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ABSTRACT

Leveraging the Molecular Signatures of Cancer for Dynamic Network

Enes Sefa Ayar
Master of Science in Computational Sciences and Engineering
August 17, 2023

Drug resistance poses a significant challenge to the effectiveness of therapies, driven
by accumulation of molecular alterations within dynamic cellular networks. In this thesis,
we used a discrete dynamic model, Graph-based Cellular Automata (GCA), to reveal the
network-based history of tumor progression and causal association between network
modules and drug resistance by data integration. GCA can simulate dynamic systems
using initial static information, set of states and simple transition rules. The reference
graph is a tissue-specific interactome that consists of both protein-protein interactions and
the regulatory network of the transcription factor to gene interactions composed of 8,228
nodes and 63,574 edges. By incorporating known biology and statistical rules of
molecular alterations, including stimulations, repressions, and (non)-linear pairwise
molecular correlations, GCA simulates molecular signalling and propagates mutation
effects downstream of signalling pathways and complexes. Eventually, GCA gives a
trajectory of subnetwork models for each context. In comparisons of simulations with
and without mutations at the node level, we detected functional subnetworks within the
dynamic network structure. We used publicly available omics data from a well-
established cancer cell line repository to optimize the GCA model and construct dynamic
networks for each cell-line-drug pair for interpreting drug resistance mechanisms at the
pathway level. The accuracy of these drug representative networks were evaluated by
cross-validation and on an independent test from Patient-Derived Xenografts (PDX).
Notably, we found context-specific pathways (e.g. MAPK signalling) involving proteins
from drug-resistant cell lines and PDX samples, thereby linking them to investigated drug
resistance mechanisms. Overall, this approach, from molecular alterations to dynamic
networks, transforms already available large datasets to gain new clinically relevant

insights about drug resistance, offering potential implications for cancer therapy.



OZETCE

Kanserin Molekiiler izlerinin Dinamik Ag Modellemede Kullanilmas:
Enes Sefa Ayar
Hesaplamah Bilimler ve Muhendislik, Yuksek Lisans
17 Agustos 2023

Ilag direnci, dinamik hiicresel aglarda molekiiler degisikliklerin birikmesinden
kaynaklanan tedavilerin etkinligi i¢in 6nemli bir sorun teskil etmektedir. Bu tezde, timor
ilerlemesinin ag tabanli ge¢misini ve ag modiilleri ile ilag direnci arasindaki nedensel
ilisk1yi veri entegrasyonu yoluyla ortaya ¢ikarmak i¢in ayrik bir dinamik model olan ¢izge
tabanl hiicresel otomata (GCA) kullandik. GCA, statik verileri, durum kiimelerini ve
basit ge¢is kurallarmi kullanarak dinamik sistemleri simiile edebilir. Referans ag, hem
protein-protein etkilesimlerinden hem de transkripsiyon faktorlerinden, 8.228 diigiim ve
63.574 kenardan, ve gen etkilesimlerini diizenleyen etkilesimlerden olusan dokuya 6zgii
bir interaktomdur. GCA aktive edici, baskilayici ve dogrusal olan yada olmayan ikili
molekiiler korelasyonlar dahil olmak iizere bilinen biyoloji ve molekiiler degisikliklerin
istatistiksel kurallarini birlestirerek molekiiler sinyalizasyonu simiile etmek ve sinyal
yolaklarmmn ve komplekslerinin akis asagisinda mutasyon etkilerini yaymak igin
kullanilmistir. Sonug olarak GCA, her durum i¢in bir alt ag modelleri gezingesi vermistir.
Diigiim seviyesinde mutasyonlu ve mutasyonsuz simiilasyonlarm karsilastirilmasiyla,
dinamik ag yapisi i¢inde islevsel alt aglar tespit ettik. GCA modelini optimize etmek ve
yolak diizeyinde ilag direng mekanizmalarini yorumlamak igin her bir hiicre hatti-ilag ifti
icin dinamik aglar olusturmak iizere kapsamli bir kanser hiicre hatt1 veri tabanindan halka
acik omik verilerini kullandik. Bu ilag temsili aglarin dogrulugu, capraz dogrulama ve
Hastadan Tiretilmis Ksenograft (PDX) igeren bagimsiz bir testle degerlendirdik.
Ozellikle, ilaca direncli hiicre hatlarindan ve PDX &rneklerinden proteinleri igeren
baglama 6zgii yolaklar (6rn. MAPK sinyali) bulduk ve bdylece bunlari arastirilan ilag
direnci mekanizmalarma bagladik. Genel olarak, molekiiler degisikliklerden dinamik
aglara kadar bu yaklasim, halihazirda mevcut olan biiyiik veri kiimelerini doniistiirerek
ilag¢ direnci hakkinda klinik olarak ilgili yeni dngoriiler elde etmis ve kanser tedavisi i¢in

potansiyel ¢ikarimlar sunmustur.
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Chapter 1:
INTRODUCTION

Mutations are genetic changes that occur in the DNA sequence of an organism. They arise
spontaneously or be induced by external factors. While they play a crucial role in the
evolution of biological organisms and serve a purpose, some of these changes lead to
abnormalities (Fitzgerald & Rosenberg, 2019; Loewe & Hill, 2010). Some mutations
occur in non-coding DNA regions known as '‘Junk DNA," which are thought to lack
functionality (Palazzo & Gregory, 2014). Despite this assumption, these seemingly non-
functional parts play a significant role either by acting as a buffer to reduce the likelihood
of mutations occurring in the functional segments or having unknown regulatory
functions (Palazzo & Gregory, 2014).

Beyond the specific type and location of a mutation on a gene, the effects of mutations
on the intricate cellular interactions remain largely unpredictable (Loewe & Hill, 2010).
In the context of cancer and its causal relationship with mutations, it becomes crucial to
identify common patterns among cancer cells and compare them to normal cells.
However, this task is highly challenging due to the diverse effects of mutations, the
complexity of the cellular organization, and the accumulation of a wide range of mutation
combinations (Salk, Fox, & Loeb, 2010).

Leveraging a wide range of omics data, genomics, transcriptomics, proteomics, and
metabolomics is equally important to consider all aspects of cancer. These
complementary layers offer valuable insights into cellular processes, elucidating the
impact of mutations on gene expression, protein function, and overall
pathways/complexes. In the last two decades, we have seen an explosion of high-
throughput studies, resulting in vast amounts of omics data that present a puzzle to
integrate and fully comprehend all intermediate steps from DNA to cellular activity. The
challenge arises to integrating these omics data for identifying disease-related
genes/proteins and exploring pathway perturbations in cancer. Despite its importance,
this task remains challenging and requires further attention.(Demirel, Arici, & Tuncbag,
2022).

Targeted drug therapies aim to eliminate cancer cells from a healthy population of cells

by leveraging their distinctive molecular characteristics (Padma, 2015). Unlike traditional
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treatments like chemotherapy and radiation, side effects are mostly minimized since
healthy cells are distinguished from cancer cells. These therapies achieve that by
disrupting specific signaling pathways and molecular targets responsible for cancer
growth and survival. For instance, Protein kinase inhibitors (PKIs) are a class of
molecules that specifically bind to active sites of protein kinases, obstructing the process
of phosphorylation, a vital step in initiating intracellular signaling cascades (Lemmon &
Schlessinger, 2010). By inhibiting the phosphorylation of specific protein residues, these
inhibitors promote cell cycle arrest at certain checkpoints, effectively restraining
uncontrolled cell division, which is particularly relevant in the context of cancer cells
(Otto & Sicinski, 2017).

A significant challenge arises as further molecular alterations accumulate in cancer cells,
increasing heterogeneity and triggering drug resistance. This resistance can occur through
various mechanisms, such as activating alternative signaling pathways, mutations in the
drug’s target site, increased drug efflux, or alterations in the tumor microenvironment
(Housman et al., 2014; Mansoori, Mohammadi, Davudian, Shirjang, & Baradaran, 2017).
The effects of these molecular alterations extend beyond the neighborhood of the altered
gene or protein, propagating through the network of interactions and affecting the
functionality of regulation mechanisms.

One promising computational approach is network medicine, which utilizes network
science to represent these interactions (Sonawane, Weiss, Glass, & Sharma, 2019). The
approach involves constructing and analyzing networks of molecular and cellular
components from various layers of omics data (Barabasi, Gulbahce, & Loscalzo, 2011).
The network construction process comprises several crucial steps, including reference
construction, seed selection, propagation, and module detection. Detected modules
represent meaningful subsets of the reference network determined through seed selection
and propagation steps. Subsequently, these modules are further explored using network
and learning-based methods (Sharma et al., 2015).

The current network medicine literature mainly focuses on obtaining valuable insights
from static network models, but they overlook the dynamic nature of biological systems
(Chaudhuri & Srivastava, 2022; Kostic, Hilgetag, & Tittgemeyer, 2020). The dynamic
nature of biological systems arises from the fact that they constantly change over time
due to various internal and external influences. This dynamic aspect is a crucial area that

needs adequate attention (Abou-Jaoude et al., 2016; Braha, 2020). By examining the
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interactions between nodes at different time points in the system’s evolution, it can be
possible to identify key patterns and processes that shape the system’s dynamic behavior
(Battiston et al., 2020). However, the need for real-time series data or its limited
availability is a significant challenge. Alternatively, discrete dynamic models emerge as
promising solutions. Discrete dynamic models leverage static data snapshots to simulate
the dynamics of biological systems in discrete time steps. They use transition functions
to represent the behavior of complex systems. One promising example is the cellular
automata model (CA). CA models are simple yet powerful simulations of complex
systems. They consist of a grid of cells that evolve based on predefined rules and their
neighboring cell states. These models reveal patterns and emergent behaviors, aiding
understanding self-organization and chaos in various fields (Ishida, 2018). Furthermore,
the Graph-based Cellular Automata (GCA) model is an exciting variation of CA that uses
a graph-based non-uniform neighborhood. It has been applied successfully in various
fields but not in biology. Applying GCA to molecular networks could simulate complex
cellular signaling pathways more flexibly and realistically, capturing dynamic

interactions and providing insights into drug resistance.

In Chapter 2, we emphasized the prominent role of mutations and introduced the multi-
omics efforts to comprehend different aspects of cancer progression. We also introduced
the biological background of drug resistance and the computational background of
network medicine, as well as the computational foundations of network medicine and
dynamic network modeling, which we believe hold the potential to illuminate the

mechanisms underlying drug resistance.

In Chapter 3, we provided the followed methodology in detail with proper references for
databases utilized. We first described the construction of the reference network, then
described the details of the GCA model. Afterward, we provided optimizations and how

drug modules related to drug resistance were constructed, validated, and analyzed.

In Chapter 4, we summarized our key findings and compared our method with previous
relevant studies. We also discussed our method's significance, limitations, strengths, and

weaknesses. Additionally, we provide perspectives and future directions for this study.
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Chapter 2:
LITERATURE REVIEW

2.1  Prominent Role of Mutations in Cancer Progression

In cancer biology, a fundamental hallmark distinguishing tumor cells from their normal
counterparts is the loss of regulation over cellular signaling, resulting in uncontrollable
proliferation (Hanahan & Weinberg, 2011). Cellular signaling is a tightly regulated
process that governs the behavior of cells in response to internal and external cues (Nair,
Chauhan, Saha, & Kubatzky, 2019). It involves molecular events, where proteins and
genes interact with each other through signaling pathways that control essential cellular
processes such as growth, differentiation, cell cycle, apoptosis (programmed cell death),
and DNA repair (Campos & Clemente-Blanco, 2020; Duronio & Xiong, 2013; Elmore,
2007). This signaling is precisely regulated in normal cells, ensuring that cells respond
appropriately to their environment and maintain homeostasis. However, this control is
disrupted in cancer due to mutations that affect key genes and proteins involved in cellular
signaling. These mutations may cause specific signaling proteins to become hyperactive,
resulting in relentless cellular growth and division (Zenonos & Kyprianou, 2013).
Alternatively, mutations might impair signaling pathways responsible for apoptosis,
eliminating abnormal or damaged cells (Elmore, 2007). Moreover, mutations can
compromise DNA repair pathways, contributing to genomic instability and the
accumulation of further genetic alterations that fuel cancer progression (Torgovnick &
Schumacher, 2015).

Cancer progression can be defined as a process with the accumulation of mutations that
progressively worsen the malignancy of cancer cells. Uncontrolled division signals begin
with initial mutations, and tens or hundreds of mutations accumulate from the beginning
of this process. Distinguishing the effects of these mutations is crucial to understanding
the nature of mutations in cancer progression to treat patients better. These mutations in
cancer progression can be categorized into three groups based on their impact: drivers,
passengers, and latent drivers (Kumar et al., 2020; McFarland et al., 2017). Driver
mutations are genetic alterations that contribute to the development and progression of
cancer (Ostroverkhova, Przytycka, & Panchenko, 2023). These mutations are called

“drivers” because they provide a selective growth advantage to cells that carry them,
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enabling them to outcompete normal cells and proliferate more rapidly. In contrast,
passenger mutations are genetic changes that occur in cancer cells but do not directly
contribute to the development or progression of the disease (Stratton, Campbell, &
Futreal, 2009). Their primary characteristic lies in their frequent co-occurrence with the
driver mutations. While passenger mutations are thought to have non-proliferative effects
on disease phenotypes, their properties and role are poorly understood (Wodarz, Newell,
& Komarova, 2018). However, accumulating slightly deleterious passenger mutations
slow cancer progression, presenting a potential therapeutic target (McFarland et al.,
2017). Finally, latent mutations can potentially drive cancer development, even though
they have not yet been recognized as cancer hallmarks (Nussinov & Tsai, 2015; Yavuz,
Tsai, Nussinov, & Tuncbag, 2023). Nonetheless, when they synergize with other
mutations, they are believed to play a significant role in promoting cancer development
and drug resistance (Nussinov & Tsai, 2015).

2.2  Molecular Landscape of Cancer

Cancer is a profoundly intricate disease, with mutation profiles being only one aspect of
the investigation. It necessitates a comprehensive study of genetic, genomic, and
molecular alterations within cancer cells. To address this necessity, significant efforts
were made, and comprehensive initiatives and projects emerged, such as The Cancer
Genome Atlas (TCGA) (Tomczak, Czerwinska, & Wiznerowicz, 2015), Cancer Cell Line
Encyclopedia (CCLE) (Ghandi et al., 2019), and Clinical Proteomic Tumor Analysis
Consortium (CPTAC) (Rudnick et al., 2016). These efforts involve the analysis of
thousands of tumor samples using advanced genomic sequencing and molecular profiling
technologies. The data they have deposited serve as invaluable resources for exploring
the molecular landscape of cancer, ranging from cell lines to patient-derived samples,
encompassing proteomics data, immunological landscapes, and drug responses.

These diverse resources have proven invaluable for providing powerful models to study
mechanisms of cancer biology and personalized, targeted therapies. One major
contribution of these efforts is the recognition that cancer is not a single disease but rather
a collection of distinct subtypes (Zhang, Chen, & Creighton, 2023). In addressing this
heterogeneity problem, Network-based stratification has emerged as a compelling

method. To categorize tumor samples according to their specific characteristics, this
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integrative method uses the genomic landscape of tumor samples and molecular gene
networks (Hofree, Shen, Carter, Gross, & Ideker, 2013; C. Liu, Han, Zhang, Nussinov, &
Cheng, 2021; S. Wang et al., 2018). Furthermore, several studies have leveraged
perturbation-based methods to rewire cellular networks of cancer cells and integrate
diverse omics data types to identify susceptible proteins and pathways (Acuner-
Ozbabacan et al., 2014; Drake et al., 2016).

In addition to high-throughput studies, there is also an increase in public datasets
enhancing our understanding of biological systems. Resources like KEGG and
Wikipathways outline biological pathways. KEGG uses manual curation for pathway
construction (Kanehisa, Furumichi, Sato, Kawashima, & Ishiguro-Watanabe, 2023),
while WikiPathways relies on community inputs (Pico et al., 2008). The CORUM
database catalogs verified mammal protein complexes from literature, experiments, and
other databases (Giurgiu et al., 2019). The OmniPath integrates various molecular
interactions—protein, signaling, and regulatory (Tirei, Korcsmaros, & Saez-Rodriguez,
2016). The BIOGRID compiles diverse interaction types (e.g., physical association, direct
interaction) (Oughtred et al., 2021). The TRRUST focuses on transcriptional networks
composed of transcription factors and target genes (Han et al., 2018). These sources and
many other offer complementary datasets, each capturing different facets of biological

processes.

2.3 Drug Resistance in Cancer

Resistance to cancer drugs is one of the major obstacles to the successful treatment of
cancer patients (X. Wang, Zhang, & Chen, 2019). The emergence of drug-resistant cancer
cells can make therapies ineffective, leading to reduced patient survival rates (Housman
et al., 2014). Several mechanisms proposed how drug resistance developed at the
molecular level (Mashouri et al., 2019). As cancer cells rapidly divide and are prone to
genetic instability, mutations can arise at a faster rate compared to normal cells (Yao &
Dai, 2014). Each cell accumulates different combinations of mutations, leading to the
formation of heterogeneous tumor cell populations. Furthermore, administrated drugs
create selective pressure for the survival of resistant clones, leading to the expansion of
resistant populations within the tumor (Friedman, 2016). An equally significant aspect of

drug resistance concerns the timeframe of its emergence. Cancer samples can be
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inherently resistant to drugs or acquire resistance after the drug treatment (Hata et al.,
2016). Some drugs can significantly increase mutation rates, giving rise to resistant
subpopulations that emerge and dominate the tumor sample (Kuczynski, Sargent,
Grothey, & Kerbel, 2013; Kuosmanen et al., 2021). On the other hand, resistance may
already be present in certain subpopulations (Greaves & Maley, 2012). To develop a
thorough comprehension of the mechanisms driving cancer drug resistance, it is essential
to consider these factors, including the time frame, order of accumulation, types of
mutations, and whether these mutations are drug-induced or inherent.

Cancer drugs mainly interfere with the nature of these highly proliferative cells through
different mechanisms, including alterations in drug targets, enhanced drug efflux, DNA
repair pathways, and dysregulation of apoptosis (Housman et al., 2014). Resistant cells
are believed to escape from these interventions through alternative mechanisms, allowing
them to bypass the effects of the drugs (Boumahdi & de Sauvage, 2020). To counteract
drug resistance, several approaches have been developed. Combinatorial drug therapies,
for instance, have demonstrated success in overcoming drug resistance in several studies
(Al-Lazikani, Banerji, & Workman, 2012; Jaaks et al., 2022; X. Wang et al., 2019). By
targeting multiple pathways simultaneously or consecutively, these therapies aim to
prevent the escape of resistant cells. Nonetheless, it is essential to acknowledge that this
strategy may come with certain side effects and can be only effective for a short time,
potentially leading to increased toxicity for the patient (Bozic et al., 2013; Felson,
Anderson, & Meenan, 1994). To mitigate this issue, another elegant study suggested
using multi drugs at lower concentrations to reduce the toxicity while increasing the
efficacy (Fernandes Neto et al., 2020). Even though there are improvements, effective
combinatorial drug therapies still require extensive knowledge of molecular mechanisms
in specific cancer types.

Studying the complex nature of molecular alterations in the genome and proteome, it can
be possible to reveal the molecular signatures of drug resistance (Le Tourneau,
Borcoman, & Kamal, 2019; Malone, Oliva, Sabatini, Stockley, & Siu, 2020). Genetic
mutations and their effects on protein level play a significant role in shaping this
molecular signature since it is believed to have a causal relationship with drug resistance.
Several studies have shown that mutations are critical in predicting drug resistance
(Chapman et al., 2011; Lievre et al., 2006; Rodes et al., 2000; Z. Yang et al., 2017).

Further identifying and understanding mutations' effects could help better forecast cancer

8
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progression. To this end, computational models have also been successfully applied to
understand the nature of mutations in cancer better (Y. Li et al., 2021; Mularoni,
Sabarinathan, Deu-Pons, Gonzalez-Perez, & Lopez-Bigas, 2016; Sherman et al., 2022).

2.4  Network Medicine

Network medicine is an innovative and interdisciplinary medical research and systems
biology approach. It is rooted in the understanding that many diseases and biological
processes are not isolated entities but rather intricate systems governed by many factors
and components. Traditional reductionist methods, which study individual elements of a
system in isolation, may struggle to capture the complexity and interconnectedness of
these systems (Ahn, Tewari, Poon, & Phillips, 2006). Diseases are modeled as
interconnected molecular and cellular networks rather than individual isolated entities.
The integration of high-throughput molecular omics datasets obtains this
comprehensiveness. Integration makes it possible to construct maps of disease-specific
networks called disease modules, which can be used to identify key regulators, pathways,
and modules that contribute to the disease's development and progression.

Since the introduction of network medicine, numerous research studies have further
validated its importance and utility (H. Chen et al., 2015; Choobdar et al., 2019; Hasin,
Seldin, & Lusis, 2017). These studies have demonstrated how network medicine has been
applied to various diseases, especially cancer. It gave remarkable results, particularly in
biomarker identification for patients or subgroups. These biomarkers, representing unique
molecular signatures, are essential for predicting resistant and sensitive drugs specific to
patient groups (patient stratification) (Garnett et al., 2012). Identifying biomarkers,
enhancing targeted therapy results, and reducing the risk of side effects (Cheng, Kovacs,
& Barabasi, 2019a; Goetz & Schork, 2018). Drugs targeting the same or similar pathways
can be repurposed for different diseases using disease-specific network modules, enabling
fast and practical therapy alternatives (Morselli Gysi et al., 2021; Zhou et al., 2021).
Moreover, network medicine can propose improvements in combinational drug therapies
to enhance therapeutic efficacy (J. Li, Xu, & Mclndoe, 2022). Network medicine can
quantitatively assess drug-disease relations to offer successful combinatorial candidates
and narrow the number of required experimental studies. This approach evaluates the

proximity of drug targets and disease modules at the network level, assessing whether
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two drugs targeting a common disease module while not targeting the same sub-modules
or pathways, which indicates a higher chance of success in combinatorial therapy (Cheng,
Kovacs, & Barabasi, 2019b)

2.5 Dynamic Network Modelling

Mutations and their relationship with drug resistance were mostly investigated with static
models in network medicine. However, cells are dynamic systems, and static models do
not entirely represent their dynamic nature. Dynamic network modeling can help identify
the underlying mechanisms that drive the system's behavior, providing insights into the
fundamental principles that govern complex biological systems (Budak, Eren Ozsoy,
AYDIN SON, Can, & Tuncbag, 2015; Somvanshi & Venkatesh, 2014). Moreover,
dynamic network modeling allows investigation of how perturbations or changes in the
system affect its dynamic behavior (Albert, 2007; Di Cara, Garg, De Micheli, Xenarios,
& Mendoza, 2007). This property is significant in biological systems, where gene
mutations, drug treatments, or environmental changes can profoundly affect phenotypical
outcomes. Dynamic modeling facilitates predicting better how it will respond to these
perturbations and identifying potential targets for therapeutic intervention (Hemedan,
Schneider, & Ostaszewski, 2023; Pappalardo et al., 2020).

High-throughput technologies comprise a broad spectrum of measurements that provide
insights into the molecular mechanisms of cells, yielding a vast amount of multi-omics
data. Our understanding of the cells is limited to these multi-omics datasets that represent
snapshots of cellular states, often accompanied by a significant amount of noise. Although
experimental methods for directly measuring dynamicity are lacking, we can enhance our
insights by incorporating the time series dimension into the data, enabling the application
of dynamic modeling approaches. Dynamic modeling enables the identification of critical
transitional points, which helps to understand the sequence of events and uncover hidden
patterns in cellular behavior. Discrete dynamic approaches have emerged as valuable
tools in this context. By reconstructing the temporal trajectory of cells in pseudo-time, it
can be possible to simulate cellular behavior together with perturbations and identify key
regulatory points that might be critical for drug resistance, disease progression, or

therapeutic interventions. Moreover, integrating different omics layers, such as genomics,

10
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transcriptomics, and proteomics, to build dynamic models facilitates filling the gaps
resulting from missing dynamical data.

Discrete dynamic models are mathematical models used to describe the behavior of
systems that change over time in discrete time steps. Unlike continuous dynamic models,
which use differential equations to represent continuous changes, discrete dynamic
models divide time into pseudo time points and use difference equations or recursive
formulas to capture changes after each step. These models involve state variables that
define the system's current state, and a transition function determines how these variables
change from one time step to the next. Discrete dynamic models find application in
ecological population dynamics, computational algorithms, social network analysis, and
more, providing valuable insights into complex systems and aiding in problem-solving
across diverse domains (Erguler, 2018; Hunter, Krivitsky, & Schweinberger, 2012).
Cellular automata (CA) is a powerful class of discrete dynamic models used to simulate
the behavior of complex dynamical systems, including biological systems. In CA models,
a grid of cells represents the spatial environment, and each cell can take on different states.
The state of a cell is updated over iterations based on transition rules. This inherent
simplicity and the ability to capture complex behaviors make CA a suitable choice for
dynamic network modeling in biology (Bandini, Mauri, & Serra, 2001). CA has been
proven in biological applications such as tumor growth, metastasis, infectious disease
spread simulations, the modeling of intercellular interactions, and even the evolution of
skin scales (Dupin, Eyraud, Maurat, Sac-Epee, & Vallois, 2023; Manukyan, Montandon,
Fofonjka, Smirnov, & Milinkovitch, 2017; Monteagudo & Santos, 2015; Pfeifer et al.,
2008; Poleszczuk & Enderling, 2014; Prieto-Langarica, Kojouharov, Chen-Charpentier,
& Tang, 2011; Reher, Klink, Deutsch, & Voss-Bohme, 2017; Valentim, Rabi, & David,
2023). Another similar modeling approach Petri nets used to represent and analyze the
behavior of concurrent systems. They consist of places (representing states), transitions
(representing events), and arcs (representing relationships between them). By depicting
the flow of tokens (representing resources or events) through these elements, Petri nets
help visualize, verify, and optimize the behavior of complex systems (Pinney, Westhead,
& McConkey, 2003).

11
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An exciting variation of CA is the graph-based CA (GCA) model, which employs a non-
uniform neighborhood in a network instead of a uniform neighborhood in a lattice, as

Dynamic Graph-based Cellular Automata Representation of Bionetworks
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Figure 2.1: Conceptual representation of the GCA approach. (A) The state of a node in the
next iteration is determined by the state of the nodes in its first neighborhood within the
interactome. (B) Demonstrating how the activity of nodes in the first neighborhood of a

selected node can evolve across iterations.

shown in Figure 2.1. GCA can simulate dynamic systems starting from initial static
information and simple transition rules. These rules are intuitively defined based on the
local relations among components in the system. GCA has been used in many different
research fields, such as urban modeling (Barreira-Gonzalez, Gomez-Delgado, &
Aguilera-Benavente, 2015; Malecki, 2017; Nowak & Lewenstein, 1996), simulation of
surface flows (Rinaldi, Dalponte, Vénere, & Clausse, 2012), and social network analysis
(Matecki, Jankowski, & Rokita, 2013). However, it has not been successfully
implemented for biological systems or molecular simulations. By applying this theory to
molecular networks, it is likely to simulate and analyze complex cellular signaling
pathways. The network structure of GCA allows for the representation of complex
molecular interactions more flexibly than traditional lattice-based models. This flexibility
is crucial in capturing biological systems' diverse and intricate nature, where molecules
can interact in non-uniform and dynamic ways. Additionally, transition rules can capture
the temporal dynamics of molecular interactions, providing a more realistic
representation of cellular behavior. Perturbations on simulations may provide insights
into how dynamic alterations in the genome or proteome affect signaling pathways and

lead to drug resistance.
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Chapter 3:
MATERIALS AND METHODS

3.1 Reference Network Construction

Since the aim of the project was to model intracellular molecular signaling, we
constructed a reference network with mostly directed interactions annotated as
stimulation and repression. First, we merged all edges in the OmniPath and TRRUST
databases containing stimulation and repression interactions. We decided on conflicting
cases for the same interaction based on the consensus column in the OmniPath database.
Second, we determined the confidence scores of the edges according to the confidence
scores from the HIPPIE (version 2.3) (Alanis-Lobato, Andrade-Navarro, & Schaefer,
2017), iRefWeb (Turner et al., 2010), STRING (Szklarczyk et al., 2021) and Intact
databases (Orchard et al., 2014). In cases where there is more than one score for the same
edge, we prioritized the HIPPIE database. The HIPPIE database was prioritized because
the HIPPIE interactome scores have consistently demonstrated better performance
compared to other alternatives (Arici & Tuncbag, 2021). We assigned the highest score
in the other databases for the interactions not found in the HIPPIE. We gave them the
highest value of 1.0 for the edges with no score information from any databases. We
applied the filter only for the interactions in the STRING database in which we used
"experimental” and "database" channels (conf > 0.7).

In addition to the directed interactions in the reference interactome, we added some high-
confidence undirected interactions as bi-directed interactions. We also added interactions
with a high confidence score (conf > 0.83) in the HIPPIE database, which is not directed
but transition rules can be applied. The application of transition rules relies on two
conditions: the coexistence within the same complex or pathway, and the presence of an
edge in the BIOGRID database. We selected edges found in BIOGRID (version 4.4.212),
KEGG (version 103.0), WikiPathways or CORUM (version 4.0) databases for
compliance with transition rules. We considered only three interaction types: "Physical
Association," "Direct Interaction," and "Association.” from the BIOGRID database.

In the GCA model, since the state update of each node over the neighborhoods is applied
according to the transition rules, we removed the isolated nodes and the self-edges from

the reference network. We have also counted the number of protein/gene groups as
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oncogenes, tumor suppressors, kinase, and transcription factors. For this purpose, we took
the list of oncogenes from the “Oncogene Database” (Y. Liu, Sun, & Zhao, 2017), and
the list of tumor suppressors from the “Tumor Suppressor Gene Database” (Zhao, Sun, &
Zhao, 2013). We obtained tumor suppressors from the dataset of multiple databases such
as Network of Cancer Genes (Repana et al., 2019), COSMIC (Sondka et al., 2018). We
obtained kinases from the “KinHub” database (Eid, Turk, Volkamer, Rippmann, & Fulle,
2017). We retrieved the list of transcription factors from “The Human Transcription
Factors” database (Lambert et al., 2018).

3.2  Graph-based Cellular Automata Model

3.2.1 Overview of the GCA Approach

We synchronously updated the activity values of genes based on weighted estimates of
their neighbors through iterative nonlinear regression analysis. We used the DepMap cell
line expression values as log(1+TPM), reflecting the respective activities, but they can be
substituted with any other numeric measure that represents gene activities. We performed
iterations 30 times by deactivating the edges according to mutations at the 15™ iteration.
We detected the effect of mutations on the dynamic network structure in comparisons of
simulations with and without mutations at the node level. We chose three sets of nodes
that form subnetworks from the reference network. These subnetworks contain the nodes
of effective gene mutations that lead to edge deactivation, isolated genes that lack any
active edges, and genes that have partially lost their edges while displaying a significant

(activity change > 0.585). Overview of the GCA model is represented in Figure 3.1.
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Figure 3.1: Overview of the GCA model on the molecular simulations. The left panel
illustrates a mutation-free simulation of the network, where stimulation and repression
edges are depicted in green and red, respectively. In the right panel, nodes with marked
mutations are represented in red, and the downstream related edges are deactivated,
indicated by the color gray.

3.2.2 Transition Rules of GCA

We used a regression analysis that can detect both linear and nonlinear relationships in
the developed approach. We used activity values of genes, and directionality of
interactions in OmniPath, and TRRUST databases in regression analysis. We selected at
least 10% of the cell lines closest to any source gene activity value by a symmetric sliding
window. We made estimation based on the distribution of activity values for the target
gene within these selected cell lines by calculating the mean and standard deviation of the
distribution. We estimated the activity value of the target gene as p+2c (u=mean,

o=standard deviation) for stimulations and the p-2c for repressions.

v, = (v, + X7 Crcey) /277 (xqc)]) /2 (3.1)

In Equation (3.1), yt+1 is the activity value of the target node at time t+1, y; is the amount
of value at time t, m is the number of effective edges to the target node, X; is the activity
amount of the nodes affecting the target node, ci is the confidence score of the edge, e is
the predicted regression result. As a result, using this equation, we estimated a gene's
activity value at time t+1 according to the activity value of neighboring genes at time t

that stimulate or repress it.
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3.2.3 Pairwise Estimation Function

In Figure 3.2, the estimation function generates estimations (green line) for the target
node (ITCH1) at every activity value of the source node (RNF11). However, it is
oversensitive since there is intrinsic noise and insignificant relative changes in the
transcription profiles. We smoothened estimation function to improve efficiency and
prevent oversensitivity issues by retaining estimations only for integer values, as shown
in Figure 3.3. Target node state estimated by interpolating activity values between two

adjacent integer points.
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Figure 3.2: Scatter plot of expression values for gene RNF11 and ITCH1. Every dot
represents a DepMap cell line. X-axis shows the expression value of source node
(RNF11) while y-axis shows the expression value of target node (ITCH1). Vertical
dashed blue lines showing the limits of symmetric sliding window which encapsulates
%10 of the data points (red dotes). On the left, distribution of ITCH1 expression values
of red dots represented. Green dashed line represents the estimation at each point based

on the estimation function and stimulation information.
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RNFIl = ITCHI
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Figure 3.3: Scatter plot of expression values for gene RNF11 and ITCH1 with
smoothened estimation function. Every dot represents a DepMap cell line. X-axis shows
the expression value of source node (RNF1) while y-axis shows the expression value
of target node (ITCH1). Green dashed line represents the estimation at each point based

on the smoothened estimation function.

3.2.4 Use of Mutations in the GCA Model

Mutations change the primary interactions of proteins and propagate their effects through
interaction networks. Therefore, from the immediate interaction partners of mutated
proteins, we modified the downstream edges along the biological complex and pathways
in which they are found. We determined effected pathways and complexes by considering
the mutated node and its first neighbors. In each iteration, we progressively deactivate the
next neighboring edges until no downstream edges are remained. We selected the first
edges affected in the reference network according to the type of mutations. We
propagated the effects of deleterious mutations (Frameshift, Early Stop Codon,
Deleterious, etc.) over the reference network starting from all the edges where the protein
interacts. On the other hand, we evaluated mutations that are not deleterious but cause a
change in a single amino acid. In this case, instead of propagating from all interactions,
we propagated over the affected edges according to the binding sites of the proteins. We
used Interactome INSIDER database (Meyer et al., 2018) for binding site information.

The application of mutations across the reference network is summarized in Figure 3.4.
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The model identifies three distinct sets of nodes: 1) mutated nodes, 2) partially isolated
nodes, and 3) completely isolated nodes. Mutated nodes correspond to the nodes where
mutations have occurred, and edges altered. Partially isolated nodes refer to nodes that
have lost some active edges and showed significant activity changes compared to not
mutated simulations. Completely isolated nodes are nodes that have lost all their edges
due to deactivation, and activity states cannot be updated anymore.

Pathway/Complex 1

. Mutation

-===4 Alteration

Figure 3.4: Graphical representation of mutation applications: Mutated genes are depicted
in red, and the downstream effects are illustrated by dashed red lines. The left panel
demonstrates deleterious mutation propagation, while the right panel represents point
mutations. Mutations are constrained within their respective pathways or complexes and

do not diffuse across different pathways or complexes.

3.3 Application of GCA Model on DepMap Cell Lines

In this section, we applied GCA Model to DepMap cell lines by using mutation profiles,
transcription profiles, and drug responses from the DepMap database (Tsherniak et al.,
2017)

3.3.1 Mutation Profiles of DepMap Cell Lines

We filtered out mutations that are not deleterious effect or happening at the interacting
residues of proteins. Then, we applied deleterious and point mutations in the cell lines

and run the simulations both with and without mutations for each cell line. Thus, we
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measured the effect of mutations on signaling by looking at the difference between the
two simulations at the gene expression level for each node.

3.3.2 Optimizations on GCA Model

We optimized the GCA model across multiple scenarios to examine its ability to
differentiate mutation classes and individual mutations. To achieve this, we selected the
cell line with the most mutations in the oncogene and tumor suppressor nodes (ACH-
000998). Subsequently, we employed three different simulation approaches by applying
mutations on different simulations. We considered only oncogene mutations in the first
simulations, while in the second simulations, we examined all tumor suppressor
mutations. Lastly, we individually applied all mutations for oncogenes, tumor
suppressors, and all together. As a result, the optimization process focused on 61 tumor
suppressors and 23 oncogene mutations. Enrichments of the different sets of mutations
performed in EnrichR. For each mutation application, we assessed the similarity between
resulting subnetworks by calculating the ‘Jaccard Index’ for subnetworks. We
represented the distribution of values in a histogram after subtracting from 1, called the

similarity score.

3.3.3 Synthetic Reference Networks

We generated synthetic networks using two different methods: the random Erdés-Renyi
method and the Barabasi-Albert method. The Erdés-Renyi model is a random graph
algorithm that generates random networks by adding edges with a constant probability
‘p’ between all pairs of nodes. To maintain consistency with the actual reference network,
we set the value of ‘p’ to the number of edges divided by ten times the number of nodes
in the reference network. This way, we obtained random networks with similar sizes of
actual reference. On the other hand, the Barabasi-Albert algorithm follows a preferential
attachment mechanism, meaning nodes with more connections are more likely to attract
new links. The algorithm takes two numbers as input ‘n’ (number of nodes) and ‘m’
(Number of edges to attach from a new node to existing nodes). We set ‘m’ value by
considering the actual reference by calculating the average degree in the reference.

Based on these two models, networks with different node numbers were incorporated,

ranging from 200 to 20,000. We maintained the pathway, biological complex, and co-
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expression information in the networks at ratios consistent with the actual data but fully
randomized. We repeated each test hundred times with random variations and completely
random 15 destructive and 5-point mutations. We examined the outputted number of

isolated and partially isolated node numbers of the model.

3.3.4  Specificity Analysis

We performed the specificity analysis of the model across three scenarios to ensure the
resulting subnodes are specific. We chose one of the (“ACH-000001") cell line, and
assesed the occurrence of each resulting node in randomly generated scenarios. In the
first scenario, we randomly selected mutated genes (initial seed nodes) from the entire
reference network. We shuffled the node names within the reference network for the
second scenario. For the third scenario, we swapped the edges connecting the nodes. Edge
swapping keeps the original topology the same and only changes the neighbors of the
proteins. In each scenario, we conducted 100 trials and analyzed the occurrence frequency

of nodes in the obtained resulting subnetworks separately for each scenario.

3.3.5 DepMap Cell Line Simulations

The DepMap database contains mutation profiles of over 1000 cell lines, their responses
to more than 4000 molecules, and various other omics datasets. We identified 951 cell
lines suitable for simulations by intersecting the mutation and transcription profiles. We
used this data to perform GCA simulations for cell lines by conducting 30 iterations per
cell line. We determined the number of iterations by considering the activity states
reached equilibrium before and after we applied the mutations. The increased number of
iterations did not cause different results but increased the computational time cost, so we
chose the minimum possible iteration number. We set the initial state of each gene in the
simulation by computing the average expression values of cell lines within its lineage.
We also conducted 30 simulations for each lineage type without mutations. Simulations
with and without mutations were compared, resulting in a comparison of 681 cell lines
because not all mutation profiles cause alteration at the edge level. In this node-level
comparison, we created subnetworks for each cell line, which included a highly affected

set of nodes regarding activity states.
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3.3.6  Construction of Drug Modules

We used drug data from GDSC1 and GDSC?2 datasets to determine drug resistance in cell
lines. Drug-resistant cell lines had a z-value above 2.0, while sensitive cell lines had a z-
value below -2.0 as suggested. After filtering out cell lines without sensitive and resistant
counterparts for the same drug, we obtained 15,441 drug-cell line pairs (402 drugs and
956 cell lines). We combined the resistant and sensitive cell line subnetworks into

consensus subnetworks by majority voting and removed common genes. This resulted in
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Figure 3.5: Graphical representation of drug module construction. Drug modules are
built for each drug based on networks comprising both resistant and sensitive cell lines.
Through majority voting at the node level, a consensus subnetwork is determined, while

the differing subsets are extracted as modules.

two drug modules representing resistant and sensitive modules for each drug, as depicted

in Figure 3.5.

3.3.7 Cell Line Blind Cross Validation of Drug Modules

We employed a systematic approach to validate the relationship between drug modules
and drug resistance. We divided the complete dataset of cell lines into 'k' subsets. To
construct drug modules, we repeatedly used the 'k-1' of these subsets 'k’ times, while the
remaining subset was reserved as the test set for cross-validation. For the case where 'k’
was set to 10, the test set consisted of 68 cell lines, and the training set included 613. The
number of drug modules generated also varied since the lack of test cell lines may be the
only ones resistant or sensitive to a drug. Notably, we excluded the test cell line modules

from generating any drug modules, ensuring an unbiased evaluation.
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We considered network proximity measures to determine whether a test cell line exhibits
resistance or sensitivity to a specific drug (Figure 3.6). These measures assess the
closeness of a test cell line subnetwork to both the sensitive and resistant drug modules
associated with the drug of interest. We predicted it to be resistant to the drug if a test cell
line network demonstrated a closer distance to the resistant module. If it displayed a closer
distance to the sensitive module, we predicted it to be sensitive to the drug. Additionally,
we put lower than threshold for the z-scores to assess the significance of the closeness.
Lower z-scores suggest significant proximity measures, so predictions made below
determined z-score thresholds. We considered resistance as positive class and sensitives
as negative class in the confusion matrix. We plotted the accuracy, precision, recall and
MCC values as the measure drug modules prediction performance and reliability.

Figure 3.6: Illustration of drug modules leveraged for predictions on test cell lines.

Predictions made for each drug cell line pair considering network proximity.
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3.3.8 Network Proximity Analysis

In network proximity analysis, three numbers (distance, z-score, and p-value) are
outputted for a given two subnetworks. There are different distance measures, but we
used the best-performing ‘closest” measure in this study. It represents the average shortest
path length between the subnetworks and the nearest module protein. In simpler terms, it
measures the average number of steps required to navigate from one subnetwork to the
other through the nodes in the reference network. A shorter distance suggests a closer
functional relationship or stronger connectivity between the two subnetworks, while a
longer distance indicates a more distant or weaker connection. The z-score represents
whether the distance between two node sets significantly differs from expectation in
selected random subnetworks of similar size and topology. A negative z-score shows that
the observed distance is smaller than the random expectation, whereas a positive z-score

implies the opposite. The proximity approach is depicted in Figure 3.7.

Figure 3.7: Conceptual representation of network proximity. Network proximity

measures how two subnetworks close to each other within a reference network.

3.3.9 Drug Module Visualization and Investigating Resistance Mechanisms

We merged the most divergent sensitive and resistant drug modules and visualized to
make observations. Drug modules normally do not contain common genes between
sensitive and drug-resistant genes, but we included them for visualization purposes.
Additionally, we expanded the gene sets with the drug’s specific targets. The visualization
focused on the giant component, representing the connected network with the most genes.
Common genes, different genes, and drug targets were visualized in different colors in

Cytoscape. We represented directional edges from the reference network to provide more
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details. To further gain insights into generated drug modules, we performed enrichment
analysis on resistant and sensitive drug modules by excluding common genes using

EnrichR. We plotted pathway enrichment against -log10(adjusted p-values).

3.4 Application of the GCA Model to Patient Derived Xenografts

This section evaluates the optimized GCA model on an independent dataset focused on
Patient-Derived Xenografts (PDX) as a case study.

3.4.1 PDX Samples

We utilized mutation profiles and drug responses of PDX samples from (Gao et al., 2015).
We filtered the mutation data of the PDX samples and kept only deleterious ‘Del0.8* and
point mutations ‘MutNovel’. We applied these mutations in the PDX samples in the
simulations, conducting 30 iterations per PDX sample. Thus, we measured the effect of
mutations on signaling by looking at the difference between these simulations and
simulations without mutations at node level. We determined the initial state of each node
in the simulation by calculating the average expression values of DepMap cell lines within
its lineage. Comparison of simulations with and without mutations resulted in 369 PDX
samples out of 399 because not all mutation profiles cause alteration at the edge level. In
this node-level comparison, we created subnetworks for each PDX sample, which

included a highly affected set of genes regarding activity state.

3.4.2 Drug Resistance Predictions on PDX Samples

This data set also includes drug responses for 37 drugs on PDX samples. The responses
were categorized into four types: Complete Responses (CR), Partial Responses (PR),
Stable Diseases (SD), and Progressive Diseases (PD). In this study, we only considered
PD as resistant, while the rest were considered sensitive to the drug. Of the 37 drugs, five
matched (Buparlisib, Ruxolitinib, Trametinib, LGK974, and Tamoxifen) with the drug
modules generated using DepMap cell line datasets. We calculated proximity measures
between PDX simulations and drug modules to make predictions. If a PDX module was
closer to the resistant module than the sensitive module of a drug, we predicted it as

resistant, and vice versa. We used the responses of PDX samples as ground truth and
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evaluated the predictions accordingly. We made the predictions for 168 PDX samples

across five drugs.

3.4.3 Investigation of Resistance Mechanisms in PDX Modules

We selected the best-predicted drug was buparlisib, and PDX samples correctly identified
as resistant to buparlisib for visualization. The majority voting between the 82 PDX
samples resulted in a consensus network and merged with resistance and sensitive
modules of the buparlisib. We expanded the gene sets with the drug’s specific targets
named MTOR, PIK3CA, PIK3CB, PIK3CD, PIK3CG, and PIK3C3. The visualization
focused on the giant component, representing the connected network with the most genes.
We visualized PDX module genes, resistant module genes, sensitive module genes, and
drug targets in different colors by using CytoScape. We also represented directional edges
from the reference network to provide more details.
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Chapter 4:
RESULTS

4.1 Data Statistics

We constructed a reference network consisting of 8,455 nodes and 62,649 edges with
high reliability, reduced false-positive effect, and mostly from directional interactions.
The reference consists of 43,123 stimulations, 12,715 repressions and 6,811 bi-directed
edges. The number of proteins contained in each group of oncogenes, tumor suppressors,

kinase, and transcription factors in the reference interactome are given in Table 4.1.

Table 4.1: Number of protein groups in total and in reference interactome

Protein Group Total Number of Found in the Reference
Number Interactome

Oncogenes 803 651

Tumor Suppressors 1217 941

Transcription Factors 1639 1288

Kinases 518 491

Another piece of information that can be included in the transition rules in the GCA
method is that their nodes are located in known biological pathways and complexes. We
annotated pathways for 4,795 proteins and complexes for 4,252 proteins out of the 8,455
proteins in the reference interactome. In addition, we included 14,953 edges from the
BIOGRID database. We also detected binding sites for 46.492 protein pairs out of 63,574
edges in the reference. Lastly, we obtained mutations that co-exist or are mutually
exclusive (Tsherniak et al. 2017) using the mutation profiles of 1392 cell lines, a total of
953 (803 genes) mutations. We found 25,009 of 453,628 mutation pairs are co-occurring
while 1,266 couples are mutually exclusive (Fisher's exact test; p-value <0.05). We find
that this information was applicable in a total of 26,285 mutations. Mutual exclusivity
and cooccurrence are currently not employed in the project, but they will be used to infer

mutational orders. Transition rules-related statistics are represented in Table 4.2.
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Table 4.2: Applicable number of entities in transition rules.

Transition Rule Name Applicable Number
Same pathways (950) 4,795 proteins

Same complexes (956) 4,252 proteins
BIOGRID 14,953 interactions
Protein binding site 46.492 protein pairs
Co-occurring mutations 25,009 mutation pairs
Mutually exclusive mutations 1,266 mutation pairs

We filtered the mutation data of the cell lines in the DepMap database, and as a result,
589,736 mutations that caused changes in the amino acid level in 17,576 proteins were
detected. While 60,250 mutations have deleterious effects, 18,399 correspond to the
proteins' binding region. In addition, 189,839 mutations caused changes in the amino acid

level, affecting 4,682 proteins across 399 samples in PDX samples.
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4.2  Optimization of the Model

4.2.1 Sensitivity of Model to Differentiate Mutations

We examined the effect of mutations from different categories to test the ability of the
model to distinguish different mutation classes, tumor suppressors, and oncogenes. A
comparison between mutations on the tumor suppressor genes and oncogenes revealed
that 77 genes present in the output set of the tumor suppressor simulations were absent in
the oncogene simulations. While 83 genes found in the output of the oncogene
simulations did not appear in the tumor suppressor simulations. Nonetheless, 119 nodes
were common to both categories. To gain deeper insights, we analyzed the pathways
where genes from different sets were enriched in EnrichR by excluding common genes
observed in both (Figure 4.1). The effect of mutations on tumor suppressors or oncogenes

varies, and the developed GCA model can represent this difference.

Tumor Suppressor Oncogene
Cytokine-cytokine receptor interaction MAPK signaling pathway
Hematopoietic cell lineage Pathways in cancer
Focal adhesion Gastric cancer
Leukocyte transendothelial migration Breast cancer
Regulation of actin cytoskeleton Ras signaling pathway
JAK-STAT signaling pathway PI3K-Akt signaling pathway
Chemokine signaling pathway Rap1 signaling pathway
Platelet activation Regulation of actin cytoskeleton
Autophagy Calcium signaling pathway
Apelin signaling pathway Toll-like receptor signaling pathway
(IJ é 1‘0 1‘5 (‘) fl> 1'0 1‘5
-log10(Adjusted.P.value) -log10(Adjusted.P.value)

Figure 4.1: Enrichment of gene sets obtained from oncogene tumor suppressor
mutations. Mutations on tumor suppressor genes simulated and resulting gene sets from
the model enriched on the left. Mutations on oncogenes simulated and resulting gene
sets enriched on the right. Significant and cancer related pathways were plotted with -
log10 of adjusted p-values. Only unique gene sets of simulations were used in the

enrichment analysis.

When we evaluate the enriched pathways involved in tumor suppressors, we can find
relevant evidences that support these enrichments. Tumor suppressors are known to
inhibit cell migration, and their reduced expression enhances migration. They interact

with focal adhesion kinases and reduce tyrosine phosphorylation (Maziveyi, Dong,
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Baranwal, & Alahari, 2018; Tamura et al.,, 1998). Tumor suppressor phosphatases
negatively regulate cell-extracellular matrix interactions, exerting their tumor-
suppressive function in this way (Pickup, Mouw, & Weaver, 2014; Sever & Brugge,
2015; Tamura et al., 1998). The JAK/STAT pathway is also crucial in human cancer, and
it is activated by specific molecules and controlled by tumor suppressor genes (Amoyel,
Anderson, & Bach, 2014).

In addition to tumor suppressor enrichments, oncogenic enrichments are also quite
relevant. RAS genes encode small GTPase proteins in signal transduction pathways
(Colicelli, 2004). Mutations in RAS genes, known as "activating mutations" or oncogenic
mutations (Fernandez-Medarde & Santos, 2011; Prior, Lewis, & Mattos, 2012), cause
constant activation of RAS proteins, leading to uncontrolled cell signaling, proliferation,
and cancer growth. RAS specifically regulates the ERK/MAPK pathway (McCain, 2013).
Activated ERK proteins translocate to the nucleus, triggering genes involved in cell
division and survival (Santarpia, Lippman, & El-Naggar, 2012).

As an additional high-resolution test, we examined individual mutations from different
classes. We applied the same mutations one by one, and the effect of each mutation was
evaluated independently. We simulated a total of 84 mutations (61 tumor suppressors and
23 oncogenes), leading to the generation of 84 distinct subnetworks. Then, we compared
these networks at the node level to assess how well the model reflected differences at the
single mutation level (Figure 4.2). Despite having similarities, some mutations
demonstrated distinct impacts on different regions within the interactome. This implies
that certain mutations could have broader-reaching effects, simultaneously influencing
multiple pathways or cellular processes. On the other hand, some mutations might be

more specific, affecting only localized regions of the network.
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Figure 4.2: Distribution of similarity ratios. The histograms illustrate the similarity ratio
distributions of GCA model networks resulting from simulations of individual mutations.
The analysis compares networks generated from mutations on tumor suppressor genes
(left), mutations on oncogenes (middle), and all mutations combined (right). Each
mutation was applied separately, and the similarity ratio was calculated by subtracting
the Jaccard distance from 1. A similarity ratio of 1 indicates that one network contains all
nodes of the other subnetwork, while a ratio of 0 means there are no common nodes

between the two subnetworks.

4.2.2 Synthetic Reference Tests

We tested the model on different-sized synthetic networks to ensure the scalability and
limitations of the model. In network models, it's essential to assess their scalability to
perform in smaller or larger networks. This ensures that the model is applicable in various
real-world scenarios regarding network size and properties. Random Erdds-Renyi method
does not guarantee to obtain connected networks, leading to the formation of isolated
nodes or components forming. Thus, results generated by GCA in smaller networks are
misleading and do not reflect the signaling abnormalities. As the network grows, the
number of components decreases, and the probability of obtaining a connected network
increase. The number of partially isolated is observed to be relatively high initially,
eventually reaching equilibrium and converging to much lower rates. In networks with an
Erdos Renyi topology, the model is inconsistent and cannot even be used in networks
larger than 20,000 nodes. On the other hand, resulting network sizes are more consistent
in the random networks generated by the Barabasi-Albert method. Interestingly, the
propagation of mutations does not lead to any nodes becoming isolated, indicating the
significance of the pathway and complex information in the system. The Barabasi method

is also known for generating random networks having closer topologies to actual
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biological networks. From these tests, three conclusions can be drawn: firstly, the GCA
model is not reliable for disconnected networks or non-biological topology networks;
secondly, scale-free networks, which are represented by the Barabasi-Albert method, are
better suited for measuring distortions in signaling by GCA model, and thirdly, pathway
and complex structure throughout the reference networks plays a significant role in the
model.

Erd8s—Rényi
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Reference Network Size (Number of Nodes)

Figure 4.3: Performance of model in synthetic networks. Two different random network
generation methods used to evaluate performance as Erdos-Renyi and Barabasi-Albert.
Performance evaluated as the capability of producing subnetworks enriched by partially
isolated (red) and isolated nodes (green). Black line represents the sum of red and green
lines. X-axis represents number of nodes in generated random networks while y-axis

represents percentage of output nodes relative to reference network nodes.
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4.2.3 Specificity Results

The objective of specificity analysis is to evaluate the model's ability to produce distinct
results. The accumulation of data points near lower occurrence values in Figure 4.4
indicates that the nodes in the resulting network are not commonly observed in random
scenarios. Instead, they yield specific outcomes based on the initial nodes and the
reference interactome utilized in the background. Specificity test results are summarized

in Figure 4.4.
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Figure 4.4: Results of specificity analysis performed on the model. In the first test,
starting nodes (mutations) were randomly selected from the reference network. The
second test involved randomly mixing the node names. In the third test, four nodes were
randomly selected, and the edges were swapped. Each case was repeated 100 times, and

the frequency of the nodes in the model's output was presented as a histogram.

In the first randomized seed selection scenario, small portion of genes happen to occur at
most of the random simulations. These genes are not specific for a given seed gene set
and happen to be in the result set independent of seed selection. In the second randomized
label shuffling scenario, the resulting subset of nodes is quite different from each other,
which implies that the reference network is quite significant and the place of genes in the
reference network directly affects the results. In the third randomization of the edge swap
scenario, generated resulting subnetworks can be considered distinct. Edge swap is a more
controlled way of label shuffling, which preserves the topology and degree of each node
in the graph. These randomization results suggest that the neighborhood of each gene is
significant in each reference network. To efficiently use these specificity results, the
frequency of occurrence within the network is normalized between 0 and 1. Then, the

frequency is subtracted from 1 to calculate a specificity score for each node. Using this
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score, the specific parts of the output of the model were determined. We used specificity

scores to filter out non-specific results in actual simulations.

4.3  Drug Modules

We constructed drug modules from the DepMap cell lines by using GCA simulations
and drug responses. In this section, we evaluated these graphs in detail.

4.3.1 Validation of Drug Modules

Cross-validation is crucial for developing and evaluating models. Its main purposes are
to assess performance, generalize the model, and aid in hyperparameter tuning. By
averaging evaluation over different data subsets, it reduces random variations, leading to
a more reliable estimate of the model's performance. We used cross-validation to validate
drug modules through their relationship with drug resistance.

We employed a 10-fold cross-validation approach to address the impact of majority
voting between cell lines in the training set on the generation of drug modules. By
adopting 10-fold cross-validation, we ensured that approximately 90% of the available
cell lines were sufficient, leading to more accurate and specific drug modules. This
approach effectively mitigated the risk of non-specific drug modules and provided
comprehensive coverage of the resistance aspect.

The Matthew Correlation Coefficient (MCC) is a crucial metric for evaluating
classification performance , particularly in imbalanced datasets (Chicco, Totsch, &
Jurman, 2021). It considers all elements of the confusion matrix, including true positives
(TP), true negatives (TN), false positives (FP), and false negatives (FN). MCC provides
a more accurate measure of a model's ability to classify both positive and negative
instances correctly. The MCC score ranges from -1 to +1, where +1 signifies a perfect
classifier, 0 represents a random classifier, and -1 indicates a classifier that performs
worse than random.

Our findings demonstrate a noteworthy trend: the model's performance improves as the
z-score of proximity measurements decreases (Figure 4.5). Additionally, we observed
interesting relationships across different folds: weak positive relationship (+.20 to +.29),

moderate positive relationship (+.30 to +.39), and strong positive relationship (+.40 to
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+.69) in terms of MCC value. Metrics, as depicted in Figure 4.5, underscore the critical
impact of the z-score of the proximity measure on the model.

Evaluation of Model Performance Using 10-Fold Cross-Validation
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Figure 4.5: Evaluation of model performance using 10-fold cross-validation. The plot
displays the performance metrics against the z-score of proximity measures. Accuracy is
represented in blue on the top left, recall in green on the top right, precision in orange on
the bottom left, and MCC (Matthews Correlation Coefficient) in red on the bottom right.

The dashed lines indicate the average of 10 folds.

4.3.2 Investigation of Drug Resistance Mechanisms on Cell Lines

To conduct a comprehensive comparison analysis of a specific drug, we visualized a
consensus network for the sensitive/resistant categories by using the GCA models of 39
drug-resistant and 8 sensitive cell lines in the simulation of the selected LCK
(Lymphocyte-Specific Protein Tyrosine Kinase) inhibitor (JW-7-24-1). Proteins that are
targets of drugs have also been used in visualization. The HMS LINCS (Vempati et al.,

2014) (https://lincs.hms.harvard.edu/db/) database was used to identify drug targets.
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Figure 4.6 shows that some nodes are grouped in the subnetworks of resistant cell lines.
Drug target proteins were found to be closer to the nodes specific to sensitive cell lines.
These nodes grouped in resistant cell lines may play an important role in drug resistance
mechanisms. In addition, we analyzed pathways with only proteins from resistant cell
lines and are shown in Figure 4.7.

One of the statistically significant enriching biological pathways, the MAPK (Mitogen-
Activated Protein Kinase) signaling pathway is a protein network that regulates various
cellular processes, including cell proliferation, differentiation, and survival. Abnormal
activation of the MAPK pathway plays a role in many diseases, including cancer, and
may contribute to the development of resistance to certain drugs or treatments by
promoting tumor growth. Therefore, drug resistance and the MAPK signaling pathway
have an important relationship with each other in cancer and other diseases, as activation
of this pathway can lead to the development of resistance to certain drugs or treatments
(Lee, Rauch, & Kolch, 2020). LCK inhibitors are important in the context of drug
resistance and the MAPK signaling pathway. LCK is a tyrosine kinase that plays a critical
role in the activation of the MAPK pathway (Bommbhardt, Schraven, & Simeoni, 2019).
Another pathway that is enriched in resistant cells is the apelin signaling pathway which
is also important in the context of drug resistance (Uribesalgo et al., 2019). Apelin is a
peptide hormone that regulates various biological processes, including cell proliferation,
survival, and drug resistance. Apelin is a signaling molecule that binds to its receptor,
APJ, activating various signaling pathways within the cell, including the PI3K/AKT and
MAPK signaling pathways. Apelin has been shown to increase drug resistance in various
types of cancer, such as breast cancer, lung cancer, and hepatocellular carcinoma (Y.
Yang, Lv, Ye, & Zhang, 2016). Inhibition of the apelin/APJ signaling pathway has been
proposed as a potential strategy to overcome drug resistance in cancer cells (L. Liu et al.,
2021; Uribesalgo et al., 2019). Therefore, the Apelin signaling pathway is an important
target for the development of new anti-cancer therapies. Finally, activation of the cGMP-
PKG signaling pathway can inhibit PARP1, an enzyme that responds to DNA damage in
cancer cells and induces cell death (Ba & Garg, 2011). Therefore, inhibition of the cGMP-
PKG signaling pathway can be considered a potential strategy to reduce drug resistance

in cancer cells and increase the efficacy of cancer treatments.
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JW-7-24-1 (256)

Figure 4.6: Representation of merged drug modules together with drug targets. Red nodes
are unique to resistant cell lines, green ones are unique to sensitive cell lines and yellow
ones are the common in both. Blue nodes are the drug targets of the drug JW-7-24-1 with

the drug ID 256.
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Figure 4.7: Representation of merged drug module resistant exclusive gene enrichments.
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4.4  Investigation of Drug Resistance Mechanisms on PDX Samples

First, we predict the drug responses of the PDX samples and present the metrics in Figure
4.8. The metrics reveal the promising performance of the models in relating resistance
with PDX samples. However, it is important to note that significant performance is mainly
observed in predicting drug-resistant samples, as approximately 92% of the PDX samples
are labeled as drug-resistant. This dataset imbalance and the models' limited ability to
predict sensitive samples can be also attributed to the larger size of the predicted drug-
resistant modules compared to sensitive modules. Additionally, number of predicted drug
responses were 5 (Buparlisib, Ruxolitinib, Trametinib, LGK974, and Tamoxifen) and
PDX were 168 and it gradually decreases as z-score threshold lowered.

Model Performance on PDX Samples
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Figure 4.8: Evaluation of model performance on PDX samples. The plot displays the
performance metrics against the z-score of proximity measures. Accuracy is represented
in blue on the top left, recall in green on the top right, precision in orange on the bottom
left, and MCC (Matthews Correlation Coefficient) in red on the bottom right.

38



RESULTS 39

o
\<3
‘

H\‘ 4!’ REB3L

%, ;’I
é\g@? CREB3L
(E%) ‘ ’ PPP3CA
" [ Apca |

TLN1
ATG14

THBS1

CAMK1 D)

0

)

'

Figure 4.9: Representation of merged PDX samples and intersection with resistant and
sensitive drug modules of buparlisib. Red nodes are unique to resistant module, green
ones are unique to sensitive module and blue nodes are the ones seen in the majority of
PDX samples. Sphere-shaped nodes are the drug targets of the drug buparlisib with the
drug ID 1873.

We further examined the which subset of nodes found to be related to drug resistance.
Buparlisib was chosen as a test case to study resistance mechanisms. To conduct a
thorough comparison analysis of buparlisib, we created a consensus network for the 82
PDX samples accurately identified as drug-resistant by the GCA model. Figure 4.9
reveals that certain nodes in the resistant modules are enriched compared to the sensitive
modules. We further examined these resistant module genes and analyzed pathways with
proteins exclusively from the resistant modules intersected with PDX modules, as
depicted in Figure 4.9.

These 7 out of 9 genes (SOS2, FGF1, PGF, TFDP2, VEGFC, IL3, and GNGT1) observed
in the majority of PDX sample simulations and drug-resistant modules of buparlisib are
known to be in PI3K-Akt signaling pathway. The activation of the PISBK/AKT pathway
is related to drug resistance against buparlisib (He et al., 2021). Furthermore, we checked
the activity states of these genes in the model through iterations (Figure 4.10). In

comparison of mutated and not mutated states in 83 PDX samples, some of these genes
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Figure 4.10: Activity changes of some detected genes from merged PDX samples and
intersection with resistant and sensitive drug modules of buparlisib. Red nodes are unique
to resistant module, and light-blue nodes are the ones seen in the majority of PDX
samples. Sphere-shaped nodes are the drug targets of the drug buparlisib with the drug
ID 1873. Blue lines represent the activity values without mutations and red line represent
activity values at simulations with mutations. Values belong to the identified genes in

both resistance modules and PDX simulations. On the right of each panel, association of
each identified gene with its closest drug target depicted.

are shown to be upregulated or downregulated. One important observation is that they are
not conflicting, and effects may vary between simulations. Associations of these affected
proteins and targets of the buparlisib are also visualized in Figure 4.10. One such example
is the upregulation of TFDP2 activity, it shows varying activity among the PDX
simulations. Additionally, we can infer that it suppresses the tumor suppressor gene
CDKN2A, thereby promoting the activity of PIK3CA. Conversely, the downregulation
of FGF1, an activator of PIK3CA, contributes to its decreased activity. However, a
secondary interaction with PDGFRA may still stimulate PIK3CA. Further activations of
other proteins GNGT1, IL3 may suggest that there is an overall activation in the
PIK3/AKT pathway. An additional insight reveals that the mutation effects (peaks)

40



RESULTS 41

diminish within five iterations for each gene in the context of this regression model. The
heights of these peaks are constrained by the maximum activity value derived from
expression profiles. Through averaging the prior temporal activity state and future state

estimation, the fading-out phenomenon occurs within the span of 5 iterations.
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Chapter 5:
DISCUSSION

Drug resistance is a significant challenge in cancer, hindering the effectiveness of targeted
therapies due to accumulating mutations in dynamic cellular networks(X. Wang et al.,
2019). To address this dynamicity, we adopted the GCA model, relying on a high-
confidence reference interactome and using pairwise regression analysis on edges to
simulate molecular signaling and perturbations. We propagated mutation effects
downstream of signaling pathways and complexes. The model was optimized by using
mutation landscapes, transcription profiles, and drug responses of well-characterized cell
lines. We can differentiate individual mutation effects and different mutation classes
(oncogenes, tumor suppressors) in the simulations. We created drug modules for each
drug based on commonalities among simulation networks of drug-resistant and sensitive
cell lines. We confirmed the reliability and accuracy of these drug modules by cross-
validation and showed a case study in an independent PDX dataset. We identified specific
pathways involving proteins from drug-resistant cell lines and PDX samples using these
drug modules. These pathways were found to be closely associated with the resistance
mechanisms of investigated drugs. We further analyzed the identified genes at a single-
gene resolution, which is a crucial layer of detail to our comprehension of drug resistance.
Single gene analysis further narrows down the set of possible targets that can be used in
targeted therapies.

In the computational modeling of cancer, the focus lies on modeling cancer within the
framework of the cancer microenvironment (Frieboes et al., 2009; Owen et al., 2011; Sun
et al., 2012). These models incorporate cellular behaviors through mathematical
equations. The major concern is that these approaches often neglect the intricate
molecular-level complexity of cells and oversimplify their behaviors to just a handful of
functions. In contrast, our proposed model considers the role of molecular networks in
driving cancer cell behaviors. Instead of employing highly complex mathematical
equations, we adopted simple local transition rules and extensive molecular networks.
Additionally, there has been a growing popularity of learning-based drug resistance
prediction algorithms (Daemen et al., 2013; Dong et al., 2015; Dorman et al., 2016;
Menden et al., 2013). These algorithms primarily prioritize prediction efficiency, but they

are often unable to provide a comprehensive understanding of the underlying mechanisms

43



DISCUSSION 44

driving drug resistance. Although our model may not achieve the same level of predictive
metrics as these algorithms, our findings are more interpretable and provide more details
of the underlying mechanisms.

Through comprehensive enrichment analysis of drug modules, we successfully identified
several crucial pathways, including MAPK, apelin, and cGMP-PKG signaling pathways,
known for their relevance to drug resistance. Moreover, our investigation has revealed
specific associations between the investigated drug, LCK inhibitor (JW-7-24-1), and the
enriched pathways. Further analysis of PDX simulations provided additional insights for
another drug buparlisib and similarly, we have found strong evidence supporting the
identified PISBK/AKT pathway and resistance to buparlisib (He et al., 2021). These
pathways have already been recognized as targets to overcome drug resistance. Our
novelty lies in narrowing down potential targets, enabling us to assess the impact of
individual proteins. These findings guide the well-reasoned treatment strategies rooted in
understanding the intricacies of drug resistance and pathway interactions.

While our developed approach exhibits notable strengths, we also recognize certain
weaknesses that need to be addressed. Transcription profiles of cell lines were used as
activity states, and they only represent one facet of the activity states of the proteins
(Haider & Pal, 2013). We acknowledge the role of epigenetic regulations in influencing
protein activity, so we plan to integrate additional omics data sets, particularly proteomics
and phosphoproteomics, to better capture cellular signaling activities (C. Chen et al.,
2023). We observed that conventional dimensionality reduction methods were
insufficient in obtaining such improved activity profiles; instead, they compromised the
model's robustness. Another important limitation of the model is to indirectly consider
the factors outside of the molecular interactions like intercellular signaling, tumor
microenvironment parameters, and metabolic activity. Addressing molecular aspects is,
in fact, the opposite of general trends in the field.

Our findings also highlighted that the model not only distinguishes individual mutations
or mutational profiles but also indicates that the order of mutation applications can yield
slightly different results. Therefore, our future research will analyze the impact of
mutation orders and delve deeper into these subtle differences. Additionally, we will
refine the study's activity representation by integrating diverse omics layers, particularly
by incorporating single-cell omics. The RNA velocity concept is relevant and applicable

in this context since it extrapolates the present cellular state toward the future state (La
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Manno et al, 2018). RNA velocity adds another dynamic perspective to our
understanding of cellular processes and molecular dynamics. As a continuation of this
study, we will also stratify patients using TCGA datasets based on molecular alterations
and the interactome data of cancer patients. These simulations will be tailored to
individual patients. While prior research categorized cancer types and tissue origins using
TCGA data, we'll take a different approach (Hoadley et al., 2018; Hoadley et al., 2014).
Instead of relying on isolated omics data and static pathways, we will classify the tumors
based on dynamic networks. This way, we will construct a network-based taxonomy of
the tumors within each cancer and cross-cancer type. We'll predict optimal treatment
strategies by linking drug response patterns from cell line models with our network-based
tumor classification.

Although we focused on drug resistance, extending this study to investigate molecular
mechanisms driving metastasis or relevant biological questions believed to underlie
molecular signaling abnormalities is possible. This methodology might even be
generalized for identifying vulnerabilities across different types of networks having a
scale-free topology. Successful adaptation requires in-depth domain knowledge and
simplified transition rules to formulate the dynamicity of complex systems.

In conclusion, we adapted the GCA model to simulate molecular signaling and
perturbations to reveal drug resistance mechanisms. Our study introduces a new
perspective by integrating multi-omics data, network medicine, and discrete dynamic
network modeling, which can lead to significant advancements in understanding and
addressing the dynamicity of drug resistance and other medical challenges. The source
code and materials can be accessed on GitHub at

https://qgithub.com/EnesSefaAyar/Graph-based Cellular Automata.
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