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ABSTRACT

INVESTIGATION OF ADIABATIC MODES AND SUPER CHARGES
USING SOFT THEOREMS AND SYMMETRIES IN ASYMPTOTICALLY

FLAT SPACETIMES

SÜMER, ARA YALIN
M.S., Department of Physics

Supervisor: Prof. Dr. Bayram Tekin

July 2023, 85 pages

This thesis aims to investigate and review the connection between adiabatic modes,

Ward identities and Weinberg’s soft theorem in the context of asymptotic symmetries

and the Bondi-Metzner-Sachs group. Adiabatic modes are low-energy excitations re-

lated to the spontaneous breaking of continuous symmetries, while Ward identities

are constraints on physical quantities arising from the existence of certain symme-

tries. Weinberg’s soft theorem, on the other hand, relates the behaviour of low-energy

particles in the presence of spontaneously broken symmetries to the symmetries them-

selves. The main focus will be the examination of how Weinberg’s soft theorem can

be produced by the use of the symmetries of the Bondi-Metzner-Sachs group, includ-

ing the supertranslations and superrotations, to gain insights into the behaviour of

low-energy particles in gravity.

Keywords: soft theorem, supertranslation, superrotation, asymptotic spacetime, mem-

ory effect
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ÖZ

ADİYABATİK MODLARIN VE SÜPER YÜKLERİN SOFT TEOREMLER
VE ASİMPTOTİK DÜZ UZAYZAMAN SİMETRİLERİ KULLANILARAK

İNCELENMESİ

SÜMER, ARA YALIN
Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi: Prof. Dr. Bayram Tekin

Temmuz 2023 , 85 sayfa

Bu tezin hedefi asimptotik simetriler ve Bondi-Metzner-Sachs grubu bağlamında adi-

yabatik modlar, Ward Özdeşlikleri ve Weinberg’in soft teoremi arasındaki ilişkiyi in-

celemektir. Adiyabatik modlar kendiliğinden simetri kırılması ile ilişkili düşük enerji

uyarılmaları iken, Ward Özdeşlikleri bazı simetrilerin varlığından dolayı oluşan fizik-

sel büyüklüklerin üzerindeki kısıtlamalardır. Öte yandan, Weinberg’in soft teoremi,

kendiliğinden simetri kırılmasının varlığındaki düşük enerjili parçacıkların davranış-

larını simetrilerin kendileriyle ilişkilendirir. Kütleçekimdeki düşük enerjili parçacık-

ların davranışları üzerine bir yaklaşım elde edebilmek için tezin odak noktası süpe-

rötelemeleri ve süperdönmeleri içeren Bondi-Metzner-Sachs grubunun simetrilerini

kullanarak Weinberg’in soft teoremini türetmek olacaktır.

Anahtar Kelimeler: soft teorem, süperöteleme, süperdönme, asimptotik uzayzaman,

hafıza etkisi
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CHAPTER 1

INTRODUCTION

Adiabatic modes can be viewed as large diffeomorphisms that can be represented

(locally) by physical perturbations with long wavelengths (Mirbabayi & Simonović,

2016). One can define them in electrodynamics and gravity in an asymptotically

flat spacetime. These are residual gauge transformations, which after local gauge

fixing stay unfixed. They also give rise to soft theorems which can be originated

from Ward identities (Ward, 1950) of spontaneously broken asymptotic symmetry

groups. It is also crucial to know that to be able to talk about a physical observable,

the asymptotic Ward identity must be expressible as the limit of a conservation law

in terms of quantities at a finite distance. However, adiabatic modes grow with radius

r and hence have a different r-dependence compared to both radiation and the large

gauge transformations of asymptotic conservation laws. It is also well known that

there is a strong connection between adiabatic modes and soft theorems even though

they seem like very distinct fields.

There are several reasons for employing soft theorems in the study of gravity. One

reason is that they provide a way to assess the consistency of perturbative quantum

gravity. In perturbative quantum gravity, scattering amplitudes are calculated using

Feynman diagrams. These diagrams are constructed using perturbation theory, which

involves expanding the scattering amplitudes in a series of terms, each multiplied by

a small coupling constant. However, this expansion is not always clear cut, making

it challenging to determine the behaviour of scattering amplitudes at low energies.

Soft theorems offer a way to test the consistency of perturbative quantum gravity by

relating the scattering amplitudes of low-energy particles to the symmetries of the

asymptotic region of spacetime. If the scattering amplitudes of these particles do not
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satisfy the constraints imposed by the soft theorems, it indicates that the perturbative

expansion is not well-defined and the theory is not consistent. In addition to providing

a way to test the consistency of perturbative quantum gravity, soft theorems also have

important implications for one’s understanding of the structure of QFT in the presence

of gravity. These theorems allow one to connect the behaviour of low-energy particles

to the symmetries of the asymptotic region of spacetime, which can help with the un-

derstanding of the role of these symmetries in the structure of the universe. Equipped

with this, it is easy to see that in cosmology, for each adiabatic mode, there is a lo-

cally conserved current and by using the conservation of this associated current one

can also derive the Weinberg soft theorem (Weinberg, 2003) corresponding to each

current. Weinberg’s soft theorem connects the scattering amplitudes of particles with

infinitesimal energies to the symmetries of the asymptotic region of spacetime. This

theorem had a vital part in the comprehension of the QFT in the presence of gravity

and has prompted the development of new approaches to perturbative quantum grav-

ity. It will be evident in the upcoming chapters of this thesis that there are indeed

infinitely many adiabatic modes but elegantly they resolve into the same leading soft

theorem.

This study will also shed light on the role of symmetry in the description of gravity

and its possible connection to the emergence of Goldstone bosons and soft modes

(Goldstone, 1961; Goldstone et al., 1962). Soft modes, also known as Nambu-

Goldstone modes, are low-energy excitations that arise in structures which contains

spontaneously broken global symmetries. In the context of asymptotic symmetry and

the BMS group (Bondi et al., 1962), these modes can be understood as the low-energy

excitations associated with the spontaneously broken symmetries generated by super-

translations and superrotations. The relationship between soft modes and Weinberg’s

soft theorem, which connects the scattering amplitudes of particles with arbitrarily

low energies to the symmetries of the asymptotic region of spacetime, can be un-

derstood by considering the role of these symmetries in the behaviour of low-energy

particles.

2



1.1 Intuitive Picture for the BMS group and Supertranslations

Asymptotic symmetries and their associated group, the BMS group, have long been

a focus of study in theoretical physics. Today, it is known that these symmetries

pertain to asymptotically flat spacetimes and are generated by supertranslations and

superrotations, which maintain the asymptotic nature of the spacetime metric.

The BMS group, also as a subgroup involves the Poincare’ group. Hence, the BMS

group has been demonstrated to be significant in the structure of the asymptotic region

of spacetime and has been utilized in formulating a consistent theory of scattering in

gravity.

For any asymptotically flat system, Bondi coordinates exist in a neighbourhood of

I+(the future boundary for null geodesics) and any two Bondi coordinate systems

are related by some BMS transformation, indicating that the BMS group entails all

possible gauge transformations required to discuss the limits of asymptotically flat

spacetime (Boyle, 2016).

The short discussion here will be built on inertial emitters in Minkowski space. So

one has translations of both time and space. Generalizing these, the structure of

supertranslations will be constructed. Starting with the time translations, consider an

emitter Y with the proper time τY with the assigned retarded time uY = τY and a

similar construction for the emitter P follows as uP = τP (see Figure 1.1).

Now, if the emitters’ time scales are related by a simple time translation such that

τP = τY − δt, there exists a relation between the retarded times as

uP = uY − δt. (1.1)

In terms of spherical coordinates, this can also be written as

u→ u+ α0,0Y0,0(θ, ϕ), (1.2)

where α0,0 is a constant. The change in the retarded-time coordinate does not depend

3



Figure 1.1: Y and P represent the same emitter with the same spatial coordinates but

for time coordinates they have different origins. The two null cones (dashed lines)

correspond to the two origins of the time coordinate.

on the direction (l=0), in other words, it is isotropic. The same argument is not valid

for space translations and generalizing this idea will be the essential part to grasp the

structure of supertranslations.

Now considering the space translations, let the emitter P be displaced from the emit-

ter Y by δx, but let them be stationary with respect to each other. The null cone NP

originates from the origin of P and intersects I+ at two points. These same points

are on null rays from two separate null cones of Y .

The relationship between the retarded time coordinates for any point on S2 is

uP = uY + δx · r. (1.3)

4



Figure 1.2: Y and P represent emitters that are displaced relatively. The two inter-

section points of the green dashed line and I+ are found on two separate null cones

emitted by Y .

In terms of spherical coordinates, this can also be written as

u→ u+
1∑

m=−1

α1,mY1,m(θ, ϕ). (1.4)

Fusing these two transformation laws into a single law for general spacetime transla-

tions gives

uP = uY −
∑

l∈{0,1}

l∑
m=−l

αl,mYl,m(θ, ϕ), (1.5)

5



where
α0,0 =

√
4πδt,

α1,−1 = −
√

2π

3
(δx+ iδy),

α1,0 = −
√

4π

3
δz,

α1,1 = −
√

2π

3
(−δx+ iδy).

(1.6)

Here (δx, δy, δz) is a spatial vector (Boyle, 2016), suggesting that the final general-

ization is the expansion of the range of the sum over l to all positive integers, while

keeping the retarded time coordinate real. More specifically, the final generalization

can be obtained by making a coordinate transformation such that

u
′
= u− α(θ, ϕ), (1.7)

where α is any real-valued function on the S2. Conventionally this transformation is

referred to as supertranslations and they are also symmetries of the asymptotic metric.

Obviously, it’s not generally a symmetry of the metric in the interior of the spacetime,

but something important happens once one gets to the I+. In the upcoming chapters,

one will see that this behaviour at the null infinity gives rise to many other physically

enticing ideas.
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CHAPTER 2

ANALYSIS AND RESULTS

2.1 The Theory

2.1.1 The Symmetry

In field theory, symmetry transformations are transformations △ϕ that leave the ac-

tion invariant, or on the same footing, change the L by △L = ∂µF
µ. If one introduces

two different states that digress by a symmetry transformation as the same physical

state, then this symmetry is considered as a gauge symmetry. On the other hand,

If ϕ′

sol and ϕsol are physically distinguishable, the transformation is called a global

symmetry where ϕ′

sol = ϕsol +△ϕsol.

If the generator Q generates new solutions, it indicates that this generator satisfies the

relation [Q,H] = 0 (one can think of this bracket as a Poisson bracket in classical

theory and as a commutator in quantum theory), where H is the Hamiltonian. There

exists a conserved current by the Noether theorem

Jν =
δL
δ∂µϕ

∆ϕ− F µ, (2.1)

with ∂µJµ = 0. Then the corresponding conserved charge is

Q =

∫
Σ

√
hJµnµd

3x, (2.2)

where nµ is a timelike vector field which identifies the hypersurface Σ which one

integrates over. Q generates transformations of the fields as

7



i[Q, ϕ] = ∆ϕ. (2.3)

2.1.2 Linearly Realized Symmetries

By quantizing the theory and turning Q and ϕ into operators one can see that the

symmetry induced by Q is unbroken in the |Ω⟩ if and only if

⟨Ω| [Q, ϕ] |Ω⟩ = 0. (2.4)

When expanding ∆ϕ, one has to begin with a linear term in ϕ but it cannot consists

of a constant term. Assuming that ∆ϕ is precisely linear in ϕ, that is

∆ϕa = Dabϕb, (2.5)

where Dab is a group of matrices representing the symmetry group. All linearly real-

ized symmetries take single-excited states into other single-excited states. That is, if

|0⟩ is the vacuum, ϕa(x) |0⟩ is mapped into

Qϕa(x) |0⟩ = [Q, ϕa(x)] |0⟩ = −iDabϕb(x) |0⟩ . (2.6)

The energy of the new excited state has to be the with the energy of the original one

(since Q commutes with H). Q is said to be an internal symmetry, if Dab has num-

ber (real or complex) entries, Q is said to be a spacetime symmetry if Dab contains

functions or derivatives of spacetime (Pajer, 2018).

2.1.3 Non-Linearly Realized Symmetries

In QFT one can define spontaneously broken symmetry as

⟨Ω| [Q, ϕ] |Ω⟩ ≠ 0. (2.7)

8



It is possible to work with fields with vanishing expectation values by using a field

redefinition such as ϕ→ ϕ−⟨ϕ⟩. Then in terms of these fields, the broken symmetry

transformation has to involve a constant term. So, it is understood that a sponta-

neously broken symmetry has to be non-linearly realized

i[Q, ϕ] = ∆ϕ = const+O(ϕ). (2.8)

In other words, one can think about non-linearly realized transformation as a trans-

formation that functions non-linearly on the solutions of the theory, meaning given

the two solutions ϕsol,1 = ϕsol,2 one finds ∆ϕsol,1 ̸= ∆ϕsol,2 (Pajer, 2018). Then it

is obvious that there exists a degenerate vacuum since both states |α⟩ = U(α) |Ω⟩
and |Ω⟩ have the equal energy where U(α) is the unitary symmetry operator for the

transformation parameter α.

2.2 Adiabatic Modes in Gravity

It is known that general relativity is invariant under infinitesimal diffeomorphisms

when the background is Minkowski spacetime. Defining the canonically normalized

metric fluctuation by

gµν = ηµν + κhµν , (2.9)

where κ2 = 32πG one sees that under a diffeomorphism ξµ, it transforms non-linearly

as

hµν → hµν + κ−1∂µξν + κ−1∂νξµ + ξσ∂σhµν . (2.10)

The synchronous gauge h00 = h0i = 0 can be preferred to fix local diffeomorphisms.

Also the transverse time independent large diffeomorphisms ∂0ξTi = ∂iξ
T
i preserve

the synchronous gauge. These large diffeomorphisms generate a set of solutions with

infinite wavelength when they act on the Minkowski vacuum.

9



To understand this better, one needs to investigate the linearized Einstein equations

□hµν − ∂µ∂σ − ∂ν∂σh
σ
µ − ∂µ∂νh− ηµν□h+ ηµν∂σ∂ρh

σρ = κ/2Tµν . (2.11)

The [0i] component acts as a constraint and when there are no sources it becomes

∂0(∂ihkk − ∂khik) = 0. (2.12)

Any hij = ∂iξ
T
j +∂jξ

T
i with ∂0ξTi = 0 satisfies this equation. But one needs to satisfy

the continuity to finite frequency when ∂0ξTi ̸= 0 i.e. when the metric perturbation is

changing with time (propagation of gravitational waves). For linearized gravity, the

requirement of continuity to finite frequency translates to the time derivative of the

perturbation approaching zero as the frequency of the perturbation approaches zero.

To achieve this, it is required to assume a stronger condition, which is

∂ihkk − ∂khik = 0. (2.13)

This condition forces ξTi to obey the relation

∇2ξTi = 0. (2.14)

These large diffeomorphisms can be organized as Taylor series such as

ξTi =
∞∑
n=0

1

(n+ 1)!
ϵii0i1···inx

i0 · · · xin . (2.15)

One can derive the Noether current by varying the action once, finding the symmetry

of the gauge fixed action, or directly from the equation of motion after linearizing it

in hµν . After linearizing the equation of motion it can be written as

∂αHαµν =
κ

2
Tµν , (2.16)

where Hαµν = ∂αhµν + ηνµ∂
βhαβ + ηνα∂µh

β
β − (α ↔ µ).

10



However, in the presence of hard gravitons linearization in hµν is no more acceptable.

But remembering that the final soft theorem only depends on asymptotic hard states,

one can involve the energy momentum of hard gravitons in Tµν . By claiming that

the divergence of the Noether current results in a projection of the given equation of

motion onto the adiabatic mode, one finds

Kµ = ∂iξ
T
j H

µij − κ

2
ξTi T

iµ. (2.17)

2.2.1 Adiabatic Modes & Gauge Transformations

So far one has seen that broken symmetries are non-linearly realized since their field

transformations involve constant terms. However, the fact that the nature of the real-

ization is independent of the symmetry and it’s dependency on the state of the theory

is evident. Meaning that a symmetry can be linearly realized or non-linearly realized

depending on the states.

In cosmology there are large classes of non-linearly realized symmetries which have

vital part in dynamical gravity scenarios, they will be discussed in the upcoming

chapters. These symmetries are continuously connected to physical perturbations

and they form a subset of large diffeomorphisms. And most importantly when acting

on an unperturbed FLRW spacetime, newly obtained solutions, which are the well-

known adiabatic modes, are generated by them.

Most of the time, while working on cosmology one has a non-linear, exact solution

that expresses an isotropic & homogeneous background, when it is expanded in a

small perturbation, it takes the form

gµν(x, t) = ḡµν(t) + hµν(x, t). (2.18)

In order to obtain conclusive results, splitting the metric and the matter parts to vec-

tors, scalars and tensors because of the rotational invariance of the background is well-

known (It is more accurate to say that into scalar, transverse vectors and transverse

traceless tensor parts). These parts coincide with the representation of the orthogo-
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nal group SO(2), which has the lowest possible dimension. One can recognize these

parts as the cosmological analog of single particle states since they are the irreducible

representations of the Poincare’ symmetry group. Continuing with the parametriza-

tion of the metric

ds2 = −(1+Z)dt2+2a(∂iY +Mi)dtdx
i+a2[(1+K)δij+∂i∂jL+2∂(iFj)+γij]dx

idxj,

(2.19)

where {Z, Y,K,L} are four scalars, {Mi, Fi} two vectors and γij is a tensor (Wein-

berg, 2008). γij satisfies the relation

γii = ∂iγij = ∂iFi = ∂iMi = 0. (2.20)

Here one assumes the source to be a single perfect fluid, with the energy momentum

tensor

Tµν = (ρ+ p)uµuν + pgµν , (2.21)

with p the pressure, ρ the energy density and uµuµ = −1 being the normalised four-

velocity. For the multiple fluids case, one can make generalizations (Pajer, 2018).

Another important side note is the assumption that the fluid has vanishing anisotropic

stresses, but this premise will be relaxed later. The fluid velocity is broken down into

a scalar δu and vector δuiV as

uµ = (u0, u1), ui =∂iδu+ δuVi , ∂iδu
V
i = 0, (2.22)

and logically it follows as δuVi = 0 (in order to have gauge invariant potential flow

which simplifies the analysis). Change of coordinates by the covariance of the GR

gives

xµ → x
′µ = xµ + ϵµ(x), (2.23)
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as the symmetries of the theory. This is suitably denoted with regards to the well

known gauge transformations in cosmological perturbation theory (Pajer, 2018). To

linear order in ϵ and the perturbations, the gauge transformations of these perturba-

tions are

∆hij = 2a2Hδijϵ0 − (∂jϵi + ∂iϵj),

∆h0i = −ϵ̇i − ∂iϵ0 + 2Hϵi,

∆h00 = −2ϵ̇0,

∆ui = −∂iϵ0,
∆δρ

ρ̇
=

∆δρ

ṗ
= ϵ0.

(2.24)

Once again, one can see that the states that differ by a gauge transformation are phys-

ically identical. It is straightforward to find some gauge invariant variables in some

suitable gauge to guarantee that these solutions are physically separate results of the

theory instead of being gauge transformations for an arbitrary single solution. Con-

sider small gauge transformations to fix the gauge, which are defined by their be-

haviour at spatial infinity

lim
|x|→∞

ϵµ(t, x) = 0. (2.25)

Then the Scalar-Vector-Tensor components of the metric and Tµν transform as

∆K = 2Hϵ0, ∆L = − 2

a2
ϵS,

∆Fi = − 1

a2
ϵVi , ∆Z = 2ϵ̇0,

∆Y =
1

a
(−ϵ0 − ϵ̇S + 2HϵS), ∆Mi =

1

a
(−ϵ̇Vi + 2HϵVi ),

∆δρ = ρ̇ϵ0, ∆δp = ṗϵ0,

∆δu = −ϵ0, ∆πS = ∆πV
i = ∆πT

ij = ∆δuVi = 0,

(2.26)

where the Scalar-Vector-Tensor splitting of the gauge parameter is specified as ϵµ =

{ϵ0, ∂iϵS+ϵiV } (Pajer, 2018). Building gauge invariant perturbations now is uncompli-

cated and there are many viable options. The most convenient variables are curvature
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perturbations on comoving (R) and constant density (ζ) hypersurfaces, respectively

given as

R ≡ K

2
+Hδu,

ζ ≡ K

2
−H

δρ

ρ̇
.

(2.27)

For these variables, the gauge invariance is satisfied only to linear order, and one must

add additional terms for second and higher-order cases.

In order to understand the most inclusive scalar and tensor adiabatic modes, one can

make a simple four step pathway. It starts with fixing the small gauge by choosing

the comoving gauge. After choosing this gauge condition, finding the residual large

diffeomorphisms that respect it comes next. Now as the third step, one needs to

solve the Einstein equation non-trivially, in other words, finding the subset of large

diffeomorphisms that continue to finite momentum. And as the final step, to produce

adiabatic modes one needs to act on the unperturbed FLRW metric with the newly

discovered diffeomorphisms.

Using the transformations of Scalar-Vector-Tensor components of Tµν

L
′
= L+∆L = 0, δu

′
= δu+ δδu = 0, Fi +∆Fi = 0. (2.28)

This designates small diffeomorphisms entirely (now one can solve for small ϵµ

uniquely).

In this gauge, the value of curvature perturbations on comoving hypersurface turns

out to be

R |comoving≡ R =
K

2
. (2.29)

By obtaining the gauge transformations of these perturbations, it is evident that acting

on the unperturbed FLRW background with a large gauge transformation generates

the following perturbations (Pajer & Jazayeri, 2018; Simonovic et al., 2014)
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R = Hϵ0 −
1

3a2
∂kϵk, N1 =ϵ̇0,

Ni = −∂iϵ0 + 2Hϵi − ϵ̇i,
δρ

ρ̇
=ϵ0,

γij = −2∂<iϵ
j
>, δui =− ∂iϵ0.

(2.30)

Where < ... > is an indication for the symmetric traceless part

T<ij> ≡ 1

2
(Tij + Tji)−

1

3
Tkkδij. (2.31)

These perturbations are solutions of the equations of motion for any large ϵ, of the

form

ϵµ =
∑
n

aµi1i2i3...in(t)x
i1xi2 · · · xin . (2.32)

In Fourier space, the above expression is just a sum of derivatives of δ3(k) since it

is non-vanishing only at k = 0. Because of this property, this solution is called the

zero momentum solution (Pajer, 2018). But one can see that because of the change of

coordinates these zero momentum solutions are just FLRW in unfamiliar coordinates.

Now by extending these solutions to the finite momentum, it is possible to interpret

them as the k → 0 limit of some perturbations in the comoving gauge. To achieve

this, one needs to impose

∂iγij = γii = 0, ∇2ϵi =− 1

3
∂i∂kϵk, (2.33)

which is the general way of representing a transverse traceless tensor. This specifi-

cally signifies

∇2∂iϵ
i = 0. (2.34)

This result is still not satisfying. A quick computation reveals that in the linear order

the off-diagonal and the ij parts of the Einstein equations take the form
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kikj(N1 +R+ ψ̇ +Hψ) = 0,

kj(Ṅ
V
i +HNV

i ) = 0,

ki(HN1 − Ṙ) = 0,

(2.35)

where Ni = ∂iψ+NV
i . While these equations are directly satisfied at k = 0, they are

not satisfied in general at k. To extend them to finite momentum one needs additional

requirements to be satisfied

(N1 +R+ ψ̇ +Hψ)
?
= 0,

(ṄV
i +HNV

i )
?
= 0,

ki(HN1 − Ṙ)
?
= 0.

(2.36)

Using the perturbation (2.30)
(
R = Hϵ0 − 1

3a2
∂kϵk

)
one finds

ϵ0 =
1

3Ḣ
∂k ϵ̇

k ⇒ ∇2ϵ0 = 0. (2.37)

Integrating the first constraint in (2.36), one arrives at

ψ = −ϵ+ 1

3a

∫ t

dt
′
a(t

′
)∂kϵ

k. (2.38)

Using (2.34) and (2.37) it turns out that ∇2ψ = 0 (Pajer, 2018). Comparing this with

the perturbation that was found earlier (2.30) (Ni = −∂iϵ0 + 2Hϵi − ϵ̇i) one finds

∂iψ = Ni = −∂iϵ0 + 2H∂iϵi − ∂iϵ̇i, (2.39)

and the solution for this is

ϵi(t, x) = ϵi(x)− ∂i∂kϵ
k

∫ t dt
′

3a(t′)3

∫ t
′

dt
′′
a(t

′′
). (2.40)

Based on the perturbations that were found earlier, these diffeomorphisms generate

the solution
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R = −1

3
∂kϵ

k,

ψ =
1

3a
∂kϵ

k

∫ t

dt
′
a(t

′
),

γij = −2∂<iϵ
j> + 2∂i∂j∂kϵ

k

∫ t dt
′

3a(t′)3

∫ t
′

dt
′′
a(t

′′
).

(2.41)

Now to discuss the results for only the leading adiabatic mode, consider the following

diffeomorphism

ϵµ = {0, wijx
j}. (2.42)

According to the gauge transformations of the perturbations that were separated into

space and time components, the diagonal part of this diffeomorphism (wii) generates

the constant curvature mode when acting on the unperturbed FLRW background

Scalar curvature mode : R = −wii

3
, ψ =

wii

3a

∫
a(t

′
)dt

′
. (2.43)

The anti-symmetric part w[ij] is just a rotation and since FLRW is rotationally invari-

ant, it does not generate any perturbation. And lastly, the adiabatic tensor mode is

given by term w<ij> as

Tensor adiabatic mode : γij = −2w<ij>. (2.44)

This derivation proves Weinberg’s famous discovery that there always exist a constant

scalar and constant tensor modes independent of the expansion phases of the universe

and its constituents of it (Weinberg, 2003). The scalar adiabatic mode equation must

be the solution on large scales if the structure under consideration has a single active

scalar DOF (like single field inflation) (Weinberg, 2008).

The perturbations which emerged very soon after the big bang are called primordial

perturbations, and impressively, it is the scalar adiabatic mode that produces each and

every cosmological perturbation one has ever observed in the cosmos. However, the
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tensor adiabatic mode is yet to be observed. There are ongoing experimental efforts

to detect it using the CMB data.

2.3 Asymptotic Expansions

2.3.1 Soft Theorems

Adiabatic modes and soft theorems are concepts that are closely related in the context

of gravitational scattering amplitudes. In the case of gravity, the soft behavior of am-

plitudes is related to the presence of Goldstone bosons (2.8) associated with large dif-

feomorphisms, and leads to relationships between low-energy and high-energy scat-

tering amplitudes.

Soft theorems describe the behaviour of massless particles when they become soft,

or have zero energy. These theorems are general features of Feynman diagrams and

scattering amplitudes that preserve the consistency of quantum field theory while

allowing for the production of an infinite number of soft particles in any physical

process.

Specifically, these theorems state that the amplitude with the added gauge boson can

be written as a product of a soft factor and the initial amplitude without the additional

boson. This behaviour is observed when the momentum of the included gauge boson

is choose to be soft (Pasterski, 2019).

Figure 2.1: With an addition of an extra boson with its energy going to zero, expan-

sion of the amplitude can be illustrated like this diagrammatically.

In the study of gravitational physics, the term "infrared" refers to the behaviour of
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low-energy particles in the presence of spontaneously broken symmetries. These

symmetries, which include those described by soft theorems, can affect the behaviour

of low-energy particles in a predictable manner. The gravitational memory effect, a

non-linear phenomenon involving the permanent displacement of objects due to the

passage of a gravitational wave, has also been studied in the context of low-energy

particle behaviour. These two are related through their connection to momentum

space poles in scattering amplitudes. The Fourier transform of a pole in frequency

space is a step function in time, which can be recognized as a domain wall connect-

ing two unequal vacua associated by an asymptotic symmetry (Strominger, 2018). As

such, the memory effect directly evaluates the action of asymptotic symmetries. Ev-

ery symmetry has a corresponding Ward identity that relates the scattering amplitudes

of symmetry-related states.

2.3.2 Asymptotic Expansion for Electrodynamics

In terms of soft theorems and symmetries, electrodynamics have strong similarities

to gravity. In both of their analysis, one deals with the Cauchy data at I±, matching

conditions, infinitely many conservation laws, large gauge transformations and so on.

So electrodynamics is a solid point to start the investigation to construct the exact

nature of gravity.

In retarded coordinates (r, u, z, z), the Minkowski line element is

ds2 = −du2 − dudr + 2r2γzzdzdz. (2.45)

These coordinates are suitable in the neighbourhood of I+. Where r is the radial

coordinate, u = t − r is the retarded time coordinate and z is a complex coordinate

on the unit sphere with metric

γzz =
2

(1 + zz)2
. (2.46)

Keeping (u, z, z) fixed and taking the limit r → ∞, one moves out along the null line

to I+. The standard Minkowski metric is

19



Figure 2.2: Future null infinity is parameterized by u and (z, z) in the retarded Bondi

coordinates.

ds2 = −dt2 + (dx⃗)2. (2.47)

This metric is related to the original one by the coordinate transformations

(x⃗)2 = r2, t = u− r, x1 + ix2 =
2rz

1 + zz
, x3 = r

1− zz

1 + zz
, (2.48)

here the domain of the z is the entire complex plane; z = 0 is the north pole, z = ∞
is the south pole, zz is the equator and z → −1/z is the antipodal map. Near I+ this

coordinate system is optimal since the considered quantities fall-off near I+, so fields

can be expanded in powers of r−1.

On the other hand, these coordinates can not be used near I−, because u = −∞
there. Advanced coordinates must be introduced to work in a neighbourhood of I−.

The advanced line element is
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ds2 = −dν2 + dνdr + 2r2γzzdzdz. (2.49)

Figure 2.3: Past null infinity is parameterized by ν and (z, z) in the advanced Bondi

coordinates.

The above metric can be acquired with the aid of coordinate transformations such as

(x⃗)2 = r2, t = ν − r, x1 + ix2 =
−2rz

1 + zz
, x3 = −r1− zz

1 + zz
. (2.50)

In the last two terms, there are minus signs which signify the role of the antipodal

map. This relation indicates that z in the advanced coordinates is the antipodal point

on the sphere to the z in the retarded coordinates. Now the next step is expanding

around I+. Given a field, one can reformulate it as a sum of expansions. If the field

under consideration is the z-component of the vector potential, the sum takes the form

Az(u, r, z, z) =
∞∑
n=0

A
(n)
z (u, r, z, z)

rn
, (2.51)
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where the coefficients depend only on the (u, r, z, z) which parameterize I+.

The superscript (n) denotes the order in the expansion about r = ∞. By the antipodal

mapping condition, one can define the matching condition as

F
(2)
(ru)(z, z) |I+

−
= F

(2)
(rν)(z, z) |I−

+
, (2.52)

where F (2)
(ru) is the 1

r2
term in the expansion of the ru-component of the field strength

around I+. Again, evaluating it at I+
− using the antipodal matching gives (by taking

u = −∞)

F
(2)
(ru)(z, z) |I+

−
= F

(2)
(ru)(−∞, z, z). (2.53)

And it can be seen that the z values on I+ are antipodally correlated to those on I−.

2.3.3 An Infinity of Conserved Charges

On Minkowski spacetime, take any function ϵ restricted by the boundary condition

ϵ(z, z) |I+
−
= ϵ(z, z) |I−

+
. (2.54)

Bear in mind that ϵ(z, z) is not smooth in the neighbourhood of spatial infinity, rather

it is antipodally identified. Continuing with defining past and future charges one gets

Q−
ϵ =

1

e2

∫
I−
+

ϵ ∗ F, Q+
ϵ =

1

e2

∫
I+
−

ϵ ∗ F. (2.55)

It immediately follows that, from the matching condition, one for every function ϵ

there exist infinite number of conservation laws, in any theory involving electromag-

netism. And by the antipodal mapping, the relation between the future and the past

charges is

Q+
ϵ = Q−

ϵ . (2.56)
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For example, ϵ could be a spherical harmonic, so that one has a conservation law for

every value of the angular momentum. Now the future charges can be written as (by

the use of explicit coordinate representations)

Q+
ϵ =

1

e2

∫
I+
−

ϵ ∗ F =
1

e2

∫
I+
−

d2zγzzϵF
(2)
ru . (2.57)

There is a r2 in the Hodge dual, which cancels the 1/r2 that involved in the F (2)
ru term,

enabling an integral that is finite for the limit r → ∞. Using the relation (2.54) one

can write the past charge as

Q−
ϵ =

1

e2

∫
I−
+

d2zγzzϵF
(2)
rν . (2.58)

This needs to be integrated by parts and to do this using the constraint equations on

the null surfaces I± is optimal. The constraint equation near I+ has an expansion in

powers of 1
r
, with the leading term

∂uF
(2)
ru +DzF (0)

uz +DzF
(0)
uz + e2j(2)u = 0. (2.59)

Dz is the covariant derivative defined on the S2 with the metric γzz and Dz = γzzDz.

Choosing ∂uϵ |I+= 0 and using the constraint equation, followed by integrating the

boundary expression for Q+
ϵ by parts gives two terms

Q+
ϵ =

1

e2

∫
I+

dud2z(∂zϵF
(0)
uz + ∂zϵF

(0)
uz ) +

∫
I+

dud2zϵγzzj
(2)
u , (2.60)

where the first term of the integral is called a "soft charge" (will be denoted as Q+
S )

which is linear in the EM field, and the second term of the integral is "hard charge"

(will be denoted as Q+
H), which is mostly linear in the charge current. By "soft charge"

one indicates entities with zero energy, while by "hard charge" one indicates energetic

excitation. Q+
S vanishes if ϵ is constant and through future null infinity, Q+

ϵ becomes

the total charge flux. For the case where ϵ is not equal to a constant, the hard term is

non-vanishing and null infinity piercing charges are weighted by an angle dependent

arbitrary function.
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Now looking at the soft charge, it is clear that it involves a term in the form

∫ ∞

−∞
duF (0)

uz ≡ Nz, (2.61)

convoluted with ∂zϵ and integrated over the sphere. This is the w → 0 limit of

∫ ∞

−∞
duF (0)

uz e
iwu, (2.62)

which is a nonzero energy and frequencyw Fourier component of the EM field. When

it is considered as a quantum operator, it creates and annihilates outgoing photons of

energy w. Similarly, in the current case, one deals with an expression which is the

w → 0 limit. And following the same argument, one concludes that this term creates

and annihilates soft particles with zero energy, making the use of the name "soft

theorem" more comprehensible.

These outgoing photons have polarization ∂zϵ. The soft photon mode (Nz) is linked

to gauge transformations at I+
± , it will be clear if one considers the curl

∂zNz − ∂zNz =

∫ ∞

−∞
du[∂zF

(0)
uz − ∂zF

(0)
uz ]

= −
∫ ∞

−∞
du∂uF

(0)
zz = −Fzz |

I+
+

I+
−
,

(2.63)

where the Bianchi identity is used in the second line. Assuming that Fzz |I+
±
= 0 (long

range magnetic fields asymptotic states not allowed) then the curl vanishes. The next

step is to define the real scalar N as

Nz ≡ e2∂zN. (2.64)

2.3.4 Large Gauge Symmetry

The commutator action of the future and past charges (Q+
ϵ , Q−

ϵ ) has a term involving

the matter field and a linear term involving ∂zN and ∂zN (known as the soft photon

terms). However, A(0)
z and the soft terms do not commute
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[Q+
ϵ , A

(0)
z (u, z, z)] = i∂zϵ(z, z), (2.65)

for the past charge, calculating on I− yields

[Q−
ϵ , A

(0)
z (ν, z, z)] = i∂zϵ(z, z). (2.66)

This concludes that, in the canonical formalism, an infinite number of symmetries

are generated by Q+
ϵ and they are all gauge transformations with the parameter ϵ. By

further analysis, one can see that Q+
ϵ transforms Az by a large gauge transformation

which is non-trivial even when the ϵ is an arbitrary function (Strominger, 2018). This

large gauge transformation also does not vanish at infinity. Checking the gauge pa-

rameter, it becomes an angle dependent (but u-independent) function at I+. Using

the antipodal argument, it is natural for Q−
ϵ to generate transformations in which the

gauge parameter approaches to the antipodally modified angle dependent function at

I−. An important side note to consider is, Az = 0 is not invariant under these sym-

metries, which indicates that one is working with spontaneously broken symmetries

and an infinitely degenerate vacuum.

So far it is proven that the commutator of the gauge field itself and the soft charge

is a large gauge transformation. For the case which involves matter, Q+
ϵ has to be

checked if it appropriately produces the gauge transformations on the matter fields.

And as expected, it will be the contribution of the hard term.

2.3.5 Ward Identity

Ward Identities basically give relations between the quantum scattering amplitudes.

They are also used to convey the dynamical outcomes of the commutation of the

conserved charges with Hamiltonian or equivalently the S-matrix. Since the S-matrix

and the Hamiltonian related as

S ∼ exp(iHT ), (2.67)
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for T → ∞. Quantum scattering amplitudes can be written as

⟨out|S |in⟩ . (2.68)

Following this, charge conservation takes the form

⟨out| (Q+
ϵ S − SQ−

ϵ ) |in⟩ = 0. (2.69)

Use of the matching condition (2.56) Q+
ϵ is equal to Q−

ϵ , however, Q−
ϵ is used when

acting on in states while Q+
ϵ is used while acting on out states (T. M. He, 2018). Using

the well-known method to generate finite symmetry, one exponentiates the charge,

and the charge conservation equation can be read as the following statement. Starting

with an in state A which develops toB an out state, a large gauge transformed in state

A develops to a large gauge transformed out state B. The action of Q−
ϵ on the in state

(A) can be written as

Q−
ϵ |in⟩ = −2

∫
d2z∂zϵ∂zN

−(z, z) |in⟩︸ ︷︷ ︸
soft

+
m∑
k=1

Qin
k ϵ(z

in
k , z

in
k ) |in⟩︸ ︷︷ ︸

hard

, (2.70)

where N−(z, z) denotes the incoming soft photon field on I−. Here it is accepted

that using the m hard particles that are coming in at points on the CS2 indicated by

zink , one can construct the in state. The first term is the contribution of the soft charge,

and the second term is the contribution of the hard charge.

Likewise, the action of the future charge (Q+
ϵ ) on the B turns out to be

⟨out| Q+
ϵ = 2

∫
d2z∂z∂zϵ ⟨out|N(z, z)︸ ︷︷ ︸

soft

+
n∑

k=1

Qout
k ϵ(zoutk , zoutk ) ⟨out|︸ ︷︷ ︸

hard

. (2.71)

Combining these results, the Ward Identity becomes
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2

∫
d2z∂z∂zϵ ⟨out|N(z, z)S − SN−(z, z) |in⟩

=

[ m∑
k=1

Qin
k ϵ(z

in
k , z

in
k )−

n∑
k=1

Qout
k ϵ(zoutk , zoutk )

]
⟨out|S |in⟩ . (2.72)

From this equation, one can deduce that corresponding to every function ϵ on the

sphere there is one Ward Identity. So in total, there is an infinite number of them.

These Ward Identities link any S-matrix element between incoming and outgoing

states times the term in the brackets, to the same S-matrix element with the insertion

of particular soft photon modes.

Figure 2.4: The S-matrix which is constructed firstly on a Minkowski space can be

rewritten as a correlator on the CS2. Massless outgoing and incoming particles are

described by operators at the position where they penetrate the null infinity (Stro-

minger, 2018).

So far by the use of advanced and retarded coordinates, particles have been charac-

terized by the points at which they came in at null infinity also the conservation laws

are derived from antipodal matching conditions. Now in order to prove that the Ward

identity is a soft theorem one needs a couple more steps to follow.

In standard QFT, one engages in a foundation of plane waves. To utilize this notation,

one needs to rewrite the Ward Identity equation in terms of a plane wave basis. This

is possible by using the conventional mode expansion for Az. It is not clear that the

commutation relations
[
∂uÂz(u, z, z), Âŵ(u

′
, w, w)

]
= − ie2

2
δ(u− u

′
)δ2(z − w) and
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[
ϕ(z, z), N(w,w)

]
= − i

4π
log |z − w|2 + f(z, z) + g(w,w) are equivalent to the

conventional ones.

The important detail here is, they both arise from the covariant symplectic form which

is independent of slicing. Now one needs to calculate it as opposed to the traditional

use of plane wave basis, pushing the slice up to I+. These kinds of bases require the

Cartesian coordinates for Minkowski space

ds2 = −dt2 + dx⃗.dx⃗. (2.73)

Near I+, Aν has the on-shell outgoing plane wave mode expansion

Aν(x) = e
∑
α=±

∫
d3q

(2π)3
1

2w

[
ϵ∗αν (q⃗)aoutα (q⃗)eiq.x + ϵαν (q⃗)a

out
α (q⃗)†e−iq.x

]
, (2.74)

where q2 = 0, the two polarization vectors satisfying a normalization condition

ϵναϵ
∗
βν = δαβ and

[
aoutα (q⃗), aoutβ (q⃗

′
)†
]
= δαβ(2π)

3(2wq)δ
3(q⃗ − q⃗

′
). (2.75)

For the commutators of modes of the free EM field, this is the conventional formula.

Now with regards to the known creation and annihilation operators, one needs to

rewrite the asymptotic quantities on I+. It is suitable to use retarded coordinates near

I+. In these coordinates, the metric follows as

ds2 = −du2 − 2dudr + 2r2γzzdzdz. (2.76)

On the S2, in the direction of the null vector, there exists a map from null vectors qµ

to points (z, z), which takes the form

qµ =
w

1 + zz
(1 + zz, z + z,−i(z − z), 1− zz) = (w, q1, q2, q3). (2.77)

28



Considering the field A(0)
z (u, r, z, z) at I+, it should be in the form

A(0)
z (u, z, z) = lim

r→∞
Az(u, r, z, z). (2.78)

This form allows one to take all the qµs in the mode expansion and re-express them

in terms of points on the CS2. Its already been established that in terms of creation

and annihilation operators, one can write an expansion forAz(u, r, z, z). So, a natural

deduction forA(0)
z (u, z, z) indicates that it should also have a similar expansion. Since

A
(0)
z (u, z, z) is an operator which is localized at the point (z, z) on the CS2, it is

consistent for it to create and annihilate photons that penetrate at that point. In the case

of a rotation about the point (z, z), A(0)
z and A(0)

z acts oppositely. They get opposite

phases, consequently while A(0)
z creating one photon helicity and annihilating the

other, A(0)
z does the same thing oppositely.

By use of saddle point approximation (Saha, 2018), evaluation of A(0)
z (u, z, z) in a

large-r yields to

A(0)
z (u, z, z) = − i

8π2

√
2e

1 + zz

∫ ∞

0

dw[aout+ (wx̂)e−iwu − aout− (wx̂)†eiwu], (2.79)

where x̂ = x̂(z, z). x̂ is a unit vector that points to (z, z) on the S2 and wx̂,x̂ is

the three momentum involved in the creation and annihilation operators. It can be

interpreted as, at the I+, it is the essential correlation between the out fields under 1
r

expansion.

The related Ward identity involves ∂zN . One has to define it in the zero momentum

limit, to get its mode expansion. The zero momentum limit defined as

∂zN =
1

2e2
lim

w→0+

∫ ∞

−∞
du(eiwu + e−iwu)F (0)

uz . (2.80)

With this, one guarantees that ∂z∂zN is Hermitian. This would not be the case if the

definition is made up only by one of the eiwu or e−iwu. Using the large-r saddle point

approximation
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∂zN =
1

8πe

√
2

1 + zz
lim

w→0+
[waout+ (wx̂) + waout− (wx̂)†]. (2.81)

There is a similar formula for ∂zN−

∂zN
− =

1

8πe

√
2

1 + zz
lim

w→0+
[wain+ (wx̂) + wain− (wx̂)†]. (2.82)

The Ward identity can now be expressed as

lim
w→0

[
w ⟨out| (aout+ (wx̂)S − Sain− (wx̂)†) |in⟩

]
=

√
2e(1 + zz)

[ n∑
k=1

Qout
k

z − zoutk

−
m∑
k=1

Qin
k

z − zink

]
⟨out|S |in⟩ , (2.83)

where ϵ is chosen to be ϵ = 1
z−w

. This is a special case which mimics the Ward iden-

tity in 2-dimensional CFT. If ϵ is kept arbitrary, one gets a similar equation to (2.72).

If one looks carefully, the resemblance between this expression and the standard soft

photon theorem is clear. On the left hand side of the last expression, via explicit mul-

tiplication by w, a soft pole in the matrix element has been displayed. Looking at the

right hand side of the expression for z → zk, there are also collinear poles.

2.4 Asymptotic Flat Spacetimes

To develop the BMS analysis, the asymptotic flat spacetimes have be to defined rigor-

ously. Now following the conformal compactification condition proposed by Penrose

in the 1960s one gets the definition:

Given a spacetime (M, g), it is called asymptotically simple if there exists a conformal

embedding into a so called ’extended spacetime’ (M̂, ĝ). Extended spacetime can be

considered as a manifold with a boundary that characterizes the points at infinity

(Wheeler, 1970).

Now let (M, g) be a Lorentzian manifold. (M, g) is called spacetime if it is smooth,

connected, 4-dim. and time orientable. The aim is to combine spacetimes that ap-
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proach Minkowski spacetime at infinity. To achieve this, one constructs the boundary

for the extended spacetime as

I := i+ ⊔ I+ ⊔ i0 ⊔ I− ⊔ i−, (2.84)

where i0 corresponds to spacelike infinity, i+ and i− to timelike infinity and I+ and I−

to lightlike infinity. It is related to the spacetime (M, g) via a conformal embedding,

C :M ↪→ M̂ (Geroch & Horowtiz, 1978; Prinz & Schmeding, 2022).

Let (M, g) be an oriented and casual spacetime. (M, g) is called an asymptotically

simple spacetime, if it admits a conformal extension (M̂, ĝ) indicating an embedding

C :M ↪→ M̂ and a smooth function ξ ∈ C∞(M̂), such that;

(a) M̂ is a manifold with interior C(M) and boundary I; i.e., M̂ ∼= C(M) ⊔ I.

(b)ξ |C(M)> 0, ξ |I≡ 0 and dξ |I ̸= 0; additionally, C∗g ≡ ξ2ĝ.

(c) Each null geodesic of (M̂, ĝ) has two distinct endpoints on I.

(d)(Rµν) |C−1(Ô)≡ 0, where Ô ⊂ M̂ is an open neighbourhood of I ⊂ M̂ .

There are a couple of important points one needs to check here. The first one is, letting

(M, g) be an asymptotically simple and empty spacetime, which makes (M, g) par-

allelizable. The second one is, if (M, g) has a vanishing cosmological constant, then

both I± ⊃ I components are homeomorphic to R × S2 (Ashtekar, 2014; Ashtekar

et al., 2018).

As one moves far away, it is expected that the stress tensor falls off with a definite rate.

So the question of how the metric approaches flatness is needed to be answered with

the minimum number of assumptions utilized in order to have a reasonable definition.

In retarded coordinates near I+, flat Minkowski space is

ds2 = −du2 − 2dudr + 2r2γzzdzdz. (2.85)

The aim is, to find a metric which is asymptotically flat, but in the deep interior not

completely equal to the flat metric. Suitable coordinates for this task are the Bondi
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coordinates (u, r, z, z), shortened as Θ = (z, z). The most generic four dimensional

metric in this gauge takes the form

ds2 = −Udu2 − 2e2βdudr + gAB(dΘ
A +

1

2
UAdu)(dΘB +

1

2
UBdu), (2.86)

where

∂rdet(
gAB

r2
) = 0. (2.87)

Where r is the luminosity distance. By the conditions grr = grA = 0 together with

∂rdet(
gAB

r2
) = 0, the local diffeomorphism invariance is fixed. By this metric, one can

locally express any geometry. At large r, requiring asymptotic flatness with the fixed

(u, z, z) is a step towards getting the fall-off conditions on the metric components. At

this point, these fall-off conditions need to be chosen very carefully. They should be

weak enough to allow all the compelling results but also strong enough to eliminate

the unrealistic results.

Following the construction made by BMS (Bondi et al., 1962; Sachs, 1962), the met-

ric is constrained to be

ds2 = −du2 − 2dudr + 2r2γzzdzdz

+
2mB

r
du2 + rCzzdz

2 + rCzzdz
2 +D2Czzdudz +DzCzzdudz

+
1

r
(
4

3
(Nz + u∂zmB)−

1

4
∂z(CzzC

zz))dudz + c.c.+ ...,

(2.88)

where Dz is the covariant derivative with respect to γzz, Czz, mB and Nz depends on

(u, z, z) but not on r, and c.c. refers to complex conjugate.

One can recognize the first line of the equation (2.88) as the flat Minkowski metric,

this is true and additional terms are the leading corrections to the flat metric. Further

subleading terms at large r are given in the ellipsis. One can associate Bondi coordi-

nates with the Minkowski coordinates since to the leading order, the spacetime is flat

near I+.

This metric is merely a geometric restriction to specify the class of spacetimes that

is under investigation. mB is known as the Bondi mass. In a general spacetime,
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it depends on the retarded time u and the angle (z, z). And total Bondi mass as

expected is the integral of mB over S2. Nz is the angular momentum characteristic

(its integral over the S2, contracted with the rotational vector field gives the total

angular momentum). Czz describes gravitational waves. It is transverse to I+. The

Bondi news tensor is given by

Nzz = ∂uCzz. (2.89)

One can consider it as the gravitational counterpart of the field strength Fuz = ∂uAz,

and similarly, its square is harmonious with the energy flux over I+.

2.4.1 More Details on the BMS Coordinate Functions

Using the conformal automorphisms of the boundary I+ of M one can construct the

BMS group. It is also useful to conceptualize S2 as the Riemann sphere with spherical

coordinates (θ, ϕ) ∈ [0, π[×[0, 2π[ by writing the boundary as I+ = S2 × R. To

establish charts for the S2 as a complex 1-dim. manifold one can use the stereographic

projections

st : S2 \ (0, 0, 1) → C ∼= R2, st(θ, ϕ) := ζ := eiϕcot(
θ

2
). (2.90)

Extending the stereographic projection to a diffeomorphism κ : S2 → C ∪ {∞} via

κ(z) =

 st(z) for z ∈ S2 \ {(1, 0, 0)}
∞ for else,

(2.91)

of S2 with the extended complex plane Ĉ := C ∪ {∞} (the Riemann sphere). The

conventional coordinates are z = (ζ, ζ̄).

Let (M, g) be an asymptotically simple spacetime with globally defined coordinate

functions xα : M → R4, denoted via xα := (t, x, y, z). From these BMS coordinate
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function follows as yα : M → R × [0,∞) × S2, denoted via yα := (u, r, θ, ϕ).

Transforming the (x, y, z) coordinates to (r, θ, ϕ) coordinates by the relations

r :=
√
x2 + y2 + z2, θ := arccos(

z

r
), ϕ := arctan(

y

x
), (2.92)

and then combining the radial coordinate r with the timelike coordinate t to form the

lightlike coordinate

u := t− r. (2.93)

With such coordinates and by uniting the angles as zα := (θ, ϕ), the metric turns out

to be

gµνdx
µ ⊗ dxν = −V

r
e2βdu⊗ du− e2β(du⊗ dr + dr ⊗ du)

+ r2hab(dz
a − Uadu)⊗ (dzb − U bdu).

(2.94)

where hab is the metric of the unit sphere

habdz
a ⊗ dzb ≡ cosh(2δ)(e2γdθ ⊗ dθ + e−2γ sin2(θ)dϕ⊗ dϕ)

+ sin(θ) sin(2δ)(dθ ⊗ dϕ+ dϕ⊗ dθ).
(2.95)

The metric degrees of freedom are expressed via a vector field on the unit sphere

U ∈ χ(S2) and real functions on the spacetime V, β, γ, δ ∈ C∞(M,R). BMS coor-

dinate functions can be considered as a diffeomorphism gauge fixing since with these

coordinates, each degree of a globally hyperbolic Lorentzian metric is parameterized

via a function (Prinz & Schmeding, 2022).

With the given coordinate functions, the (M, g) is now asymptotically flat, if for all

(u, r, θ, ϕ) ∋ yα fixed. Equipped with these and by expanding the metric in a series

of inverse powers of the radial coordinate r at null infinity, one gets the following

fall-off conditions
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lim
r→+∞

V

r
= 1 +O(1/r),

lim
r→+∞

hab = qab +O(1/r),

lim
r→+∞

β = O(1/r3),

lim
r→+∞

Uα = O(1/r3),

(2.96)

where qab = diag(1, sin2(θ)). One way to interpret this is to see that at I, the fall-off

properties become the smoothness condition.

2.5 Supertranslations

In this section, the asymptotic symmetries of gravitational theories in asymptotically

flat spacetimes will be discussed. It’s already been established that these symme-

tries are generated by diffeomorphisms which preserve both the Bondi gauge and the

boundary fall-off conditions. Historically it was envisioned that these symmetries

generate the isometries of flat spacetime itself (the Poincare group) since the asymp-

totic region is considered almost flat. But what one ends with getting the so called

BMS group, which is an infinite dimensional group (to be exact, it is a Fréchet Lie

group, see (A.2)). And the well-known Poincare group is a subgroup of this new Lie

group. Within this group, The four global translations are promoted to supertransla-

tions that independently interact with each point on the CS2. To generate these su-

pertranslations, one can make a clarifying assumption which eliminates six Lorentz

generators. Which is, one works only on the diffeomorphisms that have the large r

fall-offs

ξu, ξr ∼ O(1), ξz, ξz ∼ O(
1

r
). (2.97)

This condition rule outs boosts and rotations that grow with r at infinity since the

vector field is O(1) at large r in an orthonormal frame.
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The Lie derivatives of the metric components at large r are then

Lζgur = −∂uζu +O(
1

r
),

Lζgzr = r2γzz∂rζ
z − ∂zζ

u +O(
1

r
),

Lζgzz = rγzz[2ζ
r + rDzζ

z + rDzζ
z] +O(1),

Lζguu = −2∂uζ
u − 2∂uζ

r +O(
1

r
).

(2.98)

The next step is to ensure that Bondi gauge conditions and fall-offs are both pre-

served. One way of doing this is checking the infinitesimal BMS transformations that

preserve the asymptotic form, which are given as

u→ u− f, r → r −DzDzf,

z → z +
1

r
Dzf, z → z +

1

r
Dzf.

(2.99)

From these infinitesimal transformations, one can easily construct the desired vector

field ζ at large r as

ζ = −f∂u −DzDzf∂r +
1

r
Dzf∂z +

1

r
Dzf∂z + .... (2.100)

where f(z, z) is any function of (z, z), this diffeomorphism preserves all the remain-

ing conditions and the transformations generated by it are called supertranslations. As

already mentioned, supertranslations are promoted versions of the four translations in

Minkowski space. The geometry of spacetime is transformed into a new physically

inequivalent geometry by supertranslations although they are diffeomorphisms.

By evaluating the Lie derivative of the respective component of the metric and extract-

ing the respective coefficient in the large r expansion, the action of supertranslations

on the I+ data mB, Czz and Nzz can be determined

LfNzz = f∂uNzz,

LfmB = f∂umB +
1

4
[N zzD2

zf + 2DzN
zzDzf + c.c.],

LfCzz = f∂uCzz − 2D2
zf.

(2.101)
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If one supertranslates flat Minkowski spacetime described by mB = Nzz = Czz = 0,

these Lie derivative equations indicate that the supertranslated spacetime will still

havemB = 0 andNzz = 0 and a vanishing Riemann tensor. It was expected since dif-

feomorphisms cannot create gravitational waves or change the physical mass squared.

But the important point here is, for the supertranslated spacetime Czz ̸= 0, the van-

ishing of the curvature requires

Czz = −D2
zC, (2.102)

for some function C(z, z). Under a supertranslation

LfC = f, (2.103)

indicating that this function is the Goldstone boson, which can be considered as the

product of the spontaneously broken supertranslation invariance. It parameterizes the

physically distinct vacua.

It is possible to obtain a largerBMS+ group (semi-direct product of supertranslations

with Lorentz transformations on I+) by dropping the overly restrictive fall-offs (2.97)

on ζ . Conventionally, for angular momentum, there is no BMS+ invariant definition.

But one should note that, for any classical vacuum, there exists a unique Poincare

subgroup of BMS+ under which it is invariant. So one can say that in flat space, it is

always possible to find an unbroken Poincare subgroup of BMS+.

Assume that the geometry is ruled by the Einstein equation

Rµν −
1

2
gµνR = 8πGTM

µν . (2.104)

Since the structure under consideration is the null infinity, one can assume that TM
µν

represents the massless modes. Inserting the metric and expanding in large r, the

leading uu-component of Einstein’s equations turns out to be

∂umB =
1

4
[D2

zN
zz +D2

zN
zz]− Tuu, (2.105)
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where Tuu is found as

Tuu =
1

4
NzzN

zz + 4πG lim
r→+∞

[r2TM
uu ]. (2.106)

The leading data at I+ is constrained by these two equations. Also, there exists an

extra constraint involving Nz from the uz component of the Einstein equation.

Conventionally it is assumed that near the past and future boundaries of I+, I+
− and

I+
+ , the news falls off faster than 1

|u| . These asymptotic boundary conditions were

shown to satisfied in a bounded neighbourhood of flat space. The spacetimes under

investigation here obey this asymptotic behaviour but in the deep interior, it is not

necessary to assume that they are nearly flat spaces.

The news dictates Czz up to an integration function by integrating (2.89). Further-

more, the vanishing of the Weyl tensor at I+
− calls for Czz |I+

−
= −2D2

zC |I+
−

. So

the integration function can be chosen as C |I+
−

. Given the initial data at I+
− and the

news tensor, on I+ the quantities mB and Nz can be obtained by the integration of

the constraints. Consequently, the Cauchy data consists of

{Nzz(u, z, z), C(z, z) |I+
−
,mB(z, z) |I+

−
}. (2.107)

At higher orders in 1
r
, more data are required, along withNz |I+

−
. This is going to play

a crucial role in superrotations. Using the advanced Bondi coordinates (ν, r, z, z) one

can make a similar deduction for I−. The metric expansion is given as

ds2 = −dν2+2dνdr+2r2γzzdzdz+
2mB

r
dν2+ rCzzdz

2+ rCzzdz
2+ ..., (2.108)

here mB and Czz depend on (ν, z, z). Supertranslations act on I− as

LfNzz = f∂νNzz, LfCzz = f∂νCzz + 2D2
zf. (2.109)
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On I−, it can be expanded with boosts and rotations to obtain the action of BMS−.

The constraint equation follows as

∂νmB =
1

4
(D2

zN
zz +D2

zN
zz) + Tνν , Tνν =

1

4
NzzN

zz + 4πG lim
r→+∞

[r2TM
νν ].

(2.110)

Defining Czz |I−
+
= 2D2

zC |I−
+

, the related Cauchy data is given as

{Nzz(ν, z, z), C(z, z) |I−
+
,mB(z, z) |I−

+
}. (2.111)

2.5.1 Gravitational Scattering Problem

The aim of the scattering problem is to obtain the map between the Cauchy data on

I− and the Cauchy data on I+. The tools one has so far up to this point are not

enough to determine this map properly, right now one can determine the data on I+

at most up to a supertranslation. To make a better sense of the scattering problem in

GR, by using the constraints one needs to choose a future BMS+ frame, and establish

the initial values for integrating Nz and mB along I+. The choice of BMS+ frame is

dictated by the Lorentz invariant (also CPT) matching conditions

C(z, z) |I+
−
= C(z, z) |I−

+
, mB(z, z) |I+

−
= mB(z, z) |I−

+
. (2.112)

These matching conditions destroy the joined BMS+×BMS− action I+ and I− down

to the diagonal subgroup that preserves these conditions

f(z, z) |I+
−
= f(z, z) |I−

+
. (2.113)

Now the BMS+ frame is fixed in regards of the BMS− frame. The symmetry of the

gravitational scattering is the diagonal subgroup generated by this condition. Having

a single solution for the scattering, infinitely many more solutions are generated by

the group. Near spatial infinity, the conditions for C(z, z) and mB(z, z) antipodally

equates past and future fields (Strominger, 2014).
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By use of Weinberg’s soft graviton theorem the matching conditions for these two

were established to be essential to all orders in standard weak field perturbation the-

ory. So these conclusions push one to investigate if these matching conditions can be

used to define the scattering problem for the cases where near the spatial infinity, the

fields are weak.

2.5.2 Conserved Charges

Up until this point, it’s been hinted that for every point on the CS2, there exists a

matching condition, which results in a conserved charge. So, one expects an infinite

number of conserved charges when there are infinitely many matching conditions.

Sticking to the same construction which has been done in the gauge theory to generate

charges, one finds the supertranslation charges as

Q+
f =

1

4πG

∫
I+
−

d2zγzzfmB,

Q−
f =

1

4πG

∫
I−
+

d2zγzzfmB.

(2.114)

The conservation law presents itself right away from the matching conditions

Q+
f = Q−

f . (2.115)

Using the constraint equation and integrating by parts

Q+
f =

1

4πG

∫
I+

dud2zγzzf [Tuu −
1

4
(D2

zN
zz +D2

zN
zz)],

Q−
f =

1

4πG

∫
I−
dνd2zγzzf [Tνν +

1

4
(D2

zN
zz +D2

zN
zz)],

(2.116)

where mB → 0 in the far future. One interesting choice is, f(z, z) = δ2(z−w). With

this choice one obtains (2.115), meaning that on I+, the integrated energy flux at a

point w is equal to the integrated energy flux at the antipodal point w on I− as
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∫
I+

duγzz[Tuu −
1

4
(D2

zN
zz +D2

zN
zz)] =

∫
I−
dνγzz

[
Tνν +

1

4
(D2

zN
zz +D2

zN
zz)

]
.

(2.117)

Additional to the stress tensor term, there is another term which is linear in the grav-

itational field and is also a total u derivative in the local energy equation. This extra

term can be interpreted as the contribution to the local energy coming from soft gravi-

ton. From this, one can conclude that energy is conserved at every angle.

In the quantum theory, conserved charges commute with the S-matrix

Q+
f S − SQ−

f = 0. (2.118)

To form a Ward Identity from this statement, one can put it in between the in and out

states

⟨out| a±S |in⟩ =
√
8πG

∑
k

ϵ±µνpkµpkν
q.pk

⟨out|S |in⟩ , (2.119)

where a± annihilates a helicity ± graviton. This is same as the Weinberg’s soft gravi-

ton theorem (T. He et al., 2015).

2.6 From Momentum to Asymptotic Position Space

Weinberg’s soft graviton theorem is conveyed as momentum eigenmodes of field op-

erators. But the supertranslation Ward identity which was obtained in the last chapter

is expressed in terms of the integrated field operator Pz. One has to transform the

field operator between these two bases to examine them with respect to each other.

For a massless particle with spatial momentum centred around p⃗ becomes localized

at late times and large r near the point

p⃗ = wx̂ ≡ w
x⃗

r
=

w

1 + zz
(z + z,−iz + iz, 1− zz), (2.120)

where p⃗.p⃗ = w2. So that the momentum of massless particles can be distinguished

by (w, z, z) or pµ. By the use of the mode expansion, the gravitational field can be

estimated as
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houtµν (x) =
∑
α=±

∫
d3q

(2π)3
1

2wq

[ϵα∗µν(q⃗)a
out
α (q⃗)eiq.x + ϵαµν(q⃗)a

out
α (q⃗)†e−iq.x], (2.121)

where q0 = wq = |q⃗|, α = ± are the two helicities. Now to parameterize the graviton

four-momentum, one uses (wq, w, w)

qµ =
wq

1 + ww
(1 + ww,w + w,−i(w − w), 1− ww), (2.122)

where ϵ±µν = ϵ±µ + ϵ±ν , this gives the polarization tensors as

ϵ+µ(q⃗) =
1√
2
(w, 1,−i,−w), ϵ−µ(q⃗) =

1√
2
(w, 1, i,−w). (2.123)

Obeying the conditions ϵ±µνqν = ϵ±µ
µ = 0. In retarded Bondi coordinates, on I+,

Czz(u, z, z) = κ lim
r→∞

1

r
houtzz (r, u, z, z). (2.124)

Using hzz = ∂zx
µ∂zx

νhµν and (2.121)

Czz = κ lim
r→∞

1

r
∂zx

µ∂zx
ν
∑
α=±

∫
d3q

(2π)3
1

2wq

[ϵα∗µν(q⃗)a
out
α (q⃗)e−iwqu−iwqr(1−cos θ) + h.c.],

(2.125)

where θ is the angle between x⃗ and q⃗. The integrand has stationary points at θ = 0, π.

Over the momentum space S2, the stationary phase approximation to the integral

results in

Czz = − iκ

4π2(1 + zz)2

∫ ∞

0

dwq[a
out
+ (wqx̂)e

−iwqu − aout− (wqx̂)
†eiwqu]. (2.126)

In the large r limit, the additional part coming from stationary part θ = π vanishes

(T. He et al., 2015).
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Defining

Nw
zz(z, z) =

∫ +∞

−∞
dueiwu∂uCzz. (2.127)

One gets

Nw
zz(z, z) = − κ

2π(1 + zz)2

∫ ∞

0

dwqwq[a
out
+ (wqx̂)δ(wq−w)+aout− (wqx̂)

†δ(wq+w)].

(2.128)

Whenw is positive one gets a contribution from the first term only and similarly when

w is negative one gets a contribution from the second term only. So for w > 0

Nw
zz(z, z) = −

κwaout+ (wx̂)

2π(1 + zz)2
, N−w

zz (z, z) = −
κwaout+ (wx̂)†

2π(1 + zz)2
. (2.129)

One needs a definition in a hermitian way when dealing with the zero mode case

N0
zz ≡ lim

w→0+

1

2
(Nw

zz +N−w
zz ). (2.130)

Continuing with this definition, one gets

N0
zz(z, z) =

κ

4π(1 + zz)2
lim

w→0+
[waout+ (wx̂) + waout− (wx̂†)]. (2.131)

On I−, one has an analogous term

Mw
zz(z, z) ≡

∫ ∞

−∞
dνeiwν∂νDzz. (2.132)

Again for w > 0 it gives

Mw
zz(z, z) = −

κwain+ (wx̂)

2π(1 + zz)2
, M−w

zz (z, z) = −
κwain+ (wx̂)†

2π(1 + zz)2
, (2.133)
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where ain± and ain†± annihilate and create incoming gravitons on I− respectively. At

w = 0

M0
zz(z, z) = − κ

4π(1 + zz)2
lim

w→0+
[wain+ (wx̂) + wain− (wx̂)†]. (2.134)

From (2.127) and (2.132)

N0
zz(z, z) = D2

zN, M0
zz(z, z) = D2

zM. (2.135)

Defining Ozz as

Ozz ≡ N0
zz(z, z) +M0

zz(z, z) = D2
zN +D2

zM. (2.136)

Remembering the future supertranslation charge (2.114), it can be rewritten as

Q+
f =

1

4πG

∫
dud2zf

[
γzzTuu +

1

2
∂u(∂zUz + ∂zUz)

]
, (2.137)

where

Uz =
1

2
D2Czz, Vz =

1

2
DzDzz. (2.138)

Using the matching conditions and energy conservation one gets

Vz|I−
+
= Uz|I+

−
. (2.139)

Now with the choice of f = δ2(z − w) one can show that

∫
I+

du

[
γzzTuu +

1

2
∂u
(
∂zUz + ∂zUz

)]
=

∫
I−
dν

[
γzzTνν +

1

2
∂ν
(
∂zVz + ∂zVz

)]
.

(2.140)

With few manipulations this can be rearranged as
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γzz

(∫
I+

duTuu −
∫
I−
dνTνν

)
= ∂zVz|

I−
+

I−
−
− ∂zUz|

I+
+

I+
−
. (2.141)

Then the soft graviton current which can be defined as the difference of the incoming

and outgoing energy fluxes at a point (z, z) on CS2 (Strominger, 2014). This current

takes the form

Pz =
1

2G

(
Vz |

I−
+

I−
−
−Uz |

I+
+

I+
−

)
=

1

4G
γzz∂zOzz. (2.142)

2.6.1 Soft Graviton Theorem as Ward Identity

In (2.142), one can see that the soft graviton current Pz is expressed in terms of

standard creation and annihilation operators of the momentum space. To form a Ward

Identity for soft graviton, one needs to consider an S-matrix. An S-matrix element is

given as

⟨zout1 , ...|S |zin1 , ...⟩ , (2.143)

where the in (out) momenta are parameterized by zin(zout). Consider the element

⟨zout1 , ...| : OS : |zin1 , ...⟩ with a time ordered insertion. Now equipped with (2.136)

and the knowledge that aout− (wx̂)† (ain+ (wx̂)) annihilates the out (in) state for w → 0,

the S-matrix element takes the form

⟨zout1 , ...| : OzzS : |zin1 , ...⟩ = − κ

4π(1 + zz)2
lim

w→0+
[w ⟨zout1 , ...| aout+ (wx̂)S |zin1 , ...⟩

+ w ⟨zout1 , ...|Sain− (wx̂)† |zin1 , ...⟩]. (2.144)

The first term has a single outgoing positive helicity soft graviton with spatial mo-

mentum wx̂ and the second term has a single incoming negative helicity soft graviton

with spatial momentum (T. He et al., 2015). These two amplitudes are the same. So

simplifying the relationship gives
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⟨zout1 , ...| : OzzS : |zin1 , ...⟩ = − κ

2π(1 + zz)2
lim

w→0+
[w ⟨zout1 , ...| aout+ (wx̂)S |zin1 , ...⟩].

(2.145)

With a positive helicity outgoing graviton, the soft graviton theorem follows as

lim
w→0

[w ⟨zout1 , ...| aout+ (q⃗)S |zin1 , ...⟩]

=
κ

2
lim

w→0+

[ m∑
k=1

w[p
′

k.ϵ
+(q)]2

p
′
k.q

−
n∑

k=1

w[p
′

k.ϵ
+(q)]2

pk.q

]
⟨zout1 , ...|S |zin1 , ...⟩ . (2.146)

With the aid of momenta parametrization

pµk = Ein
k

(
1,

zink + zink
1 + zink z

in
k

,
−i(zink − zink )

1 + zink z
in
k

,
1− zink z

in
k

1 + zink z
in
k

)
,

p
′µ
k = Eout

k

(
1,

zoutk + zoutk

1 + zoutk zoutk

,
−i(zoutk − zoutk )

1 + zoutk zoutk

,
1− zoutk zoutk

1 + zoutk zoutk

)
,

qµ = w

(
1,

z + z

1 + zz
,
−i(z − z)

1 + zz
,
1− zz

1 + zz

)
,

ϵ+µ(q) =
1√
2

(
z, 1,−i,−z

)
.

(2.147)

Using these relations, and inserting them into the S-matrix element (2.145)

⟨zout1 , ...| : OzzS : |zin1 , ...⟩ = − 8G

(1 + zz)
⟨zout1 , ...|S |zin1 , ...⟩

×
[ m∑

k=1

Eout
k (z − zoutk )

(z − zoutk )(1 + zoutk zoutk )
−

n∑
k=1

Ein
k (z − zink )

(z − zink )(1 + zink z
in
k )

]
.

(2.148)

Utilizing the connection between Pz and Ozz (2.142) leads to

⟨zout1 , ...| : PzS : |zin1 , ...⟩ =
1

4G
γzz∂z ⟨zout1 , ...| : OzzS : |zin1 , ...⟩

= ⟨zout1 , ...|S |zin1 , ...⟩
[ m∑

k=1

Eout
k

(z − zoutk )
−

n∑
k=1

Ein
k

(z − zink )

]
+ ⟨zout1 , ...|S |zin1 , ...⟩

[ m∑
k=1

Eout
k zoutk

(1 + zoutk zoutk )
−

n∑
k=1

Ein
k z

in
k

(1 + zink z
in
k )

]
.

(2.149)
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Due to total momentum conservation, the last square bracket vanishes. So one ends

up with

⟨zout1 , ...| : PzS : |zin1 , ...⟩ = ⟨zout1 , ...|S |zin1 , ...⟩
[ m∑

k=1

Eout
k

(z − zoutk )
−

n∑
k=1

Ein
k

(z − zink )

]
,

(2.150)

which completely regenerates the supertranslation Ward identity.

2.7 Superrotations

So far the investigation was built on the mB and Czz, the first nontrivial corrections

to the metric near I. And it has been observed that mB has a relation with the total

mass and Nz has a similar relationship with the angular momentum. As a result, from

the matching conditions of mB, supertranslation charges emerged. Now it is time to

investigate matching conditions for Nz and discover the superrotation charges.

The angular momentum characteristicNz has the constraint equationGuz = 8πGTM
uz .

The leading uz component of this equation is

∂uNz =
1

4
∂z(D

2
zC

zz −D2
zC

zz)− u∂u∂zmB − Tuz, (2.151)

where the Tuz is

Tuz ≡ 8πG lim
r→∞

[
r2TM

uz

]
− 1

4
∂z(CzzN

zz)− 1

2
CzzDzN

zz. (2.152)

Nz is constrained in relation to a momentum density Tuz, in contrast tomB, which was

constrained in relation to the energy density Tuu. This fixes Nz up to an integration

function. One can fix this function by the matching condition

Nz(z, z) |I+
−
= Nz(z, z) |I−

+
, (2.153)
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resembling the matching condition for mB, which is not a surprise. And again, this

indicates the existence of an infinity of conserved charges. They can be produced

from a random vector field Y z on S2. By the matching condition

Q+
Y =

1

8πG

∫
I+
−

d2z(YzNz +YzNz) =
1

8πG

∫
I−
+

d2z(YzNz +YzNz) = Q−
Y , (2.154)

one gets the sign of the conservation of the superrotation charge. If the vector field is

taken to be a delta function, for every angle the new conservation laws associate net

in and out angular momentum flux.

2.7.1 Symmetries

Lorentz Killing vectors are of the general form

ζY =
(
1+

u

2r

)
Y z∂z −

u

2r
DzDzY

z∂z −
1

2
(u+ r)DzY

z∂r +
u

2
DzY

z + c.c., (2.155)

where (Y z, Y z) is a two dimensional vector field on CS2. At null infinity, ζY simpli-

fies to

ζY |I+= Y z∂z +
u

2
DzY

z∂u + c.c.. (2.156)

So now one needs to check that in Minkowski space, after choosing the vector field

as

Y z = 1, z, z2, i, iz, iz2, (2.157)

do they still generate the Lorentz transformations or not. Without restrictions, com-

puting for a general Y z, the Lie derivative with respect to ζY of distinct metric com-

ponents gives

48



LY gur = O
(

1

r2

)
,

LY gzr = O
(
1

r

)
,

LY gzz = O
(
r
)
,

LY guu = O
(
1

r

)
,

LY gzz = 2r2γzz∂zY
zO

(
r
)
.

(2.158)

If the first O(r2) term vanishes, the large r fall-off conditions are obeyed. For this

to be satisfied, Y z has to be a holomorphic vector field (Strominger, 2018). This

is locally resolved if Y z = zn for any integer n. On the other hand, to obtain the

globally defined vector fields, one has to go with the restrictive choice Y z ∼ 1, z, z2.

2.7.2 Canonical Formalism

In a canonical way, superrotation symmetries are produce by the superrotation charges,

but only at linearized order. To see this one needs to start by checking the boundary

data representing the geometry, which will be changed under superrotations. The Lie

derivative with respect to Y (represented as δY ) of the Czz term of the metric is

δYCzz =
u

2
D · Y Nzz + Y ·DCzz −

1

2
D · Y Czz + 2DzY

zCzz − uD3
zY

z. (2.159)

Now taking the u derivative gives

δYNzz =
u

2
D · Y ∂uNzz + Y ·DNzz + 2DzY

zNzz −D3
zY

z. (2.160)

From these, the conserved superrotation charge follows as

Q+
Y =

1

8πG

∫
I+
−

d2z
[
YzNz + YzNz

]
. (2.161)
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Integrating it by parts and remembering (2.151) (the constraint equation for the angu-

lar momentum aspect Nz)

Q+
Y = Q+

H +Q+
S , (2.162)

Q+
S = − 1

16πG

∫
I+

dud2z[D3
zY

zuN z
z +D3

zY
zuN z

z ], (2.163)

Q+
H =

1

8πG

∫
I+

dud2z
(
YzTuz + YzTuz + u∂zYzTuu + u∂zYzTuu

)
. (2.164)

Looking at the last two equations, one can see that while the soft charges are linear in

the Czz, the hard charge is quadratic. To check if the symmetries are generated or not

one needs commutator relations, which require this commutator

[Nzz(u, z, z), Cww(u
′
, w, w)] = 16πGiγzzδ

2(z − w)δ(u− u
′
). (2.165)

Equipped with this, the desired commutators are

[Q+
S , Czz] = −iuD3

zY
z,

[Q+
H , Czz] =

iu

2
D · Y Nzz + iY ·DCzz −

i

2
D · Y Czz + 2iDzY

zCzz.
(2.166)

These prove that

[Q+
Y , ...] = iδY . (2.167)

So the symmetry is generated by the conserved charge. But there is a very important

outcome rising from these commutators. Commutators with Q+
Y shift the news by a

function that approaches to a constant at I+
± , in the mean time Czz diverges linearly.

Looking back at the boundary conditions that were used thorough out this thesis, one

sees that they are violated with such behaviour. It basically maps the point in the phase

space to points outside that phase space. This is physically an unacceptable result. To

make sense of it, it is reasonable to demand a larger phase space. Having a larger

phase space which permits so called defects, one can understand the superrotations in

a more explicit manner.
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2.7.3 Subleading Soft Theorem

The soft theorem is already established for supertranslations. But with the existence

of the infinities of conserved superrotation charges and symmetries, it is reasonable to

assume there exists a correlated soft theorem which will be the second soft theorem

in gravity.

Superrotation charge conservation at the level of the quantum S-matrix indicates that

⟨out| (Q+
Y S − SQ−

Y ) |in⟩ = 0. (2.168)

This is conventionally written in terms of the coordinates (zk, zk). Now by the de-

composition of Q+
Y , Q+

S and Q+
H , it becomes obvious that above expression indicates

a soft graviton inclusion to a hard term.

Using the previous conclusions and setting Y z = 1
z−(q1+iq2/q0+q3)

(Kapec et al., 2014),

one finds this equation can be re-expressed in momentum space as

lim
w→0

(1 + w∂w) ⟨pn+1, pn+2, ...| a−(q)S |p1, p2, ...⟩ =
√
8πGS(1) ⟨pn+1, pn+2, ...|S |p1, p2, ...⟩ , (2.169)

where a−(q) is the annihilation operator for a negative helicity graviton of four mo-

mentum q = w(1, q̂), and the subleading soft factor is

S(1) = −i
∑
k

pkµϵ
−µνqλJkλν
pk · q

, Jkµν ≡ Lkµν + Skµν . (2.170)

Lkµν is the orbital angular momentum and Skµν the helicity of the internal spin of

the kth particle (Strominger, 2018). By replacing pν with qµJkµν , the subleading soft

factor S(1) can be obtained from the leading soft factor, so basically about q, changing

the position of translations with rotations does the trick.

This is logical since the first term in Q+
H is Y zTuz (2.164), which is responsible for
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generating a rotation, whereas the charge which generates supertranslation has a hard

term involving fTuu (2.116).

2.8 Goldstone Bosons

No matter how complex the dynamics are, the conserved quantities coming from the

symmetry are exactly conserved. So the symmetries offer non-perturbative outcomes

and they are not valid for special physical cases only. Spontaneously broken symme-

tries do not make physics duller, since many physical scenarios occur on a background

which spontaneously breaks the fundamental symmetries. Also by use of Goldstone’s

theorem (Goldstone, 1961), it has been proven that one does not lose the exactness of

the results related to symmetries. Being non-linearly realized, it is harder to see the

invariance of the Lagrangian, but spontaneously broken symmetries still constrain the

Lagrangian.

In classical field theory, one can distinguish the state of the system by one of the

solutions of the equation of motion. This solution can be referred to as the background

(or vacuum). It is stable if it stays finite and has small perturbations around it during

its evolution. Conventionally, the solutions that are chosen to be background are the

ones that minimise the energy.

At the quantum level, consider a field theory, with a global continuous symmetry

group C so that it is spontaneously broken to a subgroup L other than C(L ⊈ C) and

let there exist an explicit notion of the gap. This indicates that the span of the theory

involves minimum one gapless mode (Goldstone et al., 1962).

To prove this, one can use the conventional spectral decomposition method. Assume

that group C is uniform and globally continuous. C being continuous lets one con-

struct the currents and C being global lets one avoid gauge symmetries which makes

the conserved currents trivial. C has been chosen as global to get at least one physical

massless mode. And by assuming C is uniform one rules out the spacetime symme-

tries, implying that the vacuum is an eigenstate of unbroken translation generators Pµ

(it is homogeneous).
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Now letting Q to be a generator of C so that Q is spontaneously broken, one auto-

matically obtains a field ψ leading to the relation

⟨0| [Q,ψ(x)] |0⟩ ≠ 0. (2.171)

By using the basis vectors |nk⃗⟩ (eigenvectors of Pµ), one injects a closure relation and

spectrally decomposes the above relation (Naegels, 2021).

⟨0| [Q,ψ(x)] |0⟩ =
∫
dd−1x

′ ⟨0| [j0(x′
), ψ(x)] |0⟩

=

∫
dd−1x

′ ∑
n

∫
dd−1k

(2π)d−1

(
⟨0| j0(x′

) |nk⃗⟩ ⟨nk⃗|ψ(x) |0⟩

− ⟨0|ψ(x) |n−⃗k⟩ ⟨n−⃗k| j
0(x

′
) |0⟩

)
.

(2.172)

Since Q generates a uniform symmetry, one can translate the conserved current to

the origin. Keeping in mind that with having a uniform symmetry one has j0(x) =

eix
µPµj0(0)e−ixµPµ . Equipped with this relation and (2.172) one gets the conserved

current as

⟨0| [Q,ψ(x)] |0⟩ =
∫
dd−1x

′ ∑
n

∫
dd−1k

(2π)d−1
e−ikµx

′µ
(⟨0| j0(0) |nk⃗⟩ ⟨nk⃗|ψ(x) |0⟩

− ⟨0|ψ(x) |n−⃗k⟩ ⟨n−⃗k| j
0(0) |0⟩)

=
∑
n

∫
dd−1ke−iEn(k⃗)tϕ(k⃗)

[
⟨0| j0(0) |nk⃗⟩ ⟨nk⃗|ψ(x) |0⟩

− ⟨0|ψ(x) |n−⃗k⟩ ⟨n−⃗k| j
0(0) |0⟩

]
,

(2.173)

where

∫
dd−1x

′

(2π)d−1
eik⃗x⃗ = ϕ(k⃗) −−−→

V→∞
δd−1(k⃗). (2.174)

So one has only the modes in the zero momentum limit interfere in the spectral de-

composition equation. It is also evident that dQ
dt

= 0, meaning that ψ(x) is the only
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time dependent variable in the equation. Thus only the modes with

En(k⃗) −−→
k⃗→0⃗

0, (2.175)

which means, the contribution is coming from the massless modes summed over n

and this sum should be non zero. So one guarantees that there exists at least one

massless particle satisfying this relation. These are so called Nambu-Goldstone (NG)

modes, products of acting on the vacuum with a broken symmetry.

By enforcing the spontaneously broken symmetries successionally on the broken

states, one can get a set of broken states. This set is called the coset space and it

is continuous (Naegels, 2021). All the states in this set have the same energy. Since

the spacetime symmetries are neglected, the states with the same potential energy

means there is no potential barrier separating the states. At quadratic order, consid-

ering the perturbed Lagrangian, Lagrangian of the fluctuations in the vicinity of a

broken state, in the directions of the broken symmetries expected to do not contain

potential terms. So these fluctuations are massless. Now having these fluctuations in-

dependent of each other, once can classify them as NG modes. Intuitively they can be

understood as spacetime modulated action of the spontaneously broken symmetries

on the background. One can see that in this discussion the continuity of C played a

very vital role to obtain masslessness.

In many cases, only the internal spontaneously broken symmetries are involved, which

indicates that the algebra of C is spin 0. So by acting on the vacuum, these fluctua-

tions generate scalars, which are historically called Goldstone bosons.

Relating this to the conserved charges discussion in (subsection 2.3.3), one has a

charge Q+
ϵ that generates a symmetry of the Lagrangian of any Abelian gauge theory.

And this charge creates a mode which transforms inhomogeneously under a broken

symmetry. This mode is a soft photon mode (Strominger, 2018). This indicates

that soft photons are Goldstone bosons corresponding to the spontaneous breaking of

global symmetry. Since one can add any number of soft photons and still get the same

zero energy, there is an infinite vacuum degeneracy.
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2.9 Memory Effect

2.9.1 Gravitational Memory

Writing the metric near I+ using the Bondi coordinates and utilizing the correspond-

ing constraint equations, one finds that the angular momentum characteristic is con-

nected to the Weyl tensor component Ψ0
1 on I+ by (Pasterski et al., 2016)

Nz = lim
r→∞

r3Czrru, (2.176)

where

ImΨ0
2 = Im lim

r→∞
rγzzCzzzr = −Im

[
1

2
D2

zC
zz +

1

4
CzzN

zz

]
. (2.177)

The same analysis can be made near I− using the respective Bondi coordinates and

constraints. Now considering spacetimes that decay to vacuum at I−
− and I+

+ , one

demands the condition

Nz |I+
+
= Nz |I−

−
= mB |I+

+
= mB |I−

−
= 0. (2.178)

Additionally around I±
± , radiative modes should be unexcited

Nzz |I±
±
= ImΨ0

2 |I±
±
= 0. (2.179)

The general solution to this equation is

Czz = −2D2
zC, (2.180)

where C is an arbitrary function of (z, z). Solutions of this kind are related to each

other by supertranslations which indicates the degeneracy of the vacuum. Focusing

on the continuity conditions for mB and Czz one gets
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Czz |I+
−
= Czz |I−

+
, mB |I+

−
= mB |I−

+
. (2.181)

Following above statement with the Bianchi identity for Nzz

∂[zNz] |I−
+
= ∂[zNz] |I+

−
. (2.182)

By integrating the constraint equation (2.180) and defining

∆+Czz = Czz |I+
+
−Czz |I+

−
, ∆+mB = mB |I+

+
−mB |I+

−
, (2.183)

one can find the dissimilarity amid the initial C function and the final C function as

D2
z∆

+Czz = 2

∫
du

(
Tuu + 2∆+mB

)
. (2.184)

Indicating that

∆+C(z, z) =

∫
d2wγwwG(z;w)

[ ∫
duTuu(w) + ∆mB

]
, (2.185)

where the G is

G(z;w) = − 1

π
sin2 Θ

2
log sin2 Θ

2
,

sin2 Θ(z, w)

2
≡ | z − w |2

(1 + ww)(1 + zz)
.

(2.186)

Using the same argument for the shift of C on I− one can define

∆C = ∆+C −∆−C, (2.187)

which gives the equality
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∆C(z, z) =

∫
d2wγwwG(z;w)

[ ∫
duTuu(w)−

∫
dνTνν(w)

]
. (2.188)

Now considering fixed angle detectors which travel along fixed r and (z, z), they can

be represented as

Xµ
BMS(s) = (s, r0, z0, z0), (2.189)

where r0 is large (Strominger & Zhiboedov, 2016). Now considering another set of

detectors which are inertial and moving along geodesics

∂2sX
µ
Geo(s) + Γµ

νλ∂sX
ν
Geo(s)X

λ
Geo(s) = 0. (2.190)

The relation between the XBMS and XGeo turns out to be

Xu,r
BMS(s) = Xu,r

Geo(s) +O
(

1

r0

)
, Xz

BMS(s) = Xz
Geo(s) +O

(
1

r20

)
. (2.191)

For u > r0 the radius can become small since truly inertial detectors do not remain

at fixed r and z. Checking the detectors’ worldlines considering that they encounter

a pulse of radiation gives

L =
2r0 | δz |
1 + z1z1

, δz ≡ z1 − z2, (2.192)

where z1 and z2 are the respective initial positions of the detectors and δz is taken to

be the order of 1
r0

. Now one can see that the metric goes through a transition but z1

and z2 are fixed, indicating that the proper distance between the detectors (L) has to

be changed. And this new distance is found to be

∆L =
r0
2L

∆Czz(z1, z1)δz
2 + c.c. =

(1 + z1z1)
2

8

L

r0

(
∆Czz(z1, z1)

δz

δz
+ c.c.

)
.

(2.193)
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In terms of the energy flux, it can be rewritten as

∆Czz(z1, z1) =
4

π

∫
d2z

′
γz′z′

(1 + z
′
z)2

(1 + z
′
z′)(1 + zz)3

z − z
′

z − z′

(∫ uf

ui

duTuu(z
′
, z

′
)+∆mB

)
,

(2.194)

which is the standard gravitational memory formula. This gravitational memory is

strongly connected to soft theorems which are discussed in this thesis so far. To see

this one can analyze the transverse traceless part of the asymptotic metric at I+

∆hTT
µν (k⃗) =

1

r0

√
G

2π

( n∑
j=1

p
′
jµp

′
jν

wk · p′
j

−
m∑
j=1

pjµpjν
wk · pj

)TT

, (2.195)

where pjµ is the asymptotic momenta of the n incoming particles and p
′
jµ is the

asymptotic momenta of the m outgoing particles, k can be considered as a coordi-

nate on S2 (Wiseman & Will, 1991).

The Fourier transform of hTT
µν (w, k⃗) on I+ can be expressed as

hTT
µν (w, k⃗) = 4πi lim

r→∞
r

∫
dueiwuhTT

µν (u, rk⃗). (2.196)

Adding the assumptions that r = r0 is large and for u → ±∞, hTT
µν (u, rk⃗) gets

different finite values

∆hTT
µν (k⃗) =

1

4πir0
lim
w→0

(
− iwhTT

µν (w, k⃗)
)
. (2.197)

In the process of n→ m scattering, QFT scattering amplitudes can be written as

lim
w→0

Am+n+1(p1, ..., pn; p
′

1, ..., p
′

m, (wk, ϵµν))

=
√
8πGSµνϵ

µνAm+n(p1, ..., pn; p
′

1, ..., p
′

m) +O(w0).
(2.198)

Left hand side of the (2.198) represents the n → m + 1 scattering amplitude where

the +1 contribution is coming from the soft graviton.

58



Then using (2.197) and (2.198), one sees that the metric fluctuation obeys (to linear

order)

lim
w→0

whTT
µν (w, k)ϵ

µν = lim
w→0

wAm+n+1(p1, ..., pn; p
′
1, ..., p

′
m, (wk, ϵµν))

Am+n((p1, ..., pn; p
′
1, ..., p

′
m)

=
√
8πGϵµν lim

w→0
wSµν(wk)

=
√
8πGϵµν

( m∑
j=1

pjµppν
k · pj

−
n∑

j=1

p
′
jµp

′
jν

k · p′
j

)
,

(2.199)

where

Sµν =

( m∑
j=1

pjµpjν
wk · pj

−
n∑

j=1

p
′
jµp

′
jν

wk · p′
j

)TT

, (2.200)

giving the direct relation between the memory effect and the soft theorem representa-

tion (Strominger & Zhiboedov, 2016).

2.9.2 Spin Memory

This memory effect is a specific type of gravitational memory effect that involves

asymmetric changes in the angular momentum because of gravitational and massless

fields ( gravitational waves). To see this take a circle G of radius R near I+ centred

around z0 on a sphere of large r = r0 where R << r0. If G is taken to be the orbit of

a light ray, one can define

Z(ϕ) = z0

[
1 +

Reiϕ

2r0

1 + z0z0√
zoz0

]
+O

(
R2

r20

)
, (2.201)

where ϕ ∼ ϕ+ 2π. A light ray on G has a path ϕ(u) obeying

ds2 = 0

= 1− 2r20γzz∂uZ∂uZ − 2
mB

r0
− r0Czz(∂uZ)

2 − r0Czz(∂uZ)
2

− [DzCzz∂uZ +DzCzz∂uZ] + ...

(2.202)
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Looking at this one can see that only the square bracket term is odd under ∂uZ →
−∂uZ. Simultaneously setting two light rays to opposite orbits, the time they return

will digress by the integral of the odd term discussed above as

∆P =

∮
G

(DzCzzdz +DzCzzdz), (2.203)

for any contour G. For Czz = −2D2
zC i.e. vacuum

∆Pvacuum = −2

∮
G

d(DzDzC + C) = 0, (2.204)

indicating that desynchronization appears only when the radiation passes through I+.

Then the total time delay over all orbits is

∆+u =
1

2πR

∫
du

∮
G

(DzCzzdz +DzCzzdz), (2.205)

hinting that between oppositely orbiting pulses, there is a shift in the interference

pattern, which is called the spin memory effect. The displacement memory effect

was established as a Green’s function convoluted with an integral of the net local

asymptotic energy flux, similar construction can be made for spin memory by obtain-

ing an integral containing net local asymptotic angular momentum flux. Using the

constraints and the properties of the selected Green’s function one has

Im[∂zD
3
zC

zz] = 2Im[∂u∂zNz + ∂zTuz], (2.206)

πIm[D2
wC

ww] = −Im
∫
d2z∂zG(z;w)[∂uNz + Tuz]. (2.207)

Using the Stokes theorem and integrating over DG with boundary G gives

π

∮
G

(DwCwwdw+DwCwwdw) = −2Im
∫
DG

d2wγww

∫
d2z∂zG(z;w)[∂uNz +Tuz].

(2.208)

After integration over u, it becomes
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∆+u = − 1

π2R
Im

∫
DG

d2wγww

∫
d2z∂zG(z;w)

[
∆+Nz +

∫
duTuz

]
, (2.209)

where the shift in the angular momentum aspect is ∆+Nz ≡ Nz |I+
+
−Nz |I+

−
.

After applying the same procedure near I−, one gets a similar formula for ∆−ν and

by combining this result with ∆+u, a formulation for the time delay (∆τ ) can be

obtained as (Pasterski et al., 2016)

∆τ ≡ ∆+u−∆−ν

= − 1

π2R
Im

∫
DG

d2wγww

∫
d2z∂zG(z;w)

[ ∫
duTuz −

∫
dνTνz

]
.

(2.210)

For localized wave packets penetrating I+ or massless particles, this relation simpli-

fies to

∆τ = −8G

πR

∑
k

(
γzkzkIm

∫
DG

d2wγwwLuz(zk)∂zkG(zk;w) + πhk∈G

)
. (2.211)

This indicates a time-dragging effect since the second term on the right hand side

hinting a time delay of order hk

L
where hk is the spin of the object passing through the

boundary.

2.10 Soft Hair

The study of black hole physics has revealed the existence of a unique and intriguing

phenomenon called soft hair. This term refers to low-energy excitations that can be

associated with a black hole and act as a record of its previous interactions. The

construction of soft hair is highly related to the supertranslations, superrotations and

memory effect, as its name suggests.

The investigation starts with constructing supertranslations in Schwarzschild geome-

try. The Schwarzschild line element in advanced coordinates is

ds2 = −V dν2 + 2dνdr + r2γABdΘ
AdΘB, (2.212)
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where V = 1− 2mB

r
. Now the supertranslations ζ must satisfy the fall-off conditions

and the Bondi gauge, so for Schwarzschild metric

LζgrA = ∂Aζ
ν + gAB∂rζ

B = 0,

Lζgrr = 2∂rζ
ν = 0,

r

2
gABLζgAB = rDAζ

A + 2ζr = 0.

(2.213)

Giving the general supertranslation solution as

ζf = f∂ν +
1

r
DAf∂A − 1

2
D2f∂r, (2.214)

where f = f(z, z). After taking the Lie derivative

ds2 = −
(
V − mBD

2f

r2

)
dν2 + dνdr − dνdΘADA(2V f +D2f)

+ (r2γAB + 2rDADBf − rγABD
2f)dΘAdΘB,

(2.215)

giving the horizon at r = mB + 1
2
D2f (Hawking et al., 2017). Another important

detail is the supertranslated black hole metric is exact in r but only linear in f . The

supertranslated black hole is a non-identical physical structure than the black hole that

was developed at the start of this section since it involves a non-zero superrotation

charge

Q−
Y =

1

8π

∫
I−
+

d2Θ
√
γY ANA = −3mB

8π

∫
I−
+

d2Θ
√
γY A∂Af, (2.216)

where Y A is any smooth vector field on S2 and δfNA = −3mB∂Af (Donnay et al.,

2018).

2.10.1 Horizon Charges

In the case of the Schwarzschild metric, I+ is no longer a Cauchy surface. The new

Cauchy surface can be denoted as I+∪H+ which indicates the existence of the charge

conservation form (Hawking et al., 2016)
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Q̂+
f = Q̂I+

f + Q̂H+

f . (2.217)

Figure 2.5: Diagram of a black hole formation under gravitational collapse. The

orange lines indicate the shock wave and the purple line indicates the horizon. I+ ∪
H+ is the Cauchy surface for the massless fields.

One has to be careful with the contribution coming from Q̂H+

f since it depends on the

choice of coordinates. In the rest of the analysis, the Bondi coordinates will be used.

Continuing with the Schwarzschild metric (perturbed), under the Bondi gauge

Q̂∂Σ
ζ = − 1

16π

∫
∂Σ

d2Θ
√
γr2Frν , (2.218)

where ∂Σ is an S2 with constant ν and r. The Frν term turns out to be (Hawking

et al., 2017)

Frν = ζA
(
∂rhAν −

2

r
hAν

)
+ ζν

(
− 1

r2
DAhAν −

2

r
hνν

)
+ ∂rζ

νhνν

+
1

r2
DAζνhνA + ∂rζ

νV hνr + ζr
2

r
hνr.

(2.219)

For ζ = ζf one obtains
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Frν =
1

r
DAf∂rhAν − f

(
2

r
hνν +

4V

r
hνr

)
−D2f

1

r
hνr. (2.220)

As r goes to infinity one ends up with the incoming linearized supertranslation charge

Q̂I−
+

ζf
=

1

4π

∫
I−
+

d2Θ
√
γfm̂, (2.221)

where m̂ is the deviation of the Bondi mass aspect. Using the charge conservation,

one has

Q̂I−
+

ζf
= Q̂

I+
−

ζf
=

1

4π

∫
I+
−

d2Θ
√
γfm̂. (2.222)

Following a similar construction, now in the vicinity of a black hole, let Υ+ be a

hypersurface extending from I+
− to H+

+. Which makes the Cauchy surface under

consideration to be the Υ+ ∪H+. Then

Q̂−
f = Q̂Υ+

f + Q̂H+

f , (2.223)

where the second term is the supertranslation charge contribution of the black hole. It

can also be shown that

Q̂H+

f =
mB

8π

∫
d2Θ

√
γf

[
DA∂rhAν + 2hνν +D2hνr

]H+
+

H+
−
. (2.224)

Now to obtain the full picture of the horizon charges, one needs the horizon con-

straints

∂ν(D
AhAν + 2mBhνν)−

1

4mB

DAhAν −
1

2
D2hνν = 32πm2

BT
M
νν , (2.225)
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∂ν

(
−DAhνr − ∂rhAν +

1

mB

hνA +
1

4m2
B

DBhBA

)
+DA∂rhνν +

1

2mB

DAhνr

+
1

4m2
B

DAD
BhBν −

1

4m2
B

D2hAν −
1

4m2
B

hAν = 16πTmB
Aν .

(2.226)

Using the combination of these horizon constraints (2.225) & (2.226) (to the lin-

earized order) one gets the horizon charges as (Hawking et al., 2017)

mB∂ν(2hνν +D2hνr +DA∂rhAν)−
1

2
D2hνν −

1

4mB

DADB∂νhAB −mBD
2∂rhνν

− 1

2
D2hνr +

1

4mB

DAhAν = 32πm2
BT

mB
νν − 16πmBD

ATmB
Aν ,

(2.227)

after an integration one gets an equation for Q̂H+

f . By setting the proper boundary

conditions and gauge fixing, it becomes evident that this term generates horizon su-

pertranslations.

2.11 BMS-like Structures in FLRW Spacetimes

So far, when the null infinity was under consideration, the background was either

Minkowski or asymptotically flat spacetimes, whit the future null infinity (I+). Simi-

larly, a flat FLRW spacetime with a decelerating expansion (radiation-dominated and

matter-dominated universes) also has a future null infinity. Because of this, it might

seem logical to use the Bondi coordinate system (which has been used in two previous

chapters of this thesis so far) for this FLRW model as well. However one will see that

this procedure leads to crucial errors since there are fundamental differences between

the asymptotic behaviour of Minkowski and FLRW spacetimes. There are two points

which make this claim obvious. The first one is, looking at the fall-off rates of the

decompositions of the stress-energy tensor, one sees that they are too slow to let the

stress-energy tensor to have a finite limit to I (it diverges). The second point is, when

writing the diffeomorphisms of FLRW, one also obliged to transform the scale factor

(a(η)) which will be evident later that meaning a different asymptotic symmetry al-

gebra for FLRW spacetimes (this algebra will not be isomorphic to the bms). These
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differences call for an investigation on the null infinity once again, which will give

rise to the concept of “cosmological null asymptote”.

2.11.1 FLRW Spacetimes

The main contributor to the difference between the asymptotically flat spacetimes and

FLRW spacetimes can be considered as the existence of homogeneous matter in the

latter. To see this, one starts with the line element for the flat FLRW spacetimes

dŝ2 = a2(η)(−dη2 + dr2 + r2SABdx
AdxB). (2.228)

Where SAB is the round metric on S2, η and r conformal time coordinate and ra-

dial coordinate, respectively. The spacetimes under consideration satisfy Einstein’s

equation, indicating that the related stress-energy tensor can be written as

T̂ab = a2(p+ ρ)∇aη∇bη + pĝab. (2.229)

Following the conventional cosmological definitions, ρ represents the density and

p represents pressure and the relation between them (i.e. the equation of state) is

p = wρ. One can use this relation to define the declaration parameter and the s

parameter which will be important when defining the conformal completion of the

FLRW spacetime. Starting with the former

q :=
1 + 3w

2
, (2.230)

and the s parameter is

s :=
2

3(1 + w)
=

1

1 + q
. (2.231)

Now focusing on constructing a conformal completion for FLRW spacetimes, one

needs proper coordinates and rewrite conformal factor using them.
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Defining two new pairs of coordinates (T,R) and (U, V ) satisfying the relations

η =
sinT

cosR + cosT
, r =

sinR

cosR + cosT
,

U := T −R, V := T +R.

(2.232)

The range for these new coordinates are

0 < T < π, 0 ≤ R < π − T,

−π < U < π, |U | < V < π,
(2.233)

and the conformal factor turns out to be

Ω = 2

(
cos

V

2
cos

U

2

)1/(1−s)(
sin

U + V

2

)−s/(1−s)

. (2.234)

From (2.234) one sees that at V = −U , Ω diverges and at V = π, Ω vanishes.

V = U = π corresponds to i+ while V = −U = π corresponds to i0.

Figure 2.6: Conformal diagram for the decelerating FLRW spacetimes.

Comparing this to the conformal representation of the asymptotically flat spacetimes

one can already start to see the difference. Now looking at how a(η) behaves near I+

a(η) = Ω−sAs, A ≡ 2 sin
U + V

2
, (2.235)
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one sees that it diverges, even thoughA is smooth at future null infinity. And similarly,

near I+ the conformal factor Ω behaves like

Ω ∼ cos
U

2
(π − V )

1
1−s . (2.236)

Meaning that it is not smooth unless s = 0 (Minkowski) where 0 ≤ s < 1. Changing

the Ω for another one which is smooth on the null infinity causes a serious technical

problem which makes I+ to be no longer a null surface. So a logical decision is

to allow Ω to be not smooth and use conformal completions where gab is smooth

on the null infinity. The crucial way out from this hurdle is using Ω1−s which is

smooth on null infinity. Another important difference is rooted in the decaying of the

stress-energy tensor as it reaches null infinity. Looking at the trace of a homogeneous

stress-energy tensor of FLRW spacetime

lim
→I+

8πgabT̂ab =
6s(1− 2s)

(1− s)2

(
sec

U

2

)2

. (2.237)

one sees that it is not vanishing on the null infinity. In addition to that, for some

components of T̂ab

8πT̂ab = 2sΩ2(s−1)nanb︸ ︷︷ ︸
divergent

+2sΩs−1τ(anb) + O(1)︸ ︷︷ ︸
finite limit

, (2.238)

one sees that there is a divergent term
(
na is normal to the null infinity and τa =

tan U
2

[
∇aU +∇aV

])
. From these deductions, it is evident that the null infinity needs

a different treatment under these conformal completions, although that FLRW space-

times are conformal to Minkowski spacetimes. This is where the concept ’cosmolog-

ical null asymptote’ presents itself.

2.11.2 Cosmological Null Asymptote

A spacetime (M̂, ĝab) satisfying Ĝab = 8πT̂ab accepts a cosmological null asymptote

at infinity if there is some other spacetime (M, gab) with the boundary I ∼= R × S2

and an embedding of M̂ into M − I in such a way that
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1. Ω > 0, where Ω is smooth on M and continuously extendable to I such that

• Ω|I = 0 and gab = Ω2ĝab is non-degenerate and smooth as well.

• for 0 ≤ s < 1, Ω1−s is smooth on M , where na is the non-vanishing

normal on null infinity.

2. There exists T̂ab such that

• lim→I g
abT̂ab and,

• lim→I Ω
1−s

[
8πT̂ab− 2sΩ2(s−1)nanb

]
I
= 2sτ(anb) for some smooth τa on

the null infinity.

This defines a larger class of spacetimes than the asymptotically flat spacetimes. One

way to see this is realizing that the above definition permits T̂ab to have a limit to I
while in asymptotically flat spacetimes one has a stronger condition which requires

the existence of lim→I Ω
−2T̂ab. Spacetimes having this cosmological null asymptote

construction at null infinity are alike to decelerating FLRW spacetimes (Bonga &

Prabhu, 2020).

For all the spacetimes equipped with the cosmological null asymptote with a given s

value, one can define a common universal structure as

1. a smooth manifold I ∼= R× S2,

2. on I there is an equivalence class (qab, na) where former is a metric satisfying

qabn
b|I = 0 and Lnqab|I = 0 and latter is being a vector field.

3. there exists a map (qab, n
a) 7→ (w2qab, w

−1−sna) for somew > 0 with Lnw|I =

0.

2.11.3 Asymptotic Symmetry Algebra

With the help of the definition of universal structure, now one can construct the

asymptotic symmetry algebra, which will be the algebra of structure-preserving in-

finitesimal diffeomorphisms of I. This algebra is expressed by all smooth vector

fields ξa on I which maps one equivalence class to another one. Then ξa have to
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Lξaqab|I = 2α(ξ)qab, Lξan
a|I = −(1 + s)α(ξ)n

a, (2.239)

α(ξ) being an arbitrary function with a ξ dependence on I. The ξa obeying these

relations form a Lie algebra bs, this algebra has a strong resemblance to the bms but

it is not isomorphic to it.

Now let the vector fields take the form ξa|I = fna (where fna is a supertranslation).

This requires the conditions

Lnf |I = 0, α(fn)|I = 0. (2.240)

Then one can see that these vector fields form a subalgebra of supertranslations de-

noted as ss ⊂ bs. This subalgebra has a conformal weight 1+ s for each parametriza-

tion function on S2. Looking at the Lie bracket

[ξ, fn]a = (Lξf − (1 + s)α(ξ)f)n
a, (2.241)

one notices that the right hand side of the bracket is also a supertranslation, meaning

that bs/ss is a Lie algebra. Knowing that S2 has a unique conformal structure, one can

deduce that the algebra ss ⊂ bs is the algebra of conformal isometries of S2 which is

isomorphic to so(1, 3). Which concluded that the asymptotic symmetry algebra is

bs ∼= so(1, 3)⋉ ss. (2.242)

As expected for s = 0 case, one gets bs=0 = bms which is the BMS algebra. But for

s ̸= 0 cases, b is not isomorphic to bms, the essential difference between these two

algebras can be seen as the existence of the conformal weight 1+ s. One can also say

that for the latter case, bs does not have any favored translation subalgebra. So indeed,

BMS algebra and asymptotic symmetry algebra have deep affinities but one has to be

careful with the technical details of the model at hand since the corresponding algebra

may not be isomorphic to bms which is mostly the case.
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CHAPTER 3

DISCUSSION AND CONCLUSIONS

Starting from Weinberg’s famous work on adiabatic modes in cosmology, this thesis

encapsulated the theoretical and historical developments of the strongly correlated

research areas such as asymptotically flat spacetimes, symmetries of the null infinity

(I), soft theorems, memory effects and the BMS group. Each one of these subjects are

highly fruitful on their own. However, together they paint an undeniably astonishing

picture of the cosmos, elegantly and simply. To be able to show this picture to the

reader, this thesis is designed to be as clear as possible by building the theoretical

background from the fundamentals, and by presenting complementary material such

as chapters (2.4.1),(2.6.1),(2.8), (A.1), (A.2) and (A.3) when needed. With the aid

of these chapters, the concepts which play a crucial role in this thesis such as soft

particles, supertranslations, superrotations and gauge symmetries are believed to be

put on solid ground. Before exposing the reader directly to gravity, in chapter (2.3),

another model which is historically more developed (i.e. QED) has been chosen

to bring to surface the necessary concepts including asymptotic expansion, charge

conservation and Ward identities. Using the similarities between electrodynamics and

gravity, it has been shown that these concepts also present themselves under certain

spacetimes (2.4), and give rise to supertranslations (2.5) as well as superrotations

(2.7), which are the focal points of this thesis. Equipped with the infrared triangle in

mind, in chapter (2.9) the corresponding memory effects of the supertranslations and

the superrotations were presented to the reader. These memory effects are believed

to be vital observational candidates for testing the theory and they are expected to

be discovered soon by the scientific community. After solidifying the theoretical

background, in the last two chapters of the thesis, the focus is shifted to the black holes

and their analysis using soft charges (2.10) and the analysis of FLRW spacetimes
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(2.11), using the BMS group.

The null infinity boundaries (I±) are equipped with algebras and representations

which give asymptotic states without dealing with the interior of the spacetime. This

gives rise to the possibility of having a non-perturbative sum calculation over the line

of spin foams. Another important detail involves the cosmological constant. For the

careful reader, it should have been obvious that for each case in this thesis Λ was equal

to 0. For the two other possible cases, Λ < 0 and Λ > 0, one needs to be careful. Both

cases give rise to interesting results (known as Λ-BMS) and they are open research

fields. Considering the observational results, it is known that Λ is very small, but it is

positive (Aghanim et al., 2020). Hence, to analyse the real universe, eventually one

needs to step into new territories where Λ > 0 and the expansion of the universe is ac-

celerating. For such a case, near null infinity, the asymptotic symmetry corresponding

to the time translation becomes spacelike and there is no term that matches with the

Bondi news (Ashtekar et al., 2014), giving rise to many active research areas. Simi-

larly, for one of the other corners of the infrared triangle, the memory effect, there are

ongoing studies on perturbed FLRW spacetimes where the memory effect is defined

locally, meaning that no I limit is required and no need for an explicit relation to the

asymptotic symmetry algebra. These studies are based strictly on sources with stress-

energy confined by delta functions and the corresponding memory effect is related

to the derivative of this delta function in curvature, letting one define memory effect

involving linear perturbations on any given background (Tolish & Wald, 2016).

Regarding the spacetimes that have black holes in the interior, they have their fair

amount of ambiguities as well. Even though horizon charges and symmetries make

sense mathematically, the physical interpretations of these concepts should be ad-

dressed carefully. Because of the Hawking radiation, it is well known that the black

hole evaporates and its horizon vanishes, making it difficult to conceptualize the idea

that the information about the bulk is stored on this horizon. Also, due to the exis-

tence of an infinity of conserved charges coming from the low energy symmetries, the

outgoing Hawking radiation is greatly constrained. Meaning that the semi-classical

black hole evaporation calculation needs a modification. Such a modification also

raises questions over the black hole information paradox (Hawking et al., 2017).
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The fact that the BMS group is indeed a Fréchet Lie group, it becomes evident that

the mathematical structure of this group needs to be treated carefully. It is well-

known that for such Lie groups, various results about finite-dimensional Lie groups

are no longer satisfied and the association between the algebra and the group becomes

unclear. These ambiguities are also present in the generalized BMS group and the

extended BMS group (A.3). Resolution of these problems is expected to shed light

on the nature of the BMS group and proposals such as celestial conformal field theory

(Fotopoulos et al., 2020). This mathematical richness draws the attention of many

scientists and it is an active research area.

As the final remark, just as in many other theories, one might be curious about

whether the higher dimensional analysis of the BMS structure is fruitful or not. Look-

ing at the research, it is evident that higher dimensional analogues of the BMS group

are also promising candidates to answer some of the most fundamental questions

about nature. The asymptotic structure of I+ and i0 is believed to contribute in a

coherent way to understanding the higher dimensional black hole physics. Which is

still an open research area. In higher dimensions (d > 4), one must be careful with

the geometric structure of the i0 because its geometry depends on the number of di-

mensions. Unlike i0, I+ is not that well understood in higher dimensions. To see

that, one must look back at the conformal techniques that have been used in space-

time construction. While these techniques apply to i0 in any dimension, they are only

applicable to I+ if d is even. The problem with the odd dimensions arises from the

existence of gravitational waves and their behaviour at I+ (for a conformal factor Ω,

they behave like O(Ω(d−2)/2)) and another problem is the smoothness of Einstein’s

equations at I+ (Melas, 2011). In higher dimensions, the existence of supertransla-

tions is also in jeopardy, but they can still be obtained by using a different asymptotic

flatness definition. These difficulties also arise on one of the other corner of the in-

frared triangle, known as the memory effect. It is shown that for odd dimensions

there is no memory effect. And another interesting result is the non-existence of

gravitational or electromagnetic memory for spacetimes with d > 6 (Satishchandran

& Wald, 2018). Some of these problems are still unresolved and remain as active

research areas.

As the reader can see, the journey continues and it is far from ending. The collective
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understanding of cosmology evolves consistently and with the help of recent and

upcoming groundbreaking observational results, one will be able to put the theory to

test and keep moving forward. Unlike what has been told many times in the past,

physics is far from complete and it is more exciting than ever.
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Appendix A

APPENDIX

A.1 Witt Algebra and Asymptotic Killing Vectors

A.1.1 Witt Algebra

Witt algebra can be considered as a space of derivations using the Laurent polynomi-

als C[z, z−1] satisfying some conditions such that

Witt = Der(C[z, z−1]) =

 all linear maps D : C[z, z−1] → C[z, z−1]

satisfying D(ab) = D(a)b+ aD(b).
(A.1)

Focusing on the derivation, one sees that for all n ≥ 1

D(zn) = nzn−1D(z). (A.2)

Expanding this definition by use of Laurent polynomials a(z) where a(z) ∈ C[z, z−1]

such that

D(a(z)) =
da

dz
D(z), (A.3)

where D(z) is also in C[z, z−1]. Now the Witt algebra takes the form

Witt =

{
p(z)

d

dz
| p(z) ∈ C[z, z−1]

}
, (A.4)
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where p(z) is any Laurent polynomial.

To understand the Witt algebra better, one conventional method is constructing a basis

for it. It is evident that every element of the algebra is connected to the Laurent

polynomial. So one can take the basis for Laurent polynomials and use it to get a

basis for the Witt algebra. The relation can be considered as

.

.

z−1 →z−1 d

dz

1 → d

dz

z →z
d

dz

z2 →z2
d

dz

.

.

(A.5)

Equipped with this, one can define
{
Ln | n ∈ Z

}
as a basis for Witt algebra where

for all n ∈ Z

Ln = −zn+1 d

dz
. (A.6)

Now as a final step, to see the algebra structure of this basis one can check the below

derivation

[Lm, Ln]a(z) = LmLna(z)− LnLma(z)

= Lm(−zn+1a
′
(z))− Ln(−zm+1a

′
(z))

= −zm+1 d

dz
(−zn+1a

′
(z))− zn+1 d

dz
(zm+1a

′
(z))

= zm+1
(
(n+ 1)zna

′
(z) + zn+1a

′′
(z)

)
− zn+1

(
(m+ 1)zma

′
(z) + zm+1a

′′
(z)

)
.

(A.7)

Where a(z) ∈ C[z, z−1], m,n ∈ Z and the prime notation indicating derivative with
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respect to z. Looking at (A.7) one sees that the second derivatives cancels and the

relation simplifies to

[Lm, Ln]a(z) = −(m− n)zn+m+1a
′
(z) = (m− n)Lm+na(z). (A.8)

Delivering the celebrated algebra

[Lm, Ln] = (m− n)Lm+na(z). (A.9)

This algebra is an example of an infinite dimensional Lie algebra and its central ex-

tension is the Virasoro algebra which has a very rich structure and it plays a crucial

role in CFT and string theory.

A.1.2 Asymptotic Killing Vectors

One can consider the asymptotic symmetry algebra as the set of transformations that

preserve the boundary conditions with trivial gauge transformations taken out. Work-

ing with the Bondi coordinates (in three spacetime dimensions) and required fall-off

conditions, one sees that the boundary and gauge conditions are preserved by the

asymptotic Killing vectors

ξ = (M(ϕ) + uL
′
(ϕ))∂u +

(
L(ϕ)− u

r
L

′′
(ϕ)− 1

r
M

′
(ϕ)

)
∂ϕ − (rL

′
(ϕ) +O(1/r))∂r,

(A.10)

where u is the retarded time, ϕ ∼ ϕ + 2π is the angular coordinate and ′ notation is

the derivative with respect to u. Focusing on the leading order in large r expansion

and splitting the above Killing vector equation into L and M components one gets

ξL = uL
′
(ϕ)∂u +

(
L(ϕ)− u

r
L

′′
(ϕ)

)
∂ϕ − (rL

′
(ϕ) +O(1/r))∂r, (A.11)

ξM =M(ϕ)∂u +O(1/r). (A.12)
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Their Lie-bracket algebra consists of infinitely many generators and it is given as

[ξL(L1), ξ
L(L2)] = ξL(L1L

′

2 − L2L
′

1)O(1/r),

[ξL(L1), ξ
M(M2)] = ξM(L1M

′

2 −M2L
′

1)O(1/r),

[ξM(M1), ξ
M(M2)] = O(1/r).

(A.13)

Looking at the first line , one can see that Witt algebra is recovered as subalgebra

and from the last line it is obvious to the leading order, ξMs commute with each

other. The zero mode ξM0 = ∂u generates time translations, because of this, these

asymptotic Killing vectors are known as supertranslations. Similarly, the zero mode

ξL0 = ∂ϕ generates rotations and because of this, they are called superrotations. They

are also the generators of the Witt algebra. These two do not commute but they form

something similar to Witt algebra.

A.2 BMS Algebra as Fréchet Lie Algebra

Fréchet Lie groups are infinite-dimensional Lie groups. While finite-dimensional

Lie groups have Banach manifold structure, the Fréchet Lie groups have Fréchet

manifold structure. There are significant differences between the finite-dimensional

and infinite-dimensional cases. As already mentioned, the BMS group is an infinite-

dimensional Lie group, making it a Fréchet Lie group. To understand the BMS group

and diffeomorphisms better, an investigation of the Fréchet Lie group is required.

A Fréchet manifold can be defined as a Hausdorff topological space with an atlas

of coordinate charts taking their value in Fréchet spaces. Because of its infinite-

dimensional structure, one has to be careful with the differential geometric construc-

tions on it. Coming back to the infinite-dimensional group structure, one can start by

analysing the diffeomorphism group Diff(M) on a manifold M . This group can be

defined as

Diff(M) = {ϕ ∈ C∞(M,M) : ϕ bijective, ϕ−1 ∈ C∞(M,M)}, (A.14)

where M is a compact smooth manifold. This group is a Fréchet Lie group. The Ba-
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nach manifold version of this group DiffCn(M), which is calledCn-diffeomorphisms,

is not a Lie group (more detail can be found in (Kriegl & Michor, 1998)). Now re-

calling that the BMS group can be written as

BMS = S ⋊ SO+(3, 1), (A.15)

where S := C∞(S2) := C∞((S2,R). S is called supertranslations and they form an

abelian Fréchet Lie group. By the use of the right action

σk : C
k(S2,R)× SO+(3, 1) → Ck(S2,R), (A.16)

keeping in mind that σ∞ is smooth, for BMS, one gets

σ : S × SO+(3, 1) → S. (A.17)

Meaning that

BMS ∼= S ⋊σ SO+(3, 1). (A.18)

Hence, it is shown that the BMS group is also an infinite-dimensional Fréchet Lie

group (McCarthy, 1972; Prinz & Schmeding, 2022). However, this group is not real

analytic and it does not accept local exponential coordinates.

A.3 Generalized BMS Group

Looking at the group definition (A.18), one can come up with a clever way to expand

this group by replacing the SO+(3, 1) with a larger symmetry group. Conventionally

there are two ways to go. The first one is replacing the Lorentz group with Diff(S1)×
Diff(S1), which after the semi-product, produces the so-called extended BMS group

(BMSext). This extension emerged from the AdS/CFT correspondence (Barnich &

Troessaert, 2010). The second way is replacing the Lorentz group with Diff(S2)

(recall that they are the superrotations), which after the semi-product, produces the
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so-called generalized BMS group (BMSgen). This extension is assembled by use of

gravitational scattering theorems. Focusing on the generalized BMS, one can find the

asymptotic Killing vectors as

ξu = f(u, xA), (A.19)

ξA = Y A(u, xA) + IA, (A.20)

ξr = −1

2
r(DAY

A +DAI
A − UBDBf), (A.21)

where IA = −DBf
∫∞
r
dr

′
(e2βgAB) and ∂rf = ∂rY

A = 0. After the radial integra-

tion of these Killing vectors, they can be written as

ξu = f, (A.22)

ξA = Y A − 1

r
DAf +

1

r2

(
1

2
CABDBf

)
+

1

r3

(
− 1

16
CBCC

BCDAf

)
+O(r−4),

(A.23)

ξr = −1

2
rDAY

A +
1

2
DAD

Af +
1

r

(
− 1

2
DAC

ABDBf − 1

4
CABDADBf

)
+O(r−2),

(A.24)

where CAB and DAB come from the metric equation gAB = r2qAB + rCAB +DAB +

O(r−1) (qAB is the unit S2 metric). One can represent ξ as ξ(T, Y ) where TA are the

generators of supertranslations and Y A are the generators of the superrotations (they

are also referred as the pullback of super-Lorentz transformations) (Ruzziconi, 2020).

Hence the generalized BMS group is

BMSgen := S ⋊α Diff(S2), (A.25)

where the action α is

α : S × Diff(S2) → S. (A.26)

And its algebra is
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bmsgen = s⋊Diff(S2), (A.27)

where Diff(S2) is the diffeomorphism algebra on the CS2 (Campiglia & Laddha,

2014). Looking at (A.25), it is obvious that this group is also a Fréchet Lie group and

it is not locally exponential.
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