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ÖZET 

YARIM TAMSAYI AĞIRLIKLI MODÜLER FORMLAR ÜZERİNDE SATO-TATE 

BENZERİ PROBLEMLER ÜZERİNE 

Modüler formlar matematiğin özellikle de sayılar teorisinin önemli bir konusu olup 

yoğun bir şekilde çalışılmaktadır. Birçok anabilim dalını bir araya getirmesi nedeniyle de birçok 

matematikçi için ‘modüler formlar her yerde’ bulunur. Altı bölümden oluşan bu çalışmanın 1. 

Bölüm'ünde modüler formlar tanımlanıp temel özellikleri incelenecek ve böylece tezde ihtiyaç 

duyulan alt yapı oluşturulacaktır. Tezin özgün kısımlarından ilkini oluşturan 2. Bölüm'de yarım 

tamsayı ağırlıklı Hecke eigenformların sistematik seçimi probleminin çözümü verilecektir. 3. 

Bölüm'de ise 21. yüzyılın matematikteki en önemli başarılardan birisi olan Sato-Tate 

Konjektürü tanıtılacak ve Bruinier-Kohnen Konjektürü üzerine bir uygulaması verilecektir. 

Özgün kısmın ikinci parçası olan 4. Bölüm'de ise Ramanujan-Petersson Konjektürü tarafından 

normalleştirilen yarım tamsayı ağırlıklı modüler formların Fourier katsayılarının dağılımı 

konusu üzerinde durulacak, bir açık soru ortaya konulup mümkün olan tüm verilerle iddia 

desteklenecektir. Özgün kısmın son parçası olan 5. Bölüm'de Bruinier-Kohnen 

Konjektürü güçlendirilerek ifade edilecektir. Altıncı ve son bölüm ise tartışma, sonuç ve 

gözlemlerden oluşmaktadır. 

 

Anahtar Kelimeler: Modüler formlar, Yarım Tamsayı Ağırlıklı Modüler Formlar, Ramanujan-

Petersson Konjektürü, Bruinier-Kohnen Konjektürü, Sato-Tate Konjektürü 
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ABSTRACT 

ON SATO-TATE LIKE PROBLEMS ON HALF INTEGRAL WEIGHT OF 

MODULAR FORMS  

Modular forms are an important subject of mathematics, especially number theory, and 

they are studied intensively. Because it brings together many branches of science, 'modular 

forms are everywhere' for many mathematicians. In the first part of this six-part study, modular 

forms will be defined and their basic properties will be examined, thus creating the background 

needed in the thesis. In Chapter 2, which is the first of the original parts of the thesis, the solution 

of the systematic selection problem of half-integral weight Hecke eigenforms will be given. In 

Chapter 3, Sato-Tate Conjecture, one of the most important achievements in mathematics of 

the 21st century, will be introduced and an application on the Bruinier-Kohnen Conjecture will 

be given. In the second part of the original part, Chapter 4, the distribution of Fourier 

coefficients of half-integral weight modular forms normalized by the Ramanujan-Petersson 

Conjecture will be discussed, an open question will be raised and the claim will be supported 

with all possible data. The last part of the original part, In Chapter 5, the Bruinier-Kohnen 

Conjecture will be strengthened and expressed. The sixth and last part consists of discussion, 

conclusion and observations. 

 

Keywords: Modular forms, half integral weight modular forms, Ramanujan-Petersson 

Conjecture, Bruinier-Kohnen Conjecture, Sato-Tate Conjecture 
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1. MODÜLER FORMLAR VE ÖZELLİKLERİ 

1.1. Giriş ve Önbilgiler 

Bu bölümde çalışmanın temel konusunu oluşturan modüler formlar kavramı 
tanıtılacaktır.  

𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ ve 𝑎𝑑 െ 𝑏𝑐 ് 0 olmak üzere karmaşık analizde 𝑓ሺ𝑧ሻ ൌ ௔௭ା௕

௖௭ାௗ
 biçimindeki kesirli 

lineer dönüşümler (Möbius dönüşümü) önemli bir rol oynar. Bu dönüşümlerin fonksiyonların 

bileşke işlemine göre bir grup olduğu kolayca gösterilebilir. Bu grup projektif genel lineer grup 

olarak adlandırılır ve 𝑃𝐺𝐿ሺ2, ℝሻ ile gösterilir. İşlem kolaylığı açısından bu grubun elemanları 

matrislerle de ifade edilebilir: 

𝑎𝑧 ൅ 𝑏
𝑐𝑧 ൅ 𝑑

↔ ቀ𝑎 𝑏
𝑐 𝑑

ቁ 

Böylece matris çarpımına göre bir grup olan genel lineer grup elde edilir:  

𝐺𝐿ሺ2, ℝሻ ≔ ቄቀ𝑎 𝑏
𝑐 𝑑

ቁ : 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ, 𝑎𝑑 െ 𝑏𝑐 ് 0ቅ 

Determinantı 1 olan matrislerin oluşturduğu alt grup özel lineer grup olarak adlandırılır 

ve bu grup 𝑆𝐿ሺ2, ℝሻ ile gösterilir: Özel olarak yukarıdaki matrisin girdilerini reel sayılar yerine 

tamsayılar alınarak çok daha ilgi çekici özelliklere sahip olan aşağıda tanımlı modüler grup elde 

edilir. Konu ile ilgili detaylar Schoeneberg (1974)’den incelenebilir. 

Tanım 1.1.1. (Schoeneberg, 1974: 16) 

𝛤 ൌ 𝑆𝐿ሺ2, ℤሻ ≔ ቄቀ𝑎 𝑏
𝑐 𝑑

ቁ : 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ, 𝑎𝑑 െ 𝑏𝑐 ൌ 1ቅ 

kümesinin matrislerdeki çarpma işlemine göre oluşturduğu gruba modüler grup denir ve 𝛤 veya 

𝑆𝐿ሺ2, ℤሻ ile gösterilir. 

Tanım 1.1.2. (Schoeneberg, 1974: 78) 

𝛤଴ሺ𝑁ሻ ≔ ቄቀ𝑎 𝑏
𝑐 𝑑

ቁ ∈ 𝛤 ∶ 𝑐 ≡ 0 ሺ𝑚𝑜𝑑 𝑁ሻቅ 

şeklinde tanımlanan alt gruba 𝛤’nın temel denklik alt grubu denir ve 𝛤଴ሺ𝑁ሻ ile gösterilir. Burada 

𝑁 sayısına alt grubun seviyesi adı verilir. 

Bu hazırlıkların ardından modüler form tanımı verilebilir. Bu tanım sadece modüler 

grup veya onun alt grubu üzerinde değil aynı zamanda daha genel gruplar olan “birinci tip 
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Fuchsian gruplar” için de geçerlidir. Burada çalışmanın kapsamı gereği 1 seviyeli 𝑘 ağırlıklı 

modüler form tanımı ile 𝑁 seviyeli 𝑘 ağırlıklı modüler form tanımı verilecektir. 

Tanım 1.1.3. (Cohen ve Strömberg, 2017: 132) f, ℍ  üst yarı düzlemi üzerinde tanımlı ve 

aşağıdaki özellikleri sağlayan karmaşık değerli yani 𝑓: ℍ → ℂ şeklinde bir fonksiyon ve 𝑘 

pozitif bir tamsayı olsun. 

(i) Eğer her 𝑧 ∈ ℍ  ve 𝛾 ൌ ቀ𝑎 𝑏
𝑐 𝑑

ቁ ∈ 𝛤 için, 

𝑓 ൬
𝑎𝑧 ൅ 𝑏
𝑐𝑧 ൅ 𝑑

൰ ൌ ሺ𝑐𝑧 ൅ 𝑑ሻ௞𝑓ሺ𝑧ሻ 

fonksiyonel eşitliği sağlanıyor ise bu durumda 𝑓’ye zayıf modüler denir. Eğer buna ilave olarak 

(ii) 𝑓 fonksiyonu ℍ  üzerinde analitik, 

(iii) 𝑓 fonksiyonu 𝑖∞’da analitik 

oluyor ise 𝑓’ye 𝛤 için 𝑘 ağırlıklı modüler form adı verilir. 

Tanım 1.1.4. (Cohen ve Strömberg, 2017: 175) 𝑓, ℍ  üst yarı düzlemi üzerinde tanımlı ve 

aşağıdaki özellikleri sağlayan karmaşık değerli yani 𝑓: ℍ → ℂ şeklinde bir fonksiyon ve 𝑘 

pozitif bir tamsayı olsun. 

(i) Eğer her 𝑧 ∈ ℍ  ve 𝛾 ൌ ቀ𝑎 𝑏
𝑐 𝑑

ቁ ∈ Γ଴ሺ𝑁ሻ için, 

𝑓 ൬
𝑎𝑧 ൅ 𝑏
𝑐𝑧 ൅ 𝑑

൰ ൌ ሺ𝑐𝑧 ൅ 𝑑ሻ௞𝑓ሺ𝑧ሻ 

fonksiyonel eşitliği sağlanıyor ise bu durumda f’ye zayıf modüler denir. Eğer buna ilave olarak 

(ii) 𝑓 fonksiyonu ℍ  üzerinde analitik, 

(iii) 𝑓 fonksiyonu ℚ ∪ ሼ𝑖∞ሽ kümesinin her noktasında analitik 

oluyor ise 𝑓’ye 𝛤଴ሺ𝑁ሻ için 𝑘 ağırlıklı 𝑁 seviyeli modüler form adı verilir. 

Uyarı 1.1.5. Γ için tanımlı 𝑘 ağırlıklı modüler formlar 1 seviyeli modüler form olur. (ii) ve (iii) 

sağlanmadığı takdirde ise aynı ağırlıklı ve seviyeli modüler fonksiyon adını alır. Modüler 

fonksiyonlar da oldukça ilgi çekici özelliklere sahip olup çalışmanın kapsamı dışındadır. 

Modüler formlar otomorfik formların özel halleri olup daha genel otomorfik formlara örnek 

olarak Maass form, Bianchi modüler form, Jacobi form, Siegel modüler form ve Hilbert 

modüler form verilebilir. Bu konu ile ilgili olarak (Cohen ve Strömberg, 2017)’in 15. bölümü 

incelenebilir. 
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f eğer ∞’da sıfır oluyorsa cusp form adını alır. 𝑘 ağırlıklı 1 seviyeli cusp formlar uzayı 

𝑆௞ሺ𝛤ሻ ile gösterilir. 𝛤଴ሺ𝑁ሻ denklik alt grubu için modüler form tanımlandığında modüler 

formlar uzayı 𝑀௞൫𝛤଴ሺ𝑁ሻ൯, cusp formlar uzayı ise 𝑆௞൫𝛤଴ሺ𝑁ሻ൯ ile gösterilir. 

Teorem 1.1.6. (Koblitz, 1984: 109) 𝑀௞ሺ𝛤ሻ, ℂ cismi üzerinde sonlu boyutlu bir vektör uzayıdır. 

İspat. 𝑓, 𝑔 ∈ 𝑀௞ሺ𝛤ሻ ve 𝛼 ∈ ℂ olsun. 𝑓 ൅ 𝛼𝑔’nin de  𝑀௞ሺ𝛤ሻ da olduğunun gösterilmesi gerekir. 

Üst yarı düzlemde ve ∞’da 𝑓 ൅ 𝛼𝑔’nin analitikliği ile dönüşüm özelliklerini sağladığı açıktır. 

𝛾 ൌ ቀ𝑎 𝑏
𝑐 𝑑

ቁ ∈ 𝛤 olsun. O zaman  

ሺ𝑓 ൅ 𝛼𝑔ሻ൫𝛾ሺ𝑧ሻ൯ ൌ 𝑓൫𝛾ሺ𝑧ሻ൯ ൅ 𝛼𝑔൫𝛾ሺ𝑧ሻ൯ 

 ൌ ሺ𝑐𝑧 ൅ 𝑑ሻ௞𝑓ሺ𝑧ሻ ൅ 𝛼ሺ𝑐𝑧 ൅ 𝑑ሻ௞𝑔ሺ𝑧ሻ 

ൌ ሺ𝑐𝑧 ൅ 𝑑ሻ௞൫𝑓ሺ𝑧ሻ ൅ 𝛼𝑔ሺ𝑧ሻ൯ 

         ൌ ሺ𝑐𝑧 ൅ 𝑑ሻ௞ሺ𝑓 ൅ 𝛼𝑔ሻሺ𝑧ሻ 

Böylece 𝑓 ൅ 𝛼𝑔 ∈ 𝑀௞ሺ𝛤ሻ olur. Bu da ispatı bitirir. 

Uyarı 1.1.7. Modüler formların bir vektör uzayı oluşturması konunun popüler olmasının en 

önemli sebeplerinden birisidir. Öncelikle lineer cebirdeki hemen hemen tüm kavramlar ve 

teoriler modüler formlar teorisi için aynen geçerlidir. Öte yandan sonlu boyutlu olması taban 

vektörlerinin “kolaylıkla” elde edilebilmesini sağladığı için özellikle hesaplamalı modüler form 

problemlerinde pratiklik sağlar.  

Modüler grubun üreteçleri 𝛤’nın özel iki elemanı olan 𝑇 ൌ ቀ0 െ1
1 0

ቁ ve 𝑆 ൌ ቀ1 1
0 1

ቁ 

dönüşümleridir ve bu dönüşümler modüler form tanımındaki fonksiyonel eşitlikte yerine 

yazıldığında aşağıdaki teorem elde edilir. 

Teorem 1.1.8. (Koblitz, 1984: 108) 𝑓ሺ𝑧ሻ ∈ 𝑀௞ሺ𝛤ሻ keyfi bir modüler form olsun. Bu takdirde 

i. 𝑓 ቀെ ଵ

௭
ቁ ൌ 𝑧௞𝑓ሺ𝑧ሻ 

ii. 𝑓ሺ𝑧 ൅ 1ሻ ൌ 𝑓ሺ𝑧ሻ 

 olur. 

İspat. 

𝑓 ൬
𝑎𝑧 ൅ 𝑏
𝑐𝑧 ൅ 𝑑

൰ ൌ ሺ𝑐𝑧 ൅ 𝑑ሻ௞𝑓ሺ𝑧ሻ 

fonksiyonel eşitliğini sağladığı gösterilsin. 
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Burada 𝑓 ቀെ ଵ

௭
ቁ ifadesinde 𝑎 ൌ 0, 𝑏 ൌ െ1, 𝑐 ൌ 1, 𝑑 ൌ 0 olduğundan fonksiyonel eşitlikte 

yerine konursa 𝑓 ቀെ ଵ

௭
ቁ ൌ 𝑧௞𝑓ሺ𝑧ሻ olduğu açıktır. 

Aynı şekilde 𝑓ሺ𝑧 ൅ 1ሻ de 𝑎 ൌ 1, 𝑏 ൌ 1, 𝑐 ൌ 0, 𝑑 ൌ 1 olduğundan fonksiyonel eşitliğin 

𝑓ሺ𝑧 ൅ 1ሻ ൌ 1௞𝑓ሺ𝑧ሻ ൌ 𝑓ሺ𝑧ሻ olduğu görülür. Bu durumda ispat biter. 

Uyarı 1.1.9. Fourier Analizi teorisinin önemli bir teoremi yani (Gradshteyn ve Ryzhik, 2007: 

26). Teorem 1.1.8. (ii) gereği periyodik her bir karmaşık fonksiyonun 𝑠𝑖𝑛𝑧 ve 𝑐𝑜𝑠𝑧 cinsinden 

ifade edilebileceğini ve böylece bu karmaşık fonksiyonun bir Fourier serisi ile temsil 

edilebileceğini söyler. 

Teorem 1.1.10. (Koblitz, 1984: 108) Modüler formlar periyodik fonksiyonlar olduğu için her 

bir f fonksiyonunun 𝑞 ൌ 𝑒ଶగ௜௭ olmak üzere 

𝑓ሺ𝑧ሻ ൌ ෍ 𝑎ሺ𝑛ሻ𝑞௡

௡ஹ଴

 

şeklinde bir Fourier açılımı vardır. Buradaki 𝑎ሺ𝑛ሻ sayıları Fourier katsayıları olarak adlandırılır.  

Örnek 1.1.11. Ramanujan-Tau fonksiyonu, modüler formların en temel örneklerinden biridir. 

Bu fonksiyon ∆ሺ𝑧ሻ ile gösterilir ve 

∆ሺ𝑧ሻ ≔ ෍ 𝜏ሺ𝑛ሻ𝑞௡

௡ஹଵ

ൌ 𝑞 ෑሺ1 െ 𝑞௡ሻଶସ

௡ஹଵ

 

                                    ൌ 𝑞 െ 24𝑞ଶ ൅ 252𝑞ଷ െ 1472𝑞ସ ൅ 4830𝑞ହ െ ⋯ 

olarak tanımlanır. Kolayca gösterilebilir ki ∆ሺ𝑧ሻ, Γ için 12-ağırlıklı 1 seviyeli bir cusp formdur 

(Zagier, 1994). 

Örnek 1.1.12. Modüler formlar için bir başka ilginç örnek de Eisenstein Serileridir. 𝑘 ağırlıklı 

Eisenstein serisi, 𝐺௞ሺ𝑧ሻ ile gösterilir; 𝑧 ∈ ℍ, 𝑘 ൐ 2 tamsayı ve m,n aynı anda sıfır olmayan iki 

tamsayı olmak üzere 

𝐺௞ሺ𝑧ሻ ≔ ෍ ෍
1

ሺ𝑚 ൅ 𝑛𝑧ሻ௞

ஶ

௡ୀିஶ

ஶ

௠ୀିஶ

 

olarak tanımlanır. Riemann 𝜁 fonksiyonu ile kıyaslama yapılarak Eisenstein serilerinin iyi 

tanımlı olduğu gösterilebilir. 

Buradan aşağıdaki teorem ile Eisenstein serilerinin bir modüler form olduğu ifade 

edilebilir. 
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Teorem 1.1.13. (Cohen ve Strömberg, 2017: 146) 𝑘 ൒ 2 için 𝐺ଶ௞ሺ𝑧ሻ ∈ 𝑀ଶ௞ሺ𝛤ሻ dir. 

Tanım 1.1.14. (Cohen ve Strömberg, 2017: 147) 𝑘 ൐ 2 bir çift tamsayı olmak üzere 

𝐸௞ሺ𝑧ሻ ൌ 1 െ
2𝑘
𝐵௞

෍ 𝜎௞ିଵሺ𝑛ሻ𝑞௡

ஶ

௡ୀଵ

 

şeklindeki seriye 𝑘 ağırlıklı normalleştirilmiş Eisenstein serisi adı verilir. Burada 𝐵௞, 𝑘-ıncı 

Bernoulli sayısını gösterir ve 𝜎 bölen fonksiyonu 𝜎௞ିଵሺ𝑛ሻ ≔ ∑ 𝑑௞ିଵ
ௗ|௡  olarak tanımlanır. 

Örnek 1.1.15. Yukarıdaki tanım kullanılarak 

𝐸ସሺ𝑧ሻ ൌ 1 ൅ 240 ෍ 𝜎ଷሺ𝑛ሻ𝑞௡

ஶ

௡ୀଵ

 

𝐸଺ሺ𝑧ሻ ൌ 1 െ 504 ෍ 𝜎ହሺ𝑛ሻ𝑞௡

ஶ

௡ୀଵ

 

𝐸ଵସሺ𝑧ሻ ൌ 1 െ 24 ෍ 𝜎ଵଷሺ𝑛ሻ𝑞௡

ஶ

௡ୀଵ

 

olduğu açıkça görülebilir. Eisenstein serilerinin sağladığı çeşitli özdeşlikler vardır. Örneğin 

𝐸ଵ଴ ൌ 𝐸ସ𝐸଺ 

3617. 𝐸ଵ଺ ൌ 1617. 𝐸ସ
ସ ൅ 2000. 𝐸ସ. 𝐸଺

ଶ 

olur. Yukarıdaki teorem gereği 𝐸ଵ଴ ve 𝐸ଵ଺’nın sırasıyla 10 ve 16 ağırlıklı modüler form 

oldukları hatırlanırsa bu ve benzeri özdeşliklerden 𝐸ସ ve 𝐸଺ Eisenstein serileri ile modüler 

formlar arasındaki aşağıdaki teorem ile verilen ilişki sezgisel olarak gözlemlenebilir. 

Teorem 1.1.16. (Koblitz, 1984: 118) Herhangi bir 𝑓 ∈ 𝑀௞ሺ𝛤ሻ fonksiyonu  

𝑓ሺ𝑧ሻ ൌ ෍ 𝑐௜,௝𝐸ସሺ𝑧ሻ௜𝐸଺ሺ𝑧ሻ௝

ସ௜ା଺௝ୀ௞

 

şeklinde yazılabilir.  

Gerçekten de tüm modüler formların 𝐸ସሺ𝑧ሻ ve 𝐸଺ሺ𝑧ሻ ile temsil edilebilmesi (Cohen ve 

Strömberg, 2017) ve Eisenstein serilerinin Fourier katsayılarının 𝜎 bölen fonksiyonu yardımı 

ile oldukça hızlı ve pratik bir şekilde hesaplanabilmesi bu ilginç durumu açıklamaktadır. 

Dikkat edilirse modüler formların tanımındaki fonksiyonel eşitlik tıpkı Barry Mazur’ın 

BBC yapımı “Fermat’ın Son Teoremi” belgeselinde söylediği gibi “varlıkları kazara gibi 
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gözüken ancak var olan” modüler formların çok fazla sayıda simetriye sahip olmasını sağlar. 

Bu sayede “modüler formlar ile aritmetik yapılabilir mi?” sorusu akla gelir. Bu sorunun 

cevabının aşağıda verilen Sturm sınırı ile olumlu olduğu görülür. 

Teorem 1.1.17. (Cohen ve Strömberg, 2017: 185) 𝑓 ൌ ∑ 𝑎ሺ𝑛ሻ𝑞௡ஶ
௡ୀ଴ ,  𝑔 ൌ ∑ 𝑏ሺ𝑛ሻ𝑞௡ஶ

௡ୀ଴ ∈

𝑀௞൫𝛤଴ሺ𝑁ሻ൯ olsun. dN sayısı 𝛤଴ሺ𝑁ሻ’in, 𝑃𝑆𝐿ሺ2, ℤ)’deki görüntüsünün indeksi olmak üzere 

𝑀 ≔
𝑘𝑑ே

12
 

sayısı tanımlansın. Eğer 0 ൑ 𝑖 ൑ 𝑀 için ai=bi ise bu takdirde f = g olur. 

M sayısına Sturm sınırı adı verilir. 

Tanım 1.1.18. (Cohen, 2019: 180) 𝑓ሺ𝑧ሻ ൌ ∑ 𝑎ሺ𝑛ሻ𝑞௡ஶ
௡ୀ଴  normalleştirilmiş bir eigenform 

olsun. 

𝐿ሺ𝑓, 𝑠ሻ ൌ ෑ
1

1 െ 𝑎ሺ𝑝ሻ𝑝ି௦ ൅ 𝑝௞ିଵିଶ௦
௣∈௉

 

şeklinde tanımlanan fonksiyona ∑ 𝑎ሺ𝑛ሻ௡ஹଵ 𝑞௡ Euler çarpımına sahip L- fonksiyonu adı verilir. 

1.2. Hecke Eigenformlar 

Modüler formlar karmaşık cisim üzerinde sonlu boyutlu vektör uzayı olduğu için lineer 

cebirdeki tüm kavramların modüler formlarda karşılıkları vardır. Lineer operatörlerin 

özdeğerleri ile oluşan özvektörün modüler formlardaki karşılığı Hecke eigenform olup bu 

formlar birçok özelliği ile ön plana çıkarlar. Örneğin Hecke eigenformların Fourier katsayıları 

çarpımsal aritmetik fonksiyonlardır; diğer yandan Hecke eigenformlar "newformların" doğal 

bir tabanını oluştururlar. Hecke eigenformların L-fonksiyonları Euler çarpımları ile birlikte 

analitik/meromorfik devama sahiptir. Eliptik eğrilerle modüler formlar arasındaki ilişki Hecke 

eigenformların L-fonksiyonları üzerinden kurulur. Öte yandan Hecke eigenformlarla Galois 

temsilleri eşleşir ve bu çalışmanın tabanını oluşturan Sato-Tate Konjektürü yalnızca Hecke 

eigenformlar için geçerlidir. Tüm bu detaylar için (Cohen ve Strömberg, 2017) ve (Silverman, 

1986)'a bakılabilir. Bu bölümde Hecke eigenformlar tanıtılacaktır.  

Tanım 1.2.1. (Cohen ve Strömberg, 2017: 343) Herhangi bir sabit 𝑘 tamsayısı, 𝑛 pozitif 

tamsayısı, her 𝑓 ∈ 𝑀௞ሺ𝛤ሻ için 𝑇௡: 𝑀௞ሺ𝛤ሻ → 𝑀௞ሺ𝛤ሻ olmak üzere 

𝑇௡𝑓ሺ𝑧ሻ ൌ 𝑛௞ିଵ ෍ 𝑑ି௞

ௗ|௡

෍ 𝑓 ൬
𝑛𝑧 ൅ 𝑏𝑑

𝑑ଶ ൰

ௗିଵ

௕ୀ଴
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şeklinde tanımlanan operatörlere 𝑛-inci Hecke operatörü adı verilir ve 𝑇௡ ile gösterilir. 

Tanım 1.2.2. (Cohen ve Strömberg, 2017: 343) 

m = 1, 2, ... olmak üzere tüm Tm Hecke operatörleri için özvektör olan modüler forma Hecke 

eigenform (özform) adı verilir. Baş katsayısı 1 olan eigenformlar tam olarak Hecke 

operatörlerinin özvektörü olduğu açıktır. 

Teorem 1.2.3. (Koblitz, 1984: 156) 

(i) 𝑝 asalı için 𝑝-inci Hecke operatörü  

𝑇௣𝑓ሺ𝑧ሻ ൌ 𝑝௞ିଵ𝑓ሺ𝑝𝑧ሻ ൅
1
𝑝

෍ 𝑓 ൬
𝑧 ൅ 𝑏

𝑝
൰

௣ିଵ

௕ୀ଴

 

şeklindedir. 

(ii) Eğer 𝑓 ∈ 𝑀௞ሺ𝛤ሻ, 

𝑓ሺ𝑧ሻ ൌ ∑ 𝑐ሺ𝑚ሻ𝑒ଶగ௜௠௭ஶ
௠ୀ଴  şeklinde bir Fourier açılıma sahip ise o zaman 𝑛-inci Hecke 

operatörü 𝑇௡ de bir Fourier açılıma sahiptir ve 𝛾௡ሺ𝑚ሻ ൌ ∑ 𝑑௞ିଵ
ௗ|ሺ௡,௠ሻ 𝑐 ቀ௠௡

ௗమ ቁ olmak 

üzere 

𝑇௡𝑓ሺ𝑧ሻ ൌ ෍ 𝛾௡ሺ𝑚ሻ𝑒ଶగ௜௠௭

ஶ

௠ୀ଴

 

şeklindedir. 

(iii) ሺ𝑚, 𝑛ሻ ൌ 1 ise 𝑇௠. 𝑇௡ ൌ 𝑇௠.௡ dir. 

(iv)  Hecke operatörleri cusp formları cusp formlara resmeder, yani cusp form uzayını korur. 

Teorem 1.2.4. (Cohen ve Strömberg, 2017: 343) 𝑘 ൐ 0 ve 𝑓 ∈ 𝑀௞ሺ𝛤ሻ sıfırdan farklı modüler 

form olsun. 𝑓 ൌ ∑ 𝑎ሺ𝑛ሻ𝑞௡
௡ஹ଴ , 𝑓’nin Fourier açılımı olsun. Eğer 𝑓, tüm 𝑇௡ Hecke operatörleri 

için bir eigen fonksiyon ise yani tüm 𝑛 ൒ 1 için 𝑇௡𝑓 ൌ 𝜆ሺ𝑛ሻ𝑓 ise o zaman 𝑎ሺ1ሻ ് 0’dir. Eğer 

𝑓 normalleştirilerek 𝑎ሺ1ሻ ൌ 1 ise o zaman tüm 𝑛 ൒ 1 için 𝑎ሺ𝑛ሻ ൌ 𝜆ሺ𝑛ሻ’dir. 

Tanım 1.2.5. (Cohen ve Strömberg, 2017: 343) 𝑓 ൌ ∑ 𝑎ሺ𝑛ሻ𝑞௡
௡ஹ଴ ∈ 𝑀௞ሺ𝛤ሻ sıfırdan farklı bir 

modüler form olsun. 𝑎ሺ1ሻ ൌ 1 özelliğindeki Hecke eigenformlara normalleştirilmiş Hecke 

eigenform denir. 
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1.3. Yarım Tamsayı Ağırlıklı Modüler Formlar 

k bir tamsayı olsun. Bu durumda k + 1/2 yarım tamsayı olarak adlandırılır. Bu bölümde 

çalışmanın esas bölümünü oluşturacak modüler formlardan yarım tamsayı ağırlıklı modüler 

formlar tanımlanacaktır. Bunun için bazı ön hazırlık gereklidir. İlk olarak teta serisi 

tanımlanarak başlanacaktır.  

Tanım 1.3.1. Her bir 𝑧 ∈ ℍ için 

𝜃ሺ𝑧ሻ ≔ ෍ 𝑒ଶ௜గ௡మ௭
ஶ 

௡ୀିஶ
 

şeklinde tanımlanan seriye teta serisi adı verilir. 

Ağırlığın yarım tamsayı alınması halinde teta serisi tamsayı ağırlıklı modüler formlar 

tanımındaki fonksiyonel eşitliği hemen hemen sağladığı görülebilir. Bu nedenle 

(Shimura,1973)’te yarım tamsayı ağırlıklı modüler formları tanımlamıştır. Bu modüler formlara 

iyi bir örnek, teta serileridir hatta bu çalışmada kullanılmayan ancak oldukça önemli bir 

modüler form olan Dedekind-eta fonksiyonu da benzer fonksiyonel eşitliği sağladığı 

bilinmektedir (Cohen ve Strömberg, 2017: 33). 

Gerçekten de her 𝛾 ൌ ቀ𝑎 𝑏
𝑐 𝑑

ቁ ∈ 𝛤଴ሺ4ሻ için teta fonksiyonu  

ቆ
𝜃൫𝛾ሺ𝑧ሻ൯

𝜃ሺ𝑧ሻ
ቇ

ଶ

ൌ ൬െ
1
𝑑

൰ ሺ𝑐𝑧 ൅ 𝑑ሻ 

fonksiyonel eşitliğini sağlar. Burada ቀି

ௗ
ቁ ifadesi Jacobi sembolünü göstermektedir. 𝜃ሺ𝑧ሻଶ’nin 

1 ağırlıklı 4 seviyeli bir modüler form olduğu kolayca görülebilir. Böylece yarım tamsayı 

ağırlıklı modüler formların tanımlanması için gerekli motivasyon sağlanmış olur.  

Tanım 1.3.2. (Koblitz, 1984: 178) 𝛾 ∈ 𝛤଴ሺ4ሻ için otomorfi çarpanı 𝐽ሺ𝛾, 𝑧ሻ ൌ
ఏ൫ఊሺ௭ሻ൯

ఏሺ௭ሻ
 olarak 

tanımlansın. k bir pozitif tamsayı ve 𝑓: ℍ → ℂ olmak üzere 

i. 𝑓൫𝛾ሺ𝑧ሻ൯ ൌ 𝐽ሺ𝛾, 𝑧ሻଶ௞ାଵ𝑓ሺ𝑧ሻ 

ii. 𝑓ሺ𝑧ሻ, ℚ ∪ ሼ𝑖∞ሽ noktalarında analitiktir. 

koşullarını sağlayan f fonksiyonuna, 𝑘 ൅ ଵ

ଶ
 ağırlıklı 4 seviyeli modüler form adı verilir. 
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Tamsayı ağırlıklı modüler formlar için verilen notasyon burada da geçerlidir örneğin 

𝑘 ൅ ଵ

ଶ
 ağırlıklı 4 seviyeli sonlu boyutlu yarım tamsayı ağırlıklı modüler formların vektör uzayı 

𝑀௞ାభ
మ
൫Γ଴ሺ4ሻ൯ ile gösterilir. 

Tanım 1.3.3. (Koblitz, 1984: 184) F(z), k+1/2 ağırlıklı bir modüler form olsun. Bu durumda 

𝑞 ൌ 𝑒ଶగ௜௭ olmak üzere, 𝐹ሺ𝑧ሻ’nin 

𝐹ሺ𝑧ሻ ൌ ෍ 𝐴ሺ𝑛ሻ𝑞௡

௡ஹ଴

 

şeklinde bir Fourier açılımı vardır. Buradaki 𝐴ሺ𝑛ሻ sayıları yine Fourier katsayıları olarak 

adlandırılır. 

Önerme 1.3.4. (Koblitz, 1984: 206) 𝑇௣మ, yarım tamsayı ağırlıklı modüler formlar üzerinde 𝑝ଶ-

inci Hecke operatörü ve 𝑝 asal olmak üzere 𝑝 ∤ 𝑁 ve 𝑘 ൌ 2𝜆 ൅ 1 pozitif tek tamsayı olsun. 

𝑓ሺ𝑧ሻ ൌ ∑ 𝑎௡𝑒ଶగ௜௡௭ஶ
௡ୀ଴ ∈ 𝑀ೖ

మ
ቀΓ଴෩ ሺ𝑁ሻቁ olduğunda 

𝑏ሺ𝑛ሻ ൌ 𝑎ሺ𝑝ଶ𝑛ሻ ൅ ቆ
ሺെ1ሻఒ𝑛

𝑝
ቇ 𝑝ఒିଵ𝑎ሺ𝑛ሻ ൅ 𝑝௞ିଶ𝑎 ൬

𝑛
𝑝ଶ൰ 

olmak üzere 

𝑇௣మ𝑓ሺ𝑧ሻ ൌ ෍ 𝑏ሺ𝑛ሻ𝑒ଶగ௜௡௭

ஶ

௡ୀ଴

 

dir. 

Tanım 1.3.5. p asal olmak üzere tüm 𝑇௣మ ler için özvektör olan modüler forma, yarım tamsayı 

ağırlıklı modüler formlar için Hecke eigenform denir. 

Teorem 1.3.6. (Shimura, 1973), (Niwa, 1974)  

𝑓ሺ𝑧ሻ ൌ ෍ 𝑎ሺ𝑛ሻ𝑞௡

௡ஹ଴

 

2k ağırlıklı bir modüler form ve  

𝐹ሺ𝑧ሻ ൌ ෍ 𝐴ሺ𝑛ሻ𝑞௡

௡ஹ଴
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k+1/2 ağırlıklı modüler form olmak üzere F’yi f ile eşleştiren bir yükseltme dönüşümü 

vardır. Bu dönüşüme Shimura Karşılık Gelmesi adı verilir. Bu karşılık gelme Fourier katsayıları 

yardımıyla net olarak bellidir. Daha kesin olarak: 

İki modüler formun Fourier katsayıları arasında t tamkare olmayan bir sabit tamsayı,  

𝑎ሺ𝑡ሻ ് 0 ve 

𝜒௧,ேሺ𝑑ሻ ≔ 𝜒ሺ𝑑ሻ ቆ
ሺെ1ሻ௞𝑁ଶ𝑡

𝑑
ቇ 

olmak üzere  

𝑎ሺ𝑛ሻ ൌ ෍ 𝜒௧,ே

ௗ|௡

ሺ𝑑ሻ𝑑௞ିଵ𝐴 ቆ
𝑡𝑛ଶ

𝑑ଶ ቇ 

şeklinde bir ilişki vardır. Dikkat edilirse buradaki bağıntı yarım tamsayı ağırlıklı modüler 

formların tamkare indisli terimleri yardımıyla verilmektedir.  

Cusp formlar uzayı içerisinde önemli özelliklere sahip bir alt uzayı barındırır. Aşağıda 

tanımı verilen Kohnen Plus Space’in elemanları olan cusp formlar aritmetik olarak önemli 

bilgiler içerir. 

Tanım 1.3.7. (Kohnen, 1980: 249)  

𝑓 ൌ ෍ 𝑐ሺ𝑛ሻ𝑞௡ ∈ 𝑆
௞ାଵ

ଶ
൫Γሺ4𝑁ሻ൯

ஶ

௡ୀଵ

 

bir cusp form olsun. ሺെ1ሻ௞𝑛 ≢ 0,1 ሺ𝑚𝑜𝑑 4ሻ özelliğindeki tüm c(n) katsayıları sıfır olan cusp 

formların oluşturduğu alt uzay Kohnen Plus Space olarak adlandırılır ve 𝑆
௞ାభ

మ

ା ൫Γሺ4𝑁ሻ൯ ile 

gösterilir. 

1.4. Eliptik Eğriler ve Modülarite Teoremi 

Taniyama-Shimura konjektürü 1955-1957’de ortaya atılan her bir eliptik eğriye karşılık 

bir modüler form ve her bir modüler forma da bir eliptik eğri karşılık geldiğini ortaya koyan 

matematik tarihine damgasını vurmuş bir ifadedir. Epsilon konjektürünün 1986’da Ken Ribet 

tarafından ispatlanması ile beraber Taniyama-Shimura konjektürünün Fermat’ın son teoremini 

gerektirdiği ortaya çıkmıştır. Bu ise modüler formlarla bağlantılı olarak eliptik eğriler 

konusunun çift yönlü ele alınmasını sağlamıştır. Örneğin çalışmanın özünü oluşturan Sato-Tate 

konjektürü aslında eliptikler eğriler için verilmiş olan bir sonuç olup “Modülarite Teoremi” 
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sayesinde modüler formlar için de geçerli olur. Bu bölümde gerekli referanslar verilerek çok 

fazla detaya girmeden çalışmanın tamlığını sağlayacak bilgiler derlenecektir. 

Tanım 1.4.1. (Silverman, 1986: 48) 𝐾, karakteristiği 2 ve 3 ten farklı bir cisim ve 𝐴 ile 𝐵 belli 

iki tamsayı olsun. Δ ≔ െ16ሺ4𝐴ଷ ൅ 27𝐵ଶሻ ് 0 olmak üzere 

𝐸/𝐾 ≔ ሼሺ𝑥, 𝑦ሻ ∈ 𝐾: 𝑦ଶ ൌ 𝑥ଷ ൅ 𝐴𝑥 ൅ 𝐵ሽ ∪ ሼ∞ሽ 

 şeklinde tanımlı eğriye 𝐾 üzerinde tanımlı bir eliptik eğri adı verilir. 

Teorem 1.4.2. (Silverman, 1986: 55) 𝑃 ve 𝑄, 𝐸/𝐾 üzerinde iki nokta olsun bu iki noktanın 

toplamı bu iki noktadan geçen doğrunun eliptik eğriyi kestiği noktanın x-eksenine göre 

simetriği olarak Şekil 1.1.’deki gibi tanımlanır. Bu toplama işlemi yardımıyla 𝐸/𝐾 bir Abelyan 

grup olur. 

 

Şekil 1.1. Eliptik eğri üzerinde nokta toplamı 

Tanım 1.4.3. (Silverman, 1986: 361) 𝐸/ℚ eliptik eğrisi için 𝐿 fonksiyonu 𝐿ሺ𝐸, 𝑠ሻ ile gösterilir 

ve 

𝑎ሺ𝑝ሻ ≔ 𝑝 ൅ 1 െ ห𝐸൫𝔽௣൯ห 

olmak üzere 

𝐿ሺ𝐸, 𝑠ሻ ≔ ෑ
1

1 െ 𝑎ሺ𝑝ሻ𝑝ି௦
௣|୼

. ෑ
1

1 െ 𝑎ሺ𝑝ሻ𝑝ି௦ ൅ 𝑝ଵିଶ௦
௣∤୼

 

olarak tanımlanır. 

Teorem 1.4.4. (Wiles, 1995) 𝐸, ℚ üzerinde bir eliptik eğri olsun. N eliptik eğrinin kondüktörü 

ve Γ଴ሺ𝑁ሻ için 2 ağırlıklı belli normalleştirilmiş eigenformlar için  𝐿ሺ𝐸, 𝑠ሻ ൌ 𝐿ሺ𝑠, 𝑓ሻ’dir. Bu 

teorem “Modülarite teoremi” olarak ifade edilir ve eliptik eğriler ile modüler formlar arasında 

bir köprü görevi yapar. Modülarite teoremi aynı zamanda Taniyama-Shimura-Weil konjektürü 

olarak da bilinir. 
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Tanım 1.4.5. (Niven vd 1991: 163) Tamsayı katsayılı bir kuadratik form 

𝑄ሺ𝑥, 𝑦ሻ ൌ 𝑎𝑥ଶ ൅ 𝑏𝑥𝑦 ൅ 𝑐𝑦ଶ 

olsun. 𝐷 ≔ 𝑏ଶ െ 4𝑎𝑐’ye 𝑄ሺ𝑥, 𝑦ሻ’nun temel diskriminantı denir. 

Teorem 1.4.6. (Niven vd 1991: 163) 𝐷 bir temel diskriminant olması için gerek ve yeter koşul 

𝐷’nin aşağıdaki koşullardan birini sağlamasıdır. 

i. 𝐷 ≡ 1 ሺ𝑚𝑜𝑑 4ሻ ve 𝐷 içinde tamkare bulundurmayan bir tamsayı 

ii. 𝑚 ≡ 2,3 ሺ𝑚𝑜𝑑 4ሻ ise ve  𝑚 içinde tamkare bulundurmayan bir tamsayı ise 𝐷 ൌ 4𝑚 
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2. YARIM TAMSAYI AĞIRLIKLI HECKE EIGENFORMLARIN 

SİSTEMATİK SEÇİMİ 

Bu bölümde çalışmadaki amaca ulaşabilmek adına gerekli olan yeterli sayıdaki (en az 

10଻) Fourier katsayısı kolaylıkla hesaplanabilecek yarım tamsayı ağırlıklı Hecke 

eigenformların sistematik seçimi konusu ele alınacaktır.  

Teorem 2.1.1. (Miyake, 2006: 114) 𝛤଴ሺ4ሻ üzerinde tanımlı k + 1/2 ağırlıklı Hecke eigenformlar 

yine aynı ağırlıklı modüler formların sonlu boyutlu vektör uzayının bir alt uzayıdır. 

k + 1/2 ağırlıklı modüler form uzaylarının tabanları MAGMA (Bosma vd., 1997) Cebir 

Programı’nda veya Pari/GP’de (The Pari Group, 2019) kolaylıkla hesaplanabilmektedir. 

Çalışmanın amaçları doğrultusunda yukarıda bahsedilen özellikteki Hecke 

eigenformların sistematik seçiminde Rankin-Cohen parantezi etkin olarak kullanılmıştır. İlk 

olarak bu diferansiyel operatörlerin tanımı verilsin. 

Tanım 2.1.2. (Cohen ve Strömberg, 2017: 161) 𝑓 ve 𝑔 sırasıyla 𝑘 ve ℎ ağırlıklı modüler 

formlar olsun. 𝑧 ∈ ℍ  ve 
ௗ௙

ௗ௭
ൌ ଵ

ଶగ௜
𝑓ᇱሺ𝑧ሻ olmak üzere, 

ሾ𝑓, 𝑔ሿ௡ ≔ ෍ ሺെ1ሻ௥ ቀ𝑘 ൅ 𝑛 െ 1
𝑟

ቁ ቀℎ ൅ 𝑛 െ 1
𝑠

ቁ
𝑑௥𝑓
𝑑𝑧௥

𝑑௦௚

𝑑𝑧௦
௥ା௦ୀ௡

 

şeklinde tanımlanan operatöre 𝑓 ve 𝑔’nin 𝑛-inci Rankin-Cohen parantezi adı verilir ve ሾ𝑓, 𝑔ሿ௡ 

biçiminde gösterilir 

Teorem 2.1.3. (Zagier, 1994) 𝑓 ∈ 𝑀௞ሺΓሻ ve 𝑔 ∈ 𝑀௛ሺΓሻ olsun. Bu takdirde ሾ𝑓, 𝑔ሿ௡ ∈

𝑀௞ା௛ାଶ௡ሺΓሻ’dır.  

Dikkat edilirse bu parantez yardımıyla k1 ve k2 ağırlıklı modüler formlara Rankin-Cohen 

parantezi bir kez uygulandığında k1+k2+2 ağırlıklı yeni bir modüler form elde edilir. Detaylı 

örnekler için (Kohnen ve Zagier, 1981) incelenebilir. 

İlk olarak Rankin tarafından tanımlanan bu operatör Cohen tarafından detaylı bir şekilde 

çalışılmış ve Zagier tarafından Rankin-Cohen parantezi olarak isimlendirilmiştir. Ardından 

(Zagier, 1994)’te Rankin-Cohen parantezi için soyut bir yaklaşım ile Rankin-Cohen cebirini 

tanımlamıştır. Aynı çalışmada elde edilen yeni modüler formların arasında bazı Hecke 

eigenformları da mevcuttur. (Kohnen ve Zagier, 1981: 177)’deki 𝛿ሺ𝑧ሻ örneği aritmetik 

fonksiyonlar cinsinden ifade edilmiş 13/2 ağırlıklı Hecke eigenform örneğidir ve MAGMA 

cebir programı ile en az 2.108 Fourier katsayısı kolaylıkla hesaplanabilir. Diğer yandan 

literatürde çalışmalarımızdan önce farklı 𝑘 tamsayıları için Fourier katsayıları kolaylıkla 
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hesaplanabilecek Hecke eigenformların sistematik seçimi bir açık problem idi. Bu problem 

(Kohnen ve Zagier, 1981: 177) çalışmasından ilham alınarak bu çalışmada çözüme 

kavuşturulmuştur. 

Burada büyük ağırlıktaki örneklerin sistematik seçimi ile Kohnen Plus Space (Detaylar 

için (Kohnen, 1980)’e bakılabilir.) 𝑘 ൌ 6,8,9,10,11,13 durumlarına karşılık Kohnen Plus 

Space’in boyutu 1 olacağından 𝛤଴ሺ4ሻ için 𝑘 ൅ ଵ

ଶ
 ağırlıklı cusp formların tekliği (Shimura 

karşılık gelmesi altında Γ için 2𝑘 ağırlıklı normalleştirilmiş cusp formların tekliği ile 

ilişkilendirerek) elde edilebilir. Yani başka bir deyişle bu durumda bu uzaydaki her bir form bir 

Hecke eigenform olacaktır. Burada Rankin-Cohen parantezi etkili bir metottur. Öncelikle daha 

genel durumu göz önüne alınsın. Rankin-Cohen parantezinin Eisenstein serileri ve teta serileri 

ile bunların türevlerine ardışık olarak uygulanması ile Kohnen Plus Space’in boyutunun 1’den 

büyük olduğu örneğin k = 7 durumu için de basit bir formül elde edilebilir. Bunu yapmak için 

ağırlığa bağlı olarak Eisenstein serileri ve teta serileri ile bunların türevleri için sonlu sayıda 

ihtimal mevcuttur. Pari/GP’de yer alan ve Sturm sınırı kullanılarak Prof. Dr. Henri Cohen 

tarafından bu çalışma için yazılan kod yardımıyla Hecke eigenform olabilecek aday formüllerin 

kısa bir listesi oluşur. Hecke eigenform tanımı gereği ortaya çıkan lineer sistem çözülerek 

istenilen sonuca ulaşılır. Daha sonra MAGMA’da Fourier katsayıları hesaplanır. 

𝑘 ൌ 1 durumunda Rankin-Cohen parantezi kullanılamadığından bu durumda Hecke 

eigenform elde edilebilmesi için farklı bir metot kullanılabilir. Detaylar için (İnam, 2012) 

kaynağında Hecke eigenformlara karşılık kuadratik formların teta serileri yardımıyla elde 

edilen 3/2 ağırlıklı Hecke eigenformlara ait çeşitli örnekler yer almaktadır. 

Rankin-Cohen parantezi tekniğinin daha iyi anlaşılabilmesi için ilk olarak tıpkı yukarıda 

bahsedilen 𝛿 fonksiyonu gibi açık şekilde formülü verilen iki Hecke eigenform örneği 

verilecektir. 

Teorem 2.1.4. (İnam vd., 2020: 776) 

𝑓ଵ ൌ െ
84
2𝜋𝑖

൫3𝐺଺ሺ4𝑧ሻ𝜃ᇱሺ𝑧ሻ െ 𝐺଺
ᇱ ሺ4𝑧ሻ𝜃ሺ𝑧ሻ൯ 𝜖 𝑆ଵ଻

ଶ

ା ൫Γ଴ሺ4ሻ൯ 

bir Hecke eigenformdur. 

İspat. ሾ𝐺଺ሺ4𝑧ሻ, 𝜃ሿଵ Rankin-Cohen parantezini hesaplayalım. Tanım 2.1.2. gereği 

𝑔ଵ ≔ 6𝐺଺ሺ4𝑧ሻ𝜃ᇱሺ𝑧ሻ െ ଵ

ଶ
𝐺଺

ᇱ ሺ4𝑧ሻ𝜃ሺ𝑧ሻ ൌ െ ଵ

ସଶ
𝑞 െ ସସ

ଶଵ
𝑞ସ ൅ 8𝑞ହ െ 88𝑞଼ ൅ ⋯  (2.1) 

dir. 
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𝑞-lu terimin katsayısı 1 olacak şekilde normalleştirme yapılırsa 𝑓ଵ ൌ െ42𝑔ଵ elde edilir. Öte 

yandan dimሺ𝑆ଶଵ
ଶൗ ൫Γ଴ሺ4ሻ൯ ൌ 3 olup 

𝑢ଵ ≔ 𝑞 ൅ 88𝑞ସ െ 336𝑞ହ ൅ 3696𝑞଼ െ 5535𝑞ଽ ൅ 𝑂ሺ𝑞ଵଶሻ 

𝑢ଶ ≔ 𝑞ଶ ൅ 4𝑞ସ െ 56𝑞ହ ൅ 126𝑞଺ െ 224𝑞଻ ൅ 488𝑞଼ െ 576𝑞ଽ ൅ 𝑂ሺ𝑞ଵଶሻ 

𝑢ଷ ≔ 𝑞ଷ െ 6𝑞ସ ൅ 20𝑞ହ െ 56𝑞଺ ൅ 124𝑞଻ െ 220𝑞଼ ൅ 352𝑞ଽ ൅ 𝑂ሺ𝑞ଵଶሻ 

olmak üzere ሼ𝑢ଵ, 𝑢ଶ, 𝑢ଷሽ 𝑆ଵ଻
ଶൗ ൫Γ଴ሺ4ሻ൯’nin bir tabanıdır. Bu uzay için Sturm sınırı 4 olup (2.1) 

eşitliğine dikkat edilirse 𝑓ଵ’in 𝑛 ≡ 2,3 ሺ𝑚𝑜𝑑 4ሻ özelliğindeki Fourier katsayılarının sıfır olması 

nedeniyle 𝑓ଵ 𝜖 𝑆ଵ଻
ଶൗ

ା olur. Son olarak   𝑆భళ
మ

ା ሺΓ଴ሺ4ሻሻ’te bir tek Hecke eigenform mevcut olup bu 

formun 𝑢ଵ yani 𝑓ଵ formu olduğu kolayca görülebilir, bu da ispatı bitirir. 

Teorem 2.1.5. (İnam vd., 2020: 777) 

𝑓ଶ ≔ ଷ଴

ଶగ௜
൬8𝐺଼ሺ4𝑧ሻ𝜃ᇱሺ𝑧ሻ െ ଵ

ଶ
𝐺଼

ᇱ ሺ4𝑧ሻ𝜃ሺ𝑧ሻ൰  𝜖 𝑆ଶଵ
ଶൗ

ା ሺΓ଴ሺ4ሻሻ  

bir Hecke eigenformdur. 

İspat. 

ሾ𝐺଼ሺ4𝑧ሻ, 𝜃ሺ𝑧ሻሿଵ Rankin-Cohen parantezini uygulayalım. Tanım 2.1.2. gereği  

𝑔ଶ ≔ ሾ𝐺଼ሺ4𝑧ሻ, 𝜃ሺ𝑧ሻሿଵ ൌ 8𝐺଼ሺ4𝑧ሻ𝜃ᇱሺ𝑧ሻ െ
1
2

𝐺଼
ᇱ ሺ4𝑧ሻ𝜃ሺ𝑧ሻ 

                 ൌ ଵ

ଷ଴
𝑞 െ ହ଺

ଷ଴
𝑞ସ ൅ 12𝑞ହ െ 456𝑞଼ ൅ ቀଵ଼

଺଴
൅ 1032ቁ 𝑞ଽ ൅ ⋯                 (2.2) 

dir. 𝑞 -lu terimin katsayısı 1 olacak şekilde normalleştirme yapılırsa 𝑓ଶ ൌ 30𝑔ଶ elde edilir. Öte 

yandan dim ሺ𝑆ଶଵ
ଶൗ ൫Γ଴ሺ4ሻ൯ ൌ 4 olup  

𝑢ଵ ≔ 𝑞 ൅ 24𝑞ହ ൅ 1344𝑞଺ െ 4480𝑞଻ െ 1920𝑞଼ ൅ 4089𝑞ଽ ൅ 𝑂ሺ𝑞ଵଶሻ 

𝑢ଶ ≔ 𝑞ଶ ൅ 112𝑞ହ െ 426𝑞଺ ൅ 672𝑞଻ ൅ 2176𝑞଼ ൅ 6144𝑞ଽ ൅ 𝑂ሺ𝑞ଵଶሻ 

𝑢ଷ ≔ 𝑞ଷ ൅ 8𝑞ହ െ 56𝑞଺ ൅ 148𝑞଻ െ 448𝑞଼ ൅ 1024𝑞ଽ ൅ 𝑂ሺ𝑞ଵଶሻ 

𝑢ସ ≔ 𝑞ସ െ 6𝑞ହ ൅ 24𝑞଺ െ 80𝑞଻ ൅ 210𝑞଼ െ 480𝑞ଽ ൅ 𝑂ሺ𝑞ଵଶሻ 

olmak üzere  ሼ𝑢ଵ, 𝑢ଶ, 𝑢ଷ, 𝑢ସሽ 𝑆ଶଵ
ଶൗ

ା nin bir tabanıdır. 
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Bu uzay için Sturm sınırı 5 olup (2.2) eşitliğine dikkat edilirse 𝑓ଶ ൌ 𝑢ଵ െ 56𝑢ସ olup 

𝑓ଶ 𝜖 𝑆ଶଵ
ଶൗ

ା ሺΓ଴ሺ4ሻሻ olduğu açıktır. Kohnen Plus Space tanımı gereği 𝑓ଶ’nin 𝑛 ≡ 2, 3 ሺ𝑚𝑜𝑑 4ሻ 

özelliğindeki Fourier katsayılarının sıfır olması nedeniyle 𝑓ଶ 𝜖 𝑆ଶଵ
ଶൗ

ା olur. 

Son olarak 𝑆ଶଵ
ଶൗ

ା ሺΓ଴ሺ4ሻሻ’te bir tek Hecke eigenform mevcut olup bu formun 𝑓ଶ ൌ 𝑢ଵ െ

56𝑢ସ formu olduğu kolayca görülebilir, bu da ispatı bitirir. 
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3. SATO-TATE KONJEKTÜRÜ 

3.1. Giriş 

Sato ve Tate birbirlerinden bağımsız olarak 1960’ta aşağıdaki savı ortaya atmışlardır: 

𝑓ሺ𝑧ሻ ൌ ෍ 𝑎ሺ𝑛ሻ𝑞௡

௡ஹ଴

 

fonksiyonu “kompleks çarpıma sahip olmayan” 𝑘 ağırlıklı cuspidal Hecke eigenform olsun.  

𝑎ሺ𝑝ሻ ൌ 2𝑝
௞ିଵ

ଶ cos൫𝜙௣൯ 

sağlayacak şekilde 0 ile 𝜋 arasında öyle bir 𝜙௣ Frobenius açısı vardır. Sato-Tate Konjektürü’ne 

göre bu açıların olasılık dağılım fonksiyonu 
ଶ

గ
𝑠𝑖𝑛ଶሺ𝜙ሻ ile verilir. Aslında Sato-Tate konjektürü 

bu açıların  
ଶ

గ
𝑠𝑖𝑛ଶሺ𝜙ሻ fonksiyonuna göre dağılım gösterdiğini ve böylelikle eş dağılımlı 

olduğunu söyler. Böylece [–1,1] aralığı üzerinde Sato-Tate ölçümü adı verilen ve 
ଶ

గ
√1 െ 𝑡ଶ 

yoğunluk fonksiyonuyla ifade edilen ölçüm bulunur. “Kompleks çarpıma sahip” modüler 

formlar için sonuç (Hecke, 1920)’de ispatlanmıştır, teoremin tam versiyonu ve ispatı için 

(Arias-de-Reyna vd., 2015: 15), Teorem 3.2.3’e bakılabilir. 

Sato-Tate Konjektürü 2011 yılında (Barnet-Lamb vd., 2011) ispatlanmıştır. Bu 

konjektür, son yıllarda matematikte çözülen en önemli problemlerden birisi olup, sonuçları 

yaygın olarak çalışılmaya devam edilmektedir. 

 

Şekil 3.1. 𝑛 ൌ 10଺ için Δ’nın normalleştirilmiş katsayılarının histogramı 

Kaynak: (Mazur, 2018:193) 
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Shimura Karşılık Gelmesi sadece tamkare indisli katsayıları içerdiğinden ileride 

tanıtılacak olan Bruinier-Kohnen İşaret Eşdağılım Konjektürü’nün tamamen çözülmesi için 

kullanılabilecek literatürde herhangi bir sonuç bulunmamaktadır. Bu problemin çözümü ancak 

ve ancak yarım tamsayı ağırlıklı modüler formlar için verilecek Sato-Tate Teoremi benzeri bir 

sonuçla mümkündür. Bu tarz bir sonuç ise bu çalışmanın temel amacıdır. 

Teorem 3.1.1. (Waldspurger, 1981) f, 2k ağırlıklı içinde tamkare bulunmayan tek sayı N 

seviyeli cuspidal Hecke eigenform olsun. Bu takdirde Shimura yükseltmesi f olacak şekilde 

öyle bir k + 1/2 ağırlıklı 𝑔 ൌ ∑ 𝑐ሺ𝑛ሻ𝑞௡ yarım tamsayı ağırlıklı modüler form vardır ki tüm 

temel diskriminantlar için 

𝑐|ௗ|
ଶ ൌ 𝜒௚|𝐷|௞ିଵ

ଶ. 𝐿ሺ𝑓, 𝐷, 𝑘ሻ 

olacak şekilde bir 𝜒 sabiti vardır. 

(Conrey vd., 2006: 72)’de rastgele matrisler teorisi kullanılarak 3/2 yarım tamsayı 

ağırlıklı modüler formlar (eliptik eğriler ile ilgili) için bazı sonuçlar ve konjektürler (özellikle 

Conjecture 4.2) verilmiştir. Buradaki sonuçlar Waldspurger’in yukarıda açıklanan L-

fonksiyonlarının özel değerleriyle Fourier katsayılarının ilişkisine dayanır. Bu konjektürler 

yarım tamsayı ağırlıklı modüler formların Fourier katsayılarının karelerinin belli bir 

normalizasyon ile normal dağılacağını önerir.  Ancak katsayıların işaret değişimleri ile ilgili bir 

sonuç verilmemiştir. Diğer bir yandan Bruinier-Kohnen işaret eşdağılım konjektürü sıfırdan 

farklı katsayıların yarısının negatif yarısının pozitif olacağını iddia ederek kısmen de olsa 

konjektürel olarak bu boşluğu doldurur.  

(Thorner, 2014)’te Sato-Tate Teoremi’ndeki istatistiksel ifade için f’nin L-

fonksiyonlarının simetrik kuvvetlerinin otomorfik olduğu kabul edilerek oldukça etkili ve kolay 

hesaplanabilir bir hata terimi verilmiştir.  

(Thorner, 2020)’de Sato-Tate konjektürünün efektif versiyonu tamsayı ağırlıklı modüler 

formlar için verilmiştir. Burada bu konjektür için literatürde bulunan ve (Thorner, 2014)’ü de 

kapsayan tüm hata terimlerini geliştirerek yeni bir hata terimi elde edilmiştir. Ancak Shimura 

yükseltmesi yardımı ile bu hata teriminin yarım tamsayı ağırlıklı modüler formlar için elde 

edilmesi açık bir problemdir. 

3.2. Sato-Tate Uygulaması: Bruinier-Kohnen İşaret Eşdağılım Konjektürü 

Bu bölümde Sato-Tate Konjektürü etkili olarak kullanılarak modüler formlardaki bir 

problemin nasıl çözülebileceği görülecektir. Öncelikle problem verilsin.  
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Konjektür 3.2.1. (Bruinier ve Kohnen, 2008: 63), (Kohnen vd., 2013: 30) 

𝑓 ൌ ෍ 𝑎ሺ𝑛ሻ

ஶ

௡ୀଵ

𝑞௡  ∈ 𝑆௞൫Γ଴ሺNሻ൯ 

reel Fourier katsayılarına sahip 𝑘 ൌ 𝑙 ൅ ଵ

ଶ
 ağırlıklı cuspidal Hecke eigenform olsun. 

𝑙 ൌ 1 durumunda 𝑓’nin unary teta serisine ortogonal olduğu kabul edilsin. Bu takdirde  

ሼ𝑛 ∈ ℕ ∶  𝑎ሺ𝑛ሻ ൐ 0ሽ ve ሼ𝑛 ∈ ℕ ∶  𝑎ሺ𝑛ሻ ൏ 0ሽ kümeleri aynı doğal yoğunluğa sahiptir, tam 

olarak  

ሼ𝑛 ∈ ℕ ∶  𝑎ሺ𝑛ሻ ് 0ሽ 

kümesinin doğal yoğunluğunun yarısına eşittir. 

𝑘 ൒ 2 ve 4|𝑁 tamsayılar olmak üzere sıfırdan farklı 𝑘 ൅ ଵ

ଶ
 ağırlıklı reel Fourier 

katsayılarına sahip 

𝑓 ൌ ෍ 𝑎ሺ𝑛ሻ

ஶ

௡ୀଵ

𝑞௡  ∈ 𝑆
௞ାଵ

ଶ
൫Γ଴ሺNሻ൯ 

𝑝 ∤ 𝑁 asalları için 𝑇௣మ operatörleri için bir cuspidal Hecke eigenform olsun. Kompleks çarpıma 

sahip olmayan 

𝐹௧ ൌ ෍ 𝐴௧ሺ𝑛ሻ
ஶ

௡ୀଵ

𝑞௡  ∈ 𝑆௞ ቆΓ଴ ൬
𝑁
2

൰ቇ 

2𝑘 ağırlıklı 𝑝 ∤ 𝑁 asalları için 𝑇௣ operatörleri için Hecke eigenformu Shimura yükseltme 

dönüşümü ile 𝑓’ye karşılık gelir öyle ki sabit ve tamkare olmayan 𝑡’ler için 𝑎ሺ𝑡ሻ ് 0 olur.  

Tanım 3.2.2. ℙ, tüm asalların kümesi olmak üzere 𝑆 ⊆ ℙ olsun. Eğer  

𝜋ሺ𝑥ሻ ൌ #ሼ𝑝 ൑ 𝑥|𝑝 ∈ ℙሽ 

 asalların sayısı ve 

𝜋ௌሺ𝑥ሻ ≔ #ሼ𝑝 ൑ 𝑥|𝑝 ∈ 𝑆ሽ 

 olmak üzere lim
௫→ஶ

గೄሺ௫ሻ

గሺ௫ሻ
 limiti var ve 𝑑ሺ𝑆ሻ’ye eşit ise 𝑑ሺ𝑆ሻ’ye doğal yoğunluk adı verilir. 

Eğer lim
௭→ଵశ

∑ భ
೛೥೛∈ೄ

୪୭୥ቀ భ
೥షభ

ቁ
 limiti var ve 𝛿ሺ𝑆ሻ’ye eşit ise  𝑆 kümesi 𝛿ሺ𝑆ሻ Dirichlet yoğunluğuna 

sahiptir denir. 
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Eğer 𝑆 kümesi bir doğal yoğunluğa sahip ise o zaman 𝑆 bir Dirichlet yoğunluğa da 

sahiptir ve bu yoğunluklar çakışıktır. Eğer 𝑅𝑒ሺ𝑧ሻ ൒ 1 üzerinde ∑ ଵ

௣೥௣∈ௌ ൌ 𝛿ሺ𝑆ሻ log ቀ ଵ

௭ିଵ
ቁ ൅

𝑔ሺ𝑧ሻ için bir 𝑔ሺ𝑧ሻ holomorf fonksiyonu var ise 𝑆’ye regülerdir denir. Dirichlet yoğunluğu 1 

olan ℙ kümesi regülerdir. 

Lemma 3.2.3. (İnam ve Wiese, 2013: 333) 

i. 𝑆, ∑ ଵ

௣௣∈ௌ  sonlu bir değere yakınsayacak şekilde asalların herhangi bir kümesi olsun. O 

zaman 𝑆 kümesinin Dirichlet yoğunluğu 0’a eşittir. 

ii. 𝑆 asalların bir regüler kümesi olsun. O zaman 𝑆 kümesinin Dirichlet yoğunluğu 0 olması 

için gerek ve yeter koşul  ∑ ଵ

௣௣∈ௌ  serisinin sonlu bir değere yakınsamasıdır. 

iii. 𝑆ଵ, 𝑆ଶ asalların iki regüler kümesi ve 𝛿ሺ𝑆ଵሻ ൌ 𝛿ሺ𝑆ଶሻ olsun. O zaman ∑ ଵ

௣೥௣∈ௌభ
െ ∑ ଵ

௣೥௣∈ௌమ
 

fonksiyonu 𝑅𝑒ሺ𝑧ሻ ൒ 1 üzerinde analitiktir. 

Teorem 3.2.4. (İnam ve Wiese, 2013: 333) 𝑆 ⊆ ℙ alt kümesi 𝑑ሺ𝑆ሻ doğal yoğunluğa sahip 

olsun.  

𝐸ሺ𝑥ሻ ≔
𝜋ௌሺ𝑥ሻ
𝜋ሺ𝑥ሻ

െ 𝑑ሺ𝑆ሻ 

bir hata fonksiyonu olsun. Yeterince büyük tüm 𝑥’ler ve 𝛼 ൐ 0, 𝐶 ൐ 0 için  

|𝐸ሺ𝑥ሻ| ൑ 𝐶𝑥ିఈ 

dır. Yani 𝑆 asalların bir regüler kümesidir. 

İspat. 𝐷௦ሺ𝑧ሻ ≔ ∑ ଵ

௣೥௣∈ௌ  ve 𝐷ሺ𝑧ሻ ≔ ∑ ଵ

௣೥௣∈ℙ  notasyonlarını kullanalım. 𝑑 ≔ 𝑑ሺ𝑆ሻ ile kısaltılsın 

ve 𝑔ሺ𝑥ሻ ≔ 𝐸ሺ𝑥ሻ𝜋ሺ𝑥ሻ ve 𝑓ሺ𝑧ሻ ≔ ∑ 𝑔ሺ𝑛ሻ ቀ ଵ

௡೥ െ ଵ

ሺ௡ାଵሻ೥ቁஶ
௡ୀଶ  yi yerine konursa, 𝑔ሺ𝑥ሻ sadece 

tamsayılara zıplayan bir basamak fonksiyonu ve  

𝑓ሺ𝑧ሻ ൌ 𝑧. ෍ 𝑔ሺ𝑛ሻ න
1

𝑥௭ାଵ 𝑑𝑥
௡ାଵ

௡

ஶ

௡ୀଶ

ൌ 𝑧. න
𝑔ሺ𝑥ሻ

𝑥௭ାଵ 𝑑𝑥
ஶ

ଶ
 

olur. (Rosser, 1941)’den iyi bilinmektedir ki 𝑥 ൐ 55 için 𝜋ሺ𝑥ሻ ൏ ௫

୪୭୥ሺ௫ሻିସ
 dir. O halde 

|𝑔ሺ𝑥ሻ| ൑ 𝐶. 𝜋ሺ𝑥ሻ. 𝑥ିఈ ൑ 𝐶. ௫భషഀ

୪୭୥ሺ௫ሻିସ
 elde edilir. Böylece 𝑅𝑒ሺ𝑧ሻ ൐ 1 െ ఈ

ଶ
 için  

ቤන
𝑔ሺ𝑥ሻ

𝑥௭ାଵ 𝑑𝑥
ஶ

ହହ
ቤ ൑ න

|𝑔ሺ𝑥ሻ|

𝑥ோ௘ሺ௭ሻାଵ 𝑑𝑥
ஶ

ହହ
൑ 𝐶. න

1

𝑥ଵାఈ
ଶ

𝑑𝑥
ஶ

ହହ
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olur. Son integral yakınsak olduğundan 𝑓ሺ𝑧ሻ, 𝑅𝑒ሺ𝑧ሻ ൒ 1 üzerinde bir analitik fonksiyon olduğu 

sonucuna ulaşılır. 𝑅𝑒ሺ𝑧ሻ ൐ 1 için 

𝐷௦ሺ𝑧ሻ ൌ ෍൫𝑑𝜋ሺ𝑛ሻ ൅ 𝑔ሺ𝑛ሻ൯ ൬
1

𝑛௭ െ
1

ሺ𝑛 ൅ 1ሻ௭൰ ൌ 𝑑𝐷ሺ𝑧ሻ ൅ 𝑓ሺ𝑧ሻ

ஶ

௡ୀଶ

 

olduğundan ℙ yoğunluğu 1’dir ve bu nedenle regülerdir. Son olarak kümeler üzerinde bir 

yoğunluk notasyonu Dirichlet notasyonu olarak isimlendirilmişti. 𝐴 ⊂ ℕ alt kümesi eğer  

lim
௭→ଵశ

ሺz െ 1ሻ. ෍
1

𝑛௭

ஶ

௡ୀଵ
௡∈஺

 

limiti var ve 𝛿ሺ𝐴ሻ’ya eşit ise 𝛿ሺ𝐴ሻ Dedekind-Dirichlet yoğunluğa sahiptir olarak isimlendirilir. 

Eğer 𝐴 ⊆ ℕ bir doğal yoğunluğa sahip ise o zaman Dedekind-Dirichlet yoğunluğa da sahiptir 

ve ikisi de aynıdır. 

Hatırlanacağı üzere 𝑓’nin Fourier katsayıları ve bu katsayıların 𝐹௧ Shimura yükseltmesi 

arasında bir ilişki vardır ve bu ilişki  

𝐴௧ሺ𝑛ሻ ≔ ∑ 𝜒௧,ேሺ𝑑ሻௗ|௡ 𝑑௞ିଵ𝑎 ቀ௧௡మ

ௗమ ቁ    (3.1) 

ile ifade edilir. Burada 𝜒௧,ே karakteri gösterir ve 𝜒௧,ேሺ𝑑ሻ ≔ 𝜒ሺ𝑑ሻ ቀ
ሺିଵሻೖேమ௧

ௗ
ቁ dir. Tüm 𝑝 ∤ 𝑁 

asalları için 𝑇௣మ Hecke operatörü için 𝑓 bir Hecke eigenform ve 𝑇௣ Hecke operatörü için de 𝐹௧ 

bir eigenform olarak kabul edilir. Aslında bu durumda 𝐹, 𝑡’den bağımsız normalleştirilmiş 

Hecke eigenformu için 𝐹௧ ൌ 𝑎ሺ𝑡ሻ𝐹 dir. Dahası yarım tamsayı ağırlıklı modüler formların 

Fourier katsayıları için Euler çarpımından ሺ𝑚, 𝑛ሻ ൌ 1 için 

𝑎ሺ𝑡𝑚ଶሻ𝑎ሺ𝑡𝑛ଶሻ ൌ 𝑎ሺ𝑡ሻ𝑎ሺ𝑡𝑚ଶ𝑛ଶሻ 

çarpımsal ilişkisi vardır. Dikkat edilirse eğer 𝐹௧ reel Fourier katsayılara sahip ise 𝑓 de reel 

Fourier katsayılara sahiptir. Hatta 𝐹௧’nin katsayıları ቚ஺೟ሺ௣ሻ

௔ሺ௧ሻ
ቚ ൑ 2𝑝௞ିభ

మ olarak ifade edilebilen 

Ramanujan-Petersson (Ramanujan, 1916), (Petersson, 1930) ve (Deligne, 1974) bağıntısını 

sağlar. Böylece bu katsayılar 

𝐵௧ሺ𝑝ሻ ≔
𝐴௧ሺ𝑝ሻ

2𝑎ሺ𝑡ሻ𝑝௞ିଵ
ଶ

∈ ሾെ1,1ሿ 
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ifadesi ile normalleştirilebilir. ሾെ1,1ሿ aralığı üzerinde olasılık ölçüm fonksiyonu olan 𝜇 Sato-

Tate ölçümü 
ଶ

గ
√1 െ 𝑡ଶ𝑑𝑡 ile verilir. (Barnet-Lamb vd., 2011: 30)’de Teorem B’nin 3. Durum: 

Özellikle 𝐹 ൌ ி೟

௔ሺ௧ሻ
’yi sağlayan 𝜁 ൌ 1 ile Γ଴ሺ𝑁ሻ için önemli Sato-Tate teoremi verilir. 

Teorem 3.2.5. (Barnet-Lamb vd., 2011: 30) 𝑘 ൒ 1 ve 𝐹 ൌ ∑ 𝐴ሺ𝑛ሻ𝑞௡
௡ஹଵ , Γ଴ሺ𝑁ሻ için 2𝑘-

ağırlıklı kompleks çarpıma sahip olmayan normalleştirilmiş cuspidal Hecke eigenform olsun. 

O zaman ሾെ1,1ሿ aralığında 𝑝 ∤ 𝑁 asalları için  

𝐵ሺ𝑝ሻ ൌ
𝐴ሺ𝑝ሻ

2𝑝௞ିଵ
ଶ

 

sayıları 𝜇 dağılımındadır. 

Sonuç 3.2.6. (İnam ve Wiese, 2013: 335) ሾ𝑎, 𝑏ሿ ⊆ ሾെ1,1ሿ alt aralığı ve  

𝑆ሾ௔,௕ሿ ≔ 𝑝ሼ 𝑎𝑠𝑎𝑙 | 𝑝 ∤ 𝑁, 𝐵௧ሺ𝑝ሻ ∈ ሾ𝑎, 𝑏ሿሽ    (3.2) 

olsun. O zaman 𝑆ሾ௔,௕ሿ, 

2
𝜋

න ඥ1 െ 𝑡ଶ𝑑𝑡
௕

௔
 

integraline eşit olan doğal yoğunluğa sahiptir. 

Teorem 3.2.7. (İnam ve Wiese, 2013: 335) 𝐹௧ kompleks çarpıma sahip olmasın. ℙவ଴ ≔

ሼ𝑝 ∈ ℙ |𝑎ሺ𝑡𝑝ଶሻ ൐ 0ሽ ve benzer şekilde ℙழ଴, ℙஹ଴, ℙஸ଴ ve ℙୀ଴ asalların kümesi tanımlanabilir. 

ℙவ଴, ℙழ଴, ℙஹ଴, ℙஸ଴ kümeleri 
ଵ

ଶ
 doğal yoğunluğa sahiptir ve ℙୀ଴ kümesi 0 doğal yoğunluğuna 

sahiptir. 

İspat. 𝜋வ଴: ൌ #ሼ𝑝 ൑ 𝑥|𝑝 ∈ ℙவ଴ሽ şeklinde tanımlansın ve benzer şekilde 𝜋ழ଴ሺ𝑥ሻ, 𝜋ஹ଴ሺ𝑥ሻ, 

𝜋ஸ଴ሺ𝑥ሻ ve 𝜋ୀ଴ሺ𝑥ሻ kümeleri de benzer şekilde tanımlanabilir. 𝑓’nin 𝑎ሺ𝑡ሻ ile bölünmesi teoremin 

ifadesini değiştirmeyeceği için 𝑎ሺ𝑡ሻ ൌ 1 olarak kabul edilebilir. Bu durumda 𝐹௧ 

normalleştirilmiş eigenform olur. (3.1) denklemi 𝑝 asal olmak üzere 𝑛 ൌ 𝑝 alınarak 

özelleştirilirse  

𝑎ሺ𝑡𝑝ଶሻ ൌ 𝐴௧ሺ𝑝ሻ െ 𝜒௧,ேሺ𝑝ሻ𝑝௞ିଵ 

olur ve aşağıdaki önerme elde edilir: 

𝑎ሺ𝑡𝑝ଶሻ ൐ 0 ⇔ 𝐵௧ሺ𝑝ሻ ൐
𝜒௧,ேሺ𝑝ሻ

2ඥ𝑝
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Burada çoğu asal için |𝐴௧ሺ𝑝ሻ| ifadesi 𝜒௧,ேሺ𝑝ሻ𝑝௞ିଵ’den daha büyük olduğunu göstermek için 

Sato-Tate kullanılmıştır. 𝜀 ൐ 0 olsun. Tüm 𝑝 ൐ ଵ

ସ ఌమ asalları için ቚ
ఞ೟,ಿሺ௣ሻ

ଶ√௣
ቚ ൌ ଵ

ଶ√௣
൏ 𝜀 olduğundan 

𝜋வ଴ሺ𝑥ሻ ൅ 𝜋 ൬
1

4 𝜀ଶ൰ ൒ #ሼ𝑝 ൑ 𝑥 𝑎𝑠𝑎𝑙|𝐵௧ሺ𝑝ሻ ൐ 𝜀ሽ 

elde edilir. Sonuç 3.2.6.’dan lim
௫→ஶ

#ሼ௣ஸ௫ ௔௦௔௟|஻೟ሺ௣ሻவఌሽ

గሺ௫ሻ
ൌ 𝜇ሺሾ𝜀, 1ሿሻ elde edilir. Her 𝜀 ൐ 0 için  

𝑙𝑖𝑚 𝑖𝑛𝑓
௫→ஶ

𝜋வ଴ሺ𝑥ሻ

𝜋ሺ𝑥ሻ
൒ 𝜇ሺሾ𝜀, 1ሿሻ 

olduğundan 

𝑙𝑖𝑚 𝑖𝑛𝑓
௫→ஶ

𝜋வ଴ሺ𝑥ሻ

𝜋ሺ𝑥ሻ
൒ 𝜇ሺሾ0,1ሿሻ ൌ

1
2

 

sonucuna ulaşılır. Benzer şekilde 𝑙𝑖𝑚 𝑖𝑛𝑓
௫→ஶ

గರబሺ௫ሻ

గሺ௫ሻ
൒ 𝜇ሺሾ0,1ሿሻ ൌ ଵ

ଶ
 bulunur. 𝜋ஸ଴ሺ𝑥ሻ ൌ 𝜋ሺ𝑥ሻ െ

𝜋வ଴ሺ𝑥ሻ olduğu kullanılarak 𝑙𝑖𝑚 𝑠𝑢𝑝
௫→ஶ

గಭబሺ௫ሻ

గሺ௫ሻ
൒ 𝜇ሺሾ0,1ሿሻ ൌ ଵ

ଶ
 görülür. Böylece 𝑙𝑖𝑚

௫→ஶ

గಭబሺ௫ሻ

గሺ௫ሻ
 limiti 

vardır ve ଵ

ଶ
’ye eşittir. ℙழ଴ሺ𝑥ሻ, ℙஹ଴ሺ𝑥ሻ, ℙஸ଴ሺ𝑥ሻ argümanları da tamamen aynıdır ve ℙୀ଴ için 

aşağıdaki sonuca ulaşılır. 

Teorem 3.2.8. (İnam ve Wiese, 2013: 336) 𝐶 ൐ 0 ve 𝛼 ൐ 0 vardır öyle ki tüm ሾ𝑎, 𝑏ሿ ⊆ ሾെ1,1ሿ 

alt aralıklar ve yeterince büyük tüm 𝑥’ler için ተ
ተ

#ቐ𝑝 ൑ 𝑥 𝑎𝑠𝑎𝑙ቮ
 ஺೟ሺ௣ሻ

௔ሺ௧ሻଶ௣ೖష
భ
మ

ቑ

గሺ௫ሻ
െ 𝜇ሺሾ𝑎, 𝑏ሿሻተ

ተ ൑ ஼

௫ഀ 

olduğu kabul edilsin. O zaman ℙவ଴, ℙழ଴, ℙஹ଴, ℙஸ଴ ve ℙୀ଴ asalların regüler kümesidir. 

Uyarı 3.2.9. ሾ𝑎, 𝑏ሿ ⊆ ሾെ1,1ሿ bir alt aralık olsun. ቊ𝑝ቤ
௔൫௧௣మ൯

ଶ௔ሺ௧ሻ௣ೖష
భ
మ

∈ ሾ𝑎, 𝑏ሿቋ kümesinin yoğunluğu 

𝜇ሺሾ𝑎, 𝑏ሿሻ’ye eşittir. 

Teorem 3.2.10. (İnam ve Wiese, 2013: 337) Teorem 3.2.8.’deki varsayımları aynen alınsın ve 

𝑎ሺ𝑡ሻ ൐ 0 olsun. Bir çarpımsal fonksiyon aşağıdaki şekilde tanımlansın. 

𝑠ሺ𝑛ሻ ൌ ቐ
1, 𝑎ሺ𝑡𝑛ଶሻ ൐ 0 𝑖𝑠𝑒

െ1, 𝑎ሺ𝑡𝑛ଶሻ ൏ 0 𝑖𝑠𝑒
0, 𝑎ሺ𝑡𝑛ଶሻ ൌ 0 𝑖𝑠𝑒

 

𝑆ሺ𝑧ሻ ≔ ∑ ௦ሺ௡ሻ

௡೥
ஶ
௡ୀଵ , 𝑠ሺ𝑛ሻ’in Dirichlet serisi olsun. O zaman 𝑅𝑒ሺ𝑧ሻ ൒ 1 için 𝑆ሺ𝑧ሻ holomorfiktir. 
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Sonuç 3.2.11. (İnam ve Wiese, 2013: 337) ሼ𝑛 ∈ ℕ | 𝑎ሺ𝑡𝑛ଶሻ ൐ 0ሽ ve ሼ𝑛 ∈ ℕ ∶  𝑎ሺ𝑡𝑛ଶሻ ൏ 0ሽ 

kümeleri eşit ve pozitif Dedekind-Dirichlet yoğunluklarına sahiptir, yani 

ሼ𝑛 ∈ ℕ ∶  𝑎ሺ𝑡𝑛ଶሻ ് 0ሽ 

kümesinin Dedekind-Dirichlet yoğunluğunun yarısına karşılık gelir. 

Böylece Fourier katsayılarının özel katsayı aileleri üzerinde Bruinier-Kohnen işaret 

eşdağılım konjektürü ispatlanmış olur. (İnam ve Wiese, 2013)’den alınarak elde edilen bu 

teknik ile yazılmış problemin çeşitli varyantları için literatürde birçok makale bulunmaktadır. 

Burada Sato-Tate Konjektürü’nün etkili olarak nasıl kullanılabileceği verilmesi 

amaçlandığından literatürde bulunan diğer sonuçlardan bahsedilmemiştir.  
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4. YARIM TAMSAYI AĞIRLIKLI MODÜLER FORMLARIN 

KATSAYILARININ DAĞILIMI VE RAMANUJAN-

PETERSSON KONJEKTÜRÜ 

Bu bölümde çalışmanın temel amacını oluşturan yarım tamsayı ağırlıklı cuspidal Hecke 

eigenformların Fourier katsayılarının sistematik dağılımının Sato-Tate benzeri bir dağılım olup 

olmadığı araştırma sorusu üzerinde durulacaktır. Bunu yapabilmek için önceki bölümlerde 

verilen yöntemle elde edilen ve üzerinde istatistiksel çalışma yapmaya müsait çok fazla sayıda 

Fourier katsayıları hesaplanarak yarım tamsayı ağırlıklı Hecke eigenformlar elde edilmiştir. 

Ardından Ramanujan-Petersson Konjektürü yardımıyla normalleştirilmiş Fourier katsayılarının 

dağılımı incelenmiştir. Elde edilen veriler yardımıyla da Bruinier-Kohnen İşaret Eşdağılım 

Konjektürü literatürde olabilecek en geniş hesaplama yapılarak bu konjektür doğrulanmıştır. 

Diğer yandan Bruinier-Kohnen Konjektürü işaret ve mutlak değerden bağımsız olarak ifade 

edilerek geliştirilmiştir. Bu bölümde detaylı olarak bu başlıklar ele alınacaktır. 

4.1. Katsayıların Normalleştirilmesi ve Ramanujan-Petersson Konjektürü  

𝑓 ൌ ෍ 𝑎ሺ𝑛ሻ𝑞௡

ஶ

௡ୀଵ

 

𝑘 ağırlıklı bir cuspidal Hecke eigenform olsun. Bu durumda (Kohnen, 1994: 333) gereği 

Ramanujan-Petersson Konjektürü herhangi bir 𝜀 ൐ 0 için  

𝑎ሺ𝑛ሻ ൌ 𝑂 ൬𝑛
௞ିଵ

ଶ ାఌ൰ 

olduğunu iddia eder. Deligne tarafından 1974’te yapılan Weil Konjektürleri'nin meşhur ispatı 

gereği tamsayı ağırlıklı modüler formlar için 𝜀 ൌ 0  için Ramanujan-Petersson Konjektürü ispat 

edilmiştir. Bu konjektürden ilham alınarak bu çalışmada normalleştirilmiş katsayılar 

𝑏ሺ𝑛ሻ ≔
𝑎ሺ𝑛ሻ

𝑛௞ିଵ
ଶ

 

olarak tanımlanmıştır. Çalışma tarihi itibariyle literatürde yarım tamsayı ağırlıklar için 

Ramanujan-Petersson Konjektürü için bir özel durum bile ispatlanmamış gözükmektedir. 

Bununla beraber, (Gun ve Kohnen, 2019) çalışmasında yarım tamsayı ağırlıklı modüler formlar 

için 𝜀 ൌ 0 olmasında konjektürün doğru olmayacağını yani 𝜀’un 0 alınamayacağını 

ispatlamışlardır. Bu sonucu elde etmek için Shimura yükseltmesinden gelen içinde 

tamkare çarpan bulunan indislerin bir dizisini kullanarak bir ters örnek oluşturmuşlardır. Gun, 



 

26 
 

Kohnen ve Soundararajan'ın 2020'deki güncel makalelerinde (Farmer vd., 2007: 224)'den elde 

edilen ve Ramanujan-Petersson Konjektürü'nden daha güçlü olan  

|𝑏ሺ|𝑛|ሻ| ൑ exp ሺ𝐶ඥ𝑙𝑜𝑔|𝑛|𝑙𝑜𝑔𝑙𝑜𝑔|𝑛| 

sınırının yarım tamsayı ağırlıklı modüler formlar için "çok büyük olasılıkla" doğru olduğunu 

önermişlerdir.  

4.2. Bilinen Sonuçlar ve Yarım Tamsayı Ağırlıklı Modüler Formlar İçin    

Dağılımlara Yönelik Konjektürler 

𝑘 ൌ 𝑙 ൅ ଵ

ଶ
 yarım tamsayı ağırlık için (Waldspurger, 1981: 378) Teorem 1'de ve (Kohnen 

ve Zagier, 1981: 177) Teorem 1'de verilen sonuçlara göre Fourier katsayılarının kareleri ile L-

fonksiyonlarının merkezi değerleri arasında çok önemli bir ilişki vardır. Daha kesin olarak, 

(Shimura, 1973) ve (Niwa, 1974)'e göre Shimura yükseltmesi ile 𝑡, içinde tamkare çarpan 

bulunmayan doğal sayı ve 𝑛 ∈ ℕ olmak üzere 𝑡𝑛ଶ ile indekslenen Fourier katsayıları ile 2𝑙 

ağırlıklı 𝑔 modüler formunun 𝑛-inci Fourier katsayısını ilişkilendirir. Bu takdirde 𝑏ሺ|𝑛|ሻଶ 

normalleştirilmiş Fourier katsayısı ile 𝑔'nin 𝑛'ye karşılık gelen ilkel ikinci derece 𝜒௡ karakteri 

yardımıyla twist edilmiş Hecke L-fonksiyonu olmak üzere |𝑛| ൌ ሺെ1ሻ௡ özelliğindeki temel 

diskriminantlar için 𝐿ሺ𝑔, 𝜒௡, 𝑠ሻ  değeri orantılıdır. 

Bu ilişki 𝑏ሺ|𝑛|ሻ mutlak değeri üzerindeki birçok sonuca taban oluşturmuştur. Diğer 

yandan bu ilişki aynı zamanda 𝑛 temel diskriminantları için 𝑏ሺ|𝑛|ሻଶ katsayılarının dağılımı için 

konjektürel bir tanımlamaya yol açmıştır. Bu bağlamda, 21. yüzyılın matematikteki çığır açan 

gelişmelerden birisi olduğu kabul edilen (Barnet-Lamb vd., 2011)'de ispatı verilen meşhur Sato-

Tate Konjektürü tamsayı ağırlıklı normalleştirilmiş Fourier katsayılarının dağılımını anlatan bir 

sonuçtur. 

(Conrey vd., 2006: 72)'da eliptik eğriler ile eşleşen 3/2 ağırlıklı modüler formların 

katsayıların dağılımı üzerine bir konjektür ortaya atmışlardır. Bu çalışmadaki Konjektür 4.2 

şunu söyler: bir 𝐸 eliptik eğrisi ile eşleşen 3/2 ağırlıklı bir modüler form için 

𝛼 ൑ 𝜅∓ඥ𝑙𝑜𝑔|𝑛|൫𝑏ሺ|𝑛|ሻ൯
ଶ

ଵ
ඥ௟௢௚௟௢௚|௡| ൑ 𝛽 

özelliğindeki 𝑛 temel diskriminantlarının doğal yoğunluğu 

1

√2𝜋
න

1
𝑡

ఉ

ఈ

exp ൬െ
1
2

ሺ𝑙𝑜𝑔𝑡ሻଶ൰ 𝑑𝑡 
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olup, burada 0 ൑ 𝛼 ൑ 𝛽 ve 𝜅∓ bir pozitif sabittir. Benzer konjektürlerin daha yüksek ağırlıklar 

için de yapıldığını Stanford Üniversitesi öğretim üyesi Prof. Dr. Kannan Soundararajan 

yazışmada tarafımıza bildirilmiştir. Üstelik, dikkat edilirse (Conrey vd., 2006: 72)'nin 

Konjektür 4.2'si normalleştirilmiş 𝑏ሺ|𝑛|ሻ katsayılarının sıfıra yaklaştığını ve |𝑏ሺ|𝑛|ሻ| ൏ 𝜀 

özelliğindeki 𝑑 ∈ 𝑆∓ sayılarının kümesinin doğal yoğunluğunun 1 olmasını da gerektirir. Bu 

tahmin, (Gun vd., 2020)'de referans verildiği gibi (Radziwill ve Soundararajan, 2015: 1030)'da 

yer alan bir teoremde 4 seviyeli modüler formlar için ispatlanmıştır: 

“Her bir 𝜀 ൐ 0 için,  

|𝑏ሺ|𝑛|ሻ| ൑ 𝐶. logሺ|𝑛|ሻିభ
ర

ାఌ                                               (4.1) 

eşitsizliğini sağlayan 𝑜ሺ𝑥ሻ tane 𝑥 ൑ ሺെ1ሻ௟𝑛 ൑ 2𝑥 özelliğinde 𝑛 temel diskriminantın en az bir 

𝐶 ൌ 𝐶ሺ𝜀, 𝑓ሻ vardır.” 

Böylece bu teorem gereği 𝑏ሺ𝑛ሻ normalleştirilmiş katsayıları 1 olasılıkla (kesin olarak) 

0'a yakınsar. O halde bu normalleştirilmiş katsayılar 0'da bir Dirac ölçümüne sahip olur. Diğer 

yönde ise (Gun vd., 2020: 2) gereği, 4 seviyeli modüler formlar için, büyük değerlere sahip 

Fourier katsayılarının varlığı ispatlanmıştır: 

"Yeterince büyük 𝑥’ler ve her 𝜀 ൐ 0 için  

|𝑏ሺ|𝑛|ሻ| ൒ exp ൬
ଵ

଼ଶ

ඥ୪୭୥|௡|

ඥ௟௢௚௟௢௚|௡|
൰                                        (4.2) 

eşitsizliğini sağlayan en az 𝑥ଵିఌ tane 𝑥 ൏ ሺെ1ሻ௟𝑛 ൏ 2𝑥 özelliğinde 𝑛 temel diskriminantları 

vardır.” 

Dikkat edilirse L-fonksiyonlarının merkez değerleriyle olan ilişki katsayıların kareleri 

ile ilgili bilgi verir; yani işaretleriyle ilgili herhangi bir bilgi vermez. Burası tam olarak da 

Bruinier-Kohnen İşaret Eşdağılım Konjektürü'nün devreye girdiği yerdir. Bu konjektür 

(Konjektür 3.1.2.) sıfırdan farklı katsayıların yarısının pozitif yarısının da negatif olduğunu 

iddia eder. 

4.3. 𝚪𝟎ሺ𝟒ሻ İçin Yarım Tamsayı Ağırlıklı Hecke Eigenform Örnekleri 

Bir dağılım elde edilebilmesi için modüler formların çok fazla sayıda Fourier 

katsayısına ihtiyaç vardır. Bu çalışmada yüksek ağırlıklar için çalışılacağından dolayı mümkün 

olan en düşük seviye olan Γ଴ሺ4ሻ seçilmiştir. (İnam ve Wiese, 2021) makalesinde tanımlandığı 

gibi yarım tamsayı ağırlıklı Kohnen Plus Space yüksek hassasiyetle çabucak hesaplanabilen 
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tabanlardır. Rankin-Cohen parantezi yardımıyla bu tabanlar ile çalışılmıştır. Herhangi bir veri 

kaybı olmaması açısından sonunda sadece normalleştirilmiş katsayılara dönüşen rasyoneller 

üzerinde çalışılmıştır. Bu seçimin dezavantajı 𝑞’nun yüksek kuvvetlerine kadar hesaplanan 𝑞-

açılımlarının çok büyük miktarda bellek harcamasıdır. Daha fazla detay verilirse Rankin-Cohen 

tabanı ile ilgili Hecke eigenformları ifade etmek için oldukça iyi olan Pari/GP programı 

kullanılmıştır. Pari/GP Programındaki “mf paketi” gerekli araçları sağlamaktadır. Daha sonra 

ise Hecke eigenformları bir kuvvet serisi olarak inşa eden MAGMA Programı ile de taban 

katsayıları elde edilmiştir. Kuvvet serilerinin çarpımını çok hızlı bir algoritma ile yaptığı için 

MAGMA programı kullanılmıştır. Son adım olarak ise normalleştirilmiş katsayılar reeller 

üzerinde hesaplanmıştır. Ön hesaplamalar tamamen bittiği için reel 10 basamak almak yeterli 

olmuştur. 

Kohnen Plus Space’de sadece içinde tamkare bulunmayan indisli katsayıları 

kaydedilmiştir. ( 𝑘 െ ଵ

ଶ
  çift için 𝑛 ≡ 2,3 ሺ𝑚𝑜𝑑 4ሻ olduğunda 𝑎ሺ𝑛ሻ ൌ 0’dır.) Bu yol ile tüm 

modüler formlar da normalleştirilmiştir. Kohnen Plus Space tanımına bakılırsa bu doğal bir 

normalleştirme yoludur ancak kanonik yol değildir. 

Γ଴ሺ4ሻ için 
ଵଷ

ଶ
, ଵ଻

ଶ
, ଵଽ

ଶ
, … , ଺ଵ

ଶ
  ağırlıklı tüm Hecke eigenformların 10଻ katsayısını 

hesaplanmıştır. Bu sayede içinde tamkare bulundurmayan 𝑛 ൏ 10଻ indeksli 𝑏ሺ𝑛ሻ 

normalleştirilmiş katsayıları elde edilir. Bazı ağırlıklı Fourier katsayıları için 10଼ katsayıya ve 

ଵଷ

ଶ
 ağırlık için ise 2.10଼ katsayıya ulaşılmıştır. Bu normalleştirilmiş katsayıları içeren dosyalara 

(Wiese, 2021) kaynağında yer alan URL adresinden ulaşılabilir. Bu dataların tamamı 4 GB 

kadar bir alan tutmaktadır. Aşağıdaki tüm tablolarda 25/2ሺ2ሻ ile Γ଴ሺ4ሻ için 25/2 ağırlıklı 

Hecke eigenformun ikinci cusp formunu temsil edecek şekilde ifade edilmiştir.  

Dikkat edilecek olursa Shimura yükseltmesi altında herhangi bir yarım tamsayı ağırlıklı 

(𝑘 ağırlıklı) Hecke eigenform 2𝑘 െ 1 ∈ ℤ ağırlıklı 1 seviyeli tamsayı ağırlıklı Hecke 

eigenforma karşılık gelir. (Kohnen, 1985: 241)’den Shimura yükseltmesi tamsayı ağırlıklı uzay 

ile Kohnen Plus Space arasında Hecke eşdeğişkenli izomorfizmdir. Bu da yarım tamsayı 

ağırlıklı eigenformlar ile tamsayı ağırlıklılar arasında birebir bir eşleme vardır. Maeda 

konjektürüne (Hida ve Maeda, 1997: 196) göre 2𝑘 െ 1 ağırlıklı eigenformlar sadece tek bir 

Hecke eigenform yörüngesindedir. Maeda konjektürünü kabul ederek Kohnen Plus Space’de 

yarım tamsayı ağırlıklı Hecke eigenformların sayısı tamsayı ağırlıklı katsayılarla ortaya çıkan 

sayı cisminin derecesine eşittir. 
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4.5. Normalleştirilmiş Katsayıların Dağılım Histogramları 

Çalışmada hatırlandığı gibi yarım tamsayı ağırlıklı Hecke eigenformların 

normalleştirilmiş katsayılarının dağılımının anlaşılması amaçlanmaktadır. (Radziwiłł ve 

Soundararajan, 2015)’in sonuçlarından yola çıkılarak 𝑏ሺ𝑛ሻ normalleştirilmiş katsayıların tam 

olarak neredeyse 0’a doğru yakınsadığı ifade edilebilir. Ancak bu dağılım için tez kapsamında 

yapılan ve çok da ilginç görülen yoğunluk fonksiyonu ile yaklaşımın daha güzel olabileceği bir 

üst sınır olduğu düşünülmektedir. Dahası bu katsayıların sıfır civarında (sıfırın sağında ve 

solunda) simetrik oldukları görülmektedir.  

Dağılımın ifade edilebilmesi için tüm modüler formların normalleştirilmiş 

katsayılarının dağılım histogramları oluşturulmuştur. Dikkat edilirse Shimura yükseltilmesi 

yardımıyla k+1/2 ağırlıklı modüler formlar 2k – 1 ağırlıklı modüler formlara taşınabildiğinden 

ve burada tamkare indisli Fourier katsayılar elde edildiğinden elde edilmesi hedeflenen 

dağılımla Sato-Tate dağılımı birbiriyle karışmaması için sadece içinde tamkare bulunmayan 

sayılar tarafından indislenen Fourier katsayıları dikkate alınmıştır. Aksi takdirde elde edilecek 

grafiklerden bir analiz yapmak imkansız hale gelebilmektedir.  

Normalleştirilmiş katsayıların histogramları Gnuplot programı (Williams, 2004) 

kullanılarak oluşturulmuştur. İlgili katsayılar oldukça küçük reel sayılar olduklarından bu 

grafikler oluşturulurken bu katsayıların “paketlenerek” işlenmesi gerekir aksi takdirde bu 

grafikler oluşturulamaz. Öte yandan istenilen dağılımları etkileyip etkilemeyeceğini anlamak 

adına program kullanılırken grafiklerin çiziminde farklı kutu ölçüleri dikkate alınmıştır. 

Örneğin 
ଵଷ

ଶ
 ağırlıklı Hecke eigenformun içinde tamkare bulundurmayan tamsayılarla indislenen 

normalleştirilmiş katsayıları için kutu ölçüleri sırasıyla 0.001, 0.0001, 0.00001 alındığında elde 

edilen histogramların grafikleri aşağıdaki şekillerde gösterilmiştir. 

 

Şekil 4.1. 13/2 ağırlıklı Hecke eigenformun normalleştirilmiş Fourier katsayılarının 10଼ tanesinin histogramları 
sırasıyla kutu boyutları 0.001, 0.0001, 0.00001. 
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Bazı kutu ölçülerinde örneğe de bağlı olarak göze daha hoş gelen grafikler elde 

edilmektedir. Bu çalışmada 0.001 kutu ölçüsü baz alınmıştır. Ancak hangi ölçü alınırsa alınsın 

dağılımı açıklayan fonksiyon ile data arasındaki en iyi uyumu veren parametreler 

etkilenmemektedir.  

Aşağıdaki tabloda daha sonra açıklanacak olan 5 farklı ağırlıktaki form ve 3 farklı kutu 

ölçüsündeki GG-dağılımındaki (dağılımın en önemli parametresi olan) a değerleri verilmiştir.  

Tablo 4.1. GG- dağılımının a değerleri 

 

Bu nedenle gözlemlerde ve tartışmalarda Gnuplot programında seçilen kutu ölçüsü 

önemsenmemektedir. 

4.6. Aday Dağılım Fonksiyonları ve Regresyon 

Bu bölümdeki temel amaç elde edilen histogramların ‘genel şekli’ nin katsayılardan ve 

sınırdan bağımsız olduğunu göstermektir. Daha doğrusu bu çalışma kapsamında yapılan geniş 

hesaplamalar belirlenen sınıra kadar herhangi bir yarım tamsayı ağırlıklı Hecke eigenformların 

normalleştirilmiş Fourier katsayılarının tek tip bir yoğunluk fonksiyonu yardımıyla ifade 

edilebileceğini güçlü bir şekilde iddia etmektedir. Doğal olarak bu parametreler hesaplanan 

Fourier katsayısı kadar seçilen modüler forma da bağlıdır. 

Dikkatlice gözlemlenecek olursa her bir modüler form için histogramların şekilleri esas 

olarak aynıdır. Bu ise elde edilen datanın (hem de “basit” bir) dağılım fonksiyonu tarafından 

açıklanabileceğinin tahmin edilmesine neden olur. Böylece yarım tamsayı ağırlıklı Hecke 

eigenformların Ramanujan-Petersson konjektürü tarafından normalleştirilmiş Fourier 

katsayıları üzerinde tam olarak çalışmanın amacına uygun aşağıda verilen parametre ve 

grafiklerle desteklenen Sato-Tate benzeri dağılımın varlığı ortaya konur. 

Histogramlara bakılırsa 0 civarında bir simetriklik olduğu hemen dikkat çeker ki bu da 
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Bruinier-Kohnen İşaret Eşdağılım Konjektürü’nü doğrular. İlk bakışta histogramlar çan eğrisi 

şekline benzemesine rağmen bu bir yanılgıdır. Gerçekten de bu dağılım standart bir Gauss 

dağılımını vermez. Bunu görebilmek için SPSS istatistik programında Anderson-Darling testi 

uygulanabilir. Doğru dağılımı bulabilmek adına aşağıda tanımlanan Genel Genelleştirilmiş 

Gauss (GGG) dağılımı, Genelleştirilmiş Gauss (GG) Dağılımı, Laplace ve Cauchy dağılımları 

aşağıda tanımlanmıştır: 

GGG(x) = 𝑏𝑒
ቆି

൫೏శೣమ൯
ೌ

೎
ቇ
 

GG(x) = 𝑏𝑒
ቆି

൫ೣమ൯
ೌ

೎
ቇ
 

Laplace(x) = 𝑏𝑒ቀି
|ೣ|
೎

ቁ 

Cauchy(x) = ௔

௕ାሺ௖௫ሻమ 

Kolayca görülebilir ki, GG dağılımı GGG dağılımının özel hali (d=0) olduğu gibi 

Laplace dağılımı da GGG dağılımının özel bir halidir (a=0.5). İleride tablo ile verilecek a 

değerlerinden de görülebilecektir ki bu değerler 0.5 değerine oldukça yakın değerlerdir. 

Çalışmanın kapsamında yer almadığı için histogram grafiklerinin altında kalan alanlar 1 yapılıp 

elde edilecek dağılım fonksiyonları olasılık dağılım fonksiyonlarına dönüştürülmemiştir. Bu ise 

literatüre bir açık problem olarak bırakılmıştır. 

Grafikte dört dağılım da güzel gözükse bile bunların açıkça en iyisi GGG dağılımıdır. 

Cauchy dağılımı kuyruklarda sistematik olarak çok yüksek değerler alıyor ve bu sebepten ötürü 

içlerinde en uyumsuz görünen dağılım olmuştur. Son kısımda en iyi dağılım ile uyumu 

gösterilen dağılım fonksiyonlarının grafikleri incelenebilir. 

Histogramlarımız homojen bir şekilde normalleştirildiğinden genel olarak aynı şekli 

sunarlar ancak bazıları daha geniş bazıları daha dik şekillerdir. Farklı histogramlar arasındaki 

en iyi regresyonun düzgünlüklerini kıyaslamak oldukça zordur. Bu düzgünlük ölçümü Gnuplot 

programında RMS (Root Mean Square) değerleri ile ölçülmüştür. GGG dağılımı en iyi dağılım 

olarak ifade edilmişti bu yüzden elbette bu dağılımdaki değerlerin GG ve diğer dağılımlar 

Laplace’dan daha iyi olduğu gözlenebilmektedir. 10଼ katsayıya ulaşılmış olup örneklerin 

hepsinde Gnuplot programı kullanılarak bulunan en iyi regresyon değerleri tablolar halinde 

verilmiştir. Ayrıca 10଻ katsayıya ulaşılan tüm değerler de tablolar halinde “Ekler” kısmında 

sunulmuştur. 
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Şekil 4.2. 13/2 ağırlıklı Hecke eigenformun 10଼ katsayısının histogram ve dağılımı 

 

 

Şekil 4.3. 25/2 ağırlıklı Hecke eigenformun 10଼ katsayısının histogram ve dağılımı 

 

 

Şekil 4.4. 43/2 ağırlıklı Hecke eigenformun 10଻ katsayısının histogram ve dağılımı 
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Tablo 4.2. GGG- dağılımının en iyi parametre değerleri 

 

 

Tablo 4.3. GG- dağılımının en iyi parametre değerleri 
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Tablo 4.4. Laplace dağılımının en iyi parametre değerleri 

 

Tablo 4.5. Cauchy dağılımının en iyi parametre değerleri 
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Tablo 4.6. Dört dağılımdaki en iyi parametreler için RMS değerleri 

 

4.7. Parametrelerin Bağımlılığı ve Bağımsızlığı  

GGG dağılımı oldukça iyi gözükse bile önceki bölümde görüldüğü gibi Radziwiłł ve 

Soundararajan’ın sonuçları herhangi bir Hecke eigenform için parametrelerin aynı zamanda 

sınıra bağlı olmak zorunda olduğunu göstermektedir. Bu bölümde bu bağımlılık yani bir diğer 

ifade ile parametrelerin katsayılara göre nasıl davrandığı araştırılmıştır. Bu çalışmada 

normalleştirilmiş katsayıların en büyüğü olarak 
ଵଷ

ଶ
 ağırlık için 2. 10଼ katsayı hesaplanabilmiştir. 

Bu katsayılar da 20 alt gruba bölünerek her bir grup için yine ayrıca fit değerleri hesaplanmış 

ve aşağıdaki tablo oluşturulmuştur. Böylece yapılan işin tutarlı olduğu görülebilir. 
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Tablo 4.7. 13/2 ağırlık için 2.10଼ katsayının alt grupları için her bir dağılımdaki en iyi parametre değerleri 

 

Aşağıda bu değerler için hesaplanan RMS değerleri bir tablo ile gösterilmektedir. 

Tablo 4.8. RMS değerleri 
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Parametrelere bağımlılık kolayca görülebilir. Örneğin Cauchy ile GG dağılımının 

değerleri de bir parametreye bağımlılığı söyler. Laplace dağılımı için 𝑏 değerleri yavaşça ancak 

kesin olarak artar. Öte yandan bir istisna hariç 𝑐 değerleri yavaşça ancak kesin olarak 

azalmaktadır. GGG dağılımı için kümelerin ilk birkaç çiftindeki değerlerde net bir bağımlılık 

söz konusudur. Bununla beraber son kümeler için tüm bu değerlerin sabitleşmeye başladığı 

gözlemlenmektedir. Mevcut bilgisayar teknolojisi ile ulaşılabilen Fourier katsayılarının üst 

sınırı limit dağılımın Dirac delta fonksiyon olduğunu göstermeye yetmemektedir. 

Çalışma kapsamında hesaplanan Fourier katsayılarının içinden, içinde tamkare 

bulunmayan ve sıfırdan farklı n indisli Fourier katsayıları seçilmiştir. Tamsayı ağırlıklı 

durumlarda kompleks çarpıma sahip olmayan Hecke eigenformlar için sadece asal indisli olan 

Fourier katsayıları Sato-Tate dağılımı yarım daire oluşturur ve yarım tamsayı ağırlıklı 

durumlarla aralarında bu şekilde büyük bir farklılık vardır. Dahası, tamsayı ağırlıklı Hecke 

eigenformların katsayıları çarpımsal fonksiyonlardır böylece asal indislerde katsayıların 

dağılımı kalanları tanımlar. Yarım tamsayı ağırlıklı durumlar için ise benzer bir durum 

olduğunu bilinmemektedir. Aslında dağılımlardaki grafiğin şekli asal indisler ile sınırlandırılsa 

bile önemli ölçüde değişmeyecektir. Burada bahsedilen asal indis ya da içinde tamkare 

bulundurmayan durumlar için de dağılımlardaki değerlerin önemli ölçüde değişmediği de 

aşağıdaki tablo ile gösterilmiştir. 
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Tablo 4.9. İçinde tamkare bulunmayan (sqf) ve asal durumlar için bulunan en iyi parametre değerleri 

 

İçinde tamkare bulunmayan indislerin sayısı asal indislilerin sayısından oldukça fazla 

olduğundan b değerleri tamamen farklı değerler almaktadır. Yine aynı sebepten ötürü RMS 

değerleri de farklı değerler almıştır. Ancak en önemli parametre olan 𝑎 parametresi GG ve GGG 

dağılımında da neredeyse aynı değerleri almıştır. Bu nedenle elde edilebilen sayıda Fourier 

katsayıları için yapılan hesaplamalarda sadece içinde tamkare bulunmayan indisleri dikkate 

almak yeterlidir. 
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Şekil 4.5. 13/2 ağırlıklı Hecke eigenformun sadece asal indisli Fourier katsayılarının dağılımı ve histogramı 

GGG dağılımı ile normalleştirilmiş Fourier katsayıların üst sınırına en iyi yaklaşım 

gözlemlenmiştir ve tüm sınırlar için bu sınırın sabit olup olmadığı sorusuna ulaşılmıştır. 

Açık Soru: (İnam vd., 2021: 2434) 𝑘 ൌ 𝑙 ൅ ଵ

ଶ
 olmak üzere 𝑓 Kohnen Plus Space’de 𝑘 ağırlıklı 

Hecke eigenformun cusp formu ve 𝑏ሺ𝑛ሻ’ler daha önce verilmiş olan normalleştirilmiş 

katsayılar ve 𝑥 ∈  ℝவ଴ olsun. 

𝑛, 𝑛 ൑ 𝑥  ve 𝑛 ≡ ሺെ1ሻ௟ ሺmod 4ሻ özelliğinde içinde tamkare bulundurmayan bir doğal sayı 

olsun. Bu özellikteki 𝑛 sayıları için 𝑏ሺ𝑛ሻ normalleştirilmiş katsayıların dağılımı parametreleri 

sadece 𝑓 ve 𝑥’e bağlı olacak şekilde GGG dağılımı ile ifade edilebilir mi? 

Daha kesin olarak 𝐼 ∈ ሾ𝛼, 𝛽ሿ ⊆ ℝ özelliğindeki tüm aralıklar için 

𝑏 ൌ න expሺെ
ሺ𝑑 ൅ 𝑡ଶሻ௔

𝑐
𝑑𝑡

ஶ

ିஶ

 

ve “sqf” ile içinde tamkare olmayan tamsayıyı göstermek üzere 

#ሼ𝑛 ∈ 𝑁 𝑠𝑞𝑓 | 𝑛≤𝑥 , 𝑛 ≡ ሺെ1ሻ௟ 𝑚𝑜𝑑4 , 𝑏ሺ𝑛ሻ ∈ 𝐼}

#ሼ𝑛 ∈ 𝑁 𝑠𝑞𝑓|𝑛≤𝑥 , 𝑛 ≡ ሺെ1ሻ௟ 𝑚𝑜𝑑4 ሽ
 

sayısı,  

1
𝑏

න expሺെ
ሺ𝑑 ൅ 𝑡ଶሻ௔

𝑐
𝑑𝑡

ఉ

ఈ

 

integral değerine eşit midir? 



 

40 
 

5. BRUINIER-KOHNEN KONJEKTÜRÜNÜN 

GÜÇLENDİRİLMESİ 

Yarım tamsayı ağırlıklı Hecke eigenformların sıfırdan farklı Fourier katsayılarının 

işaretlerinin eş dağıldığı (Bruinier ve Kohnen, 2008: 63)’de iddia edilmiştir. Daha kesin olarak 

𝑘 ൌ 𝑙 ൅ ଵ

ଶ
 ağırlıklı ve Fourier katsayıları reel olan bir cusp form 𝑓 ൌ ∑ 𝑎ሺ𝑛ሻ𝑞௡ஶ

௡ୀଵ ∈ 𝑆௞൫Γ଴ሺ𝑁ሻ൯ 

olsun. Ayrıca 𝑙 ൌ 1 iken 𝑓 unary teta serilerine ortogonal olsun. Bruinier ve Kohnen  

ሼ𝑛 ∈ ℕ ∶ 𝑎ሺ𝑛ሻ ൐ 0ሽ 

 ve 

ሼ𝑛 ∈ ℕ ∶ 𝑎ሺ𝑛ሻ ൏ 0ሽ 

kümelerinin aynı doğal yoğunlukta ve kesin olarak  

ሼ𝑛 ∈ ℕ ∶ 𝑎ሺ𝑛ሻ ് 0ሽ 

kümesinin doğal yoğunluğunun yarısına eşit olduğunu sürmüşlerdir. Bu problem zor bir 

problem olup literatürde halen bu problemin tam çözümünü sağlayacak bir metot 

bulunmamaktadır. Ancak katsayı ailelerinin bazı özel alt kümeleri üzerinde problem farklı 

otomorfik formlar da dahil olmak üzere yoğun bir şekilde çalışılıp bu yönde çok sayıda sonuç 

ispatlanmıştır. Bu sonuçların öncülü ise Shimura yükseltmesi ile yarım tamsayı ağırlıklı Hecke 

eigenformlar için meşhur Sato-Tate Konjektürünün birleşmesiyle tamkare indeksli katsayılar 

için işaretlerin dağılımının ispatıdır (İnam ve Wiese, 2013), (Arias-de-Reyna vd., 2015), (İnam 

ve Wiese, 2016)’daki gibi). İşaret dağılım problemi hala ilgi çekici olarak çalışılmaktadır 

(örneğin (Amri, 2019)) ayrıca (İnam ve Wiese, 2013)’den bir teknikle (Kaushik vd., 2018)’de 

Hilbert modüler formlar gibi daha genel otomorfik formlara genişletilmektedir. 

Bu çalışmada tezin yazım tarihine kadar Bruinier-Kohnen konjektürünü destekleyen en 

geniş ve en sistematik hesaplamalar yapılmıştır. Gerçekten de çok sayıda Hecke eigenform için 

hesaplanan 10଻ ve 10଼ Fourier katsayısı için çizilen histogramlara dikkat edilirse bu 

histogramlar y-eksenine göre simetrik olup Bruinier-Kohnen konjektürünü gerçekler. 

Gerçekten de 0’ın civarında simetri olması işaretlerin düzgün dağılımını ve 

normalleştirilmiş katsayıların mutlak değerlerinin dağılımı ile işaretlerin dağılımının 

birbirinden bağımsız olduğunu gösterir. Bunu daha kesin yapabilmek için (4.2) eşitsizliği 

hatırlanırsa yeterince büyük |𝑏ሺ𝑛ሻ| normalleştirilmiş katsayıların sonsuz çoklukta olduğu 

bilinmektedir. Bu ise 𝑛 içinde tamkare bulundurmayan tamsayı olmak üzere boştan farklı 

herhangi bir 𝐼 ⊆ ℝவ଴ aralığında sonsuz çokluktaki |𝑏ሺ𝑛ሻ| normalleştirilmiş katsayıları 
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bulunduğunu söyler. Dikkat edilirse Shimura yükseltmesinden gelen tamkare indisli 

katsayıların resmi bozmaması adına ayrıştırıp bu çalışmada sadece içinde tamkare 

bulundurmayan indislerle çalışıldığı hatırlanmalıdır. Fourier katsayılarının hesaplanabildiği 

sınıra kadar olan normalleştirilmiş Fourier katsayıların dağılımı ve 0’ın civarında simetrisi 

Bruinier-Kohnen konjektürünün genişletilmesi olarak kabul edilen aşağıdaki konjektüre 

ulaşmayı sağlar. 

Konjektür 5.1.1. (İnam vd., 2021:2438) (Mutlak Değer ve İşaretin Bağımsızlığı) 

𝑓 yukarıda verilen özelliklerde ve 𝐼 ⊆ ℝவ଴ herhangi bir aralık olsun. O zaman aşağıdaki limit 

vardır ve  

lim
௫→ஶ

#ሼ𝑛 ൑ 𝑥 𝑠𝑞𝑓 | |𝑏ሺ𝑛ሻ| ∈ 𝐼, 𝑏ሺ𝑛ሻ ൐ 0ሽ  
#ሼ𝑛 ൑ 𝑥 𝑠𝑞𝑓 | |𝑏ሺ𝑛ሻ| ∈ 𝐼ሽ

ൌ
1
2

 

dir. 
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6. SONUÇ VE TARTIŞMA 

Bu çalışmada yarım tamsayı ağırlıklı modüler formlar üzerinde Sato-Tate benzeri bir 

sonuç verilip verilemeyeceği problemi ele alınmıştır. Bunu yapabilmek adına ilk olarak 

literatürdeki açık problemlerden birisi olan yarım tamsayı ağırlıklı Hecke eigenformların 

sistematik seçimine Rankin-Cohen parantezi metodu adı verilen metotla çözüm üretilmiş olup 

literatüre bu yönde önemli bir katkı sağlanmıştır.  

Elde edilen çok sayıda örnek üzerinde geniş çaplı bir istatistik yapılıp Ramanujan-

Petersson Konjektürü yardımıyla normalleştirilen Fourier katsayılarının GGG-dağılımıyla 

açıklanabileceği ortaya konmuş ve sayısal verilerle bu iddia desteklenmiştir. Böylece doktora 

tezindeki en önemli hedeflerden birisi gerçekleştirilmiştir. Ortaya konulan açık sorunun ispatı 

için yeni bir metot geliştirilmesi gerekmekte olup, tezin ürünü olarak ortaya çıkan makaleyle 

çalışmanın yayılımı gerçekleştirilmiştir. Son olarak üzerine çok fazla sayıda makale yazılan 

Bruinier-Kohnen İşaret Eşdağılım Konjektürü'nün bugüne kadar yapılmış en geniş kapsamlı 

nümerik doğrulama ile literatüre bir katkıda daha bulunulmuştur. İşaret ve mutlak değer 

bağımsızlığı ile ilgili açık problem daha da geliştirilmiştir.  

Şu gözlemlerde bulunulmuştur: 

(1)  normalleştirilmiş katsayıların mutlak değerlerinin (4.1) eşitsizliği gereği 1 olasılıkla 0'a 

yakınsadığı bilinse de katsayıların (hesaplamalı olarak erişilebilir) sınırlara kadar çok düzgün, 

önemsiz olmayan bir dağılımını gözlemliyoruz. Dağılım, genelleştirilmiş bir Gauss dağılımını 

takip ediyor gibi görünüyor. 

(2) Farklı sınırlara ve değişken yarım tamsayı ağırlıklara göre Hecke eigenformların normalize 

edilmiş Fourier katsayılarının dağılımlarının histogramları, tek tip yoğunluk fonksiyonu ile iyi 

bir şekilde yaklaşılabilmeleri, tüm grafiklerin aynı şekilde görünmesi ve parametrelerin sadece 

modüler forma ve sınıra bağlı oluşu gözlemlenmiştir.  

(3) Sınırlara kadar katsayıların gözlemlenen dağılımlarının 0 civarında simetrisi, Bruinier-

Kohnen İşaret Eşdağılım Konjektürü'ne yönelik çok güçlü kanıt olarak yorumlanabilir. Aslında, 

varsayımın mutlak değer ve işaretlerin bağımsız olarak dağıtıldığı noktaya kadar 

güçlendirilmesini önermektedir (bkz. Konjektür 5.1.1). Bildiğimiz kadarıyla bu makaledeki 

hesaplamalar, Bruinier-Kohnen İşaret Eşdağılım Konjektürü için bugüne kadar yapılmış en 

sistematik ve en büyük hesaplama desteği olarak görülebilir. Ayrıca, Açık Soru'nun olumlu bir 

cevabı varsa, Bruinier-Kohnen İşaret Eşdağılım Konjektürü doğrudur ve bu başlıktaki iki 

konuyu birbirine bağlar. 
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EK 3) EN UYGUN PARAMETRELERİN TABLOLARI 

 

Tablo E. 1. 10଻ Katsayılı GGG dağılımı için en iyi uyum parametreleri 

  

 

 

 

 

 

 

 

 



 

64 
 

Tablo E. 2. 10଻ Katsayılı GG dağılımı için en iyi uyum parametreleri 
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Tablo E. 3. 10଻ Katsayılı Laplace dağılımı için en iyi uyum parametreleri 
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Tablo E. 4. 10଻ Katsayılı Cauchy dağılımı için en iyi uyum parametreleri 
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Tablo E. 5. 10଻ Katsayılı tüm örnekler için RMS değerleri 

  

 

 


