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1. GİRİŞ 

Eğrilik kavramı, diferansiyel geometrinin temel kavramlarından biridir ve 

fizikte de önemli bir rol oynar. Bu kavram, cisimlerin hareketini ve uzaydaki 

geometrik nesnelerin özelliklerini anlamak için kullanılır. Newton yasalarına göre, 

bir cismi sabit hızda hareket ettirmek için gereken kuvvetin büyüklüğü, cismi 

hareket ettiği yolun eğriliğine bağlı olarak değişir. Yani, bir eğri boyunca hareket 

eden bir cismin hızı, yörüngenin eğriliği ile ilişkilidir. Albert Einstein’a göre ise 

yerçekimi alanındaki bir cismin hareketi, uzay-zamanın eğriliği ile belirlenir. 

Einstein’ın genel görelilik kuramına göre, kütle çekim etkisi, bir cismin uzay 

zamanda yarattığı eğrilik nedeniyle ortaya çıkar. Bu eğrilik, cismin hareketini 

etkileyen bir kuvvet olarak algılanır. Bu nedenle, cisimlerin yörüngeleri ve 

hareketleri, uzay-zamanın eğriliği ile belirlenir. Eğrilik kavramı, sadece fizikte 

değil, günlük yaşamda da gözlemlenen birçok şekil ve nesnenin belirlenmesinde 

önemli bir rol oynar. Örneğin, sabun köpükleri gibi kırılgan yapılar veya kırmızı 

kan hücreleri gibi biyolojik formlar, çeşitli eğriliklerin etkisiyle şekillenir. Bu 

şekiller, eğrilik kavramının evrensel bir prensibi olarak kabul edilir. 

Geometrik eşitsizlikler, uzaydaki geometrik nesnelerin özelliklerini ve 

aralarındaki ilişkileri tanımlamak için kullanılır. İzoperimetrik eşitsizlik, en eski ve 

en güzel geometrik eşitsizliklerden biridir. Bu eşitsizlik, ℝ2  Öklid düzlemi 

üzerinde kapalı bir γ eğrisi için geçerlidir. γ eğrisin uzunluğu L ve γ ile çevrelenen 

alan A olmak üzere izoperimetrik eşitsizlik, 

 

 𝐿2 − 4𝜋𝐴 ≥ 0 (1.1) 

 

şeklinde ifade edilir (Zhang, 2019).  Bu eşitsizlik, eğrinin uzunluğu ve çevrelenen 

alanı arasında bir ilişki kurar. Eşitlik, γ eğrisinin bir daire olduğu durumlarda 

gerçekleşir. Yani, bir dairenin çevresi ve alanı, diğer kapalı eğrilerden daha 

optimize edilmiş bir izoperimetrik ilişkiye sahiptir. Bu sonuç, belirli bir uzunluğa 

sahip en büyük alanı kapsayan eğrinin bir daire olduğunu gösterir. Ancak, 

izoperimetrik eşitsizliklere yönelik daha güçlü ilişkiler de bulunabilir ve farklı 

geometrik yapılar arasındaki ilişkileri daha detaylı şekilde analiz edebilir. 

Eğrilik hakkında Ros Teoremi, Fenchel Teoremi ve Willmore Teoremi gibi 

çok iyi bilinen eşitsizlikler veya eşitlikler vardır. Ros Teoremi, diferansiyel 
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geometride eğriliğin bir ölçüsü olan Gauss eğrilik integralinin özelliklerini ve bir 

düzlem eğri üzerindeki ilişkisini tanımlar (Oprea, 2010). Fenchel Teoremi, eğriliğin 

uzunluk ile olan ilişkisini ele alır (do Carmo, 2016). Willmore Teoremi, yüzeylerin 

eğrilik enerjisiyle ilgilidir ve yüzeylerin eğriliğine dair bir ölçüm olan Willmore 

enerjisi ile ilgili önemli bir eşitliği ifade eder (Li, 2008). 

Bir düzlem eğri için eğrilik integrallerini içeren birçok ilginç sonuç da 

mevcuttur. Pan ve Zhang, eğrilik üzerine bazı varsayımlar altında düzlem eğrileri 

için bir ters izoperimetrik eşitsizlik oluşturdu (Pan & Zhang, 2007). Eğer γ, 

uzunluğu L olan ve bir A alanını çevreleyen Öklid düzlemi ℝ2’de kapalı, kesinlikle 

dışbükey bir eğri ise, o zaman 

 

                                    𝐿2 − 4𝜋𝐴 ≤ 4𝜋|𝐴̃1|                                        (1.2) 

 

eşitsizliği geçerlidir. Burada 𝐴̃1, γ eğrisinin eğrilik merkezlerinin odağı tarafından 

çevrelenen alanın yönlendirilmiş alanını gösterir ve eşitlik ancak ve ancak γ bir 

daire ise geçerlidir. Pan ve Xu, 

 

                                    𝐿2 − 4𝜋𝐴 ≤ 4𝜋|𝐴̃1|                                            (1.3)    

                                                         

olacak şekilde en iyi C sabiti var mı, ancak ve ancak γ bir daire ise eşitlik var mı? 

sorusunu sormuştur (Pan & Xu, 2009). 

Bu tezde, Öklid düzleminde kapalı dışbükey eğrinin uzunluğu ve alanı 

incelenmiştir.
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2.   TEMEL KAVRAMLAR 

Eğrilik kavramı, geometri ve diferansiyel geometri alanında temel bir 

kavramdır ve fizikte de önemli bir rol oynar. Eğrilerin matematiksel olarak 

tanımlanması ve analiz edilmesi, eğrilik kavramının incelenmesiyle gerçekleştirilir 

(Oprea, 2010; do Carmo, 2016; Li, 2008). 

ℝ nin bir açık aralığı 𝐼 üzerinde 𝛼: 𝐼 → ℝ3 şeklinde tanımlanan sürekli bir 

fonsiyonu düşünelim. Burada 𝛼 , ℝ3 uzayındaki bir eğriyi temsil etmektedir. 

Eğrinin tanımı üzerine, ℝ3 uzayında dik koordinat fonksiyonları 𝑥1, 𝑥2, 𝑥3 olmak 

üzere 𝛼: 𝐼 → ℝ3 eğrisi verilir. α’nın değer kümesi ℝ3 olduğundan, α’nın üç bileşeni 

𝛼1, 𝛼2, 𝛼3 bulunmaktadır. Daha açık bir ifadeyle, 𝛼 = (𝛼1, 𝛼2, 𝛼3) şeklinde ifade 

edilir. Burada, her bir 1 ≤ 𝑗 ≤ 3  için 𝑥𝑗 ∘ 𝛼 = 𝛼𝑗  eşitliği geçerlidir. Her   

𝛼𝑗  fonksiyonu, 𝐼  aralığından ℝ  ye giden bir fonksiyondur. 𝛼: 𝐼 → ℝ3 

dönüşümünün diferensiyellenebilir olması, 𝛼𝑗  fonksiyonlarının 

diferensiyellenebilir olması anlamına gelir.  

Eğrinin hız vektörü veya tanjant vektörü, 𝛼(𝑡) noktasındaki hız vektörü 

olarak tanımlanır. Bu vektör, 𝛼(𝑡)  ve 𝛼′(𝑡)  noktalarını içeren 𝑇ℝ3(𝑡)  vektör 

uzayına aittir. Burada 

𝛼′(𝑡) =
𝑑𝛼

𝑑𝑡
(𝑡) = (

𝑑𝛼1

𝑑𝑡
(𝑡),

𝑑𝛼2

𝑑𝑡
(𝑡),

𝑑𝛼3

𝑑𝑡
(𝑡)), 

olarak ifade edilir.  

Eğrinin parametre dönüşümü ise 𝛼  eğrisinin ℎ  ile yeniden 

parametrelendirilmesi olarak adlandırılır. 𝛼 ∘ ℎ  ifadesiyle gösterilen bu eğri, 𝛼 

eğrisinin ℎ ile yeniden parametrelendirilmiş halidir. 

Eğrinin düzenli (regüler) olması, 𝛼′(𝑡) ≠ 0 olduğunda gerçekleşir. Yani, 

her 𝑡 ∈ 𝐼 için 𝛼′(𝑡) sıfırdan farklıdır. Bu sayede eğrinin düzgün bir şekilde çizildiği 

ve herhangi bir kesinti veya düğüm noktası olmadığını söyleyebiliriz. 

Eğrinin yay uzunluğu, eğri üzerindeki noktalar arasındaki uzaklığı ölçen bir 

fonksiyon olarak tanımlanır. 𝛼(𝑡0)  noktasından başlayarak yay uzunluğunu 

ölçmeye başladığımızda, 𝑡 < 𝑡0 ise 𝛼(𝑡0) ve 𝛼(𝑡) noktaları arasındaki kalan eğri 

parçasının uzunluğunun negatifine 𝑓(𝑡) denir. 𝑡 > 𝑡0 için 𝑓(𝑡0) = 0 olarak kabul 
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edilir. 𝑡 > 𝑡0  ise 𝛼(𝑡0)  ve 𝛼(𝑡)  noktaları arasındaki kalan eğri parçasının 

uzunluğuna 𝑓(𝑡)  denir. Böylece 𝐼  aralığından ℝ  içine tanımlı 𝑓: 𝑡 ⟶ 𝑓(𝑡) 

fonksiyonu, 𝛼  eğrisinin yay uzunluğu fonksiyonunu temsil eder. Yay uzunluğu 

fonksiyonunun türevi de 𝛼′ vektörünün normuna eşittir (𝑓′ = ‖𝛼′‖). Yani, regüler 

bir α eğrisinin yay uzunluğu fonksiyonunun türevi, 𝛼′ vektörünün normuna eşittir 

ve 

𝑓(𝑡) = ∫

𝑡0

𝑡

‖𝛼′(𝑢)‖𝑑𝑢, 

dir. Buna ek olarak, 𝛼  eğrisinin yay uzunluğu fonksiyonu 𝑓  olduğunda, 𝑡 ∈ 𝐼 

parametresine de yay parametresi denir (𝑓′(𝑡) = 1). Yani, α eğrisi birim hızlı eğri 

olarak adlandırılır ve 𝑡 ∈ 𝐼 parametresi yay parametresi olarak kabul edilir ve yay 

parametresi 𝑠 ile gösterilir. 

𝛼  eğrisinin birim teğet vektörü, 𝛼′(𝑠)  noktasında tanımlı 𝑇(𝑠)  vektörü 

olarak adlandırılır ve  

                                       𝑇(𝑠) = 𝛼′(𝑡),                                                   (2.1) 

şeklinde ifade edilir. Bu vektör, 𝛼  eğrisinin 𝑠  parametresindeki birim teğet 

vektörünü temsil eder. Ayrıca, 𝑇 fonksiyonu α eğrisi üzerinde bir vektör alanıdır ve 

𝛼 eğrisinin birim teğet vektör alanı olarak adlandırılır. 

𝛼  eğrisinin eğrilik fonksiyonu, 𝛼  eğrisinin 𝑠  parametresindeki eğrilik 

fonksiyonu 

                                      𝜅(𝑠) = ‖𝑇(𝑠)‖,                                                  (2.2) 

 

olarak ifade edilir. Eğrilik fonksiyonu 𝜅: 𝐼 → ℝ , 𝛼  eğrisinin 𝑠  parametresindeki 

eğrilik miktarını gösterir. 

𝛼 eğrisinin birinci dik vektörü veya asli normali, 

 

                                      𝑁(𝑠) =
1

𝜅(𝑠)
𝑇′(𝑠),        (2.3)  
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olarak tanımlanır. Bu vektör, 𝛼 eğrisinin 𝑠 parametresindeki birinci dik vektörünü 

temsil eder. Aynı zamanda, 𝑁  vektör alanı 𝛼  eğrisinin birinci dik vektör alanı 

olarak adlandırılır. 

𝛼 eğrisinin ikinci dik vektörü veya binormali, 

 

𝐵(𝑠) = 𝑇(𝑠) ∧ 𝑁(𝑠)                                         (2.4) 

 

şeklinde ifade edilir. 𝐵(𝑠)  vektörü, 𝛼  eğrisinin 𝑠  parametresindeki ikinci dik 

vektörünü temsil eder. 𝐵 vektör alanı ise 𝛼 eğrisinin ikinci dik vektör alanı olarak 

adlandırılır.  

 

Uyarı 2.1 Not edilmesi gereken bir nokta, birim hızlı 𝛼  eğrisinde 𝜅(𝑠) = 0 

olduğunda 𝑁(𝑠)  vektörünün tanımsız olduğudur. Bu durumda, 𝐵(𝑠)  vektörü de 

tanımsız olacaktır.  

 

Frenet vektörleri, birim hızlı 𝛼 eğrisinin Frenet Çatısı olarak adlandırılan  

{T(s), N(s), B(s)} 

kümesine verilen isimdir. Bu küme 𝛼  eğrisinin 𝑠  parametresindeki Frenet 

vektörlerini içerir. 𝑇(𝑠) , 𝑁(𝑠) ve 𝐵(𝑠)  vektörleri 𝛼  eğrisinin 𝑠  parametresindeki 

birim teğet, birinci dik ve ikinci dik vektörlerini temsil eder. 𝑇 , 𝑁  ve 𝐵  vektör 

alanları ise 𝛼 eğrisinin Frenet vektör alanları denir. 

𝛼  eğrisinin ikinci eğrilik veya burulma fonksiyonu 𝜏(𝑠), eğrinin her bir 

noktasındaki dönüş miktarını gösterir ve 𝐵 vektörünün 𝑁 vektörüyle iç çarpımının 

negatifine 

     

                                     𝜏(𝑠) = −⟨𝐵′(𝑠), 𝑁(𝑠)⟩                                       (2.5)  

 

eşittir. Torsiyon fonksiyonu 𝜏: 𝐼 → ℝ , 𝛼  eğrisinin 𝑠  parametresindeki torsiyon 

(yani; burulma veya dönüş) miktarını ifade eder. Burada pozitif bir burulma, eğrinin 

saat yönünün tersine dönmesini, negatif bir burulma ise saat yönünde dönmesini 

ifade eder. Ayrıca, ikinci eğrilik veya torsiyon, 𝜅(𝑠) ≠ 0 olduğunda tanımlıdır. 
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Son olarak, birim hızlı 𝛼 eğrisinin Frenet vektör alanları 𝑇, 𝑁 ve 𝐵 ise 

  

𝑇′ = 𝜅𝑁,
𝑁′ = −𝜅𝑇 + 𝜏𝐵,
𝐵′ = −𝜏𝑁,

                                                    (2.6) 

 

ilişkilerine, α eğrisinin Frenet-Serret formülleri denir. Bu eşitlikleri nasıl elde 

ettiğimize bakalım. 

İlk olarak (2.3) eşitliğinden 𝑇′ = 𝜅𝑁  ifadesini elde ederiz. 

{𝑇(𝑠), 𝑁(𝑠), 𝐵(𝑠)},  ℝ3 uzayının bir bazı olduğundan 

                               𝑁′ = 𝑛1𝑇 + 𝑛2𝑁 + 𝑛3𝐵,                              (2.7) 

 olarak yazabiliriz. 

(2.7) eşitliğin her iki tarafı 𝑇  ile iç çarparsak ⟨𝑁′, 𝑇⟩ = 𝑛1  elde ederiz. 

⟨𝑁, 𝑇⟩ = 0 olduğundan  

⟨𝑁′, 𝑇⟩ + ⟨𝑁, 𝑇′⟩ = 0, 

olur. Bu durumda 

⟨𝑁′, 𝑇⟩ = −⟨𝑁, 𝑇′⟩ = −⟨𝑁, 𝜅𝑁⟩ = −𝜅 

olarak bulunur. Sonuç olarak 𝑛1 = −𝜅 olur. 

(2.7) eşitliğinin her iki yanı 𝑁  ile iç çarparız ve ⟨𝑁′, 𝑁⟩ = 𝑛2  bulunur. 

⟨𝑁, 𝑁⟩ = 1 olduğundan 

⟨𝑁′, 𝑁⟩ + ⟨𝑁, 𝑁′⟩ = 0 

olur. Bu durumda, 2⟨𝑁′, 𝑁⟩ = 0olduğundan ⟨𝑁′, 𝑁⟩ = 0  bulunur. Sonuç olarak 

𝑛2 = 0 olur. 

(2.7) eşitliğinin her iki yanı 𝐵  ile iç çarparız ve ⟨𝑁′, 𝐵⟩ = 𝑛3  bulunur. 

⟨𝑁, 𝐵⟩ = 0  olduğundan 

⟨𝑁′, 𝐵⟩ + ⟨𝑁, 𝐵′⟩ = 0 

olur. Bu durumda, 



7 

⟨𝑁′, 𝐵⟩ = −⟨𝑁, 𝐵′⟩ = 𝜏, 

olarak bulunur. Sonuç olarak, 𝑛3 = 𝜏 bulunur. Öyleyse 

𝑁′ = −𝜅𝑇 + 𝜏𝐵 

olarak elde edilir. 

Son olarak, {𝑇(𝑠), 𝑁(𝑠), 𝐵(𝑠)}, ℝ3 uzayının bir bazı olduğundan 

                                 𝐵′ = 𝑏1𝑇 + 𝑏2𝑁 + 𝑏3𝐵,                                     (2.8) 

olarak yazabiliriz. 

(2.8) eşitliğinin her iki tarafını T ile iç çarparız ve ⟨𝐵′, 𝑇⟩ = 𝑏1  bulunur. 

⟨𝐵, 𝑇⟩ = 0 olduğundan, 

⟨𝐵′, 𝑇⟩ + ⟨𝐵, 𝑇′⟩ = 0 

olur. Öyleyse, ⟨𝐵′, 𝑇⟩ = −⟨𝐵, 𝑇′⟩ = ⟨𝐵, −𝜅𝑁⟩ = 0 olarak bulunur. Sonuç olarak, 

𝑏1 = 0 olur. 

(2.8) eşitliğinin her iki tarafını 𝑁 ile iç çarparız ve ⟨𝐵′, 𝑁⟩ = 𝑏2 bulunur.  

⟨𝐵′, 𝑁⟩ = −𝜏 

olduğundan, 𝑏2 = −𝜏 olur. 

(2.8) eşitliğinin her iki tarafını 𝐵 ile iç çarparız ve ⟨𝐵′, 𝐵⟩ = 𝑏3 bulunur.  

⟨𝐵, 𝐵⟩ = 1 

olduğundan,  

⟨𝐵′, 𝐵⟩ + ⟨𝐵, 𝐵′⟩ = 0, 

olur. O zaman, ⟨𝐵′, 𝐵⟩ = 0 olarak bulunur. Sonuç olarak, 𝑏3 = 0 olur. Öyleyse, 

𝐵′ = −𝜏𝑁 olarak elde edilir. 

Sonuç olarak, 𝛼 eğrisinin Frenet-Serret formülleri, (2.6) eşitlikleriyle veya 

matris olarak 
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[
𝑇′

𝑁′

𝐵′
] = [

0 𝜅 0
−𝜅 0 𝜏
0 −𝜏 0

] [
𝑇
𝑁
𝐵

] 

verilebilir. Burada, 𝛼: 𝐼 → ℝ3  eğrisinin Frenet vektörleri {𝑇, 𝑁, 𝐵} , ℝ3   de bir 

ortonormal çatı olduğundan  

𝑇 = 𝑁 ∧ 𝐵, 

𝑁 = 𝐵 ∧ 𝑇, 

𝐵 = 𝑇 ∧ 𝑁, 

olarak yazılabilir. 

Ayrıca, {𝑇, 𝑁, 𝐵}   Frenet vektörleri her 𝑠 anında, bir eksen etrafında, ani bir 

helis hareketi yaptığı kabul edilir. Bu eksene eğrinin 𝛼(𝑠) noktasındaki Darboux 

(ani dönme) ekseni denir. Bu eksenin yön ve doğrultusunu veren vektör,  

𝐷(𝑠) = 𝜏(𝑠)𝑇(𝑠) + 𝜅(𝑠)𝐵(𝑠) 

olup, eğrinin 𝛼(𝑠) noktasındaki Darboux vektörü adını alır. Bu vektör  

𝑇′ = 𝐷 ∧ 𝑇 

𝑁′ = 𝐷 ∧ 𝑁 

𝐵′ = 𝐷 ∧ 𝐵 

eşitliklerini sağlar (Hacısalihoğlu 2000).  

 

Tanım 2.1 ℝ3 uzayında bir birim hızlı 𝛼: 𝐼 → ℝ3 eğrisinin 𝛼(𝑠0) noktasındaki 𝛼 

ile sonsuz yakın üç ortak noktası olan kürelerinin merkezlerinin geometrik yeri olan  

𝛼 = 𝛼(𝑠0) +
1

𝜅(𝑠0)
𝑁(𝑠0) + 𝜆𝐵(𝑠0), 

doğrusuna 𝛼  eğrisinin 𝛼(𝑠0)  noktasındaki eğrilik ekseni denir. Eğrilik ekseni 

üzerindeki  

𝐶(𝑠0) = 𝛼(𝑠0) +
1

𝜅(𝑠0)
𝑁(𝑠0), 

noktasına α eğrisinin 𝛼(𝑠0) noktasındaki eğrilik merkezi denir.  
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Şimdi, ℝ3 uzayında bir birim hızlı olmayan eğri 𝛼: 𝐼 → ℝ3 olsun. O halde, 

𝛼 ∘ ℎ: 𝐽 → ℝ3 

birim hızlı olacak biçimde bir ℎ: 𝐽 → 𝐼 fonksiyonu vardır öyle ki 

𝑓(𝑡) = ∫

𝑡0

𝑡

‖𝛼  ′(𝑢)‖𝑑𝑢 

eşitliğiyle tanımlı 𝑓: 𝐼 → 𝐽 yay uzunluğu fonksiyonunun tersidir. Eğer 𝛽 = 𝛼 ∘ ℎ 

ise 𝛽: 𝐽 → ℝ3 birim hızlı bir eğridir. Burada, her bir 𝑠 ∈ 𝐽 için ℎ(𝑠) = 𝑡 olsun. Bu 

durumda, ℎ = 𝑓−1 olduğundan 𝑠 = 𝑓(𝑡) demektir. Buna göre 

𝛽(𝑠) = 𝛼(ℎ(𝑠)) = 𝛼(𝑡) 

olur. Burada, 𝑓(𝑡0) = 0 olduğu açıktır. 

 

ℝ3  uzayında 𝛽 = 𝛼 ∘ ℎ  ile elde edilen birim hızlı 𝛽  eğrisinin Frenet vektör 

alanlarını 𝑇𝛽, 𝑁𝛽, 𝐵𝛽 ile gösterilsin. O zaman, 𝛼 eğrisinin Frenet vektör alanları 𝑇, 

𝑁 ve 𝐵 için 

𝑇(𝑡) = 𝑇𝛽(𝑓(𝑡)) 

𝑁(𝑡) = 𝑁𝛽(𝑓(𝑡)) 

𝐵(𝑡) = 𝐵𝛽(𝑓(𝑡) 

eşitlikleri ile elde edilir. Ayrıca, 𝛽 eğrsinin eğrilik ve burulması, sırasıyla, 𝜅𝛽 ve 𝜏𝛽 

ile gösterilsin. O halde, 𝛼 eğrisinin eğrilik 𝜅 ve burulması 𝜏 fonsiyonları, sırasıyla  

 

𝜅(𝑡) = 𝜅𝛽(𝑓(𝑡)) 

𝜏(𝑡) = 𝜏𝛽(𝑓(𝑡)) 

eşitlikleri ile elde edilir. Kısaca 

𝑇 = 𝑇𝛽 ∘ 𝑓 

𝑁 = 𝑁𝛽 ∘ 𝑓 

𝐵 = 𝐵𝛽 ∘ 𝑓 

ve  

𝜅 = 𝜅𝛽 ∘ 𝑓 
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𝜏 = 𝜏𝛽 ∘ 𝑓 

dir. 

‖𝛼′‖, 𝐼  aralığından ℝ içine tanımlı bir fonksiyondur. Bu fonksiyon kısaca 𝜈  ile 

gösterirsek 

‖𝛼′‖ = 𝜈 

eşitliği ile tanımlanır. Burada, 𝑓′ = ‖𝛼′‖   olduğundan 𝑓′ = 𝜈 olur. 

 

Teorem 2.1 ℝ3 uzayında Frenet elemanları {𝑇, 𝑁, 𝐵, 𝜅, 𝜏} olan birim hızlı olmayan 

𝛼: 𝐼 → ℝ3 eğrisinin hızı 𝜈 olsun. O halde, Frenet formülleri  

 

𝑇′ = 𝜈𝜅𝑁 

𝑁′ = −𝜈𝜅𝑇 + 𝜈𝜏𝐵 

𝐵′ = −𝜈𝜏𝑁 

dir. 

 

Teorem 2.2 ℝ3 uzayında Frenet elemanları {𝑇, 𝑁, 𝐵, 𝜅, 𝜏} olan birim hızlı olmayan 

eğrisi 𝛼: 𝐼 → ℝ3 olmak üzere 

𝑇 =
𝛼′

‖𝛼′‖
 

𝐵 =
𝛼′ ∧ 𝛼′′

‖𝛼′ ∧ 𝛼′′‖
 

𝑁 = 𝐵 ∧ 𝑇 

ve 

𝜅 =
‖𝛼′ ∧ 𝛼′′‖

‖𝛼′‖3
 

𝜏 =
⟨𝛼′ ∧ 𝛼′′, 𝛼′′′⟩

‖𝛼′ ∧ 𝛼′′‖2
 

dir. 

 

Tanım 2.2 ℝ3  de Frenet vektör alanları 𝑇, 𝑁 𝑣𝑒 𝐵 olan bir eğri 𝛼: 𝐼 → ℝ3 olmak 

üzere 
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(i) 𝐵⊥ = 𝑆𝑝{𝑇, 𝑁}  düzlemine, 𝛼  eğrisinin 𝛼(𝑠)  noktasındaki dokunum düzlemi 

veya oskülatör düzlem; 

(ii) 𝑁⊥ = 𝑆𝑝{𝑇, 𝐵} düzlemine, 𝛼  eğrisinin 𝛼(𝑠) noktasındaki doğrultma düzlemi 

veya rektifyan düzlem; 

(iii) 𝑇⊥ = 𝑆𝑝{𝑁, 𝐵}  düzlemine, 𝛼  eğrisinin 𝛼(𝑠)  noktasındaki dik düzlem veya 

normal düzlem 

denir. 

 

Teorem 2.3 ℝ3 de Frenet vektör alanları 𝑇, 𝑁 𝑣𝑒 𝐵 olan birim hızlı olmayan bir 

eğri 𝛼: 𝐼 → ℝ3 olsun. O halde, 

𝛼 𝑒𝑔̆𝑟𝑖𝑠𝑖 𝑑𝑢̈𝑧𝑙𝑒𝑚𝑠𝑒𝑙 ⟺ 𝜏 = 0, 

dır. Diğer bir ifadeyle, eğrinin her bir noktasındaki dokunum (oskülatör) düzlemi, 

eğrinin içinde bulunduğu 𝑃 düzlemidir. 

 

İspat. (⟹:) Kabul edelim ki; 𝛼: 𝐼 → ℝ3eğrisi düzlemsel olsun. Buna göre, her bir 

𝑡 ∈ 𝐼 için 𝛼 eğrisinin 𝛼(𝑡) noktalarının tümü, belirli bir 𝑃 düzleminde bulunur. Bu 

düzlemin birim normal vektörü 𝜂 olsun. Eğer 𝑞 düzlem üzerinde bir nokta ise her 

bir 𝑡 ∈ 𝐼 için  

⟨𝛼(𝑡) − 𝑞, 𝜂⟩ = 0, 

olur. Buradan 

      ⟨𝛼′(𝑡), 𝜂⟩ = 0, 

     ⟨𝛼′′(𝑡), 𝜂⟩ = 0 

bulunur. Ayrıca, ‖𝛼′‖ = 𝜈 olmak üzere Teorem 2.1 kullanılarak  

𝛼′ = 𝜈𝑇, 

               𝛼′′ = 𝜈′𝑇 + 𝜈2𝜅𝑁 

olacağından  

                 ⟨𝜈𝑇, 𝜂⟩ = 0, 

⟨𝜈′𝑇 + 𝜈2𝜅𝑁, 𝜂⟩ = 0, 

elde edilir. Bu eşitlikler, 𝑇 ve 𝑁 vektör alanlarının birim normal vektörü 𝜂 ya dik 

olduğunu gösterir. O zaman, her bir 𝑡 ∈ 𝐼  için 𝑇(𝑡)  ve 𝑁(𝑡)  vektörleri, 𝛼(𝐼) 
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kümesini kapsayan 𝑃  düzlemi içindedirler. 𝐵(𝑡)  vektörü, 𝑇(𝑡)  ve 𝑁(𝑡) 

vektörlerinin her ikisine de dik olduğundan her bir 𝑡 ∈ 𝐼 için 𝐵(𝑡)//𝜂 dir. Öyleyse 

 

𝐵 = 𝜂 veya 𝐵 = −𝜂, 

dır. Buradan, 𝜂  sabit vektör olduğundan 𝐵′ = 0  elde edilir. Dahası 𝐵′ = −𝜈𝜏𝑁  

olduğundan 𝜏 = 0  olmak zorundadır. O halde, eğrinin herbir noktasına dokunan 

düzlem, eğrinin içinde bulunduğu 𝑃 düzlemidir. 

(⟸:) Kabul edelim ki; 𝛼 eğrisi için 𝜏 = 0 olsun. Bu takdirde 𝐵′ = −𝜈𝜏𝑁 ve 𝐵′ =

0 olur. Öyleyse, her bir 𝑡 ∈ 𝐼 için 𝐵 vektör alanı 𝛼 üstünde sabittir. 𝑡0𝜖𝐼 alalım ve 

𝐹: 𝐼 → ℝ  fonksiyonunu 

𝐹(𝑡) = ⟨𝛼(𝑡) − 𝛼(𝑡0), 𝐵⟩, 

eşitliğiyle tanımlayalım. Burada, 𝐹(𝑡0) = 0 olduğu hemen görülebilir. Ayrıca, 

 

                      𝐹′(𝑡) = ⟨𝛼′(𝑡), 𝐵⟩ 

                                 = ⟨𝜈𝑇(𝑡), 𝐵⟩ 

                                 = 𝑣⟨𝑇(𝑡), 𝐵⟩ 

                                 = 0 

olduğundan 𝐹  fonksiyonu sabittir ve 𝐹(𝑡0) = 0  olduğundan her bir 𝑡 ∈ 𝐼  için 

𝐹(𝑡) = 0  dır. Böylece her 𝑡 ∈ 𝐼  için ⟨𝛼(𝑡) − 𝛼(𝑡0), 𝐵⟩ = 0  dır. Bu eşitlik, 𝛼(𝐼) 

kümesinin 𝛼(𝑡0) noktasından geçen ve 𝐵 birim vektörüne dik olan düzlem içinde 

bulunduğunu gösterir. Dolayısıyle, 𝛼 eğrisi düzlemseldir. 

 

2.1   ℝ𝟐 de Düzlemsel Eğriler 

 

ℝ𝟐  uzayındaki eğriler, iki boyutlu bir düzlemde yer alan eğrilerdir ve 

düzlemsel eğriler olarak da adlandırılırlar. Düzlemsel eğrilerin matematiksel analizi 

ve geometrik özelliklerinin anlaşılması, farklı uygulama alanlarında büyük öneme 

sahiptir. Örneğin, mimaride ve tasarımda eğrilerin estetik kullanımı, mühendislik 

projelerinde yol, hat ve yüzey tasarımları, bilgisayar grafikleri ve oyun geliştirme 

gibi alanlarda gerçekçi ve doğal görüntülerin oluşturulması için düzlemsel eğrilerin 

incelenmesi önemlidir. 
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Düzlemsel eğrilerin temel özelliklerine değinmeden önce, parametrik bir 

denklemle ifade edilen düzlemsel eğrilerin temel tanımını inceleyelim. 

𝛼(𝑡) = (𝛼1(𝑡), 𝛼2(𝑡))  şeklinde verilen parametrik denklem, 𝛼: 𝐼 ⟶ ℝ2 ile 

tanımlı düzlemsel eğriyi temsil eder. Bu denklemde 𝛼1(𝑡)  ve 𝛼2(𝑡) fonksiyonları, 

eğrinin 𝑥 ve 𝑦 koordinatlarını belirler. Bu parametrik denkleme göre, eğrinin her 

bir noktasının konumu 𝑡 parametresine bağlı olarak değişir. 

Düzlemsel eğrilerin temel özelliklerini anlamak için Frenet çatısı ve birinci 

eğriliği ele alalım. Düzlemsel regüler bir eğri 𝛼: 𝐼 ⟶ ℝ2  olsun, yani 𝛼′(𝑡) ≠ 0 

olsun. Bu durumda, 𝛼(𝑡)  eğrisinin Frenet çatısı {𝑡, 𝑛}  ve eğriliği 𝑘  şu şekilde 

tanımlanır: 

 

                  𝑡(𝑡) =
𝛼′(𝑡)

‖𝛼′(𝑡)‖
=

(𝛼1
′ (𝑡), 𝛼2

′ (𝑡))

√(𝛼1(𝑡))2 + (𝛼2
′ (𝑡))2

, 

𝑛(𝑡) =
(−𝛼2

′ (𝑡), 𝛼1
′ (𝑡))

√(𝛼1(𝑡))2 + (𝛼2
′ (𝑡))2

, 

  𝑘(𝑡) =
𝛼1𝛼2

′′ − 𝛼1
′′𝛼2

′

((𝛼1(𝑡))
2

+ (𝛼2
′ (𝑡))

2
)

3
2

, 

ve Frenet formülleri 

𝑡′ = 𝑘𝑛,
𝑛′ = −𝑘𝑡,

 

dir. Burada 𝑡(𝑡), 𝛼′(𝑡)  vektörünün normalizasyonu ile elde edilen birim tangent 

vektörüdür. 𝑛(𝑡) ise 𝛼′(𝑡) vektörünün saat yönünün tersine döndürülmesiyle elde 

edilen normalleştirilmiş birim normal vektördür. 𝑘(𝑡)  ise 𝛼  eğrisinin 𝛼(𝑡) 

noktasındaki eğriliğidir. Düzlemsel eğrilerde eğriliği ifade etmek için genellikle 

eğrinin eğrilik yarıçapı kullanılır. Eğrilik yarıçapı, eğrinin bir noktasındaki eğriliğin 

tersi olarak hesaplanır. Yani, eğrilik yarıcapı 

𝑅(𝑡) =
1

𝑘(𝑡)
 

dir. Eğrilik yarıçapı, bir eğrinin belirli bir noktasındaki eğrilik durumunu ifade eder. 

Düzlemsel bir eğrinin eğrilik yarıçapı, pozitif bir değerdir ve eğrinin dönme 

derecesini belirler. Eğrilik yarıçapı, eğrinin her noktasında farklı olabilir. Bu 



14 

nedenle, eğrilik yarıçapının her noktadaki değerlerinin hesaplanması, eğrinin 

şeklini ve dönüşlerini tam olarak anlamak için önemlidir. Eğrilik yarıçapı ne kadar 

küçükse, eğri o noktada daha keskin bir dönüş yapar. Eğrilik yarıçapı ne kadar 

büyükse, eğri o noktada daha düz bir şekilde ilerler. 

ℝ2 de Frenet çatısı {𝑡, 𝑛} olan birim hızlı bir eğri 𝛼: 𝐼 ⟶ ℝ2 olsun. O halde, 

α nın hız vektörü 𝑡 ile 𝑥 -ekseni arasındaki açı 𝜙 olmak üzere 

    ⟨𝑛, 𝑒1⟩ = ‖𝑛‖‖𝑒1‖cos(𝜙 +
𝜋

2
) 

olur. Burada, 𝑛 ve 𝑒1 birim vektör olduklarından 

                                     ⟨𝑛, 𝑒1⟩ = −sin𝜙                                                  (2.9) 

elde edilir. ⟨𝑡, 𝑒1⟩ = cos𝜙 olduğundan 

⟨𝑡′, 𝑒1⟩ = −𝜙′sin𝜙 

olup 𝑡′ = 𝑘𝑛 olduğundan 

                                           𝑘⟨n, 𝑒1⟩ = −𝜙′sin 𝜙                                  (2.10) 

elde edilir. (2.9) ve (2.10) eşitliklerinden  

                                                     𝑘 = 𝜙′ 

dir. 

 

Sonuç 2.1 ℝ2 de birim hızlı olmayan bir eğri 𝛼: 𝐼 ⟶ ℝ2 olsun. O halde, 𝛼 nın hız 

vektörü ile 𝑥 -ekseni arasındaki açı 𝜙 olmak üzere 

‖𝛼′‖𝜅𝑝 = 𝜙′ 

dir.
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3. ℝ𝟐
 DE KAPALI EĞRİLER 

ℝ2 düzleminde başlangıç noktası ve bitiş noktası aynı olan eğrilere kapalı 

eğriler denir. Diğer bir ifadeyle; ℝ2 düzleminde [𝑎, 𝑏] aralığı üzerinde tanımlanan 

  𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡)) 

parametrik bir fonksiyon ile belirlenen bir eğri 𝐶 olmak üzere eğrinin başlangıç 

noktası ve bitiş noktası için 

𝑥(𝑎) = 𝑥(𝑏) 

ise 𝐶 eğrisine kapalı eğri denir ve 

    • Kapalı eğrilerin uzunluğu, parametre aralığına ve eğrinin parametrik tanımına 

bağlı olarak değişir. 

    • Kapalı eğrilerin iç ve dış bölgeleri kesin bir şekilde ayrılır. Eğrinin iç bölgesi, 

eğrinin kendisi tarafından çevrelenen bölgedir. Dış bölge ise iç bölgenin dışında 

kalan alandır. 

 

3.1 Jordan Eğri Teoremi 

 

Riemann integralinin temelinde yatan önemli bir teorem olan Jordan Eğri 

Teoremi, kapalı eğrilerin iç ve dış bölgelerini tanımlar. 

ℝ2 düzleminde kapalı ve düzgün bir eğri 𝛼(𝑡) = (𝛼1(𝑡), 𝛼2(𝑡))  olsun. Bu eğri, 

belirli bir 𝑡  aralığında tanımlanır ve 𝑡 ’ye bağlı olarak 𝑥𝑂𝑦 − düzleminde bir 

noktaya karşılık gelir. Bu noktaları birleştiren eğri, Jordan eğrisini oluşturur. 

 

Teorem 3.1 (Jordan Eğri Teoremi) Kapalı bir eğrinin iç ve dış bölgeleri arasında 

herhangi bir nokta geçişi yoktur.  

 

Diğer bir ifadeyle, Jordan Eğri Teoremi, eğrinin iç ve dış bölgelerinin kesin bir 

şekilde ayrıldığını ve eğri üzerindeki noktaların yalnızca bir tarafı temsil ettiğini 

gösterir. Eğer bir nokta, eğri üzerindeyse ya içerde ya da dışarıda olabilir, ancak her 

iki tarafta birden olamaz. Eğer α(t) = (α1(t), α2(t)) parametrik denklemiyle 
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verilen α eğrisi, ℝ2 düzleminde kapalı ve düzgün bir eğri ise, α eğrisinin iç ve dış 

bölgeleri arasında herhangi bir nokta geçişi yoktur. Teoremdeki iki bölgelerden biri 

sınırlıdır, diğeri değildir. Sınırlı bileşene 𝛼 eğrisinin içi, diğerine de 𝛼 eğrisinin dışı 

denir. Basit bir kapalı 𝛼 eğrisiyle sınırlanan alandan bahsettiğimizde, 𝛼 eğrisinin iç 

alanını kastederiz. Şimdi, Jordan Eğri Teoremi’nin bir örneğini ele alalım. 

 

Örnek 3.1.1 Çember, en basit kapalı eğridir. Merkezi orjin ve yarıyapı 𝑟  olan 

çember, [0,2𝜋] olmak üzere her 𝑡 ∈ 𝐼 için  

 

𝛼(𝑡) = (𝑟cos(𝑡), 𝑟sin(𝑡)), 

 

olarak tanımlanan 𝛼: 𝐼 ⟶ ℝ2 fonksiyonu ile ifade edilebilir. Burada, 𝛼, 𝐼 üzerinde 

𝐶∞ − sınıfından ve [0,2𝜋)  üzerinde bire-birdir. Aynı zamanda da 𝛼(𝐼) , 

ℝ2düzleminde 𝑥2 + 𝑦2 = 𝑟2 bağıntısını sağlayan (𝑥, 𝑦) ∈ ℝ2noktalarının kümesi 

orjin merkezli ve 𝑟 yarıyaplı çemberin geometrik yeridir. Bu çember, ℝ2  içinde 

𝐶∞ −sınıfından bir Jordan eğrisidir. 

 

3.2 Sarım Sayısı ve Dönüş İndeksi 

 

Sarım sayısı ve dönüş indeksi, kapalı eğrilerin dönme özelliklerini açıklayan 

matematiksel kavramlardır. Bu kavramlar, eğrinin dönme ve dönüş özelliklerini 

analiz etmek için kullanılır. 

Sarım sayısı, bir eğrinin üzerindeki bir noktanın kaç kez döndüğünü ifade eder. 

Başka bir ifade ile, bir eğrinin sarım sayısı, eğrinin üzerindeki noktanın eğriyi 

dolaşırken yaptığı tam tur sayısıdır. Kapalı bir eğri düşündüğümüzde, bu eğrinin 

üzerindeki bir noktanın dönüş sayısı bir pozitif veya negatif tam sayı veya sıfır 

olabilir. Pozitif sarım sayısı, eğrinin saat yönünün tersine döndüğünü gösterirken, 

negatif sarım sayısı, eğrinin saat yönünde döndüğünü ifade eder. Sıfır sarım sayısı 

ise, noktanın eğri boyunca dönmediği anlamına gelir. 

 

Tanım 3.2.1 ℝ2  de yönlendirilmiş bir kapalı eğri 𝐶 , 𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡)), 𝑡 ∈

[𝑎, 𝑏]  ile tanımlansın ve 𝑃 , düzlemde 𝐶  eğrisinin üzerinde olmayan bir nokta 

olsun. O halde, 
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𝑓(𝑥(𝑡)) =
𝑥(𝑡) − 𝑃

|𝑥(𝑡) − 𝑃′|
 

olarak tanımlanan 𝑓: 𝐶 ⟶ ℝ fonksiyonuna, 𝐶 eğrisinin 𝑃 ye göre konum eşlemesi 

denir. Burada, 𝑥(𝑡)  noktası 𝐶  eğrisi etrafında bir tam tur attığında, görüntü 

noktası 𝑓(𝑥(𝑡))   etrafında birden fazla tur attığı açıktır. Bu tur sayısına, 𝐶 

eğrisinin 𝑃 noktasına göre sarma sayısı denir. 

 

Dönüş indeksi ise bir eğrinin üzerindeki dönüş sayısını belirtir. Diğer bir ifadeyle; 

bir eğrinin dönüş indeksi, eğrinin üzerindeki tam dönüş sayısını belirtir. Kapalı bir 

eğri düşündüğümüzde, eğrinin üzerindeki dönüş indeksi bir pozitif veya negatif tam 

sayı olabilir. Pozitif dönüş indeksi, eğrinin saat yönünün tersine döndüğünü 

gösterirken, negatif dönüş indeksi, eğrinin saat yönünde döndüğünü ifade eder. 

 

Tanım 3.2.2 ℝ2 de yönlendirilmiş bir kapalı eğri 𝐶, yay parametresi 𝑠 ∈ [0, 𝐿] ve 

uzunluğu 𝐿 olan 𝑥(𝑠)  yayı ile tanımlansın. O halde, 

ℎ(𝑥(𝑠)) = 𝑥′(𝑠) 

olarak tanımlanan ℎ: 𝐶 → 𝑇  sürekli fonksiyonuna, 𝐶  eğrisinin teğetsel eşlemesi 

denir. Burada, 𝑥(𝑠)  noktası 𝐶  eğrisi etrafında tam bir tur attığında, görüntü 

noktası ℎ(𝑥(𝑠)) de 𝑇 etrafında attığı tur sayısına, 𝐶 eğrisinin dönüş indeksi denir.  

 

Uyarı 3.2.1 Bir basit kapalı eğri, eğri boyunca artan bir parametre yönünde 

ilerliyorsa, bu eğri pozitif yönlüdür ve eğrinin içi sol tarafta kalır. Pozitif yönlü bir 

basit kapalı eğrinin teğet vektörleri de pozitif yönlüdür. 

 

3.3 Eğri Zarfları 

 

Eğrinin her noktasında teğet doğru çizildiğinde, bu doğruların oluşturduğu 

eğri sistemine eğri zarfları denir. Eğri zarfları, eğrinin şeklini, dönüşlerini ve 

kıvrımlarını ifade eden bir eğri ailesidir. Eğri zarfları, eğrinin teğet düzlemine, hız 

vektörlerine ve eğriliğine bağlı olarak belirlendiğinden eğrinin maksimum veya 

minimum eğrilik noktalarını, düzlük bölgelerini ve dönüş noktalarını gösterir. 

Dolayısıyla, bu zarflar, eğrinin özelliklerini ve şeklini analiz etmek için kullanılır.  
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Tek parametreli bir eğri ailesinin zarfı, aşağıdaki iki özelliği taşıyan bir 

eğridir: 

 1.  Her noktasında, ailedeki en az bir eğriye teğet olan noktalardan oluşur. 

 2.  Ailenin herhangi bir eğrisiyle en az bir noktada teğet olan bir eğridir 

Bir eğrinin eğri zarflarını anlamak için basit bir örnek ele alalım: 

Örneğin; bir eğrinin eğri zarflarını anlamak için ℝ2 düzleminde düzgün bir 𝛼(𝑡) =

(𝛼1(𝑡), 𝛼2(𝑡))  eğrisni alalım. 

 1.  𝛼(𝑡) = (𝛼1(𝑡), 𝛼2(𝑡)) eğrisi bir doğru ise 𝛼 nın eğri zarfları, tüm noktalarda 

doğrunun kendisidir. Çünkü, doğrunun her noktasında teğet doğrular çizildiğinde, 

bu doğrular, doğrunun kendisini, yani 𝛼 eğrisini ve eğri zarflarını oluşturur. 

  2.  𝛼(𝑡) = (𝛼1(𝑡), 𝛼2(𝑡)) eğrisi bir çember ise 𝛼 nın eğri zarfları, çemberin iç ve 

dış bölgelerinde farklıdır. Çünkü, çemberin dışında, eğri zarfları çemberi 

çevreleyen bir eğridir. Çemberin içinde ise, eğri zarfları çemberi oluşturan 𝛼 

eğrisinin kendisidir. 

 

Teorem 3.3 ℝ2 düzleminde 

 

𝑓(𝑥1, 𝑥2, 𝑡) = 0,                                                   (3.1) 

 

𝑡 parametreli bir eğri ailesinin denklemi ve bu ailenin bir zarfı  

 

                           𝑥1 = 𝜙(𝑡),    𝑥2 = 𝜓(𝑡),                                               (3.2) 

 

olsun. O zaman, 

 

 𝑓3(𝑥1, 𝑥2, 𝑡) = 0,                                                     (3.3) 

 

dir. Burada 𝑓3, 𝑓 nin 𝑡 ye göre kısmi türevidir. 

İspat. Her 𝑡 için  𝑓, 𝜙 ve 𝜓 sürekli farklılaşağında (3.1) ile verilen eğri ailesi ile 

zarf, (𝜙(𝑡), 𝜓(𝑡)) noktasında ortak bir teğete sahiptir. Dolayısıyla, (𝜙(𝑡), 𝜓(𝑡)) 

noktası (3.1) ile verilen ifadesini sağlayacağından her 𝑡 için 
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                 𝑓(𝜙(𝑡), 𝜓(𝑡), 𝑡) = 0,                                      (3.4) 

 

dir. (3.4) ifadesinin 𝑡 ye göre türev alırsak zincir kuralından 

 

𝑓1(𝜙(𝑡), 𝜓(𝑡), 𝑡)𝜙′(𝑡) + 𝑓2(𝜙(𝑡), 𝜓(𝑡), 𝑡)𝜓′(𝑡) + 𝑓3(𝜙(𝑡), 𝜓(𝑡), 𝑡) = 0        (3.5) 

elde edilir. Burada 𝑓1 , 𝑓2  ve 𝑓3 , sırasıyla, 𝑓  nin  𝑥 , 𝑥2  ve 𝑡  ye göre kısmi 

türevleridir. Öte yandan, (3.1) ile verilen ailesinden bir eğrinin eğimi  

 

𝑑𝑥2

𝑑𝑥1
=

𝑓1(𝑥1,𝑥2,𝑡)

𝑓2(𝑥1,𝑥2,𝑡)
                                                 (3.6) 

 

ve  (3.2) ile verilen eğri ailesinin zarfının eğimi ise  

 

𝑑𝑥2

𝑑𝑥1
=

𝜓′(𝑡)

𝜙′(𝑡)
,                                              (3.7) 

 

dir. Her 𝑡 için (3.1) ile verilen eğri ailesi ile zarf, (𝜙(𝑡), 𝜓(𝑡))  noktasında ortak bir 

teğete sahip olduğundan  

 

𝜓′(𝑡)

𝜙′(𝑡)
=

𝑓1(𝜙(𝑡), 𝜓(𝑡)  , 𝑡)

𝑓2(𝜙(𝑡), 𝜓(𝑡)  , 𝑡)
 

veya  

 

𝑓1(𝜙(𝑡), 𝜓(𝑡), 𝑡)𝜙′(𝑡) + 𝑓2(𝜙(𝑡), 𝜓(𝑡), 𝑡)𝜓′(𝑡) = 0   (3.8) 

 

elde edilir. (3.5) ve (3.8) eşitliklerinden 𝑓3(𝜙(𝑡), 𝜓(𝑡), 𝑡) = 0 dir.
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4. KAPALI DIŞBÜKEY EĞRİNİN UZUNLUĞU VE ALANI 

Şimdi ℝ2 düzleminde [𝑎, 𝑏] aralığı üzerinde tanımlanan 

𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡)) 

parametrik ifadesiyle belirli pozitif yönlendirilmiş bir kapalı dışbükey 𝐶 eğrisini ve 

𝐶 eğrisinin içindeki herhangi bir noktayı sabit çatının orijini 𝑂 olarak kabul edelim. 

Eğer 𝑝, 𝑂 noktasının 𝐶 eğrisinin 𝑥 = (𝑥1, 𝑥2) noktasındaki pozitif yönlendirilmiş 𝑙 

teğetine olan dik uzaklığı ve 𝜃, bu dikme ayağı ile 𝑥 -ekseni arasındaki açı ise 𝑝 yi 

𝜃 açısına bağlı tek değişkenli ve peryodu 2π olan bir fonksiyon olarak düşünebiliriz. 

Bu durumda, 𝑙 teğet doğrusunun denklemi  

 

           𝑥1cos𝜃 + 𝑥2sin𝜃 = 𝑝(𝜃)                               (4.1) 

 

şeklinde yazılabilir. Burada (4.1) ile verilen tün doğruların zarfı, 𝐶 eğrisidir. (4.1) 

ile verilen teğetin, 𝐶 eğrisine değme noktası olan 𝑥 = (𝑥1, 𝑥2)  yi belirlemek için 

(4.1) ifadesinin 𝜃 ya göre kısmi türevini alırsak  

 

−𝑥1sin𝜃 + 𝑥2cos𝜃 = 𝑝′(𝜃)                                  (4.2) 

 

elde edilir. Burada, 𝑝′, 𝜃 ya göre kısmi türevi göstermektedir. 

(4.1) ile (4.2) eşitliklerinden 𝑐 eğrisinin parametrik gösterimi 

 

{
𝑥1 = 𝑝(𝜃)cos𝜃 − 𝑝′(𝜃)cos𝜃,

𝑥2 = 𝑝(𝜃)sin𝜃 + 𝑝′(𝜃)cos𝜃,
                                  (4.3) 

 

olarak elde edilir. Burada, 𝑐 , 𝐶  eğrisinin parametresi olur. Böylece, 𝜃  ve 𝑝(𝜃) 

verildiğinde, kapalı dışbükey 𝐶  eğrisi tek bir 𝑥(𝑥1, 𝑥2)  noktası belirleyebiliriz. 

Bunun tersi de doğrudur. Bu nedenle, (𝜃, 𝑝(𝜃))  ikilisine 𝐶  eğrisi üzerideki 

𝑥(𝑥1, 𝑥2) noktasının kutupsal teğet koordinatları denir. 

(4.3) ifadesinin 𝜃 ya göre türevi alınırsa 

 

 
𝑥1

′ = −[𝑝(𝜃) + 𝑝′′(𝜃)]sin𝜃,

𝑥2
′ = [𝑝(𝜃) + 𝑝′′(𝜃)]cos𝜃,

                                           (4.4) 
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yazılabilir. 𝐶 eğrisinin yay uzunluğu 𝑠 olmak üzere  

𝑠 = ∫

2𝜋

0

√(𝑥1
′ )2 + (𝑥2

′ )2𝑑𝜃 

dir ve burada 𝑠, 𝜃 nın monoton artan bir fonksiyonu olup (4.4) ifadesinden 

𝑠 = ∫

2𝜋

0

(𝑝(𝜃) + 𝑝′′(𝜃))𝑑𝜃 

dir. Öyleyse, yukarıdaki eşitlikten 0 ≤ 𝜃 < 2𝜋  için 𝐶 eğrisinin eğrilik yarıçapı  

 

𝜌 =
𝑑𝑠

𝑑𝜃
= 𝑝(𝜃) + 𝑝′′(𝜃) > 0,                              (4.5) 

 

olarak bulunur. 

Şimdi, 𝐶 eğrisinin uzunluğu 𝐿 olmak üzere 

 

𝐿 = ∫
𝐶

𝑑𝑠 = ∫
2𝜋

0

𝑑𝑠

𝑑𝜃
                                                (4.6) 

 

olup (4.5) ifadesini kullanarak 

 

 𝐿 = ∫
2𝜋

0
𝑝(𝜃)𝑑𝜃 + [𝑝′(𝜃]0

2𝜋,                                   (4.7) 

 

elde edilir. Burada, 𝑝 , peryodu 2𝜋  olan bir fonksiyon olduğundan 𝑝′(𝜃)  da 2𝜋 

periyodlu bir fonksiyon olacağından 𝑝′(0) = 𝑝′(2𝜋) dir. Bu yüzden yukarıdaki 

ifade  

𝐿 = ∫
2𝜋

0
𝑝(𝜃)𝑑𝜃,                                            (4.8) 

olarak yazılabilir  

𝐴, 𝐶 eğrisi tarafından sınırlanan bölgenin alanı olsun. O halde, 

 

𝐴 =
1

2
∫
𝐶

𝑝(𝜃)𝑑𝑠                                      (4.9) 
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ve (4.5) eşitliğinden 

 𝐴 =
1

2
∫
2𝜋

0
𝑝(𝜃)[𝑝(𝜃) + 𝑝′′(𝜃)]𝑑𝜃 

                    =
1

2
(∫

2𝜋

0
𝑝2(𝜃)𝑑𝜃 + ∫

2𝜋

0
𝑝(𝜃)𝑝′′(𝜃)𝑑𝜃) 

dir. Burada 

∫

2𝜋

0

𝑝(𝜃)𝑝′′(𝜃)𝑑𝜃 = [𝑝(𝜃)𝑝′(𝜃)]0
2𝜋 − ∫

2𝜋

0

𝑝′2(𝜃)𝑑𝜃, 

olup 𝑝 ve 𝑝′, 2𝜋 periyodlu birer fonksiyon olduğundan 

∫

2𝜋

0

𝑝(𝜃)𝑝′′(𝜃)𝑑𝜃 = − ∫

2𝜋

0

𝑝′2(𝜃)𝑑𝜃 

dir. Dolayısıyla,  

 

𝐴 =
1

2
∫
2𝜋

0

[𝑝2(𝜃) − 𝑝′2(𝜃)]𝑑𝜃                           (4.10) 

yazılabilir. 

 

 

4.1 Paralel Eğriler 

 

Tanım 4.1 ℝ2 düzleminde iki eğrinin karşılıklı noktaları arasındaki uzaklık sabit 

ve karşılıklı noktalardaki eğrilerin teğetleri paralel ise, bu iki eğri paraleldir denir.  

 

Örneğin, bir eğrinin iki involüs’ü paralel eğrilerdir. 

 

Şimdi 𝑛 herhangi bir pozitif sayısı olmak üzere, kapalı bir dışbükey 𝐶 eğrisinin her 

bir normali boyunca eğrinin dışındaki uzunluğu 𝑛  olsun. Bu uzunluğun bitim 

noktalarının belirttiği eğri 𝐶𝑛, 𝐶 eğrisinin bir paralel eğrisidir. 

 

Önerme 4.1 𝐶𝑛, bir kapalı dışbükey eğridir.  
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İspat. (𝜃, 𝑝𝑛(𝜃)), 𝐶 eğrisi üzerinde kutupsal teğet koordinatları (𝜃, 𝑝(𝜃)) olan bir 

noktaya karşılık gelen, 𝐶𝑛 eğrisi üzerindeki noktanın kutupsal teğet koordinatları 

olsun. O zaman 

 

                        𝑝𝑛(𝜃) = 𝑝(𝜃) + 𝑛                                             (4.11) 

 

olup (4.5) eşitliğini kullanarak𝐶𝑛 nin eğrilik yarıçapı 

 

   𝜌𝑛 = 𝜌 + 𝑛                                                (4.12) 

 

olarak elde edilir. Burada, (4.11),  𝑝𝑛(𝜃) , 𝜃  nın 2𝜋  peryotlu bir fonksiyonudur. 

Ayrıca, hem 𝜌  hem de 𝑛  pozitif olduğundan (4.12) eşitliğinden 𝜌𝑛 > 0 dir. 

Dolayısıyla,𝐶𝑛, bir kapalı dışbükey eğridir.     

 

𝐿𝑛  ve 𝐴𝑛 , sırasıyla, 𝐶𝑛eğrisinin uzunluğu ve alanı olsun. O halde, (4.8), 

(4.10) ve (4.11) ifadelerini kullanarak  

 

 𝐿𝑛 = 𝐿 + 2𝑛𝜋,                                             (4.13) 

 

ve 

 

 𝐴𝑛 = 𝐴 + 𝑛𝐿 + 𝑛2𝜋,                                      (4.14) 

 

olarak kolayca elde edebiliriz. 

 

Teorem 4.1 Kapalı bir dışbükey eğrinin uzunluğu (veya alanı), en büyük ve en 

küçük eğrilik yarıçapına sahip eğrinin oskülatör çemberlerinin uzunlukları (veya 

alanları) arasındadır.  

 

İspat. 𝜌1  ve 𝜌2 , sırasıyla, uzunluğu 𝐿  ve alanı 𝐴  olan kapalı bir dışbükey 𝐶 

eğrisinin eğrilik yarıcağının en büyük ve en küçük değeri olsun. O zaman (4.5), 

(4.6) ve (4.9) eşitliklerinden  
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2𝜋𝜌1 > 𝐿 > 2𝜋𝜌2,                                    (4.15) 

 

Ve 

 

𝜌1 ∫
2𝜋

0
𝑝(𝜃)𝑑𝜃 > 2𝐴 > 𝜌2 ∫

2𝜋

0
𝑝(𝜃)𝑑𝜃                  (4.16) 

 

elde ederiz. (4.6) eşitliğinde 

∫

2𝜋

0

𝑝(𝜃)𝑑𝜃 = ∫

2𝜋

0

𝜌(𝜃)𝑑𝜃 

Olduğundan 

2𝜋𝜌1 > ∫
2𝜋

0
𝜌(𝜃)𝑑𝜃 > 2𝜋𝜌2                                 (4.17) 

 

dir. Dolayısıyla, (4.16) ile (4.17) eşitsizliklerinden 

 

𝜋𝜌1
2 > 𝐴 > 𝜋𝜌2

2,                                    (4.18) 

 

elde edilir.     

 

Teorem 4.2 Belirli bir 𝐷 çapına sahip tüm kapalı dışbükey eğriler arasında, sabit 

D genişliğine sahip olanlar en büyük uzunluğa sahiptir.  

 

İspat. 𝐶 , kutup teğet koordinatları (𝜃, 𝑝(𝜃))   olan 𝐿  uzunluğunda kapalı bir 

dışbükey eğri olsun. 𝑝(𝜃), 2𝜋 periyodlu periyodik bir fonksiyon olduğundan  

 

𝑝(𝜃) =
1

2
𝑎0 + (𝑎𝑛

∞

𝑛=1
cos𝑛𝜃 + 𝑏𝑛sin𝑛𝜃),              (4.19) 

 

Fourier serisi ile ifade edilebilir. Burada 

 

𝑎0 =
1

𝜋
∫
2𝜋

0
𝑝(𝜃)𝑑𝜃,                              (4.20) 
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dir. (4.8) ifadesinden  

 

𝐿 = 𝜋𝑎0                                         (4.21) 

 

olup (4.20) ifadesini  

𝑎0 =
1

𝜋
∫

𝜋

0

[𝑝(𝜃) + 𝑝(𝜃 + 𝜋)]𝑑𝜃 

olarak yazabiliriz. Herhangi bir doğrultudaki 𝐶  eğrisinin genişliği 𝐷  den büyük 

olmadığı için 

𝑝(𝜃) + 𝑝(𝜃 + 𝜋) ≤ 𝐷, 

dir. Dolayısıyla, 𝑎0 ≤ 𝐷 ve (4.21) eşitliğinden 

 

𝐿 ≤ 𝜋𝐷,                                              (4.22) 

 

dir. (4.22) ifadesindeki eşitliğin ancak ve ancak 𝐶 eğrisinin sabit genişliği 𝐷 olduğu 

durumlarda geçerli olduğu açıktır.     

 

Sonuç 4.1 Sabit 𝐷 genişliğine sahip tüm kapalı dışbükey eğrilerin uzunluğu aynıdır 

ve 𝜋𝐷 dir.  

 

Teorem 4.3 Belirli bir uzunluktaki tüm basit kapalı eğriler arasında, çember en 

geniş alanı sınırlar. Başka bir deyişle, eğer  𝐴, 𝐿 uzunluğundaki bir basit kapalı 

eğri tarafıdan sınırlanmış alan ise, 

 

𝐿2 − 4𝜋𝐴 ≥ 0,                                       (4.23) 

 

dir. Burada eşitlik ancak ve ancak 𝐶 eğrisi bir çember olduğunda geçerlidir.  

 

Sonuç 4.2 Alanı 𝐴 ve çapı 𝐷 olan bir kapalı dışbükey 𝐶 eğrisi için 

 

𝐴 <
1

4
𝜋𝐷2,                                    (4.24) 

 

dir. Burada eşitlik ancak ve ancak 𝐶 eğrisi bir çember olduğunda geçerlidir.
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