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AN AGENT-BASED ENERGY MANAGEMENT APPROACH
FOR V2X-CAPABLE CHARGER CLUSTERS

SUMMARY

To deal with the intermittency problem of renewable-based distributed generation,
flexible energy assets such as electrical batteries are widely considered. In line with
the localization trend in the energy sector, electric mobility is becoming mainstream.
The additional load demand that comes with the penetration of EVs will raise the
need for additional electricity generation. In particular, aggregated charging load of
electric vehicles cause overload in the distribution network. With the management
of EV charging, overload can be avoided and grid reliability can be ensured. At this
point, smart grid applications promise to help make the addition of electric vehicles
to the grid more sustainable with concepts such as V2X (vehicle to everything).
On the other hand, as the plug-in EV fleet grows, an effective energy management
system is needed to avoid adverse effects such as voltage fluctuations and increased
electricity losses. By combining several flexible energy assets, a bidirectional EV
charger cluster can have a local balancing capacity and therefore be operated without
demanding energy from the grid for a specified period of time. The aim of this thesis
is to manage EV charging in clustered systems and to obtain energy neutral charger
clusters by increasing the local balancing capabilities of clusters and to efficiently use
V2X functions with the proposed energy management algorithm. With this thesis,
it is also aimed to reduce the peak-to-average ratio and to provide a balanced and
efficient load profile. To achieve the objectives, an agent-based energy management
concept has been proposed. In the proposed concept, each bidirectional charging
unit with a connected EV at the charging station is represented by an agent. This
approach provides a decentralized structure and swarm control in line with the agents’
local targets. In this algorithm all power producers and consumers are represented as
agents. First, the agents calculate their operation range and current power demand or
production, i.e. their flexibility. Energy consumers and producers then interact and
negotiate with each other, thus providing self-consumption by meeting each power
consumption with an equivalent power generation. This allows flexible power transfer
between EVs with a collaborative perspective on the charging system. In this way,
the peak-to-average ratio decreases and self-consumption increases. In the study, the
negotiation and decision-making processes of the agencies are discussed in detail.
Simulation studies performed on the proposed concept for local balancing show that
this application has the potential to provide effective and sustainable solutions for
energy management.
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V2X ÖZELLİKLİ ŞARJ KÜMELERİ İÇİN
ETMEN-TABANLI ENERJİ YÖNETİM YAKLAŞIMI

ÖZET

Yenilenebilir tabanlı dağıtık elektrik üretiminin kesinti sorunuyla başa çıkmak
için, piller gibi esnek enerji kaynakları dikkate alınmaktadır. Enerji sektöründeki
yerelleşme eğilimine paralel olarak, elektrikli ulaşım yaygın hale gelmektedir.
Elektrikli araçların (EA’ların) yaygınlaşmasıyla ortaya çıkan ek yük talebi ise ek
elektrik üretimi ihtiyacını arttırmaktadır. Özellikle elektrikli araçların toplu halde
şarj talebi, dağıtım şebekesinde aşırı yüklenmeye neden olacaktır. EA şarjının
yönetimi ile aşırı yüklenme önlenebilir ve şebeke güvenilirliği sağlanabilir. Bu
noktada akıllı şebeke uygulamaları, araçtan herşeye (V2X) gibi kavramlarla şebekeye
elektrikli araçların eklenmesini daha sürdürülebilir hale getirmeye yardımcı olmayı
vaat etmektedir. Öte yandan, şarj edilebilir EA filosu büyüdükçe, voltaj dalgalanmaları
ve artan elektrik kayıpları gibi olumsuz etkilerden kaçınmak için etkin bir enerji
yönetim sistemine ihtiyaç duyulmaktadır. Birkaç esnek enerji kaynağını bir araya
getirerek, bir çift yönlü EA şarj ünitesi kümesi, yerel bir dengeleme kapasitesine sahip
olabilir ve böylece belirli bir süre için şebekeden enerji talep edilmeden çalıştırılabilir.

Yenilenebilir enerji gibi yeni nesil enerji kaynakları ve EA gibi depolama sistemleri
ile şebekedeki birçok elemanın enerji akışlarını izlemek ve kontrol etmek için bir
enerji yönetim sistemine (EMS) ihtiyaç duyulmaktadır. Bir EMS, enerji kaynakları
arasındaki enerji akışını koordine ederek güç sisteminin arz-talep dengesinin
korunmasına yardımcı olurken, maliyeti en aza indirmeyi amaçlar. EA şarj kümeleri
için EMS hedefleri belirlenirken, ekonomik, çevresel veya teknik faktörlerin yanı
sıra kullanıcı çıkarları da dikkate alınır. Sosyo-ekonomik temelli bu yaklaşımlar
belirlenirken, kontrol yönteminin mimari yapısı belirlenir ve pik yükün en aza
indirilmesi veya yük profilinin düzleştirilmesi gibi amaçlara dayalı olarak algoritmalar
geliştirilir. EMS’lerin operasyonları genellikle bu kontrol mimarilerine bağlıdır ve
merkezi ve merkezi olmayan olarak ayrılabilir.

Merkezi EMS yaklaşımında, merkezi yüksek performanslı bilgi işlem birimi, EA
şarjını koordine etmek için şebekeden ve EA’lardan veri toplar ve buna göre küresel
bir optimizasyon sağlar. Merkezi olmayan kontrol mimarisinde, merkezi kontrol
mimarisinden farklı olarak, her yerel birim kendi stratejik planını oluşturur ve diğer
yerel birimlerle iletişim kurar. Merkezi birim, bu planları bir araya getirme rolüne
sahip olabilir, ancak karar verme yetkisine sahip olmaz. Bu sayede EA kullanıcılarının
parametreleri ve optimizasyon kriterlerine göre EA şarj süresi belirlenir ve şarj
maliyeti minimize edilir. Aşağıdan yukarıya yaklaşım olarak da adlandırılan merkezi
olmayan EMS, sunduğu çalışma esnekliği nedeniyle genişletilebilir. Bu özelliği,
merkezi olmayan yaklaşımı büyük ölçekli uygulamalarda merkezi mimariden üstün
kılar. Ayrıca hesaplama yükü ve hızlı yanıt açısından merkezi EMS’den üstündür.
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Merkezi ve merkezi olmayan mimarinin avantajlarını birleştiren bir yapı, hiyerarşik
tabanlı kontrol mimarisi olarak adlandırılır. Bu yapıda yerel kontrolörler ve bunlara
bilgi sağlayan merkezi bir birim bulunmaktadır. Aslında hiyerarşik koordinasyon,
birçok dolaylı ve doğrudan toplayıcıyı bir araya getirererek oluşturduğu yapıları
nedeniyle tam merkezi veya merkezi olmayan olarak sınıflandırılamaz.

EA penetrasyonu arttıkça, EA’ların öngörülemeyen davranışı nedeniyle güç talebi
yönetimi daha zor hale gelecektir. Bir EA filosundaki şarj süreçlerini temsil edebilecek
daha etkili bir modele ihtiyaç vardır. Etmen tabanlı yaklaşım veya çok etmenli sistem
(MAS), dağıtık veya hiyerarşik koordinasyon altında da sınıflandırılabilen alternatif
bir tekniktir. MAS, küresel ortak bir hedefe ulaşmak için iki veya daha fazla etmenin
kendi yerel hedeflerini gerçekleştirdiği bir sistemdir. Esnekliği ve genişletilebilirliği
nedeniyle, bu yaklaşım dağıtım ağı uygulamalarında ve dağıtık enerji kaynaklarında
(DER’lerde) giderek daha fazla kullanılmaktadır. DER’lerin akıllı kontrolü ve enerji
yönetimi için umut verici bir yöntem olarak görülen MAS, birçok karmaşıklığı
da beraberinde getirmektedir. Sistem davranışı tüm etmenlerin davranışlarından
kaynaklandığından, büyük ölçekli sistemlerde davranışı tahmin etmek zor olabilir.
Etmen sayısındaki artışla birlikte iletişim karmaşıklığındaki artış kaçınılmaz olacaktır.
Buna bir çözüm olarak, holonik MAS adı verilen tamamen dağıtılmış ve hiyerarşik bir
kontrole dayanan SwarmGrid-X konsepti ortaya çıkmıştır. Bu yaklaşımda etmenler,
yerel çevreyi algılayan ve kendi yerel kararlarını organize eden bir dizi davranış
sergilerler.

Bu tezde, kümelenmiş sistemlerde EA şarjını yönetmek ve kümelerin yerel dengeleme
yeteneklerini artırarak enerji-nötr şarj kümeleri elde etmek için bir enerji yönetimi
yaklaşımı önerilmektedir. Önerilen yaklaşım ile V2X işlevlerini verimli bir şekilde
kullanarak tepe-ortalama oranının düşürülmesi ve dengeli ve verimli bir yük profili
sağlanması amaçlanmaktadır. Bu amaçlar doğrultusunda, etmen tabanlı bir enerji
yönetimi yaklaşımı önerilmiştir. Önerilen konseptte, şarj istasyonundaki elektrikli
araçlara bağlı her bir çift yönlü şarj ünitesi, bir etmen (agent) tarafından temsil
edilmektedir. Bu yaklaşım, merkezi olmayan bir yapı ile etmenlerin yerel hedefleri
doğrultusunda bir sürü kontrolü sağlar. Bu yaklaşımda tüm güç üreticileri ve tüketiciler
etmenler tarafından temsil edilmektedir. İlk olarak, etmenler çalışma aralıklarını
hesaplar ve mevcut güç taleplerini veya üretimlerini yani esnekliklerini ortaya çıkarır.
Enerji tüketicileri ve üreticileri daha sonra birbirleriyle etkileşime girerek pazarlık
yapar, böylece her güç tüketimini eşdeğer bir güç üretimi ile karşılayarak küme
içerisinde öz tüketim sağlanır. Bu, şarj sisteminde işbirlikçi bir bakış açısıyla elektrikli
araçlar arasında esnek güç aktarımına izin verir. Bu şekilde, tepe-ortalama oranı azalır
ve küme içerisindeki tüketim ihtiyacı karşılanabilir.

Bu tez kapsamında önerilen enerji yönetimi konsepti, SwarmGrid-X algoritmasının
değiştirilmiş bir versiyonuna ve tüketici-üretici aracıları arasında bir anlaşma
protokolüne dayanmaktadır. Bu konsept, elektrikli araç şarj istasyonunun merkezi
olmayan kontrolünü sağlar. Bu tezde uygulanan senaryolarda, önceki Swarm-Grid
uygulamalarından farklı olarak şarj üniteleri çift yönlüdür. Yani hem araçtan şebekeye
hem de şebekeden araca şarj işlemi yapılabilmektedir. Bu, sistemdeki şarj ünitelerinin
hem şarj hem de deşarj olabileceği anlamına gelir. Ayrıca şarj ünitelerine bağlı
EA’ların talep profilleri önceki senaryolarda aynı iken, bu tezde ele alınan senaryolarda
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EA’lerin şarj talepleri heterojen ve dolayısıyla şarj talep profilleri ve araçların esnekliği
değişkendir. Bu nedenle, bu tezde, SwarmGrid-X algoritması bu ihtiyaçlara göre
değiştirilmiş ve kümelenmiş EA filo enerji yönetiminin taleplerine uyarlanmıştır. Tez
kapsamında odaklanılan hedef, önerilen enerji yönetimi algoritması ile V2X işlevlerini
verimli bir şekilde kullanmak ve kümelerin ve sistemin tepe/ortalama güç oranını
azaltmaktır. Bu çalışma ile şebeke operatörlerine ve EA kullanıcılarına kolaylık
sağlanmasının yanı sıra çevresel ve ekonomik katkılar sağlanması hedeflenmektedir.
Tepe güç talebinin azaltılması dengeli ve verimli bir yük profili sağlayacak ve bu
da şebeke kalitesini iyileştirecektir. Tez kapsamında etmenlerin müzakere süreçleri
ve karar verme süreçleri ile optimum çözüme ulaşma süreçleri detaylı olarak ele
alınmıştır. Yerel dengeleme için önerilen konsept üzerinde gerçekleştirilen simülasyon
çalışmaları, bu uygulamanın enerji yönetimi için etkili ve sürdürülebilir çözüm sunma
potansiyeline sahip olduğunu göstermektedir.
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1. INTRODUCTION

Every day, governments are setting various and ambitious targets to be energy efficient

and reduce emissions of harmful substances. One of the key players in the focus of

all these goals is electric vehicles (EVs), which are promising in creating a cleaner

environment. The main reason behind this is that it has been determined that at least 10

% of the emissions originate from transportation and especially road transportation has

a significant share among them [1]. Accordingly, by 2021, more than 20 countries have

committed to a complete cessation of sales of road vehicles with internal combustion

engine (ICE) within the next 30 years [2]. The trend towards electrical transportation

in order to reduce greenhouse gas emissions from transportation continues to increase

in recent years. The fact that global Plug-in Electric Vehicle (PEV) sales reached 7

million in 2021 clearly shows increasing interest in EVs [3].

In road transportation, the energy source used is rapidly shifting from petroleum to

electrical energy. At first, EVs were considered suitable for use over short distances

in the city, due to their low range and slow charging speed. However, with the

development of battery technologies and the increase in the power capacity of chargers,

EVs have begun to replace ICE vehicles [4]. Electric vehicle technology, which stands

out as a sustainable solution for reducing greenhouse gas emissions, brings some

challenges with it.

PEVs, one of the EV types, are charged from the grid. It is anticipated that increased

PEV penetration will affect load profiles and cause difficulties in the grid. One of

the most important challenges in electrification of vehicles is the unpreparedness of

the charging infrastructure and grid. Possible problems such as voltage imbalance,

overload, power losses, frequency variation, harmonics, which are the effects of

increasing power demand on the local distribution grid due to the increase in EVs,

are discussed in the literature [5].
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The additional load demand introduced by the integration of EVs will raise the need for

additional electricity generation. In particular, aggregated charging load of EVs will

cause overloading on distribution grid. The future of electromobility depends on the

development of charging technology and charging infrastructure. Smart charging can

ease the problems caused by overloading, help ensuring grid reliability and improve

energy economy [6]. Smart charging is basically the control of charging in line with

certain goals such as reducing charging costs, minimizing power loss or avoiding

overload on the grid [7]. Uncontrolled charging of EVs may increase peak loads in

the best-case scenario and compromise the reliability and stability of the power system

in the worst-case scenario. Even simple solutions such as shifting the charging periods

of low energy demand using the flexibility of EVs can be enough to reduce the peak

load. Thus, at the same time, the valleys in the load profile, that is, the times that

indicate the times when the energy demand is lower, can be also filled and the load

profile becomes flat [8].

1.1 Purpose of Thesis

The aim of this thesis is to manage EV charging in clustered systems and to provide

power neutralization as much as possible within a cluster of EVs. In order to achieve

this, an agent-based energy management concept has been proposed. In the proposed

concept, each bidirectional charging unit (CU) with a connected EV in the charging

station is represented by an agent. Depending on the flexibility of the charging demand

of the connected EV, each agent takes the role of producer or consumer. Producer and

consumer agents negotiate directly with each other for the power demand and supply,

without the supervision of any central authority. According to the agreement between

the agents after the negotiation, the batteries of the EVs represented by producer

agents, are discharged for a certain period of time to charge another (or more) vehicle

as a power source. Consumer agents try to meet their demands as much as possible

from the producer agent in the cluster.

This energy management concept is based on a modified version of SwarmGrid-X

algorithm and a negotiation protocol between consumer-producer agents. This concept

enables decentralized control of electric vehicle charging station. Unlike previous
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Swarm-Grid applications, the charging units are bidirectional in the scenarios applied

in this thesis. In other words, charging can be carried out both from the vehicle to

the grid and from the grid to the vehicle. This means that the charging units in

the system can both charge and discharge. In addition, while the demand profiles

of EVs connected to the charging units were identical in the previous scenarios, the

charging demands of EVs are heterogenous in the scenarios considered in this thesis,

and therefore the profiles of the charging demand and the flexibility of the vehicles

are diverse. Therefore, in this thesis, the swarm-grid-X algorithm has been modified

according to these needs and adapted to the demands of clustered EV fleet energy

management.

The goal focused in this study is to use the vehicle-to-everything functions efficiently

and to reduce the peak to average ratio of the clusters and the system, with the proposed

energy management algorithm. With this study, it is aimed to provide convenience to

grid operators and EV users, as well as environmental and economic contributions.

Reducing the peak power will provide a balanced and efficient load profile and this

will improve the grid quality.

1.2 Literature Review

In the literature, EV charging strategies are classified as scheduling, clustering and

forecasting, according to the problem they focus on in order to control high EV

penetration and reduce their effects on the local distribution grid. A scheduling

strategy generally aims to reduce the peak problems by shifting the demand, it can

be divided into two as centralized and decentralized. Clustering strategy is used

to group repetitive load profiles according to time intervals of various consumption

behaviors (home, workplace, etc.) in a dataset and is based on methods such as

Markov-inspired stochastic, k-means, self-organizing maps [9]. Finally, one of the

challenges in controlling EV charging is the high uncertainty EVs have. There is

uncertainty about many factors such as the arrival and departure times of the EVs at

the charging station, the state of charge (SOC) of the battery, the charging preferences,

the demand of other EVs, the current state of the electricity grid. Short, medium and

long-term precision forecasting strategies are used to address the uncertainties of EV
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charging. Studies present many approaches to control EV charging, but the approaches

have shortcomings in real applications in terms of their functionality and performance.

Although the structure of conventional electrical power systems is defined by a

hierarchical transmission from large power generators to distribution networks and

from there to the consumer, today this concept is changing with local generators and

storage systems. This power system concept, where consumers can also be local

producers, is called distributed generation (DG). This change, which has been going

on for the last 25 years, has been one of the most interesting concepts for both energy

consumers, power system operators and energy policy developers [10]. On the other

hand, the concept of demand-side management (DSM) has emerged to accelerate the

energy transition, reduce consumer bills and reduce fossil fuel energy use. DSM has

become important especially in order to balance the peak power demand and meet the

increasing energy demand efficiently. DSM aims to try to minimize the difference

between maximum and minimum power consumption [11].

The growth of DERs in the energy market, as well as developments in information

technology, have led to a shift from traditional centralized power infrastructure to a

localized concept. An illustration of comparison between traditional and new energy

concept can be seen in Figure 1.1 [12]. Parallel to this, there is a trend towards the

creation of an energy distribution network that utilizes various DERs and the smart

grid concept [13]. On the other hand, the problems (harmonics, overvoltage etc.) that

occur as a result of the intermittent nature of the RES can also be avoided with a

well-planned DER. In parallel with the transition to a DER concepts, electrification in

transportation also points to EVs that could potentially operate as DER by integrating

into the smart grid. PEVs, with their flexible nature, can power the grid as a mobile and

distributed energy storage system or source for local loads. EVs, which are considered

as flexible energy assets according to their load profiles and energy usage, have been

proposed to improve the flexibility of power systems in recent studies [14]. However,

there are still very few studies that describe EV user behaviour and the interactions

between these flexible assets.
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Figure 1.1 : Traditional Energy Concept vs DER Concept [12].

Another concept is V2X, which is proposed to improve grid quality and support the

electrical grid by making the best use of the energy storage power of EVs, which

are idle without being charged at charging stations 60 % of their time [15]. In this

concept EVs can be used not only as a load but also as a storage, making it possible

to transfer power from the EV to other assets source by bidirectional charging. In

this way, EVs can act as a distributed energy source. By using them as a source in

idle times (during parking), peak demand will be reduced. Possible advantages and

disadvantages of V2X applications are discussed in detail in the literature [16,17].

Although its disadvantages such as battery degradation, effects on electrical equipment

and investment costs cannot be ignored [18], many potential benefits of this technology

such as load balancing, peak shaving, correction of harmonics, valley filling, support

to RES are promising [19]. It is possible to benefit from V2X operations with the

integration of EVs into local power systems. In this way, local power balancing will

be possible thanks to the storage feature of EVs in renewable energy power systems.

While some studies highlight the challenges of the V2X [20], some surveys explore

EV user interest in it [21]. In addition, standardization efforts on this subject show that

V2X is a promising technology [22]. Some benefits of V2X for production, distribution

and consumer are shown in Figure 1.2 [19] .

With the new generation energy sources such as renewable energy and storage systems

such as PEV, an EMS is required to monitor and control the energy flows of many
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Figure 1.2 : V2X Benefits for Production, Distribution and the Consumer [19].

elements in the grid. In this way, the reliability of the power system is increased while

ensuring that the demands of the loads are constantly met [23]. According to the

definition of International Electrotechnical commission standard IEC 61970-2, EMS

is “a computer system comprising a software platform providing essential support

services and a set of applications providing the functionality needed for the effective

operation of electrical generation and transmission facilities to assure adequate security

of energy supply at minimum cost” [24]. An EMS aims to minimize the cost while

helping to maintain the supply-demand balance of the power system by coordinating

the energy flow between energy sources.

Solution approaches for EMS can be classified as exact optimization and approximate

optimization. Exact approaches are the solution approaches that find the optimum

solution in the most sensitive way. Approximate optimization finds solutions

close to the optimum. Although exact optimization methods guarantee an optimal

solution, they also bring with them computational complexity. However, approximate

optimization methods can reach an approximate result relatively faster. Mathematical

programming reaches results in a longer time and has more computational burden

compared to heuristic and metaheuristic approach. Heuristic methods, on the other

hand, reach an approximate result with less calculation time, but require prior

knowledge. Since each system offers different advantages, many approaches have
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Figure 1.3 : Solution Approaches for EMS [23].

been developed to adapt to the characteristics of the systems and are shown in Figure

1.3 [23].

When setting EMS targets for PEV charger clusters, user interests should be taken into

account, as well as economic, environmental or technical factors. While determining

these socio-economic-based approaches, the architectural structure of control method

is determined and algorithms are developed based on objectives such as minimizing

the peak load or flattening the load profile. The operations of EMSs are generally

dependent on these control architectures and can be divided as centralized and

decentralized. Although the concept of hierarchical EMS is discussed as a third

approach in some new sources, this approach is included in distributed EMS in some
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studies. There are severel studies [5,7,23,25] in which these approaches are discussed

and compared in detail.

In the centralized EMS approach, the central high-performance computing unit

collects data from the grid and EVs to coordinate EV charging and provides a

global optimization accordingly. The centralized architecture is advantageous over the

decentralized one in terms of reducing the total operating cost by taking into account all

global parameters. On the other hand, since all information is gathered for analysis in

a single unit, the computational load increases depending on the number of entities.

For central approaches, methods such as two-stage stochastic scheduling [26] are

frequently used, which allows the central authority to decide in case of uncertainties.

Quan-Do et al. implemented a centralized strategy to minimize the peak load of the

grid [27]. Zheng et al. proposed a centralized approach to reduce power fluctuations

using genetic algorithm [28].

In the decentralized control architecture, unlike the centralized control architecture,

each local unit creates its own strategic plan and communicates with other local

units. The central unit may have the role of putting these plans together, but not the

decision-making authority. In this way, the EV charging time is determined based on

the parameters of the EV users and the optimization criteria, and the charging cost is

minimized. The decentralized EMS, also called the bottom-up approach, is extensible

due to the flexibility of operation it offers. This makes it superior to centralized

architecture in large-scale applications. It is also superior to central EMS in terms

of computational load and fast response. In decentralized approaches, methods such as

Markov decision process [29] and game theory [30] are used. Wu et al. presented

a decentralized structure that controls EV charging and aims to improve EV user

satisfaction and pricing [31]. Similarly, Ma et al. proposed a decentralized control

structure in which EVs update their load demands iteratively [30]. Gan L. , Topcu U

et al, proposed a decentralized algorithm in which each EV updates its charge profile

according to the control signal broadcast by the utility [32]. In this way, they aim to

achieve valley-filling in load profiles by approaching optimum charging profiles.
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A third structure that combines the advantages of centralized and decentralized

architecture is referred to as hierarchical-based control architecture in the literature. In

this structure, there are local controllers and a central unit that provide information to

them. In fact, hierarchical coordination cannot be classified as either fully centralized

or decentralized due to its structures created by dividing many indirect and direct

aggregators. Thanks to the hierarchical structure, computational requirements can be

significantly reduced. Bazmohammadi et al. proposed a hierarchical structure for the

energy management of four interconnected microgrids, ultimately minimizing power

imbalances while reducing operating costs in 100 separate scenarios [33].

As EV penetration increases, power demand management will become more

challenging due to the unpredictable behaviour of EVs. There is a need for an

effective model that can represent the charging processes in an EV fleet. Mets and

Verschueren aimed to flatten the global load profile with an energy management

strategy that requires only the load information acquired via the local load signal and

no communication [8]. Although the results promise an improvement in the global load

profile, its user-friendliness is debatable. Many studies like [8] on EV charging make

an operator responsible for EV charging. However, this approach, which prioritizes

the global goals of the operator, does not always take into account the satisfaction of

EV users providing V2X services. In contrast, recent publications Yin et al. propose

an agent-based scheme that negotiates the decision process assuming each charger has

computational capability. Outcomes from agent-based studies show positive results in

terms of EV user’s benefits [34].

Agent-based approach or multi-agent system (MAS) is an alternative technique under

distributed or hierarchical coordination in the literature. MAS is a system where two

or more agents achieve their own local goals to achieve a global common goal. Due

to its flexibility and extensibility, this approach is increasingly used in distribution

network applications and DERs. In the literature review by Ringler et al, agent-based

applications within the scope of the smart network were mentioned and the strengths

and weaknesses of the studies were discussed in detail [35]. In the literature, MAS

for charge control of EV fleets has been used to achieve various objectives such as

load balancing and frequency regulation and voltage regulation. Unda et al. aimed
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to reduce the overloads in the distribution network by using MAS for EV battery

charging [36] . Mureddu et al. on the other hand, proposed an agent-based model for

both controlling the charging infrastructure in the smart city and predicting electricity

supply, as well as managing the charging requirements of the PEV charging fleet

[37]. Aljohani et al. proposed a multi-agent hierarchical architecture for dynamic

pricing for EV charging in microgrid businesses based on historical data from South

Florida [38]. The results show a significant reduction in pricing compared to other

methods. Saner et al proposed a hierarchical multi-agent system in which high-level

agents send control signals to lower-level agents to reduce demand and energy costs

in case of multiple EV charging [39]. Valogianni et al. proposed multi-agent EV

charging coordination to bring together the goals of both the interests of EV vehicle

owners and grid stability [40]. However, the proposed approach does not support

V2X. In [41], an agent-based approach whose simulation is created in the python

programming language, controls the EV charging demand of fast charging stations

and makes dynamic pricing is presented. In some studies in the literature, EV charging

was managed using multi-agent-platforms such as JADE [42] or NETLOGO [43] when

modeling multi-agent systems. Seen as a promising method for smart control and

energy management of DERs, MAS brings with it many complexities. Predicting

behavior in large-scale systems can be a challenge, as system behavior results from

the behavior of all its agents. With the increase in the number of agents, the increase in

communication complexity will be inevitable. As a solution to this, the SwarmGrid-X

concept based on a fully distributed and hierarchical control called holonic MAS

was proposed by Dähling et al [44]. Basically, the Swarmgrid-X is an extended

version of the Swarmgrid concept proposed by Kolen et al. and its architecture is

based on MAS [45]. In this concept, agents display a set of behaviors that perceive

the local environment and organize their own local decisions. The agents, who can

act as the both consumers and producers, demonstrate their flexibility by calculating

the working intervals to achieve their local targets, and interact with each other and

negotiate. Agents try to neutralize the power consumption within the community they

are in, called the swarm, with the same rate of production. In study [45], simulations

on local balancing show that DERs can provide an appropriate and effective energy
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management and that the algorithm will contribute positively to the participation of

DERs in the distribution network.

1.3 Related Standards and Protocols

Related to the charging of electric vehicles, energy management and communication in

vehicle-to-grid applications, many organizations such as International Electrotechnical

Commission (IEC), Institute of Electrical and Electronics Engineers (IEEE),

International Organization for Standardization (ISO), Society of Automotive Engineers

(SAE), Underwriters Laboratories (UL) have created various standards. Some of them

as follows:

• IEC [24]

- IEC 61850-7-420: Communications systems for Distributed Energy Resources

(DER)

- IEC 61980-1: Electric vehicle wireless power transfer (WPT) systems

• IEEE [46]

- IEEE 1547: Interconnecting Distributed Resources with Electric Power Systems

- IEEE 2030: Guide for Smart Grid Interoperability of Energy Technology and

Information Technology Operation with the Electric Power System (EPS) and End-Use

Applications and Loads

- IEEE 1609: Family of Standards for Wireless Access in Vehicular Environments

(WAVE)

• ISO [47]

- ISO 15118 Road vehicles — Vehicle to grid communication interface

- ISO 8714: Electric road vehicles — Reference energy consumption and range

- ISO 17409:Electrically propelled road vehicles — Conductive power transfer

• SAE [48]

- SAE J 1772: Electric Vehicle Conductive Charge Coupler

- SAE J 1773: Electric Vehicle Inductively Coupled Charging

- SAE J 2758: Determination of the Maximum Available Power from a Rechargeable

Energy Storage System on a Hybrid Electric Vehicle

- SAE J 2894: Power Quality Requirements for Plug-In Electric Vehicle Chargers
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- SAE J 2293: Energy Transfer System for Electric Vehicles

- SAE J3072: Interconnection Requirements for Onboard, Grid Support Inverter

Systems

• UL [49]

- UL 2202: Standard for Electric Vehicle (EV) Charging System Equipment

- UL 9741: Bidirectional Electric Vehicle (EV) Charging System Equipment

Standardization of EV components and EV-grid integration is essential to ensure the

effective participation of EVs in the transport and energy industry. In this way, every

participant, from the EV user to the charging operator and to the electricity generation

and distribution facilities, will not be adversely affected by the integration of the EV

into the grid, but can also get the most benefit.
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2. EV CHARGING SYSTEMS AND REQUIREMENTS

Although EVs may have different energy sources according to their type,the main

energy storage units are the batteries. EVs can basically be classified as hybrid electric

vehicles (HEVs) and all-electric vehicles (AEVs). AEVs are divided into battery

electric vehicles (BEVs), which depend on the grid to charge the storage unit, and fuel

cell electric vehicles (FCEVs), which do not require an external charging system. In

addition, some of the HEVs, namely Plug-in hybrid electric vehicles (PHEVs), charge

their batteries from the grid [50]. An EV charging infrastructure consists of the power

infrastructure, the control system, and the communication infrastructure [51].Electric

vehicle charging is divided into various classes as shown in Figure 2.1.

Figure 2.1 : Types of EV Charging [20].
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Electric vehicle charging can be divided into AC and DC charging according to the

type of power used, and level 1 (110-120 V AC), level 2 (220-240V AC) and level 3

(200-800V DC) according to the charging voltage levels [20]. Secondly, EV charging

can be classified as on-board and off-board based on the location of the charger. An

on-board charger is located inside the EV, it has the advantages of being compact

and cost-effective and can be used for charging the vehicle almost anywhere where

power source exists. However on-board charger allows the vehicle to be charged at

a lower power, so the vehicle charges much more slowly. Off-board chargers, on the

other hand, have different options as slow and fast charging, but the installation costs

of these chargers can be quite high. In addition to on-board and off-board chargers,

wireless charging is another type of charging that is carried out with the coil installed

outside the vehicle and the converter placed inside the vehicle [52,53].

When EV charging is evaluated in terms of physical contact, it can be classified

as conductive charging with physical contact between the power source and the

storage unit in the vehicle, and contactless (wireless) charging without physical

contact [54]. Efficiency reaches over 85% in wireless charging provided with separate

technologies such as inductive coupling, capacitive coupling, resonant inductive

coupling, permanent magnet coupling [55]. The charging levels mentioned above as

Level 1, Level 2 and Level 3 applies to both conductive and wireless charging cases.

In table 2.1, EV charging speed on level 1,level 2 and level 3 are compared.

Table 2.1 : EV Charging Speed on Level 1, 2, 3 Chargers.

Level 1
Charging

Level 2
Charging

Level 3
Charging
(DC Fast Charging)

Voltage
110-120 V
AC

220-240 V
AC

200-800 V
DC

Max Power 1.44 kW - 1.9 kW 3.1 kW- 19.2 kW Up to 350 kW

Typical Charging
Time

8–10 hour.
3–8 km of range
per hour of charging

4–8 hour.
16–32 km of range
per hour of charging

30–60 minutes.
100–130 km of range
per hour of charging

Charging
Circuit On-board On-board Off-board

Location Residental Residental Commercial

Connector SAE J1772 SAE J1772
CHAdeMO/
CCS COMBO 2
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EV chargers are further divided into unidirectional and bidirectional topologies

depending on the direction of electrical power flow. Unidirectional chargers with a

less complex structure use a unidirectional rectifier and a DC-DC converter, while a

bidirectional charger has a bidirectional DC-DC converter in addition to the rectifier.

Unidirectional charging causes fewer connectivity issues compared to bidirectional

charging, but it cannot serve the grid as the battery discharges as bidirectional charging

does. On the other hand, the disadvantage of bidirectional charging is that it may affect

the battery life due to discharge [20].

2.1 Smart EV Charging

As the demand for electricity is increasing with the rising trend of EVs, new

approaches are needed to meet the electrical power demand optimally and to ensure the

sustainability of this market. This may cause voltage fluctuations in the electricity grid,

especially as it is obvious that many EVs will need to be charged at the same time due to

the daily routines of citizens and in an uncontrolled manner. Qian et al. have revealed

that a 20% EV penetration causes a 35% increase in daily peak load for the worst

case for various uncontrolled charging applications [56]. Besides, the impact of EV

charging on the grid depends on many parameters, such as the state of charge (SOC)

and capacity of the EV battery, the charging mode and the load profile of the available

feeders, and these parameters are often uncertain. This is a factor that complicates the

operation of the distribution grid in case of high-density EV penetration [4].

In order to optimize the EV charging, to eliminate its disadvantages and even to turn

them into advantages, it is necessary to make regulations on various issues. There

are several studies to ensure more efficient use of the electricity grid and to reduce

the costs of charging infrastructure for increasing EVs. Although these studies are

divided into many subtitles, uncertainty modeling approaches and smart charging

control approaches stand out.

The uncertainties in EV charging are mainly due to the uncertainty of the EV charging

demand and the uncertainty of the electrical load in the system. In particular, the

uncertainty of the charging demand arises from the parameters such as battery capacity,

SOC, arrival and departure time at the charging station, resulting from the EV itself or
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user behavior. In addition, EV charging can become quite complex when operational

parameters such as the service time of the charging station, the total number of instant

users and the overall charging demand are considered [57]. The most common studies

to overcome the uncertainty of charging demand are Monte Carlo [58] and probability

distribution [59] based modeling methods. In addition to these, hybrid models [60] are

also being developed to increase accuracy and minimize computational costs.

The increase in EV charging demand brings with increase in load capacity as well

as uncertainty. It is clear that simply plug-and-charge without any coordination is

not sustainable for the grid [20]. Optimum fulfillment of EV charging demand is

directly dependent on the availability of grid service. In short, EV charging cannot be

considered independent from the influence of user charging behavior and infrastructure

services.

The solution to avoiding the mismatch between electricity supply and demand is the

flexibility of both EV drivers and grid operators. This introduces the concept of smart

charging. In the most basic sense, smart charging is to perform the charge in an

optimum way by controlling the charging speed and duration. The smart charging also

a concept that was born to benefit from renewable energy efficiently and to contribute to

the grid [61]. With smart charging, besides avoiding the overload on the grid, charging

costs can also be reduced and the profits of both the EV user and the grid operator can

be increased. However, there are barriers to smart charging, such as vehicle owners’

fear of not having control over the vehicle’s charging. According to study of Brey et

al. in Netherlands, EV drivers are willing to implement smart charging but want to

have control [62]. Smart or coordinated charging can be accomplished by charging

EVs during a time period when the load demand from grid is at the least, but this is not

always the most comfortable solution for EV users. For this, many charging algorithms

are being developed that can both overcome the fear of vehicle owners not to charge

and make the system more feasible.

EV smart charging algorithms can be classified according to the target time

intervals that they offer solutions as medium-term (weekly or monthly) operational

optimization, day-ahead (daily) optimization, intraday (hourly) optimization and
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real-time optimization [63]. Smart charging algorithms can be optimized based on

different purposes, such as the profit of the grid operator or the satisfaction of the

EV user. In the study in [64], a comparative analysis was made with three different

approaches. The first of these approaches is customer-based, the second is grid

operator-based, and the third is based on the coordination of both the customer and

the grid operator. In this comparison, which is handled in terms of peak load, load

factor and total charging costs, it is seen that the third approach, which aims to reach

the common goal based on the coordination of the EV user and the grid operator, offers

the most optimal solution.

There are various studies on smart charging algorithms developed by targeting possible

problems in the grid (voltage fluctuations, power losses, aging of grid equipment due

to overload, harmonics). In [65], three charging algorithms were developed to reduce

the effect of the load caused by EV charging on the grid, and it was observed that the

computational speed of the algorithms whose objective function was load variance

and load factor is better than the algorithm whose objective function is to reduce

power loss. In [66], an approach that aims to provide voltage stability with heuristic

optimization method is suggested. This smart charging algorithm calculates the load

flow and checks the working conditions of the grid, the load status of the power system

and the voltage change. If it detects any problems, it cuts off the charge of the EVs and

puts them on hold. In [67], the authors present an EV charging strategy using horizon

optimization technique that aims to both reduce the customer cost and improve the

load factor by spreading or shifting the peak load time intervals, i.e. valey filling.

In this study, without considering the uncertainty about the driving model of EVs, a

price analysis is made with this combination to find the optimized solution. In [68], on

the contrary, an smart charging approach, which can reduce the energy cost up to 9%

for both ramp and steady state, and optimizes production costs with a meta-heuristic

technique compared to valey filling method, is proposed. Main classification of EV

charging optimization strategies is shown in Figure 2.2.
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Figure 2.2 : EV Charging Strategies.
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3. EV-GRID INTEGRATION (EVGI)

3.1 Challenges of EVGI

As mentioned in the previous sections, uncontrolled EV charging is bound to have

serious impacts on the grid. The possible disruptive effects of this situation on the

electrical grid are also an issue that is examined in the literature. The main problems

addressed are as follows.

3.1.1 Voltage drop, instability and inbalance

Intensive integration of EVs into the grid and uncontrolled charging may cause

overload, increase in line losses and a short-term voltage drop [69]. It causes voltage

instability due to high demand from EVs to be charged, which can result in power

outages in the distribution system. Other devices connected to the grid may also be

affected and harmed by voltage instability. In the study in [70], a voltage deviation

of 10% was analyzed at 30% EV penetration. In addition, in three-phase systems,

unbalanced load distribution in lines can cause unbalance in phase angles and power

quality may decrease due to voltage imbalance in phases [71]. With control methods,

these problems can be solved and greater EV penetration can be achieved.

3.1.2 Overload

As a result of electric vehicle grid integration, the load demand to be produced

and transmitted increases. Writers showed in the simulation in [56] that 20% EV

integration can result in up to a 35.8% increase in daily load demand. Since local

distribution elements, transformer equipment and supply cables are not designed to

handle these extra loads, they experience very high levels of stress and can be damaged

[71]. Over-current and low voltage in the system due to uncontrolled charging, increase

the load on the transmission lines. This can have a serious effect on the load curve of
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the power grid. As a result, it is inevitable for the system to become more prone to

malfunctions [72].

3.1.3 Power losses

Grid integration and high demand of electric vehicles at similar time intervals may

cause significant power loss due to the non-linearity of their loads [73]. In study [74],

it is shown that power losses reaching 40% in case of integration of 60% of EVs into

the grid. This could seriously affect the stability of the power network.

3.1.4 Frequency change

In the model analyzed in the reference [75], it is observed that peak demand increases

up to 31% in case of integration of 50% of EVs in the Danish distribution grid. If there

is a serious imbalance between generation and demand, variations in frequency may be

observed. The frequency of the power system should always be kept within a certain

range, otherwise damage to the electrical system may occur [76]. This problem should

also not be ignored, as uncontrolled charging of EVs may result in a load increase

resulting in a frequency change [77].

3.1.5 Harmonics

Since EV chargers are devices that require power conversion, they generate harmonics,

which can lead to harmonic pollution when EV penetration is high [78]. Due

to harmonics, power quality may decrease and equipment may be damaged [79].

Although some studies say that the total harmonic distortion (THD) due to EV charging

is less than 1% most of the time [74,80], there are also studies showing that it can

increase up to 45% [81].

In addition to all these disadvantages and challenges mentioned, the literature also

focuses on is minimizing the effects on the distribution network and even making

it beneficial for the distribution system. Despite all these negative effects that EV

charging can cause, it is possible to increase the efficiency and power quality of the grid

if proper grid and EV interaction is ensured, the smart charging applications mentioned

in the previous section are developed and the energy management strategies mentioned
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in Chapter 4 are implemented. By providing effective power management, peak load

demand can be optimized. Thanks to controlled and appropriate charging methods,

voltage imbalance can be eliminated and frequency regulation can be achieved.

Uncertainties caused by renewable energy sources can be eliminated by storing energy

and it can be advantageous in terms of cost [20]. In Figure 3.1, some challenges and

opportunities of EVGI are shown.

There are promising studies that turn EV grid integration into an advantage by

improving the load profile or increasing the load factor [82,83]. In fact, It can

happen when vehicles discharge their energy to the grid. As a result, the concept

of vehicle-grid integration has become not only a grid to vehicle (charging mode) but

also a concept from vehicle to grid (discharging mode) [84]. This creates an approach

in which both charge and discharge must be effectively controlled.

Figure 3.1 : Challenges and Opportunities of EVGI.
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3.2 Vehicle-to-Everything (V2X)

Considering that EVs spend about 60% of their time parked at charging stations

without being charged [15], they can offer a solution in terms of both reducing the

cost and power demand during peak hours by making the best use of the idle energy

of EVs during this period. In Figure 3.2, the time that EV spend during the day is

shown [85]. Establishing infrastructures that support vehicle and grid integration can

result in significant increases in the quality of the electrical grid. The methods in

the literature generally aim at voltage regulation, peak power shaving, load balancing

and reduction of interruptions as mentioned in the previous section, and the results

are promising [19]. The controlled use of battery reserves in various applications

while EVs are at the charging station and connected to the grid reveals the concept

of vehicle-to-everything (V2X).

Figure 3.2 : Daily Usage of EV [85].

V2X applications provide energy flow for purposes other than operating the electric

vehicle. A vehicle with V2X feature can transfer the electrical energy from the battery

to an external application. In these applications, the unit to which the energy is
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transferred can be a smart home or building. Moreover, the vehicle can also supply

electricity directly to the grid. Vehicles compatible with bidirectional electricity flow

to the grid are called gridable electric vehicles (GEVs) [4].

With this concept, where EVs can act as a power source and provide a variety of

services through energy exchange to the grid, the benefits may vary depending on

the type of service and market regulations. With the flexibility of EVs, concepts

such as vehicle-to-grid (V2G), vehicle-to-building (V2B), vehicle-to-home (V2H),

vehicle-to-vehicle (V2V) have emerged. These definitions are related to the unit in

which electrical energy is transferred. These concepts also differ according to the

scales of the application. The Figure 3.3 shows various V2X implementations [61].

Figure 3.3 : Vehicle-to-everything (V2X) [61].

V2X services, that EVs can perform might need a fleet of vehicles of different scales.

This can range from a small-scale V2H application where a single vehicle is used to

power a home’s critical systems, to a community where there may be tens of thousands

of vehicles providing large-scale services. For example, V2H is generally with 1-3

number of EV and is designed for home back-up supply. V2B, on the other hand, is an

application made with a number of 1 to 30 EV, aiming to help the building’s back-up

supply, as well as the power correction factor, to help the electricity quality. V2G

application, on the other hand, is a larger-scale application that aims to provide effects

such as voltage and frequency regulation to the grid with more than 50 vehicles [18,86].
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In EV fleet charging or the applications that PV and EV are used together, cooperation

is made thanks to EV aggregators that provide charge coordination. The EV aggregator

can be thought of as a charge station manager that coordinares the charging of the EV

fleet.

3.2.1 Vehicle-to-home (V2H)

The most convenient and comfortable charging for EV users is to charge in the parking

lot at home. V2H is the service in which the EV is charged overnight in the parking

lot of the house and partially or completely meets the energy demand of the house.

Even the concept of smart home is structured together to provide the energy needs

of the house with the concept of V2H. This concept often includes optimal energy

management, energy production with solar panels for achieving the maximum benefit

from V2H and smart home. Vehicle-to-home can generally be seen as an easy V2X

application, as it does not require direct coordination between vehicle fleet and network

management as in V2G [18,86]. However, V2H may require separate subpanels that

transfer power to critical loads in the home. Also, since home appliances use AC

power, there is a need to convert the DC power in EV’s battery. Vehicle-to-home is

mainly used for backup power until utility power is restored in the event of a power

outage, or in combination with PV integrated into the smart home system as seen in

Figure 3.3. In this way, EV and all electrical appliances in the house are controlled

together with the smart home energy management system. V2H can reduce peak load

demand, improve load demand profile, and even result in zero power supply from the

grid [18,86]. In this context, Haines et al. have implemented a V2H application to

smooth out household load peaks [87].

V2H can help reduce the negative effects of renewable energy sources (RES) and

increase the reliability of power supply. With the V2H mode, the efficiency of the grid

can be increased by minimizing energy losses and increasing operational flexibility

in the smart home energy management system [86]. It is also important to improve

charge/discharge strategies for EV to participate in these services in the best way

possible. The most well-known example of this is the V2H service that Nissan provides

with Leaf EVs to provide backup power for grid security in the areas around the
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Fukuhara nuclear power plant failure in Japan [88]. V2H can be used to meet the part

load demand of a house for economic benefit. It can help reduce the electricity bills

of the house by charging the vehicle when the electricity price is low and discharging

it when the electricity price is high. By providing efficiency in this way in many

homes, it can contribute to the development of the entire grid [18,86,89]. In Figure 3.4,

vehicle-to-home application and integration of PV are shown with an illustration [90].

Figure 3.4 : Vehicle-to-Home with PV Integration [90].

3.2.2 Vehicle-to-building (V2B)

V2B is the energy transfer mode of an EV battery to a commercial building

(workplaces, schools, malls) to support internal loads, to reduce the mismatch between

supply and demand, within the scope of energy management planning for the building.

In this way, when EV users park their vehicles in the building, the peak load of the

buildings can be reduced by load shifting [86]. Millner et al. have implemented V2B

to reduce peak demand with E-trucks [91].

Flexible energy planning for buildings and EVs can be done with V2B.

Vehicle-to-building service can provide energy transfer to buildings as an emergency

in case of blackout. In Figure 3.5, emergency or daily use of V2B application can be

seen [92]. Due to the narrow scale of V2B, there is less variation in V2B strategies.

If the application is applied in larger diameters when it is not required for building, it

may also be possible to use it for benefits such as frequency regulation for grid [86,89].
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Figure 3.5 : V2B Services for Emergency Power Outage and for Daily Peaks [92].

3.2.3 Vehicle-to-grid (V2G)

V2G service is the integration of multiple EVs in parking lots, smart buildings, EV

charging stations into the grid through the aggregator and providing various benefits to

the grid assets and grid’s energy planning. V2G, which was first proposed by Letendre

and Kempon in 1997, is predicted to support the study of the discontinuous nature of

renewable energy resources as well as being a energy storage units [93].

Electricity system operators, regional transmission organizations and distribution

services can benefit from this service. EVs in charging stations are connected to the

medium voltage grid with transformers and necessary distribution equipment, while

EVs in buildings are connected to the low voltage grid [18,86]. The service scope of

V2G is wider than V2H and V2B. In Amsterdam, there is a pilot implementation of

the Mitsubishi Outlander PHEV fleet providing both frequency regulation and energy

reserves [94]. In Figure 3.6, an example of V2G operation can be seen [95].

Figure 3.6 : Vehicle-to-grid [95].
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Charging in which the power flow is unidirectional is sometimes referred to in the

literature as V1G [18]. It is the application of cutting off the charge with the demand

response mechanism, that is, reducing the charging rates or stopping the charging

process upon demand from the grid. In the study by Kaluza et al., nearly 100 BMW

i3 vehicles responded to a total of 209 requests during the 18-month test period, and

charging was stopped or the charging rate was reduced [96].

A comparison of unidirectional and bidirectional services is given in the Table 3.1.

Table 3.1 : Comparison of uni- and bidirectional EV charging.

Features Unidirectional Bidirectional

Power Flow Grid-to-vehicle (G2V)
Grid-to-vehicle (G2V) and
Vehicle-to-grid (V2G)

Complexity Low High
Cost Low High

Infrastructure Communication
Communication and
Bidirectional Charger

Services
Load Profile Management,
Frequency Regulation

Backup power support,
Frequency and voltage regulation,
Active Power Support

Disadvantages Limited Service
Battery Degradation, Cost,
Social Barriers

3.2.4 Vehicle-to-vehicle (V2V)

V2V is energy transfer between vehicles to meet the energy demand within a relatively

small-scale community. EVs as flexible power providers and receivers transfer power

between them. In a microgrid, EVs with a charge request can be charged by

another EV. In this way, a local neutralization can be achieved and the stress on the

grid is reduced. In V2V mode, consensus is usually achieved through negotiation

between EVs rather than a centralized unit. Individual interests of the EVs and the

load management of the total system are taken into account. In this application of

interaction between two or more EVs, efficiency can be also differ depending on the

location of the vehicles or the amount of energy shared [97]. In Figure 3.7, an example

of V2V operation in a distribution grid is shown.
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Figure 3.7 : Vehicle-to-vehicle operation in the distribution network [88].

3.3 Benefits of V2X Operation

In this subsection, the potential benefits of V2G, which are the most comprehensive

of V2X applications, are discussed. In fact, V2G can be thought of as a system that

works as a distributed energy source with the intelligent communication and control

system between EVs, the aggregator and the system operator. With the V2G service,

EVs can provide services such as frequency/voltage support, load balancing, support

of solar/wind power, load balancing, valley filling and peak shaving as shown in Figure

3.8. It should be noted that the potential of V2G depends on the EV owner’s driving

behavior and overall infrastructure. There are studies evaluating the efficiency of V2G

depending on these parameters [19].
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Figure 3.8 : V2G Services.

3.3.1 Frequency and voltage regulation

In the V2G application, the highest priority is given to the voltage and frequency

regulation of the grid. The balance of supply and loads can create a tendency to

deviate in the frequency of the system. This is more likely to happen, especially

in microgrids where production and consumption are more variable [98]. Today,

frequency regulation is carried out with generators working with expensive fuels.

Thanks to V2G, frequency regulation, one of the most important issues regarding grid

stability, can be achieved by managing the charge/discharge of grid-integrated EVs.

The charge and discharge of the EV battery can be regulated quickly by adjusting. It

is also possible to provide active and reactive power support with V2G [18].

With the V2G application, a frequency feedback regulates the EV power output to

respond to frequency changes while ensuring that the EV does not go below the
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requested SoC level. In this way, the deviation in frequency can be regulated [19].

Mu et al. analyzed the efficiency of EVs in grid integration and frequency regulation

service [99]. The results showed that EVs will provide significant assistance in

frequency regulation to increase grid stability. Khalid et al. To examine the effect

of EVs on voltage stability with V2G service, he conducted a study showing that it can

improve grid stability [100].

3.3.2 Peak shaving and load balancing

The stress on the grid also increases as electricity demand increases. It can result in

power outages in the worst case scenario. As the demand increases, V2G service can

be used to balance or shave it. V2G mode helps with peak shaving by discharging

the EV battery during peak demand times of the grid and can flatten the load curve

with valley filling during off-peak times. This benefits economic, environmental and

grid security. Peak shaving techniques provide a sustainable load profile and improve

power quality. Load balancing refers to a short-term reduction and subsequently an

increase in load when demand decreases, while peak trimming aims to reduce the peak

load. Change of the load profiles by load levelling and peak shaving can be seen in

Figure 3.9. Of course, the size of the EV fleet and the efficiency of the algorithms are

important in the performance of this operation [19,98].

Figure 3.9 : Load leveling and Peak Shaving [19].

3.3.3 Renewable energy support

The integration of EV and RES is important to increase the use of RES and to ensure

that EVs are completely green. Although increasing renewable energy sources are
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critical in reducing harmful gas emissions, they can have undesirable effects on grid

quality due to uneven generation outputs. The output power of RESs are intermittent

and unstable and difficult to control and integrate into electricity grids. The fluctuating

output of the RES creates difficulties for the grid operator. EVs can be a quite

important supporter in balancing power differences and ensuring stable operation. In

a large-scale V2G application, EV battery storage provides flexibility to renewable

energy and reduces power imbalances. EVs can transfer energy to the grid during low

generation of the RES and recharge during high generation periods of the RES. In this

way, the energy can be stored in a very efficient way. This ensures better grid stability

and frequency voltage regulation and increases reliability in the path to developing

renewable energy [18,19].

It is predicted that 5 million PEVs can reduce the annual renewable energy cut by 40%

with smart charging [101]. Lund et al modeled the energy system in Denmark. In the

study, they found a 20-30% reduction in wind electricity generation managed by a fleet

of V2G-capable EVs [102]. Dallinger et al. combined a vehicle travel model, charging

algorithm, and distribution grid model for EVs to evaluate its impact on renewable

energy. They noted that EVs contribute to the change in net load and support the

integration of RES [103]. Similarly, Nguyen et al. observed a four times reduction in

power imbalances when integrating 600 EVs with wind energy [104].

3.3.4 Transmission and distribution upgrade deferral

Electricity facilities are obliged to provide the desired amount of electricity supply at

the desired time and at the most affordable price. In order to meet the increasing loads,

public institutions plan to ensure continuity of supply. A longer-term part of these

plans is the upgrade of generation, transmission and distribution equipment, which

requires costly capital. Deferral of these costly expenses considerably means huge

savings for the organizations. The availability of flexible resources such as EVs can

postpone such costly projects [18]. Dang et al. examined the potential of V2G and

renewable energy sources for infrastructure upgrade deferral at the county level. They

treated the problems that caused the need for upgrade, frequency and voltage related

issues. As a result of the study, they found that if there is a V2G-capable EV fleet in the
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region, the transformer overload is reduced by 70% and the electricity cost is reduced

by 17% [105].

3.3.5 Spinning reserve

In case of an unplanned events such as a loss of generation, the extra generation

available to meet the demand is called the spinning reserve. In other words, it is not

a service sent as a standard, but a service provided only in case of need. However,

the spinning reserve provider is not only paid in service, but constantly paid because

they have the capacity in the hands. If enough number of V2G compatible EVs are

available, EVs can also serve as spinning reserve [19].

3.3.6 Environmental benefits

Since EVs operate with electrical energy, unlike ICE vehicles, the threat of harmful

gas emissions from transportation can be avoided. Thanks to V2G, it is predicted that

potential environmental problems can be significantly reduced and carbon emissions

can be significantly reduced. However, it should not be forgotten that the source

from which electric vehicles receive electrical energy is production centers with high

emissions. In this context, the use of more RES is essential [106].

Zhao et al. studied the environmental impacts of using V2G-enabled electric trucks

in five independent system operator regions. The lifetime of an electric truck that

provides V2G service to the grid for 15 years has shown that it can prevent 200

to 500 tCO2 emissions [107]. Hoehne and Chester conducted a study showing that

V2G-enabled EVs reduce carbon emissions by 59% by balancing the supply and

demand of the grid. In this study conducted for different scenarios, it has been shown

that the result varies according to the charging time of the vehicles and even in some

scenarios, V2G increases carbon emissions. This situation is directly related to the

electricity generation profile in the region. Based on this result, the authors said

that RES should be included in V2G applications [108]. Sioshansi and Denholm

investigated the environmental impact of V2G implementation of spinning reserve

services. Within the scope of the study, they examined CO2, SO2 and NOx emissions.
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As the output of the study, they showed that replacing 1% of an EV fleet with V2G

powered EVs reduced emissions from electricity generation by 25% [109].

3.3.7 The other services of V2X

With the V2G service, demand side management can also be provided. Demand-side

management includes the user’s or customer’s responsiveness to signals and flexibility

in response to electricity demand. Demand-side management can be more effective in

V2G mode when EVs are joined at peak time [98]. Keyhani and Ramachandran stated

that when 50% of EV users are in V2G mode during peak hours, there is a 10.2%

reduction in peak load without disturbing the user [110].

EV owners will also benefit if necessary adjustments are made in the V2G mode of

the vehicles. First of all, they can increase their profits if they do not operate in V2G

mode under a certain SoC in order to meet the driving need of the vehicle, they are

charged in the process of transferring energy to the grid, and they also take the cost of

battery deterioration. Another benefit is V2G’s energy arbitrage service. The process

of buying electrical energy when it is cheaper and selling it when it is expensive is

called energy arbitrage. Leaving aside energy losses and other operating costs, it may

be possible to make money from this difference [98].

3.4 Challanges of V2X Operation

Alongside the mentioned benefits of V2X, the challenges are also a topic to be

discussed. Main problems such as network security, EV battery degradation, social

barriers, economic difficulties are obstacles to the development of the V2X application.

In addition, the unpredictability of electric vehicle user behavior affects the reliability

of the service to be provided to the end user.Another issue is the environmental impact

from EVs and V2X. Although EVs have positive effects on the environment, as the

transition to electric power increases, the need for water for cooling in power plants

is also increasing [111]. There are many different barriers for V2X as can be seen in

Figure 3.10, the most emphasized areas in the literature are elaborated in the following

section.
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Figure 3.10 : Challanges of V2X [19].

As a result of a survey conducted in 2021 [61], it was concluded that the society

is aware of the concept of V2G and that EV (PHEV, BEV) owners are interested

in V2G. However, most of the EV owners stated that they would prefer to use it

for their own household needs when necessary (possible blackouts, etc.). The most

important common concerns stated by the survey participants were range anxienty and

data privacy issues. It is important to invite EV users who are likely to be concerned

about the implementation to collaborate with V2X technologies.

One issue that limits the applicability of V2G is that the grid does not have the same

entitlement as EVs access. This will affect the flexibility of V2G as the grid will not
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be able to fully utilize the power in EV fleets. Since the primary purpose of grid-EV

interaction is to charge EVs, it would be completely inappropriate to completely drain

the EVs’ power. In this case, only EVs above a certain SOC level will take part in V2G

mode. This reduces the functionality of EV fleets [13]. The other problem is the cyber

security issue brought by digitalization, which is indispensable for the sustainability

of V2X. The size of the data, correct processing and transmission, and uninterrupted

transmission between the network and the vehicle are challanging processes [18,19].

3.4.1 Battery degredation

Considering that a significant part of the cost of an EV results from the battery, the

reduction of the battery’s lifetime is an important evaluation criterion for the user.

Battery degredation is mainly comes from calendar aging due to temperature and

SOC, and cycle aging due to charge/discharge depth. As a requirement of V2X, the

EV battery has to be charged and discharged repeatedly throughout the day. For this

reason, it is argued that V2X will also have an impact on the life cycle of batteries.

This may affect the social acceptance of V2X applications [19,106]. Considering that a

Li-ion EV battery has an average of 500-3000 charge/discharge cycles, and this number

can be affected by parameters such as temperature, charge power, charge depth, it

seems possible [106]. The recommendation to avoid deep charging and discharging of

the battery and using a small portion of the battery capacity is not a good solution as it

will create many more charge and discharge cycles.

In a rather extreme case, Ribberink et al. have shown that daily repetition of V2G

service, which transfers the entire EV battery’s energy capacity to the grid at maximum

power rates, will reduce battery life from approximately 9.5 years to approximately

5 years [112]. Bishop et al. examined the effects of V2G on EV batteries without

cost analysis for different battery capacities [113]. According to the study, in case of

implementation of V2G service, even in the best conditions, the vehicle is obliged to

replace more than one battery during its lifetime.

Since studies of battery degradation have been simulated for V2X applications

with very different load profiles and have also been examined for different battery

chemistries, it is not surprising that the results are also very different. Uddin et al.
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conducted a battery aging study on NCA type Li-ion batteries and showed that it

is possible to extend the battery life even more in V2G state compared to normal

charging, with proper modeling by keeping the battery capacity between 29-78%. They

developed a battery aging model with the data obtained from degradation experiments,

proposed a new strategy, and argued that using V2G with their proposed strategy could

reduce the capacity reduction in Li-ion batteries by 9.1% [114].

3.4.2 Effects on distribution equipment

As EVs are connected to the grid with type 2 and type 3 chargers for charging, high

power demand can be put on the distribution transformer and other equipments. With

controlled charging, this effect can also be reduced and safety can be achieved. Moghe

et al. show that in the case of 50% EV penetration, uncontrolled EV charging reduces

the life of distribution transformers by 200-300%, while with controlled charging it

increases by 100-200% compared to uncontrolled [115].

3.4.3 Designing compatible charger for V2X

Since the charger is basically a rectifier that converts AC to DC, it requires an in-vehicle

inverter for vehicle-to-grid charging [18]. A solution is to use a bidirectional charger to

both charge and discharge the battery with the same hardware, as the inverter used for

traction power (to start the AC motor) may not be able to provide enough power. In the

study in [116], a bidirectional charger with a power level of 2 kW, which can operate

with 92% efficiency in charge and discharge mode, was produced. Although the power

level is low, this study shows the potential of the application. In addition, using it

outside the vehicle is another solution. In this context, the DC charging standard

ChaDeMo stands out with its bidirectional power flow projects [117].
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4. ENERGY MANAGEMENT SYSTEM FOR EV CHARGING

Integration of EVs into the grid creates a large additional power demand that can cause

grid components and equipment to overload. Especially considering the conjecture that

EV owners come back home from work and charge their vehicles at similar hours, these

problems are inevitable if there is an uncoordinated charging. Due to the increased EV

charging demand, local distribution elements such as transformers and supply cables

will be affected by high stress level. It is necessary to coordinate EV charging in order

to eliminate these problems and to maintain the power supply without any problems

[118]. It is possible with the energy management system for EV charging, both to

ensure the safety and reliability of the distribution network and to meet the EV charging

demand in the best way and to ensure user satisfaction.

Consumers and producers, transmission system operator (TSO), distribution system

operator (DSO) participate in energy management. Primary sources and RES can

be directly integrated into the transmission grid and provide services to the TSO.

On the other hand, consumers and distributed energy sources are integrated into the

DSO. Another element of EMS is aggregator. According to the smart grid report,

the aggregator is a legal entity that provides the opportunity to benefit from their

flexibility by encouraging end users to retail electricity. In line with the aggregator’s

goal of keeping supply and demand in balance, it is possible for consumers to

become prosumers, and thus DERs and PEVs become active participants of the

network. The PEV aggregator, on the other hand, can be seen as a tool that enables

both V2G and G2V mode to improve the performance of the local grid and to

serve PEV users who hope to fast charge and minimize charging costs by taking

into account system constraints. In the EMS algorithm, all these participants have

separate functions and they all communicate to pass the necessary information to each

other. The fact that information flows are generally bidirectional gives the right to

active participation in PEV users, aggregators and DERs. Sharing and analysis of
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information is accomplished through communication protocols and IT [23]. In Figure

4.1, participants of EMS is shown.

Figure 4.1 : Participants of EMS [23].

The main objectives of the EMS can be economic, environmental or technical. For

example, EMS may aim to improve power quality or keep equipment performance at

a high level, or it may aim to improve the lifespan of transformers. But when it comes

to the energy management of PEV charging stations, the coordinated charging of the

PEV, customers’ expectations and cost should also be considered.

While determining the energy management approach for EV charging, objectives such

as obtaining the optimum V2X operation, reducing the peak load and flattening the

load profile is aimed. Based on these goals, charge coordination methods and charge

algorithms are developed. Centralized and decentralized coordination methods come

to the fore when controlling the power flow in EV charging stations. With these
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methods, the objectives of increasing the grid quality can be achieved, such as reducing

power system losses, preventing transformer overload, minimizing voltage drop and

improving the load factor [5,71,119].

4.1 Centralized Coordination

Centralized architecture is one of the EV charging coordination methods that basically

a central unit organizes EV charging by processing information about all EVs in its

area and obtaining the optimum solution, taking into account electricity company, grid

quality and customer priorities effectively. Central unit or aggregator is responsible

for the management of all EVs in its field and takes into account the demands of EV

customers with the cost optimization it provides. While the aggregator makes regular

demand forecasts with the inputs it receives, the DSO checks the load profile for grid

security. In case of unusual or undesirable situations in the system, the aggregator is

responsible for ensuring the safety and reliability of the system by taking appropriate

measures [5].

Various studies in the literature [65,120,121] suggest central control methods to

optimize EV charging and increase EV penetration. In this control method, basically,

information from all EVs are collected centrally and optimization of charging profiles

is centrally provided. The increase in the number of EVs is one of the biggest factors

limiting central coordination. Under the central coordination architecture, there are

sub- strategies such as online control and real-time charging.

4.2 Decentralized Coordination

In this coordination method, there is no dependency on any central control unit. In

decentralized charging control, user satisfaction and electricity price are the most

important factors that determine charging decision, EV user can directly chooses

charging programs themselves. Although the choice of target SOC and charge time is

given by the EV user, they can be manipulated by a unit such as a collector, with factors

such as price signals [5]. On the other hand, focusing on user satisfaction and minimum

cost plan can be a problem in the decentralized coordination architectures [30,122].

In most models, the assumption is made that the distribution grid infrastructure is
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strong enough to meet the demands of EVs at all times, but this assumption can cause

problems especially in the evening or night when there is high charging demand [123].

However, in decentralized coordination, there are also quite effective methods that

optimize grid requirements and EV demands, although the optimum solution for the

overall system is not always guaranteed, as the demand of each EV takes priority.

Decentralized architecture can also be divided depending on the communication

network it has:

• Fully-dependent structure in which local controllers communicate via a central entity.

• Fully-independent structure where local controllers do not depend on any central

entity for communication.

• Partially-independent structure where local controllers communicate both with each

other and with the central entity.

In the first and third structures that communicate with the central unit, however, the

decision is made by the local units, the central unit has no decision-making authority

[23].

As a result, studies in the literature find the relatively new decentralized coordination

more advantageous than centralized coordination because it is less computational

complexity and user-oriented. These distributed coordination methods involve

randomness in vehicle mobility and have lower communication requirements. Better

known robust communication links such as SCADA, PLC or fiber optic are preferred

in centralized EMS, while more cost-effective technologies such as WLAN, Zigbee,

Bluetooth may be preferred in decentralized EMS [23].

4.3 Hierarchical Coordination

User data privacy, communication costs, and computation time must be considered

when implementing EMS at the distribution level. Moreover, the comfort of the

EV user should be a priority when determining the EMS for EV charging. While

providing this, the security of the network should be taken into consideration and it

should be aimed to increase the power quality. Hierarchical EMS is recommended as a

hybrid approach by eliminating the disadvantages of both centralized and decentralized

approaches and taking advantage of their strengths. The approach, which is neither
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centralized nor decentralized EMS, in which multiple microgrids are usually divided

into two or three control level structures, is called hierarchical EMS architecture

[39,120]. In this structure, there is a central controller and local controls that provide

information to it. Thanks to the layered structure it provides, it can eliminate the

excessive processing load of the central architecture, while it can be a solution to the

disadvantages such as the decentralized structure not making global optimization. The

handicap of this architecture is the interruption of information transfer in case of error

at any level. Centralized, decentralized and hierarchical control schemes are shown in

Figure 4.2 [124].

Figure 4.2 : Centralized, Decentralized and Hierarchical Control Schemes [124].

As a result, while centralized EMS is an application targeting global optimization,

it is not very suitable for application to multiple microgrids due to communication

cost and computational burden. On the other hand, decentralized architecture offers

low computational overhead while remaining far from the global optimum. For this

reason, hierarchical architecture is seen as the most suitable option for microgrids with

different control levels [19,23]. In Table 4.1, the disadvantages and advantages of EMS

architectures is compared.
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Table 4.1 : Comparions of EMS Architectures.

Advantages Disadvantages

Centralized
Global optimization
Overall operating cost reduction
Easy implementation

Lack of costumer privacy
Complex and expensive
communication
High computational burden
Poor extendibility and flexibility

Decentralized

Higher Costumer privacy
Distrubuted computational
burden on EMS
High Flexibility
Higher consumer acceptance
Higher fault tolerance

Higher total cost
Lack of exact optimization
Need of effective
communication system

Hierachical

Higher flexibility and
extendibility
Layerwise control
Higher reliability and security
Suited for MMG
High Accuracy
Abilitiy to handling power
quality and operating cost
Scalable and adaptable for
EV Fleets

Complicated control and
implementation

In all of the EMS architectures mentioned, different optimization methods can be

applied according to various objectives [23].

4.4 Agent-Based Approach

The agent-based approach is the modeling of the system at the local level, which is

handled with the smallest units called agents. These models are used to examine

the effect of agent behavior and interaction of agents on the system. When applying

this approach, it is modeled with three main characteristics of the factors; obtaining

information, making decisions and reacting as seen in Figure 4.3. Agents should

be able to take information about the conditions in the environment, process this

information and decide autonomously, and then give feedback to the environment as a

result of this decision [125].
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Figure 4.3 : Control Process of An Agent.

Agents represent active entities of the system that sense and manipulate its

environment. Ferber defined an agent as a real or virtual entity that operates in an

environment whose behavior is autonomous, can perceive and act, and interact with

others [126]. Agents, inputs, and initial state are defined by rules of interaction with

other agents and decision-making flow. An agent can interact with others in line with

their individual or global goals and make their own decisions and provide various

services to their environment.

Although all agents are modeled in the same way while modeling, the input and output

parameters of the factors and the environmental conditions may be different. One of the

features that facilitates system modeling is that the agents can be defined, modeled and

then reproduced by copying. In addition, one of the biggest advantages of this approach

is that the states of the agents can change dynamically even during simulation, the

system can be constantly updated by removing existing agents or adding new agents.

Therefore, agent-based approach is very suitable for long-term and variable scenarios

[37,125]. Agent-based modeling is a type of software development approach that

consists of many units that make their decisions locally. This modeling transforms

the decision-making process into a computer-assisted approach. An advantage of this

approach is that a fault in a single unit will not affect the rest of its system. This makes

the system more resistant to potential failures.

In EV charging management, on the other hand, agent-based approach represents

the coordination where chargers or EVs are called agents and the decision process

is carried out independently from a centralized structure. In the this approach, the

priority is usually to provide user satisfaction [5]. Each of the agents knows the data
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needed to manage EV charging and can negotiate with other agents. The agent can

make a decision as a result of local information and negotiations. However, in this

case, the process should be repeated continuously in terms of reliability, since each

agent will make its own decision [36]. In addition, for the good of the general state

of the system, hierarchical architectures, generally called multi-agents, can be used.

Agent based modeling is also the general name of the approach used in the modeling

of Multi-Agent Systems (MAS) in the literature. Although there are no different

definitions for agent-based modeling and multi-agent system in the literature, MAS

defines a system in which multiple agents interact with each other.
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5. SWARMGRID-X IMPLEMENTATION TO CLUSTERED EV CHARGING
SYSTEMS

Within the scope of this thesis, the MAS-based approach in the Swarmgrid-X

algorithm, which is the extended version of the swarmgrid algorithm, is inspired. The

proposed approach is integrated into clustered EV chargers. In the approach, it is aimed

that each charging unit in a charger cluster negotiates with each other without a central

unit, thereby achieving the goal of power neutralization within the cluster. This section

discusses the details of the proposed approach.

5.1 Swarmgrid Approach

The Swarmgrid is a decentralized approach based on the MAS, where all elements in

a distribution network are controlled by an agent. The multi-agent system here is a

swarm. This approach provides a swarm control in line with the local targets of the

agents, with its completely decentralized structure. Agents’ behavior is determined

by the agent based on local knowledge and the outcome of negotiations with other

agents, resulting in action. Agents do not always have to communicate with every

agent, and communication partners may change over time. However, each agent still

has a specific list of communication partners in a specific time period. Swarm behavior

emerges as a result of communication between agents and individual control behaviors

of agents [45].

Although this approach minimizes system operator interference and gives high priority

to local behavior, agent behavior rules can be designed to prioritize signals from the

system operator when necessary. In this approach, where distribution network control

is distributed and its resilience against local faults and communication problems is

increased, the system will still be operational in the event of a failure of a single unit

[45].
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5.2 Swarmgrid-X Concept

Due to the fact that the Swarmgrid algorithm can result in multiple communication

partners for each agent, the hierarchical coordination-based Swarmgrid-X concept

was born to overcome these potential communication problems. The main purpose

functions of Swamgrid-X are local flexibility management and voltage control by

managing active and reactive power flexibility. In this approach, communication

takes place only between agents within a subgrid. If power cannot be adjusted in the

sub-grid, the substation represented by an agent can communicate with other substation

agents. If the substation agent has the appropriate flexibility, it can act as a producer.

Moreover, if the agents of the subgrids are all consumers, they can communicate with

the MV grid [44]. In Figure 5.1, the structure of Swarmgrid-X can be seen.

Figure 5.1 : Structure of Swarmgrid-X [44].

An agent exhibits a set of predefined behaviors in line with individual goals and can

communicate directly with another agent in its swarm to influence the behavior of the

other agent. Consumer agents try to meet their demands by finding a producer agent,

while producer agents announce the amount of power they can provide to consumer

agents. A swarm can grow or shrink according to various goals and situations.

In this concept, which is defined as holonic and can consist of sub-holons, the smallest

unit is autonomous DERs, which can be power producers or consumers. These units

come together to form holons in the upper layer, represented by a higher agent.
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Negotiation between units in the same layer is possible, or the agent of the lower

layer may seek help from the holons in the upper layers. In this way, the system

becomes both fully distributed and hierarchical and more resilient to a local fault. Also,

the disadvantage of the top-down approach, that the sub-units are directly affected

by the errors that occur in the upper unit, is avoided [44]. In this approach, where

information and power consumption are handled as local as possible, cooperation

between agents is made to achieve the common system goal. This cooperation

causes the distribution system to change from being a classical power system to

a cyber-physical power system (CPPS) based on information and communication

technology. Various negotiation protocols are presented in the Intelligent Physical

Agents Foundation (FIPA) standards for managing communication between agents

[44]. In the literature, there are studies examining the appropriate communication

infrastructure for Swarmgrid applications for distribution networks [127]. However,

within the scope of this thesis, the focus is mostly on the control behavior and

negotiation processes between the agents.

In many MAS-based applications, agents’ local control behavior is set as a global state

variable, and system behavior is the result of all these behaviors. However, this can

completely mislead the system behavior in case of potential errors in the negotiation

algorithm. For this reason, the control behavior in Swarmgrid-X is completely based

on local information and negotiations within the swarm, no global variables are taken

into account. In this way, DERs are given the authority of control decision. The

system in the proposed approach allows the creation of swarms of flexible agents that

are compatible with the current electrical grid.

Within the scope of this thesis, legislative restrictions that may be necessary in

real-world practice have not been taken into account. Similarly, it is assumed

that data exchange regarding the necessary communication infrastructure is done in

an appropriate and secure manner. The study focuses solely on the feasibility of

integrating Swarmgrid-X into EV charger clusters.
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5.3 Implementation of Swarmgrid-X to EV Charger Clusters

In the referenced study, the Swarmgrid-X algorithm uses distributed energy sources

such as combined heat and power (CHP) power plants, electric heat pumps (HPs),

wind energy converters (WECs), electric loads, photovoltaic (PV) generators, other

than EVs was also taken into account [44]. However, in this thesis, as DER, we focused

only on EVs. Swarmgrid-X, which offers an agent-based energy management concept,

has been modified to improve effectiveness in V2X-capable clustered EV charging

systems. A charger cluster is a collection of EV chargers controlled by a distributed

energy management system. By bringing together flexible energy assets, local load

balancing can be achieved within the EV charging clusters, thus enabling it to operate

for a period of time without demanding electricity from the grid [128]. Figure 5.2

shows an example of a clustered charger system.

Figure 5.2 : Charger Clusters.

Each charging unit (CU) to which each electric vehicle in a charging station is

connected is an agent with computational capability and can be assigned as a producer
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or consumer. The tolerances of the CU’s represented by the agents are calculated

in accordance with the urgency of the charging demands of EVs, and the agents

are assigned as producer or consumer. They then communicate with other agents

independently of a central unit, presenting each other the powers they can provide

or the powers they demand. As a result of the negotiations between the two agents,

power flow begins and power neutralization is attempted within the cluster.

In the next sections, how the role of the agent representing the CU to which each EV is

connected is assigned at each moment, how an agent calculates the operation range, the

flow of negotiation processes and finally the contracts between the agents are explained

in detail.

5.3.1 The role of an agent

In the energy management concept presented in the thesis, the role of the agents

representing the CUs to which the EVs are connected (which will also be used directly

as EVs for convenience in the following steps) is updated at each time step. Two role

options are possible for each agent:

- a consumer agent looking for a producer agent to meet the charging demand of the

EV battery,

- a producer agent which can charge another EV by discharging its own battery.

Whether an agent is a producer or a consumer depends on its tolerance for interruption

of charging. An agent with a higher tolerance acts as a producer as a more flexible

energy asset. This tolerance value and role are determined based on the current and

target SOC of the EV represented by the agent and the parking time. The parameter

indicated as m(t) in Equation 5.1 is the tolerance of the agent and is calculated based

on the charge demand of the EV and the power of the charger and the speed at which

the demand is met.

m(t) = 1−
SoC(tD)−SoC(t)

Pch
.E

tD − t
(5.1)
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The parameters SOC(tD) and SOC(t) indicate the target and current state of charge

(SOC) of the EV, respectively. E represents the energy capacity of the EV battery and

Pch represents the power of the charger. The parameter tD shows the departure time

when the EV reaches its target SOC, SOC(tD) The tolerance indicated by m(t) is a

dynamic value that is updated with each time step, expressing the agent’s tolerance. A

threshold value mδ between 0 and 1 is determined. The fact that this value is greater

than the mδ indicates that the EV can tolerate the delay of charging for the calculated

time step and can discharge its battery in that time, and this is a producer role that can

perform V2X operation. On the other hand, if it is lower than mδ ,it indicates that the

EV cannot tolerate it, and in this case, the agent is assigned as a consumer agent. In

Equation 5.2, assignment of agent role according to a certain threshold is shown.

m(t) = 1−
soc(tD)−soc(t)

Pch
.E

tD − t
(5.2)

5.3.2 Operation range of an agent

Before the negotiation process between a producer and a consumer in the same swarm

begins, both agents determine their active operation range. For this, the consumer

agent calculates the power demanded from time t1 to t2 (as the contract period) and the

producer agent calculates the power it can provide during this time.

In Figure 5.3, SOC change of two agents according to the operations, one of which is

assigned as a producer and the other as a consumer, representing two EVs is shown as

a simple example.
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Figure 5.3 : SOC Change over Time of Agents.

The yellow line represents the agent assigned as a consumer at time t1, and the purple

line represents the agent assigned as a producer at time t1. In the t1-t2 time interval, the

producer agent discharges its battery and charges the consumer agent. It then charges

itself in the range t2-t3 (from the grid or from another vehicle). In this case, in order

for the producer agent to reach the target SOC until the moment of departure t3, it must

calculate the minimum SOC that it must have at the time of t2.

Thus, the power demanded by the consumer agent in the t1-t2 time interval, Pc, is

calculated as in Equation 5.3. Here, SOCc(t2) and SOCc(t1) represent the target and

current SOC of the consumer agent, respectively, and Ec represents the energy capacity

of the battery of the EV. The charging power can be as much as the power of the charger

Pch,c.

Pc = min
{

Pch,c,
(socc (t2)− socc (t1))∗Ec

t2 − t1

}
(5.3)

The producer agent, on the other hand, must first calculate the minimum SOC that it

can drop at the time of t2, and then the power it can supply between t1-t2 accordingly.
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As shown in Equation 5.4, the consumer agent’s SOC at time t2 is determined by

the target SOC SoCp(t3) , the charging power Pch,p, and the battery capacity of the

EV battery Ep. Then, the power that the producer can provide in t1-t2 time period is

calculated according to the current SOC SoCp(t1) and min SOC SoCp(t2) and battery

capacity Ep, as in Equation 5.5. The power that the producer can provide can be as

much as the power of the charger Pch,c.

socp (t2) = socp (t3)−
Pch,p.(t3 − t2)

Ep
(5.4)

Pp = min
{

Pch,c,
(socp (t1)− socp (t2))∗Ep

t2 − t1

}
(5.5)

These values are calculated continuously for each time interval. These agents, which

can sometimes be producers and sometimes consumers, are called prosumer, which can

produce and consume power. While making these calculations, the flexibility of users

to participate in V2X operation was not included to the calculations, only technical

calculations were made for the feasibility of the proposed EM approach.

5.3.3 Negotiation protocol

Agents negotiate based on their operation ranges. Since these negotiations are made

for the operation ranges of each agent, individual targets are achieved and as a result of

the negotiation global targets are also achieved, as local power balancing is achieved.

Although these negotiations are always between two agents, an agent can negotiate

with more than one agent for the same time step.

A consumer agent always initiates the negotiation. The consumer agent searches for

a producer that will meet some or all of the power demand in its swarm of a series

of consumer agents. Depending on the demand for this power, an agent’s swarm can

grow or shrink.

52



5.3.3.1 Directory facilitator

A Directory Facilitator (DF) is a service list or server that knows dynamically changing

information and location of each agent type in all clusters. Types and locations of

agents are information stored in DF. It can provide information to consumer agents

looking for a producer when requested, but does not have any decision-making

authority. This is not a central control unit. Also, DF does not know about other

parameters of agents in the cluster.

A consumer agent which needs more producers to meet its demand or has not a

producer in its swarm sends a message to DF. DF finds the producer agents at the

specified distance and shares their information with the requesting consumer. In this

situation, both agents add to each other’s swarm. This is called the Recruiting Protocol.

5.3.3.2 Contracts between agents

The consumer agent sends a call for proposals to the producer agent that is in the

swarm or that it has just added. If the producer can provide the desired power in the

specified time, it accepts the offer of the agent and the contract is made. Thus, the

negotiation is completed and the power flow begins. Otherwise, the producer sends a

rejection message to the consumer and the consumer starts the search process again.

If the consumer agent meets only a part of its demand from the producer agent, a

contract is made again, but the consumer agent also looks for another producer to meet

the remaining demand. An agent can have a contract with more than one agent at the

same time. These negotiations are constantly updated with new parameters according

to the power demand at each step. This processes is shown in Figure 5.4.
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Figure 5.4 : Negotiation Protocol.
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6. SIMULATIONS AND PERFORMANCE TESTS

This section discusses the details of the proposed approach. First of all, the effect

of the tolerance threshold on the performance of the algorithm was investigated by

comparing the simulations made with the proposed approach for different tolerance

thresholds. Then, the performance of the proposed MAS-based approach compared

to uncontrolled EV charging was evaluated.With this tests, it is aimed to observe the

effects of approach to the peak to average power ratio of the charger cluster.

To evaluate the performance of the proposed approach, python programming language

was used. With the object oriented programming approach, classes with various

attributes and methods were created. Thus, an algorithm that can be easily adapted

to different scenario situations was created. The UML diagram that summarizes how

the algorithm works is given in the Figure 6.1.

Figure 6.1 : UML Diagram of Proposed Approach.
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The charging system in the scenario consists of charger clusters. Each EV arriving

at the charging station at certain time intervals is randomly assigned to an available

charging unit. As explained in the previous section, agents represent charger units. At

each time step, the information of the agents in the Directory Facilitator is updated to

include the new incoming EVs and to recalculate the flexibility of the existing agents.

The current tolerance is calculated according to information such as the current and

target SOC of the EV connected to the charger unit, the battery capacity and the

duration of stay in the station. Depending on the tolerance threshold determined,

agents take the role of producer or consumer. The consumer agent requests the

producer information from the Direcitory Facilitator and creates a swarm according

to its needs and starts negotiating.

6.1 Peak Power Reduction

The agent-based energy management algorithm presented in this thesis, which is an

adaptation of the Swarmgrid-X algorithm, is applied to EV charging clusters. With

this approach, it is aimed to increase the local load balancing capabilities within the

charge clusters and to reduce the peak to average power ratio of the charge clusters. In

the performance tests, the algorithm was applied in a scenario:

- 10 charger clusters containing 12 chargers of 11 kW each

- EV parking times ranging from approximately 1 to 6 hours

- EVs with 55 kWh battery with SOC varying between 20% and 80%

- Between 7:00 to 23:00

- Contracts renewed every 5 minutes

and the results were evaluated.In addition to the simulations performed by applying

the proposed approach, the same scenario was also simulated and compared to

uncontrolled operation. Figure 6.2 shows the power profile of a charger cluster under

uncontrolled operation vs agent-based control approach applied with mδ =0.50. Figure

6.3 shows, on the other hand, the power profile of a charger cluster under uncontrolled

operation vs agent-based control approach applied with mδ =0.75.
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Figure 6.2 : Power Profile of a Cluster Uncontrolled Operation vs Proposed
MAS-based Approach with tolerance threshold mδ =0.50.

Figure 6.3 : Power Profile of a Cluster Uncontrolled Operation vs Proposed
MAS-based Approach with tolerance threshold mδ =0.75.

In Figure 6.2, agents with m(t) value greater than 0.5 are assigned producers, while in

Figure 6.3, agents with m(t) greater than 0.75 are producers. In the first case, the peak

power demand in the cluster decreased by 39%, while in the second case it decreased

by about 42%. Here, a better result is seen in case of higher mδ a determination,

although fewer agents are assigned as producers. Thus, less V2X operation resulted

in a better power profile. Although the reason for this is explained in more detail in
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the following, in the first case (Figure 6.2) consumption is delayed too much and then

again causes peaks.

The power profile in cluster 10 for different values of mδ is shown in Figures 6.2

and 6.3. However, the performance of the algorithm also depends on the demands

and charging durations of the vehicles connected during the scenario period. For this

reason, the improvements are not identical in all cluster and such significant changes

were not seen.

As explained in detail in the previous section, the m(t) value indicating tolerance

determines the role of an agent. Agents whose tolerance is above the determined value

of mδ are appointed as producer agents. When the same simulation was performed for

different mδ threshold values, the peak and mean values in Table 6.1 were obtained.

These results were calculated for all 10 clusters, i.e. the whole system, and were

compared with the situation where the mδ is 1, that is, there is no producer.

Table 6.1 : Peak to Average Ratio Comparison.

Benchmark
mδ =1.00 mδ =0.75 mδ =0.50 mδ =0.25

Peak (kW) 351.5 335.2 357.1 379.3
Average (kW) 150.5 150.5 150.5 150.5
Peak/Average Ratio 2.33 2.22 2.37 2.52

As can be seen in the Table 6.1, it is clear that the algorithm depends on the tolerance

value mδ . For a higher value of mδ , it is more difficult to appoint agents as producers.

In this case, the value of mδ =1 is the same as the uncontrolled case where no agent is

a producer and there is no V2X operation.

On the contrary, in case of smaller m tolerance threshold, more agents are producers,

that is, local power balancing is achieved since more EVs participate in V2X. In this

case, it will be expected that the peak loads in the cluster will decrease more. However,

as can be seen from the table, choosing a lower mδ value does not always result in a

lower peak powers. For example, while the peak power measured for mδ =0.75 is 335

kW, higher peak powers have been measured in the simulations at mδ =0.5 threshold

value, and it is seen that these peak powers are even higher than the uncontrolled

58



operation’s power value. The reason for these high peak values is explained by giving

an example from the power profile of a different cluster (7th cluster) as shown in Figure

6.4.

Choosing a small value of m causes more agents to be producers at time t, and

they charge other EVs by discharging in time T. Then, at t+T, they need to recharge

themselves as consumers. In this case, the number of EVs whose charges are delayed

to t+T time will be much higher and very high peak demands will be seen at t+T time.

The most dramatic example of this is seen in the power profile of 7th cluster. In the

simulation performed with a tolerance value of mδ =0.25, it is clearly seen how the

charging delayed at the beginning of the simulation results in a peak demand later on.

Figure 6.4 : Power Profile of 7th Cluster for tolerance threshold mδ =0.25.

The impact of many unpredictable variables in the scenario, such as arrival times of

EVs, current and available SOCs, and parking durations is also very significant. In

order to avoid high peak demands, a prediction can be made and a control algorithm

can be developed based on the past power demand profiles of the clusters and the

system. In this way, potential problems caused by this randomness can be avoided.

Based on the estimations, if different m values are assigned to each instant of t, more

producers can be assigned in case of simultaneity of power demand and balancing can

be performed much better with V2X operation at the right time.
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In order to evaluate the performance of the agent-based approach in different scenarios,

the peak-to-average ratio distribution of 10 different charger clusters in 20 different

scenarios is shown in Figure 6.5. The green dots show the uncontrolled approach,

while the orange dots show the results when the energy management approach is

applied. The uncertainties in the scenario such as arrival and departure times of EVs,

target and current SOC may cause the result not always to turn out better when the

energy management approach is applied. However, in most of the scenarios, it is

observed that the performance of agent-based energy management shows better results.

In the uncontrolled condition, the peak-to-average ratio increases up to 4.65 in the

simulations, while it is seen that it is at most 3.76 with the proposed approach.

Figure 6.5 : Peak to Average Ratio Distribution.

6.2 Scalability

In this section, the computational performance of the algorithm has been tested without

considering the tolerance value m and other variables, unlike the above evaluations.

The time required to converge to the solution is calculated by increasing the number of

agents in the cluster. In simulations, agent roles, negotiations and contracts are updated

every 5 minutes. However, if the number of agents in the scenario is less than 125, it is

seen that the solution can be converged in 60 seconds. This is important for a practical

application. For this reason, a period of 60 seconds can be selected as the scalability

threshold.
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Since the increase in the number of agents results in more negotiations, the

computation time also increases in parallel. However, the increase in the number of

clusters does not cause any change in the scope of the application in this thesis. This is

because negotiations only take place within the cluster. For this reason, these processes

that clusters carry out in parallel do not cause an additional computational burden.
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7. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, SwarmGrid-X, an agent-based energy management algorithm, has

been adapted and implemented for clustered EV charging systems. In the proposed

approach, depending on the urgency of the charging demands of the EVs connected to

the chargers and the tolerance threshold in the algorithm, the agents representing the

charger units are assigned the role of producer or consumer. Agents in the consumer

role get the location of producers through a server called DF, add them to their swarm

and negotiate. If the negotiation results in a contract, power flows for the specified

contract period. In this way, the producer agent discharges, meeting the charging

demand of the consumer agent.

The performance evaluation in the thesis was made by applying this approach to

a system consisting of 10 charger clusters, each with 12 charging units. Power

profiles of uncontrolled operation and proposed approach were compared. With the

appropriate mδ selection, the proposed MAS-based approach has been shown to reduce

the peak-to-average ratio of a cluster by up to 42%. As a result of the simulations made

with this approach, a positive effect on the power profile of the charger clusters was

observed when EVs stoped to be local consumers and became electricity producers

with V2X operation. On the other hand, the effect of different tolerance values on the

performance of the algorithm is also discussed. Computational analysis showed that

the computational load of this algorithm is directly related to the number of agents in

the cluster.

It has been observed that units called agents can take adequate control decisions with

limited local information. Without the need for a central control unit and without

information of the grid or the cluster, agents can neutralize the cluster in line with

their individual goals. Agents were able to exchange power by negotiating with each

other with very little communication overhead compared to other approaches in the
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literature. This demonstrates the feasibility of an agent-based approach without any

centralized control.

In addition, while the profile of EVs connected to charging units is identical in many

other applications, the charging demands of EVs are variable in this thesis and the

flexibility of EVs for V2X is also variable. In the simulation scenario, the number

of EVs connected to a charging unit during the simulation period, the arrival and

destination SOCs of the EVs are completely random. This means that in any scenario,

the role of a charging unit to which different EVs are connected is updated at each time

step, negotiating with other agents in the cluster for negotiation.

With this energy management algorithm, unlike previous studies, bidirectional

charging is handled. Thus, it is aimed to use the V2X functions in the most effective

way and to use the EVs efficiently in their idle time. Thanks to the V2X function, the

peak power demand in the clusters and the overload of the charging units on the grid

have been reduced.

7.1 Recommendations and Future Work

For future studies, it is recommended to assign agents representing the total behavior

of each cluster so that this power balancing within the cluster can be also done between

clusters. In this way, in case the demand is not met within the cluster, it can request

power from another cluster instead of requesting it directly from the grid. However, in

such an application, the computational burden of negotiating between clusters should

be taken into account.

Another improvement to be made is to make the mδ value dynamic for each time step

t, allowing it to adapt depending on the demand of the clusters and the variability of

the EVs in the cluster. Thus, peak levels can be minimized and the load profile can be

flattened.
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