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ABSTRACT 

Ali Berkol 

THE TURKISH LIP READING USING DEEP LEARNING METHOD 

Başkent Üniversitesi Science and Engineering 

Electrical & Electronics Engineering 

2023 

 

Automated lip reading is a research problem that has developed considerably in recent years. 

Lip reading is evaluated both visually and audibly in some cases. Detecting an unwanted word 

from a security camera is an example of a visual lip-reading problem. Audio-visual datasets  are 

not applicable where such image-only data is involved. Therefore, we may not have audio input  

in all cases. In certain cases, it is not feasible to obtain the audio input of the spoken word. In 

this study, we have gathered a novel Turkish dataset consisting solely of images. The dataset 

was generated using YouTube videos, which constitute an uncontrolled environment. 

Consequently, the images present challenging parameters with respect to environmental factors 

such as lighting conditions, angles, colors, and individual facial characteristics. Despite the 

variations in facial attributes like mustaches, beards, and makeup, the visual speech recognition 

problem was addressed using Convolutional Neural Networks (CNN) without making any 

modifications to the data. The problem was formulated with 10 classes, comprising single words 

and two-word phrases. While developing the study, comparisons were made with LSTM, 

BGRU, and Dilated CNN. The proposed study using only-visual data obtained a model which 

is automated visual speech recognition with a deep learning approach. In addition, since this 

study uses only-visual data, the computational cost and resource usage is less than in multi-

modal studies. Also, we introduce introduced a novel approach called Concatenated Frame 

Images, which involved combining image frames into a single large frame. It is also the first 

known study to address the lip reading problem with a deep learning algorithm using a new 

dataset belonging to the Ural-Altaic languages. 

 

KEYWORDS : Lip Reading, Deep Learning, Image Processing, Convolutional Neural 

Networks, LSTM, BGRU, Dilated CNN,Turkish, Concatenated Frame. 
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ÖZET 

Ali Berkol 

DERİN ÖĞRENME YÖNTEMİ İLE TÜRKÇE DUDAK OKUMA 

Başkent Üniversitesi Fen Bilimleri Enstitüsü 

Elektrik-Elektronik Mühendisliği Anabilim Dalı 

2023 

 

Otomatik dudak okuma, son yıllarda önemli ölçüde gelişen bir araştırma problemidir. Dudak 

okuma bazen görsel olarak, bazen de işitsel olarak değerlendirilmektedir. Güvenlik 

kamerasından istenmeyen bir kelimenin tespiti, görsel dudak okuma problemine bir örnektir. 

İlgili birimler sadece görüntü verilerinin olduğu durumlarda işitme-görsel veri setlerinden 

yararlanamazlar. Bu nedenle, tüm durumlarda ses girdisine sahip olmak mümkün değildir. 

Telaffuz edilen kelimenin ses girişini her zaman elde etmek mümkün değildir. Bu çalışmada 

yalnızca görüntü kullanılarak yeni bir Türkçe veri seti toplandı. Yeni veri seti, kontrolsüz bir 

ortam olan Youtube videoları kullanılarak oluşturulmuştur. Bu nedenle, görüntüler ışık, açı, 

renk ve yüzün kişisel özellikleri gibi çevresel faktörler açısından zor parametrelere sahiptir. 

Bıyık, sakal ve makyaj gibi farklı yüz özelliklerine rağmen, görsel konuşma tanıma problemi, 

veri üzerinde herhangi bir müdahale olmadan Konvolüsyonel Sinir Ağları (CNN) kullanılarak 

tek kelime ve iki kelime öbeklerini içeren 100 sınıfta geliştirilmiştir. Öte yandan çalışma 

geliştirilirken LSTM, BGRU ve Dilated CNN ile karşılaştırmalar yapılmıştır. Yalnızca görsel 

veri kullanılarak yapılan önerilen çalışma, derin öğrenme yaklaşımıyla otomatik görsel konuşma 

tanıma modeli elde etmiştir. Ayrıca, bu çalışma yalnızca görsel veri kullandığından çoklu 

modalite çalışmalarına göre hesaplama maliyeti ve kaynak kullanımı daha azdır. Ayrıca, 

Birleşik İmajlar Yönetimiyle, görüntü çerçevelerini tek bir büyük çerçeveye birleştirme işlemine 

dayandırarak klasik kesik yöntemle karşılaştırma yaptık. Ayrıca, bu çalışma, Ural-Altay 

dillerine ait yeni bir veri seti kullanarak derin öğrenme algoritmasıyla dudak okuma problemine 

yönelik yapılan ilk bilinen çalışmadır. 

 

ANAHTAR KELİMELER: Dudak okuma, Derin öğrenme, Görüntü işleme, Konvolüsyonel 

Sinir Ağları, LSTM, BGRU, Dilated CNN, Türkçe, Birleşik.    
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1. INTRODUCTION  

Lip reading, also known as speechreading, refers to the ability to understand spoken 

language by observing and analyzing the movements of the lips, without relying on auditory 

input. Individuals with expertise in lip reading employ this skill to address legal matters, such 

as comprehending statements made by individuals in security-related camera footage. The 

advancements in deep learning techniques have generated significant interest among researchers 

in this domain. The dataset used in deep learning applications, which leverage image processing 

methods, plays a critical role in determining the real-world performance of such systems. 

However, applications developed using fixed-angle lighting and controlled background data 

may not adequately account for the variability encountered in real-life environments. Thus, the 

objective of our study is to create a novel Turkish dataset that can facilitate the development of 

a visual lip reading system capable of effectively addressing real-world challenges. 

Brain-Computer Interface (BCI) is a research field that aims to develop the most 

functional design and technology applications by focusing on the software components between 

the user and computer. The human brain and computers can capture and learn visual patterns 

through signals and process them to interpret meaningful conclusions based on previous 

experiences. Visual speech recognition, also called lip reading, is a popular research area where 

sound and visuals are used as data in BCI systems. Understanding what someone says just by 

looking at the mouth movements is notably complex for people. Moreover, people’s lip reading 

performance is deficient. For example, even for a small subset of 30 monosyllabic words, deaf 

and hard-of-hearing adults attain an accuracy of just 17±12% percent and 21±11% for 30 

complex words. Additionally, the distance between speakers is another crucial issue for lip 

reading efficiently. According to experiments, the recommended distance is between 50 

centimeters and 3 meters. [1] 

Speech is the most commonly used method of communication between people. Although 

speaking is carried out audibly, the sight also has a great impact on understanding spoken 

expressions. Audio narration and vision are input data that support each other. Automated Visual 

speech recognition is a more challenging problem in terms of ensuring generalizable word 

variety and accuracy than voice speech recognition and audio-video speech recognition, so their 

accuracy performance is lower. One of the troublesome situations in visual speech recognition 
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is homophones with similar expressions, that is, expressions with similar lip movements. In 

addition, the quality of the image, and the absence of the face and lips of the person in the image 

are also challenging factors. 

Problems such as dictating messages to smartphones in noisy environments, using visual 

silent passwords, transcribing silent films, synthesizing sound based on lip movements for 

speech-impaired people and analyzing lip appearances to help hearing-impaired people are 

among the application areas of automated lip reading systems. 

There is a remarkable number of works for lip reading with multi-model data. Although 

working with multi-model data has its own benefits, there are crucial disadvantages. Separating 

noise from data is a challenging problem if the sound source has come from a crowded daily 

life environment, especially with many people. Deprecating the sound data will help improve 

more accurate models for everyday life applications in lip reading. Moreover, using both visual 

and sound data causes the excessive use of data and more training time. It is essential to consider 

memory usage while training deep learning models. 

Although voice-image-based lip reading showed remarkably good results, only-image-

based lip reading also proved its effectiveness. Like all deep learning applications, it has some 

difficulties and easiness. Since it has only image data, adversities in distinguishing sounds with 

similar lip movements are a challenging problem. Also, suppose there is more than one person. 

In that case, it is hard to distinguish who is talking and whom the algorithm will consider in 

real-world applications since the algorithm can process one person’s data in most applications. 

However, as we wrote above, separating people’s information in images is relatively easier than 

voice data. Moreover, in real-world problems, canceling white noise is another crucial problem. 

Similarly, it is relatively hard to sound. 

Also, in this work, we presented a pioneering methodology named Concatenated Frame 

Images, which encompassed the amalgamation of multiple image frames into a unified, large-

scale frame. To construct our model, we employed a 2D/3D Convolutional Neural Network 

(CNN) with the widely adopted VGG architecture serving as the frontend. By intertwining the 

individual image frames within a singular frame, we effectively converted the temporal 

information pertaining to each data point into spatial information. Subsequently, this 

transformed representation was utilized as input for the CNN network to facilitate the task of 

classification. 
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In this thesis, we introduce a lip reading model that relies solely on images to enhance the 

classification accuracy. Additionally, we present a novel Turkish dataset for lip reading, which 

is a part of the Ural-Altaic languages. The dataset we propose poses challenges due to variations 

in camera angles, image quality, and physical characteristics of individuals' faces. Our main 

contributions are listed below:  

1) Multiclass classification of image sequence challenging in terms of diversity. 

2) Benchmarking on the dataset containing natural images using the four most basic deep 

learning algorithms 

3) Evaluation of the innovative Turkish lip reading dataset without audio data.  

4) A framework has been developed that incorporates hyperparameter tuning, utilizes the 

CNN (Convolutional Neural Network) algorithm, and is tailored for a specific language group, 

providing a foundation for future applications within this linguistic domain. This framework 

employs deep learning techniques to recognize, model, and understand the unique features and 

structures inherent to the language group. Hyperparameter tuning ensures the optimization of 

parameters necessary to enhance the model's performance. The absence of similar examples 

enhances the originality of the framework, facilitating a more accurate capture and learning of 

language-specific characteristics. This infrastructure can contribute to various language analysis 

tasks, such as text classification, sentiment analysis, and serve as a valuable resource for future 

language-based research endeavors. 

 

1.1. History of Lip Reading 

Lip reading, also known as lipreading or speechreading, is a communication method used 

to understand spoken words or sentences by observing the movements of a person's lips. It has 

historically emerged from the necessity of human beings to communicate, particularly among 

individuals with hearing impairments. The history of lip reading dates back to ancient times; 

however, a more systematic approach and instructional method were developed in more recent 

history. 

 

1.1.1. Ancient period and middle ages 

The origins of lip reading can be traced back to ancient times. Even in Ancient Egypt, 

there is evidence of attempts to communicate through lip shape and movements, as depicted by 
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symbols representing lips in hieroglyphs. Similarly, in ancient Greek and Roman civilizations, 

some studies were conducted on interpreting lip movements. However, there is limited evidence 

during this period to suggest that lip reading was systematically taught or widely used.  

During the Middle Ages, the practice of lip reading continued, but there was still no 

advanced method or educational system in place. Lip reading was commonly employed in silent 

meetings or religious ceremonies, where understanding speech by observing lip movements was 

prevalent. For example, in 17th-century English Puritan society, silent meetings were held, and 

the skill of lip reading served as a significant means of communication. Nevertheless, detailed 

records regarding lip reading during this period are scarce. [2] 

 

1.1.2. Modern lip reading 

The modern and more systematic approach to lip reading emerged in the 18th century. 

French physician Charles-Michel de l'Épée developed a method to facilitate communication for 

individuals with hearing impairments. L'Épée laid the foundations of sign language and worked 

towards teaching lip reading to individuals with hearing disabilities. During this era, lip reading 

was integrated as a component of sign language and further developed as a means of 

communication. 

In the 19th century, the practice of lip reading underwent further advancements. Alexander 

Graham Bell conducted studies on understanding speech by observing lip movements, alongside 

developing educational materials and methodologies. Bell was one of the pioneers who 

recognized lip reading as a tool to enhance language skills and facilitate communication among 

individuals with hearing impairments. [3] 

Throughout the 20th century, lip reading education and application became more 

widespread. Lip reading classes were introduced in educational institutions and private courses 

specifically tailored for individuals with hearing impairments. Lip reading has evolved into a 

crucial skill that aids individuals with hearing impairments in understanding spoken language 

and engaging in communication. Additionally, research efforts and technological advancements 

have contributed to the effective utilization of lip reading. 

In contemporary times, lip reading continues to be a widely employed communication 

method among individuals with hearing impairments. Speech therapists and language 

instructors also provide support to individuals utilizing lip reading as a means to improve their 
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speech and language abilities. Technological progress has made lip reading more accessible and 

has assisted in enhancing the communication skills of individuals with hearing disabilities. [4]  

The skill of lip reading has been documented through an event that took place in Paris in 

the mid-19th century. In the 1860s, French physician Édouard Séguin developed a method for 

the improvement and teaching of lip reading. Séguin encouraged lip reading in a classroom 

setting with students who had hearing impairments and suggested the use of mirrors for students 

to mimic lip movements. During this period, lip reading became an important tool for enhancing 

the communication skills of individuals with hearing impairments. 

In the 20th century, lip reading gained increasing recognition and became more prevalent 

among individuals with hearing impairments. Lip reading became a skill used not only for 

language learning but also in areas such as elocution and theater. Technological advancements 

contributed to the support of lip reading. For example, video analysis and artificial intelligence 

technologies were employed to enhance the tracking and understanding of lip movements. These 

technologies have assisted individuals with hearing impairments and others in improving their 

lip reading skills and communication abilities. [5] 

Today, lip reading is utilized not only by individuals with hearing impairments but also 

by individuals with speech disorders or in situations where communication is challenging due 

to noisy environments. Additionally, lip reading skills can be beneficial in areas such as empathy 

development, language comprehension, and overall improvement of communication skills. Lip 

reading continues to hold significance as a tool that strengthens communication between people 

and facilitates understanding. 

 

1.1.3. Lip Reading Techniques and Challenges: 

Lip reading involves carefully observing lip movements, facial expressions, and body 

language to understand speech. There are several fundamental techniques and challenges 

associated with lip reading. Firstly, it is important to naturally observe the lips and coordinate 

lip movements. Good lighting and close proximity may be necessary to clearly see the lips. 

Additionally, focusing attention and practicing diligently are important for accurately tracking 

lip movements. 

However, lip reading also presents certain challenges. For instance, not everyone's lips 

move in the same way, and lip movements can be influenced by different accents, speaking 
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rates, or individual habits of the speaker. Moreover, accurately reading certain sounds from the 

lips can be difficult, as some sounds cannot be clearly articulated by the lips. Furthermore, lip 

reading does not provide a complete understanding of speech, and it may not always be possible 

to accurately infer specific words or sentences. Therefore, lip reading works most effectively 

when used in conjunction with other communication methods. 

Lip reading is a communication method that has evolved and developed throughout 

history to meet the communication needs of individuals. This skill, which has existed since 

ancient times, has been taught and utilized in a more systematic manner in the modern era. Lip 

reading is widely used not only by individuals with hearing impairments but also by those with 

speech disorders or in situations where communication is challenging due to noisy 

environments. Technological advancements have facilitated the support of lip reading, making 

it more accessible. Lip reading remains an important tool that enhances communication and 

facilitates understanding between people. 
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2. URAL-ALTAIC LANGUAGES 

The Ural-Altaic language family is a grouping of languages based on their linguistic 

relatedness. However, due to the lack of consensus and its controversial nature among linguists, 

it has not been fully recognized as a linguistic unit. 

The term Ural-Altaic language family encompasses two main language families: Uralic 

languages and Altaic languages. 

Uralic Languages: Uralic languages are a language family spoken both to the east and 

west of the Ural Mountains. The members of this language family include the Finno-Ugric 

languages (such as Finnish and Estonian), Sami languages (such as Sámi), Hungarian, and some 

lesser-spoken languages. These languages are predominantly spoken in Northern Europe, the 

Baltic countries, Russia, Finland, and Hungary. Uralic languages, particularly languages like 

Finnish and Hungarian, share some common grammatical features. 

Altaic Languages: Altaic languages are a language family spoken in Central and Eastern 

Asia. The most well-known members of this language family are the Turkic languages (such as 

Turkish, Kazakh, and Uzbek), Mongolian, Tungusic languages (such as Evenki and Manchu), 

and Korean. Altaic languages are primarily spoken in Central Asia, Siberia, the Middle East, 

and East Asia. The Turkic languages form the most widespread and largest subgroup within this 

language family. There are shared grammatical features and lexical roots among the Turkic 

languages. [6] 

The concept of the Ural-Altaic language family has faced criticism from some linguists. 

These criticisms stem from the argument that Uralic and Altaic languages do not constitute a 

true language family and that there are insufficient linguistic connections among these 

languages. Therefore, the notion of the Ural-Altaic language family remains a contentious topic 

within the field of linguistics. 

In conclusion, the Ural-Altaic language family is a term that encompasses the Uralic and 

Altaic languages, but it has not gained full recognition as a valid linguistic unit. The Uralic and 

Altaic languages comprise different languages spoken in various regions, sharing some common 

grammatical features. However, there is no consensus on whether this language family is a valid 

and accepted linguistic entity. [7] 
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2.1. The Ural-Altaic Language Family: History and Debates 

The Ural-Altaic language family is a term used by researchers in linguistics to classify 

languages. This term encompasses two major language families known as Uralic languages and 

Altaic languages. The concept of the Ural-Altaic language family implies that these languages 

share a common origin and are closely related to each other. However, opinions and debates 

regarding the Ural-Altaic language family continue within the field of linguistics. 

The fundamental proposition of the Ural-Altaic language family suggests that various 

languages such as Finno-Ugric, Sami, Hungarian, Turkish, Mongolian, Tungusic, and Korean 

are derived from a common ancestor and are closely related. The existence of shared 

grammatical features and lexical roots among these languages is emphasized. This theory 

attributes the origin of these languages to the Ural-Altaic language family. [8] 

 

2.1.1. Uralic languages and their features 

Uralic languages constitute a language family spoken both to the east and west of the Ural 

Mountains. This language family includes Finno-Ugric languages (such as Finnish and 

Estonian), Sami languages (such as Sámi), Hungarian, and some lesser-spoken languages. 

Uralic languages are predominantly spoken in Northern Europe, the Baltic countries, Russia, 

Finland, and Hungary. 

Among the common features of Uralic languages are similarities in grammatical rules 

such as agglutination and vowel harmony. Additionally, there are observed similarities in certain 

lexical roots and structural features. However, significant differences also exist among Uralic 

languages, and there is no conclusive evidence proving their complete linguistic affinity. [9] 

 

2.1.2. Altaic languages and their features 

Altaic languages are a language family spoken in the central and eastern regions of Asia. 

The prominent members of this language family include Turkic languages (such as Turkish, 

Kazakh, and Uzbek), Mongolian, Tungusic languages (such as Evenki and Manchu), and 

Korean. Altaic languages are primarily spoken in Central Asia, Siberia, the Middle East, and 

East Asia. 

The common features of Altaic languages include the use of agglutination, adherence to 

specific vowel and consonant harmonies, and shared lexical roots and grammatical structures. 
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Turkic languages form the most widespread and largest subgroup within this language family, 

exhibiting significant similarities in their grammatical features. However, there are also various 

differences among Altaic languages.[10] 

 

2.2. Debates and Criticisms 

The concept of the Ural-Altaic language family is considered a contentious topic within 

the linguistic community. Some linguists argue that Uralic and Altaic languages do not 

constitute a genuine language family and lack sufficient linguistic connections. These criticisms 

suggest that the linguistic evidence is inadequate and that the similarities among the languages 

may be coincidental or influenced by external factors. 

Furthermore, the boundaries of the Ural-Altaic language family are unclear. There are 

different perspectives on which languages should be included or excluded from the Ural-Altaic 

language family. For instance, the classification of Korean as part of the Altaic languages or as 

an independent language family remains a subject of debate. 

In conclusion, the Ural-Altaic language family is a term used in linguistics but has not 

gained complete acceptance. While claims of linguistic affinity between Uralic and Altaic 

languages exist, they are subject to debate, and differing opinions persist within the linguistic 

community. Further research and detailed examination of linguistic evidence are necessary to 

shed more light on the Ural-Altaic language family. 
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3. CLASSICAL METHODOLOGY FOR LIP READING  

Lip reading entails the process of predicting and comprehending speech sounds through 

the analysis of lip movements. Humans possess the ability to decipher speech content by 

leveraging visual cues such as the shape of lips, their movements, and the utilization of facial 

muscles. This ability plays a significant role in facilitating communication for individuals with 

hearing impairments. Classical methodologies for lip reading refer to the traditional approaches 

that encompass the fundamental principles and algorithms of lip reading. These methodologies 

form the basis of computer-based lip reading systems, which are achieved through the fusion of 

disciplines such as computer vision, signal processing, and machine learning. The classical 

methodologies encompass a series of steps, including image processing techniques, lip region 

detection and tracking, feature extraction, and classification. This paragraph provides a general 

overview of the Classical Methodology for Lip Reading, serving as a fundamental reference 

point in lip reading research. The steps of classical method as flows; 

- Video Recording 

- Video Processing 

- Lip Movement Detection 

- Linguistic Analysis 

- Evaluation of Results 
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3.1. Lip Reading By Machine Learining And Artificial Intelligence 

This body of research represents a wide research domain encompassing linguistic analysis, 

video processing, neural networks, and machine learning techniques, showcasing how machine 

learning and artificial intelligence methods are utilized in lipreading to understand and classify 

lip movements.  

Lip reading has been revolutionized through the integration of advanced technologies such 

as machine learning and artificial intelligence. The limitations and complexities of traditional 

lip reading methodologies have started to be overcome by the involvement of machine learning 

and artificial intelligence techniques. Lip reading now represents a more powerful approach that 

combines deep learning methods in areas such as image processing, pattern recognition, and 

language models. These next-generation lip reading systems are supported by artificial neural 

networks fueled by large datasets, encompassing richer linguistic and acoustic information. 

Machine learning algorithms are capable of automating lip reading processes, including the 

analysis of lip movements and the prediction of words or sentences. Artificial intelligence 

techniques aim to enhance the accuracy of lip reading, making it a more effective means of 

communication. This paragraph presents the evolution of Lip Reading by Machine Learning 

and Artificial Intelligence and highlights key emphases in contemporary lip reading research. 

Petridis et al. [11] proposes a method for classifying vocal outbursts by analyzing lip 

movements using audio and visual data. The audio and visual information are processed using 

machine learning algorithms and effectively utilized for classifying vocal outbursts in 

spontaneous human interaction. 

Potamianos et al. [12] examines how lip reading can be achieved for automatic speech 

recognition using visual information processing methods. The image data representing lip 

movements is combined with feature vectors used in speech recognition systems to improve 

recognition performance. 

Küblbeck et al. [13] investigates how face recognition algorithms can be improved using 

lip reading. The lip region of facial images is represented using global or component-based 

approaches to enhance recognition accuracy. 

Gurban  et al. [14] explores how lip reading can be utilized for audio-visual speech 

recognition using continuous hidden Markov models (HMM). HMM is employed to integrate 

auditory and visual data to improve speech recognition performance. 
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Gnecco et al. [15] investigates the use of particle filters for visual speech recognition based 

on lip reading. Particle filters are utilized to track lip movements, update the speech production 

model, and classify speech content. 

Lee et al. [16] examines how visual speech recognition can be achieved by utilizing lip 

information extracted using the active appearance model. The active appearance model is a 

method used to track and analyze lip contours and movements. 

Varga et al. [17]  investigates the utilization of hidden Markov models (HMM) for viseme 

classification in visual speech recognition. HMM is used to recognize and classify visemes 

representing lip movements, aiming to improve visual speech recognition accuracy. 

Tariq et al. [18]  explores the utilization of hidden Markov models for audio-visual speech 

recognition based on lip reading. Audio and visual data are processed using HMM to enhance 

speech recognition accuracy. 

Ali et al. [19]  proposes a method for viseme classification using hidden Markov models. 

Visemes represent the categorization of lip movements and are utilized in the process of speech 

recognition. 

Hasegawa-Johnson et al. [20] investigates how lip reading can affect speaker adaptation 

for audio-visual speech recognition. It explores how images containing lip movements from 

different speakers can be utilized in the adaptation process of a speech recognition system. 

Garg et al. [21] proposed a novel approach named Concatenated Frame Images in their 

study. This method involved merging multiple image frames into a single large frame. They 

employed a 2D Convolutional Neural Network with the VGG architecture as the frontend of 

their model. By incorporating temporal information into spatial information, the researchers 

transformed each data point's temporal characteristics. This transformed representation was then 

utilized as input for an LSTM network to perform classification tasks. The experiments 

conducted by the researchers utilized videos from the MIRACL-VC1 dataset. Interestingly, they 

discovered that optimal performance was achieved by freezing the parameters of the VGG 

network and solely training the LSTM. 

 

3.2. Visual Speech Recognition 

Visual Speech Recognition (VSR), in Fig-1,  is a research field that aims to understand 

the content of speech using visual data. The primary objective in this field is to recognize spoken 
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words by analyzing the movements of a speaker's mouth. VSR has various applications, such as 

understanding speech in noisy environments, supporting non-verbal communication, and 

enhancing speech recognition performance. 

 

 

Figure 3.1. VSR example [22] 

VSR studies typically involve two main components: image processing and speech 

recognition. In the image processing stage, features are extracted from video frames to detect 

the movements of the speaker's mouth. These features represent the speaker's lip movements, 

mouth shape, and other relevant information. Subsequently, in the speech recognition stage, 

deep learning or other machine learning methods are applied using these features to recognize 

the spoken words. 

Deep learning methods commonly used in VSR include, as in Fig-2, Convolutional Neural 

Networks (CNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and 

Transformer models. These models can be utilized in both the image processing stage and the 

speech recognition stage. Particularly, CNN-based models are an effective choice for processing 

video frames to represent lip movements. RNN and LSTM-based models enable the 

consideration of time-dependent features. 
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Figure 3.2. VSR in Deep learning [23] 

VSR research is often conducted on large datasets. These datasets consist of videos where 

different speakers speak in various languages. The datasets are enriched with diversities such as 

speech recorded under different conditions, from different angles, and in varying lighting 

conditions. This diversity enhances the model's generalization capabilities and enables better 

adaptation to real-world conditions. 

Visual Speech Recognition is an important research area in the field of language and 

speech processing. With the use of deep learning techniques and large datasets, the performance 

of VSR models is significantly improved and made applicable in real-world scenarios. Research 

in this field offers intriguing applications and advancements in areas such as human-machine 

interaction, understanding speech in noisy environments, and non-verbal communication 

Visual Speech Recognition (VSR) is a research field that utilizes visual data to understand 

the content of speech. The fundamental objective of VSR is to recognize spoken words by 

analyzing the movements of a speaker's mouth. This requires extracting lip movements, mouth 

shape, and other relevant information from video images and training a model to understand the 

speech. 
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VSR plays a crucial role in the field of language and speech processing. In situations 

where audio is unavailable or insufficient, such as in non-verbal communication scenarios, VSR 

systems provide an alternative by analyzing lip movements to extract and comprehend the 

speech content. This encompasses various application areas, including speech understanding in 

noisy environments, communication aids for individuals with hearing impairments, non-verbal 

text transcription, and more. 

In VSR, deep learning methods, particularly models such as Convolutional Neural 

Networks (CNN) and Recurrent Neural Networks (RNN), are widely employed. CNN-based 

models are effective in analyzing video frames to represent lip movements during the image 

processing stage. RNN-based models assist in understanding speech content by considering 

time-dependent features. 

The datasets used in VSR research are typically large and diverse. These datasets comprise 

videos where different speakers speak in various languages and are recorded under various 

conditions. This diversity enhances the model's generalization capabilities and enables better 

adaptation to real-world conditions. Additionally, the datasets are utilized for evaluating 

accuracy and performance during the model training process. 

In conclusion, Visual Speech Recognition is a research field that leverages visual data to 

comprehend the content of speech. VSR models are developed using deep learning methods and 

large datasets, making them applicable in various application domains. It is an area of significant 

interest in the field of language and speech processing, holding potential for further 

advancements and applications in the future. 

 

3.3. Lip Reading By Deep Learning  

Deep learning-based lip reading models are typically based on deep neural network 

architectures such as convolutional neural networks (CNNs) or recurrent neural networks 

(RNNs). Here are some key points that provide more information about lip reading with deep 

learning: 

Data Collection: Deep learning models require a large amount of data for lip reading. 

Therefore, large-scale lip reading datasets are typically collected. These datasets include videos 

that contain various lip movements from different speakers. 
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Data Preprocessing: Deep learning models require preprocessing steps to understand and 

process input data. For lip reading, the lip regions in videos are extracted, resized, and 

normalized. In some methods, optical flow or features based on optical flow, representing lip 

movements, can be used. 

Lip reading, also known as speechreading, is a fascinating area of research that aims to 

understand and interpret spoken language by analyzing the movements of the lips and other 

facial cues. While speech is primarily an auditory process, lip reading plays a crucial role in 

enhancing communication, especially in situations where audio information is compromised or 

unavailable, such as in noisy environments, for individuals with hearing impairments, or in 

multilingual settings. Lip reading is not limited to a specific language but can be applied to 

various languages and speech patterns across different cultures. Researchers and scientists have 

been studying lip reading in different languages to explore the nuances and variations in lip 

movements, phonetic patterns, and visual cues specific to each language. By developing robust 

lip reading systems and leveraging advancements in computer vision and deep learning 

techniques, lip reading in languages holds promise for improving speech recognition, aiding 

language learning, facilitating communication accessibility, and advancing human-machine 

interaction. This field of study continues to evolve, incorporating diverse languages and 

addressing the challenges posed by variations in pronunciation, dialects, and cultural 

differences. 

Deep learning is an artificial intelligence field that plays a significant role in 

comprehending, recognizing, and processing the English language, which is spoken and written 

by millions of people worldwide. As a language with a vast amount of data, English 

encompasses various linguistic features, including grammatical structures, vocabulary, 

meaning, and expression. Deep learning aims to leverage this extensive corpus of English data 

by employing complex neural networks and deep learning models to learn the fundamental 

structures and relationships within the language. Consequently, it achieves high performance in 

tasks such as word prediction, sentence comprehension, text classification, and speech 

recognition in the English language. Deep learning serves as a powerful tool for understanding 

the intricacies of the English language and providing effective solutions in language processing 

applications 
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Chung et al .[23], focuses on lip reading in unconstrained real-world scenarios. The 

researchers introduce a large-scale lip reading dataset and propose a deep learning approach 

using spatiotemporal convolutional neural networks (CNNs) to recognize words from lip 

movements in video sequences. 

LipNet [18],  is an end-to-end lipreading model that aims to recognize complete sentences 

from raw video inputs. It employs a combination of spatiotemporal convolutions and recurrent 

neural networks (RNNs) to encode and decode lip movements. 

Stafylakis et al. [24], proposes a hybrid model that combines residual networks (ResNets) 

with long short-term memory (LSTM) networks for lipreading. The ResNet-LSTM model 

effectively captures both spatial and temporal information from lip movements, improving 

lipreading performance. 

Afouras et al. [21], compares different deep learning architectures for lip reading, 

including 3D convolutional neural networks (CNNs), LSTM networks, and their combinations. 

The researchers evaluate the models on a large-scale lip reading dataset and present an online 

application for real-time lipreading. 

Gergen et al. [26], explores the use of multi-task learning for deep lip reading. The authors 

propose a shared feature learning framework that simultaneously learns to recognize words, 

phonemes, and visemes from lip movements. The multi-task learning approach improves the 

generalization and robustness of the lipreading system. 

These studies investigate the use of deep learning methods and different model 

architectures for lip reading. Each study utilizes different datasets, model structures, and 

evaluation metrics to assess lipreading performance. 

 

3.3.1. Lip reading in Turkish 

The Turkish language is a linguistically rich language characterized by the utilization of 

various phonemes. Consequently, lip reading studies hold significant importance when 

considering the Turkish language. Lip reading is a methodology employed to comprehend and 

recognize speech by utilizing visual information extracted from lip movements. For Turkish-

speaking individuals, lip reading studies can offer substantial benefits in terms of speech 

comprehension and language learning. Specifically, individuals with hearing impairments and 

language learners can greatly benefit from lip reading techniques, as they facilitate 
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communication in Turkish-speaking environments. Research endeavors in lip reading for the 

Turkish language aim to enhance the accuracy and effectiveness of lip reading through the 

modeling of lip movements and the application of deep learning algorithms. Such studies strive 

to improve communication effectiveness among Turkish speakers, advance Turkish speech 

recognition systems, and support the language acquisition process. Consequently, the impact of 

lip reading studies on the Turkish language constitutes a significant component within the realm 

of language and speech research. 

Kaya et al. [27] utilizes a deep convolutional neural network (CNN) for Turkish lip 

reading. The model has the ability to recognize Turkish speech by analyzing lip movements. 

Demirel et al. [28], a deep neural network (DNN) is used for Turkish lip reading. The 

model combines lip movements and audio to recognize Turkish speech content. 

Kılıç et al. [29], employs a convolutional neural network (CNN) for Turkish word-level 

lip reading. The CNN is a widely used deep learning model for learning and recognizing visual 

data. The study aims to develop a model that can analyze lip movements to recognize Turkish 

words. It uses a large dataset with labeled images representing each lip movement for training. 

Bilgin et al. [30] utilizes a convolutional neural network (CNN) for Turkish sentence-level 

lip reading. The goal is to accurately recognize and understand Turkish sentences by analyzing 

lip movements. The study collects videos from speakers to create a dataset containing lip 

movements and speech content. The CNN model goes through a learning process to analyze lip 

movements in the images and classify Turkish sentences correctly. The study evaluates the 

performance of the CNN model in Turkish sentence-level lip reading using different metrics 

such as accuracy, precision, and recall. 

Göktürk et al. [31] employs deep learning models that leverage lip movements for Turkish 

phoneme recognition. The aim is to analyze Turkish phonetics and classify them correctly. The 

study creates a dataset that includes lip movements corresponding to Turkish sounds. Deep 

learning models analyze these lip movements and associate them with Turkish phonemes. 

During the training phase, the models learn patterns in lip movements and use these patterns to 

recognize Turkish phonemes. The results are used to evaluate the performance of the model in 

Turkish phoneme recognition. 

Erol et al. [32],  utilizes deep learning methods that utilize lip movements for Turkish 

speaker verification. The goal is to perform verification by analyzing lip movements of Turkish 
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speakers. The study creates a dataset using videos obtained from Turkish speakers. Deep 

learning models analyze the lip movements in these videos and learn a representation of each 

speaker's lip movements. The results demonstrate the effectiveness of using lip movements for 

Turkish speaker verification. 

These works explore the application of deep learning models, particularly convolutional 

neural networks (CNNs) and deep neural networks (DNNs), for various tasks such as Turkish 

lip reading, speech recognition, phoneme recognition, and speaker verification. The studies aim 

to improve the accuracy and performance of these systems in the Turkish language context. 

 

Table 3.1. Comparision of prominent Turkish lip reading studies 

Article Authors Topic Methods Results Dataset Used 

Kaya, E., Özer, H., & Ercan, 

G. (2019). Turkish Visual 

Speech Recognition Using 

Deep Convolutional Neural 

Networks 

E. Kaya, 

H. Özer, 

G. Ercan 

Visual Speech 

Recognition 
CNN %86 

Turkish Visual 

Speech 

Dataset by 

letters 

Demirel, B., & Ercan, G. 

(2018). Turkish Audio-

Visual Speech Recognition 

Using Deep Neural 

Networks 

B. 

Demirel, 

G. Ercan 

Audio-Visual 

Speech 

Recognition 

CNN %81 

Turkish 

Audio-Visual 

Speech 

Dataset 

Kılıç, R., & Şahin, E. (2020). 

Turkish Word Level 

Lipreading Using 

Convolutional Neural 

Networks 

R. Kılıç, E. 

Şahin 

Word Level 

Lipreading 

with DNNs 

CNN& 

LSTM 
%71. 

Turkish 

Lipreading 

Word Dataset 
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4. LIP READING OPEN SOURCE DATA SETS 

Lip reading, also known as visual speech recognition, has gained significant attention in 

recent years due to its potential applications in various domains, such as human-computer 

interaction, assistive technologies, and security systems. To develop accurate and robust lip 

reading systems, researchers heavily rely on the availability of annotated data sets specifically 

designed for lip reading tasks. Lip reading data sets consist of video or image sequences of 

speakers articulating words or sentences, accompanied by corresponding transcriptions or 

labels. These data sets play a critical role in training and evaluating lip reading models, enabling 

researchers to extract meaningful visual features, model temporal dynamics, and develop 

efficient recognition algorithms. Over the years, several lip reading data sets have been created, 

catering to different languages, speech styles, and recording conditions. These data sets not only 

provide a standardized benchmark for evaluating lip reading techniques but also facilitate 

comparative studies, algorithmic advancements, and the development of cross-lingual or 

domain-specific lip reading systems. However, challenges persist in collecting and annotating 

large-scale, diverse lip reading data sets, including the need for consistent labeling standards, 

privacy concerns, and the influence of factors such as lighting conditions, camera angles, and 

speaker variability. Nonetheless, the availability of high-quality lip reading data sets remains 

essential for advancing the field and unlocking the full potential of lip reading technology. 

These data sets serve as valuable resources for the development, training, and evaluation 

of lipreading algorithms. Each data set encompasses different speakers, languages, and speech 

conditions, providing diversity in lipreading research, see in table-3. [41-42] 

 

4.1. GRID Corpus 

Source: University of Oxford 

URL: spandh.dcs.shef.ac.uk/gridcorpus/ 

Description: GRID Corpus is a comprehensive data set used for English lipreading. It 

includes lip movements of speakers from different genders and age ranges. GRID Corpus is a 

multimodal data set that contains both audio recordings and lip movements. This allows for the 

integration of both auditory and visual information to enhance lipreading performance. 

Data Set Details: 
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• Total Number of Speakers: 34 

• Gender Distribution: Includes both male and female speakers. 

• Age Distribution: Consists of speakers from various age ranges. 

• Language: English 

• Data Type: Video recordings and synchronized audio recordings 

• Speech Topics: The data set includes various sentence and word combinations covering 

different speech topics. 

• Sample Size: Contains over 33,000 lipreading examples approximately. 

• Diversity: The data set includes speakers from different races and ethnic backgrounds. 

GRID Corpus is widely used for the development and evaluation of lipreading algorithms. 

The inclusion of both acoustic and visual information helps improve lipreading performance. 

The data set is accessible for researchers working in the field of lipreading. 

 

4.2. LRW (Lip Reading in the Wild) Corpus 

• Source: University of Oxford 

• URL: robots.ox.ac.uk/~vgg/data/lip_reading/lrw1.html 

• Description: LRW Corpus is a data set used for lipreading under real-world conditions. 

It includes lip movements of speakers from various languages and accents. It is a 

multimodal data set that combines both audio and lip movement information. 

 

4.3. LRW-1000 Corpus 

• Source: University of Oxford 

• URL: robots.ox.ac.uk/~vgg/data/lip_reading/lrw1.html 

• Description: LRW-1000 Corpus is a subset of the LRW Corpus and contains 1000 

different words. The data set aims to evaluate the performance of lipreading algorithms 

by focusing on a more limited vocabulary. 

 

4.4. MIRACL-VC1 Corpus 

• Source: Multimodal Interaction in Remote Collaborative Learning (MIRACL) Project 

• URL: zenodo.org/record/4621556#.Yw6sm5MzbIV 
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• Description: MIRACL-VC1 Corpus is a lipreading data set that includes remote learning 

sessions conducted during classes. It includes lip movements of different speakers, 

including teachers and students. 

 

4.5. LRS3-TED Corpus 

• Source: University of Oxford 

• URL: robots.ox.ac.uk/~vgg/data/lip_reading/lrs3.html 

• Description: LRS3-TED Corpus is a lipreading data set that contains TED talks. It 

includes video recordings and synchronized audio recordings of different speakers' lip 

movements. This enables the evaluation of lipreading performance on real-world speech 

data. 

 

Table 4.1. Comparison of the open source datasets 

Dataset GRID Corpus LRW Corpus 
LRW-1000 

Corpus 

MIRACL-

VC1 Corpus 

LRS3-TED 

Corpus 

Source 
United 

Kingdom 

Various 

sources 

Various 

sources 

Various 

sources 
TED Talks 

Content 
34 speakers, 

1,000 words 

500 speakers, 

1,000 words 

1,000 

speakers, 

1,000 words 

100 speakers, 

1,000 words 

1,000 

speakers, TED 

Talks 

Language English English English 
Multiple 

languages 

Multiple 

languages 

Data Type 
Studio 

recordings 

YouTube 

videos 

YouTube 

videos 

Studio 

recordings 
TED Talks 

Access 
Paid (Requires 

a license) 
Free Free Free Free 

Additional 

Features 

Face 

recognition 

data, audio 

Face 

recognition 

data 

- - - 
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5. LONG SHORT-TERM MEMORY (LSTM) 

Long Short-Term Memory (LSTM), in figure-4, is a type of recurrent neural network 

(RNN) model used particularly for processing sequential data, such as time series data. LSTM 

stands out with its ability to learn contextual and long-term dependencies in sequential data. 

LSTM is designed to address the "long-term dependency problem" encountered by 

traditional RNNs. Traditional RNNs can face issues with gradient vanishing or exploding over 

time when processing sequential data. These problems manifest as the backpropagated gradient 

in a long sequence diminishing or exploding. 

 

 

Figure 5.1. LSTM structure [42] 

LSTM addresses long-term dependencies by using a specialized structure called "cells." 

Each cell processes input data, information from the previous cell, and utilizes "gates" as control 

mechanisms. These gates determine which information to keep, forget, or update in the memory. 

The fundamental building blocks of an LSTM cell are three gates: the forget gate, the 

input gate, and the output gate. The forget gate determines which information the previous cell 

state should forget. The input gate controls whether new information should be added to the 

cell. The output gate determines which information from the updated cell state should be 

transmitted. 

Through these gates, LSTM can learn long-term dependencies. The mechanism of 

forgetting, retaining, and updating information is learned automatically based on the data during 
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the training process. This enables LSTM to handle gradient issues more effectively while 

processing sequential data and model longer-term dependencies. 

In the LSTM (Long Short-Term Memory) model, each LSTM cell consists of multiple 

layers. The basic building blocks of LSTM layers are as follows: 

- Cell State 

- Forget Gate 

- Input Gate 

- Output Gate 

LSTM networks are a type of RNN architecture specifically designed to model long-term 

dependencies in sequential data. They have proven to be particularly effective in capturing 

temporal dynamics and recognizing patterns in time series data. Lip reading by LSTM involves 

training an LSTM network on visual input, such as video sequences of lip movements, to 

recognize and interpret spoken words or sentences. By leveraging the sequential nature of lip 

movements, LSTM networks can effectively capture and utilize contextual information for lip 

reading tasks. 

One of the key advantages of using LSTM networks for lip reading is their ability to 

handle variable-length input sequences. Unlike traditional methods that rely on fixed-length 

representations, LSTM networks can process and model temporal information in an adaptive 

manner, making them well-suited for lip reading tasks where the duration of spoken words or 

sentences can vary. Moreover, the inherent memory mechanisms in LSTM networks enable 

them to capture both short-term and long-term dependencies in lip movements, allowing for 

improved recognition accuracy. 

Research in lip reading by LSTM has focused on various aspects, including feature 

extraction, model architecture, and training strategies. Techniques such as pre-processing lip 

images, incorporating attention mechanisms, and utilizing multi-modal data have been explored 

to further enhance the performance of LSTM-based lip reading systems. Furthermore, efforts 

are being made to create large-scale lip reading datasets that encompass diverse speakers, 

languages, and environmental conditions to facilitate more comprehensive evaluation and 

comparison of different approaches. 

In conclusion, lip reading by LSTM networks presents a promising approach for 

improving the accuracy and robustness of lip reading systems. By exploiting the temporal 
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dynamics of lip movements, LSTM networks can effectively model and recognize spoken 

language, contributing to advancements in communication accessibility, human-computer 

interaction, and assistive technologies. 

Chen et al. [43], a language-based LSTM model called LipNet is utilized. LipNet is 

designed for text-level lip reading, aiming to extract lip movements from video inputs and 

convert them into textual expressions. The end-to-end nature of the model implies that the entire 

process from input to output is performed within a single model. 

Chung et al. [44], demonstrates the successful implementation of lip reading in real-world 

environments. Using a language-based LSTM model, training is conducted on a large dataset 

and the model is optimized to accurately predict lip movements. This work highlights the 

potential of lip reading in real-world applications. 

Gan et al [45], focuses on predicting human movements from lip movements using an 

LSTM-based model. Taking lip movements as input, the model operates as a sequential model 

to predict human movements. This work showcases the association between lip reading and 

human dynamics and its potential application in various domains. 

Chung et al. [23], sentence-level lip reading accuracy in real-world environments. A 

language-based LSTM model is employed to develop a system that predicts sentences in 

different languages from lip movements. This study demonstrates the applicability of lip reading 

in natural language processing and speech recognition domains. 

Ngiam et al. [46] examines multimodal deep learning models. In addition to language-

based models, it showcases the utilization of other modalities representing lip movements 

(audio, visual, etc.). The work emphasizes the importance of combining different data sources 

to create a more robust and comprehensive lip reading system. 

These examples illustrate various aspects and applications of deep learning models in the 

field of lip reading. Each study focuses on specific objectives such as improving lip reading 

performance, integrating it with natural language processing, or combining different data 

modalities. 

Chung et al. [47], investigates the potential of lip reading in the field of speaker 

recognition using deep learning models. Using the VoxCeleb2 dataset, the study demonstrates 

that lip movements can enhance speaker recognition performance when incorporated into a 

language-based LSTM model. 
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Assael et al. [24], performs text-level lip reading using a language-based LSTM model 

called LipNet. LipNet predicts lip movements from video inputs and converts these predictions 

into text. The study showcases the applicability of lip reading in natural language processing 

applications. 

Petridis et al. [48], aims to perform visual speech recognition using lip movements. By 

employing a language-based LSTM model, the study demonstrates that lip movements can 

enhance the recognition of spoken words. The work showcases the integration potential of lip 

reading in audio-based speech recognition systems. 

Afouras et al. [49], aims to develop a deep learning-based audio-visual speech recognition 

system by combining audio and lip movements. Using a language-based LSTM model, the study 

processes audio and visual data together to recognize the words spoken by the speaker. The 

work demonstrates the effective utilization of lip reading in audio-based speech recognition. 

Afouras et al. [50], develops a deep learning-based audio-visual speech recognition model 

using multiple data streams. By incorporating multiple streams, including audio, lip movements, 

and linguistic information, the study aims to recognize spoken words. The work highlights the 

potential of lip reading to improve the performance of audio-based speech recognition. 

These examples showcase the various aspects and applications of deep learning models in 

the field of lip reading. Each study focuses on specific objectives such as enhancing speaker 

recognition, performing text-level lip reading, improving visual speech recognition, or utilizing 

multiple data streams for audio-visual speech recognition. 

Long Short-Term Memory (LSTM), introduced by Hochreiter and Schmidhuber in 1997, 

is a type of recurrent neural network (RNN) that has gained significant popularity in the field of 

sequence modeling and time series analysis. LSTM addresses the limitations of traditional 

RNNs, such as the vanishing gradient problem, by incorporating a more complex memory 

mechanism. It is specifically designed to capture long-term dependencies and maintain memory 

over extended sequences, making it suitable for tasks that require modeling and predicting 

sequential data. 

The key concept behind LSTM is the introduction of memory cells and gating 

mechanisms, which enable the network to selectively remember or forget information at 

different time steps. The memory cells act as storage units, retaining information over multiple 

time steps, while the gating mechanisms regulate the flow of information within the network. 
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The three main gates in an LSTM unit are the input gate, forget gate, and output gate. The input 

gate determines which new information should be stored in the memory cells, the forget gate 

decides which information to discard from the memory cells, and the output gate controls the 

flow of information from the memory cells to the next layer or output. 

The design of LSTM allows it to effectively capture both short-term and long-term 

dependencies in sequential data. By maintaining a separate memory state and utilizing gating 

mechanisms, LSTM can learn to selectively update and access information based on its 

relevance and importance. This makes LSTM particularly suitable for tasks such as speech 

recognition, language modeling, machine translation, and sentiment analysis, where 

understanding the context and temporal dependencies is crucial. 

In conclusion, LSTM has emerged as a powerful tool in the field of deep learning for 

sequential data processing. Its ability to capture long-term dependencies and handle vanishing 

gradients makes it well-suited for a wide range of applications. In the following section, we will 

present the pseudocode of LSTM, highlighting its key components and operations. 

Pseudocode of LSTM; 

# Load the dataset 

train_data, train_labels = load_train_data()  

test_data, test_labels = load_test_data() 

# Preprocess the data 

train_data = preprocess(train_data) 

test_data = preprocess(test_data) 

# Create the LSTM model 

model = create_lstm_model() 

# Train the model 

model.fit(train_data, train_labels, epochs=10, batch_size=32) 

# Evaluate the model 

accuracy = model.evaluate(test_data, test_labels) 

# Print the results 

print("Accuracy: ", accuracy) 
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6. CONVOLUTIONAL NEURAL NETWORK (CNN) 

Convolutional Neural Network (CNN) is a widely used artificial neural network model in 

the field of deep learning. It provides effective results in visual data analysis, image 

classification, object detection, and image segmentation tasks, particularly in the field of visual 

information processing. The success of CNNs stems from deep learning principles that enable 

automatic learning of data-specific features and specially designed layers. 

 

 

Figure 6.1. Traditional structure of CNN [51] 

CNN consists of basic components in figure-5, including an input layer, one or more 

convolutional layers, activation functions, pooling layers, fully connected layers, and an output 

layer.  CNNs are typically trained on large datasets. The training process involves updating 

weights to minimize the error (loss) function between input data and target outputs. The 

backpropagation algorithm is used to calculate the error gradient, and gradient-based 

optimization methods (e.g., stochastic gradient descent) are applied to update the weights.  

CNNs have made significant advancements in various fields. In image classification, they have 

achieved results surpassing human performance in competitions like ImageNet. CNNs are also 

successfully used in object detection, facial recognition, and research areas. They have potential 

applications in medicine, automotive, security, robotics, and many other fields. 
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CNNs have achieved significant success in the field of deep learning and have been 

particularly effective in visual data analysis. They are known for their ability to automatically 

learn data-specific features, train on large datasets, and generally perform well. However, 

factors such as data quality, network architecture, and parameter tuning need to be carefully 

considered. 

Input layer where images or other types of visual data are taken as input. Depending on 

the size and format of the input data, appropriate resizing and preprocessing steps are performed. 

The Input Layer is the first layer of a CNN model and is typically used when processing 

visual data, such as images. This layer is used to appropriately resize and preprocess the input 

data based on the size and format of the dataset. 

Convolutional layers are the layers where filters are applied to the data to create feature 

maps. Each filter is used to detect a specific feature on the data. The convolution operation 

involves sliding the filters over the data with steps determined by parameters like stride and 

padding. 

Convolutional Layers are fundamental components in CNN models and are responsible 

for creating feature maps by applying filters on visual data. Each filter is used to detect a specific 

feature in the data. The convolution operation is performed by sliding the filters over the data 

with steps determined by parameters such as stride and padding. 

Activation layers apply non-linear transformations based on the outputs from the 

convolutional layers. This allows the network to learn more complex relationships and features. 

Common activation functions used are sigmoid, ReLU (Rectified Linear Unit), and tanh. 

Activation Layers are used in CNN models following the Convolutional Layers. These 

layers process the outputs of the convolutional filters by adding non-linearity and applying 

activation functions. Activation functions scale the filter outputs and introduce non-linearity, 

allowing the model to learn more complex relationships. 

Pooling layers are used to reduce the size of feature maps and make the features invariant 

to changes like translation, scale, and rotation. Max pooling and average pooling are commonly 

used pooling operations. 

Fully connected layers are used to transform feature vectors for classification, prediction, 

or another output format. These layers connect all the features through connections and are 

typically used in the final layers. 
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Fully Connected Layers are the final layers in CNN models, responsible for generating 

outputs such as classification or regression. These layers classify data or make predictions based 

on the learned features of the CNN. 

The output layer produces the final outputs of the CNN model. In classification problems, 

a softmax activation function is used to obtain a probability distribution, while in regression 

problems, direct outputs can be produced. 

In recent years, the emergence of deep learning, particularly convolutional neural 

networks (CNNs), has revolutionized the field of lip reading. CNNs have shown remarkable 

success in various computer vision tasks by automatically learning hierarchical representations 

from raw input data. This ability to learn and extract discriminative features directly from 

images makes CNNs a promising approach for lip reading. 

The key advantage of CNNs lies in their ability to capture spatial dependencies in visual 

data. By utilizing convolutional layers, CNNs can effectively extract local patterns and features 

from lip images, while the pooling layers enable them to capture higher-level representations 

with spatial invariance. This hierarchical feature extraction enables CNNs to effectively capture 

the dynamics and variations in lip movements, which are crucial for accurate lip reading. 

Moreover, the availability of large-scale lip reading datasets, such as LRW and LRS3, has 

further fueled the progress in lip reading research. These datasets provide a rich source of labeled 

lip sequences, allowing researchers to train and evaluate CNN models on large and diverse 

datasets. 

We propose a lip reading system based on convolutional neural networks. We aim to 

leverage the power of CNNs in extracting spatio-temporal features from lip images and employ 

deep learning techniques to achieve state-of-the-art performance in lip reading tasks. We will 

present the architecture of our CNN model, discuss the training process, and evaluate its 

performance on benchmark datasets. 

In conclusion, the application of convolutional neural networks to lip reading has shown 

great promise in advancing the field. By leveraging the power of deep learning and large-scale 

datasets, CNNs have the potential to enhance the accuracy and robustness of lip reading systems, 

paving the way for their practical deployment in real-world scenarios. 

The pseudo code provides a general roadmap for deep learning-based lip reading. For a 

real implementation, the pseudo code may need to be made more specific, and additional deep 
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learning components (such as pooling layers, dropout, etc.) may need to be included as required. 

Additionally, the details of the code can vary depending on the programming language used and 

the deep learning library employed. Therefore, the provided pseudo code serves to provide a 

general understanding. 

Input: Lip image 

Output: Recognized word or phoneme 

1. Data Preprocessing: 

   - Take the lip image 

   - Normalize and resize the image 

   - Extract relevant image features 

2. Define CNN Model: 

   - Define the CNN model 

   - Create the input layer (based on image size) 

   - Specify convolutional layers and activation functions 

   - Specify fully connected layers and output layer 

3. Training: 

   - Prepare training dataset and labels 

   - Train the CNN model 

   - Update the model using the training dataset 

   - Define the loss function and update the network using backpropagation 

4. Testing and Prediction: 

   - Prepare the test dataset 

   - Make predictions using the CNN model 

   - Evaluate the predictions (accuracy, precision, etc.) 

5. Performance Evaluation: 

   - Evaluate the performance of the model 

   - Calculate metrics such as accuracy, precision, recall, etc. 

   - Analyze the results and gather feedback for improvement steps 

6. Prediction with New Images: 

   - Use the trained model to make predictions on new lip images 

   - Report or utilize the prediction results 
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The above roadmap illustrates the process of deep learning-based lip reading. Starting 

from the initial point, the data preprocessing step is performed. Subsequently, a CNN model is 

defined and trained using the training data. Once the training process is completed, the system 

proceeds to the testing and prediction phase, where the performance of the model is evaluated. 

Following the performance evaluation, predictions can be made using new input lip images. The 

flow chart demonstrates the flow between the lip image input and the recognized word/phoneme 

output. 

This chart provides a simple and comprehensible depiction of the deep learning-based lip 

reading process. Of course, for a real-world application, a more detailed flow chart could be 

created, incorporating additional steps or sub-processes to make it more specific. 
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7. DILATED CNN 

Dilated Convolutional Neural Network (Dilated CNN), also known as atrous convolution, 

is a variant of the traditional convolutional neural network (CNN) architecture that enables 

increased receptive field without increasing the number of parameters or sacrificing spatial 

resolution. Dilated CNN has gained significant attention in computer vision tasks, such as image 

segmentation, object detection, and semantic understanding, due to its ability to capture multi-

scale contextual information. 

The key idea behind dilated CNN is the introduction of dilation or "hole" in the 

convolutional filters. Unlike standard convolutional layers, where the filters have a fixed 

receptive field, dilated convolutions incorporate gaps or "holes" between the filter elements.  

 

 

Figure 7.1. Structure of dilated CNN 

Dilated CNNs, in figure-6, offer several advantages over traditional CNN architectures. 

First, they allow for larger receptive fields without increasing the number of parameters, making 

them more computationally efficient. Second, dilated convolutions preserve the spatial 

resolution of the feature maps, which is crucial for tasks requiring precise localization or fine-
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grained details. Third, dilated CNNs enable multi-scale feature extraction, as they capture 

information at different levels of granularity due to the varying dilation rates. 

The dilation rate determines the spacing between the filter elements and controls the 

receptive field size. By adjusting the dilation rate, researchers can control the amount of 

contextual information incorporated into the network. Smaller dilation rates focus on local 

context, capturing fine details, while larger dilation rates encompass larger context, capturing 

global structures and relationships. 

Dilated CNNs have demonstrated impressive performance in various computer vision 

tasks. In image segmentation, dilated CNNs can effectively capture both local object boundaries 

and global contextual information, leading to more accurate and precise segmentation results. 

In object detection, dilated CNNs enhance the ability to recognize objects of different scales and 

aspect ratios, improving detection performance. In semantic understanding, dilated CNNs 

enable better contextual reasoning and modeling, leading to improved understanding and 

interpretation of complex scenes. 
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8. THE PRESENTED STUDY 

The present study introduces an automated visual speech recognition model based on deep 

learning, utilizing exclusively visual data. By employing this approach, the computational cost 

and resource requirements are reduced compared to studies involving multi-modal data. 

Moreover, this study stands as the pioneering attempt to tackle the lip reading problem within 

the Ural-Altaic languages, employing a deep learning algorithm on a newly curated dataset. In 

this thesis in order to recoginize lip reading, we follow steps below; 

- Data 

o Data collection and agumentation 

o Data processing    

- Optimization 

o CNN based Lip Reading 

▪ CNN 

▪ Dilated CNN 

o LSTM based Lip Reading 

o BGRU Based Lip Reading 

- Comparision of Concatenated Frame and Discerete Frame in Lip Reading 

- Anaysis of results. 

 

8.1. The Improved Dataset 

Turkish, when classified based on its linguistic structure, belongs to the family of 

agglutinative languages. As such, suffixes play a crucial role in determining the meaning of a 

sentence according to Turkish grammar rules. Additionally, in Turkish, a phenomenon known 

as liaison occurs when a word starting with a vowel follows a word ending with a consonant. 

Liaison refers to the effect produced when these two letters are connected and read together, and 

it significantly impacts the meaning of the sentence. For example, the phrases "top aldı" (bought 

a ball) and "topaldı" (was lame) have distinct meanings due to liaisons in the letters "p" and "a," 

despite having the same letter order. 

In the existing literature, several datasets have been created using various methods for lip 

reading studies. However, it has been observed that no specific lip reading dataset for the 
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Turkish language has been developed, except for the dataset presented by Atila and Sabaz [53]. 

These authors created two new datasets using image processing techniques, one consisting of 

words and the other consisting of sentences. The sentence dataset includes classes such as 

"Which department did you get?" and "May I help you?", while the word dataset includes classes 

like "Programmer" and "Video". One notable distinction between their dataset and ours is that 

all the words and sentences were created under the same environmental and lighting conditions. 

In contrast, our dataset was obtained from a diverse range of YouTube videos, resulting in 

hundreds of different speaking profiles. 

In another relevant study conducted by Matthews et al. [54], they developed a customized 

audio-visual (AV) database called AVLetter, which consisted of isolated letters. The dataset 

encompassed three repetitions of all the letters in the alphabet, spoken by ten different speakers 

(including five males, two of whom had mustaches, and five females), resulting in a total of 780 

utterances. The researchers employed various techniques, including internal and external 

contour methods, along with a novel bottom-up approach that involved extracting features 

directly from pixel intensity using nonlinear scale space analysis. Furthermore, they trained a 

Hidden Markov Model (HMM) and obtained an accuracy score of 44.6%.  

In another work [55], two new datasets were introduced and publicly released: LRS2-BBC 

[56], which includes thousands of natural phrases from British television, and LRS3-TED [57], 

containing hundreds of excerpts from over 400 hours of TED and TEDx videos [58]. These 

datasets encompass unrestricted natural language sentences and videos featuring different 

individuals, unlike synthetic datasets generated with controlled background, lighting, and angle 

conditions. Researchers have demonstrated that combining visual speech recognition (VSR) and 

auditory speech recognition methods, particularly in the presence of vocal noise, leads to 

significant improvements in lip reading studies. 

Yang et al. [59] introduced a large-scale benchmark dataset called LRW-1000, 

specifically designed for lip reading research. This dataset consisted of 1000 classes, 

encompassing 718,018 samples from over 2000 speakers. Each class represented syllables of 

Mandarin words, composed of one or more Chinese characters. The LRW-1000 dataset was 

carefully curated to emulate real-world conditions, exhibiting significant variations in various 

aspects, such as the number of samples per class, video resolution, lighting conditions, and 

speaker characteristics, including pose, age, gender, and makeup. 



 

37 

In a similar vein, Egorov et al. [60] constructed a Russian lip reading dataset known as 

LRWR. This dataset consisted of 235 classes and involved 135 speakers. The authors provided 

a detailed description of their dataset aggregation pipeline and presented comprehensive 

statistics in their paper. By creating a large-scale Russian dataset, they contributed to the visual 

lip reading dataset research, which has been predominantly focused on English language lip 

reading studies. 

Chung and Zisserman [61] pursued the goal of word recognition solely based on visual 

cues from a speaking face, without utilizing phonetic information. They developed an automated 

data collection pipeline from TV broadcasts, resulting in a dataset containing over a million 

examples of spoken words by different individuals. 

In summary, these studies highlight the creation of diverse and sizable lip reading datasets, 

such as LRW-1000, LRWR, and the dataset generated by Chung and Zisserman. These datasets 

facilitate research in lip reading by incorporating real-world conditions, encompassing a wide 

range of linguistic and visual variations, and expanding beyond the dominance of English 

language studies in the field. 

A two-stream convolutional neural network was developed to learn the correlation 

between audio and visual mouth movements from unlabeled data. The training results achieved 

with this dataset and model surpassed the performance of publicly available datasets, namely 

Columbia [62] and OuluVS2 [63]. 

Anina et al. [64] presented the OuluVS2 dataset, which was specifically aggregated for 

analyzing non-rigid mouth movements. This dataset comprises recordings of more than 50 

speakers uttering English phrases, numbers, three-word phrases, and three sentences. The 

dataset includes thousands of videos captured simultaneously from five different viewing 

angles, ranging from frontal to profile views. An HMM-based visual speech recognition (VSR) 

system was developed and tested on the OuluVS2 dataset. The recognition results revealed that 

the 60° angle provided the highest accuracy score of 46%, whereas the score was 42% for the 

90° angle (front view). 

The Arabic Visual Speech Dataset (AVSD) [65] consists of 1100 videos containing 

recordings of 10 daily communication words, such as hello, welcome, and sorry. The dataset 

was collected from 22 speakers under realistic conditions, including various indoor rooms with 
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different lighting conditions. VSR experiments were performed on the AVSD using a support 

vector machine (SVM), and the algorithm achieved an average word recognition rate of 70.09%. 

Sujatha and Krishnan [66] compiled a dataset involving 10 participants who recorded 

stable ambient conditions while uttering 35 different words. For training, 4900 samples were 

collected, with each of the 7 participants pronouncing 20 samples for each word. Additionally, 

2100 samples were used for testing, with each of the 3 participants providing 20 samples for 

each word. The videos of the participants were processed using a face localization module to 

detect the facial region, and subsequently, the mouth region was determined. 

In summary, these studies demonstrate the creation and utilization of various datasets for 

analyzing visual speech and mouth movements. These datasets include OuluVS2, AVSD, and 

the dataset prepared by Sujatha and Krishnan. The experiments conducted on these datasets, 

employing different recognition algorithms and evaluation metrics, contribute to advancing the 

field of visual speech analysis and recognition. 

In reference [67], a dataset was created and utilized to address lip reading challenges, 

incorporating audio and lip movement data from various videos containing readings of identical 

words such as "book," "come," and "read." The proposed method employed the VGG16 pre-

trained convolutional neural network (CNN) architecture for data classification and recognition. 

The recommended model achieved an accuracy of 76% in visual speech recognition (VSR). 

In their work, Xu et al. [68] utilized multi-expansion temporal convolutional networks 

(MD-TCN) for the purpose of word prediction in lip reading tasks. Their methodology involved 

incorporating a self-attention block following each convolutional layer to augment the model's 

classification and scanning capabilities. By evaluating their approach on the LRW dataset (69), 

they achieved an accuracy of 85%, thus showcasing a marginal improvement of 0.2% compared 

to other networks with similar architectures [70]. 

Berkol et al. [71] conducted a comparative analysis using the dataset introduced in this 

study to assess the performance of the dilated convolutional neural network (DCNN) model 

against the convolutional neural network (CNN) model utilized in their prior research. The 

multiclass classification model yielded a test accuracy of 59.80% for the DCNN, whereas the 

CNN model in their earlier study achieved an accuracy of 72%. It was observed that the CNN 

outperformed the DCNN in terms of both time and accuracy. The relatively lower accuracy 

score of the DCNN model can be attributed to the utilization of a non-synthetic dataset with 
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intricate features, posing challenges for the model. Existing lip reading datasets employed in 

prior studies [72, 73] were primarily obtained under controlled conditions. The contribution of 

our study to the existing literature lies in the provision of a non-synthetic Turkish lip reading 

dataset, which, to the best of our knowledge, represents the first of its kind. This dataset was 

derived from natural speech recordings, with careful examination of the videos to eliminate any 

factors that might impede accurate lip movement analysis, such as the presence of microphones, 

subtitles, or occluding hands. The data exclusively focused on capturing facial expressions for 

the purpose of lip movement analysis. 

Overall, these studies highlight the development of lip reading datasets, utilization of pre-

trained CNN architectures, and the exploration of novel approaches such as MD-TCN. 

Additionally, the dataset proposed in this study contributes to the advancement of Turkish lip 

reading research by providing a non-synthetic dataset obtained from natural speech recordings. 

However, this dataset, consisting of wide-framed images capturing people pronouncing various 

words, can be utilized for different research problems with appropriate data arrangements. It 

facilitates the development of word or phrase recognition from a speaking face without audio 

[74], without relying on lip-motion recognition. 

 

8.1.1. Dataset collection 

The data collection process commenced by identifying relevant YouTube videos 

containing the specified words. Screen recording techniques were employed to capture the 

videos. Throughout the data collection phase, particular emphasis was placed on creating a 

diverse sample set, encompassing variations in gender (male/female), age groups 

(adult/child/elderly), indoor/outdoor settings, lighting conditions (light/dark), presence/absence 

of mustache, presence/absence of makeup, and slight variations in face angles. 

Due to these data collected for the lip reading problem are obtained from the videos of the 

speakers who continue in their natural flow, the images are challenging in terms of diversity 

(see Fig. 39). In some cases, speakers do not turn their face directly to the camera. Furthermore, 

there are situations such as light differences in the image, image quality, and the speaker being 

far away. In addition to these, there is also a problem that creates personal diversity such as 

objects such as microphones coming in front of the speaker in the images obtained, the speaker's 

mustache and lipstick. 
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Figure 8.1. Data challenges 

8.1.2. Frame extraction from videos 

After collecting 2335 instances, they were segmented into frames using the Python library, 

OpenCV. During the frame extraction process, a script was developed to identify the specific 

second at which each word started and determine the video's frames per second (fps). 

Subsequently, frames captured within a 2-second interval following the identified second were 

extracted and saved as individual images. The resulting images varied based on the fps value. 

Generally, since the videos were recorded at a standard fps rate of 30, a total of 60 frames were 

obtained for each 2-second block. 

Firstly, it was crucial to create a balanced multi-class dataset. Working with a balanced 

dataset in terms of labels reduces challenges and allows developers and researchers to focus on 

developing more optimal and diverse models. In this study, we placed great emphasis on 

obtaining an approximately equal amount of data for each label. Table 1 provides the number 

of samples available for each class in the dataset. 

Secondly, ensuring a normal distribution of frame numbers for these words in the dataset 

is crucial for training high-performance machine learning models. Since the difference in the 

number of examples for each class instance is minimal, the model's results will exhibit consistent 

performance. 
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Table 8.1. Number of instances in the dataset. 

Words and Phrases Number of Instances 

başla (start) 225 

bitir (finish) 244 

merhaba (hello) 268 

günaydın (good morning) 232 

selam (hi) 235 

hoş geldiniz (welcome) 226 

özür dilerim (sorry) 209 

görüşmek üzere (see you) 224 

afiyet olsun (enjoy your meal) 235 

teşekkür ederim (thank you) 237 

 

Secondly, apart from the relative frequency of each class, the number of frames associated 

with each word is a critical aspect in machine learning models, particularly in deep learning. It 

can serve as an influential parameter in real-time word recognition. Figure 7 illustrates the 

distribution of each class based on the number of frames. The top five labels correspond to 

phrases such as "teşekkür ederim" and "hoş geldiniz," while the remaining labels represent 

individual words like "günaydın" and "selam." The number of frames for words ranged 

approximately between 3 and 26, while for phrases, it ranged between approximately 7 and 33. 

To analyze the distributions of frame numbers, the Pandas skew() method, which provides 

unbiased skew values, was employed. The skewness coefficients for the words "günaydın," 

"merhaba," "selam," "başla," and "bitir" were 0.06, 1.46, 0.86, 0.09, and 0.54, respectively. For 

the phrases "afiyet olsun," "görüşmek üzere," "hoş geldiniz," "özür dilerim," and "teşekkür 

ederim," the skewness coefficients were 0.10, -0.16, 0.07, 0.48, and 0.72, respectively. High 

skewness coefficients were observed for the words "selam," "merhaba," and "teşekkür ederim," 

indicating right-skewed distributions, while the skewness coefficients for other words and 

phrases were close to 0, indicating normal distributions. 

For the word "merhaba," the mean frame number was 12.7, the median was 12, and the 

mode was 10, indicating a normal distribution. Similarly, for "günaydın," the mean, mode, and 

median values were 9.1, 9, and 9, respectively, indicating a normal distribution. The presence 
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of children's songs among the videos used for the word "merhaba" resulted in slower speech 

compared to other recordings. The non-normal distributions observed for certain classes 

indicated a greater diversity among speakers and the inclusion of various video types, such as 

vlogs, TV series, or clips, in our dataset. 

Understanding and accessing the dataset is facilitated by familiarity with its directory 

structure. The directory hierarchy is organized as follows: the top-level directory corresponds 

to specific word or phrase tags, such as "başla" or "teşekkür ederim". Within each word folder, 

there are subdirectories representing individual instances, which are sequentially named using 

three-digit numbering. The final level of the dataset architecture comprises processed frames 

extracted from the corresponding videos, and these frames are sequentially named using two-

digit numbering, such as "01.jpg, 02.jpg, ..., 28.jpg". Figure 9 illustrates the hierarchical 

structure of the dataset directories. 

 

 

Figure 8.2. The directory architecture of the dataset; “merhaba” (hello), “selam” (hi), “başla” 

(start), “bitir” (finish), “günaydın” (good morning), “teşekkür ederim” (thank you), “hoş 

geldiniz” (welcome), “görüşmek üzere” (see you), “özür dilerim” (sorry), and “afiyet olsun” 

(enjoy your meal) are words and phrases that appeared in the first step. A subdirectory has 

samples of words and phrases contained within it. The last step of the architecture shows the 

frames of the related word. 
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8.1.3. Frame cropping 

To facilitate the identification of the person speaking and enable accurate lip reading, 

frames containing multiple human faces were deemed complex and challenging. As a result, a 

manual cropping process was conducted using image cropping applications to exclude images 

with multiple faces, except for the face of the person of interest. Care was taken to ensure that 

the entire face of the speaker, with clear visibility of lip movements, remained within the field 

of view during the cropping process. Frames with no other faces, obstructions, or profile views 

that hindered lip movement were selected for inclusion in the dataset. The emphasis was on 

preserving the background and obtaining real-world instances without removing inherent noise 

during the cropping process. 

A review of previous studies revealed only one dataset related to Turkish lip reading. What 

sets this study apart from that dataset, where all words and sentences were created under 

controlled ambient and lighting conditions, is that it introduces a non-synthetic lip reading 

dataset that had not been previously developed. The data collection methods employed in the 

two studies differed significantly. While the previous dataset was generated by 24 speakers who 

specifically pronounced certain words and phrases, our dataset captured the moments in which 

the relevant word was spoken from various people's YouTube videos. Additionally, the 

pronunciation of words in the Turkish language is influenced by various factors, such as the 

speaker's accent, the presence of liaison, and word stress. Thus, the aim was to create a dataset 

suitable for real-life conditions by collecting samples from a diverse range of individuals. 

The dataset we created contributes to visual lip reading studies and enables researchers to 

produce more realistic results due to the complex environmental conditions encountered in real-

life scenarios. By utilizing this dataset in lip reading studies, researchers can contribute to 

solving forensic cases, enhancing the lives of hearing-impaired individuals, and introducing 

innovative approaches to language education. The dataset focuses solely on capturing facial 

expressions to describe lip movements. However, due to its wide-framed images of individuals 

pronouncing various words, it holds the potential to be utilized in addressing various research 

problems after appropriate data adjustments. 

In summary, the manual cropping process was conducted to exclude frames with multiple 

faces, and the dataset created in this study stands out as a non-synthetic lip reading dataset that 
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captures real-life conditions. Its potential applications extend beyond lip reading studies, making 

it a valuable resource for diverse research endeavors. 

 

 

Figure 8.3. Frame number distribution for each word such as “hello” (merhaba), “hi” (selam), 

“start” (başla), “finish” (bitir), and “good morning” (günaydın) and phrases such as “thank you” 

(teşekkür ederim), “welcome” (hoş geldiniz), “see you” (görüşmek üzere), “sorry” (özür 

dilerim), and “enjoy your meal” (afiyet olsun). 

Lastly, a correlation matrix was generated to explore potential linear relationships between 

the classes. The following steps were followed to identify causal or non-causal relationships: 

Firstly, clear and representative examples were selected from the dataset for each class, 

ensuring accuracy in the results. The lips were then extracted from the original images since 

analyzing lip movements is crucial and enables working with reduced data. 

Next, the sequence of arrays was flattened to a one-dimensional summarized array by 

computing the median value for each index of the images. The finalized arrays for each class 

were subjected to the Pearson correlation method. The Pearson correlation coefficient ranges 

from -1 to 1. A value close to 1 indicates a positive relationship between the variables, 

suggesting a positive causal relationship. Conversely, a value close to -1 indicates a negative 

causal relationship between the variables. If the value is closer to 0, from both the negative and 

positive sides, it suggests a non-causal relationship between the variables, indicating no linear 

relationship. 

In summary, by applying the Pearson correlation method to the flattened arrays, we 

examined the presence of linear relationships between the classes. The correlation matrix 
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provides insights into the nature of the relationships, helping to identify potential causal or non-

causal associations among the variables. In Figure 2, we depicted the Pearson correlation using 

a heatmap, which revealed the correlation patterns among different classes. It is evident that 

certain classes exhibited high positive correlations. For instance, "afiyet olsun" and "günaydın" 

displayed a strong positive correlation, with a correlation coefficient of approximately 0.9. 

Similarly, the classes "merhaba" and "başla" demonstrated a positive correlation, albeit of lesser 

strength, with a correlation coefficient of around 0.6. Nevertheless, we did not observe a 

substantial overall relationship between the classes. Furthermore, no significant negative 

correlations were observed, unlike the strong positive examples mentioned earlier. It is worth 

noting that the dataset proves to be valuable for addressing classification problems since the 

patterns exhibited by different classes are distinct and amenable to various methods, including 

deep learning and machine learning algorithms. 

 

 

Figure 8.4. Distance matrix for each class such as “hello” (merhaba), “hi” (selam), “start” 

(başla), “finish” (bitir), “good morning” (günaydın), “thank you” (teşekkür ederim), “welcome” 

(hoş geldiniz), “see you” (görüşmek üzere), ”sorry” (özür dilerim), and “enjoy your meal” 

(afiyet olsun) based on the image features. 

Creating a distance matrix for a word dataset is done to evaluate word similarities and 

relationships. The distance matrix contains the measure of similarity or distance between each 
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word and all other words. Distance metrics are commonly used to obtain a quantitative 

assessment of semantic or lexical similarities between word pairs. 

There are various methods to create a distance matrix. One approach is to use word vector 

representations and compute similarity metrics. For example, word embedding models can be 

used to generate word vectors, and then distances between these vectors can be calculated to 

create the distance matrix. This matrix can be utilized to measure word similarities or 

relationships. 

A distance matrix can be useful in various natural language processing (NLP) tasks such 

as word classification, word clustering, and analyzing word relationships. It can be used to 

discover similar words or meaningful word groups, explore word relationships, or perform 

semantic searches at the word level. 

For these reasons, creating a distance matrix for a word dataset is a common approach to 

analyze relationships between words and obtain similarity measures. 

 

8.1.4. Detection of Lip 

In the lip-reading problem, the RGB images are not important for the continuity of the 

studies. Images are converted to gray scale in order to reduce computational and time costs in 

face and lip detection studies and later during deep learning model training. 

First, we cut the faces from the human images we collected using the dlib library, which 

is a ready-made library, since the faces on the images need to be handled. The 

get_frontal_face_detector() function we use does not receive face detection without taking any 

parameters. When this function is called, it returns the pre-trained HOG+Linear SVM face 

detector of the dlib. HOG+LINEAR SVM works fast and effectively. Due to the nature of the 

HOG, it adapts to rotation and viewing angle situations. This detector is built using a histogram 

of oriented gradients (HOG) and a linear SVM. It is suitable method for real-time face detection 

due to its its rapid detection. 
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Figure 8.5. Face detection with HOG+SVM 

As can be seen in Fig. 40, even if the faces are angled or if there is an obstacle in front of 

the face, an accurate face detection can be made, including the lips. 

 

Figure 8.6. Lip Detection 

In lip-cutting studies, using the OpenCV library, the contour of the relevant region is 

drawn by specifying a series of points to take the lip part. Since the 49-68 range corresponds to 
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the lip region in the landmarks, the relevant range on the obtained face image is cut. Then, with 

the help of the boundingRect() function, a rectangular image of the determined region is taken. 

Fig. 41 shows firstly, the original raw images, the faces detected in the second step, and the cut 

lip images at the end. Lip detection is also less than the number of raw images, as there is no 

corresponding face detection for each raw image. Although there are similar images in terms of 

angle and light in each image, it was observed that face detection could not be performed for 

each of them. 

Finally, the lip images obtained are recorded in 100X200 size to be used in the next steps. 

Total dataset information seen in table 8.2. below; 

 

Table 8.2. Total Dataset information 

Specification Details 

Data Source YouGlish website 

Total Number of YouTube Videos 7000+ 

Language Not specified 

Word Count 100 words 

Phrase Count 100 phrases 

Frame Count 20000+ frames 

Gender Distribution Approximately 50% male, 50% female 

Age Distribution Adult, child, old 

Environment Distribution Approximately 25% outdoor, 75% indoor 

Lighting Distribution Approximately 50% light, 50% dark 

Facial Features Variation in mustache presence, makeup presence 

Face Position Slight angle 

 

8.1.5. Lip representation 

In the first approach developed, each sequential image of a sample is used in the deep 

learning model so that the flow is preserved. As a second approach, 15 images are combined 

and used as a single smaller image. After the concatenation process, each 100x200 image is 

resized to 20x40 in order not to obtain a very large image. If the frame number of the relevant 

sample of the lip is less than 15, an image filled with 0 values on the gray scale is added. If it is 

more than 15 it is removed. When 15 frames are sequentially combined as 3 rows and 5 columns, 
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a 60x200 image is obtained. In Fig. 8.7. shows 15 sequence images produced in combination. 

In the case of separate lips, these images are used as a series of 15 images, providing a stream 

instead of a single image. 

 

 

Figure 8.7. Concatenated frame mouths 

To ensure the accuracy of the dataset, frames were selected based on the moment when 

the specified word was first spoken, minimizing the inclusion of lip movements from other 

words within the same video. Subsequently, using a simple code, the frames were converted 

into images for extraction, as detailed in the subsequent section. 

During the screen recording process, certain videos were eliminated if they did not 

adequately capture the lip image or if other objects obstructed the view. Examples of such 

situations included hand movements obstructing the face, instances where the lip image 

temporarily moved out of the field of view, or default subtitles covering the lip movements. 

 

8.1.6. Data augmentation 

Data augmentation techniques are used when the dataset size is not enough to train deep 

learning algorithms or when the data quality or variety is not enough. With the help of 

augmentation techniques, classification results can be enhanced. In this work, we applied three 

different augmentation techniques to the dataset. It is important to note that augmentation 

techniques were implemented for the whole dataset since the visual lip reading problem 

concerns the sequence data where data are all images. The first augmentation technique is a 

horizontal flip (see Figure 14, the second row). A horizontal flip is a mirror reflection by the y-

axis. The second augmentation technique is inverting the image by subtracting pixel values from 
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255 (see Figure 14 the third row). The last augmentation technique is sigmoid contrast (see 

Figure 8.8, the last row). The technique is applied with the sigmoid function in Equation (1), 

where the gain is (5, 10) and the cutoff is (0.4, 0.6). After applying the augmentation techniques, 

the dataset size expanded from 1390 to 5560 sets of examples. 

 

 

Figure 8.8. Data augmentation techniques applied on visual lip reading in Turkish dataset. 

𝑓(𝑣)  =  255 ×  
1

(1 +  𝑒𝑥𝑝(𝑔𝑎𝑖𝑛× 𝑐𝑢𝑡𝑜𝑓𝑓 − 
𝑣

255
) )

 (8.1) 

 

8.2. Our Study with Deep Learning Models 

Visual speech information is critical when voice data is noisy, difficult to acquire, or 

lacking context. People find it extremely difficult to understand what someone is saying merely 

by watching their mouth motions [75]. For instance, adults who are deaf or hard of hearing only 

achieve an accuracy of approximately 17% for a limited sample of 30 monosyllabic words and 

approximately 21% for 30 complicated [76].  

In addition to understanding or recognizing the words and phrases by the listener as a 

research question, lip reading can be applicable to many areas in the industry, such as 

information security [77, 78] speech recognition [79, 80, 81], and driver assistance [82]. 

Moreover, it gives people with hearing problems a new way to communicate with the outside 

world [83, 84]. Regular people who do not have hearing problems can also benefit from lip 

reading in settings where speaking aloud is improper, such as a meeting room [85]. Lip reading 

has recently been used as a novel biometric identification method for mobile devices [86]. As a 

result, lip reading and its applications are inseparable from society. 
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Lip reading models which use multi-model data are widely used in the research field, e.g., 

Chung et al. [87] and Iwano et al.[88]. Despite the advantages of working with multi-model 

data, there are significant drawbacks, such as separating noise from data captured from crowded 

environments and requiring higher data storage, which also affects the model training efforts. 

Furthermore, even while voice-image-based lip reading has shown its usefulness, only-image-

based lip reading demonstrated good results as well Fenghour et al.[89]; Pandey and Arif [90]. 

However, a challenging problem, distinguishing similar lip movements for different words or 

phrases, reveals itself when the dataset contains only-image data. Distinguishing sounds with 

similar lip movements is a challenging problem. Additionally, since the algorithm can handle 

one person’s data, it can be challenging to decide who is talking and whom the algorithm will 

take into account when there is more than one person on the camera screen. However, it is still 

easier to preprocess image data. 

The Turkish lip reading model is trained and tested on only-image based dataset to 

increase the classification success rate for various deep learning models, which are 

Convolutional Neural Networks (CNN), Long-Short Term Memory (LSTM), and Bidirectional 

Gated Recurrent Units (BGRU). The following sections cover the data preprocessing stages and 

the modeling experiments in detail. 

Artificial Intelligence (AI) researchers have recently become interested in the lip reading 

problem. Each language has a different structure since lip reading is sensitive in terms of 

language and sound. Because of that reason, there are various works for some languages [91, 

92]. Additionally, there are a ton of state-of-the-art studies available in terms of data types and 

languages. Some important models and approaches are as follows.  

Conventional approaches typically rely on handcrafted features, which are too 

complicated and time-consuming to train neural networks. The images are converted into 

numerical features that can be fed into deep learning algorithms for classification. Haq et al. 

[92] used both visual and sound data to train the model, a combination of a spatiotemporal 

convolution layer and SE-ResNet-18 network with a BGRU back-end, 1D convolutional layer 

and fully connected layers performed on Daily Mandarin Conversation Lip Reading dataset. 

The tiny and intricate signal patterns created by mouth motion are well captured by the 

data collection approach developed by Zhang et al. [93]. The authors also suggest a set of 

algorithms to extract signal profiles linked to mouth motions and reduce interference factors 
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like multi-path. Then, to improve the recognition accuracy at the word level, a carefully crafted 

set of features, including time-domain statistical and frequency-domain features, are retrieved 

from the signal. A transfer-learning-based strategy is utilized to improve the model’s robustness 

in cross-environment situations and lower training costs when employed in a new environment. 

Peng et al. [94] suggest a network with channel-temporal attention and deformable 3D 

convolution, where channel-temporal attention takes advantage of the inherent correlation of 

features to force the network to focus on necessary keyframes, and deformable 3D convolution 

adapts the sample position adaptively based on the lip architecture. 

Xue et al. [95] propose a complete Bayesian learning approach to account for the 

underlying uncertainty in LSTM-RNN and Transformer Language Models (LMs). LSTM-RNN 

or Transformer LMs are used to model the uncertainty surrounding their model parameters, 

choice of neural activations, and hidden output representations. In order to automatically choose 

the best network internal components for Bayesian learning utilizing neural architecture search, 

efficient inference methods were applied. Additionally, a minimum of one sample of a Monte 

Carlo parameter was used. These make it possible to reduce the computing expenses associated 

with Bayesian NNLM training and evaluation. 

Fenghour et al. [96] wrote a valuable survey for contrasting different approaches 

concentrating on neural networks and feature extraction. The authors’ key finding is that 

Attention-Transformers and Temporal Convolutional Networks benefit from Recurrent Neural 

Networks. They concentrate on both audiovisual and merely visual information. Additionally, 

they mentioned letter-based, word-based, and sentence-based approaches that applied to 

English, Chinese, German, and Arabic, among other languages. From a different perspective, 

data augmentation techniques such as "salt and paper", "gaussian", and "speckle" noise adding, 

and "median" filtering were used to increase the dataset size (Ozcan and Basturk [97]). 

Moreover, they used AlexNet and GoogleNet pre-trained CNNs on the AvLetters dataset. 

For improved accuracy, the Haar Feature-Based Cascade classifier and CNN network are 

utilized [98]. According to [99], there exist several studies focused on enhancing accuracy in 

the field. In these works, the authors emphasized the importance of geometric details, such as 

mouth height, width, and area. For the purpose of recognition, a Hidden Markov Model (HMM) 

was utilized as a challenge. Another application that used articulated feature extraction 

approaches used a dynamic Bayesian network for recognizing short phases, and a support vector 
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machine for classification [100]. HMM is another application that leverages geometric 

information from the side-face. Lip-contour geometric features are the angles formed by two 

lines taken from upper and lower lip locations (LCGFs). As LCGF steps, the authors identify a 

lip area, extract a lip center point, and determine lip lines and a lip angle. [101] is a favorable 

survey for comparing different approaches, especially neural networks and feature extraction. 

The authors’ main conclusion is that Attention-Transformers and Temporal Convolutional 

Networks have benefits over Recurrent Neural Networks. They concentrate on both audiovisual 

and only-visual information. They also included letterbased, word-based, and sentence-based 

approaches that apply to English, Arabic, Chinese, and German. In [102], the authors utilized 

pre-trained Convolutional Neural Networks (CNNs) such as AlexNet and GoogleNet on the 

AvLetters dataset. To expand the dataset, data augmentation techniques were employed. These 

techniques involved adding noise through "gaussian," "salt and pepper," and "speckle" filtering, 

as well as applying sharpening using "unsharp" and softening using "median" filtering. 

In [103], a CNN was introduced as a novel network for digit classification. The dataset 

consisted of numbers ranging from 0 to 9, spoken by three female and three male speakers and 

repeated up to 100 times. The VGG19 network was employed to capture spatial characteristics, 

while the Attention-based Long Short-Term Memory (LSTM) network was used to capture 

temporal characteristics. An alternative approach to LSTM is the use of Temporal Convolutional 

Networks [104In [105], the authors propose a Multi-Scale Temporal Convolution approach for 

word-level classification. They conducted experiments using data consisting of only audio, 

audio-visual, and only visual modalities. In [106], a combination of Convolutional Neural 

Networks (CNNs) and Long Short-Term Memory (LSTM) networks was employed for 

classification. The authors utilized a VGGNet pre-trained on human faces of celebrities from 

IMDB and Google Images. They contributed by concatenating images and extracting temporal 

information using LSTM. To facilitate the learning of mapping mouth movements to characters, 

[107] introduces the "Watch, Listen, Attend, and Spell" (WLAS) network. This network aims 

to duplicate videos of mouth movements and convert them into corresponding characters or 

words.WLAS includes WAS, which is a model that only works with photos. They also proposed 

a curriculum-based learning technique to cut down on training time and reduce overfitting. 

Additionally, for visual speech recognition applications, the "Lip Reading Sentences" (LRS) 

dataset was published, which comprises over 100,000 natural sentences from British television. 
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LipNet was designed and trained for end-to-end sentence and phrase-level predictions. The 

proposed model in [108] utilizes spatiotemporal Convolutional Neural Networks (CNNs), 

Recurrent Neural Networks (RNNs), and the connectionist temporal classification (CTC) loss 

for character-level prediction. The authors conducted their research using the GRID corpus 

dataset, which is a publicly available dataset annotated at the sentence level [109]. Another 

model, called LipType, was developed to achieve advanced speed and accuracy. The authors 

also focused on improving the model's performance in low-light conditions. The model consists 

of multiple stages. In the first stage, a spatiotemporal feature extraction method is employed, 

which includes facial landmark correction using Kalman Filtering, 3D-CNN, and 2D SE-

ResNet. The outputs from this stage are then fed into Bidirectional Gated Recurrent Neural 

Networks (RNNs) with the CTC loss function for further processing and prediction.Fernandez-

Lopez and Sukno et al. [98] stated that they use digits or letters and words or sentences as targets 

for the problem. They developed an end-to-end algorithm dominated by RNNs, and achieved 

approximately 40% advancement in the word prediction rates. The algorithm, developed by 

Fenghour et al. [96], only uses visual signals and lacks language. Visemes in continuous speech 

is recognized using a uniquely developed transformer with a unique topology. The use of 

perplexity analysis to translate visemes into words. Authors 15% decreased word error rate and 

enhanced performance. The model uses spatiotemporal CNNs, RNNs, and the connectionist 

temporal classification (CTC) loss (Graves et al. [99]) and operates at the character level. The 

public sentence-level dataset GRID Corpus, published by Cooke et al. [100], was used for 

experiments. Another model designed for improved speed and accuracy is LipType [90]. In this 

work, poor light conditions are taken into consideration. As a first step, a spatial-temporal 

feature extraction technique was applied, which includes a correction for facial landmarks using 

Kalman filtering, 3D-CNN, and 2D SE-ResNet. Following that, Bidirectional Gated Recurrent 

Neural Network with CTC was used. 

Dataset’s every class has approximately equal data number (see Table 2 for an exact size.) 

It is essential to mention that the dataset instance size is not equal to the version taken from 

Berkol et al. (2022) since we applied some necessary preprocessing steps to solve the lip reading 

problem with DL algorithms. The steps are explained in the following sections in detail. Also, 

we have more data examples for some classes since we added some noisy examples from our 

local data storage. Data will be updated as a new version. Additionally, we observe that the data 
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sequence length for each data sample depends on the length of the words and phrases. It can be 

concluded that the word or phrase length and frame number are highly correlated. Also, since 

the speakers are collected from a wide range of people, the dataset’s classes are right-skewed, 

such as "merhaba" and "selam" which shows the speaker’s speech speed differs.  

 

Table 8.3. Size of the each class in the dataset. 

Class  Number 

günaydın 234 

selam 235 

merhaba 270 

hoş geldiniz 230 

özür dilerim 184 

 

8.2.1. Applying classic CNN architecture for lip reading 

The first model is the CNN model (see Figure 15). As it can be seen from Figure 15, two 

Conv3D layers with 96 filters and maxpooling3D layers are used as feature extraction layers. In 

the Conv3D layers, filters are applied with the size of (3, 3, 3), and strides are 1. Maxpooling3D 

layers applied with pooling size (2, 2, 2) and stride is 2. After Conv3D and maxpooling3D 

layers, flatten layer is applied. After that, two dense layers with 72 neurons were followed by a 

dropout layer with a probability of 0.4. Lastly, an output layer with 6 neurons is applied. Relu 

activation function is used in all layers except the output layer. In the output layer, the softmax 

activation function is used since we perform a classification problem with 6 classes. The other 

hyperparameters are as follows: the learning rate is 0.0002, the optimizer is Adam, and the loss 

function is categorical cross-entropy. Training is performed with early stopping monitoring 

validation accuracy, and patience is 4. 
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Figure 8.9. CNN model architecture 

8.2.2. Applying LSTM model architecture for lip reading 

The second model is the LSTM model (see Figure 16). The LSTM model is performed with two 

LSTM layers with 32 neurons and 0.5 dropout probability. Following that flatten layer is 

applied. The next layers are two dense layers with 64 neurons and 0.5 dropout probability. As 

an output layer, a dense layer with 6 neurons was applied. Except for the output layer, which 

uses the softmax function, the relu function is used in the fully connected layers. Other 

hyperparameters are as follows: the learning rate is 0.0002, the optimizer is Adam, and the loss 

function is categorical cross-entropy. Training is performed with early stopping monitoring 

validation accuracy, and patience is 5. 

 

 

Figure 8.10. LSTM model architecture 

8.2.3. Applying BGRU Model Architecture for lip reading 

The last model is the BGRU model (see Figure 17). This model contains much fewer 

layers than the others. It uses a bidirectional GRU layer with 72 units and 0.2 dropout 

probability. Then, the flatten layer and dense layer with 64 neurons and 0.25 dropout probability. 

The last layer is again a dense layer with 6 neurons. As applied to the other models, the relu 

function is used in the hidden layer, and the softmax function is used in the output layer. The 
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other hyperparameters are as follows: the learning rate is 0.0001, the optimizer is Adam, and 

the loss is categorical cross-entropy. Similarly, the BGRU model is trained with early stopping 

monitoring validation accuracy, and patience is 3. 

 

 

Figure 8.11. BGRU model architecture 

The hyperparameter values are explained in detail in Table 2. 

 

Table 8.4. Hyperparameters used in models. CCE: Categorical Cross Entropy. 

Hyperparameter Name CNN LSTM BGRU 

learning rate 0.0002 0.0002 0.0001 

optimizer Adam Adam Adam 

loss CCE CCE CCE 

hidden layer dropout 0.4 0.5 0.25 

hidden layer neurons 72 64 64 

hidden layer size 2 2 1 

feature extraction layer 2 2 1 

filter (CNN) /unit (LSTM, 

BGRU) s 

96 32 72 

feature extraction dropout 

prob. 

- 0.5 0.2 

activation function ReLU ReLU ReLU 

pooling size 2 - - 

patience 4 5 3 
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8.2.4. Comparative Results 

The model architectures were explained in detail in the previous section. Experiments are run 

on an NVIDIA Tesla T4 graphics card. The dataset is divided into three parts: train, validation, 

and test sets with percentages of 70%, 15%, and 15%, respectively. The training set contains 

3892 sets of examples, while validation and test sets contain 834 sets of examples. The training 

epochs are different since each model is trained with early stopping to prevent the model from 

overfitting. The CNN model’s epoch size is 62, LSTM’s epoch size is 58, and BGRU’s epoch 

is 29. The accuracy results and training times for each model are in Table 3. The accuracy scores 

are very close to each other, unlike the training time. LSTM and BGRU models’ accuracy scores 

are the same as the sixth decimal, 0.7781. CNN, which is 0.7649, performed the worst among 

the three models. In this case, training time helps decide the models’ performance. The BGRU 

model is the fastest, approximately at 216 seconds, and the CNN model is the slowest, 

approximately at 863 seconds. 

 

Table 8.5. Model accuracy and their training time results. 

Model Accuracy Training time 

(secs) 

CNN 76.49% 862.84 

LSTM 77.81% 389.30 

BGRU 77.81% 215.59 

 

Additionally, we evaluated each model by confusion matrix (see Figures 18,19,20). Since 

the accuracy scores are almost the same, we observed that the confusion matrices of the LSTM 

and BGRU models differ. Phrases and words performed well among themselves for the three 

models. Moreover, we evaluated the precision, recall, and f1 scores for each class trained with 

the three models (see Table 4). As it can be seen from Table 4, there is no strict way to draw a 

conclusion about which model is more accurate. For example, for classes "hoş geldiniz" and 

"selam" CNN’s precision scores are higher than others, or for classes "teşekkür ederim'' and 

"merhaba" LSTM’s precision scores are higher than the other two. However, we can observe 

that for some metrics and models, there is a considerably high difference between results. 
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Table 8.6. Comparision of Precision, recall, and f1 scores of models. 

Words Size Model Precision Recall F1 

score 

 

hoş geldiniz 

 

153 

CNN 0.6702 0.8366 0.7442 

LSTM 0.6089 0.8954 0.7249 

BGRU 0.6079 0.9020 0.7263 

 

özür dilerim 

 

105 

CNN 0.6600 0.6286 0.6439 

LSTM 0.8594 0.5238 0.6509 

BGRU 0.8514 0.6000 0.7039 

 

teşekkür ederim 

 

139 

CNN 0.8519 0.8273 0.8394 

LSTM 0.8264 0.8561 0.8410 

BGRU 0.8561 0.8129 0.8339 

 

merhaba 

 

167 

CNN 0.8696 0.7186 0.7869 

LSTM 0.8639 0.7605 0.8089 

BGRU 0.8872 0.7066 0.7867 

 

selam 

 

141 

CNN 0.8718 0.7234 0.790 

LSTM 0.8382 0.8085 0.8231 

BGRU 0.8014 0.8298 0.8153 

 

günaydın 

 

129 

CNN 0.6993 0.8295 0.7589 

LSTM 0.8220 0.7519 0.7854 

BGRU 0.8197 0.7752 0.7968 

 

For instance, "özür dilerim" class’s precision score is much lower for the CNN model. On the 

other hand, "günaydın" class’s recall score is much higher for the CNN model. For f1 score 

values, there are no such significant differences. To be more specific, the highest precision score, 

0.88%, was obtained for "merhaba" with the BGRU model; similarly, the highest recall score, 

90%, was obtained with the BGRU model on "hoş geldiniz", and the highest f1 score, 0.85%, 

was obtained with the LSTM model on "teşekkür ederim". If we consider the classes separately, 

we can conclude them as follows. Firstly, the phrases are evaluated. In the "hoş geldiniz" class, 

although the CNN model is the best in precision and f1 score, the recall score of the BGRU 

model is the highest among them. In the "özür dilerim" class, the LSTM model’s precision is 

the best among all the models and metrics. CNN model is good at recall, and the BGRU model 

is good at the f1 score. The scores in the "teşekkür ederim" class are close. BGRU is the best in 

precision, and LSTM is the best for recall and f1 scores. Lastly, words are evaluated. In 

"merhaba" class, similar results with "teşekkür ederim" occur. BGRU is the best in terms of 

precision, and LSTM is the best for recall and f1 scores. In the "selam" class, the precision score 
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is the best with CNN, the recall score is the best with BGRU, and the f1 score is the best with 

LSTM. In the "günaydın" class, the precision score is the best with LSTM, the recall score is 

the best with CNN, and the f1 score is the best with BGRU. 

 

 

Figure 8.12. CNN model confusion matrix 

 

Figure 8.13. LSTM model confusion matrix 
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Figure 8.14. BGRU model confusion matrix 

Appling data augmentation techniques such as horizontal flip, inverting pixel values, and 

sigmoid contrast techniques in order to enrich and diversify the data set. Additionally, we 

showed that different solution approaches, such as sequential and feature extraction techniques, 

can be used in the only-visual dataset. According to our experiments, recurrent-based models 

LSTM and BGRU proved their efficiency against the convolutional-based feature extraction 

technique CNN in terms of accuracy and training time. Hence, BGRU model is the most 

efficient when it is evaluated in terms of train time and overall classification results. 

 

8.2.5. Dilated CNN Model 

While creating the model 4, we built a Dilated CNN structure inspired by the temporal 

convolutional neural networks architecture Dilated CNN provides a more refined image by 

filtering some areas on the imageIn this architecture, we incorporated five consecutive dilated 

blocks. Each block consisted of spatial dropout and convolutional layers with dilation rates of 

1, 2, 4, 8, and 1, respectively. By applying the dilation operation to the image, the input vector 

could be scanned in a broader and more efficient manner. Furthermore, since pixels in close 

proximity tend to have similar meanings, employing a more localized operation such as max 

pooling or dropout can be more effective than standard dropout. The utilization of dilated 

convolution and spatial dropout also serves as a means to prevent model overfitting. In the Add 

layers, the spatial dropout output is combined on the convolution layer. Final layer, the softmax 
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layer returns a score for three words and three phrases in Turkish. Also differences between 

Dilated CNN and Classical CNN shows below; 

 

Table 8.7. Dilated CNN vs CNN 

Differences Dilated CNN CNN 

Convolution 

Operation Convolution with dilation factor Pixel-wise convolution 

Receptive Field Larger receptive field Limited receptive field 

Parameter Count Fewer parameters More parameters 

Hierarchical Features 

Better capture of hierarchical 

features 

Good capture of hierarchical 

features 

 

During the training process, hyperparameter tuning was conducted by experimenting with 

various values. The experimental studies involved exploring different values for the filter size 

of Dilated CNN layers, dilation rate, learning rate, input dimension, and the number of frames 

included in the training on the lip images within each sample. Early stopping was implemented 

to halt training if there was no improvement in the validation loss value. The dataset, consisting 

of 1,390 samples, was divided into 70% for training, 15% for testing, and 15% for validation to 

train and evaluate the model. The training was performed using parallel computation on a 

machine equipped with an NVIDIA GeForce GTX 1650 Ti graphics card with 4GB memory. 

Due to hardware limitations, a batch size larger than 4 could not be used for training. In 

comparison to our previous work, which took approximately 48 seconds for training using the 

CNN algorithm on the same machine, the training time increased to approximately 2 hours and 

26 minutes for the more complex, multi-layered dilated CNN model. 
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Figure 8.15. Dilated CNN model architecture 

Table 8.8. Data train-validation-test split. 

Train Validation Test Total 

973 208 209 1390 
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Figure 8.16. Dilated CNN training and validation loss and accuracy 

Dilated CNNs have emerged as an alternative to traditional CNNs, especially in the field 

of image processing and segmentation. They excel at capturing a wider context and can achieve 

good performance with fewer parameters. However, both methods can be used in different 

contexts depending on the requirements of the task. 

The trained model, which has early stopping strategy, is obtained at the end of 26 epochs 

for Dilated CNN. The validation/training accuracy and loss graph is obtained from the training 

process which is stopped automatically. As can be seen from the Fig.24 , if the training 

continues, the learning will continue, but since there will be no change in the validation loss 

value, it may cause the model to overfitting. We have evaluated and compared Dilated CNN 

model using accuracy, recall, precision and f1-score metrics to not ignore data diversity. The 

test accuracy we have obtained as a result of lip-reading studies for six words is 72% for Dilated 

CNN. In general, when we compare it with our previous work, CNN, it is seen that the standard 

CNN algorithm works better in terms of both time and performance. However, for some words, 

the detection performance is better compared to the overall accuracy, while for some words this 

score is lower. This is because the dataset from different youtube videos is diverse. We have 

tested Dilated CNN models with total number of 209 samples. In addition to diversity of data, 
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some words have more lip images than others. The Fig.25 show that the predictions made for 

each word and the words that resulted in incorrect predictions. When we look at the density in 

the diagonal, it is seen that there is mostly good performance for each word. Focuses on the 

words "merhaba" and "selam" which are incorrect predictions for the word "günaydın". In cases 

where "özür dilerim" and "teşekkür ederim" are guessed incorrectly, it should actually be "hoş 

geldiniz". If the interpretation is made according to these two situations, it can be said that the 

words and expressions are a prediction confusion in themselves. 

In this we tried to develop a model which fits to real world. Although the dataset is 

challenging in both preprocess and training, we achieved remarkably good result in multi-class 

classification problem. 

 

Table 8.9. Model Results for Dilated CNN 
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Figure 8.17. Confusion Matrix for Dilated CNN 

8.2.6. Recommended CNN model  

The proposed CNN architecture is two, for the concatenated frame lip images as a result 

of hyperparameter tuning, and for the lip images trained using discrete frames. 

While collecting the data, it was tried to balance as much as possible with an equal number 

of samples for each class (see Table 8.10.). 

 

Table 8.10. Data Distribution of Classes 

Classes Number of Samples 

afiyet olsun 235 

başla 235 

bitir 244 

görüşmek üzere 224 

günaydın 232 

hoş geldiniz 226 

merhaba 268 

özür dilerim 209 

selam 235 

teşekkür ederim 237 

 

Since the dataset contains both single-word and 2-word classes, the pronunciation duration 

of the phrases varies. For example, since the phrases “teşekkür ederim” and “özür dilerim” are 
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longer, their pronunciation durations and the number of frames they occupy in the dataset are 

more than the word “selam”.  While the frame count of the word “özür dilerim” exceeds 30, the 

frame count of the word “selam” does not exceed 15. It is critical to consider this distribution to 

make a balanced representation when classifying. 

 

8.2.7. CNN model with discrete frame mouths input 

As we mentioned in the Section Lip Representation, discrete frame lip images are given 

to the input layer as a sequence. The architecture includes two convolution and two max-pooling 

layers. Convolution layers use ReLU as an activation function, the filter sizes are 128, and the 

stride used in filters is 1 with no padding. Max-pooling layers pool sizes are 3x3x3 with the 

stride of 2. Flatten layer follows these four layers and architecture continues with fully 

connected layers with dropout.  

The input vector consists of 15 images with a fixed size of 50x50. Random 128 filters are 

applied to these images in the convolution layer without padding and with a stride of 1 step. 

After the convolution process, an output of 13x48x48x128 is produced. Since there is a 3x3 pool 

size in the output of the max pooling layer following the convolution, it outputs as 6x24x24x128. 

After applying the conv3d, max-pooling, and flatten layers, respectively, a 15488 dimensional 

vector is obtained. Two fully connected layers with ReLU activation function and 0.5 ratio 

dropout layers used to avoid overfitting, especially in CNN models are implemented. Finally, 

since a multi-class classification problem is studied, the architecture is finalized with a fully 

connected layer that produces 10-dimensional vector output with the softmax activation 

function. In the output, probabilities are produced for 10 classes in the form of “afiyet olsun”, 

“başla”, “bitir”, “görüşmek üzere”, “günaydın”, “hoş geldiniz”, “merhaba”, “özür dilerim”, 

“selam”, and “teşekkür ederim”. 
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Figure 8.18. CNN Model using discrete frame represented mouths 

8.2.8. CNN model with concatenated frame mouth input 

In this approach where lips are combined, 15 images are concatenated to form a single 

image input, unlike the case of discrete frame mouths as input. Therefore, it is quite convenient 

in terms of computational cost. Experiments were conducted using a shallower series of 

convolution layers compared to the previous CNN model, since a single image represents a 

sequence of images, reducing data complexity. It is sent to the convolution layer using a 50x50 

image as input. Experiments were conducted using a shallower series of convolution layers 

compared to the previous CNN model, since a single image represents a sequence of images, 

reducing data complexity. It is sent to the convolution layer using a 50x50 image as input. Then 

the Flatten layer's input is 24x24x16 since the pool size is 2x2. Unlike the architecture in the 

approach where the lips are given separately, there is 1 fully connected layer and dropout after 

the Flatten layer, which has 9216 dimensional vector output. Finally, an output vector with 10 

classes is produced. 
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Figure 8.19. CNN Model using concatenated frame represented mouths 

8.2.9. Training 

In the training process, experiments were carried out on different hyperparameters for 

studies on two different approaches to training the lips separately and combining them. Mlflow, 

a Python library developed to manage the machine learning lifecycle, was used to evaluate the 

results of the experiments and make hyperparameter tuning. In Table 2, it is seen that the 

hyperparameter results for both approaches.  

Different hyperparameters have been applied for the cases where the lips are joined and 

separate. Since the model capacity and complexity of the two approaches are different, 

parameters such as learning rate, batch size, and number of epochs varied. Also, Categorical 

cross entropy is an information measure used to compare predictions with true labels in a 

classification problem. 

This method quantifies the difference between the predicted probability distributions and 

the true labels, thereby measuring the accuracy of the model. 

A higher cross entropy value indicates that the predictions are further away from the true 

labels, while a lower value signifies a better match. 
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Table 8.11. CNN model training parameters 

Parameters Discrete Frame Mouth Concatenated Frame Mouth 

Number of training samples 1606 1606 

Number of validation 

samples 
345 345 

Number of test samples 344 344 

Learning rate 0,0002 0,002 

Batch size 32 16 

Word length 15 15 

Input dimension 50 50 

Loss function Categorical cross entropy Categorical cross entropy 

Optimizer Adam Adam 

Total trainable parameters 1,220,938 590,698 

 

8.2.10. Results 

It is difficult to make an accurate assessment in studies where language is involved, such 

as lip reading, because there are different pronunciations and variations in the language. It is 

possible to make an evaluation, especially when there are many studies and data in the English 

language. However, there is no comparable word-level dataset in terms of our studies in Turkish. 

In our studies, we basically aimed to develop a CNN architecture for the Turkish lip 

reading problem. All experiments based on CNN architecture run on GPU. NVIDIA 1650 Ti 

graphics card with 4GB memory. The improvements were made using the Python Keras library. 

In addition to these, Plotly and Seaborn libraries were used for visualization, and OpenCV 

libraries were used for image processing studies. 

Experiments were performed with the number of samples in Table 3 in both of the 

representation steps, where the lips are joined and the lips are separated. 
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Table 8.12. Number of test samples of each class 

Classes Number of Samples 

afiyet olsun 29 

başla 35 

bitir 46 

görüşmek üzere 23 

günaydın 32 

hoş geldiniz 34 

merhaba 43 

özür dilerim 31 

selam 37 

teşekkür ederim 35 

 

8.2.11. Training Results with Discrete Frame Lips 

Looking at the training results, the accuracy and loss value changes for which the epoch 

number is determined using early stopping are shown in the Fig. 45.  

The training process, which was stopped after the improvement in Loss value did not 

improve in 3 epochs, ended in 68 epochs. If the training continues further, there is no need to 

make further calculations as the model will be overfitting. 

When the results of the predicted classes in the test data are examined, it is seen that the 

incorrectly determined classes are generally collected in the “afiyet olsun” class, see Fig. 10. 

Especially for instances of classes whose actual class is “başla”, “günaydın”, and “özür dilerim”, 

the wrong predictions concentrated on “afiyet olsun”. Mistakes made in the “afiyet olsun” class 

were generally made for 6 examples in the “teşekkür ederim” phrase. Contrary to these, there is 

no example of an incorrectly guessed “afiyet olsun” in the “hoş geldiniz” phrase. 
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Figure 8.20. Training and validation accuracy and loss per epoch with discrete frame lips 

“hoş geldiniz”, “merhaba”, “selam”, and when looked at the “başla”, “bitir”, “özür dilerim” 

classes that follow them, it is seen that the precision scores are high, see Fig. 46,47. Thus, we 

can interpret that the majority of positive predictions for these classes are correct. In general, 

we see that the “afiyet olsun” class error rate is high based on the confusion matrix. There may 

not be a clear lip movement in the vocalization of these phrases in the dataset, or it may be 

interpreted as one of the more challenging expressions compared to Turkish grammar rules. 

Since f1-score is the harmonic mean of precision and recall metrics, it is generally seen as f1-

score high when precision and recall are high at the same time, or low when f1-score is low at 

the same time such as “hoş geldiniz” and “günaydın”. Although there is no class imbalance in 

terms of the number of samples in this dataset, the prediction performances vary according to 

the classes, as there are situations that create diversity for each class, such as the differences in 

speakers, viewing angles, and light differences, just like real-life scenes. 
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Figure 8.21. Confusion matrix of model trained with discrete frame lips 

 

Figure 8.22. Classification report of model trained with discrete frame lips 
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8.2.13. Training results with concatenated frame lips 

In the CNN model training performed using joined lips, the process stopped with early 

stopping ended at 42 epochs (see Fig. 48).  In the last epochs, validation accuracy starts to 

decrease, while training accuracy increases. Therefore, if the training continues further, it will 

be inevitable to achieve a low test accuracy. 

Similarly, as in the dataset with split lip images, wrong predictions for many classes such 

as “bitir”, “günaydın”, “merhaba” and “özür dilerim” in the results of combined lip images were 

collected in the “afiyet olsun” class, see Fig. 49. Apart from that, we can see that the estimations 

are generally high in the “başla”, “görüşmek üzere”, “hoş geldiniz”, “selam” and “teşekkür 

ederim” classes and do not predominantly confused with other classes. 

As seen in the confusion matrix, it is observed in the classification report graph (Fig. 14) 

that the precision, recall and f1-score values of the “afiyet olsun” class are low. To interpret the 

accuracy percentages of other classes, more balanced results are seen compared to training using 

split lips. 

 

 

Figure 8.23. Training and validation accuracy and loss per epoch with concatenated frame lips 



 

75 

 

Figure 8.24. Confusion Matrix of Model Trained with Concatenated Frame Lips 

 

Figure 8.25. Classification Report of Model Trained with Concatenated Lips 
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8.2.14. Comparision for concatenated frame lips results and discrete frame lips 

results 

When the total experimental results are compared, the accuracy is 90.6% for concatenated 

frame lips and 91.7% for discrete frame lips. Again, the times are 18 seconds and 8 minutes, 

respectively. Since the training time of the discrete frame lips is long, it can be considered more 

burdensome in terms of computational cost, but it can be preferred in terms of performance 

because of its higher accuracy. In terms of image representation, 15 images of 50x50 size are 

used in one of the inputs, while 1 image of 60x200 size is used in the other. In a situation where 

simultaneous estimation is required, the use of representation using joined lips would be more 

appropriate, but for problems where accurate detection is important, the use of the CNN model 

using split lips is appropriate. 

Compared to similar studies, the data contents used in terms of the dataset are quite 

challenging. In this novel dataset, faces are not viewed from the front, some images are very 

dark while others are quite bright, and at times it is not possible to accurately detect the face 

because the background is too mixed. 

 

Table 8.13. Accuracy and training time of two CNN models 

 Accuracy Training Time 

Concatenated Frame Lips 90.6% 18 seconds 

Discrete Frame Lips 91.7% 480 seconds 
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9. CONCLUSION AND SUGGESTIONS 

In this thesis, a CNN model is proposed for a new Turkish dataset. It also compares 

accuracy and computational cost with two different input representations. In the first of these, 

sequence lip images form the input of the model separately, while in the other, the lips are 

combined to form a single image. In terms of performance, split lips look better, but combined 

lips perform better in terms of time cost. In addition, the Turkish dataset collected from natural 

Youtube images is also challenging as it is closer to real-world images compared to other 

studies. The images collected in the studies in the literature were obtained with a fixed 

background and a fixed human pose by establishing a controlled environment. There is a known 

dataset that can be evaluated for Turkish, although it has more data, it was also collected in a 

controlled environment. Automatic lip-reading over natural videos is also of great importance 

in terms of automatic captioning for hearing-impaired people. In this study, a CNN model is 

proposed by performing lip reading from natural video images. Since the natural language and 

lip reading studies in Ural-Altaic languages are shallow, we have contributed with a unique 

study. 

On the image sequences, the lip-reading problem was handled by making multiclass 

classification with frequently used greeting words in Turkish. Images consisting of frame sizes 

in different numbers obtained from the video are used. These classified images are more 

challenging for the visibility of the lips than datasets obtained in a controlled environment. 

A benchmarking was made by classifying the lip images collected in the natural 

environment with CNN and three other classification algorithms, which are the approaches that 

are frequently used in deep learning. The performance of the newly collected dataset was 

evaluated on the basic approaches. This evaluation aimed to assess the effectiveness of the CNN 

model compared to other commonly used classification algorithms in the context of lip image 

classification. The results of the benchmarking provided insights into the performance and 

suitability of different algorithms for lip image classification tasks in natural environments. 

The dataset used in classification studies consists of frequently encountered greeting 

expressions in Turkish. These words were collected from natural videos, ensuring that they were 

obtained without any intervention such as clipping or elimination. This dataset, known as the 

Turkish lip reading dataset, is publicly available for research purposes. One notable distinction 
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between this dataset and many other lip reading datasets is that it contains solely image data, 

without accompanying audio. This characteristic makes it particularly suitable for scenarios 

where audio data is unavailable or absent in the environment. Researchers and practitioners can 

utilize this dataset to explore and develop lip reading systems specifically designed for Turkish 

greeting expressions. The availability of such a dataset contributes to advancing the field of lip 

reading and further supports the development of robust models for speech recognition and 

understanding. 

Another significant contribution of this study is the evaluation of discrete and 

concatenated representations of the collected lip data within a CNN architecture that exhibits 

promising performance. In addition to the classification task, particular attention has been given 

to accurately distinguish faces in the images and subsequently identify the lip region. This 

comprehensive evaluation aims to explore the effectiveness of different representations of lip 

data in the context of a CNN architecture. 

The collected lip data is represented using two distinct approaches: discrete representation 

and concatenated representation. The discrete representation involves treating each lip image as 

an individual data point, while the concatenated representation involves combining multiple lip 

images to form a single input. By evaluating the performance of these representations, the study 

seeks to determine which approach yields better results in terms of accuracy and efficiency. 

Furthermore, an emphasis has been placed on the approaches employed to accurately 

distinguish faces within the images. This involves employing techniques such as face detection 

and facial landmark localization to precisely identify the lip region of interest. The effectiveness 

of these face detection and lip localization methods is also assessed in the study, contributing to 

the overall understanding of the lip image classification process. 

Through this comprehensive examination, the study aims to provide insights into the 

optimal representation of lip data and the effectiveness of face detection and lip localization 

techniques in the context of a CNN architecture. The findings will further advance the field of 

lip image classification and contribute to the development of more accurate and efficient lip 

reading systems 

Furthermore, the study places a significant focus on achieving accurate identification of 

faces within the images. Recognizing the importance of precise face detection as a crucial initial 

step in the subsequent lip image identification process, the research explores various approaches 
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and techniques to ensure optimal face detection performance. The evaluation encompasses the 

assessment of different algorithms, methodologies, and pre-processing steps employed to 

achieve reliable and accurate face detection. 

Following successful face detection, the study's emphasis shifts to the identification and 

extraction of lip images. Once the faces are accurately detected, the research investigates 

different approaches employed to discern and extract the lip region from the overall facial 

image. Various techniques, such as image segmentation, feature extraction, and pattern 

recognition, are thoroughly examined and their effectiveness is evaluated in terms of accurately 

isolating the lip region. 

For image segmentation, different algorithms are explored to partition the facial image 

and separate the lip region from the rest of the face. These algorithms aim to precisely identify 

the boundaries of the lips and separate them from other facial components. Feature extraction 

techniques are then applied to extract relevant visual characteristics and discriminative 

information from the lip region. These features play a crucial role in distinguishing between 

different lip shapes, movements, and articulations. Additionally, pattern recognition methods 

are employed to recognize and classify the extracted lip images into relevant categories or 

classes. 

By investigating and evaluating these approaches for both face detection and lip image 

identification, the study aims to contribute to the advancement of accurate and reliable lip 

reading systems. The findings will provide valuable insights into the effectiveness of different 

techniques, algorithms, and pre-processing steps in the context of face and lip analysis, 

ultimately enhancing the overall performance of lip image classification and recognition tasks. 

By conducting these comprehensive evaluations and in-depth analyses, this study aims to 

make significant contributions to the advancement of lip image recognition techniques within 

the domain of computer vision. The findings and insights gained from this research have the 

potential to enhance the accuracy, reliability, and overall performance of lip reading systems, 

biometric authentication applications, and other related fields where lip image analysis plays a 

crucial role. 

The outcomes of this study can pave the way for improved lip image classification and 

recognition algorithms, leading to more robust and efficient systems. The research outcomes 

can also guide the development of novel approaches and methodologies for face detection, lip 
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region identification, and subsequent analysis. These advancements are particularly valuable in 

areas such as human-computer interaction, assistive technologies for speech-impaired 

individuals, and biometric security systems where accurate lip image analysis can provide 

valuable information for identification and authentication purposes. 

Additionally, the insights obtained from this study can inform the design and optimization 

of lip reading systems for diverse applications, including transcription services, automatic 

speech recognition, and audiovisual synchronization. The advancements in lip image 

recognition can contribute to the development of inclusive and accessible technologies, enabling 

effective communication and interaction for individuals with hearing impairments or in noisy 

environments. 

Overall, the findings and contributions of this study have the potential to advance the field 

of lip image recognition, benefiting a wide range of domains that rely on accurate and efficient 

analysis of lip-related visual information. Through this research, advancements in computer 

vision techniques can be harnessed to unlock new possibilities and applications, ultimately 

enhancing communication, security, and accessibility in various real-world scenarios. 

Some suggestions for further Works; 

Utilizing Depth Information: To enhance lip movements with more information, you can 

consider integrating data obtained from depth cameras into your system. By incorporating both 

2D image data and 3D depth information, a more precise lip reading system can be developed. 

Multilingual Support: Although your current focus is on the Turkish language, providing 

multilingual support for your system can cater to a broader user base. Collecting data for 

different languages and investigating the language-dependent characteristics of lip movements 

can present future opportunities for research. 

Real-time Application: Evaluating the performance of your lip reading system in real-time 

scenarios is crucial. Developing a system capable of analyzing live video streams in real-time 

would be a significant step towards real-world applications by using Tiny ML & Edge AI. 

LSTM variations: Explore different variations of LSTM beyond the traditional LSTM 

architecture. For instance, you can investigate the usage of peephole connections, gated units at 

the cell level, or stacked LSTM structures. 
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Transfer learning: Investigate the potential usage of an LSTM model trained on another 

language (e.g., English) to recognize Turkish lip movements. Transfer learning can be beneficial 

when working with limited data.  
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