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ABSTRACT 

DETECTION OF IMMUNE TARGETABLE CANCER BIOMARKERS IN 
THE CANCER GENOME ATLAS DATASETS 

 
Talip ZENGİN 

 
Doctoral (Ph.D.) Thesis 

Graduate School of Natural and Applied Sciences 
Department of Bioinformatics 

Supervisor: Assist. Prof. Dr. Tuğba SÜZEK 
JUNE 2023, 144 pages 

 
Advances in bioinformatics data analysis have enabled the identification of genomic, 

transcriptomic, and epigenetic variations in tumor samples, that can be used for 

personalized cancer treatment. Cancer immunotherapy has been developed 

specifically as an advanced cancer therapy, involved in the interactions between 

cancer cells and immune cells in the tumor microenvironment, which are the basis of 

cancer cell for immune escape. The efficacy of immunotherapy can be affected by 

genomic alterations, tumor neoantigens, immune phenotype, and other biomarkers in 

the tumor microenvironment. Technological advancements have permitted more in-

depth investigation into the link between cancer and the immune system, which has 

led to advancements in biomarker discovery. Since The Cancer Genome Atlas 

(TCGA) project provides both molecular data including simple nucleotide variations 

(SNVs), copy number variations (CNVs), DNA methylation, gene expression, 

miRNA expression, and clinical data such as drug responses and survival data, these 

data can be used for many studies such as biomarker detection and drug response. In 

this project, we focused on tumor-associated proteins through integrative clusters to 

analyze predictive and prognostic markers to compare clinical variables and 

characteristics of patient clusters. Finally, we developed a web tool that assists users 

in querying data and visualizing results specific to cancer, cohorts, and biomarkers. 

The web tool provides an interface to combine candidate biomarkers which affect 

survival statistics of patient clusters/sub-cohorts. 

Keywords: Cancer, immunotherapy, integrative clustering, iCluster, TCGA 
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ÖZET 

KANSER GENOM ATLASI VERİ SETLERİNDE BAĞIŞIKLIKLA 
HEDEFLENEBİLEN KANSER BİYOBELİRTEÇLERİNİN TESPİTİ 

 
Talip ZENGİN 

 
Doktora Tezi 

Fen Bilimleri Enstitüsü 
Biyoinformatik Anabilim Dalı 

Danışman: Dr. Öğretim Üyesi Tuğba SÜZEK 
HAZİRAN 2023, 144 sayfa 

 
Biyoinformatik veri analizindeki gelişmeler, tümör örneklerinde kişiselleştirilmiş 

kanser tedavisi için kullanılabilecek genomik, transkriptomik ve epigenetik 

varyasyonların tanımlanmasını sağlamıştır. Kanser immünoterapisi, özellikle kanser 

hücreleri ile tümör mikroçevresindeki immün hücreler arasındaki etkileşimlerde yer 

alan ve bağışıklık sisteminden kaçışı durduran ileri bir kanser tedavisi olarak 

geliştirilmiştir. İmmünoterapinin etkinliği, genomik değişiklikler, tümör neo-

antijenleri, immün fenotip ve tümör mikroçevresindeki diğer biyobelirteçlerden 

etkilenebilir. Teknolojik gelişmeler, kanser ve bağışıklık sistemi arasındaki 

bağlantının daha derinlemesine araştırılmasına izin vermiş ve bu da biyobelirteç 

keşfinde ilerlemelere yol açmıştır. Kanser Genom Atlası (TCGA) projesi hem basit 

nükleotid varyasyonları (SNV'ler), kopya sayısı varyasyonları (CNV'ler), DNA 

metilasyonu, gen ifadesi, miRNA ifadesi gibi moleküler verileri hem de ilaç yanıtları 

ve sağ kalım verileri gibi klinik verileri sağladığından, bu veriler biyobelirteç tespiti 

ve ilaç yanıtı gibi birçok çalışma için kullanılabilir. Bu projede, hasta kümelerinin 

klinik değişkenlerini ve özelliklerini karşılaştırmak için öngörücü ve prognostik 

belirteçleri analiz etmek üzere bütünleştirici kümeler aracılığıyla tümörle ilişkili 

proteinlere odaklandık. Son olarak, kansere, hasta gruplarına ve biyobelirteçlere özgü 

sonuçları sunan ve görselleştiren bir web aracı geliştirdik. Web aracı, hasta 

kümelerinin/alt hasta gruplarının sağ kalım istatistiklerini etkileyen aday 

biyobelirteçleri birleştirmek için bir ara yüz olarak kullanılabilir. 

 
Anahtar Kelimeler: Kanser, immunoterapi, bütünleştirici kümeleme, TCGA
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1. CHAPTER 

INTRODUCTION 

Somatic DNA mutations and epigenetic alterations that change transcriptional levels, 

protein function, and cell phenotype are the hallmarks of cancer. Therefore, molecular 

data such as mutations, gene expression, or DNA methylation can provide insight into 

the mechanism underlying carcinogenesis and progression. At the level of genomic 

and epigenomic alterations, multi-omics cancer analysis provides a broader 

understanding of these disorders (Sengupta et al., 2018; Xu et al., 2019). During 

carcinogenesis and progression, genomic variations produced by DNA copy number 

variations (CNVs), or simple nucleotide variations (SNVs) are prominent (Li et al., 

2017; Ren et al., 2019; Yang et al., 2017). The variability of cancer phenotype is also 

influenced by epigenetic regulations of DNA methylation in the cancer genome (Yang 

et al., 2020). Omics studies reveal the enormous variability of genomic and 

epigenomic dysregulation, notably in some malignancies, and copy number variation 

(CNV) plays a significant regulatory role in both transcriptional abnormalities and 

tumorigenesis. (Hull et al., 2020). 

For the integrated analysis of numerous forms of -omics data, many methodologies 

and findings have been published (Kristensen et al., 2014; Richardson et al., 2016). 

For instance, Shen et al. created the integrative clustering approach (iCluster) to 

identify the molecular subgroups of colon, lung, and breast malignancies (Shen et al., 

2009). DNA methylation, an epigenetic marker extensively investigated in the cancer 

genome, is widely associated with various types of cancer. Studies have revealed that 

cancer often exhibits both reduced and increased DNA methylation on a genome-wide 

scale, particularly in specific gene promoters (Irizarry et al., 2009). The regulation of 
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gene expression is frequently intertwined with epigenetic factors such as chromatin 

structure and DNA methylation. To comprehensively comprehend the significance of 

DNA methylation in cancer, it is essential to investigate the connection between DNA 

methylation and gene expression (Fleischer et al., 2014; Gevaert et al., 2015). 

Research has demonstrated an inverse relationship between DNA methylation in 

promoter regions and gene expression, indicating that higher levels of DNA 

methylation in these regions are associated with lower gene expression. Conversely, 

DNA methylation in gene bodies has been found to have a positive correlation with 

gene expression, suggesting that increased DNA methylation within these regions is 

linked to higher levels of gene expression (Shen et al., 2013). 

Research on cancer types is used to identify cancer biomarkers, to understand the 

tumor formation process, or to characterize cancer subgroups that show different 

clinical results using integrated biological and clinical data of a group of patients with 

a particular type of cancer. Genome analysis of a cancer patient is performed to 

identify genomic variations that can be used for specially designed cancer treatment 

(Vazquez et al., 2012). Information obtained from cancer genome analysis on cancer 

type can be used in determining the patient's cancer type and analyzing the 

biomarkers of the tumor. Therefore, the best chemical components can be determined 

specifically for a patient. In ordinary clinical practice, patients are grouped according 

to their general characteristics (age, smoking status, and performance status) and 

tumor (tumor size, histological stage, expression of several proteins, and metastasis 

status). However, such grouping does not take into account the molecular 

characteristics of the tumor in depth. Therefore, methods that have recently become 

available such as gene expression profiling and various genomic tests have been 

developed to determine treatment and predict clinical outcomes (Cardoso et al., 2016). 

Personalized cancer therapy needs a strong knowledge of cancer genomes, expertise 

with cancer research analytical methodologies, knowledge of targeted therapeutic 

action mechanisms, and strategies for organizing and comprehending large data sets. 
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Identifying medications projected to be effective based on the genetic profile of a 

patient's tumor is perhaps the most difficult task (Schilsky et al., 2014). 

Despite advances in cancer treatment, there are subgroups of patients who do not 

respond to traditional chemotherapy treatments or whose disease has relapsed. 

Recently, researchers focused on the role of the immune system in cancer control. The 

escape of cancer cells from the immune response is an important sign of cancer 

(Hanahan and Weinberg, 2011; Beck and Blanpain, 2013). It is also known that the 

interaction between immune cells and cancer cells in microenvironment of the tumor 

is the basis for the cancer cell escaping immune response. To solve this problem, 

cancer immunotherapy has been developed as a treatment method for various 

malignancies. Cancer immunotherapy involves the development of strategies that 

leverage the mechanisms underlying the interaction between immune cells and cancer 

cells within the tumor microenvironment. Until now, more than 100 monoclonal 

antibodies (mAbs) have been approved by the US Food and Drug Administration 

(FDA) for treatment of cancer and other various human diseases. These antibodies 

possess the ability to selectively bind to specific antigens and elicit cytotoxic effects 

by either neutralizing them or triggering programmed cell death (Jin et al., 2022). 

Additionally, they have the capability to stimulate innate immune responses, 

complement-dependent cytotoxicity (CDC), antibody-dependent cellular cytotoxicity 

(ADCC), and antibody-dependent cellular phagocytosis (ADCP) (Figure 1.1). 
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Figure 1.1. Mechanisms of tumor cell killing by antibodies. (Taken from Scott et al., 2012) 

Expanding on the accomplishments of immunoglobulin G (IgG) mAbs, alternative 

therapeutic options have gained recognition and started to be utilized. These options 

include other antibody formats such as antibody fragments, non-IgG scaffold proteins, 

and bispecific antibodies (BsAbs), and as well as antibody derivatives like antibody-

drug conjugates (ADCs) and immunocytokines (Figure 1.2) for a wide range of 

cancers (Jin et al., 2022). The effectiveness of an antibody in combating tumors can 

be significantly enhanced by attaching a potent cytotoxic small molecule to the 

antibody, resulting in antibody-drug conjugates (ADCs). ADCs have the capacity to 

selectively transport potent small-molecule drugs directly to cancer cells, ensuring 

targeted and precise delivery. of interest, leading to their programmed cell death 

(Figure 1.2). The FDA has already approved more than 10 ADCs for the treatment of 

cancer, and over 80 ADCs are currently being investigated in clinical trials. In 

addition, antibodies can also be conjugated with various other types of molecules such 

as radionuclides, protein toxins and oligonucleotides (Jin et al., 2022).  
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Bispecific antibodies (BsAbs) possess the ability to bind simultaneously to two 

distinct antigens. A bispecific antibody (BsAb) known as a bispecific T cell engager is 

characterized by having one arm that specifically targets CD3 on T cells and another 

arm that recognizes specific proteins present on tumor cells. This interaction activates 

T cells, enabling them to eliminate the malignant cells (Jin et al., 2022). An example 

of a pioneering BsAb called blinatumomab, which can bind to CD19 and CD3, 

received FDA approval in 2014 for treating B cell precursor acute lymphoblastic 

leukemia. In addition to their binding ability to T cells, bispecific antibodies (BsAbs) 

have been engineered to bind different immune cells, including natural killer (NK) 

cells and macrophages, in the context of cancer therapy (Figure 1.2). Another 

innovative category of antibody-based immunotherapies is antibody-cytokine fusion 

proteins, known as immunocytokines. A variety of very tiny proteins known as 

cytokines are essential for controlling immune responses. Proinflammatory cytokines 

can be administered systemically, however doing so frequently causes significant off-

target damage, which limits their effective dose and therapeutic potential. 

Immunocytokines have been developed to address this issue. Cytokines combine with 

antibodies or antibody fragments to form these immunocytokines. Through this 

fusion, off-target toxicity is reduced and the therapeutic effectiveness of 

immunomodulatory cytokines such as IL-2, IL-12, and TNF in the tumor 

microenvironment is increased (Figure 1.2). This approach aims to activate anti-

cancer immune responses while minimizing systemic side effects (Jin et al., 2022). 
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Figure 1.2. Therapeutic antibody types and target proteins. a) TCR-mimic antibody; b) IgG and 
antibody fragments; c) Antibody-drug conjugate (ADC); d) Bispecific antibody and Antibody-cytokine 
fusion protein. (Taken from Jin et al., 2022) 

Monoclonal antibodies (mAbs) typically bind to antigens on the surface of cells, 

whereas many cancer-associated proteins are located inside the cell. On the other 

hand, T cell receptors (TCRs) can recognize small parts of intracellular proteins 

presented by major histocompatibility complex (MHC). To target proteins of interest 

within tumor cells or other cells, researchers are using antibodies that mimic the 
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epitope-recognition segment of TCRs, known as TCR mimic (TCRm) antibodies 

(Figure 1.2). These TCRm antibodies combine the ability to target pMHC with the 

robustness typically found in IgG mAbs, offering improved potential for therapeutic 

applications (Jin et al., 2022). 

In the past ten years, there has been a significant shift towards antibody therapeutics 

which can induce immune response against cancer cells. Immune-checkpoint 

inhibitors (ICI) which are first generation of antibody immunotherapies, block 

interactions between receptors and ligands involved in dampening the activation or 

function of T cells. Although ICIs have notable benefits for treatment of many cancer 

types, some patients cannot benefit from ICIs. Certain types of tumor immune 

microenvironments (TIME) have higher chance to respond to ICIs. By going deeper 

into the complexity of the TIME, advanced biomarkers can be discovered to identify 

patient clusters which show better response to ICIs (Binnewies et al., 2018).  

It is crucial to predict the responsiveness to ICIs based on analysis of tumor infiltrated 

immune cell composition and their activity states with their receptor repertoires. 

Existing research has primarily focused on establishing tumor microenrivonment data 

using available techniques such as immunohistochemistry or RNAseq of bulk tissue. 

CIBERSORT (Newman et al., 2015) and XCell (Aran et al., 2017) can be used to 

estimate the fractions of tumor infiltrated immune cells using bulk RNAseq data. 

Immunoscore (Bindea et al., 2013), on the other hand, combines immuno-

histochemistry and gene expression to predict outcome of clustered patients. 

Exploring new techniques such as single cell sequencing and advancing the resolution 

of TIME data will be essential to predict effectiveness of current therapies and to 

develop future immunotherapies (Binnewies et al., 2018). 

Immune checkpoint proteins have the main function to prevent autoimmunity and 

tissue damage during pathogenic infections. These proteins are inhibitory receptors 

expressed on the surface of T cells and tissue cells and prevent T cells from attacking 

tissue cells (Pardoll et al., 2012). In many malignancies, immune checkpoint 
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inhibitors (ICIs) treatment brought a new opportunity, with considerable survival 

improvements. Antibodies against Cytotoxic T-lymphocyte protein 4 (CTLA4), 

Programmed Cell Death 1 (PD-1) or Programmed Cell Death-Ligand 1 (PD-L1) have 

been used as second or first treatment option in solid tumors (Figure 1.3). Despite 

advancements in clinical therapy with ICIs, most of the patients cannot give response 

them. Only 40–45% of the melanoma patients show response to first line nivolumab 

or pembrolizumab in first-line treatment and 20% of non-small cell lung cancer 

(NSCLC) patients in second-line treatment (Robert et al., 2015; Garon et al., 2015; 

Brahmer et al., 2015). 

 

Figure 1.3. Mechanisms of immune reaction to target cell and possible antibody therapeutics. 
Interaction of T cells with malignant cells, and the mechanisms of immune-checkpoint blockade. 
(Adapted from Johnson et al., 2022) 

More research has been conducted in recent years to develop predictive biomarkers 

for the effectiveness of ICIs, and a thorough understanding of tumor biomarkers has 

been acquired. Understanding of the genomic changes, tumor neoantigens, immune 
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phenotype in the tumor microenvironment, and liquid biopsy biomarkers have made 

many new advances in this area. Various biomarker discovery methodologies have 

evolved as such as multiplex immunohistochemistry and single cell sequencing. The 

predictive biomarkers aid in the discovery of ICI therapeutic mechanisms and 

processes of tumor-host immune interaction in order to better understand tumor 

prognosis and drug response/resistance mechanisms (Bai et al., 2020). 

PD-1/PD-L1 Expression: Tumor cells that produce the PD-L1 protein can block 

CD8+ "killer" T lymphocytes from destroying tumors by turning them off (through 

the PD-1 receptor). The presence of PD-L1 in tumors is utilized as the major 

biomarker for determining whether individuals may benefit from these 

immunotherapies. Patients who have tumor with strong expression of PD-L1 can react 

(Taube et al., 2014). 

Tumor Infiltrated Lymphocytes: The fraction of tumor infiltrated CD8+ T cells within 

tumors estimated by Immunoscore (Angell and Galon, 2013), is linked to improved 

outcomes in cancer patients, independently of therapy. To protect themselves from 

immune attack, tumors commonly produce the PD-L1. Furthermore, good patient 

responses have been linked to increased T cell diversity. If we consider the fraction of 

T cells PD-1/PD-L1 expression, we can have better predictions (Tumeh et al., 2014). 

Tumor Mutations: Mutated proteins that highlight tumors and give targets - 

neoantigens - for the immune system to attack. Tumor mutation burden (TMB) is a 

biomarker that measures how many nonsynonymous mutations a tumor acquires per 

mega-base (Mb) of DNA. The higher number of mutations is correlated with higher 

number of protein mutations and neoantigens which are targetable by immune system. 

As a result, cancer patients with a high TMB have been found to be substantially more 

likely to react to checkpoint immunotherapy. TMB levels are also linked to previous 

immune responses and PD-1/PD-L1 expression. Patients' responses to anti-CTLA-4 

checkpoint immunotherapy are also influenced by the tumor's genetic state (Tumeh et 

al., 2014). Some cancers lose their capacity to repair DNA, resulting in highly 



 

10 

mutated tumors with high microsatellite instability (MSI-H) and deficient mismatch 

repair (dMMR). MSI-H/dMMR tumors can give better response to ICIs because their 

tumors are frequently expressing PD-L1 and have infiltrated killer T cells. For 

example, MSI-H colorectal cancer (CRC) samples have shown significantly stronger 

responses to immune checkpoint inhibitors (ICIs) (Binnewies et al., 2018). Merck's 

KEYTRUDA (pembrolizumab), an anti-PD-1 antibody, was authorized in May 2017 

as the first medication for patients with MSI-H/dMMR solid tumors (Bai et al., 2020). 

Some tumor mutations have been linked to primary (Shin et al., 2017) and acquired 

(Zaretsky et al., 2016) immunotherapy resistance. Other mutations, on the other hand, 

can be used to develop personalized immunotherapies such as vaccines that trigger a 

patient's cancer-specific tumor-targeting immune responses. These personalized 

vaccinations are now being tested in several cancer types in clinical studies. 

Tumor-Associated Proteins: Up-regulated gene expression of biomarkers can be 

utilized in immunotherapy to target cancer cells. HER2, a growth-related protein 

expressed in healthy cells but frequently produced at unusually high levels in cancer 

cells, is one such example. Another example is Cancer/testis antigen, typically 

expressed in adult testicular tissue, but tumor cells may stimulate Cancer/testis 

antigen synthesis inappropriately. Cancer/testis antigen expression has been linked to 

more aggressive ovarian cancer (Szender et al., 2017). Furthermore, cells infected 

with cancer related viruses can produce unusual viral proteins, served as therapeutic 

targets. 

It's doubtful that one ideal biomarker will be relevant in all instances, as the value of 

many biomarkers will likely vary depending on the kind of cancer and 

immunotherapy employed. Particular cancer or tumor types may have specific 

biomarkers. Multiple biomarker panels will be created in the future to give physicians 

with the most complete and actionable therapies. Discovering and verifying novel 

biomarkers is still an important topic of study. Technological advancements that allow 

for deeper investigation will most likely be linked to developments in biomarker 

discovery. New approaches may potentially make it possible to obtain biomarker 
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information in a less intrusive manner than old procedures. Clinical trials will also be 

critical in this advancement because they give clinicians a setting to improve 

immunotherapy effectiveness. 

The Cancer Genome Atlas (TCGA) Pan-Cancer project provides data sets of 

thousands of cancer patients, including simple nucleotide variations (SNVs), gene 

expression, miRNA expression, DNA methylation, copy number variations (CNVs), 

clinical and biopsy sample data. TCGA includes data for 33 tumor types, including 

breast invasive carcinoma (BRCA), glioblastoma multiforme (GBM), ovarian serous 

cystadenocarcinoma (OV), and lung adenocarcinoma (LUAD) (The Cancer Genome 

Atlas Research Network, 2013). The TCGA database is a valuable gold mine for 

integrated cancer analysis because it contains different molecular data for many types 

of cancer. Therefore, the structure of the data sets in the TCGA database has become 

a standard. Programs and pipelines created using TCGA data can also be used for 

databases containing other similar patient data. Because the TCGA project supplies 

both molecular data and clinical data including drug responses and survival data, 

these data have been used for many studies including biomarker detection, drug 

response, and recently machine learning approaches. 

In the concept of this project, firstly Thorsson et al., performed a pan-cancer 

immunologic analysis of 33 TCGA cancer projects and they identified six 

immunological subgroups based on changes in intra-tumoral heterogeneity, leukocyte 

fractions, the Th1:Th2 cell ratio, neoantigen load, immunomodulatory gene 

expression, and tumor prognosis. Specific driver mutations were linked to lower 

(IDH1, NRAS or CTNNB1) or higher (TP53, BRAF, or CASP8) leukocyte numbers 

across all cancers (Thorsson et al., 2018). Recently some studies have been conducted 

to detect prognostic indicators based on the tumor microenvironment such as in 20 

cancer types showing poor prognosis (Liu et al., 2020), prostate cancer (Zhu et al., 

2020), colorectal cancer (Grasso et al., 2018; Miao et al., 2020, Liao et al., 2021), 

cervical squamous cell carcinoma (Zhao et al., 2020), head and neck squamous cell 

carcinoma (Yao et al., 2020), early-stage lung adenocarcinoma (Bao et al., 2020), 
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triple-negative breast cancer (Cheng et al., 2020), ovarian cancer (Cao et al., 2021) 

and osteosarcoma (Yang et al., 2021). Recently, studies on predictive biomarkers for 

immunotherapy response have been performed in metastatic urothelial carcinoma 

(Goswami et al., 2020), acute myeloid leukemia (Vadakekolathu et al., 2020), gastric 

cancer (Ren et al., 2020), muscle-invasive bladder cancer (Cao et al., 2021) and 

machine learning methods have been integrated to analyze immunotherapy response 

in pan-cancer (Xie et al., 2020), non-small cell lung cancer (Wiesweg et al., 2020), 

lung adenocarcinoma (Peng et al., 2020) by using RNA expression data. These and 

previous studies mostly concentrated on the detection of predictive or prognostic 

biomarkers such as PD-1/PD-L1 expression, tumor infiltrated immune cells such as 

CD8+ T cells, tumor mutation burden (TMB), MSI-H/dMMR status, and individual 

mutations correlated with each other with taken immunotherapy drugs or not, and 

lastly for immunotherapy response by using RNA expression data. 

Among the indexed clinical data presented for 33 cancers in the TCGA project, 35% 

(3,786) of the total number of patients (10,690) have drug information. Of 3786 

patients with drug information, 1197 of them have a total of 2572 drug response data. 

There are 16 different antibody therapeutics used for a total of 190 patients and only 

99 patients have response data for 8 antibody drugs. We aimed to use TCGA data to 

cluster patients separately for cancer types and analyze the clusters for clinical and 

immunological features to detect the predictive or prognostic biomarkers of antibody 

therapeutics response. To date, approved antibody therapeutics which are used in 

clinic are summarized in Table 1.1. 
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Table 1.1. Approved antibody therapeutics used for cancer in clinic. 

Therapeutic Target Protein Gene Name Conditions Approved 

Aflibercept 
Vascular endothelial growth 
factor (VEGF) 

VEGF Colorectal cancer 

Alemtuzumab CAMPATH-1 antigen (CD52) CD52 
B-cell chronic lymphocytic leukemia (B-
CLL) 

Amivantamab 
Epidermal growth factor 
receptor (EGFR), Hepatocyte 
growth factor receptor (HGFR) 

EGFR, MET 
NSCLC with EGFR exon 20 insertion 
mutations, Liver cancer 

Atezolizumab 
Programmed cell death 1 
ligand 1 (PD-L1) 

CD274 
Breast cancer, Liver cancer, Non-small cell 
lung cancer, Small cell lung cancer, 
Urogenital cancer, Malignant melanoma 

Avelumab 
Programmed cell death 1 
ligand 1 (PD-L1) 

CD274 
Merkel cell carcinoma, Urogenital cancer, 
Renal cell carcinoma 

Belantamab 
mafodotin 

Tumor necrosis factor receptor 
superfamily member 17 
(TNFRSF17) 

TNFRSF17 Multiple myeloma 

Bevacizumab 
Vascular endothelial growth 
factor A (VEGFA) 

VEGFA 

Breast cancer, Cervical cancer, Colorectal 
cancer, Glioblastoma, Glioma, Liver 
cancer, Non-small cell lung cancer, Ovarian 
cancer, Renal cell carcinoma, Fallopian 
tube cancer, Peritoneal cancer 

Bintrafusp 
Programmed cell death 1 
ligand 1 (PD-L1) 

CD274 Merkel cell carcinoma, Urogenital cancer 

Blinatumomab 

B-lymphocyte antigen CD19 
(CD19), T-cell surface 
glycoprotein CD3 delta chain 
(CD3E) 

CD19, CD3D 
Precursor B-cell lymphoblastic leukaemia-
lymphoma 

Brentuximab 
vedotin 

Tumor necrosis factor receptor 
superfamily member 8 (CD30) 

TNFRSF8 

Hodgkin’s lymphoma, T-cell lymphoma, 
Peripheral T-cell lymphoma, Cutaneous T-
cell lymphoma, Anaplastic large cell 
lymphoma, Primary cutaneous anaplastic 
large cell lymphoma 

Cadonilimab 
Programmed Cell Death 1 (PD-
1), Cytotoxic T-lymphocyte 
antigen 4 (CTLA4) 

PDCD1, 
CTLA4 

Cervical cancer 

Camrelizumab 
Programmed cell death protein 
1 (PD-1) 

PDCD1 
Esophageal cancer, Non-small cell lung 
cancer, Hodgkin’s lymphoma, 
Nasopharyngeal cancer, Liver cancer 

Catumaxomab 

Epithelial cell adhesion 
molecule (EpCAM), T-cell 
surface glycoprotein CD3 
epsilon chain (CD3E) 

EPCAM, 
CD3E 

Ovarian cancer, Malignant ascites, Gastric 
cancer 
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Table 1.1. (continue) 

Therapeutic Target Protein Gene Name Conditions Approved 

Cemiplimab 
Programmed cell death protein 
1 (PD-1) 

PDCD1 
Basal cell carcinoma, Non-small cell lung 
cancer, Squamous cell carcinoma 

Cetuximab 
Epidermal growth factor 
receptor (EGFR) 

EGFR Colorectal cancer, Head and neck cancer 

Cetuximab 
sarotalocan 

Epidermal growth factor 
receptor (EGFR) 

EGFR Head and neck cancer 

Daratumumab 

ADP-ribosyl cyclase/cyclic 
ADP-ribose hydrolase 1 
(ADPRC1/cADPR hydrolase 
1) 

CD38 Multiple myeloma 

Denosumab 
Receptor activator of nuclear 
factor kappaB ligand 
(RANKL) 

TNFSF11 Bone metastases, Bone cancer 

Derlotuximab 
biotin - I131 

DNA/Histone H1 Complex  Lung cancer 

Dinutuximab Ganglioside GD2 (GD2)  Neuroblastoma 
Disitamab 
vedotin 

Human epidermal growth 
factor receptor 2 (HER2) 

ERBB2 Gastric cancer, Urothelial carcinoma 

Dostarlimab 
Programmed cell death protein 
1 (PD-1) 

PDCD1 Endometrial cancer, Solid tumors 

Durvalumab 
Programmed cell death 1 
ligand 1 (PD-L1) 

CD274 
Non-small cell lung cancer, Urogenital 
cancer, Small cell lung cancer 

Edrecolomab 
Epithelial cell adhesion 
molecule (EpCAM) 

EPCAM Colorectal cancer 

Elotuzumab 
SLAM family member 7 
(SLAMF7) 

SLAMF7 Multiple myeloma 

Enfortumab 
vedotin 

Nectin Cell Adhesion 
Molecule 4 (Nectin 4) 

NECTIN4 Urogenital cancer 

Envafolimab 
Programmed cell death 1 
ligand 1 (PD-L1) 

CD274 
Metastatic microsatellite instability-high 
(MSI-H) or deficient mismatch repair 
(dMMR) advanced solid tumors 

Gemtuzumab 
ozogamicin 

Myeloid cell surface antigen 
CD33 (CD33) 

CD33 Acute myelogenous leukemia 

Glofitamab 
B-lymphocyte antigen CD20 
(CD20), T-cell surface 
glycoprotein CD3E (CD3e) 

MS4A1, 
CD3E 

Diffuse large B-cell lymphoma 

Ibritumomab 
tiuxetan 

B-lymphocyte antigen CD20 
(CD20) 

MS4A1 Non-Hodgkin's lymphoma 

Inetetamab 
Human epidermal growth 
factor receptor 2 (HER2) 

ERBB2 HER2-positive metastatic breast cancer 
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Table 1.1. (continue) 

Therapeutic Target Protein Gene Name Conditions Approved 
Inotuzumab 
ozogamicin 

B-cell receptor CD22 
(CD22) 

CD22 B-cell acute lymphoblastic leukemia 

Ipilimumab 
Cytotoxic T-lymphocyte 
antigen 4 (CTLA4) 

CTLA4 
Liver cancer, Non-small cell lung cancer, 
Mesothelioma, Malignant melanoma, Renal 
cell carcinoma 

Isatuximab 

ADP-ribosyl cyclase/cyclic 
ADP-ribose hydrolase 1 
(ADPRC1/cADPR 
hydrolase 1) 

CD38 Multiple myeloma 

Leronlimab 
C-C chemokine receptor 
type 5 (CCR5) 

CCR5 Breast cancer 

Loncastuximab 
tesirine 

B-lymphocyte antigen 
CD19 (CD19) 

CD19 Diffuse large B-cell lymphoma 

Margetuximab 
Human epidermal growth 
factor receptor 2 (HER2) 

ERBB2 Breast cancer 

Metuximab - 
I131 

Basigin (CD147) BSG Liver cancer 

Mirvetuximab 
soravtansine 

Folate receptor alpha (FR-
alpha) 

FOLR1 
Ovarian cancer, Fallopian tube cancer, 
Peritoneal cancer 

Mogamulizumab 
C–C chemokine receptor 
type 4 (CCR4) 

CCR4 
Adult T-cell leukemia/lymphoma, Cutaneous 
T-cell lymphoma, Peripheral T-cell lymphoma 

Mosunetuzumab 

B-lymphocyte antigen 
CD20 (CD20), T-cell 
surface glycoprotein CD3 
epsilon chain (CD3e) 

MS4A1, 
CD3E 

Follicular lymphoma 

Moxetumomab 
pasudotox 

B-cell receptor CD22 
(CD22) 

CD22 Hairy cell leukemia 

Naxitamab Ganglioside GD2 (GD2)  Neuroblastoma 

Necitumumab 
Epidermal growth factor 
receptor (EGFR) 

EGFR Non-small cell lung cancer 

Nimotuzumab 
Epidermal growth factor 
receptor (EGFR) 

EGFR 
Anaplastic astrocytoma, Brain cancer, 
Esophageal cancer, Glioblastoma, Head and 
neck cancer, Nasopharyngeal cancer, Glioma 

Nivolumab 
Programmed cell death 
protein 1 (PD-1) 

PDCD1 

Colorectal cancer, Esophageal cancer, Gastric 
cancer, Head and neck cancer, Non-small cell 
lung cancer, Hodgkin’s lymphoma, 
Mesothelioma, Squamous cell carcinoma, 
Urogenital cancer, Malignant melanoma, Renal 
cell carcinoma 
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Table 1.1. (continue) 

Therapeutic Target Protein Gene Name Conditions Approved 

Obinutuzumab 
B-lymphocyte antigen CD20 
(CD20) 

MS4A1 
Chronic lymphocytic leukemia, Follicular 
lymphoma, Non-Hodgkin’s lymphoma 

Ofatumumab 
B-lymphocyte antigen CD20 
(CD20) 

MS4A1 Chronic lymphocytic leukemia 

Olaratumab 
Platelet-derived growth factor 
receptor alpha (PDGFRA) 

PDGFRA Soft tissue sarcoma 

Panitumumab 
Epidermal growth factor 
receptor (EGFR) 

EGFR Colorectal cancer 

Pembrolizumab 
Programmed cell death protein 
1 (PD-1) 

PDCD1 

Breast cancer, Cervical cancer, Colorectal 
cancer, Esophageal cancer, Gastric cancer, 
Head and neck cancer, Liver cancer, Non-
small cell lung cancer, Diffuse large B-cell 
lymphoma, Hodgkin’s lymphoma, 
Pancreatic cancer, Squamous cell 
carcinoma, Urogenital cancer, Malignant 
melanoma 

Penpulimab 
Programmed cell death protein 
1 (PD-1) 

PDCD1 
Non-small cell lung cancer, Hodgkin’s 
lymphoma, Nasopharyngeal cancer 

Pertuzumab 
Human epidermal growth 
factor receptor 2 (HER2) 

ERBB2 Breast cancer 

Polatuzumab 
vedotin 

B-cell antigen receptor 
complex-associated protein 
beta chain (CD79b) 

CD79B Diffuse large B-cell lymphoma 

Prolgolimab 
Programmed cell death protein 
1 (PD-1) 

PDCD1 Melanoma 

Pucotenlimab 
Programmed cell death protein 
1 (PD-1) 

PDCD1 
Metastatic microsatellite instability-high 
(MSI-H) or deficient mismatch repair 
(dMMR) advanced solid tumors, 

Racotumomab Ganglioside GM3 (GM3)  Non-small cell lung cancer 

Ramucirumab 
Vascular endothelial growth 
factor receptor 2 (VEGFR-2) 

KDR 
Colorectal cancer, Gastric cancer, Liver 
cancer, Non-small cell lung cancer 

Relatlimab 
Lymphocyte activation gene 3 
protein (CD223) 

LAG3 Malignant melanoma 

Retifanlimab 
Programmed cell death protein 
1 (PD-1) 

PDCD1 Merkel cell carcinoma 

Ripertamab 
B-lymphocyte antigen CD20 
(CD20) 

MS4A1 Non-Hodgkin's lymphoma 

Rituximab 
B-lymphocyte antigen CD20 
(CD20) 

MS4A1 
Chronic lymphocytic leukemia, Diffuse 
large B cell lymphoma, Follicular 
lymphoma, Non-Hodgkin's lymphoma 
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Table 1.1. (continue) 

Therapeutic Target Protein Gene Name Conditions Approved 

Sacituzumab 
govitecan 

Tumor-associated calcium 
signal transducer 2 (TACSTD-
2) 

TACSTD2 Breast cancer, Urogenital cancer 

Serplulimab 
Programmed cell death protein 
1 (PD-1) 

PDCD1 
Non-small cell lung cancer, Small cell lung 
cancer, Microsatellite instability-high solid 
tumors 

Sintilimab 
Programmed cell death protein 
1 (PD-1) 

PDCD1 
Gastric cancer, Esophageal cancer, Liver 
cancer, Non-small cell lung cancer, 
Hodgkin’s lymphoma 

Sugemalimab 
Programmed cell death 1 
ligand 1 (PD-L1) 

CD274 Non-small cell lung cancer 

Tafasitamab 
B-lymphocyte antigen CD19 
(CD19) 

CD19 Diffuse large B-cell lymphoma 

Tebentafusp 
Melanocyte protein PMEL 
(GP100), T-cell surface 
glycoprotein CD3 (CD3) 

PMEL, CD3 Uveal melanoma 

Teclistamab 

Tumor necrosis factor receptor 
superfamily member 17 
(BCMA), T-cell surface 
glycoprotein CD3 (CD3) 

TNFRSF17, 
CD3 

Multiple myeloma 

Tislelizumab 
Programmed cell death protein 
1 (PD-1) 

PDCD1 

Liver cancer, Non-small cell lung cancer, 
Hodgkin’s lymphoma, Nasopharyngeal 
cancer, Squamous cell carcinoma, 
Urogenital cancer 

Tisotumab 
vedotin 

Tissue factor (TF) F3 Cervical cancer 

Toripalimab 
Programmed cell death protein 
1 (PD-1) 

PDCD1 
Nasopharyngeal cancer, Urogenital cancer, 
Malignant melanoma 

Tositumomab - 
I131 

B-lymphocyte antigen CD20 
(CD20) 

MS4A1 Non-Hodgkin’s lymphoma 

Trastuzumab 
Human epidermal growth 
factor receptor 2 (HER2) 

ERBB2 Breast cancer, Gastric cancer 

Trastuzumab 
deruxtecan 

Human epidermal growth 
factor receptor 2 (HER2) 

ERBB2 Breast cancer, Gastric cancer 

Trastuzumab 
emtansine 

Human epidermal growth 
factor receptor 2 (HER2) 

ERBB2 Breast cancer 

Tremelimumab 
Cytotoxic T-lymphocyte 
protein 4 (CD152) 

CTLA4 Non-small cell lung cancer, Liver cancer 

Zimberelimab 
Programmed cell death protein 
1 (PD-1) 

PDCD1 Hodgkin’s lymphoma 
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Antibody therapeutics which are given to patients in TCGA projects are summarized 

in Table 1.2. As noticed, only eight antibody therapeutics were given to patients in 

TCGA projects. While most of the approved antibody therapeutics are against PD-1 

and PD-L1, patients in TCGA projects have taken only nivolumab which is anti-PD-1 

therapeutic and most of the patients have taken bevacizumab which is anti-VEGFA.  

From Table 1.1 and Table 1.2, the next table were created for possible targetable and 

targeted proteins in TCGA projects (Table 1.3). We can notice that VEGFA was 

targeted in many cancer types although bevacizumab is not approved for those 

particular cancer types (Table 1.3). The patients who took bevacizumab might be in 

clinical trials during the project. There are also cancer types for which no antibody 

medication was used (Table 1.3). We aimed to analyze both targetable and targeted 

proteins in cancer type of interest if it is available. 

Table 1.2. Antibody therapeutics given to patients in TCGA projects. 

Therapeutic Target Protein 
Gene 
Name 

TCGA Projects 

Bevacizumab 
Vascular endothelial growth factor A 
(VEGFA) 

VEGFA 

ACC, BLCA, BRCA, 
CESC, COAD, GBM, 
HNSC, KICH, KIRC, 
KIRP, LGG, MESO, OV, 
READ, SARC, SKCM, 
UCEC, UCS 

Cetuximab 
Epidermal growth factor receptor 
(EGFR) 

EGFR 
CESC, COAD, HNSC, 
LUSC, OV, STAD 

Denosumab 
Receptor activator of nuclear factor 
kappaB ligand (RANKL) 

TNFSF11 BRCA 

Nivolumab Programmed cell death protein 1 (PD-1) PDCD1 BLCA, SKCM 

Panitumumab 
Epidermal growth factor receptor 
(EGFR) 

EGFR COAD, HNSC 

Pembrolizumab Programmed cell death protein 1 (PD-1) PDCD1 LGG, SKCM 
Rituximab B-lymphocyte antigen CD20 (CD20) MS4A1 BRCA, KIRP 

Trastuzumab 
Human epidermal growth factor receptor 
2 (HER2) 

ERBB2 BRCA, OV, SKCM 
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Table 1.3. Targetable and targeted antigens in TCGA projects. 

Study 
Abbreviation 

Study Name 
Genes of Targetable 
Proteins 

Genes of Targeted 
Proteins 

ACC Adrenocortical carcinoma CD274, PDCD1 VEGFA 

BLCA Bladder urothelial carcinoma 
CD274, PDCD1, ERBB2, 
NECTIN4, TACSTD2 

VEGFA, PDCD1 

BRCA Breast invasive carcinoma 
CD274, PDCD1, CCR5, 
ERBB2, TACSTD2, VEGFA 

ERBB2, MS4A1, 
TNFSF11, VEGFA 

CESC 
Cervical squamous cell 
carcinoma and endocervical 
adenocarcinoma 

CD274, PDCD1, CTLA4, F3, 
VEGFA 

EGFR, VEGFA 

CHOL Cholangiocarcinoma CD274, PDCD1  

COAD Colon adenocarcinoma 
CD274, PDCD1, EGFR, 
EPCAM, KDR, VEGFA 

EGFR, VEGFA 

DLBC 
Lymphoid neoplasm diffuse 
large B-cell lymphoma 

CD19, CD79B, MS4A1, 
CD3E, PDCD1 

 

ESCA Esophageal carcinoma CD274, PDCD1, EGFR  

GBM Glioblastoma multiforme 
CD274, PDCD1, EGFR, 
VEGFA 

VEGFA 

HNSC 
Head and neck squamous cell 
carcinoma 

CD274, PDCD1, EGFR EGFR, VEGFA 

KICH Kidney chromophobe 
CD274, PDCD1, ERBB2, 
NECTIN4, TACSTD2 

VEGFA 

KIRC 
Kidney renal clear cell 
carcinoma 

CD274, PDCD1, CTLA4, 
ERBB2, NECTIN4, 
TACSTD2, VEGFA 

VEGFA 

KIRP 
Kidney renal papillary cell 
carcinoma 

CD274, PDCD1, CTLA4, 
ERBB2, NECTIN4, 
TACSTD2, VEGFA 

MS4A1, VEGFA 

LAML Acute myeloid leukemia CD33  

LGG Brain lower grade glioma 
CD274, PDCD1, EGFR, 
VEGFA 

VEGFA, PDCD1 

LIHC 
Liver hepatocellular 
carcinoma 

CD274, PDCD1, BSG, 
CTLA4, MET, KDR, 
VEGFA 

 

LUAD Lung adenocarcinoma 
CD274, PDCD1, CTLA4, 
EGFR, MET, KDR, VEGFA 

 

LUSC 
Lung squamous cell 
carcinoma 

CD274, PDCD1, CTLA4, 
EGFR, MET, KDR, VEGFA 

EGFR 

MESO Mesothelioma CD274, PDCD1, CTLA4 VEGFA 

OV 
Ovarian serous 
cystadenocarcinoma 

CD274, PDCD1, EPCAM, 
CD3E, FOLR1, VEGFA 

ERBB2, EGFR, 
VEGFA 
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Table 1.3. (continue) 

Study 
Abbreviation 

Study Name 
Genes of Targetable 
Proteins 

Genes of Targeted 
Proteins 

PAAD Pancreatic adenocarcinoma CD274, PDCD1  

PCPG 
Pheochromocytoma and 
paraganglioma 

CD274, PDCD1  

PRAD Prostate adenocarcinoma 
CD274, PDCD1, ERBB2, 
NECTIN4, TACSTD2 

 

READ Rectum adenocarcinoma CD274, PDCD1 VEGFA 
SARC Sarcoma CD274, PDCD1, PDGFRA VEGFA 

SKCM Skin cutaneous melanoma 
CD274, PDCD1, CTLA4, 
EPCAM, CD3E, LAG3 

ERBB2, VEGFA, 
PDCD1 

STAD Stomach adenocarcinoma 
CD274, PDCD1, EPCAM, 
CD3E, ERBB2, KDR 

EGFR 

TGCT Testicular germ cell tumors 
CD274, PDCD1, ERBB2, 
NECTIN4, TACSTD2 

 

THCA Thyroid carcinoma CD274, PDCD1  

THYM Thymoma CD274, PDCD1  

UCEC 
Uterine corpus endometrial 
carcinoma 

CD274, PDCD1 VEGFA 

UCS Uterine carcinosarcoma CD274, PDCD1 VEGFA 
UVM Uveal melanoma CD274, PDCD1, PMEL, CD3  
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2. CHAPTER 

Comprehensive Profiling of Genomic and Transcriptomic 

Differences Between Risk Groups of Lung Adenocarcinoma and 

Lung Squamous Cell Carcinoma1 

2.1. Abstract 

We analyzed genomic and transcriptomic variations in subtypes of non-small-cell 

lung cancer, lung adenocarcinoma (LUAD) and lung squamous cell carcinoma 

(LUSC). The goal was to identify key genes for prognostic prediction in these cancer 

types. We used The Cancer Genome Atlas (TCGA) gene expression data to develop 

gene signatures for prognostic risk prediction. We generated 35-gene and 33-gene 

signatures for LUAD and LUSC, respectively, and found that clustering patients into 

high- and low-risk groups based on these signatures showed significant results with 

high prediction power. We also identified specific genomic alterations related to risk 

groups or cancer types, including differences in immune and metabolic pathways. 

High-risk groups of both LUAD and LUSC have more downregulated immune 

pathways with upregulated metabolic pathways. Several important gene alterations 

were observed, such as deletions in CDKN2A and CDKN2B, SOX2 amplification in 

LUSC, and PSMD4 amplification in LUAD. Mutations in EGFR, KRAS, and other 

genes were found to be subtype specific. The low-risk groups had a higher number of 

genomic alterations. We suggest that the identified signature genes and altered genes 

could potentially be used as prognostic biomarkers in personalized oncology. 

 
1 Comprehensive Profiling of Genomic and Transcriptomic Differences between Risk Groups of 
Lung Adenocarcinoma and Lung Squamous Cell Carcinoma 
T. Zengin and T. Önal-Süzek. Journal of Personalized Medicine, 2021, doi: 10.3390/jpm11020154 
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2.2. Methods for Risk Clustering 

Simple nucleotide variations (Masked Somatic Mutations generated by mutect2 

pipeline), transcriptome profiling/RNA expression (RNAseq - HTSeq counts), copy 

number variations (masked copy number segment) and clinical data of patients in the 

LUAD and LUSC projects were downloaded from harmonized database (data aligned 

against hg38 genome) of NCI GDC (Grossman et al., 2016) using the TCGAbiolinks 

R package (Colaprico et al., 2016). All patients do not have all types of data, therefore 

we used the subset of the patients who have these four types of data. 

Gene expression quantification data (HTSeq counts) of patients with unpaired 

RNAseq data (tumor samples without corresponding normal samples) were processed. 

First, the data was normalized using the TMM method, followed by a log2 

transformation. Genes with consistently zero or low counts were filtered out. Next, 

univariate cox proportional hazards regression analysis was performed to identify 

genes associated with patient survival. Among these survival-related genes (p ≤ 0.05), 

a lasso-regularized cox model was applied using the glmnet R package (Simon et al., 

2011). The model's performance was evaluated using leave-one-out cross-validation 

(LOOCV). Subsequently, multivariate cox regression was performed for the signature 

genes, and the risk score for each patient was calculated based on the multivariate cox 

regression model. Patients were then classified into high-risk and low-risk groups 

based on determined risk score threshold, the best cutoff value for ROC calculated by 

cutoff R package (Zhang and Jin, 2019). To validate the gene signature, HTSeq 

counts from tumor samples with paired RNAseq data (tumor samples along with 

adjacent normal samples) were used. Similar preprocessing steps were applied, 

including data filtering, TMM normalization, and log2 transformation. Multivariate 

cox regression was performed for the signature genes, and the predictive performance 

of the model was evaluated. The risk score for each patient in the validation group 

was calculated using the multivariate cox regression model, and patients were 

assigned to either the high-risk or low-risk group. 
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Differentially expressed genes (q ≤ 0.01) were identified using the limma (Ritchie et 

al., 2015) and edgeR (McCarthy et al., 2012) R packages. Active subnetworks of 

these differentially expressed genes were determined using the DEsubs R package 

(Vrahatis et al., 2016). Furthermore, significantly aberrant copy number variations in 

tumor samples were identified and visualized using the gaia R package (Morganella et 

al., 2020). Somatic mutations were filtered and categorized as either oncogenes (OG) 

or tumor suppressor genes (TSG) using the SomInaClust R package (Eynden et al., 

2015). To identify hotspots, SomInaClust utilized a background mutation value based 

on known somatic mutations from the "COSMIC" and "Cancer Gene Census" (v92) 

datasets of the COSMIC database (Tate et al., 2018). These analyses were performed 

separately for high-risk and low-risk groups of LUAD and LUSC patients. The 

overall methodology is summarized in Figure 2.1 as a flowchart. 
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Figure 2.1. Flowchart of the methods used for risk clustering and analysis of genomic and 
transcriptomic variations between risk groups. 

2.3. Results of Risk Clustering 

In order to validate the gene expression signature, we predicted the risk scores of each 

patient in the LUAD test group and classified them into high-risk and low-risk groups 

based on the risk scores. The risk groups exhibited distinct patterns of gene expression 

of the signature genes, with the high-risk group showing shorter survival times and a 

higher number of deaths, resulting in a significantly different survival probability (p < 
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0.0001). The risk score demonstrated strong predictive power, with AUC values of 

0.97, 0.92, 0.93, and 0.92 for 1, 3, 5, and 8 years, respectively (Figure 2.2). 

 

Figure 2.2. Gene expression signature and risk clustering of LUAD test dataset. Test dataset 
patients were clustered into high- and low-risk groups based on risk scores calculated using signature 
genes expression. (A) Expression heatmap of the signature genes in tumor samples of LUAD patients. 
(B) Scatter plot showing risk scores, survival time and separation point of the patients into risk groups. 
(C) KM survival plot showing the overall survival probability between risk groups. (D) ROC curve 
showing prediction power of risk score in the test dataset for 1, 3, 5 and 8 years. 

We predicted the risk scores for each patient in the LUSC test group using the gene 

signature and classified them into high-risk and low-risk groups. The risk groups 

displayed distinct patterns of gene expression in the signature genes. The risk groups 

showed significantly different survival probabilities (p < 0.0001) with the high-risk 

group exhibiting shorter survival times and a higher number of deaths. The risk score 

demonstrated strong predictive power, with AUC values of 0.93, 0.95, 0.96, and 0.97 

for 1, 3, 5, and 8 years, respectively (Figure 2.3). 
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Figure 2.3. Gene expression signature and risk clustering of LUSC test dataset. Patients were 
clustered into high- and low-risk groups based on risk score. (A) Expression heatmap of the signature 
genes in tumor samples of LUSC patients. (B) Scatter plot showing risk scores, survival time and 
separation point of the patients into risk groups. (C) KM survival plot showing the overall survival 
probability between risk groups. (D) ROC curve showing prediction power of risk score in the test 
dataset for 1, 3, 5, and 8 years. 

Although the LUAD and LUSC expression gene signatures have no genes in 

common, they share eight pathways, most of which are metabolic pathways including 

central carbon metabolism, glycolysis/gluconeogenesis, HIF-1 signaling pathway, 

pyruvate metabolism, PPAR signaling pathway, amino and nucleotide sugar 

metabolism, TNF signaling pathway, and neurodegenerative pathways in cancer - 

multiple diseases. 

The full version of the article can be found at Appendix A. 
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2.4. Discussion of the method 

The accurate prediction of disease prognosis is crucial in cancer management but 

remains challenging for many types of cancer because of limitations in pathological 

and clinical variables. Usage of gene expression signatures have emerged as a 

promising approach to predict patient’s outcome by separating patients into distinct 

clusters for the guidance of personalized treatment. The first example, 70-gene 

signature showed prognostic power by categorizing patients with early-stage breast 

cancer into groups to predict prognosis. It is now commercially available as 

MammaPrint test which is routinely employed to decide adjuvant chemotherapy. 

Since then, significant attention has been focused on identifying gene expression-

based prognostic signatures for different types of cancer. However, only a limited 

number of these signatures have been officially approved for clinical use. Typically, 

most reported prognostic signatures, including those based on functional categories, 

categorize patients into different risk groups by comparing their risk scores derived 

from expression levels of signature genes. However, the risk thresholds established 

using training datasets cannot be directly applied to independent datasets due to 

inherent biases in measurements caused by batch effects and platform variations 

causing low reproducibility in independent data (Qian et al., 2021). The classification 

of patients using signature genes is not commonly employed in clinical practice for 

many cancer types and faces challenges in terms of standardization. For example, the 

subtyping of colorectal cancer (CRC) using CMS (Consensus Molecular Subtypes) is 

not commonly employed in clinic due to several limitations. These limitations include 

a lack of standardization and the need for bioinformatics resources. These factors 

restrict the more extensive utilization of CMS subtyping in routine clinical settings 

(Qian et al., 2021). On the other hand, gene expression panels commercially available 

to predict prognosis in various diseases are designed to be user-friendly. However, 

these panels often lack a clear biological interpretation and predictive value. As a 

result, their usage should be limited to specific clinical scenarios where their utility 
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has been well-established. Another example, currently, none of the biomarkers based 

on hepatocellular carcinoma (HCC) signatures are routinely used in clinical practice. 

Several factors contribute to this situation, including challenges related to biology, 

technology, statistics, and informatics. One primary factor is that gene signatures are 

commonly developed through retrospective studies, which inherently carry certain 

biases and are susceptible to confounding factors. These limitations arise due to the 

nature of retrospective research design, potentially affecting the reliability and 

generalizability of the developed gene signatures. Although retrospective studies can 

establish an association between gene signatures and prognosis, their findings often 

lack reproducibility and cannot be readily translated into clinical applications. The 

limitations in reproducibility and applicability arise from various factors, including 

the heterogeneity of study populations, differences in data analysis methods, and 

potential biases present in retrospective study designs. As a result, further validation 

and prospective studies are necessary to determine the clinical utility of gene 

signatures in a more reliable and applicable manner (Qian et al., 2021). Additionally, 

validation is crucial to assess the predictive accuracy of gene signatures, ideally 

through independent patient cohorts. As a sad example, Pinyol et al., verified 22 HCC 

gene signatures published previously, but none of them were able to accurately 

predict recurrence (Pinyol et al., 2019). Improved gene expression analysis in hepato-

cellular carcinoma, colorectal cancer, and breast cancer can be achieved through 

several potential solutions. These include establishing standardization of sample 

collection and preservation, as well as ensuring the consistent use of diagnostic 

algorithms and parameters for gene expression classification. The integration of 

multiple biological levels, such as incorporating transcriptomic data, has shown 

promise in various publications. The emergence of integrative methods has potential 

to advance the field and enhance clinical outcomes for these deathly diseases. 
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3. CHAPTER 

Integrative Clustering and Comparison of Clusters for Immune 

Targetable Cancer Biomarkers 

3.1. Introduction 

Cancer is characterized by its intricate and diverse nature, making it a complex and 

heterogeneous because of various genetic alterations, including chromosomal 

rearrangements, somatic mutations, epigenetic changes, and differential gene 

expression. While tumors may share similar histopathologic features, their genomic 

profiles can vary significantly, leading to divergent responses to identical treatments 

and distinct clinical outcomes. Hence, it is imperative to categorize tumors into 

molecular subtypes and identify key molecular alterations as drivers, which can be 

targeted through precision medicine approaches. The objective of cancer genome 

projects is to unveil critical genetic alterations in cancer and identify potential 

therapeutic targets by extensively examining the genomic landscape. Prominent 

initiatives like The Cancer Genome Atlas (TCGA) and the International Cancer 

Genome Consortium (ICGC) have been established to carry out extensive studies 

using advanced techniques such as whole-genome or whole-exome sequencing, 

profiling of DNA methylation, chromosomal copy number variation, and 

mRNA/miRNA expression. These efforts have generated an immense volume of data 

for many types of cancer. The aim is to comprehensively catalog individual genomic 

alterations and uncover common biological principles. However, the considerable 

heterogeneity observed in cancer genomes and differences between individuals 

exhibiting abnormalities in different genes, poses a significant challenge in 

identifying functionally important genes with therapeutic implications. Therefore, 

there is a critical need to integrate the vast amount of data types and extract biological 

principles to advance diagnosis and prognosis (Mo et al., 2013; Mo et al., 2018). 
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3.1.1. Integrative clustering 

A method called iCluster (Shen et al., 2009) offers an innovative approach to 

integrative clustering by leveraging the relationship between Principal Component 

Analysis (PCA) and latent variable models. iCluster computes the principal 

components by employing maximum-likelihood estimation of parameters within a 

Gaussian latent variable model. This method formulates the K-means as both 

Gaussian latent variable model and joint latent variable model that incorporates 

multiple data types. Within a unified framework, it effectively models the associations 

among various data types and the variance-covariance structure within each data type. 

Furthermore, iCluster reduces the dimensionality of the datasets, simultaneously. The 

extraction process relies on the Expectation-Maximization algorithm, utilizing a lasso-

type regularization method in the penalized complete-data likelihood. This approach 

allows for the modeling of tumor subtypes as latent variables, which can be estimated 

from available data types (Shen et al., 2009). In their study, Shen et al. utilized a 

dataset containing DNA copy number and RNA expression data obtained from cDNA 

microarrays of 6691 genes for integrative clustering of 37 breast cancer samples and 4 

breast cancer cell lines, resulted in 4 clusters. They also analyzed 91 lung 

adenocarcinomas samples containing copy number and gene expression of 2782 genes 

and found 4 clusters of samples (Shen et al., 2009). Later, Shen et al. used the iCluster 

method for DNA copy number, DNA methylation and RNA expression of 55 

glioblastoma (GBM) samples separated in 3 clusters which have distinct clinical 

features (Shen et al., 2012). 

iClusterPlus (Mo et al., 2013) is the improved version of the method integrating more 

diverse data types: binary data (DNA mutation: 0, 1), categorical data (DNA copy 

number: amplification, normal, deletion), and continuous data (mRNA expression, 

miRNA expression, DNA methylation) (Figure 3.1). They analyzed 189 colorectal 

carcinoma (CRC) samples that had all four data types (DNA somatic mutation, DNA 

copy number, DNA methylation, and RNA expression) resulting in 4 clusters.  
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Figure 3.1. Integration of diverse data types by a latent variable approach. (Taken from Mo et al 
2013) 

The iClusterPlus algorithm has been applied in many cancer genomics studies, 

encompassing various types of cancers such as lung squamous cell carcinoma 

(LUSC), lung adenocarcinoma (LUAD), stomach adenocarcinoma (STAD) and 

uterine corpus endometrial carcinoma (UCEC) (TCGARN, 2012; 2013; 2014a; 

2014b). However, it has some limitations and therefore, they developed iClusterBayes 

method (Mo et al., 2018) which performs Bayesian integrative clustering (Figure 3.2) 

that overcomes the limitations of the previous method. iClusterBayes significantly 

improved statistical computation and calculates a posterior probability for each data 

feature, which is a great advantage of this new method. 
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Figure 3.2. The proposed Bayesian integrative clustering framework. (A) Multiple genomic data 
sets are modelled jointly by bayesian latent variable regression models. (B) Detect common latent 
variables from previous step are used in lower dimensional integrated latent variable space to cluster 
patient samples. (C) Driver data features contributing to sample clustering are determined. (Taken from 
Mo et al 2018) 

Mo et al analyzed 241 kidney renal clear cell carcinoma (KIRC) samples containing 

SNV, CNV, DNA methylation, RNA expression and miRNA expression data. They 

used genes with somatic mutation rate >2%, 4470 non-redundant copy number 

regions, log2-transformed normalized top 20% (4106) most-variable RNA expression, 

top 20% (3955) most-variable DNA methylation sites and log2 transformed and the 

top 80% most-variable miRNA data and iClusterBayes method resulted in 2 clusters 

of patient samples. 

They also analyzed 84 glioblastoma (GBM) samples containing somatic mutation, 

DNA copy number and RNA expression (1740 most variable gene expression) using 

iClusterBayes which resulted in 4 clusters. The mutated genes which drive subtype 

clustering are NF1, TP53, MN1 (tumor suppressor genes), NF1, TP53, MAPK9, 
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MAPK7, PIK3R1 (intracellular signaling cascades), and A2M, ITGB2, FN1 

(inflammatory and defense responses). From CNV data 161 regions on chromosomes 

4, 7, 9, and 12 were the drivers of clustering. These genomic regions encompass 

significant genes involved in tumor suppression, such as CDKN2A and CDKN2B on 

chromosome 9. Additionally, they contain oncogenes that play crucial roles in 

regulating cell activation, division, and proliferation, such as PDGFRA on 

chromosome 4, EGFR on chromosome 7, and CDK4, MDM2 and TSPAN31 on 

chromosome 12. In the RNA expression data set, 711 genes were identified as the 

drivers, 204 of which play a role in nervous system development, while 507 genes are 

working in immunologic responses, cell proliferation, adhesion and migration. 

We used iClusterBayes for this project because it needs less computing resource if the 

used data is large. Moreover, iClusterBayes calculates posterior probability of 

genomic features that drive the integrative clustering. We aimed to compare 

integrative clusters created for 33 cancers in the TCGA project using simple 

nucleotide variations (SNV), copy number variations (CNV), methylation levels, 

transcriptome profiling data (Gene expression and miRNA expression) of patients, 

with clinical characteristics of the patients in these clusters. As eight different 

antibody therapeutics were given to patients in the TCGA project, the status of 

targeted proteins was aimed to be analyzed among patient clusters using expression 

data. At the end, we aimed to integrate integrative cluster information with curated 

TCGA subtypes to the web tool called TCGAnalyzeR designed by our group. 
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3.2. Methods 

3.2.1. Data 

Simple Nucleotide Variations (Masked Somatic Mutations), gene expression 

(RNAseq - HTSeq counts), miRNA expression (miRNAseq), Copy Number 

Variations (Masked Copy Number Segment), DNA methylation (Illumina Human 

Methylation 450 - Methylation Beta Value) and clinical data of 33 TCGA cancer 

projects were downloaded from harmonized database (data aligned against hg38 

genome) of NCI GDC (Grossman et al., 2016) using the TCGAbiolinks R package 

(Colaprico et al., 2016). Number of patients with tumor samples are summarized by 

cancer type and data type (Table 3.1). 

Table 3.1. Number of patients with tumor samples by cancer types for five different data types. 

Project Project Name SNV CNV 
Gene 
Exp 

miRNA 
Exp 

DNA 
Methylation 

All 
Data 
Types 

ACC Adrenocortical carcinoma 92 90 79 80 80 77 
BLCA Bladder urothelial carcinoma 412 412 408 409 412 405 
BRCA Breast invasive carcinoma 986 1096 1091 1078 782 676 

CESC 
Cervical squamous cell 
carcinoma and endocervical 
adenocarcinoma 

289 295 304 307 307 276 

CHOL Cholangiocarcinoma 50 36 36 36 36 35 
COAD Colon adenocarcinoma 399 452 456 444 296 289 

DLBC 
Lymphoid neoplasm diffuse 
large B-cell lymphoma 

37 48 48 47 48 37 

ESCA Esophageal carcinoma 184 184 161 184 185 160 
GBM Glioblastoma multiforme 393 596 154 0 140 47 

HNSC 
Head and neck squamous cell 
carcinoma 

508 522 500 523 528 484 

KICH Kidney chromophobe 66 66 65 66 66 65 

KIRC 
Kidney renal clear cell 
carcinoma 

336 532 530 516 319 256 

KIRP 
Kidney renal papillary cell 
carcinoma 

281 290 288 291 275 264 

LAML Acute myeloid leukemia 143 200 151 188 140 76 
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Table 3.1. (continue) 

Project Project Name SNV CNV 
Gene 
Exp 

miRNA 
Exp 

DNA 
Methylation 

All 
Data 
Types 

LGG Brain lower grade glioma 508 515 511 512 516 498 
LIHC Liver hepatocellular carcinoma 364 375 371 372 377 353 
LUAD Lung adenocarcinoma 567 518 513 513 458 447 
LUSC Lung squamous cell carcinoma 492 503 501 478 370 359 
MESO Mesothelioma 82 87 86 87 87 81 

OV 
Ovarian serous 
cystadenocarcinoma 

436 587 374 489 10 7 

PAAD Pancreatic adenocarcinoma 178 184 177 178 184 169 

PCPG 
Pheochromocytoma and 
Paraganglioma 

179 178 178 179 179 177 

PRAD Prostate adenocarcinoma 495 497 495 494 498 485 
READ Rectum adenocarcinoma 137 165 166 161 98 94 
SARC Sarcoma 237 260 259 259 261 233 
SKCM Skin cutaneous melanoma 467 104 103 97 104 97 
STAD Stomach adenocarcinoma 437 442 375 436 395 332 
TGCT Testicular germ cell tumors 144 150 150 150 150 144 
THCA Thyroid carcinoma 492 505 502 506 507 484 
THYM Thymoma 123 124 119 124 124 118 

UCEC 
Uterine corpus endometrial 
carcinoma 

530 540 543 538 431 407 

UCS Uterine carcinosarcoma 57 56 56 57 57 55 
UVM Uveal melanoma 80 80 80 80 80 80 
TOTAL   9514 10013 9151 9204 7932 7225 

3.2.2. Preparation of data for integrative clustering 

Simple nucleotide variations (masked somatic mutations) data as mutation annotation 

format (maf) files generated by mutect2 pipeline were filtered to subset genes with 

somatic mutation rate >1% using the maftools (Mayakonda et al., 2018). 

Copy number variation (masked copy number segment) data of the primary tumor 

samples were filtered to extract non-redundant copy number regions. We reduce the 

copy number regions consisting of multi-sample array data to 1K-5K non-redundant 

regions by removing the redundant regions. 
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Gene expression quantification data (HTSeq counts) of the tumor samples were 

normalized by TMM method and log2 transformed after removing genes that have 

zero or low counts. The genes which have highly variable expression were filtered by 

removing genes exhibiting variation less than 90% across samples. 

miRNA expression quantification data (miRNAseq data) of the tumor samples were 

normalized by TMM method and log2 transformed after removing miRNAs which 

have zero or low counts. 

DNA methylation data (Illumina Human Methylation 450 - Methylation Beta Value) 

were filtered by removing methylated CpG sites exhibiting variation less than 99% 

across samples to reduce the huge amount of methylation data that is advantageous 

for downstream integrative clustering analysis. 

3.2.3. Integrative clustering analysis 

Patients with tumor samples were clustered depending on prepared datasets using 

iClusterBayes method of iClusterPlus R package (Mo et al., 2018) which performs 

integrative clustering of patient samples using multiple data types. If the number of 

clusters in the samples is known, we can select the appropriate value of k (the number 

of latent variables) before clustering. The general rule is that the number of clusters is 

equal to k+1. In cases where the cluster number is unknown, we can test different 

values of k ranging from 1 to N, where N represents a reasonable number of clusters. 

In this study, the range of k was set from 1 to 10. Using parallel computing, 

iClusterBayes was run to search for the best model. In order to determine the best 

sparse model with the optimal combination of penalty parameters, we used bayesian 

information criteria (BIC) for each k (from 1-10). Additionally, to select the most 

suitable value for k, we calculated the deviance ratio, which can be interpreted as the 

percentage of explained variation (deviance ratio). The preferable selection for k 

would be based on the lower values of BIC and higher values of deviance ratio 

(explained variation). In cases where the data contains noise, there is a possibility that 
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the deviance ratio will continue to rise, and the BIC will continue to decrease as the 

value of k increases. In this situation, it is recommended to generate heat maps of the 

datasets and determine the optimal number of clusters by analyzing the patterns 

exhibited by the features on these heat maps. We chose the k where the curve of BIC 

and deviance ratio levels off. The process was run as parallel to 10 cores and just for 

the GBM dataset, the whole process took 5 CPU hours using 0.8 GB RAM and taking 

up 626 MB hard disk space for SNV, CNV and RNAseq data of 146 patients. 

3.2.4. Feature selection with gene and pathway enrichment 

After selection of k which has lower BIC value and highest deviance ratio, significant 

features for each type of used dataset which have bayesian posterior probability 

bigger than 0.5 were selected for visualization and enrichment analyses. For gene 

enrichment, genes on copy number segments were determined with their HUGO 

symbols and NCBI Gene identifiers using GenomicRanges R package (Lawrence et 

al., 2013). HUGO symbols and NCBI Gene IDs of the of mRNAseq genes and 

miRNAs were determined using the biomaRt R package (Durinck et al., 2009). 

Pathway enrichment from KEGG database was performed for selected genes/miRNAs 

using clusterProfiler R package (Yu et al., 2012). 

3.2.5. Curated TCGA data from publications 

We used several subtype information and tumor sample related data were derived 

from publications based on TCGA data analyses. The values of overall survival (OS), 

disease-specific survival (DSS), disease-free interval (DFI) and progression-free 

interval (PFI) were obtained from curated clinical data resource (Liu et al., 2018). 

Immune subtypes data, homologous DNA repair deficiency (HRD) data derived from 

(Knijnenburg et al., 2018), Tumor mutation burden (TMB) data, tumor purity data 

generated using ABSOLUTE (Carter et al., 2012, Taylor et al., 2018), Tumor 

infiltrated leukocytes (TILs) estimated based on DNA methylation assays, immune 
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cellular fraction estimated using CIBERSORT (Newman et al., 2015) and TCGA 

subtypes curated from previous TCGA publications were downloaded from the 

supplemental data of “The Immune Landscape of Cancer” article (Thorsson et al., 

2018). 

3.2.6. Statistical Analysis 

Categorical variable comparison, continuous variable comparison across multiple 

groups and correlation between numeric variables in the dataset were performed using 

ggstatsplot R package (Patil et al., 2021). Expression and subtypes heatmaps were 

drawn by ComplexHeatmap R package (Gu et al., 2016) with color palettes from 

wesanderson R package. Survival analysis was performed using survival (Therneau et 

al., 2020) and survminer (Kassambara et al., 2020) R packages. 

3.2.7. Analysis of the known targets and the approved/used immunotherapeutics 

The list of approved antibody therapeutics and target proteins of these antibodies were 

obtained from Thera-SAbDab database (Raybould et al., 2020). The list of used 

antibody therapeutics with response information in clinical data of TCGA data were 

derived using in-house R scripts. The expression levels of proteins targeted by the 

possible and used antibody therapeutics were examined by heatmaps and violin plots 

using ComplexHeatmap and ggstatsplot R packages (Gu et al., 2016; Patil et al., 

2021). 

3.2.8. Integrating the iCluster data into the web tool 

All curated subtype and iCluster data were integrated into the R-shiny based web tool 

called TCGAnalyzeR (tcganalyzer.mu.edu.tr) designed by our research group. This 

web tool enables data visualization and survival analysis for users. 

All methods used for this project are summarized in Figure 3.3. 



 

39 

 

Figure 3.3. The flowchart summarizing the methods used for integrative clustering and 
comparison of clusters for immune targetable cancer biomarkers. CNV: Copy Number Variation, 
TIL: Tumor Infiltrated Leukocytes, MSI: Micro-Satellite Instability, TMB: Tumor Mutation Burden, 
HRD: Homologous DNA Repair Deficiency, IAP: Immune Associated Protein, TAP: Tumor 
Associated Protein. 

3.3. Results 

3.3.1. Integrative clustering of LUAD patients 

We clustered 447 Lung adenocarcinoma (LUAD) tumor samples using SNV, CNV, 

gene expression, miRNA expression and methylation data. We used genes with 

somatic mutation rate >1%, non-redundant copy number regions, log2-transformed 

normalized top %10 most-variable gene expression data, all miRNA expression after 

low count filter, and top 1% most-variable DNA methylation after NA removing. 

From the BIC and deviance ratio plots, we saw that k=3 (k+1=4 clusters) is the most 

optimal solution (Figure 3.4). 
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Figure 3.4. Bayesian Information Criteria (BIC) and the deviance ratio vs k for LUAD dataset. 

iClusterBayes analysis showed that the number of genes containing SNVs with 

posterior probabilities is 1225, while the number of expressed genes is 1788 and the 

number of expressed miRNAs is 198, which have posterior probabilities >0.5. 

However, there are no CNV segments and methylation sites which have posterior 

probabilities >0.5, therefore CNV and methylation data are not informative for 

clustering for this dataset (Figure 3.5). Gene expression is highly dominant to drive 

integrative clustering followed by SNVs and miRNA expression of LUAD samples 

(Figure 3.5). 



 

41 

 
Figure 3.5. Posterior probabilities of genomic features that drive the integrative clustering. 
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According to Figure 3.6, we can observe significant differences between clusters in 

heatmaps of SNV, gene expression and miRNA expression. For SNVs, iCluster2 has 

least mutations while iCluster2 has highest number of mutations. For gene expression, 

iCluster2 has highest expression while iCluster1 has lowest expression of same set of 

genes. On the other hand, miRNA expression patterns have differences between 

clusters. 

 

Figure 3.6. Heatmap showing LUAD samples (columns) and genomic features (rows). SNV genes 
(first panel), gene expression (second panel) and miRNA expression (third panel) for the 3 clusters. 
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3.3.1.1. Feature selection 

Genomic features which drive the integrative clustering, were determined using the 

posterior probability bigger than 0.5 for SNV, gene expression and miRNA 

expression. Gene and pathway enrichment were performed for the full list of features 

which have posterior probability (pp) bigger than 0.5. Besides, the features can be 

filtered by their posterior probability. For example, the top ten significant features 

which have pp > 0.9 are CSMD3, KRAS, TP53, SPTA1, ZFHX4, STK11, XIRP2, 

SMARCA4, PCLO, KEAP1, EGFR of 268 SNV genes; GCLC, CFTR, AOC1, 

KLHL13, SLC7A2, ZMYND10, ARX, PON1, SOX8, ITGA2B of 1788 expressed 

genes; hsa-let-7a-1, hsa-let-7a-2, hsa-let-7a-3, hsa-let-7b, hsa-let-7c, hsa-let-7f-1, hsa-

let-7f-2, hsa-mir-100, hsa-mir-101-1, hsa-mir-101-2 of 186 expressed miRNAs. 

3.3.1.2. Pathway Enrichment 

According to pathway enrichment from KEGG database, SNV genes are related with 

cancer related pathways including ABC transporters, tyrosine kinase inhibitor 

resistance and glioma; metabolic pathways such as protein digestion and central 

carbon metabolism; and extracellular interaction pathways such as ECM-receptor 

interaction, focal adhesion and cell adhesion. Gene expression are highly related with 

immune pathways such as cytokine-cytokine receptor interaction, IL-17 signaling 

pathway, chemokine signaling pathway and complement and coagulation cascade; 

metabolic pathways such as arachidonic acid metabolism, protein digestion and 

absorption, linoleic acid metabolism, lipid and nitrogen metabolism; extracellular 

interaction pathways such as ECM-receptor signaling and cell adhesion; and PI3K-

Akt signaling pathway which is a well-known cancer related pathway, while miRNA 

expression is highly related with miRNAs in cancer and chemical carcinogenesis 

receptor activation (Figure 3.7). 
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Figure 3.7. Pathways of SNVs, gene expression and miRNA expression used for integrative 
clustering of LUAD tumor samples. (A) Pathways of genes with SNVs, (B) Pathways of gene 
expression, (C) Pathways of miRNA expression, (D) Pathways of all features used for integrative 
clustering by iClusterBayes. 

3.3.1.3. Comparison of LUAD iClusters for clinical variables and sample biology 

In order to determine the relationship between iClusters and clinical variables and 

biology of tumor samples, we performed several statistical analyses. Firstly, we 

performed Pearson’s 𝜒2-test of independence to determine the relationship between 

iClusters and primary diagnosis. The significant results of the test show that there is a 

significant association between iClusters and primary diagnosis. According to bar 

graph, all iClusters mostly consist of adenocarcinoma subtype and iCluster1 has 
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highest percentage of adenocarcinoma samples with absence of acinar cell carcinoma 

samples. On the other hand, iCluster2 has lowest percentage of adenocarcinoma 

samples with higher percentage of mucinous and mixed subtypes (Figure 3.8 A). 

There are not significant associations between iClusters and tumor stage or new tumor 

event type although iCluster2 has highest percentage of stage I tumor samples and 

lowest percentage of distant metastasis. iCluster1 and iCluster4 have lower percent of 

stage I and higher percent of stage III tumor samples while they have higher percent 

of distant metastasis. There is a significant association between iClusters and 

treatment outcome of first drug course. iCluster2 patients gave a complete response 

with highest ratio while iCluster1 patients gave lowest amount of complete response 

and highest amount of progressive disease response (Figure 3.8).  

 

Figure 3.8. Relationships between iClusters and clinical variables of LUAD patients. (A) Bar chart 
of iClusters vs primary diagnosis (A), tumor stage (B), new tumor event type (C), treatment outcome of 
first course (D) and results of Pearson’s 𝜒2-test for each. 
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In order to compare the clinical variables of patients from different iClusters we 

analyzed different survival and interval probabilities. When we analyzed survival 

probability of 4 LUAD patient clusters, there was significant difference between the 

iClusters for overall survival (OS), progression-free interval (PFI) and disease-free 

interval (DSI). According to plots, iCluster1 patients have worse prognosis while 

iCluster2 patients have better prognosis (Figure 3.9). 

 

Figure 3.9. Survival and interval analysis results of LUAD iClusters. 

We compared iClusters with TCGA subtypes which are estimated by TCGA research 

network and published in previous articles. At the heatmap below, it is seen that there 

are associations between expression subtypes, integrative subtypes, immune subtypes 

and iClusters (Figure 3.10). 
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Figure 3.10. Heatmap comparison of LUAD iClusters with TCGA subtypes curated from 
publications in literature. 

When we performed statistical analyses to determine the associations, we saw that 

iClusters are significantly associated with expression subtypes, integrative subtypes 

and immune subtypes. The associations between expression subtypes, integrative 

subtypes and iClusters can be explainable dependent on the similar methodology used 

by researchers. iClusters are highly dependent on gene expression and their 

association with expression subtype is highly significant (Figure 3.11). We want to 

give our attention to immune subtypes because they may be related with response of 

the patients to immunotherapeutics. iCluster2 has the highest percent of inflammatory 

subtype while iCluster1 has the lowest percent of inflammatory subtype and higher 

amount of wound healing subtype with iCluster4. 
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Figure 3.11. Relationships between LUAD iClusters and TCGA subtypes. (A) Bar chart of 
iClusters vs expression subtype (A), DNA methylation subtype (B), Integrative subtype (C), immune 
subtype (D) and results of Pearson’s 𝜒2-test for each. 

We wanted to test the relationship between immune subtypes and overall survival of 

patients because the higher inflammatory amount of iCluster2 may be related to better 

prognosis of patients in iCluster2. According to survival analysis, inflammatory 

subtype has higher overall survival probability than the other subtypes and wound 

healing subtype has the lowest survival probability followed by lymphocyte depleted 

subtype (Figure 3.12). 
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Figure 3.12. Relationships between LUAD iClusters and immune subtypes. (A) Bar chart of 
iClusters vs immune subtypes and results of Pearson’s 𝜒2-test, (B) Overall survival analysis of immune 
subtypes. 

In order to determine immune related nature of iClusters, we analyzed the purity ratio 

of tumor samples, fraction of tumor infiltrated leukocytes, fraction of CD4+ and 

CD8+ tumor infiltrated T cells in tumor samples of iClusters. There are significant 

differences between iClusters in terms of purity, tumor infiltrated leukocytes and 

fraction of CD4+ tumor infiltrated T cells. iCluster2 has lower purity ratio with higher 

fraction of tumor infiltrated leukocytes and fraction of CD4+ tumor infiltrated T cells 

(Figure 3.13). 
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Figure 3.13. Comparison of LUAD iClusters for tumor infiltrated immune cells. (A) Purity ratio of 
tumor samples, (B) Fraction of tumor infiltrated leukocytes, (C) Proportion of CD4+ tumor infiltrated 
T cells, (D) Proportion of CD8+ tumor infiltrated T cells. 

We also determined the differences of tumor mutation burden/load (TMB) and 

homologous DNA repair deficiency (HRD) level among iClusters. There are 

significant differences between iClusters for TMB and HRD. iCluster1 has the highest 

amount of TMB and HRD score followed by iCluster4 while iCluster2 has the 

opposite situation significantly (Figure 3.14). 
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Figure 3.14. Comparison of LUAD iClusters for Tumor Mutation Burden (A) and Homologous 
DNA Repair Deficiency (B). 

In order to see the correlation between TMB/HRD and tumor infiltrated immune cell 

fractions independent of iClusters, we analyzed the correlation matrix between them. 

Firstly, TMB and HRD are positively correlated as expected. Fraction of tumor 

infiltrated leukocytes (TIL) is not significantly correlated with HRD and TMB, 

however both HRD and TMB are negatively correlated with CD4+ tumor infiltrated T 

cells and positively correlated with CD8+ T cells (Figure 3.15). 

 

Figure 3.15. Correlation matrix between TMB/HRD and tumor infiltrated immune cells in 
LUAD tumor samples. TIL: Tumor Infiltrated Leukocytes, TMB: Tumor Mutation Burden, HRD: 
Homologous DNA Repair Deficiency. 
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We aimed to analyze expression differences of tumor associated proteins (TAPs) 

targetable by antibody therapeutics, among iClusters of LUAD patients. According to 

heatmap below, there are big differences in expression of TAPs between tumor 

samples and patients may have different expression patterns of TAPs such as higher 

expression of all genes, lower expression of all genes or controversial expression of 

genes for example some patients have higher expression of EGFR while have lower 

expression of KDR (VEGFR-2) and VEGFA. The expression pattern of TAPs appears 

to correlate with iClusters but not with risk groups (Figure 3.16). 

 

Figure 3.16. Expression heatmap of tumor associated proteins targetable by antibody 
therapeutics in LUAD tumor samples. 

We also analyzed the expression differences of immune associated proteins (IAPs) 

such as CTLA4, LAG3, PD-1 (PDCD1) and PD-L1 (CD274) which are targetable by 

antibody therapeutics. According to expression heatmap, there are big differences in 

expression of IAPs between tumor samples and patients may have different 

expression patterns of IAPs. While CTAL4 and LAG3 have close expression pattern, 

some patients have opposite expression of PD-L1 (CD274) and CTLA4 or LAG3. 
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The expression pattern of IAPs appears to correlate with iClusters but not with risk 

groups (Figure 3.17). 

 

Figure 3.17. Expression heatmap of immune associated proteins targetable by antibody 
therapeutics in LUAD tumor samples. 

In order to identify the relationships between iClusters and expression of TAPs and 

IAPs, we performed continuous variable comparison across iClusters. Violin plots are 

showing significant differences between iClusters for CD274, CTLA4, EGFR, KDR, 

MET and VEGFA genes. iCluster1 and iCluster4 have significantly lower expression 

of IAPs and most of the TAPs while iCluster2 has higher expression of all TAPs and 

IAPs (Figure 3.18). 
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Figure 3.18. Comparison of LUAD iClusters for expression of targetable proteins by antibody 
therapeutics. 

In heatmaps of TAP and IAP expression, risk clusters do not appear to be associated 

with expression patterns. We analyzed the relationship between iClusters, expression 

of targetable genes and risk clusters. Pearson’s 𝜒2-test of independence showed that 
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there is a significant association between iClusters and risk clusters (p=5.5E-5). 

According to bar graph below, iCluster2 has higher percent of low-risk patients while 

iCluster1 has the highest percent of high-risk patients (Figure 3.19). 

 

Figure 3.19. Relationships between iClusters and risk clusters of LUAD patients. Bar chart of 
iClusters vs risk clusters and results of Pearson’s 𝜒2-test. 

When we checked the expression levels of immunotherapeutic targetable genes 

among risk groups, there is not significant differences between risk groups for all 

genes except CTLA4. Expression of CTLA4 is significantly higher in low-risk group 

(Figure 3.20). 
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Figure 3.20. Comparison of LUAD risk clusters for expression of targetable proteins by antibody 
therapeutics. 

3.3.2. Integrative clustering of LUSC patients 

We analyzed 359 Lung squamous cell carcinoma (LUSC) samples using SNV, CNV, 

gene expression, miRNA expression and methylation data. We used genes which have 

>1% somatic mutation rate, non-redundant copy number regions, log2-transformed 

normalized top %10 most-variable gene expression data, all miRNA expression after 

low count filter, and top 1% most-variable DNA methylation after NA removing. 

From the BIC and deviance ratio plots, we saw that k=2 (k+1=3 clusters) is the most 

optimal solution (Figure 3.21). 
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Figure 3.21. Bayesian Information Criteria (BIC) and the deviance ratio vs k for LUSC dataset. 

iClusterBayes analysis showed that the number of genes containing SNVs is 707, the 

number of CNV genes are 7, while the number of expressed genes is 1821 and the 

number of expressed miRNA genes is 163, which have posterior probabilities >0.5. 

However, there are no methylation site which have posterior probabilities >0.5, 

therefore methylation data is not informative for clustering for this dataset. According 

to the plot of posterior probabilities, gene expression is highly dominant to drive 

integrative clustering followed by SNVs and miRNAs while the methylation data is 

not informative for clustering (Figure 3.22). 
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Figure 3.22. Posterior probabilities of genomic features that drive the integrative clustering. 
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According to the heatmap, there is significant differences between clusters. For 

CNVs, iCluster2 has higher copy number of a segment on chromosome 3. For gene 

expression, iCluster3 has higher expression of same set of genes. SNVs and miRNA 

expression patterns have differences between clusters (Figure 3.23). 

 

Figure 3.23. Heatmap showing LUSC samples (columns) and genomic features (rows). SNV genes 
(first panel), CNV regions (second panel), gene expression (third panel) and methylation data (fourth 
panel) for the 3 clusters. 
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3.3.2.1. Feature selection 

Genomic features which drive the integrative clustering of LUSC patients, were 

determined using the posterior probability bigger than 0.5 for SNVs, CNVs, gene 

expression and miRNA expression. Gene and pathway enrichment were performed 

for the full list of features which have posterior probability (pp) bigger than 0.5. 

Besides, the features can be filtered by their posterior probability. For example, the 

top ten significant features which have pp > 0.9 are NFE2L2, ENAM, MAP3K15, 

PTCHD2, FOXD4L4, COL5A1, HECW2, OR13F1, CDH2, and FLG of 65 SNV 

genes; GCLC, CFTR, AOC1, WNT16, ICA1, SLC7A2, PDK4, ZMYND10, 

HOXA11, and MEOX1 of 1819 expressed genes; hsa-let-7c, hsa-let-7e, hsa-mir-100, 

hsa-mir-101-1, hsa-mir-101-2, hsa-mir-106a, hsa-mir-10a, hsa-mir-10b, and hsa-mir-

1180 of 147 expressed miRNAs. 

3.3.2.2. Pathway Enrichment 

According to pathway enrichment analysis, SNV genes are not enriched from KEGG 

database significantly, however, they play role in adherens junction interactions and 

PECAM1 interactions according to Reactome database and in hippo signaling 

regulation, GDNF/RET signaling and malignant pleural mesothelioma pathways 

according to WikiPathways database. RNA expression genes are highly related with 

extracellular interaction pathways such as cell adhesion and ECM-receptor signaling; 

immune pathways such as cytokine-cytokine receptor interaction, IL-17 signaling, 

chemokine signaling, infection related pathways and hematopoietic cell lineage; 

metabolic pathways such as protein digestion and absorption, arachidonic acid 

metabolism; and cancer related pathways such as basal cell carcinoma and Wnt 

signaling pathway. Lastly, miRNA genes are highly related with miRNAs in cancer 

and chemical carcinogenesis (Figure 3.24). 
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Figure 3.24. Pathways of SNVs, gene expression and miRNA expression used for integrative 
clustering of LUSC tumor samples. (A) Pathways of genes with SNVs, (B) Pathways of gene 
expression, (C) Pathways of miRNA expression. 

3.3.2.3. Comparison of LUSC iClusters for clinical variables and sample biology 

We analyzed the relationship between iClusters and clinical variables and biology of 

tumor samples, using several statistical analyses. According to results of Pearson’s 

𝜒2-test of independence, there is not significant association between primary 

diagnosis, new tumor event type, treatment outcome of first course and iClusters. 

However, iCluster1 has highest percent of distant metastasis and new primary tumor. 

There is significant association between iClusters and tumor stages, iCluster3 has 

highest percent of stage I and lowest percent of stage II and stage III tumor samples 
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while iClust1 and iClust2 have less amount of stage I and higher amount of stage II 

and stage III tumor samples (Figure 3.25).  

 

Figure 3.25. Relationships between iClusters and clinical variables of LUSC patients. (A) Bar 
chart of iClusters vs primary diagnosis (A), tumor stage (B), new tumor event type (C), treatment 
outcome of first course (D) and results of Pearson’s 𝜒2-test for each. 

We analyzed different survival and interval probabilities among iClusters. There is 

significant difference between the iClusters for only disease-free interval (DSI) but 

progression-free interval (PFI) is very close to significance level (p=0.059) and has 

similar pattern with disease-free interval for iCluster1. According to plots, iCluster1 

patients have worse prognosis (Figure 3.26). 
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Figure 3.26. Survival and interval analysis results of LUSC iClusters. 

We compared iClusters with TCGA subtypes which are estimated by TCGA research 

network and published in previous articles. At the heatmap below, it is seen that there 

are associations between expression subtypes, immune subtypes and iClusters (Figure 

3.27). 

 

Figure 3.27. Heatmap comparison of LUSC iClusters with TCGA subtypes in literature. 
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We performed statistical analyses and determined that iClusters are significantly 

associated with expression subtypes. iCluster1 consists of mostly (70%) secretory, 

iCluster2 consists of classical (93%) subtype while iCluster3 has almost equal ratios 

of secretory, primitive, classical and basal expression subtypes. According to 

relationship with immune subtypes, iCluster1 has the highest percent of IFN-g 

dominant subtype while iCluster2 and iCluster3 have mixture of IFN-g dominant and 

wound healing subtypes, but the association is not significant (Figure 3.28). 

 

Figure 3.28. Relationships between LUSC iClusters and TCGA subtypes. (A) Bar chart of 
iClusters vs expression subtype (A), DNA methylation subtype (B), Integrative subtype (C), immune 
subtype (D) and results of Pearson’s 𝜒2-test for each. 

We analyzed the purity ratio of tumor samples, fraction of tumor infiltrated 

leukocytes, fraction of CD4+ and CD8+ tumor infiltrated T cells in tumor samples of 

iClusters in order to determine immune related nature of iClusters. There are 

significant differences between iClusters for all features above. iCluster2 has higher 

purity ratio with lower fraction of tumor infiltrated leukocytes, lower fraction of 

CD4+ and CD8+ tumor infiltrated T cells, significantly (Figure 3.29). 
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Figure 3.29. Comparison of LUSC iClusters for tumor infiltrated immune cells. (A) Purity ratio of 
tumor samples, (B) Fraction of tumor infiltrated leukocytes, (C) Proportion of CD4+ tumor infiltrated 
T cells, (D) Proportion of CD8+ tumor infiltrated T cells. 

The differences of tumor mutation burden/load (TMB) and homologous DNA repair 

deficiency (HRD) level among iClusters shows significant results. iClust1 highest 

amount of TMB followed by iClust2 and iClust3 while iClust2 has higher HRD score 

than others (Figure 3.30). 
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Figure 3.30. Comparison of LUSC iClusters for Tumor Mutation Burden (A) and Homologous 
DNA Repair Deficiency (B). 

In order to see the correlation between TMB/HRD and tumor infiltrated immune cell 

fractions, we analyzed the correlation matrix independent of iClusters. TMB and 

HRD are positively correlated as expected. Fraction of tumor infiltrated leukocytes 

(TIL), CD4+ and CD8+ tumor infiltrated T cells are negatively correlated with HRD 

and TMB (Figure 3.31). 

 

Figure 3.31. Correlation matrix between TMB/HRD and tumor infiltrated immune cells in LUSC 
tumor samples. TIL: Tumor Infiltrated Leukocytes, TMB: Tumor Mutation Burden, HRD: 
Homologous DNA Repair Deficiency. 
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We also analyzed expression differences of tumor associated proteins (TAPs) 

targetable by antibody therapeutics, among iClusters of LUSC patients. The 

expression pattern of TAPs is more diverse than pattern of LUAD tumor samples. The 

expression pattern of TAPs appears to correlate with iClusters and immune subtypes 

but not with risk groups (Figure 3.32). 

 

Figure 3.32. Expression heatmap of tumor associated proteins targetable by antibody 
therapeutics in LUSC tumor samples. 

The expression of immune associated proteins (IAPs) including LAG3, CTLA4 and 

PD-L1 (CD274) which are targetable by antibody therapeutics, have obvious 

differences between tumor samples and patients may have different expression 

patterns of IAPs. While CTLA4 and LAG3 have close expression pattern, some 

patients have opposite expression of PD-L1 (CD274) and CTLA4 or LAG3. The 

expression pattern of IAPs appears to correlate with iClusters and immune subtypes 

but not with risk groups (Figure 3.33). 
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Figure 3.33. Expression heatmap of immune associated proteins targetable by antibody 
therapeutics in LUSC tumor samples. 

We identified the relationships between iClusters and expression of TAPs and IAPs, 

using continuous variable comparison across iClusters. Violin plots show significant 

differences between iClusters for CTLA4, EGFR, KDR and MET genes. iCluster1 

and iCluster3 have higher expression of CTLA4 and KDR while iCluster3 has highest 

expression of CTLA4, EGFR, KDR and MET (Figure 3.34). 
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Figure 3.34. Comparison of LUSC iClusters for expression of targetable proteins by antibody 
therapeutics. 

Risk clusters do not appear to be associated with expression of targetable proteins in 

heatmaps. Pearson’s 𝜒2-test of independence showed that there is not a significant 
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association between iClusters and risk clusters, but iCluser1 and iCluster3 have higher 

percentage of high-risk patients (Figure 3.35). 

 

Figure 3.35. Relationships between iClusters and risk clusters of LUSC patients. Bar chart of 
iClusters vs risk clusters and results of Pearson’s 𝜒2-test. 

The expression levels of immunotherapeutic targetable genes among risk groups, 

show significant differences between risk groups for CTLA4, KDR and MET. 

Expression of CTLA4, KDR and MET is slightly lower in low-risk group (Figure 

3.36). 
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Figure 3.36. Comparison of LUSC risk clusters for expression of targetable proteins by antibody 
therapeutics. 

3.4. Discussion 

Using the TCGA data sets, we demonstrated the integrative clustering method, 

iClusterBayes, to identify clinically relevant patient clusters and driver data features. 

Integrative clustering of the LUAD patients using multiple data types (SNVs, CNVs, 

RNAseq, miRNAseq and methylation) revealed four integrative clusters (iClusters) 

with distinct genomic/transcriptomic patterns. The LUAD patients in the iCluster2 

exhibited a more favorable survival outcome compared to those in the other three 

clusters. The driver genes identified in the study, such as TP53, KEAP1, STK11, 
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KRAS and EGFR, are known to be associated with the disease. These genes exhibited 

varying mutation frequencies across the four iClusters. Among them, tumor 

suppressor genes TP53 and STK11, as well as oncogenes KRAS and EGFR, were 

identified as driver genes with distinct mutation patterns in the different iClusters. 

Targeting these oncogenes may hold potential therapeutic value for patients within 

specific iCluster subgroups displaying abnormal expression or mutations. 

Additionally, the expression patterns of immune response, PI3K-Akt signaling, and 

cell adhesion pathways differed among the iClusters, indicating their potential as 

therapeutic targets as well. 

Integrative clusters (iClusters) have an association with immune subtypes of TCGA 

cancer samples (Thorsson et al., 2018). iCluster2 has the highest percentage of 

inflammatory subtype which has better prognosis among others while iCluster1 has 

the lowest percent of inflammatory subtype and higher amount of wound healing and 

IFN-g dominant subtype which have worse prognosis. iCluster2 has less purity with 

higher fraction of tumor infiltrated leukocytes (TILs) and CD4+ T cells. Besides, it 

has less amount of tumor mutation burden (TMB) and homologous DNA repair 

deficiency (HRD) score. On the other hand, iCluster1 and iCluster4 have higher 

amount of TMB and HRD while they have higher purity with less fraction of TILs 

and CD4+ T cells. iCluster2 has higher expression of all targetable tumor associated 

proteins (TAPs) and tumor associated immune proteins (IAPs) while there is not any 

difference in expression of targetable proteins except CTLA4 among risk clusters. 

We identified three distinct iClusters for LUSC (lung squamous cell carcinoma) based 

on their mutation, copy number variation, mRNA, and miRNA expression patterns. 

These iClusters also had clinical significance as their overall survival rates exhibited 

significant differences. In terms of expression subtypes, the secretory and classical 

subtypes are like the iCluster1 and iCluster2, respectively. Basal cell carcinoma and 

Wnt signaling pathways showed different expression pattern between the three 

iClusters, which have possibility of utilizing these characteristics as targets for cluster 

specific therapies. There is no association between immune subtypes and iClusters of 
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LUSC. Moreover, immune clusters don't have significant survival differences in 

LUSC. However, iClusters have significant difference: iCluster1 has poorer prognosis 

than others. iCluster1 and iCluster3 have higher expression of CTLA4 and KDR 

significantly while expression of CTLA4, KDR and MET is slightly lower in low-risk 

group. iCluster1 and iCluster3 have less purity with higher fraction of TILs, CD4+ T 

cells, CD8+ T cells and less HRD. iCluster2 has the opposite pattern for all variables. 

iCluster1 has higher TMB than iCluster3 although HRD and TMB have positive 

correlation, and iCluster1 has worse prognosis than iCluster3. When examining the 

findings of iClusters for LUAD (lung adenocarcinoma) and LUSC (lung squamous 

cell carcinoma), it is observed that tumor mutation burden (TMB) shows a negative 

correlation with survival probability. In LUSC, tumor-infiltrating immune cells 

exhibit a negative correlation with TMB and homologous recombination deficiency 

(HRD), while they show a positive correlation with survival in both LUAD and 

LUSC. In LUAD, TMB and HRD display a negative correlation with CD4+ T cells 

but a positive correlation with CD8+ T cells. 

In Immune Landscape of Cancer paper, it was found that the lymphocyte fraction 

(LF) positively correlates with tumor mutation burden (TMB), loss of heterozygosity 

(LOH), aneuploidy and homologous recombination deficiency (HRD), but negatively 

correlates with copy number variation (CNV) burden (Thorsson et al., 2019). 

Furthermore, tumors with higher TMB, higher number of mutations in DNA repair 

proteins and higher neoantigen burden, show improved response and progression-free 

survival, particularly in response to anti-PD-1 therapy inducing neoantigen-specific T 

cell activity (Rizvi et al., 2015). We observed conflicting results that tumor infiltrated 

lymphocyte fraction and CD4+ T cells have negative correlation with TMB/HRD in 

both LUAD and LUSC. CD8+ T cells have positive correlation with TMB/HRD in 

LUAD but negative correlation in LUSC. However, independent from these 

correlations, higher amount of TIL and CD4+/CD8+ T cells showed better prognosis 

in both LUAD and LUSC. Previously published researches showed that higher ratio 

of "pre-exhausted" T cells is associated with a better prognosis (Guo et al., 2018) and 
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additionally, higher ratio of CD8+ cytotoxic T cells is significantly linked to better 

progression-free interval (PFI) and overall survival (OS), especially in patients with 

programmed death ligand-1 (PD-L1) positivity and treated with immune checkpoint 

inhibitors (Li et al., 2021; Lopez de Rodas et al., 2022). iClusters which are parallel 

with these findings may help to predict the outcome or response of ICI or other 

antibody therapies. However, we need to perform further analyses such as iCluster 

based correlations to see the relationship in existence or absence of TILs in tumor 

sample. Leader et al. identified a cellular module called Lung Cancer Immune 

Activation Module consisting higher amount of TMB, higher expression of cancer 

testis antigen and TP53mut with PDCD1+, CXCL13+ activated T cells, IgG+ plasma 

cells and SPP1+ macrophages referred to activation module (LCAM-hi). LCAM-hi is 

correlated with superior anti-PDL1 response while LCAM-lo consisting lower amount 

of TMB, lower expression of cancer testis antigen and TP53WT with naive T cells, 

lower plasma:B cell ratio, tissue-resident macrophages and resting DCs is correlated 

with worse anti-PDL1 response (Leader et al., 2021). 

Expression of CTLA4 is correlated with fraction of TILs in LUAD clusters. LUAD 

iCluster2 may be best candidate group of patients who may give better response to 

immune check point inhibitors because iCluster2 patients have higher expression of 

both CTLA4 and CD274 (PDL1). Expression of CTLA4 is correlated with fraction of 

TILs in LUSC clusters, too. LUAD and LUSC datasets do not have response data, 

therefore we could not compare them for the responses, however we plan to analyze 

iClusters and tumor/immune biomarkers using cancer type containing response data. 

In summary, we have performed iClusterBayes method for integrative clustering 

patient samples separately in 33 TCGA projects however we presented only results of 

LUAD and LUSC for the consistency in the story of the thesis. This approach offers 

researchers a robust tool for deciphering cancer omics data, enabling the identification 

of clinically significant cancer subtypes and potential markers for therapeutic 

interventions. However, it is necessary to test the method several times with 

independent data sets and to perform trials before making clinical decisions.
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4. CHAPTER 

TCGAnalyzeR: A Web Application for Integrative Visualization of 

Molecular and Clinical Data of Cancer Patients for Cohort and 

Associated Gene Discovery2 

4.1. Abstract 

The Cancer Genome Atlas (TCGA) database, which contains comprehensive 

molecular and clinical data on over 11,000 cancer patients with 33 different cancer 

types, is incredibly large and complicated, making it difficult to use this important 

resource effectively. We present TCGAnalyzeR, a web tool that integrates 

visualization of pre-processed TCGA data with numerous modules: (i) Simple 

nucleotide variations with driver prediction, pathway enrichment and survival 

analysis; (ii) Copy number variations with pathway enrichment and survival analysis; 

(iii) Differential expression in tumors versus normal with pathway enrichment and 

survival analysis; (iv) Clinical data with survival analysis, and descriptive graphics; 

(v) Internal patient clusters generated using the iClusterPlus R package or signature-

based expression analysis; (vi) Subtypes from the literature, curatedTCGAData and 

BiocOncoTK R packages. TCGAnalyzeR offers cancer researchers dynamic, 

integrated representations of this multi-omic, pan-cancer TCGA data, along with 

displaying cohort- or gene-centric results. Users can design their own custom gene 

sets for pan-cancer comparisons, custom patient subcohorts to compare external 

subtypes (MSI, Immune, PAM50, Triple Negative, IDH1, miRNA, etc.) and our 

internal patient clusters. 

 
2 TCGAnalyzeR: A Web Application for Integrative Visualization of Molecular and Clinical 
Data of Cancer Patients for Cohort and Associated Gene Discovery 
Talip Zengin, Başak Abak Masud, Tuğba Önal-Süzek. bioRxiv, 2023, doi: 10.1101/2023.01.20.524925 



 

76 

4.2. Methods 

4.2.1. Data 

Publicly available hg38 data including SNV (mutation annotation format [maf] files 

generated by mutect2 pipeline), CNV, Transcriptome Profiling (normalized HTseq 

counts) and clinical data of 33 cancer types from The Cancer Genome Atlas (TCGA) 

projects were downloaded on March 6, 2022, from NCI GDC (Grossman et al., 2016) 

using TCGAbiolinks R package (Colaprico et al., 2016). 

4.2.2. SNV Analysis 

Potential driver mutated genes with their roles as a tumor suppressor or oncogene 

were determined by SomInaClust R package (Van den Eynden et al., 2015). The 

COSMIC Mutation Data and Cancer Gene Census data were used for mutation 

validation from Catalog of Somatic Mutations in Cancer (COSMIC), organized by 

expert scientists with a careful review of numerous scientific publications 

(https://cancer.sanger.ac.uk/cosmic) (Forbes et al., 2017). 

4.2.3. CNV Analysis 

Significant recurrent copy number variations were identified by gaia R package 

(Morganella et al., 2011). NCBI IDs and Hugo Symbols of the genes on chromosomal 

regions were determined using GenomicRanges (Lawrence et al., 2013) and biomaRt 

(Durinck et al., 2009) packages. 
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4.2.4. Differential Expression Analysis (DEA) 

Differentially expressed genes were determined by limma-voom method using edgeR 

(Robinson et al., 2010) and limma (Ritchie et al., 2015) packages. Ensembl IDs were 

converted to NCBI IDs and Hugo Symbols using the biomaRt package (Durinck et 

al., 2009). If it is available for a particular cancer, two different DEA were performed 

using two datasets: (i) Paired: Tumor samples against tumor-adjacent normal 

samples; (ii) All: Tumor samples of all patients against normal samples of patients. 

Pathway enrichment and visualization was performed for each analysis by 

clusterProfiler R package (Yu et al., 2012). 

4.2.5. Pre-computed Patient Clusters and Sample Subtypes 

TCGAnalyzeR provides an interactive visual analysis of several patient cohorts: i) 

Risk Clusters: Low-risk or high-risk patient clusters determined by expression-based 

gene signature analysis for Lung Adenocarcinoma (LUAD), Lung Squamous Cell 

Carcinoma (LUSC) and Colon Adenocarcinoma (COAD) (Zengin and Önal-Süzek, 

2021), ii) iClusters: Integrative patient clusters using raw SNV, CNV, gene 

expression, miRNA expression and methylation data of tumor samples by 

iClusterBayes method (Mo et al., 2018), iii) Curated subtypes (immune subtypes, 

TNBC subtypes, PAM50 subtypes) from original publications (Thorsson et al, 2018; 

Lehmann et al, 2016; Berger et al, 2018), previously published TCGA subtypes from 

curatedTCGA R package (Ramos et al., 2020), sample subtypes based on 

Microsatellite Instability (MSI) from BiocOncoTK (Carey et al., 2022, Ding et al., 

2018) and Immune subtypes (Thorsson et al., 2019) for available cancer types. In 

total, 123 external patient cohorts are integrated into the web interface allowing 

efficient filtering and cross-comparative analysis of multiple subtypes in parallel. 
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4.2.6. Survival Analysis 

Kaplan-Meier (KM) survival analysis is performed using survfit R package (Therneau 

et al., 2022) in real-time based on reading overall survival data of patients of interest 

for selected clinical features by readr R package (Wickham et al., 2022). 

4.2.7. Visualization 

TCGAnalyzeR front-end was implemented by javascript-based R packages with an 

interactive dashboard enabling users to select cancer types, data types, risk groups and 

patient cohorts using heatmaply, g3viz and highcharter R packages (Galili et al., 

2018; Guo et al., 2019; Kunst et al., 2022). All visualizations are interactive and 

customizable by the user through the filtration options with “My genes” and/or “My 

patients” panels enabling to copy genes and/or patients of interest to the clipboard. 

All methods used for TCGAnalyzeR web application are summarized in Figure 4.1. 

 

Figure 4.1. Flowchart of methods used for preparing the data for TCGAnalyzeR web tool. 
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4.3. Examples of Data Visualization from TCGAnalyzeR 

Users can find summaries of the TCGA cancer datasets and selected cancer type at 

main page of the tool such as bar graphs showing numbers of samples and genes. 

 

Figure 4.2. Bar graph summarizing numbers of samples, genes with SNVs, genes with CNVs and 
Differentially Expressed Genes (DEGs) at main page of TCGAnalyzeR web tool. 

As example we present the summary and visualization of data analysis results for 

TCGA lung adenocarcinoma (LUAD) dataset below. 

Mutations of top 10 genes with somatic simple nucleotide variations (SNVs) 

predicted as driver genes by SomInaClust are shown in oncoplot with iClusters as 

bottom annotation (Figure 4.3). All genes are mutated in all clusters although some 

patients do not have a particular gene mutation or there are some patients who don’t 

have mutations on any of these genes. iCluster1 has less patients with KRAS 

mutation, iCluster2 and iCluster3 have less patients with KEAP1 mutation and 

iCluster2 has less patients with CDH10 mutation as differences between clusters. 

 

Figure 4.3. Oncoplot of genes with SNVs predicted as driver by SomInaClust. 
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Genomic regions with copy number variations (CNVs) are shown as bar graph 

separately based on their chromosomes and table with q-values of CNV analysis. 

According to results below, chromosome 9 has the highest number of amplifications 

while chromosome 14 has the highest number of deletions. Chromosomes 1, 5, 6, 7, 8 

and 22 have very less aberration than other chromosomes (Figure 4.4). 

 

 

Figure 4.4. Bar graph and CNV analysis results of genomic regions with CNVs in LUAD dataset. 
Amp/Red: Amplification, Del/Blue: Deletion 

Differentially expressed genes in tumor samples versus adjacent normal samples are 

shown as volcano plot and in summary table with log2 fold change (logFC) and 

statistics results in Figure 4.5. Genes of all targetable proteins by antibody 

therapeutics are highlighted in volcano plot. Only EPCAM, NECTIN4, TNFRSF17 

and CD19 genes are significantly up-regulated in LUAD tumor samples. EPCAM 

gene encodes the protein called Epithelial Cell Adhesion Molecule which is targeted 

by edrecolomab in colorectal cancer and catumaxomab in ovarian cancer, 

malignant ascites and gastric cancer. NECTIN4 encodes Nectin Cell Adhesion 
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Molecule 4 protein targeted by enfortumab vedotin in urogenital cancer. TNFRSF17 

encodes Tumor necrosis factor receptor superfamily member 17 protein, also known 

as B cell maturation antigen (BCMA), which plays role in the regulation of B cell 

survival and immunity and targeted by belantamab mafodotin and teclistamab in 

multiple myeloma. CD19 encodes B-lymphocyte antigen CD19 which is expressed in 

B cells and targetable by tafasitamab, loncastuximab tesirine and blinatumomab in B 

cell lymphomas. The up-regulation of TNFRSF17 and CD19 may depend on the 

infiltration of B cells in tumor samples.  

 

Figure 4.5. Volcano plot and analysis results of differentially expressed genes of LUAD samples. 
Genes of all targetable proteins by approved antibody therapeutics are highlighted in volcano plot. 
Statistics of significantly up-regulated genes are summarized in the second table. 

Pathway enrichment results of differentially expressed genes (DEGs) are summarized 

as bar graph in Figure 4.6. DEGs mostly play role in extra cellular pathways such as 
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cell adhesion and ECM-receptor interaction; immune related pathways including 

complement and coagulation cascades, hematopoietic cell lineage, infection and 

cytokine-cytokine receptor interaction; cell cycle and protein digestion and absorption 

pathways (Figure 4.6). 

 

Figure 4.6. Pathway enrichment of differentially expressed genes in LUAD tumor samples. 

If user wants to visualize the expression level of a specific gene in tumor samples 

versus adjacent normal cells, violin plot can be generated with adjusted p-value (q-

value) calculated during differential expression analysis. According to violin plot 

shown in Figure 4.7, EPCAM gene is up-regulated highly significantly in tumor 

samples. 

 

Figure 4.7. EPCAM gene expression in tumor and adjacent normal samples of LUAD. 
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We can summarize the clinical variables as pie charts and survival analysis can 

performed in real-time and present in other tab. We can see the distribution of tumor 

stage (ajcc pathologic stage) categories and existence of synchronous malignancy as 

pie chart with survival analysis results in Figure 4.8. Survival probabilities of tumor 

stages are significantly different and patients who have synchronous malignancy have 

poor prognosis significantly. 

 

Figure 4.8. Pie charts and survival analysis of pathologic stage and existence of synchronous 
malignancy. There are many clinical variables in clinical data section of LUAD dataset but only two of 
them is showed in this figure. 
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4.4. Conclusion 

We present comprehensive analyses of genetic mutations, copy number variations, 

and differential gene expression in large sets of patient clusters with subtype 

information. Our approach includes signature-based clustering using the Generalized 

Linear Model for two specific cancer types (LUAD and LUSC). Additionally, we 

provide immune and MSI-sensor scores for all 33 cancer types, as well as subtype 

information for breast cancer (BRCA) including PAM50 and TNBC patient cohorts, 

retrieved from previously published TCGA articles. For fifteen cancer types, TCGA 

subtype information was retrieved the curatedTCGAData R package (Ramos et al, 

2020). 

TCGAnalyzeR is a user-friendly web tool designed for integrated and large-scale 

analyses of genomic and clinical data from TCGA across 33 cancer types. Through 

the TCGAnalyzeR web interface, cancer researchers can easily create subcohorts and 

gene sets of interest to filter and visualize the results. The TCGAnalyzeR help page 

provides a demonstration of the tool, showcasing two specific use-cases for subcohort 

discovery. 

The full version of the article can be found at Appendix B. 

 

 

 

 

 



 

85 

REFERENCES 

Angell H, Galon J. From the immune contexture to the Immunoscore: the role of 
prognostic and predictive immune markers in cancer. Curr Opin Immunol. 2013 Apr; 
25(2):261-7. 

Aran, D., Hu, Z. & Butte, A. J. XCell: digitally portraying the tissue cellular 
heterogeneity landscape. Genome Biol. 2017, 18, 220. 

Bai, R., Lv, Z., Xu, D. et al. Predictive biomarkers for cancer immunotherapy with 
immune checkpoint inhibitors. Biomark Res. 2020, 8, 34. 

Bao X, Shi R, Zhao T, Wang Y. Immune landscape and a novel immunotherapy-
related gene signature associated with clinical outcome in early-stage lung 
adenocarcinoma. J Mol Med (Berl). 2020 Jun;98(6):805-818.  

Beck B, Blanpain C. Unraveling cancer stem cell potential. Nat Rev Cancer 
2013;13(10):727–38. 

Bindea, G. et al. Spatiotemporal dynamics of intratumoral immune cells reveal the 
immune landscape in human cancer. Immunity 2013, 39, 782–795. 

Binnewies, M., Roberts, E.W., Kersten, K. Understanding the tumor immune 
microenvironment (TIME) for effective therapy. Nat Med 2018, 24, 541–550. 

Brahmer J, Reckamp KL, Baas P. Nivolumab versus Docetaxel in advanced 
squamous-cell non-small-cell lung Cancer [J]. N Engl J Med. 2015;373(2):123–35. 

Cao R, Yuan L, Ma B, Wang G, Tian Y. Tumour microenvironment (TME) 
characterization identified prognosis and immunotherapy response in muscle-invasive 
bladder cancer (MIBC). Cancer Immunol Immunother. 2021 Jan;70(1):1-18. 

Cao T, Shen H. Development of a multi-gene-based immune prognostic signature in 
ovarian Cancer. J Ovarian Res. 2021 Jan 28;14(1):20.  

Chen, H. VennDiagram: Generate High-Resolution Venn and Euler Plots. R Package 
Version 1.6.20. 2018. Available online: https://cran.r-
project.org/package=VennDiagram (accessed on 21 May 2020). 

Cheng J, Ding X, Xu S, Zhu B, Jia Q. Gene expression profiling identified 
TP53MutPIK3CAWild as a potential biomarker for patients with triple-negative 
breast cancer treated with immune checkpoint inhibitors. Oncol Lett. 2020 
Apr;19(4):2817-2824. 

Colaprico, A.; Silva, T.C.; Olsen, C.; Garofano, L.; Cava, C.; Garolini, D.; Sabedot, 
T.S.; Malta, T.M.; Pagnotta, S.M.; Castiglioni, I.; et al. TCGAbiolinks: An 
R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 
2016, 44, e71. 



 

86 

Durinck, S.; Spellman, P.T.; Birney, E.; Huber, W. Mapping identifiers for the 
integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. 
Protoc. 2009, 4, 1184–1191. 

Eynden, J.V.D.; Fierro, A.C.; Verbeke, L.P.C.; Marchal, K. SomInaClust: Detection 
of cancer genes based on somatic mutation patterns of inactivation and clustering. 
BMC Bioinform. 2015, 16, 1–12.  

Fleischer T., Frigessi A., Johnson K.C., Edvardsen H., Touleimat N., Klajic J., Riis 
M.L., Haakensen V.D., Wärnberg F., Naume B. et al. Genome-wide DNA 
methylation profiles in progression to in situ and invasive carcinoma of the breast 
with impact on gene transcription and prognosis. Genome Biol. 2014; 15:435.  

Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non-small-cell 
lung cancer [J]. N Engl J Med. 2015;372(21):2018–28. 

Gerds, T.A.; Ozenne, B. RiskRegression: Risk Regression Models and Prediction 
Scores for Survival Analysis with Competing Risks. R Package Version 2020.12.08. 
2020. Available online: https://cran.r-project.org/package=riskRegression (accessed 
on 21 May 2020). 

Gentles AJ, Malhotra R, Farshidfar F, Colaprico A, Parker JS, Mose LE, Vo NS, Liu 
J, Liu Y, Rader J, Dhankani V, Reynolds SM, Bowlby R, Califano A, Cherniack AD, 
Anastassiou D, Bedognetti D, Mokrab Y, Newman AM, Rao A, Chen K, Krasnitz A, 
Hu H, Malta TM, Noushmehr H, Pedamallu CS, Bullman S, Ojesina AI, Lamb A, 
Zhou W, Shen H, Choueiri TK, Weinstein JN, Guinney J, Saltz J, Holt RA, Rabkin 
CS; Cancer Genome Atlas Research Network, Lazar AJ, Serody JS, Demicco EG, 
Disis ML, Vincent BG, Shmulevich I. The Immune Landscape of Cancer. Immunity. 
2018 Apr 17;48(4):812-830.e14.  

Gevaert O., Tibshirani R., Plevritis S.K. Pancancer analysis of DNA methylation-
driven genes using MethylMix. Genome Biol. 2015; 16:17.  

Goswami S, Chen Y, Anandhan S, Szabo PM, Basu S, Blando JM, Liu W, Zhang J, 
Natarajan SM, Xiong L, Guan B, Yadav SS, Saci A, Allison JP, Galsky MD, Sharma 
P. ARID1A mutation plus CXCL13 expression act as combinatorial biomarkers to 
predict responses to immune checkpoint therapy in mUCC. Sci Transl Med. 2020 Jun 
17;12(548):eabc4220.  

Grasso CS, Giannakis M, Wells DK, Hamada T, Mu XJ, Quist M, Nowak JA, 
Nishihara R, Qian ZR, Inamura K, Morikawa T, Nosho K, Abril-Rodriguez G, 
Connolly C, Escuin-Ordinas H, Geybels MS, Grady WM, Hsu L, Hu-Lieskovan S, 
Huyghe JR, Kim YJ, Krystofinski P, Leiserson MDM, Montoya DJ, Nadel BB, 
Pellegrini M, Pritchard CC, Puig-Saus C, Quist EH, Raphael BJ, Salipante SJ, Shin 
DS, Shinbrot E, Shirts B, Shukla S, Stanford JL, Sun W, Tsoi J, Upfill-Brown A, 
Wheeler DA, Wu CJ, Yu M, Zaidi SH, Zaretsky JM, Gabriel SB, Lander ES, 
Garraway LA, Hudson TJ, Fuchs CS, Ribas A, Ogino S, Peters U. Genetic 



 

87 

Mechanisms of Immune Evasion in Colorectal Cancer. Cancer Discov. 2018 
Jun;8(6):730-749. 

Gu, Z.; Gu, L.; Eils, R.; Schlesner, M.; Brors, B. circlize implements and enhances 
circular visualization in R. Bioinformatics 2014; 30, 2811–2812.  

Gu, Z.; Eils, R.; Schlesner, M. Complex heatmaps reveal patterns and correlations in 
multidimensional genomic data. Bioinformatics 2016; 32, 2847–2849. 

Guo, X., Zhang, Y., Zheng, L. et al. Global characterization of T cells in non-small-
cell lung cancer by single-cell sequencing. Nat Med 2018; 24, 978–985. 

Han, S., Liu, Y., Cai, S.J. et al. IDH mutation in glioma: molecular mechanisms and 
potential therapeutic targets. Br J Cancer 2020; 122, 1580–1589. 

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 
2011;144(5):646–74. 

Heagerty, P.J.; Saha-Chaudhuri, P. survivalROC: Time-Dependent ROC Curve 
Estimation from Censored Survival Data. R Package Version 1.0.3. 2013. Available 
online: https://cran.r-project.org/package=survivalROC. 

Hull, R.M., Cristina, C., Jonathan, V., J.C, H., Mark S.. Environmental change drives 
accelerated adaptation through stimulated copy number variation. PLoS Biol., 2020; 
15, p. e2001333. 

Irizarry R.A., Ladd-Acosta C., Wen B., Wu Z., Montano C., Onyango P., Cui H., 
Gabo K., Rongione M., Webster M. The human colon cancer methylome shows 
similar hypo-and hypermethylation at conserved tissue-specific CpG island shores. 
Nat. Genet. 2009; 41:178–186. 

Jin, S., Sun, Y., Liang, X. et al. Emerging new therapeutic antibody derivatives for 
cancer treatment. Sig Transduct Target Ther 7, 2022; 39.  

Johnson, D.B., Nebhan, C.A., Moslehi, J.J. et al. Immune-checkpoint inhibitors: long-
term implications of toxicity. Nat Rev Clin Oncol 2022; 19, 254–267.  

Kassambara, A.; Kosinski, M.; Biecek, P. Survminer: Drawing Survival Curves Using 
“ggplot2”. R Package Version 0.4.8. 2020. Available online: https://cran.r-
project.org/package=survminer (accessed on 21 May 2020). 

Kennedy, N. Forestmodel: Forest Plots from Regression Models. R Package Version 
0.6.2. 2020. Available online: https://cran.r-project.org/package=forestmodel 
(accessed on 21 May 2020). 

Kristensen V.N., Lingjærde O.C., Russnes H.G., Vollan H. K.M., Frigessi A., 
Børresen-Dale A.-L.. Principles and methods of integrative genomic analyses in 
cancer. Nat. Rev. Cancer. 2014; 14:299–313. 



 

88 

Lahiri A, Maji A, Potdar PD, Singh N, Parikh P, Bisht B, Mukherjee A, Paul MK. 
Lung cancer immunotherapy: progress, pitfalls, and promises. Mol Cancer. 2023 Feb 
21;22(1):40.  

Lawrence, M.; Huber, W.; Pagès, H.; Aboyoun, P.; Carlson, M.; Gentleman, R.; 
Morgan, M.T.; Carey, V.J. Software for Computing and Annotating Genomic Ranges. 
PLoS Comput. Biol. 2013, 9, e1003118. 

Leader A. M. et al. “Single-cell analysis of human non-small cell lung cancer lesions 
refines tumor classification and patient stratification,” Cancer Cell, 2021; 39, 12: 
1594-1609.e12. 

Li, C. Y. Hou, J. Xu, A. Zhang, Z. Liu, F. Qi, Z. Yang, K. Chen, S. Liu, H. Huang. A 
direct test of selection in cell populations using the diversity in gene expression within 
tumors. Mol. Biol. Evol. 2017; p. 7 

Li, Feng, Caichen Li, Xiuyu Cai, Zhanhong Xie, Liquan Zhou, Bo Cheng, Ran 
Zhong, Shan Xiong, Jianfu Li, Zhuxing Chen, Ziwen Yu, Jianxing He, Wenhua 
Liang. The association between CD8+ tumor-infiltrating lymphocytes and the clinical 
outcome of cancer immunotherapy: A systematic review and meta-analysis. 
eClinicalMedicine, 2021, 101134. 

Liao R, Ma QZ, Zhou CY, Li JJ, Weng NN, Yang Y, Zhu Q. Identification of 
biomarkers related to Tumor-Infiltrating Lymphocytes (TILs) infiltration with gene 
co-expression network in colorectal cancer. Bioengineered. 2021 Dec;12(1):1676-
1688.  

Liu Y, Zhou H, Zheng J, Zeng X, Yu W, Liu W, Huang G, Zhang Y, Fu W. 
Identification of Immune-Related Prognostic Biomarkers Based on the Tumor 
Microenvironment in 20 Malignant Tumor Types with Poor Prognosis. Front Oncol. 
2020 Jul 31; 10:1008. 

Lopez de Rodas M, Nagineni V, Ravi A, Datar IJ, Mino-Kenudson M, Corredor G, 
Barrera C, Behlman L, Rimm DL, Herbst RS, Madabhushi A, Riess JW, Velcheti V, 
Hellmann MD, Gainor J, Schalper KA. Role of tumor infiltrating lymphocytes and 
spatial immune heterogeneity in sensitivity to PD-1 axis blockers in non-small cell 
lung cancer. J Immunother Cancer. 2022 Jun;10(6):e004440. 

Mayakonda, A.; Lin, D.-C.; Assenov, Y.; Plass, C.; Koeffler, H.P. Maftools: Efficient 
and comprehensive analysis of somatic variants in cancer. Genome Res. 2018, 28, 
1747–1756.  

McCarthy, D.J.; Chen, Y.; Smyth, G.K. Differential expression analysis of multifactor 
RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012, 
40, 4288–4297. 

Meyer, D.; Zeileis, A.; Hornik, K. The Strucplot Framework: Visualizing Multi-way 
Contingency Tables withvcd. J. Stat. Softw. 2006, 17, 1–48.  



 

89 

Meyer, D.; Zeileis, A.; Hornik, K. Vcd: Visualizing Categorical Data. R Package 
Version 1.4-8. 2020. Available online: https://cran.r-project.org/package=vcd 
(accessed on 21 May 2020). 

Miao YD, Wang JT, Yang Y, Ma XP, Mi DH. Identification of prognosis-associated 
immune genes and exploration of immune cell infiltration in colorectal cancer. 
Biomark Med. 2020 Oct;14(14):1353-1369.  

Morganella, S.; Pagnotta, S.M.; Ceccarelli, M. GAIA: An R Package for Genomic 
Analysis of Significant Chromosomal Aberrations. R Package Version 2.32.0. 2020. 
Available online: https://bioconductor.org/packages/gaia (accessed on 21 May 2020). 

Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression 
profiles. Nat. Methods 2015; 12, 453–457. 

Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. NatRev 
Cancer 2012;12(4):252–64. 

Patil, I. Visualizations with statistical details: The 'ggstatsplot' approach. Journal of 
Open Source Software, 2021, 6(61), 3167. 

Peng J, Zou D, Gong W, Kang S, Han L. Deep neural network classification based on 
somatic mutations potentially predicts clinical benefit of immune checkpoint blockade 
in lung adenocarcinoma. Oncoimmunology. 2020 Feb 29;9(1):1734156. 

Pinato DJ, Howlett S, Ottaviani D, Urus H, Patel A, Mineo T, Brock C, Power D, 
Hatcher O, Falconer A, Ingle M, Brown A, Gujral D, Partridge S, Sarwar N, Gonzalez 
M, Bendle M, Lewanski C, Newsom-Davis T, Allara E, Bower M. Association of 
Prior Antibiotic Treatment With Survival and Response to Immune Checkpoint 
Inhibitor Therapy in Patients With Cancer. JAMA Oncol. 2019 Dec 1;5(12):1774-
1778. 

Pinyol R, Montal R, Bassaganyas L, Sia D, Takayama T, Chau GY, Mazzaferro V, 
Roayaie S, Lee HC, Kokudo N, Zhang Z, Torrecilla S, Moeini A, Rodriguez-
Carunchio L, Gane E, Verslype C, Croitoru AE, Cillo U, de la Mata M, Lupo L, 
Strasser S, Park JW, Camps J, Solé M, Thung SN, Villanueva A, Pena C, Meinhardt 
G, Bruix J, Llovet JM. Molecular predictors of prevention of recurrence in HCC with 
sorafenib as adjuvant treatment and prognostic factors in the phase 3 STORM trial. 
Gut. 2019 Jun;68(6):1065-1075. 

Qian Y, Daza J, Itzel T, Betge J, Zhan T, Marmé F, Teufel A. Prognostic Cancer 
Gene Expression Signatures: Current Status and Challenges. Cells. 2021 Mar 
15;10(3):648. 

Qianxing Mo, Sijian Wang, Venkatraman E. Seshan, Adam B. Olshen, Nikolaus 
Schultz, Chris Sander, R. Scott Powers, Marc Ladanyi, and Ronglai Shen. Pattern 
discovery and cancer gene identification in integrated cancer genomic data. Proc. 
Natl. Acad. Sci. USA 2013; 110(11):4245-50. 



 

90 

Qianxing Mo, Ronglai Shen, Cui Guo, Marina Vannucci, Keith S Chan, Susan G 
Hilsen-beck. A fully Bayesian latent variable model for integrative clustering analysis 
of multi-type omics data. Biostatistics 2018; 19(1):71-86. 

Ren Q, Zhu P, Zhang H, Ye T, Liu D, Gong Z, Xia X. Identification and validation of 
stromal-tumor microenvironment-based subtypes tightly associated with PD-1/PD-L1 
immunotherapy and outcomes in patients with gastric cancer. Cancer Cell Int. 2020 
Mar 24;20:92.  

Ren, Y., S. Huang, C. Dai, D. Xie, L. Zheng, H. Xie, H. Zheng, Y. She, F. Zhou, Y. 
Wang. Germline predisposition and copy number alteration in pre-stage lung 
adenocarcinomas presenting as ground-glass nodules. Front. Oncol., 2019; 9: 288 

Richardson S., Tseng G.C., Sun W. Statistical methods in integrative genomics. 
Annu. Rev. Stat. Appl. 2016; 3:181–209.  

Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma 
powers differential expression analyses for RNA-sequencing and microarray studies. 
Nucleic Acids Res. 2015, 43, e47. 

Rizvi N. A.  et al. Mutational landscape determines sensitivity to PD-1 blockade in 
non–small cell lung cancer. Science, 2015; 348, 124-128.  

Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma 
without BRAF mutation [J]. N Engl J Med. 2015;372(4):320–30. 

Scott, A., Wolchok, J. & Old, L. Antibody therapy of cancer. Nat Rev Cancer 2012; 
12, 278–287. 

Sengupta, S., S.Q. Sun, K.L. Huang, C. Oh, M.H. Bailey, R. Varghese, M.A. 
Wyczalkowski, J. Ning, P. Tripathi, J.F. Mcmichael. Integrative omics analyses 
broaden treatment targets in human cancer. Genome Med., 2018; 10:60. 

Shen H., Laird P.W. Interplay between the cancer genome and epigenome. Cell. 2013; 
153:38–55. 

Shen R, Olshen AB, Ladanyi M. Integrative clustering of multiple genomic data types 
using a joint latent variable model with application to breast and lung cancer subtype 
analysis. Bioinformatics. 2009 Nov 15;25(22):2906-12. 

Shin DS, Zaretsky JM, Escuin-Ordinas H, Garcia-Diaz A, Hu-Lieskovan S, Kalbasi 
A, Grasso CS, Hugo W, Sandoval S, Torrejon DY, Palaskas N, Rodriguez GA, Parisi 
G, Azhdam A, Chmielowski B, Cherry G, Seja E, Berent-Maoz B, Shintaku IP, Le 
DT, Pardoll DM, Diaz LA Jr, Tumeh PC, Graeber TG, Lo RS, Comin-Anduix B, 
Ribas A. Primary Resistance to PD-1 Blockade Mediated by JAK1/2 Mutations. 
Cancer Discov. 2017 Feb;7(2):188-201. 

Silva, T.C.; Colaprico, A.; Olsen, C.; D’Angelo, F.; Bontempi, G.; Ceccarelli, M.; 
Noushmehr, H. TCGA Workflow: Analyze cancer genomics and epigenomics data 
using Bioconductor packages. F1000Research 2016, 5, 1542. 



 

91 

Simon, N.; Friedman, J.H.; Hastie, T.; Tibshirani, R. Regularization Paths for Cox’s 
Proportional Hazards Model via Coordinate Descent. J. Stat. Softw. 2011, 39, 1–13. 

Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, 
Benyamin FW, Lei YM, Jabri B, Alegre ML, Chang EB, Gajewski TF. Commensal 
Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. 
Science. 2015 Nov 27;350(6264):1084-9.  

Szender JB, Papanicolau-Sengos A, Eng KH, Miliotto AJ, Lugade AA, Gnjatic S, 
Matsuzaki J, Morrison CD, Odunsi K. NY-ESO-1 expression predicts an aggressive 
phenotype of ovarian cancer. Gynecol Oncol. 2017 Jun;145(3):420-425.  

Tate, J.G.; Bamford, S.; Jubb, H.C.; Sondka, Z.; Beare, D.M.; Bindal, N.; Boutselakis, 
H.; Cole, C.G.; Creatore, C.; Dawson, E.; et al. COSMIC: The Catalogue Of Somatic 
Mutations In Cancer. Nucleic Acids Res. 2018, 47, D941–D947.  

Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, Chen L, Pardoll DM, 
Topalian SL, Anders RA. Association of PD-1, PD-1 ligands, and other features of 
the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer 
Res. 2014 Oct 1;20(19):5064-74.  

TCGARN. Comprehensive genomic characterization of squamous cell lung cancers. 
Nature 2012; 489, 519–525. 

TCGARN. Integrated genomic characterization of endometrial carcinoma. Nature 
2013; 497, 67–73. 

TCGARN. Comprehensive molecular characterization of gastric adenocarcinoma. 
Nature 2014; 513, 202–209. 

TCGARN. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014; 
511, 543–550. 

Therneau, T. A Package for Survival Analysis in R. R Package Version 3.2-7. 2020. 
Available online: https://cran.r-project.org/package=survival (accessed on 21 May 
2020). 

Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, Porta-Pardo 
E, Gao GF, Plaisier CL, Eddy JA, Ziv E, Culhane AC, Paull EO, Sivakumar IKA, 
Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski 
B, Spasic M, Henry G, Ciobanu V, West AN, Carmona M, Kivork C, Seja E, Cherry 
G, Gutierrez AJ, Grogan TR, Mateus C, Tomasic G, Glaspy JA, Emerson RO, Robins 
H, Pierce RH, Elashoff DA, Robert C, Ribas A. PD-1 blockade induces responses by 
inhibiting adaptive immune resistance. Nature. 2014 Nov 27;515(7528):568-71. 

Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, 
Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, Olsson I, Edlund K, Lundberg E, 
Navani S, Szigyarto CA, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, 
Edqvist PH, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, 



 

92 

Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von 
Heijne G, Nielsen J, Pontén F. Proteomics. Tissue-based map of the human proteome. 
Science. 2015 Jan 23;347(6220):1260419.  

Vadakekolathu J, Lai C, Reeder S, Church SE, Hood T, Lourdusamy A, Rettig MP, 
Aldoss I, Advani AS, Godwin J, Wieduwilt MJ, Arellano M, Muth J, Yau TO, 
Ravandi F, Sweet K, Altmann H, Foulds GA, Stölzel F, Middeke JM, Ciciarello M, 
Curti A, Valk PJM, Löwenberg B, Gojo I, Bornhäuser M, DiPersio JF, Davidson-
Moncada JK, Rutella S. TP53 abnormalities correlate with immune infiltration and 
associate with response to flotetuzumab immunotherapy in AML. Blood Adv. 2020 
Oct 27;4(20):5011-5024.  

Vrahatis, A.G.; Balomenos, P.; Tsakalidis, A.K.; Bezerianos, A. DEsubs: An R 
package for flexible identification of differentially expressed subpathways using 
RNA-seq experiments. Bioinformatics 2016; 32, 3844–3846. 

Wiesweg M, Mairinger F, Reis H, Goetz M, Kollmeier J, Misch D, Stephan-Falkenau 
S, Mairinger T, Walter RFH, Hager T, Metzenmacher M, Eberhardt WEE, Zaun G, 
Köster J, Stuschke M, Aigner C, Darwiche K, Schmid KW, Rahmann S, Schuler M. 
Machine learning reveals a PD-L1-independent prediction of response to 
immunotherapy of non-small cell lung cancer by gene expression context. Eur J 
Cancer. 2020 Nov;140:76-85 

Xie F, Zhang J, Wang J, Reuben A, Xu W, Yi X, Varn FS, Ye Y, Cheng J, Yu M, 
Wang Y, Liu Y, Xie M, Du P, Ma K, Ma X, Zhou P, Yang S, Chen Y, Wang G, Xia 
X, Liao Z, Heymach JV, Wistuba II, Futreal PA, Ye K, Cheng C, Xia T. 
Multifactorial Deep Learning Reveals Pan-Cancer Genomic Tumor Clusters with 
Distinct Immunogenomic Landscape and Response to Immunotherapy. Clin Cancer 
Res. 2020 Jun 15;26(12):2908-2920.  

Xu, Y. Q. Dong, F. Li, Y. Xu, Y. Zhang. Identifying subpathway signatures for 
individualized anticancer drug response by integrating multi-omics data. J. Transl. 
Med. 2019, p. 17 

Yang B, Su Z, Chen G, Zeng Z, Tan J, Wu G, Zhu S, Lin L. Identification of 
prognostic biomarkers associated with metastasis and immune infiltration in 
osteosarcoma. Oncol Lett. 2021 Mar;21(3):180 

Yang, X., L. Gao, S. Zhang. Comparative pan-cancer DNA methylation analysis 
reveals cancer common and specific patterns. Brief. Bioinformatics, 2020. 

Yang, X., Y. Chu, R. Zhang, Y. Han, L. Zhang, Y. Fu, D. Li, R. Peng, D. Li, J. Ding. 
Technical validation of a next-generation sequencing assay for detecting clinically 
relevant levels of breast cancer–related single-nucleotide variants and copy number 
variants using simulated cell-free DNA. J. Mol. Diagn., 2017; 19: 525-536 



 

93 

Yao Y, Yan Z, Lian S, Wei L, Zhou C, Feng D, Zhang Y, Yang J, Li M, Chen Y. 
Prognostic value of novel immune-related genomic biomarkers identified in head and 
neck squamous cell carcinoma. J Immunother Cancer. 2020 Jul;8(2): e000444.  

Yu, G.; Wang, L.-G.; Han, Y.; He, Q.-Y. clusterProfiler: An R Package for 
Comparing Biological Themes Among Gene Clusters. OMICS J. Integr. Biol. 2012, 
16, 284–287.  

Yu, G. Enrichplot: Visualization of Functional Enrichment Result. R Package Version 
1.8.1. 2020. Available online: https://github.com/GuangchuangYu/enrichplot 
(accessed on 21 May 2020). 

Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, 
Torrejon DY, Abril-Rodriguez G, Sandoval S, Barthly L, Saco J, Homet Moreno B, 
Mezzadra R, Chmielowski B, Ruchalski K, Shintaku IP, Sanchez PJ, Puig-Saus C, 
Cherry G, Seja E, Kong X, Pang J, Berent-Maoz B, Comin-Anduix B, Graeber TG, 
Tumeh PC, Schumacher TN, Lo RS, Ribas A. Mutations Associated with Acquired 
Resistance to PD-1 Blockade in Melanoma. N Engl J Med. 2016 Sep 1; 375(9):819-
29.  

Zengin T, Önal-Süzek T. Comprehensive Profiling of Genomic and Transcriptomic 
Differences between Risk Groups of Lung Adenocarcinoma and Lung Squamous Cell 
Carcinoma. Journal of Personalized Medicine. 2021; 11(2):154. 

Zengin T, Abak Masud B, Önal-Süzek T. TCGAnalyzeR: a web application for 
integrative visualization of molecular and clinical data of cancer patients for cohort 
and associated gene discovery. bioRxiv, 2023. 

Zhang, J.; Jin, Z. Cutoff: Seek the Significant Cutoff Value. R Package Version 1.3. 
2019. Available online: https://cran.r-project.org/package=cutoff (accessed on 21 May 
2020). 

Zhang, J.; Jin, Z. Ggrisk: Risk Score Plot for Cox Regression. R Package Version 1.2. 
2020. Available online: https://cran.r-project.org/package=ggrisk (accessed on 21 
May 2020). 

Zhao S, Yu M. Identification of MMP1 as a Potential Prognostic Biomarker and 
Correlating with Immune Infiltrates in Cervical Squamous Cell Carcinoma. DNA Cell 
Biol. 2020 Feb; 39(2):255-272. 

Zhu S, Han X, Qiao X, Chen S. The Immune Landscape and Prognostic Immune Key 
Genes Potentially Involved in Modulating Synaptic Functions in Prostate Cancer. 
Front Oncol. 2020 Aug 14; 10:1330. 



 

94 

APPENDIX A. 

ARTICLE I 

Comprehensive Profiling of Genomic and Transcriptomic Differences between 

Risk Groups of Lung Adenocarcinoma and Lung Squamous Cell Carcinoma 

Talip Zengin and Tuğba Önal-Süzek 

Journal of Personalized Medicine, 2021, doi: 10.3390/jpm11020154 

 

 

 

 

 

 

 

 

 

 

 



Journal of

Personalized 

Medicine

Article

Comprehensive Profiling of Genomic and Transcriptomic
Differences between Risk Groups of Lung Adenocarcinoma
and Lung Squamous Cell Carcinoma

Talip Zengin 1,2 and Tuğba Önal-Süzek 2,3,*
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Abstract: Lung cancer is the second most frequently diagnosed cancer type and responsible for the
highest number of cancer deaths worldwide. Lung adenocarcinoma (LUAD) and lung squamous
cell carcinoma (LUSC) are subtypes of non-small-cell lung cancer which has the highest frequency
of lung cancer cases. We aimed to analyze genomic and transcriptomic variations including simple
nucleotide variations (SNVs), copy number variations (CNVs) and differential expressed genes
(DEGs) in order to find key genes and pathways for diagnostic and prognostic prediction for lung
adenocarcinoma and lung squamous cell carcinoma. We performed a univariate Cox model and
then lasso-regularized Cox model with leave-one-out cross-validation using The Cancer Genome
Atlas (TCGA) gene expression data in tumor samples. We generated 35- and 33-gene signatures
for prognostic risk prediction based on the overall survival time of the patients with LUAD and
LUSC, respectively. When we clustered patients into high- and low-risk groups, the survival analysis
showed highly significant results with high prediction power for both training and test datasets.
Then, we characterized the differences including significant SNVs, CNVs, DEGs, active subnetworks,
and the pathways. We described the results for the risk groups and cancer subtypes separately
to identify specific genomic alterations between both high-risk groups and cancer subtypes. Both
LUAD and LUSC high-risk groups have more downregulated immune pathways and upregulated
metabolic pathways. On the other hand, low-risk groups have both up- and downregulated genes on
cancer-related pathways. Both LUAD and LUSC have important gene alterations such as CDKN2A
and CDKN2B deletions with different frequencies. SOX2 amplification occurs in LUSC and PSMD4
amplification in LUAD. EGFR and KRAS mutations are mutually exclusive in LUAD samples. EGFR,
MGA, SMARCA4, ATM, RBM10, and KDM5C genes are mutated only in LUAD but not in LUSC.
CDKN2A, PTEN, and HRAS genes are mutated only in LUSC samples. The low-risk groups of both
LUAD and LUSC tend to have a higher number of SNVs, CNVs, and DEGs. The signature genes and
altered genes have the potential to be used as diagnostic and prognostic biomarkers for personalized
oncology.

Keywords: TCGA; non-small-cell lung cancer; lung adenocarcinoma (LUAD); lung squamous cell
carcinoma (LUSC); differential expression; SNV; CNV; risk group; signature; survival

1. Introduction

Lung cancer is the second most frequently diagnosed cancer type and the leading
cause of cancer-related mortality worldwide [1]. Lung cancer treatments used in the clinic
are surgery, radiotherapy, chemotherapy, targeted therapy, and emerging immunother-
apy. The clinical treatment decisions are made based on tumor stage, histology, genetic
alterations of a few driver oncogenes for targeted therapies, and patient’s condition [2].
However, most of the patients are diagnosed at an advanced and metastatic stage, with
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high mortality and poor benefit from therapies [3]. Although the targeted therapeutics and
immunotherapeutics including immune-checkpoint inhibitors are introduced for patients
at an advanced stage, these options are beneficial only for limited subsets of patients and
these patients still can develop resistance [4]. Therefore, the majority of patients with
advanced-stage lung cancer die within 5 years of diagnosis [5].

Histologically there are four major types of lung cancer, including small-cell carcinoma
(SCLC), and adenocarcinoma, squamous cell carcinoma, large cell carcinoma as grouped
non-small-cell carcinoma (NSCLC). Lung adenocarcinoma (LUAD) and lung squamous
cell carcinoma (LUSC) account for 50% and 23% of all lung cancers, respectively [6]. Lung
cancer is both histologically and molecularly heterogeneous disease and characterizing the
genomics and transcriptomics of its nature is very important for effective therapies. Lung
cancer has many subtypes with distinct genetic characteristics, resulting in intra-tumoral
heterogeneity [7].

The Cancer Genome Atlas (TCGA) database serves different types of data such as
transcriptome profiling, simple nucleotide variation, copy number variation, DNA methy-
lation, clinical and biospecimen data of 84,392 cancer patients with 68 primary sites [8].
The Cancer Genome Atlas Research Network reported molecular profiling of 230 lung ade-
nocarcinoma samples using mRNA, microRNA and DNA sequencing integrated with copy
number, methylation and proteomic analyses. They identified 18 significantly mutated
genes, including TP53, KRAS which is mutually exclusive with EGFR, BRAF, PIK3CA, MET,
STK11, KEAP1, NF1, RB1, CDKN2A, GTPase gene RIT1, including activating mutations
and MGA including loss-of-function mutations. DNA and mRNA sequence from the
same tumor highlighted splicing alterations including exon 14 skipping in MET mRNA in
4% of cases. They also showed DNA hyper-methylation of several key genes: CDKN2A,
GATA2, GATA4, GATA5, HIC1, HOXA9, HOXD13, RASSF1, SFRP1, SOX17, WIF1, and
MYC over-expression was significantly associated with the hyper-methylation phenotype
as well [9].

The Cancer Genome Atlas Research Network also profiled 178 lung squamous cell car-
cinomas and detected mutations in 11 genes, including mutations in TP53 (81%), CDKN2A,
PTEN, PIK3CA, KEAP1, MLL2, HLA-A, NFE2L2, RB1, NOTCH1 including truncating
mutations and loss-of-function mutations in the HLA-A class I major histocompatibility
gene. They identified altered pathways such as NFE2L2 and KEAP1 in 34%, squamous
differentiation genes in 44%, PI3K pathway genes in 47%, and CDKN2A and RB1 in 72%
of tumors. CNV analysis revealed the amplification of NFE2L2, MYC, CDK6, MDM2,
BCL2L1 and EYS, and deletions of FOXP1, PTEN and NF1 genes with previously identified
CNV genes, SOX2, PDGFRA, KIT, EGFR, FGFR1, WHSC1L1, CCND1, and CDKN2A. They
identified overexpression and amplification of SOX2 and TP63, loss-of-function mutations
in NOTCH1, NOTCH2 and ASCL4 and focal deletions in FOXP1 which have known roles
in squamous cell differentiation. CDKN2A is downregulated in over 70% of samples
through epigenetic silencing by methylation (21%), inactivating mutation (18%), exon 1β
skipping (4%), or homozygous deletion (29%) [10].

Recently, many studies have been published on gene expression signatures predict-
ing the survival risk of patients with lung adenocarcinoma. These recent studies have
been mostly using TCGA data, but their methods generated different gene signatures.
Seven-gene expression signature including ASPM, KIF15, NCAPG, FGFR1OP, RAD51AP1,
DLGAP5 and ADAM10 genes, was obtained for early stage cases from seven published
lung adenocarcinoma cohorts and the signature showed high hazard rations in Cox re-
gression analysis [11]. Shukla et al. developed TCGA RNAseq data-based prognostic
signature including four protein-coding genes RHOV, CD109, FRRS1, and the lncRNA
gene LINC00941, which showed high hazard ratios for stage I, EGFR wild-type, and EGFR
mutant groups [12]. A prognostic signature that was independent of other clinical factors,
was developed and validated based on the TCGA data. Patients were grouped into risk
groups using signature genes, and patients with high-risk scores tended to have poor
survival rate at 1-, 3- and 5-year follow-up. The developed eight-gene signature including



J. Pers. Med. 2021, 11, 154 3 of 28

TTK, HMMR, ASPM, CDCA8, KIF2C, CCNA2, CCNB2, and MKI67 were highly expressed
in A549 and PC-9 cells [13].

Twelve-gene signature (RPL22, VEGFA, G0S2, NES, TNFRSF25, DKFZP586P0123,
COL8A2, ZNF3, RIPK5, RNFT2, ARHGEF12 and PTPN20A/B) was established by using
published microarray dataset from 129 patients and the signature was independently prog-
nostic for lung squamous carcinoma but not for lung adenocarcinoma [14]. A four-gene
clustering model in 14-Genes (DPPA, TTTY16, TRIM58, HKDC1, ZNF589, ALDH7A1,
LINC01426, IL19, LOC101928358, TMEM92, HRASLS, JPH1, LOC100288778, GCGR) was
established and these genes plays role in positive regulation of ERK1 and ERK2 cascade, an-
giogenesis, platelet degranulation, cell–matrix adhesion, extracellular matrix organization
and macrophage activation [15].

Lu et.al. identified differentially expressed genes between lung adenocarcinoma
and lung squamous cell carcinoma by using microarray data from the Gene Expression
Omnibus database. They identified 95 upregulated and 241 downregulated DEGs in lung
adenocarcinoma samples, and 204 upregulated and 285 downregulated DEGs in lung
squamous cell carcinoma samples, compared to the normal lung tissue samples. The genes
play role in cell-cycle, DNA replication and mismatch repair. The top five genes from global
network, HSP90AA1, BCL2, CDK2, KIT and HDAC2 have differential expression profiles
between lung adenocarcinoma and lung squamous cell carcinoma [16]. Recently, Wu et.al.
identified diagnostic and prognostic genes for lung adenocarcinoma and squamous cell
carcinoma by using weighted gene expression profiles. The five-gene diagnostic signature
including KRT5, MUC1, TREM1, C3 and TMPRSS2 and the five-gene prognostic signature
including ADH1C, AZGP1, CLU, CDK1 and PEG10 obtained a log-rank P-value of 0.03
and a C-index of 0.622 on the test set [17].

A considerable number of genetic and transcriptomic alterations have been identified
in mostly LUAD and poorly in LUSC. Although many gene expression signatures have
been identified in LUAD recently, there is less work on LUSC expression signatures. Addi-
tionally, the molecular differences between risk groups of LUAD and LUSC have not yet
been systematically described. In this study, we aimed to identify the genomic and tran-
scriptomic differences between risk groups of lung adenocarcinoma and lung squamous
cell carcinoma. We performed a univariate Cox model and then Lasso-Regularized Cox
Model with Leave-One-Out Cross-Validation (LOOCV) by using TCGA gene expression
data in tumor samples, and identified best gene signatures to cluster patients into low- and
high-risk groups. We generated 35- and 33-gene signatures for prognostic risk prediction
based on the overall survival time of the patients with LUAD and LUSC. When we clustered
patients into high- and low-risk groups, the survival analysis showed highly significant
results for both training and test datasets. Then, we characterized the differences including
significant SNVs, CNVs, DEGs and active subnetwork DEGs between risk groups in LUAD
and LUSC.

2. Materials and Methods
2.1. Data

Simple Nucleotide Variation (SNV), Transcriptome Profiling, Copy Number Variation
(CNV) and Clinical data of patients who have all of these data types in LUAD and LUSC
projects, was downloaded separately using TCGAbiolinks R package [18]. Using the same
package and the reference of hg38; Simple Nucleotide Variations (SNVs) and Copy Number
Variations (CNVs); and transcriptomic variations were processed to identify the genomic
alterations of the LUAD and LUSC patients (Table 1). The method described below can be
found as flowchart in Figure S1.
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Table 1. Summary of clinical variables of train and test group of patients with LUAD and LUSC
analyzed in the study.

LUAD LUSC

Category Train Group
(n: 436)

Test Group
(n: 56)

Train Group
(n: 431)

Test Group
(n: 47)

Age at diagnosis
(median; range) 66; 33–88 66.5; 42–86 68; 39–90 69; 45–85

Gender

Female 232 33 112 14

Male 204 23 319 33

Tumor stage

I 241 28 211 25

II 106 13 138 16

III 68 13 76 5

IV 23 2 6 1

Vital status

Alive 284 30 275 18

Dead 152 26 156 29

Smoked years
(median; range) 33; 2–61 31.5; 4–64 40; 8–62 40; 10–60

Smoked packs
per year

(median; range)
40; 0.15–154 48; 5–94.5 50; 1–240 50; 2–157.5

2.2. Gene Expression Signature Analysis

Clinical data and Gene Expression Quantification data (HTSeq counts) of patients with
unpaired RNAseq data (tumor samples without normal samples) was downloaded from the
TCGA database using the TCGAbiolinks R package. Raw HTSeq counts of tumor samples
were normalized by TMM (trimmed mean of M values) method and Log2 transformed
after filtering to remove genes that consistently have zero or low counts. Univariate Cox
Proportional Hazards Regression analysis was performed using survival R package [19]
to identify survival-related genes. For these survival-related potential biomarker genes
(p ≤ 0.05), Lasso-Regularized Cox Model (by using minimum lambda calculated in the
model) with Leave-One-Out Cross-Validation (LOOCV) was performed to determine a
gene expression signature using glmnet R package [20]. Multivariate Cox Regression for the
signature genes was performed and the predictive performance of the model was scored
using riskRegression R package [21]. The risk score of each patient was predicted based on
multivariate Cox regression model using the survival R package. Patients were clustered
into high-risk and the low-risk group based on the best cutoff value for ROC, calculated by
cutoff R package [22].

For the validation of the gene signature, HTSeq counts belonging to the tumor samples
of patients who have paired RNAseq data (tumor samples with the paired adjacent normal
samples) were downloaded from the TCGA database, filtered, normalized by TMM method
and Log2 transformed. Multivariate Cox Regression for the signature genes was performed
and the predictive performance of the model was scored. The risk score of every patient in
the validation group was predicted based on multivariate Cox regression model and each
patient was assigned to the high- or low-risk group using the best cutoff value for ROC.
These analyses were performed for LUAD and LUSC patients separately.
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2.3. Differential Expression Analysis

Gene Expression Quantification data (HTSeq counts) of both the primary tumor (TP)
and the paired normal tissue adjacent to the tumor (NT) was downloaded from the TCGA
database. Raw HTSeq counts of both tumor and normal samples were normalized by
TMM method after filtering to remove genes which have zero or low counts. Differentially
expressed (q < 0.01) genes were determined using limma [23] and edgeR [24] R packages
by limma-voom method with duplicate-correlation function. HUGO symbols and NCBI
Gene identifiers of the differentially expressed genes were downloaded using the biomaRt
R package. This analysis was performed for high- and low-risk group patients of LUAD
and LUSC, separately.

2.4. Active Subnetwork Analysis

Active subnetworks of the differentially expressed genes were determined using
DEsubs R package [25]. DEsubs package accepts the differentially expressed genes output of
the limma package along with their FDR adjusted p values (q values). DEsubs package both
computes and plots the active subnetworks. All the plots and computations were generated
for the high- and low-risk group patients of the LUAD and LUSC projects, separately.

2.5. Copy Number Variation Analysis

The Copy Number Variation data of the primary tumor samples of patients was down-
loaded using TCGAbiolinks package (Masked Copy Number Segment as data type). The
chromosomal regions which are significantly aberrant in tumor samples were determined
and plotted by gaia R package [26]. Gene enrichment from genomic regions which have
significant differential copy number was performed using GenomicRanges [27] and biomaRt
R packages. R codes used in this analysis were modified from the codes presented at
“TCGA Workflow” article [28]. All the computations and the plots were generated for the
high- and low-risk groups of LUAD and LUSC projects, separately.

2.6. Simple Nucleotide Variations Analysis

The masked Mutation Annotation Format (maf) files of the TCGA mutect2 pipeline in
tumor samples were downloaded to obtain the somatic mutations. The maf files are filtered
using the maftools [29] to obtain the subset of the mutations corresponding to the patient
barcodes. Summary plot and oncoplot were generated to summarize the mutation data
using maftools R package. Somatic mutations were filtered and assigned to either oncogene
(OG) or tumor suppressor gene (TSG) groups along with a significance score (q < 0.05)
using the SomInaClust R package [30]. SomInaClust computes a background mutation value
to identify the hot spots using the known set of somatic mutations in “COSMIC” and
the “Cancer Gene Census” (v92) datasets of COSMIC database for GRCh38 [31]. SNV
analysis was performed for high- and low-risk group patients of LUAD and LUSC projects,
separately.

2.7. Visualization

Scatter plots showing risk score and survival time of patients were generated by
ggrisk R package [32] and Kaplan–Meier (KM) survival curves were plotted by survminer R
package [33] displaying the overall survival difference between the risk groups stratified
on the proposed gene signature. ROC curves were plotted for the risk scores based on
each gene signature using survivalROC R package [34]. Univariate and multivariate Cox
regression analyses were performed and forest plots were generated for risk score with
clinical variables using survival and forestmodel [35] R packages.

Gene and pathway enrichment analyses were performed by biomaRt [36] and clus-
terProfiler [37] R packages and plotted by enrichplot R package [38]. Heatmap plots were
generated using ComplexHeatmap R package [39]. Mosaic plots to compare the categorical
variables were generated using the vcd R package [40,41].
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OncoPrint showing CNVs among patient samples was generated using Complex-
Heatmap R package. OncoPlot for significant mutated genes was drawn using maftools,
and oncoPrint showing SNVs and CNVs together was generated using ComplexHeatmap R
package. Circos plot showing all non-synonymous SNVs in original data of risk groups
and significant CNVs at genome-scale were generated using circlize R package [42].

All possible relations between DEGs; active subnetwork DEGs; CNV genes; SNV genes
of LUAD and LUSC risk groups were identified by using VennDiagram R package [43].

3. Results
3.1. Gene Expression Signature Analysis of LUAD and LUSC Patients

In order to identify gene expression prognosis risk model, clinical data and gene
expression quantification data of tumor samples of patients with LUAD and h LUSC with
unpaired RNAseq data as two separate training groups (Table 1) were downloaded from
the TCGA database. A 35-gene expression signature for LUAD and a 33-gene expression
signature for LUSC were identified by Lasso-Regularized Cox Model with LOOCV after
univariate Cox regression analysis. The risk scores of each patient in training groups and
test groups were predicted using signature genes, then patients were clustered into high-
and low-risk groups based on the cutoff values.

The genes of the LUAD expression signature model identified are AC005077.4, AC113404.3,
ADAMTS15, AL365181.2, ANGPTL4, ASB2, ASCL2, CCDC181, CCL20, CD200R1, CPXM2,
DKK1, ENPP5, EPHX1, GNPNAT1, GRIK2, IRX2, LDHA, LDLRAD3, LINC00539, LINC00578,
MS4A1, OGFRP1, RAB9B, RGS20, RHOQ, SAMD13, SLC52A1, STAP1, TLE1, U91328.1,
WBP2NL, ZNF571-AS1, ZNF682, ZNF835. Twenty-seven of them are protein-coding genes
while two of them are long intergenic non-protein coding RNA (LINC00539, LINC00578), one
is antisense RNA (ZNF571-AS1), three of them are pseudogenes (AC005077.4, AC113404.3,
OGFRP1) and two of them are novel transcripts (AL365181.2, U91328.1) (Table S1). Pathway
enrichment analysis by using clusterProfiler R package did not give any results for this 35-gene
list; therefore, enrichment analysis was performed manually using the online KEGG Mapper
tool. The genes play role in metabolic pathways, cancer and immune system-related pathways
such as Central carbon metabolism in cancer, Glycolysis, Cholesterol metabolism, Amino sugar
and Nucleotide sugar metabolism, HIF-1 signaling pathway, TNF signaling pathway, IL-17
signaling pathway, Chemokine signaling pathway and Wnt signaling pathway (Table S2).
Multivariate Cox regression analysis was performed for the signature genes and the predictive
performance of the model was scored. The AUC was 0.963 (p = 1.1 × 10−15) for LUAD training
group. The risk score of each patient was predicted and patients were clustered into high- and
low-risk groups based on the cutoff value. Low- and high-risk groups have different expression
patterns of the signature genes and significantly different survival probabilities (p < 0.0001).
The prediction power of the risk score is around 0.78 (AUC) for 1, 3, 5 and 8 years for LUAD
training group (Figure S2). Risk group clustering is independent from tumor stages because risk
groups have also significantly different survival probability for each tumor stage (Figure S3).
Vital status is highly correlated with risk groups that high-risk group is positively correlated
with death (p = 1.5 × 10−13), while only tumor stage IA and III are associated with risk groups
(Figure S4). The risk score has highly significant prognostic ability (HR:2.59, p < 0.001) when
multivariate Cox regression analysis was performed with other clinical variables (Figures S5
and S6).

In order to validate the gene expression signature, gene expression quantification data
of tumor samples of patients with LUAD who have paired RNAseq data were downloaded
from the TCGA database. The risk scores of each patient in test group were predicted using
the gene signature lists and patients were clustered into high- and low-risk groups based
on the best cutoff values for ROC. Risk groups have differential signature gene expression
patterns; high-risk group has lower survival time and higher number of deaths resulting a
significantly different survival probability (p < 0.0001). The risk score has high prediction
powers, 0.97, 0.92, 0.93 and 0.92 (AUC) for 1, 3, 5 and 8 years, respectively, for LUAD test
group (Figure 1).
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Figure 1. Gene expression signature and risk clustering of LUAD test dataset. Test dataset patients were clustered into
high- and low-risk groups based on risk scores of patients calculated by predicting the effect of the signature genes of the
signature genes expression on overall survival. (A) Expression heatmap of the signature genes in tumor samples of LUAD
patients in the test dataset. (B) Scatter plot showing risk scores, survival time and separation point of the patients into
risk groups. (C) KM survival plot showing the overall survival probability between risk groups. (D) ROC curve showing
prediction power of risk score in the test dataset for 1, 3, 5 and 8 years.

Risk groups have significantly different survival probability for each tumor stage in
LUAD test group as well (Figure S7). Vital status is highly correlated with risk groups. The
high-risk group is positively correlated with death (p = 3.87 × 10−7), while only tumor
stage I is positively associated with low-risk group (p = 0.016) (Figure S8). The risk score
has highly significant prognostic ability (HR:2.79, p < 0.001) as the result of multivariate
Cox regression analysis was performed with other clinical variables (Figure S9).

Expression signature model identified for LUSC includes these genes: AC078883.1,
AC096677.1, AC106786.1, ADAMTS17, ALDH7A1, ALK, COL28A1, EDN1, FABP6, HKDC1,
IGSF1, ITIH3, JHY, KBTBD11, LINC01426, LINC01748, LPAL2, NOS1, PLAAT1, PNMA8B,
RGMA, RPL37P6, S100A5, SLC9A9, SNX32, SRP14-AS1, STK24, UBB, UGGT2, WASH8P,
Y_RNA, ZNF160, ZNF703. Twenty-three of them are protein coding genes while two
of them are long intergenic non-protein coding RNA (LINC01748, LINC01426), one is
antisense RNA (SRP14-AS1), three of them are pseudo-genes (LPAL2, RPL37P6, WASH8P),
three of them are novel transcripts (AC106786.1, AC096677.1, AC078883.1) and one is Y
RNA (Table S3). They play role in mostly in metabolic pathways, cancer and immunity
related pathways such as Arginine and proline metabolism, Glycolysis/Gluconeogenesis,
HIF-1 signaling pathway, Non-small-cell lung cancer, PD-L1 expression and PD-1 check-
point pathway in cancer and TGF-beta signaling pathway (Table S4).
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The predictive performance score of the signature model is 80.8 (AUC) (p = 1.3 × 10−6)
in multivariate Cox regression analysis for LUSC training group. The risk score of each
patient was predicted and patients were clustered into high- and low-risk groups based
on the cutoff value. Low- and high-risk groups have different expression patterns of the
signature genes and significant difference of survival probability (p < 0.0001). The AUC
values showing prediction power of the risk score are 0.76, 0.82, 0.87 and 0.92 for 1, 3, 5
and 8 years, respectively, for LUSC training group (Figure S10). Risk groups have also
significantly different survival probability for tumor stages I, II and III (Figure S11). Risk
groups are highly correlated with vital status. The high-risk group has highly significant
positive correlation with death (p = 8.5 × 10−15), while low-risk group is negatively
correlated. Tumor stages did not show any association with risk groups (Figure S12). The
risk score has highly significant prognostic ability (HR:2.85, p < 0.001) when multivariate
Cox regression analysis was performed with other clinical variables (Figure S13).

In order to validate the gene expression signature for LUSC, gene expression quantifi-
cation data of tumor samples of patients with LUSC who have paired RNAseq data were
downloaded. The risk scores of each patient in LUSC test group were predicted using gene
signature lists and patients were clustered into high- and low-risk groups based on the
best cutoff values for ROC. Risk groups have differential signature gene expression pattern;
high-risk group has lower survival time and higher number of deaths. Risk groups have
significantly different survival probability (p < 0.0001). The risk score has high prediction
powers, 0.93, 0.95, 0.96 and 0.97 (AUC) for 1, 3, 5 and 8 years, respectively, for LUSC test
group (Figure 2).

Risk groups have also significantly different survival probability for tumor stages
in test group (Figure S14). Vital status is not correlated with risk groups of LUSC test
group that number of deaths is higher for high-risk group insignificantly (p = 0.07). Tumor
stages are not associated with risk groups (Figure S15). The risk score has highly significant
prognostic ability (HR:2.66, p < 0.001) while other clinical variables have no effect on overall
survival in multivariate Cox regression analysis (Figure S16).

The expression gene signatures of LUAD and LUSC do not have any common gene,
however they share eight common pathways which are mostly metabolic pathways: Central
carbon metabolism in cancer, Glycolysis/Gluconeogenesis, HIF-1 signaling pathway, Pyru-
vate metabolism, PPAR signaling pathway, Amino sugar and nucleotide sugar metabolism,
TNF signaling pathway and Pathways of neurodegeneration—multiple diseases.

3.2. Differential Expression and Active Subnetwork Analysis of Risk Groups

Gene expression quantification data of both primary tumor and adjacent normal
tissues of patients who have paired RNAseq data (test groups) in LUAD and LUSC projects
were downloaded from the TCGA database. Differentially expressed (q < 0.01) genes
(DEGs) were determined in tumor samples according to normal samples for high- and low-
risk patient groups in test sets of LUAD and LUSC, separately. Then, active subnetworks
of DEGs in tumor samples were determined using the DEGs with their q values.

In tumor samples of the LUAD low-risk group, the number of the genes which are
dysregulated significantly (q < 0.01) more than 2-fold is 3615 (2439 down-, 1176 upregulated)
while 3610 genes (2239 down-, 1371 upregulated) are dysregulated for the LUAD high-risk
group. LUAD low- and high-risk groups have 2745 common differentially expressed
genes (Figure S17). The top 20 significant DEGs highlighted as purple at volcano plot in
Figure 3A,B are different between LUAD risk groups as dysregulation pattern is different
between risk groups albeit the shared 2745 DEGs.
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Figure 2. Gene expression signature and risk clustering of LUSC test dataset. Test dataset patients were clustered into high-
and low-risk groups based on risk scores of patients calculated by predicting the effect of the signature genes’ expression
on overall survival. (A) Expression heatmap of the signature genes in tumor samples of LUSC patients in the test dataset.
(B) Scatter plot showing risk scores, survival time and separation point of the patients into risk groups. (C) KM survival
plot showing the overall survival probability between risk groups. (D) ROC curve showing prediction power of risk score
in the test dataset for 1, 3, 5, and 8 years.

Seven of the signature genes (GNPNAT1, CCDC181, LDHA, ADAMTS15, IRX2,
LINC00578, AC005077.4) are dysregulated in both risk groups. ANGPTL4 is upregulated
in the high-risk group while MS4A1, GRIK2, and OGFRP1 are upregulated in the low-
risk group.

Risk groups of LUAD share dysregulated pathways (Figure 3C,D), highly related to
cancer, such as Cell cycle, Biosynthesis of amino acids and Protein digestion and absorption
which are upregulated for both risk groups (Figure S18), on the other hand, they also
share ECM–receptor interaction, Cell adhesion molecules pathways with immune system-
related pathways such as Complement and coagulation cascades and Cytokine-cytokine
receptor interaction which are downregulated for both risk groups (Figure S18). However,
the high-risk group has more dysregulated immune system-related pathways such as
Allograft rejection, Graft-versus-host disease, Inflammatory bowel disease, Intestinal im-
mune network for IgA production, Rheumatoid arthritis, Staphylococcus aureus infection
(Figure 3C,D), which are downregulated pathways in LUAD high-risk group (Figure S18).

Active subnetworks of differentially expressed genes in tumor samples of the LUAD
risk groups were identified and low-risk group has 191 genes while high-risk group has 168
genes including 112 common genes, which are acting on active subnetworks (Figure S17).
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Figure 3. Differential expression analysis of the LUAD risk groups. LUAD test dataset patients were clustered into high-
and low-risk groups based on risk scores of patients and differentially expressed genes in tumor samples were determined
based on expressions in normal tissues. (A) Volcano plot showing differentially expressed genes more than 2-fold (Log2 =1)
for LUAD low-risk group. The top 20 significant downregulated and upregulated genes are highlighted as purple. FDR
corrected p-values threshold is 0.01 (-Log10 = 2). Red: Upregulated, Green: Downregulated, Black: Not significant or
low than 2-fold. (B) Volcano plot showing differentially expressed genes more than two-fold (Log2 = 1) for the LUAD
high-risk group. The top 20 significant downregulated and upregulated genes are highlighted as purple. FDR corrected
p-values threshold is 0.01 (-Log10 = 2). Red: Upregulated, Green: Downregulated, Black: Not significant or low than 2-fold.
(C) Dysregulated pathways of differentially expressed genes for LUAD low-risk group. (D) Dysregulated pathways of
differentially expressed genes for LUAD high-risk group.

Pathway enrichment of DEGs at active subnetworks shows that the genes playing
role in active subnetworks are much more related to cancer pathways such as PI3K-Akt
signaling pathway, Ras signaling pathway, Small-cell lung cancer, Breast cancer, Gastric
cancer, Proteoglycans in cancer and Rap1 signaling pathway (Figure 4). LUAD risk groups
have mostly similar cancer-related active pathways, however only low-risk group has
FoxO signaling pathway and TNF signaling pathway while high-risk group has Estrogen
signaling pathway, Growth hormone synthesis, secretion, and action with immune system
pathways such as Antigen processing and presentation, Intestinal immune network for
IgA production and Leukocyte trans-endothelial migration.

The number of dysregulated genes expressed significantly (q < 0.01) more than 2-
fold in tumor samples of the LUSC low-risk group is 5596 (3394 downregulated, 2202
upregulated) while 5403 genes (3338 downregulated, 2065 upregulated) are dysregulated
for LUSC high-risk group. LUSC low- and high-risk groups have 4562 common differen-
tially expressed genes (Figure S17). The top 20 significant DEGs highlighted at volcano
plot in Figure 5A,B include common genes and dysregulation pattern is similar between
risk groups.
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Figure 5. Differential expression analysis of the LUSC risk groups. LUSC test dataset patients were clustered into high-
and low-risk groups based on risk scores of patients and differentially expressed genes in tumor samples were determined
based on expressions in normal tissues. (A) Volcano plot showing differentially expressed genes more than 2-fold (Log2 = 1)
for LUSC low-risk group. The top 20 significant downregulated and upregulated genes are highlighted as purple. FDR
corrected p-values threshold is 0.01 (-Log10 = 2). Red: Upregulated, Green: Downregulated, Black: Not significant or low
than 2-fold. (B) Volcano plot showing differentially expressed genes more than two-fold (Log2 = 1) for LUSC high-risk group.
The top 20 significant downregulated and upregulated genes are highlighted as purple. FDR corrected p-values threshold is
0.01 (-Log10 = 2). Red: Upregulated, Green: Downregulated, Black: Not significant or low than 2-fold. (C) Dysregulated
pathways of differentially expressed genes for LUSC low-risk group. (D) Dysregulated pathways of differentially expressed
genes for LUSC high-risk group.
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LUSC signature genes have 10 common genes (EDN1, JHY, PLAAT1, HKDC1, ITIH3,
KBTBD11, RGMA, ZNF703, S100A5, LPAL2) with DEGs of both risk groups. Three of
the signature genes, ADAMTS17, IGSF1, and LINC01426, are upregulated in the low-risk
group; others, NOS1 and SRP14-AS1 are downregulated while Y_RNA is upregulated in
the high-risk group.

Risk groups of LUSC have common dysregulated pathways (Figure 5C,D), which
are highly related to cancer, such as Cell cycle, DNA replication, Base excision repair,
p53 signaling pathway which are upregulated at both risk groups (Figure S19), on the
other hand, they also share ECM–receptor interaction, Cell adhesion molecules, Focal
adhesion pathways with immune system-related pathways such as Chemokine signaling
pathway, Complement and coagulation cascades, Cytokine–cytokine receptor interaction,
which are downregulated at both risk groups (Figure S19). However, the high-risk group
has more upregulated metabolic pathways such as Central carbon metabolism in cancer,
Protein digestion and absorption, Alanine, aspartate and glutamate metabolism, Arginine
and proline metabolism, Cysteine and methionine metabolism, Glutathione metabolism,
Ribosome biogenesis in eukaryotes; and downregulated immune-related pathways such
as JAK-STAT signaling pathway, TNF signaling pathway, Primary immunodeficiency, T
cell receptor signaling pathway distinctly from low-risk group (Figure S19). LUSC low-
risk group has downregulated PI3K-Akt signaling pathway, Phenylalanine metabolism,
Tyrosine metabolism, Phospholipase D signaling pathway, Proteoglycans in cancer and
Tight junction pathways with upregulated Hippo signaling pathway and Small-cell lung
cancer distinctly from high-risk group (Figure S19).

Active subnetworks of differentially expressed genes in tumor samples of the LUSC
risk groups has 357 genes for the low-risk group while 350 genes for high-risk group includ-
ing 245 common genes (Figure S17). Active pathways of the LUSC risk groups, are highly
related to cancer pathways such as PI3K-Akt signaling pathway, Ras signaling pathway,
Small-cell lung cancer, Proteoglycans in cancer and Rap1 signaling pathway (Figure 6A,B).
LUSC risk groups have mostly similar cancer-related active pathways, however only low-
risk group has Nucleotide excision repair, Adherens junction and Alpha-Linolenic acid
metabolism pathways, while high-risk group has cancer and metabolism-related pathways
such as Basal cell carcinoma, Prolactin signaling pathway, Apoptosis, Mitophagy, Choline
metabolism in cancer, Insulin signaling pathway, Carbohydrate digestion and absorption,
Central carbon metabolism in cancer with immune system-related Measles and Influenza
A pathways.
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3.3. Copy Number Variations Analysis

The significant aberrant genomic regions in tumor samples of patients were deter-
mined and then gene enrichment from genomic regions which have differential copy
number was performed. Pathway enrichment analysis of genes which have CNVs was
performed and plotted. LUAD low- and high-risk groups have different CNV profiles
as seen at CNV plots showing amplified or deleted genomic regions on chromosomes.
Chromosomes 1, 6, 7, 10, 13, 16, 17, 28 and 20 have different significant aberrant genomic
regions (q < 0.01) between risk groups (Figure 7A,B). The highest frequencies of the am-
plified genes are 45%, 49% and the deleted genes are 31%, 45% in the low- and high-risk
groups, respectively. The top 10 the highest frequently amplified or deleted genes in tumor
samples of risk groups are different and patients in the same group may have different
aberration patterns (Figure 7C,D). The numbers of the deleted genes and the amplified
genes are 10,144 and 10,412, respectively, in tumor samples of the LUAD low-risk group.
LUAD high-risk group has 5379 deleted and 8442 amplified genes in tumor samples. Risk
groups have 4921 deleted and 6559 amplified genes in common (Figure S22).

Pathways of CNV genes are different between LUAD risk groups; mostly immune
system pathways such as Allograft rejection, Graft-versus-host disease, Antigen processing
and presentation, Complement and coagulation cascades, Inflammatory bowel disease and
Viral carcinogenesis pathways have amplified CNVs in the low-risk group (Figure S20)
while Herpes simplex virus 1, Cytosolic DNA sensing pathway, Natural killer cell mediated
cytotoxicity and Nod-like receptor signaling pathways have deleted CNVs (Figure S20)
in the high-risk group (Figure 7). Complement and coagulation cascades pathway has
amplified genes in both risk groups while Natural killer cell mediated cytotoxicity and
Nod-like receptor signaling pathways have deleted genes in both risk groups (Figure S20).
The low-risk group patients have immune system pathways with amplified genes whereas
high-risk group patients have immune system pathways with deleted genes. On the other
hand, high-risk group has amplified genes in metabolic pathways such as Gastric acid
secretion and Insulin secretion (Figure S20).

LUSC risk groups have different significant aberrant genomic regions obviously on
chromosomes 5, 6, 8 and X (Figure 8A,B). The highest frequencies of amplified genes are
84%, 77% and of the deleted genes are 55%, 51% in the low- and high-risk groups, respec-
tively. LUSC risk groups have higher frequency of amplified genes than deleted genes.
Risk groups have common genes from top 25 the highest frequently amplified genes such
as SOX2, GHSR, TNFSF10 and miRNAs, miR-7977 and miR-569, with variable frequencies.
Risk groups have also common deleted genes such as CDK inhibitors, CDKN2A and
CDKN2B, and miR-1284 (Figure 8C,D). LUSC low-risk group has 10,720 deleted and 10,264
amplified genes while LUSC high-risk group has 9477 deleted and 10,250 amplified genes
in tumor samples. Risk groups have 7820 deleted and 8659 amplified genes in common
(Figure S22).

Pathways of CNV genes highly overlap between LUSC risk groups and they share
cancer-related pathways such as PI3K-Akt signaling pathway, JAK-STAT signaling path-
way, Ras signaling pathway, Gastric cancer (Figure 8E,F). However, some pathways differ
between risk groups, low-risk group has CNVs at mTOR signaling pathway, VEGF signal-
ing pathways and Central carbon metabolism in cancer, while high-risk group has CNVs
at Chemical carcinogenesis, Drug metabolism—cytochrome P450, Carbohydrate digestion
and absorption pathways (Figure 8E,F). Steroid hormone biosynthesis and Bile secretion
pathways have multiple amplified genes while NOD-like receptor signaling pathway has
deleted genes, in both risk groups. Only low-risk group has multiple amplified genes
at Growth hormone synthesis, secretion and action, and Complement and coagulation
cascades pathways. Only high-risk group has amplified genes at Chemical carcinogenesis
and Drug metabolism pathways while has deleted genes at Cytokine-cytokine receptor
interaction and Fatty acid biosynthesis pathways (Figure S21).
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Figure 7. Significant Copy Number Variations (CNVs) of the LUAD risk groups. (A) CNV plot at genome scale showing
amplified or deleted genomic regions on chromosomes of the LUAD low-risk group. Score: -Log10(q value), Horizontal
orange line: 0.01 q value threshold. (B) CNV plot of the LUAD high-risk group. (C) OncoPrint plot showing 25 the highest
frequently amplified and deleted genes of the LUAD low-risk group. (D) OncoPrint plot showing 25 the highest frequently
amplified and deleted genes of the LUAD high-risk group. (E) Pathways of CNV genes of the LUAD low-risk group.
(F) Pathways of CNV genes of the LUAD high-risk group.
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3.4. Simple Nucleotide Variations Analysis

Significantly (q < 0.05) mutated genes classified as oncogene (OG) or tumor suppressor
gene (TSG) based on TSG/OG scores of the genes and the Cancer Gene Census, were
identified for LUAD and LUSC risk groups. COSMIC database was used as a reference
mutation database for this analysis and Cancer Gene Census data.

LUAD low-risk group has 15,376 mutated genes, while LUAD low-risk group has
12,815 mutated genes, 11,516 genes of which are common between LUAD risk groups
(Figure S27). LUAD patients have a wide range of mutation numbers changing from
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1518/1158 to 10s with median 167 and 172.5 for low- and high-risk groups, respectively.
Missense mutation is the highest frequent mutation type, and C > A and C > T substitutions
are the most frequent ones for both risk groups. LUAD risk groups have a similar set of
mutated genes with varying frequencies. TP53 is the highest frequently mutated gene with
45% and 53% for low- and high-risk groups, and the following ones are MUC16 (39%, 40%)
and CSMD3 (38%, 35%) for both groups (Figure S23). SomInaClust analysis was performed
to determine driver genes, and 39 genes and 19 genes are strong candidate driver genes
for the low-risk group and high-risk group, respectively (Tables S5 and S6). Interestingly,
LUAD risk groups share 18 of these driver genes (Figure S27). SomInaClust calculates
TSG and OG scores based on background mutation rate and hot spots, then classifies the
genes based on TSG/OG scores and cancer gene census data (Figure S25). The driver genes
determined in LUAD low-risk group are KRAS, TP53, EGFR, BRAF, STK11, MGA, NF1,
RB1, PIK3CA, ATM, RBM10, SETD2, ARID1A, CTNNB1, CMTR2, SF3B1, CSMD3, ATF7IP,
KEAP1, HMCN1, EPHA5, ARID2, TTK, SMAD4, KDM5C, SMARCA4, APC, NFE2L2, RIT1,
DDX10, LTN1, CDH10, SPTA1, LRP1B, COL11A1, MAP3K12, USH2A, AKAP6 and RASA1.
The driver genes determined in LUAD high-risk group are KRAS, TP53, STK11, EGFR,
BRAF, RBM10, PIK3CA, SETD2, ARID2, NF1, RB1, MGA, KEAP1, CSMD3, SMARCA4,
CTNNB1, KDM5C, IDH1 and ATM (Figure S25; Tables S5 and S6). TP53 and CSMD3
genes are the most frequently mutated genes with 47%, 56% and 41%, 37% frequencies,
respectively for low- and high-risk groups (Figure 9A,B). More than half of the genes are
mutated in less than 12% of patients. For common genes, LUAD high-risk group has
mostly higher frequencies. TP53 has differential mutation types, while KRAS has mostly
missense mutations. CSMD3 has more multi-hits (multiple mutations in one patient) in
the low-risk group than the high-risk group. EGFR has in frame deletions in both risk
groups and other common genes have similar mutation type pattern between risk groups
(Figure 9A,B). Pathways of driver mutated genes are highly lung cancer-related pathways
such as Non-small-cell lung cancer, EGFR tyrosine kinase inhibitor resistance, Platinum
drug resistance, MAPK signaling, mTOR signaling, Ras signaling pathway, PI3K-Akt
signaling (Figure 9C,D) and other immunologic and metabolic pathways such as Signaling
pathways regulating pluripotency of stem cells, FoxO signaling pathway, Rap1 signaling
pathway, Central carbon metabolism in cancer, Proteoglycans in cancer, Human T-cell
leukemia virus 1 infection, PD-L1 expression and PD-1 checkpoint pathway in cancer and
Natural killer cell mediated cytotoxicity pathways, for both risk groups. Many common
pathways are enriched because these mutated driver genes play role in many crucial
important pathways. However, Wnt signaling pathway and Hippo signaling pathways
are mutated only in the low-risk group, while Gap junction, GnRH signaling pathway,
C-type lectin receptor signaling pathway, T cell receptor signaling pathway, HIF-1 signaling
pathway, Growth hormone synthesis, secretion and action and AMPK signaling pathways
are mutated only in the high-risk group (Figure 9C,D).

LUSC low-risk group has 14,038 mutated genes, while LUSC low-risk group has 14,616
mutated genes, and 11,947 genes are common (Figure S27). LUSC patients have a range of
mutation numbers from 2300/1488 to 10s with median 201 for low- and high-risk groups,
respectively. Missense mutation is the highest frequent mutation type, and C > A and
C > T substitutions are the most frequent ones for both risk groups. LUSC risk groups have
overlapping list of mutated genes with varying frequencies. TP53 is the highest frequently
mutated gene with 80% and 78% for low- and high-risk groups, and the following ones are
CSMD3 (42%, 42%) and MUC16 (39%, 40%) for both groups (Figure S24). As candidate
driver genes, 30 genes and 19 genes were identified for the low-risk group and the high-risk
group, respectively (Tables S7 and S8). LUSC risk groups share 14 of these driver genes
(Figure S27). The driver genes determined in LUSC low-risk group are TP53, KMT2D,
NFE2L2, PIK3CA, CDKN2A, PTEN, RB1, FAT1, ARID1A, NF1, RASA1, CUL3, KDM6A,
NRAS, KRT5, ZNF750, EP300, FGFR3, TAOK1, CSMD3, NSD1, HRAS, SI, PDS5B, KRAS,
KEAP1, API5, HNRNPUL1, SLC16A1, FBXW7. The driver genes determined in LUSC high-
risk group are TP53, NFE2L2, PIK3CA, KMT2D, FAT1, CDKN2A, RB1, PTEN, NOTCH1,
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ARID1A, RASA1, NF1, KMT2C, BRAF, PIK3R1, CSMD3, STK11, HRAS, KEAP1 (Figure
S26; Tables S7 and S8). TP53 (83%, 82%), CSMD3 (44%, 44%) and KMT2D (25%, 23%) are
most frequent mutated genes for low- and high-risk groups (Figure 10A,B). For common
genes, risk groups have similar frequencies. TP53 and KMT2D genes have differential
mutation types, while CSMD3 has mostly missense and multi-hit mutations. CDKN2A has
mostly truncating mutations in both risk groups and other common genes have similar
mutation type pattern between risk groups (Figure 10A,B). Pathways of driver mutated
genes are highly lung cancer-related pathways such as Non-small-cell lung cancer, EGFR
tyrosine kinase inhibitor resistance, Platinum drug resistance, MAPK signaling and Ras
signaling (Figure 10C,D) and other immunologic and metabolic pathways such as FoxO
signaling pathway, Central carbon metabolism in cancer, Proteoglycans in cancer, Hepatitis
B, Hepatitis C, PD-L1 expression and PD-1 checkpoint pathway in cancer for both risk
groups. Many common pathways are enriched because these mutated driver genes play
role in many crucial important pathways. However, Gap junction and Ubiquitin mediated
proteolysis pathways are mutated only in the low-risk group, while HIF-1 signaling and
TNF signaling pathways are mutated only in the high-risk group (Figure 10C,D).
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Figure 9. Oncoplot of potential driver genes containing significant SNVs of the LUAD risk groups. (A) Oncoplot showing
significant SNV genes in tumor samples of the LUAD low-risk group patients. (B) Oncoplot showing significant SNV genes
in tumor samples of the LUAD high-risk group patients. (C) Pathway enrichment of the significant SNV genes of the LUAD
low-risk group. (D) Pathway enrichment of the significant SNV genes of the LUAD high-risk group.
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Figure 10. Oncoplot of potential driver genes containing significant SNVs of the LUSC risk groups. (A) Oncoplot showing
significant SNV genes in tumor samples of the LUSC low-risk group patients. (B) Oncoplot showing significant SNV genes
in tumor samples of the LUSC high-risk group patients. (C) Pathway enrichment of the significant SNV genes of the LUSC
low-risk group. (D) Pathway enrichment of the significant SNV genes of the LUSC high-risk group.

When venn diagram is drawn by using all driver genes, all cancer and risk groups
have TP53, CSMD3, KEAP1, NF1, RB1 and PIK3CA mutations. KRAS, STK11, BRAF,
ARID1A, NFE2L2 and RASA1 genes are shared by 3 different groups. LUAD high-risk
group has only IDH1 oncogene as different from LUAD low-risk group while LUSC high-
risk group has KMT2C, NOTCH1 and PIK3R1 tumor suppressor genes as different from
LUSC low-risk group. EGFR, MGA and SMARCA4 are not driver genes in LUSC while
CDKN2A, PTEN, HRAS and FAT1 are not driver genes in LUAD groups (Figure 11).

Significant SNVs and CNVs on driver genes are co-displayed as OncoPrint. Although
there exist some genes with both SNVs and significant CNVs while others have only SNVs.
Moreover, some patients have only SNVs or only CNVs or both for a particular driver gene.

TP53, STK11, KEAP1, SMARCA4 and MGA genes have deletions while CSMD3
and PIK3CA genes have amplification beside SNVs in both LUAD risk group. KRAS
and EGFR genes have amplification in the high-risk group; however, they do not have
significant CNVs in the low-risk group. Oncogenes tend to have amplifications while tumor
suppressor genes tend to have deletions in both risk groups with exceptions (CSMD3,
CDH10, HMCN1, AKAP6 and CTNNB1) (Figure 12).



J. Pers. Med. 2021, 11, 154 19 of 28

J. Pers. Med. 2021, 11, x FOR PEER REVIEW 20 of 30 
 

 

When venn diagram is drawn by using all driver genes, all cancer and risk groups 
have TP53, CSMD3, KEAP1, NF1, RB1 and PIK3CA mutations. KRAS, STK11, BRAF, 
ARID1A, NFE2L2 and RASA1 genes are shared by 3 different groups. LUAD high-risk 
group has only IDH1 oncogene as different from LUAD low-risk group while LUSC high-
risk group has KMT2C, NOTCH1 and PIK3R1 tumor suppressor genes as different from 
LUSC low-risk group. EGFR, MGA and SMARCA4 are not driver genes in LUSC while 
CDKN2A, PTEN, HRAS and FAT1 are not driver genes in LUAD groups (Figure 11). 

 
Figure 11. Venn diagram of driver genes containing Simple Nucleotide Variation (SNV) in tumor samples of LUAD and 
LUSC risk groups. 

Significant SNVs and CNVs on driver genes are co-displayed as OncoPrint. Although 
there exist some genes with both SNVs and significant CNVs while others have only 
SNVs. Moreover, some patients have only SNVs or only CNVs or both for a particular 
driver gene.  

TP53, STK11, KEAP1, SMARCA4 and MGA genes have deletions while CSMD3 and 
PIK3CA genes have amplification beside SNVs in both LUAD risk group. KRAS and 
EGFR genes have amplification in the high-risk group; however, they do not have signif-
icant CNVs in the low-risk group. Oncogenes tend to have amplifications while tumor 
suppressor genes tend to have deletions in both risk groups with exceptions (CSMD3, 
CDH10, HMCN1, AKAP6 and CTNNB1) (Figure 12). 

OncoPrints in Figure 13 show that TP53, CDKN2A, FAT1, RASA1, ARID1A and 
HRAS genes have deletions while only PIK3CA gene has amplification beside SNVs in 
both LUSC risk groups. PIK3R1, KEAP1 and STK11 genes have deletions only in the high-
risk group while SI, CSMD3, ZNF750, KRAS genes have amplification and NSD1, FGFR3, 
PTEN, SLC16A1, NRAS and CUL3 have deletion only in the low-risk group. Oncogenes 
tend to have amplifications while tumor suppressor genes tend to have deletions in both 
risk groups with exceptions (CSMD3, FGFR3, ZNF750, NRAS, HRAS, KEAP1) (Figure 13). 

Figure 11. Venn diagram of driver genes containing Simple Nucleotide Variation (SNV) in tumor samples of LUAD and
LUSC risk groups.

J. Pers. Med. 2021, 11, x FOR PEER REVIEW 21 of 30 
 

 

 
Figure 12. OncoPrint of the driver genes containing significant SNVs and CNVs in LUAD risk groups. Significant SNVs 
and CNVs are plotted together on potential driver genes in tumor samples of the LUAD risk groups. (A) OncoPrint of the 
driver genes in LUAD low-risk group. (B) OncoPrint of the driver genes in LUAD high-risk group. 

 
Figure 13. OncoPrint of the driver genes containing significant SNVs and CNVs in LUSC risk groups. Significant SNVs 
and CNVs are plotted together on potential driver genes in tumor samples of the LUSC risk groups. (A) OncoPrint of the 
driver genes in LUSC low-risk group. (B) OncoPrint of the driver genes in LUSC high-risk group. 

Circos plots showing all non-synonymous SNVs in original data of risk groups and 
significant CNVs at genomic scale on chromosomes were drawn to show the genomic 
alterations between risk groups of LUAD and LUSC. 

LUAD low-risk group has more genome-wide CNVs and SNVs than the high-risk 
group. The low-risk group has more genomics regions containing missense, nonsense and 
frame-shift insertions/deletions mutations. Moreover, low-risk group has extra deletions 
on chromosomes 1, 3, 5, 6, 12, 15 and X with extra amplifications on chromosomes 6, 10, 
14, and 20. The high-risk group has extra amplifications on chromosomes 7, 11, 12, and 
17. The CNVs of high-risk group are localized mostly on 1, 3, 5, 6, 7, 8 and 17 whereas 
low-risk group has CNVs on more chromosomes (Figure 14). 

LUSC high-risk group has more genomic regions containing missense and nonsense 
mutations than the low-risk group. However, they have similar amount of CNVs although 
with different localizations. The high-risk group has extra amplifications on chromosomes 
4, 6 and 11; has extra deletions on chromosomes 15, 19 and X. The low-risk group has only 
extra deletions on chromosomes 1, 5, 6, 11 and 16 (Figure 15). 

Figure 12. OncoPrint of the driver genes containing significant SNVs and CNVs in LUAD risk groups. Significant SNVs
and CNVs are plotted together on potential driver genes in tumor samples of the LUAD risk groups. (A) OncoPrint of the
driver genes in LUAD low-risk group. (B) OncoPrint of the driver genes in LUAD high-risk group.

OncoPrints in Figure 13 show that TP53, CDKN2A, FAT1, RASA1, ARID1A and HRAS
genes have deletions while only PIK3CA gene has amplification beside SNVs in both LUSC
risk groups. PIK3R1, KEAP1 and STK11 genes have deletions only in the high-risk group
while SI, CSMD3, ZNF750, KRAS genes have amplification and NSD1, FGFR3, PTEN,
SLC16A1, NRAS and CUL3 have deletion only in the low-risk group. Oncogenes tend
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to have amplifications while tumor suppressor genes tend to have deletions in both risk
groups with exceptions (CSMD3, FGFR3, ZNF750, NRAS, HRAS, KEAP1) (Figure 13).
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Figure 13. OncoPrint of the driver genes containing significant SNVs and CNVs in LUSC risk groups. Significant SNVs and
CNVs are plotted together on potential driver genes in tumor samples of the LUSC risk groups. (A) OncoPrint of the driver
genes in LUSC low-risk group. (B) OncoPrint of the driver genes in LUSC high-risk group.

Circos plots showing all non-synonymous SNVs in original data of risk groups and
significant CNVs at genomic scale on chromosomes were drawn to show the genomic
alterations between risk groups of LUAD and LUSC.

LUAD low-risk group has more genome-wide CNVs and SNVs than the high-risk
group. The low-risk group has more genomics regions containing missense, nonsense and
frame-shift insertions/deletions mutations. Moreover, low-risk group has extra deletions
on chromosomes 1, 3, 5, 6, 12, 15 and X with extra amplifications on chromosomes 6, 10,
14, and 20. The high-risk group has extra amplifications on chromosomes 7, 11, 12, and 17.
The CNVs of high-risk group are localized mostly on 1, 3, 5, 6, 7, 8 and 17 whereas low-risk
group has CNVs on more chromosomes (Figure 14).
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LUSC high-risk group has more genomic regions containing missense and nonsense
mutations than the low-risk group. However, they have similar amount of CNVs although
with different localizations. The high-risk group has extra amplifications on chromosomes
4, 6 and 11; has extra deletions on chromosomes 15, 19 and X. The low-risk group has only
extra deletions on chromosomes 1, 5, 6, 11 and 16 (Figure 15).
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4. Discussion

In order to profile the genetic differences between risk groups of LUAD and LUSC,
gene expression signatures were generated and the patients were clustered into low- and
high-risk groups and then significant DEGs, DEGs at active subnetworks, CNVs and SNVs
were identified in each risk group. The biological alterations for these data types were
compared between risk groups and between lung cancer subtypes.

Expression signature for LUAD consists of 35 gene which 27 of are protein-coding
genes while two are long intergenic non-protein coding RNA, one is antisense RNA, three
are pseudogenes and two are novel transcripts. Many of the coding genes are lung cancer
or other cancer types related such as ADAMTS15 [44], ASB2 [45] and EPHX1 [46] with
potential tumor suppressor roles; ANGPTL4 [47], ASCL2 [48], CCL20 [49], DKK1 [50],
GRIK2 [51], LDHA [52], RGS20 [53], RHOQ [54], TLE1 [55] and WBP2 [56] with potential
oncogenic roles; and CD200 [57], CD200R1 [57], CCDC181 [58], GNPNAT1 [59], IRX2 [60],
LDLRAD3 [61], STAP1 [62], LINC00578 [63] with prognostic potential. Moreover, MS4A1 is
dysregulated in asbestos-related lung squamous carcinoma [64], RAB9B is a target of miR-
15/16 which are highly related to lung cancer [65], LINC00539 is related to tumor immune
response [66] while long non-coding RNA, OGFRP1, regulates non-small-cell lung cancer
progression [67]. The remaining signature genes, CPXM2, ENPP5, SAMD13, SLC52A1,
ZNF682, ZNF835, ZNF571-AS1 and U91328.1, have not been related to carcinoma, yet.
However, they showed highly prognostic power through risk score to distinguish low- and
high-risk of overall survival in LUAD.

LUSC gene expression signature including 33 genes of which ALDH7A1 [68], ALK [69],
EDN1 [70], FABP6 [71], HKDC1 [72], IGSF1 [73], KBTBD11 [74], NOS1 [75], SLC9A9 [76],
STK24 [77], UBB [78], ZNF703 [79] have been shown with oncogenic relations while
RGMA [80] is candidate tumor suppressors. ITIH3 [81] and S100A5 [82] has been re-
lated to prognostic biomarker potentials. Other cancer-related genes are ADAMTS17 [83],
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LINC01748 [84], LPAL2 [85], SRP14-AS1 [86] and WASH8P [87]. Long intergenic non-
protein coding RNA, LINC01426, promotes cancer progression via AZGP1 and predicts
poor prognosis in patients with LUAD [88]. COL28A1 has prognostic values in glioblas-
toma [89]. Many of the genes such as JHY, PLAAT1, PNMA8B, RPL37P6, SNX32, UGGT2
and Y_RNA have not been related to any cancer, yet.

Gene expression signatures of LUAD and LUSC share eight pathways which are
mostly metabolic pathways. LUAD signature plays role in immune-related pathways as
different from those in LUSC. However, pathway enrichment shows us that risk prediction
works on metabolic pathways, therefore if we put a name to important mutations as
driver mutations, in this case we can say that reprogramming of energy metabolism is the
alternative fuel of the cancer [90–92]. The differential expression on them with immune
system effect in count can hold the passage of cancer.

High-risk groups of both LUAD and LUSC have more immune pathways including
downregulated genes and metabolic pathways including upregulated genes. On the other
hand, low-risk groups have both upregulated and downregulated genes on cancer-related
pathways. Although LUAD and LUSC seem to have similar characteristics of risk groups,
close signature gene pathways and similar differential expression pathways sharing 2106
DEGs in total, they are displayed separately in PCA, especially at analysis of test groups.

At CNV level both risk groups and cancer subtypes have huge number of genes
with amplifications or deletions which can cause genomic instability and uncontrolled
regulation. Both LUAD and LUSC risk groups have important gene alterations such as
CDKN2A and CDKN2B deletions which are associated with NSCLC [93] and promotes
KRAS and EGFR mutant tumorigenesis [94,95] while SOX2 oncogene amplification in
LUSC which is a common event in squamous cell carcinomas [96,97] and amplification of
PSMD4 in LUAD, with oncogenic roles in breast, hepatocellular, colorectal and prostate
cancer cells [98–101]. CNVs also play role in metabolic and immune-related pathways
which can differ between risk groups and cancer subtypes. If we look from a higher
perspective, the LUAD low-risk group has much more CNVs and SNVs on its genome
than the high-risk group. On the other hand, the LUSC high-risk group has more SNVs
than the low-risk group while CNVs do not vary too much.

SNV analysis gives similar results with literature for example EGFR and KRAS muta-
tions are mutually exclusive in LUAD samples that is confirmed again [9]. Additionally,
EGFR [102], MGA [103], SMARCA4 [104], ATM [105], RBM10 [106] and KDM5C [107]
which are lung cancer related genes are mutated only in LUAD but not in LUSC. On the
other hand, CDKN2A [108], PTEN [109] and HRAS [110] genes are mutated only in LUSC.
In general, low-risk groups have more mutated genes for both LUAD and LUSC sam-
ples. When SNV and CNV genes are plotted together, it can be seen that LUAD high-risk
group has obvious oncogene amplifications and tumor suppressor deletions, while LUAD
low-risk group has both tumor suppressor deletions and tumor suppressor amplifications
with a few oncogene amplifications. This SNV and copy number differential pattern can
cause differential gene expression profiles and characteristics of tumor. LUSC patients
have mostly deletions on driver genes with only PIK3CA [111] and KRAS [111] oncogene
amplifications. Both LUSC risk groups have obvious TP53 [111] and CDKN2A tumor
suppressor gene deletions, but amplification of CSMD3, which has differential roles in lung
cancer [112,113], does not occur in LUSC high-risk group. Again, only these driver genes
which have differential alterations and frequencies can create the risk difference based on
gene expression levels.

5. Conclusions

This study has been performed to profile the genomic and transcriptomic differences
not only between LUAD and LUSC but also between risk groups to understand the
driving differences between them. Treatment options can vary between cancer subtypes
and risk groups because of differential targetable mutation patterns. Nowadays, many
groups and government institutions are working on the integration of the drug bioactivity
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and molecular data to investigate more effective molecularly targeting therapeutics for
individual patients for the personalized therapy.

Supplementary Materials: The supplementary data are available online at https://www.mdpi.com/
2075-4426/11/2/154/s1; Figure S1: Flowchart of method and used R packages in this study. The
other R packages not written in this flowchart can be found at Materials and Method part of the
article; Figure S2: Gene expression signature and risk clustering of LUAD training dataset; Figure S3:
Survival analysis of risk groups clustered by using signature gene expression at different tumor
stages in LUAD training dataset; Figure S4: Mosaic plots showing association analysis of categorical
variables for LUAD training dataset. Pearson residuals show the positive (blue) or negative (red)
association between levels of categories; Figure S5: Multivariate Cox Regression results of clinical
variables and risk score in LUAD training dataset. Only risk score has significant result when all
clinical variables are included into multivariate analysis; Figure S6: Multivariate Cox Regression
results of selected clinical variables (which have significant results in univariate Cox analysis) and
risk score in LUAD training dataset. Risk score, t, n, m stages and history of prior malignancy have
significant effects on survival. When pathologic tumor stage is used instead of t, n, m stages, only
risk score and history of prior malignancy show significant effect on survival; Figure S7: Survival
analysis of risk groups clustered by using signature gene expression at different tumor stages in
LUAD test dataset; Figure S8: Mosaic plots showing association analysis of categorical variables
for LUAD test dataset; Figure S9: Multivariate Cox Regression results of selected clinical variables
(which have significant results in univariate Cox analysis) and risk score in LUAD test dataset. Risk
score and n stages have significant effect on survival. When pathologic tumor stage is used instead
of t, n, m stages, only risk score shows significant effect on survival; Figure S10: Gene expression
signature and risk clustering of LUSC training dataset; Figure S11: Survival analysis of risk groups
clustered by using signature gene expression at different tumor stages in LUSC training dataset;
Figure S12: Mosaic plots showing association analysis of categorical variables for LUSC training
dataset. Pearson residuals show the positive (blue) or negative (red) association between levels of
categories; Figure S13: Multivariate Cox Regression results of selected clinical variables (which have
significant results in univariate Cox analysis) and risk score in LUSC training dataset. Risk score,
tissue or organ of origin, t and n stages and history of prior malignancy have significant effects on
survival. When pathologic tumor stage is used instead of t, n, m stages, tissue or organ of origin,
risk score and history of prior malignancy show significant effect on survival; Figure S14: Survival
analysis of risk groups clustered by using signature gene expression at different tumor stages in
LUSC test dataset; Figure S15: Mosaic plots showing association analysis of categorical variables for
LUSC test dataset. Pearson residuals show the positive (blue) or negative (red) association between
levels of categories; Figure S16: Multivariate Cox Regression results of selected clinical variables
(which have significant results in univariate Cox analysis) and risk score in LUSC test dataset. Only
risk score has significant effect on survival either t, n, m stages or pathologic tumor stage is used
instead of t, n, m stages; Figure S17: Venn diagram of differentially expressed genes in tumor samples
of risk groups for LUAD and LUSC test groups; Figure S18: Pathway enrichment of DEGs of LUAD
risk groups; Figure S19: Pathway enrichment of DEGs of LUSC risk groups; Figure S20: Pathway
enrichment of CNV genes of LUAD risk groups; Figure S21: Pathway enrichment of CNV genes of
LUSC risk groups; Figure S22: Venn diagram of genes which have significant copy number alterations
in tumor samples of LUAD and LUSC risk groups; Figure S23: Summary of SNVs in LUAD risk
groups; Figure S24: Summary of SNVs in LUSC risk groups; Figure S25: SomInaClust result of
potential driver genes containing significant SNVs in LUAD risk groups. SomInaClust calculates
oncogene (OG) score and tumor suppressor gene (TSG) score for each significant gene and classifies
the gene according to the score threshold (20) and reference database; Figure S26: SomInaClust result
of potential driver genes containing significant SNVs in LUSC risk groups. SomInaClust calculates
oncogene (OG) score and tumor suppressor gene (TSG) score for each significant gene and classifies
the gene according to the score threshold (20) and reference database; Figure S27: Venn diagram of all
genes and potential driver genes containing SNVs of LUAD and LUSC risk groups, Table S1: Gene
list of expression signature in LUAD. Ensemble Gene IDs were used in signature analysis and then
enriched by using BioMart database; Table S2: KEGG pathway enrichment of expression signature
gene list in LUAD by using KEGG Mapper tool; Table S3: Gene list of expression signature in LUSC.
Ensemble Gene IDs were used in signature analysis and then enriched by using BioMart database;
Table S4: KEGG pathway enrichment of expression signature gene list in LUSC by using clusterProfiler
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R package; Table S5: SomInaClust result of SNV data in tumor samples of LUAD low-risk group;
Table S6: SomInaClust result of SNV data in tumor samples of LUAD high-risk group; Table S7:
SomInaClust result of SNV data in tumor samples of LUSC low-risk group; Table S8: SomInaClust
result of SNV data in tumor samples of LUSC high-risk group.
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Abstract
Motivation: The vast size and complexity of The Cancer Genome Atlas (TCGA) database with multidimensional

molecular and clinical data of ~11,000 cancer patients of 33 cancer types challenge the effective utilization of this

valuable resource. Therefore, we built a web application named TCGAnalyzeR with the main idea of presenting an

integrative visualization of mutations, transcriptome profile, copy number variation and clinical data allowing

researchers to facilitate the identification of customized patient cohorts and gene sets for better decision-making for

oncologists and cancer researchers.
Results: We present TCGAnalyzeR for integrative visualization of pre-analyzed TCGA data with the several novel

modules: (i) Simple nucleotide variations with driver prediction; (ii) Recurrent copy number alterations; (iii)
Differential expression in tumor versus normal, with pathway enrichment and the survival analysis; (iii) TCGA clinical

data and survival analysis; (iv) External subcohorts from literature, curatedTCGAData and BiocOncoTK R packages; (v)
Internal patient clusters determined using iClusterPlus R package or signature-based expression analysis.
TCGAnalyzeR provides clinical oncologists and cancer researchers interactive and integrative representations of these
multi-omic, pan-cancer TCGA data with availability of subcohort analysis and visualization. TCGAnalyzeR can be

used to create their own custom gene sets for pan-cancer comparisons, to create custom patient subcohorts comparing

external subcohorts (MSI, Immune, PAM50, Triple Negative, IDH1, miRNA, etc) along with our internal patient

clusters, to visualize cohort-centric or gene-centric results along with pathway enrichment and survival analysis

graphically on an interactive web tool.
Availability: TCGAnalyzeR ​ ​ is freely available on the web at http://tcganalyzer.mu.edu.tr.
Contact: tugbasuzek@mu.edu.tr
Supplementary information: Supplementary data are available at Bioinformatics online.

1Introduction
The sheer scale and complexity of The Cancer Genome Atlas (TCGA)
data (The Cancer Genome Atlas Research Network. et al., 2013) offers
great potential for scientific discovery, but the challenges to effective use
of this valuable resource by biologists and clinicians have led to the
development of several visualization tools such as cBioPortal (Cerami et
al., 2012; Gao et al., 2013), Firebrowse (Deng et al., 2017), and
University of California, Santa Cruz (UCSC) Xena (Goldman et al.,
2020). Among these tools, cBioPortal is the most preferred due to its
interactive exploration of larger and up-to-date cancer datasets. OncoKB
(Chakravarty et al., 2017) is another precision oncology knowledge base
that allows searching and comparing drug response data from different
TCGA cohorts. Although the ICGC web portal (Zhang et al., 2019) and
Coral web application (Adelberger et al., 2021) allow patient/gene
subsetting of TCGA cohorts and provide survival and Venn diagram

visualization of cohorts, they do not allow comparison of cohorts pre-
generated by other research groups. These tools address the reuse needs
of users. However, they only provide raw data without allowing the
patient/gene subsetting of the statistical analyses for pan-cancer
subcohort and associated gene discovery.
We built an interactive Shiny (Chang et al., 2022) web application for

the analysis and visualization of four data categories across 33 cancer
types. Users can visualize the results of preprocessed analysis of Simple
Nucleotide Variations (SNVs), Copy Number Variations (CNVs),
differential gene expression in tumor versus normal samples, and clinical
data of TCGA projects from National Cancer Institute (NCI) Genomic
Data Commons (GDC) (Grossman et al., 2016). Moreover, users can
compare patient clusters determined using iClusterPlus R package (Mo
and Shen, 2022) with expression-based survival risk groups (Zengin and
Önal-Süzek, 2020, 2021), and curated subtypes such as immune
subtypes (Thorsson et al, 2019), Triple Negative Breast Cancer (TNBC)
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subtypes (Lehmann et al, 2016), PAM50 subtypes (Berger et al, 2018)
and Microsatellite Instability (MSI) related subgroups and several data
type clusters from BiocOncoTK (Carey, 2022; Ding et al, 2018) and
curatedTCGAData (Ramos et al., 2020) R packages. Furthermore, users
can create custom subcohorts based on genomic analyses and/or clinical
data to subset data visualization. Users can also create gene sets for data
type and/or pan-cancer comparisons. For each cancer, whenever
available, sample types, survival risk groups (Low-risk / High-risk), and
pre-computed or curated patient clusters can be used for filtering patients.
The main novelty of our tool is allowing the users to generate custom
patient sub-cohorts and/or gene sets using interactive graphical
representations via clipboard functionality.

2 Methods

2.1 TCGA data
Publicly available hg38 data including SNV, CNV, Transcriptome
Profiling, microRNA, Methylation, and clinical data of 33 cancer types
from The Cancer Genome Atlas (TCGA) projects were downloaded on
March 6, 2022 from NCI GDC (Grossman et al., 2016) using
TCGAbiolinks R package (Colaprico et al., 2016).

2.2 Pre-computed Molecular Data Analysis

2.2.1 SNV Analysis
Potential driver mutated genes with their roles as a tumor suppressor or
oncogene were determined by SomInaClust R package (Van den Eynden
et al., 2015) using mutation annotation format (maf) file generated by
mutect2 pipeline. With the “Somatic Driver Mutations” option, the user
can see the significant mutated genes ranked by their Q-value. This
option is only available for the “SNV Analysis” category.

2.2.2 CNV Analysis
Significant recurrent copy number variations were identified by GAIA R
package (Morganella et al., 2011). NCBI IDs and Hugo Symbols of the
genes on chromosomal regions with altered copy numbers were
determined using GenomicRanges (Lawrence et al., 2013) and biomaRt
(Durinck et al., 2009) R packages.

2.2.3 Differential Gene Expression Analysis
Differentially expressed genes were determined using normalized HTseq
counts, by limma-voom method with duplicate-correlation function from
edgeR (Robinson et al., 2010) and limma (Ritchie et al., 2015) R
packages. Ensembl IDs were converted to NCBI IDs and Hugo Symbols
using the biomaRt package (Durinck et al., 2009).
Two different analyses were performed using paired tumor samples

against tumor-adjacent normal samples of patients with both sample
types (Paired), or tumor samples of all patients against normal samples
of patients who have both sample types (All) if it is available for a
particular cancer.

2.2.4 Pathway Enrichment
Pathway enrichment and visualization was performed for each analysis
by clusterProfiler R package (Yu et al., 2012).

2.3 Pre-computed Patient Clusters and Sample Subtypes
TCGAnalyzerR provides an interactive visual analysis of several patient
cohorts: i) Survival Risk Groups: We provide low-risk or high-risk
patient groups determined by expression-based gene signature analysis
for Lung Adenocarcinoma (LUAD), Lung Squamous Cell Carcinoma
(LUSC) and Colon Adenocarcinoma (COAD) (Zengin and Önal-Süzek,
2020, 2021), ii) iClusters: We clustered patients using their raw SNV,
CNV, gene expression, miRNA expression and methylation data of
tumor samples which have all types of data by iClusterBayes method
(Mo et al., 2018), iii) Curated subtypes (immune subtypes, TNBC
subtypes, PAM50 subtypes) from original publications (Thorsson et al,
2019; Lehmann et al, 2016; Berger et al, 2018). For fifteen cancer types,

previously published TCGA cohorts of the individual tumor types are
retrieved from curatedTCGA R package curatedTCGAData R package
(Ramos et al., 2020). Patient clusters based on Microsatellite Instability
(MSI) were compiled using BiocOncoTK (Carey, 2022, Ding et al.,
2018) and Immune clusters (Thorsson et al, 2019) were compiled for all
33 cancers. In total, 123 external patient cohorts are integrated into the
web interface allowing efficient filtering and cross-comparative analysis
of multiple subcohorts in parallel.

2.4 Survival Analysis
Kaplan-Meier (KM) survival analysis is performed by readr (Wickham
et al., 2022) and survfit (Therneau, 2022) R packages in real-time based
on overall survival data of patients of interest for selected clinical
features.

2.5 Visualization
TCGAnalyzeR front-end was implemented by javascript-based R
packages with an interactive dashboard enabling users to select cancer
types, data types, risk groups and patient cohorts using heatmaply, g3viz
and highcharter R packages (Galili et al., 2018; Guo et al., 2019; Kunst,
2022). All visualizations are interactive and customizable by the user
through the filtration options with “My genes” and/or “My patients”
panels enabling to copy genes and/or patients of interest to the clipboard.
TCGAnalyzeR currently supports TSV for downloading tables; and
high-resolution PNG format for downloading figures.

3Results
TCGAnalyzeR web application offers simple nucleotide (SNV) analysis
as the first step. We present two data sets for SNV analysis: ‘Somatic
Driver Mutations’ predicted by the SomInaClust R package and ‘All’
mutations from the original maf file without any analysis. Oncoplot in
Figure 1 shows candidate driver genes with their percentage in tumor
samples of Breast Invasive Carcinoma (BRCA) with annotations of
patient iClusters, PAM50, TNBC and immune subtypes. iCluster #1 is
highly correlated with the Basal and TNBC subtype. Wound-healing and
IFNɣ-dominant immune subtypes gather around iCluster #1. iCluster #2
is mostly correlated with Luminal A subtype and Inflammatory immune
subtype. iCluster #3 seems to be a mixture of estrogen receptor positive
Luminal A and Luminal B subtypes and heterogenous immune subtypes.
Moreover, both iCluster #1 and iCluster #2 are not TNBC subtypes. On
the other hand, iCluster #1 shows a highly different mutation pattern
than other clusters. iCluster #1 together with basal and triple-negative
subtypes have higher prevalence of TP53 mutations with very few
mutations of PIK3CA, CDH1, GATA3, KMT2C, MAP3K1 genes.
Moreover, mutations of TP53, CDH1 and GATA3 genes are mutually
exclusive (Figure 1).

Fig. 1. Oncoplot of candidate driver genes with patient clusters and sample subtypes.
Top10 significant candidate driver genes with mutations determined by SomInaClust R
package. Bottom annotations show the sample subtypes curated from the literature and
iClusters.

Pathway enrichment of candidate driver mutated genes is shown as a bar
graph in Figure 2A. Significant pathways of driver genes are highly
cancer-related pathways such as EGFR tyrosine kinase inhibitor
resistance, PD-L1 and PD-1 pathway in cancer, prostate cancer,
pancreatic cancer and chronic myeloid leukemia pathways. Pathway
enrichment analysis also supplies a table showing KEGG IDs, with
related genes and p/q-values (Figure 2B).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 29, 2023. ; https://doi.org/10.1101/2023.01.20.524925doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?Oc1W9Q
https://www.zotero.org/google-docs/?Oc1W9Q
https://www.zotero.org/google-docs/?Oc1W9Q
https://www.zotero.org/google-docs/?nE3tMe
https://www.zotero.org/google-docs/?nE3tMe
https://www.zotero.org/google-docs/?nE3tMe
https://www.zotero.org/google-docs/?vGdQIr
https://www.zotero.org/google-docs/?vGdQIr
https://www.zotero.org/google-docs/?vGdQIr
https://www.zotero.org/google-docs/?VrL5SF
https://www.zotero.org/google-docs/?VrL5SF
https://www.zotero.org/google-docs/?VrL5SF
https://www.zotero.org/google-docs/?VrL5SF
https://www.zotero.org/google-docs/?yauyJt
https://www.zotero.org/google-docs/?yauyJt
https://www.zotero.org/google-docs/?yauyJt
https://www.zotero.org/google-docs/?K6lwIU
https://www.zotero.org/google-docs/?K6lwIU
https://www.zotero.org/google-docs/?K6lwIU
https://www.zotero.org/google-docs/?XXx7Qf
https://www.zotero.org/google-docs/?XXx7Qf
https://www.zotero.org/google-docs/?XXx7Qf
https://www.zotero.org/google-docs/?yIUg4q
https://www.zotero.org/google-docs/?yIUg4q
https://www.zotero.org/google-docs/?yIUg4q
https://www.zotero.org/google-docs/?YQOZoj
https://www.zotero.org/google-docs/?YQOZoj
https://www.zotero.org/google-docs/?YQOZoj
https://www.zotero.org/google-docs/?EfyxNH
https://www.zotero.org/google-docs/?EfyxNH
https://www.zotero.org/google-docs/?EfyxNH
https://www.zotero.org/google-docs/?7UUeWj
https://www.zotero.org/google-docs/?7UUeWj
https://www.zotero.org/google-docs/?7UUeWj
https://www.zotero.org/google-docs/?NxBPO0
https://www.zotero.org/google-docs/?NxBPO0
https://www.zotero.org/google-docs/?cOYcoN
https://www.zotero.org/google-docs/?cOYcoN
https://www.zotero.org/google-docs/?cOYcoN
https://www.zotero.org/google-docs/?pYWA5y
https://www.zotero.org/google-docs/?pYWA5y
https://www.zotero.org/google-docs/?pYWA5y
https://www.zotero.org/google-docs/?pYWA5y
https://www.zotero.org/google-docs/?gyyhHR
https://www.zotero.org/google-docs/?gyyhHR
https://www.zotero.org/google-docs/?gyyhHR
https://www.zotero.org/google-docs/?gyyhHR
https://www.zotero.org/google-docs/?GbONOU
https://www.zotero.org/google-docs/?XWB0YI
https://www.zotero.org/google-docs/?XWB0YI
https://www.zotero.org/google-docs/?XWB0YI
https://www.zotero.org/google-docs/?XWB0YI
https://www.zotero.org/google-docs/?XWB0YI
https://www.zotero.org/google-docs/?XWB0YI
https://doi.org/10.1101/2023.01.20.524925
http://creativecommons.org/licenses/by-nc-nd/4.0/


Integrative visualization of cancer data for cohort and associated gene discovery

Fig. 2. Pathway enrichment of candidate driver genes. A. Bar plot showing top 10
significant pathways of candidate driver genes determined by SomInaClust R package. B.
Pathway enrichment table presenting KEGG ID, genes in significant pathways with
adjusted p-value and q-value.

The “My genes” clipboard panel of TCGAnalyzeR allows modifying
plots to show genes of interest. For example, Figure 3 shows the
mutation pattern of Oncotype DX gene set together with clinical
annotations. iCluster #2, Luminal A subtype and Her2 subtypes are
related with ERBB2 (HER2) mutations. Besides, iCluster #1 have fewer
mutations than the other two iClusters. Moreover, mutations of Oncotype
DX genes are mostly mutually exclusive (Figure 3).

Fig. 3. Oncoplot of Oncotype DX genes with patient clusters and sample subtypes.
Mutations of Oncotype DX genes with annotations showing the patient iClusters and
sample subtypes curated from the literature.

SomInaClust R package determines candidate driver mutated genes with
their potential roles as a tumor suppressor (TSG) or oncogene (OG) with
predicted scores (Van den Eynden et al., 2015). Pyramid plot in Figure
4A summarizes OG score and TSG scores of candidate driver genes
ranked by their analysis q-values. Some genes may have both OG score
and TSG score over threshold, in that case, SomInaClust considers the
COSMIC cancer gene census information. Only 1 (ERBB2) of 21
Oncotype DX genes were predicted as significant driver mutated genes.
ERBB2 is predicted as an oncogene by SomInaClust as listed Dominant
(OG) in COSMIC cancer gene census (Figure 4B).

Fig. 4. SomInaClust prediction of candidate driver genes. A. Pyramid plot showing
Oncotype DX genes of which were predicted as candidate driver genes with calculated
oncogene (OG) and tumor-suppressor (TSG) scores by SomInaClust R package. B.
Detailed results of SomInaClust analysis with number of mutations, OG score, TSG score
and q-value (qDG). CGC: COSMIC cancer gene census, Rec: Recessive (TSG), Dom:
Dominant (OG).

Transcriptome analysis module provides differential expression analysis
(DEA) of RNAseq data by comparing the expression of genes in primary
tumor samples against adjacent normal samples. We present two results
options for this analysis: ‘Paired’ as comparison of tumor samples
against their own paired normal or ‘All’ as comparison of tumor samples
against a normal sample subset of patients if such is available for the
particular cancer. Volcano plot in Figure 5A summarizes the differential
expression analysis of paired BRCA samples and Oncotype DX genes
highlighted through the ‘My Genes’ panel. Table in Figure 5B presents
the details of DEA with gene symbol, fold change (logFC) and p values
of top 10 significantly differentially expressed genes ranked by p-value.
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Fig. 5. Differential expression of genes in tumor samples versus normal samples. A.
Volcano plot showing up-regulated and down-regulated genes with -log10 conversion of
p-values. Oncotype DX genes are highlighted on the graph. B. Differential expression
results table presenting gene symbols, fold changes (logFC) and adjusted-p-values. C.
Heatmap showing pathway enrichment of differentially expressed genes.

Pathway enrichment of differentially expressed genes showed that these
genes play role in focal adhesion and ECM-receptor interaction which
can be related with metastasis; Ras signaling, PI3K-Akt signaling, cAMP
signaling and Phenylalanine metabolism pathways which are related with
cell growth (Figure 5C). Genes related to these pathways can be
observed with their p value color representation at heat plot of pathway
enrichment analysis (Figure 5C).
Metastasis related gene MMP11, proliferation related genes BIRC5,

MYBL2, MKI67 (Ki67), AURKA (STK15), CCNB1 and ERBB2
(HER2) from Oncotype DX gene set are highly up-regulated
significantly in tumor samples of BRCA (Figure 5A). However hormone
related genes (BAG1, BCL2, CD68, ESR1 (ER), GSTM1, PGR,
SCUBE2) are not significantly differentially expressed among all tumor
samples.
When we concentrate on the ERBB2 gene because it was predicted as

a driver oncogene, we can visualize positions of mutations by the
Lollipop plot in Figure 6A. Most of the mutations of ERBB2 gene are
located on the kinase domain of HER2 (Figure 6A). These mutations are
mostly missense on protein positions 755 (n=7), 767 (n=2), 769 (n=3),
777 (n=4), 797 (n=1), 842 (n=1), 939 (n=1) and in frame insertion on
protein position 885 (n=1). Mutations on ERBB2 gene in tumor samples
cause lower survival probability with 1.43 hazard ratio (not significant,
p=0.084) (Figure 6B).

Fig. 6. Detailed analysis of ERBB2 (HER2) mutations. A. Lollipop plot showing
mutations of ERBB2 gene among tumor samples. B. Overall survival analysis of wild
type versus mutated ERBB2 in tumor samples.

When we checked the expression levels of ERBB2 in tumor samples
versus normal samples, from paired DEA, ERBB2 is expressed in tumor
samples significantly higher than their adjacent normal samples
(p=3.521E-10) (Figure 7A). However, patients with higher expression of
ERBB2 have higher survival probability significantly (p=0.045) (Figure
7B).

Fig. 7. Detailed analysis of ERBB2 (HER2) expression. A. Violin plot presenting log2
transformed normalized mRNA expression of ERBB2 in normal and tumor samples with
adjusted p-value. B. Overall survival analysis of expression levels of ERBB2 in tumor
samples.

Clinical data analysis is composed of pie chart visualization and survival
analysis of clinical features with curated patient clusters and sample
subtypes. Figure 8 shows the visualization of iClusters, PAM50 subtypes
and MSI-sensor subtypes. iClusters showed differential survival
probability close to significance level (p=0.057) (Figure 8A), however
PAM50 subtypes do not have differential survival probabilities. (p=0.68)
(Figure 8B). Patients who have tumors with MSI have lower survival
probability than patients with MSI stable tumors (p=0.0022) (Figure 8C).
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Fig. 8. Pie charts and survival analysis of clinical features. A. Pie chart representation
and survival analysis of iClusters. B. Pie chart representation and survival analysis of
PAM50 subtypes. C. Pie chart representation and survival analysis of MSI subtypes.

Radial slices of the pie-chart are clickable, letting the user add the
corresponding patient subsets to the ‘My Patients’ clipboard panel.
Besides, users can customize a variety of plots such as survival plot,
volcano plot, box plot, heatmaps, lollipop plot, and pie charts for
discovering common molecular profiles for precision oncology. Each
plot and data table are downloadable for use in articles.

4 Conclusion
Several web portals facilitating analysis on TCGA data have been
developed and widely used such as Genomic Data Commons (GDC)
data portal (Grossman, 2016), ICGC data portal (Zhang, 2019) and
CPTAC data portal (Edwards, 2015). The cBioPortal is an open-access,
open-source resource for interactive exploration of multidimensional
cancer genomics data sets (Cerami, 2012; Gao, 2013) providing gene-
centered query and visualization functions across multiple cancers.
IntOGen is another similar framework for automated comprehensive
knowledge extraction based on mutational data from sequenced tumor
samples from TCGA patients (Francisco, 2020). However, we provide
pre-performed SNV, CNV and differentially expression analyses with
large sets of patient clusters and sample subtype information. We present
signature based clustering using Generalized Linear Model for three
cancer types (LUAD, LUSC and COAD). For all 33 cancer types
immune and MSI-sensor scores of all patients are retrieved from their
original publications. For the breast cancer (BRCA), PAM50 and TNBC
patient cohorts are retrieved from their original publications. For fifteen
cancer types, previously published TCGA cohorts of the individual
tumor types are retrieved by curatedTCGAData R package (Ramos et al,
2020). By the time this manuscript is written iClusterPlus based patient
cohorts are generated for fifteen cancers based on five data dimensions:
miRNA, methylation, single nucleotide variation, transcriptome and
copy number variation. A re-runnable parallel Linux pipeline is
implemented enabling a scalable update of the pan-cancer data at the
backend. We plan to generate iClusters for 33 cancer types, and integrate
results of miRNA and methylation analyses, too. Since its initial
inception to public in January 1st of 2022, TCGAnalyzeR has been
regularly accessed by ~79 unique users/day.
TCGAnalyzeR provides a user-friendly web framework for integrative,

large-scale analyses of genomic and clinical data of 33 cancer types from
TCGA. TCGAnalyzeR web interface allows clinical oncologists and
cancer researchers to create subcohorts and/or gene sets of interest to
filter visualization of analyses. TCGAnalyzeR help page includes a
demonstration of the app with the two use-cases of subcohort discovery
and can be used as a manual.
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