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Kompleks yapılarda ölçüt sağlayan kavramlardan biri entropidir. Bu çalışmada 

çizge entropi kullanılarak sosyal ağlarda analizler yapıldı ve uygulamaları gösterildi. 

Sosyal ağların önemli problemlerinden olan merkezilik hesaplamaları için yeni 

yöntemler önerildi. Entropinin ağ düğümlerinin merkeziliklerinin tespitindeki 

yeteneği gösterildi. Entropi hesaplamaları Karcı entropi, Renyi entropi ve Shannon 

entropi ile yapıldı. Daha önce sosyal ağlarda hiç kullanılmamış Karcı entropi sosyal 

ağlara uygulanmış oldu. Shannon ve Renyi entropi ile kıyaslandı. Karcı entropi ve 

Renyi entropide kullanılan 𝛼 değeri için ağın topolojik özelliklerinden olan yoğunluk 

ve kümelenme katsayısı kullanılarak bulanık 𝛼 seçim algoritması önerildi. Önerilen 

yöntemler Flags, Air Traffic ve Netscience veri setlerine uygulandı. Analiz sonuçları 

geleneksel merkezilik ölçümleri olan derece, arasındalık, yakınlık ve özvektör 

merkeziliği ile kıyaslandı. Önerilen yöntemin doğruluğu, etkinliği ve uygulanabilirliği 

gösterildi. Yerel ve küresel ölçümler yapılabildi. Geleneksel yöntemlerin çözüm 

üretemediği bazı karmaşık yapılarda Karcı entropi ve Renyi entropi ile en etkin 

aktörler tespit edilebildi. Sosyal ağlarda düğüm derecelerinin ve kenar ağırlıklarının 

etkisi beraber ölçülebildi. Sosyal ağlara yeni veri setleri kazandırıldı. 

 

ANAHTAR KELİMELER: Sosyal ağlar, çizge entropi, Karcı entropi, Renyi entropi, 

düğüm merkeziliği, bulanık mantık.  
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One of the concepts that provide criteria in complex structures is entropy. In this 

study, graph entropy was used to analyze social networks and their applications were 

shown. New methods were proposed for node centrality, one of the major problems of 

social networks. The ability of entropy to determine the centrality of network nodes 

was demonstrated. Entropy calculations were performed with Karcı entropy, Renyi 

entropy and Shannon entropy. Karcı entropy, which had never been used in social 

networks before, was applied to the social networks. A fuzzy α selection algorithm 

was proposed to determine the α value used in the Karcı entropy and Renyi entropy 

using density and clustering coefficient, which are the topological properties of the 

network. The proposed methods were applied to the Flags, Air Traffic, and Netscience 

data sets. Karcı entropy was compared with Renyi and Shannon entropies. The results 

of the analysis were compared with the traditional centrality measures which are 

degree, betweenness, closeness, and eigenvector centralities. The accuracy, 

effectiveness, and applicability of the proposed method were shown. Local and global 

measurements were performed. Karcı entropy and Renyi entropy were able to identify 

the influential actors in some complex systems where conventional methods cannot 

find a solution. The effect of node degrees and edge weights to the centrality could be 

measured together. New data sets were introduced to social networks. 

KEYWORDS: Social networks, graph entropy, Karcı entropy, Renyi entropy, node 
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1. GİRİŞ 

Günümüzde bilgi sistemlerinin hayatın her alanına girmesi ve internet ortamının 

etkileşimli bir yapıya kavuşması ile birlikte veri miktarı hızla artmaya başladı. Hayatın 

her alanı ile ilgili veriler bu ortamlarda saklanır oldu. Her türlü veriye kolay ulaşım 

sağlanmaya başlandı. Bu büyük verilere anlam katmak, verideki anlamlı parçaları 

bulmak için çaba gösterilmeye, sürekli artan bu veriler işlenerek karar süreçlerinde, 

gerçek dünya problemlerine çözüm üretmede kullanılmaya başlandı. Veri bilimi 

günümüz bilişim dünyasında üzerinde çalışmaların hızla arttığı, çok yol alınan 

alanlardan biri oldu. Yapay zekânın çokça konuşulduğu, artık gelişim hızından 

korkulduğu bir dönem yaşanıyor. Veri işleme hızı ve ulaşılan veri boyutunun 

büyüklüğü yeni bir evreye geçti. Görülüyor ki nitelikli bilginin elde edilmesi ve kararlar 

alınırken bu bilgilerin kullanılması insanlığın yararına sonuçlar doğuruyor. Bilimin ve 

insanlığın her türlü alanda gelişim göstermesi, bu verilerin işlenmesi ile daha da hızlı 

olmaya başladı.  

İnsanoğlu evrendeki birçok karmaşık sistemin yapısı ile ilgili tam bir bilgi sahibi 

değildir. Cevap bekleyen birçok soru ve sorun mevcuttur. Bunları çözümlemek için 

bilim insanları çalışmalarını aralıksız sürdürüyor. İçinde yaşadığımız dünya gittikçe 

birbirine bağlı ve birbirine bağımlı hale geldikçe, karmaşık sistemleri modelleme, 

tasarlama ve yönetme konusunda daha fazla çaba gösterme ihtiyacı ortaya çıkıyor.  

Yapısı bilinen sistemlerin verilerinin analizi daha kolaydır. Verilere, yapısına göre 

doğru yöntem ve algoritmalar uygulandığında sonuca varmak ve işlem maliyetini 

düşürmek kolaylaşır. Bu verilerin bir kısmı karmaşık ve karmaşık sistemlerden alınan 

verilerdir ve doğrusal değildir. Giriş verilerine göre bir çıkış elde etmek zordur, çünkü 

birçok birbirinden bağımsız farklı parametre vardır. Sonuca ulaşmak için birçok farklı 

adımın gerçekleştirilmesi gerekir ve matematiksel olarak ifade edilmesi zor yapılardır. 

Doğrusal olmayan bu tür sistemlerle başa çıkabilmek için bağlantı ve ilişkiler üzerinden 

oluşan bir yapı yeni bir alan olarak daha çok kullanılmaya başlandı. Bu verilerin bir 

kısmı varlıkların etkileşimiyle ortaya çıkmaktadır. Etkileşim yoluyla ortaya çıkan 

veriler ilişkisel verilerdir. Bu tür verilerin analizlerinde genellikle sosyal ağ analizi 

yöntemleri kullanılır. Bu alandaki çalışmalarda genellikle ağ yapısının çeşitli 

özelliklerinin belirlenmesi, bilginin ağdaki dağılımı, ağdaki toplulukların ve etkili 

düğümlerin tespiti gibi sorulara cevap aranır [1]. 
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Bilgi bazen olasılıksal durumlardan ortaya çıkar. Bir olayın oluşma ihtimalleri 

gözlemlendiğinde, ne kadar sürpriz veya belirsiz durum olursa olsun, olayın 

kaynağından gelen bilgilerin ortalama içeriği hakkında bir fikir edinilmeye çalışılır. Bir 

olayın üç farklı durumu vardır. Olay gerçekleşmediyse, belirsizlik durumu vardır. Olay 

yeni gerçekleştiyse, sürpriz bir durum söz konusudur. Olay bir süre önce gerçekleştiyse, 

biraz bilgi sahibi olma koşulu vardır. Bu nedenle, bu üç durum farklı zamanlarda ortaya 

çıkar. Bu şartlardaki fark, olayların oluşma ihtimalleri hakkında bilgi sahibi olmamıza 

yardımcı olur. Bu tezde sonuca gitmemizi sağlayacak yöntemlerin dayanağı entropidir. 

Entropi, ortalama bilgi içeriğinin bir ölçüsü olarak tanımlanabilir [2]. Entropi 

yardımıyla bazı sistemler hakkında ortalama bir bilgi sahibi olunacak, bu bilgi miktarı 

arttırılmaya çalışılacaktır.  

Sosyal ağlarda merkezilik günümüzde üzerinde çalışmaların çokça yapıldığı 

alanlardan biridir. Merkezilik ölçümleri ile virüs yayılımının engellenmesi, bir 

hastalığın yayılımına neden olabilecek sebeplerin ortadan kaldırılması [3], sosyal 

medyada istenmeyen türdeki hareketliliklerin merkezinin bulunması [4], bazı 

oluşumların liderlerinin tespiti [5], veri akışının düzenlenmesi [6], bir yapıyı etkileyen 

en önemli faktörlerin/varlıkların tespiti [7] gibi birçok probleme çözüm üretilebilir.  Bu 

tezde sosyal ağlarda en çok kullanılan merkezilik ölçümleri derece, arasındalık, 

yakınlık, öz vektör merkeziliğine ek olarak entropi merkeziliği kullanılarak merkezi 

düğümlerin tespiti yapıldı. 

1.1. Amaç ve Kapsam 

Son zamanlarda büyük ölçekli karmaşık ağların istatiksel özelliklerini incelemek 

için birçok çalışma yapılmaktadır. Bu alanda büyük bir hareketlenme yaşanmaktadır. 

Bunun sebeplerinden biri matematik, istatistik, mühendislik, biyoloji, fizik ve sosyal 

bilimlerdeki birçok büyük ölçekli sistemin yapısının, işlevinin ve dinamiklerinin temel 

özelliklerinin ortaya çıkarılmasında bu modellerin kullanılmasının önemli bir rol 

oynamasıdır.  

Entropi birçok alanda kendisine karşılık bulan bir kavramdır. Özellikle karmaşık 

sistemlerde ölçüm olanağı olan olasılıksal bir yapıya sahiptir. Sosyal ağlardaki 

yapıların karmaşıklığı, ilişkilerin nasıl oluştuğu, gizli yapıların tespiti, yapıdaki 

kümelenmeler, bilgi akışlarının nasıl gerçekleştiği, merkezi roller oynayan bireyleri, 

ekipleri ve birimleri tespit, bilgi arızalarını, darboğazları, yapısal delikleri, ayrıca 

yalıtılmış şahısları, ekipleri ve birimleri ayırt etmek gibi birçok sorunu çözmek için bu 
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yapılar analiz edilmektedir. Görüldüğü gibi hayatın her alanına dokunan bu yapılar 

oldukça kapsamı geniş sorular ve çözümler önermektedir. Bu tezde bu kapsam 

daraltılarak entropi kavramının bu sistemlerde merkezilik ölçümlerinde kullanımına 

katkı sağlamak, merkezilik için entropi ile çözüm önerileri sunmaktır.  Çizge entropi 

kavramı ve çizgelerde uygulama alanları incelenerek, Shannon entropiye ek olarak 

Karcı ve Renyi entropinin sosyal ağlara uygulanması amaçlanmaktadır. Bu 

yaklaşımlarında Shannon entropi gibi sosyal ağlarda kullanılabileceği, bazı durumlarda 

daha iyi sonuçların alınabileceği gösterilmeye çalışılacaktır. Bu şekilde Shannon, Karcı 

ve Renyi entropinin sosyal ağ problemlerinin çözümüne katkı sunacağı 

düşünülmektedir. Önerilecek yöntem değişik veri setleri üzerinde uygulanarak, diğer 

yaklaşımlardan üstün yanları ortaya konmaya çalışılacaktır. Özellikle ülke verileri 

kullanılarak yapılan analizlerle sosyal bilimler alanına katkı sunulmaya çalışılacaktır. 

Ayrıca sosyal ağlarda üzerinde çokça analizlerin yapıldığı Netscience veri seti 

kullanılarak entropinin sonuçlarının doğruluğu diğer önerilmiş yöntemlerle 

kıyaslanacaktır. Bu şekilde bir sistemde merkezi roller oynayan aktörler farklı 

entropiler kullanılarak tespit edilmeye çalışılacaktır. Literatürde sosyal ağlarda hiç 

kullanılmayan Karcı entropinin kullanım alanı genişletilecektir.  

Bu tezdeki asıl amaç karmaşık ağların karakterize edilebilmesi için etkin 

yöntemlerin geliştirilmesidir. 

1.2. Tezde Yapılan Çalışmalar ve Literatüre Katkısı 

1) Sosyal ağlarda bir sistemdeki en etkili ve merkezi düğümleri tespit etmek için en 

çok kullanılan yöntemler olan Derece Merkeziliği, Arasındalık Merkeziliği, 

Yakınlık Merkeziliği, Özdeğer Merkeziliğine ek olarak Çizge Entropi Merkeziliği 

çizgelere uygulandı. Çizge entropisi ile bu geleneksel yöntemler kıyaslandı. 

Önerilen yöntemle daha doğru sonuçların alındığı gösterildi. 

2) Shannon, Renyi ve Karcı entropi sosyal ağlara uygulandı. Sosyal ağlarda ilk defa 

kullanılan Karcı entropi de kullanılan α parametresinin doğru değerini belirlemek 

için bulanık mantık ile bir yöntem önerildi. Elde edilen entropi, Bulanık Karcı 

Entropisi olarak adlandırıldı. 

3) Sosyal ağlarda etkili düğümleri tespit etmek için önerdiğimiz Bulanık Karcı 

Entropi ve Renyi Entropi Uygulaması, deney sonuçlarına göre Derece Merkeziliği 

yöntemine, Arasındalık Merkeziliği yöntemine, Yakınlık Merkeziliği yöntemine, 
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Özdeğer Merkeziliği yöntemine, Shannon Çizge Entropi yöntemine göre daha iyi 

sonuçlar verdi.  

4) Karcı entropisi, α değerinin 1 olduğu durumlarda Shannon entropisi ile aynı 

davranışı gösterdiği göz önüne alındığında, farklı α değerleri ile daha fazla farklı 

duruma çözüm ürettiği için sosyal ağlarda Shannon entropisine üstün gelmektedir. 

5) Sosyal ağlarda analiz yapılırken düğüm derecesinin ve kenar ağırlıklarının etkisini 

beraber kullanmak, etki derecelerini belirlemek Karcı ve Renyi entropideki α 

değeri ile mümkün oldu. Ortalama etkileri sosyal ağ yoğunluğu ve kümelenme 

katsayısı girdileri kullanılarak bulanık mantık ile hesaplanabildi. 

6) İstatistiksel veriler sosyal ağ yapısına dönüştürüldü. Ağırlıklı, yönlü ve yönsüz 

olabilen bu ağlar entropi kullanılarak analiz edildi. Sosyal ağ yapısına yeni veri 

setleri kazandırıldı. 

7) Sosyal bilimlerin alanına giren din, dil, bölge, kıta ülke verileri sosyal ağa 

dönüştürülerek ülkelerin ilişkileri, kümelenmeleri, etkinlikleri bu parametrelere 

göre analiz edildi. Bu parametrelerin kümelenmedeki etkileri gösterildi. 

8) Ülke ilişkilerinin matematiksel olarak analizinin belli parametrelere göre 

yapılabileceği gösterildi. Sosyal bilimlerin alanına giren bir konuda çözüm 

önerildi. 

9) Ülkelerin hava trafiği etkinliği sosyal ağ analizi yöntemleri ve entropi ile analiz 

edildi. Gizli merkezi düğümler bulundu. 

10) Shannon entropi, Renyi entropi ve Karcı entropi analiz sonuçlarına göre kıyaslandı. 

Sosyal ağ yapısı verilerinin analizi için kullanılabileceği gösterildi. 

11) Karcı entropi ile Renyi entropinin aynı yönde sonuçlar verdiği görüldü. 

12) Birbirlerinden kümelenme ve yoğunluk olarak farklı ağlardaki merkezilik 

ölçümlerinin davranışı gösterildi. Önerilen yöntemin bu ağların tümünde etkili 

olduğu görüldü. 

13) Merkezilik ölçümü yapılırken ağın yapısının dikkate alınması gerektiği farklı 

yaklaşımlarla bir daha gösterildi. 

1.3. Tezin Yapısı 

Doktora tezi olarak hazırlanan bu çalışma altı bölümden oluşmuştur. Bölümlerin 

özeti aşağıdaki gibidir. 

Birinci bölümde, teze giriş yapılmış, problem tanımlanmış, geliştirilecek çözümün 

amacı, etkileri, kapsamı, yapılan çalışmalardan ve literatüre katkısından bahsedilmiştir. 
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İkinci bölümde, sosyal ağlar açıklanmıştır. Çizgelerin matematiksel gösterimi, 

çeşitleri ve temel özellikleri detaylandırılmıştır. Önerilen yöntemle kıyaslamak için 

kullanılan geleneksel merkezilik ölçümleri açıklanmış, ayrıca bulanık 𝛼 seçim 

algoritması için kullanılan yapısal sosyal ağ özellikleri olan kümelenme katsayısı ve 

yoğunluk kavramlarına değinilmiştir. Sosyal ağlarda karmaşıklık konusu irdelenmiş, 

literatürdeki çalışmalardan söz edilmiştir. 

Üçüncü bölümde, çizge entropi konusu açıklanmıştır. Entropinin tarihsel 

gelişiminden bahsedilmiş, bu çalışmada kullanılan entropilerin temeline inilmiş, 

Shannon, Rényi ve Karcı entropi açıklanmıştır. Çizge entropi ile merkezilik konusu 

anlatılmış, literatürde yapılan çalışmalara değinilmiştir. 

Dördüncü bölümde, önerilen yöntemde kullanılan bulanık mantık 

detaylandırılmıştır. Matematiksel gösterim, bulanık küme, üyelik fonksiyonu, 

bulanıklaştırma gibi bir bulanık sistemin temel kavramlarından bahsedilmiştir. Bulanık 

𝛼 seçim algoritması için kullanılan temel yapılar açıklanmıştır. 

Beşinci bölümde iki aşamalı olarak önerilen yöntemden bahsedilmiş, algoritma 

akış diyagramı ve hesaplama adımları açıklanmıştır. 3 farklı veri seti kullanılarak 

önerilen yöntemin uygulanabilirliği, geleneksel yöntemlerle kıyaslaması ve doğruluğu 

gösterilmiş, yorum ve açıklamalar yapılmıştır. Sonuçlar tablolar ve görsel şekillerle 

gösterilmiştir. Her bir veri seti için Shannon, Karcı ve Renyi entropi ile ölçümler 

yapılmış ve farklı 𝛼 değerleri kullanılmıştır. Flags veri setinden örnek veri alınarak 

minyatür bir analizde yapılmıştır. Yöntemin adımlarının anlaşılmasını basitleştirmek 

için minyatür veri adım adım anlatılmıştır. Birbirinden farklı yapıda olan 3 veri setinden 

ülkelerle ilgili olanlar tez kapsamında sosyal ağ yapısına dönüştürülüp, analiz 

edilmiştir. 

Altıncı bölümde ise tez çalışması ile elde edilen sonuçlar ve öneriler yer almaktadır.  
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2. SOSYAL AĞLAR 

Prusya'da Königsberg'de Kneiphof adında bir ada bulunmaktadır. Şekil 2.1’de 

görüldüğü üzere adayı çevreleyen nehir iki kola ayrılmaktadır. Bu kollar üzerinde yedi 

adet köprü bulunmaktadır. O zamanlar “Bu köprülerden yalnızca bir kere geçmek 

suretiyle bütün şehri dolaşabilir miyiz?” sorusuna cevap aranmaya çalışılmıştır. 1736 

yılında ünlü matematikçi Leonhard Euler bu problemin çözümünün olmadığını ve 

hangi durumlarda çözüm üretilebileceği konusunda çalışmalar yapmıştır. Bu çalışmalar 

sırasında çizge teorisinin ve topolojisinin temellerini oluşturmuştur [8].  

 

 

      Şekil 2.1. Königsberg köprüleri 

1934 yılında ABD’deki bir kız yetiştirme yurdunda psikolog olarak çalışan Moreno 

ve arkadaşı Jennings okuldan kaçan kızların davranışlarını incelerken geleneksel 

yöntemlerin bunu anlamada yeterli olmadığını fark ettiler. Öğrencilerin bireysel 

özelliklerini incelediklerinde bir sonuca ulaşamadılar. Bunun tamamıyla etkileşim ve 

arkadaş çevresiyle ilgili olduğunu anladılar. Sosyal yapıya baktıklarında dışlanmış bir 

grubun okuldan kaçma eğiliminde olduklarını gördüler. Bu çalışmadan bir topluluğu 

anlamak için bireylerden ziyade topluluğun tamamına bakmak gerektiği görüldü [9]. 

Bu yaklaşım bilim dünyasına yeni bir bakış açısı getirdi. Sosyal ilişkiler üzerinden 

analizlerin gerçekleştirilmesinin yolu açıldı [10]. Günümüzde gerçek dünya 

problemlerinin bir kısmını tanımlamada ve çözüm üretmede bu yapılar 

kullanılmaktadır. Varlıklar arasındaki ilişkilere odaklanılarak bir sosyal ağ içinde 

oluşan yapılar ve iletişim akışları incelenmektedir. İlişkileri matematiksel olarak 

tanımlamada ise, çizgelerin kullanışlı olduğu ürettiği çözümlere ve kullanıldığı alanlara 

bakıldığında anlaşılmaktadır. İnternetin gelişmesi ve büyük miktardaki verilerin 

bilgisayar sistemlerinde işlenip saklanmaya başlaması ile birlikte hayatın her alanına 

ait bilgiler ulaşılabilir oldu.  Bu verilerin analizi için geliştirilen disiplinlerden biri de 

sosyal ağ analizi oldu.  Bilimsel araştırmaların kilit konularından biri haline geldi. 
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Sosyal ilişki, birbirlerinden haberi olan, en az iki insan arasında bir süre devam 

eden, anlamlı, belirli amaçları bulunan sosyal bağ demektir [11]. Sosyal ağlar 

denildiğinde ise, Facebook, Twitter, Google+, Linkedin veya bunlara benzer arkadaşlık 

ve haberleşme siteleri akla gelmektedir. “Sosyal” olarak tanımlanabilir bir yapı söz 

konusudur. Bu tip verileri matematik ve bilgisayar bilimlerinde ifade etmek için 

çizgeler (ağlar) kullanılır. Ağlar (networks) veya çizgeler (graphs); arkadaşlık, 

akrabalık, ortak ilgi gibi parametreler üzerinden oluşan ilişkilerin tanımlandığı 

matematiksel modellerdir. Canlı veya cansız varlıklar ve bu varlıklar arasındaki 

ilişki/bağlantı olarak tanımlanan yapıdır. Varlıkların düğüm ve bağlantıların da kenar 

olarak ifade edildiği çizge veri yapısındadır. 

Ortaya çıkan çizge tabanlı yapılar genellikle çok karmaşıktır [12]. Karmaşık ağlar 

çok büyük olabileceği için yerel özelliklerine bakarak, küresel karakteristiklerini 

anlamak çok zordur. Bu nedenle bu tür ağların anlaşılır hale getirilmesi için göze çarpan 

özelliklerinin ele alınması ve analizi için işe yarar metotların geliştirilmesi 

gerekmektedir [13]. Sosyal ağ analizi yöntemleri bu karmaşık yapıları çözümlemede 

ikna edici yollar sunar ve ağ yapılarının karmaşıklığı bir nebze olsun hafifletilir. 

Düğümler ağlar içindeki bireysel aktörlerdir ve bağlarda aktörler arasındaki ilişkilerdir. 

Bir sosyal sistemdeki bireylerin ilişkilerine odaklanılarak, bu sistem analiz edilir, 

anlaşılmaya çalışılır. Düğümler arasında çok çeşitli bağlar oluşmuş olabilir. Bu bağlar 

bilgi, para, e-posta, virüs, mikrop, benzerlik, ortak işler, dedikodu, evlilik, arkadaşlık 

gibi değerleri temsil eder. Birçok dünya problemine çözüm geliştirirken bu yapılar 

üzerinde çeşitli analiz metotları geliştirilip, kullanılmaktadır. 

Bu tür bağlantılara her yerde rastlanılabilir ve bu bağlantılar ile oluşan sosyal yapı, 

bireyin konumu, konumunun özellikleri ve etkileri sosyal ağ analizi yöntemleri ile 

araştırılabilir. Sosyoloji, matematik, bilgisayar bilimleri, tıp, biyoinformatik, 

biyokimya, elektrik mühendisliği, işletme gibi birçok alanda uygulamaları vardır. Sinir 

hücreleri arasındaki bağlantılarla oluşan ağlarla beynin fonksiyonlarını; toplumdaki 

meslek, arkadaşlık ve aile bağlarını; modern iletişim sistemlerini; Facebook, Twitter, 

Instagram gibi sosyal ağları; enerji şebekeleri; ticari ağları ve ulaşım ağlarını ağların 

analizi yoluyla daha iyi anlayabiliriz[14]. Protein-protein etkileşimi (PPI) gibi hücresel 

yapıları modellemek için çizgeler kullanılabilir. Hücre bileşenleri düğüm, 

etkileşimlerde kenar ile ifade edilir. Bu modelle bilim adamlarının proteinler arasındaki 

benzerliği bulmaları ve hücrelerin karakteristiklerinin tespiti mümkün olmaktadır [15]. 

Çizgeler haberleşme ağlarının modellenmesinde de kullanılmaktadır. Terminaller 
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düğümlerle bu terminallerin haberleşmesi de kenarlarla gösterilir. Doğru ve etkin 

haberleşmenin sağlanabilmesi için analizler yapılırken bu yapılardan faydalanılır [16]. 

Bilgisayar görmesi alanında da geniş bir kullanım alanı bulmaktadır. Nesne tanıma, 

karakter eşleştirme, görüntü bölümleme problemlerin üstesinden gelmek içinde 

çizgeler kullanılır. Genel olarak hiyerarşik görüntü özellikleri ağaç yapıları veya yönlü 

çevrimsiz (acyclic) çizgelerle modellenir. Düğümler görüntünün kısımlarını, kenarlar 

ise mekânsal ilişkileri ve eşleşmeleri gösterir  [17]. Çizgeler aynı zamanda ulaşım 

ağları, etkinlik ağları ve oyun teorisinde de modelleme için kullanılır. Büyük karmaşık 

projelerin araştırılması ve planlanmasında başarılı sonuçlar verir [18]. Günümüzde ağ 

bilimi istatiksel problemlerin çözümünde de kullanılmaya ve sonuçlar üretmeye 

başlamıştır [19]. 

2.1. Matematiksel Gösterim 

Ağırlıksız bir ağ yapısı 𝐺 = (𝑉, 𝐸) şeklinde tanımlanır. 𝐺 çizge (graph), 𝑉 

düğümler kümesi (vertices set), 𝐸 kenarlar kümesi (edges set) olarak temsil edilir. 

İlişkiler tanımlanırken kenarlar kümesi veya komşuluk matrisi kullanılır. Bir çizge 

yönlü (directed) veya yönsüz (undirected) olabilir. Örneğin telefon araması yönlüdür 

çünkü bir kişiden diğerine arama gerçekleşmektedir. Kenarlar ilişkinin türüne göre 

ağırlıklı (weighted) veya ağırlıksız (unweighted) olabilir. Bir ağda, 𝑖 ve 𝑗 düğümleri 

arasında ilişki varsa ve bu ilişki 𝑒𝑖,𝑗 ile gösterilirse, bu iki düğüme komşu düğümler 

denir. Ağırlıklı ağlarda ise, kenarın ağırlığı 𝑤𝑖,𝑗 ile gösterilebilir. 

Örnek olması için Şekil 2.2’de yönsüz, ağırlıksız bir çizge yapısı gösterildi. 𝑉 =

{𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, 𝑗, 𝑘} düğümler kümesi ve 𝐸 = {(𝑎, 𝑏), (𝑎, 𝑔), (𝑏, 𝑒), (𝑑, 𝑐),

(𝑒, 𝑑), (𝑒, 𝑓), (𝑓, 𝑔), (𝑓, 𝑗), (𝑓, 𝑘), (𝑔, ℎ), (𝑔, 𝑖)} kenarlar kümesi olur. Matrisin 

diyagonal hücrelerinde hep 0 var, çünkü bireylerden hiçbirinin kendisiyle ilişkisi yok. 

Bir matriste ilişkinin türü arkadaşlık olursa, bir kişi kendisiyle arkadaş olamayacağı için 

0 olması gerekir. İlişkinin türü e-posta gönderme olursa, kişi kendine de e-posta 

gönderebileceği için 0 dışında bir değerde alabilir. Örnek matriste diyagonalin iki tarafı 

simetriktir. İlişki yönlü olsaydı simetrik olmazdı. Ağırlıklı bir çizge olsaydı, matrisin 

hücrelerinde 0 ve 1 haricinde ilişkinin sıklığını/şiddetini/ağırlığını gösteren değerler 

olacaktı. 



9 

 

Şekil 2.2. Örnek Çizge 

 

𝐴𝑖𝑗(
𝐴ğ𝚤𝑟𝑙𝚤𝑘𝑠𝚤𝑧

𝐴ğ𝚤𝑟𝑙𝚤𝑘𝑙𝚤
𝑘𝑜𝑚ş𝑢𝑙𝑢𝑘 𝑚𝑎𝑡𝑟𝑖𝑠𝑖) = {

1             𝑒ğ𝑒𝑟 (𝑖, 𝑗) ∈ 𝐸
𝑤𝑖,𝑗            𝑒ğ𝑒𝑟 𝑤𝑖,𝑗 ∈ 𝐸

0   𝑑𝑖ğ𝑒𝑟 𝑑𝑢𝑟𝑢𝑚𝑙𝑎𝑟𝑑𝑎
                             (2.1) 

Çizelge 2.1. Komşuluk matrisi (sosyomatris) ve düğüm dereceleri 

 a b c d e f g h i j k Derece  

a 0 1 0 0 0 0 1 0 0 0 0 2  

b 1 0 0 0 1 0 0 0 0 0 0 2  

c 0 0 0 1 0 0 0 0 0 0 0 1  

d 0 0 1 0 1 0 0 0 0 0 0 2  

e 0 1 0 1 0 1 0 0 0 0 0 3  

f 0 0 0 0 1 0 1 0 0 1 1 4  

g 1 0 0 0 0 1 0 1 1 0 0 4  

h 0 0 0 0 0 0 1 0 0 0 0 1  

i 0 0 0 0 0 0 1 0 0 0 0 1  

j 0 0 0 0 0 1 0 0 0 0 0 1  

k 0 0 0 0 0 1 0 0 0 0 0 1  

 

2.2. Çizge Çeşitleri 

Günümüzde birçok çeşit çizge tanımlanmış ve problemlere çözüm üretmek için 

kullanılmıştır. Aşağıda bunlardan bazıları kısaca açıklanmıştır. Düğümlerin olduğu 
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kenarların olmadığı çizgelere boş çizge denir ve tek bir düğümün olduğu çizgelere 

küçük çizge denir. Çizge kenarları yönlü ve yönsüz olabilir. Aynı iki düğümün sadece 

bir kenarla bağlandığı, herhangi bir düğümü yine kendisine bağlayan bir kenarın 

olmadığı, kenarların bir değer almadığı ve yönünün tanımlanmadığı, düğüm ve 

kenarların sınıflandırılmadığı çizgelere basit çizge denir. Bu çizgelerde 𝑛 düğüm varsa, 

maksimum kenar sayısı 𝑛(𝑛 − 1)/2 olur. Her bir düğüm çifti arasında bağlantı varsa, 

bu tür çizgelere bağlı çizge denir. Her bir düğümün en az bir kenarı olmalıdır. Böylece, 

kenarın diğer tarafında başka bir düğüme bağlı olduğu söylenebilir. En az iki düğüm 

birbirinden bağımsız ve birbiriyle bağlantılı değilse, bu çizgelere bağlantısız çizge 

denir. İki bileşen birbirinden bağımsız ve birbiriyle bağlantılı değildir. Tüm düğümler 

aynı dereceye sahipse, 𝐺 çizgesinin normal olduğu söylenir. Bir çizgede, her düğüm 

noktasının derecesi ‘𝑘’ ise, çizge ‘k-normal çizge’ olarak adlandırılır. Çizgede, bir 

düğüm diğer tüm düğümlerle kenarlara sahip olduğunda bu tam bağlı bir çizge olarak 

adlandırılır. “𝑛” düğüme sahip tam bağlı bir çizgede tüm düğümlerin derecesi (𝑛 − 1) 

olur. Bir çizgede bütün düğümlerin derecesi iki ve herhangi bir düğümden diğer bütün 

düğümlere yol varsa, bu çizgeye çevrim çizge denir. Basit çizge olmalı ve çizgede en 

az 3 düğüm bulunmalıdır. Bir çevrim çizgesine yeni bir düğüm eklenirse ve bu düğüm 

bütün düğümlerle bağlantılı hale getirilirse tekerlek çizge oluşur. Bu yeni düğüm hub 

görevi görür. Bir basit çizgede iki farklı türde düğüm kümesi var ise ve aynı düğüm 

kümesindekiler birbiri ile bağlantılı değil ve sadece diğer düğüm kümesindekilerle 

bağlantılı ise bu çizgeye iki parçalı çizge denir. Birden fazla türde düğüm kümesi de 

olabilir. Bu çizgelerde çok parçalı (multipartite) olarak adlandırılır. Her bir kümedeki 

her bir düğüm diğer düğüm kümesindeki bütün düğümlerle bağlantılı ise, bunlar 

bağlantılı tam iki parçalı çizgelerdir. Yıldız çizge tam iki parçalı bir çizgenin özel 

halidir.  İki düğüm kümesinden birinde sadece tek düğüm vardır ve bu tek düğüm diğer 

düğüm kümesindeki bütün düğümlerle bağlantılıdır. İki ya da daha fazla düğüm 

arasında birden fazla kenar (paralel kenar) varsa, bu tür çizgelere çoklu çizge denir. 

Çoklu çizgeler yönsüz ve çevrimsizdir. Örneğin iki şehir arasında birden fazla yol 

varsa, bu durum çoklu çizgeyle temsil edilir [20]. 

2.3. Sosyal Ağların Temel Özellikleri 

Ağ bilimi şekilsel yapısını çizge teorisindeki çizgelerden alır. Kavramsal 

çerçevesini ise rastgelelik ve istatistiksel fizik doldurur. Birçok farklı disiplindeki 

matematiksel kavramlardan da yararlanır. Eksik ve gürültülü veri kümelerinden bilgi 
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almamıza yardımcı olur. Tipik olarak ağ yapısı ile ifade edilen varlıklar insanlar 

olmuştur, ancak tamamen başka şeylerde olabilirler. Bugüne kadar birçok farklı varlık 

türü bu yapıda kullanılıp, analiz edilmiştir. Bunlar telefon ağı, e-posta ağı, biyolojik ağ 

(gen, protein), altyapı ağı (karayolları, havayolları, enerji) olabilir. Bir ağı oluşturan 

varlıklar tek bir tür olabileceği gibi, birden fazla türü de (bipartite-multipartite) 

barındırabilir. Bir ağdaki varlıklar arasında en az bir ilişki olmalıdır. Facebook gibi 

ağlarda bu ilişkinin adı arkadaşlıktır. Bu ağdaki varlıkların bir kısmı birbiriyle 

arkadaştır veya değildir. Bu arkadaşlığın derecesi ayrık olarak tanımlanabilir ve 

arkadaş, akraba, tanıdık olma durumlarını gösterebilir veya gerçek bir sayı ile ifade 

edilip iki kişinin birbiriyle görüşme sıklığını da gösterebilir. Bu yapıların rastgele 

oluşmadığı düşünülür, yerel yapılar üzerinden resmin tamamına ulaşılmaya çalışılır. Bu 

yapıların analizi ile çıkarsamalar yapmak, değerler elde etmek zordur fakat sezgi ile de 

olsa ilişkilerin kümelenme eğiliminde olduğu bilinmektedir. Yani, X kişisi hem Y hem 

de Z ile ilişkiliyse, Y ve Z'nin ilişkili olma ihtimali ortalamadan daha yüksek bir 

olasılıktır [21]. 

 

 

Şekil 2.3. Ağlarda Rasgelelik, Heterojenlik ve Modülerlik [16] 

Şekil 2.3’te ilk olarak ağın yapılış sürecinde yer alan rastgelelik miktarı 

gösterilmektedir. İkinci ölçütte, bağlantı dağılımının ne kadar farklı olduğunu ve 

üçüncüde de yapının nasıl modüler olduğunu ölçmektedir. Farklı ağ türlerinin 
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rastgelelik, heterojenlik ve modülerlik açısından birbirleriyle nasıl bağlantılı olduğunu 

gösterir.  

Ağların en uç durumu kafes (mesh) ve ağaçtır (tree). Bu tür ağlar insan yapımıdır 

ve heterojenlikleri düşüktür. Düğümlerin sahip olduğu bağlantı sayısı birbirine yakındır 

ve rastgelelik oranı da düşüktür. Rasgele seçilen iki düğümün birbiriyle bağlantı kurma 

ihtimali çok düşük veya hiç yoktur. Düzenli ağlar uzun ortalama yollara ve yüksek 

kümelenmeye sahip olma eğilimindedir. Kümelenmelerdeki bağlantılar yoğundur. 

Diğer bir ağ türü rastgele Erdös-Renyi (ER) çizgeleridir. Bağlantısız bir düğüm 

kümesiyle başlatılır. Belirli olasılık değeri kullanılarak düğümler eşleştirilir. Bu tür 

rastgele ağlar düşük heterojenliğe sahiptir, çünkü çoğu düğüm aynı sayıda bağlantıya 

sahip olur. Derece dağılımı Gauss çan eğrisi (Gauss bell-shaped curve) şeklinde olur. 

ER algoritması ile oluşturulan rastgele ağlar kısa ortalama yollara ve düşük 

kümelenmeye sahiptir [22]. 

Ancak, çoğu gerçek dünya ağları, düzenli veya rastgele ağların sahip olduğu 

derecelerin homojen dağılımına sahip değildir. Her düğümün ağlarda sahip olduğu 

bağlantı sayısı büyük ölçüde değişir ve bunlar düzenli ve rastgele ağlar arasında bir yere 

yerleştirilir. Aslında, Watts ve Strogatz [23], düzenli bir ağdaki düğümler arasındaki 

bağlantıların belirli bir olasılıkla yeniden bağlandığı bir model önermiştir. Bu modelle 

oluşturulan ağlar küçük dünya (small-world (SW)) ağı olarak adlandırılır. Düzenli veya 

rastgele ağ arasında bir ağdır. Bu tür ağlar birçok sosyal ağa yapısal olarak yakın 

ağlardır, çünkü aynı sayıda düğüm ve kenara sahip rastgele ağlardan daha yüksek 

kümelenme ve neredeyse aynı ortalama yola sahiptirler. Yüksek modülerliğe sahiptir, 

çünkü ağın diğer düğümlerine göre aynı kümedeki düğümlerin daha yoğun bağlantıları 

vardır. 

Son olarak, güç yasasına (power-law) göre şekillenen, oldukça heterojen bir derece 

dağılımı ile karakterize edilen, geniş ölçekli ölçek-bağımsız (scale-free (SF)) ağlar 

vardır [24].  Ölçek bağımsız denmesinin sebebi ağın herhangi bir kısmına odaklanılsa 

bile genel olarak sonuç değişmemektedir. Çok az düğümün yüksek bağlantı sayısı 

vardır.  Genelde bağlantıda olduğu düğümlerin düğüm derecesi düşüktür. Örneğin 

world wide web (www) ağı bu yapıdadır. Bu yapı heterojenliği ve rastgeleliği birleştirir, 

düşük veya yüksek modülerliğe sahip olabilir ve birçok SW ağı da ölçek-bağımsızdır 

[25].  
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2.4. Sosyal Ağlarda Merkezilik  

Sosyal ağ analizinde çözüm bekleyen problemlerden biri ağdaki en önemli 

düğümlerin veya toplulukların tespitidir. Ağa en çok etki eden düğümlerin tespiti 

önemli bir sorundur [26]. Bu tür problemlere çözüm geliştirirken en çok ihtiyaç duyulan 

bilgiler merkezilik ölçüleridir. “Belirli durumlara göre ağdaki en önemli ve merkez 

konumda bulunan aktör kimdir?” sorusunun cevabı çeşitli merkezilik hesaplamaları ile 

bulunabilir. Merkezi aktörler, diğer aktörlerle bağlantısı çok olan ve diğer aktörlere 

kolaylıkla ulaşabilen aktörlerdir. Etkin bir düğümden diğer düğümlere akış çok daha 

hızlı olabilmektedir. Bir düğümün komşularına etkisini ölçmek için en bilgilendirici 

değerler düğüm derecesi ve düğümler arasındaki en kısa yol bilgilerini öğrenmektir. 

Etkin düğümler genelde merkezidirler. Merkeziliği ölçmek için birçok yöntem 

geliştirilmiştir. Merkezilik ölçüsü ile ağdaki düğümlerin veya ayrıtların önemi ortaya 

çıkarılır. Merkezi düğümlerin tespiti ile sistemdeki birçok probleme çözüm üretilebilir, 

problem oluşturan kaynaklar tespit edilebilir. Biyoloji, tıp, ticaret, sosyal ağ gibi birçok 

alandaki çalışmalarda merkezilik ölçütleri ile sisteme etki eden önemli aktörlerin tespiti 

için literatürde birçok çalışma yapılmıştır [21–26].  Merkezilik genelde yönsüz ağlarda 

ölçülür. Yönlü ağlarda bu “prestij” diye adlandırılır. Giden bağlantı sayısının 

büyüklüğü o düğümün prestijini gösterir. Yönsüz ağlarda ise, bir düğümün ağa etkisi 

diğer düğümlerle ilişkisinin ne derece yoğun ve etkili olduğu ile alakalıdır. Bir 

düğümün ilişkide olduğu düğüm sayısı ne kadar fazla ise ve düğümlerle ilişkisi daha 

kısa yollarla oluyorsa, o düğüm o kadar merkezidir. Birçok farklı merkezilik ölçüsü 

olmasına rağmen derece, arasındalık, yakınlık ve özvektör merkeziliği en çok 

kullanılan merkezilik ölçüleridir. Derece ile yerel, arasındalık, yakınlık ve özvektör ile 

küresel ölçümler yapılabilir [27–31]. 

2.4.1. Derece merkeziliği (Degree centrality) 

Her bir düğümün ağdaki diğer düğümlerle arasındaki doğrudan bağlantı sayısı 

ölçülerek elde edilir. Bir düğümün doğrudan bağlantıda olduğu düğüm sayısı düğümün 

merkeziliğini gösterir. Yönsüz ağlarda tek tür derece varken, yönlü ağlarda bir düğüm 

için üç tür derece söz konusudur: Gelen derece, giden derece ve bu ikisinin toplamı 

olarak toplam derece vardır. Ağırlıklı ağlarda duruma göre ayrıt ağırlıkları toplanarak 

düğüm derecesi bulunabilir [33]. 

 

𝐷𝐶𝑖 = ∑ 𝑤𝑖𝑗
𝑛
𝑗=1                                                                                                          (2.2) 



14 

 

Denklem 2.2’de 𝑖 derecesi hesaplanan düğüm, 𝑛 toplam düğüm sayısı, 𝑤𝑖𝑗  değeri 

𝑖 ve 𝑗 düğümleri arasında bağlantı varsa, ayrıt ağırlığı veya 1 olarak alınır, yoksa 0 

değerini alır. 

2.4.2. Arasındalık merkeziliği (Betweenness centrality) 

Bu ölçü, ağın farklı kısımları arasındaki bilgi akışını sağlayabilen düğümleri tespit 

eder ve bir ağdaki akışlar için önemlidir. Belirli bir düğüm vasıtasıyla bilgi veya 

ilişkilerin nasıl aktığının ölçülmesidir. Düğümler arasındaki en kısa yolların bulunması 

ile hesaplanır. Her bir düğüm için bu düğümden kaç tane en kısa yol geçtiğini bularak 

hesaplanır. En yüksek arasındalığa sahip merkezi düğümler çıkarıldığında en kısa yol 

değerinin ortalaması yükselir ve bazı düğümler arasındaki akış kesilebilir [28, 29, 32]. 

 

𝐵𝐶𝑖 = ∑
𝑠𝑝𝑗𝑘(𝑖)

𝑠𝑝𝑗𝑘
𝑗,𝑘≠𝑖                                                                                                     (2.3) 

 

𝑠𝑝𝑗𝑘, 𝑗 ve k düğümleri arasındaki kısa yolların sayısını, 𝑠𝑝𝑗𝑘(𝑖) ise 𝑖 düğümü üzerinden 

geçen 𝑗 ve k düğümleri arasındaki kısa yolların sayısıdır. 

2.4.3. Yakınlık merkeziliği (Closeness centrality) 

Yakınlık, bir düğümden ağdaki erişilebilir diğer düğümlerine bilginin ne kadar 

sürede yayılacağının ölçüsü olarak kabul edilir. Bir düğümün bağımsızlığı, çizgedeki 

diğer düğümlere olan yakınlığı ile değerlendirilebilir. Bir düğüm ağdaki başka bir 

düğüme ne kadar uzak olursa, birinden diğerine geçmek için daha fazla düğümün 

geçilmesi gerekir. İki düğüm bir ayrıt ile bağlı ise, doğrudan yakınlık, birden fazla 

düğüm üzerinden geçerek bir düğümden başka bir düğüme bağlantı kuruluyorsa, 

dolaylı yakınlık söz konusudur. Farklı büyüklükteki sosyal ağlar arasında karşılaştırma 

yapmaya uygun bir ölçüt değildir [33]. 

 

𝐶𝐶𝑖 = [∑ 𝑑𝑖𝑗
𝑛
𝑗 ]

−1
                                                                                                       (2.4) 

 

𝑑𝑖𝑗, 𝑖 ve 𝑗 düğümleri arasındaki mesafeyi gösterir.  

2.4.4. Özvektör merkeziliği (Eigenvector centrality) 

Bir düğümün ağdaki diğer önemli düğümlerle ilişkisi daha fazla ise, bu düğüme 

daha fazla önem göstermek gerekir. Bağlantı sayısı az olan ama önemli bağlantılara 

sahip olan bir düğüm değerlidir. Bağlantı sayısı ile birlikte bağlantının niteliği de göz 
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önüne alınır. Bir düğümün az sayıda bağlantısı olsa bile bağlantıları etkin düğümlerle 

ise, bir sistemde çok sayıda daha etkisiz bağlantıya sahip düğüme göre daha fazla 

dikkate alınmalıdır [31, 33]. Google PageRank [38] algoritması, özvektör merkeziliği 

ölçümünün bir varyasyonudur. 

𝐴𝑥 = 𝜆𝑥, 𝑥𝑖 = 𝑢 ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1                                                                                      (2.5) 

𝐴, 𝑛𝑥𝑛 boyutunda benzerlik matrisi olsun. 𝑖 düğümünün özvektör merkeziliği 𝑥𝑖, 𝐴'nın 

en büyük özdeğerine ait normalleştirilmiş özvektördeki 𝑖‘inci girişi olarak tanımlanır. 

𝜆, 𝐴’nın en büyük özdeğeridir. 

2.5. Kümelenme Katsayısı (Clustering Coefficient) 

Çizge teorisinde kümelenme katsayısı, bir çizgedeki düğümlerin birlikte 

kümelenme derecesinin bir ölçüsüdür. Bir sosyal ağda ilişkide olan düğümlerin 

komşuları da birbirleri ile bağlantıda ise, bu düğümlerin kümelenme katsayısı 

yüksektir. Sosyal ağlarda kümelenme katsayısı aslında arkadaşlarımızın birbirleri ile ne 

kadar arkadaş olduklarını ölçer. Bir yönsüz ağın kümelenme katsayısı ağdaki üçgen 

sayısının yoğunluğudur. Bir ağın ortalama kümelenme katsayısı, her düğümün yerel 

kümelenme katsayısına dayanır [14].  

𝐶_𝐶𝑖 =
2𝑁𝑖

𝑘𝑖(𝑘𝑖−1)
                                                                                                           (2.6) 

Denklem 2.6’da 𝐶_𝐶𝑖, 𝑖 düğümünün kümelenme katsayısıdır. 𝑁𝑖, i düğümünün 

komşularının birbiri ile bağlantıda olanlarının sayısıdır. 𝑘𝑖 ise 𝑖’nin düğüm derecesidir. 

𝐶_𝐶𝑖 değeri 0 ise, i düğümü komşuları ile yıldız (star) yapısında oluşur. 𝐶_𝐶𝑖 değeri 1 

ise, 𝑖’nin komşularının hepsinin birbiri ile bağlantılı olduğu, tam bağlı bir ağ 

oluşturduğu anlaşılır. Her bir düğümün kümelenme katsayısı hesaplandıktan sonra bu 

değerler toplanıp düğüm sayısına bölünerek ortalama kümelenme katsayısı hesaplanır. 

Ortak arkadaşı olan iki kişinin ilişki kurma ihtimali daha yüksektir. Kanıtlar, çoğu 

gerçek dünya ağlarında ve özellikle sosyal ağlarda, düğümlerin nispeten yüksek 

yoğunluklu bağlarla karakterize edilen sıkı örülmüş gruplar oluşturma eğiliminde 

olduğunu göstermektedir. Bu olasılık iki düğüm arasında rastgele kurulan bir bağın 

ortalama olasılığından daha büyük olma eğilimindedir [23].  

2.6. Yoğunluk (Density) 

Yoğunluk ağdaki olası bağlantıların ne kadarının gerçekleştiğinin ölçüsüdür ve 

bireysel yoğunluk düğüm derecesidir. Ağın genelinin ilişki yoğunluğu analizlerde ölçü 
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olarak kullanılabilir. Elde edilen bu yoğunluk değerine farklı anlamlar yüklenebilir. 

Örneğin bir iş ağındaki yoğunluğun yüksek olması işlerin veya çalışan bireylerin birbiri 

ile sık ilişki kurduğu, birbirine bağımlı olduğunu gösterir. Ağın geneli için ölçülen 

yoğunluk değerinin düşük olması iş bölümünün iyi yapıldığı, birbirini etkilemeyen iş 

süreçlerinin olduğunu gösterir. Yoğunluk değeri ağ büyüdükçe azalma eğilimindedir. 

Farklı büyüklükteki ağların yoğunluğunu karşılaştırmak doğru değildir [10].   

Bir ağda n tane düğüm varsa bütün düğümlerin birbiriyle ilişkili olduğu tam bağlı 

bir ağda potansiyel kenar sayısı 𝑛(𝑛 − 1)/2 olur. Bu bilgiye göre 𝑚 adet kenarı olan 

bir ağın yoğunluğu Denklem 2.7’deki gibi hesaplanır. Tam bağlı bir ağda yoğunluk 1 

olur. 

𝑑 =
𝑚𝑒𝑣𝑐𝑢𝑡 𝑘𝑒𝑛𝑎𝑟 𝑠𝑎𝑦𝚤𝑠𝚤

𝑝𝑜𝑡𝑎𝑛𝑠𝑖𝑦𝑒𝑙 𝑘𝑒𝑛𝑎𝑟 𝑠𝑎𝑦𝚤𝑠𝚤
=

2𝑚

𝑛(𝑛−1)
                                                                           (2.7) 

Bu çalışmada ağırlıklı yoğunluk adının verildiği bir giriş daha kullanıldı. Kenar 

ağırlıkları kullanılarak yoğunluk hesaplaması yapıldı. Ağdaki bağlantıların 

ağırlıklarının toplamı olası bağlantı sayısına bölünerek yoğunluk değeri elde edildi. Ağ 

yapısına göre bu değer 1'den büyük çıkabilir. Önerilen yöntemde en yüksek değeri 1 

olarak kabul edildi. 

2.7. Sosyal Ağlarda Karmaşıklık (Social Network Complexity) 

İnternete bağlanıldığında, seyahat edildiğinde, arkadaşlıklar kurulduğunda veya 

telefon edildiğinde aslında karmaşık sistemler denilen yapıların bir parçası olmuş 

olunur. Karmaşık sistemleri anlayabilmek için öncelikle sistemin ne olduğunun 

bilinmesi gerekir. Sistem düzen, düzenek, yol, yöntem anlamlarına gelir [11]. 

Çevremizdeki dünyayı anlamak için kullanılan bir modeldir. Eleman olarak 

adlandırılan gruplar ve bu grupların birlikte çalışabilecekleri ve bir bütün oluşturdukları 

ilişkili yapıya sistem denir. Bu çok basit ve soyut model, çok çeşitli şeyleri tanımlamak 

için kullanılabilir. Karmaşıklığı ölçmek için farklı yaklaşımlar önerilebilir. Bunlar 

1. İnsan gözlemi ve (öznel) derece 

2. Parçaların veya farklı unsurların sayısı  

3. Boyut  

4. Sistemi kontrol eden parametrelerin sayısı 

5. Minimum açıklama 

6. Bilgi içeriği 

7. Minimum kurucu faktör 
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8. İnşa için gereken minimum enerji / zaman 

Bu hesaplamaların çoğu bir olgu modeli ile ilgili hesaplamalar olacaktır. İki 

gözlemci aynı olgu için çok farklı modeller geliştirebilir veya kullanabilir ve bu nedenle 

karmaşıklığın değerlendirilmesinde farklı fikirde olabilirler. Örneğin, çok basit bir 

durumda, parça sayısının sayılması olgunun görüldüğü ölçeğe bağlı olacaktır (atomları 

sayma, molekülleri, hücreleri, organları saymaktan farklıdır) [39]. 

Tek bir evrensel karmaşıklık ölçüsü bulunabileceği düşünülmemelidir. Olası en iyi 

şey belirli bir gözlemci tarafından belirli bir amaç için belirli bir bağlamda kullanışlı 

bir ölçme yapmaktır. İlk odak noktası, bir gözlemin veya olayın ne kadar şaşırtıcı veya 

beklenmedik olduğuna ilişkin hesaplamalar üzerine olacaktır. Bu yaklaşım bilgi teorisi 

olarak tanımlanmıştır. 

Karmaşık, anlaşılması zor durum, öğelerinin veya gerekli işlemlerin sayısının 

çokluğu ve çeşitliliği yüzünden anlaşılması ve yapılması güç olan, karışık, sofistike 

anlamlarına gelir [11]. Karmaşıklığı bir parametre olarak, yani bir şeyin bir ölçüsü 

olarak anlaşılabilir. Genelde karmaşık sistemler, elemanların ilişkileri ile ilgili bilgileri 

yakalamak ve ölçmek için çizge yapısında modellenir. Bu modeller ile sistemdeki 

eleman sayısı, kümelenmeler, ilişkilerin derecesi, önemi, derinliği, uyum ve 

anlamsallığı ölçülebilir [40].  

Bu tezde amaçlanan, entropi yaklaşımının önemini ve sınırlamalarını anlamak için 

çizgelerin karmaşıklığına daha geniş bir perspektiften bakmaktır. Öncelikle genel bir 

yapı tanımlanıp alt kollarına bakılabilir.  

Çizgelerin karmaşıklığını ölçmek birçok alanda karşılığı olan bir sorundur. Mevcut 

yaklaşımlar ya rastgelelik (olasılıksal) ya da istatistiksel (non-deterministik) 

karmaşıklığa dayanır. Rastgele karmaşıklık, bir yapının rastlantısallık veya dağınıklık 

derecesini nicelleştirmeyi amaçlamaktadır. İstatistiksel karmaşıklıkta ise, düğüm 

derecesi, kenar yoğunluğu veya Laplacian spektrumu gibi istatistiksel özellikler 

kullanılarak sonuç alınmaya çalışılır. Günümüzde her iki yöntemde ihtiyaca göre 

kullanılmaktadır.  

İstatistiksel yaklaşım kodlama, altyapı sayısı (number of substructures) ve üretken 

(generative) ölçümler olmak üzere üç kısma ayrılır. Kodlama yaklaşımında baskın olan 

ölçüm Kolmogorov karmaşıklığıdır. Bir kodlama şemasında, bir nesneyi kodlamak için 

gerekli olan kelime uzunluğu yani kod alfabesinden alınan karakterlerin sayısı o 

nesnenin karmaşıklık değeridir ve bu yöntem çizgelere de uygulanabilir. Örneğin 

çizgelerin ilişkilerini göstermek için kullanılan minimum komşuluk listesinin uzunluğu 



18 

aynı zamanda Kolmogorov karmaşıklık ölçüsüdür [41]. Altyapı sayısı, bir çizgeye 

farklı etkileri olan alt grupların sayısını bulan bir ölçüttür. Genel olarak, daha fazla alt 

çizgelerin olduğu sistemlerin daha karmaşık olduğu söylenir [38, 39].  Constantine [44], 

kapsama ağaçları sayısının bir çizgenin karmaşıklığını gösterdiğini söyler. Bonchev’in 

bu konuda birçok çalışması olmuştur [41, 42]. Üretken ölçümde ise, yıldız (star) veya 

hizip (clique) gibi en basit kenar gruplarından başlayarak çizgeyi oluşturmak için 

gerekli olan en az birleşim ve kesişim kümesi işlemi sayısı karmaşıklık ölçüsüdür [43, 

44]. 

Çizgelerin rastgelelik karmaşıklığını ölçmek için çizge tabanlı entropi ölçümleri ile 

iyi sonuçlar alınabilmektedir. Olasılıksal ölçümler bir çizgenin belirli yapısal özellikleri 

ile ilişkilidir. Bir çizgenin elemanlarıyla (düğümler veya kenarlar) bir olasılık 

dağılımını ilişkilendiren, içsel ve dışsal olmak üzere iki farklı tipte ölçüm vardır. Bu 

yaklaşımda bu ölçümlerin sayısal değeri genellikle bir çizgede tanımlanmış olasılık 

dağılımına bir entropi fonksiyonu uygulanarak elde edilir. Bu iki olasılıksal karmaşıklık 

ölçüsü, olasılık dağılımının belirlenme biçiminde farklılık gösterir. İçsel ölçümlerde 

dağılımı, çizgenin bazı yapısal özellikleri şekillendirir. Dışsal durumda, çizge 

elemanlarına keyfi bir olasılık dağılımı atanır [48]. Yapısal özelliklere bağlı olarak 

çizgenin bir kısım bileşenlerine olasılık dağılımı tayin edilir [49]. En çok kullanılanı 

Shannon entropidir [50]. Farklı kullanılan entropilerde vardır [13]. Bu çalışmada 

Shannon entropiye ek olarak Karcı ve Renyi entropileri kullanıldı. 
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3. ÇİZGE ENTROPİSİ 

Entropi, istatistiksel fiziğin temelini oluşturur ve bilgi teorisinin ortaya çıkışıyla 

beraber kullanım alanı çok genişlemiştir. Entropi mantık, istatistik, biyoloji ve 

ekonomiye kadar birçok disiplinde önemli roller oynar. Bununla birlikte, entropi farklı 

durumlar için farklı tanımlara sahiptir ve hatta aynı alanda bile farklı entropi kavramları 

ortaya çıkabilir.  

Termodinamikte izole edilmiş bir sistemde enerjinin nasıl uygulandığını ve 

aktarıldığını açıklar. Ek bir enerji olmadan yani belli bir maliyet olmadan aynı enerji 

ile bir işin sürekliliğinin olamayacağı anlamına gelir. Kapalı sistemler düzensizliğe 

eğilim gösterir ve entropide bunun bir ölçüsüdür. Kapalı bir sistemde entropi sürekli 

artmaktadır. Yani evrende kendisini dışarı kapatan, enerji ve madde kayıplarını 

dışarıdan yeni madde ve enerji girdileriyle telafi etmeyen bütün sistemler bu anlamda 

bir düzensizliğe, dağılmaya ve ölüme doğru gitme eğilimindedir. Doğal süreçlerde 

entropi artar. Bunun tersi, doğal olmayan, yani sisteme dışarıdan müdahale ile yapılmış 

olan bir işlem olarak görülür ve enerjinin israf edilmesi anlamına gelir [51].  

Entropinin gelişim tarihinde, entropiyi yorumlamak ve anlamak için birçok 

girişimde bulunuldu. Entropiye birçok farklı yorum yapıldı. Günümüze kadar entropi 

için kullanılan ifadelerden birkaçı sayılırsa, bunlar “bozukluk”, “dağınıklık”, 

“karmaşa”, “enerjinin yayılması”, “rastlantılılık”, “kaos”, “düzensizlik”, “bilgi 

miktarı”, vb. ifadelerdir. Bir sistemdeki düzensizlik veya rasgelelik ölçüsü olarak 

yorumlanır. Düzen veya öngörülebilirlik eksikliğinin ifadesidir. Sistematik işleyişteki 

eksikliklerin, hataların ölçüsüdür. Kompleks yapılarda yani sistem parametrelerinin 

ölçümünün zor olduğu yapılarda düzensizlik, eksiklik veya bilgi miktarını ortaya 

çıkarmak için kullanacağımız olasılıksal fonksiyon entropidir. Entropinin ne olduğunu 

ve neden sürekli arttığını anlamak önemlidir. Artışı sağlayan nedenleri görmek ve 

ortadan kaldırmak için gereklidir. 

Düzensizlik beraberinde belirsizliği getirir. Bir olayda belirsizlik söz konusu ise, o 

olaydan bilgi elde edilebilir. Meydana gelme olasılığı düşük olaylar daha fazla bilgi 

barındırır. Belirsizlik, elde edilen bilgi ile azaltılmış olur. Belirsizlik ile bilgi ters 

orantılıdır. Bir olayın dönüşeceği durumların olasılıksal yapısı biliniyorsa, entropileri 

hesaplanabilir. Entropi sayesinde niceliksel bir değer elde edilebilir. 

Sistem düzensizliği arttıkça artan herhangi bir fonksiyon entropi fonksiyonu 

olabilir. Düzensizlikle iki şey anlatılmak istenir. Birincisi sisteme giren enerjinin 
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bütününden faydalanılmaması sonucunda ister istemez sistemin gün geçtikçe eski 

haline dönemeyecek olmasının ifadesidir. İkincisi ise, bir sistemin toplam enerjisinin 

mevcut tanecikler arasındaki dağılımıdır. Düzensizlik denilince akla görsel düzensizlik 

veya kaos da gelebilir. Örneğin bir odadaki düzensizlik görsel bir düzensizliktir. Bu 

düzensizliğin oluşumu bir dış etkene (insan) bağlı ise, entropik değildir. Bu durumda 

tam tersi entropi azalır. Doğal süreçle odada bir düzensizlik oluşmuşsa, bu entropiktir. 

Kargaşa, karmaşa anlamındaki kaosta fizik ile ilgili değildir ve entropik anlamda 

düzensizliği ifade etmez [52].  

Çizge yapısındaki sosyal ağlarda bilgi elde etmek, düğümlerin önemini anlamak, 

düğümler arasındaki ilişkinin niceliğine bakmak, toplulukları tespit etmek için entropi 

kullanılabilir. Yapılan hesaplamalarda optimizasyona ihtiyaç duyulduğunda entropi ile 

iyileştirmeler yapılabilir. 

3.1. Entropinin Tarihsel Gelişimi 

Sıcaklık ve entropi, tüm termodinamik alanını diğer fizik alanlarından ayıran iki 

temel niceliktir. Bunların ikisi de atomların varlığına ve özelliklerine bağlı istatistiksel 

niceliklerdir. Sıcaklık basınca benzer ve duyularımızla hissedilebilir ve yoğunluk ile 

ilgili bir ölçüdür. Entropi ise, hacime benzer ve sistemin boyutuna göre oluşan alansal 

bir ölçüdür. Hem sıcaklığın hem de entropinin, maddenin atomik yapısına değinmeden 

tanımlandığı ve ölçüldüğü doğrudur. Bununla birlikte, bu niceliklerin anlaşılması ve 

aslında onların varlığı, maddenin atomik yapısına bağlıdır. Belki de parçacıkların 

dinamikleri tarafından açıklanacak ilk ve en basit miktar bir gazın basıncıdır. Basınç, 

bir birim alana uygulanan kuvvet olarak tanımlanmaktadır. Her ne kadar sıcaklık, 

atomlara atıfta bulunulmaksızın algılanıp ölçülebilse de onun varlığı ve açıklaması 

maddenin atomik yapısına bağlıdır. 19. yüzyıl boyunca, ısının sıcaktan soğuğa akan bir 

madde olduğuna inanılıyordu. Sıcaklık kavramının parçacıkların hareketleriyle 

anlatılması 19. yüzyılın sonlarındaki bilim insanlarının en önemli başarılarından biridir. 

Robert Boyle (1660), belirli bir gaz sıcaklığında, hacmin ve basıncın çarpımının sabit 

olduğunu buldu. Bernoulli (1732), bir gazın basıncıyla sıcaklığının doğru orantılı 

olduğunu ortaya koyarak, kinetik gaz kuramının temellerini attı.  

Her ne kadar sıcak ve soğuk algısı eskiden beri yaşanmış olsa da ölçümleri 17. ve 

18. yüzyıllarda yapılabildi. Bu dönemlerde Ole Christensen Romer (1702), Daniel 

Gabriel Fahrenheit (1714), Anders Celsius (1742) ve diğerleri tarafından çeşitli 

termometreler tasarlandı. Termometrenin icadından sonra, sıcaklığın kesin ölçümlerini 
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yapmak mümkün hale geldi. 19. yüzyılın başlarında, Jacques Charles ve Joseph Louis 

Gay-Lussac deneysel olarak sabit basınç altında, t sıcaklıkta hacmin doğrusal olduğunu 

keşfetti. Bu çıkarsamalardan sıcaklığın parçacıkların ortalama kinetik enerjisinden elde 

edildiği ortaya çıktı. 

Sadi Carnot, 1824'te ideal bir ısı motoru üzerine bir çalışma yayınladı. Bu çalışma, 

Clapeyron tarafından 1834 yılında matematiksel olarak yeniden düzenlendi. Bu çalışma 

Termodinamiğin İkinci Yasasının Clausius ve Kelvin tarafından formüle edilmesine 

temel oluşturdu. İkinci Yasa, ilk olarak 1849'da Clausius tarafından formüle edildi. 

William Thomson (Lord Kelvin) tarafından ikinci bir formülasyon 1850'de yapıldı. 

Clausius 1854'te ısı motorlarıyla bağlantılı olarak formüle ettiği 𝑑𝑆 = 𝑑𝑄 / 𝑇 ölçüsü 

ile değişimi ölçtü. Buna göre 𝑄 ısıyı, 𝑇 ise mutlak sıcaklığı gösteriyor olsun. Sistem 𝑑𝑄 

kadar ısı soğurduğunda, değişim 𝑑𝑆 kadar olur. Bununla birlikte, entropi kavramı 1863 

yılında tanıtıldı [53]. Entropi kavramı ilk olarak Alman Fizikçi Rudolf Clausius 

tarafından termodinamiğin ikinci yasasında bahsedilen enerjinin korunumu ilkesini 

açıklamak için kullanılmıştır.   

James Clerk Maxwell, dinamik gaz teorisini 1860'da yayınladı. Bu, 1867'de 

Ludwig Boltzmann tarafından genişletildi. Bu çalışmalar, günümüzde Maxwell-

Boltzmann dağılımı olarak bilinen gazdaki moleküllerin denge hızı dağılımının hem 

varlığını hem de şeklini belirledi. Bu dağılım, moleküllerin ortalama kinetik enerjisi ile 

mutlak sıcaklık arasındaki bağlantıyı kurdu. Entropi ve olasılık arasındaki logaritmik 

bağlantı ilk olarak Boltzmann tarafından tersinmezliği açıklamak için kinetik gaz 

teorisinde ifade edilmiştir[54].  19. yüzyılın sonları ve 20. yüzyılın başlarında 

entropinin moleküler yorumu Ludwig Boltzmann ve Josiah Willard Gibbs tarafından 

geliştirildi. Bu zamanlarda, maddenin moleküler teorisi evrensel olarak kabul 

edilmekten uzaktı. Atomistik madde teorisinin kabulünde bir dönüm noktası, Brownian 

hareket teorisinin Albert Einstein (1905) tarafından yayınlanması ve ardından Jean 

Perrin'in (1910) deneysel onaylamasıydı. Boltzmann, Clausius'un termodinamik 

entropisi ile istatistiksel entropi arasındaki uygunluğu, boyutsuz bir sabiti seçerek ya da 

daha iyi hale getirerek tanımladı. Boltzmann’ın tanımladığı entropi formülü 𝑆 =

𝑘𝑙𝑜𝑔(𝑊) şeklindedir. 𝑆 entropi değeri, 𝑘 Boltzmann sabiti ve 𝑊 olayın veya durumun 

oluşma olasılığını belirtir. Değişen şey, entropi 𝑆 ile 𝑊 durum sayısı arasındaki resmi 

ilişkidir. İkisini ilişkilendirmek için, sıcaklığa bölünen enerji birimlerini sabit bir 

şekilde taşımaya gerek olmayacak. Boltzmann’ın entropisinin yorumu, olasılık 

açısından ve daha sonra farklı parametreler açısından muazzam bir etki ortaya koydu.  
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Clausius’un entropisinin, Boltzmann’ın entropisinin kabulünü engelleyen tarafları 

vardı. Birinde, enerji ve sıcaklık oranı ile tanımlanan bir miktara sahipken; diğerinde, 

sistemin durum sayısını temsil eden bir miktar vardır. İki miktarın tamamen alakasız 

olduğu görülüyor. Entropi, boyutsuz bir nicelik olarak tanımlanmış olsaydı, iki entropi 

arasındaki tanımlama ve nihayetinde entropinin bir bilgi ölçüsü olarak yorumlanması 

çok daha kolay olurdu [55]. 

Daha sonraları Claude Elwood Shannon [50] “The Mathematical Theory of 

Communication” adlı kitabında entropiyi iletişimdeki belirsizliği ölçmek için önerdi. 

Bilgi teorisinin temelini oluşturan, bir bilginin saklanması ve iletilmesi için gerekli 

ortalama bit sayısını hesaplamada kullanılan Shannon’un entropi bilgisidir. Yani 

entropi, istatistiksel olarak iletişimde ikili sorularla (hayır->(0) veya evet->(1)) 

gönderilen mesajların test edilerek karşıya en az maliyetle doğru bilginin ulaştırılmasını 

sağlamaya yönelik çalışmanın sonucudur. Shannon entropi günümüzde en çok 

kullanılan belirsizlik ölçüsüdür. 

Rashevsky [56], Trucco [57] ve Mowshowitz [48], çizgelerde Shannon entropisini 

tanımlayan ve ilk araştırmaları yapan kişilerdir. Çizgelerin yapısal karmaşıklığını 

ölçmek, yapısal bilgi içeriğini yorumlamak için çizge entropi kavramını geliştirip, 

kullandılar. Çizgenin yapısal karmaşıklığını ölçen entropik ölçümler geliştirmek için 

düğüm sayısı, düğüm derecesi gibi bir dizi çizge değişkeni kullanılmıştır.  Yapısal 

karmaşıklık ağın belki de en önemli özelliğidir, çünkü karmaşık bir ağda düğümlerin 

ve kenarların düzenlenme şeklini ortaya koyar ve ağ işlevlerinin önemli oranda 

etkinliğini gösterir [58]. Bu yüzden karmaşık ağları analiz ederken yapısal 

karmaşıklığını ölçmek aslında bir zorunluluktur. 

Günümüzde çizge entropi kullanılarak yapılan çalışmaların sayısı hızla 

artmaktadır. Bazılarından bahsetmek gerekirse, Everett [59], rol benzerliğine dayanan 

yeni bir yapısal karmaşıklık ölçüsü önerdi. Çok amaçlı akıllı sistemlere hiyerarşik 

sosyal entropi uygulanarak yapay robot topluluklarının çeşitliliğinin sürekli, niceliksel 

bir ölçümü tespit edildi. Robot futbol takımı, robot yiyecek arama takımının 

heterojenlik ve çeşitlilik ölçüsü entropi ile ölçüldü [60]. Yine ağlarda, trafik aktarım 

(transfer) ve akış (flow) karakteristiğine uygun entropi tabanlı bir merkeziyet ölçüsü 

önerildi [61]. Gen ağlarına benzeyen yönlü ölçek bağımsız ağlarda tek gen 

perturbasyonlarının küresel haberleşmeye etkileri entropi ile incelendi [62]. Küçük 

ölçek bağımsız ağdan hareketle ekstremum güç kanunu dağılımı olan, önyargılı bir 

bağlantı dağılımı entropisi tanımlandı. Bu offdiagonal karmaşıklık (OdC), yönsüz bir 



23 

çizgenin veya ağın karmaşıklığını karakterize etmek için yeni bir ölçü olarak önerildi 

ve Helicobacter Pylori protein etkileşim ağına uygulandı [63]. Dehmer, ağaç 

ayrışmasına (tree decomposition) dayanan çizgelerin yapısal bilgi içeriğini tespit etmek 

için bir yöntem önerdi [64]. Kim, ağlardaki karmaşıklığı ölçmek ve hesaplama 

maliyetini düşürmek için önerilerde bulundu [65]. Bazı çizge türlerinde bazı aşırı 

entropi değerleri tespit edildi ve çizge entropisi ile derece güçlerinin toplamı arasındaki 

bağlantı bulundu [66]. Nie ve diğerleri [67], bir düğümün komşularının bilgisine 

dayanan yeni bir merkezilik tanımını entropi ile önerdi. TOPSIS ve göreceli entropi 

kullanılarak etkin düğümler tespit edildi [68]. Sosyal çizgede karmaşıklığı ve 

belirsizliği tanımlamak için arkadaş entropisi ve etkileşim sıklığı entropisi 

tanımlanarak, sosyal ilişkiye dayalı yapılarda hem doğrudan hem de dolaylı etkileri 

ölçmek için bir model önerildi [69]. Kümelemelerin tespitinde düğümün kümelemeye 

eklenmesinin doğruluğu entropi ile ölçüldü [70] . 

3.2. Entropi Türleri 

Geçmişte birçok entropi tanımlanıp kullanılmıştır. Bu çalışmaya temel oluşturan 

entropi türleri aşağıda açıklandı. 

3.2.1. Boltzmann-Gibbs entropi 

19. yüzyılda yaşamış olan Ludwig Boltzmann’ın mezar taşı üzerinde yer alan 

Denklem 3.1’deki entropi tanımı istatistiksel mekaniğe çok şey katmıştır. 

𝑆 = 𝑘 ∗ 𝑙𝑜𝑔𝑤                                                                                                             (3.1) 

Doğal süreçlerde bozuklukların artmasının entropi değerleri ile ilişkili olduğunu ilk 

fark eden kişidir. Olasılık kullanarak ünlü termodinamik düzensizlik denklemini ortaya 

koymuştur. Termodinamik entropinin olasılıksal olarak anlamını ilk vurgulayan ve 

istatistiksel olarak analizini gerçekleştiren, entropi kavramını moleküler düzensizlik 

veya kaosla ilişkilendiren kişi Boltzmann'dır [71]. Boltzmann entropisi, istatistiksel 

mekaniğin temel yapı taşıdır. Entropi kavramı daha sonra bilgi teorisinin ortaya 

çıkışıyla kullanım alanını genişletmiştir. 𝑘 Boltzmann sabiti, 𝑤 ise her bir makro durum 

ile uyumlu mikro durumların sayısıdır. 𝑤, termodinamik olasılık veya istatistiksel 

ağırlık olarak adlandırılan, sistemin makroskopik durumuyla uyumlu toplam 

mikroskobik karmaşık sayısıdır.  𝑤 miktarı 'bozukluk derecesi' olarak adlandırılır [72]. 

Olayın veya durumun oluşma olasılığını belirtir. Boltzmann bu formülü geliştirirken o 

zamanlarda daha keşfedilmeyen atomların gazların ana yapısında bulunduğu 



24 

varsayımıyla hareket etmiştir. İzin verilen mikro durumlar üzerinden durumların 

dağılım bozukluğunun bir ölçüsünü sağlar. Modern fizikteki bütün entropi 

kavramlarının temelinde Boltzmann ve Gibbs entropileri vardır. Gibbs entropi, 

istatistiksel bir küme üzerinde tanımlanır. 𝛺 = {𝑝1, 𝑝2, 𝑝3, … . , 𝑝𝑛} bir sistemin 

makroskopik veya gözlemlenebilir durumlarının bir kümesi olsun. 𝑊(𝑝𝑛) 'e gözlemsel 

durumun istatistiksel ağırlığı veya yapı fonksiyonu denir. Boltzmann entropi tanımında 

𝐴𝑛 gözlem durumuyla uyumlu olan mikroskobik karmaşık sayısıdır. 

3.2.2. Shannon entropi 

Bilgi ister analog ister dijital olsun, bir iletişim sisteminin kaynağıdır. Bilgi teorisi, 

bilgilerin kodlanması, depolanması ve iletilmesi çalışmalarını ele alan matematiksel bir 

yaklaşımdır. Claude Shannon yaptığı çalışmalarla bilgi kuramının temelini oluşturan 

kişidir.  

𝑋 değişkeninin olasılık dağılımı (𝑝1, 𝑝2, … . . , 𝑝𝑛)  olursa, bu fonksiyon şu 

özelliklere sahip olmalıdır. Entropi fonksiyonu bütün 𝑝𝑖 değerlerinde sürekli olmalıdır. 

Bütün 𝑝𝑖 değerleri eşit olasılığa sahip olduğunda 𝑛 adet olası durumlarda entropi 

fonksiyonu 𝑛’nin monoton artan bir fonksiyonu olur. Her bir olasılığın entropi değeri 

toplanarak toplam entropi değeri elde edilir [73]. Shannon bu üç özelliğe göre 3.2 

denklemini oluşturmuştur (burada K pozitif bir sayıdır). 

𝐸(𝑝1, 𝑝2, … . . , 𝑝𝑛) = −K ∑ 𝑝𝑖𝑙𝑜𝑔𝑝𝑖
𝑛
𝑖=1                                                                      (3.2) 

Deney sonucu ne ölçüde öngörülemez ise, entropi o denli büyük olmaktadır. Yazı 

tura atma olayı düşünüldüğünde olasılıksal bir sonuç söz konusudur. Doğru tahmin 

yapma şansı 1
2⁄ ’dir. 𝑝(𝑦𝑎𝑧𝚤) = 𝑝(𝑡𝑢𝑟𝑎) = 1

2⁄ , 𝐸 = − 1
2⁄ 𝑙𝑜𝑔 1

2⁄ − 1
2⁄ 𝑙𝑜𝑔 1

2⁄ =

−𝑙𝑜𝑔 1
2⁄ = −𝑙𝑜𝑔2−1 = 1 .  Çıkan sonuç 1 bit bilgi içerir. Bu değer muhtemel olası 

sonuçların sayısının logaritmasıdır. Bir madeni paranın yazı tura olayında eşit olasılık 

olduğu için maksimum belirsizlik yani maksimum entropi vardır.  Örneğin; tura gelme 

olasılığının yazı gelme olasılığından büyük olma durumu söz konusu olsa, belirsizliğin 

daha az olacağı söylenebilir. 𝑝(𝑦𝑎𝑧𝚤) = 1
5⁄ , 𝑝(𝑡𝑢𝑟𝑎) = 4

5⁄ , 𝐸 = − 1
5⁄ 𝑙𝑜𝑔 1

5⁄ −

4
5⁄ 𝑙𝑜𝑔 4

5⁄ ≈ 0,722 . Sonuç daha kolay tahmin edilebilir, çünkü tura gelme olasılığı daha 

yüksektir. Elde edilecek bilgi daha az olacaktır. Buradan entropi ile bilgi miktarının 

ilişkili olduğu söylenebilir. Örneğin bir madeni para 2 defa atılsın. 22 = 4 oluşabilecek 

durum var. Oluşabilecek durumlar yazı-yazı, yazı-tura, tura-yazı, tura-tura’dır. Çıkan 

sonuç 2 bit ile ifade edilebilir. Bu madeni n kere atıldığında 2𝑛 oluşabilecek durum 
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görülebilir. Buradaki 2 her bir atışta oluşabilecek durum sayısını, üs 𝑛 ise, toplam atış 

sayısını belirtmektedir. 𝐸 = 𝑙𝑜𝑔2𝑛 = 𝑛𝑙𝑜𝑔2. Yazı tura 2 durumlu bir sonuç 

vermektedir. Zar atma olayında ise, 6 durumlu bir sonuç vardır. Her birinin oluşma 

olasılığı 1 6⁄ ’dır. 𝐸 = −𝑙𝑜𝑔 1
6⁄ = 𝑙𝑜𝑔6 ≈ 2.58. Bilgi kuramında bu demektir ki 2.58 bitlik 

bir bilgi ile bu zarın aldığı değer karşıya iletilebilir. Logaritmanın taban değerinin 2 

seçilmesinin sebebi sonucun karşıya bit (0,1) olarak iletilmesindendir. Karşıya 

gönderilecek bilgide görüldüğü üzere bir belirsizlik var, bütün bilgiler karşıya 

ulaştıktan sonra bu belirsizlik ortadan kalkmaktadır. Shannon, bu ölçüye entropi 

demiştir [50]. 

3.2.3. Rényi entropi 

Alfred Renyi, bağımsız olayların katkısını koruyacak, olasılık aksiyomlarıyla 

uyumlu en genel bilgi hesaplama yöntemini araştıyordu [74]. Çözüm geliştirmeye 

Cauchy'nin işlevsel denklemiyle başladı. Eğer 𝑝 ve 𝑞, 𝐼'den bağımsız ise, 

𝐼(𝑝𝑞)  =  𝐼 (𝑝)  +  𝐼 (𝑞)                                                                                            (3.3) 

olur. Normalleştirici bir sabitin dışında bu; 

𝐼 (𝑝)  =  − 𝑙𝑜𝑔 𝑝                                                                                                       (3.4) 

Hartley’in bilgi içeriği ile uyumludur [75]. 𝑋 =  {𝑥1, . . . , 𝑥𝑁} olaylarının farklı 

olasılıklara sahip olduğunu varsayarsak (𝑝1, . . . , 𝑝𝑁) , ve her biri bilgi bitlerini iletirse, 

küme için toplam bilgi miktarı:  

𝐼(𝑝) = ∑ 𝑝𝑘𝐼𝑘
𝑁
𝑘=1                                                                                                       (3.5) 

Bu Shannon entropisi olarak kabul edilebilir, fakat bu denklemde bir örtülü 

varsayım var. Alternatifsiz olmayan doğrusal ortalama kullanılmış ve genel ortalama 

teorisinde, ters 𝑔−1 ile 𝑔 (𝑥)’in herhangi bir fonksiyonu için, ortalama, aşağıdaki gibi 

hesaplanabilir. 

𝑔−1 ∑ 𝑝𝑘𝑔(𝑥𝑘)𝑁
𝑘=1                                                                                                      (3.6) 

Bu tanım 𝐼(𝑃)’ye uygulanırsa aşağıdaki denklem elde edilir. 

𝐼(𝑃) = 𝑔−1(∑ 𝑝𝑘𝑔(𝐼𝑘))𝑁
𝑘=1                                                                                       (3.7) 

Bağımsız olaylar için bir eklenebilirlik (additivity) varsayımı uygulandığında, 

sadece iki olası g (x) elde edilir. 



26 

𝑔(𝑥) = 𝑐𝑥                                                                                                                  (3.8) 

𝑔(𝑥) = 𝑐−2(1−𝛼)𝑥                                                                                                      (3.9) 

İlki Shannon bilgisini verir. İkincisi de negatif olmayan ve 1’den farklı değeri olan 

α için aşağıdaki denklemi verir. 

𝐼𝛼(𝑃) =
1

1−𝛼
log (∑ 𝑝𝑘

𝛼)𝑁
𝑘=1                                                                                      (3.10) 

Bu parametrik bir bilgi ölçümü sunar ve Renyi entropisi olarak adlandırılır. α' nın 

aldığı değere göre özel durumlar oluşabilir. α değeri 0 olduğunda maksimum, sonsuza 

gittiğinde minimum entropi değeri oluşur. 1 değerini aldığında ise, Shannon entropi ile 

aynı değeri alır. Dikkat edilirse α, 1 değerini aldığında 1/0 gibi bir belirsizlik oluşur. Bu 

tür durumlara çözüm üreten L’Hospital Teoremi kullanılarak denklem çözüldüğünde 

Shannon denkleminin elde edildiği görülür [76]. 

lim
𝛼→1

1

1−𝛼
𝑙𝑜𝑔 ∑ 𝑝𝑘

𝛼 = − ∑ 𝑝𝑘𝑙𝑜𝑔𝑝𝑘
𝑁
𝑘=1

𝑁
𝑘=1                                                                 (3.11) 

3.2.4. Karcı entropi 

𝑋'in rastgele bir değişken olduğunu ve ilgili olasılık kütle/yoğunluk fonksiyonunun 

𝑝 (𝑥 =  𝑥𝑖) veya 𝑝 (𝑎 ≤  𝑥 ≤  𝑏) olduğu varsayılsın. Eğer 𝑋, bir ayrık rastgele 

değişken ise, olasılık kütle fonksiyonu, karşılık gelen noktanın olasılığıdır. Eğer 

𝑋 sürekli rastgele bir değişkense, olasılık yoğunluğu fonksiyonunun nokta değeri 

olasılık değildir. Bir aralıktaki olasılık yoğunluk fonksiyonunun değerlerinin toplamı 

bize olasılığı verecektir. Yani, 

𝑝 (𝑎 ≤  𝑥 ≤  𝑏) = ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
                                                                               (3.12) 

[𝑎, 𝑏] aralığı =  𝐼1 ∪ 𝐼2 ∪ … ∪ 𝐼𝑛  =  [𝑎,  𝑎1]  ∪  [𝑎1, 𝑎2]  ∪ … [𝑎𝑛−2, 𝑎𝑛−1][𝑎𝑛−1, 𝑏]  

gibi çok küçük bir aralığa bölünebilir. 1 ≤ 𝑖 ≤  𝑛 olmak üzere her aralığa karşılık 

gelen olasılıklar 𝐼𝑖 için 𝑃𝑖 olabilir. Shannon entropisi 

𝐻(𝑝) = − ∑ 𝑝𝑖𝑙𝑜𝑔𝑝𝑖
𝑛
𝑖=1                                                                                            (3.13) 

Birçok yazar türev sırasının belirli bir adıma kadar tamsayı olduğunu ve bu özel 

noktaya ulaşırken türev sırasını gerçek sayı olarak kabul etmiştir. Karcı kesir dereceli 

türevi yeniden tanımladı ve özelliklerini bu çalışmalarda [73-76] verdi.  Aşağıda Karcı 

tarafından kesir dereceli entropi elde etmek için uygulanan adımlar gösterilmiştir. 
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𝑓(𝑥): 𝑅 → 𝑅 bir fonksiyon olsun. 𝛼𝑅 ve kesir dereceli türev aşağıdaki gibi olsun. 

𝑓(𝛼)(𝑥) = 𝑙𝑖𝑚
ℎ→0

𝑓𝛼(𝑥+ℎ)−𝑓𝛼(𝑥)

(𝑥+ℎ)𝛼−𝑥𝛼                                                                                               (3.14) 

L’Hospital metodu uygulandığında denklemimiz şu hale gelir. 

𝑓(𝛼)(𝑥) = 𝑙𝑖𝑚
ℎ→0

𝐿 (
𝑓𝛼(𝑥+ℎ)−𝑓𝛼(𝑥)

(𝑥+ℎ)𝛼−𝑥𝛼 ) = 𝑙𝑖𝑚
ℎ→0

𝑑(𝑓𝛼(𝑥+ℎ)−𝑓𝛼(𝑥))

𝑑ℎ
𝑑((𝑥+ℎ)𝛼−𝑥𝛼)

𝑑ℎ

= (
𝑓(𝑥)

𝑥
)

𝛼−1
𝑓′(𝑥)                    (3.15) 

Kesir dereceli entropi elde etmek için kesir dereceli türev aşağıdaki fonksiyona 

uygulanabilir. 

𝑓(𝑡) = ∑ 𝑝𝑖
−𝑡

𝑖                                                                                                                       (3.16) 

Karcı entropi formülü aşağıdaki gibi olur. 

𝐸 = |
𝑑(𝛼) 𝑓(𝑡)

𝑑𝑡
| = |

𝑑(𝛼)

𝑑𝑡
∑ 𝑝−𝑡𝑛

𝑖=1 | = ∑ |(
𝑝−𝑡

𝑡
)

𝛼−1

(−1)𝑝−1 𝑙𝑛 𝑝|𝑛
𝑖=1                         (3.17) 

𝐸 = ∑ |(−𝑝)𝛼−1(−𝑝) 𝑙𝑛 𝑝| = ∑ |(−𝑝)𝛼 𝑙𝑛 𝑝|𝑛
𝑖=1

𝑛
𝑖=1                                                (3.18) 

Shannon entropisi, türev alınarak aşağıdaki Denklemden elde edilebilir [81]. 

𝐻(𝑝) = lim
𝑡→−1

𝑑

𝑑𝑡
∑ 𝑝𝑖

−𝑡
𝑖                                                                                             (3.19) 

Bu entropinin tanımı, Shannon entropisi olarak kabul edilir. Tsallis entropisi benzer 

şekilde tanımlanabilir. 𝐷𝑞
𝑡  Jackson[82] türevi olarak kabul edilir. 

𝐻(𝑝) = lim
𝑡→−1

𝐷𝑞
𝑡 ∑ 𝑝𝑖

−𝑡
𝑖                                                                                            (3.20) 

Bu yaklaşım belirsiz limite, L'Hospital kuralına dayanmaktadır. 𝑝𝑖, i’nci olayın 

olasılığı veya belirli değerler için rasgele değişken olarak kabul edilirse entropi değeri 

şöyle hesaplanır. 

𝐾𝑎𝑟𝑐𝚤 𝐸𝑛𝑡𝑟𝑜𝑝𝑖 = 𝐷𝑡
(𝛼) ∑ |𝑝𝑖

−𝑡|𝑖 = ∑ |(−𝑝𝑖)
𝛼𝑙𝑜𝑔𝑝𝑖|𝑖                                             (3.21) 

Karcı çalışmasında bu yöntemi Standart Normal dağılım, Binom dağılım, Poisson 

dağılım ve Weibull dağılımına uyguladı. Elde edilen sonuçlar, (0,1) aralığında önerilen 

entropinin Shannon entropiden daha iyi olduğunu gösterdi [79, 80]. Bu tez çalışması 

ile Karcı ilk defa sosyal ağlara uygulanmış oldu. 

3.3. Çizge Entropi ile Merkezilik 

Çizgede entropi yapısal kararlılığı temsil eder ve entropi bir sistemin belirsizliğini 

(düzensizliğini) ölçtüğü için her bir düğümün bu belirsizliğe etkisini ölçmek aslında 
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düğümün ne kadar merkezi olduğunu gösterir. Uygulanan yöntemde her bir düğüm 

ağdan sırayla çıkarılarak toplam entropi hesaplandı ve ağdaki etkisi ölçüldü.  Elde 

edilen entropi değerleri küçükten büyüğe sıralandığında üst sıradaki düğümler ağın en 

merkezi düğümleridir.  

Bu tezde çizge yapısındaki verilerde en çok kullanılan merkezilik yöntemlerine ek 

olarak farklı entropi hesaplamaları kullanılarak merkezi/etkin düğümler bulunmaya 

çalışıldı. Sosyal ağlarda entropi ile merkezi düğümlerin bulunabileceği gösterildi. 

Düğümlerin kenar ağırlık değerleri ve düğüm benzerlikleri kullanılarak entropi 

hesaplamaları yapıldı [85]. Farklı veri setleri kullanılarak hesaplama ve analizler 

yapıldı. 

𝑛 düğümü olan bir ağırlıklı ağda düğümlerin her bir durumda bulunma olasılıkları 

𝑝𝑖𝑗 olsun. Çizgenin toplam entropisi (𝐸(𝐺)) Denklem 3.22, Denklem 3.23 ve Denklem 

3.24 kullanılarak hesaplanır. 𝑤𝑖𝑗, 𝑖 ile 𝑗 düğümleri arasındaki ilişkiyi sağlayan ayrıtın 

ağırlığıdır ve 𝐸(𝑣𝑖), 𝑖 düğümünün entropisidir. Bütün düğümlerin entropisi 

hesaplandıktan sonra, çizgenin toplam entropisi 𝐸(𝐺) hesaplanır.  

𝑝𝑖𝑗 =
𝑊𝑖𝑗

∑ 𝑊𝑖𝑗
𝑛
𝑗∈𝐸

  ,                                                                                                        (3.22) 

𝐸(𝑣𝑖) = − ∑ 𝑝𝑖𝑗𝑙𝑜𝑔𝑝𝑖𝑗,      0 ≤ 𝑝𝑖𝑗 ≤ 1𝑛
𝑗=1                                                             (3.23) 

𝐸(𝐺) = ∑ 𝐸(𝑣𝑖),𝑛
𝑖=1                                                                                                 (3.24) 

𝐸(𝑣𝑖) = ∑ |(−𝑝𝑖𝑗)𝛼𝑙𝑜𝑔𝑝𝑖𝑗|,      0 < 𝛼𝑛
𝑗=1                                                                (3.25) 

𝐸(𝑣𝑖) =
1

1−𝛼
log (∑ 𝑝𝑖𝑗

𝛼 )𝑛
𝑗=1 , α ≠  1                                                                       (3.26) 

Logaritma 0 ile 1 arasında eksi değer alır. Bu çalışmada 𝑝𝑖𝑗 değerleri 0 ile 1 

arasında olduğu için logaritma sonucu eksi çıkar. Bu yüzden pozitif değere 

dönüştürülür. 𝑝𝑖𝑗’nin küçük değerlerinde eksiler pozitif kabul edildiğinden büyük 

değerlermiş gibi kabul edilir.  
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Çizelge 3.1. Örnek entropi hesaplaması 

Logaritma Üs değeri Shannon Karcı 

log2(0.1) = − 3.3219 0.10.1 = 0.7943 0.1 ∗ log2(0.1) = −0,3321 0.10.1 ∗ log2(0.1) = −2.6385 

log2(0.3) = − 1.7370 0.30.1 = 0.8866 0.3 ∗ log2(0.3) = −0,5211 0.30.1 ∗ log2(0.3) = −1.54 

log2(0.5) = −1 0.50.1 = 0.9330 0.5 ∗ log2(0.5) = −0.5 0.50.1 ∗ log2(0.5) = − 0.9330 

log2(0.7) = −0.5146 0.70.1 = 0.9650 0.7 ∗ log2(0.7) = −0.3602 0.70.1 ∗ log2(0.7) = − 0.4966 

log2(1) = 0 10.1 = 1 1 ∗ log2(1) = 0 10.1 ∗ log2(1) = 0 

log2(1.5) = 0.5850 1.50.1 = 1.0414 1.5 ∗ log2(1.5) = 0.8775 1.50.1 ∗ log2(1.5) = 0.609219 

log2(2) = 1 20.1 = 1.0718 2 ∗ log2(2) = 2 20.1 ∗ log2(2) = 1 . 0718 

log2(3) = 1.5850 30.1 = 1.1161 3 ∗ log2(3) = 4.755 30.1 ∗ log2(3) = 1.7690 

log2(4) = 2 40.1 = 1.1487 4 ∗ log2(4) = 8 40.1 ∗ log2(4) = 2 . 2974 

log2(8) = 3 80.1 = 1.2311 8 ∗ log2(8) = 24 80.1 ∗ log2(8) = 3 . 6933 

 

Çizelge 3.1’de örnek 𝑝𝑖𝑗 ve α değerlerine göre elde edilen sonuçlar gösterildi. 

Alınan değerlerle hareketin hangi yönde olduğu görülebilir. α değeri düştükçe entropi 

değeri büyür. 𝑝𝑖𝑗 değeri büyüdükçe entropi değeri büyür. 

Bu çalışmada Shannon entropi ile birlikte çok daha fazla farklı durumu hesaba 

katan α üs değeri kullanan Karcı [83] tarafından önerilen Denklem 3.25’deki Karcı 

entropi ve α değeri kullanan Alfred Renyi [74] tarafından önerilen Denklem 3.26’deki 

Renyi entropi sosyal ağlara uygulandı. 
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4. BULANIK MANTIK 

Bulanık kelimesi, net olmayan veya belirsiz olan şeyleri ifade etmek için kullanılır. 

Sürekli değişen herhangi bir olay, süreç ya da işlev her zaman doğru ya da yanlış olarak 

tanımlanamaz, bu da bu tür durumların bulanık bir şekilde tanımlanması gerektiği 

anlamına gelir. İnsan düşüncesinin büyük çoğunluğu bulanık yapıya sahiptir. Bulanık 

Mantık, insan karar verme metodolojisine benzemektedir ve matematiğin gerçek 

dünyaya uygulanmasıdır. Kesin olmayan ve matematiksel olarak tam modellenemeyen 

problemlerle ilgilenilir. Gerçek dünyada değişen durumlara göre değişen sonuçları olan 

problemler vardır. Bir sistemi istenilen duruma getirmek için sezgilere ve deneyimlere 

bağlı olarak bir strateji geliştirilir. Belirsiz ve kesin olmayan bilgiler ile ilgilenilir. 

Makinelere insanların özel verilerini işleyebilme ve onların deneyimlerini ve 

önsezilerini kullanarak çözüm üretme yeteneği verir.  Bu, gerçek dünya sorunlarının 

tamamıyla basitleştirilmesi ve Şekil 4.1’deki doğru/yanlış veya 1/0 Boolean mantığı 

yerine doğruluk derecelerine dayanmaktadır. Sayısal ifadeler yerine sembolik ifadeler 

kullanılır. Sembolik ifadelerin makinelere aktarılmasında matematiksel olarak bulanık 

kümeler kuramı kullanılır. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Şekil Boolean ve Bulanık yapı 

Bulanık Mantık 1965 yılında Lofti A. Zadeh tarafından “Bulanık Kümeler” adlı 

araştırma makalesinde sunulmuştur [86]. Küme denince nesnelerden oluşan topluluk 

akla gelir. Bir küme farklı elemanların sırasız bir koleksiyonudur. Küme elemanları 

küme parantezi ( { ) kullanılarak ve elemanların aralarına virgül işareti koyarak açık bir 

Hava soğuk mu? 

Doğru/Evet/ 1 

Yanlış/Hayır/ 0 

Boolean 

Mantığı 

Hava soğuk mu? 

Çok Soğuk 

Normal Soğuk 
Bulanık 

Mantığı 

Az Soğuk 

Soğuk değil 

Şekil 4.1. Boolean ve bulanık yapı 



31 

şekilde listelenebilir. Elemanların sırasının değiştirilmesi kümede herhangi bir 

değişikliğe sebep olmaz. Örneğin, haftanın günleri kümesi, bilgisayar mühendisliği 1. 

sınıf öğrencileri kümesi gibi. 

𝐴 =  { 𝑎, 1, 2, 3, 4, 𝑏, 𝑐, 𝑑} bir kümedir. {1, 2, 3, 𝑎, 4, 𝑏, 𝑐, 𝑑} bu kümenin 

elemanlarıdır. 𝐴 kümesinin 8 tane elemanı vardır ve bu 𝑠(𝐴)  =  8 şeklinde yazılarak 

belirtilir. Bir elemanın kümeye ait olduğu ∈, ait olmadığı ∉ işaretiyle gösterilir.  

5 ∉ 𝐴 , 1 ∈  A gibi. 

 

Şekil 4.2. Küme türlerinin üyelik fonksiyonu [87] 

Bulanık kümeler, klasik kümelerin bir uzantısı olarak düşünülebilir. Bu iki yapı 

küme üyeliği bağlamında en iyi şekilde anlaşılabilir (Şekil 4.2). Temel olarak kısmi 

üyeliğe izin verir, bu da kümenin farklı üyelik derecelerine sahip elemanlar içerdiği 

anlamına gelir. Bundan klasik küme ve bulanık küme arasındaki fark anlaşılabilir. 

Klasik küme, üyeliğin kesin özelliklerini karşılayan unsurlar içerirken, bulanık küme 

üyeliğin kesin olmayan özelliklerini karşılayan öğeler içerir. 

4.1. Matematiksel Gösterim 

Evrensel küme, belirli bir konu veya uygulamayı ilgilendiren muhtemel bütün 

elemanları içeren kümedir. Boş olmayan bir 𝑈 evrensel kümesinde 𝐴̃ bulanık kümesi 

bir alt küme olsun. Matematiksel olarak aşağıdaki gibi gösterilir. 

𝐴̃ = {(𝑦, 𝜇𝐴̃(𝑦))|𝑦 ∈ 𝑈}                                                                                          (4.1) 

Bu denklemde 𝜇𝐴̃(𝑦) ∶   𝑈 → [0,1], 𝑦’nin 0 ve 1 arasındaki bir değerle üyelik 

fonksiyonunu gösterir. U evrensel kümesi içerisindeki bir 𝐴̃  bulanık kümesi genellikle 

y elemanlarının ve bu elemanların üyelik derecelerinin sıralı çiftlerinden oluşan bir 

küme ile temsil edilir. 

𝑈 evreninin sonlu ve ayrık olduğu durumlardaki gösterimi aşağıdaki gibidir. 
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𝐴̃ = {
𝜇𝐴̃(𝑦1)

𝑦1
+

𝜇𝐴̃(𝑦2)

𝑦2
+

𝜇𝐴̃(𝑦3)

𝑦3
+ ⋯ } = ∑

𝜇𝐴̃(𝑦𝑖)

𝑦𝑖

𝑛
𝑖=1                                                   (4.2) 

𝑈 evreninin sonsuz ve sürekli olduğu durumlarda ise, aşağıdaki gibi gösterilir. 

𝐴̃ = {∫
𝜇𝐴̃

(𝑦)

𝑦
}                                                                                                             (4.3) 

4.2. Bulanık Kümede İşlemler 

𝑈 evrensel kümesinde 𝐴̃ ve 𝐵̃ olmak üzere iki bulanık küme olduğu ve y bu evrenin 

bir elemanı olarak düşünüldüğünde bulanık kümeler üzerindeki birleşim, kesişim ve 

tümleyen işlemi aşağıdaki gibi olur. 

 

Birleşim (Bulanık ‘VEYA’) 

Birleşimi anlamak için aşağıdaki ilişkinin nasıl oluştuğuna bakılabilir. 

𝜇𝐴̃𝑈𝐵̃(𝑦) = 𝜇𝐴̃(y)˅𝜇𝐵̃(y) = max (𝜇𝐴̃(y), 𝜇𝐵̃(y))  ∀𝑦 ∈ 𝑈                                      (4.4) 

Buradaki ˅ maksimum operasyonu ifade eder (Şekil 4.3). 

   

𝐴̃ bulanık kümesi 𝐵̃ bulanık kümesi İki bulanık kümenin birleşimi 

Şekil 4.3. Bulanık kümede birleşim işlemi [87] 

Kesişim (Bulanık ‘VE’) 

Buradaki ˄ minimum operasyonu ifade eder (Şekil 4.4). 

𝜇𝐴̃∩𝐵̃(𝑦) = 𝜇𝐴̃(y)˄𝜇𝐵̃(y) = min (𝜇𝐴̃(y), 𝜇𝐵̃(y))   ∀𝑦 ∈ 𝑈.                                    (4.5) 

 

Şekil 4.4. Bulanık kümede kesişim işlemi [87] 
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Tümleyen (Bulanık ‘DEĞİL’) 

A kümesine ait olmayan U evrensel kümesine dâhil olan kümeye A’nın tümleyeni 

denir (Şekil 4.5). Matematiksel ifadesi şöyledir; 

𝜇𝐴̅̃(y) = 1 − 𝜇𝐴̃(𝑦)        𝑦 ∈ 𝑈                                                                                  (4.6) 

 

 

Şekil 4.5. Bulanık kümenin tümleyeni [87] 

Eğer herhangi bir elemanın 𝐴̃ bulanık kümesindeki üyelik derecesi 0,7 ise 

tümleyenindeki üyelik derecesi 0,3 olur. Kümeler için 𝐴 ∪ 𝐴̅ = 𝑈  𝑣𝑒 𝐴 ∩ 𝐴̅ = ∅ 

haricindeki durumlar dışında bilinen tüm işlemler bulanık kümeler içinde geçerlidir. 

 

4.3. Üyelik Fonksiyonu 

Bir üyelik fonksiyonu U evrensel kümesindeki bir elemanın bulanık alt kümesine 

benzerlik derecesinin ölçümünü sağlar. Başka bir deyişle, üyelik fonksiyonu bulanık 

mantıktaki gerçekliğin derecesini temsil eder. Bulanık bir küme her bir elemanının 

üyeliğinin derecelendirilebildiği keskin bir kümenin genelleştirilmiş halidir. Bulanıklık 

en iyi üyelik fonksiyonu seçilerek karakterize edilebilir. Bir bulanık küme, 

elemanlarının üyelik değerini belirlemek için üyelik fonksiyonu olarak adlandırılan 

üçgen, yamuk, çan eğrisi vb. fonksiyonlar kullanırlar. Üyelik 0’dan 1’e kadardır. Üyelik 

Bilgi Tabanı 

Bulanıklaştırma Çıkarım Durulaştırma 

Üyelik Fonksiyonu 

Şekil 4.6. Basit bir bulanık sistemin aşamaları 
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fonksiyonları, pratik problemleri bilgiden ziyade tecrübe ile çözecek bir teknik olarak 

tanımlanabilir. Üyelik fonksiyonları grafik formlarla temsil edilir ve bulanıklığı 

tanımlayan kurallar da bulanıktır. Her bir kuralın sonucu, girişlerin üyelik 

derecelerinden, durulaştırma ile sayısal bir değerin elde edilmesi ile belirlenir (Şekil 

4.6). 

 

Üçgen Fonksiyonu: Alt sınır a, üst sınır b ve m değeri ile tanımlanır (Şekil 4.7), burada 

a<m<b’dir. 

 

Şekil 4.7. Üçgen üyelik fonksiyonu [88] 

Yamuk Fonksiyonu: Alt sınır a, üst sınır d, alt destek sınırı b ve üst destek sınırı c ile 

tanımlanır (Şekil 4.8), burada a <b <c <d. R-fonksiyonları (a = b =- ∞) ve L-

fonksiyonları (c = d = + ∞) olarak adlandırılan iki özel yamuk durumu vardır. 

 

Şekil 4.8. Yamuk üyelik fonksiyonu [88] 

Gauss Fonksiyonu: Merkezi değer m ve standart sapma k> 0 ile tanımlanır. k ne kadar 

küçükse, “çan eğrisi” o kadar dar olur (Şekil 4.9). 
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Şekil 4.9. Gauss üyelik fonksiyonu [88] 

Üyelik Fonksiyonunun Özellikleri 

Çekirdek (Core): Bir üyelik fonksiyonunun çekirdeği, kümeye tam üyelikle 

karakterize edilen bölgedir. Tam üyeliği ifade eden durumları kapsar. 𝜇𝐴̃(𝑦) = 1 dir. 

Destek (Support): Herhangi bir 𝐴̃ bulanık kümesi için, üyelik fonksiyonunun desteği, 

kümede sıfır olmayan bir üyelik değeri ile karakterize edilen bölgedir. 𝜇𝐴̃(𝑦) > 0 

durumlarının hepsini kapsar. 

Sınır (Boundary): Üyelik fonksiyonunun sınırı, kümedeki sıfır olmayan ancak 

tamamlanmamış bir üyelikle karakterize edilen evrenin bölgesidir. 0 < 𝜇𝐴̃(𝑦) < 1 

şeklinde ifade edilir. 

Şekil 4.10’da bu durumlar gösterilmiştir. 

 

                            Şekil 4.10. Üyelik fonksiyonunun özellikleri [87] 
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4.4. Bulanıklaştırma 

Bulanıklaştırma, keskin bir kümeyi bulanık bir kümeye veya bulanık bir kümeyi 

daha bulanık kümeye dönüştürme işlemidir. Sistemden alınan giriş bilgilerini dilsel 

niteleyiciler olan sembolik değerlere dönüştürme işlemidir. Üyelik fonksiyonundan 

faydalanılarak giriş bilgilerinin ait olduğu bulanık kümeyi ve üyelik derecesini tespit 

eder. Buna göre sayısal değere orta, yüksek gibi dilsel değişken değerler atar. İhtiyaca 

göre değişik yapılardaki (üçgen, yamuk, gauss vb.) bulanık kümeler tercih edilebilir. 

4.5. Bilgi Tabanı 

Bilgi tabanı, veri tabanı ve kural tabanı olmak üzere iki kısımdan oluşur. Bulanık 

temel kuramına dayanan kuralları ve dilbilimsel değişkenleri temsil eder. Bilgi tabanı 

sistemleri yaklaşık akıl yürütmeye izin verir. Bulandırma, çıkarım, durulama işlemleri 

sırasında gerek duyulan üyelik işlevi ve kural tablosu veri tabanından kullanıma 

sunulmaktadır. Bulanık sistemlerde girişler AZ, ORTA, YÜKSEK gibi dilsel 

değişkenlerden oluşur. Bu girişlere göre sonuca varma ve karar alınırken EĞER – O 

HALDE (IF - THEN) türünden kurallardan yararlanılır. Bulanık kurallar, A ve B 

dilbilimsel değişkenleri içeren önermelerin (koleksiyonların) olduğu 'IF A THEN B' 

genel formuna sahip olan dilsel IF-THEN yapılarıdır. A öncül olarak adlandırılır ve B 

kuralın sonucudur. Sonuç olarak, dilbilimsel değişkenlerin ve bulanık IF-THEN 

kurallarının kullanımı, belirsizlik ve belirsizlik toleransını kullanır.  

4.6. Bulanık Çıkarım 

İnsanın karar verme, önerme ve çıkarım yapma şekline benzer bir durumu ortaya 

koyar. İnsan aklının verileri özetleme ve kararla ilgili bilgilere odaklanma konusundaki 

yeteneğini taklit eder.  Girişlere göre bulanık kural tabanındaki kuralları kullanarak bir 

kıyaslama yapar, buna göre çıkışları hesaplar. Bulanık çıkarım için önerilen birçok 

mekanizma vardır. Bulanık çıkarım yöntemleri doğrudan ve dolaylı yöntemler olarak 

sınıflandırılır. En çok kullanılan üç doğrudan yöntem aşağıda açıklanmıştır. 

Mamdani: 1975 yılında Mamdani ve Assilian tarafından dilsel değişkenler 

kullanılarak buhar motoru ve kazan bileşimini kontrol etmek için geliştirilmiştir [89]. 

Bulanık küme kuramı kullanılarak yapılan ilk kontrol sistemleri arasında yer alır.  

Mamdani, dilsel kural yaklaşımının bilgisayar tarafından kolaylıkla işlenebildiğini 

göstermiştir. Türbin hızı ve basınç değerlerine göre vananın açılma seviyesi bulanık 

mantık ile ayarlanmaya çalışılmıştı. Sonuç kısmında bulanık kümeler kullanılır. 'min-
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max' işlemlerinin basit yapısı nedeniyle, uygulamalarda en çok kullanılan yöntemdir. 

Girdiler bulanıklaştırılır, daha sonra çıkarsama ve birleştirme adımları uygulanır. Sonuç 

durulaştırma ile elde edilir. Durulaştırmanın hesaplama maliyeti yüksektir [90]. Bu tez 

çalışmasında uygulamalar Mamdani tipi çıkarsama kullanılarak gerçekleştirilmiştir. 

Takagi-Sugeno: Durulaştırmanın uzun sürmesi sebebiyle, Takagi, Sugeno ve Kang 

1985’te Mamdani’den farklı olarak sonuç kısmında bulanık kümeler yerine gerçel 

sayıların kullanıldığı bir yöntem önerdiler [91]. A, B, C bulanık kümeler olmak üzere 

bu tip çıkarsamada kural yapısı "EĞER x = A ve y = B İSE z = f(x, y)" şeklinde olur. 

Sonuç fonksiyonuna göre birinci derece, sıfırıncı derece olarak sınıflandırılır. z değeri 

ağırlıklı ortalama hesaplanarak bulunur. Genellikle x ve y giriş değişkenlerine göre elde 

edilen f (x, y) çıkışı bir polinomdur ancak kurala göre bulanık bölge içindeki model 

çıktısını uygun şekilde tanımlayabilen herhangi bir fonksiyonda olabilir. f bir sabit 

olduğunda Mamdani bulanık çıkarım sisteminin özel bir hali olan sıfır dereceli bir 

Sugeno bulanık modeli olur. Bu yapıda kuralları oluşturmak ve sistematik bir şekilde 

sunmak zordur. Hesaplama maliyeti Mamdani’ye göre düşüktür [90]. 

Tekil (Singleton): Bulanık kuralların sonuç kısmında sabit değerler kullanılır. 

Mamdani ve Takagi-Sugeno’nun özel bir biçimidir [92]. 

4.7. Durulaştırma 

Bulanıklaştırma süreci, net miktarlardan bulanık miktarlara dönüşümü içerir. 

Bulanık haldeki sonucu tekrar berraklaştırmak gerekir. Durulaştırma süreci 

“yuvarlama” olarak adlandırılır. Bulanık kümeyi net (crisp) bir kümeye indirgeme veya 

bulanık bir üyeyi net bir üyeye dönüştürme süreci olarak tanımlanabilir. Durulaştırma 

sonucunda sonuç elde edildiğinden önemlidir. Bulanık verinin uygun bir yöntemle 

durulaştırılması başarımı etkiler. Maksimum üyelikte bulanık kümenin sonucu 

maksimum yapan değeri hesaplanarak durulaştırma yapılır. Merkezi yöntemde sonuç 

bulanık kümesinin ağırlık merkezini gösteren değer durulaştırmanın çıktısıdır. Ağırlıklı 

ortalama yönteminde, sonuç bulanık kümesini etkileyen her üyelik fonksiyonunun 

ağırlık merkezi hesaplanır. Ardından her bir üyelik fonksiyonundaki tetiklenme 

derecelerine göre ağırlıklı ortalama hesabı yapılır. Ortalama-maksimum yönteminde, 

sonuç bulanık kümesinin en büyük değerlerinin ortalaması alınarak durulaştırma çıktısı 

elde edilir. Toplamların merkezi yönteminde sonuç bulanık kümesini oluşturan her bir 

üyelik fonksiyonunun cebirsel toplamının merkezi durulaştırma sonucudur [90]. 
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5. YÖNTEM VE UYGULAMALAR 

Bu tezde farklı entropi hesaplamaları kullanılarak sosyal ağlarda analizler yapıldı. 

Sosyal ağlarda entropinin kullanımına en uygun hesaplamanın merkezilik olduğu 

düşünülerek farklı ağların merkezilik hesaplaması yapılarak en etkin düğümler tespit 

edildi. Entropi, değişimi ve bilgi miktarını ölçtüğü için her bir düğümün bu değişimdeki 

etkisi kullanılarak merkezi düğümler doğru bir şekilde tespit edilebildi. Geleneksel 

merkezilik ölçümlerinin yetersiz kaldığı, uygun sonuç üretemediği yapılarda da 

yöntemimiz doğru sonuçlar üretebildi. 

Bu çalışmada ilk başta Karcı entropi kullanılarak hesaplamalar yapıldı. İkinci 

aşamada ise Karcı entropiye ek olarak Renyi entropi kullanıldı. 𝛼 değerinin doğru 

kullanılması için bulanık mantık ile sosyal ağlardaki topolojik değerler kullanılarak 

öneri yapıldı. Bu şekilde işlem maliyeti düşürüldü. İstenilen amaçlar doğrultusunda 

sonuca gidilmiş oldu. 

5.1. Karcı Entropi Merkezilik 

Karcı, olasılık dağılım fonksiyonlarına kesirli dereceden türev ile yeni bir yöntem 

uygulayarak entropi için iki yeni tanım elde etti [83]. Bu tanımlardan biri Denklem 

3.21’dir. Bu entropi Shannon ile birlikte farklı durumları da içinde barındırır. Son 

zamanlarda Shannon entropinin sosyal ağlarda kullanımı artmaktadır. Buradan 

hareketle Karcı entropinin sosyal ağlarda kullanılmasının iyi sonuçlar vereceği 

düşünüldü. Düğüm merkezilikleri hesaplanırken Shannon ile doğru sonuçlar alınsa da 

entropiden ziyade olasılık için kullanılan ağ parametrelerinin etkisi istenilen sonuca 

ulaşmada daha etkili olmaktadır. Bu çalışmada Karcı’da kullanılan  𝛼’nın farklı 

değerleri ile nasıl bir sonuç elde edileceğinin, 𝛼’nın etkisinin ne oranda çözüme katkı 

sunacağı uygulamalar üzerinden gösterilmeye çalışıldı. 

Shannon’da 𝛼, 1’dir. 𝛼, 1 ve üzeri olduğunda kenar ağırlıkları daha çok devreye 

girer. 𝛼 daha düşük değerler seçildiğinde merkezi düğümleri tespit ederken bağlantıları 

daha çok olanlar daha fazla dikkate alınır. 𝑝𝑖𝑗 olasılık değeri yüksek olanlar merkezi 

olmaya daha yakındır. Önerilen yöntemin akış diyagramı aşağıda verilmiştir. 
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Karcı entropi merkezilik hesaplama algoritma adımları aşağıdaki gibidir. Entropi 

hesaplanırken amaçlar doğrultusunda uygun 𝛼 değerinin seçilmesi önemlidir. 𝛼 değeri 

yerel veya küresel merkezi düğümlerin tespitini sağlar. 

  

k++ 

  

Başla 

k<=n 

i<n 

j<n 

j++ 

  

i++ 

  

Bitir 

Hayır 

Hayır 

Hayır 

A’yı yükle 
k düğümünü çıkar 

Düğümlerin ağırlıklı derecelerini hesapla 

 

𝒑𝒊𝒋 =
𝑾𝒊𝒋

∑ 𝑾𝒊𝒋
𝒏
𝒋∈𝑬

 

𝒑𝒊𝒋 değerlerine göre düğümlerin Karcı entropi 

değerlerini hesapla 

k düğümsüz çizgenin toplam entropisini hesapla 

Toplam Entropi değerlerine göre düğümleri 
küçükten büyüğe sırala 

 

Evet 

Evet 

Evet 

Ağırlıklı nxn A matrisi (veri setini) yükle 

 

Şekil 5.1. Önerilen Karcı entropi akış diyagramı 
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 Karcı Entropi Merkezilik Hesaplama Algoritması  
 

1- n düğümlü ağırlıklı ağı veri setinden yükle 

2- for  𝑘 = 1: 𝑛  

  𝑘 düğümünü ağdan çıkar 
3- Düğümlerin ağırlıklı derecelerini hesapla (Denklem 3,22) 

4- Entropi hesapla 

    for  𝑖 = 1: 𝑛 − 1 

  for  𝑗 = 1: 𝑛 − 1 
Entropi(𝑖)=(Karcı entropiyi 𝑝𝑖𝑗 değerlerini kullanarak 

hesapla (Denklem 3,25))  

5- Toplam entropiyi hesapla (Denklem 3,24) 

6- Eğer 𝑘 eşit değil 𝑛 ise 2’inci adıma ilerle 
7- Elde edilen entropi değerlerini küçükten büyüğe sırala 

 

Önerilen yöntemde oluşturulan ağırlıklı ilişki matrisi (komşuluk matrisi) sisteme 

yüklenir. Matriste tanımlı düğüm sayısı hesaplanır. Döngüler bu sayıya göre ayarlanır 

ve her bir düğüm sırayla ağdan çıkarılır. Düğüm çıkarıldıktan sonra ağdaki düğümlerin 

kenar ağırlıkları toplamı bulunur. 𝑖 ve 𝑗 düğümleri arasındaki ağırlıklı olasılık  𝑝𝑖𝑗 

değerleri hesaplanır. Düğümlerin Karcı entropi değerleri istenilen 𝛼 değerine göre 

hesaplanır. 𝛼 değeri 1 seçilirse Shannon entropi değerleri hesaplanmış olur. Bütün 

düğümler sırayla ağdan çıkarıldıktan sonra hesaplanmış olan toplam entropi değerleri 

küçükten büyüğe sıralanır. Bu şekilde en etkin düğümler tespit edilir. Küçük entropi 

değerlerine sahip olanlar en etkin düğümlerdir. Çünkü ağın bütün düğümlerle 

hesaplanan toplam entropi değerini en çok düşüren düğümlerdir. 

 

Karcı Entropi Kodu  
load(adj) %ilişki matrisi 

n=size(adj) %düğüm sayısı 
derece=degrees(adj); %düğüm dereceleri toplamı  
  for ii=1:n 
     adj1=adj; 

   for jj=1:n %ağdan çıkarılacak düğüm 
        adj1(ii,jj)=0; adj1(jj,ii)=0; 
    end 
     weight1=sum(adj1) %çıkarılan düğümsüz kenar ağırlığı toplamı 

     for i=1:n 
      for j=1:n                     
       k=(adj1(i,j)); %i ve j düğümleri arası kenar ağırlığı 
       l=(weight1(i));%i’nin bütün komşuları ile toplam ağırlığı 

       𝑝𝑖𝑗=k/l; %olasılık  

       entropi_karci(i,j)=abs((((-1)* 𝑝𝑖𝑗)^alfa)*log2(𝑝𝑖𝑗));  
       end 
      end 
      toplam_dugum_entropi_karci=sum(entropi_karci); 
      toplam_entropi_karci(ii)=sum(toplam_dugum_entropi_karci);  
  end 
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5.2. Bulanık Entropi Merkezilik 

Renyi ve Karcı’da Shannon’dan farklı olarak 𝛼 değeri vardır. 𝛼 için uygun seçim 

algoritması bu bölümde bulanık mantık kullanılarak hesaplandı. Giriş ve çıkış için 

seçilecek değerlerin aralığı Şekil 5.2'de gösterildi. Bulanık kümelerin üyelik 

fonksiyonları yamuk, üçgen ya da Gauss olabilir. Bu çalışmada Gauss üyelik 

fonksiyonu kullanıldı. 𝛼 değerinin çıktı aralığı, farklı ağlardan edinilen deneyim 

nedeniyle 0 ile 1,3 arasında seçildi. Bu değer farklı α değerleri kullanılarak yapılan 

denemelerden elde edilen tecrübe ile belirlendi. Çeşitli ağlara uygulandığında, α 

değerinin, 1,3 değerinden büyük seçildiğinde düğüm sırasını karıştırdığı görüldü. 

Bulanık bir çıkarım sistemi, bir dizi bulanık sınıflandırma kuralıyla açıklanmaktadır. 

Deneyimlerden elde edilen bir dizi dilsel kontrol kuralını sentezleyen Mamdani bulanık 

çıkarımı kullanıldı [89]. Giriş olarak kullanılacak sosyal ağ özellikleri, α ile ters 

orantılıdır. Bu nedenle, bu değerler yüksek olduğunda, α düşük seçilmelidir. 

Dilbilimsel ifadeleri olan kurallar aşağıda gösterilmiştir. 

 

Dilbilimsel kurallar 
1. If (yoğunluk is d1) and (ağırlıklı-yoğunluk is wd1) and 

(kümelenme-katsayısı is cc1) then (α-değeri is α9) 

2. If (yoğunluk is d2) and (ağırlıklı-yoğunluk is wd2) and 

(kümelenme-katsayısı is cc2) then (α-değeri is α8) 

3. If (yoğunluk is d3) and (ağırlıklı-yoğunluk is wd3) and 

(kümelenme-katsayısı is cc3) then (α-değeri is α7) 

4. If (yoğunluk is d4) and (ağırlıklı-yoğunluk is wd4) and 

(kümelenme-katsayısı is cc4) then (α-değeri is α6) 

5. If (yoğunluk is d5) and (ağırlıklı-yoğunluk is wd5) and 

(kümelenme-katsayısı is cc5) then (α-değeri is α5) 

6. If (yoğunluk is d6) and (ağırlıklı-yoğunluk is wd6) and 

(kümelenme-katsayısı is cc6) then (α-değeri is α4) 

7. If (yoğunluk is d7) and (ağırlıklı-yoğunluk is wd7) and 

(kümelenme-katsayısı is cc7) then (α-değeri is α3) 

8. If (yoğunluk is d8) and (ağırlıklı-yoğunluk is wd8) and 

(kümelenme-katsayısı is cc8) then (α-değeri is α2) 

9. If (yoğunluk is d9) and (ağırlıklı-yoğunluk is wd9) and 

(kümelenme-katsayısı is cc9) then (α-değeri is α1) 

 

 

α üssünün değerini belirlemek için, ağırlıksız (d) ve ağırlıklı ağ yoğunluğu (wd) ve 

kümeleme katsayısı (cc) değerleri, bulanık çıkarım sistemine girdi olarak kullanıldı ve 

α üssünün değeri çıktı olarak elde edildi. Aşağıdaki akış diyagramında önerilen 

algoritma incelenebilir. Girdi olarak kullanılan değerlerin nasıl hesaplandığı Sosyal 

Ağlar başlığı altında açıklandı. Bulanık çıkarım ile önerilen 𝛼 değerine göre Renyi ve 

Karcı entropi ile ölçümler yapıldı. Bu iki entropi de içinde Shannon entropiyi 
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barındırdığı için  Shannon entropi ile de ölçümler yapılmış oldu. Renyi ve Karcı entropi 

ile 𝛼’dan dolayı daha nitelikli sonuçlar alındı. 

 

 

       Şekil 5.2. Giriş ve çıkış değerlerinin bulanık aralığı 
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Çizelge 5.1. Bulanık çıkarımda kullanılan parametre değerleri 

 Netscience Flags Airport Minyatür_Flags 

Kenar yoğunluğu 0,0022 0,5365 0,1739 0,51 

Ağırlıklı kenar yoğunluğu 0,00094 0,429 1,1327 0,18 

Ortalama kümelenme katsayısı 0,2662 0,7542 0,1079 0,59 

Önerilen bulanık α değeri 1,12 0,49 0,65 0,81 

 

Çizelge 5.1’deki değerler kullanılan veri setlerinin yapılarının birbirinden farklı 

olduğunu gösteriyor. Geleneksel merkezilik hesaplamalarında bütün bu veri setlerinin 

hepsinde doğru sonuçlar alınamadığı uygulama sonuçları incelendiğinde görülecektir. 

Bu tezde önerilen yöntemle bütün ağlarda doğru sonuçlar üretilebildi. Buradan önerilen 

yöntemin her türlü ağda çözüm üreteceği gösterildi. 

Uygulama sonuçları incelendiğinde, doğru 𝛼 parametresinin seçilmesinin önemi 

anlaşılmaktadır. Bu amaçla geliştirilmiş Bulanık Entropi Merkezilik algoritması 

kullanıldı.  

Bulanık Entropi Merkezilik Hesaplama Algoritması  
 

1- N düğümlü ağırlıklı ağı veri setinden yükle 

2- Ağın ağırlıksız yoğunluğunu hesapla 

 Ağın ağırlıklı yoğunluğunu hesapla 

 Ağın kümelenme katsayısını hesapla    

3- Yoğunluk, ağırlıklı yoğunluk ve kümelenme katsayı 

değerlerini bulanık çıkarım sisteminde girdi olarak 

kullanarak, önerilecek α üs değerini hesapla 

4- for  𝑘 = 1: 𝑛  

  𝑘 düğümünü ağdan çıkar 
5- Düğümlerin ağırlıklı derecelerini hesapla 

6- Entropi hesapla 

    for  𝑖 = 1: 𝑛 

  for  𝑗 = 1: 𝑛 
Entropi(𝑖)=(Karcı ve Renyi entropiyi 𝑝𝑖𝑗 değerlerini 

kullanarak hesapla)  

7- Toplam entropiyi hesapla 

8- Eğer 𝑘 eşit değil 𝑛 ise 4’üncü adıma ilerle 
9- Elde edilen entropi değerlerini küçükten büyüğe sırala 

 

Bu tezde Flags, Airport ve Netscience olmak üzere 3 veri seti analiz için kullanıldı. 

Bunlardan Flags ve Airport veri setleri istatiksel verilerden sosyal ağ yapısına çevrildi. 

Kenar ağırlıkları benzerlik ve uçuş sayısına göre belirlendi. Entropi hesaplamaları 

kenar ağırlıklarına göre yapıldı. Bu sistemlerdeki en merkezi düğümler tespit edildi. 

Kullandığımız 𝛼 bulanık seçim algoritması giriş değerleri ve çıkış değerleri Çizelge 
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5.1’de gösterildi. Ayrıca yapılan analizin, kullanılan algoritmanın basit bir minyatürü 

Flags veri setinden 10 düğüm alınarak gösterildi. 
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j<=n 
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i++ 

  

Bitir 

Ağırlıklı nxn A matrisi (veri setini) yükle 

 

A’nın yoğunluğunu hesapla 
A’nın ağırlıklı yoğunluğunu hesapla 

A’nın kümelenme katsayısını hesapla 
Bulanık çıkarım ile α değerini tahmin et   

 

A’yı yükle 
k düğümünü çıkar 

Düğümlerin ağırlıklı derecelerini hesapla 

 

𝑝𝑖𝑗 =
𝑊𝑖𝑗

∑ 𝑊𝑖𝑗
𝑛
𝑗∈𝐸

 

𝒑𝒊𝒋 değerlerine göre Renyi ve Karcı entropi değerlerini hesapla 

k düğümsüz çizgenin toplam entropisini 
hesapla 

Toplam Entropi değerlerine göre düğümleri 
küçükten büyüğe sırala 

 

Şekil 5.3. Bulanık Entropi Merkezilik algoritma akış diyagramı 

Hayır 

Evet 

Evet 

Evet 
Hayır 

Hayır 
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5.3. Bayraklar Ağı (Flags) 

Dünyadaki ülkelerin birbirleriyle iş birliği içinde olduğunu, bu birlikteliklerin 

geliştirilip birçok konuda ortak kararların hayata geçirildiği görülmektedir. Avrupa 

Birliği, Arap Birliği, NATO ve benzeri birçok oluşum günümüzde faaliyetlerini 

sürdürmektedir. Bu oluşumların hayata geçmesini sağlayan birçok etken vardır. Ortak 

coğrafya, din, dil gibi etkenlerin bu birlikteliklerin oluşumunda etkili olduğu rahatlıkla 

görülebilmektedir. 

Huntington, Medeniyetler Çatışması adlı eserinde, insanların kültürel ve dini 

kimliklerinin Soğuk Savaş sonrası dünyadaki başlıca çatışma kaynağı olacağını söyler. 

Devletlerin coğrafi özellikleri ve dünyadaki konumları, izledikleri dış politikayı ve 

ilişkilerin oluşumuna etkilerini belirler. Medeniyetler arasındaki farklılıklar küresel 

siyasetin ana çatışma alanlarını oluşturur. Buna göre sınıflandırmalar kültür ve 

medeniyetlere göre olur [93]. 

Günümüzde ulusları ilişkiler disiplini konuşulduğunda belirli standartların 

oluştuğu, bu yüzden seküler ve rasyonel modern devlet kavramında ilişkilerde din, 

kültür gibi konular çok dillendirilmek istenmez. Bu konu daha çok siyasi duruşla ifade 

edilen konular olarak görülür. Ama özellikle 11 Eylül olayından sonra bu parametreler 

dış politikada kararlar alınırken etkinlik derecesini artırdı. Son zamanlarda ise, açık 

olarak ayrışma konusu olarak dillendirilen, dış politikanın şekillenmesinde ana 

aktörlerden biri olarak görülmeye başlandı. Bu ayrışmayı yavaşlatan en büyük etken 

ise, ekonomik iş birlikleridir. Bu çalışma ülke ilişkilerinde görülmek istenmeyen dini, 

kültürel, coğrafi bağların etkileri ölçülmeye çalışıldı.  Entropi ile konuya hesapsal bir 

bakış açısı getirildi. Önerilen yöntemle elde edilen sonuçlar uluslararası ilişki uzmanları 

ve sosyal bilimciler için farklı bir bakış ve analiz imkânı sağlayacaktır. 

5.3.1. Ülkeler ve parametreler 

İnsanların beraberliklerine bakıldığında akrabalık, komşuluk, ortak geçmiş, ortak 

siyasi fikirler gibi sebeplerden kaynaklandığı görülmektedir. Aynı durum ülkelerin 

ilişkilerine de etki etmektedir. Din, etnisite, ortak geçmiş, coğrafi koşullar, yönetim 

biçimi gibi pek çok etken ülke ilişkilerinin oluşumuna katkı sağlar ve ülke 

benzerliklerinin ölçümünde kullanılabilir. “Flags” [94] veri setinin 193 ülke bayrağına 

ait 30 özelliği içerisinden benzerliğin bulunması için uygun olduğu düşünülen kıta, 

bölge, dil, din verileri kullanılarak sosyal ağ analizi yapılması amaçlandı. Bu verileri 
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çizge yapısına dönüştürdüğümüzde 10133 kenara sahip yönsüz bir ağ ortaya çıktı. Ülke 

benzerlikleri üzerinden entropi kullanılarak düğümlerin merkeziliği hesaplandı.  

Yapılan uygulamada kullanılan veri seti 1986 yılında yapılmış bir çalışmadan 

alınmıştır [94] . Günümüzde bu ülkelerin bazıları farklı ülkelere bölünmüş veya isim 

değiştirmişlerdir. Fakat bu çalışmada bu değişimler göz önüne alınmadan mevcut veri 

üzerinde analizler yapıldı. “Flags” veri setinde bulunan bu etkenlerden seçilenlerin ülke 

ilişkilerini tanımlamada daha etkili olacağı düşünüldü. Bu parametreler kullanılarak 

birliktelikleri ve benzerlikleri hesaplandı. Bu parametreler farklı bakış açıları için 

uygulamada azaltılıp, çoğaltılabilir. Parametrelere belli bir katsayı vererek sonuca etkisi 

azaltılıp çoğaltılabilir. 

• Din: Günümüzde ülke birliklerinin oluşumuna baktığımızda din konusunun 

hatta mezheplerin bile çok etkili olduğu görülebilmektedir. 

• Dil: Dil birlikteliği akrabalık göstergesidir ve ülkeler arasındaki ilişkileri en çok 

etkileyen faktörlerden biridir. 

• Kıta: Birbirine komşu olan, aynı coğrafi alanda olan ülkeler zorunlu bir 

birlikteliğe sahiptir. Çünkü ülkedeki değişimler, ekonomik gelişmeler komşu 

ülkeleri ister istemez daha fazla etkiler.  

• Bölge: Ülkelerin ekonomisine, nüfusuna, mimarisine, birlikteliğine etki 

edebilecek bir diğer faktör aynı bölgede yaşamaktır.  

5.3.2. Ülke benzerlikleri 

Düğümlerin yani aktörlerin bazı özellikleri kullanılarak ilişki üzerinden düğümler 

arasındaki benzerlik oranları ölçülebilir. Basitliğine rağmen, ağ yapılarının büyüklüğü 

veya değişkenliği hesaplama maliyeti ve zorluk derecesini arttırmaktadır. Düğümlerin 

benzerliğinin neye göre tanımlanacağı konusu çok basit olabileceği gibi çok karmaşıkta 

olabilmektedir. Kullanılan yöntem bazı ağlarda iyi sonuç verebileceği gibi bazılarında 

ise, sonuç alınamayabilir. Bu yüzden analiz yapılırken ağ yapısına göre yöntem 

geliştirilmelidir. Bazen düğümlerin nitelikleri görülemeyebilir. Böyle durumlarda 

yapısal benzerlik dediğimiz ağ yapısı ile ilgili benzerlik indekslerine odaklanılmalıdır. 

Yapısal benzerlik indeksleri çeşitli yollarla sınıflandırılmıştır. Bu sınıflandırmalar 

yerel-küresel, parametre bağımlı-parametre bağımsız, düğüm bağımlı-yol bağımlı 

indekslerdir. Benzerlik indeksleri yapısal eşitlik ve düzenli eşitlik olarak 

sınıflandırılabilir. Bu konuda yapılan iki benzerlik varsayımı vardır. Birincisi 
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bağlantının iki uç arasında olması bu iki ucun benzer olduğunu gösterir, ikincisi 

komşuları benzer olanlar arasında benzerlik olacağı varsayımıdır [95].   

Yapılan çalışmada iki düğümün benzer özelliklerinin sayısı hesaplandı. İki düğüm 

arasında ne kadar fazla ortak özellik varsa, bu düğümlerin benzerliği daha fazladır. 

Benzerlik oranı iki düğüm arasındaki benzerlik sayısı toplam benzerlik sayısına 

bölünerek elde edildi. Benzerlik hesaplanırken özelliklerden bazılarına daha fazla 

ağırlık katsayısı eklenebilir. İlişkiye daha fazla etki eden parametrelerin ağırlığı 

arttırılarak benzerliğe etkisi arttırabilir.  

Buna göre Denklem 5.1 oluşturuldu ve benzerlik hesaplamaları bu denkleme göre 

yapıldı. 𝑤 parametreye verilecek ağırlığı, 𝑠(𝑖, 𝑗) ise 𝑖 ve 𝑗 düğümleri arasında bu 

parametrenin mevcudiyetini 0 veya 1 ile ifade etmektedir. 𝑆𝑖𝑗, iki düğümün benzerlik 

oranıdır. 𝑛 parametre sayısıdır. 

𝑆𝑖𝑗 =
(𝑤1𝑠1(𝑖,𝑗)+𝑤2𝑠2(𝑖,𝑗)+⋯+𝑤𝑛𝑠𝑛(𝑖,𝑗))

𝑤1+𝑤2+⋯+𝑤𝑛
                                                                       (5.1) 

Bütün parametrelerin etkisini görebilmek için her bir parametre için elde edilen 

skor değerleri toplanıp ağırlık katsayısı toplamlarına bölündü. Denklem 5.2’de Flags 

veri setinde seçilen parametrelerle yapılan benzerlik hesaplaması gösterildi. 

𝑆𝑖𝑗 =
𝑤1𝑆(𝑖,𝑗)(𝑑𝑖𝑛)+𝑤2𝑆(𝑖,𝑗)(𝑑𝑖𝑙)+𝑤3𝑆(𝑖,𝑗)(𝑘𝚤𝑡𝑎)+𝑤4𝑆(𝑖,𝑗)(𝑏ö𝑙𝑔𝑒)

𝑤1+𝑤2+𝑤3+𝑤4
                                          (5.2) 

Entropide kullanılan olasılık değerleri benzerlik değerleri kullanılarak hesaplandı. 

Benzerlik oranı ilişkinin olasılığını etkileyen bir kavramdır. Buna göre bütün 

düğümlerin benzerliğe göre ilişki oranı hesaplandı. 𝛤(𝑖), 𝑖’düğümünün komşularının 

kümesidir. 

𝑝𝑖𝑗 =
𝑠𝑖𝑗

∑ 𝑠𝑖𝑗𝑗∈𝛤(𝑖)
                                                                                                          (5.3) 

5.3.3. Minyatür örnek  

 

Küçük bir örnekle yapılan analizin adımlarını göstermek açıklayıcı olacaktır. Bu 

yüzden yapılan çalışmanın manuel analizini göstermek için kullanılan veri setinden 10 

ülkenin verileri alınıp oluşturulan algoritma gösterilmeye çalışıldı. Çizelge 5.2’de 

belirtilen ülkelerin kıta, bölge, dil, din bilgilerine göre çizge oluşturuldu. Ülkelerin 

benzerliği ve entropi değerleri hesaplandı. En etkin ülkeler tespit edildi. Kümelemelerin 

nasıl olduğu görüldü. 
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Çizelge 5.2. Flags veri setinden alınan 10 ülke verisi 

Ülke Kıta Bölge Dil Din 

Zambia Africa SE Others Ethnic 

Turkey Asia NE Japanese/Turkish/Finnish/Magyar Muslim 

Venezuela S.America NW Spanish Catholic 

USA N.America NW English Other Christian 

Saudi-Arabia Asia NE Arabic Muslim 

South-Africa Africa SE Other Indo-European Other Christian 

Luxembourg Europe NE German Catholic 

Italy Europe NE Other Indo-European Catholic 

Hong-Kong Asia NE Chinese Buddhist 

Denmark Europe NE Other Indo-European Other Christian 

 

 

Din, Dil, Bölge ve Kıta çizgeleri Çizelge 5.2’deki verilere göre ele alındığında Şekil 

5.4’deki yapıda olur. 

 

 

Şekil 5.4. Flags veri setinden alınan 10 ülke verisinin ilişki yapısı 

Çizelge 5.3. Flags veri setinden alınan 10 ülke verisi benzerlik sayısı 

 Zamb
ia 

Turkey Venezuela USA Saudia-
Arabia 

South-
Africa 

Luxembourg Italy Hong-
Kong 

Denmark 

Zambia 0 0 0 0 0 2 0 0 0 0 

Turkey 0 0 0 0 3 0 1 1 2 1 

Venezuela 0 0 0 1 0 0 1 1 0 0 

USA 0 0 1 0 0 1 0 0 0 1 

Saudi-Arabia 
0 3 0 0 0 0 1 1 2 1 

South-Africa 
2 0 0 1 0 0 0 1 0 2 

Luxembourg 0 1 1 0 1 0 0 3 1 2 

Italy 0 1 1 0 1 1 3 0 1 3 

Hong-Kong 0 2 0 0 2 0 1 1 0 1 

Denmark 0 1 0 1 1 2 2 3 1 0 

 

Parametrelere göre ülkelerin benzerlik sayıları Çizelge 5.3’deki gibi olur. Ülkelerin 

toplam ortak parametre sayısı benzerlik ölçüsüdür. İstenirse bazı parametrelerin ağa 
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etkisi arttırılabilir. Örneğin dinin etkisi 2 katına çıkarıldığında ülkelerin benzer 

parametre sayıları Çizelge 5.4’teki gibi olur. 

Çizelge 5.4. 10 ülke verisi benzerlik sayısı (Dinin etkisi 2 katına çıkarıldı) 

  Zambia Turkey Venezuela USA 
Saudia-
Arabia 

South-
Africa 

Luxembourg Italy 
Hong-
Kong 

Denmark 

Zambia 0 0 0 0 0 2 0 0 0 0 

Turkey 0 0 0 0 4 0 1 1 2 1 

Venezuela 0 0 0 1 0 0 2 2 0 0 

USA 0 0 1 0 0 2 0 0 0 2 

Saudi-

Arabia 
0 4 0 0 0 0 1 1 2 1 

South-

Africa 
2 0 0 2 0 0 0 1 0 3 

Luxembourg 0 1 2 0 1 0 0 4 1 2 

Italy 0 1 2 0 1 1 4 0 1 3 

Hong-Kong 0 2 0 0 2 0 1 1 0 1 

Denmark 0 1 0 2 1 3 2 3 1 0 

 

Düğümlerin benzerlik değerleri Denklem 5.1’e göre hesaplanırsa düğümlerin 

benzerlik oranları Çizelge 5.5’teki gibi olur. 

Çizelge 5.5. 10 ülke verisi benzerlik oranı 

  Zambia Turkey Venezuela USA Saudia-

Arabia 

South-

Africa 

Luxembourg Italy Hong-

Kong 

Denmark 

Zambia 0 0 0 0 0 0,4 0 0 0 0 

Turkey 0 0 0 0 0,8 0 0,2 0,2 0,4 0,2 

Venezuela 0 0 0 0,2 0 0 0,4 0,4 0 0 

USA 0 0 0,2 0 0 0,4 0 0 0 0,4 

Saudi-

Arabia 

0 0,8 0 0 0 0 0,2 0,2 0,4 0,2 

South-

Africa 

0,4 0 0 0,4 0 0 0 0,2 0 0,6 

Luxembourg 

0 0,2 0,4 0 0,2 0 0 0,8 0,2 0,4 

Italy 0 0,2 0,4 0 0,2 0,2 0,8 0 0,2 0,6 

Hong-Kong 

0 0,4 0 0 0,4 0 0,2 0,2 0 0,2 

Denmark 0 0,2 0 0,4 0,2 0,6 0,4 0,6 0,2 0 

  
 

Çizelge 5.5’deki verilere göre ağımız Şekil 5.5’teki gibi oluşur. Şekle bakıldığında 

en merkezi düğümler Denmark ve Italy ülkeleri olarak görülmektedir. South-Africa, 

Zambia’yı ağa bağlayan tek ülkedir. 
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           Şekil 5.5. Ülke verisinin ağırlıklı ilişki yapısı 

Geleneksel merkezilik ölçümleri ile ölçümler yapıldığında farklı merkezilik 

sıralamaları görüldü [96]. Buna göre oluşan değerler aşağıda görülebilir. Düğüm 

derecesi en yüksek olanlar Italy ve Denmark’tır. Yakınlık merkeziliğine göre Turkey 

ve Denmark’tır. Arasındalık hesaplamalarına göre South-Africa, Zambia’yı ağa 

bağladığı için birinci sırada çıktı. Özvektör merkeziliğinde Italy birinci, Denmark ve 

Turkey sonuncu sıralarda çıktı. Her bir ölçüm ağa farklı bir yönden baktı. Kenar 

ağırlıkları ilişkileri tanımlamada çok fazla kullanılmadı.  

Çizelge 5.6. Geleneksel merkezilik ile en etkili ve etkisiz minyatür 10 ülke 

  Ülkeler Derece Ülkeler Yakınlık Ülkeler Arasındalık Ülkeler Özvektör 

1 Italy 7 Turkey 1,00 South-Africa 11,58 Italy 1,00 

2 Denmark 7 Denmark 1,00 Italy 11,17 Luxembourg 0,89 

3 Luxembourg 6 Italy 0,82 USA 4,50 Saudi-Arabia 0,87 

4 Turkey 5 Luxembourg 0,69 Denmark 1,50 Hong-Kong 0,87 

5 Saudi-Arabia 5 South-Africa 0,64 Venezuela 1,42 South-Africa 0,44 

6 Hong-Kong 5 Saudi-Arabia 0,60 Luxembourg 0,83 USA 0,18 

7 South-Africa 4 Hong-Kong 0,60 Zambia 0,00 Zambia 0,14 

8 Venezuela 3 USA 0,50 Turkey 0,00 Venezuela 0,07 

9 USA 3 Zambia 0,41 Saudi-Arabia 0,00 Turkey 0,01 

10 Zambia 1 Venezuela 0,35 Hong-Kong 0,00 Denmark 0,01 

 

Önerilen yöntemle ağı analiz ederken ilk önce Renyi ve Karcı entropi ile analizler 

yapılacağından uygun 𝛼 değerinin tespit edilmesi gerekir. Bunun için önerilen bulanık 

𝛼 seçim algoritması kullanıldı. Giriş parametrelerimiz olan ağın ağırlıksız yoğunluk 

değeri 0,51, ağırlıklı yoğunluk değeri 0,18 ve kümelenme katsayısı 0,59 olarak 
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bulundu. Önerilen 𝛼 değeri bulanık çıkarım ile 0,81 bulundu. Buna göre Renyi, Karcı 

ve Shannon entropi ile yapılan ölçüm değerleri Çizelge 5.7’de belirtilmiştir. Örnekte 

hesaplanan benzerliğe sahip ağda her bir düğümü ağdan sırasıyla çıkardığımızda elde 

ettiğimiz toplam entropi değerleri aşağıdaki gibidir. Görüldüğü üzere farklı 𝛼 değerleri 

kullanılsa da uygun bir sıralama elde edildi.  

Çizelge 5.7. Entropi ile ağdaki en etkili ve etkisiz minyatür 10 ülke sıralaması 

Sıra 

Flags 

Ülkeler 

Karcı 

α=1.2 

Flags 

Ülkeler 

Renyi 

α=1.2 

Flags 

Ülkeler 

Shannon 

α=1 

Flags 

Ülkeler 

Karcı 

α=0.81 

1 Denmark 10,38 Denmark 13,51 Denmark 13,76 Denmark 18,20 

2 Italy 10,65 Italy 13,91 Italy 14,10 Italy 18,58 

3 Luxembourg 10,89 Luxembourg 14,38 Luxembourg 14,60 Luxembourg 19,49 

4 Hong-Kong 11,24 Hong-Kong 14,94 Hong-Kong 15,21 Hong-Kong 20,52 

5 South-Africa 11,59 Turkey 15,56 Turkey 15,73 Turkey 21,05 

6 Turkey 11,68 Saudi-Arabia 15,56 Saudi-Arabia 15,73 Saudi-Arabia 21,05 

7 Saudi-Arabia 11,68 South-Africa 15,70 South-Africa 15,96 South-Africa 21,89 

8 USA 11,70 USA 15,90 USA 16,16 USA 22,25 

9 Venezuela 11,79 Venezuela 16,01 Venezuela 16,28 Venezuela 22,39 

10 Zambia 13,38 Zambia 18,17 Zambia 18,45 Zambia 25,34 
 

 
 

Sıra 

Flags 

Ülkeler 

Renyi 

α=0.81 

Flags 

Ülkeler 

Karcı 

α=0.1 

Flags 

Ülkeler 

Renyi 

α=0.1 

1 Denmark 14,01 Italy 56,47 Denmark 14,95 

2 Italy 14,28 Denmark 57,33 Italy 14,98 

3 Luxembourg 14,81 Luxembourg 62,83 Luxembourg 15,64 

4 Hong-Kong 15,48 Turkey 67,80 Hong-Kong 16,52 

5 Turkey 15,90 Saudi-Arabia 67,80 Turkey 16,57 

6 Saudi-Arabia 15,90 Hong-Kong 68,92 Saudi-Arabia 16,57 

7 South-Africa 16,22 South-Africa 78,40 South-Africa 17,17 

8 USA 16,42 Venezuela 81,50 USA 17,39 

9 Venezuela 16,54 USA 81,86 Venezuela 17,54 

10 Zambia 18,73 Zambia 91,96 Zambia 19,77 

 

Çizelgeye göre ağdaki en önemli düğüm ağdan çıkarıldığında toplam entropi 

değerinin düştüğü görülebilir. Elde edilen sonuçlara göre ağın en etkili düğümleri 

Denmark ve Italy olmaktadır. En etkisiz düğüm ise, Zambia olmaktadır. Turkey ile 

Saudi-Arabia’nın ise, benzer değerler aldığı için, aynı toplulukta olduğu söylenebilir. 

Ortak komşuları eşit ve aynı ağırlıklarla komşularıyla ilişkileri var. Buna rağmen 

geleneksel merkezilik ölçümlerinde farklı değerler aldılar. 
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Shannon entropi ile elde edilen bu sonuçlar Karcı ve Renyi entropi ile elde edilen 

sonuçlarla benzer oldu. 0 ile 1,2 arasında seçilen α katsayısı düğümlerin entropi 

değerleri arasındaki farkı daha da belirginleştirmektedir. Kullanılan katsayılar 

değiştiğinde bazı ülkelerin önemi artarken bazılarının düşmektedir. Bu değişim 

kenarların ağırlıklarının etkisini azaltıp düğüm derecelerinin etkisini arttırmasından 

kaynaklanmaktadır. α katsayısı 0,1 olduğunda düğüm kenar ağırlıklarının etkisi 

azalmaktadır. Çizelge 5.6’daki derece merkeziliği sıralama sonucu, Karcı entropide 

α’nın 0,1 olduğu durumdaki sıralama ile aynı çıktı. α katsayısı 1 değerinden büyük 

olduğunda da tersine bir hesaplama oluşmaktadır. α katsayısı 1’den aşağı olduğunda 

yukarı çıkan değerler bu sefer aşağı doğru inmektedir. α katsayısı arttıkça durum tersine 

döner. Hesaplamaları tersine çeviren bu eşik değer kullanılan sisteme göre değişiklik 

gösterebilir. Flags veri setinde bu eşik değer 1,3 olarak tespit edildi.  Ağırlıklı ağlarda 

düğüm derecesinin ve kenar ağırlıklarının ağdaki etkisini duruma göre ayarlamak için 

Karcı ve Renyi entropi kullanılabilir. Yapılan uygulamada farklı katsayılar 

kullanıldığında etkin ülkeler sıralamasında değişim olduğu görüldü. Shannon 

entropi’de çizgemizde South-Africa’nın önemi Hong-Kong, Turkey ve Saudi-

Arabia’dan daha fazladır,  fakat Karcı entropide kullanılan α katsayısı düştükçe South-

Africa’nın önem sırası düştü. Shannon entropiye göre South-Africa, Zambia’yı ağa 

bağlaması ve etkin düğümlerle daha ağırlıklı kenarlara sahip olmasından dolayı daha 

etkin bir düğümdür. Fakat Karcı ve Renyi entropi’de düğümlerin derecesi daha fazla 

dikkate alındığı için etkinliği düşük çıktı. Turkey ve Saudi-Arabia ülkelerinin düğüm 

dereceleri ve ilişkide olduğu düğümler aynı olduğu için değerleri aynı çıktı. Bu ülkeler 

Hong-Kong ile kıyaslandığında aynı ağırlıklarla diğer ülkelerle ilişki göstermektedir. 

Fakat birbirleriyle ilişkileri daha ağırlıklı olduğu için Karcı ve Renyi entropide daha ön 

plana çıktılar.  

Sonuçlar farklı 𝛼 değerleri ile daha detaya inerek analizler yapılmasının Karcı ve 

Renyi entropi ile mümkün olduğunu gösterdi. Analizde düğüm derecelerinin veya 

kenar ağırlıklarının önemini arttırmak için Renyi ve Karcı entropi kullanılabilir. Farklı 

𝛼 değerleri ağa farklı bir bakışla bakmamızı sağlar.  

5.3.4. Flags veri seti uygulama sonuçları 

 

Flags veri setinde 193 ülkenin bilgileri bulunmaktadır. Flags veri setinde kullanılan 

parametrelerin istatistiki bilgileri Çizelge 5.8’de verildi. Görüldüğü üzere din olarak en 

fazla Other Christian ve Catholic dinine mensup ülkeler bulunmaktadır. Dil olarak 
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Others ve English dilinin etkisi daha fazladır. Afrika kıtasının ülke sayısı daha fazladır. 

Bölge olarak ülkelerin en yoğun olduğu yer NE (North East)’dir. 

Yapılan çalışmada parametre ve parametre katsayısına göre iki düğüm arasındaki 

benzerlik ölçüldü. Dinin parametre katsayısı 2 olarak seçildi. Bütün parametrelere göre 

hesaplanan düğüm benzerlikleri parametre katsayısı toplamına bölünerek iki düğüm 

arasındaki 𝑝𝑖𝑗 benzer olasılık oranı bulundu. Bu değerlere göre her düğümün entropisi 

ölçüldü. Benzerlikler minyatür örnekteki gibi hesaplandı. 

Çizelge 5.8. Flags veri seti istatistiki bilgileri 

Sayısal 

Değeri Din Adı Ülke Sayısı 

0 Catholic 39 

1 Other Christian 60 

2 Muslim 36 

3 Buddhist 8 

4 Hindu 4 

5 Ethnic 27 

6 Marxist 15 

7 Others 4 

 Toplam 193 

 

Din 

 

Sayısal 

Değeri Dil Adı Ülke Sayısı 

1 English 43 

2 Spanish 20 

3 French 17 

4 German 6 

5 Slavic 4 

6 Other Indo-European 30 

7 Chinese 4 

8 Arabic 19 

9 Japanese/Turkish/Finnish/Magyar 4 

10 Others 46 

 Toplam 193 
 

 Dil 
Sayısal 

Değeri Kıta Adı Ülke Sayısı 

1 N.America 31 

2 S.America 16 

3 Europe 35 

4 Africa 52 

5 Asia 39 

6 Oceania 20 

 Toplam 193 
 

Sayısal 

Değeri Bölge Adı Ülke Sayısı 

1 NE 91 

2 SE 29 

3 SW 15 

4 NW 58 

 Toplam 193 
 

 

Kıta 

 

Bölge 

 

Önerilen yöntemin doğruluğunu tespit etmek için Sosyal Ağlar bölümünde 

bahsedilen merkezilik yöntemleri ile ölçümler yapıldı. Buna göre entropi tabanlı ile 

geleneksel yöntemler kıyaslandı. Geleneksel merkezilik ölçüm değerleri Çizelge 

5.9’daki gibidir. 

Geleneksel merkezilik ölçümleri bu veri setinde işe yarar sonuçlar üretebildi. Her 

dört ölçümde entropi tabanlı ölçüme yakın sonuçlar verdi. 
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Yapılan çalışmada Shannon, Renyi ve Karcı entropi ile din, dil, kıta ve bölge 

parametrelerine göre en etkili düğümler bulundu. Giriş parametreleri olan ağın 

ağırlıksız yoğunluk değeri 0,5365, ağırlıklı yoğunluk değeri 0,429 ve kümelenme 

katsayısı 0,7542 olarak bulundu. Önerilen 𝛼 değeri bulanık çıkarım ile 0,49 bulundu. 

Çizelge 5.9. Geleneksel merkezilik ile ağdaki en etkili ve etkisiz düğümler 

Sıra Ülkeler Derece Ülkeler Yakınlık Ülkeler Arasındalık Ülkeler Özvektör 

1 Cameroon 168 Cameroon 0,88 Philippines 194,42 Cameroon 1,00 

2 Ethiopia 166 Ethiopia 0,87 Sao-Tome 184,65 Ethiopia 0,99 

3 Sao-Tome 156 Sao-Tome 0,83 Cameroon 173,59 Marianas 0,92 

4 Marianas 154 Marianas 0,83 Ethiopia 164,53 Micronesia 0,92 

5 Micronesia 154 Micronesia 0,83 Malta 157,22 Sao-Tome 0,92 

6 Philippines 148 Philippines 0,81 Marianas 149,46 Guam 0,89 

7 Guam 146 Guam 0,80 Micronesia 149,46 Kiribati 0,89 

8 Kiribati 146 Kiribati 0,80 Guam 136,50 Cyprus 0,87 

9 Cyprus 143 Cyprus 0,79 Kiribati 136,50 Denmark 0,87 

10 Denmark 143 Denmark 0,79 
Cape-Verde-

Islands 
131,52 Greece 0,87 

11 Greece 143 Greece 0,79 Cyprus 121,04 Netherlands 0,87 

12 Netherlands 143 Netherlands 0,79 Denmark 121,04 Norway 0,87 

13 Norway 143 Norway 0,79 Greece 121,04 Sweden 0,87 

14 Sweden 143 Sweden 0,79 Netherlands 121,04 Finland 0,86 

15 Malta 141 Malta 0,78 Norway 121,04 
Germany-

FRG 
0,86 

 

…….. 

179 Cuba 80 Cuba 0,63 Turkey 5,95 Honduras 0,40 

180 
American-
Samoa 79 

American-
Samoa 0,63 UAE 5,95 Mexico 0,40 

181 Cook-Islands 79 Cook-Islands 0,63 Argentina 5,30 Nicaragua 0,40 

182 Niue 79 Niue 0,63 Bolivia 5,30 Puerto-Rico 0,40 

183 

Papua-New-

Guinea 79 

Papua-New-

Guinea 0,63 Chile 5,30 Guyana 0,39 

184 
Western-
Samoa 79 Western-Samoa 0,63 Ecuador 5,30 Cuba 0,38 

185 

French-

Polynesia 72 

French-

Polynesia 0,61 Parguay 5,30 

French-

Polynesia 0,37 

186 Brazil 69 Brazil 0,61 Peru 5,30 Brazil 0,36 

187 Argentina 50 Argentina 0,57 Uruguay 5,30 Argentina 0,23 

188 Bolivia 50 Bolivia 0,57 China 3,05 Bolivia 0,23 

189 Chile 50 Chile 0,57 USSR 3,05 Chile 0,23 

190 Ecuador 50 Ecuador 0,57 Hong-Kong 0,00 Ecuador 0,23 

191 Parguay 50 Parguay 0,57 Japan 0,00 Parguay 0,23 

192 Peru 50 Peru 0,57 Singapore 0,00 Peru 0,23 

193 Uruguay 50 Uruguay 0,57 Taiwan 0,00 Uruguay 0,23 
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Çizelge 5.10. Ağdaki en etkili düğümler 

 
Flags 

Ülkeler 

Karcı 

α=1.2 

Flags 

Ülkeler 

Renyi 

α=1.2 

Flags 

Ülkeler 

Shannon 

α=1 

Flags 

Ülkeler 

Karcı 

α=0.49 

1 Philippines 502,30 Ethiopia 1227,91 Ethiopia 1235,17 Cameroon 12998,43 

2 Ethiopia 502,30 Cameroon 1227,98 Cameroon 1235,22 Ethiopia 12999,35 

3 Sao-Tome 502,30 Sao-Tome 1228,18 Sao-Tome 1235,42 Sao-Tome 13008,97 

4 Malta 502,31 Philippines 1228,29 Philippines 1235,54 Marianas 13011,33 

5 Cameroon 502,31 Marianas 1228,31 Marianas 1235,55 Micronesia 13011,33 

6 

Cape-Verde-

Islands 502,32 Micronesia 1228,31 Micronesia 1235,55 Philippines 13015,42 

7 Marianas 502,32 Malta 1228,52 Malta 1235,76 Guam 13020,60 

8 Micronesia 502,32 Guam 1228,65 Guam 1235,88 Kiribati 13020,60 

9 Ireland 502,32 Kiribati 1228,65 Kiribati 1235,88 Malta 13022,69 

10 Malagasy 502,33 Cyprus 1228,68 Cyprus 1235,92 Cyprus 13022,80 

11 Swaziland 502,33 Denmark 1228,68 Denmark 1235,92 Denmark 13022,80 

12 France 502,33 Greece 1228,68 Greece 1235,92 Greece 13022,80 

13 Monaco 502,33 Netherlands 1228,68 Netherlands 1235,92 Netherlands 13022,80 

14 St-Helena 502,33 Norway 1228,68 Norway 1235,92 Norway 13022,80 

15 Surinam 502,33 Sweden 1228,68 Sweden 1235,92 Sweden 13022,80 
 

 

 

Flags 

Ülkeler 

Renyi 

α=0.49 

Flags 

Ülkeler 

Karcı 

α=0.1 

Flags 

Ülkeler 

Renyi 

α=0.1 

1 Cameroon 1254,49 Cameroon 83212,32 Cameroon 1269,57 

2 Ethiopia 1254,50 Ethiopia 83233,34 Ethiopia 1269,62 

3 Sao-Tome 1254,68 Sao-Tome 83327,97 Sao-Tome 1269,76 

4 Philippines 1254,81 Marianas 83345,97 Philippines 1269,89 

5 Marianas 1254,81 Micronesia 83345,97 Marianas 1269,89 

6 Micronesia 1254,81 Philippines 83406,22 Micronesia 1269,89 

7 Malta 1255,03 Guam 83418,49 Malta 1270,10 

8 Guam 1255,10 Kiribati 83418,49 Guam 1270,14 

9 Kiribati 1255,10 Cyprus 83448,24 Kiribati 1270,14 

10 Cyprus 1255,16 Denmark 83448,24 Cyprus 1270,22 

11 Denmark 1255,16 Greece 83448,24 Denmark 1270,22 

12 Greece 1255,16 Netherlands 83448,24 Greece 1270,22 

13 Netherlands 1255,16 Norway 83448,24 Netherlands 1270,22 

14 Norway 1255,16 Sweden 83448,24 Norway 1270,22 

15 Sweden 1255,16 Malta 83471,39 Sweden 1270,22 
 

 

 
 

 

         Şekil 5.6. 193 ülkenin birliktelikleri ve kümelenmeleri 
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İlişki üzerinden görselleştirmesi yapılan ağın kümelemeleri Şekil 5.6’ya göre 

oluşturuldu. Görüldüğü üzere coğrafi durum ilişkilerde oldukça etkilidir. Kümelemeler 

ve ilişkilerin yapısı coğrafi iki etken olan kıta ve bölgenin etkisini gösterdi. Ayrıca 

oluşan ağda kullanılan parametrelerden coğrafi olanların daha fazla olması bu durumu 

daha belirgin hale getirdi. Coğrafi olarak birbirine yakın ülkelerin aynı dil ve dinden 

etkilendiği gerçeği de bir daha görüldü.  

Elde edilen değerler Çizelge 5.10’da gösterildiği gibidir. Düğüm çıkarıldığında 

entropi değeri çok düşüyorsa, düğümün sistem için daha önemli olduğu anlamına gelir. 

Bir düğüm çıkarıldığında toplam entropi değerinin değişim oranı, düğümün sistem 

üzerindeki etkinliğini gösterir.  

Çizelge 5.11. Ağdaki en etkisiz düğümler 

 Flags Ülkeler 

Karcı 

α=1.2 

Flags 

Ülkeler 

Renyi 

α=1.2 

Flags 

Ülkeler 

Shannon 

α=1 

Flags 

Ülkeler 

Karcı 

α=0.49 

179 Lesotho 502,43 Malawi 1230,51 Malawi 1237,72 Rwanda 13082,40 

180 Malawi 502,43 Mozambique 1230,51 Mozambique 1237,72 Tanzania 13082,40 

181 Mozambique 502,43 Rwanda 1230,51 Rwanda 1237,72 Zaire 13082,40 

182 Rwanda 502,43 Tanzania 1230,51 Tanzania 1237,72 Zambia 13082,40 

183 Tanzania 502,43 Zaire 1230,51 Zaire 1237,72 Zimbabwe 13082,40 

184 Zaire 502,43 Zambia 1230,51 Zambia 1237,72 

Papua-

New-
Guinea 13082,55 

185 Zambia 502,43 Zimbabwe 1230,51 Zimbabwe 1237,72 

French-

Polynesia 13088,69 

186 Zimbabwe 502,43 Brazil 1230,57 Brazil 1237,83 Brazil 13092,86 

187 Argentina 502,47 Argentina 1231,30 Argentina 1238,55 Argentina 13112,87 

188 Bolivia 502,47 Bolivia 1231,30 Bolivia 1238,55 Bolivia 13112,87 

189 Chile 502,47 Chile 1231,30 Chile 1238,55 Chile 13112,87 

190 Ecuador 502,47 Ecuador 1231,30 Ecuador 1238,55 Ecuador 13112,87 

191 Parguay 502,47 Parguay 1231,30 Parguay 1238,55 Parguay 13112,87 

192 Peru 502,47 Peru 1231,30 Peru 1238,55 Peru 13112,87 

193 Uruguay 502,47 Uruguay 1231,30 Uruguay 1238,55 Uruguay 13112,87 
 

 

 
Flags 

Ülkeler 
Renyi 

α=0.49 
Flags 

Ülkeler 
Karcı 

α=0.1 Flags Ülkeler 
Renyi 

α=0.1 

179 Mozambique 1256,89 Cuba 84051,99 Mozambique 1271,86 

180 Rwanda 1256,89 

Papua-New-

Guinea 84057,55 Rwanda 1271,86 

181 Tanzania 1256,89 

American-

Samoa 84058,87 Tanzania 1271,86 

182 Zaire 1256,89 

Cook-

Islands 84058,87 Zaire 1271,86 

183 Zambia 1256,89 Niue 84058,87 Zambia 1271,86 

184 Zimbabwe 1256,89 

Western-

Samoa 84058,87 Zimbabwe 1271,86 

185 

French-

Polynesia 1256,92 

French-

Polynesia 84125,03 

French-

Polynesia 1272,01 

186 Brazil 1257,09 Brazil 84150,76 Brazil 1272,14 

187 Argentina 1257,81 Argentina 84326,89 Argentina 1272,87 

188 Bolivia 1257,81 Bolivia 84326,89 Bolivia 1272,87 

189 Chile 1257,81 Chile 84326,89 Chile 1272,87 

190 Ecuador 1257,81 Ecuador 84326,89 Ecuador 1272,87 

191 Parguay 1257,81 Parguay 84326,89 Parguay 1272,87 

192 Peru 1257,81 Peru 84326,89 Peru 1272,87 

193 Uruguay 1257,81 Uruguay 84326,89 Uruguay 1272,87 
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En önemli ve önemsiz ülkelerin ilişkide olduğu ülkelerin hangileri olduğunun Şekil 

5.7 ve Şekil 5.8’deki görsel gösterimi de yaptığımız entropi tabanlı hesaplamaların 

doğruluğunu göstermesi açısından önemlidir. 

 

 

        Şekil 5.7. En önemli ülkelerin ilişki yapısı 

Shannon entropi ile en etkin ülke olduğu hesaplanan Ethiopia’nın ilişkilerine 

bakıldığında, Latin ülkeleri haricinde neredeyse bütün dünya ülkeleri ile bağlantılı 

olduğu görülebilmektedir. Etkinliği en zayıf ülkelerin ise, Latin ülkeleri olduğu 

görülebilmektedir. Ethiopia, Africa kıtasında, NE bölgesinde, dil olarak Others ve din 

olarak Other Christian gibi dünya geneli en çok ülke barındıran değerlere sahip 

özellikleri barındırmaktadır. 

 

         Şekil 5.8. En önemsiz ülkelerin ilişki yapısı 
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Uruguay’ın “S. America”, “SW”, “Spanish” ve “Catholic” değerleriyle en etkisiz 

ülkelerden biri olarak çıkması dünya genelinde özellikle coğrafi olarak bu özelliklere 

sahip ülke sayısının az olmasından kaynaklanmaktadır. Latin ülkelerinin en etkisiz 

ülkeler olarak çıkmasının sebebi ise bölge ve dil parametreleridir.  

Bu çalışmada sosyal ağ analizi yöntemleri kullanılarak doğru parametreler seçildiği 

takdirde ülkelerin ilişki haritasının çıkarılabileceği gösterildi. Ülkelerin din, dil, kıta ve 

bölge bilgilerine bakılarak benzerlik indeksi oluşturuldu ve çıkarsamalar yapılabildi. 

Bir sistemin en etkili düğümlerinin hangileri olduğu sistemdeki değişimlerin, 

benzerliklerin takip edilmesi ile bulunabileceği gösterildi. Kullanılan veri setindeki 

bilgilere göre belirtilen yöntemle doğru sonuçlar elde edildi. Bu uygulamada ilişkiye 

etki eden parametre sayısı arttırılıp, azaltılabilir. Dünya geneli için ilişkilere 

bakıldığında coğrafi ve kültürel olarak en etkili ülkeler bulundu. 

Ülkelerin birbiriyle ilişkilerini belirtilen parametreler etkilese de dünyadaki 

politikalara yön veren en büyük parametrelerin genelde bunlar olmadığı bu çalışmadan 

görülebilir, çünkü kültürel ve coğrafi olarak yapılan analizde günümüzde dünyayı 

yönlendiren ülkeler ilk sıralarda çıkmadı.  

Dünyanın sürekli bir değişim, dönüşüm ve yeniden şekillenme içinde olduğu 

düşünülürse, doğru parametrelerle sosyal ağ analizi kullanılarak bu değişim ve 

dönüşüm ölçülebilir. Buna göre ülkelerle ekonomik, sosyal, askeri ilişkiler yeniden 

kurgulanabilir. Günümüze uygun anlamlı politikaların geliştirilmesi ve kültürel 

birlikteliklerin sürdürülebilir olması doğru kararlara bağlıdır. Bu kararların doğruluğu 

da kesin hesaplara dayanmalıdır. Kesin hesaplara dayanan bu çalışmada kullanılan 

yöntemler geleceğe dönük doğru kararlar verilmesine katkı sunabilir. Daha fazla 

karakteristik özellik kullanılarak benzerlik hesaplamaları yapılabilir, bu tür çalışmalarla 

ülkeler hakkında sosyal ve ekonomik öngörüler gerçekleştirilebilir. Farklı alanlarda da 

bu yöntem kullanılabilir. 

5.4. Dünya Havayolu Trafiği (Air Traffic) 

 

Hava taşımacılığının etkin yönetimi, ağdaki havayolu rollerinin derinlemesine 

anlaşılmasını gerektirir. Bir ülkenin hava trafiğinin kritik olup olmadığını tespit etmek 

için önerilmiş evrensel yöntem veya kriterler yoktur. Hub (merkez) dediğimiz köprü 

görevi gören havaalanları vardır. Bunlar ülkeler arasındaki hava bağlantısını oluşturan 

noktalardır. İki ülke arasındaki uçuş mesafesi uzun olduğunda, yolcu sayısı az olan 

bölgelere ulaşım bu ortak noktalar üzerinden sağlanır.  Yolcu yoğunluğuna göre uçuş 
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sayısı ve yeni rotalar oluşur. Ülkelerin ekonomisi ve stratejik konumunu güçlendirmek 

için havayolu taşımacılığı önemli bir etkendir. Bir ülkenin prestiji açısından 

havaalanlarında verilecek hizmetin kalitesi ve yolcuların memnuniyeti çok önemlidir. 

Bu yüzden havayolu ağlarının iyi analiz edilmesi, doğru ve etkin kararların alınmasına 

yardımcı olur. Yerinde ve zamanında yapılacak yatırımların önünü açar. 

Bu çalışmada mevcut veri üzerinden yani uçuş noktası bilgileri ve uçuş sayısına 

göre oluşan ağda bu merkezi noktalar tespit edilmeye çalışıldı. Verilerin geleneksel 

yöntemlerle analizi dışında, verideki gözle görülemeyen işe yarar bilgilerin elde 

edilmesi için farklı yaklaşımlar denenmeli ve kullanılmalıdır. Verinin 

değerlendirilmesinde, alınan sonuçlarda kullanılan metodoloji de önemli bir etkendir. 

Ağdaki kritik havaalanlarının (ülkelerin) tespiti sadece istatistiki bilgilerle yapıldığında 

eksik durumların oluşacağı kesindir. İlişkisel yapıdaki karmaşık verilerde sosyal ağ 

analiz yöntemleri kullanılarak analizler yapılabilir. Analizler, dünyadaki hava 

taşımacılığı ağlarının küçük dünya ağları olduğunu göstermektedir [97]. 

Havayolu ağı analizi için kullanılan veri seti [98]’den alındı. Bu veri setinde 

ülkeden ülkeye uçuş sayısını belirten veriler bulunmaktadır. Yönlü çizge yapısındadır. 

Uçuş sayısı iki ülke arasındaki ilişkinin ağırlığı olarak tanımlandı. Veri seti 

incelendiğinde gidiş dönüş uçuş sayıları arasında çok fazla fark olmadığı görüldü. O 

yüzden 𝑝𝑖𝑗 hesaplanırken sadece gidiş yönüne göre ağırlık hesaplamaları yapıldı. 

Önerilen yöntemle dönüş uçuş sayıları için de hesaplamalar yapılabilir. Çizelge 5.12’de 

gösterildiği üzere, geleneksel merkezilik ölçümleri ile doğru sonuçlar alınabildi. 
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Çizelge 5.12. Geleneksel merkezilik ile havayolu en etkin ve etkisiz 15 ülke 

  Ülke Derece Ülke Yakınlık Ülke Arasındalık Ülke Öz vektör 

1 France 223 France 0,64 United States 8791,02 Germany 1,00 

2 
United 

Kingdom 
206 Germany 0,63 France 7175,21 France 0,99 

3 Germany 205 
United 

Kingdom 
0,63 

United 

Kingdom 
4521,40 

United 

Kingdom 
0,99 

4 United States 186 United States 0,63 Germany 3239,28 Italy 0,90 

5 
United Arab 

Emirates 
164 

United Arab 

Emirates 
0,59 Australia 2605,59 Turkey 0,89 

6 Turkey 162 Netherlands 0,58 Canada 2455,82 Netherlands 0,86 

7 Italy 159 Turkey 0,58 
United Arab 
Emirates 

2170,40 
United Arab 
Emirates 

0,86 

8 Netherlands 158 Italy 0,58 South Africa 2107,03 Russia 0,82 

9 Russia 146 Spain 0,57 Netherlands 1748,21 Switzerland 0,77 

10 Spain 141 Switzerland 0,56 Kenya 1669,16 United States 0,77 

11 Switzerland 133 Russia 0,56 China 1662,82 Spain 0,76 

12 China 124 Canada 0,56 Spain 1449,85 Austria 0,73 

13 Austria 121 China 0,56 Morocco 1408,81 Belgium 0,70 

14 Canada 121 Thailand 0,55 Turkey 1260,33 Qatar 0,67 

15 Belgium 118 Qatar 0,55 Thailand 1218,21 China 0,66 
 

…………………. 

 Ülke Derece Ülke Yakınlık Ülke Arasındalık Ülke Öz vektör 

213 
Marshall 

Islands 
4 Vanuatu 0,33 Moldova 0,00 Anguilla 0,01 

214 
Norfolk 
Island 

4 Tonga 0,33 Monaco 0,00 Tonga 0,01 

215 
Wallis and 

Futuna 
4 Solomon Islands 0,33 Mongolia 0,00 Western Sahara 0,01 

216 
American 
Samoa 

2 Norfolk Island 0,33 Montserrat 0,00 Lesotho 0,01 

217 

Cocos 

(Keeling) 
Islands 

2 
British Virgin 

Islands 
0,33 Niue 0,00 Swaziland 0,01 

218 
Falkland 

Islands 
2 

Christmas 

Island 
0,33 Norfolk Island 0,00 Norfolk Island 0,01 

219 Gibraltar 2 Anguilla 0,33 
Saint Pierre and 
Miquelon 

0,00 Solomon Islands 0,01 

220 Lesotho 2 

Saint Vincent 

and the 
Grenadines 

0,33 Samoa 0,00 
Christmas 

Island 
0,01 

221 Monaco 2 Falkland Islands 0,31 Slovakia 0,00 Falkland Islands 0,01 

222 Montserrat 2 Niue 0,31 Somalia 0,00 Micronesia 0,00 

223 Niue 2 Montserrat 0,31 Swaziland 0,00 Niue 0,00 

224 
Saint Pierre 

and Miquelon 
2 

Wallis and 

Futuna 
0,30 Tonga 0,00 Montserrat 0,00 

225 Swaziland 2 Micronesia 0,29 Tuvalu 0,00 
Wallis and 
Futuna 

0,00 

226 Tuvalu 2 Tuvalu 0,29 
Wallis and 

Futuna 
0,00 Tuvalu 0,00 

227 
Western 

Sahara 
2 

Cocos (Keeling) 

Islands 
0,25 Western Sahara 0,00 

Cocos (Keeling) 

Islands 
0,00 

 

 

Karcı, Renyi ve Shannon Entropi ile yapılan hesaplamalarda hava trafiğinde kritik 

öneme sahip ülkeler Çizelge 5.13’deki gibi çıktı. Giriş parametreleri olan ağın ağırlıksız 

yoğunluk değeri 0,1739, ağırlıklı yoğunluk değeri 1,1327 ve kümelenme katsayısı 

0,1079 olarak bulundu. Önerilen 𝛼 değeri bulanık çıkarım ile 0,65 bulundu. Farklı α 

değerleri kullanılarak yapılan hesaplamalarla α değerinin etkisi anlaşılmaya çalışıldı. α 

değeri küçük seçildiğinde United States özellikle Renyi entropi ile ilk sıralarda çıktı. α 

değeri yükseltildiğinde bu sıralamanın değiştiği görüldü. 
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Çizelge 5.13. Havayolu en etkin 15 ülke 

  
Ülke hava 

trafiği 

Karcı 

α=1.2 

Ülke hava 

trafiği 

Renyi 

α=1.2 

Ülke hava 

trafiği 

Shannon 

α=1 

Ülke hava 

trafiği 

Karcı 

α=0.65 

1 Kenya 385,80 France 636,89 France 659,79 France 1928,52 

2 Fiji 386,50 Kenya 637,41 Kenya 660,78 Turkey 1937,57 

3 France 386,69 Turkey 638,24 Turkey 661,56 Netherlands 1938,32 

4 Denmark 387,08 Netherlands 638,31 Netherlands 661,67 

United 

Kingdom 1938,85 

5 Thailand 387,22 
United Arab 
Emirates 639,05 Germany 662,23 Germany 1939,63 

6 Australia 387,37 Thailand 639,08 

United Arab 

Emirates 662,33 

United Arab 

Emirates 1940,32 

7 Ethiopia 387,52 Germany 639,18 Thailand 662,54 Italy 1944,59 

8 Turkey 387,55 Switzerland 639,24 Switzerland 662,60 Switzerland 1946,26 

9 Germany 387,56 Belgium 639,51 Belgium 662,99 Belgium 1947,88 

10 Switzerland 387,59 Ethiopia 639,70 

United 

Kingdom 663,11 Kenya 1949,13 

11 Canada 387,61 Denmark 639,72 Denmark 663,14 Austria 1949,18 

12 Netherlands 387,65 Italy 639,78 Italy 663,19 Thailand 1950,04 

13 Singapore 387,69 Austria 639,97 Ethiopia 663,20 Spain 1951,94 

14 Spain 387,78 Spain 640,16 Austria 663,37 Qatar 1952,58 

15 
United Arab 
Emirates 387,78 

United 
Kingdom 640,31 Spain 663,56 Denmark 1955,09 

 

 

 Ülke hava 

trafiği 

Renyi 

α=0.65 

Ülke hava 

trafiği 

Karcı 

α=0.1 

Ülke hava 

trafiği 

Renyi 

α=0.1 

1 France 704,28 France 15503,93 

United 

States 774,97 

2 Kenya 706,32 Germany 15557,98 France 776,51 

3 Germany 707,03 

United 

Kingdom 15561,51 

United 

Kingdom 778,23 

4 Turkey 707,10 United States 15618,51 Germany 779,28 

5 
United 
Kingdom 707,28 

United Arab 
Emirates 15777,84 Kenya 780,09 

6 Netherlands 707,30 Italy 15789,40 Australia 781,02 

7 
United Arab 
Emirates 707,67 Turkey 15797,24 Turkey 781,10 

8 Switzerland 708,19 Netherlands 15815,75 

United Arab 

Emirates 781,12 

9 Thailand 708,25 Russia 15825,41 China 781,23 

10 Italy 708,65 Spain 15858,81 Netherlands 781,41 

11 Belgium 708,80 Switzerland 15922,56 Canada 781,61 

12 Denmark 708,80 China 15938,98 Italy 781,85 

13 Canada 708,83 Canada 15959,61 Spain 782,11 

14 Australia 708,93 Austria 15977,30 Thailand 782,22 

15 Ethiopia 708,99 Belgium 15997,83 Switzerland 782,22 
 

 

α değeri 0,1 olarak seçildiğinde görülen en etkin ülkelerin istatistiki bilgileri 

incelendiğinde uçuş sayısı yani kenar ağırlıkları sayısı en fazla olan ülkenin United 

States, United Kingdom, Germany, Spain olduğu görülmektedir. Uçuş noktası sayısına 

yani düğüm derecesine bakıldığında ise, France, United Kingdom, Germany en yüksek 

değerlere sahip ülkelerdir. Karcı entropide α değeri 0,1 olarak seçildiğinde düğüm 

derecesi yüksek olanlar ilk sırada çıktı. Renyi’de kenar ağırlıklarının etkisi α değeri 0,1 

olduğunda etkisini Karcı’ya göre sürdürmeye devam ettirdi. 
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Çizelge 5.14. Havayolu en etkin 20 ülke (α=0.1) 

Ülke adı 

Uçuş 

noktası 

sayısı 

Uçuş 

sayısı 

Nokta 

sayısı / 

uçuş sayısı 

United States 92 2362 0,0390 

France 111 999 0,1111 

United Kingdom 103 1716 0,0600 

Germany 100 1651 0,0606 

Kenya 49 147 0,3333 

Turkey 81 383 0,2115 

United Arab Emirates 81 589 0,1375 

Australia 32 334 0,0958 

China 62 1010 0,0614 

Netherlands 80 451 0,1774 

Canada 60 770 0,0779 

Italy 80 949 0,0843 

Spain 71 1280 0,0555 

Thailand 57 362 0,1575 

Switzerland 65 416 0,1563 

Russia 73 766 0,0953 

Denmark 47 241 0,1950 

Austria 61 357 0,1709 

Belgium 60 327 0,1835 

Ethiopia 41 99 0,4141 

 

Görselleştirilen Havayolu ağı incelendiğinde elde edilen sonuçların doğru olduğu 

görülebilmektedir. Dikkat çeken noktalardan biri düğüm derecesi düşük ve uçuş sayısı 

az olan ülkelerinde etkinliğinin yüksek çıkmasıdır. Bunun sebebi Çizelge 5.14’te de 

görüldüğü üzere uçuş noktasının uçuş sayısına göre çok olmasıdır. Bundan kenar 

ağırlığı düşük ama çok fazla bağlantı kurduğu ülkelerin olduğu anlamı çıkar. Sosyal 

ağdaki anlamı kenar ağırlığı toplamda düşük ama bu sayıya göre düğüm derecesi 

yüksektir. Renyi ve Karcı entropi ile bu durumdaki düğümler α değeri büyük 

seçildiğinde tespit edilebildi. 
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Çizelge 5.15. Havayolu en etkisiz 15 ülke 

 
Ülke hava 

trafiği 
Karcı 

α=1.2 
Ülke hava 

trafiği 
Renyi 

α=1.2 
Ülke hava 

trafiği 
Shannon 

α=1 
Ülke hava 

trafiği 
Karcı 

α=0.65 

213 Belize 391,07 Russia 647,74 East Timor 671,25 East Timor 1987,89 

214 
Norfolk 
Island 

391,18 Belize 647,76 Korea 671,27 Korea 1987,99 

215 
United 

States 
391,20 United States 647,78 Belize 671,29 

Christmas 

Island 
1988,03 

216 Tuvalu 391,64 
Norfolk 

Island 
647,89 

Norfolk 

Island 
671,42 

Cocos 
(Keeling) 

Islands 

1988,21 

217 Montserrat 391,64 Montserrat 648,44 Montserrat 672,03 Montserrat 1989,04 

218 
Western 

Sahara 
391,65 Tuvalu 648,45 Tuvalu 672,03 Tuvalu 1989,05 

219 Niue 391,65 
Western 
Sahara 

648,47 
Western 
Sahara 

672,06 
Western 
Sahara 

1989,16 

220 
Falkland 

Islands 
391,66 

Falkland 

Islands 
648,49 Niue 672,07 

Falkland 

Islands 
1989,20 

221 
Saint Pierre 
and 

Miquelon 

391,66 Niue 648,49 
Falkland 

Islands 
672,08 Niue 1989,22 

222 Lesotho 391,66 Lesotho 648,51 Lesotho 672,09 Lesotho 1989,25 

223 Swaziland 391,66 Swaziland 648,51 Swaziland 672,09 Swaziland 1989,25 

224 Gibraltar 391,67 

Saint Pierre 

and 
Miquelon 

648,51 
Saint Pierre 

and Miquelon 
672,09 

Saint Pierre 

and 
Miquelon 

1989,29 

225 Monaco 391,67 Gibraltar 648,52 Gibraltar 672,10 Gibraltar 1989,33 

226 
American 
Samoa 

391,67 Monaco 648,52 Monaco 672,11 Monaco 1989,35 

227 Russia 392,22 
American 

Samoa 
648,53 

American 

Samoa 
672,11 

American 

Samoa 
1989,42 

 

 

 
Ülke hava 

trafiği 

Renyi 

α=0.65 

Ülke hava 

trafiği 

Karcı 

α=0.1 

Ülke hava 

trafiği 

Renyi 

α=0.1 

213 East Timor 717,11 
Marshall 

Islands 
16478,90 East Timor 791,28 

214 Belize 717,12 
Wallis and 

Futuna 
16479,10 

Christmas 

Island 
791,30 

215 Korea 717,13 
Christmas 

Island 
16481,74 Korea 791,31 

216 
Norfolk 

Island 
717,22 

American 

Samoa 
16483,18 

Cocos 

(Keeling) 
Islands 

791,34 

217 Tuvalu 717,95 Monaco 16483,45 Tuvalu 792,22 

218 Montserrat 717,95 Gibraltar 16483,54 Montserrat 792,24 

219 Niue 717,99 
Saint Pierre and 
Miquelon 

16483,66 Niue 792,27 

220 
Western 

Sahara 
717,99 Lesotho 16483,82 

Falkland 

Islands 
792,28 

221 
Falkland 
Islands 

717,99 Swaziland 16483,82 Western Sahara 792,30 

222 

Saint Pierre 

and 

Miquelon 

718,01 Niue 16483,91 Lesotho 792,31 

223 Lesotho 718,02 
Falkland 

Islands 
16483,98 Swaziland 792,31 

224 Swaziland 718,02 Western Sahara 16484,07 
Saint Pierre and 

Miquelon 
792,31 

225 Gibraltar 718,03 Tuvalu 16484,42 Gibraltar 792,32 

226 Monaco 718,03 Montserrat 16484,46 
American 

Samoa 
792,32 

227 
American 

Samoa 
718,04 

Cocos 
(Keeling) 

Islands 

16486,48 Monaco 792,32 
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Sıralamada kenar ağırlıklarının etkisinin daha fazla görülmesi istenildiğinde α 

değeri küçük seçilmedir. Kenar ağırlıkları ve düğüm derecelerinin etkilerinin beraber 

görülmesi istendiğinde α değeri orta bir değer olmalıdır. α değeri düşürüldükçe ağırlıkla 

beraber düğüm derecelerinin etkisi daha fazla görülebilmektedir. 

Çizelge 5.16. Düğüm derecesine göre havayolu en etkin 25 ülke 

No Ülke Gidiş Dönüş Derece 
Ağırlıklı 

gidiş 

Ağırlıklı 

dönüş 

Ağırlıklı 

derece 

1 France 111 112 223 999 1003 2002 

2 United Kingdom 103 103 206 1716 1718 3434 

3 Germany 101 104 205 1655 1664 3319 

4 United States 92 94 186 2362 2365 4727 

5 
United Arab 

Emirates 
81 83 164 589 595 1184 

6 Turkey 81 81 162 383 381 764 

7 Italy 80 79 159 949 946 1895 

8 Netherlands 80 78 158 451 453 904 

9 Russia 73 73 146 766 768 1534 

10 Spain 71 70 141 1280 1285 2565 

11 Switzerland 65 68 133 416 418 834 

12 China 62 62 124 1010 1010 2020 

13 Austria 61 60 121 357 358 715 

14 Canada 60 61 121 770 771 1541 

15 Belgium 60 58 118 327 335 662 

16 Thailand 57 57 114 362 359 721 

17 Qatar 56 56 112 148 149 297 

18 Egypt 50 50 100 298 285 583 

19 India 49 49 98 419 416 835 

20 Kenya 49 48 97 147 139 286 

21 Denmark 47 47 94 241 242 483 

22 Morocco 46 46 92 207 209 416 

23 South Africa 44 44 88 141 141 282 

24 Ukraine 44 44 88 201 203 404 

25 Malaysia 42 42 84 274 272 546 
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   Şekil 5.9. Dünya havayolu ağı 

Uçuş sayısı hub olma ve ülke nüfusu ile ilgili bir durumdur. Uçuş noktası sayısı 

fazla olan ve aynı zamanda uçuş sayısı çok olan ülkeler etkinliği fazla olan ülkelerdir. 

France, United Kingdom, Germany istatistiki bilgilere göre en etkin olması gereken 

ülkelerdir. Çizelge 5.16’da düğüm dereceleri en yüksek ülkeler görülmektedir. 

Aşağıdaki şekillerde bazı ülkelerin görsel olarak ilişki haritası gösterildi. Bu çalışmada 

gizli kalan ve istatistiki bilgilerle keşfedilemeyen etkin ülkeler görselleştirme ve 

önerilen yöntem ile tespit edilebildi. 
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Şekil 5.10. Kenya 

 

Şekil 5.11. France 
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Şekil 5.12. Turkey 

 

Şekil 5.13. China 
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Önerilen yöntemin uygulanabilirliğini ve doğruluğunu göstermek için ülkelerin 

hava trafiği veri seti kullanıldı. 𝛼 değeri 1 olduğunda Shannon entropi davranışı 

gösteren Renyi ve Karcı entropi kullanılarak merkezi noktalar tespit edildi. Elde edilen 

sonuçlara bakıldığında α değeri küçük seçildiğinde Renyi entropi ile kenar ağırlıkları 

baskın bir merkezilik elde edildi. Karcı’da ise, kenar ağırlıkları ile birlikte düğüm 

dereceleri baskın bir ölçü elde edildi. Renyi’de α değeri arttırıldığında ise, ağırlığa göre 

düğüm derecelerinin etkisi daha çok hesaplamaya dâhil oldu. Kullanılan veri setinde 

düğüm derecesi en yüksek olan France (Şekil 5.11)’dır. Bu durum France’nın α büyük 

seçildiğinde en üste çıkmasına sebep oldu. Yapılan analizde literatürde çok da göz 

önünde olmayan Kenya (Şekil 5.10), South Africa ve Qatar gibi ülkelerde üst sıralarda 

çıktı. Bunun sebebi çok yoğun uçuşları olmasa da bu ülkelerin uçuş noktalarının uçuş 

sayısına oranla çok olmasıdır. Birçok ülkenin ağa dâhil olmasına köprü olmalarıdır. 

Bunlar hub olma potansiyeli yüksek ülkelerdir. Ülkemiz Türkiye (Şekil 5.12) ise 

yapılan hesaplamalarda hep üst sıralarda çıktı. Uçuş rotasının çok olması bunda etkili 

oldu. China’nın uçuş rotaları ise Şekil 5.13’teki gibidir. 

5.5. Yazarlar Ağı (Netscience) 

 

Ağırlıklı ağların merkezi düğümlerinin tespiti için kullanılabilecek veri setlerinden 

biri 2006 yılında Mark Newman tarafından derlenen, ağ kuramı alanında çalışan bilim 

adamlarının ortak yazar ağıdır [99].  Bu veri seti, M. E. J. Newman [19] ile S. Boccaletti 

ve arkadaşlarının [100] yazdığı iki inceleme makalesinin kaynakçasından derlendi ve 

birkaç ilave referansta elle eklendi. Ayrıt ağırlıklarının nasıl tanımlandığı [101]’de 

açıklanmıştır. Bu çalışmada 1589 düğüm ve 2742 ayrıttan oluşan Netscience ağı 

kullanıldı. 

Netscience veri seti düğümlerinin merkezilik değerleri geleneksel yöntemlerle 

Çizelge 5.17’deki gibidir [96]. Ağ yapısına bakılarak kullanılacak merkezilik 

hesaplama yöntemine karar verilmesi sağlıklı olacaktır. Arasındalık merkeziliği 

haricindeki merkezilik ölçüleri ile elde edilen değerler, Çizelge 5.17’de görüldüğü 

üzere çok da hassas değerler değildir. Yakınlık merkeziliği ile elde edilen en merkezi 

645 düğüm aynı değeri aldı. Elde edilen değerler ağırlıklı ve dağınık olan ağlarda bu 

yöntemlerle sağlıklı sonuçlar elde edilemediğini gösterdi. Çizelge 5.18‘de entropi 

kullanılarak hesaplanan merkeziliğin daha gerçekçi sonuçlara sahip olduğu görüldü. M. 

Newman, A. Barabasi, H. Jeong, S. Boccaletti en merkezi yazarlar olarak bulundu. 
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Bir ağ farklı merkezilik ölçütleri kullanılarak hesaplandıktan sonra bütün bu 

merkezilik değerlerine göre değerlendirilmesi elbette daha doğru sonuçlar elde 

edilmesini sağlar. Bu çalışmada gösterilen Karcı ve Renyi entropilerdeki α değerinin 

etkisi ile aslında bu yönde sonuçlar elde edildi. Lokal merkeziliklerin tespiti için α 

değeri küçük seçilebilir. Birbiriyle yoğun ilişkilerde olan çizgelerde merkezi düğümleri 

tespit etmek için α değerini küçük seçmek iyi sonuç verir. Fakat gruplaşmanın daha 

fazla olduğu seyrek çizgelerde elde edilen sonuçlarda bu değerin küçük seçilmesi çok 

kullanışlı olmaz. Karcı entropi kullanılarak elde edilen değerlerde α değeri küçük 

seçildiğinde düğüm derecelerine daha fazla önem vererek merkezi düğümleri tespit etti. 

Fakat kullanılan Netscience veri setinde düğüm dereceleri yüksek olan bazı yazarlar 

ağın genelinde etkili değildir. Örneğin Şekil 5.14’teki yazarların birbiriyle ilişkileri 

yoğun fakat ağın geneliyle bir bağlantıları yoktur. Düğüm derecesine göre merkezi 

ağlar tespit edildiğinde 19 ayrıt bağlantısı olan bu düğümlerin merkeziliği ilk sıralarda 

çıkıyor. Gerçekte Şekil 5.14‘teki 21 düğümün 1589 düğümden oluşan veri setinde çok 

merkezi olmadığı görülebilir çünkü diğer düğümlerle bir ilişkileri yoktur ve sadece 

birbirleriyle bağlantı oluşturmuşlardır. 

Çizelge 5.17. Merkezilik ölçümlerine göre en merkezi 15 düğüm 

Sıra Yazar Adı Derece  Yazar Adı Arasındalık  Yazar Adı Yakınlık  Yazar Adı Özvektör  

1 Barabasi, A 34 Newman, M 28300,56 

6
4
5
 d

ü
ğ
ü
m

 a
y
n
ı 

d
eğ

er
i 

al
d
ı 

1 Uetz, P 1,00 

2 Jeong, H 27 Pastorsatorras, R 24592,77 1 Cagney, G 1,00 

3 Newman, M 27 Moreno, Y 20379,79 1 Mansfield, T 1,00 

4 Oltvai, Z 21 Sole, R 19249,90 1 Giot, L 0,99 

5 Young, M 20 Boccaletti, S 18200,00 1 Qureshiemili, A 0,99 

6 Uetz, P 20 Jeong, H 17858,00 1 Li, Y 0,99 

7 Cagney, G 20 Holme, P 16506,04 1 Godwin, B 0,99 

8 Mansfield, T 20 Caldarelli, G 15786,01 1 Conover, D 0,99 

9 Alon, U 19 Bianconi, G 12460,58 1 Kalbfleisch, T 0,99 

10 Boccaletti, S 19 Capocci, A 12446,91 1 Vijayadamodar, G 0,99 

11 Giot, L 19 Vespignani, A 11143,70 1 Yang, M 0,99 

12 Judson, R 19 Barabasi, A 10834,47 1 Johnston, M 0,99 

13 Knight, J 19 Stauffer, D 10575,91 1 Fields, S 0,99 

14 Lockshon, D 19 Kurths, J 8911,83 1 Rothberg, J 0,99 

15 Narayan, V 19 Albert, R 6516,85 1 Judson, R 0,99 

 

Bulanık öneri için giriş parametreleri olan ağın ağırlıksız yoğunluk değeri 0,0022, 

ağırlıklı yoğunluk değeri 0,00094 ve kümelenme katsayısı 0,2662 olarak bulundu. 

Önerilen α değeri bulanık çıkarım ile 1,12 bulundu. 
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Çizelge 5.18. Shannon, Renyi ve Karcı entropiye göre en merkezi düğümler 

  Yazarlar 

Karcı 

α=1.2 Yazarlar 

Renyi 

α=1.2 Yazarlar 

Karcı 

α=1.12 Yazarlar 

Renyi 

α=1.12 

1 Newman, M 806,80 Barabasi, A 1026,98 Newman, M 889,42 Barabasi, A 1029,11 

2 Barabasi, A 807,55 Newman, M 1027,59 Barabasi, A 889,66 Newman, M 1029,77 

3 Jeong, H 808,52 Jeong, H 1028,10 Jeong, H 890,75 Jeong, H 1030,30 

4 Boccaletti, S 810,06 Boccaletti, S 1030,82 Boccaletti, S 892,67 Boccaletti, S 1032,99 

5 Young, M 811,11 Young, M 1031,72 Young, M 893,70 Young, M 1033,92 

6 Sole, R 811,29 Oltvai, Z 1032,00 Oltvai, Z 894,04 Oltvai, Z 1034,17 

7 Oltvai, Z 811,49 Alon, U 1032,33 Sole, R 894,19 Alon, U 1034,55 

8 Alon, U 811,64 Sole, R 1032,90 Alon, U 894,28 Sole, R 1035,04 

9 Latora, V 811,73 Kurths, J 1032,98 Latora, V 894,58 Kurths, J 1035,13 

10 Holme, P 811,97 Latora, V 1033,17 Kurths, J 894,72 Latora, V 1035,32 

11 Kurths, J 812,05 Holme, P 1033,24 Holme, P 894,79 Holme, P 1035,43 

12 Diazguilera, A 812,13 Diazguilera, A 1033,51 Diazguilera, A 895,00 Diazguilera, A 1035,71 

13 Hu, G 812,22 Pastorsatorras, R 1033,72 Pastorsatorras, R 895,15 Pastorsatorras, R 1035,92 

14 Pastorsatorras, R 812,24 Vicsek, T 1033,87 Hu, G 895,26 Vicsek, T 1036,09 

15 Vespignani, A 812,53 Vespignani, A 1034,00 Vespignani, A 895,45 Vespignani, A 1036,22 
 

 

 

Yazarlar 

Shannon 

α=1 Yazarlar 

Karcı 

α=0.1 Yazarlar 

Renyi 

α=0.1 

1 Barabasi, A 1032,46 Barabasi, A 3721,61 Barabasi, A 1063,16 

2 Newman, M 1033,22 Jeong, H 3730,47 Newman, M 1065,14 

3 Jeong, H 1033,78 Uetz, P 3733,96 Jeong, H 1065,97 

4 Boccaletti, S 1036,42 Cagney, G 3733,96 Boccaletti, S 1068,18 

5 Young, M 1037,41 Mansfield, T 3733,96 Sole, R 1069,15 

6 Oltvai, Z 1037,60 Giot, L 3735,56 Oltvai, Z 1069,28 

7 Alon, U 1038,03 Judson, R 3737,14 Young, M 1069,64 

8 Sole, R 1038,42 Knight, J 3737,14 Kurths, J 1069,96 

9 Kurths, J 1038,52 Lockshon, D 3737,14 Latora, V 1070,03 

10 Latora, V 1038,71 Narayan, V 3737,14 Alon, U 1070,20 

11 Holme, P 1038,89 Srinivasan, M 3737,14 Holme, P 1070,91 

12 Diazguilera, A 1039,20 Pochart, P 3737,14 Diazguilera, A 1071,45 

13 Pastorsatorras, R 1039,40 Qureshiemili, A 3737,14 Pastorsatorras, R 1071,48 

14 Vicsek, T 1039,59 Li, Y 3737,14 Vicsek, T 1072,00 

15 Vespignani, A 1039,73 Godwin, B 3737,14 Moreno, Y 1072,00 
 

 

Çizelge 5.17’de verilen özvektör merkeziliği ile yapılan ölçümde en merkezi 

düğümler P. Uetz, G. Cagney, T. Mansfield olarak çıktı çünkü yüksek derecelere sahip 

birden çok düğümle ilişkileri vardır, fakat bunlar ağın geneline yayılmış düğümler 

değildir. Karcı entropi ile 𝛼 değeri 0,1 seçildiğinde de bu yazarlar etkin çıktı. Fakat 

Renyi’de bunlar daha aşağıda seçildi. Bu ağda düğümlerin birbirine etkisi küçük 𝛼 

değerlerinde Renyi entropi ile daha iyi ölçülebildi. Gerçekte Şekil 5.14’deki gibi alt 

kümede merkezi olan bu düğümler çizgenin tamamı küresel olarak düşünüldüğünde 

merkezi düğümler değillerdir. 𝛼 değeri büyüdükçe sıralamada bu düğümlerin 

merkezilik sıralaması düşmektedir. 
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Şekil 5.14. Düğüm dereceleri yüksek alt ağ. 

Bu ağda ayrıt ağırlıklarının ve etkin düğümlerin birbirine etkilerinin daha iyi 

görülebilmesi için α değeri yüksek seçilmelidir. Bu şekilde düğümün ilişkide olduğu 

düğümlerin de merkezi olması etkin düğümün hesaplanmasında daha da fazla dikkate 

alınmış olur. Ağın genelinde küresel olarak etkin düğümlerin tespiti yapılır ve doğru 

olan da budur. Bir düğümün bağlantılarının fazla olması merkezilik için önemlidir ama 

yeterli değildir. Bağlantıda olduğu düğümlerin etkinliği ve yayılımı da göz önüne 

alınmalıdır. 
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Çizelge 5.19. Shannon, Renyi ve Karcı entropiye göre en etkisiz 15 yazar 

  Yazarlar 
Karcı 

α=1.2 Yazarlar 
Renyi 

α=1.2 Yazarlar 
Karcı 

α=1.12 Yazarlar 
Renyi 

α=1.12 

1575 Yaoum, Y 817,56 Yaoum, Y 1040,69 Yaoum, Y 901,09 Yaoum, Y 1042,93 

1576 Laumann, E 817,56 Laumann, E 1040,69 Laumann, E 901,09 Laumann, E 1042,93 

1577 Yeung, M 817,56 Yeung, M 1040,69 Yeung, M 901,09 Yeung, M 1042,93 

1578 Young, H 817,56 Young, H 1040,69 Young, H 901,09 Young, H 1042,93 

1579 Zachary, W 817,56 Zachary, W 1040,69 Zachary, W 901,09 Zachary, W 1042,93 

1580 Zekri, N 817,56 Zekri, N 1040,69 Zekri, N 901,09 Zekri, N 1042,93 

1581 Clerc, J 817,56 Clerc, J 1040,69 Clerc, J 901,09 Clerc, J 1042,93 

1582 Zhongbao, K 817,56 Zhongbao, K 1040,69 Zhongbao, K 901,09 Zhongbao, K 1042,93 

1583 Changshui, Z 817,56 Changshui, Z 1040,69 Changshui, Z 901,09 Changshui, Z 1042,93 

1584 Zhou, H 817,56 Zhou, H 1040,69 Zhou, H 901,09 Zhou, H 1042,93 

1585 Zhou, S 817,56 Zhou, S 1040,69 Zhou, S 901,09 Zhou, S 1042,93 

1586 Mondragon, R 817,56 Mondragon, R 1040,69 Mondragon, R 901,09 Mondragon, R 1042,93 

1587 Zhu, H 817,56 Zhu, H 1040,69 Zhu, H 901,09 Zhu, H 1042,93 

1588 Huang, Z 817,56 Huang, Z 1040,69 Huang, Z 901,09 Huang, Z 1042,93 

1589 Zhu, J 817,56 Zhu, J 1040,69 Zhu, J 901,09 Zhu, J 1042,93 
 

 

 

Yazarlar 

Shannon 

α=1 Yazarlar 

Karcı 

α=0.1 Yazarlar 

Renyi 

α=0.1 

1575 Yaoum, Y 1046,46 Yaoum, Y 3797,26 Yaoum, Y 1079,07 

1576 Laumann, E 1046,46 Laumann, E 3797,26 Laumann, E 1079,07 

1577 Yeung, M 1046,46 Yeung, M 3797,26 Yeung, M 1079,07 

1578 Young, H 1046,46 Young, H 3797,26 Young, H 1079,07 

1579 Zachary, W 1046,46 Zachary, W 3797,26 Zachary, W 1079,07 

1580 Zekri, N 1046,46 Zekri, N 3797,26 Zekri, N 1079,07 

1581 Clerc, J 1046,46 Clerc, J 3797,26 Clerc, J 1079,07 

1582 Zhongbao, K 1046,46 Zhongbao, K 3797,26 Zhongbao, K 1079,07 

1583 Changshui, Z 1046,46 Changshui, Z 3797,26 Changshui, Z 1079,07 

1584 Zhou, H 1046,46 Zhou, H 3797,26 Zhou, H 1079,07 

1585 Zhou, S 1046,46 Zhou, S 3797,26 Zhou, S 1079,07 

1586 Mondragon, R 1046,46 Mondragon, R 3797,26 Mondragon, R 1079,07 

1587 Zhu, H 1046,46 Zhu, H 3797,26 Zhu, H 1079,07 

1588 Huang, Z 1046,46 Huang, Z 3797,26 Huang, Z 1079,07 

1589 Zhu, J 1046,46 Zhu, J 3797,26 Zhu, J 1079,07 
 

 

Kullanılan veri setindeki en merkezi düğümlerin ilişkide olduğu düğümler Şekil 

5.15’te gösterildi. A. Barabasi 34 bağlantı ile düğüm derecesi en yüksek olan düğümdür 

ve ilişkide olduğu düğümlerin düğüm derecesi ortalaması 6,5’dir. M. Newman’ın 27 

bağlantısı var ve ilişkide olduğu düğümlerin düğüm derecesi ortalaması 4,88’dir. 

İlişkide oldukları düğümler analiz edildiğinde görülüyorki α değeri büyük seçilince 

ilişkide olduğu düğümlerin merkeziliği daha fazla ise bu merkezi düğümleri daha üst 

sıralara çıkarmaktadır. 
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H. JEONG S. BOCCALETTI 

Şekil 5.15. En merkezi düğümlerin ilişki kümesi 

Renyi ve Karcı entropinin bu ağda yüksek 𝛼 değerlerinde aynı yönde sonuçlar 

verdiği fakat küçük 𝛼 değerlerinde farklılıklar gösterdiği görüldü. 𝛼 seçim algoritması 

ile oluşan değerlerde ise, birbirine yakın sonuçlar ürettiği tespit edildi. Ağın yoğunluğu 

ve kümelenme katsayısı ile fikir sahibi olunan ağın yapısına göre sonuçların alınması 

daha sağlıklı olacaktır. Ağ analizlerinde Netscience veri setinin çokça kullanılması ve 

önerilen yöntemin geleneksel yöntemlerle kıyaslanması sonucunda yöntemin 

doğruluğu, etkinliği ve literatüre katkısı daha iyi anlaşıldı.  
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6. SONUÇ VE ÖNERİLER 

 

Bu tezde, çizge entropi ölçümleri ile yeni yöntemlerin tanımlaması ve entropi 

hesaplamalarının geniş uygulanabilirliğinin gösterilmesi amaçlandı. İstatistiki 

verilerden oluşturulan ilişkisel yapılar ve hazır veri setleri kullanılarak entropi temelli 

sosyal ağ analizi yöntemleri geliştirildi. Bir sistemdeki bilgi miktarı ve belirsizlik 

ölçüsü olan entropi temel alınarak uygulamalar yapıldı, literatüre katkı sunulmaya 

çalışıldı.  

Entropi birçok alanda, çok çeşitli uygulamalarla problemlere çözüm üretmede 

kullanılmakta, kullanım alanı gün geçtikçe artarak devam etmektedir. Entropi 

kavramının geliştirilmesi ve uygulamalarının artmasına katkı sunmak amacıyla bu tez 

hazırlandı. Somut örneklerle nicel olarak farklılıklar gösteren çizge entropi 

hesaplamaları arasındaki ilişkiler incelendi. Sosyal ağlarda farklı entropilerle merkezi 

düğümlerin tespit edilmesine odaklanıldı. Bilgi teorisinin gelişmesine katkısı 

tartışmasız olan entropinin, karmaşık ve ilişkisel yapıların analizine katkısının çok 

olacağı görüldü. Bu alana yeni bakış açıları kazandırılarak, entropiye yeni bir kullanım 

alanı sunulmuş oldu. Bu çalışma ile farklı entropi ölçümleri kullanılarak yeni sonuçlar 

elde edildi, bu sonuçlar sayesinde karmaşık yapıların analizinde görüş açımız genişledi. 

Çizgeler ve özellikleri karakterize edildi. Daha derin analizler gerçekleştirildi. Farklı 

entropiler kıyaslanıp, farklılıkları tespit edildi. Entropi hesaplamalarında düğüm 

dereceleri ve kenar ağırlıkları kullanıldı. Ağırlıklı ağlarda, kullanılan 𝛼 parametresi 

sayesinde amaçlar doğrultusunda sonuca gidilebildi. Kenar ağırlıklarının ve düğüm 

derecelerinin etkisinin ihtiyaç ve probleme göre ayarlanabilmesi ağa birçok farklı 

açıdan bakılmasına olanak tanımış oldu. Renyi ve Karcı entropi, 𝛼 değeri ile bunu 

sağladı. 𝛼 değerinin doğru seçilmesi halinde merkezilik hesaplamalarında alternatif 

yöntem olarak kullanılabileceği gösterildi. 

Birçok farklı entropi ölçüm yöntemi mevcuttur. Yapılan çalışmada Renyi ve Karcı 

entropi ile merkezilik ölçümlerinin yapılabileceği ve doğru sonuçların alınabileceği 

gösterildi. Farklı problem barındıran veri setlerinde bu yöntemler kullanılabilir. Bu 

çalışmada 3 farklı yapıdaki veri seti kullanıldı. Hepsinde de 𝛼 sayesinde doğru sonuçlar 

alındı. Sonuçlar geleneksel derece, arasındalık, yakınlık ve özvektör merkeziliği ile 

kıyaslanarak önerilen yöntemlerin performansı ve etkinliği ölçüldü. Geleneksel 

yöntemler bütün ağ tiplerinde anlamlı sonuç üretemezken, entropi temelli yöntemler 

doğru sonuçlar verebildi. 
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𝛼’nın alacağı değeri belirlemek için bulanık mantık ile ağın topolojik değerlerini 

kullanan bir yöntem önerildi. Yoğunluk ve kümelenme katsayısı 𝛼’yı belirlerken 

kullanıldı. Kullanılan üç veri setinde de doğru 𝛼 değeri tahmin edilebildi. Bu şekilde 

işlem maliyeti azaltılarak, doğru sonuca ulaşılmış oldu. Bulanık mantığın sonuca 

ulaşmadaki desteği gösterilmiş oldu. 

Shannon’un entropi ölçüsü, çizgeler ve çizgelerin özelliklerini tanımlamak için 

çeşitli bağlamlarda kullanılmıştır. Buradan hareketle amaçlardan biri Karcı entropiyi 

sosyal ağlarda kullanmaktı. Bu çalışma ile Karcı ilk defa sosyal ağlara uygulanmış oldu. 

Yapılan uygulamalarda olumlu sonuç alınınca Karcı gibi 𝛼 değeri kullanan Renyi 

entropi ile denemeler yapıldı. Karcı entropi ile diğer entropi ölçümleri arasındaki temel 

benzerlikler ve farklılıklar vurgulanmaya çalışıldı. Renyi entropi ile elde edilen 

sonuçlar Karcı entropi ile paralel değerler verdi. Bazı 𝛼 değerlerinde küçük çapta 

değişimlerde görülebildi. Shannon’a ek olarak her iki yöntemde sosyal ağlarda 

rahatlıkla kullanılabilir. Farklı kullanım alanları da tespit edilebilir.  

Seçilen veri setlerinin ikisi ülke verilerini barındırır. Ülke parametreleri özellikle 

seçildi. Özelde ülke ilişkileri analiz edilmek istendi. Önerilen yöntemin evrenselliğini 

göstermek için de çalışmalarda çokça kullanılan Netscience veri seti kullanıldı. 

Shannon’dan farklı olarak 𝛼 değerinin bize sağladığı en büyük avantaj merkezilikte 

yerel ve küresel ölçümlerin yapılabilmesidir. Bunun anlamı bütün merkezilik 

ölçümlerini içerisinde barındırmasıdır. Yukarıda da bahsedildiği gibi Karcı ve Renyi 

entropi nasıl Shannon entropiyi içinde barındırıyorsa, merkezilik ölçümlerinde de 

önerilen yöntem diğer merkezilikleri kapsar. 

Çizge tabanlı modellerin çok geniş kullanım alanı bulunmaktadır. Bu yüzden çizge 

entropi için sınırsız kullanım alanı ortaya çıkmaktadır. Ağlardaki yapısal biçimlerin 

tanımlama ve sınıflandırmalarının farklı entropi ölçümleri kullanılarak yapılması, hangi 

entropinin bu ölçümlerde daha yararlı olacağının tespit edilmesi önemlidir. Entropi 

teorisinin geliştirilerek kullanılması zorlu problemlere kolay çözümler bulunabilmesine 

katkı sunacağı kesindir. Gelecek stratejilerimizi belirlerken iyi analizler yapmamız 

gerekir. Bu şekilde yapılan işlerden azami verim ve yarar sağlanmış, tasarruf edilmiş 

olur.   
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