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OZET

COK KATMANLI ASIRI OGRENME MAKINELERININ GELIiSTIRiILMESIi VE
SISTEM MODELLEMEDEKI BASARIMLARININ ANALIZIi

Asirt Ogrenme Makinesi (AOM), smiflandirma ve regresyon uygulamalarinda yiiksek
verimlilik ve kolay uygulanabilirdiginden dolayr son on yilda 6nemli arastirma konusu
olmustur. Calismamiz kapsaminda regresyon ve smiflandirma problemleri i¢in gelistirilen
klasik AOM, Radyal Tabanli Fonksiyon Kullanan Asir1 Ogrenme Makinesi (RTF-AOM), Meta
Asir1 Ogrenme Makinesi (Meta-AOM) ve Cok Katmanli Asir1 Ogrenme Makinesi (CK-AOM)
gibi mevcut AOM yapilar incelenmistir. Bu ¢alismada, anilan yapilarin zayif ve iistiin yonleri
incelenerek yapilarin iyilestirilmesi ve yeni hibrit yapilar onerilmistir. Calismamizdaki
motivasyon unsuru, AOM ydntemlerinin yaygm olarak smiflandirma problemlerinde
kullanilmig olmasi ve sistem modelleme iizerinde ¢alisilmamis olmasidir. Bu baglamda zamana
dinamik bir sekilde bagli sistemlerin yanisira engebeli ve/veya keskin degisimli yiizeylere
denektas1 sistemlerin modellenmesi {izerinde ¢alisilarak iyilestirme ve yeni karma ag yapisinin
gelistirilmesi hedeflenmis olup ¢alismamizda istenen hedefe ulasiimistir. CK-AOM yapisinin
sistem modelleme basarimini arttirmayi ve hesaplama zamaninmi diisiirmeyi amaglayan iki
Iyilestirilmis Cok Katmanli Asir1 Ogrenme Makinesi (ICK-AOM) adin1 verdigimiz AOM ag
yapilar1 gelistirilmis olup deney sonuglar1 ile basarim Ustiinliinliikleri denektas1 sistemler
lizerinde gosterilmistir. ICK-AOM yapilar1 ile yedi farkli dinamik sistem modelleme
uygulamasi iizerinde basarimi incelenmistir. Ayrica ¢ok katmanli asir1 6grenme makinesi ile
radyal tabanli fonksiyon aglari birlestirerek HybRBF-ML-ELM adini verdigimiz karma bir ag
yapist daha gelistirilmistir. Engebeli ve/veya keskin degisimli yiizey problemlerinde basarimi

deney sonuglari ile kiyaslamali olarak gosterilmistir.

Dinamik sistem modelleme deneylerinde gelistirilen ICK-AOM’nin bazi durumlarda CK-
AOM’ye kiyasla hem egitim hem de test veri setleri i¢in %70lere varan daha iyi modelleme
basarim sergiledigi gézlenmistir. Ornegin, Denektasi Dinamik Sistem (DDS) 7 i¢in 100 diigiim
kullamldiginda CK-AOM, ICK-AOM1 ve ICK-AOM2 vyapilar1 0.627977, 0.104272 ve
0.092683 ortalama test Karesel Ortalama Hatanin Karakokii (RMSE) sonuglari verilmistir. CK-
AOM ile karsilastirildiginda IiCK-AOM1 yapist 83% daha iyi ortalama test RMSE sonuglari
saglarken ICK-AOM2 yapist 85% daha iyi ortalama test RMSE sonuglari saglamistir. Yiizey
modelleme deneylerinde gelistirilen HybRBF-ML-ELM yapisinin CK-AOM yapisina gore her

problem i¢cin daha basarili oldugu gdzlemlenmistir. Ornegin, Griewank, Dropwave ve Schaffer2



fonksiyonlari i¢in hem egitim hem de test RMSE sonuglarina bakildiginda CK-AOM yapisina
gore yaklasik olarak %99 daha iyi basarim elde edildigi goriilmiistiir. Peaks fonksiyonu igin de
egitim verisinde ortalama RMSE degerine bakildiginda CK-AOM yapisina gore %76,87 daha

iyl modelleme bagarim sergiledigi gézlenmistir.

Anahtar Kelimeler: Sistem modelleme, dinamik sistem, keskin degisimli yiizey, asir1 6grenme

makinesi, ¢ok katmanli agir1 6grenme makinesi.



ABSTRACT

IMPROVEMENT OF MULTILAYER EXTREME LEARNING MACHINES AND
THEIR ANALYSIS OF PERFORMANCE IN SYSTEM MODELING

Extreme Learning Machine (ELM) has been the subject of significant research in the last decade
due to its high efficiency and easy implementation in classification and regression applications.
Within the scope of our study, existing ELM structures such as classical ELM, Radial Basic
Function Extreme Learning Machine (RBF-ELM), Meta Extreme Learning Machine (Meta-
ELM) and Multilayer Extreme Learning Machine (ML-ELM), which were developed for
regression and classification problems, were examined. In this study, the weak and superior
aspects of the aforementioned structures were examined, and the improvement of the structures
and new hybrid structures were proposed. The motivation factor in our study is that ELM
methods are widely used in classification problems and system modeling has not been studied.
In this context, it was aimed to improve and develop a new mixed network structure by working
on the modeling of touchstone systems on uneven and/or sharply changing surfaces as well as
systems that are dynamically dependent on time, and the desired goal was achieved in our study.
Two ELM network structures, which we call Improved Multilayer Extreme Learning Machine
(IML-ELM), aiming to increase the system modeling performance of the ML-ELM structure
and reduce the computation time, have been developed and the test results and performance
advantages are shown on benchmark systems. Their performances on seven different dynamic
system modeling applications compared to the ML-ELM structure performance have been
examined. In addition, a hybrid network structure, which we call HypRBF-ML-ELM, has been
developed by combining multi-layer extreme learning machine and radial basis function
networks. Its performance on uneven and/or sharply changing surface problems has been shown

in comparison with the test results.

It has been observed that IML-ELM developed in dynamic system modeling experiments
exhibits up to 70% better modeling performance for both training and test datasets compared to
ML-ELM in some cases. For example, when 100 nodes are used for Benchmark Dynamic
System (BDS) 7, the average test Root Mean Square Errors (RMSE) results of 0.627977,
0.104272 and 0.092683 are achieved for the ML-ELM, IML-ELM1 and IML-ELM2 structures.
Compared to the ML-ELM, the IML-ELML1 structure provided 83% better mean test RMSE
results, while the IML-ELM2 structure provided 85% better mean test RMSE results. It has



been observed that the HybRBF-ML-ELM structure developed in surface modeling
experiments is more successful for each problem than the ML-ELM structureFor example,
when both the training and test RMSE results of HybRBF-ML-ELM for
the Griewank, Dropwave and Schaffer2 functions are examined, it is seen that approximately
99% better performance is obtained compared to the ML-ELM structure. Considering the
average RMSE value in the training data for the peaks function, it was observed that the
modeling performance was 76.87% better than the ML-ELM structure.

Keywords: System modeling, dynamic system, sharply altered surface, extreme learning

machine, multilayer extreme learning machine.
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1. GIRIS

Yapay 6grenme giiniimiizde bir ¢ok problemin ¢dzlimiinde yaygin olarak kullanilan
kavramdir. Yapay sinir aglar1 (YSA) bu kavram ile ortaya ¢ikmistir. YSA, bir¢ok miihendislik
ve bilimsel problemin ¢6ziimii i¢in yaygin olarak kullanilmaktadir ve popiiler genel modelleme
ve hesaplama yontemleridir (Haykin S, 1999). Bu yapilar genellikle yinemeleri algoritmalar
tarafindan egitilir. Aligila gelmis YSA egitiminde kullanilan tiireve dayali 6grenme yontemleri
iyi bagarim sonucu vermesine ragmen 0grenme siiresi olduk¢a zaman almaktadir. Bu ylizden
2004 yilinda Huang ve arkadaslar1 tarafindan gelistirilen asir1 dgrenme makine (AOM)
yontemi, analitik olarak hesaplama yaptifi icin c¢ok kisa siirede ¢ok hizli egitim
yapabilmektedir. Olduk¢a hizli ¢oziime ulastig1 icin bu alanda bir ¢ok arastirmaci bir ¢ok
problem icin AOM kullanmistir. AOM’nin belirgin zayif yonlerini iyilestirmek icin bir cok yeni
AOM yontemleri gelistirilmistir. Literatiir taramas1 boliimiinde bu ¢aligmalardan ve gelistirilen

AOM yéntemlerinden kronolojik olarak kisaca bahsedilmistir.

1.1.  Literatiir Taramasi

Agsirt 6grenme makinesi 2004 yilinda Huang ve arkadaslari tarafindan tek gizli katmanl
ileri beslemeli sinir ag yapisinda kullanilan yeni analitik 6grenme algoritmasidir (G. bin Huang
vd., 2004). Sinir aglarinda yaygin kullanilan tiirev tabanli 6grenme yontemlerinde 6grenme
fazla sayida egitim/test verisi ve tur sayisi fazla oldugu icin gelistirilen AOM yontemine gore
olduk¢a yavastir. AOM’de giris katmanimndaki agirlik parametrelerini rastgele atar ve gikis
katmanindaki agirlik parametreleri analitik olarak belirlenir. Bu yiizden AOM ile 6grenme hizli

ve basarim yiiksektir.

2004 yilinda Huang ve arkadaslari tarafindan 'Extreme Learning Machine: RBF
Network Case' baslikli ¢alisma ile AOM yapisi radyal tabanl fonksiyon (RTF) ag durumuna
gore genisletilmistir. RTF’deki merkez ve varyans rastgele atanir ve ¢ikis agirlik parametreleri
iteratif olarak ayarlanmak yerine analitik olarak hesaplanir (G. bin Huang ve Slew, 2004) .
Makaledeki deney sonuglar1 ile RTF aglar1 icin AOM algoritmasinin dgrenmeyi son derece
hizl1 bir sekilde tamamlayabildigini ve bir¢ok yapay ve gergek kiyaslama fonksiyonu yaklagimi
ve smiflandirma probleminde destek vektdr makinelerininkine (SVM) ¢ok yakin bir genelleme

basarimi lirettigi gosterilmistir.

2005 yilinda Huang ve arkadaglan tarafindan yazilan 'On-Line Sequential Extereme
Learning Machine' adli makalede, Cevrimici Sirali Asirt Ogrenme Makinesi (OS-ELM) olarak

adlandirilan 6zyinelemeli en kiiciik kareler (RLS) algoritmasina dayanan sirali modifikasyonu



sunulmustur. OS-ELM'e dayanarak, Sifir dereceli TSK modelini ve birinci dereceden TSK
modelini uygulamak icin Cevrimici Sirali Bulanik Ekstrem Ogrenme Makinesi (Fuzzy-ELM)
de tanitildi (G.-B. Huang vd.,2005) OS-ELM ve Fuzzy-ELM, diger popiiler sirali 6grenme
algoritmalar1 ile kiyaslanmistir ve deney sonuglarina gore bazi gercek regresyon benchmark

problemlerinde daha hizli 6grenme ve iyi genelleme bagarimi vermistir.

AOM’de giris katmanindaki agirlik parametreleri ve esik parametreleri rastgele olarak
belirleniyordu fakat 2005 yilinda Huang ve arkadaslar1 tarafindan yayinlanan 'Evolutionary
extreme learning machine' basikli makalede karma 6grenme algoritmasi gelistirilmistir. Bu
yontem ile rastgele atanan bu parametreler segmek i¢in farksal gelisim algoritmasini ve ¢ikti
agirliklarini analitik olarak belirlemek i¢cin Moore Penrose (MP) yontemini kullanan bir karma
O0grenme algoritmasit onerilmistir. Bu ¢alismadaki deney sonuglarina bakarak, bu yaklagimin

¢ok daha kompakt aglarla iyi genelleme basarimi saglayabildigi bildirilmistir (Zhu vd., 2005).

2009 yilinda Rong ve arkadaslari tarafindan yayinlanan, 'Online Sequential Fuzzy
Extreme Learning Machine for Function Approximation and Classification Problems' (OS-
Fuzzy-ELM) adli ¢alismada, fonksiyon yaklasimi ve siniflandirma problemleri i¢in ¢evrimigi

siralt bulanik asir1 6grenme makinesi (OS-Fuzzy-ELM) gelistirilmistir (Rong vd., 2009).

Lan ve arkadaslar1 2010 yilinda ‘Constructive hidden nodes selection of ELM' baglikli
calismada AOM algoritmasma dayali yapict bir yontem uygulayarak AOM regresoriiniin
mimari tasarimim ele almislardir (Lan vd., 2010a). Onerilen CS-ELM'in diger AOM aglar
(AOM, EM-ELM ve I-ELM) ile karsilastirilmasi, bazi ger¢ek kiyaslamali regresyon

uygulamalarinda yapilmistir.

"Two-stage extreme learning machine for regression' ¢alismast 2010 yilinda Lan ve
arkadaslar tarafindan yaymlamistir. Bu calismada AOM'in eksik kalan 6n ag yapismin
belirlenmesi iizerinde durmuslardir. Bu ¢aligma kapsaminda gelistirilen TS-ELM yo6ntemi iki
asamadan olusmaktadir. Birinci agsamada, ileriye doniik 6z yinelemeli algoritma her adimda
rastgele iiretilen bireylerden gizli diigiimii segmek igin uygulanir ve diigiimler durdurma kriteri
minimum degere gelene kadar aga eklenir. ikinci asamada, her gizli diigiimiin énemi gézden
gecirilir ve 6nemsiz olanlardan agdan ¢ikarilir, ki bu da ag karmagikligin1 6nemli oranda azaltur.
TS-ELM, denektast (benchmark) regresyon problemleri icin AOM ve EM-ELM ile
karstlagtirilmistir. AOM ile kiyaslandiginda daha iyi sonu¢ vermektedir, diger yandan EM-
ELM ile kiyaslandiginda da benzer ya da daha iyi sonu¢ verdigi goriilmektedir (Lan vd.,
2010b).



2013 yilinda Zhang ve Ji tarafindan yayinlanan 'Fuzzy Extreme Learning Machine for
Classification' adli calismada FELM yapis1 6nerilmistir. Onerilen bu yap1, geleneksel AOM
yapisindaki oransiz problemler ve agirlikli simiflandirma problemleri gibi farkli giris
noktalarinda siniflarin  birini tam olarak atamayabilme eksikligini giderebilmektedir.
Geleneksel AOM yontemine bulanik mantik kavrammin dahil edildigi bir yap1 olarak
goriilebilir. Agirlikli smiflandirma problemleri igin FELM, AOM'den daha mantikli sonuglar
verildigi deneysel sonuglar ile gosterilmistir (W. B. Zhang ve Ji, 2013).

R. Zhang ve arkdaslari tarafindan 2013 yilinda yayinlanan ‘Dynamic Extreme Learning
Machine and Its Approximation Capability’ baslikli galismada dinamik asir1 6grenme makinesi

yontemi gelistirilmistir. (R. Zhang vd., 2013).

2013 Han ve arkadaslari, 'Hierarchical extreme learning machine for feedforward
neural network' isimli ¢alismasinda bir hiyerarsik ileri besleme sinir agi (HFNN) agirliklarinin
egitimi icin bir yap:r Onerilmistir. Geleneksel tek gizli katman ileri besleme aglarindan
(SLFN'ler) farkl1 olarak, bu hiyerarsik AOM (HELM) ¢evrimigi olarak siral1 bilgileri hiyerarsik
ogrenebilen hiyerarsik bir yapiya dayanir (Han vd., 2014).

2013 yilinda Liao ve arkadaslari tarafindan ‘Meta-ELM: ELM with ELM hidden nodes’
isimli calismada Meta-ELM adinda AOM'nin meta 6grenme modeli nerilmistir. Meta-ELM'in
yapist bir kag temel AOM'den ve bir iist AOM'den olusur. Bu nedenle, Meta-AOM 6grenmesi
iki asamada ilerler. Ilk olarak, her bir temel AOM, egitim verilerinin bir alt kiimesi iizerinde
egitilmistir. Daha sonra, iist AOM egitilen temel AOM 'leri sanki gizli diigiimlermis gibi alarak

tiim very ile egitilir (Liao ve Feng, 2014).

Yong arkadaglar1 ile 2014 yilinda gergeklestirdigi ‘Meta-cognitive Fuzzy Extreme
Learning Machine' adli ¢alismasinda meta-bilissel bulanik asir1 6grenme makinesi (McFELM)
olarak adlandirilan sinirsel bulanik ¢ikarim sistemi (NFIS) i¢in hizli bir 6grenme metodolojisi
onermistir. Ogrenmeyi daha etkili kilmak i¢in insan meta-bilis ilkelerini igeren orijinal OS-

Fuzzy-ELM algoritmasi kullanilmistir (Yong vd., 2014).

Mevcut AOM yapilarinin, AOM'in basarimi i¢in ¢ok dnemli olan cekirdek secimini
optimize etmeye ¢ok az dikkat edildigi gerekcesiyle 2015 yilinda Liu ve arkadaslart 'Multiple
Kernel Extreme Learning Machine' isimli ¢alismada bu bahsedilen eksikligi gidermek i¢in
coklu cekirdek asir1 6grenme makineleri (MK-ELM) olarak adlandirilan genel bir 6grenme
yontemi 6nermislerdir. Onerilen MK-ELM'de, optimum ¢ekirdek kombinasyon agirliklar1 ve

AOM'in yapisal parametreleri birlikte optimize edilmistir (Liu vd., 2015).



Jagtap ve arkadaslar1 tarafindan 2015 yilinda yayinlanan 'Extreme-ANFIS: A Novel
Learning Approach for Inverse Model Control of Nonlinear Dynamical Systems' isimli
calismada Takagi-Sugeno bulanik ¢ikarim sisteminin (TS FIS) onciil ve sonug parametrelerini
ayarlamak i¢in "Extreme ANFIS" adli yeni, basit ve daha hizli bir 6grenme yaklagimi

Onerilmistir (Jagtap vd., 2015).

AOM’nin bir ¢evrim i¢i siiriimii daha 6nceden ileri siiriilmiistiir fakat eksik yonlerinden
dolay1 Scardapen ve arkadaslari tarafindan 2015 yilinda 'Online Sequential Extreme Learning
Machine with Kernels' isimli ¢alismas ile ¢evrimici ¢ekirdek tabanli AOM (KOS-ELM) ag
Onerilmistir (Scardapane vd., 2015).

2015 yilinda B.Y. Qu ve arkadasalar1 "Two Hidden Layer Extreme Learning Machine
for Regression and Classification' isimli calismada &zel bir yap1 olarak 2 gizli katmanli AOM
agl tamimmlamiglardir. Girig katmani ile birinci gizli katman arasindaki agirlik ve esik
parametreleri klasik AOM'deki gibi rastgele atanmaktadir. Birinci gizli katman ile ikinci gizli
katman arasindaki agirlik ve esik parametreleri i¢in ise yeni bir yontem gelistirilmistir, boylece
iki gizli katmanli ileri beslemeli ag yapis1 icin yeni bir AOM ydntemi tanimlanmistir (Qu vd.,

2016).

2016 yilinda Tang ve arkadaslart AOM'nin s1g mimarisi nedeniyle, AOM kullanarak
ozellik 6grenme, ¢ok sayida gizli diigiimde bile dogal sinyaller (6rnegin goriintiiler / videolar)
icin etkili olmayabilir tespitini yapmislardir. Bu konuyu ele almak i¢in, 'Extereme Learning
Machine for Multilayer Perceptron ' adli calismada, cok katmanli algilayici icin yeni bir AOM
tabanl hiyerarsik 6grenme gergevesi nerilmistir. Onerilen mimari iki ana bilesene ayrilmistir:
1) kendi kendine 6gretilen 6zellik ¢ikarimi ve ardindan denetlenen 6zellik siniflandirmast ve 2)
rastgele baslatilan gizli agirliklar ile kopriileme. Yaygin olarak kullanilan ¢esitli siniflandirma
veri setleri lizerinde yapilan kapsamli deneyler, 6nerilen algoritmanin mevcut son teknoloji
hiyerarsik ©6grenme yontemlerinden daha iyi ve daha hizli yakinsamaya ulastigini
gostermektedir. Ayrica, bilgisayar ortaminda yapilan uygulamalar, 6nerilen 6grenme planinin

genelligini ve kabiliyetini daha da dogrulamaktadir (Tang vd., 2016).

Biiyiik veri kiimerlerinde 6grenme icin giris drnekleri diizgilin bir sekilde alinamadigi
icin AOM'in siniflandirma basarimi diisiik olabilir. Bu sorun Phurattanaprapin ve Horata
tarafindan 2016 yilinda 'Extended Hierarcihical Extreme Learning Machine with Multilayer
Perceptron' isimli calismada ele alinmistir. Cok katmanli algilayicinin hiyerarsik 6grenme
mimarisine dayanarak hiyerarsik asir1 6grenme makinesi (H-ELM) ¢ercevesi onerildi. H-ELM
iki bolimden olusur: Ilki denetlenmemis c¢ok katmanli kodlama kismi ve ikinci kismi
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denetlenen dzellik siniflandirma kismidir. H-ELM, geleneksel AOM'den daha yiiksek dogruluk
orani verebilir, ancak, siniflandirma bagariminin da arttirmasi gerekmektedir. Bu nedenle, bu
makale genisleyen hiyerarsik asir1 6grenme makinesi (EH-ELM) gibi yeni bir yontem
onermektedir. EH-ELM'nin genisletilmis denetleyici kismi i¢in, iki katmanli asir1 6grenme
makinesinden yararlanilmaktadir. Ug farkl1 goriintii veri seti ile (Semeion, MNIST ve NORB)
EH-ELM basarimi inceleme ¢aligmalarinin deneysel sonuglari, EH-ELM'nin H-ELM'den ve
diger ¢ok katmanli ¢cerceveden daha iyi basarim elde ettigini gostermektedir (Phurattanaprapin
ve Horata, 2016).

Son zamanlarda, cok katmanli asir1 6grenme makinesi (CK-AOM) temsili 6grenme igin
yigilmis otomatik kodlayiciya (SAE) uygulandi. Geleneksel SAE'nin aksine, CK-AOM'in
egitim siiresi yiiksek dogrulukla saatlerden saniyelere 5nemli 6l¢iide azaldi. Ancak CK-AOM'in
eksikleri oldugu i¢in Chi Man Wong ve arkadaglar1 tarafindan 2018 yilinda, 'Kernel-Based
Multilayer Extreme Learning Machines for Representation Learning' isimli ¢alismada ML-
KELM adinda bir &grenme yontemi ileri siiriilmiistir. CK-AOM birgok sakincadan
muzdariptir: 1) her katmandaki gizli diigiimlerin sayisi iizerinde elle ayarlama, egitim siiresi ve
genelleme igin belirsiz bir faktordiir; 2) CK-AOM'in her katmanindaki esik ve giris
agirliklariin rastgele tretilmesi, yetersiz model genellemesine yol agar; 3) her katmandaki
cikis agirliklart igin s6zde ters ¢ozliimii nispeten biiylik yeniden yapilanma hatasi meydana
getirir; ve 4) temsil 6greniminde doniigiim matrislerinin depolanma ve yiiriitme siiresi, gizli
katmanlarin sayisiyla orantilidir. Cekirdek &grenmesinden esinlenerek, CK-AOM'nin bir
cekirdek siiriimii , ¢ok katmanl gekirdek AOM (ML-KELM) gelistirilmistir: Bu yapinin
katkilari: 1) her katmanda gizli diigiimlerin sayisinin elle ayarlanmasmin kaldirilmasi; 2)
optimal model genellemesi elde etmek i¢in rastgele iiretim mekanizmasi yoktur; 3) ¢ikti
agirliklar icin tam ters ¢oziim, daha kiiclik yeniden yapilandirma hatasiyla sonuglanan, ters
cevrilebilir ¢ekirdek matrisi altinda garanti edilir; ve 4) tiim donlistim matrisleri sadece iki
matriste birlestirilir, boylece depolama azaltilabilir ve model uygulama siiresi kisaltabilir.
Deneysel sonuglar 6nerilen ML-KELM'in katkilarin1 dogrulamistir. Benchmark veri setlerine

gore dogruluktaki gelisme %7'ye kadar artmistir (Wong vd., 2018a).

Dalgaciklarin zaman-frekans diizlem o6zelliklerini ve sinir aginin (NN) 6grenme
yeteneklerini, bulanik ¢ikarim sisteminin yaklasik akil yiiriitme &zelliklerini ve AOM'in son
derece hizli 6grenme hizinda tek gegisli 6grenme ve iyi bir genelleme basarimina dahil ederek
bir ¢ok uygulamada etkili bir ¢oziim sergilenmektedir. Bu ylizden 2017 yilinda Golestaneh ve

arkadaglar tarafindan yapilan 'Fuzzy Wavelet Extreme Learning Machine' adli yayinda yeni



bulanik dalgacik asir1 6grenme makinesi (FW-ELM) ileri siiriilmiistir. FW-ELM'in temel
amagclari, dogrusal 6grenme parametrelerinin sayisini azaltarak ag karmagikligin1 6nemli 6l¢iide
azaltmak ve kabul edilebilir dogruluk ve genelleme basarimlar1 korunurken rastgele baslatma
ile olusan duyarlilig1 azaltmaktir. Onerilen yapida, her bir bulanik kural bir alt dalgacik sinir
agina karsilik gelir ve farkli genisleme ve doniistimlii dalgaciklardan olusur. Bu modelde, ag
karmasiklig1 ve bagarim dogrulugu arasindaki dengeyi saglamak icin her bir bulanik kuralin
THEN kisminda, her iki giris i¢in bir katsay1 géz oniinde bulundurulur. Bu ¢alismada, dnce bir
FW modelinin ve bir SLFN'nin denkligi kanitlanmis ve daha sonra AOM dogrudan modele
uygulanabilir kilmmustir. Uyelik fonksiyonun ve dalgacik katsayilarin tiim serbest
parametreleri rastgele iiretilir ve sadece ¢ikis agirliklar analitik olarak belirlenir. FW-ELM'yi
degerlendirmek igin, ¢esitli denektasi verilerinde OS-Fuzzy-ELM, Simpl_eTS, ANFIS gibi
popiiler bulanik modelle ve AOM, BP ve SVR gibi diger ilgili algoritmalarla karsilastirildi.
Deney sonuglari, dnerilen yaklasimin verimli sonu¢ verdigini géstermektedir. FW-ELM'in
basarim dogrulugunun OS-Fuzzy-ELM ile karsilastirilabilir oldugu ve bilinen yontemlerin geri

kalanindan daha iyi oldugu gosterilmistir (Golestanesh vd., 2018).

AOM’nin son zamanlarin popiiler derin 6grenme aglarmin egitimini hizlandirmak
amagh calismalar da literatiirde géze carpmaktadir. Bu calismalardan bir kesit su sekilde
sunulabilir: Tissera ve McDonnell, siiflandirma igin denetimli otomatik kodlama mimarisi
olarak bir derin u¢ Ogrenme makinesi tasarladi (Tissera ve McDonnell, 2016). Kim ve
arkadaslari AOM kullanarak Evrisimli Sinir Aglart (CNN) igin hizli bir 6grenme ydntemi
gelistirdi (Kim vd., 2017). Yousefi-Azar ve McDonnell, yar1 denetimli bir evrisimli asir1
ogrenme makinesi tasarladi (Yousefi-Azar ve McDonnell, 2017). Vong ve arkadaslar1 ampirik
cekirdek haritas1 tabanli ML-ELM kullanarak temsili 6§renme iizerine bagka bir arastirma
yapti. Altan ve Kutlu, bir Hessenberg ELM otomatik kodlayici gelistirdikleri derin 6grenme
alaninda ¢alist1 (Altan, 2018). Chen ve arkadaslar1t ML-ELM (Chen vd., 2019) kullanarak akilli
saglik i¢in bir insan etkinligi tanima semasi gelistirdi. Zhang ve dig. ML-ELM (J. Zhang vd.,
2020) kullanarak yinelemeli olmayan ve hizli bir derin 6grenme semasi gelistirdi. Ezzati Khatab

ve dig. bir otomatik kodlayic1 tabanli yar1 denetimli derin asir1 6grenme makinesi gelistirdi

(Ezzati Khatab vd., 2021)

1.2. Hedefler ve Katkilar

Calismamizda modelleme ve smiflandirma problemleri igin gelistirilen klasik AOM,
RTF-AOM, Meta-AOM ve CK-AOM gibi mevcut AOM yapilar1 incelenmistir. Bu yapilarin



art1 ve eksi yonleri incelenerek yapilarin iyilestirilmesi ve yeni hibrit yap1 6ne siiriilmesi

hedeflenmistir.

Calismamizdaki motivasyon unsuru, AOM yoéntemleri yaygin olarak siniflandirma
problemlerinde kullanilmis olup sistem modelleme iizerinde calisilmamistir. Bu yiizden
dinamik sistem ve engebeli, keskin degisimlere sahip sistemlerin modellenmesi {izerinde
caligilarak iyilestirme ve yeni karma ag yapisinin gelistirilmesi hedeflenmis olup ¢alismamizda

istenen hedefe ulagilmistir.

Bu ¢aligmanin 6zgiin katkilar1 asagida listelenmistir.

1. AOM ve gelistirilmis olan diger bir ¢ok AOM yontemleri yaygin olarak
simiflandirma, goriintii siniflandirma, regresyon ve tahmin problemlerinde
kullanilmaktadir. Dinamik sistem modelleme iizerinde az ¢alismistir. Bu yiizden bu
doktora tez calismasinda AOM yéntemlerinin dinamik sistem ve engebeli, keskin
degisimli yiizeylere sahip modelleme problemlerine degilinilmistir.

2. Dinamik sistem modelleme problemi iizerinde CK-AOM yapisinda iyilestirilme
yapilmustir. lyilestirilmis iki farkli cok katmanli AOM vyapis1 gelistirilerek
tanimlanmistir. Gelistriren ag yapilarinin basarim tistiinliigii 5 farkli dinamik sistem
lizerinde gosterilmistir.

3. Engebeli, keskin degisimli yiizeylere sahip sistemlerin modellenmesi igin de yeni
bir karma ag yapis1 gelistirilmistir. Bu agin kiyaslamali bagarimi literatiirden secilen

denektasi islevlerin modellenmesi ¢ergevesinde sunulmustur.

1.3.  Tezin Yapisi

Tezin yapisi asagidaki gibidir. Boliim 2, AOM yonteminin temelini olusturulan yapay
ogrenme ve yapay sinir aglarinin tantmin1 kapsamaktadir. Doktora ¢alismasinda regresyon ve
siniflandirma problemleri icin gelistirilen klasik AOM, RTF-AOM, Meta-AOM ve CK-AOM
gibi incelenen mevcut AOM yapilar1 Béliim 3’te tanitilmustir. Boliim 4°te dinamik sistem
modelleme problemleri igin iyilestirme yapilan CK-AOM yapilari anlatilmaktadir. Engebeli ve
keskin degisimli yiizeylere sahip sistem modelleme problem i¢in gelistirilen karma ag yapis1 ve
kullanilan yiizey modelleri Boliim 5°te tanitilmistir. Boliim 4 ve 5°te gelistirelen yapilarin deney
sonuglart Bolim 6’da verilmistir. Son olarak, Boliim 7, ¢alismanin sonu¢ ve Onerlerini

icermektedir.



2. YAPAY OGRENME VE YAPAY SiNiR AGLARI

Yapay 6grenme giiniimiizde bir ¢ok problemin ¢dzlimiinde yaygin olarak kullanilan
kavramdir. Yapay sinir aglart (YSA) bu kavram ile ortaya ¢ikmustir. YSA, ilk olarak McCulloch
ve Pitts (Mcculloch ve Pitts, 1943) tarafindan Onerilen sinirsel hesaplama sistemleridir.
YSA'lar, kendi kendini organize etme oOzelliklerine ve paralel bilgi sistemlerine dayali
hesaplama tekniklerindeki 6nemli gelismeler sayesinde 1980'lerden itibaren yaygin olarak
kullanildi. Rumelhart ve arkadaslar1 (Rumelhart vd., 1986), ndron benzeri birimlerin aglari igin
yeni bir 6grenme prosediirii, geri yayilimi (BP) 6nerdi. BP, agin gergek ¢ikt1 vektori ile istenen
cikt1 vektorii arasindaki farkina dayali olarak tanimlanan bir 6l¢iitii en aza indirmek i¢in agdaki
baglantilarin agirliklarint tekrar tekrar ayarlar. Bu ¢alisma, paralel dagitilmis bilgi isleme
cergevelerinde BP kuralinin gelistirilmesine bagli olarak ¢esitli aragtirma alanlarinda YSA'larin
yaygin olarak kullanilmasina katkida bulunmustur. YSA'lar ayrica 1980'lerin sonlarinda
makine zekasindaki karmasik ve dogrusal olmayan fenomenleri yorumlamak i¢in yaygin olarak

kullanildi.

YSA'larin gelisimi, insan beyninin karakteristik isleyisinden esinlenerek olmustur,
ancak bunlar biyolojik esdegerleri ile yalnizca uzaktan iligkilidir. YSA'lar beynin
karmagikligina yaklagmazlar, ancak biyolojik sinir aglar1 ile YSA'lar arasinda iki temel
benzerlik vardir. Ik olarak, her iki agmn yap: taslari, yiiksek oranda birbirine bagl basit
hesaplama cihazlaridir. ikincisi, ndronlar arasindaki baglantilar agin islevini belirler. YSA'lar
paralel dagitilmis bilgi islem aglar olarak islev goriir ve bazi1 temel 6zelliklerde biyolojik sinir
sistemlerine benzerdir. Sekil 2.1 ve 2.2°de sirasiyla, biyolojik sinir hiicresinin ve YSAnin hiicre
yapis1 verilmistir. Sinir sistemi ile yapay sinir sisteminin karsilik gelen elemanlar1 da Tablo

2.1’de verilmistir.
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Sekil 2.2. YSA hiicre yapist

Tablo 2.1. Sinir sistemi ile yapay sinir sisteminin karsilik gelen elemanlar

Sinir Sistemi Yapay Sinir Sistemi
Akson Cikt
Hiicre Govdesi Toplama Birimi
Cekirdek Aktivasyon Fonksiyonu
Sinaps Agirhiklar
Dentrit Girig

2.1. Yapay Sinir Aglarinin Ozellikleri

YSA yapist gere8i 6grenebilme ve genelleme yetenegine sahiptir. Genelleme yetenegi
ile egitim siirecinde karsilasmadig1 giris degerleri i¢in de uygun sonug degerleri tiretmektedir.
Bu yetenegi ile karmasik problemleri de ¢6zebilme yetenegine sahiptir. YSA, O0grenme,
iligkilendirme, siniflandirma, genelleme, tahmin, 6zellik belirleme ve optimizasyon islemlerini

gerceklestirebilir. Bu islemlerde YSAnin temel katkisi disaridan miidahale gerekmezsizin

10



problem i¢in verilmis olan bilgiler dogrultusunda sonug iiretebilmesidir. YSA, sinir sisteminden
esinlenerek gelistirildigi i¢in bir ¢ok iistiinliikklere de sahiptir. Asagida bir ka¢ 6zelliklerinden
kisaca bahsedilmistir (Haykin S, 1999).

Ogrenebilirlik: Cogu klasik algoritma, verilen formiiller hesaplanirken aymi girdiler
icin her zaman ayni ¢iktiy1 tiretir. Bu dogrusal algoritmalarin aksine YSA sayesinde programlar
ogrenme yetenegine sahip olmuslardir. Coziimii yolu tanimlanamayan problemlerin ¢oziimii
hakkinda YSA bilgi vermeksizin 6grenebilirlik yetenegi sayesinde problemi ¢ozebilmektedir.

Problemin ¢6ziimiinde YSA’ya 6rnek girdi ve ¢ikt1 degerlerinin verilmesi gerekmektedir.

Genelleme: YSA {izerinde ¢alisilan problem igin egitildikten sonra egitim esnasinda
karsilasmadigi durum icin de sonug iiretmektedir. Ornek: bir sandelye goriintiisii tanitilip
giiriiltiilii sandelye goriintlisii verildiginde sandelye olarak taniyacaktir. Bu da YSAnin

genelleme yetegine sahip oldugunu ifade etmektedir.

Uygulanabilirlik: YSA, calistigi probleme gore agirliklarini kendisi diizenleyerek
belirler. Egitilmis YSA, her hangi bir problemde kullanilabilir. Sadece, yeni problemin giris ve

cikis degerleri aga verilerek ag tekrar egitilmelidir.

Tasarim Kolayh@i: YSAnin hiicre yapisi ve modeli, tiim YSA modellerinde yaklasik
olarak aynidir. YSA yapisi kolaylikla olusturulup ¢esitli problemlerin ¢dzlimiinde kullanilabilir.

Dogrusal Olmama: YSAnin temel elamani olan hiicre dogrusal sonu¢ vermemektedir.
Bu 6zelligi tiim aga yansimistir. Bu yiizden dogrusal olmayan sistemlerde sonug¢ almak icin

yaygin olarak YSA kullanilmaktadir.

Paralellik: Klasik problem ¢6zme algoritmalarinin aksine YSA, parallel ¢aligmaya

uygun yapiya sahip oldugundan sorunlarin ¢6zlimii i¢in ¢ok daha hizli sonug vermektedir.

Hata Toleransi: YSA parallelik 6zelligi ile bagimsiz ¢aligabildigi i¢in yapidaki bir
eleman arizalandiginda 6grenebilme ve genelleme yetenegi sayesinde yap1 sorunsuz ¢alismaya

devam edecektir.

YSAnin en temel eksigi kara kutu gibi ¢alisiyor olmasidir. Bir sorunu ¢ézmek igin
egitilen agin 6grenme ve genelleme yetisiyle ¢oziilmesi imkansiz sorunlarin iistesinden geldigi

yadsinamaz bir gercektir. Fakat bunu nasil yaptigina dair bir bilinmezlik vardir. Bir de, YSAnin
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egitimi esnasinda problemin biiyiikliigline ve ag yapisina bagl olarak oldukc¢a ¢ok zaman

harcanabilmektedir.

2.2.  Yapay Sinir Ag Modelleri

Yapay sinir ag modelleri, tek katmanli ve ¢ok katmanli algilayicilar, ileri ve geri

beslemeli yapay sinir aglar1 olmak iizere dort grupta incelenebilir.

2.2.1. Tek katmanh yapay sinir aglari

Giris ve ¢ikis diigimleri arasinda tek katmanda siralanmis noriinlardan olusan bir
yapidir. Katmandaki hiicrelere tiim giris degerleri baglanmaktadir ve bunlarin baglanti
agirliklar1 vardir. Esik girisinin 1 olmasi ¢ikis degerinin sifir olmasini engellemektedir. Sekil

2.3’te tek katmanli ag yapis1 gosterilmistir.

XN

Giris Dligtimleri

Katman

Sekil 2.3 Tek katmanli YSA ag yapisi
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2.2.2. Cok katmanh yapay sinir aglari

Cok katmanli YSA giris, gizli ve ¢ikis katmanindan olugmaktadir. Karmagik ve gii¢
dogrusal olmayan problemlerin ¢oziimiinde kullanilmaktadir. Girig katmanindaki girig birden
fazla, gizli katmanda da birden fazla gizli katman ve hiicreye sahip olabilmektedir. Gizli katman
sayis1 ve hiicre sayisi problem gore belirlenmektedir. Sekil 2.4’de ¢ok katmanli bir YSANin ag

yapisi verilmistir.
Giris Katmani: Giris bilgilerin alinip gizli katmana aktarildigi katmandar.

Gizli Katman: Giris katmanindaki her bir giris verisini gizli katmandaki her bir hiicreye

baglar ve bilgiler islenir.

Cikis Katmani: Gizli katmanin iletmis oldugu veriyi isleyerek sonug elde edilmektedir.

S g Sl | Y

X1
S g . S g h Sg-——— o
X2 « ..
2 8 > 8 - ) - S
Xy . .
\ e . Sg 38—
Giris Katmani Gizli Katmanlar Cikis Katman

Sekil 2.4. Cok katmanli YSAnin ag yapisi

2.3.  Kullanim Alanlar

YSA yaygin olarak, smifladirma, tahmin ve modelleme gibi bir ¢ok alanda
kullanilmaktadir. Ayrica YSA birgok problemle ugrasirken, bilgi kaynaklari ne eksiksiz ne de

yanilticidir. Karar kurallar1 bazen celigkili bazen de yoktur. Bu, geleneksel bilgi isleme
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yontemleri i¢in biiylik zorluklar yaratir, ancak sinir agi bu problemlerle ¢ok iyi basa ¢ikabilir
ve makul bir tanimlama ve yargilar verebilir (Wu ve Feng, 2018). Asagida YSAnin kullanim
alanlar kisaca verilmeye ¢alismistir.

Bilgi Isleme: Modern bilgi isleme ile ¢oziilmesi gereken sorunlar ¢ok karmasiktir.
Yapay sinir aglari, insanlarin diisiincelerini taklit etme veya degistirme islevine sahiptir ve
otomatik teshis, problem ¢ozme ve geleneksel yontemlerle ¢oziilemeyen problemlerin
¢oziilmesini gerceklestirebilir. Mevcut akilli bilgi sistemleri arasinda akilli enstriimanlar,
otomatik izleme ve izleme enstriimantasyon sistemleri, otomatik kontrol yonlendirme

sistemleri, otomatik ariza teshis ve alarm sistemleri yer almaktadir.

Oriintii Tammma: Oriintii tanima, nesneleri veya fenomenleri karakterize eden gesitli
bilgi bicimlerini isleyerek ve analiz ederek seyleri veya fenomenleri tanimlama, siniflandirma
ve yorumlama siirecidir. Artik iki temel Oriintii tanima yontemi vardir, istatistiksel Oriintii
tanima ve yapisal Oriintii tanima. Yapay sinir aglari, orlintii tanimada yaygin olarak kullanilan
bir yontemdir. Son yillarda, geleneksel Oriintii tanima yonteminin yerini yavas yavas yapay
sinir ag1 Oriintli tanima yontemi almistir. Yillarca siiren arastirma ve gelistirmeden sonra,
Oriintii tanima giiniimiiziin daha ileri teknolojisi haline geldi ve karakter tanima, konusma
tanima, parmak izi tanima, uzaktan algilama goriintli tanima, yiiz tanima, el yazis1 karakterleri
tanima, endiistriyel ariza algilama, biyolojik sinyallerin tespiri ve otomatik analizi, tibbi

uzman sistem gibi bir ¢cok amag i¢in yaygin olarak uygulandi.

Biyolojik Sinyal Tespiti ve Analizi: Cogu tibbi test ekipmani, verileri teshisin temeli
olan siirekli bir dalga bi¢ciminde ¢ikis verir. Yapay sinir agi, cok sayida basit islem birimiyle
birbirine baglanan bir tiir uyarlanabilir dinamik sistemdir. Geleneksel yasa ile ¢oziilemeyen
biyomedikal sinyal analizi ve isleme problemlerini ¢6zmek icin kullanilabilecek biiyiik
miktarda paralellik, dagitilmis depolama ve kendi kendine uyarlamali 6grenme islevlerine
sahiptir. Biyomedikal sinyal algilama ve islemede sinir aginin uygulanmasi temel olarak EEG
sinyalinin analizine, isitsel uyarilmis potansiyel sinyalin ¢ikarilmasina, EMG ve
gastrointestinal sinyallerin tanimlanmasma, EKG sinyallerinin sikistirilmasina, tibbi

goriintlilerin taninmasina vb. alanlardir.

Tibbr uzman sistemi: Geleneksel uzman sistem, uzmanlarin deneyim ve bilgilerini
kurallar seklinde bilgisayarda depolamak, bilgi tabani olugturmak ve tibbi teshis i¢in mantiksal
akil yiiriitme yolunu kullanmaktir. Ancak pratik uygulamalarda veri tabaninin boyutu arttikca

bilginin “patlamasina” ve bilgiye erisimde “darbogaz”a yol agarak verim diisiikliigiine neden
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olacaktir. Dogrusal olmayan paralel islemeye dayali sinir ag1, uzman sistem arastirmasi i¢in
yeni bir gelisme yoniine isaret eder, yukaridaki uzman sistem problemlerini ¢ozer ve bilgi
cikarimini, kendi kendine organizasyonu ve kendi kendine 6grenme yetenegini gelistirir,

boylece sinir ag1 yaygin olarak kullanilir.

Piyasa fiyati tahmini: Emtia fiyatlarindaki degisikliklerin analizi, piyasadaki arz talep
iligkisini etkileyen bir¢ok faktoriin kapsamli bir analizine atfedilebilir. Dogal sinirlamalari
nedeniyle, geleneksel istatistiksel iktisat yonteminin fiyat degisikliklerini bilimsel olarak
tahmin etmesi zordur. Bununla birlikte, yapay sinir aginin eksik, bulanik belirsiz veya diizenli
verilerle basa ¢ikmasi kolaydir. Bu nedenle yapay sinir agi fiyat tahmini, geleneksel
yontemlerle  karsilastirilamayacak  kadar  iyidir. Piyasa fiyatinin  belirlenmesi
mekanizmasindan yola c¢ikilarak emtia fiyatlarindan etkilenen hane sayisi, kisi basina
harcanabilir gelir, kredi faiz oran1 ve sehirlesme diizeyi gibi karmasik ve siirekli degisen
faktorler baz alinarak daha dogru ve giivenilir bir model olusturulmaktadir. Model, emtia
fiyatlarinin degisen trendini tahmin edebilir ve dogru ve objektif degerlendirme sonuglari elde

edebilir.

Risk degerlendirmesi: Risk, belirli bir faaliyette bulunma siirecindeki belirsizliklerin
neden oldugu dogal veya finansal zarar veya hasar olasiligini ifade eder. Bir riski 6nlemenin
en 1y1 yolu, riski dnceden bilimsel bir tahmin ve degerlendirme yapmaktir. Yapay sinir ag1
uygulamasinin 6ngoriisii, gergek risk kaynagina gore fiili duruma uygun kredi riski modelinin
yapisini ve algoritmasini olusturmak, risk degerlendirme katsayisini almak ve ardindan asil
problemin ¢oziimiinii belirlemektir. Bu modeli kullanan ampirik analiz, 6znel degerlendirme

eksikligini giderebilir, tatmin edici sonuglar elde edebilir.

15



3. ASIRI HIZLI OGRENME MAKINASI

Asir1 hizli 5grenme makinasi (AOM) tek gizli katmanli yapay sinir aglarimi egitmek igin
yeni analitik 6grenme algoritmasi olarak onerilmistir (G. bin Huang vd., 2004; G. bin Huang
vd., 2006). Sinir aglarinda yaygin olarak kullanilan tiirev tabanli 6grenme yoOntemlerinde
yiiksek O6grenme basarimi elde etmek icin c¢ok sayida egitim/test verisi ve tur sayisi
kullanildigindan AOM y&ntemine gore egitim seyri cok yavastir. AOM’de giris katmanindaki
agirlik parametreleri rastgele atanir ve ¢ikis katmanindaki agirlik parametreleri analitik olarak

belirlenir. Bu yiizden AOM ile 6grenme hizl1 ve basarim yiiksektir.

3.1.  Asir1 Hizh Ogrenme Makinasi

Asir1 6grenme makinesi (AOM), tek gizli katmanli yapay sinir aglar1 (SLFN)’i baz alan
bir modeldir (G. bin Huang vd., 2004; G. bin Huang vd., 2006). Sekil 3.1’de AOM’nin ag

yapisi verilmistir.

X1

Xy

Girig Katmani Cikis Katmani

Sekil 3.1. AOM’nin ag yapisi
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Sekil 3.1°de goriildiigii {izere AOM’nin yapis1 giris, gizli ve ¢ikis katmanindan
olusmaktadir. AOM’nin gizli katman parametreleri (w), rastgele olarak atanir ve ileri egitim
asamalarinda giincellenmez. Ote yandan, ¢ikisla gizli katman arasindaki agirlik parametreleri
() bir dogrusal model ile analitik ve izl bir sekilde belirlenir. Xj = [Xj1, ...., Xjn]™ Ve 0j = [0j1,
..., 0g]" olarak P ayr1 &rnek (xj, 0j) icin ELM’in matematiksel yapis1 Esitlik 3.1°de

gosterilmektedir.
Z%:l :Blg(wlx] + bl) = Oj)j = 1) ;P (31)

Bu modelde i =1, ..., L ve j =1, ..., P igin i ¢ikis agirliklari, g(.) néron aktivasyon
fonksiyonu, wi giris agirliklart ve X; giris degerleridir. Burada L diigiim veya noron sayisidir.
Geleneksel SLFN'de pi agirliklart bir dongii icinde gilincellenerek tespit edilir. Ancak, Huang
ve calisma arkadaglart bu agirlik parametrelerini bir kerede hesaplayan ELM yapisini

kesfetmistir (G. bin Huang, Zhu ve Siew, 2004c).

L > P durumu igin, P adet 6rnek sifir hata ile tahmin edebilir, baska bir deyisle 0j egitim
veri hedefi tj‘e degerine yakinsatilmistir. Bu durumda Esitlik 3.2, f£i, wi, X; ve bi i¢in

ispatlanmustir.
Zle ,Big(Win + bl) = t],] = 1, ,P (32)

Esitlik 3.2°de tj egitim veri hedef matrisi T’nin elemanlaridir. Esitlik 3.2°de tanitilan P
adet denklem Esitlik 3.3’teki gibi 6zetlenebilir.

HB =T (3.3)
Esitlik 3.3’te

g(wixy +by) - g(wpxy+by) B1
H = : - : |, T=
Bl

5]
B = : ] (3.4)

tp

g(wWiXp +by) - g(wXp+bp)

Esitlik 3.4 ele alindiginda H, gizli katmanin ¢ikis matrisidir. H matrisinin i numarali
stitunu da i numarali gizli diigiimiin ¢iktisin1 temsil eder. Vektor t ise, egitim verisi hedef

vektorudir.

Daha 6nce gosterildigi tizere, L > P i¢in sifir hata sunan birgok ¢6ziim vardir. Ancak L

< P i¢in asagidaki 6l¢iit fonksiyonunu minimize edecek bir ¢6ziim bulunmalidir.

C =% (3, Big(wix; + b;) — tj)z (3.5)
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Olgiit fonksiyonu minimize edildikten sonra, H matrisinin Moore-Penrose tersi HY

tespit edildir ve AOM, B'y1 Esitlik 3.6’da gosterildigi gibi 6grenir.

B=H'T (3.6)
Cikis matrisi O Esitlik 3.7°de gosterildigi gibi hesaplanir.

0O =Hp (3.7)
3.2.  Radyal Tabanh Fonksiyon Kullanan Asir1 Ogrenme Makinesi

Huang ve arkadaslari tarafindan 2004 yilinda yapilan ¢alismada, AOM yapisini radyal

tabanli fonksiyon (RTF) ag yapisina gore uyarlanmistir. RTF’deki merkez ve varyans degerleri

rastgele atanir ardindan ¢ikis agirlik parametreleri iteratif hesaplamak yerine AOM yapisindaki

anatilik hesaplama yontemi ile hesaplanmaktadir (G. bin Huang ve Slew, 2004).

Sekil 3.2°de RTF-AOM’nin ag yapisi verilmistir. A§ yapisinin matematiksel ifadeleri

asagida verilmistir ve Algoritma 1°de de algoritmasi yer almaktadir.

B
X1
03
Xz
L] [ ] Oq
Xn
Giris Katmani RTF Cikis Katmani

Sekil 3.2. RTF-AOM nin ag yapisi

N cekirdege sahip bir RTF agmin x € R" girdi vektoriine ciktis1 Esitlik 3.8’de

gosterildigi gibidir AOM;
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fre0 = 3 (Bipix) (3.8)

Bu denklemde B; = [Bi1, Biz, ... , Bim]", i cekirdegini ¢ikis ndronuna baglayan agirlik

vektoridiir. ¢;(X) ise i ¢ekirdeginin ¢ikisidir ve genellikle bir Gauss dagilimidir.
#:(x) = 9 (,0,%) = exp (B (39)
Burada, u; = [i1, H;2, -..4in] "1 cekirdeginin merkezi ve o; ise etki genisligidir.

cekirdege sahlp RTF matematiksel olarak

N

Z' 1Bi(pi(xj)=0jlj =1,..,P (310)
i=

seklinde tanimlanir. N cekirdege sahip standart RTF, bu P 6rnegi sifir hata ortalamasi

N
ile yakisatir (Z ||0]- -t || = 0). Kisaca varolan f3;, y; Ve o; i¢in
i

N
E Biex p<M>=tj,j =1,..,P (3.11)
i=1

Yukaridaki denklemler matrisler ile asagidaki gibi yazilabilir.

HB =T (3.12)
Burada
o(Hy,01,X1) - @(Ux, 0F, X1)
H(y, ooy Ui, O1y oony Oy X1y ooey Xp) = : :
o(,01,Xy) - @UF, 0F, Xp)
By t]
g=|:],T=|: (3.13)
By th

H gizli katman ¢ikis matrisidir. En kiiciik kareler ¢oziimii olan f ise asagidaki gibi

hesaplanir.

B =H'T (3.14)
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Algoritma 1: RTF - AOM Algoritmasi

Baslangic:
Bir egitim kiimesi JT = {( xi,t}) | xi ER", ti €R™, i=1,...,N} ve cekirdek sayis1 N igin:
Adim 1:
Keyfi merkezler p; ve etki genislikleri 6; atamas1 yap. (i=1, ..., N)
Adim 2:
Gizli (¢ekirdek) katmani ¢ikis matrisi H'yi hesapla.
Adim 3:
Cikis agirlign B'yr B = HT formiiliinii kullanarak hesapla.

3.3.  Meta Asir1 Ogrenme Makinesi (Meta-AOM)

Meta Asir1 Ogrenme Makinesi (Meta-AOM) basit olarak &grencilerden dgrenen bir
AOM modelidir. Sekil 3.3‘de goriildiigii gibi birkag taban AOM ve bu taban AOM’lerden
dgrenen bir meta 6greniciden olusur (Liao ve Feng, 2014). Her taban AOM bir taban tahmin

edici liretir ve meta 6grenici de meta tahmin edici iiretir.

Sekil 3.3°de Meta-AOM’nin basit bir ifade ile ag yapisi verilmistir.

B
X1
Xz
0]
Xn
Giris Katmani Cikis Katmani

Sekil 3.3. Meta-AOM nin ag yapisi

TKYSA agisindan bakildiginda, Meta-AOM AOM agimi Sekil 3.3’de gosterilen sekilde
AOM gizli katmanlariyla egitir. Meta-AOM, veri kiimesinin ayrik alt kiimelerinde taban AOM'

leri ve hiyerarsik mimarinin olustugu tiim veri kiimesinde bir "iist" AOM'yi egitir.
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Meta-AOM hiyerarsik bir dgrenme modelidir. Egitim veri kiimesini rastgele yeniden
karistirdiktan sonra, Meta-AOM tiim veri kiimesini ayrik alt kiimelere boler, alt kiimeler
iizerinde tahminciler olusturur ve AOM' nin yaptig1 gibi tahmin edicilerin agirliklarini analitik

olarak belirler.

Bu model, asagidaki 6l¢iit fonksiyonunu minimize etmelidir:
C= Zf:l[ g:l ﬁs(xi)AOMs(Xi) - ti]z (3.15)

Burada, P drnek sayisi, S ise taban AOM sayisina karsilik gelir. AOM,(X;) , s. sayil1
taban AOM'nin x; girdisi icin ¢ikisidir. B¢ (X;) ise, X; girdisi icin s. say1l1 taban AOM igin agirlik

parametresidir.

Bu yontem i¢in gizli katman matrisi H asagida gosterilmektedir.

h(x,) AOM;(x;) - AOMs(x,)

H= : = 1. T (3.16)
h(xp) AOM;(xp) -+ AOMs(xp)

Bu modelde de agirlik parametreleri asagidaki denklem yardimiyla bulunur.

B=H'T (3.17)

3.4. Cok Katmanh Asir1 Ogrenme Makinesi

Bu béliimde CK-AOM anlatilmaktadir. CK-AOM yapisinda tek katmanli AOM yerine
¢ok katmanli AOM katmanlar1 vardir. Bu mimaride, son katman haricinde tiim katmanlar
otomatik kodlayicilardir (AE). HHT tekil olmadiginda H matrisinin Moore-Penrose tersi
HT(HH")? olarak da gosterilebilir. Sirt regresyonu teorisi kullamldiginda, HHT matrisinin
diyagonal elemanlarina (1/A) degerleri eklenir. Sonug olarak, bir katman i¢in, CK-AOM
yapisinin 6grenme denklemi Esitlik 3.18”deki gibi olur.

-1

B=H(;+ HHT) T (3.18)

CK-AOM yapisinda her gizli katman icin temsili girisler bulunmaktadir. Katman K igin
temsili giris N adet harici giris kullanildiginda X® = [ng)' ...,xl(vk)] olarak gosterilebilir.
Katman k icin %) =[ §"),..., ,(f)] transformasyon matrisidir. Bu sekilde temsili giris
hesaplamasi Esitlik 3.19°da gosterilmistir.

X = g gk) (3.19)

Esitlik 3.19 kullanilarak p® esitlik 3.20°deki gibi 6grenilir.
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B = (H®)" (L4 H(k)(Hac))T)‘l X (3.20)

M katman icin son katmanin cikis matrisi HM olarak adlandirilir. Bu ¢ikis matrisini

kullanarak son katmanin ¢ikis agirlik matrisi p™ Esitlik 3.21°de gdsterilen sekilde dgrenilir.
-1
B0 = (HO)" (5 +HED(HOD)") " T (3.21)

CK-AOM’nin egitim ve test olmak iizere iki asamasi vardir. CK-AOM egitim ve test
islemlerinin akis semas1 Sekil 3.4-3.5’de gosterilmektedir. EZitim ve test yapilarinin farkhi
olduguna dikkat edin. CK-AOM yapisinda egitim asamasinda 6grenilen P degerlerinin test
asamasinda kullanilabilmesi i¢in saklanmasi gerekir. Son olarak, test asamasinda egitim

asamasinin son katmaninin agirlik parametreleri kullanilir.
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Basla

A 4

w" orthonormal
olarak ata

A
H'"'yi Esitlik
3.4'%e gore hesapla

v
B Esitlik
3.20'e gore hesapla

!

k=2

v
w® orthonormal
k=k+1
olarak ata
A
v

H"Y Esitlik
3.4'e gére hesapla

p™i Esitlik 3.20'

Hayt gore hesapla

Evet
H™ Esitlik
3.4'e gére hesapla

v
M Esitlik
3.21'e gore hesapla

A 4

0= H(M)B (M)

Sekil 3.4. M gizli katman icin CK-AOM egitiminin akis semas1



k=2
X(k): X(k’l) (B (k’l))l k=k+]
Hayir
Evet

y

H™”i Esitlik
3.4'e gore hesapla

l

0= H(M)B (M)

Sekil 3.5. M gizli katman i¢cin CK-AOM testinin akis semas1



4. COK KATMANLI ASIRI OGRENME MAKINESI YAPILARI iLE
DINAMIK SISTEM MODELLEME

Bu boliimde CK-AOM yapisinin sistem modelleme basarimini arttirmayi ve hesaplama
zamanm diisiirmeyi amaglayan iki ICK-AOM vyapis1 tanitilacaktir. Ayrica bu yapilar
gelistirirken bir diger motivasyonumuz da egitim ve test asamalari i¢in ayni yapiyl
kullanmaktir. ilk olarak gelistirilmis birinci yap1 ardindan da ikinci yap sekiller ve algoritma

ile anlatilmigtir.

4.1 lyilestirilmis Cok Katmanh Asir1 Ogrenme Makinesi Yapilar

Gelistirilmis olan ilk ICK-AOM (ICK-AOM1) yapisinda bir katmanin temsili girisi bir
onceki katmanin ¢ikis matrisi (H)’nin yine bir 6nceki katmanin ¢ikis agirlik parametrelerinin
carpimi ile bulunmaktadir. CK-AOM egitim ve test asamalar igin iki ayr1 yap: kullanirken ICK-
AOMI1 ayn1 yapry1 egitim ve test icin kullanmaktadir. ICK-AOM1’in egitim ve test asamalar1
icin kullandig1 yap1 Sekil 4.1°de gosterilmektedir.

Esik™ E§ik(M'” Eg,ik‘“”’
W Bu) a SWUERN B(M 1) M) g

/
U g
g

N
A
AN

/

VR N
2 \\ /
"/
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.

: \ ."\ . '
/ \ . 4 e AN . 4 ™ .

Giris 1. Katman Cikis Giris (M-1). Katman Cikis Giris M. Katman Cikis

Sekil 4.1. M adet gizli katman icin ICK-AOM1 yapisi

ICK-AOM1’in CK-AOM’e gore katkisi, ICK-AOM1’in egitim ve test i¢in Sekil 4.1°de
goriilen ayn1 yapiy1 kullanmasidir. ICK-AOM1°de her katman icin agirlik parametreleri (W) ve
esikler rastgele atanmaktadir. Bu durum da sistemdeki rastgeleligi arttirmaktadir. Sistemin

ogrenebilirligi arttirmak igin ikinci bir ICK-AOM (ICK-AOM?2) yapis1 tasarlanmistir.

Her katmanin temsili giris hesaplama yolu ve ayni yapinin egitim ve test asamalart i¢in
kullanmasi nedeniyle ICK-AOM1 hesaplama zamanint CK-AOM’e gore diisiirmektedir ve yapi
daha basitlesmistir. ICK-AOM1’in hesaplama islemleri Algoritma 2’de gosterilmektedir.
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Algoritma 2: ICK-AOM1 Yapisinin Algoritmasi
Baslangic;
[lk katman i¢in, agirlik parametreleri W' ve Esik® rastgele atanir
H® Esitlik 3.4’e gore hesaplanr.
Cikis agirlik parametreleri p® Esitlik 3.20°a gore 6grenilir.
for k=2:M do
Mevcut katmanin temsili girisi bir onceki katmanin ¢ikis matrisi H®Y ile bir 6nceki
katmanin ¢ikis agirlik parametrelerinin & carpimu ile bulunur.
Mevcut katman i¢in w® ve Esik® rastgele atanr.
H® Esitlik 3.4’e gore hesaplanir.
Cikis agirlik parametreleri p® Esitlik 3.20°e (k=M ise Esitlik 3.21) gore 6grenilir.
End

Test asamasi icin egitim asamasinda kullanilan yapi kullanilmaktadir ve egitim
asamasinda kullanilan/6grenilen giris agirlik parametreleri w, esikler ve c¢ikis agirlik

parametreleri p kullanilmaktadir.

Kisaca, grenme icin CK-AOM’e benzer bir yap1 kullanilirken, test icin CK-AOM’den
farkli bir yap1 kullamilmaktadir. ICK-AOM1 &grenmeden sonra da hiicresel diigiimler
kullanmaktadir. CK-AOM ise 6grenme asamasinda olusturulmus bir doniisim matrisi

kullanmaktadir.

ICK-AOM2 yapusi ise, temel olarak ICK-AOM1°i kullanmaktadir. ICK-AOM?2, ICK-
AOMI gibi 6grenme ve 6grenmeden sonra kullanim igin ayni1 yapryr kullanmaktadir. ICK-
AOM?2 yapisinda ilk katmanda giris baglant: agirliklar: birbirlerine ortonormal olma kosuluyla
rastgele atanmaktadir. Esik parametreleri de (-1,1) aralifinda orthonormal olarak rastgele
atanmaktadir. Sonraki katmanlarin agirlik parametre matrisi bir dnceki katmanin ¢ikis agirlik
parametre matrisinin transpozesidir. Esik parametreleri de ilk katmandaki sekilde atanmaktadir.
Bu sekilde hesaplama zamani ¢ok daha fazla azaltilmistir. Agin yapist Sekil 4.2°de
gosterilmektedir.

Egllf‘l’ Esik™" Eg,i!f“’”

[3“""“/, X ‘xi(ml‘-V(IB(MJ))T‘-\:\\.\ BEM) L&)

(1)

/ RN ( \ / \ ra(M-2:
X ) w \ N\ B el [ g ([3‘ )
AN \ _ .
N ) —-— / \\
N m N /
y A\
N VAN
. . SN
/ N . /

—

/ N
p \
) \ \ -
N,
(e — N \J \
w %" AT
"\
.
.
. . A
/
. /

s ! \\\ ’ /- \\\ ’ /!
( W) %! ()™ %o @ w

Giris 1. Katman Cikis Giris (M-1). Katman Cikis Giris M. Katman Cikis

Sekil 4.2. M adet gizli katman icin ICK-AOM2 yapisi
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Daha dnce bahsettigimiz gibi ICK-AOM2 i¢in yaptigimiz degisikliler yapimizi cok daha
sadelestirmistir. Artik tekrarlanan rastgele atamalar yoktur. Rastgele atama sadece ilk katmanda
yapilmaktadir. Son katmanin ¢ikis agirlik parametrelerini hari¢ tutarsak, her c¢ikis agirlik
parametresi 2 defa kullanilmaktadir (her katmanin ¢ikis agirlik parametresi olarak ve bir sonraki
katmanin giris agirhik parametresi olarak). ICK-AOM?2 yapisinin algoritmas1 Algoritma 3’de

gosterilmektedir.

Algoritma 3: ICK-AOM2 Yapisinin Algoritmasi

Baslangic;
flk katman igin, agirlik parametreleri w® ve Egik rastgele atanir.
H® Esitlik 3.4’e gore hesaplanir.
Cikis agirlik parametreleri B Esitlik 3.20’a gore 6grenilir.

for k=2:M do
Mevcut katmanin temsili girisi bir 6nceki katmanin ¢ikis matrisi H®? ile bir 6nceki
katmanin ¢ikis agirhik parametrelerinin & carpimu ile bulunur.
Mevcut katman igin giris agirlik parametreleri W® bir onceki ¢ikis agirlik
parametrelerinin transpozesi (B*)T olarak almmustir ve Esik® ise rastgele atanr.
H® Esitlik 3.4’e gore hesaplanir.
Cikis agirlik parametreleri p® Esitlik 3.20’e (k=M ise Esitlik 3.21) gore 6grenilir.

End

Daha 6nce de bahsettigimiz gibi ICK-AOM?2 yapisinda egitim ve test asamalar1 ayni
yapiy1 kullanmaktadir. ICK-AOM2’de, egitim asamasinda kullanilan giris agirlik parametreleri

w ve ¢ikis agirlik parametreleri B test asamasinda da kullanilmaktadr.

Yeniden belirtmek gerekirse, ICK-AOM2, ICK-AOM1 gibi egitimde ve egitimden
sonra hesaplama yapmak i¢in ndronlar kullanmaktadir. Bu 6zellik sayesinde gelistirdigimiz 2
yap1, temsili matris kullanmamalar1 ve adaptif bir hesaplama sunmalar1 ile CK-AOM’den

ayrilmaktadir.

ICK-AOM yapilarinin kisitlari: Her katmanin néron sayilar birbirine esittir. Ayrica

kullanici néron sayisini ve aktivasyon fonksiyonun kendisi se¢gmektedir.

Algoritmalarin daha iyi bir tasviri Sekil 4.3 ve 4.4’de gosterilen akis semalarinda
gosterilmektedir. Semalardaki atama ve 6grenme islem obekleri egitim asamasinda kullanilir.
Egitilen ag isletilirken ayni islemleri atama ve 6grenme 6beklerinde egitim sirasinda atanan ya
da 6grenilen vektor/matrisi kullanilir. Sadece bu kiiciik fark ile ag hem egitim hem de egitim

sonrasi igletilme asamasi i¢in ayni islem yapisina sahiptir.

27



( Basla

A 4

w' orthonormal
olarak ata

A 4

H"'yi Esitlik 3.4'e
gore hesapla

Y

B Esitlik 3.20'
gore hesapla

A

x(kl: H(kfl) B (k-1)

Y

w™ orthonormal
olarak ata k=k+1

Y

HY Esitlik 3.4'e
gore hesapla

B™ Esitlik 3.20'e

Hayir———| ..
gore hesapla

Evet
H™ Esitlik 3.4'e
gore hesapla

A 4

B™ Esitlik 3.21'e
gore hesapla

A 4

0=HMg™

Sekil 4.3. M gizli katmanlar i¢in ICK-AOM1 ag yapisinin hesaplama akis semasi
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Sonug olarak ICK-AOM1 yapilart CK-AOM’den daha hizlidir (ICK-AOM2 ¢ok daha
hizlidir) ve deneylerimizde gdsterdigimiz sonuglara bakarak belirtebiliriz ki ICK-AOM yapilart
dinamik sistem modelleme uygulamalarinda CK-AOM’e gore ¢ok daha iyi bir basarim elde
etmektedir. Bu arada bahsetmeliyiz ki, daha iyi sistem modelleme basarimlar1 elde edebilmek

icin ICK-AOM yapilar1 otokodlayicilar yerine aktivasyon fonksiyonlari kullanmaktadir.

Gelistirmis oldugumuz yap1 Elsevier Applied Soft Computing dergisinde “Multilayer
extreme learning machines and their modeling performance on dynamical systems” baslikli ile
yaymlanmistir (Kale ve Karakuzu, 2022). Yayinlanmis oldugumuz makaledeki kodlarin Code
Ocean tarafindan yeniden iiretilebilir oldugu onaylanmistir. Tekrarlanabilir Kapsiil i¢in baglanti

linki: https://doi.org/10.24433/C0.0688672.v1

4.2 Dinamik Sistem Modelleme Problemleri

Sistem modelleme, dinamik bir sistemin modelinin gergek sistemden alinan giris-gikis
Olglimleriyle bulunmasi anlamina gelir. Sistem modellemedeki amag, belirli bir sisteme veri
girig-¢ikis1 iliskisine dayanarak sistem tizerinde tekrar yapilacak ¢alismalarda kullanilabilecek

bir model kurmaktir.

Sistem modelleme deneyleri igin kullanilan denektas1 dinamik sistemleri (DDS) Tablo
4.1°de listelenmistir. Tablo 4.2°de de DDSler i¢in giris bilesenleri verilmistir. Bu calismamizda
CK-AOM, ICK-AOMI1 ve ICK-AOM2 yapilarin modelleme basarimlart 7 degisik DDS
iizerinde test edilmistir. CK-AOM ve ICK-AOM vyapilarinda aktivasyon fonksiyonu olarak

logaritmik sigmoid transfer fonksiyonu (logsig) kullanilmistir.

Tablo 4.1. Sistem tanimlama i¢in deneylerde kullanilan denektasi dinamik sistemleri

Say1 Denektas1 Dinamik Sistemi

y(k) = LDy leDk-D+25)

T2 (D)2 (D) + u(k), (Narendra ve Parthasarathy, 1990)

1
2mk . (2mk
u(K)egitim = cos (%) ,U(K)test = sin (%)
y(k+1) = y—zy(l(:;)ﬂ + 1 + u3(k), (Narendra ve Parthasarathy, 1990)
2

2wk 2wk

u(K)egitim = cos (100) , UW(K)test = sin (E)

y(k + 1) = y(k) + u(k)e3¥®I (Babuska, 2001)

3 Uu(K)egitim = [—1,1] araliginda rastgele mutlak deger

u(K)est = [—1,1] araliginda rastgele mutlak deger

24+y(k)
30

u?(k)
1+u2(k)

y(k — 1) + 0.5u(k), (Oussar vd., 1998)

4 yk+1)= y(k) + 0.8
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u(K)egitim = [—5,5] arahginda rastgele mutlak deger

u(K)est = [—5,5] araliginda rastgele mutlak deger

y(k+1) = 0.5 (Hyy“;zk) + (1 + u(R))u)(1 - uk)) ), (Sastry vd., 1994)

5 u(K)egitim = [—2,2] araliginda rastgele mutlak deger

U(K)est = [—2,2] araliginda rastgele mutlak deger

y(®y(k+1Dyk-2)u(k-1)(y(k-2)-1D+u(k)
yk+1) = Ty Diy? (D) , (Juang, 2002)

( sm( ) k <250
- _4 1, 250 <k < 500
egitim = ~1, 500 < k < 750

6 L03sm )+ 0.1sin () + 0.6sin (X)), k > 750

{ 0. 15cos( ) + 0. 5cos( k) — 0.3cos (:—l;) k < 250

@ _ 4 1, 250 <k <500
U(K)test = —1, 500 <k <750
l cos( ) k = 750

y(k + 1) = 0.3y(k) + 0.6y(k — 1) + f(k), (Jang, 1993)
f(k) = sinmu(k) + 0.3sin3mu(k) + 0.1sin5mu(k)

sin (275[1;) k < 500

7 U(k)egmm 4 0.5sin (250) + 0.5sin (an) k =500
(- OlScos( )+0551n( 16() — 0.3cos (ﬂlg), k < 234
U(K) egt = ! cos (25), 234 <k < 467

0351n(250)+01cos( )—0651n( )k>467

Bu denektasi dinamik sistemlerinde u(k) harici kontrol isaretidir. Her DDS i¢in u(k)
egitim ve test veri kiimelerini hazirlamak i¢in kullanilir. DDS 1, DDS 2, ..., DDS 5 iizerinde
yapilan deneylerde egitim i¢in 100 Ornek, test i¢in 100 6rnek kullanilmistir. DDS 6 iizerinde
yapilan deneyde egitim i¢in 1000 ornek, test icin 1000 6rnek kullanilirken DDS 7 iizerinde
yapilan deneylerde her iki asama i¢in 700 6rnek kullanilmistir. Modelleme i¢in kullanilan giris

yapilandirmasi Tablo 4.2°de veridigi gibidir.
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Tablo 4.2. Sistem tanimlamasi i¢in giris bilesimleri

DDS# Girisler

DDS 1 y(k—=1),y(k — 2),u(k)

DDS 2 y(k),u(k)

DDS 3 y(k), u(k)

DDS 4 y(k),y(k —1),u(k)

DDS 5 y(k), u(k)

DDS6  y(k),y(k—1),y(k —2),u(k),u(k—1)
DDS 7 y(k),y(k —1),u(k)
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5. ENGEBELi VE KESKIN DEGiSIMLI YUZEYLERE SAHIP SiSTEM
MODELLEME

Bu ¢alismada ¢ok katmanli agir1 6grenme makinesi ile radyal tabanli fonksiyonlu aglart
birlestirerek HybRBF-ML-ELM adini verdigimizag yapisini tasarladik. Cok katmanli asiri
o0grenme makinelerinde yiizey modelleme lokal optima noktalarini belirlemeden yapilmaktadir.
Bu dezavantaj nedeniyle CK-AOM yapisinda lokal optimalari belirleyebilmek ve bu sekilde
CK-AOM yapisinin yiizey modelleme basarimini arttirabilmek igin yapiya bir Radyal Tabanl
Fonksiyon Ag1 (RTFA) katmani eklenmistir. RTFA CK-AOM yapisinin ilk katmanina entegre
edilmistir. Deneysel sonuglar, HybRBF-ML-ELM yapisinin CK-AOM yapisina gore cok daha

iyi bir ylizey modelleme basarimi sagladigini agik¢a gostermektedir.

5.1.  Yeni Hibrit Radyal Temelli Fonksiyonlu Cok Katmanli AOM Yapisi

Gelistirilmis olan yapinin ag yapisi toplamda 3 katmandan olusmaktadir. Bu katmanlar
sirastyla RTF, AE ve Cikis katmanlaridir. ilk katmanda, Gauss fonksiyonu cekirdek olarak
kullanilmaktadir. AE ve Cikis katmanlarinda kullanilan aktivasyon fonksiyonu hiperbolik
tanjant (tansig)’dir. Sekil 5.1’de HybRF-ML-ELM’in yapisin1 egitim ve test asamalari igin
gosterilmektedir. RTF katmaninda, Gauss aktivasyon fonksiyonunun merkez parametreleri
homojen olarak ornek araligina dagitilmistir. Standart sapma degerleri [0.5-1] aralifinda
rastgele atanmistir. RTF katmaninin ardindan mevcut katmanin rastgele atanmis agirlik
parametreleri bir 6nceki katmanin ¢ikisi ile ¢arpilir ve AE katmaninin temsili girisi hesaplanmis

olur.
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Girig Cikis Girig Cikis Girig Cikis

RTF Katmani Otomatik Kodlayici

Cikis Katmani
Katmani

Giris Cikis Giris Cikig Giris Cikis

Otomatik Kodlayici

RTF Katmani Katmani

Cikis Katmani

(b)
Sekil 5.1. HybRBF-ML-ELM vyapisi: egitim asamasi (a), test asamasi (b)

RTF katmani bir giris verisini belirli bir kiimeyle iliskilendirir. Esitlik 5.1’de gosterilen
Gauss fonksiyonu c¢ekirdek olarak kullanilir. RTF’nin avantaji, keskin gegisler ig¢in esnek
modelleme yeteneginde ve girdi-gikti haritalama yiizeyinde ¢oklu minimum/maksimumda
yatmaktadir. Bu katmanin baglantilar1 birimdir ve girdileri bu katmandaki noronlara iletirler.
el

ux) =Y e i (5.1)
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Gauss fonksiyon parametrelerinde x girisi, Ci merkez vektorlerini ve oi Standart
sapmalar1 temsil eder. AE ve Cikis katmanlar i¢in, H matrisi tansig kullanilarak hesaplanir.
Tasarlanan yapinin egitim ve test asamalari igin islemler sirasiyla Algoritma 4 ve Algoritma

5’de verilmektedir.

Algoritma 4: HybRBF-ML-ELM yapisinin egitim asamasi algoritmasi.

Baslangig
RTF Katmani icin;
Merkez parametreleri 6rnek araliginda homojen olarak dagitilir.
Standart sapma parametreleri rastgele olarak [0.5-1] araliginda atanir.
Esitlik 5.1°e gore Gauss ¢ekirdek ¢ikisi hesaplanir.
Bir sonraki katmanin temsili girisi, elde edilmis sonucun rastgele orthonormal olarak
atanan @ agirlik parametreleriyle ¢carpilmasiyla hesaplanir.
AE Katman igin;
Agirhik parametreleri w® rastgele orthonormal olarak atanir.
H® Esitlik 3.4 kullanlarak hesaplanr.
Cikis agirlik parametresi g Esitlik 3.20 kullanilarak 6grenilir.
Cikis Katman icin;
Mevcut katmanm giris matrisi, bir onceki katmamin giris matrisi ile p®
parametresinin ¢arpilmasiyla elde edilir.
Agirlik parametreleri w? rastgele orthonormal olarak atanr.
Esitlik 3.4 kullanilarak H™' hesaplanir.

Cikis agirlik parametresi g Esitlik 3.21 kullanilarak 6grenilir.

Algoritma 5: HybRBF-ML-ELM yapisinin test asamasi algoritmasi.

Baslangic

RTF Katmani icin;
Esitlik 5.1°e gore egitim asamasinda atanmis merkez ve standart sapma degerleriyle
Gauss ¢ekirdek cikist hesaplanir.
Bir sonraki katmanin temsili girisi, Gauss aktivasyon fonksiyonunun ¢ikisiyla egitim
asamasinda atanan @ agirlik parametrelerinin ¢arpilmasiyla hesaplanir.

AE Katman i¢in;
Temsili giris fU ile carpilir ve bir sonraki katmanin temsili girisi bulunur.

Cikis Katmani icin;
Egitim asamasinda atanmis agirlik parametreleriyle (W®) Esitlik 3.4 kullanilarak
Hfna! hesaplanir.

0= Hfinal ﬂ(final) ile g:lk1$ hesap]anlr_

5.2. Yiizey Modellemede Kullanilan Kiyaslama Fonksiyonlari

Bu calismada yiizey modelleme problemleri i¢in Peaks, Griewank, Dropwave ve
Schaffer 2 olmak iizere 4 adet kalite testi fonksiyonu kullanilmistir. Bu fonksiyonlarin
matematiksel tanimlari, 6rnek uzaylari ve 3 boyutlu yiizey betimlemeleri Tablo 5.1°de

gosterilmistir.
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Tablo 5.1. Denektasi test fonksiyonlari

FONKSIYON Matematiksel Tanimi 3 Boyutlu Yiizeyi
ADI
) = 3(1 - x,)?e -Gt ?
X
—10 (El - xf X €
Peaks _ x5) e~ x5 -3,3]
5 ,i=1, 2,
- ge—(xln)z—yz
2 x2 d X 0 g 5]
Griewank fGx) = Z 2000 1_1[ cos (ﬁ) 1 e,
i= i= d.
[x2 1 .2 X; €
Dropwave fw = - cos(212 . -l —2.2]
0.5(x7 +x3)+2 ,i=1, 2.
_ sin?(xf — x3) - 05 %€
Schaffer2 flx)= 05+ [1+0.001(xZ 1 22)]2 |=21'22_]
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6. DENEY SONUCLARI

Dinamik sistem modelleme ve engebeli, keskin degisimki ylizeylere sahip sistem
modelleme problemleri iizerinde bu ¢aligma kapsaminda gelistirilen ii¢ 6zgiin AOM yapisinin

deney sonuglar1 bu boliimde yer almaktadir.

6.1. Cok Katmanli AOM Yapilari ile Dinamik Sistem Modelleme Uygulamasi

Deneyler Intel (R) Core (TM) i7-4510U CPU 2 GHz, 8.00 GB RAM, 64 bit Windows
8.1 isletim sistemli diziistii bilgisayarda gerceklestirilmistir. Her DDS igin CK-AOM, ICK-
AOMI ve ICK-AOM?2 yapilar1 100 defa kosulmustur. Deneyler degisik diigiim sayilar1 ile
yapilmistir.

Her DDS i¢in basarim analizleri 10, 15, 20, 25, 30, 40, 50, 100 digiim kullanarak
yapilmistir. Katman sayisi 3 olarak alinmis ve her katmandaki diigiim sayis1 aynidir.DDS 1’den
DDS 7’ya kadar olan analiz sonuglari Tablo 6.1°de listelenmektedir. Bu tabloda verilen
metrikler, yukarida anilan her bir diigiim sayis1 i¢in ayr1 ayr1 100er kez yapilmis deneyler
sonucunda elde edilmis metriklerin ortalamasidir. Bu tabloda 3 kategoride basarim metrikleri
verilmistir. Egitim i¢in gegen siire saniye, kare kok ortalama karesel hata (RMSE) cinsinden
egitim veri seti i¢in basarim, RMSE cinsinden test veri seti i¢in basarim. Bunun yani sira ICK-

AOM yapilarinin CK-AOM yapisina oranla basarim farki yiizde cinsinden eklenmistir.
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Tablo 6.1. Tiim DDS’ler igin basarim analiz metrikleri.

DDS Yap1 Egitim Zamani Egitim RMSE Test RMSE
Ort En lyi En Kotii Std ort En lyi En Kétii Std Ort En lyi En Kétii Std
CK-AOM  0.007754  0.005295 0.031980 0.003166 0.691660 0.374657 0.897934 0.107618 0.939327 0.513410 1.656150 0.198839
ICK-AOM1  0.006968  0.005487 0.062573 0.005900 0.158001 0.137317 0.182700 0.008671 0.254354 0.217501 0.304714 0.016661
1 (-10%) (4%) (96%) (86%) (-77%) (-63%) (-80%) (-92%) (-73%) (-58%) (-82%) (-92%)
ICK-AOM2  0.005465  0.003312 0.040225 0.005721 0.195109 0.092293 0.333822 0.050543 0.313705 0.159599 0.576434 0.081994
(-30%) (-37%) (26%) (81%) (-72%) (-75%) (-63%) (-53%) (-67%) (-69%) (-65%) (-59%)
CK-AOM  0.008257  0.005756 0.030778 0.002972 0.111888 0.043956 0.200160 0.033147 0.255077 0.118665 0.502613 0.077562
ICK-AOM1  0.008302  0.005494 0.136396 0.013360 0.113521 0.109538 0.119640 0.001948 0.213350 0.205675 0.222668 0.003305
2 (1%) (-5%) (343%) (350%) (1%) (149%) (-40%) (-94%) (-16%) (73%) (-56%) (-96%)
ICK-AOM2  0.004934  0.003307 0.027449 0.003094 0.098776 0.084419 0.114241 0.005869 0.162801 0.131467 0.205828 0.013406
(-40%) (-43%) (-11%) (4%) (-12%) (92%) (-43%) (-82%) (-36%) (11%) (-59%) (-83%)
CK-AOM  0.006757  0.004935 0.022812 0.002049 0.043788 0.016991 0.086269 0.013856 0.116940 0.040256 0.261525 0.042354
ICK-AOM1  0.006503  0.005479  0.0029863  0.002820 0.096702 0.090577 0.103280 0.002374 0.137063 0.111311 0.169053 0.011942
3 (-4%) (11%) (31%) (38%) (121%) (433%) (20%) (-83%) (17%) (181%) (-35%) (-72%)
ICK-AOM2  0.005088  0.003296 0.035670 0.004138 0.084991 0.073025 0.097113 0.004944 0.138689 0.102517 0.204633 0.020060
(-25%) (-33%) (56%) (102%) (94%) (330%) (13%) (-64%) (19%) (155%) (-22%) (-53%)
CK-AOM  0.008639  0.006764 0.032403 0.003101 0.457440 0.368015 0.559396 0.040371 0.880225 0.740992 1.028787 0.054026
ICK-AOM1  0.006466  0.005499 0.027912 0.002500 0.197119 0.162733 0.230555 0.013488 0.445663 0.389518 0.506575 0.024916
4 (-25%) (-19%) (-14%) (-19%) (-57%) (-56%) (-59%) (-67%) (-49%) (-47%) (-51%) (-54%)
ICK-AOM2  0.004304  0.003295 0.013222 0.001491 0.205383 0.128052 0.289463 0.033586 0.553100 0.419298 0.692630 0.053157
(-50%) (-51%) (-59%) (-52%) (-55%) (-65%) (-48%) (-17%) (-37%) (-43%) (-33%) (-2%)
CK-AOM  0.006823  0.005046 0.025599 0.002349 0.382042 0.241470 0.573292 0.066938 0.577983 0.324601 0.909941 0.116529
ICK-AOM1  0.006308  0.005480 0.018392 0.001679 0.547743 0.493925 0.581726 0.017752 0.523209 0.473988 0.550691 0.015721
5 (-8%) (9%) (-28%) (-29%) (43%) (105%) (1%) (-73%) (-9%) (46%) (-39%) (-87%)
ICK-AOM2  0.005463  0.003380 0.022324 0.002654 0.344570 0.241380 0.472900 0.048500 0.317759 0.208029 0.469107 0.052907
(-20%) (-33%) (13%) (13%) (-10%) (0%) (-18%) (-28%) (-45%) (-36%) (-48%) (-55%)
CK-AOM  0.499755  0.458654 0.805358 0.047345 0.093329 0.046668 0.149796 0.021389 0.130810 0.078266 0.190190 0.025004
ICK-AOM1 0379242  0.320060 0.517136 0.035066 0.034227 0.029672 0.040873 0.002423 0.029657 0.023857 0.039111 0.003263
6 (-24%) (-30%) (-36%) (-26%) (-63%) (-36%) (-73%) (-89%) (-77%) (-70%) (-79%) (-87%)
ICK-AOM2 0206773  0.175776 0.310811 0.031368 0.032556 0.024729 0.044372 0.003631 0.030308 0.020966 0.049632 0.005343
(-59%) (-62%) (-61%) (-34%) (-65%) (-47%) (-70%) (-83%) (-77%) (-73%) (-74%) (-79%)
CK-AOM  0.201866  0.177324 0.288117 0.017631 1.129291 0.769299 1.301125 0.110983 1.399192 0.867911 2.120719 0.211331
ICK-AOM1  0.154516  0.128529 0.313913 0.029553 0.109072 0.095379 0.133171 0.006761 0.121563 0.109850 0.143644 0.006111
7 (-23%) (-28%) (9%) (68%) (-90%) (-88%) (-90%) (-94%) (-91%) (-87%) (-93%) (-97%)
ICK-AOM2  0.074915  0.063109 0.130063 0.012709 0.367961 0.165305 0.672807 0.112064 0.413887 0.178144 0.802708 0.132409
(-63%) (-64%) (-55%) (-28%) (-67%) (-79%) (-48%) (1%) (-70%) (-79%) (-62%) (-37%)




Tiim deney sonuglarmim ortalamalar1 Tablo 6.1°da verilmektedir. ICK-AOM
sonuclarinin altinda yazan yiizdelik rakamlar ICK-AOM yapilarmin CK-AOM  yapisinin
basarimina gére degisimini gdstermektedir. Ornegin, eger yiizdelik rakam negatifse, bu ICK-
AOM vyapisinin daha basarili oldugunu belirtmektedir. Bu veriler 1s18inda Tablo 6.1
gostermektedir ki DDS 3 haricinde ICK-AOM?2 yapis1 CK-AOM yapisindan daha iyi sistem
modelleme sonuglar1 vermektedir. Ote yandan ICK-AOMI1 yapis1 DDS 2, 3, ve 5 igin daha iyi
egitim RMSE’si sunarken DDS 2 ve 5 i¢in daha iyi test RMSE’si sunmaktadir.

DDS 3 detaylar1 ve keskin gegisleri olmayan bir problemdir ve bu da CK-AOM’in ICK-
AOM yapilarina gore ortalama egitim RMSE ve ortalama test RMSE agilarindan daha iyi sonug
verme nedenidir. Ayrica tim DDSler i¢in ICK-AOM yapilar1 ¢ok daha hizli hesaplama
yapmaktadir.

Degisik diiglim sayilarina gére DDS 5 ve DDS 7 i¢in ortalama egitim zamani, ortalama

egitim RMSE ve ortalama test RMSE degisimleri Sekil 6.1 ve 6.2°de verilmektedir.
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Sekil 6.1. Diigiim sayisina gore DDS 5 i¢in egitim zamani (a), egitim veri kiimesi i¢in RMSE

(b), test veri kiimesi i¢in RMSE (c) cinsinden basarim sonuglari.
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DDS 5 igin deney sonuglarina bakildiginda, CK-AOM en iyi basarimmi 100 diigiim
kullanarak elde ederken ICK-AOMI en iyi basarimim 15 diigiim kullanarak elde etmistir. Ote
yandan ICK-AOM2 ise en iyi basarimini 30 diigiim kullanarak elde etmistir. 100 diigiim
kullanarak CK-AOM, 0.016405 egitim zamaninda 0.323780 ortalama test RMSE elde
etmektedir. Buna karsilik olarak ICK-AOM2, 0.004907 egitim zamaninda 0.226226 ortalama
test RMSE elde etmektedir. DDS 5 igin ICK-AOM2 sadece daha basarili degil ayn1 zamanda
%70 daha hizli galismaktadir.
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Sekil 6.2. Diigiim sayisina gore DDS 7 i¢in egitim zamani (a), egitim veri kiimesi i¢in RMSE

(b), test veri kiimesi i¢in RMSE (c) cinsinden basarim sonuglari.

Sekil 6.2°deki hesaplama zamanlarina bakildiginda, DDS 7 modellleme basarimlari
DDS 5 modelleme basarimlarina benzemekte ve 3 model i¢in farkliliklar goriilmektedir. CK-
AOM, ICK-AOM1 ve ICK-AOM2 igin ortalama egitim zamanlar1 0.201866, 0.154516, ve
0.074915°dir. Agikga ICK-AOM vyapilarinin CK-AOM yapisindan daha hizli olduklari
goriilmektedir. ICK-AOM1, CK-AOM yapisindan 23% hizliyken, ICK-AOM2 yapis1 CK-
AOM yapisindan 63% hizlidir. DDS 7 igin her diigiim sayisinda ICK-AOM yapilari CK-AOM
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yapisindan ortalama test RMSE cinsinden daha iyi basarim sunmaktadir. CK-AOM yapisinin
en iyi basarimi 100 diigiim kullanarak elde edilmistir. 100 diigiim kullanildiginda CK-AOM,
ICK-AOMI1 ve ICK-AOM?2 yapilar1 0.627977, 0.104272 ve 0.092683 ortalama test RMSE
sonuglar1 vermektedir. CK-AOM ile karsilastirildiginda ICK-AOM1 yapis1 83% daha iyi
ortalama test RMSE sonuglar saglarken ICK-AOM2 yapist 85% daha iyi ortalama test RMSE
sonuglar1 saglamaktadir. 100 diigiim i¢in hesaplama hizlar1 karsilastirildiginda iICK-AOMI1
CK-AOM yapisindan 13% hizliyken, IiCK-AOM2 CK-AOM yapisindan 63% hizlidir. DDS 7
i¢in agikca ICK-AOM yapilar1 CK-AOM yapisina gore ¢ok daha iyi sonuglar vermistir.

Sekil 6.3 ve 6.4°de DDS 7 ‘nin 100 diigiim i¢in CK-AOM, ICK-AOM1 ve ICK-AOM2
yapilarimin en iyi ve en kotlii modelleme basarimlari sergilenmektedir. En iyi RMSE degerleri
strastyla; 0.231169, 0.102676 ve 0.080124°dir. En kotii RMSE degerleri ise sirasiyla; 1.328345,
0.106210 ve 0.108676°dir. RMSE degerlerine ve bu sekillere bakilarak ICK-AOM2’nin ICK-
AOM1’e gore daha basarili bir sistem modelleme yapisi oldugu sdylenebilirken, ICK-AOM1
yapist da CK-AOM yapisina gore daha iyi bir sistem modelleme yapisidir.
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Sekil 6.3. DDS 7’nin 100 diigiim icin CK-AOM (a), ICK-AOM!1 (b), ICK-AOM2 (c)

yapilarinin en iyi sistem modelleme basarimlari.
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Sekil 6.3’e bakildiginda, detayli ve keskin gegislerde, ICK-AOM yapilar1 CK-AOM
yapisina gdre daha iyi basarimlar sunmaktadir. Kendi aralarinda kiyaslandiklarinda, ICK-

AOM?2 yapis1 ICK-AOM1 yapisina gore daha basarilidir.
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Sekil 6.4. DDS 7°nin 100 diigiim icin CK-AOM (a), ICK-AOM1 (b), ICK-AOM2 (c)

yapilarinin en kotii sistem modelleme basarimlari.

Tiim yapilar i¢in Sekil 6.4’de 100 kez kosma sinucunda elde edilen en kotii modelleme
basarimlarini gosterilmektedir. CK-AOM yapisinin en kotii modelleme defolar1 ICK-AOM
yapilarina gore ¢cok daha belirgindir. En kétii durumlarinda bile ICK-AOM yapilart CK-AOM

yapisina gore daha iyi modelleme sunmaktadir.

6.2. Engebeli ve Keskin Degisimli Yiizeylere Sahip Sistem Modelleme

Uygulamasi

Bu calismada deneyler Intel (R) Core (TM) 17-8565U CPU @ 1.80 GHz, 32.00 GB
RAM, 64 bit Windows 10 Enterprise isletim sistemli masaiistii bilgisayar {izerinde yapilmistir.
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CK-AOM ve HybRBF-ML-ELM yapilarinda, yiizey modelleme deneylerinde egitim
icin Peaks, Griewank, Dropwave ve Schaffer2 fonksiyonlari sirasiyla 256, 1156, 1681 ve 1681
ornek kullanir. Test asamasi igin ise Peaks, Griewank, Dropwave ve Schaffer2 fonksiyonlari
sirasiyla 169, 676, 441 ve 441 ornek kullanir. Peaks, Griewank, Dropwave ve Schaffer2
fonksiyonlarinin HybRBF-ML-ELM ag1 ile modellenmesinde sirasiyla 225, 841, 729 ve 729
diigim kullanilmaktadir. HybRBF-ML-ELM agmin her katmaninda ayni sayida diigiim
kullanilmistir. Her fonksiyon i¢in deneyler 30 defa yapilmistir. Bu ¢alismadaki deneyler igin
CK-AOM ve HybRBF-ML-ELM vyapilarinda aktivasyon fonksiyonu olarak tansig

kullanilmastir.

CK-AOM yapisi 3 katman ile kullanilmistir. Her katman icin kullanilan A parametreleri
sirastyla 1000, 107 ve 10° olarak alinmistir. Bu rakamlar (Wong, Vong, Wong ve Cao,
2018b)’dan esinlenerek ve ¢esitli denemeler sonucunda uygun oldugu goriildiigiinden tercih

edilmisgtir.

HybRBF-ML-ELM yapisinin RTF katmaninda Gauss aktivasyon fonksiyonu
kullanilmigtir. Bu fonksiyonun merkez degerleri denektasi fonksiyonunun 6rnek uzayinda
homojen dagilimli olarak atanmuistir. Standart sapma degeri de ayrica 0.5 ve 1 degerleri arasinda
rastgele atanmigtir. HypRBF-ML-ELM yapisinin 6teki katmanlarinda (AE ve Cikis katmanlari)

A parametreleri sirastyla 1000 ve 10° olarak almmustir.

Tablo 6.2°de yiizey modelleme basarimlari her denektasi test fonksiyonu igin ortalama
en iyi RMSE, en kotii RMSE ve standart sapma cinslerinden verilmektedir. Her bir yap1 i¢in
ilgili algoritmalar 30 kez kosturulup ortalama degerleri verilmistir. Bunun yani sira HybRBF-
ML-ELM yapisinin CK-AOM yapisina oranla basarim farki yiizde cinsinden eklenmistir. Bu
yiizdelerin verildigi satirlarda siyah nokta isareti (o) bu ¢aligmada gelistirilen HybRBF-ML-
ELM yapisinin rakibi CK-AOM yapisindan daha basarili oldugunu géstermektedir.
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Tablo 6.2. HYbRBF-ML-ELM ile CK-AOM yapilarinin yiizey modelleme basarimlarinin

Kargilagtirmasi
Egitim RMSE Test RMSE
Ort En lyi En Kétii Std ort En lyi En Koétii Std
Pek CK-AOM  184E-02  1,38E-02 252E-02 2,85E-03 4,78E-02 2,38E-02 1,33E-01  2,84E-02
eakKs
Fonksiyonu  pyvhRBF-ML- 4,26E-03  2,50E-03 6,66E-03 1,08E-03 124E-02 832E-03 187E-02  243E-03
ELM (976,87%) (#81,83%) (#7359%) (#62,00%) (874,10%) (®64,99%) (85,88%) (91,45%)
Griewank CK-AOM  183E+00 4,35E-01 6,01E+00 1,19E+00 2,00E+00  7,98E-01  6,09E+00  1,14E+00
Fonksiyonu HybRBF-ML- 2,62E-03  1,35E-03  4,60E-03  8,28E-04  7,66E-03 5098E-03 100E-02  1,18E-03
ELM (099,86%) (#99,69%) (#99,92%) (#99,93%) (#99,62%) (899,25%) (#99,84%) (#99,90%)
CK-AOM  177E+00 2,83E-01 4,16E+00 8,92E-01 1,80E+00 2,83E-01  4,24E+00  9,11E-01
Dropwave
Fonksiyonu HybRBF-ML- 2,88E-02  134E-02 583E-02 1,13E-02 286E-02 1,33E-02 579E-02  1,12E-02
ELM (#98,37%) (#95,24%) (#98,60%) (#98,73%) (#98,41%) (#9531%) (98,64%) (98,77%)
Schaffer2 CK-AOM  3,00E+00 526E-01 9,83E+00 2,00E+00 3,06E+00 542E-01 1,00E+01  2,04E+00
Fonksiyonu HybRBF-ML- 2,40E-02  148E-02 3,32E-02 1,30E-02 2,42E-02 152E-02 332E-02 127E-02
ELM (#99,20%) (#97,18%) (#99,66%) (#99,35%) (#99,21%) (#97,21%) (99,67%) (99,38%)

Tablo 6.2 incelendiginde gelistirilen HypRBF-ML-ELM yapisinin CK-AOM yapisina

gore her problem igin yiizey modellemede daha basarili oldugu gézlemlenmektedir.

Ortalama RMSE degerleri ele alindiginda, CK-AOM yapisi HybRBF-ML-ELM

yapisina gore sadece Peaks fonksiyonu igin yakin metrik degerler vermektedir. Oteki

fonksiyonlar i¢in CK-AOM yapisi, HybRBF-ML-ELM yapisina yakin metrik sonuglar

verememektedir. Her kiyaslamali test fonksiyonu igin HybRBF-ML-ELM ve CK-AOM

yapilarmin egitim ve test kiimeleri i¢in en iyi modelleme basarim grafikleri Sekil 6.5-6.12°de

verilmektedir.
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Sekil 6.5. Peaks fonksiyonu igin egitim basarimi; HybRBF-ML-ELM (a) ve CK-AOM (b)
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Sekil 6.7. Griewank fonksiyonu igin egitim basarimi; HybRBF-ML-ELM (a) ve CK-AOM (b)
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Tablo 6.2 incelendiginde, HybRBF-ML-ELM yapisi en iyi modelleme basarimini
Griewank fonksiyonu iizerinde elde etmistir. Yukaridaki sekillerde goriildiigii tizere, HybRBF-

ML-ELM i¢in yiizey modelleme basarimlar1 egitim ve test agsamalari i¢in oldukga iyidir.
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7. SONUCLAR VE ONERILER

Calismamizda ¢ok hizli 6grenme 6zelligi ile 6ne ¢ikan AOM’nin klasik AOM, RTF-
AOM, Meta-AOM ve CK-AOM gibi mevcut ag yapilart ve Ogrenme algoritmalar
incelenmistir. Anilan bu yapilar Boliim 3’de anlatilmistir. Incelenmis olan yapilarin iistiin ve
sakincal1 yonleri belirlenerek edinilen deneyim gercevesinde AOM yapilarinda iyilestirme ve

yeni karma yapi one siiriiliirek toplam 3 ag yapisi gelistirilmistir.

Calismamiz kapsaminda CK-AOM mimarisinde iyilestirme yapilmistir. Boliim 4’de
gelistirilmis olan yapidan ayrintili olarak bahsedilmistir. Boliim 6.1 de de elde edilen deney
sonuglarina yer verilmistir. Deney sonuglari incelendiginde; Tablo 6.1 ile ilgili olarak,
tasarlanan ICK-AOM mimarileri, keskin gecislere sahip dinamik sistemlerin (DDS 1, DDS 2,
DDS 4-7) modellenmesinde CK-AOM’den daha iyi sonuglar vermektedir. Ancak, I(CK-AOM
mimarileri, yumusak gecislere (DDS 3) sahip dinamik sistemlerde CK-AOM’den daha iyi
bagarimi gostermez. Bu arastirmada tanitilan yeni girdi temsili hesaplamalari nedeniyle, Tablo
6.1°de verilen sonuglara gére ICK-AOM1, CK-AOM’den daha hizlidir. Yalnizca DDS 2°de,
CK-AOM, ICK-AOM1°den daha hizli bir egitim siiresine sahiptir. Ote yandan, I(CK-AOM2,
tiim durumlarda hem CK-AOM hem de ICK-AOM1 den ¢ok daha hizlidir. Yumusak gecislere
sahip dinamik sistemlerin modellenmesinde ICK-AOM’lerin CK-AOM’den daha basarili
olmayabilecegi dzetlenebilir; bununla birlikte, ICK-AOM’ler keskin gecislere sahip dinamik
sistemleri modellemede daha iyi basarim gésterir. Son olarak, ICK-AOM1’in CK-AOM’den
daha hizl1 oldugunun ve ICK-AOM2’nin geleneksel CK-AOM’den ¢ok daha hizl1 oldugunun

alt1 ¢izilebilir.

Sonug olarak; egitim siiresi bakimmdan ICK-AOM1 yapisi, CK-AOM yapisina gore
biraz daha hizl1 iken ICK-AOM2 yapist her iki yapidan da ¢ok daha hizlidir. Ciinkii ICK-AOM?2
rastgele giris agirlik parametreleri atamalart sadece ilk katmanda yapmaktadir. Keskin olmayan
gecislere sahip dinamik sistemlerin modellemesinde, ICK-AOM yapilart CK-AOM yapisi
kadar basarili degildir. Ote yandan keskin gegislere sahip dinamik sistemlerin modellemesinde
ICK-AOM vyapilart CK-AOM’e gore cok daha basarilidir. Tiim DDSler icin CK-AOM en iyi
basarimini 100 diigiim kullanildiginda elde etmistir ve bu hesaplama zamanini dramatik olarak
etkilemekte ve yavaslatmaktadir. DDS 3 haricinde, ICK-AOM vyapilari tim DDS
modellemelerinde CK-AOM’e gore daha basarilidir. Ozetle, ICK-AOM yapilari CK-AOM
yapisina gore sadece daha iyi degil ayn1 zamanda hizli yapilardir. Bu gergeklere dayanarak

ICK-AOM yapilari verimli ve uygulanabilir sistem modelleme mimarisidir denilebilir.
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Bu tez kapsaminda diger bir 6zgiin calismamiz yeni bir karma AOM yapisinin
onerilmesidir. Boliim 5’te de anlatilmis olan HybRBFNN-ML-ELM yapis1 engebeli ve keskin
degisimlere sahip yiizey modelleme problemlerinde CK-AOM yapismin eksikliklerini
gidermistir. Elde edilen deney sonuglari incelendiginde; Tablo 6.2 ve Sekiller 6.5-6.12’de
HybRBF-ML-ELM yapisinin CK-AOM vyapisina gore yiizey modelleme alaninda daha iistiin
oldugu goriilmektedir. Yiizey modelleme alaninda CK-AOM yapisi yaygm olarak
kullanilmamaktadir. Ancak, Tablo 6.2 ele alindiginda CK-AOM yapisinin yiizey modelleme

basariminin iyi olmadig giiriilmiistiir.

Sonug olarak, CK-AOM vyapis1 yiizey modelleme i¢in bu calismada gelistirilen
HybRBF-ML-ELM yapisindan daha kétiidiir. CK-AOM yapisi, yiizey modelleme konusunda
sadece Peaks fonksiyonu i¢in HybRBF-ML-ELM’in metrik degerlerine daha yakin deger
vermektedir. Ote yandan, gelistirilen HybRBF-ML-ELM yapismin dért farkli kiyaslama test
fonksiyonunda modelleme basarimi iyidir. Ag¢ik¢a goriildiigii gibi, gelistirilen HybRBF-ML-
ELM yapisi, CK-AOM’den daha iyi yiizey modelleme basarimina sahiptir.

Calismamiz kapsaminda Onermis oldugumuz yeni karma yapinin iyilestirilmesi
miimkiindiir. HybRBFNN-ML-ELM vyapisinda otomatik kodlayici ve ¢ikis katmaninda CK-
AOM vyapis1 kullanilmistir. Bu katmanlarda ICK-AOM1 ve ICK-AOM2 yapilar1 kullanilarak
yeni bir karma ag yapisi gelistirilebilir. Diger bir dneri olarak, bu ¢alismada gelistirilen AOM
yapilarimin simiflama problemlerinde basarimi ayrica incelenebilir. Bu yapida kullanilan diigiim
sayilar1 bu ¢alisma cergevesinde egitim ve test ornek sayilarinin arasinda olacak sekilde
alinmistir. Diiglim sayilar ile ilgili daha detayl bir analiz yapilarak kullanilacak diigiim sayis1

i¢in bir yaklasim gelistirilebilir.
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