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ABSTRACT

LEVERAGING DIVERGENCES:
BUILDING CONTROL, PERSONAL COMFORT AND INDOOR CLIMATE

Topak, Fatih
Doctor of Philosophy, Building Science in Architecture
Supervisor: Assist. Prof. Dr. Mehmet Koray Pekericli

June 2023, 176 pages

Over the last two decades, major advances in technology have allowed researchers
to develop strategies for automating the operational tasks in buildings to improve the
overall system efficiency. However, the stochastic nature of human needs and
standardized, one-size-fits-all configurations in current control approaches lead to
disharmony in human-automation coexistence in buildings. Although well-
established interaction between control systems and occupants is acknowledged as
one of the core elements of intelligent buildings, defined borderlines of the prevailing
automation modalities fail to satisfy this primary feature. To this end, this research
conceptualizes a collaborative building control framework, which establishes a
communication ground between people and buildings. To assess comfort and energy
related implications of the proposed framework, a simulation based and data driven
research was conducted in the thermal domain, considering the need for investigating
the personalized dimensions of building control, human comfort, and indoor climate.
A multi-occupancy office space shared by six occupants was adopted as a case study.
Probabilistic personal comfort profiles were used to quantify the likelihood of each
occupant being comfortable in diverse conditions. Thermal distribution
characteristics of the space were investigated using computational fluid dynamics

(CFD) simulations under varying supply airflow rates, supply airflow directions, and



occupancy settings. Through performing an optimization analysis, achievable
comfort improvements and energy savings were presented. The results confirmed
that considering the divergences in personal comfort and indoor climate with a
dynamic control strategy, where occupants are kept in the loop, has great potential
for providing comfortable indoor environmental conditions and improving energy

efficiency.

Keywords: Building Control, Thermal Comfort, Energy Efficiency, Personal
Comfort Models, Computational Fluid Dynamics, Occupant-Centric Building

Operation
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FARKLILIKLARDAN YARARLANMAK:
BiNA KONTROLU, KiSiSEL KONFOR VE iC MEKAN iKLiMi

Topak, Fatih
Doktora, Yap1 Bilimleri, Mimarlik
Tez Yoneticisi: Dr. Ogr. Uyesi Mehmet Koray Pekericli

Haziran 2023, 176 sayfa

Son yirmi yilda, teknolojideki biiyiik ilerlemeler arastirmacilarin genel sistem
verimliligini artirmak i¢in binalardaki operasyonel gorevleri otomatiklestirmeye
yonelik stratejiler gelistirmelerine olanak saglamistir. Bununla birlikte, insan
ihtiyaglarmin  stokastik  dogast ve mevcut kontrol yaklasimlarindaki
standartlastirilmis, herkese uyacagi diistiniilen tek tip konfiglrasyonlar, binalarda
insan-otomasyon birlikteliginde uyumsuzluga yol agmaktadir. Kontrol sistemleri ve
bina kullanicilart arasinda iyi kurulmus etkilesim, akilli binalarin temel
unsurlarindan biri olarak kabul edilse de mevcut otomasyon yontemlerinin
tanimlanmis sinirlart bu ana 6zelligi karsilamakta basarisiz olmaktadir. Bu amacla,
bu arastirma, insanlar ve binalar arasinda iletisim zemini olusturan, ortaklasmaya
dayal1 bir bina kontrol gergevesini kavramsallastirmaktadir. Onerilen cercevenin
konfor ve enerji ile ilgili getirilerini degerlendirmek igin, bina kontrolii, insan
konforu ve i¢ mekan ikliminin kisisellestirilmis boyutlarini arastirma ihtiyaci goz
oniinde bulundurularak termal alanda simiilasyona ve veriye dayali bir arastirma
yurlitiilmistiir. Alt1 kisi tarafindan paylasilan ¢ok kisilik bir ofis alani, vaka ¢aligmasi
olarak kabul edilmistir. Her bir bina kullanicisinin farkli kosullarda konforlu olma
ihtimallerini belirlemek i¢in olasiliksal kisisel konfor profilleri kullanilmistir.

Secilen mekanin termal dagilim 6zellikleri, farkli besleme hava akis hizlari, besleme

Vil



hava akis yonleri ve bina kullanicis1 dolulugu dizenlemeleri altinda hesaplamali
akigkanlar dinamigi simiilasyonlar1 kullanilarak incelenmistir. Optimizasyon analizi
yapilarak, insan konforu ve enerji tasarrufu bakimindan ulasilabilir iyilestirmeler
sunulmustur. Sonuglar, bina sakinlerinin kontrol dongistne dahil edildigi dinamik
bir kontrol stratejisi ¢ercevesinde kisisel konfor ve i¢ mekan iklimi farkliliklarinin
dikkate alinmasinin konforlu i¢ mekan kosullar1 saglama ve enerji verimliligini

artirma konusunda biiyiik potansiyele sahip oldugunu dogrulamaistir.

Anahtar Kelimeler: Bina kontrolt, Termal Konfor, Enerji Verimliligi, Kisisel
Konfor Modelleri, Hesaplamali Akiskanlar Dinamigi, Kullanici Merkezli Bina

Isletimi
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CHAPTER 1

INTRODUCTION

Building control, personal comfort, and indoor climate are interdependent subjects
that have received considerable attention in the building industry over the last two
decades (Figure 1.1). Although the specific focus of research has been remarkably
diverse amongst the scholars, they are all in pursuit of a common goal at a higher
level, which is to provide a comfortable and healthy indoor climate for people while
ensuring the efficient use of energy resources for lessening the negative impacts of
buildings on the environment. As an overarching contribution to this common
purpose, this research conceptualizes an occupant-centric building control
framework and leverages its implementation for climatization systems by coupling
the non-uniformity of individuals’ comfort needs and the heterogeneity of thermal

conditions in shared indoor spaces.

Building

Indoor

Climate

Figure 1.1. Three interdependent subjects in building practice



1.1 Research Motivations and Problem Statement

Divergences in Building Control

The energy demand of the building sector constitutes nearly 40% of total energy use
globally, and energy is primarily utilized to satisfy occupants’ comfort needs.
Heating, ventilation, and air conditioning (HVAC) systems alone are accountable for
nearly 75% of electricity consumption and 40% of total energy consumption in
buildings in the United States (DOE, 2011). With the intention of reducing energy
consumption and minimizing inefficacies in the operation of building systems,
adopting a centralized automated control has been introduced as a possible
technology aided solution (Wang, 2010). However, such approaches did not gain
popularity and high acceptance levels amongst the occupants due to the decreased
perceived control, ever-changing dynamic individual needs and standardized, one-
size-fits-all approach in current automation systems. Depriving occupants
completely of building control affects both energy efficiency and occupant comfort
in a negative manner (Day and Heschong, 2016). It is crucial to note that occupants
and their complex nature have significant impacts on building energy performance,
and they are the major factors contributing to the excessive energy consumption of
building systems (Hong et al., 2017). Considering these, it can be claimed that
maintaining efficient operation of building systems and human comfort
simultaneously requires an inclusive approach, where both the control capacity of
technology-powered methods and flexibility granted by incorporating occupants in
the loop are ensured.

Divergences in Personal Comfort

Among various human dynamics, thermal comfort can be claimed as the paramount
subject considering its effects on overall human satisfaction (Frontczak & Wargocki,
2011; Wagner et al., 2007) and the account of HVAC systems on building energy
use. Providing thermal comfort in buildings is quite a complex task, which is still

unresolved and studied by many. Building researchers have concentrated on



developing empirical models, which link the thermal variables (temperature, air
velocity, etc.) of indoor environments and other factors with the comfort states of
occupants. Two main models, namely the predicted mean vote (PMV) and adaptive
models, underpin the current thermal comfort approaches and were adopted in
international standards like ASHRAE 55 (2017) and ISO 7730 (2005). However,
both are pre-defined aggregate models, and their prediction only demonstrates the
average comfort of large populations. They fail to accurately predict individuals'
thermal comfort in multi-occupancy indoor environments, where occupants with
varying comfort profiles share the same thermal zones. In recent years, the
developments in the Internet of Things (10T) concept have enabled the collection and
analysis of real-time personal data, and this paved the way for a new paradigm in
thermal comfort modeling, called personal comfort models (Kim, Schiavon, et al.,
2018). Personal comfort models eliminate the over-simplified assumptions in PMV
and adaptive models by demonstrating a highly granular, individualistic approach.
Through directly making use of the data collected in everyday environments, it
utilizes machine learning algorithms to learn individuals' comfort profiles and

creates the base for occupant-centric building control (Jung & Jazizadeh, 2019a).

Divergences in Indoor Climate

One of the primary assumptions in current studies on occupant-centric building
control is the uniform temperature distribution in the spaces under investigation,
which does not take dynamic conditions specific to particular positions into
consideration. Although a single thermostat or a local sensor is attributed to be
representative for the entire room for assessing the thermal conditions, micro-
thermal conditions may vary by location, especially in large offices with multiple
occupants (Zhou et al., 2015). Many parameters can affect micro-climate around
different occupants, including proximity to windows, furniture layout, solar
radiation, supply air inlet placement, and heat flux aroused from electronic
appliances. These factors can lead to variations in indoor environmental parameter

values within the same space, making occupant location an essential aspect for



continuous comfort. In the absence of proper control strategies, occupants may have
varying sensations (cold, warm, et.) in the same room caused by the uneven thermal
distribution. The worst-case scenario would be not being able to provide comfort for
any occupants while consuming an excessive amount of energy for conditioning the
space. In that sense, just like regarding the nonuniformity in personal comfort, taking
the heterogeneity of indoor climate conditions into consideration in building control
holds great potential for improving occupant comfort and reducing energy

consumption.

Nevertheless, limited research exists questioning the potential of incorporating
micro-thermal condition data in control loops for system efficiency in buildings. The
reason may be the high cost associated with acquiring controlled measurements and
implementing complex sensor infrastructures to comprehensively analyze the
patterns and distributions of thermal parameters in indoor environments. However,
with advances in technology facilitating greater accessibility to high computational
power, it is becoming increasingly feasible to leverage computational fluid dynamics
(CFD) simulations as a more economical and efficient alternative for obtaining the
necessary thermal variables. CFD simulation is a powerful tool that solves a set of
partial differential equations for conservation of mass (the continuity equation),
momentum (Navier-Stokes equations), and energy with applicable turbulence
models. Although this simulation tool is extensively used to design and optimize
HVAC systems in buildings (Duan & Wang, 2019; Shan et al., 2019; Zhou et al.,
2014), its employment to elaborate occupant-centric control is relatively limited.

1.2 Objectives

This research argues that an occupant-centric building control framework, which
allows bi-directional communication and control negotiation between building
management systems and occupants, can increase human comfort while enhancing
energy efficiency. To assess the potential benefits of the framework, a data driven

investigation was conducted in the thermal domain. This investigation involved



personalized evaluation of thermal comfort and dynamic operation of HVAC

systems. The main objectives of this dissertation are identified as:

Developing a collaborative building control framework enabling
collaboration and communication between building occupants and the
automation to respond to the drawbacks of prevailing building control

approaches.

Assessing the optimization of collective thermal comfort and efficient
operation of conditioning systems, through leveraging nonuniformity of
people’s personal comfort preferences and distribution of thermal parameters

in shared spaces.

Demonstrating the influences of occupancy (number, position, etc.), supplied
airflow parameters and potential human-building communication for
improving collective thermal comfort and efficient system operation in multi-

occupancy scenarios.

Accordingly, in pursuit of these aims:

A building control framework that aims to enhance human-building
communication was conceptualized through reviewing existing human and

automation related system issues.

Multiple personal comfort profiles were generated with Bayesian network
modeling approach by employing available datasets collected from actual

buildings in the literature.

Heterogeneity of thermal conditions in shared indoor spaces were
demonstrated under various conditioning and occupancy settings, by carrying
out CFD simulations in ANSYS Fluent software.

A data-driven optimization analysis within the scope of proposed framework
was carried out using personal comfort profiles and thermal distribution

datasets to present collective comfort and energy saving improvements.



1.3 Research Questions

The main question of this research is: How can we improve occupant comfort while

ensuring the efficient use of energy in building operation?

In order to answer the main question, following sub-questions are formed:

What are the comfort and energy affiliated problems in prevailing building

control approaches and how can they be tackled?

e What are the implications of occupant comfort in shared indoor environments

on building control?

e What are the characteristics of thermal distribution patterns in multi-

occupancy office spaces?

e Can we leverage varying comfort preferences of occupants and heterogeneity

of thermal conditions to improve collective comfort and energy efficiency?

1.4 Contribution

Jendritzky and de Dear (2009) reported that even making small adjustments on
temperature set points (i.e., tuning a few degrees) may have profound impacts on
energy consumption and greenhouse gas emissions. Despite the considerable amount
of energy used to provide comfort in buildings, the lack of thermal comfort is still
one of the most common occupant complaints. Based on what this research provides,
it is expected to demonstrate how building energy can be effectively used for
optimum thermal comfort provision in multi-occupancy indoor environments. In
doing so, a collaborative building control framework enabling control flexibility and
providing desired comfort conditions for building occupants is proposed. The
applicability of the proposed approach was validated in the thermal domain, through
examining the primary assumptions made in building control, which are the

averageness of thermal comfort sensations and homogeneity of thermal conditions



in indoor spaces. Within the scope of an optimization analysis, control strategies are
elaborated to use the aroused potentials in favor of human comfort and energy
efficiency.

Throughout the progression of this research, three journal articles (Topak &
Pekericli, 2021; Topak & Pekericli, 2022; Topak et al., 2023) were published, and
the sections were partially presented in several conferences ( Topak et al., 2019;
Topak & Pekericli, 2020; Topak et al., 2022; Topak et al., 2023), the exhaustive list
of which is given in Appendix-A.

1.5 Research Structure and Disposition

The structure of this dissertation is composed of four main sections, which is
demonstrated in Figure 1.2. Following the introduction section, Chapter 2 provides
an overview of occupant and system related issues of building automation systems
in the literature and presents the conceptualized collaborative building control

framework, which proposes a mixed-initiative approach in system operation.

CHAPTERS METHODS
Chapter 2
Collaborative Building Control } ------------- { Literature Survey
Chapter 3
Probabilisti h
Personal Comfort Modeling oo oo I? K.: approa
based on existing databases
Chapter 4
Analysis of Thermal Distribution Patterns } ------------- [ CFD Simulations in ANSYS Fluent
Chapter 5
Data-dri timizati lysis | i
Optimization of Collective Comfort in Shared Spaces [ Ska Cvel 2P |m|_za on analysis leveraging
datasets generated in Chapter 3 and Chapter 4

Figure 1.2. Overview of research structure



Chapter 3, Chapter 4, and Chapter 5 altogether constitute a dedicated workflow for
demonstrating how the proposed framework may function for the thermal domain.
In Chapter 3, the transition towards personal comfort models is explained, and
multiple comfort profiles are presented, generated by applying Bayesian network
modeling approach on existing real-world datasets in the literature to account for the

individual differences in comfort needs and preferences.

Chapter 4 addresses the nonuniformity of thermal conditions in shared indoor spaces.
The procedural process of running numerical CFD simulations, simulation-based
assessment of independent variables, main simulation scenarios and corresponding
results are presented, respectively. The impacts of occupancy, supplied airflow rate,

and supplied airflow direction in thermal distribution patterns are illustrated.

Leveraging personal comfort profiles and indoor thermal distribution patterns
datasets presented in Chapter 3 and Chapter 4, Chapter 5 elaborates a data-driven
optimization assessment and analyzes the potential implications of human-building
cooperation in the thermal domain. The range of achievable comfort improvement
probabilities and energy-saving possibilities are demonstrated in comparison to the

pre-determined baseline scenarios.

The dissertation is concluded in the last chapter with the overall discussion, revisiting

of research questions, limitations of the study, and projections on future work.



CHAPTER 2

COLLABORATIVE BUILDING CONTROL

In this chapter, through reviewing current human and automation related system
issues, a conceptual mixed-initiative framework that aims to enhance human-
automation collaboration for the control of building systems was presented. The
conceptualization is refined through analyzing related subjects, and the framework
is elaborated upon the available evidence in the literature. The novelty of the
proposed approach is to introduce “mixed-initiative” concept to the building control,
which enables human-automation collaboration for achieving optimum efficiency-
comfort balance. This proposal may help researchers comprehend the integral
components of mixed-initiative building control and grasp the prospective research
directions, enhancing more human-centric built environments. Following the
conceptualization, the building control scheme was concretized for the indoor
environments shared by multiple occupants, which presents a unique challenge for
personalized operation in building control due to the potential variations in people’s

behaviors, preferences and tolerance levels.

The chapter is structured as follows. First, the emergence of automation concept in
buildings were reviewed and prevailing occupant-related building automation issues
were introduced. Then, the concept of flexibility in automation was discussed by
referring to the automation taxonomies in general. Subsequently, after critically
reviewing the literature, the conceptualization of the mixed-initiative framework was
demonstrated and the operational workflow was explained. Lastly, a potential
application scenario of the proposed framework in the thermal domain was
elaborated by structuring a simplified building control scheme and the chapter was

finalized with some conclusive remarks and discussion.



2.1 Literature Review

211 Intelligent Buildings

Starting from the early 1980s, considerable advancements in computer, information,
and communication technologies reflect themselves in the management and control
of building services, evolving from simple function dedicated systems to today’s
computerized buildings. The integration of cutting-edge technological tools in built
environments has been studied in the literature under the umbrella term of intelligent
buildings, the concept of which was born with the purpose of creating energy-
efficient, productive, and environmentally healthy spaces for people (Clements-
Croome, 2013). The early definitions of the term “intelligent building” were almost
entirely related to technology integration and building automation. Many of the
examples of so-called intelligent buildings were only representing the incorporation
of increasing quantities of information technology into buildings (Wigginton &
Harris, 2002). Later on, the definition of the intelligent building concept was
expanded to cover the linkage between occupants, building systems, and the
environment. From seeking technology integration, the main focus of the concept
gradually shifted towards responding to occupant expectations, comfort needs, and
quality of life enhancement. One of the very first comprehensive definitions of
intelligent buildings was presented by Clements-Croome (1997) through referring

CIB Working Group W98’s proceedings as:

An intelligent building is a dynamic and responsive architecture that provides
every occupant with productive, cost effective and environmentally approved
conditions through a continuous interaction among its four basic elements:
Places (fabric; structure; facilities); Processes (automation, control, systems);
People (users, occupants) and Management (maintenance; performance) (p.
396).

In their intelligent environments manifesto, Augusto, Callaghan, Cook, Kameas, and
Satoh (2013) defined intelligent buildings as the environments where intelligent
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software agents control networked controllers to ensure holistic functionality and
comfort for inhabitants. From our perspective, an intelligent building can be
described as a dynamic immersive living machine, which incorporates numerous
processes flexibly to respond to the various needs of its occupants through enabling
human-machine cooperation, data-systems integration and technological
articulation. In fact, one of the most fundamental characteristics of intelligent
environments is to minimize the burden of occupants on controlling different
operational tasks in buildings through the employment of technology, providing

them more free time to spare other activities (Cole et al., 2012).

The main component of intelligent buildings satisfying this characteristic is called
building automation (Wang, 2010). The state-of-the-art technological developments
supporting automation in buildings in recent years includes but not limited to
artificial intelligence algorithms, ubiquitous sensing, actuation systems, cloud
computing, big data engineering and the Internet of Things (10T) products (Jia et al.,
2019). These tools enable to collect and analyze data from both occupants and built
environments, and assist decision making in the control of various building systems
and operations including heating, ventilation and air conditioning (HVAC), lighting,

shading, plugged-in appliances and so on.

Despite the advanced developments and wide-scale use of automation systems in
various disciplines, the employment of automation in buildings has not gain
popularity. This is mainly caused by the fact that automation has a low-acceptance
level amongst the building occupants, which is the reflection of disharmony between
human nature and the operation principles of current building automation systems
(Brush et al., 2011; Mayra et al., 2006). Although well-established continuous
interaction between building control systems and occupants is referred to as one of
the core elements of intelligent environments (Clements-Croome, 1997), strictly-
defined borderlines of the prevailing automation systems fail to satisfy this primary
feature (Ahmadi-Karvigh et al., 2017; E. S. Lee et al., 2013).
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2.1.2 Building Automation Systems

Building automation systems (also known as building management systems), refer
to the installed technological infrastructure that monitor and administrate buildings’
physical environments and operations, including heating, ventilation and air
conditioning, lighting, shading, auxiliary energy, and water supply. Automating the
building systems and creating centralized control is generally favored by many
engineers, designers, and facility managers, with an intended goal of enhancing
system efficiency. Although automation systems’ capabilities have been extended in
recent years (Aparicio-Ruiz et al., 2018; Naylor et al., 2018), their wide-scale
employment by building occupants has remained unrealized (Meerbeek et al., 2014),
which can be grounded by several reasons.

First of all, people usually desire to have a control over their environments; they
prefer manual adjustments rather than automated operation. An experimental study
conducted by Luo et al. (2016) demonstrated that the feeling of being in charge,
which is often referred to as perceived control in the literature, affects people’s
perception of comfort. Tamas, Ouf, and O’Brien (2019) reported that occupants are
usually dissatisfied with building automation, and perceived comfort is correlated
with perceived control. People accustomed to primitive building systems that are
almost entirely transparent with their simple logic and physical interfaces (i.e., a light
switch) become relatively unenlightened in the existence of advanced logic of
automation systems operating in the background with no intervention possibilities.
When people do not understand fundamentals of a system, they do not trust it, and

their sense of control and satisfaction decreases dramatically (Karjalainen, 2013).

Secondly, occupants’ automation needs and preferences are dynamic, and the level
of autonomy that they desire may change depending on their physical, psychological,
and emotional states (Callaghan, 2013). Although there have been some research
efforts for enabling occupants to vary the level of technical assistance in the built

environments (Ball & Callaghan, 2012b; Bradshaw et al., 2003), no widely-
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influential result or a comprehensive framework has been demonstrated so far, and

current building automation systems still lack such flexibility.

Lastly, building automation systems usually provide standardized indoor
environmental conditions that are the mean preference of many people, following a
“one-size-fits-all” management approach. Park and Nagy (2018) asserted that the
research on building automation systems mostly focuses on energy savings rather
than incorporating human comfort, demonstrating the recent discrepancy between
indeed very much related two subjects. Despite the ongoing progress in developing
personalized comfort models to improve occupant comfort using technology (Jung
& Jazizadeh, 2019a; Kim, Schiavon, et al., 2018), most of them rely on physical
sensor measurements and fail to centralize people in the control loop of their indoor
habitats. Due to human beings’ stochastic nature, comfort is very individual and
time-dependent, and standardized automation systems fail to fulfill occupants’

requirements.

People have certain comfort expectations of their environments, and when these
expectations are not met, they perform actions to adjust their surroundings. In
modern buildings, occupants have been allowed to interact with static building
components to adjust the environment according to their comfort levels. For
example, individually controlled window ventilation has been a universal consent,
and it was demonstrated as a beneficial strategy for ensuring a relaxed state for
occupants (Brager et al., 2004). In the last two decades, it is revealed by many
researchers that such human-building interactions have crucial influences on
building energy performance, indoor environmental conditions, and occupant
comfort (Hong et al., 2017). Building automation solutions were devised to
overcome such impacts by dramatically decreasing the level of control handed over
to occupants through centralizing the building controls and automating systems’
operation (Vasseur & Dunkels, 2010). However, recent researches demonstrated a
high demand for direct personal control, which necessitates a change of perspective

in the research agenda of building automation systems.
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Since the unfamiliarity of occupants with the way automation works leads to
inadequate human-building interactions, and resultantly, to system failures, human
intervention could be considered a risky input for the proper functioning of building
automation systems (Lazarova-Molnar & Mohamed, 2017). Occupants’ awareness
and knowledge of technology is an essential aspect for obtaining the desired benefits.
Day and Heschong (2016) emphasized that both energy efficiency and occupant
comfort were negatively affected when occupants are deprived of building control
without any prior clarification. Considering the core of implementation barriers of
building automation systems and the impacts of occupant behaviors, the main issue
to be concentrated on can be identified as the lack of a mechanism providing
coordination and communication between occupants and building automation
systems. In order to enhance the system robustness, efficient operation of building
systems, and human comfort simultaneously, benefiting from both control capacity
of computer-powered methods and flexibility granted by incorporating occupants in

the loop holds a substantial potential.

2.1.3 Flexibility in Automation

Incorporating a coordination and cooperation mechanism between people and
automation systems requires a certain level of system adjustability on the machine
end. Such flexibility has been initially led with different taxonomies proposing
varying levels of automation (LOA) in the literature. Starting from late 1950s,
intermediate levels between the two extremes of full manual operation and full
automation have been assessed to find solutions for control conflicts in various
human-machine interaction scenarios (Vagia et al., 2016). Automation levels have
been specified based on the discipline they are applied in, including avionics,

advanced manufacturing, teleoperation, air traffic control, and piloting.

A comprehensive general human-machine interaction model with no specified
application was introduced by Riley (1989) in order to assist the investigation of

automation-related issues. Accordingly, the author proposed twelve levels, through
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combining automation degrees and system’s intelligence sophistication. The former
six levels were categorized based on system’s information processing maturity and
the level of displayed advising, while the latter six were collocated according to their
ability of taking actions. Levels are labelled based on the system’s functional
capability limits, including information fuser, advisor, servant, assistant, partner, and
supervisor. A more recent and refined taxonomy was proposed by Vagia et al.
(2016), intending a wider range of usability (Table 1). LOA described in this
taxonomy is also created considering how and when the system would notify the
user, share responsibilities and take actions. Although these different levels show
how the computerized systems can provide adjusted forms of aid to humans based
on their needs, designating automation systems though using the identified levels
brings out a static situation yet again, which lacks flexibility in operation.
Considering the ever-changing requirements in built environments due to the
stochastic nature of occupant behaviors, facilitating dynamic arrangements in the

level of supplied machine assistance is of the utmost importance.

The possibility of dynamic shifts between different LOA has been studied under
different key terms, including adaptive automation (Kaber & Endsley, 2004),
adjustable (or adaptable) automation (Miller & Parasuraman, 2007), and mixed-
initiative systems (Barnes et al., 2015). Chen and Barnes (2014) explained that these
three terms cover flexibility in automation and are differentiated depending on the
delegation of authority between humans and machines on the management of the
shifts between the automation levels. As depicted in Figure 2.1, which is elaborated
upon the work of Ahmadi-Karvigh et al. (2017), automation modalities are
categorized based on the trade-off between the amounts of human control and the
automated operation. In adaptive systems, the automation is designated to invoke
appropriate drifts between LOA based on analysis of the contextual and situational
data. In adjustable systems, on the other hand, decisions of changing the automation
levels are made by humans. Adaptive systems lack human involvement in the

management of critical tasks and may lead to a reduced perceived control, whereas
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adjustable systems require certain human capabilities and result in an unbalanced

mental work load for people (Hussein & Abbass, 2018).

Table 2.1. Levels of automation proposed by Vagia et al. (2016)

LOA Description Explanation

1 Manual Control Computer offers no assistance

The computer offers some decisions to the

2 Decision Proposal operator. The operator is responsible to decide and
execute.
3 Human decision The human selects one decision and the computer
select executes.
4 Computer decision The computer selects one decision and executes

select with human approval.

Computer execution
5 and human
information

The computer executes the selected decision and
informs the human

Computer execution
6 and on call human
information

The computer executes the selected decision and
informs the human only if asked

Computer execution
7 and voluntarily
human information

The computer executes the selected decision and
informs the human only if it decides to

The computer does everything without human
notification, except if an error that is not into the
specifications arrives. In that case, the computer
needs to inform the operator.

8 Autonomous control
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Figure 2.1. Comparison of different automation modalities

As an eclectic solution combining the advantages of adaptive and adjustable systems,
mixed-initiative systems were proposed to allow a balanced responsibility
distribution in decision-making. Allen (1999) defined these systems as: “Mixed-
initiative refers to a flexible interaction strategy, where each agent (human or
computer) can contribute to the task what it does best.” Accordingly, in the process
of solving a problem, the roles are opportunistically negotiated between the agents
to actualize the best possible solution. In some cases, one of the agents might have
the full initiative as the other operates to assist it, while in some other, the roles might
be reversed. The agents may also work independently in performing some tasks and
dynamically adapt their interaction level based on the specifically asked assistance
(Allen, 1999).

Mixed-initiative systems require dynamic and adaptive function allocation, which
are usually delegated to the automation due to their complex challenges. These
challenges were pointed out by Horvitz (2007) as; recognition and decomposition of
problems, identification of sub-problems that may be best solved either by the human
or the automation, the task of sequentially and symphonically interleaving human
and automation contributions, and enhancement of coordination and communication
during the reasoning and problem solving processes. Such collaboration may be

predicated on pre-scripted operational codes, and task distribution can be adjusted
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according to particular conditions. Yet, if instant communication between the two
sides can be provided where necessary, a more natural cooperation process for
humans can be accomplished.

2.2  Conceptualization of Mixed-Initiative Building Control

The aforementioned researches in the previous section are mostly carried out to
converge solutions to numerous problems in various disciplines where a certain level
of automation is utilized. However, the achieved advances and developments were
not fully reflected in building automation systems, which can be seen as a root cause
of the fact that they are not widely adopted in the built environments. To the best of
our knowledge, although studies focusing on LOA (Aryal et al., 2021), adaptive
automation (Ahmadi-Karvigh et al., 2019) and adjustable autonomy (Ball &
Callaghan, 2012a) in buildings exist, no previous research proposed a mixed-

initiative framework for the operational management of built environments.

In intelligent buildings research, the focus is usually either on empowering the end-
user for building control or developing fully autonomous agent-driven systems that
minimize occupant inference. However, people generally prefer to be given the
ability to control their environments and choose the tasks to be delegated to the
automation (Ball & Callaghan, 2011). The study of Aryal et al. (2020) revealed that
no single automation level could satisfy all users, and the authority of building
control should be shared between the intelligent system and the users to be regulated
where necessary. Ahmadi-Karvigh et al. (2017) indicated that LOA preferences of
occupants change by context, and certain demographic variables and personality
traits impact their inclinations. Likewise, the occupant’s probable desire to vary the
amount and the type of assistance they receive from intelligent building applications
was predicated by Callaghan (2013) on two main reasons. First, the people’s mental
or physical states that change according to age, health, mood, ability, etc. may affect
the desired level of technological assistance. The second reason is that the accuracy

of intelligent assistance may not be as high as it should be depending on the
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repetitiveness of tasks and how spontaneous the occupant’s persona is, which may
be best solved with adjustability through enabling communication between humans
and the automated systems. Pritchett and Feary (2011) asserted that team play
between people and automation systems is well-grounded, where both are expected
to contribute their strengths and work in harmony to ensure the effective operation
of building systems. For this teamwork, the authors emphasized the significance of
several features including communication, cooperation, giving of suggestions or
feedbacks, consensus formation and reassurance. In addition, Rocker et al. (2005)
showed that occupants would favor the automation system that is easy to manage

and configurable to adjust personal preferences and control settings.

Although manual control has been shown to be energy inefficient and the automation
is a need in the built environment, the level of user satisfaction dramatically
decreases when the individual control is unavailable (Tabadkani et al., 2020).
Perceived control, which is characterized by occupant’s awareness of available
controls and the effectiveness of the feedback given by exercising control over the
environment, is attributed as an essential factor for technology acceptance models
and user satisfaction measures (Venkatesh et al., 2003). Similarly, it has also
appeared to be one of the significant concepts in automated building control studies
(Lolli et al., 2020). Researches have shown that both occupant comfort (Karjalainen,
2009) and energy consumption in buildings (Yun, 2018) are affected by the level of
perceived control. Occupants with higher levels of perceived control were reported
to be more tolerant to the deviations from the comfortable indoor environmental
conditions (Luo et al., 2016). On the contrary, when personal control is unavailable,
or the complexity of the control interface leads to an inconvenience for usage,
occupants become more likely to report discomfort or switch off the automated
operation (Karjalainen & Kaoistinen, 2007; Meerbeek et al., 2014). Hellwig (2015)
provided a comprehensive review, where the concept of perceived control and its

implications for the buildings have been analyzed in detail.
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Figure 2.2. Conceptual model of the mixed-initiative building control framework

Considering the current evidence on the link between the automation and the
occupant’s comfort, perceived control, cognitive load, and energy efficiency, there
is a need to establish a coordination and communication framework, which allows
for mixed-initiative interaction and encourages control negotiation between
buildings automation systems and occupants. The critical point here is to provide the
occupants with a sense of continuous control while allocating operational
responsibility to the system where applicable. Such a scenario could enact concurrent
assessment of occupant comfort and energy efficiency while making automated
applications more favorable for building inhabitants. Naturally, designing every
detail of such a framework requires the contribution of various disciplines with
specialized proficiencies. Accordingly, this study approaches the need for
conceptualizing a novel building control framework from a general perspective and
defines the borderlines of the mixed-initiative system. As demonstrated in Figure
2.2, this conceptual framework can be segregated and studied under two main

sections, namely the machine side and the human side.
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221 The Machine Side

The implementation of the proposed conceptual framework is predicated on the
existence of a Building Management System (BMS), appropriate sensor network,
and compatible building components. One of the core elements to be integrated into
BMS is agent-based control. Human comfort in buildings is tied to three factors that
are thermal comfort, visual comfort, and indoor air quality. Satisfying comfort needs
requires multiple building systems and components to be operated simultaneously
with optimal performance. In order to enhance energy efficiency, possible conflicts
that could arise between building subsystems or between the occupant’s needs and
system operations should be avoided. One of the most advanced efforts towards
ensuring the coordination in the operation of building systems has been agent-based
control systems (Dounis & Caraiscos, 2009). Multi-agent based control, especially,
is widely employed for sophisticated combined control of building systems in
intelligent environments for achieving optimum performance under dynamic
conditions (Qiao et al., 2007). The design of multi-agent based systems varies, and
adapted logic and agent attribution differ based on the approach (J. Lee, 2010; R.
Yang & Wang, 2013). Intelligent agents can represent physical devices, particular
building zones, specific user profiles, or concepts such as conflict resolution or
energy management, and they can communicate with each other for sharing
information, making requests, or checking objectives. The defined task assignments
to the agents result in a hierarchical and layered organization, where some agents
execute simple tasks like controlling illuminance levels in a room, while others have
more complex functionalities like generating decisions for the best possible control
action based on the occupant feedback (Hurtado et al., 2014). Treado and Delgoshaei
(2010) listed the possible benefits of utilizing agent-based building control as
enabling subsystems to organize themselves for basic operation, optimizing building
performance through an adaptive strategy based on dynamic human factors and
environmental data, spontaneous fault detection and rectification, facilitating

interactions with utility grids and city networks, allowing system upgradability and
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promoting the integration of innovative building systems. As it has been asserted as
a viable solution for handling the complex problems of dynamic environments,

agent-based control should be an integral part of the mixed-initiative framework.

The machine side of the proposed conceptual framework employs adaptive
algorithms to assist building management system in analyzing the sensor data and
adjusting operational setpoints. Ideally, an intelligent environment should have
persistent awareness of human presence, activities, and personal comfort
requirements and adjust indoor environment setpoints based on occupant
preferences. In the last two decades, studies have focused on developing adaptive
algorithms as predictive controls through recording and analyzing human actions in
buildings (Haldi & Robinson, 2008; Mirakhorli & Dong, 2016). Predictive building
control models usually utilize various machine learning algorithms, artificial neural
networks, or fuzzy logic to learn patterns in occupant actions with regard to
contextual parameters. Through continuously retraining themselves with new data to
update control procedures, predictive control algorithms are to be incorporated in the
mixed-initiative framework, for not only automating preference adjustments for
adaptive system operation (Gunay et al., 2014), but also allowing flexible and
efficient management of energy usage (Kathirgamanathan et al., 2021). Adaptive
control algorithms assist building management through making use of the system
inputs, state changes in building components, and collected environmental and
human-related data. Evidently, configuring a compatible utilization of both agent-
based control and adaptive control algorithms, when combined with the central logic
defining the building management flow, is promising to assure a competent

composition in the machine side of the defined framework.

222 The Human Side

The main component of the human-side in the framework is the interface, through
which all building systems might be controlled. The interface element is ascribed as

a meta-control intermediary, which could be either mobile or well-integrated with
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the building design, providing bidirectional feedback and communication between
the occupants and the building systems. In conventional buildings, primitive building
components that are almost entirely transparent with their simple logic and physical
interfaces (i.e., light switches, operable windows) provided occupants sophisticated
opportunities to regulate indoor environmental conditions, including temperature,
lighting, and air quality. Traditional touch-input procedures will progressively be
replaced with a common building interface that provides a cooperation ground
between occupants and buildings and regulates interaction dynamics (Topak &
Pekericli, 2021).

The transition in the control modalities and the importance of building interfaces are
currently very hot research topics and were extensively reviewed by Day et al. (2020)
and Tabadkani et al. (2020). Considering the fact that the sole intermediary for bi-
directional communication and coordination between the automation and the human
is the interface, which stands at the intersection of the sides (Figure 2.2), it is of the
utmost importance to study the questions like “how do building interfaces, their
context, and their underlying control logic affect behavior and perceived control?”
and “what interface features and characteristics are most effective at delivering a
comfortable environment, outstanding perceived control, and reductions in energy
consumption?”, which are pursued by IEA Annex 79 research group and outlined by
O’Brien et al. (2020). The most prevalent technologies to be used as a
communication tool between occupants and intelligent environments were listed by
Marson and McAllister (2021) as mobile apps, screens, dashboards, biometrics,
implantables, gait identification, and thought control. However, it is not easy to list
possible intermediary tools explicitly due to the pace that technological
developments have reached in recent years. As appropriately designed and
understandable control interfaces in buildings are claimed to be an effective way of
matching building operations to actual occupant needs (Cohen et al., 1999), a
common, user-friendly interface model enabling building occupants to have full
control of their environments should be well-established within the demonstrated

framework.
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2.2.3 System Operation

In order to actualize the control flow that is suggested in the framework, building
management system should be supplied with continuous spatial and temporal data
from compatible tools and systems, allowing spontaneous connection, coordination,
actuation, and data exchange. As the internet revolution has evolved into
interconnecting objects surrounding everyday life to furnish intelligent built
environments, 10T can be considered as a primary enabler for the proposed
conceptual framework. In his book, Mukhopadhyay (2014) explained that the
connectivity 10T provides through improving access to information can increase
reliability, sustainability, and efficiency in any system. As pointed out by Moser,
Harder, & Koo (2014), one of the paramount issues in intelligent buildings is the
lack of interoperability between different sensors, devices, and building components.
Internet-enabled communication can be considered as an effective solution to this
interoperability problem. In the case where every building component, device or
sensor, regardless of their vendors, is capable of communicating through the Internet,
a smooth interaction and data exchange between systems and an integrated and
coherent operational process could become possible. Moreover, 10T has been
attributed to have human-related data collection functionality, including occupancy
detection (Jeon et al. 2018), occupant monitoring (Akkaya et al. 2015), and activity
recognition (Zou, Zhou, Yang, and Spanos 2018). Lilis et al. (2017) also asserted
that the abundance of devices brought by the 10T extends the benefits of BAS with
energy harvesting capabilities without the need for intervention, improved habit

tracking, low-cost sensors for monitoring, and occupant-centric decision-making.

The proposed framework can be implemented once the necessary hardware and
software platforms are available. Building systems’ states, indoor and outdoor
environmental conditions, and occupants can be monitored by installing the sensor
network, the collected data of which is to be deployed in the central server. Agent-
based control models and adaptive algorithms can be implemented using the

platform and protocols utilized by building management system, to process both the
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sensor data and the event logs and control building systems and services. In order to
hand over the overall control of the building to the occupants, a meta-interface should
be provided that is connected to building management system, through which
occupant requests, system suggestions, and bidirectional feedbacks are
communicated. There exist continuous feedback-control loops between the interface,
building management system, and the building services. The building systems and
services (such as HVAC, lighting, or windows) could be controlled either directly
by the occupant, ignoring system suggestions, or through consensus reached by the

system and the occupant, depending on the personal inclination.
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Figure 2.3. Workflow model of the proposed framework

An explanatory possible scenario model is presented in Figure 2.3, in order to clarify
the intended workflow of the system. Accordingly, when an occupant desires a
cooler indoor environment on a windy summer day and delivers this request to the
building through the interface, the most convenient action to satisfy this request can

be determined by the building using the collected data from the environment and the

25



building systems. Instead of turning on the mechanical cooling, the building may
decide or suggest opening the windows for cross-ventilation, which is a more energy-
efficient solution satisfying the same requirement. In other words, the system may
respond to the needs of its occupants by invoking the most effective and efficient
action. If the occupant does not comply with the system’s decision and desires to
take a different action, the system can give related feedbacks through the interface
and confirm the user’s preferences regardless. Every request-analysis-action event
can be saved as an event log in the system and used to train the control algorithms
and the central management logic. Such a scenario could be a convenient way to
simultaneously enhance personal comfort, perceived control, and energy efficiency,
as it grants comprehensive controllability on the human-side and data-driven

automation adjustability on the machine side.

2.3 Building Control in Shared Environments

It is foreseen that the abovementioned system operation could have a smooth flow
in cases where the space is occupied by a single person, as it allows indoor
environmental parameters to be controlled based on individual-specific
characteristics and feedbacks. However, considering the potential variations in
people’s behaviors, preferences and tolerance levels, environments shared by
multiple building occupants present a unique challenge for personalized operation in
building control (Figure 2.4). Interaction patterns and feedback to BMS would differ
based on each occupant’s personal traits. In scenarios where occupants have
conflicting choices, a control dispute may arise that could be solved with an

optimization strategy.

In order to assess and study the control dispute in multi-occupancy environments
under a manageable complexity and decrease the number of independent variables,
the research scope was required to be narrowed down to a single domain.
Considering thermal comfort’s massive impact on overall human well-being and the

amount of energy used by HVAC to satisfy comfort needs of building occupants, the
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research scope was determined as thermal domain. Although there are some studies
proposing strategies for multi-occupancy comfort optimization in the literature (S.
Lee et al., 2019; Nagarathinam et al., 2021), optimization of occupant comfort
through utilizing personal comfort preferences in shared environments has still room

for further investigation.
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Figure 2.4. Flowchart of the proposed building control framework

The scope of the research in terms of building type is identified as office buildings,
depending on the fact that commercial buildings is the leading sector in energy
demand growth with a predicted increase rate of 1.6% per year from 2012 to 2040
(EIA, 2016). They are dynamic environments where the number and type of
occupants are unpredictable, and require real-time feedback-response control
systems for efficient system operations. Moreover, the motivation of occupants to
regulate their behaviors towards enhancing energy efficiency is different in
commercial buildings from that of residential ones. Since occupants are not
responsible for building control and its costs in commercial buildings, they may not

be aware of the consequences of their energy-related interactions (Zanjani, 2017).

2.3.1 Occupant-centric Approach

In modern buildings, indoor climate is generally controlled based on pre-defined
setpoints and schedules that are determined in the design phase with limited
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knowledge about occupancy and user profiles. Regardless of the mismatch between
the initial presumptions and the actual inputs during building operation, a defined set
of control parameters are rarely updated or modified. This simplistic and
conservative process was built upon the assumption that controlling buildings based
on custom occupancy, average occupant characteristics, and so-called ideal
conditions are adequate for improving energy efficiency and human comfort.
However, certain suboptimal issues were demonstrated, including maximum
occupancy assumption in spaces, continuous operation in unoccupied zones, and
over-conditioning despite creating discomfort (Brager et al., 2015; Erickson et al.,
2009). In recent years, occupant-centric building control has emerged as a novel
approach, taking human dynamics such as presence, location, preferences, and
behaviors as inputs to enhance overall occupant comfort and optimum system
operation (Naylor et al., 2018; O'Brien et al., 2020). This approach has shifted the
paradigm in indoor climate control from a one-size-fits-all perspective towards

human-oriented merits.

Although occupant-centric building control has been studied since the early 2000s
(Dounis & Caraiscos, 2009; Guillemin & Morel, 2001), there has been significant
growth in the number of researches over the past decade along with technological
developments (Park, Ouf, et al., 2019; Wagner et al., 2018). As there is not a
standardized approach about the level of occupant-related data integration to control
loops (Naghiyev et al., 2014), various scopes have been defined by the researchers
within the extent of occupant-centric building control depending on the utilized data
characteristics. For example, Park et al. (2019) referred to systems that only use
presence/absence states of occupants as occupancy-based controls, whereas defined
the ones that employ data on occupant preferences as occupant behavior-based
controls. Jung and Jazizadeh (2019b) used the term 'human-in-the-loop operation' to
account for dynamics of occupants, including presence, count, position, and thermal
comfort. To this end, a broader overview was presented by Naylor et al. (2018),
categorizing occupant-centric control research into four based on implementation

approaches, which are reactive response to occupancy in real-time, control to
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individual occupant preference, control catered to individual behaviors/activity types
and control based on the prediction of future occupancy/behaviors. As a common
practice in occupant-centric control studies, occupant-related data is coupled with
the data representing indoor and outdoor environmental conditions (such as
temperature, humidity, air quality, illuminance, etc.) to ensure both human comfort
and system efficiency (Jung & Jazizadeh, 2019a; Park, Dougherty, et al., 2019; Peng
et al., 2019). Xie et al. (2020) reported that occupant-centric control research offers
improvements on both comfort and energy efficiency with a median of 29% and

22%, respectively.

The scope of occupant-centric control studies oftentimes extends to occupant-related
building performance metrics, including indoor air quality, thermal comfort, visual
comfort, and acoustics comfort (Antoniadou & Papadopoulos, 2017; Azar et al.,
2020). Kong et al. (2022) tested an occupancy-based control approach with side-by-
side experiments to quantify perceived air quality and thermal comfort in
commercial buildings. Park, Dougherty, et al. (2019) developed a reinforcement
learning-based controller for lighting, which learns from and adapts to occupant
behaviors and indoor conditions. Peng et al. (2019) proposed an adaptive operational
strategy for climate control indoors, which considers dynamic aspects of occupant
behaviors and environmental conditions. Acoustic comfort is usually assessed
alongside other elements of personal comfort, providing a base for multi-sensory
consideration in buildings (Bourikas et al., 2021; W. Yang & Moon, 2019).

Among other occupant-related comfort aspects, thermal comfort attracted the
attention of researchers the most due to its massive impact on overall human
satisfaction and the account of HVAC systems on building energy use. Frontczak &
Wargocki (2011) conducted a literature survey about the effects of indoor
environmental quality (IEQ) on overall human comfort and reported that thermal
comfort was the top ranked factor in most of the studies. Similarly, Leccese et al.
(2021) revealed that thermal comfort was weighted as the most critical IEQ factor in
more than half of the related studies published between 2002 to 2018. On the other
hand, according to the Department of Energy (DOE, 2011), HVAC systems consume
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75% of electricity and 40% of total energy in buildings in the United States.
However, despite the high levels of energy used by HVAC systems to provide
comfort in buildings, the lack of thermal comfort is still one of the most common
occupant complaints (ASHRAE, 2017). According to the study by Karmann et al.
(2018) analyzing thermal comfort votes from 52980 occupants in 351 office
buildings, only 2% of buildings meet the targeted satisfied occupant rate, which was
determined as 80% by ASHRAE (2017). They reported that 43% of occupants were
thermally dissatisfied with their working environments, which might be correlated
with the inadequate personalized conditioning or control provided by prevailing
HVAC systems.

2.3.2 Proposed Structure for Thermal Domain

Ideally, an intelligent building control framework should account for human
presence, activities, and personal comfort requirements to adjust indoor environment
conditions in all domains based on occupant preferences. Once the physical
requirements such as a central building management system, appropriate sensor
network, and compatible building components are properly installed, the operational
logic of the building subsystems should be established in coordination with each
other. In the last two decades, multi-agent-based control have become a prominent
strategy for coordinating tasks in complex environments to ensure conflict-free
operation of different subsystems (Duan & Lin, 2008; Micolier et al., 2019). This
control strategy basically allocates individual tasks to autonomous entities, which
are usually called as agents, and establishes a communication ground for agents’
interaction. Each agent has its internal mechanism with specific inputs, objectives,
and decision-making triggers for taking necessary actions to complete defined tasks
(Dorri et al., 2018). In multi-occupancy environments, the number of personal agents
could be determined considering the room capacity to reflect the preferences of all

individuals in building control.
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In order to ground an optimization strategy for the operation of HVAC systems, we
isolated the interaction between the HVAC agent and personal agents from the bigger
multi-agent-based control scheme. In doing so, we outlined the data flow in agent
interactions within the thermal domain to illustrate how building control can be
framed in an occupant-centric manner (Figure 2.5). Accordingly, occupant-centric
control framework requires data from both occupants and the environment. Utilizing
Internet of Things (IoT) sensor network is a plausible strategy to collect real time
data about indoor environmental conditions including temperature, air velocity,
relative humidity, etc. and occupant characteristics such as behaviors, preferences
and sensations. Together with information retrieval about personal factors such as
age, gender, heart rate etc., collecting and leveraging such data in the building
management system would allow the development of personal comfort models that
would shape the base logic of personal agents. If continuous data flow with high
granularity is enabled, developed models could be dynamically updated to account
for the changes in occupant preferences in the long run. These models can be stored
on the central database and retrained regularly with the dedicated machine learning

algorithms.

Similarly, HVAC agent could be formed based on the generated data and iterative
outcomes of parameter combinations. As demonstrated later in Chapter 4, thermal
dynamics of a space can be assessed using CFD simulations, by setting
environmental conditions, contextual factors and HVAC system components as
boundary conditions. Once all representative variations are modeled and simulated,
thermal distribution patterns data could be stored in the central database. The base
logic of HVAC agent could then be fed with thermal distribution input to make
optimum control decisions based on instantaneous requirements of the space
prescribed by real-time data. It is also possible to substitute thermal distribution
patterns data generated using CFD simulations with a comprehensive sensor
infrastructure in place. In such a scenario, the granularity and placement of sensors
should be properly arranged to account for spatial and temporal variations. Although
a sensor-based system development has the potential to be more accurate and robust
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than a simulation-based approach, installation and maintenance of the infrastructure
may be quite costly and complex to deal with. Regardless of the approach, machine
learning algorithms could be employed for real-time processing and continuous
learning based on the type and the quality of the data.
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Figure 2.5. Data flow and control framework for thermal domain

Conventional design approaches aim to achieve relatively uniform thermal
conditions at an average setpoint temperature throughout a space. This approach

naturally implies that the thermal environment will likely be suboptimal for many of
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the building occupants. Individuals who are thermally uncomfortable would interact
with building controls to adapt their environments to retrieve their comfortable
states. However, this may disrupt other occupants, and resultantly, lead to an iterative
control problem in shared space conditioning. Considering these, we hypothesized
that collective comfort in multi-occupancy environments could be provided by
explicitly influencing and leveraging the development of non-uniform thermal
conditions, together with accounting for the differences in personal comfort
preferences of individuals. The nonuniformity of both personal comfort levels and
climatic conditions indoors can be interpreted as an optimization problem, and could
be solved through setting up an intelligent system scheme. Accordingly, once the
control structure shown in Figure 2.5 is well-established and real-time dataflow from
both the indoor environment and the occupants are ensured, a simplified workflow
(Figure 2.6) could be used to assess the potentials of the proposed framework for

improving collective comfort in shared indoor spaces.
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The demonstrated workflow model in Figure 2.6 proposes that building occupants
can be optimally assigned to micro-locations (i.e., workstation) at the start of each
day, based on their personal comfort profiles stored in the central building system.
Accordingly, once an occupant arrives to the room, BMS suggests an optimum
location by processing multiple variables including individual’s profile, occupancy
patterns for the day and micro-thermal conditions. If the occupant accepts the seat
assignment, conditioning system can use pre-calculated optimum operational
settings. If the occupant decides not to comply with the suggestion, then the system
can recalculate the optimum settings; this time by including the position and personal
comfort profile of that occupant within the inputs. At this decision-making stage, the
‘optimum operation’ can be defined by setting the system priorities about energy use
and occupant comfort. Since continuous relocation of occupants is neither practical,
nor logical in real-life conditions, suggested flow assumes that occupants would not
be relocated after they occupy a workstation for the day. As occupants have the
initiative for complying with the system suggestions, BMS can adjust its operation
to the optimum settings based on the given conditions and inputs, rather than
enforcing the ideal scenario maximizing collective comfort or energy efficiency. It
is worth mentioning that, the overall performance of the strategy would potentially
improve over time, as the database on comfort preferences of the individuals expands
and occupancy patterns are recognized by the system. For the initial employment,

personal comfort models can be pre-trained by conducting comfort surveys.

2.3.3 Case Selection

In order to assess the viability of the proposed structure for thermal domain, a case
study was described for carrying out a proof-of-concept analysis. An office space in
the College of Engineering of Penn State University was selected, which houses
workstations for six graduate students (as illustrated in Figure 2.7). The room is on
the second floor of a three-story building located at University Park Campus in State

College, the United States, the climatic zone of which can be described as cool-
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humid. It is surrounded by indoor spaces on three sides and it has five large windows

on its wall facing outdoors.

The office space is approximately ~53 m2. It has a conventional HVAC settling,
where the fresh air is supplied through an inlet on the ceiling and return air is
exhausted through an outlet on the west wall. The space use is not regular and
occupancy pattern throughout the weekdays changes each academic term depending
on students’ weekly programs. Depending on the given space characteristics, a
comprehensive analysis requires accounting for the personal preferences of six
different individuals and examining the thermal distribution dynamics under varying

occupancy and conditioning scenarios.

Figure 2.7. Three-dimensional model of the selected office space
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Accordingly, Chapter 3, Chapter 4 and Chapter 5 were organized to (1) presenting
dedicated personal comfort profiles, (2) composing the thermal distribution patterns
dataset and (3) assessing the potentials for improving collective comfort through a
data-driven analysis, respectively. Further details on the selected case are given in

Chapter 4, where the geometric modeling process for simulations are provided.

2.4 Discussion

Technology has been continuously transforming the built environments, with
changing magnitudes throughout the last century. Lately, this transformation has
been accelerated and reached a considerable pace, with the developments in artificial
intelligence, the Internet of Things concept, sensing, actuation, and information
systems. In the built environment, building automation can be claimed as one of the
primary concepts in terms of technology integration, which has been introduced to
provide efficient management by centralizing building control and minimizing
human intervention. However, researches have indicated a disharmony between the
operating principles of prevalent building automation systems and people’s
instinctive desires, which have slowed down the employment of automation in
buildings. In order to demonstrate a refined solution scenario, this research outlined
a composition for the collaborative building control system and conceptualized the

borderlines of a mixed-initiative framework.

According to the conceptual framework, the control of building systems is proposed
to be managed through a human-automation collaboration, where occupant needs
and preferences are prioritized. The most efficient and effective control action is
invoked by the automation through analysis of occupant requests and feedbacks, as
well as the collected environmental and human-related data. As it is an initial
elaboration for speculating the need for a drastic shift in system operation, the study
might help researchers comprehend the integral components of such a mixed-
initiative control in buildings and grasp the prospective research directions.

Considering the comprehensiveness of the subject, the detailed configuration of
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presented components can be achieved through compartmentalized analysis of the
domains in buildings. To this end, thermal domain was identified for further
investigation in the following sections of this research. The collaboration procedure
was simplified for enabling a computationally applicable analysis in a multi-
occupancy indoor environment, which is shared by occupants with possibly varying
personal traits. It is anticipated that assessing the technological viability of the
proposed collaborative control approach can be predicated on the demonstrated
achievements in the specified domains, the results of which could help to compound

the overall structure of the integrated framework.
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CHAPTER 3

PERSONAL COMFORT MODELING

This chapter delves into the concept of thermal comfort in buildings and highlights
the transition towards personalized models by reviewing the widely accepted
approaches in the literature. It presents six personal thermal comfort profiles, which
were used to represent six different individual occupants. These comfort profiles
were designated to be used in collective comfort probability analysis in Chapter 5,
to account for the individual differences in comfort needs and preferences of
occupants. The presented unified probabilistic thermal comfort profiles were
developed by processing available real-world datasets with Bayesian network

modeling approach.

In this section, firstly, the basics of the PMV and adaptive models were explained
and the emergence of the personal comfort modeling concept was presented. Then,
the employed dataset was introduced and the probabilistic modeling process was
illustrated. Lastly, generated personal comfort profiles were demonstrated with a
comparison on their characteristics. The chapter was concluded with a discussion on
the importance of personalized models for improving occupant comfort in the built
environment and potentials revealed by this new approach in the field. The author
would like to acknowledge that the methodology used in this chapter was built upon
the study of Jung & Jazizadeh (2019a).

3.1 Literature Review

3.1.1 Thermal Comfort in Buildings

Thermal comfort is defined by ASHRAE (2017) as "that condition of mind which

expresses satisfaction with the thermal environment”. An individual who wishes to
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feel neither warmer nor cooler when asked about their thermal state can be deemed
as thermally comfortable. Contrary to its simple definition, providing thermal
comfort in buildings is not a trivial task, as it depends on many environmental and
personal factors. Since what is accounted as comfortable changes from one place,
time, and person to another (Chappells & Shove, 2005), developing knowledge on
thermal comfort in buildings has been a critical research subject over the years (De
Dear et al., 2013).

The overarching aims of research efforts in thermal comfort field listed by Taleghani
et al. (2013) in their review include improving occupant satisfaction, productivity
and work performance in indoor environments, achieving energy savings, reducing
the negative impacts of buildings on the environment, and improving standards.
Wang et al. (2019) demonstrated how thermal comfort can affect occupants’
productivity by influencing their mental workload. Lipczynska et al. (2018) explored
the link between thermal comfort and self-reported productivity and indicated a
direct correlation. Likewise, a field survey in an office building conducted by Tanabe
et al. (2015) confirmed that improvements in work performance is closely related to
individual thermal satisfaction. On the other hand, maintaining comfortable
conditions for building occupants have great implications for energy consumption in
buildings due to the proliferation of HVAC systems in most countries (Yang et al.,
2014). Although there have been many efforts to develop advanced intelligent
building control systems that improve energy efficiency while maintaining thermally
comfortable conditions, a completely satisfactory framework is yet to be achieved
(Merabet et al., 2021).

In modern buildings, the prevailing approach towards ensuring thermal comfort has
been the development and optimization of proper mechanical systems. With the
purpose of setting system requirements and control parameters for providing
collectively acceptable conditions, the HVAC industry has defined comfort in terms
of physical variables, i.e., temperature, airspeed, and humidity (Nicol & Roaf, 2017).
Likewise, researchers have concentrated on developing empirical models that link

such physical variables with the comfort states of building users to describe the
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boundaries of comfort for average users. Among other thermal indices, two major
approaches, the PMV and adaptive models, have been dominant in the current
practice and effective in international standards. In recent years, however, comfort
assessment paradigm has shifted towards being more granular and individualistic,
and resultantly, a new approach called personal comfort modeling has become a

point of interest for building researchers (Figure 3.1).

Conventional, aggregate models

" =
Predicted Mean Vote (PMV)
S J

Thermal Comfort

Adaptive Comfort Models

in Buildings

LPersonalized Comfort Models ] '

Figure 3.1. Prevalent thermal comfort approaches in buildings

3.1.2 The Predicted Mean Vote (PMV) and Adaptive Models

The PMV, which was established through a series of experiments in climate
chambers by Fanger (1970), is the most widely accepted model, and it served as the
basis of ASHRAE 55 (2017) and ISO 7730 (2005) standards. The PMV explains
human thermal sensation as an outcome of the heat transfer between the human body
and the ambient environment and proposes a quantitative assessment by combining
environmental factors (air temperature, airspeed, mean radiant temperature,
humidity) and personal factors (metabolic rate, clothing insulation). Based on a
steady-state physiological model, it simply predicts the mean thermal sensation votes
of a large group of building users for any given environmental and personal factors,

on a scale ranging from -3 to +3, corresponding to the sensations of cold, cool,
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slightly cool, neutral, slightly warm, warm and hot (Van Hoof, 2008). Adaptive
models, on the other hand, incorporate the assumption that building users would
consciously react in ways to adapt their environments or themselves to changing
conditions to retrieve their comfortable states. Developed through inferring a linear
relationship between comfortable indoor temperature and prevalent outdoor
temperature by analyzing field study data from naturally-ventilated buildings in
different climate zones, adaptive model by de Dear & Brager (1998) was included in
ASHRAE 55 (2017) standard and adaptive model by Nicol and Humphreys (2002)
was placed in EN 15251 (2007) standard. Although the adaptive approach differs
from the PMV in its underlying philosophy, both use simple linear scales to assess
thermal comfort (Nicol & Roaf, 2017).

Although the PMV and adaptive models were adopted successfully in the
aforementioned international standards, both models have some inherent limitations.
Kim et al. (2018) listed the main drawbacks of these approaches as the burdensome
acquirement of input variables and simplified assumptions, their static nature that
lacks capabilities of calibration and relearning from new field data at particular
settings, and their inability to be modified with new input factors (such as sex, age,
body mass index, etc.) beyond models' pre-defined variables. Above all, both are
aggregate models whose comfort predictions are applicable to a group of people or
a large population. They fail to predict individuals' thermal comfort in shared
environments, where occupants with varying comfort profiles share the same
environment (Van Hoof, 2008). A recent study showed that a simple linear model is
about 40% more accurate than the PMV at predicting individual comfort (Guenther
& Sawodny, 2019). Similarly, the prediction accuracy of the adaptive model for
thermal preferences was reported as 50%, which is almost the same as random
guessing (Kim, Zhou, et al., 2018). Moreover, André et al. (2020) noted that neither
of these two approaches is suitable for evaluating the performance of personal

comfort systems since they are designed for stable, uniform environments.
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Figure 3.2. Aggregated models versus personal comfort models

In response to the deficiencies of the conventional approaches in thermal comfort
management in buildings, a new paradigm named personal comfort modeling has
been proposed (Kim, Schiavon, et al., 2018). Benefiting from the developments in
the data-driven technologies, personal comfort models eliminate the over-simplified
assumptions in the PMV and adaptive models and suggest promising features for
highly granular, individualistic, and context-relevant strategies in building control.
Aggregated group models differs from personal models in the main comfort
assessment approach (Figure 3.2), and Xie et al. (2020) emphasized that shifting
from the former to the latter can help the practice of occupant-centric control, despite

the recency of the latter.

3.1.3 Personal Comfort Models

The advancements in the Internet of Things (IoT) concept have enabled easy and
low-cost collection and generation of personal data, which formed a foundation for

more context-based, tailor-made approaches. Personal comfort modeling is a data-

43



driven strategy that predicts an individual's thermal comfort based on direct feedback
(e.g., thermal sensation, preference, pleasure) and specific data (e.g., personal,
contextual) from a single person (Kim, Schiavon, et al., 2018). Using the data
collected in daily life environments, it utilizes machine learning algorithms to learn
individuals' comfort responses, reveals variations between comfort needs of different
occupants, and allows to achieve higher satisfaction rates and energy efficiency
(André et al., 2020). Contrary to the conventional approaches, personal comfort
models are flexible, enabling the application of different modeling methods and
having the capacity to adapt new input variables and additional data. According to
the review by Martins et al. (2022), the most frequently used input variables in these
models include environmental factors such as indoor temperature, airspeed, relative
humidity, outdoor temperature, and personal features such as skin temperature, heart
rate, activity level, clothing level, and metabolic rate. It has also been shown that
thermal comfort prediction performance escalates when environmental and personal
factors are combined as inputs in the model development (Aryal & Becerik-Gerber,
2019; Jung et al., 2019).

Developing personal comfort models with high predictive performance has been a
prominent objective for many researchers in the last two decades. The main
prediction logic of developed models is predicated on correlating environmental and
personal sensor data with the occupant feedbacks collected through various mediums
(Daum et al., 2011; Ghahramani et al., 2015; Kim, Zhou, et al., 2018; W. Liu et al.,
2007). Kim, Schiavon, et al. (2018) explained the process of developing personal
comfort models in their pivotal work as data collection, data preparation, model
selection, model evaluation, and continuous learning, respectively, as shown in
Figure 3.3. Accordingly, once the model is established, it could be integrated into
building control loops with the help of connected sensors, controllers, a local
network, and a central server. However, both Kim, Schiavon, et al. (2018) and
Martins et al. (2022) highlighted that there is still no consensus on a unified and

systematic framework for personal comfort modeling in the field.
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Figure 3.3. Development of personal comfort models
(adapted from Kim, Schiavon, et al.(2018))

In recent years, many researchers have developed personal comfort modelling
strategies using various methods. Zhao et al. (2014) utilized a physical human-
machine interface to model occupants’ thermal complaints. Jazizadeh et al. (2014a)
employed a participatory sensing application for smartphones to learn occupants’
comfort preferences. Kim et al (2018) used occupants’ heating and cooling behaviors
as comfort feedback to establish personalized models with high accuracy. Feng et al.
(2023) leveraged wearable sensors and smartphone applications to collect
individualized comfort measurements from both occupants and their micro-
environments. Regardless of the approach, the common practice at this field is to
fuse occupants’ comfort feedback and indoor environmental data, and apply machine

learning algorithms to establish personalized comfort models.

One of the early studies for personal comfort modeling was published by Liu et al.
(2007). They trained a neural network model with occupant responses at varying air
temperature, humidity and air velocity values to predict individuals’ thermal
sensations under different thermal conditions and demonstrated a high prediction
performance. From there on, various models were developed employing different
machine learning algorithms. Some of the commonly employed machine learning



algorithms in personal comfort models are random forest (Chaudhuri et al., 2018),
support vector machine (Jiang & Yao, 2016), fuzzy classification (Jazizadeh et al.,
2014a), neural networks (W. Liu et al., 2007), Gaussian process (Guenther &
Sawodny, 2019), Bayesian network (Ghahramani et al., 2015) and logistic regression
(Daum et al., 2011). In a considerable number of studies, multiple machine learning
algorithms were comparatively tested to achieve the best prediction performance and
avoid algorithm-biased deviations (Aryal & Becerik-Gerber, 2019; Kim, Zhou, et
al., 2018; S. Liu et al., 2019). Among others, random forest algorithm has been
demonstrated to have a higher preference rate (Martins et al., 2022) and better
accuracy (Kim, Zhou, et al., 2018; S. Liu et al., 2019).

3.2 Material and Method

In order to capture the diversity in thermal preferences of six occupants within the
selected case (described in section 2.3.3), six different personal comfort profiles were
developed by utilizing available datasets in the literature. A probabilistic modeling
approach was adopted and Bayesian network was employed as the machine learning
algorithm to process the data. It is worth mentioning that since the main aim of
generating personal comfort profiles in this section is to account for the differences
in individuals’ comfort preferences, some steps of developing personal comfort
models such as model evaluation and continuous learning process were not

considered within the research scope.

3.2.1 Dataset

In order to accurately evaluate the potential of occupants' having different thermal
comfort preferences in multi-occupancy scenarios, considering actual human
subjects and using realistic data is of utmost importance. In ideal conditions, the
proposed framework in this research enhances real-time monitoring with continuous

data collection for generating personal comfort models and flexibility augmentation
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by integrating numerical simulations for occupant-centric building control.
However, since the outlined case methodology was designated to reveal the possible
strategies towards these goals with an offline procedure, using an existing dataset for
developing personal comfort models was deemed as a plausible option. To this end,
we used several probabilistic personal thermal comfort profiles that represent the
individual differences in thermal comfort perceptions. These profiles were generated
using a probabilistic approach and data presented in previous studies. The approach
used to generate the profiles is as follows. A personal comfort feedback dataset
compiled through field measurements carried out for several months by Daum et al.
(2011) has been utilized. They adopted a multinomial logistic regression model to
separate three thermal perception vote types: uncomfortably cool, comfortable, and
uncomfortably warm. Leveraging the data obtained from comfort profiles reported
by Daum et al. (2011), together with actual thermal votes dataset extracted from
previous studies (Jazizadeh et al., 2014a; Pazhoohesh & Zhang, 2018), unique
personal comfort profiles have been developed to represent different occupants. In
this process, air temperature and thermal sensations were taken as input variables for

calculating the probability distribution of comfort.

3.2.2 Probabilistic Modeling

As an individual could have both comfort and discomfort votes under the same
thermal conditions in different occasions, a stochastic modeling approach were
adopted to reflect the uncertainty of occupant sensations. A Bayesian network
modeling process proposed by Ghahramani et al. (2015) was employed to create
unified probabilistic thermal comfort profiles. This method leverages the Bayes rules
and combines occupants’ votes reported for being uncomfortably cool, comfortable
and uncomfortably warm across different ranges of temperatures to calculate overall

comfort probability for a given temperature (Figure 3.4).
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Uncomfortably cool

Comfortable Overall Comfort

Figure 3.4. Graphical representation of the Bayesian network

In order to form the overall thermal comfort profiles, three probability distributions
were created, representing reported comfort states of individuals within the defined
spectrum (comfortable, uncomfortably cool and uncomfortably warm), using
Equation (1), Equation (2) and Equation (3). Normal distribution was used for the
probability distribution of comfortable votes to account for the variance in
probability distributions of comfort, and two half-normal distributions were used for
the probability distributions of uncomfortably cool and uncomfortably warm votes
overlapping with comfortable votes. The mean value for half-normal distribution of
uncomfortable cool votes denotes to minimum temperature that an occupant voted

as comfortable (min(t,)), while the mean value for half-normal distribution of

uncomfortable warm votes denotes to maximum temperature that an occupant voted

as comfortable ( max(t,)). Accordingly:

e Probability distribution of comfortable votes (P(c|t)):

P(c/t)=f(t:0,)=

(t —ﬂc)ZJ "

1
o2 p( 20°

, Where t_is any indoor temperature value that was voted as comfortable, .

and o represents the mean and standard deviation of 1, values, respectively.
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e Probability distribution of uncomfortably cool votes (P(ucit)):

uc

P/ = F(t, o)=Y exp[—(t“_mi?(t“))Z]Vtuczmin(tc) @)
O-uc\/; 20,

My

Oy = \/nizauc - max(tc ))2

uc

, Where t,_ is any indoor temperature value that were voted as uncomfortably
cool within the comfortable temperature range, o, represents standard

deviation of ¢, with respect to min(t,), and n, denotes to the number of ¢

e Probability distribution of uncomfortably warm votes (P(uw|t)):

uw

Puc/t)=f(t, o,)= Usz exp (— (ty ‘Zn(jz"(tc))z] vt >mint) Q)

Mgy,

Ouw = \/nizauw - max(tc ))2

taw

, Where t,, is any indoor temperature value that were voted as uncomfortably
warm within the comfortable temperature range, o, represents standard

deviation of t,, with respect to max(t,), and n_ denotes to the number of ¢, .

Using the probability distributions for three thermal vote types and conditional
probability rules, a joint probability distribution compiling comfort profile for each

occupant were generated using Equation (4).

P(c|t)

P(oc|t) = P(uc|t) + P(c[t) + P(uw|t)

(4)
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In Equation (4), P(oc|t) denotes to the probability of the overall comfort for a given

temperature, P(uc|t) is the probability distribution of uncomfortably cool votes,

P(c|t) refers to the probability distribution of comfortable votes and P(uw|t) indicates

the probability distribution of uncomfortably warm votes. Having added a

normalization step, each comfort profile employs a Gaussian distribution defined by

the average and the standard deviation of corresponding temperatures for the votes.
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The steps of creating thermal comfort profiles were established by Jung & Jazizadeh
(2019a), which are compiling the thermal votes dataset, creating probability
distributions for the defined comfort spectrum and Bayesian network modeling, as
shown in Figure 3.5. Each personalized profile created using this method
demonstrates how an occupant’s thermal satisfaction probability changes with

respect to the changes in room temperature.

3.3 Personal Comfort Profiles

As illustrated in Figure 3.6, six comfort profiles with different thermal behaviors
were generated to assign a unique profile for each occupant within the scope of
selected case. Each colored curve represents an occupant’s thermal comfort
probabilities across the given air temperature range. Occupants can be assumed to
be most comfortable at the temperature where the curve reach its top point.
Correspondingly, the temperature that each occupant is most comfortable at are
20.5°C, 24.2°C, 22.0°C, 24.4°C, 22.7°C, and 23.3°C, respectively.

100

80

60

40

Comfort Probability (%)
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Occupant-2 —— Occupant-4 —— Occupant-6

Figure 3.6. Personal comfort profiles for six occupants
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Although some of the occupants have similar comfort preferences like occupant #2
and occupant #4, or occupant #5 and occupant #6, their thermal comfort sensitivities
have appeared to be different. Occupant #2 had a better tolerance towards both lower
and higher temperatures in comparison to occupant #4, whereas occupant #6 had a
much better tolerance toward higher temperatures in contrast to occupant #5. This
study assumes that these personal comfort profiles, which are generated by the
models ideally developed over a certain period of time and have updateability
features with continuous learning (Kim et al., 2018), could reflect thermal comfort

dynamics of occupants.

Interpreting ASHRAE (2017)’s required comfortable occupant rate indices which is
80%, comfort probability of 80% could be claimed as the lower boundary for
defining each occupant’s comfortable thermal range. Based on this assumption,
thermal comfort sensitivities of occupants were illustrated in Figure 3.7.
Accordingly, temperature range that Occupant #1, occupant #4 and occupant #5 are
comfortable at is narrower when compared to those of the other three occupants. It
is also notable that Occupant #3 has the highest tolerance level, while being more
sensitive to lower temperatures. Temperature range meeting each occupant’s
comfort probability with a rate of at least 80% are 20.0°C - 22.2°C, 22.5°C - 25.8°C,
21.1°C-24.7°C, 23.3°C - 25.5°C, 21.8'C - 24.0°C and 22.0°C - 25.3°C, respectively.
This difference between occupants’ comfort sensitivities can be leveraged to provide
comfortable conditions for all individuals in shared environments by balancing gain
and loss trade-offs between comfort probabilities. The importance of comfort
sensitivity for improving collective comfort in buildings was asserted by (Jung &
Jazizadeh, 2019a), who demonstrated its statistically crucial role for determining

temperature setpoints in multi-occupancy indoor spaces.
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3.4 Discussion

As individual differences result in variations in the comfort needs of occupants,
shifting from centralized to personalized conditioning is a prime subject for
providing comfort and energy efficiency in indoor built environments (Wang et al.,
2018). Personal comfort models have been a significant step forward in terms of
leveraging more individual-specific data collection and utilization in comfort

management.

In practice, the thermal comfort profiles for each occupant would need to be
established ahead of time and dynamically fed into building control system. Lately,
various personal comfort modelling approaches have appeared using various tools
including physical human-machine interface (Zhao et al., 2014), smartphones
(Jazizadeh et al., 2014a), and wearables (Feng et al., 2023). With the advancing
technology, tools used for collecting feedback from the occupants may transform
into new forms. It is anticipated that thermal comfort profiles will be stored in
personal devices in near future like a comfort fingerprint, readily available to be fed

into the control system in any indoor space.

The time required for generating personal comfort profiles depend on the employed
tools, modeling types, and training methods. These include different sensing (e.g.,
participatory sensing using mobile devices, ambient conditions sensing, and
wearable sensing) and data analytics methods (e.g., probabilistic or supervised
machine learning techniques). The key issue is the quality and quantity of the
collected data. For example, Jazizadeh et al. (2014b) developed thermal comfort
profiles with a data collection process of two weeks using participatory and ambient
sensing. Similarly, Liu et al. (2019) defined the data collection duration as 14 days
and stated that model performance is improved with more data. Another study by
Feng et al. (2023) collected 300 data points in three to four weeks to generate thermal
comfort profiles. On the other hand, in their pivotal study, Daum et al. (2011)
demonstrated that an initial default profile can be generated with a few data points,

and it can then be converged towards the real thermal comfort profile in time. They
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indicated that 90 data points would be sufficient for such a convergence. As pointed
out, these data points could be obtained through wearable sensing, participatory
sensing, or even smart thermostats, such as Google Nest. Once sufficient data points
(composed of comfort feedback and environmental conditions data) are collected,
they are processed with statistical or machine learning algorithms to generate
personal comfort profiles. However, it is important to note that personal comfort
profile development is not a static process. These profiles are supposed to be updated
continuously with the incoming personal and environmental data, which will help

maintain their predictive performance over time.

Previous research have demonstrated that integrating personal comfort models into
HVAC control loops for a comfort-driven operation both improves human comfort
and enhances efficient energy use by providing conditioning at the needed level
(Jazizadeh et al., 2014b; Lietal., 2017; Z. Yang & Becerik-Gerber, 2014). In single-
occupancy spaces, personal comfort models suggest huge benefits for ensuring the
desired indoor climate with high sensitivity. However, although there are some
studies proposing strategies for multi-occupancy comfort optimization in the
literature (S. Lee et al., 2019; Nagarathinam et al., 2021), optimization of occupant
comfort through utilizing personal comfort preferences in shared environments has
still room for further investigation. Considering these, in this chapter, six personal
comfort profiles representing comfort probabilities of six individuals across a range
of temperature values were developed, using a Bayesian network modeling
approach. Although conventional HVAC systems generally do not offer high
granularity for individual-specific comfort assessment in multi-occupancy spaces,
effective strategies and upgrades enabling the integration of personalized comfort
data in building control have a huge potential to shift the current paradigm. Insightful
research efforts in this field will encourage the building industry towards this
transition to seek new paths for optimizing and transforming conventional

mechanical systems in shared environments.

55






CHAPTER 4

ANALYSIS OF THERMAL DISTRIBUTION PATTERNS

This chapter focuses on the heterogeneity of thermal conditions in shared indoor
spaces. Through studying the selected case study (presented in section 2.3.3) in
depth, spatial variations in thermal parameters were analyzed. In doing so, CFD
simulations were adopted to assess the influences of different parameters including
supply airflow rate, supply airflow direction and occupancy. Following an initial
analysis of the independent variables, a total number of 432 scenarios were defined
and simulated to compile a dataset revealing thermal distribution characteristics in a

multi-occupancy environment under varying occupancy and HVAC settings.

The chapter starts with introducing the importance of non-uniformity of thermal
conditions in multi-occupancy environments. Then, CFD simulation framework,
governing equations, grid independence study and initial parameter assessment were
presented. After defining the scenarios created with parameter combinations, the
thermal distribution patterns were visualized and temperature variations at occupant
locations were illustrated. The importance of defined parameters was analyzed using
Random Forest algorithm, and the section was concluded with a brief discussion on

the results.

4.1 Literature Review

4.1.1 Spatial Heterogeneity in Shared Spaces

Thermal comfort in multi-occupancy spaces is a challenge as comfort optimization
is usually limited by the granularity and flexibility of the existing building systems.

In conventional HVAC control loops, when the thermostat is set to a specific
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temperature, conditioning adjustments are made based on the measurements from a
single sensor placed at a pre-defined point. Yet, as thermal conditions are not
homogenous in indoor spaces (Zhou et al., 2014), temperature gradients may lead to
a discrepancy between the temperature buildings occupants are subject to and the
temperature setting on the thermostats (Du et al., 2015). The dynamics of indoor
environmental conditions affect both human comfort and energy use. Especially in
large shared environments, many parameters can affect micro-climate around
different occupants, including proximity to windows, furniture layout, solar
radiation, supply air inlet placement, and heat flux aroused from electronic
appliances. These factors lead to fluctuations in indoor environmental parameter
values in the same space, making occupant location an essential aspect for
continuous comfort. Due to the influencing factors around their immediate
surroundings and resultant micro-climate, occupants may be subjected to different

thermal conditions within the very same indoor environment (Figure 4.1).

Solar Supply Air Inlet
Radiation

£ Thermostat

(N

Figure 4.1. Factors causing micro-climate variations in shared spaces
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Regardless, most of the current studies on occupant-centric building control are
predicated on the assumption that temperature is uniformly distributed in the
considered zones, ignoring the dynamic local conditions of particular positions.
Although a single thermostat or a local sensor is attributed to be representative for
the entire room for assessing the indoor environmental parameters, thermal
conditions may vary by location (Zhou et al., 2015). The spatial heterogeneity in
buildings requires a high number of distributed measurements for making comfort

implications based on occupant location.

In the absence of proper control strategies, individuals occupying the same room
may experience diverse thermal sensations, such as cold or warmth, owing to uneven
thermal distribution. The most unfavorable outcome of this scenario would be the
inability to provide satisfactory comfort for any occupants, coupled with the
excessive energy consumption to regulate the indoor environment. Hence, analogous
to addressing the nonuniformity in personal comfort, accounting for the
heterogeneity of indoor climatic conditions in building control holds a promising
opportunity for enhancing occupant comfort and decreasing energy consumption.
Moreover, flexible working hours and remote working have been a common practice
for many firms since the beginning of the Covid-19 pandemic. As dynamic
occupancy patterns are expected to remain in effect in large offices even in the post-
pandemic era (Mantesi et al., 2022), the operation of HVAC systems can be adjusted
according to the demand to avoid conditioning unoccupied locations while ensuring
comfort for the positions that are occupied.

Despite the potential benefits of using micro-thermal data to optimize building
control systems for enhanced efficiency, the current body of research on this topic is
relatively limited. The reason may be the costly requirement of controlled
measurements with complex sensor infrastructures to understand the patterns and
distributions of thermal parameters in indoor environments. As the high
computational power gets more accessible with advanced technology, it has become
more viable to utilize computational fluid dynamics (CFD) simulations to obtain the

required thermal variables in an economical and efficient manner.
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4.1.2 Computational Fluid Dynamics Simulations

Research efforts towards assessing thermal dynamics in indoor spaces are mainly
conducted by on-site measurements and computer simulations. In recent years, due
to the complex physical requirements and time-intensive nature of field studies, CFD
simulation has been a very useful tool for understanding and visualizing the air
distribution patterns of thermal parameters. When compared with field studies,
which relies on a limited number of specific point measurements, it enables to
capture indoor thermal parameters with a much higher granularity. Although its
introduction in HVAC industry dates back to the 1970s, it has become widely
popular in the last two decades (Nielsen, 2015).

Through solving a set of partial differential equations for conservation of mass,
momentum, and energy with suitable turbulence models, CFD simulation allows to
analyze and visualize airflow dynamics and temperature distribution within a defined
environment. With the increasing availability and advancements in high-power
computing and processing tools, CFD has become a prominent way of dealing with
the complex flow problems within the built environment in the last decades (Nielsen,
2015). Building researchers adopted this approach for assessing various subjects.
including indoor environmental factors Sevilgen and Kilic (2011), HVAC design
(Duan & Wang, 2019), personalized systems (J. Liu et al., 2019), occupant comfort
(Hajdukiewicz et al., 2013; Shan et al., 2020) and energy use (Zhou et al., 2014).
The study by Buratti et al. (2017) demonstrated that spatial variations in thermal
comfort can be accurately simulated using CFD tools. Other researchers employed
CFD simulations to make thermal comfort predictions in various indoor environment
typologies including lecture halls (Cheong et al., 2003), stadiums (Stamou et al.,
2008), offices (Myhren & Holmberg, 2008; Semprini et al., 2019) and residential
spaces (Z. Chen et al., 2020). A recent study by Jazizadeh et al. (2020) tested the
applicability of adaptive HVAC operation using CFD simulations and demonstrated
promising insights for employing this method for occupant-centric building control

research.
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4.2 Material and Method

In this section, CFD simulations were employed to analyze thermal distribution
characteristics in a shared office space. Simulation procedure and setup components
including solver settings, governing equations, and boundary conditions were
explained in detail. In order to confirm the reliability and validity of the simulations,
grid independence test and setting validation study were carried out. After simulating
eight initial cases to understand the influence of the independent variables, 432
different scenarios were defined using the combinations of different supplied airflow
rates, supplied airflow directions and occupancy cases. The variations of
independent variables were intentionally kept at a manageable level, considering the

cumulative increase in the number of combinations and computing time.

421 Simulation Framework

In this study, commercial software ANSYS Fluent (ANSYS Inc., 2021) is used for
performing CFD simulations. It is one of the most popular software packages for
assessing indoor air parameter distributions, with its user-friendly function
allocations (Y. Zou et al., 2018). The simulation process starts with developing three-
dimensional geometry and mesh generation, which are then followed by simulation
setup, grid independence study, mesh refinement, and running the simulations
(Figure 4.2). The finite volume method embedded in the software is used to solve
the governing equations by decomposing the fluid domain into small control
volumes. The partial differential equations are discretized into algebraic equations at
each point of the generated mesh grid, and these algebraic equations are solved
through iterations to obtain thermal distribution and airflow patterns within the
defined boundaries (Shan et al., 2020). In this study, a steady-state simulation setup
was employed, which provides a snapshot of the conditions within the defined space

at a given time under selected boundary conditions.
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An office space in the College of Engineering of Penn State University is selected as
the simulation case (Figure 4.3). Shared by six occupants, space dimensions are 8.8m
in length, 6m in width, and 4m in height. The room's only side subjected to the
exterior conditions is the south wall, having five large windows. There is one supply

air inlet and a return outlet in the room, both having dimensions of 0.5m x 0.5m.

4.2.2 Governing Equations and Boundary Conditions

Based on the real-world parameters of the selected space, a three-dimensional
geometric model is developed using the SpaceClaim platform in ANSYS Fluent.
Walls, windows, tables, computers, HVAC components, and occupants are
abstracted in the model to reduce complexity and avoid irrelevant details in meshing
(Figure 4.4). Occupant surface area is modeled as 1.8 m?, representing an average
human body (ASHRAE, 2017).

i outlet

Figure 4.4. Simulated geometry and generated mesh in ANSYS Fluent
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The governing equations used in simulations, which are conservation of mass (5),
conservation of momentum (6a, 6b, 6¢), and conservation of energy (7), were
explained in detail by Versteeg and Malalasekera (2007). Referring to Duan & Wang

(2019), equations can be written as:

Continuity equation (conservation of mass):
P v.(pV)=0 (5)
ot

, Where p is the density, V is the velocity, and V resembles divergence.

Navier-Stokes equations (conservation of momentum):

8(pu) = oP or, Ot, or
FV-(puV) =—— + 22X 4 + —= + pf
- (puVv) x o Ty T Ak (62)
. 0 0 0
a(pv)+V-(pVV)=—a—P+ Yy + Ty + Ty +,0fy (6b)
ot &y ox oy
- 0
a(pW) +V- (p\AN) :—@ + 8TXZ + Tyz + 5TZZ + pfz (6¢)
ot oL ox oy o1

, Where u, v, w is the velocity in x, y, z directions, P is the pressure force per unit

area, 7; stands for a stress in j-direction exerted on a plane perpendicular to the i-
axis; pf, denotes the body force on the fluid element acting in the i-direction,

respectively.
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Conservation of energy equation:
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OX oy oz

2
, Where (e + V?) is the total energy, k is the thermal conductivity, T is the local
temperature, § is the rate of volumetric heat addition per unit mass.

The pressure-based segregated solver is used for the incompressible flow equations,
and the Boussinesq approximation is employed to model natural convection. The
realizable K-& model is used for turbulence modeling under full buoyancy effects,
and solar radiation is solved using a surface-to-surface (S2S) model with solar ray

tracing.

The semi-implicit method for pressure-linked equation (SIMPLE) is applied as the
pressure-velocity coupling algorithm. Least squares cell based (LSCB) is used for
discretizing gradients, and the pressure staggering option (PRESTQO!) is selected for
pressure. Second-order upwind methods are utilized for the discretization of
momentum, turbulent Kinetic energy, turbulent dissipation rate, and energy. The
selection of these methods is predicated on the previous validations by Wang et al.
(2017) and Jazizadeh et al. (2020).

Boundary conditions and material properties for the baseline scenario are defined, as
shown in Table 3.1. Accordingly, air with a flow rate of 0.1625 m%s and a
temperature of 13 degrees Celsius is supplied to the space from the inlet, uniformly
in all directions with an angle of 30 degrees from the ceiling. The surface of walls,

slabs, and tables are set as adiabatic, presuming no-slip conditions for fluid-surface
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interactions. The heat sources in the space are determined as occupants with a heat
flux of 60 W/m? per individual, computers with a generated heat of 60 W/m? per
device, and the windows exposed to the exterior temperature and radiation effects.
The windows are designated with a heat transfer coefficient of 5.6 W/m? and a solar
radiation transmittance feature of 80%. The global position of the selected office
space is defined in the solar calculator of the S2S model to have accurate solar
radiation effects applied on the windows. The exterior temperature is set as 28°C,
considering a hot summer day in the case location. The date and time were arranged
as June 21%, 13:00. As indicated in Table 4.1, density, specific heat, and conductivity

parameters are defined for a low-insulation window.

Table 4.1. Boundary conditions used in the baseline simulation

Boundary Properties Conditions
Supply Inlet n/a airflow rate=0.1625 Om3/s
air temperature = 13 C
Return Outlet n/a pressure outlet
Walls n/a adiabatic, no-slip condition
Windows density = 2700 kg/m?® heat transfer coeff.: 5.6W/m?K

specific heat = 840 J/kg.K exterior temperature: 28°C
conductivity =0.14 W/m.K  transmittance: 80%

Occupants density = 998 kg/m?® heat flux = 60 W/m?
specific heat = 4182 J/kg.K
conductivity = 50 W/m.K

Computers density = 115 kg/m?® heat flux = 60 W/m?
specific heat = 1810 J/kg.K
conductivity = 0.181 W/m.K
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4.2.3 Grid Independence Study and CFD Validation

As the quality of the generated mesh is quite critical for the accuracy of simulation
results and the computational cost, determining a reasonable grid size is crucial. In
order to ensure the robustness of the solution and determine the suitable mesh to be
used in the simulations, a grid independence study is performed. Four different
meshes are generated considering the grid refinement ratio, starting from coarse
quality towards the fine.

o [ﬂ} ®)

mesh

coarse

Table 4.2. Grid parameters for different mesh sizes

Mesh-1 Mesh-2 Mesh-3 Mesh-4 l43 I3 I

174 136 411 336 964 995 2150072 131 1.33 1.33

The grid refinement ratio (r) for three-dimensional meshes is calculated for two
consecutive meshes (i.e., fine and medium, or medium and coarse), as defined in
Equation (8). In order to assess the discretization error in isolation, the refinement
ratio is required to be greater than 1.3 (Hajdukiewicz et al., 2013). Accordingly, four
successively refined meshes are created using unstructured elements, with the
maximum element sizes of 0.17 m, 0.12 m, 0.08 m, and 0.06 m, respectively. The

number of elements in each mesh and grid refinement ratios is shown in Table 4.2.

A qualitative grid independence assessment is conducted by comparing vertical
temperature profiles along the room height at two random locations. As
demonstrated in Figure 4.5 and Figure 4.6, profiles simulated with mesh-2, mesh-3,
and mesh-4 are very close, implying a very small discretization error. Considering
the trade-off between the number of elements and high computational cost with
calculation time, mesh-2 (411 k elements) is adopted for simulations. The selected
mesh size is further refined in the vicinity of the supply inlet, return outlet, and

occupants.
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The convergence of the solution is checked through monitoring the residual root
mean square error values for mass, momentum, and energy equations, together with
relevant variables including average temperature, average velocity, and mass flow
rate at inlet and outlet surfaces. The criterion for convergence is set as 1e-6 for energy
and 1e-3 for x-velocity, y-velocity, z-velocity, k, and epsilon. The solutions are
assumed to satisfactorily converge once the numerical results of the monitored
variables between the consecutive iterations become negligibly small. After
performing numerous initial simulations, it is acknowledged that the calculations in
the defined case can be terminated after 2000 iterations, where the residuals reach

converged values and the monitored variables have a steady solution.

In order to validate the effectiveness of CFD modeling approach adopted in this
study, the experiments conducted in a climate chamber by Loomans (1998) was
replicated by modeling and simulating the described office space. Loomans (1998)
comprehensively documented the experiment characteristics and reported
temperature and velocity measurements at certain locations within the test bed, for
which researchers employed his work for verifying their CFD models (Jazizadeh et
al., 2020; Stamou & Katsiris, 2006). As shown in the developed 3D model for
replicating the experiment in Figure 4.7, the space has an inlet under the desk table
that supplies air with a rate of 0.047 m®/s at 19.8°C and a return outlet on the upper
corner just below the ceiling. As the heat sources, there are one occupant (59.8 W),
two PC simulators (61.5W each), three ceiling lights (18.1W each) and a light source
(10.9W). The temperatures of the walls, floor, and ceiling were set constant values
between 22.2°C - 23.2°C.

Select experimental data recorded by Loomans (1998) was compared with the
predictions made with our CFD simulations. CFD calculations were compared to the
temperature values measured using T thermocouples (with an accuracy of +0.1°C) at
x = 1.5 m at three z-locations, and to the velocity values measured using a hot sphere
anemometer (with an accuracy of £0.0.25 m/s) at x = 2.40 at three z-locations. As

demonstrated in Figure 4.8, a very satisfactory agreement between the experiment
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measurements and CFD calculations were achieved, which validates the modeling

approach adopted in this study to simulate HVAC system of an office space.

Ceiling lights 2y

Exhaust

Occupant

Figure 4.7. CFD model geometry created for simulating the experiments of Loomans
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Figure 4.8. Vertical profiles comparing the measurement of (Loomans, 1998) and
CFD calculations for temperature at x=1.50 m and velocity at x = 2.40 m
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4.2.4 Initial Analysis for Independent Variables

Prior to proceeding to define scenarios, initial CFD simulations were performed to
gain an overall perspective on how different independent variables affect the
distribution of thermal parameters in shared environments. Airflow rate, airflow

direction, and occupancy states were evaluated with comparative analysis.

Air Flow Direction:Uniform, 4 Directions Air Flow Direction:Uniform, 4 Directions
Supply Air Flow Rate = 0.1625 m*/s Supply Air Flow Rate = 0.125 m*/s
Supplied Air Velocity = 0.65 m/s Supplied Air Velocity = 0.5 m/s
Supply Air Temperature = 13 C Supply Air Temperature = 13 C
Occupant Heat Flux = 60W/m? * 6 Occupants Occupant Heat Flux = 60W/m* * 6 Occupants
Solar Ray Tracing on, Exterior Radiation Temperature= 28 C Solar Ray Tracing on, Exterior Radiation Temperature= 28 C
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Figure 4.9. CFD simulations for supplied airflow rate variations

First, the impact of the supplied airflow rate was assessed by running two simulations
cases created based on the baseline scenario. Airflow direction, supply air
temperature, and occupancy were kept constant in both cases. In the first case,
supplied-air velocity was defined as 0.65 m/s, which creates a flow rate of
0.1625m%/s. In the second case, supplied-air velocity was decreased to 0.5 m/s,
leading to an airflow rate of 0.125 m%/s. While the average temperature of the room
was 24.7°C in the first case, it increased to 26.8°C in the latter. Temperature gradients

and air circulation were impacted as well, implying the influence of flow rate in
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thermal distribution patterns in indoor spaces. Figure 4.9 demonstrates the resultant

plan views at neck-level and air velocity streamlines.

Secondly, we checked whether the occupant presence is an influential factor for the
indoor environmental parameters. Keeping all other settings, boundary conditions,
and variables as constants, we remodel the room as an unoccupied space. It was
observed that the average temperature in the unoccupied case is dropped by four
degrees Celsius compared to the baseline (Figure 4.10). These results were
interpreted to be correlated with the heat flux created by the occupants. In addition,
air circulation patterns were affected by the absence of human bodies. It was
recognized that keeping the system operation static could lead to uncomfortable

conditions in case of occupancy variations.

Air Flow Direction:Uniform, 4 Directions Air Flow Direction:Uniform, 4 Directions
Supply Air Flow Rate = 0.1625 m°/s Supply Air Flow Rate = 0.1625 m”/s
Supplied Air Velocity = 0.65 m/s Supplied Air Velocity = 0.65 m/s
Supply Air Temperature = 13 C Supply Air Temperature = 13 C
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Figure 4.10. CFD simulations for occupancy variations
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Figure 4.11. Comparative analysis of airflow direction variations
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Lastly, alterations of supplied airflow direction were evaluated. As mentioned
before, airflow is assumed to be uniformly distributed in all directions with an angle
of 30 degrees from the ceiling in the baseline scenario. In order to determine the
influence of airflow direction, four cases were created. Directed airflow is adopted
towards only one direction in each case, north, south, east and west directions,
respectively. Simulation results showed that airflow direction changes average
temperature and distribution gradients. As illustrated in Figure 4.11, the longer the
supplied cool air travel inside the space, the cooler the room becomes, depending on
the placement of the pressure outlet. As the return outlet was placed on the upper
part of the interior wall on the west side, directional airflow towards the east side
creates the coolest conditions, while the one towards the west side leads to

comparatively higher indoor temperature.

Initial CFD simulations have proven that spatial distributions of indoor
environmental parameters are influenced by different independent variables,
including supplied airflow rate, airflow direction, and occupancy. Results also
verified the heterogeneity of thermal conditions in large shared spaces, endorsing the
aforementioned research motivation towards discovering optimization strategies for

more comfortable and efficient built environments.

425 Scenarios

In order to discover strategies for the optimization of collective comfort in shared
environments and leverage occupant-centric HVAC control strategies, a total
number of 432 scenarios were created using combinations of independent variables,
as shown in Figure 4.12. Firstly, for the occupancy variable, we created 16 scenarios.
While one of the scenarios was for the fully occupied state with six occupants, the
rest were created with the assumption that only two occupants were present in the
space. This assumption was made considering the fact that two is the minimum

number creating the multi-occupancy state. The allocation probabilities of two
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occupants between 6 seats compose 15 scenarios, based on the combination theory
(Figure 4.13, Figure 4.14).

Occupancy Occupancy Occupancy Occupancy
scenario #1 scenario #2 scenario#3 | | 77 scenario #16

Supply airflow rate: Supply airflow rate: Supply airflow rate:
0.125 m”/s 0.1625 m’/s 0.2m’/s

Supply Supply Supply Supply Supply Supply Supply Supply

airflow airflow airflow airflow airflow airflow airflow airflow
direction:| |direction:| |direction:| |direction:| |direction:| |direction:| |direction:| |direction:
Uniform N S w NW NE SW SE

Figure 4.12. Variable combinations for simulation scenarios

Secondly, three different supply airflow rates were determined, keeping the
simulated average room temperature within acceptable limits and satisfying the
standard ventilation requirements. The airflow rates of 0.125 m?/s, 0.1625 m¥s, and
0.2 m%s, correspond to air change rates (ACH) of 2.31, 2.77, and 3.41, respectively,
for this space. As the amount of supplied cold air can be directly correlated with the
consumed energy, it is possible to assess the energy saving possibilities with these
setting variations. The previous researches on ventilation rates in office spaces
asserted that an airflow rate of 0.025 m®/s per individual reduces the prevalence of
sick-building-syndrome symptoms (Sundell et al., 2011). Since reducing the amount
of supplied air comes with the risk of decreased occupant well-being and low
productivity, the range of airflow rates were defined considering the requirements to

ensure a healthy environment for a maximum of six occupants.
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Figure 4.14. Occupancy scenarios
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Lastly, four cardinal directions: north, south, west, and east, four intermediate
directions that are northwest, northeast, southwest, and southeast, and uniform
distribution towards all directions were used as alternatives for the directional flow
of supplied air. The combination of these three variables' options led to a total
number of 432 scenarios. For each of 432 scenarios, CFD simulations will be
performed by making related modifications in the geometric model and applying
defined boundary conditions.

4.3 CFD Simulation Results

After compiling the results of the CFD simulations as a dataset, various analyses
were performed. To start with, a density diagram was plotted in order to visualize
how much variation there is across all of the simulation cases for each occupant
location (Figure 4.15). The distributions are quite wide for all six locations, which
demonstrates the sensitivity of temperatures at each location to the simulation
settings. This result suggests that there should be some good opportunities in
relocating occupants for optimization, provided that we have similar variation in

occupant thermal comfort profiles.

While there is a wide distribution for each position, occupant locations near windows
have clearly higher operative temperature values. Density of the temperature values
for near-windows positions (loc-1, loc-2, loc-3) ranges between 18.5°C to 28°C and
culminates at 22°C. On the other hand, the interval for loc-4, loc-5 and loc-6 is
between 17.5°C to 27°C and 20.5°C has the highest density. This difference between
two sets of occupant locations is in tune with the fact that positions near windows
are affected more from the solar radiation and they are subjected to higher mean

radiant temperatures.
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Figure 4.15. Density plot for all six occupant positions
43.1 Visualization of Thermal Distribution Patterns

In order to evaluate the spatial variation of temperature in the selected space,
temperature contours at neck height (1.25m) in scenarios for maximum occupancy
and minimum multi-occupancy baseline cases were visualized using ANSYS
Fluent’s post-processor. The colored temperature legends were kept same (between
18°C — 32°C) in each simulation case and all plan views were arranged together for
an accurate and legible comparative analysis, as shown in Figure 4.16 and Figure
4.17.

Accordingly, higher supplied airflow rates create cooler conditions given that airflow
direction and the occupancy case are constant. However, the average room
temperature decreases by one to two degrees Celsius when the number of occupants
drops from six (Figure 4.16) to two (Figure 4.17), even with the same supplied
airflow characteristics. The observed difference could be explained with the fact that

occupants are important heat sources in indoor environments with the heat flux
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released from their bodies. This result reflects the importance of occupancy and
demonstrates how pre-defined static operation of climatization systems may lead to
unintended thermal conditions in case of occupancy fluctuations in indoor spaces,
which in return could affect human comfort and satisfaction. In addition, regardless
of occupancy case, airflow rate or airflow direction, temperature is nonuniform in all
of the cases. Temperature gradients do exist in this relatively small-scale office space
with a conventional HVAC system, proving that people can be subjected to different

thermal conditions in the very same environment, depending on desk positions.

As demonstrated in Figure 4.16 and Figure 4.17, the supplied airflow direction has a
direct influence in thermal conditions and temperature distribution. The critical
parameters here were considered to be the placement of supply air inlet and the return
outlet. As illustrated in Figure 4.13, the outlet is located on the west wall whilst the
inlet is in the center of the room with a small drift to the west. As a natural
phenomenon, if the supplied airflow direction is towards to the opposite side of the
return outlet, fresh cold air circulates more in the conditioned space and make it
cooler. The changes in room temperatures in Figure 4.16 and Figure 4.17 for
different airflow directions seem to be well in line with this. Accordingly, supplying
air towards the east direction created the coldest conditions while adjusting the
airflow direction to the west resulted in the highest room temperatures in all the cases
with varying airflow rates and occupancy. Keeping the airflow rate constant (using
same amount of energy), modifying the direction of supplied air has the potential to
fluctuate the average room temperature up to two degrees Celsius. As expected,
temperature contours were also affected with the airflow direction alterations due to

air circulation shifts.
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Figure 4.16. Temperature distribution gradients in scenarios for maximum occupancy
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Figure 4.17. Temperature distribution gradients in scenarios for minimum multi-occupancy
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4.3.2 Temperature Variations at Occupant Locations

In Figure 4.18, Figure 4.19 and Figure 4.20, operative temperature variations in
minimum  multi-occupancy scenarios at airflow rate=0.125m?%s, airflow
rate=0.1625m%/s and airflow rate=0.2 m®/s are presented, respectively. The
temperature values at neck height (1.25 m) in fifteen occupancy cases with two
occupants are illustrated in subplots, each of which is devoted to a certain airflow
direction setting. The figure shows that thermal conditions are not uniform in the
studied space in most of the cases, considering the temperature differences between
two occupant positions and the average room temperatures. Despite the fact that
average room temperatures do not show much fluctuation between different
occupancy cases with constant airflow direction within each subplot, the temperature
that each occupant is subjected to varies up to two degrees Celsius depending on
their positions in the very same environment. Although this variance may pose a
challenge for occupant-centric studies that assume homogenous thermal conditions
in indoors, it also holds a great potential for improving collective comfort in multi-

occupancy scenarios given the differences in occupants’ thermal preferences.

In addition, the direct influence of the supply airflow direction on temperature
variations is also observable in these figures, which is associated with the placement

of supply air inlet and the return outlet.

As a natural phenomenon, if the supply airflow direction is towards to the opposite
side of the return outlet, fresh cold air circulates more in the conditioned space and
make it cooler. Accordingly, the cases in which the fresh air is supplied towards the
east direction has the lowest temperature values, while the cases where airflow
direction was set to the west has the highest. To this end, it can be claimed that
changing the supply airflow direction, which do not require any additional energy at
neither the cooling coil nor the fan levels, could be seen as a promising energy

efficient strategy, instead of modifying the airflow rate to adjust the temperature.
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Figure 4.18. Operative temperature values in case of minimum multi-occupancy for
different airflow direction and occupancy case scenarios (for airflow rate=0.125 m%/s)
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Figure 4.19. Operative temperature values in case of minimum multi-occupancy for

different airflow direction and occupancy case scenarios (for airflow rate=0.1625 m/s)
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Figure 4.20. Operative temperature values in case of minimum multi-occupancy for
different airflow direction and occupancy case scenarios (for airflow rate=0.2 m®s)
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Comparing the temperature values in three figures reveals that higher supply airflow
rates create cooler conditions as expected, given that airflow direction and occupancy
positions are fixed. Yet, it also presents that supplying airflow at a higher level is not
the only way for decreasing the room temperature, if the supply airflow direction is
adjustable. Allowing a modest alteration possibility at diffuser level is shown have a
promising potential in terms of ensuring occupant comfort without using more
energy in multi-occupancy scenarios.
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Figure 4.21. Operative temperature values in case of maximum multi-occupancy for six
occupant locations
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Similar to the minimum multi-occupancy scenarios, thermal conditions are not
homogenous in maximum multi-occupancy scenario. Although temperature values
are higher in maximum occupancy, the variances between the micro-thermal
conditions that occupants are subjected to are almost the same with the minimum
multi-occupancy cases. For example, average room temperature at airflow
rate=0.1625 m®/s and airflow direction=Uniform at minimum multi-occupancy is
21.5 degrees Celsius, whereas the same setting at maximum occupancy results in an
average room temperature of 23.2 degrees Celsius. In both occupancy cases,
however, the temperature difference between occupant locations goes up to two
degrees Celsius. This similarity suggests that the indoor thermal conditions are non-
uniform regardless of the number of occupants present in the space, while the
temperature values on average naturally rises with the increasing number of
occupants due to the heat release from their bodies. As shown in Figure 4.21,
operative temperature values between six occupant locations varies up to two and a
half degrees Celsius in different cases with constant supply airflow settings. As
expected, supplying airflow at a higher level, which means using more energy,
generally created cooler conditions when the airflow direction is fixed. However, the
results also demonstrate that creating cooler conditions does not always require an
increase in supply airflow rate. For example, average room temperature at airflow
rate=0.2 m%/s and airflow direction=Uniform, could also be achieved by setting
airflow rate=0.1625 m®/s and airflow direction=East. It is important to note that,
regardless of the room averages, operative temperature at each occupant location
varies depending on the defined supply airflow settings and adjustments at the
diffuser level have the potential of altering the temperature that each occupant is
subjected to. Accordingly, once the personal preferences are accounted for in
building control, it could be possible to determine optimum settings in multi-
occupancy scenarios to improve collective comfort. Depending on the relative
thermal comfort characteristics of the occupants, wasting valuable energy could be

prevented without sacrificing human well-being.
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4.3.3 Analysis of Variable Importance

With the purpose of investigating the significance of defined parameters on CFD
simulation results, we developed statistical models using Random Forest (RF)
method, which is a machine learning algorithm. To account for the impact of
occupant locations, separate models for each of the six locations were generated,
together with the main model that employs data from all locations. These models
could be considered as a proxy for assessing predictive building control potentials.

Given
S: Original Training sample dataset of size n
p: Number of input predictors
X: Test observation
Inmitially Determine
M: Number of Trees to be generated
v: Number of predictors to be selected as split candidates for each tree (usually v = Vp)
form € 1 to M do
Draw a random sample S* of size n with replacement from S (Bootstrap)
Grow a tree Ty, using S* through the following loop:
while minimum node size nodey;, 1s not reached do
For the leave node of the tree
Randomly select v predictors out of the p predictors
Select the best pair of split candidates among the v predictors
Split the node into two daughter nodes
end while
print Constructed tree Ty, (X)

end for
s 2 : : s 1
print Prediction for a given new input X as per majority vote € = Yo Tm(X)

{Note: nodey;, is the minimum number of observations at each leaf node}

Figure 4.22. Pseudo code for Random Forest algorithm
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RF algorithm (Breiman, 2001) is a method that is used for both classification and
regression tasks. It uses Bootstrap and Aggregation technique, which is commonly
known as bagging. Bootstrap is a resampling method, which involves repeatedly
drawing samples from a training dataset and refitting a model on each sample.
Bagging refers to drawing a number of bootstrap datasets, fitting each to a decision
tree and averaging prediction of all trees. The algorithm basically generates multiple
decision trees trained over the same data and determine the final output by averaging
the results of each model. RF introduces two types of randomness: (1) to data so that
each tree is fit to a somewhat different dataset and (2) to predictors when making a
split at any point in a given tree. The former reduces variance and controls over-
fitting, whereas the latter makes it robust and reliable against correlated predictors.
The algorithm also enables to analyze the relative importance of the model inputs for
the model predictions. RF procedure was implemented using Python software, the

pseudo code of which is illustrated in Figure 4.22.

Table 4.3. Results of RF models for each location

Random Forest Model for Each Location

Loc-1 Loc-2 Loc-3 Loc-4 Loc-5 Loc-6

Mean Squared Error 0.07 006 005 006 012 0.17

feature_importance: Airflow Rate 062 069 072 066 065 0.56

feature_importance: Airflow

. . 0.28 0.21 0.19 0.20 0.24 0.30
Direction

feature_importance: Occupancy

0.10 0.10 0.09 0.14 0.11 0.14
Case
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Loc-1, Mean Squared Error: 0.068
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Figure 4.23. Predictive performance of Random Forest models, developed for each

occupant location
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We developed a dedicated multi-input-single-output prediction model using RF
regressor for each occupant location in the defined space. In order to derive the
temperature values as the predicted output, we used the independent variables that
we’ve adopted in CFD simulations as model inputs, which are airflow rate, airflow
direction and occupancy case. One-hot encoding was applied for occupancy case and
all variables were treated as continuous. The Relative statistical importance of these
features are given in Table 4.3. Accordingly, while all three inputs were found to be

influential on predictions, airflow rate is clearly the dominant feature for all models.
1< 2
MSE:HZ(Yi -Y;") 9)
i=1

To determine the amount of error in the generated models, mean squared error (MSE)
values were also calculated. The MSE is simply an estimator measuring the average
squared difference between the model predictions and the actual values, and can be
formulated as in Equation (9). It refers to the empirical risk, and better accuracy is
assessed by the closeness of MSE values to zero. Based on the results, MSE values
demonstrates an acceptable accuracy for the models. However, to better interpret the
accuracies, we created plots to visualize how the predictions of our models compare
to the test values of perfect prediction models. As illustrated in Figure 4.23, each
model has a good performance overall, indicating a promising potential for
predictive building control.

After evaluating the models for each occupant location, we also developed a main
RF model with available data from all six locations. The difference of the main
model is the additional variable that is added to account for locations. Similar to the
location-specific models, airflow rate was also found to be the most influential factor,
followed by airflow direction, location and occupancy case (Table 4.4). Although
the MSE value for the main model is somewhat higher than the previous ones, the
fit could still be considered as good considering the model predictions versus test

data plot illustrated in Figure 4.24.
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Table 4.4. Results of the main RF model

Random Forest Model for all locations
with additional ‘Location’ feature

Mean Squared Error 0.086
feature_importance: Airflow Rate 0.57
feature_importance: Airflow

o 0.2
Direction
feature_importance: Occupancy

0.1

Case
feature_importance: Location 0.13

Loc-All, Mean Squared Error: 0.086

26

24

y_pred

22

20

20 22 24 26
y_test

Figure 4.24. Predictive performance of Random Forest model, developed with data from
all locations
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4.4 Discussion

In the current practice, thermal zones are usually controlled using data from a single
sensor, the reading of which is attributed to be representative of the entire zone for
assessing indoor environmental parameters. However, the results of this study
demonstrated that temperature is not uniform throughout the indoor environment and
occupants may be subjected to different thermal conditions within the same space.
The variance in thermal conditions were shown to be influenced by the studied
independent variables, which are the supplied airflow rate, supplied airflow direction
and occupancy. As expected, increasing the supplied airflow rate led to cooler
conditions and the number of occupants was directly proportional to the room
temperature. Interestingly, it was demonstrated that changing the supplied airflow
direction could be adopted as an alternative strategy to adjust the indoor temperature.
In contrast to the supplied airflow rate alteration, adjustments in the supplied airflow
direction would not require consuming additional energy, making it an efficient
strategy to provide desired indoor conditions. Moreover, placements of supply air
inlet and return outlet were also found to be crucial, given their impact on the air

circulation characteristics in the conditioned zones.

According to analysis conducted with Random Forest modeling, it can be claimed
that once thermal distribution data under defined settings are compiled to a certain
degree, machine learning algorithms could be leveraged to predict the relevant
results for the settings that were not simulated. This kind of a strategy could lessen
the need for simulating each and every possible variation in the boundary conditions,
allowing for a more robust and efficient control mechanism. Moreover, the
developed models have the potential to be continuously updated with new field data.
This adaptability could be used to better account for the dynamics of airflow with
changing conditions in indoor environments. In the literature, such approaches are
studied under the term ‘predictive building control’, which were shown to have huge
benefits in terms of comfort improvements and energy savings in buildings (Drgona
et al., 2020).
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Considering the results of this chapter, it can be claimed that if the spatial
heterogeneity was accounted for by having sensors at each desk location, or
employing a type of thermal scanning sensor, building control system could seek to
maintain a particular thermal asymmetry based on the personal comfort profiles to
provide collectively acceptable thermal conditions in shared indoor spaces. Apart
from providing desired conditions at where it is actually required, consuming energy

unnecessarily for conditioning vacant spaces could also be prevented with such
strategies.
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CHAPTER 5

OPTIMIZATION OF COLLECTIVE COMFORT IN SHARED SPACES

In this chapter, through leveraging the personal comfort profiles and the thermal
distribution patterns dataset that were created in Chapter 3 and Chapter 4, a data
driven optimization analysis were conducted to reveal collective thermal comfort
improvement potentials. Three control strategies with an incremental complexity
were introduced to assess comfort and energy efficiency implications of adjustability
at different degrees. Temporal impacts were analyzed through performing CFD
simulations for additional 108 cases. Collective comfort probabilities for both
minimum multi-occupancy and maximum occupancy conditions under varying
settings were comparatively presented. This chapter may help researchers to fathom
the potentials that lies in accounting for the nonuniformity of thermal conditions and
personal preferences. It also underlines the importance of a communication ground
between the building control and the occupants, by reporting the difference made by
intelligent allocation of individuals to the workstations in a multi-occupancy indoor

environment.

In this chapter, firstly, previous studies focusing on developing strategies for
collective comfort improvement and energy efficiency were reviewed, and the
position of this research in comparison to the existing approaches was demonstrated.
After outlining thermal comfort assessment agenda, overall framework of the
optimization analysis was described. Then, control strategies were introduced and
related collective comfort probability analysis results were discussed. Collective
comfort probability changes in one of the cases was visualized to further elaborate
the results. Subsequently, details and results of the follow-up study, which was
conducted to evaluate the implications of temporal variations on collective comfort
probabilities, were illustrated. The chapter was concluded with a discussion on

possible practical reflections of the research outcomes.
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5.1 Literature Review

511 Comfort Improvement Strategies

In the pursuit of generating collectively comfortable indoor conditions, several
operational strategies were proposed in the literature. Jung and Jazizadeh (2020)
listed the four main strategies, which are the majority rule, error minimization,

collective learning and thermal comfort sensitivity based optimization.

The majority rule strategy was proposed by Murakami et al. (2007), who referred it
as ‘logic for building a consensus’. In a multi-occupancy office space with 50
occupants, they adopted an interactive system to collect thermal comfort feedback
from the occupants, and determined the setpoint temperature in a way to respond to
the requests of the majority. Although demonstrating a promising energy-saving
potential of 20%, their strategy did not provide any improvement in terms of
collective thermal comfort. The error minimization strategy, on the other hand, was
used by Jazizadeh et al. (2014b), who identified the temperature preferences of
occupants by adopting a participatory sensing approach through a user interface.
Their strategy was to minimize the gap between desired temperature values and the
setpoints and they reported 39% reduction in daily average airflow, which
corresponds to a considerable energy saving. Despite demonstrating improvements
in terms of both energy efficiency and occupant comfort, the proposed strategy was
employed to identify separate setpoints for single-occupancy office spaces and did
not cover the dynamics exist in shared spaces. Similarly, although collective learning
strategy proposed by Erickson and Cerpa (2012) utilized collective thermal feedback
for updating the PMV model and achieved setpoint improvements, it assumed
homogeneous conditions in the considered spaces and did not account for individual

differences.

In their overarching study, Jung and Jazizadeh (2020) proposed thermal comfort

sensitivity based optimization and comparatively analyzed their approach with the
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majority rule and the error minimization strategies. They integrated personal comfort
profiles into the control loop of HVAC systems and evaluated the energy
implications of the control strategies. Accordingly, the majority rule strategy was
demonstrated to achieve the best performance in terms of energy savings, followed
by thermal comfort sensitivity based optimization. The error minimization strategy
was shown to have the highest energy demand, due to the relatively higher
conditioning loads brought by selecting the setpoint in between all the preferred

temperatures.

Nonetheless, all of the abovementioned strategies were designated to optimize the
setpoint temperatures, and they left the heterogeneity of indoor environmental
parameters beyond their scopes. However, in recent years, assessing the differences
in micro-climates within shared indoor spaces and variances in personal comfort

preferences have attracted more attention from building researchers.

51.2 Strategies Accounting for Nonuniformity

Researchers introduced various solutions to minimize the potential negative impacts
of uneven thermal distribution and optimize occupant comfort in indoor
environments. Zhou et al. (2014) proposed a demand-driven control strategy to
substitute the conventional HVAC control logic, building upon the developments in
wireless sensors and occupant localization field (Topak et al., 2018). The authors
observed progress in energy savings through setting the temperature control based
on the breathing level and avoiding to condition the unoccupied zones. Shan et al.
(2020) indicated the improvements achieved by increasing the number of
thermostats and separating setpoints in subzones to recognize thermal
nonuniformity. Another approach adopted by the researchers is to provide micro-
location-based solutions, such as directing the airflow towards occupant’s positions.
Jazizadeh et al. (2020) investigated the implications of operating modalities, airflow
direction, and individual-level feedback in HVAC system operation. They explained

that integrating directed airflow and micro-location feedback-based control at the
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diffuser level results in a 25% reduction in energy demand and improvements in
thermal comfort. Likewise, Hu et al. (2020) presented an intelligent air conditioning
system configuration, employing multiple air vents to flexibly create desired micro-
thermal conditions at target indoor positions. On the other hand, localized personal
comfort systems have offered improvements in energy use and overall satisfaction
by providing manageable micro-thermal settings (Shahzad et al., 2018). Melikov
(2016) argued that a paradigm shift from conventional systems designed for total
volume climatization towards individually controlled distributed conditioning is a
necessity for saving energy and improving comfort. However, the combined impact
of employing personal comfort devices for individuals on the overall indoor climate
is unforeseeable and requires exhaustive research. In addition, the wide-scale
applicability and acceptability of personal comfort systems are questionable in terms

of maintainability and cost-efficiency.

Research efforts also sought to explore the applicability of utilizing personal
preferences in the presence of multiple thermal zone control loops. Z. Yang &
Becerik-Gerber (2014) presented the potential improvements of assigning occupants
with similar schedules to the rooms that are in the same mechanical zone.
Nagarathinam et al., (2021) assessed the same problem in an open-plan office
without any partition walls, and they proposed clustering occupants into groups
based on their thermal preferences and assigning them to the presumptive cells, each
of which has a separate actuator and dynamic setpoint selection feature. Although
demonstrating promising insights for optimized control in very large spaces with
over hundred occupants, their approach lacks high sensitivity for personalized
comfort and micro-climatic conditions, as temperature setpoints for defined cells are
determined through averaging the profiles of a group of occupants. S. Lee et al.
(2019) developed a method for personalized HVAC control in a shared open-plan
office space by learning occupants’ comfort preferences and operating a conditioning
system with multiple control loops. However, their study employs a radiant-based

floor cooling system and air-mixing and flow dynamics are not assessed.
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Table 5.1. Comparison of previous studies in the literature

Research System Thermal Thermal Occupant
Study controll Variables comfort heterogeneity  location
method - . -
ed assessment  consideration  assignment
. . Room- Supply
Zhou et al. S|muI§t|on, level air  airflowrate  No Yes No
(2014) Experiment .
diffusers  Occupancy
Yang & Zone- Yes - at
Becerik- Simulation level air  Occupancy  No No room level
Gerber (2014) diffusers
. Zone- Supply Personal
Ghahramani Experiment  level air  airflow rate ~ comfort No No
et al. (2014) .
diffusers Occupancy  models
. Zone- Supply Personal
Jazizgdd et Experiment  level air  airflow rate  comfort No No
al. (2014) -
diffusers Occupancy  models
Room-
Leeetal. - level oLl
(2019) Experiment Nt Occupancy comfort Yes No
] models
cooling
Jung & Room- Setpoint Personal
Jazizadeh Simulation level air  temperature  comfort No No
(2019) diffuser  resolution models
Room- .
Shan et al. Simulation level air Setpoint PMV Model  Yes No
(2019) . temperature
diffusers
Supply
airflow rate
. Room- S_upply Predefined
Jazizadeh et . - . airflow f
Simulation level air R setpoint No No
al. (2020) diffuser direction values
Control
actuation
logic
. Room- Personal Yes - at
Nagarathinam Simulation level air  Occupancy  comfort Yes subzone
et al. (2021) .
diffusers models level
Supply
Room- gIJﬂOIW rate Personal Yes - at
This study Simulation level air PPy comfort Yes workstation
. airflow
diffuser directi models level
irection
Occupancy
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Although there are studies querying the optimization potentials in multi-occupancy
spaces based on individual preferences (Ghahramani et al., 2014; Jung & Jazizadeh,
2019a), the potentials of coupled utilization of personal comfort models and thermal
distribution patterns in building control to maximize collective occupant satisfaction
and enhance energy efficiency have not been systematically examined. Table 5.1
compares the previous studies focusing on improving human comfort while being
cognizant of consumed energy in office buildings. As a direct correlation between
individuals' positions and their satisfaction levels has already been demonstrated
(Abdelrahman et al., 2022), this study aims to further reveal possible strategies and
potentials for collective comfort optimization in shared environments. Once the
personal differences between occupants are accounted for with personal comfort
models, they can be addressed at individual level with control alterations in room-

level HVAC operation or allocating occupants to the adequate locations.

5.2 Material and Method

This research adopted a simulation-based quantitative approach for evaluating the
potentials aroused from uneven temperature distribution and nonuniformity in
individuals' thermal comfort preferences. The methodology in this section is
complementary to the ones in Chapter 3 and Chapter 4. In this post-processing phase,
a data-driven optimization analysis was conducted by leveraging the personal
comfort profiles and thermal distribution patterns datasets created in Chapter 3 and
Chapter 4 to generate occupant-centric strategy deductions and uncover collective

comfort improvement potentials.

5.21 Thermal Comfort Assessment

Although thermal comfort is influenced by many factors, operative room
temperature is considered as an acceptable proxy for comfort implications. Given the

airflow direction and airflow rate manipulations in the simulated scenarios, air
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velocity values were also checked to confirm that air speed around occupants are
within the comfortable limits (< 0.20m/s) defined by ASHRAE (2017), as shown in
Figure 5.1.
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Figure 5.1. Air velocity values in all simulations

Operative temperature, which is defined as “the uniform temperature of an
imaginary black enclosure, where an occupant would exchange the same amount of
heat by radiation and convection as in the actual non-uniform environment”, is
calculated by combining ambient air temperature and mean radiant temperature
(Djongyang et al., 2010). For cases where there is no exposure to air velocities

greater than 0.20m/s, the calculation oftentimes approximated as:

=" (10)

, Where t, , t and t represent operative temperature, ambient air temperature and

mean radiant temperature, respectively.
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In this study, ambient air temperature values were obtained by CFD simulations and
mean radiant temperatures were calculated using a 3D mean radiant temperature
(MRT) tool, developed by Center for Built the Environment (CBE) (Hoyt, 2016).
The ambient temperatures at occupant locations were defined by averaging ten
representative points at neck height (1.25 m) near each occupant, considering a
similar approach used in Jazizadeh et al. (2020). Related boundary conditions and
surface temperatures extracted from CFD simulation results for each case were used
as inputs for MRT calculation using CBE’s online tool (Figure 5.2). MRT is an
important physical parameter that may vary spatially depending on the indoor
environmental factors, just like ambient air temperature. In order to account for their
joint impact on occupants’ thermal comfort, operative temperature calculations were
made through averaging these values at given occupant locations, using Equation
(10).

MRT: 23.6
Occupant (x, y): (1.1, 6.0)

} setGlobalSurfac.. |

update

Close Controls

Figure 5.2. MRT tool developed by CBE (Hoyt, 2016)

522 Energy Saving Assessment

Energy performance changes brought by altering supply airflow rates were estimated

by assuming a single-zone system with reference system parameters from ASHRAE
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90.1-2022 Appendix L: Mechanical System Performance Rating Method (ASHRAE,
2022). Accordingly, following conditions were adopted:

= From ‘Total System Performance Ratio (TSPR) Reference Building Design
HVAC — Medium Office (cold)’ table in ASHRAE (2022):
- System type: Packaged VAV — Hydronic reheat
- Fan control: VSD, no static pressure reset
- Main fan power: (>MERV13 filter) 1.285 W/cfm
- Cooling source: DX, multistage, COPcooling = 3.40
- 30% minimum flow fraction
= From Fan and Pump Power Curve Coefficients table in ASHRAE (2022), the
fan power curve coefficients for the “VSD, no static pressure reset’ are as in
Equation (11).

ElecPowFrac = (11)
0.0013+0.147* (FlowFrac) +0.9506 * (FlowFrac)® —0.0998 * (FlowFrac)®

, Where ElecPowFrac is the fraction of power at full flow and FlowFrac is

the fraction of design flow.

=  The Summer Design Conditions for University Park (725128), where the
selected office space is located, are:
- 0.4%:31.4°CDB
- 1.0%:29.9°CDB
- 2.0%:28.0°CDB
- Climate Zone 5A (Cool-Humid), but near the border of 6A (Cold-
Humid)

As illustrated earlier in table 4.1, CFD results were generated using an ambient dry
bulb temperature of 28°C, occupant heat gain of 60 W/m?, computer heat gain of 60

W/m?, window heat transfer coefficient of 5.6 W/m2K, and solar transmittance of
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80%. The simulated airflow rates of 0.125 m?/s, 0.1625 m?/s, and 0.2 m?/s all kept

the average room temperature within the acceptable thermal comfort limits.

5221 Maximum Fan Energy Change

The maximum change in fan energy across flow rates were estimated by assuming
that the largest flow used in our simulation (0.2 m%/s) is the design air flow rate (i.e.,
the fan is operating at max power at our highest flow rate). This was not completely
inconceivable, since the 2.0% cooling design condition is equivalent to the ambient

temperature used for our studies. This gave a design fan power of:

1.285 W/cfm * 2118.88 cfmxs/m® * 0.2 m®/s = 545 W (12)

With 0.2 m¥%/s as the design flow, the three flows of 0.125 m3/s, 0.1625 m?/s, and 0.2
give flow fractions of 0.625, 0.8125, and 1.0, respectively. The ElecPowFrac were
then 0.44, 0.69, and 1.0, respectively, based on the fan curve in Equation-11. Thus,
if 0.1625 m®s case were taken as the reference point, increasing to 0.2 m®s would
result in 44% more fan energy and decreasing to 0.125 m3/s would result in 37% less

fan energy (assuming same runtime for the snapshot analyzed).

5.2.2.2 Low Fan Energy Change

In order to create a lower estimate for the change in fan energy, we assumed that the
smallest flow used in our simulation (0.125 m?/s) corresponds to the minimum 30%
required flow rate, and that the fan is operating at a minimum flow fraction of 30%.

The design flow rate in this case would be 0.417 m®/s, with a design fan power of,

1.285 W/cfm * 2118.88 cfm-s/m?® * 0.417 m®/s = 1135 W (13)

(i.e., about twice as large). This represents the case where the fan is operating in its
lowest part of the performance curve. The corresponding flow fractions would be
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0.3, 0.39, and 0.48, with power fractions of, 0.13, 0.20, and 0.28, respectively. Again,
taking 0.1625 m®/s as the reference, results in the low flow rate would save 35% fan

energy and the higher flow rate would lead to 42% more fan energy use.

We forgo analyzing a multi-zone case, as the results would be highly dependent on
the size of the other zones relative to the zone of interest, the relative load diversity,

and assumptions about multizone air-handler controls.

5.2.2.3  Cooling Coil Energy Savings

When airflow is reduced, the cooling coil energy would also be reduced. To estimate
the change in energy, we assumed that the coil entering and leaving air conditions
are the same so that the change in enthalpy of the air stream is the same for the three
flow rate cases. With this assumption, the change in total cooling coil load is directly
related to the change in mass flow rate (Equation (14)). Thus, reducing the flow to
the lower flow rate would result in 23% energy savings, while increasing to the

higher flow rate would require 23% more energy.

Q=M * Ah (14)
(Q totar denotes to total load, m refers to mass flow rate and Ah is enthalpy)

In these calculations, the assumption of constant enthalpy was an approximation. It
is conceivable that the dry bulb temperature leaving the coil would be the same in all
cases, if the coil were capacity controlled based on a supply air temperature setpoint.
However, the humidity leaving the coil depends on the conditions of the air entering
the coil and the latent performance of the coil at part load operating conditions. At
the low flow rate, the average zone temperature would be higher and the temperature
entering the coil would also be higher. Similarly, under the high flow scenario, the
air would return to the air handler in a cooler state. Detailed modeling and analysis

of coil latent performance and zone/AHU moisture balance is out of the scope of this
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work, as the intent is to generate approximate figures for relative changes in energy
use. The calculations presented did capture the dominant variable that impacts coil

energy use (i.e., the supply air flow rate.)

In summary, it was calculated that lowering the flow rate would save around 35%
fan energy and 23% cooling coil energy. Raising the supply air flow rate would
require around 44% more fan energy and 23% more cooling coil energy. It is worth
mentioning that the calculations are made based on the aforementioned assumptions
and the actual energy savings on fan and cooling coils need to be comprehensively

analyzed for each individual flow rate supplied to the zone.

523 Compiled Datasets and Data Flow

As illustrated in Figure 5.3, the overall framework of the methodology consists of
three parts. First, personalized thermal comfort profiles (PCP) were developed using
a probabilistic modeling approach for six occupants, each of which was assigned to
a fixed workstation in the baseline scenario regardless of room population (see
Figure 4.13).

Secondly, possible combinations of the selected parameters were simulated using
CFD and micro-thermal conditions at occupant locations were extracted for all cases.
A prior grid independence test and verification study were also performed to
demonstrate the reliability of the modeling approach. Lastly, a data-driven analysis
was carried out to compute collective comfort probabilities under different
conditioning (i.e., HVAC control) and occupancy settings. The first and the second
parts were presented in Chapter 3 and Chapter 4, respectively. This chapter
demonstrates the last part of the defined methodology, in which the compiled
datasets were processed using a comparative analysis approach. Personalized
comfort profiles were combined with micro-thermal conditions data for comfort
probability calculations and the compiled data was filtered to contrast the baseline

and proposed control strategies.
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Figure 5.3. Overall framework of the comfort optimization analysis

524 Control Strategies for Data Analysis

Given the simulation scenarios, the baseline and three control strategies were
established. The baseline scenarios represent conventional operational settings in
office buildings, where every occupant has a fixed position and climatization is
performed with a static airflow rate and uniform air distribution towards all

directions. A dedicated baseline scenario for each occupancy case was defined to
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account for occupant location alterations, compiling sixteen baseline scenarios in
total. In order to assess comfort and energy efficiency implications of adjustability
in (1) airflow direction, (2) airflow direction and airflow rate and (3) airflow
direction, airflow rate and occupant locations, three control strategies were defined

with an incremental complexity (Figure 5.4).

Airflow Rate Airflow Direction Qccupant Location;
[ Baseline Scenario J | 0.1625m'/s Uniform, static Fixed
(Control Strategy-1 1— 0.1625m’/s | —  Adjustable — Fixed
[ Control Strategy-2 } Adjustable - Adjustable — Fixed
[ Control Strategy-3 ]— Adjustable | —  Adjustable — Relocated

Figure 5.4. Characteristics of the baseline and control strategies

The number of strategies was determined considering the scope of the thermal
distribution dataset such that an accumulative complexity was established between
the strategies by enlarging the included extent of the simulation results at each
consecutive strategy. While control strategy-1 and control strategy-2 were
established to analyze how modest adjustments on HVAC operation like changing
supply airflow rate or direction influence collective comfort probability, control
strategy-3 was predicated on the intelligent allocation possibility of occupants
between working desks. Recent studies on the interfaces enabling human-building
communication creates a ground for generating such strategies and understanding
the potentials of keeping the occupants in the loop for control efficiency (Day et al.,
2020; Marson & McAllister, 2021).

Collective comfort probabilities in each control strategy were calculated by
averaging the comfort probabilities of occupants based on the assigned comfort
profiles. To this end, we calculated the collective comfort probabilities for sixteen
baseline scenarios considering the occupying individuals. We performed a data-
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driven analysis for assessing improvements achieved by the defined control
strategies, through reorganizing the thermal distribution dataset constructed with
CFD simulations based on given strategy characteristics.

5.3 Results

Determining a proper strategy to enhance collective comfort in multi-occupancy
environments has been a key question for building researchers (Shin et al., 2017).
Many approaches have been proposed for collective comfort improvements over the
years. Although proven to have diverse implications based on the contextual factors
in different cases in the literature, many of the strategies have certain drawbacks,
such as being designated to find an optimal setpoint temperature, assuming the
uniformity of the thermal conditions indoors or disregarding the individual

differences between building occupants.

To date, very few studies have assessed the implications of accounting for the
nonuniformity of both personal preferences and indoor conditions for improving
collective comfort and energy efficiency. According to the outcomes of the study
presented in Chapter 4, it was demonstrated that temperature is not uniformly
distributed in large multi-occupancy spaces, and thermal conditions that occupants
are subjected to varies based on the contextual factors in their immediate
surroundings. In order to leverage this condition in favor of collective thermal
comfort, we concentrated on the temperature values at occupant locations rather than
the room averages, and analyzed the potentials of coupling temperature distribution
patterns and personal comfort profiles to improve occupant comfort while ensuring
energy efficiency. In doing so, we assigned a unique comfort profile for each of the
six occupants and assessed collective comfort probabilities in different occupancy

scenarios considering the related operative temperatures at the occupied locations.

Table 5.1 presents the collective comfort probabilities at minimum multi-occupancy

scenarios with two occupants. Accordingly, collective comfort probability at the
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baseline, where occupant positions are fixed and supply airflow rate is constant with
uniform distribution towards all directions, was calculated as 68% on average.
Introducing adjustability to the supply airflow direction at the diffuser level in
control strategy-1 increased the probability of achieving collective comfort to 79%,
while allowing alterations in both rate and direction of supplied airflow in control

strategy-2 resulted in 91% probability on average.

In accordance with ASHRAE (2017), a building zone is considered to satisfy comfort
requirements if the comfortable occupants compile at least 80% of the room
population. Translating this to the approach adapted in this study, achieving
collective comfort with a probability of at least 80% could be claimed as the targeted
level. Although control strategy-1 and control strategy-2 provided collective comfort
probability improvements, both failed to satisfy 80% comfort probability for all
occupancy scenarios. This implies that, in some cases, occupants would be
dissatisfied with the thermal conditions of the space regardless of the supply airflow
settings. However, control strategy-3, which allows dynamic allocation of the
occupants between six positions together with supply airflow alterations, offered
substantial improvements in collective comfort probabilities and complied with the
minimum comfort requirements in all scenarios. With a probability of 98% on
average, utilizing control strategy-3 was shown to provide almost seamless operation

for ensuring comfort in minimum multi-occupancy.

In Table 5.1, changes in supplied airflow rate were illustrated as changes in energy
use, due to their correlation based on the cubic relationship between flow rate and
fan power. Accordingly, control strategy-1 does not have any implications on energy
use, in which the supplied airflow rate was fixed. Control strategy-2 offered energy
savings in nine out of fifteen cases, while improving the collective comfort
probabilities. A superior energy performance was suggested by control strategy-3,
with which the collective comfort was shown to be improved while saving energy in
twelve out of fifteen cases. There is one exceptional case for both control strategy-2

and control strategy-3, where the supplied airflow rate was increased.

110



Table 5.2. Collective comfort probabilities for the baseline and three control

strategies (for minimum multi-occupancy, in cases of two occupants)

Occ. o1 o2 Baseline CS-1 CS-2  Energy CS-3  Energy

Case (%) (%) (%) Use (%) Use
1 Occ-1  Occ-2 67 83 83 - 95 !
2 Occ-1  Occ-3 79 95 95 - 99 1
3 Occ-1  Occ-4 33 48 52 l 90 !
4 Occ-1  Occ-5 57 82 82 > 99 !
5 Occ.-1 Occ-6 71 80 86 1 97 !
6 Occ-2  Occ-3 94 94 97 ! 98 l
7 Occ-2  Occ-4 43 53 94 ! 99 !
8 Occ-2  Occ-5 89 92 98 ! 99 l
9 Occ-2  Occ-6 90 90 99 ! 99 !
10  Occ-3  Occ-4 49 58 85 | 98 |
11 Occ-3 Occ-5 78 98 98 - 99 !
12 Occ-3 Occ-6 79 99 99 - 99 -
13 Occ-4 Occ-5 70 70 99 ! 99 !
14  Occ-4  Occ-6 40 53 93 | 99 |
15  Occ-5 Occ-6 76 97 99 l 99 -

Average: 68 79 90 98

111



Although the priority was given to achieve the highest collective comfort probability
in our calculations, the proposed strategies have offered considerable improvements
in terms of energy efficiency. Considering the calculations in section 4.6.2.1 and the
illustrated changes in energy use (i.e., the supplied airflow rate) in Table 5.1, the best
performing strategy (control strategy-3) offered savings with a rate of 35% fan
energy and 23% cooling energy in 80% of simulated scenarios with two occupants.
This result confirmed that valuable energy could be wasted if HVAC systems are
operated in a static manner with full occupancy assumption. Once the number of
occupants decreases in an indoor environment, the load of conditioning system could
be reactively lowered by adjusting the relevant parameters. On the other hand, in the
maximum occupancy scenario, improving collective comfort probability led to an
increase in fan energy by 44% and cooling coil energy by 23%. However, it should
be noted that the proposed control strategies were designated to maximize the
collective comfort and the energy saving was not prioritized, which could have an

influence on this outcome.

To further elaborate the results, we visualized how temperature distributions and
comfort probabilities changes under different control settings in one of the
occupancy scenarios with two occupants (occupancy case-10 at Table 5.1). In the
occupancy case illustrated in Figure 5.5, occupant-3 and occupant-4 are at their
preassigned locations and air is supplied uniformly towards all directions with a rate
of 0.1625 m?/s in the baseline case. To this end, occupant-3 had a comfort probability
of 98%, whereas thermal conditions that occupant-4 is subjected to were not within
the acceptable limits considering the personal comfort profiles, resulting in an
average comfort probability of 49%. Although allowing supply airflow direction
alterations in control strategy-1 provided a slight improvement for occupant-4 while
not diminishing the comfort probability of occupant-3, it did not suggest a

satisfactory achievement on average.

On the other hand, enabling adjustability on both direction and rate of supplied cool
air in control strategy-2 presented a dramatic collective comfort improvement for the

two occupants. In the given case, reducing supplied airflow rate from 0.1625m?'s to
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0.125m?%/s increased the collective comfort probability by 27%. This result implies
that operating multi-occupancy spaces based on full-occupancy assumption settings
may create uncomfortable conditions for occupants and occupant-centric strategies

in HVAC control have a great potential for energy savings.

Although collective comfort probability that was calculated by averaging the
comfort probabilities of the occupants increased to 85% in control strategy-2, the
comfort probability of occupant-3 decreased from 97% to 81%, which is not desired.
With control strategy-3, in which occupants are optimally assigned to workstations,
a collective comfort probability of 98% was achieved. Accordingly, both occupants’
locations were reassigned based on their thermal comfort profiles, occupant-4 is to
location-1 and occupant-3 is to location-4. Desired non-uniform thermal conditions
were achieved by adjusting the supply airflow direction towards the south wall while
keeping the airflow rate at 0.125m%/s. It is assumed that occupant schedules were
known at the start of the date. It is also worth noting that occupants are subjected to
different operative temperature values in all cases with a variation ranging from
0.8°C to 1.7°C, illustrating how heterogenous thermal conditions can be in spaces of

such scale.
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| Comfort Prob: 99%

Figure 5.5. Temperature distributions (at plane y = 1.25 m) and comfort probabilities under
the baseline and three control strategies settings (occupancy case-10)
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The probability analysis for maximum occupancy produced parallel results to the
ones in minimum multi-occupancy, as illustrated in Figure 5.6. As the initial supply
airflow rate was designated for six occupants, collective comfort probability in the
baseline at maximum occupancy was found as 82%, which is 14% higher in
comparison to the minimum multi-occupancy scenarios. This result reflects the
importance of occupancy and demonstrates how pre-defined static operation of
climatization systems may lead to unintended thermal conditions in case of
occupancy changes in indoor spaces. While control strategy-1 and control strategy-
2 did not offer a considerable improvement at maximum occupancy, control strategy-

3 increased the collective comfort probability of 12%, leading to the level of 94%.

100 98%

94%

82%
55 79%

68%

60

Comfort Probability (%)

40

20

Baseline Control Strategy-1 Control Strategy-2 Control Strategy-3

Minimum multi-ocupancy (2 occupants) B Maximum occupancy (6 occupants)

Figure 5.6. Collective comfort probabilities for the control strategies
(For minimum multi-occupancy (on average) and maximum occupancy)
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Overall, these results confirms that collective comfort is enhanced if a control
strategy where occupants are allocated to the positions considering both personal
comfort preferences and micro-thermal conditions is employed in multi-occupancy
spaces. In addition to comfort improvement, redundant HVAC energy use or waste
due to conditioning vacant spaces can be avoided through dynamically determining

operational shifts based on occupant data in buildings.

54  Follow-up Study for Assessing Temporal Variations

As mentioned earlier, CFD simulations were conducted using a steady-state mode,
the result of which provides a snapshot of the thermal conditions in the defined space
under given boundary conditions at a particular time. In order to confirm the
applicability of the proposed control strategies under temporal variations, a follow-
up study was designated. The primary intention here was to assess whether the
collective comfort levels that were achieved with the proposed strategies at a certain
time of the day (ToD) could be maintained throughout the working hours in any day.
Within the defined borderlines of the proposed framework, it is expected that once
the occupants are intelligently allocated to the workstations at the start of the day,
the adjustability of the supplied airflow rate and supplied airflow direction should be

sufficient to dynamically respond to occupants’ comfort needs.

541 Additional Simulation Scenarios

The aforementioned 432 simulations were performed by setting the date and time as
June 21%, 13:00. For the follow-up study, keeping the date as constant, ToD was
introduced as a new variable and four different times of day, which are 09:00, 11:00,
15:00 and 17:00, were added as ToD alternatives. Considering the accumulative
increase in the number of combinations and resultant computing time, including only
the maximum occupancy case was deemed adequate. Alternatives for the supplied
airflow rates (0.125 m%s, 0.1625 m?s, and 0.2 m%s) and the supplied airflow
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direction (uniform, north, south, west, and east, northwest, northeast, southwest and
southeast) were used as they were defined in Chapter 4. Correspondingly, the
combinations of three supplied airflow rates, nine supplied airflow directions and
four out of five ToD alternatives (scenarios for ToD:13:00 were previously

simulated) composed 108 additional scenarios, as illustrated in Figure 5.7.

Full Occupancy

Supply airﬂo;N rate: Supply airﬂovg rate: Supply airﬂg)w rate:
0.125m/s 0.1625 m /s 0.2m/s

Supply || Supply || Supply || Supply | | Supply || Supply || Supply || Supply || Supply

airflow airflow airflow airflow airflow airflow airflow airflow airflow
direction:| |direction:| |direction:| |direction:| |direction:| |direction:| |direction:| |direction:| |direction:
Uniform N S w E NW NE SW SE

[ ToD: 09:00 ] [ ToD: 11:00 ] [ ToD: 13:00 ] [ ToD: 15:00 ] [ ToD: 17:00 J

Figure 5.7. Simulation scenarios for temporal variation analysis

54.2 Analysis of Temporal Impacts

The control strategies defined in section 5.2.4 were used to evaluate collective
comfort probability changes with respect to temporal variations. By averaging the
comfort probabilities of occupants based on the assigned comfort profiles, comfort
probabilities at ToD alternatives were calculated for the baseline and three control
strategies. For control strategy-3, which was predicated on the relocation of

occupants to the workstations based on their comfort profiles, the relevant
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calculations were not done through isolating each ToD alternative. Instead, the
intelligent allocation was done through considering all five ToD cases to maximize
the performance of the control strategy. Seat assignment was determined to be done
at the start of the day, and the occupant locations were considered to be fixed
afterwards. The seat allocation maximizing the collective comfort probability for the

day was computed by averaging the comfort probabilities at all ToD alternatives.

100
96% 96%

79% 79% 80%

Comfort Probability (%)

09:00:00 11:00:00 13:00:00 15:00:00 17:00:00
Time of the Day

BN Baseline W ControlStrategy-1 W ControlStrategy-2 - ControlStrategy-3

Figure 5.8. Temporal variations of collective comfort probabilities at baseline and three
control strategies

Collective comfort probabilities in the baseline and three control strategies are
illustrated in Figure 5.8. Accordingly, the calculated collective comfort probabilities
for the baseline, in which the HVAC settings were fixed with static occupancy
assumption, range between 73% to 82%. This result demonstrates that the baseline
settings fail to maintain the minimum comfort range (80%, as mentioned earlier)
throughout the day, owing to the variations in exterior conditions (i.e., solar
radiation). Despite slightly increasing the probabilities granted by the baseline,

improvement implications of control strategy-1 and control strategy-2 did not show
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a notable fluctuation between different times of the day. However, it was observed
that the employment of control strategy-2, which implies adjustability in supplied
airflow rate and direction, keeps the collective comfort level above the minimum

required comfort threshold regardless of the time of the day.

What stands out in Figure 5.8 is that, with control strategy-3, seat assignment
procedure performed by considering the changes brought by temporal variations
increases the comfort probabilities dramatically and collective comfort could be
maintained throughout the day with a probability range between 90% to 96%. This
strategy, naturally, requires the compliance of the occupants with the seat assignment
procedure. If occupants did not collaborate with the building control system and
choose to have their workstations fixed, then the maximum achievable collective
comfort would be provided with control strategy-2, with a probability between 80%
to 84%. In an unlikely case where occupants randomly change their seats based on
their likings, the building control system could take a reactive action and adjust
HVAC settings providing the highest collective comfort probability, provided that

the occupant comfort is prioritized in the system logic.

In order to further investigate the collective comfort improvement brought by control
strategy-3, temperature values at occupant locations were comparatively analyzed.
In this regard, operative temperature changes with respect to temporal variations in
the baseline settings and control strategy-3 are depicted in Figure 5.9 and Figure
5.10, respectively. In the baseline settings, the difference between temperature values
that occupants are subjected to fluctuates during the day and reaches up to 2.7
degrees Celsius at 11:00. This fluctuation is caused by the temporal impacts on
operative temperatures at each occupant location. Accordingly, in the baseline
settings, operative temperature values at six locations throughout the day range
between 23.7°C to 25.2°C, 23.2°C to 24.6°C, 22.2°C to 23.9°C, 22.8°C to 24.5°C,
21.3°C t0 23.2°C and 23.2°C to 24.2°C, respectively. The temporal variations were
observed to influence the thermal conditions at all occupant locations, with the
highest impact at location-5 (1.9 degrees Celsius) and the lowest impact at location-

6 (1.0 degrees Celsius). Readers may refer to Figure 4.13 for occupant locations.
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Figure 5.9. Temporal variations of operative temperature in baseline settings
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Figure 5.10. Temporal variations of operative temperature in Control Strategy-3

Apart from the relocation of occupants based on their personal comfort profiles
(Figure 5.11), what control strategy-3 grants is to reduce the temporal impacts and

minimize the operative temperature fluctuations to the extent possible at each
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occupant location. Compared to the baseline settings, in control strategy-3, operative
temperature ranges at defined locations drop significantly, stretching between
23.5°C t0 24.6°C, 23.0°C to 24.0°C, 22.3°C to 23.0°C, 22.5°C to 23.5°C, 21.3°C to
21.9°C and 21.9°C to 23.9°C, respectively. What can be clearly seen in Figure 5.10
is the sharp temperature drop at loc-6 at 11:00. This drop can be correlated with the
airflow dynamics influenced by the increased supplied airflow rate, which is implied
by the control action to flatten the rising temperature at 11:00.

+ Baseline Settings + Control Strategy-3
Cosewant#2 ]— Loc2 Cosewenttz J—H> Loc2
(oetpan#s ]— Loc3 (ocetpant#s )—H— Lo
Loc-4 Loc-4
——>» Locs —p» Loc5
Loc-6 Loc-6

Figure 5.11. Relocation of occupants in control strategy-3

5.4.3 Individualistic Comfort Evaluation

As mentioned earlier, collective comfort probabilities were calculated by averaging
the comfort probabilities of occupants based on their assigned comfort profiles.
Although the averaged probability value could allow a plausible interpretation for
overall comfort assessment in shared indoor environments, further analysis at
individual level may reveal the personal implications of the proposed strategies. It
may also provide insights for improving building control. Having analyzed the
temporal impacts on operative temperature values at the defined locations, comfort
probabilities of each occupant at five ToD alternatives were computed. The changes
in personal thermal comfort levels in the baseline settings and control strategy-3 are
demonstrated in Figure 5.12 and Figure 5.13, respectively. It is worth noting that the
relocation of occupants (Figure 5.11) was taken into account while performing the
calculations for the control strategy-3 in Figure 5.13.
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Figure 5.12. Occupants’ comfort probabilities in the baseline setting
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Figure 5.13. Occupants’ comfort probabilities in control strategy-3
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What is striking in Figure 5.12 is the continuous discomfort of occupant-1
throughout the day in the baseline settings. Even at 13:00, when the collective
comfort probability was reported as 82% that was considered to be above the
minimum required comfort range, occupant-1 suffers from the lack of thermal
comfort. Moreover, the comfort probabilities of occupant-4 and occupant-5 seem to
fall below the minimum required range at 09:00 and 15:00, while other times their
comfort levels are satisfactory. These results show that temporal variations have
impacts on thermal comfort, and individual occupant assessment in building
operation would decrease the risk of leaving out some occupants while providing

comfortable conditions in shared environments.

Since neither control strategy-1 nor control strategy-2 demonstrate a remarkable
improvement for the collective comfort (see Figure 5.8), analysis of individual
comfort assessment for these strategies were not presented. Figure 5.13 demonstrates
that control strategy-3 has some dramatic improvement implications for thermal
comfort at an individual level. When compared with the baseline settings, the
obvious improvement is achieved on the comfort probability of occupant-1, without
sacrificing the remaining occupants’ well-being. The only notable downside that is
observable in control strategy-3 is that, the comfort level of occupant-6 falls slightly
below the minimum comfort range at 11:00 with a probability of 75%. This can be
related with the aforementioned unexpected drop of operative temperature at
location-6 due to the airflow dynamics, as illustrated in Figure 5.10. Apart from that,
the individual comfort probabilities are quite satisfactory with a range between 84%

to 99% with a solid inclination towards the upper limit.

To wrap up, it can be argued that thermally comfortable conditions could be provided
regardless of the temporal variations with the proposed building control strategy, if
the occupants comply with the relocation procedure at the start of the day based on
their personal comfort preferences. It is of utmost importance to take an additional
step and include individual comfort assessment while determining the collectively
comfortable conditions in multi-occupancy indoor spaces. Trusting solely on the

collective comfort probability calculation may result in overlooking the discomfort
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of an individual in the studied space. Although not observed in our current analysis,
considering occupants with different comfort profiles than reported in this work
could have changed the situation, and may have led to this problem.

55 Discussion

In the conventional practice, offices have occupants assigned to certain workstations.
In such settings, HVAC system operations could be configured to provide the
comfortable conditions based on personal preferences of individuals. On the other
hand, in recent years, with the boosting impact of Covid-19 pandemic, flexible
working and hot-desking have become a popular space usage strategy for many
offices. Instead of providing permanent offices, occupants are dynamically allocated
to the workstations with the purpose of reducing operational costs, minimizing
energy use and promoting work efficiency (Candido et al., 2019; Sood et al., 2020).
This growing trend have the potential to both necessitate and enable adopting new
operational strategies in buildings for maintaining comfort requirements and
efficient use of resources. In this research, it was demonstrated that personal
differences between individuals’ comfort needs and natural spatial variations in
thermal conditions can be leveraged in shared environments to establish novel
building control strategies to overcome the limitations of conventional approaches
and to meet the incurring operational needs without additional energy use. Both for
the conventional office settings and the lately popular operational strategies, the
proposed framework demonstrates more flexible, efficient and sustainable

operational flow, without overlooking the personal needs of building inhabitans.

In the optimization analysis presented in this chapter, although the employed datasets
and analysis procedure were carried out with an offline procedure, the primary
intention was to establish the scientific base for an occupant-centric building control
mechanism that would dynamically respond to the needs of all individuals within

shared indoor environments. Based on what this section provides, further
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elaborations and interpretations that were discussed in Chapter 2 could be made to

actualize an integrated building control framework.

In a practical application, it is anticipated that the supplied airflow rate and direction
can be adjusted at the diffuser level, based on the required thermal asymmetry
implied by the differences in occupants’ personal comfort preferences. Personalized
air conditioning has been getting attention in the past recent years as a method to
provide more efficient energy management in buildings considering the diversity in
individual preferences. The active diffusers providing flexibility of airflow
adjustments (for both throughput and airflow direction) can be employed to create
the desired temperature distribution. Active diffuser is a relatively new concept, the
development of which received attention from both researchers (Jazizadeh et al.,
2020) and commercial initiatives (Lindinvent, 2023) in recent years. By controlling
the rate and the direction of supplied fresh air, the required thermally heterogeneous
environment could be achieved to respond to the comfort needs of all individuals in
a shared space. In addition, such diffusers can shut themselves off if the space is
detected to be vacant by the occupancy sensors. Various control techniques, from
rule-based to reinforcement learning, could be developed to configure the indoor

environment using such technologies.
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CHAPTER 6

CONCLUSION

This research has focused on conceptualizing a building control framework and
analyzing its applicability in the thermal domain, as an overarching contribution to
the efforts of providing comfortable climatic conditions in buildings and being
cognizant of consumed energy. Responding to the drawbacks of the one-size-fits-all
approaches in the current practice, personalized dimensions of building control,
thermal comfort, and indoor climate were investigated. Researches have shown that
relying solely on automating the operation of building systems is not a very efficient
control strategy, as the needs of occupants are not static, and standardized settings
do not provide satisfactory indoor environmental conditions for every individual. It
was also demonstrated that keeping the occupants completely out of the control loops
leads to decreased perceived control, which impacts both energy consumption and
human comfort in a negative manner. To this end, a collaborative control framework,
which establishes a communication ground between people and buildings were
conceptualized. In order to analyze how such a framework could enable
improvements in human comfort and energy efficiency, a simulation-based and data-
driven research was conducted in the thermal domain. Differences in personal
comfort preferences and micro-climatic conditions in multi-occupancy indoor spaces
are accounted for by developing personal thermal comfort profiles and investigating
thermal distribution patterns. Through performing an optimization analysis,
achievable comfort improvements and energy savings were presented in case of both
occupants’ incorporation and sole automation. The results of the data-driven analysis
confirmed that considering the nonuniformity of personal comfort and indoor
climate in a dynamic building control strategy where the occupants are kept in the
loop have great potential for providing comfortable indoor environments without

wasting valuable energy excessively.
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6.1  Revisiting the Research Questions

The main research question that this research focused on was: How can we improve

occupant comfort while ensuring the efficient use of energy in building operation?
To answer the main research question, the following sub-questions were addressed:

What are the comfort and energy affiliated problems in prevailing building

control approaches and how can they be tackled?

With the aim of answering this question, a literature review was performed to
investigate human and automation-related system issues in building control. It was
revealed that the main focus of current approaches is either on empowering the
occupants for building control or developing fully automated system operation
minimizing human inference. While relying on manual control has been shown to be
inefficient in terms of energy use, the full automation also has crucial disadvantages,
such as decreased perceived control leading to lower satisfaction levels, and
standardized operational assumptions. To address these drawbacks, a collaborative
building control mechanism that provides a sense of continuous control for
occupants and allocates operational decisions to the building management system
was proposed, and system components were discussed. The outlined control
framework was predicated on a communication ground between the occupants and
the building, which would enable automation adjustability at the desired level and
allow bidirectional feedbacks, suggestions and notifications.

What are the implications of occupant comfort in shared indoor environments

on building control?

Satisfying occupant comfort needs in personal offices or single-occupancy spaces is
achievable by configuring the building operation based on the individual specific
preferences. However, providing comfortable conditions for all occupants in multi-
occupancy indoor environments is a unique challenge for building control. In

consideration of the possible differences in comfort preferences of occupants,

128



available personal comfort feedback datasets were processed with Bayesian network
modeling approach to generate personal comfort profiles of multiple individuals. The
illustrated variations in the thermal comfort sensitivities of six people revealed that
controlling the thermal domain in shared spaces based on generic and averaged
assumptions will create suboptimal conditions for many of the occupants.
Individuals sharing the same zone may have different thermal comfort preferences,
and this imply personalized system configuration requirement for building control.

What are the characteristics of thermal distribution patterns in multi-

occupancy office spaces?

This inquiry was addressed by performing CFD simulations in ANSYS Fluent
software. Thermal distribution patterns in a multi-occupancy office space were
investigated under varying climatization and occupancy settings. Based on the
outcomes of the numerical and visual analysis, it was demonstrated that the
temperature is not uniform in the selected office space and the distribution is
influenced by the supplied airflow rate, the supplied airflow direction, the number
and positions of occupants, and the placement of diffusers. In keeping with the
anticipated outcome, the increase in the supplied airflow rate and the number of
occupants led to higher room temperatures. It was also revealed that changing the
supplied airflow direction has a direct impact on the indoor temperature, and setting
the directional airflow configuration considering the inlet and outlet locations could
be used as an alternative strategy for providing required thermal conditions.

Can we leverage varying comfort preferences of occupants and heterogeneity

of thermal conditions to improve collective comfort and energy efficiency?

A data-driven optimization analysis was performed to test the potentials of
leveraging the nonuniformities in personal comfort preferences and distribution of
thermal parameters. A baseline setting and three control strategies were defined with
an incremental complexity. The quantitative analysis performed demonstrated
improvements in collective comfort probabilities for almost all occupancy cases,

brought by the proposed control strategies compared to the baseline. While
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substantial energy saving potential was revealed for minimum multi-occupancy
scenarios, a trade-off between collective comfort and energy consumption was
observed for maximum occupancy. The results confirmed that if building
management system can communicate with the occupants and the individuals
cooperate by complying with its suggestions (i.e., seat assignment), achievable
comfort and energy improvements are maximized. Without this communication
ground, the optimization strategies that account for personal preferences and micro-

climatic conditions still offered improvements but they were relatively limited.

6.2 Limitations and Future Work

This study also has several limitations. To start with, the proposed building control
scheme was only assessed in the thermal domain with a simplified collaboration
component, which is the assignment of occupants to the workstations. The
communication between the building and the occupants may be configured in a more
complex fashion by designating a dedicated interface in an experimental study. The
field of human-building interaction could be investigated further to discover the
different dimensions of bidirectional communication between buildings and
occupants, including influential parameters, energy and comfort affiliated potentials

and achievable improvements.

Although this work only focused on thermal comfort, other indoor environmental
conditions such as lighting, acoustics, or privacy concerns can affect occupants’
overall comfort levels and their seat selections. Other domains could also be studied
in isolation to understand their specific implications first, and then multi-domain
studies could be conducted to reveal the overall configuration requirements of the
integrated control framework. Establishing a seamless flow and well-configured
compatibility between various building systems serving different domains could
enable BMS to take the most efficient and effective action in response to the

feedback received from the building occupants.
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Personal comfort profiles utilized in this research have a direct impact on the
optimization results. Having different personal comfort profiles than the ones
defined in the optimization analysis could lead to changes in the selected settings by
the control strategies. Based on the available evidence in the literature (Wang et al.,
2018), it was assumed that occupants usually have different thermal comfort
preferences and tolerances. However, it can be claimed that in the cases where
thermal preferences of the individuals sharing the same environment are very similar,
indoor thermal conditions may not be optimal for all occupants, given the
heterogeneity in thermal conditions. For such a consideration, further research is
required to reveal the strategies that would provide uniform thermal conditions in
shared indoor spaces. Moreover, in order to confirm the inclusivity of the
methodology, more personal characterictics such as age, sex, body mass index, etc.
could be incorporated in personal comfort profiles. Having more personal traits
embedded in personal comfort profiles could also lead to profound improvements on
the predictive performance of the generated models, and decrease the required data

collection time to reach accurate representations.

The methodology proposed in this research was validated in an office space at an
educational facility, the scale and dimensions of which may have an influence on the
numerical results. Accordingly, building type, location, defined space volume,
selected time of the year and number of occupants can be variated in further studies
to investigate the applicability of the methodology in the presence of different

contextual factors.

In CFD simulations, due to the cumulative increase in the number of combinations
and computing time, only minimum and maximum multi-occupancy cases with three
supply airflow rates were modeled and analyzed. Incorporating all possible
occupancy scenarios and increasing supply airflow rate resolution by adding more
levels could reveal further explorations for ensuring collective comfort in an energy-
efficient manner. Moreover, the positions of the supply air inlet and the return outlet
were modeled considering the real-world parameters of the studied space, and they

were kept constant. Considering their influence on air mixing and flow dynamics,
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the impact of the HVAC components’ placement could be assessed to reveal possible
design strategies. In addition, we have analyzed thermal distribution patterns through
a steady state simulation setup, which provides a snapshot of the environment at a
given time under defined boundary conditions. A further study with a transient
simulation setup could make it possible to assess more granular time-dependent
fluctuations of indoor environmental conditions, which was not viable within the

scope of this research.

Applicability of the proposed control strategies under different conditions could be
verified through longitudinal field studies enabling continuous data acquisition with
adequate sensor infrastructure, which is anticipated as a future research direction for
this study. For further investigation, we also plan to incorporate more parameters,
including the time of the day at four seasons, the scale of the multi-occupancy spaces,
the arrangement of venting components, and the positioning of the working desks to

account for more contextual factors.

6.3 Conclusive Remarks

It is of the utmost importance for building researchers to consider the human
dimension in any attempts leaning towards achieving technological improvements
in buildings. As the most fundamental parameter of the built environment is the
occupants, laying the bricks on a human-centered foundation would always be a
good step forward for disposing of potential obstacles in integrating new
advancements to buildings. Considering the interdependency between building
control, indoor climate, and human comfort, operational codes of building systems

should be configured with a comprehensive understanding.

In an effort to develop an occupant-centric building control framework enhancing
human involvement, this study tackled with the challenges in the thermal domain,
posed by the differences in personal comfort preferences and nonuniformity of

micro-thermal conditions, and leveraged them for comfort provision at an individual
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level in shared environments. In doing so, an office space with six occupants was
adopted as a case study, and a unique comfort profile was developed to be assigned
to each individual within the defined environment. Thermal distribution
characteristics of the space were investigated using CFD simulations under varying
supply airflow rates, supply airflow direction, and occupancy settings. Three control
strategies were proposed with an incremental complexity to delve into the potentials
of adjustability in supply airflow direction, supply airflow direction, and supply
airflow rate, and supply airflow direction, supply airflow rate, and occupant
locations. Collective comfort probabilities were examined under three control
strategies at the minimum and maximum multi-occupancy and assessed the findings
in comparison to the defined baseline scenarios. Simulation results illustrated that
temperature is not uniformly distributed in multi-occupancy spaces, and occupants
are subjected to different thermal conditions depending on their locations and related
contextual factors. Although adjustability of supply airflow direction and supply
airflow rate implies comfort improvements in minimum multi-occupancy scenarios,
their sole employment was ineffective in full occupancy. However, it was revealed
that adjusting supply airflow direction could be used as an alternative strategy for
adjusting thermal conditions in shared indoor environments instead of altering
supply airflow rate, which typically implicates higher energy use due to the cubic
relationship between flow rate and fan power. According to the analysis results,
coupling personal comfort preferences and thermal distribution patterns in building
control increases the probability of achieving collective comfort considerably, if

individuals are intelligently allocated between six occupant positions.

This study showed that keeping occupants in the loop while determining the control
actions in buildings has profound improvement potential. For the thermal domain,
assuming the uniformity of thermal conditions in multi-occupancy spaces may be
misleading for occupant-centric building control studies, and the comfort
requirements of occupants should be assessed based on micro-conditions at their

positions rather than representative room thermostat measurements.
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B. Temperature Distribution Patterns in All Occupancy Scenarios
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Figure A.1. Temperature distribution gradients in minimum multi-occupancy scenario-1
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Figure A.2. Temperature distribution gradients in minimum multi-occupancy scenario-2
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Figure A.3. Temperature distribution gradients in minimum multi-occupancy scenario-3
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Figure A.4. Temperature distribution gradients in minimum multi-occupancy scenario-4
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Figure A.5. Temperature distribution gradients in minimum multi-occupancy scenario-5
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Figure A.6. Temperature distribution gradients in minimum multi-occupancy scenario-6
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Figure A.7. Temperature distribution gradients in minimum multi-occupancy scenario-7
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Figure A.8. Temperature distribution gradients in minimum multi-occupancy scenario-8
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Figure A.9. Temperature distribution gradients in minimum multi-occupancy scenario-9
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Figure A.10. Temperature distribution gradients in minimum multi-occupancy scenario-10
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Figure A.11. Temperature distribution gradients in minimum multi-occupancy scenario-11
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Figure A.12. Temperature distribution gradients in minimum multi-occupancy scenario-12
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Figure A.13. Temperature distribution gradients in minimum multi-occupancy scenario-13
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Figure A.14. Temperature distribution gradients in minimum multi-occupancy scenario-14
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Figure A.15. Temperature distribution gradients in minimum multi-occupancy scenario-15
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