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ABSTRACT

FAULT DETECTION OF A PLANETARY GEAR SYSTEM BASED ON
NON-LINEAR DYNAMIC MODELING AND VIBRATION SIGNALS VIA
NON-STATIONARY TIME SERIES MODELS

Hosseiniaghdam, Behrang
Doctor of Philosophy, Mechanical Engineering
Supervisor: Prof. Dr. Ender CIGEROGLU

March 2023, 157 pages

The current study aims to investigate the fault diagnosis problem in a gear system
using non-stationary time series models and non-linear dynamic modeling. Fault
diagnosis of gearboxes is an ongoing and significant research topic in the context of
condition monitoring. Various gears and gearboxes are used in machinery found in
different industries and vehicles. During manufacturing, detecting gearbox faults is
also an important task. Faults such as tooth profile error, helix angle error (of helical
gears), and assembly errors are of the faults as mentioned earlier. Some other faults
occur when the machinery is operating and if they are not prognosed in advance they
can finally result in catastrophic failures. Instances of such faults include gear tooth
crack, surface pitting, and spalling. For fault detection, first, a non-linear dynamic
model, including tooth root crack, is developed. Then the dynamic model with fault
is verified by using the results given in the available literature. In the next step, fault
detection using experimental data is carried out. The process starts with the analysis
of the vibration signals measured from a test setup to identify the fault features in the
frequency spectrum via Fast Fourier Transform (FFT). Before FFT analysis, the

signals are averaged via Time Synchronous Averaging (TSA) method. Subsequently,



the TSA signals are modeled via a non-stationary time series model called Functional
Time Series Time Dependent Autoregressive Moving Average (FS-TARMA) and
its another form called FS-TAR. The developed method of fault detection, utilizes
the identified models for vibration analysis and the estimation of Power Spectral
Densities to evaluate fault effects in the time-frequency domain. Subsequently, a
fault detection and localization algorithm is developed by comparing models
associated with healthy and faulty gearboxes. Finally, the experimental results, as
well as theoretical results, are analyzed by the use of the developed method to

demonstrate its applicability and effectiveness.

Keywords: Gear Dynamics, Non-linear vibrations, Vibration signal analysis, Fault

detection, Time series models.
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0z

DOGRUSAL OLMAYAN DiNAMiK MODELLEME VE TiTRESIM
SINYALLERINE DAYALI BiR PLANET DIiSLi SISTEMiINIiN DURGUN
OLMAYAN ZAMAN SERiSi MODELLERI iLE HATA TESPITi

Hosseiniaghdam, Behrang
Doktora, Makina Miihendisligi
Tez Yoneticisi: Prof. Dr. Ender Cigeroglu

Mart 2023, 157 sayfa

Bu calisma, duragan olmayan zaman serisi modelleri ve dogrusal olmayan dinamik
modelleme kullanarak bir digli sisteminde ariza teshis problemini arastirmayi
amaglamaktadir. Digli kutularinin ariza teshisi, durum izleme baglaminda devam
eden ve onemli bir arastirma konusudur. Farkli endiistrilerde ve aracglarda bulunan
makinelerde ¢esitli disliler ve disli kutular1 kullanilmaktadir. Imalat sirasinda
sanziman arizalarimin tespiti de 6nemli bir konudur. Dig profil hatasi, helis agisi
hatas1 (helisel dislilerin) ve montaj hatalar gibi hatalar daha 6nce bahsedildigi gibi
hatalardandir. Diger bazi1 arizalar, makine ¢alisirken meydana gelir ve 6nceden tespit
edilmezlerse, sonunda feci arizalara neden olabilirler. Bu tiir hatalarin 6rnekleri
arasinda digli disi catlamasi, yiizeyde cukurlasma ve parcalanma yer alir. Ariza
tespiti i¢in Oncelikle dis kok catlagi dahil dogrusal olmayan bir dinamik model
gelistirilmistir. Daha sonra mevcut literatiirde verilen sonuglar kullanilarak hatali
dinamik model dogrulanmistir. Bir sonraki adimda, deneysel veriler kullanilarak
ariza tespiti gercgeklestirilir. Siire¢, Hizli Fourier Doniisimi (FFT) araciligiyla
frekans spektrumundaki ariza 6zelliklerini belirlemek i¢in bir test diizeneginden

Olciilen titresim sinyallerinin analizi ile baglar. FFT analizinden Once, Zaman

vii



Senkron Ortalama (TSA) yontemi ile sinyallerin ortalamasi alinir. FFT analizinden
once, Zaman Senkron Ortalama (TSA) yontemi ile sinyallerin ortalamasi alinir.
Daha sonra, TSA sinyalleri, Fonksiyonel Zaman Serisi Zamana Bagli Otoregresif
Hareketli Ortalama (FS-TARMA) adi1 verilen duragan olmayan bir zaman serisi
modeli araciligryla modellenir. Ardindan, saglikli ve arizali digli kutulan ile ilgili
modeller karsilastirilarak bir ariza tespit ve lokalizasyon algoritmasi gelistirilmistir.
Son olarak, deneysel sonuclarin yani sira teorik sonuglar, uygulanabilirligini ve

etkinligini gostermek icin gelistirilen yontemin kullanimryla analiz edilir.

Anahtar Kelimeler: Digli Dinamigi, Dogrusal olmayan titresimler, Titresim sinyali

analizi, Ariza tespiti, Zaman serisi modelleri
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CHAPTER 1

INTRODUCTION

Gearboxes are used in most of machinery operating in various industries.
Automotive, helicopters, petrochemical factories, wind turibine etc. are among the
typical ones. Planetary gearboxes provide a number of advantages over the other
gearboxes and therefore they are preferred to the conventional gear systems. In some
areas the condition monitoring of the gearbox and fault prognesis is of high
importance. Detection of an incipient gear fault in the earlier stages can reduce the
maintenance costs, increase reliability and prevent catastrophic failures. This is more
critical in vehicles such as helicopters. Different methods that utilize various signals
may be employed for fault detection. Vibration singals are among mostly used ones
as they can provide valuable information about gearbox health condition. Vibrations
can be generated either by the gearbox itself or be generated with a simulated
dynamic model. In this study, both dynamic models and experimentally measured

signals are employed simultaneously to develop a robust fault detection algorithm.






CHAPTER 2

LITERATURE REVIEW

In this part, first a sruvey of the published literature in the field of fault diagnosis of
planetary gear systems will be carried out. Subsequently, considering the areas of the
field that still can be developed and possible contributions, the research plan and

methodolgy is presented.

2.1 Summary of literature

Gearboxes are of major constituent parts of many machineries in different industries.
As any other machines, they require regular maintenance and if they are not
monitored continuously, it can lead to sudden failures, and an increase in annual
operating budget for the industries. Condition based maintenance (CBM) allows for
continuous monitoring of the systems and fault prediction so that a planned
maintenance based on the estimated fault level is carried out before a sudden failure
occurs. Mesh stiffness and load variation in gearboxes, gives rise to vibrations. Many
researchers utilize gear vibrations as informative data for the fault symptom
diagnosis in gear systems. Although rich in information, they have generally low

levels of signal to noise ratio (SNR).

Approaches taken by researchers to gear fault diagnosis can be classified into two
major groups: model-based methods which utilize dynamic linear/non-linear models
including different faults and data-driven methods which are based on data measured
from faulty and healthy gears. The former are developed to gain further insight into
how different faults influence the vibration response of a gearbox and consequently

develop algorithms for condition monitoring via experimentally acquired data.



To aid fault detection through dynamic modeling, Parey et al [1] investigated the
effect of tooth pitting on the vibrations of a spur gear pair. The surface pitting was
modelled by a sinusoidal decaying pulse and its severity influence in the response
was evaluated by crest factor and kurtosis analysis. Through a verification with
experimental results, they showed the effectiveness of the proposed method of fault
model. Another approach to include the pitting in the dynamic model is to estimate
the amount of the change in mesh stiffness [2-3]. Chen et al [4] introduced a realistic
crack effect in dynamic model of a multistage gear system in which they could see
the influence of the crack initiation angle on the vibration signals. Another common
type of tooth faults is spalling. Since it affects the shape of tooth it changes the
stiffness of the tooth and hence the mesh stiffness compared with healthy gears.
Therefore, a frequent approach is to consider its effect on mesh stiffness. Luo et [5]
al proposed a general approach to model tooth spalls in any shape and investigated
its effect on gear vibrations. This work can provide other authors with mesh stiffness
of spalled gears in dynamic modelling. Other effects such as gear eccentricity, tooth
profile modification and misalignment can be simultaneously included in dynamic
models as well. This approach is advantageous in differentiating between different
fault features. In an attempt to model the pits and spalling effects, Luo et al [6],
proposed a dynamic model that considers the effects of tooth roughness change and
geometric deviation due to surface pitting and spalling. They demonstrated that
surface roughness changes result in sidebands in high frequencies with significant
amplitudes in the resonance frequency. This is because the effect of local faults such
as pitting and spalling reveals itself as sideband frequencies and peaks at many
frequencies, especially in high frequencies. Gears demonstrate a non-linear dynamic
behavior in the working condition; therefore, in the solution phase of the gear
vibration equation sets, different approaches can be employed. For the spur gears,
non-linearity stems from different sources from which the most important one is
varying mesh stiffness that varies as a function of the gear rotation angle.
Considering the relative orders of the gear mesh stiffness, bearing stiffness and shaft

stiffness, there might be a coupling between the torsional and lateral vibrations. It is



shown in [7] that the gear system may exhibit diverse behavior ranging from
periodic, sub-harmonic, and chaotic motion due to lateral-torsional coupling effects.
Developing a complete dynamic non-linear gear model allows a realistic evaluation
of diagnostic procedures. Most of authors preferred to establish a dynamic model
which includes a single gear fault and there are few models which consider multiple
faults with their interaction. Modelling is a forward problem at which the effects of
faults are included in the mathematical models and the response (outputs) are
calculated. The next step after the validation of models is to find algorithms that can
unfold the complicated response patterns and detect faults using the available data.
This is an inverse problem with its own difficulties. Each type of gear faults has
certain effect on the gear vibration response and therefore might require specific
methods to be detected. As it is expressed in [8], faults such as wear, pitting,
chipping, scuffing, spalling, tooth breakage and white structure flaking are the major
initiation causes of gearbox failures. Furthermore, it is stated that more investigations
need to be performed on different and mixed fault modes and severities. This is
because most of the authors have verified the effectiveness of the employed fault
indicator solely for a special fault case. According to [9], spalls and pitting affect the
tooth surface quality and mesh stiffness and it is hard to differentiate them through
vibrations, although the change in the response is significant. Therefore, with a
reliable non-linear dynamic model, development of proper fault detection and

classification algorithms are of high importance.

Since dealing with large data is computationally expensive and unprocessed data
does not provide highly correlated information, different methods are developed to
extract fault sensitive extract features from signals. Gear vibration signals are non-
stationary (or cyclostationary) in their nature and the obtained features may
simultaneously depend on time and frequency. A method that is popular in feature
extraction context and takes into account the frequency as well as time is wavelet
transform. Barbieri et al [10] Showed that the use of wavelet transform in time
domain could potentially detect a fault. However, in order to detect the fault type,

i.e. gear or bearing, their associated characteristic frequency obtained by singular



value decomposition (SVD) must be used. One of the most important features of
wavelet transforms is that it enables zooming in time or frequency domain and the
investigation of instantaneous frequencies of the signals. However, resolution in the
frequency domain might be low. In an attempt, Hu et al [11] introduced a high order
synchrosqueezing wavelet transform that provides higher resolution in the estimation

of instantaneous frequency and successfully used it in gear fault detection.

In the context of fault diagnosis, once there exist multiple fault types, the first task
after the detection of a fault occurrence, is to identify the type of the fault which is
called fault isolation. From pattern recognition point of view, this could be seen as a
non-linear classification task which can be tackled by various methods. Different
approaches have been developed for this purpose. Artificial Neural Networks
(ANNSs) and Support Vector Machines (or in a general class, Kernel based methods)
are popular methods in this category. Sadeghi et al [12] adopted a method based on
ANN for fault identification purpose and they showed the effectiveness of the
method. ANNs are quite popular in the field of classification as it can aid the
unsupervised classification process. Rafiee et al [13] utilized features from wavelet
transform as an input to ANN based classifier to identify gear and bearing faults.
Other classifiers such as fuzzy classifier has also been reported in fault identification
process [14]. Simliar studies has been carried out in [15-17] where the issue of time

varying operating conditions is of high concern.

Another complexity that arise during the analysis of gear vibration signals is that
they are non-stationary and most of the common signal analysis methods are not
readily applicable. Time-frequency methods such as Short Time Fourier Transform
(STFT) and other FFT-based methods are generally applied on gear signals which
can lead to acceptable results. Frequency domain analysis based on the Fourier
transform is a primary yet powerful approach for detecting characteristic frequencies
and fault symptoms. The biggest drawback of this method is the low frequency
resolution. Alternatives to the FFT are Hilbert Huang Transform (HHT), Wigner
Vile distribution, and wavelet transform (WT). For instance, WT enables zooming

in frequency or time domain to investigate fault effects. However, it has limitations



in detecting specific faults, such as distributed faults. In spite of the limitations, the
aforementioned methods are primarily helpful in fault detection rather than fault

severity assessment.

FFT-based, stationary, or time-dependent approaches such as WT are among the
most powerful planetary gear fault detection methods. Generally, modulation
sidebands around mesh frequency and its harmonics are utilized as fault indicators.
Many authors conducted studies by applying FFT on experimentally recorded
signals [18-19] or a combination of theoretical and experimental data [20-22]. The
former method focuses on advanced signal processing tools for fault detection. The
latter type tries to develop a model that simulates an actual gearbox's behavior as
precisely as possible such that the model represents the actual system and can aid in
fault diagnosis. Most of the studies which employed FFT, analyze sideband
frequencies around mesh frequency harmonics. Sidebands are generally analyzed
because the variation of gear mesh stiffness in a meshing period generates mesh
frequency, and its modulation with carrier and other frequencies results in sidebands.
However, the gearbox dynamics, which can be expressed in terms of its natural
frequencies and modal dampings, is affected by a fault. This fact has been employed
by [23] to detect planetary gear faults. They reported time-varying sidebands around
resonance frequencies which are thought to be excited by impulses generated due to

faults.

Once a gear fault is detected, the next major step is determining the faulty gear.
Different approaches can be used to achieve this goal. For instance, Time
Synchronous Average (TSA)-based methods as employed in [24], where TSA
signals are divided into several segments utilizing windows associated with each
planet pass. Then the windowed signals are averaged to detect the faulty planet. The
drawback of these methods is that they require considerably long measured signals.
Detection of a faulty planet requires geometric information of its pass from the
sensor location. Peng et al. [25] take a different approach to using mesh phasing of
different planet gears. They traced the gear mesh component of the faulty gear's

impulse response, making it distinguishable among the planets. For this purpose, an



internal sensor was mounted on the planet carrier. TSA can extract periodic
waveforms dues to faulty gears, and Wavelets enable zooming in time/frequency
domains. A combination of the two mentioned methods is the core of the study [26],
which enabled them to detect simultaneous faults. In the case of planetary gear fault,
when a fixed sensor is mounted on the ring gear, the impulse effect during the
meshing of the faulty tooth is transferred to the sensor from different paths. Different
vibration transfer paths complicate fault diagnosis through only one fixed sensor. To
consider such effects, Guo et al. [27] devised a method combining vibration
separation, TSA, and demodulation. They transferred time domain signals to the
angle domain using tachometer signals and applied narrowband demodulation on
TSA signals to detect planet faults. In the angle domain, the mesh period of the gears
can be followed to trace the faulty tooth impulsive mesh in the spectrum. Similar
methods have been used in [28-29]. The problem with this method is that it requires
precise speed and gear mesh information, making it quite challenging to apply in
practice. Most fault diagnosis algorithms require geometric or kinematic information
about the faulty gear to isolate it successfully. A method to achieve such information
is through time-frequency methods, which capture the time-dependent effects of
faults. Despite their great potential in gear fault detection, the authors have yet to
employ parametric non-stationary time series models frequently. This research
utilizes non-stationary time series models to achieve kinematic information about the

faulty tooth mesh for planetary gear fault diagnosis.

Gear vibration signals are non-stationary, and most common signal analysis methods
are not readily applicable. Compared to the other non-parametric empirical methods,
such as Fourier-based methods, the time series models offer several advantages, such
as parametric analysis of system dynamics represented by frequencies and dampings.
Time series models are employed vastly in the field of structural condition
monitoring. They represent a partial dynamic system model in a particular frequency
interval. According to Wang [30], the effect of a spur gear fault is periodic and
synchronous with shaft speed. Therefore, it can be best detected by Synchronously

Averaged time domain signals (typically in the angle domain). They showed that



when there is a fault, the residual of the signal's Autoregressive (AR) model does not
have a Gaussian random distribution, and there will be spikes in the spectrum. Chen
et al. [31] proposed a method based on the AR model with varying coefficients that
aid in identifying the correlation between the rotating phase and AR coefficients.
They claimed the method is more efficient than Support Vector Machines (SVM) for
detecting tooth root crack for a randomly varying speed case. There have been
attempts to detect and estimate faults using time series models as in [32-34].
Modeling gear vibrations, in general necessitates the use of non-stationary models.
Many authors have conducted fault diagnosis via time series models. Linear
parameter varying Autoregressive Moving Average (LPV-ARMA) [35-36], LPV-
VAR [37], Time-Dependent ARMA (TARMA) [38-39], Functional Series TARMA
(FS-TARMA) [40-42] and Vector Functionally Pooled ARMA (VFP-ARMA) [43]
are among the typically used times series models for fault detection. The idea behind
VFP-ARMA and generally the Functionally Pooled (FP) models [44, 45] is to obtain
a global model that includes the variation of operating conditions inside the Vector
ARMA (VARMA) model. In the LP-VAR method, the coefficients are functions of
rotating phase and speed, which allows for considering the variation of operating
conditions. The general approach in fault detection via time series models is to
generate residuals using an estimated baseline model. A hypothesis test is
subsequently carried out to determine whether the residual satisfies the normality
condition, and based on the result, a fault is detected. Fault detection of gearboxes
operating in varying load conditions with Autoregressive with Exogenous Input
(ARX) model utilizing time-synchronously averaged (TSA) signals by applying F-
test on the residuals has been attempted in [46]. Similar methods were used in [47],
where AR models fitted to the healthy signals were employed as a baseline to detect
the fault based on the normality test of given signals collected at different operating
conditions. AR models do not account for non-stationarity, and various methods can
be adopted to tackle the problem. For instance, for the particular case of periodically

varying operating conditions, Periodic AR (PAR) model has been suggested in [48].



TARMA model is different from its stationary counterpart ARMA, in the sense that
the model parameters are time-dependent, which allows for taking into account the
change of system parameters or non-stationarity of the vibration signals. Stationary
models, including AR, ARMA, ARX are generally utilized for modeling stationary
signals, although they can tackle weak non-stationarity to some extent. Time series
models offer great potential for the fault detection of mechanical systems, especially
gearboxes. Most studies that employed time series models put effort into considering
varying operating conditions inside fault detection algorithms such that they function
precisely under different operating conditions. However, none considered modeling
gear signals' non-stationary behavior via non-stationary models such as TAR or

TARMA.

This study aims to improve planetary gear systems' fault detection process via time-
frequency analysis of vibration signals using non-stationary time series approach and
non-linear dynamic modeling of a planetary gear system with concentrated gear
fault. In time series approach, the FS-TAR and FS-TARMA models will estimate
the non-stationary gear vibration signals. It will allow for following time-dependent
fault signatures at different frequency ranges. The estimated time series models
associated with faulty and healthy gears will be compared with a metric which
provide Euclidean distance called AR(o0) metric to detect the fault. Linear and non-
linear dynamic models of a planetary gear with gear fault will be developed to aid
diagnosis through the effects that faults impose on vibration response in the

frequency domain.

The methodology of fault detection with the mentioned methods is described in the

nex subsection.

2.2 Methodology

Here, FS-TAR and FS-TARMA approaches will be used to represent non-stationary

signals by time-dependent parameteric models. The core idea of the study is that, an
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FS-TARMA (FS-TAR) model can precisely estimate the vibration signals and
identity gearbox partial dynamics. The obtained model will make it possible to
observe the variation in model dynamics in one revolution of planet carrier. The
hypothesis is that any fault, other than affecting system’s natural frequencies, will
have an impulsive effect on the response when a faulty tooth enters a mesh with other
gears. Such impulses can stimulate specific operating modes (frequencies) in the
gearbox and change the dynamics of gear system in a short period. These changes
which are localized in time, can best be estimated via parametric non-stationary
models. To test the applicability of the approach, experimentally collected vibration
signals will be used. In addition, a non-linear dynamic model of planetary gearbox
with gear faults will simultaneously aid the aforementioned fault detection process.
A gear dyanmic model can provide an insight into the fault influence mechansims
on the response of the gearbox. It is expected to achieve a more effective fault
detection algorithm based on a fusion of the data provided by non-stationary signal
models and non-linear dynamic model. Figure 2.3. illustrates the process of fault

detection employing the mentioned methods.
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Figure 2.1 Fault detection process based on comparison of time series

a) Theuse of FS-TAR and FS-TARMA approaches for the first time to estimate

b) Fault detection and isolation only by using a non-stationary FS-TAR model,

¢) Development of a method for the estimation of a cracked gear mesh stiffness.
The developed method can facilitate the process of including the crack effect
in dynamic models.




2.4

Objectives and scope

The objectives and scope of the study are

Vibration-based gear fault detection via non-stationary time series approach,
Only one type of fault is considered and a fault classification will not be
carried out,

The methods based on FFT analysis will be used as a primary tool of fault
diagnosis,

WT will be used to support the fault detection through time-frequency
analysis.

The non-linear dynamic model of the gearbox is used as a complementary
tool of fault detection.

The stability analysis of the non-linear model will not be of concern,
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CHAPTER 3

Dynamic modeling of a planetary gearbox

In the current chapter, dynamic modeling of a planetary gearbox is presented. First,
a linear model is developed and through a modal analysis and comparison of resutls
with the ones available in literature, it is validated. At the next step, non-linear
dynamic model of the planetary gearbox is developed. Since the final goal of the
chapter is to model the fault effects on the response of a planetary gearbox, a method
should be developed to allow the inclusion of faults in the dynamic model. As a
primary step toward this goal, a non-linear dynamic model of a spur gear pair with
gear faults such as tooth root crack and pitting is developed and verified. Having
established a solid backgorund for fault modeling, in the last part a non-linear
dynamic model of a planetary gearbox is developed and simulated. The simulation

results will provide an aid to gear diagnostics.

3.1 Linear dynamic model

In this part, dynamic modelling of a planetary gearbox will be realized. The gearbox
considered in this study consists of a sun gear, ring gear, three planets, and a carrier.
In order to do a complete analysis, ring is also assumed to be moving. The sun gear
is connected to the input shaft and the input torque is applied to it while the output
is carrier motion. Schematic view of the gearbox is shown in Fig 3.1. In the dynamic
model, all the gears are assumed to be rigid other than the teeth which are flexible.
Sun, planets, carrier and ring gear each have three degrees of freedom (DOFs) of
which two are translational and one is rotational DOF. Therefore, the planetary gear
system will have eighteen DOFs. The mass, mass moment of inertia, and pitch radius
of'the sun are shown by m , I ¢, R  respectively. For the carrier, mass, mass moment

of inertia and the radial distance are denoted by m ,I ¢, R  respectively. m ,, 1 ,,
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R, represent the mass, mass moment of inertia and pitch radius of the planets. The
stiffness of the sun, planet and carrier bearings are denoted by kg k,, k.
respectively. Damping of the bearings is neglected in this phase of modeling.

In Fig 3.2, the planar motions of the sun gear, carrier and planetary gear along the
DOFs are shown. Sun gear has two translational DOFs shown as x 5,y _ and one
rotational DOF 6 . Similarly for the carrier, the DOF are x .,y , 6 . In the same
way the DOF of the ring gear are defined as x .,y ., 6 ;. Considering the DOFs,

displacement vector of sun, r g, and displacement vector of carrier , r . can be

written as

ro=xs+y jrc=x.i+yj 3.
According to Fig 23 (b), Absolute position of planet i, can be expressed as
r,=r.+r;+p; (3.2)

where 1] represents position vector from carrier center to planet location and p; is

displacement vector of planet with respect to the carrier.

Displacement vectors 7; and p; are written as follows
r} = Relcos(6 + ¢, i +sin(6, + p)jl. pi = € €] +ne] (33)

where R is the radial distance from carrier center to planet center, ¢ ; is the motion

in the radial direction between carrier and planet, ef represents unit vector, 77 ; is the
motion in the direction normal to § , e? is unit vector and ¢; denotes initial

circumferential position of planetary gears which are ¢; = 0, ¢, = 120", 5 =

o

240 .
Position vector of the planet i, 7 ; can be written as

ri=xl-i+yl.j (34)

Xi=x.+ (Rc +fi) COS(QC + (pi) - (Rc +n i) Sin(ec +§Di)
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y, =y, +(Rc+¢&,)sin(6: + ) — (R, +7,)cos(6: + ¢))

It has to be noted that the absolute rotational angel of planet i is obtained as 6, + 6;,

where 0; is the rotation angle measured with respect to the carrier.

Since the gear teeth are flexible, while the gears are in mesh, the overall stiftness
forms an stiffness called mesh stiffness. In order to find the force induce by the
meshing, the gear mesh deformation must be calculated in terms of the
displacements. The Gear mesh deformation between i-th planet and sun can be
expressed as

& =[x, —x;+ R, cos(b, +v,)]sin(e; —y;) +

[y, =y, + R, sin(6, +y)]cos(e; —y;)+ R.(6, - 6,) + R0, e
where Rj is the sun base radius, R, represents planet base radius, a; is the pressure
angle between i-th planet and sun and 7 shows the angular position of i-th planet
with respect to sun. the mesh deformation is the deformation of the stiffness element

between the two meshing gears as shown in Fig 3.3.

In the same way, gear mesh deformation between i-th planet and the ring (see Fig

3.4) can be shown as

0 =[x, —R cos(0. +y,)]sin(a] +y;)

. . (3.6)
_[yi _Rc Sln(ec + l//l)] Cos(ai + l//i )_ Rrec _Rpei

where 1] is position angle of i-th planet with respect to the ring, and R, represents

base radius of ring.

When the mesh stiffness is assumed to be time varying, the contact ratio comes into

play. It can be written as

Contact ratio between planet and sun m;

\/AE—R§+JA§—R§—RCsin (@)

S_

m;= 3.7
Pb
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where A, As are radii of addendum of planet and sun and p, is base pitch of
planetary gear

Contact ratio between planet and ring m;

) [a2-R2- \/A%—R%—Rcsin @ 8
m;= .
t Db

Ring gear

Carrier

Sun Gear

Planet gear

Figure 3.1 Schematic view of the planetary gearbox with three planets [49]
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In the easiest form, the mesh stiffness between planet and ring, and planet and sun

is the mesh period. Here, the mesh

can be shown as in Fig 3.5, where T, = —
PP

stiffness is estimated via Fourier series as function of time with fifteen harmonics.

This way, it can be easily used in numerical simulations.

(a) (b)
6 e
& i
&i
,"::____ ﬁ-\\‘ O,
‘,,’ N Pi

i N L ;
i L et Planet gear
\ | P C 91-+(p: .‘. 9‘

0 X

Carrier

Figure 3.2 a) planar motion of the sun gear, b) the planet gear and carrier; the

dashed and solid lines: positions before and after motion [49]

Planet gear

Sun gear —/

Figure 3.3 meshing between the sun and a planet [49]
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Planet gear

X

Ring gear _/} -'

Figure 3.4 meshing between the ring and a planet [49]
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Figure 3.5 Gear mesh stiffness between a) planet i and ring and sun, b) ring gear

and planet i [49]

Having calculated all the displacements and deformations, the potential and kinetic
energy of the system can be obtained. then, using the Lagrange’s equations (Eq 3.9),

equations of motion are derived.
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i(a—T)—a—T+8—V—Q (3.9)
dt"og, oq, oq, '

Degrees of freedom can be shown in a vector form as
qi = {ys7xsﬂexﬂycﬂxc)eg)n]7§150177727§2)Hzﬂn37§3303} (3'10)

The kinetic and potential energies are obtained as
1 . . . 1 i . .
T = 5[meG +39) + 107] + 5 [me (@2 + y2) + L6¢]

3
1 4 |
+ 3 2 [mp G2 + 98 + 1. (6. + 6062]

=1

1 1 1
V= Sk +y2) + Ske(xZ +y2) + X5 [kp (67 +17) + k] (897 +

kI (87)?] (3.11)

The potential and energy terms are plugged into the Lagrange’s equations and after
the linearization, the equations of motion are obtained. Before attempting at time
domain solution of the equations of motion, first a modal analysis using average
stiffness is carried out and the model is verified by results available in the literature.
It has to noted that here, for the planets. Relative coordinates are used, while they

can be absolute as well.

3.1.1 Linear dynamic response of the gear system

In this subsection, the response of linear dyanmic system is evaluated. Before time
simulation, first a modal analysis is carried out to verify the model using the available

results in the literature.

The values of parameters used for the validation are given in table 3.1.
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Table 3.1 Parameter values used in the simulations [50]

Sun Ring carrier Planet
Mass (kg) 0.4 2.35 5.43 0.66
Mass moment of inertia 0.39 3 6.29 0.61
divided by the radius 2
(kg)
Base diameter(mm) 77.4 275.0 176.8 100.3
Mesh stiffness (N/mm) kS =k =5x10°

i

Bearing stiffness (N/mm)

Torsional stiffness
(Nm/rad)

Pressure angle (deg)

Using the parameters in the Table 3.1, Natural frequencies and with a multiplicity of
m are obtained as shown in Table 3.2. As it can be noticed, the obtained frequencies

compare well with the results given in the literature [50]. Therefore, the model is

verified and it can be used for further analysis.

A number of the mode shapes are presented in the Figs 3.6-3.11. They are obtained

using the relative coordinate system and if absolute coordinates are used for the

planet bearings, the results would be different.
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Table 3.2 frequencies with multiplicity m and number of planets N

N=3
Reference [50] Computed
m=1 0 0
1475.7 1476.3
1930.3 19304
2658.3 2663.6
7462.8 7463.6
11775.3 11775.3
m=2 743.2 743.17
1102.4 1102.4
1896.0 1896.0
2276.4 2276.4
6986.3 6986.3
9647.9 9647.9
First Mode Shape (fn = 11775 Hz)
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Figure 3.6 First mode of the planetary gearbox
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Figure 3.8 The third mode of the planetary gearbox
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Figure 3.9 The fourth mode of the planetary gearbox
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Figure 3.10 The fifth mode of the planetary gearbox
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Figure 3.11 The mode thirteen of the planetary gearbox

3.2 Non-linear dynamic model

In this section, before attempting to model the non-linear vibrations of planetary
gearbox, a non-linear model of a spur gear pair with the inclusion of gear faults and
errors is established and solved. It will provide a basis for the analysis of fault effects
on dynamic response in time and frequency domains. It has great significance as it

helps understanding the fault modeling methods and fault influence mechanisms in
a gear system.

3.241 Non-linear dynamic modeling of a spur gear pair with gear faults

In the current subsection, in order to gain insight on how to model the faults in a gear
system, a non-linear dynamic model of a six DOF spur gear pair is developed and
the effects of different faults including gear tooth crack and surface pitting are

included in the model. This is carried out prior to modeling planetary gearbox with
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fault effects because inclusion of faults in planetary gear systems is more
complicated due to the multiple meshing nature of planetary gears. Therefore, this

part mainly includes

a) Non-linear dynamic modeling of a spur gear system without faults

b) Non-linear dynamic model with inclusion of tooth root crack and pitting

c) Investigation of the effects of faults on dynamic response in time and
frequency domains

d) Simulation results

3.2.1.1 Modeling

The purpose of this part is to develop a non-linear dynamic model of a spur gear pair
which includes the effect of coupling between torsional and lateral vibrations. In this
non-linear model, the time varying mesh stiffness, backlash, and gear errors are

included.

The six DOF dynamic model of this study is show in Fig 3.12. This model includes
four rotational DOFs (of prime mover, pinion, gear and load), and two lateral
motions of the pinion and gear along the action line which in total becomes six DOF.
The effects which are included in the dynamic model and hence are considered in

the dynamic analysis, constitute of:

1- Time varying mesh stiffness and damping,
2- Torsional flexibility of pinion and gear shafts,
3- Torsional damping of shafts,

4- Lateral flexibility of shafts,

5- Stiffness and damping of bearings,
6- Inertia of prime mover and load,
7- Input and load torques,
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8- Teeth separation during meshing,
9- Backlash and backside collision,
10-  Tooth root crack

11-  Tooth surface pitting.

The dynamic analysis is done in the plane of the gears and out of plane motions are
ignored. The effects of friction between the teeth in mesh is neglected as well. Taking

into account the assumptions and Fig 3.12, the equations of motion can be obtained.

Figure 3.12 Dynamic model of a spur gear pair [1]
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The equations of motion can be obtained using either Newton’s second law or

Lagrange’s method. The result will be as expressed in equations (3.12)-(3.17)
InBp + ke1Op — k161 + €10p — €161 = T (3.12)

L6, — kyy (6p — 6,) — Ct1(9D - 91) +kpri (V1 — Y2 + 1160, —10;) +
Cmr1(371 -y + 116, — Tzéz) =0 (3.13)

L0, — kyry(y1 — ¥y, + 116, —120,) — Cmrz(jﬁ — Y, + 110, — ngz) +
cr2(6;—6,) =0 (3.14)

1,0, + ke (8, — 0,) + co(0, —6,) =T, (3.15)

myy1 + kY1 +k;m (Y1 — ¥, + 11601 —126;) + Cm(}71 -y, + T1é1 - Tzéz) =0
(3.16)

myy, + kY, — kiy(y1 — y2 + 1161 —126;) — Cm()ﬁ — Y, + 116, — ngz) =0
(3.17)

The equations given above can be transformed to a matrix form with mass, damping

and stiffness matrices as follows

db 0 0 0 0 0y
0L, 00 0 0
0o 0L 0 0 0
M=10 0 01, 0o o (3.13)
0 0 0 0 m O
[0 0 0 0 0 myl
ktl _ktl 0 0 0 0
_ktl ktl 0 0 0 O
_ 0 ktz _ktz 0 0 0
K - 0 _ktz ktz 0 0 0 (319)
0 0 0 0 ki 0
[0 0 0 0 0 Ky
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[ Ctl _Ctl 0 0 0 0—
_Ctl Ctl 0 0 0 0
_ 0 Ctz _Ctz 0 0 0
C - 0 _Ctz Ctz 0 0 0 (320)
0 0 0 0 ¢g O
0 0 0 0 0 c,l
Tooth mesh force can be expressed as
X
%deﬂ (3.21)
where
0
(oo (%)
| 61 ] 01
X=462}pX=JQZ} (3.22)
5] o
}’1) }:,1
3] Ly,
Kd =
[0 0 0 0 0 0 0 0 0 0 0 0
[0 —kmri? kpriry 0 —kpri kpr 0 —cpn® cpnra 0 —Cpty Cpty |
|0 kpmr —kpn? 0 kpr, —kpr, 0 cphety —CpTeTi 0 CpTy  —CmTa |
lo 0 0 0 0 0 0 0 0 0 0 0
lo -k, kT 0 -k, ki 0 —cpn CmT 0 —cp Cm |
0 kun -k, 0 ki -kn 0 cpny —cpz, 0 Cm —ch
(30.23)

Forces other than mesh force, are classified as external force given as follows
(ToY
| 0|
_)o
F, = { ¥ (3.24)
Ty
| ol
0)

Total force on the right-hand side of the equations can be calculated as

F=FE,+F, (3.25)
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In the forthcoming subsection, the calculation process of mesh stiffens is described

3.2.1.2 Mesh stiffness

Mesh stiffness between two gears in contact, consists of two parts. The former is

related to Hertzian deflection and the latter is associated with the bending flexibility

of the gear tooth. Hertzian stiffness per unit length of gear width was first

calculated by Yang [51] as

__ TWE
T a(1-y?)

ky, (3.26)

where E is the Young’s modulus of elasticity and y denots Possion’s ratio.

An equation for the calculation of bending stiffens of a gear too with modified
addendum, has been introduce by Kuang and Yang [52]. Stiffness per unit length of
tooth width k;(r) for a tooth i at a loading position r can be estimated using the

following equation [52]

ki(r) = (Ao + AL X)) + (A + A3 X)) [ 2= (3.27)

(1+X;)m

where bending stiffness per unit length of tooth face width k;(r) is measured in
N/(um/mm). X; is the addendum modification coefficient. Radial distance r and
the pitch circal radius R are measure in mm. The coefficients obtained from curve

fitting are given as follows [52]

Ay = 3.867 + 1.612N; — 0.02916N;* + 0.0001553N;°, (3.28)
A; = 17.06 + 0.7289N; — 0.01728N;% + 0.0000999N;>, (3.29)
A, = 2.637 — 1.222N; + 0.02217N;* — 0.0001179N;3, (3.30)
A; = —6.330 — 1.033N; + 0.02068N;% — 0.0001130N;> (3.31)

where N; is the number of gear teeth.
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The mesh stiffness can be obtained by combining the bending stiffness of teeth in

contact between meshing gears.

According to Fig 3.13, the mesh stiffness of a pair of teeth in mesh at contact points
A and can be obtained by the combination of stiffness per unit width kq(r14),
ky(154), ki(r1g), ko(1r25), and k, of the teeth in contact, as springs in series

connection as follows [1]:

11 1 1

ka  ki(ria) | ka(rza) T kn (3.32)
Ka _ [k1(r14)k2(r24)kR]

[ [ka(riadka(rza)+ki(r1a)kn+ka(r2a)knl (3.33)
1 1 1 1

k_b - k1(r2B) + ko (2B) + k_h (334)
kp _ [k1(r1B)k2(r2B)knl (3.35)

f [k1(r1B)k2(r2B)+k1(r1B)knt+k2(T2B)kn]

where k, and kj represent a pair of teeth 1 and 2 in contact points A and B,
respectively and are measured in # f denotes the face width of the gear and kj, is
the Hertzian stiffness per unit width of the tooth.

In the equations (3.32)-(3.35), the stiffness is a function of radial distance r which is
the radial distance of contact point from the gear center. In order to find the

relationship between r and the rotation angle of gears, the involute profile of gears

must be taken into account.
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Figure 3.13 Dynamic model of a spur gear pair [1]

Time varying mesh damping can be approximated by the following equation [53]
Cn = 28 (knm )™/ (3.36)

where m,, is the equivalent mass of the pinion and gear and it is defined as in

equation (3.37) [53]

m, = —2 (3.37)

T LRy2+I,R,2
Contact ratio

Since the contact ratio between meshing gears is generally greater than unity,
according to the contact position of gears, at a specific instant, two or more pairs of

teeth might be in mesh, this phenomenon can be seen in Fig 3.14.
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Figure 3.14 Meshing steps and the number of teeth in contact [54]

Contact ratio between the teeth in contact is defined as follows [54]:

Angle of action

CR = (3.38)

Pitch angle

The total time interval at which a tooth is in contact, is calculated by equation (3.39)

[54]
tmesh = CR X 0 (3.39)
where 0 is the angular pitch as is obtained from the following equation

g = (3.40)

z
m
m and z are module and number of teeth for the gear. The time intervals at which

double and a single pair of teeth are in mesh, are obtained from the equations (3.41)

and (3.42) respectively.
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tp = (CR—1)T (3.41)
te = (2= CR)T (3.42)

where T is mesh period, and tp and ts represent the time intervals of double and

single pair, respectively.

In Figs (3.15)-(3.17), mesh stiffness and the effect of addendum modification factors

can be seen.

Meshing stiffness (N/m)

| | L | | 1 | | |
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Mesh index

Figure 3.15 Mesh stiffness for positive modification coefficient
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Figure 3.16 Mesh stiffness without modification
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Figure 3.17 Mesh stiffness with negative modification coefficient
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The next subsection, presents the modeling of faults and inclusion of their effects in
the dynamic model. The faults which are considered here, include tooth surface
pitting and tooth root crack. The effect of surface pitting is added to mesh force and

the effect of crack, modifies the mesh stiffness.

3.2.1.3 Modeling tooth surface pitting

It has been mentioned in reference [55] that the severity and extent of a fault can be
best modeled by using pulses. The pulse height has an important effect on the
amplitude and it changes with the severity of fault and can increase with the fault

growth.

In practice, the response of a system can be modelled well with the use of a decaying
sinusoidal pulse as shown in Fig 3.18. It can be shown by the following equation

[55]:

x(t) = (Ji?) e_(“’otsin{,/l — {wot +sin™*(2¢/1 - ZZ)} (3.43)

k . . : .
where K = i and k is the height of the pulse. { denotes the damping ratio, wy =

A

" is the frequency of the generated pulse, At = vi is the pulse with, b shows the fault

width along the tooth profile and v, represents the relative velocity at the defected
point. The relative velocity is the difference between the velocities of the two gears

at contact point.
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Figure 3.18 Periodic decaying sinusoidal pulse [55]

The gear mesh force without the effect of faults, Fjy, can be written as follows
Fo = kn(R16, — R0, +y, —y1) + Cm(R1é1 F— Rzéz +y, — }’1) (3.44)
where k,, and c,, are time varying mesh stiffness and mesh damping, resepctively.
After including the effect of pitting, it is modified as given in equation (3.45)
F=Fy+kpfx(t) (3.45)

Where f denotes the defect width in the tooth face direction. Therefore, by using the

modified mesh force F, the effect of pitting can be included in the model.

3.2.14 Modeling tooth root crack

In order to model the tooth root crack, an approximate model which is a beam with
a crack as shown in Fig 3.19, is used. The beam has a crack with depth a at a distance
l. from its left end. The cross section of the beam has a width b and height h. This
model can be used in lateral vibration analysis, for any beam with any boundary
conditions. Since the bending stiffness at the crack location is decreased, at the cross
section of crack position, a torsional spring with stiftness Ky is used (see Fig 3.19).
The main underlying theory in this modeling method is that the absorbed energy in

crack growth equals the absorbed energy by the torsional spring which replaced the
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crack. This theory has been introduced by Chondros [56]. The stiffness coefficient
Ky, which is a function of crack depth, geometrical properties of the beam, and beam

material properties, is given by equation (3.46) [56]:

El 1
Kg = m X @ (3.46)

where the function j() is defined as follows [56]:

](%) = 1.8624(5)? — 3.95 (%)3 +16.375 (%)4 —37.226 (%)5 +76.81 (%)6 -

126.9 (%)7 +172 (%)8 — 143.97 (%)9 +66.56()1° (3.47)

Now, the equations for the cracked beam with rectangular cross section is used for
modeling crack in gear tooth and by including a rotational spring at the cracked
section, the bending stiffness of the cracked tooth is calculated. Dimensions of a spur

gear tooth is shown in Fig 3.20 where it can be approximated with a rectangle.

h

Ky

Figure 3.19 Modeling crack in a beam with rectangular cross section
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Figure 3.20 Gear tooth profile dimensions

After some manipulation considering Fig 3.21, the governing equation for the

bending stiffness of cracked tooth can be written as follows

11 1
k(™) ky) Kg/d?cosa

(3.48)

where k() and k. (r) represent intact and cracked gear tooth stiffness, respectively
and a denotes the pressure angle. The distance d is calculated using the following

equation
d=r—rn (3.49)
Where, ;. is the root radius of the gear.

After the calculation of cracked tooth stiffness, considering the crack position and
the number of cracked tooth, the mesh stiffness is modified and therefore the effect

of crack can be included in the equations of motion.

In reference [57], the mesh stiffness of a gear with tooth root crack is calculated

using finite element method.

40



Figure 3.21 Modeling tooth root crack

According to the Fig 3.22, the mesh stiffness is decreased and it is more obvious in

the single tooth contact area.

The results of cracked tooth mesh stiffness obtained using the approximate method
developed in this study is shown in Fig 3.23. The results are for bending stiffness
and it can be converted to torsional stiffness using appropriate coefficients. The error
in the calculation of mesh stiffness using approximate method is at most about 8%

which is acceptable because in the approximate model, the crack is not skewed.
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Figure 3.22 Mesh stiffness of gear with cracked tooth calculated by FEM [57]
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Figure 3.23 Mesh stiffness of cracked tooth calculated using the approximate method
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3.2.1.5 Solution of the dynamic equations

Due to the backlash, and the fact that the mesh stiffness and mesh damping are
functions of angle of rotation, the obtained equations of motion are non-linear.
However, at a constant speed, the mesh stiffness and damping can be considered as
functions of time. Therefore, the equations can be approximated with piecewise
linear equations which are separated based on the contact condition of the meshing
tooth. However, at any circumstance, the equations of motion are non-linear due to

backlash.

Based on the value of mesh force, the equations are separated as given in equations

(3.50) and (3.51)
For positive contact
F>0=F =F, (3.50)

For tooth separation or backside collision

Fo+kmb, TE>b

< =
F=s0=F { 00 —b <TE<b

(3.51)

where b is backlash and TE is dynamic transmission error which is the difference

between the pinion and gear tangential displacement at pitch radius.

For the initial values of the variables, the static displacements due to input torque

while the load DOF is fixed, are used.

The equations are solve using Runge-Kutta method and the dynamic response is

obtained.

3.2.1.6 Simulation results

For the verification of the dynamic model, the parameter values given by Parey et al

[1] are used which are presented in Table 3.3.
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The obtained results for the case of intact gears set, are shown in Figs (3.24)-(3.28).

Acceleration of bearings are important in the sense that in practical gear fault

detection, the vibration signals are mostly collected with mounting sensors on top of

the bearings.

Table 3.3 Gear system data [1]

Parameter Pinion Gear
Speed (rpm) 1000 952
Number of teeth 20 21
Face width (m) 0.015 0.03
Shaft diameter (m) 0.092 0.110
Module (m) 0.01 0.01
Pressure angle 20° 20°
Addendum coefficient 1.0 1.0
Dedendum coefficient 1.4 1.4
Mass (N) 36 80
Shaft torsional stiffness (N m/rad) 1917 3383
Bearing stiffness (N/m) 10°% 10°
Shaft viscous damping coefficient (N s/rad) 0.268881 0.357188
Bearing viscous damping coefficient (N s/m) 8740.15 8740.15
Drive torque (N m) 200
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Figure 3.24 Tangential acceleration at pitch point, gear
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Figure 3.25 Tangential acceleration at pitch point, pinion
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Figure 3.26 Gear bearing acceleration
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Figure 3.27 Pinion bearing acceleration

1000

800

600

400

200

-200

-400

-600

-800

-1000

0.02 0.04 0.06 0.08 0.1
Time (s)

Figure 3.28 Gear bearing acceleration
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In the following figures, the results of the dynamic model are compared with those
given in reference [1]. By comparing the pinion bearing acceleration for the healthy
case (see Figs 3.29 and 3.30), and pinion bearing acceleration for the pitted tooth
case, it can be said that the results compare well both qualitatively and quantitatively.
Therefore, the model is verified and it the fault modeling method can be used later

in other gearbox types, which will be a planetary gearbox in our case.

In this section, a non-linear model for a six-DOF spur gear pair was obtained and
verified. The procedure of modeling time varying gear mesh stiffness for the healthy
and cracked case which plays an important role in the vibrations of gear systems,
was given. The dynamic model and the fault modeling method was verified using
the results given in the literature. Therefore, the modeling procedure can be used for
the planetary gears as well. As one may know, constituent components of planetary
gearboxes are mostly spur gears. As a result, the process of modeling mesh stiffness
and faults are readily available for the planetary gearbox. This was carried out first,
due to the fact that modeling faults and mesh stiffness directly for the planetary gears

has its own complexity and cannot be handled easily.

0.3

02} .

0.1} .
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O

0 0.02 0.04 0.06 0.08 0.1 0.12
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Figure 3.29 Pinion bearing acceleration [1]
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Figure 3.30 Calculated pinion bearing acceleration, intact gears
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Figure 3.31 Pinion bearing acceleration, pitted tooth [1]
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Figure 3.32 Calculated pinion bearing acceleration, pitted tooth

Once it is focused on the response in a shorter time interval, the behavior can be
visualized in a better way. In Fig 3.33, tooth mesh dynamic load is shown, as it can
be noticed, once the defected tooth is in mesh, due to the impulsive nature of the
pitting, the mesh force changes drastically. This effect is visible in pinion and gear
bearing accelerations (see Figs 3.34-3.35) as well as the pitch point accelerations

(see Figs 3.36-3.37).
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Figure 3.33 Dynamic tooth load, including pinion pitting
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Figure 3.34 Pinion bearing acceleration, including pinion pitting
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Figure 3.35 Gear bearing acceleration, including pinion pitting
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Figure 3.36 Pinion pitch point acceleration, including pinion pitting
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Figure 3.37 Gear pitch point acceleration, including pinion pitting

In order to investigate the effect of fault in a practical way, FFT of the response is
calculated. In Fig 3.38, the FFT of the pinion bearing acceleration for the case of
pitted tooth is shown. As it can be seen, the amplitude of acceleration at harmonics
of mesh frequency increases. This is due to the impulsive behavior or pitting which

is localized in time and therefore, distributed in frequency domain.
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Figure 3.38 FFT of the pinion bearing acceleration with pitted pinion tooth
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3.2.2 Non-linear dynamic response of a purely rotational planetary gear

system with sun gear fault

This section, presents the dynamic modeling of a planetary gearbox with the sun gear
fault and analysis of fault symptoms in the frequency domain by FFT method. It is
in fact the same model used in the section 3.1 with the transverse DOFs constrained.

To achieve the target of the section, the following subjects are discussed in advance:

I.  The procedure of including damping in the model
II.  Calculation and inclusion of gear mesh phasing between different gear pairs
II.  The process of including sun gear fault considering faulty tooth mesh period

IV.  Time integration algorithm by Generalized-a method

3.2.2.1 Modeling damping

To include damping in dynamic model, a proportionally distributed damping is
calculated and added to the equations of motion. Usually, a proportional damping

[C] is considered as [58, pp 63-64]
[C] = BIK] + y[M] (3.52)

where [C], [K] and [M] are damping, stiffness and mass matrices respectively. f and
y are proportionality constants. In such a case, the damped natural frequencies,
damping ratios and mode shapes of the damped system will have the following forms

[58, pp 63-64]:

w =@ [1- 10, = B@/2 +y/28,
and

[lpdamped] = [Lpundamped] (353)

where @, and w, represent undamped and damped natural frequencies, and { 18

modal damping ratio. ¥ stands for mode matrix.
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As the mesh stiffness, i.e. the elements of stiffness matrix are a function of gear
flexibility and it is related with internal material or hysteresis damping, referencing

[58], only S is nonzero and the damping is set proportional to stiffness only.

3.2.2.2  Calculation of gear mesh phasing

The gear mesh stiffness varies with time as an influence of alternating number of
teeth in contact. In the dynamic modeling and analysis of gears, the correct relative
of different gear meshes must be taken into account. In a planetary gearbox, multiple
planets mesh with sun gear and ring gear and the relative phasing between different

pairs should be calculated and considered in the mesh stiffness functions.

Here, kg, (t), k,,(t) denote the mesh stiffness functions of the n-th planet with sun

and ring gears, respectively. They are time dependent and vary with time during the
mesh period. Sun-planet mesh stiffness functions has the same shape for all planet-

sun meshes but they are not in phase with each other. It holds for planet-ring

meshes as well.

Fig 3.39 shows a purely rotational dynamic model of a planetary gear generally used
in dynamic analyses. The phasing between different meshes as shown in Fig 3.40,
are y, which is relative phase between n-th planet-sun gear and arbitrarily chosen
first planet-sun mesh, y,_ that denotes phase between n-th planet-ring and first
planet-ring mesh, and yfsl) that represents relative mesh phase between n-th planet-
ring and n-th planet-sun mesh. It is shown as well that, yfsl) is independent of the

planet chosen. Although the relations of phasing y and yfsl) are referenced to

sn’ yrn

the contact on pitch point of planet-sun and planet-ring meshes, they can be measured
with respect to any point within the mesh period of a given gear pair. The phasing
are given as a fraction of the gear mesh period T,,. Here, only the decimal part of the

fractionof y_ , v, and yg’sl) is retained. The range of the phases is as —1 < Y, V.

sn’ ™m’

yg’sl) < 1, although it can be confined to 0 < y,, ¥ yﬁ’;) <1

rm’
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The governing relationships of mesh phasing, depend on the direction of the planet
rotation which actually depends on which gear is considered to be fixed and which
ones is the input and what is its direction of rotation. Based on different

arrangements, multiple possible configurations are listed in Table 3.4.
The equations of the mesh phasing are given as follows [59]:

For clockwise rotation of planet

=, =T (3.54)

sn or ' T 2

For counterclockwise rotation of planet

T (3.55)

Ysn = 2 ' 27

where Z and Z, represent the tooth number of sun and planet respectively, and ¢,

is the circumferential phase difference between the planets (see Fig 3.39) which is
positive when measured counterclockwise. For instance, for the first planet, ¥, = 0.
In the equations (3.54) -(3.55), the sign is important as it shows phase lead for
negative and phase lag for positive sign. The phase ¥, is in fact the relative phase
difference between two arbitrarily chosen planetary gears. Such that for planet i and
planet j, it can be written as Y, = ¢, — l/)j. The equations given in (3.54) and (3.55)
are for relative phasing of planet-sun and planet-ring mesh, individually. It is
required to define phasing between sun-planet and planet-ring mesh for the same
planet, y™. It can vary between -1 and +1, and it changes based on odd or even

number of teeth for the planet.

Another phasing which is defined for meshing between different sun-planet and

planet-ring mesh, is ¥, . It is defined as the phase between n-th planet and ring mesh
with first planet and sun mesh. The yg’sl) can be obtained using the following equation

[59]
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_ _ 1 _(_Zy 1 Zs¥n _ 1
y?sl) =V " ¥sn = (yrn + y&s)) VY = (_7 + y&s)) T oo T yf’s) - (ZS +

Z,) (3.56)

where 7., is the phase difference between n-th planet and ring mesh with first planet
and sun mesh (at an arbitrary reference point, e.g., pitch point) and yg) represents
phase difference between the planet-sun and planet-ring mesh for the first planet

gear.

In a planetary gearbox, the circumferential location of each of planets (1), ) must be

an integer multiple of the least mesh angle, such that [59]

2
Vo =Pnzz (3.57)

where p, is an integer which depends on the selected planet.

It can be shown that relative phase between the sun-planet and ring-planet is the same
for all planets. The mesh phase difference of n-th planet and ring and first planet and

sun (referenced to pitch point) can be calculated as [59]
Vin = Ve ¥ Vi = Vi + V5 (3.58)

The first equation represents the phase between planet 1 and sun mesh and planet 1
and ring mesh, plus the phase difference between n-th planet and ring mesh with
planet 1 and planet 1 and ring mesh. the second equation shows the phase difference
between planet n and sun mesh and planet 1 and sun mesh plus planet n and ring

mesh and planet n and sun mesh.

The equation (3.58) is a very important equation that helps determination of relative
phase relationships. Assuming that the relative phasing of planet-sun meshes is
obtained, the next task is to determine the relative phasing of ring-planet meshes with
respect to sun-planet meshes. For the first sun-planet and planet-ring gear, it is trivial
and only the term v  is included in the stiffness term. However, when it comes to
ring-planet mesh for planets other than the first, the relative phasing of ring-planet

mesh to the first planet and ring mesh, i.e., y,, must be added and this results in y .
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From equation (3.58) it can be deduced that Yin =Y

sn’

Having defined the mesh phase relationships, the mesh stiffness variation function

will be governed by [59]
ksn(t) = ksl(tL - ysnTm) (359)

where T, is the period of stiffness variation for all planet-sun meshes. t = 0 can be
referenced to contact at pitch point for planet 1 and sun mesh. kg, and ky; can be

approximated by Fourier series as follows [59]

[ee)

ko (®) = Z [a, sin nw,,t + b, cos nw,,t]

n=0

ken(t) = Yol @n SN W, (t =y, Ty) + by COS MW (t =¥, Try)] (3.60)

Similar equations can be written for planet-ring meshes. The only difference is that,
¥, must be included as phasing. The Fourier series forms of the ring-planet stiffness

can be written as

(e )

K () = Z [c, sinnwy,t + d, cos nw,t]

n=0
k.q(t) = Z [cn sinnw, (t =y, Tn) + dy cosnw,(t —v,.Ty)]
n=0
ken(t) = Zpeolcn Sinnwm (t =7, Trm) + dy cosnwp(t = 7,,Tn)] (3.61)

The results given here is valid for spur and helical gears with modified or unmodified

teeth.
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Figure 3.39 Schematic of a planetary gearbox. u,u,,u,,u,,, represent degrees of
freedom of the model [59]

Table 3.4 Possible configurations at line of action based on fixed element, input
element, and the direction of rotation for input.

a) direction of rotation of planet gear and b) mesh direction on the line of action. The
points By, E;, B,, E, are shown in Fig 3(b). CCW and CW stand for
counterclockwise and clockwise [59]

Contact Progression on Line of
Action (see Figure 3b)

Fixed Input Planet Sun-Planet Ring-Planet
Element Input Rotation Rotation Mesh Mesh
Ring Sun CW CCW B, —E, B,—E,
Sun CcCcwW CW B,—E, B,—E,
Carrier CW CCwW E, —B, E,—B,
Carrier CcCw CW E,—B, E,—B,
Sun Carrier CW CW B,—E, B,—E,
Carrier CCW CcCwW B,—E,; B,—E,
Ring CW CcwW E,—B, E,— B,
Ring ccw cCcwW E,—B, E,—B,
Carrier Sun Ccw CCW B,—E, B,—E,
Sun ccw CwW B,—E, B,—E,
Ring CW CW E,—B, E,—B,
Ring CCW CCW E,—B, E,—B,
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Figure 3.40 Mesh phases of a planetary gearbox shown on the periodic mesh stiffness
Vs Vs VeV =0, and =0 corresponds to pitch point contact at first plant and sun

mesh. The symbol * refers to starting point of contact a pitch point [59]
3.22.3  Analytical calculation of Kg,,, k,, and ¥ ,.¢
Here, p denotes pitch point (b) Mesh progression of sun-planet and planet-ring mesh

on the line of action and base circle of gears. Ry, Ry5, Ry represent base radii of sun,

planet and ring gears, respectively. R, R, are tip radii of sun, planet, respectively.
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R, denotes root radius of ring gear. The points B, C, P, D and E are related to the

points shown in part (a), i.e. periodic mesh stiffness [59]

(b)

Fao 4

Figure 3.41 (a) Schematic of contact points progression on periodic mesh stiffness

[59]
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Here for unmodified, involute spur gears the mesh phasing relationships are obtained
considering the contact points shown in Fig 3.41. In this figure, the contact points
are B, point where second tooth starts meshing; C, point where the first tooth leaves
the mesh; P where second tooth contacts at pitch point; D point at which third tooth
enters mesh; and finally at point E, third second tooth exits contact. To find the
phasing, it is only required to calculate the lengths BE, BC, BP and BD as shown in
Fig 3.41(a). The calculations is done based on contact points shown in Fig 3.41(b).

The equation for planet-sun mesh can be written as

B1E{ = M1E{ + BiN{ — M1N; = \/REO —R%+ \/Rf,o — Rpp— (Rsp + Ryp)tan a;

(3.62)

where « is the pressure angle of sun gear, Ry, and R, denote base and tip radius
of the sun gear respectively. R, and R, denote base and tip radius of the planetary

gear respectively.

For B4P1, it can be written
B,P; = M;P; + M{B; = Rytan a; — <\/R§O —R% - BlE1> (3.63)

The base pitch which is the same for all gears, is p = 2nRy, /Z; = 2Ry, / Zy,
therefore

B1C1=B1E1—p, Bi1D1=p (3.64)

In a similar way, the equations for planet-ring mesh can be obtained as follows

ByE, = MyNy + N1E; — MyB, = 0,0,sin a; + \/Rfm —R2y— \/RED — R%, (3.65)

B,P, = M,P, — M,B, = R,tan a, — \/REO — R, (3.66)

B;C, = B2E; —p, BaDy =p (3.67)

where 010, = (Rg, + Rpp)/cos ;.
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By using the equations (3.62) -(3.67), the mesh phasing y.. can be obtained which
fully defines the mesh stiffness functions kg (t) and x,1 (7). Wheret =0 and7t =0
corresponds to mesh at pitch point of kg (t) and k.1 (7), respectively. To define kg,
the equations (3.54) -(3.55) and (3.59) are sufficient, while for k,,,, it is required to
determine y,; considering the points @, , ; based on Fig 3.41(b). These points are
actually the locations of pitch point of planet-ring mesh with respect to the pitch
point of planet-sun mesh. If the line of contact is wrapped on planet base circle, P;
will be mapped on Q,. The mesh of planet-ring occurs at the opposite face of the
mating teeth compared with planet-sun mesh. Here, point @, is used whose distance
from Q, is t, where t;, denotes planet tooth thickness at base circle. To find out about
phase difference between sun-planet and planet-ring mesh, the first contact point of
ring-planet, when the sun-planet mesh at pitch point, B,E; is calculated. It is at a
distance of integer multiples of base pitch. This point is @, and to find it, the

following length is calculated

Q2B2 = P1P2 - szz -ty = [prtan aq + pr(T[ - a1 — (lz) + prtan (lz] -
B,P, —t, (3.68)

The distance of @, from B, measured on B;P; is estimated as

B;Q, =p —pldec(Q,B2/p)] (3.69)

where dec(), shows decimal portion. Therefore, P,Q, = | B,Q; — B;P;|. For the
sun-planet mesh at pitch point, the planet-ring mesh at point Q5. Finally, the absolute

value of the mesh phase between sun-planet and planet-ring is obtained as

The value of y, ; is independent of direction of rotation and which gear is fixed. Later,
the sign of y, . must be determined, which can be decided based on 1) whether @, is
included in B,P, or P,E,, and 2) whether mesh occurs on contact line from B to E

or E to B. The mesh direction on line of action is given in Table 3.4.
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For the ring-planet mesh occurring fromBtoEorEto B, y,, = — |yrs| if planet-ring
start contact at point @ which is after point P,, and y, . = |yrs| (i.e. positive), if Q4
is located before point P, (see Table 3.4). While equations (3.62) -(3.67) are valid

for unmodified gears, y, is independent of tooth profile modification.

3.2.24 Calculation of the mesh phasing for the planetary gearbox under

consideration
This section presents the calculation of phasing for a planetary gearbox with three
planets, sun input and carrier output, with the properties given in Table 3.5.

The mesh phasing of different planet-sun mesh y, is calculated using the following

equation

Zs
Von = —p X1, ¥, = g,n =0,1,2,3 (3.71)

Table 3.5 Gear parameters for planetary gearbox

Parameter Sun Planet Ring
Number of teeth 28 36 100
Base radius (mm) 25.5 32.7 90.9
Tip radius (root 30.20 38.20 97.80
radius for ring)

(mm)

Sun-planet mesh pressure angle: a; = 24.60 deg
Planet-ring mesh pressure angle: a, = 24.60 deg
Tooth thickness of planet at base circle: 5.7072mm
Circumferential spacing of planets: 0, 21/3, 41/3

where p is the number of planets, which is equal to three in this case. Similarly, the

mesh phasing of ring-planet mesh y_ is given by

Z,
Von =X, ¥, =5n=0123 (3.72)
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To calculate the relative sun-planet and ring-planet mesh phasing, i.e. y__, the

rs’
equations (3.62)-(3.70) are used. The sign of y,_ is decided by which gear is input
and the direction of rotation of planetary gear. Here, the assumption is that the ring
gear is fixed, the input gear is sun and the direction of rotation of planetary gear is
counterclockwise. With the given assumptions, the contact will progress as

B,P,Q,E; and this leads to a negative sign for y,..

It has to be noted that the obtained mesh phasing are a fraction of mesh period T,
and if one requires the phasing as time —lead or —lag, the phasing must be multiplied

by T,,.

Table 3.6 The calculated values of mesh phasing.

Parameter Value

ySTl 0
~-1/3
)
yrn 0
1/3
"

Vs —0.2811

3.2.2.5 Modeling sun gear fault

In an attempt to model gear faults of a planetary gearbox, first sun gear fault is
considered. The fault type is gear tooth root crack that influences mesh stiffness of

planet-sun gear pair for all planetary gears.

Before including the fault, some definitions are given. One of them is tidal period
and for sun gear for instance is define as such [60]: time interval required for sun
gear’s faulty tooth to mesh with the same planet once again. In this definition, the

planetary gears are treated differently.
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Phase difference of two planets in a equally-spaced planetary gears, equals 2w /N

where N is the number of planets.

According to Fig 3.42., when the faulty tooth meshes for the next time, the sun gear
should at least rotate 2 /N more than the carrier does such that:
s — 6. =2n/N (3.73)
The time interval corresponding to this angular difference is [60]

_ 6.6, _ 0,6,
Lsun = ws—we  N(fs—fc) (374)

where tg,,, denotes the time period of faulty sun gear mesh, wg; and w, represents
sun and carrier rotational speed, and f; and f. indicate sun and carrier frequencies,
respectively. Equation (3.73) defines the relationship between carrier and sun

frequencies [61]

Zs+Zy
foun == fe (3.75)

where Z; and Z, denote the number of teeth of the sun and ring gear, respectively.

Fault Meshing point Sun Gear

Planet carrier

(a) Initial meshing position |(b) the second meshing position

Figure 3.42 Rotation of sun and carrier between two successive fault mesh of sun
gear [60]
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Using equations (3.74) and (3.75), 6, and 6, can be obtained as follows [60]

Zs+Zy
95 = N_Zr 2m (376)
and
9 — Zs 2 377
¢ =y 2m (3.77)

meaning that the sun and carrier angles can readily be calculated once the geometry

of the gearbox is known.

Based on the calculations given above, which provides the time period of sun gear
fault, crack or pitting can be included in the model. As shown in section 3.2.1.4,
tooth root crack causes a reduction in mesh stiffness throughout meshing time of
cracked tooth. The process of cracked gear mesh stiffness was given in section

3.2.14.

Once the time difference between different planets and faulty sun mesh is considered
in the mesh stiffness, the graph of Fig 3.43 is obtained. Here, the mesh phasing
between two arbitrarily chosen planets in not considered. By including the mesh
phasing, the mesh stiffness functions will be ready for use in the dynamic equations.
Fig 3.44 shows a sample graph of planet-sun mesh stiffness for different planets
(three planets here). As it can be noticed from the graph, the mesh stiffness of
different pairs have a phase difference and it has to be considered in the simulations.

Otherwise, the obtained response will not be realistic.
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Figure 3.43 Mesh stiffness of different planet-sun meshes for faulty sun gear
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Figure 3.44 Mesh stiffness of different sun gear with different planets with mesh
phasing included

Once the dynamic model with faults is obtained, the resulting ODE sets must be
solved to generated vibration response of the gearbox. For this purpose, Generalized-

o method is employed. In what follows, the method is described.
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3.2.2.6 Generalized-o method for the time integration of ODE sets

For the solution of the obtained ODEs in second order form, a method called
Generalized-a, will be employed. It has better stability and damping in low and high
frequencies. These properties make it a suitable candidate for the time integration of
gear dynamics as the order of eigenvalues is much different in gear systems. First
introduced by Chung and Hulbert [62], the Generalized-a is a numerical solution
method developed for time integration of dynamic systems that offers improved
numerical dissipation. The integration algorithms such as the Newmark and Hilber-

Hughs-Taylor-a methods are subclasses of the Generalized-a method.
The general matrix form of a linear structural dynamic system can be expressed as
MX +CX+KX=F (3.78)

where M, C and K stand for the mass, damping and stiffness matrices, respectively.
F and X denote forcing and displacement vectors, respectively. The equation (3.78),
together with the initial conditions given in equation (3.79)-(3.81), forms an initial
value problem for which the solution vector X(t) satisfies the equation (3.78) for all

time points in t € [0, ty], ty > 0.
X(0)=d (3.79)
X(0) =v (3.80)

where d and v are prescribed initial displacements and velocities, respectively. In
the time integration algorithms, the following forms are used: d,,, v, and a, stand
as approximations to X(t,,), X(t,) and X(t,,), respectively. The terms d,,; and vy, 44
are expressed based on d,;, v,,, ajand a,,,;. To determine a, ;, another equation
must be written. This type of equations are called one-step, three-stage time
integration methods. It is a one-step method as the solution at time step t,,,; is only
a function of the solution at t,,. It is a three-stage method due to the fact that the
solution is determined by three vectors d,,, v,, and a,. The Generalized-o method

provides an optimal compound of high-frequency and low-frequency dissipation.
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Algorithm of the Generalized-a method

According to [62], the Generalized-o method, in its basic form can be expressed by

the following equations

dy,y = d, + Atv,, + At (G ~B)an + ,Ban+1) (3.81)
Vi1 = Vp t+ At((l —-y)a, + Van+1) (3.82)
Mans1-gy, + CVari-ay + Kdnsig, = F (tns1-a) (3.83)
d,=d (3.84)
v, (3.85)
a, = M~1(F(0) — Cv — Kd) (3.86)
where

dpiioa, = (1 - a)dnss + apd, (3.87)
Vni1oa, = (1= a)Vpss + vy (3.88)
rioay = (1= G)ans: + Aay (3.89)
tnsr-a; = (1= @ )tnsr + sty (3.90)

where n € {0,1, ..., N — 1}, N denotes the number of time steps and At represents
time step. The equations (3.81) and (3.82) are the same of Newmark method. The

algorithmic parameters a¢, @,,, f and y are given as follows [62]

y == am+a (3.91)

B ==(1—ap+a)? (3.92)
1

U = (3.93)
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1
ar = (3.94)

It has to be noted that the given values for @, and a5 are typical values for a stable

algorithm and the Generalized-a algorithm is unconditionally stable for [62]
1 1,1
amSafSE,ﬁZZ‘FE(O{f—O{m) (3.95)

The Generalized-a method allows for the solution of the ODESs in second order form

without a need for transforming them to first order ODE set.

3.2.2.7 Results and discussion

In this simulation, the angular speed of the input gear, i.e., sun, was given as
360rpm. Subsequently, the angular acceleration of the sun, carrier and planets of
the linear system were calculated for one revolution of the carrier. Figures 3.45-3.47
show the accelerations of sun, carrier and planet gear, respectively. In Fig 3.45-a,
shows the acceleration throughout the revolution of carrier, and 3.45-b focuses in a
smaller period to demonstrate its variation after it has reached a steady-state. The
acceleration of the carrier and one of the planets is depicted in Figs 3.46 and 3.47,
respectively. As it can be seen, all of the responses have periodic patterns. Fig 3.48,
shows the acceleration of faulty sun gear. As it can be noticed, when the faulty gear

meshes with sun or ring gear, an impulse is generated which lasts for a short time.

A characteristic frequency which is a feature of gear systems is gear mesh frequency
which is common between all gears. It can be calculated as f,;, = N, f,,, where N,
and f,, represent tooth number and rotation frequency of planetary gear. To check for
the mesh frequency, FFT of the response is obtained and the spectra are investigated
in frequency domain. The gear mesh frequency equals 600Hz for the gear system
under study. Generally, it is expected to have the mesh frequency and its harmonics
is gear vibration response. The figures 3.49-3.51 illustrate frequency spectrum of

different gears. Gear mesh frequency and harmonics can be clearly noticed in the
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graphs. This is clearer in case of pinion gear FFT and the third harmonic is dominant

in the given frequency band.
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Figure 3.45 Sun gear acceleration, healthy gearbox

71



x10*
T T T I
—Linear, pure rotational

2.5

o, [rad/s?]

24

231

0.24 0.242 0.244 0.246 0.248 0.25 0.252 0.254 0.256 0.258 0.26
t[s]

Figure 3.46 Carrier acceleration, healthy gearbox
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Figure 3.47 Planetary gear acceleration, healthy gearbox

When it comes to faulty gearbox with a faulty sun gear, the effect of sun gear tooth

crack will show itself as impulses generated in a certain period. The spectra of the
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response, other than mesh frequency which shared among all gears, will be quite
different as well. The effect of fault can be better identified through its symptoms in
frequency domain. To detect fault symptoms, the FFT of faulty gear response is
analyzed and shown in Figure 3.52. The fault shows itself by sidebands spaced
around gear mesh frequency given by [63]: kf,, +Ilf. +pfs(nEN, l,p € Z).
According to the given equation, the sidebands are detected in the FFT that suggests

that a sun gear fault exists. Such sideband frequencies were not present as expected.
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Figure 3.48 Acceleration of faulty planet gear, cracked planet
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Figure 3.49 Acceleration of sun gear, cracked planet
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Figure 3.51 FFT of sun gear acceleration, healthy gearbox
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Figure 3.52 FFT of carrier acceleration, healthy gearbox

Fig 3.55, depicts the FFT of sun gear acceleration for healthy and faulty cases.

Although the frequencies precisely match for both cases, appearance of sideband
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frequencies around mesh harmonics is notable. For instance, Fig 3.55-b shows the

sidebands around harmonic fifteen of gear mesh frequency which is due to the crack.
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Figure 3.53 FFT of a planetary gear acceleration, healthy gearbox
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Figure 3.54 FFT of sun gear acceleration, cracked sun
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3.2.2.7.1 Conclusion

In this section, a purely rotational six DOF planetary gear system was modelled with
the effects of sun gear fault and time varying mesh included. The fault considered
here is sun gear crack which causes a reduction in mesh stiffness during meshing of
faulty tooth with planetary gears. The method of modeling cracked mesh stiffness

was developed in the spur gear dynamic analysis part of the current study. The same
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idea is used for sun-planet pair and the mesh stiffness is modified accordingly. To
obtain the mesh stiffness, the period of sun-planet mesh for faulty tooth must be
considered. Therefore, it was included in the mesh stiffness function to achieve the
required faulty gear mesh stiffness. Furthermore, the relative mesh phasing between
different gear pairs were properly calculated and included in the mesh stiffness

functions.

The obtained equations of motion in second order ODE form were integrated with
Generalized-a method and the response of the gear system was analyzed in time and
frequency domains. According to the obtained results, the fault mainly shows itself
by impulsive pattern in time domain and certain sideband frequencies around mesh

frequency harmonics.

The model will be further extended to include the effect of gear bearings, carrier and
sun gear shaft flexibility as it was carried out in the modal analysis part of the study.
It will allow the analysis of the response transmitted through bearings which is more

realistic.

3.23 Non-linear dynamic modeling of a planetary gear system including

translational DOFs of the gears with a planet gear fault

In this subsection, a planetary gear non-linear dynamic model which includes
translational DOFs of the bearings, in healthy and faulty cases will be developed.
The fault considered, is a tooth root crack of one of the planets. It is assumed that the
direction of rotation of the input gear, i.e., sun, is such that the tooth crack is opened
when the faulty tooth meshes with the sun gear. Therefore, only the mesh stiffness

of the planet-sun pair will be decreased when the faulty tooth meshes.

Fig 3.55 presents the schematic view of the gear system which includes bearing
stiffnesses. The DOFs include the rotation of the planets, sun and carrier, and
translational motions of the gears and carrier. Therefore, the system will have fifteen

DOFs. The ring gear is fixed and the sun gear is considered as the input gear.
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According to the Figure 3.56, the position vector of the sun and carrier can be

expressed as follows
rs =x0+Yf, e =x 1+ Y (3.96)

where xg, ys and x,, y. are displacements of sun and carrier in the x and y directions,
respectively. The position vector of the i-th planet gear with respect to the origin, is

written as
rs=r.+71;+p; (3.97)

where r; denotes the position vector of the planet with respect to carrier center and
p; is the relative position of the planet with respect its connection point with the

carrier. The vectors '} and p; can be expressed as
T; = Rc[cos(8; + ;)i + sin(6, + @;)f], p; = &iez, + niep, (3.98)

where R, is the radial distance of planet bearing center from the carrier centers, @;
represents the initial angular positions of the planets. Since they are symmetrically
located, the angles are ¢ = 0, p, = 120°, and @3 = 240°. The DOFs ¢; and n; are
radial and tangential motions of the planet i, relative to their connection points to the

carrier. The absolute position vector of the planet i, can be expressed as
ri=x;l+yj (3.99)
where x; and y; can be obtained from the following equation

x; = xc + (§; + Re) cos(6; + ¢;) — 1 sin(6, + ¢;),

Vi =Y+ (& + R.)sin(6, + ¢;) +n; cos(6, + ¢;) (3.100)
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Planet gear

INNAN

Figure 3.57 Lumped parameter model of a planetary gear system [49]

(a)

y4

Figure 3.58 Initial and displaced locations of (a) sun gear; (b) carrier and planet

[49]

The gear mesh deformation between the sun and the planet i can be obtained
considering the mesh configuration as shown in Fig 3.58. The sun-planet mesh
stiffness is represented by k;, the pressure angle of contact for the sun-planet is a;

and the instantaneous angular position of the planets with respect to sun gear is
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shown by ;. The base circle radius of the sun and planets are expressed by Rg and

R,, respectively.

In a similar fashion, the mesh model between the ring and planet i is shown in Fig
3.59, where k] is the mesh stiffness of the ring-planet i pair, ] is the pressure angle
of contact, Y] represents the position angle of the planet i relative to the ring, and

R, denotes the base radius of the ring gear.

The angles 1 and 1] at each time instant can be calculated using the following

equations.
s _Yi~ Vs r_Yi :_
Uk = Yi oll. 1,2,3 (3.101)

Sun gear

Figure 3.59 Gear mesh between sun and planet i [49]

The DOFs of the gear system are defined as

{Xs) Vsr Us) Xc) Ver Oc, §1, M1, 01,2, M2, 02, M2, €3, 113, 03} (3.102)
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The equations of motion are obtained with the use of Lagrange’s equation which is

written as follows

d ( aT ) aT av
dt

% —a—m+a—m=Qi,i=1,...,N;N=no.ofDOFs (3.103)

The potential and kinetic energy must be calculated before the application of
Lagrange’s equation. The equations of motion are given in a concise form, for more
detailed expressions, the reader is referred to Appendix A. They can be obtained as

follows

Kinetic energy

1 1 . 1 1 .
T = =my(3s% + %) + 105" +=mc (3 + %.2) + = 1,6,
2 2 2 2
1 . : . .
+o N [my (1% +9i%) + 1, (0c + 6,)7] (3.104)
0;,i = 1,2,3: angular displacement of planet i

Potential energy

3 3
1 1
z k{ (6[)2 + Eks(xsz + YSZ) + Ez kp (fiz + r]iz)
i=1 i=1

N =

3
1
V=3 k@) +
i=1
+ 2k (2 + ye?) (3.105)
The sun-planet and planet-ring contact pressure angles are as follows:
a] =a] =24.6°

The gear mesh deformation for the planets are defined as

8;: gear mesh deformation between sun and i-th planet

8/ : gear mesh deformation between ring and i-th planet

and are obtained using the following equations
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= [xs —Xc — COS(BC + (pi) S(i + Sin(gc + q)i)r]i] Sin(afg - lpf) +
[ys —Yc— Sin(gc + (pi) Ei - COS(GC + (pi)ni] cos(af - lpls) + Rs(gs - 66) + Rpei
(3.106)

67 = [xc +cos(Bc + @;) §; — sin(Bc + @i)ni] sin(af + 7)) — [y +
Sin(ec + q)i) fi + COS(BC + q)i)ni] cos(air + lplr) — R0, — Rpei (3-107)

Derivatives of potential energy terms can be obtained using the following equations

j;’ =33 kS“L 55 + ks, 2k = cos(af — Pf) (3.108)
=53,k 2 57 + ke, % = sin(af — ¥) (3.109)
:: =Xk Z‘; 85, Z‘; Rs (3.110)
o= ke, +Zl3:1(kfz_i6f+k{3—ic?{) G.111)
= keeye + Ny (k268 + kY Sk o7 (3.112)
j—;’c =i, (kf 3g 85+ kT ‘;‘; 57) (3.113)
= [sin(6; + @;)&; + cos(6. + @) n;] sin(a; — ;) + [—cos(O, + ¢;)¢; +
sin(0, + ¢;) n;] cos(a;i — ;) — R (3.114)
L — [~ sin(6, + p0& — cos(@, + 9 ni] sin(a] + ) — [~cos(6; + PO —
Sin6, + ) 1] cos(af +y]) = R, (3.115)
;’;’] - ( & kS ‘;‘; 55 + kT 3? 5r) Y (3.116)

where §;; is the Kronecker delta.

i _ —[cos(@ +q)]) sm(a —1/)]) +51n(9 +q)])cos(a —1/)])] (3.117)
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asT

3% = [COS(QC + <,Dj) Sin(ajr + zp]r) — sin(GC + (pj) cos(ajr + 1/);)] (3.118)

0

av 5{
on 57) 835 (3.119)

2~ (kymi + k§ 2067 + K
omj plli Lom ! ¢

25%

P [sin(6; + ;) sin(a; — ;) — cos(B. + @;) cos(a; — P;)]6;; (3.120)
J

asT

7y = —[sin(fc + @) sin(a] +¥) + cos(6, + ¢;) cos(a] +P)16;; (3.121)
]

av
56, = (KiRpO7 — ki Rp8] )0y (3.122)

Derivatives of the kinetic energy terms are calculated as follows

d ,oT .
2 G = Mss (3.123)

d ,oT .
2 Gy = MsYs (3.124)

d ,oT o
2 Ga) = 1s0s (3.125)

d (0T .. .
at (E) = mekc + Ly mp¥; (3.126)

where
X =X+ é.l COS(HC + (pi) - Zéléc Sin(gc + (pi) - (fl + Rc)é.c Siﬂ(@c + (pi) -
s 2 v . .
(fi + Rc)gc COS(HC + (pi) - Sln(gc + (pi) - 277196 COS(@C + (pi) -
. .2
1,0, cos(8; + ;) + n;60,. sin(6, + ;) (3.127)
Vi=Jyc+ é:l sin(6, + ¢;) + Zﬂéléc cos(6. + ;) + (& + Rc)é'c cos(f. + ¢;) —

(fi + Rc)gc Sln(ec + q)i) +mn COS(QC + q)i) - Zrhgc SlI‘l(QC + (pi) -

. .2
n:0; sin(6; + ¢;) —n;6, cos(6. + ¢;) (3.128)
d (9T . )

at (E) = mcJe + Xia My (3.129)
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;_{9TC = L0 + Ti-y my | % + ¥ %] + X311, (6 +6) (3.130)
Z—;Z = —[(& + R.) sin(6, + @;) + n; cos(6, + ¢;)] (3.131)
% = [(§&i + Rc) cos(8; + ¢;) — m; sin(6, + ¢;)] (3.132)
;—QTC= Yiam, [Xi%+yi%] (3.133)
Since in the Lagrange’s equation the term % (;—GTC) - ;—QTC will appear simultaneously,

the overall term should be obtained.

The same approach is used for &; and 7; coordinates such that the following terms

are calculated
d (dT aT d (dT aT
For the coordinate 6;, the derivatives are straightforward, and can be expressed as

d /0T . .

The equations of motions, are obtained by plugin in the derivatives. Subsequently,

the equation of motion can be arranged as follows
M(x)X+ N(x,x) = f (3.136)

where M is the mass matrix, N represents the non-linear force vector, f denotes the
external force vector, and x is the displacement vector. Here, N is a combination of

linear and non-linear stiffness, and non-linear mass related terms.

3.2.3.1 Solution

In the solution phase which is realized by the Generalized-Alpha method, given the
initial values, the initial guess for the displacement, velocity and acceleration, can be

obtained from the following equation
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d, = x(0),vy = %(0),ag = —M~*(x(0))N (x(0), x(0)) (3.137)

Before solving the equations of motions to get the response, to reduce the
computational cost, they are left multiplied by the transpose of the modal matrix ¢7.
The matrix ¢p7 includes mass-normalized mode vectors of the time invariant linear
system calculated using a mean mesh stiffness value. The vector x is substituted by
x = ¢q, where q denotes the modal coordinates corresponding to the linear system

discussed above.

Once the above-mentioned operations are carried out, the equations of motions in its

residual form can be expressed as follows

1 - 0 w, - 0 w2 0

: @y +2¢ s~ [{gr+ P [{q} + dT{K dq +
0o --- 1 0 Wy 0 wrz
Ky + My + Mg — f(t)} = {0} (3.138)

where K¢ and M¢ are time dependent parts of the linear stiffness and mass matrices,
respectively. Ky and My denote non-linear stiffness and mass related force vectors,
respectively. f(t) is the force vector, w,, 7 =1,...,N represents r-th natural
frequency of the system, where N is the number of the DOFs. { is the modal damping
ratio. Through this application, it is assumed that the damping matrix is proportional

with the mass matrix.

3.2.3.2 Validation of the non-linear model

In this subsection, to validate the non-linear model at the first stage, the response of
the system with very large bearing stiffness values (k, = k. = kg = 108N /m) is
compared with that of the purely rotational linear system. The comparison is carried
out in time domain and subsequently in frequency domain via FFT. Fig 3.60,
demonstrates the time domain response of the sun gear of the non-linear system with
rigid bearings, while Fig 3.61 shows the response of the purely rotational model. As

it can be seen, the results compare well both qualitatively and quantitatively. Since
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a comparison in time domain is not straightforward or accurate, it is performed in

the frequency domain via FFT analysis.
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t[s]

Figure 3.60 Angular acceleration of sun gear, purely rotational model
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Figure 3.61. Angular acceleration of sun gear, non-linear model
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Fig 3.62, depicts the FFT of sun gear acceleration of the both systems. Once more,
the results are approximately equal which validates the non-linear model. In Fig 3.62,
other than a smooth background curve with a relatively smooth peaks which are the
natural frequencies, there exist spiky peaks. They are associated with gear mesh
frequency and its harmonics. Gear mesh frequency (GMF) appears due to the
parametric excitation of the mesh stiffness and it is one of the characteristics

frequencies in a gear system’s dynamic response.

3500

— Linear, pure rotational
---- Nonlinear stiff bearings

3000 -

2500 N

2000
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= 1500 -

i

1000
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A .H.J |

0 5000 10000 15000
Frequency [Hz]

Figure 3.62 Comparison of FFT of sun gear angular acceleration for non-linear
case with k, =k, =k =10" N /mand purely rotational model

3.2.3.3 Results of the non-linear system and discussion

As the correctness of the non-linear model is validated, further analysis is carried out

using the model.

In the first part, the response of the healthy system is presented and subsequently the

results of the faulty gearbox are demonstrated.
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3.2.3.3.1 The dynamic response of the healthy gear system

Figs 3.63-3.68 presents the response of the nonlinear planetary gear system along
different DOFs. In each figure, first a general view of the response for one revolution
of'the carrier is depicted and then it is focused on a specific part to show the vibration
trend. Some of the outputs, such as X , shown in Fig 3.66, might seem growing large
with time, however, the trend is of a periodic nature and only a segment of it is shown

here.
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Figure 3.63 Angular acceleration of a planet, healthy nonlinear system
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Figure 3.64 Translational acceleration of a planet in radial direction 7, healthy
nonlinear system
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Figure 3.65 Angular acceleration of the carrier, healthy nonlinear system

|

91



2000 T T T T

(a) —Nonlinear|

1500

1000

500

de[m/s?]

-500

-1000

-1500

_2000 | | 1 1 1

300 T
(®)

200 - y

100 i

% [m / 32]

-100 [-

-200 - =

| | 1 L

1 I 1 1 1 1 |
0.116 0.118 0.12 0.122 0.124 0.126 0.128 0.13 0.132 0.134 0.136
t[s]

-300

Figure 3.66 Translational acceleration of the carrier in x direction, healthy
nonlinear system
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Figure 3.68 Translational acceleration of the sun gear in x direction, healthy
nonlinear system

3.2.3.3.2 Results of the faulty system

In this subsection, the dynamic response of the nonlinear planetary gear system is
presented. Figs 3.69-3.71 demonstrates the response of the faulty gearbox with planet

tooth crack along some specific directions. These are selected among the outputs as
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the fault it is most identifiable in them. As it can be noticed, the effect of the fault is

an impulse which is repeated in a specific period related to planet gear angular speed.
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Figure 3.69 Angular acceleration of the sun gear, faulty nonlinear system
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Figure 3.71 Translational acceleration of the sun gear in x direction, healthy
nonlinear system

For further analysis, the acceleration in the 6, direction for the healthy and faulty
systems are compared in the frequency domain. It is realized by the FFT analysis.
As it can be noticed, from Fig 3.72, the curves overlap each other except the part at
the frequency range of [8 — 11]kHz with sidebands around the natural frequency
located at 9.97kHz.
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CHAPTER 4

Analysis of experimental data

A study is conducted on the collected gearbox acceleration datasets to process and

model the signals through Fast Fourier Transform (FFT) and FS-TARMA methods.

4.1 Experimental test rig and acquired data

The experimental signals were recorded at Coventry University of the UK. Gear
acceleration signals of healthy and faulty gearboxes has been collected at a sampling
frequency of 51.2kHz with an accelerometer mounted on top of the ring gear. The
faults considered includes planetary gear tooth surface pitting (mild and severe),
broken tooth of a planet and missing tooth. Here, the pitted tooth case will be
employed for the analysis and modeling. The parameters of planetary gearbox are
given in table 4.1. Different faulty gears used in the experiments are shown in Fig

4.1.

Data collection process is as follows:

4.1.1 Healthy case

In healthy case, the vibration signals were collected with an accelerometer located
on top of ring gear. A pitting occurred on a tooth of one of the planets after 150 hours

of operation. Diameter of the pitting is 0.04mm.

4.1.2 Mild pitted case

For mild pitting, a pitting with depth of 0.04mm and width of 7mm (along tooth face

in axial direction) over the face width of a planetary gear was generated.
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4.1.3 Severe pitted case

In severe pitting case, the depth of fault was increased to 0.11 mm and the width was

kept constant.

4.14 Chipped tooth case

When tooth pitting progresses due to fatigue effects, it can lead to tooth chipping.

This is a severe failure and generates impulsive vibrations in the gearbox.

4.1.5 Missing tooth case

Broken tooth on a planet gear can occur under fatigue loading that leads to crack

progression. It was generated by grinding the faulty tooth.

From the cases mentioned above, the pitting will be considered for further processing

and diagnosis.

Table 4.1 Properties of the planetary gearbox used for data acquisition

Parameters Sun Planets Carrier Ring
No. of teeth 23 24 - 73
Pitch radius 22.85mm 23 - 149mm
Mass 309¢g 1816g 1224g
Pressure angle 20 20 20 20
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Figure 4.1 Different fault cases considered in the experimental data collection [64]
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4.2 Analysis of gear vibration signals

In this section, as a preliminary analysis the recorded gear signals are transformed to
frequency domain by FFT with the purpose that the faults are detected before

modeling with time series models.

4.2.1 Spectral analysis of planetary gear data by FFT

The recorded vibration signal for mild pitted planet gearbox is shown in Fig 4.2.
Before processing the signals, they were digitally band-pass filtered by a Butterworth
filter in the range of 10Hz — 10kHz. Subsequently, a Time Synchronous Averaging
(TSA) method applied on the filtered signals averages out the effects related with
gears other than that of interest. By applying TSA, in fact the periodic signals are
extracted from a composite signal contaminated with noise and other effects. This
process is carried out synchronously taking into account the speed of the carrier. The
spectrum of healthy gears is generally dominated by major peaks at gear mesh
frequency and its harmonics with modulation sidebands of low order that are mostly
due to gear errors [54]. For a faulty gear, a repeating impulse with low energy level
will be included in the signal causing frequency modulation (FM) and Amplitude
Modulation (AM). This leads to high order modulation sidebands in the spectrum of
the faulty gear. Although the impulsive effect of fault has low energy distributed in
a wide frequency range, it can generate structural resonances in the gearbox. Shaft
high resonance frequencies may appear in the spectrum of faulty gear together with

sharp peaks related to mesh frequency and its harmonics.
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Figure 4.2 Vibrations measured on top of ring gear, low-pitted planet

For the frequency domain analysis, FFT is applied on TSA signals to detect
characteristic frequencies of the healthy gearbox. The main one is the mesh
frequency, f, which is equal to 438.09Hz. Table 4.2, lists the frequencies of main

components of the gearbox.

Table 4.2 Frequencies of different components of the planetary gearbox

Gear Frequency (Hz)
Sun 23.33

Planet 17

Carrier 6

Ring Fixed

Fig 4.2 shows the frequency spectrum of healthy gearbox vibration obtained by
applying FFT on TSA signal. Gear mesh frequency and its harmonics can be
identified on the chart. Due to uneven loading of the gearbox, other frequencies are
resonated as well that resulted in some other large peaks. These peaks do not

correspond to characteristic frequencies of the gearbox that are under consideration
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here. Fig 4.3 illustrates the frequency spectrum of pitted gearbox with characteristic

sidebands emerging around mesh frequency harmonics.
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Figure 4.3 FFT of vibration signals measured on top of ring gear, healthy case
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Figure 4.4 FFT of vibration signals measured on top of ring gear, pitted case
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CHAPTER S

Fault detection process based on FS-TAR, FS-TARMA and AR metric

5.1 Modeling non-stationary signals and novelty detection

Before modeling the signals, a synchronous averaging using the speed of carrier has
to be carried out. This allows for removing the effects related with components other
than planet frequencies and noise. In fact, the gear signals are intrinsically non-
stationary and although with an assumption of weak non-stationarity they can be
modeled with stationary time series models, there always exist drawbacks with the
latter models. Here a class of non-stationary time series models named FS-TARMA

is adopted.

5.1.1 Estimation of non-stationary time series via FS-TARMA models

The differential equation governing the motion of a continuous-time, lumped

parameter, linear time variant (TV) structure denoted by ¢ , is as follows [41]:

p: M@OX(0)+COXNO+K@OX() =1(0), teltt,], 5.1
where X(t)é[xl(t)xl(t) -..xp(t)Trepresents the vibration vector as a function of
analog time ¢, and f(f) denotes the excitation vector. [to,tf} is the time interval at
which the response is observed, and M(f), C(¢) and K(¢) denote the time-

dependent mass, viscous damping, and stiffness matrices, respectively.

There exists a second order difference equation equivalent to equation (5.1).

Assuming a single input, single output (SISO) system, its (partial) dynamics can be
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described with a scalar difference equation given below:
x[1] +Za X[t —1i] +ZC [t—i], t=1,..,N, (5.2)

where ¢, [¢], and f[f] denote normalized discrete time, discretized vibration
response, and force, respectively. a[f] and c¢[f] represent the discrete time TV

parameters, ", . and N represent the equation Autoregressive (AR) and Moving

Average (MA) orders and the length of the time signal, respectively. In case for the
system to be modelled, the input is not measurable or observable, FS-TARMA model
that solely depends on response can be adopted.

Here, only the major equations are given and for details, the reader is advised to refer

to [49]. Equation (5.3), represents an FS-TARMA (n,,n.),, , . [41]:

x[t]+i Lelx[e —i]= wit] + i [t —i], w[t]~NID(0,52[¢]), t=1,...,N, (5.3)

where p,, p. represent functional basis dimensionalities respectively, and p, denotes

the dimensionality of the associated innovations variance. NID stands for Normally
Independently Distributed random variables with the indicated mean and variance.

x[¢] and w[¢] are the estimated non-stationary response and innovations sequence
respectively. The latter has a zero mean and time-dependent variance designated by

o-[t]. a,[t] and c[f] coefficients represent time-dependent AR and MA parameters,

respectively. To estimate these parameters as well as innovations variance o‘j.[t],

functional subspaces formed by orthogonal independent functions are utilized given

as follows [41]

Fo 2{G, [11.G, [1],-2G,  [1]},
Fu2{ G [1).G, 1) G, 1] (5.4)

-@‘ é{Gbs(l)[t]’ GbS(Z)[t])"'aG/,S(pS)[t]} .

where “F” represents functional subspace of the associated quantity and
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{G‘,[t] cj= 0,1,...} indicates a set of orthogonal basis functions that can be selected

from a suitable family such as Sine and Cosine functions, Chebyshev functions, etc.
The indices b,()(i=1,...p,), b.()(i=L...p,) and b(i)(i=1..,p,), indicate the

specific basis functions from a family selected for the associated subspace.

The time-dependent parameters and innovations variance are estimated using the

associated functional subspace, as follows:
a Pa N Pe ) a Py
ai[t]zzai,ij”(i)[t]’ ci[t]zzci,[Gbc(j)[t]’ O_w[[]:zS[Gbs(j)[t]’ (55)
Jj=1 Jj=1 J=1

where @, ;, ¢; ;and s; represent the AR, MA and innovations variance coefficients

of projection, respectively. In such manner, the parameterization of FS-TARMA

model is realized in terms of constant projection coefficients a; ;, ¢, ; and s;.

J
Consequently, a particular model structure M , identified by model orders 7, 7,

and functional subspaces F,,,7,,,F ., is defined as follows [41]:

AR>Y MA>
ME {0, 1, F s F | (5.6)

Eventually, the model identification problem can be represented as follows [41]:
“Given N vibration response measurements, x" ={x[1] ...x{ N1}, and the FS-
TARMA model set:

M2

{M(@) X[+ Za [t,0]x[t —i]= €[t,0] + ici[t,e]e[t—i]; ol = E{e2 [z,e]}, t=1,.,N, O¢e m‘“"“”)},

5.7
select an element of M which best fits the observations”. In this equation, dim ()
represents the dimension of the parameter vector, and ¢[;,9] denotes the one-step-

ahead prediction error (residual) sequence of the model.
The identification problem is comprised of two subproblems:
a) Estimation of parameters assuming a given structure M ,

b) Selection of model structure
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The subproblem (a) is discussed in the subsequent subsection.

5.1.1.1 Estimation of FS-TARMA parameters

The vector € , which includes the projection AR and MA projection coefficients denoted
by a and c, and innovations variance § expressed in equation (5.8) for a given model
M , using measured non-stationary response x" is considered in this subsection [41]

0219 | 9&[d" | ] SE[s,,.08

T
" Yy pyenpeep o p

(npatnep <1’
a2 [al,p""a Lp, ‘ | a, 1oy ](Tnapa)xla (5.8)
c= [c115- € 1,pf| o] . > C, 4 ](T,m)Xl

To estimate the AR/MA projection coefficients vector ¢ , Ordinary Least Squares (OLS)
method is employed which sums up the squares of the one step ahead prediction errors of

the model as follows

N N
S =arg m;n;eQ [z, 9], 5.9

where argmin indicates “argument minimizing” which means that the minimizing
arguments are searched for, and e[r, $] denotes the one-step-ahead prediction error. Since
the estimation of FS-TARMA parameters results in a non-linear problem, it can be solved
by an iterative method that divides the main non-linear problem into linear subproblems.
Here, the Two Stage Least Squares (2SLS) method [41], is utilized for the estimation of

model parameters.

5.1.1.2 FS-TARMA modal parameters

Once an FS-TARMA models is estimated, the time-dependent modal parameters of the
model, which are natural frequencies @,[f] and damping ratios &;[f]can be obtained as

follows [41]

) [t]:w(md/s), g,[t]=—cos(arg(In A[1])), t=1,..,N, (5.10)

ni
s
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where A [#] denotes the i pole of the model at time ¢, and 7, represents the sampling

period.

5.1.2 Estimation of nonstationary time series via FS-TAR models

There exists a second order difference equation equivalent to equation (5.11). Assuming
a single input, single output (SISO) system, its (partial) dynamics can be described with a

scalar difference equation given below:
A+ alalt—il=wit), t=1,..,N (.11)
i=1

where ¢ and ,[;], denote normalized discrete time, discretized vibration response,

respectively. @,[f] represent the discrete time TV parameters, 7, and N represent the

equation Autoregressive (AR) order and the length of the time signal, respectively. In case
for the system to be modelled, the input is not measurable or observable, FS-TAR model
that solely depends on response can be adopted.

Here, only the major equations are given and for details, the reader is advised to refer to

[39]. Equation (3), represents an FS-TAR (n,);, ,; [39]:
i1+ Y @[t —i] = wlt], wlt]~ NID(0,52[]), ¢=1,..., N, (5.12)
i=1

where p, represent functional basis dimensionality, and p, denotes the dimensionality of

the associated innovations variance. NID stands for Normally Independently Distributed

random variables with the indicated mean and variance. x[¢] and w [¢] are the estimated
non-stationary response and innovations sequence respectively. The latter has a zero mean
and time-dependent variance designated by Gf,[t] and a@,[t] coefficients represent time-
dependent AR parameters. To estimate these parameters as well as innovations variance
O'i[t] , functional subspaces formed by orthogonal independent functions are utilized

given as follows;

Fan é{Gbaa)[t]’Gba(z)[t]’"-’Gba<pa>[t]}> (5.13)
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F. 8{G, [1.G, o [1].-,G , [1]-

W

where “F” represents functional subspace of the associated quantity and
{G 1) = 0,1,...} indicates a set of orthogonal basis functions that can be selected from a
suitable family such as Sine and Cosine functions, Chebyshev functions, etc. The indices
b,()(i=1,...,p,), and b, (i)(i=1,...,p,), indicate the specific basis functions from a

family selected for the associated subspace.

The time-dependent parameters and innovations variance are estimated using the

associated functional subspace, as follows:
R Py 2 A Ps
alt]2) a, G, 1], ol[112)s,G, ] (5.14)
j=1 Jj=1
where a; ; and Sj represent the AR and innovations variance coefficients of projection,

respectively. In such manner, the parameterization of FS-TAR model is realized in terms

of constant projection coefficients @; ; and ;. Consequently, a particular model structure

J

M, identified by model order 7,, and functional subspaces F,,,F . ,is defined as follows:

v

Mé{na,ﬂm}-aé} (5.15)

Eventually, the model identification problem can be represented as follows: “Given

N vibration response measurements, x" = {x[l] x[N]} , and the FS-TAR model set:

W

Mé{M(Q)3x{t]+ia,-[t,0]x[t—i]=e[t,0]; o, =E{¢*[.6]}, t=1.... N, HeR‘ﬁ“‘@}

(5.16)

select an element of M which best fits the observations”. In this equation, dim(4)
represents the dimension of the parameter vector, and ¢[s,9] denotes the one-step-ahead

prediction error (residual) sequence of the model.
The identification problem is comprised of two subproblems:
a) Estimation of parameters assuming a given structure M,

b) Selection of model structure
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The subproblem (a) is discussed in the subsequent subsection.

5.1.2.1 Estimation of FS-TAR parameters

The vector 6, which includes the AR projection coefficients denoted by a , and
innovations variance § expressed in equation (8) for a given model M, using measured

non-stationary response x" is considered in this subsection

E ['9T | ST](nan, +p X1 9= [ar}

(1, p,)x1 »$ é[Sl,...,pr ]PAX“
h (5.17)

azla,,...a iplla a T

n,,12°°"n,,p, (n,p,)x1°
To estimate the AR projection coefficients vector ¢ , Ordinary Least Squares (OLS)
method is employed which sums up the squares of the one step ahead prediction errors of

the model as follows
~ N
l9=argmgin;eQ[t, 9], (5.18)

where arg min indicates “argument minimizing” which means that the minimizing

arguments are searched for, and ¢[;,¢] denotes the one-step-ahead prediction error.

5.1.2.2 Selection of AR order and functional subspace dimension

To select the AR order of the FS-TAR model and the associated functional subspace

the following process is implemented:

L. BIC values are calculated for different values of #, and p,. Subsequently

the model with the largest negative BIC value is selected. When BIC
values are negative, the model with the largest negative value is selected
as the best-fitted one. The order selection process is based on the
minimization of BIC by trial-and-error process through the BIC equation

for the FS-TAR model given as [41]
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e’[t,a] InN

1 N
BIC==Y"|In(g'[t]s)+ = [+ dim(a)—— (5.19)
N ( )(§Ms N

T
s

where g,[112G, ,[1]G, ,,[t] ... G, , 1]

A A A
s = [sl,...,spé ]pbxl’ a=la,,..a, |..la, na, , 1, , .

II. A subsequent optimization of the functional space obtained in stage I is
carried out to remove the redundant basis functions. In this process, the
effect of removing each basis function on the functional subspace to
adequately estimate the model parameters without a significant reduction
in projection accuracy is examined. Such a reduction is realized through

Aggregate Parameter Deviation (APD) criterion given as follows [41]
APDEY7" Aa, +As, (5.20)

ijirz[t] il ijC[t]|

N 24
Zrzl O-"km [t]

>
> all]

GAURTAU IO W

El

Aa, = (5.21)

Where Ag, and As represent deviations of AR and innovations variance trajectories,

respectively. The superscript “c” and “in ” denotes the current and initial (extended)
value of the associated parameters, respectively. For more details of the process, the

reader is referred to [41], where the problem is solved for an FS-TARMA model.

Once an FS-TAR model is estimated, the time-dependent modal parameters of the
model, which are natural frequencies ®,,[¢f] and damping ratios ¢,[¢]can be obtained

in the same way as it was done for FS-TARMA.

5.1.3 AR metric for the comparison of time series models and novelty

detection

Once the FS-TARMA models associated with faulty and healthy signals are estimated,
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they must be compared to achieve a criterion for fault detection. The comparison of
models can be carried out utilizing a variety of methods. Here, a metric called AR metric

[65] is considered.

To start with, given X, €L and Y € L as invertible processes whose forecast functions
expressed via the corresponding AR coefficients as [65]

7, :(ll'l,x,ﬂ'z’x,...,ﬂ‘[’x,...), z, =(72'1’},,71'2’},,...,72"[.),,...) (5.22)

And assuming absolute convergence of 7 sequences in L , Piccolo [65], introduced a

metric between two AutoRegressive Integrated Moving Average (ARIMA) processes X,

and Y, , with given orders, as Euclidean distance between their corresponding coefficients

of the AR(c0) formulation denoted as follows

(5.23)

The expression given in equation (11) has the properties of a metric as for any two
identical processes, their corresponding distance is zero. This metric has another important
feature and it is: although different orders for the model structures can be obtained for
modelling the same set of signals, their corresponding distance is zero since they are

supposed to provide the same predictions.
It has to be mentioned that for processes X, €L and Y, € L | their associated distance
d(X,Y,) is always well defined regardless of the fact that one or both processes are

stationary or non-stationary. This property of AR metric, makes it a reliable candidate for
the comparison of time series models regardless from the stationarity or non-stationarity

of the models.
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CHAPTER 6

Time-frequency analysis of gear vibration signals by FS-TAR and Wavelet

Transform

In this chapter, time dependent frequency analysis of the vibration signals will be
carried out via WT and the FS-TAR approach. Firstly, the necessary equations will

be given and subsequently the results will be presented.

6.1 Time-frequency analysis of gear vibration signals by Wavelet

Transform

Since a planetary gearbox's vibrations are nonstationary, conventional FFT analysis,
although compelling, may not be well suited for analyzing its time-varying (TV)
frequency spectrum. A variety of methods are available for the time-frequency
analysis of nonstationary signals. Continuous wavelet transform (CWT) features
several advantages over windowed FFT. One important feature is that time resolution
is high at a higher frequency, unlike the windowed FFT, where time and frequency

resolutions are independent.

Wavelet analysis was first introduced to analyze seismic signals in the 1980s. Based
on the purpose of analysis, two main types of Discrete Wavelet Transform (DWT)
and Continuous Wavelet Transform (CWT) can be utilized. While the first is
generally employed for noise removal, the latter is preferred for time-frequency
analysis. For the case of time-frequency analysis, the wavelet analysis can be
considered as FFT analysis with windows of variable lengths. Therefore, they can
focus on frequency or time domains to provide local information in both domains.

Wavelets can be 1D or multi-dimensional. 1D wavelets can be expressed as [66]
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1 x—b

v () ==y (0 (6.1)
Ja’

where a(#0), breal parameters and ¥ (x) represents a spatially localized function
named “mother wavelet”. Wavelet analysis, decomposes a given function into a
combination of wavelets and reconstructs it. For the reconstruction to be optimal, the
mother wavelet should satisfy some conditions. For the case of CWT, the following

admissibility condition must be satisfied [66]

Im|v>(w)|2

C =
= o]

74

dw <o (6.2)

where y/(w) represents the Fourier transform of ¥/ (x) given by
p (@)= [ ey (x)dx (63)
The CWT and inverse CWT of a function f(x) e L’(R) is expressed as [66]

T, (@.b) =ﬁ [7 0/ s 64)

fx) = ﬁ [T, (@b ") df#

The dimension of the time-frequency space to which the wavelet expands a given
function is twice the dimension of the original signal. This allows for effortless

multiscale analysis and identification of fault effects in the signal.

6.2 Time-frequency analysis of gear vibration signals by FS-TAR model

Although CWT provides valuable information about the TV properties of the signals
by a time-frequency analysis, it does not have a parametric structure. Nonstationary

time series models provide a parametrized representation of TV system dynamics,
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generating nonstationary vibration response. Time-dependent power spectral density
(PSD) of nonstationary gear vibration signals can be obtained by estimated FS-TAR

models via

1
1+ alie "

S(w,t) = olt], t=1,.,N (6.5)

where time dependent AR coefficients «.[¢f] and innovations variance o [¢] are

plugged in from the estimated FS-TAR model and f, is sampling frequency.

FFT analysis is an efficient tool to detect and identify fault types in a planetary
gearbox. However, gear vibration signals are nonstationary, and FFT analysis of
TSA signals assumes that they are stationarity, leading to a frozen time FFT for an
averaged signal. A more efficient spectral analysis can be realized through a time-
frequency analysis. Various methods are available for this purpose. One of the
powerful methods is Continous Wavelet Transform (CWT) which will be applied to
vibration signals in the next section. Furthermore, the estimated FS-TAR models will

analyze the time-dependent Power Spectral Density (PSD) of the signals.

6.3 Continuous Wavelet Transform of vibration signals

Power Spectral Density (PSD) analysis of gear vibration signals via FS-TAR model
and CWT analysis can provide a deep insight into the time-dependent effects of gear
fault on nonstationary response and simultaneous fault influence mechanism in time

and frequency domains.

The CWT analysis of gear vibration signals is performed with MATLAB software.
Different wavelet family types are available for CWT. Here, the “Bump” type

featuring a wider variance in time and narrower variance in frequency is chosen.

In this section, CWT is first applied on healthy and pitted gearbox signals;
subsequently, PSDs are obtained by the FS-TAR model. The spectra estimated by

the two approaches are compared, and their role in gear fault detection is studied.
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Fig 6.1 depicts the PSD of healthy gearbox vibration calculated in [10 12000] Hz

frequency band. Multiple harmonics of mesh frequency are excited with their peaks,
dominant in the PSD. These harmonics range from the 7™ to 22" multiples.
However, it is cumbersome to discriminate between the harmonics and the adjacent
peaks associated with other frequencies resonated with them. The crucial of the

graph is the frequency range [3 10] kHz excited during the gearbox's operation. For

the case of pitted planetary gear, the CWT of the vibration signal is depicted in Fig
6.2. A clear distinction can be made between the frequency range of fault influence

compared with the CWT of the healthy gearbox of Fig 6.1. In this case, the range of
excited frequencies with dominant peaks has shifted to [1 3] kHz with intermittent

peaks corresponding to faulty planet mesh with ring or sun gear. This frequency
range includes harmonics 2 to 8 of gear mesh frequency. However, it does not imply
that the other gear mesh frequencies do not exist in the spectrum. In Fig 6.2-b, a 2D
view of the CWT, dominant peaks are detectable with bright yellow color. A detailed
FFT analysis in the previous section detected a concentrated planet gear fault. A
comparison of graphs presented in Figs 6.1 and 6.2 reveals a change in the gearbox
dynamics. Since the peaks are narrow in time but wide in the frequency domain, it
suggests the existence of a concentrated fault that influences the vibration response
similar to an impulse. Fusion of the information provided by FFT and CWT analysis

can lead to a more robust fault type identification.

6.4 FS-TAR model-based PSD

Although the investigation of PSDs estimated by CWT can aid gear fault diagnosis,
its nonparametric structure does not allow for a detailed analysis of fault occurrence
time and frequencies through comparison. The FS-TAR model provides a parametric
estimate of the PSD of the vibration signal, which features high-frequency resolution

and enables the identification of the dominant mesh frequency harmonics.
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Figure 6.1 CWT graph of the healthy gearbox vibration, a) 3D view, b) 2D view

Fig 6.3 demonstrates the PSD of healthy gear vibration obtained by the FS-TAR

(32)p. 1 model. Dominant harmonics of mesh frequency, which can be easily

identified from the graph, are marked by their harmonic numbers in Fig 6.3-b. The
estimated harmonics vary slightly in one revolution period of the carrier. This is
because some other frequencies of the gear system in the vicinity of those harmonics

are resonated.
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Figure 6.2 CWT graph of the pitted gearbox vibration, a) 3D view, b) 2D view

An important phenomenon evident in the graph is the consistent excitation of the
identified harmonics during the gearbox operation, which implies no sudden change
in the response due to a concentrated fault. To a significant degree, the signal's
energy is evenly distributed between dominant harmonics. An important distinction
between the PSDs estimated by CWT and FS-TAR is the number of
frequencies/peaks identified. CWT does not truncate the signal by estimating it by
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several frequencies as FS-TAR does. It constitutes many filters applied to the signal
without changing its frequency content. FS-TAR provides a parametric signal model
and operates like a filter with a given order. It is well suited for estimating signal
resonances, and its autoregressive order must be chosen reasonably, which cannot

be very large.

Regarding the PSD of faulty gear vibration, depicted in Fig 6.4, it can be said that

the dominant peaks have been shrunk to a narrower frequency band of [1 2] kHz,
although some higher harmonics are instantly excited in [3 4] kHz . Another

critical phenomenon identifiable from Fig 6.4-b is the intermittent excitation of
mainly the fourth and sometimes the third gear mesh frequency harmonics. It occurs
due to planetary gear fault as it generates impulses at specific periods related to the
sun-planet and planet-ring mesh phasing. The range of frequencies with dominant
amplitudes for the PSD in Fig 6.4 and that of CWT in Fig 6.2 are approximately the
same. The main difference between the two PSDs is that the former is a truncated
model of the frequencies present in the vibration signal in contrast to the latter, which
includes all frequencies. The PSD estimated by FS-TAR simplifies the identification
of dominant frequencies. It provides a parametric structure that can be further

analyzed to obtain fault-sensitive features that are used in the fault diagnosis process.
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Figure 6.3 PSD estimate of the healthy gear vibration signal based on FS-TAR

model
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model (dotted lines are used for clarification only)
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CHAPTER 7

Fault detection based on FS-TAR models via vibration signals: results

7.1 Modeling and estimation of gear signals via FS-TAR models

In this section, first, the predictions of the gear signals based on FS-TAR model will

be discussed and then the results of fault detection will be presented.

7.1.1 FS-TAR model identification, results

Gear mesh stiffness and damping vary periodically, and so do the vibration signals.
Therefore, trigonometric functions are employed as basis functions to estimate the
variation of FS-TAR model parameters. Equation (7.1) presents the trigonometric

functions employed in the model estimation process.

G, [1]=1, G, [f]= sin[j”(t_l)j, G, [f]= cos[jﬂ(t_l)j, j=12,..,t=12,.,m. (7.1)

0 o m—1 & m—1
The number of basis functions for an adequate model is determined during the order
selection level. The order selection process for healthy and faulty data is carried out
separately, as each possesses different partial dynamics. During the order selection
process, the order of the model at the first trial is determined based on the gearbox
dynamics observed from FFT analysis. For instance, twice the number of dominant

characteristic frequencies, including mesh frequency and its harmonics, can be

considered as a potential order for the model.

Once an adequate FS-TAR model is fitted to the measured data, predictions are
obtained using the estimated models. In the order selection process, which will
estimate the orders n,, p,, the model estimation process is repeated for varying

orders, and the set resulting in minimum BIC is selected. The BIC values for different

order sets results can be plotted as a 3D surface, as depicted in Fig 7.1. According to
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the calculations, the minimum BIC is obtained for n, =32, p, =9 . Although these

values lead to the best-fit model, the expanded and complete functional subspace
order is set to 13. The appropriate basis functions are selected through a subsequent
refinement based on the APD criterion. As a result of this process, the final order set
remains the same; however, the basis functions are changed according to the APD

criterion.

Once an adequate model is estimated, the response can be predicted.

FS-TAR(32);,, model-based predictions for a segment of acceleration signal

measured on top of the ring gear is presented in Fig 7.2-(a). Together with the
predictions, the residual series and its variance are demonstrated in Fig 7.2-(b) and
7.2-(c), respectively. The prediction accuracy is considered to be satisfactory since
the error, which is calculated as the ratio of the Residual Sum of Squares to the Series

Sum of Squares (RSS/SSS), is equal to 0. 1%.
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Figure 7.1 BIC values for different AR and functional basis orders plotted as a 3D

surface
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Figure 7.2 (a) Prediction vs time series for a segment of nonstationary gear
acceleration, (b) residual series of estimated model, (c) residual variance
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7.2 Gear fault detection based on estimated FS-TAR models

This section presents the fault detection process of the planetary gearbox with the
aid of the FS-TAR model. An estimated FS-TAR model can predict the response of
the gear system in a specific frequency band. However, rather than the prediction of
response, the focus is on change detection based on comparing gear signals through
the estimated models. The comparison can be realized by employing different tools.
For instance, a time series model can be fitted to the baseline data corresponding to
the healthy gearbox. A fault is detected through residual generation via faulty gear
data, as it has been accomplished in [45]. Various methods can be utilized to compare
the time series models. A typical approach uses a metric calculated based on model
parameters. It is known that the parameters of time series models are implicitly
related to the system dynamics represented by frequencies and damping. In the case
of an ARMA model, the frequencies and damping ratios can be calculated through
AR and MA coefficients. Time series models can be stationary or nonstationary with
different orders, making the comparison somewhat complicated. AR metric AR(0),
eliminates the mentioned difficulties. It operates on AR inverse model and provides
the distance of two models based on the parameters. Here, AR(o) metric is applied
to the models corresponding to healthy and faulted gears, and the change in distance

is investigated.

The plot of the AR(0) distance of the faulty FS-TAR models from the healthy one
is illustrated in figure 7.3. The distance is calculated for the TSA signal obtained for
one carrier revolution. Employing TSA signals already implies that the signals are
averaged based on carrier speed, and the fault effects are averaged and emphasized
in the associated time period. Therefore, it represents a mean behavior rather than a
relationship for one revolution. The purpose is to establish a general method for fault
diagnosis that can be later applied to instantaneously acquired data. According to Fig
7.3-a, multiple peaks are noticeable on the graph, three of which are local maxima
and one absolute maximum, which occurs between the end and the beginning of the

graphs. The first(last) maximum becomes meaningful when one considers the
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periodicity of vibration signals for carrier revolution. To interpret the graph, the tools
which were utilized to estimate it need to be closely investigated. The main tool is
an FS-TAR model, which is a time-dependent nonstationary model that captures the
time-varying behavior of the corresponding time series. The other tool is a metric
that compares the baseline model and the faulted one through the model parameters,
which are implicitly related to the gear system’s partial dynamics. Considering the
features of the employed tool, it can roughly be mentioned that peaks on the graph
imply that the faulty model deviates from the baseline, which is repeated multiple
times during one complete revolution of the carrier. The deviation stems from the
changes in dynamics, which influences the system response in the event of faulty
tooth mesh and specific frequency ranges. In the linear case, the dynamics is related

to natural frequencies and associated damping ratios.

Once the duration between the peaks is calculated, it is discovered that they are
approximately equal, which suggests the periodicity of the change in the distance.
Since the fault is on a planet tooth, a comparison between the period of the peaks
and the rotational frequency of a planet reveals that the duration is equal to the
planet's frequency relative to the stationary ring gear. The frequency of carrier is
fc = 5.98Hz and when compared to planet frequency f, = 24.18Hz , it is expected
to have between three to four contacts of planet faulty tooth with the ring gear (notice

that £,/f, = 4.04).

Notably, this relationship is obtained based on kinematics only, and the tooth
geometry and mesh phasing [37] between sun-planet and planet-ring mesh are not
considered. Another effect is that the change in mesh stiffness or dynamic response
during the faulty gear mesh occurs quickly and is not purely impulsive. Considering
the mentioned effects, it can be concluded that the peaks interval does not necessarily

coincide exactly to f,,, but with a negligible margin.

Assuming that the peaks are periodic, repeating the obtained distance curve for
another period of the carrier, the graph in Fig 7.3-b is obtained, which demonstrates

the periodicity in two periods clearly.
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To uncover the phenomenon which results in the curve shown in Fig 8-a, the motion
of the faulty planet and its mesh with the sun and ring gear considering the sensor
position during the tests, is analyzed here. Consider the planetary gearbox with three
planets shown in Fig 7.4-a. The faulty tooth is marked with a red circle to make it
easy to follow its motion during meshing. At the start, it is assumed that the faulted
tooth is in mesh with ring gear (Fig 7.4-a), and as the planet rotates due to the rotation
of input gear (here, sun gear), the faulted tooth meshes with sun gear (Fig 7.4-b) and
then it comes into contact with ring gear again. An accelerometer mounted on the
ring gear records the gearbox vibrations transmitted through the ring gear. It can be
expected that the mesh of the faulty tooth with ring gear will influence the vibrations
of the gearbox sensed by the accelerometer more than its mesh with sun gear. This
is due to the fact that vibration transmission paths are different in the two cases. In
each of the three phases (7.4-a) -(7.4-c), in the event of faulty tooth contact, an
impulse is generated, which affects the vibrations, and then it is damped out quickly

between any of the two phases.

As the faulty planetary gear rotates, its faulty tooth successively meshes with the sun
and ring gear or vice versa. The periodic succession of meshes that takes place in
specific time intervals can be analyzed, considering the gearbox's kinematics. In the
event of a mesh, the mesh stiffness is reduced, and an impulse is generated,
influencing the gearbox dynamics, and hence the vibration response changes. The
vibration of a planetary gearbox is intrinsically non-stationary, and it can be
efficiently modeled with a non-stationary time series model. Here, FS-TAR is
utilized to identify the gearbox dynamics through vibrations measured on top of the
ring gear. It efficiently captures the time-varying (TV) partial dynamics of the
gearbox via measured vibration signals. The accelerometer is mounted on top of the
ring gear; therefore, the planet-ring mesh will influence the response and the
estimated model more than the planet-sun mesh. Based on vibration transmission
paths to the sensor, it is expected to have more significant deviations from the
baseline response during the faulty tooth contact with the ring gear than the sun-

planet mesh. The distance between the planet-ring meshes and the sensor also
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influences the measured signals. Considering the descriptions given, the peaks and

valleys of the graphs of Fig 7.3-a can be justified.

The method based on the AR metric and FS-TAR model applied on TSA signals
provides a method for detecting the planetary gearbox and the faulty gear type, which
here is a planetary gear. Fault isolation is performed based on the interval of the
peaks identified on the graphs presented in Fig 7.3-a. The peaks' periodicity and
multiplicity suggest that a planetary gear tooth has a concentrated fault. Furthermore,
in the spectral analysis section, a detailed FFT analysis of the healthy and faulty gear
signals showed the existence of a concentrated planetary gear fault. Combining the
method based on FS-TAR and FFT analysis adds to the robustness of the fault
diagnosis process. To detect the type of a planet fault, for instance, to make a
distinction between crack and pitting, FS-TAR and AR metric may not be efficient,
and mutual information from FFT analysis or other methods can increase the

capability of the method.
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Figure 7.3 AR(%0) of FS-TAR models associated with healthy and pitted cases: a) for
one revolution of carrier, b) for two revolutions of carrier; ¢ , : planet frequency with

respect to ring, ¢, : period of carrier rotation
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Figure 7.4 Meshing succession of planetary gear faulted tooth (marked with a red
dot) with: a) ring gear (first time), b) sun gear and ¢) ring gear (second time)
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7.3 Conclusion

This study proposed a fault detection method for a planetary gearbox based on
vibration data measured under constant speed conditions. The problem of modeling
nonstationary vibration signals from a planetary gearbox with planet gear fault via
the FS-TAR model was considered. It was shown that the FS-TAR model could
effectively model the nonstationary vibration signals, and the model coefficients
were used to estimate time-dependent power spectral density. A fault diagnosis was
performed using FFT analysis of TSA signals, and planet gear fault symptoms were
identified. Time-dependent PSDs obtained by FS-TAR were of high resolution and
could effectively identify the dominant mesh frequency harmonics as a function of
time. The effects of fault on vibration response were investigated based on time-
frequency analysis via PSDs, and it was revealed that dominant mesh frequency
harmonics changed from harmonics 7, 12. 15, 18, 22 in healthy case to harmonics 3

and 4.

The estimated FS-TAR models possess a parametric structure, making them
comparable via AR(o0) metric through their parameters. As the gears rotate, the
position of the faulty tooth changes as well. With its time-dependent structure, the
FS-TAR model provided a means of tracking the faulty tooth mesh during its contact
with sun and ring gears. The Euclidean distance between the models associated with
healthy and faulted gears was calculated by AR(c0) metric for fault detection. Peaks
repeated at the planet rotation period, in the AR(o0) distance during one carrier
revolution, were used to detect and classify a fault related to a planet gear. In this
manner, the applicability and effectiveness of FS-TAR models in the identification
of TV dynamics of planetary gear vibration and fault detection were demonstrated.
Fusing the information provided by comparing FS-TAR models with the results of
time-frequency analysis of the gear vibration signals can lead to more robust fault
diagnosis algorithms. The method developed in this thesis can be further developed

to diagnose gear faults of varying speed cases.
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CHAPTER 8

Conclusion and future works

8.1 Conclusion

The current study tried to detect a planetary gearbox's fault using two different
approaches. The first method is a forward method based on nonlinear dynamic
modeling, including the effects of gear faults. In contrast, a second method is an
inverse approach based on experimentally measured vibration signals. Its effects
were included in a nonlinear dynamic model of a spur gear pair as a first step in
modeling the fault. A novel method for estimating cracked tooth mesh stiffness based
on fracture mechanics was developed, which facilitates the inclusion of the crack
effect in dynamics models. Subsequently, linear and nonlinear dynamic models of a
planetary gearbox, including planetary and sun gear tooth crack effects, were
developed. The frequency analysis of the simulation results revealed that the crack
influences the response mostly in high frequencies around the natural frequencies of
the gearbox. The second part of the study proposed a fault detection method for a
planetary gearbox based on vibration data measured under constant speed conditions.
The problem of modeling nonstationary vibration signals from a planetary gearbox
with planet gear fault via the FS-TAR model was considered. It was shown that the
FS-TAR model could effectively model the nonstationary vibration signals, and the
model coefficients were used to estimate time-dependent power spectral density. A
fault diagnosis was performed using FFT analysis of TSA signals, and planet gear
fault symptoms were identified. Time-dependent PSDs obtained by FS-TAR were of
high resolution and could effectively identify the dominant mesh frequency
harmonics as a function of time. The effects of fault on vibration response were

investigated based on time-frequency analysis via PSDs, and it was revealed that

135



dominant mesh frequency harmonics changed from harmonics 7, 12. 15, 18, 22 in

healthy case to harmonics 3 and 4.

The estimated FS-TAR models possess a parametric structure, making them
comparable via AR(c0) metric through their parameters. As the gears rotate, the
position of the faulty tooth changes as well. With its time-dependent structure, the
FS-TAR model provided a means of tracking the faulty tooth mesh during its contact
with sun and ring gears. The Euclidean distance between the models associated with
healthy and faulted gears was calculated by AR(e0) metric for fault detection. Peaks
repeated at the planet rotation period, in the AR(c0) distance during one carrier
revolution, were used to detect and classify a fault related to a planet gear. In this
manner, the applicability and effectiveness of FS-TAR models in the identification
of TV dynamics of planetary gear vibration and fault detection were demonstrated.
Fusing the information provided by comparing FS-TAR models with the results of
time-frequency analysis of the gear vibration signals can lead to more robust fault
diagnosis algorithms. The method developed in this study can be further developed
to diagnose gear faults of varying speed cases. Significant contributions of this
research to the state of the art in the field of gear condition monitoring can be

summarized as follows:

I. A method of modeling gear tooth root crack and mesh stiffness of cracked
gear is developed that can ease the process of including crack effect in
dynamic models.

II.  An algorithm based on non-stationary FS-TAR time series model and AR
metric is developed that can detect and localized a fault (here planet crack)

in a single step

Eventually, an approach based on a combination of non-stationary time series models
and non-linear dynamic model is proposed to detect and localize a fault in planetary

gear systems.
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8.2

Future works

As future works, the focus will be on the following subjects:

L

IL.

II1.

IV.

Modeling crack and pitting on any gear of a planetary gear by including its
effect in mesh stiffness in a single function. This will aid dynamic modeling
of faulty gears and fault diagnosis through modeling.

Combining the FE model of a ring gear with the developed nonlinear lumped
parameter gearbox to simulate vibration transmission paths to a sensor on top
of the ring gear. This will allow for the consideration of sensor spinning
effect.

Extension of the developed algorithm based on non-stationary time series
models to detect and localize a fault for the case of multiple faults and
distributed faults (pitting on all teeth for instance).

Development of a method based on FS-TARMA model and the change in

frequencies and damping ratios for gear fault detection.
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APPENDICES

A. Equations of motion of the non-linear planetary gear system

Derivatives of potential energy terms can be written as follows

N

a5;
§ k$ 55 k L= S —yf
ays 4 + SyS’ ays COS(O.’l 1,01)

3 3
=|ks+ ) cos(aj —9{) kf) Vs +< cos(aj — ) sin(aj — ;) kf) Xs
( 2 2

i=1

3 3
L (Z cos(af — f) sin(ag — ) kf) xe = (2 cos?(af — ) ks)

i:1 i=1

Z ki cos(a; — ;) [sin(a] —}) cos(6. + ¢;)
+ cos(a — ;) sin(6; + )] ¢;

+ Z kf cos(ag — ) [sin(a? — ) sin(6, + ¢
i=1

3
— cos(aF — ) cos(6, + @)l + (Z Ry cos(af =) kf) 2
i=1

3 3
- <Z Rg cos(a; — ;) kf) 6. + z R, cos(a; —¢;) ki 0;
i=1 i=1

S

ks 65565+k 9% _ sin(as — v
axs z xS’ ays - Sln(ai Il}l)

147



i=1

3
- <Z sin?(af — ¥7) kf) Xp — <Z cos(ai — ) sin(aif — ) kf) Ve

=1 i=1
= ) ke sinCaf — ) [sin(a? - ) cos(0c + )
i=1
+cos(af — ) sin(0, + 9))

+ ) K sin(af —p) [sin(a} — ) sin(@, + @)
i=1

3 3
av
= (ks + ) sin?(af — ) kf) xo + (Z cos(af — ¥f) sin(af — ;) kf) s
s i=1
3

3
_ Cos(ais - lpzs) COS(QC + (pi)]ni + (Z Rs Sin(ais - Iljzs) kls) 95
i=1

3 3
— <Z Rgsin(ai —¢7) kf) 0. + Z It sin(a; — ;) ki 0;
i=1 i=1

55
] ae a0,

3 3
= <Z Rgsin(a; — ;) kf) Xg — <Z Rgsin(aj — ;) kf) X
i=1 5 i=1

— > Reklsin(af = 7) cos(6 + ) + cos(af — ) sin(6, + p)1

i=1
3

+ ) Rekflsin(af — ) sin(6, + py) — cos(a? — ) cos(O + @)l m;

l—l

(ZRcos(a — i)k )ys (ZRcos(a L )yc
(ZR ki )9 —<ZR k5>0 +ZRR kso;

=Rs

148



3
+ (2 cos(a; — ¥7) sin(a; —¥;j) ki

i=1

i=1 i=1

3 3
- (Z cos(af — ) sin(a; — ;) kf) e (Z sin?(af — ) kf

i=1 i=1

3
= (Z cos(ai — i) sin(af — ¥y) kls) Vs

i=1
3
+ D (] sin(af + W) [sin(a] +¥]) cos(e + 1)
i=1

— cos(ai — ;) sin(6; + ¢;)]
+ ki sin(ai — ¢7) [sin(af — ¢7) cos(8, + ¢;)
+ cos(ai — i) sin(0: + 9] ;

3
+ ) (k7 sin(af =) [=sin(af — YD) sin(0c + @)

=1
+ cos(af —7) cos(6c + ¢;)]
— ki sin(af +7) [sin(af +97) sin(f; + ;)

3
+ cos(a] + Y] cos(0, + g Dm; - (Z Rqsin(a - %) kf) 2
i=1
3
+ (Z Rgsin(ai —¢;7) ki — R, sin(a] + ) kf) 0,
i=1

3
= > Ry(sinas =i ki + sin(af + ) ki) 6y
i=1

149

3 3
= " cos(a] +y])sin(af +¥)) kf) e - (Z sin?(af ~ ) kf) 2

)xs



9 i i
i=1 c a c
3
=D sintaf = P)cos(a — ¥ks —cosaf +wj) sin(a]
=1

3 3
+ (ke + ) cos?(af =) ki + ) cos?(af +¢)) k{) Ve
o G -si St
- (Z cos(ag — ¥§) sin(af — ) kf) X = (Z cos?(af = i) ki
3i=1 i=1
+ (K] cos(af +y]) [~ sin(a] + ¥} cos(Oc + @)
~ cos(a — ) sin(®, + 9]
+ Ief cos(af — ) [sin(af — P7) cos(6, + o)
+ cos(ai — ;) sin(0, + @) §;
3
+ ) (f cos(af — ) [=sin(a? = D) sin(0c + ¢0)
=1

+ cos(af — Pf) cos(B, + ;)]
— kI sin(al +¥7) [sin(af + ] sin(6, + ¢;)
3

+ cos(af +w}) cos(6 + )i - (Z Ry cos(af =) kf) 6,

=1

3
+ (Z Ry cos(af — ) kf — Ry sin(a] + ) k{) 6,
i=1

3
— > Ry(cos(a =i ki +sin(a] +¥]) k)6,
i=1

ST 067
= kS —L65 + kT —L¢T7
;( l agc L + l aec l)

= [sin(0; + @;)&; + cos(6. + @) n;] sin(ai — ;)
+ [—cos(6, + 9;)&; + sin(0. + ;) ;] cos(ai — ;) — R

= [=sin(6c + ¢)¢; — cos(6c + @) mi] sin(af +¥7)
— [=cos(Bc + 9i)§; — sin(Bc + @) m] cos(ai + i) — Ry
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(21& )9 +ZkSR( —Rk$ + RK)6; +<ZkSR + kIR, )9

W _(,

7 = (o
267
0§

357
9%,

ov

i=1

+ Z k§ {Isin(6 + ) sin(af = P5) — cos(6, + ) cos(af — Yl

+ f:és(ec + @) sin(a —7) +sin(0c + ¢;) cos(aj = Pi)lni}

X {[xs — xc — cos(B, + 9)&; + sin(0, + 9 In;] sin(ai — ;)
+ [ys — ¥c — sin(0, + @;)&; — cos(6, + ;)n;] cos(aj — ;)
+ Rs(65 — 6,) + R,6;}

3

= > Rk ([ = e = c0S(6, + 9§ + 5in(6, + poIni sin(af — )
i=1

+ [ys — ¥e — sin(0; + ¢;)§; — cos(0, + @;)n;] cos(ai — P}

i Z ki {[—sin(6. + @;) sin(a] +¢Y]) — cos(O. + ¢;) cos(a] +P])]é;

+[- 605(6’ + @) sin(a; +¥;) + sin(6: + ¢;) cos(a; +Pi)In:}
X {[xc + cos(8, + ¢;)§; — sin(6, + @] sin(af +Y])
[ + Sln(gc + (pl)fl + COS(QC + (pi)ni] cos(air + lplr) - Rrgc - Rpgi}

- Z KE R {[xc + cos(6 + 9§ = sin(6, + poni] sin(a] +¥])

i=1
= [e + sin(6c + 9)¢; + cos(6c + @i)n;] cos(ai + i)}

06;

s a6r
+ k=67 + kI 5r>5

bag L Og;

= —[cos(6. + ¢;) sin(af — ¥7) + sin(B, + @;) cos(a] — ¥7)]
[cos(@ +(p])sm(a +1p])—sm(9 +<p])cos(a +1/1])]

a_fj = (kp&; + ki[cos(6. + ¢;) sin(af —F) + sin(6. + ¢;) cos(a]f — ¥7)]

X {[xs = xc — cos(6 + ¢;) &; + sin(8, + )n;] sin(a; — ¥)

+ [¥s — ye — sin(0, + ¢;) & — cos(6: + ¢;)n;] cos(ai — ;)

+ Rs(65s — 6.) + Ry0;}

+ k[ [cos(6. + (pj) sin(a]-r + 11)]’)

— sin(6, + ¢;) cos(ajr + wjf)]{[xc + cos(0;. + @;) &

— sin(0; + @;)n;] sin(a; + ;)

— [y + sin(6; + ;) §; + cos(0, + @;)n;] cos(aj +¥;) — RO,

Ry })8ij
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v —<k +k56856s+kr66r6r>5

on; plli on on

aSls . . s s S N

an; = [sin(6. + ¢;) sin(a; — ¥;) — cos(b. + ¢;) cos(a; — P;)]6;;
j

aé‘l‘r . 3 T T T r

o —[sin(6; + ¢;) sin(a; + ;) + cos(6. + ¢;) cos(a; +¥;)]6;;
j

av

3_77j = (kpni + kf[sin(@c + (pj) sin(af - wf) - cos(BC + (pj) cos(af - 1/1}9)]

X {[xs = xc = cos(Bc + @) & + sin(f, + @)n;] sin(af — ¥f)
+ [¥s — ¥ — sin(0; + ¢;) §; — cos(6: + @In;] cos(ai — ;)

+ Ry(6s — 6.) + R,6;}

— ki [sin(6. + ¢;) sin(af +¥7)

+ cos(6. + (p]-) cos(a]-r + ¢]T)]{[xc + cos(0, + ¢;) &;

—sin(8; + ¢)n] sin(a; + ;)

— [Ye +sin(6; + @;) §; + cos(0, + @In;] cos(ai + ;) — R0,

Ry })8ij

av
90, (kisté‘iS - kierair)aij
]
av s . S i ,
%f%h&&wf{@&&wﬁ{k+kw 9,
]

+ ki Rp{[xs — xc — cos(O. + ;) §; + sin(8; + pn;] sin(a; — P;)
+ [ys —Yc— Sln(ec + (pl) El COS(HC + %)m] Cos(al - f)}61]

+ (k[ RyR,)6,

— KTRy{[X, + cos(6, + @) & — sin(6, + po)n;] sin(ad + 97

— [y +sin(0c + @) & + cos(8; + @)ni] cos(a; +P;)}6;;

Derivatives of the kinetic energy terms are as follows

or  d aT_ .
oz, - Mste g Gz = mss

oT e d(a
6, ° ¥ dt b

oT d
a—xC—mcxc+Z:mpxl,dt(a ) mcxc+2mpxl

— ) = 1,6,
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where

X =X, + él cos(0. + ¢;) — Zfléc sin(0; + ¢;) — (& + Rc)é'c sin(0. + ¢;)
- ('fl + Rc)gc COS(HC + Qoig - 7'7'1 Sil’l(@c + Qoi) - Zrilgc COS(HC + Qoi)
- 771‘9c COS(HC + Qoi) + 771'90 Sin(ec + (pi)

Vi =Y+ ';il sin(0; + ¢;) + Ziléc cos(O; + @) + (& + Rc)é‘c cos(8. + ¢;)
- ('fl + Rc)gc Sil’l(@c + (pi; + ﬁl COS(GC + Qoi) - Zrilgc Sin(gc + Qoi)
- 771’9C Sin(gc + (pi) - 771'90 COS(QC + (pi)

L 57) (e s st

—\lz—)]=|m m X m,, COS i

dt axc c £ p |*c £ D cTPi)sy
3

- (Z mp [(El + Rc) Sin(gc + ¢i) +7; COS(QC + (pl)]) 9C

=1

8
d Z my Sin(gc + (pi) 7‘7'1
i=1
3
: )

+ Z mp (_26196 Sln(gc + (pi) r ({:l + Rc)gc COS(BC + (pi)

i=1

. 2 .

- 27719c COS(GC + Qoi) - Th'9c Sln(gc + Qoi))

o _ N, AT N
— = MY ZmpYi:_( -)=mCyC ZmpYi
ay. o dt \dy, o

)= (e s Yoo
— =)= m m m, Sin i
dt ayc c £ p | Ye £ D cTPi)s,
5 =
+ < mp[(fi + Rc) COS(GC + Qoi) — N Sin(ec + (pi)]> ec
i=1

3
+ Z my cos(0; + @) 17,

=1
3

.. .2 .
+ my (25100 COS(HC + Qoi) - ('fl + Rc)gc Sln(ec + (pi)

=1
.4 s 2
- angc Sm(gc + (pi) - 771'90 COS(GC + (pi))

x.
a—g-l = —[(& + R.) sin(6; + ¢;) +n; cos(B. + ¢;)]
c
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%

3. [(& + Rc) cos(8; + ¢;) —n; sin(0; + ¢;)]

or _i Ty 1
90, . 1’"1’ X590, T V50,
i=
: : a(ory_or
In the Lagrange’s equation the term ” (a éc) 26, will appear. After some

manipulation, the following equation is obtained.
3 3 3 3
d (0T\ OT ) ) . }
& a_gc —a—gcz IC +le Hc +legl_zmprlifl +Zmp (S;l +RC)TIL
i=1 i=1 i=1 i=1

+ <
+ <

i

+ < my [(fl + Rc) COS(HC + (pi) —MNi Sin(gc + (pi)]) j}c
i=1

mp [(51 + Rc)z + niz]) Hc

<.
wIIMw
[=Y

my [_(fi + Rc) Sin(ec + (pi) — i COS(GC + Qoi)]) J'C'c

wll
s

3
+ m [Zéléc(gi +R.) + Zriléc]
Zl b

d (0T ) L )
_<_> =my {[xc + cos(0; + @) &, — 28,0, sin(6; + ¢;) — (§; + RO, sin(0, + ¢;)

= (& + RO, cos(O + @1) = 1 sin0c + 1) = 2, cos(0: + o)

— ;0 cos(8, + @;) + 1,0, sin(6, + (Pi)] cos(0. + ¢;)

— [%c + & cos(6c + ¢;) — (& + R)be sin(6, + ;) —7j, sin(6, + ¢;)

— 116 cos(6; + 9;)]6, sin(6; + ¢;)

+ [J + sin(0c + 91) & + 28,6, cos(6, + @;) + (& + R, cos(6; + ¢1)
= (& + RO sin(0: + 1) + 1, cos(Oc + ) = 2, sin(0e + )

— 0 sin(6, + @) =i cos(O + ¢)| sin(6; + 9:)

+ [V + & sin(0, + 9;) + (& + R, cos(6, + @) — 1, sin(6, + @;)

- 771‘9'c Sil’l(@c + ¢i)]éc COSS(BC + Qoi)}

154



d (0T . ..
<—> = (mp cos(6, + (pl-))jc'c +myé, — (mpni)ec + (mp sin(6, + (pi))jic

de\og, T |
+ my [_rilgc - J'chc Sin(ec + (pi) + ycec COS(HC + Qoi)]
oT L L
6_5- =my [_xcgc sin(0; + @;) — §,0.sin(6; + ¢;) cos(0, + ¢;)
i
20, oA
+ (fl 'i;Rc)gc sz (GC + (pi) + mgcsmz(gc + (pi)
+ 771‘9c Sin(gc + (pi) COS(HC + Qoi) + ycgc COS(GZC + (pi)
+ flgc Sin(gc + (pi) COS(GC +2(pi) + ({:l + Rc)gc COS(GC + (pi)
+ 77'19C COSZ(QC + (pi) - 771’9C Sin(gc + (pi) COS(GC + (pi)]
oT o 2
6_5- =my [_xcgc sin(6; + @) + (& + RO, +1,0. + y.0. cos(6, + (pi)]
i

d [oT oT . . .. ) .
— =) —-=== (mp cos(6, + (pi))xc +mpé, — (mpni)Hc + (mp sin(6, + goi))yc
dt \ 9¢, a&;
L. .2

s my [_277160 > ('fl + Rc)ec ]
Similarly for the coordinate 7;, the following equation is obtained
d /0T oT ) . . ..
T (a—m) ~om = (—my sin(6; + @))% + my7, + (mp(fi + RC)) 0,

. .. .2
+ (mp COS(QC + (pi))yc + mp [25190 - 771’9C ]

For the coordinate 6;, it is straightforward, and can be expressed as follows

d (or =16.+10
dt\gg,) PP
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