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ÖZET 

 
 
 Bu tez çalışması, yedi bölümden oluşmuştur. 
 
 Birinci bölüm tezin giriş bölümüdür. Bu bölümde, eğrilik teorisi ve robot uç-işlevci 
hareketinde kullanılması ile ilgili literatür bilgisi ve bu tezde yapılanlar hakkında kısaca bilgi 
verilir.  
 

 Đkinci bölümde, 3

1IR  Minkowski uzayının temel kavramları verilir.  

 

 Üçüncü bölümde, 3

1IR  Minkowski uzayında spacelike ve timelike aykırı regle yüzeylerin 

eğrilik teorileri detaylı bir şekilde incelenir. Regle yüzeylerin ve bunların merkez normal 
yüzeylerinin çatıları bulunur. Bu çatılar arasındaki ilişkiler veriler. Regle yüzeyler ve merkez 
normal yüzeylerinin eğrilik fonksiyonları elde edilir.  
 

 Dördüncü bölümde, 3

1IR  Minkowski uzayında yegâne açılabilir regle yüzeyler olan silindir, 

koni ve teğet yüzeylerin eğrilik teorileri incelenir. Bu yüzeylerin eğrilik teorilerinin aykırı regle 
yüzeylerin eğrilik teorisinden farklılıkları ortaya koyulur. 
 
 Beşinci bölümde, üçüncü bölümde ele alınan spacelike ve timelike aykırı regle yüzeylerin 
eğrilik teorileri yardımıyla robot uç-işlevci hareketi incelenir. Robot uç-işlevci hareketinin lineer 
ve açısal özellikleri, regle yüzeylerin diferansiyel özelliklerinden belirlenir.  
 
 Altıncı bölümde, dual uzay ve dual Lorentziyen uzay ile ilgili temel kavramlar verilir. 
  
 Yedinci bölümde, üçüncü bölümde ele alınan regle yüzeylere dual Lorentziyen uzayında 
karşılık gelen dual küresel eğriler bulunur. Robot uç-işlevci hareketinin diferansiyel özellikleri 
dual küresel eğrilerin eğrilik teorisi yardımıyla incelenir. 
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ABSTRACT 
 
 
 This thesis consists of seven sections. 
 
 First section is introduction. In this section, literature review about curvature theory and its 
using in robot end-effector motion and Some information about this thesis is given.  
 

 In section two, preliminaries of Minkowski space 3

1IR  is given.  

 
 In section three, the curvature theories of spacelike and timelike ruled surfaces in 

Minkowski space 3

1IR  are examined in detail. Frames of ruled surfaces and their central normal 

surfaces is found. Relations between these frames are given. Curvature functions of the ruled 
surfaces and their central normal surfaces are obtained.  
 
 In section four, the curvature theory of cylinder, cone and tangent surface that are 

developable surfaces in Minkowski space 3

1IR , are examined. Differences between the 

curvature theory of these developable surfaces and the curvature theory of general ruled 
surfaces are showed. 
 
 In section five, motion of robot end-effector is examined using the curvature theories of 
spacelike and timelike ruled surfaces which are considered in section three. Linear and angular 
properties of the motion of robot end-effector are determined by using the differential properties 
of ruled surfaces.  
 
 In section six, preliminaries of dual space and dual Lorentzian space are given. 
 
 In section seven, dual spherical curves in dual Lorentzian space corresponding the ruled 
surfaces that are considered in section three, are obtained. The differential properties of the 
motion of robot end-effector is investigated by using the curvature theory of the dual spherical 
curves. 
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1. GĐRĐŞ 

 

 Eğrilik teorisi, hareketli katı bir cisim üzerindeki bir noktanın ya da bir doğrunun iç geometrik 

özelliklerini araştırır [30]. Uzayda katı bir cisme sabitlenmiş bir nokta ve bir doğru, cisim hareket 

ederken, sırasıyla, bir eğri ve bir regle yüzey çizerler. Bir nokta yörüngesinin eğrilik teorisi 

alanında, düzlem kinematiğinde yüksek mertebeden yörünge eğriliği kavramını ilk olarak Müller 

[23] tanımlamıştır. Düzlem kinematiğinde yüksek mertebeden yörünge eğriliği analizleri üzerine 

çalışan Freudenstein [13], karakteristik sayılar denilen skaler sayıları kullanarak, düzlemsel 

eğrilerin bir noktada nasıl karakterize edilebileceğini gösterdi. Freudenstein’ın çalışmalarının 

sonuçları, düzlemsel mekanizmaların analiz ve sentezine uygulanabilmektedir.  

 Düzlem kinematiğinde katı cisim hareketini karakterize etmek için kullanılan ani invaryantlar 

ilk kez, Bottema [7] tarafından tanımlanmıştır. Veldkamp [43], ani invaryantları uzay 

kinematiğine genişletti. Freudenstein’ın [13] çalışmasını düzlemden küreye genişleten Yang ve 

Roth [46], küresel hareketi ani invaryantlar cinsinden ifade ettiler. Onların çalışmalarının 

sonuçları da küresel mekanizmaların analiz ve sentezine uygulanabilmektedir. Kirson [19], dual 

sayıları ve vida hesabını kullanarak bir katı cisim hareketini tam olarak belirleyen kanonik 

koordinat sistemlerin ve ani invaryantların bulunması için bir yöntem geliştirdi. McCarthy [22] 

doğru yörüngelerinin skaler ve dual formülasyonlarını tekrar türeterek, bir regle yüzeyin şeklini 

karakterize eden temel eğrilik fonksiyonlarını ifade etti. Schaaf [33] ise küresel evolütler ve 

transfer teorisini kullanarak, doğru yörüngelerinin yüksek mertebeden özelliklerini dual ani 

invaryantlar cinsinden ifade etmiştir.  

 Eğrilik teorisi, sadece Öklid uzayında yapılan çalışmalar ile sınırlı kalmamış, Minkowski 

uzayında da araştırmacıların ilgisini çekmiştir. Ayyıldız ve Yücesan [2], [22] deki tekniği 

kullanarak Lorentziyen uzayda null olmayan eğriler için doğru yörüngelerinin eğrilik teorisinin 

skaler ve dual Lorentziyen formüllerini türettiler. Ersoy ve Tosun [12], bir null eğri boyunca 

hareket eden bir null yönlü doğru ile doğrudan ilişkisi olan Minkowski 3-uzaydaki yörünge null 

scrolleri verdiler. Turhan ve Ayyıldız [38], null doğuranlı bir regle yüzeyin şeklini belirleyen eğrilik 

fonksiyonlarını türettiler. Bu fonksiyonlar ile spacelike doğuranlı merkez normal yüzeyin 

fonksiyonları arasındaki ilişkileri verdiler. Uğurlu ve Önder [28,39] spacelike ve timelike regle 

yüzeylerin Frenet çatıları ve Frenet invaryantlarını verdiler.  

 Günümüzde robot uç-işlevciler, madde taşınması, boyacılık, kaynak endüstrisi ve tıp gibi 

birçok farklı alanda kullanılmaktadır [3]. Robot uç-işlevcinin göz ameliyatı gibi hassasiyet 



 2 

gerektiren alanlarda kullanıldığı da dikkate alınırsa, uç-işlevcinin hareketinin hatasız 

gerçekleşmesi önem kazanır. Ryuh ve Pennock [31], robot uç-işlevcinin hatasız hareketi için 

bilinen matris yöntemlerinden farklı bir yöntem ortaya attılar. Onlar, bir regle yüzeyin eğrilik 

teorisini kullanarak robot uç-işlevci hareketini incelediler. Ayrıca, regle yüzeyin bir parametrik 

denklem ile ifade edilemediği durumlar için bir geometrik modelleme tekniği kullandılar [32]. 

Regle yüzeylerin eğrilik teorisinin robot uç-işlevci hareketinde kullanılması ve bir geometrik 

modelleme tekniği ile oluşturulması, Ryuh’un tezinde [30] detaylı bir şekilde anlatılmıştır.  

 Minkowski 3-uzayda Ekici ve diğerleri [11] timelike doğuranlı timelike regle yüzeylerin eğrilik 

teorisini kullanarak robot uç-işlevci hareketini incelemişlerdir. Fakat bu çalışmada, Lorentziyen 

iç çarpım ile vektörel çarpım birbiri ile uyumlu değildir. Ayrıca bu çalışmada, tek bir durum ele 

alınmış, diğer durumlar incelenmemiştir. Bu tezin 3. bölümünde, [11] de yapılan çalışma, tüm 

olası durumlar için incelenmiş ve gerekli düzeltmeler belirtilmiştir.   

 Bu tezde, Minkowski 3-uzayındaki regle yüzeylerin eğrilik teorileri yardımıyla robot uç-işlevci 

hareketi incelenir. III. Bölümde, aykırı regle yüzeylerin eğrilik teorisi, regle yüzeylerin merkez 

normal yüzeyleri de ele alınarak, detaylı bir şekilde verilmiştir. Aykırı regle yüzeyler için verilen 

eğrilik teorisi, açılabilir regle yüzeyler için kullanılamaz. Robot uç-işlevci hareketinde oluşacak 

regle yüzeyin bir açılabilir regle yüzey olabileceği de göz önünde bulundurularak, yegane 

açılabilir yüzeyler olan silindir, koni ve teğet yüzey için eğrilik teorileri, IV. Bölümde ayrı ayrı 

incelenmiştir. V. Bölümde, 3

1IR  Minkowski 3-uzayındaki spacelike ve timelike regle yüzeylerin 

eğrilik teorisi kullanılarak, robot uç-işlevci hareketinin diferansiyel özellikleri olan uç-işlevcinin 

lineer hız ve ivmesi ile açısal hız ve ivmesi verilmiştir. VI. Bölümde, 3ID  ve 3

1ID  dual Öklidyen 

ve dual Lorentziyen uzayların temel kavramları ile E. Study dönüşümleri (transfer prensipleri) 

ifade edilmiştir. Son bölümde, timelike ve spacelike regle yüzeylere karşılık gelen dual 

hiperbolik ve dual Lorentziyen küresel eğriler yardımıyla, robot uç-işlevcinin diferansiyel 

özellikleri tetkik edilmiştir.    
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2. 3

1IR  MINKOWSKI UZAYININ TEMEL KAVRAMLARI 

 

Tanım 2.1. 3IR  reel vektör uzayı üzerinde 

1 1 2 2 3 3, u v u v u v= + −u v                                

ile verilen Lorentziyen iç çarpım tanımlanırsa, 3IR  Afin uzayı, Minkowski 3-uzay, 3 boyutlu 

Lorentz uzayı veya Lorentziyen 3-uzay olarak isimlendirilir ve 3

1IR  ile gösterilir [25]. Burada 

1 2 3( , , )u u u=u  ve 3

1 2 3( , , )v v v IR= ∈v  dür. u  ve v  vektörlerinin iç çarpımı için ⋅u v  

gösterimi de kullanılabilir. 

 Lorentziyen iç çarpımı pozitif tanımlı olmadığından 3

1IR  deki vektörler aşağıdaki gibi üç 

farklı Lorentziyen karaktere sahip olabilirler. 

 

Tanım 2.2. 1 2 3( , , )v v v=v , 3

1IR  de keyfi bir vektör olsun.  

 i) , 0>v v  ya da 0=v  ise v  vektörüne spacelike, 

 ii) , 0<v v  ise v  vektörüne timelike, 

 iii) , 0=v v  ve 0≠v  ise v  vektörüne null (lightlike) 

vektör denir [25].  

 

Tanım 2.3. Bir 3

1 2 3 1( , , )v v v IR= ∈v  vektörünün normu 

,=v v v                

olarak tanımlanır. Normu 1 olan vektörlere birim vektörler denir [25]. 

 

Tanım 2.4. 1 2 3( , , )u u u=u  ve 1 2 3( , , )v v v=v , 3

1IR  de iki vektör olsun. u  ve v  vektörlerinin 

Lorentziyen vektörel çarpımı  

1 2 3

1 2 3 2 3 3 2 1 3 3 1 1 2 2 1

1 2 3

( , , )u u u u v u v u v u v u v u v

v v v

− −

× = = − + − −

e e e

u v           
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biçiminde tanımlanır [36,40]. 

 

Teorem 2.1. 1 2 3 1 2 3( , , ), ( , , )u u u v v v= =u v  ve 1 2 3( , , )w w w=w , 3

1IR  uzayında üç vektör 

olsun. Bu durumda 

 i) , det( , , )× = −u v w u v w                

 ii) ( ) , ,× × = − +u v w u w v v w u               

 iii) , 0× =u v u  ve , 0× =u v v               

 iv) ( )
2

, , , ,× × = − +u v u v u u v v u v              

dir [40].  

  

Tanım 2.5. 3

1IR  uzayındaki orijin merkezli Lorentziyen ve hiperbolik birim küreler sırasıyla 

{ }2 3

1 1 2 3 1( , , ) : , 1S v v v IR= = ∈ =v v v             

ve 

{ }2 3

0 1 2 3 1( , , ) : , 1H v v v IR= = ∈ = −v v v            

olarak tanımlanır [40]. 

 

Tanım 2.6. Minkowski 3-uzayında bir ( )s=α αα αα αα α  eğrisinin hız vektörü ( )s′αααα  bir spacelike, 

timelike ya da null vektör ise ( )s=α αα αα αα α  eğrisine de sırasıyla spacelike, timelike ya da null eğri 

denir [25]. 

 

Tanım 2.7. Minkowski 3-uzayında bir yüzeyin her noktasındaki normal vektörü spacelike 

(sırasıyla, timelike) ise bu yüzeye timelike (sırasıyla, spacelike) yüzey denir [48]. 

 

Tanım 2.8. i) Hiperbolik açı: u  ve v , 3

1IR  de timelike iki vektör olsun. 

, coshθ= −u v u v  olacak şekilde bir 0θ ≥  reel sayısına u  ve v  vektörleri arasındaki 

hiperbolik açı denir [29].  

 

ii) Merkez açı: u  ve v , 3

1IR  de spacelike iki vektör ve bu vektörlerin gerdiği düzlem timelike 

olsun. , coshθ=u v u v  olacak şekilde bir 0θ ≥  reel sayısına u  ve v  vektörleri 

arasındaki merkez açı denir [29].  
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iii) Spacelike açı: u  ve v , 3

1IR  de spacelike iki vektör ve bu vektörlerin gerdiği düzlem 

spacelike olsun. , cosθ=u v u v  olacak şekilde bir 0θ ≥  reel sayısına u  ve v  vektörleri 

arasındaki spacelike açı denir [29].  

 

iv) Lorentziyen timelike açı: u , 3

1IR  de bir spacelike vektör ve v , 3

1IR  de bir timelike vektör 

olsun. , sinhθ=u v u v  olacak şekilde bir 0θ ≥  reel sayısına u  ve v  vektörleri 

arasındaki Lorentziyen timelike açı denir [29].  
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3. 3

1IR  MINKOWSKI UZAYINDA AYKIRI REGLE YÜZEYLERĐN EĞRĐLĐK TEORĐSĐ 

 

 Bu bölümde, Minkowski 3-uzayında regle yüzeylerin eğrilik teorisi detaylı bir şekilde 

incelenmiştir. Regle yüzeylerin boğaz çizgileri üzerinde tanımlı olan üreteç üçyüzlüleri ve bu 

üçyüzlülerin türev formülleri bulunmuştur. Regle yüzeylerin merkez normal yüzeyleri ve bu 

yüzeylerin boğaz çizgileri üzerinde tanımlı olan doğal üçyüzlüler incelenmiş, bu üçyüzlüler ile 

üreteç üçyüzlüleri arasındaki ilişkiler elde edilmiştir.  

 Uzayda bir doğrunun hareketi ile oluşan yüzeylere regle yüzeyler denir [10]. Bir regle yüzey 

  ( , ) ( ) ( )u v u v u= +X Rαααα               (3.1) 

denklemi ile gösterilebilir [24]. Burada, ( )uαααα  eğrisine regle yüzeyin dayanak eğrisi, regle yüzeyi 

oluşturan ana doğruların yön vektörleri olan ( )uR  vektörlerine de regle yüzeyin doğuranları 

denir. Burada u  ve v  reel parametrelerdir. αααα  ve R , 3-boyutlu uzayda iki vektör olduğundan 

bir regle yüzeyi ifade etmek için altı bağımsız parametreye ihtiyaç vardır. Regle yüzeyin 

doğuranlarının boyunun sabit büyüklükte olduğu kabul edilirse, bu bir kısıt oluşturur. Böylece bir 

regle yüzey beş bağımsız parametre ile ifade edilebilir.  

  (3.1) denklemindeki u  parametresi keyfidir. Bu parametreyi normalleştirmenin iki yolu 

vardır. Normalleştirilmiş parametre 

  
0

( )
( )

u
d u

s u du
du

= ∫
αααα

                 

biçiminde dayanak eğrisine ya da  

  
0

( )
( )

u
d u

s u du
du

= ∫
R

               (3.2) 

biçiminde doğurana bağlı olabilir [30]. Uç-işlevcinin açısal hızı ile ilgilenildiğinde, (3.2) 

denklemindeki parametrizasyon daha uygun olacağından, bu bölümde (3.2) denklemindeki 

normalleştirme işlemi kullanılacaktır.  

 Doğuran sabit bir vektör olduğunda, doğuranın türevi sıfıra eşit olur. Bu durumda tüm 

doğuranlar birbirine paraleldir. Bu tür regle yüzeyler, silindirleri ifade ederler. Silindirlerin eğrilik 

teorisi, 4. bölümde anlatılacak olup, bu bölümde incelenecek regle yüzeylerin doğuranlarının 

sabit olmadığı varsayılacaktır. 

 Bir ( , )u vX  regle yüzeyinin dağılma parametresi 
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det( , , )

,
d =

ɺɺ

ɺ ɺ

R R

R R

αααα
               (3.3) 

olarak tanımlanır [24]. Burada " "⋅ , u  parametresine göre türevi gösterir. Eğer, 0d =  ise 

doğuran boyunca teğet düzlem değişmez. Böyle bir doğurana açılabilir doğuran ve tüm 

doğuranları açılabilir doğuran olan regle yüzeylere de açılabilir regle yüzeyler denir [10]. 

Açılabilir regle yüzeylerin eğrilik teorisi, 4. bölümde incelenecektir. Bu bölümde incelenen regle 

yüzeylerin açılabilir olmayan (aykırı) regle yüzeyler olduğu varsayılacaktır. 

 Minkowski 3-uzayında regle yüzeylerin eğrilik teorisi, spacelike ve timelike regle yüzeylerin 

eğrilik teorisi olmak üzere iki bölümde incelenecektir. Null regle yüzeylerin eğrilik teorisi 

incelenmemiş olup, null regle yüzeylerin eğrilik teorisi için [37] ye bakılabilir. 

 

3.1. 3

1IR  Minkowski Uzayında Spacelike Regle Yüzeylerin Eğrilik Teorisi 

  

 ( )uαααα , 3

1IR  uzayında bir eğri, ( )uR  ana doğruların yön vektörü ve ,u v  reel değerli 

parametreler olmak üzere, bir spacelike regle yüzey 

  ( , ) ( ) ( )u v u v u= +X Rαααα                            

denklemiyle verilebilir. Burada ( )uαααα  dayanak eğrisi ve ( )uR  doğuran vektörleri spacelike 

vektörlerdir. Regle yüzeyler diğer yüzeylerden farklı olarak bir boğaz çizgisine ve boğaz çizgisi 

üzerinde tanımlanan bir üreteç üçyüzlüsüne sahiptirler. 

 

3.1.1. Boğaz Çizgisi ve Üreteç Üçyüzlüsü 

 

 Bir X  regle yüzeyinin ana doğrularından biri D  ve bu ana doğruya sonsuz yakın ana 

doğru ise D∗  olsun. D  ve D∗  ana doğrularının ortak dikmesinin D  üzerindeki ayağına, D  

ana doğrusunun boğaz noktası, boğaz noktalarının geometrik yerine ise boğaz çizgisi denir [4]. 

Boğaz çizgisi dayanak eğrisinin seçilişinden bağımsızdır.  

 Bir spacelike regle yüzeyin boğaz çizgisinin dayanak eğrisine göre denklemi  

( ) ( ) ( ) ( )s s s sµ= −c Rαααα                            

biçiminde verilebilir [30], burada µ  reel değerli bir parametredir. R  doğuranın boyu olmak 

üzere doğuran üzerinde boğaz çizgisinden dayanak eğrisine olan uzaklık Rµ  dir. 

  0′ ′⋅ =c R                             (3.4) 

denklemi boğaz çizgisini karakterize eder [10]. Boğaz çizgisinin türevi  

µ µ′ ′ ′ ′= − −c R Rαααα                            (3.5) 
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dir. (3.5) denklemi, (3.4) denkleminde yerine yazılırsa 

0µ µ′ ′ ′ ′ ′ ′ ′ ′⋅ = ⋅ − ⋅ − ⋅ =c R R R R R Rαααα             

olur. Buradan µ  parametresi 

µ ′ ′= − ⋅ Rαααα                 (3.6) 

biçiminde elde edilir. Böylece spacelike regle yüzeyin boğaz çizgisi  

( )′ ′= + ⋅c R Rα αα αα αα α               

biçiminde yazılabilir.  

 Üreteç üçyüzlüsü, spacelike regle yüzeyin boğaz çizgisi üzerinde birbirine dik, üç birim 

vektörden oluşur; bunlar üreteç vektörü q , merkez normal vektör h  ve merkez teğet vektör a  

dır. Spacelike regle yüzeyin doğuranları, birim vektör olmak zorunda olmadığından üreteç 

vektörü 

 
R

=
R

q                 (3.7) 

olarak tanımlanır. Merkez normal vektör ve merkez teğet vektör sırasıyla 

 ′=h R                (3.8) 

ve 

  = − ×a q h                             (3.9) 

biçiminde tanımlanır [39].  

 Tanım 2.7. den, bir spacelike regle yüzeyin her noktasındaki birim normal vektörünün 

timelike vektör olduğu bilinmektedir. Merkez normal vektör h , regle yüzeyin boğaz çizgisi 

üzerinde birim normal vektöre karşılık geldiğinden, merkez normal vektör h  da timelike 

vektördür, dolayısıyla üreteç vektörü q  ve merkez teğet vektör a  spacelike vektörlerdir. Üreteç 

üçyüzlüsünün vektörleri arasında 

, ,× = − × = − × =q h a h a q a q h            (3.10) 

bağıntıları mevcuttur. 

 Üreteç üçyüzlüsünün birinci mertebeden açısal değişiminin belirlenmesi için , ,q h a  birim 

vektörlerinin türevlerinin bulunması gerekmektedir. (3.7) denkleminin türevi alınıp (3.8) denklemi 

burada yerine yazılırsa  

'

R R
′ = =

R h
q               (3.11) 

elde edilir. Merkez normal vektörün birinci mertebeden türevi, üreteç üçyüzlüsü elemanlarının 

lineer bileşimi olarak 

λ µ ν′ = + +h q h a               

biçiminde yazılabilir. q  ve h  vektörleri birbirine dik olduğundan 
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0⋅ =h q               (3.12) 

eşitliği mevcuttur. (3.12) denkleminin türevi alınırsa 

0′ ′⋅ + ⋅ =h q h q              (3.13) 

elde edilir. (3.11) denkleminin (3.13) denkleminde yerine yazılması ile 

 
1

R
λ =                

bulunur. h  vektörü birim olduğundan türevine diktir, yani 

0µ =                

dır. Dolayısıyla, merkez normal vektörün türevi 
R

γ
ν =  olmak üzere 

1
( )

R
γ′ = +h q a              (3.14) 

biçiminde yazılabilir. Burada γ , üçüncü bileşen ν  den tanımlanan 

( )Rγ ′= ⋅h a               (3.15) 

fonksiyonudur ve bu fonksiyona spacelike regle yüzeyin jeodezik eğriliği denir. (3.14) denklemi, 

(3.15) denkleminde yerine yazılarak ve (3.7-3.9) denklemleri kullanılarak jeodezik eğrilik regle 

yüzeyin doğuranları cinsinden 

( , , )γ ′ ′′= R R R            

biçiminde yazılabilir. Merkez teğet vektörün birinci mertebeden türevinin bulunması için (3.9) 

denkleminin türevi alınarak  

′ ′ ′= − × − ×a q h q h               

elde edilir. (3.11), (3.14) ve (3.10) denklemleri kullanılarak merkez teğet vektörün birinci 

mertebeden türevi  

 
R

γ
′ =a h                

olarak bulunur. Böylece üreteç üçyüzlüsünün birinci mertebeden açısal değişimleri matris 

formda 

0 1 0
1

1 0

0 0

d

ds R
γ

γ

     
     =     
          

q q

h h

a a

            (3.16) 

biçiminde ifade edilebilir [39]. 

 Ayrıca, üreteç üçyüzlüsünün Darboux ani dönme vektörü 

1
( )

R
γ= − +qw q a              (3.17) 
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olarak bulunur. Bu vektör 

 , ,′ ′ ′= × = × = ×q q qq w q h w h a w a           

eşitliklerini sağlar.  

 Boğaz çizgisinin birinci mertebeden konumsal değişiminin üreteç üçyüzlüsünün vektörleri 

cinsinden ifade edilebilmesi için 

λ µ ν′ = + +c q h a             (3.18) 

eşitliğindeki , ,λ µ ν  katsayılarının bulunması gerekmektedir. λ  katsayısının bulunması için 

(3.18) denkleminde eşitliğin her iki tarafı q  vektörü ile çarpılırsa ve (3.5) denklemi kullanılırsa  

1
( ) ( ) R

R R
λ µ µ µ′ ′ ′ ′ ′ ′= ⋅ = − − ⋅ = ⋅ −α αα αα αα α

R
c q R R R           

elde edilir. (3.18) denkleminde eşitliğin her iki tarafı h  vektörü ile çarpılırsa ve (3.8) denklemi, 

(3.4) denkleminde yerine yazılırsa 

0µ ′ ⋅ == c h                

elde edilir. ν  katsayısının bulunması için (3.18) denkleminde eşitliğin her iki tarafı a  vektörü ile 

çarpılır ve (3.5) denklemi kullanılarak  

1
( ) ( ) ( )

R
ν µ µ′ ′ ′ ′ ′ ′ ′ ′= ⋅ = − ⋅ = ⋅ = ⋅ − × = − ⋅ ×α − α α αα − α α αα − α α αα − α α αc a R R a a q h R R    

elde edilir. Böylece boğaz çizgisinin birinci mertebeden konumsal değişimi 

′ = Γ + ∆c q a              (3.19) 

biçiminde yazılabilir. Burada 

1
( ) R

R
µ′ ′Γ = ⋅ −Rαααα                           (3.20) 

ve   

1
( )

R
′ ′∆ = − ⋅ ×R Rαααα             (3.21) 

dir. 

 Sırasıyla (3.15), (3.20) ve (3.21) denklemlerindeki , ,γ Γ ∆  parametrelerine spacelike regle 

yüzeyin eğrilik fonksiyonları denir. 

 

3.1.2. Merkez Normal Yüzey ve Doğal Üçyüzlü  

  

 Üreteç üçyüzlüsü boğaz çizgisi boyunca hareket ederken merkez normal vektör, merkez 

normal yüzey ya da normalia denilen başka bir regle yüzey çizer [30]. Spacelike regle yüzeyin 

merkez normal yüzeyi 
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( , ) ( ) ( )
h

s v s v s= +X c h            

denklemi ile verilebilir. Burada c , X  spacelike regle yüzeyin boğaz çizgisi ve h , X  spacelike 

regle yüzeyin merkez normal vektörüdür. 

 Merkez normal yüzeyin boğaz çizgisi, spacelike regle yüzeyin boğaz çizgisi yardımıyla 

h h
µ= −c c h               (3.22) 

biçiminde verilebilir, burada 
h

µ , merkez normal vektör boyunca iki boğaz çizgisi arasındaki 

uzaklıktır.  

 Boğaz çizgisinin tanımından 

0
h h h

µ µ′ ′′ ′ ′ ′ ′ ′⋅ = ⋅ − ⋅ − ⋅ =c h c h h h h h         

eşitliği elde edilir ve buradan 

2

( )

1
h

Rγ
µ

γ

′ ′⋅ Γ + ∆
= =

′ ′⋅ +

c h

h h
            

olarak bulunur. Böylece merkez normal yüzeyin boğaz çizgisi 

2

( )

1
h

Rγ

γ

Γ + ∆
= −

+
c c h              

biçiminde yazılabilir.  

 Merkez normal yüzeyin boğaz çizgisi üzerinde birbirine dik, üç birim vektör ile tanımlanan 

çatıya doğal üçyüzlü denir. Doğal üçyüzlüyü oluşturan vektörler; üreteç vektörü h , asal normal 

vektör n  ve binormal vektör b  dir. X  spacelike regle yüzeyin merkez normal vektörü olan h , 

merkez normal yüzeyin üreteç vektörü konumundadır ve daha önce de tanımlandığı gibi 

′=h R               

biçiminde verilebilir. Asal normal vektör 

κ

′
=

h
n               

olarak tanımlanır ve burada  

 κ ′= h              

merkez normal yüzeyin eğriliğidir. Son olarak binormal vektör 

= − ×b h n              (3.23) 

biçiminde verilir. h  vektörü bir timelike vektör olduğundan ve ,n b  vektörleri h  vektörüne dik 

olduklarından, n  ve b  vektörleri spacelike vektörlerdir. 

 Doğal üçyüzlünün birinci mertebeden açısal değişiminin belirlenmesi için , ,h n b  birim 

vektörlerinin türevleri bulunmalıdır. Asal normal vektörün tanımından, merkez normal vektörün 

birinci mertebeden türevi, doğal üçyüzlüde 
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κ′ =h n              (3.24) 

biçimindedir. Asal normal vektörün birinci mertebeden türevinin elde edilmesi için  

λ µ ν′ = + +n h n b              (3.25) 

eşitliğindeki , ,λ µ ν  katsayılarının bulunması gerekir. λ  katsayısının bulunması için (3.25) 

eşitliğinin her iki tarafı h  vektörü ile çarpılır ve (3.24) denklemi kullanılarak  

'λ κ κ′− = ⋅ = − ⋅ = − ⋅ = −n nn h n h             

elde edilir ve buradan  

 λ κ=                

olduğu görülür. n  vektörü birim vektör olduğundan, türevi kendisine diktir, dolayısıyla  

0µ =                

dır. ν τ′= ⋅ =n b  olmak üzere asal normal vektörün türevi 

κ τ′ = +n h b               (3.26) 

dir. (3.23) denkleminin türevi alınırsa  

′ ′ ′= − × − ×b h n h n                

elde edilir. (3.24) ve (3.26) denklemlerinin kullanılması ile binormal vektörün türevi 

τ′ = − nb             

olarak bulunur. Böylece doğal üçyüzlünün birinci mertebeden açısal değişimi matris formda 

0 0

0

0 0

d

ds

κ

κ τ

τ

     
     =     
     −     

h h

n n

b b

             

biçiminde ifade edilebilir, burada κ  merkez normal yüzeyin eğriliği ve τ  merkez normal 

yüzeyin burulmasıdır. Ayrıca, 

, ,′ ′ ′× = × = ×h h hh = w h n w n b w b                  

eşitliklerini sağlayan doğal üçyüzlünün Darboux ani dönme vektörü  

τ κ= − −hw h b                            

olarak bulunur. 

 



 13 

 
Şekil 3.1. Regle yüzeyin üreteç üçyüzlüsü ile merkez normal yüzeyin doğal üçyüzlüsü arasındaki ilişki 

 

 Şekil 3.1 de gösterildiği gibi, üreteç üçyüzlüsü ve doğal üçyüzlü, h  ortak merkez normal 

vektörüne sahiptirler. Üreteç üçyüzlüsünün q  ve a  vektörleri ile doğal üçyüzlünün n  ve b  

vektörleri, aynı spacelike düzlemdedir.  Üreteç üçyüzlüsünün merkez teğet vektörü a  ile doğal 

üçyüzlünün asal normal vektörü n  arasındaki spacelike açı ρ  olmak üzere, bu vektörler 

arasındaki ilişki 

  sin cosρ ρ= +n q a  

  cos sinρ ρ= −b q a  

biçiminde veya matris formda  

  
sin cos

cos sin

ρ ρ

ρ ρ

     
=     −     

n q

b a
 

biçiminde yazılabilir. Böylece üçyüzlüler arasındaki ilişki matris formda 

0 1 0

sin 0 cos

cos 0 sin

ρ ρ

ρ ρ

     
     =     
     −     

h q

n h

b a

          (3.27) 

biçiminde verilebilir. 

 (3.14) denklemi, (3.24) denkleminde yerine yazılarak ve (3.27) matris eşitliğinin ikinci satırı 

kullanılarak 

1
sin cos ( )

R
ρ ρ γ

κ
+ = +q a q a             

eşitliği elde edilir. Buradan 

1
sin

R
ρ

κ
=              (3.28) 

ve 
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  cos
R

γ
ρ

κ
=               (3.29) 

bağıntıları bulunur. (3.28) ve (3.29) denklemlerinden, spacelike regle yüzeyin jeodezik eğriliği γ  

ile spacelike ρ  açısı arasında  

cotγ ρ=              (3.30) 

ilişkisi olduğu ve merkez normal yüzeyin eğriliğinin de 

21

R

γ
κ

+
=               (3.31) 

olduğu görülür. Böylece üreteç üçyüzlüsü ve doğal üçyüzlü arasındaki ilişki matris formda  

0 0
1

1 0

0 1

R

R

κ

γ
κ

γ

     
     =     
     −     

h q

n h

b a

           (3.32) 

biçiminde de ifade edilebilir. (3.17) denklemi ile (3.32) matris eşitliğinin üçüncü satırı 

karşılaştırılırsa, üreteç üçyüzlüsünün Darboux ani dönme vektörü ile doğal üçyüzlünün binormal 

vektörü arasında 

κ= −qw b              (3.33) 

ilişkisi olduğu görülür. (3.30) ve (3.31) denklemleri kullanılarak merkez normal yüzeyin eğriliği κ  

ile spacelike ρ  açısı arasındaki ilişkinin  

csc

R

ρ
κ =                

olduğu görülür. (3.27) matris eşitliğinin ikinci satırının türevi alınıp üçüncü satırı ile çarpılırsa 

merkez normal yüzeyin burulması τ  ile spacelike ρ  açısı arasındaki ilişki  

'τ ρ=               

biçiminde bulunur. 

 (3.22) denkleminin türevi alınarak, merkez normal yüzeyin boğaz çizgisinin birinci 

mertebeden konumsal değişimi  

  
h h

µ µ′ ′′ ′= − −hc c h h              (3.34) 

biçiminde yazılabilir. (3.19) ve (3.24) denklemleri, (3.34) denkleminde yerine yazılırsa 

  
h h

µ µ κ′ ′= Γ + ∆ − −hc q a h n             

elde edilir. (3.32) matris eşitliği yardımıyla merkez normal yüzeyin boğaz çizgisinin birinci 

mertebeden konumsal değişimi, doğal üçyüzlü elemanları cinsinden 
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h h

′ = Γ ∆hc h+ b              

biçiminde ifade edilebilir. Burada 

 
h h

µ ′Γ = −             

ve 

 
21

h

γ

γ

Γ − ∆
∆ =

+
              

dir. 

 Bu bölümde tanımlanan üreteç üçyüzlüsü ve doğal üçyüzlü sırasıyla, [17] de verilen Öklid 

uzayındaki yönlü koninin çatısı ve regle yüzeyin Frenet çatısına karşılık gelmektedir. 

 

3.2. 3

1IR  Minkowski Uzayında Timelike Regle Yüzeylerin Eğrilik Teorisi 

  

 3

1IR  Minkowski uzayında timelike bir regle yüzeyin her noktasındaki yüzey normali 

spacelike vektördür. Bu durumda bir regle yüzeyin doğuranları spacelike ya da timelike vektör 

olabilir. Bu bölümde, Minkowski 3-uzayda timelike regle yüzeylerin eğrilik teorisi, regle yüzeyin 

doğuranlarının spacelike ya da timelike olma durumlarına göre iki bölümde incelenecektir. 

 

3.2.1. 3

1IR  Minkowski Uzayında Spacelike Doğuranlı Timelike Regle Yüzeylerin Eğrilik 

Teorisi  

 

 ( )uαααα  dayanak eğrisi, ( )uR  ana doğruların yön vektörü ve ,u v  reel değerli parametreler 

olmak üzere bir spacelike doğuranlı timelike regle yüzey 

  ( , ) ( ) ( )u v u v u= +X Rαααα             

denklemiyle verilebilir. Burada ( )uR  doğuranları, spacelike vektörlerdir.  

 

3.2.1.1. Boğaz Çizgisi ve Üreteç Üçyüzlüsü 

 

 Spacelike doğuranlı bir timelike regle yüzeyin boğaz çizgisinin dayanak eğrisine göre 

denklemi  

( ) ( ) ( ) ( )s s s sµ= −c Rαααα            (3.35) 

biçiminde verilebilir. Boğaz çizgisinin tanımı kullanılarak µ  parametresi 

µ ′ ′= ⋅αααα R               (3.36) 

biçiminde elde edilir. Böylece spacelike doğuranlı bir timelike regle yüzeyin boğaz çizgisi 
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( )′ ′= ⋅α − αα − αα − αα − αc R R             (3.37) 

biçiminde yazılabilir.  

 Spacelike doğuranlı bir timelike regle yüzeyin boğaz çizgisi üzerinde üreteç üçyüzlüsünü 

oluşturan üreteç vektörü 

 
R

=
R

q ,              (3.38) 

merkez normal vektör 

 ′=h R               (3.39) 

ve merkez teğet vektör 

  = ×a q h              (3.40) 

biçiminde tanımlanır.  

 Spacelike doğuranlı bir timelike regle yüzeyin her noktasındaki birim normal vektörü 

spacelike vektör olduğundan ve merkez normal vektör h , bu regle yüzeyin boğaz çizgisi 

üzerinde birim normal vektöre karşılık geldiğinden, merkez normal vektör h  da spacelike 

vektördür. Bu bölümde spacelike doğuranlı regle yüzeyler ele alındığından üreteç vektörü q  da 

spacelike vektördür, dolayısıyla merkez teğet vektör a , timelike vektör olmalıdır. Bununla 

birlikte, üreteç üçyüzlüsünün vektörleri arasında 

, ,× = × = − × = −q h a h a q a q h           (3.41) 

bağıntıları vardır. 

 Üreteç üçyüzlüsünün birinci mertebeden açısal değişiminin bulunması için gerekli olan 

, ,q h a  birim vektörlerinin türevleri, Bölüm 3.1.1 deki işlemlere benzer şekilde bulunabilir. 

Üreteç üçyüzlüsünün birinci mertebeden açısal değişimleri, matris formda 

0 1 0
1

1 0

0 0

d

ds R
γ

γ

     
     = −     
          

q q

h h

a a

          (3.42) 

biçiminde ifade edilebilir. Burada 

( )Rγ ′= − ⋅h a              (3.43) 

fonksiyonu spacelike doğuranlı bir timelike regle yüzeyin jeodezik eğriliğidir ve bu regle yüzeyin 

doğuranları cinsinden 

( , , )γ ′ ′′= R R R              

biçiminde yazılabilir. 

 Diğer taraftan, üreteç üçyüzlüsünün Darboux ani dönme vektörü 

1
( )

R
γ= −qw q a              (3.44) 
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olarak bulunur. Bu vektör 

 , ,′ ′ ′= × = × = ×q q qq w q h w h a w a  

eşitliklerini sağlar. 

 Boğaz çizgisinin birinci mertebeden konumsal değişimi 

′ = Γ + ∆c q a              (3.45) 

biçiminde yazılabilir. Burada 

1
( ) R

R
µ′ ′Γ = ⋅ −Rαααα                           (3.46) 

ve   

1
( )

R
′ ′∆ = − ⋅ ×R Rαααα              (3.47) 

dir. 

 Sırasıyla (3.43), (3.46) ve (3.47) denklemlerindeki , ,γ Γ ∆  parametreleri spacelike 

doğuranlı bir timelike regle yüzeyin eğrilik fonksiyonlarıdır. 

 

3.2.1.2. Merkez Normal Yüzey ve Doğal Üçyüzlü  

 

 Spacelike doğuranlı bir timelike regle yüzeyin merkez normal yüzeyi 

( , ) ( ) ( )s v s v s= +hX c h             

denklemi ile verilebilir. Burada c , spacelike doğuranlı X  timelike regle yüzeyinin boğaz çizgisi 

ve h , X  regle yüzeyinin merkez normal vektörüdür.  

 Merkez normal yüzeyin boğaz çizgisi  

h h
µ= −c c h                          (3.48) 

biçiminde verilebilir.  

 
h

µ  parametresi, boğaz çizgisinin tanımı kullanılarak 

2

( )

1
h

Rγ
µ

γ

′ ′⋅ Γ + ∆
= = −

′ ′⋅ −

c h

h h
            

biçiminde bulunur. Böylece merkez normal yüzeyin boğaz çizgisi 

2

( )

1
h

Rγ

γ

Γ + ∆
=

−
c c + h              

biçiminde yazılabilir.  

 Merkez normal yüzeyin boğaz çizgisi üzerinde tanımlı olan doğal üçyüzlüyü oluşturan 

vektörler; h  üreteç vektörü, n  asal normal vektör ve b  binormal vektördür. X  spacelike 
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doğuranlı timelike regle yüzeyinin merkez normal vektörü olan h , hX  merkez normal yüzeyinin 

üreteç vektörü konumundadır ve bir spacelike vektördür. n  asal normal vektör, spacelike veya 

timelike vektör olabilir ve bu iki durum ayrı ayrı incelenmelidir. 

 

1. Durum: n  asal normal vektörü spacelike olsun.  

  

 Doğal üçyüzlünün üreteç vektörü, üreteç üçyüzlüsünün merkez normal vektörü olup 

′=h R               

biçiminde verilebilir. Asal normal vektör 

κ

′
=

h
n                

olarak tanımlanır, burada  

 κ ′= h               

merkez normal yüzeyin eğriliğidir. Son olarak binormal vektör 

= ×b h n                

biçiminde verilir. h  vektörü timelike regle yüzeyin boğaz çizgisindeki normal vektörüne karşılık 

geldiğinden spacelike bir vektördür ve n  vektörü de spacelike vektör olduğundan, b  vektörü bir 

timelike vektördür. 

 Doğal üçyüzlünün birinci mertebeden açısal değişiminin belirlenmesi için gerekli olan 

, ,h n b  birim vektörlerinin türevleri, Bölüm 3.1.2 deki işlemlere benzer şekilde bulunabilir. Doğal 

üçyüzlünün birinci mertebeden açısal değişimi matris formda 

0 0

0

0 0

d

ds

κ

κ τ

τ

     
     = −     
          

h h

n n

b b

           (3.49) 

biçiminde ifade edilebilir, burada κ , merkez normal yüzeyin eğriliği ve τ , merkez normal 

yüzeyin burulmasıdır. Doğal üçyüzlünün Darboux ani dönme vektörü ise 

τ κ= −hw h b               

olarak bulunur. Bu vektör 

 , ,′ ′ ′= × = × = ×h h hh w h n w n b w b  

eşitliklerini sağlar. 

 Üreteç üçyüzlüsü ve doğal üçyüzlü, h  ortak merkez normal vektörüne sahiptirler. Üreteç 

üçyüzlüsünün q  ve a  vektörleri ile doğal üçyüzlünün n  ve b  vektörleri, aynı timelike 

düzlemdedir.   
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Şekil 3.2. Üreteç üçyüzlüsünün timelike merkez teğet vektörü ile doğal üçyüzlünün spacelike asal normal 

vektörü arasındaki timelike açı 

 

 Şekil 3.2 de gösterildiği gibi, üreteç üçyüzlüsünün merkez teğet vektörü a  ile doğal 

üçyüzlünün asal normal vektörü n  arasındaki timelike açı ρ  olmak üzere bu vektörler 

arasındaki ilişki 

  cosh sinhρ ρ= +n q a  

  sinh coshρ ρ=b q + a  

biçiminde veya matris formda  

  
cosh sinh

sinh cosh

ρ ρ

ρ ρ

     
=     

     

n q

b a
 

biçiminde yazılabilir [5]. Böylece üçyüzlüler arasındaki ilişki matris formda 

0 1 0

cosh 0 sinh

sinh 0 cosh

ρ ρ

ρ ρ

     
     =     
          

h q

n h

b a

          (3.50) 

biçiminde verilebilir.  

 (3.42) matris eşitliğinin ikinci satırı, (3.49) matris eşitliğinin birinci satırında yerine yazılır ve 

(3.50) matris eşitliğinin ikinci satırı kullanılırsa 

1
cosh sinh ( )

R
ρ ρ γ

κ
= − +q + a q a             

eşitliği bulunur. Buradan 

1
cosh

R
ρ

κ
= −            (3.51) 

ve 
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  sinh
R

γ
ρ

κ
=               (3.52) 

bağıntıları elde edilir. Böylece (3.51) ve (3.52) denklemlerinden, spacelike doğuranlı bir timelike 

regle yüzeyin eğriliği γ  ile timelike ρ  açısı arasında  

tanhγ ρ= −               (3.53) 

ilişkisi olduğu ve merkez normal yüzeyin eğriliğinin de 

21

R

γ
κ

−
=              (3.54) 

olduğu görülür. Dolayısıyla (3.50) ile verilen üreteç üçyüzlüsü ve doğal üçyüzlü arasındaki ilişki, 

matris formda  

0 0
1

1 0

0 1

R

R

κ

γ
κ

γ

     
     = −     
     −     

h q

n h

b a

         (3.55) 

biçiminde de ifade edilebilir. Üreteç üçyüzlüsünün Darboux ani dönme vektörü olan (3.44) 

denklemi, doğal üçyüzlünün binormal vektörü olan (3.55) matris eşitliğinin üçüncü satırı ile 

karşılaştırılırsa  

κ= +qw b               (3.56) 

olduğu görülür. (3.53) ve (3.54) denklemleri kullanılarak merkez normal yüzeyin eğriliği κ  ile 

timelike ρ  açısı arasında 

sech

R

ρ
κ =              

ilişkisinin olduğu görülür. (3.50) matris eşitliğinin ikinci satırının türevi alınıp, elde edilen asal 

normal vektörün türevi, üçüncü satır ile çarpılırsa, merkez normal yüzeyin burulması τ  ile 

timelike ρ  açısı arasındaki ilişki  

'τ ρ=             

biçiminde bulunur. 

 (3.48) denkleminin türevi alınarak merkez normal yüzeyin boğaz çizgisinin birinci 

mertebeden konumsal değişimi  

  
h h

µ µ′ ′′ ′= − −hc c h h              (3.57) 

biçiminde yazılabilir. (3.45) denklemi ve (3.49) matris eşitliğinin birinci satırı, (3.57) denkleminde 

yerine yazılırsa 

  
h h

µ µ κ′ ′= Γ + ∆ − −hc q a h n           
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elde edilir. (3.55) matris eşitliği yardımıyla merkez normal yüzeyin boğaz çizgisinin birinci 

mertebeden konumsal değişimi doğal üçyüzlü elemanları cinsinden 

 
h h

′ = Γ ∆hc h+ b            

biçiminde ifade edilebilir. Burada 

 
h h

µ ′Γ = −              

ve 

 
2 1

h

γ

γ

Γ + ∆
∆ =

−
            

dir. 

 

2. Durum: n  asal normal vektörü timelike olsun.  

  

 Doğal üçyüzlünün üreteç vektörü 

′=h R              

dir. Asal normal vektör 

κ

′
=

h
n             

dır, burada  

 κ ′= h  

merkez normal yüzeyin eğriliğidir. Son olarak binormal vektör 

= − ×b h n             

biçiminde tanımlanır. h  vektörü timelike regle yüzeyin boğaz çizgisindeki normal vektörüne 

karşılık geldiğinden, bir spacelike vektördür. n  vektörü timelike vektör olduğundan, b  vektörü 

bir spacelike vektördür. 

 Doğal üçyüzlünün birinci mertebeden açısal değişimi matris formda 

0 0

0

0 0

d

ds

κ

κ τ

τ

     
     =     
          

h h

n n

b b

         

biçiminde bulunur, burada κ  merkez normal yüzeyin eğriliği ve τ  merkez normal yüzeyin 

burulmasıdır. Doğal üçyüzlünün Darboux ani dönme vektörü ise 

τ κ= −hw h + b             

dir. Bu vektör 

 , ,′ ′ ′= × = × = ×h h hh w h n w n b w b  
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eşitliklerini sağlar 

 Üreteç üçyüzlüsü ve doğal üçyüzlü, h  ortak merkez normal vektörüne sahiptirler. Üreteç 

üçyüzlüsünün q  ve a  vektörleri ile doğal üçyüzlünün n  ve b  vektörleri, aynı timelike 

düzlemdedir.   

 

 
Şekil 3.3. Üreteç üçyüzlüsünün timelike merkez teğet vektörü ile doğal üçyüzlünün timelike asal normal 

vektörü arasındaki hiperbolik açı 

 

 Şekil 3.3 de gösterildiği gibi, üreteç üçyüzlüsünün merkez teğet vektörü a  ile doğal 

üçyüzlünün asal normal vektörü n  arasındaki hiperbolik açı ρ  olmak üzere, bu vektörler 

arasındaki ilişki 

  sinh coshρ ρ= +n q a  

  cosh sinhρ ρ=b q + a  

biçiminde veya matris formda  

  
sinh cosh

cosh sinh

ρ ρ

ρ ρ

     
=     

     

n q

b a
 

biçiminde yazılabilir [5]. Böylece üçyüzlüler arasındaki ilişki matris formda 

0 1 0

sinh 0 cosh

cosh 0 sinh

ρ ρ

ρ ρ

     
     =     
          

h q

n h

b a

          (3.58) 

biçiminde verilebilir. 

 (3.42) matris eşitliğinin ikinci satırı, (3.49) matris eşitliğinin birinci satırında yerine yazılır ve 

(3.58) matris eşitliğinin ikinci satırı kullanılırsa 

1
sinh cosh ( )

R
ρ ρ γ

κ
= − +q + a q a          

eşitliği bulunur. Buradan 



 23 

cosh
R

γ
ρ

κ
=               (3.59) 

ve 

  
1

sinh
R

ρ
κ

= −              (3.60) 

bağıntıları elde edilir. (3.59) ve (3.60) denklemlerinden, spacelike doğuranlı timelike regle 

yüzeyin jeodezik eğriliği γ  ile hiperbolik ρ  açısı arasındaki ilişkinin  

cothγ ρ= −              (3.61) 

olduğu görülür. Merkez normal yüzeyin eğriliği, regle yüzeyin jeodezik eğriliği cinsinden 

2 1

R

γ
κ

−
=              (3.62) 

olarak bulunur. Böylece (3.58) ile verilen üreteç üçyüzlüsü ve doğal üçyüzlü arasındaki ilişki, 

matris formda  

0 0
1

1 0

0 1

R

R

κ

γ
κ

γ

     
     = −     
     −     

h q

n h

b a

          (3.63) 

biçiminde de ifade edilebilir. (3.44) denklemi, (3.63) matris eşitliğinin üçüncü satırı ile 

karşılaştırılırsa, üreteç üçyüzlüsünün Darboux ani dönme vektörü ile doğal üçyüzlünün binormal 

vektörü arasında  

κ=qw b               (3.64) 

ilişkisi olduğu görülür. (3.61) ve (3.62) denklemleri kullanılarak merkez normal yüzeyin eğriliği κ  

ile hiperbolik ρ  açısı arasında 

csch

R

ρ
κ =              

bağıntısı bulunur. (3.58) matris eşitliğinin ikinci satırının türevi alınıp, elde edilen asal normal 

vektörün türevi, üçüncü satır ile çarpılırsa merkez normal yüzeyin burulması τ  ile hiperbolik ρ  

açısı arasındaki ilişkinin  

τ ρ ′=              

olduğu görülür. 

 (3.63) matris eşitliği yardımıyla, merkez normal yüzeyin boğaz çizgisinin birinci mertebeden 

konumsal değişiminin, doğal üçyüzlü elemanları cinsinden ifadesi 

 
h h

′ = Γ ∆hc h+ b          

biçiminde bulunur. Burada 
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h h

µ ′Γ = −             

ve 

 
2 1

h

γ

γ

Γ + ∆
∆ =

−
           

dir. 

 

3.2.2. 3

1IR  Minkowski Uzayında Timelike Doğuranlı Timelike Regle Yüzeylerin Eğrilik 

Teorisi  

 

 ( )uαααα  dayanak eğrisi, ( )uR  timelike ana doğruların yön vektörü ve ,u v  reel değerli 

parametreler olmak üzere, timelike doğuranlı bir timelike regle yüzey 

  ( , ) ( ) ( )u v u v u= +X Rαααα            

denklemiyle verilebilir. Burada ( )uR  doğuranları, timelike vektörlerdir. 

 

3.2.2.1. Boğaz Çizgisi ve Üreteç Üçyüzlüsü 

 

 Timelike doğuranlı bir timelike regle yüzeyin boğaz çizgisinin dayanak eğrisine göre konumu  

( ) ( ) ( ) ( )s s s sµ= −c Rαααα            (3.65) 

biçiminde verilebilir. Boğaz çizgisini karakterize eden (3.4) denklemi yardımıyla  

µ ′ ′= ⋅αααα R              (3.66) 

olarak bulunur. Böylece timelike doğuranlı timelike regle yüzeyin boğaz çizgisi 

( )′ ′= ⋅α − αα − αα − αα − αc R R             (3.67) 

biçiminde ifade edilebilir [28].  

 Timelike doğuranlı timelike regle yüzeyin boğaz çizgisi üzerinde tanımlı olan üreteç 

üçyüzlüsünü oluşturan üreteç vektörü, merkez normal vektör ve merkez teğet vektör sırasıyla 

 
R

=
R

q , ′=h R , = − ×a q h             (3.68) 

olarak tanımlanır [28].  

 Timelike doğuranlı timelike regle yüzeyin her noktasındaki birim normal vektörü spacelike 

vektör olduğundan ve merkez normal vektör h , regle yüzeyin boğaz çizgisi üzerinde, birim 

normal vektöre karşılık geldiğinden, merkez normal vektör h  da spacelike vektördür. Bu 

bölümde timelike doğuranlı regle yüzeyler ele alındığından, üreteç vektörü q  timelike vektördür, 
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dolayısıyla merkez teğet vektör a  spacelike vektördür. Ayrıca, üreteç üçyüzlüsünün vektörleri 

arasında 

, ,× = − × = × =q h a h a q a q h            

bağıntıları vardır. 

 Üreteç üçyüzlüsünün birinci mertebeden açısal değişimleri, matris formda 

0 1 0
1

1 0

0 0

d

ds R
γ

γ

     
     =     
     −     

q q

h h

a a

           (3.69) 

biçiminde ifade edilebilir [28]. Burada 

( )Rγ ′= ⋅h a              (3.70) 

fonksiyonuna timelike doğuranlı timelike regle yüzeyin jeodezik eğriliği denir ve regle yüzeyin 

doğuranları cinsinden 

( , , )γ ′ ′′= R R R           

biçiminde yazılabilir.  

 Ayrıca, üreteç üçyüzlüsünün Darboux ani dönme vektörü 

1
( )

R
γ= − −qw q a             (3.71) 

olarak bulunur [28]. Bu vektör 

 , ,′ ′ ′= × = × = ×q q qq w q h w h a w a  

eşitliklerini sağlar. 

 Boğaz çizgisinin birinci mertebeden konumsal değişimi 

′ = Γ + ∆c q a              (3.72) 

biçiminde yazılabilir [11]. Burada 

1
( ) R

R
µ′ ′Γ = − ⋅ +Rαααα             (3.73) 

ve   

1
( )

R
′ ′∆ = − ⋅ ×R Rαααα             (3.74) 

dir. [11] de  

 
1 1

( )
R R

µ′ ′Γ = − ⋅ −αααα R   

biçiminde verilen regle yüzeyin eğriliği, burada (3.73) denkleminden görüldüğü üzere, [11] de 

verilenden farklı bulunmuştur.  
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 Sırasıyla (3.70), (3.73) ve (3.74) denklemlerindeki , ,γ Γ ∆  parametrelerine timelike 

doğuranlı timelike regle yüzeyin eğrilik fonksiyonları denir. 

 

3.2.2.2. Merkez Normal Yüzey ve Doğal Üçyüzlü  

 

 Timelike doğuranlı timelike regle yüzeyin merkez normal yüzeyi 

( , ) ( ) ( )
h

s v s v s= +X c h           

denklemi ile verilebilir [11]. Burada c , X  regle yüzeyinin boğaz çizgisi ve h , X  regle 

yüzeyinin merkez normal vektörüdür.  

 Merkez normal yüzeyin boğaz çizgisi  

h h
µ= −c c h              (3.75) 

biçiminde verilebilir.  

 Boğaz çizgisinin tanımı yardımıyla 

2

( )

1
h

Rγ
µ

γ

′ ′⋅ −Γ + ∆
= =

′ ′⋅ −

c h

h h
          

bulunur [11]. Böylece merkez normal yüzeyin boğaz çizgisi 

2

( )

1
h

Rγ

γ

−Γ + ∆
= −

−
c c h           

biçiminde ifade edilebilir.  

 Merkez normal yüzeyin boğaz çizgisi üzerinde tanımlı olan doğal üçyüzlüyü oluşturan 

vektörler; üreteç vektörü h , asal normal vektör n  ve binormal vektör b  dir. X  timelike 

doğuranlı timelike regle yüzeyin merkez normal vektörü olan h , merkez normal yüzeyin üreteç 

vektörü konumundadır ve bir spacelike vektördür. Asal normal vektör n , spacelike veya timelike 

vektör olabilir ve bu iki durum ayrı ayrı incelenmelidir. [11] de, sadece n  asal normal 

vektörünün spacelike olma durumu ele alınmış olup, iki durum için ayrı ayrı inceleme 

yapılmamıştır.  

 

1. Durum: n  asal normal vektörü spacelike olsun.  

  

 Doğal üçyüzlünün üreteç vektörleri, türev formülleri ve Darboux vektörü Bölüm 3.2.1.2 de 

bulunmuştur.  

 Üreteç üçyüzlüsü ve doğal üçyüzlü, h  ortak merkez normal vektörüne sahiptirler. Üreteç 

üçyüzlüsünün q  ve a  vektörleri ile doğal üçyüzlünün n  ve b  vektörleri, aynı timelike 

düzlemdedir.   
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Şekil 3.4. Üreteç üçyüzlüsünün spacelike merkez teğet vektörü ile doğal üçyüzlünün spacelike asal normal 

vektörü arasındaki merkez açı 

 

 Şekil 3.4 de gösterildiği gibi, üreteç üçyüzlüsünün merkez teğet vektörü a  ile doğal 

üçyüzlünün asal normal vektörü n  arasındaki merkez açı ρ  olmak üzere bu vektörler 

arasındaki ilişki 

  sinh coshρ ρ= +n q a  

  cosh sinhρ ρ=b q + a  

biçiminde veya matris formda  

  
sinh cosh

cosh sinh

ρ ρ

ρ ρ

     
=     

     

n q

b a
 

biçiminde yazılabilir [5]. Böylece üçyüzlüler arasındaki ilişki matris formda 

0 1 0

sinh 0 cosh

cosh 0 sinh

ρ ρ

ρ ρ

     
     =     
          

h q

n h

b a

          (3.76) 

biçiminde verilebilir [11]. 

 (3.42) matris eşitliğinin ikinci satırı (3.49), matris eşitliğinin birinci satırında yerine yazılarak 

ve (3.76) matris eşitliğinin ikinci satırı kullanılarak 

1
sinh cosh ( )

R
ρ ρ γ

κ
= +q + a q a          

eşitliği elde edilir [11]. Buradan 

cosh
R

γ
ρ

κ
=              (3.77) 

ve 

  
1

sinh
R

ρ
κ

=              (3.78) 
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bağıntılarının olduğu görülür. (3.77) ve (3.78) denklemlerinden timelike doğuranlı timelike regle 

yüzeyin jeodezik eğriliği γ  ile ρ  merkez açısı arasında  

cothγ ρ=              (3.79) 

ilişkisi olduğu görülür [11]. Merkez normal yüzeyin eğriliği de 

2 1

R

γ
κ

−
=              (3.80) 

olarak bulunur. (3.77) ve (3.78) denklemleri, (3.76) matris eşitliğinde yerine yazılarak üreteç 

üçyüzlüsü ve doğal üçyüzlü arasındaki ilişkinin matris formda  

0 0
1

1 0

0 1

R

R

κ

γ
κ

γ

     
     =     
          

h q

n h

b a

           (3.81) 

biçiminde de ifade edilebileceği görülür. Üreteç üçyüzlüsünün Darboux ani dönme vektörü olan 

(3.71) denklemi, doğal üçyüzlünün binormal vektörü olan (3.81) matris eşitliğinin üçüncü satırı 

ile karşılaştırılırsa  

κ= −qw b             

ilişkisi olduğu görülür. (3.79) ve (3.80) denklemleri kullanılarak, merkez normal yüzeyin eğriliği 

κ  ile ρ  merkez açısı arasındaki ilişki  

csch

R

ρ
κ =             

olarak bulunur. (3.76) matris eşitliği yardımıyla, merkez normal yüzeyin burulması τ  ile ρ  

merkez açısı arasındaki ilişki  

'τ ρ=             

biçiminde bulunur. 

 (3.75) denkleminin türevi alınarak merkez normal yüzeyin birinci mertebeden konumsal 

değişimi  

  
h h

µ µ′ ′′ ′= − −hc c h h             (3.82) 

biçiminde yazılabilir. (3.49) matris eşitliğinin birinci satırı ve (3.72) denklemi, (3.82) denkleminde 

yerine yazılırsa 

  
h h

µ µ κ′ ′= Γ + ∆ − −hc q a h n           

elde edilir. (3.81) matris eşitliği yardımıyla, merkez normal yüzeyin boğaz çizgisinin birinci 

mertebeden konumsal değişimi, doğal üçyüzlü elemanları cinsinden 

 
h h

′ = Γ ∆hc h + b             
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biçiminde ifade edilebilir [11]. Burada 

 
h h

µ ′Γ = −             

ve 

 
2 1

h

γ

γ

Γ − ∆
∆ =

−
           

dir. 

 

2. Durum: n  asal normal vektörü timelike olsun.  

  

 Doğal üçyüzlünün üreteç vektörleri, türev formülleri ve Darboux vektörü Bölüm 3.2.1.2 de 

bulunmuştur.  

 Üreteç üçyüzlüsü ve doğal üçyüzlü, h  ortak merkez normal vektörüne sahiptirler. Üreteç 

üçyüzlüsünün q  ve a  vektörleri ile doğal üçyüzlünün n  ve b  vektörleri, aynı timelike 

düzlemdedir.   

 

 
Şekil 3.5. Üreteç üçyüzlüsünün spacelike merkez teğet vektörü ile doğal üçyüzlünün timelike asal normal 

vektörü arasındaki timelike açı 

 

 Şekil 3.5 de gösterildiği gibi, üreteç üçyüzlüsünün merkez teğet vektörü a  ile doğal 

üçyüzlünün asal normal vektörü n  arasındaki timelike açı ρ  olmak üzere, bu vektörler 

arasındaki ilişki 

  cosh sinhρ ρ= +n q a  

  sinh coshρ ρ=b q + a  

biçiminde veya matris formda  
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cosh sinh

sinh cosh

ρ ρ

ρ ρ

     
=     

     

n q

b a
 

biçiminde yazılabilir [5]. Böylece üçyüzlüler arasındaki ilişki, matris formda 

0 1 0

cosh 0 sinh

sinh 0 cosh

ρ ρ

ρ ρ

     
     =     
          

h q

n h

b a

          (3.83) 

biçiminde verilebilir. 

 (3.42) matris eşitliğinin ikinci satırı, (3.49) matris eşitliğinin birinci satırında yerine yazılarak 

ve (3.83) matris eşitliğinin ikinci satırı kullanılarak 

  
1

cosh sinh ( )
R

ρ ρ γ
κ

= +q + a q a          

eşitliği bulunur. Buradan 

1
cosh

R
ρ

κ
=              (3.84) 

ve 

  sinh
R

γ
ρ

κ
=              (3.85) 

bağıntıları elde edilir. (3.84) ve (3.85) denklemlerinden, timelike doğuranlı timelike regle yüzeyin 

jeodezik eğriliği γ  ile timelike ρ  açısı arasında  

tanhγ ρ=              (3.86) 

ilişkisi olduğu görülür. Merkez normal yüzeyin eğriliği ile regle yüzeyin jeodezik eğriliği 

arasındaki ilişki 

21

R

γ
κ

−
=              (3.87) 

olarak bulunur. (3.84) ve (3.85) denklemleri, (3.83) denkleminde yerine yazılarak üreteç 

üçyüzlüsü ve doğal üçyüzlü arasındaki ilişkinin matris formda  

0 0
1

1 0

0 1

R

R

κ

γ
κ

γ

     
     =     
          

h q

n h

b a

            (3.88) 

biçiminde de ifade edilebileceği görülür. Üreteç üçyüzlüsünün Darboux ani dönme vektörü olan 

(3.71) denklemi, doğal üçyüzlünün binormal vektörü olan (3.88) matris eşitliğinin üçüncü satırı 

ile karşılaştırılırsa  

κ= −qw b             
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olduğu görülür. (3.86) ve (3.87) denklemleri kullanılarak merkez normal yüzeyin eğriliği κ  ile 

timelike ρ  açısı arasındaki ilişki  

sech

R

ρ
κ =             

olarak bulunur. (3.76) matris eşitliği yardımıyla, merkez normal yüzeyin burulması τ  ile timelike 

ρ  açısı arasındaki ilişki  

τ ρ ′=              

biçiminde bulunur. 

 (3.75) denkleminin türevi alınarak, merkez normal yüzeyin boğaz çizgisinin birinci 

mertebeden konumsal değişimi  

  
h h

µ µ′ ′′ ′= − −hc c h h             (3.89) 

biçiminde yazılabilir. (3.49) matris eşitliğinin birinci satırı ve (3.72) denklemi, (3.89) denkleminde 

yerine yazılırsa 

  
h h

µ µ κ′ ′= Γ + ∆ − −hc q a h n           

elde edilir. (3.88) matris eşitliği yardımıyla, merkez normal yüzeyin boğaz çizgisinin birinci 

mertebeden konumsal değişimi doğal üçyüzlü elemanları cinsinden 

 
h h

′ = Γ ∆hc h+ b           

biçiminde ifade edilebilir. Burada 

 
h h

µ ′Γ = −             

ve 

 
21

h

γ

γ

Γ − ∆
∆ =

−
          

dir. 

 

Örnek 3.1. ( , ) (sinh cosh , 3 , cosh sinh )s v s v s v s v s= + +X  regle yüzeyi verilsin. Bu 

yüzeyin regle formu 

 ( , ) (sinh , 0, cosh ) (cosh , 3, sinh )s v s s v s s= +X        

biçiminde yazılabilir. Regle yüzeyin dayanak eğrisi 

 ( ) (sinh , 0, cosh )s s s=αααα            

ve doğuranları 

 ( ) (cosh , 3, sinh )s s s=R           

dir. Ana doğruların yön vektörlerinin boyu 
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( ) 2R s= =R            

dir. Doğuranların türevi  

( ) (sinh , 0, cosh )s s s′ =R           

olarak bulunur ve ( ) 1u′ =R  olduğundan s  parametresi normalleştirilmiş parametredir. Regle 

yüzeyin boğaz çizgisi 

 µ= −c Rαααα             

denklemi yardımıyla bulunabilir. Burada  

 , 0µ ′ ′= =Rαααα            

olduğundan regle yüzeyin boğaz çizgisinin dayanak eğrisine eşit olduğu görülür, yani 

 (sinh , 0, cosh )s s= =c αααα           

dir. Regle yüzeyin boğaz çizgisi üzerinde tanımlı olan { }, ,q h a  üreteç üçyüzlüsü aşağıdaki gibi 

bulunabilir. Regle yüzeyin üreteç vektörü 

 ( )1
cosh , 3, sinh

2
s s= =

R
q

R
          

olarak bulunur. , 1=q q  olduğundan, q  üreteç vektörü spacelike vektördür. Regle yüzeyin 

merkez normal vektörü 

 (sinh , 0, cosh )s s′= =h R           

dir. , 1= −h h  olduğundan, h  merkez normal vektör timelike vektördür. Regle yüzeyin 

merkez teğet vektörü ise 

 ( )1
3 cosh , 1, 3 sinh

2
s s= − × = −a q h         

biçiminde bulunur. , 1=a a  olduğundan, a  merkez teğet vektör spacelike vektördür. Üreteç 

üçyüzlüsünü oluşturan vektörlerin türevleri 

 
1

(sinh , 0, cosh )
2

s s′ =q           

 (cosh , 0, sinh )s s′ =h           

 ( )1
3 sinh , 0, 3 cosh

2
s s′ =a          

olarak bulunur. 
R

γ
′ =a h  olduğundan regle yüzeyin jeodezik eğriliği 

 3γ =             
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olarak bulunur. Üreteç üçyüzlüsünün Darboux ani dönme vektörü 

 
1

( ) (0, 1, 0)
R

γ= − + = −qw q a          

dır. Boğaz çizgisinin teğet vektörü 

 (cosh , 0, sinh )s s′ = Γ + ∆ =c q a          

biçiminde yazılabilir. Burada  

 
1 1

,
2

R
R

µ′ ′Γ = − =Rαααα          

ve 

 
1 3

,
2R

′ ′∆ = − × =R Rαααα           

dir.  

 Regle yüzeyin merkez normal yüzeyi 

  ( , ) ( ) ( ) (sinh ,0,cosh ) (sinh ,0,cosh )s v s v s s s v s s= + = +hX c h      

denklemi ile verilebilir. Merkez normal yüzeyin boğaz çizgisi 

  
h

µ= −hc c h            

denklemi yardımıyla bulunabilir. Burada  

  
,

1
,

h
µ

′ ′
= =

′ ′

c h

h h
           

olduğundan merkez normal yüzeyin boğaz çizgisi 

  (0,0,0)= − =hc c h             

biçiminde bulunur. Buradan merkez normal yüzeyin, boğaz çizgisi orijin olan bir koni olduğu 

söylenebilir. Boğaz çizgisi, bir tek noktadan ibaret olduğundan boğaz çizgisinin teğeti sıfırdır.  

 Merkez normal yüzeyin doğal üçyüzlüsü, boğaz çizgisi dışındaki herhangi bir dayanak eğrisi 

üzerinde tanımlanabilir. Merkez normal yüzeyin üreteç vektörü, regle yüzeyin merkez normal 

vektörüdür ve  

  (sinh , 0, cosh )s s=h            

denklemi ile verilir. Asal normal vektör 

  (cosh , 0, sinh )s s
κ

′
= =

h
n           

olarak elde edilir, burada 1κ ′= =h  merkez normal yüzeyin eğriliğidir. , 1=n n  olduğundan, 

n  asal normal vektörü spacelike vektördür. Binormal vektör ise 

  (0,1, 0)= − × =b h n            
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olarak bulunur. , 1=b b  olduğundan, b  binormal vektörü spacelike vektördür. Doğal 

üçyüzlüyü oluşturan , ,h n b  vektörlerinin türevleri 

  (cosh , 0, sinh )s s′ =h           

  (sinh , 0, cosh )s s′ =n           

  (0, 0, 0)′ =b             

biçiminde bulunur. τ′ = −b n  olduğundan merkez normal yüzeyin burulması  

  0τ =              

dır. Üreteç üçyüzlüsünün merkez teğet vektörü a  ile doğal üçyüzlünün asal normal vektörü n  

arasındaki spacelike açı  

 cot ρ γ=             

eşitliği kullanılarak 

 
6

π
ρ =              

olarak bulunur.  

 Şekil 3.6, ( , ) (sinh cosh , 3 , cosh sinh )s v s v s v s v s= + +X  denklemi ile verilen regle 

yüzeyi, bu yüzeyin boğaz çizgisi üzerinde tanımlı olan üreteç üçyüzlüsünü ve bu yüzeyin 

merkez normal yüzeyini göstermektedir. 
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Şekil 3.6. ( , ) (sinh cosh , 3 , cosh sinh )s v s v s v s v s= + +X  denklemli spacelike regle yüzey ve 

merkez normal yüzeyi 
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4. 3

1IR  MINKOWSKI UZAYINDA AÇILABĐLĐR REGLE YÜZEYLERĐN EĞRĐLĐK TEORĐSĐ 

  

 Bir regle yüzeyin (3.3) denklemi ile verilen dağılma parametresinin sıfıra eşit olması 

durumunda, bu regle yüzeye açılabilir regle yüzey denir [10]. Bölüm 3 de verilen regle 

yüzeylerin eğrilik teorisi, açılabilir regle yüzeyler için uygun değildir. Bu bölümde, Minkowski 3-

uzayında yegane açılabilir regle yüzeyler olan silindirler, koniler ve teğet yüzeyler için eğrilik 

teorisi geliştirilmiştir.  

 

4.1. 3

1IR  Minkowski Uzayında Silindirlerin Eğrilik Teorisi  

  

 Silindirler aykırı regle yüzeyler olmadığından aykırı regle yüzeyler için oluşturulan eğrilik 

teorisi silindirler için kullanılamaz. Bu bölümde Minkowski 3-uzayındaki silindirler için eğrilik 

teorisi geliştirilecektir.  

 Silindir bir açılabilir regle yüzeydir ve 

( , ) ( )t v t v= +X Rαααα                                                                   

denklemi ile verilebilir [34]. Burada v  reel değerli bir parametre, αααα  dayanak eğrisi ve R  ana 

doğruların yön vektörüdür. Silindirin tüm ana doğruları birbirine paralel olduğundan, R  sabit bir 

vektördür ve buna aykırı regle yüzeylerde olduğu gibi doğuran denir. Doğuran sabit vektör 

olduğundan, normalleştirme işlemi doğuranın türevi kullanılarak değil, dayanak eğrisinin türevi 

kullanılarak yapılır. Dayanak eğrisinin yay uzunluğu parametresi 

0

( )
( )

t
d t

s t dt
dt

= ∫
αααα

                                          (4.1)                         

ile verilir.   

 Aykırı regle yüzeyler için kullanılan boğaz çizgisi tanımı, silindirler için geçerli değildir. 

Silindirin boğaz çizgisi, doğuran boyunca Kartezyen referans çatısı ( , , )x y z  nin orijininden en 

kısa uzaklıkta olan, yüzey üzerindeki noktaların geometrik yeri olarak tanımlanabilir [30]. Bu 

tanıma göre boğaz çizgisi ve doğuran birbirine diktir, yani 

( ) 0s ⋅ =c R                            (4.2)                                         

dir. Burada ( )sc , silindirin boğaz çizgisini gösterir. Silindirin boğaz çizgisi, verilen tanıma göre 

tektir. (4.2) denkleminin türevi alınırsa ve ′R  nün sıfır olduğu göz önünde bulundurulursa 
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( ) 0s′ ⋅ =c R                                             (4.3)             

elde edilir. (4.3) denklemi, boğaz çizgisinin teğet vektörünün doğurana dik olduğu anlamına 

gelir. Boğaz çizgisinin dayanak eğrisine göre konumu, µ  reel değerli bir parametre olmak üzere 

( ) ( ) ( ) ( )s s s sµ= −c Rαααα                        (4.4)                             

biçiminde verilebilir. Doğuran üzerinde boğaz çizgisinden dayanağa olan uzaklık Rµ  dir. 

Burada R , doğuran vektörünün boyudur. 

 (4.4) denklemi, (4.2) denkleminde yerine yazılırsa  

[ ( ) ( ) ( )] ( ) 0s s s sµ− ⋅ =R Rαααα                   

elde edilir ve buradan 

( ) ( )

( ) ( )

s s

s s
µ

⋅
=

⋅

R

R R

αααα
                                                                    

olarak bulunur. 

 Silindirin tüm doğuranları boğaz çizgisinden geçtiğinden, boğaz çizgisi silindirin dayanak 

eğrisi olarak alınabilir. Böylece silindir denklemi 

 ( , ) ( )s v s v= +X c R                

biçiminde ifade edilebilir.  

  Minkowski 3-uzayında silindirler, doğuranın ve boğaz çizgisinin Lorentziyen karakterine 

göre sınıflandırılabilir. Bu bölümde, Minkowski 3-uzayında spacelike ve timelike silindirlerin 

eğrilik teorisi incelenecektir.  

 

4.1.1. Spacelike Silindirlerin Eğrilik Teorisi 

  

 ( )sc  bir spacelike eğri, R  bir spacelike vektör ve v  reel değerli bir parametre olmak üzere 

bir spacelike silindir  

( , ) ( )s v s v= +X c R                           

denklemi ile verilebilir. Burada ( )sc  spacelike eğrisi, silindirin boğaz çizgisidir ve yukarıda 

belirtildiği gibi dayanak eğrisi olarak alınmıştır; spacelike R  vektörü, silindiri oluşturan ana 

doğruların yön vektörüdür ve sabittir.  

  Spacelike silindirin üreteç üçyüzlüsü; q  üreteç vektörü, h  merkez normal vektör ve a  

merkez teğet vektörden oluşmaktadır. Üreteç vektörü  

R
=

R
q                                                                        

olarak tanımlanır, burada R  doğuran vektörünün boyudur. Doğuran spacelike vektör 

olduğundan, q  üreteç vektörü de spacelike vektördür. Aykırı regle yüzeylerin üreteç 
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üçyüzlüsünün oluşturulmasından farklı olarak, önce a  merkez teğet vektör ve daha sonra h  

merkez normal vektör tanımlanacaktır. Merkez teğet vektör, boğaz çizgisinin teğeti yardımıyla

  ′= ∆a c                       (4.5)                                              

biçiminde tanımlanır. Burada   

′∆ = c               

dir. Boğaz çizgisi spacelike eğri olduğundan, a  merkez teğet vektör de spacelike vektördür. 

Son olarak, merkez normal vektör                                         

= ×h a q                       (4.6)  

şeklinde belirlenir. Merkez normal vektör, silindirin yüzey normaline karşılık geldiğinden bir 

timelike vektördür.  

 Şekil 4.1, silindir yüzeyi, dayanak eğrisi, boğaz çizgisi ve üreteç üçyüzlüsünü 

göstermektedir.  

 

 
Şekil 4.1. Silindir yüzeyi ve üreteç üçyüzlüsü [30] 

 

 (4.5) denkleminden, boğaz çizgisinin birinci mertebeden konumsal değişiminin 

 ′ = ∆c a                             (4.7)                                           

olduğu görülür. 

 Üreteç üçyüzlüsünün birinci mertebeden açısal değişimi aşağıdaki gibi belirlenebilir. 

Silindirin tanımından 

0′ ′= =R q                      (4.8)                                            

olduğu bilinmektedir. a  merkez teğet vektörünün birinci mertebeden türevinin belirlenmesi için 

boğaz çizgisinin ikinci mertebeden konumsal değişimin belirlenmesi gerekmektedir. (4.7) 

denkleminin türevi alınarak  
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′′ ′ ′= ∆ + ∆c a a                                 (4.9)                             

elde edilir. ∆  sabit bir parametre olduğundan türevi sıfırdır. Böylece (4.9) denklemi  

′′ ′= ∆c a                      (4.10)                                            

şeklinde yazılabilir.  

 Boğaz çizgisi, sabit doğuran vektörüne daima diktir ve düzlemsel bir eğridir. Düzlemsel bir 

eğrinin eğrilik teorisinden, boğaz çizgisinin ikinci mertebeden konumsal değişiminin boyunun 

düzlemsel eğrinin eğriliği olduğu bilinmektedir. Eğrilik merkezi, merkez normal vektörün 

doğrultusu üzerindedir. Bu yüzden, boğaz çizgisinin ikinci mertebeden konumsal değişimi 

κ′′ = cc h                                             (4.11)                               

denklemi ile ifade edilebilir. Burada  

κ ′′=c c                    

boğaz çizgisinin eğriliğidir. (4.10) denklemi (4.11) denklemi ile karşılaştırılırsa merkez teğet 

vektörün birinci mertebeden türevinin  

γ′ =a h                        (4.12)                                             

olduğu görülür. Burada cκ
γ =

∆
 spacelike silindirin eğriliğidir.  

 (4.6) denkleminin türevi alınır ve (4.8) denklemi burada yerine yazılırsa 

  ′ ′= ×h a q               (4.13) 

elde edilir. (4.12) denklemi, (4.13) denkleminde yerine yazılarak merkez normal vektörün birinci 

mertebeden türevi  

γ′ =h a                         

olarak bulunur.                                          

 Böylece, üreteç üçyüzlüsünün birinci mertebeden açısal değişimi matris formda  

0 0 0

0 0

0 0

d

ds
γ

γ

     
     =     
          

q q

h h

a a

           (4.14) 

biçiminde ifade edilebilir. Burada 
κ

γ =
∆

c  spacelike silindirin eğriliğidir. (4.14) matris eşitliği 

d

ds

   
   = ×   
      

q

q q

h w h

a a

                                         

biçiminde de ifade edilebilir. Burada  

γ= −qw q                              
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olup, spacelike silindirin üreteç üçyüzlüsünün Darboux ani dönme vektörüdür.  

 Silindirin boğaz çizgisinin düzlemsel olmasından dolayı, silindirin merkez normal vektörü 

daima aynı düzlem içinde kalır. Bu yüzden silindirin yüksek mertebeden özelliklerinin 

incelenmesi, düzlemsel bir eğrinin eğrilik teorisinin incelenmesine dönüşür ve düzlemsel 

eğrilerin eğrilik teorisi burada anlatılmayacaktır.  

 

Örnek 4.1. 2 2 2

1 3 , 0x x r r− = − >  hiperbolik silindiri verilsin [49]. Bu yüzeyin parametrik formu  

( , ) ( sinh , , cosh )t v r t v r t=X            

biçimindedir. Hiperbolik silindir, regle formda 

( , ) ( sinh , 0, cosh ) (0,1, 0)t v r t r t v= +X         

biçiminde yazılabilir. Hiperbolik silindirin dayanak eğrisi  

 ( ) ( sinh , 0, cosh )t r t r t=αααα             

ve doğuranı  

 (0,1, 0)=R                

dır. Silindirin boğaz çizgisi tanımından, hiperbolik silindirin dayanak eğrisinin aynı zamanda 

boğaz çizgisi olduğu görülür. (4.1) denklemi kullanılarak normalleştirilmiş parametre ( )s t r t=  

olarak bulunur. Hiperbolik silindir denklemi, normalleştirme işleminden sonra  

( , ) sinh , 0, cosh (0,1, 0)
s s

s v r r v
r r

 
= + 
 

X           

biçiminde yeniden yazılabilir. Böylece hiperbolik silindirin boğaz çizgisi 

( ) sinh , 0 , cosh
s s

s r r
r r

 
=  
 

c            

olur. Boğaz çizgisinin türevi ise 

( ) cosh , 0 , sinh
s s

s
r r

 
′ =  

 
c             

olarak bulunur. , 1′ ′ =c c  olduğundan boğaz çizgisi bir spacelike eğridir. , 1=R R  

olduğundan R  doğuranı da spacelike vektördür.  

 Hiperbolik silindirin üreteç üçyüzlüsü; 

  (0,1, 0)= =q R              

üreteç vektörü, 

  cosh , 0 , sinh
s s

r r

′  
= =  ′  

c
a

c
            

merkez teğet vektör ve 
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sinh , 0 , cosh
s s

r r

 
= × =  

 
h a q         

merkez normal vektöründen oluşur. R  doğuranı spacelike vektör olduğundan, q  üreteç 

vektörü de spacelike vektördür. , 1=a a  olduğundan, a  merkez teğet vektör spacelike vektör 

ve , 1= −h h  olduğundan, h  merkez normal vektör timelike vektördür. Merkez normal vektör 

timelike vektör olduğundan, hiperbolik silindir bir spacelike yüzeydir. 

 Üreteç üçyüzlüsünü oluşturan vektörlerin türevleri 

  (0, 0, 0)′ =q ,              

  
1 1

sinh , 0 , cosh
s s

r r r r

 
′ =  

 
a             

ve  

  
1 1

cosh , 0 , sinh
s s

r r r r

 
′ =  

 
h              

biçiminde bulunur.  

 Hiperbolik silindirin üreteç üçyüzlüsünün birinci mertebeden açısal değişimi matris formda  

0 0 0

0 0 1

0 1 0

d
r

ds
r

     
     =     
          

q q

h h

a a

             

biçiminde yazılabilir.  

 Hiperbolik silindirin eğriliği  

  1 rγ =                 

ve Darboux ani dönme vektörü  

  
1

r
= −qw q                

olarak bulunur. 

 Şekil 4.2, 2 2 2

1 3 ( 0)x x r r− = − >  denklemli hiperbolik silindiri ve üreteç üçyüzlüsünü 

göstermektedir. 
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Şekil 4.2. 2 2 2

1 3 ( 0)x x r r− = − >  hiperbolik silindiri 

 

 

4.1.2. Timelike Silindirlerin Eğrilik Teorisi 

  

 Bir timelike silindirin h  merkez normal vektörü bir spacelike vektör olduğundan, doğuran 

vektörü spacelike ya da timelike vektör olabilir. Bu bölümde timelike silindirlerin eğrilik teorisi, 

doğuranı spacelike olan timelike silindirler ve doğuranı timelike olan timelike silindirlerin eğrilik 

teorisi olarak iki bölümde incelenecektir.  

 

4.1.2.1. Spacelike Doğuranlı Timelike Silindirlerin Eğrilik Teorisi 

  

 Bir spacelike doğuranlı timelike silindir  

( , ) ( )s v s v= +X c R                  

denklemi ile verilebilir. Burada ( )sc  eğrisi, silindirin boğaz çizgisidir ve aynı zamanda dayanak 

eğrisi olarak alınmıştır; spacelike R  vektörü, silindiri oluşturan ana doğruların yön vektörüdür 

ve sabittir.  
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 Spacelike doğuranlı timelike silindirin üreteç üçyüzlüsü q  üreteç vektörü, h  merkez normal 

vektör ve a  merkez teğet vektörden oluşmaktadır. Üreteç vektörü  

R
=

R
q                                       

olarak tanımlanır. Doğuran spacelike vektör olduğundan q  üreteç vektörü de spacelike 

vektördür. Merkez teğet vektör boğaz çizgisinin teğeti yardımıyla   

′= ∆a c ,  ( )′∆ = c                                      (4.15)                                      

biçiminde tanımlanır. Merkez normal vektör de                                          

= − ×h a q                    (4.16) 

şeklinde belirlenir. h  merkez normal vektörü, silindirin yüzey normaline karşılık geldiğinden bir 

timelike vektördür. Bu durumda a  merkez teğet vektör, spacelike vektördür, dolayısıyla 

silindirin boğaz çizgisi de bir spacelike eğridir. 

 (4.15) denkleminden, boğaz çizgisinin birinci mertebeden konumsal değişiminin 

 ′ = ∆c a                        (4.17)                                              

olduğu görülür. 

 Silindirin tanımından 

0′ ′= =R q                        (4.18)                                        

olduğu bilinmektedir. (4.17) denkleminin türevi alınıp, ∆  nın sabit bir parametre olduğu göz 

önünde bulundurularak  

′′ ′= ∆c a                     (4.19)                                              

elde edilir. Diğer taraftan, boğaz çizgisinin ikinci mertebeden konumsal değişimi için 

κ′′ = − cc h                            (4.20)                                     

yazılabilir. (4.19) denklemi, (4.20) denklemi ile karşılaştırılırsa merkez teğet vektörün birinci 

mertebeden türevinin  

γ′ = −a h                         (4.21)                                          

olduğu görülür. Burada 
κ

γ =
∆

c  spacelike doğuranlı timelike silindirin eğriliğidir.  

 (4.16) denkleminin türevi alınıp (4.18) ve (4.21) denklemleri burada yerine yazılırsa, merkez 

normal vektörün birinci mertebeden türevi  

γ′ = −h a                        

olarak bulunur.                                          

 Böylece, üreteç üçyüzlüsünün birinci mertebeden açısal değişimi matris formda  
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0 0 0

0 0

0 0

d

ds
γ

γ

     
     = −     
     −     

q q

h h

a a

            

biçiminde ifade edilebilir. Burada 
κ

γ =
∆

c  spacelike doğuranlı timelike silindirin eğriliğidir. Ayrıca, 

spacelike doğuranlı timelike silindirin üreteç üçyüzlüsünün Darboux ani dönme vektörü  

γ= −qw q                

olarak bulunur. Bu vektör 

 , ,′ ′ ′= × = × = ×q q qq w q h w h a w a  

eşitliklerini sağlar.                                          

 

Örnek 4.2. 2 2 2

1 3 , 0x x r r− = >  Lorentziyen dairesel silindiri verilsin [49]. Bu yüzey parametrik 

formda  

( , ) ( cosh , , sinh )t v r t v r t=X             

biçiminde, regle formda ise  

( , ) ( cosh , 0, sinh ) (0,1, 0)t v r t r t v= +X           

biçiminde ifade edilebilir. Lorentziyen dairesel silindirin dayanak eğrisi  

 ( ) ( cosh , 0, sinh )t r t r t=αααα             

ve doğuranı  

 (0,1, 0)=R               

dır. Silindirin boğaz çizgisi tanımından, Lorentziyen dairesel silindirin dayanak eğrisinin aynı 

zamanda boğaz çizgisi olduğu görülür. (4.1) denklemi kullanılarak normalleştirilmiş parametre 

( )s t r t=  olarak bulunur. Lorentziyen dairesel silindir denklemi normalleştirme işleminden sonra  

( , ) cosh , 0, sinh (0,1, 0)
s s

s v r r v
r r

 
= + 
 

X           

biçiminde yeniden yazılabilir. Böylece Lorentziyen dairesel silindirin boğaz çizgisi 

( ) cosh , 0 , sinh
s s

s r r
r r

 
=  
 

c            

olur. Boğaz çizgisinin türevi ise 

( ) sinh , 0 , cosh
s s

s
r r

 
′ =  

 
c          
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olarak bulunur. , 1′ ′ = −c c  olduğundan boğaz çizgisi bir timelike eğridir. , 1=R R  

olduğundan R  doğuranı bir spacelike vektördür.  

 Lorentziyen dairesel silindirin üreteç üçyüzlüsü; 

  (0,1, 0)= =q R              

üreteç vektörü, 

  sinh , 0 , cosh
s s

r r

′  
= =  ′  

c
a

c
           

merkez teğet vektör ve 

cosh , 0 , sinh
s s

r r

 
= − × = − − 

 
h a q            

merkez normal vektöründen oluşur. R  doğuranı spacelike vektör olduğundan, q  üreteç 

vektörü de spacelike vektördür. , 1= −a a  olduğundan, a  merkez teğet vektör timelike vektör 

ve , 1=h h  olduğundan, h  merkez normal vektör spacelike vektördür. Merkez normal vektör 

spacelike vektör olduğundan, Lorentziyen dairesel silindir bir timelike yüzeydir. 

 Üreteç üçyüzlüsünü oluşturan vektörlerin türevleri 

  ( )0, 0, 0′ =q ,          

  
1 1

cosh , 0 , sinh
s s

r r r r

 
′ =  

 
a             

ve  

  
1 1

sinh , 0 , cosh
s s

r r r r

 
′ = − − 

 
h            

biçiminde bulunur.  

 Lorentziyen dairesel silindirin üreteç üçyüzlüsünün birinci mertebeden açısal değişimi matris 

formda  

0 0 0

0 0 1

0 1 0

d
r

ds
r

     
     = −     
     −     

q q

h h

a a

           

biçiminde yazılabilir.  

 Lorentziyen dairesel silindirin eğriliği  

  1 rγ =                             

ve Darboux ani dönme vektörü  
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1

r
= −qw q                

olarak bulunur. 

 Şekil 4.3, 2 2 2

1 3 ( 0)x x r r− = >  denklemli Lorentziyen dairesel silindiri ve üreteç 

üçyüzlüsünü göstermektedir. 

 

 

 

Şekil 4.3. 2 2 2

1 3 ( 0)x x r r− = >  Lorentziyen dairesel silindiri 

 

4.1.2.2. Timelike Doğuranlı Timelike Silindirlerin Eğrilik Teorisi 

 

 Bir timelike doğuranlı timelike silindir  

( , ) ( )s v s v= +X c R                            

denklemi ile verilebilir. Burada ( )sc  eğrisi silindirin boğaz çizgisidir ve aynı zamanda dayanak 

eğrisi olarak alınmıştır; timelike R  vektörü silindiri oluşturan ana doğruların yön vektörüdür ve 

sabittir.  

  Timelike doğuranlı timelike silindirin üreteç üçyüzlüsü; q  üreteç vektörü, h  merkez normal 

vektör ve a  merkez teğet vektörden oluşmaktadır. Üreteç vektörü  
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R
=

R
q                             

olarak tanımlanır. Doğuran timelike vektör olduğundan, q  üreteç vektörü de timelike vektördür.  

Merkez teğet vektör, boğaz çizgisinin teğeti yardımıyla   

′= ∆a c ,  ( )′∆ = c                         (4.22)                                         

biçiminde tanımlanır. a  merkez teğet vektörü bir spacelike vektördür. Merkez normal vektör de                                         

= − ×h a q                    (4.23) 

şeklinde belirlenir. h  merkez normal vektör, silindirin yüzey normaline karşılık geldiğinden 

spacelike vektördür.  

 (4.22) denkleminden, boğaz çizgisinin birinci mertebeden konumsal değişiminin 

 ′ = ∆c a                     (4.24)                                                  

olduğu görülür. 

 Silindirin tanımından 

0′ ′= =R q                   (4.25)                                             

olduğu bilinmektedir. (4.24) denkleminin türevi alınıp ∆  nın sabit bir parametre olduğu göz 

önünde bulundurulursa  

′′ ′= ∆c a                       (4.26)                                           

elde edilir. Diğer taraftan, boğaz çizgisinin ikinci mertebeden konumsal değişimi  

κ′′ = − cc h                             (4.27)                                    

yazılabilir. (4.26) denklemi, (4.27) denklemi ile karşılaştırılırsa merkez teğet vektörün birinci 

mertebeden türevinin  

γ′ = −a h                    (4.28)                                                 

olduğu görülür. Burada 
κ

γ =
∆

c  timelike doğuranlı timelike silindirin eğriliğidir.  

 (4.23) denkleminin türevi alınır ve (4.25) denklemi burada yerine yazılırsa 

  ′ ′= − ×h a q               (4.29) 

elde edilir. (4.28) denklemi, (4.29) denkleminde yerine yazılırsa merkez normal vektörün birinci 

mertebeden türevi  

γ′ =h a                     

olarak bulunur.                                          

 Dolayısıyla, üreteç üçyüzlüsünün birinci mertebeden açısal değişimi matris formda  
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0 0 0

0 0

0 0

d

ds
γ

γ

     
     =     
     −     

q q

h h

a a

        

biçiminde ifade edilebilir. Burada 
κ

γ =
∆

c  timelike doğuranlı timelike silindirin eğriliğidir. Ayrıca, 

timelike doğuranlı timelike silindirin üreteç üçyüzlüsünün Darboux ani dönme vektörü 

γ= −qw q                                   

dür. Bu vektör 

 , ,′ ′ ′= × = × = ×q q qq w q h w h a w a  

eşitliklerini sağlar. 

 

Örnek 4.3. 2 2 2

1 2 , ( 0)x x r r+ = >  1-indeksli dairesel silindiri verilsin [49]. Bu yüzey parametrik 

formda  

( , ) ( cos , sin , )t v r t r t v=X          

biçiminde, regle formda ise  

( ) ( ) ( ), cos , sin , 0 0, 0,1t v r t r t v= +X            

biçiminde yazılabilir. 1-indeksli dairesel silindirin dayanak eğrisi  

 ( ) ( cos , sin , 0)t r t r t=αααα             

ve doğuranı  

 (0, 0,1)=R               

dır. Silindirin boğaz çizgisi tanımından, 1-indeksli dairesel silindirin dayanak eğrisinin aynı 

zamanda boğaz çizgisi olduğu görülür. (4.1) denklemi kullanılarak normalleştirilmiş parametre 

( )s t r t=  olarak elde edilir. 1-indeksli dairesel silindir denklemi, normalleştirme işleminden 

sonra  

( , ) cos , sin , 0 (0, 0,1)
s s

s v r r v
r r

 
= + 
 

X           

biçiminde yeniden yazılabilir. Böylece 1-indeksli dairesel silindirin boğaz çizgisi 

( ) cos , sin , 0
s s

s r r
r r

 
=  
 

c             

olur. Boğaz çizgisinin türevi ise  

( ) sin , 0 , cos
s s

s
r r

 
′ = − 

 
c             



 49 

olarak bulunur. , 1′ ′ =c c  olduğundan, boğaz çizgisi bir spacelike eğridir. , 1= −R R  

olduğundan R  doğuranı timelike vektördür.  

 1-indeksli dairesel silindirin üreteç üçyüzlüsü; 

  (0, 0,1)= =q R              

üreteç vektörü, 

  sin , cos , 0
s s

r r

′  
= = − ′  

c
a

c
        

merkez teğet vektör ve 

cos , sinh , 0
s s

r r

 
= − × =  

 
h a q         

merkez normal vektöründen oluşur. R  doğuranı timelike vektör olduğundan, q  üreteç vektörü 

de timelike vektördür. , 1=a a  olduğundan, a  merkez teğet vektör spacelike vektör ve 

, 1=h h  olduğundan, h  merkez normal vektör spacelike vektördür. Merkez normal vektör 

spacelike vektör olduğundan, 1-indeksli dairesel silindir bir timelike yüzeydir. 

 Üreteç üçyüzlüsünü oluşturan vektörlerin türevleri 

  (0, 0, 0)′ =q ,           

  
1 1 1

cos , sin , 0
s s

r r r r r

 
′ = − − = − 

 
a h           

ve  

  
1 1 1

sin , cos , 0
s s

r r r r r

 
′ = − = 

 
h a         

biçiminde bulunur.  

 Böylece, 1-indeksli dairesel silindirin üreteç üçyüzlüsünün birinci mertebeden açısal 

değişimi matris formda  

0 0 0

0 0 1

0 1 0

d
r

ds
r

     
     =     
     −     

q q

h h

a a

           

biçiminde yazılabilir.  

 1-indeksli dairesel silindirin eğriliği  

  1 rγ =                

ve Darboux ani dönme vektörü  
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1

r
= −qw q                

olarak bulunur. 

 Şekil 4.4, 2 2 2

1 2 ( 0)x x r r+ = >  denklemli 1-indeksli dairesel silindiri ve üreteç üçyüzlüsünü 

göstermektedir. 

 

 
 

Şekil 4.4. 2 2 2

1 2 ( 0)x x r r+ = >  1-indeksli dairesel silindiri 

 

 

4.2. 3

1IR  Minkowski Uzayında Konilerin Eğrilik Teorisi 

 

 Boğaz çizgisi bir noktaya dejenere olan regle yüzeylere koni denir. Bir koni yüzeyi 

  ( , ) ( )s v v s= +0X c R             

denklemi ile ifade edilebilir [24]. Burada 0c  boğaz noktası, ( )sR  ana doğruların yön vektörü ve 

v  reel değerli bir parametredir. Koninin dayanak eğrisi, boğaz noktası yardımıyla 

  ( ) ( )s sµ= +0c Rαααα               

biçiminde yazılabilir. Burada µ  reel değerli bir parametredir. Koni, tepe noktasında 

diferansiyellenebilir olmadığından, koninin üreteç üçyüzlüsü tepe noktası dışındaki bir dayanak 
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eğrisi üzerinde tanımlanmalıdır. Üreteç üçyüzlüsünü oluşturan vektörler; q  spacelike, h  

spacelike ve a  timelike olmak üzere sırasıyla  

  
R

=
R

q ,  ′=h R  ve = ×a q h                                     (4.30) 

biçiminde tanımlanabilir. Burada q , aykırı regle yüzeylerde olduğu gibi üreteç vektörü ve R  

doğuranın boyudur. h  ve a  hakkında yorum yapılabilmesi için, öncelikle koni yüzeyinin normal 

vektörü bulunmalıdır. Koninin s  ve v  parametrelerine göre türevleri sırasıyla 

  ( , ) ( )
s

s v v s′=X R             (4.31) 

ve 

  ( , ) ( )
v

s v s=X R             (4.32) 

olarak bulunur. Koni yüzeyinin normali  

  s v

s v

×

×
n

X X
S =

X X
            (4.33) 

dir. (4.31) ve (4.32) denklemleri, (4.33) denkleminde yerine yazılarak ve (4.30) denklemleri 

kullanılarak, koninin yüzey normalinin, a  vektörüne karşılık geldiği bulunur. Aykırı regle 

yüzeylerde a  vektörü, merkez teğet vektör iken konilerde a  vektörü merkez normal vektör 

konumundadır. Bu durumda, h  vektörüne de koninin merkez teğet vektörü denilebilir. Sonuç 

olarak, aykırı regle yüzeylerdeki merkez normal vektör ve merkez teğet vektörün konilerde yer 

değiştirdiği söylenebilir. Aykırı regle yüzeyler ile koniler arasındaki bu farklılık, koninin açılabilir 

regle yüzey olmasından, dolayısıyla teğet düzleminin doğuran boyunca sabit kalmasından 

kaynaklanmaktadır.  

 Koninin normali ile a  vektörü aynı Lorentziyen karaktere sahip olduklarından koninin 

Lorentziyen karakterinin belirlenmesi için a  vektörü kullanılabilir. (4.30) denklemi ile verilen 

üreteç üçyüzlüsünde, a  vektörü timelike vektör olduğundan, bu üçyüzlü spacelike konilerin 

üreteç üçyüzlüsüdür.  

 Timelike konilerde, a  merkez normal vektörü spacelike vektör olacağından, q  üreteç 

vektörü spacelike ya da timelike vektör olabilir. q  vektörü spacelike vektör olan timelike konilere 

spacelike doğuranlı timelike koniler, q  vektörü timelike vektör olan timelike konilere ise timelike 

doğuranlı timelike koniler denir ve her iki durum için de üreteç üçyüzlüsü 

  
R

=
R

q ,  ′=h R  ve = − ×a q h           

biçiminde verilir.  

 Şekil 4.5, koni yüzeyini ve bu yüzeyin dayanak eğrisi üzerindeki üreteç üçyüzlüsünü 

göstermektedir. 
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Şekil 4.5. Koni yüzeyi ve üreteç üçyüzlüsü [30] 

 

 Üreteç üçyüzlülerinin türev formülleri ve Darboux vektörleri, aykırı regle yüzeylerde yapılan 

işlemler ile aynı tarzda bulunabilir.  

 Konilerde, a  merkez normal vektörün oluşturduğu merkez normal yüzeyin doğal üçyüzlüsü 

ile koninin üreteç üçyüzlüsü çakışıktır. Bu sebeple konilerin merkez normal yüzeyinin 

incelenmesi ilgi çekici değildir. 

 Aykırı regle yüzeylerden farklı olarak, konilerin boğaz çizgisi, tek bir noktaya 

dönüştüğünden, konilerin boğaz çizgisinin konumsal değişimi sıfırdır.  

 Bir koninin h  merkez teğet vektörünün oluşturduğu yüzeye merkez teğet yüzey denir. 

Koninin merkez teğet yüzeyi  

  ( , ) ( ) ( )
h

s v s v s= +X hαααα            

denklemi ile gösterilebilir. Burada ( )sαααα  hem koninin hem de merkez teğet yüzeyin dayanak 

eğrisi konumundadır. 

 Konilerin merkez teğet yüzeyleri, aykırı regle yüzeylerin merkez normal yüzeyinin 

incelenmesi ile aynı tarzda incelenebilir. Merkez teğet yüzeyin boğaz çizgisi üzerindeki çatı, bu 

çatının türev formülleri, Darboux vektörü ve merkez teğet yüzeyin çatısı ile koninin üreteç 

üçyüzlüsü arasındaki ilişkiler bulunabilir.  

 

Örnek 4.4. ( , ) (cosh cosh , , sinh sinh )s v s v s v s v s= + − +X  konisi verilsin. Bu koninin regle 

formu 

  ( , ) (cosh , 0, sinh ) (cosh , 1, sinh )s v s s v s s= + −X         
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biçimindedir. Koninin dayanak eğrisi ve ana doğrularının doğrultman vektörleri sırasıyla 

  ( ) (cosh , 0, sinh )s s s=αααα           

ve  

  ( ) (cosh , 1, sinh )s s s= −R           

dir. Koninin üreteç vektörü 

  
1

(cosh , 1, sinh )
2

s s
R

= = −
R

q          

olarak bulunur, burada R  doğrultman vektörlerinin boyudur. , 1=q q  olduğundan, q  üreteç 

vektörü spacelike vektördür. Koninin merkez teğet vektörü 

  (sinh , 0, cosh )s s′= =h R           

dir. , 1= −h h  olduğundan, h  merkez teğet vektör timelike vektördür. Koninin merkez normal 

vektörü  

  
1

( cosh , 1, sinh )
2

s s= − × = − − −a q h         

dir. , 1=a a  olduğundan merkez normal vektör a  spacelike vektördür. Üreteç üçyüzlüsünü 

oluşturan vektörlerin türevleri 

  
1

(sinh , 0, cosh )
2

s s′ =q           

  (cosh , 0, sinh )s s′ =h           

  
1

( sinh , 0, cosh )
2

s s′ = − −a          

dir. 
1

R
γ′ =a h  olduğundan koninin jeodezik eğriliği 1γ = −  olarak bulunur. Buradan üreteç 

üçyüzlüsünün türev formülleri matris formda 

  

0 1 0
1

1 0 1
2

0 1 0

d

ds

     
     = −     
     −     

q q

h h

a a

         

biçiminde yazılabilir. Üreteç üçyüzlüsünün Darboux ani dönme vektörü 

  ( ) / (0, 1, 0)Rγ= − + = −qw q a          

dir. Koninin merkez teğet yüzeyi 

  ( , ) ( ) ( ) (cosh , 0, sinh ) (sinh , 0, cosh )s v s v s s s v s s= + = +hX hαααα     

şeklinde oluşturulur. Merkez teğet yüzeyin doğal üçyüzlüsü; h  üreteç vektörü, n  asal normal 
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vektör ve b  binormal vektörlerinden oluşur. Doğal üçyüzlünün üreteç vektörü koninin merkez 

teğet vektörü olup 

  (sinh , 0, cosh )s s=h            

dir. Asal normal vektör 

  (cosh , 0, sinh )s s
κ

′
= =

h
n           

dir, burada 1κ ′= =h  merkez teğet yüzeyin eğriliğidir. , 1=n n  olduğundan, n  asal normal 

vektörü spacelike vektördür.  Binormal vektör ise 

  (0,1, 0)= − × =b h n            

olarak bulunur. , 1=b b  olduğundan, b  binormal vektörü spacelike vektördür. Doğal 

üçyüzlüyü oluşturan vektörlerin türevleri 

  (cosh , 0, sinh )s s′ =h ,          

  (sinh , 0, cosh )s s′ =n ,          

  (0, 0, 0)′ =b             

olarak bulunur. τ′ = −b n  olduğundan, merkez teğet yüzeyin burulması olan 0τ =  dır. Doğal 

üçyüzlünün türev formülleri matris formda  

  

0 1 0

1 0 0

0 0 0

d

ds

     
     =     
          

h h

n n

b b

          

biçiminde yazılabilir. Doğal üçyüzlünün Darboux ani dönme vektörü  

  (0,1, 0)τ κ= − −hw h b =           

dir.  

 Üreteç üçyüzlüsü ve doğal üçyüzlü ortak h  vektörüne sahiptirler. Üreteç üçyüzlüsünün 

merkez normal vektörü a  ile doğal üçyüzlünün asal normal vektörü n  arasındaki spacelike açı 

ρ  olmak üzere üçyüzlüler arasındaki ilişki matris formda 

  

0 sin cos

1 0 0

0 cos sin

ρ ρ

ρ ρ

     
     =     
     −     

q h

h n

a b

         

biçimindedir. Burada 

  
1 1

sin
2R

ρ
κ

= =            

ve  
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1

cos
2R

γ
ρ

κ
= = −            

dir. Böylece spacelike ρ  açısı 

  
3

arccot( 1) 2.356
4

π
ρ = − = =          

olarak bulunur. 

 Şekil 4.6, ( , ) (cosh cosh , , sinh sinh )s v s v s v s v s= + − +X  denklemli spacelike koni, bu 

koninin dayanak eğrisi üzerindeki üreteç üçyüzlüsü ve koninin merkez teğet yüzeyini 

göstermektedir. 

 

 

 

Şekil 4.6. ( , ) (cosh cosh , , sinh sinh )s v s v s v s v s= + − +X  spacelike konisi ve merkez teğet yüzeyi 

 

4.3. 3

1IR  Minkowski Uzayında Teğet Yüzeylerin Eğrilik Teorisi 

  

 Teğet yüzey, bir uzay eğrisinin teğet vektörlerinin oluşturduğu regle yüzeydir [34]. Teğet 

yüzeyin doğuranı, uzay eğrisinin teğet vektörü olduğundan, teğet yüzeylerin eğrilik teorisi, uzay 

eğrilerinin eğrilik teorisi yardımıyla incelenebilir.  

 s  yay uzunluğu parametresi olmak üzere ( )sαααα  uzay eğrisinin teğet vektörü 

  ( ) ( )s sα
′=t αααα ,            
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asal normal vektörü 

  
( )

( )
( )

s
s

s

α
α

ακ

′
=

t
n            

ve binormal vektörü 

  ( ) ( ) ( )s s sα α α= ×b t n              (4.34) 

olarak tanımlanabilir. Burada ( )sακ  eğrinin eğriliğidir. { }, ,α α αt n b  vektörlerinin oluşturduğu 

çatıya, eğrinin Frenet çatısı denir [21]. Burada ( )sαt  teğet vektörü spacelike, ( )sαn  asal 

normal vektörü spacelike ve ( )sαb  binormal vektörü timelike vektör olarak alınmıştır. 

Dolayısıyla ( )sαααα  uzay eğrisi bir spacelike eğridir. Eğrinin Frenet türev formülleri matris formda 

  

0 0

0

0 0

α α α

α α α α

α α α

κ

κ τ

τ

′     
     ′ = −     

′          

t t

n n

b b

          (4.35) 

biçiminde ifade edilebilir. Burada ατ  eğrinin burulmasıdır.  

 ( )sαααα  uzay eğrisinin teğet vektörlerinin oluşturduğu teğet yüzey 

  ( , ) ( ) ( )s v s v s= +
α

X tαααα            (4.36) 

denklemi ile verilebilir. Burada, ( )sαααα , teğet yüzeyin dayanak eğrisi ya da sırt eğrisi olarak 

isimlendirilir [16]. Ayrıca, v  reel değerli bir parametre, s  eğrinin yay uzunluğu parametresi ve 

( )s
α

t  eğrinin teğet vektörüdür.  

 Şekil 4.7, αααα  eğrisinin teğetlerinin oluşturduğu teğet yüzeyi göstermektedir. 

 

 

Şekil 4.7. αααα  eğrisinin teğetlerinin oluşturduğu teğet yüzey [30]  
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 Bir teğet yüzeyin Lorentziyen karakterinin belirlenmesi için, öncelikle yüzeyin normali 

bulunmalıdır. (4.36) denkleminin s  ve v  parametrelerine göre türevleri sırasıyla 

  ( , ) ( ) ( )
s

s v s v s′ ′= +
α

X tαααα            (4.37) 

ve  

  ( , ) ( )
v

s v s=
α

X t             (4.38) 

olarak bulunur. Teğet yüzeyin normali  

  s v

s v

×

×
n

X X
S =

X X
             (4.39) 

dir. (4.37) ve (4.38) denklemleri, (4.39) denkleminde yerine yazılarak ve Frenet türev formülleri 

kullanılarak, teğet yüzeyin normalinin dayanak eğrisinin ( )sαb  binormal vektörüne karşılık 

geldiği görülür. Dolayısıyla teğet yüzeyin Lorentziyen karakterine, dayanak eğrisinin ( )sαb  

binormal vektörüne bakılarak karar verilebilir. (4.34) denkleminde verilen ( )sαb  vektörü timelike 

olduğundan, (4.36) denklemi ile verilen teğet yüzey bir spacelike yüzeydir.  

 Spacelike teğet yüzeyin boğaz çizgisi, dayanak eğrisi yardımıyla 

  ( ) ( ) ( )s s sαµ= −c tαααα            (4.40) 

biçiminde verilebilir. (4.40) denkleminin türevi alınır ve boğaz çizgisinin tanımı olan  

  ( ) ( ) 0s sα
′ ′⋅ =c t            

denkleminde yerine yazılırsa  

  0µ =              

bulunur. Böylece (4.40) denkleminden, dayanak eğrisinin boğaz çizgisi olduğu sonucuna varılır, 

yani 

  ( ) ( )s s= cαααα            

dir.  

 Spacelike aykırı regle yüzeylerin üreteç üçyüzlü formülleri kullanılarak teğet yüzeyin üreteç 

üçyüzlüsünü oluşturan vektörler ile eğrinin Frenet çatısını oluşturan vektörler arasında 

  ( ) ( ) , ( ) ( ) , ( ) ( )s s s s s sα α α= = =q t h n a b           (4.41) 

ilişkilerinin olduğu görülür. (4.41) denkleminde, ( )sq  teğet yüzeyin üreteç vektörüdür. Teğet 

yüzeyin yüzey normaline, dayanak eğrisinin binormali karşılık geldiğinden aykırı regle 

yüzeylerden farklı olarak ( )sa  vektörüne teğet yüzeyin merkez normal vektörü denilebilir. ( )sh  

ise teğet yüzeyin merkez teğet vektörüdür. Sonuç olarak, aykırı regle yüzeylerdeki merkez 

normal vektör ve merkez teğet vektörün teğet yüzeylerde yer değiştirdiği söylenebilir. Aykırı 

regle yüzeyler ile teğet yüzeyler arasındaki bu farklılık, teğet yüzeylerin açılabilir regle yüzeyler 
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olmasından ve dolayısıyla teğet düzlemlerinin doğuran boyunca sabit kalmasından 

kaynaklanmaktadır.  

 (4.41) denkleminin, eğrinin Frenet türev formülleri olan (4.35) de yerine yazılması ile 

spacelike teğet yüzeyin üreteç üçyüzlüsünün açısal değişimi matris formda  

  

0 0

0

0 0

α

α α

α

κ

κ τ

τ

′     
     ′ = −     

′          

q q

h h

a a

           (4.42) 

biçiminde ifade edilebilir. (4.42) matris eşitliği  

 

′   
   ′ = ×   

′      

q

q q

h w h

a a

            

biçiminde de yazılabilir, burada  

 α ατ κ= −qw q a             

spacelike teğet yüzeyin üreteç üçyüzlüsünün Darboux ani dönme vektörüdür. 

 Dayanak eğrisi, aynı zamanda boğaz çizgisi olduğundan boğaz çizgisinin birinci 

mertebeden konumsal değişimi 

  ( ) ( )s sα
′ =c t             

dir.  

 Teğet yüzeylerde a  merkez normal vektörün oluşturduğu merkez normal yüzeyin doğal 

üçyüzlüsü ile teğet yüzeyin üreteç üçyüzlüsü çakışıktır. Bu sebeple teğet yüzeylerin merkez 

normal yüzeyinin incelenmesi ilgi çekici değildir. 

 Bir spacelike teğet yüzeyin h  merkez teğet vektörünün oluşturduğu regle yüzeye merkez 

teğet yüzey denir. Merkez teğet yüzey  

  ( , ) ( ) ( )
h

s v s v s= +X c h           

denklemi ile gösterilebilir.  

 Merkez teğet yüzeyin boğaz çizgisinin spacelike teğet yüzeyin boğaz çizgisine göre konumu 

  ( ) ( ) ( )
h h

s s sµ= −c c h            

biçiminde yazılabilir. Boğaz çizgisinin tanımı yardımıyla 
h

µ  parametresi 

  
2 2h

α

α α

κ
µ

κ τ
= −

−
           

olarak bulunur. Böylece merkez teğet yüzeyin boğaz çizgisi 

  
2 2

( ) ( ) ( )
h

s s sα

α α

κ

κ τ
= +

−
c c h            



 59 

biçiminde elde edilir.  

 Merkez teğet yüzeyin doğal üçyüzlüsünü oluşturan , ,h n b  vektörleri, bunların türev 

formülleri, bu üçyüzlünün Darboux ani dönme vektörü ve doğal üçyüzlü ile spacelike teğet 

yüzeyin üreteç üçyüzlüsü arasındaki ilişkiler, aykırı regle yüzeylerin merkez normal yüzeyinin 

incelenmesi ile aynı tarzda incelenir. Spacelike teğet yüzeyin h  merkez teğet vektörü bir 

spacelike vektör olduğundan, n  vektörü spacelike ya da timelike vektör olabilir. Dolayısıyla 

doğal üçyüzlünün bu iki durum göz önüne alınarak incelenmesi gerekmektedir.  

 Timelike teğet yüzeylerde, yüzeyin normaline karşılık gelen, üreteç üçyüzlüsünün a  merkez 

normal vektörü (dayanak eğrisinin αb  binormal vektörü) bir spacelike vektördür. Bu durumda q  

üreteç vektörü (dayanak eğrisinin teğeti) spacelike ya da timelike vektör olabilir. Dolayısıyla 

timelike teğet yüzeylerin, spacelike doğuranlı timelike teğet yüzeyler ve timelike doğuranlı 

timelike teğet yüzeyler olarak iki durumda incelenmesi gerekmektedir. Bu inceleme, spacelike 

teğet yüzeylerin incelemesine benzer bir şekilde yapılabilir.  

 

Örnek 4.5. 3 2 3 22 2 3
( ) , (1 ) ,

3 3 2
s s s s

 
= −  
 

αααα  eğrisinin teğetlerinin oluşturduğu regle yüzey 

ele alınsın. Bu yüzeyin regle formu 

 

3 2 3 2

1 2 1 2

2 2 3
( , ) ( ) ( ) , (1 ) ,

3 3 2

2 2 3
, (1 ) ,

2 2 2

s v s v s s s s

v s s

 
′= + = −  

 

 
+ − −  

 

X α αα αα αα α

      

biçiminde yazılabilir.  

( ), ( ) 1s s′ ′ = −α αα αα αα α  olduğundan ( )sαααα  eğrisi birim hızlı bir timelike eğridir ve s , eğrinin 

yay uzunluğu parametresidir. αααα  eğrisinin birim teğet vektörü 

1 2 1 22 2 3
, (1 ) ,

2 2 2
s s

 
′= = − −  

 
tαααα αααα         

dir. αααα  eğrisinin asal normal vektörü 

 ( )1 , , 0s s
κ

′
= −

t
n = αααα

αααα

αααα

          

olarak bulunur, burada 
1

2 2 1 s s
κ ′= =

−
tα αα αα αα α , αααα  eğrisinin eğriliğidir. αααα  eğrisinin 

binormal vektörü ise 
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3 3 2

, 1 ,
22 2

s s
 

= − × = − − −  
 

b t nα α αα α αα α αα α α        

olarak bulunur. αααα  eğrisinin Frenet çatısını oluşturan tαααα , nαααα  ve bαααα  vektörlerinin türevleri 

sırasıyla 

 1 2 1 22 2
, (1 ) ,0

4 4
s s

− −
 

′ = −  
 

tαααα         

 
1 1

, , 0
2 1 2s s

 
′ − 

− 
n =αααα           

 
3 3

, , 0
2 2 2 2 1s s

 
′ = − −  − 

bαααα          

dir. τ′ = −b nα α αα α αα α αα α α  olduğundan αααα  eğrisinin burulması olan 
3

2 2 1s s
τ =

−
αααα  olarak bulunur.  

 Teğet yüzeyin boğaz çizgisi  

  3 2 3 22 2 3
( ) ( ) , (1 ) ,

3 3 2
s s s s s

 
= = −  

 
c αααα         

dir. Teğet yüzeyin boğaz çizgisi üzerinde tanımlı olan üreteç üçyüzlüsünü oluşturan q  üreteç 

vektörü, h  merkez teğet vektör ve a  merkez normal vektörünün, αααα  eğrisinin Frenet elemanları 

cinsinden ifadesi 

  , ,= = =q t h n a bα α αα α αα α αα α α           

biçimindedir. Üreteç üçyüzlüsünün türev formülleri, αααα  eğrisinin Frenet türev formülleri 

yardımıyla matris formda 

  

0 0

0

0 0

d

ds

κ

κ τ

τ

     
     =     
     −     

q q

h h

a a

αααα

α αα αα αα α

αααα

         

biçiminde yazılabilir. Burada  

  
1

2 2 1 s s
κ =

−
αααα             

ve  

  
3

2 2 1s s
τ =

−
αααα            

dir. Üreteç üçyüzlüsünün Darboux ani dönme vektörü 
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5

0, 0,
4 1s s

τ κ
 

= −  
− 

qw q a =α αα αα αα α         

olarak bulunur.  

 Teğet yüzeyin merkez teğet yüzeyi regle formda 

  ( )3 2 3 22 2 3
( , ) ( ) ( ) , (1 ) , 1 , , 0

3 3 2
s v s v s s s s v s s

 
= + = − + −  

 
hX c h      

biçiminde yazılabilir. Merkez teğet yüzeyin boğaz çizgisi 

  

2 2

3 2 3 2

( ) ( ) ( )

2 2 3
2 1 , (1 ) 2 1 ,

3 3 2

s s s

s s s s s s s

α

α α

κ

κ τ
= +

−

 
= + − − + −  
 

hc c h

     

biçiminde bulunur.  

 Doğal üçyüzlü merkez teğet yüzeyin boğaz çizgisi üzerinde tanımlıdır. Merkez teğet yüzeyin 

üreteç vektörü teğet yüzeyin merkez teğet vektörü olup 

  ( )1 , , 0s s= −h            

biçiminde bulunmuştu. Asal normal vektör 

  ( ), 1 , 0s s
κ

′
= = − −

h
n           

dir, burada 
1

2 (1 )s s
κ =

−
 merkez teğet yüzeyin eğriliğidir. , 1=n n  olduğundan, n  asal 

normal vektör spacelike vektördür. Binormal vektör ise 

  (0, 0,1)= × =b h n           

olarak bulunur. , 1= −b b  olduğundan, b  binormal vektör timelike vektördür. Doğal üçyüzlüyü 

oluşturan vektörlerin türevleri 

  
1 1

, , 0
2 1 2s s

 
′ = − 

− 
h ,           

  
1 1

, , 0
2 2 1s s

 
′ = − − 

− 
n ,          

  (0, 0, 0)′ =b             

olarak bulunur. τ′ =b n  olduğundan teğet yüzeyin burulması 0τ =  dır. Doğal üçyüzlünün 

Darboux ani dönme vektörü  
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1

0, 0,
2 (1 )s s

τ κ
 

= − = −  − 
hw h b          

biçiminde bulunur. Üreteç üçyüzlüsünün merkez normal vektörü a  ile doğal üçyüzlünün asal 

normal vektörü n  arasındaki timelike ρ  

  , sinh ρ=a n            

bağıntısı yardımıyla 

  
3

arcsinh 1.031
2

ρ
 

= =  
 

          

olarak bulunur. 

 Şekil 4.8, 3 2 3 22 2 3
( ) , (1 ) ,

3 3 2
s s s s

 
= −  
 

αααα  eğrisinin teğetlerinin oluşturduğu teğet 

yüzey, bu yüzeyin boğaz çizgisi üzerindeki üreteç üçyüzlüsü, merkez teğet yüzeyi ve doğal 

üçyüzlüyü göstermektedir. 

 

 

 

Şekil 4.8. 3 2 3 22 2 3
( ) , (1 ) ,

3 3 2
s s s s

 
= −  
 

αααα  eğrisinin teğetlerinin oluşturduğu teğet yüzey ve merkez 

teğet yüzeyi 
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5. 3

1IR  MINKOWSKI UZAYINDA ROBOT UÇ-ĐŞLEVCĐ HAREKETĐ 

 

 Bu bölümde, 3. bölümde verilen regle yüzeylerin eğrilik teorisi kullanılarak robot uç-işlevci 

hareketi incelenir. Öncelikle, bir regle yüzey kullanılarak, bir robot yörüngesinin nasıl temsil 

edilebileceği açıklanır. Daha sonra, regle yüzeylerin eğrilik teorisi yardımıyla robot uç-işlevcinin 

araç merkez noktasının lineer hız ve ivmesi ile araç çatısının açısal hız ve ivmesi belirlenir.  

 Robot uç-işlevcinin konumu ve yönlenmesi, araç çatısı ve araç merkez noktası kullanılarak 

tam olarak belirlenebilir. Şekil 5.1 de gösterildiği gibi, araç çatısı üç birim vektörden oluşur; 

bunlar O  yönlenme vektörü, A  yaklaşım vektörü ve N  normal vektördür. Araç çatısının 

orijini, araç merkez noktasıdır.  

 

 
Şekil 5.1. Robot uç-işlevci ve araç çatısı 

 

 Robot uç-işlevci belirli bir yörünge üzerinde hareket ederken, uç-işlevciye sıkı bir şekilde 

bağlı olan araç çatısının üç birim vektöründen her biri, bir regle yüzey oluştururlar. Bu çalışmada 

O  yönlenme vektörü ile oluşturulan regle yüzey ele alınacaktır. Uç-işlevci regle yüzey üzerinde 

hareket ederken, regle yüzeye daima dik konumda olmayabilir ve belirli bir açı yapabilir. Spin 

açısı denilen bu açı, Şekil 5.2 de gösterildiği gibi, uç işlevci üzerindeki araç çatısının A  

yaklaşım vektörü ile regle yüzeyin nS  normal vektörü arasındaki açıdır ve η  ile gösterilir. 

Böylece altı serbestlik derecesine sahip olan bir uç işlevci hareketi, beş bağımsız parametreye 

bağlı bir regle yüzey ve spin açısı yardımıyla tam olarak açıklanabilir. Robot uç-işlevci hareketini 

tam olarak belirleyen regle yüzey ve spin açısı sırasıyla 

  ( , ) ( ) ( )u v u v u= +X Rαααα                

ve  
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  ( )uη η=                 

dur. Burada αααα , uç-işlevcinin takip ettiği dayanak eğrisi, v  bir reel değerli parametre ve R  

doğurandır. O  yönlenme vektörü, doğuran yönünde birim vektör olarak seçilir.  

 

 
Şekil 5.2. Spin açısı 

 

 Bu bölümde robot uç-işlevci hareketi, spacelike ve timelike regle yüzeylerin eğrilik teorisi 

kullanılarak iki bölümde incelenecektir. 

 

 

5.1. Spacelike Regle Yüzeylerin Eğrilik Teorisi Yardımıyla Robot Uç-işlevci Hareketinin 

Đncelenmesi 

  

 Spacelike regle yüzeyin yüzey çatısı, dayanak eğrisi üzerindedir. Yüzey çatısını oluşturan 

vektörler; O  yönlenme vektörü, nS  yüzey normal vektörü ve bS  binormal vektörüdür. 

Spacelike yüzeylerde, nS  yüzey normal vektörü timelike vektör olduğundan, O  yönlenme ve 

bS  binormal vektörleri spacelike vektörlerdir.  

 Yönlenme vektörü doğuranlar yönünde birim vektör olup 

=O q                  

şeklindedir. Yüzey normal vektörü  

v s
n

v s

×
=

×

X X
S

X X
              (5.1) 

eşitliği ile verilir. Burada X  regle yüzey, s  regle yüzeyin boğaz çizgisinin yay uzunluğu 

parametresi ve v  reel değerli bir parametredir. Araç merkez noktası üzerindeki yüzey normal 



 65 

vektörü, dayanak eğrisi üzerinde olduğundan (5.1) denkleminde v  sıfır alınır. X  regle 

yüzeyinin s  ve v  parametrelerine göre türevleri sırasıyla 

s
v′ ′= +X Rαααα                 

ve  

v
=X R                  

dir. (3.7), (3.8) ve (3.9) denklemleri kullanılarak yüzey normal vektörü, üreteç üçyüzlüsü 

vektörleri cinsinden 

2 2

µ

µ

−∆ −
=

−∆ +
n

h a
S                (5.2) 

biçiminde bulunur. Burada µ  ve ∆  sırasıyla (3.6) ve (3.21) denklemleri ile tanımlanır.  

 Yüzey binormal vektörü de 

= − ×b nS O S                   

dir. Yönlenme vektörü, üreteç vektörü ile çakışık olduğundan ve (3.7), (3.8), (3.9) ve (5.2) 

denklemleri kullanılarak, yüzey binormal vektörü, üreteç üçyüzlüsü vektörleri cinsinden 

2 2

µ

µ

− − ∆
=

−∆ +
b

h a
S                

biçiminde elde edilir. 

 Üreteç vektörü, üreteç üçyüzlüsü ve yüzey çatısı için ortak vektördür. Yüzey çatısının nS  ve 

bS  vektörleri ile üreteç üçyüzlüsünün h  ve a  vektörleri aynı timelike düzlemdedir. Yüzey 

çatısının nS  timelike normal vektörü ile üreteç üçyüzlüsünün h  timelike merkez normal vektörü 

arasındaki hiperbolik açı σ  olmak üzere bu vektörler arasındaki ilişki 

  cosh sinhσ σ= +nS h a  

  sinh coshσ σ= +bS h a  

biçiminde veya matris formda 

  
cosh sinh

sinh cosh

σ σ

σ σ

     
=     
    

n

b

S h

S a
 

biçiminde yazılabilir. Böylece yüzey çatısının üreteç üçyüzlüsüne göre yönlenmesi 

1 0 0

0 cosh sinh

0 sinh cosh

σ σ

σ σ

     
     =     
          

n

b

O q

S h

S a

             (5.3) 

biçiminde bulunur.  
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 Yüzey çatısı ve araç çatısının O  yönlenme vektörü ortaktır ve bu vektör spacelike 

vektördür. Araç çatısının A  yaklaşım vektörü spacelike ya da timelike vektör olabilir. Yüzey 

çatısı ve araç çatısı arasındaki ilişki, A  yaklaşım vektörünün spacelike ya da timelike vektör 

olma durumlarına göre ayrı ayrı incelenmelidir.  

 Şekil 5.3, regle yüzeyin üreteç üçyüzlüsü, yüzey çatısı, merkez normal yüzeyin doğal 

üçyüzlüsü ve robot uç-işlevcinin araç çatısı arasındaki ilişkileri göstermektedir.  

 

 
Şekil 5.3. Çatılar arasındaki ilişkiler [30] 

 

i) A  yaklaşım vektörü spacelike olsun. 

  

 Spacelike regle yüzeyin 
n

S  timelike yüzey normal vektörü ile araç çatısının A  spacelike 

yaklaşım vektörü arasındaki açı η  timelike spin açısı olmak üzere, yüzey çatısı ile araç çatısı 

arasındaki ilişki 

1 0 0

0 sinh cosh

0 cosh sinh

n

b

η η

η η

     
     =     
          

O O

A S

N S

          

biçimindedir. (5.3) matris eşitliği yardımıyla, araç çatısı ile üreteç üçyüzlüsü arasındaki ilişki 
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1 0 0

0 sinh cosh

0 cosh sinh

ϕ ϕ

ϕ ϕ

     
     =     
          

O q

A h

N a

            (5.4) 

biçiminde bulunur. Burada  

ϕ η σ= +                 (5.5) 

dır.  

 

ii) A  yaklaşım vektörü timelike olsun. 

  

 Spacelike regle yüzeyin 
n

S  timelike yüzey normal vektörü ile araç çatısının A  timelike 

yaklaşım vektörü arasındaki açı η  hiperbolik spin açısı olmak üzere, yüzey çatısı ile araç çatısı 

arasındaki ilişki 

1 0 0

0 cosh sinh

0 sinh cosh

n

b

η η

η η

     
     =     
          

O O

A S

N S

            

biçimindedir. (5.3) matris eşitliği yardımıyla, araç çatısı ile üreteç üçyüzlüsü arasındaki ilişki 

1 0 0

0 cosh sinh

0 sinh cosh

ϕ ϕ

ϕ ϕ

     
     =     
          

O q

A h

N a

             (5.6) 

biçiminde bulunur. Burada  

ϕ η σ= +                (5.7) 

dır.  

 

5.1.1. Robot Uç-işlevci Hareketinin Diferansiyel Özellikleri 

  

 Robot uç-işlevci hareketinin diferansiyel özelliklerinin, yine A  yaklaşım vektörünün 

spacelike ve timelike vektör olma durumlarına göre incelenmesi gerekmektedir.  

 

i) A  yaklaşım vektörü spacelike olsun. 

  

 Spacelike regle yüzeyin αααα  dayanak eğrisi robot uç-işlevcinin yörüngesi olduğundan, robot 

uç-işlevcinin birinci mertebeden konumsal değişimi, (3.5) denkleminden 

µ µ′ ′ ′= + +αααα c R h               (5.8) 
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biçiminde yazılabilir. (3.19) denklemi ve (3.7) denklemi, (5.8) denkleminde yerine yazılırsa, robot 

uç-işlevcinin birinci mertebeden konumsal değişimi, üreteç üçyüzlüsü elemanları cinsinden  

( ' )Rµ µ′ = Γ + + + ∆q h aαααα              (5.9) 

biçiminde elde edilir. Araç çatısı ile üreteç üçyüzlüsü arasındaki ilişki olan (5.4) matris eşitliği 

kullanılarak, robot uç-işlevcinin birinci mertebeden konumsal değişimi, araç çatısı elemanları 

cinsinden 

( ' ) ( sinh cosh ) ( cosh sinh )Rµ µ ϕ ϕ µ ϕ ϕ′ = Γ + + − + ∆ + − ∆O A Nαααα       

biçiminde yazılabilir.  

 (5.9) denkleminin türevi alınırsa ve (3.16) daki formüller kullanılırsa, araç merkez noktasının 

ikinci mertebeden konumsal değişimi, üreteç üçyüzlüsünde 

2R
R R R R

µ γ µγ
µ µ

Γ ∆     
′′ ′ ′′ ′ ′= Γ + + + + + + + ∆     

     
q h aαααα          

olarak bulunur. (5.4) matris eşitliği kullanılarak, araç merkez noktasının ikinci mertebeden 

konumsal değişimi, araç çatısı elemanları cinsinden 

2 sinh cosh

2 cosh sinh

R
R R R R

R R R

µ γ µγ
µ µ ϕ ϕ

γ µγ
µ ϕ ϕ

 Γ ∆      
′′ ′ ′′ ′ ′= Γ + + + − + + + + ∆      

      

 Γ ∆    
′ ′+ + + − + ∆    

    

O A

N

αααα

     

biçiminde yazılabilir. 

 Araç çatısının birinci mertebeden açısal değişiminin belirlenmesi için, (5.4) matris eşitliğinin 

her iki tarafının türevi alınarak 

0 0 0 1 0 0

0 cosh sinh 0 sinh cosh

0 sinh cosh 0 cosh sinh

d d

ds ds
ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

         
         ′= +         
                  

O q q

A h h

N a a

            (5.10) 

elde edilir. (3.16) matris eşitliği, (5.10) da yerine yazılırsa  

 

1
0 0

1
sinh cosh sinh

1
cosh sinh cosh

R

d

ds R R R

R R R

γ γ
ϕ ϕ ϕ ϕ ϕ

γ γ
ϕ ϕ ϕ ϕ ϕ

 
 
    
       ′ ′= + +                     

′ ′+ +    
    

O q

A h

N a

      (5.11) 

elde edilir. (5.4) matris eşitliğinin tersi, (5.11) matris eşitliğinde yerine yazılırsa, araç çatısının 

birinci mertebeden açısal değişimi  
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0 sinh cosh
1

sinh 0

cosh 0

d
R

ds R
R

ϕ ϕ

ϕ δ

ϕ δ

−     
     =     
          

O O

A A

N N

        (5.12) 

biçiminde bulunur. Burada 

R

γ
δ ϕ′= +               (5.13) 

dir. (5.12) matris eşitliği  

O

d

ds

   
   = ×   
      

O O

A w A

N N

             

biçiminde de yazılabilir. Burada  

1
( cosh sinh )

R
δ ϕ ϕ= + − +Ow O A N            

dır ve araç çatısının Darboux ani dönme vektörü olarak adlandırılır.  

 (5.4) matris eşitliği yardımıyla, araç çatısının Darboux ani dönme vektörü, üreteç 

üçyüzlüsünde 

1

R
δ= −Ow q a             (5.14)  

biçiminde yazılabilir. (5.13) eşitliği, (5.14) denkleminde yerine yazılırsa 

1

R R

γ
ϕ ′= + −Ow q q a              

elde edilir. (3.32) matris eşitliğinin üçüncü satırından 

ϕ κ′= +Ow q b              

bulunur. (3.33) denklemi yardımıyla, araç çatısının Darboux ani dönme vektörü ile üreteç 

üçyüzlüsünün Darboux ani dönme vektörü arasındaki ilişki 

ϕ′= −O qw q w              

şeklinde bulunur. 

 (5.14) denkleminin türevi alınarak 

1

R R

γ
δ δ′ ′ ′= + −Ow q q h             (5.15) 

elde edilir. (3.16) matris eşitliği ve (5.13) eşitliği, (5.15) denkleminde yerine yazılarak, araç 

çatısının ikinci mertebeden açısal değişimi 

R

ϕ
δ

′
′ ′= +Ow q h              
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biçiminde bulunur.  

 

ii) A  yaklaşım vektörü timelike olsun. 

  

 A  yaklaşım vektörünün spacelike vektör olma durumunda yapılan işlemlere benzer 

işlemler yapılarak, robot uç-işlevcinin birinci mertebeden konumsal değişimi, araç çatısı 

elemanları cinsinden 

( ' ) ( cosh sinh ) ( sinh cosh )Rµ µ ϕ ϕ µ ϕ ϕ′ = Γ + + − ∆ + − + ∆O A Nαααα       

biçiminde bulunur.  

 Araç merkez noktasının ikinci mertebeden konumsal değişimi, araç çatısı elemanları 

cinsinden 

2 cosh sinh

2 sinh cosh

R
R R R R

R R R

µ γ µγ
µ µ ϕ ϕ

γ µγ
µ ϕ ϕ

 Γ ∆      
′′ ′ ′′ ′ ′= Γ + + + + + − + ∆      

      

 Γ ∆    
′ ′+ − + + + + ∆    

    

O A

N

αααα

      

biçiminde yazılabilir. 

 Araç çatısının birinci mertebeden açısal değişimi  

0 cosh sinh
1

cosh 0

sinh 0

d
R

ds R
R

ϕ ϕ

ϕ δ

ϕ δ

−     
     =     
          

O O

A A

N N

         

biçiminde bulunur. Burada 

R

γ
δ ϕ′= +                

dir. Araç çatısının Darboux ani dönme vektörü  

1
( sinh cosh )

R
δ ϕ ϕ= − + − +Ow O A N            

olarak bulunur. Bu vektör 

  , ,′ ′ ′= × = × = ×O O OO w O A w A N w N  

eşitliklerini sağlar. (5.6) matris eşitliği yardımıyla, araç çatısının Darboux ani dönme vektörü 

üreteç üçyüzlüsünde 

1

R
δ= −Ow q + a              

biçiminde yazılabilir. 

 Araç çatısının Darboux ani dönme vektörü ile üreteç üçyüzlüsünün Darboux ani dönme 

vektörleri arasındaki ilişki 
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ϕ′= −O qw q + w              

şeklinde bulunur. 

 Araç çatısının ikinci mertebeden açısal değişimi ise 

R

ϕ
δ

′
′ ′= − −Ow q h              

olarak elde edilir. 

 Robot uç-işlevcinin araç merkez noktasının lineer hızı ve ivmesi sırasıyla  

 2 2 2( ' )Rµ µ′ = Γ + − + ∆αααα           

ve  

  

2 2 2

2R
R R R R

µ γ µγ
µ µ

Γ ∆     
′′ ′ ′′ ′ ′= Γ + + − + + + + ∆     

     
αααα      

biçiminde elde edilir. Robot uç-işlevcinin açısal hızı ve ivmesi ise sırasıyla

 2

2

1

R
δ= +Ow             

ve  

 

2

2

R

ϕ
δ

′ ′ ′= −  
 

Ow           

biçiminde bulunur. Robot uç-işlevcinin araç merkez noktasının lineer hızı ve ivmesi ile robot uç-

işlevcinin açısal hızı ve ivmesi, A  yaklaşım vektörünün spacelike veya timelike olma 

durumlarına göre değişmez. 

 

5.2. Timelike Regle Yüzeylerin Eğrilik Teorisi Yardımıyla Robot Uç-işlevci Hareketinin 

Đncelenmesi 

  

 Bu bölümde robot uç-işlevci hareketi, spacelike doğuranlı timelike regle yüzeylerin ve 

timelike doğuranlı timelike regle yüzeylerin eğrilik teorileri kullanılarak iki bölümde 

incelenecektir. 

 

5.2.1. Spacelike Doğuranlı Timelike Regle Yüzeylerin Eğrilik Teorisi Yardımıyla Robot Uç-

işlevci Hareketinin Đncelenmesi 

 

 Spacelike doğuranlı timelike regle yüzeyin dayanak eğrisi üzerindeki yüzey çatısını 

oluşturan vektörler; O  yönlenme vektörü, nS  yüzey normal vektörü ve bS  binormal vektördür. 
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Spacelike doğuranlı timelike yüzeylerde, nS  yüzey normal vektörü ve O  yönlenme vektörü 

spacelike olduğundan, bS  binormal vektörü timelike vektördür.  

 Yönlenme vektörü, doğuran yönünde birim vektör olduğundan 

=O q               (5.16) 

dur. Yüzey normal vektörü  

v s

v s

×
=

×
n

X X
S

X X
            (5.17) 

biçiminde verilir. X  regle yüzeyinin s  ve v  parametrelerine göre türevleri alınıp, bu türevler 

(5.17) denkleminde yerine yazılır ve (3.38), (3.39), (3.40) denklemleri kullanılırsa  

2 2

µ

µ

∆
=

∆ −
n

h+ a
S             (5.18) 

elde edilir. Burada µ  ve ∆  sırasıyla (3.36) ve (3.47) denklemleri ile tanımlanır.  

 Yüzey binormal vektörü 

= ×b nS O S              (5.19) 

biçiminde verilir. (5.16) ve (5.18) denklemleri, (5.19) denkleminde yerine yazılarak ve (3.41) deki 

eşitlikler kullanılarak   

2 2

µ

µ

∆
=

∆ −
b

h+ a
S           

biçiminde elde edilir. 

 Üreteç vektörü, üreteç üçyüzlüsü ve yüzey çatısı için ortak vektördür. Yüzey çatısının nS  ve 

bS  vektörleri ile üreteç üçyüzlüsünün h  ve a  vektörleri aynı timelike düzlemdedir. Yüzey 

çatısının nS  timelike normal vektörü ile üreteç üçyüzlüsünün h  timelike merkez normal vektörü 

arasındaki hiperbolik açı σ  olmak üzere bu vektörler arasındaki ilişki 

  cosh sinhσ σ= +nS h a  

  sinh coshσ σ= +bS h a  

biçiminde veya matris formda 

  
cosh sinh

sinh cosh

σ σ

σ σ

     
=     
    

n

b

S h

S a
 

biçiminde yazılabilir. Böylece yüzey çatısının nS  spacelike normal vektörü ile üreteç 

üçyüzlüsünün h  spacelike merkez normal vektörü arasındaki merkez açı σ  olmak üzere yüzey 

çatısının üreteç üçyüzlüsüne göre yönlenmesi 
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1 0 0

0 cosh sinh

0 sinh cosh

σ σ

σ σ

     
     =     
          

n

b

O q

S h

S a

          (5.20) 

biçiminde bulunur.  

 Yüzey çatısı ve araç çatısının O  yönlenme vektörü ortaktır ve bu vektör spacelike 

vektördür. Araç çatısının A  yaklaşım vektörü spacelike ya da timelike olabilir. Yüzey çatısı ve 

araç çatısı arasındaki ilişki, A  yaklaşım vektörünün spacelike ya da timelike olma durumlarına 

göre ayrı ayrı incelenmelidir.  

 

i) A  yaklaşım vektörü spacelike olsun. 

  

 Spacelike doğuranlı timelike regle yüzeyin nS  spacelike yüzey normal vektörü ile araç 

çatısının A  spacelike yaklaşım vektörü arasındaki açı η  merkez spin açısı olmak üzere, yüzey 

çatısı ile araç çatısı arasındaki ilişki 

1 0 0

0 cosh sinh

0 sinh cosh

η η

η η

     
     =     
          

n

b

O O

A S

N S

          (5.21) 

biçimindedir. (5.20) matris eşitliği, (5.21) de yerine yazılırsa, araç çatısı ile üreteç üçyüzlüsü 

arasındaki ilişki 

1 0 0

0 cosh sinh

0 sinh cosh

ϕ ϕ

ϕ ϕ

     
     =     
          

O q

A h

N a

          (5.22) 

biçiminde bulunur. Burada  

ϕ η σ= +              (5.23) 

dir.  

 

ii) A  yaklaşım vektörü timelike olsun. 

  

 Spacelike doğuranlı timelike regle yüzeyin nS  spacelike yüzey normal vektörü ile araç 

çatısının A  timelike yaklaşım vektörü arasındaki açı η  timelike spin açısı olmak üzere yüzey 

çatısı ile araç çatısı arasındaki ilişki 
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1 0 0

0 sinh cosh

0 cosh sinh

η η

η η

     
     =     
          

n

b

O O

A S

N S

          (5.24) 

biçimindedir. (5.20) matris eşitliği, (5.24) de yerine yazılırsa, araç çatısı ile üreteç üçyüzlüsü 

arasındaki ilişki 

1 0 0

0 sinh cosh

0 cosh sinh

ϕ ϕ

ϕ ϕ

     
     =     
          

O q

A h

N a

          (5.25) 

biçiminde bulunur. Burada  

ϕ η σ= +              (5.26) 

dir.  

 

5.2.1.1. Robot Uç-işlevci Hareketinin Diferansiyel Özellikleri 

  

 Robot uç-işlevci hareketinin diferansiyel özelliklerinin, yine A  yaklaşım vektörünün 

spacelike ve timelike vektör olma durumlarına göre incelenmesi gerekmektedir.  

 

i) A  yaklaşım vektörü spacelike olsun. 

  

 Spacelike doğuranlı timelike regle yüzeyin αααα  dayanak eğrisi, robot uç-işlevcinin yörüngesi 

olduğundan, robot uç-işlevcinin birinci mertebeden konumsal değişimi, (3.35) denkleminin türevi 

alınarak 

µ µ′ ′ ′= + +αααα c R h             (5.27) 

biçiminde yazılabilir. (3.38) ve (3.45) denklemleri, (5.27) denkleminde yerine yazılırsa, robot uç-

işlevcinin birinci mertebeden konumsal değişimi, üreteç üçyüzlüsü elemanları cinsinden  

( ' )Rµ µ′ = Γ + + + ∆q h aαααα            (5.28) 

biçiminde elde edilir. (5.22) matris eşitliğinden, robot uç-işlevcinin birinci mertebeden konumsal 

değişimi, araç çatısında 

( ' ) ( cosh sinh ) ( sinh cosh )Rµ µ ϕ ϕ µ ϕ ϕ′ = Γ + + − ∆ + − + ∆O A Nαααα       (5.29) 

biçiminde yazılabilir.  

 (5.28) denkleminin türevi alınırsa ve (3.42) deki türev formülleri kullanılırsa, araç merkez 

noktasının ikinci mertebeden konumsal değişimi, üreteç üçyüzlüsünde 

2R
R R R R

µ γ µγ
µ µ

Γ ∆     
′′ ′ ′′ ′ ′= Γ + − + + + + + ∆     

     
q h aαααα         
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olarak bulunur. (5.22) matris eşitliği kullanılarak, araç merkez noktasının ikinci mertebeden 

konumsal değişimi, araç çatısı elemanları cinsinden 

2 cosh sinh

2 sinh cosh

R
R R R R

R R R

µ γ µγ
µ µ ϕ ϕ

γ µγ
µ ϕ ϕ

 Γ ∆      
′′ ′ ′′ ′ ′= Γ + − + + + − + ∆      

      

 Γ ∆    
′ ′+ − + + + + ∆    

    

O A

N

αααα

     (5.30) 

biçiminde yazılabilir. 

 Araç çatısının birinci mertebeden açısal değişiminin belirlenmesi için (5.22) matris eşitliğinin 

her iki tarafının türevi alınarak 

0 0 0 1 0 0

0 sinh cosh 0 cosh sinh

0 cosh sinh 0 sinh cosh

d d

ds ds
ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

         
         ′= +         
                  

O q q

A h h

N a a

     (5.31) 

elde edilir. (3.42) matris eşitliği, (5.31) de yerine yazılırsa  

 

1
0 0

1
cosh sinh cosh

1
sinh cosh sinh

R

d

ds R R R

R R R

γ γ
ϕ ϕ ϕ ϕ ϕ

γ γ
ϕ ϕ ϕ ϕ ϕ

 
 
    
       ′ ′= − + +                     

′ ′− + +    
    

O q

A h

N a

       

elde edilir. (5.22) matris eşitliği kullanılarak, araç çatısının birinci mertebeden açısal değişimi  

0 cosh sinh
1

cosh 0

sinh 0

d
R

ds R
R

ϕ ϕ

ϕ δ

ϕ δ

−     
     = −     
     −     

O O

A A

N N

        (5.32) 

biçiminde bulunur. Burada 

R

γ
δ ϕ′= +               (5.33) 

dir. (5.32) matris eşitliği 

d

ds

   
   = ×   
      

O

O O

A w A

N N

             

biçiminde de yazılabilir. Burada  

1
(sinh cosh )

R
δ ϕ ϕ= + −Ow O A N            

araç çatısının Darboux ani dönme vektörüdür.  
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 (5.22) matris eşitliğinden, araç çatısının Darboux ani dönme vektörü, üreteç üçyüzlüsünde 

1

R
δ= −Ow q a             (5.34) 

biçiminde yazılabilir. 

 (5.33) eşitliği, (5.34) denkleminde yerine yazılırsa 

  
1

R R

γ
ϕ ′= + −Ow q q a  

elde edilir. Doğal üçyüzlünün n  asal normal vektörü spacelike ise (3.55) matris eşitliğinin 

üçüncü satırı kullanılarak, n  vektörü timelike ise (3.63) matris eşitliğinin üçüncü satırı 

kullanılarak  

  ϕ κ′= +Ow q b   

bulunur. n  vektörünün spacelike ve timelike olma durumları için sırasıyla, (3.56) ve (3.64) 

denklemleri yardımıyla, araç çatısının Darboux ani dönme vektörü ile üreteç üçyüzlüsünün 

Darboux ani dönme vektörü arasındaki ilişki 

  ϕ ′= +O qw q w  

şeklinde bulunur.  

 (5.34) denkleminin türevi alınarak 

1

R R

γ
δ δ′ ′ ′= + −Ow q q h             (5.35) 

elde edilir. (3.42) ve (5.33), (5.35) denkleminde yerine yazılırsa, araç çatısının ikinci mertebeden 

açısal değişimi 

R

ϕ
δ

′
′ ′= +Ow q h               

biçiminde bulunur. 

 

ii) A  yaklaşım vektörü timelike olsun. 

  

 A  yaklaşım vektörünün spacelike vektör olma durumunda yapılan işlemlere benzer 

işlemler yapılarak, robot uç-işlevcinin birinci mertebeden konumsal değişimi, araç çatısı 

elemanları cinsinden 

( ' ) ( sinh cosh ) ( cosh sinh )Rµ µ ϕ ϕ µ ϕ ϕ′ = Γ + + − + ∆ + − ∆O A Nαααα       

biçiminde bulunur.  

 Araç merkez noktasının ikinci mertebeden konumsal değişimi, araç çatısı elemanları 

cinsinden 
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2 sinh cosh

2 cosh sinh

R
R R R R

R R R

µ γ µγ
µ µ ϕ ϕ

γ µγ
µ ϕ ϕ

 Γ ∆      
′′ ′ ′′ ′ ′= Γ + − + − + + + + ∆      

      

 Γ ∆    
′ ′+ + + − + ∆    

    

O A

N

αααα

      

dir. 

 Araç çatısının birinci mertebeden açısal değişimi  

0 sinh cosh
1

sinh 0

cosh 0

d
R

ds R
R

ϕ ϕ

ϕ δ

ϕ δ

−     
     = −     
     −     

O O

A A

N N

          

biçiminde bulunur. Burada 

R

γ
δ ϕ′= +               

dir. Araç çatısının Darboux ani dönme vektörü  

1
(cosh sinh )

R
δ ϕ ϕ= − + −Ow O A N          

dir. (5.25) matris eşitliği yardımıyla, araç çatısının Darboux ani dönme vektörü, üreteç 

üçyüzlüsünde 

 
1

R
δ= − +Ow q a  

biçiminde yazılabilir. Doğal üçyüzlünün n  asal normal vektörünün hem spacelike hem de 

timelike vektör olma durumları için, araç çatısının Darboux ani dönme vektörü ile üreteç 

üçyüzlüsünün Darboux ani dönme vektörü arasındaki ilişki 

 ϕ′= − −O qw q w  

şeklinde bulunur. 

 Araç çatısının ikinci mertebeden açısal değişimi ise 

R

ϕ
δ

′
′ ′= − −Ow q h              

olarak elde edilir. 

 Robot uç-işlevcinin araç merkez noktasının lineer hızı ve ivmesi sırasıyla  

 2 2 2( ' )Rµ µ′ = Γ + + − ∆αααα          

ve  

  

2 2 2

2R
R R R R

µ γ µγ
µ µ

Γ ∆     
′′ ′ ′′ ′ ′= Γ + + + + + − + ∆     

     
αααα      
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biçiminde elde edilir. Robot uç-işlevcinin açısal hızı ve ivmesi ise sırasıyla

 2

2

1

R
δ= −Ow             

ve  

 

2

2

R

ϕ
δ

′ ′ ′= +  
 

Ow            

biçiminde bulunur. Robot uç-işlevcinin araç merkez noktasının lineer hızı ve ivmesi ile robot uç-

işlevcinin açısal hızı ve ivmesi, A  yaklaşım vektörünün spacelike veya timelike olma 

durumlarına göre değişmez. 

 

 

5.2.2. Timelike Doğuranlı Timelike Regle Yüzeylerin Eğrilik Teorisi Yardımıyla Robot Uç-

işlevci Hareketinin Đncelenmesi 

 

 Timelike doğuranlı timelike regle yüzeyin dayanak eğrisi üzerindeki yüzey çatısını oluşturan 

vektörler, O  yönlenme vektörü, nS  yüzey normal vektörü ve bS  binormal vektörüdür. Timelike 

doğuranlı timelike yüzeylerde, nS  yüzey normal vektörü spacelike ve O  yönlenme vektörü 

timelike olduğundan, bS  binormal vektörü spacelike vektördür.  

 Yönlenme vektörü üreteç vektörüne eşittir, yani 

=O q               (5.36) 

şeklindedir. Yüzey normal vektörü  

v s

v s

×
=

×
n

X X
S

X X
            (5.37) 

biçiminde verilir. X  regle yüzeyinin s  ve v  parametrelerine göre türevleri alınıp bu türevler 

(5.37) denkleminde yerine yazılır ve (3.68) eşitlikleri kullanılırsa  

2 2

µ

µ

∆ −
=

∆ +
n

h a
S             (5.38) 

biçiminde bulunur. Burada µ  ve ∆  sırasıyla (3.66) ve (3.74) denklemleri ile tanımlanır.  

 Yüzey binormal vektörü 

= − ×b nS O S               (5.39) 

dir. [11] de 

 = ×b nS O S  
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biçiminde verilen yüzey binormal vektörünün, (5.39) denkleminde ifade edildiği gibi olması 

gerekmektedir. (5.36) ve (5.38) denklemleri, (5.39) denkleminde yerine yazılır ve (3.68) 

denklemi kullanılırsa   

2 2

µ

µ

∆
=

∆ +
b

h+ a
S           

biçiminde bulunur [11]. 

 Üreteç vektörü, üreteç üçyüzlüsü ve yüzey çatısı için ortak vektördür. Yüzey çatısının nS  ve 

bS  vektörleri ile üreteç üçyüzlüsünün h  ve a  vektörleri aynı spacelike düzlemdedir. Yüzey 

çatısının nS  spacelike normal vektörü ile üreteç üçyüzlüsünün h  spacelike merkez normal 

vektörü arasındaki spacelike açı σ  olmak üzere bu vektörler arasındaki ilişki 

  cos sinσ σ= +nS h a  

  sin cosσ σ= − +bS h a  

biçiminde veya matris formda 

  
cos sin

sin cos

σ σ

σ σ

     
=     −    

n

b

S h

S a
 

biçiminde yazılabilir. Böylece yüzey çatısının üreteç üçyüzlüsüne göre yönlenmesi 

1 0 0

0 cos sin

0 sin cos

n

b

σ σ

σ σ

     
     =     
     −     

O q

S h

S a

          (5.40) 

biçiminde bulunur [11].  

 Yüzey çatısı ve araç çatısının O  yönlenme vektörü ortaktır ve bu vektör timelike vektördür. 

Araç çatısının A  yaklaşım vektörü ve N  normal vektörü spacelike vektörlerdir.  

 Timelike doğuranlı timelike regle yüzeyin nS  spacelike yüzey normal vektörü ile araç 

çatısının A  spacelike yaklaşım vektörü arasındaki açı η  spacelike spin açısı olmak üzere, 

yüzey çatısı ile araç çatısı arasındaki ilişki 

1 0 0

0 cos sin

0 sin cos

η η

η η

     
     =     
     −     

n

b

O O

A S

N S

          (5.41) 

biçimindedir [11]. (5.40) matris eşitliği, (5.41) de yerine yazılarak, araç çatısı ile üreteç 

üçyüzlüsü arasındaki ilişki 



 80 

1 0 0

0 cos sin

0 sin cos

ϕ ϕ

ϕ ϕ

     
     =     
     −     

O q

A h

N a

          (5.42) 

biçiminde bulunur [11]. Burada  

ϕ η σ= +              (5.43) 

dır. 

 

5.2.2.1. Robot Uç-işlevci Hareketinin Diferansiyel Özellikleri 

 

 Timelike doğuranlı timelike regle yüzeyin αααα  dayanak eğrisi robot uç-işlevcinin yörüngesi 

olduğundan, robot uç-işlevcinin birinci mertebeden konumsal değişimi, (3.65) denkleminin türevi 

alınarak 

µ µ′ ′ ′= + +αααα c R h             (5.44) 

biçiminde yazılabilir. (3.72) denklemi, (5.44) denkleminde yerine yazılırsa, robot uç-işlevcinin 

birinci mertebeden konumsal değişimi, üreteç üçyüzlüsü elemanları cinsinden  

( ' )Rµ µ′ = Γ + + + ∆q h aαααα            (5.45) 

biçiminde elde edilir [11]. (5.42) matris eşitliği yardımıyla, robot uç-işlevcinin birinci mertebeden 

konumsal değişimi, araç çatısında 

( ' ) ( cos sin ) ( sin cos )Rµ µ ϕ ϕ µ ϕ ϕ′ = Γ + + + ∆ + − + ∆O A Nαααα        

biçiminde yazılabilir [11].  

 (5.45) denkleminin türevi alınırsa ve (3.69) daki türev formülleri kullanılırsa araç merkez 

noktasının ikinci mertebeden konumsal değişimi, üreteç üçyüzlüsünde 

2R
R R R R

µ γ µγ
µ µ

Γ ∆     
′′ ′ ′′ ′ ′= Γ + + + + − + + ∆     

     
q h aαααα         

olarak bulunur [11]. (5.42) matris eşitliği kullanılarak, araç merkez noktasının ikinci mertebeden 

konumsal değişimi, araç çatısı elemanları cinsinden 

2 cos sin

2 sin cos

R
R R R R

R R R

µ γ µγ
µ µ ϕ ϕ

γ µγ
µ ϕ ϕ

 Γ ∆      
′′ ′ ′′ ′ ′= Γ + + + + − + + ∆      

      

 Γ ∆    
′ ′+ − + − + + ∆    

    

O A

N

αααα

       

biçiminde yazılabilir [11]. 

 Araç çatısının birinci mertebeden açısal değişiminin belirlenmesi için (5.42) matris eşitliğinin 

türevi alınarak 
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0 0 0 1 0 0

0 sin cos 0 cos sin

0 cos sin 0 sin cos

d d

ds ds
ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

         
         ′= − +         
         − − −         

O q q

A h h

N a a

     (5.46) 

elde edilir [11]. (3.69) matris eşitliğinin, (5.46) da yerine yazılırsa  

 

1
0 0

1
cos sin cos

1
sin cos sin

R

d

ds R R R

R R R

γ γ
ϕ ϕ ϕ ϕ ϕ

γ γ
ϕ ϕ ϕ ϕ ϕ

 
 
    
       ′ ′= − + +                     

′ ′− − + − +    
    

O q

A h

N a

       

elde edilir [11]. (5.42) matris eşitliği kullanılarak, araç çatısının birinci mertebeden açısal 

değişimi  

0 cos sin
1

cos 0

sin 0

d
R

ds R
R

ϕ ϕ

ϕ δ

ϕ δ

−     
     =     
     − −     

O O

A A

N N

         (5.47) 

biçiminde bulunur [11]. Burada 

R

γ
δ ϕ′= +              (5.48) 

dir. (5.47) matris eşitliği 

d

ds

   
   = ×   
      

O

O O

A w A

N N

             

biçiminde de yazılabilir. Burada  

1
( sin cos )

R
δ ϕ ϕ= − + − −Ow O A N          (5.49) 

araç çatısının Darboux ani dönme vektörüdür [11]. (5.42) matris eşitliği yardımıyla, araç 

çatısının Darboux ani dönme vektörü, üreteç üçyüzlüsünde 

 
1

R
δ= − −Ow q a  

biçiminde yazılabilir. Doğal üçyüzlünün n  asal normal vektörünün hem spacelike hem de 

timelike vektör olma durumları için, araç çatısının Darboux ani dönme vektörü ile üreteç 

üçyüzlüsünün Darboux ani dönme vektörü arasındaki ilişki 

 ϕ′= − +O qw q w  

şeklinde bulunur. 
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 (5.49) denkleminin türevi alınıp (5.36) ve (5.42) denklemleri burada yerine yazılırsa 

1

R R

γ
δ δ′ ′ ′= − − −Ow q q h             (5.50) 

elde edilir. (3.69) matris eşitliğinin birinci satırı ve (5.48) eşitliği, (5.50) denkleminde yerine 

yazılarak, araç çatısının ikinci mertebeden açısal değişimi 

R

ϕ
δ

′
′ ′= − −Ow q h              

biçiminde bulunur [11]. 

 Robot uç-işlevcinin araç merkez noktasının lineer hızı ve ivmesi sırasıyla  

 2 2 2( ' )Rµ µ′ = − Γ + + + ∆αααα           

ve  

  

2 2 2

2R
R R R R

µ γ µγ
µ µ

Γ ∆     
′′ ′ ′′ ′ ′= − Γ + + + + + + + ∆     

     
αααα      

biçiminde elde edilir. Robot uç-işlevcinin açısal hızı ve ivmesi ise sırasıyla

 2

2

1

R
δ= − +Ow             

ve  

 

2

2

R

ϕ
δ

′ ′ ′= − +  
 

Ow           

biçiminde bulunur.  

 

Örnek 5.1. Robot uç-işlevci, Şekil 5.4 de gösterildiği gibi, ( , ) ( cos , sin , )s v v s v s cs=X  

helikoid yüzeyi üzerinde η  açısı ile hareket etsin. Bu helikoid yüzeyinin regle formu 

  ( , ) (0, 0, ) (cos , sin , 0)s v cs v s s= +X           

biçimindedir. Helikoidin dayanak eğrisi ve doğuranı, sırasıyla, 

  ( ) (0, 0, )s cs=αααα              

ve  

  ( ) (cos , sin , 0)s s s=R             

dır. Helikoidin boğaz çizgisi 

  µ= −c Rαααα               

denklemi yardımıyla bulunabilir. Burada  
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  , 0µ ′ ′= =Rαααα             

olduğundan, helikoidin boğaz çizgisinin dayanak eğrisine eşit olduğu görülür, yani 

  (0, 0, )cs= =c αααα            

dir. Boğaz çizgisi üzerinde tanımlanan üreteç üçyüzlüsünün vektörleri 

  (cos , sin , 0)s s=q ,           

  ( sin , cos , 0)s s= −h ,           

  (0, 0,1)=a            

dır. , 1=q q  olduğundan, üreteç vektörü q , spacelike, , 1=h h  olduğundan, merkez normal 

vektör h , spacelike ve , 1= −a a  olduğundan, merkez teğet vektör a , timelike vektördür. 

Üreteç üçyüzlüsünü oluşturan vektörlerin türevleri 

  ( sin , cos , 0)s s′ = −q ,          

  ( cos , sin , 0)s s′ = − −h ,          

  (0, 0, 0)′ =a            

dır. γ′ =a h  olduğundan helikoidin jeodezik eğriliği 

  0γ =              

dır. Üreteç üçyüzlüsünün Darboux ani dönme vektörü 

  
1

( ) (0, 0, 1)
R

γ= − = −qw q a           

dir, burada R , doğuranın boyu olup 1 e eşittir. Helikoidin boğaz çizgisinin teğeti 

  (0, 0, )c′ = Γ + ∆ =c q a           

olup, regle yüzeyin eğrilik fonksiyonları olan  

  0Γ =              

ve 

  c∆ =             

dir.  

 Helikoidin merkez normal yüzeyi 

  ( , ) ( ) ( ) (0, 0, ) ( sin , cos , 0)s v s v s cs v s s= + = + −hX c h       

denklemi ile verilebilir. Merkez normal yüzeyin boğaz çizgisi 

  
h

µ= −hc c h             

denklemi yardımıyla bulunabilir. Burada  
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,

0
,

h
µ

′ ′
= =

′ ′

c h

h h
           

olduğundan, merkez normal yüzeyin boğaz çizgisi ile helikoidin boğaz çizgisi aynıdır, yani 

  (0, 0, )cs= =hc c            

dir. Merkez normal yüzeyin doğal üçyüzlüsünü oluşturan vektörler 

  ( sin , cos , 0)s s= −h ,           

  ( cos , sin , 0)s s
κ

′
= = − −

h
n ,          

  (0, 0,1)= × =b h n           

dir, burada κ , merkez normal yüzeyin eğriliği olup 1 e eşittir. , 1=n n  olduğundan, asal 

normal vektör n , spacelike ve , 1= −b b  olduğundan, binormal vektör b , timelike vektördür. 

Doğal üçyüzlüyü oluşturan vektörlerin türevleri 

  ( cos , sin , 0)s s′ = − −h ,          

 (sin , cos , 0)s s′ = −n ,        

 (0, 0, 0)′ =b             

dir. τ′ =b n  olduğundan, merkez normal yüzeyin burulması 

0τ =              

dır. Merkez normal yüzeyin Darboux ani dönme vektörü 

  (0, 0, 1)τ κ= − = −hw h b           

dir. Merkez normal yüzeyin boğaz çizgisinin teğeti 

  (0, 0, )c′ = Γ + ∆ =h h hc q a           

olup, merkez normal yüzeyin eğrilik fonksiyonları olan  

  0Γ =h             

ve 

  c∆ =h             

dir.  

 Üreteç üçyüzlüsü ile doğal üçyüzlü ortak h  spacelike vektörüne sahiptirler. Üreteç 

üçyüzlüsünün vektörleri ile doğal üçyüzlünün diğer vektörleri arasında 

  ,= − =q n a b            

ilişkileri mevcuttur.  
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 Boğaz çizgisi, aynı zamanda dayanak eğrisi olduğundan, yüzeyin dayanak eğrisi üzerindeki 

yüzey normali ile boğaz çizgisi üzerindeki merkez normal vektörü arasındaki açı olan 

  

  0σ =              

dır.  

 Uç-işlevcinin A  yaklaşım vektörü ile yüzey çatısının nS  yüzey normali arasındaki merkez 

açı, η  spin açısı olmak üzere, (5.23) denkleminden  

  ϕ η=              

olduğu görülür. Yukarıdaki eşitliğin her iki tarafının türevi alınırsa 

  ϕ η′ ′=             

 elde edilir. Böylece (5.33) denkleminden 

  δ ϕ η′ ′= =             

bulunur.  

 Araç çatısının O  yönlenme vektörü, helikoidin üreteç üçyüzlüsünün q  üreteç vektörüne 

eşittir. Yaklaşım vektörü ve normal vektör sırasıyla 

  ( sin , cos , 0)s s= −A            

ve 

  (0, 0,1)=N             

olarak bulunur.  

 (5.29) ve (5.30) denklemlerinin yardımıyla, araç merkez noktasının birinci ve ikinci 

mertebeden konumsal değişimi, araç çatısında sırasıyla 

  (0, 0, )c c′ = N =αααα            

ve  

  (0, 0, 0)′′ =αααα             

biçiminde bulunur.  

 Araç çatısının Darboux ani dönme vektörü  

  η′= −Ow O N            

dir. Araç çatısının Darboux ani dönme vektörü, üreteç üçyüzlüsünde 

 η′= −Ow q a             

biçiminde ifade edilebilir. Araç çatısının Darboux ani dönme vektörünün türevi, üreteç 

üçyüzlüsünde 

 η η′ ′′ ′= +Ow q h            
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olarak bulunur. Araç çatısının Darboux ani dönme vektörünün türevinin araç çatısındaki ifadesi 

ise 

  η η′ ′′ ′= +Ow O A            

biçiminde yazılabilir.  

   

 

Şekil 5.4. ( , ) ( cos , sin , )s v v s v s cs=X  helikoid yüzeyi ve merkez normal yüzeyi 
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6. 3ID  DUAL VE 3

1ID  DUAL LORENTZ UZAYLARININ TEMEL KAVRAMLARI 

 

6.1. 3ID  Dual Uzayının Temel Kavramları 

 

 W. Clifford tarafından tanıtılan dual sayılar, bileşenleri reel sayılar olan ( , )a a∗  sıralı ikilileri 

olarak tanımlanabilirler [33]. a  ve a
∗  reel sayılarına, sırasıyla, dual sayının reel ve dual kısmı 

denir [33]. a  ve a
∗  reel sayılarının her ikisi de sıfırdan farklı ise dual sayıya “tam dual sayı”, 

sadece reel kısım sıfır ise dual sayıya “sırf dual sayı” denir. Sadece dual kısım sıfır ise dual 

sayıya bir reel sayı olarak bakılabilir [45].  

 Dual sayılar kümesi ID  ile gösterilir. Buna göre  

{ }( , ) : , ,ID a a a a a IR∗ ∗= = ∈             

dir. ID  üzerinde iki iç işlem ve eşitlik aşağıdaki gibi tanımlanır [33]: 

i) Toplama  : ( , ) ( , ) ( , )a a b b a b a b∗ ∗ ∗ ∗+ = + +  

ii) Çarpma : ( , ) ( , ) ( , )a a b b ab ab a b∗ ∗ ∗ ∗⋅ = +  

iii) Eşitlik  : ( , ) ( , )a a b b∗ ∗=  olması için gerek ve yeter şart ,a b a b∗ ∗= =  olmasıdır. 

 

Tanım 6.1. (0,1)ε =  dual sayısına dual birim denir ve ε , aşağıdaki kuralları sağlar: 

   20, 0 0 0, 1 1 , 0ε ε ε ε ε ε ε≠ = = = = =  [44].                        

 

Teorem 6.1. Her ( , )a a a ID∗= ∈  dual sayısı, a a aε ∗= +  biçiminde yazılabilir [15]. 

 

Tanım 6.2. Bir a a aε ∗= +  dual sayısının, 0b ≠  olan bir b b bε ∗= +  dual sayısına bölümü  

 
2

a a a b ab

b b b
ε

∗ ∗−
= +                 

biçiminde tanımlanır [8].  
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Tanım 6.3. 0a ≠  olmak üzere bir a a aε ∗= +  dual sayısının mutlak değeri  

  
a

a a a
a

ε ∗= +                

biçiminde tanımlanır [44]. 

 

Teorem 6.2. ID  kümesi, yukarıda tanımlanan toplama ve çarpma işlemlerine göre bir 

değişmeli halkadır [8]. 

 Sırf dual sayılar ile bölme işlemi tanımlı olmadığından ID , verilen işlemlere göre bir cisim 

değildir. 

 

Teorem 6.3. Bir dual sayıya bağlı bir ( )f a  fonksiyonunun ε  değişkenine göre Maclaurin 

serisine açılımı,  1n >  tamsayısı için 0nε =  olduğundan,  

 ( ) ( ) ( ) ( )f a f a a f a a f aε ε∗ ∗ ′= + = +                        

dır [9]. Burada ( )f a′ , ( )f a  nın a  ya göre türevidir.  

 

Tanım 6.4. Dual sayılara benzer şekilde bir dual vektör de ( , )∗a a  sıralı ikilisi ile tanımlanabilir 

[45]. Burada 3, IR∗ ∈a a  dür. Dual vektörlerin kümesi 3ID  ile gösterilir ve   

 { }3

1 2 3( , , ) : , 1, 2,3iID a a a a ID i= = ∈ =ɶa        

biçimindedir.  

 

Tanım 6.5. 3

1 2 3 1 2 3( , , ), ( , , )a a a b b b ID= = ∈ɶɶa b  ve IDλ ∈  olsun. Đki dual vektörün eşitliği, iki 

dual vektörün toplanması ve bir dual vektör ile bir skalerin çarpımı aşağıdaki gibi tanımlanır [15]. 

i) Eşitlik  : , ( 1,2,3)
i i

a b i= ⇔ = =ɶɶa b , 

ii) Toplama :  1 1 2 2 3 3( , , )a b a b a b+ = + + +ɶɶa b , 

iii) Skalerle çarpma :  1 2 3( , , )a a aλ λ λ λ=ɶa . 

 

Teorem 6.4. 3ID  kümesi, yukarıdaki toplama ve skalerle çarpma işlemleri ile ID  halkası 

üzerinde bir modül yapısı oluşturur ve buna kısaca ID − modül denir [15]. 

 

Teorem 6.5. 3, IR∗ ∈a a  ve 2 0ε =  olmak üzere bir dual vektör ε ∗
ɶa = a + a  biçiminde ifade 

edilebilir [33]. 
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Tanım 6.6. 3ID  deki herhangi iki ε ∗
ɶa = a + a  ve ε ∗ɶb = b + b  dual vektörün skaler ve vektörel 

çarpımları sırasıyla 

 ( ), , , ,
E E EE

ε ∗ ∗= + +ɶɶa b a b a b a b             

ve 

( )ε ∗ ∗∧ = ∧ + ∧ + ∧ɶɶa b a b a b a b               

biçiminde tanımlanır [8]. 

 

Tanım 6.7. 0≠a  olmak üzere bir ɶa  dual vektörünün normu 

,
Eε

∗

= +ɶ

a a
a a

a
               

ile verilir [15]. Normu 1 olan dual vektörlere, birim dual vektörler denir.  

 

Tanım 6.8. Birim dual vektörlerin kümesi 

 { }2 3

1 2 3( , , ) : , (1,0)
E

S a a a ID= = ∈ =ɶ ɶ ɶ ɶa a a           

ile gösterilir ve buna birim dual küre denir [6,15].  

 

Teorem 6.6. 2
Sɶ  dual birim kürenin noktaları, 3IR  deki yönlü doğrulara birebir karşılık gelir [14]. 

Bu karşılık getirmeye “E.Study dönüşümü” [35] ya da “transfer prensibi” [20] denir.   

 

Tanım 6.9. Study tarafından tanıtılan, iki birim dual vektör arasındaki dual açı, θ θ ε θ ∗= +  

biçiminde tanımlanır. Burada θ  ve θ ∗ , sırasıyla, birim dual vektörlere karşılık gelen yönlü 

doğrular arasındaki açı ve en kısa uzaklıktır [33]. 

 

Tanım 6.10. 3ID  dual uzayında ( ) ( ) ( )t t tε ∗= +ɶα α αα α αα α αα α α  ifadesine bir dual uzay eğrisi denir. 

Burada ( )1 2 3( ) ( ), ( ), ( )t t t tα α α=αααα  ve ( )1 2 3( ) ( ), ( ), ( )t t t tα α α∗ ∗ ∗ ∗=αααα , 3IR  de reel değerli 

eğrilerdir. Eğer ( )
i

tα  and *( )
i

tα , (1 3)i≤ ≤  fonksiyonları diferansiyellenebilir ise  

( )

3

1 1 2 2 3 3

:

( ) ( ) ( ), ( ) ( ), ( ) ( )

( ) ( )

I IR ID

t t t t t t t t

t t

α εα α εα α εα

ε

∗ ∗ ∗

∗

⊂ →

→ = + + +

= +

ɶ

ɶ

αααα

αααα

α αα αα αα α
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dual uzay eğrisi de diferansiyellenebilirdir. ( )t=ɶ ɶα αα αα αα α  dual eğrisinin ( )tαααα  reel kısmına gösterge 

eğrisi denir [1].  

 

6.2. 3

1ID  Dual Lorentz Uzayının Temel Kavramları 

  

 3ID  dual uzayı üzerinde iç çarpım olarak, Lorentziyen iç çarpım alınırsa, 3ID  dual uzayına 

dual Lorentziyen uzay denir. 3

1ID  ile gösterilen bu uzay 

  { }3 3

1 1: ,ID IRε ∗ ∗= = + ∈ɶa a a a a             

biçiminde gösterilebilir [18,42]. 

 

Tanım 6.11. 3ID  deki herhangi iki ε ∗
ɶa = a + a  ve ε ∗ɶb = b + b  dual vektörün dual Lorentziyen 

iç (skaler) çarpımı ve dual Lorentziyen vektörel çarpımı, sırasıyla, 

 ( ), , , ,ε ∗ ∗= + +ɶɶa b a b a b a b             

ve 

( )ε ∗ ∗× = × + × + ×ɶɶa b a b a b a b            

biçiminde tanımlanır. Burada  , , Lorentz iç çarpımı ve × , Lorentziyen vektörel çarpımı 

gösterir [18,42]. 

 

Tanım 6.12. 3

1IDε ∗ ∈ɶa = a + a  olsun. 

 i) 3

1IR∈a  bir timelike vektör ise, 3

1IDε ∗ ∈ɶa = a + a  vektörüne dual timelike vektör, 

 ii) 3

1IR∈a  bir spacelike vektör ise, 3

1IDε ∗ ∈ɶa = a + a  vektörüne dual spacelike vektör, 

 iii) 3

1IR∈a  bir null vektör ise, 3

1IDε ∗ ∈ɶa = a + a  vektörüne dual null vektör 

denir [42].  

 

Tanım 6.13. 0≠a  olmak üzere bir 3

1IDε ∗ ∈ɶa = a + a  dual vektörünün normu 

  
,

ε

∗

= +ɶ
a a

a a
a

              

biçiminde verilir [42].  
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Tanım 6.14. 3

1IDε ∗ ∈ɶa = a + a  olmak üzere,  

  { }2 3

1 1: 1; , ve spacelike vektörS IRε ∗ ∗= = + = ∈ɶ ɶ ɶa a a a a a a        

kümesine dual Lorentziyen birim küre ve  

  { }2 3

0 1: 1; , ve timelike vektörH IRε ∗ ∗= = + = ∈ɶ ɶ ɶa a a a a a a      

kümesine ise dual hiperbolik birim küre denir [47]. 

 

Teorem 6.7. 3

1ID  uzayındaki 2

0Hɶ  dual hiperbolik birim kürenin ve 2

1Sɶ  dual Lorentziyen birim 

kürenin noktaları, sırasıyla, 3

1IR  Lorentziyen uzayındaki yönlü timelike ve spacelike doğrulara 

birebir karşılık gelirler [42].  

 

Tanım 6.15. i) Dual hiperbolik açı: ɶa  ve ɶb ,  3

1ID  de iki birim dual timelike vektör olsun. 

, coshθ= −ɶɶa b  olacak şekilde θ θ εθ ∗= +  dual sayısına, ɶa  ve ɶb  birim dual vektörleri 

arasındaki dual hiperbolik açı denir. Burada θ  ve θ ∗ , sırasıyla, birim dual vektörlere karşılık 

gelen yönlü doğrular arasındaki hiperbolik açı ve en kısa uzaklıktır [41].  

 

ii) Dual merkez açı: ɶa  ve ɶb ,  3

1ID  de iki birim dual spacelike vektör ve bu vektörlerin gerdiği 

dual düzlem timelike olsun. , coshθ=ɶɶa b  olacak şekilde θ θ εθ ∗= +  dual sayısına, ɶa  ve 

ɶb  birim dual vektörleri arasındaki dual merkez açı denir. Burada θ  ve θ ∗ , sırasıyla, birim dual 

vektörlere karşılık gelen yönlü doğrular arasındaki merkez açı ve en kısa uzaklıktır [41].  

 

iii) Dual spacelike açı: ɶa  ve ɶb ,  3

1ID  de iki birim dual spacelike vektör ve bu vektörlerin 

gerdiği dual düzlem spacelike olsun. , cosθ=ɶɶa b  olacak şekilde θ θ εθ ∗= +  dual sayısına, 

ɶa  ve ɶb  birim dual vektörleri arasındaki dual spacelike açı denir. Burada θ  ve θ ∗ , sırasıyla, 

birim dual vektörlere karşılık gelen yönlü doğrular arasındaki spacelike açı ve en kısa uzaklıktır 

[41].  

 

iv) Dual Lorentziyen timelike açı: ɶa , 3

1ID  de bir birim dual spacelike vektör ve ɶb , 3

1ID  de  

bir birim dual timelike vektör olsun. , sinhθ=ɶɶa b  olacak şekilde θ θ εθ ∗= +  dual sayısına, 

ɶa  ve ɶb  birim dual vektörleri arasındaki dual Lorentziyen timelike açı denir. Burada θ  ve θ ∗ , 
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sırasıyla, birim dual vektörlere karşılık gelen yönlü doğrular arasındaki Lorentziyen timelike açı 

ve en kısa uzaklıktır [41].  
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7. 3

1ID  DUAL LORENTZ UZAYINDA KÜRESEL EĞRĐLER YARDIMIYLA ROBOT UÇ-

ĐŞLEVCĐ HAREKETĐNĐN ĐNCELENMESĐ 

  

 Robot uç-işlevci bir yörüngede hareket ederken, buna sıkı bir şekilde bağlı olan, araç 

merkez noktasından geçen ve yön vektörü, O  yönlenme vektörü olan bir doğru, bir regle yüzey 

çizer. Bu regle yüzeye, bir dual Lorentziyen küresel eğri karşılık gelir. Bu bölümde, dual 

Lorentziyen uzaydaki dual küresel eğrilerin eğrilik teorisi yardımıyla, robot uç-işlevci hareketi 

incelenecektir. Dual küresel eğrilerin eğrilik teorisi, dual hiperbolik küresel eğriler ve dual 

Lorentziyen küresel eğriler olmak üzere iki bölümde ele alınacaktır.  

 

7.1. Dual Hiperbolik Küresel Eğriler Yardımıyla Robot Uç-işlevci Hareketinin Đncelenmesi 

  

 Robot uç-işlevcinin, üzerinde hareket ettiği timelike doğuranlı timelike regle yüzey 

  ( , ) ( ) ( )s v s v s= +X c e                

denklemi ile verilsin. Burada c , regle yüzeyin boğaz çizgisi ve e , ana doğruların doğrultman 

vektörüdür. Teorem 6.7. den, bu regle yüzeye, dual hiperbolik küre üzerinde bir dual eğri 

karşılık geldiği söylenebilir. Bu dual eğri 

  ( ) ( ) ( )s s sε ∗= +ɶe e e                 

biçiminde gösterilebilir [27]. Burada ∗e  moment vektörü olup 

  ( ) ( ) ( )s s s∗ = ×e c e                 

biçiminde yazılır. Burada  

  , 1, , 1, , 0′ ′ ′ ′= − = =e e e e c e              (7.1) 

özellikleri sağlanır [27]. 

 ( )ue  birim vektörü reel hiperbolik birim küre üzerinde bir eğri çizer ve bu eğriye ɶe  dual 

eğrisinin reel gösterge eğrisi denir. Burada gösterge eğrisinin bir tek noktadan ibaret olmadığı 

varsayılır. 

 ′=t e  vektörü, gösterge eğrisinin teğetine paralel, birim vektördür. (7.1) denklemlerinden, 

e  nin timelike vektör ve t  nin spacelike vektör olduğu görülür.  

 Dual hiperbolik eğrinin türevinin normu 
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  1 ε′ = − ∆ɶe                  

biçiminde yazılabilir [27]. Burada det( , , )′∆ = c e t  açılabilir timelike regle yüzeyleri karakterize 

eder. Timelike regle yüzeyin açılabilir olması için gerek ve yeter şart 0∆ =  olmasıdır. ɶe  dual 

eğrisinin dual yay uzunluğu 

  
0 0 0

( ) (1 )

s s s

s e u du du s duε ε′= = − ∆ = − ∆∫ ∫ ∫ɶ            (7.2) 

olarak verilir [27]. (7.2) denkleminden 1s ε′ = − ∆  olduğu görülür. Böylece ( )sɶe  dual eğrisinin 

birim dual teğeti 

  ( )
1

d

ds s
ε

ε

′ ′
= = = = + ×

′ − ∆

ɶ ɶ ɶ
ɶ

e e e
t t c t              

biçiminde verilir [27]. ɶg  birim dual vektörü de  

  ε= − × = + ×ɶɶ ɶg e t g c g               

biçiminde verilebilir [27]. Burada e  timelike vektör ve t  spacelike vektör olduğundan g  

spacelike vektördür. Böylece ɶe  dual hiperbolik eğrisinin dual Darboux çatısı ya da dual jeodezik 

üçyüzlüsü olarak bilinen { }, ,ɶɶ ɶe t g  dual çatısı elde edilir.  

 Dual Darboux çatısının türev formülleri matris formda  

  

0 1 0

1 0

0 0

d

ds
γ

γ

     
     =     
     −     

ɶ ɶ

ɶ ɶ

ɶ ɶ

e e

t t

g g

             (7.3) 

biçiminde yazılabilir [27]. Burada γ  dual jeodezik eğriliktir. Dual Darboux üçyüzlüsünün dual 

Darboux ani dönme vektörü 

  γ= − −ɶ ɶ ɶ
ew e g               

dir [27].  

 Dual araç çatısı, Şekil 7.1 de gösterildiği gibi, robot uç-işlevcinin araç merkez noktasından 

geçen üç doğru ile tanımlanabilir. Bunlar; yön vektörü, O  yönlenme vektörü olan yönlenme 

doğrusu, yön vektörü, A  yaklaşım vektörü olan yaklaşım doğrusu ve yön vektörü, N  normal 

vektör olan normal doğrudur. Yönlenme doğrusuna karşılık gelen birim dual vektör ɶO , yaklaşım 

doğrusuna karşılık gelen birim dual vektör ɶA  ve normal doğruya karşılık gelen birim dual vektör 

ɶN  ile gösterilebilir. ɶO , ɶA  ve ɶN  birim dual vektörlerine de sırasıyla dual yönlenme vektörü, 

dual yaklaşım vektörü ve dual normal vektör denilebilir.  
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Şekil 7.1. Robot uç-işlevci ve dual araç çatısı 

 

 Dual araç çatısının ɶO  birim dual vektörü ile dual Darboux çatısının ɶe  birim dual vektörü 

aynı vektördür. Dual hiperbolik eğrilerde ɶe  birim dual vektörü timelike vektör olduğundan dual 

araç çatısının ɶO  dual yönlenme vektörü de timelike vektördür. Dolayısıyla ɶA  ve ɶN  birim dual 

vektörleri spacelike vektörlerdir.  

 ɶA  ve ɶt  birim dual vektörleri arasındaki dual spacelike açı ϕ ϕ ε ϕ ∗= +  olsun. Burada ϕ , 

ɶA  ve ɶt  birim dual vektörlerine karşılık gelen doğrular arasındaki spacelike açı ve ϕ∗  ise bu 

doğrular arasındaki en kısa Lorentziyen uzaklıktır. Buradaki ϕ  spacelike açısı (5.43) 

denklemindeki açıdır ve ϕ∗  ise boğaz çizgisi ile dayanak eğrisi arasındaki uzaklık olan Rµ  dir.  

 Dual Darboux çatısı ile dual araç çatısı arasındaki ilişki matris formda  

  

1 0 0

0 cos sin

0 sin cos

ϕ ϕ

ϕ ϕ

     
     = −     
         

ɶ ɶ

ɶ ɶ

ɶ ɶ

O e

A t

N g

            (7.4) 

biçiminde verilebilir.  (7.4) matris eşitliğinin her iki tarafının türevi alınırsa 

  

0 0 0 1 0 0

0 sin cos 0 cos sin

0 cos sin 0 sin cos

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

 ′ ′       
         ′ ′ ′= − − + −         
 ′ ′       −        

ɶ ɶ ɶ

ɶ ɶ ɶ

ɶ ɶ ɶ

O e e

A t t

N g g

         (7.5) 

elde edilir. Dual Darboux çatısının türev formülleri olan (7.3) matris eşitliği, (7.5) denkleminde 

yerine yazılırsa 
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0 1 0

cos sin cos

sin cos sin

ϕ δ ϕ δ ϕ

ϕ δ ϕ δ ϕ

 ′    
     ′ = − −     
 ′    −    

ɶ ɶ

ɶ ɶ

ɶ ɶ

O e

A t

N g

          

bulunur. Burada δ δ ε δ ϕ γ∗ ′= + = −  olup, " ' " , ɶe  dual hiperbolik eğrisinin s  dual yay 

uzunluğu parametresine göre türevi gösterir. (7.4) yardımıyla, dual araç çatısının türev formülleri 

matris formda  

  

0 cos sin

cos 0

sin 0

ϕ ϕ

ϕ δ

ϕ δ

   ′  
    ′ = −    
   ′      

ɶ ɶ

ɶ ɶ

ɶ ɶ

O O

A A

N N

           

biçiminde elde edilir. Dual araç çatısının dual ani dönme vektörü ise 

  sin cosδ ϕ ϕ= + −ɶ ɶ ɶɶ
Ow O A N             

olarak bulunur. (7.4) matris eşitliği kullanılarak, dual araç çatısının dual ani dönme vektörü, dual 

Darboux çatısı cinsinden 

  δ= −ɶ ɶ ɶ
Ow e g                (7.6) 

biçiminde ifade edilebilir. Dual araç çatısının dual ani dönme vektörü ile dual Darboux çatısının 

dual Darboux ani dönme vektörü arasındaki ilişkinin 

  ϕ′= +ɶ ɶ ɶ
O ew e w              

olduğu görülür. 

 Dual araç çatısının ani dönme vektörü, robot uç-işlevcinin dual hız vektörüdür. Dual araç 

çatısının dual ani dönme vektörünün normu 

  2 1w δ= = − +ɶ
O Ow               (7.7) 

dir. w w wε ∗= +O O O  olmak üzere (7.7) denklemi reel ve dual kısımlara ayrılırsa 

  
2

2

2 2

1
1 ,

1 1
Ow w

δ δ δ
δ

δ δ

∗
∗

 − + −
 = − + =
 − + − + 

O          

elde edilir. Burada wO , robot uç-işlevcinin açısal hızı ve w
∗

O , robot uç-işlevcinin öteleme (lineer) 

hızıdır.  

 (7.6) denkleminin türevi alınır ve (7.3) daki türev formülleri kullanılırsa, robot uç-işlevcinin 

dual ivme vektörü 

   δ ϕ′ ′ ′= + ɶɶ ɶ
Ow e t           

biçiminde elde edilir. Dual ivme vektörünün normu 
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  2 2a w δ ϕ′ ′ ′= = − +ɶ
O              (7.8) 

olarak bulunur. a a aε ∗= +  olmak üzere, (7.8) denklemi reel ve dual kısımlara ayrılırsa 

  
2 2

2 2

2 2 2 2
a , a

δ ϕ δ δ ϕ ϕ
δ ϕ

δ ϕ δ ϕ

∗ ∗
∗

  ′ ′′ ′ ′ ′− + − +
′ ′  = − + =

 ′ ′− + ′ ′− + 

        

elde edilir. Burada a , robot uç-işlevcinin açısal ivmesi ve a∗ , robot uç-işlevcinin öteleme 

ivmesidir.  

 

7.2. Dual Lorentziyen Küresel Eğriler Yardımıyla Robot Uç-işlevci Hareketinin 

Đncelenmesi 

  

 Bu bölümde, robot uç-işlevci hareketinin incelenmesinde kullanılan dual Lorentziyen küresel 

eğrilerin eğrilik teorisi, dual Lorentziyen küresel spacelike eğrilerin eğrilik teorisi ve dual 

Lorentziyen küresel timelike eğrilerin eğrilik teorisi olmak üzere iki bölümde ele alınacaktır. 

  

7.2.1. Dual Lorentziyen Küresel Spacelike Eğriler Yardımıyla Robot Uç-işlevci Hareketinin 

Đncelenmesi 

 

 Robot uç-işlevcinin, üzerinde hareket ettiği spacelike doğuranlı timelike regle yüzey 

  ( , ) ( ) ( )s v s v s= +X c e             

denklemi ile verilsin. Burada c , regle yüzeyin boğaz çizgisi ve e , ana doğruların doğrultman 

vektörüdür. Teorem 6.7. den, bu regle yüzeye, dual Lorentziyen küre üzerinde bir dual spacelike 

eğri karşılık geldiği söylenebilir. Bu dual eğri 

  ( ) ( ) ( )s s sε ∗= +ɶe e e               

biçiminde gösterilebilir. Burada ∗e  moment vektörü olup 

  ( ) ( ) ( )s s s∗ = ×e c e               

biçiminde yazılır. Burada  

  , 1, , 1, , 0′ ′ ′ ′= = =e e e e c e              (7.9) 

özellikleri sağlanır [41]. 

 ( )ue  birim vektörü, reel Lorentziyen birim küre üzerinde bir eğri çizer ve bu eğriye ɶe  dual 

eğrisinin reel gösterge eğrisi denir. Burada gösterge eğrisinin bir tek noktadan ibaret olmadığı 

varsayılır. 
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 ′=t e  vektörü, gösterge eğrisinin teğetine paralel birim vektördür. (7.9) denklemlerinden, e  

ve t  vektörlerinin spacelike olduğu görülür.  

 Dual Lorentziyen eğrinin türevinin normu 

  1 ε′ = − ∆ɶe              (7.10) 

biçiminde yazılabilir. Burada det( , , )′∆ = c e t  açılabilir spacelike doğuranlı timelike regle 

yüzeyleri karakterize eder. Spacelike doğuranlı timelike regle yüzeyin açılabilir olması için gerek 

ve yeter şart 0∆ =  olmasıdır. ɶe  dual eğrisinin dual yay uzunluğu 

  
0 0 0

( ) (1 )

s s s

s e u du du s duε ε′= = − ∆ = − ∆∫ ∫ ∫ɶ           (7.11) 

olarak verilir [41]. (7.11) den 1s ε′ = − ∆  olduğu görülür. Böylece ( )sɶe  dual eğrisinin birim dual 

teğeti 

  ( )
1

d

ds s
ε

ε

′ ′
= = = = + ×

′ − ∆

ɶ ɶ ɶ
ɶ

e e e
t t c t         

biçiminde verilir [41]. Son olarak ɶg  birim dual vektörü de  

  ε= × = + ×ɶɶ ɶg e t g c g              

biçiminde verilebilir [41]. Burada e  ve t  spacelike vektör olduklarından, g  timelike vektördür. 

Böylece ɶe  dual Lorentziyen küresel spacelike eğrisinin dual Darboux çatısı ya da dual jeodezik 

üçyüzlüsü olarak bilinen { }, ,ɶɶ ɶe t g  dual çatısı elde edilir.  

 Dual Darboux çatısının türev formülleri matris formda  

  

0 1 0

1 0

0 0

d

ds
γ

γ

     
     = −     
          

ɶ ɶ

ɶ ɶ

ɶ ɶ

e e

t t

g g

           (7.12) 

biçiminde yazılabilir [41]. Burada γ  dual jeodezik eğriliktir. Dual Darboux üçyüzlüsünün Dual 

Darboux ani dönme vektörü 

  γ= −ɶ ɶ ɶ
ew e g               

dir [41].  

 Dual araç çatısı, robot uç-işlevcinin araç merkez noktasından geçen üç doğru ile 

tanımlanabilir. Bunlar; yön vektörü, O  yönlenme vektörü olan yönlenme doğrusu, yön vektörü, 

A  yaklaşım vektörü olan yaklaşım doğrusu ve yön vektörü, N  normal vektör olan normal 

doğrusudur. Yönlenme doğrusuna karşılık gelen birim dual vektör, ɶO , yaklaşım doğrusuna 

karşılık gelen birim dual vektör, ɶA  ve normal doğruya karşılık gelen birim dual vektör, ɶN  ile 
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gösterilebilir. ɶO , ɶA  ve ɶN  birim dual vektörlerine de sırasıyla dual yönlenme vektörü, dual 

yaklaşım vektörü ve dual normal vektör denilebilir. Dual araç çatısının ɶO  birim dual vektörü ile 

dual Darboux çatısının ɶe  birim dual vektörü aynı vektördür. Dual Lorentziyen küresel spacelike 

eğrilerde, ɶe  birim dual vektörü spacelike vektör olduğundan, dual araç çatısının ɶO  dual 

yönlenme vektörü de spacelike vektördür. Bu durumda ɶA  birim dual vektörü spacelike ya da 

timelike vektör olabilir. 

 

i)  ɶA  birim dual vektörü spacelike olsun.  

  

 ɶA  ve ɶt  birim dual vektörleri arasındaki dual merkez açı ϕ ϕ ε ϕ ∗= +  olsun. Burada ϕ , 

ɶA  ve ɶt  birim dual vektörlerine karşılık gelen doğrular arasındaki merkez açı ve ϕ∗  ise bu 

doğrular arasındaki en kısa Lorentziyen uzaklıktır. Buradaki ϕ  açısı (5.23) denklemindeki açı 

ve ϕ∗  ise boğaz çizgisi ile dayanak eğrisi arasındaki uzaklık olan Rµ  dir. Böylece dual 

Darboux çatısı ile dual araç çatısı arasındaki ilişki matris formda  

  

1 0 0

0 cosh sinh

0 sinh cosh

ϕ ϕ

ϕ ϕ

     
     =     
         

ɶ ɶ

ɶ ɶ

ɶ ɶ

O e

A t

N g

          (7.13) 

biçiminde verilebilir.  (7.13) matris eşitliğinin her iki tarafının türevi alınırsa 

  

0 0 0 1 0 0

0 sinh cosh 0 cosh sinh

0 cosh sinh 0 sinh cosh

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

 ′ ′       
         ′ ′ ′= +         
 ′ ′               

ɶ ɶ ɶ

ɶ ɶ ɶ

ɶ ɶ ɶ

O e e

A t t

N g g

        (7.14) 

elde edilir. Dual Darboux çatısının türev formülleri olan (7.12), (7.14) matris eşitliğinde yerine 

yazılırsa  

  

0 1 0

cosh sinh cosh

sinh cosh sinh

ϕ δ ϕ δ ϕ

ϕ δ ϕ δ ϕ

 ′    
     ′ = −     
 ′    −    

ɶ ɶ

ɶ ɶ

ɶ ɶ

O e

A t

N g

         

bulunur. Burada δ δ ε δ ϕ γ∗ ′= + = +  olup, " ' " , ɶe  dual hiperbolik eğrisinin s  dual yay 

uzunluğu parametresine göre türevi gösterir. (7.12) matris eşitliği kullanılarak, dual araç 

çatısının türev formülleri matris formda  
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0 cosh sinh

cosh 0

sinh 0

ϕ ϕ

ϕ δ

ϕ δ

   ′ − 
    ′ = −    
   ′  −    

ɶ ɶ

ɶ ɶ

ɶ ɶ

O O

A A

N N

          

biçiminde elde edilir. Dual araç çatısının dual ani dönme vektörü ise 

  sinh coshδ ϕ ϕ= + −ɶ ɶ ɶɶ
Ow O A N             

olarak bulunur. (7.14) matris eşitliği kullanılarak, dual araç çatısının dual ani dönme vektörü, 

dual Darboux çatısı cinsinden 

  δ= −ɶ ɶ ɶ
Ow e g               

biçiminde ifade edilebilir. Dual araç çatısının dual ani dönme vektörü ile dual Darboux çatısının 

dual Darboux ani dönme vektörü arasındaki ilişkinin 

  ϕ′= +ɶ ɶ ɶ
O ew e w              (7.15) 

olduğu görülür. 

 Dual araç çatısının ani dönme vektörü, robot uç-işlevcinin dual hız vektörüdür. Dual araç 

çatısının dual ani dönme vektörünün normu 

  2 1w δ= = −ɶ
O Ow            (7.16) 

dir. w w wε ∗= +O O O  olmak üzere (7.16) denklemi reel ve dual kısımlara ayrılırsa 

  
2

2

2 2

1
1 ,

1 1
w w

δ δ δ
δ

δ δ

∗
∗

 −
 = − =
 − − 

O O           

elde edilir. Burada wO , robot uç-işlevcinin açısal hızı ve w
∗

O , robot uç-işlevcinin öteleme hızıdır.  

 (7.15) denkleminin türevi alınır ve (7.12) daki türev formülleri kullanılırsa, robot uç-işlevcinin 

dual ivme vektörü 

   δ ϕ′ ′ ′= + ɶɶ ɶ
Ow e t              

biçiminde elde edilir. Dual ivme vektörünün normu 

  2 2a w δ ϕ′ ′ ′= = +ɶ
O            (7.17) 

olarak bulunur. a a aε ∗= +  olmak üzere (7.17) denklemi reel ve dual kısımlara ayrılırsa 

  2 2

2 2
a , a

δ δ ϕ ϕ
δ ϕ

δ ϕ

∗ ∗
∗

′ ′′ ′+
′ ′= + =

′ ′+
           

elde edilir. Burada a , robot uç-işlevcinin açısal ivmesi ve a∗ , robot uç-işlevcinin öteleme 

ivmesidir.  
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ii)  ɶA  birim dual vektörü timelike olsun.  

  

 ɶA  ve ɶt  birim dual vektörleri arasındaki dual timelike açı ϕ ϕ ε ϕ ∗= +  olsun. Burada ϕ , 

ɶA  ve ɶt  birim dual vektörlerine karşılık gelen doğrular arasındaki timelike açı ve ϕ∗  ise bu 

doğrular arasındaki en kısa Lorentziyen uzaklıktır. Buradaki ϕ  açısı (5.26) denklemindeki açı 

ve ϕ∗  ise boğaz çizgisi ile dayanak eğrisi arasındaki uzaklık olan Rµ  dir. Böylece dual 

Darboux çatısı ile dual araç çatısı arasındaki ilişki matris formda  

  

1 0 0

0 sinh cosh

0 cosh sinh

ϕ ϕ

ϕ ϕ

     
     =     
         

ɶ ɶ

ɶ ɶ

ɶ ɶ

O e

A t

N g

          (7.18) 

biçiminde verilebilir. (7.18) matris eşitliğinin her iki tarafının türevi alınırsa 

  

0 0 0 1 0 0

0 cosh sinh 0 sinh cosh

0 sinh cosh 0 cosh sinh

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

 ′ ′       
         ′ ′ ′= +         
 ′ ′               

ɶ ɶ ɶ

ɶ ɶ ɶ

ɶ ɶ ɶ

O e e

A t t

N g g

      (7.19) 

elde edilir. Dual Darboux çatısının türev formülleri olan (7.12), (7.19) matris eşitliğinde yerine 

yazılırsa  

  

0 1 0

sinh cosh sinh

cosh sinh cosh

ϕ δ ϕ δ ϕ

ϕ δ ϕ δ ϕ

 ′    
     ′ = −     
 ′    −    

ɶ ɶ

ɶ ɶ

ɶ ɶ

O e

A t

N g

      

bulunur. Burada δ δ ε δ ϕ γ∗ ′= + = +  olup, " ' " , ɶe  dual hiperbolik eğrisinin s  dual yay 

uzunluğu parametresine göre türevi gösterir. (7.12) matris eşitliği kullanılarak, dual araç 

çatısının türev formülleri matris formda  

  

0 sinh cosh

sinh 0

cosh 0

ϕ ϕ

ϕ δ

ϕ δ

   ′ − 
    ′ = −    
   ′  −    

ɶ ɶ

ɶ ɶ

ɶ ɶ

O O

A A

N N

       

biçiminde elde edilir. Dual araç çatısının dual ani dönme vektörü ise 

  cosh sinhδ ϕ ϕ= − + −ɶ ɶ ɶɶ
Ow O A N            

olarak bulunur. (7.18) matris eşitliği kullanılarak, dual araç çatısının dual ani dönme vektörü dual 

Darboux çatısı cinsinden 

  δ= −ɶ ɶ ɶ
Ow e + g             (7.20) 
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biçiminde ifade edilebilir. Dual araç çatısının dual ani dönme vektörü ile dual Darboux çatısının 

dual Darboux ani dönme vektörü arasındaki ilişkinin 

  ϕ ′= − −ɶ ɶ ɶ
O ew e w               

olduğu görülür. 

 Dual araç çatısının ani dönme vektörü, robot uç-işlevcinin dual hız vektörüdür. Dual araç 

çatısının dual ani dönme vektörünün normu 

  2 1w δ= = −ɶ
O Ow            (7.21) 

dir. w w wε ∗= +O O O  olmak üzere (7.21) denklemi reel ve dual kısımlara ayrılırsa 

  
2

2

2 2

1
1 ,

1 1
w w

δ δ δ
δ

δ δ

∗
∗

 −
 = − =
 − − 

O O           

elde edilir. Burada wO  robot uç-işlevcinin açısal hızı ve w
∗

O  robot uç-işlevcinin öteleme hızıdır.  

 (7.20) denkleminin türevi alınır ve (7.12) deki türev formülleri kullanılırsa, robot uç-işlevcinin 

dual ivme vektörü 

   δ ϕ′ ′ ′= − − ɶɶ ɶ
Ow e t              

biçiminde elde edilir. Dual ivme vektörünün normu 

  2 2a w δ ϕ′ ′ ′= = +ɶ
O            (7.22) 

olarak bulunur. a a aε ∗= +  olmak üzere (7.22) denklemi reel ve dual kısımlara ayrılırsa 

  2 2

2 2
a , a

δ δ ϕ ϕ
δ ϕ

δ ϕ

∗ ∗
∗

′ ′′ ′+
′ ′= + =

′ ′+
           

elde edilir. Burada a , robot uç-işlevcinin açısal ivmesi ve a∗ , robot uç-işlevcinin öteleme 

ivmesidir.  

 

7.2.2. Dual Lorentziyen Küresel Timelike Eğriler Yardımıyla Robot Uç-işlevci Hareketinin 

Đncelenmesi 

 

 Robot uç-işlevcinin, üzerinde hareket ettiği spacelike regle yüzey 

  ( , ) ( ) ( )s v s v s= +X c e             

denklemi ile verilsin. Burada c , regle yüzeyin boğaz çizgisi ve e , ana doğruların doğrultman 

vektörüdür. Teorem 6.7. den, bu regle yüzeye, dual Lorentziyen küre üzerinde bir dual timelike 

eğri karşılık geldiği söylenebilir. Bu dual eğri 

  ( ) ( ) ( )s s sε ∗= +ɶe e e               
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biçiminde gösterilebilir. Burada ∗e  moment vektörü olup 

  ( ) ( ) ( )s s s∗ = ×e c e               

biçiminde yazılır. Burada  

  , 1, , 1, , 0′ ′ ′ ′= = − =e e e e c e            (7.23) 

özellikleri sağlanır [26]. 

 ( )ue  birim vektörü reel Lorentziyen birim küre üzerinde bir eğri çizer ve bu eğriye ɶe  dual 

eğrisinin reel gösterge eğrisi denir. Burada gösterge eğrisinin bir tek noktadan ibaret olmadığı 

varsayılır. 

 ′=t e  vektörü, gösterge eğrisinin teğetine paralel, birim vektördür. (7.23) denklemlerinden 

e  vektörünün spacelike ve t  vektörünün timelike olduğu görülür. 

 Dual Lorentziyen eğrinin türevinin normu 

  1 ε′ = + ∆ɶe               

biçiminde yazılabilir. Burada det( , , )′∆ = c e t  açılabilir spacelike regle yüzeyleri karakterize 

eder. Spacelike regle yüzeyin açılabilir olması için gerek ve yeter şart 0∆ =  olmasıdır. ɶe  dual 

eğrisinin dual yay uzunluğu 

  
0 0 0

( ) (1 )

s s s

s e u du du s duε ε′= = + ∆ = + ∆∫ ∫ ∫ɶ          (7.24) 

olarak verilir [26]. (7.24) denkleminden 1s ε′ = + ∆  olduğu görülür. Böylece ( )sɶe  dual eğrisinin 

birim dual teğeti 

  ( )
1

d

ds s
ε

ε

′ ′
= = = = + ×

′ + ∆

ɶ ɶ ɶ
ɶ

e e e
t t c t            

biçiminde verilir [26]. Son olarak ɶg  birim dual vektörü de  

  ε= − × = + ×ɶɶ ɶg e t g c g             

biçiminde verilebilir [26]. Burada e  spacelike ve t  timelike vektör olduğundan, g  spacelike 

vektördür. Böylece ɶe  dual Lorentziyen küresel spacelike eğrisinin dual Darboux çatısı ya da 

dual jeodezik üçyüzlüsü olarak bilinen { }, ,ɶɶ ɶe t g  dual çatısı elde edilir.  

 Dual Darboux çatısının türev formülleri matris formda  

  

0 1 0

1 0

0 0

d

ds
γ

γ

     
     =     
          

ɶ ɶ

ɶ ɶ

ɶ ɶ

e e

t t

g g

           (7.25) 

biçiminde yazılabilir [26]. Burada, γ  dual jeodezik eğriliktir. Dual Darboux üçyüzlüsünün Dual 

Darboux ani dönme vektörü 
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  γ= −ɶ ɶ ɶ
ew e + g               

dir [26].  

 Dual araç çatısı, robot uç-işlevcinin araç merkez noktasından geçen üç doğru ile 

tanımlanabilir. Bunlar; yön vektörü, O  yönlenme vektörü olan yönlenme doğrusu, yön vektörü, 

A  yaklaşım vektörü olan yaklaşım doğrusu ve yön vektörü, N  normal vektör olan normal 

doğrusudur. Yönlenme doğrusuna karşılık gelen birim dual vektör, ɶO , yaklaşım doğrusuna 

karşılık gelen birim dual vektör, ɶA  ve normal doğruya karşılık gelen birim dual vektör, ɶN  ile 

gösterilebilir. ɶO , ɶA  ve ɶN  birim dual vektörlerine de sırasıyla dual yönlenme vektörü, dual 

yaklaşım vektörü ve dual normal vektör denilebilir. Dual araç çatısının ɶO  birim dual vektörü ile 

dual Darboux çatısının ɶe  birim dual vektörü aynı vektördür. Dual Lorentziyen küresel spacelike 

eğrilerde, ɶe  birim dual vektörü spacelike vektör olduğundan, dual araç çatısının ɶO  dual 

yönlenme vektörü de spacelike vektördür. Bu durumda ɶA  birim dual vektörü spacelike ya da 

timelike vektör olabilir. 

 

i)  ɶA  birim dual vektörü spacelike olsun.  

  

 ɶA  ve ɶt  birim dual vektörleri arasındaki dual timelike açı ϕ ϕ ε ϕ ∗= +  olsun. Burada ϕ , 

ɶA  ve ɶt  birim dual vektörlerine karşılık gelen doğrular arasındaki timelike açı ve ϕ∗  ise bu 

doğrular arasındaki en kısa Lorentziyen uzaklıktır. Buradaki ϕ  açısı, (5.5) denklemindeki açı ve 

ϕ∗  ise boğaz çizgisi ile dayanak eğrisi arasındaki uzaklık olan Rµ  dir. Böylece dual Darboux 

çatısı ile dual araç çatısı arasındaki ilişki matris formda  

  

1 0 0

0 sinh cosh

0 cosh sinh

ϕ ϕ

ϕ ϕ

     
     =     
         

ɶ ɶ

ɶ ɶ

ɶ ɶ

O e

A t

N g

          (7.26) 

biçiminde verilebilir.  (7.26) matris eşitliğinin her iki tarafının türevi alınırsa 

  

0 0 0 1 0 0

0 cosh sinh 0 sinh cosh

0 sinh cosh 0 cosh sinh

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

 ′ ′       
         ′ ′ ′= +         
 ′ ′               

ɶ ɶ ɶ

ɶ ɶ ɶ

ɶ ɶ ɶ

O e e

A t t

N g g

       (7.27) 

elde edilir. Dual Darboux çatısının türev formülleri olan (7.25), (7.27) de yerine yazılırsa  
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0 1 0

sinh cosh sinh

cosh sinh cosh

ϕ δ ϕ δ ϕ

ϕ δ ϕ δ ϕ

 ′    
     ′ =     
 ′        

ɶ ɶ

ɶ ɶ

ɶ ɶ

O e

A t

N g

          

bulunur. Burada δ δ ε δ ϕ γ∗ ′= + = +  olup, " ' " , ɶe  dual Lorentziyen küresel timelike 

eğrisinin s  dual yay uzunluğu parametresine göre türevi gösterir. (7.25) yardımıyla dual araç 

çatısının türev formülleri matris formda  

  

0 sinh cosh

sinh 0

cosh 0

ϕ ϕ

ϕ δ

ϕ δ

   ′ − 
    ′ =    
   ′      

ɶ ɶ

ɶ ɶ

ɶ ɶ

O O

A A

N N

          

biçiminde elde edilir. Dual araç çatısının dual ani dönme vektörü ise 

  cosh sinhδ ϕ ϕ= − +ɶ ɶ ɶɶ
Ow O A N            

olarak bulunur. (7.26) matris eşitliği kullanılarak, dual araç çatısının dual ani dönme vektörü, 

dual Darboux çatısı cinsinden 

  δ= −ɶ ɶ ɶ
Ow e g              (7.28) 

biçiminde ifade edilebilir. Dual araç çatısının dual ani dönme vektörü ile dual Darboux çatısının 

dual Darboux ani dönme vektörü arasındaki ilişkinin 

  ϕ′= −ɶ ɶ ɶ
O ew e w               

olduğu görülür. 

 Dual araç çatısının ani dönme vektörü, robot uç-işlevcinin dual hız vektörüdür. Dual araç 

çatısının dual ani dönme vektörünün normu 

  2 1w δ= = +ɶ
O Ow             (7.29) 

dir. w w wε ∗= +O O O  olmak üzere (7.29) denklemi reel ve dual kısımlara ayrılırsa 

  2

2
1 ,

1
w w

δ δ
δ

δ

∗
∗= + =

+
O O            

elde edilir. Burada wO , robot uç-işlevcinin açısal hızı ve w
∗

O , robot uç-işlevcinin öteleme hızıdır.  

 (7.28) denkleminin türevi alınır ve (7.25) kullanılırsa, robot uç-işlevcinin dual ivme vektörü 

   δ ϕ′ ′ ′= + ɶɶ ɶ
Ow e t              

biçiminde elde edilir. Dual ivme vektörünün normu 

  2 2a δ ϕ′ ′ ′= = −ɶ
Ow            (7.30) 

olarak bulunur. a a aε ∗= +  olmak üzere (7.30) denklemi reel ve dual kısımlara ayrılırsa 
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2 2

2 2

2 2 2 2
a , a

δ ϕ δ δ ϕ ϕ
δ ϕ

δ ϕ δ ϕ

∗ ∗
∗

  ′ ′′ ′ ′ ′− −
′ ′  = − =

 ′ ′− ′ ′− 

         

elde edilir. Burada a , robot uç-işlevcinin açısal ivmesi ve a∗ , robot uç-işlevcinin öteleme 

ivmesidir.  

 

ii)  ɶA  birim dual vektörü timelike olsun.  

  

 ɶA  ve ɶt  birim dual vektörleri arasındaki dual hiperbolik açı ϕ ϕ ε ϕ ∗= +  olsun. Burada ϕ , 

ɶA  ve ɶt  birim dual vektörlerine karşılık gelen doğrular arasındaki hiperbolik açı ve ϕ∗  ise bu 

doğrular arasındaki en kısa Lorentziyen uzaklıktır. Buradaki ϕ  açısı (5.7) denklemindeki açı ve 

ϕ∗  ise boğaz çizgisi ile dayanak eğrisi arasındaki uzaklık olan Rµ  dir. Böylece dual Darboux 

çatısı ile dual araç çatısı arasındaki ilişki matris formda  

  

1 0 0

0 cosh sinh

0 sinh cosh

ϕ ϕ

ϕ ϕ

     
     =     
         

ɶ ɶ

ɶ ɶ

ɶ ɶ

O e

A t

N g

          (7.31) 

biçiminde verilebilir.  (7.31) matris eşitliğinin her iki tarafının türevi alınırsa 

  

0 0 0 1 0 0

0 sinh cosh 0 cosh sinh

0 cosh sinh 0 sinh cosh

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

 ′ ′       
         ′ ′ ′= +         
 ′ ′               

ɶ ɶ ɶ

ɶ ɶ ɶ

ɶ ɶ ɶ

O e e

A t t

N g g

      (7.32) 

elde edilir. Dual Darboux çatısının türev formülleri olan (7.25), (7.32) de yerine yazılırsa  

  

0 1 0

sinh sinh cosh

cosh cosh sinh

ϕ δ ϕ δ ϕ

ϕ δ ϕ δ ϕ

 ′    
     ′ =     
 ′        

ɶ ɶ

ɶ ɶ

ɶ ɶ

O e

A t

N g

          

bulunur. Burada δ δ ε δ ϕ γ∗ ′= + = +  olup, " ' " , ɶe  dual hiperbolik eğrisinin s  dual yay 

uzunluğu parametresine göre türevi gösterir. (7.25) türev denklemleri kullanılarak, dual araç 

çatısının türev formülleri matris formda  

  

0 cosh sinh

cosh 0

sinh 0

ϕ ϕ

ϕ δ

ϕ δ

   ′ − 
    ′ =    
   ′      

ɶ ɶ

ɶ ɶ

ɶ ɶ

O O

A A

N N

       

biçiminde elde edilir. Dual araç çatısının dual ani dönme vektörü ise 
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  sinh coshδ ϕ ϕ= − − +ɶ ɶ ɶɶ
Ow O A N            

olarak bulunur. (7.31) matris eşitliği kullanılarak, dual araç çatısının dual ani dönme vektörü dual 

Darboux çatısı cinsinden 

  δ= −ɶ ɶ ɶ
Ow e + g             (7.33) 

biçiminde ifade edilebilir. Dual araç çatısının dual ani dönme vektörü ile dual Darboux çatısının 

dual Darboux ani dönme vektörü arasındaki ilişkinin 

  ϕ′= −ɶ ɶ ɶ
O ew e + w              

olduğu görülür. 

 Dual araç çatısının ani dönme vektörü, robot uç-işlevcinin dual hız vektörüdür. Dual araç 

çatısının dual ani dönme vektörünün normu 

  2 1w δ= = +ɶ
O Ow             (7.34) 

dir. w w wε ∗= +O O O  olmak üzere (7.34) denklemi reel ve dual kısımlara ayrılırsa 

  2

2
1 ,

1
w w

δ δ
δ

δ

∗
∗= + =

+
O O            

elde edilir. Burada wO , robot uç-işlevcinin açısal hızı ve w
∗

O , robot uç-işlevcinin öteleme hızıdır.  

 (7.33) denkleminin türevi alınır ve (7.25) türev formülleri kullanılırsa, robot uç-işlevcinin dual 

ivme vektörü 

   δ ϕ′ ′ ′= − − ɶɶ ɶ
Ow e t              

biçiminde elde edilir. Dual ivme vektörünün normu 

  2 2a w δ ϕ′ ′ ′= = −ɶ
O            (7.35) 

olarak bulunur. a a aε ∗= +  olmak üzere, (7.35) denklemi reel ve dual kısımlara ayrılırsa 

  
2 2

2 2

2 2 2 2
a , a

δ ϕ δ δ ϕ ϕ
δ ϕ

δ ϕ δ ϕ

∗ ∗
∗

  ′ ′′ ′ ′ ′− −
′ ′  = − =

 ′ ′− ′ ′− 

         

elde edilir. Burada a , robot uç-işlevcinin açısal ivmesi ve a∗ , robot uç-işlevcinin öteleme 

ivmesidir.  

 

Örnek 7.1. 1c >  olmak üzere robot uç-işlevci, Şekil 7.2 de gösterildiği gibi, 

( , ) (cos sin , sin cos , )u v u v u u v u cv= − +X            

tek kanatlı hiperboloit yüzeyi üzerinde η  spin açısı ile hareket etsin. Tek kanatlı hiperbolidin 

regle formu 
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( , ) (cos ,sin ,0) ( sin ,cos , )u v u u v u u c= + −X           

biçimindedir. Bu yüzeyin geometrisi için [41] e bakınız. Bu yüzeyin dayanak eğrisi  

( ) (cos ,sin ,0)u u u=αααα          

ve ana doğrularının doğrultman vektörü 

( ) ( sin ,cos , )u u u c= −R             

dir. Denklem (3.67) den, dayanak eğrisinin aynı zamanda boğaz çizgisi olduğu görülür, yani 

 ( ) ( )u u=c αααα               

dir. 

 Tek kanatlı hiperboloit yüzeyine karşılık gelen dual eğri 

( ) ( ) ( )u u uε ∗= +ɶe e e            

olsun. Bu dual eğrinin reel gösterge eğrisi  

 
2

( ) 1
( ) ( sin ,cos , )

( ) 1

u
u u u c

u c
= = −

−

R
e

R
           

dir. Moment vektörü 

( )

1 2 3

2

2

1
( ) ( ) ( ) cos sin 0

1
sin cos

1
sin , cos ,1

1

u u u u u
c

u u c

c u c u
c

∗

− − 
 = × =  

−  − 

= −
−

e e e

e c e

       

olduğundan, dual eğri 

[ ]
2

1
( ) ( sin ,cos , ) ( sin , cos ,1)

1
u u u c c u c u

c
ε= − + −

−
ɶe          

biçiminde yazılabilir. Reel gösterge eğrisinin teğet vektörü 

2

1
( ) ( cos , sin ,0)

1
u u u

c
′ = − −

−
e          

dir. Reel gösterge eğrisinin teğetinin normu 

 
2

1
( ) 1

1
u

c
′ = ≠

−
e              

olduğundan, ( )ue  birim hızlı değildir. Normalleştirilmiş parametre 

2 2
0

1 1
( )

1 1

u

s s u dl u
c c

= = =
− −

∫         

biçiminde bulunur. Böylece regle yüzeyin boğaz çizgisi ve doğuranları ile reel gösterge eğrisi ve 

dual eğri, s  parametresine göre sırasıyla 
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 2 2( ) ( sin 1 ,cos 1 , )s c s c s c= − − −R ,           

 2 2( ) (cos 1 ,sin 1 ,0)s c s c s= − −c ,           

( )2 2

2

1
( ) sin 1 ,cos 1 ,

1
s c s c s c

c
= − − −

−
e         

ve 

( )

( )

2 2

2

2 2

1
( ) sin 1 ,cos 1 ,

1

sin 1 , cos 1 ,1

s c s c s c
c

c c s c c sε

= − − −
−

+ − − −


ɶe

        

olarak yazılabilir. , 1= −e e  olduğundan, e  timelike vektördür. 

( )2 2cos 1 , sin 1 ,0c s c s′= = − − − −t e          

elde edilir. , 1=t t  olduğundan, t  spacelike vektördür. Bu durumda g  spacelike vektördür ve 

1 2 3

2 2

2

2 2

1
sin 1 cos 1

1
cos 1 sin 1 0

c s c s c
c

c s c s

− − 
 

= − × = − − − − 
−  

− − − −  

e e e

g e t        

   ( )2 2

2

1
sin 1 , cos 1 , 1

1
c c s c c s

c
= − − − −

−
 

olarak bulunur. , 1=g g  dir.  

( )

1 2 3

2 2

2 2

( ) ( ) ( ) cos 1 sin 1 0 0,0,0

cos 1 sin 1 0

s s s c s c s

c s c s

∗

− − 
 

= × = − − = 
 
− − − −  

e e e

t c t      

olduğundan  

( )2 2( ) cos 1 , sin 1 ,0s c s c s= − − − −ɶt          (7.36) 

olarak bulunur. 

1 2 3

2 2

2

2 2

1
( ) ( ) ( ) cos 1 sin 1 0

1
sin 1 cos 1 1

s s s c s c s
c

c c s c c s

∗

− − 
 

= × = − − 
−  

− − − −  

e e e

g c g      
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          ( )2 2

2

1
sin 1 , cos 1 ,

1
c s c s c

c
= − − − −

−
 

olduğundan 

2 2

2

2 2

1
( ) ( sin 1 , cos 1 , 1)

1

(sin 1 , cos 1 , )

s c c s c c s
c

c s c s cε

= − − − −
−

+ − − − −


ɶg

        

olarak bulunur.  

 Boğaz çizgisinin birinci mertebeden türevi  

  ( )2 2 2 2( ) 1sin 1 , 1cos 1 , 0s c c s c c s′ = − − − − −c        

dir. 

 (7.2) denkleminden, dual yay uzunluğu parametresinin türevinin 

  1
ds

s
ds

ε′ = = − ∆            

olduğu bilinmektedir. Burada  

  det( , , ) c′∆ = =c e t             

olarak bulunduğundan  

  1s cε′ = −             

biçiminde elde edilir. 

 (7.3) denkleminden 

  
d

ds
γ= −

ɶ
ɶ

g
t               (7.37) 

olduğu bilinmektedir. Zincir kuralı yardımıyla 

  
d d ds

ds ds ds
=
ɶ ɶg g

             

yazılabilir. ɶg  birim dual vektörünün s  parametresine göre türevi alınarak ve yukarıdaki denklem 

kullanılarak 

  
( )

( )

2 2

2 2 2

cos 1 ,sin 1 ,0

( 1) cos 1 ,sin 1 ,0

d
c c s c s

ds

c c s c sε

= − −

+ + − −

ɶg

         (7.38) 

bulunur. (7.36) ve (7.38) denklemleri, (7.37) denkleminde yerine yazılarak elde edilen eşitlik reel 

ve dual kısımlara ayrılırsa 

  cγ =  ve 2 1cγ ∗ = +             

elde edilir. Böylece dual jeodezik eğrilik  
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  2( 1)c cγ γ εγ ε∗= + = + +           

biçiminde bulunur.  

 ɶA  ve ɶt  birim dual vektörleri arasındaki dual açı 

  ϕ ϕ εϕ∗= +              

dır. Burada ϕ  ve ϕ∗  sırasıyla, birim dual vektörlere karşılık gelen doğrular arasındaki reel açı 

ve en kısa uzaklıktır. Dayanak eğrisi, boğaz çizgisine eşit olduğundan, dayanak eğrisi ile boğaz 

çizgisi arsındaki uzaklık olan ϕ∗  sıfıra eşittir. Yüzeyin dayanak eğrisi üzerindeki normal vektörü 

n
S  ile boğaz çizgisi üzerindeki merkez normal vektör h , aynı vektör olduklarından aralarındaki 

açı 

  0σ =             

dır. Böylece  

  ϕ η σ η= + =             

olduğundan 

  ϕ η=              

olarak bulunur.  

 Dual araç çatısının dual ani dönme vektörünün 

  δ= −ɶ ɶ ɶ
Ow e g             

olduğu bilinmektedir. Burada  

  2( ) ( 1)c cδ ϕ γ η ε′ ′= − = − + +         

olduğundan dual araç çatısının dual ani dönme vektörü ya da dual açısal hız vektörü 

  

( )

( )

2 2 2

2

2 2 3

2

1
sin 1 , cos 1 , 1

1

1
( 2)sin 1 , ( 2)cos 1 ,

1

c s c s c c
c

c c s c c s c c
c

η η η

ε η η η

′ ′ ′= − − − + +
−

′ ′ ′+ − − − + − + +
−

ɶ
Ow

     

olarak bulunur. Bu dual vektörün normu alınarak uç-işlevcinin dual hızı 

  2 1w δ= = − +ɶ
O Ow             (7.39) 

olarak yazılabilir. (7.39) denklemi, reel ve dual kısımlara ayrılırsa, uç-işlevcinin açısal ve lineer 

hızı sırasıyla 

  2 21 ( ) 1w cδ η′= − + = − − +O           

ve  
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2 2 2

2 22 2

1 ( ) 1 ( )( 1)

1 ( ) 11 ( ) 1

c c c
w

c c

δ δδ η η

δ ηδ η

∗
∗

   ′ ′− + − − + − +
   = − = −
   ′− + − − + ′− + − − +   

O      

biçiminde bulunur. Robot uç-işlevcinin dual ivme vektörü 

  2 2a δ ϕ′ ′ ′= = − +ɶ
Ow             (7.40) 

dir. (7.40) denklemi, reel ve dual kısımlara ayrılırsa, uç-işlevcinin açısal ve lineer ivmesi ise 

sırasıyla 

  2 2 2 2a δ ϕ η η′ ′ ′′ ′= − + = − +          

ve 

  
2 2

2 2 2 2
a 0

δ ϕ δ δ ϕ ϕ

δ ϕ δ ϕ

∗ ∗
∗

  ′ ′′ ′ ′ ′− + − +
 = =
 ′ ′− + ′ ′− + 

        

biçiminde bulunur. 

 

 

Şekil 7.1. ( , ) (cos sin , sin cos , )u v u v u u v u cv= − +X , ( )1c >  tek kanatlı hiperboloit yüzeyi üzerinde 

hareket eden bir robot uç-işlevci örneği 
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Örnek 7.2. 0c ≠  olmak üzere robot uç-işlevci 

( , ) ( cos , sin , )u v v u v u cu=X              

helikoid yüzeyi üzerinde η  spin açısı ile hareket etsin. Helikoidin regle formu 

( , ) (0, 0, ) (cos , sin , 0)u v cu v u u= +X             

biçimindedir. Bu yüzeyin dayanak eğrisi  

( ) (0, 0, )u cu=αααα               

ve ana doğrularının doğrultman vektörü 

( ) (cos , sin , 0)u u u=R           

dir. (3.37) denkleminden, dayanak eğrisinin aynı zamanda boğaz çizgisi olduğu görülür, yani 

 ( ) ( )u u=c αααα             

dir. 

 Helikoid yüzeyine karşılık gelen dual eğri 

( ) ( ) ( )u u uε ∗= +ɶe e e             

olsun. Bu dual eğrinin reel gösterge eğrisi  

 
( )

( ) (cos , sin , 0)
( )

u
u u u

u
= =

R
e

R
                      

dir. Moment vektörü 

( )

1 2 3

( ) ( ) ( ) 0 0

cos sin 0

sin , cos , 0

u u u cu

u u

cu u cu u

∗

− − 
 = × =  
  

= −

e e e

e c e
            

olduğundan, dual eğri 

( ) (cos , sin , 0) ( sin , cos , 0)u u u cu u cu uε= + −ɶe             

biçiminde yazılabilir. Reel gösterge eğrisinin teğet vektörü 

( ) ( sin , cos , 0)u u u′ = −e               

dir. Reel gösterge eğrisinin teğetinin normu 

 ( ) 1u′ =e                

olduğundan ( )ue  birim hızlı bir eğridir. Dolayısıyla u  parametresi normalleştirilmiş parametre 

olup, u  parametresi yerine s  parametresi kullanılabilir. Böylece regle yüzeyin boğaz çizgisi ve 

doğuranları ile reel gösterge eğrisi ve dual eğri, s  parametresine göre, sırasıyla, 

 ( ) (cos , sin , 0)s s s=R ,              

 ( ) (0, 0, )s cs=c ,              
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( ) (cos , sin , 0)s s s=e             

ve 

( ) (cos , sin , 0) ( sin , cos , 0)s s s cu s cu sε= + −ɶe        

olarak yazılabilir. , 1=e e  olduğundan, e  spacelike vektördür. 

( )2 2cos 1 , sin 1 ,0c s c s′= = − − − −t e          

elde edilir. , 1=t t  olduğundan, t  spacelike vektördür. Bu durumda g  timelike vektördür ve 

1 2 3

cos sin 0 (0, 0,1)

sin cos 0

s s

s s

− − 
 = × = = 
 − 

e e e

g e t           

olarak bulunur. , 1= −g g  dir.  

1 2 3

( ) ( ) ( ) 0 0 ( cos , sin ,0)

sin cos 0

s s s cs cs s cs s

s s

∗

− − 
 = × = = 
 − 

e e e

t c t        

olduğundan  

( ) ( sin , cos , 0) ( cos , sin ,0)s s s cs s cs sε= − +ɶt        

olarak bulunur. 

1 2 3

( ) ( ) ( ) 0 0 (0, 0,1)

0 0 1

s s s cs
∗

− − 
 = × = = 
  

e e e

g c g         

olduğundan 

( ) (0, 0,1)s =ɶg              

olarak bulunur.  

 Boğaz çizgisinin birinci mertebeden türevi  

  ( ) (0, 0, )s c′ =c             

dir. 

 (7.10) denkleminden, dual yay uzunluğu parametresinin türevinin 

  1
ds

s
ds

ε′ = = − ∆            

olduğu bilinmektedir. Burada  

  det( , , ) c′∆ = =c e t             

olarak bulunduğundan  
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  1s cε′ = −            

biçiminde elde edilir. 

 (7.12) matris eşitliğinin üçüncü satırından 

  
d

ds
γ=

ɶ
ɶ

g
t              

olduğu bilinmektedir. Zincir kuralı yardımıyla 

  
d d ds

ds ds ds
=
ɶ ɶg g

             

yazılabilir. ɶg  birim dual vektörünün s  parametresine göre türevi 

  (0, 0, 0)
d

ds
=
ɶg

                       

olduğundan dual jeodezik eğrilik  

  0 0γ γ εγ ε∗= + = +             

biçiminde bulunur.  

 ɶA  ve ɶt  birim dual vektörleri arasındaki dual açı 

  ϕ ϕ εϕ∗= +              

dır. Burada ϕ  ve ϕ∗  sırasıyla, birim dual vektörlere karşılık gelen doğrular arasındaki reel açı 

ve en kısa uzaklıktır. Dayanak eğrisi boğaz çizgisine eşit olduğundan, dayanak eğrisi ile boğaz 

çizgisi arsındaki uzaklık olan ϕ∗  sıfıra eşittir. Yüzeyin dayanak eğrisi üzerindeki normal vektörü 

n
S  ile boğaz çizgisi üzerindeki merkez normal vektör h , aynı vektör olduklarından aralarındaki 

açı 

  0σ =              

dır. Böylece  

  ϕ η σ η= + =             

olduğundan 

  ϕ η=             

olarak bulunur.  

 Dual araç çatısının dual ani dönme vektörünün 

  δ= −ɶ ɶ ɶ
Ow e g            

olduğu bilinmektedir. Burada  

  0δ ϕ γ η ε′ ′= − = +             

olduğundan, dual araç çatısının dual ani dönme vektörü ya da dual açısal hız vektörü 

  ( cos , sin , 1) ( sin , cos , 0)s s cs s cs sη η ε′ ′= − + −ɶ
Ow          
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olarak bulunur. Bu dual vektörün normu alınarak uç-işlevcinin dual hızı 

  2 1w δ= = −ɶ
O Ow             (7.41) 

olarak yazılabilir. (7.41) denklemi, reel ve dual kısımlara ayrılırsa, uç-işlevcinin açısal ve lineer 

hızı sırasıyla 

  2 21 1w δ η ′= − = −O             

ve  

  
2

2 2

1
0

1 1
w

δ δδ

δ δ

∗
∗

 −
 = =
 − − 

O            

biçiminde bulunur. Robot uç-işlevcinin dual ivme vektörü 

  2 2a δ ϕ′ ′ ′= = +ɶ
Ow             (7.42) 

dir. (7.42) denklemi, reel ve dual kısımlara ayrılırsa, uç-işlevcinin açısal ve lineer ivmesi ise 

sırasıyla 

  2 2 2 2a δ ϕ η η′ ′ ′′ ′= + = +            

ve 

  
2 2

a 0
δ δ ϕ ϕ

δ ϕ

∗ ∗
∗

′ ′′ ′− +
= =

′ ′− +
          

biçiminde bulunur. 
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