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OZET

YARIM TAMSAYI AGIRLIKLI MODULER FORMLAR UZERINDE SATO-TATE
BENZERI PROBLEMLER UZERINE

Modiiler formlar matematigin 6zellikle de sayilar teorisinin énemli bir konusu olup
yogun bir sekilde ¢alisilmaktadir. Birgok anabilim dalin1 bir araya getirmesi nedeniyle de birgok
matematikci i¢in ‘modiiler formlar her yerde’ bulunur. Alt1 béliimden olusan bu ¢alismanin 1.
Boliim'iinde modiiler formlar tanimlanip temel 6zellikleri incelenecek ve boylece tezde ihtiyag
duyulan alt yap1 olusturulacaktir. Tezin 6zgiin kisimlarindan ilkini olusturan 2. Boliim'de yarim
tamsay1 agirlikli Hecke eigenformlarin sistematik se¢cimi probleminin ¢éziimii verilecektir. 3.
Bolim'de ise 21. ylizyihin matematikteki en Onemli basarilardan birisi olan Sato-Tate
Konjektiirii tanitilacak ve Bruinier-Kohnen Konjektiirli lizerine bir uygulamasi verilecektir.
Ozgiin kismin ikinci pargasi olan 4. Boliim'de ise Ramanujan-Petersson Konjektiirii tarafindan
normallestirilen yarim tamsayi agirlikli modiiler formlarin Fourier katsayilarinin dagilimi
konusu iizerinde durulacak, bir agik soru ortaya konulup miimkiin olan tiim verilerle iddia
desteklenecektir. Ozgiin kismin son pargast olan 5. Boliim'de Bruinier-Kohnen
Konjektiirii gliglendirilerek ifade edilecektir. Altinci ve son boliim ise tartisma, sonug ve

gbzlemlerden olugmaktadir.

Anahtar Kelimeler: Modiiler formlar, Yarim Tamsay1 Agirlikli Modiiler Formlar, Ramanujan-

Petersson Konjektiirii, Bruinier-Kohnen Konjektiirii, Sato-Tate Konjektiirii
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ABSTRACT

ON SATO-TATE LIKE PROBLEMS ON HALF INTEGRAL WEIGHT OF
MODULAR FORMS

Modular forms are an important subject of mathematics, especially number theory, and
they are studied intensively. Because it brings together many branches of science, 'modular
forms are everywhere' for many mathematicians. In the first part of this six-part study, modular
forms will be defined and their basic properties will be examined, thus creating the background
needed in the thesis. In Chapter 2, which is the first of the original parts of the thesis, the solution
of the systematic selection problem of half-integral weight Hecke eigenforms will be given. In
Chapter 3, Sato-Tate Conjecture, one of the most important achievements in mathematics of
the 21st century, will be introduced and an application on the Bruinier-Kohnen Conjecture will
be given. In the second part of the original part, Chapter 4, the distribution of Fourier
coefficients of half-integral weight modular forms normalized by the Ramanujan-Petersson
Conjecture will be discussed, an open question will be raised and the claim will be supported
with all possible data. The last part of the original part, In Chapter 5, the Bruinier-Kohnen
Conjecture will be strengthened and expressed. The sixth and last part consists of discussion,

conclusion and observations.

Keywords: Modular forms, half integral weight modular forms, Ramanujan-Petersson

Conjecture, Bruinier-Kohnen Conjecture, Sato-Tate Conjecture
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1. MODULER FORMLAR VE OZELLIKLERI
1.1. Giris ve Onbilgiler

Bu bolimde c¢alismanin temel konusunu olusturan modiiler formlar kavrami
tanitilacaktir.

a,b,c,d € R ve ad — bc # 0 olmak {izere karmasik analizde f(z) = % bi¢cimindeki kesirli
lineer doniisiimler (Mdbius doniisiimil) 6nemli bir rol oynar. Bu doniisiimlerin fonksiyonlarin
bileske islemine gdre bir grup oldugu kolayca gdsterilebilir. Bu grup projektif genel lineer grup
olarak adlandirilir ve PGL(2, R) ile gosterilir. Islem kolaylig1 agisindan bu grubun elemanlari

matrislerle de ifade edilebilir:

az+b
cj+d(_>(ccl Z)

Boylece matris ¢arpimina gore bir grup olan genel lineer grup elde edilir:

b

GL(2,R) = {(‘Cl d

):a,b,c,d € R ad — bc # 0}

Determinant1 1 olan matrislerin olusturdugu alt grup 6zel lineer grup olarak adlandirilir
ve bu grup SL(2, R) ile gosterilir: Ozel olarak yukaridaki matrisin girdilerini reel sayilar yerine
tamsayilar alinarak ¢ok daha ilgi ¢ekici 6zelliklere sahip olan asagida tanimli modiiler grup elde

edilir. Konu ile ilgili detaylar Schoeneberg (1974)’den incelenebilir.
Tamm 1.1.1. (Schoeneberg, 1974: 16)

a b

Ir=SL(12,7Z) = {(c d):a,b,c,d € Z,ad — bc = 1}

kiimesinin matrislerdeki carpma islemine gore olusturdugu gruba modiiler grup denir ve I" veya
SL(2,7Z) ile gosterilir.
Tanim 1.1.2. (Schoeneberg, 1974: 78)

IL(N) = {(CCL Z) €l :c=0(mod N)}

seklinde tanimlanan alt gruba I nin temel denklik alt grubu denir ve I, (N) ile gosterilir. Burada
N sayisina alt grubun seviyesi adi verilir.

Bu hazirliklarin ardindan modiiler form tanimi verilebilir. Bu tanim sadece modiiler

grup veya onun alt grubu iizerinde degil ayn1 zamanda daha genel gruplar olan “birinci tip



Fuchsian gruplar” i¢in de gecerlidir. Burada ¢alismanin kapsami geregi 1 seviyeli k agirliklh

modiiler form tanimi ile N seviyeli k agirlikli modiiler form tanimi verilecektir.

Tamm 1.1.3. (Cohen ve Stromberg, 2017: 132) f; H ist yar1 diizlemi {izerinde taniml1 ve
asagidaki ozellikleri saglayan karmasik degerli yani f: H — C seklinde bir fonksiyon ve k

pozitif bir tamsay1 olsun.

(1) Egerherz € H vey = (Ccl Z) € I' igin,

az+b
f (cz + d) = (cz+d)*f (2)

fonksiyonel esitligi saglaniyor ise bu durumda f’ye zayif modiiler denir. Eger buna ilave olarak
(i)  f fonksiyonu H iizerinde analitik,
(ii1))  f fonksiyonu ico’da analitik

oluyor ise f’ye I i¢in k agirlikli modiiler form ad1 verilir.

Tamm 1.1.4. (Cohen ve Stromberg, 2017: 175) f, H iist yar1 diizlemi iizerinde tanimh ve
asagidaki Ozellikleri saglayan karmasik degerli yani f: H — C seklinde bir fonksiyon ve k

pozitif bir tamsay1 olsun.

(1) Egerherz€e H vey = ((cl 2) € IL(N) igin,

az+b
v =+ 0@

fonksiyonel esitligi saglaniyor ise bu durumda f’ye zayif modiiler denir. Eger buna ilave olarak
(i)  f fonksiyonu H iizerinde analitik,
(i)  f fonksiyonu Q U {ico} kiimesinin her noktasinda analitik

oluyor ise f’ye I[5(N) i¢in k agirlikli N seviyeli modiiler form adi verilir.

Uyari 1.1.5. T i¢in tanimli k agirlikli modiiler formlar 1 seviyeli modiiler form olur. (i) ve (iii)
saglanmadig1 takdirde ise ayni agirlikli ve seviyeli modiiler fonksiyon adini alir. Modiiler
fonksiyonlar da oldukca ilgi g¢ekici Ozelliklere sahip olup calismanin kapsami digindadir.
Modiiler formlar otomorfik formlarin 6zel halleri olup daha genel otomorfik formlara drnek
olarak Maass form, Bianchi modiiler form, Jacobi form, Siegel modiiler form ve Hilbert
modiiler form verilebilir. Bu konu ile ilgili olarak (Cohen ve Stromberg, 2017)’in 15. boliimii

incelenebilir.



feger co’da sifir oluyorsa cusp form adimi alir. k agirlikli 1 seviyeli cusp formlar uzay1
Sk(I") ile gosterilir. I;(N) denklik alt grubu i¢in modiiler form tanimlandiginda modiiler

formlar uzay1 M, (F o(N) ) , cusp formlar uzay1 ise Sy (F o(N)) ile gosterilir.
Teorem 1.1.6. (Koblitz, 1984: 109) M, (I"), C cismi {izerinde sonlu boyutlu bir vektor uzayidir.

Ispat. f, g € My (I") ve a € Colsun. f + ag’ninde M, (I') da oldugunun gosterilmesi gerekir.

Ust yar diizlemde ve c0’da f + ag’nin analitikligi ile doniisiim 6zelliklerini sagladig1 agiktir.

_(a b
y = (c d) € I' olsun. O zaman

f +ag)(¥(@) = f(¥(2) + ag(v(2))
= (cz+ A)*f(2) + alcz + d)*g(2)
= (cz + D*(f(2) + ag(2))
= (cz + d)*(f + ag)(2)
Béylece f + ag € My (') olur. Bu da ispati bitirir.

Uyan 1.1.7. Modiiler formlarin bir vektor uzayr olusturmasi konunun popiiler olmasinin en
onemli sebeplerinden birisidir. Oncelikle lineer cebirdeki hemen hemen tiim kavramlar ve
teoriler modiiler formlar teorisi icin aynen gecerlidir. Ote yandan sonlu boyutlu olmasi taban
vektorlerinin “kolaylikla” elde edilebilmesini sagladig1 i¢in 6zellikle hesaplamali modiiler form

problemlerinde pratiklik saglar.

Modiiler grubun iiretegleri I'’nin 6zel iki elemani olan T = ((1) _01) ve S = ((1) D

doniistimleridir ve bu dontisiimler modiiler form tanimindaki fonksiyonel esitlikte yerine

yazildiginda asagidaki teorem elde edilir.

Teorem 1.1.8. (Koblitz, 1984: 108) f(z) € M, (I') keyfi bir modiiler form olsun. Bu takdirde
. 1
i f(-3)=77@
ii. f(@z+1)=f(2)

olur.

Ispat.

az+b

fonksiyonel esitligini sagladig1 gosterilsin.



Burada f ( 1) ifadesinde a =0,b = —1,c =1,d = 0 oldugundan fonksiyonel esitlikte

Z

yerine konursa f (— i) = z*f(2) oldugu agiktur.

Aymi sekilde f(z+1) de a=1,b=1,c=0,d =1 oldugundan fonksiyonel esitligin
f(z+1) = 1%f(2) = f(2) oldugu gériiliir. Bu durumda ispat biter.

Uyan 1.1.9. Fourier Analizi teorisinin dnemli bir teoremi yani (Gradshteyn ve Ryzhik, 2007:
26). Teorem 1.1.8. (i1) geregi periyodik her bir karmagik fonksiyonun sinz ve cosz cinsinden
ifade edilebilecegini ve bdylece bu karmasik fonksiyonun bir Fourier serisi ile temsil
edilebilecegini soyler.

Teorem 1.1.10. (Koblitz, 1984: 108) Modiiler formlar periyodik fonksiyonlar oldugu i¢in her

2miz

bir f fonksiyonunun g = e olmak tizere

f&) =) atq"
nz0
seklinde bir Fourier agilim1 vardir. Buradaki a(n) sayilar1 Fourier katsayilar1 olarak adlandirilir.

Ornek 1.1.11. Ramanujan-Tau fonksiyonu, modiiler formlarin en temel &rneklerinden biridir.

Bu fonksiyon A(z) ile gosterilir ve
@ =)t =q| |-
nz1 nz1
= q — 24q* + 252q® — 1472q* + 4830g° — ---
olarak tanimlanir. Kolayca gosterilebilir ki A(z), T i¢gin 12-agirlikli 1 seviyeli bir cusp formdur

(Zagier, 1994).

Ornek 1.1.12. Modiiler formlar icin bir baska ilging 6rnek de Eisenstein Serileridir. k agirlikl
Eisenstein serisi, G (z) ile gosterilir; z € H, k > 2 tamsay1 ve m,n ayn1 anda sifir olmayan iki

tamsay1 olmak {izere
(o] (o] 1
w3 3 ot
«(2) (m + nz)k
m=—0o0 nN=—0oo

olarak tanimlanir. Riemann { fonksiyonu ile kiyaslama yapilarak Eisenstein serilerinin iyi

taniml1 oldugu gosterilebilir.

Buradan asagidaki teorem ile Eisenstein serilerinin bir modiiler form oldugu ifade

edilebilir.



Teorem 1.1.13. (Cohen ve Stromberg, 2017: 146) k = 2 igin G, (z) € My, (I') dir.

Tanim 1.1.14. (Cohen ve Stromberg, 2017: 147) k > 2 bir ¢ift tamsay1 olmak iizere

2k o .
E@=1-5 ) aa(ma
k n=1

seklindeki seriye k agirlikli normallestirilmis Eisenstein serisi adi1 verilir. Burada B),, k-inc1

Bernoulli sayisim gosterir ve o bolen fonksiyonu gy,_4 (n) = Yq;,, d*~* olarak tammlanr.

Ornek 1.1.15. Yukaridaki tanim kullanilarak

E,(z) =1+ 2402 o;(n)q™
n=1

Eg(z) =1— 5042 o5 ()"
n=1

Eiy(z) =1- 242 o13(n)q"
n=1

oldugu agikc¢a goriilebilir. Eisenstein serilerinin sagladigi ¢esitli dzdeslikler vardir. Ornegin
Eyo = E,Es
3617.E; = 1617.E{ + 2000.E,. EZ

olur. Yukaridaki teorem geregi E;, ve E;g’nin sirasiyla 10 ve 16 agirlikli modiiler form
olduklar1 hatirlanirsa bu ve benzeri 6zdesliklerden E, ve Eg Eisenstein serileri ile modiiler

formlar arasindaki asagidaki teorem ile verilen iliski sezgisel olarak gézlemlenebilir.
Teorem 1.1.16. (Koblitz, 1984: 118) Herhangi bir f € M, (I") fonksiyonu
f@= ) @ @)
4i+6j=k
seklinde yazilabilir.

Gergekten de tiim modiiler formlarin E,(z) ve E4(2) ile temsil edilebilmesi (Cohen ve
Stromberg, 2017) ve Eisenstein serilerinin Fourier katsayilarinin ¢ bdlen fonksiyonu yardimi

ile oldukg¢a hizli ve pratik bir sekilde hesaplanabilmesi bu ilging durumu agiklamaktadir.

Dikkat edilirse modiiler formlarin tanimindaki fonksiyonel esitlik tipki1 Barry Mazur’in

BBC yapimi “Fermat’in Son Teoremi” belgeselinde soyledigi gibi “varliklar1 kazara gibi
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goziiken ancak var olan” modiiler formlarin ¢ok fazla sayida simetriye sahip olmasini saglar.
Bu sayede “modiiler formlar ile aritmetik yapilabilir mi?” sorusu akla gelir. Bu sorunun

cevabinin asagida verilen Sturm sinir1 ile olumlu oldugu gortliir.
Teorem 1.1.17. (Cohen ve Stromberg, 2017: 185) f =Y ,a(n)q™, g = Yoo b(n)q™ €

M, (F o(N )) olsun. dy sayisi I[;(N)’in, PSL(2,Z)’deki goriintiisiiniin indeksi olmak tizere

kdy
M=—=
12

sayist tammmlansin. Eger 0 < i < M i¢in a=b; ise bu takdirde = g olur.
M sayisina Sturm sinir1 adi verilir.
Tanim 1.1.18. (Cohen, 2019: 180) f(z) = Yo, a(n)q™ normallestirilmis bir eigenform
olsun.

1
w9 =] |
Ui 1—a(pp= +p* 1%

pEP

seklinde tanimlanan fonksiyona Y,,5; a(n) g™ Euler ¢arpimina sahip L- fonksiyonu adi verilir.

1.2. Hecke Eigenformlar

Modiiler formlar karmasik cisim lizerinde sonlu boyutlu vektor uzayi oldugu i¢in lineer
cebirdeki tiim kavramlarin modiiler formlarda karsiliklar1 vardir. Lineer operatorlerin
0zdegerleri ile olusan 6zvektoriin modiiler formlardaki karsiligi Hecke eigenform olup bu
formlar birgok 6zelligi ile 6n plana ¢ikarlar. Ornegin Hecke eigenformlarin Fourier katsayilart
carpimsal aritmetik fonksiyonlardir; diger yandan Hecke eigenformlar "newformlarin" dogal
bir tabanini olustururlar. Hecke eigenformlarin L-fonksiyonlar1 Euler carpimlari ile birlikte
analitik/meromorfik devama sahiptir. Eliptik egrilerle modiiler formlar arasindaki iliski Hecke
eigenformlarin L-fonksiyonlar1 iizerinden kurulur. Ote yandan Hecke eigenformlarla Galois
temsilleri eslesir ve bu ¢alismanin tabanini olusturan Sato-Tate Konjektiirii yalnizca Hecke
eigenformlar i¢in gecerlidir. Tiim bu detaylar i¢in (Cohen ve Stromberg, 2017) ve (Silverman,

1986)'a bakilabilir. Bu béliimde Hecke eigenformlar tanitilacaktir.

Tamm 1.2.1. (Cohen ve Stromberg, 2017: 343) Herhangi bir sabit k tamsayisi, n pozitif
tamsayist, her f € M, (I') i¢in Ty,: My, (I') = M (I") olmak tizere

d-1

T.f(z) = nk1 z gk Z f (nz ;'2 bd)

din b=0




seklinde tanimlanan operatdrlere n-inci Hecke operatorii ad1 verilir ve T, ile gosterilir.
Tanmim 1.2.2. (Cohen ve Stromberg, 2017: 343)

m =1, 2, ... olmak tizere tim 7,» Hecke operatdrleri i¢in 6zvektdr olan modiiler forma Hecke
eigenform (6zform) adi verilir. Bag katsayis1 1 olan eigenformlar tam olarak Hecke

operatorlerinin 6zvektorii oldugu agiktir.
Teorem 1.2.3. (Koblitz, 1984: 156)

(1) p asali i¢in p-inci Hecke operatorii

p—1

L@ = e+ ) £ ()

b=0 p
seklindedir.
(if) Eger f € My (1),
f(z) = X2 _, c(m)e?™™# seklinde bir Fourier agilima sahip ise o zaman n-inci Hecke
operatdrii T;, de bir Fourier agilima sahiptir ve ¥,,(m) = Xg/(nm) d1tc (%) olmak

lzere
Tf(@) = ) ya(m)ermims
m=0

seklindedir.

(iii) (m,n) = lise T),. Ty, = Ty dir.

(iv) Hecke operatorleri cusp formlar1 cusp formlara resmeder, yani cusp form uzayini korur.
Teorem 1.2.4. (Cohen ve Stromberg, 2017: 343) k > 0 ve f € M (I') sifirdan farkli modiiler
form olsun. f = Y,,,50a(n)q", f’nin Fourier agilimi olsun. Eger f, tiim T,, Hecke operatorleri
i¢in bir eigen fonksiyon ise yani tim n > 1 i¢in T, f = A(n)f ise o zaman a(1) # 0’dir. Eger
f normallestirilerek a(1) = 1 ise 0 zaman tim n > 1 igin a(n) = A(n)’dir.

Tanim 1.2.5. (Cohen ve Stromberg, 2017: 343) f = Y.,..oa(n)q™ € M, (I') sifirdan farkl bir

modiiler form olsun. a(1) = 1 6zelligindeki Hecke eigenformlara normallestirilmis Hecke

eigenform denir.



1.3. Yarim Tamsay1 Agirhkh Modiiler Formlar

k bir tamsay1 olsun. Bu durumda £ + 1/2 yarim tamsay1 olarak adlandirilir. Bu boliimde
calismanin esas boliimiinii olusturacak modiiler formlardan yarim tamsay1 agirlikli modiiler
formlar tanimlanacaktir. Bunun icin bazi &n hazirhk gereklidir. Ilk olarak teta serisi

tanimlanarak baslanacaktir.

Tanim 1.3.1. Her bir z € H i¢gin

0@ =y etz
n=-—oo

seklinde tanimlanan seriye teta serisi ad1 verilir.

Agirhigin yarim tamsay1 alinmasi halinde teta serisi tamsay1 agirlikli modiiler formlar
tanimindaki fonksiyonel esitligi hemen hemen sagladigi goriilebilir. Bu nedenle
(Shimura, 1973)’te yarim tamsay1 agirlikli modiiler formlari tanimlamigtir. Bu modiiler formlara
iyl bir ornek, teta serileridir hatta bu calismada kullanilmayan ancak olduk¢a 6nemli bir
modiiler form olan Dedekind-eta fonksiyonu da benzer fonksiyonel esitligi sagladigi

bilinmektedir (Cohen ve Stromberg, 2017: 33).

Gergekten de her y = (? Z) € [, (4) i¢in teta fonksiyonu
2
0(y(2)) 1
( 0 ) (-3) @+ a

fonksiyonel esitligini saglar. Burada G) ifadesi Jacobi semboliinii gostermektedir. 6(z)? nin

1 agirlikli 4 seviyeli bir modiiler form oldugu kolayca goriilebilir. Boylece yarim tamsayi

agirlikli modiiler formlarin tanimlanmasi i¢in gerekli motivasyon saglanmais olur.

Tamm 1.3.2. (Koblitz, 1984: 178) y € [,(4) i¢cin otomorfi ¢arpan1 J(y,z) = % olarak

tanimlansin. & bir pozitif tamsay1 ve f: H — C olmak iizere

i fr@) =, 2**f(2)
ii.  f(2), QU {ioo} noktalarinda analitiktir.

kosullarini saglayan f fonksiyonuna, k + % agirlikli 4 seviyeli modiiler form ad1 verilir.



Tamsay1 agirliklt modiiler formlar i¢in verilen notasyon burada da gegerlidir 6rnegin

k + % agirlikli 4 seviyeli sonlu boyutlu yarim tamsay1 agirlikli modiiler formlarin vektor uzayi
M, N (FO (4)) ile gosterilir.

Tamm 1.3.3. (Koblitz, 1984: 184) F(z), k+1/2 agirlikli bir modiiler form olsun. Bu durumda

q = e?™Z olmak iizere, F(z) nin

F(2) = ) A"
nz0

seklinde bir Fourier acilimi vardir. Buradaki A(n) sayilar1 yine Fourier katsayilar1 olarak

adlandirlir.

Onerme 1.3.4. (Koblitz, 1984: 206) T2, yarim tamsay1 agirlikli modiiler formlar tizerinde p?-

inci Hecke operatorii ve p asal olmak iizere p + N ve k = 214 + 1 pozitif tek tamsay1 olsun.

f(2) = oo a,e?™ ™ € My (ﬁO(N)) oldugunda
2

i 2 D' -1 -2 (1
b(n) = a(p?n) + (T) p*la(n) +p*a ()

olmak lizere

T,f(z) = Z b(n)e2minz
n=0

dir.
Tamim 1.3.5. p asal olmak tizere tiim T’z ler i¢in 6zvektor olan modiiler forma, yarim tamsay1

agirlikli modiiler formlar i¢in Hecke eigenform denir.

Teorem 1.3.6. (Shimura, 1973), (Niwa, 1974)

f@) =) ama"
nz0
2k agirlikli bir modiiler form ve

F@) =) Ama"

n=0



k+1/2 agirlikli modiiler form olmak iizere F’yi file eslestiren bir yiikseltme doniistimii
vardir. Bu doniistime Shimura Karsilik Gelmesi ad1 verilir. Bu karsilik gelme Fourier katsayilari

yardimiyla net olarak bellidir. Daha kesin olarak:
Iki modiiler formun Fourier katsayilari arasinda ¢ tamkare olmayan bir sabit tamsay1,
a(t) # 0 ve

(—1)kN2t>

Xen(d) = x(d) < d

olmak tlizere
tn?
a(m) = ) xen (Dd*"14 <7>
din

seklinde bir iligski vardir. Dikkat edilirse buradaki baginti yarim tamsayi agirlikli modiiler

formlarin tamkare indisli terimleri yardimiyla verilmektedir.

Cusp formlar uzayi icerisinde 6nemli 6zelliklere sahip bir alt uzay1 barindirir. Asagida
tanim1 verilen Kohnen Plus Space’in elemanlar1 olan cusp formlar aritmetik olarak énemli

bilgiler igerir.

Tamm 1.3.7. (Kohnen, 1980: 249)

f= Z c(n)q™ € Sk+%(F(4N))
n=1

bir cusp form olsun. (—1)*n # 0,1 (mod 4) 6zelligindeki tiim c(n) katsayilar1 sifir olan cusp

formlarin olusturdugu alt uzay Kohnen Plus Space olarak adlandirilir ve S’:’# (F(4N)) ile
2

gosterilir.

1.4. Eliptik Egriler ve Modiilarite Teoremi

Taniyama-Shimura konjektiirii 1955-1957°de ortaya atilan her bir eliptik egriye karsilik
bir modiiler form ve her bir modiiler forma da bir eliptik egri karsilik geldigini ortaya koyan
matematik tarthine damgasin1 vurmus bir ifadedir. Epsilon konjektiiriiniin 1986’da Ken Ribet
tarafindan ispatlanmasi ile beraber Taniyama-Shimura konjektiiriiniin Fermat’in son teoremini
gerektirdigi ortaya cikmustir. Bu ise modiiler formlarla baglantili olarak eliptik egriler
konusunun ¢ift yonlii ele alinmasini saglamistir. Ornegin ¢alismanin 6ziinii olusturan Sato-Tate

konjektiirii aslinda eliptikler egriler i¢in verilmis olan bir sonu¢ olup “Modiilarite Teoremi”
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sayesinde modiiler formlar i¢in de gecerli olur. Bu boliimde gerekli referanslar verilerek ¢ok

fazla detaya girmeden calismanin tamligin1 saglayacak bilgiler derlenecektir.

Tamm 1.4.1. (Silverman, 1986: 48) K, karakteristigi 2 ve 3 ten farkl1 bir cisim ve A ile B belli
iki tamsay1 olsun. A := —16(4A43 + 27B?) # 0 olmak iizere

E/K = {(x,y) € K:y? = x3+ Ax + B} U {0}
seklinde taniml egriye K {izerinde tanimli bir eliptik egri ad1 verilir.
Teorem 1.4.2. (Silverman, 1986: 55) P ve Q, E /K iizerinde iki nokta olsun bu iki noktanin
toplam1 bu iki noktadan gecen dogrunun eliptik egriyi kestigi noktanin x-eksenine gore

simetrigi olarak Sekil 1.1.”deki gibi tanimlanir. Bu toplama iglemi yardimiyla E' /K bir Abelyan

grup olur.

Sekil 1.1. Eliptik egri lizerinde nokta toplami1
Tanim 1.4.3. (Silverman, 1986: 361) E /Q eliptik egrisi igin L fonksiyonu L(E, s) ile gosterilir
ve

a(p) =p+1— |E(F,)|

olmak lizere

1 1
L(E,s) = l_[ 1—a(p)p=s’ 1_[ 1—a(p)p=s +pl-2s
plA DA

olarak tanimlanair.

Teorem 1.4.4. (Wiles, 1995) E, Q tizerinde bir eliptik egri olsun. N eliptik egrinin kondiiktorii
ve [,(N) i¢in 2 agirlikli belli normallestirilmis eigenformlar i¢in L(E,s) = L(s, f)’dir. Bu
teorem “Modiilarite teoremi” olarak ifade edilir ve eliptik egriler ile modiiler formlar arasinda
bir kdprii gorevi yapar. Modiilarite teoremi ayn1 zamanda Taniyama-Shimura-Weil konjektiirii

olarak da bilinir.
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Tamm 1.4.5. (Niven vd 1991: 163) Tamsay:1 katsayil1 bir kuadratik form
Q(x,y) = ax? + bxy + cy?
olsun. D := b? — 4ac’ye Q(x,y) nun temel diskriminanti denir.

Teorem 1.4.6. (Niven vd 1991: 163) D bir temel diskriminant olmasi igin gerek ve yeter kosul

D’nin asagidaki kosullardan birini saglamasidir.

i. D =1 (mod 4) ve D iginde tamkare bulundurmayan bir tamsay1

ii. m=2,3(mod4)ise ve m icinde tamkare bulundurmayan bir tamsay1 ise D = 4m
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2. YARIM TAMSAYI AGIRLIKLI HECKE EIGENFORMLARIN
SISTEMATIK SECIiMi

Bu béliimde ¢alismadaki amaca ulagabilmek adina gerekli olan yeterli sayidaki (en az
107) Fourier katsayis1 kolaylikla hesaplanabilecek yarmm tamsayr agirhkli  Hecke

eigenformlarin sistematik se¢imi konusu ele alinacaktir.

Teorem 2.1.1. (Miyake, 2006: 114) [;,(4) iizerinde taniml & + 1/2 agirlikli Hecke eigenformlar

yine ayn1 agirlikli modiiler formlarin sonlu boyutlu vektdr uzayinin bir alt uzayidir.

k + 1/2 agirlikli modiiler form uzaylarinin tabanlart MAGMA (Bosma vd., 1997) Cebir
Programi’nda veya Pari/GP’de (The Pari Group, 2019) kolaylikla hesaplanabilmektedir.

Calisgmanin  amaglart  dogrultusunda yukarida bahsedilen oOzellikteki Hecke
eigenformlarin sistematik se¢iminde Rankin-Cohen parantezi etkin olarak kullanilmustir. Ilk

olarak bu diferansiyel operatorlerin tanimi verilsin.

Tanim 2.1.2. (Cohen ve Stromberg, 2017: 161) f ve g sirasiyla k ve h agirlikli modiiler

d 4
formlar olsun. z € H ve d—]; = % f'(2) olmak iizere,

[f, gln = Z (-1D)" (k +;l— 1) (h+n— 1) d'f ds9

S dz" dzs

r+s=n
seklinde tanimlanan operatore f ve g’nin n-inci Rankin-Cohen parantezi ad1 verilir ve [f, g],

biciminde gosterilir

Teorem 2.1.3. (Zagier, 1994) f € M, (I'") ve g € M, (') olsun. Bu takdirde [f,g], €
My s n2n (D) dir.

Dikkat edilirse bu parantez yardimziyla k1 ve k2 agirlikli modiiler formlara Rankin-Cohen
parantezi bir kez uygulandiginda ki+k2+2 agirlikli yeni bir modiiler form elde edilir. Detayli

ornekler icin (Kohnen ve Zagier, 1981) incelenebilir.

I1k olarak Rankin tarafindan tanimlanan bu operatdr Cohen tarafindan detayli bir sekilde
calisilmis ve Zagier tarafindan Rankin-Cohen parantezi olarak isimlendirilmistir. Ardindan
(Zagier, 1994)’te Rankin-Cohen parantezi i¢in soyut bir yaklagim ile Rankin-Cohen cebirini
tanimlamigtir. Ayni calismada elde edilen yeni modiiler formlarin arasinda bazi Hecke
eigenformlar1 da mevcuttur. (Kohnen ve Zagier, 1981: 177)’deki §(z) Ornegi aritmetik
fonksiyonlar cinsinden ifade edilmis 13/2 agirlikli Hecke eigenform 6rnegidir ve MAGMA
cebir programi ile en az 2.10% Fourier katsayis1 kolaylikla hesaplanabilir. Diger yandan
literatiirde ¢alismalarimizdan once farkli k tamsayilar1 i¢in Fourier katsayilari kolaylikla
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hesaplanabilecek Hecke eigenformlarin sistematik se¢imi bir acik problem idi. Bu problem
(Kohnen ve Zagier, 1981: 177) calismasindan ilham alinarak bu calismada ¢o6ziime

kavusturulmustur.

Burada biiyiik agirliktaki 6rneklerin sistematik se¢imi ile Kohnen Plus Space (Detaylar

icin (Kohnen, 1980)’e bakilabilir.) k = 6,8,9,10,11,13 durumlarina karsilik Kohnen Plus
Space’in boyutu 1 olacagindan [(4) igin k +% agirlikli cusp formlarin tekligi (Shimura

karsilik gelmesi altinda T' i¢in 2k agirlikli normallestirilmis cusp formlarin tekligi ile
iliskilendirerek) elde edilebilir. Yani bagka bir deyisle bu durumda bu uzaydaki her bir form bir
Hecke eigenform olacaktir. Burada Rankin-Cohen parantezi etkili bir metottur. Oncelikle daha
genel durumu g6z Oniine alinsin. Rankin-Cohen parantezinin Eisenstein serileri ve teta serileri
ile bunlarin tlirevlerine ardisik olarak uygulanmasi ile Kohnen Plus Space’in boyutunun 1’den
biiylik oldugu 6rnegin k& = 7 durumu i¢in de basit bir formiil elde edilebilir. Bunu yapmak i¢in
agirliga bagl olarak Eisenstein serileri ve teta serileri ile bunlarin tiirevleri i¢in sonlu sayida
thtimal mevcuttur. Pari/GP’de yer alan ve Sturm sinir1 kullanilarak Prof. Dr. Henri Cohen
tarafindan bu calisma i¢in yazilan kod yardimiyla Hecke eigenform olabilecek aday formiillerin
kisa bir listesi olusur. Hecke eigenform tanimi geregi ortaya ¢ikan lineer sistem ¢oziilerek

istenilen sonuca ulasilir. Daha sonra MAGMA’da Fourier katsayilar1 hesaplanir.

k =1 durumunda Rankin-Cohen parantezi kullanilamadigindan bu durumda Hecke
eigenform elde edilebilmesi igin farkli bir metot kullanilabilir. Detaylar i¢in (Inam, 2012)
kaynaginda Hecke eigenformlara karsilik kuadratik formlarin teta serileri yardimiyla elde

edilen 3/2 agirlikli Hecke eigenformlara ait cesitli 6rnekler yer almaktadir.

Rankin-Cohen parantezi tekniginin daha iyi anlasilabilmesi i¢in ilk olarak tipk1 yukarida
bahsedilen § fonksiyonu gibi agik sekilde formiilii verilen iki Hecke eigenform Ornegi

verilecektir.

Teorem 2.1.4. (Inam vd., 2020: 776)
84
£ = —ﬁ(366(4z)9’(z) — G4(42)6(2)) € S17(T(4))
2

bir Hecke eigenformdur.

Ispat. [G4(4z), 6], Rankin-Cohen parantezini hesaplayalim. Tanim 2.1.2. geregi
1 1. 1 44
g1 = 6G6(42)0'(2) —5G5(42)0(2) = —-q — - q* +8¢° —88q° + -+ (2.1)

dir.
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g-lu terimin katsayis1 1 olacak sekilde normallestirme yapilirsa f; = —42g, elde edilir. Ote
yandan dim(S21 /, (To(4)) = 3 olup
u; = q + 88q* — 336q° + 36964q°% — 5535q¢° + 0(q*?)
u, = q% + 4q* — 56q° + 126q° — 224q" + 488q°® — 5764° + 0(q*?)
uz == q3 — 6q* + 20q° — 56q° + 124q7 — 220q® + 352q° + 0(q*?)
olmak tizere {u,, u,, us} S17 /, (T (4)) nin bir tabanidir. Bu uzay igin Sturm sinurt 4 olup (2.1)

esitligine dikkat edilirse f;’inn = 2,3 (mod 4) 6zelligindeki Fourier katsayilarinin sifir olmasi
nedeniyle f; € S15 /Zolur. Son olarak  Si7(I(4)) te bir tek Hecke eigenform mevcut olup bu
2
formun u, yani f; formu oldugu kolayca goriilebilir, bu da ispat1 bitirir.
Teorem 2.1.5. (Inam vd., 2020: 777)
fo = 22 (86,(42)0" (2) ~ 1 65(42)0()) € S, (To(4)
2mi 2 / 2
bir Hecke eigenformdur.
Ispat.

[Gg(4z), 8(z)]; Rankin-Cohen parantezini uygulayalim. Tanim 2.1.2. geregi

1
9> = [Ga(42),0(2)]1 = 8G5(42)8'(2) — 5 G5(42)8(2)

_ 1 56 4 5 8 18 9
=2q-2q*+12¢° — 4560° + (= +1032) ¢° + - (2.2)

30
dir. g -lu terimin katsayisi 1 olacak sekilde normallestirme yapilirsa f, = 30g, elde edilir. Ote
yandan dim (521/2 (Ty(4)) = 4 olup
wy = q + 24q° + 1344q° — 448097 — 1920q¢® + 4089¢° + 0(q*?)
U, = q% +112q° — 4264q° + 672q” + 21764q® + 61444° + 0(q*?)
u = q° + 8q° — 56¢° + 148q7 — 448q° + 10244° + 0(q'2)

u, == q* — 6q° + 24q° — 80q” + 210q® — 480q° + 0(q*?)

olmak iizere {uq,u,, us, Uy} S31 / nin bir tabanidir.
2
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Bu uzay i¢in Sturm smir1t 5 olup (2.2) esitligine dikkat edilirse f, = u; — 56u, olup
fr€eSH / (T, (4)) oldugu agiktir. Kohnen Plus Space tanimi geregi f,’nin n = 2,3 (mod 4)

ozelligindeki Fourier katsayilarmin sifir olmasi nedeniyle f;, € S5; /s olur.

Son olarak S3;, (Iy(4))’te bir tek Hecke eigenform mevcut olup bu formun f, = u; —
/2

56u, formu oldugu kolayca goriilebilir, bu da ispat1 bitirir.
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3. SATO-TATE KONJEKTURU

3.1. Giris

Sato ve Tate birbirlerinden bagimsiz olarak 1960°ta asagidaki savi ortaya atmiglardir:

f@) =) atmq"

n=0

fonksiyonu “kompleks ¢arpima sahip olmayan” k agirlikli cuspidal Hecke eigenform olsun.

k-1
a(p) =2p 2 cos(dbp)
saglayacak sekilde 0 ile 7 arasinda dyle bir ¢, Frobenius agis1 vardir. Sato-Tate Konjektiirii'ne

gore bu agilarin olasilik dagilim fonksiyonu % sin?(¢) ile verilir. Aslinda Sato-Tate konjektiirii
bu agilarin %sin2 (¢p) fonksiyonuna gore dagilim gosterdigini ve boylelikle es dagilimli

oldugunu soyler. Boylece [-1,1] aralig1 {izerinde Sato-Tate dl¢limil adi1 verilen ve %\/1 —t2

yogunluk fonksiyonuyla ifade edilen Sl¢iim bulunur. “Kompleks carpima sahip” modiiler
formlar i¢in sonug (Hecke, 1920)’de ispatlanmistir, teoremin tam versiyonu ve ispati i¢in

(Arias-de-Reyna vd., 2015: 15), Teorem 3.2.3’e bakilabilir.

Sato-Tate Konjektlirti 2011 yilinda (Barnet-Lamb vd., 2011) ispatlanmistir. Bu
konjektiir, son yillarda matematikte ¢oziilen en dnemli problemlerden birisi olup, sonuglari

yaygin olarak calisilmaya devam edilmektedir.

Sekil 3.1. n = 10° igin A’nin normallestirilmis katsayilarinin histogrami

Kaynak: (Mazur, 2018:193)
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Shimura Karsilik Gelmesi sadece tamkare indisli katsayilari igerdiginden ileride
tanitilacak olan Bruinier-Kohnen Isaret Esdagilim Konjektiirii’niin tamamen ¢oziilmesi i¢in
kullanilabilecek literatiirde herhangi bir sonu¢ bulunmamaktadir. Bu problemin ¢6z{imii ancak
ve ancak yarim tamsay1 agirlikli modiiler formlar i¢in verilecek Sato-Tate Teoremi benzeri bir

sonuc¢la miimkiindiir. Bu tarz bir sonug ise bu ¢aligmanin temel amacidir.

Teorem 3.1.1. (Waldspurger, 1981) £, 2k agirlikli i¢inde tamkare bulunmayan tek sayr N
seviyeli cuspidal Hecke eigenform olsun. Bu takdirde Shimura yiikseltmesi f olacak sekilde
oyle bir k + 1/2 agirlikli g = ), c(n)q™ yarim tamsay1 agirlikli modiiler form vardir ki tiim

temel diskriminantlar i¢in

1
C|2d| = XngIk_E- L(f' D' k)
olacak sekilde bir y sabiti vardir.

(Conrey vd., 2006: 72)’de rastgele matrisler teorisi kullanilarak 3/2 yarim tamsay1
agirliklt modiiler formlar (eliptik egriler ile ilgili) i¢in bazi sonuglar ve konjektiirler (6zellikle
Conjecture 4.2) verilmistir. Buradaki sonuglar Waldspurger’in yukarida agiklanan L-
fonksiyonlarinin 6zel degerleriyle Fourier katsayilarinin iliskisine dayanir. Bu konjektiirler
yarim tamsay1l agirlikli modiiler formlarin Fourier katsayilarinin karelerinin belli bir
normalizasyon ile normal dagilacagini 6nerir. Ancak katsayilarin isaret degisimleri ile ilgili bir
sonu¢ verilmemistir. Diger bir yandan Bruinier-Kohnen isaret esdagilim konjektiirii sifirdan
farkli katsayilarin yarisinin negatif yarisinin pozitif olacagini iddia ederek kismen de olsa

konjektiirel olarak bu boslugu doldurur.

(Thorner, 2014)’te Sato-Tate Teoremi’ndeki istatistiksel ifade i¢in fnin L-
fonksiyonlariin simetrik kuvvetlerinin otomorfik oldugu kabul edilerek oldukea etkili ve kolay

hesaplanabilir bir hata terimi verilmistir.

(Thorner, 2020)’de Sato-Tate konjektiiriiniin efektif versiyonu tamsay1 agirlikli modiiler
formlar i¢in verilmistir. Burada bu konjektiir i¢in literatiirde bulunan ve (Thorner, 2014)’i de
kapsayan tiim hata terimlerini gelistirerek yeni bir hata terimi elde edilmistir. Ancak Shimura
ylikseltmesi yardimi ile bu hata teriminin yarim tamsay1 agirlikli modiiler formlar i¢in elde

edilmesi agik bir problemdir.

3.2. Sato-Tate Uygulamasi: Bruinier-Kohnen Isaret Esdagiim Konjektiirii

Bu béliimde Sato-Tate Konjektiirii etkili olarak kullanilarak modiiler formlardaki bir

problemin nasil ¢oziilebilecegi goriilecektir. Oncelikle problem verilsin.
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Konjektiir 3.2.1. (Bruinier ve Kohnen, 2008: 63), (Kohnen vd., 2013: 30)
=) ama" €5 (rm)
n=1

reel Fourier katsayilarina sahip k = [ + % agirlikli cuspidal Hecke eigenform olsun.

[ = 1 durumunda f’nin unary teta serisine ortogonal oldugu kabul edilsin. Bu takdirde

fneN: a(n) >0} ve {n € N: a(n) < 0} kiimeleri aym dogal yogunluga sahiptir, tam

olarak
{(neN: a(n) # 0}
kiimesinin dogal yogunlugunun yarisina esittir.

k =2 ve 4|N tamsayilar olmak {iizere sifirdan farkli k +% agirliklt reel Fourier

katsayilarina sahip

f=) ama €5, (M)
n=1

p t N asallart i¢in T,z operatorleri i¢in bir cuspidal Hecke eigenform olsun. Kompleks ¢arpima

sahip olmayan

F= i A" € S, (ro (g))

2k agirhkl p t+ N asallan igin T, operatorleri igin Hecke eigenformu Shimura yiikseltme

doniistimii ile f’ye karsilik gelir dyle ki sabit ve tamkare olmayan t’ler i¢in a(t) # 0 olur.
Tanim 3.2.2. P, tiim asallarin kiimesi olmak {izere S € P olsun. Eger
n(x) = #{p < x|p € P}
asallarin sayis1 ve

ms(x) = #{p < x|p € S}

olmak iizere lim S(( ) Jimiti var ve d(S)’ye esit ise d(S)’ye dogal yogunluk adi verilir.

X—00 Tl'x

1

Eger lim ———

n -~ ( ) limiti var ve §(S)’ye esit ise S kiimesi §(S) Dirichlet yogunluguna
z= 08 z-1

sahiptir denir.
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Eger S kiimesi bir dogal yogunluga sahip ise o zaman S bir Dirichlet yogunluga da
sahiptir ve bu yogunluklar ¢akisiktir. Eger Re(z) = 1 tizerinde Zpesp—lz = §(S) log (ﬁ) +
g(z) igin bir g(z) holomorf fonksiyonu var ise S’ye regiilerdir denir. Dirichlet yogunlugu 1

olan P kiimesi regiilerdir.

Lemma 3.2.3. (inam ve Wiese, 2013: 333)

i8S, Yoe 5% sonlu bir degere yakinsayacak sekilde asallarin herhangi bir kiimesi olsun. O
zaman S kiimesinin Dirichlet yogunlugu 0’a esittir.
ii. S asallarin bir regiiler kiimesi olsun. O zaman S kiimesinin Dirichlet yogunlugu 0 olmast

.. 1 C e . -
i¢in gerek ve yeter kosul Y.,c s, Serisinin sonlu bir degere yakinsamasidir.

1

iii.  S§y,S; asallarm iki regiiler kiimesi ve §(S;) = 6(S;) olsun. O zaman ¥, s, p—lz — Xpes, -

fonksiyonu Re(z) = 1 lizerinde analitiktir.

Teorem 3.2.4. (Inam ve Wiese, 2013: 333) S € PP alt kiimesi d(S) dogal yogunluga sahip

olsun.

ms(x)
(x)

E(x) = —d(S)

bir hata fonksiyonu olsun. Yeterince biiylik tiim x’ler ve @ > 0, C > 0 i¢in
|E(x)| < Cx™@
dir. Yani S asallarin bir regiiler kiimesidir.

Ispat. Ds(2) = Y pes p—lz ve D(z) = Ypep p—lz notasyonlarini kullanalim. d := d(S) ile kisaltilsin

ve g(x) = E(x)n(x) ve f(z) = Yny9(n) (% - ) yi yerine konursa, g(x) sadece

(n+1)%
tamsayilara ziplayan bir basamak fonksiyonu ve

oo

f@) =2y g L nﬂxjﬂ dx = z. L . g(ff dx

n=

X

- dir. O halde

olur. (Rosser, 1941)’den iyi bilinmektedir ki x > 55 i¢in w(x) <

- ili O a. .
log(x)—4 elde edilir. Bdylece Re(z) > 1 — 7 igin

foo‘g(x)dx‘ sLjdesc.fm 1gdx

zZ+1
55 X

lg()| < C.n(x).x"*<C.
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olur. Son integral yakinsak oldugundan f(z), Re(z) = 1 iizerinde bir analitik fonksiyon oldugu
sonucuna ulasilir. Re(z) > 1 igin

oo}

1 1
D) = ) (dn(m) +9() (17~ oy 5e) = 0@ + f@

n=2

oldugundan P yogunlugu 1’dir ve bu nedenle regiilerdir. Son olarak kiimeler iizerinde bir

yogunluk notasyonu Dirichlet notasyonu olarak isimlendirilmisti. A € N alt kiimesi eger

- 1
lim (z — 1). E—
z-1* z

neA

limiti var ve §(A)’ya esit ise §(A) Dedekind-Dirichlet yogunluga sahiptir olarak isimlendirilir.
Eger A € N bir dogal yogunluga sahip ise o zaman Dedekind-Dirichlet yogunluga da sahiptir

ve ikisi de aymdir.

Hatirlanacagi iizere f’nin Fourier katsayilar1 ve bu katsayilarin F; Shimura yiikseltmesi

arasinda bir iligki vardir ve bu iliski
Ae(n) = S xen (@) d¥a (22) (3.1)

ile ifade edilir. Burada y,y karakteri gosterir ve y,y(d) = x(d) (( DN ) dir. Tm p t N
asallart i¢in T2 Hecke operatérii igin f bir Hecke eigenform ve T, Hecke operatérii igin de F;

bir eigenform olarak kabul edilir. Aslinda bu durumda F, t’den bagimsiz normallestirilmis
Hecke eigenformu i¢in F; = a(t)F dir. Dahasi yarim tamsayi agirlikli modiiler formlarin

Fourier katsayilar1 i¢in Euler ¢carpimindan (m,n) = 1 igin
a(tm?®)a(tn?) = a(t)a(tm?n?)

carpimsal iliskisi vardir. Dikkat edilirse eger F; reel Fourier katsayllara sahip ise f de reel

Fourier katsayilara sahiptir. Hatta F, nin katsayilar t(p)| < 2p*2 olarak ifade edilebilen

Ramanujan-Petersson (Ramanujan, 1916), (Petersson, 1930) ve (Deligne, 1974) bagmtisini

saglar. Boylece bu katsayilar

Bp) = —P e 1]
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ifadesi ile normallestirilebilir. [—1,1] aralig1 tizerinde olasilik 6l¢giim fonksiyonu olan u Sato-

Tate 6lglimii %\/ 1 — t2dt ile verilir. (Barnet-Lamb vd., 2011: 30)’de Teorem B’nin 3. Durum:

Ozellikle F = %’yi saglayan { = 1 ile [;;(N) i¢in 6nemli Sato-Tate teoremi verilir.

Teorem 3.2.5. (Barnet-Lamb vd., 2011: 30) k > 1 ve F = Y, A(n)q", IL(N) igin 2k-

agirlikli kompleks carpima sahip olmayan normallestirilmis cuspidal Hecke eigenform olsun.

O zaman [—1,1] araliginda p t N asallari igin

A
B(p) = (p)1

Zpk_i

sayilart u dagilimindadir.

Sonug 3.2.6. (inam ve Wiese, 2013: 335) [a, b] S [—1,1] alt arahi@1 ve
Siap) =p{asal |p t N,B.(p) € [a,b]} (3.2)

olsun. O zaman Sg ),

2 b
—f 1 —t2dt
T a

integraline esit olan dogal yogunluga sahiptir.

Teorem 3.2.7. (inam ve Wiese, 2013: 335) F, kompleks carpima sahip olmasin. P :=
{p € P |a(tp?) > 0} ve benzer sekilde Py, Pso, Py ve P, asallarin kiimesi tanimlanabilir.
P.o, Pco, Pso, Py kiimeleri % dogal yogunluga sahiptir ve P_, kiimesi 0 dogal yogunluguna
sahiptir.

Ispat. m.,:= #{p < x|p € P5,} seklinde tanimlansin ve benzer sekilde my(x), mso(%),
<o (x) ve m_y(x) kiimeleri de benzer sekilde tanimlanabilir. f’nin a(t) ile boliinmesi teoremin
ifadesini degistirmeyecegi ig¢in a(t) =1 olarak kabul edilebilir. Bu durumda F;
normallestirilmis eigenform olur. (3.1) denklemi p asal olmak {izere n = p aliarak
Ozellestirilirse

a(tp?) = A;(p) — xen(P)p*?

olur ve asagidaki 6nerme elde edilir:

Xen (@)

2/

a(tp®) > 0 & B.(p) >
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Burada ¢ogu asal i¢in |A.(p)| ifadesi x; y(p)p* 1 den daha biiyiik oldugunu gostermek igin

XtN(p)| _

Sato-Tate kullanilmistir. € > 0 olsun. Tim p > 4_122 asallari i¢in < € oldugundan

f

Tso(x) + n<41€ ) > #{p < x asal|B;(p) > €}

#{p<x asal|B¢(p)>¢}

elde edilir. Sonu¢ 3.2.6.’dan lim = u([e, 1]) elde edilir. Her € > 0 igin

X—00 7(x)
lim. inf n;zg) > u([e, 1])
oldugundan
tom inf 22 > (0.1 = 5

sonucuna ulasilir. Benzer sekilde lim inf n<°)(cx) u([0,1]) =% bulunur. 7.y(x) = w(x) —

X—00 ()

5o (x) oldugu kullamlarak lim sup n>‘()(;c) u([0,1]) == gorulur Boylece lim >E )) limiti

x—00 x—oo T(X
1 o , .
vardir ve E’ye esittir. Py(x), P5o(x), P<o(x) argiimanlart da tamamen aynidir ve P_, i¢in

asagidaki sonuca ulagilir.

Teorem 3.2.8. (inam ve Wiese, 2013: 336) C > 0 ve a > 0 vardir 6yle ki tiim [a, b] € [—1,1]

At(p) |

I#{p < x asal k_l}
222 — u(la, bD)| <

alt araliklar ve yeterince biiyiik tim x’ler i¢in o

oldugu kabul edilsin. O zaman P, P, Psq, P<, ve P_, asallarin regiiler kiimesidir.

(th)

Uyan 3.2.9. [a, b] S [—1,1] bir alt aralik olsun. {p
2a()p™”

€ [a, b]} kiimesinin yogunlugu
2
u([a, b])’ye esittir.

Teorem 3.2.10. (inam ve Wiese, 2013: 337) Teorem 3.2.8.’deki varsayimlar1 aynen alinsin ve
a(t) > 0 olsun. Bir ¢arpimsal fonksiyon asagidaki sekilde tanimlansin.
1, a(tn?®) > 0 ise

s(n) =< -1, a(tn?) < 0 ise
0, a(tn®) = 0 ise

S(2) =X Sin) s(n)’in Dirichlet serisi olsun. O zaman Re(z) > 1 i¢in S(z) holomorfiktir.

z

23



Sonuc 3.2.11. (inam ve Wiese, 2013: 337) {n € N | a(tn?) > 0} ve {n € N: a(tn?) < 0}
kiimeleri esit ve pozitif Dedekind-Dirichlet yogunluklarina sahiptir, yani
{fneN: a(tn?) # 0}
kiimesinin Dedekind-Dirichlet yogunlugunun yarisina karsilik gelir.
Boylece Fourier katsayilarinin 6zel katsayi aileleri iizerinde Bruinier-Kohnen isaret
esdagilim konjektiirii ispatlanmis olur. (Inam ve Wiese, 2013)’den aliarak elde edilen bu
teknik ile yazilmis problemin ¢esitli varyantlari i¢in literatlirde bircok makale bulunmaktadir.

Burada Sato-Tate Konjektiirii’niin etkili olarak nasil kullanilabilecegi verilmesi

amaglandigindan literatiirde bulunan diger sonuglardan bahsedilmemistir.
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4. YARIM TAMSAYI AGIRLIKLI MODULER FORMLARIN
KATSAYILARININ DAGILIMI VE RAMANUJAN-
PETERSSON KONJEKTURU

Bu béliimde calismanin temel amacini olusturan yarim tamsay1 agirlikli cuspidal Hecke
eigenformlarin Fourier katsayilarinin sistematik dagiliminin Sato-Tate benzeri bir dagilim olup
olmadig1 arastirma sorusu lizerinde durulacaktir. Bunu yapabilmek i¢in onceki boliimlerde
verilen yontemle elde edilen ve iizerinde istatistiksel calisma yapmaya miisait ¢ok fazla sayida
Fourier katsayilar1 hesaplanarak yarim tamsay1 agirlikli Hecke eigenformlar elde edilmistir.
Ardindan Ramanujan-Petersson Konjektiirii yardimiyla normallestirilmis Fourier katsayilarinin
dagilimi incelenmistir. Elde edilen veriler yardimiyla da Bruinier-Kohnen Isaret Esdagilim
Konjektiirii literatiirde olabilecek en genis hesaplama yapilarak bu konjektiir dogrulanmastir.
Diger yandan Bruinier-Kohnen Konjektiirii isaret ve mutlak degerden bagimsiz olarak ifade

edilerek gelistirilmistir. Bu boliimde detayli olarak bu basliklar ele alinacaktir.

4.1. Katsayilarin Normallestirilmesi ve Ramanujan-Petersson Konjektiirii

f= i a(n)q"

k agirlikli bir cuspidal Hecke eigenform olsun. Bu durumda (Kohnen, 1994: 333) geregi

Ramanujan-Petersson Konjektiirli herhangi bir € > 0 igin
k-1,
a(n) =0 (n 2 s)

oldugunu iddia eder. Deligne tarafindan 1974’te yapilan Weil Konjektiirleri'nin meshur ispati
geregi tamsay1 agirlikli modiiler formlar i¢cin € = 0 i¢in Ramanujan-Petersson Konjektiirii ispat

edilmistir. Bu konjektiirden ilham alinarak bu ¢alismada normallestirilmis katsayilar

b(n) = a(nz

n*7z

olarak tanimlanmistir. Caligma tarihi itibariyle literatlirde yarim tamsay1 agirliklar igin
Ramanujan-Petersson Konjektiiri i¢in bir 6zel durum bile ispatlanmamis goziikmektedir.
Bununla beraber, (Gun ve Kohnen, 2019) calismasinda yarim tamsay1 agirlikli modiiler formlar
icin € =0 olmasinda konjektiiriin dogru olmayacagini yani €’un 0 alinamayacagini
ispatlamiglardir. Bu sonucu elde etmek i¢in Shimura yiikseltmesinden gelen iginde

tamkare carpan bulunan indislerin bir dizisini kullanarak bir ters 6rnek olusturmuslardir. Gun,
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Kohnen ve Soundararajan'in 2020'deki glincel makalelerinde (Farmer vd., 2007: 224)'den elde

edilen ve Ramanujan-Petersson Konjektiirii'nden daha gii¢lii olan

|b(|n])| < exp (C\/loglnllogloglnl

siiriin yarim tamsay1 agirlikli modiiler formlar igin "¢ok biiyiik olasilikla" dogru oldugunu

Onermislerdir.

4.2. Bilinen Sonugclar ve Yarim Tamsay1 Agirhkl Modiiler Formlar i¢in

Dagihimlara Yonelik Konjektiirler

k=1+ %yarlm tamsay1 agirlik i¢cin (Waldspurger, 1981: 378) Teorem 1'de ve (Kohnen

ve Zagier, 1981: 177) Teorem 1'de verilen sonuglara gore Fourier katsayilarinin kareleri ile L-
fonksiyonlarinin merkezi degerleri arasinda ¢ok onemli bir iliski vardir. Daha kesin olarak,
(Shimura, 1973) ve (Niwa, 1974)'e gore Shimura yiikseltmesi ile t, i¢inde tamkare ¢arpan
bulunmayan dogal say1 ve n € N olmak iizere tn? ile indekslenen Fourier katsayilari ile 21
agirlikli g modiiler formunun n-inci Fourier katsayisim iliskilendirir. Bu takdirde b(|n|)?
normallestirilmis Fourier katsayisi ile g'nin n'ye karsilik gelen ilkel ikinci derece y,, karakteri
yardimiyla twist edilmis Hecke L-fonksiyonu olmak tizere |n| = (—1)™ 6zelligindeki temel

diskriminantlar i¢in L(g, x,, s) degeri orantilidir.

Bu iliski b(|n|) mutlak degeri lizerindeki birgok sonuca taban olusturmustur. Diger
yandan bu iliski aym zamanda n temel diskriminantlar1 i¢in b(|n|)? katsayilarinin dagilimi i¢in
konjektiirel bir tanimlamaya yol agmistir. Bu baglamda, 21. ylizy1lin matematikteki ¢i1g1r acan
gelismelerden birisi oldugu kabul edilen (Barnet-Lamb vd., 2011)'de ispat1 verilen meshur Sato-
Tate Konjektiiri tamsay1 agirlikli normallestirilmis Fourier katsayilarinin dagilimini anlatan bir

sonugtur.

(Conrey vd., 2006: 72)'da eliptik egriler ile eslesen 3/2 agirhikli modiiler formlarin
katsayilarin dagilimi iizerine bir konjektiir ortaya atmislardir. Bu ¢aligmadaki Konjektiir 4.2

sunu soyler: bir E eliptik egrisi ile eslesen 3/2 agirlikli bir modiiler form igin

1
a < k¥ logln](b(In]))*Viegloginl < g

ozelligindeki n temel diskriminantlarinin dogal yogunlugu

B
! fl ( 1(l t)z)dt
— | —exp|—z(lo
VZna t P\T2V09
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olup, burada 0 < a < 8 ve k" bir pozitif sabittir. Benzer konjektiirlerin daha yiiksek agirliklar
icin de yapildigim1 Stanford Universitesi 6gretim iiyesi Prof. Dr. Kannan Soundararajan
yazigsmada tarafimiza bildirilmistir. Ustelik, dikkat edilirse (Conrey vd., 2006: 72)'nin
Konjektiir 4.2'si normallestirilmis b(|n|) katsayilarmin sifira yaklastigini ve |b(|n|)| < &
ozelligindeki d € S sayilarmin kiimesinin dogal yogunlugunun 1 olmasmi da gerektirir. Bu
tahmin, (Gun vd., 2020)'de referans verildigi gibi (Radziwill ve Soundararajan, 2015: 1030)'da

yer alan bir teoremde 4 seviyeli modiiler formlar i¢in ispatlanmistir:

“Her bir € > 0 i¢in,

Ib(Inl)] < C.log(|n]) 75 (4.1)

esitsizligini saglayan o(x) tane x < (—1)'n < 2x 6zelliginde n temel diskriminantin en az bir

C = C(g, f) vardir.”

Boylece bu teorem geregi b(n) normallestirilmis katsayilar1 1 olasilikla (kesin olarak)
0'a yakinsar. O halde bu normallestirilmis katsayilar 0'da bir Dirac 6l¢limiine sahip olur. Diger
yonde ise (Gun vd., 2020: 2) geregi, 4 seviyeli modiiler formlar i¢in, biiylik degerlere sahip

Fourier katsayilarinin varligi ispatlanmistir:

"Yeterince biiyiik x’ler ve her € > 0 i¢in

1
Ib(InDI = exp (5 oogn) -

esitsizligini saglayan en az x17¢ tane x < (—1)'n < 2x 6zelliginde n temel diskriminantlari

vardir.”

Dikkat edilirse L-fonksiyonlarinin merkez degerleriyle olan iliski katsayilarin kareleri
ile ilgili bilgi verir; yani isaretleriyle ilgili herhangi bir bilgi vermez. Burasi tam olarak da
Bruinier-Kohnen Isaret Esdagilim Konjektiirii'niin devreye girdigi yerdir. Bu konjektiir
(Konjektiir 3.1.2.) sifirdan farkli katsayilarin yarisinin pozitif yarisinin da negatif oldugunu

iddia eder.

4.3.Ty(4) I¢cin Yarim Tamsay1 Agirhkh Hecke Eigenform Ornekleri

Bir dagilim elde edilebilmesi icin modiiler formlarin ¢ok fazla sayida Fourier
katsayisina ihtiya¢ vardir. Bu ¢alismada yiiksek agirliklar i¢in ¢alisilacagindan dolayr miimkiin
olan en diisiik seviye olan Iy(4) secilmistir. (Inam ve Wiese, 2021) makalesinde tanimlandig

gibi yarim tamsay1 agirlikli Kohnen Plus Space yiiksek hassasiyetle cabucak hesaplanabilen

27



tabanlardir. Rankin-Cohen parantezi yardimiyla bu tabanlar ile ¢alisilmistir. Herhangi bir veri
kayb1 olmamasi agisindan sonunda sadece normallestirilmis katsayilara doniisen rasyoneller
iizerinde ¢alisilmistir. Bu secimin dezavantaji ¢ ’nun yiiksek kuvvetlerine kadar hesaplanan g-
acilimlarinin ¢ok biiylik miktarda bellek harcamasidir. Daha fazla detay verilirse Rankin-Cohen
tabani ile ilgili Hecke eigenformlar ifade etmek icin oldukca iyi olan Pari/GP programi
kullanilmistir. Pari/GP Programindaki “mf paketi” gerekli araclari saglamaktadir. Daha sonra
ise Hecke eigenformlar1 bir kuvvet serisi olarak inga eden MAGMA Programu ile de taban
katsayilar1 elde edilmistir. Kuvvet serilerinin ¢arpimini ¢ok hizli bir algoritma ile yaptig1 igin
MAGMA programi kullanilmigtir. Son adim olarak ise normallestirilmis katsayilar reeller
{izerinde hesaplanmistir. On hesaplamalar tamamen bittigi igin reel 10 basamak almak yeterli

olmustur.

Kohnen Plus Space’de sadece iginde tamkare bulunmayan indisli katsayilari
kaydedilmistir. ( k —% ¢ift icin n = 2,3 (mod 4) oldugunda a(n) = 0’dir.) Bu yol ile tiim
modiiler formlar da normallestirilmistir. Kohnen Plus Space tanimina bakilirsa bu dogal bir
normallestirme yoludur ancak kanonik yol degildir.

13 17 19
2’2’2

[,(4) igin ,

, ...,% agirhikli tiim Hecke eigenformlarm 107 katsayisini

hesaplanmigtir. Bu sayede icinde tamkare bulundurmayan n < 107 indeksli b(n)

normallestirilmis katsayilar1 elde edilir. Baz1 agirlikli Fourier katsayilari igin 108 katsayiya ve
? agirlik icin ise 2.108 katsayiya ulagilmistir. Bu normallestirilmis katsayilari igeren dosyalara

(Wiese, 2021) kaynaginda yer alan URL adresinden ulasilabilir. Bu datalarin tamami1 4 GB
kadar bir alan tutmaktadir. Asagidaki tiim tablolarda 25/2(2) ile [)(4) i¢in 25/2 agirlikli

Hecke eigenformun ikinci cusp formunu temsil edecek sekilde ifade edilmistir.

Dikkat edilecek olursa Shimura yiikseltmesi altinda herhangi bir yarim tamsay1 agirlikli
(k agirhikli) Hecke eigenform 2k —1 € Z agirhkli 1 seviyeli tamsayir agirlikli Hecke
eigenforma karsilik gelir. (Kohnen, 1985: 241)’den Shimura yiikseltmesi tamsay1 agirlikli uzay
ile Kohnen Plus Space arasinda Hecke esdegiskenli izomorfizmdir. Bu da yarim tamsay1
agirhikli eigenformlar ile tamsayr agirliklilar arasinda birebir bir esleme vardir. Maeda
konjektiiriine (Hida ve Maeda, 1997: 196) gore 2k — 1 agirlikli eigenformlar sadece tek bir
Hecke eigenform yoriingesindedir. Maeda konjektiiriinii kabul ederek Kohnen Plus Space’de
yarim tamsay1 agirliklt Hecke eigenformlarin sayis1 tamsay1 agirlikli katsayilarla ortaya ¢ikan

say1 cisminin derecesine esittir.
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4.5. Normallestirilmis Katsayillarin Dagilim Histogramlari

Caligmada hatirlandigi  gibi yarim tamsayr agirlikli Hecke eigenformlarin
normallestirilmis katsayilarinin dagiliminin anlasilmasi amaglanmaktadir. (Radziwilt ve
Soundararajan, 2015)’in sonuglarindan yola ¢ikilarak b(n) normallestirilmis katsayilarin tam
olarak neredeyse 0’a dogru yakinsadigi ifade edilebilir. Ancak bu dagilim i¢in tez kapsaminda
yapilan ve ¢ok da ilging goriilen yogunluk fonksiyonu ile yaklagimin daha giizel olabilecegi bir
ist sinir oldugu diisiiniilmektedir. Dahast bu katsayilarin sifir civarinda (sifirin saginda ve

solunda) simetrik olduklar1 goriilmektedir.

Dagilimin ifade edilebilmesi ic¢in tiim modiler formlarin normallestirilmis
katsayilarinin dagilim histogramlar1 olusturulmustur. Dikkat edilirse Shimura yiikseltilmesi
yardimiyla k+1/2 agirlikli modiiler formlar 2k — 1 agirlikli modiiler formlara taginabildiginden
ve burada tamkare indisli Fourier katsayilar elde edildiginden elde edilmesi hedeflenen
dagilimla Sato-Tate dagilimi birbiriyle karismamasi i¢in sadece i¢inde tamkare bulunmayan
sayilar tarafindan indislenen Fourier katsayilar1 dikkate alinmistir. Aksi takdirde elde edilecek

grafiklerden bir analiz yapmak imkansiz hale gelebilmektedir.

Normallestirilmis katsayilarin histogramlart Gnuplot programi (Williams, 2004)
kullamilarak olusturulmustur. ilgili katsayilar olduke¢a kiiciik reel sayilar olduklarindan bu
grafikler olusturulurken bu katsayilarin “paketlenerek” islenmesi gerekir aksi takdirde bu
grafikler olusturulamaz. Ote yandan istenilen dagilimlar etkileyip etkilemeyecegini anlamak

adina program kullanilirken grafiklerin ¢iziminde farkli kutu oOlgiileri dikkate alinmustir.
Ornegin ? agirlikli Hecke eigenformun iginde tamkare bulundurmayan tamsayilarla indislenen

normallestirilmis katsayilar1 i¢in kutu 6lgiileri sirasiyla 0.001, 0.0001, 0.00001 alindiginda elde

edilen histogramlarin grafikleri asagidaki sekillerde gosterilmistir.

Sekil 4.1. 13/2 agirhkli Hecke eigenformun normallestirilmis Fourier katsayilariim 108 tanesinin histogramlari
strastyla kutu boyutlar: 0.001, 0.0001, 0.00001.
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Baz1 kutu dlgiilerinde O6rnege de bagli olarak goze daha hos gelen grafikler elde
edilmektedir. Bu ¢aligmada 0.001 kutu 6lgiisti baz alinmistir. Ancak hangi ol¢ii alinirsa alinsin
dagilimi agiklayan fonksiyon ile data arasindaki en iyi uyumu veren parametreler

etkilenmemektedir.

Asagidaki tabloda daha sonra agiklanacak olan 5 farkli agirliktaki form ve 3 farkli kutu

Ol¢iisiindeki GG-dagilimindaki (dagilimin en 6nemli parametresi olan) a degerleri verilmistir.

Tablo 4.1. GG- dagiliminin a degerleri

0.001 | 0.0001 | 0.00001

13/2 0.634 | 0.634 0.633
17/2 0.553 | 0.553 0.553
2172 0.558 | 0.558 0.558
25/2 (1) || 0.504 | 0.504 0.504
29/2(1) || 0.507 | 0.507 0.506

Bu nedenle gozlemlerde ve tartigmalarda Gnuplot programinda segilen kutu Olciisii

onemsenmemektedir.

4.6. Aday Dagilim Fonksiyonlari ve Regresyon

Bu boliimdeki temel amag elde edilen histogramlarin ‘genel sekli’ nin katsayilardan ve
sinirdan bagimsiz oldugunu gostermektir. Daha dogrusu bu ¢alisma kapsaminda yapilan genis
hesaplamalar belirlenen sinira kadar herhangi bir yarim tamsay1 agirlikli Hecke eigenformlarin
normallestirilmis Fourier katsayilarinin tek tip bir yogunluk fonksiyonu yardimiyla ifade
edilebilecegini giiclii bir sekilde iddia etmektedir. Dogal olarak bu parametreler hesaplanan

Fourier katsayis1 kadar secilen modiiler forma da baglidir.

Dikkatlice gbzlemlenecek olursa her bir modiiler form i¢in histogramlarin sekilleri esas
olarak aynidir. Bu ise elde edilen datanin (hem de “basit” bir) dagilim fonksiyonu tarafindan
aciklanabileceginin tahmin edilmesine neden olur. Boylece yarim tamsayi agirlikli Hecke
eigenformlarin Ramanujan-Petersson konjektiirii tarafindan normallestirilmis Fourier
katsayilart iizerinde tam olarak c¢alismanmin amacina uygun asagida verilen parametre ve

grafiklerle desteklenen Sato-Tate benzeri dagilimin varligi ortaya konur.
Histogramlara bakilirsa 0 civarinda bir simetriklik oldugu hemen dikkat ¢eker ki bu da
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Bruinier-Kohnen Isaret Esdagilim Konjektiirii’nii dogrular. 11k bakista histogramlar ¢an egrisi
sekline benzemesine ragmen bu bir yanilgidir. Ger¢ekten de bu dagilim standart bir Gauss
dagilimin1 vermez. Bunu gorebilmek i¢in SPSS istatistik programinda Anderson-Darling testi
uygulanabilir. Dogru dagilimi bulabilmek adina asagida tanimlanan Genel Genellestirilmis
Gauss (GGG) dagilimi, Genellestirilmis Gauss (GG) Dagilimi, Laplace ve Cauchy dagilimlari

asagida tanimlanmistir:

GGG(x) = be<_(d+f2)a>
GG(x) = be<_@>

_lx
Laplace(x) = be( c )

a
b+(cx)?

Cauchy(x) =

Kolayca goriilebilir ki, GG dagilimi GGG dagiliminin 6zel hali (d=0) oldugu gibi
Laplace dagilimi da GGG dagiliminm 6zel bir halidir (¢=0.5). Ileride tablo ile verilecek a
degerlerinden de goriilebilecektir ki bu degerler 0.5 degerine olduk¢a yakin degerlerdir.
Calismanin kapsaminda yer almadigi i¢in histogram grafiklerinin altinda kalan alanlar 1 yapilip
elde edilecek dagilim fonksiyonlari olasilik dagilim fonksiyonlarina doniistiiriilmemistir. Bu ise

literatiire bir acik problem olarak birakilmistir.

Grafikte dort dagilim da giizel goziikse bile bunlarin acik¢a en iyisi GGG dagilimidir.
Cauchy dagilimi kuyruklarda sistematik olarak ¢ok yliksek degerler aliyor ve bu sebepten oOtiirii
iclerinde en uyumsuz goriinen dagilim olmustur. Son kisimda en iyi dagilim ile uyumu

gosterilen dagilim fonksiyonlarinin grafikleri incelenebilir.

Histogramlarimiz homojen bir sekilde normallestirildiginden genel olarak ayni sekli
sunarlar ancak bazilar1 daha genis bazilar1 daha dik sekillerdir. Farkli histogramlar arasindaki
en 1yi regresyonun diizgiinliiklerini kiyaslamak olduk¢a zordur. Bu diizglinliik 6l¢timii Gnuplot
programinda RMS (Root Mean Square) degerleri ile dl¢lilmiistiir. GGG dagilimi en 1yi dagilim
olarak ifade edilmisti bu yiizden elbette bu dagilimdaki degerlerin GG ve diger dagilimlar
Laplace’dan daha iyi oldugu gozlenebilmektedir. 108 katsayrya ulasilmis olup Srneklerin
hepsinde Gnuplot programi kullanilarak bulunan en iyi regresyon degerleri tablolar halinde
verilmistir. Ayrica 107 katsayiya ulasilan tiim degerler de tablolar halinde “Ekler” kisminda

sunulmustur.
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Sekil 4.3. 25/2 agirlikli Hecke eigenformun 108 katsayisinin histogram ve dagilimi
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Sekil 4.4. 43/2 agirhikli Hecke eigenformun 107 katsayisinm histogram ve dagilimi
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Tablo 4.2. GGG- dagiliminin en iyi parametre degerleri

a b c d
13/2 0.581 | 12538 | 0.872 | 0.030
17/2 0.453 | 20421 | 0.550 | 0.030
19/2 0.385 | 44105 | 0.317 | 0.012
21/2 0.460 | 23411 | 0.485 | 0.022
23/2 0.494 | 14866 | 0.725 | 0.034
25/2(1) || 0.391 | 19462 | 0.577 | 0.035
25/2(2) || 0.237 | 88927 | 0.284 | 0.033
2712 0.513 | 22681 | 0.471 | 0.014
29/2(1) || 0.364 | 11886 | 0.812 | 0.092
29/2(2) || 0.423 | 30278 | 0.402 | 0.016
Tablo 4.3. GG- dagiliminin en iyi parametre degerleri
a b c
13/2 0.634 | 11105 | 0.969
17/2 0.553 | 14999 | 0.663
19/2 0.515 | 26822 | 0.363
21/2 0.558 | 17300 | 0.566
23/2 0.573 | 11997 | 0.857
25/2(1) || 0.504 | 13107 | 0.752
25/2(2) || 0.453 | 20676 | 0.485
27/2 0.584 | 18721 | 0.514
29/2(1) || 0.506 | 7555 | 1.256
29/2(2) || 0.532 | 20884 | 0.466
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Tablo 4.4. Laplace dagiliminin en iyi parametre degerleri

b c
13/2 12264 | 0.860
17/2 15711 | 0.650
19/2 27201 | 0.367
21/2 18184 | 0.560
23/2 12746 | 0.805
25/2(1) 13161 | 0.750
25/2(2) 19699 | 0.484
o 20071 | 0.514
29/2(1) 7597 | 1.244
29/2(2) || 21515 | 0.470
Tablo 4.5. Cauchy dagiliminmn en iyi parametre degerleri
a b c
13/2 183 | 0.017 | 0.181
17/2 194 | 0.014 | 0.222
19/2 2455 | 0.010 | 0.340
21/2 194 | 0.012 | 0.240
23/2 208 | 0.019 | 0.204
25/2(1) 194 | 0.017 | 0.212
25/2(2) || 1376 | 0.080 | 0.725
27/2 233 (D013 | 0.272
29/2(1) 813 | 0.122 | 0.340
29/2(2) 342 | 0.018 | -0.350
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Tablo 4.6. Dort dagilimdaki en iyi parametreler icin RMS degerleri

GG | GGG | Laplace | Cauchy

13/2 76 |59 | 286 252
17/2 126 | 64 | 187 219
19/2 208 | 75 | 215 295
21/2 133 | 66 | 209 265
23/2 97 |60 | 190 189
25/2(1) || 134 | 62 | 135 178

25/2(2) | 283 | 79 | 320 238
27/2 111 | 63 | 266 347
29/2(1) | 95 |56 |95 157
29/2(2) | 161 | 65 | 191 273

4.7. Parametrelerin Bagimhhig ve Bagimsizhgi

GGG dagilimi oldukea iy1 goziikse bile onceki boliimde goriildiigii gibi Radziwilt ve
Soundararajan’in sonuglar1 herhangi bir Hecke eigenform igin parametrelerin ayn1 zamanda
siira bagli olmak zorunda oldugunu gostermektedir. Bu boliimde bu bagimlilik yani bir diger
ifade ile parametrelerin katsayilara gore nasil davrandigir arastirilmistir. Bu calismada
normallestirilmis katsayilarin en biiyligli olarak ? agirhik igin 2. 108 katsay1 hesaplanabilmistir.
Bu katsayilar da 20 alt gruba boliinerek her bir grup icin yine ayrica fit degerleri hesaplanmig

ve asagidaki tablo olusturulmustur. Boylece yapilan isin tutarli oldugu goriilebilir.
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Tablo 4.7. 13/2 agirlik igin 2.108 katsayimin alt gruplari igin her bir dagilimdaki en iyi parametre degerleri

GGG GG Laplace Cauchy
a b c d a b ¢ b ¢ a b ¢
1 0.622 | 1177 1 0.967 | 0.045 |[ 0.677 | 1038 [ 1.08 || 1172 | 0.908 | 142.8 | 0.140 | 0.488
2 0.601 | 1206 | 0.917 | 0.031 |[ 0.650 | 1082 | 1.009 || 1205 | 0.876 |[ 142.0 | 0.135 | 0.498
3 0.591 | 1221 | 0.896 | 0.027 || 0.638 | 1101 | 0.981 | 1219 | 0.864 || 143.4 | 0.135 | 0.506
4 0.587 | 1230 | 0.886 | 0.025 |[ 0.633 | 1110 [ 0.969 || 1226 | 0.858 | 144.1 | 0.135 | 0.510

5 || 0.569 | 1299 | 0.846 | 0.037 |[ 0.631 | 1117 | 0.960 || 1232 | 0.852 | 144.3 | 0.134 | 0.513
6 | 0.580 | 1252 | 0.867 | 0.025 || 0.627 | 1123 | 0.952 || 1236 | 0.848 || 144.8 | 0.134 | 0.515
7 || 0.561 | 1326 | 0.828 | 0.039 || 0.628 | 1126 | 0.948 || 1239 | 0.846 || 144.8 | 0.134 | 0.516
8
9

0.566 | 1292 | 0.841 | 0.030 || 0.622 | 1133 | 0.940 || 1243 | 0.843 | 145.6 | 0.134 | 0.520
0.572 | 1273 | 0.850 | 0.026 || 0.621 | 1136 | 0.936 || 1246 | 0.840 || 145.6 | 0.134 | 0.520
10 |[ 0.559 | 1317 | 0.825 | 0.032 || 0.619 | 1141 | 0.930 [ 1249 | 0.837 || 146.0 | 0.134 | 0.522
11 || 0.567 | 1289 | 0.839 | 0.027 |[ 0.619 | 1141 | 0.930 || 1250 | 0.837 || 146.0 | 0.134 | 0.522
12 | 0.559 | 1317 | 0.824 | 0.031 |[ 0.618 | 1144 [ 0.926 || 1252 | 0.835 || 146.2 | 0.133 | 0.523
13 || 0.557 | 1326 | 0.819 [ 0.032 || 0.617 | 1146 | 0.924 || 1254 | 0.833 || 146.4 | 0.133 | 0.524
14 || 0.566 | 1275 | 0.840 | 0.020 || 0.610 | 1154 [ 0.915 | 1257 | 0.830 || 147.3 | 0.134 | 0.524
15 || 0.551 | 1349 | 0.807 | 0.034 || 0.616 | 1150 | 0.919 | 1257 | 0.830 || 146.6 | 0.133 | 0.526
16 || 0.555 | 1332 [ 0.814 [ 0.031 || 0.616 | 1151 | 0.918 || 1258 | 0.828 || 146.5 | 0.133 | 0.526
17 || 0.555 | 1327 | 0.814 | 0.029 || 0.613 | 1156 | 0.913 [ 1261 | 0.828 || 146.9 | 0.133 | 0.528
18 || 0.560 | 1309 | 0.822 [ 0.025 || 0.612 | 1158 | 0.911 |[ 1262 | 0.826 || 147.0 | 0.133 | 0.529
19 || 0.553 | 1333 | 0.811 | 0.029 || 0.612 | 1157 [ 0.911 || 1262 | 0.827 || 147.1 | 0.133 | 0.529
20 || 0.555 | 1323 | 0.814 | 0.026 || 0.610 | 1161 [ 0.907 || 1264 | 0.825 || 147.3 | 0.133 | 0.530

Asagida bu degerler icin hesaplanan RMS degerleri bir tablo ile gosterilmektedir.

Tablo 4.8. RMS degerleri

GGG | GG | Laplace | Cauchy GGG | GG | Laplace | Cauchy
1 184 | 18.9 39.0 33.6 13 184 | 19.0 31.6 29.8
2 18.1 | 18.6 354 31.6 12 18.3 ( 19.2 31.5 29.5
3 18.7 | 19.2 34.1 31.2 13 18.3 ] 19.2 31.5 29.5
4 18.2 | 18.8 333 30.7 14 18.2 | 18.7 30.1 29.4
b} 18.0 | 18.8 33.2 30.0 15 17.7 | 187 31.0 28.9
6 18.5 | 19.0 32.7 304 16 1831 19.2 31.3 204
7 184 | 19.3 33.0 299 17 18.0 | 18.8 30.6 29.1
8 18.2 | 19.0 31.9 29.7 18 18.3 | 19.0 30.7 294
9 18.3 | 18.8 31.7 299 19 184 | 19.2 30.8 29.2
10 18.3 | 19.1 31.6 29.5 20 184 | 19.2 30.5 290.2




Parametrelere bagimlilik kolayca goriilebilir. Ornegin Cauchy ile GG dagilimimin
degerleri de bir parametreye bagimliligi soyler. Laplace dagilimi i¢in b degerleri yavasca ancak
kesin olarak artar. Ote yandan bir istisna haric ¢ degerleri yavasca ancak kesin olarak
azalmaktadir. GGG dagilimi i¢in kiimelerin ilk birkag ¢iftindeki degerlerde net bir bagimlilik
s06z konusudur. Bununla beraber son kiimeler i¢in tiim bu degerlerin sabitlesmeye basladigi
gozlemlenmektedir. Mevcut bilgisayar teknolojisi ile ulasilabilen Fourier katsayilarinin st

sinir1 limit dagilimin Dirac delta fonksiyon oldugunu gostermeye yetmemektedir.

Calisma kapsaminda hesaplanan Fourier katsayilarmin i¢inden, i¢inde tamkare
bulunmayan ve sifirdan farkli » indisli Fourier katsayilari se¢ilmistir. Tamsay1 agirlikli
durumlarda kompleks ¢arpima sahip olmayan Hecke eigenformlar icin sadece asal indisli olan
Fourier katsayilart Sato-Tate dagilimi yarim daire olusturur ve yarim tamsayi agirlikh
durumlarla aralarinda bu sekilde biiyiik bir farklilik vardir. Dahasi, tamsay1 agirlikli Hecke
eigenformlarin katsayilart carpimsal fonksiyonlardir bdylece asal indislerde katsayilarin
dagilimi kalanlar1 tanimlar. Yarim tamsayi agirlikli durumlar i¢in ise benzer bir durum
oldugunu bilinmemektedir. Aslinda dagilimlardaki grafigin sekli asal indisler ile sinirlandirilsa
bile 6nemli ol¢iide degismeyecektir. Burada bahsedilen asal indis ya da icinde tamkare
bulundurmayan durumlar i¢in de dagilimlardaki degerlerin 6nemli Slgiide degismedigi de

asagidaki tablo ile gosterilmistir.
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Tablo 4.9. i¢cinde tamkare bulunmayan (sqf) ve asal durumlar igin bulunan en iyi parametre degerleri

GG

GG

GG

GG

a

b

C

d

sqf

0.570

25666

0.850

0.30

asal

0.550

3892

0.759

0.030

GGG

GGG

GGG

sqf || 0.623

22621

0.942

asal || 0.614

3329

0.856

Laplace | Laplace
b c

sqf || 24837 0.843
asal || 3635 0.784

Cauchy

Cauchy

Cauchy

a

b

C

sqf

140

0.006

0.113

asal

196

0.062

0.380

I¢inde tamkare bulunmayan indislerin sayis asal indislilerin sayisindan oldukga fazla
oldugundan b degerleri tamamen farkli degerler almaktadir. Yine ayni sebepten otiiri RMS
degerleri de farkli degerler almistir. Ancak en 6nemli parametre olan a parametresi GG ve GGG
dagiliminda da neredeyse ayni degerleri almistir. Bu nedenle elde edilebilen sayida Fourier
katsayilar1 i¢in yapilan hesaplamalarda sadece i¢inde tamkare bulunmayan indisleri dikkate

almak yeterlidir.
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Sekil 4.5. 13/2 agirlikli Hecke eigenformun sadece asal indisli Fourier katsayilarmin dagilimi ve histogrami
GGG dagilimi ile normallestirilmis Fourier katsayilarin {ist sinirina en i1yi yaklagim
gbzlemlenmistir ve tiim sinirlar i¢in bu siirin sabit olup olmadig1 sorusuna ulasilmistir.
Acik Soru: (Inam vd., 2021: 2434) k = | + % olmak iizere f Kohnen Plus Space’de k agirlikli
Hecke eigenformun cusp formu ve b(n)’ler daha oOnce verilmis olan normallestirilmis

katsayilar ve x € Ry olsun.

n,n<x ven=(—1)! (mod 4) bzelliginde icinde tamkare bulundurmayan bir dogal say1
olsun. Bu 6zellikteki n sayilar1 i¢in b(n) normallestirilmis katsayilarin dagilimi parametreleri

sadece f ve x’e bagl olacak sekilde GGG dagilimu ile ifade edilebilir mi?

Daha kesin olarak leE[a,f]ER ozelligindeki tim araliklar igin

o)

— 00
ve “sqf” ile i¢inde tamkare olmayan tamsay1y1 gostermek iizere

#{n € N sqf | n<x,n = (1) mod4,b(n) €I}
#{n € N sqf|n<x,n = (—1)! mod4 }

sayisl,

B
1 f (d +t?)e it
5 exp( -

a

integral degerine esit midir?

39



5. BRUINIER-KOHNEN KONJEKTURUNUN
GUCLENDIRILMESI

Yarim tamsay1 agirlikli Hecke eigenformlarin sifirdan farkli Fourier katsayilarinin

isaretlerinin es dagildigi (Bruinier ve Kohnen, 2008: 63)’de iddia edilmistir. Daha kesin olarak
k=1+ %aglrhkh ve Fourier katsayilari reel olan bir cusp form f = Y52 a(n)q™ € Si(To(N))

olsun. Ayrica [ = 1 iken f unary teta serilerine ortogonal olsun. Bruinier ve Kohnen
fneN:a(n) >0}

ve
fneN:a(n) <0}

kiimelerinin ayn1 dogal yogunlukta ve kesin olarak
fneN:a(n) + 0}

kiimesinin dogal yogunlugunun yarisina esit oldugunu siirmiiglerdir. Bu problem zor bir
problem olup literatiirde halen bu problemin tam ¢Ozliimiinii saglayacak bir metot
bulunmamaktadir. Ancak katsay1 ailelerinin bazi 6zel alt kiimeleri iizerinde problem farkli
otomorfik formlar da dahil olmak iizere yogun bir sekilde calisilip bu yonde ¢ok sayida sonug
ispatlanmistir. Bu sonuglarin onciilii ise Shimura yiikseltmesi ile yarim tamsay1 agirliklt Hecke
eigenformlar i¢cin meshur Sato-Tate Konjektiirliniin birlesmesiyle tamkare indeksli katsayilar
icin isaretlerin dagilimini ispatidir (inam ve Wiese, 2013), (Arias-de-Reyna vd., 2015), (inam
ve Wiese, 2016)’daki gibi). Isaret dagilim problemi hala ilgi cekici olarak ¢alisilmaktadir
(6rnegin (Amri, 2019)) ayrica (Inam ve Wiese, 2013)’den bir teknikle (Kaushik vd., 2018)’de

Hilbert modiiler formlar gibi daha genel otomorfik formlara genisletilmektedir.

Bu calismada tezin yazim tarihine kadar Bruinier-Kohnen konjektiiriinii destekleyen en
genis ve en sistematik hesaplamalar yapilmistir. Gergekten de ¢cok sayida Hecke eigenform igin
hesaplanan 107 ve 108 Fourier katsayisi icin ¢izilen histogramlara dikkat edilirse bu

histogramlar y-eksenine gore simetrik olup Bruinier-Kohnen konjektiiriinii gercekler.

Gergekten de 0’ civarinda simetri olmasi isaretlerin diizgiin dagilimini ve
normallestirilmis katsayilarin mutlak degerlerinin dagilimi ile isaretlerin dagiliminin
birbirinden bagimsiz oldugunu gosterir. Bunu daha kesin yapabilmek i¢in (4.2) esitsizligi
hatirlanirsa yeterince biiyiik |b(n)| normallestirilmis katsayilarin sonsuz g¢oklukta oldugu
bilinmektedir. Bu ise n i¢inde tamkare bulundurmayan tamsayi1 olmak iizere bostan farkli

herhangi bir I € R, araliginda sonsuz c¢okluktaki |b(n)| normallestirilmis katsayilari
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bulundugunu sdyler. Dikkat edilirse Shimura yiikseltmesinden gelen tamkare indisli
katsayilarin resmi bozmamasi adina ayristirip bu ¢alismada sadece iginde tamkare
bulundurmayan indislerle calisildigi hatirlanmalidir. Fourier katsayilarinin hesaplanabildigi
sinira kadar olan normallestirilmis Fourier katsayilarin dagilimi ve 0’1n civarinda simetrisi
Bruinier-Kohnen konjektiiriiniin genisletilmesi olarak kabul edilen asagidaki konjektiire

ulagmay1 saglar.
Konjektiir 5.1.1. (inam vd., 2021:2438) (Mutlak Deger ve Isaretin Bagimsizlig1)

f yukarida verilen 6zelliklerde ve I S R. herhangi bir aralik olsun. O zaman asagidaki limit

vardir ve

#n<xsqf [Ib(M)|€,b(n) >0} 1
Pt #n<xsqf | |Ib(n)| € I} )

dir.
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6. SONUC VE TARTISMA

Bu calismada yarim tamsay1 agirliklt modiiler formlar tizerinde Sato-Tate benzeri bir
sonug¢ verilip verilemeyecegi problemi ele alinmistir. Bunu yapabilmek adina ilk olarak
literatlirdeki acik problemlerden birisi olan yarim tamsay1 agirlikli Hecke eigenformlarin
sistematik secimine Rankin-Cohen parantezi metodu ad1 verilen metotla ¢dziim tiretilmis olup

literatiire bu yonde 6nemli bir katki saglanmistir.

Elde edilen ¢ok sayida ornek iizerinde genis capli bir istatistik yapilip Ramanujan-
Petersson Konjektiirii yardimiyla normallestirilen Fourier katsayilariin GGG-dagilimiyla
aciklanabilecegi ortaya konmus ve sayisal verilerle bu iddia desteklenmistir. Boylece doktora
tezindeki en 6nemli hedeflerden birisi gerg¢eklestirilmistir. Ortaya konulan agik sorunun ispati
icin yeni bir metot gelistirilmesi gerekmekte olup, tezin {iriinii olarak ortaya ¢ikan makaleyle
calismanin yayilimi gergeklestirilmistir. Son olarak {izerine ¢ok fazla sayida makale yazilan
Bruinier-Kohnen Isaret Esdagilim Konjektiirii'niin bugiine kadar yapilmis en genis kapsamli
niimerik dogrulama ile literatiire bir katkida daha bulunulmustur. isaret ve mutlak deger

bagimsizligi ile ilgili agik problem daha da gelistirilmistir.
Su gozlemlerde bulunulmustur:

(1) normallestirilmis katsayilarin mutlak degerlerinin (4.1) esitsizligi geregi 1 olasilikla 0'a
yakinsadigi bilinse de katsayilarin (hesaplamali olarak erisilebilir) sinirlara kadar ¢ok diizgiin,
onemsiz olmayan bir dagilimini gozlemliyoruz. Dagilim, genellestirilmis bir Gauss dagilimini

takip ediyor gibi goriiniiyor.

(2) Farkl1 sinirlara ve degisken yarim tamsay1 agirliklara gore Hecke eigenformlarin normalize
edilmis Fourier katsayilarinin dagilimlarinin histogramlari, tek tip yogunluk fonksiyonu ile iyi
bir sekilde yaklasilabilmeleri, tiim grafiklerin ayni sekilde goriinmesi ve parametrelerin sadece

modiiler forma ve sinira bagl olusu gézlemlenmistir.

(3) Sinirlara kadar katsayilarin gozlemlenen dagilimlarinin O civarinda simetrisi, Bruinier-
Kohnen Isaret Esdagilim Konjektiirii'ne yonelik ¢ok gii¢lii kanit olarak yorumlanabilir. Aslinda,
varsayimin mutlak deger ve isaretlerin bagimsiz olarak dagitildigi noktaya kadar
giiclendirilmesini 6nermektedir (bkz. Konjektiir 5.1.1). Bildigimiz kadariyla bu makaledeki
hesaplamalar, Bruinier-Kohnen Isaret Esdagilim Konjektiirii i¢cin bugiine kadar yapilmis en
sistematik ve en biiyiik hesaplama destegi olarak goriilebilir. Ayrica, Agik Sorunun olumlu bir
cevab1 varsa, Bruinier-Kohnen Isaret Esdagilim Konjektiirii dogrudur ve bu bagliktaki iki

konuyu birbirine baglar.
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eigenformun histogrami ve dagilimlar eigenformun histogrami ve dagihmlar
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17/2 agirhkl ve 108 normallestirilmis Fourier katsayili Hecke ~ 23/2 agirlikhi ve 108 normallestirilmis Fourier katsayili Hecke
eigenformun histogrami ve dagihmlar eigenformun histogrami ve dagihmlar
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Sekil E.66

19/2 agirhikli ve 108 normallestirilmis Fourier katsayili Hecke

- 8 T .
eigenformun histogrami ve dagilimlar 25/2 agirlikl ve 102 normallestiriimis Fourier katsayili 1.

Hecke eigenformun histogrami ve dagilhmlar
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25/2 agirlikli ve 108 normallestirilmis Fourier katsayili 2. 29/2 agirlikl ve 10® normallestiriimis Fourier katsayili 1.
Hecke eigenformun histogrami ve dagilimlar Hecke eigenformun histogrami ve dagilimiar
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Sekil E.68 Sekil E.70
27/2 agirlikli ve 108 normallestiriimis Fourier katsayili Hecke 29/2 agurlikli ve 10° normallestirilmis Fourier katsayil 2.
eigenformun histogrami ve dagilimlar Hecke eigenformun histogrami ve dagihmlar
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EK 2) 13/2 AGIRLIKLI VE 2.10% KATSAYILI HISTOGRAMLARIN 20 ALT
KUME OLARAK GRAFIKLERIi

Sekil E.71. 1. Kisim Sekil E.75. 5. Kisim

-3 2 -1 o 1 2 3

Sekil E.72. 2. Kisim Sekil E.76. 6. Kisim

Sekil E.73. 3. Kisim

Sekil E.74. 4. Kisim Sekil E.78. 8. Kisim
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Sekil E.79. 9. Kisim Sekil E.83. 13. Kisim

Sekil E.80. 10. Kisim Sekil E.84. 14. Kisim

Laplace(x)
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Sekil E.81. 11. Kisim Sekil E.85. 15. Kisim
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Sekil E.82. 12. Kisim Sekil E.86. 16. Kisim
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Sekil E.87. 17. Kisim Sekil E.89. 19. Kisim

Sekil E.88. 18. Kisim Sekil E.90. 20. Kisim
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EK 3) EN UYGUN PARAMETRELERIN TABLOLARI

Tablo E. 1. 107 Katsayili GGG dagilim1 igin en iyi uyum parametreleri

a b c d a b c d
13/2 0.622 | 11774 | 0.967 | 0.045 47/2(2) || 0403 | 929.1 | 1.049 | 0.147
17/2 0470 | 1986.6 | 0.575 | 0.043 47/2(3) || 0475 | 27142 [ 0412 | 0.013
19/2 0386 | 45954 | 0318 | 0.018 49/2(1) || 0.439 | 14282 | 0.760 | 0.064
21/2 0477 | 22688 | 0.506 | 0.032 49/2(2) || 0.094 | 798896 | 0.121 | 0.022
23/2 0.527 | 13586 | 0.800 | 0.039 49/2(3) || 0.480 | 2317.8 [ 0474 | 0.015
25/2(1) || 0.384 | 20653 | 0.570 | 0.057 49/2(4) || 0269 | 11240 | 0.782 | 0.648
25/2(2) || 0.219 | 124285 | 0.262 | 0.048 51/2(1) || 0.509 | 1026.3 | 1.075 | 0.094
27/2 0.542 | 21292 | 0.498 | 0.018 51/2(2) || 0.442 | 35725 | 0335 | 0.008
29/2 0354 | 12722 | 0.789 | 0.147 51/2(3) || 0369 | 14884 | 0.713 | 0.091
31/2(1) || 0.468 | 24044 | 0469 | 0.019 53/2(1) || 0339 | 5188.6 | 0.306 | 0.012
31/2(2) || 0375 | 21622 | 0.555 | 0.061 53/2(2) || 0.274 | 4932.5 | 0.341 | 0.017
33/2(1) || 0.508 | 15106 | 0.721 | 0.038 53/2(3) || 0570 | 1143.5 | 0.979 | 0.0478
33/2(2) |[ 0338 | 4206.6 | 0.3526 | 0.017 53/2(4) || 0220 | 5509.5 | 0.350 | 0.067
35/2(1) || 0.185 | 30546.8 | 0.195 | 0.014 55/2(1) || 0.475 | 1518.7 | 0.718 | 0.043
35/2(2) || 0.595 61.6 | 30.3975 | 6.408 55/2(2) || 0392 | 19982 | 0.574 | 0.043
37/2(1) || 0248 | 7668.0 | 0.292 | 0.022 55/2(3) || 0.567 | 235.1 | 5.046 | 0.286
37/2(2) || 0384 | 34322 | 0397 | 0.035 55/2(4) || 0338 | 5684.9 | 0.280 | 0.006
37/2(3) | 0414 |  620.5 1.507 | 0.415 57/2(1) || 0.488 | 23204 | 0473 | 0.016
39/2(1) || 0.397 | 2286.9 | 0.519 | 0.035 57/2(2) | 0378 | 7350 | 1237 | 0422
39/2(2) || 0.508 | 22173 | 0.493 | 0.021 57/2(3) || 0276 | 7174.6 | 0.281 | 0.011
41/2(1) || 0439 | 1830.7 | 0.609 | 0.037 57/2(4) || 0.415 | 14013 | 0771 | 0.083
41/2(2) || 0.334 | 46083 | 0.329 | 0.012 59/2(1) || 0.479 | 13515 | 0.796 | 0.047
41/2(3) || 0441 | 15346 | 0.708 [ 0.048 59/2(2) || 0.365 | 2562.3 | 0.481 [ 0.031
43/2(1) || 0.307 | 2131.8 | 0.552 | 0.080 59/2(3) || 0.515 | 1281.0 | 0.841 | 0.038
43/2(2) | 0548 | 12529 | 0.879 | 0.043 59/2(4) || 0.249 | 10585.4 | 0.241 | 0.006
43/2(3) || 0232 | 124883 | 0.238 | 0.011 61/2(1) || 0.465 | 24457 | 0.465 | 0.020
45/2(1) || 0419 | 35058 | 0.357 | 0.012 61/2(2) || 0.283 | 6542.5 | 0.286 | 0.008
45/2(2) | 0492 | 9286 | 1.172] 0.116 61/2(3) || 0.450 | 2854 | 3280 | 1.910
45/2(3) [| 0.299 | 30462 | 0.443 | 0.038 61/2(4) || 0395 | 27184 | 0445 | 0.018
47/2(1) || 0408 | 2253.6 | 0.521 | 0.033 61/2(5) || 0.167 | 4656.1 | 0.375 | 0.580




Tablo E. 2. 107 Katsayili GG dagilim1 igin en iyi uyum parametreleri

47/2(2)

0.509

642

1.57

47/2(3)

0.562

2105

0.45

49/2(1)

0.542

1023

1.01

149/2(2)

0.390

3004

0.36

19/2(3)

0.561

1841

0.53

49/2(4)

0.453

2.14

51/2(1)

0.606

807

1.39

51/2(2)

0.537

2644

0.36

51/2(3)

0.519

889

1.10

53/2(1)

0.486

2725

0.37

53/2(2)

0.426

2126

0.48

53/2(3)

0.630

986

1.13

53/2(4)

0.417

1304

0.72

55/2(1)

0.568

1165

0.88

55/2(2)

0516

1287

0.77

55/2(3)

0.670

216

7.00

55/2(4)

0.463

3322

0.31

57/2(1)

0.568

1844

0.53

57/2(2)

0.529

438

2.36

57/2(3)

0.438

2903

0.36

57/2(4)

0.530

943

1.08

59/2(1)

0.568

1060

0.98

59/2(2)

0.496

1539

0.64

59/2(3)

0.586

1068

0.99

59/2(4)

0416

3728

0.30

61/2(1)

0.562

1818

0.54

61/2(2)

0.430

3023

0.35

61/2(3)

0.579

199

6.74

a b c
13/2 0.677 | 1038 | 1.08
17/2 0.581 | 1406 | 0.71
19/2 0.538 | 2513 | 037
21/2 0.585 | 1622 | 0.60
23/2 0.599 | 1128 | 0.93
25/2(1) || 0.525 | 1232 | 0.80
25/2(2) || 0.467 | 1946 | 0.51
27/2 0.615 | 1756 | 0.54
29/2 0529 | 708 | 1.37
31/2(1) || 0.560 | 1817 | 0.53
31/2(2) || 0.523 | 1232 | 0.80
33/2(1) || 0.590 | 1211 | 0.85
33/2(2) || 0.481 | 2243 | 0.44
35/2(1) || 0.428 | 3402 | 0.32
35/2(2) || 0.646 57 | 43.86
37/2(1) || 0.437 | 2291 | 045
37/2(2) || 0.540 | 1862 | 0.52
37/2(3) || 0.529 | 418 | 255
39/2(1) || 0.518 | 1470 | 0.68
39/2(2) || 0.593 | 1744 | 0.56
41/2(1) || 0.540 | 1319 | 0.76
41/2(2) || 0.471 | 2532 | 040
41/2(3) || 0.539 | 1123 | 091
43/2(1) || 0.458 | 1025 | 0.93
43/2(2) || 0.614 | 1061 1.02
43/2(3) || 0.426 | 3277 | 0.33
45/2(1) || 0.528 | 2396 | 0.40
45/2(2) | 0579 | 724 | 1.55
45/2(3) || 0.448 | 1444 | 0.67
47/2(1) || 0.524 | 1499 | 0.66

61/2(4)

0.502

1848

0.54

61/2(5)

0.406

472

1.61
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Tablo E. 3. 107 Katsayili Laplace dagilimu i¢in en iyi uyum parametreleri

1958

0.479

1090

0.962

1188

0.778

1233

0.830

1306

0.760

225

4.846

3197

0.303

1954

0.525

448

2.206

2716

0.349

969

1.039

1121

0.912

1533

0.642

1144

0.902

3389

0.274

1918

0.532

2796

0.336

211

4.830

1852

0.536

b c b ¢
13/2 1172 | 0.908 41/2(1) || 1367 | 0.740
17/2 1503 | 0.683 41/2(2) || 2458 | 0.395
19/2 2600 | 0.388 41/2(3) || 1163 | 0.897
21/2 1740 | 0.592 43/2(1) || 981 | 0.980
23/2 1220 | 0.850 43/2(2) || 1160 | 0.899
25/2(1) || 1260 | 0.791 43/2(3) || 3021 | 0.309
25/2(2) || 1884 | 0.511 45/2(1) || 2461 | 0.409
27/2 1923 | 0.542 45/2(2) || 774 | 1.331
29/2 725 | 1.317 45/2(3) || 1366 | 0.699
31/2(1) || 1914 | 0.533 47/2(1) || 1532 | 0.655
31/2(2) || 1258 | 0.789 47/2(2) | 647 | 1.539
33/2(1) || 1302 | 0.793 47/2(3) || 2219 | 0.460
33/2(2) || 2202 | 0.444 49/2(1) || 1063 | 0.953
35/2(1) || 3147 | 0.295 49/2(2) || 2650 | 0.333
35/2(2) 62 | 17.400 49/2(3) || 1940 | 0.527
37/2(1) || 2140 | 0.440 49/2(4) || 381 | 2.493
37/2(2) || 1930 [ 0.522 51/2(1) || 871 | 1.196
37/2(3) || 429 | 2.341 51/2(2) || 2734 | 0.370
39/2(1) || 1495 | 0.669 51/2(3) || 903 | 1.077
39/2(2) || 1881 | 0.550 53/2(1) || 2687 | 0.364

423

2.131




Tablo E. 4. 107 Katsayili Cauchy dagilimi i¢in en iyi uyum parametreleri

|I a b c
13/2 143 | 0.14 | 0.49
17/2 154 | 0.12 | 0.61
19/2 152 | 0.07 | 0.82
21/2 150 | 0.10 | 0.64
23/2 156 | 0.15 | 0.54
25/2(1) 163 | 0.15 | 0.59
25/2(2) 169 | 0.10 | 0.78
27/2 148 | 0.09 | 0.66
29/2 162 | 0.25 | 0.46
31/2(1) 156 | 0.09 | 0.68
31/2(2) 163 | 0.15 | 0.59
33/2(1) 156 | 0.14 | 0.56
33/2(2) 163 | 0.08 [ 0.81
35/2(1) || 212 | 0.07 | 1.17
35/2(2) || 422 7.75 [ 0.19
37/2(1) | 200 0.10 [ 0.93
37/2(2) 156 | 0.09 | 0.71
37/2(3) || 5310 | 13.99 | 1.96
39/2(1) | 175 | 0.3 [ 0.67
39/2(2) || 145 | 0.09 | 0.66
41/2(1) 161 | 0.13 | 0.61
41/2(2) 196 | 0.09 | 0.95
41/2(3) 147 | 0.14 | 0.53
43/2(1) 192 | 0.22 | 0.60
43/2(2) | 145 | 0.14 [ 0.51
43/2(3) || 243 | 0.09 | 1.23
45/2(1) || 287 | 0.13 | 1.10
45/2(2) 153 | 024|044
15/2(3) || 206 | 0.17 [ 0.74
47/2(1) 164 | 0.12 | 0.66

" a b c
47/2(2) 165 029 | 043
47/2(3) 151 0.08 | 0.74
49/2(1) 163 0.17 | 0.54
49/2(2) 211 0.09] 1.14
49/2(3) 152 0.09 | 0.70
49/2(4) 1070 3.14 | -0.90
51/2(1) 13 0.02 ] 0.13
51/2(2) 12 0.00 [ 0.23
51/2(3) 952 1.20 | 1.23
53/2(1) 169 0.07 | 091
53/2(2) 219 0.12 ] 094
53/2(3) 144 0.15 ] 049
53/2(4) 216 0.20 | 0.73
55/2(1) 580 0.54 | 1.06
55/2(2) || 1857 1.61] 2.04
55/2(3) 1459 7.01 | 0.82
55/2(4) || 3681 1.29 | 4.70
57/2(1) 149 0.59 | 0.69
57/2(2) || 65049 | 164.83 | 7.08
57/2(3) 208 0.09 | 1.05
57/2(4) 163 0.19 | 0.52
59/2(1) 1383 1.41 1.57
59/2(2) || 2525 1.86 | 2.62
59/2(3) 385 | 28.90 | 2497
59/2(4) || 88133 0.30 | 2.55
61/2(1) 151 0.09 | 0.69
61/2(2) 242 0.10 | 1.17
61/2(3) || 3403 | 18.40 | -1.07
61/2(4) 169 0.10 ] 0.74
61/2(5) 1346 3.52 | -1.12
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Tablo E. 5. 107 Katsayili tiim &rnekler igin RMS degerleri

GG | GGG | Laplace | Cauchy
13/2 19 18 39 33
17/2 21 18 29 28
19/2 27 19 30 34
21/2 21 18 31 33
23/2 19 18 28 26
25/2(1) || 21 18 22 22
25/2(2) || 33 19 35 25
27/2 19 17 37 41
29/2 18 16 18 20
31/2(1) || 22 19 28 33
31/2(2) || 21 17 22 21
33/2(1) 19 18 28 27
33/2(2) || 27 18 28 30
35/2(1) || 48 20 57 40
35/2(2) 5 5 5 5
37/2(1) || 26 14 30 25
37/2(2) || 20 15 22 25
37/2(3) 9 9 9 10
39/2(1) 16 12 16 20
39/2(2) 17 15 28 34
41/2(1) 14 12 16 20
41/2(2) || 22 14 24 27
41/2(3) 13 11 14 18
43/2(1) 13 9 13 14
43/2(2) 14 13 22 25
43/2(3) || 41 19 50 41
45/2(1) || 21 16 23 31
45/2(2) 11 10 13 16
45/2(3) 15 11 17 17
47/2(1) 16 13 16 21

GG | GGG | Laplace | Cauchy
47/2(2) || 10 9 10 12
47/2(3) || 19 16 25 34
49/2(1) || 13 11 14 17
49/2(2) || 59 24 72 49
49/2(3) || 17 15 23 31
49/2(4) || 10 10 10 10
s12(1) | 18] 17 24 20
51/2(2) |[ 23 18 27 38
51/2(3) || 20 17 20 21
53/2(1) |[ 25 16 25 28
53/2(2) || 20 12 26 25
53/2(3) |[ 13 13 23 26
53/2(4) || 17 10 20 17
55/2(1) || 19 17 24 23
55/2(2) || 21 18 22 23
55/2(3) || 12 12 13 13
55/2(4) || 30 18 34 39
57/2(1) (| 18 16 24 32
57/2(2) | 12 12 12 12
57/2(3) | 27 15 33 31
57/2(4) || 13 11 14 16
59/2(1) | 19 18 24 22
59/2(2) || 23 17 23 25
59/2(3) || 19 18 26 24
59/2(4) || 40 19 54 48
61/2(1) || 17 15 23 29
61/2(2) || 34 I8 43 42
61/2(3) 9 9 9 9
61/2(4) || 17 13 17 23
61/2(5) || 11 9 13 12
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