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Danışman : Prof. Dr. Rüya ŞAMLI 

 Yazılım maliyet tahmini, bir mühendisin yazılım projesini geliştirmeye başladığı esnada 

ihtiyaç duyduğu yaklaşık süre ve kaynakların tahminidir. Yazılım maliyet tahmini, yazılım 

projesinin maliyetini belirlemek ve müşteriyi ikna etmek için yazılım geliştirme sürecindeki en 

önemli aşamalardan birisidir. Gerçek maliyete en yakın maliyet tahminini yapmak hem yazılım 

geliştiricileri hem de müşteriler için çok büyük bir önem arz etmektedir. Çünkü yanlış yapılan 

yazılım maliyet tahminleri projelerin tamamlanamamasına ya da geniş bir zaman dilimine 

yayılmasına neden olmaktadır. Bu yüzden yazılım maliyet tahmini için literatürde çok farklı 

yöntem geliştirilmiştir. Bu tez çalışmasında, yazılım projelerinin maliyeti, Yapay Zekâ 

yöntemlerinden olan Makine Öğrenmesi (MÖ) kullanılarak Parçacık Sürü Optimizasyonu 

(PSO) ve Genetik Algoritmalarla (GA) öznitelik seçimi yapılarak tahmin edilmeye çalışılmıştır. 

Yazılım projesinin maliyet tahmini, WEKA (Waikato Environment for Knowledge Analaysis 

– Bilgi Analizi için Waikato Ortamı) veri madenciliği aracında bulunan algoritmaların 

çalıştırlması sonucu bulunmuştur. Algoritmalar 10 kat çapraz doğrulama tekniği ile PROMISE 

(Predictor Models in Software Engineering – Yazılım Mühendisliğinde Tahmin Modelleri) veri 

deposundan alınan 9 adet veri setine (COCOMO81, COCOMONASA, COCOMONASA2, 

China, Albrecht, Finnish, Kemerer, Maxwell, Miyazaki94) uygulanmış ve sonuçlar performans 

ölçütü korelasyon katsayısı, hata oranları MAE (Mean Absolute Error –  Ortalama Mutlak 

Hata), RMSE (Root Mean Squared Error – Kök Ortalama Kare Hata), RAE (Relative Absolute 

Error – Bağıl Mutlak Hata), RRSE (Root Relative Squared Error – Kök Bağıl Kare Hata) ve 

MAPE (Mean Absolute Percentage Error – Ortalama Mutlak Hata Yüzdesi) baz alınarak 

değerlendirilmiştir. 
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1. GİRİŞ 

Yazılım, insanların birçok işini kolaylaştırmak üzere farklı programlama dillerinin kullanılması 

sonucunda bilgisayar ve benzerî makinelerin beklenilen işlemleri gerçekleştirmesi için üretilen 

kod kümeleridir. Yazılımlar, makinelerin makinelerle ya da makinelerin insanlarla olan bilgi 

alışverişini sağlar. Yazılım bir nevi cansız bir varlığın dile gelmesi, bir donanım parçasının 

konuşması, derdini anlatması olarak ifade edilebilir. Bir sistemde donanımsal bir arıza 

oluştuğunda, bunu bir insana ya da kendi gibi bir makineye bildirmesi mümkün olmadığından 

bu işlemi yazılım gerçekleştirmelidir. Türk Dil Kurumu’na (TDK) göre yazılım ise “bir 

bilgisayarda donanıma hayat veren ve bilgi işlemde kullanılan programlar, yordamlar, 

programlama dilleri ve belgelemelerin tümüdür” (TDK, 2018). Yazılımları farklı şekillerde 

gruplandırmak mümkündür, en önemli gruplardan biri Sistem yazılımları/uygulama yazılımları 

olarak ifade edilebilir. Sistem yazılımları; bilgisayarın, bilgisayar üzerindeki bir donanımın 

veya bilgisayar üzerindeki bir yazılımın çalışması için mutlak gerekli yazılımlardır; uygulama 

yazılımları ise insanların kullanması için tasarlanan, çeşitli uygulamaları grçekleştiren ve 

bilgisayar sistemi için mutlak gerekli olmayan yazılımlardır. 

 

Yazılımlar geliştiren kişilere genellikle Yazılım Mühendisi unvanı verilmektedir.  

Yazılım Mühendisi, yazılımın talep edilmesinden teslim edilmesine hatta teslim edildikten 

sonraki süreçler de bile aktif bir şekilde görev alan kişidir. Yazılım mühendisinin amacı; 

isteklere cevap veren, kaliteli, güvenli, kullanışlı bir yazılımın en az hata ile ortaya çıkmasını 

sağlamaktır. Sommerville’a (2000) göre Yazılım Mühendisliği, yazılım üretiminin tüm 

yönleriyle ilgilenen bir mühendislik disiplinidir. Yazılım projelerinde proje yöneticileri için 

yazılım maliyet tahmini oldukça mühim bir problemdir. Yazılım projesinin geliştirilmesi 

sırasında gereken kaynakların değeri yazılım maliyeti olarak tanımlanmaktadır (Sommerville, 

2000). Yazılım projelerinin maliyet tahmini ise yazılımın gerçekleştirilmesi sürecinde gereken 

bütçenin tahmin edilmesidir. Yazılım maliyetini hesaplamak kolaydır, zor olan maliyet 

tahmininde bulunmaktır. Yazılım sistemlerinin oluşturulması sırasında gerekli olan eforun 

tahmin edilmesi aşamasına yazılım projelerinin maliyet tahmini denir (Adailer, 2008). 

İnsanların yazılımlara olan ihtiyaçları gün geçtikçe artmaktadır. İhtiyaçlara cevap vermek için 
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geliştirilen yazılımlar daha büyük ve daha karmaşık olmaktadır. Bunun sonucunda yazılım 

maliyetini hesaplamak için farklı yöntemler geliştirilmiştir.  

 

Bu tez çalışmasında Yapay Zekâ yöntemleri ile yazılım maliyet tahmini gerçekleştirilmiştir.  

Bu kapsamda MÖ, GA, PSO ve öznitelik seçimi kullanılmıştır. Bu tez çalışmasının amaçları 

aşağıdaki şekilde maddelendirilebilir: 

 

 Yazılım projelerinin maliyet tahminin PROMISE veri deposundan temin edilen 

literatürde sıklıkla kullanılan farklı veri setleri üzerinde MÖ algoritmalarının 

kullanılarak yapılması, 

 Her bir veri seti üzerinde farklı MÖ algoritmasının performans analizlerinin 

yapılması ve sonuçlarının detaylı yorumlanması, 

 Yazılım projelerinin maliyet tahmininde Genetik Programlamanın kullanılabilir 

olup olmadığının belirlenmesi, 

 Yazılım projelerinin maliyet tahmininde GA ve PSO kullanılarak öznitelik 

seçiminin etkisinin araştırılması, 

 Veri setlerinde yer alan hangi özniteliklerin bir arada kullanıldığında veya hangi 

özniteliklerin önemli hangi özniteliklerin seçilen algoritma için önemsiz olduğunun 

bunun sonucu olarak da hangi algoritmaların başarı oranlarının daha yüksek 

olduğunun belirlenmesi, 

 Elde edilen bulguların literatürdeki diğer çalışmalar ile karşılaştırılması, 

 

Bu tez çalışması şu şekilde organize edilmiştir: 

 2. Bölüm olan Genel Kısımlar Bölümü’nde yazılım maliyet tahmini, yazılım maliyet 

tahmininin önemi, yazılım maliyet tahminin gerçekleştirilmesi, yazılım maliyet 

tahminin yöntemleri, Yapay Zekâ kavramı, Yapay Zekâ yöntemleri, öznitelik seçimi ve 

tez konusu kapsamında literatürde bugüne kadar yapılmış çalışmalar alt başlıklar 

halinde sunulmuştur.  

 3. Bölüm olan Malzeme ve Yöntem Bölümü’nde; tez çalışması kapsamında kullanılan 

veri setleri, uygulama platformu, MÖ algoritmaları ve oluşturulan model sunulmuştur. 
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 4. Bölüm olan Bulgular Bölümü’nde yapılan çalışmalar dört kısımda incelenebilir.  

İlk kısımda literatürdeki diğer çalışmalarla karşılaştırma yapılabilmesi amacıyla 

PROMISE veri deposundan temin edilen veri setlerine, WEKA programında bulunan 

MÖ algoritması uygulanarak yazılım maliyet tahmini gerçekleştirilmiştir. Veri setlerine 

uygulanan algoritmalar 10 kat çapraz doğrulama tekniği ile test edilmiş ve test sonuçları 

ölçüt olarak korelasyon katsayısı, hata oranları MAE, RAE, RMSE, RRSE ve MAPE 

baz alınarak değerlendirilmiştir. İkinci kısımda ise WEKA programında bulunan MÖ 

ve Evrimsel Algoritma: Genetik Programlama; Albrecht, Finnish, Kemerer, Maxwell 

ve Miyazaki94 veri setleri üzerinde iki şekilde çalıştırılmıştır. İlk olarak veri setleri 

üzerinde hiçbir öznitelik seçimi gerçekleştirilmeden MÖ algoritmaları çalıştırılmış ve 

yazılım maliyet tahmini yapılmıştır. İkincisinde, her bir veri seti üzerinde ilk önce GA 

kullanılarak öznitelik seçimi gerçekleştirilmiştir. Veri setlerine uygulanan öznitelik 

seçiminden sonra bazı öznitelikler veri setlerinden kaldırılmıştır. Veri setinde geri kalan 

öznitelikler ile MÖ algoritmaları kullanılarak yazılım maliyet tahmini yapılmıştır. 

Üçüncü kısımda Maxwell, China ve COCOMONASA veri setleri üzerinde öznitelik 

seçim metotlarından GA ve PSO kullanılarak yazılım maliyet tahmini yapılmıştır.  

Bu sayede hem öznitelik seçim metotlarının yazılım maliyet tahmini üzerindeki etkileri 

incelenmiş hemde algoritmaların performansları hesaplanıp karşılaştırılmıştır. 

Dördüncü kısımda yazılım maliyet tahmini için yapılan önceki çalışmalar incelenmiş ve 

bulgular karşılaştırılmıştır. 

 5. Bölüm olan Tartışma ve Sonuç Bölümü’nde; her bir veri setinde gerçeklenen MÖ 

algoritmalarının performans sonuçlarından bahsedilmiştir. 
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2. GENEL KISIMLAR 

Bu bölümde yazılım maliyet tahmini, yazılım maliyet tahmini yöntemleri, Yapay Zekâ, Yapay 

Zekâ yöntemleri, öznitelik seçimi açıklanmış ve konu ile ilgili ayrıntılı bir literatür taraması 

sunulmuştur. 

2.1. YAZILIM MALİYET TAHMİNİ 

Yazılım geliştirme projelerinin en mühim kısımlarından biri, yazılım projelerinin maliyet 

tahminidir. Yazılım projesinin geliştirilmesi sırasında gereken kaynakların değeri yazılım 

maliyeti olarak tanımlanmaktadır. Sommerville (2000) yazılım maliyet bileşenlerini aşağıdaki 

gibi belirtmiştir: 

 Ekipman ve yazılım giderleri 

 Yolculuk ve eğitim giderleri 

 İş gücü giderleri  

 Projeye dahil edilmiş mühendislerin ödemeleri 

 Sosyal ve sigorta giderleri 

 İş gücü giderini etkileyen diğer faktörler 

 Barınma gideri   

 İletişim gideri  

 Birlikte kullanım giderleri 

Ayyıldız’a (2007) göre ortaya çıkarılacak bir ürünün veya bir hizmetin bedelinin ne olacağına 

sayısal olarak tahmin edilmesi işine maliyet tahmini denir. Yazılım projelerinin maliyet tahmini 

ise yazılım sistemlerinin oluşturulması sırasında gerekli olan eforun tahmin edilmesi aşamasına 

denir (Adailer, 2008). Farklı tanımlamalar olmakla beraber tüm tanımlamalarda tahminleme 

işinin ortada henüz bir yazılım yokken yapılması gerektiği, bu durumun da oldukça güç bir 

durum olduğu fikri ortaktır. 

 

Proje maliyet yönetiminde maliyet tahmini için gerekli girdiler, çıktılar, araçlar ve teknikler 

Tablo 2.1’de belirtilmiştir (PMBOK, 2000). 
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Tablo 2.1: Maliyet tahmini için girdiler, araçlar ve teknikler, çıktılar. 

GİRDİLER ARAÇLAR VE TEKNİKLER ÇIKTILAR 

1. İş Dağılımı Yapısı 

2. Kaynak Gereksinimleri 

3. Kaynak Oranları 

4. Faaliyet Süresi 

Tahminleri 

5. Tahmin Yayınları 

6. Tarihi Bilgi 

7. Hesap Tablosu 

8. Riskler 

1. Benzer Tahmin 

2. Parametrik Modelleme 

3. Aşağıdan Yukarıya 

Tahmin 

4. Bilgisayarlı Aletler 

5. Diğer Maliyet Tahmin 

Yöntemleri 

1. Maliyet Tahminleri 

2. Destekleyici Detaylar 

3. Maliyet Yönetimi Planı 

2.1.1. Yazılım Maliyet Tahmininin Önemi 

Yazılım projesinin maliyet tahmininin gerçekleştirilmesi, yazılım projesinin önerilmesinde, 

onaylanmasında ve geliştirilmesindeki pek çok kararı olumlu yönde etkilemektedir. Proje 

yöneticisinin, yazılım maliyetini doğru tahmin etmesi yazılım projesindeki belirsizlikleri 

ortadan kaldırır. Aksi durumda çok ciddi maddî sıkıntılar baş göstermektedir. Maliyet tahmini, 

proje öncesinde mevduat miktarının gerçekçi bir şekilde belirlenebilmesi, bazı kararların daha 

mantıklı alınabilmesi, yazılım şirketlerinin teklif fiyatını doğru şekilde belirleyebilmesi ve 

rekabet edebilir bir fiyat saptayabilmesi gibi sebeplerden dolayı çok önemlidir. Yazılım 

projelerinin maliyet tahmininin ne kadar önemli olduğu aşağıdaki gibi belirtilmiştir (Leung ve 

Fan, 2002):  

 Genel bir iş planına göre geliştirme projelerini gruplandırmaya ve önem sırasına 

göre belirtmeye yardım eder. 

 Gerçekleştirilen değişikliklerin etkisini değerlendirmeyi sağlar ve tekrar planlama 

imkânı sunar. 

 Kaynaklar gerçek ihtiyaçlar ile eşleştirildiğinde projelerin yönetimi ve kontrolünü 

kolaylaştırır. 

 Müşterilerin gerçek geliştirme maliyetinin, tahmin edilen maliyetle uyumlu 

olmasına dair beklentisine cevap verir. 

2.1.2. Yazılım Maliyet Tahminin Gerçekleştirilmesi 

Yazılım sektörü sürekli gelişerek kendini yenileyen bir sektördür. Piyasanın artan talepleri daha 

karmaşık yazılımların geliştirilmesine neden olmaktadır. Yazılım projeleri her zaman başarılı 
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bir şekilde sonuçlanamamaktadır. Bu başarısızlığın sebeplerini Sezer (2008) çalışmasında; 

proje sınırlarının uygun bir şekilde saptanamaması, gerçeğe yakın maliyet tahmininin 

gerçekleştirilememesi, dönüşen müşteri isteklerinin karşılanamaması, personelin teknik 

donanımının eksikliği, müşterinin isteklerini tam olarak belirtememesi, bunlardan en önemlisi 

hiç kuşkusuz yanlış maliyet tahminlemesi olarak sıralamıştır. Dünya genelinde yazılım 

maliyetlerinin yanlış tahminlemesi ve projenin zaman aşımından dolayı, çoğu proje yarım 

bırakılmış ya da çökmüştür. Yazılım projelerinin maliyet tahmini, proje yöneticileri için çok 

zor bir süreçtir. Bu sürecin uygun bir şekilde işlemesi, ciddi bir yazılım maliyet tahmin yöntemi 

gerektirmektedir. Yazılım maliyet tahmin sürecinin başarı oranının artırmak, çok miktarda veri 

ile doğru analizlerin yapılmasına bağlıdır. Barry Boehm’in (Boehm, 1981) ve NASA’nın 

(National Aeronautics and Space Administration-Ulusal Havacılık ve Uzay Dairesi)  sunduğu 

iki süreç bunlardan bazılarıdır (NASA, 2003). Bu süreçler Tablo 2.2 ve 2.3’te belirtilmiştir. 

Tablo 2.2: Barry Boehm maliyet hesaplama süreci. 

1.Adım: Maliyet tahmin adımları belirlenir. 

2.Adım: Gerekli veriler ve kaynaklar için proje planı oluşturulur. 

3. Adım: Yazılım gereksinimleri sabitlenir. 

4. Adım: Mümkün olduğu kadar fazla detay verilir. 

5.Adım: Farklı maliyet tahmin teknikleri ve kaynakları kullanılır 

6.Adım: Farklı tahminler karşılaştırılır ve yinelenir. 

7.Adım: İzleme gerçekleştirilir. 

Tablo 2.3: Nasa’nın maliyet hesaplama süreci. 

1.Adım: Yazılımı fonksiyonel ve programlı olarak analiz edip bilgi toplanır. 

2. Adım: İş elemanlarını tedarikleri tanımlanır. 

3.Adım: Yazılım boyutunu tahmin eder. 

4.Adım: Yazılım eforunu tahmin eder. 

5.Adım: Harcanacak eforu planlanır. 

6.Adım: Risklerin etkisini belirlenir. 

7.Adım: Tahminleri modellerle doğrulanır. 

8.Adım: Tahminleri, bütçeyi ve zamanlamayı ayarlar. 

9.Adım: Tahminleri inceler ve onaylar. 

10.Adım: İzleme, raporlama ve bakım yapma aşamaları gerçekleşir. 

2.1.3. Yazılım Maliyeti Tahmin Yöntemleri 

Yazılım maliyeti tahmin modelleri literatürde farklı şekillerde kategorize edilmiştir. Attarzadeh 

ve Ow (2010)’un çalışmalarında yazılım projelerinin maliyet tahmin yöntemleri, algoritmik 

yöntemler ve algoritmik olmayan yöntemler olarak sınıflandırılmıştır. Literatürde yazılım 
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projelerinin maliyet tahmin modelleri için oldukça fazla araştırma yapılmıştır. Bu çalışmada 

yazılım maliyeti tahmin yöntemleri tüm kategorilerin birleşimi olacak şekilde aşağıdaki gibi 

kategorize edilmiştir: 

 Algoritmik Yöntemler (Regresyon veya İstatistiksel Yöntemler) 

 Algoritmik Olmayan Yöntemler 

  Melez Yöntemler 

Farklı yazılım maliyeti tahmin modelleri olsa da kesinlikle birinin diğerinden daha üstün 

olduğunu söylemek mümkün değildir. Her modelin başarılı olduğu ya da başarılı sonuçlar 

veremediği durumlar söz konusudur. Bazen daha doğru sonuçların elde edilebilmesi için bu 

modellerin bir kombinasyonuna başvurulması, her birinin tahminlerinin dikkatlice 

karşılaştırılması ve yinelenmesi önemlidir.  

2.1.3.1. Algoritmik Yöntemler  

Algoritmik yöntemler, yazılım maliyet tahmini için matematiksel bir formül kullanmaktadır 

(Kumari ve Pushkar 2013). Parametre olarak proje büyüklüğü, proje süresi, yazılım mühendisi 

sayısı, kod satır sayısı gibi girdiler ile efor ve maliyet tahminini matematiksel denklemler ve 

fonksiyonlar yardımı ile bulmaya çalışırlar. Putnam Modeli (SLIM), Fonksiyon Noktası Analizi 

ve COCOMO (Constructive Costing Model – Yapı Maliyet Modeli) bazı popüler algoritmik 

modeller arasında yer almaktadır. 

Putnam Modeli: 

Putnam modelinde zamana endeksli emek ve maliyet eğrileri mevcuttur (Putnam, 1978). 

Gerçek bir projede adam 𝑥 ay değeri zaman içinde stabil kalmaz. Bundan dolayı bazı anlardaki 

kişi sayısı ihtiyacı, diğer anlara göre farklılık gösterir. Putnam modelinde emek-zaman eğrisine 

bakarak kişi sayısı ayarlanabilir. Aynı birim içerisinde farklı projeler arasında personel değişimi 

Putnam eğrilerinin bir sonucu olarak yapılabilir (Ayyıldız, 2007). Denklem 2.1’de kod satır 

sayısı verilmiştir. 

𝑆 =  𝐸𝑥(Ç𝑎𝑏𝑎)1 3⁄ 𝑡𝑑
4 3⁄    

                                                                                                                  (2.1) 
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Burada 𝑡𝑑: yazılım teslim süresi, 𝐸: yazılım geliştirme yeteneğini yansıtan çevre faktörü,  

S: kaynak kodlarını ifade etmektedir. Denklem 2.2’de çaba formülü verilmiştir. 

Ç𝑎𝑏𝑎 = 𝐷𝑥𝑡3                                                                                                                                        (2.2) 

Burada 𝐷: yeni bir yazılım ya da yeniden oluşturulmuş yazılım arasında değişen insan gücünü 

ifade eden bir parametredir (0 – 8, 8 – 27 arasında değer almaktadır). Yukarıdaki iki denklem 

birleştirilerek, yazılım maliyet tahmini için Denklem 2.3 ve Denklem 2.4 elde edilir. 

Ç𝑎𝑏𝑎 = (𝐷0
4 7⁄ 𝑥𝐸−9 7⁄ )𝑥𝑆9 7⁄                                                                                                            (2.3) 

𝑡𝑑 = (𝐷0
−1𝑥𝐸−3 7⁄ )𝑥𝑆3 7⁄                                                                                                                   (2.4) 

Burada 𝐸 çevre faktörüdür. Bu modelin diğer bir avantajı da önceden oluşturulmuş proje 

verilerinden boyut, efor ve süre kullanılarak kolay oluşturulabilir olmasıdır. 

 

Fonksiyon Noktası Analizi: 

Fonksiyon Nokta Analizi, kod satır sayısı yaklaşımına alternatif olarak geliştirilmiştir 

(Albrecht, 1979). Satır sayısı tekniğinden farklı olarak bir yazılım kurumu için direk büyüklük 

tahmininde bulunmanın bir zorluğu yoktur çünkü gereksinimlerin belirlenmesi faaliyetlerinde 

bulunan değerlerden yazılımın büyüklüğü bilgisine ulaşılabilir (Ayyıldız, 2007; Sezer 2008). 

Fonksiyon Nokta Analizi, yazılımdaki fonksiyonları karmaşıklıkları ve yaptıkları işlere göre 

sınıflandırıp saymaktadır. Bunu yapmak, yöneticilerin verimliliği takip edebilmelerini ve 

yazılım geliştirme maliyetlerini tahmin edebilmelerini sağlamaktadır (Keskin, 2016). 

Fonksiyon Nokta Analizi modelinde ilk önce AFN (Ayarlanmış Fonksiyon Noktası) 

hesaplanmaktadır. AFN değeri Tablo 2.4 yardımı ile hesaplanır. AFN değerini elde ettikten 

sonra DAF (Değer Ayarlama Faktörü) değeri hesaplanır. Denklem 2.5’de AFN formülü 

verilmiştir. 

𝐴𝐹𝑁 = [|𝐻𝑎𝑟𝑖𝑐î 𝑔𝑖𝑟𝑑𝑖| 𝑥 𝑤1] + [|𝐻𝑎𝑟𝑖𝑐î ç𝚤𝑘𝑡𝚤| 𝑥 𝑤2] + [|𝐻𝑎𝑟𝑖𝑐î 𝑠𝑜𝑟𝑔𝑢| 𝑥 𝑤3]

+ [|𝐷𝑎ℎ𝑖𝑙î 𝑑𝑜𝑠𝑦𝑎| 𝑥 𝑤4][|𝐻𝑎𝑟𝑖𝑐î 𝑎𝑟𝑎𝑦ü𝑧| 𝑥 𝑤5]                                        (2.5) 

Burada 𝑤 yapılan işi göstermekedir. 
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Tablo 2.4: Bileşenlerin karmaşıklıklarına göre sınıflandırılması. 

  Düşük Orta Yüksek 

1 Haricî girdi 3 5 6 

2 Haricî çıktı 4 6 7 

3 Haricî sorgu 3 5 6 

4 Dahilî dosya 7 13 15 

5 Harici arayüz 5 9 10 

AFN değerlerinin ardından, DAF değerleriyle, son işlev puanları hesaplanabilir. DAF, 0 (en 

düşük) ve 5 (en yüksek) arasında seviyeleri arasında değerlendirilen 14 genel sistem 

özelliğinden oluşmaktadır. Bu 14 değerin toplamı toplam etki derecesini TDI (Total Degree of 

Influence – Toplam Etki Derecesi) vermektedir. Denklem 2.6’da TDI, Denklem 2.7’de DAF ve 

Denklem 2.8’de FN (Fonksiyon Noktası) verilmiştir. 

𝑇𝐷𝐼 = ∑ 𝐶𝑒𝑣𝑎𝑝𝑖  

𝑖=1,2,…,14

                                                                                                                                  (2.6) 

Genel sistem özellikleri (Ayyıldız, 2007) şekil 2.1’de aşağıdaki soruların cevapları şeklinde 

tanımlanmıştır. 

 

Şekil 2.1: Genel sistem özellikleri. 
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𝐷𝐴𝐹 = 0,65 + (0,01 𝑥 𝑇𝐷𝐼)                                                                                                            (2.7) 

𝐹𝑁 = 𝐴𝐹𝑁 𝑥 𝐷𝐴𝐹                                                                                                                               (2.8) 

 

FN, AFN ile DAF değerlerinin çarpımına eşittir. 

COCOMO: 

Barry W. Boehm 1981 yılında algoritmik yazılım maliyet tahmin modeli olan COCOMO 

modelini geliştirmiştir. Bu modele COCOMO 81 modeli de denmektedir. İlk COCOMO, 

yazılım geliştirme süreci olarak şelale (Waterfall) modelini ve programlama dili olarak 

prosedürel diller kullanmıştır. Daha sonraları ihtiyaçlara binaen COCOMO’nun farklı 

sürümleri çıkmıştır. Bunlar COCOMO 81, COCOMO II gibi modellerdir. 

COCOMO 81: COCOMO modelinin ilk sürümüdür. COCOMO 81 modelinin, hesaplanacak 

yazılım maliyet tahminlerinin kapsamlarına göre Basit COCOMO, Orta Düzey COCOMO ve 

Detaylı COCOMO olarak üç değişik modeli geliştirilmiştir. Her modelin kullanacağı probleme 

göre organik, yarı ayrık ve gömülü modlar mevcuttur.  Organik modda küçük bir ekip aşina 

oldukları bir ortamda iyi anlaşılmış proje uygulamaları geliştirir. Bu ekip belli bir deneyime 

sahip işlerini hızlı yapan kişilerdir. Yarı ayrık modda ekipte deneyimli ve deneyimsiz elemanlar 

bulunabilir. Bunlar sistemin her aşamasını bilmeyebilir ve sistemle ilgili bilgileri yetersiz 

olabilir. Gömülü modda projeleri katı donanım, yazılım, yönetmenlikler ve işlem kısıtlayıcılar 

seti içerisinde geliştirilmelidir. Yazılım üzerinde yapılacak değişiklikler o kadar maliyetlidir ki 

değişmez olarak kabul edilir. Bu yüzden sonradan çıkabilecek değişiklikler ve ön görülemeyen 

güçlükler üzerinde ciddi çalışılması gerekir. Projedeki elemanların projedeki tüm kısımlara 

hakim olması olanaksızlaşmıştır.  

COCOMO modeli ve problem türü belirlendikten sonra ilgili formüller kullanılarak tahmin 

hesaplama yoluna gidilir. Basit COCOMO modelinin hızlı ve kolay kullanımından dolayı 

küçük ve orta ölçekli yazılım geliştirme projelerine uygulanabilir. Kullanılan formüllerin 

temelinde kod satır sayısı KLOC (Kilo Line OF Code – Kilo Kod Satır Sayısı) vardır. Basit 

COCOMO bileşenleri Tablo 2.5’te, formülü Tablo 2.6’da ve modlara uygulanışı Tablo 2.7’de 

belirtilmiştir. 
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Tablo 2.5: Basit COCOMO bileşenleri. 

Problem a b c d 

Organik 2,4 1,05 2,5 0,38 

Yarı ayrık 3,0 1,12 2,5 0,35 

Gömülü 3,6 1,2 2,5 0,32 
 

Tablo 2.6: Basit COCOMO modelinin formülü. 

Çaba (ayAdam)                𝑎  𝑥  (𝐾𝐿𝑂𝐶)𝑏  

Geliştirme Zamanı (Ay)  𝑐 𝑥 (Ç𝑎𝑏𝑎)𝑑 

Verimlilik                         𝐾𝐿𝑂𝐶 / Ç𝑎𝑏𝑎 

Ortalama istihdam          Ç𝑎𝑏𝑎 / 𝐺𝑒𝑙𝑖ş𝑡𝑖𝑟𝑚𝑒 𝑍𝑎𝑚𝑎𝑛𝚤 

 

Tablo 2.7: Basit COCOMO modelinin modlara uygulanışı. 

Problem Çaba Süre 

Organik Ç𝑎𝑏𝑎 = 2,4 (𝐾𝐿𝑂𝐶)1,05 𝑆ü𝑟𝑒 = 2,5 (Ç𝑎𝑏𝑎)0,38 

Yarı ayrık Ç𝑎𝑏𝑎 = 3 (𝐾𝐿𝑂𝐶)1,12 𝑆ü𝑟𝑒 = 2,5 (Ç𝑎𝑏𝑎)0,35 

Gömülü Ç𝑎𝑏𝑎 = 3,6 (𝐾𝐿𝑂𝐶)1,20 𝑆ü𝑟𝑒 = 2,5 (Ç𝑎𝑏𝑎)0,32 

 

Burada, 𝐾𝐿𝑂𝐶  1000 Kod Satır Sayısı.  𝑎, 𝑏, 𝑐, 𝑑: Basit COCOMO Modeli Bileşenleri’dir. 

Orta Düzey COCOMO’da da basit COCOMO tahmininde olduğu gibi bir çaba tahmini 

oluşturularak formüle yerleştirilir. Çaba tahmini oluşturulurken basit COCOMO’dan farklı 

olarak formülün içine EAF (Effort Adjustment Factor – Maliyet Faktörü Çarpanı) girer. EAF, 

her bir özniteliğin yazılım geliştirme çabası üzerindeki etkisinin çarpılması ile elde edilir. 

Öznitelikler, yazılım ürün öznitelikleri, bilgisayar öznitelikleri, personel öznitelikleri ve proje 

öznitelikleri olarak dört kategoriye ayrılır. Bu öznitelikler 15 maliyet faktörü içerir. 15 maliyet 

faktörü çok az, az, normal, yüksek, çok yüksek, aşırı yüksek gibi faktör değerleri alırlar. Orta 

Düzey COCOMO’da gerekli zaman hesabı ise Basit COCOMO modelinde olduğu gibi yapılır. 

Tablo 2.8’de Orta Düzey COCOMO için öznitelikler ve faktörleri, Tablo 2.9’da Orta Düzey 

COCOMO bileşenleri, Tablo 2.10’da Orta Düzey COCOMO formülleri belirtilmiştir. 
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Tablo 2.8: Orta Düzey COCOMO Modeli’nin maliyet faktörleri. 

Kategori Maliyet 

Faktörü 

Açıklama Çok 

Az 

Az Normal Yüksek Çok 

Yüksek 

Aşırı 

Yüksek 

Örün 

Özellikleri 

Rely Yazılımın güvenirliği 0,75 0,88 1,00 1,15 1,40 
 

Size Veri tabanın büyüklüğü 
 

0,94 1,00 1,08 1,16 
 

Cplx Karmaşıklık 0,70 0,85 1,00 1,15 1,30 1,65 

Donanım 

Özellikleri 

Time İşletim zamanı kısıtı 
  

1,00 1,11 1,30 1,66 

Stor Ana bellek kısıtı 
  

1,00 1,06 1,21 1,56 

Virt Sanal makine oynaklığı 
 

0,87 1,00 1,15 1,30 
 

Turn Bilgisayar dönme zamanı 
 

0,87 1,00 1,07 1,15 
 

Personel 

Özellikleri 

Acap Analist deneyimi 1,46 1,19 1,00 0,86 0,71 
 

Aexp Uygulama deneyimi 1,29 1,13 1,00 0,91 0,82 
 

Pcap Programcı tecrübesi 1,42 1,17 1,00 0,86 0,70 
 

Vexp Sanal makine uzmanlığı 1,21 1,10 1,00 0,90 
  

Lexp Dil tecrübesi 1,14 1,07 1,00 0,95 
  

Proje 

Özellikleri 

Modp Modern programlama 

deneyimi 

1,24 1,10 1,00 0,91 0,82 
 

Tool Yazılım geliştirme araçları 

kullanımı 

1,24 1,10 1,00 0,91 0,83 
 

Sched Zamanlama kısıtlamaları 1,23 1,08 1,00 1,04 1,10 
 

Tablo 2.9: Orta Düzey COCOMO bileşenleri. 

Problem a b c d 

Organik 3,2 1,05 2,5 0,38 

Yarı ayrık 3,0 1,12 2,5 0,35 

Gömülü 2,8 1,2 2,5 0,32 

Tablo 2.10: Orta Düzey COCOMO Modelinin formülü. 

EAF  (𝑚𝑎𝑙𝑖𝑦𝑒𝑡 𝑓𝑎𝑘𝑡ö𝑟ü1 𝑥 𝑚𝑎𝑙𝑖𝑦𝑒𝑡 𝑓𝑎𝑘𝑡ö𝑟ü2 𝑥 … 𝑥 𝑚𝑎𝑙𝑖𝑦𝑒𝑡 𝑓𝑎𝑘𝑡ö𝑟ü15) 

Çaba 𝑎 𝑥 (𝐾𝐿𝑂𝐶)𝑏 𝑥 𝐸𝐴𝐹 (𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑖𝑛 𝑡ü𝑟ü𝑛𝑒 𝑔ö𝑟𝑒 𝑎 𝑣𝑒 𝑏 𝑑𝑒ğ𝑒𝑟𝑙𝑒𝑟𝑖 𝑏𝑒𝑙𝑖𝑟𝑙𝑒𝑛𝑖𝑟) 

Geliştirme zamanı 𝑐 𝑥 (Ç𝑎𝑏𝑎)𝑑 

Ortalama çalışan sayısı Ç𝑎𝑏𝑎/𝐺𝑒𝑙𝑖ş𝑡𝑖𝑟𝑚𝑒 𝑧𝑎𝑚𝑎𝑛𝚤 

Burada 𝐸𝐴𝐹, Maliyet Faktör Çarpanı, 𝐾𝐿𝑂𝐶, 1000 Kod Satır Sayısı. 𝑎, 𝑏, 𝑐, 𝑑, Orta Düzey 

COCOMO Modeli Bileşenleri’dir. 

 

Detaylı COCOMO modeli basit COCOMO ve orta COCOMO modellerinden farklı olarak iki 

özellik daha barındırır. Birincisi, aşama ile ilgili işgücü çarpanları, ikincisi, yazılım maliyet 

kestirimidir. Bu model projenin aşamalarına göre zaman içinde oluşan farklılıkları göz önünde 
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bulundurarak ara ara yazılım maliyet tahmini gerçekleştirir. Detaylı COCOMO modelinde 

zamana bağlılık temel değişikliktir. Yapılacak işin karmaşıklığı ve çaba yoğunluğu projenin 

farklı aşamalarında değişmektedir (Ayyıldız, 2007). 

 

COCOMO II: COCOMO 81 modelinden sonra modelin gelişimi devam etmiştir. 2000 yılında 

COCOMO II sürümü yayınlanmıştır (Boehm, 2000). COCOMO II modeli üç seviyeden 

oluşmuştur. Bunlar erken prototip seviyesi, erken tasarım seviyesi ve mimarîden sonraki 

seviyedir. Erken prototip seviyesinde değerlendirmeler nesne puanlarına göre hesaplanır ve 

çabayı değerlendirmek için basit formüller kullanılır. Erken prototip seviyesi, prototip 

projelerini ve yeniden kullanımı çok sık olan projeleri desteklemektedir. Denklem 2.9’da Çaba 

formülü verilmiştir. 

Ç𝑎𝑏𝑎 =
𝑁𝑒𝑠𝑛𝑒 𝑛𝑜𝑘𝑡𝑎𝑠𝚤 𝑠𝑎𝑦𝚤𝑠𝚤 𝑥 (1 − %𝑦𝑒𝑛𝑖𝑑𝑒𝑛 𝑘𝑢𝑙𝑙𝑎𝑛𝚤𝑙𝑎𝑏𝑖𝑙𝑖𝑟𝑙𝑖𝑘

𝑜𝑟𝑎𝑛𝚤
100 )

𝑣𝑒𝑟𝑖𝑚𝑙𝑖𝑙𝑖𝑘
                  (2.9) 

Erken tasarım seviyesinde değerlendirmeler işlev puanları üzerinden yapılmaktadır. Daha sonra 

bu LOC’a (Lines of Code – Kod Satır Sayısı)  dönüştürülmektedir. Değerlendirmeler 

gereksinimler belirlendikten sonra da yapılabilmektedir. Çapa formülü Denklem 2.10’da ve 

Denklem 2.11’de verilmiştir. PMm, kod otomatik oluşturulursa kullanılan faktördür. 

Dolayısıyla gerekli çaba (PMm) Denklem 2.12’de hesaplanır ve çabaya eklenir.  

Ç𝑎𝑏𝑎 = 𝐴 𝑥 𝑆𝑖𝑧𝑒𝐵  𝑥 𝑀 + 𝑃𝑀𝑚                                                                                                    (2.10) 

𝑀 = 𝑃𝐸𝑅𝑆 𝑥 𝑅𝐶𝑃𝑋 𝑥 𝑅𝑈𝑆𝐸 𝑥 𝑃𝐷𝐼𝐹 𝑥 𝑃𝑅𝐸𝑋 𝑥 𝐹𝐶𝐼𝐿 𝑥 𝑆𝐶𝐸𝐷                                             (2.11) 

𝑃𝑀𝑚 = (𝐴𝑆𝐿𝑂𝐶 𝑥

𝐴𝑇
100

𝐴𝑇𝑃𝑅𝑂𝐷
)                                                                                                   (2.12) 

Burada 𝐴, 2,5 başlangıç sabiti, Size, 1000 Kod Satır Sayısı, 𝐵 1,1 ile 1,24 arasında değişir ve 

projenin yeniliğine, geliştirme esnekliğine, risk yönetimine, süreç olgunluğuna bağlıdır.  

Diğer kriterlerin açıklaması ise aşağıdaki gibi verilmiştir: 
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 PERS: Personnel Capability – Personel Yeteneği,  

 RCPX: Product Reliability and Complexity – Ürün Doğruluğu ve Karmaşıklığı,  

 PDIF: Platform Difficulty – Platform Zorluğu,  

 PREX: Personal Experience – Personel Deneyimi,  

 SCED: Development Schedule Constraint – Geliştirme Takvimi Kısıtı,  

 FCIL: Facilities – Destek Araç Gereçler,  

 ASLOC: Source Line Of Code – Kaynak kodun Satır Sayısı,  

 ATPROD: Automated Production – Kod üretiminin üretkenlik seviyesi, (AT/100): 

Otomatik oluşturulan kodun toplam sistem koduna yüzdesi. 

 

Mimarîden sonraki seviyede erken tasarım seviyesindeki aynı formüller kullanılabilir. Sistemin 

mimarîsi bitirildiğinde, yazılımın boyutu hakkında isabetli, doğru tahmin yapılabilir. Bu 

noktada yapılan tahmin, personelin kabiliyetini, ürün ve proje özelliklerini yansıtan daha 

kapsamlı çarpan kümesi kullanır. Denklem 2.13’de ESLOC (Effective Source Line Of Code – 

Etkili Kaynak Kodun Satırlarının Sayısı) formülü verilmiştir. 

𝐸𝑆𝐿𝑂𝐶 = 𝐴𝑆𝐿𝑂𝐶 𝑥
𝐴𝐴 + 𝑆𝑈 + 0,4𝐷𝑀 + 0,3𝐶𝑀 + 0,3𝐼𝑀

100
                                                  (2.13) 

Burada  

 DM: Percentage Of Design Modified – Değiştirilen Tasarım Yüzdesi  

 CM: Percentage Of Code Modified – Değiştirilen Kod Yüzdesi  

 IM: Percentage Of The Original Integration Effort Required For Integrating The Reused 

Software – Tekrar Kullanılan Yazılımı Bütünleştirmek İçin Gereken Başlangıç 

Bütünleşme Çabası Yüzdesi  

 SU: Factor Based On The Cost Of Software Understanding – Yazılımı Anlama 

Maliyetini Yansıtan Etken  

 AA: Factor Which Reflects The Initial Assessment Costs Of Deciding If Software May 

Be Reus – Yazılımın Tekrar Kullanılacağını Dikkate Almakla Maliyetin Başlangıç 

Tahmini Yansıtan Etken  
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Regresyon temelli yazılım maliyet tahmini teknikleri literatürde oldukça sıklıkla ele alınan bir 

konudur (Adalier, 2008). Bu yöntemlerde çeşitli alanlarda, aralarında sebep sonuç ilişkisi 

bulunan veriler toplanılır ve tablo şekline getirilerek incelenir. Bu veriler arasındaki ilişkiyi 

belirlemek ve bu ilişkiyi kullanarak tahminleri ya da kestirimleri modelleyen bir fonksiyon 

bulunmaya çalışılır. Tahminleri ya da kestirimleri en iyi modelleyen bu fonksiyonu bulma 

sürecine regresyon çözümlemesi denir (Fatullayev, 2013). İstatistiksel yöntemler arasında 

bulunan regresyon çözümlemesi en çok tercih edilen yöntemlerden biridir. Olası birçok 

regresyon yönteminin dışında, genellikle matematiksel hesaplamalardaki kolaylığından dolayı, 

En Küçük Kareler Tekniği optimal tahmin yöntemi olarak tercih edilmektedir (Alma ve Özgül, 

2008). 

En Küçük Kareler Tekniği birbirine bağlı olarak değişkenlik gösteren iki fiziksel büyüklüğün 

arasındaki matematiksel bağlantıyı gerçeğe en yakın bir denklem olarak belirmek için 

kullanılan standart bir regresyon yöntemidir. Bu yöntem eldeki veri noktalarına en yakın 

geçecek bir fonksiyon eğrisi bulmaya çalışır. Gauss’un bulduğu bu yöntem Cres astroidinin 

yörüngesinin hesaplanmasında kullanılmıştır (Fatullayev, 2013). Bu hesaplama Denklem 2.14 

ve Denklem 2.15’te verilmiştir. 

𝑦 =  𝑓 (𝑥) =  𝑚𝑥 +  𝑏                                                                                                                   (2.14) 

gibi bir doğrusal fonksiyon ya da  

 

𝑦 =  𝑓 (𝑥) =  𝑎𝑥2 +  𝑏𝑥 +  𝑐                                                                                                       (2.15) 

 

gibi karesel fonksiyonda bulunması gereken değerler 𝑎, 𝑏, 𝑐, 𝑚’dir.  

Burada 𝑦𝑖 değeri 𝑓(𝑥𝑖 ) için olası değer, 𝑓(𝑥𝑖 ) ≈  𝑦𝑖, kabul edilince yapılan hata 𝑦𝑖 − 𝑓(𝑥𝑖 ) 

dir ve hedef, bu hatalar minimum olacak şekilde bir 𝑓 fonksiyonu bulmaktır. 𝑦𝑖 − 𝑓(𝑥𝑖 ) 

farklarının her birine bir artık denir. En Küçük Kareler Yönteminde aranan fonksiyon, ya da 

onun parametreleri, tüm artıkların kareleri toplamı olan Denklem 2.16’yı minimum yapacak 

şekilde belirlenir (Fatullayev, 2013). 

∑ (𝑦𝑖 − 𝑓(𝑥𝑖))
2

= (𝑦1 − 𝑓(𝑥1))
2

+ ⋯ + (𝑦𝑛 − 𝑓(𝑥𝑛))
2𝑛

𝑖=1
                                               (2.16) 
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2.1.3.2. Algoritmik Olmayan Yöntemler 

Algoritmik olmayan yöntemler maliyet tahmini için bir formül kullanmaz (Kumari ve Pushkar, 

2013). Bu yöntemler 1990 yılında ortaya çıkınca yazılım araştırmacıları dikkatlerini MÖ, GA, 

Bulanık Mantık (BM) ve Yapay Sinir Ağları (YSA) gibi Yapay Zekâ Yöntemleri olan soft 

computing (esnek hesaplama) denilen yeni yaklaşımlara yöneltmiştir (Attarzadeh ve Ow, 

2010). Algoritmik olmayan yöntemlerden bazıları  

 Uzmanlık Temelli Yöntemler 

 Uzman Görüşü 

şeklindedir.  

Uzmanlık temelli yöntemler, isminden de anlaşıldığı üzere uzman görüşüne ya da daha önce 

yapılmış projelere dayanarak yapılan tahmin yöntemleridir. Bu yöntemler daha önce benzeri 

görülmemiş projeler için ve daha önce yapılmış projelerin somut verileri olmadığı durumlarda 

kullanılmaktadır (Hihn ve Habib-agahi, 1991). Yapılan tahminin doğruluğu tahmini yapan 

uzmanın tecrübe alanına ne kadar hâkim olduğuna bağlıdır. Alanına hâkim olmayan, öznel 

görüşlerini işin içine katan bir tahmincinin objektifliği bulunmayabilir bu da yanlış tahminlerin 

yapılmasına neden olabilir. 

Uzman görüşü bir grup uzmanın deneyimlerini kullanarak tahminde bulunma yöntemidir. 

Yazılım maliyet tahmini için en kullanışlı yöntemlerden biridir. Genel olarak Delphi tekniği 

kullanılır. Delphi Tekniği, bilhasa askeri konulara dair kestirimlerde bulunmak üzere Amerika 

Birleşik Devletleri’nde RAND firmasında çalışan iki araştırmacı tarafından geliştirilmiştir 

(Dalkey ve Helmer, 1963). Delphi Tekniği başta tıp, yönetim, askeri konular ve eğitimin çok 

yönlü alanlarında olmak üzere birçok alanda kapsamlı bir şekilde kullanılmaktadır 

(Woundenberg, 1991; Şahin, 2001). Yazılım projelerinin maliyet tahmini için kullanılan bu 

teknik, konuyla ilgili uzmanlardan oluşan bir grubun, rasyonalist bir yaklaşımla iki veya daha 

fazla turda tahmin yaparak ortak görüşlerinin yazılı olarak alınmasına dayanmaktadır. Bu 

teknikte uzmanların birbirlerinden etkilenmemesi ve tartışma ortamının oluşmaması için 

uzmanların kimlikleri gizlenir, uzman görüşlerinden ortak görüşler çıkarılır. Delphi Tekniğinin 

başlıca özellikleri şunlardır: 
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 Katılımda Gizlilik: Araştırma boyunca savunulan görüşün kime ait olduğu gizli tutulur 

Şahin (2001). 

 Grup Tepkisinin İstatistiksel Analizi: Delphi Tekniği ile oluşturulan anketler 

uygulandıktan sonra her seferinde istatistiksel olarak analiz edilir. 

 Kontrollü Geri Besleme: Delphi Tekniği’nde ardışık anketler uygulanır. Ankette çıkan 

görüşler katılımcılara yeni anket ile birlikte iletilir. Katılımcılar farklı bakış açıları ile 

görüşlerini yeniden gözden geçirir. Bu şekilde devam eden teknik ortak bir görüş 

oluşuncaya kadar devam eder. 

 Analoji Tabanlı Yöntemler: Önceden yapılmış gerçek proje verilerine dayanılarak yeni 

bir projenin bazı özelliklerinin tahmin edilmesidir. Tamamlanmış projelerden elde 

edilen gerçek veriler önerilen projeyi tahmin etmek için kullanılabilir (Boehm, 1981; 

Ayyıldız, 2007; Kumari ve Pushkar, 2013). Bu tekniğin doğru sonuç verebilmesi için 

önceki proje verilerinin ve karakteristik özelliklerinin saklanmış olması gerekmektedir. 

Küçük ve orta ölçekli projelerdeki tahminler büyük ölçekli projelere kıyasla daha tatmin 

edici sonuçlar vermektedir (Adalier, 2008). 

 Yukarıdan Aşağıya Tahmin Yöntemi: Makro Model olarak da adlandırılır. Bu yöntem 

kullanılarak, projenin global özelliklerinden proje için genel bir maliyet tahmini türetilir 

ve daha sonra proje çeşitli alt düzey mekanizmalara veya bileşenlere bölünür. Bu 

yaklaşımı kullanan öncü yöntem Putnam Modeli’dir. Bu yöntem yazılım geliştirmenin 

ilk evresinde ayrıntılı bilgi bulunmadığında çok yararlıdır. 

 Aşağıdan Yukarıya Tahmin Yöntemi: Bu yöntem kullanılarak her bir yazılım 

bileşeninin maliyeti tahmin edilir ve daha sonra toplam proje maliyet tahminine ulaşmak 

için bu tahmin sonuçları birleştirilir. Bu tahmin yöntemi, küçük yazılım bileşenleri ve 

bunların etkileşimleri hakkında biriken bilgilerden bir sistemin maliyet tahminini 

oluşturmayı amaçlamaktadır. Bu yaklaşımı kullanan öncü model COCOMO modelidir.  

 Parkinson Yasaları: Parkinson (1957)’deki “iş mevcut hacmi doldurmak için genişler” 

ilkesini kullanarak maliyetin objektif bir değerlendirmeye dayanmak yerine mevcut 

kaynaklar tarafından belirlenmesidir. Örneğin yazılım 12 ayda teslim edilmek zorunda 

ise ve 5 kişi mevcut ise çaba 60 kişi-ay olarak tahmin edilmektedir. Bazen iyi tahminler 

vermesine rağmen bu yöntem çok gerçekçi olmayan tahminler de sağlayabileceği için 

pek önerilmez. 
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 Kazanmak İçin Fiyat: Yazılım maliyetini, projeyi kazanmak için gereken en iyi fiyat 

olarak tahmin etmektir. Tahmin yazılımın işlevselliği yerine müşterinin bütçesine 

bağlıdır. Örneğin bir proje için makul bir tahmin 100 kişi-ay maliyetini oluşturur ancak 

müşteri 60 kişi-ay karşılayabilirse tahminin 60 kişi-ay şeklinde değiştirmesi istenir.  

Bu yöntem, teslimatın gecikmesi ve ekibin fazla mesai yapma olasılığını yükselttiği için 

iyi bir uygulama değildir (Kumari ve Pushkar, 2013). 

 Yapay Zekâ Yöntemleri İle Yazılım Maliyet Tahmini: Son zamanlarda Yapay Zekâ 

alanında yapılan araştırmalar ve araştırmalar sonucunda elde edilen başarılardan dolayı 

bu alana bir yönelme olmuştur. Birçok bilim alanı Yapay Zekâ yöntemleri ile tekrar ele 

alınmaya başlanmış ve kayda değer sonuçlar elde edilmiştir. Bu alanlardan bir tanesi de 

yazılım maliyeti tahmin yöntemleridir. Yazılım projelerinin maliyet tahmini Yapay 

Zekâ yöntemleri ile tahmin edilmeye başlanmıştır. YSA, MÖ, BM, GA bu 

yöntemlerden sadece birkaç tanesidir.  

2.1.3.3. Melez Sistemler 

Melez sistemler, birden fazla faklı sistemin (YSA, GA, BM vb.) birlikte kullanılması ile 

oluşturulan sistemlerdir. Yazılım projelerinin maliyet tahmininde melez sistemler, birden fazla 

algoritmik yöntem, birden fazla algoritmik olmayan yöntem ya da algoritmik yöntemler ile 

algoritmik olmayan yöntemlerin bir arada kullanılması ile oluşturulmaktadır. Neuro-Fuzzy 

COCOMO modeli, Huang ve diğ. (2003) tarafından yazılım maliyet tahmini için oluşturulmuş 

melez bir sistemdir. Araştırmacılar, COCOMO modeli ile BM ve YSA’yı birleştirerek 

oluşturdukları melez sistemin yazılım maliyet tahmini başta olmak üzere yazılım 

mühendisliğindeki birçok probleme çözüm sağlayacağını belirtmişlerdir. Başka bir çalışmada 

(Molani ve diğ., 2014) YSA ve GA birlikte kullanılarak yazılım maliyet tahmini için melez bir 

model geliştirilmiştir. Araştırmacılar modelin optimalliğini kanıtlamak için modelin tahmin 

çıktılarını COCOMO 81 modelinin tahmin çıktıları ile karşılaştırmıştır. Geliştirilen modelin 

COCOMO 81 modelinden daha büyük doğruluk oranıyla tahmin yaptığı gözlemlenmiştir. 
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2.2. YAPAY ZEKÂ 

Yapay Zekâ, zeki bir canlının taklit edilmesi amacı ile belli hesaplamalar sonucunda elde edilen 

zekâdır. Çoğu zaman akıl ve zekâ kavramları karıştırılır. Akıl somut olarak ölçülemez ve zaman 

içinde geliştirilebilir. Elmas (2016) aklın genetik olduğundan  ve çevreden etkilenerek 

gelişebileceğinden söz etmekte ayrıca aklın makine, bilgisayar, yazılım gibi farklı yollarla taklit 

edilemeyeceğini zekânın ise geliştirilebilir, ölçülebilir ve taklit edilebilir bir yapı olduğunu 

savunmaktadır. TDK’nın verdiği tanıma göre zekâ, insanın düşünme, fikir yürütme, nesnel 

gerçekleri algılama, kavrama, yargılama, sonuç çıkarma yeteneklerinin tümüdür (TDK, 2020). 

Nabiyev’e (2016) göre zekâ; bireylerin amaçlı bir biçimde hareket edebilme, mantıklı 

düşünebilme ve çevresine uyum gösterme yetilerinin tanımıdır. Bazen zekâ; bir olayı önce 

anlama, ilişkileri kavrama yargıda bulunma daha sonra çözme yeteneği biçiminde de 

tanımlanmaktadır. Oleron (1996) zekâyı araçların duruma göre uygun kullanılması olarak 

tanımlar. Elmas (2016) zekânın belirli bir konuda çalışılarak, öğretilerek, edinilen bilgi ve 

birikimlerle, deneyimlere dayalı becerilerle geliştirilebilir olduğunu ifade etmiştir. Alan W. 

Turing “Makineler düşünebilir mi?” sorusuyla ilk kez insana has bir özelliğin makinelere 

nakledilebilme düşüncesini ortaya atmış ve Turing Testi ve Yapay Zekâ gibi kavramları 

literatüre kazandırmıştır (Kartal Karataş, 2011; Nabiyev, 2016). 1956 yılında Yapay Zekâ 

terimi ilk defa Dartmouth College’de düzenlenen bir konferansta kullanılmıştır (Nabiyev, 

2016).  

 

Çağımızda bilgisayar sistemleri hem eylemler arasında bağları öğrenebilmekte hem de eylemler 

hakkında kararlar alabilmektedir. Matematiksel olarak formülasyonu kurulamayan ve 

çözülmesi mümkün olmayan problemler sezgisel yöntemlerle bilgisayar sistemleri tarafından 

çözülebilmektedir. Bilgisayarlar sistemlerini bu özelliklerle donatan ve bu kabiliyetlerinin 

gelişmesini sağlayan çalışmalar Yapay Zekâ çalışmaları olarak bilinmektedir (Öztemel, 2016). 

Nabiyev (2016)’e göre Yapay Zekâ, bir bilgisayarın ya da bilgisayar denetimli bir makinenin, 

çoğunlukla insana has özellikler olduğu kabul edilen fikir yürütme, mana çıkarma, genelleme 

ve önceki tecrübelerinden öğrenme gibi yüksek zihinsel süreçlere ilişkin görevleri yerine 

getirme kabiliyeti olarak tanımlanmaktadır. 

 



20 

 

 

 

 

Yapay Zekâ, hem bilişsel sistemleri simule etmeyi hem de “akıllı” sistemleri yapılandırmayı 

amaçlayan bilimsel disiplindir (Görz, 2005). Başka bir tanıma göre Yapay Zekâ, mevcut verileri 

kullanarak doğru sonuçlar çıkaran, isabetli kararlar verebilen akıllı bilgisayar ve türevi 

makineleri yapma bilimidir. Bu bilimle uğraşanlar, zekânın doğasını anlamaya çalışarak 

bilgisayarları daha işlevsel, daha faydalı hale getirmeye çalışmaktadır. Buradaki amaç hep daha 

zeki programlar oluşturabilmektir (Sönmez, 2020). Yapay Zekâ teknolojisinin çok geniş bir 

çalışma alanı vardır (Allahverdi, 2002). Bunlardan bazıları aşağıdaki şekildedir (Tuzcuoğlu, 

2003):  

 

 İnsanın beyin işlevlerini inceleyip simülasyonunu çıkararak keşfetmek. 

 İnsanların bir problem karşında geliştirdiği taktik ve tutumu model almak. 

 İnsanın öğrenme yöntemlerini şekilsel duruma getirmek ve bilgi sistemlerine 

uygulamak. 

 İnsanın, bilgisayar etkileşimini ergonomik hale getirerek ona göre kullanıcı dostu 

donanımlar üretmek 

 Uzman kişilerden toplanan verilerden Bilgi Sistemleri ya da Uzman Sistemler 

geliştirmek. 

 Gelecekte bilgi toplumlarının oluşturulmasına yardımcı olacak “Genel Bilgi 

Sistemleri” oluşturmak. 

 Zeki robot timler oluşturmak  

 Bilimsel buluşlarda ve araştırmalarda kullanılmak üzere araştırma yardımcıları 

oluşturmak. 

 Askerî alanda çabuk karar verebilen sistemler geliştirmek. 

 Tehlike anında insan yerine kullanılabilecek yardımcı eleman oluşturmak. 

 Optik algılama bazında nesne ve renk tanımlayacak sistemler geliştirmek. 

 Tıp alanında karışık durumlarda karar verebilecek sistemler geliştirmek  
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Yapay Zekâ teknolojisinde çeşitli yöntemler mevcuttur. Yapay Zekâ yöntemlerinden bazıları: 

 Tavlama Benzetimi  

 Uzman Sistemler  

 Bilgisayarlı Görme  

 Konuşma Tanıma  

 Robotik  

 Kaotik Modelleme  

 YSA 

 BM  

 Melez Sistemler  

 GA  

 MÖ  

2.2.1. Tavlama Benzetimi 

Tavlama Benzetimi optimizasyon problemleri için tasarlanmış ihtimallere dayalı bir 

algoritmadır. Amaç optimal çözümün en kısa sürede üretimini sağlamaktır. Bu algoritma 

özellikle hesaplama alanında bir deneyin ya da nümerik sonuçların anlık değerlerini elde etmek 

için kullanılır. Tavlama Benzetimi ilk olarak metallerin tavlama işlemini simüle etme amacıyla 

önerilmiştir ve daha sonra yinelemeli bir optimizasyon yöntemi olarak tanıtılmıştır. Tavlama 

Benzetimi algoritması adını, demircilerin demiri şekillendirmek için demiri döverken belirli bir 

sıcaklığa kadar ısıl işlemden geçirmesi olayından almıştır. Tavlama sürecinin oluşumu, oldukça 

yüksek bir sıcaklık değerine sahip bir çözümden başlayıp sıcaklığı dereceli olarak düşürerek iyi 

ve kötü çözümler arasında gezinip en nihayetinde optimal çözüme ulaşmaktır (Ayan, 2009). 

Tavlama olayındaki gibi çözülmesi gereken problem ele alınır tavlama derecesi ile ısıtma 

aşamasından geçirilir arzu edilen noktaya gelindiğinde hedefe varıldığı kabul edilir. Tavlama 

Benzetimi elektronik devre tasarımı, görüntü işleme, kesme ve paketleme, akış ve iş 

çizelgeleme gibi problemlerin çözümlerinde kullanılmaktadır. 
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2.2.2. Uzman Sistemler 

Uzman Sistemler, belirli konularda uzman kişilerin görüş ve önerileri ile oluşturulmuş veri 

tabanlarını kullanarak karar verme işlemlerini modelleyebilen, kendini geliştirebilen yazılım 

sistemleridir. Uzman Sistemler, tavsiyelerde bulunabilir, sorunları çözümleyebilir, bağlantı 

kurabilir, tasarım yapabilir, tanım yapabilir, yorumlayabilir, kestirim yapabilir, yargılayabilir, 

denetleyebilir, öğrenebilir ve öğretebilir, yazılımlardır (Civalek, 2003).  

 

Uzman Sistem yaratma işlemleri "Bilgi Mühendisliği" olarak adlandırılmakta ve "Uygulamalı 

Yapay Zekâ" olarak kabul edilmektedir. Uzman Sistemler aynı zamanda daha geniş bir grubu 

oluşturan "zeki sistemler" ve "bilgiye dayalı sistemler” in alt grubunu oluşturmaktadır 

(Kurbanoğlu, 1992). Şekil 2.2’de bir Uzman Sistemin genel yapısı verilmiştir. 

 

Şekil 2.2: Bir Uzman Sistemin genel yapısı. 

Uzman Sistemlerin avantajları şu şekilde ifade edilebilir: 
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 Maliyet Azalması: Uzman Sistemler daha kısa sürede daha çok iş yapıp maliyeti 

düşürürler. 

 Verimlilik: Uzman Sistemler daha kısa sürede daha çok çalışır ve daha az yorulurlar, 

verimliliği artırırlar. 

 Kalite Artışı: Uzman Sistemler tutarlı ve uygun hareket ederek hata oranını düşürür, 

kaliteyi arttırırlar. 

 Tutarlılık: Hava durumu, ekonomi, duygusal ilişkiler gibi insani durumlar Uzman 

Sistemleri etkilemez. Dolayısıyla aynı şartlarda aynı sonucu üretirler. Bu da tutarlılığı 

sağlar. 

 Esneklik: Uzman Sistemlerin veri tabanları istenildiği zaman güncellenebilir bu da 

esnekliği sağlar. 

 Kapsamlılık: Uzman Sistemler çoğunlukla birden fazla uzman bilgisiyle 

oluşturulmuştur dolayısıyla kapsayıcı sonuçlara sahip olurlar. 

 Karar Alma Süresinin Kısalması: Uzman Sistemler uzmanlara ve diğer birçok yönteme 

oranla daha kısa sürede karar alırlar. 

 Güvenilirlik: Uzman Sistemler veri tabanındaki bilgilerden yola çıkarak sonuçlar 

üretirler. Bu sonucu üretirken hiç sıkılmadan ve yorulmadan işlemi gerçekleştirirler.  

Bu da güvenilirliği sağlar. 

 Tehlikeli Ortamlarda İşlem: Uzay keşifleri, savaş ortamları, okyanusun derinlikleri, 

zehirli gazlar bulunan yerler, madenler gibi insanlar ve canlılar için risk oluşturan birçok 

ortamda Uzman Sistemler rahatlıkla çalışabilirler.  

 Eksiksiz ve Mutlak Olmayan Bilgi ile Çalışma: Uzman Sistemler sıradan 

bilgisayarların aksine insanlar gibi net olmayan bilgilerden çıkarımlar yapabilirler. 

 Eğitim: Uzman Sistemler eğitilebilir ve eğitebilirler. Bir Uzman Sistem başka bir 

Uzman Sistemi ya da bir insanı eldeki verileri kullanarak eğitebilir.  

 Problem Çözme Kabiliyeti: Uzman Sistemler çok karmaşık görünen problemleri insana 

oranla daha kısa sürede çözebilirler.  

Günümüzde birçok alanda kullanılan Uzman Sistemler insanın iş yükünü azaltarak hayatı 

kolaylaştırmaktadır. Uzman Sistemlerin kullanıldığı bazı alanlar ve bu alanlardaki bazı örnekler 

şu şekilde ifade edilebilir: 
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 Yorumlama: Ses tanıma, görüntü analizi, denetim 

 Tahmin: Hava tahmini 

 Teşhis: Tıp, elektronik 

 Tasarım: Devre çizimi 

 Planlama: Askerî planlama 

 Görüntüleme: Hastalıkların teşhisi ve tedavisi 

 Eğitim: Danışma, ıslah, tedavi 

 Tamir: Otomobil, bilgisayar 

 Planlama: Askeri planlama, otomatik programlama 

 Kontrol Sistemleri: Hava trafik kontrolü 

 Hata Ayıklama: Yazılımlar 

2.2.3. Bilgisayarlı Görme 

Bilgisayarlı görme, 1960’ların sonlarında Yapay Zekâ çalışmalarına öncülük eden 

üniversitelerde başlamıştır (Szeliski, 2010). Robotlara akıllı davranışlar kazandırmayı 

amaçlayan araştırmacılar insan gibi görmeyi de bu çalışmanın bir basamağı olarak incelemiştir. 

Bilgisayarlı görme, insanın görme yeteneğinin bilgisayarlara aktarılması çalışmasıdır.  

Başka bir ifadeyle bilgisayarların, dijital görüntülerden veya video görüntülerinden, insan gibi 

sonuçlar çıkararak işlemler gerçekleştirip elde ettiği sonuca göre karar verebilir aşamaya 

gelebilmesidir. Bilgisayarların bunu yapabilmesi için, dijital görüntüyü oluşturma, işleme, 

analiz etme ve anlamlı hale getirme işlemlerini gerçekleştirebilecek yöntemleri kullanması 

gerekmektedir (Autonom, 2019). Bilgisayarlı görmenin, görüntü tanıma, hareket algılama, 

görüntü onarma, indeksleme, hareket izleme gibi alt dalları bulunmaktadır. Bilgisayarlı görme 

çok çeşitli alanlarda kullanılmaktadır. Bu alanlardan bazıları; medikal uygulamalar, sanayi 

uygulamaları, askeri uygulamalar ve otonom araç uygulamalarıdır. 

2.2.4. Konuşma Tanıma 

Konuşma tanıma, insan sesinin bilgisayarlar tarafından algılanmasıdır (Yalçın, 2008). 

Bilgisayar sistemleri, ses sinyallerinden oluşan konuşma verisini alarak veriyi işler, işlenmiş 

veriden yolara çıkarak tahminde bulunur ve bir metin çıktısı oluşturur buna konuşma tanıma 
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denir. Dede (2008) çalışmasında YSA’yı kullanarak bir konuşma tanıma uygulaması 

geliştirmiştir. Çalışmasında konuşma tanıma probleminin esas itibariyle bir örüntü tanıma 

problemi olduğunu belirtmiştir. Bir sözcüğün zamana göre frekans değerlerine yayılmış olan 

gösterimi o kelimenin örüntüsü olarak hesaplanır. Çünkü araştırmacıya göre ses sinyallerinde, 

belli sözcükler başka seslendirme kayıtlarında benzer sinyal şekilleri ortaya koymaktadır. 

Araştırmacı kelimelerin örüntülerinden yola çıkarak konuşma tanıma uygulaması geliştirmiştir. 

Öcal (2005) çalışmasında, konuşma alanında yapılan en eski çalışmanın 1936 yılında 

yapıldığını belirtmiştir. En başta oluşturulan konuşma tanıma sistemleri yalnızca sayıları 

anlamlandırabilmekteydi. Daha sonraki yıllarda bu alan üzerindeki çalışmalar artmıştır. 

Sovyetler Birliği, ABD, Japonya ve İngiltere’deki laboratuvarlarda 1950 ve 1960 yılları 

arasında ünlü ve ünsüz harfleri tanıyan donanım tabanlı konuşma tanıma sistemleri 

geliştirilmiştir (Yakar, 2016). Dinamik programlama ile başlayan çalışmalar saklı Markov 

modellerinin kullanılması ile günümüze kadar sürdürülmektedir (Gürel ve Aslan, 2008). 

 

Konuşma Tanıma Modelini oluşturan kısımlar aşağıda belirtilmiştir (Yalçın, 2008). 

 Sinyal işleme modülü 

 Özellik çıkarma modülü 

 Zaman düzenleme ve model karşılaştırma  

 Bir final kelime dizisi seçmek için dil modeli 

Şekil 2.3’te konuşma tanımanın genel bir modeli verilmiştir. 
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Şekil 2.3: Konuşma Tanıma Modeli. 

Konuşma tanıma uygulamaları günlük yaşantının birçok alanında kullanılmaktadır. Bankacılık 

işlemleri, akıllı ev eşyaları, sesli web tarama sistemleri, otomobiller, kamu tesisleri bunlardan 

sadece birkaçıdır. Bunlardan bir diğeri havalimanlarında kurulan farklı dil desteği ile rehberlik 

yapan Konuşma Tanıma sistemleridir. Bu sistemler farklı dilleri konuşan ama aynı cihazı 

kullanan yabancı gruplar için geliştirilmiştir. 

 

Otonom araçlar, neredeyse bir insan gibi iletişim kurabilmektedir. Tek bir cümle ile birden fazla 

soruyu anlamaya yeteneğine sahip bu sistemler yolcular ile sesli iletişim kurabilir, navigasyon 

komutları verebilir, yol bilgisi alabilir, internette arama yapabilir, çalan müziği değiştirebilir.  

 

Günlük hayatı yakından ilgilendiren giyilebilir teknoloji, müşteri hizmetleri, görme engelliler 

için özel cihazlar ve turizm sektörü konuşma anlama teknolojisi ile büyük bir gelişim 

göstermesi beklenen alanlar arasındadır (Techinside, 2017).  

2.2.5. Robotik 

İkinci Dünya Savaşı’ndan sonra yüksek seviyeli algoritmaların geliştirilerek akıllı oyun 

programlarının yapılması, otomat oyuncaklara ilgiyi azaltmıştır. Otomatların yerine, dışarıdan 

algıladıkları verileri alan ve aldıkları verileri kullanıp gerekli talimatları yerine getiren 
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sibernetik makineler geçmiştir. Bu makineler, yakınındaki ısı, ışık, gürültü kaynağını ya da bir 

engeli algılamakta ve ona göre hareketlerine yön verebilmektedir. Nobert Wiener, 1948’de 

“yönetim” anlamına gelen Sibernetik’i, insanlar ve makineler arasında iletişim ve düzenleme 

bilimi olarak tanımlamıştır (Nabiyev, 2016).  

 

Robot kelimesi ilk kez 20. yüzyılın başlarında bir tiyatro oyununda kullanılmıştır. Bilim kurgu 

yazarı Isaac Asimov insanlık geleceğini ilgilendiren 3 önemli robotik yasası olduğunu iddia 

etmiştir: 

 1. yasa: Robotlar hiçbir şekilde insanlara zarar vermemeli ve insanın zarar göreceği 

hiç bir durumda pasif kalmamalıdır. 

 2. yasa: Robotlar 1. yasaya uymak kaydıyla insanlar tarafından verilen bütün 

komutları yerine getirmek zorundadır. 

 3. yasa: 1. ve 2. yasaya uymak kaydıyla robotlar kendilerini korumak zorundadır. 

 

Şerit üzerinde hareket eden kusurlu ürünleri tespit etme, araba parçalarını birleştirme, malzeme 

taşıma ya da daha kompleks davranışları yapan robotları çağımızda görmek mümkündür. 

Bilgisayarlar, yazılımlar aracılığı ile robotları kontrol eder ve robotlara işin nasıl yapılacağını 

öğretir. Bu yazılımlar robota hareketinin zamanını, yönünü, mesafesini ve benzer konularda ne 

yapması gerektiğini komutlar yardımıyla bildiren yazılımlardır. Bazı robotlar bir kere 

programlandıktan sonra tekrar tekrar programlanmalarına gerek yoktur. Rutin işlerde 

kullanılan, bir kere programlandıktan sonra fazla kontrol edilmeyen bu tür robotlara seç, al, 

yerleştir robotları denilmektedir (Civalek, 2003). Yeni nesil robotlar ise her geçen gün daha 

fazla zekâ yeteneği ile donatılmaktadır. Bu sayede çevrelerini daha iyi algılamakta ve 

hareketlerini planlamaya yönelik gelişmektedir (Kocabaş, 2013). 

 

Robotik, makine tasarımı, kontrol kuramı, bilgisayarlı programlama ve elektronik 

disiplinlerinin karışımından oluşan ve Mekatronik olarak isimlendirilen mühendislik alanına 

girmektedir. Mekatronik biliminin temelleri 1969 yılında Japonya’da atılmıştır. Robotik, Yapay 

Zekânın Mekatronikle sınırında olan bir alandır (Civalek, 2003; Ozan, 2020). Robotlar üç 

kategoride incelenmektedir: 
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 Birinci nesil robotlar: Kendi kendine ayarlanamaz robotlardır. 

 İkinci nesil robotlar: Dışarıdan gelen verileri alabilen en az bir alıcısı olan 

robotlardır. 

 Üçüncü nesil robotlar: Kendi kendini kontrol edebilen bir Yapay Zekâ ile 

donatılmış robotlardır. 

Robotların üstün özellikleri arasında üretim artışını sağlaması, üretim maliyetini düşürmesi, 

kalite artışını sağlaması, kötü şartlarda çalışabilmesi, yönetilmesinin ve kontrol edilmesinin 

kolay olması, çalışma sahasının geniş olması, yaşam süresinin uzun olması, daha dayanıklı ve 

uyumsal olması onun kullanımını cazip kılmıştır. Bu nedenle robotlar, Japonya ve ABD’de 

birçok araştırma ve geliştirme alanında kullanılmaktadır. Teknolojinin birçok alanında olduğu 

gibi robotların da gelişme göstermesinin en büyük etkenlerinden birisi askerî alanlarda 

kullanılmasıdır (Nabiyev, 2016). 

 

Robotik bilimi, tıp ve sağlık alanında, endüstride, uzay araştırmalarında, askeri alanda, eğlence 

alanında, ulaşımda, tarım ve hayvancılık alanında, sibernetik alanı gibi daha birçok alanda 

kullanılmaktadır. Geçmişten günümüze farklı alanlarda robotlar tasarlanmıştır (Yamanol, 2016; 

Ozan, 2020). 

2.2.6. Kaotik Modelleme 

Fransızca’dan Türkçe’ye geçen kaos kelimesi, evrenin düzene geçmeden önceki uyumsuz, 

karışık hali ya da karmaşıklık, karmaşa anlamlarını içermektedir. Kaos, karmaşık ve düzensiz 

görünümlü başlangıç koşullarına bağlı, deterministik olmayan, zamanla değişen sistemler için 

kullanılan bir olgudur (Ablameyko, 2003). Kaos terimi ilk olarak 1900 yıllarında bilim adamı 

Jules Henri Poincaré tarafından karar verilemez ve saptanamaz olaylar için kullanılmıştır 

(Poincaré, 1912). 

 

Kaos kuramı, dinamik sistemlerin beklenmedik garip davranışlarını araştıran bir bilim dalıdır 

(Merih, 2016). Kaotik bir sistemde kaotik işaretler elde edildikten sonra verilere uygun bir 

matematiksel model ile kaotik işaretler ifade edilebilmektedir. Bu direk olarak lineer olmayan 

bir denklem formatında olabileceği gibi BM, YSA veya Volterra Serileri gibi farklı modelleme 
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teknikleri ile modellenebilmektedir. Buna Kaotik Modelleme denir. Dinamik bir sistemin 

kaotik olarak sınıflandırılması için başlangıç koşullarına duyarlı olmalıdır, topolojik olarak 

karıştırılmalı ve periyodik yörüngeleri yoğun olmalıdır. Son yıllarda kaos teorisi borsa, 

meteoroloji, iletişim tıp, kimya, mekanik gibi çok farklı dallarda kullanılmaktadır.  

2.2.7. Yapay Sinir Ağları 

İnsan sinir hücresinin model alınarak oluşturulmuş bilgisayar sistemlerine, öğrenmeyi, 

öğretmeyi, sonuç çıkarmayı öğreten Yapay Zekâ yöntemine YSA denir. YSA tasarlanırken 

insan sinir sisteminden ilham alınmıştır. Bir YSA’yı oluşturan işlem yapıları birbirlerine 

ağırlıklı bağlantılar ile bağlanmış her birinin kendi belleği olan, dağıtık ve paralel yapılardır. 

(Elmas, 2016). Başka bir tanıma göre YSA insan beyninin biyolojik sinir sistemini temel alarak 

oluşturulan bu bilgisayar programları ve yapıları, algılayıcılardan aldığı veri girişleri ile daha 

önceden öğrenerek sınıflandırmış olduğu bilgileri kullanarak yeni bilgiler üretmektedir. 

Ürettiği ve oluşturduğu bilgilerden yola çıkarak yeni kararlar verebilir duruma gelmektedir 

(Keskenler ve Keskenler, 2017). 

 

YSA ile ilgili ilk çalışmalar 1940’larda bugün birçok ağın önemli yapı taşı olan McCulloch-

Pitts-Neuron olarak bilinen basit bir sinir hücresi modeli tasarlanması şeklindedir (Sezen, 2008; 

Mijwill, 2017). 1949 yılında, günümüzde bile hala pek çok öğrenme kuralının özünü oluşturan 

Hebbian Öğrenme oluşturulmuştur. 1957’de farklı harfleri okuyup tanıyan bir YSA modeli 

geliştirilmiştir. 1959 senesinde MADALINE ve ADALINE olarak adlandırılan YSA modeli 

oluşturulmuştur. 1960’lı yılların sonlarında YSA’nın doğrusal olmayan problemleri 

çözememesi ve XOR (Exclusive-Or) problemi ile bunun ispatlanması bu alandaki çalışmaları 

durma noktasına getirmiştir. Geleneksel Gezgin Satıcı Problemi’nin (Travelling Salesman 

Problem – TSP) YSA ile çözülmesi aynı zamanlarda tek katmanlı algılayıcıların çözemediği 

XOR probleminin çok katmanlı algılayıcıların bulunması ile çözülmesi bu alanı tekrar ilgi 

odağı haline getirmiştir. YSA’daki gelişmelere donanım teknolojisindeki yeniliklerin etkisi çok 

olmuştur. Bilgisayarların işlem hızları ve bellek kapasiteleri artmış bu da işlemlerin daha kısa 

sürede gerçekleştirilmesini sağlamıştır. Bu sayede YSA’nın kullanımı kolaylaşmıştır.  

YSA 1990’lı yıllardan sonra sadece laboratuvarlarda uğraşılan teorik çalışmalar olmanın 

ötesinde günlük hayatta kullanılan sistemler olmaya başlamıştır bu sayede insanların 
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hayatlarına pratiklik kazandıran yeni bir sürü uygulama geliştirilmiştir. YSA’daki bu gelişim 

günümüzde hala devam etmektedir (Öztemel, 2016). 

 

Bir biyolojik beyin sinir hücresi akson, hücre gövdesi, dendrit ve sinapslardan oluşmaktadır. 

YSA, biyolojik sinir sisteminin model alınarak oluşturulmuş halidir. Sinir sistemi 

vücudumuzda bulunan milyarlarca sinir hücresi ve bunların bağlantılarından oluşmaktadır. 

Sinir hücrelerinin oluşturduğu bu bağlantılar sinir ağını meydana getirmektedir. İnsan 

vücudunda merkezi sinir sistemi ve çevresel sinir sistemi olarak 2 tane sinir sistemi mevcuttur. 

Merkezi sinir sistemini oluşturan beynimizde 1011 adet sinir hücresi ve bunların da 6𝑥1013’ten 

fazla sayıda bağlantısının olduğu ifade edilmektedir (Öztemel, 2016). 

 

YSA giriş seti olarak kendisine verilen bilgilere karşılık bazı matematiksel fonksiyonlar 

kullanarak net denilen çıkışı üretir. Bunu yapabilmesi için ağ mevcut örneklerle önceden 

eğitilmektedir. YSA’nın en temel elemanına yapay sinir hücresi (proses, perceptron) 

denmektedir. Bu yapay sinir hücresi altı temel elemandan oluşmaktadır. Bunlar, girişler, 

ağırlıklar, eşik, toplam fonksiyonu, aktivasyon fonksiyonu ve çıkış değeridir. Şekil 2.4’te yapay 

sinir hücresi verilmiştir. 

 

Şekil 2.4: Yapay sinir hücresi. 
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Girişler: Girişler (𝐼1, 𝐼2,…, 𝐼𝑛) bir sinir hücresine dışarıdan, başka sinir hücresinden ya da 

kendisinden gelen bilgilerdir. 

 

Ağırlıklar: Ağırlıklar (W1, W2,..,Wn) bir yapay sinir hücresi tarafından alınan bilginin önemini 

ve hücre üzerindeki etkisini gösteren katsayıdır. Ağırlıklar pozitif ya da negatif değerler alabilir. 

Şekildeki ağırlık 𝑊1, girdi 𝐼1’in yapay sinir hücresi üzerindeki etkisini göstermektedir.  

Ağırlık değerinin büyük olması o girdinin ağa güçlü bağlandığını, küçük olması ağa zayıf 

bağlandığını ve sıfır olması o ağ için herhangi bir etkisinin olmadığını göstermektedir. 

 

Eşik: Sinir hücresinin ya da ağın çıktısının sıfır olmasını engellemek için kullanılır. 

 

Toplama Fonksiyonu: Yapay sinir hücresine giren net bilgiyi değişik fonksiyonları kullanarak 

hesaplayan bir fonksiyondur. En yaygın kullanılan fonksiyon ağırlıklı toplama fonksiyonudur. 

Bu toplama fonksiyonu her gelen girdi değerinin kendi ağırlığıyla çarpılarak toplanmasıdır. 

 

Aktivasyon Fonksiyonu: Bu fonksiyon, hücreye gelen net girdiye karşılık bir çıkış hesaplar.  

Çıkışı belirlemek için değişik fonksiyonlar kullanılır. Bu fonksiyonlardan bazıları; Doğrusal 

Fonksiyon, Step Fonksiyon, Sinüs Fonksiyonu, Eşik Değer Fonksiyonu, Hiperbolik Tanjant 

Fonksiyonu’dur. 

 

Çıkış: Aktivasyon fonksiyonunda net girdinin işlenmesi sonucunda elde edilen çıkış değeridir. 

Elde edilen çıkış başka bir hücreye ya da aynı hücreye giriş olarak verilebilir. Bir hücrenin 

birden fazla girişi olabiliyorken sadece tek bir çıkışı vardır. Şekil 2.5’te insan sinir sistemine ait 

gerçek sinir hücresi ve YSA’ya ait sinir hücresi şekli bir arada verilmiştir.  
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Şekil 2.5: Biyolojik sinir hücresi ve yapay sinir hücresi. 

 

YSA yapısının avantajları aşağıdaki gibi ifade edilebilir: 

 Geleneksel yöntemlerle çözülemeyen birçok problemi çözebilir. 

 Tam ve normal olmayan, belirsiz ve eksik bilgileri işleyebilen çok güçlü problem 

çözme yeteneğine sahiptir. 

 Doğrusal olmayan ilişkileri de kolaylıkla modelleyebilir. 

 Örnekleri kullanarak öğrenebilir ve görülmemiş örnekler hakkında bilgi üretebilir. 

 Bilgiyi ağın bağlantılarında saklamaktadır. Bilgiler öteki yazılımlar gibi veri 

tabanında veya programın içerisinde değildir. 

 Eksik bilgi ile çalışabilmektedir. 

 Hata toleransı ağın bir bölümü yanlış oluşturulduğunda veya ağ zarar gördüğünde 

bile düzgün çalışmaya devam etmesini sağlamaktadır. 
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YSA yapısının dezavantajları aşağıdaki gibi ifade edilebilir: 

 Ağ topolojinin belirlenmesi kesin kurallara dayanmadığından ağ deneme yanılma 

yoluyla belirlenmektedir. 

 Ağın parametre sayısının oluşturulmasında kesin kurallar yoktur.  

 Örneklerin tasarımında ve belirlenmesinde bir kural yoktur ve sadece numerik 

bilgiler ile çalışmaktadır. 

 Donanıma bağımlı çalışmaktadır. 

 Ağın eğitim sürecinin ne kadar süreceği ve ne zaman bitirileceğine karar verecek bir 

yöntem yoktur. Bu durumda eğitim süreci uzun sürebilmektedir. 

 Ağ davranışı açıklanamaz. 

2.2.8. Bulanık Mantık 

Dünya sadece siyah ve beyaz renklerinden oluşmamaktadır. Siyah renginden beyaz renge 

geçişte çok fazla ara renk tonu mevcuttur. Benzer şekilde bilgisayar biliminde de her şey sadece 

1 ve 0 ya da var ve yok değildir. 1 ve 0 arasında ara değerler mevcuttur. Bilgisayar biliminde  

1 ve 0 arasındaki ara değerleri, komşuluk derecelik kavramlarına bağlı olarak değerler 

oluşturulmasını sağlayan bilime BM denir. BM kuramı bilgisayar ve türevi makinelere 

insanlara has özel verilerini işleyebilme ve onların tecrübelerinden ve öngörülerinden 

yararlanarak çalışabilme kabiliyeti kazandırır. Bu kabiliyeti verirken dijital ifadeler yerine 

simgesel ifadeler kullanır. İşte bu simgesel ifadelerin makinelere aktarılması matematiksel bir 

temele dayanır. Bu matematiksel temel BM Kümeler Kuramı ve buna dayanan BM’dir (Elmas, 

2016). 

 

Günlük hayatta kullandığımız birçok kavram bulanıklık içerir. Örneğin az, çok az, biraz, fazla, 

çok fazla, güneşli, bulutlu, ılık, soğuk, sıcak, kısa, uzun, genç, yaşlı gibi daha birçok dilsel 

terimler vardır. Bu terimler bulanık değişkenler olarak isimlendirilmektedir. BM kesin olmayan 

bilgilerin var olduğu durumlarda kullanılmaktadır. Mevcut Sistemin kompleks olduğu ve 

bilinen klasik yöntemlerle çözümün elde edilemediği, bilgilerin belirsiz olduğu veya bilgilerin 

kesin olmadığı mevcut durumlarda daha çok tercih edilmektedir. 
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Dünya Sağlık Örgütü’nün (World Health Organization – WHO) açıkladığı yaş dilimlerine göre 

0-17 arasındaki yaşlar ergen, 18-65 arasındaki yaşlar genç, 66-79 arasındaki yaşlar orta yaşlı 

ve 80-99 arasındaki yaşlar yaşlı sayılmaktadır. Bu durumda 18 yaşındaki biri ve 65 yaşındaki 

biri genç sayılıyorken 66 yaşındaki biri orta yaşlı sayılmaktadır. Ancak 18 yaşındaki biri ile 50 

yaşındaki birinin gençlik oranları aynı olmamasına rağmen klasik yöntemlerde ikisi de aynı 

kategoriye alınacaktır. Bu gibi durumlarda BM tanımların kullanılması çok daha uygun 

olmaktadır. Genç, çok genç ya da yaşlı, çok yaşlı gibi bulanık tanımlar durumun daha iyi 

anlaşılmasını sağlamaktadır. Gerçek dünya hayatı bu gibi pek çok örneği içermektedir.  

Bunlar gibi özellikleri doğru belirlenemeyen, tam tespit edilemeyen, apaçık görünmeyen, kesin 

olmayan şeklinde tanımlanan bulanıklık, dereceli üyelik kavramı yardımı ile teknik bilim 

dünyasına taşınmıştır. Bu kavram 1965 senesinde ilk defa kullanılmıştır  (Zadeh, 1965). 

Zadeh tarafından BM ilkeleri Şekil 2.6‘daki gibi belirlenmiştir (Elmas, 2007); 

 

Şekil 2.6: Bulanık Mantık genel ilkeleri. 

Lotfi Zadeh 1965 tarihli makalesinde, belirsizlik içeren sistemlerin yeniden gözden geçirilmesi 

gerektiği fikrini ortaya attıktan sonra bulanık küme kavramı 1970’li yıllarda kullanılmaya 

başlanmıştır (Altaş, 1999). BM kavramları aşağıda açıklanmıştır. 

Üyelik Fonksiyonları: Klasik küme tanımında evrensel kümedeki bir eleman kümeye ait ise  

1, değil ise 0 değerini alır. Bu değer kümeye üye olmayı ya da olmamayı ifade etmektedir. 

BM’de dereceli üyelik söz konusudur. Bir eleman A kümesine üye iken aynı zamanda  

B kümesinin de üyesi olabilmektedir. Buna dereceli üyelik denir. Elemanın küme içerisindeki 
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üyelik derecesini veren fonksiyonlara üyelik fonksiyonları denir. Üyelik fonksiyonlarını 

oluşturmak için birçok yöntem mevcuttur. Bunlardan en gelişmiş olanları aşağıda Şekil 2.7’de 

belirtildiği üzere üçgen, yamuk ve parabolik fonksiyonlarıdır.  

 

a) Üçgen Fonksiyonu               b) Yamuk Fonksiyonu               c) Parabolik Fonksiyon  

Şekil 2.7: Üyelik fonksiyonları. 

Bulanık Kümeler: Klasik kümelerde bir değer o kümenin ya elemanıdır ya da değildir. 

Hiçbir durumda kısmı üyelik söz konusu değildir. BM’de kısmî üyelikten bahsedilebilir. 

Aşağıdaki Şekil 2.8)a) incelendiğinde eğer sıcaklık 200C’nin altında ise sıcak değildir.  

Klasik mantığa göre 19,50C soğuk iken 200C sıcaktır. Oysaki günlük hayatta suyun sıcaklığını 

ifade ederken çok soğuk, soğuk, sıcak ve çok sıcak gibi dereceli ifadeler kullanılmaktadır. 

Bulanık kümelerde üyelik dereceleri [0,1] aralığında sonsuz sayıda değişebilmektedir. Klasik 

kümedeki soğuk-sıcak ifadesi, BM’de az soğuk, az sıcak gibi esnek ifadelerle gerçek dünyaya 

benzetilmektedir. Şekil 2.8)b)’deki bulanık küme incelendiğinde tam üyelik 200C’de 

başlamaktadır ve üyelik derecesi 1’dir. 200C’den 400C’ye kadar üyelik derecesi 1’dir. 200C ile 

100C arasında üyelik derecesi 0 ile 1 arasındadır ve 100C’de üyelik derecesi 0 olmaktadır. Yani 

200C sıcak ise 190C biraz sıcaktır.  
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a) Sıcaklık için klasik küme örneği. 

 

b) Sıcaklık için bulanık küme örneği. 

Şekil 2.8: Sıcaklık için küme örnekleri. 

Şekil 2.8)a)’da üyelik dereceleri incelendiğinde 150C’de 0,5 noktasının hem sıcak hem de soğuk 

bulanık kümesine üyeliği mevcuttur. 100C ile 200C arasındaki değerler hem sıcak bulanık 

kümesine hem de soğuk bulanık kümesine üyedir. Şekil 2.9’da kümelerin örtüşümü olarak 

isimlendirilen taralı bölge bulanık kümelerin kesişim bölgesidir (Elmas, 2016). 

 

Şekil 2.9: Bulanık kümelerde kesişim. 
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BM yaklaşımının kontrol sistemlerine uygulandığı ilk çalışma, 1974 senesinde bir buhar 

makinesinin bulanık kontrolünün yapılması ile gerçekleştirilmiştir. 1980’li yıllarda Japonlar 

ürünlerinde BM kullanmaya başlamıştır. Uygulandığı alanlarda performansının oldukça yüksek 

olması BM olan ilgiyi artırmıştır. Bu gelişmeler ışığında, 1989 yılında Değişim Bulanık 

Mühendislik Laboratuvarı (Laboratory for Interchange Fuzzy Engineering – LIFE) isimli 

laboratuvarlar kurulmuştur. Bu laboratuvarların kurulumunda Hitachi, Toshiba, Omron ve IBM 

gibi dünya devlerinin de aralarında bulunduğu 51 firma yer almıştır (Ertunç, 2012).  

BM uygulanan ürünler Japonya’da 1990 yılında tüketicilere sunulmuştur. BM, klasik 

yöntemlerle çözülmesi zor olan karmaşık sistemlere getirdiği kolay ve kullanışlı çözümler 

sayesinde çok geniş bir uygulama alanına yayılmıştır. Kullanım alanı geniş olan BM, Yapay 

Zekâ uygulamalarında, Robotik çalışmalarında, sağlık, mühendislik, sosyolojik ve psikolojik 

uygulamaların geliştirilmesinde, kavşak ve ulaştırma sorunlarının çözümünde ve bunlara 

benzer birçok uygulamada verimli bir şekilde uygulanmaktadır. Altaş (1999) yaptığı çalışmada 

Bulanık Mantığın uygulama alanlarını; En iyileme problemleri, Görüntü Tanıma, Otomatik 

Kontrol ve Bilgi Sistemleri olarak dört kategoride incelemiştir. Uygulama alanlarından bazıları; 

birçok elektronik ev eşyalarında (çamaşır makineleri, elektrik süpürgeleri, klimalar, 

buzdolapları) taşıma araçlarında (taşıt süspansiyonlarının kontrolü, metrolar, asansörler) inşaat 

sektöründe kullanılan makinelerin kontrolünde, bilgisayar donanım parçalarının kontrolünde, 

sembolleri, objeleri ve el yazısını tanımada, trafik lambalarında, kameraların görüntü sabitleme 

ayarlarında ve buna benzer birçok alanda BM kullanılmaktadır (Ertunç, 2012). BM üç 

aşamadan oluşur: bulanıklaştırma, bulanık çıkarım ve durulaştırma. En çok kullanılan BM 

sistemlerinden birisi, Mamdani çıkarım sistemidir. Mamdani yöntemi, Ebrahim Mamdani 

tarafından önerilmiş olup, çıkarım sistemi, Lotfi Zadeh’in önerdiği BM ilkelerini temel alarak 

geliştirilmiştir (Şen, 2004). Bulanık Sistemin çalışması şekil 2.10’da gösterildiği gibidir. 
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Şekil 2.10: Bulanık Sistemin genel yapısı. 

Bulanıklaştırma: Sisteme girilen verilerin keskin değerlerini bulanık değerlere dönüştürme 

adımıdır. Keskin değerlerden bulanık değerlere dönüştürme işlemi belirli işlemlerin yapılması 

ile gerçekleştirilir. 

Kural Tabanı: BM ile geliştirilen bir sistemin ikinci adımı kural tabanının oluşturulmasıdır. 

Kural tabanı oluşturulurken giriş ve çıkışlar arasındaki ilişkiler belirlenir. 

Bulanık Çıkarım: Bulanık sistemde, sistem için gerekli olan çıkarımın elde edildiği bölümdür. 

Çıkarımın gerçekleştirilmesi aşamasında sisteme giriş parametreleri verilir buna bağlı olarak 

çıkış parametreleri oluşturulur. Oluşturulan çıkış parametrelerine göre sonuç değerleri elde 

edilir. 

2.2.9. Melez Sistemler 

Melez Sistemler, bir problemin çözümünde tek bir Yapay Zekâ yönteminin yerine birden fazla 

Yapay Zekâ yönteminin bir arada kullanılması ile oluşturulan sistemlere denilmektedir.  

Ortaya atılan problemin zorluk derecesine göre GA, MÖ, BM, YSA, Uzman Sistemler gibi 

Yapay Zekâ yöntemlerinin her birinin diğerine göre daha üstün özellikleri mevcuttur.  

Ortaya atılan problemin çözümünde Yapay Zekâ yöntemlerinin üstün niteliklerinden en üst 

seviyeden faydalanmak adına bu yöntemlerin bir kısmının veya hepsinin birleştirilmesi ile 

Melez Sistemler geliştirilmiştir. İnsanın karar verme süreci incelendiğinde onun da melez bir 

sistem gibi çalıştığı söylenebilir. Şöyle ki; insan bir konu hakkında karar verdiğinde ilk önce 

beş duyu organı ile aldığı bilgileri inceler daha sonra önceden edindiği uzman bilgileri ile bu 
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bilgiyi harmanlar kendi genlerindeki beceri yeteneklerine göre yoğurur ve bir sonuca ulaşır. 

İnsanın karar verme süreci taklit edildiğinde sinir ağlarından Bulanık Mantıka, uzman 

bilgisinden genetik yapıya birçok yöntemi kullandığı görülmektedir. Bu melez sistemler 

makinelere uyarlandığında makinelerin daha az hata payı ile sonuçlar üreteceği kaçınılmaz 

olacaktır. Literatürde melez sistemler ile ilgili çok fazla çalışma mevcuttur. Huang ve diğ. 

(2003) BM ile YSA’yı birleştirerek Bulanık Sinir Ağlarını önermiştir. Molani ve diğ., (2014) 

YSA ile GA bir arada kullanarak yeni bir model oluşturmuştur. Melez sistemler optimal 

çözümler üretmek için çok uygun sistemlerdir. Çağımız problem çözümleri için artık melez 

sistemlere doğru geçiş yapılmaktadır. Bilinen klasik yöntemler birçok problemin çözümü için 

yetersiz kalmaktadır. Melez sistemler günümüzde kullandığımız bir çok teknolojiye entegre 

edilmiştir. Bunlardan bir tanesi Nikko Securities şirketinin BM ve YSAnın kombinasyonundan 

oluşan hisse senetlerinin durumu ile ilgili kestirimde bulunması için kullandığı sinirsel-bulanık 

ve bir diğeri Mitsubishi firmasının sinirsel-bulanık çamaşır makinesi geliştirmesidir (Şahin, 

2019).  

2.2.10. Genetik Algoritmalar 

Charles Darwin’in ilkelerine dayanan ve evrimsel programlamanın bir alt dalı olan GA, doğada 

bulunan canlıların yaşadığı süreci örnek almaktadır. Buna göre en iyi nesiller kendi yaşamlarını 

korurken, kötü nesiller yok olmaktadır. 1960’lı yıllarda I. Rechenberg, “Evrim stratejileri” 

ismindeki çalışması ile evrimsel programlamayı gündeme taşımıştır. GA, evrimleşme stratejisi 

ve Genetik Programlama evrimsel programlama adı altında toplanmıştır. Genetik Programlama, 

GA’ların kodlanıp programlanmasına denmektedir. GA, doğal seçim kurallarına göre en iyi 

sonucu ya da en iyiye yakın sonucu elde etmeyi amaçlayan güçlü bir arama ve optimizasyon 

tekniğidir (Nabiyev, 2016). GA, John Holland tarafından ilk defa 1975 yılında şuan ki hali ile 

kullanılmıştır. Holland optimizasyon problemleri ile ilgili çalışmalarını GA kullanarak 

çözümlemeyi başarmıştır. Bu çalışmalarını “Adaptation in Natural and Artificial Systems” 

isimli kitabında yayımlaması neticesinde GA, Yapay Zekâ ve MÖ konularında bir alt alan 

olarak kullanılmaya başlanmıştır. GA’ların geliştirilmesi ve bilgisayar ortamına taşınması, John 

Holland, onun çalışma arkadaşları ve öğrencileri sayesinde gerçekleşmiştir (Kubat, 2014; 

Moghaddam, 2014). GA’ların en çok kullanıldığı alanlar, matematiksel formülasyonu 

bulunamayan, geleneksel metotlarla çözümü imkânsız olan ya da çözüm süreci sorunun 
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büyüklüğü ile orantılı olarak artan alanlardır. Bu alanlar farklı bilim dallarındaki optimizasyon 

problemleri olabilmektedir (Kubat, 2014). GA ele aldığı sorunlara birden fazla ayrı çözümden 

oluşan bir çözüm kümesi oluşturmaktadır. Bunun sayesinde arama uzayında aynı anda birçok 

nokta incelenmekte ve sonuçta bütünsel çözümü elde etme olasılığı yükselmektedir (Ebren 

Kara ve Şamlı, 2021). Her biri çok boyutlu uzay üzerinde bir vektör olan çözüm kümesindeki 

çözümler birbirinden tamamen bağımsızdır (Beasley, 1993). GA işlemleri (Nabiyev, 2016) şu 

şekildedir: 

 Olası çözümlerin kodlandığı rastgele bir popülasyon oluşturulur. 

 Toplumdaki bütün kromozomların uygunluk değerleri hesaplanır. 

 Seçilen kromozomlar çiftleştirilerek tekrar klonlama ve dönüştürme operatörleri 

yürütülür. 

 Belli büyüklükteki bir toplumu oluşturmak için mevcut kromozomlar çıkarılır yeni 

kromozomlar eklenir. 

 Yeni toplumun başarısının bulunması için her bir kromozomun uygunluk değerleri 

baştan hesaplanır. 

 Belirlenmiş bir sürede en iyi nesillerin oluşturulması için bu işlemler tekrarlanır.  

 En uygun çözümün elde edilmesi toplumun hesaplanması esnasında en iyi bireylerin 

bulunmasıyla gerçekleşir. 

 

Şekil 2.11’de GA’nın evrimleşme döngüsü verilmiştir.  
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Şekil 2.11: Genetik Algoritmalarda evrimleşme döngüsü. 

GA, optimizasyon problemlerinde, ağ yerleşim problemlerinde, rota bulma problemlerinde, 

kontrol ve karar sistemlerinde, Yapay Zekâ’nın birçok alanında, Uzman Sistemelerin 

oluşturulmasında, MÖ, Robotik gibi daha bir çok alanda kullanılmaktadır. 

2.2.11. Makine Öğrenmesi 

MÖ, bilgisayarlara ve bilgisayar türevi makinelere insanlara benzer şekilde öğrenmesini ve 

insanlara benzer şekilde hareket etmesini veriler ve algoritmalar sayesinde öğretmektedir 

(Kaluza, 2016). Bilgisayar ve türevi makinelere apaçık programlanmadan öğrenme yeteneği 

sunan algoritmaları incelemek, tasarlamak ve geliştirmek ile ilgili olan MÖ kavramı 1959 

yılında yaygınlaştırılmıştır (Prowmes, 2019). MÖ özünde, makinelerin tek başlarına doğru 

kararlar verebilme düşüncesi yatmaktadır. Bilgi güçtür prensibine dayanan MÖ, bir makine ne 
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kadar fazla eğitilirse o kadar fazla bilgilenir ne kadar fazla bilgilenirse o kadar doğru kararlar 

üretebilir (Ebren Kara ve Şamlı, 2021). Torkul ve diğ., (2017) çalışmasında MÖ; gözlemler ve 

ölçümler yapılarak sahip olunan verileri deneyim olarak alan makinelerin, bu deneyimlerden 

aritmetiksel algoritmalar yardımıyla mantıklı bağlantılar kurabilmesi aşamasıdır. Şekil 2.12’de 

bazı MÖ algoritmaları (PyCon, 2014) verilmiştir.  

 

Şekil 2.12: Makine Öğrenmesi Algoritmaları. 

MÖ’te temelde üç çeşit öğrenme yöntemi vardır: 

 Eğiticili Öğrenme 

 Eğiticisiz Öğrenme  

 Pekiştirici, Yarı Eğiticili Öğrenme  

Eğiticili Öğrenme: 

Eğiticili Öğrenme, sonuç değerleri bilinen (etiketli) girdi değerlerini ele alıp girdilere bağlı 

olarak oluşan sonuçları inceleyerek aradaki ilişkiyi çözebilecek fonksiyonu oluşturmaya çalışır. 

Eğiticili Öğrenmede amaç yeni giriş verilerine karşılık gelecek sonuç değerlerini en doğru 

şekilde tahmin etmektir (Torkul ve diğ., 2017). Eğiticili Öğrenmede, sisteme verilen girdi 

değerleri işlenir sonuçta oluşacak çıktı değerlerinin ne olacağı öngörülmeye veya sistem 
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tarafından öğrenilmeye çalışılır.  Bu işleme başlangıçta çıktı değerleri bilinen veriler üzerinde 

bir sınıflandırma yapılarak başlanılır daha sonra çıktı değeri bilinmeyen veriler üzerinde tahmin 

yapılır ve uygun sınıfa yerleştirilir (Aydın ve Özkul, 2015). Görüntü tanıma, spam olan 

e-postaları süzme, banka kartı sahtekârlıklarını belirleme gibi birçok MÖ işlemlerinin 

temelindeki sistem Eğiticili Öğrenme yöntemidir. 

Eğiticisiz Öğrenme: 

Eğiticisiz Öğrenme, sonuçları bilinmeyen (etiketsiz) verilerden öğrenmeye çalışma, veriler 

arasındaki saklı yapıyı bulma işlemidir. Bu öğrenme yönteminde sisteme dışarıdan herhangi bir 

müdahale yapılmaz. Sistemin öğrenme algoritmasını kullanarak veriler arasında var olan ama 

görülmeyen ilişkiyi ortaya çıkarması beklenmektedir (Alpaydın, 2011; Aydın ve Özkul, 2015). 

Sistem ne kadar çok veri incelerse yani sistem yeni verilerle eğitildikçe karar verme becerisi 

gelişmekte ve daha doğru tahminlerde bulunmaktadır. 

Yarı Eğiticili Öğrenme: 

Sisteme verilen veriler arasında etiketli veri sayısı etiketsiz veri sayısından daha az ise Eğiticili 

Öğrenme de Eğiticisiz Öğrenme de işlevini doğru bir şekilde yapamayabilir. Böyle bir durumda 

Yarı Eğiticili Öğrenme yöntemi çok daha işlevsel olur. Yarı Eğiticili Öğrenme yöntemi, düşük 

miktardaki etiketlenmiş veriden yüksek miktardaki etiketlenmemiş veriyi tahmin etmek ve 

sınıflandırmaktır. Bu yöntem sisteme tecrübeyi ve yanılmayı öğretmektedir. Sistem eski 

tecrübelerinden öğrenir ve olabilecek en iyi sonucu bulmak için mevcut verilere göre cevabını 

uyarlayarak oluşturmaya çalışır (Kızılkaya ve Oğuzlar, 2018).  MÖ’de, bir modelin eğitilmesi 

ve daha iyi öğrenmesi için çok miktarda veri toplanmaktadır. Toplanan büyük miktardaki 

verilerin bir kısmı model eğitimi için gereksiz olabilmektedir. Modelin eğitiminde kullanılan 

gereksiz veriler modelin yavaşlamasına ve doğru olmayan sonuçlar üretmesine sebebiyet 

vermektedir. Öznitelik seçimi, verilerin ön işlemden geçirildiği sırada modelin doğruluğunu ve 

performansını artırmak amacıyla ilgisiz ve gereksiz özniteliklerin atılması ve verilerin 

gürültüden temizlenmesi işlemidir. Sınıflandırma sistemlerinde verimli ve etkin bir biçimde 

kullanılan öznitelik seçimi modelin başarısını artırmaktadır (Ebren Kara ve Şamlı, 2021). Veri 

setine öznitelik seçimi uygulandıktan sonra veriler sınıflandırıldığında veri seti üzerindeki iş 

yükü azalmakta,  gereksiz ve alakasız öznitelikler veri setinden atıldığı için sınıflandırmanın 
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doğruluk oranı artmaktadır. Sistem daha az eğitilmekte, ölçüm sayısı ve kullanılan bellek 

miktarı azalmaktadır. Bunun sayesinde veriler basit, hızlı ve  doğruluk oranı yüksek bir şekilde 

sınıflandırılmış olmaktadır (Abe ve diğ., 1998; Huang ve Chow, 2005). Şekil 2.13’te öznitelik 

akış şeması gösterilmiştir. Akış şemasında görüldüğü gibi ham veri setinden öznitelik alt 

kümeleri oluşturulmaktadır. Elde edilen alt kümelerden hangilerinin kullanılacağı farklı 

formüller kullanılarak değerlendirilmektedir. Değerlendirmeler sonucunda bazı öznitelikler alt 

kümeye dâhil edilmeyerek elenmekte, elenmeyen öznitelikler seçilerek alt kümeye eklenmekte 

ve öznitelik belirleme işlemi kullanılan algoritmanın ölçütleri yerine getirilene kadar devam 

etmektedir.  

 

Şekil 2.13: Öznitelik seçimi akış şeması. 
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Öznitelik Seçimi Yöntemleri: Öznitelik seçiminde kullanılan farklı algoritmalar vardır. Bular;: 

Filtreleme, sarmalama ve gömülü yöntemler olarak üç temel sınıfa ayrılmaktadır (Moghaddam, 

2014). Filtreleme yöntemi, veri madenciliğinde kullanılan en eski öznitelik seçim yöntemi 

olarak bilinmektedir. Sadece istatistiksel kriterlere dayalı fonksiyonlar yardımıyla öznitelik 

seçimi yapan bir yöntemdir. Sarmalama yöntemi, öznitelikler üzerinde arama işlemi 

gerçekleştiren bir yöntemdir. Gömülü yöntem, içinde hem sınıflandırma algoritmasını hem de 

öznitelik seçim algoritmasını barındırdığından, sınıflandırma ve öznitelik seçim aşamalarını 

eşzamanlı olarak gerçekleştirebilen bir yöntemdir (Budak, 2018). Şekil 2.14’te öznitelik seçim 

yöntemlerinin bir kısmı gösterilmiştir. 

 

Şekil 2.14: Öznitelik seçimi yöntemleri. 
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2.3. LİTERATÜR TARAMASI 

Bu tez çalışması çerçevesinde, yazılım projelerinin maliyet tahmini ile ilgili geçmişten 

günümüze yayınlanmış Yapay Zekâ yöntemleri konularını içeren çeşitli yayınlar incelenmiştir.  

 

Witting ve Finnie, (1997) YSA modelini kullanarak yazılım maliyet tahminlemesi yapmıştır. 

Araştırmacılar Avusturya Yazılım Ölçüt Birliğinin (Australian Software Metrics Association –

ASMA) verilerini kullanarak YSA’nın geri-yayılım yapısını seçmiş ve 136 tane örnek proje 

üzerinde çalışmış ve %17 hata oranı ile tahminler elde ederek tahmin oranının iyileştirilmesi 

için tahmine etki edecek parametre sayısının artırılması gerektiğini savunmuştur. Finnie ve diğ. 

(1997) çalışmasında, üç tane kestirim yöntemi karşılaştırılmıştır. Karşılaştırma fonksiyon 

noktaları kullanılarak yapılmıştır. Çalışmada karşılaştıran yöntemler; Regresyon, YSA ve 

durum bazlı çıkarım yöntemleri olmuştur. 299 projenin veri seti üzerinde yapılan çalışmada 

regresyon yönteminin başarısı zayıf bulunmuştur fakat YSA ve durum bazlı çıkarım 

yöntemlerinden olumlu sonuçlar alınmıştır. Idri ve diğ. (2002), YSA yazılım maliyet 

tahmininde kolayca yorumlanabilir mi diye bir soru ile YSA’nın yazılım maliyet tahminindeki 

başarısını araştırmıştır. Araştırmacıların kullandıkları YSA, 17 giriş, 1 çıkış ve 1 ara katmandan 

oluşup veri kümesi olarak COCOMO81 veri setini almıştır. 

 

Shan ve diğ. (2002) çalışmalarında, bir kısım araştırmacının, standart veri setlerinin çok fazla 

parametreye sahip olduğunu öne sürdüklerini ve bu parametre sayılarını azaltmak için çeşitli 

yöntemler denediklerini belirtmişlerdir. Bu araştırmada en uygun ölçüt kümelerinin 

belirlenmesi ve yazılım projelerinin maliyetinin tahmin doğruluğunun artırılması için eski proje 

veri kümelerine evrimsel bir yaklaşım olan GGGP (Grammar Guided Genetic Programming  – 

Dilbilgisi Güdümlü Genetik Programlama)  başarılı bir şekilde uygulanmıştır.  

 

Ayyıldız (2007) çalışmasında yazılım maliyet tahmininde ölçüt kümesinin çok etkili olduğunu 

vurgulamış ve yaptığı araştırmalar sonucunda kendi yazılım ölçüt kümesini oluşturmuştur. 

Oluşturduğu ölçüt kümesini temel alarak sahip olduğu verileri kullanan bir YSA tabanlı yazılım 

maliyet tahmin modeli geliştirmiştir. Çalışma sonucunda geliştirilen model ile yapılan tahmin 

sonuçları, mevcut ölçütler kullanılarak yapılan önceki tahmin sonuçları ile karşılaştırılmıştır. 
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Karşılaştırmada iki tür veri seti kullanılmıştır. Birinci tür veriseti COCOMO81 veri kümesi, 

ikinci tür veriseti ise yeni oluşturulan ölçüt kümesine uygun belirli firmalardan toplanan veriler 

olmuştur. Karşılaştırma sonucunda yeni oluşturulan ölçüt kümesinin COCOMO’ya nazaran 

daha başarılı olduğunu gözlemlemiştir. 

  

Başkeleş ve diğ. (2007) yaptıkları çalışmalada yazılım projelerinin maliyetini tahmin etmek 

için MÖ algoritmalarını çalıştıran bir model sunmuşlardır. Söz konusu modeli kamuya açık veri 

depolarındaki (NASA, USC) veri setleri ve Türkiye'deki yazılım şirketlerinden elde edilen 

veriler (SDR – SoftLab Data Repository)  üzerinde denemişlerdir. Denemeler sonucunda 

herhangi bir veri kümesi için en iyi yöntemin değişebileceği ve sadece bir modelin 

kullanılmasının her zaman en iyi sonuçları üretemeyeceği gerçeğini ıspatlamışlardır. Yazılım 

maliyet tahmin modeli olarak YSA kullanan bir diğer çalışmada (Sezer, 2008), çok katmanlı 

ileri beslemeli, eğitim algoritması Delta Algoritması olan bir YSA oluşturulmuştur. YSA 

mevcut veri seti ile eğitilmiş eğitilen ağa test verileri sunulmuş ve hedeflenen çıktı elde 

edilmeye çalışılmıştır. YSA tabanlı yazılım maliyet tahmin modeli ile yapılan tahmin sonuçları 

COCOMO 2000 verileri ile karşılaştırılmıştır. 

 

Adailer (2008) çalışmasında, literatürdeki MÖ ve Yapay Zekâ tabanlı yazılım tahminleme 

teknikleri karşılaştırılmıştır. Yazılım maliyetinin tahminini gerçekleştirmek üzere regresyon 

temelli ve YSA temelli iki tahminleme modeli kullanılmıştır. Her iki yöntem de istatistiksel 

öğrenme teorisi üzerine kurulmuştur. YSA’nın eğitilmesinde ve test aşamasında ISBSG 

(International Software Benchmarking Standards Group – Uluslararası – Yazılım Kıyaslama 

Standartları Grubu) veri seti sürüm 9 kullanılmıştır. Bu veriler istatistik ve MÖ kapsamındaki 

regresyon yönteminde katsayıların bulunmasında da kullanılmıştır. ISBSG veri setinde 

projelerin, hangi yazılım geliştirme ortamları kullanılarak gerçekleştirildiğinden, personel 

sayılarına, sürelerinden, kullanılan veri tabanı ve işletim sistemlerine, kaynak kod satır 

sayılarından, harcanan çabaya kadar birçok özellik yer almaktadır. YSA olarak çok katmanlı 

algılayıcı YSA modeli tercih edilmiştir. Ayrıca regresyon tabanlı yeni ve başarılı bir yazılım 

tahminleme modeli geliştirilmiştir. Sonuç olarak, regresyon ve çok katmanlı algılayıcı YSA 

modellerinin gerçekleştirimini yaparak bazı sonuçlar elde edilmiş ve bu sonuçlara dayanarak 

bu yöntemler değerlendirilmiştir.  
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Kulter ve diğ. (2009) çalışmasında, yazılım maliyet tahmininde kullanılmak üzere MÖ tabanlı 

bir model geliştirilmiştir. Geliştirilen modelde YSA ve ilişkisel bellek birleştirilerek bir arada 

kullanılmıştır. Model için kullanılan YSA’da birden fazla MLP (Multilayer Perceptrons – Çok 

Katmanlı Algılayıcı) bir araya getirilmiştir. Model yazılım maliyet tahmini yaptığında her bir 

MLP kendi tahmin sonucunu üretmiş ve tahmin sonuçları birleştirilmiştir. Kullanılan modelde 

hem ilişkisel bellek hem de birleştirme yapılarak yeni bir model oluşturulmuştur.  

 

Kartal Karataş (2011) çalışmasında, yazılım projelerinin maliyet tahmini için bir YSA modeli 

anlatılmıştır. Çalışma için öncelikle yazılım maliyet hesaplama yöntemleri araştırılmıştır. 

Ardından YSA ile gerçekleştirilen yazılım maliyet tahmin çalışmaları incelenmiştir.  

XOR probleminin çözüm yolundan faydalanılarak maliyet tahmini için bir YSA 

oluşturulmuştur. YSA’nın eğitiminde ve test edilmesinde COCOMO veri kümesi kullanılmıştır. 

Elde edinilen tahminler; oluşturulan modelin kabul edilebilir tahminler ortaya koyduğunu 

göstermiştir. Tasarlanan ağın yazılım şirketleri tarafından kullanılabilmesi için, ağın da içine 

entegre edildiği bir web sayfası oluşturulmuştur. Bu web sayfası, yazılım şirketlerine maliyet 

tahmini sağladığı gibi YSA ile ilgili dokümanları içermiş ve yazılım şirketlerinin proje 

bilgilerini tutabileceği bir veri bankası görevi üstlenmiştir. 

 

Singh ve Misra (2012) optimizasyon yöntemlerinden ikili genetik algoritma kullanarak 

COCOMO modelinin bileşenlerini yeniden ayarlayan ayrıntılı bir çalışma sunmuşlardır. Bu 

çalışmada daha iyi bir yazılım maliyet tahmini yapabilecek şekilde değiştirilmiş COCOMO 

bileşenleri ile yeni bir model önerilmiştir. Önerilen modelin performansı NASA veri seti 

üzerinde test edilmiş ve önceki modellerle karşılaştırılarak genetik algoritma tekniğinin 

sağlamlığı doğrulanmaya çalışılmıştır. 

 

Tran ve diğ., (2015) çalışmasında çok boyutlu veriler üzerinde öznitelik inşası ve öznitelik 

seçimi için Genetik Programlamanın kullanımı araştırılmıştır. Çalışmada yedi veri seti üzerinde 

dört farklı sınıflandırma algoritması kullanılmıştır. Amaç çok boyutlu veri setleri üzerinde 

sınıflandırma yapmak için öznitelik oluşturma ve öznitelik seçiminde Genetik Programlamanın 

performansını araştırmak olmuştur. Genetik Programlama tarafından oluşturulan veya seçilen 

özniteliklerin, çok daha küçük bir öznitelik kümesiyle sınıflandırma algoritmalarının 
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performansını iyileştirebileceği gözlemlenmiştir. Sonuçlar, Genetik Programlamanın daha iyi 

ayırt etme yeteneğine sahip özellikleri seçme ve oluşturma potansiyeline sahip olduğunu 

göstermiştir. Diğer bir çalışmada (Keskin ve Alptekin, 2016), ‘E–Bursum’ yazılımının maliyet 

tahmini, ilk önce İşlev puanı analizi yöntemi ile gerçekleştirilmiştir. Daha sonra aynı maliyet 

tahmini, YSA kullanılarak tekrarlanmıştır. Tahmini değerler gerçek değerlerle 

karşılaştırıldığında, tahmindeki doğruluk oranı %90’ın üzerinde çıkmıştır. İşlev puanı 

analizinin gerçeğe yaklaşımı %74 – %97 aralığında bulunurken, YSA ile elde edilen sonuçlar 

%92 – %98 aralığında olmuştur. 

Başar (2017), çalışmasında, algoritmik ve algoritmik olmayan sezgisel yöntemlerin birlikte 

kullanıldığı yeni bir yaklaşım geliştirilmiştir. Geliştirilen yaklaşıma “Sezgisel Bulanık İkili 

Karşılaştırma Tekniği” adı verilmiştir. Kullanılan teknikte yazılım projelerinin maliyet 

tahmininin yapılması için en uygun ölçütler uzman görüşü ile belirlenmiş daha sonra  

Klasik İkili Karşılaştırma yöntemi ile ölçütlerin etki dereceleri elde edilmiştir. Bilhassa önceki 

kesinleşmiş ölçekler kullanılarak elde edilen değerlendirmelerde, ölçütler göreli öneminin 

ölçekte var olan değerler ile tam olarak karşılanamaması,  bulanık değerler ile karar vermenin 

önemini arttırmıştır.  Bu yüzden,  uzman görüşü yardımıyla belirlenen ölçütlerin öneminin 

tespiti için çalışmada ayrıca Sezgisel Bulanık İkili Karşılaştırma sunulmuştur. Sunulan tekniğin 

tahmin doğruluğunun belirlenmesi için yazılım alanında çalışmalar yapan bir şirketten yazılım 

projelerinin verileri temin edilmiş ve bu gerçek veriler üzerinden yazılım maliyet tahmini 

gerçekleştirilmiştir. Elde edilen tahmin sonuçları klasik yöntemlerle elde edilen tahmin 

sonuçları ile karşılaştırıldığında sunulan tekniğin daha yüksek doğruluk oranıyla tahmin 

yapabildiği belirlenmiştir. 

 

Başka bir çalışmada (Gültekin, 2019) farklı metodolojiler kullanılarak hazırlanan yazılım 

projeleri için farklı yazılım maliyet tahmin yöntemi sunulmuştur.  Araştırmacıya göre yazılımın 

geliştirildiği metodoloji yazılım maliyet tahmininde önemli bir etkendir bu yüzden yazılım 

projelerinin geliştirildiği metodoloji göz önünde bulundurularak tahmin yöntemi 

geliştirildiğinde maliyet tahmininin doğruluk oranı artmaktadır. Bu bağlamda yazılım maliyet 

tahmini için 3 model sunulmuştur. İlk sunulan model 6 farklı regresyon tekniği kullanılarak 

oluşturulan modeldir. Bu modellerde COCOMO veri setleri kullanılmıştır. İkinci sunulan 
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model YSA temelli bir tahmin modelidir. Bu modelde kullanılan COCOMO veri setleri 

özelliklerine göre guruplandırılarak kullanılmıştır. Sunulan son modelde Scrum metodolojisi 

ile hazırlanan yazılım projelerinin maliyet tahmini için geliştirilmiştir. Geliştirilen modelde 

regresyon tabanlı MÖ algoritmaları kullanılmıştır.  

 

Diğer bir çalımada (Marepelli, 2019) WEKA programında bulunan MÖ algoritmaları 

kullanılarak COCOMO veri setleri üzerinde yazılım maliyet tahmini yapılmıştır. Yapılan 

maliyet tahmininde kullanılan iki tane MÖ algoritmasının tahmin değerlerinin hata oranları ve 

korelasyon sonuçları incelenmiştir. 



51 

 

 

 

 

3. MALZEME VE YÖNTEM 

Bu bölümde tez çalışmasında kullanılan veri setleri, değerlendirme ölçütleri, uygulama 

platformu ve yöntemler alt başlıklar halinde açıklanmıştır. 

3.1. VERİ SETLERİ 

Bu bölümde PROMISE veri deposundan temin edilen COCOMO81, COCOMONASA, 

COCOMONASA2, China, Albrecht, Finnish, Kemerer, Maxwell ve Miyazaki94 veri setleri 

incelenmiştir. Tablo 3.1’de kullanılan veri setlerinin bilgileri verilmiştir. 

Tablo 3.1: Veri setleri bilgileri. 

Veri Seti Kayıt Sayısı Öznitelik Sayısı Boyut (ölçü birimi) Maliyet (ölçü birimi) 

COCOMO81 63 17 LOC Adam - Ay 

COCOMONASA 60 17 LOC Adam - Ay 

COCOMONASA2 93 24 LOC Adam - Ay 

China 499 19 Fonksiyon Noktası Adam - Saat 

Albrecht 24 8 Fonksiyon Noktası Adam - Saat 

Finnish 38 9 Fonksiyon Noktası Adam - Saat 

Kemerer 15 8 KSLOC Adam - Ay 

Maxwell 62 27 Fonksiyon Noktası Adam - Saat 

Miyazaki94 48 9 KSLOC Adam - Ay 

 

Veri deposundan temin edilen veri setlerinde gerçek yazılım projelerinin verileri tutulmaktadır.  

Her biri farklı sayıda proje verisi barındıran veri setlerinde bağlı ve bağımsız öznitelikler 

bulunmaktadır. Bu öznitelikler maliyet tahminin gerçekleştirilmesinde kullanılmaktadır.  

Eğer bir öznitelik gerçek maliyet değerini veriyorsa bağlı öznitelik; maliyetle alakalı değerleri 

veriyorsa bağımsız öznitelik olarak adlandırılır. Veri setlerinde bulunan bağımsız öznitelikler, 

bağlı özniteliğin değerini belirlemektedir. Veri setlerinde bulunan bazı bağımsız özniteliklerin 

yazılım maliyet tahminine fazla etkisi bulunmamaktadır. USC (University of South California 

– Güney Kalforniya Ünviersitesi) Sistem ve Yazılım Mühendisliği Merkezine mensup olan 

COCOMO, USC veri seti olarak kabul edilmektedir (Kültür, 2006). 

COCOMO81: COCOMO81 veri seti 1981 yılında önerilmiştir. Veri setinde 63 yazılım 

projesinin kaydı ile 17 öznitelik bulunmaktadır. Bu öznitelikler; projenin kod satır sayısı, 

projenin gerçek geliştirme maliyeti ve 15 adet maliyet çarpanıdır. 
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COCOMONASA: COCOMONASA veri setinde 1980’ler ve 1990’larda farklı merkezlerden 

toplanmış 60 NASA projesine ait kayıt ve 17 öznitelik bulunmaktadır. 

COCOMONASA2: COCOMONASA2 veri seti bazı kayıtlarda NASA93 veri seti olarak 

geçmektedir (Bosu ve MacDonell, 2019). NASA93 veri seti NASA tarafından 1971 ile 1987 

yılları arasında üretilen 93 proje verisinin beş farklı geliştirme merkezinden toplanmasıyla 

oluşturulmuştur. Veri seti 93 NASA projesine ait kayıt ve 24 öznitelikten oluşmaktadır.  

Bu 24 öznitelikten 7 tanesinin yazılım maliyetine etkisi bulunmadığından çıkarılmıştır.  

Bu öznitelikler; recordnumber (benzersiz bir numara), projectname (proje ismi), cat2 

(uygulama kategorisi), forg (uçuş mu yer sistemi mi?), center (hangi NASA merkezi?), year 

(geliştirme yılı) ve mode (geliştirme modu) öznitelikleridir. Bunların dışında 17 öznitelikten 

15’i COCOMO maliyet tahmininde kullanılan maliyet ölçüsü, kod satır sayısını belirten loc ve 

gerçek maliyeti belirten act_effort öznitelikleridir. Tablo 3.2’de maliyet tahmininde kullanılan 

15 öznitelik gösterilmiştir.  

Tablo 3.2: COCOMO maliyet faktörleri. 

Ürün Özellikleri 

rely Required software reliability Gerekli yazılım güvenliği 

data Database size Veritabanı büyüklüğü 

cplx Software product  complexity Ürün karmaşıklığı 

Donanım 

Özellikleri 

time Execution time constraint Çalışma süresi kısıtı 

stor Main storage constraint Temel depolama kısıtı 

virt Virtual machine volatility Sanal makine geçiciliği 

turn Computer turn around time Bilgisayar yanıt süresi 

Personel 

Özellikleri 

acap Analist capability Çalışan analistin kapasitesi 

aexp Application experience Proje takımının uygulama tecrübesi 

pcap Programmer capability Programcı kapasitesi 

wexp Virtual machine experience Takımın Sanal makine tecrübesi 

lexp Language experience Takımın programlama dili tecrübesi 

Proje 

Özellikleri 

modp 
Use of modern programming 

practices 
Modern programlama uygulamaları 

tools Use of software tools Kullanılan yazılım araçları 

sced Development schedule constraint iş takvimi kısıtı 

 

Promise veri deposundan alınan her biri farklı sayıda proje verisi barındıran COCOMO81, 

COCOMONASA, COCOMONASA2 veri setlerinde bağlı ve bağımsız öznitelikler 

bulunmaktadır. Eğer bir öznitelik gerçek maliyet değerini veriyorsa bağlı öznitelik; act_effort 

(yazılım geliştirme çabası), maliyetle alakalı değerleri veriyorsa; rely, data, cplx, time, stor, virt, 

turn, acap, aexp, pcap, vexp, lexp, modp, tool, sced, loc (kod satır sayısı) bağımsız öznitelik 
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olarak adlandırılmaktadır. Tablo 3.3’de veri setlerinde bulunan özniteliklerin alabildiği en 

büyük ve en küçük değer aralıkları incelenmiştir. 

Tablo 3.3: COCOMO maliyet faktörlerinin standart sayısal değerleri. 

Öznitelik 

Çok 

Düşük 
Düşük Normal Yüksek 

Çok 

Yüksek 

Ekstra 

Yüksek 
Verimlilik 

acap 1,46 1,19 1,00 0,86 0,71  2,06 

pcap 1,42 1,17 1,00 0,86 0,70  1,67 

aexp 1,29 1,13 1,00 0,91 0,82  1,57 

modp 1,24 1,10 1,00 0,91 0,82  1,34 

tool 1,24 1,10 1,00 0,91 0,83  1,49 

vexp 1,21 1,10 1,00 0,90   1,34 

lexp 1,14 1,07 1,00 0,95   1,20 

sced 1,23 1,08 1,00 1,04 1,10  e 

stor   1,00 1,06 1,21 1,56 -1,21 

data  0,94 1,00 1,08 1,16  -1,23 

time   1,00 1,11 1,30 1,66 -1,30 

turn  0,87 1,00 1,07 1,15  -1,32 

virt  0,87 1,00 1,15 1,30  -1,49 

cplx 0,70 0,85 1,00 1,15 1,30 1,65 -1,86 

rely 0,75 0,88 1,00 1,15 1,40  -1,87 

 

Albrecht: Albrecht veri seti, IBM veri işleme hizmetlerinde gerçekleştirilen projelerden 

toplanan 24 kayıttan oluşur. Projeler COBOL, PL/I ve DMS programlama dilleri kullanılarak 

geliştirilmiştir. Projelerin boyutu ve karmaşıklığı, Albrecht tarafından önerilen fonksiyon 

noktası yaklaşımı kullanılarak ölçülmüştür (Albrecht ve Gaffney, 1983).  

Tablo 3.4: Albrecht veri seti istatistikleri. 

Sno Öznitelik Tanımlama EnKüçük EnBüyük Ortalama 

1 Input No of inputs – Giriş sayısı 7 193 40,25 

2 Output No of outputs – Çıkış sayısı 12 150 47,25 

3 Inquiry No of inqueries – Sorgu sayısı 0 75 16,88 

4 File No of master files – Ana dosya sayısı 3 60 17,38 

5 FPAdj Function points adjustment – Fonksiyon 

noktaları ayarı 

0,75 1,2 0,99 

6 RawFPcounts Count of raw function points – Ham 

fonksiyonlarının sayısı 

189,52 1902 638,54 

7 AdjFP Adjusted function points – Ayarlanmış 

fonksiyon noktaları 

199 1902 647,63 

8 Effort Person hours – Adam saat 0,5 105,2 21,88 

 

Finnish: Finnish veri seti, TIEKE organizasyonu tarafından Finlandiya'daki dokuz firmadan 

toplanan 40 proje verisinden oluşmaktadır. Projelerin boyutu ve karmaşıklığı fonksiyon noktası 
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yaklaşımı kullanılarak ölçülmüştür (Kitchenham ve Kansala, 1993). Tablo 3.5’te Finnish veri 

seti istatistikleri verilmiştir. 

Tablo 3.5: Finnish veri seti istatistikleri. 

Sno Öznitelik Tanımlama EnKüçük EnBüyük Ortalama 

1 ID Project no – Proje numarası 1 38 19,05 

2 dev,eff,hrs Development effort hours – Geliştirme çabası saati 460 26670 7678,29 

3 hw Hardware type – Donanım tipi 1 3 1,26 

4 at Application type – Uygulama tipi 1 5 2,24 

5 FP Function point data – Fonksiyon noktası verileri 65 1814 763,54 

6 co Application area – Uygulama alanı 2 10 6,26 

7 prod Project duration (calender months) – proje süresi 

(takvim ayları) 

1,47 29,47 10,07 

8 lnsize System requirements size in raw Albrecht function 

points – Ham Albrecht fonksiyon noktalarında 

sistem gereksinimleri boyutu 

4,17 7,5 6,36 

9 lneff Effort provided by application user – Uygulama 

kullanıcısı tarafından sağlanan çaba 

6,13 10,19 8,40 

 

China: China veri seti, 2010 yılında PROMISE deposuna eklenmiş diğer veri setlerine göre 

daha yeni bir veri setidir, 499 kayıttan oluşmaktadır (Bosu ve MacDonell, 2019). China veri 

seti 18’i bağımsız değişken ve 1 tanesi bağımlı değişken olmak üzere 19 öznitelikten 

oluşmaktadır. Tablo 3.6’da China veri seti istatistikleri verilmiştir. 

Tablo 3.6: China veri seti istatistikleri. 

Sno Öznitelik EnKüçük EnBüyük Ortalama 

1 ID 1 499 250 

2 AFP 9 17518 487 

3 Input 0 9404 167 

4 Output 0 2455 114 

5 Enquiry 0 952 62 

6 File 0 2955 91 

7 Interface 0 1572 24 

8 Added 0 13580 360 

9 Changed 0 5193 85 

10 Deleted 0 2657 12 

11 PDR_AFP 0.3 83.8 12 

12 PDR_UFP 0.3 96.6 12 

13 NPDR_AFP 0.4 101 13 

14 NPDU_UFP 0.4 108 14 

15 Resource 1 4 1 

16 Dev.Type 0 0 0 

17 Duration 1 84 9 

18 N_effort 31 54620 4278 

19 Effort 26 54620 3921 

 



55 

 

 

 

 

Kemerer: Kemerer veri seti (Kemerer, 1987), veri işleme yazılımı geliştiren bir Amerikan 

firmasından toplanmıştır. Bu veri seti sekiz özniteliğe sahip 15 projeden oluşmaktadır.  

Veri setindeki en eski proje 1981’de başlamış olup projelerin çoğu 1983’te başlamıştır.  

Veri setindeki proje verileri 1985’te toplanmıştır. Tablo 3.7’de Kemerer veri seti istatistikleri 

verilmiştir. 

Tablo 3.7: Kemerer veri seti istatistikleri. 

Sno Öznitelik Tanımlama EnKüçük EnBüyük Ortalama 

1 ID Project ID – Proje kimliği 1 15 8 

2 Language Software used – Kullanılan yazılım 1 3 1,2 

3 Hardware Hardware used – Kullanılan donanım 1 6 2,33 

4 Duration Duration – Süre 5 31 14,27 

5 KSLOC Number of  source lines code in thousands – Bin 

olarak kaynak kod satır sayısı 

39 450 186,57 

6 AdjFP Adjusted function points – Ayarlanmış fonksiyon 

noktaları 

99,9 2306,8 999,14 

7 RAWFP Raw function points – Ham fonksiyon noktaları 97 2284 993,87 

8 EffortMM Effort Man Months – Adam ay çaba 23,2 1107,31 219,25 

 

Miyazaki94: Miyazaki94 veri seti, Büyük Sistem Kullanıcıları Grubu tarafından toplanmıştır 

(Miyazaki ve diğ., 1994). Veriler, 20 farklı kuruluşta ve bu kuruluşlardaki birden fazla bölümde 

geliştirilen 48 COBOL projesinden elde edilmiştir. Her proje için 9 öznitelik vardır. Tablo 

3.8’de Miyazaki94 veri seti istatistikleri verilmiştir. 

Tablo 3.8: Miyazaki94 veri seti istatistikleri. 

Sno Öznitelik Tanımlama EnKüçük EnBüyük Ortalama 

1 ID Project ID – Proje kimliği    

2 KLOC Number of COBOL source lines in thousands – 

Binlerce COBOL kaynak satırı sayısı 

6,9 417,6 70,79 

3 SCRN Number of different input or output screens – Farklı 

giriş veya çıkış ekranlarının sayısı 

0 281 33,69 

4 FORM Number of different (report) forms – Farklı (rapor) 

form sayısı 

0 91 22,37 

5 FILE Number of different record formats – Farklı kayıt 

biçimlerinin sayısı 

2 370 34,81 

6 ESCRN Total number of data elements in all the screens – 

Tüm ekranlardaki toplam veri öğesi sayısı 

0 3000 525,60 

7 EFORM Total number of data elements in all the forms – 

Tüm formlardaki toplam veri öğesi sayısı 

0 1566 460,67 

8 EFILE Total number of data elements in all the files – Tüm 

dosyalardaki toplam veri öğesi sayısı 

57 45000 1854,58 

9 MM Effort measured in man-months - Adam-ay olarak 

ölçülen çaba 

5,6 1586 87,47 
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Maxwell: Maxwell veri seti bir Fin ticari bankasından toplanmıştır. 27 nitelik ile temsil edilen 

62 projeden oluşmaktadır (Maxwell, 2002). Projelerin başlangıç yılları 1985 ile 1993 yılları 

arasındadır. Tablo 3.9’da Maxwell veri seti istatistikleri verilmiştir. 

Tablo 3.9:  Maxwell veri seti istatistikleri.  

Sno Öznitelik Tanımlama EnKüçük EnBüyük Ortalama 

1 Syear Year – Geliştirme yılı 85 93 89,58 

2 App Application type – Uygulama çeşidi 1 5 2,35 

3 Har Hardware platform – Donanım platformu 1 5 2,61 

4 Dba Database – Veritabanı 0 4 1,03 

5 Ifc User interface – Kullanıcı arayüzü 1 2 1,93 

6 Source Where developed – Nerede geliştirildi 1 2 1,87 

7 Telonuse Telon use – Telon kullanımı 0 1 0,24 

8 Nlan # of development languages – Geliştirme dili 1 4 2,55 

9 T01 Customer participation – Müşteri katılımı 1 5 3,05 

10 T02 Development Env, adequacy – Geliştirme ortamı, 

yeterlilik 

1 5 3,05 

11 T03 Staff availability – Personel durumu 2 5 3,03 

12 T04 Standards use – Standartlar kullanımı 2 5 3,19 

13 T05 Methods use – Yöntem kullanımı 1 5 3,05 

14 T06 Tools use – Araçlar 1 4 2,90 

15 T07 Software logical complexity – Yazılım mantıksal 

karmaşıklığı 

1 5 3,24 

16 T08 Requirements volatility – Gereksinim oynaklığı 2 5 3,81 

17 T09 Quality requirements – Kalite gereksinimleri 2 5 4,06 

18 T10 Efficiency requirements – Verimlilik gereksinimleri 2 5 3,61 

19 T11 Installation requirements – Kurulum gereksinimleri 2 5 3,42 

20 T12 Staff analysis skills – Personel becerisi analizi 2 5 3,82 

21 T13 Staff application knowledge – Personel uygulama 

becerisi 

1 5 3,06 

22 T14 Staff tool skills – Personel araç becerisi 1 5 3,26 

23 T15 Staff team skills – Personel takım becerileri 1 5 3,34 

24 Duration Duration – Süre 4 54 17,21 

25 Size Function points – Fonksiyon noktaları 48 3643 673,30 

26 Time Time – Zaman 1 9 5,58 

27 Effort Work hours Effort – Çalışma saati çabası 583 63694 8223,21 

 

3.2. DEĞERLENDİRME KRİTERLERİ 

Bu tezde değerlendirme kriterleri olarak korelasyon katsayısı MAE, MAPE, RMSE, RAE, ve 

RRSE kullanılmıştır. 
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3.2.1. Korelasyon Katsayısı  

Korelasyon katsayısı, iki farklı değişken arasındaki bağın gücünü ve yönünü belirtir. 

Korelasyon, değişkenler arasındaki ilişkiyi korelasyon katsayısı ise ilişkinin durumunu 

belirtmektedir. Korelasyon katsayısı ilişkinin durumuna göre −1 ile 1 arasında bir sayı değeri 

alabilmektedir. Sayı değerinin negatif bir değer olması değişkenler arasında ters bir ilişkinin 

olduğunu göstermektedir. Yani değişkenlerden biri artarken diğeri azalmaktadır.  

Sayı değerinin pozitif bir değer olması değişkenler arasında doğrusal bir ilişkinin olduğunu 

göstermektedir yani değişkenlerden biri artarken diğeri de artmaktadır. Korelasyon katsayısının 

gösteren sayı değerinin sıfır olması iki değişken arasında herhangi bir ilişkinin olmadığı 

anlamına gelmektedir. Korelasyon katsayısı 1’e yaklaştıkça değişkenler arasındaki ilişkinin 

arttığı 0’a yaklaştıkça aradaki ilişkinin azaldığı anlaşılmaktadır. 

3.2.2. RMSE 

RMSE (Root Mean Squared Error – Kök Ortalama Kare Hatası), gerçek değerden tahmini değer 

çıkarılarak karesi alınır, bulunan sonuçlar toplanarak ortalamalarının karekökü alınır yani 

RMSE karesel hataların ortalamasının kareköküdür. Büyük hataların RMSE üzerinde orantısız 

olarak büyük bir etkisi vardır bu da RMSE’nin aykırı değerlere karşı hassas olduğunu gösterir. 

Bundan dolayı RMSE en fazla büyük hataların istenmediği durumlarda kullanılır. Formülü 

Denklem 3.1’de verilmiştir. 

𝑅𝑀𝑆𝐸 =  √
1

n
∑ (𝑇𝑖 − 𝐺𝑖)2𝑛

𝑖=1                                                                                                                     (3.1) 

Burada 𝑇𝑖 = tahmini değer, 𝐺𝑖= gerçek değer, 𝑛 = örnek sayısıdır. 

3.2.3. MAE 

MAE (Mean Absulate Error – Ortalama Mutlak Hata), gerçek değerlerin tahmin edilen değerle 

olan farklarının toplamının ortalamasını veren hata oranıdır.  Formülü Denklem 3.2’de 

verilmiştir.  
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𝑀𝐴𝐸 =  
1

n
∑ |𝑇𝑖

𝑛

𝑖=1

− 𝐺𝑖|                                                                                                                      (3.2) 

Burada 𝑇𝑖 = tahmini değer, 𝐺𝑖 = gerçek değer, 𝑛 = örnek sayısı’dır    

3.2.4. RAE  

RAE (Relative Absulate Error – Bağıl Mutlak Hata), gerçek değer ve tahmini değer arasındaki 

farkın toplamını bulup bunu gerçek değerlerin ortalamsından gerçek değerlerin çıkarılmasına 

bölmektir. Formülü Denklem 3.3’te verilmiştir. 

𝑅𝐴𝐸 =  
∑ |𝑇𝑖 − G𝑖|

𝑛
𝑖=1

 ∑ |G𝑚 − G𝑖|𝑛
𝑖=1

                                                                                                                    (3.3) 

Burada 𝑇𝑖 = tahmini değer, 𝐺𝑖 = gerçek değer, 𝐺𝑚= gerçek değerlerin ortalaması, 𝑛 = örnek 

sayısıdır. 

3.2.5. RRSE  

RRSE  (Root Relative Squared Error – Kök Ortalama Kare Hata), tahmin edilen her değer ile 

gerçek değerin farkının karesinin; gerçek değerlerin ortalamasından her bir gerçek değerin 

farkının alınmasıyla karesinin alındıktan sonra bölünmesinin ve sonucun karekökünün 

alınmasıdır. Kareleri alınmış hatalar bölünerek normalleştirilir. Göreceli kare hatasının 

karekökü alınarak, hata tahmin edilen miktarda aynı boyuta indirilir. Denklem 3.4’te RRSE 

formülü verilmiştir. 

𝑅𝑅𝑆𝐸 =  √
∑ (𝑇𝑖 − G𝑖)2𝑛

𝑖=1

∑ (G𝑚 − G𝑖)2𝑛
𝑖=1

                                                                                                             (3.4) 

Burada 𝑇𝑖 = tahmini değer, 𝐺𝑖 = gerçek değer, 𝐺𝑚= gerçek değerlerin ortalaması, 𝑛 = örnek 

sayısıdır. 
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3.2.6. MMRE 

MMRE (Mean Magnitude Of Relative Error – Göreceli Hatanın Ortalama Büyüklüğü), çoklu 

tahminlerin doğruluğu değerlendirilirken bir toplama yöntemi gerekmektedir. Aritmetik 

ortalaması da alınan değerlendirmeye MMRE denmektedir. Bir tahmin doğruluğu ölçülürken, 

göreceli hatanın büyüklüğü (MRE-Magnitute Relative Error) sıklıkla kullanılır. Hatanın gerçek 

gözlemlenen değere oranının mutlak değeri olarak tanımlanır: |(𝑔𝑒𝑟ç𝑒𝑘 − 𝑡𝑎ℎ𝑚𝑖𝑛 𝑒𝑑𝑖𝑙𝑒𝑛)/

𝑔𝑒𝑟ç𝑒𝑘|. Bu 100 ile çarpıldığında mutlak yüzde hatayı (APE-Absolute Percentage Error) verir.  

MMRE, kullanılan modellerin başarısı hakkında fikir vermektedir. Formülü Denklem 3.5’te 

verilmiştir. 

𝑀𝑀𝑅𝐸 =  
1

n
∑ |

𝑇𝑖 − 𝐺𝑖

𝐺𝑖
|

𝑛

𝑖=1

                                                                                                             (3.5) 

Burada 𝑇𝑖 = tahmini değer, 𝐺𝑖= gerçek değer, 𝐺𝑚= gerçek değerlerin ortalaması, 𝑛 = örnek 

sayısıdır. 

3.2.7. MAPE 

Bazı disiplinlerde MAPE (Mean Absolute Percentage Error – Ortalama Mutlak Hata Yüzdesi), 

MMRE olarak bilinmektedir (Tofallis, 2015). MAPE tahmin değerlendirmelerinde en sık 

kullanılan ölçüdür. MAPE çoğu çalışmada %MMRE olarak kullanılmıştır. Formülü Denklem 

3.6’da verilmiştir. 

𝑀𝐴𝑃𝐸 =  
1

n
∑ |

𝑇𝑖 − 𝐺𝑖

𝐺𝑖
|

𝑛

𝑖=1

x100                                                                                                     (3.6) 

Burada 𝑇𝑖 = tahmini değer, 𝐺𝑖= gerçek değer, 𝐺𝑚= gerçek değerlerin ortalaması, 𝑛 = örnek 

sayısıdır. 
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3.3. UYGULAMA PLATFORMLARI 

Tez çalışmasında WEKA ortamı kullanılmıştır. WEKA ortamı Yeni Zelanda’da bulunan 

Waikato Üniversitesindeki bir doktora öğrencisi tarafından Java dilinde geliştirilmiş,  

GPL (General Public Licence – Genel Kamu Lisansı) lisansına sahip açık kaynaklı ve ücretsiz 

bir uygulamadır. WEKA programı ticarî programlara karşılık daha çok bilimsel çalışmalarda 

ham verileri sınıflandırma, kümeleme, görselleştirme, bölütleme, tahminleme, veriler arasında 

ilişki kurma, öznitelik seçimi, veri ön işleme gibi MÖ ve Veri Madenciliği işlemlerini 

gerçekleştirebilecek algoritmaları barındırmaktadır (Witten ve diğ., 2011; Ebren Kara ve Şamlı, 

2021). Bu tezde, Genetik Programlamanın mevcut olduğu WEKA 3.4.12 (WekaGP, 2007) ve 

WEKA 3.9 (WEKA, 2018)  sürümleri kullanılmıştır. WEKA kurulumu sırasında weka.jar 

dosyası da gelmektedir. Bu jar dosyasında WEKA kütüphaneleri bulunmaktadır. Bu sayede 

başka bir platformdan (Java, C# gibi) WEKA sınıflarına erişilerek projeler geliştirilmektedir. 

WEKA’da veri setleri arff (Attribute Relationship File Format) formatında hazırlanmaktadır. 

Veri setlerinde bulunan değişkenler sayısal (decimal) ve kategorik (nominal) değerlerden 

oluşmaktadır.  

 

WEKA programında kullanılan veri setinin tahmin edilen sütun değerinin nominal ya da sayısal 

olmasına göre farklı hata formülleri kullanılmaktadır. Veri seti dosyanın tahmin edilen class 

adlı sütunu sayısal ise hata ölçüm değerleri Şekil 3.1’deki gibi olmaktadır. 

 

Şekil 3.1: Sayısal sonuç tahmininde hata ölçümleri. 
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Şekil 3.1 incelendiğinde hata ölçüm değerleri olarak korelasyon katsayısı MAE, MAPE, 

RMSE, RAE, ve RRSE değerlendirildiği görülmüştür.   

 

Veri seti dosyasının tahmin edilen sütunu nominal diğer adıyla kategorik ise hata ölçüm 

değerleri farklı olmaktadır. Şekil 3.2’de nominal bir değerin tahmin edilmesinde hata 

ölçümlerinin nasıl yapıldığı görülmektedir. Nominal değerlere sahip veri setlerinde veriler 

üzerinde sınıflandırma işlemi gerçekleştirilirken amaç kaç tanesinin doğru sınıfa kaçtanesinin 

yanlış sınıfa yerleştirildiğini tahmin etmektir.  Şekil 3.2 incelendiğinde hata ölçüm değerleri 

olarak Şekil 3.1’de açıklanan ölçümlerin yanında, doğru yerleştirme başarısı (correctly 

classified instance), kappa istatistiği (kappa statistic) ve karışıklık matrisi (confusion matrix) 

değerlendirilmiştir. 

 

 

Şekil 3.2: Nominal sonuç tahmininde hata ölçümleri. 

Şekil 3.1 ve Şekil 3.2 incelendiğinde kategorik değer tahminlerinde sayısal değer tahminlerine 

göre daha fazla hata ölçüm değerleri gösterildiği görülmüştür. Bu hata ölçüm değerleri tahmin 

yapmada kullanılan modelin başarısını izlemeyi sağlamaktadır.  

WEKA, arff formatlı dosyalar dışında metin tabanlı csv, dat, libsvm, json ve xrff gibi formatları 

da desteklemektedir. WEKA programı ilk açıldığında Şekil 3.3’deki gibi kullanıcı ara yüzü 

açılmaktadır. 
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Şekil 3.3: WEKA GUI kullanıcı ara yüzü. 

WEKA kullanıcı ara yüzünde çalışma alanına göre 5 faklı seçim alanı bulunmaktadır.  

Bunlar Şekil 3.3’te görüldüğü üzere Explorer, Experimenter, KnowledgeFlow, Workbench, 

Simple CLI alanlarıdır.  

 Explorer düğmesi ile veri seti yükleme, sınıflandırma, kümeleme, ön işleme, öznitelik 

seçimi gibi işlemler gerçekleştirilmektedir.  

 Experimenter düğmesi ile sınıflandırma ve regresyon yöntemlerinde en uygun 

metotların ve en uygun parametre değerlerinin hangisi olduğuna karar verilir.  

 KnowledgeFlow düğmesi ile büyük boyuttaki verilerin işlemleri gerçekleştirilir.  

Düğmeye tıklandığında açılan ekran, öğrenme algoritmalarını ve veri kaynaklarını 

temsil eden kutuları sürüklemeye ve istenilen ayarlar ile birleştirerek bir işlem akışı 

oluşturmaya yarar böylece veriler aşamalı olarak yüklenir ve işlenir. 

 Workbench düğmesi, diğer üç düğmenin birleşimini ve kullanıcının yüklediği eklentileri 

tek bir ekranda sunan bir ana akran sağlar. Kullanıcı tarafından hangi ayarların ve 

eklentilerin görüneceğini belirlemeye olanak tanıyacak şekilde yapılandırılabilen, veri 

madenciliği için veri ön işleme, sınıflandırma, kümeleme, regresyon gibi işlemleri 

gerçekleştiren ve işlemler arasında geçişi sağlayan bir ekrandır. 
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 Simple CLI düğmesine tıklandığında console ekranı açılır. Console ekranı ile WEKA’da 

gerçekleştirilen tüm işlemler metin komutları ile ham formda gerçekleştirilir (Witten, 

2011; Etkin, 2017; Aydemir, 2019).  

Şekil 3.3’teki ana ekrandan Explorer düğmesine tıklandığında Şekil 3.4’teki ekran açılır.  

Bütün menülerin aktif olması için Open File düğmesinden ilgili veri setinin WEKA programına 

yüklenmesi gerekir. Open file düğmesine tıklandığında Şekil 3.4’teki gibi Open penceresi açılır 

buradan üzerinde işlem yapılacak veri seti seçilir.   

 

Şekil 3.4: WEKA Explorer penceresi. 

Veri seti üzerinde MÖ algoritmalarının çalıştırılması için Şekil 3.5’teki pencereden ilgili 

algoritma seçilir ve Start düğmesine tıklanır. Varsayılan ayarlar ile veri seti üzerinde seçilen 

algoritma çalıştırılır ve çıktısı Şekil 3.6’daki gibi görünür. 
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Şekil 3.5: WEKA sınıflandırma penceresi. 

 

Şekil 3.6: WEKA’da çalıştırılan algoritma çıktısı. 
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WEKA programı kullanılarak veri setleri üzerinde öznitelik seçimini sağlayan Select attributes 

menüsüdür. Select attributes menüsüne tıklandığında Şekil 3.7’deki Select attributes penceresi 

açılır.  Select attributes penceresinden öznitelik seçim yöntemi ve arama yöntemi seçilir. Bu tez 

çalışmasında öznitelik seçim yöntemi olarak CfsSubsetEval (Corelation-based Feature Subset 

Selection Evaluation – Korelasyon Tabanlı Özellik Seçim Değerlendirici) ve arama yöntemi 

olarak GeneticSearch ve PSOSearch arama algoritmaları seçilmiştir.   

 

Şekil 3.7: WEKA öznitelik seçimi penceresi. 

WEKA programı indirildiğinde uygulamanın içinde bütün eklentiler mevcut değildir. Kurulum 

esnasında gelmeyen gerekli eklentilerin ayrıca WEKA programına yüklenmesi gerekmektedir. 

Yükleme işlemi için Şekil 3.8’de olduğu gibi kullanıcı ara yüzünden Tools menüsünün altından 

Package manager seçeneği seçilir. Şekil 3.9’da görülen pencereden gerekli eklenti seçilir ve 

load düğesine tıklanır. Bu tez çalışmasında kullanılmak üzere GeneticSearch ve PSOSearch 

arama algoritmaları WEKA 3.9 sürümüne eklenmiştir. GeneticSeach ve PSOSearch arama 

algoritmaları yüklendikten sonra veri setleri üzerinde öznitelik seçimi yapılmıştır. 
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Şekil 3.8: WEKA araçlar menüsü. 

 

Şekil 3.9: WEKA paket yöneticisi. 
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3.4. YÖNTEMLER 

Bu bölümde tez çalışmasında kullanılan algoritmaların ve kullanılan yöntemlerin açıklamaları 

sunulmuştur. 

 

WEKA programının sınıflandırma (classify) sekmesinde seç (choose) düğmesine tıklanarak 

MÖ algoritması seçilir. Seçilen algoritmanın parametre değerlerinde değişiklik yapılmak 

istendiğinde algoritmanın isminin göründüğü satıra tıklanması ve açılan ekranda gerekli 

değişiklilerin yapılması gerekmektedir. WEKA’da bulunan MÖ algoritmaları; 

 Fonksiyonlar (Functions) 

 Tembel Sınıflandırıcılar (Lazy) 

 Meta 

 Çeşitli Kategoriler (Misc) 

 Kurallar (Rules) 

 Ağaç (Tree) 

olarak gruplandırılmıştır. 

3.4.1. Fonksiyonlar (Functions) 

Bu kategori altında aşağıdaki yöntemler yer almaktadır: 

 Gauss Süreçleri (Gaussian Process) 

 Doğrusal Regresyon (Linear Regression) 

 Basit Doğrusal Regresyon (Simple Linear Regression) 

 Ardışık Minimum Optimizasyon Regresyon (Sequential Minimal Optimisation 

Regression – SMOreg) 

 Çok Katmanlı Algılayıcı (Multilayer Perceptron) 

 Genetik Programlama (Genetic Programming) 

 Parçacık Sürü Optimizasyonu (Particle Swarm Optimization – PSO) 
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3.4.1.1. Gauss Süreçleri  

Gauss Süreçleri, regresyon tabanlı problemlerin çözümünde kullanılmaktadır. Bir Gauss 

Sürecini modellemek için, önceden çok değişkenli bir Gauss dağılımı gerekmektedir.  

Gauss Süreci modeli fazla parametreli dağıtılmış rastgele parametrelerin kısıtlı bir 

koleksiyonunu edinmiş parametrik olmayan çekirdek temelli olasılık modelleridir.  

Her doğrusal bağlantı aynı dağılmıştır (Yergök ve Acı, 2019). 

3.4.1.2. Doğrusal Regresyon  

Birden fazla değişken arasındaki nicel bağlantıyı gözlemleyerek değişkenlerden birinin 

değerini diğer bir değişkenin değerine göre tahmin etmek için kullanılan çözümleme tekniğine 

Regresyon Analizi denir. Değeri tahmin edilen değişken bağımlı değişken, bağımlı değişkenin 

değerini tahmin etmek için kullanılan değişkene de bağımsız değişken denmektedir. Bu analiz 

yönteminde amaç, değişkenler arasındaki bağlantıyı işlevsel bir şekilde yorumlamak ve bu 

bağlantıyı bir model ile tanımlamaktır. Regresyon analizinde bağımlı ve bağımsız iki değişken 

varsa Basit Doğrusal Regresyon, bir tane bağımlı değişkene karşı birden fazla bağımsız 

değişken varsa buna da Çoklu Doğrusal Regresyon denir (Ebren Kara ve Şamlı, 2021). 

3.4.1.3. Basit Doğrusal Regresyon 

Tek bir açıklayıcı değişkene dayanan doğrusal bir regresyon modelidir. Bir bağımsız değişken 

ve bir bağımlı değişken olan iki boyutlu örnek noktalarla ilgilidir. Bağımlı değişken değerlerini 

bağımsız değişkenin bir fonksiyonu olarak tahmin eder ve en küçük karesel hatayı veren öğeyi 

seçer. Nominal niteliklerle çalışmaz. 

3.4.1.4. Ardışık Minimum Optimizasyon Regresyon 

Regresyon için SMOreg algoritması, regresyon için Destek Vektör Makinesi’ne (Support 

Vector Machine – SVM) dayalı SMO algoritmasının geliştirilmiş bir uzantısıdır. SMOreg, 

doğrusal olmayan tahmin için etkin bir şekilde kullanılmaktadır. SMO'da verimsizlik sorununa 

neden olan tek bir eşik vardır. SMOreg verimsizlik sorununun üstesinden gelmek için iki eşik 

kullanır (Singh ve Agrawal, 2013). 
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3.4.1.5. Çok Katmanlı Algılayıcı  

Belirli problemleri çözmek için birlikte çalışan, birbirine bağlı işlem elemanlarından (nöronlar 

veya düğümler) oluşan bir hesaplama sistemdir (Caudill, 1987). İnsan beyninin nasıl 

çalıştığından ilham alan, sinir sistemini modelleyerek oluşturulan bir algoritmadır.  

Çok Katmanlı Algılayıcı, giriş ve çıkış katmanı arasında bir veya daha fazla katman içeren ileri 

beslemeli bir sinir ağıdır. Temel olarak üç katman vardır: giriş katmanı, gizli katman ve çıkış 

katmanı. Gizli katman birden fazla olabilir. Her katmandaki her nöron (düğüm), bitişik 

katmanlardaki her nörona (düğüm) bağlıdır. Eğitim veya test vektörleri giriş katmanından 

verilir; gizli katmanda işlenir ve çıkış katmanından çıkış alınır (Gupta, 2015; Ebren Kara ve 

Şamlı, 2021). 

3.4.1.6. Genetik Programlama  

GA’nın kodlanması ile oluşturulan programlara Genetik Programlama denir. Genetik 

Programlama sınıflandırma için büyük bir potansiyel sunan; zor problemlerin çözümünde 

kullanılan evrimsel bir öğrenme tekniğidir. Genetik Programlama temsil biçimi olarak ağaç 

yapısını kullanır. Ağaç yapısında iç düğümler, işlevler ve operatörleri temsil ederken uç 

birimler değişkenleri ve sabitleri temsil ederler (Gupta, 2015; Ebren Kara ve Şamlı, 2021). 

3.4.1.7. Parçacık Sürü Optimizasyonu 

PSO algoritması ilk kez 1995 yılında geliştirilmiştir. Doğrusal olmayan ve çok boyutlu 

problemi optimize edebilen PSO, popülasyon tabanlı meta sezgisel ve evrimsel bir 

optimizasyon algoritmasıdır. Algoritma, kuş ve balık sürülerinin barınma, beslenme ve 

güvenlik için toplu hareketlerinden ilham alınarak geliştirilmiştir. Optimum yer aramak için 

çok boyutlu uzayda birlikte hareket eden sürüsünün hareketleri ve mesafeleri ayarlanarak 

davranışları simüle edilmiştir. PSO, GA benzer bir evrimsel hesaplama yöntemidir. Her bireye 

parçacık (particle), parçacıklardan oluşan topluluğa da sürü (swarm) denmektedir.  

Sürüler rastgele başlatılır. Sürüdeki her bir parçacığın başlangıçta rastgele oluşturulan konum 

ve hız bilgisi bulunmaktadır. Bu bilgiler her bir tekrarda kazanç değerlerine göre 

güncellenmektedir. Optimum kazanç değerine sahip olan parçacıklar sonraki kuşaklara 

devredilmektedir. Parçacıklardan her biri sahip olduğu konumunu daha önceki tecrübesinden 
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yararlanarak sürüdeki en iyi konuma göre hesaplamaktadır (Kennedy ve Eberhart, 1995). 

Sürüdeki her parçacık, tüm parçacıklar arasında yerel en iyi konum olarak bilinen pbest 

(personal best) ve küresel en iyi konum olarak bilinen gbest (global best) konumlarını 

korumalıdır. Parçacığın konumunu ve hızını güncellemek için kullanılan formül Denklem 3.7 

ve Denklem 3.8’de verilmiştir. 

𝑉𝑖
𝑘+1 =  𝑉𝑖

𝑘 + 𝐶1𝑟1
𝑘(𝑝𝑏𝑒𝑠𝑡𝑖

𝑘 − 𝑋𝑖
𝑘) +  𝐶2𝑟2

𝑘(𝑔𝑏𝑒𝑠𝑡𝑘 −  𝑋𝑖
𝑘)                                                   (3.7) 

𝑋𝑖
𝑘+1 =  𝑋𝑖

𝑘 + 𝑉𝑖
𝑘+1                                                                                                                             (3.8) 

Burada k: iterasyon sayısı, 𝑉𝑖
𝑘: k’inci iterasyondaki i’inci parçacığın hızı, 𝑋𝑖

𝑘: k’inci 

iterasyondaki i’inci parçacığın konumu, C1, C2: hızlandırma katsayıları, r1, r2: [0,1) aralığında 

rastgele üretilen sayılar, 𝑝𝑏𝑒𝑠𝑡𝑖
𝑘: k’inci iterasyondaki i’inci parçacığın yerelde en iyi değeri, 

𝑔𝑏𝑒𝑠𝑡𝑘: k’inci iterasyondaki sürünün en iyi değeridir. Şekil 3.10’da PSO akış şeması 

görünmektedir. 

3.4.2. Tembel Sınıflandırıcılar (Lazy Classifier) 

Bu kategoride aşağıdaki yöntemler yer almaktadır. 

 K-En Yakın Komşu Sınıflandırıcı (K-Nearest Neighbours Classifier) 

 Kyıldız (Kstar–K*) 

 Yerel Ağırlıklı Öğrenme (LWL-Locally Weighted Learning) 

3.4.2.1. K-En Yakın Komşu Sınıflandırıcı  

Bu algoritma, sınıflandırılacak olan veriyi mevcut verilere olan yakınlık bağlantısına göre 

sınıflandırmaktadır. Hem sınıflandırma hem de regresyon problemlerinin çözümünde 

kullanılan Eğiticili Öğrenme algoritmalarındandır. K sayıda yakınlık komşuluğuna bakılarak 

mevcut veri setine eklenecek olan yeni verinin, eldeki verilere bakılarak uzaklığının 

hesaplanmasıdır. 
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Şekil 3.10: PSO akış şeması. 
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3.4.2.2. Kyıldız  

Entropi tabanlı mesafe algoritması kullanan, verileri temel alan bir sınıflandırıcıdır. Kyıldız 

Algoritmasının amacı test verisinde bulunan öznitelik  bilgisi olmayan bir örneğin, eğitim 

verisinde eskiden sınıflandırılmış ama ortaya çıkmamış örnekler ile karşılaştırılması esasına 

göre sınıflandırma gerçekleştirmektir (Aha ve diğ., 1991). 

3.4.2.3. Yerel Ağırlıklı Öğrenme  

LWL algoritması parametrik bir yöntem değildir ve tahmin, verilerin sadece bir alt kümesini 

kullanan yerel fonskiyonlar tarafından yapılır. LWL, tüm fonksiyon alanı için global bir model 

oluşturmak yerine, her bir ilgi noktası için, sorgu noktasının komşu verilerine dayanarak yerel 

bir model oluşturur. Bu amaçla, her veri noktası, tahmin için veri noktasının etkisini ifade eden 

bir ağırlık faktörü haline gelir. Genel olarak, mevcut sorgu noktasına yakın komşuluktaki veri 

noktaları, uzaktaki veri noktalarından daha fazla ağırlık almaktadır (Englert, 2012). 

 

3.4.3. Meta 

Bu kategoride aşağıdaki yöntemler yer almaktadır. 

 Toplamsal Regresyon (Additive Regression) 

 Öznitelik Seçici Sınıflandırıcı (Attribute Selected Classifier) 

 Torbalama (Bagging) 

 Çapraz Doğrulama Parametre Seçimi (CVParameterSelection) 

 Çoklu Şema (Multi Scheme) 

 Rastgele Komite (Random Committee) 

 Randomize Edilebilir Filtreli Sınıflandırıcı (Randomizable Filtered Classifier) 

 Rastgele Alt Boşluk (Random Sub Space) 

 Ayrıklaştırma İle Regresyon (Regression By Discretization) 

 İstifleme (Stacking) 

 Oylama (Vote) 

 Ağırlıklı Örnek İşleyici Sarmalayıcı (Weighted Instances Handler Wrappler) 



73 

 

 

 

 

3.4.3.1. Toplamsal Regresyon 

Regresyon öğrenmesinin performansını artırır. Çoğunlukla doğrusal olmayan gerçek yaşam 

etkilerinde Doğrusal Regresyon başarılı olmayan çıktılar oluşturabilmektedir. Toplamsal 

Regresyon doğrusal olmayan regresyon etkilerini nitelendirmek için kullanılmaktadır. 

3.4.3.2. Öznitelik Seçici Sınıflandırıcı  

Öznitelik seçici sınıflandırıcı iki adımın bir birleşimidir. Birincisi eğitim ve test verilerinin 

boyutunu nitelik seçimi yoluyla azaltma, ikincisi sınıflandırmadır.   

3.4.3.3. Torbalama  

Temel öğrenme seçimine bağlı olarak istatistiksel sınıflandırma ve regresyonda kullanılan MÖ 

algoritmalarının kararlılığını ve doğruluğunu geliştirmek için tasarlanmış MÖ topluluğu meta 

algoritmasıdır. Varyans azaltmaya göre sınıflandırma yapar. Algoritma, karar ağacı yöntemleri 

başta olmak üzere her türlü yöntemle kullanılabilir. 

3.4.3.4.  Çapraz Doğrulama Parametre Seçimi  

Her hangi bir sınıflandırıcıya göre parametre seçiminde çapraz doğrulamayı kullanarak 

performansı en iyi duruma getirir. Her parametreye, alt ve üst sınırlarını ve istenen artış sayısını 

içeren bir dize verilir.  

3.4.3.5. Çoklu Şema 

Yeniden yer değiştirme hatasını kullanarak bir sınıflandırıcı seçer. Performans yüzdesel 

doğruluk ve regresyon için hata karelerinin ortalaması kullanılarak ölçülür. 

3.4.3.6. Rastgele Komite 

Temel bir sınıflandırıcılar topluluğunu rastgele olacak şekilde oluşturur ve tahminlerini 

değerlendirir. Her bir sınıflandırıcı aynı verileri kullanırken farklı rastgele sayı çekirdeği 

kullanır. Kestirim sonucu her bir temel sınıflandırıcının yaptığı kestirim sonuçlarının 



74 

 

 

 

 

ortalamasıdır. Bu durum yalnızca temel sınıflandırıcı rastgele seçilmişse anlamlıdır; yoksa tüm 

sınıflandırıcılar aynı olur. 

3.4.3.7. Randomize Edilebilir Filtreli Sınıflandırıcı 

Rastgele bir filtre ile başlıca sınıflandırıcı olarak IBk ile başlayan Filtrelenmiş Sınıflandırıcının 

basit bir çeşididir. Ayrıca iki başlıca şekilden an az birinin rastgele ara yüzünün uygulandığını 

denetleyerek rastgeleleri de uygulayan Filtreli Sınıflandırıcı ile aynı fonksiyonları uygular. 

3.4.3.8. Rastgele Alt Boşluk  

Sınıflama yapan topluluğu meydana getirmek adına her bir giriş özniteliklerinin rastgele 

seçilmiş bir alt kümesini kullanan, karar ağacı tabanlı bir sınıflandırıcıdır. Algoritma öznitelik 

vektörünün alt kümelerinin boyutunu kontrol etmek için bir parametre üretmesinin yanında bir 

de tekrar sayısını ve kullanılacak rastgele adım sayısını sağlar (Ebren Kara ve Şamlı, 2021). 

3.4.3.9. Ayrıklaştırma İle Regresyon  

Ayrıklaştırma sayısal verilerin kategorik karşılıklarına dönüştürülmesi işlemine verilen addır. 

Sıcaklık değişkeninin değerlerini 0-19, 20-39 ve 40-59 gibi aralıklara gruplamak örnek olarak 

verilebilir. Sınıf özniteliğini eşit genişlikli ayrıklaştırma kullanarak sonlu sayıda gruba ayıran 

ve sonra bir sınıflandırıcı kullanan bir regresyon şemasıdır. Tahminler, her bir ayrık aralık için 

ortalama sınıf değerinin ağırlıklı ortalaması olup, aralıklar için öngörülen olasılıklara dayanan 

ağırlıklardır. Bu yöntem aykırı gözlemlerin, geçersiz veya eksik numerik değerlerin tespitini 

kolaylaştırır (Aydemir, 2019). 

3.4.3.10. İstifleme 

Birkaç sınıflandırıcıyı birleştirir. Sınıflandırma veya regresyon yapabilir. Temel 

sınıflandırıcılar, meta öğrenme ve çapraz doğrulama katlamalarının sayısı belirtilebilir. 
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3.4.3.11. Oylama  

Sınıflandırmaları birleştirmek için farklı olasılık tahmin yöntemleri mevcuttur. Kabul edilen 

şema, sınıflandırma ve regresyon için olasılık tahminlerinin veya sayısal tahminlerinin 

ortalamasıdır. 

3.4.3.12. Ağırlıklı Örnek İşleyici Sarmalayıcı  

Bu yöntem, test verilerinin doğruluğunu kontrol etmek için eğitim verilerini kullanan eğiticili 

öğrenme algoritmasıdır. Bu yöntemin en büyük avantajı, ağırlıklı eğitim örnekleri için 

sarmalayıcı yaklaşımını kullanmasıdır. Temel sınıflandırıcı ara yüzü uygulanmadığında ve 

örnek ağırlıkları olduğunda, bu algoritma ağırlıklarla yeniden örnekleme uygular. Bir seçenek 

olarak, temel sınıflandırıcı ağırlıkları çalıştırabiliyorsa eğitim verilerini kullanır, ancak 

ağırlıklarla birlikte yeniden örnekleme yaklaşımlarını da uygulayabilir (Kargar ve diğ., 2021).  

3.4.4. Çeşitli Kategoriler  

Bu sınıflandırma algoritması, bir sınıflandırıcıyı sarmalar ve kullanılan test verilerinde mevcut 

olan nitelikler ile modeli eğittiğinde belirlenen nitelikler arasında bir eşleşme gerçekleştirir. 

Eğitim verilerinde mevcut olmayan fakat test verilerinde mevcut olan nitelikler dâhil edilmez. 

Test verilerinde olmayan fakat eğitim verilerinde bulunan özellikler eksik değerlere sahip olur. 

Bununla birlikte, eğitim verilerinde bulunmayan yeni sayısal değerler için eksik değerler 

kullanır (Aydemir, 2019). 

3.4.5. Kurallar  

Bu kategoride aşağıdaki yöntemler yer almaktadır: 

 Karar Tablosu (Decision Table) 

 M5 Kuralları (M5 Rules) 

 ZeroR 
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3.4.5.1. Karar Tablosu  

Bu sınıflandırma algoritması, çoğunluk sınıflandırıcısı oluşturmak için basit bir karar tablosu 

oluşturur ve kullanır. Karar tabloları tahmin için kullanılan sınıflandırma algoritmalarıdır.  

Bir karar tablosu, daha yüksek seviyeli bir tablodaki her girişin, başka bir tablo oluşturmak için 

bir çift ek özniteliğin değerlerine bölündüğü, hiyerarşik bir tablodan oluşur (Ebren Kara ve 

Şamlı, 2021). 

3.4.5.2. M5 Kuralları  

M5 Kuralları, regresyon problemleri için karar listeleri oluşturmak üzere böl ve yönet 

yöntemini kullanan bir algoritmadır. Karar listeleri hem sürekli hem de sayısal değişkenlerle 

çalışabilir. M5 Kuralları, bir model ağacı oluşturmak için M5 algoritmasını kullanır: en iyi 

yapraktan bir kural yapar daha sonra mevcut kurala bağlı olarak veri kümesinde bulunan öteki 

örnekler üzerinde çalışır (Omran ve diğ., 2016). 

3.4.5.3. ZeroR 

ZeroR, hedefe bağlı olan ve tüm tahmin edicileri yok sayan en basit sınıflandırma yöntemidir. 

ZeroR, basitçe çoğunluk sınıfını tahmin eder. ZeroR'da öngörülebilirlik yeteneği olmamasına 

rağmen, diğer sınıflandırma yöntemlerinde temel performansı belirlemek için bir kriter olarak 

çok kullanışlıdır (Nookala ve diğ., 2013).  

3.4.6. Ağaç  

Bu kategoride aşağıdaki yöntemler yer almaktadır: 

 Karar Kütüğü (Decision Stump) 

 M5P 

 Rep Ağacı 

 Rastgele Ağaç (Random Tree) 

 Rastgele Orman (Random Forest) 
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3.4.6.1. Karar Kütüğü 

Bir karar kütüğü, yalnızca uç düğümlere (yapraklar) doğrudan bağlı bir iç düğüme (kök) sahip 

tek seviyeli bir karar ağacından oluşan bir sınıflandırıcıdır. Bir karar kütüğü, tek bir girdinin 

değerine dayalı bir tahminde bulunabilir ve buna tek kural denir (Chen ve diğ., 2017). 

3.4.6.2. M5P 

M5 öğrenme algoritmasının yeniden yapılandırılması olan M5P ağaç algoritması regresyon 

tabanlı problemlerinin çözümünde kullanılan GA türüdür (Mohammed ve diğ., 2020).  M5P 

ağaç algoritması temel olarak iki adım içerir: ağaç büyütme adımı ve ağaç budama adımı. 

3.4.6.3. Rep Ağacı  

Rep Ağacı, bilgi kazancını, bölme kriteri olarak kullanıp bir regresyon ağacı oluşturan ve bunu 

azaltılmış hata budaması kullanarak budayan hızlı bir karar ağacı türüdür. Nümerik 

özniteliklerin değerlerini sadece bir kez sıralar. Eksik değerleri, C4.5'in kesirli örnekleri 

kullanma yöntemini kullanarak inceler (WEKA, 2021). 

3.4.6.4. Rastgele Ağaç  

Rastgele Ağaç sınıflandırma algoritması, bir ağaç oluşturmak için her düğümde belirli sayıdaki 

gelişigüzel seçilen özellikleri dikkate alır. Budamayı gerçekleştirmez. Burada rastgele demek: 

ağaç kümesindeki her ağacın eşit örnekleme şansına sahip olduğu anlamına gelir. Rastgele 

ağaçlar verimli bir şekilde oluşturulabilir ve büyük Rastgele Ağaç kümelerinin birleşimi 

genellikle doğru modeller oluşturur. Rastgele ağaç modelleri, son yıllarda MÖ alanında 

kapsamlı bir şekilde geliştirilmiştir (Zhao ve Zhang, 2008). 

3.4.6.5. Rastgele Orman 

Rastgele Orman, rastgele birden çok tekli sınıflandırma ağacı üreterek orman inşa etmek üzere 

kullanılan bir sınıflandırma algoritmasıdır. Bir girişten yeni bir nesneyi sınıflandırmak için giriş 

vektörü ormandaki her bir ağaca yerleştirilir. Her bir ağaç kendi sonucunu üretir. Tahmin, 

topluluğun tahminlerinin toplanmasıyla yapılır. Rastgele Orman genellikle önemli bir 

performans sergilemektedir (Zhao ve Zhang, 2008). 
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4. BULGULAR 

Bu tez çalışmasında performans analizleri PROMISE veri deposundan temin edilen veri setleri 

(COCOMO81, COCOMONASA, COCOMONASA2, China, Albrecht, Finnish, Kemerer, 

Maxwell ve Miyazaki94) üzerinde performans ölçütü olarak korelasyon katsayısı; hata 

oranlarını değerlendirme ölçütü olarak MAPE, MAE, RMSE, RAE ve RRSE;  uygulama 

platformu olarak da Weka 3.9 ve Weka 3.4.12 sürümleri kullanılmıştır. 

Performans analizleri aşağıdaki özelliklere sahip bilgisayarda gerçekleştirilmiştir. 

 Intel (R) Core (TM) i7-6700HQ CPU @ 2.60GHz 

 16 GB RAM 

 120 GB SSD ve 1.80 TB Harddisk 

 64 bit işletim sistemi, x64 tabanlı işlemci 

 Windows 10 Home Single Language 

4.1. WEKA SİMÜLASYON SONUÇLARI 

Tez çalışmasının bu kısmında yazılım maliyet tahmini için COCOMO81, COCOMONASA, 

COCOMONASA2 veri setleri kullanılmıştır. Veri setleri 10 kat çapraz doğrulama tekniği 

kullanılarak rastgele eğitim ve test verilerine bölünmüştür. Oluşturulan model korelasyon 

katsayısı, hata oranı MAE, RMSE, RAE ve RRSE’ye göre değerlendirilmiştir.  

WEKA ortamında bulunan MÖ algoritmaları kullanılarak yazılım projelerinin maliyet tahmini 

iki bölümde gerçekleştirilmiştir. İlk bölümde; WEKA ortamı algoritmalarının varsayılan 

ayarları tercih edilmiştir. Meta grubunda bulunan algoritmaların, LWL ve Input Mapped 

Classifier algoritmalarının özellikler penceresinden temel sınıflandırıcı olarak Random Forest 

algoritması seçilmiştir. İkinci bölümde; WEKA programında bulunan bazı algoritmalar (Meta 

grubunda bulunan algoritmalar, LWL ve Input Mapped Classifier algoritmaları) mevcut 

parametrelerine ek olarak temel bir sınıflandırıcı ve onun parametrelerini alan algoritmalardır. 

Söz konusu algoritmalar için temel sınıflandırıcı belirlerken olabilecek bütün algoritmalar tek 

tek denenmiştir ve denemeler bütün veri setleri için tekrar edilmiştir. 
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Tablo 4.1’de, Yazılım maliyet tahmini için COCOMO81’e uygulanan MÖ algoritmalarının 

performans ölçümleri verilmiştir. Tablo 4.2’de, Yazılım maliyet tahmini için 

COCOMONASA’ya uygulanan MÖ algoritmalarının performans ölçümleri verilmiştir.  

Tablo 4.3’te Yazılım maliyet tahmini için COCOMONASA2’ye uygulanan MÖ 

algoritmalarının performans ölçümleri verilmiştir.  

Tablo 4.1: COCOMO81’de tahmin algoritmalarının performans ölçümleri. 

COCOMO81 Veri Seti 

ALGORİTMALAR Ölçütler 

FONKSİYONLAR 

Korelasyon 

katsayısı 
MAE RMSE 

RAE 

(%) 

RRSE 

(%) 

Gaussian Processes 0,5401 790,6207 1529,4219 87,1334 83,3127 

Linear Regression 0,6102 874,477 1480,8087 96,3751 80,6645 

Multilayer Perceptron 0,6739 662,3573 1651,8813 72,9976 89,9834 

Simple Linear Regression 0,5803 610,8756 1556,9319 67,3239 84,8112 

SMOreg 0,6598 481,4058 1414,1265 53,0552 77,0321 

LAZY      

IBK (K-nearest neighbor ) 0,6391 597,2745 1495,836 65,8249 81,4831 

KStar 0,5621 527,3596 1707,526 58,1197 93,0146 

LWL 0,7852 513,1837 1320,6153 56,5574 71,9383 

META      

Additive Regression 0,8095 471,6203 1169,6529 51,9767 63,7149 

Attribute Selected Classifier 0,7766 480,6095 1266,5644 52,9674 68,994 

Bagging 0,6842 615,7212 1427,0346 67,8579 77,7353 

CVParameter Selection 0,7624 547,2516 1288,8028 60,312 70,2054 

Multi Schema 0,759 527,6654 1317,3837 58,1534 71,7622 

Random Comittee 0,7722 529,8123 1303,0491 58,39 70,9814 

Randomizable Fitered Classifer 0,541 570,3308 1525,4542 62,8555 83,0965 

Random SubSpace 0,6095 649,4035 1470,7424 71,57 80,1162 

Regresiyon By Discretization 0,7482 555,2121 1348,4807 61,1893 73,4562 

Weighted Instances Handler 

Wrapper 
0,7624 547,2516 1288,8028 60,312 70,2054 

MISC      

Input Maped Classifier 0,7624 547,2516 1288,8028 60,312 70,2054 

RULES      

Decision Table 0,3947 616,2634 1785,8066 67,9177 97,2788 

M5 Rules 0,7657 603,709 1289,9993 66,5341 70,2705 

TREE      

Desicion Stump 0,4596 717,5814 1673,7058 79,0838 91,1723 

M5P 0,6843 517,3589 1334,687 57,0175 72,7048 

Random Forest 0,7624 547,2516 1288,8028 60,312 70,2054 

Random Tree 0,37 688,7117 1840,2042 75,9021 100,242 

REP Tree 0,0902 787,8688 1904,8964 86,8301 103,766 
 

 

Tablo 4.1 incelendiğinde, 471,6203 MAE, 1169,6529 RMSE,  %51,9767 RAE, %63,7149 

RRSE hata oranları ve 0,8095 korelasyon katsayısı ile en iyi tahmin sonucunu Additive 
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Regression algoritması gerçekleştirmiştir. REP Tree tahmin algoritması 0,0902 korelasyon 

katsayısı ve 787,8688 MAE, 1904,8964 RMSE, %86,8301 RAE, %103 RRSE, hata payı ile en 

kötü performansı sergilemiştir. 

Tablo 4.2: COCOMONASA’da tahmin algoritmalarının performans ölçümleri. 

COCOMONASA Veri Seti 

ALGORİTMALAR Ölçütler 

FONKSİYONLAR 

Korelasyon 

katsayısı 
MAE RMSE 

RAE 

(%) 

RRSE 

(%) 

Gaussian Processes 0,6387 269,4976 513,356 62,5047 77,0828 

Linear Regression 0,7994 247,0464 431,768 57,2976 64,832 

Multilayer Perceptron 0,8931 179,4526 310,3657 41,6205 46,6029 

SMOreg 0,719 248,4012 462,9543 57,6118 69,5148 

LAZY      

IBK (K-nearest neighbor ) 0,5768 295,4267 590,2186 68,5184 88,6241 

KStar 0,6772 220,4516 501,335 51,1294 75,2778 

LWL 0,7779 210,3535 420,0186 48,7874 63,0678 

META      

Additive Regression 0,8317 200,551 367,676 46,5139 55,2083 

Attribute Selected Classifier 0,8251 202,3599 392,3317 46,9334 58,9105 

Bagging 0,7871 222,7612 425,0947 51,6651 63,83 

CVParameter Selection 0,8196 211,6876 403,4439 49,0968 60,579 

Multi Schema 0,7818 217,0315 416,7733 50,3362 62,5805 

Random Comittee 0,7813 217,802 422,6492 50,5149 63,4628 

Randomizable Fitered Classifer 0,8825 148,6937 313,6628 34,4866 47,0979 

Random SubSpace 0,6964 255,7131 474,6142 59,3076 71,2655 

Regresiyon By Discretization 0,704 251,3443 470,4945 58,2944 70,647 

Weighted Instances Handler 

Wrapper 
0,8196 211,6876 403,4439 49,0968 60,579 

MISC      

Input Maped Classifier 0,8196 211,6876 403,4439 49,0968 60,579 

RULES      

Decision Table 0,4577 261,1296 609,2296 60,5639 91,4787 

M5 Rules 0,9152 157,1147 263,9787 36,4397 39,6376 

TREE      

Desicion Stump 0,6981 303,2187 497,9172 70,3256 74,7646 

M5P 0,922 150,9841 252,8864 35,0178 37,9721 

Random Forest 0,8196 211,6876 403,4439 49,0968 60,579 

Random Tree 0,7029 254,4593 519,1927 59,0168 59,0168 

REP Tree 0,594 289,226 544,7618 67,0803 81,7985 
 

 

Tablo 4.2 incelendiğinde, 150,9841 MAE, 252,8864 RMSE,  %35,0178 RAE, %37,9721 RRSE 

hata oranları ve 0,922 korelasyon katsayısı ile en iyi tahmin sonucunu M5P algoritması 

gerçekleştirmiştir. Decision Table algoritması 0,4577 korelasyon katsayısı ve 261,1296 MAE, 

609,2296 RMSE,  %60,5639 RAE, %91,4787 RRSE hata payı ile en kötü performansı 

sergilemiştir.  
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Tablo 4.3: COCOMONASA2’de tahmin algoritmalarının performans ölçümleri. 

COCOMONASA2 Veri Seti 

ALGORİTMALAR Ölçütler 

FONKSİYONLAR 

Korelasyon 

katsayısı 
MAE RMSE 

RAE 

(%) 

RRSE 

(%) 

Gaussian Processes 0,5966 535,8033 1003,274 82,9528 87,8166 

Linear Regression 0,7294 430,7269 826,1252 66,6849 72,3107 

Multilayer Perceptron 0,6147 653,0797 1313,2285 101,1095 114,9468 

SMOreg 0,425 737,3497 1368,5567 114,1562 119,7897 

LAZY      

IBK (K-nearest neighbor ) 0,659 445,7796 924,0382 69,0154 80,881 

KStar 0,7091 376,3781 821,2064 58,2707 71,8801 

LWL 0,8183 332,7218 652,8788 51,5118 57,1464 

META      

Additive Regression 0,7974 334,6625 682,1185 51,8123 59,7058 

Attribute Selected Classifier 0,7168 379,1302 788,339 58,6968 69,0033 

Bagging 0,7298 365,3964 778,686 56,5705 68,1583 

CVParameter Selection 0,7415 365,1982 759,6982 56,5398 66,4963 

Multi Schema 0,7392 370,4636 761,003 57,355 66,6105 

Random Comittee 0,7595 358,2204 739,3583 55,4595 64,716 

Randomizable Fitered Classifer 0,7158 371,1652 789,8391 57,4636 69,1346 

Random SubSpace 0,6729 407,627 835,7404 63,1086 73,1523 

Regresiyon By Discretization 0,7069 424,2558 799,3404 65,6831 69,9662 

Weighted Instances Handler Wrapper 0,7415 365,1982 759,6982 56,5398 66,4963 

MISC      

Input Maped Classifier 0,7415 365,1982 759,6982 56,5398 66,4963 

RULES      

Decision Table 0,2525 564,7407 1186,1157 87,4329 103,8206 

M5 Rules 0,7042 360,4728 805,1669 55,8082 70,4762 

TREE      

Desicion Stump 0,4183 567,6411 1063,2781 87,8819 93,0687 

M5P 0,7171 348,3774 788,2642 53,9356 68,9967 

Random Forest 0,7415 365,1982 759,6982 56,5398 66,4963 

Random Tree 0,4882 459,4538 1016,6788 71,1324 88,9898 

REP Tree 0,3464 540,5725 1094,5921 83,6912 95,8096 
 

 

Tablo 4.3 incelendiğinde, 332,7218 MAE, 652,8788 RMSE,  %51,5118 RAE, %57,1464 RRSE 

hata oranları ve 0,8183 korelasyon katsayısı ile en iyi tahmin sonucunu LWL algoritması 

gerçekleştirmiştir. Decision Table algoritması 0,2525 korelasyon katsayısı ve 564,7407 MAE, 

1186,1157 RMSE, 87,4329 RAE, 103,8206 RRSE hata payı ile en kötü performansı 

sergilemiştir. WEKA programında, Meta grubundaki bütün algoritmalar, Lazy grubundaki 

LWL algoritması ve Rules grubundaki Input Mapped Classifier algoritması parametre olarak 

bir sınıflandırma algoritması almaktadır. Bu algoritmaların özellikler penceresinden 

sınıflandırma özelliği değiştirilerek daha iyi tahmin sonuçları elde edilebilmektedir. Yazılım 

projelerinin maliyet tahmini için kullanılan MÖ algoritmalarının parametre değerleri 
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değiştirilerek olabilecek bütün olasılıklar denenmiştir. COCOMO81, COCOMONASA ve 

COCOMONASA2 veri setleri üzerinde gerçekleştirilen testlerin en iyi tahmin sonuçları 

korelasyon katsayısı ve RAE hata payı ile Tablo 4.4, Tablo 4.5 ve Tablo 4.6’da belirtilmiştir. 

Tablo 4.4: COCOMO81‘de algoritmaların en iyi tahmin sonuçları. 

COCOMO81 veri seti 

ALGORİTMA 
Parametre olarak verilen 

algoritma 

Korelasyon 

katsayısı 

RAE 

(%) 

LWL Random Comittee 0,8331 54,4355 

Additive Regression Random Comittee 0,8282 49,6681 

Attribute Selected Classifier Random Comittee 0,8656 50,3006 

Bagging Random Comittee 0,7235 63,8393 

CVParameter Selection Random Comittee 0,8764 48,5789 

Multi Schema Random Comittee 0,8529 52,0718 

Random Comittee Random Comittee 0,8764 48,5789 

Randomizable Fitered Classifer IBK (K-nearest neighbor) 0,7722 57,5024 

Random SubSpace Random Comittee 0,7109 63,5379 

Regresiyon By Discretization Multilayer Perceptron 0,8547 56,89 

Weighted Instances Handler 

Wrapper 
Random Comittee 0,8227 51,606 

Input Maped Classifier Random Comittee 0,8764 48,5789 
 

 

Tablo 4.4 incelendiğinde tahmin algoritmasına sınıflandırma parametresi olarak Random 

Committee algoritmasının verilmesi ile en iyi tahmin sonucunun elde edildiği görülmüştür. 

Random Committee, CVParemeter Selection ve Input Maped Classifier algoritmaları 0,8764 

korelasyon katsayısı ve %48,5789 RAE hata payı ile en iyi tahmin sonucunu vermiştir.  

Bu durum şu şekilde elde edilmiştir: yazılım maliyet tahmini için seçilen algoritmanın özellikler 

penceresinden classifier özelliği için olabilecek bütün algoritmalar parametre olarak 

denenmiştir. COCOMO81 veri seti üzerinde en iyi tahmin sonucunun tahmin algoritması olarak 

Random Committee, classifier özelliğinin de Random Committee seçilmesi ile elde edildiği 

belirlenmiştir. 
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Tablo 4.5: COCOMONASA’da algoritmaların en iyi tahmin sonuçları. 

COCOMONASA 

ALGORİTMA 
Parametre olarak verilen 

algoritma 

Korelasyon 

katsayısı 

RAE 

(%) 

LWL Linear Regression 0,8945 43,6739 

Additive Regression M5P 0,9371 31,7645 

Attribute Selected Classifier Multilayer Perceptron 0,8963 36,8339 

Bagging M5P 0,9175 29,0556 

CVParameter Selection M5P 0,922 35,0178 

Multi Schema M5P 0,922 35,0178 

Random Comittee Randomizable Fitered Classifer 0,924 34,0002 

Randomizable Fitered Classifer SMOreg 0,9161 30,4218 

Random SubSpace Regresiyon By Discretization 0,817 64,1904 

Regresiyon By Discretization Randomizable Fitered Classifer 0,8309 60,419 

Weighted Instances Handler 

Wrapper 
M5P 0,922 35,0178 

Input Maped Classifier M5P 0,922 35,0178 
 

 

Tablo 4.5 incelendiğinde tahmin algoritmasına sınıflandırma parametresi olarak M5P 

algoritmasının verilmesi ile en iyi tahmin sonucunun elde edildiği görülmüştür. Additive 

Regression algoritması 0,9371 korelasyon katsayısı ve %31,7645 RAE hata payı ile en iyi 

tahmin sonucunu vermiştir. En iyi tahmin sonucunun elde edilebilmesi için seçilen algoritmanın 

özellikler penceresinden classifier özelliği için olabilecek bütün algoritmalar parametre olarak 

denenmiştir. COCOMONASA veri seti üzerinde en iyi tahmin sonucunun tahmin algoritması 

olarak Additive Regression, classifier özelliğinin de M5P seçilmesi ile elde edildiği 

belirlenmiştir. 

Tablo 4.6: COCOMONASA2 ‘de algoritmaların en iyi tahmin sonuçları. 

COCOMONASA2 

ALGORİTMA 

Parametre olarak verilen 

algoritma 

Korelasyon 

katsayısı 

RAE 

(%) 

LWL Random Comittee 0,8309 50,4804 

Additive Regression Random Forest 0,7974 51,8123 

Attribute Selected Classifier Random Comittee 0,774 56,0921 

Bagging Random Tree 0,7605 53,6467 

CVParameter Selection Random Comittee 0,783 54,5614 

Multi Schema Random Comittee 0,7923 55,2471 

Random Comittee Random Tree 0,783 54,5614 

Randomizable Fitered Classifer Random Comittee 0,8043 53,5075 

Random SubSpace Random Forest 0,6729 63,1086 

Regresiyon By Discretization Random Comittee 0,7793 64,1228 

Weighted Instances Handler 

Wrapper 
Random Comittee 0,7881 54,7878 

Input Maped Classifier Random Comittee 0,783 54,5614 
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Tablo 4.6 incelendiğinde tahmin algoritmasına sınıflandırma parametresi olarak Random 

Committee algoritmasının verilmesi ile en iyi tahmin sonucunun elde edildiği görülmüştür. 

LWL algoritması 0,8309 korelasyon katsayısı ve %50,4804 RAE hata payı ile en iyi tahmin 

sonucunu vermiştir. En iyi tahmin sonucunun elde edilebilmesi için seçilen algoritmanın 

özellikler penceresinden classifier özelliği için olabilecek bütün algoritmalar parametre olarak 

denenmiştir. COCOMONASA2 veri seti üzerinde en iyi tahmin sonucunun tahmin algoritması 

olarak LWL, classifier özelliğinin de Random Committee seçilmesi ile elde edildiği 

belirlenmiştir. 

4.2. WEKA ÖZNİTELİK SEÇİM ALGORİTMALARI İLE PERFORMANS 

DEĞERLENDİRMESİ 

Çalışmanın bu kısmında PROMISE veri deposundan alınan, Albrecht, Finnish, Kemerer, 

Maxwell, China, COCOMONASA ve Miyazaki94 veri setleri üzerinde öznitelik seçimi 

yapılarak yazılım maliyet tahmini yapılmıştır. Öznitelik seçimi, verilerin ön işlemden 

geçirildiği sırada sınıflandırıcının doğruluğunu ve performansını artırmak amacıyla ilgisiz ve 

gereksiz özniteliklerin atılması ve verilerin gürültüden temizlenmesi işlemidir. Öznitelik 

seçimi, mevcut özniteliklerin bir alt kümesini oluştururken veriler üzerinde herhangi bir 

dönüşüm gerçekleştirmez (Güven Aydın, 2021). Literatürde öznitelik seçimi için farklı 

yöntemler geliştirilmiştir. Bu yöntemlerin bazıları tezin önceki bölümlerinde açıklanmıştır. Bu 

çalışmada öznitelik seçim yöntemi olarak WEKA programı içerisinde bulunan CfsSubsetEval, 

arama metodu olarak GeneticSearch ve PSOSearch tercih edilmiştir. Oluşturulan bu modelde 

amaç, yazılım maliyet tahmini yapılırken kullanılan hazır veri setleri üzerinde öznitelik 

seçiminin maliyet tahminine olan etkisinin araştırılmasıdır. 

4.2.1. CfsSubsetEval Öznitelik Seçim Algoritması 

En etkili özniteliklerden oluşan öznitelik alt kümelerinin oluşturulması için WEKA ortamında 

bulunan CfsSubsetEval kullanılmıştır. CfsSubsetEval, öznitelik alt kümelerini korelasyona 

dayalı sezgisel değerlendirme işlevine göre sıralayan basit bir filtre algoritmasıdır. En iyi 

öznitelik alt kümesini korelasyon yardımı ile bulur. Bu algoritma sınıfla yüksek düzeyde ilişkili 

olan ve birbirleriyle ilişkisiz öznitelikler içeren alt kümeleri değerlendirir. Alakasız olan 

öznitelikler sınıfla düşük korelasyona sahip olacağından göz ardı edilir. Algoritma sınıfla 
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yüksek korelasyonlu, kendi aralarında düşük korelasyonlu öznitelikleri seçer. Bunu da arama 

algoritmalarına gönderdiği metrik ile yapar. CfsSubsetEval bir arama yöntemi değildir, bunun 

yerine arama algoritmalarına öznitelik alt kümesinin etkinliğini değerlendirmek için bir metrik 

önerir. Algoritmanın temelinde çıktı sınıfıyla yüksek oranda ilişkili ancak birbiriyle ilişkisiz 

özelliklere sahip iyi bir öznitelik alt kümesi oluşturmak yatmaktadır (Hall, 1999; Ebren Kara 

ve Şamlı, 2021). CfsSubsetEval, herhangi bir açgözlü veya meta-sezgisel arama yaklaşımıyla 

kullanılabilir. Bu çalışmada CfsSubsetEval, GeneticSearch ve PSOSearch algoritmaları ile 

kullanılmıştır. 

4.2.2. Albrecht, Finnish, Kemerer, Maxwell ve Miyazaki94 Veri Setleri Simülasyon 

Sonuçları 

Burada WEKA ortamında, PROMISE veri deposundan temin edilen Albrecht, Finnish, 

Kemerer, Maxwell ve Miyazaki94 veri setleri kullanılmıştır. Veri setlerine WEKA’da bulunan 

bazı algoritmalar ve Genetik Programlama uygulanmıştır. WEKA’nın en son sürümlerinde 

Genetik Programlama mevcut olmadığından Genetik Programlama’nın dâhil edilebilmesi için 

WEKA’nın 3.4.12 sürümü kullanılmıştır. WEKA ortamında bulunan algoritmalar varsayılan 

ayarlar ile veri setleri üzerinde iki şekilde çalıştırılmıştır. İlkinde, herhangi bir öznitelik seçimi 

yapılmadan ham veri seti üzerinden algoritmalar 10 kat çapraz doğrulama ile çalıştırılmıştır. 

İkincisinde, her veri seti üzerinde ilk önce GA kullanılarak öznitelik seçimi gerçekleştirilmiştir. 

Veri setlerine uygulanan öznitelik seçiminden sonra bazı öznitelikler (bulgular bölümünde 

seçilen öznitelikler verilmiştir.) veri setlerinden kaldırılmıştır. Genetik Programlama her 

çalıştırıldığında farklı bir sonuç vermektedir bu yüzden algoritmanın performans değerleri 

incelenirken farklı bir yöntem uygulanmıştır. GA olasılıksal, stokastik, küresel arama 

algoritmasıdır; bu nedenle her popülasyonun her bireyinin, her yürütme sırasında arama alanı 

boyunca farklı bir yörünge gerçekleştirmesi ve popülasyonun çoklu (alt) optimal çözümlere 

yaklaşması beklenmektedir. Bir GA’yı tekrar tekrar yürüterek bir dizi optimal çözüm 

toplanabilir. Algoritmanın performans değerlendirmesinde ortalama değeri hesaplamak 

yanlıştır çünkü benzer uygunluk değerine sahip iki alt optimal çözüm tamamen farklı bir yapıya 

sahip olabilir, böylece ortalama değer arama uzayının uygun olmayan bir bölgesine karşılık 

gelebilir (Ebren Kara ve Şamlı, 2021). Bundan dolayı Genetik Programlama 15 defa 

çalıştırılarak uygunluk değerine göre en uygun sonuç seçilmiştir. Albrecht veri setine 
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WEKA’nın select attributes menüsü altındaki CfsSubsetEval ve GeneticSearch uygulanarak 

öznitelik sayısı 8'den 3'e düşürülmüştür. GA uygulanarak Output, Inquiry, RawFPcounts 

öznitelikleri seçilmiştir. Bağımlı öznitelik olan Effort da eklenerek öznitelik sayısı 4 olarak 

belirlenmiştir. Algoritmalar veri seti üzerinde öznitelik seçimi yapılmadan ve seçim yapıldıktan 

sonra çalıştırılmıştır ve performans değerleri Tablo 4.7’de gösterilmiştir. 

Tablo 4.7: Albrecht veri setinde öznitelik seçimi. 

Albrecht veri seti 

ALGORİTMALAR Öznitelik seçimi yapılmadan önce 

GA ile öznitelik seçimi  

(öznitelik sayısı 8’den 3’e 

düşürüldüğünde) 

FONKSİYONLAR 
Korelasyon 

katsayısı 
MAE RAE (%) 

Korelasyon 

katsayısı 
MAE RAE (%) 

Gaussian Processes 0,6529 15,8737 77,8508 0,8847 21,7193 106,52 

Linear Regression 0,9062 8,9952 44,116 0,9286 8,2725 40,5716 

Multilayer Perceptron 0,7543 12,0558 59,1265 0,9351 7,2164 35,3922 

Simple Linear Regression 0,8598 9,9098 48,6014 0,8598 9,9098 48,6014 

SMOreg 0,8139 11,7115 57,4375 0,8986 10,2052 50,0501 

LAZY       

IBK 0,9406 6,1917 30,3663 0,9429 6,5333 32,042 

KStar 0,8518 8,5702 42,0317 0,934 6,9165 33,9211 

LWL 0,8741 9,5116 46,6483 0,9003 8,0443 39,4522 

META       

Additive Regression 0,8653 9,8845 48,4775 0,9162 7,1197 34,9177 

Bagging 0,8263 13,2655 65,0593 0,9082 11,1858 54,8594 

Random Committee 0,9611 5,8819 28,847 0,9474 5,9019 28,9454 

Randomizable Fitered 

Classifer 
0,9416 6,5083 31,9194 0,9495 6,525 32,0011 

RandomSubSpace 0,4334 14,3141 70,2019 0,6672 12,7241 62,4039 

RegresiyonByDiscretization 0,4337 16,1353 79,1337 0,8325 10,7695 52,818 

RULES       

Decision Table 0,6937 9,9449 48,7735 0,6894 9,9155 48,6296 

M5Rules 0,8921 8,0587 39,5231 0,8751 8,3984 41,189 

TREE       

Desicion Stump 0,5145 13,785 67,6072 0,8877 8,9221 43,7575 

M5P 0,8325 8,4905 41,6406 0,9422 7,0326 34,4907 

Random Forest 0,9406 7,6828 37,6795 0,9585 6,3113 30,953 

Random Tree 0,471 13,4589 66,0076 0,8631 9,2799 45,512 

REP Tree 0,5834 14,9504 73,3225 0,5425 14,7469 72,3244 

Genetic Programming 0,8595 11,378 15,7919 0,9035 15,277 74,927 

 

En iyi performansı, öznitelik seçimi yapılmadan önce Random Committee, seçim yapıldıktan 

sonra Random Forest göstermiştir. Öznitelik seçimi yapılmadan önce en kötü performansı 

RegresiyonByDiscretization gösterirken öznitelik seçimi yapıldıktan sonra en kötü performansı 

REP Tree algoritması göstermiştir. Genel olarak algoritmaların performans değerleri 

incelendiğinde öznitelik seçiminin yapılması bütün algoritmalarda olumlu bir etki yaratmıştır. 
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Tablo 4.8: Finnish veri setinde öznitelik seçimi. 

Finnish veri seti 

ALGORİTMALAR Öznitelik seçimi yapılmadan önce 

GA ile öznitelik seçimi  

(öznitelik sayısı 9’dan 4’e 

düşürüldüğünde) 

FONKSİYONLAR 
Korelasyon 

katsayısı 
MAE RAE (%) 

Korelasyon 

katsayısı 
MAE RAE (%) 

Gaussian Processes 0,8597 0,5691 55,6165 0,8443 0,5886 57,5203 

Linear Regression 0,9607 0,254 24,8268 0,9607 0,254 24,8268 

Multilayer Perceptron 0,9575 0,2297 22,4464 0,9853 0,1376 13,4468 

Simple Linear Regression 0,8811 0,4586 44,8219 0,8811 0,4586 44,8219 

SMOreg 0,962 0,2341 22,8759 0,9702 0,2213 21,6292 

LAZY       

IBK 0,7697 0,539 52,6711 0,934 0,3142 30,7074 

KStar 0,9889 0,1344 13,1344 0,9923 0,1127 11,0156 

LWL 0,8808 0,4707 46,0022 0,8934 0,4379 42,7989 

META       

Additive Regression 0,9467 0,3197 31,2479 0,9507 0,3009 29,4097 

Bagging 0,9801 0,1747 17,074 0,9857 0,1532 14,967 

Random Committee 0,9797 0,1743 17,0383 0,9922 0,1072 10,4756 

Randomizable Fitered 

Classifer 
0,8736 0,4171 40,7633 0,9396 0,311 30,3962 

RandomSubSpace 0,9239 0,3752 36,6703 0,9457 0,2945 28,7796 

RegresiyonByDiscretization 0,9748 0,216 21,1073 0,985 0,1899 18,5577 

RULES       

Decision Table 0,8788 0,3802 37,1524 0,8788 0,3802 37,1524 

M5Rules 0,9876 0,1414 13,8139 0,9833 0,1475 14,4124 

TREE       

Desicion Stump 0,8618 0,513 50,1362 0,8618 0,513 50,1362 

M5P 0,9692 0,2146 20,9732 0,9715 0,2158 21,0941 

Random Forest 0,9818 0,1649 16,1147 0,9942 0,0976 9,5354 

Random Tree 0,9029 0,3654 35,7136 0,9922 0,1072 10,4756 

REP Tree 0,9752 0,195 19,0542 0,9829 0,1779 17,3849 

Genetic Programming 0,2286 1,5542 151,8817 0,3959 1,322 129,1927 

 

Finnish veri setine, WEKA’nın select attributes menüsü altındaki CfsSubsetEval ve 

GeneticSearch uygulandığında veri setinde bulunan 9 öznitelikten 4 tanesi seçilmiştir. Bunlar 

dev.eff.hrs, FP, prod, lnsize öznitelikleridir. Öznitelik alt kümesine, bağımlı öznitelik olan lneff 

özniteliği de eklendiğinde öznitelik sayısı 5’e çıkmıştır. WEKA ortamında bulunan 

algoritmalar, Finnish veri setine öznitelik seçimi uygulanmadan önce ve öznitelik seçimi 

uygulandıktan sonra çalıştırılmıştır. Algoritmaların bulduğu tahmin sonuçları Tablo 4.8’de 

belirtilmiştir. Tablo 4.8 incelendiğinde, öznitelik seçiminden önce yapılan en iyi tahmin 

sonucunu KStar algoritması bulurken öznitelik seçiminden sonra en iyi tahmin sonucunu 

Random Forest algoritması bulmuştur. Veri setine uygulanan algoritmalar arasından Genetic 

Programming algoritması kötü bir performans sergilemiştir. 
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Tablo 4.9: Kemerer veri setinde öznitelik seçimi. 

Kemerer veri seti 

ALGORİTMALAR Öznitelik seçimi yapılmadan önce 

GA ile öznitelik seçimi  

(öznitelik sayısı 8’den 4’e 

düşürüldüğünde) 

FONKSİYONLAR 
Korelasyon 

katsayısı 
MAE RAE (%) 

Korelasyon 

katsayısı 
MAE RAE (%) 

Gaussian Processes 0,2401 173,4761 107,7937 0,2705 161,1668 100,145 

Linear Regression 0,3692 173,2407 107,6474 0,3425 190,2161 118,1955 

Multilayer Perceptron 0,3511 129,4589 80,4425 0,3277 150,4623 93,4935 

Simple Linear Regression 0,3516 173,231 107,6414 0,3516 173,231 107,6414 

SMOreg 0,5737 114,3301 71,0419 0,6946 96,4073 59,9051 

LAZY       

IBK 0,4665 142,054 88,2688 0,336 160,028 99,4374 

KStar 0,5589 134,6747 83,6835 0,6219 124,3199 77,2492 

LWL 0,6673 131,4466 81,6776 0,2476 170,0038 105,6361 

META       

Additive Regression 0,4744 146,6895 91,1492 0,4048 139,608 86,7489 

Bagging 0,1277 185,4463 115,2317 0,117 180,8072 112,3491 

Random Committee 0,3253 142,7104 88,6767 0,1869 169,0092 105,0181 

Randomizable Fitered 

Classifer 
0,689 121,1073 75,2531 0,4886 138,4607 86,036 

RandomSubSpace 0,0247 144,782 89,9639 -0,0377 148,1961 92,0854 

RegresiyonByDiscretization 0,2989 177,4283 110,2495 0,2962 177,4659 110,2729 

RULES       

Decision Table 0,102 144,9955 90,0966 0,3026 176,223 109,5005 

M5Rules 0,3244 182,0525 113,1229 0,3385 188,2263 116,9591 

TREE       

Desicion Stump 0,7835 138,6838 86,1746 0,2151 177,1265 110,062 

M5P 0,3291 176,3236 109,5631 0,3385 188,2263 116,9591 

Random Forest 0,3532 129,0567 80,1926 0,2925 143,9352 89,4377 

Random Tree -0,0271 250,9131 155,9111 0,329 163,9313 101,8628 

REP Tree -0,3027 195,5944 121,5375 -0,3027 195,5944 121,5375 

Genetic Programming 0,5299 207,0738 128,6705 0,6505 140,4516 87,2731 

 

Kemerer veri setine, WEKA’nın select attributes menüsü altındaki CfsSubsetEval ve 

GeneticSearch uygulandığında veri setinde bulunan 8 öznitelikten 4 tanesi seçilmiştir. Bunlar 

ID, Language, KSLOC, AdjFP öznitelikleridir. Öznitelik alt kümesine, bağımlı öznitelik olan 

EffortMM özniteliği de eklendiğinde öznitelik sayısı 5’e çıkmıştır. WEKA ortamında bulunan 

algoritmalar, Kemerer veri setine öznitelik seçimi uygulanmadan ve öznitelik seçimi 

uygulandıktan sonra çalıştırılmıştır. Algoritmaların bulduğu tahmin sonuçları Tablo 4.9’da 

belirtilmiştir. Tablo 4.9 incelendiğinde, öznitelik seçiminden önce en iyi tahmin sonucunu 

0,7835 korelasyon katsayısı ve %86,1746 RAE hata payı ile Desicion Stump algoritması 

bulmuştur. Öznitelik seçiminden sonra en iyi tahmin sonucunu SMOreg algoritması bulmuştur.  

Veri setine uygulanan algoritmalar arasından Random Tree algoritması öznitelik seçimi 
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yapılmadan önce en kötü tahmin sonucunu bulurken öznitelik seçimi yapıldıktan sonra en kötü 

tahmin sonucunu REP Tree algoritması bulmuştur.  

Tablo 4.10: Maxwell veri setinde öznitelik seçimi. 

Maxwell veri seti 

ALGORİTMALAR Öznitelik seçimi yapılmadan önce 

GA ile öznitelik seçimi  

(öznitelik sayısı 27’den 19’a 

düşürüldüğünde) 

FONKSİYONLAR 
Korelasyon 

katsayısı 
MAE RAE (%) 

Korelasyon 

katsayısı 
MAE RAE (%) 

Gaussian Processes 0,783 3925,0493 62,4734 0,787 3933,8702 62,6138 

Linear Regression 0,8085 4157,5897 66,1746 0,8544 3395,0666 54,0379 

Multilayer Perceptron 0,7641 4764,3788 75,8327 0,816 4146,3094 65,9951 

Simple Linear Regression 0,8023 3952,8465 62,9158 0,8023 3952,8465 62,9158 

SMOreg 0,8191 3812,9653 60,6894 0,818 3522,3771 56,0642 

LAZY       

IBK 0,463 5517,129 87,8139 0,7593 4494,6774 71,5399 

KStar 0,7336 4618,2302 73,5065 0,8596 4078,3244 64,913 

LWL 0,6089 5340,3849 85,0007 0,5866 5163,7796 82,1897 

META       

Additive Regression 0,6875 5233,4509 83,2987 0,6882 5212,0729 82,9584 

Bagging 0,7711 3949,1671 62,8573 0,7704 3898,5336 62,0514 

Random Committee 0,7875 3991,4994 63,531 0,6924 4238,3461 67,46 

Randomizable Fitered 

Classifer 
0,7402 4411,4194 70,2147 0,8235 4289,5323 68,2747 

RandomSubSpace 0,6696 4734,9648 75,3645 0,6474 4700,8192 74,821 

RegresiyonByDiscretization 0,5893 5419,5948 86,2615 0,6092 5217,0333 83,0374 

RULES       

Decision Table 0,3139 5355,5581 85,2422 0,417 5060,9465 80,553 

M5Rules 0,7497 3853,4535 61,3338 0,6528 4334,3177 68,9875 

TREE       

Desicion Stump 0,5893 5211,5585 82,9502 0,5893 5211,5585 82,9502 

M5P 0,8175 3718,2692 59,1822 0,8092 3685,2814 58,6571 

Random Forest 0,7612 3998,2174 63,638 0,7621 3827,5684 60,9218 

Random Tree 0,569 5686,9672 90,5171 0,4398 5223,2222 83,1359 

REP Tree 0,5801 4801,8161 76,4285 0,5781 4857,6179 77,3167 

Genetic Programming 0,618 7700,821 122,5708 0,4508 8906,4934 141,761 

 

 Maxwell veri setine WEKA’nın select attributes menüsü altındaki CfsSubsetEval ve 

GeneticSearch uygulandığında veri setinde bulunan 27 öznitelikten 19 tanesi seçilmiştir. Bunlar 

Syear, App, Har, Dba, Source, T01, T02, T04, T06, T07, T08, T09, T10, T11, T13, T14, 

Duration, Size, Time öznitelikleridir. Öznitelik alt kümesine, bağımlı öznitelik olan Effort 

özniteliği de eklendiğinde öznitelik sayısı 20’ye çıkmıştır. WEKA ortamında bulunan 

algoritmalar, Maxwell veri setine öznitelik seçimi uygulanmadan önce ve öznitelik seçimi 

uygulandıktan sonra çalıştırılmıştır. Algoritmaların bulduğu tahmin sonuçları Tablo 4.10’da 

belirtilmiştir. Tablo 4.10 incelendiğinde, öznitelik seçiminden önce yapılan en iyi tahmin 

sonucunu SMOreg algoritması bulurken, öznitelik seçiminden sonra en iyi tahmin sonucunu 
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KStar algoritması bulmuştur. Veri setine uygulanan algoritmalar arasından Decision Table 

algoritması en kötü performansı sergilemiştir. 

Tablo 4.11: Miyazaki94 veri setinde öznitelik seçimi. 

Miyazaki94 veri seti 

ALGORİTMALAR Öznitelik seçimi yapılmadan önce 

GA ile öznitelik seçimi  

(öznitelik sayısı 9’dan 3’e 

düşürüldüğünde) 

FONKSİYONLAR 
Korelasyon 

katsayısı 
MAE RAE (%) 

Korelasyon 

katsayısı 
MAE RAE (%) 

Gaussian Processes 0,5236 40,6054 107,9636 0,6259 40,1338 106,7099 

Linear Regression 0,2921 35,3558 94,0057 0,7525 25,0961 66,7267 

Multilayer Perceptron 0,7047 23,1496 61,5513 0,5197 39,5961 105,2801 

SMOreg 0,6797 24,5578 65,2955 0,7918 21,5708 57,3536 

LAZY       

IBK 0,4348 31,7511 84,4213 0,7265 29,6426 78,8151 

KStar 0,4618 30,737 81,7252 0,709 26,4487 70,3232 

LWL 0,5493 25,8851 68,8246 0,7979 23,9224 63,6062 

META       

Additive Regression 0,6603 24,1608 64,24 0,7883 24,1991 64,3417 

Bagging -0,3738 37,3717 99,3657 0,8862 24,33 64,6898 

Random Committee 0,6058 28,5917 76,0211 0,7023 26,8618 71,4216 

Randomizable Fitered 

Classifer 
0,3044 40,934 108,8375 0,6627 31,617 84,0649 

RandomSubSpace 0,4785 32,9529 87,6169 0,7174 25,3419 67,3804 

RegresiyonByDiscretization 0,5501 29,3266 77,9749 0,7638 26,075 69,3296 

RULES       

Decision Table 0,1314 36,1975 96,2438 0,1318 35,0326 93,1465 

M5Rules -0,3381 36,6399 97,4199 0,6715 28,6709 76,2317 

TREE       

Desicion Stump 0,5295 26,1019 69,4011 0,7643 25,1587 66,8931 

M5P -0,3381 36,6399 97,4199 0,7243 26,4012 70,1969 

Random Forest 0,6743 29,9249 79,5658 0,7833 21,9777 58,4354 

Random Tree 0,1814 40,9315 108,8307 0,6129 32,005 85,0966 

REP Tree -0,4942 37,6102 100 0,4737 26,5315 70,5432 

Genetic Programming 0,7579 38,001 101,039 0,6298 46,7985 124,4302 

 

Miyazaki94 veri setine WEKA’nın select attributes menüsü altındaki CfsSubsetEval ve 

GeneticSearch uygulandığında veri setinde bulunan 9 öznitelikten 3 tanesi seçilmiştir. Bunlar 

KLOC, FORM, FILE öznitelikleridir. Öznitelik alt kümesine, bağımlı öznitelik olan MM 

özniteliği de eklendiğinde öznitelik sayısı 4’e çıkmıştır. WEKA ortamında bulunan 

algoritmalar, Miyazaki94 veri setine öznitelik seçimi uygulanmadan önce ve öznitelik seçimi 

uygulandıktan sonra çalıştırılmıştır. Algoritmaların bulduğu tahmin sonuçları Tablo 4.11’de 

belirtilmiştir. Tablo 4.11 incelendiğinde, öznitelik seçiminden önce yapılan en iyi tahmin 

sonucunu Genetic Programming algoritması bulurken öznitelik seçiminden sonra en iyi tahmin 

sonucunu Bagging algoritması bulmuştur. Veri setine uygulanan algoritmalar arasından REP 
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Tree algoritması öznitelik seçiminden önce en kötü tahmin sonucunu bulurken öznitelik 

seçiminden sonra en kötü performansı Decision Table algoritması göstermiştir.  

4.2.3. Maxwell, China ve COCOMONASA Veri Setleri Simülasyon Sonuçları 

Tez çalışmasının bu kısmında, öznitelik seçim olarak GA ile PSO algoritmasının kullanılması 

sonucunda yazılım projelerinin maliyet tahmin sonuçları karşılaştırılmıştır. GeneticSearch ve 

PSOSearch evrimsel meta sezgisel arama algoritmalarıdır. Tez çalışması kapsamında kullanılan 

bütün veri setlerine CfsSubsetEval altında GeneticSearch ve PSOSearch algoritmaları öznitelik 

seçim yöntemi olarak uygulanmıştır. Amaç GA ve PSO algoritmaları sayesinde yazılım maliyet 

tahminini yapacak en etkili öznitelikleri belirlemektir. Veri setlerinden Albrecht, Finnish, 

Kemerer, Miyazaki94, COCOMO81 ve COCOMONASA2 öznitelk seçimi sonucunda aynı alt 

kümleri vermiştir. Bu veri setleri çalışmanın bu kısmına dâhil edilmemiştir. Maxwell, China ve 

COCOMONASA veri setlerine öznitelik seçim yöntemi olarak GA ile PSO algoritması 

uygulandığında farklı alt kümeler oluşturmuştur.  Bu veri setlerine MÖ algoritmaları 3 farklı 

şekilde uygulanmıştır. İlk önce ham veri setleri üzerinde herhangi bir öznitelik seçimi 

yapılmadan, algoritmalar 10 kat çapraz doğrulama ile çalıştırılmıştır, ikincisinde öznitelik 

seçimi olarak GA kullanılarak elde edilen özniteliklerle, üçüncüsünde öznitelik seçimi olarak 

PSO algoritması uygulanarak elde edilen özniteliklerle uygulanmıştır. Uygulamalar WEKA 

programında varsayılan ayarlar ile yapılmıştır. Elde edilen bulgular Tablo 4.12, Tablo 4.13 ve 

Tablo 4.14’te belirtilmiştir. 
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Tablo 4.12:  Maxwell veri setine farklı öznitelik yöntemlerinin uygulanması. 

Maxwell veri seti 

ALGORİTMALAR 
Öznitelik seçimi yapılmadan 

önce 

GA ile öznitelik seçimi 

(öznitelik sayısı 27’den 19’a 

düşürüldüğünde) 

PSO ile öznitelik seçimi 

(öznitelik sayısı 27’den 15’e 

düşürüldüğünde) 
FONKSİYONLAR Korelasyon 

katsayısı 
MAPE RAE 

(%) 
Korelasyon 

katsayısı 
MAPE RAE 

(%) 
Korelasyon 

katsayısı 
MAPE RAE 

(%) 
Gaussian Processes 0,783 1,0681 62,4734 0,787 1,0681 62,6138 0,8034 1,0562 60,6559 

Linear Regression 0,8085 1,0848 66,1746 0,8544 0,735 54,0379 0,835 0,8264 56,5191 

Multilayer Perceptron 0,7641 1,2569 75,8327 0,816 1,2322 65,9951 0,712 1,4635 82,3826 

Simple Linear Regression 0,8023 0,6863 62,9158 0,8023 0,6863 62,9158 0,8023 0,6863 62,9158 

SMOreg 0,8191 0,9379 60,6894 0,818 0,6903 56,0642 0,8361 0,5424 50,7562 

LAZY          

IBK 0,463 1,0379 87,8139 0,7593 0,987 71,5399 0,7432 0,9711 77,1675 

KStar 0,7336 0,8179 73,5065 0,8596 0,7644 64,913 0,85 0,5755 64,3137 

LWL 0,6089 1,3038 85,0007 0,5866 1,26 82,1897 0,6293 1,2116 77,2602 

META          

Additive Regression 0,6875 0,8649 83,2987 0,6882 0,8577 82,9584 0,6948 0,7775 79,4345 

Bagging 0,7711 0,9636 62,8573 0,7704 0,9397 62,0514 0,7738 0,9119 61,1296 

Random Committee 0,7875 0,8509 63,531 0,6924 0,8024 67,46 0,749 0,7249 61,4333 

Randomizable Fitered 

Classifer 
0,7402 0,7931 70,2147 0,8235 0,9866 68,2747 0,7588 0,9414 75,6192 

RandomSubSpace 0,6696 1,3822 75,3645 0,6474 1,2193 74,821 0,7885 1,2611 68,5983 

RegresiyonByDiscretization 0,5893 1,1059 86,2615 0,6092 1,1146 83,0374 0,4559 0,9882 92,8163 

RULES          

Decision Table 0,3139 1,1923 85,2422 0,417 0,8807 80,553 0,2688 1,1403 86,5602 

M5Rules 0,7497 0,9477 61,3338 0,6528 0,7843 68,9875 0,7265 0,8311 63,0235 

TREE          

Desicion Stump 0,5893 1,4398 82,9502 0,5893 1,4398 82,9502 0,5893 1,4398 82,9502 

M5P 0,8175 0,9478 59,1822 0,8092 0,7365 58,6571 0,834 0,8132 58,1623 

Random Forest 0,7612 1,0024 63,638 0,7621 0,8315 60,9218 0,7916 0,7674 58,1876 

Random Tree 0,569 1,0298 90,5171 0,4398 0,7481 83,1359 0,613 0,8036 81,9882 

REP Tree 0,5801 0,9835 76,4285 0,5781 1,0389 77,3167 0,5809 0,9821 76,2101 

 

Tablo 4.12 incelendiğinde Maxwell veri setine WEKA’nın select attributes menüsü altındaki 

CfsSubsetEval ve GeneticSearch uygulandığında veri setinde bulunan 27 öznitelikten 19 tanesi 

seçilmiştir. Seçilen öznitelikler Syear, App, Har, Dba, Source, T01, T02, T04, T06, T07, T08, 

T09, T10, T11, T13, T14, Duration, Size, Time olmuştur. Maxwell veri setine WEKA’nın select 

attributes menüsü altındaki CfsSubsetEval ve PSOSearch uygulandığında veri setinde bulunan 

27 öznitelikten 15 tanesi seçilmiştir. Seçilen öznitelikler Syear, Har, Dba, T02, T03, T07, T08, 

T09, T10, T11, T13, T14, Duration, Size, Time olmuştur. Tablo 4.12 incelendiğinde veri seti 

üzerinde öznitelik seçiminin yapılması algoritmaların çoğunda hata oranlarını düşürürken çok 

azında aynı kalmıştır. PSO algoritması uygulanarak elde edilen özniteliklerle yapılan tahmin 

sonuçları GA’ya göre çoğunlukla hata oranları daha düşük korelasyon katsayıları daha yüksek 

çıkmıştır.  
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Tablo 4.13: China veri setine farklı öznitelik yöntemlerinin uygulanması. 

China veri seti 

ALGORİTMALAR 
Öznitelik seçimi yapılmadan 

önce 

GA ile öznitelik seçimi 

(öznitelik sayısı 19’dan 9’a 

düşürüldüğünde) 

PSO ile öznitelik seçimi 

(öznitelik sayısı 19’dan 8’e 

düşürüldüğünde) 

FONKSİYONLAR 
Korelasyon 

katsayısı 
MAPE RAE(%) 

Korelasyon 

katsayısı 
MAPE RAE(%) 

Korelasyon 

katsayısı 
MAPE RAE(%) 

Gaussian Processes 0,9532 2,0857 43,9852 0,9534 2,1105 44,6892 0,9516 2,1247 45,5934 
Linear Regression 0,9889 0,2253 9,809 0,9859 0,241 11,1281 0,986 0,2023 10,6966 

Multilayer 

Perceptron 
0,9733 0,274 12,4698 0,9746 0,2834 13,4426 0,9767 0,3436 13,8993 

Simple Linear 

Regression 
0,9833 0,1447 11,1943 0,9833 0,1447 11,1943 0,9833 0,1447 11,1943 

SMOreg 0,9897 0,0967 7,3095 0,9847 0,1318 9,6896 0,9853 0,1366 9,7544 

LAZY          

IBK 0,8918 0,6125 42,4638 0,9076 0,6515 39,0501 0,9081 0,7697 40,5442 

KStar 0,9646 0,1902 16,9892 0,9726 0,1733 14,6867 0,9717 0,1931 14,2883 

LWL 0,8351 2,1625 59,5587 0,848 2,109 57,5662 0,8484 2,1304 57,7314 

META          

Additive Regression 0,9336 0,7246 31,5019 0,9426 0,6305 28,5508 0,9426 0,6305 28,5508 

Bagging 0,9605 0,192 13,8374 0,9596 0,1924 14,0416 0,9597 0,1923 14,035 

Random Comittee 0,9474 0,2595 18,3457 0,9555 0,2485 16,3949 0,96 0,2726 17,5369 

Randomizable 

Fitered Classifer 
0,9669 0,2735 17,9285 0,9516 0,3073 21,2019 0,9293 0,4459 27,1662 

Random SubSpace 0,9383 0,4835 22,9068 0,9395 0,6165 25,5068 0,9023 0,9952 37,729 

Regresiyon By 

Discretization 
0,9519 1,5141 36,5418 0,9423 1,5147 37,3399 0,9426 1,5142 37,2662 

RULES          

Decision Table 0,9292 1,4551 36,0382 0,9292 1,4551 36,0382 0,9292 1,4551 36,0382 

M5 Rules 0,977 0,1237 11,1973 0,9762 0,1457 11,2756 0,9763 0,1257 10,9405 

TREE          

Desicion Stump 0,8155 2,3497 62,2355 0,8155 2,3497 62,2355 0,8155 2,3497 62,2355 

M5P 0,9842 0,1239 10,6158 0,984 0,1452 10,8488 0,9832 0,1243 10,5864 

Random Forest 0,9591 0,2522 15,0747 0,9584 0,2557 15,6308 0,9602 0,2943 15,7784 

Random Tree 0,9283 0,3468 25,4871 0,8726 0,3424 28,5588 0,9155 0,3184 23,5675 

REP Tree 0,9597 0,2108 15,0204 0,9595 0,2112 15,1243 0,9595 0,2112 15,1243 

 

Tablo 4.13 incelendiğinde China veri setine WEKA’nın select attributes menüsü altındaki 

CfsSubsetEval ve GeneticSearch uygulandığında veri setinde bulunan 19 öznitelikten 9 tanesi 

seçilmiştir.  Seçilen öznitelikler ID, Input, Output, Enquiry, File, PDR_UFP, Resource, 

Duration, N_effort olmuştur. China veri setine WEKA’nın select attributes menüsü altındaki 

CfsSubsetEval ve PSOSearch uygulandığında veri setinde bulunan 19 öznitelikten 8 tanesi 

seçilmiştir. Seçilen öznitelikler S ID, Input, Output, Enquiry, File, Resource, Duration, N_effort 

olmuştur. Tablo 4.13 incelendiğinde veri seti üzerinde öznitelik seçiminin yapılması 

algoritmaların çoğunda hata oranlarını yükseltmiştir çok azında düşürmüştür. GA uygulanarak 

elde edilen özniteliklerle yapılan tahmin sonuçları PSO’ya göre çoğunlukla hata oranları daha 

düşük korelasyon katsayıları daha yüksek çıkmıştır. 
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Tablo 4.14: COCOMONASA veri setine farklı öznitelik yöntemlerinin uygulanması. 

COCOMONASA veri seti 

ALGORİTMALAR 
Öznitelik seçimi yapılmadan 

önce 

GA ile öznitelik seçimi yapılmış 

(öznitelik sayısı 17’den 9’a 

düşürüldüğünde) 

PSO ile öznitelik seçimi yapılmış 

(öznitelik sayısı 17’den 11’e 

düşürüldüğünde) 

FONKSİYONLAR 
Korelasyon 

katsayısı 
MAPE 

RAE 

(%) 

Korelasyon 

katsayısı 
MAPE 

RAE 

(%) 

Korelasyon 

katsayısı 
MAPE 

RAE 

(%) 

Gaussian Processes 0,6387 1,56 62,5047 0,6944 1,48 57,7443 0,6713 1,5587 60,4186 

Linear Regression 0,7994 1,6558 57,2976 0,7648 1,7583 64,4223 0,7396 1,6606 78,7732 

Multilayer 

Perceptron 
0,8931 0,8211 41,6205 0,8879 0,7268 39,8792 0,8956 0,8134 37,607 

SMOreg 0,719 1,091 57,6118 0,7508 0,9574 55,5536 0,6767 1,0759 66,3008 

LAZY          

IBK 0,5768 0,8978 68,5184 0,555 0,9121 68,4662 0,5504 0,9553 69,8675 

KStar 0,6772 0,4592 51,1294 0,7759 0,3837 47,6889 0,7592 0,388 45,8587 

LWL 0,5768 0,8978 68,5184 0,7535 1,9057 58,8065 0,748 1,8329 62,0653 

META          

Additive Regression 0,8255 0,7546 46,4632 0,7874 0,7885 52,1701 0,7843 0,8284 53,4854 

Bagging 0,8083 0,8773 42,921 0,8154 0,8181 42,4936 0,8103 0,8849 43,4221 

Random Comittee 0,8059 0,8793 51,5926 0,8707 0,5988 41,9377 0,8573 0,6216 43,9109 

Randomizable 

Fitered Classifer 
0,8059 0,8793 51,5926 0,8274 0,3668 43,3872 0,7833 0,4755 49,2079 

Random SubSpace 0,8617 2,3585 59,786 0,7872 2,049 58,2429 0,7274 2,3334 58,8354 

Regresiyon By 

Discretization 
0,8179 1,0923 48,1966 0,7511 1,1789 56,6852 0,7514 1,1809 56,6425 

RULES          

Decision Table 0,4577 0,7835 60,5639 0,5317 0,83 59,0642 0,5455 0,7426 55,4483 

M5 Rules 0,9152 0,9188 36,4397 0,9064 1,0434 40,1402 0,9042 1,0982 41,5366 

TREE          

Desicion Stump 0,6981 2,4527 70,3256 0,6981 2,4527 70,3256 0,6981 2,4527 70,3256 

M5P 0,922 0,9282 35,0178 0,9118 1,0348 38,9148 0,9021 1,0907 40,8145 

Random Forest 0,8196 0,8406 49,0968 0,8441 0,7052 45,5941 0,7992 0,7495 47,172 

Random Tree 0,7029 1,0006 59,0168 0,7659 0,521 46,3355 0,674 1,0309 59,8381 

REP Tree 0,594 1,4896 67,0803 0,5991 1,4835 66,3495 0,5938 1,49 67,0666 

 

Tablo 4.14 incelendiğinde COCOMONASA veri setine WEKA’nın select attributes menüsü 

altındaki CfsSubsetEval ve GeneticSearch uygulandığında veri setinde bulunan 17 öznitelikten 

9 tanesi seçilmiştir. Seçilen öznitelikler RELY, DATA, TIME, STOR, VIRT, TURN, LEXP, 

TOOL, LOC olmuştur. COCOMONASA veri setine WEKA’nın select attributes menüsü 

altındaki CfsSubsetEval ve PSOSearch uygulandığında veri setinde bulunan 17 öznitelikten 11 

tanesi seçilmiştir.  Seçilen öznitelikler RELY, DATA, TIME, STOR, VIRT, TURN, VEXP, 

LEXP, MODP, TOOL, LOC olmuştur. Tablo 4.13 incelendiğinde veri seti üzerinde GA 

uygulanarak öznitelik seçiminin yapılması algoritmaların çoğunda korelasyon katsayısını 

yükseltmiş ve hata oranlarını düşürmüştür. GA uygulanarak elde edilen özniteliklerle yapılan 

tahmin sonuçları PSO’ya göre çoğunlukla hata oranları daha düşük korelasyon katsayıları daha 

yüksek çıkmıştır. 
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4.3. BULGULARIN KARŞILAŞTIRILMASI 

Bu bölümde, Yapay Zekâ tabanlı yazılım maliyet tahmini yapan çalışmaların geniş bir literatür 

taraması yapılmıştır. Araştırılan çalışmaların incelenmesi sonucunda elde edilen analizler Tablo 

4.15’te sunulmuştur. Mevcut çalışmalar, yazılım maliyet tahmin yöntemine, kullandıkları veri 

setlerine, öznitelik seçimi yapıp yapmadıklarına ve değerlendirme ölçütlerine göre 

karşılaştırılmıştır. Yapay Zekâ tabanlı yazılım maliyet tahmini yapan çalışmalarda çoğunlukla 

performans değerlendirme ölçütü olarak; korelasyon katsayısı, MMRE, MAPE, MAE, RAE, 

RMSE, PRED’i kullandıkları tespit edilmiştir.  

Bu bölümün temel amacı, araştırmacılara yazılım maliyet tahmininde hangi Yapay Zekâ 

yönteminin umut verici doğruluk tahmini yaptığını öğrenmesine yardımcı olmaktır. Dolayısıyla 

litaratür taraması sonucunda elde edilen bu analiz tablosu araştırmacılara önemli bir kaynak 

oluşturacaktır. 

Tablo 4.15 incelendiğinde, Yapay Zekâ tabanlı yazılım maliyet tahmini çalışmalarının çok 

eskilere dayandığı görülmektedir. Özellikle YSA alanında yapılan çalışmalar literatürde geniş 

bir yer almaktadır. Regresyon tabanlı tahmin yöntemleri de yazılım maliyet tahmininde sık 

kullanılan yöntemler arasındadır. Yazılım maliyet tahmininde kullanılan veri setleri tahmin 

doğrulunu etkilemektedir. Yapılan çalışmaların çoğu yazılım maliyet tahmin yöntemini test 

etmek için hazır veri setlerini kullanmaktadır. Daha eski çalışmalar incelendiğinde yazılım 

maliyet tahmini yapıldığında öznitelik seçimine çok önem verilmediği görülmektedir. Bu tez 

çalışmasında yazılım maliyet tahmininde kullanılan hazır veri setleri üzerinde öznitelik 

seçiminin yapılması tahmin doğruluğunu olumlu yönde etkilediği tespit edilmiştir.  
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Tablo 4.15: Yapay Zekâ tabanlı yazılım maliyet tahmini yapan çalışmaların analizi.  

 
Referans Yöntem Veri seti ÖS MMRE MAE RAE (%) Korelasyon 

Deng ve diğ., 2011 KNN Desharnais ✓ 0,36    

Wittig and Finnie, 1997 
YSA ASMA projeleri X 0,29    

YSA Desharnais X 0,17    

Marapelli, 2019 Doğrusal Regresyon 

COCOMO81 X  874,477 96,3751 0,6102 

COCOMONASA X  247,0465 57,2976 0,7994 

COCOMONASA2 X  430,7269 66,6849 0,7294 

Marapelli, 2019 KNN 

COCOMO81 X  782,5524 86,2442 0,0768 

COCOMONASA X  295,4267 68,5184 0,5768 

COCOMONASA2 X  445,7796 69,0154 0,659 

Finnie ve diğ., 1997 
YSA 299 proje verisi X 0,352    

Doğrusal Regresyon 299 proje verisi X 0,623    

Oliveira, 2005 
YSA NASA18 X 0,187    

Destek Vektör Regresyon NASA18 X 0,179    

Stamelosa ve diğ., 2003 Doğrusal Regresyon ISBSG sürüm 6 X 0,23    

Sentas ve diğ., 2005 Basit Doğrusal Regresyon ISBSG sürüm 7 X 0,3598    

Karataş, 2011 YSA COCOMO81 X 0,41    

Idri ve diğ., 2002 YSA COCOMO81 X 0,8435    

Ayyıldız, 2007 YSA YEEM X 0,09    

Sandhu ve diğ., 2008 Bulanık Model NASA18 X 0,11943    

Adailer, 2008 
Doğrusal Regresyon ISBSG sürüm 9 X 0,023    

YSA ISBSG sürüm 9 X 0,047    

Malhotra ve Jain, 2011 

Doğrusal Regresyon China ✓ 0,1797 1981,48 54,16 0,79 

SVM China ✓ 0,2563 1774,36 48,49 0,81 

YSA China ✓ 1,4379 2561,00 71,50 0,75 

Karar Ağacı China ✓ 0,1706 1173,43 32,02 0,93 

Torbalama China ✓ 0,7423 1668,03 45,79 0,83 

Singh ve Kumar, 2020 

Doğrusal Regresyon Desharnais ✓  2013,7987  0,7673 

Multilayer Perceptron Desharnais ✓  2742,0907  0,6843 

RastgeleAğaç Desharnais ✓  2148,8052  0,6496 

Başkeleş ve diğ., 2007 

Çok Katmanlı Perseptron COCOMO81 ✓ 0,9173    

Destek Vektör Regresyon COCOMO81 ✓ 0,3328    

Karar Ağacı COCOMO81 ✓ 0,3312    

Attarzadeh ve OW, 2010 Bulanık Model COCOMO81 X 0,366    

Lefley ve Shepperd, 2003 

EKK Regresyon Finnish veri seti X 0,469   0,846 

Genetik Programlama Finnish veri seti X 0,376   0,937 

YSA Finnish veri seti X 0,688   0,806 

 

ÖS: Öznitelik Seçimi, gösterim ✓: evet, X: hayır. 

Bu tez çalışması kapsamında her bir veri setine uygulanan MÖ algoritmalarının bulduğu en iyi 

yazılım maliyet tahmin sonucu, literatüredeki çalışmalar ile karşılaştırılması için, Tablo 4.16’da 

verilmiştir. Bunların dışında daha kötü tahmin sonuçları da mevcuttur.  
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Tablo 4.16: Her bir veri seti üzerinde yapılan en iyi tahmin sonucu. 

 

Veri Seti Yöntem MAPE MAE RAE(%) Korelasyon 

Albrecht Random Committee 0,8487 5,8819 28,847 0,9611 

China SMOReg 0,0967 270,4561 7,3095 0,9897 

COCOMO81 Additive Regression 3,1646 471,6203 51,9767 0,8095 

COCOMONASA M5P 0,9282 150,9841 35,0178 0,922 

COCOMONASA2 LWL 0,9994 332,7218 51,5118 0,8183 

Finnish Random Forest 0,0124 0,0976 9,5354 0,9942 

Kemerer SMOreg 0,4229 96,4073 59,9051 0,6946 

Maxwell SMOreg 0,5424 3188,8894 50,7562 0,8361 

Miyazaki94 Bagging 0,7269 24,33 64,6898 0,8862 

 

Bu tez çalışmasında 9 farklı veri seti üzerinde çalışılmıştır. Bu sayı diğer çalışmalarda 

kullanılan veri setleri sayısından daha fazladır. Literatürdeki çalışmalar incelendiğinde çoğu 

çalışmada kullanılan veri setleri üzerinde öznitelik seçiminin dikkate alınmadığı görülmektedir. 

Bu çalışmada öznitelik seçiminin hazır veri setleri üzerindeki önemi vurgulanmış ve yazılım 

maliyet tahmini gerçekleştirilmeden önce veri setleri üzerinde öznitelik seçimi yapılmıştır. Veri 

setleri üzerinde öznitelik seçimi yapılmadan önce ve öznitelik seçimi yapıldıktan sonra 25 MÖ 

algoritması farklı senaryolarda çalıştırılmıştır. Bu sayı literatürdeki diğer çalışmalardan daha 

fazladır. Bu durum, bu alanda çalışacak araştırmacılara geniş bir bakış açısı sağlamaktadır. 

Yazılım maliyet tahmini gerçekleştirildiğinde hata oranlarının literatürdeki çalışmalar ile 

karşılaştırılması için birçok değerlendirme ölçütü ele alınmıştır. Bunlar Korelasyon katsayısı, 

MAE, RMSE, RAE, RRSE ve MAPE olmuştur. Diğer çalışmalarda bu kadar değerlendirme 

ölçütü ele alınmamıştır. 

Bu çalışmanın amacı Yapay Zekâ alanında yazılım maliyet tahmini gerçekleştirmek 

olduğundan iyi ve kötü tahmin sonuçları elde etmek ve bunları değerlendirmek olası bir 

sonuçtur. Bu durum araştırmacılara karşılaştırma yapmaları açısından kapsamlı bir kaynak 

oluşturacaktır.  
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5. TARTIŞMA VE SONUÇ 

 Yazılım maliyet tahmini, yazılım geliştirme projelerinin en mühim aşamalarından biridir. 

Yazılımın soyut olması ve birçok bilinmeyeni içermesi yazılım geliştirme sürecini hem 

zorlaştırmakta hem de süreç zaman almaktadır. Günümüzde gelişen teknoloji ile paralel olarak 

yazılımlar daha çok önem kazanmakta ve ihtiyaçlara cevap verebilmesi için daha karmaşık 

yazılımlar geliştirilmektedir. Yanlış yapılan yazılım maliyeti ve zaman tahminleri yazılım 

projelerinin başarısızlıkla sonuçlanmasına sebep olmaktadır. Bu yüzden yazılım maliyet 

tahmininin doğruluğunu artırmak için birçok yazılım maliyet tahmin yöntemi geliştirilmiştir.  

Bu tahmin yöntemlerinden biri de Yapay Zekâ yöntemleridir.   

 

Bu tez çalışmasında yazılım projelerinin maliyet tahmini için, Yapay Zekâ yöntemlerinden, 

MÖ algoritmaları kullanılarak üç farklı model geliştirilmiştir. Geliştirilen her bir model farklı 

veri setleri üzerinde uygulanmıştır. Yazılım maliyet tahmininde kullanılan veri setlerinin 

öznitelikleri, tahmin doğruluğunu önemli ölçüde etkilemektedir. Yazılım maliyetini 

tahminleme sürecinde öznitelik seçiminin göz ardı edilmesi tahmin sonucunu olumsuz yönde 

etkilediği tespit edilmiştir. Tez çalışmasında yazılım maliyet tahmini için öznitelik seçimi 

CfsSubsetEval ile birlikte GeneticSearch ve PSOSearch arama algoritmaları kullanılarak 

yapılmıştır. Bu sayede öznitelik seçiminin yazılım maliyet tahmin doğruluğunu nasıl 

iyileştirdiği görülmüştür.  

 

İlk geliştirilen model COCOMO81, COCOMONASA ve COCOMONASA2 veri setleri 

üzerinde WEKA programında bulunan MÖ algoritmaları kullanılarak iki farklı şekilde 

gerçekleştirilmiştir. Birinci bölümde; WEKA programında bulunan algoritmaların varsayılan 

ayarları tercih edilmiş şekilde yapılan simülasyonlarda COCOMO81 veri setinde en iyi tahmini 

Additive Regression algoritması, en kötü tahmini REP Tree algoritması;  COCOMONASA veri 

setinde en iyi tahmini M5P algoritması, en kötü tahmini Decision Table algoritması; 

COCOMONASA2 veri setinde en iyi tahmini LWL algoritması, en kötü tahmini Decision 

Table algoritması sunmuştur. İkinci bölüm; kendi parametrelerine ek olarak başka bir 

sınıflandırıcı ve onun paremetrelerini alan algoritmalar için farklı parametreler girilerek bütün 

olasılıklar denenmiştir. COCOMO81 veri setinde en iyi tahmini Random Committee 
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algoritması, en kötü tahmini Random SubSpace algoritması; COCOMONASA veri setinde en 

iyi tahmini M5P algoritmasının parametre olarak verilmesi ile Additive Regression algoritması, 

en kötü tahmini Random SubSpace algoritması; COCOMONASA2 veri setinde en iyi tahmini 

LWL algoritmasına parametre olarak verilen Random Committee algoritması, en kötü tahmini 

Random SubSpace algoritması sunmuştur. Geliştirilen ikinci modelde Albrecht, Finnish, 

Kemerer, Maxwell ve Miyazaki94 veri setleri kullanılmıştır. Veri setleri üzerinde WEKA 

programında bulunan MÖ algoritmaları iki şekilde çalıştırılmıştır. İlkinde ham veri seti 

üzerinde çalıştırılan algoritmalar, daha sonra veri setlerine öznitelik seçimi yapılarak tekrar 

çalıştırılmıştır. Sonuçlar incelendiğinde GA kullanılarak veri setleri üzerinde öznitelik 

seçiminin yapılması yazılım maliyet tahminini olumlu yönde etkilediği görülmüştür.  

Bu çalışmada ayrıca WEKA’nın eski sürümünde bulunan Genetik Programlama da yazılım 

maliyet tahmini için kullanılmıştır. Analiz sonuçları incelendiğinde Genetik Programlamanın 

yazılım maliyet tahmininde başarılı bir şekilde kullanılabildiği gözlemlenmiştir. Üçüncü 

geliştirilen modelde Maxwell, China ve COCOMONASA2 veri setleri üzerinde yazılım maliyet 

tahmini gerçekleştirilmiştir. Veri setleri üzerinde WEKA ortamında bulunan MÖ algoritmaları 

üç şekilde çalıştırılmıştır. İlkinde algoritmalar ham veri setleri üzerinde varsayılan ayarlarla 

çalıştırılmıştır. İkincisinde veri setleri üzerinde CfsSubsetEval ile birlikte GeneticSearch arama 

algoritmasıyla öznitelik seçimi yapılmıştır. Elde edilen öznitelik alt kümesiyle yazılım maliyet 

tahmini yapılmıştır. Üçünsünde veri setleri üzerinde CfsSubsetEval ile birlikte PSOSearch 

arama algoritmasıyla öznitelik seçimi yapılmıştır. Elde edilen öznitelik alt kümesiyle yazılım 

maliyet tahmini yapılmıştır. China veri seti üzerinde yapılan yazılım maliyet tahmini test 

sonuçları incelendeğinde ham veri seti üzerinde yapılan tahmin sonucunun hem GA hem de 

PSO algoritması ile elde edilen öznitelik alt kümesiyle yapılan tahmin sonuçları arasında çok 

büyük bir fark olmadığı görülmüştür. Maxwell ve COCOMONASA veri setleri üzerinde 

öznitelik seçiminin yapılması yazılım maliyet tahminindeki hata oranlarını düşürmüştür. 

Maxwell veri setinde GA ile elde edilen öznitelik alt kümesiyle yapılan tahmin sonuçlarının 

hata oranları daha düşük çıkmıştır.  COCOMONASA veri seti üzerinde PSO algoritması ile 

elde edilen öznitelk alt kümesiyle yapılan tahmin sonuçlarının hata oranları daha düşük 

çıkmıştır.   
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Bu çalışmada WEKA programı ile MÖ algoritmalarının PROMISE veri deposunda bulunan 

China, COCOMO81, COCOMONASA, COCOMONASA2, Albrecht, Finnish, Kemerer, 

Maxwell ve Miyazaki94 veri setleri kullanılarak yazılım maliyet tahmininde gösterdikleri 

performanslar incelenmiştir. Tahmin sonuçları incelendiğinde, algoritmaların hata oranlarının 

ve korelasyon katsayılarının uygulandıkları veri setlerine göre değişkenlik gösterdiği 

belirlenmiştir. Bir algoritmanın her zaman en iyi sonucu üretmediği, bazı algoritmaların bazı 

veri setlerinde çok iyi sonuçlar üretirken farklı parametrelerle ve farklı veri setlerinde kötü 

sonuçlar verebileceği gözlemlenmiştir. Ayrıca veri setlerindeki özniteliklerin, öznitelikleri 

belirlemek için kullanılan öznitelik seçim yönteminin tahmin sonucunu çok etkilediği fark 

edilmiştir. Performans değerleri incelendiğinde yazılım maliyet tahmini için kullanılan veri 

setleri üzerinde öznitelik seçiminin yapılması, genel olarak MÖ algoritmalarında iyileştirici 

sonuçların elde edilmesini sağladığı görülmüştür. Yazılım projelerinin maliyet tahmini için 

kullanılan hazır veri setleri kullanılmadan önce veri setlerinde öznitelik seçiminin yapılması 

maliyet tahmininin doğruluk oranını artıracağı sonucuna varılmıştır. 

 

Bu çalışmada, literatürde ilk kez bu kadar çok sayıda MÖ algoritmasıyla yazılım maliyet 

tahmini gerçekleştirilmiştir. MÖ evrimsel tabanlı algoritmalarla öznitelik seçimi yapılmış ve 

yazılım maliyet tahmini için Genetik Programlama kullanılmıştır. Bu çalışma sayesinde yazılım 

maliyet tahmini için hangi MÖ algoritmasının kullanılabileceği, bu algoritmaların ilgili veri 

setlerine uygulandığında tahmin sonuçlarının neler olabileceği ve en iyi çalışan algoritmaların 

hangileri olduğu bilgisine ulaşılmıştır.  

 

Bu alanda çalışmak isteyen araştırmacılar; farklı metodolojide hazırlanmış yazılım projelerinin 

veri setleri üzerinde öznitelik seçim yöntemlerini uygulayarak yazılım maliyet tahmini 

gerçekleştirebilir. GA ve BM gibi Yapay Zekâ’nın diğer yöntemlerinden melez sistemler 

oluşturarak yazılım projelerinin maliyet tahmini için farklı modeller geliştirebilir. 
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EKLER 

EK 1. SÖZLÜK 

Additive Regression : Toplamsal Regresyon 

Artificial Neural Networks : Yapay Sinir Ağları 

Associate : İlişki Kurma 

Attribute Selected Classifier : Öznitelik Seçici Sınıflandırıcı 

Australian Software Metrics Association : Avustralya Yazılım Metrikleri Birliği 

Automated Production : Otomatik Kod Üretimi 

Bagging : Torbalama 

Bottom – Up : Aşağıdan Yukarıya 

Choose : Seç 

Classification : Sınıflandırma 

Clustering : Kümeleme 

Computer and Thought : Bilgisayar ve Düşünce 

Computer Vision : Bilgisayarlı Görme 

Confusion Matrix : Karışıklık Matrisi 

Correctly Classified Instance : Doğru Yerleştirme Başarısı 

Correlation Coefficient : Korelasyon Katsayısı 

Cross Validation Parameter Selection : Çapraz Doğrulama Parametre Seçimi 

Desicion Stump : Karar Kütüğü 

Desicion Table : Karar Ağacı 

Development Schedule Constraint : Geliştirme Takvimi Kısıtı 

Expert Systems : Uzman Sistemler 

Facilities : Araç Gereçler 

Forecasting : Tahminleme 

Functions : Fonksiyonlar 

Future Selection : Öznitelik Seçimi 

Fuzzy Logic : Bulanık Mantık 

Gaussian Process : Gauss Süreçleri 

General Public Licence : Genel Kamu Lisansı 

Genetic Algorithms : Genetik Algoritmalar 

Genetic Programming : Genetik Programlama 

Genetic Search : Genetik Arama 

Global Best : Küresel En İyi 

Heuristic : Sezgisel 

Hybrid Systems : Melez Sistemler 

Input Mapped Classifier : Giriş Eşlemeli Sınıflandırıcı 

International Software Benchmarking 

Standards Group 

: Uluslararası Yazılım Kıyaslama standart 

Grubu 

K-Nearest Neighbours Classifier : K-En Yakın Komşu Sınıflandırıcı 

Kstar : Kyıldız 

Laboratory For Interchange Fuzzy 

Engineering 

: Değişim Bulanık Mühendislik 

Laboratuvarı 
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Lazy Classifier : Tembel Sınıflandırıcılar 

Linear Regression  : Doğrusal Regresyon 

Locally Weighted Learning : Yerel Ağırlıklı Öğrenme 

Machine Learning : Makine Öğrenmesi 

Mean Absolute Error : Ortalama Mutlak Hata 

Mean Absolute Percentage Error : Ortalama Mutlak Hata Yüzdesi 

Mean Magnitude Of Relative Error : Göreceli Hatanın Ortalama Büyüklüğü 

Multilayer Perceptron : Çok Katmanlı Algılayıcı 

Multi Scheme : Çoklu Şema 

Particle Swarm Optimization : Parçacık Sürü Optimizasyonu 

Personal Experience : Personel Deneyimi 

Personel Best : Kişisel En İyi 

Personnel Capability : Personel Yeteneği 

Platform Difficulty : Platform Zorluğu 

Prediction Accuracy : Tahmin doğruluğu 

Pre-Processing : Veri Ön İşleme 

Price – To – Win : Kazanmak İçin Fiyat  

Product Reliability and Complexity : Ürün Doğruluğu ve Karmaşıklığı 

Randomizable Filtered Classifier : Randomize Edilebilir Filtreli 

Sınıflandırıcı 

Random Tree : Rastgele Ağaç 

Random Sub Space : Rastgele Alt Boşluk 

Random Committee : Rastgele Komite 

Random Forest : Rastgele Orman 

Rep Tree : Rep Ağacı 

Regression By Discretization : Ayrıklaştırma İle Regresyon 

Reinforcement Learning : Pekiştirici, Yarı Eğiticili Öğrenme 

Relative Absulate Error : Bağıl Mutlak Hata 

Robotics : Robotik 

Root Mean Squared Error : Kök Ortalama Kare Hata 

Root Relative Squared Error : Kök Ortalama Kare Hata 

Rules : Kurallar 

Segmentation : Bölütleme 

Simple Linear Regression : Basit Doğrusal Regresyon 

Simulated Annealing  : Tavlama Benzetimi 

Soft Computing : Esnek Hesaplama 

Speech Recognition : Konuşma Tanıma 

Stacking : İstifleme 

Supervised Learning : Eğiticili Öğrenme 

Top – Down : Yukarıdan Aşağıya 

Travelling Salesman Problem : Gezgin Satıcı Problemi 

Tree : Ağaç 

University of South California : Güney Kalforniya Ünviersitesi 

Unsupervised Learning : Eğiticisiz Öğrenme 

Visualize : Görselleştirme 

Vote : Oylama 
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Weighted Instances Handler Wrappler : Ağırlıklı Örnek İşleyici Sarmalayıcı 

World Health Organization : Dünya Sağlık Örgütü 

 

 




