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ÖZCAN KILIÇ 

 

Kafkas Üniversitesi 

Fen Bilimleri Enstitüsü 

Matematik Anabilim Dalı 
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Fibonacci–Jacobsthal, Padovan–Fibonacci, Pell–Fibonacci, Pell–Jacobsthal, Padovan–

Pell ve Padovan–Jacobsthal dizileri [42]‟deki çalışmada tanımlanmıştır. Tanımlanan bu 

dizilerin üreteç matrisleri, binet formülleri, üstel temsilleri, toplamsal temsilleri, 

permanental temsilleri, determinantal temsilleri ve sonlu toplamları gibi bazı özellikler 

verilmiştir.  

[43] ve [44] çalışmalarında ise Fibonacci-Jacobsthal dizisi gruplara taşınmıştır. [43] „de 

bu dizinin devirli gruplardaki karşılığı ele alınmış iken [45]‟te ise bu dizi iki ve daha 

fazla gerene(üretece) sahip gruplara genişletilmiş ve Fibonacci-Jacobsthal orbiti 

kavramı tanımlanmıştır. 

Bu tez çalışmasında, grup elemanları yardımıyla tanımlanan Fibonacci-Jacobsthal dizisi 

üzerine kurgulanan yapının farklı grup aileleri üzerine genişletilmesi suretiyle daha iyi 

anlaşılması amaçlanmıştır. Bu kapsamda geren sayısı göz önünde bulundurularak iyi 

bilinen bazı grupların Fibonacci-Jacobsthal orbitleri üzerinde durulmuştur. Bu 

bağlamda, 2-gerenli gruplardan nD dihedral, 2nQ genelleştirilmiş quaternion ve 2mSD
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semidihedral gruplarının ve 3-gerenli gruplardan ise , 2,2n , 2, , 2n  ve 2,2,n  

binary polyhedral gruplarının Fibonacci-Jacobsthal orbitlerinin periyot uzunlukları 

belirlenmiştir. 

 

Anahtar Kelimeler: Fibonacci–Jacobsthal, Padovan–Fibonacci, Pell–Fibonacci, Pell–

Jacobsthal, Padovan–Pell ve Padovan–Jacobsthal dizileri, Grup, Periyot, Dizi, Matris, 

Temsil, Hadamard çarpımı.  

 

2023, 72 sayfa 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



III 

ABSTRAT 

(M. Sc. Thesis) 

 

BAZI SONLU GRUPLARDA FİBONACCİ- JACOBSTHAL DİZİLERİNİN 

PERİYOTLARI 

 

ÖZCAN KILIÇ 

Kafkas University 

Graduate School of Natural and Applied Sciences 

Department of Mathematics 

Supervisor: Prof. Dr. Ömür Deveci 

 

Fibonacci–Jacobsthal, Padovan–Fibonacci, Pell–Fibonacci, Pell–Jacobsthal, Padovan–

Pell and Padovan–Jacobsthal sequences are defined in [42]. Some properties such as 

generator matrices, binet formulas, exponential representations, additive 

representations, permanental representations, determinantal representations and finite 

sums of these defined sequences are given.  

In [43] and [44], the Fibonacci-Jacobsthal sequence was moved to groups. While in [43] 

the equivalent of this sequence in cyclic groups was discussed, in [45] this sequence 

was extended to groups with two or more generators and the concept of Fibonacci-

Jacobsthal orbit was defined. 

In this thesis, it is aimed to better understand the structure built on the Fibonacci-

Jacobsthal sequences defined with the help of group elements by expanding it on 

different group of families. In this context, the Fibonacci-Jacobsthal orbits of some 

well-known groups are emphasized, taking into account the number of strains. In this 

way, the lengths of the periods of the Fibonacci-Jacobsthal orbits of the nD dihedral, 

2nQ generalizeduaternion and 2mSD semidihedral groups from the 2-contained groups, 

and the Fibonacci-Jacobsthal orbits of the binary polyhedral groups from the 3-

registered groups 
, 2,2n

, 
2, , 2n

 ve 
2,2,n

were determined. 
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1.GİRİŞ  

Disiplinler arası ilişkilerde indirgemeli dizilere sıkça rastlanmaktadır [1,2,3,4,5,6,7,8]. 

Cebirsel anlamda indirgemeli diziler ile ilgili olarak üreteç matrisi, üreteç fonksiyonu, 

binet formülü, permanentel, determinantel ve toplamsal temsilleri gibi çeşitli özellikleri 

birçok bilim insanı tarafından çalışılmış ve bu çalışmalar halen devam etmektedir. Bu 

çalışmalardan güncel olanlara örnek olarak [9,10,11,12,13,14,15,16,17,18,19,20,21] 

çalışmaları verilebilir. Bu çalışmaların birçoğunda elde edilen bulgular indirgemeli 

dizilerin karakteristik polinomları üzerinden tanımlanan üreteç matrisleri ve bu 

matrislerin çeşitli genişlemeleri kullanılarak üretilen matrisler yardımıyla elde 

edilmiştir. 

İndirgemeli diziler, cebirsel yapılara ilk olarak Wall‟ın [22] deki çalışması ile 

taşınmıştır. Wall bu çalışmasında devirli gruplarda klasik Fibonacci dizilerini 

incelemiştir. Wilcox [23] deki çalışmasıyla teoriyi abelyen (değişmeli) gruplara 

genişletmiştir. Gruplarda Fibonacci dizileri üzerine oluşturulan bu yapı, daha sonra 

yapılan çalışmalarla genişletilerek çeşitli indirgemeli dizilerin farklı grup ailelerinde de 

incelenmiştir [24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41]. 

Çalışmanın ikinci bölümü olan materyal ve yöntemde bulgular kısmına temel teşkil 

edecek bilgiler verilmiştir.  Bu anlamda bu bölümde; 

Deveci [42] deki çalışmasında, Fibonacci-Jacobsthal, Padovan-Fibonacci, Pell-

Fibonacci, Pell-Jacobsthal, Padovan-Pell ve Padovan-Jacobsthal dizilerini tanımlamış 

ve tanımlanan bu dizilerin çeşitli özelliklerini vermiştir. 

Deveci ve Aküzüm [43] deki çalışmasında m modülüne göre Fibonacci- Jacobsthal 

dizisini incelemiş 

Deveci ve Aküzüm [44] deki çalışmasında Fibonacci- Jacobsthal dizisini sonlu 

gruplardan olan fibonacci grubunda incelemiş. 
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Ayrıca Deveci ve Yılmaz ise [45] deki çalışmasında Fibonacci- Jacobsthal dizisinde 

polyhedral grubunu incelemiş. 

Son olarak Fibonacci- Jacobsthal dizisi; Dihedral, Semidihedral, Quaternion ve Binary 

3 gerenli gruplarında incelenmiş ve bahsi geçen bu gruplarda farklı değerler için periyot 

uzunlukları hesaplanmış ayrıca bu değerler için genel formlar belirlenmiştir. Bu 

anlamda tezimize temel teşkil eden bu tezin bulguları 3. bölümde ayrıntılı olarak 

verilmiştir. 
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1.1. Kuramsal Temeller 

1.1.1. Cebirsel Yapılar  

Tanım 1.1.1.1. G  boştan farklı bir küme olsun. G G  den G  ye tanımlı 

 

dönüşümüne G  kümesi üzerinde bir ikili işlem ve ( , )G   ifadesine ise bir cebirsel yapı 

denir. 

 

Örnek 1.1.1.1.  reel sayılar kümesi olmak üzere reel elemanlı 2 2 matrislerinden 

oluşan 
2 2

kümesinde bilinen matris toplamı bir ikili işlem oluşturur [46]. 

 

Tanım 1.1.1.2. G  boştan farklı bir küme olsun. Bu küme üzerinde tanımlanan  " "  ikili 

işlemi aşağıdaki koşulları sağlıyor ise  ,G   cebirsel yapısına grup denir. 

1G ) ,a b G   için    a b c a b c     ( Birleşme Özelliği ) 

            2G ) a G   için a e e a a    olacak şekilde bir eG vardır. (Birim 

elemanın varlığı) 

            3G ) e , G  nin birim eleman olmak üzere  a G  için 

a a a a e      

olacak şekilde bir 'a G  vardır. (Ters elemanın varlığı)  

 

Örnek 1.1.1.2. “Rasyonel sayılar kümesi  ve reel sayılar kümesi toplama işlemine 

göre bir gruptur.” 

 

Tanım 1.1.1.3. Tanım 2.1.2 de verilen grup şartlarından sadece 1G  sağlanırsa bu cebirsel 

yapıya yarı grup denir. 

 

Örnek 1.1.1.3. 


pozitif tamsayılar kümesi olmak üzere ( , )   cebirsel yapısı bir yarı 

gruptur.  
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Tanım 1.1.1.4. Tanım 2.1.2 de verilen grup şartlarından 1G  ve 2G  sağlanırsa yani ( , )G   

yarı grubunun birim elemanı varsa bu cebirsel yapıya monoid denir. 

  

Tanım 1.1.1.5. “ ( , )G   cebirsel yapısı bir grup olsun. ,a b G   için  

a b b a    

şartı sağlanıyorsa bu gruba değişmeli (abelyen) grup denir.” 

 

Teorem 1.1.1.1. “ ( , )G   bir grup olsun. Buna göre 

i. G  nin birim elemanı tektir. 

ii. Her elemanın tersi tektir. 

iii. a  G  için a a e   eşitliği varsa a e dir. 

iv. G grubunda soldan ve sağdan kısaltma kuralları geçerlidir. Yani , ,a b c G  için 

a b a c    ise b c  ( soldan kısaltma kuralı ) 

b a c a    ise b c  ( sağdan kısaltma kuralı ) 

v. ,a b G  için a x b  ve y a b   denklemlerinin G  deki işlemi tektir. 

vi. a G  için   
1

1a a


   dır [47].” 

 

Teorem 1.1.1.2. ( , )G   cebirsel yapısı bir grup olsun. ,a b G   için  

 

dir. 

 

Tanım 1.1.1.6. ( , )G   bir grup ve n  de bir pozitif tamsayı olmak üzere G nin bir g

elemanının .n  kuvveti  

ng g g g     

şeklinde gösterilir.  
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Teorem 1.1.1.3. ( , )G   bir grup ve e  de grubun birim elemanı olsun. a G  ve 

,x y   için aşağıdaki kurallar geçerlidir: 

i. ,x y x y y xa a a a a     

ii.     ,
y x

x xy ya a a   

iii.    
1

1 ,
x

x xa a a


    

iv.  ,xe e  

v.  
0 .a e            

 

Tanım 1.1.1.7. “ ( , )G   cebirsel yapısı bir grup olsun. Eğer G  kümesi sonlu ise bu gruba 

sonlu grup değilse sonsuz grup denir. G kümesinin eleman sayısına ise grubun 

mertebesi denir ve G  veya  o G  sembollerinden birisi ile gösterilir.” 

 

Tanım 1.1.1.8. “G  bir grup ve e  de G  nin birim elemanı olsun. G  nin herhangi bir g  

elemanı için 
ng e  eşitliğini sağlayan bir n pozitif tam sayısı varsa g elemanına 

sonlu mertebedendir denir.” Bu şartı yerine getiren en küçük pozitif n tam sayısına ise 

g nin mertebesi denir ve g  veya  o g  sembollerinden birisi ile ifade edilir.  

 

Tanım 1.1.1.9. “G  bir grup ve H G   olsun. Eğer H , G  de tanımlanan ikili 

işleme göre bir grup ise H  ye G nin bir alt grubudur denir ve H G  ile gösterilir.” 

 

Örnek 1.1.1.4.  Çift tam sayılar kümesi olan 2 toplama işlemine göre  ,  grubunun 

bir alt grubu iken tek tam sayılar kümesi olan 2 1  toplama işlemine göre kapalılık 

şartını sağlamadığından  ,  grubunun bir alt grubu değildir.  

Tanım 1.1.1.10.  ,*G  bir grup ve e de grubun birim elemanı olmak üzere    ,*e  ve 

 ,*G  cebirsel yapıları G  grubunun birer alt grubudur ve bu alt gruplara aşikar alt 

gruplar denir. 
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Tanım 1.1.1.11. “ ,*G  bir grup olmak üzere G nin aşikar alt grupları dışındaki diğer alt 

gruplarına öz alt gruplar denir. Eğer H , G  nin bir öz alt grubu ise H G  ile gösterilir.” 

 

Tanım 1.1.1.12. G  bir grup ve aynı zamanda N G  olsun. Her a G  için aN Na  

eşitliği geçerli oluyorsa N  alt grubuna normal alt grup denir. Bu grup N G  ile ifade 

edilir. 

 

Örnek 1.1.1.5. Değişmeli bir grubun herhangi bir alt grubu normal alt gruptur. 

 

Tanım 1.1.1.13. G  bir grup ve N G  olsun.  / :G N aN a G   kümesine bölüm 

kümesi denir. 

 

Tanım 1.1.1.14. N G  olmak üzere /G N  kümesinde     Na Nb N ab  olacak 

biçiminde bir çarpma işlemi tanımlansın. /G N  kümesi bu çarpıma göre bir grup olup 

bu şartı sağlayan gruba G nin N ye göre bölüm grubu denir. 

 

Tanım 1.1.1.15. “G  bir grup ve A G   olsun. G grubunun A  yı içeren bütün alt 

gruplarının ara kesitini A  ile gösterelim.” A  kümesi G  nin bir alt grubu olur.  A  

kümesi,  G  grubunun A  yı içeren en küçük alt grubudur. Bu grup A  tarafından üretilen 

(gerilen) alt grup olarak isimlendirilir. 

 

Tanım 1.1.1.16. “G  bir grup olmak üzere  :nS a n 
 alt grubuna G  nin a  

elemanı tarafından üretilen devirli alt grubu denir ve a ile gösterilir. Yani,  

a   :na n S 
 

 dir. Buradan yola çıkarak devirli gruplar aşağıdaki gibi de tanımlanabilir:  
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G bir grup olmak üzere G  de  :nG a n 
olacak şekilde bir a  elemanı varsa o 

zaman G grubuna devirli grup denir. Böylece bir a  elemanına G  nin üreteci (gereni) 

denir ve G a  şeklinde gösterilir [47].” 

Teorem 1.1.1.4. Devirli grupların hepsi değişmelidir.  

 

Teorem 1.1.1.5.  Devirli bir grubun bütün alt grupları devirlidir.  

 

Tanım 1.1.1.17. ( ,*)G  ve ( , )H   iki grup olmak üzere :f G H  şeklinde 

tanımlanan dönüşüm ,x y G   için ( * ) ( ) ( )f x y f x f y   şartını sağlıyorsa f  ye   

G  den H  ye bir homomorfizm denir.” Eğer f  homomorfizmi 1 1  ve örten ise f  ye 

izomorfizm, G  ve H  gruplarına ise izomorf gruplar denir ve G H  ile gösterilir.   

 

Teorem 1.1.1.6. Aynı mertebeli herhangi iki devirli grup izomorfdur.  

 

Sonuç 1.1.1.1. G devirli bir grup olsun. Eğer G  sonsuz ise tam sayılar kümesine, 

G n  olduğunda ise n kümesine izomorftur. 

 

Teorem 1.1.1.7. G bir grup ve a da G nin mertebesi n olan bir elemanı yani  a n  

olsun. Buna göre; 

i. Eğer a nın mertebesi sonsuz ise bu durumda a nın bütün farklı kuvvetleri 

grubun farklı elemanlarıdır. 

ii. Eğer a nın mertebesi sonlu ise bu durumda na e koşulunu sağlayan en küçük 

pozitif tamsayı n ise a nın ürettiği devirli grubun yani a nın mertebesi de n

dir. Diğer bir deyimle  

 2 1, , , , na e a a a   

dir. 
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iii. a nın mertebesi sonlu ve n olmak üzere 
k la a olması için gerek ve yeter şart 

 modk l n olmasıdır. 

iv. a nın mertebesi sonlu ve n olmak üzere 
ka e  olması için gerek ve yeter şart 

n k olmasıdır [47].” 

 

Sonuç 1.1.1.2. “G a  sonlu bir devir grubu ve  G k   olsun.  H e ve 

na H olacak şekilde 0n  pozitif tamsayılarının en küçüğü m olmak üzere 

mH a
olduğunu kabul edelim.” O takdirde   

m k  ve 
 

k
H

m


 

dir [47]. 

G a sonsuz mertebeli bir devir grup olsun. 
ma nin bütün kuvvetleri farklı 

olacağından 
ma tarafından üretilen 

mH a
 devirli alt grubu da sonsuz olur. 

 

Teorem 1.1.1.8. G grubu, a elemanı tarafından üretilen n  mertebeli devirli bir grup 

olsun. G grubunun 
ma tarafından üretilmesi için yani 

mG a
şeklinde ifade edilmesi  

için gerek ve yeter şart n  ile m  nin aralarında asal olmasıdır.  

 

Yukarıdaki teorem göz önüne alınarak bir m tamsayısının  ,n   devirli grubunun bir 

üreteci olması için gerek ve yeter şart  , 1m n  olması gerektiği sonucuna ulaşılır. 

 

Tanım 1.1.1.18. G , j -gerenli( j - üreteçli ) bir grup olsun. 

 

kümesine G nin geren kümesi,  1, 2 , , jx x x
 ifadesine ise G nin bir geren j -lisi denir. 
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Tanım 1.1.1.19. P  boş olmayan bir küme olmak üzere eğer :f P P  dönüşümü 1 1

ve örten ise o zaman f  dönüşümüne P  kümesinin bir permütasyonu denir.  

P  kümesi üzerindeki bütün permütasyonları kümesini pS le gösterirsek pS kümesi 

dönüşümlerin bileşke işlemine göre bir grup teşkil eder.  

P  kümesini n  elemanlı  1, 2, ,n kümesi olarak kabul edelim. Bu durumda pS yi 

nS  ile göstereceğiz ve bu grubu simetrik grup olarak adlandıracağız. Burada nS

simetrik grubunun mertebesi !n  dir. 

Tanım 1.1.1.20.  1,2, ,P n kümesinin k n olmak üzere 1  ile n arasında 

elemanlarını 1 2, , , nr r r  ile gösterelim. Buna göre eğer nf S  permütasyonu aşağıdaki 

şartları sağlarsa o taktirde f  ye k  uzunluğunda bir devir ya da kısaca bir k -devir 

denir ve  1 2, , , kf r r r  şeklinde gösterilir. 

i.   1,1i if r r i k    

ii.   1kf r r  

iii.  1 2, , , kn r r r ise o zaman  f n n dir [47]. 

 1 2, , , ,kf r r r k uzunluğunda bir devir olmak üzere 1k   ise f ye birli devir, 

2k  ise f ye ikili devir ya da transpozisyon denir. 

 

Tanım 1.1.1.21. Bir nS  simetrik grubundaki bir f  permütasyonu transpozisyonların 

çarpımı olarak yazıldığında bu transpozizyonların sayısı çift ise f ye çift permütsyon 

tek ise f ye tek permütasyon denir.  

nS  nin bütün çift permütasyonlarının kümesini nA  ile göstereceğiz. nA , nS nin bir 

normal alt grubu olup bu grubun mertebesi 

!

2

n

 dir. 
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Tanım 1.1.1.22. G  bir grup ve S  de G nin bir alt kümesi olsun. Eğer G nin her elemanı 

S  nin elemanlarının ve bu elemanların terslerinin sonlu bir çarpımı olarak 

yazılabiliyorsa S  kümesi, G grubunun gerenlerinin bir kümesi olarak adlandırılır [48].”  

 

Tanım 1.1.1.23. Bir gruptaki gerenlerin sağladıkları denklemlere bu gruptaki bağıntılar 

denir [48].” 

 

Tanım 1.1.1.24. G bir grup ve S  ise G nin bir alt kümesi olsun. Eğer G grubunun 

herhangi bir elemanı S kümesinin sonlu sayıdaki elemanlarının ve aynı zamanda bu 

elemanların terslerinin bir çarpımı olarak tek türlü yazılabiliyorsa G grubuna bu S

kümesi üzerinde serbesttir denir.  

 

Tanım 1.1.1.25. G bir grup ve S  de G  nin bir alt kümesi olsun. G  nin S alt kümesini 

kapsayan en küçük normal alt grubuna S alt kümesinin normal kapanışı denir.” 

 

Tanım 1.1.1.26. X  bir küme; ( )F X , X üzerinde serbest grup ve ( )R F X olmak 

üzere R , ( )F X deki R  kümesinin normal kapanışı olsun. Yani,

1 : ( ),g rg g F X r R  
kümesi ile ( )F X in alt grubu verilmiş olsun. Bu durumda  

( ) /G F X R ise G  grubu :X R şeklindeki takdim ile tanımlanmıştır denilir [49].” 

 

Tanım 1.1.1.27. r  tek tamsayı olmak üzere 
2 1r   mertebeli  , 2F r  Fibonacci grubu 

 

şeklinde tanımlanır.  

 

Tanım 1.1.1.28. 3n için 2n  mertebeli nD  dihedral grubu  

 

şeklinde tanımlanır.  
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Tanım 1.1.1.29. 3n için 2n
mertebeli 2nQ  genelleştirilmiş Quaternion grubu  

 

şeklinde tanımlanır. 

 

Tanım 1.1.1.30. 4m için 2m
mertebeli 2mSD  semidihedral grubu  

1 22 2 1 2

2
, : ,

m m

mSD x y x y e yxy x
     

 

şeklinde tanımlanır.  

 

 

 

 

Tanım 1.1.1.31. , , 0l m n  için  , ,l m n
 polyhedral grubu  

 

ya da  

 

şeklinde tanımlanır.  , ,l m n
şeklinde ifade edilen bu polyhedral grubun sonlu olması 

için gerek ve yeter şart  

1 1 1
1k lmn mn nl lm lmn

l m n

 
        

   

 olmak üzere 0k  olmasıdır. Bu grubun mertebesi 2 /lmn k dır. 

 

Tanım 1.1.1.32. , , 1l m n  için 
, ,l m n

 binary polyhedral grubu  

, , : l m nx y z x y z xyz  
 

şeklinde tanımlanır. 

2l  iken 
, ,l m n

binary polyhedral grubu 2-gerenli olarak takdim edilebilir. 
2, ,m n

 

binary polyhedral grup  
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 
2

 , : m ny z y z yz 
 

şeklinde 2- gerenli olarak takdim edilir. 
, ,l m n

binary polyhedral grubun sonlu olması 

için gerek ve yeter şart  

1 1 1
1 1k lmn mn nl lm

l m n

 
        

   

olmak üzere 0k  olmasıdır. Bu grubun mertebesi 4 /lmn k dır [50]. 

 

Tanım 1.1.1.33. H  kümesi boştan farklı bir küme olsun. Bu kümede toplama '' ''  ve 

çarpma '' . ''  ikili işlemleri ile beraber oluşturulan yeni cebirsel yapı  , ,H    ile 

gösterilir. 

 

Tanım 1.1.1.34.   , ,H    cebirsel yapısı verilsin. Eğer , ,x y z H  için  

 

eşitliği sağlanıyorsa   , ,H    cebirsel yapısında soldan dağılma özelliği vardır denilir. 

Eğer , ,x y z H   için 

 

eşitliği sağlanıyorsa  , ,H    cebirsel yapısında sağdan dağılma özelliği vardır denilir. 

 

Tanım 1.1.1.35. “ , ,H    cebirsel yapısı verilsin. Eğer aşağıdaki şartlar sağlanırsa 

 , ,H    cebirsel yapısına '' '' ve '' . '' ikili işlemlerine göre halka denir. 

i. ( , )H   değişmeli bir gruptur. 

ii. ( , )H   nin birleşme özelliği vardır. 

iii.  , ,H    da soldan ve sağdan dağılma özelliği vardır.” 

 

Örnek 1.1.1.6.  , ,  cebirsel ifadesi yukarıda verilen şartları sağladığından bu 

cebirsel yapı bir halkadır. Bu halkaya tamsayılar halkası denir. 
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Tanım 1.1.1.36.  , ,H    halkası verilsin. H  halkasının '' '' işlemine göre etkisiz 

elemanına halkanın sıfırı denir ve 0H  ile gösterilir. H  halkasının '' . '' işlemine göre 

etkisiz elemanı varsa bu elemana halkanın birim elemanı denir ve HI  ile gösterilir. 

Halkanın birim elemanı varsa birimli halka denir 

 

Tanım 1.1.1.37. H  bir halka ve 0H a H   olmak üzere 0ab  eşitliğini sağlayan bir 

0Hb elemanı varsa a  ya sol sıfır bölen b ye de sağ sıfır bölen denir. Hem sol bölen 

hem de sağ bölen elemana sıfır bölen denir. 

 

Tanım 1.1.1.38. Birim elemanı olan değişmeli ve sıfır bölensiz bir halkaya tamlık 

bölgesi denir. 

   

Örnek 1.1.1.7.  , ,Z    tamsayılar halkası bir tamlık bölgesi iken  6 , ,Z   halkası bir 

tamlık bölgesi değildir. 

 

Tanım 1.1.1.39.  , ,H    birim elemanı olan değişmeli bir halkanın sıfırdan farklı her 

elemanın ikinci işleme (çarpma işlemine) göre bir tersi varsa bu halkaya cisim denir. 

Genel olarak bir cisim F ile gösterilir. 

 

Örnek 1.1.1.8.  , ,R    reel sayılar halkası bir cisim iken  , ,Z    tamsayılar halkası 

bir cisim değildir. 

 

1.1.2. Matris Cebiri  

Tanım 1.1.2.1. “ ijA a    , n n tipindeki kare matris olmak üzere 11 22 33, , ,..., nna a a a

elemanlarına bu matrisin esas köşegen elemanları denir. Bir kare matriste esas köşegen 

elemanları dışındaki tüm elemanlar eğer sıfır ise bu matrise köşegen matris denir.” 
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Örnek 1.1.2.1.  

10 0 0

0 22 0

0 0 68

 
 
 
    

 

matrisi 3 3 tipinde bir köşegen matristir. 

 

Tanım 1.1.2.2. ijA a      n n tipindeki kare matris için A  nın asal köşegen 

elemanlarının üstünde kalan tüm elemanlar sıfır ise alt üçgensel matris, asal köşegen 

elemanlarının altında kalan tüm elemanlar sıfır ise üst üçgensel matris denir.  

 

Örnek 1.1.2.2.  

 

2 5 6 7

0 5 4 3

0 0 3 1

0 0 0 4

 
 


 
 
 

   

 matrisi alt üçgensel matrise örnektir. 

 

4 0 0 0

1 1 0 0

3 6 2 0

1 5 5 3

 
 

 
  
 

    

matrisi üst üçgensel matrise örnektir.  

 

 

Tanım 1.1.2.3. “ ,A n n  tipinde bir kare matris ve ,I n n tipinde birim matris olsun. 

AB BA I   
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eşitliğini sağlayan n n tipinde bir B  matrisi varsa, bu B  matrisine A  matrisinin tersi 

denir ve  
1B A ile gösterilir. Tersi olan matrislere de ters çevrilebilir ( düzgün ya da 

tekil olmayan ) matrisler denir.” 

 

Tanım 1.1.2.4. 
,ijA a    n n tipinde bir kare matris olmak üzere, A  matrisinin 

determinantı  

 

şeklinde tanımlanır. Burada  , nS simetrik grubunda bir permütasyon olmak üzere 

 sgn   

 

şeklinde tanımlanan işaret fonksiyonudur. 

 

Teorem 1.1.2.1. A  ve B  aynı tipli karesel matrisler olmak üzere  

 

eşitliği geçerlidir. Bu teoremin bir sonucu olarak n   için  

   det det
nnA A
 

olur. 

 

Teorem 1.1.2.2. “Bir A  kare matrisinin ters çevrilebilir matris olması için gerek ve 

yeter şart det 0A olmasıdır.” 

 

Teorem 1.1.2.3. Kare matrisin tersi varsa tektir. 

Tanım 1.1.2.5. Bir F cismi üzerinde tanımlanan m m tipli A  matrisinin permanenti  
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şeklinde tanımlanır. Burada   , nS  simetrik grubunda tanımlı bir permütasyonu 

göstermektedir. 

 

Tanım 1.1.2.6. ijM m    , satır vektörleri 1 2, , , ux x x  olacak şekildeki u v  boyutlu 

matris olsun. Eğer M  matrisinin k -inci sütununda tam olarak iki elemanı sıfırdan 

farklı, diğer elemanlarının hepsi sıfır ise, M  matrisine k -inci sütuna göre contraction 

(büzüşme) uygulanabilir denir. M matrisinde, 0ikm  , 0jkm   ve i j  olmak üzere k

-inci sütuna göre contraction uygulandığını farzedelim. O zaman, A  matrisinde i -inci 

satır jk i ik jm r m r  vektörü ile yer değiştirerek ve j -inci satır ile k -inci sütun silinerek 

   1 1u v    boyutlu :ij kM  matrisi elde edilir. Bu yönteme M  matrisinin i -inci ve j -

inci satırlarıyla k-inci sütununa göre contraction olarak adlandırılır. Eğer M  matrisi 

0kim  , 0kjm   ve i j  olmak üzere k -inci satıra göre contraction yapılabilirse 

: :

T
T

k ij ij kM M     ile belirtilen matrise M  matrisinin i -inci ve j -inci sütunlarıyla k -inci 

satırına göre contraction‟ı denir [52].  

 

Lemma 1.1.2.1: “ 1n   için M  matrisi elemanları negatif olmayan tamsayılardan 

oluşan matris ve N  matrisi de, M  matrisinden contraction ile elde edilen matris olmak 

üzere perM perN  dir [52].” 

 

Tanım 1.1.2.7. 
,ijA a    n n tipinde bir kare matris olsun. Bu matrisin ija elemanının 

bulunduğu satır ve sütunun silinmesi ile elde edilen    1 1n n   tipindeki yeni matris 

ijM matrisi olsun. ijM matrisinin determinantına ija elemanının minörü denir. Ayrıca  

 1
i j

ij ijA M


 
 

değerine ise ija elemanının eşçarpanı( kofaktörü) denir [51]. 
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Teorem 1.1.2.4. “ 2n olmak üzere A , n n tipinde bir kare matris olsun. 1,2, ,i n

ve 1,2, ,j n için  

 

  1 1 2 2 1 1 2 2det i i i i in in j j j j nj njA A a A a A a A a A a A a A          

 

dir. Determinantın bu şekilde hesaplanmasına Laplace açılımı denir [51].” 

 

Tanım 1.1.2.8. 

11 12 1

21 22 2

1 2

...

...

...

n

n

n n nn

a a a

a a a
A

a a a

 
 
 
 
 
   n n tipinde bir kare matris ve 

1

2

n

x

x
X

x

 
 
 
 
 
   1n

tipinde bir matris olmak üzere A X X denklemini sağlayan   değerine A  

matrisinin özdeğeri ya da karakteristik değeri denir.  

 

A X X denkleminden ( ) 0 ( ) 0A X X A I X       denklemi elde edilir. 

Dolayısıyla bu durum bir lineer homojen denklem sistemini oluşturur. Bu sistemde 

sıfırdan farklı bir çözümün olabilmesi için katsayılar matrisinin determinantı sıfır 

olmalıdır. Yani  

 

11 12 1

21 22 2

1 2

...

...
0

...

n

n

n n nn

a a a

a a a
A I

a a a











  

  

 

eşitliği elde edilmelidir. A I  değeri   ye göre .n dereceden bir polinomdur ve bu 

polinoma A matrisinin karakteristik polinomu denir. 0A I  denklemine de A

matrisinin karakteristik denklemi denir. Karakteristik polinom  

1

1( ) ...n n

nP a a        

şeklinde bir polinomdur [51]. 

Tanım 1.1.2.9. “ A  bir kare matris ve   A  matrisinin bir öz değeri olmak üzere 
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A X X  

denklemini sağlayan X vektörüne   özdeğerine karşılık gelen öz vektör ya da 

karakteristik vektör denir.” 

  

Tanım 1.1.2.10. A ve B  n n  tipinde kare matrisler olsun. 

1B P AP  

olacak şekilde tekil olmayan bir P  matrisi varsa A  ve B  matrislerine benzer matrisler 

denir.  

 

Tanım 1.1.2.11. A , n n tipinde bir kare matris ve D bir köşegen matris olsun. A  

matrisi D matrisine benzer ise, bu durumda A  matrisine köşegenleştirilebilir denir. 

Yani  

1P AP D   

olacak şekilde tersi olan (tekil olmayan) bir P matrisi mevcutsa, A  matrisine 

köşegenleştirilebilir matris denir [52]. 

 

Teorem 1.1.2.5. Bir n n  boyutlu A  kare matrisinin köşegenleştirilebilir olması için, 

yani 
1D P AP  olacak şekilde bir D  köşegen matrisine benzer olması için gerek ve 

yeter şart A  matrisinin n -tane lineer bağımsız özvektörünün olması gerekir. Ayrıca  bu 

durumda D  matrisinin  köşegen elemanları A  matrisinin özdeğerleridir [52]. 

 

Tanım 1.1.2.12. 
1

0 1 1( ) ... n n

nP x a a x a x x

     polinomuna ait Companion matrisi: 

1 2 1 0

1 0 0 0

0 1 0 0

0 0 1 0

n

ij n n

a a a a

C c





    
 
 
    
 
 
    

şeklindedir. 

Companion matris hakkında daha detaylı bilgilere [53,54] deki çalışmalarda ulaşılabilir. 
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Teorem 1.1.2.6.  v v boyutlu  1 2, , , vK k k k  Companion matrisi  

 

şeklinde olsun. Bu durumda  1 2, , ,u

vK k k k matrisinin .i satır ve .j sütunundaki 

elemanı  

 

olup buradaki toplam, negatif olmayan tam sayılar üzerinden 1 22 vt t vt u i j     

koşulunu sağlar ve 

 1 1

1 1

!

, , ! !

v v

v v

t t t t

t t t t

    
 

   ifadesi çok katlı bir katsayıdır. Eğer 

u i j  ise ( 2.2.1 ) denklemindeki katsayılar 1 olarak tanımlanır [55]. 

 

Tanım 1.1.2.13. ,nV  n n tipli Vandermonde matrsisi 1 2, ,..., nx x x  için  

2 1

1 1 1

2 1

2 2 2

2 1

1

1

1

n

n

n

n

n n n

x x x

x x x
V

x x x







 
 
 
 
 
    

şeklindedir [56]. 

 

Tanım 1.1.2.14. ijX x     ve ijY y    matrisleri m n boyutlu matrisler olmak üzere  

ij ij m nX Y x y 
    çarpımına X ile Y matrislerinin Hadamard çarpımı denir. 

 

Tanım 1.1.2.15. Bir M matrisinde  detper M M K  sağlayacak şekilde eğer n n

tipinde  1, 1 olacak şekilde bir K matrisi varsa, bu durumda M matrisi 

değiştirilebilir(convertible) bir matris olarak adlandırılır. Burada M K notasyonu ile 

Hadamard çarpımı gösterilmektedir. 
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1.1.3. Lineer İndirgemeli Diziler 

Tanım 1.1.3.1. R değişmeli ve birimli bir halka aynı zamanda  0 1ic R i k    sabit 

katsayılar ve n N olsun. 0 1 1, ,..., ka a a  başlangıç değerleri olmak üzere 0n  için 

                                                                                                                       (2.3.1) 

 şeklindeki k  basamak homojen lineer indirgemeli bağıntı yardımıyla tanımlanan  na

dizisine R halkasının elemanlarının lineer indirgemeli dizisi denir [57]. 

 

, , ,  kümeleri üzerinde tanımlanan lineer indirgemeli dizilere sırasıyla tamsayı, 

rasyonel, reel ve komleks lineer indirgemeli diziler denir [58]. 

kc , R nin terslenebilir bir elemanı ise (2.3.1) de tanımlanan dizi 0 1 2, , ,...,a a a   şeklinde 

devam eder [57].” 

 

Tanım 1.1.3.2. “
1

1 1( ) ...k k

k kf x x c x c x c

     şeklindeki .k dereceden polinoma 

(2.3.1) denkleminde ifade edilen lineer indirgemeli bağıntının karakteristik polinomu 

denir.” 

Eğer R halkasının sıfır böleni yoksa bu durumda herhangi bir   na  lineer indirgemeli 

dizisi minimal uzunluktaki bir indirgeme bağıntısına sahiptir. Minimal uzunluktaki 

bağıntının karakteristik polinomu ise  na  dizisinin minimal polinomudur. Aynı 

zamanda bu minimal polinomun derecesine   na  lineer indirgemeli dizisinin mertebesi 

denir.   

 

Tanım 1.1.3.3.  R değişmeli ve birimli bir halka  0 1ic R i k    sabit katsayılar ve 

n N olsun. 0 1 1, ,..., ka a a  başlangıç değerleri olmak üzere 0n  için 

 

bağıntısı ile tanımlanan diziye homojen olmayan lineer indirgemeli dizi denir. Bu dizi 

aynı zamanda  

                                                   (2.3.2) 
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şeklindeki  1 .k  mertebeden homojen indirgeme bağıntısı ile de tanımlanabilir.  

 

Bu bağıntının karakteristik polinomu ise  

 

şeklindedir [59].  

 

 0 1 1, ,..., ka a a  başlangıç değerleri ve 0 1 1, ,..., kc c c  ler sabitler olmak üzere 

 

şeklindeki k  basamak lineer indirgeme bağıntısıyla tanımlanan dizinin elemanları: 

 

olmak üzere 

 

 

şeklinde ifade edilen denklem yardımıyla elde edilmiştir [60]. 

 

Tanım 1.1.3.4.  Bir dizi belli bir noktadan sonra bir alt dizinin tekrarı şeklinde  

oluşuyorsa tekrar eden bu diziye periyodiktir denir. Örneğin; , , , , , , , ,...a b c d e c d e  dizisi 

periyodiktir bir dizidir ve periyodu 3 tür.  

 

Tanım 1.1.3.5. “Bir dizideki ilk k eleman tekrar eden bir alt dizi şeklinde ise bu diziye 

k  periyotlu basit periyodik dizi denir. Örneğin , , , , , , , , , ,...a b c d e a b c d e  dizisi basit 

periyodik olup periyodu 5 dir.” 



22 

1.1.4. Fibonacci Dizisi 

Tanım 1.1.4.1.  nF Fibonacci dizisi, başlangıç değerleri 0 0F  ve 1 1F  olmak üzere 

0n için  

2 1n n nF F F    

şeklindeki indirgeme bağıntısı ile tanımlanır. Fibonacci dizisinin terimleri  

0,1,1,2,3,5,8,13,21,...  

olarak elde edilir. 

 

Honsberger, [61]‟de Fibonacci sayılarının  

2 1 1

1 0 1

1 1
,

1 0

n nn

n n

F F F F
Q Q

F F F F





    
      

      

eşitliğini sağlayan bir Q  matrisi tarafından üretebileceğini göstermiştir. Burada Q  

matrisi Fibonacci Q -matrisi olarak adlandırılmaktadır. 

 

Tanım 1.1.4.2. Başlangıç değerleri 0 2 0k k

kF F     ve 1

k

kF   olmak üzere 0n  için 

1 2

k k k k

n k n k n k nF F F F         şeklindeki indirgeme bağıntısı yardımıyla tanımlanan 

diziye  k -basamak Fibonacci dizisi denir.  

 

[60] ve [62] çalışmalarında kullanılan metotlar yardımıyla Fibonacci ve k -basamak 

Fibonacci dizisinin terimleri için sırasıyla aşağıdaki matris bağıntıları verilebilir:  

1 ,

0 1 0

1 1 1

n

n

n

F

F 

    
     

       
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1.1.5. Pell Dizisi 

Tanım 1.1.5.1. “ nP Pell dizisi, başlangıç değerleri 0 0P  ve 1 1P  olmak üzere 0n

için  

2 12n n nP P P    

şeklindeki indirgeme bağıntısı ile tanımlanır. Pell dizisinin terimleri 

0,1,2,5,12,29,70,169,...  

olarak elde edilir.” 

Pell sayılarının çeşitli özellikleri Horadam tarafından [63]‟deki çalışmada verilmiştir. 

Bicknel ise [64]‟de Pell sayılarının  

                                                 

2 1

1 0
M

 
  
   

olmak üzere 

                                                

1

1

n nn

n n

P P
M

P P





 
  
   

şeklinde üretilebileceğini göstermiştir. 

1.1.6. Jacobsthal Dizisi 

Tanım 1.1.6.1.  nJ Jacobsthal dizisi, başlangıç değerleri 0 10, 1J J   olmak üzere  

0n için  

2 1 2n n nJ J J    

şeklindeki indirgeme bağıntısı ile tanımlanır. Jacobsthal dizisinin terimleri  

0, 1, 1, 3, 5, 11, 21, 43,...  

olarak elde edilir. 

[65]‟deki çalışmada, Köken ve Bozkurt Jacobsthal sayılarının 

1

1

21 2
,

21 0

n nn

n n

J J
F F

J J





  
    
     

şeklindeki matris bağıntısı yardımıyla elde edilebileceğini göstermişlerdir.  
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1.1.7. Padovan Dizisi 

Tanım 1.1.7.1.  ( )P n  Padovan dizisi,  başlangıç değerleri (0) (1) (2) 1P P P    olmak 

üzere 3n için  

( ) ( 2) ( 3)P n P n P n     

şeklindeki indirgeme bağıntısı ile tanımlanır. Padovan dizisinin terimleri 

1,1,1,2,2,3,4,5,7,9,12,16,  

olarak elde edilir. 

 

Lien [66]‟deki çalışmasında Padovan sayılarının  

0 1 0

0 0 1

1 1 0

Q

 
 


 
    

şeklinde tanımlanan matris üzerinden 

                    

 

 

                             

olarak ifade edilen bağıntı yardımıyla üretilebileceğini göstermiştir.  
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2. MATERYAL VE YÖNTEM  

2.1. Fibonacci, Pell, Jacobsthal ve Padovan Sayıları Arasındaki İlişkiler  

Tanım 2.1.1.    F J n  Fibonacci-Jacobsthal,   Pa F n  Padovan-Fibonacci, 

  P F n  Pell-Fibonacci,   P J n  Pell-Jacobsthal,   Pa P n  Padovan-Pell ve 

  Pa J n  Padovan-Jacobsthal dizileri sırasıyla aşağıdaki gibi tanımlanır: 

 

     0 1 2 0F J F J F J      ,  3 1F J  ve 0n için     

         4 2 3 2 2 3 1 2F J n F J n F J n F J n F J n             ,         

 (2.1.1) 

       0 1 2 3 0Pa F Pa F Pa F Pa F        ,  4 1Pa F   ve 0n için

         5 4 2 3 2 1Pa F n Pa F n Pa F n Pa F n Pa F n            
  

(2.1.2) 

     0 1 2 0P F P F P F      ,  3 1P F   ve 0n için 

       4 3 3 3 1P F n P F n P F n P F n          ,                                        

(2.1.3) 

     0 1 2 0P J P J P J      ,  3 1P J   ve  0n için        

         4 3 3 2 5 1 2P J n P J n P J n P J n P J n             ,           

(2.1.4) 

       0 1 2 3 0Pa P Pa P Pa P Pa P        ,  4 1Pa P   ve 0n için

           5 2 4 2 3 2 3 1Pa P n Pa P n Pa P n Pa P n Pa P n Pa P n               
     

(2.1.5) 
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       0 1 2 3 0Pa J Pa J Pa J Pa J        ,  4 1Pa J   ve 0n için

         5 4 3 3 3 1 2Pa J n Pa J n Pa J n Pa J n Pa J n             ‟dır. 

 (2.1.6) 

 

İlk olarak yukarıda tanımlanan diziler ile Fibonacci, Jacobsthal, Padovan ve Pell dizileri 

arasındaki bağıntıları ele alalım; 

 

Teorem 2.1.1. “  F J n ,  Pa F n ,  P F n ,  P J n ,  Pa P n  ve  Pa J n  

sırasıyla; n-inci Fibonacci–Jacobsthal, Padovan–Fibonacci, Pell–Fibonacci, Pell–

Jacobsthal, Padovan–Pell ve Padovan–Jacobsthal sayıları olmak üzere; 

i. 0n   için  

  n nF J n J F   , 

ii. 0n   için  

  12 n nPa F n F Pa    , 

iii. 0n   için  

 1 n nP F n P F    , 

iv. 1n   için  

   
1

0

n

i i

i

P J n P J




  
, 

v. 0n   için  

    4 34 5 4 n n nPa P n Pa P n P P Pa          

ve 

vi. 0n   için  

    12 2 1 n nPa J n Pa J n J Pa        

eşitlikleri geçerlidir[43].” 
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İspat: i. durumunu düşünelim. n  üzerinden tümevarım yöntemi yardımıyla 

ispatlanacaktır.   0 00 0F J J F      olduğu açıktır. Farzedelim ki denklem 0n   

için geçerlidir. O zaman denklemin 1n  içinde sağlandığı gösterilmelidir. Buna göre 

Fibonacci–Jacobsthal dizisinin karakteristik denklemi  

  4 3 22 2 3 2p x x x x x      

Olduğundan dolayı      1 5p x f x f x  şeklindedir. Burada  1f x  ve  5f x  sırasıyla; 

Fibonacci ve Jacobsthal dizilerinin karakteristik polinomlarıdır. Dolayısıyla 0n   için  

4 3 2 12 2 3 2n n n n nF F F F F        

ve 

4 3 2 12 2 3 2n n n n nJ J J J J        

bağıntıları elde edilir. Böylelikle basit bir hesaplama ile ispat tamamlanır [42]. 

Diğer denklemlerin ispatları yukarıdaki ispata benzer şekilde yapılabilir. 

2.1.1. Üreteç Matrisleri 

(2.1.1)-(2.1.6) indirgeme bağıntıları yardımıyla,   F J n  Fibonacci–Jacobsthal, 

  Pa F n  Padovan–Fibonacci,   P F n  Pell–Fibonacci,   P J n  Pell–

Jacobsthal,   Pa P n  Padovan–Pell ve   Pa J n  Padovan–Jacobsthal dizileri 

için Companion Matris formundaki üreteç matrisleri: 

1

2 2 3 2

1 0 0 0

0 1 0 0

0 0 1 0

M

  
 
 
 
 
  , 

2

1 2 0 2 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

M

  
 
 
 
 
 
   , 
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3

3 0 3 1

1 0 0 0

0 1 0 0

0 0 1 0

M

  
 
 
 
 
  , 

4

3 1 5 2

1 0 0 0

0 1 0 0

0 0 1 0

M

  
 
 
 
 
  , 

5

2 2 1 3 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

M

   
 
 
 
 
 
    

ve 

6

1 3 0 3 2

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

M

  
 
 
 
 
 
    

 

olarak belirlenmiş olup, burada 1M , 2M , 3M , 4M , 5M  ve 6M  matrisleri sırasıyla; 

Fibonacci–Jacobsthal, Padovan–Fibonacci, Pell–Fibonacci, Pell–Jacobsthal, Padovan–

Pell ve Padovan–Jacobsthal olarak adlandırılmaktadır.  F J n ,  Pa F n , 

  ,P F n   P J n ,  Pa P n  ve  Pa J n  dizilerinin gösterimleri sırasıyla; 
1

nx , 

2

nx  , 
3

nx  , 
4 ,nx  

5

nx  ve 
6

nx  olarak ifade edilsin. Şimdi uygun n değerleri için üreteç 

matrislerin çarpımsal mertebelerini ele alacağız. n üzerinden tümevarım yöntemi 

uygulanarak, Fibonacci–Jacobsthal, Padovan–Fibonacci, Pell–Fibonacci, Pell–

Jacobsthal, Padovan–Pell ve Padovan–Jacobsthal matrislerinin n-inci kuvvetleri 

sırasıyla; 

3n   için, 
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5n   için, 

 

1n   için, 

 

1n   için, 

 

6n   için, 

 

ve 4n   için, 
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şeklinde elde edilmiştir. 

2.1.2. Binet Formülleri 

Bu bölümde, Fibonacci–Jacobsthal, Padovan–Fibonacci, Pell–Fibonacci, Pell–

Jacobsthal, Padovan–Pell ve Padovan–Jacobsthal sayıları için Binet formülleri elde 

edilecektir. 

 1M , 2M , 3 ,M  4M , 5M  ve 6M  matrislerinin özdeğerlerinin birbirinden farklı olduğu 

bilinmektedir. 
        1 1 1 1

1 2 3 4, , ,   
, 

          2 2 2 2 2

1 2 3 4 5, , , ,    
, 

        3 3 3 3

1 2 3 4, , ,   
, 

        4 4 4 4

1 2 3 4, , ,   
, 

          5 5 5 5 5

1 2 3 4 5, , , ,    
 ve 

          6 6 6 6 6

1 2 3 4 5, , , ,    
 sırasıyla 1M , 

2M , 3M , 4M , 5M  ve 6M  matrislerinin özdeğerlerinin kümesi olmak üzere  k k  tipli 

 u

kV  Vandermonde matrisi (burada 1,3,4u   için 4k   ve 2,5,6u   için 5k  ) 

aşağıdaki gibi ifade edilsin: 

 

 ,u i

kW  matrisi 
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olmak üzere  
 , ,u i j

kV  matrisini, 
 u

kV  matrisinin j-inci sütununun 
 ,u i

kW  sütun matrisleriyle 

yerdeğiştirilmesiyle elde edilen k k  tipli bir matris olarak tanımlayalım. 

 

Teorem 2.1.2.1.   ,

,=
n u n

u i jM m    olmak üzere  

 

 

, ,

,

,

det
=

det

u i j

u n k
i j u

k

V
m

V  

olarak elde edilir. Burada 1u   ve 3n   için 4k  ; 2u   ve 5n   için 4k  ; 3,4u   

ve 1n   için 4k  ; 5u   ve 6n   için 5k   ve 6u   ve 4n   için 5k   dir [43]. 

 

İspat: 2M  matrisini göz önüne alalım. 2M  matrisinin özdeğerleri birbirinden farklı 

olduğundan dolayı 2M  matrisi köşegenleştirilebilirdir

          2 2 2 2 2

2 1 2 3 4 5= , , , ,D diag     
 olmak üzere 2M  matrisi köşegenleştirilebilir 

olduğundan dolayı 
   2 2

2 5 5 2=M V V D  eşitliği yazılabilir.  

Ayrıca 2M  matrisi tersinir matris olduğundan dolayı 
    

1
2 2

5 2 5 2=V M V D


 eşitliği elde 

edilir ki; bu durum da 2M  matrisinin 2D  matrisine benzer bir matris olduğunu 

göstermektedir. Benzer matrislerin kuvvetleri de benzer olduğundan 5n   için 

       2 2

2 5 5 2=
n n

M V V D  ifadesine ulaşılır ki, bu durumda 
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şeklinde ifade edilen bir lineer denklem sistemi elde edilebilmektedir. Bu şekilde 

yazılabilen lineer denklem sisteminin çözümünden her , =1,2,3,4,5i j  için 

 

 

2, ,

2, 5
, 2

5

det
=

det

i j

n

i j

V
m

V  

sonucu elde edilir [42]. 

 

Diğer matrisler için ispatlar yukarıdaki ispata benzer şekilde yapılabilir. 

 

Sonuç 2.1.2.1. “  F J n ,  Pa F n ,  P F n ,  P J n ,  Pa P n  ve  Pa J n

” sırasıyla n-inci Fibonacci–Jacobsthal, Padovan–Fibonacci, Pell–Fibonacci, Pell–

Jacobsthal, Padovan–Pell ve Padovan–Jacobsthal sayıları olmak üzere; 

3n   için 
 

 

 

1,4,1

4

1

4

det
=

det

V
F J n

V


, 

5n   için 
 

 

 

 

 

2,5,1 2,4,5

5 5

2 2

5 5

det det
=

det det

V V
Pa F n

V V
  

, 

1n   için 
 

 

 

 

 

3,4,1 3,3,4

4 4

3 3

4 4

det det
=

det det

V V
P F n

V V
  

, 

1n   için 
 

 

 

 

 

4,4,1 4,3,4

4 4

4 4

4 4

det det
=

det 2 det

V V
P J n

V V
  

 , 

6n   için 
 

 

 

 

 

5,5,1 5,4,5

5 5

5 5

5 5

det det
=

det det

V V
Pa P n

V V
  

 

ve 
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4n   için 
 

 

 

 

 

6,5,1 6,4,5

5 5

6 6

5 5

det det
=

det 2 det

V V
Pa J n

V V
  

  

eşitlikleri elde edilir [42]. 

2.1.3. Üstel Temsiller  

  F J n ,   Pa F n ,   P F n ,   P J n ,   Pa P n  ve   Pa J n  

dizilerinin üreteç fonksiyonları sırasıyla 

 
3

1 2 3 4
=

1 2 2 3 2

x
g x

x x x x    ,  2 3 40 2 2 3 2 1x x x x     , 

 
4

2 2 4 5
=

1 2 2

x
g x

x x x x    ,  2 4 50 2 2 1x x x x     , 

 
3

3 3 4
=

1 3 3

x
g x

x x x   ,  3 40 3 3 1x x x    , 

 
3

4 2 3 4
=

1 3 5 2

x
g x

x x x x    ,  2 3 40 3 5 2 1x x x x     , 

 
4

5 2 3 4 5
=

1 2 2 3

x
g x

x x x x x     ,  2 3 4 50 2 2 3 1x x x x x       

ve 

 
4

6 2 4 5
=

1 3 3 2

x
g x

x x x x    ,  2 4 50 3 3 2 1x x x x      

olarak elde edilir. 

 

 1g x ,  2g x ,  3g x ,  4g x ,  5g x  ve  6g x  fonksiyonları göz önüne alınarak 

aşağıdaki Teorem ile Fibonacci–Jacobsthal, Padovan–Fibonacci, Pell–Fibonacci, Pell–

Jacobsthal, Padovan–Pell ve Padovan–Jacobsthal sayıları için üstel temsiller verilmiştir: 

Teorem 2.1.3.1.   F J n ,   Pa F n ,   P F n ,   P J n ,   Pa P n  ve 

  Pa J n  dizilerinin üstel temsilleri sırasıyla aşağıdaki gibidir: 



34 

   3 2 3

1

=1

= exp 2 2 3 2
i

i

i

x
g x x x x x

i

 
   

 


, 

   4 3 4

2

=1

= exp 1 2 2
i

i

i

x
g x x x x x

i

 
   

 


, 

   3 2 3

3

=1

= exp 3 3
i

i

i

x
g x x x x

i

 
  

 


, 

   3 2 3

4

=1

= exp 3 5 2
i

i

i

x
g x x x x x

i

 
   

 


, 

   4 3 4

5

=1

= exp 1 3 3 2
i

i

i

x
g x x x x x

i

 
   

 


 

ve 

   4 3 4

6

=1

= exp 1 3 3 2
i

i

i

x
g x x x x x

i

 
   

 


 [42]. 

 

İspat:   P F n  dizisini göz önüne alalım. Buna göre  

 
 3 3 4

3
ln ln 1 3 3

g x
x x x

x
    

 

ve  

       
2

3 4 2 3 2 2 3 2 31 1
ln 1 3 3 = [ 3 3 3 3 3 3 ]

2

i
ix x x x x x x x x x x x

i
            

 

olduğundan basit bir hesaplama ile sonuç elde edilir [42]. 

Diğer diziler için de benzer bir yöntem kullanılarak ispat yapılabilir. 

2.1.4. Toplamsal Temsiller 

Şimdi Fibonacci–Jacobsthal, Padovan–Fibonacci, Pell–Fibonacci, Pell–Jacobsthal, 

Padovan–Pell ve Padovan–Jacobsthal sayılarının için toplamsal temsillerini ele alalım: 
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Sonuç 2.1.4.1.  F J n ,  Pa F n ,  P F n ,  P J n ,  Pa P n  ve  Pa J n  

sırasıyla n-inci Fibonacci–Jacobsthal, Padovan–Fibonacci, Pell–Fibonacci, Pell–

Jacobsthal, Padovan–Pell ve Padovan–Jacobsthal sayıları olmak üzere;  

i. 3n   için, 

 

şeklinde olup burada bu toplamlar, negatif olmayan tam sayılar üzerinde sırasıyla 

1 2 3 42 3 4 = 3t t t t n     

şartını sağlar. 

ii. 5n   için, 

 

ve 

 
 

   21 2 3 4 55 4 5

1 2 3 4 51 2 3 4 5, , , ,
1 2 3 4 5

= 2 2 1
, , , ,

t tt

t t t t t

t t t t tt
Pa F n

t t t t tt t t t t

     
     
       


 

şeklinde olup burada bu toplamlar , negatif olmayan tam sayılar üzerinde sırasıyla   

1 2 3 4 52 3 4 5 = 4t t t t t n      

ve 

1 2 3 4 52 3 4 5 = 1t t t t t n      

şartlarını sağlar. 

iii. 1n   için, 

 
 

   11 2 3 4 3 4

1 2 3 4, , ,
1 2 3 4

= 3 3 1
, , ,

t tt

t t t t

t t t t
P F n

t t t t

   
   

 


 

ve 

 
 

   11 2 3 44 3 4

1 2 3 41 2 3 4, , ,
1 2 3 4

= 3 3 1
, , ,

t tt

t t t t

t t t tt
P F n

t t t tt t t t

    
     
      


 

şeklinde olup burada bu toplamlar, negatif olmayan tam sayılar üzerinde sırasıyla    
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1 2 3 42 3 4 = 3t t t t n     

ve  

1 2 3 42 3 4 = 1t t t t n     

şartlarını sağlar. 

iv. 1n   için, 

 
 

   11 2 3 4 3 4

1 2 3 4, , ,
1 2 3 4

= 3 5 2
, , ,

t tt

t t t t

t t t t
P J n

t t t t

   
   

 


 

ve 

 

 

şeklinde olup burada bu toplamlar, negatif olmayan tam sayılar üzerinde sırasıyla  

1 2 3 42 3 4 = 3t t t t n     

 ve  

1 2 3 42 3 4 = 1t t t t n     

şartlarını sağlar. 

v. 6n   için, 

 
 

   1 21 2 3 4 5 3 5 4

1 2 3 4 5, , , ,
1 2 3 4 5

= 2 1 3
, , , ,

t t tt t

t t t t t

t t t t t
Pa P n

t t t t t


    

   
 


 

ve 

 

şeklinde olup burada bu toplamlar, negatif olmayan tam sayılar üzerinde sırasıyla  

1 2 3 4 52 3 4 5 = 4t t t t t n      

ve  

1 2 3 4 52 3 4 5 = 1t t t t t n      
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şartlarını sağlar. 

vi. 4n   için, 

 
 

   21 2 3 4 5 4 5

1 2 3 4 5, , , ,
1 2 3 4 5

= 3 3 2
, , , ,

t tt

t t t t t

t t t t t
Pa J n

t t t t t

    
   

 


 

Ve 

 
 

   21 2 3 4 55 4 5

1 2 3 4 51 2 3 4 5, , , ,
1 2 3 4 5

1
= 3 3 2

, , , ,2

t tt

t t t t t

t t t t tt
Pa J n

t t t t tt t t t t

     
     
       


 

şeklinde olup burada bu toplamlar, negatif olmayan tam sayılar üzerinde sırasıyla 

1 2 3 4 52 3 4 5 = 4t t t t t n      

ve  

1 2 3 4 52 3 4 5 = 1t t t t t n      

şartlarını sağlar [42]. 

İspat: iv. durumu göz önüne alalım. Teorem 2.2.15 de ilk durum için 4i  , 1j   ve 

ikinci durum için 3i  , 4j   olarak seçilirse o zaman  4

n
M  matrisinden sonuç 

doğrudan görülür [42]. 

  F J n ,   Pa F n ,   P F n ,   Pa P n  ve   Pa J n  dizileri için de 

benzer yöntemler kullanılarak ispat yapılabilir. 

2.1.5. Permanental Temsiller 

Bu bölümde, Fibonacci–Jacobsthal, Padovan–Fibonacci, Pell–Fibonacci, Pell–

Jacobsthal, Padovan–Pell ve Padovan–Jacobsthal dizilerinin companion matris 

formundaki üreteç matrisleri göz önünde bulundurularak aşağıdaki gibi süper-köşegen 

matrisler tanımlanacak ve bu matrislerin permanent değerleri üzerinden de dizilerin 

permanental temsilleri verilecektir. Ayrıca bu  permanent değerleri kullanılarak 

Fibonacci–Jacobsthal, Padovan–Fibonacci, Pell–Fibonacci, Pell–Jacobsthal, Padovan–

Pell ve Padovan–Jacobsthal sayıları arasındaki çeşitli bağıntılar elde edilecektir.” 
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m m  boyutlu 
     1 1

,= i jK m k 
  , 

     2 2

,= i jK m k 
  , 

     3 3

,= i jK m k 
  , 

     4 4

,= i jK m k 
 

, 
     5 5

,= i jK m k 
   ve 

     6 6

,= i jK m k 
   süper-köşegen matrisler sırasıyla  

4m   için, 

 

5m   için, 

 

4m   için, 

 

5m   için, 
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5m   için, 

 5

,

eger =  ve =  ise 1

2                    ve

=  ve = 1 ise 1 1,

1 eger = 1 ve =  ise 1 1,

= eger =  ve = 2 ise 1 2

1                        ve

=  ve = 4 ise 1 4,

3 eger =

i j

i t j t t m

i t j t t m

i t j t t m

k i t j t t m

i t j t t m

i t

 

   

   

   



   

  ve = 3 ise 1 3,

0 diğer durumlarda.

j t t m














   
 , 

ve 5m   için, 

 6

,

3 eger =  ve = 1 ise 1 1,

eger =  ve =  ise 1

1                  ve

= = 1 ve =  ise 1 1,

2 eger =  ve = 4 ise 1 4,

3 eger =  ve = 3 ise 1 3,

0 diğer durumlarda.

i j

i t j t t m

i t j t t m

k i t j t t m

i t j t t m

i t j t t m

   


 




   
    

    

 , 

olarak tanımlanmış olsun. Bu matrislerin permanentleri ile dizilerin terimleri arasındaki 

ilişki aşağıdaki teorem ile verilir; 

Teorem 2.1.5.1. i. 4m   ve 1,3,4k   için  

    3=
k k

mperK m x   

ve 

ii. 5m   ve 2,5,6k   için  

    4=
k k

mperK m x   
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eşitlikleri elde edilir [42]. 

İspat: i. durumundaki 3k   olduğu alt durum göz önüne alınsın. Buna göre 
   3

K m  

matrisini göz önüne alalım ve 4m   için 
   3 3

3= mperK m x   eşitliğinin sağlandığını 

kabul edelim. Bu durumda, bu denklemin 1m  için de doğru olduğu ve sağlandığı 

gösterilmelidir. 
   3

K m  matrisinde birinci satıra göre Laplace açılımı uygulanarak 

   3
perK m  genişletilir ise 

               3 3 3 3
1 = 3 3 2 3perK m perK m perK m perK m      

eşitliği elde edilir. Buradan  

   3 3

3= mperK m x  , 

   3 3

12 = mperK m x   

ve  

   3 33 = mperK m x  

olduğundan dolayı 
   3 3

41 = mperK m x 
 sonucuna ulaşılır. Böylelikle ispat 

tamamlanmış olur [42]. 

Diğer matrisler için de benzer yöntemler kullanılarak ispat yapılabilir. 

 

m m  boyutlu 
     1 1

,= i jL m l 
  , 

     2 2

,= i jL m l 
  , 

     3 3

,= i jL m l 
  , 

     4 4

,= i jL m l 
  , 

     5 5

,= i jL m l 
   ve 

     6 6

,= i jL m l 
   matrisleri sırasıyla 

4m   için, 
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5m   için, 

 

4m   için, 

 

5m   için, 
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5m   için, 

 

ve 5m   için, 

 

olarak tanımlanmış olsun. 

 

Teorem 2.1.5.2. i. 4m   ve 1,3,4k   için  

    1=
k k

mperL m x  , 

ii. 5m   ve 2,6k   için  

    1=
k k

mperL m x   

ve 

ii. 5m   için  

   5 5

2= mperL m x   

eşitlikleri elde edilir [42]. 
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İspat: ii. durumundaki 6k   alt durumu göz önüne alınsın. Buna göre 
   6

L m  matrisini 

göz önüne alalım ve 5m   için 
   6 6

1= mperL m x   eşitliğinin sağlandığını kabul edelim. 

Bu durumda, denklemin 1m  için de doğru olduğu ve sağlandığı gösterilmelidir. 

   6
L m  matrisinin birinci satırına göre Laplace açılımını uygulayarak 

   6
perL m  

genişletilir ise 

                   6 6 6 6 6
1 = 3 1 3 3 2 4perL m perL m perL m perL m perL m        

eşitliği elde edilir. Buradan  

   6 6

1= mperL m x  , 

   6 61 = mperL m x , 

   6 6

23 = mperL m x   

ve  

   6 6

34 = mperL m x   

olduğundan dolayı 
   6 6

21 = mperL m x 
 sonucuna ulaşılır. Böylelikle ispat 

tamamlanmış olur [42]. 

Diğer matrisler içinde benzer yöntemler kullanılarak ispat yapılabilir. 

m m  boyutlu 
     1 1

,= i jN m n 
  , 

     2 2

,= i jN m n 
  , 

     3 3

,= i jN m n 
  , 

     4 4

,= i jN m n 
 

, 
     5 5

,= i jN m n 
   ve 

     6 6

,= i jN m n 
   matrislerinin sırasıyla 
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ve 

 

şeklinde tanımlandığını kabul edelim. Bu matrislerin permanentleri ile dizilerin 

terimlerinin sonlu toplamları arasındaki ilişki aşağıdaki teorem ile verilir; 
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Teorem 2.1.5.3. i. 4m   ve 1,3,4k   için  

   
=0

=
m

k k

i

i

perN m x
, 

ii. 5m   ve 2,6k   için  

   
=0

=
m

k k

i

i

perN m x
 

ve 

iii. 5m   için  

   
1

5 5

=0

=
m

i

i

perN m x



 

eşitlikleri elde edilir [42]. 

İspat: ii. durumundaki 6k   olduğu alt durumu göz önüne alınsın. 
   6

N m  matrisinin 

birinci satırına göre Laplace açılımını uygulayarak 
   6

perN m  genişletilir ise 

 

eşitliği elde edilir. Böylece elde edilen bulgular göz önünde bulundurularak m üzerinden 

tümevarım yöntemiyle sonuç kolaylıkla görülebilir [43]. 

Diğer matrisler için de benzer  yöntemler kullanılarak ispat yapılabilir. 

2.1.6.Diziler İle Bazı Matrislerin  Determinantları Arasındaki  İlişkiler 

Bu bölümde, aşağıdaki gibi tanımlanan R matrisi ile 
   k

K m , 
   k

L m  ve 
   k

N m

matrislerinin Hadamard çarpımları üzerinden tanımlanan belirli matrislerin determinant 

değerleri ile Fibonacci–Jacobsthal, Padovan–Fibonacci, Pell–Fibonacci, Pell–

Jacobsthal, Padovan–Pell ve Padovan–Jacobsthal sayıları arasındaki ilişki ele 

alınacaktır.  
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m m  boyutlu Hadamard matrisi 

 

şeklinde tanımlansın. Bu durumda 1,2, ,6k   için 
        = det ,
k k

perK m K m R
 

        = det
k k

perL m L m R
 ve 

        = det
k k

perN m N m R
 eşitlikleri elde edilir. 

Bu eşitlikler yardımıyla da aşağıdaki sonuçlara ulaşılır:  

 

Sonuç 2.1.6.1. i. 4m   ve 1,3,4k   için 

 

ve 5m   ve 2,5,6k   için 

. 

ii. 4m   ve 1,3,4k   için 

, 

5m   ve 2,6k   için 

 

ve 5m   için 

 

iii. 4m   ve 1,3,4k   için 

 

5m   ve 2,6k   için 
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ve 5m   için 

. 

eşitlikleri elde edilir [42]. 

 

İspat: 1,2, ,6k   için 
        = det ,
k k

perK m K m R
 

        = det
k k

perL m L m R
 

ve 
        = det
k k

perN m N m R
 olduğundan dolayı Teorem 2.1.5.1, Teorem 2.1.5.2 

ve Teorem 2.1.5.3 üzerinden sonuçlar kolaylıkla görülmektedir [42]. 

2.1.7. Sonlu Toplamlar 

Bu bölümde, Fibonacci–Jacobsthal, Padovan–Fibonacci, Pell–Fibonacci, Pell–

Jacobsthal, Padovan–Pell ve Padovan–Jacobsthal sayılarının sonlu toplamları üzerinde 

durulacaktır. 

1n   için  

=0

=
n

k

n i

i

S x
 

olsun ve sırasıyla 5 5  ve 6 6  boyutlu 1

kT  ve 2

kT  matrisleri aşağıdaki gibi tanımlansın: 

1

1 0 0 0 0

1

= 0

0

0

k

k
T M

 
 
 
 
 
 
      1,3,4k  , 
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2

1 0 0 0 0 0

1

0
=

0

0

0

k

k

T
M

 
 
 
 
 
 
 
 
     2,5,6k  . 

n üzerinden tümevarım yöntemi kullanılarak 1

kT  ve 2

kT  matrislerinin .n kuvvetleri 

aşağıdaki gibi elde edilir: 

   

2

1 1

1 ,

1 0 0 0 0

=

n
n

nk

n k

n

n

S

T S M

S

S







 
 
 
 
 
 
 
   

 
 

3

2

2

1

1 .

1 0 0 0 0 0

=

n

n nk

n

n k

n

n

S

S
T

S M

S

S









 
 
 
 
 
 
 
 
    

2.2. m  Modülüne Göre Fıbonaccı-Jacobsthal Dizisi 

 ( )F J n  Finonacci- Jacobsthal dizisi bir m  modülüne göre indirgenirse, 

 

şeklinde indirgemeli dizi elde edilir. Burada     m mF J i F J i modm   dır. 

Önemle belirtmek gerekir ki buradaki indirgeme bağıntısı (3.1.1)‟deki bağıntı ile 

aynıdır. 

Teorem 2.2.1. Her m pozitif tamsayısı için 
  mF J n

 dizisi periyodiktir [44]. 
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İspat: 
  0 1 2 3, , , 0 1iS s s s s s m   

olduğunu kabul edelim. Bu durumda 
4S m dir. 

m elemanlarının 
4m  tane farklı 4-tiplisi mevcut olduğundan, bu 4-tiplilerden en bir 

tanesi 
  mF J n

dizisinde iki kez ortaya çıkar. Bundan dolayı bu 4-tipliyi takip eden 

alt dizi tekrarlanır. Bu tekrardan dolayı 
  mF J n

dizisinin periyodik bir dizi olduğu 

görülmektedir. 

  mF J n
dizisinin periyodu  F Jh m  ile gösterilir.   

Elemanları tamsayılar olan ijD d     matrisini göz önüne alalım. D  matrisinin her 

elemanının mod m ye göre indirgenmesi   D modm  şeklinde ifade edilir. Yani              

 

dır. m
D kümesi   

  mod  0i

m
D D m i 

 

şeklinde tanımlanmış olsun. Bu küme,  ,det =1m D  olduğunda bir devirli grup 

 ,det 1m D   olduğunda ise bir yarı gruptur. 1det 2M   olduğundan 1 m
M   kümesi, 

m  tek olduğunda bir devirli grup çift olduğunda ise bir yarı grup olur.  

 1

n
M   matrisi göz önünde bulundurularak m ‟nin  tek olduğu durumda 

  1F J m
h m M 

 olacağı kolaylıkla görülmektedir [43].  

Teorem 3.2.2. r bir asal sayı ve 1 mr
M kümesi de bir devirli grup olsun. Eğer i , 

1 1= ir r
M M

olacak şekilde en büyük pozitif tamsayı ise bu durumda her j i  

tamsayısı için 1 1= .j i
j

r r
M r M

 eşitliği yazılır [43]. 
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İspat: t pozitif bir tamsayı olsun. 
   

1
1

1 mod
t

F Jh r tM I r


  olduğundan 

   
1

1 mod
t

F Jh r tM I r




  eşitliğini yazabiliriz. Bu da bize   t

F Jh r nin  1t

F Jh r 

 yi 

böldüğünü gösterir.  Ayrıca 
    1 .

tF J r
h

t t

ijM I m r


 
eşitliği üzerinde binom açılımı 

uygulayarak  

          
.

1

1 . . mod
tF J r

q

q

rh r r
t tt t t

ij ij

r
M I m r m r I r

q

  
    

 


 

ifadesini elde ederiz ki bu da bize  .t

F Jh r r sayısının  1t

F Jh r 

  tarafından 

bölünebildiğini göstermektedir. Dolayısıyla  1t

F Jh r 

   t

F Jh r ya da   1t

F Jh r 

 

 .t

F Jh r r olmalıdır. Buradaki 2. eşitlik ancak ve ancak r  tarafından  bölünemeyen 

bir 
 t

ijm  elemanının varlığı durumunda geçerlidir.  t

F Jh r   1t

F Jh r 

 olduğundan 

dolayı r tarafından bölünmeyen bir 
 1t

ijm


elemanının varlığı söz konusudur. Bu da 

bize  1t

F Jh r 

   2t

F Jh r 

 olduğunu gösterir. i  üzerinde tümevarım yöntemi 

kullanılarak ispat tamamlanacaktır [43].  

 

Teorem 2.2.3.  ir ‟ler farklı asal sayılar olmak üzere 1  için 
 

=1

= i
i

i

m r





oluyor ise   

          1 2
1 2= , , ,F J F J F J F Jh m lcm h r h r h r

  
   

 
  dir [43]. 

İspat: 

    
i

irF J n



 dizisinin periyot uzunluğu 

  i
F J ih r



  olduğundan bu dizi 

sadece 
  . i

F J iu h r


 ,  u  uzunluğundaki bloklarda  tekrar eder. Ayrıca  F Jh m

sayısı   mF J n dizisinin periyot uzunluğu olduğundan, tüm i değerleri için 

    
i

irF J n



 dizisi  F Jh m terimde bir tekrar eder. Böylece tüm i değerleri için 
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 F Jh m periyodu 
  . i

F J iu h r


 şeklinde olup bu sayı 

    
i

irF J n



dizisinin 

periyodunu vermektedir. Dolayısıyla  

 

ifadesi elde edilmektedir [43]. 

2.3. Sonlu Gruplarda Fibonacci-Jacobsthal Dizisi  

Tanım 2.3.1.  0 1 1, , , jx x x X  geren j  lisi için Fibonacci-Jacobsthal orbiti, 

başlangıç değerleri 

 

olmak üzere 0n  için  

             
2 3 2 2

4 1 2 3FJ n FJ n FJ n FJ n FJ n
 

      

şeklindeki indirgeme bağıntısı ile tanımlanır.  

 

 0 1 1, , , jx x x  şeklindeki bir geren j -lisi için Fibonacci-Jacobsthal orbiti 

 0 1 1: , , , jG x x x
FJ

 ile gösterilir [44]. 

 

Teorem 2.3.1. Sonlu bir G grubunun  0 1 1: , , , jG x x x
FJ

  Fibonacci-Jacobsthal orbiti 

periyodiktir [44]. 

İspat: G grubunun mertebesi n olsun. G nin elemanlarının 
4n  tane farklı 4 -lüsü 

mevcut olduğundan bu 4 -lülerden en az bir tanesi   0 1 1: , , , jG x x x
FJ

 dizisinde iki kez 

ortaya çıkar. Dolayısıyla bu 4 -lüyü takip eden alt dizi tekrarlanır. Bu tekrardan dolayı 

da  0 1 1: , , , jG x x x
FJ

  Fibonacci-Jacobsthal orbitinin periyodik olduğu söylenebilir.  
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 0 1 1: , , , jG x x x
FJ

  Fibonacci-Jacobsthal orbitinin periyodunun uzunluğu  0 1 1: , , , jG x x x
LFJ



ile gösterilir [44]. 

Sonuç 2.3.1. Bazı  , 2F r Fibonacci gruplarındaki Fibonacci-Jacobsthal orbitlerinin 

periyot uzunlukları aşağıdaki tabloda verilmiştir: 

 

[45]. 

 

Örnek 2.3.1.  15,2F  Fibonacci grubunun Fibonacci-Jacobsthal orbitinin periyot 

uzunluğunu ele alalım.  15,2F  Fibonacci grubundaki bağıntılar kullanarak aşağıdaki 

dizi elde edilir: 
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           

         

         

         

       

5 16

6 7 8 12 1

4 14 15 8 8

7 8 10 1

12 7 12 2

0 , 1 , 2 , 3 , 4 , 5 ,

6 , 7 , 8 , 9 , 10 ,

11 , 12 , 13 , 14 , 15 ,

16 , 17 , 18 , 19 , 20 ,

21 , 22 , 23 , 24 ,

FJ a FJ b FJ e FJ e FJ b FJ b

FJ b FJ b FJ b FJ b FJ b

FJ b FJ b FJ b FJ b FJ b

FJ b FJ b FJ b FJ b FJ e

FJ b FJ b FJ b FJ b



  

 

 

     

    

    

    

     

         

         

         

         

   

11

4 12 7 14

11 8 4 3 8

10 5 4 4 9

4 6 13 8 12

3

25 ,

26 , 27 , 28 , 29 , 30 ,

31 , 32 , 33 , 34 , 35 ,

36 , 37 , 38 , 39 , 40 ,

41 , 42 , 43 , 44 , 45 ,

46 , 47

FJ b

FJ b FJ b FJ b FJ e FJ b

FJ b FJ b FJ b FJ b FJ b

FJ b FJ b FJ b FJ b FJ b

FJ b FJ b FJ b FJ b FJ b

FJ b FJ b





    

   





    

    

    

    

       

         

         

         

         

4 6 1 12

8 7 8 6 1

4 8 11 10

13 12 8 5 12

14 5 8 8

, 48 , 49 , 50 ,

51 , 52 , 53 , 54 , 55 ,

56 , 57 , 58 , 59 , 60 ,

61 , 62 , 63 , 64 , 65 ,

66 , 67 , 68 , 69 , 70

FJ b FJ b FJ b

FJ b FJ b FJ b FJ b FJ b

FJ b FJ b FJ b FJ e FJ b

FJ b FJ b FJ b FJ b FJ b

FJ b FJ b FJ b FJ b FJ

 

  



  

  

  

    

    

    

   

       

11

12 2 11 4

,

71 , 72 , 73 , 74 .

b

FJ b FJ b FJ b FJ b



     

    1223 71FJ FJ b  ,     224 72FJ FJ b  ,     1125 73FJ FJ b   ve

    426 74FJ FJ b  olduğundan  0 1 1: , , , jG x x x
FJ

  Fibonacci-Jacobsthal orbitinin 

periyot uzunluğu 48‟dir [44]. 

2.3.1 Polyhedral Grupların Fibonacci-Jacobsthal Uzunlukları  

Bu bölümde 3-gerenli durumda ( ,2,2)n , ( 2,2, )n  ve (2, ,2)n  Polyhedral gruplarının 

Fibonacci-Jacobsthal orbitlerinin periyot uzunlukları üzerinde durulacaktır. 

 

Sonuç 2.3.1.1. Bazı n  değerleri için ( ,2,2)n ve (2,2, )n polyhedral gruplarının 

Fibonacci-Jacobsthal orbitlerinin periyot uzunlukları aşağıdaki tabloda verilmiştir: 
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[45]. 

Varsayım 2.3.1.1. ip ‟ ler farklı asal sayılar olmak üzere eğer 
 

=1

= ,
t

e
i

i

i

n p  t 1

olarak yazılabiliyor ise  

 

ve 

 

dır [45]. 

 

Örnek 2.3.1.1.  5,2,2  polyhedral grubunun Fibonacci-Jacobsthal orbitinin periyot 

uzunluğunu ele alalım. Bu gruptaki bağıntılar kullanarak aşağıdaki dizi elde edilir: 
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           

         

         

         

         

 

2

4 2 2 2

4 4

2 4 4

4 2

2

0 , 1 , 2 , 3 , 4 , 5 ,

6 , 7 , 8 , 9 , 10 ,

11 , 12 , 13 , 14 , 15 ,

16 , 17 , 18 , 19 , 20 ,

21 , 22 , 23 , 24 , 25 ,

26 ,

FJ y FJ x FJ z FJ e FJ x FJ zx

FJ x FJ x FJ zx FJ x FJ e

FJ z FJ x FJ x FJ zx FJ x

FJ x FJ z FJ x FJ x FJ zx

FJ e FJ x FJ zx FJ x FJ x

FJ zx FJ

     

    

    

    

    

        

         

         

         

         

   

2

2 4 3

3 2 3 3

3 3 2 3

4 3

4

27 , 28 , 29 , 30 ,

31 , 32 , 33 , 34 , 35 ,

36 , 37 , 38 , 39 , 40 ,

41 , 42 , 43 , 44 , 45 ,

46 , 47 , 48 , 49 , 50 ,

51 , 52

x FJ e FJ zx FJ x

FJ x FJ zx FJ x FJ x FJ zx

FJ x FJ x FJ zx FJ e FJ x

FJ zx FJ x FJ x FJ zx FJ x

FJ e FJ zx FJ x FJ x FJ zx

FJ x FJ

   

    

    

    

    

      

         

         

         

         

   

3 4 4

4 3

4 2 4 3

3 3 2 4

3 2 3

2

, 53 , 54 , 55 ,

56 , 57 , 58 , 59 , 60 ,

61 , 62 , 63 , 64 , 65 ,

66 , 67 , 68 , 69 , 70 ,

71 , 72 , 73 , 74 , 75 ,

76 , 77

x FJ zx FJ x FJ x

FJ z FJ e FJ x FJ z FJ x

FJ x FJ zx FJ x FJ e FJ zx

FJ x FJ x FJ z FJ x FJ x

FJ zx FJ x FJ x FJ zx FJ e

FJ x FJ zx

   

    

    

    

    

    4, 78 , .FJ x  

 

   3 75FJ FJ e  ,     24 76FJ FJ x  ,    5 77FJ FJ zx  ve 

    46 78FJ FJ x   eşitliklerden  anlaşılacağı gibi   5,2,2 : , ,y x z
FJ

 Fibonacci-Jacobsthal 

orbitinin periyot uzunluğu 72‟dir. 

 

Sonuç 2.3.1.2. 3n   için (2, ,2)n polyhedral grubunun Fibonacci-Jacobsthal orbitinin 

periyot uzunluğu 3‟tür [45]. 

İspat 2.3.1.2: (2, ,2)n polyhedral grubu  

2 2, , : nx y z x y z xyz e     

şeklinde takdim edilmektedir. Buradaki bağıntılar kullanılarak   2, ,2 : , ,n y x z
FJ

 dizisi  

, , , , , , , , , , , .y x z e zy z e zy z e zy   

olarak elde edilir ki, bu da bize   2, ,2 : , ,
3

n y x z
LFJ 

 olduğunu gösterir [45]. 
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3. ARAŞTIRMA BULGULARI 

Tanım 2.3.1 den açıkça anlaşılacağı gibi sonlu bir grupta Fibonacci-Jacobsthal orbitinin 

periyot uzunluğu seçilen geren kümesine, bu küme üzerinden belirlenen başlangıç 

değerlerine ve dizi elamanlarının birbirleriyle ilişkisi bakımından da grubun farklı 

takdimlerine göre değişkenlik göstermektedir. Tez çalışmamızda, grup elemanları 

yardımıyla tanımlanan Fibonacci-Jacobsthal dizileri üzerine kurgulanan konseptin farklı 

grup aileleri üzerine genişletilmesi suretiyle daha iyi anlaşılması amaçlanmıştır. Bu 

bölümde, geren sayısı göz önünde bulundurularak iyi bilinen bazı grupların Fibonacci-

Jacobsthal orbitleri üzerinde durulacaktır. Bu anlamda, 2-gerenli gruplardan nD

dihedral, 2nQ genelleştirilmiş quaternion ve 2mSD semidihedral gruplarının 3-gerenli 

gruplardan ise , 2,2n , 2, , 2n  ve 2,2,n  binary polyhedral gruplarının Fibonacci-

Jacobsthal orbitlerinin periyotlarının uzunları belirlenecektir.  

 

3.1.  2n için 2n mertebeli,  

 
22, : nx y x y xy e  

 

şeklinde takdim edilen nD dihedral grubu ele alalım. Farklı n  değerleri ve yukarıdaki 

takdime göre  ,x y  geren çifti için dihedral grubun Fibonacci-Jacobsthal orbitlerinin 

periyot uzunlukları aşağıdaki gibidir: 

 

n  
 : ,nD x y

LFJ
 

2  6 

3  6 

4  6 

5  6 

6  6 

  

Tablodan da anlaşılacağı gibi her 2n için  : ,
6

nD x y
LFJ 

 dir. Bu sonuca aşağıdaki 

diziden ulaşılmaktadır: 



57 

2 2

2

(0) , (1) , (2) , (3) , (4) , (5) , (6) , (7) , (8) ,

(9) , (10) , (11) , .

FJ x FJ y FJ e FJ e FJ yx FJ e FJ e FJ yx FJ e

FJ e FJ yx FJ e

        

    

Her 2n için dizinin terimleri arasında  

2(2) (8) , (3) (9) , (4) (10)FJ FJ e FJ FJ e FJ FJ yx       ve (5) (11)FJ FJ e   

şeklinde bir bağıntı olduğundan nD dihedral grubun  Fibonacci-Jacobsthal orbitinin 

periyot uzunluğu 6 dır. 

3.2. 3n için 2n
mertebeli,  

 

şeklinde takdim edilen 2nQ genelleştirilmiş quaternion grubu göz önünde bulunduralım. 

Farklı n  değerleri ve  ,x y  geren çiftine göre 2nQ grubunun Fibonacci-Jacobsthal  

orbitlerinin periyot uzunlukları aşağıdaki tabloda verilmiştir:  

 

n  
 

2
: ,nQ x y

LFJ
 

2  6 

3  6 

4  6 

5  6 

6  6 

  

 

Dolayısıyla her 3n için  
2

: ,n yQ x
FJ

 dizinin periyot uzunluğu 6 olur. Bu sonuca 

aşağıdaki diziden ulaşılmaktadır: 

2 2 2

2

(0) , (1) , (2) , (3) , (4) , (5) , (6) , (7) , (8) ,

(9) , (10) , (11) , .

FJ x FJ y FJ e FJ e FJ yx FJ e FJ y FJ yx FJ e

FJ e FJ yx FJ e

        

    
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Her 3n  için  2nQ genelleştirilmiş quaternion grubun Fibonacci-Jacobsthal  orbitinin 

terimleri arasında 

2(2) (8) , (3) (9) , (4) (10)FJ FJ e FJ FJ e FJ FJ yx       ve (5) (11)FJ FJ e   

şeklinde bir bağıntı olduğundan  
2

: ,
6

n x yQ
LFJ 

 olarak elde edilmektedir. 

3.3. 4m olmak üzere 2m
mertebeli semidihedral grup 

1 22 2 1 2

2
, : ,

m m

mSD x y x y e yxy x
     

 

 

şeklinde takdim edilmektedir.  Farklı m değerleri ve  ,x y  geren çiftine göre 2mSD

grubunun Fibonacci-Jacobsthal orbitlerinin periyot uzunlukları aşağıdaki gibidir:  

 

m  
 

2
: ,mSD x y

LFJ
 

2  6 

3  6 

4  6 

5  6 

6  6 

  

 

Tablodan anlaşılacağı gibi her 4m için 2mSD  semidihedral grubun Fibonacci-

Jacobsthal orbitlerinin periyot uzunlukları  6  olarak karşımıza çıkmaktadır. Bu sonuca 

genel anlamda aşağıdaki dizi üzerinden ulaşılmaktadır:   

2 2

2

(0) , (1) , (2) , (3) , (4) , (5) , (6) , (7) , (8) ,

(9) , (10) , (11) , .

FJ x FJ y FJ e FJ e FJ yx FJ e FJ e FJ yx FJ e

FJ e FJ yx FJ e

        

    

Bu dizinin terimleri arasında  
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2(2) (8) , (3) (9) , (4) (10)FJ FJ e FJ FJ e FJ FJ yx      ve (5) (11)FJ FJ e   

olacak şekilde bir bağıntı olduğundan her 4m için  
2

: ,
6

mSD x y
LFJ 

  sonucuna ulaşılır. 

3.4. Şimdi  , ,x y z  geren 3-üçlüsüne göre 3n  için , 2,2n , 2, , 2n  ve 2,2,n  

binary polyhedral gruplarının Fibonacci-Jacobsthal  orbitleri üzerinde duralım. 4n

mertebeli , 2,2n , 2, , 2n  ve 2,2,n  binary polyhedral grupları sırasıyla  

2 2,2,2 , , : nn x y z x y z xyz   
, 

2 22, ,2 , , : nn x y z x y z xyz   
 

ve  

2 22,2, , , : nn x y z x y z xyz   
 

şeklinde takdim edilmektedir. 

Farklı n  değerleri için , 2,2n binary polyhedral grubunun Fibonacci-Jacobsthal 

orbitlerinin periyot uzunlukları aşağıdaki gibidir: 

n  
 ,2,2 : , ,n x y z

LFJ
 

2  6 

3  6 

4  6 

5  6 

6  6 

  

Tablodaki periyot değerlerine aşağıdaki dizi üzerinden ulaşılmaktadır:   

2 1(0) , (1) , (2) , (3) , (4) , (5) , (6) , (7) , (8) ,

(9) , (10) , (11) , .

FJ x FJ y FJ z FJ e FJ z FJ z FJ z FJ z FJ z

FJ e FJ z FJ z

        

  
Buradan 

(2) (8) , (3) (9) , (4) (10) , (5) (11)FJ FJ z FJ FJ e FJ FJ z FJ FJ z         
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eşitlikleri edilir ki, bu da bize her 3n  için  ,2,2 : , ,
6

n x y z
LFJ 

 olduğunu gösterir.  

2, ,2n  binary polyhedral grubununun Fibonacci-Jacobsthal orbitlerinin periyot 

uzunlarını ele alalım.  2, ,2 : , ,n x y z
FJ

 dizisi  

           

         

         

       

   

3 3

6 3 27 12 45

81 54 51 177 264

483 1419 174 1629

525

0 , 1 , 2 , 3 , 4 , 5 ,

6 , 7 , 8 , 9 , 10 ,

11 , 12 , 13 , 14 , 15 ,

16 , 17 , 18 , 19 ,

20 , 21

n

n

n

FJ x FJ y FJ z FJ e FJ y FJ xy

FJ y FJ y FJ xy FJ y FJ y

FJ xy FJ y FJ y FJ xy FJ y

FJ y FJ xy FJ y FJ y

FJ xy FJ

 

  

 

   

     

    

    

   

      

       

       

       

3780 3021 17385 5298

27219 41607 38544 15165

142803 145962 323517 826485

209148 844179 203457

, 22 , 23 , 24 ,

25 , 26 , 27 , 28 ,

29 , 30 , 31 , 32 ,

33 , 34 , 35 , 36

n

n

y FJ y FJ xy FJ y

FJ y FJ xy FJ y FJ y

FJ xy FJ y FJ y FJ xy

FJ y FJ y FJ xy FJ y



  

 



   

   

   

   

       

       

       

2315802

2517363 11151231 1192680 14569053

15337509 25560066 5027613 105650973

66624972 199452915 416449575 1990309

,

37 , 38 , 39 , 40 ,

41 , 42 , 43 , 44 ,

45 , 46 , 47 , 48

n

n

FJ y FJ xy FJ y FJ y

FJ xy FJ y FJ y FJ xy

FJ y FJ y FJ xy FJ y



 



   

   

   

   

       

       

     

14

333546861 546323511 1264186464 1925794173

6500731485 59028954 8187697539 13608194031

16552481940 8659929171 8040841133

,

49 , 50 , 51 , 52 ,

53 , 54 , 55 , 56 ,

57 , 58 , 59

n

n

FJ y FJ xy FJ y FJ y

FJ xy FJ y FJ y FJ xy

FJ y FJ y FJ xy

 

 

  

   

   

    

       

       

 

1 32337587478

123759926349 214466757981 150507090264 134940773475

493119244257 721402817742 1338997495587 3897562929351

513786537

, 60 ,

61 , 62 , 63 , 64 ,

65 , 66 , 67 , 68 ,

69

n

n

FJ y

FJ y FJ xy FJ y FJ y

FJ xy FJ y FJ y FJ xy

FJ y

 

  





   

   

      948 4332225046349 5547984844629 10205809706542, 70 , 71 , 72 ,FJ y FJ xy FJ y     

şeklindedir. Bu dizi üzerinden elde edilen bazı  2, ,2 : , ,n x y z
LFJ

 değerleri aşağıdaki 

tabloda verilmiştir:  

 

n  
 2, ,2 : , ,n x y z

LFJ
 

3  
6 

4  
12 

5  
72 



61 

6  
6 

7  
18 

8  
24 

9  
18 

10  
72 

16  
48 

 

Örnek 3.4.1 2,10,2  binary polyhedral grubunun Fibonacci-Jacobsthal orbiti

           

         

         

         

       

3 3

6 7 1 3 8 5

6 1 3 4

3 6 1 5 1

5 1

0 , 1 , 2 , 3 , 4 , 5 ,

6 , 7 , 8 , 9 , 10 ,

11 , 12 , 13 , 14 , 15 ,

16 , 17 , 18 , 19 , 20 ,

21 , 22 , 23 , 24

FJ x FJ y FJ z FJ e FJ y FJ xy

FJ y FJ y FJ x y FJ y FJ y

FJ z FJ y FJ y FJ xy FJ y

FJ y FJ z FJ y FJ y FJ y x

FJ e FJ y FJ y x FJ

 

  

   

  



     

    

    

    

     

         

         

         

         

   

2 9

1 3 4 5 3 2

7 5 8 3

2 7 1 7

1 6 3 1 3 8

5

, 25 ,

26 , 27 , 28 , 29 , 30 ,

31 , 32 , 33 , 34 , 35 ,

36 , 37 , 38 , 39 , 40 ,

41 , 42 , 43 , 44 , 45 ,

46 , 47

y FJ y

FJ x y FJ y FJ y FJ xy FJ y

FJ y FJ xy FJ y FJ y FJ xy

FJ y FJ y FJ yx FJ e FJ y

FJ yx FJ y FJ y FJ x y FJ y

FJ y FJ



  



  

 



    

    

    

    

      

         

         

         

       

5 1 6 9 1

4 7 5 1 6 9

9 2

1 1 3 4 5 1

2 3 8

, 48 , 49 , 50 ,

51 , 52 , 53 , 54 , 55 ,

56 , 57 , 58 , 59 , 60 ,

61 , 62 , 63 , 64 , 65 ,

66 , 67 , 68 , 69 , 7

y x FJ y FJ y FJ yx

FJ y FJ y FJ y x FJ y FJ y

FJ z FJ e FJ y FJ z FJ y

FJ y FJ x y FJ y FJ y FJ yx

FJ y FJ y FJ z FJ y FJ

  

   



  

 

   

    

    

    

     

         

     

9

1 2 3 3

3 3 6

0 ,

71 , 72 , 73 , 74 , 75 ,

76 , 77 , 78 ,

y

FJ yx FJ y FJ y FJ xy FJ e

FJ y FJ xy FJ y

 

  



    

    

şeklinde olup burada 

   3 75FJ FJ e  ,     34 76FJ FJ y  ,     35 77FJ FJ xy  ve 

    66 78FJ FJ y  eşitlikleri sağlandığından   2,10,2 : , ,x y z
FJ

 dizisinin periyot 

uzunluğu 72 olarak elde edilir. 
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Son olarak farklı n  değerleri için  2,2,n  binary polyhedral grubunun Fibonacci-

Jacobsthal orbiti üzerinde duracağız. Bu gruptaki Fibonacci-Jacobsthal orbiti aşağıdaki 

gibidir: 

           

         

         

       

1 3

8 1 21 7 16 1 19

53 12 1 263 15 352

1 327 659 232 1 2813

0 , 1 , 2 , 3 , 4 , 5 ,

6 , 7 , 8 , 9 , 10 ,

11 , 12 , 13 , 14 , 15 ,

16 , 17 , 18 , 19 ,

2

n

n

n

FJ x FJ y FJ z FJ e FJ x z FJ z

FJ z FJ x z FJ z FJ z FJ x z

FJ z FJ z FJ x z FJ z FJ z

FJ x z FJ z FJ z FJ x z

FJ

 

     

   

     

     

    

    

   

       

       

       

     

1513 5040 1 9829 5541

7064 1 16863 30751 51392

1 161551 10531 194616 1 103835

420825 278864 1 189244

0 , 21 , 22 , 23 ,

24 , 25 , 26 , 27 ,

28 , 29 , 30 , 31

, 32 , 33 , 34

n

n

z FJ z FJ x z FJ z F

J z FJ x z FJ z FJ z

FJ x z FJ z FJ z FJ x z

FJ z FJ z FJ x z



   

    



   

   

   

    

       

       

     

5 704747

3087736 1 4774793 4061231 2550240

1 2272677 17284173 35040088 1 112021679

18227657 103233296 1 12090577

, 35 ,

36 , 37 , 38 , 39

, 40 , 41 , 42 , 43 ,

44 , 45 , 46 , 4

n

n

FJ z

FJ z FJ x z FJ z FJ z

FJ x z FJ z FJ z FJ x z

FJ z FJ z FJ x z FJ



   

  

 



   

   

    

       

       

   

261149563

249054552 1 1214784245 285339585 1840141952

1 2538069725 2824265149 442574728 1 10981734471

9357944903 23036695920

7 ,

48 , 49 , 50 , 51 ,

52 , 53 , 54 , 55 ,

56 , 57 ,

n

n

z

FJ z FJ x z FJ z FJ z

FJ x z FJ z FJ z FJ x z

FJ z FJ z F



  

  

 



   

   

     

       

       

1 54692696631 17999557131

51826863304 1 33111476125 157652398001 195823320352

1 777493687189 81310553299 1065395863656 1 1124272

58 , 59 ,

60 , 61 , 62 , 63 ,

64 , 65 , 66 , 67

n

n

J x z FJ z

FJ z FJ x z FJ z FJ z

FJ x z FJ z FJ z FJ x z

  

  

    

 

   

   

       

 

506017

1886860067415 414911437264 1 7858607242687 4830757327717

14679969102056

,

68 , 69 , 70 , 71 ,

72 ,n

FJ z FJ z FJ x z FJ z

FJ z

   



   

  

 

 

 

Aşağıdaki tabloda bazı n  değerleri için elde edilen   2,2, : , ,n x y z
LFJ

 uzunlukları 

verilmiştir:  

 

n  
 2,2, : , ,n x y z

LFJ
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3  
18 

4  
12 

5  
72 

6  
18 

7  
18 

8  
24 

9  
18 

10  
72 

16  
48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Örnek 3.4.2  2,2,5 : , ,x y z
FJ

 dizisi 
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           

         

         

         

     

1 3

3 1 1 7 6 1

3 3 1 3 5 2

1 3 3 1 3 3

1 1

0 , 1 , 2 , 3 , 4 , 5 ,

6 , 7 , 8 , 9 , 10 ,

11 , 12 , 13 , 14 , 15 ,

16 , 17 , 18 , 19 , 20 ,

21 , 22 , 23

FJ x FJ y FJ z FJ e FJ x z FJ z

FJ z FJ x z FJ z FJ z FJ x z

FJ z FJ z FJ x z FJ z FJ z

FJ x z FJ z FJ z FJ x z FJ z

FJ e FJ x z FJ z

 

    

  

 

 

     

    

    

    

      

         

         

         

         

1 3

1 2 1 1 1

5 4 3

1 1 3 1 1 3

3 3 1 1 3 4

, 24 , 25 ,

26 , 27 , 28 , 29 , 30 ,

31 , 32 , 33 , 34 , 35 ,

36 , 37 , 38 , 39 , 40 ,

41 , 42 , 43 , 44 , 45 ,

4

FJ z FJ x z

FJ z FJ z FJ x z FJ z FJ z

FJ x FJ z FJ z FJ x FJ z

FJ z FJ x z FJ z FJ e FJ x z

FJ z FJ z FJ x z FJ z FJ z

FJ



    

     

  

 

    

    

    

    

         

         

         

         

     

1 3 3 3 5

2 1 3 1

3 1 1 1 1

2 1 1

1 1 3 5

6 , 47 , 48 , 49 , 50 ,

51 , 52 , 53 , 54 , 55 ,

56 , 57 , 58 , 59 , 60 ,

61 , 62 , 63 , 64 , 65 ,

66 , 67 , 68 ,

x z FJ z FJ z FJ x FJ z

FJ z FJ x FJ z FJ z FJ x z

FJ z FJ e FJ x z FJ z FJ z

FJ x FJ z FJ z FJ x z FJ z

FJ z FJ x z FJ z F

  

  

    

 

 

    

    

    

    

      

         

         

         

         

 

4 1 3

3 1

3 3 1 3 3

4 3 3 1 3

5 2 1 3 3

1

69 , 70 ,

71 , 72 , 73 , 74 , 75 ,

76 , 77 , 78 , 79 , 80 ,

81 , 82 , 83 , 84 , 85 ,

86 , 87 , 88 , 89 , 90 ,

91

J z FJ x z

FJ z FJ z FJ x z FJ z FJ e

FJ x FJ z FJ z FJ x z FJ z

FJ z FJ x FJ z FJ z FJ x z

FJ z FJ z FJ x z FJ z FJ z

FJ x

 

 

  

   

  



 

    

    

    

    

        

         

         

         

   

3 3 1 3

1 3 1 2 1 3

1 1 1 5 4

1 1 3 1 1 1

, 92 , 93 , 94 , 95 ,

96 , 97 , 98 , 99 , 100 ,

101 , 102 , 103 , 104 , 105 ,

106 , 107 , 108 , 109 , 110 ,

111 , 112

z FJ z FJ e FJ x z FJ z

FJ z FJ x z FJ z FJ z FJ x z

FJ z FJ z FJ x z FJ z FJ z

FJ x z FJ z FJ z FJ x z FJ z

FJ e FJ



    

  

    

   

    

    

    

  1 3 3, 113 .x z FJ z    

 

şeklindedir. 

 

 

 Dolayısıyla 
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   39 111FJ FJ e  ,     1 340 112FJ FJ x z   ve     341 113FJ FJ z   

bu eşitliklerden anlaşılacağı gibi 2,2,5  binary polyhedral grubunun Fibonacci-

Jacobsthal orbitinin peiryot uzunluğu 72 dir. 
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4. SONUÇLAR VE TARTIŞMA 

Bu tezde grup elemanları yardımıyla yeniden tanımlanan Fibonacci–Jacobsthal dizisinin 

daha iyi anlaşılabilmesi adına geren sayısı göz önünde bulundurularak iyi bilinen bazı 

grupların Fibonacci-Jacobsthal orbitleri üzerinde durulmuştur. Bu anlamda,  2-gerenli 

gruplardan nD dihedral, 2nQ genelleştirilmiş quaternion ve 2mSD semidihedral 

gruplarının ve 3-gerenli gruplardan ise , 2,2n , 2, , 2n  ve 2,2,n  binary 

polyhedral gruplarının Fibonacci-Jacobsthal orbitlerinin periyotlarının uzunları 

belirlenmiştir. 
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