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ABSTRACT 

Leveraging the Molecular Signatures of Cancer for Dynamic Network  

 

Enes Sefa Ayar 

Master of Science in Computational Sciences and Engineering 

August 17, 2023 

 

 

Drug resistance poses a significant challenge to the effectiveness of therapies, driven 

by accumulation of molecular alterations within dynamic cellular networks. In this thesis, 

we used a discrete dynamic model, Graph-based Cellular Automata (GCA), to reveal the 

network-based history of tumor progression and causal association between network 

modules and drug resistance by data integration. GCA can simulate dynamic systems 

using initial static information, set of states and simple transition rules. The reference 

graph is a tissue-specific interactome that consists of both protein-protein interactions and 

the regulatory network of the transcription factor to gene interactions composed of 8,228 

nodes and 63,574 edges. By incorporating known biology and statistical rules of 

molecular alterations, including stimulations, repressions, and (non)-linear pairwise 

molecular correlations, GCA simulates molecular signalling and propagates mutation 

effects downstream of signalling pathways and complexes. Eventually, GCA gives a 

trajectory of subnetwork models for each context.  In comparisons of simulations with 

and without mutations at the node level, we detected functional subnetworks within the 

dynamic network structure. We used publicly available omics data from a well-

established cancer cell line repository to optimize the GCA model and construct dynamic 

networks for each cell-line-drug pair for interpreting drug resistance mechanisms at the 

pathway level. The accuracy of these drug representative networks were evaluated by 

cross-validation and on an independent test from Patient-Derived Xenografts (PDX). 

Notably, we found context-specific pathways (e.g. MAPK signalling) involving proteins 

from drug-resistant cell lines and PDX samples, thereby linking them to investigated drug 

resistance mechanisms. Overall, this approach, from molecular alterations to dynamic 

networks, transforms already available large datasets to gain new clinically relevant 

insights about drug resistance, offering potential implications for cancer therapy. 
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ÖZETÇE 

Kanserin Moleküler İzlerinin Dinamik Ağ Modellemede Kullanılması 

Enes Sefa Ayar 

Hesaplamalı Bilimler ve Mühendislik, Yüksek Lisans 

17 Ağustos 2023 

 

 

İlaç direnci, dinamik hücresel ağlarda moleküler değişikliklerin birikmesinden 

kaynaklanan tedavilerin etkinliği için önemli bir sorun teşkil etmektedir. Bu tezde, tümör 

ilerlemesinin ağ tabanlı geçmişini ve ağ modülleri ile ilaç direnci arasındaki nedensel 

ilişkiyi veri entegrasyonu yoluyla ortaya çıkarmak için ayrık bir dinamik model olan çizge 

tabanlı hücresel otomata (GCA) kullandık. GCA, statik verileri, durum kümelerini ve 

basit geçiş kurallarını kullanarak dinamik sistemleri simüle edebilir. Referans ağ, hem 

protein-protein etkileşimlerinden hem de transkripsiyon faktörlerinden, 8.228 düğüm ve 

63.574 kenardan, ve gen etkileşimlerini düzenleyen etkileşimlerden oluşan dokuya özgü 

bir interaktomdur. GCA aktive edici, baskılayıcı ve doğrusal olan yada olmayan ikili 

moleküler korelasyonlar dahil olmak üzere bilinen biyoloji ve moleküler değişikliklerin 

istatistiksel kurallarını birleştirerek moleküler sinyalizasyonu simüle etmek ve sinyal 

yolaklarının ve komplekslerinin akış aşağısında mutasyon etkilerini yaymak için 

kullanılmıştır. Sonuç olarak GCA, her durum için bir alt ağ modelleri gezingesi vermiştir. 

Düğüm seviyesinde mutasyonlu ve mutasyonsuz simülasyonların karşılaştırılmasıyla, 

dinamik ağ yapısı içinde işlevsel alt ağlar tespit ettik. GCA modelini optimize etmek ve 

yolak düzeyinde ilaç direnç mekanizmalarını yorumlamak için her bir hücre hattı-ilaç çifti 

için dinamik ağlar oluşturmak üzere kapsamlı bir kanser hücre hattı veri tabanından halka 

açık omik verilerini kullandık. Bu ilaç temsili ağların doğruluğu, çapraz doğrulama ve 

Hastadan Türetilmiş Ksenograft (PDX) içeren bağımsız bir testle değerlendirdik. 

Özellikle, ilaca dirençli hücre hatlarından ve PDX örneklerinden proteinleri içeren 

bağlama özgü yolaklar (örn. MAPK sinyali) bulduk ve böylece bunları araştırılan ilaç 

direnci mekanizmalarına bağladık. Genel olarak, moleküler değişikliklerden dinamik 

ağlara kadar bu yaklaşım, halihazırda mevcut olan büyük veri kümelerini dönüştürerek 

ilaç direnci hakkında klinik olarak ilgili yeni öngörüler elde etmiş ve kanser tedavisi için 

potansiyel çıkarımlar sunmuştur. 



vi 

 

ACKNOWLEDGEMENTS 

First and foremost, I sincerely thank my advisor, Assoc. Prof. Nurcan Tunçbağ for her 

guidance and kindness throughout this work. Working with her has been a privilege, and 

I appreciate the chances she gave me to sharpen my research skills. Her expertise, 

understanding, and professionalism have been priceless in shaping the direction of this 

thesis, and I am truly grateful for her mentorship. 

 

Furthermore, I would like to thank my thesis committee members: Prof. Dr. Attila 

Gürsoy, and Assistant Professor Tuğba Süzek, for their invaluable feedbacks and 

accepting to be part of my thesis committee. 

 

I thank the TÜBİTAK ARDEB 1001 program for their financial support to project 

121E245. Thank you for empowering us to make an impact in our research field. 

 

I am incredibly grateful to my dear colleagues, Uğur Şahin, Bengi Ruken Yavuz, Kaan 

Arıcı, Cansu Demirel, Sina Dadmand, Sertan Ali Dikli, Aslı Dansık, Yıldız Aydın, Yiğit 

Şibal, İdil İlayda Duran, and Ekin Su Erdem for making my academic journey more 

manageable and the achievements more joyful. I also want to thank my close friends, 

Rıdvan Balamur, Barışcan Bozkurt, Mert Gayretli, Ali Sertan Yaka, and Ülkem 

Kasapoğlu, who have been a source of encouragement and companionship. 

 

Finally, I extend my heartfelt gratitude to my family for their support and encouragement 

in the completion of this thesis. To my parents, Meryem Ayar and Süleyman Ayar, thank 

you for believing in my abilities and providing constant motivation. To my siblings, Emre 

Ayar, Hülya Çin, and Melek Tuna, your presence strengthened me during challenging 

times. I owe a heartfelt thank-you to my beloved Ceren Uzun. Our deep connection has 

led us on an extraordinary journey of learning and exploration. Your constant presence 

has been a source of unwavering support and boundless patience. 

 

 

 



vii 

 

TABLE OF CONTENTS 

List of Tables ....................................................................................................... ix 

List of Figures ........................................................................................................x 

Abbreviations ....................................................................................................... xi 

Chapter 1: Introduction ...........................................................................................1 

Chapter 2: Literature Review ..................................................................................5 

2.1 Prominent Role of Mutations in Cancer Progression .................................5 

2.2 Molecular Landscape of Cancer ...............................................................6 

2.3 Drug Resistance in Cancer........................................................................7 

2.4 Network Medicine ....................................................................................9 

2.5 Dynamic Network Modelling ................................................................. 10 

Chapter 3: Materials and methods ......................................................................... 13 

3.1 Reference Network Construction ............................................................ 13 

3.2 Graph-based Cellular Automata Model .................................................. 14 

3.2.1 Overview of the GCA Approach ..................................................... 14 

3.2.2 Transition Rules of GCA ................................................................. 15 

3.2.3 Pairwise Estimation Function .......................................................... 16 

3.2.4 Use of Mutations in the GCA Model ............................................... 17 

3.3 Application of GCA Model on DepMap Cell Lines ................................ 18 

3.3.1 Mutation Profiles of DepMap Cell Lines ......................................... 18 

3.3.2 Optimizations on GCA Model ......................................................... 19 

3.3.3 Synthetic Reference Networks......................................................... 19 

3.3.4 Specificity Analysis ........................................................................ 20 

3.3.5 DepMap Cell Line Simulations ....................................................... 20 

3.3.6 Construction of Drug Modules ........................................................ 21 

3.3.7 Cell Line Blind Cross Validation of Drug Modules ......................... 21 

3.3.8 Network Proximity Analysis ........................................................... 23 



viii 

 

3.3.9 Drug Module Visualization and Investigating Resistance Mechanisms

 23 

3.4 Application of the GCA Model to Patient Derived Xenografts................ 24 

3.4.1 PDX Samples .................................................................................. 24 

3.4.2 Drug Resistance Predictions on PDX Samples................................. 24 

3.4.3 Investigation of Resistance Mechanisms in PDX Modules .............. 25 

Chapter 4: RESULTS ........................................................................................... 27 

4.1 Data Statistics......................................................................................... 27 

4.2 Optimization of the Model ..................................................................... 29 

4.2.1 Sensitivity of Model to Differentiate Mutations ............................... 29 

4.2.2 Synthetic Reference Tests ............................................................... 31 

4.2.3 Specificity Results ........................................................................... 33 

4.3 Drug Modules ........................................................................................ 34 

4.3.1 Validation of Drug Modules ............................................................ 34 

4.3.2 Investigation of Drug Resistance Mechanisms on Cell Lines ........... 35 

4.4 Investigation of Drug Resistance Mechanisms on PDX Samples ............ 38 

Chapter 5: DISCUSSION ..................................................................................... 43 

Bibliography......................................................................................................... 47 

 

 

 

 

 

 

 

 



ix 

 

LIST OF TABLES 

 

Table 4.1: Number of protein groups in total and in reference interactome.. .......... 27 

Table 4.2: Applicable number of entities in transition rules... ................................ 28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 

 

LIST OF FIGURES 

Figure 2.1: Conceptual representation of the GCA approach. ................................ 12 

Figure 3.1: Overview of the GCA model on the molecular simulations ................. 15 

Figure 3.2: Scatter plot of expression values for gene RNF11 and ITCH1 ............. 16 

Figure 3.3: Scatter plot of expression values for gene RNF11 and ITCH1 with 

smoothened estimation function............................................................................ 17 

Figure 3.4: Graphical representation of mutation applications ............................... 18 

Figure 3.5: Graphical representation of drug module construction ........................ 21 

Figure 3.6: Illustration of drug modules leveraged for predictions on test cell- 

lines. ..................................................................................................................... 22 

Figure 3.7: Conceptual representation of network proximity ................................. 23 

Figure 4.1: Enrichment of gene sets obtained from oncogene tumor suppressor 

mutations. ............................................................................................................. 29 

Figure 4.2: Distribution of similarity ratios. .......................................................... 31 

Figure 4.3: Performance of model in synthetic networks ....................................... 32 

Figure 4.4: Results of specificity analysis performed on the model ....................... 33 

Figure 4.5: Evaluation of model performance using 10-fold cross-validation ........ 35 

Figure 4.6: Representation of merged drug modules together with drug targets ..... 37 

Figure 4.7: Representation of merged drug module resistant exclusive gene 

enrichments .......................................................................................................... 37 

Figure 4.8: Evaluation of model performance on PDX samples. ........................... 38 

Figure 4.9: Representation of merged PDX samples and intersection with resistant 

and sensitive drug modules of buparlisib. ............................................................. 39 

Figure 4.10: Evaluation of model performance on PDX samples........................... 40 

 

 

 

 

 

 

 

 

 



xi 

 

ABBREVIATIONS 

AKT A serine/threonine protein kinase 

BIOGRID Biological General Repository for Interaction Datasets 

CA Cellular Automata 

CCLE Cancer Cell Line Encyclopedia 

CDKN2A Cyclin dependent kinase inhibitor 2A 

cGMP-PKG cGMP-dependent protein kinase 

CORUM The Comprehensive Resource of Mammalian Protein Complexes 

COSMIC Catalogue Of Somatic Mutations In Cancer 

CPTAC Clinical Proteomic Tumor Analysis Consortium 

DepMap Dependency Map 

DNA Deoxyribonucleic Acid 

ERK Extracellular Signal Regulated Kinase 

FGF1 Fibroblast Growth Factor 1 

GCA Graph-based Cellular Automata 

GDSC Genomics of Drug Sensitivity in Cancer 

GNGT1 Guanine nucleotide-binding protein G(T) subunit gamma-T1 

HMS LINCS The Harvard Medical School Library of Integrated Network-based 

Cellular Signatures 

IL3 Interleukin-3 

Interactome 

INSIDER 

INtegrated Structural Interactome and genomic Data browsER 

iRefWeb Interaction Reference Index 

ITCH1 Itchy E3 Ubiquitin Protein Ligase 1 

JAK/STAT Janus Kinase/Signal Transducers and Activators of Transcription 

KEGG Kyoto Encyclopedia of Genes and Genomes 

LCK Lymphocyte-Specific Protein Tyrosine Kinase 

MAPK Mitogen-Activated Protein Kinase 

MCC Matthew’s correlation coefficient 

MTOR Mammalian target of rapamycin 

PARP1 Poly (ADP-ribose) polymerase 1 

PDGFRA Platelet-derived growth factor receptor alpha 

PDX Patient-drived Xenografts 



xii 

 

PI3K Phosphatidylinositol-3-kinase 

PIK3C3 Phosphatidylinositol 3-kinase catalytic subunit type 3 

PIK3CA Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit 

Alpha 

PIK3CB Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit beta 

PIK3CD Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit 

delta 

PIK3CG Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit 

gamma 

PKIs Protein kinase inhibitors 

RNF11 RING Finger Protein 11 

SOS2 Drosophila Son of sevenless 2 

TCGA The Cancer Genome Atlas 

TFDP2 Transcription factor Dp-2 

TRRUST Transcriptional Regulatory Relationships Unraveled by Sentence-

based Text mining 

VEGFC vascular endothelial growth factor C 

 

 

 

 

 

 

 



 

INTRODUCTION  1 

1 

 

Chapter 1:  

INTRODUCTION 

Mutations are genetic changes that occur in the DNA sequence of an organism. They arise 

spontaneously or be induced by external factors. While they play a crucial role in the 

evolution of biological organisms and serve a purpose, some of these changes lead to 

abnormalities (Fitzgerald & Rosenberg, 2019; Loewe & Hill, 2010). Some mutations 

occur in non-coding DNA regions known as 'Junk DNA,' which are thought to lack 

functionality (Palazzo & Gregory, 2014). Despite this assumption, these seemingly non-

functional parts play a significant role either by acting as a buffer to reduce the likelihood 

of mutations occurring in the functional segments or having unknown regulatory 

functions (Palazzo & Gregory, 2014).  

Beyond the specific type and location of a mutation on a gene, the effects of mutations 

on the intricate cellular interactions remain largely unpredictable (Loewe & Hill, 2010). 

In the context of cancer and its causal relationship with mutations, it becomes crucial to 

identify common patterns among cancer cells and compare them to normal cells. 

However, this task is highly challenging due to the diverse effects of mutations, the 

complexity of the cellular organization, and the accumulation of a wide range of mutation 

combinations (Salk, Fox, & Loeb, 2010). 

Leveraging a wide range of omics data, genomics, transcriptomics, proteomics, and 

metabolomics is equally important to consider all aspects of cancer. These 

complementary layers offer valuable insights into cellular processes, elucidating the 

impact of mutations on gene expression, protein function, and overall 

pathways/complexes. In the last two decades, we have seen an explosion of high-

throughput studies, resulting in vast amounts of omics data that present a puzzle to 

integrate and fully comprehend all intermediate steps from DNA to cellular activity. The 

challenge arises to integrating these omics data for identifying disease-related 

genes/proteins and exploring pathway perturbations in cancer. Despite its importance, 

this task remains challenging and requires further attention.(Demirel, Arici, & Tuncbag, 

2022). 

Targeted drug therapies aim to eliminate cancer cells from a healthy population of cells 

by leveraging their distinctive molecular characteristics (Padma, 2015). Unlike traditional 
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treatments like chemotherapy and radiation, side effects are mostly minimized since 

healthy cells are distinguished from cancer cells. These therapies achieve that by 

disrupting specific signaling pathways and molecular targets responsible for cancer 

growth and survival. For instance, Protein kinase inhibitors (PKIs) are a class of 

molecules that specifically bind to active sites of protein kinases, obstructing the process 

of phosphorylation, a vital step in initiating intracellular signaling cascades (Lemmon & 

Schlessinger, 2010). By inhibiting the phosphorylation of specific protein residues, these 

inhibitors promote cell cycle arrest at certain checkpoints, effectively restraining 

uncontrolled cell division, which is particularly relevant in the context of cancer cells 

(Otto & Sicinski, 2017). 

A significant challenge arises as further molecular alterations accumulate in cancer cells, 

increasing heterogeneity and triggering drug resistance. This resistance can occur through 

various mechanisms, such as activating alternative signaling pathways, mutations in the 

drug’s target site, increased drug efflux, or alterations in the tumor microenvironment 

(Housman et al., 2014; Mansoori, Mohammadi, Davudian, Shirjang, & Baradaran, 2017). 

The effects of these molecular alterations extend beyond the neighborhood of the altered 

gene or protein, propagating through the network of interactions and affecting the 

functionality of regulation mechanisms.  

One promising computational approach is network medicine, which utilizes network 

science to represent these interactions (Sonawane, Weiss, Glass, & Sharma, 2019). The 

approach involves constructing and analyzing networks of molecular and cellular 

components from various layers of omics data (Barabasi, Gulbahce, & Loscalzo, 2011). 

The network construction process comprises several crucial steps, including reference 

construction, seed selection, propagation, and module detection. Detected modules 

represent meaningful subsets of the reference network determined through seed selection 

and propagation steps. Subsequently, these modules are further explored using network 

and learning-based methods (Sharma et al., 2015).  

The current network medicine literature mainly focuses on obtaining valuable insights 

from static network models, but they overlook the dynamic nature of biological systems 

(Chaudhuri & Srivastava, 2022; Kostic, Hilgetag, & Tittgemeyer, 2020). The dynamic 

nature of biological systems arises from the fact that they constantly change over time 

due to various internal and external influences. This dynamic aspect is a crucial area that 

needs adequate attention (Abou-Jaoude et al., 2016; Braha, 2020). By examining the 



 

INTRODUCTION  3 

3 

 

interactions between nodes at different time points in the system’s evolution, it can be 

possible to identify key patterns and processes that shape the system’s dynamic behavior 

(Battiston et al., 2020). However, the need for real-time series data or its limited 

availability is a significant challenge. Alternatively, discrete dynamic models emerge as 

promising solutions. Discrete dynamic models leverage static data snapshots to simulate 

the dynamics of biological systems in discrete time steps. They use transition functions 

to represent the behavior of complex systems.  One promising example is the cellular 

automata model (CA). CA models are simple yet powerful simulations of complex 

systems. They consist of a grid of cells that evolve based on predefined rules and their 

neighboring cell states. These models reveal patterns and emergent behaviors, aiding 

understanding self-organization and chaos in various fields (Ishida, 2018). Furthermore, 

the Graph-based Cellular Automata (GCA) model is an exciting variation of CA that uses 

a graph-based non-uniform neighborhood. It has been applied successfully in various 

fields but not in biology. Applying GCA to molecular networks could simulate complex 

cellular signaling pathways more flexibly and realistically, capturing dynamic 

interactions and providing insights into drug resistance. 

 

In Chapter 2, we emphasized the prominent role of mutations and introduced the multi-

omics efforts to comprehend different aspects of cancer progression. We also introduced 

the biological background of drug resistance and the computational background of 

network medicine, as well as the computational foundations of network medicine and 

dynamic network modeling, which we believe hold the potential to illuminate the 

mechanisms underlying drug resistance. 

 

In Chapter 3, we provided the followed methodology in detail with proper references for 

databases utilized. We first described the construction of the reference network, then 

described the details of the GCA model. Afterward, we provided optimizations and how 

drug modules related to drug resistance were constructed, validated, and analyzed. 

 

In Chapter 4, we summarized our key findings and compared our method with previous 

relevant studies. We also discussed our method's significance, limitations, strengths, and 

weaknesses. Additionally, we provide perspectives and future directions for this study. 
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Chapter 2: 

LITERATURE REVIEW 

2.1 Prominent Role of Mutations in Cancer Progression 

In cancer biology, a fundamental hallmark distinguishing tumor cells from their normal 

counterparts is the loss of regulation over cellular signaling, resulting in uncontrollable 

proliferation (Hanahan & Weinberg, 2011). Cellular signaling is a tightly regulated 

process that governs the behavior of cells in response to internal and external cues (Nair, 

Chauhan, Saha, & Kubatzky, 2019). It involves molecular events, where proteins and 

genes interact with each other through signaling pathways that control essential cellular 

processes such as growth, differentiation, cell cycle, apoptosis (programmed cell death), 

and DNA repair (Campos & Clemente-Blanco, 2020; Duronio & Xiong, 2013; Elmore, 

2007). This signaling is precisely regulated in normal cells, ensuring that cells respond 

appropriately to their environment and maintain homeostasis. However, this control is 

disrupted in cancer due to mutations that affect key genes and proteins involved in cellular 

signaling. These mutations may cause specific signaling proteins to become hyperactive, 

resulting in relentless cellular growth and division (Zenonos & Kyprianou, 2013). 

Alternatively, mutations might impair signaling pathways responsible for apoptosis, 

eliminating abnormal or damaged cells (Elmore, 2007). Moreover, mutations can 

compromise DNA repair pathways, contributing to genomic instability and the 

accumulation of further genetic alterations that fuel cancer progression (Torgovnick & 

Schumacher, 2015). 

Cancer progression can be defined as a process with the accumulation of mutations that 

progressively worsen the malignancy of cancer cells. Uncontrolled division signals begin 

with initial mutations, and tens or hundreds of mutations accumulate from the beginning 

of this process. Distinguishing the effects of these mutations is crucial to understanding 

the nature of mutations in cancer progression to treat patients better. These mutations in 

cancer progression can be categorized into three groups based on their impact: drivers, 

passengers, and latent drivers (Kumar et al., 2020; McFarland et al., 2017). Driver 

mutations are genetic alterations that contribute to the development and progression of 

cancer (Ostroverkhova, Przytycka, & Panchenko, 2023). These mutations are called 

“drivers” because they provide a selective growth advantage to cells that carry them, 
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enabling them to outcompete normal cells and proliferate more rapidly. In contrast, 

passenger mutations are genetic changes that occur in cancer cells but do not directly 

contribute to the development or progression of the disease (Stratton, Campbell, & 

Futreal, 2009). Their primary characteristic lies in their frequent co-occurrence with the 

driver mutations. While passenger mutations are thought to have non-proliferative effects 

on disease phenotypes, their properties and role are poorly understood (Wodarz, Newell, 

& Komarova, 2018). However, accumulating slightly deleterious passenger mutations 

slow cancer progression, presenting a potential therapeutic target (McFarland et al., 

2017). Finally, latent mutations can potentially drive cancer development, even though 

they have not yet been recognized as cancer hallmarks (Nussinov & Tsai, 2015; Yavuz, 

Tsai, Nussinov, & Tuncbag, 2023). Nonetheless, when they synergize with other 

mutations, they are believed to play a significant role in promoting cancer development 

and drug resistance (Nussinov & Tsai, 2015). 

2.2 Molecular Landscape of Cancer 

Cancer is a profoundly intricate disease, with mutation profiles being only one aspect of 

the investigation. It necessitates a comprehensive study of genetic, genomic, and 

molecular alterations within cancer cells. To address this necessity, significant efforts 

were made, and comprehensive initiatives and projects emerged, such as The Cancer 

Genome Atlas (TCGA) (Tomczak, Czerwinska, & Wiznerowicz, 2015), Cancer Cell Line 

Encyclopedia (CCLE) (Ghandi et al., 2019), and Clinical Proteomic Tumor Analysis 

Consortium (CPTAC) (Rudnick et al., 2016). These efforts involve the analysis of 

thousands of tumor samples using advanced genomic sequencing and molecular profiling 

technologies. The data they have deposited serve as invaluable resources for exploring 

the molecular landscape of cancer, ranging from cell lines to patient-derived samples, 

encompassing proteomics data, immunological landscapes, and drug responses. 

These diverse resources have proven invaluable for providing powerful models to study 

mechanisms of cancer biology and personalized, targeted therapies. One major 

contribution of these efforts is the recognition that cancer is not a single disease but rather 

a collection of distinct subtypes (Zhang, Chen, & Creighton, 2023). In addressing this 

heterogeneity problem, Network-based stratification has emerged as a compelling 

method. To categorize tumor samples according to their specific characteristics, this 
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integrative method uses the genomic landscape of tumor samples and molecular gene 

networks (Hofree, Shen, Carter, Gross, & Ideker, 2013; C. Liu, Han, Zhang, Nussinov, & 

Cheng, 2021; S. Wang et al., 2018). Furthermore, several studies have leveraged 

perturbation-based methods to rewire cellular networks of cancer cells and integrate 

diverse omics data types to identify susceptible proteins and pathways (Acuner-

Ozbabacan et al., 2014; Drake et al., 2016).  

In addition to high-throughput studies, there is also an increase in public datasets 

enhancing our understanding of biological systems. Resources like KEGG and 

Wikipathways outline biological pathways. KEGG uses manual curation for pathway 

construction (Kanehisa, Furumichi, Sato, Kawashima, & Ishiguro-Watanabe, 2023), 

while WikiPathways relies on community inputs (Pico et al., 2008). The CORUM 

database catalogs verified mammal protein complexes from literature, experiments, and 

other databases (Giurgiu et al., 2019). The OmniPath integrates various molecular 

interactions—protein, signaling, and regulatory (Türei, Korcsmáros, & Saez-Rodriguez, 

2016). The BIOGRID compiles diverse interaction types (e.g., physical association, direct 

interaction) (Oughtred et al., 2021). The TRRUST focuses on transcriptional networks 

composed of transcription factors and target genes (Han et al., 2018). These sources and 

many other offer complementary datasets, each capturing different facets of biological 

processes. 

2.3 Drug Resistance in Cancer 

Resistance to cancer drugs is one of the major obstacles to the successful treatment of 

cancer patients (X. Wang, Zhang, & Chen, 2019). The emergence of drug-resistant cancer 

cells can make therapies ineffective, leading to reduced patient survival rates (Housman 

et al., 2014). Several mechanisms proposed how drug resistance developed at the 

molecular level (Mashouri et al., 2019). As cancer cells rapidly divide and are prone to 

genetic instability, mutations can arise at a faster rate compared to normal cells (Yao & 

Dai, 2014). Each cell accumulates different combinations of mutations, leading to the 

formation of heterogeneous tumor cell populations. Furthermore, administrated drugs 

create selective pressure for the survival of resistant clones, leading to the expansion of 

resistant populations within the tumor (Friedman, 2016). An equally significant aspect of 

drug resistance concerns the timeframe of its emergence. Cancer samples can be 
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inherently resistant to drugs or acquire resistance after the drug treatment (Hata et al., 

2016). Some drugs can significantly increase mutation rates, giving rise to resistant 

subpopulations that emerge and dominate the tumor sample (Kuczynski, Sargent, 

Grothey, & Kerbel, 2013; Kuosmanen et al., 2021). On the other hand, resistance may 

already be present in certain subpopulations (Greaves & Maley, 2012). To develop a 

thorough comprehension of the mechanisms driving cancer drug resistance, it is essential 

to consider these factors, including the time frame, order of accumulation, types of 

mutations, and whether these mutations are drug-induced or inherent. 

Cancer drugs mainly interfere with the nature of these highly proliferative cells through 

different mechanisms, including alterations in drug targets, enhanced drug efflux, DNA 

repair pathways, and dysregulation of apoptosis (Housman et al., 2014). Resistant cells 

are believed to escape from these interventions through alternative mechanisms, allowing 

them to bypass the effects of the drugs (Boumahdi & de Sauvage, 2020). To counteract 

drug resistance, several approaches have been developed. Combinatorial drug therapies, 

for instance, have demonstrated success in overcoming drug resistance in several studies 

(Al-Lazikani, Banerji, & Workman, 2012; Jaaks et al., 2022; X. Wang et al., 2019). By 

targeting multiple pathways simultaneously or consecutively, these therapies aim to 

prevent the escape of resistant cells. Nonetheless, it is essential to acknowledge that this 

strategy may come with certain side effects and can be only effective for a short time, 

potentially leading to increased toxicity for the patient (Bozic et al., 2013; Felson, 

Anderson, & Meenan, 1994). To mitigate this issue, another elegant study suggested 

using multi drugs at lower concentrations to reduce the toxicity while increasing the 

efficacy (Fernandes Neto et al., 2020). Even though there are improvements, effective 

combinatorial drug therapies still require extensive knowledge of molecular mechanisms 

in specific cancer types.  

Studying the complex nature of molecular alterations in the genome and proteome, it can 

be possible to reveal the molecular signatures of drug resistance (Le Tourneau, 

Borcoman, & Kamal, 2019; Malone, Oliva, Sabatini, Stockley, & Siu, 2020). Genetic 

mutations and their effects on protein level play a significant role in shaping this 

molecular signature since it is believed to have a causal relationship with drug resistance. 

Several studies have shown that mutations are critical in predicting drug resistance 

(Chapman et al., 2011; Lievre et al., 2006; Rodes et al., 2000; Z. Yang et al., 2017). 

Further identifying and understanding mutations' effects could help better forecast cancer 
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progression. To this end, computational models have also been successfully applied to 

understand the nature of mutations in cancer better (Y. Li et al., 2021; Mularoni, 

Sabarinathan, Deu-Pons, Gonzalez-Perez, & Lopez-Bigas, 2016; Sherman et al., 2022).  

2.4 Network Medicine 

Network medicine is an innovative and interdisciplinary medical research and systems 

biology approach. It is rooted in the understanding that many diseases and biological 

processes are not isolated entities but rather intricate systems governed by many factors 

and components. Traditional reductionist methods, which study individual elements of a 

system in isolation, may struggle to capture the complexity and interconnectedness of 

these systems (Ahn, Tewari, Poon, & Phillips, 2006). Diseases are modeled as 

interconnected molecular and cellular networks rather than individual isolated entities. 

The integration of high-throughput molecular omics datasets obtains this 

comprehensiveness. Integration makes it possible to construct maps of disease-specific 

networks called disease modules, which can be used to identify key regulators, pathways, 

and modules that contribute to the disease's development and progression.  

Since the introduction of network medicine, numerous research studies have further 

validated its importance and utility (H. Chen et al., 2015; Choobdar et al., 2019; Hasin, 

Seldin, & Lusis, 2017). These studies have demonstrated how network medicine has been 

applied to various diseases, especially cancer. It gave remarkable results, particularly in 

biomarker identification for patients or subgroups. These biomarkers, representing unique 

molecular signatures, are essential for predicting resistant and sensitive drugs specific to 

patient groups (patient stratification) (Garnett et al., 2012). Identifying biomarkers, 

enhancing targeted therapy results, and reducing the risk of side effects (Cheng, Kovacs, 

& Barabasi, 2019a; Goetz & Schork, 2018). Drugs targeting the same or similar pathways 

can be repurposed for different diseases using disease-specific network modules, enabling 

fast and practical therapy alternatives (Morselli Gysi et al., 2021; Zhou et al., 2021). 

Moreover, network medicine can propose improvements in combinational drug therapies 

to enhance therapeutic efficacy (J. Li, Xu, & McIndoe, 2022). Network medicine can 

quantitatively assess drug-disease relations to offer successful combinatorial candidates 

and narrow the number of required experimental studies. This approach evaluates the 

proximity of drug targets and disease modules at the network level, assessing whether 
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two drugs targeting a common disease module while not targeting the same sub-modules 

or pathways, which indicates a higher chance of success in combinatorial therapy (Cheng, 

Kovacs, & Barabasi, 2019b) 

2.5 Dynamic Network Modelling 

Mutations and their relationship with drug resistance were mostly investigated with static 

models in network medicine. However, cells are dynamic systems, and static models do 

not entirely represent their dynamic nature. Dynamic network modeling can help identify 

the underlying mechanisms that drive the system's behavior, providing insights into the 

fundamental principles that govern complex biological systems (Budak, Eren Ozsoy, 

AYDIN SON, Can, & Tuncbag, 2015; Somvanshi & Venkatesh, 2014). Moreover, 

dynamic network modeling allows investigation of how perturbations or changes in the 

system affect its dynamic behavior (Albert, 2007; Di Cara, Garg, De Micheli, Xenarios, 

& Mendoza, 2007). This property is significant in biological systems, where gene 

mutations, drug treatments, or environmental changes can profoundly affect phenotypical 

outcomes. Dynamic modeling facilitates predicting better how it will respond to these 

perturbations and identifying potential targets for therapeutic intervention (Hemedan, 

Schneider, & Ostaszewski, 2023; Pappalardo et al., 2020). 

High-throughput technologies comprise a broad spectrum of measurements that provide 

insights into the molecular mechanisms of cells, yielding a vast amount of multi-omics 

data. Our understanding of the cells is limited to these multi-omics datasets that represent 

snapshots of cellular states, often accompanied by a significant amount of noise. Although 

experimental methods for directly measuring dynamicity are lacking, we can enhance our 

insights by incorporating the time series dimension into the data, enabling the application 

of dynamic modeling approaches. Dynamic modeling enables the identification of critical 

transitional points, which helps to understand the sequence of events and uncover hidden 

patterns in cellular behavior. Discrete dynamic approaches have emerged as valuable 

tools in this context. By reconstructing the temporal trajectory of cells in pseudo-time, it 

can be possible to simulate cellular behavior together with perturbations and identify key 

regulatory points that might be critical for drug resistance, disease progression, or 

therapeutic interventions. Moreover, integrating different omics layers, such as genomics, 
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transcriptomics, and proteomics, to build dynamic models facilitates filling the gaps 

resulting from missing dynamical data. 

Discrete dynamic models are mathematical models used to describe the behavior of 

systems that change over time in discrete time steps. Unlike continuous dynamic models, 

which use differential equations to represent continuous changes, discrete dynamic 

models divide time into pseudo time points and use difference equations or recursive 

formulas to capture changes after each step. These models involve state variables that 

define the system's current state, and a transition function determines how these variables 

change from one time step to the next. Discrete dynamic models find application in 

ecological population dynamics, computational algorithms, social network analysis, and 

more, providing valuable insights into complex systems and aiding in problem-solving 

across diverse domains (Erguler, 2018; Hunter, Krivitsky, & Schweinberger, 2012). 

Cellular automata (CA) is a powerful class of discrete dynamic models used to simulate 

the behavior of complex dynamical systems, including biological systems. In CA models, 

a grid of cells represents the spatial environment, and each cell can take on different states. 

The state of a cell is updated over iterations based on transition rules. This inherent 

simplicity and the ability to capture complex behaviors make CA a suitable choice for 

dynamic network modeling in biology (Bandini, Mauri, & Serra, 2001). CA has been 

proven in biological applications such as tumor growth, metastasis, infectious disease 

spread simulations, the modeling of intercellular interactions, and even the evolution of 

skin scales (Dupin, Eyraud, Maurat, Sac-Epee, & Vallois, 2023; Manukyan, Montandon, 

Fofonjka, Smirnov, & Milinkovitch, 2017; Monteagudo & Santos, 2015; Pfeifer et al., 

2008; Poleszczuk & Enderling, 2014; Prieto-Langarica, Kojouharov, Chen-Charpentier, 

& Tang, 2011; Reher, Klink, Deutsch, & Voss-Bohme, 2017; Valentim, Rabi, & David, 

2023). Another similar modeling approach Petri nets used to represent and analyze the 

behavior of concurrent systems. They consist of places (representing states), transitions 

(representing events), and arcs (representing relationships between them). By depicting 

the flow of tokens (representing resources or events) through these elements, Petri nets 

help visualize, verify, and optimize the behavior of complex systems (Pinney, Westhead, 

& McConkey, 2003).  
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An exciting variation of CA is the graph-based CA (GCA) model, which employs a non-

uniform neighborhood in a network instead of a uniform neighborhood in a lattice, as 

shown in Figure 2.1. GCA can simulate dynamic systems starting from initial static 

information and simple transition rules. These rules are intuitively defined based on the 

local relations among components in the system. GCA has been used in many different 

research fields, such as urban modeling (Barreira-González, Gómez-Delgado, & 

Aguilera-Benavente, 2015; Małecki, 2017; Nowak & Lewenstein, 1996), simulation of 

surface flows (Rinaldi, Dalponte, Vénere, & Clausse, 2012), and social network analysis 

(Małecki, Jankowski, & Rokita, 2013). However, it has not been successfully 

implemented for biological systems or molecular simulations. By applying this theory to 

molecular networks, it is likely to simulate and analyze complex cellular signaling 

pathways. The network structure of GCA allows for the representation of complex 

molecular interactions more flexibly than traditional lattice-based models. This flexibility 

is crucial in capturing biological systems' diverse and intricate nature, where molecules 

can interact in non-uniform and dynamic ways. Additionally, transition rules can capture 

the temporal dynamics of molecular interactions, providing a more realistic 

representation of cellular behavior. Perturbations on simulations may provide insights 

into how dynamic alterations in the genome or proteome affect signaling pathways and 

lead to drug resistance. 

Figure 2.1: Conceptual representation of the GCA approach. (A) The state of a node in the 

next iteration is determined by the state of the nodes in its first neighborhood within the 

interactome. (B) Demonstrating how the activity of nodes in the first neighborhood of a 

selected node can evolve across iterations. 
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Chapter 3: 

MATERIALS AND METHODS 

3.1 Reference Network Construction 

Since the aim of the project was to model intracellular molecular signaling, we 

constructed a reference network with mostly directed interactions annotated as 

stimulation and repression. First, we merged all edges in the OmniPath and TRRUST 

databases containing stimulation and repression interactions. We decided on conflicting 

cases for the same interaction based on the consensus column in the OmniPath database. 

Second, we determined the confidence scores of the edges according to the confidence 

scores from the HIPPIE (version 2.3) (Alanis-Lobato, Andrade-Navarro, & Schaefer, 

2017), iRefWeb (Turner et al., 2010), STRING (Szklarczyk et al., 2021) and Intact 

databases (Orchard et al., 2014). In cases where there is more than one score for the same 

edge, we prioritized the HIPPIE database. The HIPPIE database was prioritized because 

the HIPPIE interactome scores have consistently demonstrated better performance 

compared to other alternatives (Arici & Tuncbag, 2021). We assigned the highest score 

in the other databases for the interactions not found in the HIPPIE. We gave them the 

highest value of 1.0 for the edges with no score information from any databases. We 

applied the filter only for the interactions in the STRING database in which we used 

"experimental" and "database" channels (conf > 0.7). 

In addition to the directed interactions in the reference interactome, we added some high-

confidence undirected interactions as bi-directed interactions. We also added interactions 

with a high confidence score (conf > 0.83) in the HIPPIE database, which is not directed 

but transition rules can be applied. The application of transition rules relies on two 

conditions: the coexistence within the same complex or pathway, and the presence of an 

edge in the BIOGRID database. We selected edges found in BIOGRID (version 4.4.212), 

KEGG (version 103.0), WikiPathways or CORUM (version 4.0) databases for 

compliance with transition rules. We considered only three interaction types: "Physical 

Association," "Direct Interaction," and "Association." from the BIOGRID database. 

In the GCA model, since the state update of each node over the neighborhoods is applied 

according to the transition rules, we removed the isolated nodes and the self-edges from 

the reference network. We have also counted the number of protein/gene groups as 
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oncogenes, tumor suppressors, kinase, and transcription factors. For this purpose, we took 

the list of oncogenes from the “Oncogene Database” (Y. Liu, Sun, & Zhao, 2017), and 

the list of tumor suppressors from the “Tumor Suppressor Gene Database” (Zhao, Sun, & 

Zhao, 2013). We obtained tumor suppressors from the dataset of multiple databases such 

as Network of Cancer Genes (Repana et al., 2019), COSMIC (Sondka et al., 2018). We 

obtained kinases from the “KinHub” database (Eid, Turk, Volkamer, Rippmann, & Fulle, 

2017). We retrieved the list of transcription factors from “The Human Transcription 

Factors” database (Lambert et al., 2018). 

3.2 Graph-based Cellular Automata Model 

3.2.1 Overview of the GCA Approach 

We synchronously updated the activity values of genes based on weighted estimates of 

their neighbors through iterative nonlinear regression analysis. We used the DepMap cell 

line expression values as log(1+TPM), reflecting the respective activities, but they can be 

substituted with any other numeric measure that represents gene activities. We performed 

iterations 30 times by deactivating the edges according to mutations at the 15th iteration. 

We detected the effect of mutations on the dynamic network structure in comparisons of 

simulations with and without mutations at the node level. We chose three sets of nodes 

that form subnetworks from the reference network. These subnetworks contain the nodes 

of effective gene mutations that lead to edge deactivation, isolated genes that lack any 

active edges, and genes that have partially lost their edges while displaying a significant 

(activity change > 0.585). Overview of the GCA model is represented in Figure 3.1. 
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3.2.2 Transition Rules of GCA 

We used a regression analysis that can detect both linear and nonlinear relationships in 

the developed approach. We used activity values of genes, and directionality of 

interactions in OmniPath, and TRRUST databases in regression analysis. We selected at 

least 10% of the cell lines closest to any source gene activity value by a symmetric sliding 

window. We made estimation based on the distribution of activity values for the target 

gene within these selected cell lines by calculating the mean and standard deviation of the 

distribution. We estimated the activity value of the target gene as µ+2σ (µ=mean, 

σ=standard deviation) for stimulations and the µ-2σ for repressions.   

 

 

In Equation (3.1), yt+1 is the activity value of the target node at time t+1, yt is the amount 

of value at time t, m is the number of effective edges to the target node, xi is the activity 

amount of the nodes affecting the target node, ci is the confidence score of the edge, ei is 

the predicted regression result. As a result, using this equation, we estimated a gene's 

activity value at time t+1 according to the activity value of neighboring genes at time t 

that stimulate or repress it.  

y
t+1
= (y

t
+ [∑ (𝑥𝑖𝑐𝑖𝑒𝑖)

𝑚
1 /∑ (𝑥𝑖𝑐𝑖)])/2

𝑚
1   (3.1) 

Figure 3.1: Overview of the GCA model on the molecular simulations. The left panel 

illustrates a mutation-free simulation of the network, where stimulation and repression 

edges are depicted in green and red, respectively. In the right panel, nodes with marked 

mutations are represented in red, and the downstream related edges are deactivated, 

indicated by the color gray. 
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3.2.3 Pairwise Estimation Function 

In Figure 3.2, the estimation function generates estimations (green line) for the target 

node (ITCH1) at every activity value of the source node (RNF11). However, it is 

oversensitive since there is intrinsic noise and insignificant relative changes in the 

transcription profiles. We smoothened estimation function to improve efficiency and 

prevent oversensitivity issues by retaining estimations only for integer values, as shown 

in Figure 3.3. Target node state estimated by interpolating activity values between two 

adjacent integer points. 

 

 

 

Figure 3.2: Scatter plot of expression values for gene RNF11 and ITCH1. Every dot 

represents a DepMap cell line. X-axis shows the expression value of source node 

(RNF11) while y-axis shows the expression value of target node (ITCH1). Vertical 

dashed blue lines showing the limits of symmetric sliding window which encapsulates 

%10 of the data points (red dotes). On the left, distribution of ITCH1 expression values 

of red dots represented. Green dashed line represents the estimation at each point based 

on the estimation function and stimulation information. 
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3.2.4 Use of Mutations in the GCA Model 

Mutations change the primary interactions of proteins and propagate their effects through 

interaction networks. Therefore, from the immediate interaction partners of mutated 

proteins, we modified the downstream edges along the biological complex and pathways 

in which they are found. We determined effected pathways and complexes by considering 

the mutated node and its first neighbors. In each iteration, we progressively deactivate the 

next neighboring edges until no downstream edges are remained.  We selected the first 

edges affected in the reference network according to the type of mutations. We 

propagated the effects of deleterious mutations (Frameshift, Early Stop Codon, 

Deleterious, etc.) over the reference network starting from all the edges where the protein 

interacts. On the other hand, we evaluated mutations that are not deleterious but cause a 

change in a single amino acid. In this case, instead of propagating from all interactions, 

we propagated over the affected edges according to the binding sites of the proteins. We 

used Interactome INSIDER database (Meyer et al., 2018) for binding site information. 

The application of mutations across the reference network is summarized in Figure 3.4. 

Figure 3.3: Scatter plot of expression values for gene RNF11 and ITCH1 with 

smoothened estimation function. Every dot represents a DepMap cell line. X-axis shows 

the expression value of source node (RNF1) while y-axis shows the expression value 

of target node (ITCH1). Green dashed line represents the estimation at each point based 

on the smoothened estimation function. 
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The model identifies three distinct sets of nodes: 1) mutated nodes, 2) partially isolated 

nodes, and 3) completely isolated nodes. Mutated nodes correspond to the nodes where 

mutations have occurred, and edges altered. Partially isolated nodes refer to nodes that 

have lost some active edges and showed significant activity changes compared to not 

mutated simulations. Completely isolated nodes are nodes that have lost all their edges 

due to deactivation, and activity states cannot be updated anymore.  

3.3 Application of GCA Model on DepMap Cell Lines 

In this section, we applied GCA Model to DepMap cell lines by using mutation profiles, 

transcription profiles, and drug responses from the DepMap database (Tsherniak et al., 

2017) 

3.3.1 Mutation Profiles of DepMap Cell Lines 

We filtered out mutations that are not deleterious effect or happening at the interacting 

residues of proteins. Then, we applied deleterious and point mutations in the cell lines 

and run the simulations both with and without mutations for each cell line. Thus, we 

Figure 3.4: Graphical representation of mutation applications: Mutated genes are depicted 

in red, and the downstream effects are illustrated by dashed red lines. The left panel 

demonstrates deleterious mutation propagation, while the right panel represents point 

mutations. Mutations are constrained within their respective pathways or complexes and 

do not diffuse across different pathways or complexes. 
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measured the effect of mutations on signaling by looking at the difference between the 

two simulations at the gene expression level for each node.  

3.3.2 Optimizations on GCA Model 

We optimized the GCA model across multiple scenarios to examine its ability to 

differentiate mutation classes and individual mutations. To achieve this, we selected the 

cell line with the most mutations in the oncogene and tumor suppressor nodes (ACH-

000998). Subsequently, we employed three different simulation approaches by applying 

mutations on different simulations. We considered only oncogene mutations in the first 

simulations, while in the second simulations, we examined all tumor suppressor 

mutations. Lastly, we individually applied all mutations for oncogenes, tumor 

suppressors, and all together. As a result, the optimization process focused on 61 tumor 

suppressors and 23 oncogene mutations. Enrichments of the different sets of mutations 

performed in EnrichR. For each mutation application, we assessed the similarity between 

resulting subnetworks by calculating the ‘Jaccard Index’ for subnetworks. We 

represented the distribution of values in a histogram after subtracting from 1, called the 

similarity score. 

3.3.3 Synthetic Reference Networks 

We generated synthetic networks using two different methods: the random Erdös-Renyi 

method and the Barabasi-Albert method. The Erdös-Renyi model is a random graph 

algorithm that generates random networks by adding edges with a constant probability 

‘p’ between all pairs of nodes. To maintain consistency with the actual reference network, 

we set the value of ‘p’ to the number of edges divided by ten times the number of nodes 

in the reference network. This way, we obtained random networks with similar sizes of 

actual reference. On the other hand, the Barabasi-Albert algorithm follows a preferential 

attachment mechanism, meaning nodes with more connections are more likely to attract 

new links. The algorithm takes two numbers as input ‘n’ (number of nodes) and ‘m’ 

(Number of edges to attach from a new node to existing nodes). We set ‘m’ value by 

considering the actual reference by calculating the average degree in the reference. 

Based on these two models, networks with different node numbers were incorporated, 

ranging from 200 to 20,000. We maintained the pathway, biological complex, and co-
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expression information in the networks at ratios consistent with the actual data but fully 

randomized. We repeated each test hundred times with random variations and completely 

random 15 destructive and 5-point mutations. We examined the outputted number of 

isolated and partially isolated node numbers of the model.  

3.3.4 Specificity Analysis 

We performed the specificity analysis of the model across three scenarios to ensure the 

resulting subnodes are specific. We chose one of the (“ACH-000001”) cell line, and 

assesed the occurrence of each resulting node in randomly generated scenarios. In the 

first scenario, we randomly selected mutated genes (initial seed nodes) from the entire 

reference network. We shuffled the node names within the reference network for the 

second scenario. For the third scenario, we swapped the edges connecting the nodes. Edge 

swapping keeps the original topology the same and only changes the neighbors of the 

proteins. In each scenario, we conducted 100 trials and analyzed the occurrence frequency 

of nodes in the obtained resulting subnetworks separately for each scenario.  

3.3.5 DepMap Cell Line Simulations 

The DepMap database contains mutation profiles of over 1000 cell lines, their responses 

to more than 4000 molecules, and various other omics datasets. We identified 951 cell 

lines suitable for simulations by intersecting the mutation and transcription profiles. We 

used this data to perform GCA simulations for cell lines by conducting 30 iterations per 

cell line. We determined the number of iterations by considering the activity states 

reached equilibrium before and after we applied the mutations. The increased number of 

iterations did not cause different results but increased the computational time cost, so we 

chose the minimum possible iteration number. We set the initial state of each gene in the 

simulation by computing the average expression values of cell lines within its lineage. 

We also conducted 30 simulations for each lineage type without mutations. Simulations 

with and without mutations were compared, resulting in a comparison of 681 cell lines 

because not all mutation profiles cause alteration at the edge level. In this node-level 

comparison, we created subnetworks for each cell line, which included a highly affected 

set of nodes regarding activity states. 
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3.3.6 Construction of Drug Modules 

We used drug data from GDSC1 and GDSC2 datasets to determine drug resistance in cell 

lines. Drug-resistant cell lines had a z-value above 2.0, while sensitive cell lines had a z-

value below -2.0 as suggested. After filtering out cell lines without sensitive and resistant 

counterparts for the same drug, we obtained 15,441 drug-cell line pairs (402 drugs and 

956 cell lines). We combined the resistant and sensitive cell line subnetworks into 

consensus subnetworks by majority voting and removed common genes. This resulted in 

two drug modules representing resistant and sensitive modules for each drug, as depicted 

in Figure 3.5. 

3.3.7 Cell Line Blind Cross Validation of Drug Modules 

We employed a systematic approach to validate the relationship between drug modules 

and drug resistance. We divided the complete dataset of cell lines into 'k' subsets. To 

construct drug modules, we repeatedly used the 'k-1' of these subsets 'k' times, while the 

remaining subset was reserved as the test set for cross-validation. For the case where 'k' 

was set to 10, the test set consisted of 68 cell lines, and the training set included 613. The 

number of drug modules generated also varied since the lack of test cell lines may be the 

only ones resistant or sensitive to a drug. Notably, we excluded the test cell line modules 

from generating any drug modules, ensuring an unbiased evaluation. 

Figure 3.5: Graphical representation of drug module construction. Drug modules are 

built for each drug based on networks comprising both resistant and sensitive cell lines. 

Through majority voting at the node level, a consensus subnetwork is determined, while 

the differing subsets are extracted as modules. 
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We considered network proximity measures to determine whether a test cell line exhibits 

resistance or sensitivity to a specific drug (Figure 3.6). These measures assess the 

closeness of a test cell line subnetwork to both the sensitive and resistant drug modules 

associated with the drug of interest. We predicted it to be resistant to the drug if a test cell 

line network demonstrated a closer distance to the resistant module. If it displayed a closer 

distance to the sensitive module, we predicted it to be sensitive to the drug. Additionally, 

we put lower than threshold for the z-scores to assess the significance of the closeness. 

Lower z-scores suggest significant proximity measures, so predictions made below 

determined z-score thresholds. We considered resistance as positive class and sensitives 

as negative class in the confusion matrix. We plotted the accuracy, precision, recall and 

MCC values as the measure drug modules prediction performance and reliability. 

Figure 3.6: Illustration of drug modules leveraged for predictions on test cell lines. 

Predictions made for each drug cell line pair considering network proximity. 
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3.3.8 Network Proximity Analysis 

In network proximity analysis, three numbers (distance, z-score, and p-value) are 

outputted for a given two subnetworks. There are different distance measures, but we 

used the best-performing ‘closest’ measure in this study. It represents the average shortest 

path length between the subnetworks and the nearest module protein. In simpler terms, it 

measures the average number of steps required to navigate from one subnetwork to the 

other through the nodes in the reference network. A shorter distance suggests a closer 

functional relationship or stronger connectivity between the two subnetworks, while a 

longer distance indicates a more distant or weaker connection. The z-score represents 

whether the distance between two node sets significantly differs from expectation in 

selected random subnetworks of similar size and topology. A negative z-score shows that 

the observed distance is smaller than the random expectation, whereas a positive z-score 

implies the opposite. The proximity approach is depicted in Figure 3.7.  

3.3.9 Drug Module Visualization and Investigating Resistance Mechanisms 

We merged the most divergent sensitive and resistant drug modules and visualized to 

make observations. Drug modules normally do not contain common genes between 

sensitive and drug-resistant genes, but we included them for visualization purposes. 

Additionally, we expanded the gene sets with the drug’s specific targets. The visualization 

focused on the giant component, representing the connected network with the most genes. 

Common genes, different genes, and drug targets were visualized in different colors in 

Cytoscape. We represented directional edges from the reference network to provide more 

Figure 3.7: Conceptual representation of network proximity. Network proximity 

measures how two subnetworks close to each other within a reference network. 
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details. To further gain insights into generated drug modules, we performed enrichment 

analysis on resistant and sensitive drug modules by excluding common genes using 

EnrichR. We plotted pathway enrichment against -log10(adjusted p-values). 

3.4 Application of the GCA Model to Patient Derived Xenografts 

This section evaluates the optimized GCA model on an independent dataset focused on 

Patient-Derived Xenografts (PDX) as a case study. 

3.4.1 PDX Samples 

We utilized mutation profiles and drug responses of PDX samples from (Gao et al., 2015). 

We filtered the mutation data of the PDX samples and kept only deleterious ‘Del0.8’ and 

point mutations ‘MutNovel’. We applied these mutations in the PDX samples in the 

simulations, conducting 30 iterations per PDX sample. Thus, we measured the effect of 

mutations on signaling by looking at the difference between these simulations and 

simulations without mutations at node level. We determined the initial state of each node 

in the simulation by calculating the average expression values of DepMap cell lines within 

its lineage. Comparison of simulations with and without mutations resulted in 369 PDX 

samples out of 399 because not all mutation profiles cause alteration at the edge level. In 

this node-level comparison, we created subnetworks for each PDX sample, which 

included a highly affected set of genes regarding activity state. 

3.4.2 Drug Resistance Predictions on PDX Samples 

This data set also includes drug responses for 37 drugs on PDX samples. The responses 

were categorized into four types: Complete Responses (CR), Partial Responses (PR), 

Stable Diseases (SD), and Progressive Diseases (PD). In this study, we only considered 

PD as resistant, while the rest were considered sensitive to the drug. Of the 37 drugs, five 

matched (Buparlisib, Ruxolitinib, Trametinib, LGK974, and Tamoxifen) with the drug 

modules generated using DepMap cell line datasets. We calculated proximity measures 

between PDX simulations and drug modules to make predictions. If a PDX module was 

closer to the resistant module than the sensitive module of a drug, we predicted it as 

resistant, and vice versa. We used the responses of PDX samples as ground truth and 
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evaluated the predictions accordingly. We made the predictions for 168 PDX samples 

across five drugs. 

3.4.3 Investigation of Resistance Mechanisms in PDX Modules 

We selected the best-predicted drug was buparlisib, and PDX samples correctly identified 

as resistant to buparlisib for visualization. The majority voting between the 82 PDX 

samples resulted in a consensus network and merged with resistance and sensitive 

modules of the buparlisib. We expanded the gene sets with the drug’s specific targets 

named MTOR, PIK3CA, PIK3CB, PIK3CD, PIK3CG, and PIK3C3. The visualization 

focused on the giant component, representing the connected network with the most genes. 

We visualized PDX module genes, resistant module genes, sensitive module genes, and 

drug targets in different colors by using CytoScape. We also represented directional edges 

from the reference network to provide more details. 
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Chapter 4: 

RESULTS 

4.1 Data Statistics 

We constructed a reference network consisting of 8,455 nodes and 62,649 edges with 

high reliability, reduced false-positive effect, and mostly from directional interactions. 

The reference consists of 43,123 stimulations, 12,715 repressions and 6,811 bi-directed 

edges. The number of proteins contained in each group of oncogenes, tumor suppressors, 

kinase, and transcription factors in the reference interactome are given in Table 4.1.  

Table 4.1: Number of protein groups in total and in reference interactome 

 

Another piece of information that can be included in the transition rules in the GCA 

method is that their nodes are located in known biological pathways and complexes. We 

annotated pathways for 4,795 proteins and complexes for 4,252 proteins out of the 8,455 

proteins in the reference interactome. In addition, we included 14,953 edges from the 

BIOGRID database. We also detected binding sites for 46.492 protein pairs out of 63,574 

edges in the reference. Lastly, we obtained mutations that co-exist or are mutually 

exclusive (Tsherniak et al. 2017) using the mutation profiles of 1392 cell lines, a total of 

953 (803 genes) mutations. We found 25,009 of 453,628 mutation pairs are co-occurring 

while 1,266 couples are mutually exclusive (Fisher's exact test; p-value <0.05). We find 

that this information was applicable in a total of 26,285 mutations. Mutual exclusivity 

and cooccurrence are currently not employed in the project, but they will be used to infer 

mutational orders. Transition rules-related statistics are represented in Table 4.2. 

 

Protein Group Total 

Number 

Number of Found in the Reference 

Interactome 

Oncogenes 803 651 

Tumor Suppressors 1217 941 

Transcription Factors 1639 1288 

Kinases 518 491 
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Table 4.2: Applicable number of entities in transition rules. 

Transition Rule Name Applicable Number 

Same pathways (950) 4,795 proteins 

Same complexes (956) 4,252 proteins 

BIOGRID  14,953 interactions 

Protein binding site 46.492 protein pairs 

Co-occurring mutations 25,009 mutation pairs 

Mutually exclusive mutations 1,266 mutation pairs 

 

We filtered the mutation data of the cell lines in the DepMap database, and as a result, 

589,736 mutations that caused changes in the amino acid level in 17,576 proteins were 

detected. While 60,250 mutations have deleterious effects, 18,399 correspond to the 

proteins' binding region. In addition, 189,839 mutations caused changes in the amino acid 

level, affecting 4,682 proteins across 399 samples in PDX samples. 
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4.2 Optimization of the Model 

4.2.1 Sensitivity of Model to Differentiate Mutations 

We examined the effect of mutations from different categories to test the ability of the 

model to distinguish different mutation classes, tumor suppressors, and oncogenes. A 

comparison between mutations on the tumor suppressor genes and oncogenes revealed 

that 77 genes present in the output set of the tumor suppressor simulations were absent in 

the oncogene simulations. While 83 genes found in the output of the oncogene 

simulations did not appear in the tumor suppressor simulations. Nonetheless, 119 nodes 

were common to both categories. To gain deeper insights, we analyzed the pathways 

where genes from different sets were enriched in EnrichR by excluding common genes 

observed in both (Figure 4.1). The effect of mutations on tumor suppressors or oncogenes 

varies, and the developed GCA model can represent this difference.  

When we evaluate the enriched pathways involved in tumor suppressors, we can find 

relevant evidences that support these enrichments. Tumor suppressors are known to 

inhibit cell migration, and their reduced expression enhances migration. They interact 

with focal adhesion kinases and reduce tyrosine phosphorylation (Maziveyi, Dong, 

Figure 4.1: Enrichment of gene sets obtained from oncogene tumor suppressor 

mutations. Mutations on tumor suppressor genes simulated and resulting gene sets from 

the model enriched on the left. Mutations on oncogenes simulated and resulting gene 

sets enriched on the right. Significant and cancer related pathways were plotted with -

log10 of adjusted p-values. Only unique gene sets of simulations were used in the 

enrichment analysis. 
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Baranwal, & Alahari, 2018; Tamura et al., 1998). Tumor suppressor phosphatases 

negatively regulate cell-extracellular matrix interactions, exerting their tumor-

suppressive function in this way (Pickup, Mouw, & Weaver, 2014; Sever & Brugge, 

2015; Tamura et al., 1998). The JAK/STAT pathway is also crucial in human cancer, and 

it is activated by specific molecules and controlled by tumor suppressor genes (Amoyel, 

Anderson, & Bach, 2014). 

In addition to tumor suppressor enrichments, oncogenic enrichments are also quite 

relevant. RAS genes encode small GTPase proteins in signal transduction pathways 

(Colicelli, 2004). Mutations in RAS genes, known as "activating mutations" or oncogenic 

mutations (Fernandez-Medarde & Santos, 2011; Prior, Lewis, & Mattos, 2012), cause 

constant activation of RAS proteins, leading to uncontrolled cell signaling, proliferation, 

and cancer growth. RAS specifically regulates the ERK/MAPK pathway (McCain, 2013). 

Activated ERK proteins translocate to the nucleus, triggering genes involved in cell 

division and survival (Santarpia, Lippman, & El-Naggar, 2012). 

As an additional high-resolution test, we examined individual mutations from different 

classes. We applied the same mutations one by one, and the effect of each mutation was 

evaluated independently. We simulated a total of 84 mutations (61 tumor suppressors and 

23 oncogenes), leading to the generation of 84 distinct subnetworks. Then, we compared 

these networks at the node level to assess how well the model reflected differences at the 

single mutation level (Figure 4.2). Despite having similarities, some mutations 

demonstrated distinct impacts on different regions within the interactome. This implies 

that certain mutations could have broader-reaching effects, simultaneously influencing 

multiple pathways or cellular processes. On the other hand, some mutations might be 

more specific, affecting only localized regions of the network. 
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4.2.2 Synthetic Reference Tests  

We tested the model on different-sized synthetic networks to ensure the scalability and 

limitations of the model. In network models, it's essential to assess their scalability to 

perform in smaller or larger networks. This ensures that the model is applicable in various 

real-world scenarios regarding network size and properties. Random Erdös-Renyi method 

does not guarantee to obtain connected networks, leading to the formation of isolated 

nodes or components forming. Thus, results generated by GCA in smaller networks are 

misleading and do not reflect the signaling abnormalities. As the network grows, the 

number of components decreases, and the probability of obtaining a connected network 

increase. The number of partially isolated is observed to be relatively high initially, 

eventually reaching equilibrium and converging to much lower rates. In networks with an 

Erdos Renyi topology, the model is inconsistent and cannot even be used in networks 

larger than 20,000 nodes. On the other hand, resulting network sizes are more consistent 

in the random networks generated by the Barabasi-Albert method. Interestingly, the 

propagation of mutations does not lead to any nodes becoming isolated, indicating the 

significance of the pathway and complex information in the system. The Barabasi method 

is also known for generating random networks having closer topologies to actual 

Figure 4.2: Distribution of similarity ratios. The histograms illustrate the similarity ratio 

distributions of GCA model networks resulting from simulations of individual mutations. 

The analysis compares networks generated from mutations on tumor suppressor genes 

(left), mutations on oncogenes (middle), and all mutations combined (right). Each 

mutation was applied separately, and the similarity ratio was calculated by subtracting 

the Jaccard distance from 1. A similarity ratio of 1 indicates that one network contains all 

nodes of the other subnetwork, while a ratio of 0 means there are no common nodes 

between the two subnetworks. 
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biological networks. From these tests, three conclusions can be drawn: firstly, the GCA 

model is not reliable for disconnected networks or non-biological topology networks; 

secondly, scale-free networks, which are represented by the Barabási-Albert method, are 

better suited for measuring distortions in signaling by GCA model, and thirdly, pathway 

and complex structure throughout the reference networks plays a significant role in the 

model.  

Figure 4.3: Performance of model in synthetic networks. Two different random network 

generation methods used to evaluate performance as Erdos-Renyi and Barabasi-Albert. 

Performance evaluated as the capability of producing subnetworks enriched by partially 

isolated (red) and isolated nodes (green). Black line represents the sum of red and green 

lines. X-axis represents number of nodes in generated random networks while y-axis 

represents percentage of output nodes relative to reference network nodes. 
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4.2.3 Specificity Results  

The objective of specificity analysis is to evaluate the model's ability to produce distinct 

results. The accumulation of data points near lower occurrence values in Figure 4.4 

indicates that the nodes in the resulting network are not commonly observed in random 

scenarios. Instead, they yield specific outcomes based on the initial nodes and the 

reference interactome utilized in the background. Specificity test results are summarized 

in Figure 4.4. 

In the first randomized seed selection scenario, small portion of genes happen to occur at 

most of the random simulations. These genes are not specific for a given seed gene set 

and happen to be in the result set independent of seed selection. In the second randomized 

label shuffling scenario, the resulting subset of nodes is quite different from each other, 

which implies that the reference network is quite significant and the place of genes in the 

reference network directly affects the results. In the third randomization of the edge swap 

scenario, generated resulting subnetworks can be considered distinct. Edge swap is a more 

controlled way of label shuffling, which preserves the topology and degree of each node 

in the graph. These randomization results suggest that the neighborhood of each gene is 

significant in each reference network. To efficiently use these specificity results, the 

frequency of occurrence within the network is normalized between 0 and 1. Then, the 

frequency is subtracted from 1 to calculate a specificity score for each node. Using this 

Figure 4.4: Results of specificity analysis performed on the model. In the first test, 

starting nodes (mutations) were randomly selected from the reference network. The 

second test involved randomly mixing the node names. In the third test, four nodes were 

randomly selected, and the edges were swapped. Each case was repeated 100 times, and 

the frequency of the nodes in the model's output was presented as a histogram. 
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score, the specific parts of the output of the model were determined. We used specificity 

scores to filter out non-specific results in actual simulations. 

4.3 Drug Modules 

We constructed drug modules from the DepMap cell lines by using GCA simulations 

and drug responses. In this section, we evaluated these graphs in detail. 

4.3.1 Validation of Drug Modules 

Cross-validation is crucial for developing and evaluating models. Its main purposes are 

to assess performance, generalize the model, and aid in hyperparameter tuning. By 

averaging evaluation over different data subsets, it reduces random variations, leading to 

a more reliable estimate of the model's performance. We used cross-validation to validate 

drug modules through their relationship with drug resistance. 

We employed a 10-fold cross-validation approach to address the impact of majority 

voting between cell lines in the training set on the generation of drug modules. By 

adopting 10-fold cross-validation, we ensured that approximately 90% of the available 

cell lines were sufficient, leading to more accurate and specific drug modules. This 

approach effectively mitigated the risk of non-specific drug modules and provided 

comprehensive coverage of the resistance aspect. 

The Matthew Correlation Coefficient (MCC) is a crucial metric for evaluating 

classification performance , particularly in imbalanced datasets (Chicco, Totsch, & 

Jurman, 2021). It considers all elements of the confusion matrix, including true positives 

(TP), true negatives (TN), false positives (FP), and false negatives (FN). MCC provides 

a more accurate measure of a model's ability to classify both positive and negative 

instances correctly. The MCC score ranges from -1 to +1, where +1 signifies a perfect 

classifier, 0 represents a random classifier, and -1 indicates a classifier that performs 

worse than random.  

Our findings demonstrate a noteworthy trend: the model's performance improves as the 

z-score of proximity measurements decreases (Figure 4.5). Additionally, we observed 

interesting relationships across different folds: weak positive relationship (+.20 to +.29), 

moderate positive relationship (+.30 to +.39), and strong positive relationship (+.40 to 
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+.69) in terms of MCC value. Metrics, as depicted in Figure 4.5, underscore the critical 

impact of the z-score of the proximity measure on the model. 

4.3.2 Investigation of Drug Resistance Mechanisms on Cell Lines 

To conduct a comprehensive comparison analysis of a specific drug, we visualized a 

consensus network for the sensitive/resistant categories by using the GCA models of 39 

drug-resistant and 8 sensitive cell lines in the simulation of the selected LCK 

(Lymphocyte-Specific Protein Tyrosine Kinase) inhibitor (JW-7-24-1). Proteins that are 

targets of drugs have also been used in visualization. The HMS LINCS (Vempati et al., 

2014) (https://lincs.hms.harvard.edu/db/) database was used to identify drug targets. 

Figure 4.5: Evaluation of model performance using 10-fold cross-validation. The plot 

displays the performance metrics against the z-score of proximity measures. Accuracy is 

represented in blue on the top left, recall in green on the top right, precision in orange on 

the bottom left, and MCC (Matthews Correlation Coefficient) in red on the bottom right. 

The dashed lines indicate the average of 10 folds. 

 

https://lincs.hms.harvard.edu/db/
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Figure 4.6 shows that some nodes are grouped in the subnetworks of resistant cell lines. 

Drug target proteins were found to be closer to the nodes specific to sensitive cell lines. 

These nodes grouped in resistant cell lines may play an important role in drug resistance 

mechanisms. In addition, we analyzed pathways with only proteins from resistant cell 

lines and are shown in Figure 4.7. 

One of the statistically significant enriching biological pathways, the MAPK (Mitogen-

Activated Protein Kinase) signaling pathway is a protein network that regulates various 

cellular processes, including cell proliferation, differentiation, and survival. Abnormal 

activation of the MAPK pathway plays a role in many diseases, including cancer, and 

may contribute to the development of resistance to certain drugs or treatments by 

promoting tumor growth. Therefore, drug resistance and the MAPK signaling pathway 

have an important relationship with each other in cancer and other diseases, as activation 

of this pathway can lead to the development of resistance to certain drugs or treatments 

(Lee, Rauch, & Kolch, 2020). LCK inhibitors are important in the context of drug 

resistance and the MAPK signaling pathway. LCK is a tyrosine kinase that plays a critical 

role in the activation of the MAPK pathway (Bommhardt, Schraven, & Simeoni, 2019). 

Another pathway that is enriched in resistant cells is the apelin signaling pathway which 

is also important in the context of drug resistance (Uribesalgo et al., 2019). Apelin is a 

peptide hormone that regulates various biological processes, including cell proliferation, 

survival, and drug resistance. Apelin is a signaling molecule that binds to its receptor, 

APJ, activating various signaling pathways within the cell, including the PI3K/AKT and 

MAPK signaling pathways. Apelin has been shown to increase drug resistance in various 

types of cancer, such as breast cancer, lung cancer, and hepatocellular carcinoma (Y. 

Yang, Lv, Ye, & Zhang, 2016). Inhibition of the apelin/APJ signaling pathway has been 

proposed as a potential strategy to overcome drug resistance in cancer cells (L. Liu et al., 

2021; Uribesalgo et al., 2019). Therefore, the Apelin signaling pathway is an important 

target for the development of new anti-cancer therapies. Finally, activation of the cGMP-

PKG signaling pathway can inhibit PARP1, an enzyme that responds to DNA damage in 

cancer cells and induces cell death (Ba & Garg, 2011). Therefore, inhibition of the cGMP-

PKG signaling pathway can be considered a potential strategy to reduce drug resistance 

in cancer cells and increase the efficacy of cancer treatments. 
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Figure 4.6: Representation of merged drug modules together with drug targets. Red nodes 

are unique to resistant cell lines, green ones are unique to sensitive cell lines and yellow 

ones are the common in both. Blue nodes are the drug targets of the drug JW-7-24-1 with 

the drug ID 256.  

Figure 4.7: Representation of merged drug module resistant exclusive gene enrichments. 

Enrichment analysis for the red nodes showing the related pathways. Enrichment 

performed using EnrichR. 
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4.4 Investigation of Drug Resistance Mechanisms on PDX Samples 

First, we predict the drug responses of the PDX samples and present the metrics in Figure 

4.8. The metrics reveal the promising performance of the models in relating resistance 

with PDX samples. However, it is important to note that significant performance is mainly 

observed in predicting drug-resistant samples, as approximately 92% of the PDX samples 

are labeled as drug-resistant. This dataset imbalance and the models' limited ability to 

predict sensitive samples can be also attributed to the larger size of the predicted drug-

resistant modules compared to sensitive modules. Additionally, number of predicted drug 

responses were 5 (Buparlisib, Ruxolitinib, Trametinib, LGK974, and Tamoxifen)  and 

PDX were 168 and it gradually decreases as z-score threshold lowered.  

 

Figure 4.8: Evaluation of model performance on PDX samples. The plot displays the 

performance metrics against the z-score of proximity measures. Accuracy is represented 

in blue on the top left, recall in green on the top right, precision in orange on the bottom 

left, and MCC (Matthews Correlation Coefficient) in red on the bottom right. 
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We further examined the which subset of nodes found to be related to drug resistance. 

Buparlisib was chosen as a test case to study resistance mechanisms. To conduct a 

thorough comparison analysis of buparlisib, we created a consensus network for the 82 

PDX samples accurately identified as drug-resistant by the GCA model. Figure 4.9 

reveals that certain nodes in the resistant modules are enriched compared to the sensitive 

modules. We further examined these resistant module genes and analyzed pathways with 

proteins exclusively from the resistant modules intersected with PDX modules, as 

depicted in Figure 4.9. 

These 7 out of 9 genes (SOS2, FGF1, PGF, TFDP2, VEGFC, IL3, and GNGT1) observed 

in the majority of PDX sample simulations and drug-resistant modules of buparlisib are 

known to be in PI3K-Akt signaling pathway. The activation of the PI3K/AKT pathway 

is related to drug resistance against buparlisib (He et al., 2021). Furthermore, we checked 

the activity states of these genes in the model through iterations (Figure 4.10). In 

comparison of mutated and not mutated states in 83 PDX samples, some of these genes 

Figure 4.9: Representation of merged PDX samples and intersection with resistant and 

sensitive drug modules of buparlisib. Red nodes are unique to resistant module, green 

ones are unique to sensitive module and blue nodes are the ones seen in the majority of 

PDX samples. Sphere-shaped nodes are the drug targets of the drug buparlisib with the 

drug ID 1873.  
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are shown to be upregulated or downregulated. One important observation is that they are 

not conflicting, and effects may vary between simulations. Associations of these affected 

proteins and targets of the buparlisib are also visualized in Figure 4.10. One such example 

is the upregulation of TFDP2 activity, it shows varying activity among the PDX 

simulations. Additionally, we can infer that it suppresses the tumor suppressor gene 

CDKN2A, thereby promoting the activity of PIK3CA. Conversely, the downregulation 

of FGF1, an activator of PIK3CA, contributes to its decreased activity. However, a 

secondary interaction with PDGFRA may still stimulate PIK3CA. Further activations of 

other proteins GNGT1, IL3 may suggest that there is an overall activation in the 

PIK3/AKT pathway. An additional insight reveals that the mutation effects (peaks) 

Figure 4.10: Activity changes of some detected genes from merged PDX samples and 

intersection with resistant and sensitive drug modules of buparlisib. Red nodes are unique 

to resistant module, and light-blue nodes are the ones seen in the majority of PDX 

samples. Sphere-shaped nodes are the drug targets of the drug buparlisib with the drug 

ID 1873. Blue lines represent the activity values without mutations and red line represent 

activity values at simulations with mutations. Values belong to the identified genes in 

both resistance modules and PDX simulations. On the right of each panel, association of 

each identified gene with its closest drug target depicted. 
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diminish within five iterations for each gene in the context of this regression model. The 

heights of these peaks are constrained by the maximum activity value derived from 

expression profiles. Through averaging the prior temporal activity state and future state 

estimation, the fading-out phenomenon occurs within the span of 5 iterations. 
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Chapter 5: 

DISCUSSION 

Drug resistance is a significant challenge in cancer, hindering the effectiveness of targeted 

therapies due to accumulating mutations in dynamic cellular networks(X. Wang et al., 

2019). To address this dynamicity, we adopted the GCA model, relying on a high-

confidence reference interactome and using pairwise regression analysis on edges to 

simulate molecular signaling and perturbations. We propagated mutation effects 

downstream of signaling pathways and complexes. The model was optimized by using 

mutation landscapes, transcription profiles, and drug responses of well-characterized cell 

lines. We can differentiate individual mutation effects and different mutation classes 

(oncogenes, tumor suppressors) in the simulations. We created drug modules for each 

drug based on commonalities among simulation networks of drug-resistant and sensitive 

cell lines. We confirmed the reliability and accuracy of these drug modules by cross-

validation and showed a case study in an independent PDX dataset. We identified specific 

pathways involving proteins from drug-resistant cell lines and PDX samples using these 

drug modules. These pathways were found to be closely associated with the resistance 

mechanisms of investigated drugs. We further analyzed the identified genes at a single-

gene resolution, which is a crucial layer of detail to our comprehension of drug resistance. 

Single gene analysis further narrows down the set of possible targets that can be used in 

targeted therapies. 

In the computational modeling of cancer, the focus lies on modeling cancer within the 

framework of the cancer microenvironment (Frieboes et al., 2009; Owen et al., 2011; Sun 

et al., 2012). These models incorporate cellular behaviors through mathematical 

equations. The major concern is that these approaches often neglect the intricate 

molecular-level complexity of cells and oversimplify their behaviors to just a handful of 

functions. In contrast, our proposed model considers the role of molecular networks in 

driving cancer cell behaviors. Instead of employing highly complex mathematical 

equations, we adopted simple local transition rules and extensive molecular networks. 

Additionally, there has been a growing popularity of learning-based drug resistance 

prediction algorithms (Daemen et al., 2013; Dong et al., 2015; Dorman et al., 2016; 

Menden et al., 2013). These algorithms primarily prioritize prediction efficiency, but they 

are often unable to provide a comprehensive understanding of the underlying mechanisms 
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driving drug resistance. Although our model may not achieve the same level of predictive 

metrics as these algorithms, our findings are more interpretable and provide more details 

of the underlying mechanisms. 

Through comprehensive enrichment analysis of drug modules, we successfully identified 

several crucial pathways, including MAPK, apelin, and cGMP-PKG signaling pathways, 

known for their relevance to drug resistance. Moreover, our investigation has revealed 

specific associations between the investigated drug, LCK inhibitor (JW-7-24-1), and the 

enriched pathways. Further analysis of PDX simulations provided additional insights for 

another drug buparlisib and similarly, we have found strong evidence supporting the 

identified PI3K/AKT pathway and resistance to buparlisib (He et al., 2021). These 

pathways have already been recognized as targets to overcome drug resistance. Our 

novelty lies in narrowing down potential targets, enabling us to assess the impact of 

individual proteins. These findings guide the well-reasoned treatment strategies rooted in 

understanding the intricacies of drug resistance and pathway interactions. 

While our developed approach exhibits notable strengths, we also recognize certain 

weaknesses that need to be addressed. Transcription profiles of cell lines were used as 

activity states, and they only represent one facet of the activity states of the proteins 

(Haider & Pal, 2013). We acknowledge the role of epigenetic regulations in influencing 

protein activity, so we plan to integrate additional omics data sets, particularly proteomics 

and phosphoproteomics, to better capture cellular signaling activities (C. Chen et al., 

2023). We observed that conventional dimensionality reduction methods were 

insufficient in obtaining such improved activity profiles; instead, they compromised the 

model's robustness. Another important limitation of the model is to indirectly consider 

the factors outside of the molecular interactions like intercellular signaling, tumor 

microenvironment parameters, and metabolic activity. Addressing molecular aspects is, 

in fact, the opposite of general trends in the field. 

Our findings also highlighted that the model not only distinguishes individual mutations 

or mutational profiles but also indicates that the order of mutation applications can yield 

slightly different results. Therefore, our future research will analyze the impact of 

mutation orders and delve deeper into these subtle differences. Additionally, we will 

refine the study's activity representation by integrating diverse omics layers, particularly 

by incorporating single-cell omics. The RNA velocity concept is relevant and applicable 

in this context since it extrapolates the present cellular state toward the future state (La 
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Manno et al., 2018). RNA velocity adds another dynamic perspective to our 

understanding of cellular processes and molecular dynamics. As a continuation of this 

study, we will also stratify patients using TCGA datasets based on molecular alterations 

and the interactome data of cancer patients. These simulations will be tailored to 

individual patients. While prior research categorized cancer types and tissue origins using 

TCGA data, we'll take a different approach (Hoadley et al., 2018; Hoadley et al., 2014). 

Instead of relying on isolated omics data and static pathways, we will classify the tumors 

based on dynamic networks. This way, we will construct a network-based taxonomy of 

the tumors within each cancer and cross-cancer type. We'll predict optimal treatment 

strategies by linking drug response patterns from cell line models with our network-based 

tumor classification. 

Although we focused on drug resistance, extending this study to investigate molecular 

mechanisms driving metastasis or relevant biological questions believed to underlie 

molecular signaling abnormalities is possible. This methodology might even be 

generalized for identifying vulnerabilities across different types of networks having a 

scale-free topology. Successful adaptation requires in-depth domain knowledge and 

simplified transition rules to formulate the dynamicity of complex systems. 

In conclusion, we adapted the GCA model to simulate molecular signaling and 

perturbations to reveal drug resistance mechanisms. Our study introduces a new 

perspective by integrating multi-omics data, network medicine, and discrete dynamic 

network modeling, which can lead to significant advancements in understanding and 

addressing the dynamicity of drug resistance and other medical challenges. The source 

code and materials can be accessed on GitHub at 

https://github.com/EnesSefaAyar/Graph-based_Cellular_Automata.  
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