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olduğu intihal yazılım programı kullanılarak Fen Bilimleri Enstitüsü’nün belirlemiş olduğu
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1. GİRİŞ

YSA, insan dimağının nörolojik yapısının işlevinden ilham alınarak geliştirilen, yapay

olarak öğrenebilen hatırlama, karar verme, kıyaslama, genelleme gibi pek çok özelliği

matematiksel modellerle gerçekleştirilen bir bilgi işleme teknolojisidir. Görülmemiş örnekler

hakkında bilgi üretme, algılama, şekil (örüntü) bağlantıları kurma ve onları sınıflandırma,

eski örüntülerden yola çıkarak yeni örüntüler elde etme ve öğrenme gibi bir çok işlemi paralel

zamanlı olarak yapabilme özelliklerine sahip olan YSA, günümüzde birçok sektörde görüntü

işleme, optimizasyon, çağrışımlı bellek tasarımı gibi problemlerin çözümünün yapılmasında

kullanılmaktadır.

YSA insana özgü öğrenme yetisini bilgisayarlara ya da makinelere aktarılmasını sağlamak

için kullanılan yapay zeka teknolojilerinin temel yapı taşlarından biridir. Bu yüzden

son dönemde yapay zeka uygulamalarının ivmelenmesiyle birlikte YSA’nın geliştirilmesi

için yapılan çalışmalar da artmıştır. Bu yapılan çalışmaların daha doğru ve sistematik

ilerleyebilmesi için YSA’nın oluşum temeline inmek gereklidir ve oldukça önem arz

etmektedir.

YSA’nın kullanım alanlarında ortaya çıkan çeşitli somut problemler matematiksel

modellemeler yardımıyla çözülmektedir. Bu modellemelerin oluşumu için ise diferansiyel

denklem sistemleri kullanılmaktadır. Bu sebeple diferansiyel denklemler YSA

çalışmalarında zorunlu olarak kullanılan bir araç haline gelmiştir.

Literatürde doğrusal sistemler gerçek dünya probleminin çözümünde kullanımının yanı

sıra basit olmalarından dolayı oldukça ilgi görmüştür. Fakat var olan tüm sistemler

doğrusal olmak zorunda değildir ve bu sebeple doğrusal olmayan diferansiyel denklem

sistemlerinin de kullanılmasını gerektirecek bazı durumlar meydana gelebilir. Ayrıca

sistemlerin matematiksel modellemesi adi diferansiyel denklemler kullanılarak yapıldığında

yalnızca o andaki var olan zamanda hesaplama yapılır ve dolayısıyla önceki zamanlar göz

ardı edilmiş olunur. Bu durum sonucunda sistemden elde edilen çıktılar çok doğru bilgiler

vermez. Dolayısıyla daha gerçek sonuçlar elde etmek için durumu zamana göre değişen

modellerin genel bir sınıfı olan dinamik sistemleri kullanmak gerekir. Dinamik sistemleri



2

daha genel bir ifadeyle tanımlayacak olursak; dinamik sistemler, zaman içinde değişen

doğrusal olan ya da olmayan sistemlerdir. Dinamik sistemler durum vektörleri ve diferansiyel

denklemlerin bir kümesiyle oluşturulur.

Doğrusal olmayan diferansiyel denklemlerle oluşturulmuş dinamik bir YSA modeli

için birtakım davranış analizleri yaparak çeşitli sonuçlar elde etmek, doğrusal olmayan

diferansiyel denklemleri çözmekten daha mümkündür. Bir başka ifadeyle bu tarz

denklemlerin niteliksel davranışları incelenerek sistem hakkında yorumlar yapılması

araştırmacılara daha kolaylık sağlar. Optimizasyon, görüntü ve işaret işleme gibi

problemlerin çözümünde kullanılan YSA modellerinde; koas, çatallanma, kararlılık,

kararsızlık, osilasyon gibi birçok niteliksel davranış içerisinden kararlı dinamik davranış tarzı

oldukça hayatidir. Bu nedenle bu tip YSA’nın denge noktasının kararlı durum formunda

olması arzu edilir ve hatta son yıllarda kararlı duruma sahip çeşitli YSA modellerinin

oluşturulması ve analiz edilmesi popüler olarak çalışılan alanlardan biri haline gelmiştir.

Literatürde, ilk dinamik sistemli YSA modellemesi, Hopfield tarafından 1980’li yıllarda

yapılmış olan Hopfield yapay sinir ağı modelidir:

Şekil 1.1: Hopfield YSA Matematiksel Modellemesi

Burada x = (x1,x2, ...,xn)
T durum vektörünü, C = diag(ci > 0) i. nöron için sabit

katsayılar, A = (ai j)nxn ara bağlantı matrisini, g(x) = (g1(x1),g2(x2), ...,gn(xn))
T aktivasyon

fonksiyonlarını u = (u1,u2, ...,un)
T giriş vektörünü, n ise nöron sayısını temsil etmektedir.

Daha sonra ise Hopfield modelden daha kullanışlı bir model olan Cohen-Grossberg YSA

model 1983 yılında ortaya atılmıştır:

Şekil 1.2: Cohen-Grossberg YSA Matematiksel Modellemesi
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Burada D(x(t)) genişletme fonksiyonudur. Bu fonsiyon sistemin denge noktasına yakınsama

hızını denetler. Ayrıca buradaki C(x(t)) davranış fonksiyonudur.

Hopfield modeli, Cohen – Grossberg modelinin (D(x(t)) = 1 ve C(x(t)) = Cx(t) için)

özelleşmiş birer formudur. Bu sebeple Cohen-Grossberg için yapılan çalışmaların hepsi

Hopfield model için de geçerli olacaktır.

Yapılan çalışmalar sonucunda YSA modellerinde göz önünde bulundurulması gereken farklı

etmenlerin varlığı da ortaya çıkmıştır. Bunlar arasından özellikle çok önemli iki faktör

göz önünde bulundurulmalıdır. Bunlardan ilki sistem parametrelerindeki sapmalar, ikincisi

sistemdeki zaman gecikmeleridir.

Bu nedenle bu iki durumun önüne geçebilmek için alınması gereken önlemlerden birincisi;

sistemdeki zaman gecikmelerinden doğan sapmalardan kurtulabilmek amacıyla zaman

gecikmeli YSA modeli kullanılmasıdır. Çünkü gecikmenin göz önünde bulundurulmadığı

bir YSA sistemi kararlı iken kararsız hale geçebilir. Benzer şekilde meydana gelebilecek

bazı dış etkenlerden dolayı, sistem parametrelerinde oluşabilecek sapmalar sebebiyle

de sistem kararsız hale gelebilir. Bu yüzden alınacak önlemlerden ikincisi ise; YSA

nın sistem parametrelerindeki sapmaların önüne geçebilmek adına sistem parametresinin

belirsizliklerinin dinamik davranış üzerindeki etkisi göz önünde bulundurularak bir robust

kararlılık analizi gerçekleştirmektir.

Bu tezin amacı zaman gecikmeli ve parametre belirsizlikleri ile tanımlanmış

Cohen-Grossberg YSA modeli için yeni bir üst sınır ve yeni bir Lyapunov fonksiyonu

tanımlayarak sistemin denge noktası için global robust kararlılık analizi gerçekleştirmek ve

yeni esnek kararlılık koşulları elde etmektir.

Bu hedef doğrultusunda, tezin genel kısımlarında doğrusal olan ve olmayan diferansiyel

denklem sistemleri için birtakım kararlılık kavramlarından bahsedilmiş ve bir diferansiyel

sistemin kararlılığının tespitinde kullanılacak bazı önemli teorilere yer verilmiştir.

Tezin malzeme ve yöntem kısmında doğrusal olmayan bir diferansiyel denklem sisteminin

matris-vektör formunda ifade edilişi üzerine elde edilen matrislerin ve vektörlerin çeşitleri

hakkında önbilgiler verilmiş olup YSA’nın matematiksel modellemeleri incelenmiştir.

Ayrıca bu modeller içerisindeki parametre belirsizliklerine sahip YSA modelleri için hem

arabağlantı matrislerine yeni bir üst sınır bulunmuş, sayısal örnekle pekiştirilmiş hem de
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belirli varsayımlar altında robust ve global asimtotik kararlılığı analizi yapılmıştır.

Bulgular kısmında ise elde edilen kararlılık koşullarının Cohen-Grossberg YSA modeli ve

Hopfield YSA modeli için uygulanabilirliği ispatlanmış olup literatürdeki benzer varsayımlar

altında elde edilen koşulları da genellediği açıkça ifade edilerek yeni ve yeterli kararlılık

koşulu elde edildiğine dikkat çekilmiştir.

Son kısımda ise tezin kapsamından bahsedilerek bu tezden elde edilen özgün sonuçlar

ışığında literatüre yeni katkılar yapılabileceği vurgulanmıştır.
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2. GENEL KISIMLAR

Dinamik sistemler YSA çalışmalarının matematiksel modellemesinde kullanılan doğrusal

olan ya da olmayan durumu zamana göre değişen diferansiyel denklem kümeleridir. Bu

sistemlerde istenilen hedef diferansiyel denklem sistemlerinin denge noktası civarındaki

davranışını inceleyerek birtakım sonuçlar elde etmektir. Bu yüzden önce denge noktası

kavramını incelemek gerekir:

Denge Noktası: ẋ = g(x) olarak gösterilen bir diferansiyel denklemde g(x̌) = 0 şartını

gerçekleyen x̌ sabitine sistemin denge noktası denir.

Genellikle uzun bir zaman aralığında sisteme ait çözüm yörüngelerinin denge noktasına

yakınsaması, denge noktasından saçılması, kaos ya da denge noktasının civarında osilasyon

yapması ve benzeri davranışlar ortaya çıkabilir. Ancak önce doğrusal olan ya da olmayan

sistemlerin matematiksel olarak ifade edilişini, eğer bulunabiliyorsa çözümlerinin nasıl

olduğunu, bulunamıyorsa sistemin davranış analizinin yapılması için kullanılan yöntemleri

açıklamak gereklidir.

2.1. DOĞRUSAL VE DOĞRUSAL OLMAYAN DİFERANSİYEL DENKLEM
SİSTEMLERİ

W nxn boyutlu sabit bir matris ve x(t) = (x1(t),x2(t), ...,xn(t))T Rn de tanımlanan vektör

olmak üzere; ẋ(t) = Wx(t) doğrusal diferansiyel denklem sistemi eğer W matrisinin

özdeğerlerine karşılık gelen n tane özvektörün lineer bağımsız kümesine sahipse o zaman

bu sistemin çözümü x(t) = c1v1eλ1t + ...+ cnvneλnt dir. Burada c1,c2, ...,cn keyfi sabitlerdir.

Ayrıca bir x(t) değişkeninin denge durumu, ẋ(t) = 0 olmasıdır.

Doğrusal olmayan sistemlerde dinamik denklem aşağıdaki şekilde ifade edilebilir:

ẋi = gi(x1(t),x2(t), ...,xn(t)), i = 1, ...,n

Yukarıdaki diferansiyel denklem takımındaki x(t) = (x1(t),x2(t), ...,xn(t))T sisteme ait
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durum değişkenidir ve g fonksiyonu doğrusal olmayan bir fonksiyonu temsil etmektedir.

Bu ifadenin vektör-matris formu ise ẋ(t) = g(x(t)) olarak yazılabilir. Ek olarak g(x̌(t)) = 0

eşitliğini sağlayan x̌ = (x̌1(t), x̌2(t), ..., x̌n(t))T vektörü sistemin denge noktasıdır.

Denge noktası doğrusal sistemlerde tek iken doğrusal olmayan sistemlerde bir ya da daha çok

olabilir. Denge noktasının sayısı kullanılacak problemin çeşidine göre belirlenir. Çift yönlü

çağrışımlı bellek tasarımı yapmak istenildiğinde çoklu denge noktasının varlığı avantajlı

iken herhangi bir optimizasyon probleminin çözülmesinde sadece bir tane denge noktasının

varlığı daha avantajlıdır.

Doğrusal olan veya olmayan herhangi bir sisteme ait çözüm yörüngeleri denge noktasına

yakınsadığında ya da denge noktasına gitmeye eğilimli olduğunda sistem kararlı; bu

yörüngeler denge noktasından uzaklaştığında ya da osilasyon yaptığında ise sistem kararsız

bir yapıdadır.

ẋ(t) =Wx(t),x ∈ Rn, t ≥ 0

şeklinde verilen doğrusal sistemi ele alınırsa det(W ) ̸= 0 olduğunda bu sistemin tek denge

noktasının varlığı aşikardır. Bu denge noktasının kararlılığı Lyapunov kararlılık teoremleri

ile belirlenebildiği gibi doğrudan W matrisine bakarak da belirlenebilir. Örneğin; λi(W ), W

matrisinin özdeğerlerini temsil etmek üzere Re(λi(W ))> 0, (i = 1, ...,n) ise ẋ(t)→ ∞ olur

ve bu şekilde olan sistemler kararsız olarak nitelendirilir. Re(λi(W ))< 0, (i = 1, ...,n) ise

ẋ(t)→ 0 olur ve bu şekilde olan sistemler kararlı olarak nitelendirilir.

Doğrusal olmayan denklem sistemlerinde ise kararlılık analizini gerçekleştirmek zor

olduğu için ve ayrıca denge noktasının varlığı sistemin kararlılığında gerekli fakat

yeterli koşul olmadığı için bu konudaki gereksinimi karşılamak üzere literatürde

doğrusal olmayan dinamik sistemlerinin kararlılık derecelerini ve özelliklerini sınıflandıran

birtakım analiz yöntemleri geliştirilmiştir. Ayrıca bu yöntemler doğrusal sistemler için de

kullanılabilmektedir.

Doğrusal olmayan sistemler için kararlılık derecelerine ve özelliklerine göre bazı kararlılık

kavramları matematiksel olarak aşağıdaki gibi tanımlanabilir:
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2.2. KARARLILIK ÇEŞİTLERİ VE TEOREMLERİ

Kararlılık : Doğrusal olmayan bir sistemin denge noktası x̌ ve t ⩾ 0 olmak şartıyla ∀ε > 0

için

∥ x(0)− x̌ ∥< δ =⇒∥ x(t)− x̌ ∥< ε

koşulunu sağlayan ∃δ bulunabilirse sistem kararlıdır.

Yukarıdaki matematiksel ifadeler x̌’ın δ komşuluğunda (S(δ )) başlayan her çözümün

x̌ ’ın ε komşuluğunda (S(ε)) kaldığını söyler. Sonuç olarak kararlı bir sistemde; x(t)

çözüm yörüngeleri denge noktasının civarındadır. Ancak birden fazla nokta bu koşulu

gerçekleyebileceğinden dolayı sistem birden çok denge noktasına sahip olabilir.

Kararsızlık : Kararlı olmayan sisteme kararsızdır denir. Yani kararsız sistemde sistemin

çözüm yörüngeleri, S(ε) bölgesinden çıkarak ya bir limit çevrimi içine girer ya da sonsuza

gider.

Asimtotik Kararlılık : x̌ denge noktası ve t ⩾ 0 olmak üzere, eğer x̌ kararlıysa ve aşağıdaki

koşulu sağlayan herhangi bir 0 < δ0 < δ varsa o zaman sistem asimtotik kararlıdır:

∥ x(0)− x̌ ∥< δ0 =⇒ lim
n→∞

x(t) = x̌

Böylece x̌ ’ın δ komşuluğunda (S(δ )) başlayan yörüngeler S(ε) bölgesinin dışına çıkmadan

t −→ ∞ iken sonunda hepsi x̌ ’a yaklaşır. Yani; asimtotik kararlı olan bir sistem tek denge

noktasına sahiptir.

Bu sebeple asimtotik kararlılık, kararlılıktan daha kuvvetli bir özelliktir. Çünkü bir sistemin

asimtotik kararlı olabilmesi için öncelikle kararlı olması gerekir. O halde asimtotik kararlı

olan her noktanın kararlı olduğu ifade edilebilir.

Global Asimtotik Kararlılık : x̌ denge noktası kararlı ve t ⩾ 0 olma koşuluyla, herhangi x(0)

için limn→∞ x(t) = x̌ oluyorsa x̌ denge noktası global asimtotik kararlıdır.

Doğrusal sistemlerde kararlılık ile global asimtotik kararlılık eşdeğerdir.
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Şekil 2.1: Kararsızlık,Kararlılık,Asimtotik Kararlılık

Üstel Kararlılık : Eğer ẋ = g(x) sisteminin denge noktası x̌ = 0 olmak üzere çözümü ∃m ≥

0,λ > 0 ve ∀t ≥ 0,∥ x(0) ∥< c için aşağıdaki koşul sağlanırsa x̌ = 0 denge noktası üstel

kararlıdır :

∥ x(t) ∥≤ m ∥ x(0) ∥ e−λ t

Bir başka ifadeyle herhangi bir başlangıç durumu için x̌ denge noktasının bir S(δ ) komşuluğu

varsa ve bu komşulukta ∀x(0) ∈ S(δ ) koşulu altında t −→ ∞ iken |x(t) − x̌| < e−λ t

eşitsizliğini gerçekleyen bir λ > 0 skaleri varsa üstel kararlıdır.

Üstel kararlılık asimtotik kararlılıktan daha güçlüdür. Yani bir sistem üstel kararlı ise

asimtotik kararlıdır.

Global Üstel Kararlılık : Eğer herhangi başlangıç koşulu için, ∀t ≥ 0 olmak şartıyla

∥ x(t) ∥≤ m ∥ x(0) ∥ e−λ t

olacak biçimde m > 0 ve λ > 0 sabitleri mevcutsa x̌ = 0 denge noktası global üstel kararlıdır.

Bir başka ifadeyle eğer üstel kararlılık koşulu tüm x(0) başlangıç koşulları için sağlanırsa
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x̌ = 0 denge noktası global üstel kararlı olarak adlandırılır.

Optimizasyon, paralel işlem gibi problemler için tek denge noktası istenildiğinden, bu

durumu garantilemek amacıyla uygulanacak YSA modeli global asimtotik kararlı olacak

şekilde belirlenir. YSA’nın global yakınsaklığını gerçekleyen belirsiz sistem parametreleri

arasındaki ilişkiyi kuran şartları elde etmek, global kararlılık analizinin temel hedeflerinden

biridir. Fakat bu şartların gerçeklenebilmesi bizi fazlasıyla zor ve karmaşık analizlere maruz

bırakmaktadır. Bunun sebebi de YSA’nın matematiksel model ifadesinin doğrusal olmayan

diferansiyel denklem sistemleri ile olmasıdır.

Ayrıca bu belirlenen doğrusal olmayan dinamik sistemli YSA modelinin kararlılığının

tespitinde; esas olarak Lyapunov teoremleri kullanılmaktadır. Nedeni ise karmaşık

diferansiyel denklemleri çözmeden sistemin kararlılık analizinin bu teorem yardımıyla

kolaylıkla yapılabilmesidir. 1982 senesinde Rus matematikçi Alexandr Mikhailovich

Lyapunov bu teoremini literatüre kazandırması ile yeni bir çığır açmıştır. Günümüzde

zamana göre değişen veya değişmeyen sistemlere direkt olarak uygulanabilmesi sebebiyle

oldukça kullanışlıdır.

Lyapunov Kararlılık Teoremi :

• Eğer sürekli, diferansiyellenebilir, yerel pozitif tanımlı bir V : R+xRn −→ R

fonksiyonu ve sabit r > 0 varsa o halde x(t) ∈ Rn ve g : R+xRn −→ Rn olacak biçimde

ẋ(t) = g[t,x(t)] t ≥ 0 sisteminin denge noktası kararlıdır öyle ki

V̇ (t,x)≤ 0, ∀t ≥ t0, ∀x ∈ Br.

• Eğer sürekli, diferansiyellenebilir, azalan, yerel pozitif tanımlı bir V : R+xRn −→ R

fonksiyonu ve sabit r > 0 varsa o halde x(t) ∈ Rn ve g : R+xRn −→ Rn olma koşuluyla

ẋ(t) = g[t,x(t)] t ≥ 0 olacak biçimde sistem düzgün kararlıdır öyle ki

V̇ (t,x)≤ 0, ∀t ≥ 0, ∀x ∈ Br.

• Sürekli, diferansiyellenebilir, azalan, yerel pozitif tanımlı bir V : R+xRn −→ R

fonksiyonu varsa öyle ki −V̇ yerel pozitif tanımlı fonksiyon; o halde x(t) ∈ Rn ve

g : R+xRn −→ Rn olma şartıyla ẋ(t) = g[t,x(t)] t ≥ 0 olacak biçimde sistem düzgün

asimtotik kararlıdır.

• Eğer sürekli, diferansiyellenebilir bir V : R+xRn −→ R fonksiyonu var ve (i) V pozitif
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tanımlı, azalan ve radyal sınırsız ve (ii) −V̇ pozitif tanımlı fonksiyon olma özelliklerine

sahipse o halde x(t) ∈ Rn ve g : R+xRn −→ Rn olacak biçimde ẋ(t) = g[t,x(t)] t ≥ 0

sisteminin denge noktası global düzgün asimtotik kararlıdır.

• Eğer sürekli, diferansiyellenebilir bir V : R+xRn −→ R fonksiyonu ve a,b,c > 0, p ≥ 1

varsa o halde x(0) global üstel kararlıdır öyle ki

a||x||p ≤V (t,x)≤ b||x||p, V̇ (t,x)≤−c||x||p, ∀t ≥ 0, ∀x ∈ Rn

Yukarıdaki teorem Lyapunov’un Direkt Metodu şeklinde isimlendirilir. Üstteki metot

sayesinde doğrusal olmayan sisteme ait diferansiyel denklemleri çöxmeden sistemin denge

noktasının kararlılık özellikleri belirlenebildiğinden oldukça genel ve kullanışlıdır. Ayrıca

bu metot doğrusal sistemler için de kullanılabilir.Ancak bu yöntemin uygılanabilmesi

için ise uygun bir Lyapunov fonksiyonu seçmek hayatidir. Lyapunov fonksiyonu elde

etmeye yarayan genel bir yöntem bulunmamakla birlikte literatürde birtakım çalışmalar [1]

mevcuttur.

Lyapunov Teoremi’nin kapsamlı versiyonu olan LaSalle Değişmezlik İlkesi de mevcuttur:

LaSalle-Krasovskii Teoremi:

• ẋ(t) = g[t,x(t)] t ≥ 0 sistemi periyodik olsun. Sistemle aynı periyoda sahip

sürekli,türevlenebilir, yerel pozitif tanımlı bir V : R+xRn −→R fonksiyonu ve V̇ (t,x)≤

0, ∀t ≥ 0,∀x ∈ N koşulunu sağlayan 0’ın bir N açık komşuluğu var olsun. c > 0 olmak

üzere Lv(c) bir seviye kümesini temsil etsin. Öyle bir c sabiti için Lv(c) nin N de

sınırlanması ve kapsanması gerçeklensin ve S aşağıdaki gibi tanımlansın:

S = x ∈ Lv(c) : ∃t ≥ 0 ∋ V̇ (t,x) = 0

Bu koşullar altında, eğer S, x(t) = 0 ∀t0 ≥ 0 hariç sistemin başka hiçbir yörüngesini

içermiyorsa, o zaman 0 denge noktası düzgün asimtotik kararlıdır.

• ẋ(t) = g[t,x(t)] t ≥ 0 sistemi periyodik olsun. Bu sistemle aynı periyoda sahip

sürekli, türevlenebilir bir V : R+xRn −→ R fonksiyonu var olsun. Öyle ki (i) V > 0

ve radyal sınırsız (ii) V̇ (t,x) ≤ 0, ∀t ≥ 0,∀x ∈ Rn. Bu koşullar altında aşağıdaki gibi
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bir R kümesi tanımlansın:

R = x ∈ Rn : ∃t ≥ 0 ∋ V̇ (t,x) = 0

eğer S, x(t) = 0 ∀t0 ≥ 0 hariç sistemin başka hiçbir yörüngesini içermiyorsa, o zaman

0 denge noktası global düzgün asimtotik kararlıdır.
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3. MALZEME VE YÖNTEM

Dinamik YSA’nın kararlılık analizi yapılırken matrislerin ve vektörlerin normları gibi

birtakım özellikleri kullanılır. Bu sebeple matris ve vektör özellikleri YSA kararlılık

analizinin temel yapıtaşıdır. Ancak bu özelliklerin daha kolay anlaşılabilmesi için önce Öklid

Uzayı kavramı izah edilecektir.

Öklid Uzayı : s = [s1,s2...,sn]
T n boyutlu vektörlerin kümesini, s1,s2...,sn gerçek sayıları

ifade edecek olursa; reel değerli tüm n-bouyutlu vektörlerin kümesi Rn ile temsil edilir ve

Öklid Uzayı olarak adlandırılır.

Rn uzayının sahip olduğu özelliklerden bazıları aşağıdaki gibidir:

(i) Rn de y = [y1,y2...,yn]
T ve s = [s1,s2...,sn]

T herhangi iki eş boyutlu vektör olmak üzere,

s+ y = [s1 + y1,s2 + y2...,sn + yn]
T yeni bir vektör oluşturur.

(ii) Herhangi bir s ∈ Rn vektörünün α skaler ile çarpımı αs = [αs1,αs2...,αsn]
T şeklinde

olup αs yeni bir vektör temsil etmektedir.

(iii) Herhangi s,y ∈ Rn vektörleri için iç çarpım sT y = ∑
n
i=1 siyi şeklinde hesaplanan bir

tamsayıdır.

Vektör Normları : ∀s,y ∈ Rn ve η sabit bir sayı olsun. ||s|| s vektörünün normunu temsil

eden ve aşağıdaki özellikleri gerçekleyen reel değerli fonksiyon olarak tanımlanırsa o zaman

bu fonksiyon bir norm belirtir:

• ||s||> 0,∀s ̸= 0 ve s = 0 ise ||s||= 0,

• ||s+ y|| ≤ ||s||+ ||y||,

• ||ηs||= |η |||s||

Literatürde en sık kullanılan p. normu aşağıdaki gibidir:

||s||p = (|s1|p + |s2|p + ...+ |sn|p)
1
p 1 ≤ p < ∞
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Bu tez çalışmasının sonuçlarının elde edilmesinde fayda sağlayan ve yukarıdaki genel

formdan elde edilen 3 norm aşağıdaki gibidir:

||s||1 = (|s1|+ |s2|+ ...+ |sn|) = ∑
n
i=1 |si|

||s||2 = (|s1|2 + |s2|2 + ...+ |sn|2)
1
2 = (∑n

i=1 s2
i )

1
2 = (sT s)

1
2

||s||∞ = max
1≤i≤n

|si|

Eğer ∥ . ∥α ve ∥ . ∥β ayrı p-normları ise, ∀s ∈ Rn için aşağıdaki biçimde µ1 > 0 ve µ2 > 0

sabit sayıları mevcuttur:

µ1 ∥ s ∥α ≤∥ s ∥β ≤ µ2 ∥ s ∥α

Bu sebeple tüm p-normları bu anlamda eşittir. Aşağıda vektör normlarının bazı özellikleri

herhangi s ∈ Rn vektörü için özetlenmiştir:

∥ s ∥2≤∥ s ∥1≤
√

m ∥ s ∥2

∥ s ∥∞≤∥ s ∥2≤
√

m ∥ s ∥∞

∥ s ∥∞≤∥ s ∥1≤
√

m ∥ s ∥∞

Ayrıca Hölder Eşitsizliği vektörlerin p-normu kullanılarak ifade edilebilen farklı bir

eşitsizliktir ve aşağıdaki gibidir:

∀s,y ∈ Rn için |sT y| ≤∥ s ∥p∥ y ∥q,
1
p
+

1
q
= 1 şartını sağlayan 1 ≤ p,q < ∞ olan p,q sayıları

mevcuttur.

Reel elemanlı nxn boyutlu W matrisi, Rn −→ Rn e ẋ(t) = Wx(t) doğrusal dönüşümünü

tanımlayacak olursa W nın p-normunun genel hali aşağıdaki gibidir:

∥W ∥p= sup
x ̸=0

∥Wx ∥p

∥ x ∥p
= max

∥x∥p=1
∥Wx ∥p

Burada p = 1,2, ...,∞ için elde edilen W matrisinin birinci normu ∥ W ∥1, ikinci normu

∥W ∥2 ve sonsuz normu ∥W ∥∞ şu şekildedir:
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∥W ∥1= max
1≤i≤n

∑
n
i=1 |w ji|

∥W ∥2= [λmax(W TW )]
1
2

∥W ∥∞= max
1≤i≤n

∑
n
j=1 |wi j|

Matris normlarının bilinmesi gereken bazı özellikleri aşağıda kısaca özetlenmiştir:

Herhangi Wmxn matrisi ve Pnxq matrisi için;

∥W ∥2≤
√

∥W ∥1∥W ∥∞

1√
n
∥W ∥∞≤∥W ∥2≤

√
m ∥W ∥∞

1√
m

∥W ∥1≤∥W ∥2≤
√

n ∥W ∥1

∥WP ∥p≤∥W ∥p∥ P ∥p

Bazen p indisi gösterim esnasında düşürülür ve yazılmaz. Bu durumda bu normun p normu

olduğu bilinmelidir.

3.1. MATRİS ÇEŞİTLERİ

Matrisler doğrusal olan ve olmayan dinamik sistemlerin dengelerinin kararlılık özelliklerini

karakterize etme bakımından fazlasıyla önemlidir. Kararlı matrislerin incelenmesi için

birincil motivasyon, diferansiyel denklem sistemlerinin denge noktalarının kararlılık

özelliklerini anlama arzusundan kaynaklanmaktadır. Matematiğin uygulandığı bilimin çeşitli

alanlarında denge noktaları ile ilgili sorular çeşitli biçimlerde ortaya çıkar. Bu alanların her

birinde, durumu değişen, özellikle uzun dönem davranışları hakkında bilgi alınmak istenen

sistemlerin dinamiklerini incelemek gerekir. Bu nedenle matris kararlılığı, uygulamalar

ve matris teorisinin evrimi arasındaki etkileşimde önemli bir konu haline gelen başlangıç

aracıdır.

Kararlı Matris : W nxn boyutlu bir matris olmak üzere W matrisinin her özdeğerinin reel

kısmı negatif (Re(λi(W ))< 0) ise W ya kararlı matris denir.

Pozitif Kararlı Matris : nxn boyutlu bir W matrisinin her özdeğeri pozitif reel kısma sahip
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(Re(λi(W ))> 0) ise W pozitif kararlı matris olarak ifade edilir.

Bu özellikleri taşıyan matrisler "H - kararlı matris" olarak da adlandırılır. Ayrıca W ∈ H

şeklinde temsil edilir.

Teorem 3.1.1 : W pozitif kararlı bir matristir ancak ve ancak −W kararlıdır.

Teorem 3.1.2 : Eğer W pozitif kararlı bir matrisse detW > 0 dır.

Pozitif Yarı Kararlı Matris : W matrisinin özdeğerlerinin negatif reel kısmı sıfırsa yani W

nın her özdeğeri negatif olmayan reel kısma sahipse W ya pozitif yarı kararlı matris denir.

Bu matrislere "H0 kararlı matris" de denir ve W ∈ H0 şeklinde temsil edilir.

Teorem 3.1.3: W nxn tipinde bir matris olmak üzere eğer W pozitif kararlı bir matrisse o

halde W tekil değildir.

Pozitif Tanımlı Matris : W nxn boyutlu bir matris olsun. Eğer W T =W ise yani W simetrik

bir matrisse ve her özdeğeri pozitif reel kısma sahip ( Re(λi(W ))> 0 ) ise W matrisine pozitif

tanımlı bir matris denir. Bu tip matrisler W > 0 şeklinde gösterilir.

Lemma 3.1.1 : Herhangi bir W matrisi pozitif tanımlıdır ancak ve ancak ∀x ̸= 0 vektörü için

xTWx kuadratik formu pozitiftir.

Pozitif Yarı Tanımlı Matris : W nxn boyutlu bir matris olsun. Eğer W T = W ise yani W

simetrik bir matrisse ve her özdeğeri negatif olmayan reel kısma sahip ( Re(λi(W ))⩾ 0 ) ise

W matrisine pozitif tanımlı bir matris denir.

Pozitif tanımlı matrislerde geçerli olan bütün kurallar yarı pozitif tanımlı matrislerde de

geçerlidir.

Teorem 3.1.4: Eğer W pozitif tanımlı ise pozitif kararlıdır. Bir başka ifadeyle pozitif tanımlı

matris pozitif kararlı matrisin özel bir durumudur.

Zn Tanımı : W = (wi j) herhangi bir matris olmak üzere;

Zn = {W = (wi j) : wi j ⩽ 0, i ̸= j ve wii > 0, i = j ∀i, j}

şeklinde tanımlanan matrise Zn sınıfının bir elemanıdır denir.
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M Matris : Eğer W ∈ Zn ve W pozitif yarı kararlı ise W matrisi M matris olarak ifade edilir,

W ∈ K0 şeklinde gösterilir.

Tekil Olmayan M Matris : Eğer W ∈ Zn ve W pozitif kararlı ise W , tekil olmayan M matris

şeklinde adlandırılır, W ∈ K şeklinde ifade edilir.

M matris sınıfının oldukça önemli özelliklerinden biri M matrislerin asıl alt matrislerinin

yine bir M matris olmasıdır. Aynı özellik pozitif tanımlı matris sınıfı için de doğrudur. Yani

pozitif tanımlı matrisler ile tekil olmayan M matrisler arasında bu anlamda büyük oranda

benzerlik bulunmaktadır.

Karşılaştırma (Kıyas) Matrisi : nxn boyutlu bir W matrisi için kıyas matrisi C = {ci j} ile

gösterilir ve elemanları cii = wii,ci j =−|wi j| olarak tanımlanır.

Zn kümesinde bir matrisin karşılaştırma matrisi kendisine eşittir.

Tekil Olmayan H-Matris : Diyagonal elemanları wii > 0 olan herhangi W matrisi için bir

kıyas matrisi C olsun. Bu C matrisi tekil olmayan M matris olursa o halde W , tekil olmayan

H matris şeklinde isimlendirilir ve W ∈C biçiminde sembolize edilir.

H-Matris : Diyagonal elemanları wii > 0 olan herhangi W matrisi için bir kıyas matrisi C

olsun. Bu C matrisi M matris olursa o halde W matrisine H matris denir ve W ∈C0 şeklinde

gösterilir.

D-kararlı Matris : W nxn boyutlu bir matris olmak üzere her P = diag{pi ⩾ 0} için WP ∈ H

olduğunda D-kararlı denir ve W ∈ D ile gösterilir.

Köşegensel Kararlı Matris : W nxn boyutlu bir matris olsun. Pozitif köşegen bir P matrisi

varsa ve W T P+PW pozitif tanımlı ise köşegensel kararlı denir ve W ∈ D ile gösterilir.

D0-kararlı Matris : W nxn boyutlu bir matris olmak üzere her P = diag{pi > 0} için WP ∈

H0 olduğunda D0-kararlı denir ve W ∈ D0 ile gösterilir.

Köşegensel Yarı-Kararlı Matris : W , nxn boyutlu bir matris olsun. Pozitif köşegen bir P

matrisi varsa ve W T P+PW pozitif yarı tanımlı ise köşegensel yarı-kararlı denir ve W ∈ D0

ile gösterilir.

Köşegensel kararlı matrisler aynı zamanda pozitif kararlı bir matris sınıfıdır.
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Toplamsal Kararlı Matris : Herhangi nxn boyutlu W matrisi ele alınsın. Her P = diag{pi ⩾

0} için W +P ∈ H ise W toplamsal kararlı bir matristir ve W ∈ A ile gösterilir.

Toplamsal Yarı-Kararlı Matris : Herhangi nxn boyutlu W matrisi ele alınsın. Her P =

diag{pi > 0} için W + P ∈ H ise W toplamsal yarı-kararlı bir matristir ve W ∈ A0 ile

gösterilir.

Bu matris sınıfı ilerleyen bölümlerdeki doğrusal olmayan dinamik sinir ağı sisteminin

kararlılık analizi çalışmasında kullanılacaktır.

Pozitif matris : W nxn boyutlu bir matris olmak üzere W matrisinin tüm temel minörleri

pozitif ise bu matrise P-matris denir ve W ∈ P ile gösterilir.

Yarı-Pozitif Matris : W nxn boyutlu bir matris olmak üzere W matrisinin tüm temel minörleri

negatif değilse bu matrise P0-matris denir ve W ∈ P0 ile gösterilir.

Kesin Köşegen Satır Baskın Matris : nxn boyutlu bir W matrisine ait elemanlar;

wii >
n

∑
j=1,i̸= j

|wi j| , ∀i

oluyorsa W kesin köşegen satır baskın matristir. Bir başka ifadeyle W matrisinin kesin

köşegen satır baskın matris olabilmesi için; bu matrisin her köşegen elemanı, bulunduğu

satırdaki diğer elemanların mutlak değerce toplamından büyük olmalıdır.

Kesin Köşegen Sütun Baskın Matris : nxn boyutlu bir W matrisine ait elemanlar;

wii >
n

∑
j=1,i̸= j

|w ji| , ∀i

oluyorsa o zaman W matrisi kesin köşegen satır baskın matristir. Bir başka ifadeyle W

matrisinin kesin köşegen satır baskın matris olabilmesi için; bu matrisin her köşegen elemanı,

bulunduğu sütundaki diğer elemanların mutlak değerce toplamından büyük olmalıdır.

Köşegen Satır Baskın Matris : Bir nxn W matrisi, ancak ve ancak

wii ⩾
n

∑
j=1,i ̸= j

|wi j| , ∀i
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ise köşegen satır baskın denir.

Köşegen Sütun Baskın Matris : Bir nxn W matrisi, ancak ve ancak

wii ⩾
n

∑
j=1,i̸= j

|w ji| , ∀i

ise köşegen sütun baskın denir

Köşegen-Dışı İzoton Matris : Elemanları wii > 0,wi j ≤ 0 şeklinde olan bir W = {wi j}nxn

matrisi için W kesin köşegen satır baskın ise köşegen dışı izoton matristir.

Toplamsal Köşegensel Kararlı (M0) Matris : ∀α > 0 skaleri için αI +W ∈ D ise W ∈ M0

olmaktadır.

Bu matris sınıfında W , C0 ve D0 matris sınıflarının özelliğini sağlamakla birlikte bu iki

sınıfın da elemanı değidir. Bu sebeple yeni bir sınıf tanımlanma yoluna gidilerek bir M0

sınıfı bulunmuştur ve bu sınıf dinamik sinirsel sistemlerin denge noktasının global asimtotik

kararlılık koşullarını elde etmek için kullanılabilmektedir.

Aşağıda bu tez kapsamındaki matris sınıflarına ait bilinmesi gereken birtakım temel önemli

özellikler verilecektir:

• Simetrik bir W matrisi için, WP reel özdeğerlere sahiptir, bu P matrisinin pozitif

köşegen matris olduğunu ispatlar.

• W ∈C ise W ∈ D dir. Ama W ∈C0 ise W ∈ D0 olmak zorunda değildir.

• C matrisi W matrisinin kıyas matrisi olmak üzere C ∈ K0 ise W ∈C0 dır.

• W tekil olmayan M-matris veya tekil olmayan H-matris ise, bir P pozitif köşegen

matrisi vardır öyle ki

PW +W T P > 0

• W ∈ M0 ise her P = diag{pi > 0} için A+P ∈ D

• W ∈ M0 ise her P = diagpi > 0 için AP ∈ M0
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• W tekil olmayan M-matris veya tekil olmayan H-matris ise, bir P pozitif köşegen

matrisi vardır öyle ki W T P kesin köşegen baskındır.

• W ∈ D ise W ∈ H dır.

• W ∈ M0 ise W ∈ D0 dır.

• C0 sınıfındaki bir W matrisinin D0 sınıfına ait olması gerekmez.

• D0 sınıfındaki bir W matrisinin C0 sınıfına ait olması gerekmez.

• K0 sınıfındaki bir W matrisinin D0 sınıfına ait olması gerekmez.

• M0 sınıfındaki bir W matrisinin C0,K0,D0 sınıflarından herhangi birine ait olması

gerekmez.

• K0, C0 ya da D0 sınıflarından birine ait olan bir W matrisi M0 sınıfına da aittir. Öte

yandan W simetrik bir matris gerek ve yeter şart pozitif yarı tanımlı ise W ∈ M0 dır.

3.2. AKTİVASYON FONKSİYONLARI

YSA’larının kararlılığını etkileyen faktörlerden biri, sistemde kullanılan aktivasyon

fonksiyonlarıdır. Aktivasyon fonksiyonları hücreye gelen net girdiye karşılık bir çıktı

belirler. Bu çıktının hesaplanabilmesi amacıyla birtakım lineer olmayan fonksiyonlar

kullanılmaktadır. Kullanılan çeşitli aktivasyon fonksiyonları saysesinde; YSA’nın sistem

parametreleri üzerinde global robust asimtotik kararlılık şartlarının oluşturulması,YSA

modelinin denge noktasının varlığı ve tekliği analizi yapılarak meydana gelen durumlardan

her biri için başka şartlar oluşturulmuştur. Bu tez çalışması kapsamında oldukça önemli bir

yere sahip olan literatürdeki aktivasyon fonksiyonları, onların matematiksel gösterimleri ve

temel özellikleri aşağıda verilmiştir:

Sınırlı Aktivasyon Fonksiyonları : ρi pozitif bir sabit olmak üzere eğer gi(s), |gi(s)| ≤ ρi,

(i=1,2,...,n) şartını gerçekliyorsa sınırlıdır. Böyle olan aktivasyon fonksiyonlarının kümesi

g ∈ B ile gösterilir.

Sürekli Artan Türevi Sınırlı Aktivasyon Fonksiyonları :

0 <
gi(s)−gi(y)

s− y
≤ ηi, ∀i ∀y,s ∈ R ve y ̸= s
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ηi > 0 herhangi sabitler olmak üzere yukarıdaki koşulu gerçekleyen fonksiyonlara sürekli

artan türevi sınırlı aktivasyon fonksiyonları denir. Bu tip aktivasyon fonksiyonlarının kümesi

de g ∈ S ile temsil edilir.

Azalmayan Türevi Sınırlı Aktivasyon Fonksiyonları :

0 ≤ gi(s)−gi(y)
s− y

≤ γi, ∀i ∀y,s ∈ R ve y ̸= s

γi > 0 herhangi sabitler olmak üzere üstteki koşulu gerçekleyen aktivasyon fonksiyonlarının

kümesi g ∈ K olarak ifade edilir ve azalmayan türevi sınırlı aktivasyon fonksiyonları denir.

K sınıfı S sınıfından daha geniş bir kümedir. K sınıfındaki aktivasyon fonksiyonları

azalmayan fonksiyonlar olduğundan dolayı türevi sıfır ya da pozitif olabilir.

Lipschitz Sürekli Aktivasyon Fonksiyonları :

|gi(s)−gi(y)|
|s− y|

≤ ιi, ∀i ∀y,s ∈ R ve y ̸= s

Yukarıdaki ifadede ιi > 0 değerleri sabittir. Üstteki koşulu gerçekleyen aktivasyon

fonksiyonları L sınıfına aittir ve g ∈ L ile gösterilir.

Lipschitz sürekli fonksiyonları monoton artan ve artan fonksiyonları içerdiğinden dolayı

L sınıfı da K sınıfından daha geniş bir kümedir. Bu sebeple Lipschitz aktivasyon

fonksiyonu YSA’nın kararlılık analizi yapılırken literatürde sıklıkla kullanılmıştır. Ayrıca

bu tez kapsamında yapılan çalışmalarda da L sınıfı aktivasyon fonksiyonu kullanılacaktır.

YSA’nın kararlılık analizlerinde genellikle kullanılan fonksiyonlar özdeşlik fonksiyonu

(g(y) = y), sigmoid fonksiyonu (g(y) = 1
1+e−y ), tanh fonksiyonu (g(y) = e2y−1

e2y+1) , signum

fonksiyonu vb. fonksiyonlardır.

3.3. YSA İLE İLGİLİ GENEL BİLGİLER

Yapay zekanın bir alt dalı olan YSA, öğrenme yöntemiyle daha önceki bilgilerden farklı

olarak bilgiler üretebilme, beyin fonksiyonlarının ürünü olan sonuçları kullanarak yeni

olaylar öğrenebilme, keşif edebilme gibi yetenekleri kendiliğinden yapabilmek maksadıyla

oluşturulan bilgisayar sistemleridir. Teknik olarak ise YSA, kendisine önceden tanıtılan bir
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girdi veri setine karşılık oluşturulabilecek bir çıktı veri seti oluşturan sistemdir [2] .

Biyolojik sinir ağları, YSAnın oluşumu için en temel referanstır. Sistemin en genel ifadeyle

çalışma şekli biyolojik olarak şu şekildedir: Beyindeki nöronlar, aksiyon potansiyelleri

olarak bilinen elektrik sinyallerini gönderir. Akson gövdesi bu sinyaller için kanal görevi

görür ve sinyaller sinaps boyunca bir nörondan diğer nörona aktarılır. Yani nöronlar sinyalleri

alır ve diğer sinyalleri üretir. Yani bilgisayar terminolojisi ile girdi verilerini alırlar, bazı

işlemleri gerçekleştirirler ve bir çıktı oluştururlar. Ancak çıktı sabit bir oranda verilmez;

girdi belirli bir eşiği aştığında çıktı olarak sonuçlanır. Bunu gerçekleştiren fonksiyon bölüm

3.2 de verilen aktivasyon fonksiyonlarından biridir.

Şekil 3.1: Sinir Ağı Kesiti

Şekil 3.2: YSA Kesiti

YSA, oldukça fazla hücreden meydana gelir ve eş zamanlı çalışması sonucu zorlu işler

yapabilir.

Yapay sinir hücreleri, insan beyninin sinir hücrelerinin simüle edilmesiyle oluşturulmuştur

ve proses elemanları olarak adlandırılmıştır. Her bir prosesin girdi,ağırlık fonsiyonu, toplama

fonksiyonu,aktivasyon fonksiyonu, çıktı olacak biçimde 5 ana unsuru vardır [2]:
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Girdi Prosese çevreden gelen uyarılar ya da
diğer nöronlardan aktarılan bilgilerdir.

Ağırlık Fonksiyonu Gelen tüm girdileri, net bir girdi haline getirmeye yarayan
birtakım sabit veya değişken değerlerdir.

Toplama Fonksiyonu Ağırlıklandırılmış girdileri birleştirerek net girdiyi elde etmeye
yarayan fonksiyondur. Bunun için değişik fonksiyonlar
kullanılmaktadır.

Aktivasyon Fonksiyonu Hücreye giren net girdileri işleyerek hücrenin gelen veri için
oluşturacağı yeni çıktıları gösterir. Bu fonksiyon çeşitleri
Bölüm 3.2 ’ de detaylıca verilmiştir.

Çıktı Bu katnmandaki hücre elemanları ara katmandan ulaşan verileri
işler ve girdi seti için bir çıktı oluşur.

Tablo 3.1: Proses elemanları

[2]

Şekil 3.3: Bir Yapay Sinir Hücresi Elemanları

Yapay sinir hücreleri genellikle 3 katman halinde ve paralel olarak birleşerek YSA’nı

oluştururlar. Girdi katmanındaki proses elemanları dış dünyadan gelen verileri ara katmana

taşır. Ara katmanda gelen veriler işlenir ve çıktı katmanına gönderilir. Sonra bu katmanında

bulunan yapay sinir hücresi elemanları ara katmandan gönderilen bilgileri alarak gelen girdi

setine karşılık üretilmesi istenen çıktıyı üretir. En son olarak üretilen bu çıktılar dış dünyaya

gönderilir[2].

Bir ağın sahip olduğu proses elemanlarının yapısı, aktivasyon fonksiyonu, toplama

fonksiyonu, ağın kullandığı öğrenme stratejisi, ağın topolojisi gibi faktörler farklı ağ

modellerinin oluşmasına neden olmuştur. Örneğin, öğrenme stratejilerinden en önemli iki
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tanesi danışmanlı ve danışmansız öğrenmedir. Danışmanlı öğrenmede sistemin istenen

bilgiyi temin edebileceği ilk kaynak mevcutken danışmansız öğrenmede sistem deneyerek

elde ettiği verilerden yola çıkarak yeni bilgiler öğrenir, yani herhangi bir ilk kaynak yoktur.

Bu öğrenme tercihi bile aslında bir YSA modelini oldukça farklılaştırmaktadır. Benzer

şekilde; YSA yapısına göre ileri sürümlü veya geri beslemeli olarak tercih edilebilir. İleri

sürümlü YSA modelinde girdi gelir ara katmanda işlenir ve çıktı olarak dışarıya aktarılır,

ancak geri beslemeli YSA modelinde ise durum biraz daha farklıdır. Bu modelde, İleri

sürümlü YSA modelindeki gibi aynı işlemler gerçeklenir fakat çıkan çıktı daha sonrasında

girdi olarak tekrar döngüye katılır. Dolayısıyla geri beslemeli YSA modeli çok daha

kullanışlı ve gerçek sinir ağı modeline oldukça uygundur. Bu tezde kullanılan YSA modeli

topolojisi de budur. Sonuç olarak ihtiyaca göre farklı gerçek dünya problemlerinin çözümüne

uygun olan farklı YSA oluşturulmuştur. Günümüzde istenilen çıktıya göre uygun YSA

modelleri tercihi yapılabilmektedir.

Şekil 3.4: YSA Örneği

Literatürde oldukça popüler olan ve üzerine fazlasıyla analizler gerçekleştirlen yapay

sinir ağı modelllerinden bazıları; hücresel sinir ağları (1988), Hopfield YSA (1982),

Cohen-Grossberg YSA (1969) dır.
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Bu tez kapsamında kullanılacak olan Cohen-Grossberg YSA modeli ilk kez 1983 senesinde

literatüre girmiştir ve günümüzde kontrol sistemleri, örüntü tanıma, paralel işlem gibi birçok

mühendislik problemlerinin çözümünün elde edilmesinde fazlasıyla kullanılmıştır.

Cohen Grossberg YSA modelinin içinde yakınsama hızını kontrol eden bir kuvvetlendirici

fonksiyon ve durum uzayında sistemi kararlı yapan noktaların bulunması gereken yerleri

belirleyen davranış fonksiyonu içermesinden dolayı diğer birçok modelden oldukça

üstündür. Ayrıca Cohen-Grossberg YSA modeli, Hopfield gibi birçok YSA modelini de içine

almaktadır.

Bu nedenle Cohen-Grossberg YSA model için yapılan analizler Hopfield model için de

otomatik olarak sağlanmış olur.

Cohen-Grossberg YSA modeli aşağıda belirtilen diferansiyel denklem sistemiyle

tanımlanmıştır:

Cohen-Grossberg YSA modelinde özellikle global robust kararlılık analizinin yapılması

oldukça önemlidir. Çünkü bu koşullara sahip sistemin tüm çözümleri sabit tek denge

noktasına yakınsamaktadır. Bu sebeple literatürde Cohen-Grossberg YSA modelinin denge

noktasının kararlılık analiziyle ilgili oldukça çok çalışma mevcuttur.

Bununla birlikte, YSA’nın kararlılık durumunu etkileyen zaman gecikmelerinin de sistem

modelinin içinde olması gereklilği ortaya atılmıştır. Bu gereklilik geri beslemeli bir YSA

modelinin elektronik devreler ile açıklanması sonucunda açığa çıkmıştır.

Bu durumu daha net bir şekilde ifade edebilmek için önce bir yapay sinir ağı modelinin

elektronik devreyle nasıl oluşturulduğu konusunu incelemek gerekir:
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Şekil 3.5: Herhangi bir nörona (i. nöron) ait bir elektronik devre modeli

Kirchoff’a göre herhangi elektrik devresinde bir düğüme giren akımların toplamı çıkan

akımların toplamına eşit olduğundan aşağıdaki denklem yazılabilir:

n

∑
j=1

I j − Ii − Idi − ICi = 0

Burada her bir terim aşağıdaki ifadelere eşittir:

∑
n
j=1 I j = ∑

n
j=1

g j(x j(t))− xi(t)
R j

, Idi =
xi(t)
Ri

ve ICi =Ci
dxi(t)

dt

Bu ifadeleri denklemde yerine koyarsak;

n

∑
j=1

g j(x j(t))− xi(t)
R j

− Ii −
xi(t)
Ri

−Ci
dxi(t)

dt
= 0

Buradan

n

∑
j=1

g j(x j(t))
CiR j

−
n

∑
j=1

xi(t)
CiR j

− Ii

Ci
− xi(t)

RiCi
=

dxi(t)
dt

Yukarıdaki ifadede direnç ve kapasite pozitif olduğundan ∀i, j = 1, ...,n için

n

∑
j=1

g j(x j(t))
CiR j

− xi(t)
n

∑
i=1

1
CiRi

− Ii

Ci
=

dxi(t)
dt

Bu denklemde sabit katsayılar bir araya toplanıp yeniden isimlendirildiğinde (
1

RiCi
=

ci,
1

R jCi
= ai j,−

Ii

Ci
= ui) aşağıdaki zaman gecikmesiz Hopfield YSA modeli elde
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edilir(1982):

dxi(t)
dt

=−cixi(t)+
n

∑
j=1

ai jg j(x j(t))+ui i = 1,2, ...,n (3.1)

Ortaya çıkan denklemde n nöron sayısı olmak üzere ci direnç ve kapasite değerinden oluşan

pozitif bir diagonal matrisi, ai j nöron ağırlık katsayılarından oluşan ara bağlantı matrisini

g = (g1(x1),g2(x2), ...,gn(xn))
T aktivasyon fonksiyonlarını, son olarak u = (u1,u2, ...,un)

T

giriş vektörünü belirtmektedir. Dikkat edilecek olursa Hopfield’ın bu modelinde sistem

bir gecikme terimi içermemektedir. Fakat YSA’nda bilginin aktarımı esnasında, elektrik

devresinde kullanılan işlemsel kuvvetlendiricinin sonlu anahtarlama hızlarından ve bağlantı

zamanından kaynaklı olarak zaman gecikmesi ortaya çıkabileceği aşikardır. Marcus ve

Westernvelt (1989) bu sebepten dolayı sistemin daha doğru çalışabilmesi için Hopfield

modele bir gecikme terimi eklemiştir:

dxi(t)
dt

=−cixi(t)+
n

∑
j=1

ai jg j(x j(t))+
n

∑
j=1

bi jg j(x j(t − τ))+ui ∀i (3.2)

ya da matris-vektör formuyla

dx(t)
dt

=−Cx(t)+Ag(x(t))+Bg(x(t − τ))+u (3.3)

τ bu denklemde sabit bir zaman gecikmesini temsil etmektedir. Fakat eklenen zaman

gecikmelerinin de aslında her bir nöron için sabit olamayacağı fark edildiğinde ayrık zaman

gecikmeli Hopfield modeller oluşturulmuştur ve bu modeller şu şekilde ifade edilmiştir:

dxi(t)
dt

=−cixi(t)+
n

∑
j=1

ai jg j(x j(t))+
n

∑
j=1

bi jg j(xk(t − τ j))+ui ∀i (3.4)

ya da matris-vektör formuyla

dx(t)
dt

=−Cx(t)+Ag(x(t))+Bg(x(t − τ))+u (3.5)

Ayrıca Hopfield modelini de kapsayan Cohen-Grossberg modeline Ye, Michel ve Wang

gecikme parametrelerini eklemiştir ve zaman gecikmeli Cohen-Grossberg YSA modeli
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literatürde yerini almıştır:

dxi(t)
dt

= di(xi(t))[−ci(xi(t))+
n

∑
j=1

ai jg j(x j(t))+
n

∑
j=1

bi jg j(x j(t − τ j))+ui] ∀i (3.6)

(3.6) ile verilen sistemde τ =max(τ j), ∀ j olsun. Dolayısıyla,(3.6)’da verilen YSA sisteminin

xi(t) = Θi(t) ∈ C([−τ,0],R) formunda başalgıç koşuluna sahip olduğu ve C([−τ,0],R) nin

de [−τ,0]’den R’ye giden reel değerli fonksiyonlar kümesini temsil ettiği söylenebilir.(3.6)

sisteminin matris-vektör formu da aşağıdaki gibidir:

dx(t)
dt

= D(x(t))[−C(x(t))+Ag(x(t))+Bg(x(t − τ))+u] (3.7)

(3.6)’daki YSA sistemi n tane τ1,τ2, ...,τn ayrık zaman gecikmesi içeren bir model olup

aşağıda tek τ zaman gecikmesi içeren ve (3.6)’nın özel bir durumu olan Cohen-Grossberg

YSA modeli de verilmiştir:

dxi(t)
dt

= di(xi(t))[−ci(xi(t))+
n

∑
j=1

ai jg j(x j(t))+
n

∑
j=1

bi jg j(x j(t − τ))+ui] ∀i (3.8)

ya da

dx(t)
dt

= D(x(t))[−C(x(t))+Ag(x(t))+Bg(x(t − τ))+u] (3.9)

Aşağıda yukarıdaki verilen YSA sistemlerinin matematiksel modellemelerinin incelenmesi

hakkında bazı önemli notlar verilecektir:

Not 1: (3.6) ile ifade edilen sinir ağının matematiksel modellemesi, (3.8) ile ifade edilen

sinir ağı modelinden ve (3.4) ile ifade edilen sinir ağı modeli de (3.2) ile ifade edilen

sinir ağından daha genel formdadır. Böylece sinir sistemi (3.6) için türetilecek kararlılık

kriteri doğrudan (3.8) sistemine ve (3.4) için türetilecek kararlılık kriteri de doğrudan (3.2)

sistemine uygulanabilir. Bu nedenle, yalnızca gecikmeli sinir ağı modelleri (3.6) ve (3.4) için

robust koşullar araştırılacaktır.

Not 2: Sinir sistemi (3.4), (3.6)’da ifade edilen sinir ağının özel bir durumudur. Bu nedenle,

ilk önce (3.6)’da tanımlanan sinir sistemi için robust kararlılık koşulları elde edilecektir.

Ardından, sinir sistemi (3.6) için elde edilen robust kararlılık koşulları (3.4) sinir ağı modeli

için genişletilecektir.
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Not 3: (3.6) YSA modeli ayrık zaman gecikme parametresi içerir ve sinir ağı (3.8)

tek bir zaman gecikmesi parametresi içerir. Burada (3.6) ve (3.8) sinir ağı modellerinin

matris-vektör formlarının sırasıyla (3.7) ve (3.9)’da belirtildiğine dikkat edilmelidir. (3.7)

ve (3.9) YSA sistemi, A ve B matrislerinin tam formlarını içerir. Bununla birlikte, (3.6)

sisteminin kararlılık analizi yapıldığında, bunun matematiksel modelinde n tane ayrık zaman

gecikmesinin yer alması nedeniyle sinir ağlarında, kararlılık koşullarının ifadelerinde B’nin

tam biçimini temsil etmek her zaman mümkün olmayabilir. Öte yandan, (3.8) numaralı

sistemler yalnızca tek bir zaman geciktirme terimi içerdiğinden, kararlılık koşullarının

ifadelerinde B’nin tam biçimini temsil etmek her zaman mümkündür.

Not 4: Dinamik sinir sistemlerinin LMI tabanlı kararlılık incelemesi, literatürde

araştırmacılar tarafından sıklıkla kullanılan yöntemlerden biridir. Özellikle, sistem

(3.8) durumunda, B matrisinin tam biçimine sahip olan yeterli kararlılık koşullarının

türetilmesinde lineer matris eşitsizliği yönteminden yararlanılabilir. Ancak, sistem (3.6)

durumunda, LMI yöntemi genellikle kararlılık koşullarının ifadelerinde B’nin tam biçimini

içermez. Bu durumda, LMI yöntemi sistem (3.6) için kararlılık koşullarının araştırılması

için uygun bir yaklaşım olmayabilir. Bu nedenle, (3.6) sinir sisteminin kararlılık analizi bazı

alternatif matematiksel teknikler ve yöntemler gerektirir.

[3]’de tanıtılan dinamik Hopfield YSA, [4]’de tanıtılan Cohen-Grossberg YSA ve bunların

değiştirilmiş modelleri, optimizasyon problemlerinin farklı çeşitlerini çözmek için yaygın

olarak kullanılmıştır [5]-[11]. Genel olarak optimizasyon problemlerinin çözümü amacıyla

kullanılan YSA modelleri için kararlı denge noktasının varlığı,tekliği hem teorik açıdan hem

de uygulama açısından oldukça önemlidir. Çünkü ilgili sinir ağı bazı sahte alt optimallerden

kaynaklanan birden çok denge noktasına sahip olabilir [12],[13].

Sinir sistemlerinin elektronik uygulamalarında bazı sabit elemanları içeren arabağlantı

matrislerinin sabit elemanları, harici parametreler tarafından bozulabilir ya da karıştırılabilir.

Bu bağlamda dinamik sinir sistemlerinin bu dış bozulmalara karşı robust kararlılığı

incelenmelidir [14],[15]. Bu tür dış etkenlere ek olarak, farklı iletim kanallarının varlığından

dolayı doğrusal olmayan dinamik sistemlerin gerçek zaman uygulamalarının çoğunda

zaman gecikme terimleri kaçınılmazdır [16]-[21]. Bu tür gecikme terimleri kararlı sinir

sistemlerinin kararsız sinir sistemlerine dönüşmesine neden olabilir. Bu nedenle, bu

zaman gecikmesi terimlerinin dinamik sinir ağı modellerindeki kararlılık üzerindeki olası
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istenmeyen etkilerinin değerlendirilmesi araştırmacılar için önemlidir. Son birkaç on yılda,

karmaşık değerli sinir ağı modelleri [22], Clifford sinir ağları [23], birleştirilmiş sinir ağı

[24], sıralı sinir ağları [25], anımsatıcı sinir ağları [26], nötral sinir ağları [27], octonion

değerli sinir ağları [28], kuaternion değerli sinir ağları [29], reaksiyon-difüzyon sinir ağları

[30], engelleyici sinir ağları [31], yönlendirme ve stokastik sinir ağı [32] sistemleri dahil

olmak üzere YSA modellerinin kararlılık ve yakınsama koşulları incelenmiştir.

Bu tezde ayrık zaman gecikmelerine sahip standart sürekli zamankı ve reel değerli sinir

ağı modelleri için bazı yeni ve alternatif robust kararlılık koşulları araştırılacaktır.Bunun

için kullanılacak olan model (3.6)’deki Ayrık Zaman Gecikmeli Cohen-Grossberg YSA

modelidir ve bu model için global asimtotik robust kararlılık analizi gerçekleştirilecektir.

Bu dinamik sistemdeki fonksiyonların özellikleri; denge noktasının varlığını, tekliğini

ve kararlılığını garanti eden kriterlerin oluşturulmasında kritik etkilere sahip olduğundan

di(xi(t)) genişletme fonksiyonunun, ci(xi(t)) davranış fonksiyonunun ve gi(xi(t)) doğrusal

olmayan aktivasyon fonksiyonlarının iyi bilinen bazı temel özelliklerinin genellikle

aşağıdaki ana koşulları sağladığı varsayılır:

C1 : υi and φi pozitif sabitler olmak üzere

0 < υi≤ di(x)≤ φi, ∀x ∈ R, ∀i.

di(x) fonksiyonu bu koşulu sağlar.

C2 : γi and ψi pozitif sabitler olmak üzere

0 < γi≤
|ci(x)− ci(x̄)|

|x− x̄|
≤ψi,∀x, x̄ ∈ R,x ̸=x̄, ∀i.

ci(x) fonksiyonu bu koşulu sağlar.

C3 : li pozitif sabit olmak üzere gi(x) aşağıda verilen bazı Lipschitz koşullarını sağlar:

|gi(x)−gi(x̄)|≤li|x− x̄|, ∀x, x̄ ∈ R, ∀i.
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Bu tip aktivasyon fonksiyonları L sınıfından olup, g ∈ L ile gösterilir ve literatürde

deterministik sabit ağ parametreleri için bu aktivasyon fonksiyonuyla oluşturulmuş (3.6) ve

(3.4) hakkında bazı yararlı sonuçlar yayınlanmıştır [33]- [46].

Ayrıca dinamik sistemin elektronik olarak ifade edilişinde de görüldüğü gibi elektronik

bileşenlerin töleranslarından dolayı ağ parametrelerinin sabit değerlerindeki değişimler

gibi bazı dış etkiler tarafından YSA’nın matematiksel modellemesindeki sabit ara bağlantı

matrislerinin elemanları karışabilir ya da bozulabilir.Bu tez çalışması kapsamında robust

kararlılık analizi yapılmasının sebebi budur. Çünkü bu sayede sistem sapmalardan

olabildiğince az etkilenecektir ve daha doğru sonuçlar ortaya çıkacaktır. İstenilen

hedef doğrultusunda yapılacak olan analizde belirsiz parametreler içeren gecikmeli

Cohen-Grossberg YSA modelindeki arabağlantı matrisleri aşağıda gösterildiği gibi bir alt

sınır ve bir üst sınır aralığı içerisinde bırakılacaktır:

AI := {A = (ai j) : A⪯A⪯A, i.e.,ai j≤ai j≤ai j, i, j = 1, ...,n} (3.10)

BI := {B = (bi j) : B⪯B⪯B, i.e.,bi j≤bi j≤bi j, i, j = 1, ...n}

Ancak A,B,C sistem parametrelerini içeren Hopfield YSA modelinde belirsiz parametrelere

aşağıdaki şekilde yaklaşım yapılır:

CI := {C : 0 ≺C⪯C⪯C, i.e.,0 < ci≤ci≤ci,∀i}

AI := {A = (ai j) : A⪯A⪯A, i.e.,ai j≤ai j≤ai j,∀i, j} (3.11)

BI := {B = (bi j) : B⪯B⪯B, i.e.,bi j≤bi j≤bi j,∀i, j}

Gecikme terimlerine sahip bu YSA için uygun robust kararlılık araştırması yapmak adına, A

ve B ara bağlantı matrislerinin normlarına pozitif üst sınırlar belirlenmesi gerekmektedir.

Geçmiş literatürde, belirsiz aralıklar içeren bir F matrisinin ikinci normu için çeşitli üst

sınırlar türetilmiştir. Bu sonuçlar aşağıdaki gibidir:

Lemma 3.3.1 [47]: F ∈ FI := {F = ( fi j) : F⪯F⪯F , i.e., f i j≤ fi j≤ f i j, i, j = 1,2, ...,n} olsun.

F∗ = 1
2 (F +F) ve F∗ = 1

2 (F −F) olarak tanımlansın. O halde aşağıdaki eşitsizlik sağlanır:

||F ||2 ≤ σ1(F) = ||F∗||2 + ||F∗||2
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Lemma 3.3.2 [48]: F ∈ FI := {F = ( fi j) : F⪯F⪯F , i.e., f i j≤ fi j≤ f i j, i, j = 1,2, ...,n} olsun.

F∗ = 1
2 (F +F) ve F∗ = 1

2 (F −F) olarak tanımlansın. O halde aşağıdaki eşitsizlik sağlanır:

||F ||2 ≤ σ2(F) =
√
||F∗||22 + ||F∗||22 +2||FT

∗ |F∗|||2

Lemma 3.3.3 [49]: F ∈ FI := {F = ( fi j) : F⪯F⪯F , i.e., f i j≤ fi j≤ f i j, i, j = 1,2, ...,n} olsun.

W ∗ = 1
2 (F +F) ve F∗ = 1

2 (F −F) olarak tanımlansın. O halde aşağıdaki eşitsizlik sağlanır:

||F ||2 ≤ σ3(F) =

√
|||F∗T F∗|+2|F∗T |F∗+FT

∗ F∗||2

Lemma 3.3.4 [50]: F ∈ FI := {F = ( fi j) : F⪯F⪯F , i.e., f i j≤ fi j≤ f i j, i, j = 1,2, ...,n} olsun.

F∗ = 1
2 (F +F) ve F∗ = 1

2 (F −F) olarak tanımlansın. O halde aşağıdaki eşitsizlik sağlanır:

||F ||2 ≤ σ4(F) = ||F̂ ||2

Lemma 3.3.5 [51]: F ∈ FI := {F = ( fi j) : F⪯F⪯F , i.e., f i j≤ fi j≤ f i j, i, j = 1,2, ...,n} olsun.

F∗ = 1
2 (F +F) ve F∗ = 1

2 (F −F) olarak tanımlansın. O halde aşağıdaki eşitsizlik sağlanır:

||F ||2 ≤ σ5(F) =

√
2|||F∗T F∗|+F∗T F∗||2

Bu tez çalışmasında Hopfield model ile verilen parametre belirsizlikleri içeren F matrisinin

ikinci normu için yeni bir üst sınır bulunmuştur:

Lemma 3.3.6 : F ∈ FI := {F = ( fi j) : F⪯F⪯F , i.e., f i j≤ fi j≤ f i j, i, j = 1,2, ...,n} olsun.

F∗ = 1
2 (F +F), F∗ = 1

2 (F −F) ve P reel bir diyagonal matris olarak tanımlansın. O halde

aşağıdaki eşitsizlik sağlanır:

||F ||2 ≤ σ6(F) = ||F∗+P||2 + ||F∗−P||2

İspat : f i j≤ fi j≤ f i j için, aşağıda verilenler gerçeklenir:

fi j =
1
2
( f i j + f i j)+

1
2

ρi j( f i j − f i j), −1 ≤ ρi j ≤ 1,∀i, j.
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Burada f̃i j =
1
2ρi j( f i j − f i j)olacak şekilde F̃ = ( f̃i j) matrisi tanımlanır. O halde F matrisi

F = 0.5(F +F)+ F̃ = F∗+ F̃

şeklinde ifade edilebilir. Tüm bu bilgiler doğrultusunda x = (x1,x2, . . . ,xn)
T vekörü ve

herhangi F matrisi için,

xT Fx = xT F∗x+ xT F̃x (3.12)

denklemi sağlanır. Öyle bir diyagonal P matrisi için, (3.12) denklemi yeniden ifade edilirse

xT Fx = xT Px− xT Px+ xT F∗x+ xT F̃x = xT (F∗+P)x+ xT F̃x−|xT |P|x| (3.13)

olur. Sonra

xT Fx ≤ ||F∗+P||2||x||22 + |xT ||F̃ ||x|− |xT |P|x| (3.14)

elde edilir. | f̃i j| ≤ 1
2( f i j − f i j),∀i, j olduğundan dolayı, |F̃ |⪯F∗ dır.

Böylece, aşağıdaki (3.15) denklemi bulunur.

xT Fx ≤ ||F∗+P||2||x||22−|xT |P|x|+ |xT |F∗|x|= |xT |(F∗−P)|x|+ ||F∗+P||2||x||22 (3.15)

(3.15) denkleminden yola çıkarak, (3.16) eşitsizliği türetilir.

xT Fx ≤ ||F ||2||x||22 ≤ ||F∗+P||2||x||22 + ||F∗−P||2||x||22 (3.16)

Eşitsizliğin her iki tarafı ||x||2 normuna bölünürse

||F ||2 ≤ ||F∗−P||2 + ||F∗+P||2

yeni üst sınırı elde edilmiş olur. Şimdi elemanları belirsiz parametre aralıkları içerisinde olan

bir F matrisi için yeni ve alternatif bir üst sınır olan σ6(F) için sayısal bir örnek verilerek

ispat pekiştirilecektir.
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Örnek : F ∈ FI := {F = ( fi j)2x2 : F⪯F⪯F} olmak üzere

F =

 0 0

−2 0

 ,F =

 2 2

0 4


şeklinde tanımlansın. Bu matrisler kullanılarak aşağıdaki matrisler elde edilebilir.

F∗ =

 1 1

−1 2

 ,F∗ =

 1 1

1 2

 , F̂ =

 2 2

2 4


F∗,F∗ and F̂ matrisleri için, Lemma 3.3.1’den Lemma 3.3.6’ya kadar verilen tüm üst sınırları

hesaplayalım:.

σ1(F) = ||F∗||2 + ||F∗||2 = 4,9208

σ2(F) =
√

||F∗||22 + ||F∗||22 +2||FT
∗ |F∗|||2 = 5,0858

σ3(F) =

√
|||F∗T F∗|+2|F∗T |F∗+FT

∗ F∗||2 = 5,0658

σ4(F) = ||F̂ ||2 = 5,2361

σ5(F) =

√
2|||F∗T F∗|+F∗T F∗||2 = 4,8990

σ6(F)’nın bulunabilmesi için aşağıdaki P diyagonal matrisini seçelim:

P =

 0 0

0 −1


O halde gerekli hesaplamalar yapılırsa σ6(F) = ||F∗ + P||2 + ||F∗ −

P||2 = 4,8284 olarak elde edilir. Görüldüğü gibi bu örnek için σm(F) =

min{σ1(F),σ2(F),σ3(F),σ4(F),σ5(F),σ6(F)} = σ6(F) sağlanır. Yani, bu örnek belirsiz

parametrelere sahip F arabağlantı matrisinin normu için σ6(F) yeni ve alternatif bir üst sınır

olduğunu kanııtlar.

Elde edilen bilgiler doğrultusunda varlık, teklik ve kararlılık analizi yapmadan önce

L sınıfına ait aktivasyon fonksiyonlarının sınırsız olabileceğine dikkat çekmek gerekir.

Literatürde, sinir ağlarında bir aktivasyon fonksiyon sınıfı olarak sınırsız fonksiyonlar

kullanıldığında denge noktasının varlık ve teklik analizinin aşağıdaki temel önermede ifade

edilen homeomorfizm eşleme teoremi yardımıyla yapıldığı bilinmektedir.
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Lemma 3.3.7 : H(x) ∈ C0 aşağıdaki iki ana özelliği içeren sürekli bir fonksiyon olsun.

Bu özelliklerden ilki x ̸= x̄ iken H(x) ̸= H(x̄) olması ve ikincisi ||x||→∞ iken ||H(x)||→∞

olmasıdır. Böyle bir H(x)∈C0 sürekli fonksiyon Rn in homeomorfizması olarak adlandırılır.

Artık ayrık zaman gecikmeli belirsiz parametrelere sahip Cohen-Grossberg YSA modeli için

(3.10)’da verilen matris aralıkları ve g ∈ L kabulü altında yapılacak olan varlık-teklik ve

kararlılık analizi için gerekli önbilgiler tamamlanmıştır.

3.4. AYRIK ZAMAN GECİKMELİ BELİRSİZ PARAMETRELERE SAHİP
COHEN-GROSSBERG YSA MODELİ İÇİN VARLIK VE TEKLİK ANALİZİ

(3.6)’daki sistemde Lipschitz koşullarını sağlayan sınırsız nöronal aktivasyon fonksiyonları

seti kullanılacağı için, bu sistemle ilişkili sabit denge noktalarının hem varlık-tekliği hem

de global kararlılığı oluşturulamlıdır. Bu nedenle, bu bölüm, Cohen-Grossberg model gibi

doğrusal olmayan diferansiyel denklem sistemi ile ifade edilen ayrık zaman gecikmeli

sinir sistemiyle ilgili kararlı denge noktalarının varlığı ve tekliğinin ayrıntılı bir analizine

ayrılacaktır.

Teorem 3.4.1: (3.6)’da tanımlanan zaman gecikmeli YSA modelinde g ∈ L olduğu ve bu

modeldeki sistem matrislerinin (3.10)’da tanımlandığı gibi, parametre belirsizliklerinin bir

alt sınır ve bir üst sınır aralığında kaldığı varsayılsın. Aşağıdaki cebirsel koşullar geçerli

olmak üzere eğer κ , η , ρ , ε , ν , ρ , µ , ξi ve ζi pozitif reel sabitleri varsa her sabit u için (3.6)

dinamik YSA sistemi tek ve global asimtotik denge noktasına sahiptir:

δi = 2ξi
γi

ℓi
−κξ

2
i − k1η

κ

n

∑
j=1

n

∑
k=1

â jib̂ jk −
k1

κη

n

∑
j=1

n

∑
k=1

âi jb̂ki −
(1+ k2ρ)m1

κ
σ

2
m(A)

−(1+ k2ρ)m2

κ

n

∑
j=1

n

∑
k=1

âkiâk j −
p1

κ
(1+

k2

ρ
)σ2

m(B)−
p2

κ
(1+

k2

ρ
)

n

∑
j=1

n

∑
k=1

b̂kib̂k j

θi = 2ζi
γi

ℓi
−q1ε

n

∑
j=1

ζiâi j −
q1

ε

n

∑
j=1

ζ jâ ji +q2µζ
2
i − q2

µ
σ

2
m(A)

−r1ρ

n

∑
j=1

ζib̂i j −
r1

ρ

n

∑
j=1

ζ jb̂ ji − r2νζ
2
i − r2

ν
σ

2
m(B) (3.17)
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için

ε1δi + ε2θi > 0, ∀i

Burada 0 ≤ ε1 ≤ 1, 0 ≤ ε2 ≤ 1 için ε1 + ε2 = 1, 0 ≤ k1 ≤ 1, 0 ≤ k2 ≤ 1 için

k1 + k2 = 1, 0 ≤ m1 ≤ 1, 0 ≤ m2 ≤ 1 için m1 + m2 = 1, 0 ≤ p1 ≤ 1, 0 ≤ p2 ≤ 1 için

p1 + p2 = 1, 0 ≤ q1 ≤ 1, 0 ≤ q2 ≤ 1 için q1 + q2 = 1, 0 ≤ r1 ≤ 1, 0 ≤ r2 ≤ 1 için

r1+ r2 = 1, σm(A) = min{σ1(A),σ2(A),σ3(A),σ4(A),σ5(A),σ6(A)}, âi j = max{|ai j|, |ai j|},

σm(B) = min{σ1(B),σ2(B),σ3(B),σ4(B),σ5(B),σ6(B)} ve b̂i j = max{|bi j|, |bi j|},∀i, j.

İspat : Kararlı denge noktalarının varlığı ve tekliği sorununu ele almak adına (3.6)’da

tanımlanan zaman gecikmeli YSA sistemi ile ilişkili uygun bir H(x) eşleme fonksiyonu

düşünelim:

H(x) =−C(x)+A f (x)+B f (x)+u (3.18)

Denklem (3.18)’den H(x) = 0 koşulunun her çözümünün, tanım gereği, (3.6) ile tanımlanan

gecikmeli sistemin sabit bir denge noktasını temsil ettiği gözlemlenebilir. Böylece Lemma

3.3.7’nin koşullarından, (3.6) sistemi için, uygun H(x) eşlemesinin Rn’in bir homeomorfizmi

olduğu gösterilebilirse, her bir u değerli sabit için her zaman yalnızca tek bir denge noktası

bulunabileceği sonucu çıkar. Dolayısıyla yukarıda tanımlanan H(x)’in Rn’in homeomorfizmi

olduğu ele alınırken x ̸= x̄ verildiğinde başka bir x̄ vektörü seçilmelidir. Daha sonra (3.18)’de

belirtilen H(x) için

H(x)−H(x̄) =C(x̄)−C(x)+A(g(x)−g(x̄))+B(g(x)−g(x̄)) (3.19)

elde edilir.

(3.6) sisteminde , eğer g ∈L ise, x ̸= x̄ için, iki farklı durum elde edilir. Bunlardam birincisi

g(x) = g(x̄) ve ikincisi g(x) ̸= g(x̄)’dir. Bu koşullardan x ̸= x̄ için g(x) = g(x̄) (3.19)’dan

direkt olarak elde edilir:

H(x)−H(x̄) =C(x̄)−C(x)

C2 koşulundan yararlanarak, x− x̄ ̸= 0 için, C(x) ̸=C(x̄) ortaya çıkar. Öyleyse H(x) ̸= H(x̄)

sağlanır.
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Eğer x ̸= x̄ koşulu altında g(x) ̸= g(x̄) durumu geçerli olursa, (3.19) denkleminin her iki kısmı

2(x− x̄)T (ε1Φ+ ε2Ψ)L ile çarpılır ve (3.20)’ye ulaşılır:

2(x− x̄)T (ε1Φ+ ε2Ψ)L(H(x)−H(x̄))

= 2ε1(x− x̄)T
ΦL(H(x)−H(x̄))+2ε2(x− x̄)T

ΨL(H(x)−H(x̄)) (3.20)

burada Φ = diag(ξi > 0), Ψ = diag(ζi > 0) ve L = diag(li > 0)’dır.

(3.20) denklemindeki her bir terimin elde edilebilecek durumlara göre incelenmesi aşağıdaki

gibidir:

(x− x̄)T
ΦL(H(x)−H(x̄))

= −(x− x̄)T
ΦL(C(x)−C(x̄))+(x− x̄)T

ΦL(A+B)(g(x)−g(x̄))

≤ −(x− x̄)T
ΦL(C(x)−C(x̄))+

κ

2
(x− x̄)T

Φ
2L2(x− x̄)

+
1

2κ
(g(x)−g(x̄))T (A+B)T (A+B)(g(x)−g(x̄))

= −(x− x̄)T
ΦL(C(x)−C(x̄))+

κ

2
(x− x̄)T

Φ
2L2(x− x̄)

+
1

2κ
(g(x)−g(x̄))T (AT A+BT B+2AT B)(g(x)−g(x̄)) (3.21)

(g(x)−g(x̄))T AT B(g(x)−g(x̄))

=
n

∑
i=1

n

∑
j=1

n

∑
k=1

ai jbik(g j(x j)−g j(x̄ j))(gk(xk)−gk(x̄k))

≤
n

∑
i=1

n

∑
j=1

n

∑
k=1

1
2

(
|ai j||bik|η(g j(x j)−g j(x̄ j))

2 + |ai j||bik|
1
η
(gk(xk)−gk(x̄k))

2
)

≤
n

∑
i=1

n

∑
j=1

n

∑
k=1

1
2

l2
i

(
η â jib̂ jk +

1
η

âk jb̂ki

)
(xi − x̄i)

2 (3.22)

ve

(g(x)−g(x̄))T AT B(g(x)−g(x̄))≤ 1
2
(g(x)−g(x̄))T (ρAT A+

1
ρ

BT B)(g(x)−g(x̄)) (3.23)
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(3.22) ve (3.23) denklemi birleştirildiğinde aşağıdaki sonuç ortaya çıkar:

2(g(x)−g(x̄))T AT B(g(x)−g(x̄))

= 2(k1 + k2)(g(x)−g(x̄))T AT B(g(x)−g(x̄))

≤
n

∑
i=1

n

∑
j=1

n

∑
k=1

(
k1η â jib̂ jk +

k1

η
âk jb̂ki

)
l2
i (xi − x̄i)

2

+(g(x)−g(x̄))T (k2ρAT A+
k2

ρ
BT B)(g(x)−g(x̄)) (3.24)

(3.24) ’te bulunan ifade (3.21) ’de yerine konularak denklem yeniden yazılırsa:

2(x− x̄)T
ΦL(H(x)−H(x̄))

≤ −2(x− x̄)T
ΦL(C(x)−C(x̄))+κ(x− x̄)T

Φ
2L2(x− x̄)

+
n

∑
i=1

n

∑
j=1

n

∑
k=1

(k1η

κ
â jib̂ jkl2

i +
k1

κη
âk jb̂kil2

i

)
(xi − x̄i)

2

+(g(x)−g(x̄))T
( 1

κ
(1+ k2ρ)AT A+

1
κ
(1+

k2

ρ
)BT B

)
(g(x)−g(x̄)) (3.25)

Yukarıdaki denklemdeki (g(x)− g(x̄))T AT A(g(x)− g(x̄)) ve teriminin analizi aşağıdaki

gibidir:

(g(x)−g(x̄))T AT A(g(x)−g(x̄))

=
n

∑
i=1

n

∑
j=1

n

∑
k=1

ai jaik(g j(x j)−g j(x̄ j))(gk(xk)−gk(x̄k))

= m1(g(x)−g(x̄))T AT A(g(x)−g(x̄))

+m2

n

∑
i=1

n

∑
j=1

n

∑
k=1

ai jaik(g j(x j)−g j(x̄ j))(gk(xk)−gk(x̄k))

≤
n

∑
i=1

l2
i

(
m1||A||22 +m2

n

∑
j=1

n

∑
k=1

|aki||ak j|
)
(xi − x̄i)

2

≤
n

∑
i=1

l2
i

(
m1σ

2
m(A)+m2

n

∑
j=1

n

∑
k=1

âkiâk j

)
(xi − x̄i)

2 (3.26)
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Benzer şekilde diğer terimin de analizi yapılır:

(g(x)−g(x̄))T BT B(g(x)−g(x̄))

=
n

∑
i=1

n

∑
j=1

n

∑
k=1

bi jbik(g j(x j)−g j(x̄ j))(gk(xk)−gk(x̄k))

= p1(g(x)−g(x̄))T BT B(g(x)−g(x̄))

+p2

n

∑
i=1

n

∑
j=1

n

∑
k=1

bi jbik(g j(x j)−g j(x̄ j))(gk(xk)−gk(x̄k))

≤
n

∑
i=1

(
p1||B||22l2

i + p2

n

∑
j=1

n

∑
k=1

|bki||bk j|l2
i

)
(xi − x̄i)

2

≤
n

∑
i=1

l2
i

(
p1σ

2
m(B)+ p2

n

∑
j=1

n

∑
k=1

b̂kib̂k j

)
(xi − x̄i)

2 (3.27)

Elde edilen (3.26) ve (3.27) denklemleri (3.25)’in içine yerleştirilirse:

2(x− x̄)T
ΦL(H(x)−H(x̄))

≤ −(x− x̄)T 2ΦL(C(x)−C(x̄))

+
n

∑
i=1

(
κξ

2
i l2

i +
n

∑
j=1

n

∑
k=1

(k1η

κ
â jib̂ jkl2

i +
k1

κη
âk jb̂kil2

i

))
(xi − x̄i)

2

+
n

∑
i=1

l2
i

( 1
κ
(1+ k2ρ)m1σ

2
m(A)+

1
κ
(1+ k2ρ)m2

n

∑
j=1

n

∑
k=1

âkiâk j

)
(xi − x̄i)

2

+
n

∑
i=1

l2
i

( p1

κ
(1+

k2

ρ
)σ2

m(B)+
p2

κ
(1+

k2

ρ
)

n

∑
j=1

n

∑
k=1

b̂kib̂k j

)
(xi − x̄i)

2 (3.28)

C2 koşulu altında, aşağıdaki denklem yazılabilir:

−(x− x̄)T 2ΦL(C(x)−C(x̄)) = −
n

∑
i=1

2(xi − x̄i)ξili(ci(xi)− ci(x̄i))

= −
n

∑
i=1

2ξili|xi − x̄i||ci(xi)− ci(x̄i)|

≤ −
n

∑
i=1

2ξiliγi(xi − x̄i)
2 (3.29)



39

(3.28). denklemde elde edilen (3.29). denklem kullanılırsa

2(x− x̄)T
ΦL(H(x)−H(x̄))

≤
n

∑
i=1

(
−2ξiγili +κξ

2
i l2

i +
n

∑
j=1

n

∑
k=1

(k1η

κ
â jib̂ jkl2

i +
k1

κη
âk jb̂kil2

i

))
(xi − x̄i)

2

+
n

∑
i=1

(
l2
i

1
κ
(1+ k2ρ)m1σ

2
m(A)+

1
κ
(k2ρ +1)m2

n

∑
j=1

n

∑
k=1

âkiâk jl2
i

)
(xi − x̄i)

2

+
n

∑
i=1

(
p1

1
κ
(1+

k2

ρ
)σ2

m(B)l
2
i +

1
κ
(1+

k2

ρ
)p2

n

∑
j=1

n

∑
k=1

b̂kib̂k jl2
i

)
(xi − x̄i)

2

= −
n

∑
i=1

l2
i

(
2ξi

γi

li
−κξ

2
i − (1+ k2ρ)m1

κ
σ

2
m(A)−

n

∑
j=1

n

∑
k=1

(k1η

κ
â jib̂ jk +

k1

κη
âk jb̂ki

)
− p1

κ
(1+

k2

ρ
)σ2

m(B)−
n

∑
j=1

n

∑
k=1

(m2(1+ k2ρ)

κ
âkiâk j +

p2

κ
(1+

k2

ρ
)b̂kib̂k j

))
(xi − x̄i)

2

= −
n

∑
i=1

l2
i δi(xi − x̄i)

2 (3.30)

elde edilir. Şimdi (3.20). denklemdeki 2(x − x̄)T ΨL(H(x) − H(x̄)) teriminin analizi

gerçeklenirse:

2(x− x̄)T
ΨL(H(x)−H(x̄))

= −2(x− x̄)T
ΨL(C(x)−C(x̄))+2(x− x̄)T

ΨL(A+B)(g(x)−g(x̄))

= −2
n

∑
i=1

(xi − x̄i)ζili(ci(xi)− ci(x̄i))

+ 2
n

∑
i=1

n

∑
j=1

(xi − yi)ζili(ai j +bi j)(g j(x j)−g j(x̄ j)) (3.31)
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Bazı önemli eşitsizlikler ayrıca aşağıda belirtilmiştir:

n

∑
i=1

n

∑
j=1

2ζili(xi − x̄i)ai j(g j(x j)−g j(x̄ j))

≤
n

∑
i=1

n

∑
j=1

ζi

(
ε|ai j|l2

i (xi − x̄i)
2 +

1
ε

ζi|ai j|(g j(x j)−g j(x̄ j))
2
)

≤
n

∑
i=1

n

∑
j=1

(
εζi|ai j|l2

i (xi − x̄i)
2 +

1
ε

ζi|ai j|l2
j (x j − x̄ j)

2
)

=
n

∑
i=1

n

∑
j=1

(
εζi|ai j|l2

i +
1
ε

ζ j|a ji|l2
i

)
(xi − x̄i)

2

≤
n

∑
i=1

n

∑
j=1

(
εζiâi jl2

i +
1
ε

ζ jâ jil2
i

)
(xi − x̄i)

2 (3.32)

ve

2
n

∑
i=1

n

∑
j=1

ζili(xi − x̄i)ai j(g j(x j)−g j(x̄ j))

≤
n

∑
i=1

(
εζ

2
i l2

i (xi − x̄i)
2 +

1
ε

( n

∑
j=1

ai j(g j(x j)−g j(x̄ j))
)2
)

= ε

n

∑
i=1

ζ
2
i l2

i (xi − x̄i)
2 +

1
ε
(g(x)−g(x̄))T AT A(g(x)−g(x̄))

≤
n

∑
i=1

(εζ
2
i l2

i +
1
ε

σ
2
m(A)ℓ

2
i )(xi − x̄i)

2 (3.33)

(3.32) ve (3.33) birleştirildiğinde

2
n

∑
i=1

n

∑
j=1

ζili(xi − x̄i)ai j(g j(x j)−g j(x̄ j))

= 2(q1 +q2)
n

∑
i=1

n

∑
j=1

ζili(xi − x̄i)ai j(g j(x j)−g j(x̄ j))

≤
n

∑
i=1

n

∑
j=1

(
q1εζiâi jl2

i +
q1

ε
ζ jâ jil2

i

)
(xi − x̄i)

2

+
n

∑
i=1

(
q2εζ

2
i l2

i +
q2

ε
σ

2
m(A)l

2
i

)
(xi − x̄i)

2 (3.34)
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Aşağıda geriye kalan bazı ek eşitsizlikler belirtilmiştir:

2
n

∑
i=1

n

∑
j=1

ζili(xi − x̄i)bi j(g j(x j)−g j(x̄ j))

≤
n

∑
i=1

n

∑
j=1

(
ρζi|bi j|l2

i (xi − x̄i)
2 +

1
ρ

ζi|bi j|(g j(x j)−g j(x̄ j))
2
)

≤
n

∑
i=1

n

∑
j=1

(
ρζi|bi j|l2

i (xi − x̄i)
2 +

1
ρ

ζi|bi j|l2
j (x j − x̄ j)

2
)

≤
n

∑
i=1

n

∑
j=1

(
ρζib̂i jl2

i +
1
ρ

ζ jb̂ jil2
i

)
(xi − x̄i)

2 (3.35)

ve

2
n

∑
i=1

n

∑
j=1

ζili(xi − x̄i)bi j(g j(x j)−g j(x̄ j))

≤
n

∑
i=1

(
νζ

2
i l2

i (xi − x̄i)
2 +

1
ν

( n

∑
j=1

bi j(g j(x j)−g j(x̄ j))
)2
)

= ν

n

∑
i=1

ζ
2
i l2

i (xi − x̄i)
2 +

1
ν
(g(x)−g(y))T BT B(g(x)−g(x̄))

≤
n

∑
i=1

(νζ
2
i l2

i +
1
ν

σ
2
m(B)l

2
i )(xi − x̄i)

2 (3.36)

(3.35) ve (3.36) denklemleri birleştirilerek yeniden yazılırsa;

2
n

∑
i=1

n

∑
j=1

ζili(xi − x̄i)bi j(g j(x j)−g j(x̄ j))

= 2(r1 + r2)
n

∑
i=1

n

∑
j=1

ζili(xi − x̄i)bi j(g j(x j)−g j(x̄ j))

=
n

∑
i=1

n

∑
j=1

(
2r1ζilibi j +2r2ζilibi j

)
(xi − x̄i)(g j(x j)−g j(x̄ j))

≤
n

∑
i=1

n

∑
j=1

(
r1ρζib̂i jl2

i +
r1

ρ
ζ jb̂ jil2

i

)
(xi − x̄i)

2

+
n

∑
i=1

(
r2νζ

2
i l2

i +
r2

ν
σ

2
m(B)l

2
i

)
(xi − x̄i)

2 (3.37)

Sonuç olarak (3.31). denkleminin içine (3.34) ve (3.37) denklemleri yerleştirilirse bir sonraki
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eşitsizliğe ulaşılır:

2(x− x̄)T
ΨL (H(x)−H(x̄))

≤ −2
n

∑
i=1

ζiγili(xi − x̄i)
2 +

n

∑
i=1

n

∑
j=1

(
q1εζiâi jl2

i +
q1

ε
ζ jâ jil2

i

)
(xi − x̄i)

2

+q2ε

n

∑
i=1

ζ
2
i l2

i (xi − x̄i)
2 +

q2

ε
σ

2
m(A)

n

∑
i=1

ℓ2
i (xi − x̄i)

2 + r1ρ

n

∑
i=1

n

∑
j=1

ζib̂i jl2
i (xi − x̄i)

2

+
r1

ρ

n

∑
i=1

n

∑
j=1

ζ jb̂ jil2
i (xi − x̄i)

2 + r2ν

n

∑
i=1

ζ
2
i l2

i (xi − x̄i)
2 +

r2

ν
σ

2
m(B)

n

∑
i=1

l2
i (xi − x̄i)

2

= −
n

∑
i=1

l2
i

(
2ζiγi −q1ε

n

∑
j=1

ζiâi j +
q1

ε

n

∑
j=1

ζ jâ ji +q2εζ
2
i +

q2

ε
σ

2
m(A)+ r1ρ

n

∑
j=1

ζib̂i j

+
r1

ρ

n

∑
j=1

ζ jb̂ ji + r2νζ
2
i +

r2

ν
σ

2
m(B)

)
(xi − x̄i)

2

= −
n

∑
i=1

l2
i θi(xi − x̄i)

2 (3.38)

(3.30) ve (3.38) denklemi (3.20)’de kullanılır ve lm = min(ℓi), θm = min(θi), δm = min(δi) ’

yi temsil etmek üzere aşağıdaki (3.39) denklemine varılır:

2(x− x̄)T (ε1Φ+ ε2Ψ)L(H(x)−H(x̄)) ≤ −
n

∑
i=1

(ε1δi + ε2θi)l2
i (xi − x̄i)

2

≤ −(ε1δm + ε2θm)l2
m||x− x̄||22 (3.39)

Bir sonraki eşitsizlik (3.39)’un direkt sonucu olarak ortaya çıkmaktadır:

|2(x− y)T (ε1Φ+ ε2Ψ)L(H(x)−H(x̄))| ≥ (ε1δm + ε2θm)l2
m||x− x̄||22 (3.40)

0 ≤ ε1 ≤ 1 ve 0 ≤ ε2 ≤ 1 olduğundan (3.40)’ta uygulanırsa lM = max(li), ξM = max(ξi) ve

ζM = max(ζi) olmak üzere

(ξM +ζM)lM|(x− x̄)T ||H(x)−H(x̄)| ≥ (ε1δm + ε2θm)ℓ
2
m||x− x̄||22 (3.41)

sonucuna ulaşılır. (3.41) numaralı denklemden aşağıdaki ifade elde edilir:

(ξM +ζM)lM||H(x)−H(x̄)||1 ≥ (ε1δm + ε2θm)l2
m||x− x̄||2 (3.42)

(3.42) numaralı denklemden yola çıkarak, ∀x ̸= x̄ için H(x) ̸= H(x̄) olduğu aşikardır.
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x̄ = 0 alındığında, (3.42). denklemden elde edilir ki:

(ξM +ζM)lM||H(x)−H(0)||1 ≥ (ε1δm + ε2θm)l2
m||x||2 (3.43)

olur ve sonra denklem (3.43)’e ulaşılır.

(ξM +ζM)ℓM||H(x)||1 ≥ (ε1δm + ε2θm)l2
m||x||2 − (ξM +ζM)lM||H(0)||1 (3.44)

Üstteki ifade ||H(0)||’ın sınırlı bir norm olduğunu kanıtlar. Böylece (3.44)’den

gözlemlenebilir ki ||x|| → ∞ olurken ||H(x)|| → ∞ olur. Dolayısıyla, H(x) : Rn → Rn

fonksiyonunun Rn üzerinde uygun bir homeomorfizm olduğu kanıtlanmıştır. Yani bir başka

ifadeyle; Cohen-Grossberg YSA sisteminin her bir u sabiti için tek bir denge noktasının

belirlediğini Teorem 3.4.1’in koşulları sağlar.

3.5. AYRIK ZAMAN GECİKMELİ YSA MODELİNİN KARARLILIK ANALİZİ

İlerleyen bölümde, (3.6)’daki YSA modelinin denge noktasının varlığını ve tekliğini,

asimtotik kararlılığını garanti eden kriterler belirlenecektir. Bu amaçla, önce (3.6) sistemi,

kendisine ait tek denge noktasının sadece orijinde bulunduğu yeni ve eşdeğer bir YSA

sistemine dönüştürülecektir. x̌1, x̌2, ..., x̌n elemanlarına sahip bir x̌ vektörü, (3.6)’da verilen

ağ modelinin sahip olduğu sabit bir denge noktasını temsil etsin. O halde (3.6) sisteminde

zi(t) = xi(t)− x̌i kullanılması yeni bir dönüştürülmüş sistemle sonuçlanır ve şu şekilde

gösterilebilir:

żi(t) = αi(zi(t))
(
−βi(zi(t))+

n

∑
j=1

ai jh j(z j(t))+
n

∑
j=1

bi jh j(z j(t − τ j))

)
,∀i (3.45)

(3.45)’te verilen bu yeni denklemde sistem fonksiyonları şu şekilde elde edilebilir:

hi(zi(t)) = gi(zi(t) + x̌i)− gi(x̌i), αi(zi(t)) = di(zi(t) + x̌i) and βi(zi(t)) = ci(zi(t) + x̌i)−

ci(x̌i), ∀i. Böylece, C1, C2 ve C3 koşulları altında bu yeni fonksiyonların aşağıdaki koşulları
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sağlayacağı hemen gözlemlenebilir:

C̃1 : 0 < υi≤ αi(zi(t))≤ φi, ∀i

C̃2 : γiz2
i (t)≤zi(t)βi(zi(t))≤ψiz2

i (t), ∀i

C̃3 : |hi(zi(t))|≤li|zi(t)|, ∀i.

(3.45)’te verilen YSA sistemi aşağıdaki gibi yeni bir formda da belirtilebilir:

ż(t) = α(z(t))
(
−β (z(t))+Ah(z(t))+Bh(z(t − τ))

)
(3.46)

(3.46)’da z(t) = (z1(t),z2(t), ...,zn(t))T dönüştürülmüş vektörü (3.46)’nın

durum değişkenlerini sembolize eder. α(z(t)) = diag(αi(zi(t)) > 0), β (z(t)) =

(β1(z1(t)),β2(z2(t)), ...,βn(zn(t)))T olarak yazılabilir. Bu YSA nın çıktı vektörü

h(z(t)) = (h1(z1(t)),h2(z2(t)), ...,hn(zn(t)))T ile ve gecikmeli çıktı vektörü ise

h(z(t − τ)) = (h1(z1(t − τ1)),h2(z2(t − τ2)), ...,hn(zn(t − τn)))
T ile gösterilebilir.

Aşağıda V (t) = V1(t) + V2(t) ile gösterilen uygun pozitif Lyapunov fonksiyon adayı

kullanılarak kararlılık analizi yapılacaktır:

V1(t) = 2
n

∑
i=1

(ε1

∫ zi(t)

0
ξili

s
αi(s)

ds+2ε2

∫ zi(t)

0
ζili

s
αi(s)

ds) (3.47)

ve

V2(t) =
n

∑
i=1

n

∑
j=1

n

∑
k=1

(
ε1 p2

κ
(1+

k2

ρ
)b̂kib̂k jl2

i

∫ t

t−τi

zi
2(ϕ)dϕ +

k1

κη
âi jb̂kil2

i

∫ t

t−τi

zi
2(ϕ)dϕ

)
+

ε1 p1

κ
(1+

k2

ρ
)σ2

m(B)
n

∑
i=1

l2
i

∫ t

t−τi

zi
2(ϕ)dϕ +

ε2r1

ρ

n

∑
i=1

n

∑
j=1

ζ jb̂ jil2
i

∫ t

t−τi

zi
2(ϕ)dϕ

ε2r2

ν
σ

2
m(B)

n

∑
i=1

l2
i

∫ t

t−τi

z2
i (ϕ)dϕ + kl2

m

n

∑
i=1

∫ t

t−τi

z2
i (ϕ)dϕ (3.48)

V1(t)’in zamana göre türevi alındığında

V̇1(t) = 2ε1

n

∑
i=1

ξili
żi(t)

αi(zi(t))
zi(t)+2ε2

n

∑
i=1

ζili
żi(t)

αi(zi(t))
zi(t) (3.49)
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Aşağıda V̇1(t)’nin terimleri ayrı ayrı analiz edilecektir:

2
n

∑
i=1

ξili
żi(t)

αi(zi(t))
zi(t) = −2zT (t)ΦLβ (z(t))+2zT (t)ΦL

(
Ah(z(t))+Bh(z(t − τ))

)
≤ −2zT (t)ΦLβ (z(t))+κzT (t)Φ2L2z(t)

+
1
κ

(
Ah(z(t))+Bh(z(t − τ))

)T(
Ah(z(t))+Bh(z(t − τ))

)
= −2zT (t)ΦLβ (z(t))+κzT (t)Φ2L2z(t)+

1
κ

hT (z(t))AT Ah(z(t))

+
1
κ

hT (z(t − τ))BT Bh(z(t − τ))+
2
κ

hT (z(t))AT Bh(z(t − τ))(3.50)

Yukarıda verilen terimlerin her birinin analizi aşağıdaki gibi iki farklı eşitsizlik şeklinde

yapılabilir:

2hT (z(t))AT Bh(z(t − τ)) = 2
n

∑
i=1

n

∑
j=1

n

∑
k=1

ai jbikh j(z j(t))hk(zk(t − τk))

≤
n

∑
i=1

n

∑
j=1

n

∑
k=1

(
η |ai j||bik|h2

j(z j(t))+
1
η
|ai j||bik|h2

k(zk(t − τk))
)

=
n

∑
i=1

n

∑
j=1

n

∑
k=1

(
η |a ji||b jk|h2

i (zi(t))+
1
η
|ak j||bki|h2

i (zi(t − τi))
)

≤
n

∑
i=1

n

∑
j=1

n

∑
k=1

(
η â jib̂ jkl2

i z2
i (t)+

1
η

âk jb̂kil2
i z2

i (t − τi)
)

(3.51)

ve

2hT (z(t))AT Bh(z(t − τ))≤ ρhT (z(t))AT Ah(z(t))+
1
ρ

hT (z(t − τ))BT Bh(z(t − τ)) (3.52)

Şimdi (3.52) ve (3.51) birleştirilerek bir sonuca varılabilir:

2hT (z(t))AT Bh(z(t − τ)) = hT (z(t))(2k1AT B+2k2AT B)h(z(t − τ))

≤
n

∑
i=1

n

∑
j=1

n

∑
k=1

(
k1η â jib̂ jkl2

i z2
i (t)+

k1

η
âk jb̂kil2

i z2
i (t − τi)

)
+hT (z(t))k2ρAT Ah(z(t))+hT (z(t − τ))

k2

ρ
BT Bh(z(t − τ)) (3.53)



46

(3.50)’de (3.53) kullanılırsa aşağıdaki eşitsizlik elde edilir:

−2zT (t)ΦLβ (z(t))+2zT (t)ΦL
(

Ah(z(t))+Bh(z(t − τ))

≤ −2zT (t)ΦLβ (z(t))+κzT (t)Φ2L2z(t)

+
n

∑
i=1

n

∑
j=1

n

∑
k=1

( 1
κ

k1η â jib̂ jkl2
i z2

i (t)+
1
κ

k1

η
âk jb̂kil2

i z2
i (t − τi)

)
+

1
κ
(1+ k2ρ)hT (z(t))AT Ah(z(t))

+
1
κ
(1+

k2

ρ
)hT (z(t − τ))BT Bh(z(t − τ)) (3.54)

Buradan

hT (z(t))AT Ah(z(t))

= m1hT (z(t))AT Ah(z(t))+m2

n

∑
i=1

n

∑
j=1

n

∑
k=1

ai jaikh j(z j(t))hk(zk(t))

≤
n

∑
i=1

(
m1||A||22 +m2

n

∑
j=1

n

∑
k=1

|aki||ak j|
)

h2
i (zi(t))

≤
n

∑
i=1

(
m1||A||22l2

i +m2

n

∑
j=1

n

∑
k=1

|aki||ak j|l2
i

)
z2

i (t)

≤
n

∑
i=1

(
m1σ

2
m(A)l

2
i z2

i (t)+m2

n

∑
j=1

n

∑
k=1

âkiâk jl2
i

)
z2

i (t) (3.55)

ve

hT (z(t − τ))BT Bh(z(t − τ))

= p1hT (z(t − τ))BT Bh(z(t − τ))+ p2

n

∑
i=1

n

∑
j=1

n

∑
k=1

bi jbikh j(z j(t − τ j))hk(zk(t − τk))

≤
n

∑
i=1

(
p1||B||22 + p2

n

∑
j=1

n

∑
k=1

|bki||bk j|
)

h2
i (zi(t − τi))

≤
n

∑
i=1

(
p1||B||22l2

i + p2

n

∑
j=1

n

∑
k=1

|bki||bk j|l2
i

)
z2

i (t − τi)

≤
n

∑
i=1

(
p1σ

2
m(B)l

2
i + p2

n

∑
j=1

n

∑
k=1

b̂kib̂k jl2
i

)
z2

i (t − τi) (3.56)

terimleri analiz edilmiştir. (3.54). denkleminin içine (3.55) ve (3.56) yerleştirilirse aşağıdaki
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sonuçlar ortaya çıkar:

2zT (t)ΦLż(t)

≤ −2zT (t)ΦLβ (z(t))+
n

∑
i=1

ξ
2
i l2

i z2
i (t)

+
n

∑
i=1

n

∑
j=1

n

∑
k=1

( 1
κ

k1η â jib̂ jkl2
i z2

i (t)+
1
κ

k1

η
âi jb̂kil2

i z2
i (t − τi)

)
+

1
κ
(1+ k2ρ)m1σ

2
m(A)

n

∑
i=1

l2
i z2

i (t)+
1
κ
(1+ k2ρ)m2

n

∑
i=1

n

∑
j=1

n

∑
k=1

âkiâk jl2
i z2

i (t)

+
1
κ
(1+

k2

ρ
)p1σ

2
m(B)

n

∑
i=1

l2
i z2

i (t − τi)

+
1
κ
(1+

k2

ρ
)p2

n

∑
i=1

n

∑
j=1

n

∑
k=1

b̂kib̂k jl2
i z2

i (t − τi) (3.57)

C̃2 koşulu altında, aşağıdaki eşitlik ifade edilebilir:

−2zT (t)ΦLβ (z(t)) = −2
n

∑
i=1

ξilizi(t)βi(zi(t))≤−2
n

∑
i=1

ξiγiliz2
i (t) (3.58)

(3.57)’de (3.58) kullanılırsa

2ε1

n

∑
i=1

ξili
żi(t)

αi(zi(t))
zi(t)

≤ −2ε1

n

∑
i=1

ξiγiliz2
i (t)+ ε1κ

n

∑
i=1

ξ
2
i l2

i z2
i (t)+

ε1k1η

κ

n

∑
i=1

n

∑
j=1

n

∑
k=1

â jib̂ jkl2
i z2

i (t)

+
1
κ

ε1k1

η

n

∑
i=1

n

∑
j=1

n

∑
k=1

âi jb̂kil2
i z2

i (t − τi)+
ε1

κ
(1+ k2ρ)m1σ

2
m(A)

n

∑
i=1

l2
i z2

i (t)

+
ε1

κ
(1+ k2ρ)m2

n

∑
i=1

n

∑
j=1

n

∑
k=1

âkiâk jl2
i z2

i (t)+
ε1 p1

κ
(1+

k2

ρ
)σ2

m(B)
n

∑
i=1

l2
i z2

i (t − τi)

+
ε1 p2

κ
(1+

k2

ρ
)

n

∑
i=1

n

∑
j=1

n

∑
k=1

b̂kib̂k jl2
i z2

i (t − τi) (3.59)
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sonucu çıkar ve aşağıdaki neticeye varılır:

2
n

∑
i=1

żi(t)
αi(zi(t))

ζilizi(t) = −2zT (t)ΨLβ (z(t))+2zT (t)ΨLAh(z(t))+2zT (t)ΨLBh(z(t − τ))

= −2
n

∑
i=1

ζilizi(t)βi(zi(t))+2
n

∑
i=1

n

∑
j=1

ζilizi(t)ai jh j(z j(t))

+2
n

∑
i=1

n

∑
j=1

ζilizi(t)bi jh j(z j(t − τ j)) (3.60)

Buradan aşağıda verilen eşitsizliğin sağlandığı gözlemlenebilir:

2
n

∑
i=1

n

∑
j=1

ζilizi(t)ai jh j(z j(t)) ≤ 2
n

∑
i=1

n

∑
j=1

ζili|ai j||zi(t)||h j(z j(t))|

≤
n

∑
i=1

n

∑
j=1

(
εζi|ai j|l2

i z2
i (t)+

1
ε

ζi|ai j|h2
j(z j(t))

)
≤

n

∑
i=1

n

∑
j=1

(
εζi|ai j|l2

i z2
i (t)+

1
ε

ζi|ai j|l2
j z

2
j(t)

)
≤

n

∑
i=1

n

∑
j=1

(
εζiâi jl2

i z2
i (t)+

1
ε

ζ jâ jil2
i z2

i (t)
)

(3.61)

ve

2
n

∑
i=1

n

∑
j=1

ζiℓizi(t)ai jh j(z j(t)) ≤
n

∑
i=1

(
εζ

2
i ℓ

2
i z2

i (t)+
1
ε

( n

∑
j=1

ai jh j(z j(t))
)2
)

= ε

n

∑
i=1

ζ
2
i ℓ

2
i z2

i (t)+
1
ε

hT (z(t))AT AhT (z(t))

≤
n

∑
i=1

(
εζ

2
i ℓ

2
i z2

i (t)+
1
ε

σ
2
m(A)ℓ

2
i z2

i (t)
)

(3.62)

(3.62) ve (3.61) birleştirildiğinde

2
n

∑
i=1

n

∑
j=1

ζilizi(t)ai jh j(z j(t)) = 2(q1 +q2)
n

∑
i=1

n

∑
j=1

ζilizi(t)ai jh j(z j(t))

≤
n

∑
i=1

n

∑
j=1

(
q1εζiâi jl2

i z2
i (t)+

q1

ε
ζ jâ jil2

i z2
i (t)

)
+

n

∑
i=1

(
q2εζ

2
i l2

i +
q2

ε
σ

2
m(A)l

2
i

)
z2

i (t) (3.63)
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Bu aşamada, aşağıdaki eşitsizlik oluşturulabilir:

2
n

∑
i=1

n

∑
j=1

ζilizi(t)bi jh j(z j(t − τ j))

≤ 2
n

∑
i=1

n

∑
j=1

ζili|bi j||zi(t)||h j(z j(t − τ j))|

≤
n

∑
i=1

n

∑
j=1

(
ρζi|bi j|l2

i z2
i (t)+

1
ρ

ζi|bi j|h2
j(z j(t − τ j))

)
≤

n

∑
i=1

n

∑
j=1

(
ρζi|bi j|l2

i z2
i (t)+

1
ρ

ζi|bi j|l2
j z

2
j(t − τ j)

)
≤

n

∑
i=1

n

∑
j=1

(
ρζib̂i jl2

i z2
i (t)+

1
ρ

ζ jb̂ jil2
i z2

i (t − τi)
)

(3.64)

ve

2
n

∑
i=1

n

∑
j=1

ζilizi(t)bi jh j(z j(t − τ j))

≤ ν

n

∑
i=1

ζ
2
i l2

i z2
i (t)+

1
ν

n

∑
i=1

( n

∑
j=1

bi jh j(z j(t − τ j))

)2

≤ ν

n

∑
i=1

ζ
2
i l2

i z2
i (t)+

1
ν

σ
2
m(B)

n

∑
i=1

l2
i z2

i (t − τi) (3.65)

Yukarıdaki (3.64) ve (3.65) birleştirildiğinde aşağıdaki denklem elde edilir:

2
n

∑
i=1

n

∑
j=1

ζilizi(t)bi jh j(z j(t − τ j))

=
n

∑
i=1

n

∑
j=1

(
2r1ζilibi j +2r2ζilibi j

)
zi(t)h j(z j(t − τ j))

≤
n

∑
i=1

n

∑
j=1

(
r1ρζib̂i jl2

i z2
i (t)+

r1

ρ
ζ jb̂ jil2

i z2
i (t − τi)

)
+r2ν

n

∑
i=1

ζ
2
i l2

i z2
i (t)+

r2

ν
σ

2
m(B)

n

∑
i=1

l2
i z2

i (t − τi) (3.66)
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(3.60) denkleminde (3.66) ve (3.63) kullanılırsa ana eşitsizlik bulunur:

2ε2

n

∑
i=1

żi(t)
αi(zi(t))

ζilizi(t) ≤ −2ε2

n

∑
i=1

ζiγiliz2
i (t)+

n

∑
i=1

n

∑
j=1

(
ε2q1εζiâi jl2

i +
ε2q1

ε
ζ jâ jil2

i

)
z2

i (t)

+ε2q2ε

n

∑
i=1

ζ
2
i l2

i z2
i (t)+

ε2q2

ε
σ

2
m(A)

n

∑
i=1

l2
i z2

i (t)

+
n

∑
i=1

n

∑
j=1

(
ε2r1ρζib̂i jl2

i z2
i (t)+

ε2r1

ρ
ζ jb̂ jil2

i z2
i (t − τi)

)
+ε2r2ν

n

∑
i=1

ζ
2
i l2

i z2
i (t)+

ε2r2

ν
σ

2
m(B)

n

∑
i=1

l2
i z2

i (t − τi) (3.67)

Lyapunov fonksiyonundaki V2(t) adayı türevlendiğinde aşağıda verilen denkleme ulaşılır:

V̇2(t) =
n

∑
i=1

n

∑
j=1

n

∑
k=1

(
ε1 p2

κ
(1+

k2

ρ
)b̂kib̂k jl2

i zi
2(t)− ε1 p2

κ
(1+

k2

ρ
)b̂kib̂k jl2

i zi
2(t − τi)

)
+

n

∑
i=1

n

∑
j=1

n

∑
k=1

(
ε1k1

κη
âi jb̂kil2

i zi
2(t)− ε1k1

κη
âi jb̂kil2

i zi
2(t − τi)

)
+

ε1 p1

κ
(1+

k2

ρ
)σ2

m(B)
n

∑
i=1

l2
i zi

2(t)− ε1 p1

κ
(1+

k2

ρ
)σ2

m(B)
n

∑
i=1

l2
i zi

2(t − τi)

+
n

∑
i=1

n

∑
j=1

(
ε2r1

ρ
ζ jb̂ jil2

i zi
2(t)− ε2r1

ρ
ζ jb̂ jil2

i zi
2(t − τi)

)
+

ε2r2

ν
σ

2
m(B)

n

∑
i=1

l2
i z2

i (t)−
ε2r2

ν
σ

2
m(B)

n

∑
i=1

l2
i zi

2(t − τi)

+kl2
m

n

∑
i=1

(z2
i (t)− zi

2(t − τi)) (3.68)
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Böylece, V (t) ana fonksiyonu için zamana göre türevi kolaylıkla gösterilebilir:

V̇ (t) = V̇1(t)+V̇2(t)≤−2ε1

n

∑
i=1

ξiγiliz2
i (t)+ ε1κ

n

∑
i=1

ξ
2
i l2

i z2
i (t)

+
n

∑
i=1

n

∑
j=1

n

∑
k=1

(
ε1k1η

κ
â jib̂ jkl2

i z2
i (t)+

1
κ

ε1k1

η
âi jb̂kil2

i z2
i (t)

)
+

ε1

κ
(1+ k2ρ)m1σ

2
m(A)

n

∑
i=1

l2
i z2

i (t)+
ε1 p1

κ
(1+

k2

ρ
)σ2

m(B)
n

∑
i=1

l2
i z2

i (t)

+
n

∑
i=1

n

∑
j=1

n

∑
k=1

(
ε1

κ
(1+ k2ρ)m2âkiâk jl2

i z2
i (t)+

ε1 p2

κ
(1+

k2

ρ
)b̂kib̂k jl2

i z2
i (t)

)
−2ε2

n

∑
i=1

ζiγiliz2
i (t)+

n

∑
i=1

n

∑
j=1

(
ε2q1εζiâi jl2

i z2
i (t)+

ε2q1

ε
ζ jâ jil2

i z2
i (t)

)
+ε2q2ε

n

∑
i=1

ζ
2
i l2

i z2
i (t)+

ε2q2

ε
σ

2
m(A)

n

∑
i=1

l2
i z2

i (t)

+
n

∑
i=1

n

∑
j=1

(
ε2r1ρζib̂i jl2

i z2
i (t)+

ε2r1

ρ
ζ jb̂ jil2

i z2
i (t)

)
+ε2r2ν

n

∑
i=1

ζ
2
i l2

i z2
i (t)+

ε2r2

ν
σ

2
m(B)

n

∑
i=1

l2
i z2

i (t)+ kl2
m||z(t)||22 (3.69)

(3.69) eşitsizliğindeki veriler ortak paranteze alınıp teoremin varsayımları uygulandığında

aşağıdaki sonuca direkt olarak ulaşılabir:

V̇ (t) ≤ −
n

∑
i=1

ℓ2
i ε1

(
2ξi

γi

li
−κξ

2
i − k1η

κ

n

∑
j=1

n

∑
k=1

â jib̂ jk −
k1

κη

n

∑
j=1

n

∑
k=1

âi jb̂ki −
(1+ k2ρ)m1

κ
σ

2
m(A)

−(1+ k2ρ)m2

κ

n

∑
j=1

n

∑
k=1

âkiâk j −
p1

κ
(1+

k2

ρ
)σ2

m(B)−
p2

κ
(1+

k2

ρ
)

n

∑
j=1

n

∑
k=1

b̂kib̂k j

)
z2

i (t)

−
n

∑
i=1

l2
i ε2

(
2ζi

γi

li
−q1ε

n

∑
j=1

ζiâi j −
q1

ε

n

∑
j=1

ζ jâ ji +q2εζ
2
i − q2

ε
σ

2
m(A)

−r1ρ

n

∑
j=1

ζib̂i j −
r1

ρ

n

∑
j=1

ζ jb̂ ji − r2νζ
2
i − r2

ν
σ

2
m(B)

)
z2

i (t)+ kl2
m||z(t)||22

= −
n

∑
i=1

l2
i ε1δiz2

i (t)−
n

∑
i=1

ℓ2
i ε2θiz2

i (t)+ kl2
m||z(t)||22

= −
n

∑
i=1

l2
i (ε1δi + ε2θi)z2

i (t)+ kl2
m||z(t)||22

≤ (−l2
m(ε1δm + ε2θm)+ kl2

m)
n

∑
i=1

z2
i (t) =−l2

m(ε1δm + ε2θm − k)||z(t)||22 (3.70)

Böylece, (3.70) z(t) ̸= 0 için V̇ (t)< 0 olduğunu garanti eder. z(t) = 0 sağlanması durumunda



52

(3.45) sisteminin dinamik analizi, (3.68)’den direkt olarak gözlemlenebilir ki

V̇2(t) = −ε1 p2

κ
(1+

k2

ρ
)

n

∑
i=1

n

∑
j=1

n

∑
k=1

b̂kib̂k jl2
i zi

2(t − τi)−
ε1k1

κη

n

∑
i=1

n

∑
j=1

n

∑
k=1

âi jb̂kil2
i zi

2(t − τi)

−ε1 p1

κ
(1+

k2

ρ
)σ2

m(B)
n

∑
i=1

l2
i zi

2(t − τi)−
ε2r1

ρ

n

∑
i=1

n

∑
j=1

ζ jb̂ jil2
i zi

2(t − τi)

−ε2r2

ν
σ

2
m(B)

n

∑
i=1

l2
i z2

i (t − τi)− kl2
m

n

∑
i=1

z2
i (t − τi)

≤ −kl2
m

n

∑
i=1

z2
i (t − τi) =−kl2

m||z(t − τ)||22 (3.71)

elde edilir. Öyleyse z(t − τ) ̸= 0 her gerçeklendiğinde (3.71) sadece V̇ (t) < 0 olan koşulu

doğrulayacaktır. z(t) = 0 ve z(t − τ) = 0 kabul edildiğinde (yani hem h(z(t)) = 0 hem

de h(z(t − τ)) = 0 olduğu anlaşılabilir),bu yeni durumda, V̇ (t) = 0 sonucuna kolaylıkla

varılabilir. Ayrıca kullanılan V (t) fonksiyonunun ||z(t)||→∞ durumunda V (t)→∞ koşulunu

gerektiren bir radyal sınırsız fonksiyon olduğu kanıtlanmış olur. Bu nedenle, temel Lyapunov

kararlılık teoreminden (3.45)’te verilen bu sinir ağının orijininin ya da (3.6) ile verilen zaman

gecikmeli sinir ağının sahip olduğu denge noktasının global asimtotik olarak robust kararlı

olduğu sonucuna varılabilir.

Dikkat edilirse, (3.6)’da sistemi için eğer ci(xi(t)) = cixi(t) ile birlikte bir de di(xi(t)) = 1

olduğu kabul edilirse bu durumda Cohen-Grossberg YSA sistemi Hopfield YSA sistemine

dönüşür. (3.29)’da ci(xi) ile cixi yer değiştirirse

−(x− x̄)T 2ΦLC(x− x̄) =−
n

∑
i=1

2ξilici(xi − x̄i)
2 (3.72)

elde edilir. (3.11)’in doğultusunda (3.72) sağlanırsa

−(x− x̄)T 2ΦLC(x− x̄)≤−
n

∑
i=1

2ξilici(xi − x̄i)
2 (3.73)

olur ve öte yandan (3.58)’de Cz(t) ile β (z(t))’nın yeri değiştirilirse aşağıdaki sonuç elde

edilir:

−2zT (t)ΦLCz(t) =−
n

∑
i=1

2ξilizi(t)cizi(t)≤−
n

∑
i=1

2ξiciliz
2
i (t) (3.74)
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O halde Teorem 3.4.1’deki γi ile ci,∀i’nın yeri değiştirildiğinde direkt olarak (3.4) modelinin

robust kararlılık koşullarını sağladığı aşağıda verilen teorem ile söylenebilir:

Teorem 3.5.1: (3.4) sisteminde, g ∈ L olduğunu ve sistem matrislerinin (3.11)’de

tanımlanan belirsiz aralık matrisleri olduğunu kabul edelim. Eğer aşağıdaki cebirsel koşulları

sağlayan κ , η , ρ , ε , ν , ρ , µ , ξi ve ζi varsa (3.4)’teki YSA sistemi her sabit u’ya göre tek,

global asimtotik kararlı bir denge noktasına sahiptir

δ̂i = 2ξi
ci
ℓi
−κξ

2
i − k1η

κ

n

∑
j=1

n

∑
k=1

â jib̂ jk −
k1

κη

n

∑
j=1

n

∑
k=1

âi jb̂ki −
(1+ k2ρ)m1

κ
σ

2
m(A)

−(1+ k2ρ)m2

κ

n

∑
j=1

n

∑
k=1

âkiâk j −
p1

κ
(1+

k2

ρ
)σ2

m(B)−
p2

κ
(1+

k2

ρ
)

n

∑
j=1

n

∑
k=1

b̂kib̂k j

θ̂i = 2ζi
ci
li
−q1ε

n

∑
j=1

ζiâi j −
q1

ε

n

∑
j=1

ζ jâ ji −q2µζ
2
i − q2

µ
σ

2
m(A)

−r1ρ

n

∑
j=1

ζib̂i j −
r1

ρ

n

∑
j=1

ζ jb̂ ji − r2νζ
2
i − r2

ν
σ

2
m(B)

için

ε1δ̂i + ε2θ̂i > 0, ∀i

Burada 0 ≤ ε1 ≤ 1, 0 ≤ ε2 ≤ 1 için ε1 + ε2 = 1, 0 ≤ k1 ≤ 1, 0 ≤ k2 ≤ 1 için k1 + k2 = 1,

0 ≤ m1 ≤ 1, 0 ≤ m2 ≤ 1 için m1 + m2 = 1, 0 ≤ p1 ≤ 1, 0 ≤ p2 ≤ 1 için p1 + p2 = 1,

0 ≤ q1 ≤ 1, 0 ≤ q2 ≤ 1 için q1 + q2 = 1, 0 ≤ r1 ≤ 1, 0 ≤ r2 ≤ 1 için r1 + r2 = 1,

σm(A) = min{σ1(A),σ2(A),σ3(A),σ4(A),σ5(A),σ6(A)}, âi j = max{|ai j|, |ai j|}, σm(B) =

min{σ1(B),σ2(B),σ3(B),σ4(B),σ5(B),σ6(B)} ve b̂i j = max{|bi j|, |bi j|},∀i, j.
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4. BULGULAR

Bu bölüm temel olarak sinir sistemleri (3.6) ve (3.7) ile ilişkili daha önce yayınlanmış

robust kararlılık sonuçlarını gözden geçirmeyi ve önceki literatür sonuçları ile bu makalede

verilen sonuçlar arasında bazı karşılaştırmalar yapmayı amaçlamaktadır. Geçmiş literatürde

benzer robust kararlılık sonuçları farklı şekillerde ifade edilmiştir.Bu bölüümde önceki

benzer robust kararlılık sonuçları birleştirilecek ve bir önceki literatür sonuçlarının, Teorem

3.4.1 ve 3.5.1’de türetilen robust kararlılık kriterlerinin bazı farklı özel durumları olarak

değerlendirilebileceği gösterilecektir.

Teorem 4.1 [52]-[53]: (3.4)’teki gecikmeli sinir sisteminde, g ∈ L olduğunu ve belirsiz

arabağlantı matrislerinin (3.11)’de tanımlanan aralıklar içerisinde kaldığını varsayalım.

Sistem (3.4) eğer r = min(ci
li
) olmak üzere aşağıdaki kriteri sağlarsa her bir u sabiti için

bu sistem yalnız bir global asimtotik kararlı denge noktasına sahiptir denir:

r−σ1(A)−σ1(B)> 0

Teorem 3.5.1’de ε2 = 1, q1 = r1 = 0, ζi = 1,∀i, r = min(ci
li
), µ = σm(A) ve ν = σm(B)

durumu için

θ̂i = 2
ci
li
−µ − 1

µ
σ

2
m(A)−ν − 1

ν
σ

2
m(B)≥ 2r−2σm(A)−2σm(B)

= 2(r−σm(A)−σm(B))> 0,∀i.

koşulu elde edilir. Böylece Teorem 4.1’in koşulları Teorem 3.5.1’de türetilen şartların bazı

özel durumlarıdır.

Teorem 4.2 [54]-[55]: (3.4)’teki gecikmeli sinir sisteminde, g ∈ L olduğunu ve belirsiz

arabağlantı matrislerinin (3.11)’de tanımlanan aralıklar içerisinde kaldığını varsayalım.

CL−1 − Â− B̂ tekil olmayan M-matrisse, bir başka ifadeyle aşağıdaki kriteri sağlayan qi > 0

gibi bazı uygun sayılar varsa sistem (3.4) her bir u sabiti için yalnız bir global asimtotik



55

kararlı denge noktasına sahiptir denir:

qi
ci
li
−

n

∑
j=1

q j(â ji + b̂ ji)> 0, ∀i

Teorem 3.5.1’de, ε2 = 1, q2 = r2 = 0 ve ε = ρ = 1 durumu için,

θ̂i = 2ζi
ci
li
−

n

∑
j=1

(ζiâi j +ζib̂i j +ζ jâ ji +ζ jb̂ ji)> 0, ∀i

2CL−1− Â− ÂT − B̂− B̂T uygulanarak tekil olmayan M-matrisin özelliğinin sağlandığı elde

edilebilir. Nihayetinde, Teorem 3.5.1’deki sağlanan sonuçlar Teorem 4.2’deki türetieln bu

sonuçlara bazı alternatif sonuçlar olarak değerlendirilebilir.

Teorem 4.3 [56]-[58]: (3.4)’teki gecikmeli sinir sisteminde, g ∈ L olduğunu ve belirsiz

arabağlantı matrislerinin (3.11)’de tanımlanan aralıklar içerisinde kaldığını varsayalım. Eğer

µ ve ν pozitif sabiti varsa sistem (3.4) her bir u sabiti için yalnız bir global asimtotik kararlı

denge noktasına sahiptir öyle ki

2r−µ − 1
µ

σ
2
1 (A)−ν − 1

ν
σ

2
1 (B)> 0

Teorem 4.4 [56]-[58]: (3.4)’teki gecikmeli sinir sisteminde, g ∈ L olduğunu ve belirsiz

arabağlantı matrislerinin (3.11)’de tanımlanan aralıklar içerisinde kaldığını varsayalım. Eğer

µ ve ν pozitif sabiti varsa sistem (3.4) her bir u sabiti için yalnız bir global asimtotik kararlı

denge noktasına sahiptir öyle ki

2r−µ − 1
µ

σ
2
4 (A)−ν − 1

ν
σ

2
4 (B)> 0

Ayrıca, Teorem 3.5.1’de, ε2 = 1, q1 = r1 = 0, ζi = 1,∀i, r =min(ci
li
), µ =σm(A) ve ν =σm(B)

durumu için aşağıdaki sonuç elde edilebilir:

θ̂i = 2r−µ − 1
µ

σ
2
m(A)−ν − 1

ν
σ

2
m(B)> 0

Dolayısıyla; Teorem 4.3 ve 4.4, Teorem 3.5.1’in özel sonucudur.
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Teorem 4.5 [59]-[60]: (3.4)’teki gecikmeli sinir sisteminde, g ∈ L olduğunu ve belirsiz

arabağlantı matrislerinin (3.11)’de tanımlanan aralıklar içerisinde kaldığını varsayalım.Eğer

sistem (3.4)’ün parametreleri aşağıdaki koşulu sağlarsa, sistem (3.4) her bir u sabiti için

yalnız bir global asimtotik kararlı denge noktasına sahiptir denir:

c2
i

ℓ2
i
−2

n

∑
j=1

n

∑
k=1

(âkiâk j + b̂kib̂k j)> 0,∀i

Teorem 3.5.1’de, ε2 = 0, m2 = 1, p2 = k2 = 1, ξi =
γi
li

ve ρ = κ = 1 durumu için

δ̂i =
c2

i

ℓ2
i
−2

n

∑
j=1

n

∑
k=1

(âkiâk j + b̂kib̂k j)> 0,∀i

elde edilir. Sonuç olarak, Teorem 4.5, Teorem 3.5.1’in özel durumudur.

Teorem 4.6 [61]-[62]: (3.4)’teki gecikmeli sinir sisteminde, g ∈ L olduğunu ve belirsiz

arabağlantı matrislerinin (3.11)’de tanımlanan aralıklar içerisinde kaldığını varsayalım.

A∗+AT
∗ ’nin spektral yarıçapını ρ(A∗+AT

∗ ) temsil etmek üzere

2r−ρ(A∗+AT
∗ )−2||A∗||2 −||B̂||1 −||B̂||∞ > 0

oluyorsa sistem (3.4) her bir u sabiti için yalnız bir global asimtotik kararlı denge noktasına

sahiptir. Ek olarak, Teorem 3.5.1’de ε1 = 0, q1 = r2 = 0, ζi = 1, µ = σm(A), ρ =

√
||B̂||∞
||B̂||1

durumu için

θ̂i = 2
γi

li
−2σm(A)−

n

∑
j=1

(ρ b̂i j −
1
ρ

b̂ ji)

≥ 2r−2σm(A)−ρ||B̂||1 −
1
ρ
||B̂||∞

= 2r−2σm(A)−2
√

||B̂||1||B̂||∞ > 0,∀i.

elde edilir. ρ(A∗ + AT
∗ ) ≤ 2||A∗||2’dır. Dolayısıyla, 2||A∗||2 + ρ(A∗ + AT

∗ ) ≤ 2(||A∗||2 +

||A∗||2) = 2σ1(A)’dır. Herhangi B̂ matrisi alınacak olursa,
√

||B̂||1||B̂||∞ ≤ 1
2(||B̂||1 + ||B̂||∞)

koşulunu sağlayan eşitsizlik gözlemlenebilir. Böylece Teorem 2’de sağlanan koşullar Teorem

4.6’da türetilmiş alternatif sonuçlar olarak düşünülebilir.
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5. TARTIŞMA VE SONUÇ

Tez çalışması, matematiksel modellerinin ayrık zaman gecikmesi terimlerini içerdiği, sürekli

Lipschitz aktivasyon fonksiyonlarını kullandığı varsayılan dinamik sinir sistemlerinin global

robust kararlılığını sağlayan bazı yeni yeterli gecikmeden bağımsız kriterler önermiştir. Bu

tezin temel katkılarından biri, yeni robust kararlılık sonuçlarının türetilmesinde kullanılan

belirsiz arabağlantı matrislerinin aralıkları için yeni ve geliştirilmiş bir üst sınır normu

türetmek olmuştur. Tezde önerilen koşullar ile daha önce sunulan bazı robust kararlılık

sonuçları arasında çok ayrıntılı bir karşılaştırma yapılmıştır; bu, bu tezde türetilen robust

koşullarının en önceki karşılık gelen robust kararlılık sonuçlarını genellediğini göstermiştir.

Ayrık gecikme terimlerini ve Lipschitz aktivasyon fonksiyonlarını içeren doğrusal olmayan

sinir sistemlerinin istenen kararlılık analizini yapmak ve arabağlantı matrislerinin içine

düştüğü aralıklar için yeni üst sınır normlarını keşfetmek başarılması zor görevler

olduğundan, bu tezde ayrık zaman gecikmesi parametrelerini içeren belirsiz gecikmeli

doğrusal olmayan sistemlerin kararlılık teorisinde ileri araştırma çalışmalarında kullanılan

kararlılık analizi teknikleri ve yöntemleri bazı sonuçlara yol açabilir.
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