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1. GIRIS

Egrilik kavrami, diferansiyel geometrinin temel kavramlarindan biridir ve
fizikte de 6nemli bir rol oynar. Bu kavram, cisimlerin hareketini ve uzaydaki
geometrik nesnelerin 6zelliklerini anlamak i¢in kullanilir. Newton yasalarina gore,
bir cismi sabit hizda hareket ettirmek i¢in gereken kuvvetin biiyiikligi, cismi
hareket ettigi yolun egriligine bagl olarak degisir. Yani, bir egri boyunca hareket
eden bir cismin hizi, yoriingenin egriligi ile iligkilidir. Albert Einstein’a gore ise
yercekimi alanindaki bir cismin hareketi, uzay-zamanimn egriligi ile belirlenir.
Einstein’in genel gorelilik kuramina gore, kiitle ¢ekim etkisi, bir cismin uzay
zamanda yarattig1 egrilik nedeniyle ortaya g¢ikar. Bu egrilik, cismin hareketini
etkileyen bir kuvvet olarak algilanir. Bu nedenle, cisimlerin yoriingeleri ve
hareketleri, uzay-zamanin egriligi ile belirlenir. Egrilik kavrami, sadece fizikte
degil, giinlilk yasamda da gozlemlenen bir¢ok sekil ve nesnenin belirlenmesinde
onemli bir rol oynar. Ornegin, sabun képiikleri gibi kirilgan yapilar veya kirmizi
kan hiicreleri gibi biyolojik formlar, c¢esitli egriliklerin etkisiyle sekillenir. Bu
sekiller, egrilik kavraminin evrensel bir prensibi olarak kabul edilir.

Geometrik esitsizlikler, uzaydaki geometrik nesnelerin ozelliklerini ve
aralarindaki iliskileri tanimlamak i¢in kullanilir. Izoperimetrik esitsizlik, en eski ve
en giizel geometrik esitsizliklerden biridir. Bu esitsizlik, R? Oklid diizlemi
tizerinde kapali bir y egrisi i¢in gegerlidir. y egrisin uzunlugu L ve vy ile ¢evrelenen

alan A olmak iizere izoperimetrik esitsizlik,

[? —4mA >0 (1.1)

seklinde ifade edilir (Zhang, 2019). Bu esitsizlik, egrinin uzunlugu ve ¢evrelenen
alan1 arasinda bir iligki kurar. Esitlik, y egrisinin bir daire oldugu durumlarda
gerceklesir. Yani, bir dairenin ¢evresi ve alani, diger kapali egrilerden daha
optimize edilmis bir izoperimetrik iligkiye sahiptir. Bu sonug, belirli bir uzunluga
sahip en biiylik alan1 kapsayan egrinin bir daire oldugunu gosterir. Ancak,
izoperimetrik esitsizliklere yonelik daha giiglii iliskiler de bulunabilir ve farklh
geometrik yapilar arasindaki iligkileri daha detayli sekilde analiz edebilir.

Egrilik hakkinda Ros Teoremi, Fenchel Teoremi ve Willmore Teoremi gibi

cok iyl bilinen esitsizlikler veya esitlikler vardir. Ros Teoremi, diferansiyel



geometride egriligin bir dl¢iisli olan Gauss egrilik integralinin 6zelliklerini ve bir
diizlem egri iizerindeki iliskisini tanimlar (Oprea, 2010). Fenchel Teoremi, egriligin
uzunluk ile olan iligkisini ele alir (do Carmo, 2016). Willmore Teoremi, yiizeylerin
egrilik enerjisiyle ilgilidir ve ylizeylerin egriligine dair bir 6l¢iim olan Willmore
enerjisi ile ilgili 6nemli bir esitligi ifade eder (Li, 2008).

Bir diizlem egri i¢in egrilik integrallerini igeren bir¢ok ilging sonug¢ da
mevcuttur. Pan ve Zhang, egrilik {izerine baz1 varsayimlar altinda diizlem egrileri
icin bir ters izoperimetrik esitsizlik olusturdu (Pan & Zhang, 2007). Eger v,
uzunlugu L olan ve bir A alanini ¢evreleyen Oklid diizlemi R?’de kapali, kesinlikle

digbtikey bir egri ise, 0 zaman
I? — 4mA < 4n |4, | (1.2)

esitsizligi gecerlidir. Burada A, y egrisinin egrilik merkezlerinin odag1 tarafindan
cevrelenen alanin yonlendirilmis alanin1 gosterir ve esitlik ancak ve ancak y bir

daire ise gegerlidir. Pan ve Xu,
1% — 47A < 4n|4, | (1.3)

olacak sekilde en iyi C sabiti var mi, ancak ve ancak y bir daire ise esitlik var mi1?
sorusunu sormustur (Pan & Xu, 2009).
Bu tezde, Oklid diizleminde kapali digbiikey egrinin uzunlugu ve alani

incelenmistir.



2. TEMEL KAVRAMLAR

Egrilik kavrami, geometri ve diferansiyel geometri alaninda temel bir
kavramdir ve fizikte de onemli bir rol oynar. Egrilerin matematiksel olarak
tanimlanmasi ve analiz edilmesi, egrilik kavraminin incelenmesiyle gergeklestirilir
(Oprea, 2010; do Carmo, 2016; Li, 2008).

R nin bir agik araligi I {izerinde a: I — R3 seklinde tanimlanan siirekli bir
fonsiyonu diisiinelim. Burada a, R3 uzayindaki bir egriyi temsil etmektedir.
Egrinin tanimu iizerine, R® uzayinda dik koordinat fonksiyonlar1 x4, x,, x3 olmak
tizere a: I > R3 egrisi verilir. a’nin deger kiimesi R oldugundan, o’nin ii¢ bileseni
Q;, a2, a3 bulunmaktadir. Daha agik bir ifadeyle, @ = (@4, @5, a3) seklinde ifade
edilir. Burada, her bir 1 <j<3 i¢cin x;0oa=aqa; esitligi gecerlidir. Her
fonksiyonu, I arahgindan R ye giden bir fonksiyondur. a:I - R3

a;

donusiminin diferensiyellenebilir olmasi, a; fonksiyonlarinin
diferensiyellenebilir olmasi anlamina gelir.

Egrinin hiz vektorii veya tanjant vektori, a(t) noktasindaki hiz vektorii
olarak tanimlanir. Bu vektor, a(t) ve a’(t) noktalarmi igeren Tgs(t) vektor

uzayina aittir. Burada

d d d d
@) =220 = (OO 0)

olarak ifade edilir.

Egrinin parametre doniisimii ise « egrisinin h ile yeniden
parametrelendirilmesi olarak adlandirilir. a o h ifadesiyle gosterilen bu egri, «
egrisinin h ile yeniden parametrelendirilmis halidir.

Egrinin diizenli (regiiler) olmasi, a'(t) # 0 oldugunda gergeklesir. Yani,
her t € I igin a’(t) sifirdan farkhdir. Bu sayede egrinin dizgun bir sekilde gizildigi
ve herhangi bir kesinti veya dagim noktasi olmadigini séyleyebiliriz.

Egrinin yay uzunlugu, egri lizerindeki noktalar arasindaki uzakligi 6l¢en bir
fonksiyon olarak tamimlanir. a(t,) noktasindan baslayarak yay uzunlugunu
Olgmeye basgladigimizda, t < t, ise a(t,) ve a(t) noktalar1 arasindaki kalan egri

pargasinin uzunlugunun negatifine f(t) denir. t > t, igin f(t,) = 0 olarak kabul



edilir. t >t, ise a(ty) ve a(t) noktalar1 arasindaki kalan egri pargasinin
uzunluguna f(t) denir. Boylece I araligindan R i¢ine tamimh f:t — f(t)
fonksiyonu, a egrisinin yay uzunlugu fonksiyonunu temsil eder. Yay uzunlugu
fonksiyonunun tiirevi de @’ vektoriiniin normuna esittir (f' = ||a’||). Yani, regiiler
bir o egrisinin yay uzunlugu fonksiyonunun tiirevi, ' vektoriiniin normuna esittir

ve

() = f la (W)l du,

dir. Buna ek olarak, a egrisinin yay uzunlugu fonksiyonu f oldugunda, t € I
parametresine de yay parametresi denir (f'(t) = 1). Yani, a egrisi birim hizli egri
olarak adlandinlir ve t € I parametresi yay parametresi olarak kabul edilir ve yay
parametresi s ile gosterilir.

a egrisinin birim teget vektori, a’(s) noktasinda tanimli T(s) vektori

olarak adlandirilir ve
T(s) =a'(t), (2.1)

seklinde ifade edilir. Bu vektor, a egrisinin s parametresindeki birim teget
vektoriinii temsil eder. Ayrica, T fonksiyonu a egrisi iizerinde bir vektor alanidir ve
a egrisinin birim teget vektor alani olarak adlandirilir.

a egrisinin egrilik fonksiyonu, a egrisinin s parametresindeki egrilik
fonksiyonu

k(s) = IT(S)I, (2.2)
olarak ifade edilir. Egrilik fonksiyonu k:I = R, a egrisinin s parametresindeki

egrilik miktarin1 gosterir.

a egrisinin birinci dik vektorii veya asli normali,

N(s) = @T’(s), (2.3)



olarak tanimlanir. Bu vektor, a egrisinin s parametresindeki birinci dik vektoriini
temsil eder. Ayni1 zamanda, N vektor alant a egrisinin birinci dik vektor alani
olarak adlandirilir.

a egrisinin ikinci dik vektorii veya binormali,

B(s) =T(s) AN(s) (2.4)

seklinde ifade edilir. B(s) vektorii, a egrisinin s parametresindeki ikinci dik
vektoriinii temsil eder. B vektor alani ise a egrisinin ikinci dik vektor alan1 olarak

adlandirilir.

Uyant 2.1 Not edilmesi gereken bir nokta, birim hizli a egrisinde k(s) =0
oldugunda N(s) vektoriiniin tammsiz oldugudur. Bu durumda, B(S) vektorii de

tamimsiz olacaktir.

Frenet vektorleri, birim hizli @ egrisinin Frenet Catis1 olarak adlandirilan

{T(s), N(s), B(s)}

kiimesine verilen isimdir. Bu kiime a egrisinin s parametresindeki Frenet
vektorlerini igerir. T(s), N(s) ve B(s) vektorleri a egrisinin s parametresindeki
birim teget, birinci dik ve ikinci dik vektorlerini temsil eder. T, N ve B vektor
alanlari ise a egrisinin Frenet vektor alanlar1 denir.

a egrisinin ikinci egrilik veya burulma fonksiyonu 7(s), egrinin her bir
noktasindaki doniis miktarin1 gosterir ve B vektoriiniin N vektoriiyle i¢ carpiminin

negatifine

7(s) = =(B'(s),N(s)) (2.5)

esittir. Torsiyon fonksiyonu 7:1 = R, a egrisinin s parametresindeki torsiyon
(yani; burulma veya doniis) miktarini ifade eder. Burada pozitif bir burulma, egrinin
saat yoniiniin tersine donmesini, negatif bir burulma ise saat yoniinde donmesini

ifade eder. Ayrica, ikinci egrilik veya torsiyon, k(s) # 0 oldugunda tanimlidir.



Son olarak, birim hizli @ egrisinin Frenet vektor alanlar1 T, N ve B ise

T' = kN,
N' = —kT + 1B, (2.6)
B' = —1N,

iligkilerine, o egrisinin Frenet-Serret formiilleri denir. Bu esitlikleri nasil elde
ettigimize bakalim.

Ilk olarak (2.3) esitliginden T’ =kN ifadesini elde ederiz.
{T(s),N(s),B(s)}, R3 uzaymnn bir baz1 oldugundan

N, = an + leN + Tl3B, (27)

olarak yazabiliriz.
(2.7) esitligin her iki tarafi T ile i¢ carparsak (N',T) = n, elde ederiz.
(N,T) = 0 oldugundan

(N',T)+(N,T') =0,
olur. Bu durumda
(N',T) = —(N,T"y = —(N,kN) = —k

olarak bulunur. Sonug olarak n; = —x olur.
(2.7) esitliginin her iki yani1 N ile i¢ ¢arpariz ve (N', N) = n, bulunur.
(N,N) = 1 oldugundan

(N',N)+(N,N') =0

olur. Bu durumda, 2(N', N) = Ooldugundan (N’, N) = 0 bulunur. Sonu¢ olarak
n, = 0 olur.

(2.7) esitliginin her iki yan B ile i¢ carpariz ve (N', B) = nz bulunur.
(N,B) = 0 oldugundan

(N',BY +(N,B") = 0

olur. Bu durumda,



(NIﬁB) = _(N’B/) =T,
olarak bulunur. Sonug olarak, n; = 7 bulunur. Oyleyse
N' = —kT + 1B

olarak elde edilir.
Son olarak, {T'(s), N(s), B(s)}, R® uzaymn bir baz1 oldugundan

B’ = blT + sz + b3B, (28)

olarak yazabiliriz.
(2.8) esitliginin her iki tarafin1 T ile i¢ ¢arpariz ve (B',T) = b; bulunur.
(B, T) = 0 oldugundan,

(B, TY+(B,T')=0

olur. Oyleyse, (B, T) = —(B,T') = (B, —kN) = 0 olarak bulunur. Sonug olarak,
b, = 0 olur.

(2.8) esitliginin her iki tarafin1 N ile i¢ garpariz ve (B’, N) = b, bulunur.
(B',N) = -7

oldugundan, b, = —7 olur.

(2.8) esitliginin her iki tarafin1 B ile i¢ ¢arpariz ve (B’, B) = b3 bulunur.
(B,B) = 1
oldugundan,
(B',B)+(B,B") =0,

olur. O zaman, (B’, B) = 0 olarak bulunur. Sonug olarak, b; = 0 olur. Oyleyse,
B' = —1N olarak elde edilir.
Sonug olarak, « egrisinin Frenet-Serret formiilleri, (2.6) esitlikleriyle veya

matris olarak



T' 0 K o1[T
Nl|l=|-xk 0 T||N
B’ 0 —1t O0lLB

verilebilir. Burada, a:1 —» R3 egrisinin Frenet vektorleri {T,N,B}, R®> de bir

ortonormal ¢at1 oldugundan

T=NAB,
N =BAT,
B=TAN,

olarak yazilabilir.
Ayrica, {T,N,B} Frenet vektorleri her s aninda, bir eksen etrafinda, ani bir
helis hareketi yaptig1 kabul edilir. Bu eksene egrinin a(s) noktasindaki Darboux

(ani donme) ekseni denir. Bu eksenin yon ve dogrultusunu veren vektor,
D(s) = t(s)T(s) + k(s)B(s)

olup, egrinin a(s) noktasindaki Darboux vektorii adini alir. Bu vektor

T'"=DAT
N =DAN
B'=DAB

esitliklerini saglar (Hacisalihoglu 2000).

Tamim 2.1 R3 uzayinda bir birim hizli a: 1 —» R3 egrisinin a(s,) noktasindaki a

ile sonsuz yakin ii¢ ortak noktasi olan kiirelerinin merkezlerinin geometrik yeri olan

1
a=a(sy) + @N(so) + AB(sy),

dogrusuna a egrisinin a(Sy) noktasindaki egrilik ekseni denir. Egrilik ekseni

tizerindeki

C(so) = a(so) + N(So),

1
Kk(So)

noktasina o egrisinin a(sy) noktasindaki egrilik merkezi denir.



Simdi, R® uzayinda bir birim hizli olmayan egri a: I - R3 olsun. O halde,
aoh:] > R3

birim hizli olacak bi¢imde bir h: ] — I fonksiyonu vardir dyle ki
t
) = f e () || due
to

esitligiyle tanimli f:1 — J yay uzunlugu fonksiyonunun tersidir. Eger f = a o h
ise B:] — R3 birim hizli bir egridir. Burada, her bir s € J i¢in h(s) = t olsun. Bu
durumda, h = £~ oldugundan s = f(t) demektir. Buna gore

B(s) = a(h(s)) = a(t)

olur. Burada, f(ty) = 0 oldugu agiktir.

R3 uzaynda f = a o h ile elde edilen birim hizli B egrisinin Frenet vektor

alanlarini Tg, Ng, Bp ile gosterilsin. O zaman, a egrisinin Frenet vektor alanlar T,
N ve B i¢in

T(t) = Tp(f (D)

N(t) = Ng(f (D))

B(t) = Bg(f(t)

esitlikleri ile elde edilir. Ayrica, B egrsinin egrilik ve burulmasi, sirasiyla, kg Ve 75

ile gosterilsin. O halde, a egrisinin egrilik k ve burulmasi t fonsiyonlari, sirasiyla

K(t) = kg (f (D)
T(t) = 7 (f (D)

esitlikleri ile elde edilir. Kisaca

T=Tgof

N=Ngof

B=Bgof
ve

K=Kgof



T=1g0f

dir.
lla’||, I araligindan R i¢ine tanimli bir fonksiyondur. Bu fonksiyon kisaca v ile
gosterirsek
lla'|l = v
esitligi ile tanimlanir. Burada, f' = ||&’|| oldugundan f' = v olur.

Teorem 2.1 R3 uzayinda Frenet elemanlar: {T, N, B, k, T} olan birim hizli olmayan

a:1 - R3 egrisinin hizi v olsun. O halde, Frenet formiilleri

T' = vkN
N' = —vkT + viB
B' = —vIN

dir.

Teorem 2.2 R3 uzayinda Frenet elemanlari {T, N, B, k, T} olan birim hizli olmayan

egrisi a:1 - R3 olmak iizere

!

a
lla’l

a ANa
P = nar
N=BAT
ve

la" Aa”ll
lla'|?

<al /\ a”, alll)
lla’ Aa”||?

dir.

Tamm 2.2 R® de Frenet vektor alanlari T, N ve B olan bir egri a:1 —» R3 olmak

lizere

10



(i) B+ = Sp{T, N} diizlemine, a egrisinin a(s) noktasindaki dokunum diizlemi
veya oskiilator diizlem;

(i) N* = Sp{T, B} diizlemine, a egrisinin a(s) noktasindaki dogrultma diizlemi
veya rektifyan diizlem,

(iii) T+ = Sp{N, B} diizlemine, a egrisinin a(s) noktasindaki dik diizlem veya
normal diizlem

denir.

Teorem 2.3 R3 de Frenet vektor alanlari T, N ve B olan birim hizli olmayan bir
egri a: I - R3 olsun. O halde,

a egrisi diizlemsel & t =0,

dwr. Diger bir ifadeyle, egrinin her bir noktasindaki dokunum (oskiilatér) diizlemi,

egrinin i¢inde bulundugu P diizlemidir.

Ispat. (=:) Kabul edelim ki; a: I —» R3egrisi diizlemsel olsun. Buna gére, her bir
t € I i¢in a egrisinin a(t) noktalarinin tiimii, belirli bir P diizleminde bulunur. Bu

diizlemin birim normal vektdrii n olsun. Eger g diizlem tizerinde bir nokta ise her

bir t € I i¢in
{a(t) —q,n) =0,
olur. Buradan
(a’(t),n) =0,
(@"(®),m) =0
bulunur. Ayrica, ||a’|| = v olmak iizere Teorem 2.1 kullanilarak
a =T,

a" =v'T +v?kN

olacagindan

(vT,n) =0,
(V'T +v?kN,n) =0,
n

elde edilir. Bu esitlikler, T ve N vektor alanlarinin birim normal vektorii 7 ya dik

oldugunu gosterir. O zaman, her bir t € [ i¢in T(t) ve N(t) vektorleri, a(l)
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kiimesini kapsayan P diizlemi icindedirler. B(t) vektori, T(t) ve N(t)
vektorlerinin her ikisine de dik oldugundan her bir t € I i¢in B(t)//n dir. Oyleyse

B =nveyaB = —n,

dir. Buradan, n sabit vektor oldugundan B’ = 0 elde edilir. Dahast B’ = —vIN
oldugundan T = 0 olmak zorundadir. O halde, egrinin herbir noktasina dokunan
diizlem, egrinin i¢inde bulundugu P diizlemidir.

(<) Kabul edelim ki; a egrisi i¢in T = 0 olsun. Bu takdirde B’ = —vtN ve B’ =
0 olur. Oyleyse, her bir t € I igin B vektor alan1 « {istiinde sabittir. toel alalim ve
F:1 - R fonksiyonunu

F(t) = {a(t) — a(to), B),

esitligiyle tanimlayalim. Burada, F (t,) = 0 oldugu hemen goriilebilir. Ayrica,

F'(t) ={(a'(t),B)
= (vT(t), B)
= v(T(t), B)
=0
oldugundan F fonksiyonu sabittir ve F(t,) = 0 oldugundan her bir t € I igin
F(t) = 0 dir. Boylece her t € I i¢in {(a(t) — a(ty),B) = 0 dir. Bu esitlik, a(])
kiimesinin a(ty) noktasindan gegen ve B birim vektoriine dik olan diizlem i¢inde

bulundugunu gosterir. Dolayisiyle, a egrisi diizlemseldir.

2.1 R? de Diizlemsel Egriler

R? uzaymdaki egriler, iki boyutlu bir diizlemde yer alan egrilerdir ve
diizlemsel egriler olarak da adlandirilirlar. Diizlemsel egrilerin matematiksel analizi
ve geometrik 6zelliklerinin anlasilmasi, farkli uygulama alanlarinda biiyiik 6neme
sahiptir. Ornegin, mimaride ve tasarimda egrilerin estetik kullanimi, miihendislik
projelerinde yol, hat ve yiizey tasarimlari, bilgisayar grafikleri ve oyun gelistirme
gibi alanlarda gergekei ve dogal goriintiilerin olusturulmasi igin diizlemsel egrilerin

incelenmesi dnemlidir.

12



Diizlemsel egrilerin temel 6zelliklerine deginmeden Once, parametrik bir
denklemle ifade edilen diizlemsel egrilerin temel tanimini inceleyelim.

a(t) = (a,(t), ay(t)) seklinde verilen parametrik denklem, a: 1 — R? ile
tanimli diizlemsel egriyi temsil eder. Bu denklemde a4 (t) ve a,(t) fonksiyonlari,
egrinin x Ve y koordinatlarini belirler. Bu parametrik denkleme gore, egrinin her
bir noktasinin konumu t parametresine bagl olarak degisir.

Diizlemsel egrilerin temel 6zelliklerini anlamak i¢in Frenet catisi ve birinci
egriligi ele alalim. Diizlemsel regiiler bir egri a:I — R? olsun, yani a’(t) # 0
olsun. Bu durumda, a(t) egrisinin Frenet catis1 {t,n} ve egriligi k su sekilde

tanimlanir;

_ad® (@), a®)

g la' O (@ ()2 + (@ (D)?
(—ay(t), a1 (t))
(t) =
T @Oy + @)
k() = a,a; — ai a; 3’

() + (3(®)°)?

ve Frenet formulleri

t' = kn,
n' = —kt,

dir. Burada t(t), a’(t) vektoriiniin normalizasyonu ile elde edilen birim tangent
vektoriidiir. n(t) ise a’(t) vektoriiniin saat yoniiniin tersine dondiiriilmesiyle elde
edilen normallestirilmis birim normal vektordiir. k(t) ise a egrisinin a(t)
noktasindaki egriligidir. Diizlemsel egrilerde egriligi ifade etmek i¢in genellikle
egrinin egrilik yaricap1 kullanilir. Egrilik yaricapi, egrinin bir noktasindaki egriligin
tersi olarak hesaplanir. Yani, egrilik yaricapi
R(t) = L
k(t)
dir. Egrilik yarigapi, bir egrinin belirli bir noktasindaki egrilik durumunu ifade eder.
Diizlemsel bir egrinin egrilik yaricapi, pozitif bir degerdir ve egrinin donme

derecesini belirler. Egrilik yarigapi, egrinin her noktasinda farkli olabilir. Bu
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nedenle, egrilik yarigapmin her noktadaki degerlerinin hesaplanmasi, egrinin
seklini ve doniislerini tam olarak anlamak i¢in 6nemlidir. Egrilik yaricapt ne kadar
kiiciikse, egri o noktada daha keskin bir doniis yapar. Egrilik yaricap1 ne kadar
bliyiikse, egri o noktada daha diiz bir sekilde ilerler.

R? de Frenet catis1 {t, n} olan birim hizl bir egri a: I — R? olsun. O halde,

a nin hiz vektorii t ile x -ekseni arasindaki ag1 ¢ olmak tizere

(n,e;) = IInlllle; llcos(¢ + )
olur. Burada, n ve e, birim vektor olduklarindan

(n, e,;) = —sing (2.9)
elde edilir. (t, e;) = cos¢ oldugundan

(t',eq) = —¢'sing
olup t" = kn oldugundan

k(n,e;) = —¢'sin ¢ (2.10)
elde edilir. (2.9) ve (2.10) esitliklerinden
k=¢'

dir.

Sonug 2.1 R? de birim hizli olmayan bir egri a:1 — R? olsun. O halde, a nin hiz

vektorii ile x -ekseni arasindaki a¢i ¢ olmak iizere
la'llky = ¢

dir.
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3. R%2 DE KAPALI EGRILER

R? diizleminde baslangic noktasi ve bitis noktasi ayn1 olan egrilere kapali

egriler denir. Diger bir ifadeyle; R? diizleminde [a, b] aralif1 iizerinde tanimlanan

x(t) = (x1(1), x2(1))

parametrik bir fonksiyon ile belirlenen bir egri C olmak iizere egrinin baslangi¢

noktasi ve bitig noktasi i¢in

x(a) = x(b)

ise C egrisine kapali egri denir ve

» Kapal1 egrilerin uzunlugu, parametre araligina ve egrinin parametrik tanimina
bagli olarak degisir.

» Kapali egrilerin i¢ ve dig bolgeleri kesin bir sekilde ayrilir. Egrinin i¢ bolgesi,
egrinin kendisi tarafindan ¢evrelenen bolgedir. Dis bolge ise i¢ bdlgenin disinda

kalan alandir.

3.1 Jordan Egri Teoremi

Riemann integralinin temelinde yatan 6nemli bir teorem olan Jordan Egri
Teoremi, kapali egrilerin i¢ ve dis bolgelerini tanimlar.
R? diizleminde kapal1 ve diizgiin bir egri a(t) = (a,(t), ay(t)) olsun. Bu egri,
belirli bir ¢t araliginda tanimlanir ve t’ye bagh olarak xOy — diizleminde bir

noktaya karsilik gelir. Bu noktalar1 birlestiren egri, Jordan egrisini olusturur.

Teorem 3.1 (Jordan Egri Teoremi) Kapali bir egrinin i¢ ve dis bélgeleri arasinda

herhangi bir nokta gec¢isi yoktur.

Diger bir ifadeyle, Jordan Egri Teoremi, egrinin i¢ ve disg bdlgelerinin kesin bir
sekilde ayrildigini ve egri lizerindeki noktalarin yalnizca bir tarafi temsil ettigini

gosterir. Eger bir nokta, egri lizerindeyse ya icerde ya da disarida olabilir, ancak her

iki tarafta birden olamaz. Eger a(t) = (al(t), az(t)) parametrik denklemiyle
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verilen a egrisi, R? diizleminde kapali ve diizgiin bir egri ise, a egrisinin i¢ ve dis
bolgeleri arasinda herhangi bir nokta ge¢isi yoktur. Teoremdeki iki bolgelerden biri
siirlidir, digeri degildir. Sinirli bilesene a egrisinin i¢i, digerine de « egrisinin dis1
denir. Basit bir kapali a egrisiyle sinirlanan alandan bahsettigimizde, a egrisinin i¢

alanii kastederiz. Simdi, Jordan Egri Teoremi’nin bir 6rnegini ele alalim.

Ornek 3.1.1 Cember, en basit kapali egridir. Merkezi orjin ve yartyap: r olan

cember, [0,27] olmak {izere her t € I i¢in

a(t) = (rcos(t), rsin(t)),

olarak tammlanan a: I — R? fonksiyonu ile ifade edilebilir. Burada, «, I iizerinde
C*® — smifindan ve [0,2m) flizerinde bire-birdir. Aym zamanda da a([) ,
R%diizleminde x? + y? = 72 bagmtisim saglayan (x,y) € R%noktalarinin kiimesi
orjin merkezli ve r yariyaph ¢emberin geometrik yeridir. Bu ¢ember, R? i¢cinde

C® —smifindan bir Jordan egrisidir.

3.2 Sarim Sayisi ve Doniis Indeksi

Sarim sayis1 ve doniis indeksi, kapal1 egrilerin donme 6zelliklerini agiklayan
matematiksel kavramlardir. Bu kavramlar, egrinin donme ve doniis 6zelliklerini
analiz etmek i¢in kullanilir.

Sarim sayisi, bir egrinin iizerindeki bir noktanin ka¢ kez dondiigiinii ifade eder.
Bagka bir ifade ile, bir egrinin sarim sayisi, egrinin iizerindeki noktanin egriyi
dolasirken yaptig1 tam tur sayisidir. Kapali bir egri diistindiigiimiizde, bu egrinin
tizerindeki bir noktanin doniis sayist bir pozitif veya negatif tam say1 veya sifir
olabilir. Pozitif sarim sayisi, egrinin saat yoniiniin tersine dondiigiini gosterirken,
negatif sarim sayisi, egrinin saat yoniinde dondiigiinii ifade eder. Sifir sarim sayisi

ise, noktanin egri boyunca donmedigi anlamina gelir.
Tamm 3.2.1 R? de yonlendirilmis bir kapali egri C, x(t) = (x,(t),x(t)), t €

[a,b] ile tammlansin ve P, diizlemde C egrisinin iizerinde olmayan bir nokta

olsun. O halde,

16



x(t)—P

fx(@®) = () —P'|

olarak tamimlanan f: C — R fonksiyonuna, C egrisinin P ye gére konum eslemesi
denir. Burada, x(t) noktasi C egrisi etrafinda bir tam tur attiginda, goriintii
noktast f(x(t)) etrafinda birden fazla tur attigi agiktir. Bu tur sayisina, C

egrisinin P noktasina gore sarma sayisi denir.

Doniis indeksi ise bir egrinin lizerindeki doniis sayisini belirtir. Diger bir ifadeyle;
bir egrinin doniis indeksi, egrinin {izerindeki tam doniis sayisini belirtir. Kapali bir
egri diisiindiiglimiizde, egrinin tizerindeki doniis indeksi bir pozitif veya negatif tam
say1 olabilir. Pozitif doniis indeksi, egrinin saat yoniinlin tersine dondiigiinii

gosterirken, negatif doniis indeksi, egrinin saat yoniinde dondiigiinii ifade eder.

Tamim 3.2.2 R? de yénlendirilmis bir kapal egri C, yay parametresi s € [0, L] ve

uzunlugu L olan x(s) yay ile tamimlansin. O halde,
h(x(s)) = x'(s)
olarak tamimlanan h: C — T siirekli fonksiyonuna, C egrisinin tegetsel eslemesi

denir. Burada, x(s) noktasi C egrisi etrafinda tam bir tur attiginda, goriintii

noktast h(x(s)) de T etrafinda attigi tur sayisina, C egrisinin doniis indeksi denir.

Uyan 3.2.1 Bir basit kapali egri, egri boyunca artan bir parametre yoniinde
ilerliyorsa, bu egri pozitif yonliidiir ve egrinin i¢i sol tarafta kalir. Pozitif yonlii bir

basit kapali egrinin teget vektorleri de pozitif yonliidiir.

3.3 Egri Zarflan

Egrinin her noktasinda teget dogru ¢izildiginde, bu dogrularin olusturdugu
egri sistemine egri zarflar1 denir. Egri zarflari, egrinin seklini, doniislerini ve
kivrimlarini ifade eden bir egri ailesidir. Egri zarflari, egrinin teget diizlemine, hiz
vektorlerine ve egriligine bagl olarak belirlendiginden egrinin maksimum veya
minimum egrilik noktalarini, diizliik bolgelerini ve doniis noktalarmi gosterir.

Dolayistyla, bu zarflar, egrinin 6zelliklerini ve seklini analiz etmek i¢in kullanilir.
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Tek parametreli bir egri ailesinin zarfi, asagidaki iki 6zelligi tastyan bir
egridir:

1. Her noktasinda, ailedeki en az bir egriye teget olan noktalardan olusur.

2. Ailenin herhangi bir egrisiyle en az bir noktada teget olan bir egridir
Bir egrinin egri zarflarin1 anlamak i¢in basit bir 6rnek ele alalim:

Ornegin; bir egrinin egri zarflarini anlamak icin R? diizleminde diizgiin bir a(t) =

(a1 (), ay(t)) egrisni alalim.

1. a(t) = (ai(t), a;(t)) egrisi bir dogru ise @ nin egri zarflari, tiim noktalarda
dogrunun kendisidir. Ciinkii, dogrunun her noktasinda teget dogrular ¢izildiginde,
bu dogrular, dogrunun kendisini, yani a egrisini ve egri zarflarini olusturur.

2. a(t) = (al(t), a, (t)) egrisi bir gember ise @ nin egri zarflari, gemberin i¢ ve
dis bolgelerinde farklhidir. Ciinkii, ¢emberin disinda, egri zarflart ¢emberi
cevreleyen bir egridir. Cemberin i¢inde ise, egri zarflar1 ¢emberi olusturan o

egrisinin kendisidir.
Teorem 3.3 R? diizleminde

f(x1,%2,8) = 0, (3.1)

t parametreli bir egri ailesinin denklemi ve bu ailenin bir zarfi

X1 =), x2 =(b), 3.2)

olsun. O zaman,

fa(x1,%2,t) = 0, (3.3)

dir. Burada f3, f nin t ye gore kismi tiirevidir.

Ispat. Her t icin f, ¢ ve y siirekli farklilasaginda (3.1) ile verilen egri ailesi ile
zarf, (¢(£),¥(t)) noktasinda ortak bir tegete sahiptir. Dolayistyla, (¢(t), P(t))

noktasi (3.1) ile verilen ifadesini saglayacagindan her t i¢in
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fe®,¥®),t) =0, (3.4)

dir. (3.4) ifadesinin t ye gore tiirev alirsak zincir kuralindan

f(@@©), (), )" (1) + (), (), Y (1) + f3(¢(), (), 1) =0 (3.5)
elde edilir. Burada f;, f, ve f;, swrasiyla, f nin x, x, ve t ye gore kismi

tiirevleridir. Ote yandan, (3.1) ile verilen ailesinden bir egrinin egimi

dx; _ f1(x1,%2,0)

= 3.6
dx;  fa(x1.x2.t) (3.6)
ve (3.2) ile verilen egri ailesinin zarfinin egimi ise
dx; _ P'(t)
dx, ¢’ (37)

dir. Her t i¢in (3.1) ile verilen egri ailesi ile zarf, (¢p(t), ¥ (t)) noktasinda ortak bir
tegete sahip oldugundan

LAQRACIONION)
') f2(6®),¥(O) ,0)

veya

fi(@(®), (1), )" () + f(P (), P(©), Y’ (1) = 0 (3.8)

elde edilir. (3.5) ve (3.8) esitliklerinden f5(¢(t), Y (t),t) = 0 dir.
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4. KAPALI DISBUKEY EGRININ UZUNLUGU VE ALANI

Simdi R? diizleminde [a, b] aralig1 {izerinde tanimlanan
x(t) = (x1(8), x2(0))
parametrik ifadesiyle belirli pozitif yonlendirilmis bir kapali digbiikey C egrisini ve
C egrisinin i¢indeki herhangi bir noktayi sabit ¢atinin orijini O olarak kabul edelim.
Eger p, O noktasinin C egrisinin x = (X, X, ) noktasindaki pozitif yonlendirilmis [
tegetine olan dik uzaklig1 ve 6, bu dikme ayagi ile x -ekseni arasindaki ag1 ise p Vi
0 agisina bagli tek degiskenli ve peryodu 27 olan bir fonksiyon olarak diisiinebiliriz.

Bu durumda, [ teget dogrusunun denklemi

x1c0s6 + x,sinf = p(0) (4.2)

seklinde yazilabilir. Burada (4.1) ile verilen tiin dogrularin zarfi, C egrisidir. (4.1)
ile verilen tegetin, C egrisine degme noktasi olan x = (x4, x,) yi belirlemek i¢in

(4.1) ifadesinin 8 ya gore kismi tiirevini alirsak

—x,5inf + x,cosf = p'(6) (4.2)

elde edilir. Burada, p’, 8 ya gore kismi tiirevi gostermektedir.
(4.1) ile (4.2) esitliklerinden ¢ egrisinin parametrik gosterimi

{xl = p(8)cosd — p'(6)cosb, (4.3)

X, = p(6)sinb + p'(0)cosb,

olarak elde edilir. Burada, c, C egrisinin parametresi olur. Bdylece, 6 ve p(60)
verildiginde, kapali digbiikkey C egrisi tek bir x(xq, x,) noktast belirleyebiliriz.
Bunun tersi de dogrudur. Bu nedenle, (6,p(8)) ikilisine C egrisi tizerideki
x(x1, x,) noktasinin kutupsal teget koordinatlart denir.

(4.3) ifadesinin @ ya gore tiirevi alinirsa

x1 = —[p(6) + p"(6)]sind,

x5 = [p(8) + p"(8)]cosb, (4.4)
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yazilabilir. C egrisinin yay uzunlugu s olmak {izere
2
s = f V(x1)? + (x3)2do
0
dir ve burada s, & nin monoton artan bir fonksiyonu olup (4.4) ifadesinden
2
s= [ @©+p"@)ds
0
dir. Oyleyse, yukaridaki esitlikten 0 < 8 < 2m igin C egrisinin egrilik yaricap1

p=22=p®)+p"(0)>0, (4.5)

olarak bulunur.

Simdi, C egrisinin uzunlugu L olmak {izere

2T o
L=Jds= ]| — 4.6
[o- [ @
olup (4.5) ifadesini kullanarak
27T
L= {) p(8)do + [p' (615", (4.7)

elde edilir. Burada, p, peryodu 2m olan bir fonksiyon oldugundan p'(8) da 2r
periyodlu bir fonksiyon olacagindan p'(0) = p’(2m) dir. Bu yiizden yukaridaki
ifade

2

L= [ p(8)de, (4.8)
0

olarak yazilabilir

A, C egrisi tarafindan sinirlanan bdlgenin alani olsun. O halde,
1
A= Efc p(8)ds (4.9)
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ve (4.5) esitliginden

27T

A=3] pODL®) +p"(©)do

- %( fo p%(6)do + fo p(H)p"(H)d@)

dir. Burada
2T 2T
| p@w"@)d0 = @ @7 - [ 70100,

olup p ve p’, 2m periyodlu birer fonksiyon oldugundan

2n 2T
| @ @0 =~ [ p2@)d0
0 0
dir. Dolayisiyla,
1 21
A==[ [p*(6) —p'*(6)]1d6 (4.10)
0

yazilabilir.

4.1 Paralel Egriler

Tamm 4.1 R? diizleminde iki egrinin karsilikli noktalar: arasindaki uzaklik sabit

ve karsilikl noktalardaki egrilerin tegetleri paralel ise, bu iki egri paraleldir denir.
Ornegin, bir egrinin iki involiis’ii paralel egrilerdir.

Simdi n herhangi bir pozitif sayis1 olmak {izere, kapali bir digbiikey C egrisinin her
bir normali boyunca egrinin disindaki uzunlugu n olsun. Bu uzunlugun bitim

noktalarinin belirttigi egri C,,, C egrisinin bir paralel egrisidir.

Onerme 4.1 C,,, bir kapali disbiikey egridir.
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Ispat. (6,p,,(0)), C egrisi iizerinde kutupsal teget koordinatlar1 (8, p(8)) olan bir
noktaya karsilik gelen, C,, egrisi iizerindeki noktanin kutupsal teget koordinatlari

olsun. O zaman
Pn(8) =p(6) +n (4.11)
olup (4.5) esitligini kullanarakC,, nin egrilik yarigapi
pp=p+n (4.12)
olarak elde edilir. Burada, (4.11), p,(0), 6 nin 2r peryotlu bir fonksiyonudur.
Ayrica, hem p hem de n pozitif oldugundan (4.12) esitliginden p, > 0 dir.

Dolayisiyla,C,,, bir kapali digbiikey egridir.

L, ve A,, sirastyla, C,egrisinin uzunlugu ve alani olsun. O halde, (4.8),

(4.10) ve (4.11) ifadelerini kullanarak

L, =L+ 2nm, (4.13)
ve

A, = A+nlL + n’m, (4.14)
olarak kolayca elde edebiliriz.
Teorem 4.1 Kapali bir digbiikey egrinin uzunlugu (veya alani), en biiyiik ve en
kiigiik egrilik yari¢capina sahip egrinin oskiilator ¢emberlerinin uzunluklar: (veya
alanlary) arasindadir.
Ispat. p; ve p,, sirastyla, uzunlugu L ve alan1 A olan kapali bir digbiikey C

egrisinin egrilik yaricaginin en biiyiik ve en kiiciik degeri olsun. O zaman (4.5),

(4.6) ve (4.9) esitliklerinden
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2nwp, > L > 2mp,, (4.15)

Ve

21 21

p1 [ p(6)d6 > 24> p, [ p(6)do (4.16)
0 0

elde ederiz. (4.6) esitliginde

2m 2m
fp(@)d@zfp(e)de
0 0
Oldugundan
21
21tp, > [ p(8)d6 > 2mp, (4.17)
0

dir. Dolayisiyla, (4.16) ile (4.17) esitsizliklerinden
wp? > A > mp2, (4.18)
elde edilir.

Teorem 4.2 Belirli bir D ¢apina sahip tiim kapalr disbiikey egriler arasinda, sabit

D genisligine sahip olanlar en biiyiik uzunluga sahiptir.

Ispat. C, kutup teget koordinatlar1 (6,p(8)) olan L uzunlugunda kapali bir
digbiikey egri olsun. p(8), 2w periyodlu periyodik bir fonksiyon oldugundan

p(0) = %ao + (a,cosnb + b,sinnf), (4.19)

n=1
Fourier serisi ile ifade edilebilir. Burada

2T

a =~ {) p(6)de, (4.20)
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dir. (4.8) ifadesinden

olup (4.20) ifadesini

S

Gy = f [p(8) + p(6 + m)]d6

olarak yazabiliriz. Herhangi bir dogrultudaki C egrisinin genisligi D den biiylik
olmadig1 i¢in

p(6) +p(6 +m) <D,
dir. Dolayisiyla, ay < D ve (4.21) esitliginden

L <mD, (4.22)

dir. (4.22) ifadesindeki esitligin ancak ve ancak C egrisinin sabit genisligi D oldugu

durumlarda gegerli oldugu agiktir.

Sonuc 4.1 Sabit D genisligine sahip tiim kapali disbiikey egrilerin uzunlugu aynidr

ve D dir.
Teorem 4.3 Belirli bir uzunluktaki tiim basit kapali egriler arasinda, ¢ember en

genis alant simirlar. Baska bir deyisle, eger A, L uzunlugundaki bir basit kapali

egri tarafidan sinirlanmis alan ise,
L? —4mA > 0, (4.23)
dir. Burada esitlik ancak ve ancak C egrisi bir cember oldugunda gecerlidir.

Sonuc 4.2 Alani A ve ¢apt D olan bir kapali disbiikey C egrisi igin
A< inDZ, (4.24)

dir. Burada esitlik ancak ve ancak C egrisi bir cember oldugunda gecerlidir.
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