements, phonetic patterns, and visual cues specific to each language. By developing robust
lip reading systems and leveraging advancements in computer vision and deep learning
techniques, lip reading in languages holds promise for improving speech recognition, aiding
language learning, facilitating communication accessibility, and advancing human-machine
interaction. This field of study continues to evolve, incorporating diverse languages and
addressing the challenges posed by variations in pronunciation, dialects, and cultural
differences.

Deep learning is an artificial intelligence field that plays a significant role in
comprehending, recognizing, and processing the English language, which is spoken and written
by millions of people worldwide. As a language with a vast amount of data, English
encompasses various linguistic features, including grammatical structures, vocabulary,
meaning, and expression. Deep learning aims to leverage this extensive corpus of English data
by employing complex neural networks and deep learning models to learn the fundamental
structures and relationships within the language. Consequently, it achieves high performance in
tasks such as word prediction, sentence comprehension, text classification, and speech
recognition in the English language. Deep learning serves as a powerful tool for understanding
the intricacies of the English language and providing effective solutions in language processing

applications
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Chung et al .[23], focuses on lip reading in unconstrained real-world scenarios. The
researchers introduce a large-scale lip reading dataset and propose a deep learning approach
using spatiotemporal convolutional neural networks (CNNs) to recognize words from lip
movements in video sequences.

LipNet [18], is an end-to-end lipreading model that aims to recognize complete sentences
from raw video inputs. It employs a combination of spatiotemporal convolutions and recurrent
neural networks (RNNSs) to encode and decode lip movements.

Stafylakis et al. [24], proposes a hybrid model that combines residual networks (ResNets)
with long short-term memory (LSTM) networks for lipreading. The ResNet-LSTM model
effectively captures both spatial and temporal information from lip movements, improving
lipreading performance.

Afouras et al. [21], compares different deep learning architectures for lip reading,
including 3D convolutional neural networks (CNNs), LSTM networks, and their combinations.
The researchers evaluate the models on a large-scale lip reading dataset and present an online
application for real-time lipreading.

Gergen et al. [26], explores the use of multi-task learning for deep lip reading. The authors
propose a shared feature learning framework that simultaneously learns to recognize words,
phonemes, and visemes from lip movements. The multi-task learning approach improves the
generalization and robustness of the lipreading system.

These studies investigate the use of deep learning methods and different model
architectures for lip reading. Each study utilizes different datasets, model structures, and

evaluation metrics to assess lipreading performance.

3.3.1. Lip reading in Turkish

The Turkish language is a linguistically rich language characterized by the utilization of
various phonemes. Consequently, lip reading studies hold significant importance when
considering the Turkish language. Lip reading is a methodology employed to comprehend and
recognize speech by utilizing visual information extracted from lip movements. For Turkish-
speaking individuals, lip reading studies can offer substantial benefits in terms of speech
comprehension and language learning. Specifically, individuals with hearing impairments and

language learners can greatly benefit from lip reading techniques, as they facilitate
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communication in Turkish-speaking environments. Research endeavors in lip reading for the
Turkish language aim to enhance the accuracy and effectiveness of lip reading through the
modeling of lip movements and the application of deep learning algorithms. Such studies strive
to improve communication effectiveness among Turkish speakers, advance Turkish speech
recognition systems, and support the language acquisition process. Consequently, the impact of
lip reading studies on the Turkish language constitutes a significant component within the realm
of language and speech research.

Kaya et al. [27] utilizes a deep convolutional neural network (CNN) for Turkish lip
reading. The model has the ability to recognize Turkish speech by analyzing lip movements.

Demirel et al. [28], a deep neural network (DNN) is used for Turkish lip reading. The
model combines lip movements and audio to recognize Turkish speech content.

Kilig et al. [29], employs a convolutional neural network (CNN) for Turkish word-level
lip reading. The CNN is a widely used deep learning model for learning and recognizing visual
data. The study aims to develop a model that can analyze lip movements to recognize Turkish
words. It uses a large dataset with labeled images representing each lip movement for training.

Bilgin et al. [30] utilizes a convolutional neural network (CNN) for Turkish sentence-level
lip reading. The goal is to accurately recognize and understand Turkish sentences by analyzing
lip movements. The study collects videos from speakers to create a dataset containing lip
movements and speech content. The CNN model goes through a learning process to analyze lip
movements in the images and classify Turkish sentences correctly. The study evaluates the
performance of the CNN model in Turkish sentence-level lip reading using different metrics
such as accuracy, precision, and recall.

Gokturk et al. [31] employs deep learning models that leverage lip movements for Turkish
phoneme recognition. The aim is to analyze Turkish phonetics and classify them correctly. The
study creates a dataset that includes lip movements corresponding to Turkish sounds. Deep
learning models analyze these lip movements and associate them with Turkish phonemes.
During the training phase, the models learn patterns in lip movements and use these patterns to
recognize Turkish phonemes. The results are used to evaluate the performance of the model in
Turkish phoneme recognition.

Erol et al. [32], utilizes deep learning methods that utilize lip movements for Turkish
speaker verification. The goal is to perform verification by analyzing lip movements of Turkish
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speakers. The study creates a dataset using videos obtained from Turkish speakers. Deep
learning models analyze the lip movements in these videos and learn a representation of each
speaker's lip movements. The results demonstrate the effectiveness of using lip movements for
Turkish speaker verification.

These works explore the application of deep learning models, particularly convolutional
neural networks (CNNs) and deep neural networks (DNNSs), for various tasks such as Turkish
lip reading, speech recognition, phoneme recognition, and speaker verification. The studies aim

to improve the accuracy and performance of these systems in the Turkish language context.

Table 3.1. Comparision of prominent Turkish lip reading studies

Avrticle Authors  Topic Methods Results Dataset Used
Kaya, E., Ozer, H., & Ercan, o
G. (2019). Turkish Visual E.Kaya, .. Turkish Visual
o 3 ) Visual Speech Speech
Speech Recognition Using H. Ozer, v CNN %86
. Recognition Dataset by
Deep Convolutional Neural G. Ercan |
etters
Networks
Demirel, B., & Ercan, G. Turkish
(2018). Turkish Audio-  B. Audio-Visual Audio-Visual
Visual Speech Recognition Demirel,  Speech CNN %81
) . Speech
Using Deep Neural G. Ercan  Recognition D
ataset
Networks
Kilig, R., & Sahin, E. (2020).
Turkish Word Level Word Level Turkish
Lipreading Using 1;.1?119, E. Lipreading (L:SN'II'\II\(/% %71. Lipreading
Convolutional Neural ahin with DNNs Word Dataset

Networks
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4. LIP READING OPEN SOURCE DATA SETS

Lip reading, also known as visual speech recognition, has gained significant attention in
recent years due to its potential applications in various domains, such as human-computer
interaction, assistive technologies, and security systems. To develop accurate and robust lip
reading systems, researchers heavily rely on the availability of annotated data sets specifically
designed for lip reading tasks. Lip reading data sets consist of video or image sequences of
speakers articulating words or sentences, accompanied by corresponding transcriptions or
labels. These data sets play a critical role in training and evaluating lip reading models, enabling
researchers to extract meaningful visual features, model temporal dynamics, and develop
efficient recognition algorithms. Over the years, several lip reading data sets have been created,
catering to different languages, speech styles, and recording conditions. These data sets not only
provide a standardized benchmark for evaluating lip reading techniques but also facilitate
comparative studies, algorithmic advancements, and the development of cross-lingual or
domain-specific lip reading systems. However, challenges persist in collecting and annotating
large-scale, diverse lip reading data sets, including the need for consistent labeling standards,
privacy concerns, and the influence of factors such as lighting conditions, camera angles, and
speaker variability. Nonetheless, the availability of high-quality lip reading data sets remains
essential for advancing the field and unlocking the full potential of lip reading technology.

These data sets serve as valuable resources for the development, training, and evaluation
of lipreading algorithms. Each data set encompasses different speakers, languages, and speech

conditions, providing diversity in lipreading research, see in table-3. [41-42]

4.1. GRID Corpus

Source: University of Oxford

URL.: spandh.dcs.shef.ac.uk/gridcorpus/

Description: GRID Corpus is a comprehensive data set used for English lipreading. It
includes lip movements of speakers from different genders and age ranges. GRID Corpus is a
multimodal data set that contains both audio recordings and lip movements. This allows for the
integration of both auditory and visual information to enhance lipreading performance.

Data Set Details:
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* Total Number of Speakers: 34

* Gender Distribution: Includes both male and female speakers.

» Age Distribution: Consists of speakers from various age ranges.

» Language: English

* Data Type: Video recordings and synchronized audio recordings

* Speech Topics: The data set includes various sentence and word combinations covering

different speech topics.

» Sample Size: Contains over 33,000 lipreading examples approximately.

* Diversity: The data set includes speakers from different races and ethnic backgrounds.

GRID Corpus is widely used for the development and evaluation of lipreading algorithms.
The inclusion of both acoustic and visual information helps improve lipreading performance.

The data set is accessible for researchers working in the field of lipreading.

4.2. LRW (Lip Reading in the Wild) Corpus
* Source: University of Oxford
* URL: robots.ox.ac.uk/~vgg/data/lip_reading/lrw1.html
* Description: LRW Corpus is a data set used for lipreading under real-world conditions.
It includes lip movements of speakers from various languages and accents. It is a

multimodal data set that combines both audio and lip movement information.

4.3. LRW-1000 Corpus
* Source: University of Oxford
« URL: robots.ox.ac.uk/~vgg/data/lip_reading/lrw1.html
* Description: LRW-1000 Corpus is a subset of the LRW Corpus and contains 1000
different words. The data set aims to evaluate the performance of lipreading algorithms

by focusing on a more limited vocabulary.

4.4. MIRACL-VC1 Corpus
* Source: Multimodal Interaction in Remote Collaborative Learning (MIRACL) Project

* URL: zenodo.org/record/4621556#.Yw6sm5MzblV
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* Description: MIRACL-VC1 Corpus is a lipreading data set that includes remote learning

sessions conducted during classes. It includes lip movements of different speakers,

including teachers and students.

4.5. LRS3-TED Corpus

* Source: University of Oxford

* URL: robots.ox.ac.uk/~vgg/data/lip reading/lrs3.html

* Description: LRS3-TED Corpus is a lipreading data set that contains TED talks. It

includes video recordings and synchronized audio recordings of different speakers' lip

movements. This enables the evaluation of lipreading performance on real-world speech

data.

Table 4.1. Comparison of the open source datasets

LRW-1000 MIRACL- LRS3-TED
Dataset GRID Corpus LRW Corpus Corpus VC1 Corpus Corpus
Source L_Jnlted Various Various TED Talks
Kingdom sources sources
1,000 1,000
Content 34 speakers, 500 speakers, speakers, 100 speakers, speakers, TED
1,000 words 1,000 words 1,000 words
1,000 words Talks
: : . Multiple
Language English English English languages
Data Type Stud_lo Yo_uTube Yo_uTube | TED Talks
recordings videos videos recordings
Access Paid _(Requwes Free Free Free
a license)
Additional Facg . Fac_e .
recognition recognition - -
Features X
data, audio data
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5. LONG SHORT-TERM MEMORY (LSTM)

Long Short-Term Memory (LSTM), in figure-4, is a type of recurrent neural network
(RNN) model used particularly for processing sequential data, such as time series data. LSTM
stands out with its ability to learn contextual and long-term dependencies in sequential data.

LSTM is designed to address the "long-term dependency problem™ encountered by
traditional RNNSs. Traditional RNNs can face issues with gradient vanishing or exploding over
time when processing sequential data. These problems manifest as the backpropagated gradient

in a long sequence diminishing or exploding.
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Figure 5.1. LSTM structure [42]

LSTM addresses long-term dependencies by using a specialized structure called "cells."
Each cell processes input data, information from the previous cell, and utilizes "gates" as control
mechanisms. These gates determine which information to keep, forget, or update in the memory.

The fundamental building blocks of an LSTM cell are three gates: the forget gate, the
input gate, and the output gate. The forget gate determines which information the previous cell
state should forget. The input gate controls whether new information should be added to the
cell. The output gate determines which information from the updated cell state should be
transmitted.

Through these gates, LSTM can learn long-term dependencies. The mechanism of

forgetting, retaining, and updating information is learned automatically based on the data during
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the training process. This enables LSTM to handle gradient issues more effectively while
processing sequential data and model longer-term dependencies.

In the LSTM (Long Short-Term Memory) model, each LSTM cell consists of multiple
layers. The basic building blocks of LSTM layers are as follows:

- Cell State

- Forget Gate

- Input Gate

- Output Gate

LSTM networks are a type of RNN architecture specifically designed to model long-term
dependencies in sequential data. They have proven to be particularly effective in capturing
temporal dynamics and recognizing patterns in time series data. Lip reading by LSTM involves
training an LSTM network on visual input, such as video sequences of lip movements, to
recognize and interpret spoken words or sentences. By leveraging the sequential nature of lip
movements, LSTM networks can effectively capture and utilize contextual information for lip
reading tasks.

One of the key advantages of using LSTM networks for lip reading is their ability to
handle variable-length input sequences. Unlike traditional methods that rely on fixed-length
representations, LSTM networks can process and model temporal information in an adaptive
manner, making them well-suited for lip reading tasks where the duration of spoken words or
sentences can vary. Moreover, the inherent memory mechanisms in LSTM networks enable
them to capture both short-term and long-term dependencies in lip movements, allowing for
improved recognition accuracy.

Research in lip reading by LSTM has focused on various aspects, including feature
extraction, model architecture, and training strategies. Techniques such as pre-processing lip
images, incorporating attention mechanisms, and utilizing multi-modal data have been explored
to further enhance the performance of LSTM-based lip reading systems. Furthermore, efforts
are being made to create large-scale lip reading datasets that encompass diverse speakers,
languages, and environmental conditions to facilitate more comprehensive evaluation and
comparison of different approaches.

In conclusion, lip reading by LSTM networks presents a promising approach for
improving the accuracy and robustness of lip reading systems. By exploiting the temporal
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dynamics of lip movements, LSTM networks can effectively model and recognize spoken
language, contributing to advancements in communication accessibility, human-computer
interaction, and assistive technologies.

Chen et al. [43], a language-based LSTM model called LipNet is utilized. LipNet is
designed for text-level lip reading, aiming to extract lip movements from video inputs and
convert them into textual expressions. The end-to-end nature of the model implies that the entire
process from input to output is performed within a single model.

Chung et al. [44], demonstrates the successful implementation of lip reading in real-world
environments. Using a language-based LSTM model, training is conducted on a large dataset
and the model is optimized to accurately predict lip movements. This work highlights the
potential of lip reading in real-world applications.

Gan et al [45], focuses on predicting human movements from lip movements using an
LSTM-based model. Taking lip movements as input, the model operates as a sequential model
to predict human movements. This work showcases the association between lip reading and
human dynamics and its potential application in various domains.

Chung et al. [23], sentence-level lip reading accuracy in real-world environments. A
language-based LSTM model is employed to develop a system that predicts sentences in
different languages from lip movements. This study demonstrates the applicability of lip reading
in natural language processing and speech recognition domains.

Ngiam et al. [46] examines multimodal deep learning models. In addition to language-
based models, it showcases the utilization of other modalities representing lip movements
(audio, visual, etc.). The work emphasizes the importance of combining different data sources
to create a more robust and comprehensive lip reading system.

These examples illustrate various aspects and applications of deep learning models in the
field of lip reading. Each study focuses on specific objectives such as improving lip reading
performance, integrating it with natural language processing, or combining different data
modalities.

Chung et al. [47], investigates the potential of lip reading in the field of speaker
recognition using deep learning models. Using the VoxCeleb2 dataset, the study demonstrates
that lip movements can enhance speaker recognition performance when incorporated into a

language-based LSTM model.
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Assael et al. [24], performs text-level lip reading using a language-based LSTM model
called LipNet. LipNet predicts lip movements from video inputs and converts these predictions
into text. The study showcases the applicability of lip reading in natural language processing
applications.

Petridis et al. [48], aims to perform visual speech recognition using lip movements. By
employing a language-based LSTM model, the study demonstrates that lip movements can
enhance the recognition of spoken words. The work showcases the integration potential of lip
reading in audio-based speech recognition systems.

Afouras et al. [49], aims to develop a deep learning-based audio-visual speech recognition
system by combining audio and lip movements. Using a language-based LSTM model, the study
processes audio and visual data together to recognize the words spoken by the speaker. The
work demonstrates the effective utilization of lip reading in audio-based speech recognition.

Afouras et al. [50], develops a deep learning-based audio-visual speech recognition model
using multiple data streams. By incorporating multiple streams, including audio, lip movements,
and linguistic information, the study aims to recognize spoken words. The work highlights the
potential of lip reading to improve the performance of audio-based speech recognition.

These examples showcase the various aspects and applications of deep learning models in
the field of lip reading. Each study focuses on specific objectives such as enhancing speaker
recognition, performing text-level lip reading, improving visual speech recognition, or utilizing
multiple data streams for audio-visual speech recognition.

Long Short-Term Memory (LSTM), introduced by Hochreiter and Schmidhuber in 1997,
is a type of recurrent neural network (RNN) that has gained significant popularity in the field of
sequence modeling and time series analysis. LSTM addresses the limitations of traditional
RNNs, such as the vanishing gradient problem, by incorporating a more complex memory
mechanism. It is specifically designed to capture long-term dependencies and maintain memory
over extended sequences, making it suitable for tasks that require modeling and predicting
sequential data.

The key concept behind LSTM is the introduction of memory cells and gating
mechanisms, which enable the network to selectively remember or forget information at
different time steps. The memory cells act as storage units, retaining information over multiple

time steps, while the gating mechanisms regulate the flow of information within the network.
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The three main gates in an LSTM unit are the input gate, forget gate, and output gate. The input
gate determines which new information should be stored in the memory cells, the forget gate
decides which information to discard from the memory cells, and the output gate controls the
flow of information from the memory cells to the next layer or output.

The design of LSTM allows it to effectively capture both short-term and long-term
dependencies in sequential data. By maintaining a separate memory state and utilizing gating
mechanisms, LSTM can learn to selectively update and access information based on its
relevance and importance. This makes LSTM particularly suitable for tasks such as speech
recognition, language modeling, machine translation, and sentiment analysis, where
understanding the context and temporal dependencies is crucial.

In conclusion, LSTM has emerged as a powerful tool in the field of deep learning for
sequential data processing. Its ability to capture long-term dependencies and handle vanishing
gradients makes it well-suited for a wide range of applications. In the following section, we will
present the pseudocode of LSTM, highlighting its key components and operations.

Pseudocode of LSTM;

# Load the dataset

train_data, train_labels = load_train_data()

test_data, test_labels = load_test_data()

# Preprocess the data

train_data = preprocess(train_data)

test_data = preprocess(test_data)

# Create the LSTM model

model = create_Istm_model()

# Train the model

model.fit(train_data, train_labels, epochs=10, batch_size=32)

# Evaluate the model

accuracy = model.evaluate(test_data, test_labels)

# Print the results

print("Accuracy: ", accuracy)
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6. CONVOLUTIONAL NEURAL NETWORK (CNN)

Convolutional Neural Network (CNN) is a widely used artificial neural network model in
the field of deep learning. It provides effective results in visual data analysis, image
classification, object detection, and image segmentation tasks, particularly in the field of visual
information processing. The success of CNNs stems from deep learning principles that enable

automatic learning of data-specific features and specially designed layers.
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Figure 6.1. Traditional structure of CNN [51]

CNN consists of basic components in figure-5, including an input layer, one or more
convolutional layers, activation functions, pooling layers, fully connected layers, and an output
layer. CNNs are typically trained on large datasets. The training process involves updating
weights to minimize the error (loss) function between input data and target outputs. The
backpropagation algorithm is used to calculate the error gradient, and gradient-based
optimization methods (e.g., stochastic gradient descent) are applied to update the weights.
CNNs have made significant advancements in various fields. In image classification, they have
achieved results surpassing human performance in competitions like ImageNet. CNNs are also
successfully used in object detection, facial recognition, and research areas. They have potential

applications in medicine, automotive, security, robotics, and many other fields.
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CNNs have achieved significant success in the field of deep learning and have been
particularly effective in visual data analysis. They are known for their ability to automatically
learn data-specific features, train on large datasets, and generally perform well. However,
factors such as data quality, network architecture, and parameter tuning need to be carefully
considered.

Input layer where images or other types of visual data are taken as input. Depending on
the size and format of the input data, appropriate resizing and preprocessing steps are performed.

The Input Layer is the first layer of a CNN model and is typically used when processing
visual data, such as images. This layer is used to appropriately resize and preprocess the input
data based on the size and format of the dataset.

Convolutional layers are the layers where filters are applied to the data to create feature
maps. Each filter is used to detect a specific feature on the data. The convolution operation
involves sliding the filters over the data with steps determined by parameters like stride and
padding.

Convolutional Layers are fundamental components in CNN models and are responsible
for creating feature maps by applying filters on visual data. Each filter is used to detect a specific
feature in the data. The convolution operation is performed by sliding the filters over the data
with steps determined by parameters such as stride and padding.

Activation layers apply non-linear transformations based on the outputs from the
convolutional layers. This allows the network to learn more complex relationships and features.
Common activation functions used are sigmoid, ReLU (Rectified Linear Unit), and tanh.

Activation Layers are used in CNN models following the Convolutional Layers. These
layers process the outputs of the convolutional filters by adding non-linearity and applying
activation functions. Activation functions scale the filter outputs and introduce non-linearity,
allowing the model to learn more complex relationships.

Pooling layers are used to reduce the size of feature maps and make the features invariant
to changes like translation, scale, and rotation. Max pooling and average pooling are commonly
used pooling operations.

Fully connected layers are used to transform feature vectors for classification, prediction,
or another output format. These layers connect all the features through connections and are

typically used in the final layers.
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Fully Connected Layers are the final layers in CNN models, responsible for generating
outputs such as classification or regression. These layers classify data or make predictions based
on the learned features of the CNN.

The output layer produces the final outputs of the CNN model. In classification problems,
a softmax activation function is used to obtain a probability distribution, while in regression
problems, direct outputs can be produced.

In recent years, the emergence of deep learning, particularly convolutional neural
networks (CNNs), has revolutionized the field of lip reading. CNNs have shown remarkable
success in various computer vision tasks by automatically learning hierarchical representations
from raw input data. This ability to learn and extract discriminative features directly from
images makes CNNs a promising approach for lip reading.

The key advantage of CNNs lies in their ability to capture spatial dependencies in visual
data. By utilizing convolutional layers, CNNs can effectively extract local patterns and features
from lip images, while the pooling layers enable them to capture higher-level representations
with spatial invariance. This hierarchical feature extraction enables CNNs to effectively capture
the dynamics and variations in lip movements, which are crucial for accurate lip reading.

Moreover, the availability of large-scale lip reading datasets, such as LRW and LRS3, has
further fueled the progress in lip reading research. These datasets provide a rich source of labeled
lip sequences, allowing researchers to train and evaluate CNN models on large and diverse
datasets.

We propose a lip reading system based on convolutional neural networks. We aim to
leverage the power of CNNSs in extracting spatio-temporal features from lip images and employ
deep learning techniques to achieve state-of-the-art performance in lip reading tasks. We will
present the architecture of our CNN model, discuss the training process, and evaluate its
performance on benchmark datasets.

In conclusion, the application of convolutional neural networks to lip reading has shown
great promise in advancing the field. By leveraging the power of deep learning and large-scale
datasets, CNNs have the potential to enhance the accuracy and robustness of lip reading systems,
paving the way for their practical deployment in real-world scenarios.

The pseudo code provides a general roadmap for deep learning-based lip reading. For a
real implementation, the pseudo code may need to be made more specific, and additional deep
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learning components (such as pooling layers, dropout, etc.) may need to be included as required.
Additionally, the details of the code can vary depending on the programming language used and
the deep learning library employed. Therefore, the provided pseudo code serves to provide a
general understanding.
Input: Lip image
Output: Recognized word or phoneme
1. Data Preprocessing:
- Take the lip image
- Normalize and resize the image
- Extract relevant image features
2. Define CNN Model:
- Define the CNN model
- Create the input layer (based on image size)
- Specify convolutional layers and activation functions
- Specify fully connected layers and output layer
3. Training:
- Prepare training dataset and labels
- Train the CNN model
- Update the model using the training dataset
- Define the loss function and update the network using backpropagation
4. Testing and Prediction:
- Prepare the test dataset
- Make predictions using the CNN model
- Evaluate the predictions (accuracy, precision, etc.)
5. Performance Evaluation:
- Evaluate the performance of the model
- Calculate metrics such as accuracy, precision, recall, etc.
- Analyze the results and gather feedback for improvement steps
6. Prediction with New Images:
- Use the trained model to make predictions on new lip images

- Report or utilize the prediction results
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The above roadmap illustrates the process of deep learning-based lip reading. Starting
from the initial point, the data preprocessing step is performed. Subsequently, a CNN model is
defined and trained using the training data. Once the training process is completed, the system
proceeds to the testing and prediction phase, where the performance of the model is evaluated.
Following the performance evaluation, predictions can be made using new input lip images. The
flow chart demonstrates the flow between the lip image input and the recognized word/phoneme
output.

This chart provides a simple and comprehensible depiction of the deep learning-based lip
reading process. Of course, for a real-world application, a more detailed flow chart could be
created, incorporating additional steps or sub-processes to make it more specific.
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7. DILATED CNN

Dilated Convolutional Neural Network (Dilated CNN), also known as atrous convolution,
is a variant of the traditional convolutional neural network (CNN) architecture that enables
increased receptive field without increasing the number of parameters or sacrificing spatial
resolution. Dilated CNN has gained significant attention in computer vision tasks, such as image
segmentation, object detection, and semantic understanding, due to its ability to capture multi-
scale contextual information.

The key idea behind dilated CNN is the introduction of dilation or "hole" in the
convolutional filters. Unlike standard convolutional layers, where the filters have a fixed

receptive field, dilated convolutions incorporate gaps or "holes" between the filter elements.
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Figure 7.1. Structure of dilated CNN

Dilated CNNs, in figure-6, offer several advantages over traditional CNN architectures.
First, they allow for larger receptive fields without increasing the number of parameters, making
them more computationally efficient. Second, dilated convolutions preserve the spatial

resolution of the feature maps, which is crucial for tasks requiring precise localization or fine-
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grained details. Third, dilated CNNs enable multi-scale feature extraction, as they capture
information at different levels of granularity due to the varying dilation rates.

The dilation rate determines the spacing between the filter elements and controls the
receptive field size. By adjusting the dilation rate, researchers can control the amount of
contextual information incorporated into the network. Smaller dilation rates focus on local
context, capturing fine details, while larger dilation rates encompass larger context, capturing
global structures and relationships.

Dilated CNNs have demonstrated impressive performance in various computer vision
tasks. In image segmentation, dilated CNNs can effectively capture both local object boundaries
and global contextual information, leading to more accurate and precise segmentation results.
In object detection, dilated CNNs enhance the ability to recognize objects of different scales and
aspect ratios, improving detection performance. In semantic understanding, dilated CNNs
enable better contextual reasoning and modeling, leading to improved understanding and

interpretation of complex scenes.
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8. THE PRESENTED STUDY

The present study introduces an automated visual speech recognition model based on deep
learning, utilizing exclusively visual data. By employing this approach, the computational cost
and resource requirements are reduced compared to studies involving multi-modal data.
Moreover, this study stands as the pioneering attempt to tackle the lip reading problem within
the Ural-Altaic languages, employing a deep learning algorithm on a newly curated dataset. In
this thesis in order to recoginize lip reading, we follow steps below;

- Data
o Data collection and agumentation
o Data processing
- Optimization
o CNN based Lip Reading
= CNN
» Dilated CNN
o LSTM based Lip Reading
o BGRU Based Lip Reading
- Comparision of Concatenated Frame and Discerete Frame in Lip Reading

- Anaysis of results.

8.1. The Improved Dataset

Turkish, when classified based on its linguistic structure, belongs to the family of
agglutinative languages. As such, suffixes play a crucial role in determining the meaning of a
sentence according to Turkish grammar rules. Additionally, in Turkish, a phenomenon known
as liaison occurs when a word starting with a vowel follows a word ending with a consonant.
Liaison refers to the effect produced when these two letters are connected and read together, and
it significantly impacts the meaning of the sentence. For example, the phrases "top ald1" (bought
a ball) and "topald1" (was lame) have distinct meanings due to liaisons in the letters "p" and "a,"
despite having the same letter order.

In the existing literature, several datasets have been created using various methods for lip

reading studies. However, it has been observed that no specific lip reading dataset for the
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Turkish language has been developed, except for the dataset presented by Atila and Sabaz [53].
These authors created two new datasets using image processing techniques, one consisting of
words and the other consisting of sentences. The sentence dataset includes classes such as
"Which department did you get?" and "May | help you?", while the word dataset includes classes
like "Programmer" and "Video". One notable distinction between their dataset and ours is that
all the words and sentences were created under the same environmental and lighting conditions.
In contrast, our dataset was obtained from a diverse range of YouTube videos, resulting in
hundreds of different speaking profiles.

In another relevant study conducted by Matthews et al. [54], they developed a customized
audio-visual (AV) database called AVLetter, which consisted of isolated letters. The dataset
encompassed three repetitions of all the letters in the alphabet, spoken by ten different speakers
(including five males, two of whom had mustaches, and five females), resulting in a total of 780
utterances. The researchers employed various techniques, including internal and external
contour methods, along with a novel bottom-up approach that involved extracting features
directly from pixel intensity using nonlinear scale space analysis. Furthermore, they trained a
Hidden Markov Model (HMM) and obtained an accuracy score of 44.6%.

In another work [55], two new datasets were introduced and publicly released: LRS2-BBC
[56], which includes thousands of natural phrases from British television, and LRS3-TED [57],
containing hundreds of excerpts from over 400 hours of TED and TEDx videos [58]. These
datasets encompass unrestricted natural language sentences and videos featuring different
individuals, unlike synthetic datasets generated with controlled background, lighting, and angle
conditions. Researchers have demonstrated that combining visual speech recognition (VSR) and
auditory speech recognition methods, particularly in the presence of vocal noise, leads to
significant improvements in lip reading studies.

Yang et al. [59] introduced a large-scale benchmark dataset called LRW-1000,
specifically designed for lip reading research. This dataset consisted of 1000 classes,
encompassing 718,018 samples from over 2000 speakers. Each class represented syllables of
Mandarin words, composed of one or more Chinese characters. The LRW-1000 dataset was
carefully curated to emulate real-world conditions, exhibiting significant variations in various
aspects, such as the number of samples per class, video resolution, lighting conditions, and

speaker characteristics, including pose, age, gender, and makeup.
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In a similar vein, Egorov et al. [60] constructed a Russian lip reading dataset known as
LRWR. This dataset consisted of 235 classes and involved 135 speakers. The authors provided
a detailed description of their dataset aggregation pipeline and presented comprehensive
statistics in their paper. By creating a large-scale Russian dataset, they contributed to the visual
lip reading dataset research, which has been predominantly focused on English language lip
reading studies.

Chung and Zisserman [61] pursued the goal of word recognition solely based on visual
cues from a speaking face, without utilizing phonetic information. They developed an automated
data collection pipeline from TV broadcasts, resulting in a dataset containing over a million
examples of spoken words by different individuals.

In summary, these studies highlight the creation of diverse and sizable lip reading datasets,
such as LRW-1000, LRWR, and the dataset generated by Chung and Zisserman. These datasets
facilitate research in lip reading by incorporating real-world conditions, encompassing a wide
range of linguistic and visual variations, and expanding beyond the dominance of English
language studies in the field.

A two-stream convolutional neural network was developed to learn the correlation
between audio and visual mouth movements from unlabeled data. The training results achieved
with this dataset and model surpassed the performance of publicly available datasets, namely
Columbia [62] and OuluVS2 [63].

Anina et al. [64] presented the OuluVS2 dataset, which was specifically aggregated for
analyzing non-rigid mouth movements. This dataset comprises recordings of more than 50
speakers uttering English phrases, numbers, three-word phrases, and three sentences. The
dataset includes thousands of videos captured simultaneously from five different viewing
angles, ranging from frontal to profile views. An HMM-based visual speech recognition (VSR)
system was developed and tested on the OuluVS2 dataset. The recognition results revealed that
the 60° angle provided the highest accuracy score of 46%, whereas the score was 42% for the
90° angle (front view).

The Arabic Visual Speech Dataset (AVSD) [65] consists of 1100 videos containing
recordings of 10 daily communication words, such as hello, welcome, and sorry. The dataset

was collected from 22 speakers under realistic conditions, including various indoor rooms with
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different lighting conditions. VSR experiments were performed on the AVSD using a support
vector machine (SVM), and the algorithm achieved an average word recognition rate of 70.09%.

Sujatha and Krishnan [66] compiled a dataset involving 10 participants who recorded
stable ambient conditions while uttering 35 different words. For training, 4900 samples were
collected, with each of the 7 participants pronouncing 20 samples for each word. Additionally,
2100 samples were used for testing, with each of the 3 participants providing 20 samples for
each word. The videos of the participants were processed using a face localization module to
detect the facial region, and subsequently, the mouth region was determined.

In summary, these studies demonstrate the creation and utilization of various datasets for
analyzing visual speech and mouth movements. These datasets include OuluVS2, AVSD, and
the dataset prepared by Sujatha and Krishnan. The experiments conducted on these datasets,
employing different recognition algorithms and evaluation metrics, contribute to advancing the
field of visual speech analysis and recognition.

In reference [67], a dataset was created and utilized to address lip reading challenges,
incorporating audio and lip movement data from various videos containing readings of identical
words such as "book," "come," and "read." The proposed method employed the VGG16 pre-
trained convolutional neural network (CNN) architecture for data classification and recognition.
The recommended model achieved an accuracy of 76% in visual speech recognition (VSR).

In their work, Xu et al. [68] utilized multi-expansion temporal convolutional networks
(MD-TCN) for the purpose of word prediction in lip reading tasks. Their methodology involved
incorporating a self-attention block following each convolutional layer to augment the model's
classification and scanning capabilities. By evaluating their approach on the LRW dataset (69),
they achieved an accuracy of 85%, thus showcasing a marginal improvement of 0.2% compared
to other networks with similar architectures [70].

Berkol et al. [71] conducted a comparative analysis using the dataset introduced in this
study to assess the performance of the dilated convolutional neural network (DCNN) model
against the convolutional neural network (CNN) model utilized in their prior research. The
multiclass classification model yielded a test accuracy of 59.80% for the DCNN, whereas the
CNN model in their earlier study achieved an accuracy of 72%. It was observed that the CNN
outperformed the DCNN in terms of both time and accuracy. The relatively lower accuracy
score of the DCNN model can be attributed to the utilization of a non-synthetic dataset with
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intricate features, posing challenges for the model. Existing lip reading datasets employed in
prior studies [72, 73] were primarily obtained under controlled conditions. The contribution of
our study to the existing literature lies in the provision of a non-synthetic Turkish lip reading
dataset, which, to the best of our knowledge, represents the first of its kind. This dataset was
derived from natural speech recordings, with careful examination of the videos to eliminate any
factors that might impede accurate lip movement analysis, such as the presence of microphones,
subtitles, or occluding hands. The data exclusively focused on capturing facial expressions for
the purpose of lip movement analysis.

Overall, these studies highlight the development of lip reading datasets, utilization of pre-
trained CNN architectures, and the exploration of novel approaches such as MD-TCN.
Additionally, the dataset proposed in this study contributes to the advancement of Turkish lip
reading research by providing a non-synthetic dataset obtained from natural speech recordings.
However, this dataset, consisting of wide-framed images capturing people pronouncing various
words, can be utilized for different research problems with appropriate data arrangements. It
facilitates the development of word or phrase recognition from a speaking face without audio

[74], without relying on lip-motion recognition.

8.1.1. Dataset collection

The data collection process commenced by identifying relevant YouTube videos
containing the specified words. Screen recording techniques were employed to capture the
videos. Throughout the data collection phase, particular emphasis was placed on creating a
diverse sample set, encompassing variations in gender (male/female), age groups
(adult/child/elderly), indoor/outdoor settings, lighting conditions (light/dark), presence/absence
of mustache, presence/absence of makeup, and slight variations in face angles.

Due to these data collected for the lip reading problem are obtained from the videos of the
speakers who continue in their natural flow, the images are challenging in terms of diversity
(see Fig. 39). In some cases, speakers do not turn their face directly to the camera. Furthermore,
there are situations such as light differences in the image, image quality, and the speaker being
far away. In addition to these, there is also a problem that creates personal diversity such as
objects such as microphones coming in front of the speaker in the images obtained, the speaker's

mustache and lipstick.
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Figure 8.1. Data challenges

8.1.2. Frame extraction from videos

After collecting 2335 instances, they were segmented into frames using the Python library,
OpenCV. During the frame extraction process, a script was developed to identify the specific
second at which each word started and determine the video's frames per second (fps).
Subsequently, frames captured within a 2-second interval following the identified second were
extracted and saved as individual images. The resulting images varied based on the fps value.
Generally, since the videos were recorded at a standard fps rate of 30, a total of 60 frames were
obtained for each 2-second block.

Firstly, it was crucial to create a balanced multi-class dataset. Working with a balanced
dataset in terms of labels reduces challenges and allows developers and researchers to focus on
developing more optimal and diverse models. In this study, we placed great emphasis on
obtaining an approximately equal amount of data for each label. Table 1 provides the number
of samples available for each class in the dataset.

Secondly, ensuring a normal distribution of frame numbers for these words in the dataset
is crucial for training high-performance machine learning models. Since the difference in the
number of examples for each class instance is minimal, the model's results will exhibit consistent

performance.

40



Table 8.1. Number of instances in the dataset.

Words and Phrases Number of Instances
basla (start) 225
bitir (finish) 244
merhaba (hello) 268
giinaydin (good morning) 232
selam (hi) 235
hos geldiniz (welcome) 226
0zur dilerim (sorry) 209
goriismek iizere (see you) 224
afiyet olsun (enjoy your meal) 235
tesekkiir ederim (thank you) 237

Secondly, apart from the relative frequency of each class, the number of frames associated
with each word is a critical aspect in machine learning models, particularly in deep learning. It
can serve as an influential parameter in real-time word recognition. Figure 7 illustrates the
distribution of each class based on the number of frames. The top five labels correspond to
phrases such as "tesekkiir ederim" and "hos geldiniz," while the remaining labels represent
individual words like "glinaydin" and "selam." The number of frames for words ranged
approximately between 3 and 26, while for phrases, it ranged between approximately 7 and 33.

To analyze the distributions of frame numbers, the Pandas skew() method, which provides
unbiased skew values, was employed. The skewness coefficients for the words "glinaydin,"
"merhaba," "selam," "basla," and "bitir" were 0.06, 1.46, 0.86, 0.09, and 0.54, respectively. For

nn "o one

the phrases "afiyet olsun," "goriismek tlizere," "hos geldiniz," "0zir dilerim," and "tesekkdir

ederim,” the skewness coefficients were 0.10, -0.16, 0.07, 0.48, and 0.72, respectively. High

skewness coefficients were observed for the words "selam," "merhaba," and "tesekkiir ederim,"
indicating right-skewed distributions, while the skewness coefficients for other words and
phrases were close to 0, indicating normal distributions.

For the word "merhaba,” the mean frame number was 12.7, the median was 12, and the
mode was 10, indicating a normal distribution. Similarly, for "gilinaydin," the mean, mode, and

median values were 9.1, 9, and 9, respectively, indicating a normal distribution. The presence
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of children's songs among the videos used for the word "merhaba” resulted in slower speech
compared to other recordings. The non-normal distributions observed for certain classes
indicated a greater diversity among speakers and the inclusion of various video types, such as
vlogs, TV series, or clips, in our dataset.

Understanding and accessing the dataset is facilitated by familiarity with its directory
structure. The directory hierarchy is organized as follows: the top-level directory corresponds
to specific word or phrase tags, such as "basla" or "tesekkiir ederim". Within each word folder,
there are subdirectories representing individual instances, which are sequentially named using
three-digit numbering. The final level of the dataset architecture comprises processed frames
extracted from the corresponding videos, and these frames are sequentially named using two-
digit numbering, such as "01.jpg, 02.jpg, ..., 28.jpg". Figure 9 illustrates the hierarchical

structure of the dataset directories.

Visual Lip Reading Dataset
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Figure 8.2. The directory architecture of the dataset; “merhaba” (hello), “selam” (hi), “basla”
(start), “bitir” (finish), “giinaydin” (good morning), “tesekkiir ederim” (thank you), “hos
geldiniz” (welcome), “goriismek lizere” (see you), “6ziir dilerim” (sorry), and “afiyet olsun”
(enjoy your meal) are words and phrases that appeared in the first step. A subdirectory has
samples of words and phrases contained within it. The last step of the architecture shows the
frames of the related word.
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8.1.3. Frame cropping

To facilitate the identification of the person speaking and enable accurate lip reading,
frames containing multiple human faces were deemed complex and challenging. As a result, a
manual cropping process was conducted using image cropping applications to exclude images
with multiple faces, except for the face of the person of interest. Care was taken to ensure that
the entire face of the speaker, with clear visibility of lip movements, remained within the field
of view during the cropping process. Frames with no other faces, obstructions, or profile views
that hindered lip movement were selected for inclusion in the dataset. The emphasis was on
preserving the background and obtaining real-world instances without removing inherent noise
during the cropping process.

A review of previous studies revealed only one dataset related to Turkish lip reading. What
sets this study apart from that dataset, where all words and sentences were created under
controlled ambient and lighting conditions, is that it introduces a non-synthetic lip reading
dataset that had not been previously developed. The data collection methods employed in the
two studies differed significantly. While the previous dataset was generated by 24 speakers who
specifically pronounced certain words and phrases, our dataset captured the moments in which
the relevant word was spoken from various people's YouTube videos. Additionally, the
pronunciation of words in the Turkish language is influenced by various factors, such as the
speaker's accent, the presence of liaison, and word stress. Thus, the aim was to create a dataset
suitable for real-life conditions by collecting samples from a diverse range of individuals.

The dataset we created contributes to visual lip reading studies and enables researchers to
produce more realistic results due to the complex environmental conditions encountered in real-
life scenarios. By utilizing this dataset in lip reading studies, researchers can contribute to
solving forensic cases, enhancing the lives of hearing-impaired individuals, and introducing
innovative approaches to language education. The dataset focuses solely on capturing facial
expressions to describe lip movements. However, due to its wide-framed images of individuals
pronouncing various words, it holds the potential to be utilized in addressing various research
problems after appropriate data adjustments.

In summary, the manual cropping process was conducted to exclude frames with multiple

faces, and the dataset created in this study stands out as a non-synthetic lip reading dataset that
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captures real-life conditions. Its potential applications extend beyond lip reading studies, making

it a valuable resource for diverse research endeavors.

Good Morning
Hello

Hi

Start

Finish

Enjoy Your Meal
See You
Welcome

Thank You ‘/A—/\\—

Welcome

See You
Sorry

DNDDODOO@EO

Enjoy Your Meal Thank You

Finish
Start
Hi
Hello

Good Morning

Figure 8.3. Frame number distribution for each word such as “hello” (merhaba), “hi” (selam),
“start” (basla), “finish” (bitir), and “good morning” (glinaydin) and phrases such as “thank you”
(tesekkiir ederim), “welcome” (hos geldiniz), “see you” (goriismek tlizere), “sorry” (Oziir
dilerim), and “enjoy your meal” (afiyet olsun).

Lastly, a correlation matrix was generated to explore potential linear relationships between
the classes. The following steps were followed to identify causal or non-causal relationships:

Firstly, clear and representative examples were selected from the dataset for each class,
ensuring accuracy in the results. The lips were then extracted from the original images since
analyzing lip movements is crucial and enables working with reduced data.

Next, the sequence of arrays was flattened to a one-dimensional summarized array by
computing the median value for each index of the images. The finalized arrays for each class
were subjected to the Pearson correlation method. The Pearson correlation coefficient ranges
from -1 to 1. A value close to 1 indicates a positive relationship between the variables,
suggesting a positive causal relationship. Conversely, a value close to -1 indicates a negative
causal relationship between the variables. If the value is closer to 0, from both the negative and
positive sides, it suggests a non-causal relationship between the variables, indicating no linear
relationship.

In summary, by applying the Pearson correlation method to the flattened arrays, we

examined the presence of linear relationships between the classes. The correlation matrix
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provides insights into the nature of the relationships, helping to identify potential causal or non-
causal associations among the variables. In Figure 2, we depicted the Pearson correlation using
a heatmap, which revealed the correlation patterns among different classes. It is evident that
certain classes exhibited high positive correlations. For instance, "afiyet olsun" and "gilinaydin"
displayed a strong positive correlation, with a correlation coefficient of approximately 0.9.
Similarly, the classes "merhaba" and "basla" demonstrated a positive correlation, albeit of lesser
strength, with a correlation coefficient of around 0.6. Nevertheless, we did not observe a
substantial overall relationship between the classes. Furthermore, no significant negative
correlations were observed, unlike the strong positive examples mentioned earlier. It is worth
noting that the dataset proves to be valuable for addressing classification problems since the
patterns exhibited by different classes are distinct and amenable to various methods, including

deep learning and machine learning algorithms.
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Figure 8.4. Distance matrix for each class such as “hello” (merhaba), “hi” (selam), “start”
(basgla), “finish” (bitir), “good morning” (giinaydin), “thank you” (tesekkiir ederim), “welcome”
(hos geldiniz), “see you” (goriismek lizere), “sorry” (6ziir dilerim), and “enjoy your meal”
(afiyet olsun) based on the image features.

Creating a distance matrix for a word dataset is done to evaluate word similarities and

relationships. The distance matrix contains the measure of similarity or distance between each
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word and all other words. Distance metrics are commonly used to obtain a quantitative
assessment of semantic or lexical similarities between word pairs.

There are various methods to create a distance matrix. One approach is to use word vector
representations and compute similarity metrics. For example, word embedding models can be
used to generate word vectors, and then distances between these vectors can be calculated to
create the distance matrix. This matrix can be utilized to measure word similarities or
relationships.

A distance matrix can be useful in various natural language processing (NLP) tasks such
as word classification, word clustering, and analyzing word relationships. It can be used to
discover similar words or meaningful word groups, explore word relationships, or perform
semantic searches at the word level.

For these reasons, creating a distance matrix for a word dataset is a common approach to

analyze relationships between words and obtain similarity measures.

8.1.4. Detection of Lip

In the lip-reading problem, the RGB images are not important for the continuity of the
studies. Images are converted to gray scale in order to reduce computational and time costs in
face and lip detection studies and later during deep learning model training.

First, we cut the faces from the human images we collected using the dlib library, which
is a ready-made library, since the faces on the images need to be handled. The
get_frontal_face_ detector() function we use does not receive face detection without taking any
parameters. When this function is called, it returns the pre-trained HOG+Linear SVM face
detector of the dlib. HOG+LINEAR SVM works fast and effectively. Due to the nature of the
HOG, it adapts to rotation and viewing angle situations. This detector is built using a histogram
of oriented gradients (HOG) and a linear SVM. It is suitable method for real-time face detection

due to its its rapid detection.
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Figure 8.5. Face detection with HOG+SVM

As can be seen in Fig. 40, even if the faces are angled or if there is an obstacle in front of

the face, an accurate face detection can be made, including the lips.
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Figure 8.6. Lip Detection

In lip-cutting studies, using the OpenCV library, the contour of the relevant region is
drawn by specifying a series of points to take the lip part. Since the 49-68 range corresponds to

47



the lip region in the landmarks, the relevant range on the obtained face image is cut. Then, with
the help of the boundingRect() function, a rectangular image of the determined region is taken.
Fig. 41 shows firstly, the original raw images, the faces detected in the second step, and the cut
lip images at the end. Lip detection is also less than the number of raw images, as there is no
corresponding face detection for each raw image. Although there are similar images in terms of
angle and light in each image, it was observed that face detection could not be performed for
each of them.

Finally, the lip images obtained are recorded in 100X200 size to be used in the next steps.

Total dataset information seen in table 8.2. below;

Table 8.2. Total Dataset information

Specification Details

Data Source YouGlish website

Total Number of YouTube Videos 7000+

Language Not specified

Word Count 100 words

Phrase Count 100 phrases

Frame Count 20000+ frames

Gender Distribution Approximately 50% male, 50% female
Age Distribution Adult, child, old

Environment Distribution Approximately 25% outdoor, 75% indoor
Lighting Distribution Approximately 50% light, 50% dark
Facial Features Variation in mustache presence, makeup presence
Face Position Slight angle

8.1.5. Lip representation

In the first approach developed, each sequential image of a sample is used in the deep
learning model so that the flow is preserved. As a second approach, 15 images are combined
and used as a single smaller image. After the concatenation process, each 100x200 image is
resized to 20x40 in order not to obtain a very large image. If the frame number of the relevant
sample of the lip is less than 15, an image filled with 0 values on the gray scale is added. If it is

more than 15 it is removed. When 15 frames are sequentially combined as 3 rows and 5 columns,
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a 60x200 image is obtained. In Fig. 8.7. shows 15 sequence images produced in combination.
In the case of separate lips, these images are used as a series of 15 images, providing a stream

instead of a single image.

Figure 8.7. Concatenated frame mouths

To ensure the accuracy of the dataset, frames were selected based on the moment when
the specified word was first spoken, minimizing the inclusion of lip movements from other
words within the same video. Subsequently, using a simple code, the frames were converted
into images for extraction, as detailed in the subsequent section.

During the screen recording process, certain videos were eliminated if they did not
adequately capture the lip image or if other objects obstructed the view. Examples of such
situations included hand movements obstructing the face, instances where the lip image
temporarily moved out of the field of view, or default subtitles covering the lip movements.

8.1.6. Data augmentation

Data augmentation techniques are used when the dataset size is not enough to train deep
learning algorithms or when the data quality or variety is not enough. With the help of
augmentation techniques, classification results can be enhanced. In this work, we applied three
different augmentation techniques to the dataset. It is important to note that augmentation
techniques were implemented for the whole dataset since the visual lip reading problem
concerns the sequence data where data are all images. The first augmentation technique is a
horizontal flip (see Figure 14, the second row). A horizontal flip is a mirror reflection by the y-

axis. The second augmentation technique is inverting the image by subtracting pixel values from
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255 (see Figure 14 the third row). The last augmentation technique is sigmoid contrast (see
Figure 8.8, the last row). The technique is applied with the sigmoid function in Equation (1),
where the gain is (5, 10) and the cutoff is (0.4, 0.6). After applying the augmentation techniques,

the dataset size expanded from 1390 to 5560 sets of examples.

lnverting:I-.'-.-'-.-':'

Figure 8.8. Data augmentation techniques applied on visual lip reading in Turkish dataset.

f(w) = 255x y (8.1)

(1 + exp(gainxcutoff—%) )

8.2. Our Study with Deep Learning Models

Visual speech information is critical when voice data is noisy, difficult to acquire, or
lacking context. People find it extremely difficult to understand what someone is saying merely
by watching their mouth motions [75]. For instance, adults who are deaf or hard of hearing only
achieve an accuracy of approximately 17% for a limited sample of 30 monosyllabic words and
approximately 21% for 30 complicated [76].

In addition to understanding or recognizing the words and phrases by the listener as a
research question, lip reading can be applicable to many areas in the industry, such as
information security [77, 78] speech recognition [79, 80, 81], and driver assistance [82].
Moreover, it gives people with hearing problems a new way to communicate with the outside
world [83, 84]. Regular people who do not have hearing problems can also benefit from lip
reading in settings where speaking aloud is improper, such as a meeting room [85]. Lip reading
has recently been used as a novel biometric identification method for mobile devices [86]. As a

result, lip reading and its applications are inseparable from society.
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Lip reading models which use multi-model data are widely used in the research field, e.g.,
Chung et al. [87] and Iwano et al.[88]. Despite the advantages of working with multi-model
data, there are significant drawbacks, such as separating noise from data captured from crowded
environments and requiring higher data storage, which also affects the model training efforts.
Furthermore, even while voice-image-based lip reading has shown its usefulness, only-image-
based lip reading demonstrated good results as well Fenghour et al.[89]; Pandey and Arif [90].
However, a challenging problem, distinguishing similar lip movements for different words or
phrases, reveals itself when the dataset contains only-image data. Distinguishing sounds with
similar lip movements is a challenging problem. Additionally, since the algorithm can handle
one person’s data, it can be challenging to decide who is talking and whom the algorithm will
take into account when there is more than one person on the camera screen. However, it is still
easier to preprocess image data.

The Turkish lip reading model is trained and tested on only-image based dataset to
increase the classification success rate for various deep learning models, which are
Convolutional Neural Networks (CNN), Long-Short Term Memory (LSTM), and Bidirectional
Gated Recurrent Units (BGRU). The following sections cover the data preprocessing stages and
the modeling experiments in detail.

Artificial Intelligence (Al) researchers have recently become interested in the lip reading
problem. Each language has a different structure since lip reading is sensitive in terms of
language and sound. Because of that reason, there are various works for some languages [91,
92]. Additionally, there are a ton of state-of-the-art studies available in terms of data types and
languages. Some important models and approaches are as follows.

Conventional approaches typically rely on handcrafted features, which are too
complicated and time-consuming to train neural networks. The images are converted into
numerical features that can be fed into deep learning algorithms for classification. Haq et al.
[92] used both visual and sound data to train the model, a combination of a spatiotemporal
convolution layer and SE-ResNet-18 network with a BGRU back-end, 1D convolutional layer
and fully connected layers performed on Daily Mandarin Conversation Lip Reading dataset.

The tiny and intricate signal patterns created by mouth motion are well captured by the
data collection approach developed by Zhang et al. [93]. The authors also suggest a set of

algorithms to extract signal profiles linked to mouth motions and reduce interference factors
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like multi-path. Then, to improve the recognition accuracy at the word level, a carefully crafted
set of features, including time-domain statistical and frequency-domain features, are retrieved
from the signal. A transfer-learning-based strategy is utilized to improve the model’s robustness
in cross-environment situations and lower training costs when employed in a new environment.
Peng et al. [94] suggest a network with channel-temporal attention and deformable 3D
convolution, where channel-temporal attention takes advantage of the inherent correlation of
features to force the network to focus on necessary keyframes, and deformable 3D convolution
adapts the sample position adaptively based on the lip architecture.

Xue et al. [95] propose a complete Bayesian learning approach to account for the
underlying uncertainty in LSTM-RNN and Transformer Language Models (LMs). LSTM-RNN
or Transformer LMs are used to model the uncertainty surrounding their model parameters,
choice of neural activations, and hidden output representations. In order to automatically choose
the best network internal components for Bayesian learning utilizing neural architecture search,
efficient inference methods were applied. Additionally, a minimum of one sample of a Monte
Carlo parameter was used. These make it possible to reduce the computing expenses associated
with Bayesian NNLM training and evaluation.

Fenghour et al. [96] wrote a valuable survey for contrasting different approaches
concentrating on neural networks and feature extraction. The authors’ key finding is that
Attention-Transformers and Temporal Convolutional Networks benefit from Recurrent Neural
Networks. They concentrate on both audiovisual and merely visual information. Additionally,
they mentioned letter-based, word-based, and sentence-based approaches that applied to
English, Chinese, German, and Arabic, among other languages. From a different perspective,
data augmentation techniques such as "salt and paper", "gaussian”, and "speckle™ noise adding,
and "median"” filtering were used to increase the dataset size (Ozcan and Basturk [97]).
Moreover, they used AlexNet and GoogleNet pre-trained CNNs on the AvLetters dataset.

For improved accuracy, the Haar Feature-Based Cascade classifier and CNN network are
utilized [98]. According to [99], there exist several studies focused on enhancing accuracy in
the field. In these works, the authors emphasized the importance of geometric details, such as
mouth height, width, and area. For the purpose of recognition, a Hidden Markov Model (HMM)
was utilized as a challenge. Another application that used articulated feature extraction

approaches used a dynamic Bayesian network for recognizing short phases, and a support vector
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machine for classification [100]. HMM is another application that leverages geometric
information from the side-face. Lip-contour geometric features are the angles formed by two
lines taken from upper and lower lip locations (LCGFs). As LCGF steps, the authors identify a
lip area, extract a lip center point, and determine lip lines and a lip angle. [101] is a favorable
survey for comparing different approaches, especially neural networks and feature extraction.
The authors’ main conclusion is that Attention-Transformers and Temporal Convolutional
Networks have benefits over Recurrent Neural Networks. They concentrate on both audiovisual
and only-visual information. They also included letterbased, word-based, and sentence-based
approaches that apply to English, Arabic, Chinese, and German. In [102], the authors utilized
pre-trained Convolutional Neural Networks (CNNs) such as AlexNet and GoogleNet on the
AvLetters dataset. To expand the dataset, data augmentation techniques were employed. These
techniques involved adding noise through "gaussian," "salt and pepper,” and "speckle" filtering,
as well as applying sharpening using "unsharp" and softening using "median” filtering.

In [103], a CNN was introduced as a novel network for digit classification. The dataset
consisted of numbers ranging from 0 to 9, spoken by three female and three male speakers and
repeated up to 100 times. The VGG19 network was employed to capture spatial characteristics,
while the Attention-based Long Short-Term Memory (LSTM) network was used to capture
temporal characteristics. An alternative approach to LSTM is the use of Temporal Convolutional
Networks [1041In [105], the authors propose a Multi-Scale Temporal Convolution approach for
word-level classification. They conducted experiments using data consisting of only audio,
audio-visual, and only visual modalities. In [106], a combination of Convolutional Neural
Networks (CNNs) and Long Short-Term Memory (LSTM) networks was employed for
classification. The authors utilized a VGGNet pre-trained on human faces of celebrities from
IMDB and Google Images. They contributed by concatenating images and extracting temporal
information using LSTM. To facilitate the learning of mapping mouth movements to characters,
[107] introduces the "Watch, Listen, Attend, and Spell” (WLAS) network. This network aims
to duplicate videos of mouth movements and convert them into corresponding characters or
words.WLAS includes WAS, which is a model that only works with photos. They also proposed
a curriculum-based learning technique to cut down on training time and reduce overfitting.
Additionally, for visual speech recognition applications, the "Lip Reading Sentences™ (LRS)
dataset was published, which comprises over 100,000 natural sentences from British television.
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LipNet was designed and trained for end-to-end sentence and phrase-level predictions. The
proposed model in [108] utilizes spatiotemporal Convolutional Neural Networks (CNNSs),
Recurrent Neural Networks (RNNSs), and the connectionist temporal classification (CTC) loss
for character-level prediction. The authors conducted their research using the GRID corpus
dataset, which is a publicly available dataset annotated at the sentence level [109]. Another
model, called LipType, was developed to achieve advanced speed and accuracy. The authors
also focused on improving the model's performance in low-light conditions. The model consists
of multiple stages. In the first stage, a spatiotemporal feature extraction method is employed,
which includes facial landmark correction using Kalman Filtering, 3D-CNN, and 2D SE-
ResNet. The outputs from this stage are then fed into Bidirectional Gated Recurrent Neural
Networks (RNNs) with the CTC loss function for further processing and prediction.Fernandez-
Lopez and Sukno et al. [98] stated that they use digits or letters and words or sentences as targets
for the problem. They developed an end-to-end algorithm dominated by RNNs, and achieved
approximately 40% advancement in the word prediction rates. The algorithm, developed by
Fenghour et al. [96], only uses visual signals and lacks language. Visemes in continuous speech
is recognized using a uniquely developed transformer with a unique topology. The use of
perplexity analysis to translate visemes into words. Authors 15% decreased word error rate and
enhanced performance. The model uses spatiotemporal CNNs, RNNSs, and the connectionist
temporal classification (CTC) loss (Graves et al. [99]) and operates at the character level. The
public sentence-level dataset GRID Corpus, published by Cooke et al. [100], was used for
experiments. Another model designed for improved speed and accuracy is LipType [90]. In this
work, poor light conditions are taken into consideration. As a first step, a spatial-temporal
feature extraction technique was applied, which includes a correction for facial landmarks using
Kalman filtering, 3D-CNN, and 2D SE-ResNet. Following that, Bidirectional Gated Recurrent
Neural Network with CTC was used.

Dataset’s every class has approximately equal data number (see Table 2 for an exact size.)
It is essential to mention that the dataset instance size is not equal to the version taken from
Berkol et al. (2022) since we applied some necessary preprocessing steps to solve the lip reading
problem with DL algorithms. The steps are explained in the following sections in detail. Also,
we have more data examples for some classes since we added some noisy examples from our

local data storage. Data will be updated as a new version. Additionally, we observe that the data
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sequence length for each data sample depends on the length of the words and phrases. It can be
concluded that the word or phrase length and frame number are highly correlated. Also, since
the speakers are collected from a wide range of people, the dataset’s classes are right-skewed,

such as "merhaba" and "selam" which shows the speaker’s speech speed differs.

Table 8.3. Size of the each class in the dataset.

Class Number
glinaydin 234
selam 235
merhaba 270

hos geldiniz 230
Oz(r dilerim 184

8.2.1. Applying classic CNN architecture for lip reading

The first model is the CNN model (see Figure 15). As it can be seen from Figure 15, two
Conv3D layers with 96 filters and maxpooling3D layers are used as feature extraction layers. In
the Conva3D layers, filters are applied with the size of (3, 3, 3), and strides are 1. Maxpooling3D
layers applied with pooling size (2, 2, 2) and stride is 2. After Conv3D and maxpooling3D
layers, flatten layer is applied. After that, two dense layers with 72 neurons were followed by a
dropout layer with a probability of 0.4. Lastly, an output layer with 6 neurons is applied. Relu
activation function is used in all layers except the output layer. In the output layer, the softmax
activation function is used since we perform a classification problem with 6 classes. The other
hyperparameters are as follows: the learning rate is 0.0002, the optimizer is Adam, and the loss
function is categorical cross-entropy. Training is performed with early stopping monitoring

validation accuracy, and patience is 4.
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Figure 8.9. CNN model architecture

8.2.2. Applying LSTM model architecture for lip reading
The second model is the LSTM model (see Figure 16). The LSTM model is performed with two
LSTM layers with 32 neurons and 0.5 dropout probability. Following that flatten layer is
applied. The next layers are two dense layers with 64 neurons and 0.5 dropout probability. As
an output layer, a dense layer with 6 neurons was applied. Except for the output layer, which
uses the softmax function, the relu function is used in the fully connected layers. Other
hyperparameters are as follows: the learning rate is 0.0002, the optimizer is Adam, and the loss
function is categorical cross-entropy. Training is performed with early stopping monitoring

validation accuracy, and patience is 5.
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Figure 8.10. LSTM model architecture

8.2.3. Applying BGRU Model Architecture for lip reading

The last model is the BGRU model (see Figure 17). This model contains much fewer
layers than the others. It uses a bidirectional GRU layer with 72 units and 0.2 dropout
probability. Then, the flatten layer and dense layer with 64 neurons and 0.25 dropout probability.
The last layer is again a dense layer with 6 neurons. As applied to the other models, the relu

function is used in the hidden layer, and the softmax function is used in the output layer. The
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other hyperparameters are as follows: the learning rate is 0.0001, the optimizer is Adam, and
the loss is categorical cross-entropy. Similarly, the BGRU model is trained with early stopping

monitoring validation accuracy, and patience is 3.
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Figure 8.11. BGRU model architecture

The hyperparameter values are explained in detail in Table 2.

Table 8.4. Hyperparameters used in models. CCE: Categorical Cross Entropy.

Hyperparameter Name CNN LSTM BGRU
learning rate 0.0002 0.0002 0.0001
optimizer Adam Adam Adam
loss CCE CCE CCE
hidden layer dropout 0.4 0.5 0.25
hidden layer neurons 72 64 64

hidden layer size
feature extraction layer

filter (CNN) /unit (LSTM, 96 32 72
BGRU) s
feature extraction dropout - 0.5 0.2
prob.
activation function RelLU RelLU RelLU
pooling size 2 - -
patience 4 5 3
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8.2.4. Comparative Results
The model architectures were explained in detail in the previous section. Experiments are run
on an NVIDIA Tesla T4 graphics card. The dataset is divided into three parts: train, validation,
and test sets with percentages of 70%, 15%, and 15%, respectively. The training set contains
3892 sets of examples, while validation and test sets contain 834 sets of examples. The training
epochs are different since each model is trained with early stopping to prevent the model from
overfitting. The CNN model’s epoch size is 62, LSTM’s epoch size is 58, and BGRU’s epoch
is 29. The accuracy results and training times for each model are in Table 3. The accuracy scores
are very close to each other, unlike the training time. LSTM and BGRU models’ accuracy scores
are the same as the sixth decimal, 0.7781. CNN, which is 0.7649, performed the worst among
the three models. In this case, training time helps decide the models’ performance. The BGRU
model is the fastest, approximately at 216 seconds, and the CNN model is the slowest,

approximately at 863 seconds.

Table 8.5. Model accuracy and their training time results.

Model Accuracy Training time
(secs)
CNN 76.49% 862.84
LSTM 77.81% 389.30
BGRU 77.81% 215.59

Additionally, we evaluated each model by confusion matrix (see Figures 18,19,20). Since
the accuracy scores are almost the same, we observed that the confusion matrices of the LSTM
and BGRU models differ. Phrases and words performed well among themselves for the three
models. Moreover, we evaluated the precision, recall, and f1 scores for each class trained with
the three models (see Table 4). As it can be seen from Table 4, there is no strict way to draw a
conclusion about which model is more accurate. For example, for classes "hos geldiniz" and
"selam" CNN’s precision scores are higher than others, or for classes "tesekkiir ederim" and
"merhaba" LSTM’s precision scores are higher than the other two. However, we can observe

that for some metrics and models, there is a considerably high difference between results.
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Table 8.6. Comparision of Precision, recall, and f1 scores of models.

Words Size | Model | Precision | Recall F1
score

CNN 0.6702 | 0.8366 | 0.7442
hos geldiniz | 153 | LSTM [ 0.6089 | 0.8954 | 0.7249
BGRU | 0.6079 | 0.9020 [ 0.7263
CNN 0.6600 | 0.6286 | 0.6439
Ozur dilerim | 105 | LSTM | 0.8594 | 0.5238 | 0.6509
BGRU | 0.8514 | 0.6000 [ 0.7039
CNN 0.8519 | 0.8273 | 0.8394
tesekkiir ederim| 139 | LSTM | 0.8264 [ 0.8561 | 0.8410
BGRU | 0.8561 | 0.8129 [ 0.8339
CNN 0.8696 | 0.7186 | 0.7869
merhaba 167 | LSTM [ 0.8639 | 0.7605 | 0.8089
BGRU | 0.8872 | 0.7066 [ 0.7867
CNN 0.8718 | 0.7234 [ 0.790
selam 141 | LSTM | 0.8382 | 0.8085 | 0.8231
BGRU | 0.8014 | 0.8298 | 0.8153
CNN 0.6993 | 0.8295 | 0.7589
glinaydin 129 | LSTM | 0.8220 | 0.7519 | 0.7854
BGRU | 0.8197 | 0.7752 [ 0.7968

For instance, "0ziir dilerim" class’s precision score is much lower for the CNN model. On the
other hand, "glinaydin" class’s recall score is much higher for the CNN model. For fl score
values, there are no such significant differences. To be more specific, the highest precision score,
0.88%, was obtained for "merhaba" with the BGRU model; similarly, the highest recall score,
90%, was obtained with the BGRU model on "hos geldiniz", and the highest f1 score, 0.85%,
was obtained with the LSTM model on "tesekkiir ederim™. If we consider the classes separately,
we can conclude them as follows. Firstly, the phrases are evaluated. In the "hos geldiniz" class,
although the CNN model is the best in precision and f1 score, the recall score of the BGRU
model is the highest among them. In the "6ziir dilerim" class, the LSTM model’s precision is
the best among all the models and metrics. CNN model is good at recall, and the BGRU model
is good at the f1 score. The scores in the "tesekkiir ederim" class are close. BGRU is the best in
precision, and LSTM is the best for recall and f1 scores. Lastly, words are evaluated. In
"merhaba" class, similar results with "tesekkiir ederim" occur. BGRU is the best in terms of

precision, and LSTM is the best for recall and f1 scores. In the "selam™ class, the precision score
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is the best with CNN, the recall score is the best with BGRU, and the 1 score is the best with
LSTM. In the "glinaydin" class, the precision score is the best with LSTM, the recall score is
the best with CNN, and the f1 score is the best with BGRU.

Hos geldiniz 120
Ozir dilerim 100
- . 80
Tesekkur ederim
60
Merhaba
40
Selam
20
Gunaydin
0
Figure 8.12. CNN model confusion matrix
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Figure 8.13. LSTM model confusion matrix
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Figure 8.14. BGRU model confusion matrix

Appling data augmentation techniques such as horizontal flip, inverting pixel values, and
sigmoid contrast techniques in order to enrich and diversify the data set. Additionally, we
showed that different solution approaches, such as sequential and feature extraction techniques,
can be used in the only-visual dataset. According to our experiments, recurrent-based models
LSTM and BGRU proved their efficiency against the convolutional-based feature extraction
technique CNN in terms of accuracy and training time. Hence, BGRU model is the most

efficient when it is evaluated in terms of train time and overall classification results.

8.2.5. Dilated CNN Model
While creating the model 4, we built a Dilated CNN structure inspired by the temporal
convolutional neural networks architecture Dilated CNN provides a more refined image by
filtering some areas on the imageln this architecture, we incorporated five consecutive dilated
blocks. Each block consisted of spatial dropout and convolutional layers with dilation rates of
1, 2, 4, 8, and 1, respectively. By applying the dilation operation to the image, the input vector
could be scanned in a broader and more efficient manner. Furthermore, since pixels in close
proximity tend to have similar meanings, employing a more localized operation such as max
pooling or dropout can be more effective than standard dropout. The utilization of dilated
convolution and spatial dropout also serves as a means to prevent model overfitting. In the Add

layers, the spatial dropout output is combined on the convolution layer. Final layer, the softmax
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layer returns a score for three words and three phrases in Turkish. Also differences between
Dilated CNN and Classical CNN shows below;

Table 8.7. Dilated CNN vs CNN

Differences Dilated CNN CNN
Convolution
Operation Convolution with dilation factor Pixel-wise convolution
Receptive Field Larger receptive field Limited receptive field
Parameter Count Fewer parameters More parameters
Better capture of hierarchical Good capture of hierarchical
Hierarchical Features features features

During the training process, hyperparameter tuning was conducted by experimenting with
various values. The experimental studies involved exploring different values for the filter size
of Dilated CNN layers, dilation rate, learning rate, input dimension, and the number of frames
included in the training on the lip images within each sample. Early stopping was implemented
to halt training if there was no improvement in the validation loss value. The dataset, consisting
of 1,390 samples, was divided into 70% for training, 15% for testing, and 15% for validation to
train and evaluate the model. The training was performed using parallel computation on a
machine equipped with an NVIDIA GeForce GTX 1650 Ti graphics card with 4GB memory.
Due to hardware limitations, a batch size larger than 4 could not be used for training. In
comparison to our previous work, which took approximately 48 seconds for training using the
CNN algorithm on the same machine, the training time increased to approximately 2 hours and

26 minutes for the more complex, multi-layered dilated CNN model.
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Figure 8.15. Dilated CNN model architecture

Table 8.8. Data train-validation-test split.

Train

Validation

Test

Total

973

208

209

1390
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Figure 8.16. Dilated CNN training and validation loss and accuracy

Dilated CNNs have emerged as an alternative to traditional CNNs, especially in the field
of image processing and segmentation. They excel at capturing a wider context and can achieve
good performance with fewer parameters. However, both methods can be used in different
contexts depending on the requirements of the task.

The trained model, which has early stopping strategy, is obtained at the end of 26 epochs
for Dilated CNN. The validation/training accuracy and loss graph is obtained from the training
process which is stopped automatically. As can be seen from the Fig.24 , if the training
continues, the learning will continue, but since there will be no change in the validation loss
value, it may cause the model to overfitting. We have evaluated and compared Dilated CNN
model using accuracy, recall, precision and f1-score metrics to not ignore data diversity. The
test accuracy we have obtained as a result of lip-reading studies for six words is 72% for Dilated
CNN. In general, when we compare it with our previous work, CNN, it is seen that the standard
CNN algorithm works better in terms of both time and performance. However, for some words,
the detection performance is better compared to the overall accuracy, while for some words this
score is lower. This is because the dataset from different youtube videos is diverse. We have
tested Dilated CNN models with total number of 209 samples. In addition to diversity of data,
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some words have more lip images than others. The Fig.25 show that the predictions made for
each word and the words that resulted in incorrect predictions. When we look at the density in
the diagonal, it is seen that there is mostly good performance for each word. Focuses on the
words "merhaba™ and "selam" which are incorrect predictions for the word "giinaydin". In cases
where "0ziir dilerim" and "tesekkiir ederim" are guessed incorrectly, it should actually be "hos
geldiniz". If the interpretation is made according to these two situations, it can be said that the
words and expressions are a prediction confusion in themselves.

In this we tried to develop a model which fits to real world. Although the dataset is
challenging in both preprocess and training, we achieved remarkably good result in multi-class
classification problem.

Table 8.9. Model Results for Dilated CNN

Words Accuracy | Precision | Recall | F1-Score | Size
Hog geldmiz 0.54 0.84 0.66 25
(Welcome)
Qzlir dilerim 0.88 0.66 0.75 32
(Sorry)
Tesekkiir
ederim - 0.81 0.75 0.78 40
(Thank you)
g 0.70 0.70 0.70 33
(Hello)
Selam (Hi) - 0.71 0.8% 0.79 40
Giinaydin

A 5 3
(G_Morning) 0.is 4 - »
All words 0.72 0.74 0.73 0.72 209
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Figure 8.17. Confusion Matrix for Dilated CNN

8.2.6. Recommended CNN model

The proposed CNN architecture is two, for the concatenated frame lip images as a result
of hyperparameter tuning, and for the lip images trained using discrete frames.

While collecting the data, it was tried to balance as much as possible with an equal number

of samples for each class (see Table 8.10.).

Table 8.10. Data Distribution of Classes

Classes Number of Samples
afiyet olsun 235
basla 235
bitir 244
goriismek lizere 224
giinaydin 232
hos geldiniz 226
merhaba 268
0zur dilerim 209
selam 235
tesekkiir ederim 237

Since the dataset contains both single-word and 2-word classes, the pronunciation duration

of the phrases varies. For example, since the phrases “tesekkiir ederim” and “6ziir dilerim” are
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longer, their pronunciation durations and the number of frames they occupy in the dataset are
more than the word “selam”. While the frame count of the word “6ziir dilerim” exceeds 30, the
frame count of the word “selam” does not exceed 15. It is critical to consider this distribution to

make a balanced representation when classifying.

8.2.7. CNN model with discrete frame mouths input

As we mentioned in the Section Lip Representation, discrete frame lip images are given
to the input layer as a sequence. The architecture includes two convolution and two max-pooling
layers. Convolution layers use ReLLU as an activation function, the filter sizes are 128, and the
stride used in filters is 1 with no padding. Max-pooling layers pool sizes are 3x3x3 with the
stride of 2. Flatten layer follows these four layers and architecture continues with fully
connected layers with dropout.

The input vector consists of 15 images with a fixed size of 50x50. Random 128 filters are
applied to these images in the convolution layer without padding and with a stride of 1 step.
After the convolution process, an output of 13x48x48x128 is produced. Since there is a 3x3 pool
size in the output of the max pooling layer following the convolution, it outputs as 6x24x24x128.
After applying the conv3d, max-pooling, and flatten layers, respectively, a 15488 dimensional
vector is obtained. Two fully connected layers with ReLU activation function and 0.5 ratio
dropout layers used to avoid overfitting, especially in CNN models are implemented. Finally,
since a multi-class classification problem is studied, the architecture is finalized with a fully
connected layer that produces 10-dimensional vector output with the softmax activation
function. In the output, probabilities are produced for 10 classes in the form of “afiyet olsun”,
“bagla”, “bitir”, “goriismek lizere”, “giinaydin”, “hos geldiniz”, “merhaba”, “6ziir dilerim”,

“selam”, and “tesekkiir ederim”.
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afiyet olsun
FLATTEN
basla
FULLY FULLY FULLY
CONV 30 MAX-POOLING 3D CONV 3D MAX-POOLING 30 CONNECTED CONNECTED CONNECTED bitir
DROPOUT DROPOUT gérigmek iizere
3 ginaydin
RelU RelU RelU 0.5 ReLU 0.5 £
15 x 50 x 50 13 x48x 48 X 128 6x24x24x128 4x22x22x84 64 64 64 64 | 3 10 hos geldiniz
merhaba
§ . . N Gzar dilerim
ElliesSiea125 Pool Size: 3X3 X 3 EdenSized6y Pool Size: 3X3X 3
Stride: 1 TR Stride: 1 e
No Padding e, No Padding Tides selam
INPUT tesekkir ederim

OUTPUT

Figure 8.18. CNN Model using discrete frame represented mouths

8.2.8. CNN model with concatenated frame mouth input

In this approach where lips are combined, 15 images are concatenated to form a single
image input, unlike the case of discrete frame mouths as input. Therefore, it is quite convenient
in terms of computational cost. Experiments were conducted using a shallower series of
convolution layers compared to the previous CNN model, since a single image represents a
sequence of images, reducing data complexity. It is sent to the convolution layer using a 50x50
image as input. Experiments were conducted using a shallower series of convolution layers
compared to the previous CNN model, since a single image represents a sequence of images,
reducing data complexity. It is sent to the convolution layer using a 50x50 image as input. Then
the Flatten layer's input is 24x24x16 since the pool size is 2x2. Unlike the architecture in the
approach where the lips are given separately, there is 1 fully connected layer and dropout after
the Flatten layer, which has 9216 dimensional vector output. Finally, an output vector with 10

classes is produced.
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afiyet olsun
FLATTEN

basla
FULLY FULLY
CONV 2D MAX-POOLING 2D CONNECTED CONNECTED bitir
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50 x 50 48 x 48 x 16 24x24x 16 9216 10 hos geldiniz
merhaba
Filter Size: 16 Pool Size: 2 x 2 Gzur dilerim
Stride: 1 Stride: 2
No Padding selam

tesekkar ederim

OUTPUT

Figure 8.19. CNN Model using concatenated frame represented mouths

8.2.9. Training

In the training process, experiments were carried out on different hyperparameters for
studies on two different approaches to training the lips separately and combining them. Mlflow,
a Python library developed to manage the machine learning lifecycle, was used to evaluate the
results of the experiments and make hyperparameter tuning. In Table 2, it is seen that the
hyperparameter results for both approaches.

Different hyperparameters have been applied for the cases where the lips are joined and
separate. Since the model capacity and complexity of the two approaches are different,
parameters such as learning rate, batch size, and number of epochs varied. Also, Categorical
cross entropy is an information measure used to compare predictions with true labels in a
classification problem.

This method quantifies the difference between the predicted probability distributions and
the true labels, thereby measuring the accuracy of the model.

A higher cross entropy value indicates that the predictions are further away from the true

labels, while a lower value signifies a better match.
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Table 8.11. CNN model training parameters

Parameters Discrete Frame Mouth Concatenated Frame Mouth
Number of training samples 1606 1606
Number of validation
samples 345 345
Number of test samples 344 344
Learning rate 0,0002 0,002
Batch size 32 16
Word length 15 15
Input dimension 50 50

Loss function

Categorical cross entropy

Categorical cross entropy

Optimizer

Adam

Adam

Total trainable parameters

1,220,938

590,698

8.2.10. Results

It is difficult to make an accurate assessment in studies where language is involved, such

as lip reading, because there are different pronunciations and variations in the language. It is

possible to make an evaluation, especially when there are many studies and data in the English

language. However, there is no comparable word-level dataset in terms of our studies in Turkish.

In our studies, we basically aimed to develop a CNN architecture for the Turkish lip
reading problem. All experiments based on CNN architecture run on GPU. NVIDIA 1650 Ti

graphics card with 4GB memory. The improvements were made using the Python Keras library.

In addition to these, Plotly and Seaborn libraries were used for visualization, and OpenCV

libraries were used for image processing studies.

Experiments were performed with the number of samples in Table 3 in both of the

representation steps, where the lips are joined and the lips are separated.
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Table 8.12. Number of test samples of each class

Classes Number of Samples
afiyet olsun 29
basla 35
bitir 46
goriismek iizere 23
giinaydin 32
hos geldiniz 34
merhaba 43
Ozur dilerim 31
selam 37
tesekkiir ederim 35

8.2.11. Training Results with Discrete Frame Lips

Looking at the training results, the accuracy and loss value changes for which the epoch
number is determined using early stopping are shown in the Fig. 45.

The training process, which was stopped after the improvement in Loss value did not
improve in 3 epochs, ended in 68 epochs. If the training continues further, there is no need to
make further calculations as the model will be overfitting.

When the results of the predicted classes in the test data are examined, it is seen that the
incorrectly determined classes are generally collected in the “afiyet olsun” class, see Fig. 10.
Especially for instances of classes whose actual class is “bagla”, “glinaydin”, and “6ziir dilerim”,
the wrong predictions concentrated on “afiyet olsun”. Mistakes made in the “afiyet olsun” class

were generally made for 6 examples in the “tesekkiir ederim” phrase. Contrary to these, there is

no example of an incorrectly guessed “afiyet olsun” in the “hos geldiniz” phrase.

71



Training and Validatian Data Accuracy per Epoch Training and Validation Data Loss per Epoch

Figure 8.20. Training and validation accuracy and loss per epoch with discrete frame lips

“hos geldiniz”, “merhaba”, “selam”, and when looked at the “basla”, “bitir”, “0ziir dilerim”
classes that follow them, it is seen that the precision scores are high, see Fig. 46,47. Thus, we
can interpret that the majority of positive predictions for these classes are correct. In general,
we see that the “afiyet olsun” class error rate is high based on the confusion matrix. There may
not be a clear lip movement in the vocalization of these phrases in the dataset, or it may be
interpreted as one of the more challenging expressions compared to Turkish grammar rules.
Since fl-score is the harmonic mean of precision and recall metrics, it is generally seen as f1-
score high when precision and recall are high at the same time, or low when fl-score is low at
the same time such as “hos geldiniz” and “giinaydin”. Although there is no class imbalance in
terms of the number of samples in this dataset, the prediction performances vary according to
the classes, as there are situations that create diversity for each class, such as the differences in

speakers, viewing angles, and light differences, just like real-life scenes.
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Figure 8.21. Confusion matrix of model trained with discrete frame lips

Precision Recall F1-Score

afiyetolsun 0.22 0.52 0.31

gorusmekuzere

gunaydin 0.48 0.47 0.48
0.5
hosgeldiniz|
0.4
ozurdilerim|
0.3

Figure 8.22. Classification report of model trained with discrete frame lips
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8.2.13. Training results with concatenated frame lips

In the CNN model training performed using joined lips, the process stopped with early
stopping ended at 42 epochs (see Fig. 48). In the last epochs, validation accuracy starts to
decrease, while training accuracy increases. Therefore, if the training continues further, it will
be inevitable to achieve a low test accuracy.

Similarly, as in the dataset with split lip images, wrong predictions for many classes such
as “bitir”, “giinaydin”, “merhaba” and “6ziir dilerim” in the results of combined lip images were
collected in the “afiyet olsun” class, see Fig. 49. Apart from that, we can see that the estimations
are generally high in the “basla”, “gériismek tizere”, “hos geldiniz”, “selam” and “tesekkiir
ederim” classes and do not predominantly confused with other classes.

As seen in the confusion matrix, it is observed in the classification report graph (Fig. 14)
that the precision, recall and f1-score values of the “afiyet olsun” class are low. To interpret the
accuracy percentages of other classes, more balanced results are seen compared to training using

split lips.

Figure 8.23. Training and validation accuracy and loss per epoch with concatenated frame lips

74



gorusmekuzere]

gunaydin

Ground Truth

hosgeldiniz]

merhaba

ozurdilerim

tesekkurederim

Predicted

Figure 8.24. Confusion Matrix of Model Trained with Concatenated Frame Lips
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Figure 8.25. Classification Report of Model Trained with Concatenated Lips
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8.2.14. Comparision for concatenated frame lips results and discrete frame lips

results

When the total experimental results are compared, the accuracy is 90.6% for concatenated
frame lips and 91.7% for discrete frame lips. Again, the times are 18 seconds and 8 minutes,
respectively. Since the training time of the discrete frame lips is long, it can be considered more
burdensome in terms of computational cost, but it can be preferred in terms of performance
because of its higher accuracy. In terms of image representation, 15 images of 50x50 size are
used in one of the inputs, while 1 image of 60x200 size is used in the other. In a situation where
simultaneous estimation is required, the use of representation using joined lips would be more
appropriate, but for problems where accurate detection is important, the use of the CNN model
using split lips is appropriate.

Compared to similar studies, the data contents used in terms of the dataset are quite
challenging. In this novel dataset, faces are not viewed from the front, some images are very
dark while others are quite bright, and at times it is not possible to accurately detect the face

because the background is too mixed.

Table 8.13. Accuracy and training time of two CNN models

Accuracy Training Time
Concatenated Frame Lips 90.6% 18 seconds
Discrete Frame Lips 91.7% 480 seconds
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9. CONCLUSION AND SUGGESTIONS

In this thesis, a CNN model is proposed for a new Turkish dataset. It also compares
accuracy and computational cost with two different input representations. In the first of these,
sequence lip images form the input of the model separately, while in the other, the lips are
combined to form a single image. In terms of performance, split lips look better, but combined
lips perform better in terms of time cost. In addition, the Turkish dataset collected from natural
Youtube images is also challenging as it is closer to real-world images compared to other
studies. The images collected in the studies in the literature were obtained with a fixed
background and a fixed human pose by establishing a controlled environment. There is a known
dataset that can be evaluated for Turkish, although it has more data, it was also collected in a
controlled environment. Automatic lip-reading over natural videos is also of great importance
in terms of automatic captioning for hearing-impaired people. In this study, a CNN model is
proposed by performing lip reading from natural video images. Since the natural language and
lip reading studies in Ural-Altaic languages are shallow, we have contributed with a unique
study.

On the image sequences, the lip-reading problem was handled by making multiclass
classification with frequently used greeting words in Turkish. Images consisting of frame sizes
in different numbers obtained from the video are used. These classified images are more
challenging for the visibility of the lips than datasets obtained in a controlled environment.

A Dbenchmarking was made by classifying the lip images collected in the natural
environment with CNN and three other classification algorithms, which are the approaches that
are frequently used in deep learning. The performance of the newly collected dataset was
evaluated on the basic approaches. This evaluation aimed to assess the effectiveness of the CNN
model compared to other commonly used classification algorithms in the context of lip image
classification. The results of the benchmarking provided insights into the performance and
suitability of different algorithms for lip image classification tasks in natural environments.

The dataset used in classification studies consists of frequently encountered greeting
expressions in Turkish. These words were collected from natural videos, ensuring that they were
obtained without any intervention such as clipping or elimination. This dataset, known as the

Turkish lip reading dataset, is publicly available for research purposes. One notable distinction
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between this dataset and many other lip reading datasets is that it contains solely image data,
without accompanying audio. This characteristic makes it particularly suitable for scenarios
where audio data is unavailable or absent in the environment. Researchers and practitioners can
utilize this dataset to explore and develop lip reading systems specifically designed for Turkish
greeting expressions. The availability of such a dataset contributes to advancing the field of lip
reading and further supports the development of robust models for speech recognition and
understanding.

Another significant contribution of this study is the evaluation of discrete and
concatenated representations of the collected lip data within a CNN architecture that exhibits
promising performance. In addition to the classification task, particular attention has been given
to accurately distinguish faces in the images and subsequently identify the lip region. This
comprehensive evaluation aims to explore the effectiveness of different representations of lip
data in the context of a CNN architecture.

The collected lip data is represented using two distinct approaches: discrete representation
and concatenated representation. The discrete representation involves treating each lip image as
an individual data point, while the concatenated representation involves combining multiple lip
images to form a single input. By evaluating the performance of these representations, the study
seeks to determine which approach yields better results in terms of accuracy and efficiency.

Furthermore, an emphasis has been placed on the approaches employed to accurately
distinguish faces within the images. This involves employing techniques such as face detection
and facial landmark localization to precisely identify the lip region of interest. The effectiveness
of these face detection and lip localization methods is also assessed in the study, contributing to
the overall understanding of the lip image classification process.

Through this comprehensive examination, the study aims to provide insights into the
optimal representation of lip data and the effectiveness of face detection and lip localization
techniques in the context of a CNN architecture. The findings will further advance the field of
lip image classification and contribute to the development of more accurate and efficient lip
reading systems

Furthermore, the study places a significant focus on achieving accurate identification of
faces within the images. Recognizing the importance of precise face detection as a crucial initial
step in the subsequent lip image identification process, the research explores various approaches
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and techniques to ensure optimal face detection performance. The evaluation encompasses the
assessment of different algorithms, methodologies, and pre-processing steps employed to
achieve reliable and accurate face detection.

Following successful face detection, the study's emphasis shifts to the identification and
extraction of lip images. Once the faces are accurately detected, the research investigates
different approaches employed to discern and extract the lip region from the overall facial
image. Various techniques, such as image segmentation, feature extraction, and pattern
recognition, are thoroughly examined and their effectiveness is evaluated in terms of accurately
isolating the lip region.

For image segmentation, different algorithms are explored to partition the facial image
and separate the lip region from the rest of the face. These algorithms aim to precisely identify
the boundaries of the lips and separate them from other facial components. Feature extraction
techniques are then applied to extract relevant visual characteristics and discriminative
information from the lip region. These features play a crucial role in distinguishing between
different lip shapes, movements, and articulations. Additionally, pattern recognition methods
are employed to recognize and classify the extracted lip images into relevant categories or
classes.

By investigating and evaluating these approaches for both face detection and lip image
identification, the study aims to contribute to the advancement of accurate and reliable lip
reading systems. The findings will provide valuable insights into the effectiveness of different
techniques, algorithms, and pre-processing steps in the context of face and lip analysis,
ultimately enhancing the overall performance of lip image classification and recognition tasks.

By conducting these comprehensive evaluations and in-depth analyses, this study aims to
make significant contributions to the advancement of lip image recognition techniques within
the domain of computer vision. The findings and insights gained from this research have the
potential to enhance the accuracy, reliability, and overall performance of lip reading systems,
biometric authentication applications, and other related fields where lip image analysis plays a
crucial role.

The outcomes of this study can pave the way for improved lip image classification and
recognition algorithms, leading to more robust and efficient systems. The research outcomes

can also guide the development of novel approaches and methodologies for face detection, lip
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region identification, and subsequent analysis. These advancements are particularly valuable in
areas such as human-computer interaction, assistive technologies for speech-impaired
individuals, and biometric security systems where accurate lip image analysis can provide
valuable information for identification and authentication purposes.

Additionally, the insights obtained from this study can inform the design and optimization
of lip reading systems for diverse applications, including transcription services, automatic
speech recognition, and audiovisual synchronization. The advancements in lip image
recognition can contribute to the development of inclusive and accessible technologies, enabling
effective communication and interaction for individuals with hearing impairments or in noisy
environments.

Overall, the findings and contributions of this study have the potential to advance the field
of lip image recognition, benefiting a wide range of domains that rely on accurate and efficient
analysis of lip-related visual information. Through this research, advancements in computer
vision techniques can be harnessed to unlock new possibilities and applications, ultimately
enhancing communication, security, and accessibility in various real-world scenarios.

Some suggestions for further Works;

Utilizing Depth Information: To enhance lip movements with more information, you can
consider integrating data obtained from depth cameras into your system. By incorporating both
2D image data and 3D depth information, a more precise lip reading system can be developed.

Multilingual Support: Although your current focus is on the Turkish language, providing
multilingual support for your system can cater to a broader user base. Collecting data for
different languages and investigating the language-dependent characteristics of lip movements
can present future opportunities for research.

Real-time Application: Evaluating the performance of your lip reading system in real-time
scenarios is crucial. Developing a system capable of analyzing live video streams in real-time
would be a significant step towards real-world applications by using Tiny ML & Edge Al.

LSTM variations: Explore different variations of LSTM beyond the traditional LSTM
architecture. For instance, you can investigate the usage of peephole connections, gated units at

the cell level, or stacked LSTM structures.
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Transfer learning: Investigate the potential usage of an LSTM model trained on another
language (e.g., English) to recognize Turkish lip movements. Transfer learning can be beneficial

when working with limited data.
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