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Tez kapsaminda, ayrik zaman gecikme terimlerini, Lipschitz aktivasyon fonksiyonlarini
iceren ve parametre belirsizliklerine sahip olan arabaglanti matrislerinin bir alt sinir ve bir
st sinir icinde kaldigr bir YSA smifinin matematiksel modellemesi incelenecektir. Bu tez
oncelikle bu sinir ag1 modellerinin robust kararliligin1 olusturmak i¢in istenen sonuclarin elde
edilmesinde 6nemli bir etkiye sahip olacak, arabaglanti matrisler sinifinin ikinci normunuin
yeni ve alternatif bir iist sinir degerini sunacaktir. Daha sonra iyi bilinen homeomorfizm
eslesme bagintisi teorisi ve temel Lyapunov kararlilik teorisi kullanilarak, ayrik zaman
gecikmeli dinamik bir YSA i¢in baz1 yeni robust kararlilik kosullarin1 belirlemek amaciyla
genel manada bir cerceve belirtilecektir. Aym1 zamanda daha Once yaymlanmis robust
kararlilik sonuglarinin kapsamli bir incelemesi tezde yapilacak olup mevcut robust kararlilik
sonuclarinin verilen sonuglardan kolayca cikarilabilecegini bu tez caligsmasi gosterecektir.
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which is one of the types of numerous activation conditions required in the mathematical
representation of artificial neural networks, is applied and a new upper bound definition
is made for interval matrices with uncertainties parameter in this model. Furthermore, in
this thesis, a global asymptotic robust stability analysis was satisfied using the standard
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and a general result was revealed by comparing the previous findings in the literature.

May 2023, xi+63 pages.

Keywords: Dynamical Neural Networks, Interval Matrices, Discrete Delays, Robust
Stability, Lyapunov Functionals

xi



1. GIRIS

YSA, insan dimagimin norolojik yapisinin iglevinden ilham alinarak gelistirilen, yapay
olarak Ogrenebilen hatirlama, karar verme, kiyaslama, genelleme gibi pek c¢ok ozelligi
matematiksel modellerle gerceklestirilen bir bilgi isleme teknolojisidir. Goriilmemis 6rnekler
hakkinda bilgi tiretme, algilama, sekil (6riintii) baglantilar1 kurma ve onlart siniflandirma,
eski orlintiilerden yola ¢ikarak yeni oriintiiler elde etme ve 6grenme gibi bir ¢ok islemi paralel
zamanl olarak yapabilme ozelliklerine sahip olan YSA, giiniimiizde bir¢cok sektorde goriintii
isleme, optimizasyon, ¢agrisimli bellek tasarimi gibi problemlerin ¢éziimiiniin yapilmasinda

kullanilmaktadir.

YSA insana 6zgii 6grenme yetisini bilgisayarlara ya da makinelere aktarilmasini saglamak
icin kullanilan yapay zeka teknolojilerinin temel yap1 taslarindan biridir. Bu yiizden
son donemde yapay zeka uygulamalarinin ivmelenmesiyle birlikte YSA'nin gelistirilmesi
icin yapilan c¢aligmalar da artmistir. Bu yapilan calismalarin daha dogru ve sistematik
ilerleyebilmesi i¢cin YSA'nin olusum temeline inmek gereklidir ve olduk¢ca Onem arz

etmektedir.

YSA’nin kullamim alanlarinda ortaya c¢ikan c¢esitli somut problemler matematiksel
modellemeler yardimiyla ¢oziilmektedir. Bu modellemelerin olusumu i¢in ise diferansiyel
denklem sistemleri kullanilmaktadir. Bu sebeple diferansiyel denklemler YSA

calismalarinda zorunlu olarak kullanilan bir ara¢ haline gelmistir.

Literatiirde dogrusal sistemler gercek diinya probleminin ¢oziimiinde kullantminin yam
sira basit olmalarindan dolayr oldukg¢a ilgi gormiistiir. Fakat var olan tiim sistemler
dogrusal olmak zorunda degildir ve bu sebeple dogrusal olmayan diferansiyel denklem
sistemlerinin de kullanilmasin1 gerektirecek bazi durumlar meydana gelebilir. Ayrica
sistemlerin matematiksel modellemesi adi diferansiyel denklemler kullanilarak yapildiginda
yalnizca o andaki var olan zamanda hesaplama yapilir ve dolayisiyla dnceki zamanlar goz
ardi edilmis olunur. Bu durum sonucunda sistemden elde edilen ¢iktilar ¢cok dogru bilgiler
vermez. Dolayisiyla daha gercek sonuglar elde etmek i¢in durumu zamana gore degisen

modellerin genel bir sinifi olan dinamik sistemleri kullanmak gerekir. Dinamik sistemleri



daha genel bir ifadeyle tanimlayacak olursak; dinamik sistemler, zaman i¢inde degisen
dogrusal olan ya da olmayan sistemlerdir. Dinamik sistemler durum vektorleri ve diferansiyel

denklemlerin bir kiimesiyle olusturulur.

Dogrusal olmayan diferansiyel denklemlerle olusturulmus dinamik bir YSA modeli
icin birtakim davranis analizleri yaparak cesitli sonuglar elde etmek, dogrusal olmayan
diferansiyel denklemleri cozmekten daha miimkiindiir. Bir bagka ifadeyle bu tarz
denklemlerin niteliksel davramiglart incelenerek sistem hakkinda yorumlar yapilmasi
aragtirmacilara daha kolaylik saglar. Optimizasyon, goriintii ve isaret isleme gibi
problemlerin ¢6ziimiinde kullanilan YSA modellerinde; koas, catallanma, kararlilik,
kararsizlik, osilasyon gibi bir¢ok niteliksel davranis icerisinden kararli dinamik davranis tarzi
olduk¢a hayatidir. Bu nedenle bu tip YSA'nin denge noktasinin kararli durum formunda
olmasi arzu edilir ve hatta son yillarda kararli duruma sahip cesitli YSA modellerinin

olusturulmast ve analiz edilmesi popiiler olarak ¢aligilan alanlardan biri haline gelmistir.

Literatiirde, ilk dinamik sistemli YSA modellemesi, Hopfield tarafindan 1980’li yillarda

yapilmis olan Hopfield yapay sinir ag1 modelidir:

dx(t)
dt

=—Cx(t)+Ag(x(t)) +u

Sekil 1.1: Hopfield YSA Matematiksel Modellemesi

T durum vektoriinii, C = diag(c; > 0) i. noron igin sabit

Burada x = (x1,x2,...,%p)
katsayilar, A = (a; ;) ara baglantt matrisini, g(x) = (g1(x1),g2(x2), .., gn(xn))" aktivasyon

fonksiyonlarint u = (uy,uy, ...,u,)" giris vektoriinii, n ise néron sayisini temsil etmektedir.

Daha sonra ise Hopfield modelden daha kullanigli bir model olan Cohen-Grossberg YSA

model 1983 yilinda ortaya atilmigtir:

dx(1) _

25 = D(x(0)[-Clx(r)) +Ag(x(1)) + 4]

Sekil 1.2: Cohen-Grossberg YSA Matematiksel Modellemesi



Burada D(x(7)) genisletme fonksiyonudur. Bu fonsiyon sistemin denge noktasina yakinsama

hizin1 denetler. Ayrica buradaki C(x(¢)) davranig fonksiyonudur.

Hopfield modeli, Cohen — Grossberg modelinin (D(x(r)) = 1 ve C(x(t)) = Cx(t) igin)
0zellesmis birer formudur. Bu sebeple Cohen-Grossberg i¢in yapilan ¢alismalarin hepsi

Hopfield model i¢in de gecerli olacaktir.

Yapilan calismalar sonucunda YSA modellerinde g6z oniinde bulundurulmasi gereken farkli
etmenlerin varlig1 da ortaya cikmugtir. Bunlar arasindan 6zellikle ¢cok onemli iki faktor
g6z oniinde bulundurulmalidir. Bunlardan ilki sistem parametrelerindeki sapmalar, ikincisi

sistemdeki zaman gecikmeleridir.

Bu nedenle bu iki durumun Oniine gecebilmek i¢in alinmasi gereken onlemlerden birincisi;
sistemdeki zaman gecikmelerinden dogan sapmalardan kurtulabilmek amaciyla zaman
gecikmeli YSA modeli kullanilmasidir. Ciinkii gecikmenin goz 6niinde bulundurulmadigi
bir YSA sistemi kararli iken kararsiz hale gecebilir. Benzer sekilde meydana gelebilecek
bazi1 dig etkenlerden dolayi, sistem parametrelerinde olusabilecek sapmalar sebebiyle
de sistem kararsiz hale gelebilir. Bu yiizden alinacak onlemlerden ikincisi ise; YSA
nin sistem parametrelerindeki sapmalarin 6niine gegebilmek adina sistem parametresinin
belirsizliklerinin dinamik davranis lizerindeki etkisi goz oniinde bulundurularak bir robust

kararlilik analizi gerceklestirmektir.

Bu tezin amaci zaman gecikmeli ve parametre belirsizlikleri ile tanimlanmig
Cohen-Grossberg YSA modeli i¢in yeni bir iist sinir ve yeni bir Lyapunov fonksiyonu
tanimlayarak sistemin denge noktasi icin global robust kararlilik analizi gerceklestirmek ve

yeni esnek kararlilik kosullari elde etmektir.

Bu hedef dogrultusunda, tezin genel kisimlarinda dogrusal olan ve olmayan diferansiyel
denklem sistemleri i¢in birtakim kararlilik kavramlarindan bahsedilmis ve bir diferansiyel

sistemin kararliliginin tespitinde kullanilacak bazi 6nemli teorilere yer verilmistir.

Tezin malzeme ve yontem kisminda dogrusal olmayan bir diferansiyel denklem sisteminin
matris-vektor formunda ifade edilisi lizerine elde edilen matrislerin ve vektorlerin cesitleri
hakkinda oOnbilgiler verilmis olup YSA'nin matematiksel modellemeleri incelenmistir.
Ayrica bu modeller icerisindeki parametre belirsizliklerine sahip YSA modelleri i¢in hem

arabaglant1 matrislerine yeni bir iist sinir bulunmus, sayisal ornekle pekistirilmis hem de



belirli varsayimlar altinda robust ve global asimtotik kararlilig1 analizi yapilmistir.

Bulgular kisminda ise elde edilen kararlilik kosullarinin Cohen-Grossberg YSA modeli ve
Hopfield YSA modeli i¢in uygulanabilirligi ispatlanmis olup literatiirdeki benzer varsayimlar
altinda elde edilen kosullar1 da genelledi8i acikca ifade edilerek yeni ve yeterli kararlilik
kosulu elde edildigine dikkat ¢ekilmistir.

Son kisimda ise tezin kapsamindan bahsedilerek bu tezden elde edilen 6zgiin sonuclar

15181nda literatiire yeni katkilar yapilabilece8i vurgulanmustir.



2. GENEL KISIMLAR

Dinamik sistemler YSA caligmalarinin matematiksel modellemesinde kullanilan dogrusal
olan ya da olmayan durumu zamana gore degisen diferansiyel denklem kiimeleridir. Bu
sistemlerde istenilen hedef diferansiyel denklem sistemlerinin denge noktasi civarindaki
davranmigini inceleyerek birtakim sonuglar elde etmektir. Bu yiizden 6nce denge noktasi

kavramini incelemek gerekir:

Denge Noktasi: X = g(x) olarak gosterilen bir diferansiyel denklemde g(X) = O sartim

gercekleyen X sabitine sistemin denge noktasi denir.

Genellikle uzun bir zaman araliginda sisteme ait ¢coziim yoriingelerinin denge noktasina
yakinsamasi, denge noktasindan sacilmasi, kaos ya da denge noktasinin civarinda osilasyon
yapmasi ve benzeri davraniglar ortaya cikabilir. Ancak once dogrusal olan ya da olmayan
sistemlerin matematiksel olarak ifade edilisini, eger bulunabiliyorsa ¢oziimlerinin nasil
oldugunu, bulunamiyorsa sistemin davranis analizinin yapilmasi i¢in kullanilan yontemleri

aciklamak gereklidir.

2.1. DOGRUSAL VE DOGRUSAL OLMAYAN DIFERANSIYEL DENKLEM
SISTEMLERI

W nxn boyutlu sabit bir matris ve x(t) = (x1(¢),x2(¢),...,x,(t))7 R* de tanimlanan vektor
olmak iizere; x(r) = Wx(t) dogrusal diferansiyel denklem sistemi eger W matrisinin
ozdegerlerine karsilik gelen n tane 6zvektoriin lineer bagimsiz kiimesine sahipse o zaman
bu sistemin ¢oziimii x(¢) = civieM + .+ ¢ v,e™! dir. Burada ¢y, ca, ..., c, keyfi sabitlerdir.

Ayrica bir x(¢) degiskeninin denge durumu, x(¢) = 0 olmasidir.

Dogrusal olmayan sistemlerde dinamik denklem asagidaki sekilde ifade edilebilir:

Xi = gi(x1(1),x2(), ..., x5 (1)), i=1,.,n

Yukaridaki diferansiyel denklem takimindaki x(¢) = (x1(t),x2(¢),...,x,(¢))T sisteme ait



durum degiskenidir ve g fonksiyonu dogrusal olmayan bir fonksiyonu temsil etmektedir.
Bu ifadenin vektor-matris formu ise %(z) = g(x(¢)) olarak yazilabilir. Ek olarak g(¥(¢)) =0

esitligini saglayan X = (¥ (¢), %2 (¢),...,%,(¢))" vektorii sistemin denge noktasidur.

Denge noktast dogrusal sistemlerde tek iken dogrusal olmayan sistemlerde bir ya da daha ¢ok
olabilir. Denge noktasinin sayis1 kullanilacak problemin ¢esidine gore belirlenir. Cift yonli
cagrisimli bellek tasarimi yapmak istenildiginde ¢oklu denge noktasinin varligi avantajli
iken herhangi bir optimizasyon probleminin ¢6ziilmesinde sadece bir tane denge noktasinin

varlig1 daha avantajlidir.

Dogrusal olan veya olmayan herhangi bir sisteme ait ¢6ziim yoriingeleri denge noktasina
yakinsadiginda ya da denge noktasina gitmeye egilimli oldugunda sistem kararli; bu
yoriingeler denge noktasindan uzaklastiginda ya da osilasyon yaptiginda ise sistem kararsiz

bir yapidadir.
x(t) =Wx(t),xeR",t >0

seklinde verilen dogrusal sistemi ele alinirsa det(W) # 0 oldugunda bu sistemin tek denge
noktasinin varlig1 asikardir. Bu denge noktasinin kararliligi Lyapunov kararlilik teoremleri
ile belirlenebildigi gibi dogrudan W matrisine bakarak da belirlenebilir. Ornegin; A;(W), W
matrisinin 6zdegerlerini temsil etmek tizere Re(A;(W)) >0, (i=1,...,n)ise x(t) — oo olur
ve bu sekilde olan sistemler kararsiz olarak nitelendirilir. Re(A;(W)) <0, (i=1,...,n) ise

x(t) — 0 olur ve bu sekilde olan sistemler kararli olarak nitelendirilir.

Dogrusal olmayan denklem sistemlerinde ise kararlilik analizini gerceklestirmek zor
oldugu icin ve ayrica denge noktasinin varligir sistemin kararlilhifinda gerekli fakat
yeterli kosul olmadigi i¢cin bu konudaki gereksinimi karsilamak {izere literatiirde
dogrusal olmayan dinamik sistemlerinin kararlilik derecelerini ve 6zelliklerini siniflandiran
birtakim analiz yontemleri gelistirilmistir. Ayrica bu yontemler dogrusal sistemler i¢in de

kullanilabilmektedir.

Dogrusal olmayan sistemler i¢in kararlilik derecelerine ve 6zelliklerine gore bazi kararlilik

kavramlar1 matematiksel olarak asagidaki gibi tanimlanabilir:



2.2. KARARLILIK CESITLERI VE TEOREMLERI

Kararlhilik : Dogrusal olmayan bir sistemin denge noktasi X ve ¢ > 0 olmak sartiyla Ve > 0

icin
[(0) =X [|< 6 =] x(r) —x[l<e

kosulunu saglayan 36 bulunabilirse sistem kararlidir.

Yukaridaki matematiksel ifadeler ¥’in 0 komsulugunda (S(8)) baslayan her ¢oziimiin
X ’in € komgulugunda (S(¢)) kaldigin1 soyler. Sonug olarak kararli bir sistemde; x(¢)
¢Oziim yoriingeleri denge noktasinin civarindadir. Ancak birden fazla nokta bu kosulu

gercekleyebileceginden dolayi sistem birden ¢ok denge noktasina sahip olabilir.

Kararsizhik : Kararli olmayan sisteme kararsizdir denir. Yani kararsiz sistemde sistemin
coziim yoriingeleri, S(€) bolgesinden ¢ikarak ya bir limit ¢cevrimi igine girer ya da sonsuza

gider.

Asimtotik Kararhilik : X denge noktasi ve t > 0 olmak lizere, eger X kararliysa ve asagidaki

kosulu saglayan herhangi bir 0 < 8y < & varsa o zaman sistem asimtotik kararhdir:

| x(0) =X ||< 8o = lim x(r) =X
n—oo

Boylece X "1 & komsulugunda (S(9)) baglayan yoriingeler S(€) bolgesinin digina ¢ikmadan
t — oo iken sonunda hepsi X ’a yaklasir. Yani; asimtotik kararli olan bir sistem tek denge

noktasina sahiptir.

Bu sebeple asimtotik kararlilik, kararliliktan daha kuvvetli bir 6zelliktir. Ciinkii bir sistemin
asimtotik kararli olabilmesi i¢in Oncelikle kararli olmasi gerekir. O halde asimtotik kararl

olan her noktanin kararl oldugu ifade edilebilir.

Global Asimtotik Kararlilik : X denge noktasi kararli ve ¢ > 0 olma kosuluyla, herhangi x(0)

icin lim,, . x(f) = X oluyorsa X denge noktas1 global asimtotik kararlidr.

Dogrusal sistemlerde kararlilik ile global asimtotik kararlilik esdegerdir.
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Sekil 2.1: Kararsizlik,Kararlilik, Asimtotik Kararlilik

Ustel Kararhlik : Eger x = g(x) sisteminin denge noktas1 ¥ = 0 olmak iizere ¢oziimii Im >
0,A >0 ve Vt > 0,]| x(0) ||< ¢ i¢in asagidaki kosul saglanirsa X = 0 denge noktasi iistel

kararlidir :

1 x(0) [|< m || x(0) | e

Bir bagka ifadeyle herhangi bir baglangi¢ durumu i¢in X denge noktasinin bir S(6) komsulugu

varsa ve bu komsulukta Vx(0) € S(8) kosulu altinda t — oo iken |x(f) — X| < e

esitsizligini gergcekleyen bir A > 0 skaleri varsa tistel kararlidir.

Ustel kararlilik asimtotik kararhiliktan daha giicliidiir. Yani bir sistem iistel kararli ise

asimtotik kararhdir.

Global Ustel Kararhlik : Eger herhangi baglangic kosulu igin, V¢ > 0 olmak sartiyla
1 x(e) < m || x(0) || e

olacak bi¢cimde m > 0 ve A > 0 sabitleri mevcutsa ¥ = 0 denge noktasi global iistel kararlidir.

Bir bagka ifadeyle eger iistel kararlilik kosulu tiim x(0) baslangic kosullari icin saglanirsa



X = 0 denge noktas1 global iistel kararli olarak adlandirilir.

Optimizasyon, paralel igslem gibi problemler icin tek denge noktasi istenildiginden, bu
durumu garantilemek amaciyla uygulanacak YSA modeli global asimtotik kararli olacak
sekilde belirlenir. YSA'nin global yakinsakligini gercekleyen belirsiz sistem parametreleri
arasindaki iligkiyi kuran sartlar elde etmek, global kararlilik analizinin temel hedeflerinden
biridir. Fakat bu sartlarin gerceklenebilmesi bizi fazlasiyla zor ve karmasik analizlere maruz
birakmaktadir. Bunun sebebi de YSA’nin matematiksel model ifadesinin dogrusal olmayan

diferansiyel denklem sistemleri ile olmasidir.

Ayrica bu belirlenen dogrusal olmayan dinamik sistemli YSA modelinin kararliliginin
tespitinde; esas olarak Lyapunov teoremleri kullanilmaktadir. Nedeni ise karmasik
diferansiyel denklemleri cozmeden sistemin kararlilik analizinin bu teorem yardimiyla
kolaylikla yapilabilmesidir. 1982 senesinde Rus matematik¢i Alexandr Mikhailovich
Lyapunov bu teoremini literatiire kazandirmasi ile yeni bir ¢igir agmistir. Giinlimiizde
zamana gore de8isen veya degismeyen sistemlere direkt olarak uygulanabilmesi sebebiyle

oldukca kullanighdir.

Lyapunov Kararhlik Teoremi :

» Eger siirekli, diferansiyellenebilir, yerel pozitif tanimlhi bir V : R xR" — R
fonksiyonu ve sabit r > 0 varsa o halde x(¢) € R" ve g : R{xR" — R" olacak bi¢cimde
x(t) = g[t,x(t)] t > 0 sisteminin denge noktasi kararlidir 6yle ki
V(t,x) <0, Vt>ty, VYx€B,.

» Eger siirekli, diferansiyellenebilir, azalan, yerel pozitif tanimlh bir V : Ry xR" — R
fonksiyonu ve sabit r > 0 varsa o halde x(r) € R" ve g : R+ xR" — R" olma koguluyla
x(t) = g[t,x(t)] t> 0 olacak bigimde sistem diizgiin kararhidir dyle ki
V(t,x) <0, Vt>0, VxeB,.

* Siirekli, diferansiyellenebilir, azalan, yerel pozitif tanimli bir V : RyxR" — R
fonksiyonu varsa dyle ki —V yerel pozitif tamml fonksiyon; o halde x(z) € R" ve
g: R:xR" — R" olma sartiyla x(¢) = g[t,x(¢)] ¢ > 0 olacak bigimde sistem diizgiin

asimtotik kararhdir.

 Eger siirekli, diferansiyellenebilir bir V : R, xR" — R fonksiyonu var ve (i) V pozitif
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tanimly, azalan ve radyal sinirs1z ve (i) —V pozitif tanimli fonksiyon olma 6zelliklerine
sahipse o halde x(¢) € R" ve g : RyxR" — R" olacak bigcimde x(¢) = g[t,x(¢)] ¢t >0

sisteminin denge noktasi global diizgiin asimtotik kararlidir.

» Eger siirekli, diferansiyellenebilir bir V : R xR" — R fonksiyonu ve a,b,c >0, p > 1
varsa o halde x(0) global iistel kararlidir dyle ki
allx[|P <V (t,x) < b||x|[P, V(t,x) < —cl|x]|, Vt > 0, Vx € R"

Yukaridaki teorem Lyapunov’un Direkt Metodu seklinde isimlendirilir. Ustteki metot
sayesinde dogrusal olmayan sisteme ait diferansiyel denklemleri ¢coxmeden sistemin denge
noktasinin kararlilik 6zellikleri belirlenebildiginden oldukca genel ve kullanighdir. Ayrica
bu metot dogrusal sistemler i¢in de kullanilabilir Ancak bu yoOntemin uygilanabilmesi
icin ise uygun bir Lyapunov fonksiyonu se¢mek hayatidir. Lyapunov fonksiyonu elde
etmeye yarayan genel bir yontem bulunmamakla birlikte literatiirde birtakim calismalar [1]

mevcuttur.
Lyapunov Teoremi’nin kapsamli versiyonu olan LaSalle Degismezlik Ilkesi de mevcuttur:

LaSalle-Krasovskii Teoremi:

e x(t) = glt,x(t)] t > 0 sistemi periyodik olsun. Sistemle ayni periyoda sahip
siirekli,tiirevlenebilir, yerel pozitif tanimli bir V : R, xR" — R fonksiyonu ve V (¢,x) <
0, Vt > 0,Vx € N kosulunu saglayan 0’1n bir N acik komsulugu var olsun. ¢ > 0 olmak
lizere L,(c) bir seviye kiimesini temsil etsin. Oyle bir ¢ sabiti i¢in L,(c) nin N de

sinirlanmasi ve kapsanmasi gerceklensin ve S asagidaki gibi tanimlansin:
S=x€L,(c):3t>0>V(t,x)=0

Bu kogullar altinda, eger S, x(¢) = 0 Vy > 0 harig sistemin bagka hicbir yoriingesini

icermiyorsa, o zaman 0 denge noktasi diizgiin asimtotik kararlidur.

o X(t) = g[t,x(¢)] t > 0 sistemi periyodik olsun. Bu sistemle ayni periyoda sahip
siirekli, tiirevlenebilir bir V : R, xR" — R fonksiyonu var olsun. Oyle ki (i) V > 0

ve radyal smirsiz (i) V (¢,x) < 0, Vt > 0,Vx € R". Bu kosullar altinda asagidaki gibi
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bir R kiimesi tanimlansin:

R=xcR":3t>0>V(t,x) =0

eger S, x(t) = 0 Vo > 0 harig sistemin bagka hi¢bir yoriingesini igermiyorsa, o zaman

0 denge noktasi global diizgiin asimtotik kararhdir.
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3. MALZEME VE YONTEM

Dinamik YSA’nin kararlilik analizi yapilirken matrislerin ve vektorlerin normlar1 gibi
birtakim o©zellikleri kullanilir. Bu sebeple matris ve vektor ozellikleri YSA kararlilik
analizinin temel yapitasidir. Ancak bu 6zelliklerin daha kolay anlasilabilmesi icin 6nce Oklid

Uzay1 kavrami izah edilecektir.

Oklid Uzay1: s = [s,s5;...,5,]7 n boyutlu vektorlerin kiimesini, s1,s5...,s, gercek sayilari
ifade edecek olursa; reel degerli tiim n-bouyutlu vektorlerin kiimesi R” ile temsil edilir ve
Oklid Uzay1 olarak adlandirilir.

R" uzayinin sahip oldugu 6zelliklerden bazilar1 asagidaki gibidir:

]T

(i) R* de y = [y1,y2..-,yu|] Ve s = [s1,52...,5,]T herhangi iki es boyutlu vektor olmak iizere,

s+y=I[s1 +y1,5 +Y2....8, +yn]" yeni bir vektor olusturur.

(i) Herhangi bir s € R" vektoriiniin o skaler ile carpimi ots = [atsy, otss..., dis,]” seklinde

olup as yeni bir vektor temsil etmektedir.

(iii) Herhangi s,y € R" vektorleri icin i¢ carpim s”y = Y, siyi seklinde hesaplanan bir

tamsay1dir.

Vektor Normlari: Vs,y € R” ve 1 sabit bir say1 olsun. ||s|| s vektoriiniin normunu temsil
eden ve asagidaki ozellikleri gercekleyen reel degerli fonksiyon olarak tanimlanirsa o zaman

bu fonksiyon bir norm belirtir:

« |Is|| > 0,Ys #0 ve s =0 ise ||s|| =0,
* Als+ 1l < [lsll+ 111,

* |nslf = [nlllsl]
Literatiirde en sik kullanilan p. normu asagidaki gibidir:

1
[Isllp = (s1]” +s2l” + .. +sal?) 7 T <p <o
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Bu tez calismasinin sonuglarinin elde edilmesinde fayda saglayan ve yukaridaki genel

formdan elde edilen 3 norm asagidaki gibidir:

[Isllr = (sal+[s2f 4.+ Isnl) = Xy [sil

lsll = (1P 12+ lsaf)2 = (B 5)2 = (579)2
Il = max s

Eger || . ||o ve || . [|g ayrt p-normlart ise, Vs € R" igin asagidaki bicimde p; >0 ve up >0

sabit sayilar1 mevcuttur:

s lloa <l sllp < p2 |l slla

Bu sebeple tiim p-normlart bu anlamda esittir. Asagida vektdr normlarinin bazi 6zellikleri

herhangi s € R" vektorii i¢in dzetlenmistir:
s l2<l's li<v/m [ s |l2
I's o <Il's l2<v/m || s [|os
s lle<ll s h<v/m || 5 ]|oo

Ayrica Holder Esitsizligi vektorlerin p-normu kullanilarak ifade edilebilen farkli bir

esitsizliktir ve agagidaki gibidir:

1 1
Vs,y € R"igin |sTy| <|| s |||l ¥ ll4» — + — = 1 sartim saglayan 1 < p,q < o olan p,q sayilari
P 9

mevcuttur.

Reel elemanli nxn boyutlu W matrisi, R" — R" e x(t) = Wx(t) dogrusal doniisiimiinii

tanimlayacak olursa W nin p-normunun genel hali agagidaki gibidir:

| Wx ||
H w Hp: sup L=
w0 1xllp  Ixllp=

Burada p = 1,2,...,0 i¢in elde edilen W matrisinin birinci normu || W ||;, ikinci normu

|| W ||2 ve sonsuz normu || W || su sekildedir:
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| W = max Y1 Wi

IW o= Aar(WTW)]2

| W le= max ¥j-i |wijl

Matris normlarinin bilinmesi gereken bazi 6zellikleri asagida kisaca 6zetlenmistir:
Herhangi W,,,,,, matrisi ve By, matrisi i¢in;
W< VITW LW [l

1
T [ W o< [| W [l2< /m || W]

1
N W Ih<[W 2= v/n | W
WP <[ Wl Pl

Bazen p indisi gosterim esnasinda diisiiriiliir ve yazilmaz. Bu durumda bu normun p normu

oldugu bilinmelidir.

3.1. MATRIS CESITLERI

Matrisler dogrusal olan ve olmayan dinamik sistemlerin dengelerinin kararlilik 6zelliklerini
karakterize etme bakimindan fazlasiyla Onemlidir. Kararli matrislerin incelenmesi i¢in
birincil motivasyon, diferansiyel denklem sistemlerinin denge noktalarinin kararlilik
ozelliklerini anlama arzusundan kaynaklanmaktadir. Matematigin uygulandig1 bilimin ¢esitli
alanlarinda denge noktalar1 ile ilgili sorular ¢esitli bicimlerde ortaya ¢ikar. Bu alanlarin her
birinde, durumu degisen, 6zellikle uzun donem davraniglar1 hakkinda bilgi alinmak istenen
sistemlerin dinamiklerini incelemek gerekir. Bu nedenle matris kararliligi, uygulamalar
ve matris teorisinin evrimi arasindaki etkilesimde onemli bir konu haline gelen baslangi¢

aracidir.

Kararli Matris : W nxn boyutlu bir matris olmak iizere W matrisinin her 6zdegerinin reel

kismi negatif (Re(A;(W)) < 0) ise W ya kararli matris denir.

Pozitif Kararli Matris : nxn boyutlu bir W matrisinin her 6zdegeri pozitif reel kisma sahip
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(Re(A;(W)) > 0) ise W pozitif kararli matris olarak ifade edilir.

Bu ozellikleri tagsiyan matrisler "H - kararli matris" olarak da adlandirilir. Ayrica W € H

seklinde temsil edilir.
Teorem 3.1.1 : W pozitif kararl bir matristir ancak ve ancak —W kararhdir.
Teorem 3.1.2 : Eger W pozitif kararl bir matrisse detW > 0 dur.

Pozitif Yart Kararli Matris : W matrisinin 6zdegerlerinin negatif reel kismu sifirsa yani W

nin her 6zdegeri negatif olmayan reel kisma sahipse W ya pozitif yar1 kararli matris denir.
Bu matrislere "Hy kararli matris" de denir ve W € Hj seklinde temsil edilir.

Teorem 3.1.3: W nxn tipinde bir matris olmak iizere eger W pozitif kararli bir matrisse o

halde W tekil degildir.

Pozitif Tanumli Matris : W nxn boyutlu bir matris olsun. Eger W7 = W ise yani W simetrik
bir matrisse ve her 6zdegeri pozitif reel kisma sahip ( Re(A;(W)) > 0) ise W matrisine pozitif

taniml1 bir matris denir. Bu tip matrisler W > 0 seklinde gosterilir.

Lemma 3.1.1 : Herhangi bir W matrisi pozitif tanimhidir ancak ve ancak Vx # 0 vektorii i¢in

xT Wx kuadratik formu pozitiftir.

Pozitif Yart Tamiml Matris : W nxn boyutlu bir matris olsun. Eger W = W ise yani W
simetrik bir matrisse ve her 6zdegeri negatif olmayan reel kisma sahip ( Re(4;(W)) > 0) ise

W matrisine pozitif taniml bir matris denir.

Pozitif tamimli matrislerde gecerli olan biitiin kurallar yar1 pozitif tanimli matrislerde de

gecerlidir.

Teorem 3.1.4: Eger W pozitif tanimli ise pozitif kararlidir. Bir bagka ifadeyle pozitif taniml

matris pozitif kararli matrisin 6zel bir durumudur.

Z, Tamumi : W = (w;;) herhangi bir matris olmak iizere;
Zyp ={W = (wij) :wij <0, i jvew; >0,i=j Vi j}

seklinde tanimlanan matrise Z, sinifinin bir elemanidir denir.
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M Matris : Eger W € Z,, ve W pozitif yar1 kararli ise W matrisi M matris olarak ifade edilir,
W € Ky seklinde gosterilir.

Tekil Olmayan M Matris : Eger W € Z,, ve W pozitif kararli ise W, tekil olmayan M matris
seklinde adlandirilir, W € K seklinde ifade edilir.

M matris siifinin olduk¢a 6nemli 6zelliklerinden biri M matrislerin asil alt matrislerinin
yine bir M matris olmasidir. Ayni1 6zellik pozitif tanimli matris sinifi icin de dogrudur. Yani
pozitif tanimli matrisler ile tekil olmayan M matrisler arasinda bu anlamda biiyiik oranda

benzerlik bulunmaktadir.

Karsilagtirma (Kiyas) Matrisi : nxn boyutlu bir W matrisi igin kiyas matrisi C = {¢;;} ile

gosterilir ve elemanlari ¢;; = wj;,¢jj = — |wi j| olarak tanimlanir.
Z, kiimesinde bir matrisin karsilagstirma matrisi kendisine esittir.

Tekil Olmayan H-Matris : Diyagonal elemanlar1 w;; > 0 olan herhangi W matrisi icin bir
kiyas matrisi C olsun. Bu C matrisi tekil olmayan M matris olursa o halde W, tekil olmayan

H matris seklinde isimlendirilir ve W € C bigiminde sembolize edilir.

H-Matris : Diyagonal elemanlar1 w;; > 0 olan herhangi W matrisi i¢in bir kiyas matrisi C
olsun. Bu C matrisi M matris olursa o halde W matrisine H matris denir ve W € Cj seklinde

gosterilir.

D-kararly Matris : W nxn boyutlu bir matris olmak iizere her P = diag{p; > 0} icin WP € H
oldugunda D-kararli denir ve W € D ile gosterilir.

Kosegensel Kararli Matris : W nxn boyutlu bir matris olsun. Pozitif kdsegen bir P matrisi

varsa ve W1 P+ PW pozitif taniml ise kosegensel kararli denir ve W € D ile gosterilir.

Dy-kararli Matris : W nxn boyutlu bir matris olmak iizere her P = diag{p; > 0} icin WP €
Hj oldugunda Dy-kararli denir ve W € Dy ile gosterilir.

Kosegensel Yari-Kararli Matris : W, nxn boyutlu bir matris olsun. Pozitif kosegen bir P
matrisi varsa ve W P+ PW pozitif yar1 tamml ise kosegensel yari-kararli denir ve W € Dy

ile gosterilir.

Kosegensel kararli matrisler ayni zamanda pozitif kararli bir matris sinifidir.
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Toplamsal Kararli Matris : Herhangi nxn boyutlu W matrisi ele alinsin. Her P = diag{p; >
0} i¢cin W + P € H ise W toplamsal kararli bir matristir ve W € A ile gosterilir.

Toplamsal Yari-Kararli Matris : Herhangi nxn boyutlu W matrisi ele alinsin. Her P =
diag{p; > 0} icin W + P € H ise W toplamsal yari-kararli bir matristir ve W € Ay ile

gostertilir.

Bu matris sinifi ilerleyen boliimlerdeki dogrusal olmayan dinamik sinir agi sisteminin

kararlilik analizi ¢calismasinda kullanilacaktir.

Pozitif matris: W nxn boyutlu bir matris olmak iizere W matrisinin tiim temel mindrleri

pozitif ise bu matrise P-matris denir ve W € P ile gosterilir.

Yari-Pozitif Matris : W nxn boyutlu bir matris olmak tizere W matrisinin tiim temel mindrleri

negatif degilse bu matrise Py-matris denir ve W € P ile gosterilir.

Kesin Kosegen Satir Baskin Matris : nxn boyutlu bir W matrisine ait elemanlar;

n
wi > Y wyl o, Vi

j=Li#j

oluyorsa W kesin kosegen satir baskin matristir. Bir bagka ifadeyle W matrisinin kesin
kosegen satir baskin matris olabilmesi i¢in; bu matrisin her kosegen elemani, bulundugu

satirdaki diger elemanlarin mutlak degerce toplamindan biiyiik olmalidir.

Kesin Kosegen Siitun Baskin Matris : nxn boyutlu bir W matrisine ait elemanlar;

n
Wii > Z |W jil , Vi

J=Li#]

oluyorsa o zaman W matrisi kesin kdsegen satir baskin matristir. Bir bagka ifadeyle W
matrisinin kesin kosegen satir baskin matris olabilmesi i¢in; bu matrisin her kdsegen elemant,

bulundugu siitundaki diger elemanlarin mutlak degerce toplamindan biiyiik olmalidir.

Kosegen Satir Baskin Matris : Bir nxn W matrisi, ancak ve ancak

wi = Y wijl ; Vi

n
J=Li#j



18

ise kdsegen satir baskin denir.

Kosegen Siitun Baskin Matris : Bir nxn W matrisi, ancak ve ancak

n
Wi = Z |Wj,'| , Vi
J=Li#j

ise kosegen siitun baskin denir

Kosegen-Disi Izoton Matris : Elemanlart w;; > 0,w;; < 0 seklinde olan bir W = {w;;}

matrisi i¢in W kesin kosegen satir baskin ise kdsegen dig1 izoton matristir.

Toplamsal Kosegensel Kararli (My) Matris : Yo > 0 skaleri icin ol + W € D ise W € M,

olmaktadir.

Bu matris smifinda W, Cy ve Dy matris siniflarimin 6zelliini saglamakla birlikte bu iki
siifin da eleman1 degidir. Bu sebeple yeni bir sinif tamimlanma yoluna gidilerek bir M
sinift bulunmugtur ve bu sinif dinamik sinirsel sistemlerin denge noktasinin global asimtotik

kararlilik kogullarini elde etmek i¢in kullanilabilmektedir.

Asagida bu tez kapsamindaki matris siniflarina ait bilinmesi gereken birtakim temel 6nemli

ozellikler verilecektir:

e Simetrik bir W matrisi i¢in, WP reel 0zdegerlere sahiptir, bu P matrisinin pozitif

kosegen matris oldugunu ispatlar.

WeCise W € Ddir. Ama W € Cy ise W € Dy olmak zorunda degildir.

* C matrisi W matrisinin kiyas matrisi olmak iizere C € Ky ise W € Cy dir.

W tekil olmayan M-matris veya tekil olmayan H-matris ise, bir P pozitif kosegen

matrisi vardir dyle ki

PW+WIP>0

* W € M, ise her P =diag{p; >0} icinA+P €D

* W e My ise her P =diagp; > 0icin AP € M)
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W tekil olmayan M-matris veya tekil olmayan H-matris ise, bir P pozitif kosegen

matrisi vardir 6yle ki W7 P kesin kosegen baskindur.
e WeDiseW € H dir.
e WeMyise W € Dy dir.
* (p sinifindaki bir W matrisinin Dy sinifina ait olmasi gerekmez.
* Dy sinifindaki bir W matrisinin Cy sinifina ait olmasi gerekmez.
* Ky sinifindaki bir W matrisinin Dy sinifina ait olmasi gerekmez.

* My sinifindaki bir W matrisinin Cop, Koy, Do siniflarindan herhangi birine ait olmasi

gerekmez.

* Ky, Cp ya da Dy smiflarindan birine ait olan bir W matrisi My sinifina da aittir. Ote

yandan W simetrik bir matris gerek ve yeter sart pozitif yar1 tanimli ise W € My dur.

3.2. AKTIVASYON FONKSIYONLARI

YSA’larmin  kararliligini etkileyen faktorlerden biri, sistemde kullamilan aktivasyon
fonksiyonlaridir. Aktivasyon fonksiyonlar1 hiicreye gelen net girdiye karsilik bir ¢ikti
belirler. Bu ¢iktinin hesaplanabilmesi amaciyla birtakim lineer olmayan fonksiyonlar
kullanilmaktadir. Kullanilan cesitli aktivasyon fonksiyonlar1 saysesinde; YSA’nin sistem
parametreleri iizerinde global robust asimtotik kararlilik sartlarinin olusturulmasi, YSA
modelinin denge noktasinin varlig1 ve tekligi analizi yapilarak meydana gelen durumlardan
her biri i¢in bagka sartlar olusturulmustur. Bu tez calismasi kapsaminda olduk¢a 6nemli bir
yere sahip olan literatiirdeki aktivasyon fonksiyonlari, onlarin matematiksel gosterimleri ve

temel Ozellikleri asagida verilmistir:

Siirh Aktivasyon Fonksiyonlari : p; pozitif bir sabit olmak iizere eger g;(s),

gi(s)l < pi,
(1i=1,2,...,n) sartim gercekliyorsa sinirlidir. Boyle olan aktivasyon fonksiyonlarinin kiimesi

g € B ile gosterilir.
Siirekli Artan Tiirevi Sitmirh Aktivasyon Fonksiyonlari :

gi(s) — &i(y)
s—y

0< < Ni, Vi Vy,sER ve y+#s
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n; > 0 herhangi sabitler olmak iizere yukaridaki kosulu gercekleyen fonksiyonlara siirekli
artan tiirevi sinirh aktivasyon fonksiyonlari denir. Bu tip aktivasyon fonksiyonlarinin kiimesi

de g € S ile temsil edilir.
Azalmayan Tiirevi Sinirh Aktivasyon Fonksiyonlar :

gi(s) —&i(y)
s—y

0< <Y, Vi Vy,s ER ve y#s

% > 0 herhangi sabitler olmak iizere iistteki kogulu gercekleyen aktivasyon fonksiyonlarinin

kiimesi g € K olarak ifade edilir ve azalmayan tiirevi sinirli aktivasyon fonksiyonlar1 denir.

K simifi S simifindan daha genis bir kiimedir. K smifindaki aktivasyon fonksiyonlari

azalmayan fonksiyonlar oldugundan dolay1 tiirevi sifir ya da pozitif olabilir.
Lipschitz Siirekli Aktivasyon Fonksiyonlari :

|gi(s) — &i(y)]

<, Vi Vy,s ER ve y#s
|s =l

Yukaridaki ifadede 1; > O degerleri sabittir. Ustteki kosulu gercekleyen aktivasyon

fonksiyonlar1 .Z sinifina aittir ve g € .Z ile gosterilir.

Lipschitz siirekli fonksiyonlart monoton artan ve artan fonksiyonlar icerdiginden dolayi
< smifi da K simifindan daha genis bir kiimedir. Bu sebeple Lipschitz aktivasyon
fonksiyonu YSA’nin kararlilik analizi yapilirken literatiirde siklikla kullanilmistir. Ayrica

bu tez kapsaminda yapilan ¢alismalarda da . sinifi aktivasyon fonksiyonu kullanilacaktir.

YSA’'nin kararlilik analizlerinde genellikle kullanilan fonksiyonlar 6zdeslik fonksiyonu

1 |

(g(y) =), sigmoid fonksiyonu (g(y) = 17, ), tanh fonksiyonu (g(y) = &—) , signum

fonksiyonu vb. fonksiyonlardir.

3.3. YSA ILE ILGILI GENEL BILGILER

Yapay zekanin bir alt dali olan YSA, 68renme yontemiyle daha onceki bilgilerden farkli
olarak bilgiler iiretebilme, beyin fonksiyonlarinin iiriinii olan sonuglar1 kullanarak yeni
olaylar 6grenebilme, kesif edebilme gibi yetenekleri kendiliginden yapabilmek maksadiyla

olusturulan bilgisayar sistemleridir. Teknik olarak ise YSA, kendisine dnceden tanitilan bir
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girdi veri setine karsilik olusturulabilecek bir ¢ikti veri seti olusturan sistemdir [2] .

Biyolojik sinir aglari, YSAnin olusumu icin en temel referanstir. Sistemin en genel ifadeyle
calisma sekli biyolojik olarak su sekildedir: Beyindeki noronlar, aksiyon potansiyelleri
olarak bilinen elektrik sinyallerini gonderir. Akson govdesi bu sinyaller i¢in kanal gorevi
goriir ve sinyaller sinaps boyunca bir ndrondan diger nérona aktarilir. Yani noronlar sinyalleri
alir ve diger sinyalleri iiretir. Yani bilgisayar terminolojisi ile girdi verilerini alirlar, bazi
islemleri gerceklestirirler ve bir c¢ikti olustururlar. Ancak ¢ikti sabit bir oranda verilmez;
girdi belirli bir esigi astiginda ¢ikti olarak sonuglanir. Bunu gerceklestiren fonksiyon boliim

3.2 de verilen aktivasyon fonksiyonlarindan biridir.

-,
P ~
. R &
Ly T .
- "J‘J \/P@"
_/:Z,\Krﬁ—):,—’;‘:—\_,f\g

Layer 1 Layer 2 Layer 3

Sekil 3.1: Sinir Ag1 Kesiti

Layer1 Layer 2 Layer 3

s Sigmoid
wi, function
sigmoid /

function

|

sigmoid

function ) =

Input z w2, 2
function 3 output

Sigmoid
function

Sigmoid
function

—_—

|

g
4

Sigmoid W3, 2

> function

Sekil 3.2: YSA Kesiti

YSA, oldukca fazla hiicreden meydana gelir ve es zamanli ¢alismasi sonucu zorlu isler

yapabilir.

Yapay sinir hiicreleri, insan beyninin sinir hiicrelerinin simiile edilmesiyle olusturulmustur
ve proses elemanlari olarak adlandirilmistir. Her bir prosesin girdi,agirlik fonsiyonu, toplama

fonksiyonu,aktivasyon fonksiyonu, ¢ikti olacak bicimde 5 ana unsuru vardir [2]:
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Girdi Prosese ¢evreden gelen uyarilar ya da
diger noronlardan aktarilan bilgilerdir.

Agirhik Fonksiyonu Gelen tiim girdileri, net bir girdi haline getirmeye yarayan
birtakim sabit veya de8isken degerlerdir.

Toplama Fonksiyonu Agirliklandirilmis girdileri birlestirerek net girdiyi elde etmeye

yarayan fonksiyondur. Bunun icin degisik fonksiyonlar
kullanilmaktadur.

Aktivasyon Fonksiyonu | Hiicreye giren net girdileri isleyerek hiicrenin gelen veri igin

olusturacag yeni ciktilart gosterir. Bu fonksiyon cesitleri
Boliim 3.2 ° de detaylica verilmistir.

Cikt1

Bu katnmandaki hiicre elemanlar1 ara katmandan ulasan verileri
isler ve girdi seti icin bir ¢ikt1 olusur.

Tablo 3.1: Proses elemanlar1

(2]

Gi:Ji'@'E" w, Adirliklar

Gikig
fix) b—av

Aktivasyon

Toplama  Fonksiyonu
Fonksiyonu

Sekil 3.3: Bir Yapay Sinir Hiicresi Elemanlari

Yapay sinir hiicreleri genellikle 3 katman halinde ve paralel olarak birleserek YSA'ni

olustururlar. Girdi katmanindaki proses elemanlar1 dig diinyadan gelen verileri ara katmana

tasir. Ara katmanda gelen veriler islenir ve ¢ikti katmanina gonderilir. Sonra bu katmaninda

bulunan yapay sinir hiicresi elemanlar1 ara katmandan gonderilen bilgileri alarak gelen girdi

setine karsilik iiretilmesi istenen ¢iktiy iiretir. En son olarak iiretilen bu ¢iktilar dis diinyaya

gonderilir[2].

Bir agin sahip oldugu proses elemanlarinin yapisi, aktivasyon fonksiyonu, toplama

fonksiyonu, agin kullandigi 68renme stratejisi, agin topolojisi gibi faktorler farkli ag

modellerinin olusmasina neden olmustur. Ornegin, 6grenme stratejilerinden en dnemli iki
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tanesi danismanli ve danmismansiz 68renmedir. Danigmanli 68renmede sistemin istenen
bilgiyi temin edebilecegi ilk kaynak mevcutken danigsmansiz 6grenmede sistem deneyerek
elde ettigi verilerden yola ¢ikarak yeni bilgiler 6grenir, yani herhangi bir ilk kaynak yoktur.
Bu 6grenme tercihi bile aslinda bir YSA modelini oldukca farklilastirmaktadir. Benzer
sekilde; YSA yapisina gore ileri siiriimlii veya geri beslemeli olarak tercih edilebilir. leri
stirimlii YSA modelinde girdi gelir ara katmanda islenir ve ¢ikti olarak disariya aktarilir,
ancak geri beslemeli YSA modelinde ise durum biraz daha farklidir. Bu modelde, Ileri
stirimlii YSA modelindeki gibi ayni iglemler gerceklenir fakat ¢ikan cikti daha sonrasinda
girdi olarak tekrar dongiiye katilir. Dolayisiyla geri beslemeli YSA modeli ¢cok daha
kullanigl ve gercek sinir ag1 modeline oldukca uygundur. Bu tezde kullanilan YSA modeli
topolojisi de budur. Sonug olarak ihtiyaca gore farkli gercek diinya problemlerinin ¢éziimiine
uygun olan farkli YSA olusturulmustur. Giiniimiizde istenilen ¢iktiya goére uygun YSA

modelleri tercihi yapilabilmektedir.

B e ()

e et A

Sekil 3.4: YSA Ornegi

Literatiirde oldukc¢a popiiler olan ve iizerine fazlasiyla analizler gerceklestirlen yapay
sinir ag1 modelllerinden bazilari; hiicresel sinir aglar1 (1988), Hopfield YSA (1982),
Cohen-Grossberg YSA (1969) dur.
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Bu tez kapsaminda kullanilacak olan Cohen-Grossberg YSA modeli ilk kez 1983 senesinde
literatiire girmistir ve giiniimiizde kontrol sistemleri, Oriintii tanima, paralel igslem gibi bir¢cok

miihendislik problemlerinin ¢dziimiiniin elde edilmesinde fazlasiyla kullanilmistir.

Cohen Grossberg YSA modelinin icinde yakinsama hizini kontrol eden bir kuvvetlendirici
fonksiyon ve durum uzayinda sistemi kararl1 yapan noktalarin bulunmasi gereken yerleri
belirleyen davranis fonksiyonu icermesinden dolayr diger bircok modelden oldukc¢a
istiindiir. Ayrica Cohen-Grossberg YSA modeli, Hopfield gibi bir¢ok YSA modelini de i¢ine

almaktadir.

Bu nedenle Cohen-Grossberg YSA model i¢in yapilan analizler Hopfield model i¢in de

otomatik olarak saglanmis olur.

Cohen-Grossberg YSA modeli asagida belirtilen diferansiyel denklem sistemiyle

tanimlanmugtir:

a‘x,- (I)
dr

= di(ui(t))[—con(t) + ¥ ayg; i)+l Vi
=1

Cohen-Grossberg YSA modelinde ozellikle global robust kararlilik analizinin yapilmasi
oldukca onemlidir. Ciinkii bu kosullara sahip sistemin tiim coziimleri sabit tek denge
noktasina yakinsamaktadir. Bu sebeple literatiirde Cohen-Grossberg YSA modelinin denge

noktasinin kararlilik analiziyle ilgili olduk¢a ¢ok ¢alisma mevcuttur.

Bununla birlikte, YSA'nin kararlilik durumunu etkileyen zaman gecikmelerinin de sistem
modelinin i¢inde olmasi gereklildi ortaya atilmistir. Bu gereklilik geri beslemeli bir YSA

modelinin elektronik devreler ile aciklanmasi sonucunda agiga ¢ikmistir.

Bu durumu daha net bir sekilde ifade edebilmek icin Once bir yapay sinir ag1 modelinin

elektronik devreyle nasil olusturuldugu konusunu incelemek gerekir:
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Sekil 3.5: Herhangi bir ndrona (i. néron) ait bir elektronik devre modeli

Kirchoff’a gore herhangi elektrik devresinde bir diigiime giren akimlarin toplami ¢ikan

akimlarin toplamina esit oldugundan asagidaki denklem yazilabilir:
n
Y Ii—Li—1Ig—1c;=0
j=1
Burada her bir terim asagidaki ifadelere esittir:

n gj(xj(l)) xi(t) )C,'(t) Cdxi(t>
J=1 Rj > i R; Ci "dt

111

Bu ifadeleri denklemde yerine koyarsak;

Cl'Rj Ci RG ot

y &0) _§ox) L (0 du()

Yukaridaki ifadede direng ve kapasite pozitif oldugundan Vi, j = 1,...,n i¢in

o) L G dul)
CiR; ’ CR, C;  dt

1
Bu denklemde sabit katsayilar bir araya toplanip yeniden isimlendirildiginde (R c =
iCi
1 I;

RC - 4T = u;) asagidaki zaman gecikmesiz Hopfield YSA modeli elde

Ci,
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edilir(1982):

dxi(t)
dt

n
:—cixi(t)-l-Zaijgj(xj(t))-l—u,- i=1,2,...n 3.1
=1

Ortaya cikan denklemde n noron sayis1 olmak iizere c; diren¢ ve kapasite degerinden olugan
pozitif bir diagonal matrisi, a;; néron agirhk katsayilarindan olusan ara baglant1 matrisini
g = (g1(x1),82(x2),...,8n(x,))7 aktivasyon fonksiyonlarini, son olarak u = (uy,uz,...,u,)"
giris vektoriinii belirtmektedir. Dikkat edilecek olursa Hopfield’in bu modelinde sistem
bir gecikme terimi icermemektedir. Fakat YSA’nda bilginin aktarimi esnasinda, elektrik
devresinde kullanilan islemsel kuvvetlendiricinin sonlu anahtarlama hizlarindan ve baglanti
zamanindan kaynakli olarak zaman gecikmesi ortaya c¢ikabilecegi asikardir. Marcus ve
Westernvelt (1989) bu sebepten dolayr sistemin daha dogru calisabilmesi i¢in Hopfield

modele bir gecikme terimi eklemistir:

dx;(t L 1t .
df ) :—cixi(t)+2a,'jgj(xj(t))+Zbijgj(xj(t—f))+ui Vi (3.2)
j=1 j=1
ya da matris-vektor formuyla
dx(t)
Pk —Cx(t)+Ag(x(t)) +Bg(x(t—17))+u (3.3)

T bu denklemde sabit bir zaman gecikmesini temsil etmektedir. Fakat eklenen zaman
gecikmelerinin de aslinda her bir ndron i¢in sabit olamayacag fark edildiginde ayrik zaman

gecikmeli Hopfield modeller olusturulmustur ve bu modeller su sekilde ifade edilmistir:

dxi(t)

7 :—cix,-(t)—l—Zaijgj(xj(t))-i-Zbijgj(xk(t—rj))-i-ui Vi 3.4)

j=1 j=1

ya da matris-vektor formuyla

dx(t)
dt

= —Cx(r) +Ag(x(1)) + Bg(x(t — 7)) +u (3.5)

Ayrica Hopfield modelini de kapsayan Cohen-Grossberg modeline Ye, Michel ve Wang

gecikme parametrelerini eklemistir ve zaman gecikmeli Cohen-Grossberg YSA modeli
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literatiirde yerini almistir:

dx,-(t)
dt

n n
=di(xi(1))[—ci(xi(1)) + Y aijgj(x;(1))+ Y bijgj(xj(t — 7)) +uw] Vi (3.6)
j=1 j=1
(3.6) ile verilen sistemde T = max(7;), Vj olsun. Dolayisiyla,(3.6)’da verilen YSA sisteminin
xi(t) = 0;(t) € C([—1,0],R) formunda basalgi¢ kosuluna sahip oldugu ve C([—7,0],R) nin
de [—7,0]’den R’ye giden reel degerli fonksiyonlar kiimesini temsil ettigi soylenebilir.(3.6)

sisteminin matris-vektor formu da agsagidaki gibidir:

dx(t)
dt

= D(x(1))[=C(x(t)) + Ag(x(t)) + Bg(x(t — 7)) + u] 3.7)

(3.6)’daki YSA sistemi n tane 7j,7,...,T, ayrik zaman gecikmesi iceren bir model olup
asagida tek 7 zaman gecikmesi iceren ve (3.6)’nin 6zel bir durumu olan Cohen-Grossberg

YSA modeli de verilmistir:

djzit) = di(xi(t))[—ci(xi(t)) + iaijgj(xj(r)) + i‘,lb,-jgj(xj(t —))4u] Vi (3.8
ya da
d);(;) = D(x(t))[-C(x(t)) +Ag(x(t)) + Bg(x(t — 7)) +u (3.9)

Asagida yukaridaki verilen YSA sistemlerinin matematiksel modellemelerinin incelenmesi

hakkinda bazi1 onemli notlar verilecektir:

Not 1: (3.6) ile ifade edilen sinir aginin matematiksel modellemesi, (3.8) ile ifade edilen
sinir ag1 modelinden ve (3.4) ile ifade edilen sinir ag1 modeli de (3.2) ile ifade edilen
sinir agindan daha genel formdadir. Bylece sinir sistemi (3.6) i¢in tiiretilecek kararlilik
kriteri dogrudan (3.8) sistemine ve (3.4) icin tiiretilecek kararlilik kriteri de dogrudan (3.2)
sistemine uygulanabilir. Bu nedenle, yalnizca gecikmeli sinir ag1 modelleri (3.6) ve (3.4) icin

robust kosullar aragstirilacaktir.

Not 2: Sinir sistemi (3.4), (3.6)’da ifade edilen sinir aginin 6zel bir durumudur. Bu nedenle,
ilk once (3.6)’da tanimlanan sinir sistemi i¢in robust kararlilik kosullar1 elde edilecektir.
Ardindan, sinir sistemi (3.6) i¢in elde edilen robust kararlilik kosullar1 (3.4) sinir ag1 modeli

icin genigletilecektir.
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Not 3: (3.6) YSA modeli ayrik zaman gecikme parametresi icerir ve sinir ag1 (3.8)
tek bir zaman gecikmesi parametresi icerir. Burada (3.6) ve (3.8) sinir ag1 modellerinin
matris-vektor formlarinin sirasiyla (3.7) ve (3.9)’da belirtildigine dikkat edilmelidir. (3.7)
ve (3.9) YSA sistemi, A ve B matrislerinin tam formlarini icerir. Bununla birlikte, (3.6)
sisteminin kararlilik analizi yapildiginda, bunun matematiksel modelinde » tane ayrik zaman
gecikmesinin yer almasi nedeniyle sinir aglarinda, kararlilik kosullarinin ifadelerinde B nin
tam bicimini temsil etmek her zaman miimkiin olmayabilir. Ote yandan, (3.8) numarali
sistemler yalnmizca tek bir zaman geciktirme terimi icerdiginden, kararlilik kosullarinin

ifadelerinde B’nin tam bi¢imini temsil etmek her zaman miimkiindiir.

Not 4: Dinamik sinir sistemlerinin LMI tabanli kararlilik incelemesi, literatiirde
aragtirmacilar tarafindan sikhikla kullamlan yontemlerden biridir. Ozellikle, sistem
(3.8) durumunda, B matrisinin tam bi¢imine sahip olan yeterli kararlilik kosullarinin
tiiretilmesinde lineer matris esitsizligi yonteminden yararlanilabilir. Ancak, sistem (3.6)
durumunda, LMI yontemi genellikle kararlilik kosullarinin ifadelerinde B’nin tam bi¢imini
icermez. Bu durumda, LMI yontemi sistem (3.6) i¢in kararlilik kosullarinin arastirilmasi
icin uygun bir yaklasim olmayabilir. Bu nedenle, (3.6) sinir sisteminin kararlilik analizi bazi

alternatif matematiksel teknikler ve yontemler gerektirir.

[3]’de tamitilan dinamik Hopfield YSA, [4]’de tanitilan Cohen-Grossberg YSA ve bunlarin
degistirilmis modelleri, optimizasyon problemlerinin farkli cesitlerini ¢6zmek icin yaygin
olarak kullanilmigtir [5]-[11]. Genel olarak optimizasyon problemlerinin ¢6ziimii amaciyla
kullanilan YSA modelleri icin kararli denge noktasinin varligi,tekligi hem teorik agidan hem
de uygulama acisindan oldukca dnemlidir. Ciinkii ilgili sinir ag1 bazi sahte alt optimallerden

kaynaklanan birden ¢cok denge noktasina sahip olabilir [12],[13].

Sinir sistemlerinin elektronik uygulamalarinda bazi sabit elemanlar1 iceren arabaglanti
matrislerinin sabit elemanlari, harici parametreler tarafindan bozulabilir ya da karistirilabilir.
Bu baglamda dinamik sinir sistemlerinin bu dis bozulmalara karsi robust kararliligi
incelenmelidir [14],[15]. Bu tiir dis etkenlere ek olarak, farkli iletim kanallarinin varlifindan
dolayr dogrusal olmayan dinamik sistemlerin ger¢cek zaman uygulamalarinin ¢ogunda
zaman gecikme terimleri kacinilmazdir [16]-[21]. Bu tiir gecikme terimleri kararli sinir
sistemlerinin kararsiz sinir sistemlerine doniismesine neden olabilir. Bu nedenle, bu

zaman gecikmesi terimlerinin dinamik sinir ag1 modellerindeki kararlilik tizerindeki olasi
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istenmeyen etkilerinin de8erlendirilmesi arastirmacilar i¢in énemlidir. Son birkag¢ on yilda,
karmasik degerli sinir ag1 modelleri [22], Clifford sinir aglar1 [23], birlestirilmig sinir ag1
[24], sirali sinir aglar1 [25], animsatici sinir aglart [26], notral sinir aglart [27], octonion
degerli sinir aglar [28], kuaternion degerli sinir aglar1 [29], reaksiyon-difiizyon sinir aglari
[30], engelleyici sinir aglar1 [31], yonlendirme ve stokastik sinir ag1 [32] sistemleri dahil

olmak iizere YSA modellerinin kararlilik ve yakinsama kosullar1 incelenmistir.

Bu tezde ayrik zaman gecikmelerine sahip standart siirekli zamanki ve reel degerli sinir
ag1 modelleri i¢in bazi yeni ve alternatif robust kararlilik kosullar1 arastirilacaktir. Bunun
icin kullanilacak olan model (3.6)’deki Ayrik Zaman Gecikmeli Cohen-Grossberg YSA

modelidir ve bu model i¢in global asimtotik robust kararlilik analizi gerceklestirilecektir.

Bu dinamik sistemdeki fonksiyonlarin ozellikleri; denge noktasinin varligini, tekligini
ve kararliligini garanti eden kriterlerin olusturulmasinda kritik etkilere sahip oldugundan
di(x;(t)) genisletme fonksiyonunun, c;(x;(¢)) davranig fonksiyonunun ve g;(x;(¢)) dogrusal
olmayan aktivasyon fonksiyonlarinin iyi bilinen bazi temel Ozelliklerinin genellikle

asagidaki ana kosullar1 sagladig: varsayilir:

C1 : v; and ¢; pozitif sabitler olmak {izere
0<y< d,-(x) < ¢;, Vx € R, Vi.

d;(x) fonksiyonu bu kosulu saglar.

C; @ v and y; pozitif sabitler olmak tizere

jci(x) — ci(¥)]

0<y< -
[ — ]

<y;,Vx,X € R, x #X, Vi.

ci(x) fonksiyonu bu kogulu saglar.

C; : I; pozitif sabit olmak iizere g;(x) asagida verilen bazi Lipschitz kogullarini saglar:

|gi(x) — gi(X)|<l;|x — X[, Vx,X € R, Vi.
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Bu tip aktivasyon fonksiyonlar1 .Z sinifindan olup, g € £ ile gosterilir ve literatiirde
deterministik sabit a§ parametreleri i¢in bu aktivasyon fonksiyonuyla olusturulmus (3.6) ve

(3.4) hakkinda baz1 yararli sonuglar yayinlanmistir [33]- [46].

Ayrica dinamik sistemin elektronik olarak ifade edilisinde de goriildiigii gibi elektronik
bilesenlerin todleranslarindan dolay1 ag parametrelerinin sabit degerlerindeki degisimler
gibi bazi dig etkiler tarafindan YSA’nin matematiksel modellemesindeki sabit ara baglanti
matrislerinin elemanlar1 karisabilir ya da bozulabilir.Bu tez c¢alismasi kapsaminda robust
kararlilik analizi yapilmasinin sebebi budur. Ciinkii bu sayede sistem sapmalardan
olabildigince az etkilenecektir ve daha dogru sonuglar ortaya gikacaktr. Istenilen
hedef dogrultusunda yapilacak olan analizde belirsiz parametreler iceren gecikmeli
Cohen-Grossberg YSA modelindeki arabaglanti matrisleri asagida gosterildigi gibi bir alt
sinir ve bir iist sinir arali81 igerisinde birakilacaktir:

A] = {A = (aij) :AjAjK,i.e.,c_zijgaijgaij,i,j = 17...,11} (310)

By :={B = (bij) : BXB=B,i.e..b;;<b;j<bjj,i,j=1,..n}

Ancak A,B,C sistem parametrelerini iceren Hopfield YSA modelinde belirsiz parametrelere

asagidaki sekilde yaklasim yapilir:

C;:={C:0=<C=C=C,i.e.,0< ¢;<c;<c;,Vi}
Ap:={A = (a;j) : AZA=A, i.e.,q;;<a;j<a;;,Vi, j} (3.11)

By :={B = (bij) : BXB=B,i.e.,b;;<b;;j<b;;,Vi, j}

Gecikme terimlerine sahip bu YSA i¢in uygun robust kararlilik aragtirmas1 yapmak adina, A
ve B ara baglanti matrislerinin normlarina pozitif iist sinirlar belirlenmesi gerekmektedir.
Gecmis literatiirde, belirsiz araliklar igeren bir F' matrisinin ikinci normu i¢in cesitli {ist

sinirlar tiiretilmistir. Bu sonuglar agsagidaki gibidir:

Lemma 3.3.1 [47]: F € Fj :={F = (fij) :EijF,i.e.,]_’ijgfijgfij,i,j =1,2,...,n} olsun.
F* = % (F+F)veF, = % (F — F) olarak tamimlansin. O halde asagidaki esitsizlik saglanir:

|F[l2 < 01 (F) = [[F7|l2 + || |2
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Lemma 3.3.2 [48]: F € F; :={F = (fij) :EijF,i.e.,]_cl.jgf,-jgj_‘ij?i,j =1,2,...,n} olsun.
F*=1(F+F)veF. =% (F —F) olarak tammlansin. O halde asagidaki esitsizlik saglanr:

IFIl2 < 02(F) = \/IIF*|3+ IE B + 2/ ET [F4] I

Lemma 3.3.3[49]: F € F; :={F = (f3) :EijF,i.e.,]_”ijgfijgj_”ij,i,j =1,2,...,n} olsun.
W* =1 (F+F) ve F. = % (F — F) olarak tamimlansn. O halde asagidaki esitsizlik saglanr:

1Flle < 03(F) = \/ 118 ¥+ 2/FT |F.+ FTE. .

Lemma 3.3.4[50]: F € F;:={F = (f;j) EijF,i.e.,]_fijgﬁjgfij,i,j =1,2,...,n} olsun.
F*=1(F+F)veF, = % (F—F) olarak tammlansin. O halde asagidaki esitsizlik saglanr:

IFll2 < 04(F) = ||F||2

Lemma3.3.5[51: F e F;:={F =(f;;): EijF,i.e.,]_‘l.jgfijgj_‘ij,i,j =1,2,...,n} olsun.
F* = % (F+F)veF, = % (F — F) olarak tamimlansin. O halde asagidaki esitsizlik saglanir:

IF|l2 < 05(F) = \/2[||F*TF*| + ETE. |2

Bu tez ¢alismasinda Hopfield model ile verilen parametre belirsizlikleri iceren F' matrisinin

ikinci normu icin yeni bir {ist sinir bulunmustur:

Lemma 3.3.6: F € F; :={F = (fjj) : Eijf,i.e.,[ijgﬁjgfij,i,j = 1,2,...,n} olsun.
F*=3 (F+F), F, = 5 (F—F) ve P reel bir diyagonal matris olarak tanimlansin. O halde

asagidaki esitsizlik saglanir:

1F|l2 < 05(F) = [|F* + Pl + ||F. — Pl

Ispat : S l,jg fij <f; j icin, asagida verilenler gerceklenir:

1 - 1 - ..
fijzi(fij"i"f_cij)"i_ipij(fij_]_( ), —1<pi; <1,Vi, ).

ij
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Burada f;; = 1p;;(F; = ]_Cl.j)olacak sekilde F' = (f;;) matrisi tammlanir. O halde F matrisi

F=05F+F)+F=F*+F

seklinde ifade edilebilir. Tiim bu bilgiler dogrultusunda x = (x1,x2,...,x,)7 vekorii ve

herhangi F' matrisi i¢in,
K Fx=x"F'x+x"Fx (3.12)

denklemi saglanir. Oyle bir diyagonal P matrisi igin, (3.12) denklemi yeniden ifade edilirse

xT Fx = xTPx —xT Px+ xT F*x 4 xT Fx = xT (F* + P)x +xT Fx — |xT|P|x| (3.13)
olur. Sonra
X Fox < ||F*+ Plfa [x] |3 + 27 || F x| — x| Pla] (3.14)

elde edilir. | fi;| < 3(F; i ]_”l.j),Vi, j oldugundan dolay1, |F|<F dur.

Boylece, asagidaki (3.15) denklemi bulunur.
2 Fx < ||F* 4 Plla| |3 = [x7 [Plx| + e | Ecfe] = [ (B = P) x|+ ||F* + Pl |[ 3 (3.15)
(3.15) denkleminden yola cikarak, (3.16) esitsizligi tiiretilir.
A Fx < [[F|a| (3 < [[F* 4 Pll2||x[[3 + [|F — Pl lx[]3 (3.16)
Esitsizligin her iki tarafi ||x||, normuna béliiniirse
1Fll2 < ||Fs = Pll2+ [[F* + P2

yeni Ust sinir1 elde edilmis olur. Simdi elemanlar1 belirsiz parametre araliklar igcerisinde olan
bir F matrisi i¢in yeni ve alternatif bir iist sinir olan og(F) igin sayisal bir 6rnek verilerek

ispat pekistirilecektir.
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Ornek: F € F; := {F = (f;})2x2 : FXF<F} olmak iizere

0O 0| _ 2
F = F =
-2 0 0 4

seklinde tanimlansin. Bu matrisler kullanilarak asagidaki matrisler elde edilebilir.

11 1 1] .
F = F, = F =
-1 2 12 2 4

F* F, and F matrisleri icin, Lemma 3.3.1°den Lemma 3.3.6’ya kadar verilen tiim {ist sinirlari

hesaplayalim:.

oi1(F) = [IF|l2+[|F[2 =4,9208

r(F) = JIF*IE+ IIF]3+2/FT|F*[|| = 5,0858

) = P TR +2FT|F.+ FT .|l = 5,0658

!

63(

os(F) = |[|F||>=5,2361

o5(F) = \J2lIF*TF*|+ET ]|, = 4,890
06 (F)’nin bulunabilmesi i¢in asagidaki P diyagonal matrisini se¢elim:

0 O
0 -1

O halde gerekli hesaplamalar yapilirsa o©g(F) = ||F* + Pl + ||[F —
P|l; = 4,8284 olarak elde edilir. Gorildiigi gibi bu ornek igin o, (F) =
min{cy(F),02(F),03(F),04(F),05(F),06(F)} = 06(F) saglanir. Yani, bu 6rnek belirsiz
parametrelere sahip F arabaglanti matrisinin normu i¢in os(F) yeni ve alternatif bir tist sinir
oldugunu kanntlar.

Elde edilen bilgiler dogrultusunda varlik, teklik ve kararlilik analizi yapmadan Once
£ sinifina ait aktivasyon fonksiyonlarinin sinirsiz olabilecegine dikkat ¢ekmek gerekir.
Literatiirde, sinir aglarinda bir aktivasyon fonksiyon sinifi olarak sinirsiz fonksiyonlar
kullanildiginda denge noktasinin varlik ve teklik analizinin asagidaki temel 6nermede ifade

edilen homeomorfizm esleme teoremi yardimiyla yapildig1 bilinmektedir.
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Lemma 3.3.7: H(x) € C° asagidaki iki ana ozelligi iceren siirekli bir fonksiyon olsun.
Bu 6zelliklerden ilki x # ¥ iken H(x) # H(x) olmasi ve ikincisi ||x||—oo iken ||H (x)||—o0

olmasidir. Boyle bir H (x) € C? siirekli fonksiyon R" in homeomorfizmasi olarak adlandirilir.

Artik ayrik zaman gecikmeli belirsiz parametrelere sahip Cohen-Grossberg YSA modeli i¢cin
(3.10)’da verilen matris araliklar1 ve g € . kabulii alinda yapilacak olan varlik-teklik ve

kararlilik analizi i¢in gerekli Onbilgiler tamamlanmustir.

3.4. AYRIK ZAMAN GECIKMELI BELIRSiZ PARAMETRELERE SAHIP
COHEN-GROSSBERG YSA MODELI ICIN VARLIK VE TEKLIK ANALIZI

(3.6)’daki sistemde Lipschitz kosullarin1 saglayan sinirsiz ndronal aktivasyon fonksiyonlari
seti kullanilacag1 icin, bu sistemle iligkili sabit denge noktalarinin hem varlik-tekligi hem
de global kararlilig1 olusturulamlidir. Bu nedenle, bu boliim, Cohen-Grossberg model gibi
dogrusal olmayan diferansiyel denklem sistemi ile ifade edilen ayrik zaman gecikmeli
sinir sistemiyle ilgili kararl1 denge noktalarinin varlig1 ve tekliginin ayrintili bir analizine

ayrilacaktir.

Teorem 3.4.1: (3.6)’da tanimlanan zaman gecikmeli YSA modelinde g € .Z oldugu ve bu
modeldeki sistem matrislerinin (3.10)’da tanimlandig1 gibi, parametre belirsizliklerinin bir
alt sinir ve bir iist sinir araliginda kaldig1 varsayilsin. Asagidaki cebirsel kosullar gecerli
olmak iizere eger K, 1, p, €, V, p, i, & ve §; pozitif reel sabitleri varsa her sabit u i¢in (3.6)

dinamik YSA sistemi tek ve global asimtotik denge noktasina sahiptir:

¥ 5 an & ki & a (1—|-k2p)ml 5
o = 25'—— —_— a~~b-k—— a bk— A
’ R e o)
L+kp)my & o 5 s ky 2 kv v 2
U002 § 3 =21+ 2)02(8) - 21+ 2) Y ¥ by,
S = = p S |

% I TR I 92
6, = ZC,'Z—qlé‘ZCiaij—?Zgjaji‘*'QZ‘uCiz_EGn%(A)
i j=1 j=1

n “ r n R ,,.2
—np Y. Gbij= o Y. Gibii— v =0 (B) (3.17)
j=1 j=1
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icin

€0 +&6;>0,Vi

Burada 0 < g <1, 0< g <1 icihn g+& =1 0<k <1, 0<k <1 icin
kit+k=1,0<m<1,0<m<1licinm +my=1,0<p; <1,0< p, <1 igin
Prtpp=10<g <1, 0<gp<1licing +g2=10<r <1 0<r <1 ign
ri+r2 =1, 6u(A) = min{01(A),02(A),03(A),04(A),05(A), 06(A)}, dij = max{|a;;|,aij| },

Gn(B) = min{c1(B),05(B), 03(B), 04(B), 05(B), G5 (B) } ve bij = max{|by;], [Bij|}, Vi, j

Ispat: Kararli denge noktalarimin varligi ve tekligi sorununu ele almak adina (3.6)’da
tanimlanan zaman gecikmeli YSA sistemi ile iligkili uygun bir H(x) esleme fonksiyonu

diistinelim:

H(x) =—C(x)+Af(x)+Bf(x)+u (3.18)

Denklem (3.18)’den H(x) = 0 kosulunun her ¢oziimiiniin, tanim geregi, (3.6) ile tanimlanan
gecikmeli sistemin sabit bir denge noktasini temsil ettigi gozlemlenebilir. Boylece Lemma
3.3.7’nin kosullarindan, (3.6) sistemi i¢in, uygun H (x) eslemesinin R"’in bir homeomorfizmi
oldugu gosterilebilirse, her bir u degerli sabit i¢in her zaman yalnizca tek bir denge noktasi
bulunabilecegi sonucu ¢ikar. Dolayisiyla yukarida tanimlanan H (x)’in R"’in homeomorfizmi
oldugu ele alinirken x # X verildiginde baska bir X vektorii se¢ilmelidir. Daha sonra (3.18)’de

belirtilen H (x) i¢in
H(x) — H(x) = C(x) = C(x) +A(g(x) — g(%)) + B(g(x) —&(¥)) (3.19)

elde edilir.

(3.6) sisteminde , eger g € .Z ise, x # X i¢in, iki farkli durum elde edilir. Bunlardam birincisi
g(x) = g(x) ve ikincisi g(x) # g(¥)’dir. Bu kosullardan x # ¥ i¢in g(x) = g(x) (3.19)’dan
direkt olarak elde edilir:

H(x)—H(x) =C(x) —C(x)

C, kosulundan yararlanarak, x — ¥ # 0 igin, C(x) # C(¥) ortaya ¢ikar. Oyleyse H(x) # H ()

saglanir.
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Eger x # X kosulu altinda g(x) # g(X) durumu gecerli olursa, (3.19) denkleminin her iki kism1
2(x—%)T (e1®@ + &)L ile garpilir ve (3.20)’ye ulagtlir:

20— )" (&1 + &2W)L(H(x) — H(%))
= 2&(x—3%)T®L(H(x) — H(%)) +2& (x — %) WL(H (x) — H(%)) (3.20)

burada ® = diag(&; > 0), ¥ = diag({; > 0) ve L = diag(l; > 0)’dur.

(3.20) denklemindeki her bir terimin elde edilebilecek durumlara gore incelenmesi asagidaki

gibidir:
(x—x)"PL(H(x) — H(%))
= —(x—%)"PL(C(x) - C(x)) + (x %) PL(A+B)(g(x) — g(%))
< —(x—%)"PL(C(x) —C(x) + (x B P°L* (x—x)
+%(g(X)—g(X)) (A+B)" (A+B)(g(x) — g(¥))
— (- D)TDL(C(x) — C(F)) + g(x TP (x— )
3 (8(0) — 8(0)" (A7A + BB+ 247 B)(g(x) ~ 8() G2
(8(x) —g(%) A" B(g(x) — g(¥))
= Z{ Z] ];aijbik(gj(xj) —8j(%;)) (gk (xk) — gk (%))
i=1j=1k=
< LB Y 5 (lulnesc) 07+ oIl a1 ~ 5
i=1 j=1k=1
< IZ”Z”C;%I?(n&ﬁ@jw%dk,@k,-)(xi—f,-)z (3.22)
ve

(8(x) — 8(2)) (PATA + %BTB) (s() — 5(5)) (3.23)

N =

(g(x) — g(x))" AT B(g(x) — g(¥)) <
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(3.22) ve (3.23) denklemi birlestirildiginde asagidaki sonug ortaya cikar:

2(g(x) — (%)) AT B(g(x) — g(%))
= 2(ki +k2)(g(x) — (%)) AT B(g(x) — g(%))
Z Z (klnaﬂ ]k-l—];akjbk,)l ( ._Xl,)z

1 j=1k=1

+(g(x) —8(x)" (kapATA+ %BTB) (g(x) —g(x)) (3.24)

VAN
= 2

(3.24) ’te bulunan ifade (3.21) ’de yerine konularak denklem yeniden yazilirsa:

Lockim o, . ki . 2 _
) (%najibjkliz"f‘ﬁakjbkiliz) (i — %)*
(1 T 1 ka1 =
+H8() 80" (1 +kap)ATA+ (14 BB (5() ~¢(D))  (3:29)

Yukaridaki denklemdeki (g(x) — g(x))TATA(g(x) — g(¥)) ve teriminin analizi asagidaki
gibidir:

g(x) — ()" ATA(g(x) — (%))

= Z Z Y aijau(gj(x;) — g(%;)) (g () — g (X))

= m(g(x) —g(x) ATA(g(x) — (%))

mr Y Y Y aijaeseg) — 85(5) (gelxe) — 86(50)

—~

IN
M:

n n
ldMﬁMZZ%MH — )2

(3.26)

IN
1=
~
N
uM: ﬂ
] M: l
Q)
Z
\_/
[\)



38

Benzer sekilde diger terimin de analizi yapilir:

N
I
_
~
Il
_
-
I
_

+p2 i i i bijbix(gj(x;j) — g;(%;))(8k(xx) — g (¥k))

i=1j=1k=1
< ) <p1HB|!zlz+p Y ) Ibwillbi L ) — %)’
i=1 J=1k=1
n n n A
< yr <p16 Z Zb bkj) _5)? (3.27)

N
I
—_

Elde edilen (3.26) ve (3.27) denklemleri (3.25)’in icine yerlestirilirse:

2(x— )?)TCIDL(H(X) —H(X))
C(x) —C(x))
+Z (Kézlz ; 1;1 (m&jif?jkliva %dkj[;kili2>) (x; — %)

K

< (x %) 2dL(

1 n n
Zzz< (1+kp)mop(4) +(1+kop)ms Y. Y ddes ) (5= )
+le<lj<l 1+];2) 2(B)+&(1+_)ZZ@kﬂ;kj>(xi—fi)2 (3.28)

C; kosulu altinda, asagidaki denklem yazilabilir:

n

—(x—)E)TZCI)L(C(x) —C(x)) = — 22 — %) &ili(ci(x;) — ci(%:))

i=1

- _ Z 2&L;|x;i — %il|ci(x;) — ci(%)]

IN

— Z 2ELyi(x; — ;) (3.29)
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(3.28). denklemde elde edilen (3.29). denklem kullanilirsa

IN

n n k oa k R " _
( 26l +xEF+ Y Y <1Tnajibjkli2+ K_;,’akjbkilzg)) (x; — %i)?

j=1k=1

+ i (lf%(l +kop)my O (A) +

= =Y P&(xi—%)? (3.30)

elde edilir. Simdi (3.20). denklemdeki 2(x — %)"WL(H(x) — H(%X)) teriminin analizi

gerceklenirse:
2(x —)Z)T‘{’L(H(x) —H(X))
= —2(x—%)"PL(C(x) — C(%)) +2(x — %) "WL(A + B)(g(x) — g(%))
= —2211 — %) Gili(ci(xi) — ci(%))
£ 2 Y (i) G+ (8,07) — () (33D)

i=1j=1
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Baz1 6nemli esitsizlikler ayrica agsagida belirtilmigtir:

veE

IN

IN

IN

IN

IN

™=
M=

28ili(xi — Xi)aij(gj(x;) — (%))

I
—_
~.
I
—_

_ 1 _
C(d%!lz( —Xi)2+gCi\aij\(gj(xj) —gj(xj))z)

M=
M=

N
I

—_
~.
I

—_

™=
M=

eGlaisliF (s — 5V + - Glayl (g %))

I
—_
~.
I
—_

eGaij|i? + - cjya,,u)( %)

N
I

—_
~.
I

—_

1= 1p71=
M= 1=

az]l + - C]ajl )( _)Zi)z

I
—_
~.
I
—_

2i2¢:lz _ B)aigi(x) - ()

n

—_

i (85212 Z“U 8j(x;j) gj(fj)))2>

exci21?<xi—xi>2+§(g<x> ~ 40 ATA(g(x) ~ 5(0)

(3.32) ve (3.33) birlestirildiginde

n n

2 Z Z Gili(xi — %i)aij(gj(x;) — 8;(%)))

i=1j=1
non
= Q1+qz ZZ —X; az] gj('x]> gj(ij))

Zi( lsgal]l + C]A 12)( _Xi)z

=1 j=1

+ Y (e + LRWE) (5 —5)”

IN

~.

—

(3.32)

(3.33)

(3.34)
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Asagida geriye kalan bazi ek esitsizlikler belirtilmistir:

-
=

Gili(xi — %;)bij(gj(x;) — &;(%;))

,_.
~.
I

—_

VA
1= T
s

1 _
PGB (xi =5+ il (8,(5) ~ 8(5))?)

,..
I

_
~.
I

_

(VAN
agE
M:

N
I

_
~.
Il

_

(
Y- (p&lbuli2tsi=0% + by 13s; =)
L (

IN
D=
D=

pCibiil?+ — cjb bjil?) (xi — %) (3.35)

,..
I

_
~.
I

_

veE

i=1j=1
n n 2
< ¥ (v ; (8505) — 8(51)))°)
d Zl +§<g<x> 2" B"B(g(x) — g(¥))
< Y (VG OB (5 3.36)

(3.35) ve (3.36) denklemleri birlestirilerek yeniden yazilirsa;

222& X —%)bij(g;(x;) — 8;(%)))

i=1j=

= 2(ri+n) ii‘, bij(g(x;j) —gj(x;))

= X (2r1 Cilibij+2r2 Cilibu') (i — %) (8 (x7) — (%))

J=1

uh s 2 My 0 -)\2

Z Z <r1p<§ibijl,- +—Cjbjil,~)(xi—xi)

i=1j=1 P

n
-

y (rzvc,?z,? +, (B)z,.z) (x; — i) (3.37)

=1

~.
—

IA

Sonug olarak (3.31). denkleminin icine (3.34) ve (3.37) denklemleri yerlestirilirse bir sonraki
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esitsizlige ulagilir:

20— X)WL (H(x) - H(X))
—2 Z Givili(x 2 + Z Z (qlsc,a”l +— @ CJ A1112>( xi)z

n

+q2e Y Gl xi—5)+ Z62(A) Y Ax—x) +np22;bul, — %)

i=1 i= i=1j=

IXH‘,ZCB X — %) +r2vf§llz i — %) 212 ;
i=1

i=1j=1

J
112(2(:1% QIEZClazj'i‘ ZCJ“}I"‘QZECZ 6]2 2 +rpZCz ij

IN

—

~

_|_

o |

[
M=

N
I
—

v L it ,%<B>><xi—xi>2

l,zei(xi—fi)z (3.38)

I

I
s

1

(3.30) ve (3.38) denklemi (3.20)’de kullanilir ve L, = min(¢;), 6,, = min(6;), 6, = min(5;)’

yi temsil etmek tizere asagidaki (3.39) denklemine varilir:

(616, + &6; )l (xi )fl')z

M=~

29 (1@ + W)L(H(X) ~H() <
1

e18u+ 60,02 x—x|3  (3.39

A
/“ﬂ

Bir sonraki esitsizlik (3.39)’un direkt sonucu olarak ortaya ¢ikmaktadir:
2(x—y)" (e1® + &W)L(H (x) — H(%))| > (€18 + €260)15||x — 7|3 (3.40)

0<e¢g <1ve0<g <1 oldugundan (3.40)’ta uygulanirsa Iy = max(l;), Ey = max(&;) ve

&y = max(E;) olmak tizere
(8 + Gor)la | (x = )T | H (x) — H(%)| > (€16 + £20) | |lx — 713 (3:41)
sonucuna ulagilir. (3.41) numarali denklemden asagidaki ifade elde edilir:
(Ent + Con) | | H (x) — H(%)[[1 2> (€18 + €260) | lx — 7|2 (3.42)

(3.42) numaral denklemden yola ¢ikarak, Vx # X icin H(x) # H(X) oldugu asikardir.
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X = 0 alindiginda, (3.42). denklemden elde edilir ki:

(Ev + Sn) | [H (x) — H(O)||1 > (€18 + €20) 5| x| |2 (3.43)

olur ve sonra denklem (3.43)’e ulagilir.

(& + ) mllH (x)[[1 > (€18 + €20 [l |2 = (Ear + Car) e |1H (O) (3.44)

Ustteki ifade ||[H(0)|'m smrh bir norm oldugunu kanitlar. Bdylece (3.44)’den
gozlemlenebilir ki ||x|| — oo olurken ||H(x)|| — oo olur. Dolayisiyla, H(x) : R" — R"
fonksiyonunun R" {izerinde uygun bir homeomorfizm oldugu kanitlanmistir. Yani bir bagka
ifadeyle; Cohen-Grossberg YSA sisteminin her bir u sabiti icin tek bir denge noktasinin

belirledigini Teorem 3.4.1’in kosullar1 saglar.

3.5. AYRIK ZAMAN GECIKMELI YSA MODELININ KARARLILIK ANALIZIi

Ilerleyen boliimde, (3.6)’daki YSA modelinin denge noktasmin varhigini ve tekligini,
asimtotik kararliligin1 garanti eden kriterler belirlenecektir. Bu amagcla, 6nce (3.6) sistemi,
kendisine ait tek denge noktasinin sadece orijinde bulundugu yeni ve esdeger bir YSA
sistemine doniistiiriilecektir. X1,X»,...,X, elemanlarina sahip bir X vektorii, (3.6)’da verilen
ag modelinin sahip oldugu sabit bir denge noktasini temsil etsin. O halde (3.6) sisteminde
zi(t) = x;(t) — X; kullanilmas1 yeni bir doniistiiriilmiis sistemle sonuglanir ve su sekilde

gosterilebilir:
40 = ai(z(0) (— Bu(zi(t)) + iauhxq(r)) T ibuhxq(r - rm) Wi (345)
j= j=

(3.45)’te verilen bu yeni denklemde sistem fonksiyonlar1 su sekilde elde edilebilir:
hi(zi(t)) = gi(zi(t) + Xi) — gi(X:), ai(zi(t)) = di(zi(t) +X;) and Bi(zi(r)) = cilzi(t) +Xi) —
ci(X;), Vi. Boylece, Cy, C; ve C3 kosullari altinda bu yeni fonksiyonlarin asagidaki kosullar
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saglayacagi hemen gozlemlenebilir:

Ci: 0< ;< OCi(Zi(t)> < (Pi, Vi
Co: Yizr (1) <ai(t)Bi(zi(t)) <wizp (1), Vi
Gy |hi(zi(0))|<li|zi()], Vi.

(3.45)’te verilen YSA sistemi agagidaki gibi yeni bir formda da belirtilebilir:
) = alz(t)) ( _ B(z(t)) + Ah(z(r)) + Bh(z(t — r))) (3.46)

(3.46)yda  z(t) = (z1(¢),22(t),....z,(¢))T  doniistiiriilmiis  vektorii  (3.46)’min
durum degiskenlerini sembolize eder. a(z(t)) = diag(a(zi(t)) > 0), B(z(t)) =
(Bi(z1(2)), Ba(z2(2)), -, Bu(zn(2)))T olarak yazilabili. Bu YSA mn g¢ikti vektori
h(z(t)) = (hi(z1(t)),ha(z2(1)), .o hn(z2(t)))T ile ve gecikmeli ¢ikti vektorii ise
h(z(t — 1)) = (hi(z1(t — 71)), ha(22(t — ), ..., B (20 (t — T)))T ile gosterilebilir.,

Asagida V(t) = Vi(t) + Vo(r) ile gosterilen uygun pozitif Lyapunov fonksiyon adayi

kullanilarak kararlilik analizi yapilacaktir:

:2i 81/ 5, a’s+2€2/ C, ) ds) (3.47)

veE

N = 222(1—p2<1+ Dbibist? [ @)do-+ tahil? [ a(0)do)
i—1j=1k=1 " K [y tfr,- KN t r,
+ AL 1+ le / 22 (p)do+ ezrlZZCJbﬂlz / 22 (9)d
K =T p = 1j= T;
&rn o o (!
Tam(B)Zli/t ] @)do + kI, Z/ z, (3.48)
i=1 —h i=1

Vi (t)’in zamana gore tiirevi alindiginda

o Ny Gl Vo Glt)
t) = 2¢ ,Zi Eil; e (t))z,(t) +282; Gily e (t))z,(t) (3.49)
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Asagida V;(¢)’nin terimleri ayr1 ayr analiz edilecektir:

L zi(t)
2 Gl Ly = 2T OBLBG) 2 ()01 (AR(:() + BA(:(t — 7))
T (OBLB (<(1)) + T (8L 2(1)
4 (An((0) + BR(— ) (AR()) +Bh(: 7))

= 227 (@LP (2(1)) + Kz (1)D*L72(r) + %hT(Z(t))ATAh(Z(f))

IA

T (elt )BT BR((t — 1)) + S (2(1)AT Bh(<(s — T)50)

Yukarida verilen terimlerin her birinin analizi asagidaki gibi iki farkli esitsizlik seklinde

yapilabilir:
21T (z2(1))ATBh(z(t — 1)) = 2Y Y Y aibich(zi(6) ezt — )
i=1 j=1k=1
n n n 1
S Z Z Z <77!a,]||blk|h zj(t _’ainbik|hl%(Zk(t_ Tk)))
i=1 j=1k=1 n
n n n 1
=2 ) (nla]l||bjk|h zit _|akj||bki|hi2(Zi(t—Ti))>
i=1 j=1k=1 n
< Yy) ( jibli= (1) + ak,bk,l 272 (t— n)) (3.51)
i=1j=1k=1

ve
2T (z(2))ATBh(z(t — 7)) < ph? (2(1))AT Ah(z(1)) + %hT(z(t —1))B'Bh(z(t — 7)) (3.52)
Simdi (3.52) ve (3.51) birlestirilerek bir sonuca varilabilir:

2hT (z(1))ATBh(z(t — ©)) = AT (2(1)) (2k1 AT B+ 2k AT BY (2 (1 — 7))

n

n o n k .
< Z Z Z (klna]l kl Z,( )+#dkjbkili2z,-2(t—ri)>

=1

N
|
—
~.
|
_
-

+hT (2())kapAT AR(2(2)) + AT (z(t — T))%BTBh(z(t —1)) (3.53)
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(3.50)’de (3.53) kullanilirsa asagidaki esitsizlik elde edilir:

(2(t)) + 22 (1)®L (Ah(z(t)) 4 Bh(z(1 — 1))
—27" (z(1)) + xz" (1) ®*L*2(r)
FY Y Y (chnagbutd ) + %%ak )

IN

N
i
I
~.
i
I
T
I

+

+
Rl—ARI=

(1+ %)hT (z(t — 7))BT Bh(z(t — 7)) (3.54)

Buradan

W' (2(1)A" Ah(2(1))
())ATAR(z(1) +m2 Y ¥ Y aijaih(2;(6)) he(a(r)

i=1j=1k=

<m1HA||2—|—m ii akl||akj h (t>)

j=lk=1

I
3
=
4

IN
B

~.
ey

(VAN
LagE

I
N

<m1||A||212+m Z Z aillaxj|1; ) (t)
L.

IA

—

(mlo,i(A)lfz%(z)erz Za iy ) (3.55)

veE

h' (z(t — 7))B" Bh(z(t - 7))
= plhT(z(t—T))BTBh t—1)) ZZZ ijbirhj(zj(t — ;) ) (ze(t — )

Y (pl1B1R+ 2 X 3 bl et %)

j=lk=1

A
D=

N
I
—_

A
™=

n n
@mw%pzzmww) %)
k=1

I
—_

IN

N
I
—_

n n
(p16 (B)I? + p2 ZZ Bk,lz)z, — 1) (3.56)

terimleri analiz edilmistir. (3.54). denkleminin icine (3.55) ve (3.56) yerlestirilirse asagidaki
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sonuglar ortaya cikar:

27 (1)®L:(t)
< =277 (1) LB (2 +25le

n

1k -
Y ) ( kinaibpl?z} (t )‘f’EﬁlaijbkilizZiz(t_Ti))

_|_
M:

i=1j=1k=1

1 n n n n
+—(1+kap)miog(A) Y 172} (1 1+k2p ymy YN Y dwidiiz (1)

K i=1 i=1 j=1k=1

1 ka 2 2.2
+_(1+_)p16m(B)le < (t Tl)

L i=1

1 ko ¥ ST
+E(1 + B)Pz Y XN N bubiiliz (i — ) (3.57)

i=1 j=1k=1

C, kosulu altinda, asagidaki esitlik ifade edilebilir:
_2ZT(I)¢LB( ( = _2251 lZl Bz Zz < 22&1'}’1 zZl (3.58)
(3.57)’de (3.58) kullanilirsa
n .
Zi(t)
2¢e li—————zi(t
1i_Zlél lai(Z'(t)) l( )
< 222 elkm”””m 2.2
< 28 ) Emilizi(t +817<Z€‘l lizi ( - YN ) ajibidizi(r)
j i=1 j=1k=1

i=1

==Y Y Y aybuliz (1 — )+ —(1+kop)mi6,(A) Y 177 (1)

LY Ry s K o

! shuly 2.2 1P1 !
+(Itkap)my ) ¥ Y @udilzi () + Z 22(t— 1))

i=1 j=1k=1 =

€12 ky NA o e n

+ 2022 Y VY bby 21— ) (3.59)
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sonucu ¢ikar ve asagidaki neticeye varilir:

f )g, i) = 22T (OPLB(() + 257 () WLAK(z(r)) + 227 (1) ¥LBA(z(t — 7))
= —ZZQ lZl ﬁl Zz +ZZZCZ zZz az] ( ))
i=1j=
+22 Z CI lZl bljh (ZJ( )) (360)

i=1j=

Buradan asagida verilen esitsizligin saglandig1 gézlemlenebilir:

n

Zi Gilizi(t)aijhj(z;(t)) <

=1 j=1 |

-
M=

Gililaij||zi(t)||h(z;(2))]

_
~
I

1

eGilaij|17= (1

+ %Ci|aij|h?(zj(t))>

IA
1= T
™=

N
I
_
~
Il
—_

Y 0+ 2 Glagl30)

IA
ngE
ngE

N
I
A
~
s |l
_

(
<SCi|aij|li2 z
(

(
(
eGaBR () + LAl ) (6D

A
M=

N
I
—
~
I
—_

veE

1=

ZZZC’ tZt alj (t)) <

i=1j=

<8§2€2 Z a;jh; 2>

cze%z%<r>+éhf<z<r>>ATAhT<z<r>>

N
I
—_

|
E”4=

~

eCRZ(0)+ LR ABA0) (6

~.
—_

IN |
M= -
—~ =

(3.62) ve (3.61) birlestirildiginde

Gilizi(t)aijhj(z;(t)) = 2(q1 + q2) i ié' lizi(t)aijhj(z(r))

i=1j=1

M=

._.
~.
I
—_

IN
(ngE

~
—
~.
—

(et 0+ L gjaa?2 1))

+
™=

Y (azel?+ L)) 0) (3.63)

I
—_
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Bu agsamada, asagidaki esitsizlik olusturulabilir:

veE

Yukaridaki (3.64) ve (3.65) birlestirildiginde asagidaki denklem elde edilir:

IN

IN

IN

IN

IN

IN

Gilizi(t)bijhj(z;(t — 7))

M:

N
I
—
~.
I
_

-
M:

Gili|bij|zi(2)] | (zj(r — )]

—_
.
Il

—_

1= T
ngE

PLIBLIR0) + 5 by 20— 7))

I
—_
~.
I
—_

M=
M=

N
I

—_
~.
I

—_

(
Y. (pGlbli3)+ S Llbyli3a—m)
L (

™=
M=

pClszlz 1)+ — C]bjllz (t— Ti))

I
—_
~.
I
—_

22 Z Gilizi(t)bijhj(z;(t — 7))

i=1j=
2122 1 < 2
v Z Cilizi(t)+ Z ( Y bijhj(z;(t — Tj)))
i=1 i=1 \j=1
n 1 n
VY QR0 o® Y )
i=1 i=1

2 Y, Gli(0)buhy (1)

1j=1

Y ¥ (2rGilibis+2naGiliby ) z0)h (1t — %,))

.]:

)Y (npébull zi (1) + %CJBjilizzlz(l - Ti))

INh M-

N
I

—_

_

™=
Z
~.

Z

+r2v2;212 )+ 2 o w(B) Y Pz (t— )
i=1

(3.64)

(3.65)

(3.66)
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(3.60) denkleminde (3.66) ve (3.63) kullanilirsa ana esitsizlik bulunur:

zz) - 2 k' s o2, 841, . 0\ o
22 ) ——=Glizi(t) < —262_2Ci%'lizi(l)+2_Zl<€2m€§iaijli+TCjajili>Zi(l)

n

+8292€ZC1 0+ =R o) L EZ 0
=

—1—2 Z (Szrlpcl’gijlizZiz( )+ &ar ICJ ],lz 2( Tl-)>

i=1 j=1

n
&r
+erv Y G + = O c2(B B).
i=1

P2 (t—1) (3.67)

M:

I
—_

Lyapunov fonksiyonundaki V;(¢) aday: tiirevlendiginde asagida verilen denkleme ulagilir:

. e £ ky .~ « € k
V() = ZZZ(1—1’2(1+§)bkibk_,~z,.2zi2(t)— (14 Dbyl 1))

i=1j=1k=1 ° K
! ek . - ek
+3 ) ) (gdijbkilizziz(f) — =Gyl (t — Ti))
i=1 j=1k=1 * KN Kkn
€ k € k i
L1+ 2)00(B) Y 1727 (1) = "2 (1+ 2)on(B) Y. 2= )
P i=1 P i=1
1l &ry . » &ry
+Y ) <_Cjbjilizzlz( )——Cz bjilfzi( Tz))
i=1 j=1

+kin Y (7 (1) — 2 (1 — 7)) (3.68)
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Boylece, V(¢) ana fonksiyonu igin zamana gore tiirevi kolaylikla gosterilebilir:

V(t) Vl( ) +V2( ) < —2¢; Z fg',"}/,'lizl + €& K'Z é,zllzzl

4 k . 1 ek
+3 2 ) (81,€ln@jibjkll2 2t )+;%aﬁ,bkllzz,( ))

n k n
(1+kap)mio2(A) Y 222(1) + 81_51(1 + —2)6,31(8) Y Pz ()
i=1 i=1

€ . A &P ko
(E(l+k2p)m20kiakjlizziz(t)+ p” (1+p)bklbk,llzz()>

_|_
M=
M=

N
|
~
I
_
-
I
_

o
k2
'M=

I
—_

20+ X, X (eGintf o + 5 G 20)

n
tepe Y P20+ 2262(4) Y 22()
i=1 =1

&€
ks £o22 &r 2.2
+Y Y (82r1PCibijli z; (t) + CJ jiliz i(f)>
i=1j=1
L er
+earav ), cﬁz&%m%oz(m Y. 220+ ki3 1(0)| (3.69)
i=1 i=1

(3.69) esitsizligindeki veriler ortak paranteze alinip teoremin varsayimlart uygulandiginda

asagidaki sonuca direkt olarak ulasilabir:

i=1 k=1 KN iZi=1 K

1+ kop)my =, 1 ko 2 kv vz 2
o2 37 3 iy~ 220+ $2)038) - 21+ ) 3 3 buby )0
S ke p KPS

zl (zc,— e z Gy - Z i+ el — o)
np _21 Gy~ 2 by ravEE — 203(B) )2 0) + 20
L
- - Zl Perd () - ;e%eze,z%(z) FREI20)]B
- —i‘iliz(glai-i-ez@)ziz(f)+k131||1(f)||%
< (“R(6180+ £20) + KI2) éz,?o) (618 + £26m— K)|2(0)| B (3.70)

Boylece, (3.70) z(t) # 0 i¢in V(¢) < 0 oldugunu garanti eder. z(z) = 0 saglanmas1 durumunda
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(3.45) sisteminin dinamik analizi, (3.68)’den direkt olarak gdzlemlenebilir ki

v Y2 ky 5 ¢ Ao g €Ki Y\ YO NC A 7 22
z(l‘) = __(1+_)ZZ Zbkibkjlizi (I—Ti)—— Z Zaijbkilizi (I—Ti)
K [y i | KN i3 =1 k=1
€1p1 k2, 2% 2 < 2
_T(1+F)Gm(B)ZliZl — T Zzgjbﬂl 2 (t—)
i=1 i=1j=1
&ern - 500 2
_TGm(B)Zl 7 (t— 1) —kI2, Zzl t—1)
i=1
n
< —klp Y 7t —w) =~k ||z(t — 7|13 (3.71)

i=1

elde edilir. Oyleyse z(t — 7) # 0 her gerceklendiginde (3.71) sadece V (¢) < 0 olan kosulu
dogrulayacaktir. z(r) = 0 ve z(t — 7) = 0 kabul edildiginde (yani hem h(z(¢)) = 0 hem
de h(z(t — 7)) = 0 oldugu anlagilabilir),bu yeni durumda, V(z) = 0 sonucuna kolaylikla
varilabilir. Ayrica kullanilan V (¢) fonksiyonunun ||z(z)|| — eo durumunda V (¢) — eo kogulunu
gerektiren bir radyal sinirsiz fonksiyon oldugu kanitlanmis olur. Bu nedenle, temel Lyapunov
kararlilik teoreminden (3.45)’te verilen bu sinir aginin orijininin ya da (3.6) ile verilen zaman
gecikmeli sinir aginin sahip oldugu denge noktasinin global asimtotik olarak robust kararli

oldugu sonucuna varilabilir.

Dikkat edilirse, (3.6)’da sistemi i¢in eger c;(x;(f)) = c;x;(t) ile birlikte bir de d;(x;(t)) =1
oldugu kabul edilirse bu durumda Cohen-Grossberg YSA sistemi Hopfield YSA sistemine
doniisiir. (3.29)da ¢;(x;) ile c;x; yer degistirirse

—(x—%)T2®LC(x — %) Z 2&Eilici(x (3.72)
elde edilir. (3.11)’in dogultusunda (3.72) saglanirsa
n

—(x—%)T2®LC(x — %) Z 2Eilic;(x; — %;)? (3.73)

olur ve ote yandan (3.58)’de Cz(¢) ile B(z(¢)) min yeri degistirilirse asagidaki sonug elde

edilir:

_ZZ ( )CDLCZ Zzéz tZt CtZt( ) < - zgigilizzz(t) (3.74)

I™-
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O halde Teorem 3.4.1°deki ¥ ile ¢;, Vi’nin yeri degistirildiginde direkt olarak (3.4) modelinin

robust kararlilik kosullarini sagladigi asagida verilen teorem ile sOylenebilir:

Teorem 3.5.1: (3.4) sisteminde, g € £ oldugunu ve sistem matrislerinin (3.11)’de
tanimlanan belirsiz aralik matrisleri oldugunu kabul edelim. Eger asagidaki cebirsel kosullari
saglayan K, 1, p, €, V, p, i, & ve §; varsa (3.4)’teki YSA sistemi her sabit u’ya gore tek,

global asimtotik kararli bir denge noktasina sahiptir

. km & & . kI & & . - 1 +kop)m
& = 251‘ N — 1—ZZCljibjk__l Zaijbki_%cri(‘q)
K ji=lk=1 KN j=i= K
1+ kop)my S, . D k> P2 k2, v xo 2 2
UERap)m §° §° s — 21+ 22)028) ~ 2214 2) Y ¥ iy
K j=lk=1 p K P ==

& (& SR q1 % 4 A q
6, = 2(:,-7 —q1€ Z Cidjj — ?1 Z Cjdji —Q2N§i2 - EZG;%(A)
i j=1 j=1
r n
—rlpZCz ij — IZCJ Jji rz\’Cz——G ( )

icin

& 8,‘—}—829,' >0, Vi

Burada 0< ¢ <1,0<&<1licing+&=1,0<k <1,0<kh <1igink +k =1,
0<m <1,0<m <liginm+m=10<p <1,0<p, <1igin p; +pr =1,
0<g1<1L,0< g <ligcmng+q=1,0<r<1,0<rn<1iinr+nrn =1,
on(A) = min{01(A),02(A),03(A),04(A),05(A),06(A)}, aij = max{|a;|,[aij|}, om(B) =
min{c1(B),02(B),03(B), 04(B), 0s(B), 06(B)} ve bij = max{|byl,[bij|}, Vi, j.
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4. BULGULAR

Bu boliim temel olarak sinir sistemleri (3.6) ve (3.7) ile iligkili daha 6nce yaymlanmis
robust kararlilik sonuglarin1 gozden gegirmeyi ve onceki literatiir sonuclari ile bu makalede
verilen sonuglar arasinda bazi kargilagtirmalar yapmay1 amaclamaktadir. Gegmis literatiirde
benzer robust kararlilik sonuclar1 farkli sekillerde ifade edilmistir.Bu bdliiimde onceki
benzer robust kararlilik sonuglari birlestirilecek ve bir dnceki literatiir sonug¢larinin, Teorem
3.4.1 ve 3.5.1°de tiiretilen robust kararlilik kriterlerinin bazi farkli 6zel durumlar olarak

degerlendirilebilecegi gosterilecektir.

Teorem 4.1 [52]-[53]: (3.4)’teki gecikmeli sinir sisteminde, g € L oldugunu ve belirsiz
arabaglanti matrislerinin (3.11)’de tanimlanan araliklar icerisinde kaldigini varsayalim.
<

Sistem (3.4) eger r = min( li) olmak iizere asagidaki kriteri saglarsa her bir u sabiti i¢in

bu sistem yalniz bir global asimtotik kararli denge noktasina sahiptir denir:

r—o1(A)—o1(B) >0

Teorem 3.5.1'de &, =1, q1 =r =0, §=1,Vi, r = mm(%’), U = ou(A) ve v = 0,(B)

durumu icin

; 1 1
6, = Zi—u—ﬁc,%(A)—v—;G,%(B)22r—26m(A)—2c7m(B)
= 2(r—ou(A)—on(B)) >0,Vi.

kosulu elde edilir. Boylece Teorem 4.1’in kosullar1 Teorem 3.5.1°de tiiretilen sartlarin bazi

0zel durumlardir.

Teorem 4.2 [54]-[55]: (3.4)’teki gecikmeli sinir sisteminde, g € L oldugunu ve belirsiz
arabaglanti matrislerinin (3.11)’de tanimlanan araliklar icerisinde kaldigini varsayalim.
CL~! — A — B tekil olmayan M-matrisse, bir baska ifadeyle asagidaki kriteri saglayan ¢; > 0

gibi baz1 uygun sayilar varsa sistem (3.4) her bir u sabiti icin yalmz bir global asimtotik
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kararl1 denge noktasina sahiptir denir:

G
%7 -
L

n
qj(@ji+bj) >0,Vi
=1

Teorem 3.5.1’de, &, =1, g2 =r» =0 ve € = p = 1 durumu i¢in,

A

6 = 2§

|1

n
Y=Y (Gidij+ Gibij+ Ciaji+ Eibji) > 0, Vi
=

i

~

2CL~' — A — AT — B— B” uygulanarak tekil olmayan M-matrisin 6zelliginin saglandi1 elde
edilebilir. Nihayetinde, Teorem 3.5.1°deki saglanan sonuglar Teorem 4.2°deki tiiretieln bu

sonuglara bazi alternatif sonuglar olarak degerlendirilebilir.

Teorem 4.3 [56]-[58]: (3.4)’teki gecikmeli sinir sisteminde, g € L oldugunu ve belirsiz
arabaglanti matrislerinin (3.11)’de tanimlanan araliklar icerisinde kaldigini varsayalim. Eger
u ve v pozitif sabiti varsa sistem (3.4) her bir u sabiti i¢in yalniz bir global asimtotik kararl
denge noktasina sahiptir 6yle ki

1 5

1
2r—u—ﬁc71 (A)—v—;cf(B) >0

Teorem 4.4 [56]-[58]: (3.4)’teki gecikmeli sinir sisteminde, g € L oldugunu ve belirsiz
arabaglanti matrislerinin (3.11)’de tanimlanan araliklar icerisinde kaldigin1 varsayalim. Eger
W ve v pozitif sabiti varsa sistem (3.4) her bir u sabiti i¢in yalmz bir global asimtotik kararl

denge noktasina sahiptir dyle ki

1 1
2r—u— EGE(A) e ;GZ(B) >0

Ayrica, Teorem 3.5.1’de, &, =1,q1 =r; =0, =1,Yi,r = min(%"), U= 0p(A) ve V=0,(B)

durumu i¢in asagidaki sonug elde edilebilir:
b =2 Loziay—v—Lo2m)>0
=) — — Cy——
i H 1w om y

Dolayisiyla; Teorem 4.3 ve 4.4, Teorem 3.5.1°in 6zel sonucudur.
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Teorem 4.5 [59]-[60]: (3.4)’teki gecikmeli sinir sisteminde, g € L oldugunu ve belirsiz
arabaglanti matrislerinin (3.11)’de tamimlanan araliklar icerisinde kaldigin1 varsayalim.Eger
sistem (3.4)’tin parametreleri asagidaki kosulu saglarsa, sistem (3.4) her bir u sabiti icin

yalmiz bir global asimtotik kararli denge noktasina sahiptir denir:

n n
-2 Z Z (éki&kj +bkibkj> > 0,Vi
j=1k=1

Nw|m

Teorem 3.5.1’de, &, =0,my =1, pr =k =1, & = l_: ve p = kK = 1 durumu igin

~N|m

n n
Z Z (Gridxj+ bribyj) > 0,Vi
j=lk=1

elde edilir. Sonug olarak, Teorem 4.5, Teorem 3.5.1’in 6zel durumudur.

Teorem 4.6 [61]-[62]: (3.4)’teki gecikmeli sinir sisteminde, g € L oldugunu ve belirsiz
arabaglanti matrislerinin (3.11)’de tanimlanan araliklar icerisinde kaldigini varsayalim.

A, + AT’ nin spektral yaricapini p (A, +AT) temsil etmek iizere
2r = p(As+AL) = 2|A[|2 — ||B][1 — ||B]. > 0

oluyorsa sistem (3.4) her bir u sabiti i¢in yalniz bir global asimtotik kararli denge noktasina

18]l

sahiptir. Ek olarak, Teorem 3.5.1’de €, =0, ¢, = =0, =1, u = o0,(A), p = 1B

durumu icin

A Y LI 14
0 = 2 —20u(A) =} (pbij - 50
i j=1

A 1,
> 2r—20m(A) —plBlh —EHBH«:

= 2r—20m,(A) —21/|B||1]|B||- > 0, Vi.

elde edilir. p(A. +AT) < 2||A.||o’dir. Dolaysiyla, 2||A*||, + p (A, +AT) < 2(||A%||2 +
||A+||2) =201 (A) dir. Herhangi B matrisi almacak olursa, 1/ ||B||1]|B|[« < 5(||B||1 +||B]|)

kosulunu saglayan esitsizlik gézlemlenebilir. Boylece Teorem 2’de saglanan kosullar Teorem

4.6’da tiiretilmis alternatif sonuglar olarak diisiiniilebilir.
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5. TARTISMA VE SONUC

Tez ¢alismasi, matematiksel modellerinin ayrik zaman gecikmesi terimlerini icerdigi, siirekli
Lipschitz aktivasyon fonksiyonlarini kullandig1 varsayilan dinamik sinir sistemlerinin global
robust kararliligin1 saglayan bazi yeni yeterli gecikmeden bagimsiz kriterler onermistir. Bu
tezin temel katkilarindan biri, yeni robust kararlilik sonuclarinin tiiretilmesinde kullanilan
belirsiz arabaglanti matrislerinin araliklart i¢in yeni ve gelistirilmig bir iist sinir normu
tiretmek olmustur. Tezde Onerilen kosullar ile daha Once sunulan bazi robust kararlilik
sonuglart arasinda ¢ok ayrintili bir karsilastirma yapilmistir; bu, bu tezde tiiretilen robust
kosullarinin en onceki karsilik gelen robust kararlilik sonuglarini genelledigini gostermistir.
Ayrik gecikme terimlerini ve Lipschitz aktivasyon fonksiyonlarini igceren dogrusal olmayan
sinir sistemlerinin istenen kararlilik analizini yapmak ve arabaglanti matrislerinin i¢ine
diigtiigii araliklar i¢in yeni {iist sinir normlarini kesfetmek basarilmasi zor gorevler
oldugundan, bu tezde ayrik zaman gecikmesi parametrelerini igeren belirsiz gecikmeli
dogrusal olmayan sistemlerin kararlilik teorisinde ileri arastirma ¢aligmalarinda kullanilan

kararlilik analizi teknikleri ve yontemleri bazi sonuglara yol agabilir.
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