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ABSTRACT

INVESTIGATION OF ADIABATIC MODES AND SUPER CHARGES
USING SOFT THEOREMS AND SYMMETRIES IN ASYMPTOTICALLY
FLAT SPACETIMES

SUMER, ARA YALIN
M.S., Department of Physics

Supervisor: Prof. Dr. Bayram Tekin

July 2023, 85 pages

This thesis aims to investigate and review the connection between adiabatic modes,
Ward identities and Weinberg’s soft theorem in the context of asymptotic symmetries
and the Bondi-Metzner-Sachs group. Adiabatic modes are low-energy excitations re-
lated to the spontaneous breaking of continuous symmetries, while Ward identities
are constraints on physical quantities arising from the existence of certain symme-
tries. Weinberg’s soft theorem, on the other hand, relates the behaviour of low-energy
particles in the presence of spontaneously broken symmetries to the symmetries them-
selves. The main focus will be the examination of how Weinberg’s soft theorem can
be produced by the use of the symmetries of the Bondi-Metzner-Sachs group, includ-
ing the supertranslations and superrotations, to gain insights into the behaviour of

low-energy particles in gravity.

Keywords: soft theorem, supertranslation, superrotation, asymptotic spacetime, mem-

ory effect



0z

ADIYABATIK MODLARIN VE SUPER YUKLERIN SOFT TEOREMLER
VE ASIMPTOTIK DUZ UZAYZAMAN SIMETRILERI KULLANILARAK
INCELENMESI

SUMER, ARA YALIN
Yiiksek Lisans, Fizik Bolimii

Tez Yoneticisi: Prof. Dr. Bayram Tekin

Temmuz 2023 , 85 sayfa

Bu tezin hedefi asimptotik simetriler ve Bondi-Metzner-Sachs grubu baglaminda adi-
yabatik modlar, Ward Ozdeslikleri ve Weinberg’in soft teoremi arasindaki iligkiyi in-
celemektir. Adiyabatik modlar kendiliginden simetri kirilmasi ile iligkili diisiik enerji
uyarilmalari iken, Ward Ozdeslikleri baz1 simetrilerin varligindan dolay1 olusan fizik-
sel biiyiikliiklerin iizerindeki kisitlamalardir. Ote yandan, Weinberg’in soft teoremi,
kendiliginden simetri kirtlmasinin varligindaki diisiik enerjili parcaciklarin davranis-
larin1 simetrilerin kendileriyle iligkilendirir. Kiitlecekimdeki diisiik enerjili parcacik-
larin davraniglar tizerine bir yaklagim elde edebilmek icin tezin odak noktasi siipe-
rotelemeleri ve siiperdonmeleri igeren Bondi-Metzner-Sachs grubunun simetrilerini

kullanarak Weinberg’in soft teoremini tiiretmek olacaktir.

Anahtar Kelimeler: soft teorem, siiperdteleme, siiperddnme, asimptotik uzayzaman,

hafiza etkisi
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CHAPTER 1

INTRODUCTION

Adiabatic modes can be viewed as large diffeomorphisms that can be represented
(locally) by physical perturbations with long wavelengths (Mirbabayi & Simonovié,
2016). One can define them in electrodynamics and gravity in an asymptotically
flat spacetime. These are residual gauge transformations, which after local gauge
fixing stay unfixed. They also give rise to soft theorems which can be originated
from Ward identities (Ward, 1950) of spontaneously broken asymptotic symmetry
groups. It is also crucial to know that to be able to talk about a physical observable,
the asymptotic Ward identity must be expressible as the limit of a conservation law
in terms of quantities at a finite distance. However, adiabatic modes grow with radius
r and hence have a different r-dependence compared to both radiation and the large
gauge transformations of asymptotic conservation laws. It is also well known that
there is a strong connection between adiabatic modes and soft theorems even though

they seem like very distinct fields.

There are several reasons for employing soft theorems in the study of gravity. One
reason is that they provide a way to assess the consistency of perturbative quantum
gravity. In perturbative quantum gravity, scattering amplitudes are calculated using
Feynman diagrams. These diagrams are constructed using perturbation theory, which
involves expanding the scattering amplitudes in a series of terms, each multiplied by
a small coupling constant. However, this expansion is not always clear cut, making
it challenging to determine the behaviour of scattering amplitudes at low energies.
Soft theorems offer a way to test the consistency of perturbative quantum gravity by
relating the scattering amplitudes of low-energy particles to the symmetries of the

asymptotic region of spacetime. If the scattering amplitudes of these particles do not



satisfy the constraints imposed by the soft theorems, it indicates that the perturbative
expansion is not well-defined and the theory is not consistent. In addition to providing
a way to test the consistency of perturbative quantum gravity, soft theorems also have
important implications for one’s understanding of the structure of QFT in the presence
of gravity. These theorems allow one to connect the behaviour of low-energy particles
to the symmetries of the asymptotic region of spacetime, which can help with the un-
derstanding of the role of these symmetries in the structure of the universe. Equipped
with this, it is easy to see that in cosmology, for each adiabatic mode, there is a lo-
cally conserved current and by using the conservation of this associated current one
can also derive the Weinberg soft theorem (Weinberg, 2003) corresponding to each
current. Weinberg’s soft theorem connects the scattering amplitudes of particles with
infinitesimal energies to the symmetries of the asymptotic region of spacetime. This
theorem had a vital part in the comprehension of the QFT in the presence of gravity
and has prompted the development of new approaches to perturbative quantum grav-
ity. It will be evident in the upcoming chapters of this thesis that there are indeed
infinitely many adiabatic modes but elegantly they resolve into the same leading soft

theorem.

This study will also shed light on the role of symmetry in the description of gravity
and its possible connection to the emergence of Goldstone bosons and soft modes
(Goldstone, 1961; Goldstone et al., 1962). Soft modes, also known as Nambu-
Goldstone modes, are low-energy excitations that arise in structures which contains
spontaneously broken global symmetries. In the context of asymptotic symmetry and
the BMS group (Bondi et al., 1962), these modes can be understood as the low-energy
excitations associated with the spontaneously broken symmetries generated by super-
translations and superrotations. The relationship between soft modes and Weinberg’s
soft theorem, which connects the scattering amplitudes of particles with arbitrarily
low energies to the symmetries of the asymptotic region of spacetime, can be un-
derstood by considering the role of these symmetries in the behaviour of low-energy

particles.



1.1 Intuitive Picture for the BMS group and Supertranslations

Asymptotic symmetries and their associated group, the BMS group, have long been
a focus of study in theoretical physics. Today, it is known that these symmetries
pertain to asymptotically flat spacetimes and are generated by supertranslations and

superrotations, which maintain the asymptotic nature of the spacetime metric.

The BMS group, also as a subgroup involves the Poincare’ group. Hence, the BMS
group has been demonstrated to be significant in the structure of the asymptotic region
of spacetime and has been utilized in formulating a consistent theory of scattering in

gravity.

For any asymptotically flat system, Bondi coordinates exist in a neighbourhood of
Z™"(the future boundary for null geodesics) and any two Bondi coordinate systems
are related by some BMS transformation, indicating that the BMS group entails all
possible gauge transformations required to discuss the limits of asymptotically flat

spacetime (Boyle, 2016).

The short discussion here will be built on inertial emitters in Minkowski space. So
one has translations of both time and space. Generalizing these, the structure of
supertranslations will be constructed. Starting with the time translations, consider an
emitter ) with the proper time 7y with the assigned retarded time uy = 7y and a

similar construction for the emitter P follows as up = 7p (see Figure 1.1).

Now, if the emitters’ time scales are related by a simple time translation such that

Tp = Ty — 0t, there exists a relation between the retarded times as

Up = Uy — ot. (11)

In terms of spherical coordinates, this can also be written as

u— u+a”Yo(0, 9), (1.2)

0,0

where o™ is a constant. The change in the retarded-time coordinate does not depend
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Figure 1.1: ) and P represent the same emitter with the same spatial coordinates but
for time coordinates they have different origins. The two null cones (dashed lines)

correspond to the two origins of the time coordinate.

on the direction ({=0), in other words, it is isotropic. The same argument is not valid
for space translations and generalizing this idea will be the essential part to grasp the

structure of supertranslations.

Now considering the space translations, let the emitter P be displaced from the emit-
ter ) by dx, but let them be stationary with respect to each other. The null cone Np
originates from the origin of P and intersects Z* at two points. These same points

are on null rays from two separate null cones of ).

The relationship between the retarded time coordinates for any point on S? is

up = uy + 0x - 1. (1.3)

4
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Figure 1.2: Y and P represent emitters that are displaced relatively. The two inter-
section points of the green dashed line and Z" are found on two separate null cones

emitted by V.

In terms of spherical coordinates, this can also be written as

1

=t Y a0, 6). (1.4)

m=—1

Fusing these two transformation laws into a single law for general spacetime transla-

tions gives

l
up =1y — Yy > a"Yiu(0,0), (1.5)

1€{0,1} m=—1

5



where

(1.6)

Here (0x, 0y, dz) is a spatial vector (Boyle, 2016), suggesting that the final general-
ization is the expansion of the range of the sum over [ to all positive integers, while
keeping the retarded time coordinate real. More specifically, the final generalization

can be obtained by making a coordinate transformation such that

u'=u—a(b,g), (1.7)

where « is any real-valued function on the S2. Conventionally this transformation is
referred to as supertranslations and they are also symmetries of the asymptotic metric.
Obviously, it’s not generally a symmetry of the metric in the interior of the spacetime,
but something important happens once one gets to the Z. In the upcoming chapters,
one will see that this behaviour at the null infinity gives rise to many other physically

enticing ideas.



CHAPTER 2

ANALYSIS AND RESULTS

2.1 The Theory

2.1.1 The Symmetry

In field theory, symmetry transformations are transformations /¢ that leave the ac-
tion invariant, or on the same footing, change the £ by AL = 9, F*. If one introduces
two different states that digress by a symmetry transformation as the same physical
state, then this symmetry is considered as a gauge symmetry. On the other hand,
If gb;ol and ¢, are physically distinguishable, the transformation is called a global
symmetry where qﬁ;ol = Psor + DNPsor-

If the generator () generates new solutions, it indicates that this generator satisfies the
relation [, H|] = 0 (one can think of this bracket as a Poisson bracket in classical
theory and as a commutator in quantum theory), where H is the Hamiltonian. There

exists a conserved current by the Noether theorem

oL

T = 50,0

A¢p — F*, (2.1)

with 0,J" = 0. Then the corresponding conserved charge is

Q= / Vhtn,ds, (2.2)
>

where n* is a timelike vector field which identifies the hypersurface > which one

integrates over. () generates transformations of the fields as

7



i[Q, ¢] = Ag. (2.3)

2.1.2 Linearly Realized Symmetries

By quantizing the theory and turning () and ¢ into operators one can see that the

symmetry induced by () is unbroken in the |2) if and only if

(Q1Q,¢]€) = 0. 2.4)

When expanding A¢, one has to begin with a linear term in ¢ but it cannot consists

of a constant term. Assuming that A¢ is precisely linear in ¢, that is

A¢a 5 Dab¢b7 (25)

where D, is a group of matrices representing the symmetry group. All linearly real-
ized symmetries take single-excited states into other single-excited states. That is, if

|0) is the vacuum, ¢, () |0) is mapped into

Q¢a(®) |0) = [Q, da()][0) = —iDap(2) [0) - (2.6)

The energy of the new excited state has to be the with the energy of the original one
(since () commutes with H). () is said to be an internal symmetry, if D,, has num-
ber (real or complex) entries, () is said to be a spacetime symmetry if D,;, contains

functions or derivatives of spacetime (Pajer, 2018).

2.1.3 Non-Linearly Realized Symmetries

In QFT one can define spontaneously broken symmetry as

(Q1Q, 9] €2) # 0. 2.7)



It is possible to work with fields with vanishing expectation values by using a field
redefinition such as ¢ — ¢ — (¢). Then in terms of these fields, the broken symmetry
transformation has to involve a constant term. So, it is understood that a sponta-

neously broken symmetry has to be non-linearly realized

i@, ¢] = Ad = const + O(d). (2.8)

In other words, one can think about non-linearly realized transformation as a trans-
formation that functions non-linearly on the solutions of the theory, meaning given
the two solutions ¢go,1 = Pso1,2 ONE finds A1 # A2 (Pajer, 2018). Then it
a) = U(a) [©)

and |(2) have the equal energy where U («) is the unitary symmetry operator for the

is obvious that there exists a degenerate vacuum since both states

transformation parameter c.

2.2 Adiabatic Modes in Gravity

It 1s known that general relativity is invariant under infinitesimal diffeomorphisms
when the background is Minkowski spacetime. Defining the canonically normalized

metric fluctuation by

Guv = Nuw + '%h;u/a (29)

where x? = 327G one sees that under a diffeomorphism £/, it transforms non-linearly

as

= Py + K708 + K710,6, + €705y (2.10)

The synchronous gauge hgg = hg; = 0 can be preferred to fix local diffeomorphisms.
Also the transverse time independent large diffeomorphisms 9p¢! = 9;£] preserve
the synchronous gauge. These large diffeomorphisms generate a set of solutions with

infinite wavelength when they act on the Minkowski vacuum.

9



To understand this better, one needs to investigate the linearized Einstein equations

Oy — 0y — 0,0515 — 0,0k — 0 Oh + 10,0y 0,h™ = k/2T,,. (2.11)

The [0i] component acts as a constraint and when there are no sources it becomes

Do (Db — Dhi) = 0. (2.12)

Any hi; = 9;¢] + ;8] with 0o = 0 satisfies this equation. But one needs to satisfy
the continuity to finite frequency when 9o # 0 i.e. when the metric perturbation is
changing with time (propagation of gravitational waves). For linearized gravity, the
requirement of continuity to finite frequency translates to the time derivative of the
perturbation approaching zero as the frequency of the perturbation approaches zero.

To achieve this, it is required to assume a stronger condition, which is

This condition forces &I to obey the relation

vl = 0. (2.14)

These large diffeomorphisms can be organized as Taylor series such as

& = Z (n+ 1)!€iioi1-~~z’n$ O (2.15)

n=0

One can derive the Noether current by varying the action once, finding the symmetry
of the gauge fixed action, or directly from the equation of motion after linearizing it
in h,,. After linearizing the equation of motion it can be written as

0% Hopy = gT, (2.16)

where H,,, = Oyl + nwaﬂhw + nmauhg — (<> p).

10



However, in the presence of hard gravitons linearization in A, is no more acceptable.
But remembering that the final soft theorem only depends on asymptotic hard states,
one can involve the energy momentum of hard gravitons in 7),,. By claiming that
the divergence of the Noether current results in a projection of the given equation of

motion onto the adiabatic mode, one finds
K" = 0,¢T H" — ggf Tk, (2.17)

2.2.1 Adiabatic Modes & Gauge Transformations

So far one has seen that broken symmetries are non-linearly realized since their field
transformations involve constant terms. However, the fact that the nature of the real-
ization is independent of the symmetry and it’s dependency on the state of the theory
is evident. Meaning that a symmetry can be linearly realized or non-linearly realized

depending on the states.

In cosmology there are large classes of non-linearly realized symmetries which have
vital part in dynamical gravity scenarios, they will be discussed in the upcoming
chapters. These symmetries are continuously connected to physical perturbations
and they form a subset of large diffeomorphisms. And most importantly when acting
on an unperturbed FLRW spacetime, newly obtained solutions, which are the well-

known adiabatic modes, are generated by them.

Most of the time, while working on cosmology one has a non-linear, exact solution
that expresses an isotropic & homogeneous background, when it is expanded in a

small perturbation, it takes the form

G (2,1) = G (t) + hy (2, 1). (2.18)

In order to obtain conclusive results, splitting the metric and the matter parts to vec-
tors, scalars and tensors because of the rotational invariance of the background is well-
known (It is more accurate to say that into scalar, transverse vectors and transverse

traceless tensor parts). These parts coincide with the representation of the orthogo-

11



nal group SO(2), which has the lowest possible dimension. One can recognize these
parts as the cosmological analog of single particle states since they are the irreducible
representations of the Poincare’ symmetry group. Continuing with the parametriza-

tion of the metric

(2.19)

where {Z,Y, K, L} are four scalars, {M;, F;} two vectors and ;; is a tensor (Wein-

berg, 2008). ~;; satisfies the relation

Vi = Oivij = 0 F; = O;M; = 0. (2.20)

Here one assumes the source to be a single perfect fluid, with the energy momentum

tensor

T,ul/ = (p + p)uuuu + PAuv, (221)

with p the pressure, p the energy density and u,u” = —1 being the normalised four-
velocity. For the multiple fluids case, one can make generalizations (Pajer, 2018).
Another important side note is the assumption that the fluid has vanishing anisotropic
stresses, but this premise will be relaxed later. The fluid velocity is broken down into

a scalar du and vector dul, as

u, = (U, ur), w; =0;0u + uy | diouy =0, (2.22)

and logically it follows as du) = 0 (in order to have gauge invariant potential flow
which simplifies the analysis). Change of coordinates by the covariance of the GR

gives

ot — 't =t 4 (), (2.23)

12



as the symmetries of the theory. This is suitably denoted with regards to the well
known gauge transformations in cosmological perturbation theory (Pajer, 2018). To
linear order in € and the perturbations, the gauge transformations of these perturba-

tions are

Ah;; = 2a2H(5¢j€0 — (06 + Oiey),
AhOi = _67, - 81'60 _'_ 2H€’i7

Ahoo - —2é0, (224)
Aui == —&-eo,

Adp  Adp

— = —— = €p.
P D

Once again, one can see that the states that differ by a gauge transformation are phys-
ically identical. It is straightforward to find some gauge invariant variables in some
suitable gauge to guarantee that these solutions are physically separate results of the
theory instead of being gauge transformations for an arbitrary single solution. Con-
sider small gauge transformations to fix the gauge, which are defined by their be-

haviour at spatial infinity

lim €“(t,x) = 0. (2.25)

|z|—o00

Then the Scalar-Vector-Tensor components of the metric and 7}, transform as

2

AK = 2He,, AL = ——¢é%,
a
1
AF@ — ——262/, AZ = Qéo,
a
1 1
AY = ~(—eg — 5+ 2HS), AM; = —(—¢¥ +2HeY), (2.26)
a a
Adp = ﬁeo, Adp = 2;9607
Adu = —¢, Am® = Arn) = A} = Adu =0,

where the Scalar-Vector-Tensor splitting of the gauge parameter is specified as e* =
{2, 05 +€l,} (Pajer, 2018). Building gauge invariant perturbations now is uncompli-

cated and there are many viable options. The most convenient variables are curvature

13



perturbations on comoving (R) and constant density () hypersurfaces, respectively

given as

R = % + Hoéu,
K 5p (2.27)
P

For these variables, the gauge invariance is satisfied only to linear order, and one must

add additional terms for second and higher-order cases.

In order to understand the most inclusive scalar and tensor adiabatic modes, one can
make a simple four step pathway. It starts with fixing the small gauge by choosing
the comoving gauge. After choosing this gauge condition, finding the residual large
diffeomorphisms that respect it comes next. Now as the third step, one needs to
solve the Einstein equation non-trivially, in other words, finding the subset of large
diffeomorphisms that continue to finite momentum. And as the final step, to produce
adiabatic modes one needs to act on the unperturbed FLRW metric with the newly

discovered diffeomorphisms.

Using the transformations of Scalar-Vector-Tensor components of 7},

L'=L+AL=0, ou' = du+ d06u =0, F, + AF; = 0. (2.28)

This designates small diffeomorphisms entirely (now one can solve for small e

uniquely).

In this gauge, the value of curvature perturbations on comoving hypersurface turns

out to be

K
R |comovingE R = 5 (229)

By obtaining the gauge transformations of these perturbations, it is evident that acting
on the unperturbed FLRW background with a large gauge transformation generates

the following perturbations (Pajer & Jazayeri, 2018; Simonovic et al., 2014)

14



1

R = Hey — —28k€k7 Ny =éo,
3a
. Op
N; = =00+ 2He; — €, — =eo, (2.30)
)
Yij = —28<iej>, (5ul = — @eo.

Where < ... > is an indication for the symmetric traceless part

1
Teij> (T + Tji) — ngk&j. (2.31)

| —

These perturbations are solutions of the equations of motion for any large ¢, of the

form

€= iy, (DTT g (2.32)

In Fourier space, the above expression is just a sum of derivatives of §%(k) since it
is non-vanishing only at £ = (. Because of this property, this solution is called the
zero momentum solution (Pajer, 2018). But one can see that because of the change of
coordinates these zero momentum solutions are just FLRW in unfamiliar coordinates.
Now by extending these solutions to the finite momentum, it is possible to interpret
them as the £ — 0 limit of some perturbations in the comoving gauge. To achieve

this, one needs to impose
9 1
Orvij = v = 0, Vi = — gaiakﬁk, (2.33)

which is the general way of representing a transverse traceless tensor. This specifi-

cally signifies

V20;e = 0. (2.34)

This result is still not satisfying. A quick computation reveals that in the linear order

the off-diagonal and the 77 parts of the Einstein equations take the form
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kik;j(Ny + R + 1 + Hip) = 0,
ki(NY + HNY) =0, (2.35)

where N; = 0;1) + NY. While these equations are directly satisfied at k = 0, they are
not satisfied in general at k. To extend them to finite momentum one needs additional

requirements to be satisfied

(N1 + R+ + Hy) =0,
(NY +HN)) £ 0, (2.36)
ki(HN, — R) = 0.

Using the perturbation (2.30) (R = Hey — &%@ek) one finds

1
€0 = —0pe® = V?¢ = 0. 2.37
0= 3% 0 (2.37)

Integrating the first constraint in (2.36), one arrives at

t
V= —€+ 3—1a/ dt a(t')Ope". (2.38)

Using (2.34) and (2.37) it turns out that V?1) = 0 (Pajer, 2018). Comparing this with
the perturbation that was found earlier (2.30) (N; = —0;eq + 2He; — €;) one finds

and the solution for this is

!
’

t t
€i(t,z) = € (x) — Doy / % / dt"a(t"). (2.40)

Based on the perturbations that were found earlier, these diffeomorphisms generate

the solution
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1
R — —gﬁkEk,

| L
¢=£ak€k/ dt a(t), (2.41)

’

—7 — t dt’ ¢ " 7"
Yij = —20;~ +28¢8j8k6k/ 3@@/)3/ dt a(t).

Now to discuss the results for only the leading adiabatic mode, consider the following

diffeomorphism

e = {0, w;;z’}. (2.42)

According to the gauge transformations of the perturbations that were separated into
space and time components, the diagonal part of this diffeomorphism (w;;) generates

the constant curvature mode when acting on the unperturbed FLRW background

Scalar curvature mode : R = —%, Y= % / a(t)dt . (2.43)
a
The anti-symmetric part wy;; 18 just a rotation and since FLRW is rotationally invari-

ant, it does not generate any perturbation. And lastly, the adiabatic tensor mode is

given by term w.;;> as

Tensor adiabatic mode : v;; = —2w ;. (2.44)

This derivation proves Weinberg’s famous discovery that there always exist a constant
scalar and constant tensor modes independent of the expansion phases of the universe
and its constituents of it (Weinberg, 2003). The scalar adiabatic mode equation must
be the solution on large scales if the structure under consideration has a single active

scalar DOF (like single field inflation) (Weinberg, 2008).

The perturbations which emerged very soon after the big bang are called primordial
perturbations, and impressively, it is the scalar adiabatic mode that produces each and

every cosmological perturbation one has ever observed in the cosmos. However, the
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tensor adiabatic mode is yet to be observed. There are ongoing experimental efforts

to detect it using the CMB data.

2.3 Asymptotic Expansions

2.3.1 Soft Theorems

Adiabatic modes and soft theorems are concepts that are closely related in the context
of gravitational scattering amplitudes. In the case of gravity, the soft behavior of am-
plitudes is related to the presence of Goldstone bosons (2.8) associated with large dif-
feomorphisms, and leads to relationships between low-energy and high-energy scat-

tering amplitudes.

Soft theorems describe the behaviour of massless particles when they become soft,
or have zero energy. These theorems are general features of Feynman diagrams and
scattering amplitudes that preserve the consistency of quantum field theory while
allowing for the production of an infinite number of soft particles in any physical

process.

Specifically, these theorems state that the amplitude with the added gauge boson can
be written as a product of a soft factor and the initial amplitude without the additional
boson. This behaviour is observed when the momentum of the included gauge boson

is choose to be soft (Pasterski, 2019).

q

pPi

Figure 2.1: With an addition of an extra boson with its energy going to zero, expan-

sion of the amplitude can be illustrated like this diagrammatically.

In the study of gravitational physics, the term "infrared" refers to the behaviour of
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low-energy particles in the presence of spontaneously broken symmetries. These
symmetries, which include those described by soft theorems, can affect the behaviour
of low-energy particles in a predictable manner. The gravitational memory effect, a
non-linear phenomenon involving the permanent displacement of objects due to the
passage of a gravitational wave, has also been studied in the context of low-energy
particle behaviour. These two are related through their connection to momentum
space poles in scattering amplitudes. The Fourier transform of a pole in frequency
space is a step function in time, which can be recognized as a domain wall connect-
ing two unequal vacua associated by an asymptotic symmetry (Strominger, 2018). As
such, the memory effect directly evaluates the action of asymptotic symmetries. Ev-
ery symmetry has a corresponding Ward identity that relates the scattering amplitudes

of symmetry-related states.

2.3.2 Asymptotic Expansion for Electrodynamics

In terms of soft theorems and symmetries, electrodynamics have strong similarities
to gravity. In both of their analysis, one deals with the Cauchy data at Z*, matching
conditions, infinitely many conservation laws, large gauge transformations and so on.
So electrodynamics is a solid point to start the investigation to construct the exact

nature of gravity.

In retarded coordinates (r, u, 2, z), the Minkowski line element is

ds* = —du® — dudr + 2r*vy.zdzdz. (2.45)

These coordinates are suitable in the neighbourhood of Z+. Where r is the radial
coordinate, © = t — r is the retarded time coordinate and z is a complex coordinate

on the unit sphere with metric

2
Yoz = m (2.46)

Keeping (u, z, Z) fixed and taking the limit » — oo, one moves out along the null line

to ZT. The standard Minkowski metric is
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Figure 2.2: Future null infinity is parameterized by u and (z, Z) in the retarded Bondi

coordinates.

ds® = —dt* + (d7)*.

This metric is related to the original one by the coordinate transformations

2rz 1—22
(£)? =12, t=wu—r, ol +i2? = —, 2 =r —
1+ 2z 1+ 22z

(2.47)

(2.48)

here the domain of the z is the entire complex plane; z = 0 is the north pole, z = oo

is the south pole, 27 is the equator and z — —1/Z% is the antipodal map. Near Z* this

coordinate system is optimal since the considered quantities fall-off near Z™, so fields

can be expanded in powers of 7 1.

On the other hand, these coordinates can not be used near 7, because u

= —

there. Advanced coordinates must be introduced to work in a neighbourhood of Z~.

The advanced line element is
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ds* = —dv* + dvdr + 2r*y.zdzdz. (2.49)

Figure 2.3: Past null infinity is parameterized by v and (z, Z) in the advanced Bondi

coordinates.

The above metric can be acquired with the aid of coordinate transformations such as

—2rz 3 1—2z
-, I =-r —.
1+ 2z I+ 2%

(Z)?=7r% t=v—r, a'4+iz?= (2.50)
In the last two terms, there are minus signs which signify the role of the antipodal
map. This relation indicates that z in the advanced coordinates is the antipodal point
on the sphere to the z in the retarded coordinates. Now the next step is expanding
around Z*. Given a field, one can reformulate it as a sum of expansions. If the field

under consideration is the z-component of the vector potential, the sum takes the form

f: AM (u,r,2,%)

Tn

, (2.51)



where the coefficients depend only on the (u, r, z,Z) which parameterize 7.

The superscript (n) denotes the order in the expansion about r = co. By the antipodal

mapping condition, one can define the matching condition as

2 _ 2 _
F((mz)(za Z) |Ij: F((W))<Za Z) ‘1;7 (2.52)

where F((:Z) is the 7% term in the expansion of the ru-component of the field strength
around Z*. Again, evaluating it at Z" using the antipodal matching gives (by taking

U= —00)

F(2)

2 (2,7) |z+= Fi) (—00,2,%). (2.53)

(

And it can be seen that the 2 values on Z* are antipodally correlated to those on Z~.

2.3.3 An Infinity of Conserved Charges

On Minkowski spacetime, take any function € restricted by the boundary condition

€(2,%) ‘I‘f: €(2,%) |I; . (2.54)

Bear in mind that ¢(z, Z) is not smooth in the neighbourhood of spatial infinity, rather

it is antipodally identified. Continuing with defining past and future charges one gets

1 1
QE:_z/ ex F sz—Q/ ex F (2.55)
e I; e T

It immediately follows that, from the matching condition, one for every function e
there exist infinite number of conservation laws, in any theory involving electromag-

netism. And by the antipodal mapping, the relation between the future and the past

charges is

of =9, (2.56)
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For example, € could be a spherical harmonic, so that one has a conservation law for
every value of the angular momentum. Now the future charges can be written as (by

the use of explicit coordinate representations)

1 1
Qf = —/ ex = — dQZ%geF,g). (2.57)
I*

e? e? Jr+

There is a 7 in the Hodge dual, which cancels the 1/72 that involved in the F2

term,
enabling an integral that is finite for the limit » — oco. Using the relation (2.54) one

can write the past charge as

1
O / A2y, FD. (2.58)
4

2L

This needs to be integrated by parts and to do this using the constraint equations on
the null surfaces Z= is optimal. The constraint equation near Z*+ has an expansion in

powers of +, with the leading term

0.2 + D*FO + D7FY 4 22 — . (2.59)

U

D, is the covariant derivative defined on the S? with the metric .z and D? = v**D5.
Choosing d,¢ |7+= 0 and using the constraint equation, followed by integrating the

boundary expression for QF by parts gives two terms

1
0f = [ dudu(0.cFY + 0B+ [ dudzensi, @60
T+

@2 T+

where the first term of the integral is called a "soft charge" (will be denoted as Q%)
which is linear in the EM field, and the second term of the integral is "hard charge"
(will be denoted as Q};), which is mostly linear in the charge current. By "soft charge"
one indicates entities with zero energy, while by "hard charge" one indicates energetic
excitation. Q;C vanishes if ¢ is constant and through future null infinity, @ becomes
the total charge flux. For the case where € is not equal to a constant, the hard term is
non-vanishing and null infinity piercing charges are weighted by an angle dependent

arbitrary function.
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Now looking at the soft charge, it is clear that it involves a term in the form

/ duF%Y = N, (2.61)

[e.9]

convoluted with Oz¢ and integrated over the sphere. This is the w — 0 limit of

/ duFWe, (2.62)

[e.e]

which is a nonzero energy and frequency w Fourier component of the EM field. When
it is considered as a quantum operator, it creates and annihilates outgoing photons of
energy w. Similarly, in the current case, one deals with an expression which is the
w — 0 limit. And following the same argument, one concludes that this term creates
and annihilates soft particles with zero energy, making the use of the name "soft

theorem" more comprehensible.

These outgoing photons have polarization dz¢. The soft photon mode (/V,) is linked

to gauge transformations at Z, it will be clear if one considers the curl

O:N. — O.N, = / dul0:FY — 9.F Y]
e X (2.63)
= / dud, FO = —F [

I+7
o0 —

where the Bianchi identity is used in the second line. Assuming that F; | I+= 0 (long
range magnetic fields asymptotic states not allowed) then the curl vanishes. The next

step is to define the real scalar N as

N, = €%0,N. (2.64)

2.3.4 Large Gauge Symmetry

The commutator action of the future and past charges (9, Q-) has a term involving

the matter field and a linear term involving 0, N and 9N (known as the soft photon

o

terms). However, A;" and the soft terms do not commute
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[0F, AV (u, 2,2)] = i0,¢(2, %), (2.65)

for the past charge, calculating on Z~ yields

(07, AV (v, 2,7)] = i0.€(2,Z). (2.66)

This concludes that, in the canonical formalism, an infinite number of symmetries
are generated by Q" and they are all gauge transformations with the parameter €. By
further analysis, one can see that Q7 transforms A, by a large gauge transformation
which is non-trivial even when the ¢ is an arbitrary function (Strominger, 2018). This
large gauge transformation also does not vanish at infinity. Checking the gauge pa-
rameter, it becomes an angle dependent (but u-independent) function at Z*. Using
the antipodal argument, it is natural for Q_ to generate transformations in which the
gauge parameter approaches to the antipodally modified angle dependent function at
Z~. An important side note to consider is, A, = 0 is not invariant under these sym-
metries, which indicates that one is working with spontaneously broken symmetries

and an infinitely degenerate vacuum.

So far it is proven that the commutator of the gauge field itself and the soft charge
is a large gauge transformation. For the case which involves matter, Q has to be
checked if it appropriately produces the gauge transformations on the matter fields.

And as expected, it will be the contribution of the hard term.

2.3.5 Ward Identity

Ward Identities basically give relations between the quantum scattering amplitudes.
They are also used to convey the dynamical outcomes of the commutation of the
conserved charges with Hamiltonian or equivalently the S-matrix. Since the S-matrix

and the Hamiltonian related as

S ~ exp(iHT), (2.67)
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for " — oo. Quantum scattering amplitudes can be written as

(out| S |in) . (2.68)

Following this, charge conservation takes the form

(out| (QFS — SQ-) |in) = 0. (2.69)

Use of the matching condition (2.56) QF is equal to Q_, however, Q_ is used when
acting on in states while Q7 is used while acting on out states (T. M. He, 2018). Using
the well-known method to generate finite symmetry, one exponentiates the charge,
and the charge conservation equation can be read as the following statement. Starting
with an in state A which develops to B an out state, a large gauge transformed in state
A develops to a large gauge transformed out state 5. The action of Q_ on the in state

(A) can be written as

Q- |in) = —2/d2285682N(z,2) lin) + Z Qie(z", 74" |in), (2.70)
k=1

[\

Vv J/

3 Vv
soft hard

where N~ (z,Z) denotes the incoming soft photon field on Z~. Here it is accepted
that using the m hard particles that are coming in at points on the C'S? indicated by
z,i”, one can construct the in state. The first term is the contribution of the soft charge,

and the second term is the contribution of the hard charge.

Likewise, the action of the future charge (Q_) on the B turns out to be

(out| QF =2 / d?20,0z¢ (out| N(z,%) + Z Q%e(z0™ Z0") (out| . (2.71)

N k=1
v (.

soft

s

~
hard

Combining these results, the Ward Identity becomes
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2/d228z8§e (out| N(z,2)S — SN~ (z,Z) |in)

= {Z Qie(z™, Zi") — Z QZ“te(zgut,Zzut)] (out| S'lin) . (2.72)
k=1 k=1

From this equation, one can deduce that corresponding to every function ¢ on the
sphere there is one Ward Identity. So in total, there is an infinite number of them.
These Ward Identities link any S-matrix element between incoming and outgoing
states times the term in the brackets, to the same S-matrix element with the insertion

of particular soft photon modes.

Figure 2.4: The S-matrix which is constructed firstly on a Minkowski space can be
rewritten as a correlator on the C'S?. Massless outgoing and incoming particles are
described by operators at the position where they penetrate the null infinity (Stro-

minger, 2018).

So far by the use of advanced and retarded coordinates, particles have been charac-
terized by the points at which they came in at null infinity also the conservation laws
are derived from antipodal matching conditions. Now in order to prove that the Ward

identity is a soft theorem one needs a couple more steps to follow.

In standard QFT, one engages in a foundation of plane waves. To utilize this notation,
one needs to rewrite the Ward Identity equation in terms of a plane wave basis. This
is possible by using the conventional mode expansion for A,. It is not clear that the

commutation relations [&J/Alz(u, 2,7), Ag (', w, )| = —% (u —u")0%(z — w) and
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[6(2,2), N(w,w)] = —=log|z — w|* + f(2,%) + g(w,w) are equivalent to the

conventional ones.

The important detail here is, they both arise from the covariant symplectic form which
is independent of slicing. Now one needs to calculate it as opposed to the traditional
use of plane wave basis, pushing the slice up to Z*. These kinds of bases require the

Cartesian coordinates for Minkowski space

ds® = —dt® + dZ.dZ. (2.73)

Near 7, A, has the on-shell outgoing plane wave mode expansion

d 1 *a ou iq.x a ou —1iq.x
o @@ + S@a @], e
where ¢ = 0, the two polarization vectors satisfying a normalization condition
€n€h, = Oap and
[ag"(@), a3 (7)'] = 0 (2m)?(2w,)8° (T~ 7). (2.75)

For the commutators of modes of the free EM field, this is the conventional formula.

Now with regards to the known creation and annihilation operators, one needs to
rewrite the asymptotic quantities on Z*. It is suitable to use retarded coordinates near

Z+. In these coordinates, the metric follows as

ds? = —du® — 2dudr + 2r*y.zdzdz. (2.76)

On the S?, in the direction of the null vector, there exists a map from null vectors g#

to points (z, Z), which takes the form

¢ = 1f —(1+27,2+7,—i(z = 2),1 - 22) = (0, ¢", ¢, ©°). 2.77)
Y

28



Considering the field AD (u,r,2z,Z) at Z*, it should be in the form

AV (y, 2,7) = Th_)I?O A, (u,r, 2,Z). (2.78)
This form allows one to take all the ¢*s in the mode expansion and re-express them
in terms of points on the C'S?. Its already been established that in terms of creation
and annihilation operators, one can write an expansion for A, (u, r, z,Z). So, a natural
deduction for A% (u, 2, Z) indicates that it should also have a similar expansion. Since
A (u,z,Z) is an operator which is localized at the point (z,Z) on the C'S?, it is
consistent for it to create and annihilate photons that penetrate at that point. In the case
of a rotation about the point (z, %), AY and Aéo) acts oppositely. They get opposite
phases, consequently while AY creating one photon helicity and annihilating the

other, A(EO) does the same thing oppositely.

By use of saddle point approximation (Saha, 2018), evaluation of Aio)(u, z,Z) in a

large-r yields to

i V2e o , .
AV, 2,7) = —— / dwla® (wi)e ™ — o (wi)Te™® 2.79
z(”) 87T21+Z§0 [Jr() 7(> ]7 ( )
where # = #(2,%). % is a unit vector that points to (z,Z) on the S? and w,z is
the three momentum involved in the creation and annihilation operators. It can be
interpreted as, at the Z™, it is the essential correlation between the out fields under %

expansion.

The related Ward identity involves 0,/N. One has to define it in the zero momentum

limit, to get its mode expansion. The zero momentum limit defined as

1 o0 ) )
0.N = — lim du(e™ 4 e~ O, (2.80)

2
2e? w—0+ oo

With this, one guarantees that 0,0-N is Hermitian. This would not be the case if the

definition is made up only by one of the e™* or e~**, Using the large-r saddle point

approximation
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1 \/5 out out ~\T
0N = % 1+ 27 wlgfﬁ[w% ( ) +waZ (wx) ] (2.81)

There is a similar formula for 0, N~

_ 1 V2 o o
0N = o lim [wal! (wi) + wa™ (wi)T]. 2.82)

The Ward identity can now be expressed as

lim [w (out| (a7 (wi)S — Sa™(wz)") |in) ]

w—0

n out 2 i
:\/56(1+z§)[z < i Z ’f] (out| S |in), (2.83)
k=

k=1 k

where € is chosen to be e = ——. This is a special case which mimics the Ward iden-
tity in 2-dimensional CFT. If €18 kept arbitrary, one gets a similar equation to (2.72).
If one looks carefully, the resemblance between this expression and the standard soft
photon theorem is clear. On the left hand side of the last expression, via explicit mul-
tiplication by w, a soft pole in the matrix element has been displayed. Looking at the

right hand side of the expression for z — 2y, there are also collinear poles.

2.4 Asymptotic Flat Spacetimes

To develop the BMS analysis, the asymptotic flat spacetimes have be to defined rigor-
ously. Now following the conformal compactification condition proposed by Penrose

in the 1960s one gets the definition:

Given a spacetime (M, g), it is called asymptotically simple if there exists a conformal
embedding into a so called ’extended spacetime’ (M , §). Extended spacetime can be
considered as a manifold with a boundary that characterizes the points at infinity

(Wheeler, 1970).

Now let (M, g) be a Lorentzian manifold. (M, g) is called spacetime if it is smooth,

connected, 4-dim. and time orientable. The aim is to combine spacetimes that ap-
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proach Minkowski spacetime at infinity. To achieve this, one constructs the boundary

for the extended spacetime as

I:: 2._;'_ |_|I+|_|ZU |_|I_L|i_, (2.84)

where 7 corresponds to spacelike infinity, 7, and i_ to timelike infinity and Z, and Z_
to lightlike infinity. It is related to the spacetime (M, g) via a conformal embedding,
C:M< M (Geroch & Horowtiz, 1978; Prinz & Schmeding, 2022).

Let (M, g) be an oriented and casual spacetime. (M, g) is called an asymptotically
simple spacetime, if it admits a conformal extension (M , §) indicating an embedding

C : M < M and a smooth function & € C°°(M), such that;

(a) M is a manifold with interior C(M) and boundary Z; i.e., M = C(M) U Z.
() |eany> 0, & |z= 0 and d€ |7 0; additionally, C*g = £2g.

(c) Each null geodesic of (M , §) has two distinct endpoints on Z.

(D(Ryw) |e-1(0)= 0, where O C M is an open neighbourhood of Z C M.

There are a couple of important points one needs to check here. The first one is, letting
(M, g) be an asymptotically simple and empty spacetime, which makes (M, g) par-
allelizable. The second one is, if (M, ¢g) has a vanishing cosmological constant, then
both Z; D Z components are homeomorphic to R x S? (Ashtekar, 2014; Ashtekar
et al., 2018).

As one moves far away, it is expected that the stress tensor falls off with a definite rate.
So the question of how the metric approaches flatness is needed to be answered with

the minimum number of assumptions utilized in order to have a reasonable definition.

In retarded coordinates near Z+, flat Minkowski space is

ds* = —du® — 2dudr + 2r*vy.zdzdz. (2.85)

The aim is, to find a metric which is asymptotically flat, but in the deep interior not

completely equal to the flat metric. Suitable coordinates for this task are the Bondi
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coordinates (u, 1, z, Z), shortened as © = (z,%). The most generic four dimensional

metric in this gauge takes the form

1 1
ds? = —Udu® — 2e* dudr + gap(dO? + §UAdu)(d®B + 5UBdu), (2.86)

where

d,det(P22) = o, (2.87)
T

Where 7 is the luminosity distance. By the conditions g, = ¢,4 = 0 together with
Ordet(%42) = 0, the local diffeomorphism invariance is fixed. By this metric, one can
locally express any geometry. At large r, requiring asymptotic flatness with the fixed
(u, z,Z) is a step towards getting the fall-off conditions on the metric components. At
this point, these fall-off conditions need to be chosen very carefully. They should be
weak enough to allow all the compelling results but also strong enough to eliminate

the unrealistic results.

Following the construction made by BMS (Bondi et al., 1962; Sachs, 1962), the met-

ric is constrained to be

ds* = —du® — 2dudr + 27"2fyzgdzd3

2 _

+ T:B du? + rC..dz2 + rCod?® + D2C..dudz + D*Cozdudz — (2.88)
14 1

+ ;(g(Nz +ud,mp) — Zﬁz(C’ZZCZZ))dudz +cc + ...,

where D, is the covariant derivative with respect to .z, C,., mp and N, depends on

(u, z,Z) but not on r, and c.c. refers to complex conjugate.

One can recognize the first line of the equation (2.88) as the flat Minkowski metric,
this is true and additional terms are the leading corrections to the flat metric. Further
subleading terms at large r are given in the ellipsis. One can associate Bondi coordi-
nates with the Minkowski coordinates since to the leading order, the spacetime is flat

near Z.

This metric is merely a geometric restriction to specify the class of spacetimes that

is under investigation. mpg is known as the Bondi mass. In a general spacetime,
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it depends on the retarded time u and the angle (z,%). And total Bondi mass as
expected is the integral of mp over S2. N, is the angular momentum characteristic
(its integral over the S?, contracted with the rotational vector field gives the total
angular momentum). C,, describes gravitational waves. It is transverse to Z*. The

Bondi news tensor is given by

N,, = 0,C... (2.89)

One can consider it as the gravitational counterpart of the field strength F,, = 0, A.,

and similarly, its square is harmonious with the energy flux over Z+.

2.4.1 More Details on the BMS Coordinate Functions

Using the conformal automorphisms of the boundary Z* of M one can construct the
BMS group. Itis also useful to conceptualize S? as the Riemann sphere with spherical
coordinates (0, ¢) € [0, 7[x[0,27[ by writing the boundary as Z© = S* x R. To
establish charts for the S? as a complex 1-dim. manifold one can use the stereographic

projections

st :S*\ (0,0,1) — C =2 R? st(0,¢) = ( = e“%ot(%). (2.90)

Extending the stereographic projection to a diffeomorphism x : S* — C U {oo} via

2
o(z) = st(z) for ze S\ {(1,0,0)} 2.91)
oo for else,

of S? with the extended complex plane C := C U {co} (the Riemann sphere). The
conventional coordinates are z = ((, ().

Let (M, g) be an asymptotically simple spacetime with globally defined coordinate

functions x® : M — R*, denoted via 2@ := (¢, x,y, ). From these BMS coordinate
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function follows as y* : M — R x [0,00) x S?, denoted via y* := (u,r,0,¢).

Transforming the (x,y, z) coordinates to (r, f, ¢) coordinates by the relations

ro=\/x? 4y + 22, 0= arccos(z), ¢ = arctan(g), (2.92)
r T

and then combining the radial coordinate » with the timelike coordinate ¢ to form the

lightlike coordinate

u:=t—r. (2.93)

With such coordinates and by uniting the angles as z® := (6, ¢), the metric turns out

to be

Gudr” @ dz” = _Y gy, ® du — e*(du ® dr + dr @ du)
r

(2.94)
+ 12 hgy(dz® — Udu) @ (d2° — Uldu).
where h,, is the metric of the unit sphere
hapdz® @ dzb = cosh(25)(e27d9 ®di + e sin2(6?)dgb ® do) 2.95)

+ sin(#) sin(20)(df ® d¢ + do ® df).

The metric degrees of freedom are expressed via a vector field on the unit sphere
U € x(S?) and real functions on the spacetime V, 3,v,5 € C°°(M,R). BMS coor-
dinate functions can be considered as a diffeomorphism gauge fixing since with these
coordinates, each degree of a globally hyperbolic Lorentzian metric is parameterized

via a function (Prinz & Schmeding, 2022).

With the given coordinate functions, the (M, g) is now asymptotically flat, if for all
(u,r,0,¢) >y fixed. Equipped with these and by expanding the metric in a series
of inverse powers of the radial coordinate r at null infinity, one gets the following

fall-off conditions
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lim V_ 14+ 0(1/r),

r—-4oo 1

lHm hg = qup + O(1)7),
oo (2.96)
lim 8= 0O(1/r%),

r—+00

lim U* = O(1/r%),

r—-+o0o

where ¢, = diag(1,sin?(6)). One way to interpret this is to see that at Z, the fall-off

properties become the smoothness condition.

2.5 Supertranslations

In this section, the asymptotic symmetries of gravitational theories in asymptotically
flat spacetimes will be discussed. It’s already been established that these symme-
tries are generated by diffeomorphisms which preserve both the Bondi gauge and the
boundary fall-off conditions. Historically it was envisioned that these symmetries
generate the isometries of flat spacetime itself (the Poincare group) since the asymp-
totic region is considered almost flat. But what one ends with getting the so called
BMS group, which is an infinite dimensional group (to be exact, it is a Fréchet Lie
group, see (A.2)). And the well-known Poincare group is a subgroup of this new Lie
group. Within this group, The four global translations are promoted to supertransla-
tions that independently interact with each point on the C'S?. To generate these su-
pertranslations, one can make a clarifying assumption which eliminates six Lorentz
generators. Which is, one works only on the diffeomorphisms that have the large r

fall-offs
- 1
£, ~0(1), £, ~ (9(;)- (2.97)

This condition rule outs boosts and rotations that grow with r at infinity since the

vector field is O(1) at large  in an orthonormal frame.
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The Lie derivatives of the metric components at large r are then
u 1
*CCgur = _auC + O(;);

= 1
ECQZT = TZ'VZEGTCZ - 0.¢" + O(‘)v
r (2.98)

chzf = TIVZE[ng + TDZCZ + TDECZ] + O(l)v

1
LeGuy = —20,C" —20,(" + (’)(;)

The next step is to ensure that Bondi gauge conditions and fall-offs are both pre-
served. One way of doing this is checking the infinitesimal BMS transformations that

preserve the asymptotic form, which are given as

u—u—f, r—r—D*D.f,
1 w (2.99)
z—z+=-D*f, zZ—>ZzZ+ -D*f.
r r

From these infinitesimal transformations, one can easily construct the desired vector

field ¢ at large r as

¢ =—fd, — D*D.f0, + %szaz + %szﬁg%— (2.100)

where f(z,Z) is any function of (z, Z), this diffeomorphism preserves all the remain-
ing conditions and the transformations generated by it are called supertranslations. As
already mentioned, supertranslations are promoted versions of the four translations in
Minkowski space. The geometry of spacetime is transformed into a new physically

inequivalent geometry by supertranslations although they are diffeomorphisms.

By evaluating the Lie derivative of the respective component of the metric and extract-
ing the respective coefficient in the large r expansion, the action of supertranslations

on the ZT data mp, C., and N,, can be determined

1
Lymp = fO,mp + Z[NZZDif +2D,N**D,f + c.c, (2.101)

L:C,. = f0,C.. —2D*f.
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If one supertranslates flat Minkowski spacetime described by mg = N, = C,, = 0,
these Lie derivative equations indicate that the supertranslated spacetime will still
have mp = 0 and N,, = 0 and a vanishing Riemann tensor. It was expected since dif-
feomorphisms cannot create gravitational waves or change the physical mass squared.
But the important point here is, for the supertranslated spacetime C,, # 0, the van-

ishing of the curvature requires

C..=—-D2C, (2.102)

for some function C'(z,Z). Under a supertranslation

L;C=f (2.103)

indicating that this function is the Goldstone boson, which can be considered as the
product of the spontaneously broken supertranslation invariance. It parameterizes the

physically distinct vacua.

It is possible to obtain a larger BM ST group (semi-direct product of supertranslations
with Lorentz transformations on Z") by dropping the overly restrictive fall-offs (2.97)
on (. Conventionally, for angular momentum, there is no BM S™ invariant definition.
But one should note that, for any classical vacuum, there exists a unique Poincare
subgroup of BM S™ under which it is invariant. So one can say that in flat space, it is

always possible to find an unbroken Poincare subgroup of BM S+,

Assume that the geometry is ruled by the Einstein equation

1
Ryy = 59u R = 87GT. (2.104)

Since the structure under consideration is the null infinity, one can assume that T%
represents the massless modes. Inserting the metric and expanding in large r, the

leading uu-component of Einstein’s equations turns out to be

1 _
dump = Z[DiNZZ + DZN*] — T, (2.105)
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where T, is found as

1
Ty = =N..N* + 4G lim [P*TM]. (2.106)
4 r——4o00
The leading data at Z™ is constrained by these two equations. Also, there exists an

extra constraint involving NV, from the uz component of the Einstein equation.

Conventionally it is assumed that near the past and future boundaries of Z*, Z* and
T, the news falls off faster than ﬁ These asymptotic boundary conditions were
shown to satisfied in a bounded neighbourhood of flat space. The spacetimes under
investigation here obey this asymptotic behaviour but in the deep interior, it is not

necessary to assume that they are nearly flat spaces.

The news dictates C',, up to an integration function by integrating (2.89). Further-
more, the vanishing of the Weyl tensor at Z* calls for C.. |;+= —2D?C' |+. So
the integration function can be chosen as C' |,+. Given the initial data at Z7 and the
news tensor, on Z* the quantities mp and N, can be obtained by the integration of

the constraints. Consequently, the Cauchy data consists of

{N..(u, 2,%),C(2,2) |7+, mp(2,Z) |7+ }. (2.107)

At higher orders in %, more data are required, along with N |z+. This is going to play
a crucial role in superrotations. Using the advanced Bondi coordinates (v, 7, z,Z) one

can make a similar deduction for Z~. The metric expansion is given as

2m

ds* = —dv* 4 2dvdr + 2r*y.zdzdz + Ba?+ rC,.dz* +rCsdz* + ..., (2.108)

r

here mp and C,, depend on (v, z, Z). Supertranslations act on Z~ as

L;N..= fo,N.., L;C.. = f0,C.,+2Df. (2.109)
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On Z—, it can be expanded with boosts and rotations to obtain the action of BAMS™.

The constraint equation follows as

1 - 1
o,mp = Z(DﬁN“ + DAN#)+T,,, T, =-N,.N*4+4xG lim [r*TM].

4 r—4o00
(2.110)
Defining C., | 0= 2D2C | 7 the related Cauchy data is given as
{N..(v,2,%2),C(2,%) |I;,m3(z,§) |I;}' (2.111)

2.5.1 Gravitational Scattering Problem

The aim of the scattering problem is to obtain the map between the Cauchy data on
Z~ and the Cauchy data on Z*. The tools one has so far up to this point are not
enough to determine this map properly, right now one can determine the data on Z+
at most up to a supertranslation. To make a better sense of the scattering problem in
GR, by using the constraints one needs to choose a future BMS™ frame, and establish
the initial values for integrating N, and mp along Z*. The choice of BMS™ frame is

dictated by the Lorentz invariant (also CPT) matching conditions

C(2,2) |+ = C(2,%2) |I;, mp(2,%) |+ = mp(2,2) |I; : (2.112)

These matching conditions destroy the joined BMS* x BMS™ action Z* and Z~ down

to the diagonal subgroup that preserves these conditions

f(Z,E) ’If: f(Z,E) |I_T_ : (2113)

Now the BMS™ frame is fixed in regards of the BMS™ frame. The symmetry of the
gravitational scattering is the diagonal subgroup generated by this condition. Having
a single solution for the scattering, infinitely many more solutions are generated by
the group. Near spatial infinity, the conditions for C'(z,z) and mpg(z,Z) antipodally

equates past and future fields (Strominger, 2014).
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By use of Weinberg’s soft graviton theorem the matching conditions for these two
were established to be essential to all orders in standard weak field perturbation the-
ory. So these conclusions push one to investigate if these matching conditions can be
used to define the scattering problem for the cases where near the spatial infinity, the

fields are weak.

2.5.2 Conserved Charges

Up until this point, it’s been hinted that for every point on the C'S?, there exists a
matching condition, which results in a conserved charge. So, one expects an infinite
number of conserved charges when there are infinitely many matching conditions.
Sticking to the same construction which has been done in the gauge theory to generate

charges, one finds the supertranslation charges as

1
e p— A2y~
Qf 47TG /I+ Z’szmeu

iy
_47TG I_T_

(2.114)

Q; d2ZVzEme-

The conservation law presents itself right away from the matching conditions

=05 (2.115)

Using the constraint equation and integrating by parts

1 1 _
Q? = — dud® 27z f[Tyw — —(D?>N** + D2ZN?)],
AnG s f (2.116)
- 2 _ - 27 722 g 553
O = o5 [ sl Mo + (DN + DN,

where mp — 0 in the far future. One interesting choice is, f(z,%) = 6%(z —w). With
this choice one obtains (2.115), meaning that on Z™, the integrated energy flux at a

point w is equal to the integrated energy flux at the antipodal point w on Z~ as
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DIN* + DIN7)].
(2.117)

1 - 1
/ duyzTw — 7 (DIN* + DINT)| = / dvyz[ T + 4
Izt 4 - 4

Additional to the stress tensor term, there is another term which is linear in the grav-
itational field and is also a total u derivative in the local energy equation. This extra
term can be interpreted as the contribution to the local energy coming from soft gravi-

ton. From this, one can conclude that energy is conserved at every angle.

In the quantum theory, conserved charges commute with the S-matrix

QiS—SQ; =0. (2.118)

To form a Ward Identity from this statement, one can put it in between the in and out

states

(out| ayS |in) = V8rG Z pk“pku (out| S |in) , (2.119)

where a. annihilates a helicity + graviton. This is same as the Weinberg’s soft gravi-

ton theorem (T. He et al., 2015).

2.6 From Momentum to Asymptotic Position Space

Weinberg’s soft graviton theorem is conveyed as momentum eigenmodes of field op-
erators. But the supertranslation Ward identity which was obtained in the last chapter
is expressed in terms of the integrated field operator P,. One has to transform the

field operator between these two bases to examine them with respect to each other.

For a massless particle with spatial momentum centred around p’ becomes localized

at late times and large r near the point

F=wi=ws= lf (247, —iz + 07,1 — 27), (2.120)
T 4

where p.p’ = w?. So that the momentum of massless particles can be distinguished
by (w, z,%Z) or p*. By the use of the mode expansion, the gravitational field can be

estimated as
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ou dSq 1 ok ou 1q.x « ou —1q.x
huf(r)zé/(27)32—%[%@%%@)(3(1 + e ()ad ()T "],  (2.121)

where ¢° = w, = |g], a = + are the two helicities. Now to parameterize the graviton

four-momentum, one uses (w,, w, W)

Wq

¢ = 1+ww(1+w@,w+@, —i(w —w), 1 — ww), (2.122)

where et#” = ¢ 4 %7 this gives the polarization tensors as

1
7 1 _9 _a —H = — 1 ). — . 2.12
<w7 ) Z? w)7 6 (@ \/i(w7 727 w) ( 3)

etH(

1
=7

+

Obeying the conditions €/ ¢q, = ¢ " = 0. In retarded Bondi coordinates, on "t

1
C..(u,2,%Z) = k lim ~h%(r,u, 2,%). (2.124)

r—oo T

Using h,, = 0,2"0,2"h,,, and (2.121)

1 d3 1 , A
C,, =k lim —aza;“azx“;/ (2733 ez‘,f(cf)ag“t(cj)e_zwq“_’w“(l_ws9) + h.c],

Jn 2,

(2.125)

where 6 is the angle between & and ¢. The integrand has stationary points at § = 0, 7.
Over the momentum space S2, the stationary phase approximation to the integral

results in

K > ou ~\ ,,— WU ou A TWqU
Cze = _m/o dwq[a+t(wqx)e ! —ait(wqa:)Te . (2.126)

In the large r limit, the additional part coming from stationary part # = 7 vanishes

(T. He et al., 2015).
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Defining

“+o0o
NY(z,%) = / due™"9,C... (2.127)
One gets
K o0
NY ) — d out L) o out - T5 )
50 = g | Al )= ) o ) (wifiﬁ)

When w is positive one gets a contribution from the first term only and similarly when

w 1S negative one gets a contribution from the second term only. So for w > 0

rwas™ (wz)T!

C2n(1 4 22)2

rwa™ (wi) Ay
+ N. zw(zv z) =

N“(2,2) = ——+ 2
zz(ZVZ) 271'(1 +Z§)2’ z

(2.129)

One needs a definition in a hermitian way when dealing with the zero mode case
N’ = lim 1(Nw + N_*) (2.130)
zz w*)0+ 2 zZz zZZ ‘ ‘

Continuing with this definition, one gets

= K : ou A ou A
N.(2,2) = (1 + 22) wh_{&[waﬁ(wx) + wa™ (wih)]. (2.131)

On Z7, one has an analogous term

M" (2, %) = / dve™d,D.,.. (2.132)
Again for w > 0 it gives
_ kwa'(wi) I kwa'™(wi)T
=52 =~ =@ = a iy @1



where a'{* and aii"T annihilate and create incoming gravitons on Z~ respectively. At

w=20

= K : in - mn -
MY, (2,2) = Tir(i Jggl+ [wa'l (wi) + wa™ (wi)T]. (2.134)

From (2.127) and (2.132)

N° (z,%) = D?N, M? (2,Z) = D*M. (2.135)

Defining O, as

O..= N2 (2,2) + M2 (2,Z) = D:N + D> M. (2.136)

Remembering the future supertranslation charge (2.114), it can be rewritten as

1 1
+ _ 2 B 1 -
where
1, 1

Using the matching conditions and energy conservation one gets

Vz|1; = Uz|1j' (2.139)

Now with the choice of f = §?(z — w) one can show that

+ -
’ (2.140)

With few manipulations this can be rearranged as
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- +
%Z(/+ duT,, —/ dz/TW> = 8 V.| — UL (2.141)
A - - -

Then the soft graviton current which can be defined as the difference of the incoming
and outgoing energy fluxes at a point (z,%) on C'S? (Strominger, 2014). This current

takes the form

1 - Tt 1 -
P. — V. [t —U + = — ~*F0 . 2.142
: QG( - ‘I: ? ‘Ij ) el 20: ( )

2.6.1 Soft Graviton Theorem as Ward Identity

In (2.142), one can see that the soft graviton current P, is expressed in terms of
standard creation and annihilation operators of the momentum space. To form a Ward
Identity for soft graviton, one needs to consider an S-matrix. An S-matrix element is

given as

(224 S|Am, ., (2.143)

out) - Consider the element

where the in (out) momenta are parameterized by 2(z
(2098 .| : OS : |zi",...) with a time ordered insertion. Now equipped with (2.136)
and the knowledge that a®**(wz)" (a’(w#)) annihilates the out (in) state for w — 0,

the S-matrix element takes the form

k 1 out out A in
T s o o (7 0 D)5 [, )

+w (20| Sa™ (wa)T |20 .0)]. (2.144)

(2008 |2 = —

The first term has a single outgoing positive helicity soft graviton with spatial mo-
mentum w2 and the second term has a single incoming negative helicity soft graviton
with spatial momentum (T. He et al., 2015). These two amplitudes are the same. So

simplifying the relationship gives
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ou mn K : ou ou S mn
<Zl t, ‘ : OZZS . |Zl ,> = —mz}l{ng[w <Zl t, |Cl t(wx)S ‘Zl ,>]
(2.145)

With a positive helicity outgoing graviton, the soft graviton theorem follows as

lim [w (27", ...] a3 (@) S | ", -..)]

= lim [Z—w[p’“'f+(Q)]2 —i—w[p’“'€+(Q)]2] (20U Sz, L)L (2.146)

P-4 —~ g

With the aid of momenta parametrization

! =in (AN =in n=in
_ g1, Mz (i — 7)1 — 2z
Ty z;;lz;y’ 1+ 2z 1+ 22
out —out out —out out—zout
ot 1, +2zpt =il =7 1= vz
by = "1 + Zout—zut’ 14+ Zout—zut "1 + Zout—out

k Pk

(2.147)
z24+Z —i(z—2) 1—2Z
qu = w 17 — —_ ) —_ Y
1+2z2° 142z 1422
1
et(q) = —=(z,1,—1i,—2).
(q) \/5( )
Using these relations, and inserting them into the S-matrix element (2.145)
8G
208 AL = out | Sz, ...
(27, ] 21" ) = ) (™, [ S 21", )
|:zm: Eout > _ zzut) n Ez‘n (E kn)
— out ( out out) — (Z . Zk )(1 + Z]z{ng;cn) .
(2.148)
Utilizing the connection between P, and O, (2.142) leads to
ou n 1 zz ou in
(29" PSS |2 ) = el Oz (20" |08 124" .)
m Fout n Ezn
— sl | Y e - 3 ]
kz:;(z_zkt) k:1(2_2k>
m [outzout n Emzin
F S ) | Y s = S .
;(1"‘21@ ) = (4 5E)
(2.149)
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Due to total momentum conservation, the last square bracket vanishes. So one ends

up with
‘ ) m Eout n Em
(20 | PS |2t = (0] S |2 L) [ ﬁ — —k g :|7
! ' ! ! kz:;(z_zkt) kzl(z_zk)
(2.150)

which completely regenerates the supertranslation Ward identity.

2.7 Superrotations

So far the investigation was built on the mp and C,., the first nontrivial corrections
to the metric near Z. And it has been observed that mp has a relation with the total
mass and /V, has a similar relationship with the angular momentum. As a result, from
the matching conditions of mp, supertranslation charges emerged. Now it is time to

investigate matching conditions for N, and discover the superrotation charges.

The angular momentum characteristic NV, has the constraint equation G, = 87GT, é\f .

The leading uz component of this equation is

1 _
OuN, = ZaZ(Dgczz — D2C%) — ud,0,mp — T, (2.151)

where the T, is

1 1
T,. = 8rG lim [r*T)!] — 710:(C2:N7) = 5C.. DN, (2.152)

T—00

N, is constrained in relation to a momentum density 7, , in contrast to m g, which was
constrained in relation to the energy density 75,,. This fixes [V, up to an integration

function. One can fix this function by the matching condition

N.(2,2) lgr= Na(2,2) Iz, (2.153)
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resembling the matching condition for m g, which is not a surprise. And again, this
indicates the existence of an infinity of conserved charges. They can be produced

from a random vector field Y# on S?. By the matching condition

of =

1
v =— | d&2(YzN.+Y.N;) = d*2(YzN, +Y.N;) = Qy, (2.154)
87TG Ii—

N 87TG I;

one gets the sign of the conservation of the superrotation charge. If the vector field is
taken to be a delta function, for every angle the new conservation laws associate net

in and out angular momentum flux.

2.7.1 Symmetries

Lorentz Killing vectors are of the general form

. 1
G = (14 52) Y70, = D" D.Y*0: = S(u+1)D.Y "0, + 5 D.Y 4 cc., (2.155)
T T

where (Y#,Y?) is a two dimensional vector field on C'S?. At null infinity, ¢y simpli-

fies to

Gy |z+= Y70, + gDzYZ&J + c.c.. (2.156)

So now one needs to check that in Minkowski space, after choosing the vector field

as

Y?=1,2221,iz,i2°, (2.157)

do they still generate the Lorentz transformations or not. Without restrictions, com-
puting for a general Y?, the Lie derivative with respect to (y of distinct metric com-

ponents gives
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1
LYgur =0 <_2) 5
r

Lyg =0 <1>
T
Lygz==0(r). (2159

—_

‘CYguu =0 <_) )

Lygs = 2710 *0(r).

<

If the first O(r?) term vanishes, the large r fall-off conditions are obeyed. For this
to be satisfied, Y* has to be a holomorphic vector field (Strominger, 2018). This

is locally resolved if Y* = 2" for any integer n. On the other hand, to obtain the

globally defined vector fields, one has to go with the restrictive choice Y? ~ 1, z, 22.

2.7.2 Canonical Formalism
In a canonical way, superrotation symmetries are produce by the superrotation charges,
but only at linearized order. To see this one needs to start by checking the boundary

data representing the geometry, which will be changed under superrotations. The Lie

derivative with respect to Y (represented as dy') of the C,, term of the metric is

1
S5y C,, = gD YN Y- DCe. = 5D - YCoi 4 2D.YCor —uD2Y". (2.159)

Now taking the u derivative gives

Sy N, = gD YOuN,. +Y - DN., + 2D,Y*N,, — D*Y". (2.160)

From these, the conserved superrotation charge follows as

o L /sz[YZNZJrYZNZ}. (2.161)

Y= 87TG 7t
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Integrating it by parts and remembering (2.151) (the constraint equation for the angu-

lar momentum aspect /V,)

vy =95+ 9f, (2.162)

b=- dud?z[D¥Y*uNZ + DY *uN? 2.163

QS 167G - U Z[ z u z+ Z u z]? ( )
1

(O dud*z(Y:T,. + V. Tz + u0.Ys T + u0:Y.To).  (2.164)

H = 87TG T+

Looking at the last two equations, one can see that while the soft charges are linear in
the C,, the hard charge is quadratic. To check if the symmetries are generated or not

one needs commutator relations, which require this commutator

[Nzz(u, 2,Z), oo (0, w, @) = 167Giry.26% (2 — w)d(u — u ). (2.165)

Equipped with this, the desired commutators are

[Q¢,C..] = —iuD?Y?,
) o | ; o (2.166)
[9},,C..] = 5D YN.o 40V - DC.. = 5D - YCo 4 2iD.YCle.

These prove that

[QF, ...] = idy. (2.167)

So the symmetry is generated by the conserved charge. But there is a very important
outcome rising from these commutators. Commutators with Q5 shift the news by a
function that approaches to a constant at Z, in the mean time C,, diverges linearly.
Looking back at the boundary conditions that were used thorough out this thesis, one
sees that they are violated with such behaviour. It basically maps the point in the phase
space to points outside that phase space. This is physically an unacceptable result. To
make sense of it, it is reasonable to demand a larger phase space. Having a larger
phase space which permits so called defects, one can understand the superrotations in

a more explicit manner.
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2.7.3 Subleading Soft Theorem

The soft theorem is already established for supertranslations. But with the existence
of the infinities of conserved superrotation charges and symmetries, it is reasonable to
assume there exists a correlated soft theorem which will be the second soft theorem

in gravity.

Superrotation charge conservation at the level of the quantum S-matrix indicates that

(out| (QFS — SQy) lin) = 0. (2.168)

This is conventionally written in terms of the coordinates (zz,Zx). Now by the de-
composition of Q;S, Q;L and Q7, it becomes obvious that above expression indicates

a soft graviton inclusion to a hard term.

Using the previous conclusions and setting Y* = ) (Kapec et al., 2014),

1
z—(q"+iq° /4" +4¢>
one finds this equation can be re-expressed in momentum space as

i}iiﬂ)o(l +wOy) (Pnt1, Prtas -l a—(@)S |p1,p2, ...) =

87GSY (pps1, Patas | S [p1y P2, ), (2.169)

where a_(q) is the annihilation operator for a negative helicity graviton of four mo-

mentum ¢ = w(1, ¢), and the subleading soft factor is

—pv )\J
S(l) =—1 Z M, Jk:p,l/ = Lkuy + Skuu- (2170)
Dk - q
k

Ly, is the orbital angular momentum and Sy, the helicity of the internal spin of
the kth particle (Strominger, 2018). By replacing p,, with ¢*.J,,,, the subleading soft
factor S(Y) can be obtained from the leading soft factor, so basically about g, changing

the position of translations with rotations does the trick.
This is logical since the first term in @}, is Y*T,,. (2.164), which is responsible for
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generating a rotation, whereas the charge which generates supertranslation has a hard

term involving f7,,, (2.116).

2.8 Goldstone Bosons

No matter how complex the dynamics are, the conserved quantities coming from the
symmetry are exactly conserved. So the symmetries offer non-perturbative outcomes
and they are not valid for special physical cases only. Spontaneously broken symme-
tries do not make physics duller, since many physical scenarios occur on a background
which spontaneously breaks the fundamental symmetries. Also by use of Goldstone’s
theorem (Goldstone, 1961), it has been proven that one does not lose the exactness of
the results related to symmetries. Being non-linearly realized, it is harder to see the
invariance of the Lagrangian, but spontaneously broken symmetries still constrain the

Lagrangian.

In classical field theory, one can distinguish the state of the system by one of the
solutions of the equation of motion. This solution can be referred to as the background
(or vacuum). It is stable if it stays finite and has small perturbations around it during
its evolution. Conventionally, the solutions that are chosen to be background are the

ones that minimise the energy.

At the quantum level, consider a field theory, with a global continuous symmetry
group C'so that it is spontaneously broken to a subgroup L other than C(L ¢ C) and
let there exist an explicit notion of the gap. This indicates that the span of the theory

involves minimum one gapless mode (Goldstone et al., 1962).

To prove this, one can use the conventional spectral decomposition method. Assume
that group C' is uniform and globally continuous. C being continuous lets one con-
struct the currents and C being global lets one avoid gauge symmetries which makes
the conserved currents trivial. C' has been chosen as global to get at least one physical
massless mode. And by assuming C' is uniform one rules out the spacetime symme-
tries, implying that the vacuum is an eigenstate of unbroken translation generators P,

(it is homogeneous).
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Now letting () to be a generator of C' so that () is spontaneously broken, one auto-

matically obtains a field v leading to the relation

(0@, ¢ (2)]10) # 0. (2.171)

By using the basis vectors |nz) (eigenvectors of P,), one injects a closure relation and

spectrally decomposes the above relation (Naegels, 2021).

01Q. v 10) = [ @4 ©1°6). () o)
= [ a5 S [ g (0156 ) v 0) 2.
(0] (@) In ) sy 1°(')[0) )

Since () generates a uniform symmetry, one can translate the conserved current to
the origin. Keeping in mind that with having a uniform symmetry one has j°(z) =
e Fuj0(0)e~"Fu, Equipped with this relation and (2.172) one gets the conserved

current as

(0[[Q, ()] [0) = / e Z / éﬁ)yie“@w’“«m 7°(0) Ing) (nzl () 0)

— (016(2) n5) (5] °(0)0)
=3 [t e B O [ (0]7°0) g (gl () 0

= (0] ¥(x) [n_3) (n5,15°(0) [0) ]
2.173)

where

d-1,! . ~
/d x eikf:gb(k’) 5d_1(k‘). (2.174)

So one has only the modes in the zero momentum limit interfere in the spectral de-

composition equation. It is also evident that dQ = 0, meaning that ¢)(z) is the only
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time dependent variable in the equation. Thus only the modes with

E, (k) — 0, (2.175)

k—0

which means, the contribution is coming from the massless modes summed over n
and this sum should be non zero. So one guarantees that there exists at least one
massless particle satisfying this relation. These are so called Nambu-Goldstone (NG)

modes, products of acting on the vacuum with a broken symmetry.

By enforcing the spontaneously broken symmetries successionally on the broken
states, one can get a set of broken states. This set is called the coset space and it
is continuous (Naegels, 2021). All the states in this set have the same energy. Since
the spacetime symmetries are neglected, the states with the same potential energy
means there is no potential barrier separating the states. At quadratic order, consid-
ering the perturbed Lagrangian, Lagrangian of the fluctuations in the vicinity of a
broken state, in the directions of the broken symmetries expected to do not contain
potential terms. So these fluctuations are massless. Now having these fluctuations in-
dependent of each other, once can classify them as NG modes. Intuitively they can be
understood as spacetime modulated action of the spontaneously broken symmetries
on the background. One can see that in this discussion the continuity of C' played a

very vital role to obtain masslessness.

In many cases, only the internal spontaneously broken symmetries are involved, which
indicates that the algebra of C'is spin 0. So by acting on the vacuum, these fluctua-

tions generate scalars, which are historically called Goldstone bosons.

Relating this to the conserved charges discussion in (subsection 2.3.3), one has a
charge Q7 that generates a symmetry of the Lagrangian of any Abelian gauge theory.
And this charge creates a mode which transforms inhomogeneously under a broken
symmetry. This mode is a soft photon mode (Strominger, 2018). This indicates
that soft photons are Goldstone bosons corresponding to the spontaneous breaking of
global symmetry. Since one can add any number of soft photons and still get the same

zero energy, there is an infinite vacuum degeneracy.
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2.9 Memory Effect

2.9.1 Gravitational Memory

Writing the metric near Z" using the Bondi coordinates and utilizing the correspond-
ing constraint equations, one finds that the angular momentum characteristic is con-

nected to the Weyl tensor component U{ on Z* by (Pasterski et al., 2016)

N, = lim 7*Clpp, (2.176)
T—00
where
0 : 2z 1 2 vzz 1 2z
ImV;, = Im lim ry**C\z,, = —Im §DZC’ 4= ZCZZN . (2.177)
r—>00

The same analysis can be made near Z~ using the respective Bondi coordinates and
constraints. Now considering spacetimes that decay to vacuum at Z~ and Z7, one

demands the condition

N. |z+= N. [z-=msp |z+=mp |;-= 0. (2.178)

Additionally around Z7, radiative modes should be unexcited

N |zx=ImP | == 0. (2.179)

The general solution to this equation is

C.. = —2D*C, (2.180)

where C' is an arbitrary function of (z,Z). Solutions of this kind are related to each
other by supertranslations which indicates the degeneracy of the vacuum. Focusing

on the continuity conditions for m g and C,, one gets
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Cox |zt = Cz |z, mp |+ =mp |z . (2.181)

Following above statement with the Bianchi identity for V,,
0. Nz ‘z; = 0.V |7+ - (2.182)

By integrating the constraint equation (2.180) and defining

A"‘sz =0C,, |Ii —-C,, |Iir, A+mB = Mg |II —mp |Ij’ (2.183)

one can find the dissimilarity amid the initial C' function and the final C' function as

DIATC* =2 / du(Tyu 4+ 2A%mp). (2.184)
Indicating that
ATC(z,2) = /d2w7wwG(z; w) {/duTuu(w) + Ampgl|, (2.185)
where the G is
1
G(z;w) = —=sin® — log sin’ %,
m
20w [z-wf (150
2 (14+ww)(l+22)

Using the same argument for the shift of C' on Z~ one can define

AC =ATC - AC, (2.187)

which gives the equality
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AC(z,7) = / de%wG@;w){ / duT,, (w) — / dyTW(w)}. (2.188)

Now considering fixed angle detectors which travel along fixed r and (z, Z), they can

be represented as

X%MS(S) = <87T0a20720)7 (2189)

where 1y is large (Strominger & Zhiboedov, 2016). Now considering another set of

detectors which are inertial and moving along geodesics

O2XA,(5) + Ts0s Xty (3) X3en(5) = 01 (2.190)

The relation between the X 53,5 and X, turns out to be

u,r u,r 1 z z 1
Xiius(e) = Xe 0+ O( ). Xous(s) = Xeuwl9) +0( ). @19

0
For u > 7y the radius can become small since truly inertial detectors do not remain
at fixed r and z. Checking the detectors’ worldlines considering that they encounter

a pulse of radiation gives

_27’0|5Z|
N 1"’21517

L 0z = 21 — 2o, (2.192)
where z; and z, are the respective initial positions of the detectors and dz is taken to
be the order of % Now one can see that the metric goes through a transition but 2;
and 2, are fixed, indicating that the proper distance between the detectors (L) has to

be changed. And this new distance is found to be

(AC’ZZ(zl,El)(S—z + c.c.).

0z
(2.193)

(1 + 2121)2 L
8 To

AL = 0

- EACZZ(Zlazl)(SZQ tecc =
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In terms of the energy flux, it can be rewritten as

' uf ’ /
- (/ duTy,(z ,Z )+Am3),
v (2.194)

(1+272)? z-2
1+7Z2)1+22)32—2

4 '
AC’ZZ(zl,%l) = % /dQZ Y5

which is the standard gravitational memory formula. This gravitational memory is
strongly connected to soft theorems which are discussed in this thesis so far. To see

this one can analyze the transverse traceless part of the asymptotic metric at Z*

. 1 /G /I~ 7 '.V T DDy r
ALY (k) = — —<Z Lalliv ™ Pinbiv ) , (2.195)
ro V 2m = wk - p; = wk - p;
where p;, is the asymptotic momenta of the n incoming particles and p;-u is the

asymptotic momenta of the m outgoing particles, k& can be considered as a coordi-

nate on S? (Wiseman & Will, 1991).

The Fourier transform of A} (w, k) on Z* can be expressed as

r—00

T 7 B iwuyp TT 7
h,, (w, k) = 4ri lim r/due b, (u, k). (2.196)

Adding the assumptions that r = 7y is large and for u — oo, A} (u, rk) gets

different finite values

ARTT (k) = lim (- iwh!} (w, k). (2.197)

4irg w—0
In the process of n — m scattering, QFT scattering amplitudes can be written as

IIII%) Am+n+1(p17 7pn7p/17 "'7p;nu (U)l{?, 6/11/))
v (2.198)

= V81GS,, " Ay in(p1, ...,pn;pll, ...,p/m) + O(wo).

Left hand side of the (2.198) represents the n — m + 1 scattering amplitude where

the +1 contribution is coming from the soft graviton.
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Then using (2.197) and (2.198), one sees that the metric fluctuation obeys (to linear

order)

wAernJrl(le 7pn7p/17 "'7p;n7 (wkv 6#1/))

lim whi;r(w, k)e"” = lim

w0 w0 Amin (D1, o Do DL s Ply)
= VBRGe™ lim wS,, (wk) (2.199)
= 87TG€'MV< . % - i p]#p]/l’> )
= hep I ke
where
m n / 7 T
S, = ( Dinbiv. _ § M) : (2.200)
o wk - p; = wk - p;

giving the direct relation between the memory effect and the soft theorem representa-

tion (Strominger & Zhiboedov, 2016).

2.9.2 Spin Memory

This memory effect is a specific type of gravitational memory effect that involves
asymmetric changes in the angular momentum because of gravitational and massless
fields ( gravitational waves). To see this take a circle G of radius R near Z* centred
around z( on a sphere of large r = ry where R << ry. If GG is taken to be the orbit of

a light ray, one can define

R€i¢1+2020 R?
Z(@) = 1 —_— O —= 2.201
e B ()

where ¢ ~ ¢ + 27. A light ray on G has a path ¢(u) obeying

ds® =0

=1—2r27..0,20,7 — 272—: — 100 (0u2) — 100 (0. 2)2 (2202)

— [D*C..0,Z + D*C0,7Z] + ...
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Looking at this one can see that only the square bracket term is odd under 0,7 —
—0, 4. Simultaneously setting two light rays to opposite orbits, the time they return

will digress by the integral of the odd term discussed above as

AP = ]{ (D*C..dz + D*C=dz), (2.203)
G
for any contour G. For C,, = —2D?('i.e. vacuum
APacuum = —2 7{ d(D*D.C + C) =0, (2.204)
G

indicating that desynchronization appears only when the radiation passes through Z+.

Then the total time delay over all orbits is

1 _
Aty=— D7 D*C=dz 2.2
U 5T /duji( C..dz + D*Cdz), (2.205)

hinting that between oppositely orbiting pulses, there is a shift in the interference
pattern, which is called the spin memory effect. The displacement memory effect
was established as a Green’s function convoluted with an integral of the net local
asymptotic energy flux, similar construction can be made for spin memory by obtain-
ing an integral containing net local asymptotic angular momentum flux. Using the

constraints and the properties of the selected Green’s function one has

Im[0;D?C**] = 2Im[0,0:N, + 0:T,.], (2.206)

7Im[D2C""] = —Im / d?20:G(z;w)[0uN,, + T.]. (2.207)

Using the Stokes theorem and integrating over D with boundary G gives

Wj{(DwC’wwdw + DY Cypdw) = —2Im d2w'yww/d2285G(z; w)[0uN, + Tz
G D
¢ (2.208)

After integration over u, it becomes
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1
Atu=———Im de%,w/d%(%G(z;w) A+Nz+/duTuz . (2.209)
7T2R D¢

where the shift in the angular momentum aspectis ATN, = N, | It —N, | I+

After applying the same procedure near Z—, one gets a similar formula for A~ and
by combining this result with A*w, a formulation for the time delay (A7) can be

obtained as (Pasterski et al., 2016)

Ar=ATu—A"v
1 (2.210)
=———Im d2w’yww/d22c%G(z; w) {/duTuz — /duTyz}

2
7TR D¢

For localized wave packets penetrating Z* or massless particles, this relation simpli-

fies to

8G

Ar= -2
TT TR
k

(’YZkaIm d2w7wELuz(Zk)a§kG(Zk; w) Sy ﬂ-thG) - (2211)

D¢g
This indicates a time-dragging effect since the second term on the right hand side
hinting a time delay of order h—Lk where hy, is the spin of the object passing through the

boundary.

2.10 Soft Hair

The study of black hole physics has revealed the existence of a unique and intriguing
phenomenon called soft hair. This term refers to low-energy excitations that can be
associated with a black hole and act as a record of its previous interactions. The
construction of soft hair is highly related to the supertranslations, superrotations and

memory effect, as its name suggests.

The investigation starts with constructing supertranslations in Schwarzschild geome-

try. The Schwarzschild line element in advanced coordinates is

ds® = =V dv? + 2dvdr + r*y,pdO*dO5, (2.212)
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where V =1 — 2”‘7’3 Now the supertranslations ¢ must satisfy the fall-off conditions

and the Bondi gauge, so for Schwarzschild metric

Legra = 0aC” + gapdi (P =0,
Legr = 20, =0, 2.213)

.
—g"PLegap =rDaC* +2¢" = 0.

2

Giving the general supertranslation solution as

¢ = [0, + Do, %D%ar, 2214)
T

where f = f(z,Z). After taking the Lie derivative

mBsz

r2

ds? = — (V b )du2 + dvdr — dvd®*D4(2V f + D?f)

(2.215)
+ (r®yap + 2rDsDpf — ryapD* f)dO*dOP,

giving the horizon at r = mp + %Dz f (Hawking et al., 2017). Another important
detail is the supertranslated black hole metric is exact in r but only linear in f. The
supertranslated black hole is a non-identical physical structure than the black hole that

was developed at the start of this section since it involves a non-zero superrotation

charge
-1 2 A 3mp 2 A
QY = — d @ﬁY Np=—— d @ﬁY oaf, (2.216)
8 II 8 IJ:
where Y4 is any smooth vector field on S? and ;N4 = —3mpdaf (Donnay et al.,
2018).

2.10.1 Horizon Charges

In the case of the Schwarzschild metric, Z" is no longer a Cauchy surface. The new
Cauchy surface can be denoted as Z" UMt which indicates the existence of the charge

conservation form (Hawking et al., 2016)
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of =07 + Q1. (2.217)

Figure 2.5: Diagram of a black hole formation under gravitational collapse. The
orange lines indicate the shock wave and the purple line indicates the horizon. Z U

H* is the Cauchy surface for the massless fields.

One has to be careful with the contribution coming from Q}# since it depends on the

choice of coordinates. In the rest of the analysis, the Bondi coordinates will be used.

Continuing with the Schwarzschild metric (perturbed), under the Bondi gauge

. 1
) 2 2
——— | e E,, 2.218
OF 167 |, Nals ( )

where 0Y is an S? with constant v and r. The F), term turns out to be (Hawking

etal., 2017)

F., = CA (87”hAI/ - 2hAI/) + CV( - %DAhAV - 2hl/zx) + 0,¢" o
" " " (2.219)

1 2
+ _QDACVhVA + 6T‘€VVhl/7’ + Cr_hur~
r r
For ¢ = (s one obtains
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4V

r

1 2
F., = =-D*f0,ha, — f(—hw +
T

r

1
hw) — D*f-h,,. (2.220)
T

As r goes to infinity one ends up with the incoming linearized supertranslation charge

. 1 .
Qe = E/z d*O\/~ fn, (2.221)

where 1 is the deviation of the Bondi mass aspect. Using the charge conservation,

one has

AT ATt 1 R
Q. =qQ;, = E/ﬁ d*©./yf. (2.222)

Following a similar construction, now in the vicinity of a black hole, let T* be a
hypersurface extending from Z* to HJ. Which makes the Cauchy surface under

consideration to be the Y+ U H™'. Then

Q; =9 + 9}, (2.223)

where the second term is the supertranslation charge contribution of the black hole. It

can also be shown that

R +
oy = 1o / 26T [D40,ha, + 2hyy + Dh] T (2.224)

Now to obtain the full picture of the horizon charges, one needs the horizon con-

straints

1 1
3,,(DAhAl, + QmBhW) — RDA]'LAV — §D2hyy = 327Tm?3T%,
B

(2.225)
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1 1 1
ay( - DAhur - arhAu + _hl/A + ) DBhBA> + DAarhzll/ + —-DAhl/T'
mp 4m% 2mp
1 1
DaDPhp, — —5D*hp, — —5ha, = 167T} 7.
* Am2 A B am T T am T4y

(2.226)

Using the combination of these horizon constraints (2.225) & (2.226) (to the lin-

earized order) one gets the horizon charges as (Hawking et al., 2017)

1 1
mp0,(2hy, + D*hy, + D0, ha,) — =D?*h,,, — ——DADP0,h s — mpD?*0,h,,
2 4mB
1 1
— =D?hyp + ——D*h g, = 32rmBTIE — 16mmpDATE,
2 4mB

(2.227)

. o . N+ o
after an integration one gets an equation for Q;f . By setting the proper boundary
conditions and gauge fixing, it becomes evident that this term generates horizon su-

pertranslations.

2.11 BMS-like Structures in FLRW Spacetimes

So far, when the null infinity was under consideration, the background was either
Minkowski or asymptotically flat spacetimes, whit the future null infinity (Z*). Simi-
larly, a flat FLRW spacetime with a decelerating expansion (radiation-dominated and
matter-dominated universes) also has a future null infinity. Because of this, it might
seem logical to use the Bondi coordinate system (which has been used in two previous
chapters of this thesis so far) for this FLRW model as well. However one will see that
this procedure leads to crucial errors since there are fundamental differences between
the asymptotic behaviour of Minkowski and FLRW spacetimes. There are two points
which make this claim obvious. The first one is, looking at the fall-off rates of the
decompositions of the stress-energy tensor, one sees that they are too slow to let the
stress-energy tensor to have a finite limit to Z (it diverges). The second point is, when
writing the diffeomorphisms of FLRW, one also obliged to transform the scale factor
(a(n)) which will be evident later that meaning a different asymptotic symmetry al-

gebra for FLRW spacetimes (this algebra will not be isomorphic to the bms). These

65



differences call for an investigation on the null infinity once again, which will give

rise to the concept of “cosmological null asymptote”.

2.11.1 FLRW Spacetimes

The main contributor to the difference between the asymptotically flat spacetimes and
FLRW spacetimes can be considered as the existence of homogeneous matter in the

latter. To see this, one starts with the line element for the flat FLRW spacetimes

ds* = a*(n)(—dn® + dr* + r2SABda:Ade). (2.228)

Where S5 is the round metric on S?,  and 7 conformal time coordinate and ra-
dial coordinate, respectively. The spacetimes under consideration satisfy Einstein’s

equation, indicating that the related stress-energy tensor can be written as

Ty = a*(p + P)Va) Vi) + Dias- (2.229)

Following the conventional cosmological definitions, p represents the density and
p represents pressure and the relation between them (i.e. the equation of state) is
p = wp. One can use this relation to define the declaration parameter and the s
parameter which will be important when defining the conformal completion of the

FLRW spacetime. Starting with the former

1+ 3w
q =

2.230
5 ( )

and the s parameter is

2 1
3(1+w) 144

(2.231)

S =

Now focusing on constructing a conformal completion for FLRW spacetimes, one

needs proper coordinates and rewrite conformal factor using them.

66



Defining two new pairs of coordinates (7, R) and (U, V') satisfying the relations

sin T’ sin R
- =
1= SosR+cosT’ cos R+ cosT’ (2.232)
U:=T-R, V.=T+R.

The range for these new coordinates are

0<T<m, 0<R<7m-T,

(2.233)
—r<U<m, |U<V<m,
and the conformal factor turns out to be
e U\ /0= ULy /0=
Q) =2| cos — cos — sin + ) (2.234)
2 2 2
From (2.234) one sees that at V' = —U, () diverges and at V' = m, () vanishes.
V = U = 7 corresponds to i+ while V = —U = 7 corresponds to i°.

it

Big Bang

Figure 2.6: Conformal diagram for the decelerating FLRW spacetimes.

Comparing this to the conformal representation of the asymptotically flat spacetimes

one can already start to see the difference. Now looking at how a(n) behaves near Z+

a(n) = QA% A = 2sin v —12_ V, (2.235)
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one sees that it diverges, even though A is smooth at future null infinity. And similarly,

near ZT the conformal factor €2 behaves like

1

U
Q2 ~ cos E(W — V)i, (2.236)

Meaning that it is not smooth unless s = 0 (Minkowski) where 0 < s < 1. Changing
the {2 for another one which is smooth on the null infinity causes a serious technical
problem which makes Z* to be no longer a null surface. So a logical decision is
to allow €2 to be not smooth and use conformal completions where g,; is smooth
on the null infinity. The crucial way out from this hurdle is using Q'~* which is
smooth on null infinity. Another important difference is rooted in the decaying of the
stress-energy tensor as it reaches null infinity. Looking at the trace of a homogeneous

stress-energy tensor of FLRW spacetime
. . 6s(1—2s) U\’
ab A
EIII}F 8mg™ Ty = —<1 BySE (Sec —2) . (2.237)

one sees that it is not vanishing on the null infinity. In addition to that, for some

components of 7,

81T = 25Q%C Vn,ny, 4250 rny + O(1) (2.238)
di t fini "l. .
vergen nite limit

one sees that there is a divergent term (na is normal to the null infinity and 7, =
tan % [VQU + VQV} ) From these deductions, it is evident that the null infinity needs
a different treatment under these conformal completions, although that FLRW space-
times are conformal to Minkowski spacetimes. This is where the concept ’cosmolog-

ical null asymptote’ presents itself.

2.11.2 Cosmological Null Asymptote

A spacetime (M , Gap) satisfying Gy = 87T accepts a cosmological null asymptote
at infinity if there is some other spacetime (M, g,;) with the boundary Z = R x §?
and an embedding of M into M — T in such a way that
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1. Q > 0, where € is smooth on M and continuously extendable to Z such that

e Q|7 = 0and g, = 922§, is non-degenerate and smooth as well.

e for 0 < s < 1, Q1% is smooth on M, where n, is the non-vanishing

normal on null infinity.
2. There exists Tab such that

o lim_,7 g®T,; and,

o lim .7 Q=% 87T, — 2502V ny| = 257(4np) for some smooth 7, on

the null infinity. g

This defines a larger class of spacetimes than the asymptotically flat spacetimes. One
way to see this is realizing that the above definition permits T to have a limit to Z
while in asymptotically flat spacetimes one has a stronger condition which requires
the existence of lim_,7 2T}, Spacetimes having this cosmological null asymptote
construction at null infinity are alike to decelerating FLRW spacetimes (Bonga &

Prabhu, 2020).

For all the spacetimes equipped with the cosmological null asymptote with a given s

value, one can define a common universal structure as

1. a smooth manifold Z =2 R x S?,

2. on Z there is an equivalence class (gu, n*) where former is a metric satisfying

qun®|z = 0 and L,,qqp|7 = 0 and latter is being a vector field.

3. there exists amap (qqp, %) — (W qap, w1 *n®) for some w > 0 with £,,w|r =

0.

2.11.3 Asymptotic Symmetry Algebra

With the help of the definition of universal structure, now one can construct the
asymptotic symmetry algebra, which will be the algebra of structure-preserving in-
finitesimal diffeomorphisms of Z. This algebra is expressed by all smooth vector

fields £* on Z which maps one equivalence class to another one. Then £ have to
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£§GQab‘I = 205(5)(]@, Lgana‘j = —(1 + S)Oé(g)na, (2239)

a(¢) being an arbitrary function with a £ dependence on Z. The £ obeying these
relations form a Lie algebra by, this algebra has a strong resemblance to the bms but

it is not isomorphic to it.

Now let the vector fields take the form £*|7 = fn® (where fn® is a supertranslation).

This requires the conditions

,Cnf|1 = 0, Oé(fn)|z =0. (2240)

Then one can see that these vector fields form a subalgebra of supertranslations de-
noted as s; C b,. This subalgebra has a conformal weight 1 + s for each parametriza-

tion function on S2. Looking at the Lie bracket

€, fn]® = (Lef — (14 s)oye f)n?, (2.241)

one notices that the right hand side of the bracket is also a supertranslation, meaning
that b, /s, is a Lie algebra. Knowing that S? has a unique conformal structure, one can
deduce that the algebra s, C b, is the algebra of conformal isometries of S? which is

isomorphic to s0(1, 3). Which concluded that the asymptotic symmetry algebra is

b, = s0(1,3) X 5. (2.242)

As expected for s = 0 case, one gets b,_y = bms which is the BMS algebra. But for
s # 0 cases, b is not isomorphic to bms, the essential difference between these two
algebras can be seen as the existence of the conformal weight 1 + s. One can also say
that for the latter case, b, does not have any favored translation subalgebra. So indeed,
BMS algebra and asymptotic symmetry algebra have deep affinities but one has to be
careful with the technical details of the model at hand since the corresponding algebra

may not be isomorphic to bms which is mostly the case.
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CHAPTER 3

DISCUSSION AND CONCLUSIONS

Starting from Weinberg’s famous work on adiabatic modes in cosmology, this thesis
encapsulated the theoretical and historical developments of the strongly correlated
research areas such as asymptotically flat spacetimes, symmetries of the null infinity
(Z), soft theorems, memory effects and the BMS group. Each one of these subjects are
highly fruitful on their own. However, together they paint an undeniably astonishing
picture of the cosmos, elegantly and simply. To be able to show this picture to the
reader, this thesis is designed to be as clear as possible by building the theoretical
background from the fundamentals, and by presenting complementary material such
as chapters (2.4.1),(2.6.1),(2.8), (A.1), (A.2) and (A.3) when needed. With the aid
of these chapters, the concepts which play a crucial role in this thesis such as soft
particles, supertranslations, superrotations and gauge symmetries are believed to be
put on solid ground. Before exposing the reader directly to gravity, in chapter (2.3),
another model which is historically more developed (i.e. QED) has been chosen
to bring to surface the necessary concepts including asymptotic expansion, charge
conservation and Ward identities. Using the similarities between electrodynamics and
gravity, it has been shown that these concepts also present themselves under certain
spacetimes (2.4), and give rise to supertranslations (2.5) as well as superrotations
(2.7), which are the focal points of this thesis. Equipped with the infrared triangle in
mind, in chapter (2.9) the corresponding memory effects of the supertranslations and
the superrotations were presented to the reader. These memory effects are believed
to be vital observational candidates for testing the theory and they are expected to
be discovered soon by the scientific community. After solidifying the theoretical
background, in the last two chapters of the thesis, the focus is shifted to the black holes
and their analysis using soft charges (2.10) and the analysis of FLRW spacetimes
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(2.11), using the BMS group.

The null infinity boundaries (Z*) are equipped with algebras and representations
which give asymptotic states without dealing with the interior of the spacetime. This
gives rise to the possibility of having a non-perturbative sum calculation over the line
of spin foams. Another important detail involves the cosmological constant. For the
careful reader, it should have been obvious that for each case in this thesis A was equal
to 0. For the two other possible cases, A < 0 and A > 0, one needs to be careful. Both
cases give rise to interesting results (known as A-BMS) and they are open research
fields. Considering the observational results, it is known that A is very small, but it is
positive (Aghanim et al., 2020). Hence, to analyse the real universe, eventually one
needs to step into new territories where A > 0 and the expansion of the universe is ac-
celerating. For such a case, near null infinity, the asymptotic symmetry corresponding
to the time translation becomes spacelike and there is no term that matches with the
Bondi news (Ashtekar et al., 2014), giving rise to many active research areas. Simi-
larly, for one of the other corners of the infrared triangle, the memory effect, there are
ongoing studies on perturbed FLRW spacetimes where the memory effect is defined
locally, meaning that no Z limit is required and no need for an explicit relation to the
asymptotic symmetry algebra. These studies are based strictly on sources with stress-
energy confined by delta functions and the corresponding memory effect is related
to the derivative of this delta function in curvature, letting one define memory effect

involving linear perturbations on any given background (Tolish & Wald, 2016).

Regarding the spacetimes that have black holes in the interior, they have their fair
amount of ambiguities as well. Even though horizon charges and symmetries make
sense mathematically, the physical interpretations of these concepts should be ad-
dressed carefully. Because of the Hawking radiation, it is well known that the black
hole evaporates and its horizon vanishes, making it difficult to conceptualize the idea
that the information about the bulk is stored on this horizon. Also, due to the exis-
tence of an infinity of conserved charges coming from the low energy symmetries, the
outgoing Hawking radiation is greatly constrained. Meaning that the semi-classical
black hole evaporation calculation needs a modification. Such a modification also

raises questions over the black hole information paradox (Hawking et al., 2017).
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The fact that the BMS group is indeed a Fréchet Lie group, it becomes evident that
the mathematical structure of this group needs to be treated carefully. It is well-
known that for such Lie groups, various results about finite-dimensional Lie groups
are no longer satisfied and the association between the algebra and the group becomes
unclear. These ambiguities are also present in the generalized BMS group and the
extended BMS group (A.3). Resolution of these problems is expected to shed light
on the nature of the BMS group and proposals such as celestial conformal field theory
(Fotopoulos et al., 2020). This mathematical richness draws the attention of many

scientists and it is an active research area.

As the final remark, just as in many other theories, one might be curious about
whether the higher dimensional analysis of the BMS structure is fruitful or not. Look-
ing at the research, it is evident that higher dimensional analogues of the BMS group
are also promising candidates to answer some of the most fundamental questions
about nature. The asymptotic structure of Z* and i is believed to contribute in a
coherent way to understanding the higher dimensional black hole physics. Which is
still an open research area. In higher dimensions (d > 4), one must be careful with
the geometric structure of the i because its geometry depends on the number of di-
mensions. Unlike %, Z1 is not that well understood in higher dimensions. To see
that, one must look back at the conformal techniques that have been used in space-
time construction. While these techniques apply to i° in any dimension, they are only
applicable to Z* if d is even. The problem with the odd dimensions arises from the
existence of gravitational waves and their behaviour at Z* (for a conformal factor €2,
they behave like O(Q2(4~2)/2)) and another problem is the smoothness of Einstein’s
equations at Z* (Melas, 2011). In higher dimensions, the existence of supertransla-
tions is also in jeopardy, but they can still be obtained by using a different asymptotic
flatness definition. These difficulties also arise on one of the other corner of the in-
frared triangle, known as the memory effect. It is shown that for odd dimensions
there is no memory effect. And another interesting result is the non-existence of
gravitational or electromagnetic memory for spacetimes with d > 6 (Satishchandran
& Wald, 2018). Some of these problems are still unresolved and remain as active

research areas.

As the reader can see, the journey continues and it is far from ending. The collective
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understanding of cosmology evolves consistently and with the help of recent and
upcoming groundbreaking observational results, one will be able to put the theory to
test and keep moving forward. Unlike what has been told many times in the past,

physics is far from complete and it is more exciting than ever.
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Appendix A

APPENDIX

A.1 Witt Algebra and Asymptotic Killing Vectors

A.1.1 Witt Algebra

Witt algebra can be considered as a space of derivations using the Laurent polynomi-

als C[z, 27| satisfying some conditions such that

, . all linear maps D : C[z,27'] = C[z,27]
Witt = Der(Clz,z77]) = (A.1)
satisfying  D(ab) = D(a)b+ aD(b).

Focusing on the derivation, one sees that for all n > 1

D(2") = nz""'D(2). (A.2)

Expanding this definition by use of Laurent polynomials a(z) where a(z) € Clz, 27|

such that

D(a(z)) = %D(z), (A.3)

where D(z) is also in C[z, z7!]. Now the Witt algebra takes the form

Witt = {p(z)diz | p(z) € (C[z,z_l]}, (A.4)
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where p(z) is any Laurent polynomial.

To understand the Witt algebra better, one conventional method is constructing a basis
for it. It is evident that every element of the algebra is connected to the Laurent
polynomial. So one can take the basis for Laurent polynomials and use it to get a

basis for the Witt algebra. The relation can be considered as

dz (A.5)

Equipped with this, one can define {Ln | n € Z} as a basis for Witt algebra where
foralln € Z

L,=—z"" " (A.6)

Now as a final step, to see the algebra structure of this basis one can check the below

derivation

Ly, Lyla(z) = Ly Lya(z) — Ly L,a(z)
= Lin(=2""d/(2)) = La(=2"""a'(2))

m+1 d nt+1 / n+1 d m+1.’
= —z"F %(—Z a(z))—= %(z Tla(2))
=" (n+ )2 (2) + 2" (2)) = 2" ((m 4 )27 (2) + 27 (2)).

(A.7)
Where a(z) € C[z,27'], m,n € Z and the prime notation indicating derivative with
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respect to z. Looking at (A.7) one sees that the second derivatives cancels and the

relation simplifies to

[Lyn, Ly]a(z) = —(m — n)2" "4 (2) = (m — n) Lyma(z2). (A.8)

Delivering the celebrated algebra

[Lin, Ly) = (m —n) Ly na(z). (A.9)

This algebra is an example of an infinite dimensional Lie algebra and its central ex-
tension is the Virasoro algebra which has a very rich structure and it plays a crucial

role in CFT and string theory.

A.1.2 Asymptotic Killing Vectors

One can consider the asymptotic symmetry algebra as the set of transformations that
preserve the boundary conditions with trivial gauge transformations taken out. Work-
ing with the Bondi coordinates (in three spacetime dimensions) and required fall-off
conditions, one sees that the boundary and gauge conditions are preserved by the

asymptotic Killing vectors

u _n 1

§ = (M(¢) +uL'(6))0u+ (L(¢) = —L"(9) = —M'(6)) 05 — (rL (6) + O(1/1))0.

(A.10)

r

where u is the retarded time, ¢ ~ ¢ + 2 is the angular coordinate and ’ notation is
the derivative with respect to u. Focusing on the leading order in large r expansion

and splitting the above Killing vector equation into L and M components one gets

wu _n

¢" = ul'(¢)0, + (L(¢) — —L(0))0 - (rL'(¢) + O(1/7))0,, (A.11)
M = M(¢)d, +O(1/r). (A.12)
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Their Lie-bracket algebra consists of infinitely many generators and it is given as

[€"(L1), €5(La)] = €(Ly Ly — Lo L) O(1/7),
[E5(Ly), €M (My)] = €M (Lo My — MyL})O(1)r), (A.13)
(M (M), €Y (Ma)] = O(1/r).

Looking at the first line , one can see that Witt algebra is recovered as subalgebra
and from the last line it is obvious to the leading order, £¥s commute with each
other. The zero mode 5(])‘/[ = 0, generates time translations, because of this, these
asymptotic Killing vectors are known as supertranslations. Similarly, the zero mode
¢l = 0, generates rotations and because of this, they are called superrotations. They
are also the generators of the Witt algebra. These two do not commute but they form

something similar to Witt algebra.

A.2 BMS Algebra as Fréchet Lie Algebra

Fréchet Lie groups are infinite-dimensional Lie groups. While finite-dimensional
Lie groups have Banach manifold structure, the Fréchet Lie groups have Fréchet
manifold structure. There are significant differences between the finite-dimensional
and infinite-dimensional cases. As already mentioned, the BMS group is an infinite-
dimensional Lie group, making it a Fréchet Lie group. To understand the BMS group

and diffeomorphisms better, an investigation of the Fréchet Lie group is required.

A Fréchet manifold can be defined as a Hausdorff topological space with an atlas
of coordinate charts taking their value in Fréchet spaces. Because of its infinite-
dimensional structure, one has to be careful with the differential geometric construc-
tions on it. Coming back to the infinite-dimensional group structure, one can start by
analysing the diffeomorphism group Diff()/) on a manifold M. This group can be
defined as

Diff(M) = {¢ € C(M, M) : ¢ bijective, ¢~ € C>°(M, M)}, (A.14)

where M is a compact smooth manifold. This group is a Fréchet Lie group. The Ba-
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nach manifold version of this group Diffon (M), which is called C"-diffeomorphisms,
is not a Lie group (more detail can be found in (Kriegl & Michor, 1998)). Now re-
calling that the BMS group can be written as

BMS = S x SO*(3,1), (A.15)

where S := C®(S?) := C*((S* R). S is called supertranslations and they form an

abelian Fréchet Lie group. By the use of the right action

oy : C*(S?,R) x SO*(3,1) — C*(S? R), (A.16)

keeping in mind that o, is smooth, for BMS, one gets

o8 xS07(3,1) = 8. (A.17)

Meaning that

BMS = S x, SO"(3,1). (A.18)

Hence, it is shown that the BMS group is also an infinite-dimensional Fréchet Lie
group (McCarthy, 1972; Prinz & Schmeding, 2022). However, this group is not real

analytic and it does not accept local exponential coordinates.

A.3 Generalized BMS Group

Looking at the group definition (A.18), one can come up with a clever way to expand
this group by replacing the SO™ (3, 1) with a larger symmetry group. Conventionally
there are two ways to go. The first one is replacing the Lorentz group with Diff(S!) x
Diff(S'), which after the semi-product, produces the so-called extended BMS group
(BMS“*"). This extension emerged from the AdS/CFT correspondence (Barnich &
Troessaert, 2010). The second way is replacing the Lorentz group with Diff(S?)

(recall that they are the superrotations), which after the semi-product, produces the
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so-called generalized BMS group (BMS?“"). This extension is assembled by use of
gravitational scattering theorems. Focusing on the generalized BMS, one can find the

asymptotic Killing vectors as

¢ = f(u,z?), (A.19)
¢ =Y (u, ) + 14, (A.20)
= _%T(DAYA + DI —UPDgf), (A.21)

where I4 = —Dpf [*dr'(*’¢g"P) and 0, f = 9,Y" = 0. After the radial integra-

tion of these Killing vectors, they can be written as

=1 (A.22)
=y" - lDAf + L leanp fl+ 1-tc CPCDAf ) + O(r ™)
r r2\ 2 2 3 16 °¢ ’

(A.23)

1 1 1 1 1
&= _ETDAYA + 5DADAf +- ( — 5DACAJ-E‘DBf — ZCABDADBf) +0(r?),

(A.24)

where C'45 and D 45 come from the metric equation g5 = 72qap +17Cap + Dap +
O(r~Y) (qap is the unit S? metric). One can represent ¢ as (T, Y') where T4 are the
generators of supertranslations and Y4 are the generators of the superrotations (they
are also referred as the pullback of super-Lorentz transformations) (Ruzziconi, 2020).

Hence the generalized BMS group is

BMS?" := S x,, Diff(S?), (A.25)

where the action « is

o : S x Diff(S?) — S. (A.26)

And its algebra is

84



bms?" = 5 x Diff(S?), (A.27)

where Diff(S?) is the diffeomorphism algebra on the C'S? (Campiglia & Laddha,
2014). Looking at (A.25), it is obvious that this group is also a Fréchet Lie group and

it is not locally exponential.
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