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OZET

Bu c¢alismada ¢ok katmanli eksantrik homojen dairesel silindirlerden
monokromatik elektromanyetik dalga sagilmasinin bilinen analitik formiilasyonunun
regiilerizasyonu incelenmistir. Bu formiilasyonun regiilerizasyonunun gerekli oldugu
goriilmiistiir. Ele alman problem integral formiilasyonunu ve daha Once iki
miikemmel iletken dairesel silindirden sagilma i¢in yapilan sonucun genigletilmesini
temel  almaktadw. Caligmalar  silindirlere  paralel  eksenler  boyunca
gerceklestirilmistir. Boylece iki boyutlu bir problem incelenmis ve ¢alismalar her iki

polarizasyon i¢in  gecerli olmustur. Sonugta olusan cebirsel sistem

(I+K)y=g,y,g €/, seklinde ikinci tir bir lineer denklem sistemidir. Burada I /,

uzaymda birim operatér ve K [, uzayinda kompakt bir operatordiir. Bu tiir bir

sacilma probleminin c¢esitli geometrik ve elektrik parametrelerini iceren uzak ve
yakin alanlar i¢in elde edilen sonuglar anilan teknik ile dogrulanmistir. Regiilerize ve
regiilerize olmayan sistemlerin matris ters alma duyarliligini igeren sayisal sonuglar,
sadece regiilerize sistemin yiiksek frekanslar i¢cin sayisal olarak kararli sonuclar
verdigini ve c¢oziimiin fiziksel giivenilirligini iceren biiylik cebirsel sistemin

boyutunu gdstermistir.

Anahtar Kelimeler: Dalga Sacilmasi; Regiilerizasyon; Ikinci Tiir Lineer

Denklem Sistemi (LCDS2).
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SUMMARY

The regularization of the well-known analytical formulation of the
monochromatic electromagnetic wave scattering by a few eccentrically multilayered
homogenous circular cylinders is presented. It is found out that a regularization of
this formulation is absolutely necessary. The regularization is based on the integral
formulation to the mentioned problem and extension of the work done for scattering
from two perfectly conducting circular cylinders. The illumination is performed
parallel to the longitudinal axes of the cylinders, thus a two dimensional problem is
under consideration and for both polarizations. Resulting algebraic system is of the

second kind i.e. (I+K)y=g,y,g <€/, where I is the identity operator and K is a

compact operator in /;. The technique is validated by existing results such as near and
far fields obtained under various geometrical and electrical parameters of this kind of
scattering problem. Numerical results including the condition numbers of the
regularized and non-regularized systems show that only regularized system gives
numerically stable results for high frequencies and big algebraic system sizes with

ensuring the physical reliability of the solution.

Keywords: Wave Scattering; Regularization; Linear Algebraic Equation

System of Second Kind (LAES2).
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SIMGELER ve KISALTMALAR DIiZiNi

Simgeler ve Aciklamalar

Kisaltmalar

€ : Dielektrik Gegirgenlik Sabiti

H : Manyetik Gegirgenlik Sabiti

E : Elektrik Alan Vektorii

H : Manyetik Alan Vektorii

DS : Dairesel Sinir

EDS : Eksantrik Dairesel Silindirler

IF : Integral Formiilasyonu

LCDSI : 1. Tir Lineer Cebirsel Denklem Sistemi
LCDS2 : 2.Tir Lineer Cebirsel Denklem Sistemi
MAD : Matris Ters Alma Duyarlilig1

SA : Seri A¢ilim

TE : Transverse Electric(Dik Elektrik)

™ : Transverse Magnetic(Dik Manyetik)
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1.1:  Kesikli ¢izgiler ile gosterilen sinir (m = 0) sonsuzun hayali sinirmi
gostermektedir, a)lki katmanl silindir, b)lki komsu silindir.

2.1:  1Iki katmanl dielektrik dairesel silindir i¢in geometri.

2.2:  1Iki komsu eksantrik dielektrik dairesel silindir i¢in geometri.

2.3:  Ug katmanl dielektrik dairesel silindir i¢in geometri.

2.4:  Dort katmanl dielektrik silindir i¢in geometri.

2.5: Ana silindir i¢inde iki farkli eksantrik dairesel silindir bulunan
geometriden sacilma i¢in sekil.

2.6:  Tez konusunu olusturan geometri.

3.1:  lleri monostatik Radar Kesit Alanlar1 (RKA) ile karsilastirma
grafikleri,0 =0, kb=4, kja=2,¢,,=2, ¢, =4.

3.2:  Geri monostatik RKA ile karsilastirma grafikleri, 0 =0, kb=4,
ka=2,¢e,=2,¢c,=4.

3.3:  iki katmanli geometri i¢in ¢dziilen LCDS2’nin kesilmesi ile elde
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Dort katmanli geometri igin ¢oziilen LCDS2’nin kesilmesi ile elde
edilen matris ters alma duyarlilig.

TM modu i¢in kyo, ile geri RKA ve kyo, ile ileri RKA grafigi,
koa, = kya, = 0.5, kyd, =1.5, kyd, =1.0, 6, =0, 6, =180°.

TM modu i¢in ileri ve geri RKA grafikleri, a) Ileri RKA grafigi, b)
Ger1 RKA grafigi, kya =kya,=0.5, kyjay; =25, kyd =125,
kod, =1.0, 6, =0°, 6, =180°.

TE modu i¢in ko, ile geri RKA ve kyo, ile ileri RKA grafigi,
koa, = kya, = 0.5, kyay=2.5, kyd, =15, kyd, =10, 6,=0°,
0, =180°.

TE modu icin ileri ve geri RKA grafikleri. a) ileri RKA grafigi, b)
Ger1 RKA grafigi, kya =kya,=0.5, kyja; =25, kyd =15,
kod, =1.0, 6, =0°, 6, =180°.

TM modda iki komsu dielektrik silindir i¢in ileri RKA grafigi.

TM modda iki komsu dielektrik silindir i¢in geri RKA grafigi.

Iki komsu geometri i¢in ¢dziilen LCDS2’nin kesilmesi ile elde
edilen matris ters alma duyarlilig1.

TM mod ile tez konusunu olusturan geometri i¢in ileri RKA grafigi,
kya=25, kb=05, kyc=05, kd=25, kyd,=1.0,
kod; =1.5,kyd,y =25, kyd,=55,c,=4,¢,=106,¢,,=16.
€.4=4.

TM mod ile tez konusunu olusturan geometri i¢in geri RKA grafigi,
kya=25, kb=05, kyc=05, kd=25, kyd,=1.0,
kod; =1.5,kyd,; =25, kyd,=55,¢,=4,¢,=106,¢,,=16.
€.4=4.

Tez geometrisi i¢in ¢oziilen LCDS2’nin kesilmesi ile elde edilen

matris ters alma duyarlilig1.
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1. GIRIS

Elektromanyetik alaninda dogrudan sayisal ¢oziiciilerin (6rnegin; momentler
yontemini temel alanlar gibi) ragbet gérmesinin sebebi biiyiik dl¢iide, neredeyse her
miihendislik probleminin ¢6ziilebildigi yeni bir donemdeki hesaplama becerileridir.
Bu algit mantikhdir, ¢linkii son donemdeki literatiirde  miihendislik
elektromanyetiginin modellenmesiyle ilgili problemlere sayisal olarak oldukc¢a giiclii
bir sekilde yaklasilmistir. Bu tiir ¢oziimler kurulmas: ile ilgili kaygilardaki
degisikliklerin son 50 yilda analitik formiilasyonlarin bilgisayarda etkin bir sekilde
uygulanmasindan kaynaklanan bir evrimle bagladigi goriilmektedir [1], [2], [3].
Ayrica dogrudan sayisal ¢oziiciileri temel alan bu tiir modern yazilimlarm gelistiricisi
veya kullanicisi olmayla ilgili temel notasyonlar, analitik formiilasyonlarin
perspektifinden baglayarak elektromanyetik olayin anlagilmasini gerektirmektedir
[4]. Dahasi; sadece nanoteknoloji, metamateryal bilimi ve fotonik gibi yeni
alanlardaki uygulamalarin ortaya c¢ikmasi degil, ayni zamanda dalgalarin
kilavuzlanmasi, biyoelektromanyetik, manyetik, akustik ve enerji iletim hatlarmin
tasarimindaki uygulamalar da [5]-[22] halen 6nemli problemlerin analitik olarak
modellenmesini gerektirmektedir. Biitiin bunlar dikkate alindiginda, analitik bir
modelin sayisal olarak uygulanmasindaki herhangi bir zorlugun azaltilmasi, ilgili
alanlar i¢cin maksimum diizeyde 6nem tagimaktadir.

Yayin [2]’de, inhomojen ortamlarla ilgili kirmim problemlerinin aragtirilmasi
icin gereken hesaplamaya yonelik ¢abalarda siireci hizlandiracak her tiirli teknigin
olumlu karsilanacagi dngorilmiistiir. Bu ¢agr1 yanit bulmus ve hesaplama giicii son
on yil igerisinde, bu tezde de ele alinan inhomojen ortam probleminin karmasiklig1
icin daha o zamanlar [6]'de sayisal sonuglarin elde edildigi bir seviyeye ulagmustir.
Tipik olarak s6z konusu teknikte Green'in formiilii temel alinmakta ve birinci tiirden
ilgili sinir integral/integral-diferansiyel denklemleri elde edilmektedir [3]. Bu tiir
denklemler s6z konusu oldugunda, modern bilgisayarlarin miithis bellek ve islemci
kaynaklarma ragmen dogrudan sayisal yontemlerin ¢Oziimlerini stabilize etme
anlamida cok kritik olan bir gercek s6z konusudur: Enerji dengesi ve smir
kosullarinin karsilanmastyla ilgili kriterler ikincil derecede 6nemlidir [3] ve [6]'da
saglanan ¢6ziimiin giivenilirligiyle ilgili kontroller ve diger bircogu da bu kategoriye

girer. Clinkii [3], [24]'te ele alindig1 gibi, yuvarlama hatalarinin olmadigi giivenilir ve



stabil bir ¢6zliim elde etmenin tek pratik yolu, yuvarlanmis cebirsel sistemin matris
ters alma duyarliliginin kelime uzunluguna (diger bir deyisle standart PC i¢in 53 bit
veya 16 ondalik rakam) ulagsmamasi (tercihen) veya bu degeri asmamasidir (yani
anlaml rakamlar elde edilmez). Bu gercek, [1] ve [3]'te kullanilan yaklasimlarda
dogrudan ve [2]'de dolayli olarak dikkate alinmistir. Bu nedenle bu ¢alismada hedef,
herhangi biri digerini igerebilen Sekil 1.1.a) ve benzer bir konfigiirasyona komsu
olabilen Sekil 1.1.b) dielektrik silindirlerin kesismeyen dairesel sinirlarinin
olusturdugu bir birlesimden sagilmaya iliskin 1yi durumda bir formiilasyon
sunmaktir.

Sekil 1.1.a) ve Sekil 1.1.b)'deki temel problemlerin ¢6ziim prosediirii burada
sunulmustur. Eksantrik olarak (es eksenli olmayan sekilde) cok katmanli sekilde
diizenlenmis keyfi sayidaki dielektrik silindirler i¢in sunulan teknigin genellenmesi
goriiniiste kolaydir ve sayisal sonuglar bashiginda Orneklerle gosterilmistir.
Formiilasyonda, gerektiginde [2] incelemesine atifta bulunulacaktir. [3]'te ele alinan
avantajlara sahip 1yi durumdaki sistemin tarifi, [1]'in Ol¢ekleme teknigi ile
verilecektir. [1]'deki regiilerlestirme, komsu iki miitkemmel iletken dairesel silindir
icin Onerilmistir. Bu yaklagimin eksantrik olarak katmanli ve komsu iki dielektrik
silindiri iceren durumla ilgili sira dis1 agilimi bu yaymda uygulanmistir. Asagida,
onerilen yaklasimin faydali olabilecegi uygulamalarin kisa bir incelemesini
bulacaksmiz.

Yaym [5] ¢ok katmanli olarak diizenlenmis eksantrik dairesel silindirlerle
ilgilidir ve dogrudan mod eslestirme olarak anilacaktir ve [2]'deki seri agilimlara
(SA) uygundur. [2]'deki endirekt mod eslestirme yaklasimiyla birlikte [6]'daki
integral formiilasyonun (IF) kapsaminda gelistirilmistir. IF, bu calismada ve asagida
atifta bulunulan bazi tezlerde kullanilmistir. Ornegin ¢oklu engellerden [4] sacilmay1
ayrintilandiran T matris yaklasimi, [7] ve [8]'de alanlarin analitik temsili ve bunlarin
dairesel silindirik koordinatlarda etkilesimi kullanilarak dairesel silindirik sa¢ilmayla
kisitlanmistir. [9]'da, [2]’de de incelenen durum degiskeni formiilasyonu, kesin
olarak birlestirilmis dalga analizi i¢in kullanilmis ve [5]'in birka¢ durumunda
karsilagtirma yapilmistir. Akustik sagilmada, dikkate alinan problem de ilgi gormiis
[10] ve elde edilen ¢oziimlerin dogruluguyla ilgili hesaplamaya ydnelik sinirlamalar
son donemde es eksenli (concentric) ¢ok katmanli durumlarda bile rapor edilmistir
[11]. [2]'deki temeller, ¢oklu iletkenli dairesel silindirik dalga kilavuzlarmin [12],

[13] modlarini belirlemeyle ilgili ¢alismalarda bir temel yap1 olusturmustur.



Metamateryaller ve bosluk-plazmon dalga kilavuzlarindaki uygulamalar ve
teknikler [14], [16]'da ele alinmistir. [17], [19]'dan anlasildig: iizere, bu tezde ele
alman inhomojen dielektrik ortamlarin diizgiin sekilde modellenmesi miikemmel
iletken (PEC) yuvali dairesel silindir konfigiirasyonlarina yonelik daha karmasik
yaklagimlar i¢cin esneklik saglayabilir. Cesitli anten uygulamalar1 6rnegin, [20] ve
elektriksel olarak iletken sonlu ortamlar [21], [22] bobin sargili borularin ve ii¢
damarli ekranlanmis denizalti kablolarmin modelleri i¢in eksantrik dairesel

modelleme ihtiyaglar1 karsilanabilir.
1.1. Tezin Amaci, Katkisi ve Icerigi

Yaym [5]'te oldugu gibi SA kullanimi, ¢6ziimii tek olarak elde etmek iizere,
cevreleyen dairenin  merkezinin ¢evrelenen dairenin ig¢ine yerlestirilmesini
gerektirdigi i¢in smirhdir [2]. Diger taraftan IF, SA'n bahsedilen dezavantaji
olmaksizin daha esnek bir secenek saglar. Helmholtz denkleminin disa dogru hareket
eden dalga coziimlerini, belirli bir bolgede, SA'da neden oldugu gibi hareketi
sonlanandan ziyade [2] ve [6] yerine, harekete basladig1 dairesel smnirin kutupsal
koordinat sisteminde [2], [5], [7] seklinde temsil etmek yeterlidir. Sonug¢ olarak,
kesismeyen fakat keyfi olarak yerlestirilen ayni tiirden coklu dairesel katmanlar
iceren ve eksantrik olarak katmanlar seklinde diizenlenen dairesel silindirik bolgeler

icin ¢oziimii tek olarak bulmak olanakli hale gelir [2].

a) b)

Sekil 1.1: Kesikli ¢izgiler ile gosterilen smir (m = 0) sonsuzun hayali sinirini
gostermektedir, a)lki katmanli silindir, b)iki komsu silindir.



Bu tiirden en karmasik konfigiirasyon bile Sekil 1.1.a) ve Sekil 1.1.b)’de
gosterilen iki duruma indirgenerek analiz edilebilir. Ozellikle Sekil 1.1.a) ve Sekil
1.1.b)’deki konfigiirasyonlar anlaminda nihai lineer cebirsel sistemin ilgili bloklarini
olusturma algoritmas1 asagida gosterilmistir. Tim formiilasyon, TE modu
formiilasyonu ve ¢oziimii cok benzer bir sekilde gergeklestirilebildiginden TM modu

icin olacaktir.
Sekil 1.1.a) ve Sekil 1.1.b)’de, O, noktalari, iki dairesel sinir (DS) (m=1,2)
icin kutupsal koordinat sistemlerinin merkezlerine ait konum vektorlerini temsil eder

( P, ,gom) . Ayrica sonsuzda m =0 olan sanal bir siirin oldugu da kabul edilmektedir.
Tim DS'lar x — y diizlemini indisi j =0,1,2 olan bolgelere boler; burada j, j =m
bolgesindeki kapali katman bolgeleri haric m indisli DS igindeki bolgeyi etiketler.

Tim ortamlarin dielektrik sabiti ¢, ve manyetik gegirgenligi u; genel olarak
karmagik degerli biiytlikliiklerdir. Bilindigi lizere tiim manyetik alan bilesenleri E,

araciligiyla ifade edilebilir. Toplam E_ tiim bdlgelerde disa dogru hareket eden ve
duran dalga bilesenlerinden olusur. IF, DS"1 bu alanlarla, y sirastyla "R" ve "T"’ye

esit olmak tlizere Onceki, m indisli DS'dan yansitilan, sonraki de m indisli DS

iizerinden iletilen bilesen olarak yorumlanabilecek sekilde iligskilendirir:

EZ(pm,(om)zEgR)(pm,(omH gT)(pm,(om), m=0,1,2;0 oo'da hayali smir i¢in
o0 .
Egl)(/?ma(om): Z Xl(’lm)zl(’ll)(k(i,m)pm)elnq)m’ (11)

n=—00

+,m)

. k(s.m)> disarida m, y = R
( - k(_’m), iceride m, y =T

Metin boyunca monokromatik elektromanyetik dalgalarm zaman bagimlilig
e ™ olarak kabul edilmistir. Burada, =a)(5(i’m)/,t(i’m))1/2, ortamin m indisli
DS’m 4 disa dogru normal yoniindeki dalga sayisidir, Z'*'(f) y =T i¢in Bessel
fonksiyonu J,(f) ve y=R i¢in Hankel fonksiyonu H'"(z)’dur ve x'™ smir
kosulundan (yani m indisli DS lizerinde E, ve H, tegetsel alanlarm siirekliligi)

bulunacak katsayilardir. Gelen alan ve R'” =0 i¢in sadece 7.’ ’m bilindigi kabul

edilmektedir. Koordinat farklar1 icin kullanilan vektor kutupsal koordinatlarda



d,=(,,0,)=0,-0, olarak tamimlanmstir. Koaksiyel dairesel silindirik

dielektrik katmanlarin analizinden bilinen sinir kosullari saglandiktan sonra elde

edilen asagidaki fonksiyonlar1 dikkate alalim [4]:

PV (p)= 8,11 (kyp) i (k) - BHS (kyp) T (k).

77 (p)= BTukp)J (JP) BT (kip)J (k]p)

T,gl)(p) ﬁij)(kzp) (U'(k ,0) BH (klp) (I)(kjp), (1.2)
WP (p)=-BI7 (p)=2if; / whyp, B;=1/m;,m;=\[u; /e

Fy3

P _ ) @) St (1) (04122,
F2(p) =H(r)4 [g ,ﬂ(k atheJe ’(SJ_(O,H,AQ,..J

Ifade (1.2)’deki her fonksiyonun, karsilik gelen DS"n kabul edilen merkeziyle
iligkili Rayleigh harmoniklerinin radyal kisimlarmin bir siiperpozisyonu olduguna
dikkat edelim. Burada ' ilgili argiimana gore tiirevi gdstermektedir. Bolge indisleri
j ve [’nin degerleri 0,1,2 arasindan secilir. Dikkate alinan iki smnirm her birinin
formiilasyonu, gelen kaynak alan (kendisi) tarafindan indiiklenen sagilan alanin ve
diger smira ait sagilan alanin (etkilesim) degerlendirilmesini gerektirir. ifadeler,
yukarida belirtildigi gibi her DS’in sinir kosulu i¢in (1.1)’de verilen formda yazili
olarak tiim bolgelerde yansitilan ve iletilen dalgalardan elde edilir. F ile (1.2)’de ¢ift
indisle belirtilen fonksiyonlar DS’lar arasindaki etkilesim i¢in kullanilan
sablonlardir. Bunlar, karsi DS ile ilgili DS'ye Grafin, Bessel ve Hankel
fonksiyonlarma [23] yonelik toplamsallik teoremi ile doniistiiriiliir. Bu, birlestirilen

iki DS'm her birinde Fourier katsayilarinin esitlenmesini kolaylastirir. Bunun, d,,

‘nin skaler degerleriyle calismak icin yeterli olduguna dikkat edilmelidir. o

parametresi Sekil 1.1.a)’daki gibi bir icerme mi (a = 7) yoksa Sekil 1.1.b)’deki gibi
bir komsu mu(a =N) oldugunu gosterir. Boylece Z!)(1) a =1 igin Bessel
fonksiyonu J,(f) ve a =N igin Hankel fonksiyonu H " (¢) olur. Ayrica birlesmenin
gercgeklestigi ortamin dalga sayis1 &, ile gosterilir; burada k, a =17 iginve k, a =N

icindir.



TE polarizasyon durum c¢oziimleri, sadece (1.1) ifadesindeki E. yerine H,

alinmasma ve (1.2) esitliginde B, =n, olmasina dikkat edilereck TM polarizasyon

ifadelerinden kolayca elde edilebilir. Burada m indisli DS’da H_ ve E, tegetsel

alanlarmin devamlilig1 bastirilir.

Esitlik (1.2)’de tanimlanan fonksiyonlar (1.3) ve (1.4)’de birinci tiir lineer
cebirsel denklem sistemini (LCDS1) [3] olusturmanin anahtaridir. Sekil 1.1.a) ve
Sekil 1.1.b)’deki konfigilirasyonlar i¢cin bu tiir bir sistem olusturmada kullanilan
algoritma asagida verilmistir. Burada amag, keyfi bir karmasik konfiglirasyon ait
LCDSTI’1 Sekil 1.1°deki iki temel durumdan birine indirgenmis kiimeler ile ifade

etmek ve bunlarin temel LCDS1 matris bloklarmi siiperpozisyon yoluyla

kullanmaktir. Bu tir LCDS1’ler AY ¥  =pl

mm Xmm’ = P Matris formundadir: burada mm

s6z konusu iki DS’dir ve 11 sirasiyla a=1 (1=1) ve a=N (1=1) i¢in DS’larin

bulundugu ortamdir.

AY »
- ~ 12 bm
) ) — 12
|:Pn(l 0) (a)J [0] [Wn(i 12 (a)J [0] Rr(,]) 010 (@) >
[0] |:Pn(1»0) (a):| |:Tn(’i»0)12(a):| [0] Tn(l) - _Tn(o)Wn(o)(a)

o (o o

o] [m

Youn)

) [Be)] | &Y
R IR AL K R

—

I [P;fl’o)(a)] [0] [Q(] w”(")} [0] RO [zt ”(a)]

[0] B@ ] [ @] [0 10 2| o (a) | (14

(@] 1 [Be)] R | e)
(

2) T(O)W(O) b
(w2 e)] o] o] [pr@]Ln’] L)
- An X% b

Esitlik (1.3) ve (1.4)’lin elde edilmesi i¢in, Sekil 1.1°deki konfigiirasyonlara ait
p,=a ve p,=>b yarigaplarmm kabul edilen degerleri (1.2) esitliginde tanimlanan
fonksiyonlarla degistirilir. Bu durumda bloklar1 (1.3) ve (1.4)’de gosterildigi gibi, bir

matris blogundaki formlarin1 kullanarak bir matris blogundaki tek/¢ift indis
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fonksiyonunun bu sinirda bireysel kendisi/etkilesim Ogesini  saglayan bir
kosegen/dolu blok oldugu ve sifir matris bloklarmin ortada oldugu fonksiyonlar:
kullanarak olusturmak yeterli olacaktir. Bilinmeyen vektor siitunu dikkate alinan
sinirin yansima ve iletim katsayilardan olusmaktadir. Bilinen gelen alan (1.3) ve
(1.4)’lin sag tarafindaki vektor siitununu olusturur. Bulunulan ortamin ek bir DS
icinde olmasi1 durumunda, gelen alanla tiim etkilesim bulunulan ortamin disinda
birakildig1 i¢in bu vektoriin sifir olduguna dikkat edilmelidir. Bu 6zellikle Sekil
I.1.a)'daki o =7 durumu i¢in (1.3) ve (1.4)'e ait ilk LCDS1'de gozlemlenebilir,
clinkii m=2 olan DS'm bulunulan ortami m =1 olan DS'm i¢indeki bdlgedir ve
gelen alanla etkilesim m =1 olan DS'm disinda birakilmistir. Asagidaki blok

notasyonun, (1.5)'teki matrisler ve vektorler i¢in gecerli olduguna dikkat edilmelidir:

1 1
- ﬂb {’;“} (1.5)
m'’ tm'

Esitlik (1.5)’teki gosterim, keyfi diizeyde karmasik bir konfiglirasyon
ayrmtilandirilirken pratik olacaktir.
Esitlik (1.3) ve (1.4)’deki LCDS1'in sebebi olan formiilasyon, s6z konusu

problem i¢in kullanilan bilinen yaklagimi temsil etmenin modiiler bir yoludur. Bessel
fonksiyonu ve Hankel fonksiyonlarmin (burada H"(¢)’dir) n— oo olarak
asimptotik gosterilimleri, (1.6)’in ilk satirmda verilmistir. Bunlar, asimptotik Stirling
formiiliidir [23] ve n!~(27wn)"*(n/e)" ile bu fonksiyonlar igin iist smurlari

belirlemek tiizere kullanilabilir. Bu durumda »n — oo icin (1.6)’de ikinci satirda

asagidaki esitsizlikler yazilabilir:

1 et " . (1,2) 2 [21/1)” .
- || = H ~ = 2=
I (t)| N27n (211) S (t)‘ anl\et )| (1.6)
e\lmt\ N (12) ' Jimd 2y .
L= 5 | 102 (1) < (n=1)te =

Bu esitsizlik, (1.3) ve (1.4)’deki LCDS1’in kotii kosullu dogasini agiga ¢ikarir

giinkii burada (1.3) ve (1.4)de gorilen {P,7,0,W} """ ye iliskin 1,5 — 00



olurken baskin asimptotik terim davranislari olarak, (1.2)’deki P ve WU sabit

gibi davranirken, 7" hizlica artan ve Q%"  hizlica azalan yapidadirlar. Bu

bloklarin herhangi birine ait sonsuz matrisin Oklid matris normunun simirsiz oldugu
gosterilebilir [1].

Bu nedenle bu tir LAES1'lerin ¢oziimleri, sayisal degerlendirme icin
yuvarlama yapilirken olusabilecek yuvarlama hatalarma kars1 savunmasizdir. [1]’de,
(1.3) ve (1.4)’teki bilinmeyen katsayilar i¢in diizgiin sekilde dlgekleme yapmanin
LCDSTI’1 regiilerlestirerek miikemmel iletken iki komsu silindir i¢in ikinci tiir bir
lineer cebirsel sistem (LCDS2) haline getirdigi goriilmiistiir. Buradaki amacimiz,
ayn1 seyl dikkate almnan smir kosullar1 ve yeni sinir konfigiirasyonlart igin
gerceklestirmektir. Bu tiir bloklardan olusan bir katmanli siir sisteminin 1yi duruma
getirilmesi amaciyla (1.3) ve (1.4)'te LAESI'lerin her biri i¢in regiilerlestirme
isleminin gergeklestirilmesinin yeterli oldugu gosterilebilir.

Esitlik (1.1)’de bir IF’a ait bilinmeyen '™ yansima/iletim katsayisinin yapisi,
J ,(t)/ H"(¢) radyal fonksiyonu ve onun tiirevlerinden [2] olusan bir kombinasyonla

orantili hizli azalma/artma davranigma sahiptir. Bilinmeyen katsayilarin
Olgeklenmesinde, bu tiir davraniglarm (1.3) ve (1.4)te LCDSI1’leri
regiilerlestirilebilmesi durumunun gergeklenmesi temel alinir. Boylece bu 6l¢ekleme,
anilan asimptotik fonksiyonlarin tilda ile gosterilen yeni bilinmeyenler ile

carpilmasindan ibaret olarak sunulabilir:

1

o [ 6] 10 0 o
0 | W [k W ]
W o [mes] w | A
SN0 [0] I ()| S

Esitlik (1.7)’deki tamim, X=Rybicimindedir ve Onceki bolimdeki &k,
tanimma dayali bigimde (1.3) ve (1.4)’teki iki durumun vektor siitunlari igin
gecerlidir. R™’in mevcut olmas: kritik bir dnem tasir. Bu nedenle yansima/iletim

katsayilarin asimptotik davranislar1 J, (¢)/ H"(¢) ile orantili olsa da, argiimanlarmna



gore gercel/sanal iist yar1 diizlem sifirlarina rastlamamak amaciyla bunlarin yerine
[H,ﬁl)(t)]il / H"(t) kullanilmaktadir(bkz. Bessel ve Hankel fonksiyonlarmin sifirlart

[23]). Bu miimkiindiir c¢ilinkii, bu yeni fonksiyonlarin asimptotik davranislari,
R"™ /T™ yansima/iletim katsayisinin hizli azalma/artma davramigini temsil etmek
icin yeterlidir.

Esitlik (1.7) araciligiyla » ’nin tanimlanma amaci, (1.3) ve (1.4)’teki her
LCDS1’i iyi kosullayarak, sag yan regiilerlestiricisinin R sunulmasiyla LCDS2 elde
etmektir. Bir LCDS2 (I+K)y =g olacak bi¢gimdedir. Burada /,’de birim operator I

ve kompakt operator K ile birlikte y,g €/, dir [3]. R’yi (1.7) ile tanimlamak (1.3)
ve (1.4)’teki LCDS1°1 bir LCDS2’ye doniistiirmeye (genel oldugu gibi - ancak bazen
de tersi olabilir) yeterli olmadigindan (I+K)=LARve g=Lb olacak bigimde

n
mm’

uygun bir sol regiilerlestirici tanimlanmalidir. Asagidaki vektorleri L

kosegenlerinde kosegen matrislerdir:

- N L . ]
w o [ BT [B7@] [ eere) T [Re)]
Liz =dieg|| 7 7 1 17 ;
i (1.8)
. - o B |
100 _ i P (q) l |:F;,(]’0)(a):| PO (b) l [P,,(Z’O)(b)]
=dla ‘
12 g _H,(,l)(koa)_ Hr(,])(kla) _Hr(,])(kob)_ Hr(z])(kzb)

PUY fonksiyonunun garpmaya gore tersleri meveuttur giinkii onu olugturan

mm’

fonksiyonlardan sadece bir kokiinde sifir olabilir [2]. (L'V Rﬂ;m,) regiilerlestirici

ciftleri  (1.3) ve (1.4)teki iki LCDS2 1yi halli matrislerine, yani

(I+Kﬂ;m,)=L'V AV RY . ve sag yanlarma g =1) b! ilgilenilen durumlar

mm' - *mm’' ™ mm’ mm’

Iy

icin vartlir. Ki,,»

matrisleri asagidaki formdadar:



o] o] [KP2] [0 0] [o] [k27] [o]]

[0] [0]| [0] [0]
0] [0} [K2Z] [0] 0] (0] [K72] [0]
, . (1.9)
] [K22] (o] [o]] |[k2*] [0] [0] [o]
(o] [&7] [0 (o] |[&27] [0] [0] (o]
K{) K

K" . matrislerinin sifirdan farkli girdilerinin iist smnirlarmna iliskin tahminler

mm’

.....

K?; icin:

k;??v\d[('"'”'ﬂ!)} aras
a

| |n|!|s|! a

k(Q)21‘<A _(|n|!+|s—l|!) b | d \S\.
s 3_ |n|!|s|! a a)’

k£?12‘<A2 {(|n+]|!+|s|!):|(ﬁj

s

o[ (.

K?g icin:
k(Q)12‘<A (|n|!+|s—1|!) (ﬂjn(ﬁjs~ k(W)]Z‘<A (|n|'+|s|!) (gjn(bjs
" i |n|!|s|! d )’ 6 |n|'|s|! d d)’

(il ls - 20T o\ o3
49| <, ([ ]s |)}(gj (gj ;

|n|!|s|!

Etkilesimli geometri i¢cin d+b<a ve komsu geometri icin a+b<d

gecerlidir. Bun nedenle (1.10)’daki iist sinir ifadeleri 7,5 — 00 oldukea sifir olur ve

K" .~ matrisleri [, uzaymmda kompakt olur. Yukaridaki regiilerlestirme

matrisleri,(1.5) ‘e ek olarak keyfi diizeyde karmasik konfiglirasyonun gosterimini

basitlestirmek icin asagidaki blok ifadelere sahiptir:

1 1 z1 ’ Al ’ 1 ’
gl“,‘ _| T (l), ?“,‘ ;L = ?, ;KD = ? Koo . (1.11)
gm' O 1_‘m' g:n’ O Am' I<m'm 0
[ —

' I I
mm’ Rmm’ ymm'

Bu calismada yukarida anlatilan iki durumdan sonra sirasiyla lic-katmanli ve

dort-katmanli eksantrik dielektrik dairesel silindirlerden dalga sagilmasi incelenmis

10



ve [5]°deki sayisal sonuglarin grafikleri ile karsilastirilmistir. Daha sonra [7]’de Sekil
4 ve Sekil 5 ile verilen ana silindir i¢inde iki komsu eksantrik dielektrik dairesel
silindir olan geometri i¢in regiilerizasyon incelenmis ve sayisal sonuglarin grafikleri
karsilagtirilmistir.

Son olarak tezin konusunu olusturan geometriden dalga sacilmasi detayli

olarak incelenmistir ve elde edilen sayisal sonuglar sunulmustur.
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2. PROBLEMLERIN FORMULASYONLARI

2.1. iki Katmanh Eksantrik Dielektrik Dairesel Silindirden
Sacilma

Sekil 2.1°de, O,,, swrasiyla dig (m=1) ve i¢c (m=2) eksantrik dairesel
silindirler (EDS) i¢in dairesel merkezleri ve eksenleri gostermektedir. Burada
dairesel silindirler x —y diizlemini indisleri en distan en ige dogru j=0,1,20lan

bolgelere ayrilmaktadir.

A y1

Sekil 2.1: iki katmanl dielektrik dairesel silindir i¢in geometri.

Tim bolgelerde alanlar TM modlari igin 6zgiin bilesenler olan E, ve H  ’ler

araciligiyla ifade edilebilir. Her bir siir i¢in toplam alan ifadeleri agikca yazilirsa;

o

DT, ap)e™ + Y RVH (kyp)e” =Y T, (kipy)e™

n=—0n

n=—w

z . = . = . 2.1
2 T, (kp)e™ + 30 RPH (kpy)e"™™ = 3 T2, (kyp,)e™ 1)
ﬁ Z 7:1(0)']n (kop] )e”"/’l +_0 Z RrS])HrE]) (kop])e""/’l :£ Z T:;(])Jn (k]p] )e”"/’l
luo n=—0n0 /uo n=—m /u] n=—wo

S RO (e

/uz n=—o0n

0 0

z Tn(])Jnl(k] p] )e["(/)l + ﬁ Z RrEZ)HrE])V(k] pZ )e[’"/’z :ﬁ Z 7-:1(2)‘];;(/{2/)2 )e[’"/’z

n=—00

k
/u] n 1 n=—x 2 n=—x
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Burada, birinci ve igiincii denklemler p=p, smirinda E ve H tegetsel

alanlarinin siirekliliginden, ikinci ve dordiincii denklemler p =p, smirinda E_ ve
H, tegetsel alanlarinin siirekliliginden gelen denklemlerdir. Ayrica her bir
denklemdeki 7",R", 7 R® yukarida bahsedilen alanlarmn siirekliligi i¢in aranan
katsayilardir. Sadece 7 bilinen gelen alanin katsayisidir ve bir diizlemsel dalga ya
da ¢izgisel kaynak i¢in [3]deki uygun ifadelere bakilabilir. Burada j =2 bdlgesinde
kaynak olmadigint varsayityoruz. Merkezler arasi uzaklik vektorii kutupsal
koordinatlarda d = (d,0) =0, -0, seklinde tanimlanir. Gerekli cebirsel iglemlerden

ve Graf’in uygun toplamsallik teoremlerinin kullanilmasindan sonra, smir kosullar
koaksiyel silindirik katmanlarin [6] analizine benzer bi¢imde (1.2) esitligindeki
fonksiyonlarin elde edilmesiyle asagidaki duruma doniisiir. Graf’in toplamsallik
teoremleri araciligi ile her bir smir kosulu i¢in yazilan denklemlerin Fourier
katsayilar1 esitlenmis olur. Boylelikle (2.1) denklemlerinde goriilen iistel terimler

sadelestirilebilir:
L0 (p)+RVBM () = RV B (p)
TR (p) =~T"B"" (p)+ RVT" (p))
(2.2)
IO (p,)+ RPE (p) =0

TP (p,) =TV P ()

Ayni indisli P fonksiyonlarinin (1.2) esitligindeki Wronskiyan fonksiyonu
oldugu g6z Oniine alinarak, esitlik (2.3)’u elde etmek icin (2.2) esitliklerinde

yarigaplarin p, =a ve p, =b degerlerini yerlerine yazariz:

[Prgl,m(a)} [0] [Wn(lgl 2 (a)} 0]
RD | [_0),(1.0)
0] [#a| [6%@]  [0] o] o @
Tn2 _| 100, (2.3)
(0] |[e%w| [APe] (0] RYY 0
Trgz) 0
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Elde edilen bu LCDS1’i LCDS2’ye doniistiirmek icin uygun sol ve sag

regiilerlestiriciler asagidaki gibidir:

- 1 [0, AT 1 [ 20 ]
L =diag Pn("‘%)] #0)] [Pﬂ”(b)} Kl

| #4 (kga) 1 (kja) | B (kpb) 14 (kob) (2.4)

-1 -1

R=diag_(H,(11)(k0a)j HD (ka) [H,(,l)(klb)j H,(})(kzb)]

Boylelikle regiilerlestirici ¢ift (L,R); Ax=b formunda olan LCDSI’i
(I+K)=LAR, y=R"'x ve g=Lb olan ikinci tir 1+K)y =g, y,g €/, sistemine

dontistiiriir. Burada I birim operatordiir. K matrisi asagidaki formdadir:

0 0 [K;] O

B 0 0 [KH] 0

10 K]l 000 (2-3)
0 [Kpy] 0 0

A,,, asimptotik analizin bazi reel degerli sabitleri olarak birakilirsa, K ’nin

sifir olmayan degerlerinin st smirlar1 i¢in asagidaki esitsizliklerin gecerli oldugunu

[ ey
R Mn' ok
[
(

(sl
T

goruruz.

12
s

T)12|_
1)

Q4 ; (2.6)

k(W) 21

Problemin kurulumu geregi dogal olarak saglanan d <b—a, a<b ve d <b
olduke¢a /, uzaymda K 'nin kompakt bir operator oldugu ispatlanabilir. Burada, (2.6)
esitsizliklerindeki & degerleri (2.5) matrisindeki sirasiyla K,,K,,,K,,,K,, matris

bloklar1 i¢in degerlerdir ve tiim diger bloklar sifirdir.
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2.2. Iki Komsu Eksantrik Dielektrik Dairesel Silindirden
Sacilma

Sekil 2.2’de, O, ve O, sirasiyla soldan saga dogru her bir eksantrik dairesel

silindir (EDS) i¢in dairesel merkezleri ve eksenleri gostermektedir.

Y1

&0, Mo

Sekil 2.2: iki komsu eksantrik dielektrik dairesel silindir i¢in geometri.

Tim bolgelerde alanlar TM modlart i¢in 6zgiin bilesenler olan E, ve H ’lerin
sirekliligi ve Grafm uygun toplamsallik teoremleri araciligiyla ifade
edilebildiginden her bir smir i¢in toplam alan ifadeleri iki-katmanli dielektrik
dairesel silindirde yapilan islemler ayni swa ile takip edilerek uygulandiginda

asagidaki gibi yazilabilir:

TR (p) = ROE (p) + TR (p) =0

OO (p)+ RV (p)+ RO () =0
(2.7)
—T(O)P(O’O)(pz) +1'~?(1)P(0’0)(p2) + T(2)P(2,0) (,0 ) =0
n n n n n n 2

V0% (p,)+ RV (p,) + RVO(p,) =0
n n n n n n 2

Burada ayni indisli P fonksiyonlar1 (1.2) ifadesindeki Wronskiyan
fonksiyonudur. Esitlik (2.7)’de her bir denkleme p,=a ve p,=b degerleri

yazilarak ve gerekli islemler yapilarak (2.8) esitligi elde edilir.
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_ [Prgl,o)(a)} [0]

ExaCIU

I

0] [#0m] [m%)]

ERRC)

[0]

gD [Z7(0p00)
R (2.8)
o] | [&7] |-n e e
RN AR

Elde edilen yukaridaki LCDS1’1 LCDS2’ye doniistiirmek i¢in kullanilacak

uygun sol ve sag regiilerlestiriciler asagidaki gibidir:

L =diag

-1

HD (koa)

-1

I -1
-1 (1,0)
gl (o)
HPY (ka)

HPD (k)

-1 (52,0
200" (£
HPD (kop)

Rediag| (10 o) | | 10 (k) (100ee)] H,gD(kzb)] 2.9)

Yukaridaki (L,R) regiilerlestirici ¢ifti araciligi ile I+K)y =g, y,g€/, olan

LCDS2’ye ulagmis oluruz. Buradaki K matrisi su formdadir:

S O O O

(2.10)

oS O O O

A, .y asimptotik analizin bazi reel degerli sabitleri olarak birakilirsa, K

‘nin sifir olmayan degerlerinin {ist sinirlart i¢in (2.11) esitsizliklerinin gecerli

oldugunu gortiriiz.
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I+ ls =1 ZFR\S
kg)fz‘<A5[<lnl|+l's |)](gj (2]
n|.|s|! d d

i
| o [Urlsl) | (aY Y,
kn,S ‘< 6[ |}’l|'|S|' d d )
KO <A (el | a Y oYY (2.11)
w1 e ) La)
k(W)ZI‘<A _(|}’l|'+|S|') g ‘n‘ 2 ‘S‘
w1 T | La) La)

Problemin kurulumu geregi dogal olarak saglanan d >a ve d > boldukca /,
uzaymda K ’'nin kompakt bir operatdr oldugu ispatlanabilir. Burada, (2.11)
esitsizliklerindeki & degerleri (2.10) matrisinde sirasiyla K,,K,,,K,;,K,, matris

bloklar1 i¢in degerlerdir ve bunlar haricindeki tiim bloklar sifirdir.

2.3. U¢ Katmanh Eksantrik Dielektrik Dairesel Silindirden
Sacilma

Bu baslik altinda ti¢c-katmanli eksantrik dielektrik dairesel silindirden sagilma
daha once iki-katmanl eksantrik dielektrik dairesel silindirden sacilma bashgmda
yapilan islemler altinda incelenmistir.

Ug-katmanli eksantrik dielektrik dairesel silindir icin de her bir sinirda
alanlarin siirekliligi i¢in gerekli kosullar ile gelen ve yansiyan alanlar i¢in Graf’in
uygun toplamsallik teoremleri kullanilarak (2.12) esitligindeki LCDSI1 elde
edilmistir.

Ayrica (2.12) esitliginde her bir yarigap ig¢in p,=a, p,=b ve p,=c
degerleri yerlerine yazilmigtir. Problemin kurulumu geregi a >b>c esitsizligi

saglanmalidir.
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Sekil 2.3: Ug katmanl dielektrik dairesel silindir igin geometri.

[ro@] o] [m@]  [o] [0] 0 Trao] oo
] [E"™@] [-1%"@)] [0] [0] [o] |l _r:}°’v?;‘°’(a) (2.12)
o [e®] [p®] (o] [mEe)] o] | & 0
o o] [ [Ere)] [re)] o ||z | o
[o]  [0] ] [e8@] [F2@] [o] |R 0
[0] [0] [o] [m22@] 0]  [F@)] L0

Elde edilen LCDS1’1 LCDS2’ye doniistiirmek i¢in kullanilacak uygun (L,R)

regiilerlestirici ¢ifti (2.13) esitliginde goriilen formdadir:

L=diag

an (#00]

n
P (k)

—1
-1 (2,1)
Péz’“(b)} (A0
HD (kya)

1
-1 (3,2), .
pr(l3,2) (L) [Pn (‘)]
HD (kyp) HD (leyp)

e (kae) P (k3e)

(2.13)

R=diag

[Hﬁzl) ("fou)f1 1D (kya) [Hﬁzl) (klb)jil 1 (k) [Hﬁzl) (kzv)jil 1P (’@L‘)}

2.4. Dort Katmanh Eksantrik Dielektrik Dairesel
Silindirden Sacilma

Burada iki-katmanli eksantrik dielektrik dairesel silindirden sagilma ig¢in
yapilan islemler genisletilerek Sekil 2.4’de goriilen dort-katmanli eksantrik dielektrik

dairesel silindirden sagilma incelenmistir.
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Sekil 2.4: Dort katmanl dielektrik silindir i¢in geometri.

Sekil 2.4°de goriilen geometri icin LCDS1°1 elde etmek i¢in tipki iki katmanli
ve li¢ katmanl eksantrik dielektrik dairesel silindirler i¢in yapilan islemler dort sinir
i¢in yapilmistir. Yarigaplarin p, =a,p,=b,p,=c ve p,=d degerleri yerlerine

yazilmigtir. Problemin kurulumu geregi a > b >c>d esitsizligi saglanmalidir.

1
I

a

IS T [N TN [y I Ry S— Ry S— R T—
=

| 100 (a)

n _T(O)W(O) (a)
(2)
R 0

0

(2.14)

O 0 0O

i@

0
3
e
o o o o o

——————— — —— —

0

Esitlik (2.14)’deki matrisin sol yaninda goriilen ve [C] bloklar1 ile
numaralandirilan matris elemanlar1 katsayilar matrisini olusturmaktadir ve bloklarin

dolu ve bos halleri asagida goriilmektedir:
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[C1=[[A"@] [0] [w2"@] [o] [0] [0] [o] [0]]:

[c.]=] [0] [B™@] [-1%"@] [o] [0] [0] [o] [o]};

[C]=] [0] [ez™®)] [B*®)] [0] [W2*®)] [o] [0] [o]];

l-[ [ ] o] (2ol Feee] o o ek O
[C]=] [0] [0] [0] [@%@] [B*"@] [o] [m%@] [o]);

[C]=[ [o] [0] [o] [m22@] [0] [B*"@)] [-15"@)] [0]];

(1= [o] [o] [o] [o] [0] [0%"*@] [R* @] [0]]:

[C]=] [o] [o] [o] [0] [0] [w°@)] [o] [B*@]]

Elde edilen LCDS1’i LCDS2’ye doOniistiirecek olan uygun (L,R)

regiilerlestirici ¢ifti goriilmektedir.

1 (1,0, )] (20, )] 1 32), 7! 1 (p@3), )]

N P S P O

HD (koa) HD(ka) | HD (kp) HD (k) | HD (kye) HD(ke)  (HD (k3a) HD (kye)
(2.16)

R:drag{[fif,”(koa]*' HD k) (HD ) D) (10har)] 10 (D k0] H&”(w)}

2.5. Ana Silindir icinde Iki Komsu Eksantrik Dielektrik
Dairesel Silindir Bulunan Geometriden Sac¢ilma

Burada iki-katmanli eksantrik dielektrik dairesel silindirden sagilma ve iki
komgsu dielektrik dairesel silindirden sagilma problemleri i¢in yapilan islemler uygun
bir bicimde genisletilerek Sekil 2.5°te goriilen geometri icin sagilma problemi
incelenmistir.

Tim bolgelerde alanlarin siirekliligi i¢in sinir kosullar1 ve problemin

geometrisine uygun Graf’in toplamsallik teoremleri ile (2.17) esitliginde goriilen

LCDSI1 elde edilmistir. Ayrica bu LCDS1’de yarigaplar icin p, =a, p,=b ve

p, =c degerleri yerlerine yazilmistir. Problemin geometrisi geregi a >bve a>c

esitsizlikleri saglanmaktadir.
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Sekil 2.5: Ana silindir i¢inde iki farkl eksantrik dairesel silindir bulunan
geometriden sacilma i¢in sekil.

_[P»,('«))(a)} [0] [W’:L)zl(a):l [0] [W’:'l‘)zu(a):l [0] —_R“)_ .
21 1,0)31 n -1, ”' a
0 [@] [mr@] 0 @] 0 || | Sepee | 2.17)
Pl [ex @] [pe)] D] [eF®] Pl |e¥) | o
] [rre] o [Ere] [ere] ol | o
o [eve) [ere) B [rte] B (&)
L el [mire] [0 o [pr)t ]

Uygun cebirsel islemler ile elde edilmis olan LCDS1’t LCDS2’ye

dontistiirecek olan uygun (L, R) regiilerlestirici ¢ifti goriilmektedir.

-1 -1 —1

-1 (p0), -1 (p2D), -1 G,

L=diag Pé"‘”(a)} (#00) (s (H200) P,?")(c)} G
HD (koa) HD (ha) | HD (l1p) HD (kpp) | HP (k) HD (kse)

e Y L O L ) (2.18)

2.6. Tezin Konusunu Olusturan Geometriden Sa¢ilma

Problemlerin formiilasyonlar1 baslig1 altinda ¢esitli geometriler i¢in hesaplanan
sacilma problemlerinin bir kombinasyonundan olusan geometri Sekil 2.6°da

goriilmektedir.
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Sekil 2.6: Tez konusunu olusturan geometri.

Bu karmasik gibi goriinen geometri i¢in diger tiim geometriler i¢in yaptigimiz
adimlar1 uyguladigimizda problemi ¢6zmiis olacagiz. Her bdlgede alanlarin
stirekliligi icin smir kosullar: ile Graf’in gelen ve yansiyan alanlar i¢in geometriye
uygun toplamsallik teoremlerinin kullanilmasi sonucunda Sekil 2.6’da goriilen
geometri i¢gin LCDS1 kolayca elde edilebilir. Elde edilen LCDS1°de sirasiyla p, =a,
p,=b, p,=c ve p,=d yargaplar1 yerlerine yazilarak (2.19) esitligine

ulagilmistir. Problemin kurulumu geregi a > b ve a > ¢ esitsizlikleri saglanmalidir.

Gl (RO [_T0019(g) ]
G| T | | cromo(q)
[C:] R ” 0"
C 7‘;1(2) 0
€] o |= (2.19)
[CS] Rn 0
[Cé] 7‘;[(3) 0
[c]|| R | |-L70 @)
1 Bl AR

Yukarida goriilen LCDS1’in [C] bloklar1 ile numaralandiran matris bloklarinin

acik hali asagida goriilmektedir:
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(@] o] [m@] [o] W2 @] [o] [el*@] [o]];
) [2@] [1i@] [0] [12@] (o] [m2@] [o]l;
] [ »]  [r@] [o] [o®)] [0] [o] [o):
o] [rmo] [0 [20e] o] o o o) @20
(o] [o2@] [02@] [0] [B*"@] [o] [0] [o]];
0] [ @] [m*@] [o] [o] [2°"@] [o] [o]}:
o™ @] (o] [o] o] [0] o] [2*] [ol]
[re™@y] (o] [o] [o] [o] [o] [0] [A“()]].

(€]
[C.]
[c]
[C.]
]
[C]=
[C]=
[G]=

I

Il
a1

Yukarida elde edilen LCDS1 (2.21) esitligindeki uygun (L,R) regiilerlestirici

cifti araciligiyla LCDS2’ye doniistiiriilebilir.

- 1 - -
1 (0 -1 (p2D), -1 3, 1 p40)

P,ﬁ"")(a)] () [P,Ez")w)] Gl [Pn“")m] (7] {Pﬁ“"’%d)] ()
HD (koa) HD(ha) | HD (ko) HD () 1D (kre) HD ge) | 1D (koa) HD (kge)

l (2.21)

L—diag{

- - -1 -1
R:dfag{[u,(,‘)(k(.a)) HD (kya) [u,(,‘)(k,h)) HD (fpp) [uﬁ,‘)(k,()] //,(1‘>(k3<)[//§1‘)(k(.4)) //5‘)(1{44)}

Bir diizlemsel dalganin Sekil 2.6’daki geometriye carptigi kabul edilmektedir.
Once, bu tiir farkli kompozisyonlar igin pratik uygulama amaciyla LCDSI ile
LCDS2’ye karsilik gelen matrislerinin nasil diizenlendigi gosterilmistir. Sekil 2.6 ile
(1.5) ve (1.11)’daki notasyonlara gore blok matrisler asagidaki gibidir:

o), v, x| [0 el [ o o of&
om0 o |2 |2 (2] o oo o8
Yy 0 IL Yillg| |o| [&] |0 o T5 0§
Y, 0 Yy, ThlEg] LO) (&) [0 o o TijE]
X x b X R Y (2.22)
A 0 o 0] 0 KY, KP, K
L]0 A, 0 0 . Ky, 0 o0 0
0o o0 A, of Kyy 0 0 Kj;
10 0 0 A} Ki; 0 Kj, 0 |

Aciktir ki, (2.22)’deki sistemin bilinmeyenleri, her biri ilgili yansima ve

kirilma katsayilarini i¢eren sistemin bilinmeyenleri, her biri ilgili Sekil 2.6’da taniml
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smir ile iligkili (1.3), (1.4) ve (1.5) esitlikleri ile verilen yansima ve kirilma
katsayilarmi igeren dort parcaya ayrilmistir. Buradaki ilgili blok matrisler yine (1.3),
(1.4) ve (1.5) esitlikleri ile tanimlidir ve 4x 4 blok matris sistemi Ax=b (2.22)’ye
biriktirilmislerdir. Bilinmeyen katsayilarin iliskili blok 6lgeklemesi (1.7), (1.8), (1.9)
ve (1.11) esitlikleri ile tanimlidir ve 4x 4 blok matrisleri olan L, R ve K (2.22)’ye

biriktirilmistir.
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3. SAYISAL SONUCLAR

Bu boliimde bir onceki bolimde c¢esitli geometriler i¢in hesaplanan analitik
cOzlimlerin sayisal sonucglarina yer verilecektir. Bu ¢alismada onerilen algoritma,
yayinlanmis olan sayisal sonuglarla [5], [6], [7] yapilan karsilastirmalar araciligiyla
eksantrik katmanli ve komsu geometriler i¢in basariyla kontrol edilmistir. Daha sonra
iki komsu dielektrik silindir geometrisi ve tezin konusunu olusturan geometri i¢in

elde edilen sayisal sonuglara yer verilmistir.
3.1. Bilinen Bazi1 Sonuclar ile Karsilastirma

Bu bolimde iki katmanli ve {i¢ katmanli eksantrik dielektrik dairesel
silindirden sacilma ve ana silindir i¢inde iki farkli eksantrik dielektrik dairesel
silindir bulunan geometriden sagilma ic¢in bilinen bazi sonucglarin bu tezde caligilan

algoritma ile hesaplanislarina yer verilecektir.

18
18
sTTToTT ~
i \ 17 o nm————— N
’ “ 7 N
' \ 16 / AN
L \ Il \
15 ’ \ / ‘\
‘r ™ \| 15 III ‘\\
P / e
s L/ koe =0 ‘\ — 14 £ — kO d=0 “\ ]
f --- kge = 0.628 s LS . ‘~
= o ky'd=0.628
-~ Xgo=126 2 1
DT S S I I e ko*d=1A256
............................. 12
»
10
[ ar— L s ol sy
0 60 120 180 9 y . ;
0 50 100 150
‘pao F’hi0

Sekil 3.1: Ileri monostatik Radar Kesit Alanlari(RKA) ile karsilastirma grafikleri,
0=0, kb=4, ka=2,¢,=2,¢,=4.

Ileri monostatik RKA degerlerini gdsteren Sekil 3.1, iki katmanli eksantrik
dielektrik dairesel silindirden sacilma i¢in sayisal sonuclar1 gostermektedir. Burada

sol taraftaki grafik, Sekil 5’ ten goriilebilir [5].
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Bu tezi olusturan algoritma ile ayn1 veriler kullanilarak elde edilen sonuglar1

sag taraftaki grafik gostermektedir.
4 F !.-' 4 s
4
™ ',' ,,'
— kge=0 h 350 | . ky'd=1.256 !
L) 1
3 o koe=0628 . I — kjd=0628| [
-- kge=1256 . !
! —— k=0 !
1 25 !
Ob 2 b ; @ {
Il £ 2 "
3 ¥ =2 1
' ? |
r"—ﬁ\ :o’ 1.5 N l’
. . o o \‘ ',l:;
‘\ :.' 1 \ 17
\\ 'l:.
A 4 A I3
. L 05 N
0 e e e \ .-':"
0 e .
0 60 120 180 0 5 100 150
Phi,

Sekil 3.2: Geri monostatik RKA ile karsilastirma grafikleri, =0, kb=4, kja=2,
E.=2,¢,=4.

Geri monostatik RKA degerlerini gosteren Sekil 3.2, iki-katmanli eksantrik
sonuclarin  grafiklerini

silindirden sa¢ilma icin sayisal

dielektrik dairesel
gostermektedir. Burada sol taraftaki grafik, Sekil 6 dan goriilebilir [5].
Bu tezi olusturan algoritma ile [5]’deki wveriler kullanilarak elde edilen

sonuglar1 sag taraftaki grafik gostermektedir.
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Sekil 3.3: Tki katmanli geometri i¢in ¢oziilen LCDS2 nin kesilmesi ile elde edilen
matris ters alma duyarlilig1.

op° o

Sekil 3.4: TM ve TE modlari igin geri monostatik RKA ile kargilastirma grafikleri,
r,=1.04,, n=0.84,, n=0.64,, ¢,=4.0,¢,=3.0, ¢,=2.0, 0, =(0,0),
0, =(0.24,,0), O, =(0.44,,0).
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b)
Sekil 3.5: TM ve TE modlar1 i¢in monostatik geri RKA ile karsilastirma grafikleri,
a) TM mod grafigi b) TE mod grafigi, , =1.04,, , =0.84,, 1, =0.64,, &,, =4.0,
£,=30,¢,=2.0, 0 =(0,0), 0,=(0.24,,0), O, =(0.44,,0).

Ug katmanl eksantrik dielektrik dairesel silindirlerin TM ve TE modlar1 igin
monostatik RKA degerlerini gosteren Sekil 3.4, Sekil 7° den goriilebilir [5].

Bu tezde gelistiren algoritma ile [5]’de Sekil 7° deki grafik icin ayni veriler
kullanilarak bire bir ayn1 elde edilen grafik Sekil 3.5°de goriilmektedir.
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Sekil 3.6: Ug katmanli geometri igin ¢dziilen LCDS2’nin kesilmesi ile elde edilen
matris ters alma duyarlilig1.
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Sekil 3.7: TM ve TE modlar1 i¢gin monostatik geri RKA ile kargilastirma grafikleri,
r=1.04,, n=0.84,, b=0.64,, r,=0.44,¢,=4.0, ¢,=10, ¢, =4.0,
0,,0,=(0,0), 0,,0,=(0.24,,0).
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Sekil 3.8: Geri monostatik RKA grafikleri a) TM mod grafigi b) TE mod grafigi,
r=1.04,, n=0.84,, n=0.64,, r,=0.44,, ¢,,=4.0, ¢,=10, ¢, =4.0,
0,,0,=(0,0), 0,,0, =(0.24,,0).

TM ve TE modlar1 i¢in dort-katmanli dielektrik dairesel silindirden sagilma
probleminin RKA degerlerini gosteren Sekil 3.7, [5]°de Sekil 8 den goriilebilir.
Burada sekillerden de gorildigi tlizere dordiincii katmanin bagil dielektrik

gecirgenligi swrasiyla €,, =1.0, ¢,, =2.0 ve ¢, = 6.0 degerlerini almaktadir.

Bu tezde gelistirilen algoritma ile [5]°de Sekil 3.8°deki verilerle bire bir ayni
olarak elde edilen sonuglar Sekil 3.8.a) ve Sekil 3.8.b)’de goriilmektedir. Sekil 3.8°de
istteki grafik TM modu i¢in ve alttaki grafik TE modu i¢cin dordiincii katmani ii¢
farkli bagil dielektrik gecgirgenlik degerleri alan dort-katmanli dielektrik dairesel

silindirler icin monostatik RKA degerlerinin grafikleridir.
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Sekil 3.9: Dort katmanli geometri i¢in ¢oziilen LCDS2’nin kesilmesi ile elde edilen
matris ters alma duyarlilig1.

120 —— .

(3)
(9|
ttering cross-section

koob, koof

_ (D w

= 1 p—

180° in 270° ' 360°

Sekil 3.10: TM modu i¢in k0, ile geri RKA ve ko, ile ileri RKA grafigi,
kya, =kya, =0.5, k,d, =1.5, kyd, =1.0, 6,=0°, 0, =180", kya, =2.5.
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Sekil 3.11: TM modu igin ileri ve geri RKA grafikleri, a) Ileri RKA grafigi, b) Geri
RKA grafigi, k,a, =kya,=0.5, kd =15, kd, =10, 6,=0", 6, =180", kya, =2.5.

Ana silindir i¢inde iki komsu eksantrik dielektrik dairesel silindir bulunan
geometriden TM modlu sac¢ilma i¢in ileri ve geri RKA degerlerini gosteren Sekil

3.10, Sekil 4’de gortilmektedir [7].
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Bu tezde gelistirilen algoritma ile [7]’deki veriler kullanilarak elde edilen
grafikler Sekil 3.11°de goriilmektedir. Sekil 3.11°de sol taraftaki grafik ileri RKA ve
sag taraftaki grafik geri RKA grafikleridir.
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Sekil 3.12: TE modu igin k0, ile geri RKA ve ko, ile ileri RKA grafigi,
k,a, =kya, =05, kd, =15, kd, =10, 6,=0", 6, =180, kya, =2.5

Ana silindir i¢inde iki komsu eksantrik dielektrik dairesel silindir bulunan
geometriden TE modlu sacilma i¢in ileri ve geri RKA degerlerini gosteren Sekil
3.12, Sekil 5°de gortilmektedir [7].

Bu tezde gelistirilen algoritma ile [7]’deki veriler kullanilarak elde edilen
grafikler Sekil 3.13’de goriilmektedir. Sekil 3.13°de sol taraftaki grafik ileri RKA ve
sag taraftaki grafik geri RKA grafikleridir.
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Sekil 3.13: TE modu igin ileri ve geri RKA grafikleri. a) Ileri RKA grafigi, b) Geri
RKA grafigi, k,a, =kya,=0.5, kya,=2.5, kd =1.5, kd, =10, 6,=0", 6, =180".

3.2. Diger Sonuclar

Bu boliimde iki komsu eksantrik dielektrik dairesel silindirden sagilma ve tezin

konusunu olusturan dielektrik geometriden sacilma icin bu tez kapsaminda ¢alisilan
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algoritma ile swrasiyla elde edilen RKA ve matris ters alma duyarhilig1 sonuglarina

yer verilecektir.
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Sekil 3.14: TM modda iki komsu dielektrik silindir i¢in ilerit RKA grafigi,
kya=15, kb=15, kd=32,¢,6=16, ¢, =16.
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Sekil 3.15: TM modda iki komsu dielektrik silindir i¢in geri RKA grafigi,
kya=15, kb=15, kd=32,¢,=16, ¢, =16.
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ki komsu dielektrik dairesel silindirden sagilmada TM modda kya=1.

5,

kb =1.5 ve k,d =3.2 degerleri i¢in ileri RKA degerlerini gosteren grafik Sekil 3.14

ve geri RKA degerlerini gosteren grafik Sekil 3.15°de goriilmektedir.
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Sekil 3.16: Tki komsu geometri i¢in ¢6ziilen LCDS2’nin kesilmesi ile elde edilen
matris ters alma duyarlilig1.
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Sekil 3.17: TM mod ile tez konusunu olusturan geometri i¢in ileri RKA grafigi,
ka=25, kb=05, kc=0.5, kd =25, kd, =10, kd; =15, kd,; =2.5,
kd,=55,¢,=4,¢,=16,¢,=16, ¢ ,=4.
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Sekil 3.18: TM mod ile tez konusunu olusturan geometri i¢in geri RKA grafigi,
ka=25, kb=0.5, kc=0.5, kd =25, kd, =10, kd; =15, kd,; =2.5,

kod14 =5.5, 8” :4, 8r2 =16, 8r3 :16’ 8r4 =4,
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Bu tezin konusunu olusturan geometri i¢in bu tezde calisilan algoritma ile TM
mod i¢in ileri ve geri RKA degerlerinin grafiklerinin gosterildigi sekiller sirasiyla
Sekil 3.17 ve Sekil 3.18tiir.

Calisilan algoritmanin dogrulugunu test etmek i¢in tez konusunu olusturan

Sekil 2.6’daki geometride sag yandaki dielektrik silindir i¢in bagil dielektrik
gecirgenlik ¢, =1 degerini yani bos uzay degerini aldiginda [7]’de Sekil 4 ve 5’deki
grafikler ile ayn1 sonuglar elde edilmistir.

Benzer sekilde yine calisilan algoritmanin dogrulugunu test etmek icin £,, ve
€., degerleri ¢, degerine esit alindiginda iki komsu dielektrik silindir i¢in elde

edilen sonuglar ile ayn1 sonuglara ulagilmistir.

log10(A)

400

200

Matris Ters Alma Duyarliligt

20

15

15
5 10

10 .
5 00 Matris boyutu

[letkenlik

Sekil 3.19: Tez geometrisi i¢in ¢dziilen LCDS2’nin kesilmesi ile elde edilen matris
ters alma duyarlilig:.

Bu tezin konusunu olusturan geometri i¢in dalga sagilmasi probleminin
LCDS1’1 LCDS2’ye doniistiirerek bu tezde c¢alisilan algoritma ile hesaplaniginin
matris tersi alma duyarliligini gosteren grafik, Sekil 3.19°de goriilmektedir.

Bu grafikten agik¢a goriilmektedir ki, bu tezde calisilan algoritma matris tersi

almaya daha duyarhidir ve glivenilirligi diger yontemlere gore daha fazladir.

38



4. SONUCLAR ve YORUMLAR

Bu calismada, ¢esitli eksantrik katmanl ve komsu dielektrik dairesel silindirli
geometrilerden dalga sacilmasi detayli olarak incelenmistir. Silindirik koordinatlarda
Helmholtz denkleminin ¢ozlimleri olan Bessel ve birinci tiir Hankel fonksiyonlar1 ve
[2]’deki matematik prensipler araciligiyla her bir bolgede alan ifadelerinin gelen ve
sacilan alanlarin sonsuz seri toplamlar1 cinsinden yazilmasina imkan saglanmstir.
Tegetsel alan bilesenlerinin siirekliliginin ve Fourier katsayilarinin esitligi icin
Graf’in uygun toplamsallik teoremlerinin elektrik ve manyetik alanlar i¢in sinir
kosullarina uygulanmasi1 ile Ax=b formundaki birinci tiir bir lineer denklem
sistemine ulagilmistir. Bu tezde calisilan regiilerlestirme yontemi ile elde edilen

birinci tiir lineer denklem sistemi her bir geometri i¢in uygun (L,R) regiilerlestirici
¢ifti ile /,’de I Dbirim matris ve K kompakt operatér olmak tizere

I+K)y=g;y,gc/, formundaki ikinci tiir bir lineer denklem sistemine

indirgenmistir. Boylece elde edilen bu sistem sayisal kesme yontemi ile istenen
dogrulukta ¢oziilerek cesitli geometrilerde sagilma incelenmistir.

Tezde calisilan algoritma ile cesitli geometriler icin elde edilen ileri ve geri
RKA grafikleri sayisal sonuglar bashiginda verilmistir. Coziilen ikinci tiir lineer
denklem sistemine ait ters almaya kars1 duyarlilik tezde ele alinan geometriler i¢in
sayisal sonuglar boliimiinde, bilinen bazi sonuglar ve birinci tiir lineer denklem
sistemi ile karsilastirilarak grafikler ile verilmistir. Sonuglarin fiziksel olarak
glivenilirlii ve yontemin sayisal olarak etkinli§i bu sonuglar araciligi ile
gosterilmistir.

Ileriki calismalarda, eksantrik katmanli ve komsu silindirlerin sayis: arttirilarak
etkilesimli geometriler i¢in problemler genellestirilebilir. Ayrica sadece dielektrik
silindirler i¢in degil, cesitli elektrik ve manyetik gecirgenlik degerlerine sahip
malzemeler i¢in de bu tezde calisilan regiilerlestirme yontemi ile benzer dalga

sa¢ilmas1 problemleri ¢alisilabilir.
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EKLER

Ek A: Elektromanyetik Alan Hesaplamalarinda Bazi Analitik
Kisitlamalar

Bu béliimde tezin dayandig: klasik temelleri atfederek anabilecegimiz “IEEE
TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL.
MTT-23, NO. 8, AUGUST 1975, Elektromanyetik Alan Hesaplamalarinda Analitik
Kisitlamalar, R. H. T. BATES, UYE, IEEE” makalesinin, tezin teorik biitiinliigiiniin
saglanmasima yardimci olacagi diisiiniilen kisimlar1 yer almaktadir.

Bu boliimde analitik formiilasyonlarin hesaplanmasmdaki gii¢liiklere dikkat
cekilmekte ve iki boyutlu problemler icin seri acilimi ve integral formiilasyon
yaklagimlar1 agiklanmaktadir. Ayrica tezin konusu olan inhomojen ortamlardaki
hesaplamalarin 6nemi ve orada yasanacagi ongoriilen giigliikleri ifade eden bdliime

de burada yer verilmistir.
Al. GIRIS

Dijital bilgisayarlarin gelisimi, son yirmi yil boyunca Maxwell denklemlerinin
sayisal degerlendirme i¢in kullanishh formlara doniistiiriilmesine olan ilginin
artmasina neden olmustur. Burada s6z konusu olan, artik bir seylerin hesaplanip
hesaplanamayacagr degil, s6z konusu seyin en etkin sekilde nasil
hesaplanabilecegidir. Siirgiili hesap cetvelleri ve masaiistii hesap makinelerinin
kullanildig1 zamanlarda miihendisler tarafindan hor goriilen matematiksel analiz,
pratik hesaplama agisindan 6nem kazanmistir.

Bu tezde, elektromanyetik alanlarin pasif yapilarla etkilesiminin hesaplamaya
dayali belirli yonleri ayrintili olarak incelenmektedir. Silvester ve Csendes [Al] ile
Ng [A2] tarafindan yapilan son "global" incelemelere gore mikrodalga
miihendisliginde hesaplama problemlerine getirilen diferansiyel yaklasimimn integral
yaklasgimi1 ve seri yaklagimmna gore istiin oldugu goriilmektedir. Diferansiyel
yaklagimi, dalga denkleminin dogrudan ¢oziimiinii temel alir ve sonlu farklar ve
sonlu elemanlar yontemleri [A3] ve ayn1 zamanda iletim hatt1 matris yontemleri [ A4]

ile temsil edilir.
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Burada s6z konusu olan, alan problemlerinin integral denklem formiilasyonlari
(integral yaklasimi) ve dalga denklemi i¢in uygun ¢oziimler olusturan alanlarin
fonksiyon dizileri olarak a¢ilimidir (seri yaklasimi). Son on yil boyunca genellikle
etkileyici teorik ve/veya hesaplamaya dayali destekleyici kanitlarla birlikte bir¢ok
farkli, kimi zaman ¢eligkili teknikler Onerilmistir. Cesitli Onerilerin goérece
faydaliligin1 degerlendirmek zor olmustur, ¢iinkii bunlar ¢cogu kez miihendisler icin
aciklanmas1 ya da anlasilmasi kolay olmayan muglak matematiksel nosyonlar
icermektedir.

Burada su ii¢ husus konusunda c¢aba gosterilmistir:

e mevcut yontemleri kapsayan birlestirilmis bir gelisim programi sunmak,
¢ en azindan karsilastirilmali olarak sliphe icermeyen sonuglar elde etmek,
e radyo ve mikrodalga miihendisliginde c¢alisilan alan hesaplama tekniklerini

gelistirmek i¢in en 6nemli ve uygun goriinen arastirma tiplerini dnermek.

Literatiir, birinci ve ikinci maddelerin yazarin kendi yargilarindan nispeten
bagimsiz olmasini saglayan yeterli glivenilir yaklasimlar icermektedir ama ayn1 sey
iiclincii madde i¢in sOylenemez. Ancak, bu tiir bir incelemede gelecege yonelik
arastirma olanaklarini géz ardi etmek gereksiz yere bir ¢ekingenlik olacaktir.

Tanitilmas1 gereken bir¢ok karmasik matematiksel islemin fiziksel anlamini
aciklama ve buna odaklanma yoniinde ¢aba gosterilirken analiz sadece iki boyutta
cesitlilik gosteren alanlarla smirlanmistir. Dolayisiyla burada silindirik dalgalarin
silindirik yapilar tarafindan kirinimi incelenmektedir. Prensipte yapilarin kesitsel
sekilleri veya malzeme bilesimi ile ilgili bir sinirlama yoktur.

Eksiksiz, ii¢ boyutlu bir yaklasim ¢ok daha karmasik ve zor anlasilir olacaktir.
Bunun 6nemli bir katkisinin olacag: siiphelidir, ¢iinkii alanin polarizasyonu buradaki
sorularla ilgili olarak avantaj saglayacak bir biliyiikliik degildir. Sirasiyla silindirik
dalga sisteminin eksenine paralel bir manyetik alan bileseni ve elektrik alan1 bileseni
olmayan elektriksel olarak polarize olan ve manyetik olarak polarize olan bu iki
boyutlu alanlar arasinda bir baglant1 yoktur. Iki boyutlu formiilasyonun diger bir
faydal1 yani, akustik alanlara kesin olarak uygulanmasidir.

Genis bant mikrodalga sinyallerinin pasif yapilarla olan etkilesimi giderek daha
fazla ilgi gormektedir, fakat modiilasyonlu tasiyici dalgalar kirinim hesaplamasiyla

ilgili genis bir literatlir heniiz mevcut degildir. Benzer sekilde, burada da yaklasim
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monokromatik dalgalarla sinirlidir. Zamana bagl sagilma caligmasi i¢in gelistirilen
ve bazilar1 burada temelde ele alinan bazi analitik teknikleri temel alan "tekillik seri

acilim yontemi'"ne referansta bulunulmustur [AS].

A2. BASLANGIC

Sekil A.1°de keyfi bir nokta olan P gosterilmektedir, bu noktanin silindirik
kutupsal koordinatlar1 Y ii¢ boyutlu uzaymin z=0 diizlemi olan iki boyutlu bir Q

uzayinda p ve ¢’dir. OO diiz ¢izgisi, P ’nin agisal konumunun tanimlanmasinda
faydalanilan keyfi bir bilesendir. Koordinatlarin O orijinini ¢evreleyen, kapali bir
egri olan C, Q uzaymi bir Q i¢ bolimi ve bir €, dig boliimiine aywrir. C
tizerindeki keyfi bir nokta olan Q ’nun silindirik kutupsal koordinatlar1 » ve 6’dur.
C sembolii, egrinin kendisini temsil etmesinin yam srra ayni zamanda, OO 'nin

egriyle kesistigi noktadan (veya birden fazla nokta mevcutsa, en i¢ noktadan) saatin

tersi yoniinde Olciilen Q ’da egri boyunca olan mesafeyi de sembolize eder. Q ’da C
’ye dogru disar1 yondeki normal olan v yonii, OQ c¢izgisinin uzantisiyla bir o agis1
olusturur. P ve Q noktalar1 arasindaki uzaklik R ile gdsterilmistir.

Kiime teorisi notasyonu mihendisler arasinda popiilerligini yitirme
egilimindedir ve tek amaci argiimani anlasilmaz hale getirmek olarak goriindiiglinde
bunu hak etmektedir. Fakat birinin kesin olmasini saglama gibi bir avantaja sahiptir.
Q uzayy, tipik biri P olan noktalardan olusan bir koleksiyon olarak goriilebilir. C

"deki tiim noktalarla birlikte Q_‘daki tiim noktalar ve Q, ’daki tiim noktalar Q ’daki

noktalar1 olusturur. Bu da su sekilde yazilir:

Q=0 UcCUQ, (A2.1)
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Sekil A.1: Q’daki noktalar, bdlgeler ve koordinat sistemleri, ii¢
boyutlu ¥ uzaymda z =0 diizleminde z dogrultusu kagida diktir.

Eger Z bolge ise veya Q i¢inde kesismeyen bolgelerden olusan bir koleksiyon
ise, yani Z c Q ise, P € Z notasyonu P noktasmin Z i¢inde herhangi bir yerde
olabilecegini gosterir. Aksine, P¢Z notasyonu P ’nin Z icinde olamayacagini
gosterir.

), uzay: bolimii, yarigapt », olan, O ’da merkezlenen C ’yi ¢evreleyen I',
dairesine gore Q. ve ) (swrasiyla i¢ ve dis) olarak partisyonlara ayrilmistir. Bu
Sekil A.2°de gosterilmistir ve bu sekil aynt € ’nin yaricapt » olan, O’da
merkezlenen I'  dairesine gore swrasiyla QQ  ve Q  olan i¢ ve dis partisyonlara

ayrilmaktadir. Bu partisyonlara ayirma islemi su denklemlerle 6zetlenmistir:

Q=0 Ur_ua
o -0 Ur Ua, =
Y ’de, elektrik siddeti E , manyetik yogunlugu H ve agisal frekans1 @ olan bir
elektromanyetik alan mevcuttur. Alan, z yoniinde hicbir varyasyon icermez ve
uygun sekilde, swrasiyla £, ve H_’nin sifir oldugu iki bagimsiz alana ayrilmistir.
Karmagik eksponansiyel notasyon kullanilarak ve zaman faktorii exp(jot)

bastirilarak, bu alanlarin her ikisi de burada tekil bir skaler [A6] 68e ile tam olarak

karakterize edilmistir. ¥ =W (p, @) uygun sekilde asagidaki gibi tanimlanmistir:
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E_ elektriksel olarak polarize alanlar i¢in
— (A2.3)

H_ manyetiksel olarak polarize alanlar i¢in

Keyfi bir noktast £ olan bir Q) cQ,  bolgesinde bulunan etkilenen
kaynaklardan bir birincil veya gelen alan ¥ =Y (p,9) ¢ikar. Q’nm bdliimleri
bosluktan farkl ise sagilan ya da tekrar yayilan bir alan ¥, =¥, (p, ) alani ortaya

cikar, boylece toplam alan asagidaki sekilde ifade edilebilir:
Y=Y +¥, PeQ (A2.4)

Kiime teorisi notasyonuna ¢ok asina olmayan okuyucular i¢in bu denklem sunu
ifade eder: ¥ alanin goézlemlendigi P noktast iki boyutlu Q uzaymin icinde

herhangi bir yerde ise ¥, ve ¥, ’in toplami olarak almabilir.

Sekil A.2: @ ve Q. partisyonlarina ayirma.

Dalgalarm kirinimi ve sagilmasi konusuna getirilen kullanish bir yaklasim, tim
alanlarin  bosluktaymis gibi ilerlediginin kabul edildigi polarizasyon-kaynak
formiilasyonudur [A7]. Burada kirmim gii¢lii bir bicimde, bos uzaydan farkliliklarin
oldugu yerlere denk (kutuplanmig) kaynaklar koyarak hesaba almmistir. Eger

o, =0,(p,p) 2, icinde etkilenen kaynaklarin yogunlugu ise gelen alan [A7]

asagidaki ifadeyi karsilar:

VY + kY, = -0, PeQ (A2.5)

Burada £ dalga sayisi ya da bos uzaym yayilma sabitidir.
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Uzay Q,’dan ayr1 olarak tim €, boyunca bos olarak kabul edilmistir.
Q_UC i¢inde zamanla degismeyen bir inhomojen yayilma ortammin bulunmasina
izin verilmistir. Bunun sonucunda, dogrudan Q_C boyunca ortamin elektriksel
gecirgenligi, manyetik gecirgenligi ve iletkenliginde [A7] goriilen de§isimlerden

hesaplanan polarizasyon-kaynak yogunlugu o, = @,(p,p) C egrisi disinda sifirdir:
0 =0,PeQ), (A2.6)
Burada tekrar yayilan alan asagidaki ifadeyi karsilar:
VY +k°Y, =-w, PeQ (A2.7)
Toplam kaynak yogunlugu asagidaki ifadeyle tanimlanmistir:
0=, +o, (A2.8)
(A2.4) ve (A2.6)’dan elde edilen sonug,
VY +kY =-0, PeQ (A2.9)
Eger P bir kaynak noktasi ise, yani uzaym o # 0 oldugu bir parcasi ise ve R,
P ve P noktalar1 aras1 uzaklik oldugu bdliimde bir nokta ise, o halde ¥ su sekilde

verilmektedir [A7]:

Y= ” o(p.9)g,,d0 (A2.10)

Q,uQ_Uc

Burada p ve ¢ P ’nin kutupsal koordinatlari, dQ) bir alan elemanidir ve g

iki boyutlu dalgalar i¢in Green fonksiyonunu [A6] sembolize eder:

g, =8, =—(j/HH (kR') (A2.11)
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Genelde Bessel fonksiyonlar1 [A8] icin kullanilan toplamsallik teoremine
basvurularak faydalanilan bir formda agilabilir. Ag¢ilim, Sekil A.1°’de tanitilan

notasyon c¢ercevesinde gosterilmistir:

j4gQP = H(()Z) (kR)

= 3, () H (kp) exp(jmlp—0), p>r (A2.12)

m=—00

= 3" HO (k) (kp) exp(jmlp—0)), p<r

m=—00

Burada J, (+) ve H(s) swasiyla m’inci dereceden birinci tiir Bessel

fonksiyonu ve ikinci tiir Hankel fonksiyonlaridir.

A3. SERI ACILIMLAR

Sekil A.3’te Q iginde yer alan birQ) bolgesi gosterilmektedir. () *daki bosluk
dalga denklemini karsilayan belirli bir alana y = y(0,¢) yonelik genel bir ifade

[A6]dir.
7 =0+, (A3.1)
@, = > 4,J,(kp)exp(jmp) (A3.2)
®, = > B,H, (kp)exp(jmp) (A3.3)

Burada 4, ve B, sabitlerdir. ®, icin kullanilan (A3.2) ifadesi “duran dalgalar1”
temsil edebilirken, (A3.3)’teki ikinci tiirden Hankel fonksiyonlar1 @, ‘nin 0 ‘dan

baslayarak ilerleyen “disar1 yonde hareket eden dalgalar’dan olustugunu gosterir. y

icin genel bir ifade yazmanin diger bir yolu, bunu “igeri” ve “disar1” yonde hareket
eden dalgalar olarak aymrmaktir. Bununla birlikte, (A3.2) ve (A3.3) bu ¢alismada

sirdiiriilen gelisim i¢in daha kullanighdir. Hankel fonksiyonlari, arglimanlar1 sifir
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[A8] oldugunda tekil oldugu i¢in ve fiziksel nedenlerden dolay1 alanin boslukta her

yerde diizgiin sekilde davranmasi gerektiginden su sonug elde edilir:

B =0,0eQ (A3.4)

Q boyunca, koordinatlarm 0 noktasina gore tiimiiyle disartya giden (kendi seri
acilim katsayilartyla kabul edilen degerlerinden bagimsiz olarak) alan ac¢ilimlarinin

a(Q) smifinn tammlamas: ilgi ¢ekici bir noktadir. ¥ bu smifta ise asagidaki

notasyona basvurulur:
Vea(@) (A3.5)
Bunun sonucunda;

A, =0, yea(Q) (A3.6)

Cunkii A, salt hareket eden dalgalar1 temsil etmek tlizere @, i¢in 6zel
formlarmn kullanildigini farz etmek zorundadir, aslinda, 6rnegin tiim A4, 'ler gergekse
®, salt duran dalgalar1 temsil eder.

Alanlar (A3.2) ve (A3.3)'in sag tarafindaki ifadeler gibi sonsuz dalga
fonksiyonu serileriyle temsil edilirken dikkat edilmesi gereken ii¢ temel prensip

mevcuttur.

Sekil A.3: Q bolgesi.

Birinci prensip bir giris kismi olmadan ifade edilebilir.
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¢ Birinci Temel Prensip

Sonsuz bir dalga fonksiyonlar1 serisi bir uzay bodlgesi i¢inde bir alani temsil
etmek i¢in kullanigl bir yontemdir, fakat bu ancak serinin bolge i¢inde her noktada
tek bir degere sahip olmasi durumunda yani seri bolgede her yerde yakinsiyorsa
gecerlidir (serinin yeterli sayida Ogeye sahip olacak sekilde yuvarlandiginda,
degerinin baska 6gelerin eklenmesiyle ihmal edilecek 6lciide artmasi anlaminda).

Birinci tiirden Bessel fonksiyonlari, argiimanlarinin [A8] negatif olmayan
usleri seklinde seri olarak yazilabilir. Bu nedenle, @, i¢in kullanilan seri p
maksimum yakinsaklik yarigapindan [A9] kiiciik iken bir Taylor serisi olarak
diizenlenebilir. . Bir Hankel fonksiyonunun genligi, argiimaninin genligi artarken
[A8] monoton olarak azalir ve argiimanlar1 sifir iken tiim Hankel fonksiyonlari

tekildir, boylece (A3.3)'te @, i¢in kullanilan ifade minimum bir yakinsaklik

yarigapina sahip olur. 7 ve 7, biyiikliikleri,

7 =(14)"tin RHS maks. yakinsaklik yarigap1 (A3.7)

7y = (15)'in RHS min. yakinsaklik yarigap1 (A3.8)

ile tanimlandiginda tim Q Sekil A.3'te gosterildigi gibi 7y < p<7 halkasinin

arasinda yer almalidir.

Analitik devam konsepti en ¢ok karmasik degisken teorisinde [A9] bilinir,
fakat herhangi bir boyuttaki gercek uzaylara uygulanir [A10]. Waterman [Al1],
Mittra ve Wilton [A12], Imbriale ve Mittra [A13], Weston ve digerleri ile Weston ve
Boerner [A15] tarafindan elektromanyetik teorisini etkileyerek uygulanmistir. Onemi
Millar [A16] tarafindan vurgulanan ikinci prensip, analitik devammn tekligini temel

alir [A10].

e Ikinci Temel Prensip

Q ve Zseklinde iki bolge ve Q c Z oldugunu diisiiniin; burada Z belirli bir
alanin bulundugu uzay bdlgesinde yer almaktadir. Alanin bir seri olarak temsilinin
Q bolgesi icinde gegerli oldugu biliniyorsa, fakat sonra daha genis bolge olan Z
icinde yakinsadigr goriiliiyorsa, analitik devam konseptinin tekligi, serinin Z
boyunca gecerli bir temsil olmasimni1 saglar.
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Y, 'nin asagidaki sekilde ifade edilebilmesi bu ikinci prensiple ilgili gerekli bir

sonugtur:
¥, = a,J,(kp)exp(jmp), PeQ (A3.9)

Burada, a, sabitlerdir ve ¥, kaynaklar1 timiiyle Q, < Q, i¢inde mevcut
olarak tanimlanmistir, boylece ¥, Oorijininde analitiktir. Bu nedenle, (A3.9),
(A3.3)'teki gibi hicbir serinin ¥, 'in €2 boyunca bir temsilinin parcasi olamayacagi
anlaminda (A3.3) ile uyumludur. ikinci prensibe gore (A3.9)'deki serinin maksimum
yakinsaklik yarigap1 r 'den az olamaz ¢iinkii ¥, Q,'da analitik olamaz. Dolayisiyla

Y, (A3.9)'de oldugu gibi Q  i¢inde ifade edilebilir olmalidir.

W, 'm, sonsuzluktan bir $ acisiyla 00'a gelen bir diizlemsel dalga formuna

sahip olmasi durumunda [AS],
a, = j" exp(jm89) (A3.10)

Bir alanin homojen bir kaynaksiz bolgede herhangi bir noktada tek bir degere
sahip olmas1 gerekmesine ragmen alani, bu noktay1 igeren sonlu bir bolgede temsil
etmek i¢in kullanilabilecek sonsuz sayida olas1 dalga fonksiyonu serisi mevcuttur. Bu
dalga fonksiyonlarinin neredeyse tliimiiniin fonksiyonel bagimliliginin ayrilmamis
olacagina dikkat edilmelidir, ¢iinkii sadece onbir ayrilabilir koordinat sistemi
mevceuttur.

Her ikisi de bosluk dalga denklemini karsilayan iki set dalga fonksiyonu
oldugunu farz edelim: {Vn(l”(p,go)} ve {Vnﬁz)(p,go)}. Belirli bir alanm V =V (p, o)

asagidaki gibi ifade edilebilecegi goriilecektir:

V=2 CV\ (p.9) PeL,
" (A3.11)

= > CPVP(p,p), Pe,
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Burada C" ve C% sabitler, Z, ve 7, swasiyla, iki serinin yakimlastig1 en

genis bdlgelerdir. Millar'in ¢alismalar1 [A16] {icilincli prensibin 6nemini ortaya

koymaktadir.

e Uciincii Temel Prensip

Sekil A.4'te gosterilen Z,(Z,, vb. i¢indeki tarali bolgede V' "ve V*'yi

29
birbirine gore yeniden diizenlemek faydali olur, bdylece sabit kiimesi C', C
araciligiyla belirlenebilir ve tersi de gecgerlidir. Ancak Z, ve Z,'nin kesigsmeyen

boliimleri iginde bu tiir bir yeniden diizenleme bu sabit kiimeleri i¢in tek bir sonug

olusturmaz.

V=V (p,p) seklinde, bir Z, bdlgesinde tiimiiyle digar1 giden alan oldugunu

farz edelim:

Veall,} (A3.12)

Burada Z,,, r,, yarigapli I'j, dairesinin digindaki tiim uzaydir. Bu durumda V

1+

asagidaki gibi yazilabilir:

V=> C,H?(kp)exp(jmp,), p, >, (A3.13)

m=—o

Burada C,, birer sabit ve 7, ile ¢, I';'in merkezi olan 01 orijiniyle

iliskilendirilen kutupsal koordinatlardir.

Sekil A.4. Kesisen bolgeler.
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Sekil A.5. Koordinat orijininin degigsmesi.

Eger r;, RHS'!n (A3.13) minimum yakinsaklik yarigapi ise, ¥ 'nin tekil oldugu
I',,'de en az bir nokta S, olmalidir (yani ya V', S,'de mevcut degildir veya bazi
sonlu derecelerden daha yiiksek bir derecedeki F'nin tiirevleri S,'de mevcut
degildir). Sekil A.5'te, O, noktas1 r,, yarigaph I'j, dairesinin merkezi ve p, ile ¢,

kutupsal koordinatlarin orijinidir. Ayn1 zamanda Z,, , I', 'nin disindaki tiim uzaydir.

2+

Simdi Bessel fonksiyonlar1 i¢in kullanilan toplamsallik teoremi [12] herhangi bir

derecedeki fonksiyonlara gore genisletilebilir [A8], boylece P konumu p, > p,
iken (A3.13) asagidaki sekilde yazilabilir:

V=73 C,H7(kp,)exp(jmp,) (A3.14)
C,,, =exp(jmpy,) 3 C,,J, (kpy,) - exp(=jle, + 1) (A3.15)

Bu ifade aslinda, {igiincli temel prensipte atifta bulunulan tiirden 6gelerin bir
yeniden diizenlenmesidir. Dolayisiyla (A3.15), sadece uzayin, RHS (A3.13) ve
(A3.14) ifadelerinin her ikisinin de yakinsadigi boliimiinde anlamlidir. RHSmin
minimum yakmsaklik yaricapr (A3.14) r, ile sembolize edildiginde, (A3.14)'nin

sadece p>r, i¢in gegerli oldugu ve (A3.14) ile (A3.15) ifade edilen 6gelerin
yeniden diizenlenmesinin sadece Z,, (1Z,, iginde gegerli oldugu goriiliir. Yani 7 'nin

tekil oldugu I'j,'de en az bir S, noktas1 olmak zorundadir.
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S,'in T', lUzerinde veya i¢inde olmasi gerektiginin anlasilmasi onemlidir.
Ugiincii temel prensibe gore (A3.13) Z,, (17Z,, boyunca RHS (A3.14) ile tamamen
aynidir. Buna gore eger S, 7Z,, i¢inde olsaydi, RHS (A3.14) Z,, i¢inde tekil
olurdu, fakat bu dogru olamaz, ¢iinkii 7, 'nin tanim1 RHS'nin (A3.14) Z,, boyunca
analitik olmasm saglar. Benzer sekilde S,'de I'j,'in lizerinde veya i¢inde olmak

zorundadir. Bu, V' alanmin, alani temsil etmek i¢cin hangi ifadeler kullanilirsa

kullanmlsin S, ve S,'de tekil olmasmi saglar. Koordinatlarin orijini siirekli olarak
degistirilerek stirekli kapali digbiikkey egri x, prensipte takip edilebilir, burada
tekilliklerin "digbiikey ortiisii" olarak adlandirilan ~,, ¥ 'nin tekilliklerinin disbiikey

zarfidir. Dogru digbiikey zarfin takip edilmesi gerekiyorsa koordinatlarin orijininin

ozel bir yol kiimesini izlemesi gerektigine dikkat edin.

A4. INTEGRAL FORMULASYONLARI

Tim Q dikkate alinirken tekrar yayilan alan W, ’in yeri, Q2 UC iginde
polarizasyon-kaynak yogunlugu olarak kabul edilmistir. Bunun birlikte sadece 2,
dikkate alimirken ¥,, C'deki esdeger kaynaklar anlaminda ornegin, Baker ve

Copson [A17] tarafindan gosterildigi gibi uygun sekilde ifade edilebilir. [Al]’e ve

onceki tanimlara bakilir ve sonra asagidaki denklemle tanimlanan [ = (p,p)

ifadesi degerlendirilir:

F = [[]eaV’®,— 0,V [d0 (A4.1)

Q

Burada Snoktast dQ alanma ait 68enin i¢inde yer alr ve P, Q’da [F’in
hesaplandig1 noktadir. Simdi, P noktas1 § ile ¢arpismadig: siirece g, analitiktir

yani normal veya iyi kosullanmis, boylece (A4.1)’deki integrand sadece P 'nin

komsulugunda analitik olamayabilir ve x, ile gosterilir. Green'in g, fonksiyonu,

alan S kaynagindaki bir noktada yayilmis olarak diisiiniilebilir, boylece [A6];

Vigy +k'gy =—0g, PEQ (A4.2)
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Burada 6, , iki boyutlu delta fonksiyonudur:

5,d0= [[6,d0=1 (A4.3)
- Jfs

Q

(A2.6), (A2.7), (A4.2) ve (A4.3)'dan anlasilacag: gibi (A4.1), asagidaki sekilde

yazilabilir:
Fi(p.0)= [[ ,8,d2=W,(p,0), PEQ, (A4.4)
Clinkii;
gV’U =V-(gV¥)—-Vg-VV¥ (A4.5)

Esitlik (A4.1) asagidaki gibi yazilabilir:

F = [[V-(g5V¥, ¥ Vgy,)d0 (A4.6)
Q,

Sekil A.l'de gosterilen notasyona bakildiginda bu denklemin 1raksama

teoreminin yardimiyla asagidaki ifadeye doniistiiriilebilecegi goriiliir:

e f
C

og o (p,
U, (pp) 2 g Iy pegq (A4.7)
ov ov

Burada dC, yaym C boyunca olan diferansiyel elemanidir. Yiizey
integralinden Q iizerinden Q’y1 cevreleyen kontur boyunca ¢izgi integraline
doniistiirme durumunda, sonsuzda bir daire boyunca bir ¢izgi integrali ve C boyunca
cizgi integrali mevcuttur. Fakat sonsuzdaki integral ortadan kaybolur, ¢ilinkii hem
g, hem de W, sonsuza giden tiptedir. Bu, inlii "Sommerfeld radyasyon
kosulu"dur (Ausstrahlungsbedingung) [A6], [A17]. (Ad4.4)ve (A4.7) esitlikleri

birlestirildiginde su sonug elde edilir:
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Ogor OV (r,0)

v, (r,0) EY Eop o

v, =
C

]JC, Peq), (A4.8)

Esitlik (A4.3) ve Sekil A.1'in notasyonu kullanilarak (A2.5) su sekilde

yazilabilir:

VU, + K0, =~ [ [ w,6,,d0 (A4.9)
Q

Burada w, , w,'m §),'da F, noktasindaki degerini gosterir. (A4.1)'deki 1 alt

simgesi 0 alt simgesiyle degistirildiginde ve (A4.1)'den (A4.4)'e gotiiren mantik
tekrar uygulandiginda asagidaki ifade elde edilir:

F, =0, P (A4.10
0 +

Cunkii Q,’daki W nin kaynaklarindan elde edilen katkilar asagidaki bileseni

iptal eder:

[[ v a9 (A4.11)

Esitlik (A4.5) ve (A4.7) ile analoji yapildiginda su sonug elde edilir:

og ov, (r,0
\Ifo(r,H)a—ip — 8o g%)]dc, PeQ, (A4.12)

J

C

Esitlik (A4.8) ile (A4.12) birlestirildiginde C’deki toplam alan ve buradaki
normal tiirevi anlaminda tekrar yayilan alan i¢in bir ifade elde edilir. Alanin normal
tirevine olan orani, burada asagidaki gibi temsil edilen normalize edilmis bir

empedans olarak goriilebilir:

Z:\I/(r,é)/a\lja(;’e) (A4.13)

Bu genelde C boyunca farklilik gosterir:
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Z=7(r8)=2(C)=2, (Ad.14)

Z ’nin fonksiyonel bagimliligmni ifade eden bu farkli notasyonlar daha ileride

faydali olacaktur.

(A2.4), (A4.8), ve (A4.12)-(A4.14) birlestirildiginde su notasyon elde edilir:

v, :f[gQP_ZQ agQP/aV]F(C)dC, Peq, (A4.15)
C

Burada tekrar yayilan kaynaklarin lineer yogunlugu F(C) su sekilde

tanimlanir:

F(C)=—0%(r,0)/0v (A4.16)

F(C)’nin, C Kkesitine ait sonsuz silindirin cidarindaki esdeger yiizey
akimlarmin yogunluguyla orantili olduguna dikkat edilmelidir. Elektriksel ve
manyetik olarak polarize olan alanlar i¢in F(C), sirasiyla esdeger elektrik ve
manyetik yiizey akimi yogunluklariyla orantihidir. F(C), mikemmel iletken
silindirler icin asil yiizey akimi yogunluyla orantilidir. Miikemmel bir iletkenin

Uzerinde manyetik yiizey olamayacagmi hatirlaym, bu durumda Z,F(C),alan

manyetik olarak polarize edildiginde elektrik yiizey akimi yogunluguyla orantili olur.
Z =wiken (A4.15)’deki integrandin anlamiyla ilgili her tiirli belirsizligi

gidermek icin asagidaki tanim gereklidir:

F(C)=0 ve Z,F(C)=G(C) Z,=o0 oldugunda (A4.17)

Burada G(C), C’deki tekrar yayilan kaynaklarin yogunlugunun alternatif bir
tanimidir, C’nin 1yi bir fonksiyonudur.

Z, Q_’deki alan ile kabul edilen forma baghdir, yani genel olarak i¢ ve dis (C
ye gore) alanlarin dogru olarak hesaplanabilmesi i¢cin birlikte ele alinmalidir.

Bununla birlikte, 2_ U C ’de bulunan ortam ¢ok yansitici veya ¢ok kayiph ise Z,
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onceden belirtilebilir [A18]. Ozellikle, eer ortam tamamen yansitict 6zellikteyse
(6rnegin C sonsuz, miikemmel iletken bir silindirin kesitidir) Z, alanin elektriksel
veya manyetik olarak polarize olmasina bagli olarak sirasiyla sifir veya sonsuz olur.

Z ve ¥ belirtildiyse, ¥, €, ’da belirlenmesi, uygun sekilde formiile edilmis

bir siir deger problemidir ve (A4.13) ve (A4.15)’den tiiretilmis bir integral denklemi
olarak kabul edilebilir:

g g .
gQ,Q -7, gQQ, F(C)dC
ov ovov

Z
0

ov .
o

v+ f [g oo — 2000y /au}F(C)dc
C

(A4.18)

Burada \IJOQ,, C’de ¥,’in Q noktasindaki degeridir, burada C ydniindeki

disar1 dogru normal yon, v yoniidiir. (A4.18) notasyonundaki bilinmeyen, bir dizi

farkli moment yontemiyle [A19], [A20] sayisal olarak degerlendirilebilen F(C) dir.

F(C) belirlendikten sonra W¥,, F(C)’nin (A4.15)’de yerine konmasiyla

19
hesaplanabilir.

Y, ’1 agisal bir Fourier serisine agmak genelde uygun bir davranistr, fizikgiler

bunu "kismi dalga agilimi" olarak adlandirir. Bunu yapmak i¢in 6nce C’yi, Q’nun

radyal koordinatmin, alanin incelendigi P noktasinin radyal koordinatindan kiiciik

veya biiyiik oldugu pargalara ayirmak gerekir:

C=L UL, (A4.19)
p<roldugundaQe L (A4.20)
p=>r oldugunda Q€ L, (A4.21)

Hem L hem de L, ‘nmn P konumunun fonksiyonlar1 olduguna dikkat
edildiginde;
L. =L.(p) (A4.22)
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Sekil A.2 incelendiginde su ifadeler goriiliir:

L =¢vel =C, PeN),, (A4.23)
L. =¢vel =C, PeQ__ (A4.24)

Burada ¢, sifir kiimesini, 6rnegin uzayin hi¢bir nokta bulunmayan bolgesi,

temsil eder.

Daha once tanimlanan yx biiylikligline donmek ve bunu tim Q boyunca

asagidaki ifadeyle tanimlamak uygun olacaktir:

X:f[gQP_ZQ 0g,p /OV|F(C)dC, P€Q (A4.25)
C

Esitlik (A4.15) ile yapilan karsilastirmada asagidaki goriiliir:

x=Y,, PeQ, (A4.26)

Simdi, swrasiyla (A3.2) ve (A3.3) esitliklerinde gordigimiz @, ve @,
biiylikliiklerinin tanimlarmi genisletmek gerekiyor. (A3.2) ve (A3.3)’teki seriler
oldukga genel tiptedir, fakat agilim katsayilarini ( 4, ve B, ) sabit olarak secmek, Q

gibi sadece belirli bolgelerde faydalidir. Sunlar1 tanimlayalim:

= S A (0, (kp)exp(jmy) (A427)
D= 3 N (p)H (kp)exp(jme) (A4.28)

Sekil A.1’deki notasyondan ve (A2.12), (A4.14), (A4.19) ve (A4.22) ile
(A4.25)’den su sonugclar elde edilir:

A (p) = f F(C)H® (k,r) exp(— jm0)dC (A4.29)

L_(p)
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A (p) = f F(C)J, (k,r)exp(—jm0)dC (A4.30)

L, (p)

H ve J'deki tildalar kisa notasyondur:
a7 1 . .
W sy = W, (k) =~ K[, (k) exp(jo) =, (k) exp(—ja) | 2(C) (A4:31)

Burada W, J veya H temsil eder. Onceki sonuglar1 teyit etmenin en kolay

yolu, (A4.25)’deki g,,’yi, v ye gore diferansiyel almadan 6nce toplama teoremi

(A2.12) ile agmaktir. (A4.23) ve (A4.24)’ye ait referans sunlar1 gostermektedir:
A(p)=4, 2(p)=0, PeQ_ (A4.32)
2(p)=B, 2,(p)=0, PeQ., (A4.33)

Buradaki 4, ve B, ’yi (A3.2) ve (A3.3)’te gormiistiik. Daha sonra (A4.26)

aracilifiyla, (A3.5)’de sunulan notasyon kullanilarak su sonuca ulagilir:
Y, ea{Q,,} (A4.34)

(A3.6) ve (A4.26)-(A4.33)’a bakildiginda, (A4.34) notasyonunun asagidaki

sonucu sagladig1 goriiliir:

Y, = z B, H? (kp)exp(jmp), PeQ,, (A4.35)

m=—om

(A3.14)’nin (A3.13)’ten aldig1 analitik devam prosediirii sadece bir alanin

tekilliklerine ait x, digbiikey Ortiisiinii takip edebilir. Tekilliklerin ger¢ek

ortlistinde i¢biikeylikleri (mevcutsa) izole etmek icin farkli bir prosediire [Al12]-
[A15] ihtiyag¢ duyulur.

Ikinci temel prensipten (A4.35)’in RHS nin, 0°’da merkezlenen ve yarigapi r,

olan I'; dairesinin digindaki tiim © i¢in W, ’in analitik devaminin gegerli bir temsili
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oldugu sonucu elde edilir; burada p, (A4.35)’in RHS’nin minimum yakmsaklik

yarigapidir. Ancak ¥, ’in analitik devamini 0°da merkezlenen ve yarigapt 7 olan T’
dairesinin i¢ kism1 boyunca temsil etmek i¢in farkli bir ifadeye ihtiya¢ duyulur ve bu
Sekil A.6’da gosterilmistir. T'’nin hem I'y, hem dex, ile kesistigine dikkat edin.
(A3.14) tiiretilirken bagvurulan toplamsallik teoremi kullanilarak (A4.35)’in

RHS’nin I ’nin i¢ kismi yoniindeki analitik devami su sekilde bulunur.

> A, (kr)yexp(jmy), 1 <7 (A4.36)
4,= . BHP, (kp)exp(jnp) (A4.37)

Burada /Nlm , Iy ile I’nin i¢ kisimlarmin kesisimi icinde (A4.35) ve (A4.36)
‘nin karsilastirilmasi yoluyla belirlenir.

Eger 7 RHS’nin maksimum yakinsaklik yarigap: ise (A4.36), T’ en az bir
noktada x’ye teget olmalidir. Bu nedenle, daha 6nce belirtildigi gibi, alanlarin
tekillikleri tek oldugu i¢in, ', & ’nin i¢c kismiyla kesisemez. Aslinda x ancak & ’nin
kendisi i¢biikeylikler igeriyorsa x ’nin i¢ kismiyla kesisebilir.

Toplamsallik teoreminin arka arkaya uygulanmasiyla ¥,, x’nin dig kismi
boyunca analitik olarak devam ettirilebilir.

C’nin Sekil A.7°de (,’da oldugu gibi keskin bir koseye sahip olmasi
durumunda x kosede C ’ye neredeyse her zaman deger. Sekil A.7°de gosterilen

kutupsal koordinatlar » ve ) kullanilarak Q,’in komsulugunda €2, ’daki toplam

alanin agagidaki formda [ A6] ifade edilebilmesi gerekir.
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Sekil A.7: Bir kosesi olan C egrisi.

Y= Z c,J, (kr)sin(u,y +6,) (A4.38)
m=1

Burada c, ’ler birer sabittir ve 1, , O, komsulugunda ylizey empedanslar1 Z,
v =0da vey =(27 — ) ’da tanimlanan sinir kosullarini karsilar. Boylece u, ve®, ,

sirastyla ;o ve 6 'nin degerleridir ve bunlar da asagidaki denklemi karsilar:
uzZ =tan(@) uz,=tan([27— B1+0) (A4.39)

Burada, W fiziksel alanmm y =0’da sonlu olmasi gerektiginden, ;. 'niin
gercek kismi negatif olmamalidir. C boyunca Q,’dan itibaren olan 6l¢iim mesafesi,
ylizey-kaynak yogunlugu (A4.16) ve (A4.38) araciligiyla asagidaki ifadeyle

verilmistir.
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F(C)= éZFm‘Jﬂm (-kC), C<0
m=1
A4.40
L ( )
=—> F.J, (kC), C>0
C p— m

En azindan Q,’m komsulugunda, burada F, sabitleri asagidaki ifadelerle

verilmistir.
F =-u.c, cos(0) (Ad4.41)

F'=uc, cos([2n - plu, +6,) (A4.42)

m

C’nin analitik olmasi ve Z’nin C boyunca analitik olarak degismesi
kosuluyla, ikinci temel prensibe gore, (A4.40)’daki seriler, C ’nin serilerin
yakinsadig1 degerleri i¢in F(C) 'nin gegerli temsilleridir. Eger C;, C boyunca Q,
’dan Q,’e kadar olan mesafe ise ve C;, (A4.40)’daki ikinci serinin yakinsaklik

yaricapi ise su denklem gegerlidir:
F(C)= %Z FyJ, (kC), 0<C<C, (A4.43)
m=l

Bessel fonksiyonlarmnin [A8] dogasi geregi, tiimp, ’ler pozitif tamsayilar
olmadig1 siirece F(C)’nin Q,’da analitik olmaya son vermek zorunda olmasinin

anlasilmas1 6nemlidir.
AS. INHOMOJEN ORTAMLAR

Pratik hesaplama bilgilerinin temelini neredeyse tamamen homojen ortamlara
gomiilmiis milkemmel iletken nesneler tarafindan kirinim  ¢alismalari
olusturmaktadir. Inhomojen ortamlarla ilgili belirli problemler diferansiyel
yaklasimla basarili bir sekilde ¢oziilmiistiir. Ik olarak mikrodalga miihendisligi igin
Richmond [AS58] tarafindan sistematik bir hesaplamaya dayali bir yontem olarak

gelistirilen bir integral yaklasimi olan polarizasyon-kaynak formiilasyonu, bir dizi
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basarili ¢coziimiin [A7] elde edilmesini saglamistir ve 6zellikle dielektrik ytiklii dalga
kilavuzlari i¢in kullanigl formiiller saglamaktadir.

James ve Gallett [A53], [AS59] tarafindan elde edilen son sonuglar hesaplama
acisindan biiyiik bir 6neme sahip olabilir, ¢linkii bunlar Rayleigh hipotezinin
basarisiz olmasinin sonuglarinin penetre edilebilir ortamlar i¢in milkemmel iletken
yapilara gore daha az kritik oldugunu gostermektedir.

Inhomojen ortamlarla ilgili kirmim problemlerinin sayisal olarak dogru
degerlendirilmesi i¢in genelde asir1 diizeyde hesaplama g¢abalar1 gerekmektedir, bu
ylizden hesaplamalar1 hizlandiran yontemler memnuniyetle karsilanmaktadir. James
ve GQallett'in dielektrik dalga kilavuzlarmmn alanlarina yonelik nokta eslesmeli
¢oziimlerini diizeltme yontemi [A59] bu baglamda ilgi cekicidir. Ozdegerler ve
alanlarin diizeltilebilmesi durumunda bu yontemin olduk¢a ©nem kazanacagina
dikkat ¢ekmek isteriz (6rnegin, kesin polarizasyon-kaynak formiilasyonu gibi sayisal

bir ¢dziimiin temelini olusturan hesaplama siiresini arttirmadan).
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