

İSTANBUL-2022

DOKTORA TEZİ

YAPAY ZEKÂ YÖNTEMLERİ İLE YAZILIMLARIN

MALİYETLERİNİN TAHMİN EDİLMESİ

Şükran EBREN KARA

Bilgisayar Mühendisliği Programı

Bilgisayar Mühendisliği Anabilim Dalı

DANIŞMAN

Prof. Dr. Rüya ŞAMLI

T.C.

İSTANBUL ÜNİVERSİTESİ-CERRAHPAŞA

LİSANSÜSTÜ EĞİTİM ENSTİTÜSÜ

Bu çalışma, Tarih girmek için burayı tıklatın. tarihinde aşağıdaki jüri tarafından,

....................nda olarak kabul edilmiştir.

Tez Jürisi

Prof. Dr. Rüya ŞAMLII(Danışman)

İstanbul Üniversitesi-Cerrahpaşa

Mühendislik Fakültesi

Prof. Dr. Ahmet SERTBAŞI

İstanbul Üniversitesi-Cerrahpaşa

Mühendislik Fakültesi

Dr. Öğr. Üyesi Ceren ÇUBUKÇU CERASİ

Gebze Teknik Üniversitesi

İşletme Fakültesi

Doç. Dr. Selçuk SEVGEN

İstanbul Üniversitesi-Cerrahpaşa

Mühendislik Fakültesi

Dr. Öğr. Üyesi Şengül BAYRAK

Sabahattin Zaim Üniversitesi

Mühendislik ve Doğa Bilimleri Fakültesi

20.04.2016 tarihli Resmi Gazete’de yayımlanan Lisansüstü Eğitim ve Öğretim Yönetmeliğinin

9/2 ve 22/2 maddeleri gereğince; Bu lisansüstü teze, İstanbul Üniversitesi-Cerrahpaşa’nın

abonesi olduğu intihal yazılım programı kullanılarak Lisansüstü Eğitim Enstitüsü’nün

belirlemiş olduğu ölçütlere uygun rapor alınmıştır.

iv

ÖNSÖZ

Doktora eğitimimde danışmanlığımı üstelenen, ilk tanıştığımız günden beri beni yönlendiren,

çözüm odaklı pratik zekâsı ile heyecanlandıran, kendisine hayran bırakan bana güvenerek

değerli olduğumu hissettrien, toparlanmam için bana zaman tanıyan, toparlandığımda

doğrulmama yardımcı olan yoluma ışık tutan kıymetli danışman hocam

Prof. Dr. Rüya ŞAMLI’ya sonsuz teşekkürler.

Öncellikle bende hep bir baba şefkati hissi uyandıran Bilgisayar Mühendisliği Bölüm Başkanı

değerli jüri üyesi Prof. Dr. Ahmet SERTBAŞ’a, yapıcı yönlendirmeleri ile tezimin

şekillenmesine yardımcı olan değerli jüri üyesi Dr. Öğr. Üyesi Ceren ÇUBUKÇU CERASİ’ye

ve bölümün diğer saygı değer hocalarına teşekkürü bir borç bilirim.

Ayrıca tüm hayatım boyunca yanımda olan aldığım kararları hep destekleyen hiçbir maddi

manevi yardımlarını esirgemeyen beni sürekli cesaretlendiren başta sevgili babam

Hasan EBREN’e, annem Taybet EBREN’e ve kardeşlerime çok teşekkürler. Tanıştığımız ilk

günden beri beni yalnız bırakmayan aldığım her kararda yanımda duran, bütün sıkıntılarıma

sabırla katlanan, destek olan tavsiyeleri ile beni cesaretlendiren hayat arkadaşım, dostum,

sırdaşım canım eşim Dr. Ferhat KARA’ya ve hayattaki can damarım olan sevgili çocuklarıma

sonsuz teşekkürler.

Son olarak beni sürekli destekleyen, motive eden meslektaşlarıma, çıkmaza girdiğim bir anda

bana can simidi gibi yetişen Dr. Zeynep Behrin GÜVEN AYDIN’a ayrıca teşekkür ederim.

Mayıs 2022 Şükran EBREN KARA

v

İÇİNDEKİLER

Sayfa No

ÖNSÖZ ... iv

İÇİNDEKİLER ... v

ŞEKİL LİSTESİ ... viii

TABLO LİSTESİ ... ix

SİMGE VE KISALTMA LİSTESİ .. xi

DENKLEM LİSTESİ ... xiii

ÖZET .. xiv

SUMMARY ... xv

1. GİRİŞ .. 1

2. GENEL KISIMLAR .. 4

2.1. YAZILIM MALİYET TAHMİNİ ... 4

2.1.1. Yazılım Maliyet Tahmininin Önemi ... 5

2.1.2. Yazılım Maliyet Tahminin Gerçekleştirilmesi .. 5

2.1.3. Yazılım Maliyeti Tahmin Yöntemleri ... 6

2.1.3.1. Algoritmik Yöntemler ... 7

2.1.3.2. Algoritmik Olmayan Yöntemler ... 16

2.1.3.3. Melez Sistemler .. 18

2.2. YAPAY ZEKÂ ... 19

2.2.1. Tavlama Benzetimi .. 21

2.2.2. Uzman Sistemler ... 22

2.2.3. Bilgisayarlı Görme .. 24

2.2.4. Konuşma Tanıma... 24

2.2.5. Robotik .. 26

2.2.6. Kaotik Modelleme ... 28

2.2.7. Yapay Sinir Ağları ... 29

2.2.8. Bulanık Mantık .. 33

2.2.9. Melez Sistemler ... 38

2.2.10. Genetik Algoritmalar ... 39

2.2.11. Makine Öğrenmesi .. 41

2.3. LİTERATÜR TARAMASI ... 46

vi

3. MALZEME VE YÖNTEM ... 51

3.1. VERİ SETLERİ .. 51

3.2. DEĞERLENDİRME KRİTERLERİ .. 56

3.2.1. Korelasyon Katsayısı ... 57

3.2.2. RMSE .. 57

3.2.3. MAE .. 57

3.2.4. RAE ... 58

3.2.5. RRSE ... 58

3.2.6. MMRE ... 59

3.2.7. MAPE .. 59

3.3. UYGULAMA PLATFORMLARI .. 60

3.4. YÖNTEMLER .. 67

3.4.1. Fonksiyonlar (Functions)... 67

3.4.1.1. Gauss Süreçleri .. 68

3.4.1.2. Doğrusal Regresyon .. 68

3.4.1.3. Basit Doğrusal Regresyon ... 68

3.4.1.4. Ardışık Minimum Optimizasyon Regresyon ... 68

3.4.1.5. Çok Katmanlı Algılayıcı .. 69

3.4.1.6. Genetik Programlama ... 69

3.4.1.7. Parçacık Sürü Optimizasyonu ... 69

3.4.2. Tembel Sınıflandırıcılar (Lazy Classifier) ... 70

3.4.2.1. K-En Yakın Komşu Sınıflandırıcı ... 70

3.4.2.2. Kyıldız .. 72

3.4.2.3. Yerel Ağırlıklı Öğrenme ... 72

3.4.3. Meta ... 72

3.4.3.1. Toplamsal Regresyon ... 73

3.4.3.2. Öznitelik Seçici Sınıflandırıcı .. 73

3.4.3.3. Torbalama .. 73

3.4.3.4. Çapraz Doğrulama Parametre Seçimi ... 73

3.4.3.5. Çoklu Şema .. 73

3.4.3.6. Rastgele Komite ... 73

3.4.3.7. Randomize Edilebilir Filtreli Sınıflandırıcı ... 74

3.4.3.8. Rastgele Alt Boşluk .. 74

3.4.3.9. Ayrıklaştırma İle Regresyon .. 74

vii

3.4.3.10. İstifleme .. 74

3.4.3.11. Oylama ... 75

3.4.3.12. Ağırlıklı Örnek İşleyici Sarmalayıcı .. 75

3.4.4. Çeşitli Kategoriler ... 75

3.4.5. Kurallar .. 75

3.4.5.1. Karar Tablosu .. 76

3.4.5.2. M5 Kuralları .. 76

3.4.5.3. ZeroR ... 76

3.4.6. Ağaç ... 76

3.4.6.1. Karar Kütüğü ... 77

3.4.6.2. M5P .. 77

3.4.6.3. Rep Ağacı ... 77

3.4.6.4. Rastgele Ağaç .. 77

3.4.6.5. Rastgele Orman ... 77

4. BULGULAR ... 78

4.1. WEKA SİMÜLASYON SONUÇLARI .. 78

4.2. WEKA ÖZNİTELİK SEÇİM ALGORİTMALARI İLE PERFORMANS

DEĞERLENDİRMESİ ... 84

4.2.1. CfsSubsetEval Öznitelik Seçim Algoritması... 84

4.2.2. Albrecht, Finnish, Kemerer, Maxwell ve Miyazaki94 Veri Setleri Simülasyon

Sonuçları ... 85

4.2.3. Maxwell, China ve COCOMONASA Veri Setleri Simülasyon Sonuçları 91

4.3. BULGULARIN KARŞILAŞTIRILMASI .. 95

5. TARTIŞMA VE SONUÇ .. 98

KAYNAKLAR .. 101

EKLER .. 110

EK 1. SÖZLÜK .. 110

ÖZGEÇMİŞ .. 113

viii

ŞEKİL LİSTESİ

Sayfa No

Şekil 2.1: Genel sistem özellikleri. .. 9

Şekil 2.2: Bir Uzman Sistemin genel yapısı... 22

Şekil 2.3: Konuşma Tanıma Modeli. ... 26

Şekil 2.4: Yapay sinir hücresi. ... 30

Şekil 2.5: Biyolojik sinir hücresi ve yapay sinir hücresi. ... 32

Şekil 2.6: Bulanık Mantık genel ilkeleri. ... 34

Şekil 2.7: Üyelik fonksiyonları. ... 35

Şekil 2.8: Sıcaklık için küme örnekleri. ... 36

Şekil 2.9: Bulanık kümelerde kesişim. ... 36

Şekil 2.10: Bulanık Sistemin genel yapısı. ... 38

Şekil 2.11: Genetik Algoritmalarda evrimleşme döngüsü. .. 41

Şekil 2.12: Makine Öğrenmesi Algoritmaları. ... 42

Şekil 2.13: Öznitelik seçimi akış şeması. ... 44

Şekil 2.14: Öznitelik seçimi yöntemleri. .. 45

Şekil 3.1: Sayısal sonuç tahmininde hata ölçümleri. ... 60

Şekil 3.2: Nominal sonuç tahmininde hata ölçümleri. ... 61

Şekil 3.3: WEKA GUI kullanıcı ara yüzü. ... 62

Şekil 3.4: WEKA Explorer penceresi. ... 63

Şekil 3.5: WEKA sınıflandırma penceresi. .. 64

Şekil 3.6: WEKA’da çalıştırılan algoritma çıktısı. .. 64

Şekil 3.7: WEKA öznitelik seçimi penceresi. .. 65

Şekil 3.8: WEKA araçlar menüsü. ... 66

Şekil 3.9: WEKA paket yöneticisi. .. 66

Şekil 3.10: PSO akış şeması. .. 71

ix

TABLO LİSTESİ

Sayfa No

Tablo 2.1: Maliyet tahmini için girdiler, araçlar ve teknikler, çıktılar. 5

Tablo 2.2: Barry Boehm maliyet hesaplama süreci. .. 6

Tablo 2.3: Nasa’nın maliyet hesaplama süreci. ... 6

Tablo 2.4: Bileşenlerin karmaşıklıklarına göre sınıflandırılması. ... 9

Tablo 2.5: Basit COCOMO bileşenleri. .. 11

Tablo 2.6: Basit COCOMO modelinin formülü. ... 11

Tablo 2.7: Basit COCOMO modelinin modlara uygulanışı. ... 11

Tablo 2.8: Orta Düzey COCOMO Modeli’nin maliyet faktörleri. .. 12

Tablo 2.9: Orta Düzey COCOMO bileşenleri. .. 12

Tablo 2.10: Orta Düzey COCOMO Modelinin formülü. .. 12

Tablo 3.1: Veri setleri bilgileri. ... 51

Tablo 3.2: COCOMO maliyet faktörleri. ... 52

Tablo 3.3: COCOMO maliyet faktörlerinin standart sayısal değerleri.................................. 53

Tablo 3.4: Albrecht veri seti istatistikleri. ... 53

Tablo 3.5: Finnish veri seti istatistikleri. ... 54

Tablo 3.6: China veri seti istatistikleri. .. 54

Tablo 3.7: Kemerer veri seti istatistikleri. ... 55

Tablo 3.8: Miyazaki94 veri seti istatistikleri. .. 55

Tablo 3.9: Maxwell veri seti istatistikleri. .. 56

Tablo 4.1: COCOMO81’de tahmin algoritmalarının performans ölçümleri. 79

Tablo 4.2: COCOMONASA’da tahmin algoritmalarının performans ölçümleri. 80

Tablo 4.3: COCOMONASA2’de tahmin algoritmalarının performans ölçümleri 81

Tablo 4.4: COCOMO81 ‘de algoritmaların en iyi tahmin sonuçları. 82

Tablo 4.5: COCOMONASA’da algoritmaların en iyi tahmin sonuçları. 83

x

Tablo 4.6: COCOMONASA2 ‘de algoritmaların en iyi tahmin sonuçları. 83

Tablo 4.7: Albrecht veri setinde öznitelik seçimi. ... 86

Tablo 4.8: Finnish veri setinde öznitelik seçimi. ... 87

Tablo 4.9: Kemerer veri setinde öznitelik seçimi. ... 88

Tablo 4.10: Maxwell veri setinde öznitelik seçimi. ... 89

Tablo 4.11: Miyazaki94 veri setinde öznitelik seçimi. .. 90

Tablo 4.12: Maxwell veri setine farklı öznitelik yöntemlerinin uygulanması...................... 92

Tablo 4.13: China veri setine farklı öznitelik yöntemlerinin uygulanması. 93

Tablo 4.14: COCOMONASA veri setine farklı öznitelik yöntemlerinin uygulanması. 94

Tablo 4.15: Yapay Zekâ tabanlı yazılım maliyet tahmini yapan çalışmaların analizi........... 96

Tablo 4.16: Her bir veri seti üzerinde yapılan en iyi tahmin sonucu. 97

xi

SİMGE VE KISALTMA LİSTESİ

 Kısaltmalar Açıklama

AA : Factor Which Reflects The Initial Assessment Costs Of Deciding If Software

May Be Reus – Yazılımın Tekrar Kullanılacağını Dikkate Almakla Maliyetin

Başlangıç Tahmini Yansıtan Etken

ABD : Amerika Birleşik Devletleri

AFN : Ayarlanmamış Fonksiyon Noktaları

APE : Absolute Percentage Error – Mutlak Yüzde Hata

ARFF : Attribute Relationship File Format – Öznitelik İlişkisi Dosyası Biçimi

ASLOC : Source Line Of Code – Kaynak kodun Satır Sayısı

ASMA : Australian Software Metrics Association – Avusturalya Yazılım Metrikleri

Birliği

AT/100 : Otomatik oluşturulan kodun toplam sistem koduna yüzdesi

ATPROD : Automated Production – Kod Üretiminin Üretkenlik Seviyesi

BM Bulanık Mantık

CfsSubsetEval : Corelation-based Feature Subset Selection Evaluation – Korelasyon Tabanlı

Özellik Seçim Değerlendirici

COCOMO : Constructive Costing Model – Yapı Maliyet Modeli

CSBSG : Chinese Software Benchmarking Standards Group – Çin Yazılım Kıyaslama

Standartları Grubu

DAF : Değer Ayarlama Faktörü

DM : Percentage Of Design Modified – Değiştirilen Tasarım Yüzdesi

EAF : Effort Adjustment Factor – Maliyet Faktörü Çarpanı

EKK : En Küçük Kareler Tekniği

ESLOC : Effective Source Line Of Code – Etkili Kaynak Kodun Satırlarının Sayısı

FCIL : Facilities – Destek Araç Gereçler

FN : Fonksiyon Noktası

GA : Genetik Algoritma

GPL : General Public Licence – Genel Kamu lisansı

GUI : Grafic User Interface – Gragik Kullanıcı Ara yüzü

IM : Percentage Of The Original Integration Effort Required For Integrating The

Reused Software – Tekrar Kullanılan Yazılımı Bütünleştirmek İçin Gereken

Başlangıç Bütünleşme Çabası Yüzdesi

ISBSG : International Software Benchmarking Standards Group – Uluslararası

Yazılım Kıyaslama Standartları Grubu

KLOC : Kilo Line Of Code – 1000 Kod Satır Sayısı

xii

KSLOC : Kilo Source Line Of Code – 1000 Kaynak Kod Satır Sayısı

LIFE : Laboratory for Interchange Fuzzy Engineering – Değişim Bulanık

Mühendislik Laboratuvarı

LOC : Lines of Code – Kod Satır Sayısı

LWL : Locally Weighted Learning – Yerel Ağırlıklı Öğrenme

MAE : Mean Absolute Error – Ortalama Mutlak Hata

MAPE Mean Absolute Percentage Error – Ortalama Mutlak Hata Yüzdesi

MLP : Multi Layer Perceptron – Çok Katmanlı Algılayıcı

MMRE : Mean Magnitude of Relative Error – Göreceli Hatanın Ortalama Büyüklüğü

MÖ : Makine Öğrenmesi

MRE : Magnitude Relative Error – Göreceli Hatanın Büyüklüğü

NASA :National Aeronautics and Space Administration – Ulusal Havacılık ve Uzay

Dairesi

PDIF : Platform Difficulty – Platform Zorluğu

PERS : Personnel Capability – Personel Yeteneği

PRED : Prediction Accuracy – Tahmin Doğruluğu

PREX : Personal Experience – Personel Deneyimi

PROMISE : Predictor Models in Software Engineering – Yazılım Mühendisliğinde Tahmin

Modelleri

PSO : Particle Swarm Optimization – Parçacık Sürü Optimizasyonu

RAE :Relative Absolute Error – Bağıl Mutlak Hata

RCPX : Product Reliability and Complexity – Ürün Doğruluğu ve Karmaşıklığı

RMSE : Root Mean Squared Error – Kök Ortalama Kare Hata

RRSE : Root Relative Squared Error – Kök Bağıl Kare Hata

SCED : Development Schedule Constraint – Geliştirme Takvimi Kısıtı

SDR : SoftLab Data Repository – Softlab Veri Deposu

SMO : Sequential Minimal Optimization – Sıralı Minimal Optimizasyon

SU : Factor Based On The Cost Of Software Understanding – Yazılımı Anlama

Maliyetini Yansıtan Etken

TDI : Total Degree of Influence – Toplam Etki Derecesi

TSP Travelling Salesman Problem – Gezgin Satıcı Problemi

UCI : University of California, Irvine – Kaliforniya Univsersitesi, Irvine

USC : University of South California – Güney Kalforniya Ünviersitesi

WEKA : Waikato Environment for Knowledge Analysis – Bilgi Analizi için Waikato

Ortamı

WHO : World Health Organization – Dünya Sağlık Örgütü

YSA : Yapay Sinir Ağları

xiii

DENKLEM LİSTESİ

Denklem (2.1) : Kod Satır Sayısı Fomülü

Denklem (2.2) : Çaba Formülü

Denklem (2.3) : Çaba Formülü

Denklem (2.4) : Yazılım Teslim Süresi

Denklem (2.5) : Ayarlanmış Fonksiyon Noktası Formülü

Denklem (2.6) : Toplam Etki Derecesi Formülü

Denklem (2.7) : Değer Ayarlama Faktörü Formülü

Denklem (2.8) : Fonksiyon Noktası Fomülü

Denklem (2.9) : Çaba Formülü

Denklem (2.10) : Çaba Formülü

Denklem (2.11) : Çaba İçin M Çarpanı Fomülü

Denklem (2.12) : Otomatik Oluşturulan Kod İçin Çaba Formülü

Denklem (2.13) : Yeni Kod Satırlarının Formülü

Denklem (2.14) : Doğrusal Fonksiyon Formülü

Denklem (2.15) : Karesel Fonksiyon Formülü

Denklem (2.16) : Tüm Artıkların Kareleri Toplamı Formülü

Denklem (3.1) : Kök Ortalama Kare Hata Formülü

Denklem (3.2) : Ortalama Mutlak Hata Formülü

Denklem (3.3) : Bağıl Mutlak Hata Formülü

Denklem (3.4) : Kök Ortalama Kare Hata Formülü

Denklem (3.5) : Göreceli Hatanın Ortalama Büyüklüğü

Denklem (3.6) : Ortalama Mutlak Hata Yüzdesi

Denklem (3.7) : Sürüdeki parçacığın hızı

Denklem (3.8) : Sürüdeki parçacığın konumu

xiv

ÖZET

DOKTORA TEZİ

Şükran EBREN KARA

İstanbul Üniversitesi-Cerrahpaşa

Lisansüstü Eğitim Enstitüsü

Bilgisayar Mühendisliği Anabilim Dalı

Danışman : Prof. Dr. Rüya ŞAMLI

 Yazılım maliyet tahmini, bir mühendisin yazılım projesini geliştirmeye başladığı esnada

ihtiyaç duyduğu yaklaşık süre ve kaynakların tahminidir. Yazılım maliyet tahmini, yazılım

projesinin maliyetini belirlemek ve müşteriyi ikna etmek için yazılım geliştirme sürecindeki en

önemli aşamalardan birisidir. Gerçek maliyete en yakın maliyet tahminini yapmak hem yazılım

geliştiricileri hem de müşteriler için çok büyük bir önem arz etmektedir. Çünkü yanlış yapılan

yazılım maliyet tahminleri projelerin tamamlanamamasına ya da geniş bir zaman dilimine

yayılmasına neden olmaktadır. Bu yüzden yazılım maliyet tahmini için literatürde çok farklı

yöntem geliştirilmiştir. Bu tez çalışmasında, yazılım projelerinin maliyeti, Yapay Zekâ

yöntemlerinden olan Makine Öğrenmesi (MÖ) kullanılarak Parçacık Sürü Optimizasyonu

(PSO) ve Genetik Algoritmalarla (GA) öznitelik seçimi yapılarak tahmin edilmeye çalışılmıştır.

Yazılım projesinin maliyet tahmini, WEKA (Waikato Environment for Knowledge Analaysis

– Bilgi Analizi için Waikato Ortamı) veri madenciliği aracında bulunan algoritmaların

çalıştırlması sonucu bulunmuştur. Algoritmalar 10 kat çapraz doğrulama tekniği ile PROMISE

(Predictor Models in Software Engineering – Yazılım Mühendisliğinde Tahmin Modelleri) veri

deposundan alınan 9 adet veri setine (COCOMO81, COCOMONASA, COCOMONASA2,

China, Albrecht, Finnish, Kemerer, Maxwell, Miyazaki94) uygulanmış ve sonuçlar performans

ölçütü korelasyon katsayısı, hata oranları MAE (Mean Absolute Error – Ortalama Mutlak

Hata), RMSE (Root Mean Squared Error – Kök Ortalama Kare Hata), RAE (Relative Absolute

Error – Bağıl Mutlak Hata), RRSE (Root Relative Squared Error – Kök Bağıl Kare Hata) ve

MAPE (Mean Absolute Percentage Error – Ortalama Mutlak Hata Yüzdesi) baz alınarak

değerlendirilmiştir.

Mayıs 2022, 128 sayfa.

Anahtar kelimeler: Yapay Zekâ, Makine Öğrenmesi, Yazılım Maliyet Tahmini, WEKA,

Öznitelik Seçimi, Genetik Algoritmalar, Parçacık Sürü Optimizasyonu

YAPAY ZEKÂ YÖNTEMLERİ İLE YAZILIMLARIN MALİYETLERİNİN

TAHMİN EDİLMESİ

xv

SUMMARY

Ph.D. THESIS

Şükran EBREN KARA

Istanbul University-Cerrahpasa

Institute of Graduate Studies

Department of Computer Engineering

Supervisor : Prof. Dr. Rüya ŞAMLI

A software cost estimation is an estimate of the time and resources an engineer will need to

begin developing a software project. Software cost estimation is important to determine the cost

of the software project and to convince the customer. Making a cost estimation closest to the

actual cost is very important for both software developers and customers, because incorrect

software cost estimations cause projects to be incomplete or spread over a large time period.

Therefore, many different methods have been developed for software cost estimation. When

the studies in the literature are examined, it is seen that the cost of software projects is tried to

be estimated with very different methods. In this thesis, the cost of software projects has been

estimated using Machine Learning from Artificial Intelligence methods by features selection

with Particle Swarm Optimization (PSO) and Genetic Algorithms (GA). Project cost estimation

was made by testing Machine Learning algorithms in WEKA (Waikato Environment for

Knowledge Analaysis) data mining tool. Algorithms were applied to 9 datasets (COCOMO81,

COCOMONASA, COCOMONASA2, China, Albrecht, Finnish, Kemerer, Maxwell,

Miyazaki94) taken from PROMISE (Predictor Models in Software Engineering) data store with

10-fold cross validation technique and results, performance criterion correlation coefficient,

error rates MAE (Mean Absolute Error), RMSE (Root Mean Squared Error), RAE (Relative

Absolute Error), RRSE (Root Relative Squared Error), MAPE (Mean Absolute Percentage

Error).

May 2022, 128 pages.

Keywords: Artificial Intelligence, Machine Learning, Software Cost Estimation, WEKA,

Feature Selection, Genetic Algorithms, Particle Swarm Optimization Algorithm

ESTIMATING SOFTWARE COSTS BY ARTIFICIAL INTELLIGENCE

METHODS

1

1. GİRİŞ

Yazılım, insanların birçok işini kolaylaştırmak üzere farklı programlama dillerinin kullanılması

sonucunda bilgisayar ve benzerî makinelerin beklenilen işlemleri gerçekleştirmesi için üretilen

kod kümeleridir. Yazılımlar, makinelerin makinelerle ya da makinelerin insanlarla olan bilgi

alışverişini sağlar. Yazılım bir nevi cansız bir varlığın dile gelmesi, bir donanım parçasının

konuşması, derdini anlatması olarak ifade edilebilir. Bir sistemde donanımsal bir arıza

oluştuğunda, bunu bir insana ya da kendi gibi bir makineye bildirmesi mümkün olmadığından

bu işlemi yazılım gerçekleştirmelidir. Türk Dil Kurumu’na (TDK) göre yazılım ise “bir

bilgisayarda donanıma hayat veren ve bilgi işlemde kullanılan programlar, yordamlar,

programlama dilleri ve belgelemelerin tümüdür” (TDK, 2018). Yazılımları farklı şekillerde

gruplandırmak mümkündür, en önemli gruplardan biri Sistem yazılımları/uygulama yazılımları

olarak ifade edilebilir. Sistem yazılımları; bilgisayarın, bilgisayar üzerindeki bir donanımın

veya bilgisayar üzerindeki bir yazılımın çalışması için mutlak gerekli yazılımlardır; uygulama

yazılımları ise insanların kullanması için tasarlanan, çeşitli uygulamaları grçekleştiren ve

bilgisayar sistemi için mutlak gerekli olmayan yazılımlardır.

Yazılımlar geliştiren kişilere genellikle Yazılım Mühendisi unvanı verilmektedir.

Yazılım Mühendisi, yazılımın talep edilmesinden teslim edilmesine hatta teslim edildikten

sonraki süreçler de bile aktif bir şekilde görev alan kişidir. Yazılım mühendisinin amacı;

isteklere cevap veren, kaliteli, güvenli, kullanışlı bir yazılımın en az hata ile ortaya çıkmasını

sağlamaktır. Sommerville’a (2000) göre Yazılım Mühendisliği, yazılım üretiminin tüm

yönleriyle ilgilenen bir mühendislik disiplinidir. Yazılım projelerinde proje yöneticileri için

yazılım maliyet tahmini oldukça mühim bir problemdir. Yazılım projesinin geliştirilmesi

sırasında gereken kaynakların değeri yazılım maliyeti olarak tanımlanmaktadır (Sommerville,

2000). Yazılım projelerinin maliyet tahmini ise yazılımın gerçekleştirilmesi sürecinde gereken

bütçenin tahmin edilmesidir. Yazılım maliyetini hesaplamak kolaydır, zor olan maliyet

tahmininde bulunmaktır. Yazılım sistemlerinin oluşturulması sırasında gerekli olan eforun

tahmin edilmesi aşamasına yazılım projelerinin maliyet tahmini denir (Adailer, 2008).

İnsanların yazılımlara olan ihtiyaçları gün geçtikçe artmaktadır. İhtiyaçlara cevap vermek için

2

geliştirilen yazılımlar daha büyük ve daha karmaşık olmaktadır. Bunun sonucunda yazılım

maliyetini hesaplamak için farklı yöntemler geliştirilmiştir.

Bu tez çalışmasında Yapay Zekâ yöntemleri ile yazılım maliyet tahmini gerçekleştirilmiştir.

Bu kapsamda MÖ, GA, PSO ve öznitelik seçimi kullanılmıştır. Bu tez çalışmasının amaçları

aşağıdaki şekilde maddelendirilebilir:

 Yazılım projelerinin maliyet tahminin PROMISE veri deposundan temin edilen

literatürde sıklıkla kullanılan farklı veri setleri üzerinde MÖ algoritmalarının

kullanılarak yapılması,

 Her bir veri seti üzerinde farklı MÖ algoritmasının performans analizlerinin

yapılması ve sonuçlarının detaylı yorumlanması,

 Yazılım projelerinin maliyet tahmininde Genetik Programlamanın kullanılabilir

olup olmadığının belirlenmesi,

 Yazılım projelerinin maliyet tahmininde GA ve PSO kullanılarak öznitelik

seçiminin etkisinin araştırılması,

 Veri setlerinde yer alan hangi özniteliklerin bir arada kullanıldığında veya hangi

özniteliklerin önemli hangi özniteliklerin seçilen algoritma için önemsiz olduğunun

bunun sonucu olarak da hangi algoritmaların başarı oranlarının daha yüksek

olduğunun belirlenmesi,

 Elde edilen bulguların literatürdeki diğer çalışmalar ile karşılaştırılması,

Bu tez çalışması şu şekilde organize edilmiştir:

 2. Bölüm olan Genel Kısımlar Bölümü’nde yazılım maliyet tahmini, yazılım maliyet

tahmininin önemi, yazılım maliyet tahminin gerçekleştirilmesi, yazılım maliyet

tahminin yöntemleri, Yapay Zekâ kavramı, Yapay Zekâ yöntemleri, öznitelik seçimi ve

tez konusu kapsamında literatürde bugüne kadar yapılmış çalışmalar alt başlıklar

halinde sunulmuştur.

 3. Bölüm olan Malzeme ve Yöntem Bölümü’nde; tez çalışması kapsamında kullanılan

veri setleri, uygulama platformu, MÖ algoritmaları ve oluşturulan model sunulmuştur.

3

 4. Bölüm olan Bulgular Bölümü’nde yapılan çalışmalar dört kısımda incelenebilir.

İlk kısımda literatürdeki diğer çalışmalarla karşılaştırma yapılabilmesi amacıyla

PROMISE veri deposundan temin edilen veri setlerine, WEKA programında bulunan

MÖ algoritması uygulanarak yazılım maliyet tahmini gerçekleştirilmiştir. Veri setlerine

uygulanan algoritmalar 10 kat çapraz doğrulama tekniği ile test edilmiş ve test sonuçları

ölçüt olarak korelasyon katsayısı, hata oranları MAE, RAE, RMSE, RRSE ve MAPE

baz alınarak değerlendirilmiştir. İkinci kısımda ise WEKA programında bulunan MÖ

ve Evrimsel Algoritma: Genetik Programlama; Albrecht, Finnish, Kemerer, Maxwell

ve Miyazaki94 veri setleri üzerinde iki şekilde çalıştırılmıştır. İlk olarak veri setleri

üzerinde hiçbir öznitelik seçimi gerçekleştirilmeden MÖ algoritmaları çalıştırılmış ve

yazılım maliyet tahmini yapılmıştır. İkincisinde, her bir veri seti üzerinde ilk önce GA

kullanılarak öznitelik seçimi gerçekleştirilmiştir. Veri setlerine uygulanan öznitelik

seçiminden sonra bazı öznitelikler veri setlerinden kaldırılmıştır. Veri setinde geri kalan

öznitelikler ile MÖ algoritmaları kullanılarak yazılım maliyet tahmini yapılmıştır.

Üçüncü kısımda Maxwell, China ve COCOMONASA veri setleri üzerinde öznitelik

seçim metotlarından GA ve PSO kullanılarak yazılım maliyet tahmini yapılmıştır.

Bu sayede hem öznitelik seçim metotlarının yazılım maliyet tahmini üzerindeki etkileri

incelenmiş hemde algoritmaların performansları hesaplanıp karşılaştırılmıştır.

Dördüncü kısımda yazılım maliyet tahmini için yapılan önceki çalışmalar incelenmiş ve

bulgular karşılaştırılmıştır.

 5. Bölüm olan Tartışma ve Sonuç Bölümü’nde; her bir veri setinde gerçeklenen MÖ

algoritmalarının performans sonuçlarından bahsedilmiştir.

4

2. GENEL KISIMLAR

Bu bölümde yazılım maliyet tahmini, yazılım maliyet tahmini yöntemleri, Yapay Zekâ, Yapay

Zekâ yöntemleri, öznitelik seçimi açıklanmış ve konu ile ilgili ayrıntılı bir literatür taraması

sunulmuştur.

2.1. YAZILIM MALİYET TAHMİNİ

Yazılım geliştirme projelerinin en mühim kısımlarından biri, yazılım projelerinin maliyet

tahminidir. Yazılım projesinin geliştirilmesi sırasında gereken kaynakların değeri yazılım

maliyeti olarak tanımlanmaktadır. Sommerville (2000) yazılım maliyet bileşenlerini aşağıdaki

gibi belirtmiştir:

 Ekipman ve yazılım giderleri

 Yolculuk ve eğitim giderleri

 İş gücü giderleri

 Projeye dahil edilmiş mühendislerin ödemeleri

 Sosyal ve sigorta giderleri

 İş gücü giderini etkileyen diğer faktörler

 Barınma gideri

 İletişim gideri

 Birlikte kullanım giderleri

Ayyıldız’a (2007) göre ortaya çıkarılacak bir ürünün veya bir hizmetin bedelinin ne olacağına

sayısal olarak tahmin edilmesi işine maliyet tahmini denir. Yazılım projelerinin maliyet tahmini

ise yazılım sistemlerinin oluşturulması sırasında gerekli olan eforun tahmin edilmesi aşamasına

denir (Adailer, 2008). Farklı tanımlamalar olmakla beraber tüm tanımlamalarda tahminleme

işinin ortada henüz bir yazılım yokken yapılması gerektiği, bu durumun da oldukça güç bir

durum olduğu fikri ortaktır.

Proje maliyet yönetiminde maliyet tahmini için gerekli girdiler, çıktılar, araçlar ve teknikler

Tablo 2.1’de belirtilmiştir (PMBOK, 2000).

5

Tablo 2.1: Maliyet tahmini için girdiler, araçlar ve teknikler, çıktılar.

GİRDİLER ARAÇLAR VE TEKNİKLER ÇIKTILAR

1. İş Dağılımı Yapısı

2. Kaynak Gereksinimleri

3. Kaynak Oranları

4. Faaliyet Süresi

Tahminleri

5. Tahmin Yayınları

6. Tarihi Bilgi

7. Hesap Tablosu

8. Riskler

1. Benzer Tahmin

2. Parametrik Modelleme

3. Aşağıdan Yukarıya

Tahmin

4. Bilgisayarlı Aletler

5. Diğer Maliyet Tahmin

Yöntemleri

1. Maliyet Tahminleri

2. Destekleyici Detaylar

3. Maliyet Yönetimi Planı

2.1.1. Yazılım Maliyet Tahmininin Önemi

Yazılım projesinin maliyet tahmininin gerçekleştirilmesi, yazılım projesinin önerilmesinde,

onaylanmasında ve geliştirilmesindeki pek çok kararı olumlu yönde etkilemektedir. Proje

yöneticisinin, yazılım maliyetini doğru tahmin etmesi yazılım projesindeki belirsizlikleri

ortadan kaldırır. Aksi durumda çok ciddi maddî sıkıntılar baş göstermektedir. Maliyet tahmini,

proje öncesinde mevduat miktarının gerçekçi bir şekilde belirlenebilmesi, bazı kararların daha

mantıklı alınabilmesi, yazılım şirketlerinin teklif fiyatını doğru şekilde belirleyebilmesi ve

rekabet edebilir bir fiyat saptayabilmesi gibi sebeplerden dolayı çok önemlidir. Yazılım

projelerinin maliyet tahmininin ne kadar önemli olduğu aşağıdaki gibi belirtilmiştir (Leung ve

Fan, 2002):

 Genel bir iş planına göre geliştirme projelerini gruplandırmaya ve önem sırasına

göre belirtmeye yardım eder.

 Gerçekleştirilen değişikliklerin etkisini değerlendirmeyi sağlar ve tekrar planlama

imkânı sunar.

 Kaynaklar gerçek ihtiyaçlar ile eşleştirildiğinde projelerin yönetimi ve kontrolünü

kolaylaştırır.

 Müşterilerin gerçek geliştirme maliyetinin, tahmin edilen maliyetle uyumlu

olmasına dair beklentisine cevap verir.

2.1.2. Yazılım Maliyet Tahminin Gerçekleştirilmesi

Yazılım sektörü sürekli gelişerek kendini yenileyen bir sektördür. Piyasanın artan talepleri daha

karmaşık yazılımların geliştirilmesine neden olmaktadır. Yazılım projeleri her zaman başarılı

6

bir şekilde sonuçlanamamaktadır. Bu başarısızlığın sebeplerini Sezer (2008) çalışmasında;

proje sınırlarının uygun bir şekilde saptanamaması, gerçeğe yakın maliyet tahmininin

gerçekleştirilememesi, dönüşen müşteri isteklerinin karşılanamaması, personelin teknik

donanımının eksikliği, müşterinin isteklerini tam olarak belirtememesi, bunlardan en önemlisi

hiç kuşkusuz yanlış maliyet tahminlemesi olarak sıralamıştır. Dünya genelinde yazılım

maliyetlerinin yanlış tahminlemesi ve projenin zaman aşımından dolayı, çoğu proje yarım

bırakılmış ya da çökmüştür. Yazılım projelerinin maliyet tahmini, proje yöneticileri için çok

zor bir süreçtir. Bu sürecin uygun bir şekilde işlemesi, ciddi bir yazılım maliyet tahmin yöntemi

gerektirmektedir. Yazılım maliyet tahmin sürecinin başarı oranının artırmak, çok miktarda veri

ile doğru analizlerin yapılmasına bağlıdır. Barry Boehm’in (Boehm, 1981) ve NASA’nın

(National Aeronautics and Space Administration-Ulusal Havacılık ve Uzay Dairesi) sunduğu

iki süreç bunlardan bazılarıdır (NASA, 2003). Bu süreçler Tablo 2.2 ve 2.3’te belirtilmiştir.

Tablo 2.2: Barry Boehm maliyet hesaplama süreci.

1.Adım: Maliyet tahmin adımları belirlenir.

2.Adım: Gerekli veriler ve kaynaklar için proje planı oluşturulur.

3. Adım: Yazılım gereksinimleri sabitlenir.

4. Adım: Mümkün olduğu kadar fazla detay verilir.

5.Adım: Farklı maliyet tahmin teknikleri ve kaynakları kullanılır

6.Adım: Farklı tahminler karşılaştırılır ve yinelenir.

7.Adım: İzleme gerçekleştirilir.

Tablo 2.3: Nasa’nın maliyet hesaplama süreci.

1.Adım: Yazılımı fonksiyonel ve programlı olarak analiz edip bilgi toplanır.

2. Adım: İş elemanlarını tedarikleri tanımlanır.

3.Adım: Yazılım boyutunu tahmin eder.

4.Adım: Yazılım eforunu tahmin eder.

5.Adım: Harcanacak eforu planlanır.

6.Adım: Risklerin etkisini belirlenir.

7.Adım: Tahminleri modellerle doğrulanır.

8.Adım: Tahminleri, bütçeyi ve zamanlamayı ayarlar.

9.Adım: Tahminleri inceler ve onaylar.

10.Adım: İzleme, raporlama ve bakım yapma aşamaları gerçekleşir.

2.1.3. Yazılım Maliyeti Tahmin Yöntemleri

Yazılım maliyeti tahmin modelleri literatürde farklı şekillerde kategorize edilmiştir. Attarzadeh

ve Ow (2010)’un çalışmalarında yazılım projelerinin maliyet tahmin yöntemleri, algoritmik

yöntemler ve algoritmik olmayan yöntemler olarak sınıflandırılmıştır. Literatürde yazılım

7

projelerinin maliyet tahmin modelleri için oldukça fazla araştırma yapılmıştır. Bu çalışmada

yazılım maliyeti tahmin yöntemleri tüm kategorilerin birleşimi olacak şekilde aşağıdaki gibi

kategorize edilmiştir:

 Algoritmik Yöntemler (Regresyon veya İstatistiksel Yöntemler)

 Algoritmik Olmayan Yöntemler

 Melez Yöntemler

Farklı yazılım maliyeti tahmin modelleri olsa da kesinlikle birinin diğerinden daha üstün

olduğunu söylemek mümkün değildir. Her modelin başarılı olduğu ya da başarılı sonuçlar

veremediği durumlar söz konusudur. Bazen daha doğru sonuçların elde edilebilmesi için bu

modellerin bir kombinasyonuna başvurulması, her birinin tahminlerinin dikkatlice

karşılaştırılması ve yinelenmesi önemlidir.

2.1.3.1. Algoritmik Yöntemler

Algoritmik yöntemler, yazılım maliyet tahmini için matematiksel bir formül kullanmaktadır

(Kumari ve Pushkar 2013). Parametre olarak proje büyüklüğü, proje süresi, yazılım mühendisi

sayısı, kod satır sayısı gibi girdiler ile efor ve maliyet tahminini matematiksel denklemler ve

fonksiyonlar yardımı ile bulmaya çalışırlar. Putnam Modeli (SLIM), Fonksiyon Noktası Analizi

ve COCOMO (Constructive Costing Model – Yapı Maliyet Modeli) bazı popüler algoritmik

modeller arasında yer almaktadır.

Putnam Modeli:

Putnam modelinde zamana endeksli emek ve maliyet eğrileri mevcuttur (Putnam, 1978).

Gerçek bir projede adam 𝑥 ay değeri zaman içinde stabil kalmaz. Bundan dolayı bazı anlardaki

kişi sayısı ihtiyacı, diğer anlara göre farklılık gösterir. Putnam modelinde emek-zaman eğrisine

bakarak kişi sayısı ayarlanabilir. Aynı birim içerisinde farklı projeler arasında personel değişimi

Putnam eğrilerinin bir sonucu olarak yapılabilir (Ayyıldız, 2007). Denklem 2.1’de kod satır

sayısı verilmiştir.

𝑆 = 𝐸𝑥(Ç𝑎𝑏𝑎)1 3⁄ 𝑡𝑑
4 3⁄

 (2.1)

8

Burada 𝑡𝑑: yazılım teslim süresi, 𝐸: yazılım geliştirme yeteneğini yansıtan çevre faktörü,

S: kaynak kodlarını ifade etmektedir. Denklem 2.2’de çaba formülü verilmiştir.

Ç𝑎𝑏𝑎 = 𝐷𝑥𝑡3 (2.2)

Burada 𝐷: yeni bir yazılım ya da yeniden oluşturulmuş yazılım arasında değişen insan gücünü

ifade eden bir parametredir (0 – 8, 8 – 27 arasında değer almaktadır). Yukarıdaki iki denklem

birleştirilerek, yazılım maliyet tahmini için Denklem 2.3 ve Denklem 2.4 elde edilir.

Ç𝑎𝑏𝑎 = (𝐷0
4 7⁄ 𝑥𝐸−9 7⁄)𝑥𝑆9 7⁄ (2.3)

𝑡𝑑 = (𝐷0
−1𝑥𝐸−3 7⁄)𝑥𝑆3 7⁄ (2.4)

Burada 𝐸 çevre faktörüdür. Bu modelin diğer bir avantajı da önceden oluşturulmuş proje

verilerinden boyut, efor ve süre kullanılarak kolay oluşturulabilir olmasıdır.

Fonksiyon Noktası Analizi:

Fonksiyon Nokta Analizi, kod satır sayısı yaklaşımına alternatif olarak geliştirilmiştir

(Albrecht, 1979). Satır sayısı tekniğinden farklı olarak bir yazılım kurumu için direk büyüklük

tahmininde bulunmanın bir zorluğu yoktur çünkü gereksinimlerin belirlenmesi faaliyetlerinde

bulunan değerlerden yazılımın büyüklüğü bilgisine ulaşılabilir (Ayyıldız, 2007; Sezer 2008).

Fonksiyon Nokta Analizi, yazılımdaki fonksiyonları karmaşıklıkları ve yaptıkları işlere göre

sınıflandırıp saymaktadır. Bunu yapmak, yöneticilerin verimliliği takip edebilmelerini ve

yazılım geliştirme maliyetlerini tahmin edebilmelerini sağlamaktadır (Keskin, 2016).

Fonksiyon Nokta Analizi modelinde ilk önce AFN (Ayarlanmış Fonksiyon Noktası)

hesaplanmaktadır. AFN değeri Tablo 2.4 yardımı ile hesaplanır. AFN değerini elde ettikten

sonra DAF (Değer Ayarlama Faktörü) değeri hesaplanır. Denklem 2.5’de AFN formülü

verilmiştir.

𝐴𝐹𝑁 = [|𝐻𝑎𝑟𝑖𝑐î 𝑔𝑖𝑟𝑑𝑖| 𝑥 𝑤1] + [|𝐻𝑎𝑟𝑖𝑐î ç𝚤𝑘𝑡𝚤| 𝑥 𝑤2] + [|𝐻𝑎𝑟𝑖𝑐î 𝑠𝑜𝑟𝑔𝑢| 𝑥 𝑤3]

+ [|𝐷𝑎ℎ𝑖𝑙î 𝑑𝑜𝑠𝑦𝑎| 𝑥 𝑤4][|𝐻𝑎𝑟𝑖𝑐î 𝑎𝑟𝑎𝑦ü𝑧| 𝑥 𝑤5] (2.5)

Burada 𝑤 yapılan işi göstermekedir.

9

Tablo 2.4: Bileşenlerin karmaşıklıklarına göre sınıflandırılması.

 Düşük Orta Yüksek

1 Haricî girdi 3 5 6

2 Haricî çıktı 4 6 7

3 Haricî sorgu 3 5 6

4 Dahilî dosya 7 13 15

5 Harici arayüz 5 9 10

AFN değerlerinin ardından, DAF değerleriyle, son işlev puanları hesaplanabilir. DAF, 0 (en

düşük) ve 5 (en yüksek) arasında seviyeleri arasında değerlendirilen 14 genel sistem

özelliğinden oluşmaktadır. Bu 14 değerin toplamı toplam etki derecesini TDI (Total Degree of

Influence – Toplam Etki Derecesi) vermektedir. Denklem 2.6’da TDI, Denklem 2.7’de DAF ve

Denklem 2.8’de FN (Fonksiyon Noktası) verilmiştir.

𝑇𝐷𝐼 = ∑ 𝐶𝑒𝑣𝑎𝑝𝑖

𝑖=1,2,…,14

 (2.6)

Genel sistem özellikleri (Ayyıldız, 2007) şekil 2.1’de aşağıdaki soruların cevapları şeklinde

tanımlanmıştır.

Şekil 2.1: Genel sistem özellikleri.

10

𝐷𝐴𝐹 = 0,65 + (0,01 𝑥 𝑇𝐷𝐼) (2.7)

𝐹𝑁 = 𝐴𝐹𝑁 𝑥 𝐷𝐴𝐹 (2.8)

FN, AFN ile DAF değerlerinin çarpımına eşittir.

COCOMO:

Barry W. Boehm 1981 yılında algoritmik yazılım maliyet tahmin modeli olan COCOMO

modelini geliştirmiştir. Bu modele COCOMO 81 modeli de denmektedir. İlk COCOMO,

yazılım geliştirme süreci olarak şelale (Waterfall) modelini ve programlama dili olarak

prosedürel diller kullanmıştır. Daha sonraları ihtiyaçlara binaen COCOMO’nun farklı

sürümleri çıkmıştır. Bunlar COCOMO 81, COCOMO II gibi modellerdir.

COCOMO 81: COCOMO modelinin ilk sürümüdür. COCOMO 81 modelinin, hesaplanacak

yazılım maliyet tahminlerinin kapsamlarına göre Basit COCOMO, Orta Düzey COCOMO ve

Detaylı COCOMO olarak üç değişik modeli geliştirilmiştir. Her modelin kullanacağı probleme

göre organik, yarı ayrık ve gömülü modlar mevcuttur. Organik modda küçük bir ekip aşina

oldukları bir ortamda iyi anlaşılmış proje uygulamaları geliştirir. Bu ekip belli bir deneyime

sahip işlerini hızlı yapan kişilerdir. Yarı ayrık modda ekipte deneyimli ve deneyimsiz elemanlar

bulunabilir. Bunlar sistemin her aşamasını bilmeyebilir ve sistemle ilgili bilgileri yetersiz

olabilir. Gömülü modda projeleri katı donanım, yazılım, yönetmenlikler ve işlem kısıtlayıcılar

seti içerisinde geliştirilmelidir. Yazılım üzerinde yapılacak değişiklikler o kadar maliyetlidir ki

değişmez olarak kabul edilir. Bu yüzden sonradan çıkabilecek değişiklikler ve ön görülemeyen

güçlükler üzerinde ciddi çalışılması gerekir. Projedeki elemanların projedeki tüm kısımlara

hakim olması olanaksızlaşmıştır.

COCOMO modeli ve problem türü belirlendikten sonra ilgili formüller kullanılarak tahmin

hesaplama yoluna gidilir. Basit COCOMO modelinin hızlı ve kolay kullanımından dolayı

küçük ve orta ölçekli yazılım geliştirme projelerine uygulanabilir. Kullanılan formüllerin

temelinde kod satır sayısı KLOC (Kilo Line OF Code – Kilo Kod Satır Sayısı) vardır. Basit

COCOMO bileşenleri Tablo 2.5’te, formülü Tablo 2.6’da ve modlara uygulanışı Tablo 2.7’de

belirtilmiştir.

11

Tablo 2.5: Basit COCOMO bileşenleri.

Problem a b c d

Organik 2,4 1,05 2,5 0,38

Yarı ayrık 3,0 1,12 2,5 0,35

Gömülü 3,6 1,2 2,5 0,32

Tablo 2.6: Basit COCOMO modelinin formülü.

Çaba (ayAdam) 𝑎 𝑥 (𝐾𝐿𝑂𝐶)𝑏

Geliştirme Zamanı (Ay) 𝑐 𝑥 (Ç𝑎𝑏𝑎)𝑑

Verimlilik 𝐾𝐿𝑂𝐶 / Ç𝑎𝑏𝑎

Ortalama istihdam Ç𝑎𝑏𝑎 / 𝐺𝑒𝑙𝑖ş𝑡𝑖𝑟𝑚𝑒 𝑍𝑎𝑚𝑎𝑛𝚤

Tablo 2.7: Basit COCOMO modelinin modlara uygulanışı.

Problem Çaba Süre

Organik Ç𝑎𝑏𝑎 = 2,4 (𝐾𝐿𝑂𝐶)1,05 𝑆ü𝑟𝑒 = 2,5 (Ç𝑎𝑏𝑎)0,38

Yarı ayrık Ç𝑎𝑏𝑎 = 3 (𝐾𝐿𝑂𝐶)1,12 𝑆ü𝑟𝑒 = 2,5 (Ç𝑎𝑏𝑎)0,35

Gömülü Ç𝑎𝑏𝑎 = 3,6 (𝐾𝐿𝑂𝐶)1,20 𝑆ü𝑟𝑒 = 2,5 (Ç𝑎𝑏𝑎)0,32

Burada, 𝐾𝐿𝑂𝐶 1000 Kod Satır Sayısı. 𝑎, 𝑏, 𝑐, 𝑑: Basit COCOMO Modeli Bileşenleri’dir.

Orta Düzey COCOMO’da da basit COCOMO tahmininde olduğu gibi bir çaba tahmini

oluşturularak formüle yerleştirilir. Çaba tahmini oluşturulurken basit COCOMO’dan farklı

olarak formülün içine EAF (Effort Adjustment Factor – Maliyet Faktörü Çarpanı) girer. EAF,

her bir özniteliğin yazılım geliştirme çabası üzerindeki etkisinin çarpılması ile elde edilir.

Öznitelikler, yazılım ürün öznitelikleri, bilgisayar öznitelikleri, personel öznitelikleri ve proje

öznitelikleri olarak dört kategoriye ayrılır. Bu öznitelikler 15 maliyet faktörü içerir. 15 maliyet

faktörü çok az, az, normal, yüksek, çok yüksek, aşırı yüksek gibi faktör değerleri alırlar. Orta

Düzey COCOMO’da gerekli zaman hesabı ise Basit COCOMO modelinde olduğu gibi yapılır.

Tablo 2.8’de Orta Düzey COCOMO için öznitelikler ve faktörleri, Tablo 2.9’da Orta Düzey

COCOMO bileşenleri, Tablo 2.10’da Orta Düzey COCOMO formülleri belirtilmiştir.

12

Tablo 2.8: Orta Düzey COCOMO Modeli’nin maliyet faktörleri.

Kategori Maliyet

Faktörü

Açıklama Çok

Az

Az Normal Yüksek Çok

Yüksek

Aşırı

Yüksek

Örün

Özellikleri

Rely Yazılımın güvenirliği 0,75 0,88 1,00 1,15 1,40

Size Veri tabanın büyüklüğü

0,94 1,00 1,08 1,16

Cplx Karmaşıklık 0,70 0,85 1,00 1,15 1,30 1,65

Donanım

Özellikleri

Time İşletim zamanı kısıtı

1,00 1,11 1,30 1,66

Stor Ana bellek kısıtı

1,00 1,06 1,21 1,56

Virt Sanal makine oynaklığı

0,87 1,00 1,15 1,30

Turn Bilgisayar dönme zamanı

0,87 1,00 1,07 1,15

Personel

Özellikleri

Acap Analist deneyimi 1,46 1,19 1,00 0,86 0,71

Aexp Uygulama deneyimi 1,29 1,13 1,00 0,91 0,82

Pcap Programcı tecrübesi 1,42 1,17 1,00 0,86 0,70

Vexp Sanal makine uzmanlığı 1,21 1,10 1,00 0,90

Lexp Dil tecrübesi 1,14 1,07 1,00 0,95

Proje

Özellikleri

Modp Modern programlama

deneyimi

1,24 1,10 1,00 0,91 0,82

Tool Yazılım geliştirme araçları

kullanımı

1,24 1,10 1,00 0,91 0,83

Sched Zamanlama kısıtlamaları 1,23 1,08 1,00 1,04 1,10

Tablo 2.9: Orta Düzey COCOMO bileşenleri.

Problem a b c d

Organik 3,2 1,05 2,5 0,38

Yarı ayrık 3,0 1,12 2,5 0,35

Gömülü 2,8 1,2 2,5 0,32

Tablo 2.10: Orta Düzey COCOMO Modelinin formülü.

EAF (𝑚𝑎𝑙𝑖𝑦𝑒𝑡 𝑓𝑎𝑘𝑡ö𝑟ü1 𝑥 𝑚𝑎𝑙𝑖𝑦𝑒𝑡 𝑓𝑎𝑘𝑡ö𝑟ü2 𝑥 … 𝑥 𝑚𝑎𝑙𝑖𝑦𝑒𝑡 𝑓𝑎𝑘𝑡ö𝑟ü15)

Çaba 𝑎 𝑥 (𝐾𝐿𝑂𝐶)𝑏 𝑥 𝐸𝐴𝐹 (𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑖𝑛 𝑡ü𝑟ü𝑛𝑒 𝑔ö𝑟𝑒 𝑎 𝑣𝑒 𝑏 𝑑𝑒ğ𝑒𝑟𝑙𝑒𝑟𝑖 𝑏𝑒𝑙𝑖𝑟𝑙𝑒𝑛𝑖𝑟)

Geliştirme zamanı 𝑐 𝑥 (Ç𝑎𝑏𝑎)𝑑

Ortalama çalışan sayısı Ç𝑎𝑏𝑎/𝐺𝑒𝑙𝑖ş𝑡𝑖𝑟𝑚𝑒 𝑧𝑎𝑚𝑎𝑛𝚤

Burada 𝐸𝐴𝐹, Maliyet Faktör Çarpanı, 𝐾𝐿𝑂𝐶, 1000 Kod Satır Sayısı. 𝑎, 𝑏, 𝑐, 𝑑, Orta Düzey

COCOMO Modeli Bileşenleri’dir.

Detaylı COCOMO modeli basit COCOMO ve orta COCOMO modellerinden farklı olarak iki

özellik daha barındırır. Birincisi, aşama ile ilgili işgücü çarpanları, ikincisi, yazılım maliyet

kestirimidir. Bu model projenin aşamalarına göre zaman içinde oluşan farklılıkları göz önünde

13

bulundurarak ara ara yazılım maliyet tahmini gerçekleştirir. Detaylı COCOMO modelinde

zamana bağlılık temel değişikliktir. Yapılacak işin karmaşıklığı ve çaba yoğunluğu projenin

farklı aşamalarında değişmektedir (Ayyıldız, 2007).

COCOMO II: COCOMO 81 modelinden sonra modelin gelişimi devam etmiştir. 2000 yılında

COCOMO II sürümü yayınlanmıştır (Boehm, 2000). COCOMO II modeli üç seviyeden

oluşmuştur. Bunlar erken prototip seviyesi, erken tasarım seviyesi ve mimarîden sonraki

seviyedir. Erken prototip seviyesinde değerlendirmeler nesne puanlarına göre hesaplanır ve

çabayı değerlendirmek için basit formüller kullanılır. Erken prototip seviyesi, prototip

projelerini ve yeniden kullanımı çok sık olan projeleri desteklemektedir. Denklem 2.9’da Çaba

formülü verilmiştir.

Ç𝑎𝑏𝑎 =
𝑁𝑒𝑠𝑛𝑒 𝑛𝑜𝑘𝑡𝑎𝑠𝚤 𝑠𝑎𝑦𝚤𝑠𝚤 𝑥 (1 − %𝑦𝑒𝑛𝑖𝑑𝑒𝑛 𝑘𝑢𝑙𝑙𝑎𝑛𝚤𝑙𝑎𝑏𝑖𝑙𝑖𝑟𝑙𝑖𝑘

𝑜𝑟𝑎𝑛𝚤
100)

𝑣𝑒𝑟𝑖𝑚𝑙𝑖𝑙𝑖𝑘
 (2.9)

Erken tasarım seviyesinde değerlendirmeler işlev puanları üzerinden yapılmaktadır. Daha sonra

bu LOC’a (Lines of Code – Kod Satır Sayısı) dönüştürülmektedir. Değerlendirmeler

gereksinimler belirlendikten sonra da yapılabilmektedir. Çapa formülü Denklem 2.10’da ve

Denklem 2.11’de verilmiştir. PMm, kod otomatik oluşturulursa kullanılan faktördür.

Dolayısıyla gerekli çaba (PMm) Denklem 2.12’de hesaplanır ve çabaya eklenir.

Ç𝑎𝑏𝑎 = 𝐴 𝑥 𝑆𝑖𝑧𝑒𝐵 𝑥 𝑀 + 𝑃𝑀𝑚 (2.10)

𝑀 = 𝑃𝐸𝑅𝑆 𝑥 𝑅𝐶𝑃𝑋 𝑥 𝑅𝑈𝑆𝐸 𝑥 𝑃𝐷𝐼𝐹 𝑥 𝑃𝑅𝐸𝑋 𝑥 𝐹𝐶𝐼𝐿 𝑥 𝑆𝐶𝐸𝐷 (2.11)

𝑃𝑀𝑚 = (𝐴𝑆𝐿𝑂𝐶 𝑥

𝐴𝑇
100

𝐴𝑇𝑃𝑅𝑂𝐷
) (2.12)

Burada 𝐴, 2,5 başlangıç sabiti, Size, 1000 Kod Satır Sayısı, 𝐵 1,1 ile 1,24 arasında değişir ve

projenin yeniliğine, geliştirme esnekliğine, risk yönetimine, süreç olgunluğuna bağlıdır.

Diğer kriterlerin açıklaması ise aşağıdaki gibi verilmiştir:

14

 PERS: Personnel Capability – Personel Yeteneği,

 RCPX: Product Reliability and Complexity – Ürün Doğruluğu ve Karmaşıklığı,

 PDIF: Platform Difficulty – Platform Zorluğu,

 PREX: Personal Experience – Personel Deneyimi,

 SCED: Development Schedule Constraint – Geliştirme Takvimi Kısıtı,

 FCIL: Facilities – Destek Araç Gereçler,

 ASLOC: Source Line Of Code – Kaynak kodun Satır Sayısı,

 ATPROD: Automated Production – Kod üretiminin üretkenlik seviyesi, (AT/100):

Otomatik oluşturulan kodun toplam sistem koduna yüzdesi.

Mimarîden sonraki seviyede erken tasarım seviyesindeki aynı formüller kullanılabilir. Sistemin

mimarîsi bitirildiğinde, yazılımın boyutu hakkında isabetli, doğru tahmin yapılabilir. Bu

noktada yapılan tahmin, personelin kabiliyetini, ürün ve proje özelliklerini yansıtan daha

kapsamlı çarpan kümesi kullanır. Denklem 2.13’de ESLOC (Effective Source Line Of Code –

Etkili Kaynak Kodun Satırlarının Sayısı) formülü verilmiştir.

𝐸𝑆𝐿𝑂𝐶 = 𝐴𝑆𝐿𝑂𝐶 𝑥
𝐴𝐴 + 𝑆𝑈 + 0,4𝐷𝑀 + 0,3𝐶𝑀 + 0,3𝐼𝑀

100
 (2.13)

Burada

 DM: Percentage Of Design Modified – Değiştirilen Tasarım Yüzdesi

 CM: Percentage Of Code Modified – Değiştirilen Kod Yüzdesi

 IM: Percentage Of The Original Integration Effort Required For Integrating The Reused

Software – Tekrar Kullanılan Yazılımı Bütünleştirmek İçin Gereken Başlangıç

Bütünleşme Çabası Yüzdesi

 SU: Factor Based On The Cost Of Software Understanding – Yazılımı Anlama

Maliyetini Yansıtan Etken

 AA: Factor Which Reflects The Initial Assessment Costs Of Deciding If Software May

Be Reus – Yazılımın Tekrar Kullanılacağını Dikkate Almakla Maliyetin Başlangıç

Tahmini Yansıtan Etken

15

Regresyon temelli yazılım maliyet tahmini teknikleri literatürde oldukça sıklıkla ele alınan bir

konudur (Adalier, 2008). Bu yöntemlerde çeşitli alanlarda, aralarında sebep sonuç ilişkisi

bulunan veriler toplanılır ve tablo şekline getirilerek incelenir. Bu veriler arasındaki ilişkiyi

belirlemek ve bu ilişkiyi kullanarak tahminleri ya da kestirimleri modelleyen bir fonksiyon

bulunmaya çalışılır. Tahminleri ya da kestirimleri en iyi modelleyen bu fonksiyonu bulma

sürecine regresyon çözümlemesi denir (Fatullayev, 2013). İstatistiksel yöntemler arasında

bulunan regresyon çözümlemesi en çok tercih edilen yöntemlerden biridir. Olası birçok

regresyon yönteminin dışında, genellikle matematiksel hesaplamalardaki kolaylığından dolayı,

En Küçük Kareler Tekniği optimal tahmin yöntemi olarak tercih edilmektedir (Alma ve Özgül,

2008).

En Küçük Kareler Tekniği birbirine bağlı olarak değişkenlik gösteren iki fiziksel büyüklüğün

arasındaki matematiksel bağlantıyı gerçeğe en yakın bir denklem olarak belirmek için

kullanılan standart bir regresyon yöntemidir. Bu yöntem eldeki veri noktalarına en yakın

geçecek bir fonksiyon eğrisi bulmaya çalışır. Gauss’un bulduğu bu yöntem Cres astroidinin

yörüngesinin hesaplanmasında kullanılmıştır (Fatullayev, 2013). Bu hesaplama Denklem 2.14

ve Denklem 2.15’te verilmiştir.

𝑦 = 𝑓 (𝑥) = 𝑚𝑥 + 𝑏 (2.14)

gibi bir doğrusal fonksiyon ya da

𝑦 = 𝑓 (𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 (2.15)

gibi karesel fonksiyonda bulunması gereken değerler 𝑎, 𝑏, 𝑐, 𝑚’dir.

Burada 𝑦𝑖 değeri 𝑓(𝑥𝑖) için olası değer, 𝑓(𝑥𝑖) ≈ 𝑦𝑖, kabul edilince yapılan hata 𝑦𝑖 − 𝑓(𝑥𝑖)

dir ve hedef, bu hatalar minimum olacak şekilde bir 𝑓 fonksiyonu bulmaktır. 𝑦𝑖 − 𝑓(𝑥𝑖)

farklarının her birine bir artık denir. En Küçük Kareler Yönteminde aranan fonksiyon, ya da

onun parametreleri, tüm artıkların kareleri toplamı olan Denklem 2.16’yı minimum yapacak

şekilde belirlenir (Fatullayev, 2013).

∑ (𝑦𝑖 − 𝑓(𝑥𝑖))
2

= (𝑦1 − 𝑓(𝑥1))
2

+ ⋯ + (𝑦𝑛 − 𝑓(𝑥𝑛))
2𝑛

𝑖=1
 (2.16)

16

2.1.3.2. Algoritmik Olmayan Yöntemler

Algoritmik olmayan yöntemler maliyet tahmini için bir formül kullanmaz (Kumari ve Pushkar,

2013). Bu yöntemler 1990 yılında ortaya çıkınca yazılım araştırmacıları dikkatlerini MÖ, GA,

Bulanık Mantık (BM) ve Yapay Sinir Ağları (YSA) gibi Yapay Zekâ Yöntemleri olan soft

computing (esnek hesaplama) denilen yeni yaklaşımlara yöneltmiştir (Attarzadeh ve Ow,

2010). Algoritmik olmayan yöntemlerden bazıları

 Uzmanlık Temelli Yöntemler

 Uzman Görüşü

şeklindedir.

Uzmanlık temelli yöntemler, isminden de anlaşıldığı üzere uzman görüşüne ya da daha önce

yapılmış projelere dayanarak yapılan tahmin yöntemleridir. Bu yöntemler daha önce benzeri

görülmemiş projeler için ve daha önce yapılmış projelerin somut verileri olmadığı durumlarda

kullanılmaktadır (Hihn ve Habib-agahi, 1991). Yapılan tahminin doğruluğu tahmini yapan

uzmanın tecrübe alanına ne kadar hâkim olduğuna bağlıdır. Alanına hâkim olmayan, öznel

görüşlerini işin içine katan bir tahmincinin objektifliği bulunmayabilir bu da yanlış tahminlerin

yapılmasına neden olabilir.

Uzman görüşü bir grup uzmanın deneyimlerini kullanarak tahminde bulunma yöntemidir.

Yazılım maliyet tahmini için en kullanışlı yöntemlerden biridir. Genel olarak Delphi tekniği

kullanılır. Delphi Tekniği, bilhasa askeri konulara dair kestirimlerde bulunmak üzere Amerika

Birleşik Devletleri’nde RAND firmasında çalışan iki araştırmacı tarafından geliştirilmiştir

(Dalkey ve Helmer, 1963). Delphi Tekniği başta tıp, yönetim, askeri konular ve eğitimin çok

yönlü alanlarında olmak üzere birçok alanda kapsamlı bir şekilde kullanılmaktadır

(Woundenberg, 1991; Şahin, 2001). Yazılım projelerinin maliyet tahmini için kullanılan bu

teknik, konuyla ilgili uzmanlardan oluşan bir grubun, rasyonalist bir yaklaşımla iki veya daha

fazla turda tahmin yaparak ortak görüşlerinin yazılı olarak alınmasına dayanmaktadır. Bu

teknikte uzmanların birbirlerinden etkilenmemesi ve tartışma ortamının oluşmaması için

uzmanların kimlikleri gizlenir, uzman görüşlerinden ortak görüşler çıkarılır. Delphi Tekniğinin

başlıca özellikleri şunlardır:

17

 Katılımda Gizlilik: Araştırma boyunca savunulan görüşün kime ait olduğu gizli tutulur

Şahin (2001).

 Grup Tepkisinin İstatistiksel Analizi: Delphi Tekniği ile oluşturulan anketler

uygulandıktan sonra her seferinde istatistiksel olarak analiz edilir.

 Kontrollü Geri Besleme: Delphi Tekniği’nde ardışık anketler uygulanır. Ankette çıkan

görüşler katılımcılara yeni anket ile birlikte iletilir. Katılımcılar farklı bakış açıları ile

görüşlerini yeniden gözden geçirir. Bu şekilde devam eden teknik ortak bir görüş

oluşuncaya kadar devam eder.

 Analoji Tabanlı Yöntemler: Önceden yapılmış gerçek proje verilerine dayanılarak yeni

bir projenin bazı özelliklerinin tahmin edilmesidir. Tamamlanmış projelerden elde

edilen gerçek veriler önerilen projeyi tahmin etmek için kullanılabilir (Boehm, 1981;

Ayyıldız, 2007; Kumari ve Pushkar, 2013). Bu tekniğin doğru sonuç verebilmesi için

önceki proje verilerinin ve karakteristik özelliklerinin saklanmış olması gerekmektedir.

Küçük ve orta ölçekli projelerdeki tahminler büyük ölçekli projelere kıyasla daha tatmin

edici sonuçlar vermektedir (Adalier, 2008).

 Yukarıdan Aşağıya Tahmin Yöntemi: Makro Model olarak da adlandırılır. Bu yöntem

kullanılarak, projenin global özelliklerinden proje için genel bir maliyet tahmini türetilir

ve daha sonra proje çeşitli alt düzey mekanizmalara veya bileşenlere bölünür. Bu

yaklaşımı kullanan öncü yöntem Putnam Modeli’dir. Bu yöntem yazılım geliştirmenin

ilk evresinde ayrıntılı bilgi bulunmadığında çok yararlıdır.

 Aşağıdan Yukarıya Tahmin Yöntemi: Bu yöntem kullanılarak her bir yazılım

bileşeninin maliyeti tahmin edilir ve daha sonra toplam proje maliyet tahminine ulaşmak

için bu tahmin sonuçları birleştirilir. Bu tahmin yöntemi, küçük yazılım bileşenleri ve

bunların etkileşimleri hakkında biriken bilgilerden bir sistemin maliyet tahminini

oluşturmayı amaçlamaktadır. Bu yaklaşımı kullanan öncü model COCOMO modelidir.

 Parkinson Yasaları: Parkinson (1957)’deki “iş mevcut hacmi doldurmak için genişler”

ilkesini kullanarak maliyetin objektif bir değerlendirmeye dayanmak yerine mevcut

kaynaklar tarafından belirlenmesidir. Örneğin yazılım 12 ayda teslim edilmek zorunda

ise ve 5 kişi mevcut ise çaba 60 kişi-ay olarak tahmin edilmektedir. Bazen iyi tahminler

vermesine rağmen bu yöntem çok gerçekçi olmayan tahminler de sağlayabileceği için

pek önerilmez.

18

 Kazanmak İçin Fiyat: Yazılım maliyetini, projeyi kazanmak için gereken en iyi fiyat

olarak tahmin etmektir. Tahmin yazılımın işlevselliği yerine müşterinin bütçesine

bağlıdır. Örneğin bir proje için makul bir tahmin 100 kişi-ay maliyetini oluşturur ancak

müşteri 60 kişi-ay karşılayabilirse tahminin 60 kişi-ay şeklinde değiştirmesi istenir.

Bu yöntem, teslimatın gecikmesi ve ekibin fazla mesai yapma olasılığını yükselttiği için

iyi bir uygulama değildir (Kumari ve Pushkar, 2013).

 Yapay Zekâ Yöntemleri İle Yazılım Maliyet Tahmini: Son zamanlarda Yapay Zekâ

alanında yapılan araştırmalar ve araştırmalar sonucunda elde edilen başarılardan dolayı

bu alana bir yönelme olmuştur. Birçok bilim alanı Yapay Zekâ yöntemleri ile tekrar ele

alınmaya başlanmış ve kayda değer sonuçlar elde edilmiştir. Bu alanlardan bir tanesi de

yazılım maliyeti tahmin yöntemleridir. Yazılım projelerinin maliyet tahmini Yapay

Zekâ yöntemleri ile tahmin edilmeye başlanmıştır. YSA, MÖ, BM, GA bu

yöntemlerden sadece birkaç tanesidir.

2.1.3.3. Melez Sistemler

Melez sistemler, birden fazla faklı sistemin (YSA, GA, BM vb.) birlikte kullanılması ile

oluşturulan sistemlerdir. Yazılım projelerinin maliyet tahmininde melez sistemler, birden fazla

algoritmik yöntem, birden fazla algoritmik olmayan yöntem ya da algoritmik yöntemler ile

algoritmik olmayan yöntemlerin bir arada kullanılması ile oluşturulmaktadır. Neuro-Fuzzy

COCOMO modeli, Huang ve diğ. (2003) tarafından yazılım maliyet tahmini için oluşturulmuş

melez bir sistemdir. Araştırmacılar, COCOMO modeli ile BM ve YSA’yı birleştirerek

oluşturdukları melez sistemin yazılım maliyet tahmini başta olmak üzere yazılım

mühendisliğindeki birçok probleme çözüm sağlayacağını belirtmişlerdir. Başka bir çalışmada

(Molani ve diğ., 2014) YSA ve GA birlikte kullanılarak yazılım maliyet tahmini için melez bir

model geliştirilmiştir. Araştırmacılar modelin optimalliğini kanıtlamak için modelin tahmin

çıktılarını COCOMO 81 modelinin tahmin çıktıları ile karşılaştırmıştır. Geliştirilen modelin

COCOMO 81 modelinden daha büyük doğruluk oranıyla tahmin yaptığı gözlemlenmiştir.

19

2.2. YAPAY ZEKÂ

Yapay Zekâ, zeki bir canlının taklit edilmesi amacı ile belli hesaplamalar sonucunda elde edilen

zekâdır. Çoğu zaman akıl ve zekâ kavramları karıştırılır. Akıl somut olarak ölçülemez ve zaman

içinde geliştirilebilir. Elmas (2016) aklın genetik olduğundan ve çevreden etkilenerek

gelişebileceğinden söz etmekte ayrıca aklın makine, bilgisayar, yazılım gibi farklı yollarla taklit

edilemeyeceğini zekânın ise geliştirilebilir, ölçülebilir ve taklit edilebilir bir yapı olduğunu

savunmaktadır. TDK’nın verdiği tanıma göre zekâ, insanın düşünme, fikir yürütme, nesnel

gerçekleri algılama, kavrama, yargılama, sonuç çıkarma yeteneklerinin tümüdür (TDK, 2020).

Nabiyev’e (2016) göre zekâ; bireylerin amaçlı bir biçimde hareket edebilme, mantıklı

düşünebilme ve çevresine uyum gösterme yetilerinin tanımıdır. Bazen zekâ; bir olayı önce

anlama, ilişkileri kavrama yargıda bulunma daha sonra çözme yeteneği biçiminde de

tanımlanmaktadır. Oleron (1996) zekâyı araçların duruma göre uygun kullanılması olarak

tanımlar. Elmas (2016) zekânın belirli bir konuda çalışılarak, öğretilerek, edinilen bilgi ve

birikimlerle, deneyimlere dayalı becerilerle geliştirilebilir olduğunu ifade etmiştir. Alan W.

Turing “Makineler düşünebilir mi?” sorusuyla ilk kez insana has bir özelliğin makinelere

nakledilebilme düşüncesini ortaya atmış ve Turing Testi ve Yapay Zekâ gibi kavramları

literatüre kazandırmıştır (Kartal Karataş, 2011; Nabiyev, 2016). 1956 yılında Yapay Zekâ

terimi ilk defa Dartmouth College’de düzenlenen bir konferansta kullanılmıştır (Nabiyev,

2016).

Çağımızda bilgisayar sistemleri hem eylemler arasında bağları öğrenebilmekte hem de eylemler

hakkında kararlar alabilmektedir. Matematiksel olarak formülasyonu kurulamayan ve

çözülmesi mümkün olmayan problemler sezgisel yöntemlerle bilgisayar sistemleri tarafından

çözülebilmektedir. Bilgisayarlar sistemlerini bu özelliklerle donatan ve bu kabiliyetlerinin

gelişmesini sağlayan çalışmalar Yapay Zekâ çalışmaları olarak bilinmektedir (Öztemel, 2016).

Nabiyev (2016)’e göre Yapay Zekâ, bir bilgisayarın ya da bilgisayar denetimli bir makinenin,

çoğunlukla insana has özellikler olduğu kabul edilen fikir yürütme, mana çıkarma, genelleme

ve önceki tecrübelerinden öğrenme gibi yüksek zihinsel süreçlere ilişkin görevleri yerine

getirme kabiliyeti olarak tanımlanmaktadır.

20

Yapay Zekâ, hem bilişsel sistemleri simule etmeyi hem de “akıllı” sistemleri yapılandırmayı

amaçlayan bilimsel disiplindir (Görz, 2005). Başka bir tanıma göre Yapay Zekâ, mevcut verileri

kullanarak doğru sonuçlar çıkaran, isabetli kararlar verebilen akıllı bilgisayar ve türevi

makineleri yapma bilimidir. Bu bilimle uğraşanlar, zekânın doğasını anlamaya çalışarak

bilgisayarları daha işlevsel, daha faydalı hale getirmeye çalışmaktadır. Buradaki amaç hep daha

zeki programlar oluşturabilmektir (Sönmez, 2020). Yapay Zekâ teknolojisinin çok geniş bir

çalışma alanı vardır (Allahverdi, 2002). Bunlardan bazıları aşağıdaki şekildedir (Tuzcuoğlu,

2003):

 İnsanın beyin işlevlerini inceleyip simülasyonunu çıkararak keşfetmek.

 İnsanların bir problem karşında geliştirdiği taktik ve tutumu model almak.

 İnsanın öğrenme yöntemlerini şekilsel duruma getirmek ve bilgi sistemlerine

uygulamak.

 İnsanın, bilgisayar etkileşimini ergonomik hale getirerek ona göre kullanıcı dostu

donanımlar üretmek

 Uzman kişilerden toplanan verilerden Bilgi Sistemleri ya da Uzman Sistemler

geliştirmek.

 Gelecekte bilgi toplumlarının oluşturulmasına yardımcı olacak “Genel Bilgi

Sistemleri” oluşturmak.

 Zeki robot timler oluşturmak

 Bilimsel buluşlarda ve araştırmalarda kullanılmak üzere araştırma yardımcıları

oluşturmak.

 Askerî alanda çabuk karar verebilen sistemler geliştirmek.

 Tehlike anında insan yerine kullanılabilecek yardımcı eleman oluşturmak.

 Optik algılama bazında nesne ve renk tanımlayacak sistemler geliştirmek.

 Tıp alanında karışık durumlarda karar verebilecek sistemler geliştirmek

21

Yapay Zekâ teknolojisinde çeşitli yöntemler mevcuttur. Yapay Zekâ yöntemlerinden bazıları:

 Tavlama Benzetimi

 Uzman Sistemler

 Bilgisayarlı Görme

 Konuşma Tanıma

 Robotik

 Kaotik Modelleme

 YSA

 BM

 Melez Sistemler

 GA

 MÖ

2.2.1. Tavlama Benzetimi

Tavlama Benzetimi optimizasyon problemleri için tasarlanmış ihtimallere dayalı bir

algoritmadır. Amaç optimal çözümün en kısa sürede üretimini sağlamaktır. Bu algoritma

özellikle hesaplama alanında bir deneyin ya da nümerik sonuçların anlık değerlerini elde etmek

için kullanılır. Tavlama Benzetimi ilk olarak metallerin tavlama işlemini simüle etme amacıyla

önerilmiştir ve daha sonra yinelemeli bir optimizasyon yöntemi olarak tanıtılmıştır. Tavlama

Benzetimi algoritması adını, demircilerin demiri şekillendirmek için demiri döverken belirli bir

sıcaklığa kadar ısıl işlemden geçirmesi olayından almıştır. Tavlama sürecinin oluşumu, oldukça

yüksek bir sıcaklık değerine sahip bir çözümden başlayıp sıcaklığı dereceli olarak düşürerek iyi

ve kötü çözümler arasında gezinip en nihayetinde optimal çözüme ulaşmaktır (Ayan, 2009).

Tavlama olayındaki gibi çözülmesi gereken problem ele alınır tavlama derecesi ile ısıtma

aşamasından geçirilir arzu edilen noktaya gelindiğinde hedefe varıldığı kabul edilir. Tavlama

Benzetimi elektronik devre tasarımı, görüntü işleme, kesme ve paketleme, akış ve iş

çizelgeleme gibi problemlerin çözümlerinde kullanılmaktadır.

22

2.2.2. Uzman Sistemler

Uzman Sistemler, belirli konularda uzman kişilerin görüş ve önerileri ile oluşturulmuş veri

tabanlarını kullanarak karar verme işlemlerini modelleyebilen, kendini geliştirebilen yazılım

sistemleridir. Uzman Sistemler, tavsiyelerde bulunabilir, sorunları çözümleyebilir, bağlantı

kurabilir, tasarım yapabilir, tanım yapabilir, yorumlayabilir, kestirim yapabilir, yargılayabilir,

denetleyebilir, öğrenebilir ve öğretebilir, yazılımlardır (Civalek, 2003).

Uzman Sistem yaratma işlemleri "Bilgi Mühendisliği" olarak adlandırılmakta ve "Uygulamalı

Yapay Zekâ" olarak kabul edilmektedir. Uzman Sistemler aynı zamanda daha geniş bir grubu

oluşturan "zeki sistemler" ve "bilgiye dayalı sistemler” in alt grubunu oluşturmaktadır

(Kurbanoğlu, 1992). Şekil 2.2’de bir Uzman Sistemin genel yapısı verilmiştir.

Şekil 2.2: Bir Uzman Sistemin genel yapısı.

Uzman Sistemlerin avantajları şu şekilde ifade edilebilir:

23

 Maliyet Azalması: Uzman Sistemler daha kısa sürede daha çok iş yapıp maliyeti

düşürürler.

 Verimlilik: Uzman Sistemler daha kısa sürede daha çok çalışır ve daha az yorulurlar,

verimliliği artırırlar.

 Kalite Artışı: Uzman Sistemler tutarlı ve uygun hareket ederek hata oranını düşürür,

kaliteyi arttırırlar.

 Tutarlılık: Hava durumu, ekonomi, duygusal ilişkiler gibi insani durumlar Uzman

Sistemleri etkilemez. Dolayısıyla aynı şartlarda aynı sonucu üretirler. Bu da tutarlılığı

sağlar.

 Esneklik: Uzman Sistemlerin veri tabanları istenildiği zaman güncellenebilir bu da

esnekliği sağlar.

 Kapsamlılık: Uzman Sistemler çoğunlukla birden fazla uzman bilgisiyle

oluşturulmuştur dolayısıyla kapsayıcı sonuçlara sahip olurlar.

 Karar Alma Süresinin Kısalması: Uzman Sistemler uzmanlara ve diğer birçok yönteme

oranla daha kısa sürede karar alırlar.

 Güvenilirlik: Uzman Sistemler veri tabanındaki bilgilerden yola çıkarak sonuçlar

üretirler. Bu sonucu üretirken hiç sıkılmadan ve yorulmadan işlemi gerçekleştirirler.

Bu da güvenilirliği sağlar.

 Tehlikeli Ortamlarda İşlem: Uzay keşifleri, savaş ortamları, okyanusun derinlikleri,

zehirli gazlar bulunan yerler, madenler gibi insanlar ve canlılar için risk oluşturan birçok

ortamda Uzman Sistemler rahatlıkla çalışabilirler.

 Eksiksiz ve Mutlak Olmayan Bilgi ile Çalışma: Uzman Sistemler sıradan

bilgisayarların aksine insanlar gibi net olmayan bilgilerden çıkarımlar yapabilirler.

 Eğitim: Uzman Sistemler eğitilebilir ve eğitebilirler. Bir Uzman Sistem başka bir

Uzman Sistemi ya da bir insanı eldeki verileri kullanarak eğitebilir.

 Problem Çözme Kabiliyeti: Uzman Sistemler çok karmaşık görünen problemleri insana

oranla daha kısa sürede çözebilirler.

Günümüzde birçok alanda kullanılan Uzman Sistemler insanın iş yükünü azaltarak hayatı

kolaylaştırmaktadır. Uzman Sistemlerin kullanıldığı bazı alanlar ve bu alanlardaki bazı örnekler

şu şekilde ifade edilebilir:

24

 Yorumlama: Ses tanıma, görüntü analizi, denetim

 Tahmin: Hava tahmini

 Teşhis: Tıp, elektronik

 Tasarım: Devre çizimi

 Planlama: Askerî planlama

 Görüntüleme: Hastalıkların teşhisi ve tedavisi

 Eğitim: Danışma, ıslah, tedavi

 Tamir: Otomobil, bilgisayar

 Planlama: Askeri planlama, otomatik programlama

 Kontrol Sistemleri: Hava trafik kontrolü

 Hata Ayıklama: Yazılımlar

2.2.3. Bilgisayarlı Görme

Bilgisayarlı görme, 1960’ların sonlarında Yapay Zekâ çalışmalarına öncülük eden

üniversitelerde başlamıştır (Szeliski, 2010). Robotlara akıllı davranışlar kazandırmayı

amaçlayan araştırmacılar insan gibi görmeyi de bu çalışmanın bir basamağı olarak incelemiştir.

Bilgisayarlı görme, insanın görme yeteneğinin bilgisayarlara aktarılması çalışmasıdır.

Başka bir ifadeyle bilgisayarların, dijital görüntülerden veya video görüntülerinden, insan gibi

sonuçlar çıkararak işlemler gerçekleştirip elde ettiği sonuca göre karar verebilir aşamaya

gelebilmesidir. Bilgisayarların bunu yapabilmesi için, dijital görüntüyü oluşturma, işleme,

analiz etme ve anlamlı hale getirme işlemlerini gerçekleştirebilecek yöntemleri kullanması

gerekmektedir (Autonom, 2019). Bilgisayarlı görmenin, görüntü tanıma, hareket algılama,

görüntü onarma, indeksleme, hareket izleme gibi alt dalları bulunmaktadır. Bilgisayarlı görme

çok çeşitli alanlarda kullanılmaktadır. Bu alanlardan bazıları; medikal uygulamalar, sanayi

uygulamaları, askeri uygulamalar ve otonom araç uygulamalarıdır.

2.2.4. Konuşma Tanıma

Konuşma tanıma, insan sesinin bilgisayarlar tarafından algılanmasıdır (Yalçın, 2008).

Bilgisayar sistemleri, ses sinyallerinden oluşan konuşma verisini alarak veriyi işler, işlenmiş

veriden yolara çıkarak tahminde bulunur ve bir metin çıktısı oluşturur buna konuşma tanıma

25

denir. Dede (2008) çalışmasında YSA’yı kullanarak bir konuşma tanıma uygulaması

geliştirmiştir. Çalışmasında konuşma tanıma probleminin esas itibariyle bir örüntü tanıma

problemi olduğunu belirtmiştir. Bir sözcüğün zamana göre frekans değerlerine yayılmış olan

gösterimi o kelimenin örüntüsü olarak hesaplanır. Çünkü araştırmacıya göre ses sinyallerinde,

belli sözcükler başka seslendirme kayıtlarında benzer sinyal şekilleri ortaya koymaktadır.

Araştırmacı kelimelerin örüntülerinden yola çıkarak konuşma tanıma uygulaması geliştirmiştir.

Öcal (2005) çalışmasında, konuşma alanında yapılan en eski çalışmanın 1936 yılında

yapıldığını belirtmiştir. En başta oluşturulan konuşma tanıma sistemleri yalnızca sayıları

anlamlandırabilmekteydi. Daha sonraki yıllarda bu alan üzerindeki çalışmalar artmıştır.

Sovyetler Birliği, ABD, Japonya ve İngiltere’deki laboratuvarlarda 1950 ve 1960 yılları

arasında ünlü ve ünsüz harfleri tanıyan donanım tabanlı konuşma tanıma sistemleri

geliştirilmiştir (Yakar, 2016). Dinamik programlama ile başlayan çalışmalar saklı Markov

modellerinin kullanılması ile günümüze kadar sürdürülmektedir (Gürel ve Aslan, 2008).

Konuşma Tanıma Modelini oluşturan kısımlar aşağıda belirtilmiştir (Yalçın, 2008).

 Sinyal işleme modülü

 Özellik çıkarma modülü

 Zaman düzenleme ve model karşılaştırma

 Bir final kelime dizisi seçmek için dil modeli

Şekil 2.3’te konuşma tanımanın genel bir modeli verilmiştir.

26

Şekil 2.3: Konuşma Tanıma Modeli.

Konuşma tanıma uygulamaları günlük yaşantının birçok alanında kullanılmaktadır. Bankacılık

işlemleri, akıllı ev eşyaları, sesli web tarama sistemleri, otomobiller, kamu tesisleri bunlardan

sadece birkaçıdır. Bunlardan bir diğeri havalimanlarında kurulan farklı dil desteği ile rehberlik

yapan Konuşma Tanıma sistemleridir. Bu sistemler farklı dilleri konuşan ama aynı cihazı

kullanan yabancı gruplar için geliştirilmiştir.

Otonom araçlar, neredeyse bir insan gibi iletişim kurabilmektedir. Tek bir cümle ile birden fazla

soruyu anlamaya yeteneğine sahip bu sistemler yolcular ile sesli iletişim kurabilir, navigasyon

komutları verebilir, yol bilgisi alabilir, internette arama yapabilir, çalan müziği değiştirebilir.

Günlük hayatı yakından ilgilendiren giyilebilir teknoloji, müşteri hizmetleri, görme engelliler

için özel cihazlar ve turizm sektörü konuşma anlama teknolojisi ile büyük bir gelişim

göstermesi beklenen alanlar arasındadır (Techinside, 2017).

2.2.5. Robotik

İkinci Dünya Savaşı’ndan sonra yüksek seviyeli algoritmaların geliştirilerek akıllı oyun

programlarının yapılması, otomat oyuncaklara ilgiyi azaltmıştır. Otomatların yerine, dışarıdan

algıladıkları verileri alan ve aldıkları verileri kullanıp gerekli talimatları yerine getiren

27

sibernetik makineler geçmiştir. Bu makineler, yakınındaki ısı, ışık, gürültü kaynağını ya da bir

engeli algılamakta ve ona göre hareketlerine yön verebilmektedir. Nobert Wiener, 1948’de

“yönetim” anlamına gelen Sibernetik’i, insanlar ve makineler arasında iletişim ve düzenleme

bilimi olarak tanımlamıştır (Nabiyev, 2016).

Robot kelimesi ilk kez 20. yüzyılın başlarında bir tiyatro oyununda kullanılmıştır. Bilim kurgu

yazarı Isaac Asimov insanlık geleceğini ilgilendiren 3 önemli robotik yasası olduğunu iddia

etmiştir:

 1. yasa: Robotlar hiçbir şekilde insanlara zarar vermemeli ve insanın zarar göreceği

hiç bir durumda pasif kalmamalıdır.

 2. yasa: Robotlar 1. yasaya uymak kaydıyla insanlar tarafından verilen bütün

komutları yerine getirmek zorundadır.

 3. yasa: 1. ve 2. yasaya uymak kaydıyla robotlar kendilerini korumak zorundadır.

Şerit üzerinde hareket eden kusurlu ürünleri tespit etme, araba parçalarını birleştirme, malzeme

taşıma ya da daha kompleks davranışları yapan robotları çağımızda görmek mümkündür.

Bilgisayarlar, yazılımlar aracılığı ile robotları kontrol eder ve robotlara işin nasıl yapılacağını

öğretir. Bu yazılımlar robota hareketinin zamanını, yönünü, mesafesini ve benzer konularda ne

yapması gerektiğini komutlar yardımıyla bildiren yazılımlardır. Bazı robotlar bir kere

programlandıktan sonra tekrar tekrar programlanmalarına gerek yoktur. Rutin işlerde

kullanılan, bir kere programlandıktan sonra fazla kontrol edilmeyen bu tür robotlara seç, al,

yerleştir robotları denilmektedir (Civalek, 2003). Yeni nesil robotlar ise her geçen gün daha

fazla zekâ yeteneği ile donatılmaktadır. Bu sayede çevrelerini daha iyi algılamakta ve

hareketlerini planlamaya yönelik gelişmektedir (Kocabaş, 2013).

Robotik, makine tasarımı, kontrol kuramı, bilgisayarlı programlama ve elektronik

disiplinlerinin karışımından oluşan ve Mekatronik olarak isimlendirilen mühendislik alanına

girmektedir. Mekatronik biliminin temelleri 1969 yılında Japonya’da atılmıştır. Robotik, Yapay

Zekânın Mekatronikle sınırında olan bir alandır (Civalek, 2003; Ozan, 2020). Robotlar üç

kategoride incelenmektedir:

28

 Birinci nesil robotlar: Kendi kendine ayarlanamaz robotlardır.

 İkinci nesil robotlar: Dışarıdan gelen verileri alabilen en az bir alıcısı olan

robotlardır.

 Üçüncü nesil robotlar: Kendi kendini kontrol edebilen bir Yapay Zekâ ile

donatılmış robotlardır.

Robotların üstün özellikleri arasında üretim artışını sağlaması, üretim maliyetini düşürmesi,

kalite artışını sağlaması, kötü şartlarda çalışabilmesi, yönetilmesinin ve kontrol edilmesinin

kolay olması, çalışma sahasının geniş olması, yaşam süresinin uzun olması, daha dayanıklı ve

uyumsal olması onun kullanımını cazip kılmıştır. Bu nedenle robotlar, Japonya ve ABD’de

birçok araştırma ve geliştirme alanında kullanılmaktadır. Teknolojinin birçok alanında olduğu

gibi robotların da gelişme göstermesinin en büyük etkenlerinden birisi askerî alanlarda

kullanılmasıdır (Nabiyev, 2016).

Robotik bilimi, tıp ve sağlık alanında, endüstride, uzay araştırmalarında, askeri alanda, eğlence

alanında, ulaşımda, tarım ve hayvancılık alanında, sibernetik alanı gibi daha birçok alanda

kullanılmaktadır. Geçmişten günümüze farklı alanlarda robotlar tasarlanmıştır (Yamanol, 2016;

Ozan, 2020).

2.2.6. Kaotik Modelleme

Fransızca’dan Türkçe’ye geçen kaos kelimesi, evrenin düzene geçmeden önceki uyumsuz,

karışık hali ya da karmaşıklık, karmaşa anlamlarını içermektedir. Kaos, karmaşık ve düzensiz

görünümlü başlangıç koşullarına bağlı, deterministik olmayan, zamanla değişen sistemler için

kullanılan bir olgudur (Ablameyko, 2003). Kaos terimi ilk olarak 1900 yıllarında bilim adamı

Jules Henri Poincaré tarafından karar verilemez ve saptanamaz olaylar için kullanılmıştır

(Poincaré, 1912).

Kaos kuramı, dinamik sistemlerin beklenmedik garip davranışlarını araştıran bir bilim dalıdır

(Merih, 2016). Kaotik bir sistemde kaotik işaretler elde edildikten sonra verilere uygun bir

matematiksel model ile kaotik işaretler ifade edilebilmektedir. Bu direk olarak lineer olmayan

bir denklem formatında olabileceği gibi BM, YSA veya Volterra Serileri gibi farklı modelleme

29

teknikleri ile modellenebilmektedir. Buna Kaotik Modelleme denir. Dinamik bir sistemin

kaotik olarak sınıflandırılması için başlangıç koşullarına duyarlı olmalıdır, topolojik olarak

karıştırılmalı ve periyodik yörüngeleri yoğun olmalıdır. Son yıllarda kaos teorisi borsa,

meteoroloji, iletişim tıp, kimya, mekanik gibi çok farklı dallarda kullanılmaktadır.

2.2.7. Yapay Sinir Ağları

İnsan sinir hücresinin model alınarak oluşturulmuş bilgisayar sistemlerine, öğrenmeyi,

öğretmeyi, sonuç çıkarmayı öğreten Yapay Zekâ yöntemine YSA denir. YSA tasarlanırken

insan sinir sisteminden ilham alınmıştır. Bir YSA’yı oluşturan işlem yapıları birbirlerine

ağırlıklı bağlantılar ile bağlanmış her birinin kendi belleği olan, dağıtık ve paralel yapılardır.

(Elmas, 2016). Başka bir tanıma göre YSA insan beyninin biyolojik sinir sistemini temel alarak

oluşturulan bu bilgisayar programları ve yapıları, algılayıcılardan aldığı veri girişleri ile daha

önceden öğrenerek sınıflandırmış olduğu bilgileri kullanarak yeni bilgiler üretmektedir.

Ürettiği ve oluşturduğu bilgilerden yola çıkarak yeni kararlar verebilir duruma gelmektedir

(Keskenler ve Keskenler, 2017).

YSA ile ilgili ilk çalışmalar 1940’larda bugün birçok ağın önemli yapı taşı olan McCulloch-

Pitts-Neuron olarak bilinen basit bir sinir hücresi modeli tasarlanması şeklindedir (Sezen, 2008;

Mijwill, 2017). 1949 yılında, günümüzde bile hala pek çok öğrenme kuralının özünü oluşturan

Hebbian Öğrenme oluşturulmuştur. 1957’de farklı harfleri okuyup tanıyan bir YSA modeli

geliştirilmiştir. 1959 senesinde MADALINE ve ADALINE olarak adlandırılan YSA modeli

oluşturulmuştur. 1960’lı yılların sonlarında YSA’nın doğrusal olmayan problemleri

çözememesi ve XOR (Exclusive-Or) problemi ile bunun ispatlanması bu alandaki çalışmaları

durma noktasına getirmiştir. Geleneksel Gezgin Satıcı Problemi’nin (Travelling Salesman

Problem – TSP) YSA ile çözülmesi aynı zamanlarda tek katmanlı algılayıcıların çözemediği

XOR probleminin çok katmanlı algılayıcıların bulunması ile çözülmesi bu alanı tekrar ilgi

odağı haline getirmiştir. YSA’daki gelişmelere donanım teknolojisindeki yeniliklerin etkisi çok

olmuştur. Bilgisayarların işlem hızları ve bellek kapasiteleri artmış bu da işlemlerin daha kısa

sürede gerçekleştirilmesini sağlamıştır. Bu sayede YSA’nın kullanımı kolaylaşmıştır.

YSA 1990’lı yıllardan sonra sadece laboratuvarlarda uğraşılan teorik çalışmalar olmanın

ötesinde günlük hayatta kullanılan sistemler olmaya başlamıştır bu sayede insanların

30

hayatlarına pratiklik kazandıran yeni bir sürü uygulama geliştirilmiştir. YSA’daki bu gelişim

günümüzde hala devam etmektedir (Öztemel, 2016).

Bir biyolojik beyin sinir hücresi akson, hücre gövdesi, dendrit ve sinapslardan oluşmaktadır.

YSA, biyolojik sinir sisteminin model alınarak oluşturulmuş halidir. Sinir sistemi

vücudumuzda bulunan milyarlarca sinir hücresi ve bunların bağlantılarından oluşmaktadır.

Sinir hücrelerinin oluşturduğu bu bağlantılar sinir ağını meydana getirmektedir. İnsan

vücudunda merkezi sinir sistemi ve çevresel sinir sistemi olarak 2 tane sinir sistemi mevcuttur.

Merkezi sinir sistemini oluşturan beynimizde 1011 adet sinir hücresi ve bunların da 6𝑥1013’ten

fazla sayıda bağlantısının olduğu ifade edilmektedir (Öztemel, 2016).

YSA giriş seti olarak kendisine verilen bilgilere karşılık bazı matematiksel fonksiyonlar

kullanarak net denilen çıkışı üretir. Bunu yapabilmesi için ağ mevcut örneklerle önceden

eğitilmektedir. YSA’nın en temel elemanına yapay sinir hücresi (proses, perceptron)

denmektedir. Bu yapay sinir hücresi altı temel elemandan oluşmaktadır. Bunlar, girişler,

ağırlıklar, eşik, toplam fonksiyonu, aktivasyon fonksiyonu ve çıkış değeridir. Şekil 2.4’te yapay

sinir hücresi verilmiştir.

Şekil 2.4: Yapay sinir hücresi.

31

Girişler: Girişler (𝐼1, 𝐼2,…, 𝐼𝑛) bir sinir hücresine dışarıdan, başka sinir hücresinden ya da

kendisinden gelen bilgilerdir.

Ağırlıklar: Ağırlıklar (W1, W2,..,Wn) bir yapay sinir hücresi tarafından alınan bilginin önemini

ve hücre üzerindeki etkisini gösteren katsayıdır. Ağırlıklar pozitif ya da negatif değerler alabilir.

Şekildeki ağırlık 𝑊1, girdi 𝐼1’in yapay sinir hücresi üzerindeki etkisini göstermektedir.

Ağırlık değerinin büyük olması o girdinin ağa güçlü bağlandığını, küçük olması ağa zayıf

bağlandığını ve sıfır olması o ağ için herhangi bir etkisinin olmadığını göstermektedir.

Eşik: Sinir hücresinin ya da ağın çıktısının sıfır olmasını engellemek için kullanılır.

Toplama Fonksiyonu: Yapay sinir hücresine giren net bilgiyi değişik fonksiyonları kullanarak

hesaplayan bir fonksiyondur. En yaygın kullanılan fonksiyon ağırlıklı toplama fonksiyonudur.

Bu toplama fonksiyonu her gelen girdi değerinin kendi ağırlığıyla çarpılarak toplanmasıdır.

Aktivasyon Fonksiyonu: Bu fonksiyon, hücreye gelen net girdiye karşılık bir çıkış hesaplar.

Çıkışı belirlemek için değişik fonksiyonlar kullanılır. Bu fonksiyonlardan bazıları; Doğrusal

Fonksiyon, Step Fonksiyon, Sinüs Fonksiyonu, Eşik Değer Fonksiyonu, Hiperbolik Tanjant

Fonksiyonu’dur.

Çıkış: Aktivasyon fonksiyonunda net girdinin işlenmesi sonucunda elde edilen çıkış değeridir.

Elde edilen çıkış başka bir hücreye ya da aynı hücreye giriş olarak verilebilir. Bir hücrenin

birden fazla girişi olabiliyorken sadece tek bir çıkışı vardır. Şekil 2.5’te insan sinir sistemine ait

gerçek sinir hücresi ve YSA’ya ait sinir hücresi şekli bir arada verilmiştir.

32

Şekil 2.5: Biyolojik sinir hücresi ve yapay sinir hücresi.

YSA yapısının avantajları aşağıdaki gibi ifade edilebilir:

 Geleneksel yöntemlerle çözülemeyen birçok problemi çözebilir.

 Tam ve normal olmayan, belirsiz ve eksik bilgileri işleyebilen çok güçlü problem

çözme yeteneğine sahiptir.

 Doğrusal olmayan ilişkileri de kolaylıkla modelleyebilir.

 Örnekleri kullanarak öğrenebilir ve görülmemiş örnekler hakkında bilgi üretebilir.

 Bilgiyi ağın bağlantılarında saklamaktadır. Bilgiler öteki yazılımlar gibi veri

tabanında veya programın içerisinde değildir.

 Eksik bilgi ile çalışabilmektedir.

 Hata toleransı ağın bir bölümü yanlış oluşturulduğunda veya ağ zarar gördüğünde

bile düzgün çalışmaya devam etmesini sağlamaktadır.

33

YSA yapısının dezavantajları aşağıdaki gibi ifade edilebilir:

 Ağ topolojinin belirlenmesi kesin kurallara dayanmadığından ağ deneme yanılma

yoluyla belirlenmektedir.

 Ağın parametre sayısının oluşturulmasında kesin kurallar yoktur.

 Örneklerin tasarımında ve belirlenmesinde bir kural yoktur ve sadece numerik

bilgiler ile çalışmaktadır.

 Donanıma bağımlı çalışmaktadır.

 Ağın eğitim sürecinin ne kadar süreceği ve ne zaman bitirileceğine karar verecek bir

yöntem yoktur. Bu durumda eğitim süreci uzun sürebilmektedir.

 Ağ davranışı açıklanamaz.

2.2.8. Bulanık Mantık

Dünya sadece siyah ve beyaz renklerinden oluşmamaktadır. Siyah renginden beyaz renge

geçişte çok fazla ara renk tonu mevcuttur. Benzer şekilde bilgisayar biliminde de her şey sadece

1 ve 0 ya da var ve yok değildir. 1 ve 0 arasında ara değerler mevcuttur. Bilgisayar biliminde

1 ve 0 arasındaki ara değerleri, komşuluk derecelik kavramlarına bağlı olarak değerler

oluşturulmasını sağlayan bilime BM denir. BM kuramı bilgisayar ve türevi makinelere

insanlara has özel verilerini işleyebilme ve onların tecrübelerinden ve öngörülerinden

yararlanarak çalışabilme kabiliyeti kazandırır. Bu kabiliyeti verirken dijital ifadeler yerine

simgesel ifadeler kullanır. İşte bu simgesel ifadelerin makinelere aktarılması matematiksel bir

temele dayanır. Bu matematiksel temel BM Kümeler Kuramı ve buna dayanan BM’dir (Elmas,

2016).

Günlük hayatta kullandığımız birçok kavram bulanıklık içerir. Örneğin az, çok az, biraz, fazla,

çok fazla, güneşli, bulutlu, ılık, soğuk, sıcak, kısa, uzun, genç, yaşlı gibi daha birçok dilsel

terimler vardır. Bu terimler bulanık değişkenler olarak isimlendirilmektedir. BM kesin olmayan

bilgilerin var olduğu durumlarda kullanılmaktadır. Mevcut Sistemin kompleks olduğu ve

bilinen klasik yöntemlerle çözümün elde edilemediği, bilgilerin belirsiz olduğu veya bilgilerin

kesin olmadığı mevcut durumlarda daha çok tercih edilmektedir.

34

Dünya Sağlık Örgütü’nün (World Health Organization – WHO) açıkladığı yaş dilimlerine göre

0-17 arasındaki yaşlar ergen, 18-65 arasındaki yaşlar genç, 66-79 arasındaki yaşlar orta yaşlı

ve 80-99 arasındaki yaşlar yaşlı sayılmaktadır. Bu durumda 18 yaşındaki biri ve 65 yaşındaki

biri genç sayılıyorken 66 yaşındaki biri orta yaşlı sayılmaktadır. Ancak 18 yaşındaki biri ile 50

yaşındaki birinin gençlik oranları aynı olmamasına rağmen klasik yöntemlerde ikisi de aynı

kategoriye alınacaktır. Bu gibi durumlarda BM tanımların kullanılması çok daha uygun

olmaktadır. Genç, çok genç ya da yaşlı, çok yaşlı gibi bulanık tanımlar durumun daha iyi

anlaşılmasını sağlamaktadır. Gerçek dünya hayatı bu gibi pek çok örneği içermektedir.

Bunlar gibi özellikleri doğru belirlenemeyen, tam tespit edilemeyen, apaçık görünmeyen, kesin

olmayan şeklinde tanımlanan bulanıklık, dereceli üyelik kavramı yardımı ile teknik bilim

dünyasına taşınmıştır. Bu kavram 1965 senesinde ilk defa kullanılmıştır (Zadeh, 1965).

Zadeh tarafından BM ilkeleri Şekil 2.6‘daki gibi belirlenmiştir (Elmas, 2007);

Şekil 2.6: Bulanık Mantık genel ilkeleri.

Lotfi Zadeh 1965 tarihli makalesinde, belirsizlik içeren sistemlerin yeniden gözden geçirilmesi

gerektiği fikrini ortaya attıktan sonra bulanık küme kavramı 1970’li yıllarda kullanılmaya

başlanmıştır (Altaş, 1999). BM kavramları aşağıda açıklanmıştır.

Üyelik Fonksiyonları: Klasik küme tanımında evrensel kümedeki bir eleman kümeye ait ise

1, değil ise 0 değerini alır. Bu değer kümeye üye olmayı ya da olmamayı ifade etmektedir.

BM’de dereceli üyelik söz konusudur. Bir eleman A kümesine üye iken aynı zamanda

B kümesinin de üyesi olabilmektedir. Buna dereceli üyelik denir. Elemanın küme içerisindeki

35

üyelik derecesini veren fonksiyonlara üyelik fonksiyonları denir. Üyelik fonksiyonlarını

oluşturmak için birçok yöntem mevcuttur. Bunlardan en gelişmiş olanları aşağıda Şekil 2.7’de

belirtildiği üzere üçgen, yamuk ve parabolik fonksiyonlarıdır.

a) Üçgen Fonksiyonu b) Yamuk Fonksiyonu c) Parabolik Fonksiyon

Şekil 2.7: Üyelik fonksiyonları.

Bulanık Kümeler: Klasik kümelerde bir değer o kümenin ya elemanıdır ya da değildir.

Hiçbir durumda kısmı üyelik söz konusu değildir. BM’de kısmî üyelikten bahsedilebilir.

Aşağıdaki Şekil 2.8)a) incelendiğinde eğer sıcaklık 200C’nin altında ise sıcak değildir.

Klasik mantığa göre 19,50C soğuk iken 200C sıcaktır. Oysaki günlük hayatta suyun sıcaklığını

ifade ederken çok soğuk, soğuk, sıcak ve çok sıcak gibi dereceli ifadeler kullanılmaktadır.

Bulanık kümelerde üyelik dereceleri [0,1] aralığında sonsuz sayıda değişebilmektedir. Klasik

kümedeki soğuk-sıcak ifadesi, BM’de az soğuk, az sıcak gibi esnek ifadelerle gerçek dünyaya

benzetilmektedir. Şekil 2.8)b)’deki bulanık küme incelendiğinde tam üyelik 200C’de

başlamaktadır ve üyelik derecesi 1’dir. 200C’den 400C’ye kadar üyelik derecesi 1’dir. 200C ile

100C arasında üyelik derecesi 0 ile 1 arasındadır ve 100C’de üyelik derecesi 0 olmaktadır. Yani

200C sıcak ise 190C biraz sıcaktır.

36

a) Sıcaklık için klasik küme örneği.

b) Sıcaklık için bulanık küme örneği.

Şekil 2.8: Sıcaklık için küme örnekleri.

Şekil 2.8)a)’da üyelik dereceleri incelendiğinde 150C’de 0,5 noktasının hem sıcak hem de soğuk

bulanık kümesine üyeliği mevcuttur. 100C ile 200C arasındaki değerler hem sıcak bulanık

kümesine hem de soğuk bulanık kümesine üyedir. Şekil 2.9’da kümelerin örtüşümü olarak

isimlendirilen taralı bölge bulanık kümelerin kesişim bölgesidir (Elmas, 2016).

Şekil 2.9: Bulanık kümelerde kesişim.

37

BM yaklaşımının kontrol sistemlerine uygulandığı ilk çalışma, 1974 senesinde bir buhar

makinesinin bulanık kontrolünün yapılması ile gerçekleştirilmiştir. 1980’li yıllarda Japonlar

ürünlerinde BM kullanmaya başlamıştır. Uygulandığı alanlarda performansının oldukça yüksek

olması BM olan ilgiyi artırmıştır. Bu gelişmeler ışığında, 1989 yılında Değişim Bulanık

Mühendislik Laboratuvarı (Laboratory for Interchange Fuzzy Engineering – LIFE) isimli

laboratuvarlar kurulmuştur. Bu laboratuvarların kurulumunda Hitachi, Toshiba, Omron ve IBM

gibi dünya devlerinin de aralarında bulunduğu 51 firma yer almıştır (Ertunç, 2012).

BM uygulanan ürünler Japonya’da 1990 yılında tüketicilere sunulmuştur. BM, klasik

yöntemlerle çözülmesi zor olan karmaşık sistemlere getirdiği kolay ve kullanışlı çözümler

sayesinde çok geniş bir uygulama alanına yayılmıştır. Kullanım alanı geniş olan BM, Yapay

Zekâ uygulamalarında, Robotik çalışmalarında, sağlık, mühendislik, sosyolojik ve psikolojik

uygulamaların geliştirilmesinde, kavşak ve ulaştırma sorunlarının çözümünde ve bunlara

benzer birçok uygulamada verimli bir şekilde uygulanmaktadır. Altaş (1999) yaptığı çalışmada

Bulanık Mantığın uygulama alanlarını; En iyileme problemleri, Görüntü Tanıma, Otomatik

Kontrol ve Bilgi Sistemleri olarak dört kategoride incelemiştir. Uygulama alanlarından bazıları;

birçok elektronik ev eşyalarında (çamaşır makineleri, elektrik süpürgeleri, klimalar,

buzdolapları) taşıma araçlarında (taşıt süspansiyonlarının kontrolü, metrolar, asansörler) inşaat

sektöründe kullanılan makinelerin kontrolünde, bilgisayar donanım parçalarının kontrolünde,

sembolleri, objeleri ve el yazısını tanımada, trafik lambalarında, kameraların görüntü sabitleme

ayarlarında ve buna benzer birçok alanda BM kullanılmaktadır (Ertunç, 2012). BM üç

aşamadan oluşur: bulanıklaştırma, bulanık çıkarım ve durulaştırma. En çok kullanılan BM

sistemlerinden birisi, Mamdani çıkarım sistemidir. Mamdani yöntemi, Ebrahim Mamdani

tarafından önerilmiş olup, çıkarım sistemi, Lotfi Zadeh’in önerdiği BM ilkelerini temel alarak

geliştirilmiştir (Şen, 2004). Bulanık Sistemin çalışması şekil 2.10’da gösterildiği gibidir.

38

Şekil 2.10: Bulanık Sistemin genel yapısı.

Bulanıklaştırma: Sisteme girilen verilerin keskin değerlerini bulanık değerlere dönüştürme

adımıdır. Keskin değerlerden bulanık değerlere dönüştürme işlemi belirli işlemlerin yapılması

ile gerçekleştirilir.

Kural Tabanı: BM ile geliştirilen bir sistemin ikinci adımı kural tabanının oluşturulmasıdır.

Kural tabanı oluşturulurken giriş ve çıkışlar arasındaki ilişkiler belirlenir.

Bulanık Çıkarım: Bulanık sistemde, sistem için gerekli olan çıkarımın elde edildiği bölümdür.

Çıkarımın gerçekleştirilmesi aşamasında sisteme giriş parametreleri verilir buna bağlı olarak

çıkış parametreleri oluşturulur. Oluşturulan çıkış parametrelerine göre sonuç değerleri elde

edilir.

2.2.9. Melez Sistemler

Melez Sistemler, bir problemin çözümünde tek bir Yapay Zekâ yönteminin yerine birden fazla

Yapay Zekâ yönteminin bir arada kullanılması ile oluşturulan sistemlere denilmektedir.

Ortaya atılan problemin zorluk derecesine göre GA, MÖ, BM, YSA, Uzman Sistemler gibi

Yapay Zekâ yöntemlerinin her birinin diğerine göre daha üstün özellikleri mevcuttur.

Ortaya atılan problemin çözümünde Yapay Zekâ yöntemlerinin üstün niteliklerinden en üst

seviyeden faydalanmak adına bu yöntemlerin bir kısmının veya hepsinin birleştirilmesi ile

Melez Sistemler geliştirilmiştir. İnsanın karar verme süreci incelendiğinde onun da melez bir

sistem gibi çalıştığı söylenebilir. Şöyle ki; insan bir konu hakkında karar verdiğinde ilk önce

beş duyu organı ile aldığı bilgileri inceler daha sonra önceden edindiği uzman bilgileri ile bu

39

bilgiyi harmanlar kendi genlerindeki beceri yeteneklerine göre yoğurur ve bir sonuca ulaşır.

İnsanın karar verme süreci taklit edildiğinde sinir ağlarından Bulanık Mantıka, uzman

bilgisinden genetik yapıya birçok yöntemi kullandığı görülmektedir. Bu melez sistemler

makinelere uyarlandığında makinelerin daha az hata payı ile sonuçlar üreteceği kaçınılmaz

olacaktır. Literatürde melez sistemler ile ilgili çok fazla çalışma mevcuttur. Huang ve diğ.

(2003) BM ile YSA’yı birleştirerek Bulanık Sinir Ağlarını önermiştir. Molani ve diğ., (2014)

YSA ile GA bir arada kullanarak yeni bir model oluşturmuştur. Melez sistemler optimal

çözümler üretmek için çok uygun sistemlerdir. Çağımız problem çözümleri için artık melez

sistemlere doğru geçiş yapılmaktadır. Bilinen klasik yöntemler birçok problemin çözümü için

yetersiz kalmaktadır. Melez sistemler günümüzde kullandığımız bir çok teknolojiye entegre

edilmiştir. Bunlardan bir tanesi Nikko Securities şirketinin BM ve YSAnın kombinasyonundan

oluşan hisse senetlerinin durumu ile ilgili kestirimde bulunması için kullandığı sinirsel-bulanık

ve bir diğeri Mitsubishi firmasının sinirsel-bulanık çamaşır makinesi geliştirmesidir (Şahin,

2019).

2.2.10. Genetik Algoritmalar

Charles Darwin’in ilkelerine dayanan ve evrimsel programlamanın bir alt dalı olan GA, doğada

bulunan canlıların yaşadığı süreci örnek almaktadır. Buna göre en iyi nesiller kendi yaşamlarını

korurken, kötü nesiller yok olmaktadır. 1960’lı yıllarda I. Rechenberg, “Evrim stratejileri”

ismindeki çalışması ile evrimsel programlamayı gündeme taşımıştır. GA, evrimleşme stratejisi

ve Genetik Programlama evrimsel programlama adı altında toplanmıştır. Genetik Programlama,

GA’ların kodlanıp programlanmasına denmektedir. GA, doğal seçim kurallarına göre en iyi

sonucu ya da en iyiye yakın sonucu elde etmeyi amaçlayan güçlü bir arama ve optimizasyon

tekniğidir (Nabiyev, 2016). GA, John Holland tarafından ilk defa 1975 yılında şuan ki hali ile

kullanılmıştır. Holland optimizasyon problemleri ile ilgili çalışmalarını GA kullanarak

çözümlemeyi başarmıştır. Bu çalışmalarını “Adaptation in Natural and Artificial Systems”

isimli kitabında yayımlaması neticesinde GA, Yapay Zekâ ve MÖ konularında bir alt alan

olarak kullanılmaya başlanmıştır. GA’ların geliştirilmesi ve bilgisayar ortamına taşınması, John

Holland, onun çalışma arkadaşları ve öğrencileri sayesinde gerçekleşmiştir (Kubat, 2014;

Moghaddam, 2014). GA’ların en çok kullanıldığı alanlar, matematiksel formülasyonu

bulunamayan, geleneksel metotlarla çözümü imkânsız olan ya da çözüm süreci sorunun

40

büyüklüğü ile orantılı olarak artan alanlardır. Bu alanlar farklı bilim dallarındaki optimizasyon

problemleri olabilmektedir (Kubat, 2014). GA ele aldığı sorunlara birden fazla ayrı çözümden

oluşan bir çözüm kümesi oluşturmaktadır. Bunun sayesinde arama uzayında aynı anda birçok

nokta incelenmekte ve sonuçta bütünsel çözümü elde etme olasılığı yükselmektedir (Ebren

Kara ve Şamlı, 2021). Her biri çok boyutlu uzay üzerinde bir vektör olan çözüm kümesindeki

çözümler birbirinden tamamen bağımsızdır (Beasley, 1993). GA işlemleri (Nabiyev, 2016) şu

şekildedir:

 Olası çözümlerin kodlandığı rastgele bir popülasyon oluşturulur.

 Toplumdaki bütün kromozomların uygunluk değerleri hesaplanır.

 Seçilen kromozomlar çiftleştirilerek tekrar klonlama ve dönüştürme operatörleri

yürütülür.

 Belli büyüklükteki bir toplumu oluşturmak için mevcut kromozomlar çıkarılır yeni

kromozomlar eklenir.

 Yeni toplumun başarısının bulunması için her bir kromozomun uygunluk değerleri

baştan hesaplanır.

 Belirlenmiş bir sürede en iyi nesillerin oluşturulması için bu işlemler tekrarlanır.

 En uygun çözümün elde edilmesi toplumun hesaplanması esnasında en iyi bireylerin

bulunmasıyla gerçekleşir.

Şekil 2.11’de GA’nın evrimleşme döngüsü verilmiştir.

41

Şekil 2.11: Genetik Algoritmalarda evrimleşme döngüsü.

GA, optimizasyon problemlerinde, ağ yerleşim problemlerinde, rota bulma problemlerinde,

kontrol ve karar sistemlerinde, Yapay Zekâ’nın birçok alanında, Uzman Sistemelerin

oluşturulmasında, MÖ, Robotik gibi daha bir çok alanda kullanılmaktadır.

2.2.11. Makine Öğrenmesi

MÖ, bilgisayarlara ve bilgisayar türevi makinelere insanlara benzer şekilde öğrenmesini ve

insanlara benzer şekilde hareket etmesini veriler ve algoritmalar sayesinde öğretmektedir

(Kaluza, 2016). Bilgisayar ve türevi makinelere apaçık programlanmadan öğrenme yeteneği

sunan algoritmaları incelemek, tasarlamak ve geliştirmek ile ilgili olan MÖ kavramı 1959

yılında yaygınlaştırılmıştır (Prowmes, 2019). MÖ özünde, makinelerin tek başlarına doğru

kararlar verebilme düşüncesi yatmaktadır. Bilgi güçtür prensibine dayanan MÖ, bir makine ne

42

kadar fazla eğitilirse o kadar fazla bilgilenir ne kadar fazla bilgilenirse o kadar doğru kararlar

üretebilir (Ebren Kara ve Şamlı, 2021). Torkul ve diğ., (2017) çalışmasında MÖ; gözlemler ve

ölçümler yapılarak sahip olunan verileri deneyim olarak alan makinelerin, bu deneyimlerden

aritmetiksel algoritmalar yardımıyla mantıklı bağlantılar kurabilmesi aşamasıdır. Şekil 2.12’de

bazı MÖ algoritmaları (PyCon, 2014) verilmiştir.

Şekil 2.12: Makine Öğrenmesi Algoritmaları.

MÖ’te temelde üç çeşit öğrenme yöntemi vardır:

 Eğiticili Öğrenme

 Eğiticisiz Öğrenme

 Pekiştirici, Yarı Eğiticili Öğrenme

Eğiticili Öğrenme:

Eğiticili Öğrenme, sonuç değerleri bilinen (etiketli) girdi değerlerini ele alıp girdilere bağlı

olarak oluşan sonuçları inceleyerek aradaki ilişkiyi çözebilecek fonksiyonu oluşturmaya çalışır.

Eğiticili Öğrenmede amaç yeni giriş verilerine karşılık gelecek sonuç değerlerini en doğru

şekilde tahmin etmektir (Torkul ve diğ., 2017). Eğiticili Öğrenmede, sisteme verilen girdi

değerleri işlenir sonuçta oluşacak çıktı değerlerinin ne olacağı öngörülmeye veya sistem

43

tarafından öğrenilmeye çalışılır. Bu işleme başlangıçta çıktı değerleri bilinen veriler üzerinde

bir sınıflandırma yapılarak başlanılır daha sonra çıktı değeri bilinmeyen veriler üzerinde tahmin

yapılır ve uygun sınıfa yerleştirilir (Aydın ve Özkul, 2015). Görüntü tanıma, spam olan

e-postaları süzme, banka kartı sahtekârlıklarını belirleme gibi birçok MÖ işlemlerinin

temelindeki sistem Eğiticili Öğrenme yöntemidir.

Eğiticisiz Öğrenme:

Eğiticisiz Öğrenme, sonuçları bilinmeyen (etiketsiz) verilerden öğrenmeye çalışma, veriler

arasındaki saklı yapıyı bulma işlemidir. Bu öğrenme yönteminde sisteme dışarıdan herhangi bir

müdahale yapılmaz. Sistemin öğrenme algoritmasını kullanarak veriler arasında var olan ama

görülmeyen ilişkiyi ortaya çıkarması beklenmektedir (Alpaydın, 2011; Aydın ve Özkul, 2015).

Sistem ne kadar çok veri incelerse yani sistem yeni verilerle eğitildikçe karar verme becerisi

gelişmekte ve daha doğru tahminlerde bulunmaktadır.

Yarı Eğiticili Öğrenme:

Sisteme verilen veriler arasında etiketli veri sayısı etiketsiz veri sayısından daha az ise Eğiticili

Öğrenme de Eğiticisiz Öğrenme de işlevini doğru bir şekilde yapamayabilir. Böyle bir durumda

Yarı Eğiticili Öğrenme yöntemi çok daha işlevsel olur. Yarı Eğiticili Öğrenme yöntemi, düşük

miktardaki etiketlenmiş veriden yüksek miktardaki etiketlenmemiş veriyi tahmin etmek ve

sınıflandırmaktır. Bu yöntem sisteme tecrübeyi ve yanılmayı öğretmektedir. Sistem eski

tecrübelerinden öğrenir ve olabilecek en iyi sonucu bulmak için mevcut verilere göre cevabını

uyarlayarak oluşturmaya çalışır (Kızılkaya ve Oğuzlar, 2018). MÖ’de, bir modelin eğitilmesi

ve daha iyi öğrenmesi için çok miktarda veri toplanmaktadır. Toplanan büyük miktardaki

verilerin bir kısmı model eğitimi için gereksiz olabilmektedir. Modelin eğitiminde kullanılan

gereksiz veriler modelin yavaşlamasına ve doğru olmayan sonuçlar üretmesine sebebiyet

vermektedir. Öznitelik seçimi, verilerin ön işlemden geçirildiği sırada modelin doğruluğunu ve

performansını artırmak amacıyla ilgisiz ve gereksiz özniteliklerin atılması ve verilerin

gürültüden temizlenmesi işlemidir. Sınıflandırma sistemlerinde verimli ve etkin bir biçimde

kullanılan öznitelik seçimi modelin başarısını artırmaktadır (Ebren Kara ve Şamlı, 2021). Veri

setine öznitelik seçimi uygulandıktan sonra veriler sınıflandırıldığında veri seti üzerindeki iş

yükü azalmakta, gereksiz ve alakasız öznitelikler veri setinden atıldığı için sınıflandırmanın

44

doğruluk oranı artmaktadır. Sistem daha az eğitilmekte, ölçüm sayısı ve kullanılan bellek

miktarı azalmaktadır. Bunun sayesinde veriler basit, hızlı ve doğruluk oranı yüksek bir şekilde

sınıflandırılmış olmaktadır (Abe ve diğ., 1998; Huang ve Chow, 2005). Şekil 2.13’te öznitelik

akış şeması gösterilmiştir. Akış şemasında görüldüğü gibi ham veri setinden öznitelik alt

kümeleri oluşturulmaktadır. Elde edilen alt kümelerden hangilerinin kullanılacağı farklı

formüller kullanılarak değerlendirilmektedir. Değerlendirmeler sonucunda bazı öznitelikler alt

kümeye dâhil edilmeyerek elenmekte, elenmeyen öznitelikler seçilerek alt kümeye eklenmekte

ve öznitelik belirleme işlemi kullanılan algoritmanın ölçütleri yerine getirilene kadar devam

etmektedir.

Şekil 2.13: Öznitelik seçimi akış şeması.

45

Öznitelik Seçimi Yöntemleri: Öznitelik seçiminde kullanılan farklı algoritmalar vardır. Bular;:

Filtreleme, sarmalama ve gömülü yöntemler olarak üç temel sınıfa ayrılmaktadır (Moghaddam,

2014). Filtreleme yöntemi, veri madenciliğinde kullanılan en eski öznitelik seçim yöntemi

olarak bilinmektedir. Sadece istatistiksel kriterlere dayalı fonksiyonlar yardımıyla öznitelik

seçimi yapan bir yöntemdir. Sarmalama yöntemi, öznitelikler üzerinde arama işlemi

gerçekleştiren bir yöntemdir. Gömülü yöntem, içinde hem sınıflandırma algoritmasını hem de

öznitelik seçim algoritmasını barındırdığından, sınıflandırma ve öznitelik seçim aşamalarını

eşzamanlı olarak gerçekleştirebilen bir yöntemdir (Budak, 2018). Şekil 2.14’te öznitelik seçim

yöntemlerinin bir kısmı gösterilmiştir.

Şekil 2.14: Öznitelik seçimi yöntemleri.

46

2.3. LİTERATÜR TARAMASI

Bu tez çalışması çerçevesinde, yazılım projelerinin maliyet tahmini ile ilgili geçmişten

günümüze yayınlanmış Yapay Zekâ yöntemleri konularını içeren çeşitli yayınlar incelenmiştir.

Witting ve Finnie, (1997) YSA modelini kullanarak yazılım maliyet tahminlemesi yapmıştır.

Araştırmacılar Avusturya Yazılım Ölçüt Birliğinin (Australian Software Metrics Association –

ASMA) verilerini kullanarak YSA’nın geri-yayılım yapısını seçmiş ve 136 tane örnek proje

üzerinde çalışmış ve %17 hata oranı ile tahminler elde ederek tahmin oranının iyileştirilmesi

için tahmine etki edecek parametre sayısının artırılması gerektiğini savunmuştur. Finnie ve diğ.

(1997) çalışmasında, üç tane kestirim yöntemi karşılaştırılmıştır. Karşılaştırma fonksiyon

noktaları kullanılarak yapılmıştır. Çalışmada karşılaştıran yöntemler; Regresyon, YSA ve

durum bazlı çıkarım yöntemleri olmuştur. 299 projenin veri seti üzerinde yapılan çalışmada

regresyon yönteminin başarısı zayıf bulunmuştur fakat YSA ve durum bazlı çıkarım

yöntemlerinden olumlu sonuçlar alınmıştır. Idri ve diğ. (2002), YSA yazılım maliyet

tahmininde kolayca yorumlanabilir mi diye bir soru ile YSA’nın yazılım maliyet tahminindeki

başarısını araştırmıştır. Araştırmacıların kullandıkları YSA, 17 giriş, 1 çıkış ve 1 ara katmandan

oluşup veri kümesi olarak COCOMO81 veri setini almıştır.

Shan ve diğ. (2002) çalışmalarında, bir kısım araştırmacının, standart veri setlerinin çok fazla

parametreye sahip olduğunu öne sürdüklerini ve bu parametre sayılarını azaltmak için çeşitli

yöntemler denediklerini belirtmişlerdir. Bu araştırmada en uygun ölçüt kümelerinin

belirlenmesi ve yazılım projelerinin maliyetinin tahmin doğruluğunun artırılması için eski proje

veri kümelerine evrimsel bir yaklaşım olan GGGP (Grammar Guided Genetic Programming –

Dilbilgisi Güdümlü Genetik Programlama) başarılı bir şekilde uygulanmıştır.

Ayyıldız (2007) çalışmasında yazılım maliyet tahmininde ölçüt kümesinin çok etkili olduğunu

vurgulamış ve yaptığı araştırmalar sonucunda kendi yazılım ölçüt kümesini oluşturmuştur.

Oluşturduğu ölçüt kümesini temel alarak sahip olduğu verileri kullanan bir YSA tabanlı yazılım

maliyet tahmin modeli geliştirmiştir. Çalışma sonucunda geliştirilen model ile yapılan tahmin

sonuçları, mevcut ölçütler kullanılarak yapılan önceki tahmin sonuçları ile karşılaştırılmıştır.

47

Karşılaştırmada iki tür veri seti kullanılmıştır. Birinci tür veriseti COCOMO81 veri kümesi,

ikinci tür veriseti ise yeni oluşturulan ölçüt kümesine uygun belirli firmalardan toplanan veriler

olmuştur. Karşılaştırma sonucunda yeni oluşturulan ölçüt kümesinin COCOMO’ya nazaran

daha başarılı olduğunu gözlemlemiştir.

Başkeleş ve diğ. (2007) yaptıkları çalışmalada yazılım projelerinin maliyetini tahmin etmek

için MÖ algoritmalarını çalıştıran bir model sunmuşlardır. Söz konusu modeli kamuya açık veri

depolarındaki (NASA, USC) veri setleri ve Türkiye'deki yazılım şirketlerinden elde edilen

veriler (SDR – SoftLab Data Repository) üzerinde denemişlerdir. Denemeler sonucunda

herhangi bir veri kümesi için en iyi yöntemin değişebileceği ve sadece bir modelin

kullanılmasının her zaman en iyi sonuçları üretemeyeceği gerçeğini ıspatlamışlardır. Yazılım

maliyet tahmin modeli olarak YSA kullanan bir diğer çalışmada (Sezer, 2008), çok katmanlı

ileri beslemeli, eğitim algoritması Delta Algoritması olan bir YSA oluşturulmuştur. YSA

mevcut veri seti ile eğitilmiş eğitilen ağa test verileri sunulmuş ve hedeflenen çıktı elde

edilmeye çalışılmıştır. YSA tabanlı yazılım maliyet tahmin modeli ile yapılan tahmin sonuçları

COCOMO 2000 verileri ile karşılaştırılmıştır.

Adailer (2008) çalışmasında, literatürdeki MÖ ve Yapay Zekâ tabanlı yazılım tahminleme

teknikleri karşılaştırılmıştır. Yazılım maliyetinin tahminini gerçekleştirmek üzere regresyon

temelli ve YSA temelli iki tahminleme modeli kullanılmıştır. Her iki yöntem de istatistiksel

öğrenme teorisi üzerine kurulmuştur. YSA’nın eğitilmesinde ve test aşamasında ISBSG

(International Software Benchmarking Standards Group – Uluslararası – Yazılım Kıyaslama

Standartları Grubu) veri seti sürüm 9 kullanılmıştır. Bu veriler istatistik ve MÖ kapsamındaki

regresyon yönteminde katsayıların bulunmasında da kullanılmıştır. ISBSG veri setinde

projelerin, hangi yazılım geliştirme ortamları kullanılarak gerçekleştirildiğinden, personel

sayılarına, sürelerinden, kullanılan veri tabanı ve işletim sistemlerine, kaynak kod satır

sayılarından, harcanan çabaya kadar birçok özellik yer almaktadır. YSA olarak çok katmanlı

algılayıcı YSA modeli tercih edilmiştir. Ayrıca regresyon tabanlı yeni ve başarılı bir yazılım

tahminleme modeli geliştirilmiştir. Sonuç olarak, regresyon ve çok katmanlı algılayıcı YSA

modellerinin gerçekleştirimini yaparak bazı sonuçlar elde edilmiş ve bu sonuçlara dayanarak

bu yöntemler değerlendirilmiştir.

48

Kulter ve diğ. (2009) çalışmasında, yazılım maliyet tahmininde kullanılmak üzere MÖ tabanlı

bir model geliştirilmiştir. Geliştirilen modelde YSA ve ilişkisel bellek birleştirilerek bir arada

kullanılmıştır. Model için kullanılan YSA’da birden fazla MLP (Multilayer Perceptrons – Çok

Katmanlı Algılayıcı) bir araya getirilmiştir. Model yazılım maliyet tahmini yaptığında her bir

MLP kendi tahmin sonucunu üretmiş ve tahmin sonuçları birleştirilmiştir. Kullanılan modelde

hem ilişkisel bellek hem de birleştirme yapılarak yeni bir model oluşturulmuştur.

Kartal Karataş (2011) çalışmasında, yazılım projelerinin maliyet tahmini için bir YSA modeli

anlatılmıştır. Çalışma için öncelikle yazılım maliyet hesaplama yöntemleri araştırılmıştır.

Ardından YSA ile gerçekleştirilen yazılım maliyet tahmin çalışmaları incelenmiştir.

XOR probleminin çözüm yolundan faydalanılarak maliyet tahmini için bir YSA

oluşturulmuştur. YSA’nın eğitiminde ve test edilmesinde COCOMO veri kümesi kullanılmıştır.

Elde edinilen tahminler; oluşturulan modelin kabul edilebilir tahminler ortaya koyduğunu

göstermiştir. Tasarlanan ağın yazılım şirketleri tarafından kullanılabilmesi için, ağın da içine

entegre edildiği bir web sayfası oluşturulmuştur. Bu web sayfası, yazılım şirketlerine maliyet

tahmini sağladığı gibi YSA ile ilgili dokümanları içermiş ve yazılım şirketlerinin proje

bilgilerini tutabileceği bir veri bankası görevi üstlenmiştir.

Singh ve Misra (2012) optimizasyon yöntemlerinden ikili genetik algoritma kullanarak

COCOMO modelinin bileşenlerini yeniden ayarlayan ayrıntılı bir çalışma sunmuşlardır. Bu

çalışmada daha iyi bir yazılım maliyet tahmini yapabilecek şekilde değiştirilmiş COCOMO

bileşenleri ile yeni bir model önerilmiştir. Önerilen modelin performansı NASA veri seti

üzerinde test edilmiş ve önceki modellerle karşılaştırılarak genetik algoritma tekniğinin

sağlamlığı doğrulanmaya çalışılmıştır.

Tran ve diğ., (2015) çalışmasında çok boyutlu veriler üzerinde öznitelik inşası ve öznitelik

seçimi için Genetik Programlamanın kullanımı araştırılmıştır. Çalışmada yedi veri seti üzerinde

dört farklı sınıflandırma algoritması kullanılmıştır. Amaç çok boyutlu veri setleri üzerinde

sınıflandırma yapmak için öznitelik oluşturma ve öznitelik seçiminde Genetik Programlamanın

performansını araştırmak olmuştur. Genetik Programlama tarafından oluşturulan veya seçilen

özniteliklerin, çok daha küçük bir öznitelik kümesiyle sınıflandırma algoritmalarının

49

performansını iyileştirebileceği gözlemlenmiştir. Sonuçlar, Genetik Programlamanın daha iyi

ayırt etme yeteneğine sahip özellikleri seçme ve oluşturma potansiyeline sahip olduğunu

göstermiştir. Diğer bir çalışmada (Keskin ve Alptekin, 2016), ‘E–Bursum’ yazılımının maliyet

tahmini, ilk önce İşlev puanı analizi yöntemi ile gerçekleştirilmiştir. Daha sonra aynı maliyet

tahmini, YSA kullanılarak tekrarlanmıştır. Tahmini değerler gerçek değerlerle

karşılaştırıldığında, tahmindeki doğruluk oranı %90’ın üzerinde çıkmıştır. İşlev puanı

analizinin gerçeğe yaklaşımı %74 – %97 aralığında bulunurken, YSA ile elde edilen sonuçlar

%92 – %98 aralığında olmuştur.

Başar (2017), çalışmasında, algoritmik ve algoritmik olmayan sezgisel yöntemlerin birlikte

kullanıldığı yeni bir yaklaşım geliştirilmiştir. Geliştirilen yaklaşıma “Sezgisel Bulanık İkili

Karşılaştırma Tekniği” adı verilmiştir. Kullanılan teknikte yazılım projelerinin maliyet

tahmininin yapılması için en uygun ölçütler uzman görüşü ile belirlenmiş daha sonra

Klasik İkili Karşılaştırma yöntemi ile ölçütlerin etki dereceleri elde edilmiştir. Bilhassa önceki

kesinleşmiş ölçekler kullanılarak elde edilen değerlendirmelerde, ölçütler göreli öneminin

ölçekte var olan değerler ile tam olarak karşılanamaması, bulanık değerler ile karar vermenin

önemini arttırmıştır. Bu yüzden, uzman görüşü yardımıyla belirlenen ölçütlerin öneminin

tespiti için çalışmada ayrıca Sezgisel Bulanık İkili Karşılaştırma sunulmuştur. Sunulan tekniğin

tahmin doğruluğunun belirlenmesi için yazılım alanında çalışmalar yapan bir şirketten yazılım

projelerinin verileri temin edilmiş ve bu gerçek veriler üzerinden yazılım maliyet tahmini

gerçekleştirilmiştir. Elde edilen tahmin sonuçları klasik yöntemlerle elde edilen tahmin

sonuçları ile karşılaştırıldığında sunulan tekniğin daha yüksek doğruluk oranıyla tahmin

yapabildiği belirlenmiştir.

Başka bir çalışmada (Gültekin, 2019) farklı metodolojiler kullanılarak hazırlanan yazılım

projeleri için farklı yazılım maliyet tahmin yöntemi sunulmuştur. Araştırmacıya göre yazılımın

geliştirildiği metodoloji yazılım maliyet tahmininde önemli bir etkendir bu yüzden yazılım

projelerinin geliştirildiği metodoloji göz önünde bulundurularak tahmin yöntemi

geliştirildiğinde maliyet tahmininin doğruluk oranı artmaktadır. Bu bağlamda yazılım maliyet

tahmini için 3 model sunulmuştur. İlk sunulan model 6 farklı regresyon tekniği kullanılarak

oluşturulan modeldir. Bu modellerde COCOMO veri setleri kullanılmıştır. İkinci sunulan

50

model YSA temelli bir tahmin modelidir. Bu modelde kullanılan COCOMO veri setleri

özelliklerine göre guruplandırılarak kullanılmıştır. Sunulan son modelde Scrum metodolojisi

ile hazırlanan yazılım projelerinin maliyet tahmini için geliştirilmiştir. Geliştirilen modelde

regresyon tabanlı MÖ algoritmaları kullanılmıştır.

Diğer bir çalımada (Marepelli, 2019) WEKA programında bulunan MÖ algoritmaları

kullanılarak COCOMO veri setleri üzerinde yazılım maliyet tahmini yapılmıştır. Yapılan

maliyet tahmininde kullanılan iki tane MÖ algoritmasının tahmin değerlerinin hata oranları ve

korelasyon sonuçları incelenmiştir.

51

3. MALZEME VE YÖNTEM

Bu bölümde tez çalışmasında kullanılan veri setleri, değerlendirme ölçütleri, uygulama

platformu ve yöntemler alt başlıklar halinde açıklanmıştır.

3.1. VERİ SETLERİ

Bu bölümde PROMISE veri deposundan temin edilen COCOMO81, COCOMONASA,

COCOMONASA2, China, Albrecht, Finnish, Kemerer, Maxwell ve Miyazaki94 veri setleri

incelenmiştir. Tablo 3.1’de kullanılan veri setlerinin bilgileri verilmiştir.

Tablo 3.1: Veri setleri bilgileri.

Veri Seti Kayıt Sayısı Öznitelik Sayısı Boyut (ölçü birimi) Maliyet (ölçü birimi)

COCOMO81 63 17 LOC Adam - Ay

COCOMONASA 60 17 LOC Adam - Ay

COCOMONASA2 93 24 LOC Adam - Ay

China 499 19 Fonksiyon Noktası Adam - Saat

Albrecht 24 8 Fonksiyon Noktası Adam - Saat

Finnish 38 9 Fonksiyon Noktası Adam - Saat

Kemerer 15 8 KSLOC Adam - Ay

Maxwell 62 27 Fonksiyon Noktası Adam - Saat

Miyazaki94 48 9 KSLOC Adam - Ay

Veri deposundan temin edilen veri setlerinde gerçek yazılım projelerinin verileri tutulmaktadır.

Her biri farklı sayıda proje verisi barındıran veri setlerinde bağlı ve bağımsız öznitelikler

bulunmaktadır. Bu öznitelikler maliyet tahminin gerçekleştirilmesinde kullanılmaktadır.

Eğer bir öznitelik gerçek maliyet değerini veriyorsa bağlı öznitelik; maliyetle alakalı değerleri

veriyorsa bağımsız öznitelik olarak adlandırılır. Veri setlerinde bulunan bağımsız öznitelikler,

bağlı özniteliğin değerini belirlemektedir. Veri setlerinde bulunan bazı bağımsız özniteliklerin

yazılım maliyet tahminine fazla etkisi bulunmamaktadır. USC (University of South California

– Güney Kalforniya Ünviersitesi) Sistem ve Yazılım Mühendisliği Merkezine mensup olan

COCOMO, USC veri seti olarak kabul edilmektedir (Kültür, 2006).

COCOMO81: COCOMO81 veri seti 1981 yılında önerilmiştir. Veri setinde 63 yazılım

projesinin kaydı ile 17 öznitelik bulunmaktadır. Bu öznitelikler; projenin kod satır sayısı,

projenin gerçek geliştirme maliyeti ve 15 adet maliyet çarpanıdır.

52

COCOMONASA: COCOMONASA veri setinde 1980’ler ve 1990’larda farklı merkezlerden

toplanmış 60 NASA projesine ait kayıt ve 17 öznitelik bulunmaktadır.

COCOMONASA2: COCOMONASA2 veri seti bazı kayıtlarda NASA93 veri seti olarak

geçmektedir (Bosu ve MacDonell, 2019). NASA93 veri seti NASA tarafından 1971 ile 1987

yılları arasında üretilen 93 proje verisinin beş farklı geliştirme merkezinden toplanmasıyla

oluşturulmuştur. Veri seti 93 NASA projesine ait kayıt ve 24 öznitelikten oluşmaktadır.

Bu 24 öznitelikten 7 tanesinin yazılım maliyetine etkisi bulunmadığından çıkarılmıştır.

Bu öznitelikler; recordnumber (benzersiz bir numara), projectname (proje ismi), cat2

(uygulama kategorisi), forg (uçuş mu yer sistemi mi?), center (hangi NASA merkezi?), year

(geliştirme yılı) ve mode (geliştirme modu) öznitelikleridir. Bunların dışında 17 öznitelikten

15’i COCOMO maliyet tahmininde kullanılan maliyet ölçüsü, kod satır sayısını belirten loc ve

gerçek maliyeti belirten act_effort öznitelikleridir. Tablo 3.2’de maliyet tahmininde kullanılan

15 öznitelik gösterilmiştir.

Tablo 3.2: COCOMO maliyet faktörleri.

Ürün Özellikleri

rely Required software reliability Gerekli yazılım güvenliği

data Database size Veritabanı büyüklüğü

cplx Software product complexity Ürün karmaşıklığı

Donanım

Özellikleri

time Execution time constraint Çalışma süresi kısıtı

stor Main storage constraint Temel depolama kısıtı

virt Virtual machine volatility Sanal makine geçiciliği

turn Computer turn around time Bilgisayar yanıt süresi

Personel

Özellikleri

acap Analist capability Çalışan analistin kapasitesi

aexp Application experience Proje takımının uygulama tecrübesi

pcap Programmer capability Programcı kapasitesi

wexp Virtual machine experience Takımın Sanal makine tecrübesi

lexp Language experience Takımın programlama dili tecrübesi

Proje

Özellikleri

modp
Use of modern programming

practices
Modern programlama uygulamaları

tools Use of software tools Kullanılan yazılım araçları

sced Development schedule constraint iş takvimi kısıtı

Promise veri deposundan alınan her biri farklı sayıda proje verisi barındıran COCOMO81,

COCOMONASA, COCOMONASA2 veri setlerinde bağlı ve bağımsız öznitelikler

bulunmaktadır. Eğer bir öznitelik gerçek maliyet değerini veriyorsa bağlı öznitelik; act_effort

(yazılım geliştirme çabası), maliyetle alakalı değerleri veriyorsa; rely, data, cplx, time, stor, virt,

turn, acap, aexp, pcap, vexp, lexp, modp, tool, sced, loc (kod satır sayısı) bağımsız öznitelik

53

olarak adlandırılmaktadır. Tablo 3.3’de veri setlerinde bulunan özniteliklerin alabildiği en

büyük ve en küçük değer aralıkları incelenmiştir.

Tablo 3.3: COCOMO maliyet faktörlerinin standart sayısal değerleri.

Öznitelik

Çok

Düşük
Düşük Normal Yüksek

Çok

Yüksek

Ekstra

Yüksek
Verimlilik

acap 1,46 1,19 1,00 0,86 0,71 2,06

pcap 1,42 1,17 1,00 0,86 0,70 1,67

aexp 1,29 1,13 1,00 0,91 0,82 1,57

modp 1,24 1,10 1,00 0,91 0,82 1,34

tool 1,24 1,10 1,00 0,91 0,83 1,49

vexp 1,21 1,10 1,00 0,90 1,34

lexp 1,14 1,07 1,00 0,95 1,20

sced 1,23 1,08 1,00 1,04 1,10 e

stor 1,00 1,06 1,21 1,56 -1,21

data 0,94 1,00 1,08 1,16 -1,23

time 1,00 1,11 1,30 1,66 -1,30

turn 0,87 1,00 1,07 1,15 -1,32

virt 0,87 1,00 1,15 1,30 -1,49

cplx 0,70 0,85 1,00 1,15 1,30 1,65 -1,86

rely 0,75 0,88 1,00 1,15 1,40 -1,87

Albrecht: Albrecht veri seti, IBM veri işleme hizmetlerinde gerçekleştirilen projelerden

toplanan 24 kayıttan oluşur. Projeler COBOL, PL/I ve DMS programlama dilleri kullanılarak

geliştirilmiştir. Projelerin boyutu ve karmaşıklığı, Albrecht tarafından önerilen fonksiyon

noktası yaklaşımı kullanılarak ölçülmüştür (Albrecht ve Gaffney, 1983).

Tablo 3.4: Albrecht veri seti istatistikleri.

Sno Öznitelik Tanımlama EnKüçük EnBüyük Ortalama

1 Input No of inputs – Giriş sayısı 7 193 40,25

2 Output No of outputs – Çıkış sayısı 12 150 47,25

3 Inquiry No of inqueries – Sorgu sayısı 0 75 16,88

4 File No of master files – Ana dosya sayısı 3 60 17,38

5 FPAdj Function points adjustment – Fonksiyon

noktaları ayarı

0,75 1,2 0,99

6 RawFPcounts Count of raw function points – Ham

fonksiyonlarının sayısı

189,52 1902 638,54

7 AdjFP Adjusted function points – Ayarlanmış

fonksiyon noktaları

199 1902 647,63

8 Effort Person hours – Adam saat 0,5 105,2 21,88

Finnish: Finnish veri seti, TIEKE organizasyonu tarafından Finlandiya'daki dokuz firmadan

toplanan 40 proje verisinden oluşmaktadır. Projelerin boyutu ve karmaşıklığı fonksiyon noktası

54

yaklaşımı kullanılarak ölçülmüştür (Kitchenham ve Kansala, 1993). Tablo 3.5’te Finnish veri

seti istatistikleri verilmiştir.

Tablo 3.5: Finnish veri seti istatistikleri.

Sno Öznitelik Tanımlama EnKüçük EnBüyük Ortalama

1 ID Project no – Proje numarası 1 38 19,05

2 dev,eff,hrs Development effort hours – Geliştirme çabası saati 460 26670 7678,29

3 hw Hardware type – Donanım tipi 1 3 1,26

4 at Application type – Uygulama tipi 1 5 2,24

5 FP Function point data – Fonksiyon noktası verileri 65 1814 763,54

6 co Application area – Uygulama alanı 2 10 6,26

7 prod Project duration (calender months) – proje süresi

(takvim ayları)

1,47 29,47 10,07

8 lnsize System requirements size in raw Albrecht function

points – Ham Albrecht fonksiyon noktalarında

sistem gereksinimleri boyutu

4,17 7,5 6,36

9 lneff Effort provided by application user – Uygulama

kullanıcısı tarafından sağlanan çaba

6,13 10,19 8,40

China: China veri seti, 2010 yılında PROMISE deposuna eklenmiş diğer veri setlerine göre

daha yeni bir veri setidir, 499 kayıttan oluşmaktadır (Bosu ve MacDonell, 2019). China veri

seti 18’i bağımsız değişken ve 1 tanesi bağımlı değişken olmak üzere 19 öznitelikten

oluşmaktadır. Tablo 3.6’da China veri seti istatistikleri verilmiştir.

Tablo 3.6: China veri seti istatistikleri.

Sno Öznitelik EnKüçük EnBüyük Ortalama

1 ID 1 499 250

2 AFP 9 17518 487

3 Input 0 9404 167

4 Output 0 2455 114

5 Enquiry 0 952 62

6 File 0 2955 91

7 Interface 0 1572 24

8 Added 0 13580 360

9 Changed 0 5193 85

10 Deleted 0 2657 12

11 PDR_AFP 0.3 83.8 12

12 PDR_UFP 0.3 96.6 12

13 NPDR_AFP 0.4 101 13

14 NPDU_UFP 0.4 108 14

15 Resource 1 4 1

16 Dev.Type 0 0 0

17 Duration 1 84 9

18 N_effort 31 54620 4278

19 Effort 26 54620 3921

55

Kemerer: Kemerer veri seti (Kemerer, 1987), veri işleme yazılımı geliştiren bir Amerikan

firmasından toplanmıştır. Bu veri seti sekiz özniteliğe sahip 15 projeden oluşmaktadır.

Veri setindeki en eski proje 1981’de başlamış olup projelerin çoğu 1983’te başlamıştır.

Veri setindeki proje verileri 1985’te toplanmıştır. Tablo 3.7’de Kemerer veri seti istatistikleri

verilmiştir.

Tablo 3.7: Kemerer veri seti istatistikleri.

Sno Öznitelik Tanımlama EnKüçük EnBüyük Ortalama

1 ID Project ID – Proje kimliği 1 15 8

2 Language Software used – Kullanılan yazılım 1 3 1,2

3 Hardware Hardware used – Kullanılan donanım 1 6 2,33

4 Duration Duration – Süre 5 31 14,27

5 KSLOC Number of source lines code in thousands – Bin

olarak kaynak kod satır sayısı

39 450 186,57

6 AdjFP Adjusted function points – Ayarlanmış fonksiyon

noktaları

99,9 2306,8 999,14

7 RAWFP Raw function points – Ham fonksiyon noktaları 97 2284 993,87

8 EffortMM Effort Man Months – Adam ay çaba 23,2 1107,31 219,25

Miyazaki94: Miyazaki94 veri seti, Büyük Sistem Kullanıcıları Grubu tarafından toplanmıştır

(Miyazaki ve diğ., 1994). Veriler, 20 farklı kuruluşta ve bu kuruluşlardaki birden fazla bölümde

geliştirilen 48 COBOL projesinden elde edilmiştir. Her proje için 9 öznitelik vardır. Tablo

3.8’de Miyazaki94 veri seti istatistikleri verilmiştir.

Tablo 3.8: Miyazaki94 veri seti istatistikleri.

Sno Öznitelik Tanımlama EnKüçük EnBüyük Ortalama

1 ID Project ID – Proje kimliği

2 KLOC Number of COBOL source lines in thousands –

Binlerce COBOL kaynak satırı sayısı

6,9 417,6 70,79

3 SCRN Number of different input or output screens – Farklı

giriş veya çıkış ekranlarının sayısı

0 281 33,69

4 FORM Number of different (report) forms – Farklı (rapor)

form sayısı

0 91 22,37

5 FILE Number of different record formats – Farklı kayıt

biçimlerinin sayısı

2 370 34,81

6 ESCRN Total number of data elements in all the screens –

Tüm ekranlardaki toplam veri öğesi sayısı

0 3000 525,60

7 EFORM Total number of data elements in all the forms –

Tüm formlardaki toplam veri öğesi sayısı

0 1566 460,67

8 EFILE Total number of data elements in all the files – Tüm

dosyalardaki toplam veri öğesi sayısı

57 45000 1854,58

9 MM Effort measured in man-months - Adam-ay olarak

ölçülen çaba

5,6 1586 87,47

56

Maxwell: Maxwell veri seti bir Fin ticari bankasından toplanmıştır. 27 nitelik ile temsil edilen

62 projeden oluşmaktadır (Maxwell, 2002). Projelerin başlangıç yılları 1985 ile 1993 yılları

arasındadır. Tablo 3.9’da Maxwell veri seti istatistikleri verilmiştir.

Tablo 3.9: Maxwell veri seti istatistikleri.

Sno Öznitelik Tanımlama EnKüçük EnBüyük Ortalama

1 Syear Year – Geliştirme yılı 85 93 89,58

2 App Application type – Uygulama çeşidi 1 5 2,35

3 Har Hardware platform – Donanım platformu 1 5 2,61

4 Dba Database – Veritabanı 0 4 1,03

5 Ifc User interface – Kullanıcı arayüzü 1 2 1,93

6 Source Where developed – Nerede geliştirildi 1 2 1,87

7 Telonuse Telon use – Telon kullanımı 0 1 0,24

8 Nlan # of development languages – Geliştirme dili 1 4 2,55

9 T01 Customer participation – Müşteri katılımı 1 5 3,05

10 T02 Development Env, adequacy – Geliştirme ortamı,

yeterlilik

1 5 3,05

11 T03 Staff availability – Personel durumu 2 5 3,03

12 T04 Standards use – Standartlar kullanımı 2 5 3,19

13 T05 Methods use – Yöntem kullanımı 1 5 3,05

14 T06 Tools use – Araçlar 1 4 2,90

15 T07 Software logical complexity – Yazılım mantıksal

karmaşıklığı

1 5 3,24

16 T08 Requirements volatility – Gereksinim oynaklığı 2 5 3,81

17 T09 Quality requirements – Kalite gereksinimleri 2 5 4,06

18 T10 Efficiency requirements – Verimlilik gereksinimleri 2 5 3,61

19 T11 Installation requirements – Kurulum gereksinimleri 2 5 3,42

20 T12 Staff analysis skills – Personel becerisi analizi 2 5 3,82

21 T13 Staff application knowledge – Personel uygulama

becerisi

1 5 3,06

22 T14 Staff tool skills – Personel araç becerisi 1 5 3,26

23 T15 Staff team skills – Personel takım becerileri 1 5 3,34

24 Duration Duration – Süre 4 54 17,21

25 Size Function points – Fonksiyon noktaları 48 3643 673,30

26 Time Time – Zaman 1 9 5,58

27 Effort Work hours Effort – Çalışma saati çabası 583 63694 8223,21

3.2. DEĞERLENDİRME KRİTERLERİ

Bu tezde değerlendirme kriterleri olarak korelasyon katsayısı MAE, MAPE, RMSE, RAE, ve

RRSE kullanılmıştır.

57

3.2.1. Korelasyon Katsayısı

Korelasyon katsayısı, iki farklı değişken arasındaki bağın gücünü ve yönünü belirtir.

Korelasyon, değişkenler arasındaki ilişkiyi korelasyon katsayısı ise ilişkinin durumunu

belirtmektedir. Korelasyon katsayısı ilişkinin durumuna göre −1 ile 1 arasında bir sayı değeri

alabilmektedir. Sayı değerinin negatif bir değer olması değişkenler arasında ters bir ilişkinin

olduğunu göstermektedir. Yani değişkenlerden biri artarken diğeri azalmaktadır.

Sayı değerinin pozitif bir değer olması değişkenler arasında doğrusal bir ilişkinin olduğunu

göstermektedir yani değişkenlerden biri artarken diğeri de artmaktadır. Korelasyon katsayısının

gösteren sayı değerinin sıfır olması iki değişken arasında herhangi bir ilişkinin olmadığı

anlamına gelmektedir. Korelasyon katsayısı 1’e yaklaştıkça değişkenler arasındaki ilişkinin

arttığı 0’a yaklaştıkça aradaki ilişkinin azaldığı anlaşılmaktadır.

3.2.2. RMSE

RMSE (Root Mean Squared Error – Kök Ortalama Kare Hatası), gerçek değerden tahmini değer

çıkarılarak karesi alınır, bulunan sonuçlar toplanarak ortalamalarının karekökü alınır yani

RMSE karesel hataların ortalamasının kareköküdür. Büyük hataların RMSE üzerinde orantısız

olarak büyük bir etkisi vardır bu da RMSE’nin aykırı değerlere karşı hassas olduğunu gösterir.

Bundan dolayı RMSE en fazla büyük hataların istenmediği durumlarda kullanılır. Formülü

Denklem 3.1’de verilmiştir.

𝑅𝑀𝑆𝐸 = √
1

n
∑ (𝑇𝑖 − 𝐺𝑖)2𝑛

𝑖=1 (3.1)

Burada 𝑇𝑖 = tahmini değer, 𝐺𝑖= gerçek değer, 𝑛 = örnek sayısıdır.

3.2.3. MAE

MAE (Mean Absulate Error – Ortalama Mutlak Hata), gerçek değerlerin tahmin edilen değerle

olan farklarının toplamının ortalamasını veren hata oranıdır. Formülü Denklem 3.2’de

verilmiştir.

58

𝑀𝐴𝐸 =
1

n
∑ |𝑇𝑖

𝑛

𝑖=1

− 𝐺𝑖| (3.2)

Burada 𝑇𝑖 = tahmini değer, 𝐺𝑖 = gerçek değer, 𝑛 = örnek sayısı’dır

3.2.4. RAE

RAE (Relative Absulate Error – Bağıl Mutlak Hata), gerçek değer ve tahmini değer arasındaki

farkın toplamını bulup bunu gerçek değerlerin ortalamsından gerçek değerlerin çıkarılmasına

bölmektir. Formülü Denklem 3.3’te verilmiştir.

𝑅𝐴𝐸 =
∑ |𝑇𝑖 − G𝑖|

𝑛
𝑖=1

 ∑ |G𝑚 − G𝑖|𝑛
𝑖=1

 (3.3)

Burada 𝑇𝑖 = tahmini değer, 𝐺𝑖 = gerçek değer, 𝐺𝑚= gerçek değerlerin ortalaması, 𝑛 = örnek

sayısıdır.

3.2.5. RRSE

RRSE (Root Relative Squared Error – Kök Ortalama Kare Hata), tahmin edilen her değer ile

gerçek değerin farkının karesinin; gerçek değerlerin ortalamasından her bir gerçek değerin

farkının alınmasıyla karesinin alındıktan sonra bölünmesinin ve sonucun karekökünün

alınmasıdır. Kareleri alınmış hatalar bölünerek normalleştirilir. Göreceli kare hatasının

karekökü alınarak, hata tahmin edilen miktarda aynı boyuta indirilir. Denklem 3.4’te RRSE

formülü verilmiştir.

𝑅𝑅𝑆𝐸 = √
∑ (𝑇𝑖 − G𝑖)2𝑛

𝑖=1

∑ (G𝑚 − G𝑖)2𝑛
𝑖=1

 (3.4)

Burada 𝑇𝑖 = tahmini değer, 𝐺𝑖 = gerçek değer, 𝐺𝑚= gerçek değerlerin ortalaması, 𝑛 = örnek

sayısıdır.

59

3.2.6. MMRE

MMRE (Mean Magnitude Of Relative Error – Göreceli Hatanın Ortalama Büyüklüğü), çoklu

tahminlerin doğruluğu değerlendirilirken bir toplama yöntemi gerekmektedir. Aritmetik

ortalaması da alınan değerlendirmeye MMRE denmektedir. Bir tahmin doğruluğu ölçülürken,

göreceli hatanın büyüklüğü (MRE-Magnitute Relative Error) sıklıkla kullanılır. Hatanın gerçek

gözlemlenen değere oranının mutlak değeri olarak tanımlanır: |(𝑔𝑒𝑟ç𝑒𝑘 − 𝑡𝑎ℎ𝑚𝑖𝑛 𝑒𝑑𝑖𝑙𝑒𝑛)/

𝑔𝑒𝑟ç𝑒𝑘|. Bu 100 ile çarpıldığında mutlak yüzde hatayı (APE-Absolute Percentage Error) verir.

MMRE, kullanılan modellerin başarısı hakkında fikir vermektedir. Formülü Denklem 3.5’te

verilmiştir.

𝑀𝑀𝑅𝐸 =
1

n
∑ |

𝑇𝑖 − 𝐺𝑖

𝐺𝑖
|

𝑛

𝑖=1

 (3.5)

Burada 𝑇𝑖 = tahmini değer, 𝐺𝑖= gerçek değer, 𝐺𝑚= gerçek değerlerin ortalaması, 𝑛 = örnek

sayısıdır.

3.2.7. MAPE

Bazı disiplinlerde MAPE (Mean Absolute Percentage Error – Ortalama Mutlak Hata Yüzdesi),

MMRE olarak bilinmektedir (Tofallis, 2015). MAPE tahmin değerlendirmelerinde en sık

kullanılan ölçüdür. MAPE çoğu çalışmada %MMRE olarak kullanılmıştır. Formülü Denklem

3.6’da verilmiştir.

𝑀𝐴𝑃𝐸 =
1

n
∑ |

𝑇𝑖 − 𝐺𝑖

𝐺𝑖
|

𝑛

𝑖=1

x100 (3.6)

Burada 𝑇𝑖 = tahmini değer, 𝐺𝑖= gerçek değer, 𝐺𝑚= gerçek değerlerin ortalaması, 𝑛 = örnek

sayısıdır.

60

3.3. UYGULAMA PLATFORMLARI

Tez çalışmasında WEKA ortamı kullanılmıştır. WEKA ortamı Yeni Zelanda’da bulunan

Waikato Üniversitesindeki bir doktora öğrencisi tarafından Java dilinde geliştirilmiş,

GPL (General Public Licence – Genel Kamu Lisansı) lisansına sahip açık kaynaklı ve ücretsiz

bir uygulamadır. WEKA programı ticarî programlara karşılık daha çok bilimsel çalışmalarda

ham verileri sınıflandırma, kümeleme, görselleştirme, bölütleme, tahminleme, veriler arasında

ilişki kurma, öznitelik seçimi, veri ön işleme gibi MÖ ve Veri Madenciliği işlemlerini

gerçekleştirebilecek algoritmaları barındırmaktadır (Witten ve diğ., 2011; Ebren Kara ve Şamlı,

2021). Bu tezde, Genetik Programlamanın mevcut olduğu WEKA 3.4.12 (WekaGP, 2007) ve

WEKA 3.9 (WEKA, 2018) sürümleri kullanılmıştır. WEKA kurulumu sırasında weka.jar

dosyası da gelmektedir. Bu jar dosyasında WEKA kütüphaneleri bulunmaktadır. Bu sayede

başka bir platformdan (Java, C# gibi) WEKA sınıflarına erişilerek projeler geliştirilmektedir.

WEKA’da veri setleri arff (Attribute Relationship File Format) formatında hazırlanmaktadır.

Veri setlerinde bulunan değişkenler sayısal (decimal) ve kategorik (nominal) değerlerden

oluşmaktadır.

WEKA programında kullanılan veri setinin tahmin edilen sütun değerinin nominal ya da sayısal

olmasına göre farklı hata formülleri kullanılmaktadır. Veri seti dosyanın tahmin edilen class

adlı sütunu sayısal ise hata ölçüm değerleri Şekil 3.1’deki gibi olmaktadır.

Şekil 3.1: Sayısal sonuç tahmininde hata ölçümleri.

61

Şekil 3.1 incelendiğinde hata ölçüm değerleri olarak korelasyon katsayısı MAE, MAPE,

RMSE, RAE, ve RRSE değerlendirildiği görülmüştür.

Veri seti dosyasının tahmin edilen sütunu nominal diğer adıyla kategorik ise hata ölçüm

değerleri farklı olmaktadır. Şekil 3.2’de nominal bir değerin tahmin edilmesinde hata

ölçümlerinin nasıl yapıldığı görülmektedir. Nominal değerlere sahip veri setlerinde veriler

üzerinde sınıflandırma işlemi gerçekleştirilirken amaç kaç tanesinin doğru sınıfa kaçtanesinin

yanlış sınıfa yerleştirildiğini tahmin etmektir. Şekil 3.2 incelendiğinde hata ölçüm değerleri

olarak Şekil 3.1’de açıklanan ölçümlerin yanında, doğru yerleştirme başarısı (correctly

classified instance), kappa istatistiği (kappa statistic) ve karışıklık matrisi (confusion matrix)

değerlendirilmiştir.

Şekil 3.2: Nominal sonuç tahmininde hata ölçümleri.

Şekil 3.1 ve Şekil 3.2 incelendiğinde kategorik değer tahminlerinde sayısal değer tahminlerine

göre daha fazla hata ölçüm değerleri gösterildiği görülmüştür. Bu hata ölçüm değerleri tahmin

yapmada kullanılan modelin başarısını izlemeyi sağlamaktadır.

WEKA, arff formatlı dosyalar dışında metin tabanlı csv, dat, libsvm, json ve xrff gibi formatları

da desteklemektedir. WEKA programı ilk açıldığında Şekil 3.3’deki gibi kullanıcı ara yüzü

açılmaktadır.

62

Şekil 3.3: WEKA GUI kullanıcı ara yüzü.

WEKA kullanıcı ara yüzünde çalışma alanına göre 5 faklı seçim alanı bulunmaktadır.

Bunlar Şekil 3.3’te görüldüğü üzere Explorer, Experimenter, KnowledgeFlow, Workbench,

Simple CLI alanlarıdır.

 Explorer düğmesi ile veri seti yükleme, sınıflandırma, kümeleme, ön işleme, öznitelik

seçimi gibi işlemler gerçekleştirilmektedir.

 Experimenter düğmesi ile sınıflandırma ve regresyon yöntemlerinde en uygun

metotların ve en uygun parametre değerlerinin hangisi olduğuna karar verilir.

 KnowledgeFlow düğmesi ile büyük boyuttaki verilerin işlemleri gerçekleştirilir.

Düğmeye tıklandığında açılan ekran, öğrenme algoritmalarını ve veri kaynaklarını

temsil eden kutuları sürüklemeye ve istenilen ayarlar ile birleştirerek bir işlem akışı

oluşturmaya yarar böylece veriler aşamalı olarak yüklenir ve işlenir.

 Workbench düğmesi, diğer üç düğmenin birleşimini ve kullanıcının yüklediği eklentileri

tek bir ekranda sunan bir ana akran sağlar. Kullanıcı tarafından hangi ayarların ve

eklentilerin görüneceğini belirlemeye olanak tanıyacak şekilde yapılandırılabilen, veri

madenciliği için veri ön işleme, sınıflandırma, kümeleme, regresyon gibi işlemleri

gerçekleştiren ve işlemler arasında geçişi sağlayan bir ekrandır.

63

 Simple CLI düğmesine tıklandığında console ekranı açılır. Console ekranı ile WEKA’da

gerçekleştirilen tüm işlemler metin komutları ile ham formda gerçekleştirilir (Witten,

2011; Etkin, 2017; Aydemir, 2019).

Şekil 3.3’teki ana ekrandan Explorer düğmesine tıklandığında Şekil 3.4’teki ekran açılır.

Bütün menülerin aktif olması için Open File düğmesinden ilgili veri setinin WEKA programına

yüklenmesi gerekir. Open file düğmesine tıklandığında Şekil 3.4’teki gibi Open penceresi açılır

buradan üzerinde işlem yapılacak veri seti seçilir.

Şekil 3.4: WEKA Explorer penceresi.

Veri seti üzerinde MÖ algoritmalarının çalıştırılması için Şekil 3.5’teki pencereden ilgili

algoritma seçilir ve Start düğmesine tıklanır. Varsayılan ayarlar ile veri seti üzerinde seçilen

algoritma çalıştırılır ve çıktısı Şekil 3.6’daki gibi görünür.

64

Şekil 3.5: WEKA sınıflandırma penceresi.

Şekil 3.6: WEKA’da çalıştırılan algoritma çıktısı.

65

WEKA programı kullanılarak veri setleri üzerinde öznitelik seçimini sağlayan Select attributes

menüsüdür. Select attributes menüsüne tıklandığında Şekil 3.7’deki Select attributes penceresi

açılır. Select attributes penceresinden öznitelik seçim yöntemi ve arama yöntemi seçilir. Bu tez

çalışmasında öznitelik seçim yöntemi olarak CfsSubsetEval (Corelation-based Feature Subset

Selection Evaluation – Korelasyon Tabanlı Özellik Seçim Değerlendirici) ve arama yöntemi

olarak GeneticSearch ve PSOSearch arama algoritmaları seçilmiştir.

Şekil 3.7: WEKA öznitelik seçimi penceresi.

WEKA programı indirildiğinde uygulamanın içinde bütün eklentiler mevcut değildir. Kurulum

esnasında gelmeyen gerekli eklentilerin ayrıca WEKA programına yüklenmesi gerekmektedir.

Yükleme işlemi için Şekil 3.8’de olduğu gibi kullanıcı ara yüzünden Tools menüsünün altından

Package manager seçeneği seçilir. Şekil 3.9’da görülen pencereden gerekli eklenti seçilir ve

load düğesine tıklanır. Bu tez çalışmasında kullanılmak üzere GeneticSearch ve PSOSearch

arama algoritmaları WEKA 3.9 sürümüne eklenmiştir. GeneticSeach ve PSOSearch arama

algoritmaları yüklendikten sonra veri setleri üzerinde öznitelik seçimi yapılmıştır.

66

Şekil 3.8: WEKA araçlar menüsü.

Şekil 3.9: WEKA paket yöneticisi.

67

3.4. YÖNTEMLER

Bu bölümde tez çalışmasında kullanılan algoritmaların ve kullanılan yöntemlerin açıklamaları

sunulmuştur.

WEKA programının sınıflandırma (classify) sekmesinde seç (choose) düğmesine tıklanarak

MÖ algoritması seçilir. Seçilen algoritmanın parametre değerlerinde değişiklik yapılmak

istendiğinde algoritmanın isminin göründüğü satıra tıklanması ve açılan ekranda gerekli

değişiklilerin yapılması gerekmektedir. WEKA’da bulunan MÖ algoritmaları;

 Fonksiyonlar (Functions)

 Tembel Sınıflandırıcılar (Lazy)

 Meta

 Çeşitli Kategoriler (Misc)

 Kurallar (Rules)

 Ağaç (Tree)

olarak gruplandırılmıştır.

3.4.1. Fonksiyonlar (Functions)

Bu kategori altında aşağıdaki yöntemler yer almaktadır:

 Gauss Süreçleri (Gaussian Process)

 Doğrusal Regresyon (Linear Regression)

 Basit Doğrusal Regresyon (Simple Linear Regression)

 Ardışık Minimum Optimizasyon Regresyon (Sequential Minimal Optimisation

Regression – SMOreg)

 Çok Katmanlı Algılayıcı (Multilayer Perceptron)

 Genetik Programlama (Genetic Programming)

 Parçacık Sürü Optimizasyonu (Particle Swarm Optimization – PSO)

68

3.4.1.1. Gauss Süreçleri

Gauss Süreçleri, regresyon tabanlı problemlerin çözümünde kullanılmaktadır. Bir Gauss

Sürecini modellemek için, önceden çok değişkenli bir Gauss dağılımı gerekmektedir.

Gauss Süreci modeli fazla parametreli dağıtılmış rastgele parametrelerin kısıtlı bir

koleksiyonunu edinmiş parametrik olmayan çekirdek temelli olasılık modelleridir.

Her doğrusal bağlantı aynı dağılmıştır (Yergök ve Acı, 2019).

3.4.1.2. Doğrusal Regresyon

Birden fazla değişken arasındaki nicel bağlantıyı gözlemleyerek değişkenlerden birinin

değerini diğer bir değişkenin değerine göre tahmin etmek için kullanılan çözümleme tekniğine

Regresyon Analizi denir. Değeri tahmin edilen değişken bağımlı değişken, bağımlı değişkenin

değerini tahmin etmek için kullanılan değişkene de bağımsız değişken denmektedir. Bu analiz

yönteminde amaç, değişkenler arasındaki bağlantıyı işlevsel bir şekilde yorumlamak ve bu

bağlantıyı bir model ile tanımlamaktır. Regresyon analizinde bağımlı ve bağımsız iki değişken

varsa Basit Doğrusal Regresyon, bir tane bağımlı değişkene karşı birden fazla bağımsız

değişken varsa buna da Çoklu Doğrusal Regresyon denir (Ebren Kara ve Şamlı, 2021).

3.4.1.3. Basit Doğrusal Regresyon

Tek bir açıklayıcı değişkene dayanan doğrusal bir regresyon modelidir. Bir bağımsız değişken

ve bir bağımlı değişken olan iki boyutlu örnek noktalarla ilgilidir. Bağımlı değişken değerlerini

bağımsız değişkenin bir fonksiyonu olarak tahmin eder ve en küçük karesel hatayı veren öğeyi

seçer. Nominal niteliklerle çalışmaz.

3.4.1.4. Ardışık Minimum Optimizasyon Regresyon

Regresyon için SMOreg algoritması, regresyon için Destek Vektör Makinesi’ne (Support

Vector Machine – SVM) dayalı SMO algoritmasının geliştirilmiş bir uzantısıdır. SMOreg,

doğrusal olmayan tahmin için etkin bir şekilde kullanılmaktadır. SMO'da verimsizlik sorununa

neden olan tek bir eşik vardır. SMOreg verimsizlik sorununun üstesinden gelmek için iki eşik

kullanır (Singh ve Agrawal, 2013).

69

3.4.1.5. Çok Katmanlı Algılayıcı

Belirli problemleri çözmek için birlikte çalışan, birbirine bağlı işlem elemanlarından (nöronlar

veya düğümler) oluşan bir hesaplama sistemdir (Caudill, 1987). İnsan beyninin nasıl

çalıştığından ilham alan, sinir sistemini modelleyerek oluşturulan bir algoritmadır.

Çok Katmanlı Algılayıcı, giriş ve çıkış katmanı arasında bir veya daha fazla katman içeren ileri

beslemeli bir sinir ağıdır. Temel olarak üç katman vardır: giriş katmanı, gizli katman ve çıkış

katmanı. Gizli katman birden fazla olabilir. Her katmandaki her nöron (düğüm), bitişik

katmanlardaki her nörona (düğüm) bağlıdır. Eğitim veya test vektörleri giriş katmanından

verilir; gizli katmanda işlenir ve çıkış katmanından çıkış alınır (Gupta, 2015; Ebren Kara ve

Şamlı, 2021).

3.4.1.6. Genetik Programlama

GA’nın kodlanması ile oluşturulan programlara Genetik Programlama denir. Genetik

Programlama sınıflandırma için büyük bir potansiyel sunan; zor problemlerin çözümünde

kullanılan evrimsel bir öğrenme tekniğidir. Genetik Programlama temsil biçimi olarak ağaç

yapısını kullanır. Ağaç yapısında iç düğümler, işlevler ve operatörleri temsil ederken uç

birimler değişkenleri ve sabitleri temsil ederler (Gupta, 2015; Ebren Kara ve Şamlı, 2021).

3.4.1.7. Parçacık Sürü Optimizasyonu

PSO algoritması ilk kez 1995 yılında geliştirilmiştir. Doğrusal olmayan ve çok boyutlu

problemi optimize edebilen PSO, popülasyon tabanlı meta sezgisel ve evrimsel bir

optimizasyon algoritmasıdır. Algoritma, kuş ve balık sürülerinin barınma, beslenme ve

güvenlik için toplu hareketlerinden ilham alınarak geliştirilmiştir. Optimum yer aramak için

çok boyutlu uzayda birlikte hareket eden sürüsünün hareketleri ve mesafeleri ayarlanarak

davranışları simüle edilmiştir. PSO, GA benzer bir evrimsel hesaplama yöntemidir. Her bireye

parçacık (particle), parçacıklardan oluşan topluluğa da sürü (swarm) denmektedir.

Sürüler rastgele başlatılır. Sürüdeki her bir parçacığın başlangıçta rastgele oluşturulan konum

ve hız bilgisi bulunmaktadır. Bu bilgiler her bir tekrarda kazanç değerlerine göre

güncellenmektedir. Optimum kazanç değerine sahip olan parçacıklar sonraki kuşaklara

devredilmektedir. Parçacıklardan her biri sahip olduğu konumunu daha önceki tecrübesinden

70

yararlanarak sürüdeki en iyi konuma göre hesaplamaktadır (Kennedy ve Eberhart, 1995).

Sürüdeki her parçacık, tüm parçacıklar arasında yerel en iyi konum olarak bilinen pbest

(personal best) ve küresel en iyi konum olarak bilinen gbest (global best) konumlarını

korumalıdır. Parçacığın konumunu ve hızını güncellemek için kullanılan formül Denklem 3.7

ve Denklem 3.8’de verilmiştir.

𝑉𝑖
𝑘+1 = 𝑉𝑖

𝑘 + 𝐶1𝑟1
𝑘(𝑝𝑏𝑒𝑠𝑡𝑖

𝑘 − 𝑋𝑖
𝑘) + 𝐶2𝑟2

𝑘(𝑔𝑏𝑒𝑠𝑡𝑘 − 𝑋𝑖
𝑘) (3.7)

𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝑉𝑖
𝑘+1 (3.8)

Burada k: iterasyon sayısı, 𝑉𝑖
𝑘: k’inci iterasyondaki i’inci parçacığın hızı, 𝑋𝑖

𝑘: k’inci

iterasyondaki i’inci parçacığın konumu, C1, C2: hızlandırma katsayıları, r1, r2: [0,1) aralığında

rastgele üretilen sayılar, 𝑝𝑏𝑒𝑠𝑡𝑖
𝑘: k’inci iterasyondaki i’inci parçacığın yerelde en iyi değeri,

𝑔𝑏𝑒𝑠𝑡𝑘: k’inci iterasyondaki sürünün en iyi değeridir. Şekil 3.10’da PSO akış şeması

görünmektedir.

3.4.2. Tembel Sınıflandırıcılar (Lazy Classifier)

Bu kategoride aşağıdaki yöntemler yer almaktadır.

 K-En Yakın Komşu Sınıflandırıcı (K-Nearest Neighbours Classifier)

 Kyıldız (Kstar–K*)

 Yerel Ağırlıklı Öğrenme (LWL-Locally Weighted Learning)

3.4.2.1. K-En Yakın Komşu Sınıflandırıcı

Bu algoritma, sınıflandırılacak olan veriyi mevcut verilere olan yakınlık bağlantısına göre

sınıflandırmaktadır. Hem sınıflandırma hem de regresyon problemlerinin çözümünde

kullanılan Eğiticili Öğrenme algoritmalarındandır. K sayıda yakınlık komşuluğuna bakılarak

mevcut veri setine eklenecek olan yeni verinin, eldeki verilere bakılarak uzaklığının

hesaplanmasıdır.

71

Şekil 3.10: PSO akış şeması.

72

3.4.2.2. Kyıldız

Entropi tabanlı mesafe algoritması kullanan, verileri temel alan bir sınıflandırıcıdır. Kyıldız

Algoritmasının amacı test verisinde bulunan öznitelik bilgisi olmayan bir örneğin, eğitim

verisinde eskiden sınıflandırılmış ama ortaya çıkmamış örnekler ile karşılaştırılması esasına

göre sınıflandırma gerçekleştirmektir (Aha ve diğ., 1991).

3.4.2.3. Yerel Ağırlıklı Öğrenme

LWL algoritması parametrik bir yöntem değildir ve tahmin, verilerin sadece bir alt kümesini

kullanan yerel fonskiyonlar tarafından yapılır. LWL, tüm fonksiyon alanı için global bir model

oluşturmak yerine, her bir ilgi noktası için, sorgu noktasının komşu verilerine dayanarak yerel

bir model oluşturur. Bu amaçla, her veri noktası, tahmin için veri noktasının etkisini ifade eden

bir ağırlık faktörü haline gelir. Genel olarak, mevcut sorgu noktasına yakın komşuluktaki veri

noktaları, uzaktaki veri noktalarından daha fazla ağırlık almaktadır (Englert, 2012).

3.4.3. Meta

Bu kategoride aşağıdaki yöntemler yer almaktadır.

 Toplamsal Regresyon (Additive Regression)

 Öznitelik Seçici Sınıflandırıcı (Attribute Selected Classifier)

 Torbalama (Bagging)

 Çapraz Doğrulama Parametre Seçimi (CVParameterSelection)

 Çoklu Şema (Multi Scheme)

 Rastgele Komite (Random Committee)

 Randomize Edilebilir Filtreli Sınıflandırıcı (Randomizable Filtered Classifier)

 Rastgele Alt Boşluk (Random Sub Space)

 Ayrıklaştırma İle Regresyon (Regression By Discretization)

 İstifleme (Stacking)

 Oylama (Vote)

 Ağırlıklı Örnek İşleyici Sarmalayıcı (Weighted Instances Handler Wrappler)

73

3.4.3.1. Toplamsal Regresyon

Regresyon öğrenmesinin performansını artırır. Çoğunlukla doğrusal olmayan gerçek yaşam

etkilerinde Doğrusal Regresyon başarılı olmayan çıktılar oluşturabilmektedir. Toplamsal

Regresyon doğrusal olmayan regresyon etkilerini nitelendirmek için kullanılmaktadır.

3.4.3.2. Öznitelik Seçici Sınıflandırıcı

Öznitelik seçici sınıflandırıcı iki adımın bir birleşimidir. Birincisi eğitim ve test verilerinin

boyutunu nitelik seçimi yoluyla azaltma, ikincisi sınıflandırmadır.

3.4.3.3. Torbalama

Temel öğrenme seçimine bağlı olarak istatistiksel sınıflandırma ve regresyonda kullanılan MÖ

algoritmalarının kararlılığını ve doğruluğunu geliştirmek için tasarlanmış MÖ topluluğu meta

algoritmasıdır. Varyans azaltmaya göre sınıflandırma yapar. Algoritma, karar ağacı yöntemleri

başta olmak üzere her türlü yöntemle kullanılabilir.

3.4.3.4. Çapraz Doğrulama Parametre Seçimi

Her hangi bir sınıflandırıcıya göre parametre seçiminde çapraz doğrulamayı kullanarak

performansı en iyi duruma getirir. Her parametreye, alt ve üst sınırlarını ve istenen artış sayısını

içeren bir dize verilir.

3.4.3.5. Çoklu Şema

Yeniden yer değiştirme hatasını kullanarak bir sınıflandırıcı seçer. Performans yüzdesel

doğruluk ve regresyon için hata karelerinin ortalaması kullanılarak ölçülür.

3.4.3.6. Rastgele Komite

Temel bir sınıflandırıcılar topluluğunu rastgele olacak şekilde oluşturur ve tahminlerini

değerlendirir. Her bir sınıflandırıcı aynı verileri kullanırken farklı rastgele sayı çekirdeği

kullanır. Kestirim sonucu her bir temel sınıflandırıcının yaptığı kestirim sonuçlarının

74

ortalamasıdır. Bu durum yalnızca temel sınıflandırıcı rastgele seçilmişse anlamlıdır; yoksa tüm

sınıflandırıcılar aynı olur.

3.4.3.7. Randomize Edilebilir Filtreli Sınıflandırıcı

Rastgele bir filtre ile başlıca sınıflandırıcı olarak IBk ile başlayan Filtrelenmiş Sınıflandırıcının

basit bir çeşididir. Ayrıca iki başlıca şekilden an az birinin rastgele ara yüzünün uygulandığını

denetleyerek rastgeleleri de uygulayan Filtreli Sınıflandırıcı ile aynı fonksiyonları uygular.

3.4.3.8. Rastgele Alt Boşluk

Sınıflama yapan topluluğu meydana getirmek adına her bir giriş özniteliklerinin rastgele

seçilmiş bir alt kümesini kullanan, karar ağacı tabanlı bir sınıflandırıcıdır. Algoritma öznitelik

vektörünün alt kümelerinin boyutunu kontrol etmek için bir parametre üretmesinin yanında bir

de tekrar sayısını ve kullanılacak rastgele adım sayısını sağlar (Ebren Kara ve Şamlı, 2021).

3.4.3.9. Ayrıklaştırma İle Regresyon

Ayrıklaştırma sayısal verilerin kategorik karşılıklarına dönüştürülmesi işlemine verilen addır.

Sıcaklık değişkeninin değerlerini 0-19, 20-39 ve 40-59 gibi aralıklara gruplamak örnek olarak

verilebilir. Sınıf özniteliğini eşit genişlikli ayrıklaştırma kullanarak sonlu sayıda gruba ayıran

ve sonra bir sınıflandırıcı kullanan bir regresyon şemasıdır. Tahminler, her bir ayrık aralık için

ortalama sınıf değerinin ağırlıklı ortalaması olup, aralıklar için öngörülen olasılıklara dayanan

ağırlıklardır. Bu yöntem aykırı gözlemlerin, geçersiz veya eksik numerik değerlerin tespitini

kolaylaştırır (Aydemir, 2019).

3.4.3.10. İstifleme

Birkaç sınıflandırıcıyı birleştirir. Sınıflandırma veya regresyon yapabilir. Temel

sınıflandırıcılar, meta öğrenme ve çapraz doğrulama katlamalarının sayısı belirtilebilir.

75

3.4.3.11. Oylama

Sınıflandırmaları birleştirmek için farklı olasılık tahmin yöntemleri mevcuttur. Kabul edilen

şema, sınıflandırma ve regresyon için olasılık tahminlerinin veya sayısal tahminlerinin

ortalamasıdır.

3.4.3.12. Ağırlıklı Örnek İşleyici Sarmalayıcı

Bu yöntem, test verilerinin doğruluğunu kontrol etmek için eğitim verilerini kullanan eğiticili

öğrenme algoritmasıdır. Bu yöntemin en büyük avantajı, ağırlıklı eğitim örnekleri için

sarmalayıcı yaklaşımını kullanmasıdır. Temel sınıflandırıcı ara yüzü uygulanmadığında ve

örnek ağırlıkları olduğunda, bu algoritma ağırlıklarla yeniden örnekleme uygular. Bir seçenek

olarak, temel sınıflandırıcı ağırlıkları çalıştırabiliyorsa eğitim verilerini kullanır, ancak

ağırlıklarla birlikte yeniden örnekleme yaklaşımlarını da uygulayabilir (Kargar ve diğ., 2021).

3.4.4. Çeşitli Kategoriler

Bu sınıflandırma algoritması, bir sınıflandırıcıyı sarmalar ve kullanılan test verilerinde mevcut

olan nitelikler ile modeli eğittiğinde belirlenen nitelikler arasında bir eşleşme gerçekleştirir.

Eğitim verilerinde mevcut olmayan fakat test verilerinde mevcut olan nitelikler dâhil edilmez.

Test verilerinde olmayan fakat eğitim verilerinde bulunan özellikler eksik değerlere sahip olur.

Bununla birlikte, eğitim verilerinde bulunmayan yeni sayısal değerler için eksik değerler

kullanır (Aydemir, 2019).

3.4.5. Kurallar

Bu kategoride aşağıdaki yöntemler yer almaktadır:

 Karar Tablosu (Decision Table)

 M5 Kuralları (M5 Rules)

 ZeroR

76

3.4.5.1. Karar Tablosu

Bu sınıflandırma algoritması, çoğunluk sınıflandırıcısı oluşturmak için basit bir karar tablosu

oluşturur ve kullanır. Karar tabloları tahmin için kullanılan sınıflandırma algoritmalarıdır.

Bir karar tablosu, daha yüksek seviyeli bir tablodaki her girişin, başka bir tablo oluşturmak için

bir çift ek özniteliğin değerlerine bölündüğü, hiyerarşik bir tablodan oluşur (Ebren Kara ve

Şamlı, 2021).

3.4.5.2. M5 Kuralları

M5 Kuralları, regresyon problemleri için karar listeleri oluşturmak üzere böl ve yönet

yöntemini kullanan bir algoritmadır. Karar listeleri hem sürekli hem de sayısal değişkenlerle

çalışabilir. M5 Kuralları, bir model ağacı oluşturmak için M5 algoritmasını kullanır: en iyi

yapraktan bir kural yapar daha sonra mevcut kurala bağlı olarak veri kümesinde bulunan öteki

örnekler üzerinde çalışır (Omran ve diğ., 2016).

3.4.5.3. ZeroR

ZeroR, hedefe bağlı olan ve tüm tahmin edicileri yok sayan en basit sınıflandırma yöntemidir.

ZeroR, basitçe çoğunluk sınıfını tahmin eder. ZeroR'da öngörülebilirlik yeteneği olmamasına

rağmen, diğer sınıflandırma yöntemlerinde temel performansı belirlemek için bir kriter olarak

çok kullanışlıdır (Nookala ve diğ., 2013).

3.4.6. Ağaç

Bu kategoride aşağıdaki yöntemler yer almaktadır:

 Karar Kütüğü (Decision Stump)

 M5P

 Rep Ağacı

 Rastgele Ağaç (Random Tree)

 Rastgele Orman (Random Forest)

77

3.4.6.1. Karar Kütüğü

Bir karar kütüğü, yalnızca uç düğümlere (yapraklar) doğrudan bağlı bir iç düğüme (kök) sahip

tek seviyeli bir karar ağacından oluşan bir sınıflandırıcıdır. Bir karar kütüğü, tek bir girdinin

değerine dayalı bir tahminde bulunabilir ve buna tek kural denir (Chen ve diğ., 2017).

3.4.6.2. M5P

M5 öğrenme algoritmasının yeniden yapılandırılması olan M5P ağaç algoritması regresyon

tabanlı problemlerinin çözümünde kullanılan GA türüdür (Mohammed ve diğ., 2020). M5P

ağaç algoritması temel olarak iki adım içerir: ağaç büyütme adımı ve ağaç budama adımı.

3.4.6.3. Rep Ağacı

Rep Ağacı, bilgi kazancını, bölme kriteri olarak kullanıp bir regresyon ağacı oluşturan ve bunu

azaltılmış hata budaması kullanarak budayan hızlı bir karar ağacı türüdür. Nümerik

özniteliklerin değerlerini sadece bir kez sıralar. Eksik değerleri, C4.5'in kesirli örnekleri

kullanma yöntemini kullanarak inceler (WEKA, 2021).

3.4.6.4. Rastgele Ağaç

Rastgele Ağaç sınıflandırma algoritması, bir ağaç oluşturmak için her düğümde belirli sayıdaki

gelişigüzel seçilen özellikleri dikkate alır. Budamayı gerçekleştirmez. Burada rastgele demek:

ağaç kümesindeki her ağacın eşit örnekleme şansına sahip olduğu anlamına gelir. Rastgele

ağaçlar verimli bir şekilde oluşturulabilir ve büyük Rastgele Ağaç kümelerinin birleşimi

genellikle doğru modeller oluşturur. Rastgele ağaç modelleri, son yıllarda MÖ alanında

kapsamlı bir şekilde geliştirilmiştir (Zhao ve Zhang, 2008).

3.4.6.5. Rastgele Orman

Rastgele Orman, rastgele birden çok tekli sınıflandırma ağacı üreterek orman inşa etmek üzere

kullanılan bir sınıflandırma algoritmasıdır. Bir girişten yeni bir nesneyi sınıflandırmak için giriş

vektörü ormandaki her bir ağaca yerleştirilir. Her bir ağaç kendi sonucunu üretir. Tahmin,

topluluğun tahminlerinin toplanmasıyla yapılır. Rastgele Orman genellikle önemli bir

performans sergilemektedir (Zhao ve Zhang, 2008).

78

4. BULGULAR

Bu tez çalışmasında performans analizleri PROMISE veri deposundan temin edilen veri setleri

(COCOMO81, COCOMONASA, COCOMONASA2, China, Albrecht, Finnish, Kemerer,

Maxwell ve Miyazaki94) üzerinde performans ölçütü olarak korelasyon katsayısı; hata

oranlarını değerlendirme ölçütü olarak MAPE, MAE, RMSE, RAE ve RRSE; uygulama

platformu olarak da Weka 3.9 ve Weka 3.4.12 sürümleri kullanılmıştır.

Performans analizleri aşağıdaki özelliklere sahip bilgisayarda gerçekleştirilmiştir.

 Intel (R) Core (TM) i7-6700HQ CPU @ 2.60GHz

 16 GB RAM

 120 GB SSD ve 1.80 TB Harddisk

 64 bit işletim sistemi, x64 tabanlı işlemci

 Windows 10 Home Single Language

4.1. WEKA SİMÜLASYON SONUÇLARI

Tez çalışmasının bu kısmında yazılım maliyet tahmini için COCOMO81, COCOMONASA,

COCOMONASA2 veri setleri kullanılmıştır. Veri setleri 10 kat çapraz doğrulama tekniği

kullanılarak rastgele eğitim ve test verilerine bölünmüştür. Oluşturulan model korelasyon

katsayısı, hata oranı MAE, RMSE, RAE ve RRSE’ye göre değerlendirilmiştir.

WEKA ortamında bulunan MÖ algoritmaları kullanılarak yazılım projelerinin maliyet tahmini

iki bölümde gerçekleştirilmiştir. İlk bölümde; WEKA ortamı algoritmalarının varsayılan

ayarları tercih edilmiştir. Meta grubunda bulunan algoritmaların, LWL ve Input Mapped

Classifier algoritmalarının özellikler penceresinden temel sınıflandırıcı olarak Random Forest

algoritması seçilmiştir. İkinci bölümde; WEKA programında bulunan bazı algoritmalar (Meta

grubunda bulunan algoritmalar, LWL ve Input Mapped Classifier algoritmaları) mevcut

parametrelerine ek olarak temel bir sınıflandırıcı ve onun parametrelerini alan algoritmalardır.

Söz konusu algoritmalar için temel sınıflandırıcı belirlerken olabilecek bütün algoritmalar tek

tek denenmiştir ve denemeler bütün veri setleri için tekrar edilmiştir.

79

Tablo 4.1’de, Yazılım maliyet tahmini için COCOMO81’e uygulanan MÖ algoritmalarının

performans ölçümleri verilmiştir. Tablo 4.2’de, Yazılım maliyet tahmini için

COCOMONASA’ya uygulanan MÖ algoritmalarının performans ölçümleri verilmiştir.

Tablo 4.3’te Yazılım maliyet tahmini için COCOMONASA2’ye uygulanan MÖ

algoritmalarının performans ölçümleri verilmiştir.

Tablo 4.1: COCOMO81’de tahmin algoritmalarının performans ölçümleri.

COCOMO81 Veri Seti

ALGORİTMALAR Ölçütler

FONKSİYONLAR

Korelasyon

katsayısı
MAE RMSE

RAE

(%)

RRSE

(%)

Gaussian Processes 0,5401 790,6207 1529,4219 87,1334 83,3127

Linear Regression 0,6102 874,477 1480,8087 96,3751 80,6645

Multilayer Perceptron 0,6739 662,3573 1651,8813 72,9976 89,9834

Simple Linear Regression 0,5803 610,8756 1556,9319 67,3239 84,8112

SMOreg 0,6598 481,4058 1414,1265 53,0552 77,0321

LAZY

IBK (K-nearest neighbor) 0,6391 597,2745 1495,836 65,8249 81,4831

KStar 0,5621 527,3596 1707,526 58,1197 93,0146

LWL 0,7852 513,1837 1320,6153 56,5574 71,9383

META

Additive Regression 0,8095 471,6203 1169,6529 51,9767 63,7149

Attribute Selected Classifier 0,7766 480,6095 1266,5644 52,9674 68,994

Bagging 0,6842 615,7212 1427,0346 67,8579 77,7353

CVParameter Selection 0,7624 547,2516 1288,8028 60,312 70,2054

Multi Schema 0,759 527,6654 1317,3837 58,1534 71,7622

Random Comittee 0,7722 529,8123 1303,0491 58,39 70,9814

Randomizable Fitered Classifer 0,541 570,3308 1525,4542 62,8555 83,0965

Random SubSpace 0,6095 649,4035 1470,7424 71,57 80,1162

Regresiyon By Discretization 0,7482 555,2121 1348,4807 61,1893 73,4562

Weighted Instances Handler

Wrapper
0,7624 547,2516 1288,8028 60,312 70,2054

MISC

Input Maped Classifier 0,7624 547,2516 1288,8028 60,312 70,2054

RULES

Decision Table 0,3947 616,2634 1785,8066 67,9177 97,2788

M5 Rules 0,7657 603,709 1289,9993 66,5341 70,2705

TREE

Desicion Stump 0,4596 717,5814 1673,7058 79,0838 91,1723

M5P 0,6843 517,3589 1334,687 57,0175 72,7048

Random Forest 0,7624 547,2516 1288,8028 60,312 70,2054

Random Tree 0,37 688,7117 1840,2042 75,9021 100,242

REP Tree 0,0902 787,8688 1904,8964 86,8301 103,766

Tablo 4.1 incelendiğinde, 471,6203 MAE, 1169,6529 RMSE, %51,9767 RAE, %63,7149

RRSE hata oranları ve 0,8095 korelasyon katsayısı ile en iyi tahmin sonucunu Additive

80

Regression algoritması gerçekleştirmiştir. REP Tree tahmin algoritması 0,0902 korelasyon

katsayısı ve 787,8688 MAE, 1904,8964 RMSE, %86,8301 RAE, %103 RRSE, hata payı ile en

kötü performansı sergilemiştir.

Tablo 4.2: COCOMONASA’da tahmin algoritmalarının performans ölçümleri.

COCOMONASA Veri Seti

ALGORİTMALAR Ölçütler

FONKSİYONLAR

Korelasyon

katsayısı
MAE RMSE

RAE

(%)

RRSE

(%)

Gaussian Processes 0,6387 269,4976 513,356 62,5047 77,0828

Linear Regression 0,7994 247,0464 431,768 57,2976 64,832

Multilayer Perceptron 0,8931 179,4526 310,3657 41,6205 46,6029

SMOreg 0,719 248,4012 462,9543 57,6118 69,5148

LAZY

IBK (K-nearest neighbor) 0,5768 295,4267 590,2186 68,5184 88,6241

KStar 0,6772 220,4516 501,335 51,1294 75,2778

LWL 0,7779 210,3535 420,0186 48,7874 63,0678

META

Additive Regression 0,8317 200,551 367,676 46,5139 55,2083

Attribute Selected Classifier 0,8251 202,3599 392,3317 46,9334 58,9105

Bagging 0,7871 222,7612 425,0947 51,6651 63,83

CVParameter Selection 0,8196 211,6876 403,4439 49,0968 60,579

Multi Schema 0,7818 217,0315 416,7733 50,3362 62,5805

Random Comittee 0,7813 217,802 422,6492 50,5149 63,4628

Randomizable Fitered Classifer 0,8825 148,6937 313,6628 34,4866 47,0979

Random SubSpace 0,6964 255,7131 474,6142 59,3076 71,2655

Regresiyon By Discretization 0,704 251,3443 470,4945 58,2944 70,647

Weighted Instances Handler

Wrapper
0,8196 211,6876 403,4439 49,0968 60,579

MISC

Input Maped Classifier 0,8196 211,6876 403,4439 49,0968 60,579

RULES

Decision Table 0,4577 261,1296 609,2296 60,5639 91,4787

M5 Rules 0,9152 157,1147 263,9787 36,4397 39,6376

TREE

Desicion Stump 0,6981 303,2187 497,9172 70,3256 74,7646

M5P 0,922 150,9841 252,8864 35,0178 37,9721

Random Forest 0,8196 211,6876 403,4439 49,0968 60,579

Random Tree 0,7029 254,4593 519,1927 59,0168 59,0168

REP Tree 0,594 289,226 544,7618 67,0803 81,7985

Tablo 4.2 incelendiğinde, 150,9841 MAE, 252,8864 RMSE, %35,0178 RAE, %37,9721 RRSE

hata oranları ve 0,922 korelasyon katsayısı ile en iyi tahmin sonucunu M5P algoritması

gerçekleştirmiştir. Decision Table algoritması 0,4577 korelasyon katsayısı ve 261,1296 MAE,

609,2296 RMSE, %60,5639 RAE, %91,4787 RRSE hata payı ile en kötü performansı

sergilemiştir.

81

Tablo 4.3: COCOMONASA2’de tahmin algoritmalarının performans ölçümleri.

COCOMONASA2 Veri Seti

ALGORİTMALAR Ölçütler

FONKSİYONLAR

Korelasyon

katsayısı
MAE RMSE

RAE

(%)

RRSE

(%)

Gaussian Processes 0,5966 535,8033 1003,274 82,9528 87,8166

Linear Regression 0,7294 430,7269 826,1252 66,6849 72,3107

Multilayer Perceptron 0,6147 653,0797 1313,2285 101,1095 114,9468

SMOreg 0,425 737,3497 1368,5567 114,1562 119,7897

LAZY

IBK (K-nearest neighbor) 0,659 445,7796 924,0382 69,0154 80,881

KStar 0,7091 376,3781 821,2064 58,2707 71,8801

LWL 0,8183 332,7218 652,8788 51,5118 57,1464

META

Additive Regression 0,7974 334,6625 682,1185 51,8123 59,7058

Attribute Selected Classifier 0,7168 379,1302 788,339 58,6968 69,0033

Bagging 0,7298 365,3964 778,686 56,5705 68,1583

CVParameter Selection 0,7415 365,1982 759,6982 56,5398 66,4963

Multi Schema 0,7392 370,4636 761,003 57,355 66,6105

Random Comittee 0,7595 358,2204 739,3583 55,4595 64,716

Randomizable Fitered Classifer 0,7158 371,1652 789,8391 57,4636 69,1346

Random SubSpace 0,6729 407,627 835,7404 63,1086 73,1523

Regresiyon By Discretization 0,7069 424,2558 799,3404 65,6831 69,9662

Weighted Instances Handler Wrapper 0,7415 365,1982 759,6982 56,5398 66,4963

MISC

Input Maped Classifier 0,7415 365,1982 759,6982 56,5398 66,4963

RULES

Decision Table 0,2525 564,7407 1186,1157 87,4329 103,8206

M5 Rules 0,7042 360,4728 805,1669 55,8082 70,4762

TREE

Desicion Stump 0,4183 567,6411 1063,2781 87,8819 93,0687

M5P 0,7171 348,3774 788,2642 53,9356 68,9967

Random Forest 0,7415 365,1982 759,6982 56,5398 66,4963

Random Tree 0,4882 459,4538 1016,6788 71,1324 88,9898

REP Tree 0,3464 540,5725 1094,5921 83,6912 95,8096

Tablo 4.3 incelendiğinde, 332,7218 MAE, 652,8788 RMSE, %51,5118 RAE, %57,1464 RRSE

hata oranları ve 0,8183 korelasyon katsayısı ile en iyi tahmin sonucunu LWL algoritması

gerçekleştirmiştir. Decision Table algoritması 0,2525 korelasyon katsayısı ve 564,7407 MAE,

1186,1157 RMSE, 87,4329 RAE, 103,8206 RRSE hata payı ile en kötü performansı

sergilemiştir. WEKA programında, Meta grubundaki bütün algoritmalar, Lazy grubundaki

LWL algoritması ve Rules grubundaki Input Mapped Classifier algoritması parametre olarak

bir sınıflandırma algoritması almaktadır. Bu algoritmaların özellikler penceresinden

sınıflandırma özelliği değiştirilerek daha iyi tahmin sonuçları elde edilebilmektedir. Yazılım

projelerinin maliyet tahmini için kullanılan MÖ algoritmalarının parametre değerleri

82

değiştirilerek olabilecek bütün olasılıklar denenmiştir. COCOMO81, COCOMONASA ve

COCOMONASA2 veri setleri üzerinde gerçekleştirilen testlerin en iyi tahmin sonuçları

korelasyon katsayısı ve RAE hata payı ile Tablo 4.4, Tablo 4.5 ve Tablo 4.6’da belirtilmiştir.

Tablo 4.4: COCOMO81‘de algoritmaların en iyi tahmin sonuçları.

COCOMO81 veri seti

ALGORİTMA
Parametre olarak verilen

algoritma

Korelasyon

katsayısı

RAE

(%)

LWL Random Comittee 0,8331 54,4355

Additive Regression Random Comittee 0,8282 49,6681

Attribute Selected Classifier Random Comittee 0,8656 50,3006

Bagging Random Comittee 0,7235 63,8393

CVParameter Selection Random Comittee 0,8764 48,5789

Multi Schema Random Comittee 0,8529 52,0718

Random Comittee Random Comittee 0,8764 48,5789

Randomizable Fitered Classifer IBK (K-nearest neighbor) 0,7722 57,5024

Random SubSpace Random Comittee 0,7109 63,5379

Regresiyon By Discretization Multilayer Perceptron 0,8547 56,89

Weighted Instances Handler

Wrapper
Random Comittee 0,8227 51,606

Input Maped Classifier Random Comittee 0,8764 48,5789

Tablo 4.4 incelendiğinde tahmin algoritmasına sınıflandırma parametresi olarak Random

Committee algoritmasının verilmesi ile en iyi tahmin sonucunun elde edildiği görülmüştür.

Random Committee, CVParemeter Selection ve Input Maped Classifier algoritmaları 0,8764

korelasyon katsayısı ve %48,5789 RAE hata payı ile en iyi tahmin sonucunu vermiştir.

Bu durum şu şekilde elde edilmiştir: yazılım maliyet tahmini için seçilen algoritmanın özellikler

penceresinden classifier özelliği için olabilecek bütün algoritmalar parametre olarak

denenmiştir. COCOMO81 veri seti üzerinde en iyi tahmin sonucunun tahmin algoritması olarak

Random Committee, classifier özelliğinin de Random Committee seçilmesi ile elde edildiği

belirlenmiştir.

83

Tablo 4.5: COCOMONASA’da algoritmaların en iyi tahmin sonuçları.

COCOMONASA

ALGORİTMA
Parametre olarak verilen

algoritma

Korelasyon

katsayısı

RAE

(%)

LWL Linear Regression 0,8945 43,6739

Additive Regression M5P 0,9371 31,7645

Attribute Selected Classifier Multilayer Perceptron 0,8963 36,8339

Bagging M5P 0,9175 29,0556

CVParameter Selection M5P 0,922 35,0178

Multi Schema M5P 0,922 35,0178

Random Comittee Randomizable Fitered Classifer 0,924 34,0002

Randomizable Fitered Classifer SMOreg 0,9161 30,4218

Random SubSpace Regresiyon By Discretization 0,817 64,1904

Regresiyon By Discretization Randomizable Fitered Classifer 0,8309 60,419

Weighted Instances Handler

Wrapper
M5P 0,922 35,0178

Input Maped Classifier M5P 0,922 35,0178

Tablo 4.5 incelendiğinde tahmin algoritmasına sınıflandırma parametresi olarak M5P

algoritmasının verilmesi ile en iyi tahmin sonucunun elde edildiği görülmüştür. Additive

Regression algoritması 0,9371 korelasyon katsayısı ve %31,7645 RAE hata payı ile en iyi

tahmin sonucunu vermiştir. En iyi tahmin sonucunun elde edilebilmesi için seçilen algoritmanın

özellikler penceresinden classifier özelliği için olabilecek bütün algoritmalar parametre olarak

denenmiştir. COCOMONASA veri seti üzerinde en iyi tahmin sonucunun tahmin algoritması

olarak Additive Regression, classifier özelliğinin de M5P seçilmesi ile elde edildiği

belirlenmiştir.

Tablo 4.6: COCOMONASA2 ‘de algoritmaların en iyi tahmin sonuçları.

COCOMONASA2

ALGORİTMA

Parametre olarak verilen

algoritma

Korelasyon

katsayısı

RAE

(%)

LWL Random Comittee 0,8309 50,4804

Additive Regression Random Forest 0,7974 51,8123

Attribute Selected Classifier Random Comittee 0,774 56,0921

Bagging Random Tree 0,7605 53,6467

CVParameter Selection Random Comittee 0,783 54,5614

Multi Schema Random Comittee 0,7923 55,2471

Random Comittee Random Tree 0,783 54,5614

Randomizable Fitered Classifer Random Comittee 0,8043 53,5075

Random SubSpace Random Forest 0,6729 63,1086

Regresiyon By Discretization Random Comittee 0,7793 64,1228

Weighted Instances Handler

Wrapper
Random Comittee 0,7881 54,7878

Input Maped Classifier Random Comittee 0,783 54,5614

84

Tablo 4.6 incelendiğinde tahmin algoritmasına sınıflandırma parametresi olarak Random

Committee algoritmasının verilmesi ile en iyi tahmin sonucunun elde edildiği görülmüştür.

LWL algoritması 0,8309 korelasyon katsayısı ve %50,4804 RAE hata payı ile en iyi tahmin

sonucunu vermiştir. En iyi tahmin sonucunun elde edilebilmesi için seçilen algoritmanın

özellikler penceresinden classifier özelliği için olabilecek bütün algoritmalar parametre olarak

denenmiştir. COCOMONASA2 veri seti üzerinde en iyi tahmin sonucunun tahmin algoritması

olarak LWL, classifier özelliğinin de Random Committee seçilmesi ile elde edildiği

belirlenmiştir.

4.2. WEKA ÖZNİTELİK SEÇİM ALGORİTMALARI İLE PERFORMANS

DEĞERLENDİRMESİ

Çalışmanın bu kısmında PROMISE veri deposundan alınan, Albrecht, Finnish, Kemerer,

Maxwell, China, COCOMONASA ve Miyazaki94 veri setleri üzerinde öznitelik seçimi

yapılarak yazılım maliyet tahmini yapılmıştır. Öznitelik seçimi, verilerin ön işlemden

geçirildiği sırada sınıflandırıcının doğruluğunu ve performansını artırmak amacıyla ilgisiz ve

gereksiz özniteliklerin atılması ve verilerin gürültüden temizlenmesi işlemidir. Öznitelik

seçimi, mevcut özniteliklerin bir alt kümesini oluştururken veriler üzerinde herhangi bir

dönüşüm gerçekleştirmez (Güven Aydın, 2021). Literatürde öznitelik seçimi için farklı

yöntemler geliştirilmiştir. Bu yöntemlerin bazıları tezin önceki bölümlerinde açıklanmıştır. Bu

çalışmada öznitelik seçim yöntemi olarak WEKA programı içerisinde bulunan CfsSubsetEval,

arama metodu olarak GeneticSearch ve PSOSearch tercih edilmiştir. Oluşturulan bu modelde

amaç, yazılım maliyet tahmini yapılırken kullanılan hazır veri setleri üzerinde öznitelik

seçiminin maliyet tahminine olan etkisinin araştırılmasıdır.

4.2.1. CfsSubsetEval Öznitelik Seçim Algoritması

En etkili özniteliklerden oluşan öznitelik alt kümelerinin oluşturulması için WEKA ortamında

bulunan CfsSubsetEval kullanılmıştır. CfsSubsetEval, öznitelik alt kümelerini korelasyona

dayalı sezgisel değerlendirme işlevine göre sıralayan basit bir filtre algoritmasıdır. En iyi

öznitelik alt kümesini korelasyon yardımı ile bulur. Bu algoritma sınıfla yüksek düzeyde ilişkili

olan ve birbirleriyle ilişkisiz öznitelikler içeren alt kümeleri değerlendirir. Alakasız olan

öznitelikler sınıfla düşük korelasyona sahip olacağından göz ardı edilir. Algoritma sınıfla

85

yüksek korelasyonlu, kendi aralarında düşük korelasyonlu öznitelikleri seçer. Bunu da arama

algoritmalarına gönderdiği metrik ile yapar. CfsSubsetEval bir arama yöntemi değildir, bunun

yerine arama algoritmalarına öznitelik alt kümesinin etkinliğini değerlendirmek için bir metrik

önerir. Algoritmanın temelinde çıktı sınıfıyla yüksek oranda ilişkili ancak birbiriyle ilişkisiz

özelliklere sahip iyi bir öznitelik alt kümesi oluşturmak yatmaktadır (Hall, 1999; Ebren Kara

ve Şamlı, 2021). CfsSubsetEval, herhangi bir açgözlü veya meta-sezgisel arama yaklaşımıyla

kullanılabilir. Bu çalışmada CfsSubsetEval, GeneticSearch ve PSOSearch algoritmaları ile

kullanılmıştır.

4.2.2. Albrecht, Finnish, Kemerer, Maxwell ve Miyazaki94 Veri Setleri Simülasyon

Sonuçları

Burada WEKA ortamında, PROMISE veri deposundan temin edilen Albrecht, Finnish,

Kemerer, Maxwell ve Miyazaki94 veri setleri kullanılmıştır. Veri setlerine WEKA’da bulunan

bazı algoritmalar ve Genetik Programlama uygulanmıştır. WEKA’nın en son sürümlerinde

Genetik Programlama mevcut olmadığından Genetik Programlama’nın dâhil edilebilmesi için

WEKA’nın 3.4.12 sürümü kullanılmıştır. WEKA ortamında bulunan algoritmalar varsayılan

ayarlar ile veri setleri üzerinde iki şekilde çalıştırılmıştır. İlkinde, herhangi bir öznitelik seçimi

yapılmadan ham veri seti üzerinden algoritmalar 10 kat çapraz doğrulama ile çalıştırılmıştır.

İkincisinde, her veri seti üzerinde ilk önce GA kullanılarak öznitelik seçimi gerçekleştirilmiştir.

Veri setlerine uygulanan öznitelik seçiminden sonra bazı öznitelikler (bulgular bölümünde

seçilen öznitelikler verilmiştir.) veri setlerinden kaldırılmıştır. Genetik Programlama her

çalıştırıldığında farklı bir sonuç vermektedir bu yüzden algoritmanın performans değerleri

incelenirken farklı bir yöntem uygulanmıştır. GA olasılıksal, stokastik, küresel arama

algoritmasıdır; bu nedenle her popülasyonun her bireyinin, her yürütme sırasında arama alanı

boyunca farklı bir yörünge gerçekleştirmesi ve popülasyonun çoklu (alt) optimal çözümlere

yaklaşması beklenmektedir. Bir GA’yı tekrar tekrar yürüterek bir dizi optimal çözüm

toplanabilir. Algoritmanın performans değerlendirmesinde ortalama değeri hesaplamak

yanlıştır çünkü benzer uygunluk değerine sahip iki alt optimal çözüm tamamen farklı bir yapıya

sahip olabilir, böylece ortalama değer arama uzayının uygun olmayan bir bölgesine karşılık

gelebilir (Ebren Kara ve Şamlı, 2021). Bundan dolayı Genetik Programlama 15 defa

çalıştırılarak uygunluk değerine göre en uygun sonuç seçilmiştir. Albrecht veri setine

86

WEKA’nın select attributes menüsü altındaki CfsSubsetEval ve GeneticSearch uygulanarak

öznitelik sayısı 8'den 3'e düşürülmüştür. GA uygulanarak Output, Inquiry, RawFPcounts

öznitelikleri seçilmiştir. Bağımlı öznitelik olan Effort da eklenerek öznitelik sayısı 4 olarak

belirlenmiştir. Algoritmalar veri seti üzerinde öznitelik seçimi yapılmadan ve seçim yapıldıktan

sonra çalıştırılmıştır ve performans değerleri Tablo 4.7’de gösterilmiştir.

Tablo 4.7: Albrecht veri setinde öznitelik seçimi.

Albrecht veri seti

ALGORİTMALAR Öznitelik seçimi yapılmadan önce

GA ile öznitelik seçimi

(öznitelik sayısı 8’den 3’e

düşürüldüğünde)

FONKSİYONLAR
Korelasyon

katsayısı
MAE RAE (%)

Korelasyon

katsayısı
MAE RAE (%)

Gaussian Processes 0,6529 15,8737 77,8508 0,8847 21,7193 106,52

Linear Regression 0,9062 8,9952 44,116 0,9286 8,2725 40,5716

Multilayer Perceptron 0,7543 12,0558 59,1265 0,9351 7,2164 35,3922

Simple Linear Regression 0,8598 9,9098 48,6014 0,8598 9,9098 48,6014

SMOreg 0,8139 11,7115 57,4375 0,8986 10,2052 50,0501

LAZY

IBK 0,9406 6,1917 30,3663 0,9429 6,5333 32,042

KStar 0,8518 8,5702 42,0317 0,934 6,9165 33,9211

LWL 0,8741 9,5116 46,6483 0,9003 8,0443 39,4522

META

Additive Regression 0,8653 9,8845 48,4775 0,9162 7,1197 34,9177

Bagging 0,8263 13,2655 65,0593 0,9082 11,1858 54,8594

Random Committee 0,9611 5,8819 28,847 0,9474 5,9019 28,9454

Randomizable Fitered

Classifer
0,9416 6,5083 31,9194 0,9495 6,525 32,0011

RandomSubSpace 0,4334 14,3141 70,2019 0,6672 12,7241 62,4039

RegresiyonByDiscretization 0,4337 16,1353 79,1337 0,8325 10,7695 52,818

RULES

Decision Table 0,6937 9,9449 48,7735 0,6894 9,9155 48,6296

M5Rules 0,8921 8,0587 39,5231 0,8751 8,3984 41,189

TREE

Desicion Stump 0,5145 13,785 67,6072 0,8877 8,9221 43,7575

M5P 0,8325 8,4905 41,6406 0,9422 7,0326 34,4907

Random Forest 0,9406 7,6828 37,6795 0,9585 6,3113 30,953

Random Tree 0,471 13,4589 66,0076 0,8631 9,2799 45,512

REP Tree 0,5834 14,9504 73,3225 0,5425 14,7469 72,3244

Genetic Programming 0,8595 11,378 15,7919 0,9035 15,277 74,927

En iyi performansı, öznitelik seçimi yapılmadan önce Random Committee, seçim yapıldıktan

sonra Random Forest göstermiştir. Öznitelik seçimi yapılmadan önce en kötü performansı

RegresiyonByDiscretization gösterirken öznitelik seçimi yapıldıktan sonra en kötü performansı

REP Tree algoritması göstermiştir. Genel olarak algoritmaların performans değerleri

incelendiğinde öznitelik seçiminin yapılması bütün algoritmalarda olumlu bir etki yaratmıştır.

87

Tablo 4.8: Finnish veri setinde öznitelik seçimi.

Finnish veri seti

ALGORİTMALAR Öznitelik seçimi yapılmadan önce

GA ile öznitelik seçimi

(öznitelik sayısı 9’dan 4’e

düşürüldüğünde)

FONKSİYONLAR
Korelasyon

katsayısı
MAE RAE (%)

Korelasyon

katsayısı
MAE RAE (%)

Gaussian Processes 0,8597 0,5691 55,6165 0,8443 0,5886 57,5203

Linear Regression 0,9607 0,254 24,8268 0,9607 0,254 24,8268

Multilayer Perceptron 0,9575 0,2297 22,4464 0,9853 0,1376 13,4468

Simple Linear Regression 0,8811 0,4586 44,8219 0,8811 0,4586 44,8219

SMOreg 0,962 0,2341 22,8759 0,9702 0,2213 21,6292

LAZY

IBK 0,7697 0,539 52,6711 0,934 0,3142 30,7074

KStar 0,9889 0,1344 13,1344 0,9923 0,1127 11,0156

LWL 0,8808 0,4707 46,0022 0,8934 0,4379 42,7989

META

Additive Regression 0,9467 0,3197 31,2479 0,9507 0,3009 29,4097

Bagging 0,9801 0,1747 17,074 0,9857 0,1532 14,967

Random Committee 0,9797 0,1743 17,0383 0,9922 0,1072 10,4756

Randomizable Fitered

Classifer
0,8736 0,4171 40,7633 0,9396 0,311 30,3962

RandomSubSpace 0,9239 0,3752 36,6703 0,9457 0,2945 28,7796

RegresiyonByDiscretization 0,9748 0,216 21,1073 0,985 0,1899 18,5577

RULES

Decision Table 0,8788 0,3802 37,1524 0,8788 0,3802 37,1524

M5Rules 0,9876 0,1414 13,8139 0,9833 0,1475 14,4124

TREE

Desicion Stump 0,8618 0,513 50,1362 0,8618 0,513 50,1362

M5P 0,9692 0,2146 20,9732 0,9715 0,2158 21,0941

Random Forest 0,9818 0,1649 16,1147 0,9942 0,0976 9,5354

Random Tree 0,9029 0,3654 35,7136 0,9922 0,1072 10,4756

REP Tree 0,9752 0,195 19,0542 0,9829 0,1779 17,3849

Genetic Programming 0,2286 1,5542 151,8817 0,3959 1,322 129,1927

Finnish veri setine, WEKA’nın select attributes menüsü altındaki CfsSubsetEval ve

GeneticSearch uygulandığında veri setinde bulunan 9 öznitelikten 4 tanesi seçilmiştir. Bunlar

dev.eff.hrs, FP, prod, lnsize öznitelikleridir. Öznitelik alt kümesine, bağımlı öznitelik olan lneff

özniteliği de eklendiğinde öznitelik sayısı 5’e çıkmıştır. WEKA ortamında bulunan

algoritmalar, Finnish veri setine öznitelik seçimi uygulanmadan önce ve öznitelik seçimi

uygulandıktan sonra çalıştırılmıştır. Algoritmaların bulduğu tahmin sonuçları Tablo 4.8’de

belirtilmiştir. Tablo 4.8 incelendiğinde, öznitelik seçiminden önce yapılan en iyi tahmin

sonucunu KStar algoritması bulurken öznitelik seçiminden sonra en iyi tahmin sonucunu

Random Forest algoritması bulmuştur. Veri setine uygulanan algoritmalar arasından Genetic

Programming algoritması kötü bir performans sergilemiştir.

88

Tablo 4.9: Kemerer veri setinde öznitelik seçimi.

Kemerer veri seti

ALGORİTMALAR Öznitelik seçimi yapılmadan önce

GA ile öznitelik seçimi

(öznitelik sayısı 8’den 4’e

düşürüldüğünde)

FONKSİYONLAR
Korelasyon

katsayısı
MAE RAE (%)

Korelasyon

katsayısı
MAE RAE (%)

Gaussian Processes 0,2401 173,4761 107,7937 0,2705 161,1668 100,145

Linear Regression 0,3692 173,2407 107,6474 0,3425 190,2161 118,1955

Multilayer Perceptron 0,3511 129,4589 80,4425 0,3277 150,4623 93,4935

Simple Linear Regression 0,3516 173,231 107,6414 0,3516 173,231 107,6414

SMOreg 0,5737 114,3301 71,0419 0,6946 96,4073 59,9051

LAZY

IBK 0,4665 142,054 88,2688 0,336 160,028 99,4374

KStar 0,5589 134,6747 83,6835 0,6219 124,3199 77,2492

LWL 0,6673 131,4466 81,6776 0,2476 170,0038 105,6361

META

Additive Regression 0,4744 146,6895 91,1492 0,4048 139,608 86,7489

Bagging 0,1277 185,4463 115,2317 0,117 180,8072 112,3491

Random Committee 0,3253 142,7104 88,6767 0,1869 169,0092 105,0181

Randomizable Fitered

Classifer
0,689 121,1073 75,2531 0,4886 138,4607 86,036

RandomSubSpace 0,0247 144,782 89,9639 -0,0377 148,1961 92,0854

RegresiyonByDiscretization 0,2989 177,4283 110,2495 0,2962 177,4659 110,2729

RULES

Decision Table 0,102 144,9955 90,0966 0,3026 176,223 109,5005

M5Rules 0,3244 182,0525 113,1229 0,3385 188,2263 116,9591

TREE

Desicion Stump 0,7835 138,6838 86,1746 0,2151 177,1265 110,062

M5P 0,3291 176,3236 109,5631 0,3385 188,2263 116,9591

Random Forest 0,3532 129,0567 80,1926 0,2925 143,9352 89,4377

Random Tree -0,0271 250,9131 155,9111 0,329 163,9313 101,8628

REP Tree -0,3027 195,5944 121,5375 -0,3027 195,5944 121,5375

Genetic Programming 0,5299 207,0738 128,6705 0,6505 140,4516 87,2731

Kemerer veri setine, WEKA’nın select attributes menüsü altındaki CfsSubsetEval ve

GeneticSearch uygulandığında veri setinde bulunan 8 öznitelikten 4 tanesi seçilmiştir. Bunlar

ID, Language, KSLOC, AdjFP öznitelikleridir. Öznitelik alt kümesine, bağımlı öznitelik olan

EffortMM özniteliği de eklendiğinde öznitelik sayısı 5’e çıkmıştır. WEKA ortamında bulunan

algoritmalar, Kemerer veri setine öznitelik seçimi uygulanmadan ve öznitelik seçimi

uygulandıktan sonra çalıştırılmıştır. Algoritmaların bulduğu tahmin sonuçları Tablo 4.9’da

belirtilmiştir. Tablo 4.9 incelendiğinde, öznitelik seçiminden önce en iyi tahmin sonucunu

0,7835 korelasyon katsayısı ve %86,1746 RAE hata payı ile Desicion Stump algoritması

bulmuştur. Öznitelik seçiminden sonra en iyi tahmin sonucunu SMOreg algoritması bulmuştur.

Veri setine uygulanan algoritmalar arasından Random Tree algoritması öznitelik seçimi

89

yapılmadan önce en kötü tahmin sonucunu bulurken öznitelik seçimi yapıldıktan sonra en kötü

tahmin sonucunu REP Tree algoritması bulmuştur.

Tablo 4.10: Maxwell veri setinde öznitelik seçimi.

Maxwell veri seti

ALGORİTMALAR Öznitelik seçimi yapılmadan önce

GA ile öznitelik seçimi

(öznitelik sayısı 27’den 19’a

düşürüldüğünde)

FONKSİYONLAR
Korelasyon

katsayısı
MAE RAE (%)

Korelasyon

katsayısı
MAE RAE (%)

Gaussian Processes 0,783 3925,0493 62,4734 0,787 3933,8702 62,6138

Linear Regression 0,8085 4157,5897 66,1746 0,8544 3395,0666 54,0379

Multilayer Perceptron 0,7641 4764,3788 75,8327 0,816 4146,3094 65,9951

Simple Linear Regression 0,8023 3952,8465 62,9158 0,8023 3952,8465 62,9158

SMOreg 0,8191 3812,9653 60,6894 0,818 3522,3771 56,0642

LAZY

IBK 0,463 5517,129 87,8139 0,7593 4494,6774 71,5399

KStar 0,7336 4618,2302 73,5065 0,8596 4078,3244 64,913

LWL 0,6089 5340,3849 85,0007 0,5866 5163,7796 82,1897

META

Additive Regression 0,6875 5233,4509 83,2987 0,6882 5212,0729 82,9584

Bagging 0,7711 3949,1671 62,8573 0,7704 3898,5336 62,0514

Random Committee 0,7875 3991,4994 63,531 0,6924 4238,3461 67,46

Randomizable Fitered

Classifer
0,7402 4411,4194 70,2147 0,8235 4289,5323 68,2747

RandomSubSpace 0,6696 4734,9648 75,3645 0,6474 4700,8192 74,821

RegresiyonByDiscretization 0,5893 5419,5948 86,2615 0,6092 5217,0333 83,0374

RULES

Decision Table 0,3139 5355,5581 85,2422 0,417 5060,9465 80,553

M5Rules 0,7497 3853,4535 61,3338 0,6528 4334,3177 68,9875

TREE

Desicion Stump 0,5893 5211,5585 82,9502 0,5893 5211,5585 82,9502

M5P 0,8175 3718,2692 59,1822 0,8092 3685,2814 58,6571

Random Forest 0,7612 3998,2174 63,638 0,7621 3827,5684 60,9218

Random Tree 0,569 5686,9672 90,5171 0,4398 5223,2222 83,1359

REP Tree 0,5801 4801,8161 76,4285 0,5781 4857,6179 77,3167

Genetic Programming 0,618 7700,821 122,5708 0,4508 8906,4934 141,761

 Maxwell veri setine WEKA’nın select attributes menüsü altındaki CfsSubsetEval ve

GeneticSearch uygulandığında veri setinde bulunan 27 öznitelikten 19 tanesi seçilmiştir. Bunlar

Syear, App, Har, Dba, Source, T01, T02, T04, T06, T07, T08, T09, T10, T11, T13, T14,

Duration, Size, Time öznitelikleridir. Öznitelik alt kümesine, bağımlı öznitelik olan Effort

özniteliği de eklendiğinde öznitelik sayısı 20’ye çıkmıştır. WEKA ortamında bulunan

algoritmalar, Maxwell veri setine öznitelik seçimi uygulanmadan önce ve öznitelik seçimi

uygulandıktan sonra çalıştırılmıştır. Algoritmaların bulduğu tahmin sonuçları Tablo 4.10’da

belirtilmiştir. Tablo 4.10 incelendiğinde, öznitelik seçiminden önce yapılan en iyi tahmin

sonucunu SMOreg algoritması bulurken, öznitelik seçiminden sonra en iyi tahmin sonucunu

90

KStar algoritması bulmuştur. Veri setine uygulanan algoritmalar arasından Decision Table

algoritması en kötü performansı sergilemiştir.

Tablo 4.11: Miyazaki94 veri setinde öznitelik seçimi.

Miyazaki94 veri seti

ALGORİTMALAR Öznitelik seçimi yapılmadan önce

GA ile öznitelik seçimi

(öznitelik sayısı 9’dan 3’e

düşürüldüğünde)

FONKSİYONLAR
Korelasyon

katsayısı
MAE RAE (%)

Korelasyon

katsayısı
MAE RAE (%)

Gaussian Processes 0,5236 40,6054 107,9636 0,6259 40,1338 106,7099

Linear Regression 0,2921 35,3558 94,0057 0,7525 25,0961 66,7267

Multilayer Perceptron 0,7047 23,1496 61,5513 0,5197 39,5961 105,2801

SMOreg 0,6797 24,5578 65,2955 0,7918 21,5708 57,3536

LAZY

IBK 0,4348 31,7511 84,4213 0,7265 29,6426 78,8151

KStar 0,4618 30,737 81,7252 0,709 26,4487 70,3232

LWL 0,5493 25,8851 68,8246 0,7979 23,9224 63,6062

META

Additive Regression 0,6603 24,1608 64,24 0,7883 24,1991 64,3417

Bagging -0,3738 37,3717 99,3657 0,8862 24,33 64,6898

Random Committee 0,6058 28,5917 76,0211 0,7023 26,8618 71,4216

Randomizable Fitered

Classifer
0,3044 40,934 108,8375 0,6627 31,617 84,0649

RandomSubSpace 0,4785 32,9529 87,6169 0,7174 25,3419 67,3804

RegresiyonByDiscretization 0,5501 29,3266 77,9749 0,7638 26,075 69,3296

RULES

Decision Table 0,1314 36,1975 96,2438 0,1318 35,0326 93,1465

M5Rules -0,3381 36,6399 97,4199 0,6715 28,6709 76,2317

TREE

Desicion Stump 0,5295 26,1019 69,4011 0,7643 25,1587 66,8931

M5P -0,3381 36,6399 97,4199 0,7243 26,4012 70,1969

Random Forest 0,6743 29,9249 79,5658 0,7833 21,9777 58,4354

Random Tree 0,1814 40,9315 108,8307 0,6129 32,005 85,0966

REP Tree -0,4942 37,6102 100 0,4737 26,5315 70,5432

Genetic Programming 0,7579 38,001 101,039 0,6298 46,7985 124,4302

Miyazaki94 veri setine WEKA’nın select attributes menüsü altındaki CfsSubsetEval ve

GeneticSearch uygulandığında veri setinde bulunan 9 öznitelikten 3 tanesi seçilmiştir. Bunlar

KLOC, FORM, FILE öznitelikleridir. Öznitelik alt kümesine, bağımlı öznitelik olan MM

özniteliği de eklendiğinde öznitelik sayısı 4’e çıkmıştır. WEKA ortamında bulunan

algoritmalar, Miyazaki94 veri setine öznitelik seçimi uygulanmadan önce ve öznitelik seçimi

uygulandıktan sonra çalıştırılmıştır. Algoritmaların bulduğu tahmin sonuçları Tablo 4.11’de

belirtilmiştir. Tablo 4.11 incelendiğinde, öznitelik seçiminden önce yapılan en iyi tahmin

sonucunu Genetic Programming algoritması bulurken öznitelik seçiminden sonra en iyi tahmin

sonucunu Bagging algoritması bulmuştur. Veri setine uygulanan algoritmalar arasından REP

91

Tree algoritması öznitelik seçiminden önce en kötü tahmin sonucunu bulurken öznitelik

seçiminden sonra en kötü performansı Decision Table algoritması göstermiştir.

4.2.3. Maxwell, China ve COCOMONASA Veri Setleri Simülasyon Sonuçları

Tez çalışmasının bu kısmında, öznitelik seçim olarak GA ile PSO algoritmasının kullanılması

sonucunda yazılım projelerinin maliyet tahmin sonuçları karşılaştırılmıştır. GeneticSearch ve

PSOSearch evrimsel meta sezgisel arama algoritmalarıdır. Tez çalışması kapsamında kullanılan

bütün veri setlerine CfsSubsetEval altında GeneticSearch ve PSOSearch algoritmaları öznitelik

seçim yöntemi olarak uygulanmıştır. Amaç GA ve PSO algoritmaları sayesinde yazılım maliyet

tahminini yapacak en etkili öznitelikleri belirlemektir. Veri setlerinden Albrecht, Finnish,

Kemerer, Miyazaki94, COCOMO81 ve COCOMONASA2 öznitelk seçimi sonucunda aynı alt

kümleri vermiştir. Bu veri setleri çalışmanın bu kısmına dâhil edilmemiştir. Maxwell, China ve

COCOMONASA veri setlerine öznitelik seçim yöntemi olarak GA ile PSO algoritması

uygulandığında farklı alt kümeler oluşturmuştur. Bu veri setlerine MÖ algoritmaları 3 farklı

şekilde uygulanmıştır. İlk önce ham veri setleri üzerinde herhangi bir öznitelik seçimi

yapılmadan, algoritmalar 10 kat çapraz doğrulama ile çalıştırılmıştır, ikincisinde öznitelik

seçimi olarak GA kullanılarak elde edilen özniteliklerle, üçüncüsünde öznitelik seçimi olarak

PSO algoritması uygulanarak elde edilen özniteliklerle uygulanmıştır. Uygulamalar WEKA

programında varsayılan ayarlar ile yapılmıştır. Elde edilen bulgular Tablo 4.12, Tablo 4.13 ve

Tablo 4.14’te belirtilmiştir.

92

Tablo 4.12: Maxwell veri setine farklı öznitelik yöntemlerinin uygulanması.

Maxwell veri seti

ALGORİTMALAR
Öznitelik seçimi yapılmadan

önce

GA ile öznitelik seçimi

(öznitelik sayısı 27’den 19’a

düşürüldüğünde)

PSO ile öznitelik seçimi

(öznitelik sayısı 27’den 15’e

düşürüldüğünde)
FONKSİYONLAR Korelasyon

katsayısı
MAPE RAE

(%)
Korelasyon

katsayısı
MAPE RAE

(%)
Korelasyon

katsayısı
MAPE RAE

(%)
Gaussian Processes 0,783 1,0681 62,4734 0,787 1,0681 62,6138 0,8034 1,0562 60,6559

Linear Regression 0,8085 1,0848 66,1746 0,8544 0,735 54,0379 0,835 0,8264 56,5191

Multilayer Perceptron 0,7641 1,2569 75,8327 0,816 1,2322 65,9951 0,712 1,4635 82,3826

Simple Linear Regression 0,8023 0,6863 62,9158 0,8023 0,6863 62,9158 0,8023 0,6863 62,9158

SMOreg 0,8191 0,9379 60,6894 0,818 0,6903 56,0642 0,8361 0,5424 50,7562

LAZY

IBK 0,463 1,0379 87,8139 0,7593 0,987 71,5399 0,7432 0,9711 77,1675

KStar 0,7336 0,8179 73,5065 0,8596 0,7644 64,913 0,85 0,5755 64,3137

LWL 0,6089 1,3038 85,0007 0,5866 1,26 82,1897 0,6293 1,2116 77,2602

META

Additive Regression 0,6875 0,8649 83,2987 0,6882 0,8577 82,9584 0,6948 0,7775 79,4345

Bagging 0,7711 0,9636 62,8573 0,7704 0,9397 62,0514 0,7738 0,9119 61,1296

Random Committee 0,7875 0,8509 63,531 0,6924 0,8024 67,46 0,749 0,7249 61,4333

Randomizable Fitered

Classifer
0,7402 0,7931 70,2147 0,8235 0,9866 68,2747 0,7588 0,9414 75,6192

RandomSubSpace 0,6696 1,3822 75,3645 0,6474 1,2193 74,821 0,7885 1,2611 68,5983

RegresiyonByDiscretization 0,5893 1,1059 86,2615 0,6092 1,1146 83,0374 0,4559 0,9882 92,8163

RULES

Decision Table 0,3139 1,1923 85,2422 0,417 0,8807 80,553 0,2688 1,1403 86,5602

M5Rules 0,7497 0,9477 61,3338 0,6528 0,7843 68,9875 0,7265 0,8311 63,0235

TREE

Desicion Stump 0,5893 1,4398 82,9502 0,5893 1,4398 82,9502 0,5893 1,4398 82,9502

M5P 0,8175 0,9478 59,1822 0,8092 0,7365 58,6571 0,834 0,8132 58,1623

Random Forest 0,7612 1,0024 63,638 0,7621 0,8315 60,9218 0,7916 0,7674 58,1876

Random Tree 0,569 1,0298 90,5171 0,4398 0,7481 83,1359 0,613 0,8036 81,9882

REP Tree 0,5801 0,9835 76,4285 0,5781 1,0389 77,3167 0,5809 0,9821 76,2101

Tablo 4.12 incelendiğinde Maxwell veri setine WEKA’nın select attributes menüsü altındaki

CfsSubsetEval ve GeneticSearch uygulandığında veri setinde bulunan 27 öznitelikten 19 tanesi

seçilmiştir. Seçilen öznitelikler Syear, App, Har, Dba, Source, T01, T02, T04, T06, T07, T08,

T09, T10, T11, T13, T14, Duration, Size, Time olmuştur. Maxwell veri setine WEKA’nın select

attributes menüsü altındaki CfsSubsetEval ve PSOSearch uygulandığında veri setinde bulunan

27 öznitelikten 15 tanesi seçilmiştir. Seçilen öznitelikler Syear, Har, Dba, T02, T03, T07, T08,

T09, T10, T11, T13, T14, Duration, Size, Time olmuştur. Tablo 4.12 incelendiğinde veri seti

üzerinde öznitelik seçiminin yapılması algoritmaların çoğunda hata oranlarını düşürürken çok

azında aynı kalmıştır. PSO algoritması uygulanarak elde edilen özniteliklerle yapılan tahmin

sonuçları GA’ya göre çoğunlukla hata oranları daha düşük korelasyon katsayıları daha yüksek

çıkmıştır.

93

Tablo 4.13: China veri setine farklı öznitelik yöntemlerinin uygulanması.

China veri seti

ALGORİTMALAR
Öznitelik seçimi yapılmadan

önce

GA ile öznitelik seçimi

(öznitelik sayısı 19’dan 9’a

düşürüldüğünde)

PSO ile öznitelik seçimi

(öznitelik sayısı 19’dan 8’e

düşürüldüğünde)

FONKSİYONLAR
Korelasyon

katsayısı
MAPE RAE(%)

Korelasyon

katsayısı
MAPE RAE(%)

Korelasyon

katsayısı
MAPE RAE(%)

Gaussian Processes 0,9532 2,0857 43,9852 0,9534 2,1105 44,6892 0,9516 2,1247 45,5934
Linear Regression 0,9889 0,2253 9,809 0,9859 0,241 11,1281 0,986 0,2023 10,6966

Multilayer

Perceptron
0,9733 0,274 12,4698 0,9746 0,2834 13,4426 0,9767 0,3436 13,8993

Simple Linear

Regression
0,9833 0,1447 11,1943 0,9833 0,1447 11,1943 0,9833 0,1447 11,1943

SMOreg 0,9897 0,0967 7,3095 0,9847 0,1318 9,6896 0,9853 0,1366 9,7544

LAZY

IBK 0,8918 0,6125 42,4638 0,9076 0,6515 39,0501 0,9081 0,7697 40,5442

KStar 0,9646 0,1902 16,9892 0,9726 0,1733 14,6867 0,9717 0,1931 14,2883

LWL 0,8351 2,1625 59,5587 0,848 2,109 57,5662 0,8484 2,1304 57,7314

META

Additive Regression 0,9336 0,7246 31,5019 0,9426 0,6305 28,5508 0,9426 0,6305 28,5508

Bagging 0,9605 0,192 13,8374 0,9596 0,1924 14,0416 0,9597 0,1923 14,035

Random Comittee 0,9474 0,2595 18,3457 0,9555 0,2485 16,3949 0,96 0,2726 17,5369

Randomizable

Fitered Classifer
0,9669 0,2735 17,9285 0,9516 0,3073 21,2019 0,9293 0,4459 27,1662

Random SubSpace 0,9383 0,4835 22,9068 0,9395 0,6165 25,5068 0,9023 0,9952 37,729

Regresiyon By

Discretization
0,9519 1,5141 36,5418 0,9423 1,5147 37,3399 0,9426 1,5142 37,2662

RULES

Decision Table 0,9292 1,4551 36,0382 0,9292 1,4551 36,0382 0,9292 1,4551 36,0382

M5 Rules 0,977 0,1237 11,1973 0,9762 0,1457 11,2756 0,9763 0,1257 10,9405

TREE

Desicion Stump 0,8155 2,3497 62,2355 0,8155 2,3497 62,2355 0,8155 2,3497 62,2355

M5P 0,9842 0,1239 10,6158 0,984 0,1452 10,8488 0,9832 0,1243 10,5864

Random Forest 0,9591 0,2522 15,0747 0,9584 0,2557 15,6308 0,9602 0,2943 15,7784

Random Tree 0,9283 0,3468 25,4871 0,8726 0,3424 28,5588 0,9155 0,3184 23,5675

REP Tree 0,9597 0,2108 15,0204 0,9595 0,2112 15,1243 0,9595 0,2112 15,1243

Tablo 4.13 incelendiğinde China veri setine WEKA’nın select attributes menüsü altındaki

CfsSubsetEval ve GeneticSearch uygulandığında veri setinde bulunan 19 öznitelikten 9 tanesi

seçilmiştir. Seçilen öznitelikler ID, Input, Output, Enquiry, File, PDR_UFP, Resource,

Duration, N_effort olmuştur. China veri setine WEKA’nın select attributes menüsü altındaki

CfsSubsetEval ve PSOSearch uygulandığında veri setinde bulunan 19 öznitelikten 8 tanesi

seçilmiştir. Seçilen öznitelikler S ID, Input, Output, Enquiry, File, Resource, Duration, N_effort

olmuştur. Tablo 4.13 incelendiğinde veri seti üzerinde öznitelik seçiminin yapılması

algoritmaların çoğunda hata oranlarını yükseltmiştir çok azında düşürmüştür. GA uygulanarak

elde edilen özniteliklerle yapılan tahmin sonuçları PSO’ya göre çoğunlukla hata oranları daha

düşük korelasyon katsayıları daha yüksek çıkmıştır.

94

Tablo 4.14: COCOMONASA veri setine farklı öznitelik yöntemlerinin uygulanması.

COCOMONASA veri seti

ALGORİTMALAR
Öznitelik seçimi yapılmadan

önce

GA ile öznitelik seçimi yapılmış

(öznitelik sayısı 17’den 9’a

düşürüldüğünde)

PSO ile öznitelik seçimi yapılmış

(öznitelik sayısı 17’den 11’e

düşürüldüğünde)

FONKSİYONLAR
Korelasyon

katsayısı
MAPE

RAE

(%)

Korelasyon

katsayısı
MAPE

RAE

(%)

Korelasyon

katsayısı
MAPE

RAE

(%)

Gaussian Processes 0,6387 1,56 62,5047 0,6944 1,48 57,7443 0,6713 1,5587 60,4186

Linear Regression 0,7994 1,6558 57,2976 0,7648 1,7583 64,4223 0,7396 1,6606 78,7732

Multilayer

Perceptron
0,8931 0,8211 41,6205 0,8879 0,7268 39,8792 0,8956 0,8134 37,607

SMOreg 0,719 1,091 57,6118 0,7508 0,9574 55,5536 0,6767 1,0759 66,3008

LAZY

IBK 0,5768 0,8978 68,5184 0,555 0,9121 68,4662 0,5504 0,9553 69,8675

KStar 0,6772 0,4592 51,1294 0,7759 0,3837 47,6889 0,7592 0,388 45,8587

LWL 0,5768 0,8978 68,5184 0,7535 1,9057 58,8065 0,748 1,8329 62,0653

META

Additive Regression 0,8255 0,7546 46,4632 0,7874 0,7885 52,1701 0,7843 0,8284 53,4854

Bagging 0,8083 0,8773 42,921 0,8154 0,8181 42,4936 0,8103 0,8849 43,4221

Random Comittee 0,8059 0,8793 51,5926 0,8707 0,5988 41,9377 0,8573 0,6216 43,9109

Randomizable

Fitered Classifer
0,8059 0,8793 51,5926 0,8274 0,3668 43,3872 0,7833 0,4755 49,2079

Random SubSpace 0,8617 2,3585 59,786 0,7872 2,049 58,2429 0,7274 2,3334 58,8354

Regresiyon By

Discretization
0,8179 1,0923 48,1966 0,7511 1,1789 56,6852 0,7514 1,1809 56,6425

RULES

Decision Table 0,4577 0,7835 60,5639 0,5317 0,83 59,0642 0,5455 0,7426 55,4483

M5 Rules 0,9152 0,9188 36,4397 0,9064 1,0434 40,1402 0,9042 1,0982 41,5366

TREE

Desicion Stump 0,6981 2,4527 70,3256 0,6981 2,4527 70,3256 0,6981 2,4527 70,3256

M5P 0,922 0,9282 35,0178 0,9118 1,0348 38,9148 0,9021 1,0907 40,8145

Random Forest 0,8196 0,8406 49,0968 0,8441 0,7052 45,5941 0,7992 0,7495 47,172

Random Tree 0,7029 1,0006 59,0168 0,7659 0,521 46,3355 0,674 1,0309 59,8381

REP Tree 0,594 1,4896 67,0803 0,5991 1,4835 66,3495 0,5938 1,49 67,0666

Tablo 4.14 incelendiğinde COCOMONASA veri setine WEKA’nın select attributes menüsü

altındaki CfsSubsetEval ve GeneticSearch uygulandığında veri setinde bulunan 17 öznitelikten

9 tanesi seçilmiştir. Seçilen öznitelikler RELY, DATA, TIME, STOR, VIRT, TURN, LEXP,

TOOL, LOC olmuştur. COCOMONASA veri setine WEKA’nın select attributes menüsü

altındaki CfsSubsetEval ve PSOSearch uygulandığında veri setinde bulunan 17 öznitelikten 11

tanesi seçilmiştir. Seçilen öznitelikler RELY, DATA, TIME, STOR, VIRT, TURN, VEXP,

LEXP, MODP, TOOL, LOC olmuştur. Tablo 4.13 incelendiğinde veri seti üzerinde GA

uygulanarak öznitelik seçiminin yapılması algoritmaların çoğunda korelasyon katsayısını

yükseltmiş ve hata oranlarını düşürmüştür. GA uygulanarak elde edilen özniteliklerle yapılan

tahmin sonuçları PSO’ya göre çoğunlukla hata oranları daha düşük korelasyon katsayıları daha

yüksek çıkmıştır.

95

4.3. BULGULARIN KARŞILAŞTIRILMASI

Bu bölümde, Yapay Zekâ tabanlı yazılım maliyet tahmini yapan çalışmaların geniş bir literatür

taraması yapılmıştır. Araştırılan çalışmaların incelenmesi sonucunda elde edilen analizler Tablo

4.15’te sunulmuştur. Mevcut çalışmalar, yazılım maliyet tahmin yöntemine, kullandıkları veri

setlerine, öznitelik seçimi yapıp yapmadıklarına ve değerlendirme ölçütlerine göre

karşılaştırılmıştır. Yapay Zekâ tabanlı yazılım maliyet tahmini yapan çalışmalarda çoğunlukla

performans değerlendirme ölçütü olarak; korelasyon katsayısı, MMRE, MAPE, MAE, RAE,

RMSE, PRED’i kullandıkları tespit edilmiştir.

Bu bölümün temel amacı, araştırmacılara yazılım maliyet tahmininde hangi Yapay Zekâ

yönteminin umut verici doğruluk tahmini yaptığını öğrenmesine yardımcı olmaktır. Dolayısıyla

litaratür taraması sonucunda elde edilen bu analiz tablosu araştırmacılara önemli bir kaynak

oluşturacaktır.

Tablo 4.15 incelendiğinde, Yapay Zekâ tabanlı yazılım maliyet tahmini çalışmalarının çok

eskilere dayandığı görülmektedir. Özellikle YSA alanında yapılan çalışmalar literatürde geniş

bir yer almaktadır. Regresyon tabanlı tahmin yöntemleri de yazılım maliyet tahmininde sık

kullanılan yöntemler arasındadır. Yazılım maliyet tahmininde kullanılan veri setleri tahmin

doğrulunu etkilemektedir. Yapılan çalışmaların çoğu yazılım maliyet tahmin yöntemini test

etmek için hazır veri setlerini kullanmaktadır. Daha eski çalışmalar incelendiğinde yazılım

maliyet tahmini yapıldığında öznitelik seçimine çok önem verilmediği görülmektedir. Bu tez

çalışmasında yazılım maliyet tahmininde kullanılan hazır veri setleri üzerinde öznitelik

seçiminin yapılması tahmin doğruluğunu olumlu yönde etkilediği tespit edilmiştir.

96

Tablo 4.15: Yapay Zekâ tabanlı yazılım maliyet tahmini yapan çalışmaların analizi.

Referans Yöntem Veri seti ÖS MMRE MAE RAE (%) Korelasyon

Deng ve diğ., 2011 KNN Desharnais ✓ 0,36

Wittig and Finnie, 1997
YSA ASMA projeleri X 0,29

YSA Desharnais X 0,17

Marapelli, 2019 Doğrusal Regresyon

COCOMO81 X 874,477 96,3751 0,6102

COCOMONASA X 247,0465 57,2976 0,7994

COCOMONASA2 X 430,7269 66,6849 0,7294

Marapelli, 2019 KNN

COCOMO81 X 782,5524 86,2442 0,0768

COCOMONASA X 295,4267 68,5184 0,5768

COCOMONASA2 X 445,7796 69,0154 0,659

Finnie ve diğ., 1997
YSA 299 proje verisi X 0,352

Doğrusal Regresyon 299 proje verisi X 0,623

Oliveira, 2005
YSA NASA18 X 0,187

Destek Vektör Regresyon NASA18 X 0,179

Stamelosa ve diğ., 2003 Doğrusal Regresyon ISBSG sürüm 6 X 0,23

Sentas ve diğ., 2005 Basit Doğrusal Regresyon ISBSG sürüm 7 X 0,3598

Karataş, 2011 YSA COCOMO81 X 0,41

Idri ve diğ., 2002 YSA COCOMO81 X 0,8435

Ayyıldız, 2007 YSA YEEM X 0,09

Sandhu ve diğ., 2008 Bulanık Model NASA18 X 0,11943

Adailer, 2008
Doğrusal Regresyon ISBSG sürüm 9 X 0,023

YSA ISBSG sürüm 9 X 0,047

Malhotra ve Jain, 2011

Doğrusal Regresyon China ✓ 0,1797 1981,48 54,16 0,79

SVM China ✓ 0,2563 1774,36 48,49 0,81

YSA China ✓ 1,4379 2561,00 71,50 0,75

Karar Ağacı China ✓ 0,1706 1173,43 32,02 0,93

Torbalama China ✓ 0,7423 1668,03 45,79 0,83

Singh ve Kumar, 2020

Doğrusal Regresyon Desharnais ✓ 2013,7987 0,7673

Multilayer Perceptron Desharnais ✓ 2742,0907 0,6843

RastgeleAğaç Desharnais ✓ 2148,8052 0,6496

Başkeleş ve diğ., 2007

Çok Katmanlı Perseptron COCOMO81 ✓ 0,9173

Destek Vektör Regresyon COCOMO81 ✓ 0,3328

Karar Ağacı COCOMO81 ✓ 0,3312

Attarzadeh ve OW, 2010 Bulanık Model COCOMO81 X 0,366

Lefley ve Shepperd, 2003

EKK Regresyon Finnish veri seti X 0,469 0,846

Genetik Programlama Finnish veri seti X 0,376 0,937

YSA Finnish veri seti X 0,688 0,806

ÖS: Öznitelik Seçimi, gösterim ✓: evet, X: hayır.

Bu tez çalışması kapsamında her bir veri setine uygulanan MÖ algoritmalarının bulduğu en iyi

yazılım maliyet tahmin sonucu, literatüredeki çalışmalar ile karşılaştırılması için, Tablo 4.16’da

verilmiştir. Bunların dışında daha kötü tahmin sonuçları da mevcuttur.

97

Tablo 4.16: Her bir veri seti üzerinde yapılan en iyi tahmin sonucu.

Veri Seti Yöntem MAPE MAE RAE(%) Korelasyon

Albrecht Random Committee 0,8487 5,8819 28,847 0,9611

China SMOReg 0,0967 270,4561 7,3095 0,9897

COCOMO81 Additive Regression 3,1646 471,6203 51,9767 0,8095

COCOMONASA M5P 0,9282 150,9841 35,0178 0,922

COCOMONASA2 LWL 0,9994 332,7218 51,5118 0,8183

Finnish Random Forest 0,0124 0,0976 9,5354 0,9942

Kemerer SMOreg 0,4229 96,4073 59,9051 0,6946

Maxwell SMOreg 0,5424 3188,8894 50,7562 0,8361

Miyazaki94 Bagging 0,7269 24,33 64,6898 0,8862

Bu tez çalışmasında 9 farklı veri seti üzerinde çalışılmıştır. Bu sayı diğer çalışmalarda

kullanılan veri setleri sayısından daha fazladır. Literatürdeki çalışmalar incelendiğinde çoğu

çalışmada kullanılan veri setleri üzerinde öznitelik seçiminin dikkate alınmadığı görülmektedir.

Bu çalışmada öznitelik seçiminin hazır veri setleri üzerindeki önemi vurgulanmış ve yazılım

maliyet tahmini gerçekleştirilmeden önce veri setleri üzerinde öznitelik seçimi yapılmıştır. Veri

setleri üzerinde öznitelik seçimi yapılmadan önce ve öznitelik seçimi yapıldıktan sonra 25 MÖ

algoritması farklı senaryolarda çalıştırılmıştır. Bu sayı literatürdeki diğer çalışmalardan daha

fazladır. Bu durum, bu alanda çalışacak araştırmacılara geniş bir bakış açısı sağlamaktadır.

Yazılım maliyet tahmini gerçekleştirildiğinde hata oranlarının literatürdeki çalışmalar ile

karşılaştırılması için birçok değerlendirme ölçütü ele alınmıştır. Bunlar Korelasyon katsayısı,

MAE, RMSE, RAE, RRSE ve MAPE olmuştur. Diğer çalışmalarda bu kadar değerlendirme

ölçütü ele alınmamıştır.

Bu çalışmanın amacı Yapay Zekâ alanında yazılım maliyet tahmini gerçekleştirmek

olduğundan iyi ve kötü tahmin sonuçları elde etmek ve bunları değerlendirmek olası bir

sonuçtur. Bu durum araştırmacılara karşılaştırma yapmaları açısından kapsamlı bir kaynak

oluşturacaktır.

98

5. TARTIŞMA VE SONUÇ

 Yazılım maliyet tahmini, yazılım geliştirme projelerinin en mühim aşamalarından biridir.

Yazılımın soyut olması ve birçok bilinmeyeni içermesi yazılım geliştirme sürecini hem

zorlaştırmakta hem de süreç zaman almaktadır. Günümüzde gelişen teknoloji ile paralel olarak

yazılımlar daha çok önem kazanmakta ve ihtiyaçlara cevap verebilmesi için daha karmaşık

yazılımlar geliştirilmektedir. Yanlış yapılan yazılım maliyeti ve zaman tahminleri yazılım

projelerinin başarısızlıkla sonuçlanmasına sebep olmaktadır. Bu yüzden yazılım maliyet

tahmininin doğruluğunu artırmak için birçok yazılım maliyet tahmin yöntemi geliştirilmiştir.

Bu tahmin yöntemlerinden biri de Yapay Zekâ yöntemleridir.

Bu tez çalışmasında yazılım projelerinin maliyet tahmini için, Yapay Zekâ yöntemlerinden,

MÖ algoritmaları kullanılarak üç farklı model geliştirilmiştir. Geliştirilen her bir model farklı

veri setleri üzerinde uygulanmıştır. Yazılım maliyet tahmininde kullanılan veri setlerinin

öznitelikleri, tahmin doğruluğunu önemli ölçüde etkilemektedir. Yazılım maliyetini

tahminleme sürecinde öznitelik seçiminin göz ardı edilmesi tahmin sonucunu olumsuz yönde

etkilediği tespit edilmiştir. Tez çalışmasında yazılım maliyet tahmini için öznitelik seçimi

CfsSubsetEval ile birlikte GeneticSearch ve PSOSearch arama algoritmaları kullanılarak

yapılmıştır. Bu sayede öznitelik seçiminin yazılım maliyet tahmin doğruluğunu nasıl

iyileştirdiği görülmüştür.

İlk geliştirilen model COCOMO81, COCOMONASA ve COCOMONASA2 veri setleri

üzerinde WEKA programında bulunan MÖ algoritmaları kullanılarak iki farklı şekilde

gerçekleştirilmiştir. Birinci bölümde; WEKA programında bulunan algoritmaların varsayılan

ayarları tercih edilmiş şekilde yapılan simülasyonlarda COCOMO81 veri setinde en iyi tahmini

Additive Regression algoritması, en kötü tahmini REP Tree algoritması; COCOMONASA veri

setinde en iyi tahmini M5P algoritması, en kötü tahmini Decision Table algoritması;

COCOMONASA2 veri setinde en iyi tahmini LWL algoritması, en kötü tahmini Decision

Table algoritması sunmuştur. İkinci bölüm; kendi parametrelerine ek olarak başka bir

sınıflandırıcı ve onun paremetrelerini alan algoritmalar için farklı parametreler girilerek bütün

olasılıklar denenmiştir. COCOMO81 veri setinde en iyi tahmini Random Committee

99

algoritması, en kötü tahmini Random SubSpace algoritması; COCOMONASA veri setinde en

iyi tahmini M5P algoritmasının parametre olarak verilmesi ile Additive Regression algoritması,

en kötü tahmini Random SubSpace algoritması; COCOMONASA2 veri setinde en iyi tahmini

LWL algoritmasına parametre olarak verilen Random Committee algoritması, en kötü tahmini

Random SubSpace algoritması sunmuştur. Geliştirilen ikinci modelde Albrecht, Finnish,

Kemerer, Maxwell ve Miyazaki94 veri setleri kullanılmıştır. Veri setleri üzerinde WEKA

programında bulunan MÖ algoritmaları iki şekilde çalıştırılmıştır. İlkinde ham veri seti

üzerinde çalıştırılan algoritmalar, daha sonra veri setlerine öznitelik seçimi yapılarak tekrar

çalıştırılmıştır. Sonuçlar incelendiğinde GA kullanılarak veri setleri üzerinde öznitelik

seçiminin yapılması yazılım maliyet tahminini olumlu yönde etkilediği görülmüştür.

Bu çalışmada ayrıca WEKA’nın eski sürümünde bulunan Genetik Programlama da yazılım

maliyet tahmini için kullanılmıştır. Analiz sonuçları incelendiğinde Genetik Programlamanın

yazılım maliyet tahmininde başarılı bir şekilde kullanılabildiği gözlemlenmiştir. Üçüncü

geliştirilen modelde Maxwell, China ve COCOMONASA2 veri setleri üzerinde yazılım maliyet

tahmini gerçekleştirilmiştir. Veri setleri üzerinde WEKA ortamında bulunan MÖ algoritmaları

üç şekilde çalıştırılmıştır. İlkinde algoritmalar ham veri setleri üzerinde varsayılan ayarlarla

çalıştırılmıştır. İkincisinde veri setleri üzerinde CfsSubsetEval ile birlikte GeneticSearch arama

algoritmasıyla öznitelik seçimi yapılmıştır. Elde edilen öznitelik alt kümesiyle yazılım maliyet

tahmini yapılmıştır. Üçünsünde veri setleri üzerinde CfsSubsetEval ile birlikte PSOSearch

arama algoritmasıyla öznitelik seçimi yapılmıştır. Elde edilen öznitelik alt kümesiyle yazılım

maliyet tahmini yapılmıştır. China veri seti üzerinde yapılan yazılım maliyet tahmini test

sonuçları incelendeğinde ham veri seti üzerinde yapılan tahmin sonucunun hem GA hem de

PSO algoritması ile elde edilen öznitelik alt kümesiyle yapılan tahmin sonuçları arasında çok

büyük bir fark olmadığı görülmüştür. Maxwell ve COCOMONASA veri setleri üzerinde

öznitelik seçiminin yapılması yazılım maliyet tahminindeki hata oranlarını düşürmüştür.

Maxwell veri setinde GA ile elde edilen öznitelik alt kümesiyle yapılan tahmin sonuçlarının

hata oranları daha düşük çıkmıştır. COCOMONASA veri seti üzerinde PSO algoritması ile

elde edilen öznitelk alt kümesiyle yapılan tahmin sonuçlarının hata oranları daha düşük

çıkmıştır.

100

Bu çalışmada WEKA programı ile MÖ algoritmalarının PROMISE veri deposunda bulunan

China, COCOMO81, COCOMONASA, COCOMONASA2, Albrecht, Finnish, Kemerer,

Maxwell ve Miyazaki94 veri setleri kullanılarak yazılım maliyet tahmininde gösterdikleri

performanslar incelenmiştir. Tahmin sonuçları incelendiğinde, algoritmaların hata oranlarının

ve korelasyon katsayılarının uygulandıkları veri setlerine göre değişkenlik gösterdiği

belirlenmiştir. Bir algoritmanın her zaman en iyi sonucu üretmediği, bazı algoritmaların bazı

veri setlerinde çok iyi sonuçlar üretirken farklı parametrelerle ve farklı veri setlerinde kötü

sonuçlar verebileceği gözlemlenmiştir. Ayrıca veri setlerindeki özniteliklerin, öznitelikleri

belirlemek için kullanılan öznitelik seçim yönteminin tahmin sonucunu çok etkilediği fark

edilmiştir. Performans değerleri incelendiğinde yazılım maliyet tahmini için kullanılan veri

setleri üzerinde öznitelik seçiminin yapılması, genel olarak MÖ algoritmalarında iyileştirici

sonuçların elde edilmesini sağladığı görülmüştür. Yazılım projelerinin maliyet tahmini için

kullanılan hazır veri setleri kullanılmadan önce veri setlerinde öznitelik seçiminin yapılması

maliyet tahmininin doğruluk oranını artıracağı sonucuna varılmıştır.

Bu çalışmada, literatürde ilk kez bu kadar çok sayıda MÖ algoritmasıyla yazılım maliyet

tahmini gerçekleştirilmiştir. MÖ evrimsel tabanlı algoritmalarla öznitelik seçimi yapılmış ve

yazılım maliyet tahmini için Genetik Programlama kullanılmıştır. Bu çalışma sayesinde yazılım

maliyet tahmini için hangi MÖ algoritmasının kullanılabileceği, bu algoritmaların ilgili veri

setlerine uygulandığında tahmin sonuçlarının neler olabileceği ve en iyi çalışan algoritmaların

hangileri olduğu bilgisine ulaşılmıştır.

Bu alanda çalışmak isteyen araştırmacılar; farklı metodolojide hazırlanmış yazılım projelerinin

veri setleri üzerinde öznitelik seçim yöntemlerini uygulayarak yazılım maliyet tahmini

gerçekleştirebilir. GA ve BM gibi Yapay Zekâ’nın diğer yöntemlerinden melez sistemler

oluşturarak yazılım projelerinin maliyet tahmini için farklı modeller geliştirebilir.

101

KAYNAKLAR

Abe S, Thawonmas R, Kobayashi Y, 1998, Feature selection by analyzing class regions

approximated by ellipsoids, IEEE Trans. On Systems, Man, and Cybernetics-Part C:

Applications and Reviews, 28(2), 282–287.

Ablameyko S, Goras L, Gori M, Piuri V, 2003, Neural Networks for Instrumentation,

Measurement and Related Industrial Applications, IOS Press, 120, 138.

Adalier O, 2008, Yapay Zeka Yöntemleri İle Yazılım Projelerinde Maliyet Kestirimi, Doktora

Tezi, Ege Üniversitesi, Fen Bilimleri Enstitüsü.

Aha DW, Kipler D, Albert MK, 1991, Instance-Based Learning Algortihms, Machine Learning,

6, 37–66.

Albrecht AJ, 1979, Measuring application development productivity, Proceeding of the Joint

SHARE, GUIDE and IBM application development symposium, IBM Corporation.

Albrecht AJ, Gaffney JE, 1983, Software function, source lines of code, and development effort

prediction: a software science validation. IEEE Trans. Softw. Eng. 9, 6 (1983), 639–648.

Allahverdi N, 2002, Uzman Sistemler Bir Yapay Zeka Uygulaması, Atlas Yayın Dağıtım,

Ankara, ISBN 975-6574-10-0.

Alma ÖG, Özgül V, 2008, Regresyon Analizinde Kullanılan En Küçük Kareler Ve En Küçük

Medyan Kareler Yöntemlerinin Karşılaştırılması, Sdü Fen Edebiyat Fakültesi Fen

Dergisi, 3(2), 219–229.

Alpaydın E, 2011, Yapay Öğrenme, Boğaziçi Üniversitesi Yayınevi, İstanbul, ISBN: 978-605-

4238-49-1.

Altaş İH, 1999, Bulanık Mantık: Bulanıklık Kavramı, Enerji-Elektrik- Elektromekanik-3e, 62,

80–85.

Attarzadeh I, Ow SH, 2010, A novel Algorithmic Cost Estimation Model Based on Soft

Computing Technique, Journal of Computer Science, 6(2), 117–125.

Autonom, 2019, Bilgisayarlı Görü, https://www.autonom.com.tr/bilgisayarli-goru-computer-

vision-nedir/, [Ziyaret tarihi: 31 Ağustos 2020].

Ayan TE, 2009, Kaynak Kısıtlı Çoklu Proje Programlama Problemi İçin Tavlama Benzetimi

Algoritması, Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 23(2), 101–118.

Aydemir E, 2019, Weka ile Yapay Zeka, Seçkin, Ankara, ISBN: 978-975-02-5536-6.

Aydın S, Özkul AE, 2015, Veri Madenciliği Ve Anadolu Üniversitesi Açık öğretim Sisteminde

Bir Uygulama, Eğitim ve Öğretim Araştırmaları Dergisi, Ankara, 4(3), 38.

https://www.autonom.com.tr/bilgisayarli-goru-computer-vision-nedir/
https://www.autonom.com.tr/bilgisayarli-goru-computer-vision-nedir/

102

Ayyıldız M, 2007, Yazılım Projeleri Ölçüm Sonuçları Veri tabanının Oluşturulması ve Yeni

Yazılım Projelerinin Maliyet Tahmininde Kullanımı, Doktora, Yıldız Teknik Üniversitesi,

Fen Bilimleri Enstitüsü.

Başar A, 2017, Klasik ve Sezgisel Bulanık İkili Karşılaştırma ile Yazılım Geliştirme

Projelerinin Maliyet Tahmini: Uygulama Örneği, Bilişim Teknolojileri Dergisi, 10(2),

129–137.

Beasley D, Bull DR, Martin RR, 1993, An Overview of Genetic Algorithms: Part 1,

Fundamentals. University Computing, 15(2), 58–69.

Başkeleş B, Turhan B, Bener A, 2007, Software Effort Estimation Using Machine Learning

Methods, Computer and information sciences, Ankara, IEEE.

Boehm BW, 1981, Software Engineering Economics, Prentice Hall.

Boehm B, Abts CA, Chulani S, Clark BK, Horowitz E, Madachy R, Reifer DJ, Steece B, 2000,

Software cost estimation with COCOMO II, Prentice Hall.

Bosu MF, MacDonell SG, 2019, Experience: Quality Benchmarking of Datasets Used in

Software Effort Estimation, CM Journal of Data and Information Quality, 11(4), 38.

 Budak H, 2018, Özellik Seçim Yöntemleri ve Yeni Bir Yaklaşım, Süleyman Demirel

Üniversitesi Fen Bilimleri Enstitüsü Dergisi.

Caudill M, 1987, Neural networks primer, J. AI Expert, 2(12), 46–52.

Chen H, Lin Z, Mo L, Tan C, 2017, Identification Of Colorectal Cancer Using Near-İnfrared

Spectroscopy And Adaboost With Decision Stump, Analytical Letters, 50(16), 2608-

2618.Civalek Ö, 2003, Yapay Zeka, Türkiye Mühendislik Haberleri, 423, 40–50

Dalkey N, Helmer O, 1963, An Experimental Application of the Delphi Method to the Use of

Experts, The RAND Corporation, Santa Monica.

Dede G, 2008, Yapay Sinir Ağları İle Konuşma Tanıma, Yüksek Lisans, Fen Bilimleri

Enstitüsü.

Deng JD, Purvis M, Purvis M, 2011, Software Effort Estimation: Harmonizing Algorithms And

Domain Knowledge İn An İntegrated Data Mining Approach, International Journal of

Intelligent Information Technologies (IJIIT), 7(3), 41-53.

Ebren Kara Ş, Şamlı R, 2021, Genetik Algoritma İle Öznitelik Seçimi Yapılarak Yazılım

Projelerinin Maliyet Tahmini, Avrupa Bilim ve Teknoloji Dergisi (EJOSAT), 27, 985-994.

Ebren Kara Ş, Şamlı R, 2021, Software Cost Estimation Using Machine Learning Algorithms,

Applied Stochastic Models and Data Analysis International Conference (ASMDA21), 1-

4 June, Virtual.

103

Ebren Kara Ş, Şamlı R, 2021, Yazılım Projelerinin Maliyet Tahmini için WEKA’da Makine

Öğrenmesi Algoritmalarının Karşılaştırmalı Analizi, Avrupa Bilim ve Teknoloji Dergisi

(EJOSAT), 23, 415-426.

Elmas Ç, 2016, Yapay Zeka Uygulamaları, 3. Baskı, Seçkin yayınları, Anakara, ISBN: 978-

975-02-3686-0.

Englert P, 2012, Locally Weighted Learning, https://www.ias.informatik.tu-darmstadt.de,

[Ziyaret tarihi: 26 Ocak 2022].

Ertunç HM, 2012, Introductıon To Fuzzy Logic, https://

avesis.kocaeli.edu.tr/hmertunc/deneyim, [Ziyaret tarihi: 25 Eylül 2020].

Etkin EE, 2017, Zaman Serilerinde Veri Madenciliği Öngörü Algoritmalarının Etkinlik Ve

Verimliliğinin Bıst100 Hisse Senetleri Üzerinde Gerçeklenmesi, Yüksek Lisans, Maltepe

Üniversitesi, Fen Bilimleri Enstitüsü.

Fatullayev AG, 2013, En Küçük Kareler Yöntemi, http://www.kocaelimakine.com/wp

content/uploads/2013/04/en-kucuk-kareler-yontemi-afet-golayoglu.pdf, [Ziyaret tarihi:

15 Şubat 2019].

Finnie GR, Wittig GE, Desharnais JM, 1997, A Comparison of Software Effort Estimation

Techniques: Using Function Points with Neural Networks, Case-Based Reasoning and

Regression Models, Journal of Systems Software, 39(3), 281–289.

Görz GN, 2005, Yapay Zeka, İnkılap Kitabevi, İstanbul, ISBN: 975-10-2405-6.

Gupta A, 2015, Classification Of Complex UCI Datasets Using Machine Learning And

Evolutionary Algorithms, International Journal Of Scientific & Technology Research,

4(5), 85–94.

Gültekin M, 2019, Makine Öğrenmesi Tabanlı Yazılım Maliyet Tahmini Yöntemlerinin

Karşılaştırmalı Analizi, Doktora, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü.

Gürel A, Aslan LM, 2008, Konuşma Tanıma için İnsan-Makine Karşılaştırması, Dilbilim

Araştırma Dergisi, 19, 77–90.

Güven Aydın ZB, 2021, Makine Öğrenmesi Yöntemleri İle Yazılım Hata Tahmini, Doktora

Tezi, İstanbul Üniversitesi-Cerrahpaşa Lisansüstü Eğitim Enstitüsü.

Hall Mark A, 1999, Correlation-based Feature Selection for Machine Learning, Doktora Tezi,

University of Waikato, Bilgisayar Bilimleri.

Hihn J, Habib-agahi H, 1991, Cost estimation of software intensive projects: A survey of

current practices. In Proceedings of the 13th international conference on Software

engineering, IEEE Computer Society Press, 276–287.

https://www.ias.informatik.tu-darmstadt.de/
http://www.kocaelimakine.com/wp%20content/uploads/2013/04/en-kucuk-kareler-yontemi-afet-golayoglu.pdf
http://www.kocaelimakine.com/wp%20content/uploads/2013/04/en-kucuk-kareler-yontemi-afet-golayoglu.pdf

104

Huang D, Chow TWS, 2005, Efficiently searching the important input variables using Bayesian

discriminant, IEEE Trans. on Circuits and Systems-I: Regular Papers, 52(4), 785–793.

Huang X, Capretz LF, Ren J, Ho D, 2003, A Neuro-Fuzzy Model for Software Cost Estimation,

Proceedings of the Third International Conference On Quality Software, 0-7695-2015-

4/03 $ 17.00 © 2003 IEEE.

Idri A, Khoshgoftaar TM, Abran A, 2002, Can Neural Networks be easily Interpreted in

Software Cost Estimation?, 0-7803-7280-8/02/$10.O0.

Kaluza B, 2016, Machine Learning in Java, Pact Publishing.

Kargar K, Safari MJS, Khosravi K, 2021, Weighted instances handler wrapper and rotation

forest-based hybrid algorithms for sediment transport modeling. Journal of

Hydrology, 598, 126452.

Kartal Karataş E, 2011, Yapay Sinir Ağları İle Yazılım Projesi Maliyet Tahmini, Yüksek Lisans

Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü.

Kemerer CF, 1987, An Empirical Validation Of Software Cost Estimation Models. Commun.

ACM 30, 5(1987), 416–429.

Kennedy J, Eberhart R, 1995, Particle Swarm Optimization, Neural Networks Proceedings

IEEE International Conference on, Perth, 1942-1948.Keskenler MF, Keskenler EF, 2017,

Geçmişten Günümüze Yapay Sinir Ağları ve Tarihçesi, Takvim-i Vekayi, 5(2), 8–18.

Keskin M, Alptekin GI, 2016, Yazılım Maliyet Tahmininde İşlev Puanı Analizi ve Yapay Sinir

Ağları Kullanımı, UYMS'16 10. Ulusal Yazılım Mühendisliği Sempozyumu, 24–26 Ekim

2016, Çanakkale.

Kızılkaya YM, Oğuzlar A, 2018, Bazı Denetimli Öğrenme Algoritmalarının R Programlama

Dili İle Kıyaslanması, Karadeniz Uluslararası Bilimsel Dergi, 37(37), 90 – 98.

Kitchenham B, Kansala K, 1993, Inter-item correlations among function points, In

Proceedings of the 15th International Conference on Software Engineering, 229–238.

Kubat C, 2014, Matlab Yapay Zeka ve Mühendislik Uygulamaları, 2. Baskı, Pusula Yayınları,

İstanbul, ISBN: 978-605-5106-12-6.

Kulter Y, Turhan B, Baner A, 2009, Ensemble of neural networks with associative memory

(ENNA) for Estimating software development costs, Knowledge-Based Systems,

395–402.

Kumari S, Pushkar S, 2013, Performance Analysis of the Software Cost Estimation Methods:

A Review, International Journal of Advanced Research in Computer Science and

Software Engineering, Jully 2013, India, CSE & BIT Mesra, ISSN: 2277 128X, 229-238

Kurbanoğlu S, 1992, Uzman Sistemler, Türk Kütüphaneciliği, 6(4), 190–193.

https://dergipark.org.tr/tr/pub/kdeniz

105

Kültür Y, 2006, Software Effort Estimation Using Ensable of Neural Networks with Associative

Memory, Yüksek Lisans Tezi, Boğaziçi Üniversitesi Fen Bilimleri Enstütüsü.

Lefley M, Shepperd M J, 2003, Using Genetic Programming To İmprove Software Effort

Estimation Based On General Data Sets, In Genetic and Evolutionary Computation

Conference (pp. 2477-2487). Springer, Berlin, Heidelberg.

Leung H, Fan Z, 2002, Software Cost Estimation, Handbook of Software Engineering and

Knowledge Engineering, ftp://cs.pitt.edu/chang/handbook/42b.pdf, [Ziyaret tarihi: 10

Şubat 2019].

Malhotra, Ruchika, Ankita Jain, 2011, Software Effort Prediction Using Statistical And

Machine Learning Methods, International Journal of Advanced Computer Science and

Applications, 2(1), 145-152.

Marapelli B, 2019, Software Development Effort Duration and Cost Estimation using Linear

Regression and K-Nearest Neighbors Machine Learning Algorithms, International

Journal of Innovative Technology and Exploring Engineering (IJITEE), 9(2), 2278–3075.

Maxwell K, 2002, Applied Statistics for Software Managers, Prentice-Hall, Englewood Cliffs,

NJ. Katrina D. Maxwell and Pekka Forselius. 2000. Benchmarking software-

development productivity. IEEE Softw. 17(1), 80–88.

Merih K, 2016, Kaos Kuramı ve Kaotik Düşünce Sistemi,

https://datalabtr.com/index.php/2016/05/06/kaos-kurami-ve-kaotik-dusunce-sistemi/,

[Ziyaret tarihi: 11 Eylül 2020].

Mijwil MM, 2017, Yapay Sinir Ağlar Yapısı ve Fonksiyonu, ResearchGate,

https://www.researchgate.net/publication/323073864, [Ziyaret tarihi: 14 Ağustos 2020].

Miyazaki Y, Terakado M, Ozaki K, Nozaki H, 1994, Robust Regression For Developing

Software Estimation Models. J. Syst. Softw. 27, 13–16.

Moghaddam SAV, 2014, Etkin Sınıflandırma İçin Genetik Algoritma Tabanlı Öznitelik Alt

Küme Seçimi, Yüksek Lisans Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü.

Mohammed A, Rafiq S, Sihag P, Kurda R, Mahmood W, Ghafor K, Sarwar W, 2020, ANN,

M5P-Tree And Nonlinear Regression Approaches With Statistical Evaluations To Predict

The Compressive Strength Of Cement-Based Mortar Modified With Fly Ash. Journal of

Materials Research and Technology, 9(6), 12416-12427.

Molani M, Ghaffari A, Jafarian A, 2014, A New Approach to Software Project Cost Estimation

using a Hybrid Model of Radial Basis Function Neural Network and Genetic Algorithm,

Indian Journal of Science and Technology, 7(6), 838–843.

Nabiyev VV, 2016, Yapay Zeka, 5. Baskı, Seçkin Yayınları, Ankara, ISBN: 978-975-02-3727-

0.

https://datalabtr.com/index.php/2016/05/06/kaos-kurami-ve-kaotik-dusunce-sistemi/

106

NASA 2003, Handbook for Software Cost Estimation, NASA, Jet Propulsion Laboratory,

Pasadena, California.

Nookala GKM, Pottumuthu BK, Orsu N, Mudunuri SB, 2013, Performance Analysis And

Evaluation Of Different Data Mining Algorithms Used For Cancer

Classification, International Journal of Advanced Research in Artificial Intelligence

(IJARAI), 2(5), 49-55.

Oleron P, 1996, Zeka, Yeni Yüzyıl Kitaplığı, İletişim yayınları/ Çeviri – Ela Güngören,

İstanbul, ISBN: 978-975-47-0237-8.

Oliveira AL, 2006, Estimation Of Software Project Effort With Support Vector Regression,

Neurocomputing, 69(13-15), 1749-1753.

Omran BA, Chen Q, Jin R, 2016, Comparison Of Data Mining Techniques For Predicting

Compressive Strength Of Environmentally Friendly Concrete, Journal of Computing in

Civil Engineering, 30(6), 04016029.

Ozan E, 2020, Robotlar ve Uygulamaları, Yüksek Lisans Tezi, Batman Üniversitesi Fen

Bilimleri Enstitüsü.

Öcal K, 2005, Otomatik Konuşma Tanıma Algoritmalarının Uygulamaları, Yüksek Lisans

Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü.

Öztemel E, 2016, Yapay Sinir Ağları, 4. Basım, Papatya Yayıncılık, İstanbul, ISBN: 978-975-

6797-39-6.

Parkinson CN, 1957, Parkinson‘s Law and Other Studies in Administration, Houghton-Miffin,

Boston.

PMBOK 2000, A Guide to the Project Management Body of Knowledge, Project Management

Institute.

Poincaré JH, 1912, Henry Poincaré, http://www.chaos.umd.edu./misc/poincare.html, [Ziyaret

tarihi: 11 Eylül 2020].

Prowmes B, 2019, Makine Öğrenmesi, http://www.prowmes.com/blog/makine-ogrenmesi/,

[Ziyaret tarihi: 14 Ağustos 2020].

Putnam LH, 1978, A general empirical solution to the macro software sizing and estimating

problem, IEEE transactions on Software Engineering, 4, 345–361.

PyCon, 2014, How To Get Started with Machine Learning – Melanie Warrick’s PyCon 2014

Talk | Hackbright Academy, https://youtu.be/uBorfxosVYs, [Ziyaret tarihi: 14 Ağustos

2020].

Sandhu PS, Bassi P, Brar AS, 2008, Software Effort Estimation Using Soft Computing

Techniques, World Academy of Science, Engineering and Technology, 46, 488–491.

http://www.chaos.umd.edu./misc/poincare.html
http://www.prowmes.com/blog/makine-ogrenmesi/
https://youtu.be/uBorfxosVYs

107

Sentas P, Angelis L, Stamelos I, Bleris G, 2005, Software Productivity And Effort Prediction

With Ordinal Regression, Information And Software Technology, 47(1), 17–29.

Sezer A, 2008, Yazılım Projelerinde Yapay Sinir Ağı Uygulaması İle Maliyet Tahmini, Yüksek

Lisans Tezi, Haliç Üniversitesi Fen Bilimleri Enstitüsü.

Shan Y, McKay CJ, Essam DL, 2002, Software Project Effort Estimation Using Genetic

Programming, International Conference on Communications Circuits and Systems.

Singh AJ, Kumar M, 2019, Effort Estimation Using Hybridized Machine Learning Techniques

for Evaluating Student’s Academic Performance, In International Conference on

Information Management & Machine Intelligence (pp. 65-75). Springer, Singapore.

Singh P, Agrawal S, 2013, Node Localization in Wireless Sensor Networks Using the

M5P Tree and SMOreg Algorithms, 5th International Conference on Computational

Intelligence and Communication Networks.

Singh BK, Misra AK, 2012, Software Effort Estimation by Genetic Algorithm Tuned

Parameters of Modified Constructive Cost Model for NASA Software Projects,

International Journal of Computer Applications, 59 (9) , 10.5120/9577-4053.

Sommerville I, 2000, Software Engineering (6th Edition), Addison-Wesley.

Sönmez S, 2020, Yapay Zeka (ders notları), http://bit.ly/2ieeRcT, [Ziyaret tarihi: 12 Ağustos

2020].

Stamelos I, Angelis L, Morisio M, Sakellaris E, Bleris GL, 2003, Estimating The Development

Cost Of Custom Software, Information & Management, 40(8), 729-741.Szeliski R,

2010, Computer Vision: Algorithms and Applications, Springer Science & Business

Media, ISBN 978-1-84882-935-0.

Şahin AE, 2001, Eğitim Araştırmalarında Delphi Tekniği Ve Kullanımı, Hacettepe Üniversitesi

Eğitim Fakültesi Dergisi, 20, 215–220.

Şahin M, 2019, Melez Yapay Zeka Sistemleri, http://mehmetsahin.web.tr/melez-yapay-zeka-

sistemleri/, [Ziyaret tarihi: 26 Eylül 2020].

Şen Z, 2004, Mühendislikte Bulanık Mantık (Fuzzy) ile modelleme prensipleri, Su Vakfı

Yayınları, İstanbul, ISBN: 975-850-923-3.

TDK, 2020, Zekâ, http://bit.ly/1CcStkR, [Ziyaret tarihi: 11 Ağustos 2020].

TDK, Yazılım, http://www.tdk.gov.tr, [Ziyaret tarihi: 22 Haziran 2018].

Techinside, 2017, Ses Tanıma Teknolojisi Bu 5 Sektörü Değiştirecek,

https://www.techinside.com/ses-tanima-teknolojisi-5-sektoru-degistirecek/, [Ziyaret

tarihi: 04 Eylül 2020]

https://books.google.com/?id=bXzAlkODwa8C
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1-84882-935-0
http://mehmetsahin.web.tr/melez-yapay-zeka-sistemleri/
http://mehmetsahin.web.tr/melez-yapay-zeka-sistemleri/
http://bit.ly/1CcStkR
http://www.tdk.gov.tr/
https://www.techinside.com/ses-tanima-teknolojisi-5-sektoru-degistirecek/

108

Tekin BY, 2020, Benzetimli Tavlama (Simulated Annealing) Algoritması,

https://globalaihub.com/benzetimli-tavlama-simulated-annealing-algoritmasi/ [Ziyaret

tarihi: 21 Ağustos 2020].

Torkul O, Gülseçen S, UyarOğlu Y, Çağıl G, Uçar MK, 2017, Mühendislikte Yapay Zeka

Uygulamaları, Sakarya Üniversitesi Kütüphanesi Yayınevi, Sakarya, ISBN: 978-605-

4735-98-3

Tofallis C, 2015, A Better Measure Of Relative Prediction Accuracy For Model Selection And

Model Estimation, Journal of the Operational Research Society, 66, 1352–1362.

Tran B, Xue B, Zhang M, 2015, Genetic programming for feature construction and selection in

classification on high-dimensional data, Springer-Verlag Berlin Heidelberg: Regular

Papers, 8, 3–15.

Tuzcuoğlu H, 2003,Yapay Zeka Teknikleri, Depremde Kullanılması ve Küme Kavramları,

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi, Fen ve Mühendislik Dergisi, 5(1),

73–88.

Weka last versiyon, 2018, Downloading and installing Weka, https://waikato.github.io/weka-

wiki/downloading_weka/, [Ziyaret tarihi: 24 Mayıs 2021].

WEKA, The Workbench for machine learning, http://old-www.cms.waikato.ac.nz/ml/weka,

[Ziyaret tarihi: Mart 2021].

WekaGP 3.4.12, 2007, Genetic Programming Classifier for Weka,

https://sourceforge.net/projects/wekagp/files/latest/download, [Ziyaret tarihi: 24 Mayıs

2021].

Witten IH, Frank E, Hall MA, 2011, Data Mining Practical Machine Learning Tools and

Techniques Third Edition, Morgan Kaufmann, USA, ISBN: 978-0-12-374856-0.

Witting G, Finnie G, 1997, Estimating software development effort with connectionist models,

Information and Software Technology, 39, 469–476.

Woundenberg F, 1991, An Evaluation of Delphi, Technological Forecasting and Social

Change, 40: BI-ISO.

Yakar Ö, 2016, Sözcük ve Hece Tabanlı Konuşma Tanıma Sistemlerinin Karşılaştırılması,

Yüksek Lisans, Fen Bilimleri Enstitüsü.

Yalçın N, 2008, Konuşma Tanıma Teorisi ve Teknikler, Kastamonu Eğitim Dergisi, 16(1),

249–266.

Yamanol İ, 2016, Robotların Kısa Tarihi, https://www.bilimkurgukulubu.com/genel/bilim-

teknoloji/robotlarin-kisa-tarihi/, [Ziyaret tarihi: 17 Nisan 2020].

https://globalaihub.com/benzetimli-tavlama-simulated-annealing-algoritmasi/
https://waikato.github.io/weka-wiki/downloading_weka/
https://waikato.github.io/weka-wiki/downloading_weka/
http://old-www.cms.waikato.ac.nz/ml/weka
https://sourceforge.net/projects/wekagp/files/latest/download
https://www.bilimkurgukulubu.com/genel/bilim-teknoloji/robotlarin-kisa-tarihi/
https://www.bilimkurgukulubu.com/genel/bilim-teknoloji/robotlarin-kisa-tarihi/

109

Yergök G, Acı M, 2019, Toplu Yemek Üretiminde Günlük Talep Tahmini için Alternatif Bir

Yaklaşım: Öğrenci Regresyon, Avrupa Bilim ve Teknoloji Dergisi, özel sayı, 64–73.

Zadeh LA, 1965, Fuzzy sets, Information and Control, 8, 338–353.

Zhao Y, Zhang Y, 2008, Comparison Of Decision Tree Methods For Finding Active

Objects, Advances in Space Research, 41(12), 1955–1959.

110

EKLER

EK 1. SÖZLÜK

Additive Regression : Toplamsal Regresyon

Artificial Neural Networks : Yapay Sinir Ağları

Associate : İlişki Kurma

Attribute Selected Classifier : Öznitelik Seçici Sınıflandırıcı

Australian Software Metrics Association : Avustralya Yazılım Metrikleri Birliği

Automated Production : Otomatik Kod Üretimi

Bagging : Torbalama

Bottom – Up : Aşağıdan Yukarıya

Choose : Seç

Classification : Sınıflandırma

Clustering : Kümeleme

Computer and Thought : Bilgisayar ve Düşünce

Computer Vision : Bilgisayarlı Görme

Confusion Matrix : Karışıklık Matrisi

Correctly Classified Instance : Doğru Yerleştirme Başarısı

Correlation Coefficient : Korelasyon Katsayısı

Cross Validation Parameter Selection : Çapraz Doğrulama Parametre Seçimi

Desicion Stump : Karar Kütüğü

Desicion Table : Karar Ağacı

Development Schedule Constraint : Geliştirme Takvimi Kısıtı

Expert Systems : Uzman Sistemler

Facilities : Araç Gereçler

Forecasting : Tahminleme

Functions : Fonksiyonlar

Future Selection : Öznitelik Seçimi

Fuzzy Logic : Bulanık Mantık

Gaussian Process : Gauss Süreçleri

General Public Licence : Genel Kamu Lisansı

Genetic Algorithms : Genetik Algoritmalar

Genetic Programming : Genetik Programlama

Genetic Search : Genetik Arama

Global Best : Küresel En İyi

Heuristic : Sezgisel

Hybrid Systems : Melez Sistemler

Input Mapped Classifier : Giriş Eşlemeli Sınıflandırıcı

International Software Benchmarking

Standards Group

: Uluslararası Yazılım Kıyaslama standart

Grubu

K-Nearest Neighbours Classifier : K-En Yakın Komşu Sınıflandırıcı

Kstar : Kyıldız

Laboratory For Interchange Fuzzy

Engineering

: Değişim Bulanık Mühendislik

Laboratuvarı

111

Lazy Classifier : Tembel Sınıflandırıcılar

Linear Regression : Doğrusal Regresyon

Locally Weighted Learning : Yerel Ağırlıklı Öğrenme

Machine Learning : Makine Öğrenmesi

Mean Absolute Error : Ortalama Mutlak Hata

Mean Absolute Percentage Error : Ortalama Mutlak Hata Yüzdesi

Mean Magnitude Of Relative Error : Göreceli Hatanın Ortalama Büyüklüğü

Multilayer Perceptron : Çok Katmanlı Algılayıcı

Multi Scheme : Çoklu Şema

Particle Swarm Optimization : Parçacık Sürü Optimizasyonu

Personal Experience : Personel Deneyimi

Personel Best : Kişisel En İyi

Personnel Capability : Personel Yeteneği

Platform Difficulty : Platform Zorluğu

Prediction Accuracy : Tahmin doğruluğu

Pre-Processing : Veri Ön İşleme

Price – To – Win : Kazanmak İçin Fiyat

Product Reliability and Complexity : Ürün Doğruluğu ve Karmaşıklığı

Randomizable Filtered Classifier : Randomize Edilebilir Filtreli

Sınıflandırıcı

Random Tree : Rastgele Ağaç

Random Sub Space : Rastgele Alt Boşluk

Random Committee : Rastgele Komite

Random Forest : Rastgele Orman

Rep Tree : Rep Ağacı

Regression By Discretization : Ayrıklaştırma İle Regresyon

Reinforcement Learning : Pekiştirici, Yarı Eğiticili Öğrenme

Relative Absulate Error : Bağıl Mutlak Hata

Robotics : Robotik

Root Mean Squared Error : Kök Ortalama Kare Hata

Root Relative Squared Error : Kök Ortalama Kare Hata

Rules : Kurallar

Segmentation : Bölütleme

Simple Linear Regression : Basit Doğrusal Regresyon

Simulated Annealing : Tavlama Benzetimi

Soft Computing : Esnek Hesaplama

Speech Recognition : Konuşma Tanıma

Stacking : İstifleme

Supervised Learning : Eğiticili Öğrenme

Top – Down : Yukarıdan Aşağıya

Travelling Salesman Problem : Gezgin Satıcı Problemi

Tree : Ağaç

University of South California : Güney Kalforniya Ünviersitesi

Unsupervised Learning : Eğiticisiz Öğrenme

Visualize : Görselleştirme

Vote : Oylama

112

Weighted Instances Handler Wrappler : Ağırlıklı Örnek İşleyici Sarmalayıcı

World Health Organization : Dünya Sağlık Örgütü

