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Fibonacci—Jacobsthal, Padovan—Fibonacci, Pell-Fibonacci, Pell-Jacobsthal, Padovan—
Pell ve Padovan—Jacobsthal dizileri [42]’deki ¢alismada tanimlanmistir. Tanimlanan bu
dizilerin tirete¢ matrisleri, binet formiilleri, listel temsilleri, toplamsal temsilleri,
permanental temsilleri, determinantal temsilleri ve sonlu toplamlar1 gibi baz1 6zellikler
verilmistir.

[43] ve [44] ¢alismalarinda ise Fibonacci-Jacobsthal dizisi gruplara taginmustir. [43] ‘de
bu dizinin devirli gruplardaki karsilig1 ele alinmis iken [45]’te ise bu dizi iki ve daha
fazla gerene(iiretece) sahip gruplara genisletilmis ve Fibonacci-Jacobsthal orbiti
kavrami tanimlanmustir.

Bu tez galigmasinda, grup elemanlar1 yardimiyla tanimlanan Fibonacci-Jacobsthal dizisi
iizerine kurgulanan yapinin farkli grup aileleri lizerine genisletilmesi suretiyle daha iyi
anlasilmas1 amaglanmistir. Bu kapsamda geren sayisi goz oniinde bulundurularak iyi

bilinen bazi gruplarin Fibonacci-Jacobsthal orbitleri iizerinde durulmustur. Bu

baglamda, 2-gerenli gruplardan Dn dihedral, Q. genellestirilmis quaternion ve SD,,



(n,2,2) | (2,n,2) (2,2,n)

semidihedral gruplarmin ve 3-gerenli gruplardan ise ve
binary polyhedral gruplarinin Fibonacci-Jacobsthal orbitlerinin periyot uzunluklari

belirlenmistir.

Anahtar Kelimeler: Fibonacci—Jacobsthal, Padovan—Fibonacci, Pell-Fibonacci, Pell—-
Jacobsthal, Padovan—Pell ve Padovan—Jacobsthal dizileri, Grup, Periyot, Dizi, Matris,

Temsil, Hadamard carpimi.
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1.GIRIS
Disiplinler arasi iligkilerde indirgemeli dizilere sikga rastlanmaktadir [1,2,3,4,5,6,7,8].

Cebirsel anlamda indirgemeli diziler ile ilgili olarak {irete¢ matrisi, lirete¢ fonksiyonu,
binet formiilli, permanentel, determinantel ve toplamsal temsilleri gibi ¢esitli 6zellikleri
bircok bilim insan1 tarafindan ¢alisilmis ve bu ¢alismalar halen devam etmektedir. Bu
calismalardan giincel olanlara 6rnek olarak [9,10,11,12,13,14,15,16,17,18,19,20,21]
calismalar1 verilebilir. Bu c¢aligmalarin bircogunda elde edilen bulgular indirgemeli
dizilerin karakteristik polinomlar1 iizerinden tanimlanan iirete¢ matrisleri ve bu
matrislerin ¢esitli genislemeleri kullanilarak iiretilen matrisler yardimiyla elde

edilmistir.

Indirgemeli diziler, cebirsel yapilara ilk olarak Wall’m [22] deki c¢alismasi ile
tasinmugtir. Wall bu calismasinda devirli gruplarda klasik Fibonacci dizilerini
incelemistir. Wilcox [23] deki ¢alismasiyla teoriyi abelyen (degismeli) gruplara
genigletmistir. Gruplarda Fibonacci dizileri {lizerine olusturulan bu yapi, daha sonra
yapilan caligmalarla genisletilerek ¢esitli indirgemeli dizilerin farkli grup ailelerinde de

incelenmistir [24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41].

Calismanin ikinci boliimii olan materyal ve yontemde bulgular kismina temel teskil

edecek bilgiler verilmistir. Bu anlamda bu boliimde;

Deveci [42] deki ¢alismasinda, Fibonacci-Jacobsthal, Padovan-Fibonacci, Pell-
Fibonacci, Pell-Jacobsthal, Padovan-Pell ve Padovan-Jacobsthal dizilerini tanimlamis

ve tanimlanan bu dizilerin ¢esitli 6zelliklerini vermistir.

Deveci ve Akiiziim [43] deki ¢alismasinda M modiiliine gore Fibonacci- Jacobsthal

dizisini incelemis

Deveci ve Akiiziim [44] deki ¢alismasinda Fibonacci- Jacobsthal dizisini sonlu

gruplardan olan fibonacci grubunda incelemis.



Ayrica Deveci ve Yilmaz ise [45] deki ¢alismasinda Fibonacci- Jacobsthal dizisinde

polyhedral grubunu incelemis.

Son olarak Fibonacci- Jacobsthal dizisi; Dihedral, Semidihedral, Quaternion ve Binary
3 gerenli gruplarinda incelenmis ve bahsi gecen bu gruplarda farkli degerler i¢in periyot
uzunluklar1 hesaplanmig ayrica bu degerler icin genel formlar belirlenmistir. Bu
anlamda tezimize temel teskil eden bu tezin bulgular1 3. boliimde ayrintili olarak

verilmistir.



1.1. Kuramsal Temeller

1.1.1. Cebirsel Yapilar

Tanim 1.1.1.1. G bostan farkl bir kiime olsun. GxG den G ye tanimli

*=GxnG—=G , (x,y])|—=x*y

doniisiimiine G kiimesi iizerinde bir ikili islem ve (G,*) ifadesine ise bir cebirsel yap1

denir.

Ornek 1.1.1.1. R reel sayilar kiimesi olmak iizere reel elemanli 2X 2 matrislerinden

olusan R*? kiimesinde bilinen matris toplami bir ikili islem olusturur [46].

Tanim 1.1.1.2. G bostan farkli bir kiime olsun. Bu kiime iizerinde tanimlanan "*" ikili
islemi agagidaki kosullar1 sagliyor ise (G’*) cebirsel yapisina grup denir.

G,) Va,beG j¢in a*(b*c)=(ax*b)*c ( Birlesme Ozelligi )

G,) VaeG i¢in a*e=e*a=aolacak sekilde bir ¢ € G vardr. (Birim
elemanin varligi)

G:) e, G nin birim eleman olmak iizere VA€ G icin

axa' =a'*a=e

olacak sekilde bir a'€ G vardir. (Ters elemanin varligi)

Ornek 1.1.1.2. Rasyonel sayilar kiimesi ¢ ve reel sayilar kiimesi R toplama islemine

gore bir gruptur.

Tanim 1.1.1.3. Tanim 2.1.2 de verilen grup sartlarindan sadece G, saglanirsa bu cebirsel

yapiya yar1 grup denir.

Ornek 1.1.1.3. 2 pozitif tamsayilar kiimesi olmak iizere (Z",+) cebirsel yapis1 bir yar1

gruptur.



Tanim 1.1.1.4. Tanim 2.1.2 de verilen grup sartlarindan G ve G, saglanirsa yani (G.,*)

yar1 grubunun birim elemani varsa bu cebirsel yapiya monoid denir.
Tanim 1.1.1.5. (G,*) cebirsel yapisi bir grup olsun. Va,beG j¢in
ax*b=Db=*a

sart1 saglantyorsa bu gruba degismeli (abelyen) grup denir.

Teorem 1.1.1.1. (G, *) bir grup olsun. Buna gore

i G nin birim elemani tektir.

ii.  Her elemanin tersi tektir.

iii. @ €G igin a*a==¢ egitligi varsa a =edir.

iv. G grubunda soldan ve sagdan kisaltma kurallari gegerlidir. Yani Va,b,C €Gicin
a*b=a%*C jse b=c ( soldan kisaltma kural1 )
b*a=c*a jse b=c (sagdan kisaltma kurali )

v. abeG jcin axx=bve y*a=b denklemlerinin G deki islemi tektir.

-1 *1_
Vi aeeign(a) =a qir [47].

Teorem 1.1.1.2. (G, *) cebirsel yapist bir grup olsun. Va&,b€G j¢in

/ I T |
|a*b) =b""*a

dir.

Tamm 1.1.1.6. (G.*) bir grup ve n de bir pozitif tamsay1 olmak tizere G nin bir 9

elemanmm N kuvveti

g"=g*gxg

seklinde gosterilir.



Teorem 1.1.1.3. (G.*) bir grup ve € de grubun birim elemani olsun. Va € G ve

VX, Y € Z iin asagidaki kurallar gecerlidir:

i a'xa’=a"’=a’+a’,

Tamm 1.1.1.7. (G,*) cebirsel yapisi bir grup olsun. Eger G kiimesi sonlu ise bu gruba

sonlu grup degilse sonsuz grup denir. G kiimesinin eleman sayisma ise grubun

mertebesi denir ve G| veya 0(G) sembollerinden birisi ile gosterilir.

Tanim 1.1.1.8. G birgrup ve € de G nin birim eleman: olsun. G nin herhangi bir 9

eleman1 i¢in g"=e esitligini saglayan bir N pozitif tam sayis1 varsa 9 elemanma

sonlu mertebedendir denir. Bu sart1 yerine getiren en kii¢iik pozitif N tam sayisina ise

d nin mertebesi denir ve |9| veya ©(9) sembollerinden birisi ile ifade edilir.

Tamm 1.1.1.9. G bir grup ve Y#HCG olsun. Eger H, G de tanimlanan ikili

isleme gore bir grup ise H ye G nin bir alt grubudur denir ve H <G ile gosterilir.

Ornek 1.1.1.4. Cift tam sayilar kiimesi olan 2Z toplama islemine gore (Z+) grubunun

bir alt grubu iken tek tam sayilar kiimesi olan 27:+1 toplama islemine gore kapalilik

sartin1 saglamadigindan (%+) grubunun bir alt grubu degildir.

Tanimm 1.1.1.10. (G’*) bir grup ve €de grubun birim eleman1 olmak tizere ((e)’*) ve

(GX) cebirsel yapilart G grubunun birer alt grubudur ve bu alt gruplara agikar alt

gruplar denir.



Tanmm 1.1.1.11. (G’*) bir grup olmak iizere G nin asikar alt gruplar1 disindaki diger alt

gruplarma 6z alt gruplar denir. Eger H, G nin bir 6z alt grubu ise H <G ile gsterilir.

Tamm 1.1.1.12. G bir grup ve aym1 zamanda N<G olsun. Her 2€G j¢in aN=Na

esitligi gecerli oluyorsa N alt grubuna normal alt grup denir. Bu grup N <G ile ifade
edilir.

Ornek 1.1.1.5. Degismeli bir grubun herhangi bir alt grubu normal alt gruptur.

Tamim 1.1.1.13. G bir grup ve N<G olsun. G/N :{aN :aEG} kiimesine bolim

kiimesi denir.

Tanim 1.1.1.14. N<G olmak iizere G/N kiimesinde (Na)(Nb):N(ab) olacak

bi¢ciminde bir ¢arpma islemi tanimlansin. G/ N kiimesi bu ¢arpima gore bir grup olup

bu sart1 saglayan gruba G nin N ye gore boliim grubu denir.

Tamm 1.1.1.15. G bir grup ve ¥ # A< G olsun. G grubunun A y1 igeren biitiin alt

gruplarinin ara kesitini <A> ile gosterelim. <A> kiimesi G nin bir alt grubu olur. <A>

kiimesi, G grubunun A y1 iceren en kiiciik alt grubudur. Bu grup A tarafindan iiretilen

(gerilen) alt grup olarak isimlendirilir.

Tanim 1.1.1.16. G bir grup olmak tizere S:{a :neZ} alt grubuna G nin &

elemani tarafindan iiretilen devirli alt grubu denir ve <a> ile gosterilir. Yani,
(a) — {a":neZ} =S

dir. Buradan yola ¢ikarak devirli gruplar asagidaki gibi de tanimlanabilir:



G bir grup olmak iizere G de G:{a :nEZ} olacak sekilde bir @ eleman1 varsa o

zaman G grubuna devirli grup denir. Boylece bir @ elemanma G nin iireteci (gereni)

denir ve © :<a> seklinde gosterilir [47].

Teorem 1.1.1.4. Devirli gruplarm hepsi degismelidir.

Teorem 1.1.1.5. Devirli bir grubun biitiin alt gruplar1 devirlidir.

Tanim 1.1.1.17. (G*) ve (H,®) ikj grup olmak {izere f:G—>H seklinde

tanimlanan déniisim VX Y€G icin f(x*y)=f (X)®f(Y) sartim saglyorsa f ye
G den H ye bir homomorfizm denir. Eger T homomorfizmi 1-1 ve ortenise f ye

izomorfizm, G ve H gruplarina ise izomorf gruplar denir ve G =H ile ggsterilir.

Teorem 1.1.1.6. Ayn1 mertebeli herhangi iki devirli grup izomorfdur.

Sonug 1.1.1.1. Gdevirli bir grup olsun. Eger G sonsuz ise Z tam sayilar kiimesine,
6]

=n oldugunda ise 7 kiimesine izomorftur.

Teorem 1.1.1.7. G bir grup ve @ da G nin mertebesi N olan bir elemant yani °(a)=n

olsun. Buna gore;
i.  Eger @ nin mertebesi sonsuz ise bu durumda @ nin biitiin farkli kuvvetleri

grubun farkli elemanlaridir.

ii. Eger @ nin mertebesi sonlu ise bu durumda a" = e kosulunu saglayan en kiigiik
pozitif tamsay1 N ise @ nin drettigi devirli grubun yani <a> nin mertebesi de N
dir. Diger bir deyimle

(a)={eaa’...,a""}

dir.



. . k | ..
iii. @ nin mertebesi sonlu ve N olmak ilizere @ =a olmas1 i¢in gerek ve yeter sart

k=1(modn)

olmasidir.

. . . k . .
iv. @ nin mertebesi sonlu ve N olmak ilizere @ =€ olmasi i¢in gerek ve yeter sart

n |k olmasidir [47].

°(G)=k<® isun. H=le}

Sonug 1.1.1.2. G:<a> sonlu bir devir grubu ve ve

a"eH olacak sekilde N>0  pozitif tamsayilarmin en kiigiigii ™M olmak iizere

H=(2" ) (lqugunu kabul edelim. O takdirde

dir [47].
G:<a> sonsuz mertebeli bir devir grup olsun. @" nin biitiin kuvvetleri farkli

_ m
olacagindan " tarafindan iiretilen H _<a > devirli alt grubu da sonsuz olur.

Teorem 1.1.1.8. Ggrubu, & cleman: tarafindan tiretilen N mertebeli devirli bir grup

m [ Aam
olsun. G grubunun @ tarafindan iiretilmesi i¢in yani G_<a > seklinde ifade edilmesi

icin gerek ve yeter sart N ile M nin aralarinda asal olmasidir.

Yukaridaki teorem g6z Oniine alinarak bir M tamsayisinin (Zn’+) devirli grubunun bir

iireteci olmasi i¢in gerek ve yeter sart (m’ n):l olmas1 gerektigi sonucuna ulasilir.

Tanim 1.1.1.18. G, ] -gerenli( j- tiretegli ) bir grup olsun.

X=[[ .T]_.T::...=.Tv:-_] £ GxGx...><G|<[.T]_.T:=...=.Tv:-}}=G}

kiimesine G nin geren kiimesi, (% %0-00%;) ifadesine ise G nin bir geren J -lisi denir.



Tanimm 1.1.1.19. P bos olmayan bir kiime olmak iizere eger f:P—>P donigimii 1-1

ve orten ise 0 zaman | doniisiimiine P kiimesinin bir permiitasyonu denir.

S

P kiimesi iizerindeki biitiin permiitasyonlari kiimesini °p le gdsterirsek S, kiimesi

doniistimlerin bileske islemine gore bir grup teskil eder.

P kiimesini N elemanh (1’ 2,0, n) kiimesi olarak kabul edelim. Bu durumda S yi
S ile gosterecegiz ve bu grubu simetrik grup olarak adlandiracagiz. Burada S,

simetrik grubunun mertebesi N! dir.

Tanim 1.1.1.20. P:(l’z""’n)kﬁmesinin K<N olmak diizere 1 ile N arasinda

elemanlarmi 1%+ T ile gdsterelim. Buna gore eger | €S, permiitasyonu asagidaki

sartlar1 saglarsa o taktirde f ye k uzunlugunda bir devir ya da kisaca bir K -devir

denir ve f=(|’1,r2,...,l’k) seklinde gosterilir.

i, f(r)=n
i, N2(R %) ise 0 zaman T (N)=n gir [47].

f:('i’rz""’rk)’ K uzunlugunda bir devir olmak iizere K=1 ise f ye birli devir,

k=2 ise f ye ikili devir ya da transpozisyon denir.

Tamm 1.1.1.21. Bir Sn simetrik grubundaki bir f permiitasyonu transpozisyonlarin

carpimi olarak yazildiginda bu transpozizyonlarin sayisi ¢ift ise f ye ¢ift permiitsyon
tek ise f ye tek permiitasyon denir.

Sn nin biitiin cift permiitasyonlarmm kiimesini A le gosterecegiz. A, Sa nin bir

n!
normal alt grubu olup bu grubun mertebesi 2 dir.



Tanim 1.1.1.22. G bir grup ve S de G nin bir alt kiimesi olsun. Eger G nin her elemani

S nin elemanlarinin ve bu elemanlarin terslerinin sonlu bir ¢arpimi olarak

yazilabiliyorsa S kiimesi, G grubunun gerenlerinin bir kiimesi olarak adlandirilir [48].

Tanim 1.1.1.23. Bir gruptaki gerenlerin sagladiklar1 denklemlere bu gruptaki bagntilar
denir [48].

Tanim 1.1.1.24. G bir grup ve S ise Gnin bir alt kiimesi olsun. Eger G grubunun

herhangi bir elemani S kiimesinin sonlu sayidaki elemanlarinin ve ayn1 zamanda bu

elemanlarin terslerinin bir garpimi olarak tek tiirlii yazilabiliyorsa G grubuna bu S

kiimesi tizerinde serbesttir denir.

Tanmim 1.1.1.25. G bir grup ve S de G nin bir alt kiimesi olsun. G nin S alt kiimesini

kapsayan en kiigiik normal alt grubuna S alt kiimesinin normal kapanisi denir.

Tamm 1.1.1.26. X bir kiime; F(X), Xiizerinde serbest grup ve RSF (X)) olmak

uzere ﬁ, F (X)) deki R kiimesinin normal kapamsi olsun.  Yani,

-1 .
<g rg:geF (X)reR >kiimesi ile F(X)in alt grubu verilmis olsun. Bu durumda

G=F(X)/Rise G grubu (X ‘R ) seklindeki takdim ile tanimlanmustir denilir [49].

Tanmm 1.1.1.27. T tek tamsay1 olmak iizere r* -1 mertebeli F(r.2) Fibonacci grubu

f

- o =12 ] - =112 ]
{:r._b:::m: = k. ( Ba) ’p=:ml)

seklinde tanimlanir.

Tanim 1.1.1.28. N3 icin 2N mertebeli Dn dihedral grubu

D.r:(ﬁ.; Ve .1":r:.1'::[.1j']: :e)

seklinde tanimlanir.
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Tamm 1.1.1.29. N=3 icin 2" mertebeli Q, genellestirilmis Quaternion grubu

2 1.2 -1 -1
Q. ={.1'__J':.T =gV =x" .y iy=x }

seklinde tanimlanir.

Tamm 1.1.1.30. M24 icin 2" mertebeli SP,» semidihedral grubu

SD,, =<x, yix? =y?=e yxy =x"?" >

seklinde tanimlanir.

Tanim 1.1.1.31. ,mn>0 icin (I’m’n) polyhedral grubu

{.1': y,z:x =y"="=xz=e }

ya da

(.‘-.; y:X=y"=(0) =e )
seklinde tanimlanir. (I’m’ n) seklinde ifade edilen bu polyhedral grubun sonlu olmasi
icin gerek ve yeter sart

11 1

k=|mn(—+—+——1} =mn+nl+Im-Imn
Il m n

olmak iizere K>0 olmasidir. Bu grubun mertebesi 2mn/k g,

Tamm 1.1.1.32. L,mMn>1jcin <I’m’n> binary polyhedral grubu

<x,y,z:x':y”‘:z”:xyz>

seklinde tanimlanir.

1=2 jken <I’m’ n> binary polyhedral grubu 2-gerenli olarak takdim edilebilir. <2’ m, n>

binary polyhedral grup

11



<y,z :ym=z”=(yz)2>

seklinde 2- gerenli olarak takdim edilir. <I M, n> binary polyhedral grubun sonlu olmasi

icin gerek ve yeter sart

k:Imn[}+1+E—1)=mn+n|+|m—1
Il m n

olmak iizere K>0 olmasidir. Bu grubun mertebesi 4IMN/K dir [507.

Tanmm 1.1.1.33. H kiimesi bostan farkli bir kiime olsun. Bu kiimede toplama "+ " ve

carpma - ikili iglemleri ile beraber olusturulan yeni cebirsel yap1 (H.+0) e

gosterilir.

Tanim 1.1.1.34. (H.+) cebirsel yapisi verilsin. Eger VX% Y,Z€H j¢in

y+)=(y)+(xz)

H,+-)

esitligi saglantyorsa ( cebirsel yapisinda soldan dagilma 6zelligi vardir denilir.

Eger VX ¥,Z€H jcin

(x+1)z=0z)+(1z)

esitligi saglaniyorsa ( H,+, ) cebirsel yapisinda sagdan dagilma 6zelligi vardir denilir.

Tanim 1.1.1.35. (H'+") cebirsel yapisi verilsin. Eger asagidaki sartlar saglanirsa

( H '+") cebirsel yapisma " + " ve " " ikili islemlerine gore halka denir.
i. (H,+) degismeli bir gruptur.

ii. (H,") nin birlesme 6zelligi vardur.

jii. (H.*) da soldan ve sagdan dagilma 6zelligi vardir.

Ornek 1.1.1.6. (Z'+") cebirsel ifadesi yukarida verilen sartlar1 sagladigindan bu

cebirsel yap1 bir halkadir. Bu halkaya tamsayilar halkasi denir.

12



Tamm 1.1.1.36. (H*°) halkasi verilsin. H halkasmmn "+ islemine gore etkisiz

elemanmna halkanmn sifiri denir ve On ile gosterilir. H halkasmin "." islemine gore

etkisiz elemani varsa bu elemana halkanin birim eleman denir ve ' ile gosterilir.

Halkanin birim elemani varsa birimli halka denir

Tanim 1.1.1.37. H bir halka ve 0, #aeH olmak iizere ab=0 esitligini saglayan bir

b#0y elemani varsa a ya sol sifir bolen b ye de sag sifir bolen denir. Hem sol bolen

hem de sag bolen elemana sifir bolen denir.

Tanim 1.1.1.38. Birim eleman1 olan degismeli ve sifir bdlensiz bir halkaya tamlik

bolgesi denir.

Ornek 1.1.1.7. (Z’+") tamsayilar halkas1 bir tamlik bolgesi iken (Ze""" )halka51 bir
tamlik bolgesi degildir.

Tanim 1.1.1.39. ( H ’+") birim elemani olan degismeli bir halkanin sifirdan farkl her

elemanin ikinci isleme (¢arpma islemine) gore bir tersi varsa bu halkaya cisim denir.

Genel olarak bir cisim F ile gosterilir.

Ornek 1.1.1.8. (R’+") reel sayilar halkasi bir cisim iken (Z’+") tamsayilar halkasi

bir cisim degildir.

1.1.2. Matris Cebiri

Tanim 1.1.2.1. A:[ail}, NxN tipindeki kare matris olmak iizere 1821853, 8y,

elemanlarmna bu matrisin esas kdsegen elemanlar1 denir. Bir kare matriste esas kdsegen

elemanlar1 disindaki tiim elemanlar eger sifir ise bu matrise kosegen matris denir.

13



Ornek 1.1.2.1.

10 0 O
0 22 0
0O 0 68

matrisi 3%3 tipinde bir kosegen matristir.

Tanim 1.1.2.2. A:[aill NxnN tipindeki kare matris igin A nmn asal kdsegen

elemanlarinin iistiinde kalan tiim elemanlar sifir ise alt {iggensel matris, asal kosegen

elemanlarinin altinda kalan tiim elemanlar sifir ise iist liggensel matris denir.

Ornek 1.1.2.2.

o o o N
o o o«
w
=

matrisi alt iggensel matrise 6rnektir.

4 0 0 O
-1 1 0 O
-3 6 2 0

1 5 -5 -3

matrisi iist tiggensel matrise drnektir.

Tanim 1.1.2.3.  A,NXN tipinde bir kare matris ve |, NXN tipinde birim matris olsun.

AB=BA=1I

14



esitligini saglayan NxNtipinde bir B matrisi varsa, bu B matrisine A matrisinin tersi

denir ve  B=A" ile gosterilir. Tersi olan matrislere de ters gevrilebilir ( diizgiin ya da

tekil olmayan ) matrisler denir.

Tanim 1.1.2.4. A:[aii] NN tipinde bir kare matris olmak iizere, A" matrisinin

determinanti1

det A= sgn [J]t[ﬂ.".:- a
i1

el

= Z sen (O) @y, a0, Ay

e,
seklinde tanimlanir. Burada O, S, simetrik grubunda bir permiitasyon olmak {izere
sgn(o)

[+l; o ciftise
sgn(0):=1 _
l—L O fekise

seklinde tanimlanan igaret fonksiyonudur.

Teorem 1.1.2.1. A ve B ayni tipli karesel matrisler olmak tizere

det( AB )=(det A)(detB)
esitligi gegerlidir. Bu teoremin bir sonucu olarak Vn e Z igin
det(A")=(det A)"

olur.

Teorem 1.1.2.2. Bir A kare matrisinin ters cevrilebilir matris olmasi i¢in gerek ve

yeter sart det A#0 olmasidur.

Teorem 1.1.2.3. Kare matrisin tersi varsa tektir.

Tanim 1.1.2.5. Bir F cismi iizerinde tanimlanan Mxm tipli A matrisinin permanenti
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seklinde tanimlanir. Burada O S, simetrik grubunda tanimli bir permiitasyonu

gostermektedir.

Tanm 1.1.2.6. M Z[miil satir vektorleri Xi» X1+ X, olacak sekildeki UXV boyutlu

matris olsun. Eger M matrisinin k -inci siitununda tam olarak iki eleman: sifirdan

farkli, diger elemanlarmin hepsi sifir ise, M matrisine k -inci siituna gore contraction
(biiziisme) uygulanabilir denir. M matrisinde, M %0, My #0 ye 1# ] olmak iizere k
-inci siituna gore contraction uygulandigmi farzedelim. O zaman, A matrisinde i-inci
My G + M r

satir i vektorii ile yer degistirerek ve J -inci satir ile K -inci siitun silinerek

(u—l)x(v—l) boyutlu Mizx matrisi elde edilir. Bu ydnteme M matrisinin i -inci ve j-

inci satirlartyla k-inci siitununa gore contraction olarak adlandirilir. Eger M matrisi

mg#0 My #0 e 1# ] olmak iizere k-inci satra gore contraction yapilabilirse

_ T .
My _[Miizk} ile belirtilen matrise M matrisinin i-inci ve J -inci siitunlariyla k -inci

satirma gore contraction’t denir [52].

Lemma 1.1.2.1: n>1 icin M matrisi elemanlar1 negatif olmayan tamsayilardan

olusan matris ve N matrisi de, M matrisinden contraction ile elde edilen matris olmak

tizere PerM = perN (dijr [52].

Tanim 1.1.2.7. A:[aii] NN tipinde bir kare matris olsun. Bu matrisin i elemaninmn

bulundugu satir ve siitunun silinmesi ile elde edilen (n _1)X(n _1) tipindeki yeni matris

Mij matrisi olsun. Mij matrisinin determinantma i elemanimnim minérii denir. Ayrica

A :(‘1)i+j

degerine ise i elemanmin escarpani( kofaktorii) denir [51].

M,
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Teorem 1.1.2.4. N2 glmak iizere A, NxN tipinde bir kare matris olsun, iI=L2,...,n

ve j:1,2,...,n 1(;11'1

det(A):|A|:aﬂA1+a12A2+"'+ainAn:a1jA.Lj +a, A+t ay Ay

dir. Determinantin bu sekilde hesaplanmasina Laplace ag¢ilimi denir [51].

&; @ . &, X
Aol B o | %
Tanim 1.1.2.8. 8y &y - @n] Nxn tipinde bir kare matris ve X, ] nx1

tipinde bir matris olmak {izere AX=AX denklemini saglayan A degerine A

matrisinin 6zdegeri ya da karakteristik degeri denir.

AX=AX denkleminden (AX=AX)=0=(A-A1)X=0 denklemi elde edilir.
Dolayisiyla bu durum bir lineer homojen denklem sistemini olusturur. Bu sistemde
sifirdan farkli bir ¢oziimiin olabilmesi i¢in katsayilar matrisinin determinant1 sifir

olmalidrr. Yani

ail_j’ a, a,
a a,—1 .. a
|A—/1I |: :21 22. | .2n _0
a, a,, T

esitligi elde edilmelidir. |A—241| degeri 4 ye gore N dereceden bir polinomdur ve bu

polinoma A matrisinin karakteristik polinomu denir. |A=21[=0 denklemine de A

matrisinin karakteristik denklemi denir. Karakteristik polinom

P(1)=A"+aA" " +..+a,
seklinde bir polinomdur [51].

Tanim 1.1.2.9. A bir kare matrisve A A matrisinin bir 6z degeri olmak iizere
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AX=1X

denklemini saglayan X vektoriine A Ozdegerine karsilik gelen 6z vektor ya da

karakteristik vektor denir.

Tamm 1.1.2.10. Ave B nxn tipinde kare matrisler olsun.
B=P AP

olacak sekilde tekil olmayan bir P matrisi varsa A ve B matrislerine benzer matrisler

denir.

Tamm 1.1.2.11. A, nxn tipinde bir kare matris ve D bir késegen matris olsun. A

matrisi D matrisine benzer ise, bu durumda A matrisine kosegenlestirilebilir denir.

Yani
P*AP=D

olacak sekilde tersi olan (tekil olmayan) bir P matrisi mevcutsa, A matrisine

kosegenlestirilebilir matris denir [52].

Teorem 1.1.2.5. Bir NxN boyutlu A kare matrisinin kdsegenlestirilebilir olmas1 igin,

yani D=P7AP olacak sekilde bir D kosegen matrisine benzer olmast icin gerek ve
yeter sart A matrisinin N -tane lineer bagimsiz 6zvektdriiniin olmas1 gerekir. Ayrica bu

durumda D matrisinin kdsegen elemanlar1 A matrisinin dzdegerleridir [52].

Tamm 1.1.2.12. P() =8 +ax+..+8,,X""+X" polinomuna ait Companion matrisi:

__an+1 A B _aO_
1 0 0 0
c=la],.,= o
0 1 0
0 0 1 0|

seklindedir.
Companion matris hakkinda daha detayl bilgilere [53,54] deki calismalarda ulasilabilir.
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Teorem 1.1.2.6. V>V poyutlu K(kl’kz’""kv ) Companion matrisi

Kk & ... K
K(k.k ,jfr]zll '3' = .D
0 -1 0

u - .
seklinde olsun. Bu durumda K (kl’k2""’kv ) matrisinin ! satir ve J- siitunundaki
elemani
foAE Tt (R4t

Y
B9k ko k)= P SR BT R 221
e P svwrrae I @21)

olup buradaki toplam, negatif olmayan tam sayilar iizerinden & +26 +--+Vf, =U—i+]

t1+---+th:(t1+---+tv)!

Wt Lt ifadesi cok katli bir katsayidir. Eger

Vv

kosulunu saglar ve [ b

U=i—]j jse (2.2.1 ) denklemindeki katsayilar 1 olarak tanimlanir [55].

Tanim 1.1.2.13. Va» NXN tipli Vandermonde matrsisi Xi» X2+ X, €R jein

2 n-1

1 5 X ...0X
2 n-1

X X .. X

V. = 1 % 2 2
2 n-1

1 Xn Xn Xn

seklindedir [56].

Tanm 1.1.2.14. X Z[XU’] ve Yz[yii] matrisleri M*N boyutlu matrisler olmak {izere

X *Y Z[Xii Yi ] mn carpimma X ile Y matrislerinin Hadamard ¢arpimi denir.

Tamm 1.1.2.15. Bir M matrisinde PerM =det(M *K) saglayacak sekilde eger NN

tipinde (1-1) olacak sekilde bir K matrisi varsa, bu durumda M matrisi

degistirilebilir(convertible) bir matris olarak adlandirilir. Burada M *K notasyonu ile

Hadamard ¢arpimmu gosterilmektedir.
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1.1.3. Lineer indirgemeli Diziler

Tanm 1.1.3.1. R degismeli ve birimli bir halka ayn1 zamanda G eR(0<i<k—1) gahjt

katsayilar ve NEN olsun. 8@ -8 baglangic degerleri olmak iizere N2 0 icin

Aoy =Cy TO T T 1T (2.3.1)
seklindeki k —basamak homojen lineer indirgemeli bagint1 yardimiyla tanimlanan {a,}

dizisine R halkasmnin elemanlarmnm lineer indirgemeli dizisi denir [57].

7, 0 R, C kiimeleri {izerinde tanimlanan lineer indirgemeli dizilere sirasiyla tamsayzi,

rasyonel, reel ve komleks lineer indirgemeli diziler denir [58].

C¢ , R nin terslenebilir bir elemant ise (2.3.1) de tanimlanan dizi 88.1,84:- geklinde

devam eder [57].

Tamm 1.1.3.2. fOO=X+cX"+..+C,X +¢ seklindeki K- dereceden polinoma
(2.3.1) denkleminde ifade edilen lineer indirgemeli bagintinin karakteristik polinomu

denir.

Eger R halkasmnin sifir béleni yoksa bu durumda herhangi bir {a.} lineer indirgemeli

dizisi minimal uzunluktaki bir indirgeme bagmntisina sahiptir. Minimal uzunluktaki
bagintinin karakteristik polinomu ise {a.} dizisinin minimal polinomudur. Ayni

zamanda bu minimal polinomun derecesine {a.} lineer indirgemeli dizisinin mertebesi

denir.

Tamm 1.1.3.3. R degismeli ve birimli bir halka & eR(0<i<k—1)gapit katsayilar ve

NeN olsun. 88 baslangi¢ degerleri olmak iizere N 2 0 icin

A =C 8y TC8, T FGa, +¢,

bagintis1 ile tanimlanan diziye homojen olmayan lineer indirgemeli dizi denir. Bu dizi

ayni zamanda
E-l

= tl)a,, + E €1 —6 )8, 618, (23.2)
-1

a,.
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seklindeki (k +1)' mertebeden homojen indirgeme bagmtisi ile de tanimlanabilir.

Bu bagmtinin karakteristik polinomu ise
F(xX)=(x*+ax*!, e, yx—c; Nx-1)

seklindedir [59].

8,8 -+, 81 baglangic degerleri ve CorCire-1Ca ler sabitler olmak iizere

a. =6, tea, +. +tc . a, .,

seklindeki K— basamak lineer indirgeme bagintisiyla tanimlanan dizinin elemanlari:

[ 1 0 . 0 i
1 .. 0
0 0
A= : .
o 0 0 0 1
| &y O O Ciea Tp1
olmak uzere
] L]
n| @ L
Al T = -
'ﬂf 'ﬂ;z—i

seklinde ifade edilen denklem yardimiyla elde edilmistir [60].

Tanim 1.1.3.4. Bir dizi belli bir noktadan sonra bir alt dizinin tekrar1 seklinde

olusuyorsa tekrar eden bu diziye periyodiktir denir. Ornegin; ab.cd.ec.de.. giisi
periyodiktir bir dizidir ve periyodu 3 tiir.

Tanim 1.1.3.5. Bir dizideki ilk k eleman tekrar eden bir alt dizi seklinde ise bu diziye

K periyotlu basit periyodik dizi denir. Ornegin @&D0.C,d,e,a,b,c,d.e,... gizisi basit
periyodik olup periyodu 5 dir.
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1.1.4. Fibonacci Dizisi

Tamim 1.1.4.1. {F} Fibonacci dizisi, baslangic degerleri Fo =0 ve F=1olmak iizere
N0 jcin

I:n+2 = F

n+1

+F,

seklindeki indirgeme bagintisi ile tanimlanir. Fibonacci dizisinin terimleri

0,11,2,35,8,1321,...
olarak elde edilir.

Honsberger, [61]’de Fibonacci sayilarinin

FZ Fl 1 1 n I:n +1 I:n
Q= = . Q=
FE K 10 F F.

esitligini saglayan bir Q matrisi tarafindan iiretebilecegini gdstermistir. Burada Q

matrisi Fibonacci Q -matrisi olarak adlandiriimaktadir.

Tanim 1.1.4.2. Baslangi¢ degerleri F==F%=0 ve R olmak iizere N=0 icin
Frv=Fouat P+ B seklindeki indirgeme bagmtist yardimiyla tanimlanan

diziye k -basamak Fibonacci dizisi denir.

[60] ve [62] calismalarinda kullanilan metotlar yardimiyla Fibonacci ve K -basamak

Fibonacci dizisinin terimleri i¢in sirasiyla asagidaki matris bagmtilar1 verilebilir:

23 BHE

0 1 0 0 0 [0 E¥
U F
0 0 . 0 F®
0 0 0 0 1 |0 | EY,
¢p 6 € . Gy Gol[l] _F;;-l_
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1.1.5. Pell Dizisi

Tamm 1.1.5.1. {P} Pell dizisi, baslangi¢ degerleri R=0ve R =1 olmak iizere N20
icin

P

n+2

=2P

n+1

+P,

seklindeki indirgeme bagintisi ile tanimlanir. Pell dizisinin terimleri
0,1,2,5,12,29,70,169,...

olarak elde edilir.

Pell sayilarinin ¢esitli 6zellikleri Horadam tarafindan [63]’deki ¢alismada verilmistir.

Bicknel ise [64]’de Pell sayilarinin
olmak iizere

seklinde iiretilebilecegini gostermistir.

1.1.6. Jacobsthal Dizisi

Tanim 1.1.6.1. 19n} Jacobsthal dizisi, baslangi¢ degerleri Jo=0, J;=1 lmak iizere
N20 j¢in
Jn+2 =‘]n+1+2‘]n

seklindeki indirgeme bagntisi ile tanimlanir. Jacobsthal dizisinin terimleri

0,11 3,511 21 43,...
olarak elde edilir.

[65] deki ¢alismada, Koken ve Bozkurt Jacobsthal sayilarmin

1 2 n ‘]n+l 2‘]n
F= , F'=
10 J, 23,

seklindeki matris bagintis1 yardimiyla elde edilebilecegini gdstermislerdir.

23



1.1.7. Padovan Dizisi

Tanim 1.1.7.1. {P(M} Padovan dizisi, baslangic degerleri P(0)=P()=P(2)=1 olmak
iizere 23 icin

P(n)=P(n-2)+P(n+3)
seklindeki indirgeme bagintisi ile tanimlanir. Padovan dizisinin terimleri

111,2,2,3,4,5,7,9,12,16,...
olarak elde edilir.

Lien [66]’deki ¢calismasinda Padovan sayilarinin

0
Q=|0
1

R O
o - O

seklinde tanimlanan matris lizerinden

P(n-35) P(n-3) P(n—-4)]
Q"=| P(n—4) P(n-2) P(n-3)
P(n-3) P(n-1) P(n- E}J

olarak ifade edilen bagint1 yardimiyla {iretilebilecegini gostermistir.
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2. MATERYAL VE YONTEM

2.1. Fibonacci, Pell, Jacobsthal ve Padovan Sayilar1 Arasindaki Tliskiler

Tanim  2.1.1. {F_‘](”)} Fibonacci-Jacobsthal, {Pa—F(n)} Padovan-Fibonacci,
{P—F(n)} Pell-Fibonacci, {P_J(“)} Pell-Jacobsthal, {Pa—P(n)} Padovan-Pell ve

{Pa_ J (n)} Padovan-Jacobsthal dizileri sirasiyla asagidaki gibi tanimlanir:

F—J(O): F—J(l): F-J (2):0, F—J(3):1ven20 icin

F—J(n+4):2F—J(n+3)+2F—J(n+2)—3F—J(n+1)—2F—J(n)
(2.1.2)

Pa—F(0)=Pa-F(l)=Pa-F(2)=Pa-F(3)=0 Pa~F(4)=1 6 120 jcip

Pa—F(n+5)=Pa—F(n+4)+2Pa—F(n+3)-2Pa—F(n+1)-Pa—F(n)
(2.1.2)
P-F(0)=P-F(1)=P-F(2)=0 P-F(3)=1

ve N0 jcin
P—F(n+4)=3P—F (n+3)~3P—F (n+1)-P~F(n)
(2.1.3)
P—J(O)ZP—J(I)ZP—J(Z)ZO,P—J(3):1 ve n>0 jcin

P-J(n+4)=3P-J(n+3)+P-J(n+2)-5P-J (n+1)-2P-J(n)
(2.1.4)

Pa—P(0)=Pa—P(1)=Pa—P(2)=Pa-P(3)=0 Pa—P(4)=1 ve N=0 jcin

Pa—P(n+5)=2Pa-P(n+4)+2Pa—-P(n+3)-Pa-P(n+2)-3Pa-P(n+1)-Pa-P(n)
(2.1.5)
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Pa-J(0)=Pa-J(1)=Pa-J(2)=Pa-J(3)=0 Pa-J(4)=1 e 120 i

Pa—J(n+5)=Pa-J(n+4)+3Pa-J(n+3)-3Pa-J(n+1)-2Pa-J (n),dm
(2.1.6)

I1k olarak yukarida tanimlanan diziler ile Fibonacci, Jacobsthal, Padovan ve Pell dizileri

arasindaki bagintilari ele alalim;

Teorem 2.1.1. F—J(n) Pa—F(n) P-F(n) P-J(n) Pa-P(n),, Pa-J(n)
sirasiyla; n-inci  Fibonacci-Jacobsthal, Padovan—Fibonacci, Pell-Fibonacci, Pell-

Jacobsthal, Padovan—Pell ve Padovan—Jacobsthal sayilar1 olmak tizere;

i. n>0 i¢in
F-J(n)=J,-F,
ii. n>0 i¢in
Pa-F(n+2)=F,,—Pa,

iii. n>0 icin

P-F(n+1)=P,-F,
iv. n>1 i¢cin

P-3(n)=3(R-1)

i=0 ,
v. n=0 i¢in
4Pa—P(n+5)+Pa—P(n+4)=P,,—P ,—Pa,

ve
vi. n>0 ic¢in

2Pa—-J(n+2)+Pa-J(n+1)=J,,—Pa

n

esitlikleri gecerlidir[43].
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Ispat: 1. durumunu disiinelim. N {zerinden tiimevarim yontemi yardimiyla

ispatlanacaktir. F-J (O) =J-F =0 oldugu agiktir. Farzedelim ki denklem n>0

icin gegerlidir. O zaman denklemin n+1 i¢ginde saglandig1 gdsterilmelidir. Buna gore

Fibonacci—Jacobsthal dizisinin karakteristik denklemi

p(x)=x"—2x>-2x* +3x+2

Oldugundan dolay1 p(X)z fl(X) fS(X) seklindedir. Burada fl(x) ve fS(X) strastyla;

Fibonacci ve Jacobsthal dizilerinin karakteristik polinomlaridir. Dolayisiyla n>0 igin

I:n+4 = 2Fn+3 + 2Fn+2 _3Fn+l - 2Fn
ve
‘Jn+4 — 2‘]n+3 + 2‘]n+2 _3‘]n+l _2Jn

bagintilar1 elde edilir. Boylelikle basit bir hesaplama ile ispat tamamlanir [42].

Diger denklemlerin ispatlar1 yukaridaki ispata benzer sekilde yapilabilir.

2.1.1. Urete¢ Matrisleri

(2.1.1)-(2.1.6) indirgeme bagintilar1 yardimiyla, {F—J(n)} Fibonacci—Jacobsthal,
{Pa—F(n)} Padovan—Fibonacci, {P—F(n)} Pell-Fibonacci, {P—J(n)} Pell-

Jacobsthal, {Pa—P(n)} Padovan—Pell ve {Pa—J(n)} Padovan—Jacobsthal dizileri

icin Companion Matris formundaki lirete¢c matrisleri:

2 2 -3 -2
Mlzlooo
01 0 0
001 0]
1 20 -2 -1
100 0 O
M,=/0 1 0 0 O
001 0 0
000 1 0
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30 -3 -1
M3:1000
01 0 O
00 1 0]
3 1 -5 -2
|v|4:1000
01 0 O
00 1 0]
2 2 -1 -3 -1
10 0 0 O
M,={0 1 0 0 O
00 1 0 O
00 0 1 0]
ve
1 3 0 -3 =2
100 0 O
M,=|0 1 0 0 O
001 0 O
0 00 1 O]

olarak belirlenmis olup, burada Ml, Mz, Ms, M4, Ms ve Ms matrisleri sirasiyla;

Fibonacci—Jacobsthal, Padovan—Fibonacci, Pell-Fibonacci, Pell-Jacobsthal, Padovan—

Pell ve Padovan-Jacobsthal olarak adlandirilmaktadir. F-J (n) Pa—F (n) ,

P-F(n), P-J(n) Pa-P(n) , Pa-J(n)

e . X
dizilerinin gosterimleri sirastyla; *n,

Xa , X3 , i X: ve X olarak ifade edilsin. Simdi uygun N degerleri i¢in iireteg
matrislerin ¢arpimsal mertebelerini ele alacagiz. N iizerinden tiimevarim yontemi
uygulanarak, Fibonacci-Jacobsthal, Padovan—Fibonacci, Pell-Fibonacci, Pell-
Jacobsthal, Padovan—Pell ve Padovan-Jacobsthal matrislerinin n-inci kuvvetleri
sirasiyla;

n>3 igin,
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F, X, +[_1)H |
F _-’ﬁ%&: +[_1JHJ
F _-".11:+1 +[_1JH
E,; _-".%z + [_IJM

n>5 igin,

n=1 igin,

n=1 igin,

n=6 igin,

Pa _,+ -".':HJ

5
P Ay 3 +J‘.va+1
5
P (L + K

5
P Ay 3 +J‘.vz—1

ve N>4 i¢in,
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e NsX. Pamx, o Pag-xls 2|
"‘:- -"".:-4 "":-: Pa_ -x.. Pa,— "".:-4 2%,

(M ]n = -"f.:-: -"f.:-; _-"f.:-: Pa, , _-"f:-: FPa,, _-"f.:-; _2-".:-1 :
Y Yo% Pa-xl Pa-xl, 2
|, xa-x, Pa-x) Pa-x, —2x

seklinde elde edilmistir.

2.1.2. Binet Formiilleri

Bu bolimde, Fibonacci—Jacobsthal, Padovan—Fibonacci, Pell-Fibonacci, Pell-
Jacobsthal, Padovan—Pell ve Padovan—Jacobsthal sayilar1 igin Binet formiilleri elde
edilecektir.

Ml, Mz, M, M4, Ms ve Ms matrislerinin 0zdegerlerinin birbirinden farkl oldugu

B 20 20 4@ (2) 2(2) 2(2) 2(2) 4(2) (3) 203 203 4,03
pilinmektedir. VA AL} {AP.40.40.49.40) (4040 40,40}
{21(4)’/1;4)'23(4)’/154)}, {/11(5)’/12(5),23(5)’%5)’%5)} Ve {11(6)’12(6)’1‘56)1156)’25(6)}

strasiyla A
M, M; M, M e Mg matrislerinin Ozdegerlerinin kiimesi olmak tizere kxKk tipli

(u) . .. ..
V' Vandermonde matrisi (burada U=13,4 icin k=4 ve U=256 icin k=5)
asagidaki gibi ifade edilsin:

[f:q'“']i_l [%“I].::-l [,:v.-_ili-]':“l

AR

Wk(u'l) matrisi
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oy wi) S
olmak tizere Vk(UI ) matrisinl, Vi matrisinin J-1nc1 suitununun W™ siitun matrisleriyle

yerdegistirilmesiyle elde edilen KxK tipli bir matris olarak tanimlayalim.

Teorem 2..2.1. (M) =[ M7 ] o 1mak iizere

o _ dety®h)

m,”
T detv
olarak elde edilir. Burada u=1 ve n>3 icin k=4; u=2 ve n>5 icin k=4; u=34

ve N>1i¢cin K=4; u=5ve n>6 i¢in k=5 ve u=6 ve n>4 igin k=5 dir [43].

Ispat: M., matrisini g6z Oniine alalim. M, matrisinin 0zdegerleri birbirinden farklh

oldugundan dolay1 M, matrisi kosegenlestirilebilirdir

0, =diag (1,4, 27, 27,27

olmak iizere M. matrisi kosegenlestirilebilir

2) _y\y(2
oldugundan dolay1 szs( ) _Vs( )Dz esitligi yazilabilir.

@) MV =
Ayrica M. matrisi tersinir matris oldugundan dolay1 (V5 ) MVs D, esitligi elde

edilir ki; bu durum da M, matrisinin D> matrisine benzer bir matris oldugunu

gostermektedir. Benzer matrislerin kuvvetleri de benzer oldugundan Nn=>=5 igin

(M2)"Vd? =V#(D,)" ifadesine ulasilir ki, bu durumda
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oy BHEI—E

3 (A) 2 (2] 3 (2] S (A7 )+ =(22)

n+5—1

AY 3 (2] (A2 ml =(42)

(A2 2 (A ) +mE A 4w = (42)

2.8 02

.11 [f‘i»:;: ]3 +??’i':;y![ /1.4: ]: +m:",4 Ay +mli’! — [/14: ]-”3—5—-"

:J,.*z- ,-F.,';:' 5+m-__12,.='z- f:-«: :+m-__1..>z-f;v-;1-+m-__1;.>z-: }%J
i 5 i4 5 L5 5

seklinde ifade edilen bir lineer denklem sistemi elde edilebilmektedir. Bu sekilde
yazilabilen lineer denklem sisteminin ¢oziimiinden her 1, j =1,2,3,4,5 icin

on _ detv /)
M = etV
detV,

sonucu elde edilir [42].

Diger matrisler i¢in ispatlar yukaridaki ispata benzer sekilde yapilabilir.

Somug2.12.1, F=J(n) Pa-F(n) P-F(n) P-J(n) Pa-P(n),, Pa-J(n)

sirastyla n-inci Fibonacci—Jacobsthal, Padovan-Fibonacci, Pell-Fibonacci, Pell-

Jacobsthal, Padovan—Pell ve Padovan—Jacobsthal sayilar1 olmak tizere;

F-J(n)= _detV4(1'4'1)
n>3 icin detV,”
(251) (2.45)
Pa—F(n)= detV; = detV; .
n>5 icin detV; detV;
P_F(n)= detV,**? _ detv,**"
n>1 igin detV,” detV,?
p_3(n)= detv,**) _ detv,**"
n>1 icin detv,)  2.detv®
pa—p(n)= JEVa T __detvi™
N6 igin detV,” detV.”

ve
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(6,52) (6,4,5)
Pa—J(n)= detV; = detV; .
n>4 icin detV; 2-detV;

esitlikleri elde edilir [42].

2.1.3. Ustel Temsiller

{F=3(n)}, {Pa-F(m)} {P-F(n)} {P-3(n)} {Pa-P(n)} o {Pa-J(n)}

dizilerinin lirete¢ fonksiyonlar1 sirasiyla

X3

9,()= 1-2x—2¢ +3¢+2x* , (052x+2x* -3¢ —2x" <1)

X4

9 (X) = lox—2C+2x +x¢, (0=x+2x* —2x" —x° <1

3

X
9:(x) | (Os3x—3x3—x4<l)’

T 1-3x+ 33+

3

X
9,(x)= 1-3x— ¢ +50 +2x* , (0<3x+x* =5x* —2x* <1
4

X
X) = 2 3 4 5
gs (X) 12X 2@ + X 13X + X, (0<2x+2x* —x* =3x* - x° <1)

ve

4

X
9 (X) = 1-x-3x+3x" +2x¢ , (0Sx+3x* =3x" —2x° <1)

olarak elde edilir.

gl(x), QZ(X), g3(x), g4(x), gS(X) ve gG(X) fonksiyonlar1 g6z Oniine almarak

asagidaki Teorem ile Fibonacci—Jacobsthal, Padovan—Fibonacci, Pell-Fibonacci, Pell-

Jacobsthal, Padovan—Pell ve Padovan—Jacobsthal sayilari igin tistel temsiller verilmistir:

Teorem 2.1.3.1. {F_J(”)}, {Pa—F(n)}' {P—F(n)}' {P—J(n)}’ {Pa—P(n)} ve

{ Pa—J (n)} dizilerinin tistel temsilleri sirasiyla agsagidaki gibidir:
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g5 (x)=x"exp iXTI(HSx 3x° 2x4)iJ

ve

=X exp[iXT(1+3x—3x3 —2x4)ij
i=1

[42].

Ispat: {P -F (n)} dizisini g6z Oniine alalim. Buna gore

In g3x( ) —In (1 3x+3x3 +x)

ve
In(1—3x+3x3er“):—[x(3—3x2 —x3)+%x2(3—3x2 —x3)2 +---+%xi (3—3x2 —x3)i]

oldugundan basit bir hesaplama ile sonug elde edilir [42].

Diger diziler i¢in de benzer bir yontem kullanilarak ispat yapilabilir.

2.1.4. Toplamsal Temsiller

Simdi Fibonacci—Jacobsthal, Padovan-Fibonacci, Pell-Fibonacci, Pell-Jacobsthal,

Padovan—Pell ve Padovan—Jacobsthal sayilarinin igin toplamsal temsillerini ele alalim:
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Sonug 2.1.4.1. F=3(n)
sirasiyla n-inci  Fibonacci—Jacobsthal, Padovan—Fibonacci, Pell-Fibonacci,

Jacobsthal, Padovan—Pell ve Padovan—Jacobsthal sayilari olmak {iizere;
i. N>3 i¢in,

[t +8+8+t

|
F—J[}?:I= Z 4}[2:—1-_[_3]13[_2]14

, SR A A
Helytsety N 1=%2=%3:=%4

seklinde olup burada bu toplamlar, negatif olmayan tam sayilar iizerinde sirasiyla
t+2t,+3t, +4t, =n-3
sartini saglar.
ii. N>5 i¢in,
(8 +8+E+1,+8, .

Y
Pa-F(n)= ¥ ot Jz’=[—23’4[—135

P

|
(5880405

ve

t+t +t+1, +1
tl!tz’ta’tzwts

k()| T b

(t1,t2,t3,t4,t5) t1 +t2 +t3 +t4 +t5

Jo -2y

seklinde olup burada bu toplamlar , negatif olmayan tam sayilar iizerinde sirasiyla

t +2t, +3t; +4t, +5t, =n—-4
ve
t +2t, +3t, +4t, +5t. =n+1
sartlarini saglar.
iii. n>1 i¢in,
t+t +t +1,
tl’tZ’t3’t4

-F(n)= Y |

(tt2:83.t4)

Jo

ve

D R e e (R I E)

(tl,tz,ts,t4)t'1+t2 +t3+t4 t1’t2't3't4

seklinde olup burada bu toplamlar, negatif olmayan tam sayilar lizerinde sirasiyla
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t+2t,+3t, +4t, =n-3
ve
t +2t, +3t, +4t, =n+1

sartlarini saglar.

iv. n>1 icin,
+t, +1t, +t
SURIN S T RE
(it t3.ty) bt b
ve
1-'r [t +8,+t,+1 H
P-J(n)=—| Z _ 4[3[ iz] —2]r4
' 2 i Fat PN A S AN oW N A

{ A

seklinde olup burada bu toplamlar, negatif olmayan tam sayilar iizerinde sirasiyla

t,+2t,+3t, +4t, =n-3

ve

t +2t, +3t, +4t, =n+1

sartlarini saglar.

V. N=>6 icin,
+0 +t+1, +t .
Pa—P(n)= > [tl AR 5}2“? (-5 (-3)*
(Lt b3t ts) 'L S A
ve
( f. (t+t,+t,+0,+20 ) . : - r \
PamPl)= 2 |27 (7 (3)'

'a_"1=f:=f3=f4f- r+r +r +r +r N T S0 S S |

seklinde olup burada bu toplamlar, negatif olmayan tam sayilar {izerinde sirasiyla
t, +2t, +3t, +4t, +5t. =n—-4
ve

t, +2t, +3t, +4t, +5t, =n+1
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sartlarini saglar.
vi. >4 igin,

L+t +t+1, +1
t1’t2't3’t4't5

Ve

SSIOR |

(213t 15)

Jo a5 -2

Pa—-J (n) = _1 Z t; (tl +hL G+, +t5j3t2 (_3)t4 (_2)’[5
(tl,tz,ts,t4,5)t1+t2+t3+t4+t5 t,t, 4,1,k

seklinde olup burada bu toplamlar, negatif olmayan tam sayilar iizerinde sirasiyla

t+2t, +3t,+4t, +5t, =n-4
ve

t +2t, +3t, +4t, +5t. =n+1
sartlarini saglar [42].

Ispat: iv. durumu gz 6niine alalim. Teorem 2.2.15 de ilk durum i¢in i=4, J=1 ve

ikinci durum ic¢in i=3, J=4% olarak secilirse 0 zaman (M4) matrisinden sonug

dogrudan goriiliir [42].

{F=3(n)} {Pa=F(n)} {P=F(n)} {Pa=P(n)j e {Pa=3(N)} diileri icin de

benzer yontemler kullanilarak ispat yapilabilir.

2.1.5. Permanental Temsiller

Bu boliimde, Fibonacci—Jacobsthal, Padovan—Fibonacci, Pell-Fibonacci, Pell-
Jacobsthal, Padovan-Pell ve Padovan-Jacobsthal dizilerinin companion matris
formundaki iirete¢ matrisleri goz 6niinde bulundurularak asagidaki gibi siiper-kdsegen
matrisler tanimlanacak ve bu matrislerin permanent degerleri lizerinden de dizilerin
permanental temsilleri verilecektir. Ayrica bu  permanent degerleri kullanilarak
Fibonacci—Jacobsthal, Padovan—Fibonacci, Pell-Fibonacci, Pell-Jacobsthal, Padovan—

Pell ve Padovan—Jacobsthal sayilar1 arasindaki ¢esitli bagintilar elde edilecektir.
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@) = kW
Mxm boyutlu K (m)_[k"J , J J ],

(5) = k® (6) = K®
K™ (m) = [ki'j } ve K (m)= [k"i } siiper-kdsegen matrisler sirasiyla

m=4 i¢in,
egeri=tvej=tisel=t=m
2 ve
i=tvej=rt+lisel=r=m—1,
=11 egeri=rf+lvej=rise 1Z2r<m—1, .
-2 egeri=tvej=f+3i1sel=r=m-3,
—3 egeri=tvej=f+2isel=r=m-12,

0 diger durumlarda.
m=5 igin,
2 egeri=tvej=t+lisel=r=m-l,
egeri=fvej=rtisel=r=m
1 ve
ﬁ:;: i=t+lvej=risel<r<m-—1,
—1 egeri=tvej=r+4disel=r=m—4,
—2 egeri=tvej=t+3isel=r=m-3,
|0 diger durumlarda.
m=4 igin,
3 egeri=tvej=trisel=r=m,
1 egeri=f+lvej=risel<r<m-1
k;j.-'=~—l egeri=rvej=t+3isel=<r<m-3, .
=3 egeri=fvej=f+2isel<r<m-12,
| 0 diger durumlarda.
m=5 igin,
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3 egeri=rtvej=rtisel=r=m,
egeri=fvej=rt+lisel=r=m-1

1 ve

Y = i=t+lvej=tise l<r<m—1,

—2 egeri=tvej=t+3isel=r=m-3,

—5 egeri=tvej=rf+2isel=r=m-12,

| 0 diger durumlarda.
m=5 igin,
egeri=tvej=tisel<t<m
2 ve
i=tvej=t+lisel<t<m-1,
1 egeri=t+lvej=tisel<t<m-1,
k) = egeri=tvej=t+2isel<t<m-2
-1 ve
i=tvej=t+4isel<t<m-4,
-3 egeri=tvej=t+3isel<t<m-3,
0 diger durumlarda. ’
ve m>5 icin,

3 egeri=tvej=t+lisel<t<m-1,
egeri=tvej=tisel<t<m

1 ve

k® = i=t+lvej=tisel<t<m-1,

-2 egeri=tvej=t+4isel<t<m-4,

-3 egeri=tvej=t+3isel<t<m-3,

0 diger durumlarda.

olarak tanimlanmis olsun. Bu matrislerin permanentleri ile dizilerin terimleri arasindaki

ilisk1 asagidaki teorem ile verilir;

Teorem 2.1.5.1.i. m>4 ve k=134 icin

perk™ (m)=x¢
ve
ii. m>5 ve k=256 icin

perk ™ (m) = x

m+4
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esitlikleri elde edilir [42].

. . . ®)
Ispat: i. durumundaki k =3 oldugu alt durum goz Oniine alinsin. Buna gore K™ (m)

3

= Xmi3 esitliginin saglandigimi

®)
matrisini géz Online alalim ve m=4 i¢in perkK (m)
kabul edelim. Bu durumda, bu denklemin m+1 i¢in de dogru oldugu ve saglandigi

©) ..
gosterilmelidir. K (m) matrisinde birinci satira gore Laplace agilimi uygulanarak

(3)
perK (m) genisletilir ise

perkK® (m+1) = 3perkK® (m)—3perk® (m—2) - perk® (m-3)
esitligi elde edilir. Buradan

perk® (m)=x

m+3 ,

m+1

perk® (m-2) =
ve

perk® (m-3)=x3

3) — 3
oldugundan dolay1 perk (m+1)— Xmia  sonucuna ulasilir. Boylelikle ispat

tamamlanmis olur [42].

Diger matrisler i¢in de benzer yontemler kullanilarak ispat yapilabilir.

mem boyuty L (M=[E] L m=[19] Om=[ig] 1 m)=[iy]

(5) =116 (6) =10
L (m) B [Ii'j } ve L (m) B [Ii'i ] matrisleri sirastyla

m =4 igin,
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m=>5 igin,

f!l.l =1

-2
=3
0

.

.

m=4 igin,

m=5 igin,

1=

2

-1
-2
0

3

-1
-3
0

.

3

.

-2
-5
0

egeri=tvej=tisel=r=m-2
ve
i=tvej=t+lisel=r=m-2,
egeri=fvej=tisem—l1=<t=m
ve
i=t+lvej=rise l=¢f<m-—3,
egeri=fvej=r+3isel=r<m-3,
egeri=fvej=r+2isel=r=m-3,
diger dorumlarda

egeri=tvej=t+lisel=r=m—2,
egeri=tvej=tisel=¢t=m
ve
i=t+lwvej=risel=r=m—4
egeri=tvej=t+4isel=r=m—4,
egeri=tvej=f+31sel=fr=m-3,
diger durumlarda.

egeri=fvej=rise l<fr<m-2,
egeri=tvej=tfisem—1=r<=m
ve
i=t+lwvej=risel=r=m-—3,
egeri=fvej=f+3isel=r=m-3,
egeri=fvej=ft+2isel=r=m-2,
diger durumlarda

egeri=fvej=rise 1<f<m-2

egeri =rfvej=risem—-1<fr<m,

i=tvej=r+lisel=r=m-21

ve

i=t+lvej=risel=r=m-3,
egeri=fvej=f+3isel=r=m-3,
egeri=fvej=r+2isel=r=m-—12,

diger durumlarda.
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m=5 igin,

ve m=>5 igin,

olarak tanimlanmis olsun.

egeri =fvej=rfisel<f<m-12
ve
i=tvej=r+lisel=r=m-12,
egeri=tvej=tisem—1<t=m
ve
i=t+lvej=risel=r=m-3,
egeri=ftvej=f+2isel=r=m-3
ve
i=tvej=t+disel=r=m—4,
eger i=fvej=f+3ise l=r=m-3,
diger durumlarda.

egeri=rftvej=rtr+lisel=r=m-2,
egeri=rvej=tisel=r=m
ve
i=t+lvej=risel=r=m—4,
egeri=rvej=r+4dise l=r=m—4,
egeri=fvej=f+3ise l=r=m-3,
diger durumlarda.

Teorem 2.1.5.2.i. m>4 ve k=134 icin

ii. m>5 ve K=2,6 icin

ve

ii. m>5 icin

esitlikleri elde edilir [42].

m-+1

perl™ (m) = x

k
m-+1

perL") (m) = x

5
m+2

perL’® (m) = x
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. .. . (6) L
Ispat: ii. durumundaki k =6 alt durumu goz 6niine alinsin. Buna gore L™ (m) matrisini

(6) _ 6
g0z Oniine alalim ve m>5 i¢in perL (m) = Xni1 esitliginin saglandigini kabul edelim.

Bu durumda, denklemin m+1 i¢in de dogru oldugu ve saglandigi gosterilmelidir.

(6) (6)
L (m) matrisinin birinci satirmma gore Laplace ac¢iliminit uygulayarak perL (m)

genisletilir ise

perl'® (m+1) = perL’® (m)+3perL’® (m-1)—3per'® (m—3)—2per'® (m-4)
esitligi elde edilir. Buradan

6
m+1 ,

perl'® (m) = x

perl® (m-1)=x¢

perL® (m=3)=x,
ve

perL® (m-4)=x ,

(6) — 6
oldugundan dolay1 perL (m+1)—xm+2 sonucuna ulasilir. Boylelikle ispat

tamamlanmis olur [42].

Diger matrisler i¢cinde benzer yontemler kullanilarak ispat yapilabilir.

mxm boyutia N (M) =[] N (m)=[n | N (m)=[nf | N (m)=]nf} |

(5) —| n® (6) = n®
, N (m)_[ni,i} ve N (m)_[ni'i} matrislerinin sirasiyla
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(m—2)-inci

)
1 1 0 0]
‘;h.,r'-“'[m): 1 .m>4 ve f=14 1cin,
0 L% (m-1)
_I:I -
[ (m—3)-inci ]
\
1 1 0 0 0
. 1 s
N (m)= 0 . m>5 ve k=26 1gin,
: Ek'(m—l)
0
_0 -
(m—3)-inci ]
\)
1 1 0 0 0
N (m)= (l) . m>4 1¢1n
: L¥ (m-1)
0
-0 —
ve
(m—2)-inci
\)
1 1 0 0
gu,rj'[mj: 1 ., m=5 1

seklinde tanimlandigini kabul edelim. Bu matrislerin permanentleri ile dizilerin

terimlerinin sonlu toplamlar1 arasindaki iliski asagidaki teorem ile verilir;
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Teorem 2.1.5.3.i. m>4 ve k=134 icin

ii. m>5 ve K=2,6 icin

ve

iii. m>5 icin

esitlikleri elde edilir [42].

N(G)(m)

Ispat: ii. durumundaki k =6 oldugu alt durumu géz 6niine almsn. matrisinin

perN‘® (m)

birinci satirma gore Laplace a¢ilimini uygulayarak genisletilir ise

parN'® (m)=paN'® (m—1)+ paL® (m-1)

esitligi elde edilir. Boylece elde edilen bulgular géz oniinde bulundurularak m iizerinden

tiimevarim yontemiyle sonug kolaylikla goriilebilir [43].

Diger matrisler i¢in de benzer yontemler kullanilarak ispat yapilabilir.

2.1.6.Diziler ile Bazi Matrislerin Determinantlar1 Arasindaki Iliskiler

L (k) (k)
Bu boliimde, asagidaki gibi tamimlanan R matrisi ile K (m)’ L (m) ve

N(")(m)
matrislerinin Hadamard c¢arpimlar1 lizerinden tanimlanan belirli matrislerin determinant
degerleri ile Fibonacci—Jacobsthal, Padovan—Fibonacci, Pell-Fibonacci, Pell-
Jacobsthal, Padovan—Pell ve Padovan—Jacobsthal sayilar1 arasindaki iliski ele

almacaktir.
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MXxM boyutlu Hadamard matrisi

1 1 1 1 1
-1 1 1 1 1
a| 1M 1 1
R G O

1 11 -1 1

(k) — (k)
seklinde tanimlansin. Bu durumda K=12,...,6 icin perk™ (m) _det(K (m)e R)’

perL)(m) = det (L' (m)-R) o perN® (m) = det(N" ()< R) oiiiuteri eide eciir.

Bu esitlikler yardimiyla da asagidaki sonuglara ulasilir:

Sonug 2.1.6.1.i. m>4 ve k=13,4 icin

det(K(m)oR) =22,

ve m>5 ve K=2,56 icin

det [K‘[m1 cR] =_xji_4.

ii. m>4 ve K=13,4 icin

det(L* (m)e R)=x,,.

m>5 ve kK=2,6 icin
det[.E'E'[m]cR]:.xji_l
ve m>5 i¢in

det( L% (m)eR )=

m+1"

iii. m>4 ve k=134 icin

det( N (m)e R) =T

=y
=

m>5 ve K=2,6 icin

46



dEt[N‘k'[?}?]ﬁR]=

504=

ve m>5 i¢in

.‘
|
—

det( N7 (m)=R|=

vk

esitlikleri elde edilir [42].

ispat: k=126 icin perk ) (m) = det(K" (m)<R), perl" (m)=det(L") (m)-R)
(k) - (k) .

ve perN (m) - det(N (m) R) oldugundan dolay1r Teorem 2.1.5.1, Teorem 2.1.5.2

ve Teorem 2.1.5.3 iizerinden sonuglar kolaylikla goriilmektedir [42].

2.1.7. Sonlu Toplamlar

Bu bolimde, Fibonacci-Jacobsthal, Padovan-Fibonacci, Pell-Fibonacci, Pell-
Jacobsthal, Padovan—Pell ve Padovan—Jacobsthal sayilarinin sonlu toplamlar1 tizerinde

durulacaktur.

n>1 igin

(k=1,34)
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R
1

O O O O K
<
=

_ | (k=258)

. o . . k k . .. .
n iizerinden tiimevarim yontemi kullanilarak To ve T. matrislerinin n.kuvvetleri

asagidaki gibi elde edilir:

2.2. M Modiiliine Gore Fibonacci-Jacobsthal Dizisi

{F—J(n)} Finonacci- Jacobsthal dizisi bir M modiiliine gore indirgenirse,

(F—J" (n)}={F=J"(0), F=J"(1)...F=J"(i)....}

seklinde indirgemeli dizi elde edilir. Burada F—3J"(1)=F—J3"(i)(modm) g
Onemle belirtmek gerekir ki buradaki indirgeme bagintis1 (3.1.1)’deki bagmnti ile

aymdir.

m
Teorem 2.2.1. Her M pozitif tamsayis1 i¢in {F -J (n)} dizisi periyodiktir [44].
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ispat: S :{(50’31'32’33)‘03% < m_]_}

7.

oldugunu kabul edelim. Bu durumda [S|=m" dir.

m elemanlarmm M* tane farkl 4-tiplisi mevcut oldugundan, bu 4-tiplilerden en bir
AF =3 g o
tanesi dizisinde iki kez ortaya ¢ikar. Bundan dolay1 bu 4-tipliyi takip eden
. (=M g
alt dizi tekrarlanir. Bu tekrardan dolay1 dizisinin periyodik bir dizi oldugu
goriilmektedir.

{F -J (n)} dizisinin periyodu Ne- (M) ile gosterilir.

Elemanlar1 tamsayilar olan D:[d”] matrisini gdz oniine alalm. D matrisinin her

D (modm)

elemaninin MOAM ye gére indirgenmesi seklinde ifade edilir. Yani

D(modm)=|d.( modm| |
dir. <D>m kiimesi

(D), ={D'(modm)| i >0}

seklinde tanimlanmis olsun. Bu kiime, (MdetD)=1 glqusunda bir devirli grup

(m,detD) =1 oldugunda ise bir yar1 gruptur. 9€tM; =2 glqusundan (My),, kiimesi,

M tek oldugunda bir devirli grup ¢ift oldugunda ise bir yar1 grup olur.

(M,) matrisi g6z Oniinde bulundurularak M ’nin  tek oldugu durumda

he_, (m) = ‘<M1>m

olacagi kolaylikla goriilmektedir [43].

Teorem 3.2.2. T bir asal say1 ve (M), kiimesi de bir devirli grup olsun. Eger i

‘<M1>r :KMl)ri

olacak sekilde en biiyiik pozitif tamsay1 ise bu durumda her j i

=rfmy),

tamsayist i¢in ‘<M1>rj esitligi yazilir [43].
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Mlh”(rm) =1 (mod r'**)

Ispat:t pozitif ~ bir  tamsayr  olsun. oldugundan

he_, (rt+1)

M, =1 (mod r‘)

t t+1
esitligini yazabiliriz. Bu da bize "5 (") nin Mews () yi

h

M, = +(mr

t
boldiginii gosterir.  Ayrica i )esitligi tizerinde binom agilimi

uygulayarak

Mth{'t)'r =( [ Jr(mij(t).r‘))r :Zr:(gj(mij(‘) .rt)q =1 ( mod r”l)

q
ifadesini elde ederiz ki bu da bize Me- (rt)'r sayisinin he_, (rm) tarafindan
boliinebildigini gostermektedir. Dolayisiyla he_, (rm) = N, (rt) ya da he_, (rm) =
he_, (rt)'r olmaldir. Buradaki 2. esitlik ancak ve ancak I tarafindan boliinemeyen
bir mij(t) elemanmin varligi durumunda gegerlidir. hes (rt) # Ne_y (rm) oldugundan

(t+1)
dolayr T tarafindan boliinmeyen bir Mj" " elemaninin varligi s6z konusudur. Bu da

t+1 t+2 R
bize k- (r ) % Ne_y (r )oldugunu gosterir. | {izerinde tiimevarim yontemi

kullanilarak ispat tamamlanacaktir [43].

A
m=]1](r)"
Teorem 2.2.3. T ’ler farkh asal sayilar olmak tizere 421 icin i=1 ( )

h | (m) — |Cm[hFJ ((G)al),h,:,J ((rz)az),,,,,h,:fJ ((rﬂ)m )} dir [43].
{F—J“w(n»

oluyor ise

Ispat: dizisinin periyot uzunlugu e ((r,) ) oldugundan bu dizi

sadece Uhe (( ) I), (u eN ) uzunlugundaki bloklarda tekrar eder. Ayrica he_, (m)

SaYISI{F_J (n)} dizisinin periyot uzunlugu oldugundan, tiim 1 degerleri igin

F—a0" n} .
{ ( ) dizisi N (m)terimde bir tekrar eder. Boylece tiim ! degerleri igin
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ai _ 70
hF—J(m)periyodu “'hF—J((ri) )seklinde olup bu sayi {F ) (n)}dizisinin

periyodunu vermektedir. Dolayisiyla

ifadesi elde edilmektedir [43].

2.3. Sonlu Gruplarda Fibonacci-Jacobsthal Dizisi

Tanim 2.3.1. (XO’Xi""’Xifl)EX geren Jj— lisi icin Fibonacci-Jacobsthal orhbiti,
baslangi¢ degerleri

‘,FJ{D:I:A'FFJ[I]:.\:::FJ[2]=.1;=FJ{3]=.1'4 j=4
JFI(0)=x. FJ (1) = x. FJ(2)=x.FJ(3)=e  j=3
lFJ(D]z_rkFJ[l]=_1:1=FJ[2]=2 FI(3)=e =2

olmak tizere N> 0i¢in

FJ(n+4)=(FJ(n))" (FI(n+1))"(FI(n+2)) (FI(n+3))

seklindeki indirgeme bagntisi ile tanimlanir.

(XO’Xl""’XJ'—l) seklindeki bir geren J-lisi icin Fibonacci-Jacobsthal orbiti

FJ(G:Xo’Mv--ﬂXJ—l) ile gosterilir [44].

Teorem 2.3.1. Sonlu bir G grubunun FJ(G:XD%---'XH) Fibonacci-Jacobsthal orbiti
periyodiktir [44].

Ispat: G grubunun mertebesi N olsun. G nin elemanlarinin N* tane farkli 4 -lisi

mevcut oldugundan bu 4 -liilerden en az bir tanesi (62 x.-+x11) dizisinde iki kez

ortaya ¢ikar. Dolayisiyla bu 4 -lityii takip eden alt dizi tekrarlanir. Bu tekrardan dolay1

FJ
da  (®%a--%1) Fibonacci-Jacobsthal orbitinin periyodik oldugu sdylenebilir.
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FJ LFJ

(6% x.+x11)  Fibonacci-Jacobsthal orbitinin periyodunun uzunlugu (G0 )

ile gosterilir [44].
F(r.2)

Sonu¢ 2.3.1. Bazi Fibonacci gruplarindaki Fibonacci-Jacobsthal orbitlerinin

periyot uzunluklar1 asagidaki tabloda verilmistir:

r=5 LEJ gy 0pmp =12
r=7 LFJ, =24
=9 LFJ,_ =24
r=11 LFJ, =60
r=13 IFJ, . =24
r=15 LFJ], . . =48

[45].

Ornek 2.3.1. F(15’2) Fibonacci grubunun Fibonacci-Jacobsthal orbitinin periyot
F(15,2)

uzunlugunu ele alalim. Fibonacci grubundaki bagntilar kullanarak asagidaki

dizi elde edilir:

52



FJ(0)=a,FJ(1)=b,FI(2)=e,FJ(3)=¢,FJ(4)=b" FJ(5)=b",
)

FJ(6 :b‘G,FJ(7):b7,FJ (8)=b"* FJ(9)=b" FJ(10)=b",
FJ(11)=b*,FJ (12) =b",FJ (13)=b",FJ (14)=b"®*,FJ (15) =b"®,
FJ(16)=b’,FJ(17)=b*,FJ(18)=b",FJ(19)=b"*,FJ(20)=e,
FJ(21)=b"% FJ(22)=b",FJ(23)=b" |:J(24)=b2 FJ(25)=b",
FJ(26)=b™ FJ(27)= b”,FJ(28):b FJ(29)=e,FJ(30)=b",
FJ(31)=b",FJ(32)=b% FJ(33)=b~* FJ(34)=b* FJ(35)=b°,
FJ(36)=b"",FJ(37)=b°,FJ(38)=b™ FJ(39)=b"* FJ(40)=b"",
FJ(41)=b™ FJ(42)=b*,FJ(43)=b""*,FJ (44)=b8,FJ (45)=b12,

FJ (46)=b° FJ(47)=b" FJ(48)=b°,FJ(49)=b

(50)=b

FJ
FJ(51)=b™ FJ(52)=b",FJ(53)=b® FJ(54)=b",FJ(55)=b
FJ(56) =b*,FJ(57)=b® FJ(58) =b",FJ (59)=e¢, FJ( 0)= 10,
FJ(61)=b™, FJ(62)=b"?,FJ(63)=b*,FJ(64)=b" FJ(65)=b",
FJ(66)=b",FJ(67)=b"FJ(68)=b" FJ(69)=b" FJ(70)=b",
FJ(71)=b", FJ(72)=b? FJ(73)=b",FJ(74)=b™".
FJ(23)=FJ(71)=b* FJ(24)=FJ(72)=b* FJ(25)=FJ(73)=b" ve
FJ (26) =H (74) =b™ oldugundan FJ(G:XU’Xi""'lel) Fibonacci-Jacobsthal orbitinin

periyot uzunlugu 48’dir [44].

2.3.1 Polyhedral Gruplarin Fibonacci-Jacobsthal Uzunluklar:

Bu boliimde 3-gerenli durumda (M2,2)  (2,2,n) ve (2,n,2) Polyhedral gruplarinin

Fibonacci-Jacobsthal orbitlerinin periyot uzunluklari {izerinde durulacaktir.

Sonu¢ 2.3.1.1. Baz1t N degerleri igin (n,2,2) ve (2,2,n) polyhedral gruplarmin

Fibonacci-Jacobsthal orbitlerinin periyot uzunluklar1 asagidaki tabloda verilmistir:
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n=3 LFJ ., =6 |LFJ . =6

n=4 LFJ .,y .,=6 LFJ =6

=3 LFJ ., ..=T72 | LFJ .. __ =72

}?=6 .I.Fur: 2. --;;,:.=6 ‘I'F”r.-_ i | =18

n=7 LFJ . ., =18 | LFJ . . __ =18

s VXS LU B e

n=8 LFJ ., .. =12 | LFJ =12

n=9 LFJ ., .. =18 | LFJ .. =18

[45].

n=11(R)" (151)

Varsayim 2.3.1.1. Pi’ ler farkh asal sayilar olmak iizere eger i=1

olarak yazilabiliyor ise
LFT 0 apss) =frm[£FJ oo LIRS LLET }

ve

J?'-'}:-"’r.-J,J,.=z-:1'.1'.:- :h‘m|:1'FJ ] T I'FJ ] ako I'FJ ] i _:|

]
1
¥
3
"1z
P
1
v
3
iz

dir [45].

Ornek 2.3.1.1. (5’212) polyhedral grubunun Fibonacci-Jacobsthal orbitinin periyot

uzunlugunu ele alalim. Bu gruptaki bagintilar kullanarak asagidaki dizi elde edilir:
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FI(0)=y,FI(1)=x,FI(2)=2,FI(3)=¢,FI(4)=x*,FI(5)=zx,
J(6)=x*FI(7)=x*FJ(8)=2x*,FJ(9)=x*FJ(10)=
J(11)=2,FJ (12) = x*, FJI (13) = x*, FJ (14) = 2x, FJ (15) = X,
J(16)=x*,FJ (17) = 2,FJ (18) = x, FJ (19) = x*, FJ (20) = 2x
J(21)=e, FJ( 2)=x,FJ(23)=12x",FJ(24)=x*FJ(25)=x,
J(26)=12x*,FJ(27)=x,FJ (28) =¢,FJ (29) = 2x, FJ (30) = X’,
J(31)=x,FJ(32)—zx FJ(33)=x, FJ(34):X,FJ( 5) = 2x
J(36)=x>,FJ(37)=x*FJ(38)=2¢*,FJ(39)=¢,FJ (4 )=
FJ(41)= 2¢,FJ (42) = xFJ(43):x 1(44)=12¢, FJ(45):X3,
FJ(46)=eF (47)_zx FJ (48)=x,FJ(49)=x,FJ(50)=2x’,
J(5l):X4F( 2)=x*,FJ(53)=2zx*,FJ(54)=x*,FJ (55) = x,
J(56)=2,FJ (57)=e,FJ(58) = x,FJ(59):z FJ(GO):X,
J(61)=x*,FJ(62) = 2x*,FJ (63) = x*, FJ (64) = ¢, FJ (65) = z
3(66)=x°,FJ (67) = x,FJ(68)=z,FJ(69):x,FJ(?O):
J(7) =2, FI(72) =x*,FI(73)=x*, FJ (74) = 2, FJ (75) =¥,
3(76)=x?,F3(77) = 2x, FJ (78) =

FJ(3)=FJ(75)=e FI(4)=FJ(76)=x" FJ(5)=FJ(77)=1x,

_ — 4 FJ
FJ (6) =FJ (78) =X esitliklerden anlasilacagi gibi (522)v.x7) Fibonacci-Jacobsthal

orbitinin periyot uzunlugu 72’dir.

Sonug 2.3.1.2. n>3 icin (2,n,2) polyhedral grubunun Fibonacci-Jacobsthal orbitinin
periyot uzunlugu 3’tiir [45].

Ispat 2.3.1.2: (2,n,2) polyhedral grubu
<x,y,z:x2=yn =22=xyz=e>

seklinde takdim edilmektedir. Buradaki bagintilar kullanilarak FJ( 2n2)yxz) dizisi
Y,X,2,6,2Y,2,8,2y,2,6,2y,....

L R, = o
olarak elde edilir ki, bu da bize (2n2yx2) = oldugunu gosterir [45].
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3. ARASTIRMA BULGULARI

Tanim 2.3.1 den agikga anlasilacagi gibi sonlu bir grupta Fibonacci-Jacobsthal orbitinin
periyot uzunlugu secilen geren kiimesine, bu kiime iizerinden belirlenen baglangic
degerlerine ve dizi elamanlarmnin birbirleriyle iligkisi bakimmdan da grubun farkli
takdimlerine gore degiskenlik gdstermektedir. Tez g¢alismamizda, grup elemanlari
yardimiyla tanimlanan Fibonacci-Jacobsthal dizileri tizerine kurgulanan konseptin farkli
grup aileleri {lizerine genisletilmesi suretiyle daha iyi anlasilmasi amaglanmistir. Bu

boliimde, geren sayist goz oniinde bulundurularak 1yi bilinen bazi gruplarin Fibonacci-

Jacobsthal orbitleri iizerinde durulacaktir. Bu anlamda, 2-gerenli gruplardan Ds

SD

dihedral, Q» genellestirilmis quaternion ve "2 semidihedral gruplarinin 3-gerenli

gruplardan ise <n’2’2> : <2’n’2> ve <2’ 2, n> binary polyhedral gruplarinin Fibonacci-

Jacobsthal orbitlerinin periyotlarinin uzunlar1 belirlenecektir.

3.1. N22 jcin 2N mertebeli,
<x, y:x"=y? =(xy)2=e>
seklinde takdim edilen D, dihedral grubu ele alalim. Farkli N degerleri ve yukaridaki

takdime gore (X’ y) geren ¢ifti igin dihedral grubun Fibonacci-Jacobsthal orbitlerinin

periyot uzunluklar1 asagidaki gibidir:

n LFJ

OO WD
D O O O o

LFJ =6

Tablodan da anlasilacagi gibi her N22 igin (Dnix.y) dir. Bu sonuca agagidaki

diziden ulasilmaktadir:
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FJ(0)=x,FI(1)=y,FJ(2)=¢e,FI(3)=¢, FI(4)=yx*,FI(5)=¢, FI(6)=e, FJ(7)=yx*, FJ(8)=¢,
FJ(9)=e, FJ(10)=yx%, FI (1) =e, ...

Her N22 jcin dizinin terimleri arasmnda

FJ(2)=FJ(8)=e, FJ(3)=FJ(9)=¢, FJ(4)=FJ(10) = yx> ve FJ(5)=FJ(11)=e

seklinde bir bagmti oldugundan D. dihedral grubun Fibonacci-Jacobsthal orbitinin

periyot uzunlugu 6 dir.
3.2. 123 icin 2" mertebeli,

b 1.3 -1 -1
Q, ={_1'= y:x° =e 3y =x" ¥ xy=x }

seklinde takdim edilen Q. genellestirilmis quaternion grubu géz 6niinde bulunduralim.

Farkli N degerleri ve (X’y) geren ciftine gore Q. grubunun Fibonacci-Jacobsthal

orbitlerinin periyot uzunluklar1 asagidaki tabloda verilmistir:

n LFJ

2" :x,y)

OO WD
D O O O O

FJ
Dolayisiyla her n=3 icin (@22 dizinin periyot uzunlugu 6 olur. Bu sonuca

asagidaki diziden ulagilmaktadir:

FJ(0)=x,FI()=y,FJ(2)=e,FI(3)=e, FI(4)=yx*,FI(5)=¢, F1(6) = y*, FJ(7) = yx*, FJ(8) =e,
FJ(9)=¢, FJ(10)=yx%, FI (1) =, ...
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Her N=3 icin Q. genellestirilmis quaternion grubun Fibonacci-Jacobsthal orbitinin

terimleri arasinda
FJ(2)=FJ(8)=e,FI(3)=FJ(9)=¢,FJ(4)=FJ(10)=yx* ye FJ(5)=FJ(11)=e

LFJ =6
seklinde bir bagmt1 oldugundan (CRER) olarak elde edilmektedir.

3.3. M24 olmak iizere 2" mertebeli semidihedral grup

SD,, =<x, yixt =y2=e,yxy =x*2" >

seklinde takdim edilmektedir. Farkli M degerleri ve (X’y) geren ¢iftine gore SD,,

grubunun Fibonacci-Jacobsthal orbitlerinin periyot uzunluklar1 asagidaki gibidir:

m LFJ
(sozm :x,y)
2 6
3 6
Z 6
5 6
6 6

Tablodan anlagilacagi gibi her M24 icin SD,»  semidihedral grubun Fibonacci-

Jacobsthal orbitlerinin periyot uzunluklari 6 olarak karsimiza ¢ikmaktadir. Bu sonuca

genel anlamda asagidaki dizi lizerinden ulagilmaktadir:

FI(0)=x,FI()=y,FJ(2)=¢e,FI(3)=¢, FJ(4)=yx*,FJ(5)=¢, FJ(6) =&, FI(7)=yx*, FJ(8) =¢,
FJ(9)=e, FJ(10)= yx*, F(1])=e, ..

Bu dizinin terimleri arasinda
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FJ(2)=FJ(8)=e, FJ(3)=FJ(9)=¢, FJ(4)=FJ(10) = yx’ e FJ(5)=FJ(11)=e

LFJ =6
olacak sekilde bir bagint1 oldugundan her M=4 j¢cin (5D, %) sonucuna ulasilir.

3.4. Simdi (X’ y,z) geren 3-iicliisiine gore N=3 igin (n,2,2> : (2,n,2> ve <2’2’ n)
binary polyhedral gruplarinin Fibonacci-Jacobsthal orbitleri lizerinde duralim. 4an
mertebeli <n’2’2> , <2’n’2> ve <2’ 2, n> binary polyhedral gruplari sirasiyla

(n,2,2)

<x,y,z:x”:y2:22:xyz>

(2,n,2>:<x,y,z:x2:y” :zzzxyz>

ve
(2,2,n>:<x, y,2:x =y’ =17" :xyz>
seklinde takdim edilmektedir.

Farkli N degerleri igin (n,2,2> binary polyhedral grubunun Fibonacci-Jacobsthal

orbitlerinin periyot uzunluklar1 asagidaki gibidir:

=]

LFJ(<n’

N

2)1%,y,2)

O |01 | AW (N
| O O O O

Tablodaki  periyot degerlerine asagidaki dizi iizerinden  ulasilmaktadir:

FJ(0)=x,FI() =y, F1(2)=z, FI(3)=e, FI(4)=2,FI(5)=2, FI(6)=2%, FJ(7) =z, F)(8) =z,

FJ(9)=e,FJ(10)=z,FI(1)=2z,....
Buradan

FI(2)=FJ(8)=z, F1(3)=FJ(9)=e, FJ(4)=FJ(10)=z, FI(5)=FJ(11)=z

59



esitlikleri edilir ki, bu da bize her N=3 igin LFJ(<“'22> xyiz) 0 oldugunu gosterir.

(2,n,2> binary polyhedral grubununun Fibonacci-Jacobsthal orbitlerinin periyot

uzunlarini ele alalim. FJ(<2’H,2>1X:V'Z) dizisi

)=x FI(1)=y, FJ(2)=z, FJ(3)=e, FI(4)=y~, FI(5)=xy~,
6)=y " FI(7)=y"°,FI(8)=xy™*,FJ(9)=y" FI(10)=y*,
11)=xy™, FJ(12) = y*,FJ (13) = y"™ FI (14) =xy*" ,FJ (15) = y ™,
): y—483’ FJ (17) _ Xy-1419, FJ (18) _ y-174’ FJ (19) _ yn+1629’

(
(
(
(
(
(
FJ (29 — Xy—142803’ FJ (30) — y145962, FJ (31) — yn+323517’ FJ (32) y826485
( y209148 FJ (34) — y—844179’ FJ (35) — Xy203457, FJ (36) = y—2315802’
FJ (37 — yn 2517363 FJ (38) Xy—11151231’ FJ (39) il y1192680’ FJ (40)
(
(
(
(
(
(
(
(

14569053

y ]
FJ 41 s Xy15337509 FJ ( 2) 255600661 FJ (43) - yn+5027613’ FJ (44) — Xy105650973

)
)
)
)
)
)
FJ(45) =y FJ (46) = y "0 FJ (47) = xy """ FJ (48) = y %,
)=y
)
)
)
)
)

— n+333546861 FJ ( ) —546323511 F\] (51) — y1264186464’ F\] (52) — y1925794173’
F\] 53 — Xy6500731485 F\] (54) 59028954 F\] (55) yn78187697539’ F\] (56) y 13608194031

y
F\] 61 — yn+123759926349, FJ ( ) 214466757981 FJ (63) — y150507090264, F\] (64) — y—134940773475,
FJ 65 — Xy493119244257, FJ ( ) —721402817742 FJ (67) yn—1338997495587’ FJ ( ) —3897562929351

FJ(69) = y oumessemses £y (70) 4832225046349 (71): xy oz J( ) 1020580706542
. . e . LFJ _ < . 9 .

seklindedir. Bu dizi iizerinden elde edilen bazi (@n2)xyz)  degerleri asagidaki
tabloda verilmistir:

n

LFJ(<2,n,2>:x,y,z)

3 6

4 12

5 72
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6 6

7 18
8 24
9 18
10 72
16 48

Ornek 3.4.1 <2’1O’ 2> binary polyhedral grubunun Fibonacci-Jacobsthal orbiti
FI(0)=x, FI(1)=y, FI(2)=2,FI(3)=¢, FI(4)=y, FJ(5)=xy~",

J(6)=y*,FI(7)=Yy",FI(8)=x"y*,FI(9) =y, FJ(10)=y",
J(11)=2,FI(12)=y*,FI (13) =y, FJ (14) = xy’3 FI(15)=y*

J(16) =y, FI(17)=2,FI (18) = y*,FI (19) = y *, FJ (2 ):yx
J(21)=e,FJ(22)=y,FJ(23)=y°x*, FJ (24) = y*,FJ (25) =y *,
J(26)=x"'y’,FI(27)=y ", FI(28)=y°,FJ(29)=xy°,FJ(30)=Yy?,
J(31)=y',FI(32)=xy°,FJ(33)=Yy®,FJ(34)=y,FI(35)=xy"°,
3(36)=y 2 FJ(37)=y’,FJ(38) = yx* FJ(39) e,FJ(40)=y
FJ(41)=yx ', FJ(42)=y° FJ(43)=y*,FJ(44)=x""y* FJ (45) =",
J(46)=y°, FJ(47)=y°x",FJ(48)=y°,FJ(49)=y°,FJ(50)=yx,
J(51)=y* FI(52)=y",FI(53)=y°x ", FJ(54)=y°,FJ(55)=y~,
J(56)=2,FJ(57)=¢,FJ(58)=y°, FJ(59): JFJ(60)=y7?,
J(61)=y" ,F( 2)=x"y* FJ(63)=y* FJ(64)=y° FJ(65)=yx™",
J(66)=y? FJ(67)=y°,FJ(68)=z, FJ( 9)=y*,FJ(70)=y",
3(71) = yx 1, FI(72) = y2, FI (73) = ¥, FJ( 4)=xy*,FI(75)=¢,

FI(76)=y°, FI(77)=xy >, FI(78)=y°,...
seklinde olup burada
FJ (3) =FJ (75) =e FJ (4) =FJ (76) =y° FJ (5) =FJ (77) =xy° ve

6
FI(6)=FJ(78)=y esitlikleri saglandigindan Feanzpera) dizisinin periyot

uzunlugu 72 olarak elde edilir.

61



Son olarak farkli N degerleri igin <2’2’ n) binary polyhedral grubunun Fibonacci-

Jacobsthal orbiti tizerinde duracagiz. Bu gruptaki Fibonacci-Jacobsthal orbiti asagidaki

gibidir:

FI(0)=x, F(1)=y, FJ(2)=z, FI(3)=¢, FJ(4)=x""z, F(5)=2"
F3(6)=2"%,F3 (7)=x"2%,F3 (8) =27 F3 (8)=2",F (10)=x"2
(11) 2* Fl (12) " FJ (13) X7 FJ (14) 27®, FJ (15) 7%,
(16) —1 =327 F\] (17): —659’ FJ (18) n -232 F\] (19) 1 2813
(20) " FJ (21) 7™ FJ (22):X7129829 FJ (23): ™ F
J (24):Zn 7064’ FJ (25) l 16863 FJ (26) —30751 FJ (27) —51392
F\] (28): X—lz—161551, F\] (29) — 2_10531, FJ (30): Zn+194616, FJ (31) X—12103835
, F\] (32) > 2420825, F\] (33): 2278864, F\] (34): X_121892445, FJ (35): Z_704747,
FJ (36) — n—3087736 FJ (37): X71274774793’ F\] (38): 274061231, FJ (39): Z2550240
F\] (40) —l 2272677 FJ (41): 17284173 FJ (42): n+35040088 F\] (43): X_12112021679,
(44) 18227657 F\] (45) 103233296 FJ (46) 12090577 F\] (47) Z—261149563
(48) Zn —249054552 FJ (49) 1214784245 F\] (50): 285339585 F\] ( 1) Z1840141952
(52) X 1 2538069725 FJ (53) 2824265149 F\] (54) n 442574728 FJ (55) X—1210981734471
(56) 2—9357944903 F\] (57) —23036695920 F\] (58) —x 2—54692696631 F\] (59) Z—17999557131
(60) Zn+51826863304 FJ (61):)( 12—33111476125 FJ (62): 2157652398001 FJ (63): 195823320352
64 X—l 777493687189 F\] (65) 81310553299 F\] (66):Zn—1065395863656 FJ (67) X 1Z 1124272506017

F3(64)
(68) 2—1886860067415 F\] (69) —414911437264 F-J (70): X—lz —7858607242687 FJ (71) — Z483O757327717
FI(72)=

72 n+14679969102056

z

LFJ

Asagidaki tabloda bazi N degerleri i¢in elde edilen (22n)xy.2) yzunluklari

verilmistir:

n LFJ

((2,2,n):x,y,2)
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Ornek 3.4.2

FJ

18

3
4 12
5 72
6 18
7 18
8 24
9 18

10 72

16 48

((225)xy.2) dizisi
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FJ(0)=x, FI(1)=y, FI(2)=z, F () e, FJ(4)=x"z, F)(5)=2"
FJ(6)=z"FJ(7)=x"2",FJ(8)=2",FJ(9)=2", FJ(lO):xlz,
FJ(11)=2% FJ(12)=27, FJ(13)=x""7" FJ(14) °, F(15)=27,
FJ(16)=x"2%,FJ (17)=2,FJ (18)=2° FJ (19)=x"2*, F1 (20)=2’,
FJ(21)=e,FJ(22)=x"7"FJ(23)=2,F](24)=1, F\](25):xlz3
FJ(26)=2",FJ(27)=2"%FJ(28)=x""z", FJ(29)=z",FJ(30)=z,
FJ(31)=x, FJ(32)=2", FJ(33)=2",FJ (34) X, FJ(35)=2",
FJ(36)=2"", FJ(37)=x"z" FJ(38)=z"FJ(39)=e, FJ(40)=x"z",
FJ(41)=2°, F3(42)=2°, FJ (43)=x"7",FJ (44)=2" FJ(45)=12",
FJ(46)=x"2",FJ(47)=2"FJ (48)=2° FJ (49)= xFJ(50)=
FJ (51)=2* FJ(52)=x,FJ (53)=2",FJ (54)=2",FJ (55)=x"
FJ(56)=2" FJ(57)=¢,FJ(58)=x"z"FJ(59)=2" FJ(60)=

FJ (61)=x,FJ (62)=z,FJ (63)=2",FJ(64)=x"2",FJ (65)=z
FJ(66): ,FJ(67)=x"2",FJ(68)=2",FJ(69)=z"FJ(70)=x"'2",

FJ(71)=2°,FJ(72)=2,F3 (73)=x"2,FJ (74)=2,FJ (75)=e
FJ(76)=x,FJ (77)=2" FJ (78)=2", F3 (79)=x "'z, FJ (80)=2",
FJ )=x"77,

(
(
(81)=z"*,FJ (8 ) xFJ(83) 2°,FJ(84)=2"FJ(85)=x
(86)= ?,FJ(88)=x"z",FJ(89)=2,FJ(90)=2",
FJ(91)=x"z*,F] (92):2 ,FJ(93)=e,FJ(94)=x"2°,FJ (95)=1,
FJ(96)=2,FJ(97)=x"2",FJ(98)=z",FJ (99)=2",FJ (100)=x""z’
( 3)=x
(
(

FJ 101)22_1,FJ (102)=Z,FJ (10 X'z FJ (104) 2°,FJ (105) ",
FJ(106)=x"z%, FJ (107)=2*,FJ (108)=2"*, FJ (109)=x"'z, FJ (110)=z
FJ 111):e FJ (112) 122 F) (113)

seklindedir.

Dolayisiyla
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FJ(39)=FJ(111)=e FJ(40)=FJ(112)=x"z* , FJ(41)=FJ(113)=7°

(2,2,5)

bu esitliklerden anlasilacagi gibi binary polyhedral grubunun Fibonacci-

Jacobsthal orbitinin peiryot uzunlugu 72 dir.
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4. SONUCLAR VE TARTISMA

Bu tezde grup elemanlar1 yardimiyla yeniden tanimlanan Fibonacci—Jacobsthal dizisinin
daha iyi anlasilabilmesi adma geren sayis1 goz oniinde bulundurularak iyi bilinen baz1

gruplarin Fibonacci-Jacobsthal orbitleri tizerinde durulmustur. Bu anlamda, 2-gerenli

SDzm semidihedral

(2,2,n)

gruplardan  Dn dihedral, Q. genellestirilmis quaternion ve

gruplarinin ve 3-gerenli gruplardan ise (n,2,2>, (2,n,2> ve binary
polyhedral gruplarinin Fibonacci-Jacobsthal orbitlerinin  periyotlarinin  uzunlari

belirlenmistir.
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