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OZET

DOKTORA TEZi

YUZEYI FONKSIYONELLESTIRILMIiS HIBRIT METAL OKSIT
NANOYAPILARIN GELISTIRILMESI

Merve ILGAR

Istanbul Universitesi-Cerrahpasa
Lisansiistii Egitim Enstitiisii
Anabilim Dah Adi

Program Adi

Damisman : Dog. Dr. Selcan KARAKUS
II. Damisman : Prof. Dr. Ayben KiLISLIOGLU

Seryum oksit (CeOz2) esasli hibrit nanoyapilar, biyoteknolojide ila¢ salim ve terapétik etki ile
cevresel uygulamalarda fotokatalitik etki gibi farkli alanlarda ¢ok fonksiyonlu nanomalzeme
olarak ilgi gormektedir. Bu ¢aligmada, kimyasal ¢oktiirme, termal ayrisma ve sonokimya-
destekli yesil yontem kullanilarak sirasiyla kitosan (Cs), demir oksit (FesOs) ve bakir oksit
(CuO) katkili CeOz hibrit nanoyapilarinin sentezi ii¢ farkli boliimde incelendi. Numunelerin
tanecik boyutlari, ylizey morfolojileri, kimyasal ve kristal yapilar1t SEM, TEM, FTIR ve XRD
analizleri ile aydinlatildi. Birinci boliimde ilag salim kinetigi, ikinci boliimde singlet oksijen
tiretim kinetigi ve t¢iincii boliimde fotokatalitik bozunma kinetigi UV-Vis spektrofotometresi
kullanilarak incelendi. Ilk boliimde CeO2 ve Cs katkili CeOz’nin (CeO2/Cs) metotreksat (MTX)
salim1 tlizerindeki etkisi arastirildi. CeO2/Cs’nin CeO2’ye gore ayni siirede 5.3 kat fazla salim
gerceklestigi gozlemlendi. CeO/Cs igin farkli kinetik modellere uygulanan MTX salim
sonuglari, Higuchi ve Bhaskar kinetik modellerine uyum sagladi. Béylece, MTX saliminda
CeO02/Cs’nin uygun bir inorganik nanotasiyici olarak dnerilebilecegi sonucuna varildi. ikinci
kisimda, seryum oleat (Ce(Ole)z) ve demir oleat (Fe(Ole)s) baslaticilarindan farkli sicakliklarda
termal ayrisma yontemiyle oleik asit (OA) ile kapli CeO2/OA ve Fez04/OA sentezlendi. Uygun
sentez sicakligi belirlendikten sonra, 2:1, 5:1 ve 9:1 oranlarinda Ce(Ole)sz:Fe(Ole)s kullanilarak,
Ce0,-Fe30s hibrit  nanoyapilar (CF/OA-9, CF/OA-2 ve CF/OA-5) sentezlendi.
Optimizasyonlar sonucunda istenilen yapida elde edilen CF/OA-9’un 4.7 emu/g degerinde
stiperparamanyetik 6zellik gosterdigi ve oldukea kisa siirede singlet oksijen iiretimini arttirdigi
belirlendi. Son bdliimde, CuO/ME ve CuO-CeO: hibrit nanoyapilar1 (CC/ME), sonokimya-
destekli yesil yontem ile maca ekstrakti (ME) kullanilarak sentezlendi ve bunlarin eosin Y (EY)
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tizerindeki fotokatalitik etkileri goriiniir 1s1kta incelendi. CC/ME, sulu ortamda EY’nin %89
degerinde bozunmasini sagladi. EY'nin fotobozunmasi, konsantrasyon artisiyla dogrusal olarak
azald1 ve artan pH ile hafifce yiikseldi. CC/ME tekrar kullanilabilirlik testleri sonucunda en az
tic kez verimli bir sekilde kullanilabilecegi gozlemlendi. CuO'nun CeO-'ye eklenmesi, sulu
ortamda EY'yi bozarak ¢evresel uygulamalar i¢in uygun bir fotokatalizor oldugu kanitlanmistir.

Haziran 2023 , 131 sayfa.

Anahtar kelimeler: seryum oksit, ilag salim kinetigi, singlet oksijen iiretimi, fotokatalitik
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Hybrid nanomaterials based on cerium oxide (CeQO>) are of great interest as multifunctional
nanomaterials in various fields such as drug delivery and therapeutic effects in biotechnology,
as well as photocatalytic effects in environmental applications. In this study, the synthesis of
chitosan (Cs), iron oxide (Fez304), and copper oxide (CuO) additives on CeO2 hybrid
nanomaterials was investigated in three different sections using chemical precipitation, thermal
decomposition, and sonochemical-assisted green methods, respectively. The particle sizes,
surface morphologies, chemical and crystal structures of the samples were clarified using SEM,
TEM, FTIR, and XRD analysis. Drug release kinetics in the first part, singlet oxygen production
kinetics in the second part and photocatalytic degradation kinetics in the third part were
examined using UV-Vis spectrophotometer. In the first section, the effect of CeO, and Cs-
doped CeO> (CeO2/Cs) on the release kinetics of methotrexate (MTX) was investigated. It was
observed that CeO/Cs had 5.3 times more release than CeO- in the same period. MTX release
results applied to different kinetic models for CeO,/Cs fitted Higuchi and Bhaskar kinetic
models. Therefore, CeO2/Cs could be recommended as a suitable inorganic nanocarrier for
MTX release. In the second section, CeO,/OA and Fe304/OA coated with oleic acid (OA) were
synthesized by the thermal decomposition method at different temperatures using cerium oleate
(Ce(Ole)s) and iron oleate (Fe(Ole)s) initiators. After determining the synthesis temperature,
Ce0,-Fe304 hybrid nanomaterials (CF/OA-9, CF/OA-2, and CF/OA-5) were synthesized using
Ce(Ole)s:Fe(Ole)s ratios of 2:1, 5:1, and 9:1, respectively. As a result of optimizations, CF/OA-
9, which exhibited the desired structure, exhibited superparamagnetic properties with a value
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of 4.7 emu/g and increased singlet oxygen production in a very short time. In the final section,
CuO/ME and CuO-CeO hybrid nanomaterials (CC/ME) were synthesized using the
sonochemical-assisted green method with maca extract (ME), and their photocatalytic effects
on eosin Y (EY) were examined under visible light. CC/ME achieved a degradation rate of 89%
for EY in an aqueous medium. The photodegradation of EY decreased linearly with increasing
concentration and slightly increased with increasing pH. CC/ME was observed to be efficiently
reusable for at least three cycles in the reusability test. The addition of CuO to CeO: has been
proven to be a suitable photocatalyst for environmental applications, degrading EY in the
aqueous medium.

June 2023, 131 pages.

Keywords: cerium oxide, drug release Kinetics, singlet oxygen generation, photocatalytic

degradation kinetics
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1. GIRIS

Metal oksit nanotanecikler oldukga istiin 6zelliklere sahip olup, ilag tastyict sistemler,
manyetik rezonans goriintilleme (MRI) ve fotodinamik terapi (PDT) gibi biyomedikal
uygulamalarda ve fotokatalizor olarak ¢evresel uygulamalarda faydali rol oynamaktadir (Umar
et al., 2015; Soares et al., 2016; Gogoi et al., 2017; Senthilkumar et al., 2017; Chen et al.,
2022). Metal oksit nanotaneciklerin manyetik, optik ve iletkenlik gibi fizikokimyasal
ozellikleri, boyut ve morfolojilerine bagli olarak sentez yontemleri ile kontrol edilebilir (Khan,
Saeed and Khan, 2019). Genellikle basit sentez yontemleri kullanilarak, sicaklik, pH ve
reaksiyon siiresi gibi parametrelerin optimizasyonu ile istenilen nitelikleri kazanabilen metal
oksit nanotanecikler, tek basina kullanilabildikleri gibi, bazi durumlarda yiizeylerinin
gelistirilmesine ihtiyag duyar. Bu nedenle, inorganik veya organik maddelerle birlikte
kullanilarak gelistirilebilir ve bdylece benzersiz 6zellikler kazanabilirler. Bu ¢aligmada, metal
oksit nanotanecikler, farkli sentez yontemleri ile gelistirilmis ve farkli uygulama alanlarindaki
etkileri li¢ farkli boliimde sunulmustur. Kimyasal ¢oktiirme yontemiyle kitosan (Cs) katkilt
seryum oksit (CeO») hibrit nanoyapilar, termal ayrisma yontemiyle oleik asitle (OA) kaplanmis
CeO2-demir oksit (FesO4) hibrit nanoyapilar ve sonokimya-destekli yesil sentez yontemiyle de
maca ekstraktinda (ME) CeOz-bakir oksit (CuO) hibrit nanoyapilar gelistirilmis ve ilag salim

kinetigi, singlet oksijen tiretimi, fotokatalitik 6zellikleri arastirilmistir.

. Birinci bolimde, CeO2 ve Cs katkili CeO: hibrit nanoyapilar (CeO./Cs),
kimyasal ¢oktiirme yontemi kullanilarak sentezlendi ve metotreksat (MTX) yiikli
nanoyapilarin ilag salim kinetikleri incelendi. CeO2 uygun pH kosullarinda, oksidatif stress
kaynakli {iiretilen serbest radikalleri temizlemeleri nedeniyle, ilag salim uygulamalarinda
onemli bir rol oynayabilmektedir (Karakoti et al., 2008). Ancak, hidrofobik karakterleri
nedeniyle, sinirli sayida g¢alisma CeOz'nin ilag salim uygulamalarindaki kullanimina
odaklanmistir (Hao et al., 2020). Bu nedenle, CeO. yiizeyinin gelistirilerek ilag salim
caligmalarinda kullanimi amaglanmigtir. CeO2 yiizeyi, Cs gibi bir biyobozunur polimer ile
katkilandirildiginda, sulu ortamdaki kararliligi ve homojen dagilimi arttirilabilir. Cs, Kitinin
deasetilasyonundan elde edilen N-asetil glukozamin ve D-glukozamin'in tekrar eden
birimlerinden olusan bir polisakkarittir (SINGH and RAY, 2000; Tavakol et al., 2014) ve suda



¢cOzliniir olmast i¢in amino gruplarmin asidik protonasyonu ile modifiye edilmesi
gerekmektedir (Sobhana et al., 2009). Ayrica toksik degildir ve insan viicudu tarafindan
tiikketilebilen iirlinlere yavas yavas pargalanabilir. Biyolojik olarak parcalanabilirligi, canh
dokularla biyouyumlulugu ve alerjik reaksiyonlara neden olmama gibi 6zellikleri nedeniyle
biyolojik uygulamalar i¢in uygundur (Arias et al., 2018). Bir¢ok ilacin yiiksek toksisite, diisiik
stabilite ve yan etki gibi bircok nemli sorunlart vardir. Cs’nin ilag tasiyict uygulamalarinda
dogal bir polimer olarak kullanilmasi, bu problemlerin bir kisminin hafifletilmesinde veya
¢oziilmesinde 6nemli bir rol oynayabilir (Bernkop-Schniirch and Diinnhaupt, 2012; Hu, Sun
and Wu, 2013). ilag tasiyic1 CeO; ve CeO,/Cs nanoyapilarina yiiklenmek iizere segilen MTX
(2,4-diamino-N10-metil propil glutamik asit), bir antimetabolit, folik asit analogu ve
dihidrofolat rediiktaz (DHFR) inhibitoriidiir (Seeger et al., 1949). Losemi, akciger kanseri,
meme kanseri, multipl miyelom (akyuvarlarda olusan kanser tiirii), Crohn hastaligi (bagirsak
iltihabi), osteosarkom (kemik tiimorii), romatoid artrit (iltthapli romatizma) ve sedef hastaligi
dahil olmak tizere ¢esitli kanser ve otoimmiin hastaliklar igin terapétik bir ajandir (Bologna et
al., 1997; Abolmaali, Tamaddon and Dinarvand, 2013; Rajitha et al., 2017; Friedman and
Cronstein, 2019). MTX, kanser tedavisinde yaygin olarak kullanilmaktadir ancak diisiik
terapotik indekse sahip, oldukca toksik ve biyoyararlanimi sinirhi bir antikanser ajanidir
(Abolmaali, Tamaddon and Dinarvand, 2013). MTX’in sulu ortamda zayif ¢Oziiniirligi
nedeniyle etkinligi sinirlidir ve bu problemin ortadan kalkmasi i¢in MTX'in biyoyararlanimi
lipozomlar, polimerik nanotanecikler, dendrimerler, inorganik malzemeler veya diger ilag¢
tastyici sistemler kullanilarak arttirilabilir. Bu nedenle, MTX’in salimu i¢in polimer-metal oksit
hibrit nanoyapr ilag tastyici sistemine dayanan Cs katkili CeO; nanotastyicilarin {iretilmesi
planlandi. Bu amagla, MTX yiikli CeO2 ve CeO2/Cs numuneleri, hizli kimyasal ¢oktiirme
yontemi ile sentezlendi ve numunelerin yiizey morfolojileri, kimyasal ve fiziksel yapilart
taramal1 elektron mikroskobu (SEM), Fourier transform kiziltesi spektrofotometresi (FTIR),
X-151n1 kirmimm (XRD) yontemleri ile karakterize edildi, ilag salim profilleri UV-Vis
spektroskopisi ile incelendi. Elde edilen bulgulara gore, CeO2/Cs nanotasiyicisinin MTX

saliminda etkili bir sekilde kullanilabilecegi sonucuna varildu.

o Ikinci béliimde, OA ile kapli CeOz- FesO4 hibrit nanoyapilar1 (CF/OA), termal
ayrisma yontemiyle sentezlenerek, singlet oksijen iiretimi kinetik ¢alismalar1 yapildi. Ustiin
manyetik 6zelliklerinden dolay1 biyomedikal uygulamalarda yaygin olarak kullanilan Fe3Oa,

tek basina sentezlendiginde biyolojik ortamda ylizey etkilesiminin kisitli olmasi ve kararsiz



olabilmesi gibi nedenlerle bir yiizey aktif madde ile birlikte sentezlenerek daha etkin sekilde
kullanilabilmektedir (Figuerola et al., 2010). Ayrica tek basina manyetik 6zellige sahip olan
Fe3O4 farkli metal oksit nanotaneciklerle katkilandirildiginda ¢ok fonksiyonlu yeni metal oksit
hibrit nanoyapilar olusturulabilir. Bu amagla, reaktif oksijen tiirleri (ROS) tireterek oksidatif
stres yaratabilen CeO: ile birlikte FesO4 hibrit nanoyapilar gelistirilebilir (Rodea-Palomares et
al., 2012). CeO>’nin singlet oksijen iiretebildigi ¢aligmalar literatiirde mevcut olup, bu 6zelligi
ile PDT uygulamasinda kullanilabilmektedir (Chen et al., 2022; Qi et al., 2023). Bu durumda,
Fe304-CeO: hibrit nanoyapilarin sentezlenmesiyle, biyouygulama alanlarinda kullanilabilen
etkin bir nanomalzeme potansiyeli olusturabilmektedir. CeO2-Fe3O4 hibrit nanoyapilar, birlikte
¢oktiirme ve sol-jel yontemleri kullanilarak daha 6nce sentezlenmistir (DING et al., 2017,
Gogoi et al., 2017; Gao et al., 2018). Bu yontemlerle sentezlenen nanoyapilarin, kararsiz
olabilecegi ve uzun siire saklanmasinda problem olacag diisiiniilerek, OA ile modifiye edilmis
nanomalzemelerin termal ayrisma yontemi ile iretilmesi hedeflendi. Literatiirde, metal oleat
kompleksleri kullanilarak, iyi tanecik boyutu ve dagilimina sahip nanotanecikler ayri ayri
gelistirilmistir (Jana, Chen and Peng, 2004; Alvarez-Asencio, Corkery and Ahniyaz, 2020).
Fakat her iki metal oleat kompleks baslaticisi seryum oleat (Ce(Ole)s) ve demir oleat (Fe(Ole)s)
kullanilarak yiiksek sicakliklarda, havaya duyarli sentez kosullarinda tiretilen OA kapli CeOo-
Fe30a hibrit nanoyapilara (CF) literatiirde ¢ok sik rastlanmamaktadir. Bu nedenle, OA ile kapl
CF/OA'nin sentezi i¢in vakum ortaminda termal ayrisma yontemi tercih edildi ve deneysel
optimizasyon yapildi. Calismada ilk olarak, 6nceden sentezlenen Ce(Ole)s) ve Fe(Ole)s
komplekslerinden ayr1 ayri CeO2/OA ve Fe3O4/OA sentezlenerek, optimum ¢alisma sicakliklart
belirlendi. Sonrasinda, farkli oranlarda (Ce(Ole)s):(Fe(Ole)s) kullanilarak, baslatict oranlarinin
CF/OA’lar iizerindeki etkisi incelendi. Numunelerin kimyasal, fiziksel, morfolojik ve manyetik
karakterizasyonlar1 i¢in; FTIR, XRD, X-1s5m1 fotoelektron spektroskopisi (XPS), gegirimli
elektron mikroskobu (TEM) ve titresimli numune magnetometresi (VSM) analizleri yapildu.
Optimum kosullarda sentezlenen CF/OA'larin singlet oksijen iiretim c¢aligmalart UV-Vis
spektroskopisi kullanilarak gergeklestirildi. Bu veriler sonucunda, manyetik demir oksit
cekirdek iizerine dagilabilen seryum oksit hibrit nanoyapilarin, gelecekte PDT ve MRI gibi
biyomedikal ¢aligmalarda kullanim potansiyeli oldugu gbzlemlenmistir.

J Son boélimde ise, ME ortaminda sonikasyon yardimiyla yesil yontemle
sentezlenen bakir oksit nanotanecikleri (CuO/ME) ile CuO-CeO: hibrit nanoyapilarinin
(CC/ME), eosin Y (EY) boyasi tizerindeki fotokataliz 6zellikleri incelendi. EY, brom atomlari

iceren, heterosiklik yapida ve anyonik bir boyar madde olup, ¢evre icin ciddi sorunlar



olusturabilen oldukga toksik bir maddedir (Bhattacharjee and Ahmaruzzaman, 2016). Bu
nedenle, EY nin atik sulardan uzaklastirilmasina yonelik yeni fotokatalizorlerin gelistirilmesi
amaglanmistir. CuO, dar bant araligina sahip bir yari iletken olup, CeOy ile birlikte kullanilarak
organik kirleticilerin goriiniir 151k altinda fotokatalitik olarak pargalanmasinda etkili bir sekilde
kullanilabilir (Bhattacharjee and Ahmaruzzaman, 2016; Kusmierek, 2020). Cevre
uygulamasinda kullanilmasi hedeflenen CuO-CeO: hibrit nanoyapilarin (CC) sentezi igin,
tehlikeli maddelerin kullaniminin ortadan kaldirilmasi ve bu kimyasallarin tehlikesinin
azaltilmasi amaciyla sonokimya-destekli yesil bir yontem uygulandi. Bu amagla, CUO/ME ve
CC/ME fotokatalizorleri, Peru’da yetisen bir bitki olan maca (Lepidium meyenii) ekstresi (ME),
bir biyomatris ve stabilizasyon ajani olarak kullanilarak sentezlendi (Alarcon Yaquetto, Paz
Aparicio and Gonzales, 2021). CC/ME numuneleri, CeOz varligi nedeniyle, CuO/ME
numunelerine gére daha iyi fotokatalitik 6zellik gosterdi. Numunelerin kimyasal, fiziksel ve
morfolojik karakterizasyonlari i¢in FTIR, XRD ve TEM analizleri yapildi. Fotokatalitik Kinetik

calismalari ise UV-Vis spektroskopisi kullanilarak incelendi.



2. KAVRAMSAL CERCEVE

2.1. NANOMALZEMELER

Gliniimiizde, nano 0l¢ekli malzemeler pratik bakis acilarinda 6nemli derecede ilgi ¢ekmektedir.
Nano 6l¢ekli malzemeleri inceleyen, oldukca genis bir bilim dali olan Nanoteknoloji, 1960°da
Richard P. Feynman tarafindan “There’s plenty of room at the bottom” baglikli bildirisi ile
Diinya’ya sunulmustur (Feynman, 1960). Nanoteknoloji, maddeleri atomik &lgekte kontrol
ederek son derece gelismis ve benzersiz malzemeler, iirtinler ve cihazlar tiretmeye dayanir. Bu
kapsamda 100 nm’nin altinda en az bir boyutu olan, sifir (0B), bir (1B), iki (2B) ve ii¢ boyutlu
(3B) olabilen malzeme siniflar1 genel olarak nanomalzemeler olarak adlandirilmaktadir
(Jeevanandam et al., 2018; Daulbayev et al., 2020). 0B malzemeler, biitiin boyutlar1 100 nm’nin
altinda olan nanomalzemelerdir. Kiiresel, kare ve ¢okgen gibi sekillere sahip olmalarinin yani
sira, cok daha kiiciik boyutlarda (>10 nm) bile incelenebilir. 10 nm’den kiiclik olabilen bu
malzemelere kuantum noktalar (QDs) en iyi 6rnektir (Singh et al., 2022). 1B malzemeler, bir
boyutu 100 nm’nin {izerinde olan malzemelerdir ve nanolifler, nanotiipler, nanokablolar ve
nanorodlar bu malzemeler arasinda yer alir (Barhoum et al., 2019). 2B malzemeler ise iki
boyutu da 100 nm’nin iizerinde olan malzemelerdir. Nanofilmler, nanodiskler ve nanotabakalar
2B malzemelere 6rnek olarak verilebilir (Kim and Lee, 2017). 3B malzemeler ise biitiin
boyutlart 100 nm’nin {izerinde olan nanokristaller ve nanogicekler gibi yiizey morfolojilerine
gore isimlendirilen malzemelerdir. Bu malzemeler genel olarak 100-1000 nm boyut araliginda
olup, nanomalzeme olarak nitelendirilmesi hala tartisilmaktadir (Jeevanandam et al.,
2018,Zhou and Zhang, 2021). Nanomalzemelerin fiziksel ve kimyasal 6zellikleri, boyutlari
degistirildiginde degisebilir. Bu nedenle, bu malzemeler ¢esitli alanlarda beklenmedik
davraniglar gosterir. Nanomalzemeler, ¢esitli iretim yontemleri ile sekil, boyut ve
morfolojilerine bagli olarak {istiin optik, elektrik, manyetik, yar1 iletken, mekanik,
antibakteriyel, antikanser 6zellikler kazanmaktadir (Laurent et al., 2014b; Vimbela et al., 2017,
Y00, You and Lee, 2017; Zeng et al., 2017; Singh, Goyal and Devlal, 2018; Huang, Liu and
Wang, 2020; Wu et al., 2020). Nanomalzemeler genel olarak karbon, organik ve inorganik

esasli olarak kategorilere ayrilarak incelenebilir.



Karbon esasli nanomalzemeler, dogada bol miktarda bulunan ve diisiik maliyetli olan karbon
kaynaklarindan yararlanarak, yiiksek mukavemet, optik, elektriksel ve termal iletkenlik gibi
istiin nitelikler kazanabilen malzemelerin nanoteknolojinin imkanlariyla iiretilmesine
dayanmaktadir. Ornegin; grafenler grafitten oldukga basit bir sekilde elde edilerek yiiksek
mukavemet, elektriksel ve termal iletkenlik 6zellikleri kazanmaktadir (Papageorgiou, Kinloch
and Young, 2017). Grafenden kimyasal buhar biriktirme, lazer ablasyonu gibi yontemlerle
iiretilebilen karbon nanotiipler (CNT) de bu stiin 6zelliklerin disinda esnek bir yapida, tek ya
da ¢ok duvarli olmak tizere farkli bigimlerde sentezlenebilir (Kinloch et al., 2018; Azizi-
Lalabadi et al., 2020; Kumar Jagadeesan, Thangavelu and Dhananjeyan, 2020). Karbon
nanofiberler (CNF) de yiiksek mekanik, termal ve elektrik karakterlerine ek olarak frekans
korumasi 6zelligi kazanmistir (Yadav, Amini and Ehrmann, 2020). Bunlara ek olarak grafitin
lazer ile buharlastirilmasiyla elde edilebilen fullerenler, altmis karbon atomuna sahip, i¢i bos
kiire seklinde olup, inert, yari iletken, iletken ve siiper iletken olabilmekte ve yogunluguna gore
151k ileten bir yapiya sahiptir (Klupp, Margadonna and Prassides, 2016). Karbon esash
baslaticilardan iistiin 6zelliklerde nanomalzemelerin iiretilmesi sonucunda fosil yakit olmanin
Otesine gecen karbon, nanoteknolojinin imkanlar1 dahilinde elektronik, sensor, biyomedikal ve

uzay gibi oldukc¢a genis uygulama alanlarinda kullanilabilmektedir.

Organik esasli nanomalzemeler, lipozomlar, lipidler, dendrimerler, miseller ve polimerler gibi
malzemeleri kapsayan ve nanoteknolojinin birgok alaninda kullanilmak tizere gelistirilip farkli
ozellikler kazanmasina dayanan malzemelerdir. Bunlar genellikle biyobozunur olmalar1 ve
toksik olmamalari ile birlikte, 1s1 ve 1s18a duyarli olabilirler (Anu Mary Ealia and
Saravanakumar, 2017). Organik nanomalzemeler, genellikle kovalent olmayan etkilesimlerle
uretilir ve bu durum onlar1 dogada daha kararsiz hale getirebilir. Esnek yapiya sahip olan
organik nanomalzemelerin, ¢cevresel uyarilara yanit olarak molekiiler baglanma etkilesimleriyle
sekil veya konformasyonlarinda degisimler olusturabilir. Bu durum o&zellikle biyolojik

uygulamalar i¢in uygun olup, insan viicudundan kolayca atilabilmelerine olanak saglar (Ng and
Zheng, 2015).

Inorganik esasli nanomalzemelere ise silika esasli nanomalzemeler, kuantum noktalar (QDs),
metal ve metal oksit nanotanecikler 6rnek olarak verilebilir. Silika esasli nanoyapilar ¢ok yonlii
yiizey kimyasina sahip ve suda iyi dagilabilen kararli malzemelerdir. Ayrica biyouyumlu ve
biyobozunur olmasi ile toksik olmamasi, biyomedikal alaninda yaygin olarak kullanilmasina

olanak saglar (Wang et al., 2021). QDs, genis spektrumda optik ve elektriksel 6zellikler



gosterebilen ve kanser teshis ve tedavisi gibi biyomedikal alanlarinda kullanilabilen 10 nm
boyutundan kiigiik olabilen yari iletken malzemelerdir (Kargozar et al., 2020; Farzin and
Abdoos, 2021). Metal nanotanecikler ise, hemen hemen tiim metallerden basit yontemlerle
sentezlenebilirler. Aliiminyum (Al), demir (Fe), bakir (Cu), altin (Au), glimiis (Ag) ve ¢inko
(Zn) yaygin olarak kullanilan metal nanotaneciklerdir. Metal nanotanecikler, tanecik boyutu,
sekli, gézenek boyutu, yiizey yiikii ve yik yogunlugu, kristal yapisi, rengi gibi ylizey
karakterlerine gore, hava, nem, 1s1 gibi dis faktorlere duyarli 6zellik gosterirler (Anu Mary Ealia
and Saravanakumar, 2017). Bunlarin yaninda metal oksit nanotanecikler, yari iletken 6zellikler
gostebilen ve nanoteknolojide olduk¢a genis uygulama alanlarina sahip inorganik
nanomalzemelerdir. Giimiis oksit (Ag20), aliiminyum oksit (Al.O3), titanyum oksit (TiO>),
¢inko oksit (ZnO), demir oksitler (Fe203, Fe30s), bakir oksit (CuO) ve seryum oksit (CeO5)
siklikla kullanilan metal oksit nanotaneciklerdir. Bu malzemelerin uygulama alanlar1 oldukca
genis olmakla birlikte, uygun g¢evresel kosullarda, sekil ve boyutlarina gore, fotokatalitik,
manyetik, antibakteriyel, antifungal, UV filtreleyici, antioksidan, antikanser gibi {istiin
ozellikler gosterebilirler (Dutta et al., 2016; Agarwal, Venkat Kumar and Rajeshkumar, 2017;
Zhu et al., 2018; Singh et al., 2019; Zhang et al., 2019; Abbasi et al., 2020; Ilgar, Karakus and
Kilislioglu, 2022; Ilgar et al., 2022).

2.2. METAL OKSIiT NANOYAPILAR

Metalik elementler, farkli sentez yontemleriyle ¢esitli oksitler olusturabilirler. Genel olarak,
gecis metali oksitlerin d- kabuklar1 kismen elektronla doluyken, pozitif metalik iyonlarin s-
kabuklar1 tamamen elektronla doludur. Metal oksitlerin elektronik yapilari, malzemenin
iletken, yar1 iletken veya yalitkan 6zelliklerini belirler (Ashik, Kudo and Hayashi, 2018). Metal
oksit nanoyapilar boyut, dagilim ve morfolojilerine gore {istiin kimyasal, fiziksel, elektronik,
optik, manyetik ve biyolojik 6zellikler gostererek antioksidan, antikanser, antibakteriyel, UV
koruyucu ve fotokataliz gibi 6zellikler kazanabilmektedir (Amano et al., 2008; Becheri et al.,
2008; Saikia et al., 2010; Rosen et al., 2012; Sudakaran et al., 2017; Yoo, You and Lee, 2017,
Sathya and Pushpanathan, 2018). Bu 6zelliklere sahip seryum oksit (CeO2), demir oksit (Fe30a)
ve bakir oksit (CuO) nanoyapilar ile bunlarin organik ve inorganik nanomalzemelerle iiretilen

hibrit nanoyapilar1 genis uygulama alanlarinda yer alabilmektedir.



2.2.1. Seryum Oksit Nanotanecikler

Seryum elementi (Ce), periyodik tablodaki lantan metal serisinin iiyesi olan, yer kabugunda
agirlikca yaklasik %0,0046 oraninda bulunan nadir toprak metallerinin en bol olanidir (Dahle
and Arai, 2015). Seryum oksit nanotanecikler (CeO), seryum nitrat, seryum kloriir, seryum
stilfat gibi ¢esitli oncii maddeler kullanilarak iiretilmektedir (Hartati et al., 2021). Yiiksek erime
sicakligina, UV absorpsiyon kapasitesine, sertlige, lliminesansa ve radyasyon toleransina sahip
olan CeO,, kiibik florit kafes yapisinda ve yaklasik 3.1 eV bant araliginda olabilen bir yari
iletkendir (Ye et al., 2011; Ali et al., 2018). Ustiin kristal yapisi, yiizey kimyasi, giiclii
elektrostatik etkisi, tanecik boyutlarina gore iistiin redoks 6zellikleri, yiiksek oksijen afinitesi
gibi ozellikleri nedeniyle, ROS’lar1 temizleyebilen antioksidan o6zellikler sergiler (Rodea-
Palomares et al., 2012). CeO hem dért degerlikli (Ce**), hem de ii¢ degerlikli (Ce*) durumda
bulunur ve bir redoks reaksiyonunda Ce** ve Ce3* arasinda kolayca déniistiiriilerek ROS’lar1
stiptiriir (Denklem 2.1 ve 2.2). Bu oksidasyon durumundaki degisiklikler, oksijen ve/veya
elektronlarinin kaybi nedeniyle, kafes yapisinda oksijen bosluklarina veya eksikliklerine neden
olur (Nelson et al., 2016). Oksidasyon durumundaki degisiklikler kendiliginden, fiziksel veya
cevresel etmenlerden kaynaklanabilir. Tanecik boyutu kiicilildiikge daha fazla oksijen boslugu
olusacagi i¢in, bu degisikliklerde 6zellikle tanecik boyutu olduk¢a dnemlidir (Deshpande et al.,
2005; Rubio, Marcos and Hernandez, 2018).

Ce3t + 05 +2H' —» Ce*t + H,0, (siiperoksit siipiiriicii) (2.1)
Ce*t + H,0, » Ce3" + H* + HO, (hidrojen peroksit siipiiriicii) (2.2)

CeO: biyolojik uygulamalarda kullanildiginda, hiicre i¢i ROS’lar1 temizleyip toksik hasarlar
azaltarak hiicre Omriinii uzatabilir. CeO2 antioksidan aktivite gdstermesi nedeniyle,
norodejeneratif patolojiler, otoimmiin hastaliklar, diyabet ve kanser gibi oksidatif stres kaynakli
farmakolojik tedavilerinde kullanimi agisindan umut vadetmektedir (Caputo, De Nicola and
Ghibelli, 2014). Ornegin, ila¢ salim ¢alismalarinda kullanildiginda, ilact salmakla birlikte
hedeflenen bolgede antioksidan davranis gosterebilmektedir. Yapilan bir ¢calismada, antikanser
ilag yiiklenmis CeOg-silika nanotanecikleri i¢in redoksa duyarli bir ilag verme sistemi olarak
tasarlanmig ve BXPC-3 pankreas kanseri hiicrelerine karsi terapdtik etki goOstermistir
(Muhammad et al., 2014). Baska bir ¢alismada, MCF-7 meme kanseri hiicrelerine karsi
doksorubisin (DOX) antikanser ajani yliklenen CeO2-PEG kullanilmistir ve hem tasiyict hem
de terapotik rol oynamistir (Damle et al., 2020).



CeOo, antioksidan davranisin yaninda oksidan 6zelligi de gosterir. CeO2’nin oksidan ya da
antioksidan Ozelligini belirlemede ortammin pH’st biiyiikk bir 6neme sahiptir. Biyolojik
uygulamalarda kullanilirken, normal hiicrelerde toksik olmayan CeO», farkli pH’larda olan
timor hiicrelerinde toksik 6zellik gosterebilir (Asati et al., 2010; Wason et al., 2013). CeO>
asidik ortamda kataliz gibi aktifleserek kanser hiicrelerine kars1 segici toksiklik gosterdigi 6ne
siiriilmiistiir. fyonlastiric1 radyasyon tarafindan iiretilen siiperoksit varliginda, diisiik pH'da bile
var olabilen siiperoksit dismutaz (SOD-siiperoksit radikallerini etkisizlestirerek, hiicreleri
siiperoksit radikalinin zararli etkilerinden korur) benzeri aktivite gdostererek, radyasyon
toksisitesini artirir  ve hidrojen peroksit (H202) birikimine neden olur. Radyoterapi
uygulamalarinda, dokuyu radyasyonla olusturulan hasardan ve oksidatif stresten koruyarak
1sinlanmis kanser hiicrelerinin Sliimiinii segici olarak indiikleme kapasitesine sahiptir
(Tarnuzzer et al., 2005; Colon et al., 2010). PDT’de kullanilabilen CeO-, belirli dalga
boylarinda 1s18a duyarl hale gelerek yine hedeflenen hasarli hiiclerelerin segici olarak ¢liimiine
sebep olur. PDT’de kullanilmak tizere CeO: esasli akilli nanoproblar, hedeflenen Hepg2
karaciger kanser hiicresi lizerinde 1518a maruz birakilarak incelenmis ve ROS tiirlerinden biri
olan singlet oksijen (*0,) iiretebildigi kamtlannmstir (Fan et al., 2019). Baska bir ¢alismada,
yine PDT’de kullanilmak tizere diyabet ilact metformin yiiklenmis CeO2-mezoporoz silika
yapist, 1sinlama etkisiyle molekiiler oksijenden toksik singlet oksijen tiretmistir (Tang, Moonshi
and Ta, 2023).

Biyolojik uygulamalarda oldukga etkili olabilen CeO2, ¢evre uygulamalarinda da organik
kirleticilerin bozunmasi i¢in fotokatalizor olarak kullamlabilen bir yari iletkendir. CeO2 nin

3" iyonlarina doniismesi ve stokiyometrideki biiyiik sapmalari, goriiniir 151k

Ce** iyonlarmin C
emilimini artirabilen yiiksek miktarda oksijen bosluguna neden olur (Fauzi et al., 2022).
Degerlik band1 (VB) ve iletkenlik bandi (CB) arasindaki bosluk 2.8-3.2 eV araliginda olabilen
CeOy, giin 15181 ile uyarildiginda VB'deki elektron (e7) fotonu emer ve femtosaniye i¢inde CB'ye
go¢ ederek VB’de aymi miktarda delik (h™) birakir. CeO; lizerinde olan bu elektron delikler
ROS tiretimine sebep olur. Giiglii oksidatif 6zelligi olan bu yapilar, organik kirleticileri bozarak
zararsiz H>O, CO2 ve ara ilriinlere doniistiirerek atik sudan kirleticileri etkili bir sekilde
uzaklastirir (Ma et al., 2019). Yapilan arastirmalar, CeO2’nin farkli morfolojilerde iiretilen
nanoyapilarinin birgok organik kirletici iizerinde fotokatalitik Ozellik gosterdigini ortaya

koymustur. Ornegin, nanodisk seklinde sentezlenen CeO2 nanotanecikleri, metilen mavisini

%95.1, malakit yesilini %84.3 ve metil turuncusunu %42.8 degerlerinde sudan uzaklastirarak
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iyi fotokatalitik 6zellikler ortaya koymustur (Choudhary et al., 2020). Baska bir ¢alismada ise
pul benzeri yapida sentezlenen CeO2 nanoyapilari eosin Y iizerinde %91 fotokatalitik 6zellik
gosterdigi belirtilmistir (Alex et al., 2021). Ayrica, kiiresel sekilde sentezlenen CeOz’nin, atik
sularda ciddi tehlike olusturabilen rose bengal boyar maddesine kars1 %74, benzer morfolojide
sentezlenen bagka bir CeO2’nin rodamin B’ye kars1 %92 goriiniir 151k altinda fotokatalizor
olarak etkili oldugu bildirilmistir. Tiim bu bulgular gostermektedir ki CeO2, farkli ortam
kosullarinda farkli davraniglar sergileyebilen ve ¢esitli alanlarda kullanilabilen stirdiiriilebilir

ve temiz bir gelecek vadeden potansiyeli yiiksek bir malzemedir.

2.2.2. Demir Oksit Nanotanecikler

Demir oksitler, dogada bol miktarda bulunan demir ve oksijen elementlerinin birlesmesiyle
olusan ve yaklasik on alt1 tane tanimlanmis farkli yapiya sahip olan malzemelerdir (Ali et al.,
2016). Yogunluklari ve erime noktalari oldukga yiiksek olan demir oksitlerin en yaygin olarak
bulunan formlari; manyetit (FesOs), maghemit (y-Fe2O3) ve hematittir (a-Fe,O3). Manyetik
malzemeler olarak da bilinen Fe3O4 ferromanyetik, y-Fe2Oz ferrimanyetik ve a-Fe2Os zayif
ferromanyetik veya antiferromanyetik 6zellikler gdsterir. Ayrica kristal yapilar1 FezOa, y-Fe203
ve a-Fe20zigin sirasiyla kiibik, kiibik /dort yiizlii ve eskenar dortgen / altigen seklindedir (Teja
and Koh, 2009; Ali et al., 2016). Fe30s ve y-Fe2O3 ¢ogunlukla ¢aplart 10 nm ile 100 nm
arasinda degisen, yliksek manyetik momentlere sahip, fizyolojik kosullarda kimyasal kararlilig1
yiiksek ve diisiik toksisitete olan iistiin manyetik malzemelerdir (Laurent et al., 2014). Demir
oksit nanotaneciklerin kontrollii sentez yontemleri, kristallesmesi, boyutu, sekli ve manyetik
davraniglarini oldukga fazla etkiler. Demir oksit nanotaneciklerin siiperparamanyetik 6zelligini
kazanmas1 icin genellikle 20 nm’nin altinda ve kararli nanotaneciklerin sentezi
hedeflenmektedir (Ali et al., 2016). Kiiciik tanecik boyunda sentezlenebilmesiyle 6ne ¢ikan
stiperparamanyetik malzemeler biyouyumlu olmalar1 nedeniyle, biyomedikal uygulamalarda
ozellikle teshis ve tedavi uygulamalar icin MRI, hedeflenen bolgeye ilag tasima, biyosensor,
biyoayirma gibi pek c¢ok alanda etkili bir sekilde kullanilmakta olup, umut vadeden ¢alismalar
devam etmektedir (Xu and Sun, 2013). Disaridan miknatisla kontrol edilerek hedeflenen
bolgeye tasinmasi, organik ve inorganik bilesiklerle birlikte kullanim kolayligr ve yiizey
modifikasyonlar1 ile kullanim yerine gore iiretilebilmesi nedeniyle yogun ilgi gérmektedir
(Figuerola et al., 2010). Yapilan bir ¢alismada, antikanser ilaglarmin gegisinin oldukga zor
oldugu beyin bariyerlerine tasinmasi i¢in, ylizey modifikasyonu ile kararli ve biyouyumlu hale

getirilen DOX yiiklii manyetik demir oksit nanotanecikleri tiretilmis ve U251 beyin timorii
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hiicrelerine taginan DOX yiiklii demir oksit nanotaneciklerin, saf DOX’a gore 2.8 kat daha fazla
beyin bariyerlerini gegerek tiimdrleri etkisiz hale getirdigi bulunmustur (Norouzi et al., 2020).
Bagka bir ¢alismada kitosan katmanlar ile kaplanmis demir oksit nanotanecikleri, MRI kontrast
maddesi olarak BALB/c fare kullanilarak in vivo olarak incelenmis ve karaciger hastaliklarinin
teshisi ve organlarin goriintiilenmesi i¢in T2 (dokularin koyu goériinmesini saglayan manyetik
ajan) kontrast ajani olarak davranmistir (Kania et al., 2018). Demir oksit nanotanecikleri yine
farkl1 bir c¢alismada meme kanseri ic¢in biyobelirte¢ olarak manyetik goriintiilleme
uygulamasinda kullanilmistir (Dong, 2008; O’Flynn and deSouza, 2011). Biyolojik
uygulamalarin yaninda, c¢evresel uygulamalarda da kullanilabilen manyetik demir oksit
nanotanecikler, sudaki organik kirleticilerin fotobozunmasinda kullanilabilmektedir.
Literatiirde, demir oksit nanotanecikler, tehlikeli tekstil boyalarini, ¢evre dostu bir sekilde
uzaklastirildig1 calismalar mevcuttur. Fe3Os nanotanecikler, goriiniir 151k altinda, hidroksil
radikali olusturarak metil mavisinin %75 bozunmasini saglayarak fotokatalitik etki gostermistir
(Arularasu, Devakumar and Rajendran, 2018). Baska bir ¢alismada, giin 15181 altinda kristal
viyole lizerindeki etkisi arastirilan Fe3Os nanotanecikleri boyanin %80’inin bozunmasini
saglamistir (Vasantharaj et al., 2019). Yar iletken olarak davranmasinin yaninda manyetik
Ozelliginin olmasi, sudan atik boya uzaklastirilmasinda fotokatalizlerin sudan manyetik dig
etkiyle ayrilarak tekrar kullanimini kolaylastirmaktadir. Sonu¢ olarak, demir oksit
nanotanecikler hem yari iletken olmalar1 hem de {istiin manyetik 6zellik gdostermelerinden

dolay1 nanoteknolojide kendilerine genis olarak yer bulmaktadir.

2.2.3. Bakar Oksit Nanotanecikler

Bakir oksit (CuO) nanotanecikler, yer yiiziinde bol miktarda bulunan, diisiik ¢evresel toksisite
ve termal kararlilik 6zellikleriyle dikkat ¢eken metal oksit yari iletkendir. Dar bir bant araligina
(2 eV) sahip olabilen CuO, biiylime kosullarina bagli olarak genis mor 6tesi (UV) ve yakin kizil
otesi (NIR) absorpsiyon bolgelerinde yer alabilmektedir (Sagadevan et al., 2019; Verma and
Kumar, 2019). CuO nano boyutta iyi elektrokimyasal aktivite, yiiksek spesifik yiizey alani,
uygun redoks potansiyeli gosterebilir (Verma and Kumar, 2019). Uzun vadede kararli olabilen
CuO, katalitik, antikanser, antioksidan, antimikrobiyal ve sitotoksisite gibi farkli 6zelliklere
sahiptir (Javed et al., 2017; Elemike et al., 2019; Veisi et al., 2021). Nanoteller, nanokiipler,
nano seritler, nanogigcekler ve nanofilmler gibi pek c¢ok morfolojide olabilen CuO
nanotanecikleri, koloidal sentez, sonokimyasal ve solvotermal gibi yontemler kullanilarak

sentezlenebilir. Bu yoOntemlerin disinda, bitki Ozlerinden yesil yontemle de kolayca
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sentezlenebilen CuO nanotanecikler, antikanser ajani, enerji depolama, atik su aritma ve sensor
gibi ¢ok farkli uygulama alanlarina kullanilabilmektedir (Ates et al., 2015; Bhattacharjee and
Ahmaruzzaman, 2016; llgar et al., 2022). Yapilan bir ¢alismada, Stigmaphyllon ovatum yapragi
ekstraktiyla iiretilen CuO nanotaneciklerin antikanser 6zelligi arastirmis ve 62.5 ug/mL
konsantrasyonda kullanilan CuO, MCF-7 meme kanseri hiicrelerini %50 azalttig1 bildirilmistir
(Elemike et al., 2019). Baska bir arastirmada, organik igerikli bir limon suyu segilerek, dogal
sitrik asit destekli yesil sentezle CuO elde edilmis ve farkli sicaklik ve gaz konsantrasyonlarinda
gaz sensOrii olarak etkinligi kamitlanmustir (Vandamar Poonguzhali et al., 2022). CuO
nanotanecikleri, yaklasik 2 eV bant diisiik bant aralig1r degerine sahip oldugu i¢in, goriiniir
bolgede organik kirleticilerin fotobozunmasini inceleyen fotokatalitik ¢caligmalar milkemmel
bir adaydir. Carica papaya yapragi ekstrakti kullanilarak sentezlenen CuO nanotanecikleri,
dogrudan giin 15181 altinda Coomassie parlak mavi R-250 fotobozunmasini ger¢eklestirmistir
(Sankar et al., 2014). Baska bir ¢alismada yine yesil bir yontemle Cardiospermum halicacabum
ekstraktinda sentezlenen CuO nanotanecikleri, metilen mavisinin %93 bozunmasini saglamis,
ayrica Gram pozitif ve Gram negatif bakterilerine karsi antibakteriyel 6zellik gdstermistir
(Karuppannan et al., 2021). Yapilan baska bir ¢alismada, ¢cevre dostu ve ekonomik bir yontemle
Ocimum tenuiflorum kullanilarak {retilen CuO nanotanecikler, Bacillus subtilis,
Staphylococcus aureus, and Escherichia coli patojenlerine karsi antibakteriyel o6zellik
gostermistir. Ayrica fotokatalitik 6zelligi arastirllan CuO, metil turuncusunun %96
fotobozunmasini saglamistir (Sharma et al., 2021). Bir¢ok caligma, CuO nanotaneciklerin
ozellikle fotokataliz ve antibakteriyel ozellik gostermesi bakimindan ¢ok fonksiyonlu

malzemeler oldugunu kanitlamis olup, farkli alanlarda kullanilmasina olanak vermektedir.

2.3. METAL OKSIT HiBRiT NANOYAPILAR

Metal oksit hibrit nanoyapilar, sentez yontemi ve birlikte kullanilan malzeme tiiriine gore cesitli
alanlarda kullanilabilmektedir. Kazanilan 6zelliklerine bagli olarak metal oksit hibrit
nanoyapilar, 6zellikle biyomedikal ve ¢evresel uygulamalar i¢in {istiin performans gosterebilir.
Bu malzemeler, tan1 ve tedavi amagli manyetik goriintiileme, biyosensor, ilag tasiyict ve
implant malzemeler gibi biyomedikal alanlarda farkli amaglar i¢in kullanilabilirler. Cevresel
uygulamalarda da atik sulardan organik kirleticilerin uzaklastirilmasina yonelik arastirmalarda
kullanilan metal oksit hibrit nanoyapilar, yari iletken o6zelliklerinden dolay: fotokatalitik

malzeme olarak degerlendirilmektedir. Metal oksit nanotanecikler karbon, polimer ve inorganik
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malzemelerle birlikte, nanokompozit, janus, ¢cekirdek-kabuk ve ince film gibi hibrit nanoyapilar

olusturarak ¢ok fonksiyonlu 6zellikler kazanabilmektedir.

Karbon esasli metal oksit hibrit nanoyapilarda, metal oksitler 6zellikle CNT ile birlikte
kullanildig1 zaman iistiin nitelikte hibrit nanoyapilar elde edilebilir. CNT'lerin yiliksek mekanik
dayanima ve elektriksel Ozelliklere sahip olmasi, metal oksitlerin sahip olduklar
dezavantajlarmin  CNT'lerin katkisiyla iyilestirilerek daha genis uygulama alanlarinda
kullanilabilen malzemelerin kolayca iiretilebilecegi anlamma gelmektedir. Ornegin, CNT
Fe30ys ile birlikte elektrodepozisyonla iiretilmis ve lityum iyon pillerinde elektrik iletkenligini
iyilestirerek elektrot yapisini giiclendirmek igin tasarlanmistir (Pang et al., 2015). Benzer
sekilde CNT ve a-Fe2O3 kullanilarak ftiretilen hibrit nanofilmler, yine lityum iyon pillerini
gelistirmek i¢in kullanilmistir (Cao and Wei, 2013). ZnO, genis bant araligina sahip olmasi ve
stiin optik ve elektriksel Ozellikleri nedeniyle CNT ile birlikte kullanildiginda metil
turuncusunun fotobozunmasinda yiiksek performansl fotokatalizor olarak etkili olabilmektedir
(Chen et al., 2013). Yine ZnO, bu kez indirgenmis grafen oksitle (rGO) birlikte H> gaz sensorii
olarak kullanilmis ve normalde gaz molekiillerine kars1 yiiksek hassasiyette oldugu bildirilen
rGO’nun, Hz gaz hassasiyetini arttirdig1 bildirilmistir (Abideen, Kim and Kim, 2015). Siiper
kapasitor olarak kullanilmak tizere, N katkili karbon nanoteller ile MnO> ve Fe2Os kompozitleri
iiretilmis olup, karbon nanoteller elektronlar i¢in hizli ve verimli yollar saglarken, metal oksitler
hizli iyon taginmasini saglamistir (Fu et al., 2018). Karbon gibi dogada bol miktarda bulunan
malzemeler, farkli metal oksitlerle birlestirilerek genis uygulama alanlarinda kullanilabilmekte

ve Ustlin nitelikte Urlinlerin gelismesine katki saglayabilmektedir.

Polimer esasli metal oksit nanoyapilar, enerji depolama, biyosensor, ilag tasiyict sistemler ve
fotokatalizor gibi alanlarda kullanilmaktadir. Iletken polimerler kullanilarak elektrospin
yontemi ile tiretilen metal oksit katkili nanofiberler, iistiin elektrokimyasal 6zellikler kazanarak
enerji depolama alanlarinda incelenmektedir (Mohd Abdah et al., 2020). Polipirol (PPy),
polianilin (PANI) ve politiofen (PTh) polimerleri iyi iletkenlik, esneklik, sentez kolaylig1 gibi
benzersiz avantajlar1 nedeniyle tercih edilirken, CuO, CeO2, TiO2, Fe>O3 ve ZnO gibi metal
oksit nanotanecikler de genis yiizey alanlari, yiiksek kapasitans yetenekleri ve yiiksek enerji
yogunluklart nedeniyle enerji depolamada ilgi gormektedirler (Meng et al., 2017; Salunkhe,
Kaneti and Yamauchi, 2017). Ayrica, iletken polimerlerin metal oksitlerle Dbirlikte
elektrokimyasal biyosensor olarak kullanimi da ilgi ¢ekmektedir. Iletken polimerler analite

kars1 yiiksek hassasiyet saglayabilirken, metal oksitler yiiksek kararlilikta analit ile
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immobilizasyonu saglayabilir. PPy/CuxO ve PPy/Fe304 nanokompozitlerin glikozu, PANi/Au-
TiO2 nanoyapilari ise laktati yiiksek duyarlilikta tespit ederek biyosensor olarak etkin olduklari
bildirilmistir (Dakshayini et al., 2019). Bunlarin disinda, polilaktik asit (PLA), polivinil alkol
(PVA), jelatin ve kitosan gibi biyouyumlu ve biyobozunur polimerlerin, metal oksit
nanotaneciklerle birlikte nanoyapilar1 hazirlanarak biyomedikal alanlarda etkin bir sekilde
kullanildigina dair ¢aligmalar mevcuttur. Bu polimerle {iretilen metal oksit hibrit nanoyapilar,
ilag tasiyici olarak bir¢ok calismaya konu olmustur. TiO2, Fe3Os ve ZnO esasli PLA
nanoyapilara DOX yiiklenerek ilag salim ¢alismalar1 yapilmis ve PLA bozunmasini agiklayan
ilag salim kinetik modelleri, yiiksek belirleme katsayisinda sifir dereden kinetik model
uygulanarak aydinlatilmistir (Mhlanga and Ray, 2015). Ayrica CuO/PVA hidrojellerine
yiiklenen Ibuprofen’in kinetik salimi incelenmis ve hesaplanan kinetik modellerinden
Korsmeyer-Peppas modeline uyum saglayan davramig gosterdigi sonucuna varilmistir
(Ahmadian et al., 2019). Jelatinle kaplanmis FesO4 nanoyapilar, merkaptopiirin (Mer) kanser
ilacin1 tagimak i¢in kullanilmis ve sliperparamanyetik davranis gosteren nanoyapilar potansiyel
kanser ilaci tasiyici olarak davranmustir (Sirivat and Paradee, 2019). Biyobozunur polimer-
metal oksit hibrit nanoyapilar, ilag tasiyici olarak kullanilmalarmin yaninda, ilag yerine
kullanilarak terapotik etki de gosterebilmektedir. Bu durumda, hedeflenen metal oksit
nanotaneciklerin hasarli hiicreleri toksik ozellikleri sayesinde etkisiz hale getirmesi
amaglanmaktadir. Olduk¢a ekonomik bir yontem olan yesil sentez kullanilarak iiretilen CuO-
kitosan nanokompozitleri, insan akciger kanseri A549 hiicre hatlari {izerinde antikanser ajani
olarak davrandigi bildirilmistir (Bharathi et al., 2019). Baska bir ¢alismada, FesOa/kitosan ve
NiFe O4/kitosan nanokompozitler iiretilerek karaciger kanseri HepG2 ve insan kolon kanseri
HCT116 hiicre hatlar iizerindeki etkileri incelenmistir. FesOs/kitosan HepG2 hiicre hattina
kars1 yiiksek sitotoksik aktivite gosterirken, NiFe;Oa4/kitosan hem HepG2, hem de HCT116
hiicre hatlarina karsi, yaygin olarak kullanilan antikanser ajant DOX aktivitesiyle
kiyaslanabilecek seviyede giiglii sitotoksik aktivite gostermistir (Badry et al., 2016). Polimer
esaslt metal oksit nanoyapilar biyomedikal uygulamalarin yaninda sensor, antibakteriyel ve
antifungal aktivite gibi Ozelliklere de konu olmustur. Flor katkili kalay oksit {izerinde
biriktirilen kitosan-demir oksit nanokompozitlerden hazirlanan bir elektrokimyasal sensor,
marul yapragi ve topraktan oldukca diisiik konsantrasyonda malathion pestisitini belirleme
tizerinde etkinlik gdstermistir (Prabhakar et al., 2016). Antibakteriyel aktifligi incelemek i¢in
zeytin yapragi ekstresinde CuO/kitosan nanokompozitleri iiretilmis, Gram pozitif ve Gram

negatif bakterilerine etkili olduklari bildirilmistir (Umoren et al., 2022). Farkli bir uygulama
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alant olarak, mantarlarin ¢ogalmasinin o6nlenmesi i¢in ZnO/kitosan, CuO/kitosan ve
Ag20/kitosan nanokompozit katkili seliiloz filtreleri su filtresi olarak tasarlanmig ve antifungal

olarak etkinlik gosterdigi bildirilmistir (Jain et al., 2022).

Inorganik esasli hibrit metal oksit nanoyapilar, tek basina kullanilan metal oksitlerin
fizikokimyasal Ozelliklerini gelistirmek icin Onemli bir yere sahiptir. Nano boyutta
diizenlenebilen silika, kil, metal ve metal oksit gibi inorganik malzemelerle metal oksit hibrit
nanoyapilar olusturulabilmektedir. Silika, toksik olmamasi, topaklanmay1 Onlemesi, yiiksek
biyouyumlulugu ve kararliligi nedeniyle metal oksitleri gelistirmek i¢in yaygin olarak
kullanilmaktadir (Wang et al., 2015). Kontrol edilebilir gézenek boyutuna ve diizenli gdzenek
boyutu dagilimina sahip silika kabuklari, bir yiizey aktif madde stratejisi ile metal oksit
nanotanecikler iizerinde kolayca olusabilir (Li et al., 2019). Ustiin yiizey 6zellikleri ve
biyouyumlulugu nedeniyle ¢ekirdekteki metal oksitleri kabuk seklinde kaplayabilen silika
esasli metal oksit nanoyapilar, biyomedikal alanlarda tercih edilmektedir. Cekirdekte manyetik
metal oksit nanotanecik, kabukta gézenekli silika yer alan nanoyapilar, biyogoriintiileme ve ilag
salimda kullanilmaktadir. Kabukta yer alan gozenekler ilacin etkin bir sekilde yiiklenmesini
saglarken, kabuktaki manyetik metal oksit nanotanecik hedefleme ve goriintiilemeyi saglar
(Wang et al., 2015; Li et al., 2019). Killer, genellikle fillosilikatlar igeren, dogada plastitisite
halde olup, kurutuldugunda sertlesebilen ince taneli minerallerdir. Diger ince taneli
topraklardan mineroloji ve boyut farkliliklart ile ayirt edilmekle birlikte, genellikle
montmorillonit, kaolinit, illit, bentonit ve klorit olarak siniflandirilabilir (Kausar et al., 2018).
Killer, gozenekleri, yiiksek ylizey alanlar1 ve organik molekiil ve iyonlar1 adsorbe etme
kapasiteleri nedeniyle diisiik maliyetli ve yliksek performans gosterebilen malzemelerdir
(Fadillah et al., 2020). Yari iletken metal oksit nanotaneciklerle birlikte kullanildiklarinda, atik
sulardan organik kirleticilerin uzaklastirilmasinda etkin olarak kullanilabilirler. TiO2, ZnO,
Fe30a, y-Fe203 ve Co304 yari iletkenleri killerle birlikte nanokompozitler sentezlenmis ve atik
sulardan organik kirleticilerin uzaklastirilmasinda hem adsorban hem de fotokatalizor olarak
rol oynamiglardir (Zhao et al., 2019; Fadillah et al., 2020; Mustapha et al., 2020). Metal /metal
oksit esasli metal oksit hibrit nanoyapilar genellikle ¢ekirdek-kabuk nanoyapi, janus nanoyapi
ve nanokompozit gibi formlarda sentezlenebilmektedir (Liu et al., 2017). Ozellikle
antibakteriyel aktiviteye sahip Ag ve Au nanotanecikler, uygun boyut, sekil, morfoloji ve
kristallikte antibakteriyel 6zellik gosterebilen ZnO, Fe30a4, y-Fe203, TiO2, MnO2, CuO ve MgO

nanotaneciklerle birlikte iiretilerek Gram pozitif ve Gram negatif bakteriler ilizerinde {istiin
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antibakteriyel aktivitede gosterebilmektedir (Pachaiappan et al., 2021). Au ve Ag’ye ek olarak
Pt ve Pd nanotanecikler metal oksitlerle birlikte iiretilerek fotokatalitik uygulamalar igin
gelistirilmektedir. Saf haldeki metal oksitlerle kiyaslandiginda, N-Pd-TiO2 EY’nin, Pd-
CdS/Fe304 rhodamin B’nin, Pt, Ag ve Au katkili CeO2 metil turuncusunun goriiniir 1s1k altinda
fotobozunmasini arttirdigini bildiren ¢aligsmalar yapilmistir (Kuvarega, Krause and Mamba,
2011; Sahoo et al., 2014; Tang et al., 2021). Metal oksit- metal oksit hibrit malzemeler, nano
boyutlarda sentezlenerek, benzersiz ve ayarlanabilir optik, manyetik, elektronik, fotokatalitik
ve biyolojik ozelliklerinden dolay1 genis bir uygulama yelpazesinde kullanilmaktadir. Son
zamanlarda, genis spesifik yiizey alanlari, kullanish bant araliklar1 gibi nedenlerle fotokataliz
alaninda ve yiiksek biyolojik aktiviteleri nedeniyle biyomedikal alanlarda kullanilmak {izere
etkili metal oksit bazli nanomalzemeler tiretilmistir (Kannan et al., 2020). CeO,, CuO, Fe30s,
ZnO, MnO; ve TiO; gibi bircok metal oksit nanotanecik, ikili ya da ¢oklu hibrit nanoyapilar
olusturarak ¢ok fonksiyonlu oOzellikler sergileyebilmektedir. CeO,, onceki bolimlerde de
bahsedildigi gibi, oksidan davranisi ve yart iletken 6zelliginden dolay1 uygulama alanina gore
farkli metal oksitlerle birlikte sentezlenebilmektedir. ROS {iretebilen CeO2 ve
sliperparamanyetik Fe3Ojs ile birlikte sentezlenerek yapilan bir ¢aligmada, CeO2-FezO hibrit
nanoyapisi timor hiicresine manyetik olarak hedeflenerek bolgede oksidatif strese neden olmasi
ve kanser hiicrelerini se¢ici olarak 6ldiiriilmesi lizerine tasarlanmistir (Lee et al., 2021). Benzer
sekilde Pt ve MnO: ile birlikte sentezlenen CeO, nanoyapilarina DOX yiiklenmis ve bu
nanoyapilarin hem ilag tasiyict hem de PDT’de fotoduyarhlastirici (PS) olarak etkinlikleri
incelenmistir. Singlet oksijen iireterek PDT’de etkin olabilen CeO2’nin yaninda, MnO2 tiimor
hiicre ortaminda hidrojen peroksidi katalize ederek DOX’un kanser duyarli salimini
gerceklestirmek tlizere asidik ortamda bozulmustur (Xu et al., 2021). Baska bir ¢alismada,
metilen mavisinin sudan uzaklagtirilmas1 amaciyla CeO2’nin daha diisiik bant araligina sahip
CuO ile birlikte nanokompozitlerinin iiretilmis ve goriiniir 151k altinda fotokatalitik 6zellik
gosterdigi bildirilmistir (Raees et al., 2021). Yine ayn1 amagla sentezlenen CeO2/TiO2 ve
Ce02/Zn0 nanoyapilart da UV ve goriiniir 151k altinda rodamin B boyasina karsi1 fotokatalitik
etki gostermistir (Fan et al., 2016; Zhang et al., 2020). Metal oksit nanotaneciklerin, 6ne ¢ikan
ozelliklerine gore, farkli metal oksit kombinasyonlariyla elde edilen hibrit nanoyapilar,

uygulama alanlarina gore etkin performans gosterebilmektedir.
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2.4. NANOYAPILARIN URETIM YONTEMLERIYONTEMLERI

Metal oksit esasli nanoyapilarin iiretimi, yukaridan asagi (top-down) ve asagidan yukari

(bottom-up) olmak {iizere iki ana yaklasimi kapsar (Sanchez and Sobolev, 2010).

2.4.1. Yukaridan Asagiya Yontemi

Yukaridan asagiya yonteminde, bliyiik yapilarin boyutlan kiiciiltiilerek malzemenin orijinal
Ozellikleri korunur ve atomik diizeyde kontrol saglanir. Makro boyutta olan bir malzemenin
nano Olgekli taneciklere indirgenmesi ile gerceklestirilir. Mekanik 6giitme, lazer ablasyon ve

elektrospin yontemleri yukaridan asagiya yaklasiminda siklikla kullanilan yontemlerdir.

Mekanik 6giitme yi1gin halinde toz numunelerin boyutlarinin bilye ya da diskler araciligiyla
kiigiiltiilmesine dayanan, ekonomik ve c¢evreye karst duyarli bir yontemdir. Ogiitiilen
malzemenin boyutu bilye /numune agirlik orani, 6giitme hiz1 ve dgiitme siiresi gibi kosullar ile

istenilen seviyede ayarlanabilir (Mahdikhah et al., 2019).

Lazer ablasyonu cesitli ¢oziiciilerin i¢inde nanomalzeme iiretimi i¢in kullanilan yaygin bir
yontemdir. Bir lazer 1siniyla sivi ¢oziicliye batirilmis bir metalin 1s1nlanmasi, nanotanecikler
tireten bir plazma bulutunu yogunlastirir. Lazer ablasyon, metallerin geleneksel kimyasal
indirgenmesine alternatif bir yontem olarak organik ¢oziicii ya da suda herhangi bir stabilize
edici ajan veya kimyasal gerektirmeyen kararli nanomalzeme sentezi sagladigi icin gevreye

kars1 duyarli bir yontemdir (Reza Sadrolhosseini et al., 2019).

Elektrospin boyutlar1 birka¢ nanometreden onlarca mikrometreye kadar degisen lifli
malzemeleri tiretmek amaciyla elektrostatik kuvvetleri kullanan iletken bir sivi yardimiyla
gerceklestirilen bir yontemdir. Bir siringaya doldurulan numune, yiiksek voltaj altinda igne
vasitasiyla belirli bir mesafeden toplayici levhaya firlatilarak nano boyutta lifler elde edilir.
Elektrospin yontemiyle iiretilen lifli malzemeler uygulama alanina gore ¢ekirdek kabuk, ici bos
veya anizotropik olacak sekilde tasarlanabilir. Bu yontemde lif yapisini olusturan polimerlere,
metal tuzu Onciileri ya da metal/metal oksit malzemeler katkilandirilarak hedeflenen
uygulamalara yonelik metal oksit nanokompozitler iiretilir (Vaseghi and Nematollahzadeh,
2020).

2.4.2. Asagidan Yukariya Yontemi
Asagidan yukariya yonteminde, nanomalzemeler, atomik seviyeden baslamak iizere atom ve

molekiiller kendi kendilerine birleserek sentezlenir (Sanchez and Sobolev, 2010). Mikrodalga
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destekli sentez, sol-jel yontemi, solvotermal ve hidrotermal sentez, kimyasal ¢oktiirme- birlikte
¢cOktiirme sentezleri, sonokimyasal sentez ve yesil sentez gibi sedimantasyon ve indirgeme
teknikleri asagidan yukariya sentez gesitlerine 6rnek olarak verilebilir (Iravani, 2011; Baig,
Kammakakam and Falath, 2021).

Mikrodalga destekli sentez ile sicaklik ve basing gibi reaksiyon parametreleri izlenerek
kontrollii nanotanecik sentezi yapilir. Mikrodalga 1simasi, yiiksek dielektrik sabitine sahip
coOziiciiler tarafindan emilerek 1s1ma sirasinda 1s1 {iretir. Mikrodalga 1sinlar1 reaksiyon
diizeneginde segici 1sitma saglayarak, metal oksit nanotaneciklerin geleneksel yontemlere gore

daha az enerji ve zaman kullanilarak verimli bir sekilde tiretilmesini saglanir (Luo et al., 2013).

Sol-jel yontemi, metal oksit nanotanecikler ve bunlarin bir¢ok inorganik veya organik esasli
nanokompozitleri gibi nanomalzemenin sentezi i¢in kullanilan bir 1slak kimyasal yontemdir.
Bu yontemde, metal alkoksit gibi bir baslatici alkol veya su gibi bir ¢oziiciide ¢oziilerek sol
fazina getirilir. Ardindan 1sitilarak ve karistirilarak hidroliz/ alkoliz yoluyla jele doniistiirtiliir.
Son olarak kurutma islemi ile ¢6ziicii jelden uzaklastirilir ve toz fazina doniisiir (Bokov et al.,
2021). Sol-jel yontemi kullanilarak elyaf, aerojel ve yiizey kaplama gibi 6zel formlarda metal
oksit nanotanecikler ve bunlarin istenilen sekilde, gozenekli ve homojen organik ve polimerik
nanokompozitleri, diisiik sicaklikta ve yiiksek tiretim verimliliginde sentezlenebilir (Liao, Xu
and Chan, 2013; Feinle, Elsaesser and Hiising, 2016). Bu malzemeler, yiiksek saflik, diisiik
termal genlesme katsayisi, diisik UV absorpsiyonu ve yiiksek optik seffaflik gibi fiziksel
ozellikler kazanabilirler (Bokov et al., 2021).

Solvotermal ve hidrotermal sentez, metal oksit nanotaneciklerin tiretiminde olduk¢a yaygin
olarak kullanilan yontemlerdir. Bu yontemlerde, nanotaneciklerin olusumu, yiiksek sicaklik ve
basing ortaminda, teflon kap iceren ¢elik otoklav kullanilarak gerceklesir (Lai et al.,
2015). Genellikle metal oksit nanotaneciklerin sentezinde kullanilan bu yontemde, atomlardan
cekirdeklenme ve atomik biiylime reaksiyonlari susuz ortamda gerceklestiginde solvotermal,
sulu ortamda gergeklestiginde hidrotermal sentez olarak adlandirilir (Rafienia, Bigham and Ali
Hassanzadeh-Tabrizi, 2018). Kullanilan baslatici, indirgeyici madde ve ¢oziicli segimleriyle,
sicaklik ve reaksiyon siiresi gibi parametrelerin kontrolii yapilarak, belirli boyutta ve
morfolojide, dagilimlar1 iyi olan metal oksit nanotanecikler, malzeme kaybi olmaksizin

sentezlenebilir (Lai et al., 2015; Gan et al., 2020).
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Kimyasal ¢oktiirme/ birlikte ¢oktiirme yontemleri metal oksit nanotaneciklerin veya hibrit
metal oksit nanoyapilarin hazirlanmasi i¢in sulu ortamda gergeklestirilen oldukga basit ve
yaygin olarak kullanilan yontemlerdir. Kimyasal ¢oktiirme i¢in iki ya da ti¢ degerlikli bir adet
metal tuzu, birlikte ¢Oktiirme i¢in iki veya daha fazla metal tuzu suda coziilerek, siirekli
karistirma altinda bazik ortamda indirgenirler ve suda c¢oziinmeyen forma donisiirler.
Nanotaneciklerin yilizey morfolojileri ve boyutlari, ortamin pH’1, ortam sicakligi, metal tuzu
derisimi, reaksiyon stiresi gibi parametrelerle kontrol edilir. Coziicliden ayrilan ¢okelek, daha
fazla saflastirilarak kurutulurlar. Nanotaneciklerin olusumu ¢ekirdeklenme, biiyiime, irilesme
(Ostwald olgunlasmasi), topaklanma ve stabilize etme islemlerini icerir (Kolahalam et al.,
2019).

Termal ayrisma yOntemi, bilesikte yer alan kimyasal baglarin 1siyla kirilmasindan {iretilen
endotermik bir kimyasal ayrismadir. Bilesikten ayrilan elementin kimyasal olarak ayrildigi
sicaklik bozunma sicakligidir. Bu yontemle kimyasal reaksiyona giren ve ikincil irlinler tireten
bir metalin belirli sicakliklarda ayristirilmasiyla nanoyapilar tretilir (Huang et al., 2023).
Termal ayrisma yonteminde, yag asitleri, oleik asit ve heksadesilamin yiizey aktif maddelerin
varliginda, metal tuzlar1 baslaticilarinin yiiksek sicaklikta ayrismasiyla, diger yontemlere gore
genellikle daha yiiksek diizeyde tekdiize dagilma ve kii¢iik boyut kontroliine sahip metal oksit

nanotaneciklerin tretilebilir.

Sonokimyasal sentezde, ses dalgalarinin frekans1 20 kHz'in iizerine ¢iktiginda, ses dalgalari
ultrasonik dalgalara doniisiir ve insanlarin isitebileceginden yiiksek frekans degerine sahiptir.
Bu ses dalgalar1 sivi bir ortamdan gecerken akustik kavitasyon olustururlar. Akustik
kavitasyonla olusan kabarciklar kisa siirede biiyiiyerek hemen patlarlar. Olusan kabarciklarin
iretimi ve parcalanmasi ile 20 MPa'lik bir yiiksek basing bolgesi olusturan yiiksek gerilim
bolgesi olusur (Qi et al., 2022). Bu yontemle diisitk maliyette ve kisa siirede tek adimli metal
oksit nanotanecik sentezi yapilabilir (Wang, Nkurikiyimfura and Pan, 2015). Bir¢ok ¢alismada,
metal oksit nanotaneciklerinin sentezi i¢in sonokimyasal yontemin geleneksel yontemlere gore
sentez siliresini  kisalttigit ve kiiciik boyutlu ve homojen dagilimli nanotaneciklerin
tiretilebilecegi kanitlanmistir (Dolores, Raquel and Adianez, 2015; Vabbina et al., 2015;
Pirsaheb and Moradi, 2020; llgar et al., 2022). Ayrica zararli kimyasallarin kullanilmamasi ya
da en az seviyede kullanilmasi nedeniyle, cevreye duyarli bir yesil yontem olarak

degerlendirilebilir.
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Yesil sentez, diger yontemlere gore c¢evreye duyarli ve diisiik maliyetli olmasi nedeniyle
nanotanecik sentezinde oldukga etkili bir yontem olarak kullanilmaktadir. Bu yontemde toksik
kimyasallar kullanilmadan biyomalzeme ortaminda metal tuzu baglaticilar1 ile oda kosullarinda
ve kisa siirede metal /metal oksit nanotanecikleri tiretilmektedir (Gour and Jain, 2019). Yesil
sentez, bitkisel irilinler, algler, mantarlar, mayalar, bakteriler ve viriisler gibi ¢ok ¢esitli
kaynaklar kullanilarak gerceklestirilebilir (Dikshit et al., 2021). Biyomalzemelerde bulunan
proteinler, indirgeyici sekerler, polioller, terpenoidler, polifenoller gibi fito bilesikler, metal
iyonlarinin biyoindirgenmesini saglayarak metal /metal oksit nanotanecik olusumu

gerceklestirir (Ovais et al., 2018; Dikshit et al., 2021).

2.5. NANOYAPILARIN KARAKTERIZASYON TEKNiKLERI

Metal oksit nanoyapilarin, kimyasal ve fiziksel yapilarinin aydinlatilmas: ile ylizey
Ozelliklerinin incelenmesi i¢in bir¢gok analiz yontemi mevcuttur. Bunlardan en sik
kullanilanlari, Fourier dontisiimlii kizilotesi spektroskopisi, X-igin1 kirinim analizi, X-1511
fotoelektron spektroskopisi, taramali ve gecirimli elektron mikroskoplari, UV-Vis

spektroskopisi ve titresimli numune magnometresi analizleridir.

Fourier doniisiimii kizildtesi (FTIR) spektroskopisi, numunelerin 4000-400 cm™ araliginda nitel
analizini gergeklestirmek i¢in uygulanan numuneye zarar vermeyen, harici kalibrasyona gerek
duymayan, yiiksek optik verime sahip, hassas ve basit bir yontemdir. Numuneye gonderilen
kizil6tesi (IR) 1gtmanin bir kismui ise iginden gecerken, bir kismi1 da numune tarafindan titresim
modlarima uyan frekanslarda sogurulur. IR 1gimay1 soguran numunenin kimyasal baglari
karakteristik frekanslarda titresir. Titresim gegisleri, farkli enerjilere karsilik gelir ve molekiiller
yalnmizca belirli dalga boylarinda ve frekanslarda IR 1simasini sogurur. Isima absorpsiyon
frekansinin 6l¢iilmesi, fonksiyonel gruplari ve bilesikleri tantmlamak i¢in kullanilabilecek bir
spektrum tiretir. Numuneden elde edilen IR spektrumu, malzemeyi olusturan atomlarin baglari
arasindaki titresimlerin frekanslarin1 ifade eden absorpsiyon pikleri ile 1500-400 cm?
araliginda yer alan parmak izini temsil etmektedir. Farkli molekiillerin parmak izleri asla ayni
IR spektrumunu {liretmez, bdylece malzemelerin tanimlanmasinda kullanilir. Ayrica pik
noktalarinin siddeti malzeme miktar1 hakkinda bilgi de verebilir. Bu nedenle hem nitel hem de
nicel analiz olarak kullanilabilen bir yontemdir. FTIR, bir kimyasal bilesikteki fonksiyonel
gruplar1 saptamakta kullanildig1 gibi, ylizeyi degistirilmis nanoyapilarin karakterizasyonunda

etkili bir spektroskopik analiz olarak kullanilmaktadir. Reaksiyonun basarili olup olmadigi,
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olusan yeni gruplarin varlig1 ya da yoklugu ile tespit edilebilmektedir (Dutta, 2017). Metal oksit
nanoyapilarda genel olarak metal-oksijen baglarimin (600-400 cm™), havadan gelen
karbondioksit veya su gruplarinin, kullanilan baglaticilardan kalan safsizliklarin
belirlenmesinde ve diger bilesenlerle olusan kimyasal etkilesimlerin aydinlatilmasinda

kullanilmaktadir.

X-1s1n1 kirmnimi (XRD) analizi, kristal ve kristal olmayan malzemelerin yapisini tanimlayan bir
yontemdir. X 1sinlari, dalga boyu 1073-10' nm araliginda olan yiiksek enerjili elektromanyetik
dalgalardir. X-151n1 fotonlar1 bir maddeye uygulandiginda, madde tarafindan gesitli sogurma ve
sacilma etkilesimleri ger¢eklesir. Atom ¢ekirdeginin etrafindaki fotonlar ve elektronlar arasinda
“Rayleigh” sagilmas1 denilen elastik bir sagilma olusur. Sag¢ilan dalganin enerjisi degismeyerek
gelen dalga ile faz iliskisini korur. Sonug olarak tiim atomlara ¢arpan X-1s1n1 fotonlar1 her yéne
dagilir ve yapici veya yikict sagilmis 1s1malar, malzemelerin kristal yapisini inceleyen kirinim
olaylara yol agarak numunenin karakteristik dzelligini belirler. Ozetle XRD, her bir kristal
fazin kendine 6zgli atomik dizilimlerine bagli olarak, X-1sinlarin1 karakteristik bir diizen
icerisinde kirmasi esasina dayanir. Kirinim profilleri her bir kristal faz i¢in parmak izi gibi o
kristali tanimlar. XRD’nin geometrik yorumu olan Bragg yasasi aralarinda d mesafesi bulunan
atomik diizlemlerden kirinima ugramis sinyalin ag1 tespitine dayanir (Epp, 2016; Khan et al.,
2020).

nA =2d sinB

Sekil 2.1: Kafes diizlemleri kirmimlarinin geometrik ifadesi.

Sekil 2.1°de yer alan Bragg denkleminde n kirinim derecesini, A gelen 1sinin dalga boyunu, d
atomik diizlemler aras1 mesafeyi, 0 kirilan 1s1in agisini ifade etmektedir (Epp, 2016). XRD
yonteminde analiz sirasinda numune bozulmaz ve az miktardaki numunelerin analizleri

yapilabilir. XRD analizi ile numunelerin kristal yapisi, kristallik derecesi, kristal tanecik
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boyutu, kristal fazi, bunlarin kantitatif orani ile birlikte bilinmeyen kristal malzeme ve katilar
tanimlanabilir. Polimerik ve cam malzemeler gibi amorf yapilar spesifik pik vermezken,
kendilerine o6zgii kafes yapilarma sahip olan metal oksit kristal yapilar, 20 bolgesinde
karakteristik pikler gostermektedir. Kristal numunelerin XRD desenleri Toz Kirinim
Standartlar1 Ortak Komitesi kiitiiphanesi (JCPDS) ile eslestirilerek numunelerin nitel analizleri
yapilir (Epp, 2016; Khan et al., 2020). Literatiirden edinilen bilgiler 1s181nda metal oksit hibrit
nanoyapilarda yeni pik olusumlarinin gézlemlenmesi ya da olusan piklerin saga ya da sola
kaymasiyla kafes genislemesi ya da daralmasi olaylar1 gbézlemlenerek hibrit nanoyapilarin
etkilesimin ya da katkilanmasiin gergeklesip gergeklesmedigi belirlenebilir (Channei et al.,
2014).

X-151m fotoelektron spektroskopisi (XPS) yontemi ile numune yiizeyinin elementel bilesimi
ol¢iiliir ve elementlerin baglanma durumlar belirlenir ve XPS ile numunenin 10 nm derinligine
kadar inilerek analiz yapilabilir (Mather, 2009). Numune yiizeyi X-isinlar1 ile
bombalandiginda, temel diizeyde bulunan elektronlar tarafindan emilir ve fotoelektron olarak
numuneden disar1 yayilir. XPS analizi ile yayilan elektronlarin kinetik enerjisi ol¢iiliir, bu
nedenle yiizeye duyarli bir analitik tekniktir. X-igimimnin bir numune yiizeyinden elektron

koparma diyagramini belirten Fotoelektrik etki Sekil 2.2°de verilmistir.

/. Fotoelektron

Baglanma
Enerjisi (B.E.)

B.E.= hv —%sz

Fermi Enerji Seviyesi

Sekil 2.2: Fotoelektrik etki.

Bu teknigin en 6nemli avantaj1 yiizey duyarliligi ve numunedeki elementlerden kimyasal durum
bilgilerini ortaya ¢ikarma yetenegidir. XPS ile hidrojen ve helyum disindaki tiim elementler
tespit edilebilir (Stevie and Donley, 2020). Metal oksit esasli hibrit nanoyapilarda ylizey
modifikasyonu yapildiginda, modifiye edici molekiillerin yapisini ve bunlarin metal oksitle

etkilesimlerini karakterize etmek i¢in kullanilabilir. Ayrica hibrit nanoyapilarda mevcut
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elementlerle birlikte onlarin degerlik durumlarin1 da gosterecek duyarliliga sahiptir (Huang et

al., 2023).

Elektron mikroskobu elektron-madde etkilesimleri tarafindan iiretilen sinyaller Yyoluyla
malzemelerin temel nano 6l¢ekte 6zelliklerinin degerlendirilmesine yonelik yiizey morfolojisi,
tane boyutu gibi 6zelliklerinin degerlendirilmesinde olduk¢a Onemlidir. Taramali elektron
mikroskobu (SEM) ve gecirimli elektron mikroskobu (TEM), nanomalzemelerin ylizey
karakterizasyonu i¢in en sik kullanilan elektron mikroskobu yontemleridir. Bu yontemlerde,
optik mikroskoptan farkli olarak numuneye 151k demeti yerine elektron firlatilmasi sonucunda
numune hakkinda bilgi edinilir. SEM goériintiileri, cihazin tepesinde bulunan bir elektron
tabancas1 yardimiyla numuneye yiiksek enerjili bir elektron 1sin1 firlatarak numunenin
ylizeyinin taranmasiyla elde edilir. Elektron demeti yiizeye carptiginda yiizeyle etkilesime girer
ve li¢ tiir elektron yayilir. Bunlar geri sacilan elektronlar, ikincil elektronlar ve Auger
elektronlaridir. SEM yalnizca birincil ve ikincil elektronlar1 kullanir. Geri sagilan elektronlar
atom yilizeyinden geri yansiyan birincil elektronlar olarak adlandirilir ve enerjileri atom
yogunluguna gore degisir. Atom numarasi ne kadar yiiksekse, goriintii de o kadar parlak olur,
ylizey bilesimindeki kontrast varyasyonunu gorsellestirmede etkilidir ve atomlarin yonelimi ve
diizeni hakkinda bilgi edinilebilir. Ikincil elektronlar, birincil elektronlar malzemelerin
ylzeyine girdikten sonra, enerjinin bir kismi numune elektronlarina aktararak olusur ve
elektron 15101 ¢apiyla sinirh yiiksek ¢oziiniirliiklii bir sinyal verir. Yiizeye yakin elde edildikleri
icin topografya hakkinda bilgi verir ve yiiksek ¢oziiniirliklii goriintiileri yaklagik 1-5 nm'lik
ayrintida elde edebilir. Auger elektronlar1 ve X-iginlari gibi diger etkilesimler, atomlar
elektronla uyardiktan sonra olusan fazla enerjiyi serbest birakmak icin gerceklesir. Enerji
dagiliml X-151n1 (EDX) analizi ile X-iginlart kullanilarak elementleri tanimlamak ve numune
konsantrasyonu belirlemek kullanilir (Akhtar et al., 2018; Titus, James Jebaseelan Samuel and
Roopan, 2019). SEM analizi igin yiizeyi incelenecek numunelerin uygun hazirlanmasi
gerekmektedir. Metal igerikli malzemeler zaten elektrigi iletebildikleri i¢in dogrudan
incelenebilir ancak elektrik iletkenligi olmayan malzemelerin altin gibi ince bir iletken
malzeme ile kaplanmasi gerekir. Ayrica geleneksel SEM analizinde numunenin nemli
olmamasi gerekir. Su molekiilleri vakum altinda buharlasarak goriintiiniin netligini bozabilir
(Titus, James Jebaseelan Samuel and Roopan, 2019). (Titus, James Jebaseelan Samuel and
Roopan, 2019). SEM'de 1-30 kV enerji araliginda ayarlanan elektron 1s1n1 bir noktaya odaklanir

numune boyunca taranarak numuneden sinyaller yayilir, bu sinyaller dedektorler tarafindan
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toplanir. Dedektor, numune konumundan seri halde toplanan sinyalleri boyut/piksel dagilimi

secilen tarama modeline gore birlestirilerek goriintiiyii olusturur (Inkson, 2016).

Geri sagilan Karakteristik

elektronlar O X 1swnlar:
O < 7
1 [
' ikincil
I '. elektronlar
|
|
|
|
|
|
|
|
|
| i I
iletilen Elastik Elastik olmayan
elektronlar sacilim sacihm

Sekil 2.3: Atomik diizeyde elektron ve 1s1n etkilesimleri.

TEM analizi yapilirken, elektron 1simn1 numuneye iletilir ve numuneden iletilen elektronlar
mercekler tarafindan odaklanarak goriintiiyii olusturmak igin paralel bir detektor tarafindan
toplanir ve floresans ekrana yansitilarak goriintii fotograflanir. TEM'deki elektron enerjileri 80—
300 keV araliginda oldukgca ytiksek degerde olup, elastik olmayan sa¢ilimla numunenin i¢inden
gegmelerini saglar. Elektronun numunenin iginden gegebilmesi i¢in numune 100 nm’nin altinda
oldukga ince bir tabaka halinde hazirlanmasi1 gerekmektedir. Bu nedenle, ancak nano boyutta
malzemelerin incelenmesi miimkiindiir. Elektrokimyasal ¢dziinme, kimyasal agindirma, iyon
puskiirtme, mekanik asindirma ve kontrolli kirma gibi ¢ok c¢esitli inceltme teknikleri
uygulanarak numunelerin boyutlar1 kiiciltilebilir (Inkson, 2016). TEM ile iki boyutlu siyah
beyaz gorintiiler elde edilir ve SEM ile kiyaslandiginda ¢ok daha yiiksek ¢oziintirlik ve
biiyilitmeye sahiptir. Ayrica SEM, yiizey morfolojisi ve malzemelerin bilesimi hakkinda bilgi

saglarken, TEM, numunenin i¢ yapist hakkinda ayrintilar verir (Akhtar et al., 2018).

Ultraviyole ve goriiniir 151k (UV-Vis) absorpsiyon spektroskopisi bir 151n demetinin numuneden
gectikten veya numune yiizeyinden yansitildiktan sonraki azalmasinin 6l¢iilmesi prensibine
dayanir. Numunenin derigimi arttik¢a 15181n absorpsiyonu da dogrusal olarak artarken, 1s1gin
iletimi Ustel olarak azalir. UV-Vis bolgesinde, 1simanin absorpsiyonu atomlar, molekiiller ve
iyonlar gibi absorbe eden tiirlerin elektronik konfigiirasyonuna baglhdir. Bir elektronik enerji

seviyesi, ¢esitli titresim enerji seviyelerinden, tek bir titresim enerji seviyesi de gesitli donme
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enerji seviyelerinden olusur. Foton ile molekiil etkilesime girdiginde, fotonun sagladigi enerji
bu seviyelerdeki enerji farkiyla eslesirse, elektronik enerji seviyelerinde bir gecise neden
olabilir. Spektrumu elde etmek i¢in numune tarafindan emilen i1sima miktar1 Ol¢iiliir ve
elektromanyetik 1s1ma dalga boyuna gore ¢izilir ve absorpsiyon siddetine karsi dalga boyu
grafigi olan UV-Vis spektrumu olusur (Akash and Rehman, 2020). 190-1100 nm araliginda
numunelerin absorbans degerlerinin 6l¢iilmesine dayanan bu analiz yonteminde, renksiz sivi
numunelerin nitel ve nicel analizleri yapilabilmektedir. Isik kaynagi olarak genellikle tungsten
ve doteryum lambalar kullanilmaktadir. Lambert-Beer yasasi kullanilarak absorbans
spektroskopisi agiklanabilmektedir ve numuneye gonderilen 15181n sogurulmasi ile soguran

tiirlerin konsantrasyonu arasindaki iliskiyi tanimlar (Sekil 2.4).

T=1,/1
A=logly=€xlxC
(—— |
_— —_——
Gelenigik Cikan 151k
—>

L(cm)

Sekil 2.4: Lambert Beer Yasasi.

Lambert-Beer yasasinda yer alan denklemde T gegirgenlik, A absorbans, € molar absorpsiyon
katsayis1 (L moltcm), | 1s181n ¢ozeltide aldigi yol (cm) ve C konsantrasyon (mol/L) anlamina
gelmektedir. UV-Vis spektrometresi ile kimyasal reaksiyonlarin hizi incelenerek kimyasal
kinetik ¢aligmalar1 yapilabilir. Reaksiyonun kinetigini belirlemek i¢in, bir reaktant veya tirtiniin
zamanla konsantrasyon degisimi 6l¢iiliir. Absorbans, numune konsantrasyonu ile dogru orantilt
oldugundan, UV-Vis spektrometresi bir reaksiyonun seyrini takip etmek i¢in kullanilabilir
(Akash and Rehman, 2020). Boylece, ilag salimi, singlet oksijen iiretimi ve fotokatalitik
bozunma gibi pek ¢ok farkli uygulamada kimyasal kinetik ¢aligmalar1 yapilabilir. Ayrica yari
iletken malzemelerin absorbans-dalga boyu spektrumlarindan Tauc grafigi elde edilerek,
numunelerin bant aralik enerjileri hesaplanabilmektedir. Numunelerin kullanim yerlerine gore
nitel analizlerinin yapilmasi ve miktarlarinin belirlenmesi amaciyla nicel analizlerinin

gerceklestirilmesi bakimindan UV-Vis spektroskopisi oldukga faydali bir analiz yontemidir.

Titresimli numune magnometresi (VSM) malzemelerin manyetik 6zelliklerinin dl¢limiinde

kullanilan bir cihazdir. Manyetik malzemenin titresimini, diizglin bir manyetik alanda (H),
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diizgiince yerlestirilmis algilama bobinlerinden elektrik akimi iiretimiyle analiz eder. Algilama
bobinlerinde olusan gerilim, numunenin manyetik momentiyle orantili olarak degisir. Manyetik
alan, elektromiknatis veya siiper iletken miknatis ile olusturulmaktadir. VSM’nin ¢alisma
prensibi Faraday indiiksiyon yasasina gore gerceklesmektedir. Bu yasaya gore, degisen
manyetik alan elektrik alani iiretir ve bu elektrik alan oSlgiilebilir ve degisen manyetik alan
hakkinda bilgi saglar (Nasrollahzadeh et al., 2019). VSM analizi ile numunelerin hangi
manyetik davranisi sergiledigi, manyetizasyona (M) kars1 manyetik alan (H) grafigi ¢izilerek
tespit edilir. Manyetik malzemeler, diamanyetik, paramanyetik, ferromanyetik ve
stiperparamanyetik davraniglar sergilerler. Diamanyetik malzemelerin eslesmemis elektronlari
bulunmaz, biitiin spinleri doludur ve dis manyetik alan uygulandig1 zaman, uygulanan alanin
tam ters yoniinde hareket eder, manyetik alan kaldirilinca manyetik 6zellik sergilemez.
Paramanyetik malzemelerin atomlarinin biitiin spinleri dolu degildir ve eslesmemis elektronlar
vardir. Boylece atom, elektronlarin hareketinden kaynaklanan manyetik momente sahiptir ve
manyetik alan uygulandiginda dogru orantili olacak sekilde manyetik alan ile siralanir. Boylece
pozitif duyarhilik gosteren miknatislanma gerceklesir ve manyetik alan kaldirilinca
miknatislanma sonlanir. Ferromanyetik malzemelerde ise digerlerinin aksine, dipoller arasi
biiyiik bir etkilesim vardir. Atomik manyetik dipollerin neden oldugu ikincil manyetik alan
biiyiiktiir ve ortam alanini biiylik 6l¢iide agar. Ortamdan manyetik alan kaldirildiginda bile
malzemelerdeki manyetik etki devam eder (Kaufman, Hansen and Kleinberg, 2008).
Malzemenin manyetizasyonunu {i¢ ana parametre agiklayabilir. Bunlardan ilki zorlayici alan
(He) olarak adlandirilir ve malzemenin miknatislanmasinin tersine c¢evrilmesi i¢in gereken
minimum enerjiyi de temsil eder. Ikincisi malzemenin yeterince yiiksek manyetik alanlarin
etkisi altinda ulasabilecegi maksimum miknatislanma degeri olan doyma miknatislanmasidir
(Ms). Son parametre, sifir alanda uygulanan, miknatislanmay1 gosteren kalict miknatislanmadir
(Mr). Farkli manyetik malzemeleri igeren Hc, Ms ve Mr parametrelerinin manyetik alan (H) -

manyetizasyon (M) histeresis dongiisii Sekil 2.5’te verilmistir (Figuerola et al., 2010).
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Diamanyetik
Ferromanyetik
Superparamanyetik
Paramanyetik

Sekil 2.5: Manyetik malzemelerin M-H grafigi tizerindeki gosterimi.

Yumusak miknatis olarak da adlandirilan siiperparamanyetik malzemeler, sadece disaridan bir
manyetik alan olusturuldugunda manyetik alan yonii boyunca hizalanabilen, manyetik
dipollerle karakterize edilir. Bu malzemelerin zorlayicilig ve kalicilig1 yoktur, yani disaridan
uygulanan manyetik alan kaldirildigt zaman, manyetik dipoller yeniden rastgelelesir.
Malzemenin manyetikligini gidermek icin fazladan enerji uygulanmadig i¢in baslangictaki
sifir net manyetik moment tekrar kendiliginden olusur (Figuerola et al., 2010). Manyetik
malzemelerin uygun sentez kosullarinda ve farkli katki malzemelerinin kullanimi ile boyut ve
ylizey Ozellikleri degistirilebilir. Bu sekilde kullanim alanlarina gore, siiperparamanyetik

ozellik kazanabilen nanomalzemelerin tasarlanmasi miimkundiir.

2.6. ILAC SALIM KINETIiGI

Ilaglarm nanoyapilardan saliminda, ilag tasiyici sistemin uygun bir sekilde tasarlanmas1 hizli
salim uygulamalarda 6nemli bir rol oynar. ila¢ salim o6zellikleri, ilacin fizikokimyasal
ozellikleri, dozajm belirlenmesi ve {iiretim siireci parametrelerinden etkilenmektedir. Bu
nedenle etkili bir formiilasyon gelistirilmesi i¢in ilag salim modelleri gelistirilmistir. Bir
formiilasyondaki nitel ve nicel degiskenler, in vivo ilag salim performansin
degistirebileceginden, iiriin gelistirmeyi kolaylastiran araglarin gelistirilmesi gerekmektedir
(PAARAKH et al., 2018). Bu nedenle ilag¢ salim kinetik modellerinden faydalanmak, tasarim
stirecinin verimli bir sekilde ilerlemesini saglamaktadir. Nanoyapilardan ilag¢ salim kinetiklerini

aciklamak i¢in pek ¢ok model kullanilmaktadir. Sifirinci dereceden kinetik model ayrismayan
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ve ilac1 yavasga salan dozaj formlarindan ilag ¢oziinmesi i¢in kullanilmaktadir. Birinci
dereceden kinetik model, bazi ilaglarin emilimini ya da ortadan kaldirilmasini agiklamak igin
kullanilan, ancak bu mekanizmay1 teorik bir temelde kavramsallastirmasi zor bir modeldir.
Higuchi modeli bir matris sisteminden ila¢ salimmni tanimlar ve bu modelde matristeki
baslangi¢ ilag konsantrasyonu ilag ¢oziiniirliigiinden daha yiiksek olup, ilag¢ difiizyonu sadece
bir boyutta gergeklesir. Ayrica bu modelde, ilag tanecikleri sistem kalinligindan ¢ok daha
kiiciik, matris sismesi ve ¢oziinmesi ihmal edilebilir diizeyde ve serbest birakma ortaminda ilag
difiizyonu sabittir. Ritger-Peppas modeli, ilacin sisen ve sismeyen polimerik dagitim
sistemlerinden hem Fickian hem de Fickian olmayan salimini analiz etmek i¢in gelistirilmistir.
Model denkleminde yer alan n issii degeri; n<0.43 oldugunda Fickian difiizyonu (Durum I),
0.43 < n <0.85 araliginda anormal durumu (Fickian olmayan) ve n>0.85 oldugunda durum II
(rahatlatic1) tasimayi ifade ederek ilag salim mekanizmasi agiklar (Bruschi, 2015). Fickian
diflizyonel salinim, ilacin olagan molekiiler difiizyonu ile gerceklesir. Durum II (rahatlatic)
salimi, su veya biyolojik ortamda sisen hidrofilik polimerlerin durum gegisi ile iligkili ilag
tasima mekanizmasidir. Bu durum polimerin ¢6ziilmesini ve erozyonunu ifade etmektedir
(Dash, 2010; PAARAKH et al., 2018). Bhaskar modeli, ilaglarin ¢oziinmeyen inorganik
matrislerden diflizyonunu agiklamak i¢in uygun bir kinetik modeldir (Khan et al., 2018) ve ilag
dagitim sistemleri i¢in ¢6ziinme-difiizyon kinetik modeli olarak bilinir (Bhaskar et al., 1986).
Bu modellerin yaninda, bir¢ok farkli ilag salim kinetik modelleri gelistirilmis olup, bir ilag
tastyici sistemi tasarlanirken uygulanan ila¢ salim kinetik modelleri, kullanilan nanotastyici

tirti ve davraniglar1 hakkinda 6n bilgi alinmasi bakimindan olduk¢a 6nemli bir yere sahiptir.

2.7. SINGLET OKSIJEN URETIiMi

Singlet oksijen (*02), elektronik temel durumunda her yerde bulunan triplet molekiiler
oksijenden (30,) daha az kararl olan molekiiler oksijenin elektronik olarak uyarilmis halidir.
Ortam oksijeninin uyarilmis haldeki elektronik izomeri olarak singlet oksijen, ortam
oksijeninden daha yiiksek oksidatif giice ve reaktiviteye sahiptir. Singlet oksijen, PS’nin
uyarilmis durumundan oksijen molekiiliine, enerji transferi yoluyla iiretilir (Kashyap et al.,
2021). Singlet oksijenin kesin tespiti, yakin kizil 6tesi bolgesinde, dogrudan 1270 nm civarinda
bulunan fosforesans emisyonunun 6l¢giilmesiyle yapilir. Ancak bu teknik, tipik olarak zay1f bir
sinyal {retir ve 6zel ekipman gerektirir (Herman and Neal, 2019). Bundan dolay1 singlet
oksijenin dolayli dl¢iimiine dayanan farkli yontemlerin gelistirilmesine ihtiya¢ duyulmustur.

Bu amagla sulu ¢ozeltilerde PS boyalar tarafindan iiretilen singlet oksijenin tespiti i¢in basit ve
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hassas bir spektrofotometrik yontem gelistirilmistir. Bu yontem singlet oksijenin bir imidazol
tiireviyle ile reaksiyonuyla indiiklenen p-nitrosodimetilanilinin (RNO) agartilmasina dayanir.
Reaksiyonda imidazol tiirevi singlet oksijen ile halka seklinde peroksit ara tirtinlerini olusturur
ve bu halka seklindeki peroksit ara fiirlinleri RNO ile reaksiyona girerek 440 nm’de
agartilmasina sebep olur (Kralji¢ and Mohsni, 1978). Boylelikle ortamda olusan singlet oksijen
tiretimi kinetigi UV-vis spektroskopisiyle 440 nm’de zamana bagli olarak kolaylikla izlenebilir.
Singlet oksijenin tiretiminin belirlenmesi ve izlenmesi, 6zellikle PDT uygulamasinda oldukga
onemlidir. PDT, kanser hiicrelerini dogrudan yok etmek veya biiylimelerini engellemek icin
hiicre i¢ci molekiillerle reaksiyona giren ROS’lar1 olusturmak i¢in etkilesime giren PS, 151k ve
oksijen olmak tizere ii¢ temel element icerir. PS, uygun dalga boyunda isinlanarak enerjisini
molekiiler oksijene aktarir ve singlet oksijenin ortaya ¢ikmasina neden olur. PS ile singlet
oksijen tiirleri bolgede arttirilarak, o bolgedeki kanserli hiicrelerin yok olmas1 hedeflenmektedir
(Pang et al., 2022). PDT yapilmadan 6nce, PS’nin singlet oksijen iiretiminin harici deney
kosullarinda etkinliginin bilinmesi gerekmektedir. Dolayli yoldan singlet oksijen iiretiminin
incelenmesi deneyi (RNO-imidozaol) ile kullanilacak olan PS’nin etkinligi aydinlatilabilir.
Metal oksit nanotaneciklerin, 1s1nlama altinda ROS {iiretme yetenegine sahip yari iletkenler
olduklar1 bilinmektedir. Yiiksek foton enerjisi ile tetiklendiklerinde metal oksitlerin VVB’deki
elektronlar, bant araligin1 gegmeye ve CB’ye ulasmaya calisir. Bu sekilde elektron-delik giftleri
olusarak ROS’lar1 meydana getirir. (Chen et al., 2021). Bu nedenle metal oksit nanotanecikler,
singlet oksijen {retiminin etkinliginin artmasinda uygun 1sima altinda PS olarak

kullanilabilmektedir.

2.8. FOTOKATALITIK ETKi

Yar iletken 6zellige sahip metal oksit fotokatalizorler, organik kirletici boyalarin ¢evre dostu
ve siirdiirtilebilir bir sekilde uzaklastirilmasi i¢in biiyiik bir kapsama sahiptir. Endiistriyel atik
sularindan organik kirletici boyalarin giin 15181 altinda fotokatalitik ayrismasi, ihmal edilebilir
miktarda kati yan iiriin Uretmektedir. Fotokatalizorler, glines gibi hem UV hem de goriiniir
bdlge 1s1masina sahip bir 151k kaynagi ile etkinlestirilerek organik kirleticileri verimli bir sekilde
parcalayabilir. Bir fotokatalizor, diger metal oksitlerle katkilandirilarak, fotokatalitik bozunma
verimi arttirilabilmektedir. Kompozit Kkatalizorlerin fotokatalitik aktivitesi, katalizoriin
kristalligi, tanecik boyutlari, morfolojisi, bant araligi ve ylizey modifikasyonlarina gore
gelistirilebilir (Sudha and Sivakumar, 2015). Yar1 iletken metal oksitler (MO), VB ve CB araligi

bir 151k kaynagi ile indiiklenmesiyle elektron (e) ve delik (h*) gegisleri olusur ve bunlar oksijen
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(02), su (H20) ve hidroksil (OH) gruplariyla reaksiyona girerek giiglii oksidasyona sahip
hidroksil radikalleri (-OH) ve siiperoksit radikal anyonlart (-O2") gibi ROS iiretir (Koe et al.,
2020). Metal oksitlerin bir 1s1mayla sudaki organik kirleticileri bozmasi reaksiyonlar1 asagida
verilmistir (Denklem 2.3-2.6)

MO 55 MO (e + h*) 2.3)
h*(VB) + H,0 - OH (2.4)
e (CB)+ 0, - 05 (2.5)
organik kitletici + olusan radikaller - CO, + H,0 + ara urinler (2.6)

Fotokatalitik etkiyi incelerken, fotokatalizoriin tanecik boyutu, yiizey 6zellikleri ve optik
ozellikleri ile organik kirleticinin tiirli, pH degeri ve konsantrasyonu gibi parametreler optimize
edilerek, belirli dalga boyuna sahip 151k altinda organik kirleticilerin bozunma mekanizmasi
arastirilabilmektedir. Yari iletken 6zellikte olan metal oksit ya da bunlardan elde edilen hibrit
malzemeler, organik kirleticiye uygulanan 1sik tiirine gore belirli bir bant aralifinda
tasarlanabilir. Boylece, organik kirleticiler yan iriin iiretmeden dogadan tamamen
uzaklastirilabilir. Bu nedenle tekrar tekrar kullanilabilen metal oksitler ve bunlarin hibrit
malzemeleri, fotokatalizor olarak ¢evresel uygulamalarda atik sularin temizlenmesi i¢in giicli

bir potansiyel 6zellik gostermektedir.
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3. YONTEM

3.1. MALZEMELER

Seryum nitrat hekzahidrat (Ce(NO3)3.6H20, %99), diisikk molekiil agirlikli kitosan (~50 kDa,
deasetilasyon derecesi %75-85), amonyum hidroksit (NHsOH, %99,9), diyaliz tiip seliiloz
membran (14,000 Da), asetik asit (%100), demir kloriir hekzahidrat (FeCls.6H20, %97), 1-
oktodesen (%90), oleik asit (%90) ve metil alkol (ACS) Sigma-Aldrich firmasindan temin
edildi. Fosfat salin tampon (PBS), sodyum hidroksit (NaOH, pelet), hidrojen peroksit (H20,
%30) ve susuz bakir (II) kloriir (%99,95) Merck firmasindan satin alindi. Seryum (III) kloriir
heptahidrat (CeClz.7H20, %99) ve imidazol (%99) Alfa Aesar'dan, izopropil alkol (ACS) ve
etil alkol Ficher Chemical firmasindan temin edildi. Metotreksat (MTX), Istanbul Universitesi
Istanbul Tip Fakiiltesi'nden temin edildi. N,N-Dimetil-4-nitrosoanilin (%98.0) TCI
America’dan alind1. Spectra/Por Float-A-Lyzer G2 marka diyaliz membran (300 kDa MWCO)
kullanildi. %40 oktilamin ile modifiye edilmis poli(akrilik asit) literatiire gére hazirland1 (Wu
et al., 2002; Chen, Thakar and Snee, 2008). OA ayrica saflastirilarak kullanildi. Maca tozu
(9%6.28 su, %14.30 protein, %1.31 yag, %3.22 kiil, 0.16 mg/g maca amid, 1.25 mg/g

glukozinolat ve 0.18 mg /g alkaloid) Arioglu Firmasindan satin alindu.

3.2. SERYUM OKSIT ESASLI HiBRiT NANOYAPILARIN SENTEZi

Bu tez caligmasi kapsaminda, gesitli metal oksit hibrit nanoyapilar farkli kimyasal yontemler
kullanilarak firetildi. Calisma iic kisimdan olusmaktadir ve uygulama alanlariyla birlikte

asagida kisaca 6zetlenmistir.

e Kimyasal ¢oktiirme yontemi ile sentezlenen CeO> nanotanecikleri ve Cs katkili CeO»
hibrit nanoyapilar1 (CeO2/Cs) MTX antikanser ilaci saliminda kullanildi ve farkl: ilag

salim kinetik modellerine uygulandi.

e OA ile kapli Fe3O4 /OA CeO2/OA nanotanecikleri ile CeO2-FezO4 hibrit nanoyapilar
(CF/OA) termal ayrisma yontemi kullanilarak, sicaklik ve madde miktar1 degiskenleri
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ile optimizasyonlar1 yapildi. En iyi gézlemlenen kompozisyon, manyetik alan ve singlet

oksijen kinetigi dl¢limlerinde kullanildi.

e Sonokimya-destekli yesil yontemle maca ekstraktinda (ME) CuO nanotanecikleri
(CuO/ME) ve CuO-CeO: hibrit nanoyapilari (CC/ME) sentezlendi. Eosin Y boyasi

uzerindeki fotokatalitik etkisi incelendi.

3.2.1. CeO2 ve CeO2/Cs Nanoyapilarin Kimyasal Coktiirme Yontemi ile Sentezi

CeO:z sentezi i¢in hizli kimyasal ¢oktiirme yontemi kullanildi (Oosthuizen, Motaung and Swart,
2020). Baslangigta, 0.05 M Ce(NO3)3.6H20 ve 0.2 M NH4OH ¢ozeltileri 50°ser mL saf suda
ayr1 ayr1 hazirlandi. NH4OH ¢6zeltisi manyetik karistirict ilizerinde seryum ¢ozeltisine damla
damla ilave edildi, ardindan seryum hidroksit (Ce(OH)3) ¢okelegi olusana kadar 5 saat siireyle
karistirildi (Denklem 3.1). Olusan agik sar1 ¢okelek birkag kez etanol ve saf su karigim ile
santrifiijde ¢oktiriildi ve numuneler 70 °C'de bir gece etiivde kurutuldu (Denklem 3.2).
Ardindan 500 °C'de 5 saat kalsine edildi ve agik sar1 renkte toz CeO- elde edildi (Denklem 3.3).

(d)

Sekil 3.1: CeO;’nin sentez asamast; (a) bazik ortamda Ce(OH)s’iin ¢oktiiriilmesi, (b) santrifiijle
yikama, (c) suda dagitma ve (d) 1sil islem sonras1 son {iriin.

Ce3* + 30H™ + xH,0 - Ce(OH)3.xH,0 (3.1)
70°C
Ce(OH)5.xH,0 — Ce(OH); + xH,0 (3.2)
500°C
Ce(OH); — CeO, + H,0 (3.3)

Cs katkili CeO2 nanoyapilar1 (CeO2/Cs) sentezlemek i¢in dncelikle %2’lik 50 mL asetik asit
cozeltisi icine, %0.5 (agirlik/hacim) CeO; eklendi ve homojen dagilana dek karistirildi. Daha
sonra tizerine %1 (agirlik/hacim) Cs eklenerek ultrasonik banyoda 40 dk bekletildi. Cozelti, 0.2
M NaOH ile pH 6-7 degerine getirilerek 75 °C’de 3 saat manyetik karistiricida karigtirildi.



33

Olusan ¢okelek 5000 rpm’de 15 dk santriftijlendikten sonra 50 °C’de etiivde 5 saat kurutuldu
ve sar1 renkte toz CeO2/Cs elde edildi.

Sekil 3.2: CeO,/Cs’nin sentez asamast; (a) Cs ve CeO; sulu siispansiyonu, (b) ultrasonik banyoda
bekletme, (¢) pH 6l¢iimii, (d) santrifiijle ile ¢oktiirme, (e) suda dagitma ve (f) kurutulmus son iiriin.

— — OH
HO

OH
OH

HO NH,

NH,

Sekil 3.3:Cs’nin kimyasal yapisi.

MTX-CeO2 ve MTX- CeO>/Cs nanotasiyicilarin hazirlanmasi i¢in; 50 mg / 10 mL CeO3 ve
Ce0,/Cs sulu siispansiyonlarina, ayri ayr1 5 mg/ 5 mL MTX sulu ¢6zeltisi damla damla yavasga
ilave edildi ve 700 rpm’de 24 saat karistirildi. Siispansiyonlar 16.500 rpm'de 30 dk
santrifiijlendi, slipernatantlar ayrildiktan sonra toz nanoyapilarin elde edilmesi i¢in 50 °C'de 2

saat kurutuldu.
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Sekil 3.4: MTX’in kimyasal yapisi.

3.2.2. Ce(Ole)s ve Fe(Ole)s Kompleksleri ile CeO2/OA, Fe304/OA ve CF/OA

Nanoyapilarin Termal Ayrisma Yontemi ile Sentezi

Bu boliimde, OA ile kapli Fe3Os nanotanecikler (Fes04/OA), CeO; nanotanecikler CeO-
(CeO2/0A) ve CeO»-Fes04 hibrit nanoyapilar (CF/OA) termal ayrisma yontemi ile vakum
altinda ve azot gazi ortaminda kurulan “schlenk line” sistemi lizerinden yapildi. FesO4/OA ve
CeO2/OA sentezi igin literatiirdeki sentez yontemi uygulandi (Bronstein et al., 2007). Bunun
icin 6ncelikle demir ve seryum tuz baslaticilar1 kullanilarak Fe(Ole)z ve Ce(Ole)s kompleksleri
sentezlendi. Ardindan metal oksit nanotaneciklerin baslaticist olarak oleat kompleksleri
kullanilarak FesO4/OA, CeO2/OA ve CF/OA nanoyapilari sentezlendi.

OH

Sekil 3.5: Saf OA’nin kimyasal yapist.

Fe(Ole)z kompleksinin iiretilmesi i¢in, 2 boyunlu 250 mL'lik bir balona 5 ml saf su ile 1.3515
g (5 mmol) FeClz.6H20 alind1 ve ¢oziinene kadar manyetik karigtiricida karistirildi. Ardindan,
bir beherde 4.312 g (15 mmol) %90’lik OA, 0.8415 g (15 mmol) KOH, 10 mL etil alkol, 2.5
mL saf su ve 17 mL hekzandan olusan bir ¢6zelti hazirlands. Iki boyunlu balon, yag banyosuna
alinarak geri sogutucuya baglandi ve OA ¢ozeltisi, FeClz.6H20 ¢ozeltisine damla damla
karistirarak ilave edildi. Azot gazi altinda 70 °C'de manyetik karistiricida 4 saat karistirildi.
Reaksiyon tamamlandiktan sonra ¢ozelti, ayirma hunisine alindi ve 3-4 kez saf su ile yikandi.
Bordo-kahverengiye donilisen numune ayrilarak bir balona alindi ve hekzan vakum altinda
uzaklastirildi. Kalan serbest OA ve yan tiriinler, izopropil alkol (IPA) ile 3500 rpm'de 3 kez 10
dk santrifiij edilerek uzaklastirildi. Son olarak santrifiij ile ayrilan kahverengi-turuncu ¢okelek

70 °C'de 5 saat yag banyosunda 1sitildi ve Fe(Ole)s kompleksi elde edildi.
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Sekil 3.6: Fe(Ole)s kompleksinin sentez asamast; (a) geri sogutucuda reaksiyon iglemi, (b) ayirma
hunisinde yikama islemi, (c)santrifiijle ¢oktiirme ve (d) vakum altinda kurutma.

CH,

O:s
-
o =}
HQCW - >/—\—\—\—\_/—/—/ICH3
(e}
(o]

Sekil 3.7: Fe(Ole)s kompleksinin kimyasal yapisi

Ce(Ole)z kompleksinin sentezi i¢in, Fe(Ole)s kompleksinde uygulanan prosediiriin aynisi,
1.3515 g (5 mmol) FeCls.6H20 yerine 1.2324 g (5 mmol) CeCls kullanilmak {izere birebir
uygulandi. Reaksiyon sonunda numune ayirma hunisinde yikandiktan sonra elde edilen agik
sart numune, kalan serbest OA ve yan iirliinleri ayirmak i¢in IPA ile 3500 rpm'de 3 kez 10 dk
santrifiijle ¢oktiirildi. Santrifiijle ayrilan acik sar1 ¢okelek (reginemsi yapigskan yapida), nihai

irlinii elde etmek icin 4 saat vakum altinda kurutuldu.
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Sekil 3.8: Ce(Ole)s kompleksinin sentez asamast; (a) geri sogutucuda reaksiyon islemi, (b) ayirma
hunisinde yikama iglemi, (c)santrifiijle ¢6ktiirme ve (d) vakum altinda kurutma.

CHj

o Ce
H,C / CHg
o
[e}

Sekil 3.9: Ce(Ole)s kompleksinin kimyasal yapisi.

Optimizasyon ¢alismasi i¢in sicaklik parametresi degistirilerek (325, 300 ve 275 °C) Fe3s04/OA
sentezi iizerindeki etkisinin incelenmesi i¢in ii¢ ayr1 reaksiyon diizenegi kuruldu. Ilk olarak,
Fe304/OA-325 sentezi i¢in, SO0 mL'lik 3 boyunlu balona alinan 0.0564 g (0.2 mmol) saf OA,
0.18 g (0.2 mmol) Fe(Ole)s ve 10 mL 1-oktadekan, oda sicakliginda ¢6ziinene kadar manyetik
karigtiricida karigtirlldi. Ardindan vakuma baglanan balon 30 dk bekletildi. Daha sonra 275 °C
sicakliga cikartilarak azot gazi altinda 20 dk karistirildi. Siyah ¢6zelti, hekzan ile santrifiijle
¢oktiriildi ve vakum altinda kurutuldu. Aym islem 300 °C ve 275 °C sicakliklarinda
tekrarlanarak FesO4/OA-300 ve FesO4/OA-275 numuneleri sentezlendi.
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Sekil 3.10: Fes04/OA sentez asamast; (a) reaksiyondan énce, (b) yiiksek sicaklikta ve (¢)
reaksiyondan sonra.

Sicakligin CeO2/OA sentezi iizerindeki etkisini incelemek igin 265, 225 ve 185 °C
sicakliklarinda ii¢ ayri reaksiyon diizenegi kuruldu. ilk olarak, CeO2/OA-265’in sentezlenmesi
igin, 0.0564 g (0.2 mmol) saf OA, 0.198 g (0.2 mmol) Ce(Ole)s ve 15 mL 1-oktadesan 50
mL’lik ti¢ boyunlu balona alinarak 60 °C’de, manyetik karistiricida ¢6ziinene dek karigtirildi.
Oda sicakligina kadar sogutulan sar1 renkli ¢ozelti vakum altinda 30 dk bekletildi. Ardindan
265 °C’de 2 saat azot gazi altinda karistirildi. Cozelti IPA ile santrifiij edildi ve vakum altinda
kurutuldu. Ayni islem 225°C ve 185 °C sicakliklarinda tekrarlanarak CeO2/OA-225 ve
Ce02/OA-185 numuneleri sentezlendi.

Sekil 3.11: CeO,/OA sentez agamasi; (a)reaksiyondan dnce, (b) yiiksek sicaklikta ve (c) reaksiyondan
sonra.
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Tablo 3.1: CF/OA’larin sentezinde kullanilmak iizere deneysel parametrelerin belirlenmesi ve
optimizasyon denemeleri.

Baslatici = Numune kodu = Sicaklik (°C) = Numune kodu Madde Miktari (mol/mol)

Ce02/0OA-185 185

CF/OA-9 9:1-(Ce(Ole)s: Fe(Ole)s)
Ce(Ole)s Ce0,/OA-225 @ 225
Ce0,/0A-265 | 265
CF/OA-5 5:1-(Ce(Ole)s: Fe(Ole)s)
Fes04/0A-275 | 275
Fe(Ole)s = Fes04/0A-300 300
CF/OA-2 2:1-(Ce(Ole)s: Fe(Ole)s)

Fes04/0A-325 325

Madde miktarmim CF/OA hibrit nanoyapilari tizerindeki etkisini incelemek iizere 2:1, 5:1 ve
9:1 olmak {izere ii¢ farkli mol oraninda Ce(Ole)s: Fe(Ole)s kullanildi. ilk olarak 2:1 mol
oraninda Ce(Ole)s: Fe(Ole)s kullanilarak sentezlenen CF/OA-2 numunesi igin 0.0564 g (0.2
mmol) saf OA, 0.1316 g (0.0133 mmol) Ce(Ole)s ve 10 mL, 1-oktadesan 50 mL’lik ti¢ boyunlu
balona alinarak oda sicakliginda, manyetik karistiricida ¢oziinene kadar karistirildi. Vakuma
baglanan balon 30 dk bekletildi. Ardindan 185 °C’de 2 saat azot gazi altinda karistirildi.
Ardindan 0.0599 g (0.00666 mmol) Fe(Ole)s, 5 mL 1-oktadesan iginde ¢Oziindii. Vakuma
alinip, azotla doldurulan Fe(Ole)s ¢ozeltisi, 185 °C’de Ce(Ole)s ¢ozeltisine enjeksiyonla hizla
ilave edildi. Daha sonra 325 °C’ye kadar isitilan karisim bu sicaklikta 20 dk karistirildi.
Reaksiyonun ardindan elde edilen siyah ¢ozelti IPA kullanilarak santrifiij ile ¢oktiiriildi ve 3
kez IPA ile yikandi. Ardindan vakum altinda kurutuldu. Ayni yontemle 5:1 ve 9:1 mol
oranlarinda CF/OA-5 ve CF/OA-9 sentezlendi.
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Sekil 3.12: CF/OA sentez asamasi; (a)reaksiyondan 6nce, (b) yiiksek sicaklikta ve (¢) reaksiyondan
sonra.

Suda ¢oziinebilen CF/OA-9’un hazirlanmasi igin; 0.74 g CF/OA-9 numunesine dnce hekzan,
ardindan IPA ve metil alkol eklendi ve birka¢ kez santriflij ile ¢Oktiiriilerek vakum altinda
kurutuldu. 15 mg kurutulmus numune ve 50 mg %40 oktilamin ile modifiye edilmis poli(akrilik
asit) kloroform igerisinde ¢oziindii. Coziiciisii vakumda uzaklastirilan numune, 1 mL, 0.1 M
NaOH c¢ozeltisi ile ¢oziindii ve saf su ile toplam 10.8 mL'ye seyreltildi. Numune 300 kDa diyaliz
membran tiipiinde saf su ortaminda birkag¢ giin diyaliz edildi. Elde edilen suda ¢oziinebilir

CF/OA-9, singlet oksijen dl¢limii deneyinde kullanildi.

3.2.3. CuO/ME ve CC/ME Nanoyapilarin Sonokimya-Destekli Yesil Yontemle Sentezi

ME ortaminda CuO/ME ve CC/ME numuneleri, olduk¢a basit bir yontem olan sonokimya-
destekli yesil yontemle kisa siirede sentezlenmistir. CuO/ME ve CC/ME’lerin sentezinden
once ME’yi hazirlamak icin, 250 mL saf suya 10 g kurutulmus maca kokii tozu ilave edilerek
oda sicakliginda karanlik ortamda 3 giin boyunca bekletildi. Bu karisim basit siizge¢ kagidiyla
filtrelenerek polifenol o6ziitlinii iceren sivi kisim ayrildi ve sonraki kullanimlar igin

buzdolabinda saklandi.

CuO/ME sentezi i¢in; 0.04 g CuCl, 50 mL saf su i¢inde ¢6ziildli ve manyetik karistiricida oda
sicakliginda 10 dk karistirildi. Ardindan 25 ml ME, Cu ¢ozeltisine eklendi ve sonikasyon
stirasinda iizerine damla damla 0.02 M, 0.5 mL NaOH c¢ozeltisi ilave edilerek 30 dk siireyle %40
genlik frekansinda sonikasyon devam etti. CC/ME numunesinin sentezi i¢in; 2:1 mol oraninda
CeO, ve CuCly 50 mL saf suda dagitilarak manyetik karistiricida oda sicakliginda 10 dk

karistirildi. Ardindan 25 ml ME, Cu ¢6zeltisine eklendi ve sonikasyon sirasinda iizerine damla
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damla 0.02 M, 0.5 mL NaOH ¢ozeltisi ilave edilerek 30 dk siireyle %40 genlik frekansta

sonikasyona devam edildi.

Sekil 3.13: CuO/ME’nin sentez asamasi; (a) 3 giin bekletilmis ME, (b) CuCl; ¢ozeltisinin
karistirilmast, (€) karistirmadan 6nce 25 mL ME, (d) ME ve CuCl; karisiminin sonikasyonu.

3.3. SERYUM OKSIT ESASLI HiBRIiT NANOYAPILARIN KARAKTERIZASYONU
VE UYGULAMALARI

3.3.1. CeO2 ve CeO2/Cs Nanoyapilarin Karakterizasyonu ve fla¢ Salim Kinetigi

Cahismalan

3.3.1.1. Karakterizasyon

FTIR spektroskopi analizleri 4 cm™ ¢oziiniirliikte ve 400- 4000 cm™ dalga sayisi araliginda
ATR oOrnekleme fiinitesine sahip Bruker Alpha FTIR spektrofotometresi kullanilarak
gergeklestirildi. CeO2 ve CeO2/Cs’nin XRD desenleri, 0-80° 2-teta (20) araliginda bir CuKa
radyasyon kaynagi (A=1.54056 A) kullanan Rigaku D/Max-2200/PC marka X-1sin1 kirinim
cihaz1 araciligiyla elde edildi. XRD grafiginden elde edilen ana pikler, Debye-Scherrer
denklemine (Denklem 3.4) uygulanarak nanoyapilarin ortalama kristal boyutlari hesaplandi
(Borchert et al., 2005).

Debye-Scherrer denklemi:

K2
- LcosO

(3.4)

D: ortalama kristal boyutu, K: sekil faktorii (0.9). A: radyasyonun X-1sin1 dalga boyu. 3: Bragg
zirvesinin yart maksimumundaki tam genislik (FWHM) ve 6: Bragg agisi. Numunelerin

kristallik yiizdesi, kristalin ve amorf tepelerin alani kullanilarak Denklem 3.5’e gbre hesaplandi.

Kristal piklerin alant

% Kristallik =

100 (3.5)

Kristal ve amorf piklerin toplam alant
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Hazirlanan CeO> ve CeO2/Cs’nin yiizey morfolojileri, 30 kV'de 150.000 biiylitme ile taramali
elektron mikroskobu (SEM, QUANTA FEG 450-FEI)) kullanilarak yapildi. Tanecik boyutu

dagilimlari, SEM goriintiilerinden Image J programi kullanilarak hesaplandi.

3.3.1.2. fla¢ Salim Kinetigi Calismalar

MTX-CeO2 ve MTX-CeO,/Cs numunelerinin ila¢ salim ¢aligmalari yapilmadan Once
numunelerin enkapsiilasyon verimliligi (Denklem 3.6) ve yiikleme kapasitesi (Denklem 3.7)
hesaplandi. Bunun i¢in, numunelere ila¢ yiikleme asamasinda, santrifiijden ayrilan
stipernatantlar kullanildi. Stipernatantlarda kalan serbest MTX’in absorbansi, UV-Vis
spektrofotometre (T-80+ PG Instruments) kullanilarak 302 nm dalga boyunda 6lgiildii. Burada
MTX in standart grafigi kullanilarak serbest MTX miktar1 bulundu.

.. . Nanotastyicidaki MTX miktart —serbest MTX miktari
% Enkapsiilasyon verimi = : , , x100% (3.6)
Nanotostyicidaki MTX miktart
.. . b Nanotastyicidaki MTX miktart —serbest MTX miktari
% Yiikleme kapasitesi = s x100% (3.7)

Nanotastyict miktari

MTX yiiklii CeO2 ve CeO2/Cs nanoyapilarin salim profili, diyaliz yontemi kullanilarak 37°C'de
PBS (pH 7.4) ortaminda arastirildi. 2 mL PBS iceren 10 mg nanoyap1 diyaliz membran tiipiine
aktarildi ve 50 mL PBS salim ortamina diyaliz membran yerlestirildi. Salim sistemi, 37°C'de
sirkiile su banyosunda gergeklestirildi ve periyodik olarak numunelerin 302 nm’de UV-Vis
spektrofotometresi kullanilarak absorbans Ol¢timleri yapildi. Standart denklem kullanilarak
absorbans degerleri konsantrasyona cevrilerek numunelerin kiimiilatif MTX salimi yiizdesi

hesaplandi (Denklem 3.8).

n—1 .,
% Kiimiilatif Salim = Z22L_C+Voln 01 (3.8)

mmrx

Denklem 3.8°de verilen murx, nanotastyicilardaki toplam MTX miktarini, Vo, salim ortaminin
hacmini (50 mL), Ve, degistirilen ortam hacmini (2 mL), C;, baslangi¢ konsantrasyonunu ve Ch,

numunedeki MTX konsantrasyonunu temsil etmektedir (H. Deng et al., 2016).

Nanotastyicilardan salinan MTX miktari, 6l¢iim araligi 0-8 saat ve dalga boyu 302 nm olarak
alind1. Ilag salim kinetik model ¢alismalar1 i¢in farkli kinetik modeller kullanilmistir. Bunlar
sifir derece kinetik (Denklem 3.9), birinci derece kinetik (Denklem 3.10), Higuchi modeli
(Denklem 3.11), Bhaskar modeli (Denklem 3.12) ve Rigter-Peppas modeli (Denklem 3.13)

dahil olmak iizere bes farkl1 kinetik model kullanildi ve belirleme katsayilar1 (R?) kiyaslandi
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(Higuchi, 1963; Schwartz, Simonelli and Higuchi, 1968; Bhaskar et al., 1986; Freitas and
Marchetti, 2005; Li et al., 2009; Chakraborty et al., 2011).

M /My = kot (3.9
In(1—M/My) = —k, t (3.10)
M, /My, = ky t°5 (3.11)
In (1= M,/M,,) = —kt®65 (3.12)
M,/M,, = kt™ (3.13)

Burada; t: siire, M/Mx: t zamaninda ilag salim1 ve k: ila¢ salim hiz1 sabitidir.

3.3.2. Ce(Ole)s ve Fe(Ole)s Kompleksleri ile CeO2/OA, FesO4/OA ve CF/OA

Nanoyapilarin Karakterizasyonu ve Singlet Oksijen Uretimi Kinetigi Calismalar

3.3.2.1. Karakterizasyon

FTIR analizleri 4 cm™ ¢oziiniirlikte ve 400- 4000 cm™ dalga sayisi araliginda Thermo
Scientific Nicolet iS5 model FTIR spektrofotometresi ile iD7 Diamond ATR modunda
gergeklestirildi. XRD analizleri 40 kV ve 40 mA, Cu Ka radyasyonunda (A = 1.5418 A) 10-70°
2-teta (20) araliginda Bruker D8 Advance difraktometresi ile yapildi. TEM gorintiileri JEOL-
JEM-3010 modeli kullanilarak 300 kV HT hizlandirma voltajinda analiz edildi. Numunelerin
absorbans degerleri, Cary 300 Bio UV-Vis Spektrofotometre kullanilarak, dogrudan bant
aralif1 enerjilerini hesaplamak tizere degerlendirildi. Numunelerin dogrudan bant aralig
enerjisi, absorbans degerleri kullanilarak Tauc grafigi ile Denklem 3.14 kullanilarak

hesaplandi:
(a(h9))? = A(h9 — Eg) (3.14)

Burada; a: sogurma katsayisi, h: foton enerjisi, Eg: dogrudan bant aralig1 enerjisi ve A: optik
sabittir. XPS analizi Kratos AXIS-165 kullanilarak yiiksek ¢oziintirliiklii monokromatik Al Ka
X-1s1n1 kaynagi ile her numune i¢in farkli voltajda ¢alisildi (CeO2/OA, CF/OA-5, CF/OA-9
numuneleri i¢in sirasiyla 14, 9.0 ve 8.2 eV). VSM analizi, numunelerin oda sicakliginda, £50
kOe manyetik alan araliginda manyetik davranislarini belirlemek i¢in Quantum Design PPMS-

9 T kullanilarak gergeklestirildi.
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3.3.2.2. Singlet Oksijen Uretimi Kinetigi Calismalart

Singlet oksijen Olciimleri literatiirden alinan prosediire dayanmaktadir (Kralji¢ and Mohsni,
1978). 1.5 mg (0.01 mmol) N,N-Dimetil-4-nitrosoanilin ve 109 mg (1.6 mmol) imidazol, 100
mL saf su i¢inde ¢oziilerek singlet oksijen algilayan bir stok ¢ozeltisi hazirlandi. Daha sonra,
su i¢inde dagitilmig 0.156 mL, 0.322 mL ve 0.644 mL CF/OA-9 numunesi, 1.611 g stok
¢ozeltisine ayr1 ayri ilave edildi ve saf suyla 5 mL'ye tamamlandi. Kontrol 5 mg suda ¢6ziinen
polimerden (%40 oktilamin ile modifiye edilmis poli(akrilik asit)) olugsmaktadir. Kontrol ve
numuneler 5 mL kuvars kiivetlere (Starna Scientific) eklendi ve kiivetler kapatildi. Numuneler,
karigtirma sirasinda 1, 2 veya 5 dakikalik araliklarla Rayonet UV fotoliz odasinin hava
sogutmali bosluguna yerlestirildi, ardindan Cary Bio 300 UV-Vis spektroskopisi ile absorbans
Ol¢timii yapildi. Rayonet fotoliz sistemi i¢in, (16x8W Interlight, Hammond, IN) UV lamba
kullanildi.

3.3.3. CuO/ME ve CC/ME Nanoyapilarin Karakterizasyonu ve Fotokatalitik Kinetik

Calismalan

3.3.3.1. Karakterizasyon

Numunelerin fonksiyonel gruplarini anlamak i¢in 4 cm™ ve 8 tarama ¢oziiniirliigii ile 4000-400
cm? dalga sayis1 araliginda FTIR (Perkin Elmer, Spectrum Two modeli) analizi yapildi.
Sentezlenen numunelerin XRD analizi 40 kV ve 15 mA'da Cu Ka radyasyonuna sahip XRD
cihaziyla (PANalytical Empyrean) gerceklestirildi. XRD sonuglarinda gézlemlenen pikler
Denklem 3.4°te verilen Debye-Scherrer denklemine uygulanarak nanoyapilarin ortalama kristal
boyutlar1 hesaplandi Numunelerin TEM (Hitachi HighTech HT7700 modeli) analizi, 100 kV'de

yiiksek vakum modunda numunelerin ylizeyini karakterize etmek i¢in kullanildi.

3.3.3.2. Fotokatalitik Kinetik Calismalart
Numunelerin fotokatalitik performansi, goriiniir 151ma altinda katalizér eklenen Eosin Y'nin

(EY) zamana kars1 absorbans 6l¢iimleri alinarak degerlendirildi.
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Sekil 3.14: EY’nin kimyasal yapisi.

Oncelikle farkli konsantrasyonlarda EY ¢ozeltileri hazirlanarak absorbans &lgiimleri alindi.
Absorbans-konsantrasyon grafigi ¢izilereck elde edilen standart denklem, fotokatalitik
Olciimlerde konsantrasyonlarin hesabinda kullanildi. Fotokatalitik Slgtimler, CuO/ME ve
CC/ME katalizleri eklenen EY siispansiyonlarinin karanlik bir ortamda, goriiniir led lamba (200
W) 1s1mas1 altinda gergeklestirildi. Bunun i¢in ayr1 ayr hazirlanan 10 mg kataliz, 25 mL 10
ppm EY c¢ozeltisine eklendi. Ardindan lamba 1s1masi ile 200 rpm’de karisma sirasinda, EY
cozeltisinden belirli zaman araliklarinda numune alinarak 10000 rpm’de 3 dk santrifiij edildi.
Katalizorden ayrilan siipernatantin absorbans degerleri 518 nm dalga boyunda UV-Vis
spektrofotometresi (PG Instruments T80 UV/VIS Spektrofotometre) kullanilarak periyodik
olarak kaydedildi. 300 dk sonra Sl¢iimler tamamlanarak EY ¢ozeltilerinin bozunma ytiizdeleri
(%), kinetik hiz sabitleri (k) ve belirleme katsayilar1 (R?) hesaplandi. CC/ME numunesi i¢in bu
islemler, farkli konsantrasyonlarda (10, 12.5 ve 15 ppm) ve pH (3, 5.5 ve 8.5 pH) degerlerinde
EY ¢ozeltileri kullanilarak optimize edildi. Ayrica CC/ME, EY bozunmasindan sonra santrifiij
ile ayrildi. Ardindan birkag kere saf suyla yikanip, etiivde kurutularak EY’nin
fotobozunmasinda tekrar kullanildi. EY nin bozunma yiizdesi (%), Denklem 3.15 kullanilarak
hesaplandi:

Co—
Co

€ 100 (3.15)

Bozunma (%) =

Burada; 518 nm dalga boyunda EY c¢ozeltilerinin absorbans degerlerinden elde edilen
konsantrasyonlardan Co: boyanin baslangi¢ konsantrasyonu ve C: se¢ilen bir zamanda boyanin
konsantrasyonudur. EY’nin yalanci birinci dereceden hiz sabitleri (k), Denklem 3.16

kullanilarak hesaplandi:

m%zkt (3.16)
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Burada; k: yalanci birinci dereceden hiz sabiti, t: EY nin 1518a maruz kalma siiresinin dakika

cinsinden degeri, Co/C: baslangi¢c konsantrasyonunun t siiredeki konsantrasyona oranini ifade

etmektedir.

CC/ME’nin fotokatalitik mekanizmas: asagidaki denklemlerle (Denklem 3.17-3.22)

aciklanabilir (Huang et al., 2016):

CC/ME (Cu0 — Ce0,) -5 CC/ME (e~ + h™)
h*(VB) + OH- - OH

e (CB)+ 0, - 05

H,0 + 05 — OOH- + OH~

200H > 0, + H,0,

H,0, + 05 — OH-+0H" + 0,

EY+ OH + 05 + h* - C0, + H,0 + ara urinler

(3.17)
(3.18)
(3.19)
(3.20)
(3.21)
(3.22)

(3.22)
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4. BULGULAR

4.1. CeO2 ve Ce02/Cs NANOYAPILARIN KARAKTERIZASYONU VE ILAC SALIM
KINETIKLERININ INCELENMESI

4.1.1. FTIR Analizleri

CeO2, Ce0,/Cs, MTX- CeO, ve MTX-CeO,/Cs numunelerinin FTIR spektrumlar1 Sekil 4.1'de
verilmistir. Biitiin numunelerde gozlemlenen ve 3300 cm ‘da yer alan genis pik hidroksil
gruplarmin (-OH) gerilme titresimlerine, 690 ve 490 cm™'deki absorpsiyon pikleri ise, CeO2'nin
karakteristik bandi oldugu i¢in Ce-O gerilme titresimlerine karsilik gelir (Arumugam et al.,
2015; Ali et al., 2018). Yine biitiin numuneler icin 1070 cm™ civarinda bulunan absorpsiyon
bantlari, havadan hapsolmus CO> nedeniyle ortaya ¢ikan C-O bag gerilme modlarini ifade
etmektedir. 1320 cm™Y'deki bant ise numunelerde baslaticidan kalan nitrat nedeniyle N-O
gerilme titresimini ifade eder (Arumugam et al., 2015; Ramasamy and Vijayalakshmi, 2016;
Ali et al., 2018). CeO, ve CeO,/Cs numunelerinde 1640 cm™’de goriilen absorpsiyon bantlar
sudan gelen egilme modundan kaynaklanir (Umar et al., 2015). CeO2 ve CeO2/Cs FTIR
spektrumlar1 benzer olmasina ragmen ayni bolgelerde olusan piklerin siddeti CeO2/Cs igin
azalmis ve genislemistir. Bu nedenle, CeO2/Cs numunesi i¢in CeO2’nin Cs tarafindan

kaplandig1 ve bu etkilesimin fiziksel bir etkilesim oldugu FTIR analizi ile belirlendi.
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Sekil 4.1: CeO,, Ce0./Cs, MTX- CeO, ve MTX-CeO,/Cs numunelerinin FTIR analizi sonuglari.

MTX-CeO; FTIR spektrumunda, OH gruplarmin gerilme titresimine karsilik gelen 3300 cm™
bolgesi, CeO2’ye gore diisiik siddette gézlemlendi. MTX ile CeO2’nin kimyasal etkilesimine
dair yeni bir pik olusumu goézlemlenmedi. Bu nedenle MTX’in CeO iizerine fiziksel olarak
tutundugu varsayildi. Literatiirde saf MTX’in, 3360 cm™ 2954 cm?, 1644 cm™®, 1603 cm™,
1496 cm™?, 1404 cm™ ve 1206 cm™ bolgelerinde karakteristik pik verdigi ve bu bantlarin
sirastyla MTX kimyasal yapisinda bulunan amitte yer alan N-H, C-H, C=0, C-N, NH> gruplar1
ile C=0 kismindaki C-O grubu ilgili gerilmelere ait olduklar1 belirtilmistir (Teja and
Damodharan, 2018). MTX-CeO2/Cs’de, saf MTX kimyasal yapisinda bulunan fonksiyonel
gruplar net bir sekilde gézlemlendi. Bu baglamda, polimer matrisin pozitif yiiklii N-H gruplari

ile ilacin negatif yiiklii OH gruplar arasinda iyonik etkilesimin oldugu varsayildi.

4.1.2. XRD Analizleri

Ce0O2, CeO2/Cs’nin kristal fazlarin1 belirlemek i¢in yapilan XRD desenleri Sekil 4.2'de
verilmistir. Her iki numune igin, (111), (200), (220), (311), (222), (400) ve (331) kristal
diizlemlerine karsilik gelen pikler sirasiyla 28.2°, 32.7°, 47.2°, 56.0°, 58.8°, 69.0° ve 76.5°
civarinda standart kiibik florit formunda (JCPDS 89-8436) olduklar: tespit edildi (Srinivasan
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and Chandra Bose, 2010). Numunelerin XRD deseninde gozlemlenen en giiclii pik (111)
Debye-Scherrer denklemine uygulandi (Denklem 3.1). Debye-Scherrer denklemine gore CeO-
ve CeO2/Cs’nin ortalama kristal boyutlar1 sirasiyla 11 ve 10 nm olarak bulundu.
Nanotasiyicilarin kristal derecelerinin ilag salim sistemleri tizerindeki etkilerini anlamak igin
nanoyapilarin kristallik parametreleri belirlendi (Denklem 3.2). Numunelerin kristal dereceleri
Ce0: i¢in %84.47 ve CeO2/Cs igin %88.38 olarak hesaplandi. CeO2’ye kitosan katkisi, kristal

boyutunu azaltt1 ve polimer katkisina ragmen kristallik yiizdesini artirdi.

3
: ~~
~ (@) —
8§ F
3
8 / CeO,
©
©
5]
(77}
A
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CeO,/Cs
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20 (Derece)

Sekil 4.2: CeO, ve CeO,/Cs’nin XRD desenleri.
4.1.3. SEM Goriintiileri

Sentezlenen CeO> ve CeO,/Cs’nin yiizey morfolojilerini incelemek i¢in alinan SEM goriintiileri
ve tanecik boyutu dagilim grafikleri Sekil 4.3: (a)-(d)’de verilmistir. Her iki numune de SEM
sonuglarina gore kiiresel sekilde ve tanecik boyutu dagilimi grafiklerine gore ortalama 35 nm
tanecik boyutuna sahip olduklar1 belirlendi. Sekil 4.3: (a)’da CeO2’nin kiigiik nanotaneciklerin
bir araya gelmesi nedeniyle topaklandigi, Sekil 4.3: (b)’de ise CeO2/Cs’nin homojen bir dagilim
gosterdigi goriilmektedir. Tanecik boyut dagilimlari incelendiginde, CeO2/Cs’nin (Sekil 4.3:
(d)) CeO2’ye (Sekil 4.3: (c)) gore daha homojen bir boyut dagiliminda elde edildigi
goriilmektedir. Bu durumda, CeO2’nin Cs katkistyla birlikte tanecik boyutu dagiliminin net bir
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sekilde iyilestigi gozlemlendi. Cs, CeOz’nin topaklanma olmaksizin homojen bir sekilde
dagilmasinda onemli bir rol oynamistir. Cs, iyi dagilmigs CeOz’nin elde edilmesi ve

topaklanmasinin 6nlenmesi i¢in iyi bir stabilize edici polimer matris olarak hareket etmistir.

16 20
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Sekil 4.3: (a) CeO2’nin SEM goriintiisii, (b) CeO2/Cs’nin SEM goriintiisii, (¢) CeO2’nin tanecik boyutu
dagilim grafigi ve (d) CeO2/Cs’nin tanecik boyutu dagilim grafigi.
4.1.4. lla¢ Salim Kinetigi

Ilag salimi1 incelenmeden &nce, 1.25 ile 20 mg/L konsantrasyon degerleri araliginda metotreksat
(MTX) ¢ozeltileri hazirlanarak, 302 nm dalga boyunda UV-Vis spektroskopisi ile absorbans
degerleri ol¢iildii ve MTX standart grafigi ¢izildi. Konsantrasyonlara karsi ¢izilen absorbans
grafiginden MTX’e ait standart denklemi y=0.0265+0.08094x olarak hesaplandi (Sekil 4.4).

Olgiilen absorbans degerleri bu denklemde yerine konularak, konsantrasyon degerleri bulundu.
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Sekil 4.4: MTX’in standart grafigi.

flag salim calismalaria baslamadan &nce, nanotasiyicilara ne kadar MTX yiiklendigini
saptamak i¢in enkapsiilasyon verimliligi ve ylikleme kapasitesi Denklem 3.6 ve 3.7 kullanilarak
hesaplandi. MTX-CeO2 ve MTX-CeO2/Cs i¢in enkapsiilasyon verimi sirasiyla %95.8 ve %70.7
olarak bulundu. Ayrica yiikleme kapasiteleri MTX-CeO> igin %9.58 ve MTX-CeO2/Cs igin
%7.07 olarak hesaplandi. Saf CeO2’nin enkapsiilasyon verimliliginin ve yiikleme kapasitesinin
Ce02/Cs’den daha yiiksek c¢ikmasinin sebebi, MTX ile CeO: arasindaki hidrofobik
etkilesimlerden kaynaklanabilecegi disiiniildii. Cs’nin, CeO2’nin hidrofilik 6zelligini
arttiracagi varsayildigindan, hidrofobik bir ila¢ olan MTX ile yiiklenmesinin azalmasi olagan
karsilandi. MTX-CeO, ve MTX-CeO2/Cs'nin in vitro salim davranislari, pH 7.4 PBS
tamponunda ve 37 °C’de diyaliz membran tiip kullanilarak incelendi. Sekil 4.5'te gosterilen
salim davranigi sonuglarina gore, 8 saatte MTX-CeOz’den %12.4 ve MTX-CeO./Cs’den
%66.26 MTX salimi gergeklesti. CeOzile kiyaslandiginda, ayni siirelerde CeO2/Cs’den 5.3 kat
daha yiiksek kiimiilatif salim ytlizdesi degeri elde edildi. Bu durumda hidrofilik Cs’nin PBS

ortaminda bozularak ilaci daha hizli saldig1 sonucuna varildi.
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Sekil 4.5: MTX-CeO, ve MTX- CeO/Cs’nin kiimiilatif salim yiizdeleri.

[lag salim kinetik parametreleri farkli modeller (sifirmei dereceden, birinci dereceden, Higuchi,
Bhaskar ve Rigter-Peppas model) kullanilarak kiyaslandi. Bu modeller kullanilarak ¢izilen
grafikler Sekil 4.6: (a)-(e)’de verilmis olup, grafiklerden elde edilen verilerle hesaplanan k ve
R? degerleri Tablo 4.1°de 6zetlenmistir. Her iki numune i¢in de birinci dereceden ve ikinci

dereceden R? degerleri diger modellere gore diisiik degerde olduklar tespit edilmistir.
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Tablo 4.1: MTX salinimi igin CeO> ve CeO,/Cs tastyicilarina uygulanan farkli kinetik model
parametreleri.

MTX-CeO:2 MTX-CeO2/Cs
Sifirinc1 Dereceden k (mg sal) 0.0108 0.1833
R? 0.9316 0.8053
Birinci Dereceden k (mg sa) 0.027 0.027
R? 0.8642 0.8642
Higuchi k (mg sa®%) 0.0347 0.2417
R? 0.9855 0.9652
Bhaskar k (-sa0-%) 0.0265 0.2824
R? 0.9864 0.9652
Ritger- Peppas k (h™ 0.0553 0.2633
R? 0.9917 0.9372
n 0.4 0.5

MTX-CeO: icin R? degerleri Ritger-Peppas modeline gore 0.9917 olup en yiiksek degerdedir,
sonrasinda Higuchi ve Bhaskar modeline gore sirasiyla 0.9855 ve 0.9864 degerlerinde oldugu
bulundu. Sifirinct ve birinci dereceden modele gére R? degetleri oldukea diisiik bulundu. Bu
durumda MTX-CeO2’den in vitro MTX salim kinetik sonucuna en iyi uyan model Ritger-
Peppas olarak belirlendi. Ritger-Peppas sonuglara gore salim issiiniin (n) degeri 0.43'ten
kiiglik bulundu ve bu durum sismeyen salim sistemlerini ifade etmektedir. CeO> igin salim
mekanizmasinin Fickian difizyonu ile kontrol edilmesi gerektigi sonucuna varildi (Aristizabal-
Gil et al., 2019; Guo et al., 2020). Higuchi modeli de, Fickian diflizyon yasasina bagli olarak
zamana bagl ila¢ salim davranisini agiklayabilmektedir (Sun et al., 2017). Ayrica, Bhaskar
modelinde belirtilen ¢6ziinme-difiizyon modeli de ¢dziinmeyen inorganik matristen ilacin
yayilmasini agikladigi bilinmektedir. Bu durumda MTX-CeO: ti¢ kinetik modeli igin de ilag

salim profili ile uyumlu davranis gostermistir.

8 saatte %66.26 MTX salimi1 gergeklestiren MTX-CeO,/Cs’nin ilag salim kinetik sonuglari
incelendiginde, hesaplanan en yiiksek R? degerleri Higuchi modeli i¢in 0.9652 ve Bhaskar
modeli i¢in 0.9797 bulundu. Sonug olarak, deneysel veriler, mekanizmanin MTX'in
Ce02/Cs’den saliminin difiizyon ile ilgili oldugu Higuchi ve Bhaskar modelleri ile dogrulandi.
In vitro ilag salim kinetik sonuglari, polimer katkisinin ilag yiiklii metal oksit inorganik

nanotastyicilar tizerinde 6nemli bir etki olusturdugunu gosterdi. Ayrica, deneysel ilag salim
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kinetigi, ilacin Cs ve metal oksit ara yiiziinde bulunabilecegi varsayilarak, polimer matrisin ilag

salim kosullarini optimize edici bir madde olarak islev gorebilecegi belirlendi.
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Sekil 4.6: MTX-CeO, ve MTX- CeO,/Cs i¢in MTX salimina uygulanan kinetik modeller; (a) Sifirinci
Dereceden, (b) Birinci Dereceden, (c) Higuchi, (d) Bhaskar ve (e) Ritger-Peppas.

4.2. Ce(Ole)s ve Fe(Ole)s KOMPLEKSLERI ile CeO2/OA, Fes04/OA ve CF/OA
NANOYAPILARIN KARAKTERIZASYONU VE SINGLET OKSIiJEN URETIMINIiN
INCELENMESI

4.2.1. FTIR Analizleri

Fe(Ole)s ve Ce(Ole)s komplekslerinin ve saf OA’nin FTIR spektrumlart Sekil 4.7'de verilmistir.
Uc numunede de gdzlemlenen 2917 ve 2820 cm™'deki iki keskin bant, asimetrik ve simetrik

CH> gerilmesinden kaynaklanmaktadir. OA’da goriilen 1710 cm-Y'deki keskin pik, serbest
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OA’nin karboksil grubuyla iliskili olan C=0 gerilmesini, 1280 cm™deki bant bir C-O
gerilmesidir. Ayrica OA spektrumunda diizlem igi ve diizlem dist O — H bantlar1 930 cm™'de
goriilmektedir (Zhang, He and Gu, 2006). OA uzun alifatik zinciri nedeniyle, metilen
gruplarinin agisal deformasyonuna ve zincir agisal deformasyonunu ifade eden karakteristik
absorpsiyon bantlar1 1460 ve 720 cm™'de goriilmektedir (Neto et al., 2018). Hem Ce(Ole)s hem
de Fe(Ole)s spektrumlart igin karboksil gruplarmin titresim frekanslar1 1520 ve 1430 cm™'de
goriilmektedir. Iki numunede de olusan bu gerilme modu, karboksilat grubunun bir metal
atomuna ¢ift disli koordinasyonunun karakteristigidir (Sreeremya et al., 2014). Ayrica serbest
OA’dan beklenen ve karbonil grubunu temsil eden 1710 cm™ band: kompleks yapilarda yok
olmustur (Gu and Soucek, 2007; Vilas-Boas et al., 2015). Bu durum, yikama isleminde ortamda

kalan serbest OA’nin uzaklastirilmasindan kaynaklanmustir.

Gecgirgenlik (a.u.)

.«

T T T T T T T T T T T T T
4000 3500 3000 2500 2000 1500 1000 500
Dalga Sayisi (cm'l)

2917
| 2820

1710

Sekil 4.7: Ce(Ole)s, Fe(Ole)s ve OA FTIR analizi sonuglari.

275 °C, 300 °C ve 325 °C sicakliklarinda sentezlenen FesO4/OA numuneleri igin FTIR
spektrumlar Sekil 4.8'de gosterilmistir. Her {i¢ spektrum igin 580 cm™'de goriilen keskin pik,
Fe-O titresimini ortaya koymaktadir (Vilas-Boas et al., 2015). FesO4s/OA-275 ve Fes04/OA-
300 numunelerinde gozlemlenen 1380 ve 1220 cm™'deki bantlar OA’dan gelen metil (-CHa)
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gruplaridir. 1750 cm™'de goriinen bant ise, serbest OA’dan gelen karboksil gruplarmdan
kaynaklanmaktadir (Ibarra et al.,, 2015; Vilas-Boas et al., 2015). Fe304/0OA-325
spektrumundaki 1090 ve 800 cm™'deki pikler, Fe yiizeyindeki -OH gruplarindan olusmus
olabilir (Huang et al., 2009). Ayrica 2920 ve 2850 cm™’de yer alan CH, ve CHs gruplari, demir
oksit yiizeyinin OA ile kaplandigini ifade etmektedir. Bu durumda, numunenin 325°C
sicaklikta, serbest OA’dan uzaklastirilarak daha yiiksek saflikta elde edildigi sonucuna varildi.
Bu nedenle, farkli oranlarda sentezlenecek olan CF/OA numuneleri igin Fe(Ole)s baslaticisi

kullanilirken 325 °C sicaklikta sentezin yapilmasina karar verildi.

Fe3O4/OA-325

/N

Fe3O4/OA-300

—

I T
Feg0,4/0A-275 U 'aa ﬁ/\

Gegirgenlik (a.u.)

1380
1220

1 1750
4 560

T I T I T I T I I T I T
4000 3500 3000 2500 2000 1500 1000 500
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Sekil 4.8: Fe304/0A-275, Fe304/0A-300 ve Fe;04/0OA-325’in FTIR analizi sonuglari.

185 °C, 225 °C ve 265 °C'de sentezlenen CeO2/OA numuneleri i¢in FTIR spektrumlart Sekil
4.9°da gosterilmistir. Sirastyla 2920 ve 2850 cm™de gériilen iki giiglii titresim bandi, OA nin -
CHz grubuna aittir. Ayrica 720 cm™'de goriilen pik, OA’nin (CH2)n omurgasini temsil
etmektedir. 1300 cm™Y'deki bant Ce—~O—Ce titresimidir (Sreeremya et al., 2014). 1430 ve 1540
cm™'deki iki keskin pik, simetrik ve asimetrik karboksil gruplari titresim gerilmesine aittir
(Sreeremya et al., 2012). Her ii¢ sicaklik i¢in elde edilen FTIR egrilerinde seryum oleat

kompleksine benzer bir egri elde edilmis ve CeO2 drneklerinin oleat ile kaplanmis oldugu kabul
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edildi. Biitiin sicakliklar i¢cin benzer FTIR spektrumlar elde edildigi icin, farkli oranlarda
CF/OA numunelerinin sentez agsamasinda Ce(Ole)s baslaticis1 kullanilirken en diisiik sicaklik

olarak 185 °C sicakligi se¢ilmistir.

Ce0,/0A-265

i U Ay
Ce0,/0A-185 | i

Gecirgenlik (a.u.)

J
%

1540
1430 ~
1300
720

1920
1850

T T T T T T * T T T T T T T
4000 3500 3000 2500 2000 1500 1000 500
Dalga Sayisi (cm™1)

Sekil 4.9: CeO,/0OA-185, Ce0,/0A-225 ve CeO,/OA-265in FTIR analizi sonuglari.

9:1, 5:1 ve 2:1 (CeO2:Fe304) oranlarinda sentezlenen CF/OA-9, CF/OA-5 ve CF/OA-2
numunelerinin FTIR spektrumlar1 Sekil 4.10°da verilmistir. Ug¢ CF/OA numunesinin de FTIR
spektrumlari, CeO2/OA-185’e benzer bir sonug gosterdi. CeO2/OA’ya ait olan 1540 ve 1430
cm™ bolgelerinde yer alan karboksil grubu pikleri CF/OA bilesimleri i¢in hafifce saga kayd.
Ayrica biitiin CF/OA numunelerinde metal oksit baglarini isaret eden 580 ve 460cm™’de yeni

bir Fe-O bagi olustugu gozlemlendi.
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Sekil 4.10: Fes04/0A-325, CeO,/0OA-185, CF/OA-9, CF/OA-5 ve CF/OA-2’nin FTIR analizi
sonuglart.

4.2.2. XRD Analizleri

Farkli sicakliklarda sentezlenen Fe3O4/OA numunelerinin XRD analizlerinin sonuglar1 Sekil
4.11'de gosterilmektedir. XRD sonuglarina gore, farkli sicakliklarda sentezlenen tiim FesO4/OA
numunelerinin manyetit FesO4 yapisinda sentezlendigini dogrulandi. 29.8° (220), 35.3° (311),
43.0° (400), 56.9 ° (511) ve 62.5 ° (440) karakteristik tepe noktalari, kristal manyetik FezO4
yapisini temsil etmektedir (Mahdavi et al., 2013). Diger iki numunenin aksine, Fe304/OA-
325’in XRD spektrumlarinda, baska bir faza veya maddeye atfedilebilecek baska belirgin bir
pik gozlemlenmedi. Dolayisiyla 325 °C sentez sicakliginin, FesO4/OA numunesinin kiibik
manyetik demir oksit yapisina daha fazla ortiistiigii tespit edildi. Bu nedenle, XRD sonuglarina
baktigimizda, FTIR sonuglarinda oldugu gibi 325 °C sicakliginin CF/OA numunelerinin sentezi

i¢in kullanilmasina karar verildi.
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Sekil 4.11: Fe304/0A-275, Fes04/0A-300 ve Fe304/0A-325’in XRD desenleri.

Farkli sicakliklarda sentezlenen CeO2/OA numunelerinin XRD analizlerinin sonuglar1 Sekil
4.12'de verilmigtir. XRD spektrumlari biitiin numunelerde ayn1 gézlemlendigi icin sentezde
uygulanan farkli sicakliklarin Kristal yapiy1 etkilemedigi diisiiniildii. 20 derecede gézlemlenen
biiylik yayvan pikler OA’dan kaynaklanmaktadir. (111) bolgesinde CeOz2’ye ait oldugu bilinen

ana pik gozlemlenmis olmakla birlikte, yayvan ve belirsiz XRD modeli, CeO2/OA 6rneklerinin

kiiglik boyutlu ve/veya sekilsiz olduguna atfedilebilir.
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Sekil 4.12: CeO,/OA-185, CeO,/0OA-225 ve CeO2/0OA-265’in XRD desenleri.

9:1,5:1 ve 2:1 (CeO2:Fe304) oranlarinda sentezlenen CF/OA numunelerinin kristal yapisi Sekil
4.13'te gosterilmektedir. Elde edilen XRD sonuglarina goére CF/OA-9 numunesinin yilizeyinin
OA ile kaplandig1 i¢in CeO2/OA’ya benzer sekilde amorf karakterde oldugu gozlemlendi.
Ayrica Fe3O4/OA deseni ile kiyaslandiginda demir oksiti igaret eden pikin (220) CF/OA-9’da
kayboldugu goriilmiistiir. CF/OA-5 ve CF/OA-2 numunelerinde de yine FezO4/OA piklerinin
yogunlugu OA ile kaplandiklar1 igin disik ¢ikmistir. FesOs/OA’nin kafes yapisindan
kaynaklanan manyetit demir oksite isaret eden ve 29.7°‘de yer alan pik (220), CF/OA-5 ve
CF/OA-2 numuneleri i¢in sirasiyla 29.4° ve 28.9° bolgelerinde olusmus ve bu pikte belirgin bir
kayma tespit edilmemistir. Bu durumda CeO2/OA miktarinin artmasi, yiizeyde yer alan
Fes04/OA’y1 baskilayarak demir oksitin, seryum oksit ile daha iyi kaplamasina sebep olabilir.
Boylece, cekirdek-kabuk nanotanecik calismalarinda manyetit demir oksitin ¢ekirdekte,
seryum oksitin yilizeyde kabuk seklinde dagildigi literatiirle de uyumlu bulunmustur (Qin et al.,

2018).
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Sekil 4.13: Fe304/0A-325, CeO2/0OA-185, CF/OA-9, CF/OA-5 ve CF/OA-2’nin XRD desenleri

4.2.3. Optik Analiz

Ce02/OA-185, CF/OA-9, CF/OA-5 ve CF/OA-2 numunelerinin optik analizleri UV-Vis
spektroskopisi kullanilarak yapildi. Olgiimlerden cizilen absorbans grafigi ile dogrudan bant
araligini belirlemek i¢in kullanilan Tauc grafigi Sekil 4.14’te verilmistir. Sekil 4.14: (a)’da
verilen absorbans grafigi kullanilarak ¢izilen Tauc grafiginde (Sekil 4.13: (b)), numunelerin
dogrudan bant aralig1 enerjileri, CeO2/OA-185, CF/OA-9, CF/OA-5 ve CF/OA-2 igin sirastyla
3.75, 3.66, 3.58 ve 3.55 eV bulundu. Bu durumda CF/OA numunelerinde Fe3O4/OA-325 orani
artist ile dogrudan bant araligi enerjilerinde azalma oldugu, CeO2/OA-185 oraninin artmasiyla
bant aralig1 enerjisinin artarak UV bolgesine dogru kaymalarin gergeklestigi sonucuna varildi.
Ozellikle CF/OA-9 numunesinin UV 1simasi kullanilan uygulamalar igin yiiksek potansiyelde
oldugu belirlendi.
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Sekil 4.14: CeO,/OA-185, CF/OA-9, CF/OA-5 ve CF/OA-2’nin (a) absorbans degerleri, (b) dogrudan
bant araliklar1.

4.2.4. XPS Analizleri

Numunelerin yiizey etkilesimi XPS analizi ile belirlendi (Sekil 4.15). CeO,-185, CF/OA-5 ve
CF/OA-9’un yiizey XPS profili Ce, Fe ve O element sinyallerini belirlemek i¢in 0 ila 1000 eV
arasinda yapildi. XPS spektrumu, Sekil 4.16’da gosterilmektedir. 290 eV civarinda gdzlenen
yiiksek yogunluklu tepe noktasi, her numune igin OA’dan gelen organik igeriklere baglidir.

Ayrica, oksijen 1s zirvesi olan 540 eV'deki sinyal, ylizeydeki hidroksil gruplarinin varligina

baglanabilir (Wen et al., 2020).
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Sekil 4.15: CeO,/OA-185, CF/OA-9 ve CF/OA-5’in XPS analizi grafigi.

Sekil 4.16: (a)’da verilen CeO2/OA-185 numunesinde, seryumun ¢oklu oksidasyonunu gosteren
Ce3d'nin XPS spektrumu goriilmektedir. Burada 918 eV’de olan pik Ce*" durumunu ifade eden
Ce3ds piki ile 898 eV'de Ce®* durumu anlamina gelen Ce3ds, piki olustu (Talluri, Yoo and
Kim, 2022). Sekil 4.16: (b) ve (c)’de ise CF/OA-9 ve CF/OA-5 numunelerinin Ce3dz. ve
Ce3ds, pikleri gosterilmistir. 1ki numunenin pikleri igin de demir oksit katkist olmayan
Ce0,/0OA-185’ya gore saga dogru kayma gozlemlendi. Bu durumda iki bilesenin basarili bir
sekilde etkilesimde bulundugu sonucuna varildi. Sekil 4.16: (d) ve (e)’de verilen XPS
grafiklerine baktigimizda ise, CeO2/OA-185’e demir oksit eklendikten sonra sentezlenen
CF/OA-9 ve CF/OA-5 numuneleri i¢in 718 ve 730 eV civarinda yeni Fe (2par) ve Fe (2p1r)
piklerinin olustugu gdzlemlendi (Sood et al., 2017). Ozetle, CF/OA hibrit nanoyapilar igin
yapilan XPS analizi sonucunda Ce3d pik pozisyonlarinin biraz degistigi ve buna ek olarak
spektrumlarda kolaylikla gozlemlenebilen Fe2p piklerinin olustugu belirlendi. Bu sonuglar,

seryum oksit ve demir oksit nanotanecikleri arasinda olusan etkilesimin basarili oldugu ile

iliskilendirildi.
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Sekil 4.16: (a) CeO2/OA-185’in Ce3d, (b) CF/OA-5’in Ce3d, (c) CF/OA-9 Ce3d, (d) CF/OA-5’in
Fe2d ve (e) CF/OA-9’un Fe2d piklerini belirten XPS grafikleri.

4.2.5. TEM Gériintiileri

Fe304/0OA, CeO,/0OA, CF/OA-5 ve CF/OA-9 numuneleri i¢in TEM goriintiileri Sekil 4.17'de
verilmistir. Sekil 4.17: (a) FesO4/OA TEM goriintiisiinii gostermektedir ve tanecik boyutlart
yaklasik 6-36 nm araliginda olup, kare ve dikdortgen seklindedir. Sekil 4.17: (b)'de verilen
CeO2/0A icin XRD sonuglarinda da vurgulanan sekilsiz yapi goriilmektedir. Ancak,
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Ce0,/OA’ya kiyasla, CF/OA-9 ortalama 10 nm tanecik boyutunda ve homojen boyut
dagiliminda gozlemlenirken, CF/OA-5, 5-16 nm boyut araliginda dikdoértgen ve kare formlarda
elde edildi (Sekil 4.18: (c) ve (d)). CF/OA-5’e gore daha kiiciik tanecik boyutlarinda olan
CF/OA-9 numunesinin yilizey morfolojisi ve tanecik boyut dagilimimin daha iyi oldugu

sonucuna varildi.

Sekil 4.17: (a) Fes04/0A-325, (b) Ce0-185, (c) CF/OA-5 ve (d) CF/OA-9’un TEM gériintiileri.
4.2.6. VSM Analizleri

Fe304/0OA-325 ve CF/OA-9 numunelerinin manyetik 6zellikleri oda sicakliginda, titregimli
numune manyetometresi (VSM) kullanilarak elde edilen M-H grafigi Sekil 4.18: (a) ve (b)’de
verilmistir. VSM profilinde histeresis dongiisiiniin olmamasi, nanoyapilarin stiperparamanyetik
davranisa sahip oldugunu ifade etmektedir. Fe304/OA-325 ve CF/OA-9 manyetizasyon
degerleri sirasiyla yaklasik 42 emu/g ve 4.7 emu/g olarak bulundu. VSM profilin histeresis
dongiisti olmadigindan ve zorlayicilik sifira yakin oldugundan, sentezlenen numuneler
stiperparamanyetik malzeme olarak siniflandirilmistir (Rajagukguk et al., 2020). CF/OA-9’un
manyetizasyon degeri Fe3O4/OA-325’¢e gore yaklasik 8.9 kat azaldi. Bunun nedeni CF/OA-9’un
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sentezinde 9:1 molar oraninda Ce(Ole)s-Fe(Ole)s kullanilmasindan kaynaklanmaktadir. Bu
durumda manyetit 6zelligin zayiflamasi1 Ce(Ole)s varligina baglidir. CF/OA-9 numunesi, 4.7
emu/g degeriyle azalan bir deger gosterse de nanoyapilarin manyetik olarak ayrilmasi igin
yeterli olup, harici bir miknatis yardimiyla hedeflenen bolgeye ulasabilir. Kayda deger
sliperparamanyetik 6zelligi gosteren hibrit nanoyapilar, biyomedikal uygulamalarda umut

vadetmektedir.

60 6
woll @ A )
5 20 5 27
S S
g/ 0 g 04
= =
-204 -24
-40 -4
—— Fe;0,/0A —— CFIOA-9
-60 T T T T T T T T T T T -6 T T T T T T T T T T T
-60 -50 -40 -30 -20 -10 O 10 20 30 40 50 60 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60
H (kOe) H (kOe)

Sekil 4.18: (a) Fes04/0A-325 ve (b) CF/OA-9’un histeresis dongiileri.
4.2.7. Singlet Oksijen Uretimi Kinetigi

UV 1smmast ile aktiflestirilen CF/OA-9’un farkli miktarlarda kullanimi ile elde edilen singlet
oksijen tiretim kinetigi grafikleri Sekil 4.19: (a)-(d)’de verilmistir. Sekil 4.19: (a) ve (b)’de
goriilen kontrol ve 0.156 mL numunenin Kinetikleri toplamda 20 dakika siirerek benzer
bulundu. Bu durumda diisiik miktarda kullanilan CF/OA-9’nin singlet oksijen tiretimine etkisi
olmadig1 sonucuna varildi. Ancak Sekil 4.20: (c) ve (d)’de goriildiigii gibi 0.322 mL numunenin
singlet oksijen iiretimi 10 dakikada, 0.644 mL numunenin 6 dakikada hizli bir sekilde

gercekleserek tamamlandi.
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Sekil 4.19: (a) kontrol, (b) 0.156 mL, (c) 0.322 mL ve (d) 0.644 mL CF/OA-9’un singlet oksijen
iiretimi grafikleri.

4.3. CuO/ME CC/ME NANOYAPILARIN KARAKTERIZASYONU
FOTOKATALITIK OZELLIiKLERININ iINCELENMESI

ve ve

4.3.1. FTIR Analizleri

ME, CuO/ME ve CC/ME’lerin fonksiyonel gruplarini incelemek igin yapilan FTIR analizi
spektrumlar1 Sekil 4.21°de verilmistir. ME FTIR spektrumunda gézlemlenen 3274, 2979, 1742,
1620, 1380, 1250 ve 1000 cm™ bolgelerine denk gelen pikler sirasiyla -OH gerilme titresimi,
C—H gerilme titresimi, C=0 egilme titresimi, COO— grubu, C-O ve C-O-C titresimlerine
karsilik gelmekte olup, ME’nin tipik yapisini ifade eder (Chen et al., 2015; Moosavinejad et
al., 2019). CuO/ME ve CC/ME numunelerinin FTIR spektrumunda ise, ME’de bulunan diger
piklerin aksine 1742, 1380 ile 1250 cm™ pikleri kayboldu, 1620 cm™’de yer alan pikler kiigiildii.

Bu durum, ME’den gelen organik molekiil yapisinin, olusan yeni metal oksit yapilarda yok
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olmasindan kaynaklanmaktadir (Chen et al., 2015). CuO/ME’de, ME ve CC/ME’den farkli
olarak yeni 3439 cm™¥’da —OH germe titresimi ve 3331 cm™*’da C—H germe titresimi olustu.
Ayrica, CUO/ME ve CC/ME spektrumlarinda 500 cm™ civarinda metal oksit baglar

gbzlemlendi.
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Sekil 4.20: ME, CuO/ME ve CC/ME’nin FTIR analizi sonuglari.
4.3.2. XRD Analizleri

CuO/ME ve CC/ME’nin kristal yapilarini ve kristal tanecik boyutlarin1 belirlemek i¢in XRD
analizi yapild1 (Sekil 4.22). CuO/ME’de 31.5°, 35.2°, 38.4°, 45.3°, 48.7°, 53.7°, 58.1°, 61.4 °,
66.2°, 68°, 72.1° ve 75.1° 20 bolgelerinde kirmim pikleri sirasiyla (110), (002), (111), (202),
(020), (202), (113), (022), (220), (311) ve (004) diizlemlerine karsilik gelmektedir (Andualem
et al., 2020). Bu kirinim desenine gére, monoklinik CuO sentezlenmis olup, CuO/ME tenorit
minerali (JCPDS kart1 No. 01-080-1268) ile iyi uyum saglamstir (Darezereshki and Bakhtiari,
2011). CC/ME igin ise (111), (200), (220), (311), (222), (400) ve (331) kristal diizlemlerine
28.4°, 33° 47.4° 56.2° 59.4° 69.2° ve 76.4° pikleri karsilik gelerek, standart kiibik florit
(JCPDS 89-8436) yapisinda CeO. kirmim deseni gosterdi (Srinivasan and Chandra Bose,
2010). CC-ME XRD deseninde CuO gozlemlenmemis olup, CeO’ye katkilandigi
varsayiminda bulunuldu. Ayrica numunelerin kristal tanecik boyutlar1 Debye-Scherrer
denklemime (Denklem 3.1) gore hesaplandi ve ortalama kristal boyutlart CUO/ME’nin igin
yaklasik 13 nm ve CC/ME ig¢in 17 nm bulundu.
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Sekil 4.21: CuO/ME ve CC/ME’nin XRD desenleri.

4.3.3. TEM Gorintileri

ME, CuO/ME ve CC/ME’nin yiizey morfolojileri, tanecik boyutu ve dagilimi analizleri TEM
ile incelendi ve elde edilen goriintiiler Sekil 4.22: (a-c)'de verilmistir. Sekil 4.22: (a)’da yer alan
goriintiide, saf macanin gézenekli bir ylizey morfolojisine sahip oldugunu gézlemlendi. Sekil
4.22: (b)’de verilen CuO/ME nin tanecik boyutu dagiliminin diizgiin ve dar aralikta elde edildi.
Ayrica 5-12 nm tanecik boyutlarinda kiiresel sekilde oldugu gézlemlendi. Sekil 4.22: (c)’de
verilen CC/ME’nin goriintiisiinde ise, tanecik boyutlarinin biraz daha biiyiiyerek 12-25 nm
araliginda kiiresel ve homojen olmayan dagilimda gézlemlendi. Sonokimya-destekli yesil
yontemin diisiik maliyetli metal oksit hibrit nanoyapilar elde etmek igin etkili bir yol oldugu
kanitlandi. Sonu¢ olarak, sentezlenen numunelerin sonokimya-destekli yesil yontem
kullanilarak ME matrisinde dagittigi ve ME’nin nanoyapilar stabilize etmekte 6nemli bir rolii

oldugu diistiniilmektedir.
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Sekil 4.22: (a) ME, (b) CUO/ME ve (d) CC/ME’nin TEM gériintiileri.

4.3.4. Fotokatalitik Bozunma Kinetigi

Numunelerin fotokatalitik aktivitesi, sulu ortamda EY ¢ozeltisinin renk giderimi ile arastirildi.
EY’nin hazirlanan belirli konsantrasyonlarindan elde edilen absorbans degerleri ile ¢izilen
standart grafigi Sekil 4.23’te verilmistir. Bu grafikten alinan egim ve kesim noktalartyla elde

edilen denklem y=0.03715+0.08683 olarak hesaplandi.
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Sekil 4.23: EY’nin standart grafigi.

10 ppm ve pH 5.5 kosullarinda hazirlanan EY sulu ¢ozeltisinin, fotokatalitik reaksiyonu
sirasinda zamana baglhi UV-Vis absorpsiyon spektrum grafikleri, CuO/ME ve CC/ME
fotokatalizleri igin Sekil 4.24: (a) ve (b)’de gosterilmistir. Gorliniir 15188 maruz kalma siiresi
0'dan 300 dakikaya dogru arttikga EY’nin absorbans degerleri siirekli olarak azalarak EY ’nin
fotobozunma siireci gosterilmistir. CuO/ME’nin EY’nin bozunmasina etkisi absorbans
grafigine gore, 300 dakikada neredeyse yar1 yariya iken, CC/ME ig¢in ayni siirede EY nin
bozunmasina CuO/ME’ye gore neredeyse iki kat fazla oldugu goriilmektedir. Sekil: 4.24: (c)
ve (d)’de iki numune i¢in de EY ’nin fotokatalitik bozunmas1 ve yalanci birinci dereceden hiz
kinetigi grafikleri goriilmektedir. Bozunma ytizdeleri CuO/ME i¢in %44.6, CC/ME i¢in %89.4
degerlerinde, K sabitleri ise CuO/ME ve CC/ME igin sirastyla 0.00161 (R?=0.978) ve 0.00744
dk! (R?=0.984) olarak hesaplandi. CC/ME’nin sentezinde kullanilan CeO> katkisin EY’nin
bozunmasina olan etkisi, saf CuO/ME ile kiyaslandiginda nerdeyse iki katina ¢iktigi, ayrica
kinetik hiz sabitinin de CuO/ME’ye gore oldukca yiiksek oldugu gozlemlendi. EY’nin
fotokatalitik bozunmasi, hesaplanan lineer regresyon degeri ile yalanci birinci dereceden

kinetige oldukc¢a uyumlu oldugu dogrulandi.
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Sekil 4.24: (a) CuO/ME varliginda EY absorbans grafigi, (b) CC/ME varliginda EY absorbans grafigi,
(c) CuO/ME ve CC/ME varliginda EY’nin fotokatalitik bozunmasi ve (d) CuO/ME ve CC/ME
varliginda EY’nin hiz kinetigi.

CC/ME numunesinin CuO/ME’ye gore daha yliksek fotokatalitik bozunmaya neden olmasi
nedeniyle, EY nin farkli konsantrasyonlarda fotobozunma deneyleri CC/ME numunesi i¢in
tekrar edildi. Daha once yapilan goriiniir 151k altinda 10 ppm EY (5.5 pH) fotobozunma
deneyinin yaninda, 12.5 ve 15 ppm EY’nin fotobozunma kinetikleri incelendi. Sekil 4.25°te
verilen UV-Vis absorpsiyon spektrum grafikleri incelendiginde, EY’nin konsantrasyonunun
artmasiyla, zamana bagli absorbanslarin azalmasinda dogrusal bir diisiis elde edildi. Bu
durumda en yiiksek verimde fotobozunmanin 10 ppm EY c¢ozeltisinde gerceklestigi sonucuna

varildi.
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Sekil 4.25: CC/ME varliginda EY 'nin (pH 5.5) farkli konsantrasyonda absorbans grafikleri; (a)10
ppm, (b) 12.5 ppm ve (c) 15 ppm.

CC/ME varliginda 10, 12.5 ve 15 ppm EY c¢ozeltilerinin goriiniir 151k altinda fotobozunma
deneylerinden elde edilen sonuglarla ¢izilen fotokatalitik bozunma, yalanci birinci dereceden
hiz kinetigi ve hiz kinetigi grafiklerinden hesaplanan hiz sabitleri grafikleri Sekil 4.26: (a)-
(c)’de verilmistir. Ayrica ii¢ konsantrasyon i¢in de bozunma yiizdesi degerleri, k sabitleri ve
belirleme katsayilar1 Tablo 4.2°de 6zetlenmistir. 10 ppm EY’de bulunan bozunma ytizdesi
%89.4 iken, 12.5 ppm EY’de %79.4 ve 15 ppm EY’de %69.1 olarak bulundu. Her 2.5 ppm’lik
konsantrasyon artistyla EY nin bozunma ytizdesi ortalama %10 azaldi. Bu durumda CC/ME
fotokatalizorleri varliginda goriiniir 151k altinda EY ’nin fotobozunmasi konsantrasyon artigiyla
tutarli bir sekilde azalmaktadir. Ayrica Tablo. 4.2 ve Sekil: 4.28 (c)’de k sabitleri

incelendiginde, bu dogrusal azalma, konsantrasyona gore net bir sekilde goriilmektedir.
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Tablo 4.2: CC/ME varliginda farkli konsantrasyonlarda hazirlanan EY’nin bozunma yiizdeleri, k
sabitleri ve belirleme katsayilari.

10 ppm 12.5 ppm 15 ppm
Bozunma (%0) 89.4 79.4 69.1
k (dk?) 0.00744 0.00521 0.00379
R? 0.984 0.974 0.975
25
107 (@) (b) .
2.0
0.8 -
064 154
° 8
U - - OO
O 0.4 N A < 1.0
© —=—10 ppm ”‘*o\\ A =
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4.0x10°
3.5x10°
10 ;;pm 12.5Ippm 15 ;;pm

Sekil 4.26: CC/ME varliginda farkli konsantrasyonlarda ve pH 5.5’te EY 'nin; (a) fotokatalitik
bozunmast, (b) hiz kinetigi ve (c) hiz sabitleri.

CC/ME varliginda, EY ¢ozeltilerinin farkli konsantrasyonlarda fotobozunma deneylerine ek
olarak, farkli pH’larda fotobozunmalarina etkileri incelendi. Daha 6nce yapilan pH 5.5 EY (10
ppm) fotobozunma kinetik deneyinin yaninda, pH 3 ve 8.5’te EY ’nin fotobozunma kinetikleri
incelendi. Sekil 4.27: (a)-(c)’de verilen UV-Vis absorpsiyon spektrum grafikleri
incelendiginde, EY nin pH’ nin artmasiyla, zamana bagl absorbanslarin azalmasinda hafif bir

artis elde edildi.
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Sekil 4.27: CC/ME varliginda EY ’nin (10 ppm) farkli pH’larda absorbans grafikleri; a) pH 3, (b) pH
5.5 ve (c) pH 8.5.

CC/ME varliginda pH 3, 5.5 ve 8.5’te EY c¢ozeltilerinin goriiniir 151k altinda fotobozunma
deneylerinden elde edilen sonuglarla ¢izilen fotokatalitik bozunma, yalanci birinci dereceden
hiz kinetigi ve hiz kinetigi grafiklerinden hesaplanan hiz sabitleri grafikleri Sekil 4.30: (a)-
(c)’de verilmistir. Ayrica li¢ konsantrasyon i¢in de yiizde bozunma degerleri, k sabitleri ve
belirleme katsayilart Tablo 4.3’te Ozetlenmistir. pH 3 EY ¢0zeltisinde bulunan bozunma
yiizdesi %74.4 iken, pH 5.5 EY’de %89.4 ve pH 8.5 EY’de %91.2 olarak bulundu. Ayrica
Tablo. 4.3’te 6zetlenen ve Sekil 4.28: (c)’deki grafikten elde edilen k sabitlerine bakildiginda,
pH 3 EY c¢ozeltisinde 0.00429 dk* iken, pH 5.5 ve 8.5 EY ¢ozeltilerinde sirasiyla 0.00744 ve
0.00759 dk* olup birbirlerine ¢ok yakin degerlerde elde edildi. pH 3 degerinde EY ¢ozeltisine

gore neredeyse iki kat artti.
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Tablo 4.3: CC/ME varliginda farkli pH’larda hazirlanan EY’nin bozunma yiizdeleri, k sabitleri ve
belirleme katsayilari.

pH 3 pH 5.5 pH 8.5

Bozunma (%0) 74.4 89.4 91.2
k (dk1) 0.00429 0.00744 0.00759

R? 0.985 0.984 0.962

251l () .
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Sekil 4.28: CC/ME varliginda farkli pH’larda ve 10 ppm EY ’nin; (a) fotokatalitik bozunmasi, (b) hiz
kinetigi ve (c) hiz sabitleri.

CC/ME’nin yeniden kullanimi ve kararliliginin incelenmesi igin tekrar kullanilabilirlik testleri
yapildi. EY'nin bozunmasindan sonra, CC/ME fotokatalizorleri saf su ile yikanip, etiivde
kurutularak EY c¢ozeltisinin bozunmasi i¢in tekrar kullanildi. Sekil: 4.29°da verilen grafikte
goriildiigii gibi CC/ME {i¢ kez kullandiktan sonra EY'nin fotobozunmasinda 6nemli bir aktivite

kayb1 goriilmedi. Bu durumda CC/ME fotokatalizorlerinin, tekrar verimli bir sekilde

kullanilabilecegi sonucuna varildi.
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Sekil 4.29: CC/ME’nin tekrar kullanilabilirlikleri.
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5. TARTISMA

Bu tez kapsaminda, CeO2 nin ii¢ farkli sentez yontemiyle, farkli morfoloji, boyut ve kimyasal
Ozelliklerde hibrit nanoyapilarinin elde edilebilecegi ve biyomedikal ve ¢evre uygulamalarinda

potansiyel kullanimlarinin olabilecegi sonucuna varildi.

. Birinci boliimde, CeO2 ve CeO»/Cs nanoyapilar literatiirde oldukga yaygin bir
yontem olan kimyasal ¢oktiirme yontemiyle sentezlendi (Phokha and Utara, 2019; Oosthuizen,
Motaung and Swart, 2020). Kimyasal ¢oktiirme islemi, bazik ortamda amonyum hidroksit ile
seryum nitrat hekzahidrat baslaticisinin seryum hidroksit olarak ¢oktiiriilmesi ve yiiksek
sicaklikta kalsinasyon islemiyle hidroksitin uzaklastirilarak seryum oksitin ortamda kalmasina
dayanmaktadir. CeO2, CeO2/Cs, MTX-CeO2 ve MTX- CeO2/Cs numunelerinin FTIR analizleri
sonucunda, 690 ve 490 cm™ civarinda gdzlemlenen absorpsiyon pikleri, CeO2'nin yapisinda
bulunan Ce-O gerilme titresimlerini ifade etmektedir. Phokha ve Utara (2019) ¢alismasinda,
farkli zamanlarda oda sicakliginda ozonoliz destekli kimyasal ¢oktiirme yontemi kullanilarak
sentezlenen CeO, nanotanecikleri, 300°C kalsinasyon sicakliginda 400-750 cm™ araliginda
benzer Ce-O baglarina sahip olduklari gésterilmistir (Phokha and Utara, 2019). FTIR sonuglari

incelendiginde, yine biitin numunelerde 3300 cmt

civarinda -OH gruplarinin gerilme
titresimlerine ait genis pikler gozlemlenmistir. CeO2, 500°C gibi yiiksek sicakliklarda kalsine
edilmesine ragmen -OH gruplarin mevcut olmasi, numunelerin nem tutabilmesine atfedildi.
Calvache-Munoz ve dig. (2017), CeO2 nanotanecikleri asidik ve bazik ortamlarda sentezlemis,
biitiin numuneleri 3 saat 550 °C’de kalsine ederek FTIR spektrumlarini kiyaslamistir. FTIR
sonuclarinda, biitiin numuneler i¢in genis ve biiylik -OH pikleri elde edilmis ve bu pikin su
molekiillerinden kaynaklandig: ifade edilmistir (Calvache-Mufioz, Prado and Rodriguez-Péez,
2017). MTX yiikli nanoyapilar incelendigi zaman, Teja ve dig. (2018), saf MTX’in FTIR
spektrumunda, amit bolgesinden gelen N-H, C-H, C=0, C-N, NH2 ve C=0 boélgesinde yer alan
C-O gruplarn sirastyla 3360, 2954, 1644, 1603, 1496, 1404 ve 1206 cm™* dalga sayilarinda yer
aldigin1 belirmistir (Teja and Damodharan, 2018). MTX-CeO2/Cs nanoyapisinin FTIR
spektrumunda benzer bolgelerde pikler gozlemlendigi icin MTX ile Cs katkili CeO2
nanoyapilarin kimyasal olarak etkilestikleri sonucuna varildi. Ancak MTX-CeO;’nin FTIR

spektrumunda ise herhangi bir degisiklik gdzlemlenmedi ve CeO: ile MTX in fiziksel olarak
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etkilesimde bulundugu sonucuna varildi. CeO2 ve CeO2/Cs nanoyapilarin XRD desenlerinden,
kafes yapilart kiibik florit formunda (JCPDS 89-8436) elde edildi. Ayrica Debye-Scherrer
denklemine gore; CeO2 ve CeO»/Cs i¢in kristal boyutlar1 sirasiyla yaklasik 11 ve 10 nm ve
kristallik yiizdeleri %84.47 ve %88.38 olarak bulundu. CeO;’ye Cs katkisi, saf CeO2’ye gore
kristal boyutunu azaltti1 ve polimer katkisina ragmen kristallik yilizdesini artirdi. Bu sonuglar,
literatlirde yapilan diger ¢alismalarla benzerlik gostermistir. Senthilkumar ve dig. (2017), CeO2
nanotaneciklerini, Sida acuta Brum.f. yapragi ekstakti kullanarak yesil yontemle sentezlemis
ve Cs ve CeOy hibrit nanoyapilar1 hazirlamistir. XRD sonuglarina gore, bu ¢alismada elde
edilen XRD deseni ile ayni kristal kafes yapisinda ve Debye-Scherrer denklemine gore 28 nm
kristal boyutunda nanoyapilar elde etmislerdir (Senthilkumar et al., 2017). Srinivasan ve dig.
(2010) birlikte ¢oktiirme ydntemiyle sentezledikleri Sm®" katkili CeO2 nanoyapilar igin, ayni
kiibik florit kafes yapisini elde etmistir (Srinivasan and Chandra Bose, 2010). Baska bir
calismada Kalantari ve dig. (2020) Zingiber officinale ekstrakti ile yesil bir yontemle hazirlanan
CeO: i¢in, buldugumuz sonuglara benzer, fakat daha diisiik siddette piklere sahip XRD deseni
elde etmistir (Kalantari et al., 2020). Farkl1 ¢alismalarla kiyaslandiginda, saf CeO> ve CeO2/Cs
icin XRD desenleri ayni, fakat pik siddetleri ve kristal tanecik boyutlar1 degisen degerlerde
olabilecegi gbzlemlenmis olup, sentezlenen nanoyapilarin beklenen kristal yapida elde edildigi
sonucuna varildi. CeO, ve CeO/Cs nanoyapilarinin ortalama tanecik boyutlart SEM
goriintiilerine gore 35 nm elde edildi. Deneysel sonuglar CeO2/Cs 6rneginde saf CeO2'ye kiyasla
daha homojen bir dagilimin varligint ortaya koymaktadir. Cs katkisinin, CeOz'nin
topaklanmadan homojen bir sekilde dagilmasinda dnemli bir rol oynadig1 sonucuna varilmistir.
Bu nedenle Cs, iy1 dagilmis CeOz'nin elde edilmesi ve topaklanmanin 6nlenmesi i¢in etkili bir
stabilizasyon ajani olarak islev gdrmiistiir. Negatif yiiklii CeOz ile pozitif yiikli Cs yiizeyleri
arasindaki elektrostatik ¢ekimlerin, nanoyapinin topaklanmasini 6nlemekte nemli bir rolii
oldugu varsayildi. CeO: iizerine yapilan arastirmalarda benzer morfolojik sonuglara
ulagilmigtir. Farahmandjou ve dig. (2016), kimyasal ¢oktiirme yontemi kullanarak elde ettikleri
CeO: orneklerini SEM analizi ile incelerken, 20 nm boyutlu kiire benzeri sekillerde,
topaklanmig dagilimlara sahip olduklarmi tespit etmistir (Farahmandjou et al., 2016).
Nourmohammadi ve dig. (2016) karagenan kullanarak yesil bir yontemle elde ettikleri 8-60 nm
boyut araliginda CeO2’nin topaklagsmaya egilimli kiiresel morfolojilere sahip oldugunu
bulmustur (Nourmohammadi et al., 2018). Nanoyapilardan ilag¢ salim sonuglar1 incelendiginde,
MTX-CeO2/Cs’den MTX salimi, MTX-CeO>’den 5.3 kat daha hizli gergeklesmistir. MTX'in

salim yiizdesi artisina Cs katkisinmn oldukga yiiksek oldugu gozlemlendi. Ilag salim sonuglari,
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kinetik modellere uygulanarak MTX-CeO, ve MTX-CeO/Cs numunelerinin R? degerleri
belirlendi. Analiz sonuglar1, Bhaskar ve Higuchi modellerine uyum saglayan numunelerin R?
degerlerinin yiiksek oldugunu gosterdi. Bu sonuglar, CeO2 ve CeO2/Cs nanotasiyicilarinin
MTX salimin1 basartyla kontrol edebildigini gostermektedir. Bhaskar modeli, ilaglarin
inorganik matrislerden difiizyonunu aciklamak ic¢in uygulanan, Higuchi modeli ise, ilag
taneciklerinin ilag tasiyici sisteme gore kiiclik oldugu salim sistemleri icin kullanilan
modellerdir (Dash, 2010; Khan et al., 2018). Bu modellere gore nanotasiyicilarin inorganik
yapisinin belirgin bir sisme davranis1 gostermedigi anlagilmistir. Nanoyapilardan ilag salim
mekanizmasinin  temelinin, hidrofilik Cs’nin  hidrofobik MTX yiikli tasiyicilarla
etkilesiminden kaynaklanan polimer bozunmasina dayandigi varsayildi. MTX’in salinmasinin
yaninda CeO:2 esasli nanoyapilarin, hedeflenen bolgede oksidatif stres yaratan ROS’lar
temizlemesi amaglanmistir (Asati et al., 2010; Wason et al., 2013). Pirmohamed ve dig. (2010)
yaptiklari in vitro ¢alismalar sonucunda, CeO>’nin katalaz mimetik 6zelligi gostererek hiicreleri
oksidatif stresten korudugunu bulmustur (Pirmohamed et al., 2010). Baska bir ¢alismada,
Heckert ve dig. (2008), hem hiicre kiiltiirii hem de hayvan modellerinde CeO2’nin SOD benzeri
davranig gostererek hiicreleri oksidatif strese karsi korudugunu bulmustur (Heckert et al.,
2008). Bu ¢alismada iiretilen nanotasiyicilarin antikanser ilag tasiyicisi olarak kullaniminin yani
sira, hiicre ortaminda antioksidan ozellikleri ile oksidatif stresi azaltabilecegi ve kanser
tedavisinde etkili olabilecegi literatiirde belirtilmektedir. Bu nedenle, nanotastyicilarin kanser

tedavisinde umut vadeden bir segenek oldugu diisiiniilmektedir.

. Ikinci béliimde, OA ile kapli CeO./OA, Fes04/OA ve CF/OA hibrit
nanoyapilari, termal ayrisma yontemi ile hidrofobik ortamda sentezlendi (Bronstein et al.,
2007). Literatiirde kullanilan sentez yontemlerinde genel olarak inert ortamda geri sogutucu
sistemi kullanilirken (Bloemen et al., 2012), bu ¢alismada nanoyapilarin sentezi “schlenk line”
sistemi kullanilarak, vakum ortaminda azot gazi altinda gerceklestirildi. Bu sistemde
nanoyapilar, polimersiz ortamda topaklanma olmadan, ylizey aktif madde ve kapatici ligand ile
yiiksek verimle tretilebilmektedir (Goloverda et al., 2009). OA, ¢ok ince manyetit
nanotaneciklere yiiksek afiniteyle kaplanabildigi i¢in diger ylizey aktif maddelere kiyasla daha
cok tercih edilir (Yang et al., 2010). OA ile modifiye edilmis manyetit nanoyapilar,
biyouyumlu, diisiik toksisiteye sahip, uzun siire kararli olan ve homojen dagilimda elde
edilebilir (Velusamy et al., 2016). Ayrica OA’nin daha once bakterilere karsi antibakteriyel
Ozellik gosterdigi bildirilmistir (Desbois and Smith, 2010). Bu nedenle biyomedikal
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uygulamalar i¢in kullanilmasi hedeflenen CF hibrit nanoyapilarin OA ile kaplanmasina karar
verildi. Manyetit nanotaneciklerin sentezi igin OA yaygin olarak kullanilan bu yiizey
modifikasyonu olmakla birlikte, daha dnce CeO sentezinde de kullanilan OA, bu ¢alismada
farkli olarak CF/OA hibrit numunelerinin sentezi i¢in de denenmistir. Ayr1 ayr1 CeO2 ve Fez04
nanoyapilara farkli sentez sicakliklari uygulanarak, en verimli sentez kosullarinin
belirlenmesiyle deneyler planlanmis, FTIR ile XRD analizler sonucunda optimum sicaklik
Fes04/0OA i¢in 325 °C, CeO2/OA igin 185 °C olarak belirlenmis ve bu sicakliklarin CF/OA
nanoyapilarinin sentezinde kullanilmasina karar verilmistir. Literatiirde birgok farkli yontemle
OA kaplanmis Fe3Os4 ve CeO: nanoyapilar sentezlenmis ve farkli boyut ve morfolojilerde
tiretilen bu nanoyapilarin cesitli uygulamalarda etkinlikleri incelenmistir (Bronstein et al.,
2007; Yang et al., 2010; Bloemen et al., 2012; Lee et al., 2013; Velusamy et al., 2016).
Bronstein ve dig. (2007) geri sogutucu sistemi kullanarak, 380 °C gibi oldukga yiiksek
sicaklikta diizglin dagilmig, 8.5-23 nm boyut araliginda kiiresel nanotanecikler elde etmistir
(Bronstein et al., 2007). Velusamy ve dig. (2016), solvotermal yontem kullanarak 200°C’de 8
saatte OA kapli manyetit nanotanecikler sentezlemis ve 50-100 nm araliginda trettikleri
nanoyapilar antibakteriyel 6zellik sergilemistir (Velusamy et al., 2016). Soares ve dig. (2016),
birlikte ¢oktiirme yontemi ile ¢ift tabaka OA ile kapladiklar1 Fe3Os nanoyapilart MRI kontrast
ajan1 ve manyetik hipertermi uygulamalarinda kullanilmak {izere 9 nm c¢apinda diizgiin
dagihimda sentezlemistir (Soares et al., 2016). Bildirilen g¢alismalarla karsilastirildiginda,
Fe304/OA-325 nanoyapilari vakum altinda “schrenk line” sisteminde 20 dakika gibi ¢cok daha
kisa slirede sentezlendi. Fe3Os/OA-325 numunesinin kimyasal ve kristal yapilar ile
morfolojileri incelendiginde 6-36 nm araliginda kare ve dikdortgen sekillere sahip, tipik
manyetit demir oksit kristal yapisina ait oldugu ve genel olarak literatiir ile uyumlu nanoyapilar
elde edildigi sonucuna varildi. CeO2/OA nanoyapilarinin sentezi igin 185, 225 ve 265 °C’de
sentez sicakliklari literatlirde uygulanan sicaklik degerleri esas alinarak belirlendi. Lee ve dig.
(2013), 260 °C’de 2 saatte tirettikleri CeO2’yi ses dalgalar1 yardimi ile OA ile kaplamis ve 8.2
nm boyutlarinda, kiiresel ve homojen dagilimda olan ve hidrojen peroksite kars1 antioksidan
ozellik gosteren nanoyapilar elde etmislerdir (Lee et al., 2013). Lv ve dig. (2010) hidrotermal
yontemle 180 °C ve 24 saatte sentezledikleri OA kapli CeO2’yi kiibik florit kristal yapida ve
oldukga iyi dagilimda kare seklinde elde ederek sivi fazda O ile toluenin benzaldehitlere
oksidasyonu igin 6zel segicilik gosterdigini bildirmistir (Lv et al., 2010). Bu calismada
literatlirde kullanilan sicaklik araliklar1 dikkate alinarak, OA kapli CeO: sentezi i¢in 185, 225

ve 265 °C sicakliklari uygulandi. Ancak sicaklik farklarmin nanoyapilarin kimyasal ve kristal
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ozelliklerine farkl: bir etkisinin olmadig: belirlendi. Bu nedenle en diisiik sicaklik olan 185 °C
uygulandi. Sentezlenen CeO2/OA-185’in XRD deseni, literatiirde bildirilen oda sicakliginda
sentezlenen seryum oleat ile benzerlik gosterdi (Rub” et al., 2020). OA ile kaplanmasiyla
Ce02/0OA-185’%in kristal yapisi yok olmus, morfolojisi diizgiin kristal tanecik olarak elde
edilememistir. Sentez sicaklit veya siiresinin yeteri kadar yiiksek olmamasi amorf
nanoyapilarin iiretilmesine neden olmus olabilir. Her ne kadar saf CeO2/OA kristal yapida ve
diizgiin morfolojide elde edilememis olsa da CeO2/OA’nin CF/OA nanoyapilarda ayni sentez
kosullar1 uygulanarak, Fe304/OA nanoyapilarinin iizerini kaplayabilecegi iizerine odaklanild1
ve {i¢ farkli CeOz: FesO4 oraninda (9:1, 5:1 ve 2:1) CF/OA hibrit nanoyapilar sentezlendi. Ug
numunenin FTIR sonuglar incelendiginde, 460 cm™’de metal-oksijen baginin olustugu
gozlemlendi. XRD desenlerinde ise, FesOs ana piki (220) CF/OA-5 ve CF/OA-2’de
bolgelerinde hafifge sola kaymis olarak gozlemlenmistir. CF/OA-5’teki kayma CF/OA-2’ye
gore fazla oldugu i¢in Fe3O4 katkisinin CeO2’ye dahil edilmesinin basarili oldugu sonucuna
varildi. Channei ve dig. (2014), kimyasal ¢oktiirme yontemi ile farkli oranlarda Fe katkiladiklart
CeOz2 nanoyapilarin XRD desenlerini incelemis ve Fe veya FexOy igeren piklerin nanoyapilarda
olusmadigini bildirmistir (Channei et al., 2014). Soni ve dig. (2018) de, benzer sekilde farkli
yiizdelerde Fe katkili CeO2 nanoyapilar tiretmis ve XRD desenlerini CeO; kiibik florit yapisinda
elde etmistir (Soni et al., 2018). Literatiirle uyumlu olarak CF/OA-9’da Fe304’e ait XRD piki
gozlemlenmedi ve bunun CF/OA-9’da Fe3O4 katkisinin CeOz’ye tamamen dahil edildigi, yani
CeO: ile kaplanmasindan dolay1 gergeklestigi diisliniildii. Sonug olarak, CF/OA-5 6rneginde
FesO4 pikinin biraz daha sola kaymasi ve CF/OA-9 6rneginde ise Fe3O4 yapisinin tamamen
CeO: ile kaplanmig olmasi dikkate alindiginda, XPS analizinin CF/OA-9 06rnegi iizerinde
yapilmasi kararlastirildi. Nanoyapilarin XPS analizinden 6nce, UV-Vis dl¢iimleri yapildi ve bu
veriler kullanilarak absorbans grafikleri ¢izildi. Daha sonra, Tauc grafikleri olusturuldu. Tauc
grafigi ile CeO2/OA-185’in dogrudan bant aralik enerji degeri 3.75 eV olarak hesaplandi.
CF/OA-9, CF/OA-5 ve CF/OA-2 igin sirastyla 3.66, 3.58 ve 3.55 eV degerlerinde hesaplanan
dogrudan bant araliklari, CF/OA nanoyapilarinda FesOs/OA orani artisiyla UV’den goriiniir
bolgeye dogru kaymanin gerceklestigini gosterdi. Bant aralik enerjileri, yar1 iletken
malzemelerde metal /metal oksit katkilanma ile diizenlenebilir ve uygulama alanlarina gore
goriiniir bolgedeki etkinlikleri incelenebilir (Tiwari et al., 2019). XPS analizleri incelendiginde,
saf CeO,/OA-185’de olusan Ce3dsz (Ce*') ve Ce3ds, (Ce*") pikleri, CF/OA-9 ve CF/OA-5
hibrit nanoyapilarda da gézlemlenmis olup saga kayma gergeklesmistir (Talluri, Yoo and Kim,
2022). Bununla birlikte CF/OA-9 ve CF/OA-5 numunelerinde, yeni Fe (2psr) ve Fe (2pir)
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pikleri olusarak, numunelerde yer alan CeO: ve Fe3O4’iin etkilesimde bulundugu sonucuna
vartlmistir (Sood et al., 2017). Ayni numunelere TEM analizi yapildiginda, CF/OA-9’un
tanecik boyutu homojen olup ortalama 10 nm iken, CF/OA-5’nin 5-16 nm araliginda oldugu
gozlemlendi ve CF/OA-9’un daha diizgiin boyut dagiliminda oldugu sonucuna varildi.
Literatiirle kiyaslandiginda, %10 ve %20 demir katkili CeO2 nanoyapilar1 5-7 nm boyutlarinda
oldukgea kiiciik sentezlendigi bildirilmistir (Hawi et al., 2019). Baska bir ¢alismada ise 5-10 nm
boyutlarinda Fes04/CeO2 nanokompozitlerini elde etmistir (Xu and Wang, 2012). CF/OA-9’un
daha homojen tanecik boyutunda gozlemlenmesi nedeniyle, biyomedikal uygulamalarda
uygunlugunun arastirilmasi amaciyla VSM analizi ve singlet oksijen liretimi incelenmistir. Ayri
ayr1 incelendiginde Fe3O4’iin manyetik 6zelligi ve CeOz’nin oksidatif stres yaratarak
olusturdugu singlet oksijen iiretim 6zelligi 6ne ¢ikmaktadir. Bu nanoyapilar birlestirildiginde
hem manyetik hem de singlet oksijen liretimi 6zellikleri gosterebilen ¢ok fonksiyonlu dzellikler
kazanabilir. VSM analizinde, CF/OA-9 hibrit nanoyapisi siiperparamanyetik 6zellik
gostermistir ve siliperparamanyetik 6zellik, biyomedikal uygulamalar i¢in aranan o6zelliktir
(Xiao and Du, 2020). Siiperparamanyetik malzemeler, harici bir manyetik alan altinda belirli
bir dokuda birikebilir ve hedefleme amaciyla kullanilabilir. Ayrica MRI ve manyetik hipertermi
ozellikleri sergileyebilen, ilag tasiyict ve kontrast madde olarak kullanimlarda oldukea ilgi
ceker (Zhi et al., 2020). Bununla birlikte CF/OA-9’un singlet oksijen iiretimi kinetik olarak
incelenmis ve UV 1s18a maruz birakildiginda, kontrol numunesine gore nerdeyse 3.5 kat daha
hizli bir sekilde singlet oksijen iretimi saglamistir. PDT uygulamasinda kullanilmasi
hedeflenen bu hibrit nanoyapilarin, kisa siirede singlet oksijen iiretimini arttirmasi, hedeflenen
sorunlu hiicreleri 151 altinda etkili bir sekilde yok edebilme potansiyeli tasimaktadir.
Literatiirde, CeO2’nin tek basina ve silika ile PS olarak PDT’de kullanilmis, karaciger kanseri
ve diyabet hastaligi i¢in hedeflenen bdlgelerde toksik singlet oksijen {ireterek etkinlik
gostermistir (Fan et al., 2019; Tang, Moonshi and Ta, 2023). Sonug olarak siiperparamanyetik
yapisindan dolayr MRI kontras ajani olabilen ve singlet oksijen iiretim 6zelligi nedeniyle de
PDT’de PS olarak potansiyeli gosteren yeni ¢ok fonksiyonlu hibrit nanoyapilar basariyla

tretilmistir.

o Son boliimde ise, sonokimya-destekli yesil bir yontemle ME ortaminda yeni
CuO/ME ve CC/ME hibrit nanoyapilar sentezlendi ve yapisal karakterizasyonlar1 yapilarak
fotokatalitik uygulamadaki etkinlikleri incelendi. FTIR analizleri incelendiginde, saf ME ile

kiyaslandig1 zaman CuO/ME ve CC/ME numunelerinde farkli olarak ME’den gelen organik
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baglarin kayboldugu ve metal-oksit baglarinin olustugu gozlemlendi (Chen et al., 2015). Bu
nedenle, ME’de metal oksit yapilarinin basarili bir sekilde sentezlendigi sonucuna varildi. XRD
sonuglart incelendiginde, saf CuO/ME’de monoklinik CuO kristal yapis1 gozlemlenirken,
CC/ME’de kiibik florit CeO- yapisi elde edildi. Al-Agel ve dig. (2015) solvotermal teknikle
sentezledikleri bakir katkili CeO2 nanoyapilarinda, bu c¢alismayla benzer sekilde kiibik florit
CeO: yapist elde etmistir  (Al-Agel et al., 2015). Bilindigi gibi bu bolimde CC/ME
sentezlenirken bakir baslaticisi olarak susuz bakir (II) kloriir kullanilirken, seryum baslaticisi
olarak birinci boliimde sentezlenmis olan hazir CeO2 kullanildi. CC/ME’nin XRD desent,
birinci boliimde analizi yapilan CeO; ile kiyaslandigi zaman, ayni diizlemde elde edilen
piklerde saga dogru hafifce kayma gozlemlendi. (111) diizleminde yer alan ana pik 28.2°
konumundayken 28.4°’ye kaydi ve CeO2’nin CuO ile katkilandigi sonucuna varildi (C. Deng
et al., 2016). XRD’den elde elde edilen Debye-Scherrer denklemine gore; CuO/ME (13 nm) ve
ilk boliimde sentezlenen saf CeO2 (11 nm) numuneleriyle CC/ME (17 nm) kiyaslandigi zaman,
kristal tanecik boyutunun artmast da CeOz’nin CuO ile katkilanmasi ihtimalini
dogrulamaktadir. TEM goriintiileri incelendiginde, CuO/ME’nin CC/ME’ye gore daha kiigiik
tanecik boyutunda elde edilmesi, XRD sonuglari ile tutarlilik gosterdi. Bu ¢aligsmada iiretilen
CuO/ME nanoyapilariin, genellikle yesil yontemlerle tiretilen CuO nanoyapilarinin tanecik
boyutlar1 ve kristal yapilart ile uyumlu oldugu literatiirden de tespit edilmistir. Naika ve dig.
(2018), Gloriosa superba L. ekstrakti kullanilarak 5-10 nm boyutlarinda kiiresel CuO
nanotanecikleri tiretilmis ve bu ¢alismayla benzer kristal deseni elde etmistir (Naika et al.,
2018). Farkli bir ¢alismada yine ayn1 kiriim desenine sahip CuO, Calotropis gigantea yaprak
Oziitli kullanilarak yaklasik 20 nm kiiresel sekilde iiretilmistir (Sharma et al., 2015). Buradan,
bitki ekstrakti ile CuO/ME nanoyapilarin sentezinin oldukca basit ve literatiirle uyumlu bir
sekilde elde edildigi sonucuna varildi. CuO ve CeO: hibrit nanoyapilar literatiirde
incelendiginde, biraz daha farkli yapilarin elde edildigi gézlemlenmistir. Sangsefidi ve dig.
(2017), fruktoz ¢ozeltisi kullanarak uyguladiklari yesil bir yontemle, seryum ve bakir tuzlar
baslaticilarini kullanarak CuO-CeO, nanokompozitlerini sentezlemis ve CuO, hem de CeO:
kristal yapisinda bulunan piklere sahip, 15-30 nm boyut araliginda kiiresel nanoyapilar elde
etmistir (Sangsefidi et al., 2017). Ancak, farkli bir ¢alismada arastirilan CuO-CeO2, bu
calismada sentezlenen CC/ME gibi sadece CeO2 XRD deseninde elde edilmis ve bu duruma
CuO'nun diisiik yiiklemesi ve/veya kiigiik boyutu nedeniyle Cu bilesiginden gelen herhangi bir
kirmim tepe noktasinin olusmamasindan kaynaklandigi bildirilmistir (Chu et al., 2020).

CuO/ME ve CC/ME nanoyapilarin goriiniir 151k altinda anyonik bir boya olan EY’nin
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fotobozunmasina etkisi incelendigi zaman, teoride saf CuO’nun bant araligi saf CeO: ile
kiyaslandigi zaman daha diisiik olup, goriiniir 151k altinda elektron-delik gegislerinin daha
CuO’da daha kolay ger¢eklesmesi beklenmektedir (Ali et al., 2018; Verma and Kumar, 2019).
Buna ragmen, CC/ME hibrit nanoyapisinda fotokatalitik aktivite, CuO/ME’ye gore daha
yiiksek elde edildi, yani CeO> katkisi ile CC/ME’nin fotokatalitik etkisi artmis oldu. Benzer
sekilde yapilan bir ¢calismada, CuO ve CuO-CeO; nanoyapilarin metilen mavisinin giin 15181
altinda fotobozunmasi tizerindeki etkisi incelenmis ve CuO-CeO: hibrit nanoyapisinin CuO'dan
daha fazla metilen mavisini bozdugu bildirilmistir (Arfan et al., 2022). CuO ve CeO; arasindaki
etkilesim, Ce™/Ce**iin bir arada bulunmasina yol agar ve elektron-delik yeniden
kombinasyonunu dnleyerek fotokataliz islemini daha yiliksek verimiyle sonu¢lanmasini saglar
(Arfan et al., 2022). CeO2'nin VB’sindeki bosluklar ve CuO'nun CB’sindeki elektronlar
sirastyla yiikseltgenme ve indirgeme siireglerine tabi tutulur. Bu elektronlar, adsorbe olmus
oksijenle birleserek siiperoksit radikallerini olusturur, burada delikler suyla birleserek hidroksil
radikallerini olusturur ve bu sekilde organik boya (EY) bozunur (Huang et al., 2016; Arfan et
al., 2022). Sonug olarak CuO ve CeO: arasindaki etkilesimle CC/ME numunesi gelismis
fotokatalitik performans sergiledi. CC/ME numunesinin ayrica farkli konsantrasyonlarda ve pH
degerlerinde de fotokatalitik 6zelligi incelenmis olup, konsantrasyon artisiyla birlikte bozunma
yiizdeleri ve hiz sabitlerinin ters orantili bir sekilde diistiigii gozlemlendi. pH denemelerinde ise
diisiik pH’da fotokatalitik etki azalirken, pH artisiyla ufak bir artis oldu. Literatiirde de yiiksek
pH yiikseldik¢e EY’nin fotobozunmasinda artig oldugu belirtilmistir (Alvarez-Martin et al.,
2017). Bu durumda anyonik yapida olan EY’nin asidik ortamda kararliliginin artarak daha
yavas bozundugu fakat bazik ortamda fotokatalitik etkisinin arttigi gozlemlendi. Son olarak
tekrar kullanilabilirlikleri yapilmis olup, ti¢ tekrar sonrasinda bile CC/ME’nin verimli bir
sekilde kullanilabilecegi sonucuna varildi. Daha 6nceki ¢alismalarda, kobalt katkili ZrO2-CNT,
ZnO ve glimiis katkilt manyetik nanotanecikler gibi farkli metal oksitler, fotokatalizor olarak
EY’nin bozunmasinda kullanilmis ve cesitli optimizasyon kosullarinda ve siirelerinde etkili
olmustur (Alzahrani, 2015; Anku et al., 2016; Sharma et al., 2017) . ME ortaminda basit, ucuz
ve temiz bir sentez yontemiyle elde edilebilen yeni CuO-CeOz: hibrit nanoyapilari, EY’nin atik
sulardan uzaklastirilmasi i¢in fotokatalizor olarak etkin bir sekilde kullanilabilecegi sonucuna

varilmistir.
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6. SONUC VE ONERILER

Bu tez calismasinda, CeO; esasli polimer ve metal oksit hibrit nanoyapilar farkli kosullarda
sentezlenerek, kazanilan fizikokimyasal 6zelliklere gore, biyomedikal ve g¢evre alanlarinda
uygulanabilirlikleri arastirildi. ilk boliimde kimyasal ¢oktiirme yontemi kullanilarak
sentezlenen CeO», biyouyumlu bir polimer olan Cs ile kaplanarak cesitli hastaliklarin
tedavisinde kullanilan MTX’in in vitro salimi ve kinetik modelleri arastirildi. Sonug olarak,
CeO: kimyasal ¢oktiirme teknigi ile basarili bir sekilde iiretildigi ve Cs ile fiziksel olarak
kaplandig1 yapilan Kkarakterizasyonlar sonucunda dogrulandi. Ayrica, CeO2/Cs igin MTX
yiikleme kapasitesi ve enkapsiilasyon verimliligi yeterli degerde bulunarak pH 7.4'te 8 saate
kadar kabul edilebilir bir in vitro salim degeri elde edildi. Kinetik ¢alismalara gore, CeO,/Cs
nanotastyicisindan MTX saliniminin Higuchi ve Bhaskar modellerine uygun oldugu belirlendi.
Bu iki modelle, polimer kapli inorganik nanotasiyicilarin, MTX'in kontrollii ilag salimi igin
kullanilabilecegini dogruladi. CeO yiizeyine kaplanan Cs’nin esas olarak ara yiizdeki yapiy1
tyilestirdigi ve MTX ile inorganik nanoyapi arasinda etkilesime neden oldugunu deneysel
verilerle kanitlandi. Son olarak, CeO2/Cs MTX’in kontrollii salimi ile potansiyel etkili bir
nanotastyici olarak dnerilebilecegi sonuglarina varilds. Ikinci béliimde, CeO, ve Fe3Os “schrenk
line” sistemi kullanilarak hidrofobik ortamda optimizasyon deneyleri gergeklestirildi ve
uiretilen hibrit nanoyapilarin fizikokimyasal 6zelliklerinin aydinlatilmasiyla birlikte, manyetik
ozellikleri ile singlet oksijen {iiretim deneyleri gerceklestirildi. Baglatici olarak 6nceden
Ce(Ole)s ve Fe(Ole)s kompleks yapilari sentezlenerek FTIR ile kimyasal yapilart dogrulandi.
Bu kompleksler kullanilarak ii¢ farkli sentez sicakliginda OA ile kapli CeO2 ve Fe3O4
nanotanecik denemeleri yapildi. Fe3O4/OA sentezi igin yiiksek sicakligin (325°C), CeO2/OA
i¢in ise disiik sicakligin (185°C), uygun olduguna FTIR ve XRD analizleri sonucunda karar
verildi. Fes04/OA-325’in analizler sonucunda beklenen kristal ve kimyasal yapida oldugu
gozlemlendi. Ancak, FTIR analiziyle CeO2/OA-185’in Ce(Ole)s yapisina benzer oldugu, XRD
analiziyle de amorf yapida oldugu belirlendi. Bu durumun CeO2/OA-185’in oleat ile kapli
olmast ve safsizliklardan iyi uzaklastirllamamasindan kaynaklanmis olabilecegi sonucuna
varildi. Farkli sicaklik kosullarinin da CeO2/OA sentezinde 6nemli bir farkliliga neden olmadigi
belirlendi ve bu nedenle en diisiik sicaklik olan 185 °C'nin kullanilmasina karar verildi. OA
kapli CeO2- Fe304 hibrit nanoyapilarin sentezi i¢in Ce(Ole)s ve Fe(Ole)s kompleks baslaticilar
belirlenen sicakliklarda kullanilarak, CF/OA hibrit nanoyapilar1 {i¢ farkli oranda sentezlendi.

XRD ve XPS analizlerinden sonra CF/OA-5 ve CF/OA-9 numunelerin uygun yapida oldugu
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belirlendi. Ayrica CF/OA-9’un tanecik boyutu dagilimi, CF/OA-5'ten daha iyi gozlendi. Bu
durumda CF/OA-9’un manyetik 6zelligini aydinlatmak i¢in yapilan VSM analizi sonucunda,
nanoyapinin siiperparamanyetik  Ozellik gosterdigi  bulundu. Singlet oksijen {iiretimi
incelendiginde ise, olduk¢a kisa siirede singlet oksijeni attirdig1 kinetik ¢alismalar sonucunda
belirlendi. Bu sonuglar, CF/OA hibrit nanoyapilarin belirli bir miktar ve yoOntemle
sentezlendikten sonra, ilerideki ¢alismalarda biyogoriintiilemede kontras ajan1 ve PS olarak
MRI ve PDT uygulamalarinda potansiyel olarak kullanilabilece§ini gostermektedir. Son
boliimde ise, ME’de sonokimya-destekli yesil yontemle CeO2 ve CuO igeren hibrit nanoyapi
sentezlendi. Saf CuO/ME ile CC/ME hibrit nanoyapilarmin fizikokimyasal o6zellikleri
aydinlatildiktan sonra EY ’nin fotokatalitik bozunma deneyleri yapildi. FTIR analizi sonucuyla
sadece numunelerin oksit baglarinin olustugu aydinlatilabilmisken, XRD ve TEM analizleri ile
CC/ME numunesinde CuO’nun CeO2’ye katkilandig1 sonucuna varildi. Kirinim desenler saf
CuO/ME’de monoklinik CuO kristal yapisi tespit edildi, CC/ME igin saf CeO2 nin kristal yapis1
gbzlemlenmis olup, CuQ’ya ait bir pik bulunamadi. Birinci bolimde sentezlenip, XRD analizi
yapilmis olan ve tgiincli bolimde de seryum kaynagi olarak kullanilan CeOz’nin kirinim
deseni, CC/ME kirmmim deseni ile kiyaslandi zaman pik pozisyonlarinda hafif¢e kayma tespit
edildi. Literatiirde yapilan bazi ¢alismalar da benzer sonuglara ulasilmis ve CuO’nun CeO2’ye
katkilandigin1 desteklemistir. TEM analizinde de CC/ME hibrit nanoyapilarinda taneciklerin
CuO/ME’ye gore daha biiyiik ¢ikmasi, bu durumu agiklamaktadir. Yapilan fotokataliz
calismalarinda, EY nin fotobozunmasi CC/ME’de CuO/ME’ye gore yiiksek elde edildi. Bu
duruma, CuO ve CeO; arasindaki etkilesim ile Ce*3/Ce*™ bir arada bulunarak elektron-delik
yeniden kombinasyonunun onlenmesinin neden oldugu disiiniildii. Boylece sulu ortamda
stiperoksit radikalleri ve hidroksil radikalleri olusarak EY nin sudan uzaklastirilmasi saglandi.
Yapilan diger deneyler sonucunda, konsantrasyon artisi ile fotobozunma hizinin azaldigi, pH
artis1 ile arttirildigt ve CC/ME numunesinin tekrar verimli bir sekilde kullanilabilecegi
gozlemlendi. Bu ¢alismalarin 15181inda, CC/ME hibrit nanoyapilarinin yesil bir yontemle hizl
bir sekilde iiretilmesiyle, organik kirleticilerin atik sudan uzaklastirilmasinda fotokatalizor
olarak kullanilabilecegi sonucuna varildi. Sonug olarak, farkli kosullarda sentezlenen CeO:2
esaslt polimer ve metal oksit hibrit nanoyapilarin biyomedikal ve ¢evre alanlarinda

uygulanabilirlikleri ispat edildi.
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