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OZET

Bu tez calismasi, yedi bélimden olugsmustur.

Birinci bélim tezin giris bélumadir. Bu bdélimde, egrilik teorisi ve robot ug-islevci
hareketinde kullaniimasi ile ilgili literatir bilgisi ve bu tezde yapilanlar hakkinda kisaca bilgi
verilir.

ikinci bolimde, IR13 Minkowski uzayinin temel kavramlari verilir.

Uglincii balimde, IRf Minkowski uzayinda spacelike ve timelike aykiri regle ylzeylerin

egrilik teorileri detayl bir sekilde incelenir. Regle ylzeylerin ve bunlarin merkez normal
ylzeylerinin catilari bulunur. Bu catilar arasindaki iligkiler veriler. Regle ylzeyler ve merkez
normal ylzeylerinin egrilik fonksiyonlari elde edilir.

Doérdincl bélimde, IRf Minkowski uzayinda yegane agcilabilir regle ylzeyler olan silindir,

koni ve teget ylzeylerin egrilik teorileri incelenir. Bu ylzeylerin egrilik teorilerinin aykiri regle
ylzeylerin egrilik teorisinden farkliliklari ortaya koyulur.

Besinci bélimde, glincl bdlimde ele alinan spacelike ve timelike aykiri regle yizeylerin
egrilik teorileri yardimiyla robot ug-islevci hareketi incelenir. Robot ug-islevci hareketinin lineer
ve agisal 6zellikleri, regle ylzeylerin diferansiyel ézelliklerinden belirlenir.

Altinci b6limde, dual uzay ve dual Lorentziyen uzay ile ilgili temel kavramlar verilir.
Yedinci bdlimde, G¢lnct bdlimde ele alinan regle ylzeylere dual Lorentziyen uzayinda

karsilik gelen dual kiresel egriler bulunur. Robot ug-islevci hareketinin diferansiyel ézellikleri
dual kiresel egrilerin egrilik teorisi yardimiyla incelenir.



viii

ABSTRACT

This thesis consists of seven sections.

First section is introduction. In this section, literature review about curvature theory and its
using in robot end-effector motion and Some information about this thesis is given.

In section two, preliminaries of Minkowski space IRf is given.

In section three, the curvature theories of spacelike and timelike ruled surfaces in
Minkowski space IR’ are examined in detail. Frames of ruled surfaces and their central normal

surfaces is found. Relations between these frames are given. Curvature functions of the ruled
surfaces and their central normal surfaces are obtained.

In section four, the curvature theory of cylinder, cone and tangent surface that are
developable surfaces in Minkowski space IR’, are examined. Differences between the

curvature theory of these developable surfaces and the curvature theory of general ruled
surfaces are showed.

In section five, motion of robot end-effector is examined using the curvature theories of
spacelike and timelike ruled surfaces which are considered in section three. Linear and angular
properties of the motion of robot end-effector are determined by using the differential properties
of ruled surfaces.

In section six, preliminaries of dual space and dual Lorentzian space are given.

In section seven, dual spherical curves in dual Lorentzian space corresponding the ruled
surfaces that are considered in section three, are obtained. The differential properties of the
motion of robot end-effector is investigated by using the curvature theory of the dual spherical
curves.



1. GIRIS

Egrilik teorisi, hareketli kati bir cisim Gzerindeki bir noktanin ya da bir dogrunun i¢ geometrik
Ozelliklerini arastirir [30]. Uzayda kati bir cisme sabitlenmis bir nokta ve bir dogru, cisim hareket
ederken, sirasiyla, bir egri ve bir regle ylzey gizerler. Bir nokta yériingesinin egrilik teorisi
alaninda, dizlem kinematiginde yiksek mertebeden yériinge egriligi kavramini ilk olarak Muller
[23] tanimlamistir. DGzlem kinematiginde yiksek mertebeden ydriinge egriligi analizleri Gzerine
calisan Freudenstein [13], karakteristik sayilar denilen skaler sayilari kullanarak, dizlemsel
egrilerin bir noktada nasil karakterize edilebilecegini gdsterdi. Freudenstein’in ¢alismalarinin
sonuglari, dizlemsel mekanizmalarin analiz ve sentezine uygulanabilmektedir.

Duzlem kinematiginde kati cisim hareketini karakterize etmek igin kullanilan ani invaryantlar
ilk kez, Bottema [7] tarafindan tanimlanmistir. Veldkamp [43], ani invaryantlari uzay
kinematigine genisletti. Freudenstein’in [13] ¢alismasini duzlemden kireye genigleten Yang ve
Roth [46], klresel hareketi ani invaryantlar cinsinden ifade ettiler. Onlarin c¢alismalarinin
sonuclari da kiresel mekanizmalarin analiz ve sentezine uygulanabilmektedir. Kirson [19], dual
sayllari ve vida hesabini kullanarak bir kati cisim hareketini tam olarak belirleyen kanonik
koordinat sistemlerin ve ani invaryantlarin bulunmasi i¢in bir ydéntem gelistirdi. McCarthy [22]
dogru yéringelerinin skaler ve dual formilasyonlarini tekrar tireterek, bir regle ylzeyin seklini
karakterize eden temel egrilik fonksiyonlarini ifade etti. Schaaf [33] ise kiresel evoliitler ve
transfer teorisini kullanarak, dogru yéringelerinin yiksek mertebeden 6zelliklerini dual ani
invaryantlar cinsinden ifade etmisgtir.

Egrilik teorisi, sadece Oklid uzayinda yapilan galismalar ile sinirl kalmamis, Minkowski
uzayinda da arastirmacilarin ilgisini ¢ekmistir. Ayyildiz ve Yilcesan [2], [22] deki teknigi
kullanarak Lorentziyen uzayda null olmayan egriler icin dogru yériingelerinin egrilik teorisinin
skaler ve dual Lorentziyen formdllerini tUrettiler. Ersoy ve Tosun [12], bir null edri boyunca
hareket eden bir null yénll dogru ile dogrudan iliskisi olan Minkowski 3-uzaydaki yériinge null
scrolleri verdiler. Turhan ve Ayyildiz [38], null doguranli bir regle yizeyin seklini belirleyen egrilik
fonksiyonlarini tlrettiler. Bu fonksiyonlar ile spacelike doguranli merkez normal ylzeyin
fonksiyonlari arasindaki iligkileri verdiler. Ugurlu ve Onder [28,39] spacelike ve timelike regle
ylzeylerin Frenet catilari ve Frenet invaryantlarini verdiler.

Gundmizde robot ug-islevciler, madde tasinmasi, boyacilik, kaynak endistrisi ve tip gibi

bircok farkh alanda kullaniimaktadir [3]. Robot ug-islevcinin gdéz ameliyati gibi hassasiyet



gerektiren alanlarda kullanildigi da dikkate alinirsa, ug-islevcinin  hareketinin  hatasiz
gerceklesmesi énem kazanir. Ryuh ve Pennock [31], robot ug-iglevcinin hatasiz hareketi igin
bilinen matris yontemlerinden farkli bir yéntem ortaya attilar. Onlar, bir regle ylzeyin egrilik
teorisini kullanarak robot ug-islevci hareketini incelediler. Ayrica, regle ylzeyin bir parametrik
denklem ile ifade edilemedidi durumlar igcin bir geometrik modelleme teknigi kullandilar [32].
Regle yuzeylerin egrilik teorisinin robot ucg-islevci hareketinde kullaniimasi ve bir geometrik
modelleme teknigi ile olusturulmasi, Ryuh’un tezinde [30] detayli bir sekilde anlatiimistir.

Minkowski 3-uzayda Ekici ve digerleri [11] timelike doguranli timelike regle yiizeylerin egrilik
teorisini kullanarak robot ug-islevci hareketini incelemiglerdir. Fakat bu ¢alismada, Lorentziyen
ic carpim ile vektérel ¢carpim birbiri ile uyumlu degildir. Ayrica bu ¢alismada, tek bir durum ele
alinmis, diger durumlar incelenmemistir. Bu tezin 3. béliminde, [11] de yapilan ¢alisma, tim
olasi durumlar igin incelenmis ve gerekli dizeltmeler belirtiimistir.

Bu tezde, Minkowski 3-uzayindaki regle ylzeylerin egrilik teorileri yardimiyla robot ug-islevci
hareketi incelenir. 1ll. Bélimde, aykiri regle yizeylerin egrilik teorisi, regle ylzeylerin merkez
normal yuzeyleri de ele alinarak, detayli bir sekilde verilmistir. Aykiri regle yuzeyler igin verilen
egrilik teorisi, acilabilir regle yuzeyler igin kullanilamaz. Robot ug-islevci hareketinde olusacak
regle ylzeyin bir acilabilir regle ylzey olabilecegi de g6z 6ninde bulundurularak, yegane

acllabilir yizeyler olan silindir, koni ve teget ylzey icin egdrilik teorileri, IV. B6limde ayri ayri
incelenmigtir. V. Bbélimde, IR13 Minkowski 3-uzayindaki spacelike ve timelike regle yiizeylerin
egdrilik teorisi kullanilarak, robot ug-iglevci hareketinin diferansiyel 6zellikleri olan ug-iglevcinin
lineer hiz ve ivmesi ile agisal hiz ve ivmesi verilmistir. VI. Bélimde, ID’ ve ID13 dual Oklidyen

ve dual Lorentziyen uzaylarin temel kavramlari ile E. Study déntstmleri (transfer prensipleri)
ifade edilmistir. Son bdélimde, timelike ve spacelike regle yuzeylere karsilik gelen dual
hiperbolik ve dual Lorentziyen kirresel egriler yardimiyla, robot ug-islevcinin diferansiyel

Ozellikleri tetkik edilmistir.



2. IR’ MINKOWSKI UZAYININ TEMEL KAVRAMLARI

Tamim 2.1. IR’ reel vektor uzay! iizerinde
(u,v> =uv, +uyv, —Uusv,
ile verilen Lorentziyen i¢ ¢carpim tanimlanirsa, IR’ Afin uzay!, Minkowski 3-uzay, 3 boyutlu
Lorentz uzayl veya Lorentziyen 3-uzay olarak isimlendirilir ve IR13 ile gosterilir [25]. Burada
u=(u,u,u,) ve v=(,v,,v,)€ IR’ dir. u ve v vektdrlerinin ic carpimi igin u-v
gbsterimi de kullanilabilir.
Lorentziyen i¢ carpimi pozitif tanimli olmadidindan IR13 deki vektorler agagidaki gibi U¢

farkl Lorentziyen karaktere sahip olabilirler.

Tamm 2.2. v = (v, v,,v;), IR, de keyfi bir vektor olsun.
i) <v,v> >0 yada v =0 ise v vektoriine spacelike,
if) (v,v><0 ise v vektoriine timelike,

iii) (v,v)=0 ve v #0 ise v vektdrine null (lightlike)

vektor denir [25].

Tamim 2.3. Bir v = (v, v,, v;) € IR, vektdriintin normu

vl = (7

olarak tanimlanir. Normu 1 olan vektérlere birim vektdrler denir [25].

Tanim 2.4. u=(u,u,,u;) ve v=(v,v,,v;), IR de iki vektdr olsun. u ve v vektdrlerinin
Lorentziyen vektorel carpimi
—€ —€, ¢&
UXv=u Uy, U= (—UyVy T Uy, UV — UV UV, — U V))

Vi V, W



biciminde tanimlanir [36,40].

3 w .
Teorem 2.1. u=(u,,u,,u;),v=~,,v,,v;) ve w=(w,w,,w;), IR’ uzayinda U¢ vektdr
olsun. Bu durumda

i) <u><v,w>=—det(u,v,w)
i) (uxv)xw =—<u,w>v+<v,w>u
iiii) <u><v,u>=0 ve <u><v,v>=0

iv) (uxv,uxv)= —<”’”><V’v>+(<u’v>)2
dir [40].

Tanim 2.5. IR13 uzayindaki orijin merkezli Lorentziyen ve hiperbolik birim kireler sirasiyla
St={v=0v e lR’: (vv)=1]

ve
Hy ={v=0,v,v)e IR’ : (vv)=-1}

olarak tanimlanir [40].

Tanim 2.6. Minkowski 3-uzayinda bir @ =a(s) egrisinin hiz vektérii @'(s) bir spacelike,

timelike ya da null vekitr ise @ = a/(s) egrisine de sirasiyla spacelike, timelike ya da null egri

denir [25].

Tanim 2.7. Minkowski 3-uzayinda bir ylzeyin her noktasindaki normal vektdérii spacelike

(sirasiyla, timelike) ise bu ylzeye timelike (sirasiyla, spacelike) ylzey denir [48].

Tanim 2.8. i) Hiperbolik aci: u ve v, IRI3 de timelike iki vektdor olsun.

<u,v> =—||u||||v||cosh0 olacak sekilde bir >0 reel sayisina u ve v vektorleri arasindaki

hiperbolik agi denir [29].

ii) Merkez ac1: u ve v, IRI3 de spacelike iki vektor ve bu vektdrlerin gerdigi dizlem timelike

olsun. <u,v>=||u||||v||cosh0 olacak sekilde bir >0 reel sayisina u ve v vektorleri

arasindaki merkez aci denir [29].



iii) Spacelike ac1: u ve v, IRI3 de spacelike iki vektér ve bu vektorlerin gerdigi dizlem

spacelike olsun. Ku,v>‘ =||u||||v||cos€ olacak sekilde bir 8 >0 reel sayisina u ve v vektorleri

arasindaki spacelike agi denir [29].

iv) Lorentziyen timelike aci: u, IRf de bir spacelike vektdr ve v, IRf de bir timelike vektdr

olsun. Ku,v}‘znu””v”sinhﬁ olacak sekilde bir @>0 reel sayisina u ve v vekitorleri

arasindaki Lorentziyen timelike a¢i denir [29].



3. IR’ MINKOWSKI UZAYINDA AYKIRI REGLE YUZEYLERIN EGRILIK TEORISi

Bu bélimde, Minkowski 3-uzayinda regle ylzeylerin egrilik teorisi detayh bir sekilde
incelenmistir. Regle ylzeylerin bodaz ¢izgileri Uzerinde tanimli olan Ureteg Ugydzllleri ve bu
agylzlulerin tirev formdlleri bulunmustur. Regle yUzeylerin merkez normal ylizeyleri ve bu
ylzeylerin bodaz gizgileri Gzerinde tanimh olan dogal GgytzlUler incelenmis, bu Ggyzlller ile
Ureteg UgyulzlUleri arasindaki iliskiler elde edilmisgtir.

Uzayda bir dogrunun hareketi ile olusan ylzeylere regle ytizeyler denir [10]. Bir regle ylzey

X(u,v)=au)+v R(u) (3.1)
denklemi ile gosterilebilir [24]. Burada, a/(u) egrisine regle ylzeyin dayanak egrisi, regle ylzeyi

olusturan ana dogrularin yon vektorleri olan R(u) vektorlerine de regle ylizeyin doguranlari

denir. Burada u ve v reel parametrelerdir. & ve R, 3-boyutlu uzayda iki vektér oldugundan
bir regle yizeyi ifade etmek i¢in alti bagimsiz parametreye ihtiya¢c vardir. Regle ylizeyin
doguranlarinin boyunun sabit biyUklikte oldugu kabul edilirse, bu bir kisit olusturur. Béylece bir
regle ylzey bes bagimsiz parametre ile ifade edilebilir.

(3.1) denklemindeki u parametresi keyfidir. Bu parametreyi normallestirmenin iki yolu

vardir. Normallestirilmis parametre

sw)= dow) 4,
ol du
biciminde dayanak egrisine ya da
s(u)z_[ R (w) du (8.2)
ol du

biciminde dogurana bagl olabilir [30]. Ug-islevcinin agisal hizi ile ilgilenildiginde, (3.2)
denklemindeki parametrizasyon daha uygun olacagindan, bu bélimde (3.2) denklemindeki
normallestirme islemi kullanilacaktir.

Doguran sabit bir vektér oldugunda, doguranin tirevi sifira esit olur. Bu durumda tim
doguranlar birbirine paraleldir. Bu tlr regle ylzeyler, silindirleri ifade ederler. Silindirlerin egrilik
teorisi, 4. b6limde anlatilacak olup, bu bélimde incelenecek regle yuzeylerin doguranlarinin

sabit olmadigi varsayilacaktir.

Bir X (u,v) regle ylzeyinin dagilma parametresi



g det(&, R, R)
(k)

olarak tanimlanir [24]. Burada

(3.3)

nn

-", u parametresine goére tirevi gosterir. Eger, d =0 ise

doguran boyunca teget dizlem degdismez. Béyle bir dogurana agcilabilir doguran ve tim
doguranlari agilabilir doguran olan regle yiizeylere de agilabilir regle ylzeyler denir [10].
Acilabilir regle ytzeylerin egrilik teorisi, 4. b6limde incelenecektir. Bu bélimde incelenen regle
ylzeylerin acilabilir olmayan (aykir) regle ylzeyler oldugu varsayilacaktir.

Minkowski 3-uzayinda regle yiizeylerin egrilik teorisi, spacelike ve timelike regle ylzeylerin
egrilik teorisi olmak Uzere iki bélimde incelenecektir. Null regle yizeylerin egrilik teorisi

incelenmemis olup, null regle yiizeylerin egrilik teorisi i¢in [37] ye bakilabilir.

3.1. IRf Minkowski Uzayinda Spacelike Regle Yiizeylerin Egrilik Teorisi

a(u), IRI3 uzayinda bir egri, R(u) ana dogrularin yon vektori ve u,v reel degerli
parametreler olmak (zere, bir spacelike regle ylzey
X(u,v)=a(u)+v R(u)
denklemiyle verilebilir. Burada a/(u) dayanak egrisi ve R(u) doguran vektorleri spacelike

vektérlerdir. Regle yuzeyler diger yuzeylerden farkli olarak bir bodaz ¢izgisine ve bogaz cizgisi

Uzerinde tanimlanan bir Ureteg UgytzlUslUne sahiptirler.
3.1.1. Bogaz Cizgisi ve Uretec Ucyiizliisii

Bir X regle yuzeyinin ana dogrularindan biri D ve bu ana dogruya sonsuz yakin ana

dogru ise D™ olsun. D ve D" ana dogrularinin ortak dikmesinin D (izerindeki ayagina, D
ana dogrusunun bogdaz noktasi, bogaz noktalarinin geometrik yerine ise bogaz gizgisi denir [4].
Bogaz cizgisi dayanak egrisinin secilisinden bagimsizdir.
Bir spacelike regle ylzeyin bogaz gizgisinin dayanak egrisine gére denklemi
c(s)=a(s)—u(s)R(s)
bigiminde verilebilir [30], burada (£ reel degerli bir parametredir. R doguranin boyu olmak
Uzere doguran Uizerinde bogaz gizgisinden dayanak egrisine olan uzaklik #R dir.
¢ R =0 (3.4)
denklemi bogaz cizgisini karakterize eder [10]. Bogaz ¢izgisinin tlrevi

¢’=a-UuR-ur’ (3.5)



dir. (3.5) denklemi, (3.4) denkleminde yerine yazilirsa
¢ R=a R-yR-R-uR R =0
olur. Buradan i parametresi
U=-a R (3.6)
biciminde elde edilir. Boylece spacelike regle ylizeyin bogaz ¢izgisi
c=a+(a@-R)R
biciminde yazilabilir.
Ureteg Ugylizliisli, spacelike regle yiizeyin bogaz gizgisi lizerinde birbirine dik, Gi¢ birim
vektérden olusur; bunlar Ureteg vektorl g , merkez normal vektér h ve merkez teget vektor a

dir. Spacelike regle yiizeyin doguranlari, birim vektér olmak zorunda olmadigindan Ureteg

vektori
q= X (3.7)
R
olarak tanimlanir. Merkez normal vektér ve merkez teget vektor sirasiyla
h=R (3.8)
ve
a=—qxh (3.9)

biciminde tanimlanir [39].
Tanim 2.7. den, bir spacelike regle yiizeyin her noktasindaki birim normal vekt6rindn
timelike vektor oldugu bilinmektedir. Merkez normal vektér h, regle ylzeyin bogaz gizgisi
izerinde birim normal vektére karsilik geldiginden, merkez normal vektér h da timelike
vektdrdiir, dolayisiyla lreteg vektdrli ¢ ve merkez teget vektdr a spacelike vektorlerdir. Ureteg
O¢y0zIUsUndn vektorleri arasinda
gxh=—-a, hxa=—-q, axq=h (8.10)
bagintilari mevcuttur.

Ureteg Ggylizliistinin birinci mertebeden agisal degisiminin belirlenmesi icin ¢, k, a birim
vektoérlerinin tdrevlerinin bulunmasi gerekmektedir. (3.7) denkleminin tirevi alinip (3.8) denklemi
burada yerine yazilirsa
, R' h

"R R

elde edilir. Merkez normal vektdriin birinci mertebeden tirevi, Grete¢ G¢yUzlisi elemanlarinin

q (3.11)

lineer bilesimi olarak
h' =Aq+uh+va

bigiminde yazilabilir. ¢ ve h vektorleri birbirine dik oldugundan



h-g=0 (3.12)
esitligi mevcuttur. (3.12) denkleminin tirevi alinirsa
h-qg+h-q=0 (3.13)
elde edilir. (3.11) denkleminin (3.13) denkleminde yerine yazilmasi ile
a=1
R

bulunur. h vektéri birim oldugundan tirevine diktir, yani

pu=0

dir. Dolayisiyla, merkez normal vektorin tirevi v =% olmak Gzere

h'=%(q+7/a) (3.14)

biciminde yazilabilir. Burada ¥, tglinct bilesen v den tanimlanan
y=R(H -a) (3.15)
fonksiyonudur ve bu fonksiyona spacelike regle ylzeyin jeodezik egriligi denir. (3.14) denklemi,

(3.15) denkleminde yerine yazilarak ve (3.7-3.9) denklemleri kullanilarak jeodezik egrilik regle

ylzeyin doguranlari cinsinden
y=(R,R,R")
biciminde yazilabilir. Merkez teget vektdrin birinci mertebeden tlrevinin bulunmasi igin (3.9)
denkleminin tirevi alinarak
a’ =—q'xh—qxh’
elde edilir. (3.11), (3.14) ve (8.10) denklemleri kullanilarak merkez teget vektdriin birinci

mertebeden tlrevi

a=Lh
R

olarak bulunur. Béylece Urete¢ Ugylzlisinlin birinci mertebeden agisal degisimleri matris
formda

0 1 Ollq
1 0 yl||h (3.16)
0 7 Ofla

biciminde ifade edilebilir [39].

Ayrica, Urete¢ UgyuzIistinin Darboux ani dénme vektérl

w, =l(—}/q+a) (3.17)
R
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olarak bulunur. Bu vektor
q'=wq><q, h'=wq><h, a'=wq><a
esitliklerini saglar.
Bogaz cizgisinin birinci mertebeden konumsal degisiminin Urete¢ Ugyuzllsinin vektorleri
cinsinden ifade edilebilmesi igin

¢’ =Aq+uh+va (3.18)
esitligindeki A, i, v katsayilarinin bulunmasi gerekmektedir. A4 katsayisinin bulunmasi igin

(3.18) denkleminde esitligin her iki tarafi g vektdru ile garpilirsa ve (3.5) denklemi kullanilirsa
’ / 4 4 R 1 4 ’
A=c"-q=(a - /'R-uR )'E:E(“ ‘R)— 'R

elde edilir. (3.18) denkleminde esitligin her iki tarafi h vektori ile garpilirsa ve (3.8) denklemi,
(3.4) denkleminde yerine yazilirsa

u=c-h=0
elde edilir. v katsayisinin bulunmasi i¢in (3.18) denkleminde esitligin her iki tarafi @ vektéri ile

carpilir ve (3.5) denklemi kullanilarak
7 /7 ’ /7 / /’ 1 / ’
v=c-a=(@—-UR-uR)a=a -a=« -(—qxh)z—Ea (RXR)

elde edilir. Bdylece bogaz gizgisinin birinci mertebeden konumsal degisimi

¢’=Tq+Aa (3.19)
biciminde yazilabilir. Burada
= %(a’ ‘R)— 'R (3.20)
ve
1 /’ ’
A=——a - (RXR) (3.21)
R
dir.

Sirasiyla (3.15), (3.20) ve (3.21) denklemlerindeki ¥, I', A parametrelerine spacelike regle

yUzeyin egrilik fonksiyonlari denir.
3.1.2. Merkez Normal Yiizey ve Dogal Ugyiizlii
Uretec (cylizllisii bogaz cizgisi boyunca hareket ederken merkez normal vektdr, merkez

normal ylizey ya da normalia denilen baska bir regle ylzey cizer [30]. Spacelike regle yuzeyin

merkez normal yizeyi
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X, (s,v)=c(s)+v h(s)
denklemi ile verilebilir. Burada ¢, X spacelike regle ylizeyin bodaz ¢izgisi ve h, X spacelike
regle ylizeyin merkez normal vektoridar.
Merkez normal ylizeyin bogdaz gizgisi, spacelike regle ylzeyin bogaz ¢izgisi yardimiyla
c,=c—uh (3.22)
biciminde verilebilir, burada 4, , merkez normal vektdr boyunca iki bodaz gizgisi arasindaki

uzakliktir.

Bogaz c¢izgisinin tanimindan

¢, W=c W—puhh—uhh=0

esitligi elde edilir ve buradan
i = c-n _T+Ay)R
"WH 1+
olarak bulunur. Bdylece merkez normal ylizeyin bogaz gizgisi
T+Ay)R
€, =C———— 7
1+

biciminde yazilabilir.

h

Merkez normal ylzeyin bogdaz gizgisi Uzerinde birbirine dik, G¢ birim vektdr ile tanimlanan
catiya dogal Ugytizli denir. Dogal Ggy(zIlyl olusturan vektorler; Greteg vektord h, asal normal
vektér n ve binormal vektdr b dir. X spacelike regle ylizeyin merkez normal vektori olan h,

merkez normal ylzeyin Urete¢ vektdri konumundadir ve daha énce de tanimlandidi gibi

h=FR
biciminde verilebilir. Asal normal vektér

h/

n=—

K

olarak tanimlanir ve burada

k=|n

merkez normal ylzeyin egrili§idir. Son olarak binormal vektér
b=-hxn (3.23)
bigiminde verilir. h vektord bir timelike vektor oldugundan ve n, b vektorleri h vektorine dik
olduklarindan, n ve b vektorleri spacelike vektorlerdir.
Dogal Ggydzlinln birinci mertebeden agisal degisiminin belirlenmesi icin h, n,b birim

vektorlerinin tlrevleri bulunmalidir. Asal normal vektériin tanimindan, merkez normal vektoriin
birinci mertebeden tirevi, dogal G¢yizlide
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h =kn (3.24)
bicimindedir. Asal normal vektériin birinci mertebeden tirevinin elde edilmesi i¢in
n’ =Ah+un+vb (3.25)

esitligindeki A, i, v katsayilarinin bulunmasi gerekir. A katsayisinin bulunmasi igin (3.25)
esitliginin her iki tarafi h vektori ile garpilir ve (3.24) denklemi kullanilarak
~A=n""h=-n-h'=—-xn-n=-x

elde edilir ve buradan

A=k
oldugu goralur. n vektdri birim vektdr oldugundan, tirevi kendisine diktir, dolayisiyla
u=0

dir. v=n"-b =7 olmak izere asal normal vektdriin tiirevi
n =xh+71h (3.26)
dir. (3.23) denkleminin tirevi alinirsa
b'=-h'xn—hxn’
elde edilir. (3.24) ve (3.26) denklemlerinin kullaniimasi ile binormal vektdrin tlrevi
b'=-mm
olarak bulunur. Béylece dogal tgylzIinin birinci mertebeden agisal degisimi matris formda
h 0 x O|h
n|=x 0 7|n
b 0 -z O||b

ds
biciminde ifade edilebilir, burada x merkez normal ylUzeyin egdrilidi ve 7 merkez normal
ylzeyin burulmasidir. Ayrica,

K=w,xh, n"=w,xn, b'’=w,xb
esitliklerini saglayan dogal G¢yUzliinin Darboux ani dénme vektorl

w, =—Th—Kb

olarak bulunur.
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Bofaz gizgisi

Sekil 3.1. Regle yiizeyin Ureteg UigylzIUsU ile merkez normal ylizeyin dogal t¢gyiizllsu arasindaki iligki

Sekil 3.1 de gosterildigi gibi, Urete¢ Ugylizlisl ve dogal Ugylzll, h ortak merkez normal
vektdriine sahiptirler. Ureteg (gylizlisiiniin ¢ ve a vektdrleri ile dogal Ggylzlinin n ve b
vektdrleri, ayni spacelike diizlemdedir. Ureteg ligylizlisiiniin merkez teget vektdrii a ile dogal
Ugyuzlinin asal normal veki6rii n arasindaki spacelike a¢i p olmak Gzere, bu vektorler
arasindaki iligki

n=sinpqg+cospa
b=cospq—sinpa

biciminde veya matris formda

n sinp cosp || q
{b} - Losp —sin p}{a}
biciminde yazilabilir. Bdéylece GgyUzlUler arasindaki iliski matris formda
h 0 1 0 q
n|=|sinp 0 cosp ||h (3.27)
b cosp 0 —sinpl|la
biciminde verilebilir.

(3.14) denklemi, (3.24) denkleminde yerine yazilarak ve (3.27) matris esitliginin ikinci satiri
kullanilarak

. 1
sinpg+cospa=—-=:_q+ya)
Rx
esitligi elde edilir. Buradan
. 1
sin p=— (3.28)

Rx

ve
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y
= 3.29
cos p=—— (3.29)

bagintilari bulunur. (3.28) ve (3.29) denklemlerinden, spacelike regle ylUzeyin jeodezik egriligi ¥
ile spacelike p acisi arasinda
y=cotp (3.30)

iliskisi oldugu ve merkez normal ylGzeyin egriliginin de

K= 3.31
R (3.31)
oldugu géruliir. Boylece Ureteg Ugylzllsl ve dogal G¢yuzIU arasindaki iliski matris formda
h 0 Rx O|lgq
1
ni=—1|1 0 h (3.32)
R v

K
b y 0 -1|la

biciminde de ifade edilebilir. (3.17) denklemi ile (3.32) matris esitliginin Uclncl satir
karsilastinilirsa, Urete¢ UgytzIisinin Darboux ani dénme vektérl ile dogal GgydzIinin binormal
vektorl arasinda

w, =—kb (3.33)

iliskisi oldugu géralir. (3.30) ve (3.31) denklemleri kullanilarak merkez normal yizeyin egriligi x
ile spacelike p acisi arasindaki iligkinin
csc
K= P
R

oldugu goérilur. (3.27) matris esitliginin ikinci satirinin tirevi alinip G¢lncl satiri ile carpilirsa

merkez normal ylizeyin burulmasi 7 ile spacelike p agisi arasindaki iligki

T=p'
biciminde bulunur.

(3.22) denkleminin tdrevi alinarak, merkez normal ylzeyin bogaz cizgisinin birinci

mertebeden konumsal degisimi

¢, =¢ = h—uh (3.34)
biciminde yazilabilir. (3.19) ve (3.24) denklemleri, (3.34) denkleminde yerine yazilirsa

¢, =Tq+Aa—u, h—pu xkn
elde edilir. (3.32) matris esitligi yardimiyla merkez normal yizeyin bogaz c¢izgisinin birinci

mertebeden konumsal degisimi, dogal G¢yizIl elemanlar cinsinden
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¢, =T, h+A, b

biciminde ifade edilebilir. Burada

’

L, =-u,
ve
A, = yI'=A
1+
dir.

Bu béliimde tanimlanan ureteg lgyiizliisii ve dogal ligylizlii sirasiyla, [17] de verilen Oklid

uzayindaki yonli koninin ¢atisi ve regle ylzeyin Frenet gatisina kargilik gelmektedir.

3.2 IRf Minkowski Uzayinda Timelike Regle Yiizeylerin Egrilik Teorisi

IRf Minkowski uzayinda timelike bir regle ylzeyin her noktasindaki ylzey normali

spacelike vektdrdir. Bu durumda bir regle ylzeyin doguranlari spacelike ya da timelike vektor
olabilir. Bu bélimde, Minkowski 3-uzayda timelike regle yiizeylerin egrilik teorisi, regle yiizeyin

doguranlarinin spacelike ya da timelike olma durumlarina gére iki bélimde incelenecektir.

3.21. IRI3 Minkowski Uzayinda Spacelike Doguranh Timelike Regle Yiizeylerin Egrilik

Teorisi

a(u) dayanak egrisi, R(u) ana dogrularin yon vektor(i ve u,v reel degerli parametreler
olmak Uzere bir spacelike doguranl timelike regle ylzey

Xw,v)=au)+v R(u)

denklemiyle verilebilir. Burada R(u) doguranlari, spacelike vektorlerdir.

3.2.1.1. Bogaz Cizgisi ve Uretec Ucyiizliisii

Spacelike doguranh bir timelike regle ylzeyin bogaz gizgisinin dayanak egrisine gore
denklemi
c(s)=a(s)— u(s)R(s) (3.35)
biciminde verilebilir. Bogaz ¢izgisinin tanimi kullanilarak 4 parametresi
U=a' R (3.36)

biciminde elde edilir. Béylece spacelike doguranl bir timelike regle yiizeyin bogaz gizgisi
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c=a—-(ad R)R (3.37)
biciminde yazilabilir.
Spacelike doguranli bir timelike regle ylzeyin bogaz cgizgisi Uzerinde Urete¢ Ugyuzlisini

olusturan dretec vektori

q= 5 ; (3.38)
R
merkez normal vektor
h=R (3.39)
ve merkez teget vektor
a=qxh (3.40)

biciminde tanimlanir.

Spacelike doguranli bir timelike regle ylUzeyin her noktasindaki birim normal vektori
spacelike vektor oldugundan ve merkez normal vektér h, bu regle ylizeyin bogaz cizgisi
Gzerinde birim normal vektére karsilik geldiginden, merkez normal vektér h da spacelike
vektordir. Bu bélimde spacelike doguranh regle yizeyler ele alindigindan Urete¢ vektéri ¢ da
spacelike vektdrdir, dolayisiyla merkez teget vektér a, timelike vektér olmahdir. Bununla
birlikte, Greteg¢ UgylzIUsinin vektérleri arasinda

gqxh=a, hxa=—-q, axq=-h (3.41)
bagintilari vardir.

Ureteg (igyiizliisiiniin birinci mertebeden agisal degisiminin bulunmasi icin gerekli olan
q, h,a birim vektorlerinin tlrevleri, Bolum 3.1.1 deki islemlere benzer sekilde bulunabilir.

Uretec Gigyiizliisiiniin birinci mertebeden acisal degisimleri, matris formda

q 0 1 O0llq
4 h _1 -1 0 h (3.42)
ds R 4 '

a 0 7 Olla

biciminde ifade edilebilir. Burada

y=—R(K -a) (3.43)
fonksiyonu spacelike doguranli bir timelike regle yizeyin jeodezik egriligidir ve bu regle yizeyin
doguranlari cinsinden

y=(R,R,R")
biciminde yazilabilir.

Diger taraftan, Urete¢ Ug¢yuzlisinin Darboux ani dénme vektdri

w, :l(}/q—a) (3.44)
R
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olarak bulunur. Bu vektér
q =w,xq, h =wq><h, a=w,xa
esitliklerini saglar.

Bogaz cizgisinin birinci mertebeden konumsal degisimi

¢’'=Tq+Aa (3.45)
biciminde yazilabilir. Burada
= %(a’ ‘R)— 'R (3.46)
ve
1 /’ ’
A=——a - (RXR) (3.47)
R
dir.

Sirasiyla (3.43), (3.46) ve (3.47) denklemlerindeki 7,1, A parametreleri spacelike

doguranli bir timelike regle ylzeyin egrilik fonksiyonlaridir.
3.2.1.2. Merkez Normal Yiizey ve Dogal Ucyiizlii

Spacelike doguranli bir timelike regle ylizeyin merkez normal yiizeyi
X, (s,v)=c(s)+vh(s)
denklemi ile verilebilir. Burada ¢, spacelike doguranli X timelike regle ylizeyinin bogaz cizgisi
ve h, X regle ylizeyinin merkez normal vektoriddr.
Merkez normal ylizeyin bodaz cizgisi
c,=c—ph (3.48)
biciminde verilebilir.
M, parametresi, bogaz gizgisinin tanimi kullanilarak
i = W . T+ApR
h h,'h/ 1_ 7/2
biciminde bulunur. Béylece merkez normal ylzeyin bodaz gizgisi
T+ApY)R
1=y

biciminde yazilabilir.

c, =c+ h

h

Merkez normal yilzeyin bogaz ¢izgisi Uzerinde tanimli olan dogal UgylzIlyl olusturan

vektérler; h Uretegc vektorl, m asal normal vektér ve b binormal vektordir. X spacelike
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doguranli timelike regle ylizeyinin merkez normal vektodri olan h , X, merkez normal yiizeyinin

Urete¢ vektéri konumundadir ve bir spacelike vektérdir. n asal normal vektér, spacelike veya

timelike vektor olabilir ve bu iki durum ayri ayri incelenmelidir.

1. Durum: n asal normal vektorii spacelike olsun.

Dogal tigylzlinan Greteg vektoérd, Ureteg Ugylzlisinin merkez normal vektéra olup

h=R’
biciminde verilebilir. Asal normal vektér

hl

n=—

K

olarak tanimlanir, burada

k=|n

merkez normal ylzeyin egrili§idir. Son olarak binormal vektér
b=hxn
biciminde verilir. h vektorl timelike regle ylizeyin bogaz gizgisindeki normal vektériine karsilik
geldiginden spacelike bir vektordiir ve n vektorii de spacelike vektdr oldugundan, b vektodri bir
timelike vektdrdar.
Dogal ugylzlinin birinci mertebeden agisal degisiminin belirlenmesi icin gerekli olan
h, n, b birim vektorlerinin tirevleri, B61im 3.1.2 deki igslemlere benzer sekilde bulunabilir. Dogal
O¢y0zlGndn birinci mertebeden agisal degisimi matris formda
h 0 « Ofh
gnz—lc 0 7|ln (3.49)
b 0 7 Ofb
biciminde ifade edilebilir, burada k, merkez normal yUzeyin egriligi ve 7, merkez normal
ylzeyin burulmasidir. Dogal G¢yizlinin Darboux ani dénme vektoéri ise
w, =Th—kb
olarak bulunur. Bu vektor
K =w,xh, n’=w,xn, b’=w,xb
esitliklerini saglar.
Uretec Ugylizliisi ve dogal Gigylizli, k ortak merkez normal vektdriine sahiptirler. Ureteg

Ugylzlistnin g ve a vektorleri ile dogal Ugylzlinin n ve b vektbrleri, ayni timelike

dizlemdedir.
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- Space

Sekil 3.2. Ureteg Gigylizliistintin timelike merkez teget vektori ile dogal tigylizliiniin spacelike asal normal

vektorl arasindaki timelike agl

Sekil 3.2 de gosterildigi gibi, Orete¢ Ggylzlisinin merkez teget vektdéri a ile dogal
Ggyuzlinin asal normal vektdri m arasindaki timelike agi p olmak GOzere bu vektérler
arasindaki iligki

n=coshpqg+sinhpa
b=sinhpg+coshpa

biciminde veya matris formda

n| |coshp sinhp |l g
b| sinhp coshp|la

biciminde yazilabilir [5]. Béylece Ugyuzlller arasindaki iliski matris formda

h 0 1 0 q
n|=|coshp O sinhp ||l h (3.50)
b sinhp 0 coshp|la

biciminde verilebilir.
(3.42) matris esitliginin ikinci satir, (3.49) matris esitliginin birinci satirinda yerine yazilir ve

(3.50) matris esitliginin ikinci satiri kullanilirsa
. 1
cosh pg+sinhpa=—-=:(—q+ya)
Rx

esitligi bulunur. Buradan

cosh,o——L (3.51)
Rx '

ve
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sinh p =2~ (3.52)
Rx
bagintilar elde edilir. Béylece (3.51) ve (3.52) denklemlerinden, spacelike doduranli bir timelike

regle ylzeyin egriligi } ile timelike p agisi arasinda
y=—tanh p (3.53)
iliskisi oldugu ve merkez normal ylGzeyin egriliginin de
-7

S 1 3.54
K R (3.54)

oldugu gérallr. Dolayisiyla (3.50) ile verilen Ureteg¢ UgyizIUsu ve dogal GgyuzIt arasindaki iliski,

matris formda

h 0O Rk Ol|q

n|= 1 -1 0 vy |h (3.55)
Rx

b y 0 -—lfla

biciminde de ifade edilebilir. Urete¢ iigyiizlisiiniin Darboux ani dénme vektérii olan (3.44)
denklemi, dogal U¢yUzlinin binormal vektdérd olan (3.55) matris esitliginin Gg¢lnct satin ile
karsilastirilirsa

w, =+kb (3.56)

oldugu gérallr. (3.53) ve (3.54) denklemleri kullanilarak merkez normal ylzeyin egriligi « ile
timelike o agisi arasinda

o= se;hp
iliskisinin oldugu gérdlir. (3.50) matris esitliginin ikinci satirinin tirevi alinip, elde edilen asal
normal vektdrin tdrevi, O¢lncl satir ile carpilirsa, merkez normal yilzeyin burulmasi 7 ile
timelike o agisi arasindaki iligki

T=p'
biciminde bulunur.

(3.48) denkleminin tlrevi alinarak merkez normal ylzeyin bodaz ¢izgisinin birinci

mertebeden konumsal degisimi
¢, =¢ = h—uh (3.57)

biciminde yazilabilir. (3.45) denklemi ve (3.49) matris esitliginin birinci satiri, (3.57) denkleminde
yerine yazilirsa

¢, =Tq+Aa—u, h—pu kn
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elde edilir. (3.55) matris esitligi yardimiyla merkez normal yizeyin bogaz c¢izgisinin birinci

mertebeden konumsal degisimi dogal t¢yuzli elemanlari cinsinden

¢, =T, h+A, b
biciminde ifade edilebilir. Burada
L) =-u,
ve
I'+A
A =112
71
dir.

2. Durum: n asal normal vektori timelike olsun.

Dogal tigyGzlindn Greteg vektori
h=FR
dir. Asal normal vektor
n=—
K
dir, burada

k=|n

merkez normal ylzeyin egrili§idir. Son olarak binormal vektér

b=-hxn
biciminde tanimlanir. h vektorl timelike regle ylizeyin bodaz gizgisindeki normal vektoriine
karsilik geldiginden, bir spacelike vektérdlr. n vektorl timelike vektoér oldugundan, b vektori
bir spacelike vektdrdar.

Dogal tgylzlindn birinci mertebeden agisal degisimi matris formda

h| |0 x O}l h

d—n:KOTn
vl o 7 ol

biciminde bulunur, burada x merkez normal ylzeyin egriligi ve T merkez normal ylizeyin
burulmasidir. Dogal tigylzlinin Darboux ani ddnme vektéri ise

w, =—Th+ kb
dir. Bu vektor

’ ’ ’
h'=w,xh, n"=w,xn, b"’=w,xb
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esitliklerini saglar
Uretec Ugylizliist ve dogal Ggylizli, k ortak merkez normal vektdriine sahiptirler. Ureteg
UgyUzlistinin g ve a vektorleri ile dogal Ugylzlinin m ve b vektdrleri, ayni timelike

dizlemdedir.

p Space

Sekil 3.3. Ureteg iigylizlistinin timelike merkez teget vektdri ile dogal tigylizliiniin timelike asal normal

vektori arasindaki hiperbolik agl

Sekil 3.3 de gosterildigi gibi, Urete¢ GgyUzlisinin merkez teget vektéri a ile dogal
Ggytzlinin asal normal vektori m arasindaki hiperbolik a¢i p olmak Uzere, bu vektdrler
arasindaki iligki

n=sinhpg+coshpa
b=coshpg+sinhpa

biciminde veya matris formda

'n] [sinhp coshpl[q
b | |coshp sinhp } L}
biciminde yaz
Rl [ 0 1 0 q

n|=|sinhp 0 coshpl|lh (3.58)
b| |coshp 0 sinhp | a

labilir [5]. Bbylece Ugyuzlller arasindaki iliski matris formda

biciminde verilebilir.
(3.42) matris esitliginin ikinci satir, (3.49) matris esitliginin birinci satirinda yerine yazilir ve

(3.58) matris esitliginin ikinci satiri kullanilirsa
. 1
sinh pg+coshpa=—->:y(—q+ya)
Rx

esitligi bulunur. Buradan
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/4

cosh p=—— 3.59
P R ( )
ve
1
sinhp=—— 3.60
P R ( )

bagintilari elde edilir. (3.59) ve (3.60) denklemlerinden, spacelike doguranh timelike regle

ylzeyin jeodezik egriligi ) ile hiperbolik p agisi arasindaki iligkinin

y=-—coth p (3.61)
oldugu goralir. Merkez normal ylzeyin egriligi, regle yiizeyin jeodezik egriligi cinsinden
71
=" 1 (3.62)
R

olarak bulunur. Bdylece (3.58) ile verilen Urete¢ UgylUzlist ve dogal G¢ylzIlu arasindaki iligki,

matris formda

h 0O Rk Ol|q

n|= 1 -1 0 vy |h (3.63)
Rx

b y 0 -—lfla

biciminde de ifade edilebilir. (3.44) denklemi, (3.63) matris esitliginin G¢lnct satir ile
karsilastinlirsa, Urete¢ UgylzIisinin Darboux ani dénme vektérl ile dogal GgyldzIinin binormal
vektorl arasinda

w, = kb (3.64)

iliskisi oldugu goéralir. (3.61) ve (3.62) denklemleri kullanilarak merkez normal yizeyin egriligi x
ile hiperbolik p agisiI arasinda

. |cschp|
R

bagintisi bulunur. (3.58) matris esitliginin ikinci satirinin tirevi alinip, elde edilen asal normal

vektorin tdrevi, Gglinch satir ile garpilirsa merkez normal ylzeyin burulmasi 7 ile hiperbolik 0
acis! arasindaki iliskinin
T=p
oldugu goraldr.
(3.63) matris esitligi yardimiyla, merkez normal yiizeyin bogaz ¢izgisinin birinci mertebeden
konumsal degdisiminin, dogal UgylzIi elemanlari cinsinden ifadesi
¢, =T, h+A, b

biciminde bulunur. Burada
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L, =-u,
ve
A, = yI'+A
7~
dir.

3.2.2. IRl3 Minkowski Uzayinda Timelike Doguranli Timelike Regle Yizeylerin Egrilik

Teorisi

a(u) dayanak egrisi, R(u) timelike ana dogrularin yon vektdérli ve u,v reel degerli

parametreler olmak Uzere, timelike doguranl bir timelike regle ylzey
Xw,v)=au)+v R(u)

denklemiyle verilebilir. Burada R(u) doguranlari, timelike vektorlerdir.

3.2.2.1. Bogaz Cizgisi ve Urete¢ Ucyiizliisii

Timelike doguranli bir timelike regle ylzeyin bogaz ¢izgisinin dayanak egrisine gére konumu

c(s)=a(s)— u(s)R(s) (3.65)
biciminde verilebilir. Bogaz ¢izgisini karakterize eden (3.4) denklemi yardimiyla
u=ao R (3.66)

olarak bulunur. Béylece timelike doguranli timelike regle ylizeyin bogaz gizgisi
c=a-(ad R)R (3.67)
biciminde ifade edilebilir [28].
Timelike doguranh timelike regle ylzeyin bodaz ¢izgisi Uzerinde tanimli olan Urete¢

O¢y0zIUsUnd olusturan Ureteg vektéri, merkez normal vektdr ve merkez teget vektér sirasiyla

q:%’h:R/,a:—th (368)

olarak tanimlanir [28].

Timelike doguranh timelike regle ylzeyin her noktasindaki birim normal vektdri spacelike
vektér oldugundan ve merkez normal vektoér h, regle ylzeyin bodaz gizgisi tizerinde, birim
normal vektoére karsilik geldiginden, merkez normal vektér h da spacelike vektorddr. Bu

bélimde timelike doguranli regle yizeyler ele alindigindan, Ureteg vektori g timelike vektérdar,
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dolayisiyla merkez teget vektdér a spacelike vektoérdir. Ayrica, Urete¢ Ggylzlisinin vektorleri
arasinda

gxh=—-a, hxa=q, axq=h
bagintilar vardir.

Uretec Gigyiizliisiiniin birinci mertebeden agisal degisimleri, matris formda

q 0 1 Ollq
4 rl=1l1 o h (3.69)
ds R 4 '

a 0 =y Ol|la

biciminde ifade edilebilir [28]. Burada

y=R(K -a) (3.70)
fonksiyonuna timelike doguranh timelike regle ylUzeyin jeodezik egriligi denir ve regle yizeyin
doguranlari cinsinden

y=(R,R,R")
biciminde yazilabilir.

Ayrica, Urete¢ UgyuzIisinin Darboux ani dénme vektérl
1
W, =—(rg-a) (3.71)
olarak bulunur [28]. Bu vektor
g =w,xq, K=w, xh, a’=w, xa

esitliklerini saglar.

Bogaz cizgisinin birinci mertebeden konumsal degisimi

¢’=Tq+Aa (3.72)
biciminde yazilabilir [11]. Burada
I'= —%(a’ ‘R)+ /'R (3.73)
ve
1, ,
A=——a - (RXR) (3.74)
R
dir. [11] de

| l ,
R( ) G

biciminde verilen regle ylzeyin egriligi, burada (3.73) denkleminden goérulduga Uzere, [11] de

verilenden farkli bulunmustur.
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Sirasiyla (3.70), (3.73) ve (3.74) denklemlerindeki ¥,I', A parametrelerine timelike

doguranli timelike regle ylzeyin egrilik fonksiyonlari denir.
3.2.2.2. Merkez Normal Yiizey ve Dogal Ugyiizlii

Timelike doguranli timelike regle yizeyin merkez normal ylizeyi
X, (s,v)=c(s)+v h(s)

denklemi ile verilebilir [11]. Burada ¢, X regle ylzeyinin bodaz cizgisi ve h, X regle
ylzeyinin merkez normal vektéradr.
Merkez normal ylzeyin bodaz ¢izgisi
c,=c—u,h (3.75)
biciminde verilebilir.
Bogaz cizgisinin tanimi yardimiyla
_ ey i _(-I'+Ap)R
BT o

bulunur [11]. Béylece merkez normal ylzeyin bodaz ¢izgisi
c— -I'+Apy)R
y -1

biciminde ifade edilebilir.

c,= h

Merkez normal ylzeyin bogaz cizgisi Uzerinde tanimli olan dogal (gylzllyl olusturan
vektorler; Ureteg vektéri h, asal normal vekiér m ve binormal vektér b dir. X timelike
doguranli timelike regle ylizeyin merkez normal vektorii olan h, merkez normal yiizeyin lreteg
vektoéri konumundadir ve bir spacelike vektordir. Asal normal vektdér n, spacelike veya timelike
vektér olabilir ve bu iki durum ayri ayri incelenmelidir. [11] de, sadece n asal normal
vektérinin spacelike olma durumu ele alinmis olup, iki durum igin ayri ayri inceleme

yapilmamistir.
1. Durum: n asal normal vektori spacelike olsun.

Dogal Ggyizlinin Urete¢ vektoérleri, tirev formalleri ve Darboux vektéri Bélim 3.2.1.2 de

bulunmustur.
Uretec Ugylizliisi ve dogal Ggylizli, h ortak merkez normal vektdriine sahiptirler. Ureteg
Ugylzlistnin g ve a vektorleri ile dogal Ugylzlinin n ve b vektbrleri, ayni timelike

dizlemdedir.
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p Space

Sekil 3.4. Ureteg tigyiizlisiintin spacelike merkez teget vektdri ile dogal tigyiizliiniin spacelike asal normal

vektori arasindaki merkez agi

Sekil 3.4 de gosterildigi gibi, Urete¢ GgyUzlisinin merkez teget vektéri a ile dogal
Ggytzlinin asal normal vektdéri n arasindaki merkez agi o olmak Ulzere bu vektorler
arasindaki iligki

n=sinh pg+coshpa
b=coshpg+sinhpa

biciminde veya matris formda

'n] [sinhp coshpl[q
b| |coshp sinhp ||a

biciminde yaz
Rl [ O 1 0 q
n|=|sinhp 0 coshpl|lh (3.76)
b| |coshp 0 sinhp | a

labilir [5]. Béylece Ugyuzlller arasindaki iliski matris formda

biciminde verilebilir [11].
(3.42) matris esitliginin ikinci satirn (3.49), matris esitliginin birinci satirinda yerine yazilarak

ve (3.76) matris esitliginin ikinci satiri kullanilarak
. 1
sinhpg+coshpa=—-:y_q+ya)
Rx

esitligi elde edilir [11]. Buradan

cosh p = e (8.77)

Rx

ve

sinh p = L (3.78)
Rx '
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bagintilarinin oldugu gérallr. (3.77) ve (3.78) denklemlerinden timelike doguranli timelike regle

ylzeyin jeodezik egriligi ) ile p merkez agisi arasinda

¥y =coth p (3.79)
iliskisi oldugu goralir [11]. Merkez normal yiizeyin egriligi de
-1
K=—— (3.80)
R

olarak bulunur. (3.77) ve (3.78) denklemleri, (3.76) matris esitliginde yerine yazilarak Ureteg
UgyUzIlUsU ve dogal GgylzIU arasindaki iliskinin matris formda
h . 0 Rx Ollgq
ni=—|1 0 yl|lh (3.81)
Rx
b y 0 1|a
biciminde de ifade edilebilecegi gérilir. Ureteg ligylizliisiiniin Darboux ani dénme vektdrii olan

(3.71) denklemi, dogal Ug¢ylUzIlinin binormal vektéri olan (3.81) matris esitliginin G¢lncU satir

ile karsilastirilirsa

iliskisi oldugu goralir. (3.79) ve (3.80) denklemleri kullanilarak, merkez normal yiizeyin egriligi

K ile p merkez agisi arasindaki iligki

e |cschp|
R

olarak bulunur. (3.76) matris esitligi yardimiyla, merkez normal ylzeyin burulmasi 7 ile p
merkez acisi arasindaki iligki

T=p'
biciminde bulunur.

(3.75) denkleminin turevi alinarak merkez normal yiizeyin birinci mertebeden konumsal

degisimi

¢, =¢ = h—uh (3.82)
biciminde yazilabilir. (3.49) matris esitliginin birinci satin ve (3.72) denklemi, (3.82) denkleminde
yerine yazilirsa

ch/ =I'q+Aa _;uh/h_luh’(n
elde edilir. (3.81) matris esitligi yardimiyla, merkez normal ylzeyin bodaz ¢izgisinin birinci

mertebeden konumsal degisimi, dogal G¢yizIi elemanlar cinsinden

¢, =T, h+A,b
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biciminde ifade edilebilir [11]. Burada

L, = _;uh/
ve
A, = yI'=A
7=
dir.

2. Durum: n asal normal vektori timelike olsun.

Dogal Ggyizlinin Urete¢ vektoérleri, tirev formalleri ve Darboux vektéri Bélim 3.2.1.2 de

bulunmustur.
Uretec Ugylizlisi ve dogal Ggylzli, k ortak merkez normal vektdriine sahiptirler. Ureteg
Ugylzlistinin g ve a vektorleri ile dogal Ugylzlinin m ve b vektdrleri, ayni timelike

dizlemdedir.

> Space

Sekil 3.5. Ureteg iigyiizliisiiniin spacelike merkez teget vektéril ile dogal tigylizliiniin timelike asal normal

vektorl arasindaki timelike agl

Sekil 3.5 de gosterildigi gibi, Orete¢ Ggylzlisinin merkez teget vektori a ile dogal

Ggyuzlinin asal normal vektdéri m arasindaki timelike agi p olmak Uzere, bu vektérler
arasindaki iligki

n=coshpg+sinhpa

b=sinhpg+coshpa

biciminde veya matris formda
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n| [coshp sinhpllq
b| |sinhp coshp|la

biciminde yazilabilir [5]. Béylece Ugyuzlller arasindaki iligki, matris formda
h] [ 0o 1 0 g
n|=|coshp O sinhp ||l h (3.83)

b| |sinhp 0 coshp | a

biciminde verilebilir.
(3.42) matris esitliginin ikinci satiri, (3.49) matris esitliginin birinci satirinda yerine yazilarak
ve (3.83) matris esitliginin ikinci satiri kullanilarak

coshpg+sinhpa =L(q+7/a)
Rk

esitligi bulunur. Buradan

cosh p= L (3.84)
Rx
ve
. /4
sinh p = —*— 3.85
Y R (3.85)

bagintilari elde edilir. (3.84) ve (3.85) denklemlerinden, timelike doguranli timelike regle ylzeyin
jeodezik egriligi ¥ ile timelike p agisi arasinda
¥ =tanh p (3.86)
iliskisi oldugu goérulir. Merkez normal yUzeyin egriligi ile regle ylzeyin jeodezik egriligi
arasindaki iligki
17|
K=—"" (3.87)
R
olarak bulunur. (3.84) ve (3.85) denklemleri, (3.83) denkleminde yerine yazilarak Ureteg
O¢y0zIUsU ve dogal GigyiizlU arasindaki iliskinin matris formda
h . 0 Rx Ollgq
ni=—I|1 0 yl|lh (3.88)
Rx
b y 0 1|a
biciminde de ifade edilebilecegi gériliir. Ureteg tigyiizlisiiniin Darboux ani dénme vektérii olan
(3.71) denklemi, dogal G¢yUzlinin binormal vektdri olan (3.88) matris esitliginin G¢incd satiri

ile karsilastirilirsa

w, =—kb
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oldugu gérallr. (3.86) ve (3.87) denklemleri kullanilarak merkez normal ylzeyin egriligi « ile
timelike o agisi arasindaki iligki
sech
K‘:—p
R

olarak bulunur. (3.76) matris esitligi yardimiyla, merkez normal yizeyin burulmasi 7 ile timelike
L acisi arasindaki iligki

T=p
biciminde bulunur.

(3.75) denkleminin tdrevi alinarak, merkez normal ylzeyin bogaz c¢izgisinin birinci

mertebeden konumsal degisimi
¢, =¢—u h—uh (3.89)

biciminde yazilabilir. (3.49) matris esitliginin birinci satirn ve (3.72) denklemi, (3.89) denkleminde

yerine yazilirsa
ch/ =I'q+Aa _;uh/h_luh’(n

elde edilir. (3.88) matris esitligi yardimiyla, merkez normal yiizeyin bodaz cizgisinin birinci

mertebeden konumsal degisimi dogal GigyUzIli elemanlar cinsinden

¢, =T, h+A, b
biciminde ifade edilebilir. Burada
L, =-u,
ve
I'-A
A, =L
-7
dir.

Ornek 3.1. X(s,v)=(sinhs+vcoshs, \/gv, coshs+vsinhs) regle yizeyi verilsin. Bu
ylzeyin regle formu
X (5,v) = (sinh s, 0, cosh s) + v(cosh s, /3, sinh )
biciminde yazilabilir. Regle ylzeyin dayanak egrisi
a(s) =(sinhs, 0, cosh s)
ve doguranlari
R(s) = (cosh 5, /3, sinh s)

dir. Ana dogrularin ydn vektérlerinin boyu
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R=[R(|=2

dir. Doguranlarin tirevi
R’(s) = (sinh s, 0, cosh s)
olarak bulunur ve ||R'(u)|| =1 oldugundan s parametresi normallestiriimis parametredir. Regle
ylzeyin bogdaz gizgisi
c=a—-UR
denklemi yardimiyla bulunabilir. Burada
u={(a,R’)=0
oldugundan regle ylizeyin bogaz gizgisinin dayanak egrisine esit oldugu goruldr, yani

¢ =a=(sinhs, 0, cosh s)
dir. Regle ylzeyin bogaz cizgisi Gzerinde tanimli olan {q, h, a} Ureteg UgylzllisU asagidaki gibi

bulunabilir. Regle ylzeyin Urete¢ vektori

R 1
g=r—=— coshs,\/g, sinh s
Ohes )

olarak bulunur. <q,q> =1 oldugundan, ¢ (Ureteg¢ vektori spacelike vektordlr. Regle yizeyin

merkez normal vektord
h =R’ =(sinhs, 0, cosh s)

dir. <h,h>=—1 oldugundan, h merkez normal vektor timelike vektordiir. Regle yiizeyin

merkez teget vektori ise

a=—qxh =%(\/§cosh s, —1, \/gsinh s)

biciminde bulunur. <a,a> =1 oldugundan, @ merkez teget vektdr spacelike vektdrdir. Ureteg

O¢y0zIUsUna olusturan vektoérlerin tirevleri
, 1.
q = 5 (sinh s, 0, cosh s)
h’ = (cosh s, 0, sinh s)

a =%(\/§ sinh s, 0, /3 cosh s)

olarak bulunur. a’ = %h oldugundan regle ylzeyin jeodezik egriligi

y=+3
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olarak bulunur. Ureteg (igyizliisiiniin Darboux ani ddnme vektorii
1
w, =E(—7/q +a)=(0,-1,0)
dir. Bogaz gizgisinin teget vektorl

¢’=T'q+ Aa = (cosh s, 0, sinh s)

biciminde yazilabilir. Burada
1, , 1
I's—(a,R)- U R=—
R< > H 2
ve

A= —i<a’,R_><R’> _¥3
R 2
dir.
Regle ylzeyin merkez normal yiizeyi
X, (s,v) =c(s)+Vvh(s) = (sinh s,0,cosh s) +v(sinh 5,0, cosh )

denklemi ile verilebilir. Merkez normal ylizeyin bogaz ¢izgisi

c,=c—,h
denklemi yardimiyla bulunabilir. Burada
G
"(W.K)

oldugundan merkez normal yuzeyin bogaz ¢izgisi

c,=c—h=(0,0,0)
biciminde bulunur. Buradan merkez normal ylzeyin, bogdaz cizgisi orijin olan bir koni oldugu
sdylenebilir. Bogaz gizgisi, bir tek noktadan ibaret oldugundan bogaz gizgisinin tegeti sifirdir.

Merkez normal ylzeyin dogal UgyiizIUsl, bodaz cizgisi disindaki herhangi bir dayanak egrisi

Uzerinde tanimlanabilir. Merkez normal yuzeyin Urete¢ vektorl, regle yluzeyin merkez normal
vektorudur ve

h = (sinh s, 0, cosh )

denklemi ile verilir. Asal normal vektor

n=—=(coshs, 0, sinh )
K
olarak elde edilir, burada x = ||h’|| =1 merkez normal ylzeyin egriligidir. (n,n> =1 oldugundan,

n asal normal vektorl spacelike vektordir. Binormal vektor ise
b=-hxn=(0,1,0)
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olarak bulunur. <b,b>=1 oldugundan, b binormal vektori spacelike vektérdir. Dogal

Ggyuzllyl olusturan h, n, b vektorlerinin tlrevleri
h’ = (coshs, 0, sinh s)
n’ = (sinhs, 0, cosh s)
b'=(0,0,0)
biciminde bulunur. b'=-n oldugundan merkez normal ylzeyin burulmasi
7=0
dir. Ureteg lgylzlUsiinin merkez teget vektdrli a ile dogal lgylzlinin asal normal vektdri n
arasindaki spacelike agi
cotp=y
esitligi kullanilarak

p==
6

olarak bulunur.
Sekil 3.6, X (s,v)=(sinhs+vcoshs, \/gv, cosh s+vsinhs) denklemi ile verilen regle

ylzeyi, bu ylzeyin bogaz ¢izgisi Uzerinde tanimh olan Urete¢ Ug¢yuzlisini ve bu ylizeyin

merkez normal ylzeyini géstermektedir.
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Time

Sekil 3.6. X (s,v) =(sinhs+vcoshs, \/gv, cosh s +vsinh 5) denklemli spacelike regle ylizey ve

merkez normal ylizeyi
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4. IR} MINKOWSKI UZAYINDA AGILABILIR REGLE YUZEYLERIN EGRILIK TEORISI

Bir regle ylzeyin (3.3) denklemi ile verilen dagilma parametresinin sifira egit olmasi
durumunda, bu regle ylizeye agclilabilir regle ylzey denir [10]. Bélum 3 de verilen regle
ylzeylerin egrilik teorisi, acilabilir regle ylzeyler igin uygun degildir. Bu bélimde, Minkowski 3-
uzayinda yegane agilabilir regle yizeyler olan silindirler, koniler ve teget yluzeyler igin egrilik

teorisi gelistirilmigtir.

4.1. IR} Minkowski Uzayinda Silindirlerin Egrilik Teorisi

Silindirler aykiri regle ylzeyler olmadigindan aykiri regle ylzeyler igin olusturulan egrilik
teorisi silindirler igin kullanilamaz. Bu bélimde Minkowski 3-uzayindaki silindirler igin egrilik
teorisi geligtirilecektir.

Silindir bir agilabilir regle ylzeydir ve

X(t,v)=at)+v R
denklemi ile verilebilir [34]. Burada v reel degerli bir parametre, & dayanak egrisi ve R ana

dogrularin yon vektoridar. Silindirin tim ana dogrulari birbirine paralel oldugundan, R sabit bir
vektordlr ve buna aykir regle ylzeylerde oldugu gibi doguran denir. Doguran sabit vektér
oldugundan, normallestirme islemi doguranin tirevi kullanilarak degil, dayanak egrisinin turevi

kullanilarak yapilir. Dayanak egrisinin yay uzunlugu parametresi

da(t)
dt

s(t) = j dt (4.1)
0

ile verilir.

Aykiri regle yuzeyler igin kullanilan bogaz c¢izgisi tanimi, silindirler i¢cin gecerli degildir.
Silindirin bogaz gizgisi, doguran boyunca Kartezyen referans gatisi (x, y,z) nin orijininden en
kisa uzaklikta olan, yuzey Uzerindeki noktalarin geometrik yeri olarak tanimlanabilir [30]. Bu
tanima gdre bogdaz ¢izgisi ve doguran birbirine diktir, yani

c(s)-R=0 (4.2)
dir. Burada c(s), silindirin bogaz gizgisini gosterir. Silindirin bogaz cizgisi, verilen tanima gére

tektir. (4.2) denkleminin tiirevi alinirsa ve R’ niin sifir oldugu gz éniinde bulundurulursa
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c’(s)-R=0 (4.3)
elde edilir. (4.3) denklemi, bogaz ¢izgisinin teget vektérinin dogurana dik oldugu anlamina

gelir. Bogaz ¢izgisinin dayanak egrisine gére konumu, i reel degerli bir parametre olmak Uzere
c(s) = a(s)— u(s)R(s) (4.4)
biciminde verilebilir. Doguran Uzerinde bogaz gizgisinden dayanaga olan uzaklk 4R dir.

Burada R, doguran vektorinin boyudur.
(4.4) denklemi, (4.2) denkleminde yerine yazilirsa
[a(s) — u(s) R(s)]-R(s) =0
elde edilir ve buradan
a(s)-R(s)
" R(s)R(s)
olarak bulunur.
Silindirin tim doguranlari bodaz ¢izgisinden gegtiginden, bodaz gizgisi silindirin dayanak
egdrisi olarak alinabilir. Béylece silindir denklemi
X(s,v)=c(s)+VvR
biciminde ifade edilebilir.
Minkowski 3-uzayinda silindirler, doguranin ve bogdaz gizgisinin Lorentziyen karakterine
gbre siniflandirlabilir. Bu bélimde, Minkowski 3-uzayinda spacelike ve timelike silindirlerin

egdrilik teorisi incelenecektir.

4.1.1. Spacelike Silindirlerin Egrilik Teorisi

c(s) bir spacelike egri, R bir spacelike vektor ve v reel de@erli bir parametre olmak tizere
bir spacelike silindir
X(s,v)=c(s)+VR
denklemi ile verilebilir. Burada c(s) spacelike egrisi, silindirin bodaz gizgisidir ve yukarida
belirtildigi gibi dayanak egrisi olarak alinmigtir; spacelike R vektord, silindiri olugturan ana
dogrularin yon vektéridar ve sabittir.
Spacelike silindirin Ureteg lgyuzllst; ¢ Ureteg vektdéri, h merkez normal vektér ve a

merkez teget vektdrden olusmaktadir. Ureteg vektorii

¢I=E

olarak tanimlanir, burada R doguran vektérinin boyudur. Doguran spacelike vektor

oldugundan, ¢q Urete¢ vekidrii de spacelike vektdrdir. Aykiri regle ylzeylerin Ureteg
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Ggyuzltsinin olusturulmasindan farkl olarak, 6nce @ merkez teget vektor ve daha sonra h

merkez normal vektér tanimlanacaktir. Merkez tedet vektér, bodaz cizgisinin tegeti yardimiyla
a=c’/A (4.5)
biciminde tanimlanir. Burada

A:”c'

dir. Bogaz cizgisi spacelike egri oldugundan, @ merkez teget vektdr de spacelike vektdrdar.
Son olarak, merkez normal vektor
h=axq (4.6)
seklinde belirlenir. Merkez normal vektér, silindirin ylizey normaline karsilik geldiginden bir
timelike vektdrdar.
Sekil 4.1, silindir yOzeyi, dayanak egrisi, bogaz cizgisi ve Urete¢ UgylzlUsini
gdstermektedir.

1 Doduran

Bodaz gizgisi

x
Dayanak eqrisi

Sekil 4.1. Silindir ylzeyi ve Ureteg UgyizlUsi [30]

(4.5) denkleminden, bodaz ¢izgisinin birinci mertebeden konumsal degisiminin
¢ =Aa (4.7)
oldugu goraldr.
Uretec Ugylizlistniin birinci mertebeden acisal degisimi asagidaki gibi belirlenebilir.
Silindirin tanimindan
R'=¢'=0 (4.8)
oldugu bilinmektedir. @ merkez teget vektdriinin birinci mertebeden tlrevinin belirlenmesi igin

bogaz c¢izgisinin ikinci mertebeden konumsal degisimin belirlenmesi gerekmektedir. (4.7)

denkleminin tlirevi alinarak
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c’=Aa’+ANa (4.9)
elde edilir. A sabit bir parametre oldugundan tlrevi sifirdir. Boylece (4.9) denklemi
c’=Ada (4.10)
seklinde yazilabilir.
Bogaz cizgisi, sabit doguran vektériine daima diktir ve dizlemsel bir egridir. Dizlemsel bir
egrinin egrilik teorisinden, bogaz ¢izgisinin ikinci mertebeden konumsal degisiminin boyunun
dizlemsel egrinin egriligi oldugu bilinmektedir. Egrilik merkezi, merkez normal vektérin

dogrultusu tzerindedir. Bu yiizden, bogaz ¢izgisinin ikinci mertebeden konumsal degisimi
¢ = K h (4.11)
denklemi ile ifade edilebilir. Burada

_ ”
K =|e¢

bogaz cizgisinin egriligidir. (4.10) denklemi (4.11) denklemi ile karsilastinlirsa merkez teget

vektorin birinci mertebeden tlrevinin

a=yh (4.12)
oldugu goralur. Burada 7/=% spacelike silindirin egriligidir.

(4.6) denkleminin tirevi alinir ve (4.8) denklemi burada yerine yazilirsa
h' =a’xq (4.13)
elde edilir. (4.12) denklemi, (4.13) denkleminde yerine yazilarak merkez normal vektérin birinci
mertebeden tlrevi
h=va
olarak bulunur.

Boylece, Ureteg Ugyuzlisinun birinci mertebeden agisal degisimi matris formda

dq 0 0 O|lq
—|h|={0 0 7| h (4.14)
ds

a 0 7 0]la

biciminde ifade edilebilir. Burada 7/=% spacelike silindirin egriligidir. (4.14) matris esitligi

q q
A nl=w xln
ds 1

a a

biciminde de ifade edilebilir. Burada

w,=-7q
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olup, spacelike silindirin Grete¢ Ggylzllisinin Darboux ani dénme vektéridar.

Silindirin bogaz ¢izgisinin dlzlemsel olmasindan dolayi, silindirin merkez normal vektori
daima ayni dizlem iginde kalir. Bu ylzden silindirin ylksek mertebeden &zelliklerinin
incelenmesi, dizlemsel bir egrinin egrilik teorisinin incelenmesine doénisir ve dizlemsel

egrilerin egrilik teorisi burada anlatiimayacaktir.

Ornek 4.1. x7 —x] =—r*

, r>0 hiperbolik silindiri verilsin [49]. Bu ylizeyin parametrik formu
X(t,v)=(rsinht, v, rcosht)
bicimindedir. Hiperbolik silindir, regle formda
X (t,v)=(rsinht, 0, rcoshr)+v(0,1,0)
biciminde yazilabilir. Hiperbolik silindirin dayanak egrisi
a(t) = (rsinht, 0, rcosht)
ve dogurani
R=(0,1,0)
dir. Silindirin bogaz cizgisi tanimindan, hiperbolik silindirin dayanak egrisinin ayni zamanda
bogaz cizgisi oldugu goéralir. (4.1) denklemi kullanilarak normallestiriimis parametre s(t)=rt
olarak bulunur. Hiperbolik silindir denklemi, normallestirme isleminden sonra
X (s,v) = (rsinh%, 0, rcosh%j+v(0, 1,0)
biciminde yeniden yazilabilir. Bdylece hiperbolik silindirin bogaz ¢izgisi
c(s)= (r sinhﬁ ,0, rcoshﬁj
r r
olur. Bogaz gizgisinin tlrevi ise

¢'(s) = (coshﬁ .0, sinh ﬁj
r r

olarak bulunur. (c’,¢’)=1 oldugundan bogaz gizgisi bir spacelike egridir. (R,R)=1

oldugundan R dogurani da spacelike vektordur.
Hiperbolik silindirin Grete¢ U¢yuzlisu;
qg=R=(0,1,0)

Uretec vektord,

a ¢ :(coshi ,0, sinhij

= 7|
| e r r

merkez teget vektor ve
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h=axq= (sinhi ,0, coshﬁj

r r

merkez normal vektoriinden olusur. R dogurani spacelike vektdr oldugundan, g (reteg
vektérl de spacelike vektérdir. <a,a> =1 oldugundan, a merkez teget vektor spacelike vektor

ve (h,h> =—1 oldugundan, h merkez normal vektdr timelike vektdrdiir. Merkez normal vektor

timelike vektor oldugundan, hiperbolik silindir bir spacelike ylzeydir.

Uretec Gigyiizliistini olusturan vektérlerin tiirevleri

g’ =(0,0,0),
a':(lsinhﬁ,o,lcoshﬁj
r r r r

ve
" =(lcosh£ , 0,lsinh£j
r r r r
biciminde bulunur.
Hiperbolik silindirin rete¢ G¢yUzllstnin birinci mertebeden agisal degdisimi matris formda
q 0O 0 O0]lq
—|h|{=]0 0 1I/r|h
ds
al |0 I/r O |a
biciminde yazilabilir.
Hiperbolik silindirin egriligi
y=1/r
ve Darboux ani ddnme vektdru
w, = —lq
r
olarak bulunur.

Sekil 4.2, xf—x32=—r2 (r >0) denklemli hiperbolik silindiri ve Ureteg GgylzlUsini

gbstermektedir.
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>N

Time

Sekil 4.2. x7 —x; =—r> (r>0) hiperbolik silindiri

4.1.2. Timelike Silindirlerin Egrilik Teorisi

Bir timelike silindirin & merkez normal vekt6rl bir spacelike vektér oldugundan, doguran
vektéri spacelike ya da timelike vektdr olabilir. Bu bdlimde timelike silindirlerin egrilik teorisi,
dogurani spacelike olan timelike silindirler ve dogurani timelike olan timelike silindirlerin egrilik
teorisi olarak iki b6limde incelenecektir.

4.1.2.1. Spacelike Doguranli Timelike Silindirlerin Egrilik Teorisi

Bir spacelike doguranh timelike silindir
X(s,v)=c(s)+VvR
denklemi ile verilebilir. Burada ¢(s) egrisi, silindirin bogaz cizgisidir ve ayni zamanda dayanak

egrisi olarak alinmistir; spacelike R vektord, silindiri olusturan ana dogrularin yén vektoridir
ve sabittir.
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Spacelike doguranli timelike silindirin Ureteg GgylzIlst g Ureteg vektorl, k merkez normal

vektdr ve @ merkez teget vektdrden olusmaktadir. Ureteg vektori

¢I=E

olarak tanimlanir. Doduran spacelike vektér oldugundan ¢ Urete¢ vekitdéri de spacelike

vektoérdur. Merkez teget vektdr bogaz gizgisinin tedeti yardimiyla

a=c’/A, (Az

7|

C

) (4.15)

biciminde tanimlanir. Merkez normal vektor de

h=—-axq (4.16)

seklinde belirlenir. h merkez normal vektord, silindirin ylizey normaline karsilik geldiginden bir
timelike vektdérdir. Bu durumda a merkez teget vektdr, spacelike vektordlr, dolayisiyla
silindirin bodaz c¢izgisi de bir spacelike egridir.
(4.15) denkleminden, bogaz ¢izgisinin birinci mertebeden konumsal degisiminin
¢’=Aa (4.17)
oldugu goraldr.
Silindirin tanimindan
R'=¢'=0 (4.18)
oldugu bilinmektedir. (4.17) denkleminin tlrevi alinip, A nin sabit bir parametre oldugu g6z
6niinde bulundurularak
¢c’=Ad (4.19)

elde edilir. Diger taraftan, bodaz c¢izgisinin ikinci mertebeden konumsal degisimi icin

¢"=-k h (4.20)
yazilabilir. (4.19) denklemi, (4.20) denklemi ile karsilastirilirsa merkez teget vektdrin birinci
mertebeden tlrevinin

a=-yh (4.21)
oldugu goralur. Burada 7/=% spacelike doguranh timelike silindirin egriligidir.

(4.16) denkleminin tdrevi alinip (4.18) ve (4.21) denklemleri burada yerine yazilirsa, merkez
normal vektoriin birinci mertebeden tirevi
hK=-ya
olarak bulunur.

Boylece, Ureteg Ugylzlisinin birinci mertebeden agisal degisimi matris formda
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dq 0O 0 O|gq
—lh|=10 0 -—y||h

ds
al |0 -y 0 |la

biciminde ifade edilebilir. Burada 7/=% spacelike doguranh timelike silindirin egriligidir. Ayrica,

spacelike doguranl timelike silindirin Ureteg¢ Ggytzlisinin Darboux ani dénme vektéri
w,=-74

olarak bulunur. Bu vektor
q = w,Xq, h'=wq xh, a’ = w,Xa

esitliklerini saglar.

Ornek 4.2. xl2 —x32 =r’, r>0 Lorentziyen dairesel silindiri verilsin [49]. Bu ylizey parametrik
formda
X (t,v)=(rcosht,v, rsinht)
biciminde, regle formda ise
X(t,v)=(rcosht, 0, rsinht)+v(0,1,0)
biciminde ifade edilebilir. Lorentziyen dairesel silindirin dayanak egrisi
a(t)=(rcosht, 0, rsinht)
ve dogurani
R=(0,1,0)
dir. Silindirin bogaz gizgisi tanimindan, Lorentziyen dairesel silindirin dayanak egrisinin ayni

zamanda bogaz cizgisi oldugu gorilir. (4.1) denklemi kullanilarak normallestiriimis parametre

s(t) =rt olarak bulunur. Lorentziyen dairesel silindir denklemi normallestirme isleminden sonra
s .S
X(s,v)= (rcosh—, 0, rsmh—j +v(0,1,0)
r r
biciminde yeniden yazilabilir. Bdylece Lorentziyen dairesel silindirin bogaz gizgisi
s .S
c(s)=| rcosh—,0, rsinh—
r r
olur. Bogaz ¢izgisinin tlrevi ise

c’(s)= (sinhﬁ ,0, cosh ﬁj
r

r
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olarak bulunur. <c',c'>=—1 oldugundan bogaz cizgisi bir timelike egridir. <R,R>=l

oldugundan R dogurani bir spacelike vektordur.

Lorentziyen dairesel silindirin Ureteg GgylzIUsU;
qg=R=(0,1,0)

Uretec vektord,

c r r

a= c, :(sinhﬁ ,0, coshij

merkez teget vektor ve

h=—-axq :(—coshE ,0, —sinhﬁj
r

r

merkez normal vektoriinden olusur. R dogurani spacelike vektdér oldugundan, q (Ureteg
vektorl de spacelike vektoérdlr. <a,a> =—1 oldugundan, @ merkez teget vektor timelike vektor

ve (h,h> =1 oldugundan, h merkez normal vekitr spacelike vektdrdir. Merkez normal vektor

spacelike vektdr oldugundan, Lorentziyen dairesel silindir bir timelike ylzeydir.

Uretec Gigyiizliistini olusturan vektérlerin tiirevleri

q' =(0,0,0),
a':(lcoshi,o,lsinhﬁj
r r r r
ve
" =(—lsinhi ,0, —lcoshﬁj
r r r r

biciminde bulunur.
Lorentziyen dairesel silindirin Urete¢ UgytzIistUnin birinci mertebeden agisal degisimi matris

formda

q 0O O 0 |lq
hi=|0 0 -1/r||h
al |0 =1/r 0 |la

a
ds

biciminde yazilabilir.
Lorentziyen dairesel silindirin egriligi
y=Vr

ve Darboux ani dénme vektori
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1
Wq ——;q

olarak bulunur.

Sekil 4.3, xf—xfzrz (r>0) denklemli Lorentziyen dairesel silindiri ve Ureteg

UgyUzlisin( gdstermektedir.

>N

Time

Sekil 4.3. xl2 —x32 =r? (r>0) Lorentziyen dairesel silindiri

4.1.2.2. Timelike Doguranl Timelike Silindirlerin Egrilik Teorisi

Bir timelike doguranl timelike silindir
X(s,v)=c(s)+vR
denklemi ile verilebilir. Burada ¢(s) egrisi silindirin bodaz gizgisidir ve ayni zamanda dayanak

egrisi olarak alinmigtir; timelike R vektori silindiri olusturan ana dogrularin yon vektériadir ve
sabittir.

Timelike doguranli timelike silindirin Ureteg UgylizIGsi; ¢ Ureteg vektérii, h merkez normal

vektdr ve a merkez teget vektdrden olusmaktadir. Uretec vektéril
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¢I=E

olarak tanimlanir. Doguran timelike vektdr oldugundan, g Urete¢ vektdrl de timelike vektdrdar.

Merkez teget vektdr, bogaz cizgisinin tegeti yardimiyla

a=c’/A, (Az

7|

C

) (4.22)

biciminde tanimlanir. @ merkez teget vektéri bir spacelike vektérdir. Merkez normal vektér de
h=—-axq (4.23)

seklinde belirlenir. B merkez normal vektér, silindirin ylizey normaline karsilik geldiginden
spacelike vektordur.
(4.22) denkleminden, bogaz ¢izgisinin birinci mertebeden konumsal degisiminin
c’=Aa (4.24)
oldugu goraldr.
Silindirin tanimindan
R'=¢'=0 (4.25)
oldugu bilinmektedir. (4.24) denkleminin tlrevi alinjp A nin sabit bir parametre oldugu géz
6niinde bulundurulursa
c’=Ad (4.26)
elde edilir. Diger taraftan, bogaz cizgisinin ikinci mertebeden konumsal degisimi

¢=—x h (4.27)

yazilabilir. (4.26) denklemi, (4.27) denklemi ile karsilastirilirsa merkez teget vektdrin birinci
mertebeden tlrevinin

’

a=-yh (4.28)
oldugu goéralur. Burada }/=% timelike doguranh timelike silindirin egriligidir.

(4.28) denkleminin tirevi alinir ve (4.25) denklemi burada yerine yazilirsa
h' =-a’xq (4.29)
elde edilir. (4.28) denklemi, (4.29) denkleminde yerine yazilirsa merkez normal vektdrin birinci
mertebeden tlrevi
h=yva
olarak bulunur.

Dolayisiyla, Greteg GgyUzlisunin birinci mertebeden agisal degisimi matris formda
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dq 0 0 Ollg
—h|=10 0 yi|lh
ds

a 0 -y Ofla

biciminde ifade edilebilir. Burada 7=% timelike doguranh timelike silindirin egriligidir. Ayrica,

timelike doguranli timelike silindirin Greteg Ugytzlisinin Darboux ani ddnme vektdri
w,=-74

dir. Bu vektor
q = w,Xq, h'=wq xh, a’ = w,Xa

esitliklerini saglar.

Ornek 4.3. xlz +x22 =r?, (r>0) 1-indeksli dairesel silindiri verilsin [49]. Bu yiizey parametrik
formda
X(t,v)=(rcost, rsint,v)
biciminde, regle formda ise
X (t,v)=(rcost, rsint, 0)+v(0,0,1)
biciminde yazilabilir. 1-indeksli dairesel silindirin dayanak egrisi
a(t)=(rcost, rsint, 0)
ve dogurani
R=(0,0,1)
dir. Silindirin bogaz ¢izgisi tanimindan, 1-indeksli dairesel silindirin dayanak egrisinin ayni
zamanda bogaz cizgisi oldugu gorilir. (4.1) denklemi kullanilarak normallestiriimis parametre

s(t)=rt olarak elde edilir. 1-indeksli dairesel silindir denklemi, normallestirme isleminden

sonra

S .S
X(s,v)= (rcos—, rsin—, Oj+v(0, 0,1
r r
biciminde yeniden yazilabilir. Béylece 1-indeksli dairesel silindirin bogaz ¢izgisi
S .S
c(s) :(rcos— , rsin—, Oj
r r
olur. Bogaz gizgisinin tlrevi ise

c'(s)= (— sin> ,0, cos ﬁj
r

r
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olarak bulunur. <c',c'>=1 oldugundan, bogaz cizgisi bir spacelike egridir. <R,R>=—1

oldugundan R dogurani timelike vektorddr.

1-indeksli dairesel silindirin Greteg UgylzIUsU;
g=R=(0,0,1)

Uretec vektord,

¢ .S s
a=-——=|—sin—,cos—,0

c r r

merkez teget vektor ve

h=—-axq :(cosE , sinhE , Oj

r r

merkez normal vektoriinden olusur. R dogurani timelike vektor oldugundan, g Ureteg vektorl

de timelike vektordir. (a,a>=1 oldugundan, a merkez teget vektdér spacelike vektdr ve

<h,h>=1 oldugundan, h merkez normal vektor spacelike vektordiir. Merkez normal vektor

spacelike vektdr oldugundan, 1-indeksli dairesel silindir bir timelike ylzeydir.

Uretec Gigyiizliistini olusturan vektérlerin tiirevleri
q'=(0,0,0),

cz'z(—lcos£ , —lsin£ , Oj = —lh
ror r r r

ve

W :(—lsinﬁ,lcosﬁ , Oj :la

r r r r r
biciminde bulunur.
Boylece, 1-indeksli dairesel silindirin Urete¢ GgyUzlUsinin birinci mertebeden agisal
degdisimi matris formda
q 0O O 0llq
—lh|=|0 O l/r h
ds
al |0 -1/r 0 ||a
biciminde yazilabilir.
1-indeksli dairesel silindirin egrilidi
y=1/r

ve Darboux ani ddnme vektorl
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1
Wq ——;q

olarak bulunur.

Sekil 4.4, x7 +x; =r> (r>0) denklemli 1-indeksli dairesel silindiri ve Greteg tgytizlistini

gbstermektedir.

Sekil 4.4. x7 +x; =1’ (r>0) 1-indeksli dairesel silindiri

4.2, IRf Minkowski Uzayinda Konilerin Egrilik Teorisi

Bogaz ¢izgisi bir noktaya dejenere olan regle ylzeylere koni denir. Bir koni yuzeyi
X(s,v)=c,+Vv R(s)
denklemi ile ifade edilebilir [24]. Burada ¢, bogaz noktasi, R(s) ana dogrularin yén vektéri ve
v reel deg@erli bir parametredir. Koninin dayanak egrisi, bogaz noktasi yardimiyla
a(s)=c,+ UuR(s)
biciminde yazilabilir. Burada 4 reel degerli bir parametredir. Koni, tepe noktasinda

diferansiyellenebilir olmadigindan, koninin Urete¢ U¢ylzlisu tepe noktasi digindaki bir dayanak
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egrisi lzerinde tanimlanmaldir. Ureteg Ugylizlisini olusturan vektérler; g spacelike, h
spacelike ve a timelike olmak lzere sirasiyla

q:%’ h:R, ve a:q)(h (430)

biciminde tanimlanabilir. Burada ¢, aykiri regle ylizeylerde oldugu gibi Greteg vektori ve R

doguranin boyudur. i ve a hakkinda yorum yapilabilmesi igin, 6ncelikle koni ylizeyinin normal

vektérd bulunmalidir. Koninin s ve v parametrelerine gére tirevleri sirasiyla

X (s5,v) =VvR'(s) (4.31)
ve

X, (5,v)=R(s) (4.32)
olarak bulunur. Koni yizeyinin normali

S, = ”;% (4.33)

dir. (4.31) ve (4.32) denklemleri, (4.33) denkleminde yerine yazilarak ve (4.30) denklemleri
kullanilarak, koninin ylzey normalinin, a vektdrine karsilik geldigi bulunur. Aykiri regle
ylzeylerde a vektdrl, merkez teget vektdr iken konilerde a vektdéri merkez normal vektor
konumundadir. Bu durumda, k vekitriine de koninin merkez teget vektdri denilebilir. Sonug
olarak, aykiri regle yizeylerdeki merkez normal vektdr ve merkez tedet vektdrin konilerde yer
degistirdigi sdylenebilir. Aykiri regle ylzeyler ile koniler arasindaki bu farkhlik, koninin agilabilir
regle ylzey olmasindan, dolayisiyla teget diizleminin doguran boyunca sabit kalmasindan
kaynaklanmaktadir.

Koninin normali ile a vektéri ayni Lorentziyen karaktere sahip olduklarindan koninin
Lorentziyen karakterinin belirlenmesi icin a vektérd kullanilabilir. (4.30) denklemi ile verilen
Urete¢ Ugylzlisinde, a vektdérl timelike vektér oldugundan, bu UgylzIi spacelike konilerin
Ureteg UgylzlUsaddr.

Timelike konilerde, @ merkez normal vektéri spacelike vektdr olacagindan, ¢ (reteg
vektori spacelike ya da timelike vektdr olabilir. ¢ vektdri spacelike vektdr olan timelike konilere

spacelike doguranli timelike koniler, g vektoru timelike vektdr olan timelike konilere ise timelike

doguranli timelike koniler denir ve her iki durum icin de Ureteg UgyUzlisi

q=£, h=R ve a=-qxh
R
biciminde verilir.
Sekil 4.5, koni ylzeyini ve bu ylzeyin dayanak egrisi Uzerindeki Urete¢ GgyUzlUsin(
g6stermektedir.
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Bogaz noktasi

Doguran

Dayanak edrisi

Sekil 4.5. Koni yuzeyi ve Ureteg GigylzIisi [30]

Uretec Ggy(zlilerinin tirev formiilleri ve Darboux vektérleri, aykir regle yiizeylerde yapilan
islemler ile ayni tarzda bulunabilir.

Konilerde, @ merkez normal vektdrin olusturdugu merkez normal ylzeyin dogal tgyuzllsU
ile koninin Urete¢ Ugylzlistu c¢akigikiir. Bu sebeple konilerin merkez normal ylizeyinin
incelenmesi ilgi ¢ekici degildir.

Aykiri  regle ylzeylerden farklh olarak, konilerin bogaz c¢izgisi, tek bir noktaya
déndstiginden, konilerin bodaz gizgisinin konumsal degisimi sifirdir.

Bir koninin h merkez tedet vektoriinin olusturdugu ylizeye merkez teget ylizey denir.

Koninin merkez teget ylizeyi
X, (s,v)=a(s)+vh(s)
denklemi ile g6sterilebilir. Burada a(s) hem koninin hem de merkez teget ylizeyin dayanak

egrisi konumundadir.

Konilerin merkez teget ylzeyleri, aykiri regle ylzeylerin merkez normal yiizeyinin
incelenmesi ile ayni tarzda incelenebilir. Merkez teget ylzeyin bogaz cizgisi Gzerindeki ¢ati, bu
¢atinin tdrev formdalleri, Darboux vektéri ve merkez teget ylzeyin catisi ile koninin Ureteg

O¢y0zIUsU arasindaki iligkiler bulunabilir.

Ornek 4.4. X (s,v) = (cosh s +vcosh s, —v, sinh s +vsinh s) konisi verilsin. Bu koninin regle
formu

X (s,v)=(coshs, 0, sinh s)+v(cosh s, —1, sinh )
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bicimindedir. Koninin dayanak egdrisi ve ana dogrularinin dogrultman vektorleri sirasiyla
a(s) =(coshs, 0, sinh s)

ve
R(s) =(cosh s, —1, sinh s)

dir. Koninin Urete¢ vektérl

p :%:i(coshs, ~1, sinh 5)

V2

olarak bulunur, burada R dogrultman vektoérlerinin boyudur. (q,q>=1 oldugundan, ¢ dreteg

vektéri spacelike vektdrdir. Koninin merkez teget vektori
h =R’ =(sinhs, 0, cosh s)

dir. <h,h> =—1 oldugundan, h merkez teget vektdr timelike vektdérdir. Koninin merkez normal

vektord

a=—qxh =L(—cosh s, —1,—sinh )

NG

dir. (a,a> =1 oldugundan merkez normal vektér a spacelike vektdrdir. Ureteg tigylizlisini

olusturan vektorlerin tirevleri

q = LZ (sinh s, 0, cosh )

NG

h’ = (cosh s, 0, sinh s)
, 1 .
a zﬁ(—smhs, 0, —cosh s)
dir. a :EQ/h oldugundan koninin jeodezik egriligi ¥ =—1 olarak bulunur. Buradan Ureteg

O¢y0zIGstndn tarev formilleri matris formda

0 1 O
d 1 1 1
d_ h :ﬁ 1 0 —1 h
A)
a 0 -1 O|la

biciminde yazilabilir. Uretec Gigyiizliisiiniin Darboux ani dénme vektérii
w,=(-yq+a)/R=(0,-10)

dir. Koninin merkez teget ylizeyi
X, (s,v)=a(s)+Vvh(s)=(coshs, 0, sinh s)+v(sinh s, 0, cosh s)

seklinde olusturulur. Merkez te@et ylizeyin dogal UgylzIisu; h Ureteg vektorl, n asal normal
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vektér ve b binormal vektdrlerinden olusur. Dogal UgylzIinin Greteg vektdri koninin merkez
teget vektérl olup
h = (sinh s, 0, cosh s)

dir. Asal normal vektor

’

n=—=(coshs,Q0, sinh s)
K

dir, burada K‘=||h'|| =1 merkez teget ylzeyin egriligidir. <n,n> =1 oldugundan, n asal normal
vektori spacelike vektdrdlr. Binormal vektor ise

b=-hxn=(0,1,0)
olarak bulunur. (b,b> =1 oldugundan, b binormal vektori spacelike vektérdir. Dogal
O¢y0zIUy( olusturan vektorlerin tlrevleri

h’=(coshs, 0, sinh s),

n’ = (sinhs, 0, cosh s),

b'=(0,0,0)
olarak bulunur. b’ =—7n oldugundan, merkez teget ylizeyin burulmasi olan 7 =0 dir. Dogal

O¢y0zIGnan tarev formilleri matris formda

h| (0 1 O|lh

din:100n
Iv| o 0 ol

biciminde yazilabilir. Dogal G¢yUzliinin Darboux ani dénme vektdri
w,=—-Th—xb=(0,1,0)
dir.

Uretec Ugyilizlisi ve dogal lgylzli ortak h vektdriine sahiptirler. Uretec Gigyiizliisiiniin
merkez normal vektoéri a ile dogal U¢ylzIlinin asal normal vektérl n arasindaki spacelike agl
P olmak tzere Ggyizliler arasindaki iliski matris formda

q 0 sinp cosp ||h
hi=|1 0 0 n
a 0 cosp —sinpl||lb

bicimindedir. Burada
sin p = L
Rx

ve
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Cosp:l _L

RK': \/5

dir. Boylece spacelike p agisi

p =arccot(—1) = % =2.356

olarak bulunur.
Sekil 4.6, X (s,v)=(coshs+vcoshs,—v,sinhs+vsinhs) denklemli spacelike koni, bu

koninin dayanak egrisi Uzerindeki Urete¢ Ugylzlisi ve koninin merkez teget yuUzeyini
gOstermektedir.

Sekil 4.6. X (s,v) =(coshs+vcoshs,—v,sinhs+vsinhs) spacelike konisi ve merkez teget ylzeyi
4.3. IRf Minkowski Uzayinda Teget Yiizeylerin Egrilik Teorisi

Teget ylzey, bir uzay egrisinin teget vektérlerinin olusturdugu regle yizeydir [34]. Teget
yUzeyin dogurani, uzay egrisinin teget vektdéri oldugundan, teget ylzeylerin egrilik teorisi, uzay
egrilerinin egrilik teorisi yardimiyla incelenebilir.

s yay uzunlugu parametresi olmak lizere @(s) uzay egrisinin teget vektorl

t,(s)=a(s),



56

asal normal vektorl
_ t(s)
K,(s)

ve binormal vektori

n,(s)

b,(s)=t,(s)xn,(s) (4.34)
olarak tanimlanabilir. Burada &, (s) edrinin egriligidir. {ta,na,ba} vektérlerinin olusturdugu
catiya, egdrinin Frenet catisi denir [21]. Burada £,(s) teget vekidri spacelike, n,(s) asal
normal vektorli spacelike ve b,(s) binormal vektori timelike vektér olarak alinmistir.

Dolayisiyla @(s) uzay egrisi bir spacelike egridir. Egrinin Frenet tlrev formulleri matris formda

t 0 «x, 0]¢,
n |=|-x, 0 7,|n, (4.35)
b, 0 7, 0]lb,

biciminde ifade edilebilir. Burada 7, egrinin burulmasidir.
a(s) uzay egrisinin teget vektorlerinin olusturdugu teget ylizey
X(s,v)=a(s)+vt,(s) (4.36)
denklemi ile verilebilir. Burada, @(s), tedet ylizeyin dayanak egrisi ya da sirt egrisi olarak
isimlendirilir [16]. Ayrica, v reel degerli bir parametre, s egrinin yay uzunlugu parametresi ve
t,(s) egrinin teget vektorudur.

Sekil 4.7, @ egdrisinin tegetlerinin olusturdugu teget yizeyi géstermektedir.

Dayanak egrisi

Deodguran (teget vektor)

Sekil 4.7. @ egrisinin tegetlerinin olusturdugu teget yizey [30]
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Bir teget ylzeyin Lorentziyen karakterinin belirlenmesi igin, 6ncelikle ylzeyin normali

bulunmalidir. (4.36) denkleminin s ve v parametrelerine gore turevleri sirasiyla

X (s,v)=a(s)+vt (s) (4.37)
ve

X (s,v)=t,(s) (4.38)
olarak bulunur. Teget ylizeyin normali

S, = ”;% (4.39)

dir. (4.37) ve (4.38) denklemleri, (4.39) denkleminde yerine yazilarak ve Frenet tirev formulleri

kullanilarak, teget ylzeyin normalinin dayanak egrisinin ba(s) binormal vektérine karsilk
geldigi gorulir. Dolayisiyla teget ylizeyin Lorentziyen karakterine, dayanak egrisinin b, (s)

binormal vektoriine bakilarak karar verilebilir. (4.34) denkleminde verilen b, (s) vektori timelike
oldugundan, (4.36) denklemi ile verilen teget ylzey bir spacelike ylizeydir.
Spacelike teget ylzeyin bodaz cizgisi, dayanak egrisi yardimiyla
c(s)=al(s)—ut,(s) (4.40)
biciminde verilebilir. (4.40) denkleminin tlrevi alinir ve bodaz ¢izgisinin tanimi olan
c’(s)-t (s)=0
denkleminde yerine yazilirsa
1=0
bulunur. Béylece (4.40) denkleminden, dayanak egrisinin bodaz ¢izgisi oldugu sonucuna varilir,
yani
a(s)=c(s)
dir.
Spacelike aykiri regle ylzeylerin Ureteg GgyUzIli formUlleri kullanilarak teget yiizeyin Ulreteg
O¢y0zIGsUnd olusturan vektoérler ile egrinin Frenet ¢atisini olusturan vektérler arasinda

q(s)=t,(s), h(s)=n,(s), a(s)=b,(s) (4.41)
iligkilerinin oldugu goérulir. (4.41) denkleminde, g(s) tedet ylzeyin Ureteg vektoridir. Teget
ylzeyin ylzey normaline, dayanak egrisinin binormali karsilik geldiginden aykiri regle
ylzeylerden farkli olarak a(s) vektoriine teget ylizeyin merkez normal vektérl denilebilir. h(s)

ise teget ylzeyin merkez teget vektéridir. Sonug olarak, aykir regle yizeylerdeki merkez
normal vektdr ve merkez tedet vektériin teget ylzeylerde yer degistirdigi sylenebilir. Aykiri

regle ylzeyler ile teget ylzeyler arasindaki bu farklilik, teget yizeylerin agilabilir regle yizeyler
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olmasindan ve dolayisiyla teget dlzlemlerinin doguran boyunca sabit kalmasindan
kaynaklanmaktadir.
(4.41) denkleminin, egrinin Frenet tirev formulleri olan (4.35) de yerine yazilmasi ile

spacelike teget yiizeyin Urete¢ tgylzIisiniin agisal degisimi matris formda

h (4.42)

q q
" =w, X h
a’ a

biciminde de yazilabilir, burada
w,=7,4—-K,a
spacelike teget ylzeyin Ureteg tgylzlisinin Darboux ani dénme vektéridir.

Dayanak egrisi, ayni zamanda bogaz c¢izgisi oldugundan bogdaz gizgisinin birinci
mertebeden konumsal degisimi

c¢’(s)=t,(s)
dir.

Teget ylzeylerde a merkez normal vektoérin olusturdugu merkez normal ylzeyin dogal
Ugyuzlisu ile teget ylzeyin Urete¢ Ugylzlislh cakisiktir. Bu sebeple teget ylzeylerin merkez
normal ylzeyinin incelenmesi ilgi ¢ekici degildir.

Bir spacelike teget ylizeyin h merkez teget vektoriiniin olusturdugu regle ylizeye merkez
teget ylzey denir. Merkez teget yiizey

X, (s,v)=c(s)+Vvh(s)
denklemi ile gosterilebilir.
Merkez teget ylzeyin bogaz gizgisinin spacelike teget ylizeyin bogaz gizgisine gére konumu
¢,(5)=c(s)— i, h(s)

biciminde yazilabilir. Bogaz gizgisinin tanimi yardimiyla 4, parametresi

K

— a
S
olarak bulunur. Béylece merkez teget ylzeyin bodaz ¢izgisi
Ka
c,(s)=c(s)+ P h(s)

a o
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biciminde elde edilir.

Merkez teget ylizeyin dogal Ugyuzlisini olusturan h,n,b vektdrleri, bunlarin tirev
formdlleri, bu Ggyizlinin Darboux ani dénme vektéri ve dogal GgylzlU ile spacelike teget
ylzeyin Urete¢ UgyuzlUsth arasindaki iligskiler, aykiri regle yizeylerin merkez normal yiizeyinin
incelenmesi ile ayni tarzda incelenir. Spacelike teget ylzeyin h merkez teget vektori bir
spacelike vektdér oldugundan, n vektdri spacelike ya da timelike vektdr olabilir. Dolayisiyla
dogal GgytzIinin bu iki durum g6z éniine alinarak incelenmesi gerekmektedir.

Timelike teget ylzeylerde, ylzeyin normaline karsilik gelen, trete¢ UGgyiizlisinin @ merkez
normal vektérl (dayanak egrisinin b, binormal vektérl) bir spacelike vektordir. Bu durumda ¢

Urete¢ vektdr( (dayanak egrisinin tegeti) spacelike ya da timelike vektér olabilir. Dolayisiyla
timelike teget ylzeylerin, spacelike doguranli timelike teget ylzeyler ve timelike doguranli
timelike teget ylzeyler olarak iki durumda incelenmesi gerekmektedir. Bu inceleme, spacelike

teget ylzeylerin incelemesine benzer bir sekilde yapilabilir.

Ornek 4.5. a(s) =

2 2 3
(% s”,%(l—s)y2 isj egrisinin tegetlerinin olusturdugu regle ylizey

P

ele alinsin. Bu ylzeyin regle formu

X(s,v)=a(s)+vd (s) =

\/5 32 \/5 3/2 \/g
(TS ,T(l—S) ,ﬁs
1/2 ﬁj

\/— 1/2 \/— )
9 \/5
biciminde yazilabilir.
(a’(s),a’(s)> =—1 oldugundan @(s) egrisi birim hizli bir timelike egridir ve s, egrinin

yay uzunlugu parametresidir. @ egrisinin birim teget vektéri

B e
N

t—a

dir. & egrisinin asal normal vektorl

=(V1-5./5.0)

_“
K,

olarak bulunur, burada &, =|| a egrisinin egriligidir. @ egrisinin

|
AENCN PN

binormal vektori ise
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] Vi3 —
by =t 1, - ([I B j

olarak bulunur. @ egrisinin Frenet catisini olusturan #,, n, ve ba vektorlerinin trevleri

sirasiyla

t, :(gs-l/z,g(l—s)‘w,o]

a

";’z(_zx/ll—_s’ﬁ’oj
,_( 3 3 OJ

“22VsT 22

dir. b, =—7,n, oldugundan & egrisinin burulmasi olan 7

=———— olarak bulunur.
S NONPN/

Teget ylzeyin bogaz cizgisi

(\/_ 3/2 \/_ )3/2 ﬁSJ

c(s)=a(s)=

NG

dir. Teget ylzeyin bogaz gizgisi Uzerinde tanimli olan Urete¢ UgylzIUsini olusturan g Ureteg

vektorii, h merkez teget vektdr ve @ merkez normal vektoriinin, @ egrisinin Frenet elemanlari

cinsinden ifadesi
g=t,, h=n,, a=b,

bicimindedir. Urete¢ (gyizliisiiniin tirev formiilleri, @ egrisinin Frenet tirev formiilleri
yardimiyla matris formda

q 0 x, Ojgq
4 hi=lx, 0 7,|lh
ds

a 0 -z, O|la

a

biciminde yazilabilir. Burada

1
RPN NN
P
« = adsi=s

dir. Ureteg (igylizlisiiniin Darboux ani dénme vektorii
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w =7qg—K —(OOéj
A S N PN

olarak bulunur.

Teget ylzeyin merkez teget ylzeyi regle formda

V2 2 3
X, (s,v)=c(s)+Vvh(s)= —s3/2,— 1-s 3/2,—s +v l—s,\/;,O
h<><><>(3 3<>ﬁ(d )
biciminde yazilabilir. Merkez teget ylzeyin bogaz ¢izgisi
K

e

a o

:[gﬂz NN E NNNE%S]

c,(s)=c(s)+

3 N
biciminde bulunur.

Dogal G¢yizli merkez teget yilizeyin bogaz gizgisi Gizerinde tanimlidir. Merkez teget yiizeyin

Uretec vektdrl teget ylzeyin merkez teget vektdri olup
h=(\1-5.5.0)

biciminde bulunmustu. Asal normal vektér

h/
n=—=(—\/;,\/1—s,0)
K
dir, burada K:ﬁ merkez teget ylzeyin egriligidir. <n,n>=1 oldugundan, n asal
s(l—s

normal vektor spacelike vektérdir. Binormal vektor ise
b=hxn=(0,0,1)

olarak bulunur. <b,b> =—1 oldugundan, b binormal vektér timelike vektordir. Dogal GgyiizIly(

olusturan vektorlerin tirevleri

h'—(—# L ()j
-5 2ds” )

)
wWs' o 2i-s )

b'=(0,0,0)
olarak bulunur. b"=7n oldugundan teget ylzeyin burulmasi 7=0 dir. Dogal Ugytzlinin

Darboux ani dénme vektori
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. =m_,d,=(o,o,_;j

\2s(1—9)

biciminde bulunur. Ureteg Ggylizliistiniin merkez normal vektérli a ile dogal Gigyiizlinin asal

normal vektérl n arasindaki timelike p
<a, n> =sinh p

bagintisi yardimiyla

V3
=arcsinh| — |=1.031
) ( -

olarak bulunur.

Sekil 4.8, a(s):(gsm,g(l—s)m,%s] egrisinin tegetlerinin olusturdugu teget

ylzey, bu ylzeyin bogaz ¢izgisi Uzerindeki Urete¢ Ugyuzlisl, merkez teget yilizeyi ve dogal
UgyUzllyl gbstermektedir.

P
G
2 2 3
Sekil 4.8. a(s) = (% s3/z,§(l - s)3/2,% s] egrisinin tegetlerinin olusturdugu teget ylizey ve merkez

teget ylizeyi
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5. IR} MINKOWSKI UZAYINDA ROBOT UG-ISLEVCi HAREKETI

Bu bdélimde, 3. bélimde verilen regle yuzeylerin egdrilik teorisi kullanilarak robot ug-iglevci
hareketi incelenir. Oncelikle, bir regle yiizey kullanilarak, bir robot yériingesinin nasil temsil
edilebilecegi aciklanir. Daha sonra, regle yizeylerin egdrilik teorisi yardimiyla robot ug-iglevcinin
ara¢ merkez noktasinin lineer hiz ve ivmesi ile arac ¢atisinin agisal hiz ve ivmesi belirlenir.

Robot ug-islevcinin konumu ve yénlenmesi, arag¢ ¢atisi ve arag merkez noktasi kullanilarak

tam olarak belirlenebilir. Sekil 5.1 de gosterildigi gibi, ara¢ ¢atisi t¢ birim vektérden olusur;
bunlar O ybnlenme vektorli, A yaklagim vektéri ve N normal vektordir. Arag catisinin

orijini, ara¢ merkez noktasidir.

Arag merkez
noktasi

Sekil 5.1. Robot ug-islevci ve arag ¢atisi

Robot uc-iglevci belirli bir yéringe (zerinde hareket ederken, ug-islevciye siki bir sekilde

bagh olan arag gatisinin ¢ birim vektériinden her biri, bir regle ylzey olustururlar. Bu ¢calismada
O yoénlenme vektoru ile olusturulan regle yiizey ele alinacaktir. Ug-islevci regle ylizey lizerinde
hareket ederken, regle ylzeye daima dik konumda olmayabilir ve belirli bir agi yapabilir. Spin
agisi denilen bu agi, Sekil 5.2 de gosterildigi gibi, ug islevci Uzerindeki arag gatisinin A
yaklasim vektorl ile regle yiizeyin S, normal vektérl arasindaki agidir ve 77 ile gosterilir.
Boylece alti serbestlik derecesine sahip olan bir ug islevci hareketi, bes bagimsiz parametreye

bagli bir regle ylizey ve spin agisi yardimiyla tam olarak agiklanabilir. Robot ug-islevci hareketini

tam olarak belirleyen regle yiizey ve spin agisi sirasiyla
Xu,v)=a(u)+vR(u)

ve
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n=n)
dur. Burada @, ug-iglevcinin takip ettigi dayanak egrisi, v bir reel degerli parametre ve R

dogurandir. O ybnlenme vektord, doguran yoniinde birim vektor olarak segilir.

Sekil 5.2. Spin agisi

Bu bélimde robot ug-islevci hareketi, spacelike ve timelike regle ylzeylerin egrilik teorisi

kullanilarak iki bélimde incelenecektir.

5.1. Spacelike Regle Yiizeylerin Egrilik Teorisi Yardimiyla Robot Uc-islevci Hareketinin

incelenmesi

Spacelike regle ylizeyin ylzey catisi, dayanak egrisi Gzerindedir. Ylizey catisini olugturan

vektorler; O yonlenme vektdri, S, ylzey normal vektdéri ve S, binormal vektorudir.
Spacelike ylizeylerde, S, ylzey normal vektéri timelike vektér oldugundan, O yénlenme ve

S, binormal vektérleri spacelike vektérlerdir.

Yénlenme vektdri doguranlar ydninde birim vektdr olup
0=¢q
seklindedir. Yiizey normal vektér
X xX,

S =202
<X,

(5.1)

esitligi ile verilir. Burada X regle ylzey, s regle ylizeyin bodaz gizgisinin yay uzunlugu

parametresi ve v reel degerli bir parametredir. Ara¢ merkez noktasi Uzerindeki ylzey normal



65

vektorl, dayanak egrisi Gzerinde oldugundan (5.1) denkleminde v sifir alinir. X regle
ylzeyinin s ve v parametrelerine gbre tUrevleri sirasiyla
X, =+
ve
X =R
dir. (3.7), (3.8) ve (3.9) denklemleri kullanilarak yizey normal vektérl, Urete¢ UGgylizlUsh
vektdrleri cinsinden
S, :—Ah——,ua (5.2)
‘—Az +,uz‘
bigiminde bulunur. Burada i ve A sirasiyla (3.6) ve (3.21) denklemleri ile tanimlanir.
Yizey binormal vektdru de
S, =-0xS,

dir. Yonlenme vektérQ, Urete¢ vektorl ile cakisik oldugundan ve (3.7), (3.8), (3.9) ve (5.2)
denklemleri kullanilarak, yizey binormal vektor(, Grete¢ GgylzIUsi vektorleri cinsinden
—lh—Aa
s, ==L
‘—AZ + ,uz‘
biciminde elde edilir.

Uretec vektori, Greteg ligyiizllisii ve yilizey catisi igin ortak vektdrdir. Yiizey catisinin S, ve
S, vektorleri ile Ureteg UgylzlUisinin h ve a vektorleri ayni timelike dizlemdedir. Yuzey

catisinin S, timelike normal vektori ile Greteg Ugylzlistntn h timelike merkez normal vektori
arasindaki hiperbolik agi 0 olmak Uzere bu vektodrler arasindaki iligki

S, =cosho h+sinhoa

S, =sinho h+coshoa

biciminde veya matris formda

'S | [cosho sinho |[h
S, | |[sinho cosho

a

biciminde yazilabilir. Bdéylece ylzey catisinin Urete¢ UgyUzlisiine gore ydnlenmesi

o] |1 0 0 q
S,1=|0 cosho sinho ||k (5.3)
S, 0 sinho cosho||la

biciminde bulunur.
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Yizey cgatisi ve arag catisinin O yonlenme vektorl ortaktir ve bu vektor spacelike
vektorddr. Arag catisinin A yaklasim vektorl spacelike ya da timelike vektor olabilir. Yizey
catisi ve arag catisi arasindaki iliski, A yaklasim vektoriinin spacelike ya da timelike vektor
olma durumlarina gére ayri ayri incelenmelidir.

Sekil 5.3, regle ylzeyin Urete¢ GgylzlUsl, ylUzey catisi, merkez normal ylzeyin dogal
UgyUzIlUsU ve robot ug-islevcinin arag catisi arasindaki iligkileri géstermektedir.

P t—
e Arag Merkez Noktas
"
- e .'\‘
k =] o
"
s ‘r" \\“‘-- Dayanak edrisi

" |/

A

\

N
P | I

LR

sy

.

Bofaz gizgisi

S S

Sekil 5.3. Catilar arasindaki iligkiler [30]

i) A yaklasim vektorii spacelike olsun.

Spacelike regle ylzeyin S, timelike ylizey normal vektéri ile arag gatisinin A spacelike
yaklasim vekiorli arasindaki agi 77 timelike spin agisi olmak Uzere, ylizey c¢atisi ile arag ¢atisi
arasindaki iligki

o 1 0 0 o
A |=|0 sinhnp coshn|| S,
N 0 coshnp sinhnp || S,

bicimindedir. (5.3) matris esitligi yardimiyla, arag catisi ile Urete¢ UgyUlzIUsU arasindaki iligki
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(0] 1 0 0 q
A |=|0 sinhg coshe | h (5.4)
N 0 coshe sinhg ||a
biciminde bulunur. Burada
p=n+o0 (5.5)
dir.

ii) A yaklagim vektori timelike olsun.

Spacelike regle ylzeyin S, timelike ylizey normal vektorl ile arag gatisinin A timelike
yaklasim vekt6rU arasindaki agi 77 hiperbolik spin acisi olmak Uzere, yiizey ¢atisi ile arag ¢atisi
arasindaki iligki

(0] 1 0 0 (0]

A |=|0 coshn sinh7 || S,

N 0 sinhnp coshn || S,
bicimindedir. (5.3) matris esitligi yardimiyla, arag¢ catisi ile trete¢ tgyiizIist arasindaki iligki

(0] 1 0 0 q

A |=|0 cosheg sinhe ||h (5.6)

N 0 sinhg coshg|la
biciminde bulunur. Burada

p=n+0 (5.7)

dir.

5.1.1. Robot Uc-islevci Hareketinin Diferansiyel Ozellikleri

Robot ug-iglevci hareketinin diferansiyel 6zelliklerinin, yine A yaklasim vektorinin

spacelike ve timelike vektdr olma durumlarina gére incelenmesi gerekmektedir.
i) A yaklasim vektoéri spacelike olsun.
Spacelike regle ylizeyin @ dayanak egrisi robot ug-islevcinin yériingesi oldugundan, robot

ucg-islevcinin birinci mertebeden konumsal degisimi, (3.5) denkleminden

o =c’+ 'R+ uh (5.8)
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biciminde yazilabilir. (3.19) denklemi ve (3.7) denklemi, (5.8) denkleminde yerine yazilirsa, robot
ug-islevcinin birinci mertebeden konumsal degdisimi, Ureteg UgyUzllsi elemanlari cinsinden

o =T+ u'R)q+ tth+ Aa (5.9)
biciminde elde edilir. Ara¢ ¢atisi ile Urete¢ UgylizlUsU arasindaki iliski olan (5.4) matris esitligi
kullanilarak, robot ucg-iglevcinin birinci mertebeden konumsal degisimi, ara¢ catisi elemanlari
cinsinden

@ =T+ ' R)O + (—usinh @+ Acosh @) A + (g cosh ¢ — Asinh @) N
biciminde yazilabilir.

(5.9) denkleminin tirevi alinirsa ve (3.16) daki formiller kullanilirsa, arac merkez noktasinin

ikinci mertebeden konumsal degisimi, Urete¢ lgylzlisinde
= F’+,u”R+£ q+ F+2;¢ AV N[ BN a
R R R R

olarak bulunur. (5.4) matris esitligi kullanilarak, arag merkez noktasinin ikinci mertebeden

konumsal degisimi, ara¢ catisi elemanlari cinsinden

P/ r , Ay/j . (,uy ,j
= I"+yU'R+= |0+|—-| =+24 +—= |sinhp+| —=+A heo A
( Y7, j { ( Y sinh @ cosh ¢

+K%+2ﬂ’+ARyjcosh¢ (ILIZ/ jsinh¢}N

biciminde yazilabilir.
Arag c¢atisinin birinci mertebeden agisal degisiminin belirlenmesi igin, (5.4) matris esitliginin

her iki tarafinin tirevi alinarak

p (0] 0 0 0 q 1 0 0 J q
= A|=¢'|0 coshep sinhg ||h|+|0 sinhg coshg o h (5.10)
* N 0 sinhe coshe|la 0 cosh¢e sinhg * a
elde edilir. (3.16) matris esitligi, (5.10) da yerine yazilirsa
0 1 0
(0] R q
41 A (=] Lsinhg ( +1j cosh @ ((p’+1jsinh(p h (5.11)
ds R R R '
N 1
7 4
—cosh ~ |sinh +- |cosh
R ( Rj Y ((” Rj d

elde edilir. (5.4) matris esitliginin tersi, (5.11) matris esitliginde yerine yazilirsa, arag ¢atisinin

birinci mertebeden agisal degisimi
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p (0] . 0 —sinh¢@ coshg || O
—| A |=—| sinh g 0 OR A (5.12)
ds R
N coshgp  OR 0 N
biciminde bulunur. Burada
s=¢g +7~ 5.13
@ R (5.13)
dir. (5.12) matris esitligi
4 (0] (0]
—| A |=w,Xl A
ds
N N

biciminde de yazilabilir. Burada
1 .
W, = §0+E(—cosh(pA+s1nh(p N)

dir ve arac catisinin Darboux ani dénme vektdri olarak adlandirilir.
(5.4) matris esitligi yardimiyla, ara¢ ¢atisinin Darboux ani ddénme vektéri, (reteg
Ugyuzlisinde
1

w, —5q—Ea (5.14)
biciminde yazilabilir. (5.13) esitlidi, (5.14) denkleminde yerine yazilirsa
wo =9¢q +Zg-La
R R

elde edilir. (3.32) matris esitliginin G¢lncl satirindan
W, =0q+kb
bulunur. (3.33) denklemi yardimiyla, ara¢ catisinin Darboux ani dénme vektdri ile Greteg
UgyUzlistinin Darboux ani donme vektdrl arasindaki iliski
wo =9¢q -w,
seklinde bulunur.
(5.14) denkleminin tirevi alinarak

’ , ’ 1 }/
w, =0q+0q —=h (5.15)
0 qr+oq RR
elde edilir. (3.16) matris esitligi ve (5.13) esitligi, (5.15) denkleminde yerine yazilarak, arag

catisinin ikinci mertebeden acisal degisimi

Wy = §'q+%h
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biciminde bulunur.
ii) A yaklagim vektori timelike olsun.

A yaklasim vektoérinin spacelike vektér olma durumunda yapilan iglemlere benzer
islemler yapilarak, robot ug-iglevcinin birinci mertebeden konumsal degisimi, ara¢ catisi
elemanlari cinsinden

o =T+ ' R)O + (1 cosh @— Asinh @) A + (—sinh @+ Acosh @) N
biciminde bulunur.

Ara¢c merkez noktasinin ikinci mertebeden konumsal degisimi, ara¢ catisi elemanlari
cinsinden

” P /] r , Ay Ly ).
a=\I"rvu'R+—=|0+|| —+2u +—— ho—| ~—~+A heo |A
( “ Rj KR “ RJCOS Y (R js’m 4

+[_(£+2ﬂ’+%jsinh ¢+(%+A'jcosh (p}N

biciminde yazilabilir.

Arag c¢atisinin birinci mertebeden agisal degisimi

p o . 0 coshg —sinhg || O
—| A |=—| cosh @ 0 OR A
ds R| .
N sinhgp  OR 0 N
biciminde bulunur. Burada
s=¢+L
¢ R

dir. Arag¢ catisinin Darboux ani dénme vektori
1 .
w, = —50+E(—smh(oA+cosh(p N)

olarak bulunur. Bu vektor

O'=w,x0, A'=w,xA, N =w,xN
esitliklerini saglar. (5.6) matris esitligi yardimiyla, ara¢ ¢atisinin Darboux ani dénme vektdri
Ureteg UgylzllUsinde

W, = —§q+la

R
biciminde yazilabilir.
Arag¢ catisinin Darboux ani dénme vektorl ile Urete¢ UgyUzlisinin Darboux ani dénme

vektorleri arasindaki iliski



71

Wo=—0q+w,
seklinde bulunur.

Arag catisinin ikinci mertebeden agisal degisimi ise
, , ¢
w, =—0q _Eh

olarak elde edilir.

Robot ug-iglevcinin arag merkez noktasinin lineer hizi ve ivmesi sirasiyla

o] = |+ R + 7]

ve

o

2 F A 2 2
F’+ﬂ”R+ﬁ - —+2,u’+—7/ + E N
R R R R
biciminde elde edilir. Robot ug¢-islevcinin agisal hizi ve ivmesi ise sirasiyla

1
ool =+
-]
R

biciminde bulunur. Robot ug-iglevcinin arag merkez noktasinin lineer hizi ve ivmesi ile robot ug-

ve

’

Wo

islevcinin agisal hizi ve ivmesi, A yaklasim vektdriiniin spacelike veya timelike olma

durumlarina gére degismez.

5.2. Timelike Regle Yuzeylerin Egrilik Teorisi Yardimiyla Robot Uc-islevci Hareketinin
incelenmesi

Bu bdlimde robot ug-islevci hareketi, spacelike doguranli timelike regle yizeylerin ve
timelike doguranli timelike regle ylzeylerin egdrilik teorileri kullanilarak iki bdélimde

incelenecektir.

5.2.1. Spacelike Doguranl Timelike Regle Yiizeylerin Egrilik Teorisi Yardimiyla Robot Ug-

islevci Hareketinin incelenmesi

Spacelike doguranli timelike regle ylzeyin dayanak egrisi Uzerindeki ylzey c¢atisini

olusturan vektorler; O ydnlenme vektér, S, yizey normal vektérl ve S, binormal vektordir.
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Spacelike doguranli timelike ylzeylerde, S, ylizey normal vektdrii ve O ybénlenme vektori

spacelike oldugundan, S, binormal vektéri timelike vektordir.

Yonlenme vektéri, doguran yéninde birim vektdr oldugundan

0=gq (5.16)
dur. Ylzey normal vektorl
X xX
S = v (5.17)
X, xX,

biciminde verilir. X regle ylzeyinin s ve v parametrelerine gore tirevleri alinip, bu tlrevler
(5.17) denkleminde yerine yazilir ve (3.38), (3.39), (3.40) denklemleri kullanilirsa
Ah+ ua
5, = Mitia 5.18)
4% =42
elde edilir. Burada # ve A sirasiyla (3.36) ve (3.47) denklemleri ile tanimlanir.
Yiizey binormal vektdri
S, =0xS, (5.19)

biciminde verilir. (5.16) ve (5.18) denklemleri, (5.19) denkleminde yerine yazilarak ve (3.41) deki

esitlikler kullanilarak
h+ Aa
5 o Mhtha
=]

biciminde elde edilir.

Uretec vektoril, Ureteg licylizllisii ve yilizey catisi igin ortak vektdrdir. Yiizey catisinin S, ve
S, vektorleri ile Ureteg UgylzlUisinin h ve a vektorleri ayni timelike dizlemdedir. Yuzey

catisinin S, timelike normal vektori ile Greteg Ugylzlistnin h timelike merkez normal vektori
arasindaki hiperbolik a¢i 0 olmak (zere bu vektodrler arasindaki iligki

S, =cosho h+sinhoa

S, =sinho h+coshoa

biciminde veya matris formda
S, cosho sinho ||k
S, | sinho  cosho || a
biciminde yazilabilir. Boylece ylzey catisinin S, spacelike normal vektori ile (reteg

Ggyuzltstnin h spacelike merkez normal vektor arasindaki merkez agl o olmak lzere ylizey

¢atisinin Ureteg UgyUzlUsine gore ydnlenmesi
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(0] 1 0 0 q
S,|=/0 cosho sinho ||h (5.20)
S, 0 sinho cosho ||a
biciminde bulunur.
Yizey cgatisi ve arag catisinin O yonlenme vektorl ortaktir ve bu vektor spacelike
vektorddr. Arag catisinin A yaklasim vektori spacelike ya da timelike olabilir. Yizey catisi ve

arag catisi arasindaki iliski, A yaklasim vektoriniin spacelike ya da timelike olma durumlarina
gbre ayri ayri incelenmelidir.

i) A yaklasim vektori spacelike olsun.

Spacelike doguranh timelike regle yiizeyin S, spacelike ylizey normal vektérl ile arag

catisinin A spacelike yaklagim vektort arasindaki agi 77 merkez spin agisi olmak Uzere, ylizey
catisi ile arag catisi arasindaki iligki

(0] 1 0 0 (0]

A |=|0 coshnp sinh7 || S, (5.21)

N 0 sinhnp coshnp || S,
bicimindedir. (5.20) matris esitlidi, (5.21) de yerine yazilirsa, ara¢ catisi ile Urete¢ UgylizlUsl
arasindaki iligki

(0] 1 0 0 q

A |=|0 cosheg sinhe ||h (5.22)

N 0 sinhg coshg|la
biciminde bulunur. Burada

Qo=n+o0 (5.23)

dir.

ii) A yaklagim vektori timelike olsun.

Spacelike doguranh timelike regle yiizeyin S, spacelike ylizey normal vektéri ile arag

catisinin A timelike yaklagim vektorl arasindaki agl 77 timelike spin agisi olmak Uizere ylzey

catisi ile arag catisi arasindaki iligki
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(0] 1 0 0 (0]

A |=|0 sinhnp coshn || S, (5.24)

N 0 coshnp sinh7y || S,
bicimindedir. (5.20) matris esitlidi, (5.24) de yerine yazilirsa, ara¢ catisi ile Urete¢ UgylizlUsl
arasindaki iligki

(0] 1 0 0 q

A |=|0 sinhg coshe | h (5.25)

N 0 coshe sinhg || a
biciminde bulunur. Burada

p=n+0 (5.26)

dir.

5.2.1.1. Robot Uc-islevci Hareketinin Diferansiyel Ozellikleri

Robot ug-iglevci hareketinin diferansiyel 6zelliklerinin, yine A yaklasim vektorinin

spacelike ve timelike vektér olma durumlarina gére incelenmesi gerekmektedir.

i) A yaklasim vektori spacelike olsun.

Spacelike doguranh timelike regle ylizeyin & dayanak egrisi, robot ug-iglevcinin yoriingesi
oldugundan, robot ug-iglevcinin birinci mertebeden konumsal degisimi, (3.35) denkleminin tirevi
alinarak

o =c’"+ 'R+ uh (5.27)
biciminde yazilabilir. (3.38) ve (3.45) denklemleri, (5.27) denkleminde yerine yazilirsa, robot ug-
islevcinin birinci mertebeden konumsal degisimi, Ureteg¢ UgylUzIlsi elemanlari cinsinden

o =+ u'R)q+ tth+ Aa (5.28)
biciminde elde edilir. (5.22) matris esitliginden, robot uc-islevcinin birinci mertebeden konumsal
degisimi, ara¢ catisinda

o =T+ ' R)O + (1 cosh @ — Asinh @) A + (— sinh @+ Acosh @) N (5.29)
biciminde yazilabilir.

(5.28) denkleminin tirevi alinirsa ve (3.42) deki tirev formdlleri kullanilirsa, ara¢ merkez

noktasinin ikinci mertebeden konumsal degisimi, trete¢ UgylzIistinde

r (i vy M r ., ij (,uy j
a=\I"+tuU'R-—=|q+| =+24'+—= |h+| —+A"|a
( # qu (R # R R
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olarak bulunur. (5.22) matris esitligi kullanilarak, ara¢ merkez noktasinin ikinci mertebeden

konumsal degisimi, ara¢ ¢atisi elemanlari cinsinden
» b M I , Ay ay .
o =\"+uy'R——|O+|| —+2u +— |coshp—| —=+ A" |sinh@ |A
( g Rj KR g RJ i (R j 4

+[_(£+2ﬂ’+%jsinh ¢+(%+A'jcosh (p}N

biciminde yazilabilir.

(5.30)

Arag catisinin birinci mertebeden agisal degisiminin belirlenmesi igin (5.22) matris esitliginin

her iki tarafinin ttrevi alinarak

J 0 0 0 0 q 1 0 0 J q
o A|=¢'|0 sinhg coshg| h|+|0 coshg sinhg = h (5.31)
* N 0 coshe sinhe ||a 0 sinh¢e coshe * a
elde edilir. (3.42) matris esitligi, (5.31) de yerine yazilirsa
0 1 0
(0] R q
4 A= —lcosh(p (¢'+Z sinh @ (¢'+chosh(p h
ds R R R
N : a
. / 7/ 4 }/ .
——sinh +-= |cosh +- |sinh
R ((” R)E (q’ Rj 7]

elde edilir. (5.22) matris esitligi kullanilarak, ara¢ catisinin birinci mertebeden acgisal degisimi

J o . 0 coshgp —sinhg || O
—| A |=—| —cosh g 0 OR A (5.32)
ds R .
N —sinh¢p  OR 0 N
biciminde bulunur. Burada
s
o=¢ += 5.33
@ R (5.33)
dir. (5.32) matris esitligi
(0] 0
4 A|=w,X| A
ds
N N

biciminde de yazilabilir. Burada
W, = §0+%(sinh¢A—cosh(p N)

arag g¢atisinin Darboux ani dénme vektéraddr.
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(5.22) matris esitliginden, arag ¢atisinin Darboux ani ddnme vektéri, Urete¢ G¢ylzlusinde
1
Wy =0q-—a (5.34)
biciminde yazilabilir.

(5.33) esitligi, (5.34) denkleminde yerine yazilirsa

Wy = va+Lg-La
R R

elde edilir. Dogal G¢yOzlinin n asal normal vektérii spacelike ise (3.55) matris esitliginin
Ggclnct satin kullanilarak, nr vektéri timelike ise (3.63) matris egitliginin Gglncl satiri
kullanilarak

W, =¢q+kb
bulunur. n vektorinin spacelike ve timelike olma durumlari icin sirasiyla, (3.56) ve (3.64)
denklemleri yardimiyla, ara¢ c¢atisinin Darboux ani dénme vektorQ ile Grete¢ UgyUzlisinin
Darboux ani ddnme vektori arasindaki iligki

Wo =Pq+w,
seklinde bulunur.

(5.34) denkleminin tlrevi alinarak
4 , ’ 1 7
w, =0q+0q ——=h 5.35
) q+oq RR ( )

elde edilir. (3.42) ve (5.33), (5.35) denkleminde yerine yazilirsa, ara¢ ¢atisinin ikinci mertebeden

acisal degisimi
row @
w, =0q +Eh

biciminde bulunur.
ii) A yaklasim vektori timelike olsun.

A vyaklasim vektorliniin spacelike vektdr olma durumunda yapilan iglemlere benzer
islemler yapilarak, robot ug-iglevcinin birinci mertebeden konumsal degisimi, ara¢ catisi
elemanlari cinsinden

o =T+ ' R)O + (—usinh @+ Acosh @) A + (g cosh ¢ — Asinh @) N
biciminde bulunur.
Ara¢c merkez noktasinin ikinci mertebeden konumsal degisimi, ara¢ catisi elemanlari

cinsinden
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” , ” ﬂ r ’ A}/ . ﬂ7/ ’
a=\I"v+u'R—— |0+|—-| —+2u +——- ho+| —+A ho |A
( “ Rj { (R “ stm Y (R jCOS 4

oo 55}

dir.
Arag c¢atisinin birinci mertebeden agisal degisimi
p (4] . 0 —sinh¢ coshe || O
—| A |=—| —sinh¢ 0 OR || A
ds R
N —coshgp  OR 0 N
biciminde bulunur. Burada
s=¢+L
¢ R

dir. Arag catisinin Darboux ani dénme vektéri
1 .
w, = —50+E(cosh(oA—smh(p N)

dir. (5.25) matris esitligi yardimiyla, ara¢ c¢atisinin Darboux ani dénme vektdrl, Ureteg

Ugyuzlisinde
1
w, =—-0q +Ea

biciminde yazilabilir. Dogal G¢yGzlinin nr asal normal vektériinin hem spacelike hem de
timelike vektdér olma durumlari icin, arac catisinin Darboux ani dénme vektdri ile Uretec

O¢y0zlGstinan Darboux ani ddnme vektéri arasindaki iligki
Wo=—0q-w,
seklinde bulunur.

Arag catisinin ikinci mertebeden acisal degisimi ise
’r , q),
w, =—04q _Eh

olarak elde edilir.

Robot ug-igslevcinin ara¢c merkez noktasinin lineer hizi ve ivmesi sirasiyla

| :\/‘(1—‘+,U'R)2 it A

a/

ve

a//

2 1_, A 2 2
(F’ﬂ/’R +ﬁj +(—+2y’+—7j —(ﬂ+A’j
R R R R
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biciminde elde edilir. Robot ug-islevcinin agisal hizi ve ivmesi ise sirasiyla

1
o
ve
A
‘Wo = 5’24‘(})

biciminde bulunur. Robot ug-iglevcinin ara¢g merkez noktasinin lineer hizi ve ivmesi ile robot ug-

islevcinin agisal hizi ve ivmesi, A vyaklasim vektorinin spacelike veya timelike olma

durumlarina gére degismez.

5.2.2. Timelike Doguranh Timelike Regle Yiizeylerin Egrilik Teorisi Yardimiyla Robot Uc-
islevci Hareketinin incelenmesi

Timelike doguranh timelike regle ylizeyin dayanak egrisi Gizerindeki ylizey c¢atisini olusturan

vektorler, O yoénlenme vekiorli, S, ylzey normal vektérl ve S, binormal vektéridir. Timelike
doguranli timelike ylizeylerde, S, yizey normal vektérl spacelike ve O yodnlenme vektori

timelike oldugundan, S, binormal vektérii spacelike vektérdir.

Yénlenme vektdrt Ureteg vektériine esittir, yani

0=¢q (5.36)
seklindedir. Yiizey normal vektéri
X xX
S, = W (5.37)
XA

bigiminde verilir. X regle ylzeyinin s ve v parametrelerine goére tirevleri alinip bu tirevler

(5.37) denkleminde yerine yazilir ve (3.68) esitlikleri kullanilirsa

g - Ah—pa

(5.38)
A+
bigiminde bulunur. Burada i ve A sirasiyla (3.66) ve (3.74) denklemleri ile tanimlanir.
Yizey binormal vektdru
S, =-0xS, (5.39)

dir. [11] de
S, =0xS,
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biciminde verilen yizey binormal vektérinin, (5.39) denkleminde ifade edildidi gibi olmasi
gerekmektedir. (5.36) ve (5.38) denklemleri, (5.39) denkleminde yerine yazilir ve (3.68)

denklemi kullanilirsa
Uh+ Aa

A+

biciminde bulunur [11].

S, =

Ureteg vektord, Ureteg Ugylizllsii ve ylizey catisi igin ortak vektordir. Yiizey gatisinin S, ve
S, vektorleri ile Ureteg Ugylzlisinin h ve a vektdrleri ayni spacelike diizlemdedir. Yiizey

catisinin S, spacelike normal vektorl ile Greteg Ugyizllstniin b spacelike merkez normal
vektorl arasindaki spacelike agl o olmak (Gzere bu vektérler arasindaki iligki

S, =cosoch+sinca

S,=-sinch+cosoa

biciminde veya matris formda

S,| | coso sino || h
S, —sino coso || a
biciminde yazilabilir. Béylece ylzey ¢atisinin lrete¢ UgylzllUsiine gbre ydnlenmesi

(0] 1 0 0 q
S |=|0 coso sino || h (5.40)

n

S, 0 —sino coso ||la
biciminde bulunur [11].
Yiizey catisi ve arag gatisinin O ydnlenme vektord ortaktir ve bu vektor timelike vektordir.
Arag catisinin A yaklagim vektori ve N normal vektorl spacelike vektorlerdir.

Timelike doguranli timelike regle ylzeyin S, spacelike ylzey normal vektérl ile arag

catisinin A spacelike yaklagim vektorl arasindaki agl 77 spacelike spin agisi olmak Uzere,
ylzey gatisi ile arag ¢atisi arasindaki iligki
(0] 1 0 0 (0]
A |=|0 cosp sin7g || S, (5.41)
N 0 —sinnp cosny |l S,
bicimindedir [11]. (5.40) matris esitligi, (5.41) de yerine yazilarak, ara¢ catisi ile Ureteg
U¢y0zIUsU arasindaki iligki
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(0] 1 0 0 q
A|=|0 cosg sing|lh (5.42)
N 0 —sing cos¢|la
biciminde bulunur [11]. Burada
p=n+o0 (5.43)
dir.

5.2.2.1. Robot Uc-islevci Hareketinin Diferansiyel Ozellikleri

Timelike doguranh timelike regle ylzeyin @ dayanak egrisi robot ucg-islevcinin yériingesi
oldugundan, robot ug-iglevcinin birinci mertebeden konumsal degisimi, (3.65) denkleminin tirevi
alinarak

& =c'+ 'R+ ph (5.44)
biciminde yazilabilir. (3.72) denklemi, (5.44) denkleminde yerine yazilirsa, robot ug-islevcinin
birinci mertebeden konumsal degisimi, Urete¢ G¢ylzIisU elemanlari cinsinden

& =0T+u'R)q+uh+Aa (5.45)
biciminde elde edilir [11]. (5.42) matris esitligi yardimiyla, robot ug-islevcinin birinci mertebeden
konumsal degisimi, ara¢ catisinda

o =T+ ' R)O + (cos @+ Asin )A + (—usin @+ Acos )N
biciminde yazilabilir [11].

(5.45) denkleminin tlrevi alinirsa ve (3.69) daki tirev formdlleri kullanilirsa arag merkez

noktasinin ikinci mertebeden konumsal degisimi, trete¢ UgylzIistinde
a’ = F’+,u”R+£ q+ £+2y’—ﬂ ht| 2L A a
R R R R

olarak bulunur [11]. (5.42) matris esitligi kullanilarak, ara¢c merkez noktasinin ikinci mertebeden

konumsal degisimi, ara¢ catisi elemanlari cinsinden
» b M I , Ay My ).
a=I"'+uyR+=|0+|| —+2u4 —= |cos@+| —+A"|singp |A
( g Rj KR g Rj q)(R j 4
L ., Ay). 4 j
+|—| —+24 ——— |sin@+| —+A" |cos@ |N
[ (R g Rj Y (R Y
biciminde yazilabilir [11].

Arag catisinin birinci mertebeden acisal degisiminin belirlenmesi icin (5.42) matris esitliginin

threvi alinarak
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elde edilir [11]. (3.69) matris esitliginin, (5.46) da yerine yazilirsa

0 1

d o 1 ’

4

—| A |=| —cos -l ¢+

ds R ¢ ((p R
N

R

jsin¢ (¢'+

0

Ve
ch0s¢

R

d
sing |—| h
14 ds

(5.46)

—%sin¢ —(¢'+ yjcos¢ —(¢'+ y)sin(p

elde edilir [11]. (5.42) matris esitligi kullanilarak, ara¢ catisinin birinci mertebeden agisal

degisimi
p o . 0 cos¢p —sing |l O
—| A |=—| cos¢@ 0 OR || A (5.47)
ds R .
N —sing —OR 0 N
biciminde bulunur [11]. Burada
e
o=¢ += 5.48
@ R (5.48)
dir. (5.47) matris esitligi
4 (0] (0]
—|A|=w,X| A
ds
N N
biciminde de yazilabilir. Burada
w, =—50+%(—sin(pA—cosgoN) (5.49)

ara¢ catisinin Darboux ani dénme vektéridir [11]. (5.42) matris esitligi yardimiyla, arac

catisinin Darboux ani dénme vektorl, Ureteg Ggylzllisinde
1
w, =-0q =

biciminde yazilabilir. Dogal G¢yGzlinin nr asal normal vektériinin hem spacelike hem de
timelike vektdér olma durumlari icin, arac catisinin Darboux ani dénme vektdri ile Uretec
O¢y0zlGstnan Darboux ani ddnme vektéri arasindaki iligki

Wo =—0q+w,

seklinde bulunur.
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(5.49) denkleminin tarevi alinip (5.36) ve (5.42) denklemleri burada yerine yazilirsa
4 , ’ 1 7
w, =—0q—-0q ——=—h 5.50
0 q—oq RR ( )

elde edilir. (3.69) matris esitliginin birinci satir ve (5.48) esitligi, (5.50) denkleminde yerine

yazilarak, arag ¢atisinin ikinci mertebeden acisal degisimi
, , ¢
w, =—0q _Eh

biciminde bulunur [11].

Robot ug-iglevcinin ara¢ merkez noktasinin lineer hizi ve ivmesi sirasiyla

PLE \/‘—(F+,U'R)2 4+ A

a’

ve

4

a

2 F A 2 2
| —(F’+,u”R+£j +(—+2,u’+—7j +(ﬂ—7+A’j
R R R R

biciminde elde edilir. Robot ug¢-islevcinin agisal hizi ve ivmesi ise sirasiyla

1

ool |07+

ve

biciminde bulunur.

Ornek 5.1. Robot uc-islevci, Sekil 5.4 de gdsterildigi gibi, X (s,v)=(vcoss, vsins, cs)
helikoid ylizeyi Gzerinde 77 agisi ile hareket etsin. Bu helikoid ylizeyinin regle formu
X (s,v)=(0,0, cs)+v(coss,sin s, 0)
bicimindedir. Helikoidin dayanak egrisi ve dogurani, sirasiyla,
a(s)=1(0,0,cs)
ve
R(s) =(coss, sin s, 0)
dir. Helikoidin bogaz gizgisi
c=a-UR

denklemi yardimiyla bulunabilir. Burada
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u={a,R)=0
oldugundan, helikoidin bogaz cizgisinin dayanak egrisine esit oldugu gorilr, yani
c=a=(0,0,cs)
dir. Bodaz ¢izgisi Uzerinde tanimlanan Urete¢ U¢yUzllsinin vektdrleri
q =(coss,sins, 0),
h=(—sins, coss, 0),
a=(0,0,1)

dir. <q,q> =1 oldugundan, Ureteg vektorl ¢q , spacelike, <h,h> =1 oldugundan, merkez normal

vektor h, spacelike ve <a,a> =—1 oldugundan, merkez teget vektoér a, timelike vektordir.
Uretec Gigyiizllistini olusturan vektérlerin tiirevleri
g = (-sins, cos s, 0),
h’=(—coss,—sins, 0),
a’ =(0,0,0)
dir. a’ = vh oldugundan helikoidin jeodezik egriligi
=0
dir. Ureteg Gigyiizliisiiniin Darboux ani dénme vektdril

1
w, =E(7/¢I—a) =(0,0,-D)

dir, burada R, doguranin boyu olup 1 e egittir. Helikoidin bogaz ¢izgisinin tegeti
¢'=Tq+Aa=(0,0,c)

olup, regle yizeyin egrilik fonksiyonlari olan
'=0

ve
A=c

dir.

Helikoidin merkez normal yiizeyi

X, (s,v)=c(s)+Vvh(s)=(0,0,cs)+v(-sins, coss, 0)

denklemi ile verilebilir. Merkez normal ylizeyin bogaz gizgisi
c,=c—uh

denklemi yardimiyla bulunabilir. Burada
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)
’ ’ = 0
(W)
oldugundan, merkez normal ylizeyin bodaz ¢izgisi ile helikoidin bogdaz ¢izgisi aynidir, yani

c,=¢=(0,0,cs)

My, =

dir. Merkez normal ylzeyin dogal UgylzIUsinu olusturan vektorler

h=(-sins, coss, 0),
’

n=—=(—coss,—sins,0),
K

b=hxn=(0,0,1)
dir, burada k, merkez normal ylzeyin egriligi olup 1 e esittir. <n,n>=1 oldugundan, asal

normal vektor n, spacelike ve <b,b> = —1 oldugundan, binormal vektér b, timelike vektérdiir.
Dogal Ggylzluyi olusturan vektorlerin tlrevleri
h’=(—coss,—sins, 0),
n’ = (sins, —coss, 0),
b'=(0,0,0)
dir. " =7n oldugundan, merkez normal yiizeyin burulmasi
7=0
dir. Merkez normal ylGzeyin Darboux ani ddénme vektdri
w,=Th—xb=(0,0,-1)
dir. Merkez normal ylizeyin bogaz cizgisinin tegeti
¢, =T, q+A,a=(0,0,c¢)
olup, merkez normal yiizeyin egrilik fonksiyonlari olan
Ir,=0
ve
A, =c
dir.
Uretec Ugylzliisti ile dogal Ugylzlii ortak h spacelike vektdrine sahiptirler. Ureteg
UgyUzlisinln vektérleri ile dogal GgytzlUnin diger vektorleri arasinda
q=—n,a=>b

iliskileri mevcuttur.
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Bogaz ¢izgisi, ayni zamanda dayanak egrisi oldugundan, ylzeyin dayanak egrisi Uzerindeki

ylzey normali ile bogaz ¢izgisi Uzerindeki merkez normal vektérli arasindaki a¢i olan

o=0
dir.
Ug-islevcinin A yaklasim vektord ile ylizey catisinin S, ylizey normali arasindaki merkez
acl, 17 spin agisi olmak Uzere, (5.23) denkleminden
=0
oldugu gorilar. Yukaridaki esitligin her iki tarafinin tirevi alinirsa
¢ =1
elde edilir. Bdylece (5.33) denkleminden
6=¢' =11
bulunur.
Arag catisinin O yo6nlenme vektord, helikoidin Ureteg Ugylzlisinin g Ureteg vektoriine
esittir. Yaklasim vektdéri ve normal vektdr sirasiyla
A =(—sins, coss, 0)
ve
N =(0,0,1)
olarak bulunur.

(5.29) ve (5.30) denklemlerinin yardimiyla, ara¢ merkez noktasinin birinci ve ikinci

mertebeden konumsal degisimi, arag ¢atisinda sirasiyla
a =cN =(0,0,c)
ve
o’ =(0,0,0)
biciminde bulunur.
Arag catisinin Darboux ani dénme vektori
w,=170-N
dir. Arag catisinin Darboux ani dénme vektérd, Ureteg UgyizlUsiinde
w,=1q-a
biciminde ifade edilebilir. Ara¢ c¢atisinin Darboux ani dénme vektdrinin tlrevi, Ureteg

Ugyuzlisinde

wO’ — n//q +77/h
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olarak bulunur. Arag¢ ¢atisinin Darboux ani dénme vektériinlin tirevinin arag gatisindaki ifadesi
ise
wy =1"0+1'A

biciminde yazilabilir.

Sekil 5.4. X (s,v) =(vcoss, vsins, cs) helikoid ylizeyi ve merkez normal ylizeyi



87

6. ID’ DUAL VE D] DUAL LORENTZ UZAYLARININ TEMEL KAVRAMLARI
6.1. ID’ Dual Uzayinin Temel Kavramlari

W. Clifford tarafindan tanitilan dual sayilar, bilesenleri reel sayilar olan (a,a’) siral ikilileri

olarak tanimlanabilirler [33]. a ve a’ reel sayilarina, sirasiyla, dual sayinin reel ve dual kismi

denir [33]. a ve a" reel sayilarinin her ikisi de sifirdan farkl ise dual sayiya “tam dual say!”,
sadece reel kisim sifir ise dual sayiya “sirf dual say” denir. Sadece dual kisim sifir ise dual

saylya bir reel sayi olarak bakilabilir [45].

Dual sayilar kimesi ID ile gosterilir. Buna gore
ID ={ a=(a,a’):a,a € IR,}
dir. ID Uzerinde iki i¢ igslem ve esitlik asagidaki gibi tanimlanir [33]:
i) Toplama (a,a’)+b,b)=(a+b,a” +b")
ii) Carpma : (a,a”)-(b,b")=(ab, ab" +a’b)

iii) Esitlik : (a,a”)=(b,b") olmasi icin gerek ve yeter sart a=b, a" =b" olmasidir.

Tanim 6.1. £ =(0,1) dual sayisina dual birim denir ve &, asagidaki kurallari saglar:

e#0, 0e=£0=0, le=el=¢, € =0 [44].
Teorem 6.1. Her a@ = (a,a”) € ID dual sayisi, a =a+&£a’" bigiminde yazilabilir [15].

Tanim 6.2. Bir @ =a+&a’ dual sayisinin, b# 0 olan bir b =b+¢eb" dual sayisina bslimi

a a a’b—ab"
—=—tEe———
b b b

biciminde tanimlanir [8].
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Tanim 6.3. |a| # 0 olmak lizere bir @ =a+&a" dual sayisinin mutlak degeri

_ a .
|a|=|a|+e—a
d

biciminde tanimlanir [44].

Teorem 6.2. ID kimesi, yukarida tanimlanan toplama ve carpma islemlerine gore bir
degismeli halkadir [8].

Sirf dual sayilar ile bdlme islemi tanimli olmadigindan ID, verilen islemlere gére bir cisim
degildir.
Teorem 6.3. Bir dual sayiya bagh bir f(a) fonksiyonunun € degiskenine gére Maclaurin

serisine agilimi, n>1 tamsayisi igin £" =0 oldugundan,
f@)=f(at+ea)= f(a)+éea f'(a)
dir [9]. Burada f’(a), f(a) nin a ya gére tirevidir.

Tanim 6.4. Dual sayilara benzer sekilde bir dual vektdr de (a,a”) sirali ikilisi ile tanimlanabilir
[45]. Burada a,a” € IR’ dur. Dual vektdrlerin kiimesi ID’ ile gbsterilir ve
ID’={a=(a,a,,a,): aelD,i=123}

bicimindedir.

Tanim 6.5. d@ = (@,,a,,a,), b = (b,,b,,b,) € ID* ve A€ ID olsun. iki dual vektérin esitligi, iki

dual vektdrin toplanmasi ve bir dual vektoér ile bir skalerin ¢garpimi asagidaki gibi tanimlanir [15].

i) Esitlik cd=b o a=b, (i=12,3),
if) Toplama ; d+l;=(c_zl+l;1,52+l;2,c_z3+l;3),

iii) Skalerle carpma : Ad = (/Tc_z1 , /TEZ , /76_13) .

Teorem 6.4. ID® kiimesi, yukaridaki toplama ve skalerle carpma islemleri ile ID halkasi

Gzerinde bir modl yapisi olusturur ve buna kisaca ID — modl denir [15].

Teorem 6.5. a,a’ € IR’ ve £” =0 olmak {izere bir dual vektér @ =a + €a" biciminde ifade

edilebilir [33].
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Tanim 6.6. ID> deki herhangi iki @ =a+&a” ve b=b+ eb* dual vektdriin skaler ve vektérel

carpimlari sirasiyla

<d,I;>E =<a,b>E +€(<a,b*>E +<a*,b>E)
ve
anb=a /\b+€(a Ab"+a” /\b)

biciminde tanimlanir [8].

Tanim 6.7. ||a|| # 0 olmak tzere bir @ dual vektdriniin normu

a||=|al|+ &
|| =a] ]

ile verilir [15]. Normu 1 olan dual vektdrlere, birim dual vektérler denir.

Tanim 6.8. Birim dual vektorlerin kiimesi
§*={a=(a,.a,a)eID’:(d.d), =(1,0)}

ile gdsterilir ve buna birim dual kiire denir [6,15].

Teorem 6.6. S dual birim kirenin noktalari, IR’ deki yonll dogrulara birebir karsihk gelir [14].

Bu karsilik getirmeye “E.Study dénisimi” [35] ya da “transfer prensibi” [20] denir.

Tanim 6.9. Study tarafindan tanitilan, iki birim dual vektér arasindaki dual agi, @ =@ +¢£ 6"

biciminde tanimlanir. Burada @ ve 6, sirasiyla, birim dual vektérlere karsilik gelen yénlii

dogrular arasindaki aci ve en kisa uzakliktir [33].

Tanim 6.10. ID® dual uzayinda @(t) = a(t)+¢ea’(t) ifadesine bir dual uzay egrisi denir.
Burada a(t) = (o, (1), 0, (1), (1)) ve @ (t)=(a; (1), a;(1),0;(t)), IR’ de reel degerl
egrilerdir. Eger ¢, (t) and Oti*(t), (1<i < 3) fonksiyonlari diferansiyellenebilir ise

@:1cIR— ID’
t— @)= () +ea (1), a,(t) + €0, (1), a,(t)+€0; (1))

=a()+ea’ (1)
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dual uzay egrisi de diferansiyellenebilirdir. & = @&(t) dual egrisinin a(t) reel kismina gdsterge

egrisi denir [1].

6.2. ID; Dual Lorentz Uzayinin Temel Kavramlari

ID’ dual uzay Uzerinde i¢ ¢arpim olarak, Lorentziyen i¢ ¢carpim alinirsa, ID’ dual uzayina

dual Lorentziyen uzay denir. IDI3 ile gosterilen bu uzay
ID)={d=a+ea": a,a’ e IR’ |

biciminde gbsterilebilir [18,42].

Tanim 6.11. ID’ deki herhangi iki @ =a+¢&a” ve b =b+ gb" dual vektdriin dual Lorentziyen

ic (skaler) carpimi ve dual Lorentziyen vektorel carpimi, sirasiyla,

(@.6)=(a.b)+&((a.b")+(a",b))

axb=axb+e(axb +a" xb)

biciminde tanimlanir. Burada (, > Lorentz i¢c carpimi ve X, Lorentziyen vektbrel ¢arpimi

gOsterir [18,42].

Tanim 6.12. @ =a + £a” € ID; olsun.
i)ae IRl3 bir timelike vektor ise, d =a+ £a” € ID13 vektortine dual timelike vektor,
ii)ae IRl3 bir spacelike vektorise, d =a+ea” € ID13 vektoriine dual spacelike vektor,

iii) a € IR, bir null vektér ise, @ = a + £a’ € ID; vektoriine dual null vektor

denir [42].

Tanim 6.13. ||a|| # 0 olmak (izere bir @ =a+ £a” € ID; dual vektdrintin normu

(aa)
o

] =al +&

biciminde verilir [42].
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Tanim 6.14. d =a + £€a” € ID; olmak (izere,

S; ={ d=a+ea’: ||d|| =1;a,a’ € IR, ve a spacelike Vektﬁr}
kimesine dual Lorentziyen birim klre ve
H; ={ d=a+ea": |i|=1;a,a" € IR vea timelike vektér}

kimesine ise dual hiperbolik birim kire denir [47].

Teorem 6.7. IDf uzayindaki I-?(f dual hiperbolik birim kirenin ve 5’12 dual Lorentziyen birim

kdrenin noktalari, sirasiyla, IR13 Lorentziyen uzayindaki yonlli timelike ve spacelike dogrulara

birebir karsilik gelirler [42].

Tanim 6.15. i) Dual hiperbolik aci: a ve I;, IDI3 de iki birim dual timelike vektdr olsun.

<d,l;>=—cosh§ olacak sekilde @ =@ +¢&6" dual sayisina, @ ve b birim dual vektorleri

arasindaki dual hiperbolik aglI denir. Burada & ve o, sirasiyla, birim dual vektorlere karsilk

gelen ydnli dogrular arasindaki hiperbolik aci ve en kisa uzakliktir [41].

ii) Dual merkez acl: a ve 5 ID13 de iki birim dual spacelike vektdr ve bu vektérlerin gerdigi

dual diizlem timelike olsun. ‘<d,l;>‘ =cosh @ olacak sekilde 6 =60+¢€0" dual sayisina, a4 ve

b birim dual vektérleri arasindaki dual merkez agi denir. Burada @ ve 8", sirasiyla, birim dual

vektérlere karsilik gelen yonli dogrular arasindaki merkez agi ve en kisa uzaklktir [41].

iii) Dual spacelike aci: a ve I;, IDI3 de iki birim dual spacelike vektdr ve bu vektdrlerin

gerdigi dual diizlem spacelike olsun. <d,l;> =cos@ olacak sekilde 0 =6+¢6° dual sayisina,

@ ve b birim dual vektdrleri arasindaki dual spacelike agi denir. Burada @ ve 8", sirasiyla,

birim dual vektérlere karsilik gelen yonli dogrular arasindaki spacelike a¢i ve en kisa uzakliktir
[41].

iv) Dual Lorentziyen timelike aci: a, IDf de bir birim dual spacelike vektor ve I; ID13 de

bir birim dual timelike vektér olsun. ‘<d,l;>‘ =sinh @ olacak sekilde 0 =60+¢e0" dual sayisina,

@ ve b birim dual vektdrleri arasindaki dual Lorentziyen timelike aci denir. Burada & ve 6",
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siraslyla, birim dual vektdrlere kargilik gelen yénlu dogrular arasindaki Lorentziyen timelike agi

ve en kisa uzakhktir [41].



93

7. ID] DUAL LORENTZ UZAYINDA KURESEL EGRILER YARDIMIYLA ROBOT UG-
ISLEVCI HAREKETININ INCELENMESI

Robot ug-iglevci bir yéringede hareket ederken, buna siki bir sekilde bagll olan, arag
merkez noktasindan gegen ve yon vektorl, O ydnlenme vektorii olan bir dogru, bir regle ylizey
cizer. Bu regle ylzeye, bir dual Lorentziyen kiresel edri karsilik gelir. Bu bélimde, dual
Lorentziyen uzaydaki dual kiresel egrilerin egrilik teorisi yardimiyla, robot ug-islevci hareketi
incelenecektir. Dual kiresel egrilerin egrilik teorisi, dual hiperbolik kiresel egriler ve dual

Lorentziyen kiresel egriler olmak tizere iki b6limde ele alinacaktir.
7.1. Dual Hiperbolik Kiiresel Egriler Yardimiyla Robot Uc-iglevci Hareketinin incelenmesi

Robot ug-iglevcinin, Gzerinde hareket ettidi timelike doguranh timelike regle ylzey
X(s,v)=c(s)+ve(s)
denklemi ile verilsin. Burada ¢, regle ylzeyin bodaz ¢izgisi ve e, ana dogrularin dogrultman

vektoridir. Teorem 6.7. den, bu regle ylzeye, dual hiperbolik kire Uzerinde bir dual egri

karsilik geldigi séylenebilir. Bu dual egri

e(s)=e(s)+ee (s)
biciminde gdsterilebilir [27]. Burada e” moment vektérii olup

e’ (s)=c(s)xe(s)
biciminde yazilir. Burada

<e,e> =—1, <e',e'>=1, <c',e'>=0 (7.1)
Ozellikleri saglanir [27].

e(u) birim vektori reel hiperbolik birim kiire izerinde bir egri gizer ve bu egriye € dual

egrisinin reel gosterge egrisi denir. Burada gdsterge egrisinin bir tek noktadan ibaret olmadigi
varsayilir.

t =¢’ vektor, gbsterge egrisinin tegetine paralel, birim vektérdir. (7.1) denklemlerinden,
e nin timelike vektdr ve ¢ nin spacelike vektér oldugu goéralar.

Dual hiperbolik egrinin tirevinin normu
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él=1-€eA

biciminde yazilabilir [27]. Burada A =det(c’,e,t) acilabilir timelike regle yiizeyleri karakterize

eder. Timelike regle ylizeyin agilabilir olmasi igin gerek ve yeter sart A=0 olmasidir. € dual

egrisinin dual yay uzunlugu
5= j||é’(u)||du = j(l —eA)du =s— gj Adu (7.2)
0 0 0

olarak verilir [27]. (7.2) denkleminden 5 =1—&A oldugu gorilir. Béylece é(s) dual egrisinin

birim dual tegeti

de ¢ ¢’

j-de_¢

&5 5 1-€A

bigiminde verilir [27]. g birim dual vektori de

=t+&(cXxt)

g=—eéxt=g+éecxg
biciminde verilebilir [27]. Burada e timelike vekidr ve ¢ spacelike vektér oldugundan g
spacelike vektordir. Boylece e dual hiperbolik egrisinin dual Darboux catisi ya da dual jeodezik
GigyuzlGsh olarak bilinen {é,f,g} dual catisi elde edilir.

Dual Darboux ¢atisinin tirev formilleri matris formda

dé 0 1 o0]fe

—lf|=|1 0 7| ¢ 7.3
&l _7/~ (7.3)
gl |0 =¥ 0]l g

bigiminde yazilabilir [27]. Burada 7 dual jeodezik egriliktir. Dual Darboux Ugylzlisinin dual

Darboux ani dénme vektori

dir [27].
Dual arag¢ catisi, Sekil 7.1 de gdsterildidi gibi, robot ug-islevcinin arag merkez noktasindan

gegen (¢ dogru ile tanimlanabilir. Bunlar; yon vektori, O ybnlenme vektorld olan yonlenme

dogrusu, yon vektori, A yaklasim vektori olan yaklasim dogrusu ve yon vektord, N normal
vektér olan normal dogrudur. Yénlenme dogrusuna karsilik gelen birim dual vektér 0 , yaklasim
dogrusuna karsilik gelen birim dual vektor A ve normal dogruya karsilik gelen birim dual vektor

N ile gosterilebilir. 0 , A ve N birim dual vektdrlerine de sirasiyla dual yénlenme vektoéri,

dual yaklasim vektdri ve dual normal vektdr denilebilir.
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Sekil 7.1. Robot ug-islevci ve dual arag ¢atisi

Dual arac catisinin O birim dual vektérii ile dual Darboux catisinin € birim dual vektori
ayni vektérdir. Dual hiperbolik egrilerde € birim dual vektori timelike vektér oldugundan dual

arag ¢atisinin O dual yonlenme vektdrli de timelike vektordir. Dolayisiyla A ve N birim dual

vektoérleri spacelike vektorlerdir.

A ve f birim dual vektérleri arasindaki dual spacelike agi @ = @+ € ¢@" olsun. Burada ¢,

A ve t birim dual vektdrlerine karsilik gelen dogrular arasindaki spacelike agi ve ¢* ise bu

dogrular arasindaki en kisa Lorentziyen uzakliktir. Buradaki @ spacelike agisi (5.43)

denklemindeki acidir ve @ ise bogaz cizgisi ile dayanak egrisi arasindaki uzaklik olan &R dir.

Dual Darboux catisi ile dual arac ¢atisi arasindaki iligki matris formda

ol 1 o 0 [é
A|=|0 cosp -sing| (7.4)
N 0 sin@ cos@ || g

biciminde verilebilir. (7.4) matris egitliginin her iki tarafinin tirevi alinirsa
o’ 0 0 o Jfé] [t o 0 e
A |=9|0 —sinp —cos@||f|+|0 cosp —sinp || (7.5)
N’ 0 cos@p —sin@||g| |0 sing cosp || &

elde edilir. Dual Darboux catisinin tirev formiilleri olan (7.3) matris esitligi, (7.5) denkleminde
yerine yazilirsa
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o’ 0 1 0 é
A |=|cosp -Osinp -Scosp ||t

N'| |sing Jcosg —Osing||g

mmn

bulunur. Burada 6 =8+£0 =@ —% olup, , € dual hiperbolik egrisinin 5 dual yay
uzunlugu parametresine goére turevi gosterir. (7.4) yardimiyla, dual ara¢ ¢atisinin tirev formulleri

matris formda
0 cos@ sing
=lcosp O -

0"’/
A/
N’| |sing & 0

21 =

biciminde elde edilir. Dual arag¢ ¢atisinin dual ani ddnme vektéri ise

w, =00 +sinp A—cos@ N
olarak bulunur. (7.4) matris esitligi kullanilarak, dual arag ¢atisinin dual ani dénme vektéru, dual
Darboux c¢atisi cinsinden

W,=0é—§ (7.6)
biciminde ifade edilebilir. Dual ara¢ ¢atisinin dual ani dénme vektérl ile dual Darboux ¢atisinin
dual Darboux ani dénme vektérl arasindaki iligkinin

W, =0 €+W,
oldugu goralir.

Dual ara¢ catisinin ani dénme vektori, robot ug-islevcinin dual hiz vektéridiar. Dual arag

catisinin dual ani dénme vektdriinin normu
w, =|w,|=4/-0%+1 7.7
W, =Wy (7.7)

dir. w, =w, + €w2 olmak Uzere (7.7) denklemi reel ve dual kisimlara ayrilirsa

w, = [‘_52+1 ’ WZ —§2+1 -0

) ‘—52 +1‘ ‘—52 +1‘

elde edilir. Burada w,, , robot ug-iglevcinin agisal hizi ve WZ , robot ug-islevcinin ételeme (lineer)

hizidir.
(7.6) denkleminin tirevi alinir ve (7.3) daki tirev formdlleri kullanilirsa, robot uc-islevcinin

dual ivme vektori
W, =0 e+ {

biciminde elde edilir. Dual ivme vektérinin normu
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olarak bulunur. @ =a+ £a" olmak lizere, (7.8) denklemi reel ve dual kisimlara ayrilirsa

. _5/2 + qp/z _5/5*’ + ¢/¢*’
‘_5/2 + ¢/2 ‘_5,2 N (0/2

, a

a= ‘—5’2 +¢”

elde edilir. Burada a, robot uc-islevcinin agisal ivmesi ve a“, robot ug-islevcinin ételeme

ivmesidir.

7.2. Dual Lorentziyen Kiiresel Egriler Yardimiyla Robot Uc-islevci Hareketinin

incelenmesi

Bu bdlimde, robot ug-islevci hareketinin incelenmesinde kullanilan dual Lorentziyen kuresel
egrilerin egrilik teorisi, dual Lorentziyen kiresel spacelike egrilerin egrilik teorisi ve dual

Lorentziyen kiresel timelike egrilerin egrilik teorisi olmak Uzere iki bélimde ele alinacaktir.

7.2.1. Dual Lorentziyen Kiiresel Spacelike Egriler Yardimiyla Robot Ug¢-iglevci Hareketinin

incelenmesi

Robot ug-iglevcinin, Gzerinde hareket ettidi spacelike doguranli timelike regle yuzey
X(s,v)=c(s)+ve(s)
denklemi ile verilsin. Burada ¢, regle ylzeyin bodaz ¢izgisi ve e, ana dogrularin dogrultman

vektoridir. Teorem 6.7. den, bu regle yluzeye, dual Lorentziyen kire tzerinde bir dual spacelike

egri karsilik geldigi séylenebilir. Bu dual egri

é(s)=e(s)+ee (s)
biciminde gdsterilebilir. Burada e” moment vektdrii olup

e’ (s)=c(s)xe(s)
biciminde yazilir. Burada

(e.e)=1, (e"e")=1, (c’.e’)=0 (7.9)
Ozellikleri saglanir [41].

e(u) birim vektori, reel Lorentziyen birim kiire izerinde bir edri gizer ve bu egriye € dual

egrisinin reel gbésterge egdrisi denir. Burada gdsterge egrisinin bir tek noktadan ibaret olmadigi

varsayilir.
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t =e’ vektori, gosterge egrisinin tegetine paralel birim vektérdr. (7.9) denklemlerinden, e
ve t vektorlerinin spacelike oldugu goralir.

Dual Lorentziyen egrinin tlrevinin normu

~/|
e

=1-€A (7.10)
biciminde yazilabilir. Burada A =det(c’,e,t) acilabilir spacelike doguranli timelike regle
ylzeyleri karakterize eder. Spacelike doguranli timelike regle ylzeyin agilabilir olmasi igin gerek
ve yeter sart A =0 olmasidir. € dual egrisinin dual yay uzunlugu

5 = [[e‘a|du :j(l—eA)du:s—ngdu (7.41)
0

s
0 0

olarak verilir [41]. (7.11) den 5" =1—&A oldugu gériiliir. Béylece €(s) dual egrisinin birim dual

tegeti

é
= =t+&(cXt
oy (ext)

bigiminde verilir [41]. Son olarak g birim dual vektori de

g=eéxt=g+ecxg
biciminde verilebilir [41]. Burada e ve t spacelike vektdr olduklarindan, g timelike vektérdar.
Boylece e dual Lorentziyen kiiresel spacelike egrisinin dual Darboux catisi ya da dual jeodezik
Gigyuzltsh olarak bilinen {é,f,g} dual catisi elde edilir.

Dual Darboux ¢atisinin tirev formilleri matris formda

dé 0 1 0jle

—|f|=|-1 0 7|¢ 7.12

&t _7/~ (7.12)
g 0 7 0]l g

bigiminde yazilabilir [41]. Burada ¥ dual jeodezik egriliktir. Dual Darboux Ugy(zIlistinin Dual
Darboux ani dénme vektéri
W, =7¢-§
dir [41].
Dual ara¢ catisi, robot ug-iglevcinin ara¢c merkez noktasindan gegen (¢ dogru ile
tanimlanabilir. Bunlar; yon vektor, O ydnlenme vektorl olan yénlenme dogrusu, yon vektord,

A yaklasim vektorl olan yaklagim dogrusu ve yon vektorl, N normal vektor olan normal
dogrusudur. Yénlenme dogrusuna karsilik gelen birim dual vektér, 6, yaklasim dogrusuna

karsilik gelen birim dual vektér, A ve normal dogruya karsilik gelen birim dual vektor, N ile
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gosterilebilir. 0, A ve N birim dual vektérlerine de sirasiyla dual yénlenme vektérl, dual
yaklasim vektdri ve dual normal vektér denilebilir. Dual arag ¢atisinin O birim dual vektori ile
dual Darboux catisinin € birim dual vektori ayni vektorddr. Dual Lorentziyen kiiresel spacelike
egrilerde, € birim dual vektori spacelike vektdr oldugundan, dual arag gatisinin 0 dual

yénlenme vektdrl de spacelike vektérdir. Bu durumda A birim dual vektdri spacelike ya da
timelike vektor olabilir.

i) A birim dual vektérii spacelike olsun.

A ve f birim dual vektérleri arasindaki dual merkez agi @ = @+ £ @ olsun. Burada ¢,

A ve f birim dual vektdrlerine karsilik gelen dogrular arasindaki merkez agi ve @ ise bu

dogrular arasindaki en kisa Lorentziyen uzakliktir. Buradaki ¢ agisi (5.23) denklemindeki agi

ve @ ise bogaz cizgisi ile dayanak egrisi arasindaki uzaklik olan 4R dir. Bdylece dual

Darboux catisi ile dual arac ¢atisi arasindaki iliski matris formda

o] [1 o0 0 e
A|=|0 cosh@ sinh@ || (7.13)
N 0O sinh@ cosho ||l g

biciminde verilebilir. (7.13) matris esitliginin her iki tarafinin tirevi alinirsa
0 0 0 o el [t o 0o e
A |=@|0 sinh@ cosh@|[f|+|0 coshp sinh@ || ¢ (7.14)
N’ 0 coshp sinh@||g| |0 sinh@ coshg || g

elde edilir. Dual Darboux catisinin tirev formalleri olan (7.12), (7.14) matris esitliginde yerine

yazilirsa
o’ 0 1 0 é
A" |=|-coshp Jsinhp Jcoshe || f
N’| | -sinh@ Jcosh@ Jsinhe || g
bulunur. Burada & =8+£0 =@ +7% olup, "'", € dual hiperbolik egrisinin 5 dual yay

uzunlugu parametresine goére tlrevi gosterir. (7.12) matris esitligi kullanilarak, dual arag

catisinin tirev formulleri matris formda
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o’ 0 coshg —sinh || O
A’ |=|-coshp 0 S A
N’| |-sinhg & 0 N

biciminde elde edilir. Dual ara¢ ¢atisinin dual ani dénme vektéri ise

W, =0 O+sinhp A—coshp N
olarak bulunur. (7.14) matris esitligi kullanilarak, dual ara¢ c¢atisinin dual ani dénme vektéra,
dual Darboux catisi cinsinden

W, = Sé— g
biciminde ifade edilebilir. Dual ara¢ ¢atisinin dual ani dénme vektérl ile dual Darboux catisinin
dual Darboux ani dénme vektdérl arasindaki iligkinin

W, =@ €+W, (7.15)
oldugu goralir.

Dual arag¢ catisinin ani dénme vektori, robot ug-islevcinin dual hiz vektéridar. Dual arag

¢atisinin dual ani dénme vektériinin normu

— ~ S2

o =0 =167 -1 (7.16)
dir. w, =w, + €w2 olmak Uzere (7.16) denklemi reel ve dual kisimlara ayrilirsa

W= -1] 66
» Wo ‘52_1‘ ‘52_1‘

w, = ‘52 -1

elde edilir. Burada w,, , robot ug-iglevcinin agisal hizi ve WZ , robot uc-islevcinin ételeme hizidir.

(7.15) denkleminin tirevi alinir ve (7.12) daki tirev formdilleri kullanilirsa, robot uc-islevcinin

dual ivme vektéri
W, =0 €+0't
biciminde elde edilir. Dual ivme vektériiniin normu

=[5 +p? (7.17)

olarak bulunur. @ =a+€a" olmak lizere (7.17) denklemi reel ve dual kisimlara ayrilirsa

-’
Wo

7|

. 5/5*’ + ¢/¢*’

elde edilir. Burada a, robot uc-islevcinin agisal ivmesi ve a’, robot ug-islevcinin &teleme

a=+0"+¢”, a

ivmesidir.



101

ii) A birim dual vektdrii timelike olsun.

A ve f birim dual vektdrleri arasindaki dual timelike ag @ =@+& @ olsun. Burada ¢,

A ve t birim dual vektorlerine karsilik gelen dogrular arasindaki timelike agi ve @ ise bu

dogrular arasindaki en kisa Lorentziyen uzakliktir. Buradaki @ agisi (5.26) denklemindeki agi

ve ¢* ise bogaz cizgisi ile dayanak egrisi arasindaki uzaklik olan 4R dir. Bdylece dual

Darboux catisi ile dual arag ¢atisi arasindaki iliski matris formda

o] 1 o0 0 Jfe
A|=|0 sinh® cosho || (7.18)
N| |0 coshp sinh@ || g

biciminde verilebilir. (7.18) matris esitliginin her iki tarafinin tirevi alinirsa
o’ 0 0 0 J[e] [1 o 0o e
A =70 cosh@ sinh@ ||[f|+|0 sinh@ cosh@ || ¢ (7.19)
N’ O sinh@ cosh@|[g| |0 cosh@ sinh@ || g

elde edilir. Dual Darboux c¢atisinin tirev formdilleri olan (7.12), (7.19) matris esitliginde yerine

yazilirsa
o’ 0 1 0 é
A’ |=| —sinh@ Jcoshgp Jsinh@ || f
N’| |-coshg &sinh@ Jcosh || g

mmn

bulunur. Burada 6 =8+£0 =@ +7 olup, , € dual hiperbolik egrisinin s dual yay

uzunlugu parametresine goére tlrevi gosterir. (7.12) matris esitligi kullanilarak, dual arag

catisinin tirev formulleri matris formda

o’ 0 —sinh® cosh@ || O
A’ |=| —sinh@ 0 5 ||A
N’| |-coshg & 0 ||N

biciminde elde edilir. Dual arag¢ ¢atisinin dual ani ddnme vektéri ise

W, =-0 O+cosh@ A—sinh @ N
olarak bulunur. (7.18) matris esitligi kullanilarak, dual arag¢ ¢atisinin dual ani dénme vektéri dual
Darboux catisi cinsinden

W,=-0é+g (7.20)
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biciminde ifade edilebilir. Dual ara¢ ¢atisinin dual ani dénme vektérl ile dual Darboux ¢atisinin

dual Darboux ani dénme vektérl arasindaki iligkinin

— ~ ~

Wo=—@Q e—w

oldugu goralir.
Dual ara¢ catisinin ani dénme vektori, robot ug-islevcinin dual hiz vektéridiar. Dual arag

catisinin dual ani dénme vektdriinin normu
Wy =[] =671 (7.21)

dir. w, =w, +8w(*, olmak Uzere (7.21) denklemi reel ve dual kisimlara ayrilirsa

. O-1| 8¢
W, =4/‘52_1 , Wy = ‘52_1‘ ‘52_1‘

elde edilir. Burada w,, robot ug-islevcinin agisal hizi ve wz robot ug-islevcinin ételeme hizidir.

(7.20) denkleminin tlrevi alinir ve (7.12) deki tirev formdilleri kullanilirsa, robot ug-iglevcinin

dual ivme vektori
Wy =—0é-¢'i
biciminde elde edilir. Dual ivme vektérinin normu

| = /87 +9" (7.22)

olarak bulunur. @ =a+ £a" olmak lizere (7.22) denklemi reel ve dual kisimlara ayrilirsa

<[,

. 5/5*’ + ¢/¢*’

elde edilir. Burada a, robot uc-islevcinin agisal ivmesi ve a“, robot ug-islevcinin teleme

a=+0"+¢”, a

ivmesidir.

7.2.2. Dual Lorentziyen Kiiresel Timelike Egriler Yardimiyla Robot U¢-islevci Hareketinin
incelenmesi

Robot ug-iglevcinin, Gzerinde hareket ettigi spacelike regle ylzey
X(s,v)=c(s)+ve(s)
denklemi ile verilsin. Burada ¢, regle ylzeyin bodaz ¢izgisi ve e, ana dogrularin dogrultman

vektorudir. Teorem 6.7. den, bu regle ylzeye, dual Lorentziyen kire Uzerinde bir dual timelike

egri karsilik geldigi séylenebilir. Bu dual egri

é(s)=e(s)+ee (s)
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biciminde gdsterilebilir. Burada e” moment vektdrii olup
(7.23)

e’ (s)=c(s)xe(s)

biciminde yazilir. Burada
(e,e> =1, <e',e'> =1, <c',e'> =0

Ozellikleri saglanir [26].

e(u) birim vektor reel Lorentziyen birim kire Gzerinde bir edri gizer ve bu egriye € dual
egrisinin reel gbésterge egdrisi denir. Burada gdsterge egrisinin bir tek noktadan ibaret olmadigi

varsayilir.

t =e’ vektor, gOsterge egrisinin tegetine paralel, birim vektérdlr. (7.23) denklemlerinden
e vektorindn spacelike ve ¢ vektorindn timelike oldugu gérdldr.

Dual Lorentziyen egrinin tlrevinin normu

~/|
e

=1+&A
biciminde yazilabilir. Burada A =det(c’,e,t) acilabilir spacelike regle yiizeyleri karakterize

eder. Spacelike regle ylizeyin agilabilir olmasi igin gerek ve yeter sart A =0 olmasidir. € dual
(7.24)

egrisinin dual yay uzunlugu
&(w)|du = [ (1+eA)du = s+ [ Adu
0 0

5=
olarak verilir [26]. (7.24) denkleminden 5 =1+ &A oldugu gériliir. Boylece €(s) dual egrisinin

0

birim dual tegeti
. de ¢ é

t=—=== =t+&(cXt)
ds s 1+&

bigiminde verilir [26]. Son olarak g birim dual vektori de

g=—eéxt=g+éecxg
biciminde verilebilir [26]. Burada e spacelike ve ¢ timelike vektdér oldugundan, g spacelike

vektordir. Bylece € dual Lorentziyen kiresel spacelike edrisinin dual Darboux catisi ya da

dual jeodezik GigylizIisi olarak bilinen {€,7,g} dual catisi elde edilir.

Dual Darboux catisinin tirev formdilleri matris formda
e 0 1 Ofle
dlil<l1 o 7||¢ (7.25)
e v ' .
g] |0 7 O0]lg
bigiminde yazilabilir [26]. Burada, ¥ dual jeodezik egriliktir. Dual Darboux UgyUzlisinin Dual

Darboux ani dénme vektori
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w,=-ye+g
dir [26].
Dual ara¢ catisi, robot ug-iglevcinin ara¢ merkez noktasindan gegen (¢ dogru ile
tanimlanabilir. Bunlar; yon vektorl, O yoénlenme vektori olan yonlenme dogrusu, yén vektord,

A yaklasim vektorl olan yaklagim dogrusu ve yon vektorl, N normal vektor olan normal

dogrusudur. Yonlenme dogrusuna karsilik gelen birim dual vektér, O, yaklasim dogrusuna
karsilik gelen birim dual vektér, A ve normal dogruya karsilik gelen birim dual vektér, N ile
gobsterilebilir. 0~ A ve N birim dual vektdrlerine de siraslyla dual yénlenme vektéri, dual

yaklasim vektdri ve dual normal vektér denilebilir. Dual arag ¢atisinin O birim dual vektori ile

dual Darboux catisinin € birim dual vektdr( ayni vektoérdir. Dual Lorentziyen kiresel spacelike
egrilerde, € birim dual vektori spacelike vektdr oldugundan, dual arag gatisinin 0 dual

yonlenme vektéri de spacelike vektodrdir. Bu durumda A birim dual vektdri spacelike ya da
timelike vektor olabilir.

i) A birim dual vektérii spacelike olsun.

A ve £ birim dual vektdrleri arasindaki dual timelike agi @ = @+ £ @ olsun. Burada ¢,

A ve t birim dual vektorlerine karsilik gelen dogrular arasindaki timelike agi ve @ ise bu

dogrular arasindaki en kisa Lorentziyen uzakliktir. Buradaki ¢ agisi, (5.5) denklemindeki agi ve

@ ise bodaz cizgisi ile dayanak egrisi arasindaki uzaklik olan #R dir. Bdylece dual Darboux

catisi ile dual arag catisi arasindaki iliski matris formda

o| [t o 0 fé
A|=|0 sinh® cosho || (7.26)
N 0O cosheg sinho || g

biciminde verilebilir. (7.26) matris esitliginin her iki tarafinin trevi alinirsa
o’ 0 0 o el [t o 0 e
A |=7|0 cosh@ sinh@ ||[f|+|0 sinhg cosh@ || (7.27)
N’ 0 sinhg cosh@||g| |0 cosh@ sinhe || g

elde edilir. Dual Darboux g¢atisinin tirev formulleri olan (7.25), (7.27) de yerine yazilirsa
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o 0 1 0 é
A’ |=|sinhp Jcoshp JOsinhe ||
N’| |coshp Jsinhg JScoshog || g

mmn

bulunur. Burada 5=5+8§*=¢'+7_/ olup, , € dual Lorentziyen kiiresel timelike

egrisinin s dual yay uzunlugu parametresine goére tlrevi gosterir. (7.25) yardimiyla dual arag

catisinin tirev formulleri matris formda

o’ 0 —sinh@ cosh@ ] O
A’ |=|sinh® 0 5 ||A
N’| |coshp o 0 N

biciminde elde edilir. Dual arag¢ ¢atisinin dual ani ddnme vektéri ise

w, =0 0—coshp A+sinhp N
olarak bulunur. (7.26) matris esitligi kullanilarak, dual arac catisinin dual ani dénme vektéra,
dual Darboux catisi cinsinden

W,=06—§ (7.28)
biciminde ifade edilebilir. Dual ara¢ ¢atisinin dual ani dénme vektérl ile dual Darboux catisinin
dual Darboux ani dénme vektéri arasindaki iligkinin

Wo = aé_‘;’e
oldugu goraldr.

Dual arag¢ catisinin ani dénme vektori, robot ug-islevcinin dual hiz vektéridar. Dual arag

catisinin dual ani dénme vektdriinin normu
Wy =|Wo|=v8* +1 (7.29)

dir. w, =w, + €w2 olmak Uzere (7.29) denklemi reel ve dual kisimlara ayrilirsa

= . 88
W, =Vo +1, w, = N
elde edilir. Burada w,, , robot ug-iglevcinin agisal hizi ve WZ , robot ug-islevcinin ételeme hizidir.
(7.28) denkleminin trevi alinir ve (7.25) kullanilirsa, robot ug-iglevcinin dual ivme vektdri
W, =0 é+@'f
biciminde elde edilir. Dual ivme vektérinin normu

o =0 =
W, 0" -0

(7.30)

a-|

olarak bulunur. @ =a+ £a" olmak lizere (7.30) denklemi reel ve dual kisimlara ayrilirsa



106

. 5/2 _ ¢/2 5/5*’ _ ¢/¢>:/

2 ” _
5 - ¢ , 4 = 5,2 _ ¢/2 5,2 _ ¢,2

a=

elde edilir. Burada a, robot uc-islevcinin agisal ivmesi ve a“, robot ug-islevcinin teleme

ivmesidir.
ii) A birim dual vektdrii timelike olsun.

A ve f birim dual vektérleri arasindaki dual hiperbolik aci @ = @+ & @" olsun. Burada ¢,

A ve t birim dual vektorlerine karsilik gelen dogrular arasindaki hiperbolik a¢i ve ¢* ise bu

dogrular arasindaki en kisa Lorentziyen uzakliktir. Buradaki ¢ agisi (5.7) denklemindeki agi ve

@" ise bogaz cizgisi ile dayanak egrisi arasindaki uzaklik olan &R dir. Béylece dual Darboux

catisi ile dual arag catisi arasindaki iliski matris formda

o]l [1 o0 0 fe
A|=|0 cosh@ sinh® |7 (7.31)
N| |0 sinhg cosh@ | g

biciminde verilebilir. (7.31) matris esitliginin her iki tarafinin tirevi alinirsa
0] 0 0 o el 1 o 0o e
A =70 sinh@ cosh@|[f|+|0 coshp sinhp || ¢ (7.32)
N’ 0 coshp sinh@||g| |0 sinh® coshg || g’

elde edilir. Dual Darboux gatisinin tirev formulleri olan (7.25), (7.32) de yerine yazilirsa

ol o 1 0
A’ |=|sinhp Jsinh® Jcoshp
N

ey ™

coshp JScoshp Jsinh@

mmn

bulunur. Burada 6 =8+£0 =@ +% olup, , € dual hiperbolik egrisinin s dual yay

uzunlugu parametresine gore tirevi gosterir. (7.25) tlrev denklemleri kullanilarak, dual arag

catisinin tirev formulleri matris formda

o’ 0 coshp —sinh@]| O
A |=|coshp 0 5 A
N’| |sinhp & 0 N

biciminde elde edilir. Dual arag¢ ¢atisinin dual ani ddnme vektéri ise
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W, =—0 O—sinhp A+coshp N
olarak bulunur. (7.31) matris esitligi kullanilarak, dual ara¢ ¢atisinin dual ani dénme vektéri dual
Darboux c¢atisi cinsinden

W,=-0é+8 (7.33)
biciminde ifade edilebilir. Dual ara¢ ¢atisinin dual ani dénme vektérl ile dual Darboux ¢atisinin
dual Darboux ani dénme vektéri arasindaki iligkinin

W, = —pé+w,
oldugu goraldr.

Dual arag¢ catisinin ani dénme vektori, robot ug-islevcinin dual hiz vektéridar. Dual arag

catisinin dual ani dénme vektdriinin normu

Wy =|[Wo|=v8* +1 (7.34)

dir. w, =w, + €w2 olmak Uzere (7.34) denklemi reel ve dual kisimlara ayrilirsa

=& +1, w, = 09
T SN

elde edilir. Burada w, , robot ug-iglevcinin agisal hizi ve WZ , robot ug-islevcinin ételeme hizidir.

(7.33) denkleminin tOrevi alinir ve (7.25) tlrev formdlleri kullanilirsa, robot ug-islevcinin dual

ivme vektori
~ 7 _ 5/ ~ —_
W, =—0e—¢@t
biciminde elde edilir. Dual ivme vektérinin normu

- 7
Wo

3/2 _ a’Z

(7.35)

7|

olarak bulunur. @ =a+£a" olmak (izere, (7.35) denklemi reel ve dual kisimlara ayrilirsa

. é-/z _ (0/2 é-/ 5»’ _ ¢/¢*’
0 -¢” 57—

a=

2

5’2 _ ¢'2

elde edilir. Burada a, robot uc-islevcinin agisal ivmesi ve a’, robot ug-islevcinin &teleme

ivmesidir.

Ornek 7.1. |c| > 1 olmak Gzere robot ug-islevci, Sekil 7.2 de gosterildigi gibi,

X (u,v)=(cosu—vsinu,sinu+vcosu, cv)
tek kanatli hiperboloit ylzeyi Uzerinde 7 spin agisi ile hareket etsin. Tek kanatli hiperbolidin

regle formu
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X (u,v) = (cosu,sinu,0) + v(—sinu,cosu,c)

bicimindedir. Bu ylzeyin geometrisi i¢in [41] e bakiniz. Bu yiizeyin dayanak egrisi
a(u) = (cosu,sinu,0)

ve ana dogrularinin dogrultman vektoru
R(u) =(—sinu,cosu,c)

dir. Denklem (3.67) den, dayanak egrisinin ayni zamanda bogaz ¢izgisi oldugu goéralar, yani
c(u)=a(u)

dir.

Tek kanatli hiperboloit ylzeyine karsilik gelen dual egri

éw)=e()+ee (u)

olsun. Bu dual egrinin reel gbsterge egrisi

Ru) 1

||R(u)|| = m (—sinu,cosu,c)

dir. Moment vektori

e(u)=

—€, —€, €
. 1 )
e (u)y=cu)xe(u)= cosu sinu O
c?-1 .
—sinu  cosu ¢
1 .
= (—csinu,ccosu,l)
o |

oldugundan, dual egri
1

Vet -1

biciminde yazilabilir. Reel gdsterge egrisinin teget vektorl

1
Vi -1
dir. Reel gbsterge egdrisinin tegetinin normu

, 1
e'(w)|=
Vet -1

oldugundan, e(u) birim hizli degildir. Normallegtirilmis parametre

é(u)= [(—sinu,cosu,c)+&(=csinu,ccosu,1)]

e’(u)= (—cosu,—sinu,0)

#1

s=s(u)=j‘\/21 ldlz\/l u
oVC —

|

biciminde bulunur. Bdylece regle ylzeyin bogaz gizgisi ve doguranlari ile reel gdsterge egrisi ve

dual egri, s parametresine goére sirasiyla
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R(s) =(—sinvc* —1s,cosvc? —1s,¢),
c(s) =(cosvc? —1s,sinVc? —15,0),

e(s)= \/21_1 (—sin\/c2 —1s,c084/c? —ls,c)
-

ve

e(s)= \/% [(—sin \/ﬁs,cos ms,c)

+€(—c sinve? —1s,ccosvc? —1s,1)}
olarak yazilabilir. <e,e> =—1 oldugundan, e timelike vektordur.
t=e¢ = (—cos ¢*—1s,—sinvc? —1s,0)

elde edilir. <t,t> =1 oldugundan, ¢ spacelike vektérdir. Bu durumda g spacelike vektordir ve

€

—€, —e,
g:—ext:—\/zl_ —sinvel—=1s  cosvei—-1s ¢
. |
¢ —cosvel—1s —sinvel=1s 0

= ! (csin\/c2 —1s,—ccos+/c? —ls,—l)

|

olarak bulunur. <g,g> =1 dir.
—e, —e, e,
£'(s)=c(s)xt(s)=| cosvle®—1s  sinVe’=1s 0 [=(0,0,0)
—cos \/Zs —sin ms 0
oldugundan

t(s)= (—COS\/CZ —1s,—sin/c* —ls,O) (7.36)

olarak bulunur.

€3

—€, —€,
g*(s)=c(s)><g(s)=\/2171 cosvel—1s  sinvel=1s 0
c —
csinve*—1s —ccosvcer—=1s -1
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= ! (sin Vet =1s,—cosy/c? —ls,—c)

|

oldugundan

g2(s)= \/21_1 [(c siny/c® —1s,—ccosc* —1s,—1)
C —_—

+e(sinve? —1s,—cosv ¢ —1s, — c)}

olarak bulunur.

Bogaz cizgisinin birinci mertebeden tlrevi

¢(s) = (—\/c2 —1sinve? =1 s.Jc> —1cos /> —1 s, 0)

dir.
(7.2) denkleminden, dual yay uzunlugu parametresinin tlrevinin
_ ds
s =—=1-€A
ds

oldugu bilinmektedir. Burada
A=det(c’,e,t)=c
olarak bulundugundan
s =1-é&c
biciminde elde edilir.
(7.3) denkleminden

g _-

==yt 7.37

et (7.37)
oldugu bilinmektedir. Zincir kurali yardimiyla

g _dg ds

ds dsds
yazilabilir. g birim dual vektoriiniin s parametresine gore tlirevi alinarak ve yukaridaki denklem
kullanilarak

dg .

a8 _ c(cosxlc2 —1 s,sinv/e* =1 s,O)

ds (7.38)

+e&(c? +1)(COS\/C2 —1s,sinve? =1 s,O)

bulunur. (7.36) ve (7.38) denklemleri, (7.37) denkleminde yerine yazilarak elde edilen esitlik reel
ve dual kisimlara ayrilirsa

y=cve y =c’+1

elde edilir. Béylece dual jeodezik egdrilik
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V=y+ey =c+e(c+1)

biciminde bulunur.
A ve f birim dual vektorleri arasindaki dual acl

p=p+ep
dir. Burada ¢ ve ¢ sirasiyla, birim dual vektorlere karsilik gelen dogrular arasindaki reel agl
ve en kisa uzaklktir. Dayanak egrisi, bodaz cizgisine esit oldugundan, dayanak egrisi ile bogaz
gizgisi arsindaki uzaklik olan ¢ sifira esittir. Ylizeyin dayanak egrisi izerindeki normal vektori
S, ile bogaz cizgisi Uizerindeki merkez normal vektér h, ayni vektér olduklarindan aralarindaki
acl

o=0
dir. Bdylece

p=n+o=1q
oldugundan

p=n
olarak bulunur.

Dual arag catisinin dual ani dénme vektérindn

W, = oé— g
oldugu bilinmektedir. Burada

S=0-7=-c)+e(c®+1)
oldugundan dual arag ¢atisinin dual ani ddnme vektdri ya da dual agisal hiz vektorQ

W, = ! (—n’sin\/cz—ls,f]'cosxlcz—ls,ﬂ'c+c2+1)

|

Jﬁg\/zl—l((_”’c_z)Sin Vel =1s, (i'c+2)cosve® —1 s, 77’+c+03)
C —

olarak bulunur. Bu dual vektériin normu alinarak ug-iglevcinin dual hizi

o =[] = |- +1] (7.39)

olarak yazilabilir. (7.39) denklemi, reel ve dual kisimlara ayrilirsa, ug-islevcinin agisal ve lineer

hizi sirasiyla

wy =[-8 +1 = |- =) +1

ve
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(=) s [ -0t 1 ) o +1)
Wo =~ 2 - , 2
=+ ) e+l U =er +1] ) g - oy 4]

biciminde bulunur. Robot ug¢-islevcinin dual ivme vektdri

a=|w,|=|-0°+77 (7.40)

dir. (7.40) denklemi, reel ve dual kisimlara ayrilirsa, ug-islevcinin agisal ve lineer ivmesi ise

siraslyla

a= \/‘—5'2 +o”

-

ve
O 58" +¢'¢p" _
=67 +0% ) -7+

0

biciminde bulunur.

Sekil 7.1. X (u,v) = (cosu —vsinu, sinu +vcosu, cv), (|c| > 1) tek kanatli hiperboloit ylzeyi Gizerinde

hareket eden bir robot ug-islevci 6rnegi
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Ornek 7.2. ¢ # 0 olmak (izere robot ug-islevci
X (u,v)=(vcosu,vsinu,cu)

helikoid ylzeyi Uzerinde 77 spin agisi ile hareket etsin. Helikoidin regle formu
X (u,v)=(0,0, cu)+v(cosu, sinu, 0)

bicimindedir. Bu ylzeyin dayanak egrisi
a(u)=1(0,0, cu)

ve ana dogrularinin dogrultman vektori
R(u) =(cosu, sinu, 0)

dir. (38.37) denkleminden, dayanak egrisinin ayni zamanda bogdaz ¢izgisi oldugu goéruldr, yani
c(u)y=au)

dir.

Helikoid yiizeyine karsilik gelen dual egri

ew)=e(u)+ee (u)

olsun. Bu dual egrinin reel gbsterge egrisi

e(u)= M =(cosu, sinu, 0)

|RG)

dir. Moment vektori

e(w)=cu)xew)=| 0 0 cu
cosu sinu 0
= (cusinu, —cucosu, 0)

oldugundan, dual egri

ée(u)=(cosu,sinu, 0)+ &(cusinu, —cucosu, 0)
biciminde yazilabilir. Reel gdsterge egrisinin teget vektorl

e’(u) = (—sinu, cosu, 0)
dir. Reel gbsterge egdrisinin tegetinin normu

e’ @l =1
oldugundan e(u) birim hizli bir egridir. Dolayisiyla u# parametresi normallestiriimis parametre
olup, u parametresi yerine s parametresi kullanilabilir. Béylece regle ylizeyin bodaz gizgisi ve
doguranlari ile reel gdsterge egrisi ve dual egri, s parametresine gore, sirasiyla,

R(s)=(coss,sins, 0),

c(s)=(0,0,cs),
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e(s)=(coss,sins, 0)
ve

e(s)=(coss,sins, 0)+&(cusins, —cucoss, 0)

olarak yazilabilir. <e,e> =1 oldugundan, e spacelike vektordur.
t=e¢ = (—cos'\/c2 —1s,—sinvc? —1s,0)

elde edilir. <t,t> =1 oldugundan, ¢ spacelike vektoérdir. Bu durumda g timelike vektordir ve
—e —e, €
g=ext=| coss sins 0 ]=(0,0,1)

—sins coss O
olarak bulunur. <g,g> =—1 dir.

—e, —e, &
t'(s)=c(s)xt(s)=| O 0 cs|=(cscoss,cssins,0)
—sins coss 0
oldugundan
£(s)=(-sins, coss, 0)+&(cscos s, cssin s,0)

olarak bulunur.

-e, —e, e,
g (s)=c(s)xg(s)=| 0 0 es|=(0,0,1)
0 0 1
oldugundan
g(s)=(0,0,1)

olarak bulunur.
Bogaz cizgisinin birinci mertebeden tirevi
¢’(5)=(0,0,0)

dir.
(7.10) denkleminden, dual yay uzunlugu parametresinin tlrevinin
_ ds
s =—=1-€A
ds

oldugu bilinmektedir. Burada
A=det(c’,e,t)=c

olarak bulundugundan
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s =1-é&c
biciminde elde edilir.

(7.12) matris esitliginin Gglinct satirindan

dg _.
o
oldugu bilinmektedir. Zincir kurali yardimiyla
4 _dg ds
ds dsds
yazilabilir. g birim dual vektdériiniin s parametresine gore tirevi
ag
E =(0,0,0)

oldugundan dual jeodezik egrilik

y=y+ey =0+¢€0
biciminde bulunur.

A ve f birim dual vektérleri arasindaki dual acl

p=p+ep
dir. Burada ¢ ve ¢ siraslyla, birim dual vektorlere karsilik gelen dogrular arasindaki reel agi
ve en kisa uzakliktir. Dayanak egrisi bogdaz gizgisine esit oldugundan, dayanak egrisi ile bogaz
cizgisi arsindaki uzaklik olan ¢@" sifira esittir. Ylizeyin dayanak egrisi Gzerindeki normal vektori
S, ile bogaz cizgisi Uzerindeki merkez normal vektér h, ayni vektér olduklarindan aralarindaki
acl

o=0
dir. Bdylece

p=n+o=1q
oldugundan

p=n
olarak bulunur.

Dual arag c¢atisinin dual ani dénme vektérinin

W,=06—§
oldugu bilinmektedir. Burada

=0 -7=n+¢€0
oldugundan, dual arag¢ ¢atisinin dual ani dénme vektorl ya da dual agisal hiz vektori

W, = (17" cos s, i)’sins, —1)+ &(cssin s, —cscos s, 0)
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olarak bulunur. Bu dual vektériin normu alinarak ug-iglevcinin dual hizi
Wy =W, =+/|6” -1 (7.41)

olarak yazilabilir. (7.41) denklemi, reel ve dual kisimlara ayrilirsa, ug-islevcinin agisal ve lineer

hizi sirasiyla
T il
ve
o-11| 65

W = =
R N
biciminde bulunur. Robot ug¢-islevcinin dual ivme vektdri

_ (57 +7" (7.42)

—_ ~ 7
a=|w,
dir. (7.42) denklemi, reel ve dual kisimlara ayrilirsa, ug-islevcinin acisal ve lineer ivmesi ise

sirasiyla

a=\67+¢” =" +7"

ve
a* ~ _5/5*’ + ¢/¢*’
[_5’2 + ¢/2

biciminde bulunur.

=0
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