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ABSTRACT 

 

FAULT DETECTION OF A PLANETARY GEAR SYSTEM BASED ON 
NON-LINEAR DYNAMIC MODELING AND VIBRATION SIGNALS VIA 

NON-STATIONARY TIME SERIES MODELS 
 
 
 

Hosseiniaghdam, Behrang 
Doctor of Philosophy, Mechanical Engineering 

Supervisor: Prof. Dr. Ender CİĞEROĞLU 
 
 
 

March 2023, 157 pages 

 

The current study aims to investigate the fault diagnosis problem in a gear system 

using non-stationary time series models and non-linear dynamic modeling. Fault 

diagnosis of gearboxes is an ongoing and significant research topic in the context of 

condition monitoring. Various gears and gearboxes are used in machinery found in 

different industries and vehicles. During manufacturing, detecting gearbox faults is 

also an important task. Faults such as tooth profile error, helix angle error (of helical 

gears), and assembly errors are of the faults as mentioned earlier. Some other faults 

occur when the machinery is operating and if they are not prognosed in advance they 

can finally result in catastrophic failures. Instances of such faults include gear tooth 

crack, surface pitting, and spalling. For fault detection, first, a non-linear dynamic 

model, including tooth root crack, is developed. Then the dynamic model with fault 

is verified by using the results given in the available literature. In the next step, fault 

detection using experimental data is carried out. The process starts with the analysis 

of the vibration signals measured from a test setup to identify the fault features in the 

frequency spectrum via Fast Fourier Transform (FFT). Before FFT analysis, the 

signals are averaged via Time Synchronous Averaging (TSA) method. Subsequently, 
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the TSA signals are modeled via a non-stationary time series model called Functional 

Time Series Time Dependent Autoregressive Moving Average (FS-TARMA) and 

its another form called FS-TAR. The developed method of fault detection, utilizes 

the identified models for vibration analysis and the estimation of Power Spectral 

Densities to evaluate fault effects in the time-frequency domain. Subsequently, a 

fault detection and localization algorithm is developed by comparing models 

associated with healthy and faulty gearboxes. Finally, the experimental results, as 

well as theoretical results, are analyzed by the use of the developed method to 

demonstrate its applicability and effectiveness. 

Keywords: Gear Dynamics, Non-linear vibrations, Vibration signal analysis, Fault 

detection, Time series models.  
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ÖZ 

 

DOĞRUSAL OLMAYAN DİNAMİK MODELLEME VE TİTREŞİM 
SİNYALLERİNE DAYALI BİR PLANET DİŞLİ SİSTEMİNİN DURGUN 

OLMAYAN ZAMAN SERİSİ MODELLERİ İLE HATA TESPİTİ 
 
 
 

Hosseiniaghdam, Behrang 
Doktora, Makina Mühendisliği 

Tez Yöneticisi: Prof. Dr. Ender Ciğeroğlu 
 

 

Mart 2023, 157 sayfa 

 

Bu çalışma, durağan olmayan zaman serisi modelleri ve doğrusal olmayan dinamik 

modelleme kullanarak bir dişli sisteminde arıza teşhis problemini araştırmayı 

amaçlamaktadır. Dişli kutularının arıza teşhisi, durum izleme bağlamında devam 

eden ve önemli bir araştırma konusudur. Farklı endüstrilerde ve araçlarda bulunan 

makinelerde çeşitli dişliler ve dişli kutuları kullanılmaktadır. İmalat sırasında 

şanzıman arızalarının tespiti de önemli bir konudur. Diş profil hatası, helis açısı 

hatası (helisel dişlilerin) ve montaj hataları gibi hatalar daha önce bahsedildiği gibi 

hatalardandır. Diğer bazı arızalar, makine çalışırken meydana gelir ve önceden tespit 

edilmezlerse, sonunda feci arızalara neden olabilirler. Bu tür hataların örnekleri 

arasında dişli dişi çatlaması, yüzeyde çukurlaşma ve parçalanma yer alır. Arıza 

tespiti için öncelikle diş kök çatlağı dahil doğrusal olmayan bir dinamik model 

geliştirilmiştir. Daha sonra mevcut literatürde verilen sonuçlar kullanılarak hatalı 

dinamik model doğrulanmıştır. Bir sonraki adımda, deneysel veriler kullanılarak 

arıza tespiti gerçekleştirilir. Süreç, Hızlı Fourier Dönüşümü (FFT) aracılığıyla 

frekans spektrumundaki arıza özelliklerini belirlemek için bir test düzeneğinden 

ölçülen titreşim sinyallerinin analizi ile başlar. FFT analizinden önce, Zaman 
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Senkron Ortalama (TSA) yöntemi ile sinyallerin ortalaması alınır. FFT analizinden 

önce, Zaman Senkron Ortalama (TSA) yöntemi ile sinyallerin ortalaması alınır. 

Daha sonra, TSA sinyalleri, Fonksiyonel Zaman Serisi Zamana Bağlı Otoregresif 

Hareketli Ortalama (FS-TARMA) adı verilen durağan olmayan bir zaman serisi 

modeli aracılığıyla modellenir. Ardından, sağlıklı ve arızalı dişli kutuları ile ilgili 

modeller karşılaştırılarak bir arıza tespit ve lokalizasyon algoritması geliştirilmiştir. 

Son olarak, deneysel sonuçların yanı sıra teorik sonuçlar, uygulanabilirliğini ve 

etkinliğini göstermek için geliştirilen yöntemin kullanımıyla analiz edilir. 

Anahtar Kelimeler: Dişli Dinamiği, Doğrusal olmayan titreşimler, Titreşim sinyali 

analizi, Arıza tespiti, Zaman serisi modelleri 
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CHAPTER 1  

1 INTRODUCTION  

Gearboxes are used in most of machinery operating in various industries. 

Automotive, helicopters, petrochemical factories, wind turibine etc. are among the 

typical ones. Planetary gearboxes provide a number of advantages over the other 

gearboxes and therefore they are preferred to the conventional gear systems. In some 

areas the condition monitoring of the gearbox and fault prognesis is of high 

importance. Detection of an incipient gear fault in the earlier stages can reduce the 

maintenance costs, increase reliability and prevent catastrophic failures. This is more 

critical in vehicles such as helicopters. Different methods that utilize various signals 

may be employed for fault detection. Vibration singals are among mostly used ones 

as they can provide valuable information about gearbox health condition. Vibrations 

can be generated either by the gearbox itself or be generated with a simulated 

dynamic model. In this study, both dynamic models and experimentally measured 

signals are employed simultaneously to develop a robust fault detection algorithm.  
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CHAPTER 2  

2 LITERATURE REVIEW 

In this part, first a sruvey of the published literature in the field of fault diagnosis of 

planetary gear systems will be carried out. Subsequently, considering the areas of the 

field that still can be developed and possible contributions, the research plan and 

methodolgy is presented.  

2.1 Summary of literature  

Gearboxes are of major constituent parts of many machineries in different industries. 

As any other machines, they require regular maintenance and if they are not 

monitored continuously, it can lead to sudden failures, and an increase in annual 

operating budget for the industries. Condition based maintenance (CBM) allows for 

continuous monitoring of the systems and fault prediction so that a planned 

maintenance based on the estimated fault level is carried out before a sudden failure 

occurs. Mesh stiffness and load variation in gearboxes, gives rise to vibrations. Many 

researchers utilize gear vibrations as informative data for the fault symptom 

diagnosis in gear systems. Although rich in information, they have generally low 

levels of signal to noise ratio (SNR).  

Approaches taken by researchers to gear fault diagnosis can be classified into two 

major groups: model-based methods which utilize dynamic linear/non-linear models 

including different faults and data-driven methods which are based on data measured 

from faulty and healthy gears. The former are developed to gain further insight into 

how different faults influence the vibration response of a gearbox and consequently 

develop algorithms for condition monitoring via experimentally acquired data.  
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To aid fault detection through dynamic modeling, Parey et al [1] investigated the 

effect of tooth pitting on the vibrations of a spur gear pair. The surface pitting was 

modelled by a sinusoidal decaying pulse and its severity influence in the response 

was evaluated by crest factor and kurtosis analysis. Through a verification with 

experimental results, they showed the effectiveness of the proposed method of fault 

model. Another approach to include the pitting in the dynamic model is to estimate 

the amount of the change in mesh stiffness [2-3]. Chen et al [4] introduced a realistic 

crack effect in dynamic model of a multistage gear system in which they could see 

the influence of the crack initiation angle on the vibration signals. Another common 

type of tooth faults is spalling. Since it affects the shape of tooth it changes the 

stiffness of the tooth and hence the mesh stiffness compared with healthy gears. 

Therefore, a frequent approach is to consider its effect on mesh stiffness. Luo et [5] 

al proposed a general approach to model tooth spalls in any shape and investigated 

its effect on gear vibrations. This work can provide other authors with mesh stiffness 

of spalled gears in dynamic modelling. Other effects such as gear eccentricity, tooth 

profile modification and misalignment can be simultaneously included in dynamic 

models as well. This approach is advantageous in differentiating between different 

fault features. In an attempt to model the pits and spalling effects, Luo et al [6], 

proposed a dynamic model that considers the effects of tooth roughness change and 

geometric deviation due to surface pitting and spalling. They demonstrated that 

surface roughness changes result in sidebands in high frequencies with significant 

amplitudes in the resonance frequency. This is because the effect of local faults such 

as pitting and spalling reveals itself as sideband frequencies and peaks at many 

frequencies, especially in high frequencies. Gears demonstrate a non-linear dynamic 

behavior in the working condition; therefore, in the solution phase of the gear 

vibration equation sets, different approaches can be employed. For the spur gears, 

non-linearity stems from different sources from which the most important one is 

varying mesh stiffness that varies as a function of the gear rotation angle. 

Considering the relative orders of the gear mesh stiffness, bearing stiffness and shaft 

stiffness, there might be a coupling between the torsional and lateral vibrations. It is 
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shown in [7] that the gear system may exhibit diverse behavior ranging from 

periodic, sub-harmonic, and chaotic motion due to lateral-torsional coupling effects. 

Developing a complete dynamic non-linear gear model allows a realistic evaluation 

of diagnostic procedures. Most of authors preferred to establish a dynamic model 

which includes a single gear fault and there are few models which consider multiple 

faults with their interaction. Modelling is a forward problem at which the effects of 

faults are included in the mathematical models and the response (outputs) are 

calculated. The next step after the validation of models is to find algorithms that can 

unfold the complicated response patterns and detect faults using the available data. 

This is an inverse problem with its own difficulties. Each type of gear faults has 

certain effect on the gear vibration response and therefore might require specific 

methods to be detected. As it is expressed in [8], faults such as wear, pitting, 

chipping, scuffing, spalling, tooth breakage and white structure flaking are the major 

initiation causes of gearbox failures. Furthermore, it is stated that more investigations 

need to be performed on different and mixed fault modes and severities. This is 

because most of the authors have verified the effectiveness of the employed fault 

indicator solely for a special fault case. According to [9], spalls and pitting affect the 

tooth surface quality and mesh stiffness and it is hard to differentiate them through 

vibrations, although the change in the response is significant. Therefore, with a 

reliable non-linear dynamic model, development of proper fault detection and 

classification algorithms are of high importance.  

Since dealing with large data is computationally expensive and unprocessed data 

does not provide highly correlated information, different methods are developed to 

extract fault sensitive extract features from signals. Gear vibration signals are non-

stationary (or cyclostationary) in their nature and the obtained features may 

simultaneously depend on time and frequency. A method that is popular in feature 

extraction context and takes into account the frequency as well as time is wavelet 

transform. Barbieri et al [10] Showed that the use of wavelet transform in time 

domain could potentially detect a fault. However, in order to detect the fault type, 

i.e. gear or bearing, their associated characteristic frequency obtained by singular 
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value decomposition (SVD) must be used. One of the most important features of 

wavelet transforms is that it enables zooming in time or frequency domain and the 

investigation of instantaneous frequencies of the signals. However, resolution in the 

frequency domain might be low. In an attempt, Hu et al [11] introduced a high order 

synchrosqueezing wavelet transform that provides higher resolution in the estimation 

of instantaneous frequency and successfully used it in gear fault detection.  

In the context of fault diagnosis, once there exist multiple fault types, the first task 

after the detection of a fault occurrence, is to identify the type of the fault which is 

called fault isolation. From pattern recognition point of view, this could be seen as a 

non-linear classification task which can be tackled by various methods. Different 

approaches have been developed for this purpose. Artificial Neural Networks 

(ANNs) and Support Vector Machines (or in a general class, Kernel based methods) 

are popular methods in this category. Sadeghi et al [12] adopted a method based on 

ANN for fault identification purpose and they showed the effectiveness of the 

method. ANNs are quite popular in the field of classification as it can aid the 

unsupervised classification process. Rafiee et al [13] utilized features from wavelet 

transform as an input to ANN based classifier to identify gear and bearing faults. 

Other classifiers such as fuzzy classifier has also been reported in fault identification 

process [14]. Simliar studies has been carried out in [15-17] where the issue of time 

varying operating conditions is of high concern.  

Another complexity that arise during the analysis of gear vibration signals is that 

they are non-stationary and most of the common signal analysis methods are not 

readily applicable. Time-frequency methods such as Short Time Fourier Transform 

(STFT) and other FFT-based methods are generally applied on gear signals which 

can lead to acceptable results. Frequency domain analysis based on the Fourier 

transform is a primary yet powerful approach for detecting characteristic frequencies 

and fault symptoms. The biggest drawback of this method is the low frequency 

resolution. Alternatives to the FFT are Hilbert Huang Transform (HHT), Wigner 

Vile distribution, and wavelet transform (WT). For instance, WT enables zooming 

in frequency or time domain to investigate fault effects. However, it has limitations 
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in detecting specific faults, such as distributed faults. In spite of the limitations, the 

aforementioned methods are primarily helpful in fault detection rather than fault 

severity assessment. 

FFT-based, stationary, or time-dependent approaches such as WT are among the 

most powerful planetary gear fault detection methods. Generally, modulation 

sidebands around mesh frequency and its harmonics are utilized as fault indicators. 

Many authors conducted studies by applying FFT on experimentally recorded 

signals [18-19] or a combination of theoretical and experimental data [20-22]. The 

former method focuses on advanced signal processing tools for fault detection. The 

latter type tries to develop a model that simulates an actual gearbox's behavior as 

precisely as possible such that the model represents the actual system and can aid in 

fault diagnosis. Most of the studies which employed FFT, analyze sideband 

frequencies around mesh frequency harmonics. Sidebands are generally analyzed 

because the variation of gear mesh stiffness in a meshing period generates mesh 

frequency, and its modulation with carrier and other frequencies results in sidebands. 

However, the gearbox dynamics, which can be expressed in terms of its natural 

frequencies and modal dampings, is affected by a fault. This fact has been employed 

by [23] to detect planetary gear faults. They reported time-varying sidebands around 

resonance frequencies which are thought to be excited by impulses generated due to 

faults.  

Once a gear fault is detected, the next major step is determining the faulty gear. 

Different approaches can be used to achieve this goal. For instance, Time 

Synchronous Average (TSA)-based methods as employed in [24], where TSA 

signals are divided into several segments utilizing windows associated with each 

planet pass. Then the windowed signals are averaged to detect the faulty planet. The 

drawback of these methods is that they require considerably long measured signals. 

Detection of a faulty planet requires geometric information of its pass from the 

sensor location. Peng et al. [25] take a different approach to using mesh phasing of 

different planet gears. They traced the gear mesh component of the faulty gear's 

impulse response, making it distinguishable among the planets. For this purpose, an 
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internal sensor was mounted on the planet carrier. TSA can extract periodic 

waveforms dues to faulty gears, and Wavelets enable zooming in time/frequency 

domains. A combination of the two mentioned methods is the core of the study [26], 

which enabled them to detect simultaneous faults. In the case of planetary gear fault, 

when a fixed sensor is mounted on the ring gear, the impulse effect during the 

meshing of the faulty tooth is transferred to the sensor from different paths. Different 

vibration transfer paths complicate fault diagnosis through only one fixed sensor. To 

consider such effects, Guo et al. [27] devised a method combining vibration 

separation, TSA, and demodulation. They transferred time domain signals to the 

angle domain using tachometer signals and applied narrowband demodulation on 

TSA signals to detect planet faults. In the angle domain, the mesh period of the gears 

can be followed to trace the faulty tooth impulsive mesh in the spectrum. Similar 

methods have been used in [28-29]. The problem with this method is that it requires 

precise speed and gear mesh information, making it quite challenging to apply in 

practice. Most fault diagnosis algorithms require geometric or kinematic information 

about the faulty gear to isolate it successfully. A method to achieve such information 

is through time-frequency methods, which capture the time-dependent effects of 

faults. Despite their great potential in gear fault detection, the authors have yet to 

employ parametric non-stationary time series models frequently. This research 

utilizes non-stationary time series models to achieve kinematic information about the 

faulty tooth mesh for planetary gear fault diagnosis.  

Gear vibration signals are non-stationary, and most common signal analysis methods 

are not readily applicable. Compared to the other non-parametric empirical methods, 

such as Fourier-based methods, the time series models offer several advantages, such 

as parametric analysis of system dynamics represented by frequencies and dampings. 

Time series models are employed vastly in the field of structural condition 

monitoring. They represent a partial dynamic system model in a particular frequency 

interval. According to Wang [30], the effect of a spur gear fault is periodic and 

synchronous with shaft speed. Therefore, it can be best detected by Synchronously 

Averaged time domain signals (typically in the angle domain). They showed that 
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when there is a fault, the residual of the signal's Autoregressive (AR) model does not 

have a Gaussian random distribution, and there will be spikes in the spectrum. Chen 

et al. [31] proposed a method based on the AR model with varying coefficients that 

aid in identifying the correlation between the rotating phase and AR coefficients. 

They claimed the method is more efficient than Support Vector Machines (SVM) for 

detecting tooth root crack for a randomly varying speed case. There have been 

attempts to detect and estimate faults using time series models as in [32-34]. 

Modeling gear vibrations, in general necessitates the use of non-stationary models. 

Many authors have conducted fault diagnosis via time series models. Linear 

parameter varying Autoregressive Moving Average (LPV-ARMA) [35-36], LPV-

VAR [37], Time-Dependent ARMA (TARMA) [38-39], Functional Series TARMA 

(FS-TARMA) [40-42] and Vector Functionally Pooled ARMA (VFP-ARMA) [43] 

are among the typically used times series models for fault detection. The idea behind 

VFP-ARMA and generally the Functionally Pooled (FP) models [44, 45] is to obtain 

a global model that includes the variation of operating conditions inside the Vector 

ARMA (VARMA) model. In the LP-VAR method, the coefficients are functions of 

rotating phase and speed, which allows for considering the variation of operating 

conditions. The general approach in fault detection via time series models is to 

generate residuals using an estimated baseline model. A hypothesis test is 

subsequently carried out to determine whether the residual satisfies the normality 

condition, and based on the result, a fault is detected. Fault detection of gearboxes 

operating in varying load conditions with Autoregressive with Exogenous Input 

(ARX) model utilizing time-synchronously averaged (TSA) signals by applying F-

test on the residuals has been attempted in [46]. Similar methods were used in [47], 

where AR models fitted to the healthy signals were employed as a baseline to detect 

the fault based on the normality test of given signals collected at different operating 

conditions. AR models do not account for non-stationarity, and various methods can 

be adopted to tackle the problem. For instance, for the particular case of periodically 

varying operating conditions, Periodic AR (PAR) model has been suggested in [48]. 
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TARMA model is different from its stationary counterpart ARMA, in the sense that 

the model parameters are time-dependent, which allows for taking into account the 

change of system parameters or non-stationarity of the vibration signals. Stationary 

models, including AR, ARMA, ARX are generally utilized for modeling stationary 

signals, although they can tackle weak non-stationarity to some extent. Time series 

models offer great potential for the fault detection of mechanical systems, especially 

gearboxes. Most studies that employed time series models put effort into considering 

varying operating conditions inside fault detection algorithms such that they function 

precisely under different operating conditions. However, none considered modeling 

gear signals' non-stationary behavior via non-stationary models such as TAR or 

TARMA. 

This study aims to improve planetary gear systems' fault detection process via time-

frequency analysis of vibration signals using non-stationary time series approach and 

non-linear dynamic modeling of a planetary gear system with concentrated gear 

fault. In time series approach, the FS-TAR and FS-TARMA models will estimate 

the non-stationary gear vibration signals. It will allow for following time-dependent 

fault signatures at different frequency ranges. The estimated time series models 

associated with faulty and healthy gears will be compared with a metric which 

provide Euclidean distance called AR(∞) metric to detect the fault. Linear and non-

linear dynamic models of a planetary gear with gear fault will be developed to aid 

diagnosis through the effects that faults impose on vibration response in the 

frequency domain.  

The methodology of fault detection with the mentioned methods is described in the 

nex subsection.  

2.2 Methodology  

Here, FS-TAR and FS-TARMA approaches will be used to represent  non-stationary 

signals by time-dependent parameteric models. The core idea of the study is that, an 
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FS-TARMA (FS-TAR) model can precisely estimate the vibration signals and 

identity gearbox partial dynamics. The obtained model will make it possible to 

observe the variation in model dynamics in one revolution of planet carrier. The 

hypothesis is that any fault, other than affecting system’s natural frequencies, will 

have an impulsive effect on the response when a faulty tooth enters a mesh with other 

gears. Such impulses can stimulate specific operating modes (frequencies) in the 

gearbox and change the dynamics of gear system in a short period. These changes 

which are localized in time, can best be estimated via parametric non-stationary 

models. To test the applicability of the approach, experimentally collected vibration 

signals will be used. In addition, a non-linear dynamic model of planetary gearbox 

with gear faults will simultaneously aid the aforementioned fault detection process. 

A gear dyanmic model can provide an insight into the fault influence mechansims 

on the response of the gearbox. It is expected to achieve a more effective fault 

detection algorithm based on a fusion of the data provided by non-stationary signal 

models and non-linear dynamic model. Figure 2.3. illustrates the process of fault 

detection employing the mentioned methods.  
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Figure 2.1 Fault detection process based on comparison of time series 

2.3 Contributions to the field 

The main contributions of the research are  

a) The use of FS-TAR and FS-TARMA approaches for the first time to estimate 

non-stationary planetary gearbox signals, 

b) Fault detection and isolation only by using a non-stationary FS-TAR model,  

c) Development of a method for the estimation of a cracked gear mesh stiffness. 
The developed method can facilitate the process of including the crack effect 
in dynamic models. 

Recording gear vibration response/ calculation of 

non-linear vibration response and estimation of 

TSA signals 

Modeling TSA signals of the healthy and faulty 

gears with non-stationary time series models  

Calculation of AR(∞) distance of estimated 

models 

Fault detection and localization  

Features from non-linear 

dynamic model  
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2.4 Objectives and scope  

The objectives and scope of the study are  

 Vibration-based gear fault detection via non-stationary time series approach, 

 Only one type of fault is considered and a fault classification will not be 

carried out, 

 The methods based on FFT analysis will be used as a primary tool of fault 

diagnosis, 

 WT will be used to support the fault detection through time-frequency 

analysis.  

 The non-linear dynamic model of the gearbox is used as a complementary 

tool of fault detection. 

 The stability analysis of the non-linear model will not be of concern,  
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CHAPTER 3  

3 Dynamic modeling of a planetary gearbox 

In the current chapter, dynamic modeling of a planetary gearbox is presented. First, 

a linear model is developed and through a modal analysis and comparison of resutls 

with the ones available in literature, it is validated. At the next step, non-linear 

dynamic model of the planetary gearbox is developed. Since the final goal of the 

chapter is to model the fault effects on the response of a planetary gearbox, a method 

should be developed to allow the inclusion of faults in the dynamic model. As a 

primary step toward this goal, a non-linear dynamic model of a spur gear pair with 

gear faults such as tooth root crack and pitting is developed and verified. Having 

established a solid backgorund for fault modeling, in the last part a non-linear 

dynamic model of a planetary gearbox is developed and simulated. The simulation 

results will provide an aid to gear diagnostics.  

3.1 Linear dynamic model 

In this part, dynamic modelling of a planetary gearbox will be realized. The gearbox 

considered in this study consists of a sun gear, ring gear, three planets, and a carrier. 

In order to do a complete analysis, ring is also assumed to be moving. The sun gear 

is connected to the input shaft and the input torque is applied to it while the output 

is carrier motion. Schematic view of the gearbox is shown in Fig 3.1. In the dynamic 

model, all the gears are assumed to be rigid other than the teeth which are flexible. 

Sun, planets, carrier and ring gear each have three degrees of freedom (DOFs) of 

which two are translational and one is rotational DOF. Therefore, the planetary gear 

system will have eighteen DOFs. The mass, mass moment of inertia, and pitch radius 

of the sun are shown by 𝑚 ௦, 𝐼 ௦, 𝑅 ௦ respectively. For the carrier, mass, mass moment 

of inertia and the radial distance are denoted by 𝑚 ௖ , 𝐼 ௖, 𝑅 ௖ respectively. 𝑚 ௣, 𝐼 ௣, 
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𝑅 ௣ represent the mass, mass moment of inertia and pitch radius of the planets. The 

stiffness of the sun, planet and carrier bearings are denoted by 𝑘 ௦, 𝑘 ௣, 𝑘 ௖ 

respectively. Damping of the bearings is neglected in this phase of modeling.  

In Fig 3.2, the planar motions of the sun gear, carrier and planetary gear along the 

DOFs are shown. Sun gear has two translational DOFs shown as 𝑥 ௦, 𝑦 
௦
 and one 

rotational DOF 𝜃 ௦.  Similarly for the carrier, the DOF are 𝑥 ௖ , 𝑦 
௖
, 𝜃 ௖. In the same 

way the DOF of the ring gear are defined as 𝑥 ௥, 𝑦 
௥
, 𝜃 ௥. Considering the DOFs, 

displacement vector of sun, 𝒓 ௦, and displacement vector of carrier ,  𝒓 ௖ can be 

written as  

𝒓 ௦ = 𝑥 ௦𝒊 + 𝑦 
௦
𝒋,  𝒓 ௖ = 𝑥 ௖𝒊 + 𝑦 

௖
𝒋  (3.1) 

According to Fig 23 (b), Absolute position of planet i, can be expressed as 

𝒓 ௜ = 𝒓 ௖ + 𝒓௜
ᇱ + 𝝆௜  (3.2) 

where 𝒓௜
ᇱ represents position vector from carrier center to planet location and 𝝆௜ is 

displacement vector of planet with respect to the carrier.  

Displacement vectors 𝒓௜
ᇱ and 𝝆௜ are written as follows 

𝒓௜
ᇱ = 𝑅௖[cos(𝜃௖ + 𝜑௜) 𝒊 + sin(𝜃௖ + 𝜑௜)𝒋], 𝝆௜ = 𝜉 

௜
𝒆௜

క
+ 𝜂𝒆௜

ఎ  (3.3) 

where 𝑅௖ is the radial distance from carrier center to planet center, 𝜉 
௜
 is the motion 

in the radial direction between carrier and planet, 𝒆௜
క  represents unit vector, 𝜂 

௜
 is the 

motion in the direction normal to 𝜉 
௜
, 𝒆௜

ఎ is unit vector  and 𝜑௜ denotes initial 

circumferential position of planetary gears which are 𝜑ଵ = 0°, 𝜑ଶ = 120°, 𝜑ଷ =

240°.  

Position vector of the planet i, 𝒓 ௜ can be written as  

𝒓 ௜ = 𝑥 ௜𝒊 + 𝑦 
௜
𝒋  (3.4) 

𝑥 ௜ = 𝑥 ௖ + ൫𝑅௖ + 𝜉 
௜൯ cos(𝜃௖ + 𝜑௜) − ൫𝑅௖ + 𝜂 

௜
൯ sin(𝜃௖ + 𝜑௜)  



 
 

17 

𝑦 
௜

= 𝑦 
௖

+ ൫𝑅௖ + 𝜉 
௜൯ sin(𝜃௖ + 𝜑௜) − ൫𝑅௖ + 𝜂 

௜
൯ cos(𝜃௖ + 𝜑௜)  

It has to be noted that the absolute rotational angel of planet 𝑖 is obtained as 𝜃௖ + 𝜃௜ , 

where 𝜃௜ is the rotation angle measured with respect to the carrier. 

Since the gear teeth are flexible, while the gears are in mesh, the overall stiffness 

forms an stiffness called mesh stiffness. In order to find the force induce by the 

meshing, the gear mesh deformation must be calculated in terms of the 

displacements. The Gear mesh deformation between 𝒊-th planet and sun can be 

expressed as 

[ cos( )]sin( )

[ sin( )]cos( ) ( )

s s s
i s i c c i i i

s s
s i c c i i i s s c p i

x x R

y y R R R

    

      

     

      
   (3.5) 

where 𝑅௦ is the sun base radius, 𝑅௣ represents planet base radius, 𝛼௜
௦ is the pressure 

angle between 𝑖-th planet and sun and 𝜓௜
௦ shows the angular position of 𝑖-th planet 

with respect to sun. the mesh deformation is the deformation of the stiffness element 

between the two meshing gears as shown in Fig 3.3.  

In the same way, gear mesh deformation between 𝑖-th planet and the ring (see Fig 

3.4) can be shown as 

[ cos( )]sin( )

[ sin( )]cos( )

r r r
i i c c i i i

r r
i c c i i i r c p i

x R

y R R R

    

     

   

     
  (3.6) 

where 𝜓௜
௥ is position angle of 𝑖-th planet with respect to the ring, and 𝑅௥ represents 

base radius of ring. 

When the mesh stiffness is assumed to be time varying, the contact ratio comes into 

play. It can be written as  

Contact ratio between planet and sun 𝑚௜
௦ 

𝑚௜
௦= 

ට஺ೞ
మିோೞ

మାට஺೛
మ ିோ೛

మିோ೎ୱ୧୬ (ఈ೔
ೞ)

௣್
  (3.7) 
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where 𝐴௣, 𝐴௦ are radii of addendum of planet and sun and 𝑝௕ is base pitch of 

planetary gear 

Contact ratio between planet and ring 𝑚௜
௥ 

𝑚௜
௥= 

ට஺೛
మ ିோ೛

మିට஺ೝ
మିோೝ

మିோ೎ୱ୧୬ (ఈ೔
ೝ)

௣್
  (3.8) 

 

 

. 

Figure 3.1 Schematic view of the planetary gearbox with three planets [49] 
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In the easiest form, the mesh stiffness between planet and ring, and planet and sun 

can be shown as in Fig 3.5, where 𝑇௠ =  
ଶగ

௡೛ఠ೛
  is the mesh period. Here, the mesh 

stiffness is estimated via Fourier series as function of time with fifteen harmonics. 

This way, it can be easily used in numerical simulations.  

 

Figure 3.2 a) planar motion of the sun gear, b) the planet gear and carrier; the 

dashed and solid lines: positions before and after motion [49] 

 

Figure 3.3 meshing between the sun and a planet [49] 
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Figure 3.4 meshing between the ring and a planet [49] 

 

 

Figure 3.5 Gear mesh stiffness between a) planet 𝑖 and ring and sun, b) ring gear 

and planet 𝑖 [49] 

 

Having calculated all the displacements and deformations, the potential and kinetic 

energy of the system can be obtained. then, using the Lagrange’s equations (Eq 3.9), 

equations of motion are derived. 
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( ) ,i
i i i

d T T V
Q

dt q q q

  
  

     (3.9) 

Degrees of freedom can be shown in a vector form as  

1 1 1 2 2 2 3 3 3{ , , , , , , , , , , , , , , }i s s s c c cq y x y x             (3.10) 

The kinetic and potential energies are obtained as  

𝑇 =  
1

2
ൣ𝑚௦(𝑥̇௦

ଶ + 𝑦̇௦
ଶ) + 𝐼௦𝜃̇௦

ଶ൧ +
1

2
ൣ𝑚௖(𝑥̇௖

ଶ + 𝑦̇௖
ଶ) + 𝐼௖𝜃̇௖

ଶ൧

+ ෍
1

2
ൣ𝑚௣(𝑥̇௜

ଶ + 𝑦̇௜
ଶ) + 𝐼௖(𝜃̇௖ + 𝜃̇௜)𝜃̇௖

ଶ൧

ଷ

௜ୀଵ

 

𝑉 =  
ଵ

ଶ
𝑘௦(𝑥௦

ଶ + 𝑦௦
ଶ) +  

ଵ

ଶ
𝑘௖(𝑥௖

ଶ + 𝑦௖
ଶ) + ∑

ଵ

ଶ
ൣ𝑘௣(𝜉௜

ଶ + 𝜂௜
ଶ) + 𝑘௜

௦(𝛿௜
௦)ଶ +ଷ

௜ୀଵ

𝑘௜
௥(𝛿௜

௥)ଶ൧  (3.11) 

The potential and energy terms are plugged into the Lagrange’s equations and after 

the linearization, the equations of motion are obtained. Before attempting at time 

domain solution of the equations of motion, first a modal analysis using average 

stiffness is carried out and the model is verified by results available in the literature. 

It has to noted that here, for the planets. Relative coordinates are used, while they 

can be absolute as well.  

3.1.1 Linear dynamic response of the gear system   

In this subsection, the response of linear dyanmic system is evaluated. Before time 

simulation, first a modal analysis is carried out to verify the model using the available 

results in the literature. 

The values of parameters used for the validation are given in table 3.1. 
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Table 3.1 Parameter values used in the simulations [50] 

 
Sun Ring carrier Planet  

Mass (kg) 0.4 2.35 5.43 0.66 

Mass moment of inertia 

divided by the radius  
௃

௥మ 

(kg) 

0.39 3 6.29 0.61 

Base diameter(mm) 77.4 275.0 176.8 100.3 

Mesh stiffness (N/mm) 85 10s r
i ik k    

Bearing stiffness (N/mm) 810p s rk k k    

Torsional stiffness 
(Nm/rad) 

910ruk  , 0su cuk k   

Pressure angle (deg) 24.6s r     

 

Using the parameters in the Table 3.1, Natural frequencies and with a multiplicity of 

m are obtained as shown in Table 3.2. As it can be noticed, the obtained frequencies 

compare well with the results given in the literature [50]. Therefore, the model is 

verified and it can be used for further analysis. 

A number of the mode shapes are presented in the Figs 3.6-3.11. They are obtained 

using the relative coordinate system and if absolute coordinates are used for the 

planet bearings, the results would be different.  
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Table 3.2 frequencies with multiplicity m and number of planets N 

N = 3 
 

Reference [50]  Computed 

m = 1 0 

1475.7 

1930.3 

2658.3 

7462.8 

11775.3 

0 

1476.3 

1930.4 

2663.6 

7463.6 

11775.3 
 

m = 2 743.2 

1102.4 

1896.0 

2276.4 

6986.3 

9647.9 

743.17 

1102.4 

1896.0 

2276.4 

6986.3 

9647.9 
 

 

Figure 3.6  First mode of the planetary gearbox 
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Figure 3.7  Second mode of the planetary gearbox 

 

Figure 3.8  The third mode of the planetary gearbox 
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Figure 3.9  The fourth mode of the planetary gearbox 

 

Figure 3.10 The fifth mode of the planetary gearbox 
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Figure 3.11  The mode thirteen of the planetary gearbox 

3.2 Non-linear dynamic model 

In this section, before attempting to model the non-linear vibrations of planetary 

gearbox, a non-linear model of a spur gear pair with the inclusion of gear faults and 

errors is established and solved. It will provide a basis for the analysis of fault effects 

on dynamic response in time and frequency domains. It has great significance as it 

helps understanding the fault modeling methods and fault influence mechanisms in 

a gear system.  

3.2.1 Non-linear dynamic modeling of a spur gear pair with gear faults 

In the current subsection, in order to gain insight on how to model the faults in a gear 

system, a non-linear dynamic model of a six DOF spur gear pair is developed and 

the effects of different faults including gear tooth crack and surface pitting are 

included in the model. This is carried out prior to modeling planetary gearbox with 
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fault effects because inclusion of faults in planetary gear systems is more 

complicated due to the multiple meshing nature of planetary gears. Therefore, this 

part mainly includes  

a) Non-linear dynamic modeling of a spur gear system without faults 

b) Non-linear dynamic model with inclusion of tooth root crack and pitting 

c) Investigation of the effects of faults on dynamic response in time and 

frequency domains 

d) Simulation results 

3.2.1.1 Modeling  

The purpose of this part is to develop a non-linear dynamic model of a spur gear pair 

which includes the effect of coupling between torsional and lateral vibrations. In this 

non-linear model, the time varying mesh stiffness, backlash, and gear errors are 

included.  

The six DOF dynamic model of this study is show in Fig 3.12. This model includes 

four rotational DOFs (of prime mover, pinion, gear and load), and two lateral 

motions of the pinion and gear along the action line which in total becomes six DOF. 

The effects which are included in the dynamic model and hence are considered in 

the dynamic analysis, constitute of: 

  1- Time varying mesh stiffness and damping,  

2- Torsional flexibility of pinion and gear shafts, 

3- Torsional damping of shafts,  

4- Lateral flexibility of shafts,  

5- Stiffness and damping of bearings,  

6- Inertia of prime mover and load,  

7- Input and load torques,  
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8- Teeth separation during meshing,  

9- Backlash and backside collision,  

10- Tooth root crack 

11- Tooth surface pitting.  

The dynamic analysis is done in the plane of the gears and out of plane motions are 

ignored. The effects of friction between the teeth in mesh is neglected as well. Taking 

into account the assumptions and Fig 3.12, the equations of motion can be obtained. 

 

 

Figure 3.12  Dynamic model of a spur gear pair [1] 
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The equations of motion can be obtained using either Newton’s second law or 

Lagrange’s method. The result will be as expressed in equations (3.12)-(3.17) 

𝐼஽𝜃̈஽ + 𝑘௧ଵ𝜃஽ − 𝑘௧ଵ𝜃ଵ + 𝑐௧ଵ𝜃̇஽ − 𝑐௧ଵ𝜃ଵ̇ = 𝑇஽  (3.12) 

𝐼ଵ𝜃̈ଵ − 𝑘௧ଵ(𝜃஽ − 𝜃ଵ) − 𝑐௧ଵ൫𝜃̇஽ − 𝜃ଵ̇൯ + 𝑘௠𝑟ଵ(𝑦ଵ − 𝑦ଶ + 𝑟ଵ𝜃ଵ − 𝑟ଶ𝜃ଶ) +

𝑐௠𝑟ଵ൫𝑦̇ଵ − 𝑦̇ଶ + 𝑟ଵ𝜃ଵ̇ − 𝑟ଶ𝜃ଶ̇൯ = 0  (3.13) 

𝐼ଶ𝜃̈ଶ − 𝑘௠𝑟ଶ(𝑦ଵ − 𝑦ଶ + 𝑟ଵ𝜃ଵ − 𝑟ଶ𝜃ଶ) − 𝑐௠𝑟ଶ൫𝑦̇ଵ − 𝑦̇ଶ + 𝑟ଵ𝜃ଵ̇ − 𝑟ଶ𝜃ଶ̇൯ +

𝑐௧ଶ൫𝜃̇ଶ − 𝜃௅̇൯ = 0  (3.14) 

𝐼௅𝜃̈௅ + 𝑘௧ଶ(𝜃ଶ − 𝜃௅) + 𝑐௧ଶ൫𝜃̇ଶ − 𝜃௅̇൯ = 𝑇௅    (3.15) 

𝑚ଵ𝑦̈ଵ + 𝑘ଵ𝑦ଵ+𝑘௠(𝑦ଵ − 𝑦ଶ + 𝑟ଵ𝜃ଵ − 𝑟ଶ𝜃ଶ) + 𝑐௠൫𝑦̇ଵ − 𝑦̇ଶ + 𝑟ଵ𝜃ଵ̇ − 𝑟ଶ𝜃ଶ̇൯ = 0    

(3.16)  

𝑚ଶ𝑦̈ଶ + 𝑘ଶ𝑦ଶ − 𝑘௠(𝑦ଵ − 𝑦ଶ + 𝑟ଵ𝜃ଵ − 𝑟ଶ𝜃ଶ) − 𝑐௠൫𝑦̇ଵ − 𝑦̇ଶ + 𝑟ଵ𝜃ଵ̇ − 𝑟ଶ𝜃ଶ̇൯ = 0 

(3.17) 

The equations given above can be transformed to a matrix form with mass, damping 

and stiffness matrices as follows 

𝑀 =

⎣
⎢
⎢
⎢
⎢
⎡
𝐼஽ 0 0 0 0 0
0 𝐼ଵ 0 0 0 0
0 0 𝐼ଶ 0 0 0
0 0 0 𝐼௅ 0 0
0 0 0 0 𝑚ଵ 0
0 0 0 0 0 𝑚ଶ⎦

⎥
⎥
⎥
⎥
⎤

  (3.18) 

𝐾 =

⎣
⎢
⎢
⎢
⎢
⎡

𝑘௧ଵ −𝑘௧ଵ 0 0 0 0
−𝑘௧ଵ 𝑘௧ଵ 0 0 0 0

0 𝑘௧ଶ −𝑘௧ଶ 0 0 0
0 −𝑘௧ଶ 𝑘௧ଶ 0 0 0
0 0 0 0 𝑘ଵ 0
0 0 0 0 0 𝑘ଶ⎦

⎥
⎥
⎥
⎥
⎤

   (3.19) 
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𝐶 =

⎣
⎢
⎢
⎢
⎢
⎡

𝑐௧ଵ −𝑐௧ଵ 0 0 0 0
−𝑐௧ଵ 𝑐௧ଵ 0 0 0 0

0 𝑐௧ଶ −𝑐௧ଶ 0 0 0
0 −𝑐௧ଶ 𝑐௧ଶ 0 0 0
0 0 0 0 𝑐ଵ 0
0 0 0 0 0 𝑐ଶ⎦

⎥
⎥
⎥
⎥
⎤

  (3.20) 

Tooth mesh force can be expressed as  

𝐹௠ = 𝐾ௗ ቄ
𝑋
𝑋̇

ቅ  (3.21) 

where 

𝑋 =

⎩
⎪
⎨

⎪
⎧

𝜃஽

𝜃ଵ

𝜃ଶ

𝜃௅

𝑦ଵ

𝑦ଶ ⎭
⎪
⎬

⎪
⎫

,  𝑋̇ =

⎩
⎪⎪
⎨

⎪⎪
⎧

𝜃̇஽

𝜃̇ଵ

𝜃̇ଶ

𝜃̇௅

𝑦̇ଵ

𝑦̇ଶ ⎭
⎪⎪
⎬

⎪⎪
⎫

  (3.22) 

𝐾ௗ = 

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0 0 0 0 0 0 0 0 0 0
0 −𝑘௠𝑟ଵ

ଶ 𝑘௠𝑟ଵ𝑟ଶ 0 −𝑘௠𝑟ଵ 𝑘௠𝑟ଵ 0 −𝑐௠𝑟ଵ
ଶ 𝑐௠𝑟ଵ𝑟ଶ 0 −𝑐௠𝑟ଵ 𝑐௠𝑟ଵ

0 𝑘௠𝑟ଶ𝑟ଵ −𝑘௠𝑟ଶ
ଶ 0 𝑘௠𝑟ଶ −𝑘௠𝑟ଶ 0 𝑐௠𝑟ଶ𝑟ଵ −𝑐௠𝑟ଶ𝑟ଵ 0 𝑐௠𝑟ଶ −𝑐௠𝑟ଶ

0 0 0 0 0 0 0 0 0 0 0 0
0 −𝑘௠𝑟ଵ 𝑘௠𝑟ଶ 0 −𝑘௠ 𝑘௠ 0 −𝑐௠𝑟ଵ 𝑐௠𝑟ଶ 0 −𝑐௠ 𝑐௠

0 𝑘௠𝑟ଵ −𝑘௠𝑟ଶ 0 𝑘௠ −𝑘௠ 0 𝑐௠𝑟ଵ −𝑐௠𝑟ଶ 0 𝑐௠ −𝑐௠ ⎦
⎥
⎥
⎥
⎥
⎤

  

(30.23) 

Forces other than mesh force, are classified as external force given as follows 

𝐹௘ =

⎩
⎪
⎨

⎪
⎧

𝑇஽

0
0
𝑇௅

0
0 ⎭

⎪
⎬

⎪
⎫

  (3.24) 

Total force on the right-hand side of the equations can be calculated as   

𝐹 = 𝐹௠ + 𝐹௘  (3.25) 
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In the forthcoming subsection, the calculation process of mesh stiffens is described 

3.2.1.2 Mesh stiffness 

Mesh stiffness between two gears in contact, consists of two parts. The former is 

related to Hertzian deflection and the latter is associated with the bending flexibility  

of the gear tooth. Hertzian stiffness per unit length of gear width was first 

calculated by Yang [51] as 

𝑘௛ =
గா

ସ(ଵିఊమ)
  (3.26) 

where 𝐸 is the Young’s modulus of elasticity and 𝛾 denots Possion’s ratio.  

An equation for the calculation of bending stiffens of a gear too with modified 

addendum, has been introduce by Kuang and Yang [52]. Stiffness per unit length of 

tooth width 𝑘௜(𝑟) for a tooth 𝑖 at a loading position 𝑟 can be estimated using the 

following equation [52] 

𝑘௜(𝑟) = (𝐴଴ + 𝐴ଵ𝑋௜) + (𝐴ଶ + 𝐴ଷ𝑋௜) ቂ
(௥ିோ೔)

(ଵା௑೔)௠
ቃ  (3.27) 

where bending stiffness per unit length of tooth face width 𝑘௜(𝑟) is measured in 

𝑁/(𝜇𝑚/𝑚𝑚). 𝑋௜ is the addendum modification coefficient. Radial distance 𝑟 and 

the pitch circal radius 𝑅 are measure in 𝑚𝑚. The coefficients obtained from curve 

fitting are given as follows [52] 

𝐴଴ = 3.867 + 1.612𝑁௜ − 0.02916𝑁௜
ଶ + 0.0001553𝑁௜

ଷ,  (3.28) 

𝐴ଵ = 17.06 + 0.7289𝑁௜ − 0.01728𝑁௜
ଶ + 0.0000999𝑁௜

ଷ,  (3.29) 

𝐴ଶ = 2.637 − 1.222𝑁௜ + 0.02217𝑁௜
ଶ − 0.0001179𝑁௜

ଷ,  (3.30) 

𝐴ଷ = −6.330 − 1.033𝑁௜ + 0.02068𝑁௜
ଶ − 0.0001130𝑁௜

ଷ (3.31) 

where 𝑁௜ is the number of gear teeth.  
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The mesh stiffness can be obtained by combining the bending stiffness of teeth in 

contact between meshing gears.  

According to Fig 3.13, the mesh stiffness of a pair of teeth in mesh at contact points 

A and can be obtained by the combination of stiffness per unit width 𝑘ଵ(𝑟ଵ஺), 

𝑘ଶ(𝑟ଶ஺), 𝑘ଵ(𝑟ଵ஻), 𝑘ଶ(𝑟ଶ஻), and 𝑘௛ of the teeth in contact, as springs in series 

connection as follows [1]: 

ଵ

௞ೌ
=

ଵ

௞భ(௥భಲ)
+

ଵ

௞మ(௥మಲ)
+

ଵ

௞೓
  (3.32) 

௞ೌ

௙
=

[௞భ(௥భಲ)௞మ(௥మಲ)௞೓]

[௞భ(௥భಲ)௞మ(௥మಲ)ା௞భ(௥భಲ)௞೓ା௞మ(௥మಲ)௞೓]
  (3.33) 

ଵ

௞್
=

ଵ

௞భ(௥మಳ)
+

ଵ

௞మ(௥మಳ)
+

ଵ

௞೓
  (3.34) 

௞್

௙
=

[௞భ(௥భಳ)௞మ(௥మಳ)௞೓]

[௞భ(௥భಳ)௞మ(௥మಳ)ା௞భ(௥భಳ)௞೓ା௞మ(௥మಳ)௞೓]
  (3.35) 

where 𝑘௔ and 𝑘௕ represent a pair of teeth 1 and 2 in contact points A and B, 

respectively and are measured in 
ே

௠௠
. 𝑓 denotes the face width of the gear and 𝑘௛ is 

the Hertzian stiffness per unit width of the tooth.  

In the equations (3.32)-(3.35), the stiffness is a function of radial distance 𝑟 which is 

the radial distance of contact point from the gear center. In order to find the 

relationship between 𝑟 and the rotation angle of gears, the involute profile of gears 

must be taken into account.  
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Figure 3.13  Dynamic model of a spur gear pair [1] 

 

Time varying mesh damping can be approximated by the following equation [53] 

𝐶௠ = 2𝜁(𝑘௠𝑚௘)ଵ/ଶ  (3.36)  

where 𝑚௘ is the equivalent mass of the pinion and gear and it is defined as in 

equation (3.37) [53] 

𝑚௘ =
ூభூమ

ூభோమ
మାூమோభ

మ  (3.37) 

Contact ratio  

Since the contact ratio between meshing gears is generally greater than unity, 

according to the contact position of gears, at a specific instant, two or more pairs of 

teeth might be in mesh, this phenomenon can be seen in Fig 3.14.  
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Figure 3.14  Meshing steps and the number of teeth in contact [54] 

 

Contact ratio between the teeth in contact is defined as follows [54]: 

𝐶𝑅 =  
஺௡௚௟௘ ௢௙ ௔௖௧௜௢௡

௉௜௧௖௛ ௔௡௚௟௘
  (3.38) 

The total time interval at which a tooth is in contact, is calculated by equation (3.39) 

[54] 

𝑡௠௘௦௛ = 𝐶𝑅 × 𝜃  (3.39) 

where 𝜃 is the angular pitch as is obtained from the following equation 

𝜃 =
௭

௠
  (3.40) 

𝑚 and 𝑧 are module and number of teeth for the gear. The time intervals at which 

double and a single pair of teeth are in mesh, are obtained from the equations (3.41) 

and (3.42) respectively. 



 
 

35 

𝑡஽ = (𝐶𝑅 − 1)𝑇  (3.41) 

𝑡ௌ = (2 − 𝐶𝑅)𝑇  (3.42) 

where 𝑇 is mesh period, and 𝑡஽ and 𝑡ௌ represent the time intervals of double and 

single pair, respectively.  

In Figs (3.15)-(3.17), mesh stiffness and the effect of addendum modification factors 

can be seen.  

 

 

Figure 3.15  Mesh stiffness for positive modification coefficient 
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Figure 3.16  Mesh stiffness without modification 

 

 

Figure 3.17  Mesh stiffness with negative modification coefficient 
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The next subsection, presents the modeling of faults and inclusion of their effects in 

the dynamic model. The faults which are considered here, include tooth surface 

pitting and tooth root crack. The effect of surface pitting is added to mesh force and 

the effect of crack, modifies the mesh stiffness.  

3.2.1.3 Modeling tooth surface pitting  

It has been mentioned in reference [55] that the severity and extent of a fault can be 

best modeled by using pulses. The pulse height has an important effect on the 

amplitude and it changes with the severity of fault and can increase with the fault 

growth.   

In practice, the response of a system can be modelled well with the use of a decaying 

sinusoidal pulse as shown in Fig 3.18. It can be shown by the following equation 

[55]: 

𝑥(𝑡) =  ൬
௞

ඥଵି఍మ
൰ 𝑒ି఍ఠబ௧sinቄඥ1 − 𝜁ଶ𝜔଴𝑡 + sinିଵ൫2𝜁ඥ1 − 𝜁ଶ൯ቅ  (3.43) 

where 𝐾 =
௞

ඥଵି఍మ
  and 𝑘 is the height of the pulse. 𝜁 denotes the damping ratio, 𝜔଴ =

గ

∆௧
 is the frequency of the generated pulse, ∆𝑡 =

௕

௩ೌ
 is the pulse with, 𝑏 shows the fault 

width along the tooth profile and 𝑣௔ represents the relative velocity at the defected 

point. The relative velocity is the difference between the velocities of the two gears 

at contact point.  
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Figure 3.18 Periodic decaying sinusoidal pulse [55] 

 

The gear mesh force without the effect of faults, 𝐹଴, can be written as follows 

𝐹଴ = 𝑘௠(𝑅ଵ𝜃ଵ − 𝑅ଶ𝜃ଶ + 𝑦ଶ − 𝑦ଵ) + 𝑐௠൫𝑅ଵ𝜃̇ଵ − 𝑅ଶ𝜃ଶ̇ + 𝑦ଶ̇ − 𝑦ଵ̇൯  (3.44) 

where 𝑘௠ and 𝑐௠ are time varying mesh stiffness and mesh damping, resepctively.  

After including the effect of pitting, it is modified as given in equation (3.45) 

𝐹 = 𝐹଴ + 𝑘௛𝑓𝑥(𝑡)  (3.45) 

Where 𝑓 denotes the defect width in the tooth face direction. Therefore, by using the 

modified mesh force 𝐹, the effect of pitting can be included in the model.  

3.2.1.4 Modeling tooth root crack 

In order to model the tooth root crack, an approximate model which is a beam with 

a crack as shown in Fig 3.19, is used. The beam has a crack with depth a at a distance 

𝑙௖ from its left end. The cross section of the beam has a width 𝑏 and height ℎ. This 

model can be used in lateral vibration analysis, for any beam with any boundary 

conditions. Since the bending stiffness at the crack location is decreased, at the cross 

section of crack position, a torsional spring with stiffness 𝐾ఏ is used (see Fig 3.19). 

The main underlying theory in this modeling method is that the absorbed energy in 

crack growth equals the absorbed energy by the torsional spring which replaced the 
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crack. This theory has been introduced by Chondros [56]. The stiffness coefficient 

𝐾ఏ, which is a function of crack depth, geometrical properties of the beam, and beam 

material properties, is given by equation (3.46) [56]: 

𝐾ఏ =
ாூ

଺(ଵିఔమ)௛
×

ଵ

௝(
ೌ

೓
)
   (3.46) 

where the function 𝑗() is defined as follows [56]: 

𝑗 ቀ
௔

௛
ቁ = 1.8624(

௔

௛
)ଶ − 3.95 ቀ

௔

௛
ቁ

ଷ

+ 16.375 ቀ
௔

௛
ቁ

ସ

− 37.226 ቀ
௔

௛
ቁ

ହ

+ 76.81 ቀ
௔

௛
ቁ

଺

−

126.9 ቀ
௔

௛
ቁ

଻

+ 172 ቀ
௔

௛
ቁ

଼

− 143.97 ቀ
௔

௛
ቁ

ଽ

+ 66.56(
௔

௛
)ଵ଴  (3.47) 

 

Now, the equations for the cracked beam with rectangular cross section is used for 

modeling crack in gear tooth and by including a rotational spring at the cracked 

section, the bending stiffness of the cracked tooth is calculated. Dimensions of a spur 

gear tooth is shown in Fig 3.20 where it can be approximated with a rectangle.  

 

 

Figure 3.19 Modeling crack in a beam with rectangular cross section 
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Figure 3.20 Gear tooth profile dimensions  

 

After some manipulation considering Fig 3.21, the governing equation for the 

bending stiffness of cracked tooth can be written as follows 

ଵ

௞಴(௥)
=

ଵ

௞ಹ(௥)
+

ଵ

௄ഇ/ௗమ௖௢௦ఈ
  (3.48) 

where 𝑘ு(𝑟) and 𝑘஼(𝑟) represent intact and cracked gear tooth stiffness, respectively 

and 𝛼 denotes the pressure angle. The distance 𝑑 is calculated using the following 

equation  

𝑑 = 𝑟 − 𝑟௥  (3.49) 

Where, 𝑟௥ is the root radius of the gear.  

After the calculation of cracked tooth stiffness, considering the crack position and 

the number of cracked tooth, the mesh stiffness is modified and therefore the effect 

of crack can be included in the equations of motion.  

In reference [57], the mesh stiffness of a gear with tooth root crack is calculated 

using finite element method. 
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Figure 3.21 Modeling tooth root crack 

 

According to the Fig 3.22, the mesh stiffness is decreased and it is more obvious in 

the single tooth contact area. 

The results of cracked tooth mesh stiffness obtained using the approximate method 

developed in this study is shown in Fig 3.23. The results are for bending stiffness 

and it can be converted to torsional stiffness using appropriate coefficients. The error 

in the calculation of mesh stiffness using approximate method is at most about 8% 

which is acceptable because in the approximate model, the crack is not skewed. 
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Figure 3.22 Mesh stiffness of gear with cracked tooth calculated by FEM [57] 

 

 

Figure 3.23 Mesh stiffness of cracked tooth calculated using the approximate method 
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3.2.1.5 Solution of the dynamic equations  

Due to the backlash, and the fact that the mesh stiffness and mesh damping are 

functions of angle of rotation, the obtained equations of motion are non-linear. 

However, at a constant speed, the mesh stiffness and damping can be considered as 

functions of time. Therefore, the equations can be approximated with piecewise 

linear equations which are separated based on the contact condition of the meshing 

tooth. However, at any circumstance, the equations of motion are non-linear due to 

backlash.  

Based on the value of mesh force, the equations are separated as given in equations 

(3.50) and (3.51) 

For positive contact   

𝐹 > 0 ⟹ 𝐹 = 𝐹଴  (3.50)  

For tooth separation or backside collision  

𝐹 ≤ 0 ⟹ 𝐹 = ൜
𝐹଴ + 𝑘௠𝑏,    𝑇𝐸 ≥ 𝑏

     0,     − 𝑏  < 𝑇𝐸 < 𝑏 
  (3.51)  

where 𝑏 is backlash and TE is dynamic transmission error which is the difference 

between the pinion and gear tangential displacement at pitch radius.  

For the initial values of the variables, the static displacements due to input torque 

while the load DOF is fixed, are used.  

The equations are solve using Runge-Kutta method and the dynamic response is 

obtained. 

3.2.1.6 Simulation results 

For the verification of the dynamic model, the parameter values given by Parey et al 

[1] are used which are presented in Table 3.3. 
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The obtained results for the case of intact gears set, are shown in Figs (3.24)-(3.28). 

Acceleration of bearings are important in the sense that in practical gear fault 

detection, the vibration signals are mostly collected with mounting sensors on top of 

the bearings. 

 

Table 3.3 Gear system data [1] 

 

 

 

Figure 3.24 Tangential acceleration at pitch point, gear 
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Figure 3.25 Tangential acceleration at pitch point, pinion 

 

 

Figure 3.26 Gear bearing acceleration  
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Figure 3.27 Pinion bearing acceleration 

 

 

Figure 3.28 Gear bearing acceleration 
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In the following figures, the results of the dynamic model are compared with those 

given in reference [1]. By comparing the pinion bearing acceleration for the healthy 

case (see Figs 3.29 and 3.30), and pinion bearing acceleration for the pitted tooth 

case, it can be said that the results compare well both qualitatively and quantitatively. 

Therefore, the model is verified and it the fault modeling method can be used later 

in other gearbox types, which will be a planetary gearbox in our case.  

In this section, a non-linear model for a six-DOF spur gear pair was obtained and 

verified. The procedure of modeling time varying gear mesh stiffness for the healthy 

and cracked case which plays an important role in the vibrations of gear systems, 

was given. The dynamic model and the fault modeling method was verified using 

the results given in the literature. Therefore, the modeling procedure can be used for 

the planetary gears as well. As one may know, constituent components of planetary 

gearboxes are mostly spur gears. As a result, the process of modeling mesh stiffness 

and faults are readily available for the planetary gearbox. This was carried out first, 

due to the fact that modeling faults and mesh stiffness directly for the planetary gears 

has its own complexity and cannot be handled easily.  

 

 
Figure 3.29 Pinion bearing acceleration [1] 
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Figure 3.30 Calculated pinion bearing acceleration, intact gears 

 

 

Figure 3.31 Pinion bearing acceleration, pitted tooth [1] 
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Figure 3.32 Calculated pinion bearing acceleration, pitted tooth 

 

Once it is focused on the response in a shorter time interval, the behavior can be 

visualized in a better way. In Fig 3.33, tooth mesh dynamic load is shown, as it can 

be noticed, once the defected tooth is in mesh, due to the impulsive nature of the 

pitting, the mesh force changes drastically. This effect is visible in pinion and gear 

bearing accelerations (see Figs 3.34-3.35) as well as the pitch point accelerations 

(see Figs 3.36-3.37). 
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Figure 3.33 Dynamic tooth load, including pinion pitting 

 

 

Figure 3.34 Pinion bearing acceleration, including pinion pitting 
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Figure 3.35 Gear bearing acceleration, including pinion pitting 

 

 

Figure 3.36 Pinion pitch point acceleration, including pinion pitting 
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Figure 3.37 Gear pitch point acceleration, including pinion pitting 

 

In order to investigate the effect of fault in a practical way, FFT of the response is 

calculated. In Fig 3.38, the FFT of the pinion bearing acceleration for the case of 

pitted tooth is shown. As it can be seen, the amplitude of acceleration at harmonics 

of mesh frequency increases. This is due to the impulsive behavior or pitting which 

is localized in time and therefore, distributed in frequency domain.  

 

 

Figure 3.38 FFT of the pinion bearing acceleration with pitted pinion tooth 
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3.2.2 Non-linear dynamic response of a purely rotational planetary gear 

system with sun gear fault    

This section, presents the dynamic modeling of a planetary gearbox with the sun gear 

fault and analysis of fault symptoms in the frequency domain by FFT method. It is 

in fact the same model used in the section 3.1 with the transverse DOFs constrained. 

To achieve the target of the section, the following subjects are discussed in advance: 

I. The procedure of including damping in the model 

II. Calculation and inclusion of gear mesh phasing between different gear pairs 

III. The process of including sun gear fault considering faulty tooth mesh period 

IV. Time integration algorithm by Generalized-α method 

3.2.2.1 Modeling damping  

To include damping in dynamic model, a proportionally distributed damping is 

calculated and added to the equations of motion. Usually, a proportional damping 

[𝐶] is considered as [58, pp 63-64] 

[𝐶] = 𝛽[𝐾] + 𝛾[𝑀]  (3.52) 

where [𝐶], [𝐾] and [𝑀] are damping, stiffness and mass matrices respectively. 𝛽 and 

𝛾 are proportionality constants. In such a case, the damped natural frequencies, 

damping ratios and mode shapes of the damped system will have the following forms 

[58, pp 63-64]: 

𝜔𝑟
′ = 𝜔ഥ 𝑟ට1 − 𝜁

𝑟
2 ; 𝜁

𝑟
= 𝛽𝜔ഥ 𝑟/2 + 𝛾/2𝜔ഥ 𝑟  

and  

ቂψ
𝑑𝑎𝑚𝑝𝑒𝑑ቃ = ቂψ

𝑢𝑛𝑑𝑎𝑚𝑝𝑒𝑑ቃ  (3.53) 

where 𝜔ഥ 𝑟 and 𝜔𝑟
′  represent undamped and damped natural frequencies, and 𝜁𝑟 is 

modal damping ratio. Ψ stands for mode matrix.  
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As the mesh stiffness, i.e. the elements of stiffness matrix are a function of gear 

flexibility and it is related with internal material or hysteresis damping, referencing 

[58], only 𝛽 is nonzero and the damping is set proportional to stiffness only.  

3.2.2.2 Calculation of gear mesh phasing 

The gear mesh stiffness varies with time as an influence of alternating number of 

teeth in contact. In the dynamic modeling and analysis of gears, the correct relative 

of different gear meshes must be taken into account. In a planetary gearbox, multiple 

planets mesh with sun gear and ring gear and the relative phasing between different 

pairs should be calculated and considered in the mesh stiffness functions.  

Here, 𝑘𝑠𝑛(𝑡), 𝑘𝑟𝑛(𝑡) denote the mesh stiffness functions of the n-th planet with sun 

and ring gears, respectively. They are time dependent and vary with time during the 

mesh period. Sun-planet mesh stiffness functions has the same shape for all planet-

sun meshes but they are not in phase with each other. It holds for planet-ring 

meshes as well.  

Fig 3.39 shows a purely rotational dynamic model of a planetary gear generally used 

in dynamic analyses. The phasing between different meshes as shown in Fig 3.40, 

are 𝛾𝑠𝑛 which is relative phase between n-th planet-sun gear and arbitrarily chosen 

first planet-sun mesh, 𝛾𝑟𝑛 that denotes phase between n-th planet-ring and first 

planet-ring mesh, and 𝛾𝑟𝑠
(𝑛) that represents relative mesh phase between n-th planet-

ring and n-th planet-sun mesh. It is shown as well that, 𝛾𝑟𝑠
(𝑛) is independent of the 

planet chosen. Although the relations of phasing 𝛾𝑠𝑛, 𝛾𝑟𝑛 and 𝛾𝑟𝑠
(𝑛) are referenced to 

the contact on pitch point of planet-sun and planet-ring meshes, they can be measured 

with respect to any point within the mesh period of a given gear pair. The phasing 

are given as a fraction of the gear mesh period 𝑇𝑚. Here, only the decimal part of the 

fraction of 𝛾𝑠𝑛, 𝛾𝑟𝑛 and 𝛾𝑟𝑠
(𝑛) is retained. The range of the phases is as −1 < 𝛾௦௡, 𝛾𝑟𝑛, 

𝛾𝑟𝑠
(𝑛) < 1, although it can be confined to 0 ≤ 𝛾௦௡, 𝛾𝑟𝑛, 𝛾𝑟𝑠

(𝑛) < 1.  
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The governing relationships of mesh phasing, depend on the direction of the planet 

rotation which actually depends on which gear is considered to be fixed and which 

ones is the input and what is its direction of rotation. Based on different 

arrangements, multiple possible configurations are listed in Table 3.4.  

The equations of the mesh phasing are given as follows [59]: 

For clockwise rotation of planet 

𝛾𝑠𝑛 =
𝑍𝑠𝜓𝑛

2𝜋
, 𝛾𝑟𝑛 = −

𝑍𝑟𝜓𝑛

2𝜋
   (3.54) 

For counterclockwise rotation of planet 

𝛾𝑠𝑛 = −
𝑍𝑠𝜓𝑛

2𝜋
, 𝛾𝑟𝑛 =

𝑍𝑟𝜓𝑛

2𝜋
   (3.55) 

where 𝑍𝑠 and 𝑍𝑟 represent the tooth number of sun and planet respectively, and 𝜓
𝑛
 

is the circumferential phase difference between the planets (see Fig 3.39) which is 

positive when measured counterclockwise. For instance, for the first planet, 𝜓1 = 0.  

In the equations (3.54) -(3.55), the sign is important as it shows phase lead for 

negative and phase lag for positive sign. The phase 𝜓
𝑛
, is in fact the relative phase 

difference between two arbitrarily chosen planetary gears. Such that for planet 𝑖 and 

planet 𝑗, it can be written as 𝜓
𝑛

= 𝜓
𝑖

− 𝜓
𝑗
. The equations given in (3.54) and (3.55) 

are for relative phasing of planet-sun and planet-ring mesh, individually. It is 

required to define phasing between sun-planet and planet-ring mesh for the same 

planet, 𝛾𝑟𝑠
(𝑛). It can vary between -1 and +1, and it changes based on odd or even 

number of teeth for the planet.  

Another phasing which is defined for meshing between different sun-planet and 

planet-ring mesh, is 𝛾ෝ𝑟𝑛. It is defined as the phase between n-th planet and ring mesh 

with first planet and sun mesh. The  𝛾𝑟𝑠
(𝑛) can be obtained using the following equation 

[59]  
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𝛾𝑟𝑠
(𝑛) = 𝛾ෝ𝑟𝑛 − 𝛾𝑠𝑛 = ൫𝛾𝑟𝑛 + 𝛾𝑟𝑠

(1)൯ − 𝛾𝑠𝑛 = ቀ−
𝑍𝑟𝜓𝑛

2𝜋
+ 𝛾𝑟𝑠

(1)ቁ −
𝑍𝑠𝜓𝑛

2𝜋
= 𝛾𝑟𝑠

(1) − (𝑍𝑠 +

𝑍𝑟)
𝜓𝑛

2𝜋
    (3.56)  

where 𝛾ෝ𝑟𝑛 is the phase difference between 𝑛-th planet and ring mesh with first planet 

and sun mesh (at an arbitrary reference point, e.g., pitch point) and 𝛾𝑟𝑠
(1) represents 

phase difference between the planet-sun and planet-ring mesh for the first planet 

gear.  

In a planetary gearbox, the circumferential location of each of planets (𝜓
𝑛
) must be 

an integer multiple of the least mesh angle, such that [59] 

𝜓
𝑛

= 𝑝
𝑛

2𝜋

𝑍𝑠+𝑍𝑟
  (3.57) 

where 𝑝
𝑛
 is an integer which depends on the selected planet.  

It can be shown that relative phase between the sun-planet and ring-planet is the same 

for all planets. The mesh phase difference of 𝑛-th planet and ring and first planet and 

sun (referenced to pitch point) can be calculated as [59] 

 𝛾ෝ𝑟𝑛 = 𝛾𝑟𝑠 + 𝛾𝑟𝑛 = 𝛾𝑠𝑛 + 𝛾𝑟𝑠  (3.58) 

The first equation represents the phase between planet 1 and sun mesh and planet 1 

and ring mesh, plus the phase difference between n-th planet and ring mesh with 

planet 1 and planet 1 and ring mesh. the second equation shows the phase difference 

between planet n and sun mesh and planet 1 and sun mesh plus planet n and ring 

mesh and planet n and sun mesh. 

The equation (3.58) is a very important equation that helps determination of relative 

phase relationships. Assuming that the relative phasing of planet-sun meshes is 

obtained, the next task is to determine the relative phasing of ring-planet meshes with 

respect to sun-planet meshes. For the first sun-planet and planet-ring gear, it is trivial 

and only the term γrs is included in the stiffness term. However, when it comes to 

ring-planet mesh for planets other than the first, the relative phasing of ring-planet 

mesh to the first planet and ring mesh, i.e., γrn must be added and this results in γොrn.  
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 From equation (3.58) it can be deduced that 𝛾𝑟𝑛 = 𝛾𝑠𝑛. 

Having defined the mesh phase relationships, the mesh stiffness variation function 

will be governed by [59] 

𝑘𝑠𝑛(𝑡) = 𝑘𝑠1(𝑡 − 𝛾𝑠𝑛𝑇𝑚)  (3.59) 

 where 𝑇𝑚 is the period of stiffness variation for all planet-sun meshes. 𝑡 = 0 can be 

referenced to contact at pitch point for planet 1 and sun mesh. 𝑘𝑠𝑛 and 𝑘𝑠1 can be 

approximated by Fourier series as follows [59] 

𝑘𝑠1(𝑡) = ෍[𝑎𝑛 sin 𝑛𝜔𝑚𝑡 + 𝑏𝑛 cos 𝑛𝜔𝑚𝑡]

∞

𝑛=0

 

𝑘𝑠𝑛(𝑡) = ∑ ൣ𝑎𝑛 sin 𝑛𝜔𝑚(𝑡 − 𝛾𝑠𝑛𝑇𝑚) + 𝑏𝑛 cos 𝑛𝜔𝑚(𝑡 − 𝛾𝑠𝑛𝑇𝑚)൧∞
𝑛=0   (3.60) 

Similar equations can be written for planet-ring meshes. The only difference is that, 

𝛾𝑟𝑠 must be included as phasing. The Fourier series forms of the ring-planet stiffness 

can be written as 

𝜅𝑟1(𝑡) = ෍[𝑐𝑛 sin 𝑛𝜔𝑚𝑡 + 𝑑𝑛 cos 𝑛𝜔𝑚𝑡]

∞

𝑛=0

 

𝑘𝑟1(𝑡) = ෍ൣ𝑐𝑛 sin 𝑛𝜔𝑚(𝑡 − 𝛾𝑟𝑠𝑇𝑚) + 𝑑𝑛 cos 𝑛𝜔𝑚(𝑡 − 𝛾𝑟𝑠𝑇𝑚)൧

∞

𝑛=0

 

𝑘𝑟𝑛(𝑡) = ∑ ൣ𝑐𝑛 sin 𝑛𝜔𝑚(𝑡 − 𝛾ෝ𝑟𝑛𝑇𝑚) + 𝑑𝑛 cos 𝑛𝜔𝑚(𝑡 − 𝛾ෝ𝑟𝑛𝑇𝑚)൧∞
𝑛=0   (3.61) 

The results given here is valid for spur and helical gears with modified or unmodified 

teeth.  
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Figure 3.39 Schematic of a planetary gearbox. 1,2,3, , ,s c ru u u u   represent degrees of 

freedom of the model [59] 

 

Table 3.4 Possible configurations at line of action based on fixed element, input 
element, and the direction of rotation for input. 

a) direction of rotation of planet gear and b) mesh direction on the line of action. The 
points 𝐵ଵ, 𝐸ଵ, 𝐵ଶ, 𝐸ଶ are shown in Fig 3(b). CCW and CW stand for 
counterclockwise and clockwise [59]  
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Figure 3.40 Mesh phases of a planetary gearbox shown on the periodic mesh stiffness  

1, , , 0,sn rn rs s      and 0t   corresponds to pitch point contact at first plant and sun 
mesh. The symbol * refers to starting point of contact a pitch point [59]  

 

3.2.2.3 Analytical calculation of 𝒌𝒔𝒏, 𝒌𝒓𝒏 and  𝜸𝒓𝒔 

Here, p denotes pitch point (b) Mesh progression of sun-planet and planet-ring mesh 

on the line of action and base circle of gears. 𝑅𝑠𝑏, 𝑅𝑝𝑏, 𝑅𝑟𝑏 represent base radii of sun, 

planet and ring gears, respectively. 𝑅𝑠𝑜, 𝑅𝑝𝑜 are tip radii of sun, planet, respectively. 
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𝑅𝑟𝑜 denotes root radius of ring gear. The points B, C, P, D and E are related to the 

points shown in part (a), i.e. periodic mesh stiffness [59] 

 

 

Figure 3.41 (a) Schematic of contact points progression on periodic mesh stiffness 

[59]  
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Here for unmodified, involute spur gears the mesh phasing relationships are obtained 

considering the contact points shown in Fig 3.41. In this figure, the contact points 

are B, point where second tooth starts meshing; C, point where the first tooth leaves 

the mesh; P where second tooth contacts at pitch point; D point at which third tooth 

enters mesh; and finally at point E, third second tooth exits contact. To find the 

phasing, it is only required to calculate the lengths BE, BC, BP and BD as shown in 

Fig 3.41(a). The calculations is done based on contact points shown in Fig 3.41(b). 

The equation for planet-sun mesh can be written as  

𝐵1𝐸1 = 𝑀1𝐸1 + 𝐵1𝑁1 − 𝑀1𝑁1 = ට𝑅𝑠𝑜
2 − 𝑅𝑠𝑏

2 + ට𝑅𝑝𝑜
2 − 𝑅𝑝𝑏

2 − ൫𝑅𝑠𝑏 + 𝑅𝑝𝑏൯tan 𝛼1 

 (3.62)  

where  𝛼1 is the pressure angle of sun gear, 𝑅𝑠𝑏 and 𝑅𝑠𝑜 denote base and tip radius 

of the sun gear respectively. 𝑅𝑝𝑏 and 𝑅𝑝𝑜 denote base and tip radius of the planetary 

gear respectively. 

For 𝐵1𝑃1, it can be written 

𝐵1𝑃1 = 𝑀1𝑃1 + 𝑀1𝐵1 = 𝑅𝑠𝑏tan 𝛼1 − ቆට𝑅𝑠𝑜
2 − 𝑅𝑠𝑏

2 − 𝐵1𝐸1ቇ  (3.63) 

The base pitch which is the same for all gears, is 𝑝 = 2𝜋𝑅௦௕ 𝑍௦⁄ = 2𝜋𝑅௣௕ 𝑍௣⁄ , 

therefore 

𝐵1𝐶1 = 𝐵1𝐸1 − 𝑝,  𝐵1𝐷1 = 𝑝  (3.64) 

In a similar way, the equations for planet-ring mesh can be obtained as follows 

𝐵2𝐸2 = 𝑀2𝑁2 + 𝑁1𝐸2 − 𝑀2𝐵2 = 𝑂1𝑂2sin 𝛼2 + ට𝑅𝑝𝑜
2 − 𝑅𝑝𝑏

2 − ට𝑅𝑟𝑜
2 − 𝑅𝑟𝑏

2  (3.65)  

𝐵2𝑃2 = 𝑀2𝑃2 − 𝑀2𝐵2 = 𝑅𝑟𝑏tan 𝛼2 − ට𝑅𝑟𝑜
2 − 𝑅𝑟𝑏

2   (3.66) 

𝐵2𝐶2 = 𝐵2𝐸2 − 𝑝,  𝐵2𝐷2 = 𝑝  (3.67) 

where 𝑂1𝑂2 = (𝑅𝑠𝑏 + 𝑅𝑝𝑏)/cos 𝛼1.  
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By using the equations (3.62) -(3.67), the mesh phasing 𝛾𝑟𝑠 can be obtained which 

fully defines the mesh stiffness functions 𝑘𝑠1(𝑡) and 𝜅𝑟1(𝜏). Where 𝑡 = 0 and 𝜏 = 0 

corresponds to mesh at pitch point of 𝑘𝑠1(𝑡) and 𝜅𝑟1(𝜏), respectively. To define 𝑘𝑠𝑛, 

the equations (3.54) -(3.55) and (3.59) are sufficient, while for 𝑘𝑟𝑛, it is required to 

determine 𝛾𝑟𝑠 considering the points 𝑄1,2,3 based on Fig 3.41(b). These points are 

actually the locations of pitch point of planet-ring mesh with respect to the pitch 

point of planet-sun mesh. If the line of contact is wrapped on planet base circle, 𝑃1 

will be mapped on 𝑄1. The mesh of planet-ring occurs at the opposite face of the 

mating teeth compared with planet-sun mesh. Here, point 𝑄2 is used whose distance 

from 𝑄1 is 𝑡𝑏 where 𝑡𝑏 denotes planet tooth thickness at base circle. To find out about 

phase difference between sun-planet and planet-ring mesh, the first contact point of 

ring-planet, when the sun-planet mesh at pitch point, 𝐵2𝐸2 is calculated. It is at a 

distance of integer multiples of base pitch. This point is 𝑄3 and to find it, the 

following length is calculated 

𝑄2𝐵2 = 𝑃1𝑃2 − 𝐵2𝑃2 − 𝑡𝑏 = ൣ𝑅𝑝𝑏tan 𝛼1 + 𝑅𝑝𝑏(𝜋 −  𝛼1 −  𝛼2) + 𝑅𝑝𝑏tan 𝛼2൧ −

𝐵2𝑃2 − 𝑡𝑏  (3.68) 

The distance of 𝑄3 from 𝐵2 measured on 𝐵2𝑃2 is estimated as 

𝐵2𝑄3 = 𝑝 − 𝑝[𝑑𝑒𝑐(𝑄2𝐵2/𝑝)]  (3.69) 

where 𝑑𝑒𝑐(), shows decimal portion. Therefore, 𝑃2𝑄3 = ห 𝐵2𝑄3 − 𝐵2𝑃2ห. For the 

sun-planet mesh at pitch point, the planet-ring mesh at point 𝑄3. Finally, the absolute 

value of the mesh phase between sun-planet and planet-ring is obtained as 

ห𝛾𝑟𝑠ห = (𝑃2𝑄3)/𝑝  (3.70) 

The value of 𝛾𝑟𝑠 is independent of direction of rotation and which gear is fixed. Later, 

the sign of 𝛾𝑟𝑠 must be determined, which can be decided based on 1) whether 𝑄3 is 

included in 𝐵2𝑃2 or 𝑃2𝐸2, and 2) whether mesh occurs on contact line from B to E 

or E to B. The mesh direction on line of action is given in Table 3.4.  
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For the ring-planet mesh occurring from B to E or E to B, 𝛾𝑟𝑠 = −ห𝛾𝑟𝑠ห if planet-ring 

start contact at point 𝑄3 which is after point 𝑃2, and 𝛾𝑟𝑠 = ห𝛾𝑟𝑠ห (i.e. positive), if 𝑄3 

is located before point 𝑃2 (see Table 3.4). While equations (3.62) -(3.67) are valid 

for unmodified gears, 𝛾𝑟𝑠 is independent of tooth profile modification.  

3.2.2.4 Calculation of the mesh phasing for the planetary gearbox under 

consideration  

This section presents the calculation of phasing for a planetary gearbox with three 

planets, sun input and carrier output, with the properties given in Table 3.5.  

The mesh phasing of different planet-sun mesh 𝛾𝑠𝑛 is calculated using the following 

equation  

𝛾𝑠𝑛 = −
𝑍𝑠

2𝜋
× 𝑛𝜓

𝑛
,  𝜓

𝑛
=

𝜋

𝑝
, 𝑛 = 0,1,2,3  (3.71) 

 

Table 3.5 Gear parameters for planetary gearbox 

Parameter Sun  Planet Ring  
Number of teeth  28 36 100 
Base radius (mm) 25.5 32.7 90.9 
Tip radius (root 
radius for ring) 
(mm) 

30.20 38.20 97.80 

Sun-planet mesh pressure angle: 𝜶𝟏 = 𝟐𝟒. 𝟔𝟎 𝐝𝐞𝐠 
Planet-ring mesh pressure angle: 𝜶𝟐 = 𝟐𝟒. 𝟔𝟎 𝐝𝐞𝐠 
Tooth thickness of planet at base circle: 5.7072mm 
Circumferential spacing of planets: 0, 𝟐𝝅/𝟑, 𝟒𝝅/𝟑 

 

where 𝑝 is the number of planets, which is equal to three in this case. Similarly, the 

mesh phasing of ring-planet mesh 𝛾𝑟𝑛 is given by  

𝛾𝑟𝑛 =
𝑍𝑟

2𝜋
× 𝑛𝜓

𝑛
,  𝜓

𝑛
=

𝜋

𝑝
, 𝑛 = 0,1,2,3  (3.72) 
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To calculate the relative sun-planet and ring-planet mesh phasing, i.e. 𝛾𝑟𝑠, the 

equations (3.62)-(3.70) are used. The sign of 𝛾𝑟𝑠 is decided by which gear is input 

and the direction of rotation of planetary gear. Here, the assumption is that the ring 

gear is fixed, the input gear is sun and the direction of rotation of planetary gear is 

counterclockwise. With the given assumptions, the contact will progress as 

𝐵2𝑃2𝑄3𝐸2 and this leads to a negative sign for 𝛾𝑟𝑠. 

It has to be noted that the obtained mesh phasing are a fraction of mesh period 𝑇𝑚 

and if one requires the phasing as time –lead or –lag, the phasing must be multiplied 

by 𝑇𝑚.  

 

Table 3.6 The calculated values of mesh phasing. 

Parameter Value 

𝜸𝒔𝒏 
ቐ

0
−1/3
−2/3

ቑ 

𝜸𝒓𝒏 
ቐ

0
1/3
2/3

ቑ 

𝜸𝒓𝒔 −0.2811 

 

3.2.2.5 Modeling sun gear fault  

In an attempt to model gear faults of a planetary gearbox, first sun gear fault is 

considered. The fault type is gear tooth root crack that influences mesh stiffness of 

planet-sun gear pair for all planetary gears.  

Before including the fault, some definitions are given. One of them is tidal period 

and for sun gear for instance is define as such [60]: time interval required for sun 

gear’s faulty tooth to mesh with the same planet once again. In this definition, the 

planetary gears are treated differently.   
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Phase difference of two planets in a equally-spaced planetary gears, equals 2𝜋/𝑁 

where 𝑁 is the number of planets.  

According to Fig 3.42., when the faulty tooth meshes for the next time, the sun gear 

should at least rotate 2𝜋/𝑁 more than the carrier does such that: 

𝜃௦ − 𝜃௖ = 2𝜋/𝑁   (3.73) 

The time interval corresponding to this angular difference is [60] 

𝑡௦௨௡ =
ఏೞିఏ೎

ఠೞିఠ೎
=

ఏೞିఏ೎

ே(௙ೞି௙೎)
  (3.74) 

where 𝑡௦௨௡ denotes the time period of faulty sun gear mesh, 𝜔௦ and 𝜔௖ represents 

sun and carrier rotational speed, and 𝑓௦ and 𝑓௖  indicate sun and carrier frequencies, 

respectively. Equation (3.73) defines the relationship between carrier and sun 

frequencies [61] 

𝑓௦௨௡ =
௓ೞା௓ೝ

௓ೞ
𝑓௖   (3.75) 

where 𝑍௦ and 𝑍௥ denote the number of teeth of the sun and ring gear, respectively.  

 

 

Figure 3.42 Rotation of sun and carrier between two successive fault mesh of sun 
gear [60] 
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Using equations (3.74) and (3.75), 𝜃௦ and 𝜃௖  can be obtained as follows [60] 

𝜃௦ =
௓ೞା௓ೝ

ே௓ೝ
. 2𝜋  (3.76) 

and  

𝜃௖ =
௓ೞ

ே௓ೝ
. 2𝜋  (3.77) 

meaning that the sun and carrier angles can readily be calculated once the geometry 

of the gearbox is known.  

Based on the calculations given above, which provides the time period of sun gear 

fault, crack or pitting can be included in the model. As shown in section 3.2.1.4, 

tooth root crack causes a reduction in mesh stiffness throughout meshing time of 

cracked tooth. The process of cracked gear mesh stiffness was given in section 

3.2.1.4.  

Once the time difference between different planets and faulty sun mesh is considered 

in the mesh stiffness, the graph of Fig 3.43 is obtained. Here, the mesh phasing 

between two arbitrarily chosen planets in not considered. By including the mesh 

phasing, the mesh stiffness functions will be ready for use in the dynamic equations. 

Fig 3.44 shows a sample graph of planet-sun mesh stiffness for different planets 

(three planets here). As it can be noticed from the graph, the mesh stiffness of 

different pairs have a phase difference and it has to be considered in the simulations. 

Otherwise, the obtained response will not be realistic.  
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Figure 3.43 Mesh stiffness of different planet-sun meshes for faulty sun gear 

 

 

Figure 3.44 Mesh stiffness of different sun gear with different planets with mesh 
phasing included 

 

Once the dynamic model with faults is obtained, the resulting ODE sets must be 

solved to generated vibration response of the gearbox. For this purpose, Generalized-

α method is employed. In what follows, the method is described.  
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3.2.2.6 Generalized-α method for the time integration of ODE sets 

For the solution of the obtained ODEs in second order form, a method called 

Generalized-α, will be employed. It has better stability and damping in low and high 

frequencies. These properties make it a suitable candidate for the time integration of 

gear dynamics as the order of eigenvalues is much different in gear systems. First 

introduced by Chung and Hulbert [62], the Generalized-α is a numerical solution 

method developed for time integration of dynamic systems that offers improved 

numerical dissipation. The integration algorithms such as the Newmark and Hilber-

Hughs-Taylor-α methods are subclasses of the Generalized-α method.  

The general matrix form of a linear structural dynamic system can be expressed as  

𝐌𝐗̈ + 𝐂𝐗̇ + 𝐊𝐗 = 𝐅  (3.78) 

where 𝐌, 𝐂 and 𝐊 stand for the mass, damping and stiffness matrices, respectively. 

𝐅 and 𝐗 denote forcing and displacement vectors, respectively. The equation (3.78), 

together with the initial conditions given in equation (3.79)-(3.81), forms an initial 

value problem for which the solution vector 𝐗(𝑡) satisfies the equation (3.78) for all 

time points in 𝑡 ∈ [0, 𝑡ே], 𝑡ே > 0.  

𝐗(0) = 𝐝   (3.79) 

𝐗̇(0) = 𝐯   (3.80) 

where 𝐝 and  𝐯 are prescribed initial displacements and velocities, respectively. In 

the time integration algorithms, the following forms are used: 𝐝௡, 𝐯௡ and 𝐚௡ stand 

as approximations to 𝐗(𝑡௡), 𝐗̇(𝑡௡) and 𝐗̈(𝑡௡), respectively. The terms 𝐝௡ାଵ and 𝐯௡ାଵ 

are expressed based on 𝐝௡, 𝐯௡,  𝐚௡and 𝐚௡ାଵ. To determine 𝐚௡ାଵ, another equation 

must be written. This type of equations are called one-step, three-stage time 

integration methods. It is a one-step method as the solution at time step 𝑡௡ାଵ is only 

a function of the solution at 𝑡௡. It is a three-stage method due to the fact that the 

solution is determined by three vectors 𝐝௡, 𝐯௡ and 𝐚௡. The Generalized-α method 

provides an optimal compound of high-frequency and low-frequency dissipation.  
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Algorithm of the Generalized-α method 

According to [62], the Generalized-α method, in its basic form can be expressed by 

the following equations  

𝐝௡ାଵ = 𝐝௡ + ∆𝑡𝐯௡ + ∆𝑡𝟐 ൬ቀ
ଵ

ଶ
− 𝛽ቁ 𝐚௡ + 𝛽𝐚௡ାଵ൰  (3.81) 

𝐯௡ାଵ = 𝐯௡ + ∆𝑡൫(1 − 𝛾)𝐚௡ + 𝛾𝐚௡ାଵ൯  (3.82) 

𝐌𝐚௡ାଵିఈ೘
+ 𝐂𝐯௡ାଵିఈ೑

+ 𝐊𝐝௡ାଵିఈ೑
= 𝐅 ቀ𝑡௡ାଵିఈ೑

ቁ  (3.83) 

𝐝଴ = 𝐝  (3.84) 

𝐯଴ = 𝐯  (3.85) 

𝐚଴ = 𝐌ି𝟏(𝐅(0) − 𝐂𝐯 − 𝐊𝐝)  (3.86) 

where  

𝐝௡ାଵିఈ೑
= ൫1 − 𝛼௙൯𝐝௡ାଵ + 𝛼௙𝐝௡  (3.87) 

𝐯௡ାଵିఈ೑
= ൫1 − 𝛼௙൯𝐯௡ାଵ + 𝛼௙𝐯௡  (3.88) 

𝐚௡ାଵିఈ೘
= (1 − 𝛼௠)𝐚௡ାଵ + 𝛼௠𝐚௡  (3.89) 

𝑡௡ାଵିఈ೑
= ൫1 − 𝛼௙൯𝑡௡ାଵ + 𝛼௙𝑡௡  (3.90) 

where 𝑛 ∈ {0,1, … , 𝑁 − 1},  𝑁 denotes the number of time steps and ∆𝑡 represents 

time step. The equations (3.81) and (3.82) are the same of Newmark method. The 

algorithmic parameters 𝛼௙, 𝛼௠, 𝛽 and 𝛾 are given as follows [62] 

𝛾 =
ଵ

ଶ
− 𝛼௠ + 𝛼௙  (3.91) 

𝛽 =
ଵ

ସ
(1 − 𝛼௠ + 𝛼௙)ଶ  (3.92) 

𝛼௠ =
ଵ

ଶ
  (3.93) 
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𝛼௙ =
ଵ

ଶ
  (3.94) 

It has to be noted that the given values for 𝛼௠ and 𝛼௙ are typical values for a stable 

algorithm and the Generalized-α algorithm is unconditionally stable for [62] 

𝛼௠ ≤ 𝛼௙ ≤
ଵ

ଶ
, 𝛽 ≥

ଵ

ସ
+

ଵ

ଶ
(𝛼௙ − 𝛼௠)  (3.95) 

The Generalized-α method allows for the solution of the ODEs in second order form 

without a need for transforming them to first order ODE set.  

3.2.2.7 Results and discussion 

In this simulation, the angular speed of the input gear, i.e., sun, was given as 

360𝑟𝑝𝑚. Subsequently, the angular acceleration of the sun, carrier and planets of 

the linear system were calculated for one revolution of the carrier. Figures 3.45-3.47 

show the accelerations of sun, carrier and planet gear, respectively. In Fig 3.45-a, 

shows the acceleration throughout the revolution of carrier, and 3.45-b focuses in a 

smaller period to demonstrate its variation after it has reached a steady-state. The 

acceleration of the carrier and one of the planets is depicted in Figs 3.46 and 3.47, 

respectively. As it can be seen, all of the responses have periodic patterns. Fig 3.48, 

shows the acceleration of faulty sun gear. As it can be noticed, when the faulty gear 

meshes with sun or ring gear, an impulse is generated which lasts for a short time.  

A characteristic frequency which is a feature of gear systems is gear mesh frequency 

which is common between all gears. It can be calculated as 𝑓௠ = 𝑁௣𝑓௣, where 𝑁௣ 

and 𝑓௣ represent tooth number and rotation frequency of planetary gear. To check for 

the mesh frequency, FFT of the response is obtained and the spectra are investigated 

in frequency domain. The gear mesh frequency equals 600Hz for the gear system 

under study. Generally, it is expected to have the mesh frequency and its harmonics 

is gear vibration response. The figures 3.49-3.51 illustrate frequency spectrum of 

different gears. Gear mesh frequency and harmonics can be clearly noticed in the 
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graphs. This is clearer in case of pinion gear FFT and the third harmonic is dominant 

in the given frequency band.  

 

 

Figure 3.45 Sun gear acceleration, healthy gearbox 
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Figure 3.46 Carrier acceleration, healthy gearbox 

 

 

Figure 3.47 Planetary gear acceleration, healthy gearbox 

 

When it comes to faulty gearbox with a faulty sun gear, the effect of sun gear tooth 

crack will show itself as impulses generated in a certain period. The spectra of the 
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response, other than mesh frequency which shared among all gears, will be quite 

different as well. The effect of fault can be better identified through its symptoms in 

frequency domain. To detect fault symptoms, the FFT of faulty gear response is 

analyzed and shown in Figure 3.52. The fault shows itself by sidebands spaced 

around gear mesh frequency given by [63]: 𝑘𝑓௠ + 𝑙𝑓௖ + 𝑝𝑓௦ (𝑛 ∈ 𝑁, 𝑙, 𝑝 ∈ 𝑍). 

According to the given equation, the sidebands are detected in the FFT that suggests 

that a sun gear fault exists. Such sideband frequencies were not present as expected.  

 

 

Figure 3.48 Acceleration of faulty planet gear, cracked planet 
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Figure 3.49 Acceleration of sun gear, cracked planet 
 

 

Figure 3.50 Acceleration of the carrier, cracked planet 
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Figure 3.51 FFT of sun gear acceleration, healthy gearbox 

 

 

Figure 3.52 FFT of carrier acceleration, healthy gearbox 

 

Fig 3.55, depicts the FFT of sun gear acceleration for healthy and faulty cases. 

Although the frequencies precisely match for both cases, appearance of sideband 
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frequencies around mesh harmonics is notable. For instance, Fig 3.55-b shows the 

sidebands around harmonic fifteen of gear mesh frequency which is due to the crack. 

 

 

Figure 3.53 FFT of a planetary gear acceleration, healthy gearbox 

 

 

Figure 3.54 FFT of sun gear acceleration, cracked sun 
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3.55 FFT of sun gear acceleration, healthy vs cracked planet (a) general view, (b) 
smaller frequency interval   

 

3.2.2.7.1 Conclusion 

In this section, a purely rotational six DOF planetary gear system was modelled with 

the effects of sun gear fault and time varying mesh included. The fault considered 

here is sun gear crack which causes a reduction in mesh stiffness during meshing of 

faulty tooth with planetary gears. The method of modeling cracked mesh stiffness 

was developed in the spur gear dynamic analysis part of the current study. The same 
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idea is used for sun-planet pair and the mesh stiffness is modified accordingly. To 

obtain the mesh stiffness, the period of sun-planet mesh for faulty tooth must be 

considered. Therefore, it was included in the mesh stiffness function to achieve the 

required faulty gear mesh stiffness. Furthermore, the relative mesh phasing between 

different gear pairs were properly calculated and included in the mesh stiffness 

functions.  

The obtained equations of motion in second order ODE form were integrated with 

Generalized-α method and the response of the gear system was analyzed in time and 

frequency domains. According to the obtained results, the fault mainly shows itself 

by impulsive pattern in time domain and certain sideband frequencies around mesh 

frequency harmonics.  

The model will be further extended to include the effect of gear bearings, carrier and 

sun gear shaft flexibility as it was carried out in the modal analysis part of the study. 

It will allow the analysis of the response transmitted through bearings which is more 

realistic.   

3.2.3 Non-linear dynamic modeling of a planetary gear system including 

translational DOFs of the gears with a planet gear fault    

In this subsection, a planetary gear non-linear dynamic model which includes 

translational DOFs of the bearings, in healthy and faulty cases will be developed. 

The fault considered, is a tooth root crack of one of the planets. It is assumed that the 

direction of rotation of the input gear, i.e., sun, is such that the tooth crack is opened 

when the faulty tooth meshes with the sun gear. Therefore, only the mesh stiffness 

of the planet-sun pair will be decreased when the faulty tooth meshes.  

Fig 3.55 presents the schematic view of the gear system which includes bearing 

stiffnesses. The DOFs include the rotation of the planets, sun and carrier, and 

translational motions of the gears and carrier. Therefore, the system will have fifteen 

DOFs. The ring gear is fixed and the sun gear is considered as the input gear.  
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According to the Figure 3.56, the position vector of the sun and carrier can be 

expressed as follows 

𝒓௦ = 𝑥௦𝚤̂ + 𝑦௦𝚥̂, 𝒓௖ = 𝑥௖𝚤̂ + 𝑦௖𝚥̂  (3.96) 

where 𝑥௦ , 𝑦௦ and 𝑥௖, 𝑦௖ are displacements of sun and carrier in the 𝑥 and 𝑦 directions, 

respectively. The position vector of the i-th planet gear with respect to the origin, is 

written as  

 𝒓௦ = 𝒓௖ + 𝒓௜
ᇱ + 𝝆௜  (3.97) 

where 𝒓௜
ᇱ denotes the position vector of the planet with respect to carrier center and 

𝝆௜  is the relative position of the planet with respect its connection point with the 

carrier. The vectors 𝒓௜
ᇱ and 𝝆௜ can be expressed as 

𝒓௜
ᇱ = 𝑅௖[cos(𝜃௖ + 𝜑௜)𝚤̂ + sin(𝜃௖ + 𝜑௜)𝚥̂], 𝝆௜ = 𝜉௜𝑒క೔

+ 𝜂௜𝑒ఎ೔
  (3.98) 

where 𝑅௖ is the radial distance of planet bearing center from the carrier centers, 𝜑௜ 

represents the initial angular positions of the planets. Since they are symmetrically 

located, the angles are 𝜑ଵ = 0, 𝜑ଶ = 120°, and 𝜑ଷ = 240°. The DOFs 𝜉௜ and 𝜂௜ are 

radial and tangential motions of the planet 𝑖, relative to their connection points to the 

carrier. The absolute position vector of the planet 𝑖, can be expressed as  

𝒓௜ = 𝑥௜𝚤̂ + 𝑦௜𝚥̂  (3.99) 

where 𝑥௜ and 𝑦௜ can be obtained from the following equation  

𝑥௜ = 𝑥௖ + (𝜉௜ + 𝑅௖) cos(𝜃௖ + 𝜑௜) − 𝜂௜ sin(𝜃௖ + 𝜑௜), 

𝑦௜ = 𝑦௖ + (𝜉௜ + 𝑅௖) sin(𝜃௖ + 𝜑௜) + 𝜂௜ cos(𝜃௖ + 𝜑௜)  (3.100) 
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Figure 3.57 Lumped parameter model of a planetary gear system [49] 

 

 

Figure 3.58 Initial and displaced locations of (a) sun gear; (b) carrier and planet 

[49] 

 

The gear mesh deformation between the sun and the planet 𝑖 can be obtained 

considering the mesh configuration as shown in Fig 3.58. The sun-planet mesh 

stiffness is represented by 𝑘௜
௦, the pressure angle of contact for the sun-planet is 𝛼௜

௦ 

and the instantaneous angular position of the planets with respect to sun gear is 
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shown by 𝜓௜
௦. The base circle radius of the sun and planets are expressed by 𝑅௦ and 

𝑅௣, respectively.  

In a similar fashion, the mesh model between the ring and planet 𝑖 is shown in Fig 

3.59, where  𝑘௜
௥ is the mesh stiffness of the ring-planet 𝑖 pair, 𝛼௜

௥ is the pressure angle 

of contact, 𝜓௜
௥  represents the position angle of the planet 𝑖 relative to the ring, and 

𝑅௥ denotes the base radius of the ring gear.  

The angles 𝜓௜
௦ and 𝜓௜

௥ at each time instant can be calculated using the following 

equations. 

𝜓௜
௦ =

௬೔ି௬ೞ

௫೔ି௫ೞ
,   𝜓௜

௥ =
௬೔

௫೔
, 𝑖 = 1,2,3  (3.101) 

 

 

Figure 3.59 Gear mesh between sun and planet 𝑖 [49] 

 

The DOFs of the gear system are defined as  

{𝑥௦, 𝑦௦ , 𝑢௦ , 𝑥௖ , 𝑦௖ , 𝜃௖ , 𝜉ଵ, 𝜂ଵ, 𝜃ଵ, 𝜉ଶ, 𝜂ଶ, 𝜃ଶ, 𝜂ଶ, 𝜉ଷ, 𝜂ଷ, 𝜃ଷ}  (3.102) 
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The equations of motion are obtained with the use of Lagrange’s equation which is 

written as follows  

ௗ

ௗ௧
ቀ

డ்

డ௤̇೔
ቁ −

డ்

డ௤೔
+

డ௏

డ௤೔
= 𝑄௜, 𝑖 = 1, … , 𝑁; 𝑁 = no. of DOFs  (3.103)

 

The potential and kinetic energy must be calculated before the application of 

Lagrange’s equation. The equations of motion are given in a concise form, for more 

detailed expressions, the reader is referred to Appendix A. They can be obtained as 

follows  

Kinetic energy  

𝑇 =
1

2
𝑚௦൫𝑦̇௦

ଶ + 𝑥̇௦
ଶ൯ +

1

2
𝐼௦𝜃̇௦

ଶ
+

1

2
𝑚௖൫𝑦̇௖

ଶ + 𝑥̇௖
ଶ൯ +

1

2
𝐼௖𝜃̇௖

ଶ
 

+
ଵ

ଶ
∑ ൣ𝑚௣൫𝑥̇௜

ଶ + 𝑦̇௜
ଶ൯ + 𝐼௣(𝜃̇௖ + 𝜃̇௜)ଶ൧ଷ

௜ୀଵ   (3.104) 

𝜃௜ , 𝑖 = 1,2,3: angular displacement of planet i 

Potential energy  

𝑉 =
1

2
෍ 𝑘௜

௦

ଷ

௜ୀଵ

(𝛿௜
௦)ଶ +

1

2
෍ 𝑘௜

௥

ଷ

௜ୀଵ

(𝛿௜
௥)ଶ +

1

2
𝑘௦(𝑥௦

ଶ + 𝑦௦
ଶ) +

1

2
෍ 𝑘௣

ଷ

௜ୀଵ

൫𝜉௜
ଶ + 𝜂௜

ଶ൯ 

+
ଵ

ଶ
𝑘௖(𝑥௖

ଶ + 𝑦௖
ଶ)  (3.105) 

The sun-planet and planet-ring contact pressure angles are as follows: 

𝛼௜
௦ = 𝛼௜

௥ = 24.6° 

The gear mesh deformation for the planets are defined as  

𝛿௜
௦: gear mesh deformation between sun and 𝑖-th planet 

𝛿௜
௥: gear mesh deformation between ring and 𝑖-th planet 

and are obtained using the following equations  
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𝛿௜
௦ = [𝑥௦ − 𝑥௖ − cos(𝜃௖ + 𝜑௜) 𝜉௜ + sin(𝜃௖ + 𝜑௜)𝜂௜] sin(𝛼௜

௦ − 𝜓௜
௦) +

[𝑦௦ − 𝑦௖ − sin(𝜃௖ + 𝜑௜) 𝜉௜ − cos(𝜃௖ + 𝜑௜)𝜂௜] cos(𝛼௜
௦ − 𝜓௜

௦) + 𝑅௦(𝜃௦ − 𝜃௖) + 𝑅௣𝜃௜  

 (3.106) 

𝛿௜
௥ = [𝑥௖ + cos(𝜃௖ + 𝜑௜) 𝜉௜ − sin(𝜃௖ + 𝜑௜)𝜂௜] sin(𝛼௜

௥ + 𝜓௜
௥) − [𝑦௖ +

sin(𝜃௖ + 𝜑௜) 𝜉௜ + cos(𝜃௖ + 𝜑௜)𝜂௜] cos(𝛼௜
௥ + 𝜓௜

௥) − 𝑅௥𝜃௖ − 𝑅௣𝜃௜  (3.107) 

Derivatives of potential energy terms can be obtained using the following equations  

డ௏

డ௬ೞ
= ∑ 𝑘௜

௦ డఋ೔
ೞ

డ௬ೞ

ଷ
௜ୀଵ 𝛿௜

௦ + 𝑘௦𝑦௦,
డఋ೔

ೞ

డ௬ೞ
= cos(𝛼௜

௦ − 𝜓௜
௦)  (3.108) 

డ௏

డ௫ೞ
= ∑ 𝑘௜

௦ డఋ೔
ೞ

డ௫ೞ

ଷ
௜ୀଵ 𝛿௜

௦ + 𝑘௦𝑥௦ ,
డఋ೔

ೞ

డ௬ೞ
= sin(𝛼௜

௦ − 𝜓௜
௦)  (3.109) 

డ௏

డఏೞ
= ∑ 𝑘௜

௦ డఋ೔
ೞ

డఏೞ

ଷ
௜ୀଵ 𝛿௜

௦,
డఋ೔

ೞ

డఏೞ
= 𝑅௦ (3.110) 

డ௏

డ௫೎
= 𝑘௖𝑥௖ + ∑ ቀ𝑘௜

௦ డఋ೔
ೞ

డ௫೎
𝛿௜

௦ + 𝑘௜
௥ డఋ೔

ೝ

డ௫೎
𝛿௜

௥ቁଷ
௜ୀଵ   (3.111) 

డ௏

డ௬೎
= 𝑘௖𝑦௖ + ∑ ቀ𝑘௜

௦ డఋ೔
ೞ

డ௬೎
𝛿௜

௦ + 𝑘௜
௥ డఋ೔

ೝ

డ௬೎
𝛿௜

௥ቁଷ
௜ୀଵ   (3.112) 

డ௏

డఏ೎
= ∑ ቀ𝑘௜

௦ డఋ೔
ೞ

డఏ೎
𝛿௜

௦ + 𝑘௜
௥ డఋ೔

ೝ

డఏ೎
𝛿௜

௥ቁଷ
௜ୀଵ   (3.113) 

డఋ೔
ೞ

డఏ೎
= [sin(𝜃௖ + 𝜑௜)𝜉௜ + cos(𝜃௖ + 𝜑௜) 𝜂௜] sin(𝛼௜

௦ − 𝜓௜
௦) + [−cos(𝜃௖ + 𝜑௜)𝜉௜ +

sin(𝜃௖ + 𝜑௜) 𝜂௜] cos(𝛼௜
௦ − 𝜓௜

௦) − 𝑅௦  (3.114) 

డఋ೔
ೝ

డఏ೎
= [− sin(𝜃௖ + 𝜑௜)𝜉௜ − cos(𝜃௖ + 𝜑௜) 𝜂௜] sin(𝛼௜

௥ + 𝜓௜
௥) − [−cos(𝜃௖ + 𝜑௜)𝜉௜ −

sin(𝜃௖ + 𝜑௜) 𝜂௜] cos(𝛼௜
௥ + 𝜓௜

௥) − 𝑅௥  (3.115) 

డ௏

డకೕ
= ൬𝑘௣𝜉௜ + 𝑘௜

௦ డఋ೔
ೞ

డకೕ
𝛿௜

௦ + 𝑘௜
௥ డఋ೔

ೝ

డకೕ
𝛿௜

௥൰ 𝛿௜௝  (3.116) 

where 𝛿௜௝ is the Kronecker delta.  

డఋ೔
ೞ

డకೕ
= −ൣcos൫𝜃௖ + 𝜑௝൯ sin൫𝛼௝

௦ − 𝜓௝
௦൯ + sin൫𝜃௖ + 𝜑௝൯ cos൫𝛼௝

௦ − 𝜓௝
௦൯൧  (3.117) 
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డఋ೔
ೝ

డకೕ
= ൣ𝑐𝑜𝑠൫𝜃௖ + 𝜑௝൯ sin൫𝛼௝

௥ + 𝜓௝
௥൯ − 𝑠𝑖𝑛൫𝜃௖ + 𝜑௝൯ cos൫𝛼௝

௥ + 𝜓௝
௥൯൧  (3.118) 

డ௏

డఎೕ
= ቀ𝑘௣𝜂௜ + 𝑘௜

௦ డఋ೔
ೞ

డఎ೔
𝛿௜

௦ + 𝑘௜
௥ డఋ೔

ೝ

డఎ೔
𝛿௜

௥ቁ 𝛿௜௝  (3.119) 

డఋ೔
ೞ

డఎೕ
= [sin(𝜃௖ + 𝜑௜) sin(𝛼௜

௦ − 𝜓௜
௦) − cos(𝜃௖ + 𝜑௜) cos(𝛼௜

௦ − 𝜓௜
௦)]𝛿௜௝  (3.120) 

డఋ೔
ೝ

డఎೕ
= −[sin(𝜃௖ + 𝜑௜) sin(𝛼௜

௥ + 𝜓௜
௥) + cos(𝜃௖ + 𝜑௜) cos(𝛼௜

௥ + 𝜓௜
௥)]𝛿௜௝  (3.121) 

డ௏

డఏೕ
= ൫𝑘௜

௦𝑅௣𝛿௜
௦ − 𝑘௜

௥𝑅௣𝛿௜
௥൯𝛿௜௝  (3.122) 

Derivatives of the kinetic energy terms are calculated as follows 

ௗ

ௗ௧
(

డ்

డ௫̇ೞ
) = 𝑚௦𝑥̈௦  (3.123) 

ௗ

ௗ௧
(

డ்

డ௬̇ೞ
) = 𝑚௦𝑦̈௦  (3.124) 

ௗ

ௗ௧
(

డ்

డఏ̇ೞ
) = 𝐼௦𝜃̈௦  (3.125) 

ௗ

ௗ௧
ቀ

డ்

డ௫̇೎
ቁ = 𝑚௖𝑥̈௖ + ∑ 𝑚௣𝑥̈௜

ଷ
௜ୀଵ   (3.126) 

where  

𝑥̈௜ = 𝑥̈௖ + 𝜉ప̈ cos(𝜃௖ + 𝜑௜) − 2𝜉ప̇𝜃௖̇ sin(𝜃௖ + 𝜑௜) − (𝜉௜ + 𝑅௖)𝜃௖̈ sin(𝜃௖ + 𝜑௜) −

(𝜉௜ + 𝑅௖)𝜃௖̇
ଶ

cos(𝜃௖ + 𝜑௜) − 𝜂ప̈ sin(𝜃௖ + 𝜑௜) − 2𝜂ప̇𝜃௖̇ cos(𝜃௖ + 𝜑௜) −

𝜂௜𝜃௖̈ cos(𝜃௖ + 𝜑௜) + 𝜂௜𝜃௖̇
ଶ

sin(𝜃௖ + 𝜑௜)  (3.127) 

𝑦̈௜ = 𝑦̈௖ + 𝜉ప̈ sin(𝜃௖ + 𝜑௜) + 2𝜉ప̇𝜃௖̇ cos(𝜃௖ + 𝜑௜) + (𝜉௜ + 𝑅௖)𝜃௖̈ cos(𝜃௖ + 𝜑௜) −

(𝜉௜ + 𝑅௖)𝜃௖̇
ଶ

sin(𝜃௖ + 𝜑௜) + 𝜂ప̈ cos(𝜃௖ + 𝜑௜) − 2𝜂ప̇𝜃௖̇ sin(𝜃௖ + 𝜑௜) −

𝜂௜𝜃௖̈ sin(𝜃௖ + 𝜑௜) − 𝜂௜𝜃௖̇
ଶ

cos(𝜃௖ + 𝜑௜)  (3.128) 

ௗ

ௗ௧
ቀ

డ்

డ௬̇೎
ቁ = 𝑚௖𝑦̈௖ + ∑ 𝑚௣𝑦̈௜

ଷ
௜ୀଵ   (3.129) 
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డ்

డఏ̇೎
= 𝐼௖𝜃̇௖ + ∑ 𝑚௣

ଷ
௜ୀଵ ቂ𝑥̇௜

డ௫̇೔

డఏ̇೎
+ 𝑦̇௜

డ௬̇೔

డఏ̇೎
ቃ + ∑ 𝐼௣

ଷ
௜ୀଵ (𝜃̇௖ + 𝜃̇௜)  (3.130) 

డ௫̇೔

డఏ̇೎
= −[(𝜉௜ + 𝑅௖) sin(𝜃௖ + 𝜑௜) + 𝜂௜ cos(𝜃௖ + 𝜑௜)]  (3.131) 

డ௬̇೔

డఏ̇೎
= [(𝜉௜ + 𝑅௖) cos(𝜃௖ + 𝜑௜) − 𝜂௜ sin(𝜃௖ + 𝜑௜)]  (3.132) 

డ்

డఏ೎
= ∑ 𝑚௣

ଷ
௜ୀଵ ቂ𝑥̇௜

డ௫̇೔

డఏ೎
+ 𝑦̇௜

డ௬̇೔

డఏ೎
ቃ  (3.133) 

Since in the Lagrange’s equation the term  
ௗ

ௗ௧
ቀ

డ்

డఏ̇೎
ቁ −

డ்

డఏ೎
 will appear simultaneously, 

the overall term should be obtained.  

The same approach is used for 𝜉௜ and 𝜂௜ coordinates such that the following terms 

are calculated  

 
ௗ

ௗ௧
ቀ

డ்

డకഢ̇
ቁ −

డ்

డక೔
, 

ௗ

ௗ௧
ቀ

డ்

డఎഢ̇
ቁ −

డ்

డఎ೔
  (3.134) 

For the coordinate 𝜃௜, the derivatives are straightforward, and can be expressed as  

ௗ

ௗ௧
ቀ

డ்

డఏഢ̇
ቁ = 𝐼௣𝜃̈௖ + 𝐼௣𝜃̈௜   (3.135) 

The equations of motions, are obtained by plugin in the derivatives. Subsequently, 

the equation of motion can be arranged as follows  

𝐌(𝐱)𝐱̈ + 𝐍(𝐱, 𝐱̇) = 𝐟  (3.136) 

where 𝐌 is the mass matrix, 𝐍 represents the non-linear force vector, 𝐟 denotes the 

external force vector, and x is the displacement vector. Here, 𝐍 is a combination of 

linear and non-linear stiffness, and non-linear mass related terms.  

3.2.3.1 Solution 

In the solution phase which is realized by the Generalized-Alpha method, given the 

initial values, the initial guess for the displacement, velocity and acceleration, can be 

obtained from the following equation 
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𝒅଴ = 𝒙(0), 𝒗଴ = 𝒙̇(0), 𝒂଴ = −𝑀ିଵ൫𝒙(0)൯𝑁(𝒙(0), 𝒙̇(0))  (3.137) 

Before solving the equations of motions to get the response, to reduce the 

computational cost, they are left multiplied by the transpose of the modal matrix 𝛟். 

The matrix 𝛟் includes mass-normalized mode vectors of the time invariant linear 

system calculated using a mean mesh stiffness value. The vector x is substituted by 

x = 𝛟q, where q denotes the modal coordinates corresponding to the linear system 

discussed above.  

Once the above-mentioned operations are carried out, the equations of motions in its 

residual form can be expressed as follows  

൥
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

൩ {𝑞̈} + 2𝜁 ൥
𝜔ଵ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜔௥

൩ {𝑞̇} + ൥
𝜔ଵ

ଶ ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 𝜔௥

ଶ
൩ {𝑞} + 𝛟்{K௧𝛟q +

Kே + Mே + M௧𝛟q̈ − f(𝑡)} = {0}  (3.138) 

where K௧ and M௧ are time dependent parts of the linear stiffness and mass matrices, 

respectively. Kே and Mே denote non-linear stiffness and mass related force vectors, 

respectively. f(𝑡) is the force vector, 𝜔௥, 𝑟 = 1, … , 𝑁 represents 𝑟-th natural 

frequency of the system, where 𝑁 is the number of the DOFs. 𝜁 is the modal damping 

ratio. Through this application, it is assumed that the damping matrix is proportional 

with the mass matrix. 

3.2.3.2 Validation of the non-linear model  

In this subsection, to validate the non-linear model at the first stage, the response of 

the system with very large bearing stiffness values (𝑘௣ = 𝑘௖ = 𝑘௦ = 10ଵ଼𝑁/𝑚) is 

compared with that of the purely rotational linear system. The comparison is carried 

out in time domain and subsequently in frequency domain via FFT. Fig 3.60, 

demonstrates the time domain response of the sun gear of the non-linear system with 

rigid bearings, while Fig 3.61 shows the response of the purely rotational model. As 

it can be seen, the results compare well both qualitatively and quantitatively. Since 
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a comparison in time domain is not straightforward or accurate, it is performed in 

the frequency domain via FFT analysis.  

 

 

Figure 3.60 Angular acceleration of sun gear, purely rotational model 

 

 

Figure 3.61. Angular acceleration of sun gear, non-linear model 
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Fig 3.62, depicts the FFT of sun gear acceleration of the both systems. Once more, 

the results are approximately equal which validates the non-linear model. In Fig 3.62, 

other than a smooth background curve with a relatively smooth peaks which are the 

natural frequencies, there exist spiky peaks. They are associated with gear mesh 

frequency and its harmonics. Gear mesh frequency (GMF) appears due to the 

parametric excitation of the mesh stiffness and it is one of the characteristics 

frequencies in a gear system’s dynamic response. 

 

 

Figure 3.62  Comparison of FFT of sun gear angular acceleration for non-linear 
case with 1810 /p c sk k k N m   and purely rotational model 

 

3.2.3.3 Results of the non-linear system and discussion  

As the correctness of the non-linear model is validated, further analysis is carried out 

using the model.  

In the first part, the response of the healthy system is presented and subsequently the 

results of the faulty gearbox are demonstrated.  
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3.2.3.3.1 The dynamic response of the healthy gear system   

Figs 3.63-3.68 presents the response of the nonlinear planetary gear system along 

different DOFs. In each figure, first a general view of the response for one revolution 

of the carrier is depicted and then it is focused on a specific part to show the vibration 

trend. Some of the outputs, such as 𝑥̈௦ , shown in Fig 3.66, might seem growing large 

with time, however, the trend is of a periodic nature and only a segment of it is shown 

here.  

 

 

 

Figure 3.63  Angular acceleration of a planet, healthy nonlinear system 
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Figure 3.64  Translational acceleration of a planet in radial direction 𝜂, healthy 
nonlinear system 
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Figure 3.65 Angular acceleration of the carrier, healthy nonlinear system 
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Figure 3.66  Translational acceleration of the carrier in 𝑥 direction, healthy 
nonlinear system 

 



 
 

93 

 

 

Figure 3.67 Angular acceleration of the sun gear, healthy nonlinear system 
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Figure 3.68  Translational acceleration of the sun gear in 𝑥 direction, healthy 
nonlinear system 

 

3.2.3.3.2 Results of the faulty system  

In this subsection, the dynamic response of the nonlinear planetary gear system is 

presented. Figs 3.69-3.71 demonstrates the response of the faulty gearbox with planet 

tooth crack along some specific directions. These are selected among the outputs as 
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the fault it is most identifiable in them. As it can be noticed, the effect of the fault is 

an impulse which is repeated in a specific period related to planet gear angular speed.  

 

 

 

Figure 3.69  Angular acceleration of the sun gear, faulty nonlinear system 
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Figure 3.70  Translational acceleration of a planet in radial direction 𝜂, healthy 

nonlinear system 
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Figure 3.71  Translational acceleration of the sun gear in 𝑥 direction, healthy 
nonlinear system 

 

For further analysis, the acceleration in the 𝜃௦ direction for the healthy and faulty 

systems are compared in the frequency domain. It is realized by the FFT analysis. 

As it can be noticed, from Fig 3.72, the curves overlap each other except the part at 

the frequency range of [8 − 11]kHz with sidebands around the natural frequency 

located at 9.97kHz. 
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Figure 3.72  Comparison of the FFT of sun gear angular acceleration, healthy vs 
faulty  
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CHAPTER 4  

4 Analysis of experimental data 

A study is conducted on the collected gearbox acceleration datasets to process and 

model the signals through Fast Fourier Transform (FFT) and FS-TARMA methods. 

4.1 Experimental test rig and acquired data  

The experimental signals were recorded at Coventry University of the UK. Gear 

acceleration signals of healthy and faulty gearboxes has been collected at a sampling 

frequency of 51.2kHz with an accelerometer mounted on top of the ring gear. The 

faults considered includes planetary gear tooth surface pitting (mild and severe), 

broken tooth of a planet and missing tooth. Here, the pitted tooth case will be 

employed for the analysis and modeling. The parameters of planetary gearbox are 

given in table 4.1. Different faulty gears used in the experiments are shown in Fig 

4.1.  

Data collection process is as follows: 

4.1.1 Healthy case  

In healthy case, the vibration signals were collected with an accelerometer located 

on top of ring gear. A pitting occurred on a tooth of one of the planets after 150 hours 

of operation. Diameter of the pitting is 0.04mm. 

4.1.2 Mild pitted case  

For mild pitting, a pitting with depth of 0.04mm and width of 7mm (along tooth face 

in axial direction) over the face width of a planetary gear was generated.  
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4.1.3 Severe pitted case  

In severe pitting case, the depth of fault was increased to 0.11 mm and the width was 

kept constant.  

4.1.4 Chipped tooth case 

When tooth pitting progresses due to fatigue effects, it can lead to tooth chipping. 

This is a severe failure and generates impulsive vibrations in the gearbox.  

4.1.5 Missing tooth case 

Broken tooth on a planet gear can occur under fatigue loading that leads to crack 

progression. It was generated by grinding the faulty tooth. 

From the cases mentioned above, the pitting will be considered for further processing 

and diagnosis.  

 

Table 4.1 Properties of the planetary gearbox used for data acquisition  

 

Parameters  Sun Planets Carrier Ring 

No. of teeth 23 24 - 73 

Pitch radius 22.85mm 23 - 149mm 

Mass 309g                  1816g 1224g 

Pressure angle 20 20 20 20 
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Figure 4.1 Different fault cases considered in the experimental data collection [64] 
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4.2  Analysis of gear vibration signals  

In this section, as a preliminary analysis the recorded gear signals are transformed to 

frequency domain by FFT with the purpose that the faults are detected before 

modeling with time series models.  

4.2.1 Spectral analysis of planetary gear data by FFT 

The recorded vibration signal for mild pitted planet gearbox is shown in Fig 4.2. 

Before processing the signals, they were digitally band-pass filtered by a Butterworth 

filter in the range of 10Hz − 10kHz. Subsequently, a Time Synchronous Averaging 

(TSA) method applied on the filtered signals averages out the effects related with 

gears other than that of interest. By applying TSA, in fact the periodic signals are 

extracted from a composite signal contaminated with noise and other effects. This 

process is carried out synchronously taking into account the speed of the carrier. The 

spectrum of healthy gears is generally dominated by major peaks at gear mesh 

frequency and its harmonics with modulation sidebands of low order that are mostly 

due to gear errors [54]. For a faulty gear, a repeating impulse with low energy level 

will be included in the signal causing frequency modulation (FM) and Amplitude 

Modulation (AM). This leads to high order modulation sidebands in the spectrum of 

the faulty gear. Although the impulsive effect of fault has low energy distributed in 

a wide frequency range, it can generate structural resonances in the gearbox. Shaft 

high resonance frequencies may appear in the spectrum of faulty gear together with 

sharp peaks related to mesh frequency and its harmonics.  
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Figure 4.2 Vibrations measured on top of ring gear, low-pitted planet 

 

For the frequency domain analysis, FFT is applied on TSA signals to detect 

characteristic frequencies of the healthy gearbox. The main one is the mesh 

frequency, 𝑓
𝑚

 which is equal to 438.09Hz. Table 4.2, lists the frequencies of main 

components of the gearbox. 

 

Table 4.2 Frequencies of different components of the planetary gearbox 

Gear Frequency (𝐇𝐳) 
Sun  23.33 
Planet  17 
Carrier  6 
Ring  Fixed  

 

Fig 4.2 shows the frequency spectrum of healthy gearbox vibration obtained by 

applying FFT on TSA signal. Gear mesh frequency and its harmonics can be 

identified on the chart. Due to uneven loading of the gearbox, other frequencies are 

resonated as well that resulted in some other large peaks. These peaks do not 

correspond to characteristic frequencies of the gearbox that are under consideration 
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here. Fig 4.3 illustrates the frequency spectrum of pitted gearbox with characteristic 

sidebands emerging around mesh frequency harmonics.  

 

 

Figure 4.3 FFT of vibration signals measured on top of ring gear, healthy case 

 

 

Figure 4.4 FFT of vibration signals measured on top of ring gear, pitted case 
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CHAPTER 5  

5 Fault detection process based on FS-TAR, FS-TARMA and AR metric 

 

5.1 Modeling non-stationary signals and novelty detection  

Before modeling the signals, a synchronous averaging using the speed of carrier has 

to be carried out. This allows for removing the effects related with components other 

than planet frequencies and noise. In fact, the gear signals are intrinsically non-

stationary and although with an assumption of weak non-stationarity they can be 

modeled with stationary time series models, there always exist drawbacks with the 

latter models. Here a class of non-stationary time series models named FS-TARMA 

is adopted.  

5.1.1 Estimation of non-stationary time series via FS-TARMA models 

The differential equation governing the motion of a continuous-time, lumped 

parameter, linear time variant (TV) structure denoted by  , is as follows [41]: 

0: ( ) ( ) ( ) ( ) ( ) ( ) ( ), , ,ft t t t t t t t t t          M x C x K x f          (5.1) 

where 1 1( ) ( ) ( ) ... ( )
T

pt x t x t x t  x    represents the vibration vector as a function of 

analog time t , and ( )tf  denotes the excitation vector. 0 , ft t    is the time interval at 

which the response is observed, and ( )tM , ( )tC  and ( )tK  denote the time-

dependent mass, viscous damping, and stiffness matrices, respectively.  

 

There exists a second order difference equation equivalent to equation (5.1). 

Assuming a single input, single output (SISO) system, its (partial) dynamics can be 
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described with a scalar difference equation given below: 

1 0

[ ] [ ] [ ]  [ ] [ ] [ ],     1,..., ,
a cn n

i i
i i

x t a t x t i w t c t f t i t N
 

         (5.2) 

where t , [ ]x t , and [ ]f t  denote normalized discrete time, discretized vibration 

response, and force, respectively. [ ]ia t  and [ ]ic t  represent the discrete time TV 

parameters, , a cn n  and N  represent the equation Autoregressive (AR) and Moving 

Average (MA) orders and the length of the time signal, respectively. In case for the 

system to be modelled, the input is not measurable or observable, FS-TARMA model 

that solely depends on response can be adopted.  

Here, only the major equations are given and for details, the reader is advised to refer 

to [49]. Equation (5.3), represents an [ , , ]FS-TARMA ( , )
a c sa c p p pn n  [41]:   

 

2

1 1

[ ] [ ] [ ]  [ ] [ ] [ ],   w[t] NID(0, [ ]),   1,..., ,
a cn n

i i w
i i

x t a t x t i w t c t w t i t t N
 

          (5.3) 

where ,  a cp p represent functional basis dimensionalities respectively, and sp denotes 

the dimensionality of the associated innovations variance. NID stands for Normally 

Independently Distributed random variables with the indicated mean and variance. 

[ ]x t  and w [ ]t are the estimated non-stationary response and innovations sequence 

respectively. The latter has a zero mean and time-dependent variance designated by

2[ ]w t . [ ]ia t  and [ ]ic t  coefficients represent time-dependent AR and MA parameters, 

respectively. To estimate these parameters as well as innovations variance 2[ ]w t , 

functional subspaces formed by orthogonal independent functions are utilized given 

as follows [41] 

 (1) (2) ( )[ ], [ ],..., [ ] ,
a a a aAR b b b pG t G t G t   

 (1) (2) ( )[ ], [ ],..., [ ] ,
c c c cMA b b b pG t G t G t   (5.4) 

 2 (1) (2) ( )[ ], [ ],..., [ ] .
s s s sw

b b b pG t G t G t

  

where “ ” represents functional subspace of the associated quantity and 
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 [ ] : 0,1,...jG t j   indicates a set of orthogonal basis functions that can be selected 

from a suitable family such as Sine and Cosine functions, Chebyshev functions, etc. 

The indices  ( ) 1,...,a ab i i p ,  ( ) 1,...,c cb i i p  and  ( ) 1,...,s sb i i p , indicate the 

specific basis functions from a family selected for the associated subspace.  

 

The time-dependent parameters and innovations variance are estimated using the 

associated functional subspace, as follows: 

2
, ( ) , ( ) ( )

1 1 1

[ ] [ ],    [ ] [ ],    [ ] [ ],   
a c s

a c s

p p p

i i j b j i i j b j w j b j
j j j

a t a G t c t c G t t s G t
  
       (5.5) 

where ,i ja , ,i jc and js  represent the AR, MA and innovations variance coefficients 

of projection, respectively. In such manner, the parameterization of FS-TARMA 

model is realized in terms of constant projection coefficients ,i ja , ,i jc  and js . 

Consequently, a particular model structure  , identified by model orders , a cn n , 

and functional subspaces 2, ,
w

AR MA 
   , is defined as follows [41]: 

 2, , , ,
w

a c AR MAn n


    .  (5.6) 

Eventually, the model identification problem can be represented as follows [41]: 

“Given N  vibration response measurements,  [1] ... [ ]Nx x x N , and the FS-

TARMA model set:  

    2 2 dim( )

1 1

: [ ] [ , ] [ ] [ , ] [ , ]e[ ];  E , ,  1,..., ,  ,
a cn n

i i w
i i

x t a t x t i e t c t t i e t t N       
 



 
        

 
 



R

(5.7) 

select an element of  which best fits the observations”. In this equation, dim ( )  

represents the dimension of the parameter vector, and [ , ]e t   denotes the one-step-

ahead prediction error (residual) sequence of the model. 

The identification problem is comprised of two subproblems:  

a) Estimation of parameters assuming a given structure  , 

b) Selection of model structure 
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The subproblem (a) is discussed in the subsequent subsection. 

5.1.1.1 Estimation of FS-TARMA parameters 

The vector  , which includes the projection AR and MA projection coefficients denoted 

by a  and c , and innovations variance s expressed in equation (5.8) for a given model 

 , using measured non-stationary response Nx  is considered in this subsection [41] 

( ) 1 1 1( ) 1

1,1 1, ,1 , ( ) 1

1,1 1, ,1 , ( ) 1

[ | ] , | , [ ,..., ] ,

[ ,..., | ... | ,..., ] ,

[ ,..., | ... | ,..., ]

a a c c s s s
a a c c

a a a a a a

c c c c c c

T T T T
n p n p p p pn p n p

T
p n n p n p

T
p n n p n p

s a c s s s

a a a a a

c c c c c

      





    




 (5.8) 

To estimate the AR/MA projection coefficients vector  , Ordinary Least Squares (OLS) 

method is employed which sums up the squares of the one step ahead prediction errors of 

the model as follows 

 2

1

arg min [ , ],
N

t

e t


 


   (5.9) 

where argmin indicates “argument minimizing” which means that the minimizing 

arguments are searched for, and [ , ]e t   denotes the one-step-ahead prediction error. Since 

the estimation of FS-TARMA parameters results in a non-linear problem, it can be solved 

by an iterative method that divides the main non-linear problem into linear subproblems. 

Here, the Two Stage Least Squares (2SLS) method [41], is utilized for the estimation of 

model parameters.  

5.1.1.2 FS-TARMA modal parameters 

Once an FS-TARMA models is estimated, the time-dependent modal parameters of the 

model, which are natural frequencies [ ]ni t  and damping ratios [ ]i t can be obtained as 

follows [41] 

  ln [ ]
[ ] ( / ),   [ ] cos arg ln [ ] ,   1,..., ,i

ni i i
s

t
t rad s t t t N

T


        (5.10) 
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where [ ]i t  denotes the thi  pole of the model at time t , and sT  represents the sampling 

period.  

5.1.2 Estimation of nonstationary time series via FS-TAR models 

There exists a second order difference equation equivalent to equation (5.11). Assuming 

a single input, single output (SISO) system, its (partial) dynamics can be described with a 

scalar difference equation given below: 

1

[ ] [ ] [ ]  [ ],   1,...,
an

i
i

x t a t x t i w t t N


      (5.11) 

where t  and [ ]x t , denote normalized discrete time, discretized vibration response, 

respectively. [ ]ia t  represent the discrete time TV parameters, an  and N  represent the 

equation Autoregressive (AR) order and the length of the time signal, respectively. In case 

for the system to be modelled, the input is not measurable or observable, FS-TAR model 

that solely depends on response can be adopted.  

Here, only the major equations are given and for details, the reader is advised to refer to 

[39]. Equation (3), represents an FS-TAR [ , ]( )
a sa p pn  [39]:  

2

1

[ ] [ ] [ ]  [ ],   w[t] NID(0, [ ]),   1,..., ,
an

i w
i

x t a t x t i w t t t N


        (5.12) 

where ap  represent functional basis dimensionality, and sp denotes the dimensionality of 

the associated innovations variance. NID stands for Normally Independently Distributed 

random variables with the indicated mean and variance. [ ]x t  and w [ ]t are the estimated 

non-stationary response and innovations sequence respectively. The latter has a zero mean 

and time-dependent variance designated by 2[ ]w t  and [ ]ia t  coefficients represent time-

dependent AR parameters. To estimate these parameters as well as innovations variance 

2[ ]w t , functional subspaces formed by orthogonal independent functions are utilized 

given as follows; 

 (1) (2) ( )[ ], [ ],..., [ ] ,
a a a aAR b b b pG t G t G t   (5.13) 
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 2 (1) (2) ( )[ ], [ ],..., [ ] .
s s s sw

b b b pG t G t G t

  

where “ ” represents functional subspace of the associated quantity and 

 [ ] : 0,1,...jG t j   indicates a set of orthogonal basis functions that can be selected from a 

suitable family such as Sine and Cosine functions, Chebyshev functions, etc. The indices 

 ( ) 1,...,a ab i i p , and  ( ) 1,...,s sb i i p , indicate the specific basis functions from a 

family selected for the associated subspace.  

 

The time-dependent parameters and innovations variance are estimated using the 

associated functional subspace, as follows: 

2
, ( ) ( )

1 1

[ ] [ ],    [ ] [ ]  
a s

a s

p p

i i j b j w j b j
j j

a t a G t t s G t
 
     (5.14) 

where ,i ja and s
j  represent the AR and innovations variance coefficients of projection, 

respectively. In such manner, the parameterization of FS-TAR model is realized in terms 

of constant projection coefficients ,i ja  and js . Consequently, a particular model structure 

, identified by model order an , and functional subspaces 2,
w

AR 
  , is defined as follows: 

 2, ,
w

a ARn


      (5.15) 

Eventually, the model identification problem can be represented as follows: “Given 

N  vibration response measurements,  [1] ... [ ]Nx x x N , and the FS-TAR model set:  

    2 2 dim( )

1

: [ ] [ , ] [ ] [ , ]; E , ,  1,..., ,  
an

i w
i

x t a t x t i e t e t t N      


 
       





 

 (5.16) 

select an element of  which best fits the observations”. In this equation, dim( )  

represents the dimension of the parameter vector, and [ , ]e t   denotes the one-step-ahead 

prediction error (residual) sequence of the model. 

The identification problem is comprised of two subproblems:  

a) Estimation of parameters assuming a given structure , 

b) Selection of model structure 
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The subproblem (a) is discussed in the subsequent subsection. 

 

5.1.2.1 Estimation of FS-TAR parameters 

The vector , which includes the AR projection coefficients denoted by a  , and 

innovations variance s expressed in equation (8) for a given model , using measured 

non-stationary response Nx  is considered in this subsection 

( ) 1 1 1( ) 1

1,1 1, ,1 , ( ) 1

[ | ] , , [ ,..., ] ,

[ ,..., | ... | ,..., ] ,

a a s s s
a a

a a a a a a

T T T
n p p p pn p

T
p n n p n p

s a s s s

a a a a a

    



    


  (5.17) 

To estimate the AR projection coefficients vector  , Ordinary Least Squares (OLS) 

method is employed which sums up the squares of the one step ahead prediction errors of 

the model as follows 

 2

1

argmin [ , ],
N

t

e t


 


   (5.18) 

where arg m in indicates “argument minimizing” which means that the minimizing 

arguments are searched for, and [ , ]e t   denotes the one-step-ahead prediction error.  

5.1.2.2 Selection of AR order and functional subspace dimension 

To select the AR order of the FS-TAR model and the associated functional subspace 

the following process is implemented: 

I. BIC values are calculated for different values of an  and ap . Subsequently 

the model with the largest negative BIC value is selected. When BIC 

values are negative, the model with the largest negative value is selected 

as the best-fitted one. The order selection process is based on the 

minimization of BIC by trial-and-error process through the BIC equation 

for the FS-TAR model given as [41] 
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 
 

2

2
1

ˆ1 [ , ] ln
ˆln [ ]. dim( )

[ ].

N
T
s

T
t

s

e t N
BIC t

N Nt

 
   
 
 

 a
g s a

g s
   (5.19) 

where (1) (2) ( )[ ] [ ] [ ] ... [ ] ,
s s s s

T

s b b b pt G t G t G t  g  

1 1[ , ..., ] ,s s 
s sp ps 1,1 1, ,1 , ( ) 1ˆ [ ,..., | ... | ,..., ] .

a a a a a ap n n p n pa a a a a  

II. A subsequent optimization of the functional space obtained in stage I is 

carried out to remove the redundant basis functions. In this process, the 

effect of removing each basis function on the functional subspace to 

adequately estimate the model parameters without a significant reduction 

in projection accuracy is examined. Such a reduction is realized through 

Aggregate Parameter Deviation (APD) criterion given as follows [41] 

1
,an

kk
APD a s


    (5.20) 

2 2

1 1

2

1 1

[ ] [ ] [ ] [ ]
,  

[ ] [ ]

N Nin c in c
k k ek ekt t

k N Nin in
k ekt t

a t a t t t
a s

a t t

 


 

 

 
  

 
 

   (5.21) 

Where ka  and s  represent deviations of AR and innovations variance trajectories, 

respectively. The superscript “ c” and “ in ” denotes the current and initial (extended) 

value of the associated parameters, respectively. For more details of the process, the 

reader is referred to [41], where the problem is solved for an FS-TARMA model.  

Once an FS-TAR model is estimated, the time-dependent modal parameters of the 

model, which are natural frequencies [ ]ni t   and damping ratios [ ]i t can be obtained 

in the same way as it was done for FS-TARMA.  

5.1.3 AR metric for the comparison of time series models and novelty 

detection 

Once the FS-TARMA models associated with faulty and healthy signals are estimated, 
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they must be compared to achieve a criterion for fault detection. The comparison of 

models can be carried out utilizing a variety of methods. Here, a metric called AR metric 

[65] is considered.  

To start with, given tX L  and tY L  as invertible processes whose forecast functions 

expressed via the corresponding AR coefficients as [65] 

   1, 2, , 1, 2, ,, ,..., ,... , , ,..., ,...x x x j x y y y j y            (5.22) 

And assuming absolute convergence of   sequences in L , Piccolo [65], introduced a 

metric between two AutoRegressive Integrated Moving Average (ARIMA) processes tX  

and tY , with given orders, as Euclidean distance between their corresponding coefficients 

of the AR(∞) formulation denoted as follows  

       
1

2 2

, ,
1

,t t x y x y j x j y
j

d X Y      




       
 . (5.23) 

The expression given in equation (11) has the properties of a metric as for any two 

identical processes, their corresponding distance is zero. This metric has another important 

feature and it is: although different orders for the model structures can be obtained for 

modelling the same set of signals, their corresponding distance is zero since they are 

supposed to provide the same predictions.  

It has to be mentioned that for processes tX L  and tY L , their associated distance 

 ,t td X Y  is always well defined regardless of the fact that one or both processes are 

stationary or non-stationary. This property of AR metric, makes it a reliable candidate for 

the comparison of time series models regardless from the stationarity or non-stationarity 

of the models. 
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CHAPTER 6  

6 Time-frequency analysis of gear vibration signals by FS-TAR and Wavelet 

Transform 

In this chapter, time dependent frequency analysis of the vibration signals will be 

carried out via WT and the FS-TAR approach. Firstly, the necessary equations will 

be given and subsequently the results will be presented.  

6.1 Time-frequency analysis of gear vibration signals by Wavelet 

Transform 

Since a planetary gearbox's vibrations are nonstationary, conventional FFT analysis, 

although compelling, may not be well suited for analyzing its time-varying (TV) 

frequency spectrum. A variety of methods are available for the time-frequency 

analysis of nonstationary signals. Continuous wavelet transform (CWT) features 

several advantages over windowed FFT. One important feature is that time resolution 

is high at a higher frequency, unlike the windowed FFT, where time and frequency 

resolutions are independent.   

Wavelet analysis was first introduced to analyze seismic signals in the 1980s. Based 

on the purpose of analysis, two main types of Discrete Wavelet Transform (DWT) 

and Continuous Wavelet Transform (CWT) can be utilized. While the first is 

generally employed for noise removal, the latter is preferred for time-frequency 

analysis. For the case of time-frequency analysis, the wavelet analysis can be 

considered as FFT analysis with windows of variable lengths. Therefore, they can 

focus on frequency or time domains to provide local information in both domains. 

Wavelets can be 1D or multi-dimensional. 1D wavelets can be expressed as [66] 
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( , ) 1
( ) ( )a b x b
x

aa
  

    (6.1) 

where ( 0),  a b real parameters and ( )x  represents a spatially localized function 

named “mother wavelet”. Wavelet analysis, decomposes a given function into a 

combination of wavelets and reconstructs it. For the reconstruction to be optimal, the 

mother wavelet should satisfy some conditions. For the case of CWT, the following 

admissibility condition must be satisfied [66] 

2ˆ ( )
C d

 






    (6.2) 

where ˆ ( )   represents the Fourier transform of ( )x  given by  

ˆ ( ) ( )i xe x dx  
 


    (6.3) 

The CWT and inverse CWT of a function 2( ) ( )f x L R is expressed as [66] 

( , )1
( , ) ( ) ( )a bT a b x f x dx

C








     (6.4) 

( , )
2

1 d d
( ) ( , ) ( )a b a b

f x T a b x
aC





 

 
    

The dimension of the time-frequency space to which the wavelet expands a given 

function is twice the dimension of the original signal. This allows for effortless 

multiscale analysis and identification of fault effects in the signal. 

6.2 Time-frequency analysis of gear vibration signals by FS-TAR model 

Although CWT provides valuable information about the TV properties of the signals 

by a time-frequency analysis, it does not have a parametric structure. Nonstationary 

time series models provide a parametrized representation of TV system dynamics, 
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generating nonstationary vibration response. Time-dependent power spectral density 

(PSD) of nonstationary gear vibration signals can be obtained by estimated FS-TAR 

models via  

2

/

1

1
( , ) [ ],   1,...,

1 [ ]a s
en j r f

rr

S t t t N
a t e 

 




 


  (6.5) 

where time dependent AR coefficients [ ]ra t  and innovations variance 2[ ]e t  are 

plugged in from the estimated FS-TAR model and sf  is sampling frequency. 

FFT analysis is an efficient tool to detect and identify fault types in a planetary 

gearbox. However, gear vibration signals are nonstationary, and FFT analysis of 

TSA signals assumes that they are stationarity, leading to a frozen time FFT for an 

averaged signal. A more efficient spectral analysis can be realized through a time-

frequency analysis. Various methods are available for this purpose. One of the 

powerful methods is Continous Wavelet Transform (CWT) which will be applied to 

vibration signals in the next section. Furthermore, the estimated FS-TAR models will 

analyze the time-dependent Power Spectral Density (PSD) of the signals. 

6.3 Continuous Wavelet Transform of vibration signals 

Power Spectral Density (PSD) analysis of gear vibration signals via FS-TAR model 

and CWT analysis can provide a deep insight into the time-dependent effects of gear 

fault on nonstationary response and simultaneous fault influence mechanism in time 

and frequency domains. 

The CWT analysis of gear vibration signals is performed with MATLAB software. 

Different wavelet family types are available for CWT. Here, the “Bump” type 

featuring a wider variance in time and narrower variance in frequency is chosen.  

In this section, CWT is first applied on healthy and pitted gearbox signals; 

subsequently, PSDs are obtained by the FS-TAR model. The spectra estimated by 

the two approaches are compared, and their role in gear fault detection is studied. 
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Fig 6.1 depicts the PSD of healthy gearbox vibration calculated in [10  12000] Hz  

frequency band. Multiple harmonics of mesh frequency are excited with their peaks, 

dominant in the PSD. These harmonics range from the 7th to 22nd multiples. 

However, it is cumbersome to discriminate between the harmonics and the adjacent 

peaks associated with other frequencies resonated with them. The crucial of the 

graph is the frequency range [3  10] kHz  excited during the gearbox's operation. For 

the case of pitted planetary gear, the CWT of the vibration signal is depicted in Fig 

6.2. A clear distinction can be made between the frequency range of fault influence 

compared with the CWT of the healthy gearbox of Fig 6.1. In this case, the range of 

excited frequencies with dominant peaks has shifted to [1  3] kHz with intermittent 

peaks corresponding to faulty planet mesh with ring or sun gear. This frequency 

range includes harmonics 2 to 8 of gear mesh frequency. However, it does not imply 

that the other gear mesh frequencies do not exist in the spectrum. In Fig 6.2-b, a 2D 

view of the CWT, dominant peaks are detectable with bright yellow color. A detailed 

FFT analysis in the previous section detected a concentrated planet gear fault. A 

comparison of graphs presented in Figs 6.1 and 6.2 reveals a change in the gearbox 

dynamics. Since the peaks are narrow in time but wide in the frequency domain, it 

suggests the existence of a concentrated fault that influences the vibration response 

similar to an impulse. Fusion of the information provided by FFT and CWT analysis 

can lead to a more robust fault type identification.  

6.4 FS-TAR model-based PSD 

Although the investigation of PSDs estimated by CWT can aid gear fault diagnosis, 

its nonparametric structure does not allow for a detailed analysis of fault occurrence 

time and frequencies through comparison. The FS-TAR model provides a parametric 

estimate of the PSD of the vibration signal, which features high-frequency resolution 

and enables the identification of the dominant mesh frequency harmonics. 
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Figure 6.1 CWT graph of the healthy gearbox vibration, a) 3D view, b) 2D view 

 

Fig 6.3 demonstrates the PSD of healthy gear vibration obtained by the FS-TAR

 7, 11(32)  model. Dominant harmonics of mesh frequency, which can be easily 

identified from the graph, are marked by their harmonic numbers in Fig 6.3-b. The 

estimated harmonics vary slightly in one revolution period of the carrier. This is 

because some other frequencies of the gear system in the vicinity of those harmonics 

are resonated. 
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Figure 6.2 CWT graph of the pitted gearbox vibration, a) 3D view, b) 2D view 

 

An important phenomenon evident in the graph is the consistent excitation of the 

identified harmonics during the gearbox operation, which implies no sudden change 

in the response due to a concentrated fault. To a significant degree, the signal's 

energy is evenly distributed between dominant harmonics. An important distinction 

between the PSDs estimated by CWT and FS-TAR is the number of 

frequencies/peaks identified. CWT does not truncate the signal by estimating it by 
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several frequencies as FS-TAR does. It constitutes many filters applied to the signal 

without changing its frequency content. FS-TAR provides a parametric signal model 

and operates like a filter with a given order. It is well suited for estimating signal 

resonances, and its autoregressive order must be chosen reasonably, which cannot 

be very large. 

Regarding the PSD of faulty gear vibration, depicted in Fig 6.4, it can be said that 

the dominant peaks have been shrunk to a narrower frequency band of [1  2] kHz , 

although some higher harmonics are instantly excited in  [3  4] kHz  . Another 

critical phenomenon identifiable from Fig 6.4-b is the intermittent excitation of 

mainly the fourth and sometimes the third gear mesh frequency harmonics. It occurs 

due to planetary gear fault as it generates impulses at specific periods related to the 

sun-planet and planet-ring mesh phasing. The range of frequencies with dominant 

amplitudes for the PSD in Fig 6.4 and that of CWT in Fig 6.2 are approximately the 

same. The main difference between the two PSDs is that the former is a truncated 

model of the frequencies present in the vibration signal in contrast to the latter, which 

includes all frequencies. The PSD estimated by FS-TAR simplifies the identification 

of dominant frequencies. It provides a parametric structure that can be further 

analyzed to obtain fault-sensitive features that are used in the fault diagnosis process. 
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Figure 6.3 PSD estimate of the healthy gear vibration signal based on FS-TAR 

model 
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Figure 6.4 PSD estimate of the pitted gear vibration signal based on FS-TAR 

model (dotted lines are used for clarification only) 
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CHAPTER 7  

7 Fault detection based on FS-TAR models via vibration signals: results  

7.1 Modeling and estimation of gear signals via FS-TAR models 

In this section, first, the predictions of the gear signals based on FS-TAR model will 

be discussed and then the results of fault detection will be presented.   

7.1.1 FS-TAR model identification, results 

Gear mesh stiffness and damping vary periodically, and so do the vibration signals. 

Therefore, trigonometric functions are employed as basis functions to estimate the 

variation of FS-TAR model parameters. Equation (7.1) presents the trigonometric 

functions employed in the model estimation process.   

0 2 1 2

( 1) ( 1)
[ ] 1,  [ ] sin ,  [ ] cos ,  1,2,...,  1,2,..., .

1 1j jb b b

j t j t
G t G t G t j t m

m m

 


               
  (7.1) 

The number of basis functions for an adequate model is determined during the order 

selection level. The order selection process for healthy and faulty data is carried out 

separately, as each possesses different partial dynamics. During the order selection 

process, the order of the model at the first trial is determined based on the gearbox 

dynamics observed from FFT analysis. For instance, twice the number of dominant 

characteristic frequencies, including mesh frequency and its harmonics, can be 

considered as a potential order for the model.  

Once an adequate FS-TAR model is fitted to the measured data, predictions are 

obtained using the estimated models. In the order selection process, which will 

estimate the orders ,a an p , the model estimation process is repeated for varying 

orders, and the set resulting in minimum BIC is selected. The BIC values for different 

order sets results can be plotted as a 3D surface, as depicted in Fig 7.1. According to 
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the calculations, the minimum BIC is obtained for 32,  9 a an p  . Although these 

values lead to the best-fit model, the expanded and complete functional subspace 

order is set to 13. The appropriate basis functions are selected through a subsequent 

refinement based on the APD criterion. As a result of this process, the final order set 

remains the same; however, the basis functions are changed according to the APD 

criterion.  

Once an adequate model is estimated, the response can be predicted. 

 7 ,11FS-TAR (32)  model-based predictions for a segment of acceleration signal 

measured on top of the ring gear is presented in Fig 7.2-(a). Together with the 

predictions, the residual series and its variance are demonstrated in Fig 7.2-(b) and 

7.2-(c), respectively. The prediction accuracy is considered to be satisfactory since 

the error, which is calculated as the ratio of the Residual Sum of Squares to the Series 

Sum of Squares (RSS/SSS), is equal to 0. 1%.   

 

 

Figure 7.1 BIC values for different AR and functional basis orders plotted as a 3D 

surface 
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Figure 7.2 (a) Prediction vs time series for a segment of nonstationary gear 
acceleration, (b) residual series of estimated model, (c) residual variance  
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7.2 Gear fault detection based on estimated FS-TAR models 

This section presents the fault detection process of the planetary gearbox with the 

aid of the FS-TAR model. An estimated FS-TAR model can predict the response of 

the gear system in a specific frequency band. However, rather than the prediction of 

response, the focus is on change detection based on comparing gear signals through 

the estimated models. The comparison can be realized by employing different tools. 

For instance, a time series model can be fitted to the baseline data corresponding to 

the healthy gearbox. A fault is detected through residual generation via faulty gear 

data, as it has been accomplished in [45]. Various methods can be utilized to compare 

the time series models. A typical approach uses a metric calculated based on model 

parameters. It is known that the parameters of time series models are implicitly 

related to the system dynamics represented by frequencies and damping. In the case 

of an ARMA model, the frequencies and damping ratios can be calculated through 

AR and MA coefficients. Time series models can be stationary or nonstationary with 

different orders, making the comparison somewhat complicated. AR metric AR(∞), 

eliminates the mentioned difficulties. It operates on AR inverse model and provides 

the distance of two models based on the parameters. Here, AR(∞) metric is applied 

to the models corresponding to healthy and faulted gears, and the change in distance 

is investigated. 

The plot of the AR(∞) distance of the faulty FS-TAR models from the healthy one 

is illustrated in figure 7.3. The distance is calculated for the TSA signal obtained for 

one carrier revolution. Employing TSA signals already implies that the signals are 

averaged based on carrier speed, and the fault effects are averaged and emphasized 

in the associated time period. Therefore, it represents a mean behavior rather than a 

relationship for one revolution. The purpose is to establish a general method for fault 

diagnosis that can be later applied to instantaneously acquired data. According to Fig 

7.3-a, multiple peaks are noticeable on the graph, three of which are local maxima 

and one absolute maximum, which occurs between the end and the beginning of the 

graphs. The first(last) maximum becomes meaningful when one considers the 
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periodicity of vibration signals for carrier revolution. To interpret the graph, the tools 

which were utilized to estimate it need to be closely investigated. The main tool is 

an FS-TAR model, which is a time-dependent nonstationary model that captures the 

time-varying behavior of the corresponding time series. The other tool is a metric 

that compares the baseline model and the faulted one through the model parameters, 

which are implicitly related to the gear system’s partial dynamics. Considering the 

features of the employed tool, it can roughly be mentioned that peaks on the graph 

imply that the faulty model deviates from the baseline, which is repeated multiple 

times during one complete revolution of the carrier. The deviation stems from the 

changes in dynamics, which influences the system response in the event of faulty 

tooth mesh and specific frequency ranges. In the linear case, the dynamics is related 

to natural frequencies and associated damping ratios.  

Once the duration between the peaks is calculated, it is discovered that they are 

approximately equal, which suggests the periodicity of the change in the distance. 

Since the fault is on a planet tooth, a comparison between the period of the peaks 

and the rotational frequency of a planet reveals that the duration is equal to the 

planet's frequency relative to the stationary ring gear. The frequency of carrier is 

𝑓௖ = 5.98Hz  and when compared to planet frequency 𝑓௣ = 24.18Hz , it is expected 

to have between three to four contacts of planet faulty tooth with the ring gear (notice 

that 𝑓௣/𝑓௖ = 4.04). 

 Notably, this relationship is obtained based on kinematics only, and the tooth 

geometry and mesh phasing [37] between sun-planet and planet-ring mesh are not 

considered. Another effect is that the change in mesh stiffness or dynamic response 

during the faulty gear mesh occurs quickly and is not purely impulsive. Considering 

the mentioned effects, it can be concluded that the peaks interval does not necessarily 

coincide exactly to 𝑓௣, but with a negligible margin.  

Assuming that the peaks are periodic, repeating the obtained distance curve for 

another period of the carrier, the graph in Fig 7.3-b is obtained, which demonstrates 

the periodicity in two periods clearly.  



 
 

130 

To uncover the phenomenon which results in the curve shown in Fig 8-a, the motion 

of the faulty planet and its mesh with the sun and ring gear considering the sensor 

position during the tests, is analyzed here. Consider the planetary gearbox with three 

planets shown in Fig 7.4-a. The faulty tooth is marked with a red circle to make it 

easy to follow its motion during meshing. At the start, it is assumed that the faulted 

tooth is in mesh with ring gear (Fig 7.4-a), and as the planet rotates due to the rotation 

of input gear (here, sun gear), the faulted tooth meshes with sun gear (Fig 7.4-b) and 

then it comes into contact with ring gear again. An accelerometer mounted on the 

ring gear records the gearbox vibrations transmitted through the ring gear. It can be 

expected that the mesh of the faulty tooth with ring gear will influence the vibrations 

of the gearbox sensed by the accelerometer more than its mesh with sun gear. This 

is due to the fact that vibration transmission paths are different in the two cases. In 

each of the three phases (7.4-a) -(7.4-c), in the event of faulty tooth contact, an 

impulse is generated, which affects the vibrations, and then it is damped out quickly 

between any of the two phases. 

As the faulty planetary gear rotates, its faulty tooth successively meshes with the sun 

and ring gear or vice versa. The periodic succession of meshes that takes place in 

specific time intervals can be analyzed, considering the gearbox's kinematics. In the 

event of a mesh, the mesh stiffness is reduced, and an impulse is generated, 

influencing the gearbox dynamics, and hence the vibration response changes. The 

vibration of a planetary gearbox is intrinsically non-stationary, and it can be 

efficiently modeled with a non-stationary time series model. Here, FS-TAR is 

utilized to identify the gearbox dynamics through vibrations measured on top of the 

ring gear. It efficiently captures the time-varying (TV) partial dynamics of the 

gearbox via measured vibration signals. The accelerometer is mounted on top of the 

ring gear; therefore, the planet-ring mesh will influence the response and the 

estimated model more than the planet-sun mesh. Based on vibration transmission 

paths to the sensor, it is expected to have more significant deviations from the 

baseline response during the faulty tooth contact with the ring gear than the sun-

planet mesh. The distance between the planet-ring meshes and the sensor also 
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influences the measured signals. Considering the descriptions given, the peaks and 

valleys of the graphs of Fig 7.3-a can be justified.  

The method based on the AR metric and FS-TAR model applied on TSA signals 

provides a method for detecting the planetary gearbox and the faulty gear type, which 

here is a planetary gear. Fault isolation is performed based on the interval of the 

peaks identified on the graphs presented in Fig 7.3-a. The peaks' periodicity and 

multiplicity suggest that a planetary gear tooth has a concentrated fault. Furthermore, 

in the spectral analysis section, a detailed FFT analysis of the healthy and faulty gear 

signals showed the existence of a concentrated planetary gear fault. Combining the 

method based on FS-TAR and FFT analysis adds to the robustness of the fault 

diagnosis process. To detect the type of a planet fault, for instance, to make a 

distinction between crack and pitting, FS-TAR and AR metric may not be efficient, 

and mutual information from FFT analysis or other methods can increase the 

capability of the method. 
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Figure 7.3 AR(∞) of FS-TAR models associated with healthy and pitted cases: a) for 
one revolution of carrier, b) for two revolutions of carrier; p rt : planet frequency with 

respect to ring, cart : period of carrier rotation 

 

 

Figure 7.4 Meshing succession of planetary gear faulted tooth (marked with a red 
dot) with: a) ring gear (first time), b) sun gear and c) ring gear (second time) 

 

A
R

 d
is

ta
n

ce
 in

 tw
o 

re
vo

lu
tio

n
s 

of
 c

a
rr

ie
r



 
 

133 

7.3 Conclusion 

This study proposed a fault detection method for a planetary gearbox based on 

vibration data measured under constant speed conditions. The problem of modeling 

nonstationary vibration signals from a planetary gearbox with planet gear fault via 

the FS-TAR model was considered. It was shown that the FS-TAR model could 

effectively model the nonstationary vibration signals, and the model coefficients 

were used to estimate time-dependent power spectral density. A fault diagnosis was 

performed using FFT analysis of TSA signals, and planet gear fault symptoms were 

identified. Time-dependent PSDs obtained by FS-TAR were of high resolution and 

could effectively identify the dominant mesh frequency harmonics as a function of 

time. The effects of fault on vibration response were investigated based on time-

frequency analysis via PSDs, and it was revealed that dominant mesh frequency 

harmonics changed from harmonics 7, 12. 15, 18, 22 in healthy case to harmonics 3 

and 4. 

The estimated FS-TAR models possess a parametric structure, making them 

comparable via AR(∞) metric through their parameters. As the gears rotate, the 

position of the faulty tooth changes as well. With its time-dependent structure, the 

FS-TAR model provided a means of tracking the faulty tooth mesh during its contact 

with sun and ring gears. The Euclidean distance between the models associated with 

healthy and faulted gears was calculated by AR(∞) metric for fault detection. Peaks 

repeated at the planet rotation period, in the AR(∞) distance during one carrier 

revolution, were used to detect and classify a fault related to a  planet gear. In this 

manner, the applicability and effectiveness of FS-TAR models in the identification 

of TV dynamics of planetary gear vibration and fault detection were demonstrated. 

Fusing the information provided by comparing FS-TAR models with the results of 

time-frequency analysis of the gear vibration signals can lead to more robust fault 

diagnosis algorithms. The method developed in this thesis can be further developed 

to diagnose gear faults of varying speed cases.  
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CHAPTER 8  

8 Conclusion and future works 

8.1 Conclusion 

The current study tried to detect a planetary gearbox's fault using two different 

approaches. The first method is a forward method based on nonlinear dynamic 

modeling, including the effects of gear faults. In contrast, a second method is an 

inverse approach based on experimentally measured vibration signals. Its effects 

were included in a nonlinear dynamic model of a spur gear pair as a first step in 

modeling the fault. A novel method for estimating cracked tooth mesh stiffness based 

on fracture mechanics was developed, which facilitates the inclusion of the crack 

effect in dynamics models. Subsequently, linear and nonlinear dynamic models of a 

planetary gearbox, including planetary and sun gear tooth crack effects, were 

developed. The frequency analysis of the simulation results revealed that the crack 

influences the response mostly in high frequencies around the natural frequencies of 

the gearbox. The second part of the study proposed a fault detection method for a 

planetary gearbox based on vibration data measured under constant speed conditions. 

The problem of modeling nonstationary vibration signals from a planetary gearbox 

with planet gear fault via the FS-TAR model was considered. It was shown that the 

FS-TAR model could effectively model the nonstationary vibration signals, and the 

model coefficients were used to estimate time-dependent power spectral density. A 

fault diagnosis was performed using FFT analysis of TSA signals, and planet gear 

fault symptoms were identified. Time-dependent PSDs obtained by FS-TAR were of 

high resolution and could effectively identify the dominant mesh frequency 

harmonics as a function of time. The effects of fault on vibration response were 

investigated based on time-frequency analysis via PSDs, and it was revealed that 
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dominant mesh frequency harmonics changed from harmonics 7, 12. 15, 18, 22 in 

healthy case to harmonics 3 and 4. 

The estimated FS-TAR models possess a parametric structure, making them 

comparable via AR(∞) metric through their parameters. As the gears rotate, the 

position of the faulty tooth changes as well. With its time-dependent structure, the 

FS-TAR model provided a means of tracking the faulty tooth mesh during its contact 

with sun and ring gears. The Euclidean distance between the models associated with 

healthy and faulted gears was calculated by AR(∞) metric for fault detection. Peaks 

repeated at the planet rotation period, in the AR(∞) distance during one carrier 

revolution, were used to detect and classify a fault related to a  planet gear. In this 

manner, the applicability and effectiveness of FS-TAR models in the identification 

of TV dynamics of planetary gear vibration and fault detection were demonstrated. 

Fusing the information provided by comparing FS-TAR models with the results of 

time-frequency analysis of the gear vibration signals can lead to more robust fault 

diagnosis algorithms. The method developed in this study can be further developed 

to diagnose gear faults of varying speed cases. Significant contributions of this 

research to the state of the art in the field of gear condition monitoring can be 

summarized as follows: 

I. A method of modeling gear tooth root crack and mesh stiffness of cracked 

gear is developed that can ease the process of including crack effect in 

dynamic models.  

II. An algorithm based on non-stationary FS-TAR time series model and AR 

metric is developed that can detect and localized a fault (here planet crack) 

in a single step  

Eventually, an approach based on a combination of non-stationary time series models 

and non-linear dynamic model is proposed to detect and localize a fault in planetary 

gear systems.  
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8.2 Future works 

As future works, the focus will be on the following subjects:  

I. Modeling crack and pitting on any gear of a planetary gear by including its 

effect in mesh stiffness in a single function. This will aid dynamic modeling 

of faulty gears and fault diagnosis through modeling.  

II. Combining the FE model of a ring gear with the developed nonlinear lumped 

parameter gearbox to simulate vibration transmission paths to a sensor on top 

of the ring gear. This will allow for the consideration of sensor spinning 

effect. 

III. Extension of the developed algorithm based on non-stationary time series 

models to detect and localize a fault for the case of multiple faults and 

distributed faults (pitting on all teeth for instance). 

IV. Development of a method based on FS-TARMA model and the change in 

frequencies and damping ratios for gear fault detection.  
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APPENDICES 

A. Equations of motion of the non-linear planetary gear system 

Derivatives of potential energy terms can be written as follows 
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௥ + 𝜓௜
௥) 𝑘௜

௥)

ଷ

௜ୀଵ

𝜃௜ 

 

𝜕𝑉

𝜕𝜃௖
= ෍ ቆ𝑘௜

௦ 𝜕𝛿௜
௦

𝜕𝜃௖
𝛿௜

௦ + 𝑘௜
௥ 𝜕𝛿௜

௥

𝜕𝜃௖
𝛿௜

௥ቇ

ଷ

௜ୀଵ

 

𝜕𝛿௜
௦

𝜕𝜃௖
= [sin(𝜃௖ + 𝜑௜)𝜉௜ + cos(𝜃௖ + 𝜑௜) 𝜂௜] sin(𝛼௜

௦ − 𝜓௜
௦)

+ [−cos(𝜃௖ + 𝜑௜)𝜉௜ + sin(𝜃௖ + 𝜑௜) 𝜂௜] cos(𝛼௜
௦ − 𝜓௜

௦) − 𝑅௦ 

𝜕𝛿௜
௥

𝜕𝜃௖
= [− sin(𝜃௖ + 𝜑௜)𝜉௜ − cos(𝜃௖ + 𝜑௜) 𝜂௜] sin(𝛼௜

௥ + 𝜓௜
௥)

− [−cos(𝜃௖ + 𝜑௜)𝜉௜ − sin(𝜃௖ + 𝜑௜) 𝜂௜] cos(𝛼௜
௥ + 𝜓௜

௥) − 𝑅௥ 
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𝜕𝑉

𝜕𝜃௖
= ൭෍ 𝑘௜

௦

ଷ

௜ୀଵ

𝑅௦
ଶ൱ 𝜃௦ + ෍ 𝑘௜

௦𝑅௣(−𝑅௦𝑘௜
௦ + 𝑅௥𝑘௜

௥)𝜃௜

ଷ

௜ୀଵ

+ ൭෍ 𝑘௜
௦

ଷ

௜ୀଵ

𝑅௦
ଶ + 𝑘௜

௥𝑅௥
ଶ൱ 𝜃௖

+ ෍ 𝑘௜
௦

ଷ

௜ୀଵ

{[sin(𝜃௖ + 𝜑௜) sin(𝛼௜
௦ − 𝜓௜

௦) − cos(𝜃௖ + 𝜑௜) cos(𝛼௜
௦ − 𝜓௜

௦)]𝜉௜

+ [cos(𝜃௖ + 𝜑௜) sin(𝛼௜
௦ − 𝜓௜

௦) + sin(𝜃௖ + 𝜑௜) cos(𝛼௜
௦ − 𝜓௜

௦)]𝜂௜}

× ൛[𝑥௦ − 𝑥௖ − cos(𝜃௖ + 𝜑௜)𝜉௜ + sin(𝜃௖ + 𝜑௜)𝜂௜] sin(𝛼௜
௦ − 𝜓௜

௦)

+ [𝑦௦ − 𝑦௖ − sin(𝜃௖ + 𝜑௜)𝜉௜ − cos(𝜃௖ + 𝜑௜)𝜂௜] cos(𝛼௜
௦ − 𝜓௜

௦)

+ 𝑅௦(𝜃௦ − 𝜃௖) + 𝑅௣𝜃௜ൟ

− ෍ 𝑅௦𝑘௜
௦{[𝑥௦ − 𝑥௖ − cos(𝜃௖ + 𝜑௜)𝜉௜ + sin(𝜃௖ + 𝜑௜)𝜂௜] sin(𝛼௜

௦ − 𝜓௜
௦)

ଷ

௜ୀଵ

+ [𝑦௦ − 𝑦௖ − sin(𝜃௖ + 𝜑௜)𝜉௜ − cos(𝜃௖ + 𝜑௜)𝜂௜] cos(𝛼௜
௦ − 𝜓௜

௦)}

+ ෍ 𝑘௜
௥{[−𝑠𝑖𝑛(𝜃௖ + 𝜑௜) sin(𝛼௜

௥ + 𝜓௜
௥) − 𝑐𝑜𝑠(𝜃௖ + 𝜑௜) cos(𝛼௜

௥ + 𝜓௜
௥)]𝜉௜

ଷ

௜ୀଵ

+ [−𝑐𝑜𝑠(𝜃௖ + 𝜑௜) sin(𝛼௜
௥ + 𝜓௜

௥) + 𝑠𝑖𝑛(𝜃௖ + 𝜑௜) cos(𝛼௜
௥ + 𝜓௜

௥)]𝜂௜}

× ൛[𝑥௖ + cos(𝜃௖ + 𝜑௜)𝜉௜ − sin(𝜃௖ + 𝜑௜)𝜂௜] sin(𝛼௜
௥ + 𝜓௜

௥)

− [𝑦௖ + sin(𝜃௖ + 𝜑௜)𝜉௜ + cos(𝜃௖ + 𝜑௜)𝜂௜] cos(𝛼௜
௥ + 𝜓௜

௥) − 𝑅௥𝜃௖ − 𝑅௣𝜃௜ൟ

− ෍ 𝑘௜
௥𝑅௥

ଷ

௜ୀଵ

{[𝑥௖ + cos(𝜃௖ + 𝜑௜)𝜉௜ − sin(𝜃௖ + 𝜑௜)𝜂௜] sin(𝛼௜
௥ + 𝜓௜

௥)

− [𝑦௖ + sin(𝜃௖ + 𝜑௜)𝜉௜ + cos(𝜃௖ + 𝜑௜)𝜂௜] cos(𝛼௜
௥ + 𝜓௜

௥)} 

𝜕𝑉

𝜕𝜉௝
= ቆ𝑘௣𝜉௜ + 𝑘௜

௦ 𝜕𝛿௜
௦

𝜕𝜉௝
𝛿௜

௦ + 𝑘௜
௥ 𝜕𝛿௜

௥

𝜕𝜉௝
𝛿௜

௥ቇ 𝛿௜௝  

𝜕𝛿௜
௦

𝜕𝜉௝
= −ൣcos൫𝜃௖ + 𝜑௝൯ sin൫𝛼௝

௦ − 𝜓௝
௦൯ + sin൫𝜃௖ + 𝜑௝൯ cos൫𝛼௝

௦ − 𝜓௝
௦൯൧ 

𝜕𝛿௜
௥

𝜕𝜉௝
= ൣ𝑐𝑜𝑠൫𝜃௖ + 𝜑௝൯ sin൫𝛼௝

௥ + 𝜓௝
௥൯ − 𝑠𝑖𝑛൫𝜃௖ + 𝜑௝൯ cos൫𝛼௝

௥ + 𝜓௝
௥൯൧ 

𝜕𝑉

𝜕𝜉௝
= ൫𝑘௣𝜉௜ + 𝑘௜

௦ൣcos൫𝜃௖ + 𝜑௝൯ sin൫𝛼௝
௦ − 𝜓௝

௦൯ + sin൫𝜃௖ + 𝜑௝൯ cos൫𝛼௝
௦ − 𝜓௝

௦൯൧

× ൛[𝑥௦ − 𝑥௖ − cos(𝜃௖ + 𝜑௜) 𝜉௜ + sin(𝜃௖ + 𝜑௜)𝜂௜] sin(𝛼௜
௦ − 𝜓௜

௦)

+ [𝑦௦ − 𝑦௖ − sin(𝜃௖ + 𝜑௜) 𝜉௜ − cos(𝜃௖ + 𝜑௜)𝜂௜] cos(𝛼௜
௦ − 𝜓௜

௦)

+ 𝑅௦(𝜃௦ − 𝜃௖) + 𝑅௣𝜃௜ൟ

+ 𝑘௜
௥ൣ𝑐𝑜𝑠൫𝜃௖ + 𝜑௝൯ sin൫𝛼௝

௥ + 𝜓௝
௥൯

− 𝑠𝑖𝑛൫𝜃௖ + 𝜑௝൯ cos൫𝛼௝
௥ + 𝜓௝

௥൯൧൛[𝑥௖ + cos(𝜃௖ + 𝜑௜) 𝜉௜

− sin(𝜃௖ + 𝜑௜)𝜂௜] sin(𝛼௜
௥ + 𝜓௜

௥)
− [𝑦௖ + sin(𝜃௖ + 𝜑௜) 𝜉௜ + cos(𝜃௖ + 𝜑௜)𝜂௜] cos(𝛼௜

௥ + 𝜓௜
௥) − 𝑅௥𝜃௖

− 𝑅௣ൟ൯𝛿௜௝ 
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𝜕𝑉

𝜕𝜂௝
= ቆ𝑘௣𝜂௜ + 𝑘௜

௦ 𝜕𝛿௜
௦

𝜕𝜂௜
𝛿௜

௦ + 𝑘௜
௥ 𝜕𝛿௜

௥

𝜕𝜂௜
𝛿௜

௥ቇ 𝛿௜௝  

𝜕𝛿௜
௦

𝜕𝜂௝
= [sin(𝜃௖ + 𝜑௜) sin(𝛼௜

௦ − 𝜓௜
௦) − cos(𝜃௖ + 𝜑௜) cos(𝛼௜

௦ − 𝜓௜
௦)]𝛿௜௝  

𝜕𝛿௜
௥

𝜕𝜂௝
= −[sin(𝜃௖ + 𝜑௜) sin(𝛼௜

௥ + 𝜓௜
௥) + cos(𝜃௖ + 𝜑௜) cos(𝛼௜

௥ + 𝜓௜
௥)]𝛿௜௝ 

𝜕𝑉

𝜕𝜂௝
= ൫𝑘௣𝜂௜ + 𝑘௜

௦ൣsin൫𝜃௖ + 𝜑௝൯ sin൫𝛼௝
௦ − 𝜓௝

௦൯ − cos൫𝜃௖ + 𝜑௝൯ cos൫𝛼௝
௦ − 𝜓௝

௦൯൧

× ൛[𝑥௦ − 𝑥௖ − cos(𝜃௖ + 𝜑௜) 𝜉௜ + sin(𝜃௖ + 𝜑௜)𝜂௜] sin(𝛼௜
௦ − 𝜓௜

௦)

+ [𝑦௦ − 𝑦௖ − sin(𝜃௖ + 𝜑௜) 𝜉௜ − cos(𝜃௖ + 𝜑௜)𝜂௜] cos(𝛼௜
௦ − 𝜓௜

௦)

+ 𝑅௦(𝜃௦ − 𝜃௖) + 𝑅௣𝜃௜ൟ

− 𝑘௜
௥ൣ𝑠𝑖𝑛൫𝜃௖ + 𝜑௝൯ sin൫𝛼௝

௥ + 𝜓௝
௥൯

+ 𝑐𝑜𝑠൫𝜃௖ + 𝜑௝൯ cos൫𝛼௝
௥ + 𝜓௝

௥൯൧൛[𝑥௖ + cos(𝜃௖ + 𝜑௜) 𝜉௜

− sin(𝜃௖ + 𝜑௜)𝜂௜] sin(𝛼௜
௥ + 𝜓௜

௥)
− [𝑦௖ + sin(𝜃௖ + 𝜑௜) 𝜉௜ + cos(𝜃௖ + 𝜑௜)𝜂௜] cos(𝛼௜

௥ + 𝜓௜
௥) − 𝑅௥𝜃௖

− 𝑅௣ൟ൯𝛿௜௝ 

𝜕𝑉

𝜕𝜃௝
= ൫𝑘௜

௦𝑅௣𝛿௜
௦ − 𝑘௜

௥𝑅௣𝛿௜
௥൯𝛿௜௝

 

𝜕𝑉

𝜕𝜃௝
= ൫𝑘௝

௦𝑅௦𝑅௣൯𝜃௦ − ൫𝑘௝
௦𝑅௦𝑅௣൯𝜃௖ + ൫𝑘௝

௦ + 𝑘௝
௥൯𝑅௣

ଶ𝜃௜

+ 𝑘௝
௦𝑅௣{[𝑥௦ − 𝑥௖ − cos(𝜃௖ + 𝜑௜) 𝜉௜ + sin(𝜃௖ + 𝜑௜)𝜂௜] sin(𝛼௜

௦ − 𝜓௜
௦)

+ [𝑦௦ − 𝑦௖ − sin(𝜃௖ + 𝜑௜) 𝜉௜ − cos(𝜃௖ + 𝜑௜)𝜂௜] cos(𝛼௜
௦ − 𝜓௜

௦)}𝛿௜௝

+ ൫𝑘௜
௥𝑅௥𝑅௣൯𝜃௖

− 𝑘௜
௥𝑅௣{[𝑥௖ + cos(𝜃௖ + 𝜑௜) 𝜉௜ − sin(𝜃௖ + 𝜑௜)𝜂௜] sin(𝛼௜

௥ + 𝜓௜
௥)

− [𝑦௖ + sin(𝜃௖ + 𝜑௜) 𝜉௜ + cos(𝜃௖ + 𝜑௜)𝜂௜] cos(𝛼௜
௥ + 𝜓௜

௥)}𝛿௜௝ 

 

Derivatives of the kinetic energy terms are as follows 

𝜕𝑇

𝜕𝑥̇௦
= 𝑚௦𝑥̇௦ ,

𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝑥̇௦
) = 𝑚௦𝑥̈௦

 

𝜕𝑇

𝜕𝜃̇௦

= 𝐼௦𝜃̇௦,
𝑑

𝑑𝑡
(

𝜕𝑇

𝜕𝜃̇௦

) = 𝐼௦𝜃̈௦ 

𝜕𝑇

𝜕𝑥̇௖
= 𝑚௖𝑥̇௖ + ෍ 𝑚௣𝑥̇௜

ଷ

௜ୀଵ

,
𝑑

𝑑𝑡
൬

𝜕𝑇

𝜕𝑥̇௖
൰ = 𝑚௖𝑥̈௖ + ෍ 𝑚௣𝑥̈௜

ଷ

௜ୀଵ
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where  

𝑥̈௜ = 𝑥̈௖ + 𝜉ప̈ cos(𝜃௖ + 𝜑௜) − 2𝜉ప̇𝜃௖̇ sin(𝜃௖ + 𝜑௜) − (𝜉௜ + 𝑅௖)𝜃௖̈ sin(𝜃௖ + 𝜑௜)

− (𝜉௜ + 𝑅௖)𝜃௖̇
ଶ

cos(𝜃௖ + 𝜑௜) − 𝜂ప̈ sin(𝜃௖ + 𝜑௜) − 2𝜂ప̇𝜃௖̇ cos(𝜃௖ + 𝜑௜)

− 𝜂௜𝜃௖̈ cos(𝜃௖ + 𝜑௜) + 𝜂௜𝜃௖̇
ଶ

sin(𝜃௖ + 𝜑௜) 

𝑦̈௜ = 𝑦̈௖ + 𝜉ప̈ sin(𝜃௖ + 𝜑௜) + 2𝜉ప̇𝜃௖̇ cos(𝜃௖ + 𝜑௜) + (𝜉௜ + 𝑅௖)𝜃௖̈ cos(𝜃௖ + 𝜑௜)

− (𝜉௜ + 𝑅௖)𝜃௖̇
ଶ

sin(𝜃௖ + 𝜑௜) + 𝜂ప̈ cos(𝜃௖ + 𝜑௜) − 2𝜂ప̇𝜃௖̇ sin(𝜃௖ + 𝜑௜)

− 𝜂௜𝜃௖̈ sin(𝜃௖ + 𝜑௜) − 𝜂௜𝜃௖̇
ଶ

cos(𝜃௖ + 𝜑௜) 

𝑑

𝑑𝑡
൬

𝜕𝑇

𝜕𝑥̇௖
൰ = ൭𝑚௖ + ෍ 𝑚௣

ଷ

௜ୀଵ

൱ 𝑥̈௖ + ෍ 𝑚௣

ଷ

௜ୀଵ

cos(𝜃௖ + 𝜑௜) 𝜉ప̈

− ൭෍ 𝑚௣[(𝜉௜ + 𝑅௖) sin(𝜃௖ + 𝜑௜) + 𝜂௜ cos(𝜃௖ + 𝜑௜)]

ଷ

௜ୀଵ

൱ 𝜃௖̈

− ෍ 𝑚௣

ଷ

௜ୀଵ

sin(𝜃௖ + 𝜑௜) 𝜂ప̈

+ ෍ 𝑚௣

ଷ

௜ୀଵ

ቀ−2𝜉ప̇𝜃௖̇ sin(𝜃௖ + 𝜑௜) − (𝜉௜ + 𝑅௖)𝜃௖̇
ଶ

cos(𝜃௖ + 𝜑௜)

− 2𝜂ప̇𝜃௖̇ cos(𝜃௖ + 𝜑௜) + 𝜂௜𝜃௖̇
ଶ

sin(𝜃௖ + 𝜑௜)ቁ 

𝜕𝑇

𝜕𝑦̇௖
= 𝑚௖𝑦̇௖ + ෍ 𝑚௣𝑦̇௜

ଷ

௜ୀଵ

,
𝑑

𝑑𝑡
൬

𝜕𝑇

𝜕𝑦̇௖
൰ = 𝑚௖𝑦̈௖ + ෍ 𝑚௣𝑦̈௜

ଷ

௜ୀଵ

 

𝑑

𝑑𝑡
൬

𝜕𝑇

𝜕𝑦̇௖
൰ = ൭𝑚௖ + ෍ 𝑚௣

ଷ

௜ୀଵ

൱ 𝑦̈௖ + ෍ 𝑚௣

ଷ

௜ୀଵ

sin(𝜃௖ + 𝜑௜) 𝜉ప̈

+ ൭෍ 𝑚௣[(𝜉௜ + 𝑅௖) cos(𝜃௖ + 𝜑௜) − 𝜂௜ sin(𝜃௖ + 𝜑௜)]

ଷ

௜ୀଵ

൱ 𝜃௖̈

+ ෍ 𝑚௣

ଷ

௜ୀଵ

cos(𝜃௖ + 𝜑௜) 𝜂ప̈

+ ෍ 𝑚௣

ଷ

௜ୀଵ

ቀ2𝜉ప̇𝜃௖̇ cos(𝜃௖ + 𝜑௜) − (𝜉௜ + 𝑅௖)𝜃௖̇
ଶ

sin(𝜃௖ + 𝜑௜)

− 2𝜂ప̇𝜃௖̇ sin(𝜃௖ + 𝜑௜) − 𝜂௜𝜃௖̇
ଶ

cos(𝜃௖ + 𝜑௜)ቁ 

𝜕𝑇

𝜕𝜃̇௖

= 𝐼௖𝜃̇௖ + ෍ 𝑚௣

ଷ

௜ୀଵ

ቈ𝑥̇௜

𝜕𝑥̇௜

𝜕𝜃̇௖

+ 𝑦̇௜

𝜕𝑦̇௜

𝜕𝜃̇௖

቉ + ෍ 𝐼௣

ଷ

௜ୀଵ

(𝜃̇௖ + 𝜃̇௜) 

𝜕𝑥̇௜

𝜕𝜃̇௖

= −[(𝜉௜ + 𝑅௖) sin(𝜃௖ + 𝜑௜) + 𝜂௜ cos(𝜃௖ + 𝜑௜)] 
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𝜕𝑦̇௜

𝜕𝜃̇௖

= [(𝜉௜ + 𝑅௖) cos(𝜃௖ + 𝜑௜) − 𝜂௜ sin(𝜃௖ + 𝜑௜)] 

𝜕𝑇

𝜕𝜃௖
= ෍ 𝑚௣

ଷ

௜ୀଵ

൤𝑥̇௜

𝜕𝑥̇௜

𝜕𝜃௖
+ 𝑦̇௜

𝜕𝑦̇௜

𝜕𝜃௖
൨ 

In the Lagrange’s equation the term  
ௗ

ௗ௧
ቀ

డ்

డఏ̇೎
ቁ −

డ்

డఏ೎
 will appear. After some 

manipulation, the following equation is obtained.  

𝑑

𝑑𝑡
ቆ

𝜕𝑇

𝜕𝜃̇௖

ቇ −
𝜕𝑇

𝜕𝜃௖
= ൭𝐼௖ + ෍ 𝐼௣

ଷ

௜ୀଵ

൱ 𝜃௖̈ + ෍ 𝐼௣

ଷ

௜ୀଵ

𝜃ప̈ − ෍ 𝑚௣

ଷ

௜ୀଵ

𝜂௜𝜉ప̈ + ෍ 𝑚௣

ଷ

௜ୀଵ

(𝜉௜ + 𝑅௖)𝜂ప̈

+ ൭෍ 𝑚௣

ଷ

௜ୀଵ

[(𝜉௜ + 𝑅௖)ଶ + 𝜂௜
ଶ]൱ 𝜃̈௖

+ ൭෍ 𝑚௣

ଷ

௜ୀଵ

[−(𝜉௜ + 𝑅௖) sin(𝜃௖ + 𝜑௜) − 𝜂௜ cos(𝜃௖ + 𝜑௜)]൱ 𝑥̈௖

+ ൭෍ 𝑚௣

ଷ

௜ୀଵ

[(𝜉௜ + 𝑅௖) cos(𝜃௖ + 𝜑௜) − 𝜂௜ sin(𝜃௖ + 𝜑௜)]൱ 𝑦̈௖

+ ෍ 𝑚௣

ଷ

௜ୀଵ

ൣ2𝜉ప̇𝜃௖̇(𝜉௜ + 𝑅௖) + 2𝜂ప̇𝜃௖̇൧ 

 

 
డ்

డకഢ̇
= 𝑚௣ ቂ𝑥̇௜

డ௫̇೔

డకഢ̇
+ 𝑦̇௜

డ௬̇೔

డకഢ̇
ቃ 

𝑑

𝑑𝑡
ቆ

𝜕𝑇

𝜕𝜉ప̇

ቇ = 𝑚௣ ቄቂ𝑥̈௖ + cos(𝜃௖ + 𝜑௜) 𝜉ప̈ − 2𝜉ప̇𝜃௖̇ sin(𝜃௖ + 𝜑௜) − (𝜉௜ + 𝑅௖)𝜃௖̈ sin(𝜃௖ + 𝜑௜)

− (𝜉௜ + 𝑅௖)𝜃௖̇
ଶ

cos(𝜃௖ + 𝜑௜) − 𝜂ప̈ sin(𝜃௖ + 𝜑௜) − 2𝜂ప̇𝜃௖̇ cos(𝜃௖ + 𝜑௜)

− 𝜂௜𝜃௖̈ cos(𝜃௖ + 𝜑௜) + 𝜂௜𝜃௖̇
ଶ

sin(𝜃௖ + 𝜑௜)ቃ cos(𝜃௖ + 𝜑௜)

− ൣ𝑥̇௖ + 𝜉ప̇ cos(𝜃௖ + 𝜑௜) − (𝜉௜ + 𝑅௖)𝜃௖̇ sin(𝜃௖ + 𝜑௜) − 𝜂ప̇ sin(𝜃௖ + 𝜑௜)

− 𝜂௜𝜃௖̇ cos(𝜃௖ + 𝜑௜)൧𝜃௖̇ sin(𝜃௖ + 𝜑௜)

+ ቂ𝑦̈௖ + sin(𝜃௖ + 𝜑௜) 𝜉ప̈ + 2𝜉ప̇𝜃௖̇ cos(𝜃௖ + 𝜑௜) + (𝜉௜ + 𝑅௖)𝜃௖̈ cos(𝜃௖ + 𝜑௜)

− (𝜉௜ + 𝑅௖)𝜃௖̇
ଶ

sin(𝜃௖ + 𝜑௜) + 𝜂ప̈ cos(𝜃௖ + 𝜑௜) − 2𝜂ప̇𝜃௖̇ sin(𝜃௖ + 𝜑௜)

− 𝜂௜𝜃௖̈ sin(𝜃௖ + 𝜑௜) − 𝜂௜𝜃௖̇
ଶ

cos(𝜃௖ + 𝜑௜)ቃ sin(𝜃௖ + 𝜑௜)

+ ൣ𝑦̇௖ + 𝜉ప̇ sin(𝜃௖ + 𝜑௜) + (𝜉௜ + 𝑅௖)𝜃௖̇ cos(𝜃௖ + 𝜑௜) − 𝜂ప̇ sin(𝜃௖ + 𝜑௜)

− 𝜂௜𝜃௖̇ sin(𝜃௖ + 𝜑௜)൧𝜃௖̇ coss(𝜃௖ + 𝜑௜)ቅ 
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𝑑

𝑑𝑡
ቆ

𝜕𝑇

𝜕𝜉ప̇

ቇ = ൫𝑚௣ cos(𝜃௖ + 𝜑௜)൯𝑥̈௖ + 𝑚௣𝜉ప̈ − ൫𝑚௣𝜂௜൯𝜃̈௖ + ൫𝑚௣ sin(𝜃௖ + 𝜑௜)൯𝑦̈௖

+ 𝑚௣ൣ−𝜂ప̇𝜃௖̇ − 𝑥̇௖𝜃௖̇ sin(𝜃௖ + 𝜑௜) + 𝑦௖𝜃௖̇ cos(𝜃௖ + 𝜑௜)൧ 

𝜕𝑇

𝜕𝜉௜
= 𝑚௣ ቂ−𝑥̇௖𝜃௖̇ sin(𝜃௖ + 𝜑௜) − 𝜉ప̇𝜃௖̇ sin(𝜃௖ + 𝜑௜) cos(𝜃௖ + 𝜑௜)

+ (𝜉௜ + 𝑅௖)𝜃௖̇
ଶ

sinଶ(𝜃௖ + 𝜑௜) + 𝜂ప̇𝜃௖̇sinଶ(𝜃௖ + 𝜑௜)

+ 𝜂௜𝜃௖̇
ଶ

sin(𝜃௖ + 𝜑௜) cos(𝜃௖ + 𝜑௜) + 𝑦̇௖𝜃௖̇ cos(𝜃௖ + 𝜑௜)

+ 𝜉ప̇𝜃௖̇ sin(𝜃௖ + 𝜑௜) cos(𝜃௖ + 𝜑௜) + (𝜉௜ + 𝑅௖)𝜃௖̇
ଶ

cos(𝜃௖ + 𝜑௜)

+ 𝜂ప̇𝜃௖̇ cosଶ(𝜃௖ + 𝜑௜) − 𝜂௜𝜃௖̇
ଶ

sin(𝜃௖ + 𝜑௜) cos(𝜃௖ + 𝜑௜)ቃ 

𝜕𝑇

𝜕𝜉௜
= 𝑚௣ ቂ−𝑥̇௖𝜃௖̇ sin(𝜃௖ + 𝜑௜) + (𝜉௜ + 𝑅௖)𝜃௖̇

ଶ
+ 𝜂ప̇𝜃௖̇ + 𝑦̇௖𝜃௖̇ cos(𝜃௖ + 𝜑௜)ቃ 

𝑑

𝑑𝑡
ቆ

𝜕𝑇

𝜕𝜉ప̇

ቇ −
𝜕𝑇

𝜕𝜉௜
= ൫𝑚௣ cos(𝜃௖ + 𝜑௜)൯𝑥̈௖ + 𝑚௣𝜉ప̈ − ൫𝑚௣𝜂௜൯𝜃̈௖ + ൫𝑚௣ sin(𝜃௖ + 𝜑௜)൯𝑦̈௖

+ 𝑚௣ ቂ−2𝜂ప̇𝜃௖̇ − (𝜉௜ + 𝑅௖)𝜃௖̇
ଶ

ቃ 

Similarly for the coordinate 𝜂௜, the following equation is obtained 

𝑑

𝑑𝑡
൬

𝜕𝑇

𝜕𝜂ప̇
൰ −

𝜕𝑇

𝜕𝜂௜
= ൫−𝑚௣ sin(𝜃௖ + 𝜑௜)൯𝑥̈௖ + 𝑚௣𝜂ప̈ + ቀ𝑚௣(𝜉௜ + 𝑅௖)ቁ 𝜃̈௖

+ ൫𝑚௣ cos(𝜃௖ + 𝜑௜)൯𝑦̈௖ + 𝑚௣ ቂ2𝜉ప̇𝜃௖̇ − 𝜂௜𝜃௖̇
ଶ

ቃ 

For the coordinate 𝜃௜, it is straightforward, and can be expressed as follows 

𝑑

𝑑𝑡
ቆ

𝜕𝑇

𝜕𝜃ప̇

ቇ = 𝐼௣𝜃̈௖ + 𝐼௣𝜃̈௜ 
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