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ÖZET 

 

Doktora Tezi 

 

ELEKTRİKLİ ARAÇLAR İÇİN MENZİL TAHMİNİNE DAYALI ŞARJ 

PLANLAMA MODELİ 

 

Hilal YILMAZ 

 

Bursa Uludağ Üniversitesi 

Fen Bilimleri Enstitüsü 

Endüstri Mühendisliği Anabilim Dalı 

 

Danışman: Prof. Dr. Betül YAĞMAHAN 
 

Menzil kaygısı sorunu (range anxiety) elektrikli araçlara (EA’lara) geçişi olumsuz yönde 

etkileyen en önemli faktörlerden biri olmaya devam etmektedir. Menzil kaygısını 

tetikleyen unsurlar arasında EA sürücülerinin kalan menzil göstergelerine yeterince 

güvenmemeleri gelmektedir. Bununla birlikte, EA sürücüsünün yolculuğun başında kalan 

menzil bilgisine göre rota üzerinde şarj için durması gereken yerleri bilmesinin de menzil 

kaygısını düşürme potansiyeli bulunmaktadır. Akıllı ulaşım teknolojileri sayesinde 

EA’ların sürücü bilgilendirme sistemleri gerçek-zamanlı verilere erişebilse de belirlenen 

rotanın koşulları dikkate alınarak menzil tahmini yapılmadığı sürece oluşturulan şarj 

planının menzil kaygısını azaltması beklenemez. Bu çalışmanın amacı, belirlenen bir rota 

için gerçek-zamanlı menzil tahminine dayalı şarj planı oluşturarak EA’nın minimum 

yolculuk süresi veya maliyeti için nerede ve ne kadar şarj olması gerektiğini belirlemektir. 

Menzil tahmini için, yolculuğa ait statik öznitelikler ve dinamik öznitelikleri girdi olarak 

alan derin sinirsel ağ (DSA) modeli kullanılmıştır. Şarj planlaması kapsamında, şarj 

istasyonlarında doğrusal olmayan şarj süresini, zaman dilimlerine bağlı değişen şarj 

fiyatlarını, uygunluklarını (dolu/boş bilgisi), araçtan şebekeye enerji satışı uygulamalarını 

(Vehicle to grid /V2G), birden fazla ve farklı güç seviyelerinde şarj ünitelerini dikkate 

alan karma tamsayılı doğrusal programlama modeli geliştirilmiştir. Ancak geliştirilen 

matematiksel programlama modelin çözüm elde etme süresi açısından yetersiz kalması 

nedeniyle çözüm yaklaşımı olarak genetik algoritma ve matematiksel programlama 

modelinin hibrit kullanımından oluşan mat-sezgisel bir yaklaşım önerilmiştir. 32 farklı 

büyüklükteki problem üzerinde yapılan test sonuçları, mat-sezgisel yaklaşımının hem 

minimum yolculuk süresi hem de minimum yolculuk maliyeti için genetik algoritma ve 

sezgisel yaklaşımlardan daha başarılı sonuçlar verdiğini göstermektedir. 

 

 
 

Anahtar Kelimeler: Elektrikli araçlar, menzil tahmini, şarj planlaması, yapay zekâ, 

karma tamsayılı doğrusal programlama, mat-sezgisel, genetik algoritma 

 

2022, vii + 98 sayfa. 
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ABSTRACT 

 

PhD Thesis 

 

CHARGING PLANNING MODEL FOR ELECTRIC VEHICLES BASED ON 

RANGE PREDICTION 

 

Hilal YILMAZ 

 

 Bursa Uludag University  

Graduate School of Natural and Applied Sciences 

Department of Industrial Engineering 

 

Supervisor: Prof. Dr. Betül YAĞMAHAN 

 

Range anxiety continues to be one of the most important factors negatively affecting the 

transition to electric vehicles (EVs). Factors that trigger range anxiety include EV drivers 

not relying enough on remaining range indicators. However, it has the potential to reduce 

range anxiety if the EV driver knows where to stop for charging on the route according 

to the range information remaining at the beginning of the journey. Although driver 

information systems of EVs can access real-time data thanks to smart transportation 

technologies, it cannot be expected that the created charging plan will reduce range 

anxiety unless range prediction is made considering the conditions of the determined 

route. The aim of this study is to determine where and how much the EV should be 

charged for minimum travel time or cost by creating a charging plan based on real-time 

range prediction for a specified route. The deep neural network (DNN) model was trained 

by using the inputs of the static features and dynamic features of the journey in the range 

prediction model. In the charge planning model, the amount of energy consumed between 

the nodes on the route was obtained by the range prediction model. Within the scope of 

charging planning, a mixed integer programming model is developed that take into 

account non-linear charging times, charging prices that vary depending on time slots, 

vehicle to the grid (V2G) applications, of charging units, multiple charger points with 

different power levels and their availability (occupied/free). However, since the 

developed mathematical programming model was insufficient in terms of the solution 

time, a mat-heuristic approach consisting of hybrid use of genetic algorithm and 

mathematical programming model was proposed as a solution approach. Test results on 

32 various problems indicate that the mat-heuristic approach outperforms the 

metaheuristic and heuristics for both minimum travel time and minimum travel cost. 
 

Key words: Electric vehicles, range prediction, charge planning, artificial intelligence, 

mixed integer linear programming, mat-heuristic, genetic algorithm 
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SİMGELER ve KISALTMALAR DİZİNİ 

 

 

Simgeler Açıklama 

𝐴𝑖
𝑎 EA’nın 𝑖.  şarj istasyonuna vardığı sırada yolculuk süresinin H zaman 

dilimini geçme sayısı 

𝐴𝑖
𝑑 EA’nın 𝑖.  şarj istasyonundan ayrıldığı sırada yolculuk süresinin H zaman 

dilimini geçme sayısı 

𝐵  EA’nın batarya kapasitesi (kWh) 

𝐵𝑚𝑖𝑛  Kabul edilebilir minimum SOC yüzdesi (%) 

𝑏𝑝 Doğrusal olmayan şarj süresinin EA’nın enerjisine bağlı kırılma noktası 

(%) 

𝑐𝑖𝑓ℎ
𝑔

  𝑖. şarj istasyonunun 𝑓. şarj ünitesinin ℎ. zaman dilimindeki deşarj fiyatı 

($/dk) 

𝑐𝑖𝑓ℎ
𝑣   𝑖. şarj istasyonunun 𝑓. şarj ünitesinin ℎ. zaman dilimindeki şarj fiyatı 

($/dk) 

𝐶𝐻𝑖  𝑖. şarj istasyonundaki  şarj üniteleri 

𝐶𝑆  Şarj istasyonları kümesi 

𝛿𝑖𝑓ℎ
1  EA, 𝑖. şarj istasyonunun 𝑓. şarj ünitesinin ℎ. zaman diliminde vardığında 

geçen zaman dilimi sayısı 𝐻’ı geçmezse 1, aksi takdirde 0  

𝛿𝑖ℎ
2   EA, 𝑖. şarj istasyonuna ℎ. zaman diliminde varırsa 1, aksi takdirde 0 

𝛿𝑖ℎ
3   EA, 𝑖. şarj istasyonundan ℎ. zaman diliminde ayrılırsa 1, aksi takdirde 0 

𝑒𝑖 Başlangıç düğümünden 𝑖. düğüme varmak için gereken birikimli enerji 

miktarı (kWh) 

𝑓𝑖
𝑠  𝑆 kümesindeki 𝑖. şarj istasyonunda uğranılacak şarj ünitesi 

𝐺𝑖
𝑔

  EA’nın 𝑖. şarj istasyonuna aktardığı enerji miktarı (kWh) 

𝐺𝑖
𝑣  EA’nın 𝑖. şarj istasyonundan aldığı enerji miktarı (kWh) 

𝐻 Zaman dilimi sayısı 

ℎ0 Yolculuğun başladığı zaman dilimi 

𝐼𝑖
𝑎 EA’nın 𝑖. şarj istasyonuna vardığı zaman dilimi 

𝐼𝑖
𝑎 Kayan pencereler yöntemi ile elde edilen EA’nın 𝑖. şarj istasyonuna en 

erken vardığı zaman dilimi 

𝐼𝑖
𝑑 EA’nın 𝑖. şarj istasyonundan ayrıldığı zaman dilimi 

𝐼𝑖
𝑑 Kayan pencereler yöntemi ile elde edilen EA’nın 𝑖. şarj istasyonundan en 

geç ayrıldığı zaman dilimi 

𝐼𝑓
𝑠  𝑖. şarj istasyonundaki 𝑓. şarj ünitesinin uygun olduğu zaman dilimleri 

𝑙 Yolculuğu tamamlamak için gereken enerji miktarı (kWh) 

𝑀 Zaman dilimi uzunluğu (dk) 

𝑚𝑖 𝑖. şarj istasyonundaki şarj ünitesi sayısı 

𝑛 Şarj istasyonu sayısı 

𝑝𝑖𝑓 𝑖. şarj istasyonunun 𝑓. şarj ünitesinin şarj gücü (kW) 

𝑟0 Yolculuğun başında kalan enerji miktarı (kWh) 

𝑅𝑖
𝑎 EA’nın 𝑖. şarj istasyonuna varış anındaki enerji miktarı (kWh) 

𝑅̂𝑖
𝑎 Kayan pencereler yöntemi ile elde edilen EA’nın 𝑖. şarj istasyonuna varış 

anındaki kalan enerji miktarı (kWh) 
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𝑅𝑖
𝑑 EA’nın 𝑖. şarj istasyonundan ayrıldığındaki enerji miktarı (kWh) 

𝑅̂𝑖
𝑑 Kayan pencereler yöntemi ile elde edilen EA’nın 𝑖. şarj istasyonundan 

ayrılırken kalan enerji miktarı (kWh) 

𝑆 Uğranılacak şarj istasyonları kümesi 

𝑆′  Uğranılacak şarj istasyonları kümesi dışındaki şarj istasyonları 

𝑠𝑖  Başlangıç düğümünden 𝑖. düğüme varmak için gereken yolculuk süresi 

(dk) 

𝑠𝑝 Doğrusal olmayan şarj süresinin kırılma noktasından sonraki eğimi (%) 

𝑇 Yolculuğun hiç durmaksızın tamamlanma süresi (dk) 

𝑇𝑖
𝑎 EA’nın 𝑖. şarj istasyonuna varış zamanı (dk) 

𝑇̂𝑖
𝑎  Kayan pencereler yöntemi ile elde edilen 𝑖. şarj istasyonuna varış zamanı 

(dk) 

𝑇𝑖
𝑑 EA’nın 𝑖. şarj istasyonundan ayrılış zamanı (dk) 

𝑇̂𝑖
𝑑  Kayan pencereler yöntemi ile elde edilen 𝑖. şarj istasyonundan ayrılış 

zamanı (dk) 

𝑡𝑖𝑓ℎ
𝑔

  EA’nın 𝑖. şarj istasyonunun 𝑓. şarj ünitesinden ℎ. zaman dilimindeki deşarj 

süresi (dk) 

𝑡𝑖𝑓ℎ
𝑣   EA’nın 𝑖. şarj istasyonunun 𝑓. şarj ünitesinden ℎ. zaman dilimindeki şarj 

süresi (dk) 

𝑇𝑆 Zaman dilimleri kümesi  

𝑤𝑖𝑓ℎ  𝑖. şarj istasyonunun 𝑓. şarj ünitesinin ℎ. zaman dilimindeki uygunluk 

durumu (boş:1/dolu:0) 

𝑥𝑖
𝑔

 EA, 𝑖. şarj istasyonunda deşarj edilirse 1, aksi takdirde 0 

𝑥𝑖
𝑣 EA, 𝑖. şarj istasyonunda şarj edilirse 1, aksi takdirde 0 

𝑦𝑖𝑓ℎ
𝑔

  EA, 𝑖. şarj istasyonunun 𝑓. şarj ünitesinden ℎ. zaman diliminde deşarj 

edilirse 1, aksi takdirde 0 

𝑦𝑖𝑓ℎ
𝑣   EA, 𝑖. şarj istasyonunun 𝑓. şarj ünitesinden ℎ. zaman diliminde şarj edilirse 

1, aksi takdirde 0 

𝜏𝑖𝑓(𝑥)  EA’nın 𝑖. şarj istasyonundaki 𝑓. şarj ünitesinde enerji miktarını sıfırdan 𝑥 

seviyesine (kWh) çıkarmak için gereken toplam süre (dk) 

𝜑𝑖ℎ
𝑎   EA,  𝑖. şarj istasyonuna ℎ. zaman diliminde varıp şarj/deşarj işlemini aynı 

gün içerisinde tamamlarsa 1, aksi takdirde 0 

𝜑𝑖ℎ
𝑑   EA, 𝑖. şarj istasyonundan ℎ. zaman diliminde ayrılıp şarj/deşarj işlemini 

aynı gün içerisinde tamamlarsa 1, aksi takdirde 0 

𝜙𝑖ℎ
𝑎   EA, 𝑖. şarj istasyonuna ℎ. zaman diliminde varıp şarj/deşarj işlemini aynı 

gün içerisinde tamamlamazsa 1, aksi takdirde 0 

𝜙𝑖ℎ
𝑑   EA,  𝑖. şarj istasyonundan ℎ. zaman diliminde ayrılıp şarj/deşarj işlemini 

aynı gün içerisinde tamamlamazsa 1, aksi takdirde 0 

𝜁𝑖  EA, aynı gün içerisinde 𝑖. şarj istasyonda şarj/deşarj işlemini tamamlarsa 

1, aksi takdirde 0  

𝜉𝑖  EA, aynı gün içerisinde 𝑖. şarj istasyonda şarj/deşarj işlemini 

tamamlamazsa 1, aksi takdirde 0 
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Kısaltmalar Açıklama 

AC  Alternatif Akım (Alternative Current) 

AUS  Akıllı Ulaşım Sistemleri  

ClaSP  Sınıflandırma Puan Profili (Classification Score Profile) 

DC  Doğru Akım (Direct Current) 

DFS   Derin Öncelikli Arama (Depth First Search) 

DSA  Derin Sinirsel Ağlar 

DZB  Dinamik Zaman Bükme (Dynamic Time Wrapping) 

EA  Elektrikli Araç 

EASMT EA’larda Sürüş Menzili Tahmini 

EAŞP  EA’larda Şarj Planlama  

EPA  Çevreyi Koruma Ajansı (Environmental Protection Agency)  

FFM  Fiziksel Formülasyon Modeli 

GA  Genetik Algoritma 

IoT  Nesnelerin İnterneti (Internet of Things) 

Li-ion  Lityum-iyon  

MSE  Ortalama Kare Hata (Mean Squarred Error)  

MAE  Ortalama Mutlak Hata (Mean Absolute Error)  

MAT-GA Mat-sezgisel (Genetik Algoritma Tabanlı Matematiksel Model) 

RMSE  Kök Ortalama Kare Hata (Root Mean Squarred Error)  

SMAT-GA Sınırlandırılmış MAT-GA 

SOC  Bataryanın Şarj Durumu (State of Charge)  

SŞPM  Sınırlandırılmış Şarj Planlama Modeli 

ROR  Rasgele Orman Regresyonu 

V2G  Araçtan Şebekeye (Vehicle to Grid) 

VTM  Veri Tabanlı Model 
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1. GİRİŞ 

 

Akıllı evler, akıllı şebeke, akıllı şehirler... Son yıllarda birçok alanda karşılaşabileceğimiz 

“akıllı” sistemler, kullanıldıkları gerçek zamanlı verileri ile optimal geribildirimler 

sunabilmekte ve dinamik koşullar altında karar verme sürecinin kolaylaştırılması 

sağlamaktadır. Cihazların da internete erişebilmesine olanak sağlayan nesnelerin 

teknolojisi (Internet of Things-IoT) akıllı sistemlerin büyük veriyi kullanarak daha 

kapsamlı geribildirimler üretmesine olanak sağlar. 

 

Birçok dinamik ve gerçek-zamanlı kararların verildiği ulaşım alanı, akıllı sistem 

uygulamalarının en sık kullanıldığı alanlardan biridir. Akıllı ulaşım sistemleri (AUS), 

bulut ve IoT gibi teknolojiler aracılığıyla aktarılan gerçek zamanlı veriler ile ulaşımda 

yönetimi ve iyileşmeyi sağlayan bir karar destek sistemidir. AUS, seyahatleri optimize 

etmeye (rota rehberliği), seyahat edilen gereksiz kilometreleri azaltmaya ve trafikte 

harcanan zamanı azaltmaya yardımcı olabilmektedir (Susan ve Finson, 2013). 

 

Yeşil ulaşımın yapıtaşlarından biri olan elektrikli araçların (EA) yakındaki şarj 

istasyonlarının konumlarına, şarj gücüne, şarj fiyatlarına, doluluk-boşluk bilgilerine 

ulaşması AUS ile mümkün hale gelmiştir (Yi ve Shirk, 2018). Başlangıçta özellikle şehir 

içi ulaşıma uygun olarak tasarlanan EA’lar, gelişen batarya teknolojisi sayesinde uzun 

yolculuklar yapabilir duruma gelmişlerdir (Ullah, Liu, Yamamoto, Zahid ve Jamal, 

2021). Dahası, EA’lar, sıfır emisyona sahip olduklarından çevre dostu araçlar olarak 

değerlendirilmekte ve gelecekte içten yanmalı araçların yerini tamamen almaları 

öngörülmektedir (Un-Noor Padmanaban, Mihet-Popa, Mollah ve Hossain, 2017). 

 

Birçok Avrupa ülkesi, 2030 yılına kadar her türlü geleneksel içten yanmalı aracı 

yasaklamaya hazırlanmaktadır. Ancak, EA’ların tamamen geleneksel araçların yerine 

geçebilmesi için sürücülerin menzil kaygısı yaşamadan istedikleri her yere EA ile 

gidebilecek kadar EA’lara güven duymaları gerekmektedir. Menzil kaygısı, varış 

noktasına veya herhangi bir yakıt istasyonuna ulaşmadan önce yakıtın bitme korkusudur 

ve günümüzde EA’lara geçişi olumsuz yönde etkileyen en önemli faktörlerden biri 

olmaya devam etmektedir. EA’ların sınırlı menzilleri, uzun şarj süreleri ve yetersiz 
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sayıdaki şarj istasyonları (özellikle EA’ların yeni kullanılmaya başlandığı yerlerde) gibi 

faktörler menzil kaygısını tetiklemektedir.  Menzil kaygısı, potansiyel bir EA alıcısında, 

EA kullanmanın önemli riskler taşıdığına dair bir algı oluşturabilir (Tannahill, Muttaqi 

ve Sutanto, 2016). Menzil kaygısının azaltılmasında EA’nın kalan sürüş menzili ile 

gidebileceği mesafenin bilinmesinin önemli bir katkısı bulunmaktadır (Varga, Sagoian ve 

Mariasiu, 2019). Bu nedenle, EA sürücülerine doğru bir kalan menzil bilgisi sağlanması, 

menzil kaygılarının hafifletilmesi açısından önemlidir. Ayrıca Türkiye'de de EA'lara 

geçişin önündeki en büyük engel olarak, menzil kaygısı ve kamu farkındalığının 

düşüklüğü olduğu belirlenmiştir (Gönül, Duman ve Güler, 2021). 

 

EA’larda kalan sürüş menzilinin doğru bir şekilde belirlenebilmesi için EA’nın kalan 

sürüş menziline etki eden faktörler dikkate alınmalıdır. Şekil 1.1’de kalan sürüş menziline 

doğrudan etki eden faktörler ve etki yüzdeleri gösterilmiştir. Gösterilen sonuçlara göre 

gerçek dünya koşulları altında batarya şarj durumu (SOC-State of Charge) faktörünün 

kalan sürüş menziline etkisi %54’e kadar çıkabilmektedir. Geriye kalan %46’yı sıcaklık, 

sürüş biçimi, yol ve trafik koşulları oluşturmaktadır (Varga vd., 2019). EA’ların 

navigasyon sistemlerindeki menzil tahmin modellerinin yalnızca EA’nın teknik 

parametrelerini kullanması, sürüş yapılan rotanın ve diğer dinamik faktörlerin dikkate 

alınmaması nedeniyle yapılan menzil tahminleri yanıltıcı sonuçlara yol açmaktadır 

(Sarrafan vd. 2018, Ullah, Liu, Yamamoto, Zahid vd., 2021). Menzil tahminindeki büyük 

dalgalanmalar, özellikle eğimli yollarda veya yüksek hızlarda sürüş gibi yoğun enerji 

gerektiren durumlarda ortaya çıkmaktadır (Tannahill vd., 2016). 

 

EA’ların şarj sürelerinin uzun ve şarj istasyon sayılarının yetersiz olması nedeniyle 

yolculuk öncesi şarj planlanmasının yapılması, menzil kaygısı yaşanmadan bir yolculuk 

gerçekleştirmek için gereklidir. Şarj planlaması, EA’nın nerede, ne zaman ve ne kadar 

şarj edilmesi gerektiği kararlarını içeren bir yolculuk planıdır. Akıllı şebeke 

uygulamalarının yaygınlaşmasıyla şebekeye enerji satışı (Vehicle-to-grid/V2G) 

işlemlerin artacağı düşünülürse şarj planlama sistemlerinin deşarj seçeneğini dikkate 

alması önemli hale gelecektir. Şarj planlamasının yapılmadığı yolculuklarda menzil 

kaygısı sorununun ortaya çıkması kaçınılmazdır (Smuts, Scholtz ve Wesson, 2017).  
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Şekil 1.1. EA’ların kalan sürüş menziline etki eden faktörler (Varga vd., 2019) 

 

EA’ların uzun yolculuklarda menzil kaygısı çekmeden sürüş gerçekleştirebilmeleri için 

hangi şarj istasyonunda ne kadar şarj olmaları gerektiği sürücü tarafından bilinmesi 

gerekmektedir. Şarj planlama problemi, verilen bir rotada EA’nın nerede ve ne kadar şarj 

olması gerektiği problemidir. EA’ların şarj sürelerinin doğrusal olmaması, akıllı şebeke 

uygulamaları ile birlikte şarj fiyatlarının zaman dilimlerine bağlı değişmesi ve V2G 

işlemlerinin gerçekleştirilmesi, şarj planlama problemini zorlaştıran faktörlerdir. Bir 

EA’nın şarj olma süresi, bir akaryakıt ikmali süresinden oldukça uzundur. 50 kW seviye 

üç hızlı şarj cihazıyla bile bir EA’yı %0’dan %80 kapasiteye şarj etmek otuz dakika ila 

bir saat sürebilmektedir (Yang, Sarma, Hyland ve Jayakrishnan, 2021). Yani bir EA, hızlı 

şarj seçeneğini kullanmasına rağmen benzin istasyonundaki bir araçtan önemli ölçüde 

daha uzun bir süre beklemesi gerekecektir. Ayrıca, EA sürücüsünün gittiği şarj 

istasyonunda bekleme kuyruğu olması durumunda, şarj olmaya başlamak için bile uzun 

bir süre beklemek zorunda kalabilir.  

  

Bu tezin amacı, EA’nın yolculuk yapacağı rotanın gerçek-zamanlı verileri ile menzil 

tahmini sonuçlarını kullanarak toplam yolculuk süresini veya maliyetini minimize edecek 

şekilde hangi şarj istasyonunda ne zaman ve ne kadar şarj/deşarj edilmesi gerektiği 

kararlarını kullanıcıya sunan entegre bir karar destek sisteminin geliştirilmesidir. 

EA’ların menzil tahmininin seçilen rotanın koşulları baz alınarak yapılmasının tahmin 

performansı üzerinde etkili olacağı savunulmaktadır.  
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Tez çalışması kapsamında, EA’lar için sürüş menzil tahmini (EASMT) ve EA’larda şarj 

planlama (EAŞP) olmak üzere iki temel problem üzerinde durulmuştur. Menzil 

tahmininin veri bazlı yapay zekâ yöntemi ile yapılması, şarj planlama modelinde menzil 

tahmin modelinin sonuçlarının kullanılması, şarj planlama modeli için optimal çözümü 

garantileyen özgün bir matematiksel programlama modelinin geliştirilmesi ve toplam 

yolculuk maliyetini minimize etmek için V2G seçeneğini dikkate alarak optimal şarj 

planının oluşturulması tez konusunu özgün kılan özelliklerdir. EA rota optimizasyon 

çalışmalarında da olduğu gibi (Bourass, Cherkaoui ve Khoukhi, 2017a; Barabadi, 

Tashtarian ve Moghaddam, 2018;  Yi ve Shirk, 2018) şarj istasyonlarındaki doluluk-

boşluk bilgileri, şarj kapasitesi ve fiyatları gibi dinamik verilerin, AUS ile edinildiği 

varsayılacaktır. Bu strateji, şarj istasyonu ve EA’ların birbirleriyle iletişim kurmasına ve 

EA’ların karayolu ile ilgili bilgi almasına izin veren bir iletişim altyapısı olduğunu 

varsayar. Bu varsayımlar mevcut teknolojilerin kapasitesi dahilindedir (Razo ve 

Jacobsen, 2016).  

 

Önerilen entegre karar destek sisteminin genel akışı Şekil 1.2’de gösterilmiştir. EA’ların 

kalan sürüş menzilinin tahmin edilmesinde veri bazlı bir model olarak derin öğrenmeye 

dayalı menzil tahmini model mimarisi oluşturulmuştur. Modelin eğitimi için uygun 

yolculuk veri seti araştırılmıştır. Veri seti gerekli önişlemlere (veri temizleme, 

dönüştürme vs.) tabi tutulmuştur. Aykırı uzunluğa sahip yolculuk verileri segmente 

edilmiştir. Yolculukların hız-zaman verileri üzerinde kümeleme işlemi uygulanarak 

yolculukların rota tipi etiketleri elde edilmiştir ve menzil tahmin modelinde bu etiketler 

statik girdi olarak kullanılmıştır. Menzil tahmin modeli, sürüş yapılacak rotanın yol 

segmentleri üzerinde uygulanır. Rota üzerindeki her bir yol segmenti için ortalama hız, 

yol eğimi, sürüş mesafesi gibi dinamik verilerin yanı sıra hava sıcaklığı, araç ağırlığı ve 

yol tipi gibi statik veriler kullanılarak önce harcanan enerji, ardından menzil tahmini 

yapılır. Rota üzerindeki her bir şarj istasyonuna direk sürüş için gereken enerji tüketim 

miktarı menzil tahmin modelinden elde edilir. EA’nın optimal şarj planının elde edilmesi 

için matematiksel programlama modeli geliştirilmiştir. Şarj planlama modeli, şarj 

istasyonun konum bilgilerini, şarj ünitesi sayılarını, güç bilgilerini, fiyat bilgilerini ve 

uygunluk (doluluk/boşluk) bilgilerini kullanır. Tahmin sonuçları, şarj planlama 

modelinde girdi parametresi olarak kullanılarak optimal şarj planı bulunur. Şarj planlama 
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için geliştirilen matematiksel modelinin çözüm verme hızı açısından yetersiz kalması 

durumunda genetik algoritmaya (GA) dayalı mat-sezgisel yöntem geliştirilmiştir. 

 

 
 

Şekil 1.2. Tez çalışmasının genel akışı 

 

Tez çalışmasının birinci bölümünde, tez konusuna dair giriş bilgileri, EASMT ve EAŞP 

problemleri açıklanmıştır. İkinci bölümde, EASMT ve EAŞP ile ilgili kuramsal temellere 

ve kaynak araştırmasına yer verilmiştir. Üçüncü bölüm, üç kısımdan oluşmaktadır. İlk 

kısım, menzil tahmin modelinin eğitimi sırasında kullanılacak EA yolculuklarına ait veri 

setinin tanıtımı ve ön işlemleri ile ilgili detaylı bilgilendirmeleri içermektedir. İkinci 

kısım, EASMT için önerilen çözüm yaklaşımı ve üçüncü kısımda ise, EAŞP için 

kullanılan yöntemler anlatılmaktadır. Dördüncü bölümde, EASMT ve EAŞP için yapılan 

deneysel çalışmalar ve bulgularına sırasıyla yer verilmiştir. Beşinci bölümde, tartışma ve 

sonuçlar paylaşılmıştır.  
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2. KURAMSAL TEMELLER VE KAYNAK ARAŞTIRMASI 

 

Bu bölümde EA’nın sürüş menzili tahmini problemi ve şarj planlaması problemi ile ilgili 

temel bilgiler ve kaynak araştırması bilgilerine yer verilmiştir.  

 

2.1.EA’larda Sürüş Menzili Tahmini (EASMT) 

 

EASMT, EA’nın yolculuğun başındaki enerji seviyesi ile gerçek zamanlı koşullar altında 

nereye kadar gidebileceğinin tahmin edilmesi problemidir. EA’ların menzili, bataryada 

kalan enerji miktarı ile doğrudan ilişkilidir. EA’nın kalan enerjisi ile nereye kadar 

gidebileceğini belirlemek için EA’nın harcayabileceği enerji hesaplanmalıdır. Menzil 

tahmini ile ilgili yapılan çalışmalarda kullanılan yaklaşımlar iki kategoride incelenebilir: 

Fiziksel formülasyon modeli (FFM) ve veri tabanlı model (VTM) (Yavasoglu, Tetik ve 

Gokce, 2019). FFM’de, EA’ya etki eden fiziksel kuvvetler üzerinden önce güç, sonra da 

harcanan enerji (veya kalan enerji) hesaplanır (Rhode, Van Vaerenbergh ve Pfriem, 

2020). VTM’de ise, yapay zekâ yöntemlerinin kullanıldığı tahmin modelleridir.   

 

Belirli bir yol segmenti için harcanan enerjinin hesaplanmasında FFM’lerinin kullanıldığı 

çalışmaların sayısı oldukça fazladır. EA’ların yolculuk sırasında harcadığı enerjinin 

bulunmasında en çok kullanılan FFM’in temelinde araç dinamik modeli yatmaktadır. 

Şekil 2.1’de EA’ya etki eden kuvvetlerin diyagramı gösterilmiştir.  

 

 
 

Şekil 2.1. Aracı etkileyen gelen kuvvetlerin diyagramı 
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EA’ya etki eden kuvvetler: yuvarlanma direnci, hava direnci, araç ağırlığı ve çekiş 

kuvvetidir. EA’nın birim zamanda, belirli bir mesafede veya sabit bir hızda 

harcayabileceği enerjiyi bulabilmek için öncelikle EA’ya etki eden net kuvvet denklem 

(2.1) ile hesaplanır (Yi ve Shirk, 2018):  

 

𝐹(𝑣) =
1

2
𝜌𝐶𝑑𝐴(𝑣 − 𝑤)2  +  𝐶𝑟𝑀𝑔 cos(𝛼)  +  𝑀̃𝑎 + 𝑀𝑔 sin(𝛼) (2.1) 

  

Bu denklemde, 𝑣, araç hızını ve 𝐶𝑑, hava sürükleme katsayısını gösterir. 𝐴, öngörülen ön 

alan; 𝑤, araç hızı yönünde rüzgâr hızı bileşeni; 𝜌, hava yoğunluğu; 𝑀, araç kütlesi; 𝐶𝑟, 

yuvarlanma direnci katsayısı; 𝛼, yol yüzeyinin açısı; 𝑀̃, ataletsel kütle faktörleri; 𝑔 yer 

çekimi ivmesi ve 𝑎, araç ivmesidir. 

 

FFM’leri ile yapılan enerji tüketimi tahminlerinde, enerji tüketimini etkileyen tüm 

faktörlerin dikkate alınabilmesi için her faktörün matematiksel olarak tanımlanması 

gerekmektedir (R. Zhang ve Yao, 2015, Sarrafan vd., 2018; ). EA bataryalarının karmaşık 

ve son derece dinamik davranışları göz önünde bulundurulduğunda, tahmin modelinin 

geliştirilmesini zorlaştırmaktadır (Bolovinou, Bakas, Amditis, Mastrandrea ve Vinciotti, 

2014). Örneğin rejeneratif frenlemenin oluşabileceği durumları hesaba katabilen bir 

FFM’de frenleme yapılabilecek segmentlerde üretilen gücün belirlenerek enerjiye 

dönüştürülmesi gerekmektedir. Daha sonra bataryaya olan enerji transferi belirlenmelidir. 

Aynı şekilde aracın klima ve radyo gibi elektriksel özelliklerinin kullanımı da dikkate 

alınırsa bu parametreler tanımlanmalı ve tüketilen toplam enerjiye eklenecek denklem 

oluşturulmalıdır (De Nunzio ve Thibault, 2017). Ancak VTM’lerde ise, her bir 

parametreyi tanımlamaya ihtiyaç duymadan istenen çıktıların elde edilmesi mümkündür.  

 

VTM’ler, yapay zekâ yöntemlerinin kullanıldığı tahmine dayalı modellerdir. VTM’lerde 

her bir parametreyi tanımlamaya gerek kalmadan istenilen çıktıları elde etmek 

mümkündür. FFM’ler, doğru tahminleri desteklemek için yüksek çözünürlüklü gerçek 

zamanlı bilgilere ihtiyaç duyarken, literatürdeki VTM’ler, enerji maliyeti ve trafik 

koşulları arasındaki içsel fiziksel ilişkileri içermez (Yi ve Shirk, 2018). 
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Enerji tüketim tahmini için kullanılan veriler, farklı düzeylerde ve gözlem tipi için 

derlenebilir. Gözlem türü, tahmin probleminin düzeyini (makro/mikro), uygulanacak 

tahmin modelini ve kullanılacak girdileri belirlemede önemli bir faktördür. Enerji 

tüketimi için en çok kullanılan gözlem türleri, segment tabanlı, yolculuk tabanlı, zaman 

tabanlı ve hız tabanlı gözlemlerdir. Segment ve yolculuk tabanlı gözlemlerde, varış 

noktasındaki menzili tahmin etmek için rota ile ilgili bilgiler girdi olarak kullanılır. 

Yolculuk tabanlı gözlemler, yolculuğa ait istatistiksel bilgileri ve/veya statik öznitelikler 

istatistikleri kullanarak yolculuk sonundaki toplam enerjinin, menzilinin veya yolculuk 

SOC değerinin tahmini için kullanılır (Zheng, He, Zhao ve Li, 2016; El-Bayeh vd., 2016; 

Foiadelli, Longo ve Miraftabzadeh, 2018; Fukushima vd., 2018;Amirkhani, Haghanifar 

ve Mosavi, 2019;  Ullah, Liu, Yamamoto, Al Mamlook ve Jamal, 2021; Ullah, Liu, 

Yamamoto, Zahid, vd., 2021). Zaman tabanlı gözlemler, genelde anlık SOC veya enerji 

tahminleri için kullanılmaktadır ve esas olarak önceki gözlemleri göz önünde 

bulundurarak veya saniyeler içinde gözlemler yapılarak gerçek zamanlı SOC, enerji 

tüketimi/hızı veya kalan sürüş mesafesi tahmin edilir (Bolovinou vd., 2014; Fiori, Ahn 

ve Rakha, 2018; Xia vd., 2018; Sun, Zhang, Bi, Wang ve Moghaddam, 2019; Modi, 

Bhattacharya ve Basak, 2021). Hız tabanlı modellerde, belirli hız aralıklarındaki enerji 

tüketim değerleri dikkate alınarak model eğitimi gerçekleştirilir (C. H. Lee ve Wu, 2015; 

Yi ve Shirk, 2018; J. Bi, Wang, Sai ve Ding, 2019; Topić, Škugor ve Deur, 2019; Ding 

vd., 2020). Hız tabanlı gözlemlerin kullanıldığı çalışmalarda genelde tek girdi olarak hız 

kullanılmaktadır. 

 

Bedogni vd. (2014), Nunzio ve Thibault (2017), Sarrafan, Sutanto vd. (2017), Sarrafan, 

Muttaqi vd. (2017), Thibault vd. (2018), ve Çeven vd., (2020) segment tabanlı gözlemler 

için enerji tüketimi tahminini FFM’ler ile gerçekleştirmişlerdir. Segment tabanlı 

gözlemler için VTM geliştiren ilk çalışmalardan biri olan Bolovinou vd. (2014) tarafından 

ele alınan çalışmada, geçmiş yolculukların ortalama hızı ve enerji tüketimine bağlı 

doğrusal regresyon ve destek vektörü regresyonu ile sürüş menzilini tahmin etmişlerdir. 

Cauwer vd. (2017), gelecekteki bir yolculuk için enerji tüketimini tahmin etmek için 

gerçek dünyadan toplanan sürüş verilerini coğrafi ve hava durumu verileriyle birleştiren 

çoklu bir doğrusal regresyon modeli sunmuşlardır. Cauwer vd. (2020) çalışmalarında aynı 

model ile daha sonra en kısa yol algoritmalarını kullanarak enerji tasarruflu rotaların 
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seçimi için enerji tüketimi ve menzil tahminini entegre eden bir model sunmuşlardır. 

Zaman, mesafe ve enerjinin minimizasyonu için rota optimizasyonu yapılmıştır. Pamula 

ve Pamula (2020), otobüs durakları arasındaki enerji tüketimini tahmin etmek için girdi 

olarak yola bağlı statik veriler ve hava durumu içeren bir derin sinirsel ağ (DSA) modeli 

kullanmışlardır. Moawad vd. (2021), yolculuk tabanlı ve segment tabanlı gözlemleri 

birleştiren bir enerji tüketimi tahmin metodolojisi sunmuşlardır. 

 

Enerji tüketimini tahmin etmek için önemli bir faktör, rota tipidir. Araştırmacılar, tahmin 

doğruluğunu geliştirmek için tahmin modellerinde rota tipi bilgilerini kullanmışlardır 

(Cauwer vd., 2017; Fetene vd., 2017; Foiadelli vd., 2018; Cauwer vd., 2020; J. Guo vd., 

2020). Birçok çevrimiçi harita hizmeti, ayrıntılı rota bilgisi sunmaktadır. Ancak ne yazık 

ki bazı veri setleri GPS koordinatlarını veya rota tipini içermez ve bu nedenle rota tipinin 

tahmin edilmesi gerekir. EASMT ile ilgili yapılan bazı çalışmalarda rota tipinin etkisini 

incelemek için rota tipini tahmin edilmesi üzerinde durmuşlardır. Örneğin, Park vd. 

(2009) hız profillerine dayalı olarak rota tipini ve tıkanıklık seviyesini tahmin etmek için 

makine öğrenimi modelleri kullanmışlardır. Yao vd. (2013), farklı rota tipleri için EA’nın 

enerji tüketim faktörü modelleri oluşturmuşlardır. Elde edilen sonuçlara göre, enerji 

tüketim faktörü rota tipine göre önemli ölçüde değişmektedir. Shankar ve Marco (2013), 

rota tiplerini ve trafik sıkışıklık düzeylerini sınıflandırmak için yapay sinir ağlarını 

kullanan bir çerçeve önermişlerdir. Daha sonra farklı rota tipleri için bir FFM ile enerji 

tüketimi tahmin edilmiştir. Sarrafan, Sutanto vd. (2017) ve Tannahill vd. (2016), trafik 

koşullarının etkisini menzil tahmin modeline girdi olarak eklemek için, yol segmentlerini 

her kilometredeki durak sayısına göre sınıflandırmışlardır. J. Wang vd., (2018), 

OpenStreetsMap üzerinden elde edilen rota bilgilerine dayalı çevrimiçi ve çevrimdışı 

enerji tüketimi tahmin algoritması geliştirmişlerdir. Yavaşoğlu vd. (2019), rota tiplerini 

belirlemek için karar ağacı yöntemini kullanmışlar ve bu sonuçlarını menzili tahmin 

modellerinde girdi olarak kullanmışlardır. Karar ağacı algoritması, Worldwide 

Harmonized Light Vehicles Test Cycles (WLTC) üzerinde eğitilmiştir. Zhao vd. (2020), 

araç hızına, motor akımına ve motor akımının değişim hızına göre rota türleri olarak kabul 

edilebilecek farklı sürüş modellerini tanımlamak için k-ortalamalar kümeleme yöntemini 

uygulamışlardır. 
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EASMT için kullanılan girdileri, statik ve dinamik olarak sınıflandırmak mümkündür. 

Örneğin, yolculuk boyunca aracın ağırlığı, hava durumu ve yol tipi gibi değişmeyen veya 

diğer dinamik değişkenlere nispeten daha az değişen veriler statik olarak 

değerlendirilebilir. Bazı çalışmalarda yolculuklara ait statik bilgiler kullanılarak her bir 

yolculuk için harcanabilecek enerji tahmin edilir (El-Bayeh vd., 2016; Foiadelli vd., 

2018; Fukushima vd., 2018; Amirkhani vd., 2019; Ullah, Liu, Yamamoto, Zahid, vd., 

2021). EA’nın hızı, ivmesi, yol segmentlerinin eğimi, mesafesi gibi girdiler ise dinamik 

girdilerdir. Dinamik veriler hem EA’ya hem de sürüş yapılan rotaya bağlı veriler olabilir.  

 

Statik ve dinamik verilerin birlikte kullanılması farklı problemlerde yaygın olarak 

görülmektedir. Bu tür problemler en çok tıp ve sağlık alanında görülmektedir. Hastaların 

yaşı ve geçmiş hastalıkları gibi statik veriler, hastanın durumunu tahmin etmek veya 

sınıflandırmak için EKG gibi zaman serisi verileriyle birleştirilir (Esteban ve diğerleri, 

2016; C. Guo, Lu ve Chen, 2020; Ruan ve diğerleri, 2019). Kristensen ve Burelli (2019), 

müşteri kaybı tahmini (churn prediction) problemi için zamana bağlı dinamik verilerle 

birlikte müşteriler hakkındaki statik bilgileri birleştirmişlerdir. Menzil tahmini problemi 

için Rahimi-Eichi ve Chow (2014), Sarrafan, Muttaqi vd. (2017) ve Yavaşoğlu vd. 

(2019), statik veriler ile dinamik verileri birbirlerinden ayırt edilmeksizin tahmin 

modelinde tek bir girdi olarak kullanan çalışmalardır. 

 

Problem türünden bağımsız olarak tahmin/sınıflandırma hatasını azaltmak için statik ve 

dinamik verilerin farklı kombinasyon yöntemlerine odaklanan çalışmalar da 

bulunmaktadır. Miebs vd. (2020), yinelemeli sinir ağ (Recurrent Neural Network) 

modelinin öğrenme sürecini iyileştirmek için zaman serilerinin statik özniteliklerini dahil 

eden yöntemler sunmuşlardır. Miebs vd. (2020), statik öznitelikleri  modelin farklı 

katmanlarına eklemenin etkisini incelemişlerdir. Çalışmanın sonuçları, zaman serilerinin 

statik özniteliklerini birleştirme şeklinin, analiz edilen verilerin statik ve dinamik 

bileşenleri arasındaki istatistiksel ilişkileri öğrenmek için etkili bir araç sağladığını 

göstermiştir. Ayrıca, statik özniteliklerin tahmin modelinin tahmin gücü yeteneklerini 

önemli ölçüde artırdığını ortaya koymuştur. 
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2.2. EA’larda Şarj Planlama (EAŞP) 

 

Tez kapsamında ele alınan EAŞP problemi, bir EA’nın kalan sürüş menzilinden daha 

fazla mesafe gerektiren bir rota üzerinde şarj ünitelerindeki farklı şarj güçlerini, zaman 

dilimlerine bağlı değişen şarj fiyatlarını, doğrusal olmayan şarj sürelerini ve doluluk-

boşluk bilgisini ve V2G uygulamalarını da dikkate alarak optimal şarj ve deşarj 

yerlerinin, şarj/deşarj miktarının ve zamanlarının bulunması problemidir.  

 

EA’larda şarj standartları ülkelere göre değişmektedir. Şarj standartlarına bağlı olarak şarj 

istasyonlarının konnektör türleri ve EA’ların şarj soket tipleri farklılık gösterebilmektedir. 

Örneğin Amerika’da SAE ve IEEE standartları, Avrupa’da IEC, Japonya’da ChaDeMo, 

Çin de ise IEC ve Guabiao standardı kullanılmaktadır (Das, Rahman, Li ve Tan, 2020).  

 

Şarj istasyonun sağladığı maksimum gücün (kW), EA’nın kabul edebildiği maksimum 

gücü aşması durumunda EA kabul edebileceği kadar güç temin edebilir. Dolayısıyla 

EA’nın şarj istasyonlarından alabileceği maksimum güç sınırını EA belirler. Şarj 

sırasında enerji transferinin hızı, şarj gücü ile ilişkilidir ki bu da iki faktöre bağlıdır: voltaj 

ve amper (Mies, Helmus ve Hoed, 2018; Schoenberg ve Dressler, 2019). Gerçekte, bir 

EA’nın şarj süresi, şarj hızına ve EA’nın şarj öncesi ve sonrası SOC seviyesine bağlıdır. 

EA bataryasının çıkış voltajının belirli bir maksimum değerinde şarj işlemi iki aşamaya 

ayrılır: İlk aşamada, pil seviyesi zamanla hızlı ve doğrusal olarak artar. İkinci aşamada, 

pil seviyesi zamanla yavaş ve içbükey olarak artar. Bu nedenle, şarjı bitmiş bir bataryanın 

tam şarjlı bir batarya ile değiştirilmediği sürece sabit bir şarj süresi olduğu söylenemez 

(Fu ve Dong, 2019). Şarj süresi, EA’nın SOC miktarına bağlı olarak doğrusal olmayan, 

konkav bir yapı sergilemektedir. Şarj süresi bazı çalışmalarda doğrusal fonksiyon olarak 

varsayılırken (Keskin ve Çatay, 2016; Rastani, Yüksel ve Çatay, 2019), bazı çalışmalarda 

şarj süresi parçalı doğrusal fonksiyon olarak modellenmiştir (Fu ve Dong, 2019; Keskin, 

Laporte ve Çatay, 2019). Ayrıca, EA’nın SOC değeri belirli bir değerin altında iken (%20 

ve altı) EA’nın sergilediği davranış, genel pil modelinden farklı ve tutarsız olduğundan, 

modellerde EA için minimum şarj seviyesi dikkate alınmıştır (Keskin vd., 2019; Sun vd., 

2019). 
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EAŞP problemlerinde, şarj politikası farklı varsayımlara dayanarak modellenmiştir. Şarj 

politikaları varsayımları iki gruba ayrılır: tam şarj ve kısmi şarj. Tam şarj politikası 

altında, bir EA şarj istasyonuna her ulaştığında istasyonda tam şarj (veya belirlenen 

maksimum bir şarj seviyesi) ile ayrılırken, kısmi şarj politikası altında şarj miktarı karar 

değişkeni olarak ele alınır (Fu ve Dong, 2019). 

 

EAŞP ve rotalama ile ilgili çalışmalarda iki perspektiften bahsetmek mümkündür: EA ve 

şarj istasyonu (kontrol merkezi olarak da tabir edilebilir) perspektifi. EA için amaç, 

minimum sürede ve minimum maliyet ile rotanın tamamlanmasıdır. Bu bakış açısı 

bireyseldir. Kontrol merkezli perspektifte ise hem EA’lar hem de şarj istasyonları için en 

uygun şarj programı belirlenir (Liu vd, 2020; L.P. Qian, Zhou, Yu ve Wu, 2020; F. Xia, 

Chen, Chen ve Qin, 2019; C. Zhang, Fanaee ve Thoresen, 2021). Kontrol merkezli 

perspektifte EA, en müsait şarj istasyonuna yönlendirilmektedir (Bourass vd., 2017a; 

Moghaddam vd., 2018; Razo ve Jacobsen, 2016; Tannahill vd., 2016). Bu tarz 

çalışmalarda amaç, EA için optimal rotayı ve şarj planını elde ederken şarj istasyonundaki 

enerji talep yükünü dengelemektir. EA’ların yanı sıra şarj istasyonları için de bir çizelge 

oluşturulur. Ancak bu yaklaşımlar belirli bir konum/simülasyon ortamı/şehir içerisinde 

yapılan kısa yolculuklar için uygundur. 

 

Literatürde EAŞP problemi genel olarak EA rotalama ile birlikte ele alındığı (Bac ve 

Erdem, 2021; Basso vd., 2019; X. Bi ve Tang, 2019, Keskin vd., 2019; Pelletier vd., 2019, 

Rastani ve Çatay, 2021; Rastani vd., 2019; Shao vd., 2017) görülmektedir. Bu 

çalışmaların genel özellikleri şarj planı ile birlikte optimal rotanın elde edildiği modeller 

içermesidir. Başlangıçta EA’ların %100 şarj edildiği varsayımı mevcuttur. Rotalama 

problemlerinde amaç genellikle en kısa sürede ve maliyette müşterilere uğrayıp yolcuğu 

tamamlamaktır. Araç rotalamada müşteri, müşterilere teslim zamanları gibi faktörler 

dikkate alınır. Ayrıca çoğu EA rotalama probleminde EA’ların yolculuk sırasında en fazla 

bir kez şarj edilebilir şeklinde kısıtlama bulunmaktadır. Ancak bireysel sürüşlerde, 

sürücünün yolculuk amacına da bağlı olarak böyle bir kısıtlamaya gerek duyulmayabilir. 

Dahası, V2G işlemlerinin de dikkat alındığı varsayıldığında sürücü maliyetini minimize 

etmek amacıyla yolculuk süresini uzatarak aracını deşarj etmek isteyebilir. Sonuç olarak 

EA rotalama problemi ile sunulan EAŞP problemi ile tam olarak örtüşmese de EAŞP, EA 
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rotalama probleminin bir alt problemi olduğu için ilgili literatür çalışmalarına burada yer 

verilmiştir.  

 

Pelletier vd. (2018), belirli rotalar üzerinde sürüş yapan EA filoları için şarj maliyetini 

minimize eden optimal şarj planı bulmak için matematiksel programlama modeli 

geliştirmişlerdir. Modellerinde farklı şarj tipleri ve doğrusal olmayan şarj süreleri dikkate 

alınmıştır. EA’ların rota üzerindeki şarj sayısı için bir üst limit verilmiştir. Rastani vd. 

(2019), hava sıcaklığının EA’nın enerji tüketimine etkisini incelemek için sıcaklığı bağlı 

toplam enerji maliyetini minimize eden bir matematiksel programlama modeli 

geliştirmişlerdir. EA rotalama probleminin ele alındığı çalışmada, EA’lar ardışık iki 

müşteri arasında en fazla bir kez şarj edildiği varsayılmıştır.  

 

Keskin vd. (2019), EA rotalama problemi için istasyonda bekleme sürelerinin de hesaba 

katıldığı, şarj sürelerinin parçalı fonksiyon olarak belirtildiği bir matematiksel 

programlama modeli geliştirmişlerdir. Amaç, toplam maliyeti minimize edecek rota ve 

şarj planının ele edilmesidir. EA’ların başlangıç noktasından tam şarj ile ayrıldığı 

varsayıldığı çalışmada kısmi şarj stratejisi benimsenmiştir.  

 

Pelletier vd. (2019), EA rotalama problemi bağlamında enerji tüketimi belirsizliklerini 

dikkate almak için bir optimizasyon modeli önermişlerdir. Amaç, EA’nın rotası sırasında 

şarjının bitmeyeceğine dair güçlü garantiler sağlayabilecek minimum maliyetli teslimat 

yollarını belirlemektir. Problem, karma doğrusal programlama modeli olarak formüle 

edilmiştir. Enerji tüketimi modellerinde rejeneratif enerji ile enerjinin geri kazanımı 

dikkate alınmamıştır. Modelde yolculuk içerisinde şarj yapılmadığı varsayıldığı için şarj 

planı oluşumu söz konusu değildir. Bac ve Erdem (2021), farklı EA modellerinden oluşan 

bir filo için optimal rota ve şarj planı elde etmek için komşuluk aramaya dayalı sezgisel 

algoritma önermişlerdir. Ele aldıkları problemde EA’ların başlangıç noktasından %100 

şarj ile ayrıldığı varsayılmaktadır.  

 

EAŞP ile ilgili çalışmalardaki problemlerde tek seferli ve çok seferli şarj olarak iki 

kategori mevcuttur. Tek seferli şarj için optimal şarj planı öneren çalışmalar 

bulunmaktadır (Basso vd., 2019; Qian vd., 2020;  Y. Wang vd., 2018; Zhang vd., 2021). 
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Bu çalışmalarda genelde şehir içi sürüşler veya belirli bir yol ağı için geliştirilen şarj 

planları bulunmaktadır. Şarj planı ile beraber rotanın da belirlendiği problemlerdir. 

 

Y. Wang vd. (2018), optimal rotaların belirlenmesinde yolculuk süresini, enerji 

tüketimini ve şarj maliyetlerini minimize etmek için çok amaçlı bir optimizasyon modeli 

geliştirmişlerdir. Şarj istasyonlarında tek tip, sabit güç miktarı olan şarj ünitelerinin 

olduğu ve EA’ların verilen yol ağında en fazla bir kez şarj olabileceği varsayılmaktadır. 

Problemin çözümü için GA tasarlanmıştır. T. Qian vd. (2020), trafik koşullarının, şarj 

fiyatlarının ve şarj istasyonlarındaki bekleme süresinin rassal değişiminin göz önünde 

bulundurulduğu, toplam yolculuk süresini ve şarj maliyetini en aza indirmeyi amaçlayan 

derin pekiştirmeli öğrenme (Deep Reinforcement Learning) tabanlı EV şarj navigasyon 

modeli önermişlerdir. EA şarj navigasyon modeli Markov karar süreci olarak formüle 

edilmiştir. EA pil tüketiminin gidilen mesafe ile doğrusal değiştiği varsayılmıştır.  

 

Çok seferli şarj problemleri, genelde şehirlerarası yolculuklar için geliştirilen şarj 

planlarıdır. Sweda vd. (2017), şarj istasyonlarındaki bekleme sürelerinin bilinmemesi 

durumunda optimal bir uyarlamalı yönlendirme ve yeniden şarj etme politikası elde 

etmek için toplam yolculuk maliyetini minimize edecek dinamik programlamaya dayalı 

algoritmalar önermişlerdir. Strehler vd. (2017), EA ve hibrit EA’lara yönelik birden fazla 

durak seçimi içeren bir araç rotalama problemi için en kısa yolun bulunmasını sağlayan 

genel bir model tanıtmışlardır. Y.W. Wang vd. (2018), şarj istasyonu yer seçimi için 

geliştirdikleri matematiksel modeli (Y.W. Wang ve Lin (2009)) şarj planlama problemi 

için uyarlamışlardır. Sunulan modelde amaç, turistik bir rota takip eden bir EA’nın ziyaret 

edilen turistik merkezlerinin ağırlık puanının toplamını en üst düzeye çıkarmaktır. 

Problem bir maksimizasyon problemi olduğu için yolculuk süresi için üst limit 

belirlenmiştir.  

 

Yapılan çalışmalardan anlaşıldığı üzere, spesifik olarak rotanın belirli olduğu bir senaryo 

için EA’nın şarj yeri ve miktarı seçimi problemi üzerinde çalışma sınırlı sayıdadır. Y. 

Wang vd. (2021), belirlenen bir rota için seyahat süresini ve şarj maliyetini birlikte en aza 

indirmeyi ve mevcut rotalar boyunca yer alan her şarj istasyonunda en uygun şarjlı enerji 

miktarını dinamik programlama yöntemi ile belirlemişlerdir. 
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2.3. Bütünleşik Problem: EA’larda Menzil Tahminine Dayalı Şarj Planlaması 

 

EASMT ve EAŞP’yi birlikte ele alan ilk çalışmalar, optimal şarj yeri seçiminden ziyade 

daha çok şarj öneri sistemleri geliştirmişlerdir. Şarj öneri sistemlerinde amaç, menzil 

tahmini sonucuna göre SOC değerinin belirlenen bir eşik değerinin altında olmamasını 

sağlayacak şekilde EA’yı en yakın istasyona yönlendirmektir (Sarrafan, Muttaqi vd., 

2017, Tannahill vd. 2016). Tannahill vd. (2016), menzil kaygısını azaltmak için rota 

bilgileri, şarj istasyonu konumları, sürüş koşulları ve sürücü davranışına bağlı SOC 

değerini tahmin eden bir FFM geliştirerek, tahmin edilen SOC değerine göre sürücünün 

şarj etmesi gerektiği durumları uyaran bir sistemi geliştirmişlerdir. Chokkalingam vd. 

(2017), SOC tahmini ile rota üzerinde şarj istasyon önerisi veren bir metodoloji 

geliştirmişlerdir. Sarrafan, Muttaqi vd., (2017), rota bilgileri, hava koşulları ve batarya 

sağlık durumunu da dikkate alan formülasyonlar ile EA’nın kalan şarj ve menzilini 

belirlemişlerdir. EA’nın tüm yolculuk süresi içinde kaç kere şarj ihtiyacının 

oluşabileceğini ve nerede şarj edilebileceğini belirleyen bir sezgisel algoritma 

geliştirmişlerdir. EA’nın tam (%100) şarj edildiği veya hedefe varması için gereken 

minimum şarj miktarı kadar şarj edildiği varsayılır. Kalan sürüş menzili hesaplanırken 

EA’nın yolculuk boyunca oluşturduğu sürüş profili baz alınmıştır.  

 

Bahsi geçen çalışmalarda menzil tahminine dayalı şarj öneri sistemi geliştirilmiştir. Şarj 

öneri sistemi yerine menzil tahminine dayalı optimal şarj planının elde edildiği çalışmalar 

da bulunmaktadır. Bourass vd. (2017a), şarj istasyonlarındaki bekleme süresini minimize 

etmek için şarj ihtiyacı olan EA’ları en uygun şarj istasyonuna yönlendiren bir algoritma 

geliştirmişlerdir. AUS ile bilgi aktarımının sağlandığı sistemde EA’ların ulaşabileceği 

şarj istasyonlarının belirlenmesi için geliştirdikleri matematiksel model ile enerji tüketim 

tahmini yapılmıştır. Çalışmada EA’ların hedef şarj seviyelerinin olduğu 

varsayılmaktadır. Yazarlar, iki aşamalı bir şarj planlama modeli geliştirmişlerdir. İlk 

aşamada EA’nın harcayacağı enerjiyi minimize eden rota belirlenir. Enerji tüketimi için 

FFM tercih edilmiştir. Ardından toplam yolculuk süresini minimize edecek şekilde şarj 

planı oluşturulur. Yi ve Shirk (2018), EA’ların şarj maliyetini minimize etmek için 

yalnızca aracın hızına bağlı bir enerji tüketim modeli geliştirerek dinamik programlama 
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ile şarj planı oluşturmuşlardır. EA’nın rotasının evde başlayıp evde bittiği ve rota 

üzerindeki durakların arasındaki mesafenin EA menzilinden kısa olduğu varsayılmıştır.  

 

Schoenberg ve Dressler (2019), EA’ların hızına bağlı enerji tüketimine göre minimum 

yolculuk süresini belirlemek için rota seçimini ve şarj planını optimize eden bir yaklaşım 

önermişlerdir.  Rota seçimi için, Dijkstra ve A* algoritmaları kullanılmıştır. Rota seçimi 

aşamasında EA’nın bir sonraki şarj istasyonunda tam şarj olduğu varsayılmıştır. Şarj 

istasyonu seçimi için, EA’nın mevcut şarj istasyonunda sağlanan güç ile bir sonraki 

istasyondaki gücün karşılaştırılmasına göre seçim yapılır. 

 

Basso vd. (2019), Newton’un hareket yasasını baz alarak geliştirdikleri FFM ile yol 

segmentlerinde harcanan enerjiyi belirleyerek elde ettikleri çıktıları tamsayılı doğrusal 

programlama modellerine parametre olarak eklemişlerdir. Zaman pencereli EA’ların 

rotalama problemi için gerçekleştirilen çalışmada şarj istasyonlarına uğrayan EA’ların 

tam şarj edildiği varsayılmıştır. Bi ve Tang (2019), EA rotalama probleminin toplam 

yolculuk süresini minimize etmek için stokastik bir dinamik programlama model 

önermişlerdir. Trafikte bekleme sürelerinin zamana bağlı stokastik değiştiğinin 

varsayıldığı çalışmada EA’nın trafikteki hızına göre harcadığı enerji FFM ile 

hesaplanarak optimal şarj planını içeren strateji elde edilmiştir. Fu ve Dong (2019), 

EA’lar için şarj istasyonlarındaki bekleme sürelerini, doğrusal olmayan şarj süresini ve 

hıza bağlı değişen enerji tüketimimi dikkate alan iki aşamalı bir şarj planlama ve rotalama 

modeli geliştirmişlerdir. Birden fazla şarja izin veren modelde EA’ların tam şarj ile 

istasyondan ayrıldıkları varsayılmıştır. C. Zhang vd. (2021), şehir içi tek seferlik şarj 

problemi için pekiştirmeli öğrenme yöntemi ile optimal EA-şarj istasyonu çizelgesi 

oluşturmuşlardır. EA’ların sürüş mesafesine göre harcadıkları enerjiyi tahmin etmek için 

doğrusal regresyon modeli kullanılmıştır. Hecht vd. (2021), Almanya’daki şarj 

istasyonlarının yeterliliğini değerlendirmek için yaptıkları çalışmada belirli bir rota 

üzerinde yolculuk maliyetini minimize etmek amacıyla iki aşamalı bir optimizasyon 

modeli geliştirilmişlerdir. İlk aşamada gidilecek şarj istasyonu belirlenirken, ikinci 

aşamada gidilecek istasyonlardaki şarj miktarı optimize edilmektedir. Modellerinde kısıt 

olarak yalnızca minimum şarj seviyesi ve varış sırasındaki hedef şarj seviyesinin altına 

inilmemesi sağlanmıştır. Optimizasyon modelinde harcanan enerjiye bağlı menzil 
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tahmini için polinomsal regresyon modeli kullanılmıştır. Rastani ve Çatay (2021), EA 

rotalama problemini taşınan yükün ağırlığını dikkate alarak zaman pencereleri ile ele 

almışlardır. Çalışmalarında menzil tahmini için geniş adaptif komşuluk arama (Large 

Adaptive Neighbourhood Search) yönteminde optimal bir onarım prosedürünü 

bütünleştiren ve performansını doğrulayan mat-sezgisel bir yaklaşım geliştirmişlerdir. 

Elde edilen sonuçlara göre kargo ağırlığının rota planlarında ve filo büyüklüğünde önemli 

değişiklikler yaratabileceğini ve ihmal edilmesinin hizmette ciddi aksamalara neden 

olabileceğini ve yükün artmasına neden olabileceğini göstermektedir. 

 

2.4.Araştırma Boşlukları 

 

Literatürde EASMT ve EAŞP problemlerini ile ilgili birçok çalışma olmasına rağmen bu 

iki problemi bir arada değerlendiren (menzil/enerji tüketim tahminine dayalı şarj 

planlama veya rotalama) sayılı çalışma bulunmaktadır (Basso vd. 2019). Ek 1’de EASMT 

ve EAŞP problemlerini bir arada ele alan çalışmaların listelendiği bir çizelge verilmiştir. 

EASMT ve EAŞP problemlerini birlikte ele alan çalışmalarda enerji tahmini için 

çoğunlukla FFM’lerinin tercih edildiği   görülmektedir. Enerji/menzil tahminine ağırlık 

veren çalışmalar, optimal şarj yeri seçiminden ziyade şarj öneri sistemi olarak 

modellenmiştir (Sarrafan, Muttaqi, vd. 2017; Tannahill vd., 2016).  

 

Şarj planlaması ile ilgili yapılan çalışmalardaki genel varsayım, EA’nın kat ettiği mesafe 

ile SOC değişiminin ve dolayısıyla harcanan enerjinin, doğrusal olarak değiştiğidir.  

(Keskin vd., 2019; Moghaddam vd., 2018; Pelletier vd., 2018). Ancak harcanan enerji 

yalnızca mesafeye bağlı olarak değişmemektedir. Yolculuğun gerçekleştirildiği rotanın 

eğim bilgisi, trafik, hava, ortalama hız gibi gerçek-zamanlı koşullar harcanan enerjiye ve 

dolayısıyla kalan sürüş menzili üzerinde etkili olacaktır. Bu nedenle optimal şarj planının 

elde edilmesinde menzil tahmininin rotaya bağlı olarak gerçek-zamanlı veriler dikkate 

alınarak yapılması doğruluk oranını artıracaktır. 

 

Yapılan çalışmalar tek seferlik şarj odaklı tasarlandıklarından ve buna bağlı olarak test 

sürüşleri de kısa mesafelerden ibaret olduğundan dolayı uzun rotalar için şarj istasyonları 

ve menzil kaygısı açısından rotanın uygun olup olmadığı dikkate alınmamaktadır. Aynı 
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şekilde uzun rotalar için birden çok şarj işlemi gerçekleşebileceği için anlık şarj 

seviyesine göre şarj yeri öneren sistemler optimal bir şarj planı elde etme garantisi 

vermemektedir. 

 

Varış noktasındaki menzili tahmin etmek için literatürde hem mesafe tabanlı hem de 

yolculuk tabanlı veriler kullanılmış olsa da daha iyi bir tahmin doğruluğu için her iki veri 

türünün birlikte kullanmanın etkisi araştırılmamıştır. Şarj planlama modelini menzil 

tahmini ile entegre eden çalışmalarda menzil tahminleri birbirine benzer FFM’lerden 

ibarettir. Menzil tahminini şarj planlaması ile birlikte dikkate alan çalışmalarda, 

belirlenen bir rota için zamana bağlı güncellenen parametreler bulunmamaktadır. Örneğin 

segmentlerde harcanan enerjinin yolculuk boyunca değişmediği varsayımı altında şarj 

planlaması yapılmaktadır. Ayrıca EA sürücüleri açısından maliyet azaltıcı bir etken olan 

V2G opsiyonları da şarj planlama modellerinde dikkate alınmamıştır. 

 

Literatürdeki bu araştırma boşluklarını da dikkate alarak belirlenen bu tezin amacı, rota 

bilgilerine bağlı olarak harcanan enerji tahmini için veri bazlı yapay zekâ modeli ile kalan 

sürüş menzilini belirleyerek EA’nın belirli bir rota için toplam yolculuk süresini ve şarj 

maliyetini minimize edecek şekilde şarj/deşarj yerini ve miktarını veren optimal şarj 

planının oluşturulmasıdır. Önerilen metodoloji iki temel modülden oluşmaktadır: menzil 

tahmini ve şarj planlaması. EA’nın başlangıçtaki şarj durumu ile tamamlayamayacağı bir 

rota için nerede, ne zaman ve ne kadar şarj/deşarj edilmesi gerektiği yapılan menzil 

tahmin bilgilerine göre şekillenir. Şarj planlama modeline menzil tahmin modelini 

entegre ederek iç içe kullanılması ve menzil tahminin veri bazlı yapay zekâ yöntemi ile 

yapılması, şarj planlama modelinin doğrusal olmayan şarj, birden fazla şarj ünitesi 

varsayımını ve V2G seçeneğini aynı anda dikkate alması çalışmayı özgün kılan 

özelliklerdendir. Önerilen konu elektrikli otonom araçların uzun yolculuklarda şarj 

planlama sistemlerinin tasarımı için de bir altyapı oluşturabilir. 

 

Bu çalışmanın ilk modülü olan EASMT bölümünde VTM ile kalan sürüş menzilinin 

tahmini üzerine odaklanılmıştır. Gözlem tipi, rota tipi ve statik-dinamik özelliklerin 

tahmin sonuçları üzerindeki etkilerini analiz etmek için deneyler yapılmıştır. Yapılan 

katkılar aşağıda özetlenmiştir: 
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▪ Yolculuk bazlı ve segment bazlı gözlemlere sahip enerji tüketimi tahmin modellerinin 

karşılaştırılması  

▪ Rota türü bilinmeyen yolculukların özniteliğe ve şekle dayalı kümeleme yöntemi ile 

rota tiplerinin kümelenmesi ve tahmin performansına etkisinin incelenmesi 

▪ Statik ve dinamik yolculuk verilerinin birlikte kullanımının tahmin performansına 

etkisinin incelenmesi  

 

Çalışmanın ikinci modülü olan EAŞP bölümünde EA’ların sürüş yapmasına uygun uzun 

bir rota için özgün bir matematiksel programlama modeli ve mat-sezgisel çözüm 

yaklaşımı önerilmiştir. Tez çalışmasının EA’larda şarj planlama literatürüne katkıları 

aşağıdaki gibi listelenmiştir: 

▪ Şarj istasyonlarında birden fazla şarj ünitesinin doğrusal olmayan şarj sürelerinin 

olduğu, zaman dilimlerine bağlı değişen şarj fiyatlarının ve V2G işlemlerinin 

gerçekleştirildiği bir şarj planlama problemi için özgün bir karmaşık tamsayılı 

doğrusal programlama modelinin geliştirilmesi 

▪ Menzil tahminine dayalı şarj planlama problemi için genetik algoritmaya dayalı mat-

sezgisel yaklaşım geliştirilmesi 

▪ Geliştirilen mat-sezgisel yaklaşımının dört farklı sezgisel ve bir metasezgisel 

yaklaşımla karşılaştırılması 
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3. MATERYAL ve YÖNTEM 

 

EA’lara yönelik kalan sürüş menzil tahminine dayalı şarj planlama modelinin genel akışı 

Şekil 3.1’de verilmiştir.  

 

 
 

Şekil 3.1. EA’larda menzil tahminine dayalı şarj planlaması- metodoloji 
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Problemin çözümü için öncelikle EA’nın sürüş yapacağı rota belirlenir. Rota, yol 

segmentlerine bölünür. Her bir yol segmenti için eğim, hız limiti, ortalama hız, yol tipi 

gibi bilgiler elde edilir. Her segment için varış zamanına göre zamana bağlı 

parametrelerin bilgileri (hava durumu, trafik vs.) temin edilir. Bu bilgiler ile araç 

parametre bilgileri (araç kütlesi, anlık şarj durumu vs.) kullanılarak her bir yol segmenti 

için menzil tahmin modeli ile harcanan enerji tahmini yapılır ve kümülatif olarak toplanır. 

Rota üzerindeki her bir şarj istasyonuna direk sürüş için gereken enerji tüketim miktarı 

menzil tahmin modelinden elde edilir. Tahmin sonuçları, şarj planlama modelinde girdi 

parametresi olarak kullanılarak optimal şarj planı bulunur. Şarj planlama modeli şarj 

istasyonunun konum bilgilerini, şarj ünitesi sayılarını, güç bilgilerini ve fiyat bilgilerini 

kullanır. Şarj planlama modeli ile toplam yolculuk maliyetini veya süresini minimize 

eden optimal şarj planı elde edilir.  

 

3.1. Veri Seti 

 

Menzil tahmini modelinin eğitiminde kullanılmak üzere Carneige Mellon Üniversitesi 

tarafından yürütülen ChargeCar projesine (CREATE Lab, 2009) ait gerçek GPS verileri 

kullanılmıştır. EA’ların verimliliğinin nasıl artırılabileceğinin ve pil ömrünün nasıl 

uzatılabileceğinin araştırıldığı projede Amerika ve Avrupa’dan farklı sürücü ve araçlara 

ait toplam 423 yolculuk verisi bulunmaktadır. Yapılan yolculukların başlangıç noktası, 

tarihi, hava sıcaklığı ve toplam harcanan enerji bilgileri mevcuttur. EA’ların sahip 

oldukları farklı motor ve batarya özellikleri, menzillerinin de farklı olmasına yol 

açmaktadır. Dolayısıyla farklı EA’lara ait yolculuk verilerinin menzil tahmin modeli 

eğitiminde kullanımının tahmin doğruluğunu azaltması ve önerilen şarj planlama 

sisteminin tek bir EA modelinin navigasyon sisteminde kullanımına uygun olması 

nedeniyle tahmin modeli eğitimi için belirli bir araca ait veriler kullanılmıştır.  

 

Menzil tahmin modeli eğitimi için ChargeCar projesinde en fazla veriye sahip olan 

Toyota RAV4 EV araç modeli seçilmiştir. Seçilen EA’nın 10 farklı sürücüye ait toplam 

55 adet yolculuk verisi bulunmaktadır. Bu yolculuklara ait bilgiler Çizelge 3.1’de 

verilmektedir.  
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Çizelge 3.1. Toyota RAV4 EV sürüşlerine ait bilgiler 

 

Sürücü Yolculuk sayısı (adet)  Yolculuk mesafesi (km) 

Illah 18 478 

Ron 7 265 

Walter 6 441 

Mike 4 101 

Nikolay 6 340 

Todd 4 194 

Arnold 3 130 

Marcos 3 198 

Jorgen 3 54 

Chris 1 33 

Toplam 55 2234 

 

Yolculuk verileri, yolculuğun başından itibaren araçtan belirli zaman aralıklarında alınan 

gözlemlerle oluşturulmuştur ve her gözlem için elde edilen öznitelikler Çizelge 3.2’de 

yer almaktadır. İtalik olan satırlar, orijinal veri setinde olmayıp, sonradan hesaplanıp 

eklenen öznitelikler belirtmektedir. Tahmin edilmek istenen öznitelik olan harcanan 

enerji öznitelik olarak veri setinde mevcut değildir. Yalnızca yolculuk için toplam 

harcanan enerji bilgileri verilmiştir. Her bir gözlem için harcanan enerjinin hesaplanması 

amacıyla iki gözlem arası geçen süre ile gücün çarpımı olarak harcanan enerji 

bulunmuştur.  

 

Çizelge 3.2. EA’nın sürüş verisine ait dinamik veriler 

 

Öznitelik Açıklama (birim) 

Zaman Yolculuk sırasındaki zaman (saat: dakika: saniye) 

Süre  İki gözlem arası geçen zaman (s) 

Yükseklik  Aracın bulunduğu konumun yüksekliği (m) 

Yükseklik değişimi  İki gözlem arası yükseklik farkı (m) 

Eklenen mesafe  İki gözlem arası eklenen mesafe (m)  

Hız  Aracın anlık hızı (m/s) 

İvme  İki gözlem arası aracın ivmesi (m/s2) 

Güç  Aracın anlık gücü (kW) 

Enerji  İki gözlem arası aracın harcadığı enerji (Wh) 
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Yolculuğa ait genel bilgileri içeren öznitelikler Çizelge 3.3’te verilmiştir.  

 

Çizelge 3.3. Yolculuğa ait statik veriler 

 

Öznitelik Açıklama 

Sürücü Yolculuğu yapan sürücünün ismi  

Sürüş tarihi Yolculuk tarihi (gün.ay.yıl) 

Ağırlık Araç ve yük ağırlığı (kg) 

Konum Yolculuğun başlangıç konumu (şehir) 

Süre Yolculuk süresi (dk) 

Harcanan enerji  Yolculukta harcanan toplam enerji (kWh) 

Sıcaklık  Sıcaklık derecesi (°C) 

 

Veri seti analizi için izlenen akış Şekil 3.2’de verilmiştir. Veri önişleme kapsamında eksik 

veri, aykırı veri analizi, veri dönüşümü, veri normalizasyonu, öznitelik seçimi ve çıkarımı 

işlemleri gerçekleştirilmiştir. 

 

 
 

Şekil 3.2. Veri analizi akış şeması 
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3.1.1. Veri önişleme  

 

Veri setini menzil tahmin modelinde kullanılabilir hale getirirken dikkate alınması 

gereken ilk husus, verilerin önceden veya gerçek-zamanlı olarak temin edilebilirliğidir. 

Yolculuklara ait veri seti, belirli saniyelerde aracın sensörlerinden elde edilen verileri 

içeren zaman serileridir. Ancak gerçek hayat uygulamasında bir rotanın ileriye dönük 

saniye bazında zaman-serileri verilerini temini mümkün olmayabilir. Bunun yerine 

yolculuklara ait zaman serileri yol segment verilerine dönüştürülebilir. Yol segmenti 

kullanmanın en önemli avantajı konuma dayalı olmasıdır. Böylece bulunan zamandan 

ileriye yönelik bir rota için menzil tahmini yapılırken rota segmentlere ayrılarak her bir 

segment için veri temin edilir ve menzil tahmin modelinde girdi olarak kullanılabilir. 

Zaman serilerini yol segmentlerine dönüştürmek için iki gözlem arasındaki fark alınır. 

ChargeCar veri setinde hız, yükseklik, gidilen mesafe gibi dinamik özniteliklerle birlikte 

hava sıcaklığı ve araç ağırlığı gibi statik öznitelikler de bulunmaktadır (Şekil 3.3).  

 

 
 

Şekil 3.3. ChargeCar veri setindeki bir yolculuğa ait statik ve dinamik veriler 

 

Tahmin modelinde kullanılabilecek verileri değerlendirirken ilk dikkate alınması gereken 

özellik verinin yolculuğun başında temin edilebilirliğidir. Örneğin yol segmentlerine 

bölünmüş bir rotanın dinamik girdi parametrelerinden yol segment mesafesi, sürüş süresi, 

ortalama sürüş hızı ve yükseklik/eğim bilgilerin temin edilmesi mümkündür. Ancak 

EA’nın yol segmentlerinde sarf edeceği güç miktarının bilinmesi (herhangi bir tahmin 
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yöntemi ile tahmin edilmediği sürece) mümkün değildir. Bu nedenle “Güç” özniteliği 

gerçek hayatta rota üzerinde uygulama yaparken önceden bilinebilecek bir öznitelik 

olmadığı için girdi parametresi olarak değerlendirilmemiştir.  

 

Menzil tahmini probleminde kullanılacak olan veri seti, birçok önemli özniteliği içeriyor 

olsa da yolculuğa bağlı bazı karakteristik özniteliklerin eklenmesi menzilin tahmin 

edilmesinde kritik değer taşıyabilir. Araştırmacılar, enerji veya menzil tahmin 

doğruluğunu artırmak için tahmin modellerinde rota tipi bilgilerini kullanmışlardır (De 

Cauwer vd. 2017, 2020, Fetene vd. 2017, Foiadelli vd. 2018, J. Guo vd. 2020). ChargeCar 

veri setinde rota tipi bilgileri bulunmadığı için rota tipini tahmin etmek amacıyla 

kümeleme yöntemleri kullanılmıştır. 

 

Bu çalışmada ChargeCar veri setindeki statik bilgiden yararlanarak daha fazla öznitelik 

çıkartmak amacıyla yolculuklara ait hız-zaman grafiklerini (hız profilini) kullanarak rota 

tipi elde edilebilir. Yolculukları genel itibariyle iki sınıfa ayırmak mümkündür (Fetene 

vd. 2017, Yavasoglu vd. 2019): şehir içi ve şehir dışında (otoyolda) yapılan yolculuklar. 

Şekil 3.4’te Amerika Çevre Koruma Ajansı EPA’nın emisyon standartları ve yakıt 

ekonomisi testleri için oluşturduğu farklı sürüş testlerine ait hız profilleri gösterilmiştir 

(EPA, 2021). Verilen grafiklerden görüldüğü üzere şehir içi ve şehir dışı/otoyolda 

gerçekleştirilen yolculukların hız profillerinin örüntüleri arasında belirgin farklılık söz 

konusudur. Yolculukların hız profilleri yapılabilecek bir kümeleme işlemi ile yolculukları 

tiplerinin etiketlenmesi mümkündür. 

 

 
 

Şekil 3.4. Şehir içi ve şehir dışı sürüşlerine ait hız profilleri (EPA, 2021) 
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3.1.2.  Yolculukların segmentasyonu 

 

ChargeCar veri setindeki bazı yolculuklar birden fazla alt yolculuk içermektedir. Alt 

yolculuk içeren yolculuklar ve alt yolculuk sayısı verinin temin edildiği ChargeCar 

projesi veri setinde bulunmaktadır (CREATE Lab, 2009). Alt yolculukların yanı sıra uzun 

duraksamaların olduğu yolculuklarda iki gözlem arası geçen süre aykırı değerlere sahip 

olabilmektedir. Duraksama içeren yolculuklarda duruş zamanlarını enerji miktarı 

üzerinden tespit etmek de mümkündür. Harcanan enerji, geçen süre ile güç çarpımı 

sonucu elde edildiğinden uzun duraksama ve alt yolculuk içeren verilerin harcanan enerji-

zaman grafiğinden yararlanarak duraksama sayısı elde edilebilir. Örneğin Şekil 3.5’te 

duraksama içeren yolculuğun harcanan enerji (Wh)-zaman (sn) grafiğine göre yolculukta 

dört kez duraksama yapılmıştır.  

 

 
 

Şekil 3.5. Duraksama içeren bir yolculuğa ait harcanan enerji (Wh) grafiği 

 

Uzun yolculukların daha kısa yolculuklara bölünmesi yolculuk tipi kümelenmesinde daha 

doğru sonuçlar elde edilmesinde etkili olacaktır. Bu amaçla yolculukları hız 

profillerindeki değişimin olduğu noktaları belirleyerek bu noktalarda yolculuklar 

bölünmesi gerekir. Hız profilleri esasında zaman serileri olduğundan zaman serilerinde 

değişimin olduğu noktaların bulunmasına literatürde değişim noktası seçimi (change 

point detection) problemi veya zaman serisi segmentasyonu (time-series segmentation) 

olarak geçmektedir. Şekil 3.6’da bu problem için bir örnek verilmiştir. Zaman serisinin 

değişim noktalarının belirlenmesi ile zaman serisi alt serileri oluşturulur.  
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Şekil 3.6. Zaman serisi segmentasyonu problemi 

 

Uzun yolculukları hız profillerine göre bölmek için Schäfer vd. (2021) tarafından zaman 

serisi segmentasyonu problemi için önerilen ClaSP (Classification Score Profile) 

algoritmasını uygulanmıştır. ClaSP algoritması, benzer şekle sahip bölgeleri tanımlamak 

için bir zaman serisi sınıflandırıcısını uyarlayarak segmentasyona yaklaşır. CLaSP 

algoritmasının temel işlevi, bir zaman serisini hiyerarşik olarak ikili bir şekilde bölerek 

zaman serisi içerisindeki benzer şekle sahip bölgeleri tanımlamaktır. İkiye ayrılan her alt 

zaman serisinin sağ ve sol kısmını ayırmak üzere eğitilmiş bir ikili sınıflandırıcı kullanılır. 

Sınıflandırma performansının en yüksek olduğu nokta bulunarak değişim noktaları 

yinelemeli olarak belirlenir. CLaSP algoritmasının başlıca avantajları, diğer yöntemlere 

göre yüksek doğrulukta olması, tek parametre gerektirmesi (hareketli pencere uzunluğu) 

ve hızlı bir algoritma olmasıdır. 

 

3.1.3. Hız profillerinin kümelenmesi 

 

Genel olarak şehir içi, otoyollar, kırsal yollar, ana yollar vb. gibi birçok rota tipi vardır. 

Bu çalışmada, rota tipinin bilinmediği durumlarda izlenebilecek yöntemler üzerinde 

durulmuştur. Birçok araştırma, EA’larda harcanan enerjiyi tahmin etmek için rota tipinin 

önemine işaret etmektedir (Li vd. 2016, Wang vd. 2018, Yao vd. 2013, Zhang ve Yao 

2015). ChargeCar veri seti yol tipini içermese de yol tipini tahmin etmek için 

yolculukların hız profilleri kullanılabilir. Hız profillerinden rota tipi, sürüş davranışı veya 

trafik durumu hakkında bilgi almak mümkündür (J. Wang vd. 2018, L. Zhao vd. 2020).  
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Veri setinden en iyi şekilde yararlanmak için hız profillerine kümeleme işlemi uygulayıp 

küme etiketini tahmin aşaması için statik bir girdi olarak menzil tahmin modelinde 

kullanılması mümkün hale getirilir. Hız profili, aracın zamana bağlı hızını temsil eden bir 

zaman serisi verisidir. Burada, her bir hız profilinin bir gözlem olarak ele alınması ile hız 

profillerinin kümelenmesi problemi söz konusudur. Bu problem, tüm zaman serisi 

kümeleme (whole time series clustering) olarak bilinir (Aghabozorgi, Seyed 

Shirkhorshidi ve Ying Wah, 2015). Bu problem için uygulanabilecek yöntemlerden biri, 

zaman serisine ait istatistiksel öznitelikler elde ederek zaman serisini iki boyuttan tek 

boyuta indirgemektir. Kümeleme için kullanılacak öznitelikler belirlendikten tüm zaman 

serisini kullanmak yerine öznitelikler üzerinden bir kümeleme tekniği uygulanır. Bu 

kümeleme tekniğine öznitelik tabanlı kümeleme denir (Räsänen ve Kolehmainen, 2009). 

 

Zaman serilerini kümelemenin başka bir yolu da zaman serilerini şekillerine göre 

kümelemektir. Öklid mesafesi, Manhattan mesafesi, Chebyshev mesafesi vb. gibi zaman 

serisi verileri arasındaki benzerliği ölçmek için kullanılan ölçüler kümelemede yaygın 

olarak kullanılsa da benzer şekillere sahip zaman serilerini keşfetmek için kullanılması 

zordur. Şekle dayalı kümeleme için kullanılan en yaygın yöntem Dinamik Zaman Bükme 

(Dynamic Time Warping) (DZB) yöntemidir. DZB, iki zaman serisi arasındaki optimum 

hizalamayı, zaman serisini uzatarak veya büzüştürerek bulabilir ve benzer şekillere sahip 

örüntüleri keşfedebilir. DZB ile şekil tabanlı bir benzerlik ölçüsü hesaplanır ve minimum 

mesafeye sahip zaman serileri birlikte kümelenir (Wen, Zhou ve Yang, 2019). Çalışma 

kapsamında iki farklı kümeleme yöntemi kullanılmış ve menzil tahmin modeline etkisi 

karşılaştırılmıştır. 

 

a) Özniteliğe dayalı kümeleme 

 

Şehir içi ve şehir dışı sürüşlerine ait hız profillerini, belirli istatistiksel özniteliklerin 

çıkarımı ile kümeleyerek yapılan yolculukların rota tipi belirlenebilir. Hız profillerine ait 

istatistiksel öznitelikler, kümeleme algoritmasının girdisi olacaktır. Kümeleme 

algoritması olarak küme sayısının belirtilebilmesi nedeniyle k-ortalamalar algoritması 

(Macqueen, 1967) kullanılmıştır. K-ortalamalar algoritmasının adımları Şekil 3.7’de 

verilmiştir. 
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Şekil 3.7. K-ortalamalar algoritması adımları 

 

b) Şekle dayalı kümeleme 

 

Zaman serilerinde kümeleme yapmanın diğer bir yöntemi şekle dayalı kümelemedir. Bu 

tür kümeleme yöntemlerinde iki zaman serisi arasında DZB kullanılarak şekil tabanlı bir 

benzerlik ölçüsü hesaplanır ve minimum mesafeye sahip zaman serileri birlikte 

kümelenir. DZB ile iki zaman serisi arasındaki zamansal kaymalar ortadan kaldırılarak 

serilerin benzerliği tespit edilir. DZB ile elde edilen mesafe ölçüsü, şekil tabanlı 

kümeleme için uygun bir göstergedir. DZB, zaman serisinin bazı bölümlerini sıkıştırarak 

veya genişleterek iki zaman serisi arasında en uygun eşleşmeyi hesaplar. Bu nedenle, 

DZB, rota türlerinin şekillerine göre benzerliğini ölçmek için de uygulanabilir (Hu, Wu 

ve Schwanen, 2017).  

 

Şekil 3.8’de DZB ile farklı uzunluklara sahip iki zaman serisi (𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) ve 𝑌 =

(𝑦1, 𝑦2, … , 𝑦𝑚)) üzerinde uygulanışı gösterilmiştir. Şekilsel benzerliklerini karşılaştırmak 

için ve (𝑛 × 𝑚) boyutunda boş bir uzaklık matrisi (𝒄) oluşturulur. Uzaklık matrisi 

oluşturulduktan sonra matrisin sağ üst köşesinden sol alt köşesinde “bükme yolu” elde 

edilir. Amaç, minimum mesafeli bükme yolunu elde etmektir. Bükme yolu 𝑝 =

(𝑝1, 𝑝2, … , 𝑝𝑘) farklı uzunluklarda oluşturulması mümkündür. Burada 𝑘, 𝑚𝑎𝑥(𝑚, 𝑛) ve 

(𝑚 + 𝑛 + 1) arasında bir değer alır. Hesaplama karmaşıklığını azaltmak için bazı 

sınırlamalar yapılır. Matrisin ilk eleman 𝑐00 sıfır değerini alır. Matrisin geriye kalan diğer 

elemanları denklem (3.1)-(3.3) ile hesaplanarak özyinelemeli olarak doldurulur (Mishra, 

2020).  
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Şekil 3.8. DZB ile bükme yolunun elde edilmesi (Müller, 2015) 

 

𝑐𝑖0 = ∞, ∀𝑖 ∈ {1, … , 𝑛}   (3.1) 

𝑐0𝑗 = ∞, ∀𝑗 ∈ {1, … , 𝑚} (3.2) 

𝑐𝑖𝑗 = 𝑑(𝑥𝑖, 𝑦𝑗) + min (𝑐𝑖−1,𝑗−1, 𝑐𝑖,𝑗−1, 𝑐𝑖−1,𝑗) (3.3) 

𝐷𝑍𝐵𝑋𝑌 = 𝑐𝑛𝑚 (3.4) 

 

Denklem (3.3)’te 𝑐𝑖𝑗, komşu elemanların minimum uzunluğa sahip olanlarıyla 

oluşturulan ve mevcut hücrenin uzunluk değeri 𝑑(𝑥𝑖, 𝑦𝑗) ile bulunan birikimli uzaklık 

değeridir. 𝑋 ve 𝑌 zaman serilerinin DZB ölçüsü (𝐷𝑍𝐵𝑋𝑌) küçük bir değere sahip ise 

serilerinin benzer oldukları çıkarımı yapılır, aksi takdirde  𝑋 ve 𝑌 zaman serilerinin şekil 

itibari ile benzer olmadıkları sonucuna varılır (Diab vd., 2021; Tuncer ve Unlu, 2016). 

 

3.2.  EASMT için Çözüm Yaklaşımı 

 

Bu tez kapsamında EASMT problemi için kullanılacak veri seti tablo formatında olup 

çıktı sayısal bir değerdir. Tahmin edilmek istenen öznitelik sayısal bir değere sahipse 

problem, regresyon problemi olarak değerlendirilir. Makine öğrenmesinde regresyon 

problemlerinin çözümünde regresyon modelleri kullanılmaktadır. Regresyon modelleri, 

sürekli değişkenlere dayalı gerçek değerleri tahmin etmek için kullanılır. Regresyon 

modelleri, tahmin hatasını minimize eden fonksiyonu bulmak için bağımsız ve bağımlı 

değişkenler arasında ilişkiler kurar. Regresyon problemlerinin çözümünde en çok 

kullanılan makine öğrenmesi yöntemleri regresyon modelleri, rastgele orman regresyonu, 

destek vektör regresyonları ve sinirsel ağlardır (Kumar ve Sharma, 2017). 
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Bir tür makine öğrenimi yöntemi olan derin öğrenme, bilgisayarla görme, doğal dil 

işleme, konuşma tanıma gibi birçok alanda yüksek performans göstermiştir. Derin 

öğrenme modellerinin temelini oluşturan derin sinir ağları (DSA), giriş ve çıkış 

katmanları arasında çok sayıda katman bulunan yapay bir sinir ağlarıdır (Schmidhuber, 

2015). DSA, ilave işleme katmanları ekleyerek yüksek düzeyde soyut, doğrusal olmayan 

veri temsillerini öğrenebilmektedirler (Veres ve Moussa, 2020). DSA’nın temeli, 

canlıların sinir sisteminin modellenmesine dayanmaktadır. Canlıların sinir sistemindeki 

bir sinir ağının temel görevi, verileri depolayan ve yöneten ve bunları yapay sinapslarla 

bağlayan nöronlar veya düğümler geliştirmektir. Amaç, veriler arasında ilişki kurarak 

öğrenme ve hafızaya almayı sağlamaktır. DSA, giriş katmanı, gizli katman(lar) ve çıkış 

katmanından oluşur. Girdi katmanındaki düğüm sayısı, değerlendirilmekte olan 

öznitelikleri temsil eden değişkenlerin sayısını ifade ederken, çıktı katmanındaki 

nöronların sayısı sınıfların sayısına eşittir.  Nöronların sayısı ve gizli katmanların sayısı, 

probleme ve eğitim verilerinin sayısına bağlıdır. Her nöron, bir önceki katmandaki tüm 

düğümlerle, gizli ve çıkış katmanındaki ilişkili bir sayısal ağırlıkla ilişkilidir. İki nöron 

arasındaki ağırlık, aralarında oluşan sinyalin büyüklüğünü kontrol eder. DSA’nın gizli 

katmanındaki nöronlarda gerçekleştirilen matematiksel işlem denklem (3.5)’te yer 

almaktadır (Ullah, Liu, Yamamato, al-Mamlook vd., 2021): 

 

𝜂𝑗
𝑖 = ∑ 𝜔𝑘

𝑖 𝜒𝑘
𝜄𝑖−1𝜄𝑖−1

𝑘=1 + 𝛽𝑘
𝑖 ,   ∀𝑗 = {1 … 𝜄𝑖} (3.5) 

 

Burada 𝑖, gizli katman numarasını ve 𝑗, katmandaki nöron numarasını belirtmektedir. 𝜄𝑖, 

𝑖. katmandaki nöron sayısını belirtir. 𝑖. katmandaki 𝑗. nöronunun çıktısı 𝜂𝑗
𝑖  olarak ifade 

edilmiştir. 𝜔𝑘
𝑖  ve 𝛽𝑘

𝑖  sırasıyla, 𝑖. katmandaki 𝑘. nöronunun ağırlığını ve önyargı (bias) 

değerini belirtir. 𝜒𝑘
𝜄𝑖−1 ise bir önceki katmanın 𝑘. nöronunun çıktı değerini temsil eder. 𝜂𝑗

𝑖  

değeri aktivasyon fonksiyonunun girdisi olarak kullanılır. Aktivasyon fonksiyonunun 

çıktısı bir sonraki katmanın girdisi olarak kullanılır. Çıktı katmanında da denklem (3.5) 

ile bir sonuç elde edilir, ancak çıktı değeri üzerinde aktivasyon fonksiyonu kullanılmaz. 

DSA, çıktı değerleri ile istenilen değerler arasındaki ortalama hata değerlerini minimize 

eden optimal 𝜔 ve 𝛽 değerlerinin bulunması problemini çözer. Bunun için geriye yayılım 
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algoritması kullanılır. Geri yayılım algoritması, hata fonksiyonunun gradyanını hesaplar. 

Geri yayılım, sinir ağının bir fonksiyonu olarak yazılabilir. Geri yayılım algoritmaları, 

zincir kuralından yararlanan bir gradyan iniş yaklaşımını izleyerek yapay sinir ağlarını 

verimli bir şekilde eğitmek için kullanılan bir dizi yöntemdir. 

 

Menzil tahmini için derin öğrenme yöntemlerinden DSA modeli kullanılmıştır. Veri 

setinde hem statik hem de dinamik veriler bulunduğundan iki menzil tahmin modeli 

geliştirilmiştir. Yalnızca dinamik verilerin girdi olarak kullanıldığı tahmin modeli DSA-

A ve statik ve dinamik verinin birlikte model eğitimi için kullanıldığı DSA-B modeli 

geliştirilmiştir. Her katmandaki katman sayısı ve nöronlar, en düşük doğrulama kaybı 

izlenerek ampirik olarak belirlenmiştir. DSA modelleri, nöron sayılarına sahip üç 

katmana sahiptir. Yığın boyutu 64 olarak ayarlanmıştır. Nöron ağırlıklarının 

optimizasyonu için Adam optimizasyon işlevi kullanılmıştır. Çıktı değişkeni olan 

harcanan enerji miktarı, pozitif ve negatif değerler aldığından kullanılacak aktivasyon 

fonksiyonunun da aynı aralığı kapsaması gerekmektedir. Sızıntı (leaky) ReLU, çıktı 

olarak negatif değerler de üretebilmesi nedeniyle aktivasyon fonksiyonu olarak 

kullanılmıştır. Sızıntı ReLU fonksiyonu Şekil 3.9’da verilmiştir. Fonksiyonunun eğim 

parametresi (α) 0,2 olarak alınmıştır. Kayıp fonksiyonu olarak, ortalama kare hatası 

(Mean Square Error -MSE) seçilmiştir. 

 

 
 

Şekil 3.9. Sızıntı ReLU grafiksel gösterimi (Leaky ReLU Explained, 2022) 

 

DSA-A ve DSA-B tahmin modellerinin yapısı Şekil 3.10’da gösterilmiştir. Dinamik ve 

statik veri setleri oluşturulduktan sonra eğitim-doğrulama (validation) ve test aşamaları 
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için her iki veri seti üç gruba ayrılmıştır. Verilerin aldıkları değerlerin birbirlerinden farklı 

aralıklarda olması nedeniyle ölçeklendirme yapılması model eğitimi sırasında ağırlık 

değerlerinin kararlı bir şekilde güncellenebilmesi için gerekli bir önişlemdir. Yolculuk 

veri setindeki özniteliklerin maksimum ve minimum noktaları net olmadığı için Z-

standart ölçeği kullanılmıştır. DSA modellerinin çıktısı segmentte harcanan enerji (Wh) 

tahminidir. Segmentlere bölünmüş bir rota üzerinde bir EA’nın kalan enerji seviyesi baz 

alınarak nereye kadar gidebileceğini tahmin etmek için rotanın segmentlerinin enerjisi 

DSA modelleri ile elde edilir ve EA’nın kalan enerji seviyesinin üstüne çıkana kadar 

segmentlerde harcanan enerji kümülatif olarak toplanır. Elde edilen segment mesafesi, 

EA’nın tahmini kalan menzilini gösterir. 

 

 
 

Şekil 3.10. Menzil tahmini için geliştirilen DSA-A ve DSA-B modelleri 
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3.3. EAŞP için Çözüm Yaklaşımı 

 

EAŞP probleminde amaç, minimum yolculuk süresi veya yolculuk maliyeti için EA’nın 

nerede, ne zaman ve ne kadar şarj/deşarj olması gerektiğinin bulunmasıdır. Sürüş 

yapılacak rota belirlendikten sonra menzil tahmini yapılır. Rota, menzili aşan bir 

uzunluğa sahip ise rota üzerindeki şarj istasyonları belirlenir. Şarj istasyonlarının 

konumları, sıraları, doluluk-boşluk bilgileri ve fiyat bilgileri AUS aracılığıyla elde edilir. 

EA’nın rotası üzerindeki her bir şarj istasyona varabilmesi için harcaması gereken enerji 

miktarı menzil tahmini modeli ile elde edilir. Bu bilgi, şarj planlama modelinde bir girdi 

parametresi olarak kullanılır.  

 

EAŞP için geliştirilen karma tamsayılı doğrusal programlama modeli V2G (şebekeden-

araca enerji satış) uygulamalarını, zaman dilimlerine bağlı değişen şarj/deşarj fiyatlarını, 

doğrusal olmayan şarj/deşarj sürelerini ve şarj ünitelerinin sürüşün başladığı zaman 

diliminde kullanılabilirliğini dikkate alır. Şarj süresi, şarj ünitesinin gücüne ve EA’nın 

şarj düzeyi miktarına bağlıdır. Genel olarak lityum-iyon pillerinin (Li-ion) şarj süresi, 

Şekil 3.11’de verildiği gibi parçalı doğrusal bir fonksiyona yakınsayan doğrusal olmayan 

bir yapı sergiler (Fu ve Dong, 2019; Keskin vd, 2019; Schoenberg ve Dressler, 2019). 

 

 
 

Şekil 3.11. Şarj süresi prosesinin parçalı lineer fonksiyon yaklaşımı 

 

Fu ve Dong’un (2019) çalışmasından yararlanarak parçalı doğrusal şarj süresi, Denklem 

(3.6)’da verildiği gibi hesaplanır. Burada 𝑥, EA’nın kalan enerji miktarı (kWh) olsun. 
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𝜏𝑖𝑓(𝑥),  𝑖. şarj istasyonundaki 𝑓. şarj ünitesinde EA’nın enerji miktarının sıfırdan 𝑥’e 

(kWh) çıkması için gereken toplam süre (dakika) olsun. EA’nın şarj sırasındaki enerji 

miktarı kapasitesinin (𝐵) belirli bir kırılım yüzdesine (%𝑏𝑝) ulaşana kadar şarj süresi 

60 ∗
𝑥

𝒑𝒊𝒇
  değerine eşit olur. Burada 𝑝𝑖𝑓, kW cinsinden şarj gücüdür. Belirli bir seviyeden 

sonra (𝐵 ∗ 𝑏𝑝) şarj gücü düşer, dolayısıyla şarj süresi artmaya başlar. 𝑠𝑝, parçalı 

fonksiyonun kırılma noktasından sonraki eğimi olsun (𝑠𝑝 < 1). EA’nın enerji miktarı, 

batarya kapasitesinin %𝑏𝑝 seviyesinin üzerinde olduğunda dakika cinsinden şarj süresi 

𝜏𝑖𝑓(𝑥) gibi hesaplanır.  

 

𝜏𝑖𝑓(𝑥) = {

60 ∙
𝑥

𝑝𝑖𝑓
,                                    𝑥 < 𝐵 ∙ 𝑏𝑝       

60 ∙
𝐵∙𝑏𝑝

𝑝𝑖𝑓
+ 60 ∙

𝑥−𝐵∙𝑏𝑝

𝑠𝑝∙𝑝𝑖𝑓
,       𝑥 ≥ 𝐵 ∙ 𝑏𝑝

 (3.6) 

 

3.3.1. Problem varsayımları 

 

EA’nın belirlenen bir rota üzerinde optimal şarj planının elde edilmesi için geliştirilen 

matematiksel programlama modelinin varsayımları aşağıda belirtilmiştir: 

▪ Rota üzerinde seyahati tamamlamak için yeterli sayıda şarj istasyonu bulunmaktadır.  

▪ Ardışık şarj istasyonlarına ulaşmak için gereken enerji EA’nın kapasitesinden azdır.  

▪ Tüm şarj istasyonları V2G özelliğine sahip istasyonlardır.  

▪ EA, bir şarj istasyonunda yalnızca bir şarj ünitesinde şarj edilebilir.  

▪ EA, uğradığı istasyonda ya şarj veya deşarj olmak için uğrar. Bir istasyonda hem şarj 

hem de deşarj olamaz ve aynı şarj ünitesinden şarj/deşarj olabilir.  

▪ Yolculuk boyunca SOC değerinin %20’nin altına düşmesine izin verilmemektedir.  

▪ Şarj süresi parçalı lineer fonksiyon olarak modellenmiştir. 

 ▪ EA’nın istasyona uğradığı zaman diliminde uygunluk durumu müsait olan (boş olan) 

şarj ünitelerinde şarj/deşarj olmaya başlayabilir.  

▪ Tüm şarj ünitelerinin, zaman ufkunun uzunluğunu aşan yolculuk süreleri için uygun 

(boş) olduğu varsayılır.  

▪ Şarj istasyonlarındaki şarj ünitelerinin uygunluk durumu (boş-dolu) ve fiyatı zaman 

dilimlerine bağlı değişmektedir. 
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3.3.2. Matematiksel programlama modeli 

 

Şarj planlama modeli için kullanılan matematiksel notasyon Çizelge 3.1’de verilmiştir: 

 

Çizelge  3.1. Matematiksel modelde kullanılan notasyonlar 

 
Kümeler 

𝐶𝑆 Şarj istasyonları kümesi 𝑖 = {1, … , 𝑛} 

𝑇𝑆 Zaman dilimleri kümesi ℎ = {1, … , 𝐻} 

𝐶𝐻𝑖 𝑖. şarj istasyonunun şarj üniteleri kümesi; 𝑓 = {1, … , 𝑚𝑖} 

Parametreler 

𝑛 Şarj istasyonu sayısı 

𝐻 Zaman dilimi sayısı 

𝑀 Zaman dilimi uzunluğu (dk) 

𝐵 EA’nın batarya kapasitesi (kWh) 

𝐵𝑚𝑖𝑛 Kabul edilebilir minimum SOC yüzdesi (%) 

𝑏𝑝 Doğrusal olmayan şarj süresinin EA’nın enerjisine bağlı kırılma noktası (%) 

𝑠𝑝 Doğrusal olmayan şarj süresinin kırılma noktasından sonraki eğimi (%) 

𝑙 Yolculuğu tamamlamak için gereken enerji miktarı (kWh) 

𝑇 Yolculuğun hiç durmaksızın tamamlanma süresi (dk) 

𝑟0 Yolculuğun başında kalan enerji miktarı (kWh) 

ℎ0 Yolculuğun başladığı zaman dilimi,  ℎ0 ∈ 𝑇𝑆 

𝑚𝑖 𝑖. şarj istasyonundaki şarj ünitesi sayısı 

𝑒𝑖 Başlangıç düğümünden 𝑖. düğüme varmak için gereken birikimli enerji miktarı (kWh) 

𝑠𝑖 Başlangıç düğümünden 𝑖. düğüme varmak için gereken yolculuk süresi (dk) 

𝑝𝑖𝑓 𝑖. şarj istasyonunun 𝑓. şarj ünitesinin şarj gücü (kW/h) 

𝑤𝑖𝑓ℎ 𝑖. şarj istasyonunun 𝑓. şarj ünitesinin ℎ. zaman dilimindeki uygunluk durumu (boş:1/dolu:0) 

𝑐𝑖𝑓ℎ
𝑣  𝑖. şarj istasyonunun 𝑓. şarj ünitesinin ℎ. zaman dilimindeki şarj fiyatı ($/dk) 

𝑐𝑖𝑓ℎ
𝑔

 𝑖. şarj istasyonunun 𝑓. şarj ünitesinin ℎ. zaman dilimindeki deşarj fiyatı ($/dk) 

İkili Değişkenler 

𝑥𝑖
𝑣 EA, 𝑖. şarj istasyonunda şarj edilirse 1, aksi takdirde 0 

𝑥𝑖
𝑔

 EA, 𝑖 şarj istasyonunda deşarj edilirse 1, aksi takdirde 0 

𝑦𝑖𝑓ℎ
𝑣  EA, 𝑖 şarj istasyonunun 𝑓 şarj ünitesine ℎ zaman diliminde şarj edilirse 1, aksi takdirde 0 

𝑦𝑖𝑓ℎ
𝑔

 EA, 𝑖 şarj istasyonunun 𝑓 şarj ünitesine ℎ zaman diliminde deşarj edilirse 1, aksi takdirde 0 

Tamsayı Değişkenler 

𝐴𝑖
𝑎 EA, 𝑖.  istasyonuna vardığında yolculuk süresinin H zaman dilimini geçme sayısı 

𝐴𝑖
𝑑 EA, 𝑖  istasyonundan ayrıldığında yolculuk süresinin H zaman dilimini geçme sayısı 

𝐼𝑖
𝑎 EA, 𝑖 şarj istasyonuna vardığı zaman dilimi 

𝐼𝑖
𝑑 EA, 𝑖 şarj istasyonundan ayrıldığı zaman dilimi 

Sürekli Değişkenler 

𝑅𝑖
𝑎 EA’nın 𝑖. şarj istasyonuna varış anındaki enerji miktarı (kWh) 

𝑅𝑖
𝑑 EA’nın 𝑖 şarj istasyonundan ayrıldığındaki enerji miktarı (kWh) 

𝑇𝑖
𝑎 EA’nın 𝑖 şarj istasyonuna varış zamanı (dk) 

𝑇𝑖
𝑑 EA’nın 𝑖 şarj istasyonundan ayrılış zamanı (dk) 

𝐺𝑖
𝑣 EA’nın 𝑖 şarj istasyonunun 𝑓 şarj ünitesinden ℎ zaman diliminde aldığı enerji miktarı (kWh) 

𝐺𝑖
𝑔

 EA’nın 𝑖 şarj istasyonunun 𝑓 şarj ünitesine ℎ zaman diliminde aktardığı enerji miktarı (kWh) 

𝑡𝑖𝑓ℎ
𝑣  EA’nın 𝑖 şarj istasyonunun 𝑓 şarj ünitesinden ℎ zaman dilimindeki şarj süresi (dk) 

𝑡𝑖𝑓ℎ
𝑔

 EA’nın 𝑖 şarj istasyonunun 𝑓 şarj ünitesinden ℎ zaman dilimindeki deşarj süresi (dk) 
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Çizelge  3.1. Matematiksel modelde kullanılan notasyonlar (devam) 

 
Fonksiyon 

𝜏𝑖𝑓(𝑥) 
EA’nın 𝑖. şarj istasyonunun 𝑓. şarj ünitesinde enerji miktarını sıfırdan 𝑥 seviyesine (kWh) 

çıkarmak için gereken toplam süre (dk) 

Ara İkili Değişkenler 

𝛿𝑖𝑓ℎ
1  EA, 𝑖. şarj istasyonunun 𝑓. şarj ünitesinin ℎ zaman diliminde vardığında geçen zaman dilimi 

sayısı 𝐻’ı geçmezse 1, aksi takdirde 0  

𝛿𝑖ℎ
2  EA, 𝑖 şarj istasyonuna ℎ zaman diliminde varırsa 1, aksi takdirde 0 

𝛿𝑖ℎ
3  EA, 𝑖 şarj istasyonundan ℎ zaman diliminde ayrılırsa 1, aksi takdirde 0 

𝜑𝑖ℎ
𝑎  EA,  𝑖 şarj istasyona ℎ zaman diliminde varıp şarj/deşarj işlemini aynı gün içerisinde tamamlarsa 

1, aksi takdirde 0 

𝜑𝑖ℎ
𝑑  EA, 𝑖 şarj istasyondan ℎ zaman diliminde ayrılıp şarj/deşarj işlemini aynı gün içerisinde 

tamamlarsa 1, aksi takdirde 0 

𝜁𝑖  EA, aynı gün içerisinde 𝑖. şarj istasyonda şarj/deşarj işlemini tamamlarsa 1, aksi takdirde 0  

𝜙𝑖ℎ
𝑎  EA, 𝑖 şarj istasyona ℎ zaman diliminde varıp şarj/deşarj işlemini aynı gün içerisinde 

tamamlamazsa 1, aksi takdirde 0 

𝜙𝑖ℎ
𝑑  EA,  𝑖 şarj istasyondan ℎ zaman diliminde ayrılıp ve şarj/deşarj işlemini aynı gün içerisinde 

tamamlamazsa 1, aksi takdirde 0 

𝜉𝑖 EA, aynı gün içerisinde 𝑖 şarj istasyonda şarj/deşarj işlemini tamamlamazsa 1, aksi takdirde 0  

 

Şarj planlama için iki farklı amaç fonksiyonu kullanılmıştır. Denklem (3.7)’deki amaç 

fonksiyonu EA’nın toplam yolculuk süresinin minimize edilmesini sağlarken denklem 

(3.8), toplam yolculuk maliyetini minimize etmektedir: 

 

𝑀𝑖𝑛     𝑇𝑛
𝑎 − 𝑀 ∗ ℎ0 (3.7) 

𝑀𝑖𝑛    ∑ ∑ ∑ (𝑐𝑖𝑓ℎ
𝑣 ∗ 𝑡𝑖𝑓ℎ

𝑣 − 𝑐𝑖𝑓ℎ
𝑔

∗ 𝑡𝑖𝑓ℎ
𝑔

)𝐻
ℎ

𝑚𝑖
𝑓

𝑛
𝑖  (3.8) 

 

Kısıtlar: 

 

𝐺𝑖
𝑣 ≤ 𝐵 ∗ (1 − 𝐵𝑚𝑖𝑛) ∗ 𝑥𝑖

𝑣                            ∀𝑖 ∈ 𝐶𝑆   (3.9) 

𝐺𝑖
𝑔

≤ 𝐵 ∗ (1 − 𝐵𝑚𝑖𝑛) ∗ 𝑥𝑖
𝑔

                            ∀𝑖 ∈ 𝐶𝑆 (3.10) 

𝑥𝑖
𝑣 + 𝑥𝑖

𝑔
≤ 1 ∀𝑖 ∈ 𝐶𝑆 (3.11) 

∑ 𝑦𝑖𝑓ℎ
𝑣𝑚𝑖

𝑓 ≤ 𝑥𝑖
𝑣 ∀𝑖 ∈ 𝐶𝑆, ∀ℎ ∈ 𝑇𝑆 (3.12) 

∑ 𝑦𝑖𝑓ℎ
𝑔𝑚𝑖

𝑓 ≤ 𝑥𝑖
𝑔

 ∀𝑖 ∈ 𝐶𝑆, ∀ℎ ∈ 𝑇𝑆 (3.13) 

𝑦𝑖𝑓ℎ
𝑣 + 𝑦𝑖𝑓ℎ

𝑔
− 𝑤𝑖𝑓ℎ ≤  1 − 𝛿𝑖𝑓ℎ

1     ∀𝑖 ∈ 𝐶𝑆, ∀𝑓 ∈ 𝐶𝐻𝑖, ∀ℎ ∈ 𝑇𝑆 (3.14) 

𝐻 − (𝐻 ∗ 𝐴𝑖
𝑎 + 𝐼𝑖

𝑎 − ℎ0) ≤ 𝐻 ∗ 𝛿𝑖𝑓ℎ
1   ∀𝑖 ∈ 𝐶𝑆, ∀𝑓 ∈ 𝐶𝐻𝑖, ∀ℎ ∈ 𝑇𝑆 (3.15) 

𝑟0 − 𝑒1 = 𝑅1
𝑎  (3.16) 

𝑅𝑖−1
𝑑 − 𝑒𝑖 + 𝑒𝑖−1 = 𝑅𝑖

𝑎 ∀𝑖 ∈ 𝐶𝑆/1 (3.17) 
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𝑅𝑛
𝑑 − 𝑙 + 𝑒𝑛 = 𝑅𝑛+1

𝑎   (3.18) 

𝑅𝑖
𝑑 − 𝐺𝑖

𝑣 ≤ 𝑅𝑖
𝑎 + 𝐵 ∗ (1 − 𝑥𝑖

𝑣) ∀𝑖 ∈ 𝐶𝑆 (3.19) 

𝑅𝑖
𝑑 − 𝐺𝑖

𝑣 ≥ 𝑅𝑖
𝑎 − 𝐵 ∗ (1 − 𝑥𝑖

𝑣) ∀𝑖 ∈ 𝐶𝑆 (3.20) 

𝑅𝑖
𝑎 − 𝐺𝑖

𝑔
≤ 𝑅𝑖

𝑑 + 𝐵 ∗ (1 − 𝑥𝑖
𝑔

) ∀𝑖 ∈ 𝐶𝑆 (3.21) 

𝑅𝑖
𝑎 − 𝐺𝑖

𝑔
≥ 𝑅𝑖

𝑑 − 𝐵 ∗ (1 − 𝑥𝑖
𝑔

) ∀𝑖 ∈ 𝐶𝑆 (3.22) 

𝑅𝑖
𝑎 ≤ 𝑅𝑖

𝑑 + 𝐵 ∗ (𝑥𝑖
𝑣 + 𝑥𝑖

𝑔
) ∀𝑖 ∈ 𝐶𝑆 (3.23) 

𝑅𝑖
𝑎 ≥ 𝑅𝑖

𝑑 − 𝐵 ∗ (𝑥𝑖
𝑣 + 𝑥𝑖

𝑔
) ∀𝑖 ∈ 𝐶𝑆 (3.24) 

𝜏𝑖𝑓(𝑅𝑖
𝑑) − 𝜏𝑖𝑓(𝑅𝑖

𝑎) ≤ ∑ 𝑡𝑖𝑓ℎ
𝑣𝐻

ℎ +
60∗𝐵

(𝑝𝑖𝑓∗𝑠𝑝)
(1 − ∑ 𝑦𝑖𝑓ℎ

𝑣𝐻
ℎ )  ∀𝑖 ∈ 𝐶𝑆, ∀𝑓 ∈ 𝐶𝐻𝑖   (3.25) 

𝜏𝑖𝑓(𝑅𝑖
𝑑) − 𝜏𝑖𝑓(𝑅𝑖

𝑎) ≥ ∑ 𝑡𝑖𝑓ℎ
𝑣𝐻

ℎ −
60∗𝐵

(𝑝𝑖𝑓∗𝑠𝑝)
(1 − ∑ 𝑦𝑖𝑓ℎ

𝑣𝐻
ℎ ) ∀𝑖 ∈ 𝐶𝑆, ∀𝑓 ∈ 𝐶𝐻𝑖   (3.26) 

𝜏𝑖𝑓(𝑅𝑖
𝑎) − 𝜏𝑖𝑓(𝑅𝑖

𝑑) ≤ ∑ 𝑡𝑖𝑓ℎ
𝑔𝐻

ℎ +
60∗𝐵

(𝑝𝑖𝑓∗𝑠𝑝)
(1 − ∑ 𝑦𝑖𝑓ℎ

𝑔𝐻
ℎ ) ∀𝑖 ∈ 𝐶𝑆, ∀𝑓 ∈ 𝐶𝐻𝑖   (3.27) 

𝜏𝑖𝑓(𝑅𝑖
𝑎) − 𝜏𝑖𝑓(𝑅𝑖

𝑑) ≥ ∑ 𝑡𝑖𝑓ℎ
𝑔𝐻

ℎ −
60∗𝐵

(𝑝𝑖𝑓∗𝑠𝑝)
(1 − ∑ 𝑦𝑖𝑓ℎ

𝑔𝐻
ℎ ) ∀𝑖 ∈ 𝐶𝑆, ∀𝑓 ∈ 𝐶𝐻𝑖   (3.28) 

∑ ∑ 𝑦𝑖𝑓ℎ
𝑣 ≤ 𝐻 ∗ 𝑥𝑖

𝑣𝑚𝑖
𝑓

𝐻
ℎ  ∀𝑖 ∈ 𝐶𝑆   (3.29) 

∑ ∑ 𝑦𝑖𝑓ℎ
𝑔

≤ 𝐻 ∗ 𝑥𝑖
𝑔𝑚𝑖

𝑓
𝐻
ℎ  ∀𝑖 ∈ 𝐶𝑆   (3.30) 

∑ ∑ 𝑦𝑖𝑓ℎ
𝑣 ≥ 𝑥𝑖

𝑣𝑚𝑖
𝑓

𝐻
ℎ  ∀𝑖 ∈ 𝐶𝑆   (3.31) 

∑ ∑ 𝑦𝑖𝑓ℎ
𝑔

≥ 𝑥𝑖
𝑔𝑚𝑖

𝑓
𝐻
ℎ  ∀𝑖 ∈ 𝐶𝑆   (3.32) 

𝑦𝑖𝑓ℎ
𝑣 ≤ 𝑡𝑖𝑓ℎ

𝑣  ∀𝑖 ∈ 𝐶𝑆, ∀𝑓 ∈ 𝐶𝐻𝑖, ∀ℎ ∈ 𝑇𝑆 (3.33) 

𝑦𝑖𝑓ℎ
𝑔

≤ 𝑡𝑖𝑓ℎ
𝑔

 ∀𝑖 ∈ 𝐶𝑆, ∀𝑓 ∈ 𝐶𝐻𝑖, ∀ℎ ∈ 𝑇𝑆 (3.34) 

𝑡𝑖𝑓ℎ
𝑣 ≤ 𝑀 ∗ 𝑦𝑖𝑓ℎ

𝑣  ∀𝑖 ∈ 𝐶𝑆, ∀𝑓 ∈ 𝐶𝐻𝑖, ∀ℎ ∈ 𝑇𝑆 (3.35) 

𝑡𝑖𝑓ℎ
𝑔

≤ 𝑀 ∗ 𝑦𝑖𝑓ℎ
𝑔

 ∀𝑖 ∈ 𝐶𝑆, ∀𝑓 ∈ 𝐶𝐻𝑖, ∀ℎ ∈ 𝑇𝑆 (3.36) 

60 ∗ ℎ0 + 𝑠1 = 𝑇1
𝑎  (3.37) 

𝑇𝑖−1
𝑑 + 𝑠𝑖 − 𝑠𝑖−1 = 𝑇𝑖

𝑎 ∀𝑖 ∈ 𝐶𝑆/1 (3.38) 

𝑇𝑛
𝑑 − 𝑇 + 𝑠𝑛 = 𝑇𝑛+1

𝑎   (3.39) 

𝑇𝑖
𝑎

60
< 𝐻 ∗ 𝐴𝑖

𝑎 + 𝐼𝑖
𝑎 ∀𝑖 ∈ 𝐶𝑆   (3.40) 

𝑇𝑖
𝑎

60
+ 0.99 ≥ 𝐻 ∗ 𝐴𝑖

𝑎 + 𝐼𝑖
𝑎 ∀𝑖 ∈ 𝐶𝑆   (3.41) 

𝑇𝑖
𝑑

60
< 𝐻 ∗ 𝐴𝑖

𝑑 + 𝐼𝑖
𝑑 ∀𝑖 ∈ 𝐶𝑆   (3.42) 

𝑇𝑖
𝑑

60
+ 0.99 ≥ 𝐻 ∗ 𝐴𝑖

𝑑 + 𝐼𝑖
𝑑 ∀𝑖 ∈ 𝐶𝑆   (3.43) 
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𝑇𝑖
𝑎 + ∑ ∑ (𝑡𝑖𝑓ℎ

𝑣 + 𝑡𝑖𝑓ℎ
𝑔

)𝐻
ℎ

𝑚𝑖
𝑓 = 𝑇𝑖

𝑑 ∀𝑖 ∈ 𝐶𝑆 (3.44) 

∑ (𝑡𝑖𝑓ℎ
𝑣 + 𝑡𝑖𝑓ℎ

𝑔
)

𝑚𝑖
𝑓 − 𝑀 ∗ (𝐼𝑖

𝑎 + 𝐻 ∗ 𝐴𝑖
𝑎) + 𝑇𝑖

𝑎 ≤ 𝑀𝛿𝑖ℎ
2  ∀𝑖 ∈ 𝐶𝑆, ∀ℎ ∈ 𝑇𝑆  (3.45) 

𝐼𝑖
𝑎 − ℎ ≤ 𝐻 ∗ 𝛿𝑖ℎ

2  ∀𝑖 ∈ 𝐶𝑆, ∀ℎ ∈ 𝑇𝑆  (3.46) 

𝐼𝑖
𝑎 − ℎ ≥ −𝐻 ∗ 𝛿𝑖ℎ

2  ∀𝑖 ∈ 𝐶𝑆, ∀ℎ ∈ 𝑇𝑆  (3.47) 

∑ (𝑡𝑖𝑓ℎ
𝑣 + 𝑡𝑖𝑓ℎ

𝑔
)

𝑚𝑖
𝑓 − 𝑇𝑖

𝑑 + 𝑀 ∗ (𝐼𝑖
𝑑 + 𝐻 ∗ 𝐴𝑖

𝑑 − 1) ≤ 𝑀𝛿𝑖ℎ
3    ∀𝑖 ∈ 𝐶𝑆, ∀ℎ ∈ 𝑇𝑆   (3.48) 

𝐼𝑖
𝑑 − ℎ ≤ 𝐻 ∗ 𝛿𝑖ℎ

3  ∀𝑖 ∈ 𝐶𝑆, ∀ℎ ∈ 𝑇𝑆  (3.49) 

ℎ − 𝐼𝑖
𝑑 ≥ −𝐻 ∗ 𝛿𝑖ℎ

3  ∀𝑖 ∈ 𝐶𝑆, ∀ℎ ∈ 𝑇𝑆 (3.50) 

𝐼𝑖
𝑎 − ℎ ∗ (1 − (𝐴𝑖

𝑑 − 𝐴𝑖
𝑎)) ≤ 𝐻 ∗ 𝜑𝑖ℎ

𝑎  ∀𝑖 ∈ 𝐶𝑆, ∀ℎ ∈ 𝑇𝑆  (3.51) 

ℎ ∗ (1 − (𝐴𝑖
𝑑 − 𝐴𝑖

𝑎)) − 𝐼𝑖
𝑎 ≤ 𝐻 ∗ 𝜑𝑖ℎ

𝑎  ∀𝑖 ∈ 𝐶𝑆, ∀ℎ ∈ 𝑇𝑆    (3.52) 

∑ ∑ (𝑦𝑖𝑓𝑘
𝑣 + 𝑦𝑖𝑓𝑘

𝑔
)

𝑚𝑖
𝑓

ℎ−1
𝑘=1 ≤ 𝐻 ∗ 𝜑𝑖ℎ

𝑎  ∀𝑖 ∈ 𝐶𝑆, ∀ℎ ∈ 𝑇𝑆    (3.53) 

𝐼𝑖
𝑑 − ℎ ∗ (1 − (𝐴𝑖

𝑑 − 𝐴𝑖
𝑎)) ≤ 𝐻 ∗ 𝜑𝑖ℎ

𝑑  ∀𝑖 ∈ 𝐶𝑆, ∀ℎ ∈ 𝑇𝑆   (3.54) 

ℎ ∗ (1 − (𝐴𝑖
𝑑 − 𝐴𝑖

𝑎)) − 𝐼𝑖
𝑑 ≤ 𝐻 ∗ 𝜑𝑖ℎ

𝑑  ∀𝑖 ∈ 𝐶𝑆, ∀ℎ ∈ 𝑇𝑆   (3.55) 

∑ ∑ (𝑦𝑖𝑓𝑘
𝑣 + 𝑦𝑖𝑓𝑘

𝑔
)

𝑚𝑖
𝑓

𝐻
𝑘=ℎ+1 ≤ 𝜑𝑖ℎ

𝑑  ∀𝑖 ∈ 𝐶𝑆, ∀ℎ ∈ 𝑇𝑆    (3.56) 

𝑥𝑖
𝑣 + 𝑥𝑖

𝑔
− (1 − (𝐴𝑖

𝑑 − 𝐴𝑖
𝑎)) ≤ 𝐻 ∗ 𝜁𝑖 ∀𝑖 ∈ 𝐶𝑆   (3.57) 

(1 − (𝐴𝑖
𝑑 − 𝐴𝑖

𝑎)) − (𝑥𝑖
𝑣 + 𝑥𝑖

𝑔
) ≤ 𝐻 ∗ 𝜁𝑖 ∀𝑖 ∈ 𝐶𝑆   (3.58) 

∑ ∑ (𝑦𝑖𝑓ℎ
𝑣 + 𝑦𝑖𝑓ℎ

𝑔
)

𝑚𝑖
𝑓

𝐻
ℎ − (𝐼𝑖

𝑑 − 𝐼𝑖
𝑎 + 1) ≤ 𝜁𝑖 ∀𝑖 ∈ 𝐶𝑆  (3.59) 

𝐼𝑖
𝑎 − ℎ ∗ (𝐴𝑖

𝑑 − 𝐴𝑖
𝑎) ≤ 𝐻 ∗ 𝜙𝑖ℎ

𝑎  ∀𝑖 ∈ 𝐶𝑆, ∀ℎ ∈ 𝑇𝑆    (3.60) 

ℎ ∗ (𝐴𝑖
𝑑 − 𝐴𝑖

𝑎) − 𝐼𝑖
𝑎 ≤ 𝐻 ∗ 𝜙𝑖ℎ

𝑎  ∀𝑖 ∈ 𝐶𝑆, ∀ℎ ∈ 𝑇𝑆    (3.61) 

∑ ∑ (𝑦𝑖𝑓𝑘
𝑣 + 𝑦𝑖𝑓𝑘

𝑔
)

𝑚𝑖
𝑓

𝐻
𝑘=ℎ ≤ (𝐻 − ℎ + 1) ∗ 𝜙𝑖ℎ

𝑎  ∀𝑖 ∈ 𝐶𝑆, ∀ℎ ∈ 𝑇𝑆    (3.62) 

𝐼𝑖
𝑑 − ℎ ∗ (𝐴𝑖

𝑑 − 𝐴𝑖
𝑎) ≤ 𝐻 ∗ 𝜑𝑖ℎ

𝑑  ∀𝑖 ∈ 𝐶𝑆, ∀ℎ ∈ 𝑇𝑆   (3.63) 

ℎ ∗ (𝐴𝑖
𝑑 − 𝐴𝑖

𝑎) − 𝐼𝑖
𝑑 ≤ 𝐻 ∗ 𝜑𝑖ℎ

𝑑  ∀𝑖 ∈ 𝐶𝑆, ∀ℎ ∈ 𝑇𝑆   (3.64) 

∑ ∑ (𝑦𝑖𝑓𝑘
𝑣 + 𝑦𝑖𝑓𝑘

𝑔
)

𝑚𝑖
𝑓

ℎ
𝑘=1 ≤ ℎ ∗ 𝜑𝑖ℎ

𝑑  ∀𝑖 ∈ 𝐶𝑆, ∀ℎ ∈ 𝑇𝑆    (3.65) 

𝑥𝑖
𝑣 + 𝑥𝑖

𝑔
− (𝐴𝑖

𝑑 − 𝐴𝑖
𝑎) ≤ 𝐻 ∗ 𝜉𝑖 ∀𝑖 ∈ 𝐶𝑆   (3.66) 

(𝐴𝑖
𝑑 − 𝐴𝑖

𝑎) − (𝑥𝑖
𝑣 + 𝑥𝑖

𝑔
) ≤ 𝐻 ∗ 𝜉𝑖 ∀𝑖 ∈ 𝐶𝑆   (3.67) 

∑ ∑ (𝑦𝑖𝑓ℎ
𝑣 + 𝑦𝑖𝑓ℎ

𝑔
)

𝑚𝑖
𝑓

𝐻
ℎ − (𝐻 + 𝐼𝑖

𝑑 − 𝐼𝑖
𝑎 + 1) ≤ 𝜉𝑖 ∀𝑖 ∈ 𝐶𝑆  (3.68) 

∑ (𝑦𝑖𝑓ℎ
𝑣 + 𝑦𝑖𝑓ℎ

𝑔
)𝐻

ℎ − ∑ ∑ (𝑦𝑖𝑓ℎ
𝑣 + 𝑦𝑖𝑓ℎ

𝑔
)

𝑚𝑖
𝑓

𝐻
ℎ ≤ 𝐻 ∗ (1 − ∑ (𝑦𝑖𝑓ℎ

𝑣 + 𝑦𝑖𝑓ℎ
𝑔

))𝐻
ℎ   

 ∀𝑖 ∈ 𝐶𝑆, ∀𝑓 ∈ 𝐶𝐻𝑖 (3.69) 
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𝐵𝑚𝑖𝑛 ≤ 𝑅𝑖
𝑎, 𝑅𝑖

𝑑 ≤ 𝐵 ∀𝑖 ∈ 𝐶𝑆   (3.70) 

1 ≤ 𝐼𝑖
𝑎, 𝐼𝑖

𝑑 ≤ 𝐻 ∀𝑖 ∈ 𝐶𝑆   (3.71) 

𝑡𝑖𝑓ℎ
𝑣 , 𝑡𝑖𝑓ℎ

𝑔
, 𝐺𝑖

𝑣, 𝐺𝑖
𝑔

, 𝑅𝑖
𝑎, 𝑅𝑖

𝑑, 𝑇𝑖
𝑎, 𝑇𝑖

𝑑 ≥ 0 ∀𝑖 ∈ 𝐶𝑆, ∀𝑓 ∈ 𝐶𝐻𝑖, ∀ℎ ∈ 𝑇𝑆  (3.72) 

𝑥𝑖
𝑣 , 𝑥𝑖

𝑔
, 𝑦𝑖𝑓ℎ

𝑣 , 𝑦𝑖𝑓ℎ
𝑔

, 𝛿𝑖𝑓ℎ
1 ,  𝛿𝑖ℎ

2 , 𝛿𝑖ℎ
3 , 𝜑𝑖ℎ

𝑎 , 𝜑𝑖ℎ
𝑑 , 𝜙𝑖ℎ

𝑎 , 𝜙𝑖ℎ
𝑑 , 𝜁𝑖 , 𝜉𝑖   ∈ {0,1}  

 ∀𝑖 ∈ 𝐶𝑆, ∀𝑓 ∈ 𝐶𝐻𝑖, ℎ ∈ 𝑇𝑆   (3.73) 

 𝐴𝑖
𝑎, 𝐴, 𝐼𝑖

𝑎, 𝐼𝑖
𝑑 ∈ 𝑍+ ∀𝑖 ∈ 𝐶𝑆   (3.74) 

 

Kısıt (3.9) ve (3.10), bir şarj istasyonundan alınan veya istasyona aktarılan toplam enerji 

miktarının, EA’nın kapasitesini aşmamasını sağlamaktadır. Kısıt (3.11), EA’nın uğradığı 

şarj istasyonunda şarj veya deşarj işlemlerinden yalnızca birinin gerçekleştirilmesine izin 

vermektedir. Kısıt (3.12) ve (3.13), EA’nın bir istasyonda bir zaman diliminde en fazla 

bir şarj ünitesinde şarj/deşarj olmasını sağlar. Kısıt (3.14) ve (3.15), EA’nın sürüşe 

başladığından itibaren geçen zaman dilimi sayısı (𝐻 ∗ 𝐴𝑖
𝑎 + 𝐼𝑖

𝑎 − ℎ0), 𝐻 zaman dilimi 

geçinceye kadar dolu olan şarj ünitelerini seçmesini engellemektedir. Diğer bir ifadeyle 

eğer EA, şarj istasyonuna vardığında geçen süre, bir zaman periyodunu aşmadığı sürece 

EA’nın dolu şarj ünitelerinden dolu olanlarında şarj/deşarj olmaması sağlanır. Ancak 

zaman periyodundan daha uzun süre geçtiyse şarj ünitesinin rezerve olup olmadığına göre 

bir kısıtlama yapılmaz. Şarj ünitelerinin uygunluğunu yalnızca ilk 𝐻 zaman dilimleri için 

kısıtlamanın nedeni, bu bilginin sadece ilk bir zaman periyodu için belirli olduğu 

varsayıldığından kaynaklanmaktadır. Dolayısıyla daha uzun süreli yolculuklar için 

modelin geçmiş zaman periyoduna ait parametreleri kullanması önlenmektedir. Kısıt 

(3.16)-(3.18), yolculuk boyunca EA’nın enerji korunumunu sağlamaktadır. Kısıt (3.16), 

başlangıç düğümü ve ilk şarj istasyonu arasındaki enerji dengesini; kısıt (3.17), ardışık 

şarj istasyonları arasındaki enerji dengesini ve kısıt (3.18), son şarj istasyonu ile varış 

düğümü arasındaki enerji dengesini ifade etmektedir. Kısıt (3.19) ve (3.20), şarj 

istasyonlarında şarj işlemi sırasında enerji dengesini takip etmektedir. Kısıt (3.21) ve 

(3.22), EA’nın deşarj ettiği enerji miktarının, EA’nın istasyona varıştaki enerji miktarı ile 

istasyondan ayrıldığı sıradaki enerji miktarı farkına eşit olmasını sağlamaktadır. Kısıt 

(3.23) ve (3.24), EA’nın şarj istasyonunda şarj veya deşarj olmaması durumunda 

istasyona varırken ve istasyondan ayrıldığı sıradaki enerji miktarının değişmemesini 

sağlamaktadır.  
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Kısıt (3.25)-(3.28), doğrusal olmayan şarj/deşarj sürelerini modellemektedir. Denklem 

(3.6)’da verilen parçalı lineer şarj süresi fonksiyonu 𝜏𝑖𝑓(𝑥), EA’nın 𝑖. şarj istasyondan 

ayrılış anındaki enerji miktarı için 𝑓. şarj ünitesinden harcanması gereken şarj süresi ile 

istasyona varış zamanındaki enerji miktarı için gereken şarj süresi arasındaki farkı alarak 

şarj süresini hesaplamak için kullanılır. Deşarj süresini hesaplamak için de varıştaki enerji 

miktarı için gereken şarj süresinden istasyondan ayrılırken kalan enerji miktarı için 

gereken şarj süresi arasındaki fark alınır.  Kısıt (3.29) ve (3.30), bir istasyonda şarj/deşarj 

işlemi için durulmadığı müddetçe 𝑦𝑖𝑓ℎ
𝑣  ve 𝑦𝑖𝑓ℎ

𝑔
değişkenlerinin sıfır değeri almasını 

sağlamaktadır. Ancak bir istasyonda şarj/deşarj işlemi için durulacaksa kısıt (3.31) ve 

(3.32)’ye göre en az bir şarj ünitesinin zaman dilimi şarj/deşarj işlemi için seçilmiş 

olmalıdır. Kısıt (3.33) ve (3.34), EA’nın bir şarj ünitesine atanması durumunda şarj 

ünitesindeki şarj/deşarj süresinin sıfırdan büyük olmasını garantilemektedir. Kısıt (3.35) 

ve (3.36) ise şarj/deşarj süresinin, zaman diliminde kalan süreyi aşmamasını 

sağlamaktadır.   

 

Kısıt (3.37)-(3.39), EA’nın yolculuk içeresindeki zaman dengesini sağlayan kısıtlardır. 

Kısıt (3.37), EA’nın 𝑖. şarj istasyonunda şarj/deşarj edilmesi durumunda, istasyona 

vardığı zaman diliminde şarj/deşarj etmeye başlaması gerektiğini garanti etmektedir. 

Kısıt (3.38), ardışık şarj istasyonları arasında geçen zamanı dengelemektedir. Kısıt (3.39), 

son şarj istasyonu ile varış düğümü arasındaki zaman dengesini sağlamaktadır. Kısıt 

(3.40) ve (3.41), EA’nın şarj istasyonuna vardığı zaman diliminin bulunmasını garanti 

etmektedir. Kısıt (3.42) ve (3.43), EA’nın şarj istasyonundan ayrıldığı zaman diliminin 

bulunmasını sağlamaktadır. Kısıt (3.44), EA’nın şarj/deşarj işlemi sırasında zaman 

dengesini sağlamaktadır. Kısıt (3.45)-(3.47), EA’nın istasyona vardığı zaman diliminde 

harcayacağı şarj/deşarj süresinin, o zaman diliminde kalan mevcut süreyi aşmamasını 

engellemektedir. Kısıt (3.48)-(3.50), EA’nın, 𝑖. şarj istasyonundan  ℎ. zaman diliminde 

ayrılması durumunda (𝐼𝑖
𝑑 = ℎ), ℎ. zaman dilimindeki şarj/deşarj süresinin istasyondan 

ayrılış zamanı ile ℎ. zaman diliminin başlangıç zamanı arasındaki farktan daha az 

olmasını engellemektedir.  

 

EA’nın şarj/deşarj olduğu şarj ünitelerini ve zaman dilimlerini modellerken, EA’nın 

istasyona varış ve istasyondan ayrılış zaman dilimlerinin aynı zaman periyodu (gün) 
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içerisinde gerçekleşip gerçekleşmediği dikkate alınmalıdır.  Eğer EA, şarj/deşarj işlemini 

aynı günde tamamlıyorsa (𝐴𝑖
𝑑 = 𝐴𝑖

𝑎), varış zaman dilimi 𝐼𝑖
𝑎, ayrılış zaman diliminden (𝐼𝑖

𝑑) 

sayıca küçük olur. EA, şarj/deşarj işleminin başladığı zaman diliminden bittiği zaman 

dilimine kadar geçen süre boyunca şarj/deşarj olmalıdır. Modelin (3.51)-(3.59) arasındaki 

kısıtları, aynı gün içerisinde şarj/deşarj işleminin tamamlanması durumunu 

kapsamaktadır. Kısıt (3.51)-(3.53), EA’nın aynı gün içerisinde şarj/deşarj işlemi 

tamamlaması ve istasyona ℎ zaman diliminde varması durumunda, ℎ. zaman dilimi 

öncesinde şarj/deşarj işleminin yapılmasını engellemektedir. Kısıt (3.54)-(3.56), EA’nın 

aynı gün içerisinde şarj/deşarj işlemi tamamlaması ve istasyondan ℎ. zaman diliminden 

ayrılması durumunda, ℎ. zaman dilimi sonrasında EA istasyonda şarj/deşarj olmasını 

engellemektedir. Kısıt (3.57)-(3.59), EA’nın aynı gün içerisinde şarj/deşarj olması 

durumunda toplam şarj/deşarj için harcadığı zaman dilimi sayısını (𝐼𝑖
𝑑 − 𝐼𝑖

𝑎 + 1) değerine 

eşitlemektedir. 

 

Şarj/deşarj işleminin aynı gün içerisinde tamamlanmaması durumunda (𝐴𝑖
𝑑 ≠ 𝐴𝑖

𝑎) varış 

zaman dilimi 𝐼𝑖
𝑎, ayrılış zaman diliminden (𝐼𝑖

𝑑) büyük olur. Bu durumda EA’nın istasyona 

varış zaman diliminden öncesi, istasyondan ayrılış zaman dilimine kadar istasyonun 

toplam tüm şarj üniteleri için 𝑦𝑖𝑓ℎ
𝑣  ve 𝑦𝑖𝑓ℎ

𝑔
 değişkenlerinin değeri sıfır olmalıdır 

(∑ (𝑦𝑖𝑓ℎ
𝑣 + 𝑦𝑖𝑓ℎ

𝑔
)

𝐼𝑖
𝑎−1

ℎ=𝐼𝑖
𝑑+1

 ). Kısıt (3.60)-(3.63), EA’nın aynı gün içerisinde şarj işlemi 

tamamlamaması ve istasyona ℎ zaman diliminde varması durumunda, ℎ. zaman 

diliminden zaman periyodunun sonuna kadar EA istasyonda şarj/deşarj olmasını sağlar. 

Kısıt (3.64)-(3.67), EA’nın aynı gün içerisinde şarj işlemi tamamlamaması ve istasyondan 

ℎ. zaman diliminde ayrılması durumunda, zaman periyodunun başından ℎ. zaman 

dilimine kadar EA istasyonda şarj/deşarj olmasını sağlar. Kısıt (3.68)-(3.69), EA’nın yine 

aynı gün içerisinde şarj işlemi tamamlamaması durumunda, EA’nın şarj/deşarj için 

toplam harcadığı zaman dilimi sayısının 𝐻 + 𝐼𝑖
𝑑 − 𝐼𝑖

𝑎 + 1 değerine eşit olmasını sağlar. 

Kısıt (3.70)-(3.74), değişken sınırlarını göstermektedir. 
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3.3.3. Sezgisel yaklaşımlar 

 

Şarj planlama için literatürde önerilen sezgisel stratejiler şu şekildedir (Barabadi vd. 

2018, Schoenberg ve Dressler 2019, Y. Wang vd. 2021): 

 

▪ Her istasyonda tam dolum (Strateji-1, S1): EA’nın rota üzerindeki tüm 

istasyonlarda durmasını ve %100 şarj olmasını gerektiren bir şarj stratejisidir. Şarj 

planlama ile ilgili çalışmalarda önerilen stratejilerle en çok karşılaştırılan stratejidir. 

▪ Eşik değerin altına düşemeyecek şekilde tam dolum (Strateji-2, S2): Bu stratejiye 

göre EA, sıradaki istasyonda dolum yapmayıp bir sonraki istasyona vardığında enerji 

seviyesi, belirlenen minimum eşik değerinin (EA’da kalan enerji miktarı) altına 

düşecekse sıradaki ilk istasyonda tam dolum yapmalıdır.  

▪ Ulaşılabilen en uzak istasyona varabilecek kadar dolum (Strateji-3, S3): EA’nın 

kalan menziline göre gidebileceği en uzak istasyonu seçtiği stratejidir. Bu stratejiye 

göre dolum miktarı tam olması gerekmez, yalnızca EA’nın ulaşabileceği en uzak 

istasyona varabilecek kadar şarj olması yeterlidir. 

▪ Sıradaki istasyona varabilecek kadar dolum (Strateji-4, S4): Bu stratejiye göre 

EA yol üzerindeki tüm istasyonlara uğrar ve bir sonraki istasyona gidebilmek için 

gereken enerji miktarı kadar dolum yapar. 

 

3.3.4. Metasezgisel yaklaşım: genetik algoritma 

 

Metasezgisel algoritmalar, özellikle karmaşık optimizasyon problemlerini çözmek için 

kullanılan hesaplamalı zeka paradigmalarıdır (Abdel-Basset, Abdel-Fatah ve Sangaiah, 

2018). Metasezgisel yaklaşımlarını tek çözüm ve popülasyon tabanlı olarak iki kategoriye 

ayırmak mümkündür. GA, Holland (1975) tarafından önerilen popülasyon tabanlı bir 

metasezgisel yöntemdir. GA, problem çözme yetenekleri ve sağlamlığı açısından yaygın 

araştırma ilgisini çeken ve endüstriyel etkisi fark edilen erken optimizasyon yöntemleri 

arasında yer almaktadır (Ezugwu vd., 2021).  

 

GA’nın temel çalışma prensibi doğal seçilime dayanmaktadır. Güçlü bireylerin hayatta 

kalmaya devam ederken zayıf bireyler zaman içerisinde elenerek en iyi bireyler seçilir. 

GA’da çözümleri kromozomlar temsil etmektedir. Kromozom yapısı belirledikten sonra 
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başlangıç popülasyonu oluşturulur. Başlangıç popülasyonu rasgele oluşturulan 

kromozomları içeren bir çözüm havuzu olarak düşünülebilir. Başlangıç 

popülasyonundaki kromozomların değerlendirilmesi için uygunluk fonksiyonu 

tanımlanır ve kromozomların uygunluk değerleri elde edilir. Ardından kromozomlar 

arasında seçim işlemi gerçekleştirilir. Seçim işlemi uygunluk değerine göre 

yapılmaktadır. En yaygın kullanılan teknikler rulet tekerleği ve turnuva seçim tekniğidir. 

Seçilen kromozomlar bir sonraki popülasyonun oluşturulmasında kullanılır.  

 

Bir sonraki popülasyonun oluşturulmasında, çaprazlama ve mutasyon gibi genetik 

operatörler etkin rol oynar. GA’nın her nesil daha iyi çözümler elde edebilmesindeki en 

önemli işlem genetik operatörlerdir. Çaprazlama, seçilen iki kromozomun kombinasyonu 

ile yeni kromozomların oluşturulma işlemidir. Burada çaprazlama için seçilen 

kromozomlar ebeveyn, üretilen yeni kromozomlar ise çocuk olarak nitelendirilir. 

Mutasyon, seçilen bir kromozomdaki bir parçanın değişimi işlemidir. Genetik operatörler 

ile elde edilen yeni kromozomlar uygunluk fonksiyonu ile değerlendirilir. Uygunluk 

değerleri iyi olmayan kromozomlar yeni kromozomların yerini alır. Algoritma durdurma 

kriteri sağlanana kadar devam ettirilir. 

 

Kromozom Yapısı: EAŞP probleminde kullanılacak örnek bir kromozom yapısı Şekil 

3.12’de verilmiştir. Kromozom, hiyerarşik bir yapıya sahip olup ilk katman uğranılacak 

şarj istasyonlarını, ikinci katman seçilen şarj ünitelerini ve son katman şarj ünitelerinden 

alınacak/verilecek enerji miktarını temsil etmektedir. Kromozomun uzunluğu, rota 

üzerindeki şarj istasyonu sayısına (𝑛) eşittir. 

 

 
 

Şekil 3.12. Kromozom yapısı 
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Uygunluk Fonksiyonu: Minimum yolculuk süresi ve minimum yolculuk maliyeti olarak 

iki farklı amaç için uygunluk fonksiyonu oluşturulmuştur. Denklem (3.7) ve Denklem 

(3.8)’de verilen amaç fonksiyonlarını hesaplayabilmek için kromozomda verilen bilgiler 

kullanılarak zaman değişkenleri (𝑦𝑖𝑓ℎ, 𝑢𝑖𝑓ℎ, 𝑡𝑖𝑓ℎ
𝑣 , 𝑡𝑖𝑓ℎ

𝑔
, 𝑇𝑖

𝑎, 𝑇𝑖
𝑑) bulunur. Ardından 

kromozomların amaç fonksiyonuna göre uygunluk değeri belirlenir. 

 

Seçim: Kromozomların uygunluk değerine göre popülasyondaki en iyi kromozomlardan 

ilk %50’lik dilime girenler arasından rasgele seçim yapılır. Seçilen kromozomlar genetik 

işlemlere tabi tutulur. Burada amaç genetik işlemlere tabi tutulacak kromozomların en iyi 

kromozomlar arasından seçilmesini sağlayarak daha iyi bir popülasyon oluşturmaktır.  

 

Genetik Operatörler: GA’da çaprazlama ve mutasyon olmak üzere iki türlü genetik 

operatör bulunmaktadır. Çaprazlama ile elde edilecek yeni kromozomların uygun 

olmayan çözümler oluşturmasını engellemek için çaprazlama işlemine tâbi tutulacak 

ebeveyn kromozomları seçerken dikkat edilmesi gereken ilk şart, ebeveyn kromozomlar 

arasında ilk ve son şarj istasyonu hariç en az bir ortak şarj istasyon olması gerektiğidir. 

Çaprazlama işlemi bu ortak nokta üzerinden yapılmalıdır. Aksi takdirde mümkün 

olmayan bir rota oluşabilir.  

 

Şekil 3.13’te bu duruma örnek bir çaprazlama işlemi gösterilmiştir. Çaprazlama işleminin 

gerçekleştirilebilmesi için kromozomların uğradıkları şarj istasyonları dikkate 

alındığından Şekil 3.13’te kromozomların yalnızca ilk katmanı gösterilmiştir.  𝐸𝑏𝑒𝑣𝑒𝑦𝑛1 

ve 𝐸𝑏𝑒𝑣𝑒𝑦𝑛2 ile oluşturulan çocuk çözüme göre, EA sırasıyla 1-4-5 şarj istasyonlarına 

uğramalıdır. Ancak Şekil 3.14’te gösterilen örnek bir problemin ulaşılabilirlik ağı 

incelendiğinde bu rotanın mümkün olmadığı görülmektedir. 𝐸𝑏𝑒𝑣𝑒𝑦𝑛1 ve 𝐸𝑏𝑒𝑣𝑒𝑦𝑛2 ile 

uygun bir çözüm oluşturabilmek için çaprazlama yapılacak noktada en az bir ortak 

istasyon olmalıdır. Şekil 3.13 (a) örneğinde çaprazlama işlemi 2. ve 3. istasyonlar 

arasında yapılmıştır. Ancak çaprazlama yapılan yerin sağ ve sol tarafında (2 ve 3 numaralı 

istasyonlardan) gidilen ortak bir istasyon yoktur. Bu durum, 𝐸𝑏𝑒𝑣𝑒𝑦𝑛1 ve 𝐸𝑏𝑒𝑣𝑒𝑦𝑛2 ile 

çaprazlanması ile mümkün olmayan bir çözüm üretmesine neden olmuştur. Ancak Şekil 

3.13 (b) örneğindeki gibi çaprazlama yapılacak noktada ortak bir istasyon olduğunda elde 

edilen çözümlerde uygun olmayan bir durum ile ortaya çıkmamaktadır. 
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Şekil 3.13. Çaprazlama için ebeveyn seçimi 

 

 
 

Şekil 3.14. Çaprazlama için kullanılan örnek problemin ulaşılabilirlik ağı 

 

Mutasyon işlemi için çözümde uğranılacak şarj istasyonlarından birden fazla şarj 

ünitesine sahip olan istasyonlar belirlenir. Belirlenen istasyonlar arasından rasgele bir 

tanesi seçilir. Seçilen istasyonun çözümdeki şarj ünitesi yerine rasgele bir şarj ünitesi 

belirlenir. Şekil 3.15’te beş istasyonlu bir rota için istasyonlardaki şarj ünitesi sayısı 

gösterilmiştir. Verilere göre üçüncü istasyonda bir şarj ünitesi olduğundan üçüncü 

istasyonun şarj ünitesi değeri mutasyon işlemine tabi tutulamaz. 

 

 
 

Şekil 3.15. Mutasyon için uygun genlerin belirlenmesi 
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Mutasyon işlemi için örnek Şekil 3.16’da verilmiştir. Kromozoma göre EA, 1-3-4-5 

istasyonlarının sırasıyla 2, 1, 1 ve 3 numaralı şarj ünitelerine gitmektedir. Kromozomun 

mutasyona uğraması durumunda gidilen istasyonlar arasından 1, 4 ve 5 numaralı 

istasyonların şarj ünitelerinden biri değiştirilir. 

 

 
 

Şekil 3.16. Örnek mutasyon işlemi 

 

Genetik operatörlere maruz kalan kromozomlar için enerji miktarı katmanı yeniden 

oluşturulmalıdır. Aksi takdirde problem kısıtlarını sağlamayan çözümler ortaya çıkabilir. 

Bu durumu önlemek için uğranılacak şarj istasyonları ve şarj ünitelerine göre Şekil 

3.17’de verilen enerji seçimi algoritması ile enerji değerleri belirlenir.  

 

 
 

Şekil 3.17. Enerji seçimi algoritması 
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3.3.5. Mat-sezgisel yaklaşım 

 

Bu çalışmada ele alınan problem için, GA ve matematiksel programlama modeline 

dayanan bir mat-sezgisel yaklaşım önerilmiştir. Sezgisel algoritmaların hızlı sonuç elde 

etme özelliği ile popülasyon-tabanlı metasezgisellerin geniş çözüm arama özelliklerinin 

birleştirilmesiyle elde edilen nihai çözüm matematiksel model üzerinden optimize edilir. 

Bu yaklaşımın amacı, daha iyi bir başlangıç çözümü ile başlayarak optimal çözüme 

yakınsamayı hızlandırmak ve GA ile elde edilen çözümün iyileştirmeye çalışmaktır. Mat-

sezgisel yaklaşımın akış diyagramı Şekil 3.18’de verilmiştir.  

 

Mat-sezgisel yaklaşımda kullanılan matematiksel programlama, Bölüm 3.3.2’de verilen 

modeldeki kısıtlara ek olarak yeni kısıtlar dahil edilmiştir. Bunun nedeni, GA ile elde 

edilen çözümdeki bazı değişkenler (uğranılacak istasyonlar ve şarj üniteleri gibi) 

matematiksel modelde sabit değer olarak alınırken istasyona varış ve ayrılış anındaki 

zaman enerji miktarı gibi değişkenler sabitlenen değerlere göre sınırlandırılarak çözüm 

elde edilmesi gerektiğindendir. Mat-sezgisel içerisinde kullanılan bu matematiksel 

modele sınırlandırılmış şarj planlama modeli (SŞPM) ismi verilmiştir. SŞPM ile ilgili 

detaylar bölümün devamında verilmiştir. 

 

Önerilen mat-sezgisel yaklaşım dört modülden oluşmaktadır: Başlangıç popülasyon 

modülü, GA modülü, iyileştirme prosedürü modülü ve nihai çözüm modülü. Mat-sezgisel 

yaklaşım ilk olarak başlangıç popülasyon modülünden başlamaktadır. Başlangıç 

popülasyonunda istenilen sayıda çözüm olması halinde GA modülüne geçilir. Durdurma 

kriteri sağlanana kadar GA çalıştırılır. İterasyon süresince elde edilen çözümlerin en iyi 

uygunluk değeri eğer belirlenen iyileştirme eşik değeri sayısı boyunca değişmezse 

iyileştirme prosedürü modülüne geçilir. İyileştirme prosedüründe popülasyon içerisinden 

seçilen bir GA çözümü SŞPM ile daha iyi hale getirilmesi durumunda GA çözümünün 

güncellenmesi işlemi gerçekleştirilir. Durdurma kriteri sağlandıktan sonra nihai çözüm 

modülüne geçilir. GA ile bulunan en iyi çözümün SŞPM ile daha iyi hale getirilmesi 

sağlanır. Eğer verilen sürede daha iyi bir çözüm elde edilebilirse nihai çözüm olarak 

iyileştirilmiş çözüm seçilir. 



   

 

49 

 

 

 
 

Şekil 3.18. Mat-sezgisel yaklaşımın akış diyagramı 
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A. Başlangıç popülasyonu: Başlangıç popülasyonu oluşturulurken sezgisel 

yaklaşımlardan elde edilen çözümler, SŞPM çözümleri ve ihtiyaç duyulması halinde 

(SŞPM’in verilen sürede uygun çözüm bulamaması ve/veya popülasyon istenilen sayıya 

ulaşmaması durumunda) rasgele uygun çözümler oluşturulur. Şekil 3.19’da mat-

sezgiselin başlangıç popülasyonunun oluşturulma adımları detaylı bir şekilde 

gösterilmiştir.  

 

 
 

Şekil 3.19. Mat-sezgisel için başlangıç popülasyonun oluşturulması 
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Öncelikle sürüş yapılacak rotanın ulaşılabilirlik ağı oluşturulması gerekir. Verilen bir rota 

üzerindeki şarj istasyonlarına ulaşmak için gereken enerji miktarının menzil tahmin 

modelinden elde edildiği varsayımı altında EA’nın rotanın başındaki menzili ile 

gidebileceği istasyonlar belirlenir. Ardından her bir istasyondan tam menzil ile 

gidebileceği düğümler (istasyon ve/veya varış noktası) belirlenerek rotanın ulaşılabilirlik 

ağı oluşturulur. Şekil 3.20’de A noktasından başlayıp B noktasında biten örnek bir rota 

için oluşturulmuş bir ulaşılabilirlik ağı gösterilmiştir. EA’nın enerji kapasitesinin (𝐵) 80 

kWh ve başlangıç enerji miktarının (𝑟0) 40 kWh olduğu örnekte beş istasyon yer 

almaktadır. İstasyonlara durmaksızın yapılacak sürüşler için menzil tahmin modeli ile 

gereken enerji miktarı (𝑒𝑖) belirtildiği gibi olduğu varsayılsın.  

 

 
 

Şekil 3.20. Ulaşılabilirlik ağının oluşumunu göstermek için verilen örnek problem 

 

Örnek problemin ulaşılabilirlik kümeleri ve buna göre oluşturulmuş ulaşılabilirlik ağı 

Şekil 3.21’de verilmiştir. Başlangıç noktası dışında diğer düğümlerin ulaşılabilirlik 

kümeleri oluşturulurken EA’nın batarya kapasitesi (𝐵) dikkate alınır. Şarj planlama 

kapsamında ulaşılabilirlik ağı oluşturulurken, EA’nın istasyona vardığında kalan enerji 

seviyesinin batarya kapasitesinin %20’sinin altına düşmemesi dikkate alınmıştır.  

 

 
 

Şekil 3.21. Örnek problemin ulaşılabilirlik kümeleri ve ulaşılabilirlik ağı 
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A.1. Sezgisel yaklaşımlar ile çözüm elde edilmesi: Sezgisel yaklaşımlarda önerilen 

algoritmalar ile uğranılacak şarj istasyonları ve enerji miktarları belirlenmektedir. Ancak 

istasyonlardaki şarj süresini belirlemek için her bir şarj istasyonunda seçilen şarj 

ünitesinin bilinmesi gerekmektedir. Şarj ünitesi seçimi için Şekil 3.22’de verilen Şarj 

Ünitesi Seçimi Algoritması kullanılmıştır.  

 

 
 

Şekil 3.22. Şarj Ünitesi Seçimi Algoritması 
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Sezgisel yaklaşımlar ile elde edilen yolculuk süresi ve yolculuk maliyetini olabildiğince 

minimize etmek için açgözlü bir şarj ünitesi seçimi gerçekleştirilir. Örneğin, eğer amaç 

fonksiyonu yolculuk süresinin minimize edilmesi ise, güç değeri (kW) en yüksek şarj 

ünitelerinden seçim yapılır. Amaç fonksiyonu yolculuk maliyeti ise, tüm zaman dilimleri 

içerisinde şarj fiyatı en düşük olan şarj ünitesi seçilir. Şarj fiyatının zaman dilimine bağlı 

değişkenlik göstermesi ve istasyonlardaki şarj süresinin önceden bilinmemesi nedeniyle 

tüm zaman dilimleri içerisinden en düşük fiyata sahip şarj ünitesi seçilmiştir. Sadece ilk 

uğranılacak istasyon için varış zamanı belli olduğu için, varış zaman diliminde en düşük 

şarj fiyatı olan şarj ünitesi seçilir. Sezgisel yaklaşımlar için şarj ünitesi seçimi yapıldıktan 

sonra oluşturulan çözümler GA kromozomu formatında tutulur ve başlangıç 

popülasyonuna eklenir. 

 

A.2. SŞPM ile çözüm elde edilmesi: SŞPM ile çözüm elde edebilmek için uğranılacak 

şarj istasyonları ve şarj üniteleri bilgisinin önceden belirlenmiş olması gerekmektedir. 

Ulaşılabilirlik ağı ile belirli sayıda şarj istasyon listesi üretilir. İstasyon listelerini elde 

etmek için derinlik öncelikli arama (Depth First Search-DFS) yöntemi kullanılmıştır. 

DFS yönteminde başlangıç düğümünden varış düğümüne varana kadar her bir 

düğümünden gidilebilecek bir düğüm belirlenir ve bu şekilde arama ağacının derinlerine 

inilir. Şarj istasyon listeleri oluşturulduktan sonra SŞPM ile çözümlerin elde edildiği 

döngü çalıştırılır. Bu döngü, başlangıç popülasyon sayısı ile kullanılacak sezgisel 

yaklaşım sayısın farkı kadar çalıştırılır. Döngünün her iterasyonunda şarj istasyon 

listesinden rasgele bir seçim yapılarak uğranılacak şarj istasyonları belirlenir. Şekil 

3.22’de verilen şarj ünitesi seçimi algoritması ile amaç fonksiyonuna göre gidilecek şarj 

üniteleri (ilk istasyon hariç) rasgele olarak belirlenir. Seçilen rotalardaki şarj istasyonları 

için uygun (boş olan) şarj üniteleri arasından seçim yapılır.  

 

A.2.1. Kayan pencereler yöntemi ile istasyonlara uğrama zamanlarının 

belirlenmesi: Uğranılacak şarj istasyonları ve şarj üniteleri seçildikten sonra kayan 

pencereler yöntemi zamana bağlı değişkenlerin (istasyona varış ve istasyondan ayrılış 

süresi, istasyona varış ve ayrılış zaman dilimleri gibi) sınır değerleri bulunur. EA’nın şarj 

ünitelerinde olabileceği zaman dilimleri bilgisine göre SŞPM’deki zaman dilimleri 

sınırlandırılabilir. Burada amaç, kullanılacak değişken sayısını azaltarak optimal 
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çözümün bulunmasını kolaylaştırmaktır. Şekil 3.23’te örnek bir uygunluk matrisi 

verilmiştir. Matristeki yeşil hücreler, EA’nın seçili şarj ünitesi ve zaman diliminde orada 

bulunma olasılığının olduğunu belirtmektedir. Kırmızı hücre ise, seçili şarj ünitesinin 

dolu olduğu zaman dilimleridir. Bir şarj ünitesinde geçirilen minimum zamanın 

belirlenmesinde EA’nın uğrayacağı şarj istasyonları baz alınarak bir sonraki istasyona 

varması için gereken enerji miktarı ve şarj süresi hesaplanır. Şarj ünitesinde geçirilecek 

maksimum süre hesaplanırken ise EA’nın tam dolum için gereken enerji miktarına göre 

şarj süresi hesaplanır. Varış düğümüne ulaşana kadar uğranılacak tüm şarj ünitelerinin 

uygun zaman dilimleri bu şekilde elde edilir. 

 

 
 

Şekil 3.23. Uğranılacak şarj ünitelerine en erken varış ve en geç ayrılış zaman dilimlerinin 

gösterimi 

 

A.2.2. SŞPM (Sınırlandırılmış Şarj Planlama Modeli): SŞPM için gerekli bilgiler 

(uğranılacak şarj istasyonları, şarj üniteleri, minimum ve maksimum enerji miktarları, şarj 

süreleri ve varış ve ayrılış zamanları) temin edildikten sonra bu bilgiler SŞPM’e aktarılır. 

SŞPM’de yer alan yeni kısıt ve sınırlar Denklem (3.75)-(3.91)’de verilmiştir. Burada 𝑆, 

uğranılacak şarj istasyonlarını içeren bir kümeyi ve 𝑆′, 𝑆 dışında kalan şarj istasyonlarını 

ifade etmektedir.  

 

𝑥𝑖
𝑣 + 𝑥𝑖

𝑔
= 1 ∀𝑖 ∈  𝑆 (3.75) 

𝑥𝑖
𝑣 = 0 ∀𝑖 ∈  𝑆′ (3.76) 

𝑥𝑖
𝑔

= 0 ∀𝑖 ∈  𝑆′ (3.77) 

𝐺𝑖
𝑣 = 0 ∀𝑖 ∈  𝑆′ (3.78) 
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𝐺𝑖
𝑔

= 0 ∀𝑖 ∈  𝑆′ (3.79) 

∑ (𝑦𝑖𝑓ℎ
𝑣 + 𝑦𝑖𝑓ℎ

𝑔
)𝐻

ℎ ≥ 1 ∀𝑖 ∈ 𝑆, ∀𝑓 = 𝑓𝑖
𝑠 (3.80) 

∑ (𝑦𝑖𝑓ℎ
𝑣 + 𝑦𝑖𝑓ℎ

𝑔
)𝐻

ℎ ≤ 0 ∀𝑖 ∈ 𝑆, ∀𝑓 ≠ 𝑓𝑖
𝑠 (3.81) 

𝑦𝑖𝑓ℎ
𝑣 = 0 ∀𝑖 ∈ 𝑆, ∀ℎ ∉ 𝐼𝑓

𝑖 , ∀𝑓 = 𝑓𝑖
𝑠 (3.82) 

𝑢𝑖𝑓ℎ
𝑣 = 0 ∀𝑖 ∈ 𝑆, ∀ℎ ∉ 𝐼𝑓

𝑖 , ∀𝑓 = 𝑓𝑖
𝑠 (3.83) 

𝑡𝑣𝑖𝑓ℎ
𝑣 = 0 ∀𝑖 ∈ 𝑆, ∀ℎ ∉ 𝐼𝑓

𝑖 , ∀𝑓 = 𝑓𝑖
𝑠 (3.84) 

𝑡𝑔𝑖𝑓ℎ
𝑣 = 0 ∀𝑖 ∈ 𝑆, ∀ℎ ∉ 𝐼𝑓

𝑖 , ∀𝑓 = 𝑓𝑖
𝑠 (3.85) 

𝐼𝑖
𝑎 ≤ 𝐼𝑖

𝑎 ∀𝑖 ∈ 𝑆  (3.86) 

𝐼𝑖
𝑑 ≥ 𝐼𝑖

𝑑 ∀𝑖 ∈ 𝑆  (3.87) 

𝑅̂𝑖
𝑎 ≤ 𝑅𝑖

𝑎 ∀𝑖 ∈ 𝑆  (3.88) 

𝑅̂𝑖
𝑑 ≤ 𝑅𝑖

𝑑 ∀𝑖 ∈ 𝑆  (3.89) 

𝑇̂𝑖
𝑎 ≤ 𝑇𝑖

𝑎 ∀𝑖 ∈ 𝑆  (3.90) 

𝑇̂𝑖
𝑑 ≥ 𝑇𝑖

𝑑 ∀𝑖 ∈ 𝑆  (3.91) 

 

Kısıt (3.75), EA’nın bu istasyonlarda şarj veya deşarj olmasını sağlamaktadır. Kısıt (3.76) 

ve (3.77), EA’nın uğranılacak şarj istasyonları içerisinde yer almayan şarj istasyonlarında 

şarj/deşarj olmasını engellemektedir. Kısıt (3.78) ve (3.79) ise, uğranılmayacak 

istasyonlardaki alınan/verilen enerji miktarını sıfıra eşitler. Burada 𝑓𝑖
𝑠, 𝑆 kümesinde yer 

alan 𝑖. şarj istasyonunda uğranılacak şarj ünitesini temsil etmektedir. Kısıt (3.80), bu şarj 

ünitelerine uğranılmasını zorunlu kılmaktadır. Kısıt (3.81), EA’nın uğranılacak şarj 

üniteleri dışında kalan şarj ünitelerine uğramasını engellemektedir. 𝐼𝑓
𝑖 , 𝑖. şarj 

istasyonundaki 𝑓. şarj ünitesinin uygun olduğu zaman dilimleri kümesi olsun. Kısıt (3.82) 

ve (3.83), 𝐼𝑓
𝑖  dışında kalan zaman dilimlerinde EA’nın şarj/deşarj olmasını 

engellemektedir. Kısıt (3.84) ve (3.85), 𝐼𝑓
𝑖  dışında kalan zaman dilimlerinde EA’nın 

şarj/deşarj süresinin sıfır olmasını sağlar. 𝐼𝑖
𝑎 ve 𝐼𝑖

𝑑, uğranılacak şarj istasyonları (𝑆) için 

kayan pencereler yöntemi ile elde edilen en erken varış ve en geç ayrılış zaman dilimlerini 

belirtir. Kısıt (3.86) ve (3.87), uğranılacak istasyonlardaki varış ve ayrılış zaman 

dilimlerini 𝐼𝑖
𝑎 ve 𝐼𝑖

𝑑 değerlerine göre sınırlamaktadır. Ancak zaman dilimleri periyodik 

oldukları için sınırlandırılmış modelin bu kısıtlar altında mümkün olmayan bir çözüm 

verme olasılığı vardır. Mümkün olmayan bir çözüm çıkması durumunda kısıt (3.86) ve 
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(3.87) SŞPM’e dahil edilmez. 𝑅̂𝑖
𝑎 ve 𝑅̂𝑖

𝑑, uğranılacak şarj istasyonları için varış ve ayrılış 

zamanındaki kalan enerji miktarını belirtmektedir. Kısıt (3.88), istasyona varış anındaki 

enerji miktarının alt sınır değerinin 𝑅̂𝑖
𝑎 ve kısıt (3.89) ise istasyondan ayrılış anındaki 

enerji miktarının 𝑅̂𝑖
𝑑 olmasını sağlamaktadır. 𝑇̂𝑖

𝑎 ve 𝑇̂𝑖
𝑑 uğranılacak şarj istasyonları için 

varış ve ayrılış zamanını belirtmektedir. Kısıt (3.90) ve (3.91), istasyonlara uğrama 

zamanlarını 𝑇̂𝑖
𝑎 ve 𝑇̂𝑖

𝑑 arasında sınırlamaktadır. 

 

SŞPM için çözüm havuzu oluşturulur ve çözüm havuzundan rasgele bir çözüm seçilir. Bu 

işlem için CPLEX çözücüsünün Docplex Python kütüphanesinin 

“populate_solution_pool()” modülü kullanılmıştır (CPLEX Optimization Studio, 2021). 

Çözüm havuzu, dal-sınır algoritmasının bir uzantısını kullanarak karma tamsayılı 

programlama modeli için birden çok çözüm oluşturulmasına olanak tanır. Bu özellik 

alternatif çözümleri çeşitli şekillerde keşfetmek ve değerlendirmek için kullanılır. Çözüm 

havuzu ile elde edilen çözüm uygun ve geçerli bir çözüm ise popülasyona eklenir. Bu 

işlem döngü tamamlanana kadar devam ettirilir. 

 

B. GA: Başlangıç popülasyonu oluşturulduktan sonra çözümlerin uygunluk değerleri 

hesaplanır. En iyi çözüm ve uygunluk değeri belirlenir. Durdurma kriteri ve iyileştirme 

sayacı eşik değeri ayarlanır. Ardından GA çalıştırılır. Her iterasyon sonucunda iyileştirme 

sayaç değeri güncellenir. Eğer iterasyon sonunda elde edilen uygunluk değeri bir önceki 

iterasyondaki uygunluk değeri ile aynı ise iyileştirme sayaç değeri bir artırılır, 

güncellenirse de sayaç değeri sıfırlanır. Sayaç değeri iyileştirme eşik değerine ulaşırsa 

iyileştirme prosedürüne geçilir. GA ile elde edilen uygunluk değerleri belirlenen 

iyileştirme sayaç değeri boyunca değişmemesi durumunda iyileştirme prosedürüne 

geçilir. GA, durdurma kriteri sağlanana kadar devam ettirilir. GA tamamlandıktan sonra 

nihai çözüm aşamasına geçilir. 

 

C. İyileştirme Prosedürü: İyileştirme prosedüründe en iyi ilk %50’lik diliminde yer alan 

çözümler arasından bir çözüm, rulet tekerleği yöntemi ile seçilir. Seçilen çözüm için 

SŞPM çalıştırılır. Daha önce iyileştirme prosedürüne tabi tutulan bir çözüm için tekrar 

aynı işlemin uygulamaması için tabu listesi oluşturulur. Bu şekilde her seferinde farklı 

çözümlerin iyileştirme prosedürüne tabi tutulması sağlanır. GA çözümünden uğranılacak 
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şarj istasyonları ve şarj üniteleri bilgisi alınır, kayan pencereler yöntemi ile sınır değerler 

belirlenir ve SŞPM ile çözüm aranır. Verilen sürede daha iyi bir çözüm elde edilmesi 

durumunda GA çözümü güncellenir ve tekrar GA modülüne devam edilir. Durdurma 

kriteri sağlanınca nihai çözüm modülüne geçilir. Bu modül iyileştirme prosedürü 

modülünde olduğu gibi SŞPM ile verilen sürede daha iyi bir çözüm elde edebilmeyi 

sağlar. Elde edilen çözüm daha iyi ise yeni çözüm, eski çözüm ile değiştirilir. Aynı 

çözümler seçilmesinin engellemek için tabu listesi kullanılır. Böylece her seferinde farklı 

çözümlerin iyileştirilmesi sağlanır. 

 

D. Nihai Çözüm: GA sonucunda elde edilen en iyi çözüm seçilir. Bu çözüme göre 

uğranılacak istasyonlar ve şarj üniteleri sabitlenir, zamana bağlı değişkenlerin sınır 

değerleri kayan pencereler yöntemi ile elde edilerek SŞPM’e aktarılır. SŞPM ile daha iyi 

bir sonuç elde edilmesi durumunda yeni şarj planı olarak sürücüye sunulur. 
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4. BULGULAR  

 

Bu bölümde veri analizi, menzil tahmin ve şarj planlaması için önerilen yaklaşımlarla 

elde edilen bulgular paylaşılmıştır.  

 

4.1. Veri Analizi Bulguları 

 

ChargeCar veri setinde uzun duraksama ve alt yolculuklar içeren yolculuklar tespit 

edilmiştir. Uzun duraksama ve alt yolculuk içermeyen sadece 15 yolculuk vardır. Geriye 

kalan 40 yolculuk verisinde duraksamalar bulunmaktadır. Alt yolculuk ve uzun 

duraksama içeren yolculuk verilerindeki duruş zamanları belirlenerek veri setinden 

çıkarılmıştır ve duruş sonrası her yolculuk yeni bir yolculuk verisi olarak kaydedilmiştir. 

Bu işlem sonrası toplam yeni yolculuk sayısı 55’ten 152’ye çıkmıştır.  

 

EA’ların menzil tahmininde yolculuğun statik öznitelikleri ile yolculuk segmentlerine ait 

dinamik öznitelikler kullanılmıştır. Veri setindeki yolculukların rota tipi segment bazında 

bilinmediği için yolculuğa ait statik bir öznitelik olarak değerlendirilmiştir. ChargeCar 

veri setindeki yolculukların sürüş mesafesi %77’si 25 km’nin altındadır ve yolculukların 

ortalama sürüş süresi 30 dk’dır. Genel olarak şehir içi sürüşlerine ait veriler 

bulunmaktadır. Dolayısıyla sürüşlerde rota tipinin yolculuğa ait statik bir öznitelik olarak 

kullanılması mümkündür. Ancak ortalamanın çok üzerinde olan aykırı yolculuklar da veri 

setinde bulunmaktadır. Yolculuk verilerindeki veri sayısı uzunluğu bakımından aykırı 

veri olarak değerlendirilen veriler Şekil 4.1’de gösterilmiştir. 

 

 
 

Şekil 4.1. Yolculuk uzunluklarına göre oluşturulan kutu grafiği 
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Aykırı uzunluğa sahip yolculuklarda farklı rota tipleri bulunabilir. Bu kapsamda 

yolculukların hız-zaman verileri üzerinden değişim noktaları tespit edilerek, yolculuklar 

segmente edilebilir. Belirlenen uzun yolculuklar için zaman serisi segmentasyonunda 

kullanılan ClaSP algoritmasını uygulanarak rota tipinin değiştiği zaman noktaları 

belirlenmiştir. Değişim noktaları belirlendikten sonra, yolculuklar bu noktalardan 

bölünerek yeni alt yolculuklar oluşturulur. ClaSP algortiması uzunluk bakımından 

diğerlerinden aykırı olan 14 yolculuk veri seti üzerinde uygulanmıştır. ClaSP 

algoritmasının tek parametresi olan pencere boyutu, yolculuk uzunluğuna göre parçalı bir 

fonksiyon olarak seçilmiştir.  

 

ClaSP uygulandıktan sonra toplam sefer sayısı 62’ye yükselmiştir ve bu da 214 sefer ile 

sonuçlanmıştır. Ortalama süre 35,3 dakikadan 25,1 dakikaya, ortalama yolculuk mesafesi 

14,7 km’den 10,5 km’ye düşmüştür (Şekil 4.2). Uzun yolculuklar alt yolculuklara 

ayrıldıktan sonra tüm yolculukların tiplerini kümelemek için özniteliğe dayalı ve şekle 

dayalı olmak üzere iki farklı kümeleme yöntemi kullanılmış ve menzil tahmin modeli 

üzerindeki etkileri karşılaştırılmıştır. 

 

 
 

Şekil 4.2. Uzun yolculukların bölünmeden öncesi ve sonrası istatistikler 

 

Yolculuk hız profillerini kümelemek için zaman serisi özniteliklerinin elde edilmesinde 

kullanılan Christ vd. (2018) tarafından geliştirilen tsfresh kütüphanesi kullanılmıştır. Elde 

edilen öznitelikler Çizelge 4.1’de verilmiştir. K-ortalamalar algoritması 𝑘 = 2 alınarak 

çalıştırılmıştır. 
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Çizelge  4.1. Hız profillerinden elde edilen öznitelikler 

 

Öznitelik Açıklama 

“Absolute sum of 

changes” 

Zaman serisindeki ardışık değişikliklerin mutlak değerinin 

üzerindeki toplamı verir. 

“cid_ce” 
Zaman serisi karmaşıklığı ölçen parametre (Daha karmaşık bir 

zaman serisinin daha fazla zirvesi, vadileri vb.). 

“Number crossing” 

Zaman serisinin belirli bir değerin üzerine çıktığı/altına düştüğü 

sayıyı verir. Uygulamada 20 ve 90 değerler için öznitelik 

oluşturulmuştur. 

“Number peaks”  

Zaman serisinde en az n komşuluktaki tepe sayısını hesaplar. Tepe 

noktası, sağ ve soldaki n komşusundan daha büyük olmalıdır. n=10 

alınmıştır. 

“Value count”  
Zaman serisindeki değer (value) tekrarlarını sayar. Duraksamaları 

saymak amacıyla value=0 olarak alınmıştır. 

 

Şekle dayalı kümeleme yönteminde yolculuklar, EPA’nın şehir içi ve şehir dışı hız profil 

verilerine benzerliklerine göre etiketlenmiştir. Her yolculuk ile EPA hız profilleri 

arasındaki benzerlik, DZB algoritması kullanılarak hesaplanmıştır. Şekil 4.3, şekle dayalı 

kümeleme yöntemi ile kümelenen bazı yolculukları göstermektedir. Yolculuk ile şehir 

dışı yolculuk (𝐷𝑍𝐵ş𝑒ℎ𝑖𝑟 𝑑𝚤ş𝚤) arasındaki DZB mesafeleri ve yolculuk ile şehir içi yolculuk 

𝐷𝑍𝐵ş𝑒ℎ𝑖𝑟 𝑖ç𝑖 arasındaki DZB mesafesi hesaplandıktan sonra yolculuk, minimum DZB 

mesafesini veren aynı yol tipiyle etiketlenmiştir. Şehir içi yolculuk olarak etiketlenen 

sefer sayısı 126, karayolu güzergahı 88’dir. 

 

 
 

Şekil 4.3. DZB yolculukların hız profillerinin şekle dayalı kümelenmesi 
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4.2. EASMT Bulguları 

 

EASMT için geliştirilen modelin tahmin sonuçlarını değerlendirmek amacıyla iki tür test 

seti oluşturulmuştur. Birinci test setinde (𝑡𝑒𝑠𝑡𝑦) rasgele seçilen yolculukların (214 

yolculuk) %80’i eğitim ve %20’si test için ayrılmıştır. İkinci test setinde (𝑡𝑒𝑠𝑡𝑠) 

yolculuklara ait toplam 33625 segment verisi başlangıçta karıştırılarak %80’i eğitim ve 

%20’si test için rasgele seçilmiştir. 𝑡𝑒𝑠𝑡𝑦 için metrikler yolculuk bazında harcanan gerçek 

enerji ile tahmin edilen enerji tüketimine göre hesaplanırken, segment tabanlı modellerin 

performansını değerlendirmek için 𝑡𝑒𝑠𝑡𝑠 veri seti kullanılarak segment bazında harcanan 

gerçek enerji ile tahmini enerji üzerinden hesaplama yapılmıştır. Segment tabanlı model 

ile yolculuklardaki toplam enerji tüketimi tahmin etmek için, 𝑡𝑒𝑠𝑡𝑦 test kümesindeki her 

yolculuk segmentinin enerji tüketimini tahminleri toplanır. Çalışmada dört metrik 

kullanılmıştır: MSE, ortalama mutlak hata (MAE), kök ortalama kare hatası (RMSE) ve 

r kare (𝑟2). Metriklerin matematiksel formülleri aşağıda verilmiştir. Burada, 𝑁 gözlem 

sayısını, 𝑦𝑖 gözlemin gerçek değerini, 𝑦̂𝑖 tahmin edilen değerini ve 𝑦̅𝑖 ise gözlem 

değerlerinin ortalamasını ifade etmektedir. Tahmin modellenmesinde Keras ve Scikit-

Learn kütüphaneleri kullanılmıştır. Tüm testler Python 3.8 programlama dilinde 

kodlanmıştır.  

 

MSE = 
1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑁

𝑖=1  (4.1) 

MAE = 
1

𝑁
∑ |𝑦𝑖 − 𝑦̂𝑖|𝑁

𝑖=1  (4.2) 

RMSE =√
1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑁

𝑖=1

2
 (4.3) 

𝑟2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)2𝑁

𝑖=1

∑ (𝑦𝑖−𝑦̅𝑖)2𝑁
𝑖=1

 (4.4) 

 

EASMT modeli için dört deney gerçekleştirilmiştir (Şekil 4.4): 

 

Deney 1: Gözlem tipinin (yolculuk verisi/segment verisi) etkisini araştırmaktadır.  

Deney 2: Rota tipi küme etiketlerinin dahil edilmesinin etkisine odaklanmaktadır. Bu 

etkiyi test etmek için rota tipi etiketleri olan ve olmayan modeller ile elde edilen 

sonuçların metrikleri analiz edilmiştir.  
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Deney 3: Girdilerin segment bazlı gözlemler üzerindeki etkisini test etmek için DSA-A 

ve DSA-B modelleri arasında bir karşılaştırma yapılmıştır.  

Deney 4: Statik verilerinin farklı katmanlarda eklemenin etkisini incelemek için farklı 

DSA model mimarileri geliştirilmiş ve tahmin performansları araştırılmıştır. 

 

 
 

Şekil 4.4. Menzil tahmin modeli için deneysel çalışmalar 
 

4.2.1. Deney 1: Gözlem tipinin etkisi 

 

Yolculuk tabanlı ve segment tabanlı gözlem tipinin test veri setindeki tahmin performansı 

üzerindeki etkisi karşılaştırılmıştır. Öncelikle yolculuk tabanlı gözlemler de enerji 

tahmini yapabilmek için tahmin modeli olarak Rastgele Orman Regresyon (ROR), 

XGBoost ve tek gizli katmanlı bir DSA modeli eğitilmiştir. Burada yolculuk veri 

sayısının az olması nedeniyle (214 yolculuk) çok parametre optimizasyonu 

gerektirmeyecek makine öğrenmesi modelleri arasından seçim yapılmıştır. Model girdisi 

olarak yolculukların mesafesi, süresi, toplam araç ağırlığı, hava sıcaklığı, ortalama hızı 



   

 

63 

 

maksimum hız ve net yükseklik değişimi kullanılmıştır. Çizelge 4.2’de tahmin sonuçları 

paylaşılmıştır. Hata metrikleri en düşük olan yöntemin Rastgele Orman Regresyon 

(ROR) modeli olduğu görülmektedir.  

 

Çizelge  4.2. Yolculuk bazında enerji tahmini yapan modeller 

 

Modeller MSE MAE RMSE 𝑟2 

ROR 0,387 0,425 0,622 0,920 

XGBoost 0,575 0,460 0,758 0,901 

DSA 2,514 0,740 1,586 0,703 

 

Enerji tahmini için gözlem tipi olarak segment veya yolculuk gözlemlerinden hangisinin 

daha iyi sonuç verdiğini bulmak için 𝑡𝑒𝑠𝑡𝑦 kullanılarak modellerin performansı test 

edilmiştir. Çizelge 4.3, segment gözlemlerini girdi olarak alan DSA-A ve yolculuk 

gözlemlerini girdi olarak alan ROR modeli sonuçlarını içerir. Segmentler üzerindeki 

enerji tüketimlerinin tahmin edilmesi, yolculuk tabanlı gözlemler kullanılarak yapılan 

tahmin sonuçlarına kıyasla daha az tahmin hatası verdiği görülmektedir. 

 

Çizelge  4.3. Gözlem tipinin tahmin sonuçları 

 

Eğitim-test veri seti Model MSE MAE RMSE 𝑟2 

𝑡𝑒𝑠𝑡𝑦 

DSA-A 0,004 0,043 0,066 0,940 

ROR 0,387 0,425 0,622 0,920 

 

Şekil 4.5’te 𝑡𝑒𝑠𝑡𝑦 veri setindeki yolculuklular için DSA-A ve ROR ile tahmin edilen 

enerji tüketimleri gösterilmiştir. Test setindeki yolculuklar farklı uzunluklara sahiptir. 

Gözlem türü için her yolculuk için tahmin sonuçlarını görmek Şekil 4.5’e göre, enerji 

tüketimi tahmin sonuçları kısa yolculuklar için daha doğrudur. Tahmin hatası, yolculuğun 

mesafesi ile orantılı olarak arttığı görülmektedir. Tahmin hatasının özellikle yolculuk 

tabanlı gözlemler için geçerli olduğu görülmektedir. 
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Şekil 4.5. ROR ve DSA-A ile enerji tüketimi tahmini sonuçları 

 

4.2.2. Deney 2: Rota tipi küme etiketinin etkisi 

 

Düşük veya yüksek hızda sürüş yapmak, “dur-kalk” yaparak yolculuğu tamamlamak veya 

durmaksızın bir sürüşü önceden oluşturmak, rota tipi ile ilişkili bir durumdur. 

Yolculukları rota tiplerine göre ayırmak için iki tür zaman serisi kümeleme tekniği 

uygulanmıştır. Hem özniteliğe dayalı hem de şekle dayalı kümeleme için yapılan 

etiketleme işlemi sonuçlarına ait bilgiler Çizelge 4.4’te verilmiştir. Sonuçlara göre, farklı 

kümelerde etiketlenmiş 95 yolculuk bulunmaktadır. Yolculukların çoğu her iki kümeleme 

yöntemi için şehir içi yolculuk olarak seçilmiştir. 

 

Çizelge  4.4. Küme etiketleri matrisi 

 

 
Özniteliğe dayalı kümeleme 

Toplam 
Şehir içi Şehir dışı 

Şekle dayalı 

kümeleme 

Şehir içi 83 45 128 

Şehir dışı 50 36 86 

Toplam 133 81 214 

 

Kümeleme tekniklerindeki farkı daha iyi anlamak için, ortalama yolculuk mesafesi (km), 

süre ve hız Çizelge 4.5’te verildiği gibi karşılaştırılır. Kümeleme sonuçlarını görsel olarak 

analiz etmek için Şekil 4.6, karışıklık matrisinde her kategori için seçilen yolculukları 

göstermektedir. 

 



   

 

65 

 

Çizelge  4.5. Kümelerin ortalama mesafe, süre ve hız bilgileri  

 

Rota tipi Küme Etiketi 
Ortalama 

mesafe (km) 

Ortalama 

süre (dk) 

Ortalama hız 

(km/sa) 

Şehir içi 
Özniteliğe dayalı  4,51 12,99 22,82 

Şekle dayalı  5,91 21,46 14,05 

Şehir dışı 
Özniteliğe dayalı  20,05 33,25 40,82 

Şekle dayalı  17,06 19,48 37,38 

 

Özniteliğe dayalı kümeleme yöntemi, yolculukları çoğunlukla uzunluklarına göre 

gruplandırırken, şekle dayalı kümeleme yolculukları hızın kararlılığına göre 

kümelemiştir. Özniteliğe dayalı kümeleme sonuçlarında kümeleme işleminin genel 

olarak hız profillerinin minimum ve maksimum değerlerine göre gerçekleştirildiği 

görülmektedir. Çizelge 4.5’te de belirtildiği üzere, şehir içi kümelenmenin ortalama 

mesafesi, süresi ve hızı karayolu kümesinden daha azdır. Bununla birlikte, şekil tabanlı 

kümeleme ile kentsel kümelenmede ortalama süre (21,46 dk), karayolu kümelenmesinden 

(19,48 dk) daha fazladır. Şekil 4.6’da verilen şekle dayalı kümeleme sonuçlarında, ardışık 

durakları içeren yolculuklar, şekle dayalı kümeleme sonuçlarında birlikte kümelenme 

eğiliminde olmuştur. 

 

 
 

Şekil 4.6. Rota tipi kümeleme sonuçlarından bazı örnekler 
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Her iki kümeleme tekniği için rota tipi etiketlerinin etkisi, rota tipi etiketinin 

kullanılmadığı durumla karşılaştırılmıştır. Çizelge 4.6, rota tipi etiketlerini kullanmanın 

ROR modelini kullanan yolculuk tabanlı gözlemler için tahmin sonuçları üzerindeki 

etkisini göstermektedir. Girdi olarak rota tipi etiketi kullanılmadığında tahmin doğruluğu 

en düşük seviyede kalmaktadır. Şekle dayalı kümeleme etiketlerinden elde edilen rota tipi 

etiketleri, özniteliğe dayalı kümelemeden elde edilen etiketlere göre daha iyi sonuçlar 

vermiştir. Çizelge 4.6’da verilen her metrikte, şekle dayalı kümeleme etiketleri, özniteliğe 

dayalı kümelemeye göre tahmin hatasını daha fazla azaltmaktadır. 

 

Çizelge  4.6. Yolculuk tabanlı modelde rota tipi etiketi kullanmanın etkisi 

 

Test veri seti Model Rota tipi etiketi MSE MAE RMSE 𝑟2 

𝑡𝑒𝑠𝑡𝑦 ROR 

Yok 0,387 0,425 0,622 0,920 

Özniteliğe dayalı 0,368 0,417 0,606 0,924 

Şekle dayalı 0,352 0,407 0,593 0,925 

 

Rota tipi etiketinin segment tabanlı gözlemlerin enerji tahmini üzerindeki etkisini 

incelemek için DSA-B modeli, 𝑡𝑒𝑠𝑡𝑠 veri seti ile eğitilip test edilmiştir. Çizelge 4.7’de 

statik ve dinamik segment verisini girdi olarak alan DSA-B modeli ile özniteliğe dayalı 

ve şekle dayalı kümeleme ile elde edilen rota tipi etiketlerinin segment bazında tahmin 

sonucuna etkisi gösterilmiştir.  

 

Çizelge 4.7. Segment tabanlı modelde özniteliğe ve şekle dayalı küme etiketi 

kullanmanın etkisi 

 

Test veri seti Model Rota tipi etiketi MSE MAE RMSE 𝑟2 

𝑡𝑒𝑠𝑡𝑠 DSA-B 
Özniteliğe dayalı 0,262 0,256 0,512 0,9911 

Şekle dayalı 0,207 0,216 0,455 0,9928 

 

Genel olarak, rota tipi etiketinin yolculuk verilerine dahil edilmesinin olumlu etkisi 

gözlemlenebilir. Şekle dayalı kümelemeden elde edilen etiketler, özniteliğe dayalı 

kümelemeden elde edilen etiketlerden daha iyi performans göstermiştir. Sonuçlara göre 

enerji tahmini için hız profillerinin şekle bağlı ayırt edilmesinin, yolculukların genelleyici 

istatistiklerinin kullanılmasından daha bilgilendirici olduğu sonucuna varılmaktadır. 

Kümeleme için öznitelik sayısının arttırılmasının tahminleri iyileştirdiği ve hatta şekle 
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dayalı kümeleme tekniğinden daha iyi performans gösterdiği görülmüştür. Bu durumda, 

metodolojiye daha fazla veri önişleme adımları eklenmesi gerekecektir. En iyi sonucu en 

az veri önişlem adımı ile gerçekleştirmek veri bazlı modellerde önem arz eden bir 

konudur.  

 

4.2.3. Deney 3: Statik ve dinamik verilerinin birlikte kullanımın etkisi 

 

Yolculuğa ait statik öznitelikler ile yolculuk segmentlerinin dinamik verilerinin DSA 

modelinde birlikte girdi olarak kullanılmasının etkisi analiz edilmiştir. DSA-A modeli 

yalnızca dinamik verilerle, DSA-B modeli ise statik ve dinamik verilerle eğitilmiştir. 

Çizelge 4.8, segmentlere ilişkin tahmin sonuçlarını vermektedir. Sonuçlar, dinamik 

veriler ile birlikte statik verilerin kullanılmasının her bir metrik için tahmin doğruluğunu 

arttırdığını göstermektedir.  

 

Çizelge  4.8. Statik ve dinamik verinin birlikte kullanmanın segmentte harcanan enerji 

tahmini üzerindeki etkisi 

 

Test veri seti Model MSE MAE RMSE 𝑟2 

𝑡𝑒𝑠𝑡𝑠 
DSA-A 0,2724 0,2496 0,5219 0,9904 

DSA-B 0,2075 0,2156 0,4555 0,9928 

 

Statik ve dinamik verinin birlikte kullanmanın yolculukta harcanan enerji tahmini 

üzerindeki etkisi Çizelge 4.9’da verilmiştir. Sonuçlara göre DSA-A, DSA-B modeline 

göre daha düşük iyi performans göstermiştir. Ancak her yolculuk için kümülatif enerji 

tüketimini tahmin ederken (Çizelge 4.8) DSA-B, DSA-A’dan daha iyi sonuçlar elde 

etmiştir. Bu sonucun temel nedenlerinden biri negatif ve pozitif enerji tüketimi 

tahminlerinin kümülatif olarak birleştirilmesinden kaynaklanıyor olmasıdır. Önceki 

segmentlerde yapılan tahmin hataları, hata devam ettikçe kapatılır. Elbette bu, kümülatif 

hatanın her zaman azalacağı anlamına gelmez; tersi de mümkündür. Bununla birlikte, 

segmentler için tahmin hatası en aza indirilirse, kümülatif enerji tüketimi gerçekten 

azalacaktır. 
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Çizelge  4.9. Statik ve dinamik verinin birlikte kullanmanın yolculukta harcanan enerji 

tahmini üzerindeki etkisi 

 

Test veri seti Model MSE MAE RMSE 𝑟2 

𝑡𝑒𝑠𝑡𝑦 
DSA-A 0,0044 0,0425 0,0661 0,9989 

DSA-B 0,0045 0,0485 0,0672 0,9989 

 

4.2.4. Deney 4: Kullanılan model mimarisinin etkisi 

 

Bölüm 2.1’de de belirtildiği gibi, DSA modellerinde zaman serisi verilerinin statik 

özniteliklerinin kullanım şekli, tahmin sonuçlarının performansını etkileyebilmektedir. 

Bu nedenle DSA-A ve DSA-B dışında, statik özniteliklerinin modelde iki kez kullanıldığı 

üç farklı model mimarisi oluşturulmuştur. Şekil 4.7, geliştirilen yeni model mimarilerini 

göstermektedir. DSA-C, statik ve dinamik girdileri birinci katmandan önce birleştirir ve 

birinci katmanın çıktısını tekrar statik girdilerle birleştirir. DSA-D, statik girdileri ikinci 

katmanın dinamik girdileri ve çıktısı ile birleştirir ve DSA-E’de statik girdiler, birinci ve 

ikinci katmanın çıktısı ile iki kez birleştirilir. Statik ve dinamik girişler, DSA-B’de 

kullanılanlarla aynıdır. Modellerde kullanılan rota tipi etiketleri, şekle dayalı kümeleme 

ile belirlenmiştir. 

 

 
 

Şekil 4.7. Statik ve dinamik segment verilerini birleştirmek için oluşturulan model 

mimarileri 

 

Segment ve yolculuk gözlemlerindeki enerji tahmin sonuçları sırasıyla Çizelge 4.10 ve 

4.11’de verilmiştir. Her iki gözlem türü için de DSA-D’nin en iyi sonuçları, DSA-C’nin 

ise en kötü sonuçları verdiği görülmektedir. Segmentler için tahminler, açmalardaki 

hatalardan daha yüksek bir hata değerine sahiptir. Ayrıca, segmentler için tahmin 
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sonuçları, açmalar için verilen hatalardan çok daha benzerdir. Başka bir deyişle, DSA-D, 

yolculuklardaki yüzdeler açısından daha iyi performans gösterir. Her metrik ve testi seti 

için sonuçların kararlılığı ve tutarlılığı, statik ve dinamik verileri birleştirmek için model 

mimarisinin tahmin sonuçlarını etkilediğini göstermektedir. 

 

Çizelge  4.10. Segmentte harcanan enerji tahmini için DSA-C, DSA-D ve DSA-E’nin 

karşılaştırmalı sonuçları 

 

Test veri seti Model MSE MAE RMSE 𝑟2 

𝑡𝑒𝑠𝑡𝑠 

DSA-C 0,2370 0,2290 0,4870 0,9919 

DSA-D 0,2070 0,2134 0,4547 0,9928 

DSA-E 0,2222 0,2246 0,4713 0,9923 

 

Çizelge  4.11. Yolculukta harcanan enerji tahmini için DSA-C, DSA-D ve DSA-E’nin 

karşılaştırmalı sonuçları 

 

Test veri seti Model MSE MAE RMSE 𝑟2 

𝑡𝑒𝑠𝑡𝑦 

DSA-C 0,0073 0,0571 0,0852 0,9982 

DSA-D 0,0018 0,0321 0,0428 0,9995 

DSA-E 0,0036 0,0411 0,0602 0,9991 

 

4.3. EAŞP Bulguları 

 

Şarj planlama modelinin çözüm süresini farklı büyüklüklerdeki problemlerde test etmek 

için rassal problemler üretilmiştir. Problemler üretilirken Çizelge 4.12’deki veriler 

dikkate alınmıştır. Her test probleminde belirli sayıda şarj istasyonu bulunmaktadır. 

 

Çizelge  4.12. Test problemlerin üretilmesinde kullanılan parametreler 

 

Parametre Değer 

Enerji Kapasitesi (𝐵) 35 kWh 

Minimum enerji seviyesi (𝐵𝑚𝑖𝑛) %20 

Başlangıç enerji miktarı (𝑟0) 14 kWh 

Sürüşün başladığı zaman dilimi (ℎ0) 7 

Zaman dilimi sayısı 𝐻 ve uzunluğu (𝑀) 24, 60 dk 

Şarj süresinin (kırılım noktası) (𝑏𝑝) %80 

Şarj süresinin kırılma noktası sonrası güç değerindeki azalma oranı (𝑠𝑝) %50 
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 Şarj istasyon sayısı 5’ten 50’ye kadar beşer beşer arttırılıp, her istasyondaki şarj ünitesi 

sayısı 𝑚𝑖 ∈ [1,3], 𝑚𝑖 ∈ [2,5] ve 𝑚𝑖 ∈ [3,10] aralıkları için rasgele seçilmiştir. Başlangıç 

düğümünden her bir istasyona durmaksızın yapılan yolculuklarda gereken enerji tüketimi 

en az 2 kWh, en çok 𝐵(1 − 𝐵𝑚𝑖𝑛) kWh olacak şekilde belirlenmiştir. Böylece EA’nın 

menzil kaygısı çekmeden sürüş gerçekleştirebilmesi sağlanır. Aynı şekilde başlangıç 

düğümünden her bir istasyona durmaksızın yapılan yolculuklarda dakika cinsinden sürüş 

süresi 𝑠𝑖, enerji tüketim parametresiyle orantılı olarak hesaplanmıştır (Denklem (4.5)): 

 

 𝑠𝑖 = 𝑠𝑖−1 + (𝑒𝑖 − 𝑒𝑖−1) ∗ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(2,5)      (4.5)  

 

Şarj ünitelerinin güç miktarlarının belirlenmesinde Türkiye’nin şarj istasyon 

firmalarından EŞarj’ın 2022 yılı AC ve DC güç miktarları baz alınmıştır (Eşarj, 2022). 

AC şarj üniteleri, 𝑝𝐴𝐶 ∈ {7 kW, 11 kW, 22 kW} güç miktarı değerlerinden rasgele olarak 

seçilmiştir. DC şarj üniteleri ise, 𝑝𝐷𝐶 ∈ {24 kW, 50 kW} olarak kullanılabilmektedir. 

Problemler uzun yolculukları kapsayan bir model için üretildiğinden yolculukların 

şehirlerarası sürüşler olduğu varsayımı ile oluşturulmuştur. Şehirlerarası yollardaki şarj 

istasyonlarında en az bir DC şarj ünitesi olduğu varsayımına göre şarj ünitelerinin güç 

miktarları seçilmiştir. Eğer şarj istasyonun bir şarj ünitesi varsa, güç miktarı 𝑝𝐷𝐶 

içerisinden seçilir. Birden fazla şarj ünitesi olan şarj istasyonların için ise, içlerinden en 

az bir şarj ünitesinin DC şarj olması kaydıyla gerisi 𝑝𝐴𝐶 ve 𝑝𝐷𝐶 içerisinden rasgele 

seçilmiştir.  

 

$
dk⁄ = ($

MWh⁄ ) ∗ (1
60⁄ ) ∗ (1

1000⁄ ) ∗ 𝑀
k⁄ ∗ kW (4.6) 

 

Şarj istasyonlarındaki şarj ünitelerinin zaman dilimlerine bağlı değişen fiyatları 

oluştururken Enerji Piyasaları İşletme Anonim Şirketinin (EPİAŞ) şeffaflık platformunun 

4 Nisan 2022 Pazartesi gününe ait saatlik elektrik enerjisi fiyatları verisi kullanılmıştır 

(EPİAŞ, 2022). Enerji fiyatlarına ait grafik, Şekil 4.8’de gösterilmiştir. Denklem (4.6) ile 

saatlik elektrik enerjisi fiyatlarının birimi ($ MWh⁄ ) şarj planlama modelindeki birime 

($/dk) dönüştürülmüştür.  
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Şekil 4.8. EPİAŞ 4 Nisan 2022 Pazartesi gününe ait saatlik elektrik enerjisi fiyatları  

 

Denklem (4.6)’ya göre şarj ünitelerinin saatlik fiyatları, şarj ünitelerinin şarj gücüne bağlı 

hesaplanır. Şarj gücü yüksekse dakikalık şarj fiyatı da yüksek olacaktır. Oluşturulan test 

problemlerinde bir şarj ünitesinin zaman dilimine bağlı şarj ve deşarj fiyatları eşit olduğu 

varsayılmıştır. Şarj istasyonlarındaki şarj ünitelerinin uygunluk parametrelerini 

belirlerken, mümkün olmayan çözüm ortaya çıkarmamak için tek bir şarj ünitesi olan 

istasyonların her bir zaman dilimi için uygun olduğu (𝑤𝑖𝑓ℎ = 1) varsayılmıştır. Birden 

fazla şarj ünitesi varsa, uygunluk değerleri %10 olasılıkla dolu olacak şekilde rasgele 

atanmıştır. 

 

Toplamda 32 farklı büyüklükte test problemi oluşturulmuştur. Testler önce şarj planlama 

için geliştirilen matematiksel programlama modeli üzerinde test edilmiştir. Ardından 

önerilen diğer yaklaşımlar (sezgisel, metasezgisel ve mat-sezgisel) için test edilip amaç 

fonksiyonu ve çözüm süresi açısından karşılaştırmalar yapılmıştır. 

 

4.3.1. Matematiksel modelin çözüm sonuçları 

 

Şarj planlama problemi için geliştirilen matematiksel programlama modeli, oluşturulan 

küçük ve orta büyüklükteki problemler üzerinde test edilmiştir. Matematiksel model 8 

GB ram bilgisayarda Python 3.8’de kodlanmıştır ve IBM ILOG CPLEX 20.0 

versiyonunun Python kütüphanesi olan DOcplex kullanılarak dal-sınır algoritması ile 

çözülmüştür. Çözüm süresi 3600 dakika ile sınırlandırılmıştır. Her bir test problemdeki 

şarj istasyon sayısı (𝑛), istasyonlardaki şarj ünitesi sayısı aralığı (𝑚𝑖), toplam şarj ünitesi 

sayısı, tüm yolculuğu tamamlamak için gereken enerji miktarı (𝑙) verilmiştir. Minimum 

yolculuk süresi için elde edilen sonuçlar Çizelge 4.13’de ve minimum yolculuk 

maliyetinin çözüm sonuçları Çizelge 4.14’te verilmiştir.  
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Çizelge  4.13. Matematiksel modelin amaç fonksiyonu minimum yolculuk süresi iken 

elde edilen sonuçlar 

 

𝒏 𝒎𝒊 ∑ 𝒎𝒊 𝒍 (kWh) 
Tamsayı 

değişken 
Kısıt 

Yolculuk 

süresi 

(dk) 

Çözüm 

süresi 

(sn) 

5 [1-3] 9 57 1530 3733 427,7 17 

5 [2-5] 18 47 1683 4123 185,4 837 

5 [3-10] 25 58 2397 5943 289,1 3600 

10 [1-3] 18 144 2753 6681 562,4 3600 

10 [2-5] 33 121 3264 7983 737,7 3600 

10 [3-10] 58 117 5049 12533 590,8 3600 

15 [1-3] 29 196 3716 8969 846,5 3600 

15 [2-5] 56 206 4845 11843 994,6 3600 

15 [3-10] 100 178 13025 27232 - 3600 

 

Her iki amaç fonksiyonu için sadece ilk iki test probleminin optimal çözümü elde 

edilmiştir. Şarj istasyon sayısı 5’ten 10’a çıkartıldığında 3600 sn içerisinde optimal 

çözüm elde edilememektedir. Ayrıca şarj istasyonlarındaki ünite sayısındaki artış, çözüm 

süresine olumsuz etkilemiştir. Sonuç olarak şarj planlama için geliştirilen matematiksel 

modelin küçük ve orta boyutlu problemlerde minimum süre ve maliyet için verilen sınırlı 

sürede optimal çözümü bulmakta yetersiz kaldığı görülmektedir.  

 

Çizelge  4.14. Matematiksel modelin amaç fonksiyonu minimum yolculuk maliyeti iken 

elde edilen sonuçlar 

 

𝒏 𝒎𝒊 ∑ 𝒎𝒊 𝒍 (kWh) 
Tamsayı 

değişken 
Kısıt 

Yolculuk 

Maliyeti 

($) 

Çözüm 

süresi 

(sn) 

5 [1-3] 9 57 1373 3044 9,9 55 

5 [2-5] 18 47 2471 5276 3,0 3058 

5 [3-10] 25 58 3325 7012 4,9 3600 

10 [1-3] 18 144 2746 6086 10,1 3600 

10 [2-5] 33 121 4576 9806 16,2 3600 

10 [3-10] 58 117 7626 16006 - 3600 

15 [1-3] 29 196 4363 9624 19,7 3600 

15 [2-5] 56 206 7657 16320 - 3600 

15 [3-10] 100 178 13025 27232 - - 
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4.3.2. Önerilen yaklaşımların karşılaştırmalı sonuçları 

 

Şarj planlama problemi için önerilen dört sezgisel yaklaşım (S1: Her istasyonda tam 

dolum, S2: Eşik değerin altına düşemeyecek şekilde tam dolum, S3: Ulaşılabilen en uzak 

istasyona varabilecek kadar dolum ve S4: Sıradaki istasyona varabilecek kadar dolum), 

metasezgisel yaklaşım (GA) ve mat-sezgisel yaklaşım (MAT-GA) kullanılarak test 

problemleri için çözümler elde edilmiş ve sonuçlar karşılaştırılmıştır. GA ve MAT-GA 

yöntemlerinin ortak parametreleri Çizelge 4.15’te verilmiştir. Buna ek olarak MAT-

GA’nın iyileştirme sayacı eşiği 10 iterasyon olarak ayarlanmıştır (10 iterasyon boyunca 

iyileştirme olmaması durumunda sınırlandırılmış şarj planlama modeli ile iyileştirme 

yapılması adımı). Kayan pencereler yöntemi ile şarj ünitesinden ayrılış zaman dilimini 

belirlerken, en erken ve en geç ayrılış zaman diliminin ortalaması alınmıştır.  

Sınırlandırılmış şarj planlama modelinin çözüm süresi 20 sn olarak belirlenmiştir.  

 

Çizelge  4.15. GA ve MAT-GA parametreleri 

 

Parametre İsmi Parametre değeri 

İstasyon listesindeki rota sayısı 50  

Popülasyon büyüklüğü 10 

Çaprazlama oranı 0,7 

Mutasyon oranı 0,1 

Maksimum iterasyon sayısı 100 

 

Çizelge 4.16 ve 4.17, sırasıyla minimum yolculuk süresi ve minimum yolculuk maliyeti 

için altı yaklaşım ile elde edilen amaç fonksiyon değerlerini içermektedir. Kalın 

gösterilen sayılar en iyi sonucu göstermektedir. S1, her iki amaç fonksiyonu için en kötü 

sonuçları içeren yöntem olduğu görülmektedir. Sezgisel yaklaşımlar arasından en iyi 

sonuç S4 ile elde edilmiştir. Minimum yolculuk süresi için sadece iki problemde (𝑛: 25,  

𝑚𝑖: [2-5] ve 𝑛: 30, 𝑚𝑖: [2-5]) S3, S4’ten daha iyi sonuç vermiştir. S4, toplam on altı test 

probleminde MATGA ile aynı en iyi minimum yolculuk süresini elde etmiştir. Ancak 

minimum yolculuk maliyeti için bir test problemi hariç (S1, 𝑛: 30, 𝑚𝑖: [3-10]) hiçbir 

sezgisel yaklaşım en iyi çözümü bulamamıştır. Bunun nedeni, sezgisel yaklaşımlar ile 

bulunan çözümlerde V2G işlemleri yer almamaktadır. Ancak GA ve MAT-GA 

yöntemlerinde V2G ile maliyet düşüşü mümkündür. 
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Çizelge  4.16. Minimum yolculuk süresi için karşılaştırmalı sonuçlar 

 

𝑛 𝑚𝑖 ∑ 𝑚𝑖 S1 S2 S3 S4 GA MATGA 

5 [2-5] 18 238,2 219 185,4 185,4 185,4 185,4 

5 [3-10] 25 357,5 310,7 297,5 289,1 289,1 289,1 

10 [1-3] 18 786,0 633,3 657,9 596,2 571,5 566,0 

10 [2-5] 33 911,6 877,2 758,2 740,7 749,8 738,9 

10 [3-10] 58 743,8 640,0 604,0 593,4 608,9 591,3 

15 [1-3] 29 1103,2 989,2 919,7 889,1 888,9 879,0 

15 [2-5] 56 1194,6 1153,1 1032,4 1019,5 1011,4 994,7 

15 [3-10] 100 881,3 820,1 748,1 738,5 758,9 738,5 

20 [1-3] 44 1783,6 1526,4 1524,0 1444,7 1530,4 1410,9 

20 [2-5] 71 1432,5 1365,7 1235,7 1220,3 1239,2 1220,3 

20 [3-10] 124 1424,7 1391,4 1285,1 1244,6 1245,0 1230,3 

25 [1-3] 54 2186,1 2032,2 1856,3 1851,6 1836,8 1842,7 

25 [2-5] 85 2086,8 1910,7 1781,1 1786,8 1788,3 1762,0 

25 [3-10] 165 1737,6 1678,8 1528,8 1513,2 1551,6 1513,2 

30 [1-3] 60 2366,8 2216,6 2042,1 2022,7 2050,5 2013,5 

30 [2-5] 104 2408,1 2249,4 2024,7 2050,8 2044,2 2016,6 

30 [3-10] 181 2217,2 2086,9 1977,7 1906,1 2008,2 1906,1 

35 [1-3] 78 3119,8 2935,1 2727,0 2607,2 2747,8 2607,2 

35 [2-5] 119 2857,3 2686,1 2472,3 2445,4 2464,0 2445,4 

35 [3-10] 212 2513,2 2378,4 2230,3 2161,6 2202,9 2161,6 

40 [1-3] 82 3283,0 3082,7 2827,1 2782,9 2897,0 2782,9 

40 [2-5] 146 3209,5 3007,7 2777,2 2747,6 2817,2 2744,7 

40 [3-10] 256 3098,8 2998,3 2683,9 2664,2 2764,1 2664,2 

45 [1-3] 97 3333,7 3113,7 2786,0 2725,9 2816,2 2725,9 

45 [2-5] 159 3744,7 3672,6 3393,0 3296,7 3466,9 3296,7 

45 [3-10] 303 2938,7 2757,5 2579,9 2530,7 2634,4 2530,7 

50 [1-3] 97 4133,0 3726,2 3482,6 3395,5 3531,4 3395,5 

50 [2-5] 179 3524,2 3355,0 3103,4 3063,7 3166,7 3063,7 

50 [3-10] 329 3901,0 3745,1 3448,8 3365,4 3475,8 3365,4 

Ortalama 2190,2 2053,8 1895,5 1857,9 1908,4 1851,1 

 

Her iki amaç fonksiyonu için ortalama en iyi çözüm MAT-GA ile elde edilmiştir. 

Minimum yolculuk süresi için GA’nın MAT-GA’dan daha iyi olduğu bir test problemi 

(𝑛: 25, 𝑚𝑖:[1,3]) bulunmaktadır ve %0,3 daha iyi çözüm elde edebilmiştir. Amaç 

fonksiyonu yolculuk maliyeti olduğunda ise GA iki test probleminde (𝑛: 5, 𝑚𝑖:[3,10] ve 

𝑛: 15, 𝑚𝑖:[2,5]) MAT-GA’dan %4 ve %1 daha iyi çözüm vermiştir. MAT-GA yolculuk 

süresi için tüm test problemlerinde maksimum %8,5 ve ortalama %3 daha iyi sonuç elde 

edebilmişken yolculuk maliyet için maksimum %26 ve ortalama %6 daha iyi çözüm elde 

etmiştir. 
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MAT-GA’nın amaç fonksiyonu minimum yolculuk maliyeti olduğunda diğer 

yöntemlerle arasındaki fark, amaç fonksiyonu minimum yolculuk süresi olduğu duruma 

göre daha fazladır. Amaç fonksiyonu minimum yolculuk süresi olduğunda elde edilen 

optimal şarj planında EA istasyonlara sadece şarj işlem için uğramaktadır. Amaç 

fonksiyonu minimum maliyet olduğunda deşarj işlemleri ortaya çıkmaktadır.  

 

Çizelge  4.17. Minimum yolculuk maliyeti için karşılaştırmalı sonuçlar 

 

𝑛 𝑚𝑖 ∑ 𝑚𝑖 S1 S2 S3 S4 GA MATGA 

5 [2-5] 18 10,33 8,31 5,43 6,25 4,33 3,44 

5 [3-10] 25 13,40 10,84 9,24 7,05 5,15 5,34 

10 [1-3] 18 26,13 16,85 13,62 12,59 11,84 10,61 

10 [2-5] 33 27,80 23,97 21.0 20,66 18,82 16,78 

10 [3-10] 58 26,34 19,48 17,16 15,67 14,34 13,87 

15 [1-3] 29 36,08 27,32 25,31 22,04 21,39 21,12 

15 [2-5] 56 42,13 39,58 28,86 28,53 25,89 26,03 

15 [3-10] 100 30,52 24,96 19,34 17,98 16,59 15,44 

20 [1-3] 44 57,68 46,91 37,51 35,09 34,88 33,44 

20 [2-5] 71 53,67 46,53 34,69 32,50 31,69 29,31 

20 [3-10] 124 44,95 39,42 27,46 28,12 25.00 24,14 

25 [1-3] 54 61,72 54,91 41,13 38,45 39,55 35,99 

25 [2-5] 85 68,47 59,69 44,22 39,77 39,85 37,78 

25 [3-10] 165 67,63 61,09 44,68 43,99 42,28 42,17 

30 [1-3] 60 76,96 66,77 52,37 48,80 47,67 46,78 

30 [2-5] 104 79,70 72,60 49,83 50,40 47,71 46,05 

30 [3-10] 181 78,77 67,64 50,94 45,61 48,02 45,61 

35 [1-3] 78 93,67 79,33 63,32 57,79 57,99 54,16 

35 [2-5] 119 93,17 81,74 64,74 60,02 60,19 57,45 

35 [3-10] 212 82,90 65,55 58,44 50,76 52,18 48,28 

40 [1-3] 82 99,97 87,67 68,30 63,80 66,89 63,12 

40 [2-5] 146 110,01 89,93 67,21 63,08 67,12 61,54 

40 [3-10] 256 105,36 89,12 69,59 67,23 67,46 66,10 

45 [1-3] 97 101,84 82,15 64,40 62,09 62,93 57,23 

45 [2-5] 159 125,54 110,75 84,91 81,87 84,72 79,05 

45 [3-10] 303 110,07 91.00 71,88 65,76 64,58 62,48 

50 [1-3] 97 128,12 110,81 87,27 80,82 84,16 78,94 

50 [2-5] 179 118,77 110,06 86,73 82,43 77,56 76,01 

50 [3-10] 329 130,79 112,96 91,73 84,07 87,86 82,54 

Ortalama 72.50 62,00 48,32 45,28 45,13 42,79 

 

Çizelge 4.18 ve Çizelge 4.19, sırasıyla amaç fonksiyonu minimum yolculuk süresi ve 

maliyeti için çözüm yaklaşımlarının sn bazında çözüm sürelerini göstermektedir.  
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Çizelge  4.18. Minimum yolculuk süresi için çözüm sürelerinin (sn) karşılaştırılması 

 

𝑛 𝑚𝑖 ∑ 𝑚𝑖 S1 S2 S3 S4 GA MATGA 

5 [2-5] 18 0,000 0,000 0,000 0,000 47,78 91,53 

5 [3-10] 25 0,000 0,000 0,000 0,000 68,55 107,25 

10 [1-3] 18 0,000 0,000 0,000 0,000 50,27 79,17 

10 [2-5] 33 0,000 0,000 0,001 0,000 62,18 87,73 

10 [3-10] 58 0,000 0,000 0,000 0,000 116,01 413,78 

15 [1-3] 29 0,000 0,000 0,000 0,001 55,29 87,21 

15 [2-5] 56 0,000 0,000 0,001 0,000 93,76 214,76 

15 [3-10] 100 0,000 0,001 0,000 0,000 165,94 273,56 

20 [1-3] 44 0,001 0,000 0,001 0,001 69,43 174,55 

20 [2-5] 71 0,000 0,000 0,000 0,001 114,12 196,02 

20 [3-10] 124 0,000 0,001 0,000 0,000 210,20 391,92 

25 [1-3] 54 0,001 0,000 0,000 0,000 87,08 155,76 

25 [2-5] 85 0,000 0,000 0,000 0,001 158,06 526,05 

25 [3-10] 165 0,000 0,001 0,000 0,000 264,28 428,89 

30 [1-3] 60 0,001 0,000 0,001 0,000 109,16 261,14 

30 [2-5] 104 0,000 0,000 0,000 0,001 192,10 350,72 

30 [3-10] 181 0,000 0,000 0,001 0,001 388,29 509,59 

35 [1-3] 78 0,000 0,000 0,000 0,001 110,67 221,14 

35 [2-5] 119 0,000 0,001 0,001 0,000 268,18 397,66 

35 [3-10] 212 0,000 0,001 0,001 0,000 456,23 554,22 

40 [1-3] 82 0,001 0,000 0,001 0,000 179,28 282,57 

40 [2-5] 146 0,000 0,000 0,001 0,001 269,10 443,38 

40 [3-10] 256 0,000 0,001 0,000 0,001 491,62 663,42 

45 [1-3] 97 0,002 0,000 0,001 0,001 155,45 302,74 

45 [2-5] 159 0,002 0,000 0,003 0,001 296,50 420,76 

45 [3-10] 303 0,001 0,000 0,001 0,001 552,25 813,21 

50 [1-3] 97 0,001 0,000 0,002 0,000 191,61 373,77 

50 [2-5] 179 0,001 0,000 0,001 0,001 369,75 481,73 

50 [3-10] 329 0,001 0,001 0,002 0,001 544,15 716,97 

Ortalama 0,000 0,000 0,000 0,000 218,09 345,56 

 

Her iki amaç fonksiyonu için sezgisel yaklaşımlar ile anında çözüm elde edilebilmesi 

mümkün iken GA ve MAT-GA ile çözüm elde etme süresinin problem boyutuna göre 

değişkenlik gösterdiği görülmektedir. Yine her iki amaç fonksiyonu için GA, çözüm 

süresi açısından MAT-GA’dan ortalama olarak daha hızlı sonuç elde etmektedir. 

Minimum yolculuk süresi için GA ortalama %36,8 ve minimum yolculuk maliyeti için 

ise %39,4 daha kısa sürede çözüm elde etmiştir.  
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Çizelge  4.19. Minimum yolculuk maliyeti için çözüm sürelerinin (sn) karşılaştırılması 

 

𝑛 𝑚𝑖 ∑ 𝑚𝑖 S1 S2 S3 S4 GA MATGA 

5 [2-5] 18 0,001 0,000 0,000 0,000 37,88 83,75 

5 [3-10] 25 0,001 0,000 0,000 0,000 64,35 85,21 

10 [1-3] 18 0,001 0,001 0,000 0,000 46,41 79,17 

10 [2-5] 33 0,001 0,000 0,001 0,002 63,51 138,04 

10 [3-10] 58 0,000 0,000 0,000 0,000 126,2 461,42 

15 [1-3] 29 0,001 0,000 0,000 0,000 53,77 246,35 

15 [2-5] 56 0,000 0,001 0,001 0,000 97,59 214,76 

15 [3-10] 100 0,001 0,001 0,000 0,000 176,73 488,53 

20 [1-3] 44 0,001 0,001 0,001 0,001 73,32 324,62 

20 [2-5] 71 0,000 0,001 0,000 0,000 117,06 355,28 

20 [3-10] 124 0,001 0,001 0,000 0,001 222,81 460,57 

25 [1-3] 54 0,001 0,000 0,000 0,001 98,81 327,23 

25 [2-5] 85 0,001 0,000 0,000 0,001 171,72 425,1 

25 [3-10] 165 0,001 0,001 0,000 0,002 290,43 557,9 

30 [1-3] 60 0,001 0,000 0,001 0,001 110,68 377,15 

30 [2-5] 104 0,002 0,001 0,000 0,001 205,14 572,89 

30 [3-10] 181 0,002 0,001 0,001 0,001 362,27 683,72 

35 [1-3] 78 0,001 0,001 0,000 0,000 103,2 359,37 

35 [2-5] 119 0,001 0,001 0,001 0,001 209,82 480,36 

35 [3-10] 212 0,002 0,002 0,001 0,002 401,72 681,38 

40 [1-3] 82 0,001 0,000 0,001 0,001 176,04 404,65 

40 [2-5] 146 0,002 0,001 0,001 0,001 234,56 483,5 

40 [3-10] 256 0,002 0,002 0,000 0,002 479,74 755,83 

45 [1-3] 97 0,003 0.000 0,001 0,002 273,86 406,97 

45 [2-5] 159 0,002 0,001 0,003 0,001 480,13 547,67 

45 [3-10] 303 0,004 0,002 0,001 0,003 1346,65 893,77 

50 [1-3] 97 0,001 0,001 0,002 0,001 444,11 464,78 

50 [2-5] 179 0,002 0,001 0,001 0,002 930,09 597,20 

50 [3-10] 329 0,003 0,001 0,002 0,003 583,12 1211,12 

Ortalama 0,001 0,001 0,001 0,001 275,23 454,08 

 

4.3.3. Başlangıç popülasyonu ve iyileştirme eşiğinin etkisi 

 

MAT-GA’nın başlangıç popülasyonunda sezgisel yaklaşımlarla elde edilen çözümler ile 

ve sınırlandırılmış matematiksel model ile oluşturulan çözümler yer almaktadır. Eğer 

sınırlandırılmış matematiksel model, verilen sürede çözüm elde edemezse popülasyona 

rasgele oluşturulan çözümler eklenir. MAT-GA, belirlenen bir iterasyon sayısı boyunca 

(iyileştirme eşiği) amaç fonksiyon değerinde iyileşme olmaması durumunda 

sınırlandırılmış matematiksel model ile daha iyi bir çözüm araştırılır. 
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MAT-GA’nın diğer yaklaşımlardan güçlü olduğu yanları gösterebilmek adına başlangıç 

popülasyonun rasgele oluşturulduğu ve iyileştirme eşiğinin olmadığı bir sadeleştirilmiş 

MAT-GA versiyonu (SMAT-GA) ile karşılaştırma yapılmıştır. GA’dan farkı ise, 

iterasyonun sonunda elde edilen çözümün sınırlandırılmış matematiksel model ile 

çözülmesidir. Çizelge 4.20 ve 4.21’de sırasıyla amaç fonksiyonu minimum yolculuk 

süresi ve maliyeti olduğunda SMAT-GA ile MAT-GA’nın karşılaştırmalı sonuçları yer 

almaktadır.  

 

Çizelge  4.20. Minimum yolculuk süresi için karşılaştırmalı sonuçlar 

 

Test SMAT-GA MAT-GA  

𝑛 𝑚𝑖 Yolculuk süresi(dk) Çözüm süresi (sn) Yolculuk süresi (dk) Çözüm süresi (sn) 

5 [2-5] 185,4 47,78 185,4 91,53 
5 [3-10] 297,5 68,55 289,1 107,25 
10 [1-3] 562,4 50,43 566,0 79,17 
10 [2-5] 741,3 62,79 738,8 87,73 
10 [3-10] 602,8 116,17 591,3 413,78 
15 [1-3] 875,9 56,46 879,0 87,21 
15 [2-5] 1004,2 94,32 994,7 214,76 
15 [3-10] 746,9 166,50 738,5 273,56 
20 [1-3] 1503,4 71,43 1411,0 174,55 
20 [2-5] 1225,8 115,92 1220,3 196,02 
20 [3-10] 1230,3 211,96 1230,3 391,92 
25 [1-3] 1807,0 88,55 1842,7 155,76 
25 [2-5] 1763,2 160,72 1762,0 526,05 
25 [3-10] 1531,2 265,98 1513,2 428,89 
30 [1-3] 2008,6 115,04 2013,5 261,14 
30 [2-5] 2001,2 195,88 2016,6 350,72 
30 [3-10] 1978,7 393,31 1906,1 509,59 
35 [1-3] 2684,5 121,23 2607,2 221,14 
35 [2-5] 2437,4 271,98 2445,4 397,66 
35 [3-10] 2183,3 460,57 2161,6 554,22 
40 [1-3] 2842,4 193,69 2782,9 282,57 
40 [2-5] 2773,2 280,48 2744,7 443,38 
40 [3-10] 2698,4 502,82 2664,2 663,42 
45 [1-3] 2765,6 164,78 2725,9 302,74 
45 [2-5] 3405,3 313,12 3296,7 420,76 
45 [3-10] 2576,9 561,09 2530,7 813,21 
50 [1-3] 3489,1 229,20 3395,5 373,77 
50 [2-5] 3089,6 385,27 3063,7 481,73 
50 [3-10] 3418,5 558,62 3365,4 716,97 

Ortalama 1876,9 218,09 1851,1 345,56 

 

Çizelge  4.21. Minimum yolculuk maliyeti için karşılaştırmalı sonuçlar 
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Test SMAT-GA MAT-GA 

𝑛 𝑚𝑖 Yolculuk maliyeti ($) Çözüm süresi (sn) Yolculuk maliyeti ($) Çözüm süresi (sn) 

5 [2-5] 4,27 37,96 3,44 83,75 

5 [3-10] 4,97 64,65 5,34 85,21 

10 [1-3] 11,77 46,71 10,61 79,17 

10 [2-5] 17,92 69,89 16,78 138,04 

10 [3-10] 13,55 146,23 13,87 461,42 

15 [1-3] 19,10 73,79 21,12 246,35 

15 [2-5] 25,01 97,98 26,03 214,76 

15 [3-10] 15,98 196,75 15,44 488,53 

20 [1-3] 33,27 81,80 33,44 324,62 

20 [2-5] 31,69 117,06 29,31 355,28 

20 [3-10] 25,00 222,81 24,14 460,57 

25 [1-3] 38,84 118,83 35,99 327,23 

25 [2-5] 39,85 171,72 37,78 425,10 

25 [3-10] 40,28 330,48 42,17 557,90 

30 [1-3] 47,44 130,73 46,78 377,15 

30 [2-5] 47,71 205,14 46,05 572,89 

30 [3-10] 48,02 362,27 45,61 683,72 

35 [1-3] 57,99 103,20 54,16 359,37 

35 [2-5] 60,19 209,82 57,45 480,36 

35 [3-10] 52,18 401,72 48,28 681,38 

40 [1-3] 66,89 176,04 63,12 404,65 

40 [2-5] 67,12 234,56 61,54 483,50 

40 [3-10] 67,46 479,74 66,10 755,83 

45 [1-3] 62,93 273,86 57,23 406,97 

45 [2-5] 84,72 480,13 79,05 547,67 

45 [3-10] 64,58 1346,65 62,48 893,77 

50 [1-3] 84,16 444,11 78,94 464,78 

50 [2-5] 77,56 930,09 76,01 597,20 

50 [3-10] 87,86 583,12 82,54 1211,12 

Ortalama 44,77 280,62 42,79 454,08 

 

Çizelge 4.20 ve 4.21’de verilen sonuçlar incelendiğinde MAT-GA’nın ortalama olarak 

ile SMAT-GA’dan daha iyi çözüm elde ettiği görülmektedir. MAT-GA, minimum 

yolculuk süresi için en iyi %7, minimum yolculuk maliyet için ise %24 (𝑛: 20, 𝑚𝑖:[1,3]) 

daha iyi sonuç bulmuştur. Şarj istasyon sayısının 25’in üzerine çıktığı test problemlerinde 

SMAT-GA’nın daha iyi bir sonuç elde edememektedir. MAT-GA’nın iyileştirme 

adımının çözüm süresi açısından negatif etkisi olduğu görülmektedir. 

 

 



   

 

80 

 

5. TARTIŞMA ve SONUÇ 

 

Bu çalışma, şarj istasyonlarındaki şarj ünitelerinin fiyatlarının zaman dilimlerine bağlı 

değiştiği, uygunluk bilgilerinin bilindiği ve V2G uygulamalarının gerçekleştirilebildiği 

bir senaryoda, rotaya bağlı menzil tahminine dayalı olarak, EA’nın belirli bir yolculuğu 

minimum süre veya maliyetle tamamlaması için en uygun şarj planının elde edilmesi 

problemini ele almaktadır. EASMT ve EAŞP problemleri için ayrı ayrı çözüm 

yaklaşımları sunulmuştur. 

 

EASMT için elde edilen sonuçlar, gözlem tipinin, özellikle uzun mesafeli yolculuklar için 

enerji tüketimi tahmininde önemli bir rol oynadığını açıklığa kavuşturmaktadır. Kısa 

mesafeli yolculuklar için yolculuk tabanlı gözlemler ile yapılan tahminler, segment 

tabanlı gözlemlerle yapılan tahminlerle benzer doğruluğa sahiptir. Buradan 

çıkarılabilecek bir sonuç, girdi verilerinin boyutunu azaltmak için kısa mesafeli 

yolculuklar için yolculuk tabanlı gözlem kullanan bir VTM kullanılabilir ve daha uzun 

yolculuklar için, segment kullanan bir VTM ile enerji tüketimi tahmin edilebilir.  

 

Rota tipinin önemini analiz etmek için, her yolculuğun hız profillerini kümelemek için 

kümeleme teknikleri uygulanmıştır ve küme etiketlerini tahmin için girdi olarak 

kullanılmıştır. Özniteliğe ve şekle dayalı kümeleme olmak üzere iki kümeleme tekniği 

uygulanmıştır. Şekle dayalı kümelemeden elde edilen etiketler, özniteliğe dayalı 

kümelemeden elde edilen etiketlerden biraz daha iyi performans göstermiştir. Sonuçlar, 

sürüş çevrimlerinin şeklinin ayırt edici faktörünün, rota tipi açısından öznitelik 

çıkarımından daha bilgilendirici olduğunu göstermektedir. Kümeleme için öznitelik 

sayısını artırmanın tahminleri iyileştireceği, üstelik bu durumda şekle dayalı kümeleme 

tekniğinden daha iyi performans gösterebilme ihtimali düşünülebilir. Ancak, daha fazla 

öznitelik eklemek, ön işlem sayısını artıracaktır. Ayrıca, daha şekle dayalı kümeleme ile 

daha az işlem ile daha iyi tahmin sonucu elde edilebildiği görülmektir. Nitekim az veri 

ön işleme ile en iyi sonuçları elde etmek, veri-bazlı modeller için önem arz eden bir 

konudur. 
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Menzil tahmininde, yolculukların statik verileri ile yolculuk segmentlerine ait dinamik 

verileri birleştirmenin tahmin modelinin performansını etkilemektedir. Gerçekleştirilen 

deneysel çalışmaların sonuçlarına göre iki veri türünün birlikte kullanılması, rastgele 

karıştırılan segmentler için hata ölçümlerini azaltmıştır. Son deney, statik ve dinamik 

verileri farklı katmanlarda birleştiren DSA model mimarisinin tahmin modelinin 

performansı üzerinde herhangi bir etkisinin olup olmadığı sorununu ele aldı. Sonuçlar, en 

iyi model mimarisinin, statik verilerin dinamik verilerle giriş katmanında ve ikinci gizli 

katmanın çıkışında birleştirildiği DSA-C olduğunu göstermektedir. Tahmin doğruluğunu 

iyileştirme veya kötüleştirme potansiyeline sahip olduklarından, DSA model mimarisinin 

ve statik ve dinamik verilerin kombinasyonunun kritik olabileceği sonucuna varılmıştır. 

Bu çalışmada elde edilen sonuçlar aynı zamanda Miebs vd. (2020)’nin çalışmalarında 

elde edilen sonuçlarla örtüşmektedir. 

 

Menzil tahmini için elde edilen sonuçlara göre rotaya bağlı menzil tahminin yapılması 

tahmin modelinin performansını artırmaktadır. Bu sonucu destekleyen diğer bir bulgu, 

yolculukların hız profillerinin kümelenmesi ile rota tipi etiketlerinin elde edildiği deney 

sonuçlarıdır. Yolculuk verilerinin rota tipinin bilinmediği halde, rota tipini tahmin 

edilmesini sağlayan kümeleme yöntemlerinin sonuçları ile yolculuklarda harcanan enerji 

değerinin ortalama hata değerinin azalması sağlanmıştır.  

 

EAŞP için metasezgisel bir algoritma olan GA ile karma tamsayılı bir doğrusal 

programlama modelinin entegre bir şekilde kullanıldığı mat-sezgisel bir yaklaşım 

önerilmiştir. Mat-sezgisel yaklaşım, minimum yolculuk süresi ve maliyeti açısından dört 

sezgisel ve GA metasezgiseli ile karşılaştırılmıştır. Sezgisel yaklaşımlar, hızlı çözüm elde 

etmek adına iyi bir yaklaşım olarak değerlendirilebilir. Minimum yolculuk süresi ve 

maliyeti için en iyi sezgisel yaklaşım S4: Sıradaki istasyona varabilecek kadar dolum 

stratejisidir. Ancak minimum yolculuk süresi için bazı problemlerde S3’ün (Ulaşılabilen 

en uzak istasyona varabilecek kadar dolum stratejisinin), S4’ten daha iyi sonuç verdiği 

gözlemlenmiştir. Menzil kaygısı yüksek sürücülerin tercih edebileceği bir strateji olan S1 

(Rota üzerindeki tüm istasyonlarda dolum stratejisi), hem yolculuk süresi hem de maliyet 

açısından tercih edilebilecek en kötü strateji olduğu sonucuna varılmıştır.  
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GA metasezgiseli ve mat-sezgisel yaklaşımın çözüm süreleri sezgisel yaklaşımlardan çok 

daha uzun sürmektedir. Ancak hem minimum yolculuk süresi ve maliyet için elde edilen 

optimal değerler açısından incelendiğinde mat-sezgiselin diğer yaklaşımlardan ortalama 

olarak belirgin bir şekilde daha iyi çözüm elde ettiği gösterilmiştir. Gelecek çalışmalarda, 

menzil tahminine dayalı şarj planlama için yolculuk boyunca EA sürücüsünü asiste 

edecek şekilde dinamik bir yaklaşım üzerinde durulacaktır. Şarj planlama modelinin 

çözüm verme süresinin azaltılması yönelik çalışmalar yapılacaktır. Mat-sezgiselin 

iyileştirme oranına göre erken durdurma özelliğinin eklenmesi, paralel mat-sezgisel gibi 

konular incelenecektir. Önerilen çalışmanın otonom EA’ların uzun yolculuklarda şarj 

planlama sistemlerinin tasarımı için bir altyapı oluşturması beklenmektedir.   
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