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ÖZET 

ÇOK KATMANLI AŞIRI ÖĞRENME MAKİNELERİNİN GELİŞTİRİLMESİ VE 

SİSTEM MODELLEMEDEKİ BAŞARIMLARININ ANALİZİ 

Aşırı Öğrenme Makinesi (AÖM), sınıflandırma ve regresyon uygulamalarında yüksek 

verimlilik ve kolay uygulanabilirdiğinden dolayı son on yılda önemli araştırma konusu 

olmuştur. Çalışmamız kapsamında regresyon ve sınıflandırma problemleri için geliştirilen 

klasik AÖM, Radyal Tabanlı Fonksiyon Kullanan Aşırı Öğrenme Makinesi (RTF-AÖM), Meta 

Aşırı Öğrenme Makinesi (Meta-AÖM) ve Çok Katmanlı Aşırı Öğrenme Makinesi (ÇK-AÖM) 

gibi mevcut AÖM yapıları incelenmiştir. Bu çalışmada, anılan yapıların zayıf ve üstün yönleri 

incelenerek yapıların iyileştirilmesi ve yeni hibrit yapılar önerilmiştir. Çalışmamızdaki 

motivasyon unsuru, AÖM yöntemlerinin yaygın olarak sınıflandırma problemlerinde 

kullanılmış olması ve sistem modelleme üzerinde çalışılmamış olmasıdır. Bu bağlamda zamana 

dinamik bir şekilde bağlı sistemlerin yanısıra engebeli ve/veya keskin değişimli yüzeylere 

denektaşı sistemlerin modellenmesi üzerinde çalışılarak iyileştirme ve yeni karma ağ yapısının 

geliştirilmesi hedeflenmiş olup çalışmamızda istenen hedefe ulaşılmıştır. ÇK-AÖM yapısının 

sistem modelleme başarımını arttırmayı ve hesaplama zamanını düşürmeyi amaçlayan iki 

İyileştirilmiş Çok Katmanlı Aşırı Öğrenme Makinesi (İÇK-AÖM) adını verdiğimiz AÖM ağ 

yapıları geliştirilmiş olup deney sonuçları ile başarım üstünlünlükleri denektaşı sistemler 

üzerinde gösterilmiştir. İÇK-AÖM yapıları ile yedi farklı dinamik sistem modelleme 

uygulaması üzerinde başarımı incelenmiştir. Ayrıca çok katmanlı aşırı öğrenme makinesi ile 

radyal tabanlı fonksiyon ağları birleştirerek HybRBF-ML-ELM adını verdiğimiz karma bir ağ 

yapısı daha geliştirilmiştir. Engebeli ve/veya keskin değişimli yüzey problemlerinde başarımı 

deney sonuçları ile kıyaslamalı olarak gösterilmiştir.  

Dinamik sistem modelleme deneylerinde geliştirilen İÇK-AÖM’nin bazı durumlarda ÇK-

AÖM’ye kıyasla hem eğitim hem de test veri setleri için %70lere varan daha iyi modelleme 

başarım sergilediği gözlenmiştir. Örneğin, Denektaşı Dinamik Sistem (DDS) 7 için 100 düğüm 

kullanıldığında ÇK-AÖM, İÇK-AÖM1 ve İÇK-AÖM2 yapıları 0.627977, 0.104272 ve 

0.092683 ortalama test Karesel Ortalama Hatanın Karakökü (RMSE) sonuçları verilmiştir. ÇK-

AÖM ile karşılaştırıldığında İÇK-AÖM1 yapısı 83% daha iyi ortalama test RMSE sonuçları 

sağlarken İÇK-AÖM2 yapısı 85% daha iyi ortalama test RMSE sonuçları sağlamıştır. Yüzey 

modelleme deneylerinde geliştirilen HybRBF-ML-ELM yapısının ÇK-AÖM yapısına göre her 

problem için daha başarılı olduğu gözlemlenmiştir. Örneğin, Griewank, Dropwave ve Schaffer2 
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fonksiyonları için hem eğitim hem de test RMSE sonuçlarına bakıldığında ÇK-AÖM yapısına 

göre yaklaşık olarak %99 daha iyi başarım elde edildiği görülmüştür. Peaks fonksiyonu için de 

eğitim verisinde ortalama RMSE değerine bakıldığında ÇK-AÖM yapısına göre %76,87 daha 

iyi modelleme başarım sergilediği gözlenmiştir. 

Anahtar Kelimeler: Sistem modelleme, dinamik sistem, keskin değişimli yüzey, aşırı öğrenme 

makinesi, çok katmanlı aşırı öğrenme makinesi. 
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ABSTRACT 

IMPROVEMENT OF MULTILAYER EXTREME LEARNING MACHINES AND 

THEIR ANALYSIS OF PERFORMANCE IN SYSTEM MODELING 

Extreme Learning Machine (ELM) has been the subject of significant research in the last decade 

due to its high efficiency and easy implementation in classification and regression applications. 

Within the scope of our study, existing ELM structures such as classical ELM, Radial Basic 

Function Extreme Learning Machine (RBF-ELM), Meta Extreme Learning Machine (Meta-

ELM) and Multilayer Extreme Learning Machine (ML-ELM), which were developed for 

regression and classification problems, were examined. In this study, the weak and superior 

aspects of the aforementioned structures were examined, and the improvement of the structures 

and new hybrid structures were proposed. The motivation factor in our study is that ELM 

methods are widely used in classification problems and system modeling has not been studied. 

In this context, it was aimed to improve and develop a new mixed network structure by working 

on the modeling of touchstone systems on uneven and/or sharply changing surfaces as well as 

systems that are dynamically dependent on time, and the desired goal was achieved in our study. 

Two ELM network structures, which we call Improved Multilayer Extreme Learning Machine 

(IML-ELM), aiming to increase the system modeling performance of the ML-ELM structure 

and reduce the computation time, have been developed and the test results and performance 

advantages are shown on benchmark systems. Their performances on seven different dynamic 

system modeling applications compared to the ML-ELM structure performance have been 

examined. In addition, a hybrid network structure, which we call HybRBF-ML-ELM, has been 

developed by combining multi-layer extreme learning machine and radial basis function 

networks. Its performance on uneven and/or sharply changing surface problems has been shown 

in comparison with the test results. 

It has been observed that IML-ELM developed in dynamic system modeling experiments 

exhibits up to 70% better modeling performance for both training and test datasets compared to 

ML-ELM in some cases.  For example, when 100 nodes are used for Benchmark Dynamic 

System (BDS) 7, the average test Root Mean Square Errors (RMSE) results of 0.627977, 

0.104272 and 0.092683 are achieved for the ML-ELM, IML-ELM1 and IML-ELM2 structures. 

Compared to the ML-ELM, the IML-ELM1 structure provided 83% better mean test RMSE 

results, while the IML-ELM2 structure provided 85% better mean test RMSE results. It has 
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been observed that the HybRBF-ML-ELM structure developed in surface modeling 

experiments is more successful for each problem than the ML-ELM structureFor example, 

when both the training and test RMSE results of HybRBF-ML-ELM for 

the Griewank, Dropwave and Schaffer2 functions are examined, it is seen that approximately 

99% better performance is obtained compared to the ML-ELM structure. Considering the 

average RMSE value in the training data for the peaks function, it was observed that the 

modeling performance was 76.87% better than the ML-ELM structure. 

Keywords: System modeling, dynamic system, sharply altered surface, extreme learning 

machine, multilayer extreme learning machine. 
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1. GİRİŞ 

Yapay öğrenme günümüzde bir çok problemin çözümünde yaygın olarak kullanılan 

kavramdır. Yapay sinir ağları (YSA) bu kavram ile ortaya çıkmıştır. YSA, birçok mühendislik 

ve bilimsel problemin çözümü için yaygın olarak kullanılmaktadır ve popüler genel modelleme 

ve hesaplama yöntemleridir (Haykin S, 1999). Bu yapılar genellikle yinemeleri algoritmalar 

tarafından eğitilir. Alışıla gelmiş YSA eğitiminde kullanılan türeve dayalı öğrenme yöntemleri 

iyi başarım sonucu vermesine rağmen öğrenme süresi oldukça zaman almaktadır. Bu yüzden 

2004 yılında Huang ve arkadaşları tarafından geliştirilen aşırı öğrenme makine (AÖM) 

yöntemi, analitik olarak hesaplama yaptığı için çok kısa sürede çok hızlı eğitim 

yapabilmektedir. Oldukça hızlı çözüme ulaştığı için bu alanda bir çok araştırmacı bir çok 

problem için AÖM kullanmıştır. AÖM’nin belirgin zayıf yönlerini iyileştirmek için bir çok yeni 

AÖM yöntemleri geliştirilmiştir. Literatür taraması bölümünde bu çalışmalardan ve geliştirilen 

AÖM yöntemlerinden kronolojik olarak kısaca bahsedilmiştir. 

1.1. Literatür Taraması 

Aşırı öğrenme makinesi 2004 yılında Huang ve arkadaşları tarafından tek gizli katmanlı 

ileri beslemeli sinir ağ yapısında kullanılan yeni analitik öğrenme algoritmasıdır (G. bin Huang 

vd., 2004). Sinir ağlarında yaygın kullanılan türev tabanlı öğrenme yöntemlerinde öğrenme 

fazla sayıda eğitim/test verisi ve tur sayısı fazla olduğu için geliştirilen AÖM yöntemine göre 

oldukça yavaştır. AÖM’de giriş katmanındaki ağırlık parametrelerini rastgele atar ve çıkış 

katmanındaki ağırlık parametreleri analitik olarak belirlenir. Bu yüzden AÖM ile öğrenme hızlı 

ve başarımı yüksektir. 

2004 yılında Huang ve arkadaşları tarafından 'Extreme Learning Machine: RBF 

Network Case' başlıklı çalışma ile AÖM yapısı radyal tabanlı fonksiyon (RTF) ağ durumuna 

göre genişletilmiştir. RTF’deki merkez ve varyans rastgele atanır ve çıkış ağırlık parametreleri 

iteratif olarak ayarlanmak yerine analitik olarak hesaplanır (G. bin Huang ve Slew, 2004) . 

Makaledeki deney sonuçları ile RTF ağları için AÖM algoritmasının öğrenmeyi son derece 

hızlı bir şekilde tamamlayabildiğini ve birçok yapay ve gerçek kıyaslama fonksiyonu yaklaşımı 

ve sınıflandırma probleminde destek vektör makinelerininkine (SVM) çok yakın bir genelleme 

başarımı ürettiği gösterilmiştir. 

2005 yılında Huang ve arkadaşları tarafından yazılan 'On-Line Sequential Extereme 

Learning Machine' adlı makalede, Çevrimiçi Sıralı Aşırı Öğrenme Makinesi (OS-ELM) olarak 

adlandırılan özyinelemeli en küçük kareler (RLS) algoritmasına dayanan sıralı modifikasyonu 



2 
 

sunulmuştur. OS-ELM'e dayanarak, Sıfır dereceli TSK modelini ve birinci dereceden TSK 

modelini uygulamak için Çevrimiçi Sıralı Bulanık Ekstrem Öğrenme Makinesi (Fuzzy-ELM) 

de tanıtıldı (G.-B. Huang vd.,2005) OS-ELM ve Fuzzy-ELM, diğer popüler sıralı öğrenme 

algoritmaları ile kıyaslanmıştır ve deney sonuçlarına göre bazı gerçek regresyon benchmark 

problemlerinde daha hızlı öğrenme ve iyi genelleme başarımı vermiştir. 

AÖM’de giriş katmanındaki ağırlık parametreleri ve eşik parametreleri rastgele olarak 

belirleniyordu fakat 2005 yılında Huang ve arkadaşları tarafından yayınlanan 'Evolutionary 

extreme learning machine'  başıklı  makalede karma öğrenme algoritması geliştirilmiştir. Bu 

yöntem ile rastgele atanan bu parametreler seçmek için farksal gelişim  algoritmasını ve çıktı 

ağırlıklarını analitik olarak belirlemek için Moore Penrose (MP) yöntemini kullanan bir karma 

öğrenme algoritması önerilmiştir.  Bu çalışmadaki deney sonuçlarına bakarak, bu yaklaşımın 

çok daha kompakt ağlarla iyi genelleme başarımı sağlayabildiği bildirilmiştir (Zhu vd., 2005). 

2009 yılında Rong ve arkadaşları tarafından yayınlanan, 'Online Sequential Fuzzy 

Extreme Learning Machine for Function Approximation and Classification Problems' (OS-

Fuzzy-ELM) adlı çalışmada, fonksiyon yaklaşımı ve sınıflandırma problemleri için çevrimiçi 

sıralı bulanık aşırı öğrenme makinesi (OS-Fuzzy-ELM) geliştirilmiştir (Rong vd., 2009). 

Lan ve arkadaşları 2010 yılında 'Constructive hidden nodes selection of ELM' başlıklı 

çalışmada AÖM algoritmasına dayalı  yapıcı bir yöntem uygulayarak AÖM regresörünün 

mimari tasarımını ele almışlardır (Lan vd., 2010a). Önerilen CS-ELM'in diğer AÖM ağları 

(AÖM, EM-ELM ve I-ELM) ile karşılaştırılması, bazı gerçek kıyaslamalı regresyon 

uygulamalarında yapılmıştır. 

'Two-stage extreme learning machine for regression' çalışması 2010 yılında Lan ve 

arkadaşları tarafından yayınlamıştır. Bu çalışmada AÖM'in eksik kalan ön ağ yapısının 

belirlenmesi üzerinde durmuşlardır. Bu çalışma kapsamında geliştirilen TS-ELM yöntemi iki 

aşamadan oluşmaktadır. Birinci aşamada, ileriye dönük öz yinelemeli algoritma her adımda 

rastgele üretilen bireylerden gizli düğümü seçmek için uygulanır ve düğümler durdurma kriteri 

minimum değere gelene kadar ağa eklenir. İkinci aşamada, her gizli düğümün önemi gözden 

geçirilir ve önemsiz olanlardan ağdan çıkarılır, ki bu da ağ karmaşıklığını önemli oranda azaltır. 

TS-ELM, denektaşı (benchmark) regresyon problemleri için AÖM ve EM-ELM ile 

karşılaştırılmıştır. AÖM ile kıyaslandığında daha iyi sonuç vermektedir, diğer yandan EM-

ELM ile kıyaslandığında da benzer ya da daha iyi sonuç verdiği görülmektedir (Lan vd., 

2010b). 
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2013 yılında Zhang ve Ji tarafından yayınlanan 'Fuzzy Extreme Learning Machine for 

Classification' adlı çalışmada FELM yapısı önerilmiştir. Önerilen bu yapı, geleneksel AÖM 

yapısındaki oransız problemler ve ağırlıklı sınıflandırma problemleri gibi farklı giriş 

noktalarında sınıfların birini tam olarak atamayabilme eksikliğini giderebilmektedir. 

Geleneksel AÖM yöntemine bulanık mantık kavramının dahil edildiği bir yapı olarak 

görülebilir.  Ağırlıklı sınıflandırma problemleri için FELM, AÖM'den daha mantıklı sonuçlar 

verildiği deneysel sonuçlar ile gösterilmiştir (W. B. Zhang ve Ji, 2013).  

R. Zhang ve arkdaşları tarafından 2013 yılında yayınlanan 'Dynamic Extreme Learning 

Machine and Its Approximation Capability' başlıklı çalışmada dinamik aşırı öğrenme makinesi 

yöntemi geliştirilmiştir. (R. Zhang vd., 2013).   

2013 Han ve arkadaşları, 'Hierarchical extreme learning machine for feedforward 

neural network' isimli çalışmasında bir hiyerarşik ileri besleme sinir ağı (HFNN) ağırlıklarının 

eğitimi için bir yapı önerilmiştir. Geleneksel tek gizli katman ileri besleme ağlarından 

(SLFN'ler) farklı olarak, bu hiyerarşik AÖM (HELM) çevrimiçi olarak sıralı bilgileri hiyerarşik 

öğrenebilen hiyerarşik bir yapıya dayanır (Han vd., 2014). 

2013 yılında Liao ve arkadaşları tarafından 'Meta-ELM: ELM with ELM hidden nodes' 

isimli çalışmada Meta-ELM adında AÖM'nin meta öğrenme modeli önerilmiştir. Meta-ELM'in 

yapısı bir kaç temel AÖM'den ve bir üst AÖM'den oluşur. Bu nedenle, Meta-AÖM öğrenmesi 

iki aşamada ilerler. İlk olarak, her bir temel AÖM, eğitim verilerinin bir alt kümesi üzerinde 

eğitilmiştir. Daha sonra, üst AÖM eğitilen temel AÖM'leri sanki gizli düğümlermiş gibi alarak 

tüm very ile eğitilir (Liao ve Feng, 2014).  

Yong arkadaşları ile 2014 yılında gerçekleştirdiği 'Meta-cognitive Fuzzy Extreme 

Learning Machine' adlı çalışmasında meta-bilişsel bulanık aşırı öğrenme makinesi (McFELM) 

olarak adlandırılan sinirsel bulanık çıkarım sistemi (NFIS) için hızlı bir öğrenme metodolojisi 

önermiştir. Öğrenmeyi daha etkili kılmak için insan meta-biliş ilkelerini içeren orijinal OS-

Fuzzy-ELM algoritması kullanılmıştır (Yong vd., 2014). 

Mevcut AÖM yapılarının, AÖM'nin başarımı için çok önemli olan çekirdek seçimini 

optimize etmeye çok az dikkat edildiği gerekçesiyle 2015 yılında Liu ve arkadaşları 'Multiple 

Kernel Extreme Learning Machine' isimli çalışmada bu bahsedilen eksikliği gidermek için 

çoklu çekirdek aşırı öğrenme makineleri (MK-ELM) olarak adlandırılan genel bir öğrenme 

yöntemi önermişlerdir. Önerilen MK-ELM'de, optimum çekirdek kombinasyon ağırlıkları ve 

AÖM'in yapısal parametreleri birlikte optimize edilmiştir (Liu vd., 2015). 
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Jagtap ve arkadaşları tarafından 2015 yılında yayınlanan 'Extreme-ANFIS: A Novel 

Learning Approach for Inverse Model Control of Nonlinear Dynamical Systems' isimli 

çalışmada Takagi-Sugeno bulanık çıkarım sisteminin (TS FIS) öncül ve sonuç parametrelerini 

ayarlamak için "Extreme ANFIS" adlı yeni, basit ve daha hızlı bir öğrenme yaklaşımı 

önerilmiştir (Jagtap vd., 2015). 

AÖM’nin bir çevrim içi sürümü daha önceden ileri sürülmüştür fakat eksik yönlerinden 

dolayı Scardapen ve arkadaşları tarafından 2015 yılında 'Online Sequential Extreme Learning 

Machine with Kernels' isimli çalışması ile çevrimiçi çekirdek tabanlı AÖM (KOS-ELM) ağı 

önerilmiştir (Scardapane vd., 2015). 

2015 yılında B.Y. Qu ve arkadaşaları 'Two Hidden Layer Extreme Learning Machine 

for Regression and Classification' isimli çalışmada özel bir yapı olarak 2 gizli katmanlı AÖM 

ağı tanımlamışlardır. Giriş katmanı ile birinci gizli katman arasındaki ağırlık ve eşik 

parametreleri klasik AÖM'deki gibi rastgele atanmaktadır. Birinci gizli katman ile ikinci gizli 

katman arasındaki ağırlık ve eşik parametreleri için ise yeni bir yöntem geliştirilmiştir, böylece 

iki gizli katmanlı ileri beslemeli ağ yapısı için yeni bir AÖM yöntemi tanımlanmıştır (Qu vd., 

2016). 

2016 yılında Tang ve arkadaşları AÖM'nin sığ mimarisi nedeniyle, AÖM kullanarak 

özellik öğrenme, çok sayıda gizli düğümde bile doğal sinyaller (örneğin görüntüler / videolar) 

için etkili olmayabilir tespitini yapmışlardır. Bu konuyu ele almak için, 'Extereme Learning 

Machine for Multilayer Perceptron ' adlı çalışmada, çok katmanlı algılayıcı için yeni bir AÖM 

tabanlı hiyerarşik öğrenme çerçevesi önerilmiştir. Önerilen mimari iki ana bileşene ayrılmıştır: 

1) kendi kendine öğretilen özellik çıkarımı ve ardından denetlenen özellik sınıflandırması ve 2) 

rastgele başlatılan gizli ağırlıklar ile köprüleme. Yaygın olarak kullanılan çeşitli sınıflandırma 

veri setleri üzerinde yapılan kapsamlı deneyler, önerilen algoritmanın mevcut son teknoloji 

hiyerarşik öğrenme yöntemlerinden daha iyi ve daha hızlı yakınsamaya ulaştığını 

göstermektedir. Ayrıca, bilgisayar ortamında yapılan uygulamalar, önerilen öğrenme planının 

genelliğini ve kabiliyetini daha da doğrulamaktadır (Tang vd., 2016). 

Büyük veri kümerlerinde öğrenme için giriş örnekleri düzgün bir şekilde alınamadığı 

için AÖM'nin sınıflandırma başarımı düşük olabilir. Bu sorun Phurattanaprapin ve Horata 

tarafından 2016 yılında 'Extended Hierarcihical Extreme Learning Machine with Multilayer 

Perceptron' isimli çalışmada ele alınmıştır. Çok katmanlı algılayıcının hiyerarşik öğrenme 

mimarisine dayanarak hiyerarşik aşırı öğrenme makinesi (H-ELM) çerçevesi önerildi. H-ELM 

iki bölümden oluşur: İlki denetlenmemiş çok katmanlı kodlama kısmı ve ikinci kısmı 
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denetlenen özellik sınıflandırma kısmıdır. H-ELM, geleneksel AÖM'den daha yüksek doğruluk 

oranı verebilir, ancak, sınıflandırma başarımının da arttırması gerekmektedir. Bu nedenle, bu 

makale genişleyen hiyerarşik aşırı öğrenme makinesi (EH-ELM) gibi yeni bir yöntem 

önermektedir. EH-ELM'nin genişletilmiş denetleyici kısmı için, iki katmanlı aşırı öğrenme 

makinesinden yararlanılmaktadır. Üç farklı görüntü veri seti ile (Semeion, MNIST ve NORB) 

EH-ELM başarımı inceleme çalışmalarının deneysel sonuçları, EH-ELM'nin H-ELM'den ve 

diğer çok katmanlı çerçeveden daha iyi başarım elde ettiğini göstermektedir (Phurattanaprapin 

ve Horata, 2016). 

Son zamanlarda, çok katmanlı aşırı öğrenme makinesi (ÇK-AÖM) temsili öğrenme için 

yığılmış otomatik kodlayıcıya (SAE) uygulandı. Geleneksel SAE'nin aksine, ÇK-AÖM'in 

eğitim süresi yüksek doğrulukla saatlerden saniyelere önemli ölçüde azaldı. Ancak ÇK-AÖM'in 

eksikleri olduğu için Chi Man Wong ve arkadaşları tarafından 2018 yılında, 'Kernel-Based 

Multilayer Extreme Learning Machines for Representation Learning' isimli çalışmada ML-

KELM adında bir öğrenme yöntemi ileri sürülmüştür. ÇK-AÖM birçok sakıncadan 

muzdariptir: 1) her katmandaki gizli düğümlerin sayısı üzerinde elle ayarlama, eğitim süresi ve 

genelleme için belirsiz bir faktördür; 2) ÇK-AÖM'nin her katmanındaki eşik ve giriş 

ağırlıklarının rastgele üretilmesi, yetersiz model genellemesine yol açar; 3) her katmandaki 

çıkış ağırlıkları için sözde ters çözümü nispeten büyük yeniden yapılanma hatası meydana 

getirir; ve 4) temsil öğreniminde dönüşüm matrislerinin depolanma ve yürütme süresi, gizli 

katmanların sayısıyla orantılıdır. Çekirdek öğrenmesinden esinlenerek, ÇK-AÖM'nin bir 

çekirdek sürümü , çok katmanlı çekirdek AÖM (ML-KELM) geliştirilmiştir: Bu yapının 

katkıları: 1) her katmanda gizli düğümlerin sayısının elle ayarlanmasının kaldırılması; 2) 

optimal model genellemesi elde etmek için rastgele üretim mekanizması yoktur; 3) çıktı 

ağırlıkları için tam ters çözüm, daha küçük yeniden yapılandırma hatasıyla sonuçlanan, ters 

çevrilebilir çekirdek matrisi altında garanti edilir; ve 4) tüm dönüşüm matrisleri sadece iki 

matriste birleştirilir, böylece depolama azaltılabilir ve model uygulama süresi kısaltabilir. 

Deneysel sonuçlar önerilen ML-KELM'in katkılarını doğrulamıştır. Benchmark veri setlerine 

göre doğruluktaki gelişme %7'ye kadar artmıştır (Wong vd., 2018a). 

Dalgacıkların zaman-frekans düzlem özelliklerini ve sinir ağının (NN) öğrenme 

yeteneklerini, bulanık çıkarım sisteminin yaklaşık akıl yürütme özelliklerini ve AÖM'in son 

derece hızlı öğrenme hızında tek geçişli öğrenme ve iyi bir genelleme başarımına dahil ederek 

bir çok uygulamada etkili bir çözüm sergilenmektedir. Bu yüzden 2017 yılında Golestaneh ve 

arkadaşları tarafından yapılan 'Fuzzy Wavelet Extreme Learning Machine' adlı yayında yeni 
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bulanık dalgacık aşırı öğrenme makinesi (FW-ELM) ileri sürülmüştür. FW-ELM'in temel 

amaçları, doğrusal öğrenme parametrelerinin sayısını azaltarak ağ karmaşıklığını önemli ölçüde 

azaltmak ve kabul edilebilir doğruluk ve genelleme başarımları korunurken rastgele başlatma 

ile oluşan duyarlılığı azaltmaktır. Önerilen yapıda, her bir bulanık kural bir alt dalgacık sinir 

ağına karşılık gelir ve farklı genişleme ve dönüşümlü dalgacıklardan oluşur. Bu modelde, ağ 

karmaşıklığı ve başarım doğruluğu arasındaki dengeyi sağlamak için her bir bulanık kuralın 

THEN kısmında, her iki giriş için bir katsayı göz önünde bulundurulur. Bu çalışmada, önce bir 

FW modelinin ve bir SLFN'nin denkliği kanıtlanmış ve daha sonra AÖM doğrudan modele 

uygulanabilir kılınmıştır. Üyelik fonksiyonun ve dalgacık katsayıların tüm serbest 

parametreleri rastgele üretilir ve sadece çıkış ağırlıkları analitik olarak belirlenir. FW-ELM'yi 

değerlendirmek için, çeşitli denektaşı verilerinde OS-Fuzzy-ELM, Simpl_eTS, ANFIS gibi 

popüler bulanık modelle ve AÖM, BP ve SVR gibi diğer ilgili algoritmalarla karşılaştırıldı. 

Deney sonuçları, önerilen yaklaşımın verimli sonuç verdiğini göstermektedir. FW-ELM'in 

başarım doğruluğunun OS-Fuzzy-ELM ile karşılaştırılabilir olduğu ve bilinen yöntemlerin geri 

kalanından daha iyi olduğu gösterilmiştir (Golestanesh vd., 2018). 

AÖM’nin son zamanların popüler derin öğrenme ağlarının eğitimini hızlandırmak 

amaçlı çalışmalar da literatürde göze çarpmaktadır. Bu çalışmalardan bir kesit şu şekilde 

sunulabilir: Tissera ve McDonnell, sınıflandırma için denetimli otomatik kodlama mimarisi 

olarak bir derin uç öğrenme makinesi tasarladı (Tissera ve McDonnell, 2016). Kim ve 

arkadaşları AÖM kullanarak Evrişimli Sinir Ağları (CNN) için hızlı bir öğrenme yöntemi 

geliştirdi (Kim vd., 2017). Yousefi-Azar ve McDonnell, yarı denetimli bir evrişimli aşırı 

öğrenme makinesi tasarladı (Yousefi-Azar ve McDonnell, 2017). Vong ve arkadaşları ampirik 

çekirdek haritası tabanlı ML-ELM kullanarak temsili öğrenme üzerine başka bir araştırma 

yaptı. Altan ve Kutlu, bir Hessenberg ELM otomatik kodlayıcı geliştirdikleri derin öğrenme 

alanında çalıştı (Altan, 2018). Chen ve arkadaşları ML-ELM (Chen vd., 2019) kullanarak akıllı 

sağlık için bir insan etkinliği tanıma şeması geliştirdi. Zhang ve diğ. ML-ELM (J. Zhang vd., 

2020) kullanarak yinelemeli olmayan ve hızlı bir derin öğrenme şeması geliştirdi. Ezzati Khatab 

ve diğ. bir otomatik kodlayıcı tabanlı yarı denetimli derin aşırı öğrenme makinesi geliştirdi 

(Ezzati Khatab vd., 2021) 

1.2. Hedefler ve Katkılar 

Çalışmamızda modelleme ve sınıflandırma problemleri için geliştirilen klasik AÖM, 

RTF-AÖM, Meta-AÖM ve ÇK-AÖM gibi mevcut AÖM yapıları incelenmiştir. Bu yapıların 
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artı ve eksi yönleri incelenerek yapıların iyileştirilmesi ve yeni hibrit yapı öne sürülmesi 

hedeflenmiştir. 

Çalışmamızdaki motivasyon unsuru, AÖM yöntemleri yaygın olarak sınıflandırma 

problemlerinde kullanılmış olup sistem modelleme üzerinde çalışılmamıştır. Bu yüzden 

dinamik sistem ve engebeli, keskin değişimlere sahip sistemlerin modellenmesi üzerinde 

çalışılarak iyileştirme ve yeni karma ağ yapısının geliştirilmesi hedeflenmiş olup çalışmamızda 

istenen hedefe ulaşılmıştır. 

Bu çalışmanın özgün katkıları aşağıda listelenmiştir. 

1. AÖM ve geliştirilmiş olan diğer bir çok AÖM yöntemleri yaygın olarak 

sınıflandırma, görüntü sınıflandırma, regresyon ve tahmin problemlerinde 

kullanılmaktadır. Dinamik sistem modelleme üzerinde az çalışmıştır. Bu yüzden bu 

doktora tez çalışmasında AÖM yöntemlerinin dinamik sistem ve engebeli, keskin 

değişimli yüzeylere sahip modelleme problemlerine değilinilmiştir. 

2. Dinamik sistem modelleme problemi üzerinde ÇK-AÖM yapısında iyileştirilme 

yapılmıştır. İyileştirilmiş iki farklı çok katmanlı AÖM yapısı geliştirilerek 

tanımlanmıştır. Geliştriren ağ yapılarının başarım üstünlüğü 5 farklı dinamik sistem 

üzerinde gösterilmiştir. 

3. Engebeli, keskin değişimli yüzeylere sahip sistemlerin modellenmesi için de yeni 

bir karma ağ yapısı geliştirilmiştir. Bu ağın kıyaslamalı başarımı literatürden seçilen 

denektaşı işlevlerin modellenmesi çerçevesinde sunulmuştur. 

1.3. Tezin Yapısı 

Tezin yapısı aşağıdaki gibidir. Bölüm 2, AÖM yönteminin temelini oluşturulan yapay 

öğrenme ve yapay sinir ağlarının tanımını kapsamaktadır. Doktora çalışmasında regresyon ve 

sınıflandırma problemleri için geliştirilen klasik AÖM, RTF-AÖM, Meta-AÖM ve ÇK-AÖM 

gibi incelenen mevcut AÖM yapıları Bölüm 3’te tanıtılmıştır. Bölüm 4’te dinamik sistem 

modelleme problemleri için iyileştirme yapılan ÇK-AÖM yapıları anlatılmaktadır. Engebeli ve 

keskin değişimli yüzeylere sahip sistem modelleme problem için geliştirilen karma ağ yapısı ve 

kullanılan yüzey modelleri Bölüm 5’te tanıtılmıştır. Bölüm 4 ve 5’te geliştirelen yapıların deney 

sonuçları Bölüm 6’da verilmiştir. Son olarak, Bölüm 7, çalışmanın sonuç ve önerlerini 

içermektedir. 
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2. YAPAY ÖĞRENME VE YAPAY SİNİR AĞLARI  

Yapay öğrenme günümüzde bir çok problemin çözümünde yaygın olarak kullanılan 

kavramdır. Yapay sinir ağları (YSA) bu kavram ile ortaya çıkmıştır. YSA, ilk olarak McCulloch 

ve Pitts (Mcculloch ve Pitts, 1943) tarafından önerilen sinirsel hesaplama sistemleridir. 

YSA'lar, kendi kendini organize etme özelliklerine ve paralel bilgi sistemlerine dayalı 

hesaplama tekniklerindeki önemli gelişmeler sayesinde 1980'lerden itibaren yaygın olarak 

kullanıldı. Rumelhart ve arkadaşları (Rumelhart vd., 1986), nöron benzeri birimlerin ağları için 

yeni bir öğrenme prosedürü, geri yayılımı (BP) önerdi. BP, ağın gerçek çıktı vektörü ile istenen 

çıktı vektörü arasındaki farkına dayalı olarak tanımlanan bir ölçütü en aza indirmek için ağdaki 

bağlantıların ağırlıklarını tekrar tekrar ayarlar. Bu çalışma, paralel dağıtılmış bilgi işleme 

çerçevelerinde BP kuralının geliştirilmesine bağlı olarak çeşitli araştırma alanlarında YSA'ların 

yaygın olarak kullanılmasına katkıda bulunmuştur. YSA'lar ayrıca 1980'lerin sonlarında 

makine zekasındaki karmaşık ve doğrusal olmayan fenomenleri yorumlamak için yaygın olarak 

kullanıldı.  

YSA'ların gelişimi, insan beyninin karakteristik işleyişinden esinlenerek olmuştur, 

ancak bunlar biyolojik eşdeğerleri ile yalnızca uzaktan ilişkilidir. YSA'lar beynin 

karmaşıklığına yaklaşmazlar, ancak biyolojik sinir ağları ile YSA'lar arasında iki temel 

benzerlik vardır. İlk olarak, her iki ağın yapı taşları, yüksek oranda birbirine bağlı basit 

hesaplama cihazlarıdır. İkincisi, nöronlar arasındaki bağlantılar ağın işlevini belirler. YSA'lar 

paralel dağıtılmış bilgi işlem ağları olarak işlev görür ve bazı temel özelliklerde biyolojik sinir 

sistemlerine benzerdir. Şekil 2.1 ve 2.2’de sırasıyla, biyolojik sinir hücresinin ve YSAnın hücre 

yapısı verilmiştir. Sinir sistemi ile yapay sinir sisteminin karşılık gelen elemanları da Tablo 

2.1’de verilmiştir.  
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Şekil 2.1. Biyolojik sinir hücre yapısı  

Kaynak: (Tübitak Bilim ve Teknik Dergisi, 2000) 
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Şekil 2.2. YSA hücre yapısı 

Tablo 2.1. Sinir sistemi ile yapay sinir sisteminin karşılık gelen elemanlar 

Sinir Sistemi Yapay Sinir Sistemi 

Akson Çıktı 

Hücre Gövdesi Toplama Birimi 

Çekirdek Aktivasyon Fonksiyonu 

Sinaps Ağırlıklar 

Dentrit Giriş 

 

2.1. Yapay Sinir Ağlarının Özellikleri 

YSA yapısı gereği öğrenebilme ve genelleme yeteneğine sahiptir. Genelleme yeteneği 

ile eğitim sürecinde karşılaşmadığı giriş değerleri için de uygun sonuç değerleri üretmektedir. 

Bu yeteneği ile karmaşık problemleri de çözebilme yeteneğine sahiptir. YSA, öğrenme, 

ilişkilendirme, sınıflandırma, genelleme, tahmin, özellik belirleme ve optimizasyon işlemlerini 

gerçekleştirebilir. Bu işlemlerde YSAnın temel katkısı dışarıdan müdahale gerekmezsizin 
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problem için verilmiş olan bilgiler doğrultusunda sonuç üretebilmesidir. YSA, sinir sisteminden 

esinlenerek geliştirildiği için bir çok üstünlüklere de sahiptir. Aşağıda bir kaç özelliklerinden 

kısaca bahsedilmiştir (Haykin S, 1999). 

Öğrenebilirlik: Çoğu klasik algoritma, verilen formüller hesaplanırken aynı girdiler 

için her zaman aynı çıktıyı üretir. Bu doğrusal algoritmaların aksine YSA sayesinde programlar 

öğrenme yeteneğine sahip olmuşlardır. Çözümü yolu tanımlanamayan problemlerin çözümü 

hakkında YSA bilgi vermeksizin öğrenebilirlik yeteneği sayesinde problemi çözebilmektedir. 

Problemin çözümünde YSA’ya örnek girdi ve çıktı değerlerinin verilmesi gerekmektedir. 

Genelleme: YSA üzerinde çalışılan problem için eğitildikten sonra eğitim esnasında 

karşılaşmadığı durum için de sonuç üretmektedir. Örnek: bir sandelye görüntüsü tanıtılıp 

gürültülü sandelye görüntüsü verildiğinde sandelye olarak tanıyacaktır. Bu da YSAnın 

genelleme yeteğine sahip olduğunu ifade etmektedir. 

Uygulanabilirlik: YSA, çalıştığı probleme göre ağırlıklarını kendisi düzenleyerek 

belirler. Eğitilmiş YSA, her hangi bir problemde kullanılabilir. Sadece, yeni problemin giriş ve 

çıkış değerleri ağa verilerek ağ tekrar eğitilmelidir. 

Tasarım Kolaylığı:  YSAnın hücre yapısı ve modeli, tüm YSA modellerinde yaklaşık 

olarak aynıdır. YSA yapısı kolaylıkla oluşturulup çeşitli problemlerin çözümünde kullanılabilir. 

Doğrusal Olmama: YSAnın temel elamanı olan hücre doğrusal sonuç vermemektedir. 

Bu özelliği tüm ağa yansımıştır. Bu yüzden doğrusal olmayan sistemlerde sonuç almak için 

yaygın olarak YSA kullanılmaktadır.  

Paralellik: Klasik problem çözme algoritmalarının aksine YSA, parallel çalışmaya 

uygun yapıya sahip olduğundan sorunların çözümü için çok daha hızlı sonuç vermektedir.  

Hata Toleransı: YSA parallelik özelliği ile bağımsız çalışabildiği için yapıdaki bir 

eleman arızalandığında öğrenebilme ve genelleme yeteneği sayesinde yapı sorunsuz çalışmaya 

devam edecektir.  

YSAnın en temel eksiği kara kutu gibi çalışıyor olmasıdır. Bir sorunu çözmek için 

eğitilen ağın öğrenme ve genelleme yetisiyle çözülmesi imkansız sorunların üstesinden geldiği 

yadsınamaz bir gerçektir. Fakat bunu nasıl yaptığına dair bir bilinmezlik vardır. Bir de, YSAnın 
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eğitimi esnasında problemin büyüklüğüne ve ağ yapısına bağlı olarak oldukça çok zaman 

harcanabilmektedir.  

2.2. Yapay Sinir Ağ Modelleri 

Yapay sinir ağ modelleri, tek katmanlı ve çok katmanlı algılayıcılar, ileri ve geri 

beslemeli yapay sinir ağları olmak üzere dört grupta incelenebilir. 

2.2.1. Tek katmanlı yapay sinir ağları 

 Giriş ve çıkış düğümleri arasında tek katmanda sıralanmış nörünlardan oluşan bir 

yapıdır. Katmandaki hücrelere tüm giriş değerleri bağlanmaktadır ve bunların bağlantı 

ağırlıkları vardır. Eşik girişinin 1 olması çıkış değerinin sıfır olmasını engellemektedir. Şekil 

2.3’te tek katmanlı ağ yapısı gösterilmiştir. 

 

Şekil 2.3 Tek katmanlı YSA ağ yapısı 
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2.2.2. Çok katmanlı yapay sinir ağları 

Çok katmanlı YSA giriş, gizli ve çıkış katmanından oluşmaktadır. Karmaşık ve güç 

doğrusal olmayan problemlerin çözümünde kullanılmaktadır. Giriş katmanındaki giriş birden 

fazla, gizli katmanda da birden fazla gizli katman ve hücreye sahip olabilmektedir. Gizli katman 

sayısı ve hücre sayısı problem göre belirlenmektedir. Şekil 2.4’de çok katmanlı bir YSAnın ağ 

yapısı verilmiştir. 

Giriş Katmanı: Giriş bilgilerin alınıp gizli katmana aktarıldığı katmandır. 

Gizli Katman: Giriş katmanındaki her bir giriş verisini gizli katmandaki her bir hücreye 

bağlar ve bilgiler işlenir.  

Çıkış Katmanı: Gizli katmanın iletmiş olduğu veriyi işleyerek sonuç elde edilmektedir. 

 

Şekil 2.4. Çok katmanlı YSAnın ağ yapısı 

2.3. Kullanım Alanları 

YSA yaygın olarak, sınıfladırma, tahmin ve modelleme gibi bir çok alanda 

kullanılmaktadır. Ayrıca YSA birçok problemle uğraşırken, bilgi kaynakları ne eksiksiz ne de 

yanıltıcıdır. Karar kuralları bazen çelişkili bazen de yoktur. Bu, geleneksel bilgi işleme 
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yöntemleri için büyük zorluklar yaratır, ancak sinir ağı bu problemlerle çok iyi başa çıkabilir 

ve makul bir tanımlama ve yargılar verebilir (Wu ve Feng, 2018). Aşağıda YSAnın kullanım 

alanlar kısaca verilmeye çalışmıştır. 

Bilgi İşleme: Modern bilgi işleme ile çözülmesi gereken sorunlar çok karmaşıktır. 

Yapay sinir ağları, insanların düşüncelerini taklit etme veya değiştirme işlevine sahiptir ve 

otomatik teşhis, problem çözme ve geleneksel yöntemlerle çözülemeyen problemlerin 

çözülmesini gerçekleştirebilir. Mevcut akıllı bilgi sistemleri arasında akıllı enstrümanlar, 

otomatik izleme ve izleme enstrümantasyon sistemleri, otomatik kontrol yönlendirme 

sistemleri, otomatik arıza teşhis ve alarm sistemleri yer almaktadır. 

Örüntü Tanıma: Örüntü tanıma, nesneleri veya fenomenleri karakterize eden çeşitli 

bilgi biçimlerini işleyerek ve analiz ederek şeyleri veya fenomenleri tanımlama, sınıflandırma 

ve yorumlama sürecidir. Artık iki temel örüntü tanıma yöntemi vardır, istatistiksel örüntü 

tanıma ve yapısal örüntü tanıma. Yapay sinir ağları, örüntü tanımada yaygın olarak kullanılan 

bir yöntemdir. Son yıllarda, geleneksel örüntü tanıma yönteminin yerini yavaş yavaş yapay 

sinir ağı örüntü tanıma yöntemi almıştır. Yıllarca süren araştırma ve geliştirmeden sonra, 

örüntü tanıma günümüzün daha ileri teknolojisi haline geldi ve karakter tanıma, konuşma 

tanıma, parmak izi tanıma, uzaktan algılama görüntü tanıma, yüz tanıma, el yazısı karakterleri 

tanıma, endüstriyel arıza algılama, biyolojik sinyallerin tespiri ve otomatik analizi, tıbbi 

uzman sistem gibi bir çok amaç için yaygın olarak uygulandı. 

Biyolojik Sinyal Tespiti ve Analizi: Çoğu tıbbi test ekipmanı, verileri teşhisin temeli 

olan sürekli bir dalga biçiminde çıkış verir. Yapay sinir ağı, çok sayıda basit işlem birimiyle 

birbirine bağlanan bir tür uyarlanabilir dinamik sistemdir. Geleneksel yasa ile çözülemeyen 

biyomedikal sinyal analizi ve işleme problemlerini çözmek için kullanılabilecek büyük 

miktarda paralellik, dağıtılmış depolama ve kendi kendine uyarlamalı öğrenme işlevlerine 

sahiptir. Biyomedikal sinyal algılama ve işlemede sinir ağının uygulanması temel olarak EEG 

sinyalinin analizine, işitsel uyarılmış potansiyel sinyalin çıkarılmasına, EMG ve 

gastrointestinal sinyallerin tanımlanmasına, EKG sinyallerinin sıkıştırılmasına, tıbbi 

görüntülerin tanınmasına vb. alanlardır. 

Tıbbı uzman sistemi: Geleneksel uzman sistem, uzmanların deneyim ve bilgilerini 

kurallar şeklinde bilgisayarda depolamak, bilgi tabanı oluşturmak ve tıbbi teşhis için mantıksal 

akıl yürütme yolunu kullanmaktır. Ancak pratik uygulamalarda veri tabanının boyutu arttıkça 

bilginin “patlamasına” ve bilgiye erişimde “darboğaz”a yol açarak verim düşüklüğüne neden 
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olacaktır. Doğrusal olmayan paralel işlemeye dayalı sinir ağı, uzman sistem araştırması için 

yeni bir gelişme yönüne işaret eder, yukarıdaki uzman sistem problemlerini çözer ve bilgi 

çıkarımını, kendi kendine organizasyonu ve kendi kendine öğrenme yeteneğini geliştirir, 

böylece sinir ağı yaygın olarak kullanılır.  

Piyasa fiyatı tahmini: Emtia fiyatlarındaki değişikliklerin analizi, piyasadaki arz talep 

ilişkisini etkileyen birçok faktörün kapsamlı bir analizine atfedilebilir. Doğal sınırlamaları 

nedeniyle, geleneksel istatistiksel iktisat yönteminin fiyat değişikliklerini bilimsel olarak 

tahmin etmesi zordur. Bununla birlikte, yapay sinir ağının eksik, bulanık belirsiz veya düzenli 

verilerle başa çıkması kolaydır. Bu nedenle yapay sinir ağı fiyat tahmini, geleneksel 

yöntemlerle karşılaştırılamayacak kadar iyidir. Piyasa fiyatının belirlenmesi 

mekanizmasından yola çıkılarak emtia fiyatlarından etkilenen hane sayısı, kişi başına 

harcanabilir gelir, kredi faiz oranı ve şehirleşme düzeyi gibi karmaşık ve sürekli değişen 

faktörler baz alınarak daha doğru ve güvenilir bir model oluşturulmaktadır. Model, emtia 

fiyatlarının değişen trendini tahmin edebilir ve doğru ve objektif değerlendirme sonuçları elde 

edebilir. 

Risk değerlendirmesi: Risk, belirli bir faaliyette bulunma sürecindeki belirsizliklerin 

neden olduğu doğal veya finansal zarar veya hasar olasılığını ifade eder. Bir riski önlemenin 

en iyi yolu, riski önceden bilimsel bir tahmin ve değerlendirme yapmaktır. Yapay sinir ağı 

uygulamasının öngörüsü, gerçek risk kaynağına göre fiili duruma uygun kredi riski modelinin 

yapısını ve algoritmasını oluşturmak, risk değerlendirme katsayısını almak ve ardından asıl 

problemin çözümünü belirlemektir. Bu modeli kullanan ampirik analiz, öznel değerlendirme 

eksikliğini giderebilir, tatmin edici sonuçlar elde edebilir. 
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3. AŞIRI HIZLI ÖĞRENME MAKİNASI 

Aşırı hızlı öğrenme makinası (AÖM) tek gizli katmanlı yapay sinir ağlarını eğitmek için 

yeni analitik öğrenme algoritması olarak önerilmiştir (G. bin Huang vd., 2004; G. bin Huang 

vd., 2006). Sinir ağlarında yaygın olarak kullanılan türev tabanlı öğrenme yöntemlerinde 

yüksek öğrenme başarımı elde etmek için çok sayıda eğitim/test verisi ve tur sayısı 

kullanıldığından AÖM yöntemine göre eğitim seyri çok yavaştır. AÖM’de giriş katmanındaki 

ağırlık parametreleri rastgele atanır ve çıkış katmanındaki ağırlık parametreleri analitik olarak 

belirlenir. Bu yüzden AÖM ile öğrenme hızlı ve başarımı yüksektir. 

3.1. Aşırı Hızlı Öğrenme Makinası 

Aşırı öğrenme makinesi (AÖM), tek gizli katmanlı yapay sinir ağları (SLFN)’i baz alan 

bir modeldir (G. bin Huang vd., 2004; G. bin Huang vd., 2006).  Şekil 3.1’de AÖM’nin ağ 

yapısı verilmiştir.  

 

Şekil 3.1. AÖM’nin ağ yapısı 
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Şekil 3.1’de görüldüğü üzere AÖM’nin yapısı giriş, gizli ve çıkış katmanından 

oluşmaktadır. AÖM’nin gizli katman parametreleri (w), rastgele olarak atanır ve ileri eğitim 

aşamalarında güncellenmez. Öte yandan, çıkışla gizli katman arasındaki ağırlık parametreleri 

(β) bir doğrusal model ile analitik ve hızlı bir şekilde belirlenir. xj = [xj1, ...., xjN]T ve oj = [oj1, 

...., ojq]
T olarak P ayrı örnek (xj, oj) için ELM’in matematiksel yapısı Eşitlik 3.1’de 

gösterilmektedir. 

∑ 𝛽𝑖𝑔(𝐰𝑖𝐱𝑗 + 𝑏𝑖) = 𝑜𝑗 , 𝑗 = 1,… , 𝑃𝐿
𝑖=1                                                                      (3.1) 

Bu modelde i = 1, ..., L ve j = 1, ..., P için βi çıkış ağırlıkları, g(.) nöron aktivasyon 

fonksiyonu, wi giriş ağırlıkları ve xj giriş değerleridir. Burada L düğüm veya nöron sayısıdır. 

Geleneksel SLFN'de βi ağırlıkları bir döngü içinde güncellenerek tespit edilir. Ancak, Huang 

ve çalışma arkadaşları bu ağırlık parametrelerini bir kerede hesaplayan ELM yapısını 

keşfetmiştir (G. bin Huang, Zhu ve Siew, 2004c).  

L ≥ P durumu için, P adet örnek sıfır hata ile tahmin edebilir, başka bir deyişle oj eğitim 

veri hedefi tj‘e değerine yakınsatılmıştır. Bu durumda Eşitlik 3.2, βi, wi, xj ve bi  için 

ispatlanmıştır. 

∑ 𝛽𝑖𝑔(𝐰𝑖𝐱𝑗 + 𝑏𝑖) = 𝒕𝒋, 𝑗 = 1, … , 𝑃
𝐿
𝑖=1                                                                                (3.2) 

Eşitlik 3.2’de tj eğitim veri hedef matrisi T’nin elemanlarıdır. Eşitlik 3.2’de tanıtılan P 

adet denklem Eşitlik 3.3’teki gibi özetlenebilir. 

𝐇𝜷 = 𝐓                                                                                                                                      (3.3) 

Eşitlik 3.3’te 

𝐇 = [
𝑔(𝐰1𝐱1 + 𝑏1) ⋯ 𝑔(𝐰𝐿𝐱1 + 𝑏𝐿)

⋮ ⋱ ⋮
𝑔(𝐰1𝐱𝑃 + 𝑏1) ⋯ 𝑔(𝐰𝐿𝐱𝑃 + 𝑏𝐿)

] , 𝛃 = [
𝛽1
⋮
𝛽𝐿

] , 𝐓 = [

𝐭1
⋮
𝐭𝑃

]                                               (3.4) 

Eşitlik 3.4 ele alındığında H, gizli katmanın çıkış matrisidir. H matrisinin i numaralı 

sütunu da i numaralı gizli düğümün çıktısını temsil eder.  Vektör t ise, eğitim verisi hedef 

vektörüdür. 

Daha önce gösterildiği üzere, L > P  için sıfır hata sunan birçok çözüm vardır. Ancak L 

< P için aşağıdaki ölçüt fonksiyonunu minimize edecek bir çözüm bulunmalıdır. 

𝐶 = ∑ (∑ 𝛽𝑖𝑔(𝐰𝑖𝐱𝑗 + 𝑏𝑖) − 𝑡𝑗
𝐿
𝑖=1 )

2𝑃
𝑗=1                                                                        (3.5) 
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Ölçüt fonksiyonu minimize edildikten sonra, H matrisinin Moore-Penrose tersi 𝐇† 

tespit edildir ve AÖM, 𝜷̂'yı Eşitlik 3.6’da gösterildiği gibi öğrenir. 

𝜷̂ = 𝐇†𝐓                                                                                                                      (3.6) 

Çıkış matrisi O Eşitlik 3.7’de gösterildiği gibi hesaplanır. 

𝐎 = 𝐇𝛃              (3.7) 

3.2. Radyal Tabanlı Fonksiyon Kullanan Aşırı Öğrenme Makinesi  

Huang ve arkadaşları tarafından 2004 yılında yapılan çalışmada, AÖM yapısını radyal 

tabanlı fonksiyon (RTF) ağ yapısına göre uyarlanmıştır. RTF’deki merkez ve varyans değerleri 

rastgele atanır ardından çıkış ağırlık parametreleri iteratif hesaplamak yerine AÖM yapısındaki 

anatilik hesaplama yöntemi ile hesaplanmaktadır (G. bin Huang ve Slew, 2004).  

Şekil 3.2’de RTF-AÖM’nin ağ yapısı verilmiştir. Ağ yapısının matematiksel ifadeleri 

aşağıda verilmiştir ve Algoritma 1’de de algoritması yer almaktadır. 

 

Şekil 3.2. RTF-AÖM’nin ağ yapısı 

𝑁̃ çekirdeğe sahip bir RTF ağının x Є Rn girdi vektörüne çıktısı Eşitlik 3.8’de 

gösterildiği gibidir.AÖM1 
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 𝑓𝑁̃(𝐱) = ∑ (𝛽𝑖𝜑𝑖(𝐱))
𝑁̃

𝑖=1
                                                                                           (3.8) 

Bu denklemde 𝛽𝑖 = [𝛽𝑖1, 𝛽𝑖2, ... , 𝛽𝑖m]T, i çekirdeğini çıkış nöronuna bağlayan ağırlık 

vektörüdür. 𝜑𝑖(𝐱) ise i çekirdeğinin çıkışıdır ve genellikle bir Gauss dağılımıdır. 

𝜑𝑖(𝐱) = 𝜑(𝜇𝑖, 𝜎𝑖, 𝐱) = exp (
‖𝐱−𝜇𝑖‖

2

𝜎𝑖
)                                                                         (3.9) 

Burada, 𝜇𝑖 = [𝜇𝑖1, 𝜇𝑖2, ...,𝜇𝑖n]
T i çekirdeğinin merkezi ve 𝜎𝑖 ise etki genişliğidir. 

𝐱i = [xi1, xi2,...,xin]
T Є Rn ve ti = [ti1, ti2,...,tim]T Є Rm iken, P keyfi farklı örnek (𝐱i,ti) için 𝑁̃ 

çekirdeğe sahip RTF matematiksel olarak 

∑ 𝛽𝑖𝜑𝑖(𝐱j) = 𝐨j
𝑁̃

𝑖=1
, j =  1, . . . , P                                                                           (3.10) 

şeklinde tanımlanır. 𝑁̃ çekirdeğe sahip standart RTF, bu P örneği sıfır hata ortalaması 

ile yakınsatır (∑ ‖𝐨j − 𝐭j‖
𝑁̃

𝑖=1
= 0). Kısaca varolan 𝛽𝑖, 𝜇𝑖 ve 𝜎𝑖 için 

∑ 𝛽𝑖exp (
‖𝐱𝑗−𝜇𝑖‖

2

𝜎𝑖
) = 𝐭j

𝑁̃

𝑖=1

, j =  1, . . . , P                                                            (3.11) 

Yukarıdaki denklemler matrisler ile aşağıdaki gibi yazılabilir. 

𝐇𝜷 = 𝐓                                                                                                                        (3.12) 

Burada 

            𝐇(𝜇1, … , 𝜇𝑁̃ , 𝜎1, … , 𝜎𝑁̃ , 𝐱1, … , 𝐱𝑛) = [
𝜑(𝜇1, 𝜎1, 𝐱1) ⋯ 𝜑(𝜇𝑁̃, 𝜎𝑁̃ , 𝐱1)

⋮ ⋱ ⋮
𝜑(𝜇1, 𝜎1, 𝐱𝑛) ⋯ 𝜑(𝜇𝑁̃ , 𝜎𝑁̃ , 𝐱𝑛)

] 

𝛽 = [
𝛽1
𝑇

⋮
𝛽𝑁̃
𝑇
] , 𝐓 = [

𝐭1
𝑇

⋮
𝐭𝑃
𝑇
]                                                                                                            (3.13) 

H gizli katman çıkış matrisidir. En küçük kareler çözümü olan 𝛽̂ ise aşağıdaki gibi 

hesaplanır. 

β̂ = 𝐇†𝐓                                                                                                                    (3.14) 
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Algoritma 1: RTF - AÖM Algoritması 

Başlangıç: 

            Bir eğitim kümesi Ӆ = {( 𝐱i,ti) | 𝐱i Є Rn , 𝐭i Є Rm , i=1,...,N} ve çekirdek sayısı 𝐍̃ için: 

Adım 1: 

           Keyfi merkezler 𝛍𝐢 ve etki genişlikleri 𝛔𝐢 ataması yap. (i = 1, ... , 𝐍̃) 

Adım 2: 

 Gizli (çekirdek) katmanı çıkış matrisi H'yi hesapla. 

Adım 3: 

 Çıkış ağırlığı 𝛃'yı 𝛃 = H†T formülünü kullanarak hesapla. 

3.3. Meta Aşırı Öğrenme Makinesi (Meta-AÖM) 

Meta Aşırı Öğrenme Makinesi (Meta-AÖM) basit olarak öğrencilerden öğrenen bir 

AÖM modelidir. Şekil 3.3‘de görüldüğü gibi birkaç taban AÖM ve bu taban AÖM’lerden 

öğrenen bir meta öğreniciden oluşur (Liao ve Feng, 2014). Her taban AÖM bir taban tahmin 

edici üretir ve meta öğrenici de meta tahmin edici üretir.  

Şekil 3.3‘de Meta-AÖM’nin basit bir ifade ile ağ yapısı verilmiştir.  

 

Şekil 3.3. Meta-AÖM’nin ağ yapısı 

TKYSA açısından bakıldığında, Meta-AÖM AÖM ağını Şekil 3.3’de gösterilen şekilde 

AÖM gizli katmanlarıyla eğitir. Meta-AÖM, veri kümesinin ayrık alt kümelerinde taban AÖM' 

leri ve hiyerarşik mimarinin oluştuğu tüm veri kümesinde bir "üst" AÖM' yi eğitir. 
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Meta-AÖM hiyerarşik bir öğrenme modelidir. Eğitim veri kümesini rastgele yeniden 

karıştırdıktan sonra, Meta-AÖM tüm veri kümesini ayrık alt kümelere böler, alt kümeler 

üzerinde tahminciler oluşturur ve AÖM' nin yaptığı gibi tahmin edicilerin ağırlıklarını analitik 

olarak belirler. 

Bu model, aşağıdaki ölçüt fonksiyonunu minimize etmelidir: 

𝐶 = ∑ [∑ 𝛽𝑠(𝐱𝑖)𝐴Ö𝑀𝑠(𝐱𝑖) − 𝑡𝑖
𝑆
𝑠=1 ]2𝑃

𝑖=1                                                                         (3.15) 

Burada, P örnek sayısı, S ise taban AÖM sayısına karşılık gelir. 𝐴Ö𝑀𝑠(𝐱𝑖) , s. sayılı 

taban AÖM'nin 𝐱𝑖 girdisi için çıkışıdır. 𝛽𝑠(𝐱𝑖) ise, 𝐱𝑖 girdisi için s. sayılı taban AÖM için ağırlık 

parametresidir. 

Bu yöntem için gizli katman matrisi H aşağıda gösterilmektedir. 

𝐇 = [
𝐡(𝐱1)
⋮

𝐡(𝐱𝑃)
] = [

𝐴Ö𝑀1(𝐱1) ⋯ 𝐴Ö𝑀𝑺(𝐱1)
⋮ ⋱ ⋮

𝐴Ö𝑀1(𝐱𝑃) ⋯ 𝐴Ö𝑀𝑆(𝐱𝑃)
]                                                         (3.16) 

Bu modelde de ağırlık parametreleri aşağıdaki denklem yardımıyla bulunur. 

𝜷 = 𝐇†𝐓                                                                                                                       (3.17) 

3.4. Çok Katmanlı Aşırı Öğrenme Makinesi  

Bu bölümde ÇK-AÖM anlatılmaktadır. ÇK-AÖM yapısında tek katmanlı AÖM yerine 

çok katmanlı AÖM katmanları vardır. Bu mimaride, son katman haricinde tüm katmanlar 

otomatik kodlayıcılardır (AE). HHT tekil olmadığında H matrisinin Moore-Penrose tersi 

HT(HHT)-1 olarak da gösterilebilir. Sırt regresyonu teorisi kullanıldığında, HHT matrisinin 

diyagonal elemanlarına (1/) değerleri eklenir. Sonuç olarak, bir katman için, ÇK-AÖM 

yapısının öğrenme denklemi Eşitlik 3.18’deki gibi olur. 

𝛃 = 𝐇𝑇 (
𝐈

𝜆
+ 𝐇𝐇𝑇)

−𝟏

𝐓                                                                 (3.18) 

ÇK-AÖM yapısında her gizli katman için temsili girişler bulunmaktadır. Katman k için 

temsili giriş N adet harici giriş kullanıldığında 𝐗(𝑘) = [𝐱1
(𝑘)
, … , 𝐱𝑁

(𝑘)
] olarak gösterilebilir. 

Katman k için 𝛃(𝑘) = [𝛃1
(𝑘)
, … , 𝛃𝑁

(𝑘)
] transformasyon matrisidir.  Bu şekilde temsili giriş 

hesaplaması Eşitlik 3.19’da gösterilmiştir. 

𝐗(𝑘) = 𝐇(𝑘)𝛃(𝑘)                     (3.19) 

Eşitlik 3.19 kullanılarak β(k) eşitlik 3.20’deki gibi öğrenilir. 
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𝛃(𝑘) = (𝐇(𝑘))
𝑇
(
𝐈

𝜆
+ 𝐇(𝑘)(𝐇(𝑘))

𝑇
)
−𝟏

𝐗(𝑘)                            (3.20) 

M katman için son katmanın çıkış matrisi H(M) olarak adlandırılır. Bu çıkış matrisini 

kullanarak son katmanın çıkış ağırlık matrisi β(M) Eşitlik 3.21’de gösterilen şekilde öğrenilir. 

𝛃(𝑀) = (𝐇(𝑀))
𝑇
(
𝐈

𝜆
+ 𝐇(𝑀)(𝐇(𝑀))

𝑇
)
−𝟏

𝐓                                       (3.21) 

ÇK-AÖM’nin eğitim ve test olmak üzere iki aşaması vardır. ÇK-AÖM eğitim ve test 

işlemlerinin akış şeması Şekil 3.4-3.5’de gösterilmektedir. Eğitim ve test yapılarının farklı 

olduğuna dikkat edin. ÇK-AÖM yapısında eğitim aşamasında öğrenilen β değerlerinin test 

aşamasında kullanılabilmesi için saklanması gerekir. Son olarak, test aşamasında eğitim 

aşamasının son katmanının ağırlık parametreleri kullanılır. 
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Şekil 3.4. M gizli katman için ÇK-AÖM eğitiminin akış şeması 
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Şekil 3.5. M gizli katman için ÇK-AÖM testinin akış şeması 
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4. ÇOK KATMANLI AŞIRI ÖĞRENME MAKİNESİ YAPILARI İLE 

DİNAMİK SİSTEM MODELLEME 

Bu bölümde ÇK-AÖM yapısının sistem modelleme başarımını arttırmayı ve hesaplama 

zamanını düşürmeyi amaçlayan iki İÇK-AÖM yapısı tanıtılacaktır. Ayrıca bu yapıları 

geliştirirken bir diğer motivasyonumuz da eğitim ve test aşamaları için aynı yapıyı 

kullanmaktır. İlk olarak geliştirilmiş birinci yapı ardından da ikinci yapı şekiller ve algoritma 

ile anlatılmıştır. 

4.1 İyileştirilmiş Çok Katmanlı Aşırı Öğrenme Makinesi Yapıları  

Geliştirilmiş olan ilk İÇK-AÖM (İÇK-AÖM1) yapısında bir katmanın temsili girişi bir 

önceki katmanın çıkış matrisi (H)’nin yine bir önceki katmanın çıkış ağırlık parametrelerinin 

çarpımı ile bulunmaktadır. ÇK-AÖM eğitim ve test aşamaları için iki ayrı yapı kullanırken İÇK-

AÖM1 aynı yapıyı eğitim ve test için kullanmaktadır. İÇK-AÖM1’in eğitim ve test aşamaları 

için kullandığı yapı Şekil 4.1’de gösterilmektedir. 

 

Şekil 4.1. M adet gizli katman için İÇK-AÖM1 yapısı 

İÇK-AÖM1’in ÇK-AÖM’e göre katkısı, İÇK-AÖM1’in eğitim ve test için Şekil 4.1’de 

görülen aynı yapıyı kullanmasıdır. İÇK-AÖM1’de her katman için ağırlık parametreleri (w) ve 

eşikler rastgele atanmaktadır. Bu durum da sistemdeki rastgeleliği arttırmaktadır. Sistemin 

öğrenebilirliği arttırmak için ikinci bir İÇK-AÖM (İÇK-AÖM2) yapısı tasarlanmıştır. 

Her katmanın temsili giriş hesaplama yolu ve aynı yapının eğitim ve test aşamaları için 

kullanması nedeniyle İÇK-AÖM1 hesaplama zamanını ÇK-AÖM’e göre düşürmektedir ve yapı 

daha basitleşmiştir. İÇK-AÖM1’in hesaplama işlemleri Algoritma 2’de gösterilmektedir. 
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Algoritma 2: İÇK-AÖM1 Yapısının Algoritması 

Başlangıç; 

              İlk katman için, ağırlık parametreleri w(1) ve Eşik(1) rastgele atanır 

              H(1) Eşitlik 3.4’e göre hesaplanır. 

             Çıkış ağırlık parametreleri β(1) Eşitlik 3.20’a göre öğrenilir. 

for k=2:M do 

Mevcut katmanın temsili girişi bir önceki katmanın çıkış matrisi H(k-1) ile bir önceki 

katmanın çıkış ağırlık parametrelerinin β(k-1) çarpımı ile bulunur. 

 Mevcut katman için w(k) ve Eşik(k) rastgele atanır. 

 H(k) Eşitlik 3.4’e göre hesaplanır. 

 Çıkış ağırlık parametreleri β(k) Eşitlik 3.20’e (k=M ise Eşitlik 3.21) göre öğrenilir. 

End 

Test aşaması için eğitim aşamasında kullanılan yapı kullanılmaktadır ve eğitim 

aşamasında kullanılan/öğrenilen giriş ağırlık parametreleri w, eşikler ve çıkış ağırlık 

parametreleri β kullanılmaktadır. 

Kısaca, öğrenme için ÇK-AÖM’e benzer bir yapı kullanılırken, test için ÇK-AÖM’den 

farklı bir yapı kullanılmaktadır. İÇK-AÖM1 öğrenmeden sonra da hücresel düğümler 

kullanmaktadır. ÇK-AÖM ise öğrenme aşamasında oluşturulmuş bir dönüşüm matrisi 

kullanmaktadır. 

İÇK-AÖM2 yapısı ise, temel olarak İÇK-AÖM1’i kullanmaktadır. İÇK-AÖM2, İÇK-

AÖM1 gibi öğrenme ve öğrenmeden sonra kullanım için aynı yapıyı kullanmaktadır. İÇK-

AÖM2 yapısında ilk katmanda giriş bağlantı ağırlıkları birbirlerine ortonormal olma koşuluyla 

rastgele atanmaktadır. Eşik parametreleri de (-1,1) aralığında orthonormal olarak rastgele 

atanmaktadır. Sonraki katmanların ağırlık parametre matrisi bir önceki katmanın çıkış ağırlık 

parametre matrisinin transpozesidir. Eşik parametreleri de ilk katmandaki şekilde atanmaktadır. 

Bu şekilde hesaplama zamanı çok daha fazla azaltılmıştır. Ağın yapısı Şekil 4.2’de 

gösterilmektedir. 

 

Şekil 4.2. M adet gizli katman için İÇK-AÖM2 yapısı 
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Daha önce bahsettiğimiz gibi İÇK-AÖM2 için yaptığımız değişikliler yapımızı çok daha 

sadeleştirmiştir. Artık tekrarlanan rastgele atamalar yoktur. Rastgele atama sadece ilk katmanda 

yapılmaktadır. Son katmanın çıkış ağırlık parametrelerini hariç tutarsak, her çıkış ağırlık 

parametresi 2 defa kullanılmaktadır (her katmanın çıkış ağırlık parametresi olarak ve bir sonraki 

katmanın giriş ağırlık parametresi olarak). İÇK-AÖM2 yapısının algoritması Algoritma 3’de 

gösterilmektedir. 

Algoritma 3: İÇK-AÖM2 Yapısının Algoritması 

Başlangıç; 

             İlk katman için, ağırlık parametreleri w(1) ve Eşik(1) rastgele atanır. 

             H(1) Eşitlik 3.4’e göre hesaplanır. 

             Çıkış ağırlık parametreleri β(1) Eşitlik 3.20’a göre öğrenilir. 

for k=2:M do 

Mevcut katmanın temsili girişi bir önceki katmanın çıkış matrisi H(k-1) ile bir önceki 

katmanın  çıkış ağırlık parametrelerinin β(k-1) çarpımı ile bulunur. 

Mevcut katman için giriş ağırlık parametreleri w(k) bir önceki çıkış ağırlık 

parametrelerinin transpozesi (β(k-1))T olarak alınmıştır ve Eşik(k) ise rastgele atanır. 

 H(k) Eşitlik 3.4’e göre hesaplanır. 

 Çıkış ağırlık parametreleri β(k) Eşitlik 3.20’e (k=M ise Eşitlik 3.21) göre öğrenilir. 

End 

Daha önce de bahsettiğimiz gibi İÇK-AÖM2 yapısında eğitim ve test aşamaları aynı 

yapıyı kullanmaktadır. İÇK-AÖM2’de, eğitim aşamasında kullanılan giriş ağırlık parametreleri 

w ve çıkış ağırlık parametreleri β test aşamasında da kullanılmaktadır. 

Yeniden belirtmek gerekirse, İÇK-AÖM2, İÇK-AÖM1 gibi eğitimde ve eğitimden 

sonra hesaplama yapmak için nöronlar kullanmaktadır. Bu özellik sayesinde geliştirdiğimiz 2 

yapı, temsili matris kullanmamaları ve adaptif bir hesaplama sunmaları ile ÇK-AÖM’den 

ayrılmaktadır. 

İÇK-AÖM yapılarının kısıtları: Her katmanın nöron sayıları birbirine eşittir. Ayrıca 

kullanıcı nöron sayısını ve aktivasyon fonksiyonun kendisi seçmektedir. 

Algoritmaların daha iyi bir tasviri Şekil 4.3 ve 4.4’de gösterilen akış şemalarında 

gösterilmektedir. Şemalardaki atama ve öğrenme işlem öbekleri eğitim aşamasında kullanılır. 

Eğitilen ağ işletilirken aynı işlemleri atama ve öğrenme öbeklerinde eğitim sırasında atanan ya 

da öğrenilen vektör/matrisi kullanılır. Sadece bu küçük fark ile ağ hem eğitim hem de eğitim 

sonrası işletilme aşaması için aynı işlem yapısına sahiptir. 
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Şekil 4.3. M gizli katmanlar için İÇK-AÖM1 ağ yapısının hesaplama akış şeması 
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Şekil 4.4. M gizli katmanlar için İÇK-AÖM2 ağ yapısının hesaplama akış şeması 
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Sonuç olarak İÇK-AÖM1 yapıları ÇK-AÖM’den daha hızlıdır (İÇK-AÖM2 çok daha 

hızlıdır) ve deneylerimizde gösterdiğimiz sonuçlara bakarak belirtebiliriz ki İÇK-AÖM yapıları 

dinamik sistem modelleme uygulamalarında ÇK-AÖM’e göre çok daha iyi bir başarım elde 

etmektedir. Bu arada bahsetmeliyiz ki, daha iyi sistem modelleme başarımları elde edebilmek 

için İÇK-AÖM yapıları otokodlayıcılar yerine aktivasyon fonksiyonları kullanmaktadır. 

Geliştirmiş olduğumuz yapı Elsevier Applied Soft Computing dergisinde “Multilayer 

extreme learning machines and their modeling performance on dynamical systems” başlıklı ile 

yayınlanmıştır (Kale ve Karakuzu, 2022). Yayınlanmış olduğumuz makaledeki kodların Code 

Ocean tarafından yeniden üretilebilir olduğu onaylanmıştır. Tekrarlanabilir Kapsül için bağlantı 

linki: https://doi.org/10.24433/CO.0688672.v1 

4.2 Dinamik Sistem Modelleme Problemleri 

Sistem modelleme, dinamik bir sistemin modelinin gerçek sistemden alınan giriş-çıkış 

ölçümleriyle bulunması anlamına gelir. Sistem modellemedeki amaç, belirli bir sisteme veri 

giriş-çıkışı ilişkisine dayanarak sistem üzerinde tekrar yapılacak çalışmalarda kullanılabilecek 

bir model kurmaktır.  

Sistem modelleme deneyleri için kullanılan denektaşı dinamik sistemleri (DDS) Tablo 

4.1’de listelenmiştir. Tablo 4.2’de de DDSler için giriş bileşenleri verilmiştir. Bu çalışmamızda 

ÇK-AÖM, İÇK-AÖM1 ve İÇK-AÖM2 yapılarının modelleme başarımları 7 değişik DDS 

üzerinde test edilmiştir. ÇK-AÖM ve İÇK-AÖM yapılarında aktivasyon fonksiyonu olarak 

logaritmik sigmoid transfer fonksiyonu (logsig) kullanılmıştır. 

Tablo 4.1. Sistem tanımlama için deneylerde kullanılan denektaşı dinamik sistemleri 

Sayı Denektaşı Dinamik Sistemi 

1 

y(k) =
y(k−1)y(k−2)(y(k−1)+2.5)

1+y2(k−1)+y2(k−2)
+ u(k), (Narendra ve Parthasarathy, 1990) 

u(k)eğitim = cos (
2πk

100
) , u(k)test = sin (

2πk

25
)   

2 

y(k + 1) =
y(k)

y2(k)+1
+ 1 + u3(k), (Narendra ve Parthasarathy, 1990) 

u(k)eğitim = cos (
2πk

100
) , u(k)test = sin (

2πk

25
)   

3 

y(k + 1) = y(k) + u(k)e−3|y(k)|, (Babuska, 2001) 

u(k)eğitim = [−1,1] aralığında rastgele mutlak değer   

u(k)test = [−1,1] aralığında rastgele mutlak değer    

4 y(k + 1) =
24+y(k)

30
y(k) + 0.8

u2(k)

1+u2(k)
y(k − 1) + 0.5u(k), (Oussar vd., 1998) 

https://doi.org/10.24433/CO.0688672.v1
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u(k)eğitim = [−5,5] aralığında rastgele mutlak değer   

u(k)test = [−5,5] aralığında rastgele mutlak değer    

5 

y(k + 1) = 0.5 (
y(k)

1+y2(k)
+ (1 + u(k))u(k)(1 − u(k))), (Sastry vd., 1994) 

u(k)eğitim = [−2,2] aralığında rastgele mutlak değer   

u(k)test = [−2,2] aralığında rastgele mutlak değer    

6 

y(k + 1) =
y(k)y(k+1)y(k−2)u(k−1)(y(k−2)−1)+u(k)

1+y2(k−1)+y2(k−2)
, (Juang, 2002) 

u(k)eğitim =

{
 
 

 
 sin (

πk

25
) , k < 250

1, 250 ≤ k < 500
−1, 500 ≤ k < 750 

0.3sin (
πk

25
) + 0.1sin (

πk

32
) + 0.6sin (

πk

10
) , k ≥ 750

  

u(k)test =

{
 
 

 
 −0.15cos (

πk

50
) + 0.5cos (

πk

16
) − 0.3cos (

πk

20
) ,   k < 250

1, 250 ≤ k < 500
−1, 500 ≤ k < 750 

cos (
πk

50
) , k ≥ 750

  

7 

y(k + 1) = 0.3y(k) + 0.6y(k − 1) + f(k), (Jang, 1993) 

f(k) = sinπu(k) + 0.3sin3πu(k) + 0.1sin5πu(k)  

u(k)eğitim = {
sin (

2πk

250
) , k < 500

0.5sin (
2πk

250
) + 0.5sin (

2πk

25
) , k ≥ 500

  

u(k)test =

{
 
 

 
 −0.15cos (

πk

50
) + 0.5sin (

πk

16
) − 0.3cos (

πk

20
) ,   k < 234

cos (
2πk

125
) , 234 ≤ k < 467

0.3sin (
2πk

250
) + 0.1cos (

πk

64
) − 0.6sin (

πk

20
) , k ≥ 467

  

Bu denektaşı dinamik sistemlerinde u(k) harici kontrol işaretidir. Her DDS için u(k) 

eğitim ve test veri kümelerini hazırlamak için kullanılır. DDS 1, DDS 2, ..., DDS 5 üzerinde 

yapılan deneylerde eğitim için 100 örnek, test için 100 örnek kullanılmıştır. DDS 6 üzerinde 

yapılan deneyde eğitim için 1000 örnek, test için 1000 örnek kullanılırken DDS 7 üzerinde 

yapılan deneylerde her iki aşama için 700 örnek kullanılmıştır. Modelleme için kullanılan giriş 

yapılandırması Tablo 4.2’de veridiği gibidir.  
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Tablo 4.2. Sistem tanımlaması için giriş bileşimleri 

DDS# Girişler 

DDS 1 𝑦(𝑘 − 1), 𝑦(𝑘 − 2), 𝑢(𝑘) 

DDS 2 𝑦(𝑘), 𝑢(𝑘) 

DDS 3 𝑦(𝑘), 𝑢(𝑘) 

DDS 4 𝑦(𝑘), 𝑦(𝑘 − 1), 𝑢(𝑘) 

DDS 5 𝑦(𝑘), 𝑢(𝑘) 

DDS 6 𝑦(𝑘), 𝑦(𝑘 − 1), 𝑦(𝑘 − 2), 𝑢(𝑘), 𝑢(𝑘 − 1) 

DDS 7 𝑦(𝑘), 𝑦(𝑘 − 1), 𝑢(𝑘) 
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5. ENGEBELİ VE KESKİN DEĞiŞİMLİ YÜZEYLERE SAHİP SİSTEM 

MODELLEME 

Bu çalışmada çok katmanlı aşırı öğrenme makinesi ile radyal tabanlı fonksiyonlu ağları 

birleştirerek HybRBF-ML-ELM adını verdiğimizağ yapısını tasarladık. Çok katmanlı aşırı 

öğrenme makinelerinde yüzey modelleme lokal optima noktalarını belirlemeden yapılmaktadır. 

Bu dezavantaj nedeniyle ÇK-AÖM yapısında lokal optimaları belirleyebilmek ve bu şekilde 

ÇK-AÖM yapısının yüzey modelleme başarımını arttırabilmek için yapıya bir Radyal Tabanlı 

Fonksiyon Ağı (RTFA) katmanı eklenmiştir. RTFA ÇK-AÖM yapısının ilk katmanına entegre 

edilmiştir. Deneysel sonuçlar, HybRBF-ML-ELM yapısının ÇK-AÖM yapısına göre çok daha 

iyi bir yüzey modelleme başarımı sağladığını açıkça göstermektedir. 

5.1. Yeni Hibrit Radyal Temelli Fonksiyonlu Çok Katmanlı AÖM Yapısı 

Geliştirilmiş olan yapının ağ yapısı toplamda 3 katmandan oluşmaktadır. Bu katmanlar 

sırasıyla RTF, AE ve Çıkış katmanlarıdır. İlk katmanda, Gauss fonksiyonu çekirdek olarak 

kullanılmaktadır. AE ve Çıkış katmanlarında kullanılan aktivasyon fonksiyonu hiperbolik 

tanjant (tansig)’dir. Şekil 5.1’de HybRF-ML-ELM’in yapısını eğitim ve test aşamaları için 

gösterilmektedir. RTF katmanında, Gauss aktivasyon fonksiyonunun merkez parametreleri 

homojen olarak örnek aralığına dağıtılmıştır. Standart sapma değerleri [0.5-1] aralığında 

rastgele atanmıştır. RTF katmanının ardından mevcut katmanın rastgele atanmış ağırlık 

parametreleri bir önceki katmanın çıkışı ile çarpılır ve AE katmanının temsili girişi hesaplanmış 

olur. 
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(a) 

 

(b) 

Şekil 5.1. HybRBF-ML-ELM yapısı: eğitim aşaması (a), test aşaması (b) 

RTF katmanı bir giriş verisini belirli bir kümeyle ilişkilendirir. Eşitlik 5.1’de gösterilen 

Gauss fonksiyonu çekirdek olarak kullanılır. RTF’nin avantajı, keskin geçişler için esnek 

modelleme yeteneğinde ve girdi-çıktı haritalama yüzeyinde çoklu minimum/maksimumda 

yatmaktadır. Bu katmanın bağlantıları birimdir ve girdileri bu katmandaki nöronlara iletirler. 

𝑢(𝑥) = ∑ 𝑒
−
‖𝑥−𝑐𝑖‖

2

𝜎𝑖
2𝑁

𝑖=1                                               (5.1) 
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Gauss fonksiyon parametrelerinde x girişi, ci merkez vektörlerini ve σi standart 

sapmaları temsil eder. AE ve Çıkış katmanları için, H matrisi tansig kullanılarak hesaplanır. 

Tasarlanan yapının eğitim ve test aşamaları için işlemler sırasıyla Algoritma 4 ve Algoritma 

5’de verilmektedir. 

Algoritma 4: HybRBF-ML-ELM yapısının eğitim aşaması algoritması. 

Başlangıç 

RTF Katmanı için; 
  Merkez parametreleri örnek aralığında homojen olarak dağıtılır. 

  Standart sapma parametreleri rastgele olarak [0.5-1] aralığında atanır. 

  Eşitlik 5.1’e göre Gauss çekirdek çıkışı hesaplanır. 

Bir sonraki katmanın temsili girişi, elde edilmiş sonucun rastgele orthonormal olarak 

atanan θ ağırlık parametreleriyle çarpılmasıyla hesaplanır. 

AE Katman için; 

  Ağırlık parametreleri w(1) rastgele orthonormal olarak atanır. 

  H(1) Eşitlik 3.4 kullanılarak hesaplanır. 

Çıkış ağırlık parametresi β(1) Eşitlik 3.20 kullanılarak öğrenilir. 

Çıkış Katmanı için; 

Mevcut katmanın giriş matrisi, bir önceki katmanın giriş matrisi ile β(1) 

parametresinin çarpılmasıyla elde edilir. 

Ağırlık parametreleri w(2) rastgele orthonormal olarak atanır. 

Eşitlik 3.4 kullanılarak Hfinal hesaplanır. 

Çıkış ağırlık parametresi β(final) Eşitlik 3.21 kullanılarak öğrenilir. 

 

Algoritma 5: HybRBF-ML-ELM yapısının test aşaması algoritması. 

Başlangıç 

RTF Katmanı için; 

Eşitlik 5.1’e göre eğitim aşamasında atanmış merkez ve standart sapma değerleriyle 

Gauss çekirdek çıkışı hesaplanır.  

Bir sonraki katmanın temsili girişi, Gauss aktivasyon fonksiyonunun çıkışıyla eğitim 

aşamasında atanan θ ağırlık parametrelerinin çarpılmasıyla hesaplanır. 

AE Katman için; 

 Temsili giriş β(1) ile çarpılır ve bir sonraki katmanın temsili girişi bulunur. 

Çıkış Katmanı için; 

Eğitim aşamasında atanmış ağırlık parametreleriyle (w(2)) Eşitlik 3.4 kullanılarak 

Hfinal hesaplanır. 

             O = Hfinal β(final) ile çıkış hesaplanır. 

 

5.2. Yüzey Modellemede Kullanılan Kıyaslama Fonksiyonları 

Bu çalışmada yüzey modelleme problemleri için Peaks, Griewank, Dropwave ve 

Schaffer 2 olmak üzere 4 adet kalite testi fonksiyonu kullanılmıştır. Bu fonksiyonların 

matematiksel tanımları, örnek uzayları ve 3 boyutlu yüzey betimlemeleri Tablo 5.1’de 

gösterilmiştir. 
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Tablo 5.1. Denektaşı test fonksiyonları 

FONKSİYON 

ADI 
Matematiksel Tanımı 3 Boyutlu Yüzeyi 

Peaks  

𝑓(𝑥) = 3(1 − 𝑥1)
2𝑒−𝑥1

2−(𝑥2+1)
2

− 10 (
𝑥1
5
− 𝑥1

3

− 𝑥2
5) 𝑒−𝑥1

2−𝑥2
2

−
1

3
𝑒−(𝑥1+1)

2−𝑦2  

𝑥𝑖 ∈
[−3 , 3 ] 
, i=1, 2. 

 

Griewank  𝑓(𝑥) =∑
𝑥𝑖
2

4000

𝑑

𝑖=1

−∏𝑐𝑜𝑠 (
𝑥𝑖

√𝑖
)

𝑑

𝑖=1

+ 1 

𝑥𝑖 ∈
[−5 , 5 ] 
, i=1, …, 
d. 

 

Dropwave  𝑓(𝑥) =  − 
1 + cos (12√𝑥1

2 + 𝑥2
2)

0.5(𝑥1
2 + 𝑥2

2) + 2
 

𝑥𝑖 ∈
[−2 , 2 ] 
, i=1, 2. 

 

Schaffer2  𝑓(𝑥) =  0.5 + 
𝑠𝑖𝑛2(𝑥1

2 − 𝑥2
2) − 0.5

[1 + 0.001(𝑥1
2 + 𝑥2

2)]2
 
𝑥𝑖 ∈
[−2 , 2 ] 
, i=1, 2. 
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6. DENEY SONUÇLARI 

Dinamik sistem modelleme ve engebeli, keskin değişimki yüzeylere sahip sistem 

modelleme problemleri üzerinde bu çalışma kapsamında geliştirilen üç özgün AÖM yapısının 

deney sonuçları bu bölümde yer almaktadır.  

6.1. Çok Katmanlı AÖM Yapıları ile Dinamik Sistem Modelleme Uygulaması 

Deneyler Intel (R) Core (TM) i7-4510U CPU 2 GHz, 8.00 GB RAM, 64 bit Windows 

8.1 işletim sistemli dizüstü bilgisayarda gerçekleştirilmiştir. Her DDS için ÇK-AÖM, İÇK-

AÖM1 ve İÇK-AÖM2 yapıları 100 defa koşulmuştur. Deneyler değişik düğüm sayıları ile 

yapılmıştır. 

Her DDS için başarım analizleri 10, 15, 20, 25, 30, 40, 50, 100 düğüm kullanarak 

yapılmıştır. Katman sayısı 3 olarak alınmış ve her katmandaki düğüm sayısı aynıdır.DDS 1’den 

DDS 7’ya kadar olan analiz sonuçları Tablo 6.1’de listelenmektedir. Bu tabloda verilen 

metrikler, yukarıda anılan her bir düğüm sayısı için ayrı ayrı 100er kez yapılmış deneyler 

sonucunda elde edilmiş metriklerin ortalamasıdır. Bu tabloda 3 kategoride başarım metrikleri 

verilmiştir. Eğitim için geçen süre saniye, kare kök ortalama karesel hata (RMSE) cinsinden 

eğitim veri seti için başarım, RMSE cinsinden test veri seti için başarım. Bunun yanı sıra İÇK-

AÖM yapılarının ÇK-AÖM yapısına oranla başarım farkı yüzde cinsinden eklenmiştir. 



 

3
8 

 

Tablo 6.1. Tüm DDS’ler için başarım analiz metrikleri. 
DDS Yapı Eğitim Zamanı Eğitim RMSE Test RMSE 

Ort En İyi En Kötü Std Ort En İyi En Kötü Std Ort En İyi En Kötü Std 

1 

ÇK-AÖM 0.007754 0.005295 0.031980 0.003166 0.691660 0.374657 0.897934 0.107618 0.939327 0.513410 1.656150 0.198839 

İÇK-AÖM1 0.006968 

(-10%) 

0.005487 

(4%) 

0.062573 

(96%) 

0.005900 

(86%) 

0.158001 

(-77%) 

0.137317 

(-63%) 

0.182700 

(-80%) 

0.008671 

(-92%) 

0.254354 

(-73%) 

0.217501 

(-58%) 

0.304714 

(-82%) 

0.016661 

(-92%) 

İÇK-AÖM2 0.005465 

(-30%) 

0.003312 

(-37%) 

0.040225 

(26%) 

0.005721 

(81%) 

0.195109 

(-72%) 

0.092293 

(-75%) 

0.333822 

(-63%) 

0.050543 

(-53%) 

0.313705 

(-67%) 

0.159599 

(-69%) 

0.576434 

(-65%) 

0.081994 

(-59%) 

2 

ÇK-AÖM 0.008257 0.005756 0.030778 0.002972 0.111888 0.043956 0.200160 0.033147 0.255077 0.118665 0.502613 0.077562 

İÇK-AÖM1 0.008302 

(1%) 

0.005494 

(-5%) 

0.136396 

(343%) 

0.013360 

(350%) 

0.113521 

(1%) 

0.109538 

(149%) 

0.119640 

(-40%) 

0.001948 

(-94%) 

0.213350 

(-16%) 

0.205675 

(73%) 

0.222668 

(-56%) 

0.003305 

(-96%) 

İÇK-AÖM2 0.004934 

(-40%) 

0.003307 

(-43%) 

0.027449 

(-11%) 

0.003094 

(4%) 

0.098776 

(-12%) 

0.084419 

(92%) 

0.114241 

(-43%) 

0.005869 

(-82%) 

0.162801 

(-36%) 

0.131467 

(11%) 

0.205828 

(-59%) 

0.013406 

(-83%) 

3 

ÇK-AÖM 0.006757 0.004935 0.022812 0.002049 0.043788 0.016991 0.086269 0.013856 0.116940 0.040256 0.261525 0.042354 

İÇK-AÖM1 0.006503 

(-4%) 

0.005479 

(11%) 

0.0029863 

(31%) 

0.002820 

(38%) 

0.096702 

(121%) 

0.090577 

(433%) 

0.103280 

(20%) 

0.002374 

(-83%) 

0.137063 

(17%) 

0.111311 

(181%) 

0.169053 

(-35%) 

0.011942 

(-72%) 

İÇK-AÖM2 0.005088 

(-25%) 

0.003296 

(-33%) 

0.035670 

(56%) 

0.004138 

(102%) 

0.084991 

(94%) 

0.073025 

(330%) 

0.097113 

(13%) 

0.004944 

(-64%) 

0.138689 

(19%) 

0.102517 

(155%) 

0.204633 

(-22%) 

0.020060 

(-53%) 

4 

ÇK-AÖM 0.008639 0.006764 0.032403 0.003101 0.457440 0.368015 0.559396 0.040371 0.880225 0.740992 1.028787 0.054026 

İÇK-AÖM1 0.006466 

(-25%) 

0.005499 

(-19%) 

0.027912 

(-14%) 

0.002500 

(-19%) 

0.197119 

(-57%) 

0.162733 

(-56%) 

0.230555 

(-59%) 

0.013488 

(-67%) 

0.445663 

(-49%) 

0.389518 

(-47%) 

0.506575 

(-51%) 

0.024916 

(-54%) 

İÇK-AÖM2 0.004304 

(-50%) 

0.003295 

(-51%) 

0.013222 

(-59%) 

0.001491 

(-52%) 

0.205383 

(-55%) 

0.128052 

(-65%) 

0.289463 

(-48%) 

0.033586 

(-17%) 

0.553100 

(-37%) 

0.419298 

(-43%) 

0.692630 

(-33%) 

0.053157 

(-2%) 

5 

ÇK-AÖM 0.006823 0.005046 0.025599 0.002349 0.382042 0.241470 0.573292 0.066938 0.577983 0.324601 0.909941 0.116529 

İÇK-AÖM1 0.006308 

(-8%) 

0.005480 

(9%) 

0.018392 

(-28%) 

0.001679 

(-29%) 

0.547743 

(43%) 

0.493925 

(105%) 

0.581726 

(1%) 

0.017752 

(-73%) 

0.523209 

(-9%) 

0.473988 

(46%) 

0.550691 

(-39%) 

0.015721 

(-87%) 

İÇK-AÖM2 0.005463 

(-20%) 

0.003380 

(-33%) 

0.022324 

(13%) 

0.002654 

(13%) 

0.344570 

(-10%) 

0.241380 

(0%) 

0.472900 

(-18%) 

0.048500 

(-28%) 

0.317759 

(-45%) 

0.208029 

(-36%) 

0.469107 

(-48%) 

0.052907 

(-55%) 

6 

ÇK-AÖM 0.499755 0.458654 0.805358 0.047345 0.093329 0.046668 0.149796 0.021389 0.130810 0.078266 0.190190 0.025004 

İÇK-AÖM1 0.379242 

(-24%) 

0.320060 

(-30%) 

0.517136 

(-36%) 

0.035066 

(-26%) 

0.034227 

(-63%) 

0.029672 

(-36%) 

0.040873 

(-73%) 

0.002423 

(-89%) 

0.029657 

(-77%) 

0.023857 

(-70%) 

0.039111 

(-79%) 

0.003263 

(-87%) 

İÇK-AÖM2 0.206773 

(-59%) 

0.175776 

(-62%) 

0.310811 

(-61%) 

0.031368 

(-34%) 

0.032556 

(-65%) 

0.024729 

(-47%) 

0.044372 

(-70%) 

0.003631 

(-83%) 

0.030308 

(-77%) 

0.020966 

(-73%) 

0.049632 

(-74%) 

0.005343 

(-79%) 

7 

ÇK-AÖM 0.201866 0.177324 0.288117 0.017631 1.129291 0.769299 1.301125 0.110983 1.399192 0.867911 2.120719 0.211331 

İÇK-AÖM1 0.154516 

(-23%) 

0.128529 

(-28%) 

0.313913 

(9%) 

0.029553 

(68%) 

0.109072 

(-90%) 

0.095379 

(-88%) 

0.133171 

(-90%) 

0.006761 

(-94%) 

0.121563 

(-91%) 

0.109850 

(-87%) 

0.143644 

(-93%) 

0.006111 

(-97%) 

İÇK-AÖM2 0.074915 

(-63%) 

0.063109 

(-64%) 

0.130063 

(-55%) 

0.012709 

(-28%) 

0.367961 

(-67%) 

0.165305 

(-79%) 

0.672807 

(-48%) 

0.112064 

(1%) 

0.413887 

(-70%) 

0.178144 

(-79%) 

0.802708 

(-62%) 

0.132409 

(-37%) 
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Tüm deney sonuçlarının ortalamaları Tablo 6.1’da verilmektedir. İÇK-AÖM 

sonuçlarının altında yazan yüzdelik rakamlar İÇK-AÖM yapılarının ÇK-AÖM yapısının 

başarımına göre değişimini göstermektedir. Örneğin, eğer yüzdelik rakam negatifse, bu İÇK-

AÖM yapısının daha başarılı olduğunu belirtmektedir. Bu veriler ışığında Tablo 6.1 

göstermektedir ki DDS 3 haricinde İÇK-AÖM2 yapısı ÇK-AÖM yapısından daha iyi sistem 

modelleme sonuçları vermektedir. Öte yandan İÇK-AÖM1 yapısı DDS 2, 3, ve 5 için daha iyi 

eğitim RMSE’si sunarken DDS 2 ve 5 için daha iyi test RMSE’si sunmaktadır. 

DDS 3 detayları ve keskin geçişleri olmayan bir problemdir ve bu da ÇK-AÖM’in İÇK-

AÖM yapılarına göre ortalama eğitim RMSE ve ortalama test RMSE açılarından daha iyi sonuç 

verme nedenidir. Ayrıca tüm DDSler için İÇK-AÖM yapıları çok daha hızlı hesaplama 

yapmaktadır. 

Değişik düğüm sayılarına göre DDS 5 ve DDS 7 için ortalama eğitim zamanı, ortalama 

eğitim RMSE ve ortalama test RMSE değişimleri Şekil 6.1 ve 6.2’de verilmektedir.  

 

(a)                                                                  (b) 

 

(c) 

Şekil 6.1. Düğüm sayısına göre DDS 5 için eğitim zamanı (a), eğitim veri kümesi için RMSE 

(b), test veri kümesi için RMSE (c) cinsinden başarım sonuçları. 
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DDS 5 için deney sonuçlarına bakıldığında, ÇK-AÖM en iyi başarımını 100 düğüm 

kullanarak elde ederken İÇK-AÖM1 en iyi başarımını 15 düğüm kullanarak elde etmiştir. Öte 

yandan İÇK-AÖM2 ise en iyi başarımını 30 düğüm kullanarak elde etmiştir. 100 düğüm 

kullanarak ÇK-AÖM, 0.016405 eğitim zamanında 0.323780 ortalama test RMSE elde 

etmektedir. Buna karşılık olarak İÇK-AÖM2, 0.004907 eğitim zamanında 0.226226 ortalama 

test RMSE elde etmektedir. DDS 5 için İÇK-AÖM2 sadece daha başarılı değil aynı zamanda 

%70 daha hızlı çalışmaktadır. 

 

(a)                                                               (b) 

 

(c) 

Şekil 6.2. Düğüm sayısına göre DDS 7 için eğitim zamanı (a), eğitim veri kümesi için RMSE 

(b), test veri kümesi için RMSE (c) cinsinden başarım sonuçları. 

Şekil 6.2’deki hesaplama zamanlarına bakıldığında, DDS 7 modellleme başarımları 

DDS 5 modelleme başarımlarına benzemekte ve 3 model için farklılıklar görülmektedir. ÇK-

AÖM, İÇK-AÖM1 ve İÇK-AÖM2 için ortalama eğitim zamanları 0.201866, 0.154516, ve 

0.074915’dir. Açıkça İÇK-AÖM yapılarının ÇK-AÖM yapısından daha hızlı oldukları 

görülmektedir. İÇK-AÖM1, ÇK-AÖM yapısından 23% hızlıyken, İÇK-AÖM2 yapısı ÇK-

AÖM yapısından 63% hızlıdır. DDS 7 için her düğüm sayısında İÇK-AÖM yapıları ÇK-AÖM 
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yapısından ortalama test RMSE cinsinden daha iyi başarım sunmaktadır. ÇK-AÖM yapısının 

en iyi başarımı 100 düğüm kullanarak elde edilmiştir. 100 düğüm kullanıldığında ÇK-AÖM, 

İÇK-AÖM1 ve İÇK-AÖM2 yapıları 0.627977, 0.104272 ve 0.092683 ortalama test RMSE 

sonuçları vermektedir. ÇK-AÖM ile karşılaştırıldığında İÇK-AÖM1 yapısı 83% daha iyi 

ortalama test RMSE sonuçları sağlarken İÇK-AÖM2 yapısı 85% daha iyi ortalama test RMSE 

sonuçları sağlamaktadır. 100 düğüm için hesaplama hızları karşılaştırıldığında İÇK-AÖM1 

ÇK-AÖM yapısından 13% hızlıyken, İÇK-AÖM2 ÇK-AÖM yapısından 63% hızlıdır. DDS 7 

için açıkça İÇK-AÖM yapıları ÇK-AÖM yapısına göre çok daha iyi sonuçlar vermiştir. 

Şekil 6.3 ve 6.4’de DDS 7 ‘nin 100 düğüm için ÇK-AÖM, İÇK-AÖM1 ve İÇK-AÖM2 

yapılarının en iyi ve en kötü modelleme başarımları sergilenmektedir. En iyi RMSE değerleri 

sırasıyla; 0.231169, 0.102676 ve 0.080124’dir. En kötü RMSE değerleri ise sırasıyla; 1.328345, 

0.106210 ve 0.108676’dır. RMSE değerlerine ve bu şekillere bakılarak İÇK-AÖM2’nin İÇK-

AÖM1’e göre daha başarılı bir sistem modelleme yapısı olduğu söylenebilirken, İÇK-AÖM1 

yapısı da ÇK-AÖM yapısına göre daha iyi bir sistem modelleme yapısıdır. 

 

(a)                                                                  (b) 

 

(c) 

Şekil 6.3. DDS 7’nin 100 düğüm için ÇK-AÖM (a), İÇK-AÖM1 (b), İÇK-AÖM2 (c) 

yapılarının en iyi sistem modelleme başarımları. 
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Şekil 6.3’e bakıldığında, detaylı ve keskin geçişlerde, İÇK-AÖM yapıları ÇK-AÖM 

yapısına göre daha iyi başarımlar sunmaktadır. Kendi aralarında kıyaslandıklarında, İÇK-

AÖM2 yapısı İÇK-AÖM1 yapısına göre daha başarılıdır. 

  

(a) (b) 

 

(c) 

Şekil 6.4. DDS 7’nin 100 düğüm için ÇK-AÖM (a), İÇK-AÖM1 (b), İÇK-AÖM2 (c) 

yapılarının en kötü sistem modelleme başarımları. 

Tüm yapılar için Şekil 6.4’de 100 kez koşma sınucunda elde edilen en kötü modelleme 

başarımlarını gösterilmektedir. ÇK-AÖM yapısının en kötü modelleme defoları İÇK-AÖM 

yapılarına göre çok daha belirgindir. En kötü durumlarında bile İÇK-AÖM yapıları ÇK-AÖM 

yapısına göre daha iyi modelleme sunmaktadır. 

6.2. Engebeli ve Keskin Değişimli Yüzeylere Sahip Sistem Modelleme 

Uygulaması 

Bu çalışmada deneyler Intel (R) Core (TM) i7-8565U CPU @ 1.80 GHz, 32.00 GB 

RAM, 64 bit Windows 10 Enterprise işletim sistemli masaüstü bilgisayar üzerinde yapılmıştır.  
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ÇK-AÖM ve HybRBF-ML-ELM yapılarında, yüzey modelleme deneylerinde eğitim 

için Peaks, Griewank, Dropwave ve Schaffer2 fonksiyonları sırasıyla 256, 1156, 1681 ve 1681 

örnek kullanır. Test aşaması için ise Peaks, Griewank, Dropwave ve Schaffer2 fonksiyonları 

sırasıyla 169, 676, 441 ve 441 örnek kullanır. Peaks, Griewank, Dropwave ve Schaffer2 

fonksiyonlarının HybRBF-ML-ELM ağı ile modellenmesinde sırasıyla 225, 841, 729 ve 729 

düğüm kullanılmaktadır. HybRBF-ML-ELM ağının her katmanında aynı sayıda düğüm 

kullanılmıştır. Her fonksiyon için deneyler 30 defa yapılmıştır. Bu çalışmadaki deneyler için 

ÇK-AÖM ve HybRBF-ML-ELM yapılarında aktivasyon fonksiyonu olarak tansig 

kullanılmıştır. 

ÇK-AÖM yapısı 3 katman ile kullanılmıştır. Her katman için kullanılan λ parametreleri 

sırasıyla 1000, 107 ve 109 olarak alınmıştır. Bu rakamlar  (Wong, Vong, Wong ve Cao, 

2018b)’dan esinlenerek ve çeşitli denemeler sonucunda uygun olduğu görüldüğünden tercih 

edilmiştir. 

HybRBF-ML-ELM yapısının RTF katmanında Gauss aktivasyon fonksiyonu 

kullanılmıştır. Bu fonksiyonun merkez değerleri denektaşı fonksiyonunun örnek uzayında 

homojen dağılımlı olarak atanmıştır. Standart sapma değeri de ayrıca 0.5 ve 1 değerleri arasında 

rastgele atanmıştır. HybRBF-ML-ELM yapısının öteki katmanlarında (AE ve Çıkış katmanları) 

λ parametreleri sırasıyla 1000 ve 109 olarak alınmıştır. 

Tablo 6.2’de yüzey modelleme başarımları her denektaşı test fonksiyonu için ortalama 

en iyi RMSE, en kötü RMSE ve standart sapma cinslerinden verilmektedir. Her bir yapı için 

ilgili algoritmalar 30 kez koşturulup ortalama değerleri verilmiştir. Bunun yanı sıra HybRBF-

ML-ELM yapısının ÇK-AÖM yapısına oranla başarım farkı yüzde cinsinden eklenmiştir. Bu 

yüzdelerin verildiği satırlarda siyah nokta işareti (●) bu çalışmada geliştirilen HybRBF-ML-

ELM yapısının rakibi ÇK-AÖM yapısından daha başarılı olduğunu göstermektedir. 
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Tablo 6.2. HybRBF-ML-ELM ile ÇK-AÖM yapılarının yüzey modelleme başarımlarının 

karşılaştırması 

  

Eğitim RMSE Test RMSE 

Ort En İyi En Kötü Std Ort En İyi En Kötü Std 

Peaks 

Fonksiyonu 

ÇK-AÖM 1,84E-02 1,38E-02 2,52E-02 2,85E-03 4,78E-02 2,38E-02 1,33E-01 2,84E-02 

HybRBF-ML-
ELM 

4,26E-03 
(●76,87%) 

2,50E-03 
(●81,83%) 

6,66E-03 
(●73,59%) 

1,08E-03 
(●62,00%) 

1,24E-02 
(●74,10%) 

8,32E-03 
(●64,99%) 

1,87E-02 
(●85,88%) 

2,43E-03 
(●91,45%) 

Griewank 

Fonksiyonu 

ÇK-AÖM 1,83E+00 4,35E-01 6,01E+00 1,19E+00 2,00E+00 7,98E-01 6,09E+00 1,14E+00 

HybRBF-ML-
ELM 

2,62E-03 
(●99,86%) 

1,35E-03 
(●99,69%) 

4,60E-03 
(●99,92%) 

8,28E-04 
(●99,93%) 

7,66E-03 
(●99,62%) 

5,98E-03 
(●99,25%) 

1,00E-02 
(●99,84%) 

1,18E-03 
(●99,90%) 

Dropwave 

Fonksiyonu 

ÇK-AÖM 1,77E+00 2,83E-01 4,16E+00 8,92E-01 1,80E+00 2,83E-01 4,24E+00 9,11E-01 

HybRBF-ML-

ELM 

2,88E-02 

(●98,37%) 

1,34E-02 

(●95,24%) 

5,83E-02 

(●98,60%) 

1,13E-02 

(●98,73%) 

2,86E-02 

(●98,41%) 

1,33E-02 

(●95,31%) 

5,79E-02 

(●98,64%) 

1,12E-02 

(●98,77%) 

Schaffer2 

Fonksiyonu 

ÇK-AÖM 3,00E+00 5,26E-01 9,83E+00 2,00E+00 3,06E+00 5,42E-01 1,00E+01 2,04E+00 

HybRBF-ML-

ELM 

2,40E-02 

(●99,20%) 

1,48E-02 

(●97,18%) 

3,32E-02 

(●99,66%) 

1,30E-02 

(●99,35%) 

2,42E-02 

(●99,21%) 

1,52E-02 

(●97,21%) 

3,32E-02 

(●99,67%) 

1,27E-02 

(●99,38%) 

Tablo 6.2 incelendiğinde geliştirilen HybRBF-ML-ELM yapısının ÇK-AÖM yapısına 

göre her problem için yüzey modellemede daha başarılı olduğu gözlemlenmektedir. 

Ortalama RMSE değerleri ele alındığında, ÇK-AÖM yapısı HybRBF-ML-ELM 

yapısına göre sadece Peaks fonksiyonu için yakın metrik değerler vermektedir. Öteki 

fonksiyonlar için ÇK-AÖM yapısı, HybRBF-ML-ELM yapısına yakın metrik sonuçlar 

verememektedir. Her kıyaslamalı test fonksiyonu için HybRBF-ML-ELM ve ÇK-AÖM 

yapılarının eğitim ve test kümeleri için en iyi modelleme başarım grafikleri Şekil 6.5-6.12’de 

verilmektedir. 
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(a) 

 
(b) 

Şekil 6.5. Peaks fonksiyonu için eğitim başarımı; HybRBF-ML-ELM (a) ve ÇK-AÖM (b) 
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(a) 

 
(b) 

Şekil 6.6. Peaks fonksiyonu için test başarımı; HybRBF-ML-ELM (a) ve ÇK-AÖM (b) 
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(a) 

 
(b) 

Şekil 6.7. Griewank fonksiyonu için eğitim başarımı; HybRBF-ML-ELM (a) ve ÇK-AÖM (b)  
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(a) 

 
(b) 

Şekil 6.8. Griewank fonksiyonu için test başarımı; HybRBF-ML-ELM(a) ve ÇK-AÖM (b)  
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(a) 

 

(b) 

Şekil 6.9. Dropwave fonksiyonu için eğitim başarımı; HybRBF-ML-ELM (a) ve ÇK-AÖM 

(b)  
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(a) 

 
(b) 

Şekil 6.10. Dropwave fonksiyonu için test başarımı; HybRBF-ML-ELM (a) ve ÇK-AÖM (b)  
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(a) 

 
(b) 

Şekil 6.11. Schaffer2 fonksiyonu için eğitim başarımı; HybRBF-ML-ELM (a) ve ÇK-AÖM 

(b)  
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(a) 

 
(b) 

Şekil 6.12. Schaffer2 fonksiyonu için test başarımı; HybRBF-ML-ELM (a) ve ÇK-AÖM (b) 

Tablo 6.2 incelendiğinde, HybRBF-ML-ELM yapısı en iyi modelleme başarımını 

Griewank fonksiyonu üzerinde elde etmiştir. Yukarıdaki şekillerde görüldüğü üzere, HybRBF-

ML-ELM için yüzey modelleme başarımları eğitim ve test aşamaları için oldukça iyidir.  
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7.  SONUÇLAR VE ÖNERİLER 

Çalışmamızda çok hızlı öğrenme özelliği ile öne çıkan AÖM’nin klasik AÖM, RTF-

AÖM, Meta-AÖM ve ÇK-AÖM gibi mevcut ağ yapıları ve öğrenme algoritmaları 

incelenmiştir. Anılan bu yapılar Bölüm 3’de anlatılmıştır. İncelenmiş olan yapıların üstün ve 

sakıncalı yönleri belirlenerek edinilen deneyim çerçevesinde AÖM yapılarında iyileştirme ve 

yeni karma yapı öne sürülürek toplam 3 ağ yapısı geliştirilmiştir. 

Çalışmamız kapsamında ÇK-AÖM mimarisinde iyileştirme yapılmıştır. Bölüm 4’de 

geliştirilmiş olan yapıdan ayrıntılı olarak bahsedilmiştir. Bölüm 6.1 de de elde edilen deney 

sonuçlarına yer verilmiştir. Deney sonuçları incelendiğinde; Tablo 6.1 ile ilgili olarak, 

tasarlanan İÇK-AÖM mimarileri, keskin geçişlere sahip dinamik sistemlerin (DDS 1, DDS 2, 

DDS 4-7) modellenmesinde ÇK-AÖM’den daha iyi sonuçlar vermektedir. Ancak, İÇK-AÖM 

mimarileri, yumuşak geçişlere (DDS 3) sahip dinamik sistemlerde ÇK-AÖM’den daha iyi 

başarımı göstermez. Bu araştırmada tanıtılan yeni girdi temsili hesaplamaları nedeniyle, Tablo 

6.1’de verilen sonuçlara göre İÇK-AÖM1, ÇK-AÖM’den daha hızlıdır. Yalnızca DDS 2’de, 

ÇK-AÖM, İÇK-AÖM1’den daha hızlı bir eğitim süresine sahiptir. Öte yandan, İÇK-AÖM2, 

tüm durumlarda hem ÇK-AÖM hem de İÇK-AÖM1’den çok daha hızlıdır. Yumuşak geçişlere 

sahip dinamik sistemlerin modellenmesinde İÇK-AÖM’lerin ÇK-AÖM’den daha başarılı 

olmayabileceği özetlenebilir; bununla birlikte, İÇK-AÖM’ler keskin geçişlere sahip dinamik 

sistemleri modellemede daha iyi başarım gösterir. Son olarak, İÇK-AÖM1’in ÇK-AÖM’den 

daha hızlı olduğunun ve İÇK-AÖM2’nin geleneksel ÇK-AÖM’den çok daha hızlı olduğunun 

altı çizilebilir. 

Sonuç olarak; eğitim süresi bakımından İÇK-AÖM1 yapısı, ÇK-AÖM yapısına göre 

biraz daha hızlı iken İÇK-AÖM2 yapısı her iki yapıdan da çok daha hızlıdır. Çünkü İÇK-AÖM2 

rastgele giriş ağırlık parametreleri atamaları sadece ilk katmanda yapmaktadır. Keskin olmayan 

geçişlere sahip dinamik sistemlerin modellemesinde, İÇK-AÖM yapıları ÇK-AÖM yapısı 

kadar başarılı değildir. Öte yandan keskin geçişlere sahip dinamik sistemlerin modellemesinde 

İÇK-AÖM yapıları ÇK-AÖM’e göre çok daha başarılıdır. Tüm DDSler için ÇK-AÖM en iyi 

başarımını 100 düğüm kullanıldığında elde etmiştir ve bu hesaplama zamanını dramatik olarak 

etkilemekte ve yavaşlatmaktadır. DDS 3 haricinde, İÇK-AÖM yapıları tüm DDS 

modellemelerinde ÇK-AÖM’e göre daha başarılıdır. Özetle, İÇK-AÖM yapıları ÇK-AÖM 

yapısına göre sadece daha iyi değil aynı zamanda hızlı yapılardır. Bu gerçeklere dayanarak 

İÇK-AÖM yapıları verimli ve uygulanabilir sistem modelleme mimarisidir denilebilir. 
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Bu tez kapsamında diğer bir özgün çalışmamız yeni bir karma AÖM yapısının 

önerilmesidir. Bölüm 5’te de anlatılmış olan HybRBFNN-ML-ELM yapısı engebeli ve keskin 

değişimlere sahip yüzey modelleme problemlerinde ÇK-AÖM yapısının eksikliklerini 

gidermiştir. Elde edilen deney sonuçları incelendiğinde; Tablo 6.2 ve Şekiller 6.5-6.12’de 

HybRBF-ML-ELM yapısının ÇK-AÖM yapısına göre yüzey modelleme alanında daha üstün 

olduğu görülmektedir. Yüzey modelleme alanında ÇK-AÖM yapısı yaygın olarak 

kullanılmamaktadır. Ancak, Tablo 6.2 ele alındığında ÇK-AÖM yapısının yüzey modelleme 

başarımının iyi olmadığı gürülmüştür.  

Sonuç olarak, ÇK-AÖM yapısı yüzey modelleme için bu çalışmada geliştirilen 

HybRBF-ML-ELM yapısından daha kötüdür. ÇK-AÖM yapısı, yüzey modelleme konusunda 

sadece Peaks fonksiyonu için HybRBF-ML-ELM’in metrik değerlerine daha yakın değer 

vermektedir. Öte yandan, geliştirilen HybRBF-ML-ELM yapısının dört farklı kıyaslama test 

fonksiyonunda modelleme başarımı iyidir. Açıkça görüldüğü gibi, geliştirilen HybRBF-ML-

ELM yapısı, ÇK-AÖM’den daha iyi yüzey modelleme başarımına sahiptir. 

Çalışmamız kapsamında önermiş olduğumuz yeni karma yapının iyileştirilmesi 

mümkündür. HybRBFNN-ML-ELM yapısında otomatik kodlayıcı ve çıkış katmanında ÇK-

AÖM yapısı kullanılmıştır. Bu katmanlarda İÇK-AÖM1 ve İÇK-AÖM2 yapıları kullanılarak 

yeni bir karma ağ yapısı geliştirilebilir. Diğer bir öneri olarak, bu çalışmada geliştirilen AÖM 

yapılarının sınıflama problemlerinde başarımı ayrıca incelenebilir. Bu yapıda kullanılan düğüm 

sayıları bu çalışma çerçevesinde eğitim ve test örnek sayılarının arasında olacak şekilde 

alınmıştır. Düğüm sayıları ile ilgili daha detaylı bir analiz yapılarak kullanılacak düğüm sayısı 

için bir yaklaşım geliştirilebilir. 
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