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ÖZET 

Bu çalışmada çok katmanlı eksantrik homojen dairesel silindirlerden 

monokromatik elektromanyetik dalga saçılmasının bilinen analitik formülasyonunun 

regülerizasyonu incelenmiştir. Bu formülasyonun regülerizasyonunun gerekli olduğu 

görülmüştür. Ele alınan problem integral formülasyonunu ve daha önce iki 

mükemmel iletken dairesel silindirden saçılma için yapılan sonucun genişletilmesini 

temel almaktadır. Çalışmalar silindirlere paralel eksenler boyunca 

gerçekleştirilmiştir. Böylece iki boyutlu bir problem incelenmiş ve çalışmalar her iki 

polarizasyon için geçerli olmuştur. Sonuçta oluşan cebirsel sistem 

2(I + K)y = g, y,g l  şeklinde ikinci tür bir lineer denklem sistemidir. Burada I  2l  

uzayında birim operatör ve K  2l  uzayında kompakt bir operatördür. Bu tür bir 

saçılma probleminin çeşitli geometrik ve elektrik parametrelerini içeren uzak ve 

yakın alanlar için elde edilen sonuçlar anılan teknik ile doğrulanmıştır. Regülerize ve 

regülerize olmayan sistemlerin matris ters alma duyarlılığını içeren sayısal sonuçlar, 

sadece regülerize sistemin yüksek frekanslar için sayısal olarak kararlı sonuçlar 

verdiğini ve çözümün fiziksel güvenilirliğini içeren büyük cebirsel sistemin 

boyutunu göstermiştir. 
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SUMMARY 

The regularization of the well-known analytical formulation of the 

monochromatic electromagnetic wave scattering by a few eccentrically multilayered 

homogenous circular cylinders is presented. It is found out that a regularization of 

this formulation is absolutely necessary. The regularization is based on the integral 

formulation to the mentioned problem and extension of the work done for scattering 

from two perfectly conducting circular cylinders. The illumination is performed 

parallel to the longitudinal axes of the cylinders, thus a two dimensional problem is 

under consideration and for both polarizations. Resulting algebraic system is of the 

second kind i.e. 2(I + K)y = g, y,g l where I  is the identity operator and K  is a 

compact operator in l2. The technique is validated by existing results such as near and 

far fields obtained under various geometrical and electrical parameters of this kind of 

scattering problem. Numerical results including the condition numbers of the 

regularized and non-regularized systems show that only regularized system gives 

numerically stable results for high frequencies and big algebraic system sizes with 

ensuring the physical reliability of the solution. 
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1. GİRİŞ 

Elektromanyetik alanında doğrudan sayısal çözücülerin (örneğin; momentler 

yöntemini temel alanlar gibi) rağbet görmesinin sebebi büyük ölçüde, neredeyse her 

mühendislik probleminin çözülebildiği yeni bir dönemdeki hesaplama becerileridir. 

Bu algı mantıklıdır, çünkü son dönemdeki literatürde mühendislik 

elektromanyetiğinin modellenmesiyle ilgili problemlere sayısal olarak oldukça güçlü 

bir şekilde yaklaşılmıştır. Bu tür çözümler kurulması ile ilgili kaygılardaki 

değişikliklerin son 50 yılda analitik formülasyonların bilgisayarda etkin bir şekilde 

uygulanmasından kaynaklanan bir evrimle başladığı görülmektedir [1], [2], [3]. 

Ayrıca doğrudan sayısal çözücüleri temel alan bu tür modern yazılımların geliştiricisi 

veya kullanıcısı olmayla ilgili temel notasyonlar, analitik formülasyonların 

perspektifinden başlayarak elektromanyetik olayın anlaşılmasını gerektirmektedir 

[4]. Dahası; sadece nanoteknoloji, metamateryal bilimi ve fotonik gibi yeni 

alanlardaki uygulamaların ortaya çıkması değil, aynı zamanda dalgaların 

kılavuzlanması, biyoelektromanyetik, manyetik, akustik ve enerji iletim hatlarının 

tasarımındaki uygulamalar da [5]-[22] hâlen önemli problemlerin analitik olarak 

modellenmesini gerektirmektedir. Bütün bunlar dikkate alındığında, analitik bir 

modelin sayısal olarak uygulanmasındaki herhangi bir zorluğun azaltılması, ilgili 

alanlar için maksimum düzeyde önem taşımaktadır. 

Yayın [2]’de, inhomojen ortamlarla ilgili kırınım problemlerinin araştırılması 

için gereken hesaplamaya yönelik çabalarda süreci hızlandıracak her türlü tekniğin 

olumlu karşılanacağı öngörülmüştür. Bu çağrı yanıt bulmuş ve hesaplama gücü son 

on yıl içerisinde, bu tezde de ele alınan inhomojen ortam probleminin karmaşıklığı 

için daha o zamanlar [6]'de sayısal sonuçların elde edildiği bir seviyeye ulaşmıştır. 

Tipik olarak söz konusu teknikte Green'in formülü temel alınmakta ve birinci türden 

ilgili sınır integral/integral-diferansiyel denklemleri elde edilmektedir [3]. Bu tür 

denklemler söz konusu olduğunda, modern bilgisayarların müthiş bellek ve işlemci 

kaynaklarına rağmen doğrudan sayısal yöntemlerin çözümlerini stabilize etme 

anlamında çok kritik olan bir gerçek söz konusudur: Enerji dengesi ve sınır 

koşullarının karşılanmasıyla ilgili kriterler ikincil derecede önemlidir [3] ve [6]'da 

sağlanan çözümün güvenilirliğiyle ilgili kontroller ve diğer birçoğu da bu kategoriye 

girer. Çünkü [3], [24]'te ele alındığı gibi, yuvarlama hatalarının olmadığı güvenilir ve 
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stabil bir çözüm elde etmenin tek pratik yolu, yuvarlanmış cebirsel sistemin matris 

ters alma duyarlılığının kelime uzunluğuna (diğer bir deyişle standart PC için 53 bit 

veya 16 ondalık rakam) ulaşmaması (tercihen) veya bu değeri aşmamasıdır (yani 

anlamlı rakamlar elde edilmez). Bu gerçek, [1] ve [3]'te kullanılan yaklaşımlarda 

doğrudan ve [2]'de dolaylı olarak dikkate alınmıştır. Bu nedenle bu çalışmada hedef, 

herhangi biri diğerini içerebilen Şekil 1.1.a) ve benzer bir konfigürasyona komşu 

olabilen Şekil 1.1.b) dielektrik silindirlerin kesişmeyen dairesel sınırlarının 

oluşturduğu bir birleşimden saçılmaya ilişkin iyi durumda bir formülasyon 

sunmaktır. 

Şekil 1.1.a) ve Şekil 1.1.b)'deki temel problemlerin çözüm prosedürü burada 

sunulmuştur. Eksantrik olarak (eş eksenli olmayan şekilde) çok katmanlı şekilde 

düzenlenmiş keyfi sayıdaki dielektrik silindirler için sunulan tekniğin genellenmesi 

görünüşte kolaydır ve sayısal sonuçlar başlığında örneklerle gösterilmiştir. 

Formülasyonda, gerektiğinde [2] incelemesine atıfta bulunulacaktır. [3]'te ele alınan 

avantajlara sahip iyi durumdaki sistemin tarifi, [1]'in ölçekleme tekniği ile 

verilecektir. [1]'deki regülerleştirme, komşu iki mükemmel iletken dairesel silindir 

için önerilmiştir. Bu yaklaşımın eksantrik olarak katmanlı ve komşu iki dielektrik 

silindiri içeren durumla ilgili sıra dışı açılımı bu yayında uygulanmıştır. Aşağıda, 

önerilen yaklaşımın faydalı olabileceği uygulamaların kısa bir incelemesini 

bulacaksınız. 

Yayın [5] çok katmanlı olarak düzenlenmiş eksantrik dairesel silindirlerle 

ilgilidir ve doğrudan mod eşleştirme olarak anılacaktır ve [2]'deki seri açılımlara 

(SA) uygundur. [2]'deki endirekt mod eşleştirme yaklaşımıyla birlikte [6]'daki 

integral formülasyonun (İF) kapsamında geliştirilmiştir. İF, bu çalışmada ve aşağıda 

atıfta bulunulan bazı tezlerde kullanılmıştır. Örneğin çoklu engellerden [4] saçılmayı 

ayrıntılandıran T  matris yaklaşımı, [7] ve [8]'de alanların analitik temsili ve bunların 

dairesel silindirik koordinatlarda etkileşimi kullanılarak dairesel silindirik saçılmayla 

kısıtlanmıştır. [9]'da, [2]’de de incelenen durum değişkeni formülasyonu, kesin 

olarak birleştirilmiş dalga analizi için kullanılmış ve [5]'in birkaç durumunda 

karşılaştırma yapılmıştır. Akustik saçılmada, dikkate alınan problem de ilgi görmüş 

[10] ve elde edilen çözümlerin doğruluğuyla ilgili hesaplamaya yönelik sınırlamalar 

son dönemde eş eksenli (concentric) çok katmanlı durumlarda bile rapor edilmiştir 

[11]. [2]'deki temeller, çoklu iletkenli dairesel silindirik dalga kılavuzlarının [12], 

[13] modlarını belirlemeyle ilgili çalışmalarda bir temel yapı oluşturmuştur. 
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Metamateryaller ve boşluk-plazmon dalga kılavuzlarındaki uygulamalar ve 

teknikler [14], [16]'da ele alınmıştır. [17], [19]'dan anlaşıldığı üzere, bu tezde ele 

alınan inhomojen dielektrik ortamların düzgün şekilde modellenmesi mükemmel 

iletken (PEC) yuvalı dairesel silindir konfigürasyonlarına yönelik daha karmaşık 

yaklaşımlar için esneklik sağlayabilir. Çeşitli anten uygulamaları örneğin, [20] ve 

elektriksel olarak iletken sonlu ortamlar [21], [22] bobin sargılı boruların ve üç 

damarlı ekranlanmış denizaltı kablolarının modelleri için eksantrik dairesel 

modelleme ihtiyaçları karşılanabilir. 

1.1. Tezin Amacı, Katkısı ve İçeriği 

Yayın [5]'te olduğu gibi SA kullanımı, çözümü tek olarak elde etmek üzere, 

çevreleyen dairenin merkezinin çevrelenen dairenin içine yerleştirilmesini 

gerektirdiği için sınırlıdır [2]. Diğer taraftan İF, SA'ın bahsedilen dezavantajı 

olmaksızın daha esnek bir seçenek sağlar. Helmholtz denkleminin dışa doğru hareket 

eden dalga çözümlerini, belirli bir bölgede, SA'da neden olduğu gibi hareketi 

sonlanandan ziyade [2] ve [6] yerine, harekete başladığı dairesel sınırın kutupsal 

koordinat sisteminde [2], [5], [7] şeklinde temsil etmek yeterlidir. Sonuç olarak, 

kesişmeyen fakat keyfi olarak yerleştirilen aynı türden çoklu dairesel katmanlar 

içeren ve eksantrik olarak katmanlar şeklinde düzenlenen dairesel silindirik bölgeler 

için çözümü tek olarak bulmak olanaklı hale gelir [2]. 

 

 

 

 

 

 Şekil 1.1: Kesikli çizgiler ile gösterilen sınır ( 0)m  sonsuzun hayali sınırını 
göstermektedir, a)İki katmanlı silindir, b)İki komşu silindir. 

a) b) 
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Bu türden en karmaşık konfigürasyon bile Şekil 1.1.a) ve Şekil 1.1.b)’de 

gösterilen iki duruma indirgenerek analiz edilebilir. Özellikle Şekil 1.1.a) ve Şekil 

1.1.b)’deki konfigürasyonlar anlamında nihai lineer cebirsel sistemin ilgili bloklarını 

oluşturma algoritması aşağıda gösterilmiştir. Tüm formülasyon, TE modu 

formülasyonu ve çözümü çok benzer bir şekilde gerçekleştirilebildiğinden TM modu 

için olacaktır. 

Şekil 1.1.a) ve Şekil 1.1.b)’de, mO  noktaları, iki dairesel sınır (DS) ( 1,2)m  

için kutupsal koordinat sistemlerinin merkezlerine ait konum vektörlerini temsil eder 

 ,m m  . Ayrıca sonsuzda 0m  olan sanal bir sınırın olduğu da kabul edilmektedir. 

Tüm DS'lar x y  düzlemini indisi 0,1,2j   olan bölgelere böler; burada j , j m  

bölgesindeki kapalı katman bölgeleri hariç m   indisli DS içindeki bölgeyi etiketler. 

Tüm ortamların dielektrik sabiti j  ve manyetik geçirgenliği j  genel olarak 

karmaşık değerli büyüklüklerdir. Bilindiği üzere tüm manyetik alan bileşenleri zE  

aracılığıyla ifade edilebilir. Toplam zE  tüm bölgelerde dışa doğru hareket eden ve 

duran dalga bileşenlerinden oluşur. İF, DS'ı bu alanlarla,   sırasıyla " "R  ve " "T ’ye 

eşit olmak üzere önceki, m  indisli DS'dan yansıtılan, sonraki de m  indisli DS 

üzerinden iletilen bileşen olarak yorumlanabilecek şekilde ilişkilendirir: 

 

         
       

 

 
 

 

,

,

,

,,

,

;0  'da hayali sınır için

,  ,
, ,

, , , 0,1,2

,

m

m

m
m

m

m

R T
z z z

z

k dışarıda m R
k

k içeride m T

mm m m m m m

inkm m mn n
n

E E E

E Z e




     

    





 
  






  











  (1.1) 

Metin boyunca monokromatik elektromanyetik dalgaların zaman bağımlılığı 
i te   olarak kabul edilmiştir. Burada,  1/2

( , ) ( , ) ( , )m m mk      , ortamın m  indisli 

DS’ın   dışa doğru normal yönündeki dalga sayısıdır, ( ) ( )nZ t  T   için Bessel 

fonksiyonu ( )nJ t  ve R   için Hankel fonksiyonu (1) ( )nH t ’dur ve ( )m
n  sınır 

koşulundan (yani m  indisli DS üzerinde zE  ve H  teğetsel alanların sürekliliği) 

bulunacak katsayılardır. Gelen alan ve (0) 0nR   için sadece (0)
nT ’ın bilindiği kabul 

edilmektedir. Koordinat farkları için kullanılan vektör kutupsal koordinatlarda 
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12 12 2 1( , )d12d O O    olarak tanımlanmıştır. Koaksiyel dairesel silindirik 

dielektrik katmanların analizinden bilinen sınır koşulları sağlandıktan sonra elde 

edilen aşağıdaki fonksiyonları dikkate alalım [4]: 

 

         
         
         
   
 
 

 

(j,l) (1) (1)
n n n n nj j jl l l
(j,l)
n n n n nj j jl l l
(j,l) (1) (1) (1) (1)
n n n n nj j jl l l
(j) (j, j)
n n j j j j j j j

12
n,s

s21
n,s

P ρ = β H k ρ J k ρ - β H k ρ J k ρ ,

Q ρ = β J k ρ J k ρ - β J k ρ J k ρ ,

T ρ = β H k ρ H k ρ - β H k ρ H k ρ ,

W ρ = -P ρ = 2iβ / πk ρ, β = 1 / , /

F ρ
= F ρ

F ρ

   

 
 
 
  



 

 



    12i(s-n)θ
n-s
s-n

n 0,±1,±2,...Z k e , =s 0,±1,±2,...


 
 
 

  
        

12d

 (1.2) 

İfade (1.2)’deki her fonksiyonun, karşılık gelen DS'ın kabul edilen merkeziyle 

ilişkili Rayleigh harmoniklerinin radyal kısımlarının bir süperpozisyonu olduğuna 

dikkat edelim. Burada '  ilgili argümana göre türevi göstermektedir. Bölge indisleri 

j  ve l ’nin değerleri 0,1,2  arasından seçilir. Dikkate alınan iki sınırın her birinin 

formülasyonu, gelen kaynak alan (kendisi) tarafından indüklenen saçılan alanın ve 

diğer sınıra ait saçılan alanın (etkileşim) değerlendirilmesini gerektirir. İfadeler, 

yukarıda belirtildiği gibi her DS’ın sınır koşulu için (1.1)’de verilen formda yazılı 

olarak tüm bölgelerde yansıtılan ve iletilen dalgalardan elde edilir. F  ile (1.2)’de çift 

indisle belirtilen fonksiyonlar DS’lar arasındaki etkileşim için kullanılan 

şablonlardır. Bunlar, karşı DS ile ilgili DS'ye Graf'ın, Bessel ve Hankel 

fonksiyonlarına [23] yönelik toplamsallık teoremi ile dönüştürülür. Bu, birleştirilen 

iki DS'ın her birinde Fourier katsayılarının eşitlenmesini kolaylaştırır. Bunun, 12d

’nin skaler değerleriyle çalışmak için yeterli olduğuna dikkat edilmelidir.   

parametresi Şekil 1.1.a)’daki gibi bir içerme mi ( )I   yoksa Şekil 1.1.b)’deki gibi 

bir komşu mu ( )N   olduğunu gösterir. Böylece ( ) ( )nZ t  I   için Bessel 

fonksiyonu ( )nJ t  ve N   için Hankel fonksiyonu (1) ( )nH t  olur. Ayrıca birleşmenin 

gerçekleştiği ortamın dalga sayısı k  ile gösterilir; burada 1k I   için ve 2k N   

içindir.  
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TE polarizasyon durum çözümleri, sadece (1.1) ifadesindeki zE  yerine zH  

alınmasına ve (1.2) eşitliğinde j j   olmasına dikkat edilerek TM polarizasyon 

ifadelerinden kolayca elde edilebilir. Burada m  indisli DS’da zH  ve E  teğetsel 

alanlarının devamlılığı bastırılır. 

Eşitlik (1.2)’de tanımlanan fonksiyonlar (1.3) ve (1.4)’de birinci tür lineer 

cebirsel denklem sistemini (LCDS1) [3] oluşturmanın anahtarıdır. Şekil 1.1.a) ve 

Şekil 1.1.b)’deki konfigürasyonlar için bu tür bir sistem oluşturmada kullanılan 

algoritma aşağıda verilmiştir. Burada amaç, keyfi bir karmaşık konfigürasyon ait 

LCDS1’i Şekil 1.1’deki iki temel durumdan birine indirgenmiş kümeler ile ifade 

etmek ve bunların temel LCDS1 matris bloklarını süperpozisyon yoluyla 

kullanmaktır. Bu tür LCDS1’ler ll ll ll
mm mm mmA x = b  

    matris formundadır: burada 'mm  

söz konusu iki DS’dır ve '11  sırasıyla ' (1 1)I   ve ' (1 1)N   için DS’ların 

bulunduğu ortamdır. 

       

       

       

       

 

 

 

 

(1,0) (1)12
1n n,s

n
(1,0) (1,0)12 1n n,s n

2(2,1)21 (2,1)
n,s n n

2(1)21 (2,1) nn,s n

P a 0 W a 0 R -
0 P a T a 0 T

=
0 Q b P b 0 R

T0 W b 0 P b

01
12

01
12A x

                                                 



 
 

(0) (1,0)
n n
(0) (0)
n n

T Q a

-T W a
0
0

01
12b

 
 
 
 
 
  



  (1.3) 

       

       

       

       

 

 

 

 

 
(1,0) (1,0)12

1n n,s
n

(1,0) (0)12 1n n,s n
2(2,0)21 (2,0)

n,s n n
2(0)21 (2,0) nn,s n

P a 0 Q a 0 R
0 P a W a 0 T =

Q b 0 P b 0 R

TW b 0 0 P b
00
1200

12A x

                                                 

 
 
 
 

(0) (1,0)
n n
(0) (0)
n n
(0) (2,0)
n n
(0) (0)
n n

-T Q a

-T W a

-T Q b

-T W b
00
12b

 
 
 
 
 
 
 

  (1.4) 

Eşitlik (1.3) ve (1.4)’ün elde edilmesi için, Şekil 1.1’deki konfigürasyonlara ait 

1 a   ve 2 b   yarıçaplarının kabul edilen değerleri (1.2) eşitliğinde tanımlanan 

fonksiyonlarla değiştirilir. Bu durumda blokları (1.3) ve (1.4)’de gösterildiği gibi, bir 

matris bloğundaki formlarını kullanarak bir matris bloğundaki tek/çift indis 
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fonksiyonunun bu sınırda bireysel kendisi/etkileşim öğesini sağlayan bir 

köşegen/dolu blok olduğu ve sıfır matris bloklarının ortada olduğu fonksiyonları 

kullanarak oluşturmak yeterli olacaktır. Bilinmeyen vektör sütunu dikkate alınan 

sınırın yansıma ve iletim katsayılardan oluşmaktadır. Bilinen gelen alan (1.3) ve 

(1.4)’ün sağ tarafındaki vektör sütununu oluşturur. Bulunulan ortamın ek bir DS 

içinde olması durumunda, gelen alanla tüm etkileşim bulunulan ortamın dışında 

bırakıldığı için bu vektörün sıfır olduğuna dikkat edilmelidir. Bu özellikle Şekil 

1.1.a)'daki I  durumu için (1.3) ve (1.4)'e ait ilk LCDS1'de gözlemlenebilir, 

çünkü 2m  olan DS'ın bulunulan ortamı 1m  olan DS'ın içindeki bölgedir ve 

gelen alanla etkileşim 1m  olan DS'ın dışında bırakılmıştır. Aşağıdaki blok 

notasyonun, (1.5)'teki matrisler ve vektörler için geçerli olduğuna dikkat edilmelidir: 

 ; ; .
l l l l

ll ll llm mm m m
mm mm mml l l l

m m m m m

A x b  
     

   

     
       
     

   
   

 (1.5) 

Eşitlik (1.5)’teki gösterim, keyfi düzeyde karmaşık bir konfigürasyon 

ayrıntılandırılırken pratik olacaktır. 

Eşitlik (1.3) ve (1.4)’deki LCDS1'in sebebi olan formülasyon, söz konusu 

problem için kullanılan bilinen yaklaşımı temsil etmenin modüler bir yoludur. Bessel 

fonksiyonu ve Hankel fonksiyonlarının (burada (1) ( )nH t ’dir) n  olarak 

asimptotik gösterilimleri, (1.6)’in ilk satırında verilmiştir. Bunlar, asimptotik Stirling 

formülüdür [23] ve 1/2! (2 ) ( / )nn n n e  ile bu fonksiyonlar için üst sınırları 

belirlemek üzere kullanılabilir. Bu durumda n  için (1.6)’de ikinci satırda 

aşağıdaki eşitsizlikler yazılabilir: 

 
     

       

1,2

Im
Im1,2

1 2 2; ;
22

2; 1 ! .
! 2

n n

n n

n nt
t

n n

et nJ t H t
n n etn

e tJ t H t n e
n t





   
      

        
   

 

 (1.6) 

Bu eşitsizlik, (1.3) ve (1.4)’deki LCDS1’in kötü koşullu doğasını açığa çıkarır 

çünkü burada (1.3) ve (1.4)’de görülen  ( , )(12 21)

,
, , , j l

n s
P T Q W  ’ye ilişkin ,n s  
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olurken baskın asimptotik terim davranışları olarak, (1.2)’deki ( j,l)
nP  ve ( j,l)

nW  sabit 

gibi davranırken, ( , )j l
nT  hızlıca artan ve ( j,l)

nQ   hızlıca azalan yapıdadırlar. Bu 

blokların herhangi birine ait sonsuz matrisin Öklid matris normunun sınırsız olduğu 

gösterilebilir [1]. 

Bu nedenle bu tür LAES1'lerin çözümleri, sayısal değerlendirme için 

yuvarlama yapılırken oluşabilecek yuvarlama hatalarına karşı savunmasızdır. [1]’de, 

(1.3) ve (1.4)’teki bilinmeyen katsayılar için düzgün şekilde ölçekleme yapmanın 

LCDS1’i regülerleştirerek mükemmel iletken iki komşu silindir için ikinci tür bir 

lineer cebirsel sistem (LCDS2) haline getirdiği görülmüştür. Buradaki amacımız, 

aynı şeyi dikkate alınan sınır koşulları ve yeni sınır konfigürasyonları için 

gerçekleştirmektir. Bu tür bloklardan oluşan bir katmanlı sınır sisteminin iyi duruma 

getirilmesi amacıyla (1.3) ve (1.4)'te LAES1'lerin her biri için regülerleştirme 

işleminin gerçekleştirilmesinin yeterli olduğu gösterilebilir. 

Eşitlik (1.1)’de bir İF’a ait bilinmeyen ( )m
n  yansıma/iletim katsayısının yapısı, 

(1)( ) / ( )n nJ t H t  radyal fonksiyonu ve onun türevlerinden [2] oluşan bir kombinasyonla 

orantılı hızlı azalma/artma davranışına sahiptir. Bilinmeyen katsayıların 

ölçeklenmesinde, bu tür davranışların (1.3) ve (1.4)’te LCDS1’leri 

regülerleştirilebilmesi durumunun gerçeklenmesi temel alınır. Böylece bu ölçekleme, 

anılan asimptotik fonksiyonların tilda ile gösterilen yeni bilinmeyenler ile 

çarpılmasından ibaret olarak sunulabilir: 

 

 

 

 

 

       

       

       

       

 

 

 

 

1

1

(2)
1 1n

n n
(2)1 1nn n

2 2(2)n nn
2 2

(2)n n
n

H k a 0 0 0R R
0 H k a 0 0T T

R R0 0 H k b 0
T T0 0 0 H k b
x y

R













       
    

           
     

     
           








 



 (1.7) 

Eşitlik (1.7)’deki tanım, x Ry biçimindedir ve önceki bölümdeki k  

tanımına dayalı biçimde (1.3) ve (1.4)’teki iki durumun vektör sütunları için 

geçerlidir. -1R ’in mevcut olması kritik bir önem taşır. Bu nedenle yansıma/iletim 

katsayıların asimptotik davranışları (1)( ) / ( )n nJ t H t  ile orantılı olsa da, argümanlarına 
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göre gerçel/sanal üst yarı düzlem sıfırlarına rastlamamak amacıyla bunların yerine 
1(1) (1)( ) / ( )n nH t H t

     kullanılmaktadır(bkz. Bessel ve Hankel fonksiyonlarının sıfırları 

[23]). Bu mümkündür çünkü, bu yeni fonksiyonların asimptotik davranışları, 
( ) ( )/m m
n nR T yansıma/iletim katsayısının hızlı azalma/artma davranışını temsil etmek 

için yeterlidir. 

Eşitlik (1.7) aracılığıyla y ’nin tanımlanma amacı, (1.3) ve (1.4)’teki her 

LCDS1’i iyi koşullayarak, sağ yan regülerleştiricisinin R  sunulmasıyla LCDS2 elde 

etmektir. Bir LCDS2 (I +K)y = g  olacak biçimdedir. Burada 2l ’de birim operatör I  

ve kompakt operatör K  ile birlikte 2ly,g ’dir [3]. R ’yi (1.7) ile tanımlamak (1.3) 

ve (1.4)’teki LCDS1’i bir LCDS2’ye dönüştürmeye (genel olduğu gibi - ancak bazen 

de tersi olabilir) yeterli olmadığından (I +K) = LARve g = Lb  olacak biçimde 

uygun bir sol regülerleştirici tanımlanmalıdır. Aşağıdaki vektörleri ll
mmL 

  

köşegenlerinde köşegen matrislerdir:  

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

1 11 1

11

;
(1,0) (2,1)(1,0) (2,1)n nn n

(1) (1) (1) (1)
n n n n

(1,0)(1,0) (2,0)nn n
(1) (1) (1)
n n n

P a P bP a P b
diag

H k a H k a H k b H k b

P aP a P b
diag

H k a H k a H k b

   

  

  

 

                       

         
      

01
12

00
12

L

L
 
 

11

.
(2,0)
n

(1)
n

P b

H k b

    
 
  

 (1.8) 

( j,l)
nP  fonksiyonunun çarpmaya göre tersleri mevcuttur çünkü onu oluşturan 

fonksiyonlardan sadece bir kökünde sıfır olabilir [2].  ll ll
mm mmL ,R 

   regülerleştirici 

çiftleri (1.3) ve (1.4)’teki iki LCDS2 iyi halli matrislerine, yani 

 ll ll ll ll
mm mm mm mmI + K L A R   

     ve sağ yanlarına ll ll ll
mm mm mmg = L b  

   ilgilenilen durumlar 

için varılır. ll
mmK 

  matrisleri aşağıdaki formdadır: 
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     

     

     

     

     

     

     

     

,

(W)12 (Q)12
n,s n,s

(T)12 (W)12
n,s n,s

(Q)21 (Q)21
n,s n,s

(W)21 (W)21
n,s n,s

0 0 k 0 0 0 k 0

0 0 k 0 0 0 k 0

0 k 0 0 k 0 0 0

0 k 0 0 k 0 0 0

01 00
12 12K K

      
      

      
      
   

         
   

              

.



 (1.9) 

ll
mmK 

  matrislerinin sıfırdan farklı girdilerinin üst sınırlarına ilişkin tahminler 

sırasıyla aşağıdaki gibidirler ( 1,...,8  bazı reel değerli sabitler): 

   

   

1 2

3 4

 için :

! ! ! !
; ;

! ! ! !

! ! ! !
;

! ! ! !

n s n s
(W)12 (T)12
n,s n,s

n s n
(Q)21 (W)21
n,s n,s

n s n+1 sb d b dk k
n s a a n s a a

n s - 1 n sb d b dk k
n s a a n s a a

01
12K

                        
             

                     
           

   

   

5 6

7 8

.

 için :

! 1 ! ! !
; ;

! ! ! !

! ! ! !
;

! ! ! !

s

n s n s
(Q)12 (W)12
n,s n,s

n s
(Q)21 (W)21
n,s n,s

n s n sa b a bk k
n s d d n s d d

n s - 1 n sa b ak k
n s d d n s d

00
12K


 
 

                         
             

                  
          

.
n sb

d
  
  
  

(1.10) 

Etkileşimli geometri için  d b a  ve komşu geometri için  a b d  

geçerlidir. Bun nedenle (1.10)’daki üst sınır ifadeleri ,n s  oldukça sıfır olur ve 




ll
mmK  matrisleri 2l  uzayında kompakt olur. Yukarıdaki regülerleştirme 

matrisleri,(1.5) ‘e ek olarak keyfi düzeyde karmaşık konfigürasyonun gösterimini 

basitleştirmek için aşağıdaki blok ifadelere sahiptir: 

 
 

; ; .
l l l ll

ll llm m m mmm
mm mml l l ll

m m m m mm
ll ll
mm mmll

mmx yR

0
L K

0
  

    
   

 
 



        
                  






    
    

  (1.11) 

Bu çalışmada yukarıda anlatılan iki durumdan sonra sırasıyla üç-katmanlı ve 

dört-katmanlı eksantrik dielektrik dairesel silindirlerden dalga saçılması incelenmiş 
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ve [5]’deki sayısal sonuçların grafikleri ile karşılaştırılmıştır. Daha sonra [7]’de Şekil 

4 ve Şekil 5 ile verilen ana silindir içinde iki komşu eksantrik dielektrik dairesel 

silindir olan geometri için regülerizasyon incelenmiş ve sayısal sonuçların grafikleri 

karşılaştırılmıştır. 

Son olarak tezin konusunu oluşturan geometriden dalga saçılması detaylı 

olarak incelenmiştir ve elde edilen sayısal sonuçlar sunulmuştur. 
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2.  PROBLEMLERİN FORMÜLASYONLARI 

2.1. İki Katmanlı Eksantrik Dielektrik Dairesel Silindirden 
Saçılma 

Şekil 2.1’de, mO , sırasıyla dış ( 1)m  ve iç ( 2)m  eksantrik dairesel 

silindirler (EDS) için dairesel merkezleri ve eksenleri göstermektedir. Burada 

dairesel silindirler x y  düzlemini indisleri en dıştan en içe doğru 0,1,2j  olan 

bölgelere ayrılmaktadır.  

 
Şekil 2.1: İki katmanlı dielektrik dairesel silindir için geometri. 

Tüm bölgelerde alanlar TM modları için özgün bileşenler olan zE  ve H ’ler 

aracılığıyla ifade edilebilir. Her bir sınır için toplam alan ifadeleri açıkça yazılırsa; 

 

1 1 1

2

1

(0) (1) (1) (1)
0 1 0 1 1 1

(2) (1)
2 2

(1)
1 1

( ) ( ) ( )

                                                                          + ( )

( )

in in in
n n n n n n

n n n

in
n n

n

in
n n

n

T J k e R H k e T J k e

R H k e

T J k e

  





  





  

  







   



2 2

1 1 1

(2) (1) (2)
1 2 2 2

(0) ' (1) (1)' (1) '0 0 1
0 1 0 1 1 1

0 0 1

( ) ( )

( ) ( ) ( )

                                                    

in in
n n n n

n n

in in in
n n n n n n

n n n

R H k e T J k e

k k kT J k e R H k e T J k e

 

  

 

  
  

  

  

  

  

 

 

  

  

2

1 2 2

(2) (1)'2
2 2

2

(1) ' (2) (1)' (2) '1 1 2
1 1 1 2 2 2

1 1 2

                                  + ( )

( ) ( ) ( )

in
n n

n

in in in
n n n n n n

n n n

k R H k e

k k kT J k e R H k e T J k e



  




  
  





  

  

 



  

 (2.1) 
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Burada, birinci ve üçüncü denklemler 1   sınırında zE ve H  teğetsel 

alanlarının sürekliliğinden, ikinci ve dördüncü denklemler 2   sınırında zE ve 

H  teğetsel alanlarının sürekliliğinden gelen denklemlerdir. Ayrıca her bir 

denklemdeki (1) (1) (2) (2), , ,n n n nT R T R  yukarıda bahsedilen alanların sürekliliği için aranan 

katsayılardır. Sadece (0)
nT  bilinen gelen alanın katsayısıdır ve bir düzlemsel dalga ya 

da çizgisel kaynak için [3]’deki uygun ifadelere bakılabilir. Burada 2j   bölgesinde 

kaynak olmadığını varsayıyoruz. Merkezler arası uzaklık vektörü kutupsal 

koordinatlarda ( , )d 2 1d O -O   şeklinde tanımlanır. Gerekli cebirsel işlemlerden 

ve Graf’ın uygun toplamsallık teoremlerinin kullanılmasından sonra, sınır koşulları 

koaksiyel silindirik katmanların [6] analizine benzer biçimde (1.2) eşitliğindeki 

fonksiyonların elde edilmesiyle aşağıdaki duruma dönüşür. Graf’ın toplamsallık 

teoremleri aracılığı ile her bir sınır koşulu için yazılan denklemlerin Fourier 

katsayıları eşitlenmiş olur. Böylelikle (2.1) denklemlerinde görülen üstel terimler 

sadeleştirilebilir: 

 

(0) (1,0) (1) (1,0) (2) (1,1)
1 1 1

(0) (0,0) (1) (1,0) (2) (0,1)
1 1 1

(1) (2,1) (2) (2,1)
2 2

(1) (1,1) (2) (2,1)
2 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) 0

( ) ( )

n n n n n n

n n n n n n

n n n n

n n n n

T Q R P R P

T P T P R T

T Q R P

T P T P

 

  

 

  









  

  

 

 

 (2.2) 

Aynı indisli P  fonksiyonlarının (1.2) eşitliğindeki Wronskiyan fonksiyonu 

olduğu göz önüne alınarak, eşitlik (2.3)’u elde etmek için (2.2) eşitliklerinde 

yarıçapların 1 a   ve 2 b   değerlerini yerlerine yazarız: 

 

 

 

(1,0) (1)12( ) 0 ( ),

(1,0) (1,0)12( ) ( ),

(2,1)21 (2,1)( ) ( ),

(1)21 (2,1)( ) 0 ( ),

0

0 0

0 0

0

P a W an n s
Rn

P a T an n s

Q b P bn s n

W b P bn s n

               
                  
 

                 
 

               

(1) (0) (1,0) ( )
(1) (0) (0) ( )
(2) 0
(2) 0

T Q an n
Tn T W an n
Rn

Tn

                         

 (2.3) 
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Elde edilen bu LCDS1’i LCDS2’ye dönüştürmek için uygun sol ve sağ 

regülerleştiriciler aşağıdaki gibidir: 

 

 
 

 

 
 

 

 

 

       

1 11 1

0 1 1 2
1 1(1) (1) (1) (1)

L

R

(1,0) (2,1)P a P b(1,0) (2,1)n nP a P bn ndiag (1) (1) (1) (1)H k a H k a H k b H k bn n n n

a a b bdiag H k H k H k H kn n n n

   

                    
    

   
 
             



 


 (2.4) 

Böylelikle regülerleştirici çift  L, R ; xA b  formunda olan LCDS1’i 
( ) ,    -1I + K LAR y = R x  ve g = Lb  olan ikinci tür 2(I + K)y = g,  y,g l  sistemine 
dönüştürür. Burada I  birim operatördür. K  matrisi aşağıdaki formdadır: 

 

 

0 0 0
0 0 0
0 0 0
0 0 0

KI
KII

KIII
KIV

K

    
    
    
    

  (2.5) 

1,2,3,4  asimptotik analizin bazı reel değerli sabitleri olarak bırakılırsa, K ’nın 
sıfır olmayan değerlerinin üst sınırları için aşağıdaki eşitsizliklerin geçerli olduğunu 
görürüz. 

 

 

 

 

 

! !
;1 ! !

! !
;2 ! !

! !
;3 ! !

! !
.4 ! !

n sn s b d(W)12kn,s n s a a

n sn+1 s b d(T)12kn,s n s a a

n sn s - 1 b d(Q)21kn,s n s a a

n sn s b d(W)21kn,s n s a a

            
     

            
     

            
     

            
     

 (2.6) 

Problemin kurulumu gereği doğal olarak sağlanan ,   a<bd b a   ve d b

oldukça 2l  uzayında K ’nın kompakt bir operatör olduğu ispatlanabilir. Burada, (2.6) 

eşitsizliklerindeki k  değerleri (2.5) matrisindeki sırasıyla , , ,I II III IVK K K K  matris 

blokları için değerlerdir ve tüm diğer bloklar sıfırdır. 
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2.2. İki Komşu Eksantrik Dielektrik Dairesel Silindirden 
Saçılma 

Şekil 2.2’de, 1O  ve 2O  sırasıyla soldan sağa doğru her bir eksantrik dairesel 

silindir (EDS) için dairesel merkezleri ve eksenleri göstermektedir. 

 
Şekil 2.2: İki komşu eksantrik dielektrik dairesel silindir için geometri. 

Tüm bölgelerde alanlar TM modları için özgün bileşenler olan zE  ve H ’lerin 

sürekliliği ve Graf’ın uygun toplamsallık teoremleri aracılığıyla ifade 

edilebildiğinden her bir sınır için toplam alan ifadeleri iki-katmanlı dielektrik 

dairesel silindirde yapılan işlemler aynı sıra ile takip edilerek uygulandığında 

aşağıdaki gibi yazılabilir: 

 

(0) (0,0) (2) (0,0) (1) (1,0)
1 1 1

(0) (1,0) (1) (1,0) (1) (1,0)
1 1 1

(0) (0,0) (1) (0,0) (2) (2,0)
2 2 2

(0) (2,0) (2) (2,0)
2 2

( ) ( ) ( ) 0

   ( ) ( ) ( ) 0

( ) ( ) ( ) 0

  ( ) ( )

n n n n n n

n n n n n n

n n n n n n

n n n n

T P R P T P

T Q R P R Q

T P R P T P

T Q R P

   

  

   

 







  

  

  

  (1) (2,0)
2( ) 0n nR Q  

 (2.7) 

Burada aynı indisli P  fonksiyonları (1.2) ifadesindeki Wronskiyan 

fonksiyonudur. Eşitlik (2.7)’de her bir denkleme 1 a   ve 2 b   değerleri 

yazılarak ve gerekli işlemler yapılarak (2.8) eşitliği elde edilir. 
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(1,0) (1)12( ) ( ),

(1,0) (0)12( ) ( ),

(2,1)21 (2,0)( ) ( ),

(0)21 (2,0)( ) ( ),

0 0

0 0

0 0

0 0

P a Q an n s

P a W an n s

Q b P bn s n

W b P bn s n

                  
                  
 
                

                  

(1) (0) (1,0)( )
(1) (0) (0)( )
(2) (0) (2,0) ( )
(2) (0) (0)( )

R T Q an n n

T T W an n n

R T Q bn n n

T T W bn n n

      
         

   
    

       



 (2.8) 

Elde edilen yukarıdaki LCDS1’i LCDS2’ye dönüştürmek için kullanılacak 

uygun sol ve sağ regülerleştiriciler aşağıdaki gibidir: 

 

 

 

 

 
 

 

 

 

       

0 1 0 2

0 1 0 2

1 11 1(1,0) (2,0)(1,0) (2,0)

(1) (1) (1) (1)

1 1(1) (1) (1) (1)

L

R

a ba b

a a b b

a a b b

P Pn nP Pn ndiag
H k H k H k H kn n n n

diag H k H k H k H kn n n n

                  
    
        
 
             

  



 
  (2.9) 

Yukarıdaki (L,R)  regülerleştirici çifti aracılığı ile 2(I + K)y = g,  y,g l  olan 
LCDS2’ye ulaşmış oluruz. Buradaki K  matrisi şu formdadır: 

 

 

0 0 0
0 0 0

0 0 0
0 0 0

KI
KII

KIII
KIV

K

    
    
    
    

  (2.10) 

, , ,I II III IV  asimptotik analizin bazı reel değerli sabitleri olarak bırakılırsa, K
’nın sıfır olmayan değerlerinin üst sınırları için (2.11) eşitsizliklerinin geçerli 
olduğunu görürüz. 
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 

 

 

 

5

6

7

8

! 1!
;

! !

! !
;

! !

! !
;

! !

! !
 .

! !

n s
(Q)12
n,s

n s
(W)12
n,s

n s
(Q)21
n,s

n s
(W)21
n,s

n s a bk
n s d d

n s a bk
n s d d

n s -1 a bk
n s d d

n s a bk
n s d d

            
     

            
     

           
     

            
     

 (2.11) 

Problemin kurulumu gereği doğal olarak sağlanan d a  ve d b oldukça 2l  

uzayında K ’nın kompakt bir operatör olduğu ispatlanabilir. Burada, (2.11) 

eşitsizliklerindeki k  değerleri (2.10) matrisinde sırasıyla , , ,I II III IVK K K K  matris 

blokları için değerlerdir ve bunlar haricindeki tüm bloklar sıfırdır. 

2.3. Üç Katmanlı Eksantrik Dielektrik Dairesel Silindirden 
Saçılma 

Bu başlık altında üç-katmanlı eksantrik dielektrik dairesel silindirden saçılma 

daha önce iki-katmanlı eksantrik dielektrik dairesel silindirden saçılma başlığında 

yapılan işlemler altında incelenmiştir. 

Üç-katmanlı eksantrik dielektrik dairesel silindir için de her bir sınırda 

alanların sürekliliği için gerekli koşullar ile gelen ve yansıyan alanlar için Graf’ın 

uygun toplamsallık teoremleri kullanılarak (2.12) eşitliğindeki LCDS1 elde 

edilmiştir. 

Ayrıca (2.12) eşitliğinde her bir yarıçap için 1 a  , 2 b   ve 3 c   

değerleri yerlerine yazılmıştır. Problemin kurulumu gereği a b c   eşitsizliği 

sağlanmalıdır. 
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Şekil 2.3: Üç katmanlı dielektrik dairesel silindir için geometri. 

 

 

       
       
   

(1,0) (1)12
,

(1,0) (0,1)12
,

(2,1)21 (2,1) (2)23
, ,

( )   0         ( )   0            0           0

     0    ( ) ( )  0            0           0

     0   ( )  ( )    0      ( )

n n s

n n s

n s n n s

P a W a

P a T a

Q b P b W b

      
      
            

     
       
       

(1)21 (2,1) (1,2)23
, ,

(3,2)32 (3,2)
,

(2)32
,

  0

     0    ( )       0     ( ) ( )  0

     0        0                0    ( ) ( )     0

     0        0                0    ( )      0  

n s n n s

n s n

n s

W b P b T b

Q c P c

W c

          
      
  

(1) (0) (1,0)

(1) (0) (0)

(2)

(2)

(3)

(3)
(3,2)

( )

( )
         0
         0
         0
         0

    ( )

n n n

n n n

n

n

n

n
n

R T Q a
T T W a
R

T

R
TP c

 
        
     
    
     
    
    
    
          

 (2.12) 

Elde edilen LCDS1’i LCDS2’ye dönüştürmek için kullanılacak uygun (L,R)  

regülerleştirici çifti (2.13) eşitliğinde görülen formdadır: 

 

 

 

 
 

 

 

 
 

 

 

 

 

      
0 1 1 2 2 3

0

1 1 11 1 1(1,0) (2,1) (3,2)(1,0) (2,1) (3,2)
(1) (1) (1) (1) (1) (1)

(1)

L

R

a b ca b c

a a b b c c

a

P P Pn n nP P Pn n ndiag
H k H k H k H k H k H kn n n n n n

diag H kn

                            
      
            
 

 



    



            1 1 2 2 3
1 1 1(1) (1) (1) (1) (1)a b b c cH k H k H k H k H kn n n n n

               

     (2.13) 

2.4. Dört Katmanlı Eksantrik Dielektrik Dairesel 
Silindirden Saçılma 

Burada iki-katmanlı eksantrik dielektrik dairesel silindirden saçılma için 

yapılan işlemler genişletilerek Şekil 2.4’de görülen dört-katmanlı eksantrik dielektrik 

dairesel silindirden saçılma incelenmiştir. 

1x  

1y  

1 1ε ,μ   2 2,    

3 3ε ,μ  

0 0,   
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Şekil 2.4: Dört katmanlı dielektrik silindir için geometri. 

 

Şekil 2.4’de görülen geometri için LCDS1’i elde etmek için tıpkı iki katmanlı 
ve üç katmanlı eksantrik dielektrik dairesel silindirler için yapılan işlemler dört sınır 
için yapılmıştır. Yarıçapların 1 a  , 2 b  , 3 c   ve 4 d   değerleri yerlerine 
yazılmıştır. Problemin kurulumu gereği a b c d    eşitsizliği sağlanmalıdır. 
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       
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   
   
    
   
   
   
   
   
     

  0

 
 
 
 
 
 
 
 
 
 
 
  

 (2.14) 

Eşitlik (2.14)’deki matrisin sol yanında görülen ve  C  blokları ile 
numaralandırılan matris elemanları katsayılar matrisini oluşturmaktadır ve blokların 
dolu ve boş halleri aşağıda görülmektedir: 

0 0,   

1 1,   
2 2,   

3 3,   

1x  

1y  

4 4,   
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  (2.15) 

Elde edilen LCDS1’i LCDS2’ye dönüştürecek olan uygun (L,R)  

regülerleştirici çifti görülmektedir. 
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1(4,3)

(1)

1 1 1 1(1) (1) (1) (1) (1) (1) (1) (1)R

d

c

a a b b c c d d

H kn

diag H k H k H k H k H k H k H k H kn n n n n n n n

      
 
 
 
 
                         



   


  (2.16) 

2.5. Ana Silindir İçinde İki Komşu Eksantrik Dielektrik 
Dairesel Silindir Bulunan Geometriden Saçılma  

Burada iki-katmanlı eksantrik dielektrik dairesel silindirden saçılma ve iki 

komşu dielektrik dairesel silindirden saçılma problemleri için yapılan işlemler uygun 

bir biçimde genişletilerek Şekil 2.5’te görülen geometri için saçılma problemi 

incelenmiştir. 

Tüm bölgelerde alanların sürekliliği için sınır koşulları ve problemin 

geometrisine uygun Graf’ın toplamsallık teoremleri ile (2.17) eşitliğinde görülen 

LCDS1 elde edilmiştir. Ayrıca bu LCDS1’de yarıçaplar için 1 a  , 2 b   ve 

3 c   değerleri yerlerine yazılmıştır. Problemin geometrisi gereği a b ve a c  

eşitsizlikleri sağlanmaktadır. 
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Şekil 2.5: Ana silindir içinde iki farklı eksantrik dairesel silindir bulunan 

geometriden saçılma için şekil. 
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  (2.17) 

Uygun cebirsel işlemler ile elde edilmiş olan LCDS1’i LCDS2’ye 

dönüştürecek olan uygun (L,R)  regülerleştirici çifti görülmektedir. 
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    (2.18) 

2.6. Tezin Konusunu Oluşturan Geometriden Saçılma 

Problemlerin formülasyonları başlığı altında çeşitli geometriler için hesaplanan 

saçılma problemlerinin bir kombinasyonundan oluşan geometri Şekil 2.6’da 

görülmektedir. 

 

1y   

1x   
1O   

3 3,    

2 2,    0 0,    

1 1,    
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Şekil 2.6: Tez konusunu oluşturan geometri. 

 

Bu karmaşık gibi görünen geometri için diğer tüm geometriler için yaptığımız 

adımları uyguladığımızda problemi çözmüş olacağız. Her bölgede alanların 

sürekliliği için sınır koşulları ile Graf’ın gelen ve yansıyan alanlar için geometriye 

uygun toplamsallık teoremlerinin kullanılması sonucunda Şekil 2.6’da görülen 

geometri için LCDS1 kolayca elde edilebilir. Elde edilen LCDS1’de sırasıyla 1 a  , 

2 b  , 3 c   ve 4 d   yarıçapları yerlerine yazılarak (2.19) eşitliğine 

ulaşılmıştır. Problemin kurulumu gereği a b  ve a c  eşitsizlikleri sağlanmalıdır. 
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  (2.19) 

Yukarıda görülen LCDS1’in  C  blokları ile numaralandıran matris bloklarının 

açık hali aşağıda görülmektedir: 

1x   
4x   

4y   
1y   

0 0,    
1 1,    

4 4,    

3 3,    2 2,    
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 (2.20) 

Yukarıda elde edilen LCDS1 (2.21) eşitliğindeki uygun (L,R)  regülerleştirici 

çifti aracılığıyla LCDS2’ye dönüştürülebilir. 
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  (2.21) 

Bir düzlemsel dalganın Şekil 2.6’daki geometriye çarptığı kabul edilmektedir. 

Önce, bu tür farklı kompozisyonlar için pratik uygulama amacıyla LCDS1 ile 

LCDS2’ye karşılık gelen matrislerinin nasıl düzenlendiği gösterilmiştir. Şekil 2.6 ile 

(1.5) ve (1.11)’daki notasyonlara göre blok matrisler aşağıdaki gibidir: 
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  (2.22) 

Açıktır ki, (2.22)’deki sistemin bilinmeyenleri, her biri ilgili yansıma ve 

kırılma katsayılarını içeren sistemin bilinmeyenleri, her biri ilgili Şekil 2.6’da tanımlı 
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sınır ile ilişkili (1.3), (1.4) ve (1.5) eşitlikleri ile verilen yansıma ve kırılma 

katsayılarını içeren dört parçaya ayrılmıştır. Buradaki ilgili blok matrisler yine (1.3), 

(1.4) ve (1.5) eşitlikleri ile tanımlıdır ve 4 4  blok matris sistemi Ax = b  (2.22)’ye 

biriktirilmişlerdir. Bilinmeyen katsayıların ilişkili blok ölçeklemesi (1.7), (1.8), (1.9) 

ve (1.11) eşitlikleri ile tanımlıdır ve 4 4  blok matrisleri olan L , R  ve K  (2.22)’ye 

biriktirilmiştir. 
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3.  SAYISAL SONUÇLAR 

Bu bölümde bir önceki bölümde çeşitli geometriler için hesaplanan analitik 

çözümlerin sayısal sonuçlarına yer verilecektir. Bu çalışmada önerilen algoritma, 

yayınlanmış olan sayısal sonuçlarla [5], [6], [7] yapılan karşılaştırmalar aracılığıyla 

eksantrik katmanlı ve komşu geometriler için başarıyla kontrol edilmiştir. Daha sonra 

iki komşu dielektrik silindir geometrisi ve tezin konusunu oluşturan geometri için 

elde edilen sayısal sonuçlara yer verilmiştir. 

3.1. Bilinen Bazı Sonuçlar ile Karşılaştırma 

Bu bölümde iki katmanlı ve üç katmanlı eksantrik dielektrik dairesel 

silindirden saçılma ve ana silindir içinde iki farklı eksantrik dielektrik dairesel 

silindir bulunan geometriden saçılma için bilinen bazı sonuçların bu tezde çalışılan 

algoritma ile hesaplanışlarına yer verilecektir. 

 

 

Şekil 3.1: İleri monostatik Radar Kesit Alanları(RKA) ile karşılaştırma grafikleri, 
0  , 0 4k b  , 0 2k a  , 1 2r  , 2 4.r   

 

İleri monostatik RKA değerlerini gösteren Şekil 3.1, iki katmanlı eksantrik 

dielektrik dairesel silindirden saçılma için sayısal sonuçları göstermektedir. Burada 

sol taraftaki grafik, Şekil 5’ ten görülebilir [5]. 
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Bu tezi oluşturan algoritma ile aynı veriler kullanılarak elde edilen sonuçları 

sağ taraftaki grafik göstermektedir. 

 

 

Şekil 3.2: Geri monostatik RKA ile karşılaştırma grafikleri, 0  , 0 4k b  , 0 2k a  , 

1 2r  , 2 4.r   
 

Geri monostatik RKA değerlerini gösteren Şekil 3.2, iki-katmanlı eksantrik 

dielektrik dairesel silindirden saçılma için sayısal sonuçların grafiklerini 

göstermektedir. Burada sol taraftaki grafik, Şekil 6’ dan görülebilir [5]. 

Bu tezi oluşturan algoritma ile [5]’deki veriler kullanılarak elde edilen 

sonuçları sağ taraftaki grafik göstermektedir. 
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Şekil 3.3: İki katmanlı geometri için çözülen LCDS2’nin kesilmesi ile elde edilen 
matris ters alma duyarlılığı. 

 

 

Şekil 3.4: TM ve TE modları için geri monostatik RKA ile karşılaştırma grafikleri, 
1 01.0r  , 2 00.8r  , 3 00.6r  , 1 4.0r  , 2 3.0r  , 3 2.0r  , 1 (0,0)O  , 

2 0(0.2 ,0)O  , 3 0(0.4 ,0).O   
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Şekil 3.5: TM ve TE modları için monostatik geri RKA ile karşılaştırma grafikleri,  
a) TM mod grafiği b) TE mod grafiği, 1 01.0r  , 2 00.8r  , 3 00.6r  , 1 4.0r  , 

2 3.0r  , 3 2.0r  , 1 (0,0)O  , 2 0(0.2 ,0)O  , 3 0(0.4 ,0).O   
 

Üç katmanlı eksantrik dielektrik dairesel silindirlerin TM ve TE modları için 

monostatik RKA değerlerini gösteren Şekil 3.4, Şekil 7’ den görülebilir [5]. 

Bu tezde geliştiren algoritma ile [5]’de Şekil 7’ deki grafik için aynı veriler 

kullanılarak bire bir aynı elde edilen grafik Şekil 3.5’de görülmektedir. 
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Şekil 3.6: Üç katmanlı geometri için çözülen LCDS2’nin kesilmesi ile elde edilen 
matris ters alma duyarlılığı. 

 

 

Şekil 3.7: TM ve TE modları için monostatik geri RKA ile karşılaştırma grafikleri, 
1 01.0r  , 2 00.8r  , 3 00.6r  , 4 00.4r  1 4.0r  , 2 1.0r  , 3 4.0r  , 

1 2, (0,0)O O  , 3 4 0, (0.2 ,0).O O   
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Şekil 3.8: Geri monostatik RKA grafikleri a) TM mod grafiği b) TE mod grafiği, 
1 01.0r  , 2 00.8r  , 3 00.6r  , 4 00.4r  , 1 4.0r  , 2 1.0r  , 3 4.0r  , 

1 2, (0,0)O O  , 3 4 0, (0.2 ,0)O O  .  
 

TM ve TE modları için dört-katmanlı dielektrik dairesel silindirden saçılma 

probleminin RKA değerlerini gösteren Şekil 3.7, [5]’de Şekil 8’ den görülebilir. 

Burada şekillerden de görüldüğü üzere dördüncü katmanın bağıl dielektrik 

geçirgenliği sırasıyla 4 1.0r  , 4 2.0r   ve 4 6.0r   değerlerini almaktadır. 

Bu tezde geliştirilen algoritma ile [5]’de Şekil 3.8’deki verilerle bire bir aynı 

olarak elde edilen sonuçlar Şekil 3.8.a) ve Şekil 3.8.b)’de görülmektedir. Şekil 3.8’de 

üstteki grafik TM modu için ve alttaki grafik TE modu için dördüncü katmanı üç 

farklı bağıl dielektrik geçirgenlik değerleri alan dört-katmanlı dielektrik dairesel 

silindirler için monostatik RKA değerlerinin grafikleridir. 
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Şekil 3.9: Dört katmanlı geometri için çözülen LCDS2’nin kesilmesi ile elde edilen 
matris ters alma duyarlılığı. 

 

 

Şekil 3.10: TM modu için 0 bk   ile geri RKA ve 0 fk   ile ileri RKA grafiği, 

0 1 0 2 0.5k a k a  , 0 1 1.5k d  , 0 2 1.0k d  , 1 0   , 2 180   , 0 3 2.5.k a   
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Şekil 3.11: TM modu için ileri ve geri RKA grafikleri, a) İleri RKA grafiği, b) Geri 
RKA grafiği, 0 1 0 2 0.5k a k a  , 0 1 1.5k d  , 0 2 1.0k d  , 1 0   , 2 180   , 0 3 2.5.k a   

 

Ana silindir içinde iki komşu eksantrik dielektrik dairesel silindir bulunan 

geometriden TM modlu saçılma için ileri ve geri RKA değerlerini gösteren Şekil 

3.10, Şekil 4’de görülmektedir [7]. 
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Bu tezde geliştirilen algoritma ile [7]’deki veriler kullanılarak elde edilen 

grafikler Şekil 3.11’de görülmektedir. Şekil 3.11’de sol taraftaki grafik ileri RKA ve 

sağ taraftaki grafik geri RKA grafikleridir. 

 

Şekil 3.12: TE modu için 0 bk   ile geri RKA ve 0 fk   ile ileri RKA grafiği, 

0 1 0 2 0.5k a k a  , 0 1 1.5k d  , 0 2 1.0k d  , 1 0   , 2 180   , 0 3 2.5.k a   
 

Ana silindir içinde iki komşu eksantrik dielektrik dairesel silindir bulunan 

geometriden TE modlu saçılma için ileri ve geri RKA değerlerini gösteren Şekil 

3.12, Şekil 5’de görülmektedir [7]. 

Bu tezde geliştirilen algoritma ile [7]’deki veriler kullanılarak elde edilen 

grafikler Şekil 3.13’de görülmektedir. Şekil 3.13’de sol taraftaki grafik ileri RKA ve 

sağ taraftaki grafik geri RKA grafikleridir. 
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Şekil 3.13: TE modu için ileri ve geri RKA grafikleri. a) İleri RKA grafiği, b) Geri 
RKA grafiği, 0 1 0 2 0.5k a k a  , 0 3 2.5,k a  0 1 1.5k d  , 0 2 1.0k d  , 1 0   , 2 180   . 

3.2. Diğer Sonuçlar 

Bu bölümde iki komşu eksantrik dielektrik dairesel silindirden saçılma ve tezin 

konusunu oluşturan dielektrik geometriden saçılma için bu tez kapsamında çalışılan 
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algoritma ile sırasıyla elde edilen RKA ve matris ters alma duyarlılığı sonuçlarına 

yer verilecektir. 

 

Şekil 3.14: TM modda iki komşu dielektrik silindir için ileri RKA grafiği,  
0 1.5k a  , 0 1.5k b  , 0 3.2k d  , 1 16r  , 2 16.r   

 

 

Şekil 3.15: TM modda iki komşu dielektrik silindir için geri RKA grafiği,  
0 1.5k a  , 0 1.5k b  , 0 3.2k d  , 1 16r  , 2 16.r   
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İki komşu dielektrik dairesel silindirden saçılmada TM modda 0 1.5k a  , 

0 1.5k b   ve 0 3.2k d   değerleri için ileri RKA değerlerini gösteren grafik Şekil 3.14 

ve geri RKA değerlerini gösteren grafik Şekil 3.15’de görülmektedir. 

 

Şekil 3.16: İki komşu geometri için çözülen LCDS2’nin kesilmesi ile elde edilen 
matris ters alma duyarlılığı. 
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Şekil 3.17: TM mod ile tez konusunu oluşturan geometri için ileri RKA grafiği, 
0 2.5k a  , 0 0.5k b  , 0 0.5k c  , 0 2.5k d  , 0 12 1.0k d  , 0 13 1.5k d  , 0 23 2.5k d  , 

0 14 5.5k d  , 1 4r  , 2 16r  , 3 16r  , 4 4.r   

 

 

Şekil 3.18: TM mod ile tez konusunu oluşturan geometri için geri RKA grafiği, 
0 2.5k a  , 0 0.5k b  , 0 0.5k c  , 0 2.5k d  , 0 12 1.0k d  , 0 13 1.5k d  , 0 23 2.5k d  , 

0 14 5.5k d  , 1 4r  , 2 16r  , 3 16r  , 4 4.r   
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Bu tezin konusunu oluşturan geometri için bu tezde çalışılan algoritma ile TM 

mod için ileri ve geri RKA değerlerinin grafiklerinin gösterildiği şekiller sırasıyla 

Şekil 3.17 ve Şekil 3.18’tür. 

Çalışılan algoritmanın doğruluğunu test etmek için tez konusunu oluşturan 

Şekil 2.6’daki geometride sağ yandaki dielektrik silindir için bağıl dielektrik 

geçirgenlik 4 1r   değerini yani boş uzay değerini aldığında [7]’de Şekil 4 ve 5’deki 

grafikler ile aynı sonuçlar elde edilmiştir. 

Benzer şekilde yine çalışılan algoritmanın doğruluğunu test etmek için 2r  ve 

3r  değerleri 1r  değerine eşit alındığında iki komşu dielektrik silindir için elde 

edilen sonuçlar ile aynı sonuçlara ulaşılmıştır. 

 

Şekil 3.19: Tez geometrisi için çözülen LCDS2’nin kesilmesi ile elde edilen matris 
ters alma duyarlılığı. 

 

Bu tezin konusunu oluşturan geometri için dalga saçılması probleminin 

LCDS1’i LCDS2’ye dönüştürerek bu tezde çalışılan algoritma ile hesaplanışının 

matris tersi alma duyarlılığını gösteren grafik, Şekil 3.19’de görülmektedir. 

Bu grafikten açıkça görülmektedir ki, bu tezde çalışılan algoritma matris tersi 

almaya daha duyarlıdır ve güvenilirliği diğer yöntemlere göre daha fazladır. 
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4.  SONUÇLAR ve YORUMLAR 

Bu çalışmada, çeşitli eksantrik katmanlı ve komşu dielektrik dairesel silindirli 

geometrilerden dalga saçılması detaylı olarak incelenmiştir. Silindirik koordinatlarda 

Helmholtz denkleminin çözümleri olan Bessel ve birinci tür Hankel fonksiyonları ve 

[2]’deki matematik prensipler aracılığıyla her bir bölgede alan ifadelerinin gelen ve 

saçılan alanların sonsuz seri toplamları cinsinden yazılmasına imkân sağlanmıştır. 

Teğetsel alan bileşenlerinin sürekliliğinin ve Fourier katsayılarının eşitliği için 

Graf’ın uygun toplamsallık teoremlerinin elektrik ve manyetik alanlar için sınır 

koşullarına uygulanması ile Ax = b  formundaki birinci tür bir lineer denklem 

sistemine ulaşılmıştır. Bu tezde çalışılan regülerleştirme yöntemi ile elde edilen 

birinci tür lineer denklem sistemi her bir geometri için uygun (L,R)  regülerleştirici 

çifti ile 2l ’de I  birim matris ve K  kompakt operatör olmak üzere 

2(I + K)y = g; y,g l  formundaki ikinci tür bir lineer denklem sistemine 

indirgenmiştir. Böylece elde edilen bu sistem sayısal kesme yöntemi ile istenen 

doğrulukta çözülerek çeşitli geometrilerde saçılma incelenmiştir. 

Tezde çalışılan algoritma ile çeşitli geometriler için elde edilen ileri ve geri 

RKA grafikleri sayısal sonuçlar başlığında verilmiştir. Çözülen ikinci tür lineer 

denklem sistemine ait ters almaya karşı duyarlılık tezde ele alınan geometriler için 

sayısal sonuçlar bölümünde, bilinen bazı sonuçlar ve birinci tür lineer denklem 

sistemi ile karşılaştırılarak grafikler ile verilmiştir. Sonuçların fiziksel olarak 

güvenilirliği ve yöntemin sayısal olarak etkinliği bu sonuçlar aracılığı ile 

gösterilmiştir. 

İleriki çalışmalarda, eksantrik katmanlı ve komşu silindirlerin sayısı arttırılarak 

etkileşimli geometriler için problemler genelleştirilebilir. Ayrıca sadece dielektrik 

silindirler için değil, çeşitli elektrik ve manyetik geçirgenlik değerlerine sahip 

malzemeler için de bu tezde çalışılan regülerleştirme yöntemi ile benzer dalga 

saçılması problemleri çalışılabilir. 
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EKLER 

Ek A: Elektromanyetik Alan Hesaplamalarında Bazı Analitik 
Kısıtlamalar 

Bu bölümde tezin dayandığı klasik temelleri atfederek anabileceğimiz “IEEE 

TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 

MTT-23, NO. 8, AUGUST 1975, Elektromanyetik Alan Hesaplamalarında Analitik 

Kısıtlamalar, R. H. T. BATES, ÜYE, IEEE” makalesinin, tezin teorik bütünlüğünün 

sağlanmasına yardımcı olacağı düşünülen kısımları yer almaktadır. 

Bu bölümde analitik formülasyonların hesaplanmasındaki güçlüklere dikkat 

çekilmekte ve iki boyutlu problemler için seri açılımı ve integral formülasyon 

yaklaşımları açıklanmaktadır. Ayrıca tezin konusu olan inhomojen ortamlardaki 

hesaplamaların önemi ve orada yaşanacağı öngörülen güçlükleri ifade eden bölüme 

de burada yer verilmiştir. 

A1. GİRİŞ 

Dijital bilgisayarların gelişimi, son yirmi yıl boyunca Maxwell denklemlerinin 

sayısal değerlendirme için kullanışlı formlara dönüştürülmesine olan ilginin 

artmasına neden olmuştur. Burada söz konusu olan, artık bir şeylerin hesaplanıp 

hesaplanamayacağı değil, söz konusu şeyin en etkin şekilde nasıl 

hesaplanabileceğidir. Sürgülü hesap cetvelleri ve masaüstü hesap makinelerinin 

kullanıldığı zamanlarda mühendisler tarafından hor görülen matematiksel analiz, 

pratik hesaplama açısından önem kazanmıştır. 

Bu tezde, elektromanyetik alanların pasif yapılarla etkileşiminin hesaplamaya 

dayalı belirli yönleri ayrıntılı olarak incelenmektedir. Silvester ve Csendes [A1] ile 

Ng [A2] tarafından yapılan son "global" incelemelere göre mikrodalga 

mühendisliğinde hesaplama problemlerine getirilen diferansiyel yaklaşımın integral 

yaklaşımı ve seri yaklaşımına göre üstün olduğu görülmektedir. Diferansiyel 

yaklaşımı, dalga denkleminin doğrudan çözümünü temel alır ve sonlu farklar ve 

sonlu elemanlar yöntemleri [A3] ve aynı zamanda iletim hattı matris yöntemleri [A4] 

ile temsil edilir. 
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Burada söz konusu olan, alan problemlerinin integral denklem formülasyonları 

(integral yaklaşımı) ve dalga denklemi için uygun çözümler oluşturan alanların 

fonksiyon dizileri olarak açılımıdır (seri yaklaşımı). Son on yıl boyunca genellikle 

etkileyici teorik ve/veya hesaplamaya dayalı destekleyici kanıtlarla birlikte birçok 

farklı, kimi zaman çelişkili teknikler önerilmiştir. Çeşitli önerilerin görece 

faydalılığını değerlendirmek zor olmuştur, çünkü bunlar çoğu kez mühendisler için 

açıklanması ya da anlaşılması kolay olmayan muğlak matematiksel nosyonlar 

içermektedir. 

Burada şu üç husus konusunda çaba gösterilmiştir: 
 

 mevcut yöntemleri kapsayan birleştirilmiş bir gelişim programı sunmak, 

 en azından karşılaştırılmalı olarak şüphe içermeyen sonuçlar elde etmek, 

 radyo ve mikrodalga mühendisliğinde çalışılan alan hesaplama tekniklerini 

geliştirmek için en önemli ve uygun görünen araştırma tiplerini önermek. 

 

Literatür, birinci ve ikinci maddelerin yazarın kendi yargılarından nispeten 

bağımsız olmasını sağlayan yeterli güvenilir yaklaşımlar içermektedir ama aynı şey 

üçüncü madde için söylenemez. Ancak, bu tür bir incelemede geleceğe yönelik 

araştırma olanaklarını göz ardı etmek gereksiz yere bir çekingenlik olacaktır. 

Tanıtılması gereken birçok karmaşık matematiksel işlemin fiziksel anlamını 

açıklama ve buna odaklanma yönünde çaba gösterilirken analiz sadece iki boyutta 

çeşitlilik gösteren alanlarla sınırlanmıştır. Dolayısıyla burada silindirik dalgaların 

silindirik yapılar tarafından kırınımı incelenmektedir. Prensipte yapıların kesitsel 

şekilleri veya malzeme bileşimi ile ilgili bir sınırlama yoktur. 

Eksiksiz, üç boyutlu bir yaklaşım çok daha karmaşık ve zor anlaşılır olacaktır. 

Bunun önemli bir katkısının olacağı şüphelidir, çünkü alanın polarizasyonu buradaki 

sorularla ilgili olarak avantaj sağlayacak bir büyüklük değildir. Sırasıyla silindirik 

dalga sisteminin eksenine paralel bir manyetik alan bileşeni ve elektrik alanı bileşeni 

olmayan elektriksel olarak polarize olan ve manyetik olarak polarize olan bu iki 

boyutlu alanlar arasında bir bağlantı yoktur. İki boyutlu formülasyonun diğer bir 

faydalı yanı, akustik alanlara kesin olarak uygulanmasıdır. 

Geniş bant mikrodalga sinyallerinin pasif yapılarla olan etkileşimi giderek daha 

fazla ilgi görmektedir, fakat modülasyonlu taşıyıcı dalgaların kırınım hesaplamasıyla 

ilgili geniş bir literatür henüz mevcut değildir. Benzer şekilde, burada da yaklaşım 
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monokromatik dalgalarla sınırlıdır. Zamana bağlı saçılma çalışması için geliştirilen 

ve bazıları burada temelde ele alınan bazı analitik teknikleri temel alan "tekillik seri 

açılım yöntemi"ne referansta bulunulmuştur [A5]. 

 

A2. BAŞLANGIÇ 

Şekil A.1’de keyfi bir nokta olan P gösterilmektedir, bu noktanın silindirik 

kutupsal koordinatları Y üç boyutlu uzayının 0z   düzlemi olan iki boyutlu bir   

uzayında   ve  ’dir. 'OO  düz çizgisi, P ’nin açısal konumunun tanımlanmasında 

faydalanılan keyfi bir bileşendir. Koordinatların O  orijinini çevreleyen, kapalı bir 

eğri olan C ,   uzayını bir   iç bölümü ve bir   dış bölümüne ayırır. C  

üzerindeki keyfi bir nokta olan Q ’nun silindirik kutupsal koordinatları r  ve  ’dır. 

C  sembolü, eğrinin kendisini temsil etmesinin yanı sıra aynı zamanda, 'OO ’nın 

eğriyle kesiştiği noktadan (veya birden fazla nokta mevcutsa, en iç noktadan) saatin 

tersi yönünde ölçülen Q ’da eğri boyunca olan mesafeyi de sembolize eder. Q ’da C

’ye doğru dışarı yöndeki normal olan   yönü, OQ  çizgisinin uzantısıyla bir   açısı 

oluşturur. P  ve Q  noktaları arasındaki uzaklık R  ile gösterilmiştir. 

Küme teorisi notasyonu mühendisler arasında popülerliğini yitirme 

eğilimindedir ve tek amacı argümanı anlaşılmaz hale getirmek olarak göründüğünde 

bunu hak etmektedir. Fakat birinin kesin olmasını sağlama gibi bir avantaja sahiptir.

  uzayı, tipik biri P  olan noktalardan oluşan bir koleksiyon olarak görülebilir. C

’deki tüm noktalarla birlikte  ‘daki tüm noktalar ve  ’daki tüm noktalar  ’daki 

noktaları oluşturur. Bu da şu şekilde yazılır: 

 C        (A2.1) 
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Eğer   bölge ise veya   içinde kesişmeyen bölgelerden oluşan bir koleksiyon 

ise, yani    ise, P  notasyonu P  noktasının   içinde herhangi bir yerde 

olabileceğini gösterir. Aksine, P  notasyonu P ’nin   içinde olamayacağını 

gösterir. 

  uzayı bölümü, yarıçapı r  olan, O ’da merkezlenen C ’yi çevreleyen   

dairesine göre   ve   (sırasıyla iç ve dış) olarak partisyonlara ayrılmıştır. Bu 

Şekil A.2’de gösterilmiştir ve bu şekil aynı  ’nın yarıçapı r  olan, O ’da 

merkezlenen   dairesine göre sırasıyla   ve  olan iç ve dış partisyonlara 

ayrılmaktadır. Bu partisyonlara ayırma işlemi şu denklemlerle özetlenmiştir: 

    

   

   
    

 
 

  (A2.2) 

Y ’de, elektrik şiddeti E , manyetik yoğunluğu H ve açısal frekansı   olan bir 

elektromanyetik alan mevcuttur. Alan, z  yönünde hiçbir varyasyon içermez ve 

uygun şekilde, sırasıyla zE  ve zH ’nin sıfır olduğu iki bağımsız alana ayrılmıştır. 

Karmaşık eksponansiyel notasyon kullanılarak ve zaman faktörü exp( )j t  

bastırılarak, bu alanların her ikisi de burada tekil bir skaler [A6] öğe ile tam olarak 

karakterize edilmiştir. ( , )     uygun şekilde aşağıdaki gibi tanımlanmıştır: 

Şekil A.1:  ’daki noktalar, bölgeler ve koordinat sistemleri, üç 
boyutlu Y  uzayında 0z   düzleminde z  doğrultusu kâğıda diktir. 
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 elektriksel olarak polarize alanlar için
 manyetiksel olarak polarize alanlar için

z

z

E
H


  


  (A2.3) 

Keyfi bir noktası 0P  olan bir 0     bölgesinde bulunan etkilenen 

kaynaklardan bir birincil veya gelen alan 0 0 ( , )     çıkar.  ’nın bölümleri 

boşluktan farklı ise saçılan ya da tekrar yayılan bir alan 1 1( , )     alanı ortaya 

çıkar, böylece toplam alan aşağıdaki şekilde ifade edilebilir: 

 0 1,  P       (A2.4) 

Küme teorisi notasyonuna çok aşina olmayan okuyucular için bu denklem şunu 

ifade eder:   alanın gözlemlendiği P  noktası iki boyutlu   uzayının içinde 

herhangi bir yerde ise 0  ve 1 ’in toplamı olarak alınabilir.  

 
 

Dalgaların kırınımı ve saçılması konusuna getirilen kullanışlı bir yaklaşım, tüm 

alanların boşluktaymış gibi ilerlediğinin kabul edildiği polarizasyon-kaynak 

formülasyonudur [A7]. Burada kırınım güçlü bir biçimde, boş uzaydan farklılıkların 

olduğu yerlere denk (kutuplanmış) kaynaklar koyarak hesaba alınmıştır. Eğer 

0 0 ( , )     0  içinde etkilenen kaynakların yoğunluğu ise gelen alan [A7] 

aşağıdaki ifadeyi karşılar: 

 2 2
0 0 0 ,  k P         (A2.5) 

Burada k  dalga sayısı ya da boş uzayın yayılma sabitidir. 

Şekil A.2:   ve   partisyonlarına ayırma. 
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Uzay 0 ’dan ayrı olarak tüm   boyunca boş olarak kabul edilmiştir. 

C   içinde zamanla değişmeyen bir inhomojen yayılma ortamının bulunmasına 

izin verilmiştir. Bunun sonucunda, doğrudan C   boyunca ortamın elektriksel 

geçirgenliği, manyetik geçirgenliği ve iletkenliğinde [A7] görülen değişimlerden 

hesaplanan polarizasyon-kaynak yoğunluğu 1 1( , )     C  eğrisi dışında sıfırdır: 

 1 0,  P     (A2.6) 

Burada tekrar yayılan alan aşağıdaki ifadeyi karşılar: 

 2 2
1 1 1,  k P         (A2.7) 

Toplam kaynak yoğunluğu aşağıdaki ifadeyle tanımlanmıştır: 

 0 1      (A2.8) 

(A2.4) ve (A2.6)’dan elde edilen sonuç, 

 2 2 ,  k P        (A2.9) 

Eğer 'P  bir kaynak noktası ise, yani uzayın 0   olduğu bir parçası ise ve 'R , 
'P  ve P  noktaları arası uzaklık olduğu bölümde bir nokta ise, o halde    şu şekilde 

verilmektedir [A7]: 

 '

0

' '( , )
P P

C

g d  
 

  
 

  (A2.10) 

Burada '  ve '  'P ’nin kutupsal koordinatları, d  bir alan elemanıdır ve g  

iki boyutlu dalgalar için Green fonksiyonunu [A6] sembolize eder: 

 ' '
(2) '
0( / 4) ( )

P P PP
g g j H kR     (A2.11) 
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Genelde Bessel fonksiyonları [A8] için kullanılan toplamsallık teoremine 

başvurularak faydalanılan bir formda açılabilir. Açılım, Şekil A.1’de tanıtılan 

notasyon çerçevesinde gösterilmiştir:  

 

4 (2)
0

(2)

(2)

( )

         ( ) ( ) exp( [ ]),  

         ( ) ( ) exp( [ ]),  

QP

m m
m

m m
m

j g H kR

J kr H k jm r

H kr J k jm r

   

   











  

  





  (A2.12) 

Burada ( )mJ   ve (2) ( )mH   sırasıyla m ’inci dereceden birinci tür Bessel 

fonksiyonu ve ikinci tür Hankel fonksiyonlarıdır. 

 

A3. SERİ AÇILIMLAR 

Şekil A.3’te   içinde yer alan bir  bölgesi gösterilmektedir. ’daki boşluk 

dalga denklemini karşılayan belirli bir alana ( , )     yönelik genel bir ifade 

[A6]’dır.  

 1 2      (A3.1) 

 1 ( ) exp( )m m
m

A J k jm 




     (A3.2) 

 (2)
2 ( )exp( )m m

m
B H k jm 





     (A3.3) 

Burada mA  ve mB  sabitlerdir. 1  için kullanılan (A3.2) ifadesi “duran dalgaları” 

temsil edebilirken, (A3.3)’teki ikinci türden Hankel fonksiyonları 2 ‘nin 0 ‘dan 

başlayarak ilerleyen “dışarı yönde hareket eden dalgalar”dan oluştuğunu gösterir.   

için genel bir ifade yazmanın diğer bir yolu, bunu “içeri” ve “dışarı” yönde hareket 

eden dalgalar olarak ayırmaktır. Bununla birlikte, (A3.2) ve (A3.3) bu çalışmada 

sürdürülen gelişim için daha kullanışlıdır. Hankel fonksiyonları, argümanları sıfır 
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[A8] olduğunda tekil olduğu için ve fiziksel nedenlerden dolayı alanın boşlukta her 

yerde düzgün şekilde davranması gerektiğinden şu sonuç elde edilir: 

 0,  0mB     (A3.4) 

  boyunca, koordinatların 0 noktasına göre tümüyle dışarıya giden (kendi seri 

açılım katsayılarıyla kabul edilen değerlerinden bağımsız olarak) alan açılımlarının 

( )   sınıfının tanımlaması ilgi çekici bir noktadır. V  bu sınıfta ise aşağıdaki 

notasyona başvurulur: 

 ( )V    (A3.5) 

Bunun sonucunda; 

 0,  ( )mA      (A3.6) 

Çünkü mA  salt hareket eden dalgaları temsil etmek üzere 1  için özel 

formların kullanıldığını farz etmek zorundadır, aslında, örneğin tüm mA 'ler gerçekse 

1  salt duran dalgaları temsil eder. 

Alanlar (A3.2) ve (A3.3)'in sağ tarafındaki ifadeler gibi sonsuz dalga 

fonksiyonu serileriyle temsil edilirken dikkat edilmesi gereken üç temel prensip 

mevcuttur. 

 
 

Birinci prensip bir giriş kısmı olmadan ifade edilebilir. 

Şekil A.3:   bölgesi. 
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  Birinci Temel Prensip 

Sonsuz bir dalga fonksiyonları serisi bir uzay bölgesi içinde bir alanı temsil 

etmek için kullanışlı bir yöntemdir, fakat bu ancak serinin bölge içinde her noktada 

tek bir değere sahip olması durumunda yani seri bölgede her yerde yakınsıyorsa 

geçerlidir (serinin yeterli sayıda öğeye sahip olacak şekilde yuvarlandığında, 

değerinin başka öğelerin eklenmesiyle ihmal edilecek ölçüde artması anlamında). 

Birinci türden Bessel fonksiyonları, argümanlarının [A8] negatif olmayan 

üsleri şeklinde seri olarak yazılabilir. Bu nedenle, 1  için kullanılan seri   

maksimum yakınsaklık yarıçapından [A9] küçük iken bir Taylor serisi olarak 

düzenlenebilir. . Bir Hankel fonksiyonunun genliği, argümanının genliği artarken 

[A8] monoton olarak azalır ve argümanları sıfır iken tüm Hankel fonksiyonları 

tekildir, böylece (A3.3)'te 2  için kullanılan ifade minimum bir yakınsaklık 

yarıçapına sahip olur. r̂  ve 0r  büyüklükleri, 

 ˆ (14)'ün RHS maks. yakınsaklık yarıçapır   (A3.7) 

 0 (15)'in RHS min. yakınsaklık yarıçapır   (A3.8) 

ile tanımlandığında tüm   Şekil A.3'te gösterildiği gibi 0 ˆr r   halkasının 

arasında yer almalıdır. 

Analitik devam konsepti en çok karmaşık değişken teorisinde [A9] bilinir, 

fakat herhangi bir boyuttaki gerçek uzaylara uygulanır [A10]. Waterman [A11], 

Mittra ve Wilton [A12], Imbriale ve Mittra [A13], Weston ve diğerleri ile Weston ve 

Boerner [A15] tarafından elektromanyetik teorisini etkileyerek uygulanmıştır. Önemi 

Millar [A16] tarafından vurgulanan ikinci prensip, analitik devamın tekliğini temel 

alır [A10]. 

  İkinci Temel Prensip 

  ve  şeklinde iki bölge ve    olduğunu düşünün; burada   belirli bir 

alanın bulunduğu uzay bölgesinde yer almaktadır. Alanın bir seri olarak temsilinin 

  bölgesi içinde geçerli olduğu biliniyorsa, fakat sonra daha geniş bölge olan   

içinde yakınsadığı görülüyorsa, analitik devam konseptinin tekliği, serinin   

boyunca geçerli bir temsil olmasını sağlar. 
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0 'nin aşağıdaki şekilde ifade edilebilmesi bu ikinci prensiple ilgili gerekli bir 

sonuçtur: 

 0 ( )exp( ),  m m
m

a J k jm P 





    (A3.9) 

Burada, ma  sabitlerdir ve 0  kaynakları tümüyle 0     içinde mevcut 

olarak tanımlanmıştır, böylece 0  0 orijininde analitiktir. Bu nedenle, (A3.9), 

(A3.3)'teki gibi hiçbir serinin 0 'ın   boyunca bir temsilinin parçası olamayacağı 

anlamında (A3.3) ile uyumludur. İkinci prensibe göre (A3.9)'deki serinin maksimum 

yakınsaklık yarıçapı r 'den az olamaz çünkü 0  0 'da analitik olamaz. Dolayısıyla 

0  (A3.9)'de olduğu gibi   içinde ifade edilebilir olmalıdır. 

0 'ın, sonsuzluktan bir   açısıyla '00 'a gelen bir düzlemsel dalga formuna 

sahip olması durumunda [A8], 

 exp( )m
ma j jm  (A3.10) 

Bir alanın homojen bir kaynaksız bölgede herhangi bir noktada tek bir değere 

sahip olması gerekmesine rağmen alanı, bu noktayı içeren sonlu bir bölgede temsil 

etmek için kullanılabilecek sonsuz sayıda olası dalga fonksiyonu serisi mevcuttur. Bu 

dalga fonksiyonlarının neredeyse tümünün fonksiyonel bağımlılığının ayrılmamış 

olacağına dikkat edilmelidir, çünkü sadece onbir ayrılabilir koordinat sistemi 

mevcuttur. 

Her ikisi de boşluk dalga denklemini karşılayan iki set dalga fonksiyonu 

olduğunu farz edelim:  (1) ( , )mV    ve  (2) ( , )mV   . Belirli bir alanın  ,V V    

aşağıdaki gibi ifade edilebileceği görülecektir: 

 

(1) (1)
1

(2) (2)
2

( , ),  

  ( , ),  

m m
m

m m
m

V C V P

C V P

 

 









 

 








 (A3.11) 
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Burada (1)
mC  ve (2)

mC  sabitler, 1  ve 2  sırasıyla, iki serinin yakınlaştığı en 

geniş bölgelerdir. Millar'ın çalışmaları [A16] üçüncü prensibin önemini ortaya 

koymaktadır. 

  Üçüncü Temel Prensip 

Şekil A.4'te gösterilen 1 2  , vb. içindeki taralı bölgede (1)
mV ve (2)

mV 'yi 

birbirine göre yeniden düzenlemek faydalı olur, böylece sabit kümesi (2)
mC , (1)

mC  

aracılığıyla belirlenebilir ve tersi de geçerlidir. Ancak 1  ve 2 'nin kesişmeyen 

bölümleri içinde bu tür bir yeniden düzenleme bu sabit kümeleri için tek bir sonuç 

oluşturmaz. 

 ,V V    şeklinde, bir 1  bölgesinde tümüyle dışarı giden alan olduğunu 

farz edelim: 

  1V     (A3.12) 

Burada 1 , 01r  yarıçaplı 01  dairesinin dışındaki tüm uzaydır. Bu durumda V  

aşağıdaki gibi yazılabilir: 

 (2)
1, 1 1 1 01( ) exp( ),  m m

m
V C H k jm r  





   (A3.13) 

Burada 1,mC  birer sabit ve 01r  ile 1 , 01 'in merkezi olan 01  orijiniyle 

ilişkilendirilen kutupsal koordinatlardır. 

 
 Şekil A.4. Kesişen bölgeler. 
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Eğer 01r  RHS'ın (A3.13) minimum yakınsaklık yarıçapı ise, V 'nin tekil olduğu 

01 'de en az bir nokta 1S  olmalıdır (yani ya V , 1S 'de mevcut değildir veya bazı 

sonlu derecelerden daha yüksek bir derecedeki V 'nin türevleri 1S 'de mevcut 

değildir). Şekil A.5'te, 2O  noktası 02r  yarıçaplı 02  dairesinin merkezi ve 2  ile 2  

kutupsal koordinatların orijinidir. Aynı zamanda 2 , 02 'nin dışındaki tüm uzaydır. 

Şimdi Bessel fonksiyonları için kullanılan toplamsallık teoremi [12] herhangi bir 

derecedeki fonksiyonlara göre genişletilebilir [A8], böylece P  konumu 2 12   

iken (A3.13) aşağıdaki şekilde yazılabilir: 

 (2)
2, 2 2( )exp( )m m

m
V C H k jm 





   (A3.14) 

 2, 12 1, 12 12exp( ) ( ) exp( [ ])m m n
n

C jm C J k j   




     (A3.15) 

Bu ifade aslında, üçüncü temel prensipte atıfta bulunulan türden öğelerin bir 

yeniden düzenlenmesidir. Dolayısıyla (A3.15), sadece uzayın, RHS (A3.13) ve 

(A3.14) ifadelerinin her ikisinin de yakınsadığı bölümünde anlamlıdır. RHS'nin 

minimum yakınsaklık yarıçapı (A3.14) 02r  ile sembolize edildiğinde, (A3.14)'nın 

sadece 02r   için geçerli olduğu ve (A3.14) ile (A3.15) ifade edilen öğelerin 

yeniden düzenlenmesinin sadece 1 2   içinde geçerli olduğu görülür. Yani V 'nin 

tekil olduğu 02 'de en az bir 2S  noktası olmak zorundadır. 

Şekil A.5. Koordinat orijininin değişmesi. 
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1S 'in 02  üzerinde veya içinde olması gerektiğinin anlaşılması önemlidir. 

Üçüncü temel prensibe göre (A3.13) 1 2   boyunca RHS (A3.14) ile tamamen 

aynıdır. Buna göre eğer 1S  2  içinde olsaydı, RHS (A3.14) 2  içinde tekil 

olurdu, fakat bu doğru olamaz, çünkü 02r 'nin tanımı RHS'nin (A3.14) 2  boyunca 

analitik olmasını sağlar. Benzer şekilde 2S 'de 01 'in üzerinde veya içinde olmak 

zorundadır. Bu, V  alanının, alanı temsil etmek için hangi ifadeler kullanılırsa 

kullanılsın 1S  ve 2S 'de tekil olmasını sağlar. Koordinatların orijini sürekli olarak 

değiştirilerek sürekli kapalı dışbükey eğri c  prensipte takip edilebilir, burada 

tekilliklerin "dışbükey örtüsü" olarak adlandırılan c , V 'nin tekilliklerinin dışbükey 

zarfıdır. Doğru dışbükey zarfın takip edilmesi gerekiyorsa koordinatların orijininin 

özel bir yol kümesini izlemesi gerektiğine dikkat edin. 

 

A4. İNTEGRAL FORMÜLASYONLARI 

Tüm   dikkate alınırken tekrar yayılan alan 1 ’in yeri, C   içinde 

polarizasyon-kaynak yoğunluğu olarak kabul edilmiştir. Bunun birlikte sadece   

dikkate alınırken 1 , C 'deki eşdeğer kaynaklar anlamında örneğin, Baker ve 

Copson [A17] tarafından gösterildiği gibi uygun şekilde ifade edilebilir. [A1]’e ve 

önceki tanımlara bakılır ve sonra aşağıdaki denklemle tanımlanan 1 1( , )   

ifadesi değerlendirilir: 

 2 2
1 1 1SP SPg g d



          (A4.1) 

Burada S noktası d  alanına ait öğenin içinde yer alır ve P ,  ’da 1 ’in 

hesaplandığı noktadır. Şimdi, P  noktası S  ile çarpışmadığı sürece SPg  analitiktir 

yani normal veya iyi koşullanmış, böylece (A4.1)’deki integrand sadece P 'nin 

komşuluğunda analitik olamayabilir ve P  ile gösterilir. Green'in SPg  fonksiyonu, 

alan S  kaynağındaki bir noktada yayılmış olarak düşünülebilir, böylece [A6]; 

 2 2 ,  SP SP SPg k g P     (A4.2) 



57 
 

Burada SP , iki boyutlu delta fonksiyonudur: 

 1
p

SP SPd d


 


    (A4.3) 

(A2.6), (A2.7), (A4.2) ve (A4.3)'dan anlaşılacağı gibi (A4.1), aşağıdaki şekilde 

yazılabilir: 

 1 1 1( , ) ( , ),  
P

SPd P


           (A4.4) 

Çünkü; 

 2 ( )g g g      (A4.5) 

Eşitlik (A4.1) aşağıdaki gibi yazılabilir: 

 1 1 1( )SP SPg g d


       (A4.6) 

Şekil A.1'de gösterilen notasyona bakıldığında bu denklemin ıraksama 

teoreminin yardımıyla aşağıdaki ifadeye dönüştürülebileceği görülür: 

 1
1 1

( , )( , ) ,  QP
QP

C

g
g dC P  

 
  

         
  (A4.7) 

Burada dC , yayın C  boyunca olan diferansiyel elemanıdır. Yüzey 

integralinden   üzerinden  ’yı çevreleyen kontur boyunca çizgi integraline 

dönüştürme durumunda, sonsuzda bir daire boyunca bir çizgi integrali ve C  boyunca 

çizgi integrali mevcuttur. Fakat sonsuzdaki integral ortadan kaybolur, çünkü hem 

SPg , hem de 1  sonsuza giden tiptedir. Bu, ünlü "Sommerfeld radyasyon 

koşulu"dur (Ausstrahlungsbedingung) [A6], [A17]. (A4.4)ve (A4.7) eşitlikleri 

birleştirildiğinde şu sonuç elde edilir: 
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 1
1 1

( , )( , ) ,  QP
QP

C

g rr g dC P


  

          
  (A4.8) 

Eşitlik (A4.3) ve Şekil A.1'in notasyonu kullanılarak (A2.5) şu şekilde 

yazılabilir: 

 
0 0

0

2 2
0 0 P P Pk d 



       (A4.9) 

Burada 
0p , 0 'ın 0 'da 0P  noktasındaki değerini gösterir. (A4.1)'deki 1  alt 

simgesi 0  alt simgesiyle değiştirildiğinde ve (A4.1)'den (A4.4)'e götüren mantık 

tekrar uygulandığında aşağıdaki ifade elde edilir: 

 0 0,  P    (A4.10) 

Çünkü 0 ’daki 0 ’nin kaynaklarından elde edilen katkılar aşağıdaki bileşeni 

iptal eder: 

 0

P

SPd


    (A4.11) 

Eşitlik (A4.5) ve (A4.7) ile analoji yapıldığında şu sonuç elde edilir: 

 0
0

( , )( , ) ,  QP
QP

C

g rr g dC P


  

        
  (A4.12) 

Eşitlik (A4.8) ile (A4.12) birleştirildiğinde C ’deki toplam alan ve buradaki 

normal türevi anlamında tekrar yayılan alan için bir ifade elde edilir. Alanın normal 

türevine olan oranı, burada aşağıdaki gibi temsil edilen normalize edilmiş bir 

empedans olarak görülebilir: 

  
 ,

,
r

Z r






 


 (A4.13) 

Bu genelde C  boyunca farklılık gösterir: 



59 
 

  , ( ) QZ Z r Z C Z    (A4.14) 

Z ’nin fonksiyonel bağımlılığını ifade eden bu farklı notasyonlar daha ileride 

faydalı olacaktır. 

(A2.4), (A4.8), ve (A4.12)-(A4.14) birleştirildiğinde şu notasyon elde edilir: 

 1 ( ) ,  QP Q QP
C

g Z g F C dC P 
          (A4.15) 

Burada tekrar yayılan kaynakların lineer yoğunluğu ( )F C  şu şekilde 

tanımlanır: 

 ( ) ( , )F C r     (A4.16) 

( )F C ’nin, C  kesitine ait sonsuz silindirin cidarındaki eşdeğer yüzey 

akımlarının yoğunluğuyla orantılı olduğuna dikkat edilmelidir. Elektriksel ve 

manyetik olarak polarize olan alanlar için ( )F C , sırasıyla eşdeğer elektrik ve 

manyetik yüzey akımı yoğunluklarıyla orantılıdır. ( )F C , mükemmel iletken 

silindirler için asıl yüzey akımı yoğunluyla orantılıdır. Mükemmel bir iletkenin 

üzerinde manyetik yüzey olamayacağını hatırlayın, bu durumda ( )QZ F C ,alan 

manyetik olarak polarize edildiğinde elektrik yüzey akımı yoğunluğuyla orantılı olur. 

Z   iken (A4.15)’deki integrandın anlamıyla ilgili her türlü belirsizliği 

gidermek için aşağıdaki tanım gereklidir: 

 ( ) 0  ve  ( ) ( )   =  olduğundaQ QF C Z F C G C Z    (A4.17) 

Burada ( )G C , C ’deki tekrar yayılan kaynakların yoğunluğunun alternatif bir 

tanımıdır, C ’nin iyi bir fonksiyonudur. 

Z ,  ’deki alan ile kabul edilen forma bağlıdır, yani genel olarak iç ve dış (C

’ye göre) alanların doğru olarak hesaplanabilmesi için birlikte ele alınmalıdır. 

Bununla birlikte, C  ’de bulunan ortam çok yansıtıcı veya çok kayıplı ise Z , 
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önceden belirtilebilir [A18]. Özellikle, eğer ortam tamamen yansıtıcı özellikteyse 

(örneğin C  sonsuz, mükemmel iletken bir silindirin kesitidir) Z , alanın elektriksel 

veya manyetik olarak polarize olmasına bağlı olarak sırasıyla sıfır veya sonsuz olur. 

Z  ve 0  belirtildiyse, 1   ’da belirlenmesi, uygun şekilde formüle edilmiş 

bir sınır değer problemidir ve (A4.13) ve (A4.15)’den türetilmiş bir integral denklemi 

olarak kabul edilebilir: 

 

' ' '

'

' ' '

2
0
! ' '

0

( )

            = ( )

Q QQ QQ
Q Q

C

QQ QQ QQ
C

g g
Z F C dC Z

g Z g F C dC

   



                
       




 (A4.18) 

Burada '0Q
 , C ’de 0 ’ın 'Q  noktasındaki değeridir, burada C  yönündeki 

dışarı doğru normal yön, '  yönüdür. (A4.18) notasyonundaki bilinmeyen, bir dizi 

farklı moment yöntemiyle [A19], [A20] sayısal olarak değerlendirilebilen ( )F C ’dir. 

( )F C  belirlendikten sonra 1 , ( )F C ’nin (A4.15)’de yerine konmasıyla 

hesaplanabilir. 

1 ’i açısal bir Fourier serisine açmak genelde uygun bir davranıştır, fizikçiler 

bunu "kısmi dalga açılımı" olarak adlandırır. Bunu yapmak için önce C ’yi, Q’nun 

radyal koordinatının, alanın incelendiği P  noktasının radyal koordinatından küçük 

veya büyük olduğu parçalara ayırmak gerekir: 

 C L L    (A4.19) 

  olduğunda r Q L    (A4.20) 

  olduğunda r Q L    (A4.21) 

Hem L  hem de L  ‘nın P  konumunun fonksiyonları olduğuna dikkat 

edildiğinde; 

 ( )L L    (A4.22) 
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Şekil A.2 incelendiğinde şu ifadeler görülür: 

  ve ,  L L C P      (A4.23) 

  ve ,  L L C P      (A4.24) 

Burada  , sıfır kümesini, örneğin uzayın hiçbir nokta bulunmayan bölgesi, 

temsil eder. 

Daha önce tanımlanan   büyüklüğüne dönmek ve bunu tüm   boyunca 

aşağıdaki ifadeyle tanımlamak uygun olacaktır: 

 ( ) ,  QP Q QP
C

g Z g F C dC P          (A4.25) 

Eşitlik (A4.15) ile yapılan karşılaştırmada aşağıdaki görülür: 

 1,  P     (A4.26) 

Şimdi, sırasıyla (A3.2) ve (A3.3) eşitliklerinde gördüğümüz 1  ve 2

büyüklüklerinin tanımlarını genişletmek gerekiyor. (A3.2) ve (A3.3)’teki seriler 

oldukça genel tiptedir, fakat açılım katsayılarını ( mA  ve mB ) sabit olarak seçmek,   

gibi sadece belirli bölgelerde faydalıdır. Şunları tanımlayalım: 

 1 ( ) ( ) exp( )m m
m

J k jm   






    (A4.27) 

 (2)
2 ( ) ( ) exp( )m m

m

H k jm   






    (A4.28) 

Şekil A.1’deki notasyondan ve (A2.12), (A4.14), (A4.19) ve (A4.22) ile 

(A4.25)’den şu sonuçlar elde edilir: 

 (2)

( )

( ) ( ) ( , ) exp( )m m
L

F C H k r jm dC


  


     (A4.29) 
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( )

( ) ( ) ( , ) exp( )m m
L

F C J k r jm dC


  


     (A4.30) 

H  ve J 'deki tildalar kısa notasyondur: 

 4
1 1

1( , ) ( ) ( )exp( ) ( )exp( ) ( )
2m m m mj W k r W kr k W kr j W kr j Z C  

     
  (A4.31) 

Burada W , J  veya H  temsil eder. Önceki sonuçları teyit etmenin en kolay 

yolu, (A4.25)’deki QPg ’yi,  ’ye göre diferansiyel almadan önce toplama teoremi 

(A2.12) ile açmaktır. (A4.23) ve (A4.24)’ye ait referans şunları göstermektedir: 

 ( )   ( ) 0,   m m mA P    
    (A4.32) 

 ( )   ( ) 0,   m m mB P    
    (A4.33) 

Buradaki mA  ve mB ’yi (A3.2) ve (A3.3)’te görmüştük. Daha sonra (A4.26) 

aracılığıyla, (A3.5)’de sunulan notasyon kullanılarak şu sonuca ulaşılır: 

  1      (A4.34) 

(A3.6) ve (A4.26)-(A4.33)’a bakıldığında, (A4.34) notasyonunun aşağıdaki 

sonucu sağladığı görülür: 

 (2)
1 ( ) exp( ),  m m

m
B H k jm P 






     (A4.35) 

(A3.14)’nın (A3.13)’ten aldığı analitik devam prosedürü sadece bir alanın 

tekilliklerine ait c  dışbükey örtüsünü takip edebilir. Tekilliklerin gerçek   

örtüsünde içbükeylikleri (mevcutsa) izole etmek için farklı bir prosedüre [A12]-

[A15] ihtiyaç duyulur. 

İkinci temel prensipten (A4.35)’in RHS’nin, 0 ’da merkezlenen ve yarıçapı 0r  

olan 0  dairesinin dışındaki tüm   için 1 ’in analitik devamının geçerli bir temsili 
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olduğu sonucu elde edilir; burada  , (A4.35)’in RHS’nin minimum yakınsaklık 

yarıçapıdır. Ancak 1 ’in analitik devamını 0 ’da merkezlenen ve yarıçapı r  olan   

dairesinin iç kısmı boyunca temsil etmek için farklı bir ifadeye ihtiyaç duyulur ve bu 

Şekil A.6’da gösterilmiştir.  ’nin hem 0 , hem de c  ile kesiştiğine dikkat edin. 

(A3.14) türetilirken başvurulan toplamsallık teoremi kullanılarak (A4.35)’in 

RHS’nin  ’nin iç kısmı yönündeki analitik devamı şu şekilde bulunur. 

 ( ) exp( ),   rm m
m

A J kr jm r




     (A4.36) 

 (2) ( ) exp( )m n n m
n

A B H k jn 





      (A4.37) 

Burada mA , 0  ile  ’nin iç kısımlarının kesişimi içinde (A4.35) ve (A4.36)

’nin karşılaştırılması yoluyla belirlenir. 

Eğer r  RHS’nin maksimum yakınsaklık yarıçapı ise (A4.36),   en az bir 

noktada  ’ye teğet olmalıdır. Bu nedenle, daha önce belirtildiği gibi, alanların 

tekillikleri tek olduğu için,  ,  ’nin iç kısmıyla kesişemez. Aslında   ancak  ’nin 

kendisi içbükeylikler içeriyorsa  ’nin iç kısmıyla kesişebilir. 

Toplamsallık teoreminin arka arkaya uygulanmasıyla 1 ,  ’nin dış kısmı 

boyunca analitik olarak devam ettirilebilir. 

C ’nin Şekil A.7’de 0Q ’da olduğu gibi keskin bir köşeye sahip olması 

durumunda   köşede C ’ye neredeyse her zaman değer. Şekil A.7’de gösterilen 

kutupsal koordinatlar r  ve   kullanılarak 0Q ’ın komşuluğunda  ’daki toplam 

alanın aşağıdaki formda [A6] ifade edilebilmesi gerekir. 
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1

( ) sin( )
mm m m

m
c J kr   





     (A4.38) 

Burada mc ’ler birer sabittir ve m , 0Q  komşuluğunda yüzey empedansları 1Z

0  ’da ve (2 )    ’da tanımlanan sınır koşullarını karşılar. Böylece m  ve m , 

sırasıyla   ve  ’nın değerleridir ve bunlar da aşağıdaki denklemi karşılar: 

 1 2tan( )  tan([2 ] )Z Z           (A4.39) 

Burada,   fiziksel alanının 0  ’da sonlu olması gerektiğinden, ’nün 

gerçek kısmı negatif olmamalıdır. C  boyunca 0Q ’dan itibaren olan ölçüm mesafesi, 

yüzey-kaynak yoğunluğu (A4.16) ve (A4.38) aracılığıyla aşağıdaki ifadeyle 

verilmiştir. 

Şekil A.6: Tekilliklerin dışbükey örtüsü içinde analitik devam. 

 

Şekil A.7: Bir köşesi olan C  eğrisi. 
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1

1( ) ( ),   0

1         = ( ),      0
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m

F C F J kC C
C

F J kC C
C















  






  (A4.40) 

En azından 0Q ’ın komşuluğunda, burada mF   sabitleri aşağıdaki ifadelerle 

verilmiştir. 

 cos( )m m m mF c      (A4.41) 

 cos([2 ] )m m m m mF c          (A4.42) 

C ’nin analitik olması ve Z ’nin C  boyunca analitik olarak değişmesi 

koşuluyla, ikinci temel prensibe göre, (A4.40)’daki seriler, C ’nin serilerin 

yakınsadığı değerleri için ( )F C ’nin geçerli temsilleridir. Eğer 1C , C  boyunca 0Q

’dan 1Q ’e kadar olan mesafe ise ve 1C , (A4.40)’daki ikinci serinin yakınsaklık 

yarıçapı ise şu denklem geçerlidir:  

 1
1

1( ) ( ),   0
mm

m
F C F J kC C C

C 






     (A4.43) 

Bessel fonksiyonlarının [A8] doğası gereği, tüm m ’ler pozitif tamsayılar 

olmadığı sürece ( )F C ’nin 0Q ’da analitik olmaya son vermek zorunda olmasının 

anlaşılması önemlidir. 

A5. İNHOMOJEN ORTAMLAR 

Pratik hesaplama bilgilerinin temelini neredeyse tamamen homojen ortamlara 

gömülmüş mükemmel iletken nesneler tarafından kırınım çalışmaları 

oluşturmaktadır. İnhomojen ortamlarla ilgili belirli problemler diferansiyel 

yaklaşımla başarılı bir şekilde çözülmüştür. İlk olarak mikrodalga mühendisliği için 

Richmond [A58] tarafından sistematik bir hesaplamaya dayalı bir yöntem olarak 

geliştirilen bir integral yaklaşımı olan polarizasyon-kaynak formülasyonu, bir dizi 
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başarılı çözümün [A7] elde edilmesini sağlamıştır ve özellikle dielektrik yüklü dalga 

kılavuzları için kullanışlı formüller sağlamaktadır. 

James ve Gallett [A53], [A59] tarafından elde edilen son sonuçlar hesaplama 

açısından büyük bir öneme sahip olabilir, çünkü bunlar Rayleigh hipotezinin 

başarısız olmasının sonuçlarının penetre edilebilir ortamlar için mükemmel iletken 

yapılara göre daha az kritik olduğunu göstermektedir. 

İnhomojen ortamlarla ilgili kırınım problemlerinin sayısal olarak doğru 

değerlendirilmesi için genelde aşırı düzeyde hesaplama çabaları gerekmektedir, bu 

yüzden hesaplamaları hızlandıran yöntemler memnuniyetle karşılanmaktadır. James 

ve Gallett'in dielektrik dalga kılavuzlarının alanlarına yönelik nokta eşleşmeli 

çözümlerini düzeltme yöntemi [A59] bu bağlamda ilgi çekicidir. Özdeğerler ve 

alanların düzeltilebilmesi durumunda bu yöntemin oldukça önem kazanacağına 

dikkat çekmek isteriz (örneğin, kesin polarizasyon-kaynak formülasyonu gibi sayısal 

bir çözümün temelini oluşturan hesaplama süresini arttırmadan). 
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