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This thesis consists of four parts. The first part is the introduction part and some
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convergence properties of the Kantorovich operator and in the fourth part, we will
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affine functions.
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1.GIRIS

Analizin O6nemli alanlarindan birisi de Yaklasimlar Teorisidir. Bu teori,
fonksiyonlarin daha basit fonksiyonlarla yani polinomlar, Fourier serileri, tam
fonksiyonlar gibi fonksiyonlarla yaklasma durumunu incelemektedir. Burada en iyi
yaklasimin nasil elde edilecegi en az hata ile bu hesaplamalarin nasil yapilabilecegi,
yakinsaklik derecesi ve yakinsaklik hizinin hesaplanmasi gibi konular ele
alinmaktadir. Yaklagim teorisi fonksiyonlarla yakinsakliginin yaninda diferansiyel
denklemler integral denklemleri 1s1 denklemlerinin ¢oziimleriyle birlikte de ortaya
cikmaktadir. Bu nedenle arastirmacilar tarafindan farkli yonleri ile biiyiyiip
gelismekte olan bir alandir. Arastirmacilar daha iyi sonuclar elde edebilmek icin
klasik operatorleri genellestirerek veya modiifiye ederek yeni operator dizileri
tanimlayarak ¢alismalara devam etmektedir Bu teorinin sadece analiz de uygulamasi
yoktur. Mihendislikte, optimizasyon, ekonomi, istatistik gibi bircok alanda da
kullanilmakta oldugundan popiilerligini uzun yillardir korumaktadir. Ornegin yapay
sinir aglarinin geometrik tasarimlarinda, niifus dagilimnda, grafik tasarimlarinda,
goriintli isleme ve sinyalizasyon sistemlerinde, otomotiv endiistrisinde kullanimlari
bulunmaktadir. Bununla birlikte matematigin kendi i¢indeki dallarla da bir kopri

gorevi gormekte olup piir ve uygulamali matematigi birlestirmektedir.

Yaklagimlar teorisinde en c¢ok kullanilan operatdrlerden birisi de lineer pozitif
operator dizileridir. Lineer pozitif operatdr dizilerinin bazi fonksiyonlar tarafindan
tekrar tretildigi veya bazi fonksiyonlari korudugu bilinmektedir. Bu fonksiyonlara
ornek olarak test fonksiyonlari, iistel fonksiyonlar, afin fonksiyonlar1 v.b. verilebilir

(bkz [1,4,8,9]).

Agratini [5], afin fonksiyonlar1 yeniden {ireten operatorlerle ilgili bir ¢aligma
yapmistir. Bu c¢alismada L,e,= e, ve L,e;= e, n € N, sartlarim1 saglayan
operatorlerle ilgili bazi yeni yakinsaklik sonuclari elde etmistir. Diskre operatorler
stireksiz fonksiyonlara yaklagmak i¢in uygun olmadigindan, bu operatdrler integral
tipli operatorlere genellestirilmektedir. Bernstein, Baskakov, Szasz gibi klasik
operatorlerin, Durmeyerr, Kantorovich gibi integral genellestirmeleri de literatiirde

mevcuttur [16,17]. Integral operatorleri, genellikle sabitleri korur. L,e,= e, 6zelligi



saglanir ki bu da, operatoriin e,” daki degerinin yine e, oldugunu gdsterir. Ancak

operatoriin e, deki degeri korunmaz.

Bu calismada, bir operatoriin yaklasim oOzelliklerinin bilinmesi durumunda,
Kantorovich tipli operatoriin, klasik ve agirlikli siireklilik modiilii yardimiyla, bazi

yakinsaklik sonuclari elde edilecektir.

Ozellikle operatdriin momentleri bilindiginde, ayn1 operatdriin Kantorovich formu

i¢in de yakinsama sonuglarinin verilebilecegi gosterilecektir.



2. TEMEL TANIM VE TEOREMLER

Tanim 2.1. V # @ bir kiime ve (K, +, .) reel veya kompleks sayilar cismi olsun.

Vde bir i¢ islem @:V XV —= V ve bir dis islem O: K X V = V seklinde tanimlansin.
Eger asagidaki sartlar saglaniyorsa © ve @ islemleriyle birlikte I* ye K cismi
tizerinde tanimli bir lineer uzay veya vektor uzayi denir ve (V,®, (K, +,),®) ile

gosterilir.

1) Her x,y,z € V igin (V, @) i¢ islemine gore degismeli gruptur.

v; ) Kapalilik 6zelligi, x@®@y € V

v, ) Birlesme 6zelligi, x®(y®z) = (xBy)Dz

v3 ) Birim eleman, x@6 = 6@®x = x olacak sekilde 8 € V dir.

v, ) Terseleman, x®x~! = x“1@®x = 0 olacak sekilde x~1 = —x € V dir.
vs ) Degisme ozelligi, x@®y = yDx

2) Her a, B € K ve her x,y € V igin skalerle carpma yani Vdeki © dis islemine gore

asagidaki sartlar saglanir.

Ve ) Kapalilik 6zelligi, a©x € V

v, ) Skalerlerin ¢carpim, (a - B)®Ox = a®(LOx)

vg ) Soldan dagilma ozelligi, a®(x®y) = (a®x)B(a®y)
Vg ) Sagdan dagilma 6zelligi, (a + £)Ox = (a®x)B(BOX)
v;10) Birim eleman, 1,®x = x olacak sekilde 1 € K dir.

Tanmmm 2.2. (X,+, .) bir K cismi (Rveya C) iizerinde tanimli lineer uzay ve
Ill: X - K

x = |lx]]
bir fonksiyon olsun. 8, X vektor uzayinin etkisiz eleman1 olmak iizere
i) Her x € X i¢in ||x|| = 0 (Pozitif tanimlilik)
ii) Her x € X i¢in [|x]| = 0 & x = 6, (Uzayin birim elemani)

iii) Her @ € K ve x € X i¢in ||lax|| = |al||x|| (Skalerle carpma)



iv) Her x,y € X icin ||x + y|| < lIx]| + llyll (Uggen esitsizligi)

sartlar1 saglaniyorsa ||-|| fonksiyonuna X tizerinde bir norm ve (X, ||-]]) ikilisine bir

normlu uzay denir. Boylece (X, |||, +, (K, +, .),.) uzay1 lineer normlu uzaydir.

Tanmmm 2.3. (X,d) bir metrik uzay ve (x,) bu uzayda bir dizi olsun. Ve > 0 igin
m,n > n, oldugunda d(x,,, x,) < € olacak sekilde n, sayis1 varsa (x,) dizisine
Cauchy dizisi denir. Eger X deki her Cauchy dizisi yakinsak ise yani x,, = x € X ise

X uzayma tam uzay denir.

Tamm 2.4. X ve Y iki fonksiyon uzayi olsun. Eger X’ den alinan herhangi bir f
fonksiyonuna Y’ de bir g fonksiyonu karsilik getiren bir L kurali varsa, buna X

uzayinda bir operator denir. Bu operator L(f; x) = g(x) bigiminde gosterilir.

Tamm 2.5. X ve Y lineer fonksiyon uzaylari olmak iizere,
L:X —>Y
seklindeki L operatoriinii g6z 6niine alalim. Eger Vf,g € X ve Va, f € R i¢in
L(af + Bg; x) = aL(f; x) + BL(g; x)
kosulu saglaniyor ise L operatdriine lineer operator denir.

Tamm 2.6. Eger bir L operatorii pozitif degerli fonksiyonu yine pozitif degerli bir

fonksiyona doniistiiriiyor ise yani, f bir fonksiyon ve L bir operatér olmak iizere,
f=0i¢inL(f) =0

ise L operatoriine pozitif operatér denir. Hem lineerlik hem de pozitiflik sartlarini

saglayan operatorlere lineer pozitif operatorler denir.

f <0 iken L(f;x) < 0 esitsizligi de saglanir. f < 0 oldugunu kabul edelim. Bu

durumda —f > 0 olacaktir. L operatorii pozitif oldugundan,
L(—f;x)=0
olur.
L operatdriiniin lineerlik 6zelligi de gdzoniinde bulunduruldugunda,
—L(f;x) 20=L(f;x) <0
elde edilir. Dolayisiyla
f<0iseL(f;x)<0.

4



Tamm 2.7. f € C[a, b] olsun. § > 0 igin
w(f;6) = sup [f(O) - f(x)l (2.1)
x,t € [a,b]
|t—x|<6
ile tanimlanan w(f; &) ifadesine f fonksiyonunun siireklilik modiilii denir.

Lemma 2.1. Siireklilik modiilii § > 0 i¢in asagidaki 6zellikleri saglar.

i. w(f;6)=0
ii. 6, <6,ise w(f;67) < w(f;8,)
iii.  Vvm €N i¢in w(f; mé) < mw(f;o)
iv. VA€ R*icin o(f;18) < (A + Da(f; 8)
V. lima(f;6) =0

Vi 1@ - f@) < o(f; |t~z
vii.  IF(0) =Gl < (54 1) (3 8).
Tanmm 2.8.

Ky, f ye bagl bir sabit olmak tizere, f pozitif reel eksende siirekli, lim A K

x—o00 1+x2

ve Ky sonlu olsun.

C = {f f, [0, ) siirekli ve lim 10 _ g } sinifi seklinde tanimlansin. Bu
Kl0,00) oL o 14xz $ .

uzayda norm,

Al = |f ()
e, = 5072

bi¢iminde tanimlidur.

f € CKf [O, OO) i@in,

30 = 0 G
|h|<é
seklinde gosterilen Q(f; &) ifadesine, agirlikli uzayda bir siireklilik modiilii denir
([14]).
Lemma 2.2 Q(f; &) asagidaki 6zellikleri saglar.

5



LIFO) - fGI <@+ (t—0)*)A + x|t — x])
ii.m € N igin
Q(f;m8) < 2m(1 + 62)2(f; 5).
iii. 1 € Rve f € Cyy[0,00) igin
Q(f; 28) < 2(1 + (1 + 6)(f; 6)
iv. lim 2(f; 8) = 0' .

[f(&)=f (x|
(1+x2)(1+(t—x)2)

Ispati.(f;|t—x|) sup yazilarak
0<x

[t—x|<|t—x|
I - fGIl < A+ (€ —0)*)(A +x2)2(f; ]t — xI)
esitsizligi elde edilir.
ii. m bir dogal say1 olmak iizere

) _ Ifx+h)—f )| If(e+mh)—f ()l .
Q(f;md) = sup oG WP Grdrarmny ST
|hl<ms |ni<6

|f (x +mh) = fO)| = [Xkes f(x + kh) — f(x + (k = Dh)|

2y vm  f(e+kh)—f(x+(k—1h)|
< (147" 2k (1+h2)(1+(x+(k—1)h)2)

= (1 +h)a(f;8) Xxza(1 + (x + (k — Dh)?)
< (1+h)Of;8)[1+ (x + mh)?)] X, 1
<m(1+ h?)[2 + 2(x? + (mh)?12(f; )

< 2m(1 +h) (1 +22) (1+ 22 a(f: 6)

1+x
<2m(1+ A1+ x)(A + (mh)Q(f; 6)
elde edilir. Boylece

|f(x+mh)—f(x)|

2 .
et < 2m(L+ h)A(f;8)

bulunur. Supremum alinirsa, m € N igin

(1+ (x+ (k — 1)h)?



|f (x + mh) — f(x)I

VR 1+ ) (1 + (mh)?)
|h|<6

< 2m(1 + 82)(f; 6)

elde edilir. 1 € R igin, [|A]] <A < [|A]] + 1 oldugundan
Q(f;28) < o(f; ([12] + 1)6)
< 2([IA1] + D + 8)(f; 8)
<2(1+ DA+ 82)0(f; 6)
esitsizligi saglanir.

Tanmim 2.9. L: X - Y bir operator olsun. D(L), L nin tanim kiimesi olmak flizere,
VfeD(L) igin,
NL(f520) IyS Ml f NIy

esitsizligini saglayan MeR™ varsa L' ye D(L)' de smurli operator denir.

I L llx—y= inf{M:IL(f; 0y < MIIfllx}
sayisina L operatoriiniin normu denir.

Tanim 2.10. X ve Y normlu uzaylar L: X — Y lineer operatoér olsun. Her € > 0
sayisina karsilik Oyle bir pozitif &(e, fy) sayist bulunabilir ki [|f — follx <&

oldugunda
IIL(F) — L(fo)lly < € esitsizligi saglanirsa L operatdrii f;, € X i¢in siireklidir denir.

Tanmim 2.11. (s,,) reel terimli bir dizi olsun. (s,) dizisinin sonlu adetteki terimleri
hari¢ diger tim terimleri bir s sayisinin keyfi € > 0 komsulugunda kaliyorsa (s,,)

dizisinin limiti s dir denir ve (s,,) — s ile veya lim s,, = s ile gosterilir.
n—->oo

Teorem 2.1. (Weierstrass Yaklasim Teoremi)

f fonksiyonu, [a, b] araligi {izerinde, siirekli fonksiyonlar uzayinda olmak iizere,
Ve>0 igin, |[f(x) — B,(x)| < € olacak sekilde n.dereceden bir B,(x) polinom
dizisi vardir. Yani her siirekli f fonksiyonuna karsilik gelen P, (x) polinomlar dizisi
vardir. Bernstein, Weierstrass teoreminde adi gegen polinomlara bir 6rnek olan

Bernstein polinomlarini x € [0,1] igin,



n

B, (f;x) = z f (S) (Z) xk(1 = x)nk

k=0

seklinde tanimlamistir.

Yaklasimlar teorisinde dnemli teoremlerden birisi de Korovkin tarafindan vermistir.

Bu teorem, lineer pozitif operatorler alaninda yapilan c¢alismalara biiylik katki

saglamistir.

Teorem 2.2. (P.P. Korovkin Teoremi (1951))

f € Cla, b] olsun. Tiim reel eksende, |f(x)| < M; olmak iizere,
Eger L, (f; x) lineer pozitif operator dizisi, her x € [a, b] i¢in,
iLL,(1;x)31

i. L,(t;x) 3 x

iii. L, (t%;x) 3 x?

kosullarini sagliyorsa, bu durumda her f € [a, b] igin, L,,(f;x) 3 f(x) dir.

(2.2)

Ispat: f € C[a, b] olsun. Siirekli fonksiyon tanimindan her pozitif € sayisina karsilik

oyle bir & bulabiliriz ki [t — x| < § oldugunda |f(t) — f(x)| < e olur. [t —x| > &

oldugunda ise (2.2)’ den ve li¢cgen esitsizliginden dolay1,

If @) = fOII < IfFOI+ [f ()] < 2Mf

yazilabilir. Diger taraftan eger |t — x| > § ise It:CI
(t-x)?

o—>1

saglanir. (2.3) ve (2.4)’ ten

(t—x)2
F(©) = f()] < 2Mp < 2Mp —<3—
esitsizlikleri saglanir.

Ozetle |t — x| < & igin, |f(t) — f(x)| < e ve |t — x| > & igin,

(t —x)?

O = FG] < 2Mp —

elde edilir. Boylece her t € R ve x € [a, b] i¢in;

> 1 olacagindan,

(2.3)

(2.4)



(t—2x)?

If () = fO] < e+ 2Mp— (2.5)

dir. Bger (i), (ii) ve (iii) kosullarmn1 saglayan (L,,) operatér dizisinin,
lim 1L (F (3 % = £ () llclap = O
esitligini sagladigin gosterirsek ispat tamamlanmus olur.
Lineerlikten:
ILa(F (£ 2) = FEO| = [Ln(F(0);2) = F () + L (f ()3 2) = Ln(F ()5 )]
= [Ln(F(£); %) = Ln(F ()3 0) + Lu(F (1); %) — F ()]
= |2 ((F®) = £GO)sx) + F ) Ln(Lsx) = D)

yazilabilir. Burada iiggen esitsizligi kullanilirsa,

ILa(F (£ %) = FI < [Ln ((FO) = F@); %) | + 1F G L (120 = D))

yazilabilir. Diger taraftan lineer pozitif operatdrler monoton artan oldugundan

| ((F©® = F@)ix)| < La(f ©) = F GO 2)
yazilabilir. Boylece,
1L (£ (0 2) = FOOI < Lu(IF () = FGOL2) + F GOl (L (L 2) = D]
oldugu gésterilmis olur. (2.2)’den,
1L (F(0;2) = FGOI < Ly (£ ) = FOOL ) + MylLn (1) — 1]
yazilabilir. (L,,) monoton artan oldugundan (2.5)’in kullaniimastyla;

|Ln (f (£); ) — F (0

<L, (w%(t—x)%x)+Mf|(Ln(1;x)—1)| (2.6)

bulunur. Diger taraftan;

L, (s + %(t - x)z;x) =L(gx)+ Ly, (% (t — x)z;x)

= ¢eL,(1; —ZMfL t? — 2t Z,
—en(,x)+52 2(t% — 2tx + x%; x)
2My 2 2_ .2 2 2
=¢elL,(1;x) + 52 [L,(t%; x)—x*—x* + 2x* — 2xL,(t; x) + x*L,,(1; x)]



2Mg
=¢elL,(1;x) + —

52 [L (t?%;x)—x? + 2x% — 2xL,(t; x) + x%L,(1; x)—x?]

2My
eL,(1;x) + —- [(L (t%x)—x?) + 2x(x — L,(t; x) + x%L,(1;x) — 1)]

bulunur. Son esitlik, (2.6)’da yerine yazilirsa

|L,(f (£); ) — fF(X)|
ZM
<el,(1;x) +—- [(Ln(t2 x)—x2) + 2x(x — L,,(t; x) + x?L,,(1; x) — 1)]

+Mp|(Ln(1;x) — 1| (2.7)
elde edilir. (1), (i) ve (iii) kosullarinin (2.7)’ de kullanilmasi ile
ILy(f(©); %) = f()| < ¢
elde edilir. Boylece AI_YLIO max |L,(f(t); x) — f(x)| = 0 ile ispat tamamlanr.

Tanim 2.12. Verilen f fonksiyonu ve (X1, Y1), « . , O V) Y = f(x) seklindeki

n tane nokta igin,

n

X — Xy

P=¥
Xi— X
k=1"" k

Jj*k

olmak tizere,
n
PG = ) P
j=1

seklinde tanimlanan polinoma Newton Interpolasyon Polinomu denir.

Tanim 2.13. Her pozitif o sayisi i¢in,

l/p
oL, (f:0) = sup ( j G+ 6 - f(x)lpdx>

|t|lso

[fadesine, f’ nin L,, uzayindaki siireklilik moduli denir.
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Tamm 2.14. Her € > 0 ve her bir x € A i¢in en az bir ny € N vardir 6yleki her n >
ng i¢in |f, (x) — f(x)| < € oluyorsa (f;,) dizisi A tlizerinde f fonksiyonuna noktasal

yakinsaktir denir. Burada n, sayisi hem ¢ , hem de x noktasina baglidir.

Tamm 2.15. Her € > 0 i¢in en az bir n, Oyleki her n > n, ve her x € A igin
|fn(x) — f(x)] <& oluyorsa (f,,) dizisi A fizerinde f fonksiyonuna diizgiin
yakinsaktir denir ve kisaca f, = f seklinde gosterilir. Burada n, sayist sadece &

sayisina bagli olup x noktalarindan bagimsizdir.

Tamm 2.16. Kompakt bir I = [a, b] aralig1 lizerinde tanimli, a noktasinda sagdan b
noktasinda soldan siirekli olmak iizere tiim noktalarda siirekli olan fonksiyonlarin
kiimesine siirekli fonksiyonlar uzay1 denir ve Cla, b] veya C(I) seklinde gosterilir.

Cla, b] uzay1 kisaca,
Cla,b]: = {f|f:[a, b] » R tanimh ve Vx € [a, b] i¢in siirekli}
seklinde ifade edilir.
Tanim 2.17. f fonksiyonu [a, b] iizerinde mutlak stireklidir gerek ve yeter sart Ve >
0 icin bir

6 > 0 vardir dyleki,

n
Y i-an <o
k=1

sartin1 saglayan her sonlu ve ikiserli ayrik
{(ay,by) c |a,bl:k =1,2,..,n}

aralik ailesi i¢in

n

D IFh) — fla)l < £

k=1
saglanir. Bu tanima gore mutlak siirekli her fonksiyon siireklidir fakat bunun karsiti
dogru degildir.

Tanim 2.18

(X, U, u) bir 6l¢ii uzayi olsun. 0 < p < o olmak tizere,

Ly = {f € MCX,U):IfI” € L(X, U, 1)}
11



kiimesine p. kuvvetten integrallenebilen fonksiyonlar sinifi denir.

Tamim 2.19. f,, ve f fonksiyonlari L, uzaymin elemanlari olsun.

(f,) dizisi f fonksiyonuna p-inci mertebeden ortalama yakinsaktir & Ve > 0 igin

An, € N dyleki Vn = n igin
I = fll, <&

Bu yakinsaklik ¢esidine L,," de yakinsaklik da denir. Burada p > 1 olup

|

p
If = fll, = ( f I3 —flpdu>

dir. Buna gore;

(fn) dizisi f fonksiyonuna L, de yakinsak < Tll,l—‘{?o Ifn — fll, = 0.

Tamm 2.20. D c R? smirh ve kapali bir bolge olmak iizere, D bdlgesi iizerindeki iki

degiskenli siirekli fonksiyonlar uzay1
C(D):={fIf:D »R tanmimh ve V(x,y) € D igin siirekli)
seklinde gosterilir.

Tamim 2.21. Kompakt bir [a, b] araliginda tanimli bir £fonksiyonunun her bir k =
1,2, ... icin &1nc1 mertebeden tiirevleri var ve bu tiirevler siirekli ise C*[a, b] uzayina

kmc1 mertebeden tiirevlenebilir siirekli fonksiyonlar uzay1 denir.

Tanim 2.22. K: R™ — R"™ bir fonksiyon ve L: R™ — R" lineer fonksiyon olsun. Her

x € R™ ve R™ deki bir b vektorii i¢in,

K(x) = L(x) + b sartin1 saglayan bir L lineer fonksiyonu varsa, K ‘ya afin

fonksiyon denir.

Bir afin fonksiyonu, 6teleme doniisiimiine sahip lineer bir fonksiyondur. Eger

K:R™ — R™ afin fonksiyon ise, her x € R™ igin,

K(x) = A(x) + b olacak sekilde bir n x m tipinde A matrisi ve R™’ deki bir b
vektorii vardir. Eger f: R — R afin ise her x € Ri¢in f(x) = ax + b olacak sekilde

a ve b reel sayilar1 vardir.

12



Tamim 2.23. Afin doniisiimi, f: R™ - R™ fonksiyonu x, A € R ve Vx,y € R" i¢in,

fAA=-Dx+y) =A=-DfX) +2f ()

kosulunu saglayan fonksiyona denir. Bununla birlikte

f (i /1k}’k> = i Aef i)
k=1 k=1

esitligi saglanir.
Lemma 2.3.

ai,...,a, ve by, ..., by, herhangi reel sayilar ise,

(ayby+...+a,by)? < (@2 +...+a,2) (b2 +...+b,”)

dir.
Ispat.
P(x) = (a;x — by)?*+...+(a,x — by)?

olsun. Eger,

A=ai+...+a,?

B = b?+...+b,”

C =ayby+...+a,b,

ise,

p(x) = Ax? —2Cx + B

elde edilir. Her xeR igin, p(x) karelerinin toplami oldugundan p(x) = 0 ¢ikar. Yani

her xeR i¢in,
Ax? —=2Cx+B=p(x) =0

bulunur. Her reel say1 i¢cin gegerli olan bdyle bir esitsizlik, ancak, C? — AB < 0 ise

mumkundir. Bu durumda
(aiby+...+a,hy)? < (@2+...+a,2) (b2 +...+b,”)

bulunur.

13



Tanim 2.24.

— k
feC[0,0) veneNveP,, = (n + llz 1) (1+z)N+k olmak iizere
T .
n (14 x)" £’ \n k (1 + x)k

Srrlh

ifadesine Baskakov operatorii denir.
Tamm 2.25.

f € C[0,00) ve x € [0,0) olmak iizere,

ol S nxk k
a0 = e ) Tr (7)
k=0
ifadesine Szasz operatdrii denir.
Tamim 2.26.
f € L,([0,1]) i¢in
kt1
n n+1
n\ k n-k
K0 =m0y () xka - [ rodr
k=0 _k_
n+1

seklinde tanimlanan operatore Kantorovich operatorii  denir. Kantorovich

operatdriiniin 1, t ve t? ‘deki degerleri asagidaki verilmistir.

K,(L;x) = kzzo(n +1) (:—: - -II{— 1) (Z) xk(1—x)nk
= B, (1;x)
=1,

Kt = ) <(k ;1321)_2k2) () ¥ ="

14



1
=" x4+ ve

n+1 2(n+1)
. 1/(k+1)3 =k3
Kn(tz; X) = z[n ;— (( (_:l -2 1)3 )] (1]:) Xk(l _ X)n_k
k=0
"3+ 1)22((k + 1D +k(k+1)+ kz)( ) k(1 — x)nk
= n’ B. (£2- n 1
T (n+1)? n(E550) + (n+ 1)2x+3(n+1)2
_n [, x1-x n 1
_(n+1)z<x + ~ )+(n+1)2x+3(n+1)2

Teorem 2.3. f € C[0,1] ve x € [0,1] igin,

lim K (f; %) = £ ().
Teorem 2.4.
f EL,[0,1],(1 < p < ) ise

Lim 1K, (F) = f1], =
dir.

Ispat. K, operatérii L,,[0,1]' den L,,[0,1]" e sinirlt bir operatordiir. Ayrica

Wesierstrass teoreminden f € L,,[0,1] oldugundan, verilen £ > 0 i¢in dyle bir
g € C[0,1] fonksiyonu vardir ki,
I~ gl <e
ve bir ny € N dyleki n > ny igin
|IKn(9) = gl|, < &

esitsizlikleri saglanir.

1K () = f1], = [IKn(F) = Kn(g) + Kn(g) — g + g — ]|
15
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< 1K () = KD, + [1Knlg) — gl|, + [lg = f1]
< [If = gl,(IIKI| + 1) + [IKng — gl

olup Vn = n, igin ||Kn(f) - f||p < £(|IK|| + 2) yazilabilir. Bdylece ispat
tamamlanir.

f(ax)—f(x)

promy seklinde

Tamim 2.27. f fonksiyonunun q tiirevi g # 1 igin D f (x) =

tanimlidir. Bununla birlikte lirr} Dqf (x) = f'(x) dir.
q—)

q integral,

[ fedg@ =) rea@ = a ) ==Y ag"f (g™
0 n=0 n=0

esitligi le tanimlanir.

Tanmm 2.28. f, [0,1] lizerinde q -integrallenebilir fonksiyon olmak iizere q € [0,1]

i¢in,
[k+1]
n [n+1] n—k—1
ny _
K=Y @+l [ rodo ot [ a-en
k=0 [k] s=0
[n+1]

seklinde tanimlanan operatére q -Bernstein Kantorovich operatorii denir. Test

fonksiyonlarindaki degerleri asagida verilmistir. Oncelikle operatoriin 1° deki degeri

verilsin.
[k+1]
n [n+1]
KD =Y+ 1] [ dgord,
k=0 [k]
[n+1]
olup g-integral yardimiyla
[k+1] [k+1] [x]
[n+1] [n+1] [n+1]
[Cai= | ae- | a
[k] 0 0
[n+1]

16



Jj=0

~ [k+1] | S
—(1—q)[n+1]zq’—(1—q);q’

[k + 1] — [k]
[n+ 1]

_k+q"—k_ q®
B [n+ 1] _[n+1]

yazilabilir. Boylece
Kl(1;x) =1

dir. Benzer sekilde operatoriin t ve t2° deki degerleri

[n] 1 1
KD = @
ar2. o _ g ] [n—1] 211+ 2D [n] 11
(i) =l [n + 1] o B] [n+1]? x+3[n+1]2
elde edilir.
Teorem 2.5.

0 < g, < 1 olmak tizere q = (q,) dizisi lim q, = 1 kosulunu saglasm. f, [0,1]
n—-oo

araliginda siirekli ve monoton artan bir fonksiyon ve x € [0,1] olmak tizere,
Lim K" (f;x) = f(x)
n—->oo

dir.

Ispat.f monoton artan bir fonksiyon ise K, (f; x): C[0,1] = C[0,1] e déniisiim yapan
lineer pozitif bir operatordiir. Test fonksiyonlarindaki degerleri yukarida verilmistir.
q yerine (q,) dizisi segilerek

nlg, In+1],, -1 1

lim ——In_ — g I~ _ =1
o n+ 1], now guln+ 1, now 1

=g In+ 1lq,

<[n +1lg, — 1) <[n +1]g, —[1+ q])
li [n]qn[n - 1]qn — i an q%
now  [n+ 12, now n+112,

elde edilir. Boylece Korovkin teoreminin hipotezleri saglair.

Teorem 2.6. F, f fonksiyonunun g anti tiirevi olsun. Bu durumda

17



DgBy, 1 (F;x) = K, (f; qx).

ispat. Asagidaki
n—-k—-1 e kn
Dq( 1_[ (1—q5x)> —[n—k] 1_[ (1 - ¢5*1x)
s=0 13
esitligi yazilabilir. Buradan,
n+1 [k] . -
n+ )
DyBY, 1 (F;x) = kZOF<[n . 1]> "+, (xk u(l . x))

n+1 " -0
- nr s+
_2F<[n+1]>[ N { kll_[(l L

=

n—k—1
—xfn-k+1] | | a- qs+1x)}
s=0
n+1 4
[k] [n+ 1][n]! ] B

=k=OF<[n+1]> [n+1_k]'[k_1]|xk1 l:)[(l—q 1x)

n+1 Wy
B k=1F <m> [k]mxk | | (1-g*1x)

[k+1]
= k=0 <[Tl + 1] f[ﬁ?”f(t)dq t) [ ] x Hn ~1(1 — qst1x)

[n+1]

= K1 (f; qx)
elde edilir.

Tanim 2.29. Bir noktada aldig1 deger ve tlirevleri f fonksiyonununkiler ile ayni olan
p polinomun,a f ile uyumlu polinom adi verilir. Eger,

p(x) = ap + ayx + ayx%+... +a,x"

polinomu x = a noktasinda n inci mertebeden tiirevlenebilen f fonksiyonu ile
uyumlu ise,

p@ =f() e a, =f(a)
p'@@)=f'@) e a =f'()
p”(@) = f"@) & 2a, = f"(a)
p"'(a) =f"(a) & 23.a; = f"'(a)
p®(@) = f®(a) & 2.3.4.a, = f®(a)

18



olup bu sekilde devam edilirse,
p®@) = fP@Q) o 23...k.,a, = fP()
olur. Yani k = 0,1,2, ..., n igin,

f (@)
k!

ai =

dir. Boylece derecesi n’ den biiyiik olmayan bir tek p polinomu vardir. Bu polinom
x = a noktasinda f fonksiyonu tarafindan iiretilen Taylor polinomu

n

(k)
pey = > Ty

k!
k=0

seklinde ifade edilebilir.
Teorem 2.7.

n = 1 olmak iizere f ile g, x = 0 noktasinda n-inci mertebeden tiirevlenebilen birer
fonksiyon ve p,,’ de n-inci dereceden bir polinom olsun. lirr& g(x) = 0 olmak {izere
X—

f(x) = pp(x) + x™g(x) yazilabiliyorsa, p,, polinomu f fonksiyonu tarafindan
x = 0 noktasinda iiretilen Taylor Polinomudur.

Tamim 2.30. Yukaridaki teoremlerden x = a noktasinda f(x) ve p(x) degerleri goz
Ontine alinirsa f'(x) — p(x) farkinin birbirine ¢ok yakin oldugu goriiliir. Eger, f(x) —
p(x) = K, (x) denirse K,,(x) ifadesine kalan terim, fark veya hata denir. Buradan,

WA
k!

(x — )" + K, (x)
k=0

yazilabilir ki bu ifadeye kalan terimli Taylor Formiilii denir.

Tamim 2.31 f fonksiyonu a noktasini igeren bir aralikta her mertebeden
tiirevlenebilir olsun.
n
f @

(= O 4 Ky ()

k=0
serisine x = a noktasinda f fonksiyonu tarafindan tiretilen Taylor Serisi ad1 verilir.

Tanim 2.32. Bir z = f(x, y) fonksiyonunun z, = (a, b) noktasinda her mertebeden
kismf tlirevleri mevcut olsun.

) 1 k
Zg[ﬂc(a, b)(x — a) +fy(al b)(y - b)]
k=0
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=f(a,b) + = [fe(a, b)(x — @) + £, (a, b)(y — b)]

1
% [fix(a, B)(x — @)% + 2f,,(a, b)(x — a)(y — b) + £, (a, b)(y — b)?] + -~

serisine f fonksiyonunun, (a, b) noktasindaki Taylor serisi denir. Bu serinin yakinsak
olmasi i¢in gerek ve yeter sart 0 < 6 < 1 i¢in,

Ky (x,y)
! n+1
:m{[fx(a+9(x—a),b+6(y—b))] (x — a)™*!
+[f(a+6(x—a),b+6(y—b)(y— b)]n+1(y B b)"+1}

kalan teriminin sifir olmasidir.

Tanim 2.33. n > 1 olmak iizere bir f fonksiyonunun tanim kiimesinden segilen
Xg, X1, ---, X seklindeki n + 1 tane nokta i¢in

flxol = f(xo)
r f(x1) — f(xo)

' _ X1—Xg
flxo, %1, %2] = f[xl’xi]z:;;[xo'xl]

f[xl' ey xn] - f[xO'xlﬂ s xn—l]
Xn—Xo

f[x0'x1' "'!xn] =

seklinde tanimlanan esitlige f fonksiyonunun n -inci mertebeden boliinmiis farklar:
denir ([21]). Bir f fonksiyonunun boliinmiis farki ayni fonksiyonun k-inci
mertebeden tiirevinin lineer birlesimi olarak yazilabilir. Simdi bunu ifade eden
teorem verilsin.

Teorem 2.8.

i =0,,..,nvex; € [a,b] olsun. Eger f € C¥[a, b] ise Rolle teoreminden

_ 96
k!

flx0, X1, oo s X

olacak sekilde en az bir &, € [a, b] vardir ([21]).

Teorem 2.9.n € N, h > 0 olmak iizere keyfi bir f fonksiyonu i¢in ardigik iki
noktanin fonksiyon altindaki goriintiileri arasindaki farki,

f(xi1) = fOx) = f Qi + h) = fxqy = Anf (x2)
ile gosterelim.
ARf (xo) = £ (xo)
20



ARf(x) = f(x; +h) = f(x)
seklinde devam edilirse,
M) = A (BKF () = AL (i) — AL ()

ile tanimlanan A operatdriine ileri fark operatorii denir. Ileri fark operatérii kisaca

n
n
A F G = ) (<D () f ienoi)
k=0
seklinde de yazilir. Yukaridaki tanimlardan ileri fark operatorii ile boliinmiis farklar

arasinda asagidaki iliski elde edilir.

Teorem 2.10. Her i, k > 0 i¢in x; = i olmak lizere

1
f (i X1y s Xigp) = FAkf(xi)
dir.

Tanim 2.34. f: [a, b] € R — R bir fonksiyon olsun. Her x;,x, € [a, b] ve her A1 €
[0.1] i¢in

fQxy + (1= Dxz) < Af (x1) + (1 = Df (x2)

oluyorsa f fonksiyonuna [a,b] tiizerinde konvekstir denir. Bu durumda —f
fonksiyonu konkav olur. Konvekslik tanim1 k + 1 tane farkli nokta i¢in de yazilabilir.

Xo, X1, -, Xy € [a.b] ve u; € R icin ¥, u; = 1 olmak iizere

k k
f(Z ex,) < Z e f(x)

esitsizligi saglaniyorsa, f fonksiyonuna konveks fonksiyon denir ([19]).

Teorem 2.11. f: [a, b] — R fonksiyonunun (a, b) tizerinde ikinci mertebeden tiirevi
var olsun. Eger Vx € (a.b) i¢in f"'(x) = 0 oluyorsa, f fonksiyonu [a.b]’ de
konvekstir.

Teorem 2.12. f fonksiyonu [a, b] iizerinde konvekstir ancak ve ancak f nin ikinci
mertebeden boliinmiis farklar1 negatif olmayandir.

Iki degiskenli fonksiyonlar icin ileri fark operatdrii iiggensel bolge iizerinde
asagidaki gibi tanimlanir.

Tamm 2.35.i,j € N, 0 < i + j < 2 olmak iizere eger h € R* igin Ag'j)f > 0 ise, bu

durumda f(x,y) fonksiyonuna (i,j)-inci mertebeden konvekstir denir ([22]).
Boylece iki degiskenli fonksiyonlar i¢in konvekslik taniminin iki degiskenli ileri fark
operatorii ile verilebilmesi, kismfi tiirevler yardimiyla da ifade edilebilecegi anlamina
gelir.
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Tanim.2.36. Operatorler i¢in noktasal yakinsaklik durumu, verilen bir f
fonksiyonunun Taylor a¢iliminin bir sonucu olarak,

lim ()T () = £1 = 9 (£, )

seklinde yazilabilir. Bdylece n — oo i¢in % — 0 dizisine operatoriin kendisini

olusturan fonksiyona asimptotik (noktasal yakinsaklik) hizi, @(f,x) ifadesine ise
operatoriin asimptotik degeri denir. Literatiirde bu duruma en iyi 6rnek 1932 yilinda
Bernstein operatdrleri i¢in ispatlanmis olan Voronovskaya teoremidir.

Tamim 2.37. D = [a, b] X [c,d] € R? smurh bir bdlge ve
CD):={fIf:D - R, V(x,y) € D i¢in f stirekli}

olmak iizere f € C(D) ve § > 0 igin,

sup

0= TGy <0

{f&s) - f.yit.x €lablsy€[cd]}

veya

O(f3 81,52) = prorios, U (65) = F ) t,x € [a,b, 5,y € [c,d]}
[s—y|=6,

fonksiyonuna, f fonksiyonunun D bolgesi lizerindeki tam stireklilik modiilii denir.

Burada § € (0,4/(b — a)?2 + (d — ¢)? dir ([19]).

Tanim 2.38. Binom formili

n

Ctym =) (P)xio

i=0
seklindedir. Binom formiiliinde y = 1 — x alinirsa

n

(x+1—-x)"= z (7) xtH(1 — x)n

i=0

elde edilir. Boylece binom formiilii yardimiyla Bernstein bazi olarak bilinen

n -
Pn,k(x) = (k) xk(l —x)" k
elde edilir. Benzer sekilde binom formiilii iki degiskenli olarak elde edilebilir. Binom

formiiliinden yola ¢ikarak,

n

(x+1—x)"= Z (rll) xt(1 = x)n

i=0
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esitliginin sag tarafindaki parantez i¢ine y eklenip ¢ikarilirsa,

n

"= Z (D)@ +1—x -y

=0

olur. Sag taraftaki parantezin (n — i) . dereceden binom agilim1 yapilirsa,

b n-i .
=y (" 12(”_‘) J(1 = x — y)n-i=i
1=> (D) ("7 )yia-x-»
i=0 j=0
elde edilir. Buradan iki degiskenli binom formiilii,
n n-i .
n = (MY iy = x — y)r=ici
bi;(x, y) Z;Z)(l)( i )xy(l x=y)
i=0 j=

olarak elde edilir.
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3. KANTOROVICH TiPLi OPERATORLERIN YAKINSAKLIK
OZELLIKLERI

Yaklasim Teorisi alaninda lineer pozitif operatorler ve bu operatorlerin g¢esitli
genellestirilmeleri ile ilgili caligmalar glinlimiizde de 6nemini korumaktadir. Lineer
pozitif operator dizileri genel olarak (L,),sqile gosterilir. Bu operator dizilerinin,
bazi1 fonksiyonlari korudugu veya bazi fonksiyonlar tarafindan tekrar iiretildigi ile
ilgili bircok ¢alisma bulunmaktadir. Ornegin test fonksiyonlari, iistel fonksiyonlar,
afin fonksiyonlar v.b. [8,11,12,16]. Agratini [12], afin fonksiyonlarini koruyan
operatorlerle ilgili bir calisma yapmistir. Bu calismada L,ey,= ey ve Lp,e;= e;
(n € N) esitliklerinin saglandigi operatorleri kullanarak bazi yakinsaklik sonuglari
elde etmistir. Bu calismada diskre operatorler, siireksiz fonksiyonlara yaklagsmak i¢in
uygun olmadigindan, integral tipli operatorlere genellestirilmislerdir. Bu
yontemlerden birisi de Kantorovich ydntemidir. Genellikle integral operatorleri
L,eq= e dzelligini saglar. Ancak diger afin fonksiyonlarim korumayabilir. Ornegin,
L,e;# e; dir. Buna 6rnek olarak Bernstein ve Bernstein - Kantorovich operatdriinii

verebiliriz.

Klasik Bernstein operatorleri,

Ba(f3 %) = ZiooPric () £ (5).f € RO, x € [0,1] 3.1)

Pur(0) = (1) XL =)k =0,n
seklinde tanimlanmistir ve B,,eq = ey, Bye; = e; dir.

Bernstein operatoriiniin Kantorovich genellestirmesi ise, f € L;([0,1]) olmak tizere,

f(k+1)/(n+1)

k/(n+1) f(t)dt: X € [0'1] (32)

K. (f;x) = n+1) Z;clzo pn,k(x)

seklinde tanimlanmistir. Bu operator icin K,ey = ¢y, K,e; # e; dir.
Bu bdliimde, bir operatoriin momentleri bilindiginde, ayni operatoriin Kantorovich
tipli genellestirilmesi i¢in, momentleri ile yaklasim sonuglari verilecektir. Son olarak

bu 6zellikleri saglayan bazi operatdr o6rnekleri verilecektir.

3.1. Operatoriin Tanim ve Ozellikleri
Bu béliimde H,H* € R araliklari, H = [0,1] veya H* = Rt olarak kabul

edilsin. Burada araligin sinirli ve sinirsiz olmasi durumunda inceleme yapilacaktir.
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I, © N bir indis kiimesi olmak iizere (xn‘k) kel ? H araligi iizerinde bir dizi olsun.
(xn,k) ke, dizisinin esit uzaklikli koselere sahip oldugunu, yani; lign u,= 0 olacak
sekilde, her n € N igin,

Xnje+1 Xnk = Un, KE I, (3.3)
oldugu g6z oOniine alalim. Aslinda diskre lineer pozitif operatorlerin biiyiik
cogunlugu, bu ozellige sahiptir. x;, ; = % secgersek, u, = % olacagi acgiktir. Asagidaki

gibi tanimlanan ayrik tipli lineer pozitif operatorlerin bir dizisini ele alalim.

Ln(fF x) = Zkeln An,k(x)f(xn,k) ,XEH k€I, (3-4)

Burada her (n,k) € N X I,,i¢in A, € C(H), A,,,> 0 dir. Burada, eger Card(l,)
sonlu ise, f € C(H) olur. Eger Card(l,) sonlu degil ise, f € F(H) elde edilir.

Burada, F(H) :={g € C(H) : (3.4)'deki seri mutlak yakinsaktir} seklinde tanimlidir.

Cg(H) ile H tlizerinde tanimli tiim reel degerli siirekli ve sinirli fonksiyonlarin uzay1
gosterilsin. Buna gore Cz(H) c F(H)’ dir. Burada, yine, r =1 ve r = 2 i¢in &€

F(H) olsun. L,, operatorleri afin fonksiyonlarini yeniden iiretirler. Boylece,

Lket, Ani(x) =1 (3.5)
ve

Yikety Ange(X) Xp e =%, x EH (3.6)

esitlikleri saglanir. u,, (3.3)' de verildigi sekilde olmak {izere u* = sup u,, olsun. Eger
neN

H* = R* ise, A* = [u?, o) araligi dikkate alinirken, H = [0,1] iken,

A= [%’ 1] araligin1  gostersin. L, (n € N) operatorlerinin  Kantorovich tipli

genellestirmesi Agratini [12] tarafindan asagidaki gibi tanimlanmustir.
Lof () = =Sty Ani(x =D f(Odt xe A° (3.7)

Eger I,sonlu ise, f fonksiyonu H {izerinde integrallenebilir olacak sekilde
secilmelidir. Aksi takdirde, f fonksiyonu, anti tiirevi F(H) uzayma ait olacak sekilde

H aralig1 iizerinde lokal integrallenebilir olmalidir. Ayrica x,,, € H ve X, ;41 € H
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olacak sekilde, bir k € I,, 1i¢in, X, ;41 'In yerine X, ifadesi kullanilirsa ve H

sinirlysa, integral sifir olacaktir. L, (n €N) lineer pozitif operatdrdiir.

(3.2)’ de, L,, operatdrlerinin afin fonksiyonlar: korudugu gosterilecektir. Ayrica bazi
durumlarda bu tip operatorlerin klasik Kantorovich operatorlerinden daha kiigiik bir

yaklasim hatas1 verdigi gosterilecektir.

3.2. Operatoriiniin Momentlerinin Hesaplanmasi

Bu boliimde L,, operatoriiniin momentlerini inceleyelim.

Teorem 3.2.1. e,.(t) = t",7 = 0,1,2 ve L,, (3.7) ile tanimlanan operatdr olsun.
Her x € A* igin,

(i) (Lneo)(x) = 1

(i) (Lney)(x) = x

(i) (Lnez) () = (Lnez) (X = 22) + e — 2=

esitlikleri saglanir.. Burada u,, ve L,, sirasiyla (3.3) ve (3.4) ile tanimlanur.

Ispat. (i) (3.5)" ten aciktir. (3.3) ve (3.6)' y1 kullamilarak,

~ 1 n
(Lnen)() = 52 Tty Ang (¥ = 2)Qunnsud)

= (Lne)(x = )+ 2 (Lneo)(x — 2)
=x
bulunur. Benzer sekilde (3.3) ve (3.7) kullanilarak,
(L) () = 5= Scety Anje(x = ) B gt + 3 3 +147)
esitligi elde edilir.

(i) ve (ii)’ den, L, (n € N) operatérlerinin, afin fonksiyonu korudugu goésterilmistir.

Bununla birlikte 2. mertebeden merkezil momenti,
2 (x):= (Lya?y)(x) olur. (ay(t) = t — x, (t,x) € H X A%)

seklinde verilsin. Teorem 1’ deki ifadeler kullanilarak, herhangi bir x € A i¢in
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2
n2(0) = (Lne) (x —22) + x(uy — ) == (3.8)
seklinde elde edilir.

L, ( n € N) diskre operatérii géz Oniine alinarak, genellestirilmis Kantorovich

operatorii asagida verilmistir.
1 n,
(G (X) = o Biety, Anje 0 [0 f(D)dt - x€ H. (3.9)

L, (n € N) i¢in, benzer yolu takip ederek, her x € H i¢in, asagidaki formiiller elde

edilir.
(Gneo)(x) =1

(Grep)(x) = x + %

2
(Gnez) () = (Lne2) () + unx + -
Ikinci dereceden merkezil moment
2
Wy ()i = (Gra?)(x) = (Lpep)(x) — x + - (3.10)

olarak elde edilir.

Teorem 3.2.2.

aH=[01]ved = [u?, 1] olsun. Herhangi bir f € C(H) fonksiyonu i¢in, L,, ve G,

operatorleri

16N = FGI < 204 (£ [15200)

ve

| Lof () = f(0)| < 2w (f; it . (0))
esitsizliklerini saglar.
b.H* =[0,0) ve A* = [u?, 00) olsun. t sabit olmak tizere, T > u? olur.
Herhangi bir f € Cgz (H) fonksiyonu igin, L, ve G, (n € N) operatorleri igin

asagidaki esitsizlikler saglanir.
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16 G = FCON < 2000 (£ iz )

ve

Ef @) = £ < 2002 (3 Jrna(0)

ispat.

Siireklilik modiilii yardimiyla verilen bu sonuglar, dogrudan Shisha ve Mond [6]

tarafindan kanitlanan agagidaki ifadenin sonucudur.
Eger A, C([a, b])’ de taniml1 lineer pozitif operator ise, her x € [a, b] ve L > 0 i¢in,

1(Af)(x) = FO] < If()]](Aep) (x) — 1

1
+ ((Aeo)(x) + I\/(/leo)(X) (Ap;%)(x)> w(f; )

olur. Eger, A = 1/ (Ap2) (x) segilirse, ispat tamamlanir.

Yaklasim hatasmin {ist smir1 incelenerek, u,, < p,, saglandiginda, L, (n€N)

operatorlerinin daha kullanisl oldugu goriiliir.
Teorem 3.2.3.

L, (3.4) ile tanmlanan operatdr olmak tizere,
2 *
(Lnez) (x =22) = (Lne) () +upx <2, x 2% (3.11)

esitsizligi saglanirsa,n € N olmak iizere (3.7)'de tanimlanan L, ile (3.9) ile
verilen G,, operatorleri karsilastirildiginda, stirekli ve sinirli fonksiyonlar i¢in daha

Iyi bir yaklagim sonucu elde edilir.
ispat: Un2 < Uy Ve (3.8) ve (3.10) bagintilar1 kullanilarak ispat tamamlanur.

3.4. Ornekler
[lk iki 6mek H* =R*ve son &mek H =[0,1] durumu goz oOniine alinarak

verilmistir.

3.3.1. Modifiye Szasz — Mirakjan - Kantorovich operatorleri

Klasik Szasz-Mirakjan operatorleri,

) = e () 2
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olmak tizere,

o

L) = Y 50 (3)

k=0
dir.
Szasz-Kantorovich operatorleri, (bkz. Butzer [1])

(k+1)/n

(an)(X)—Tle OSnk( )f f(t)dt,xZO.
seklinde tanimlanmustir.

1.. = .
Bu durumda, u, = —igin, L,,n € N, operatorleri,

NI»—»

Cof)(x) =ne 7y, &t fk F(Ode,x

2kk!

seklinde verilmistir. Bu operatdrler Duman, Ozarslan ve Della Vecchia [3].
tarafindan tanimlanmis ve yaklagim 6zellikleri incelenmistir. Klasik Szasz-Mirakjan

operatorleri igin,
, X
(Lne2) () = x? +~

esitligi saglanir ve (3.11)'te yerine koyulursa,

2

(Lnez) (X - uz_n) — (Lpex)(x) + up x < %

olmak iizere,

u,

(ne) (x =) = =2 +

uTl
2n

)

elde edilir. Buradan,

u X Uu X u
2 n n n
X —xU, +—+—-————x“"——Fu,x <=
n 4 n 2n n n 2

Un Up Up
<
4 2n 2

yazilir. u,, = % oldugundan,
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3 <0
4n?

elde edilir. Bu durum, L,, operatérlerinin daha kiigiik bir yaklasim hatas iirettigini

gosterir.

3.3.2. Modifiye Baskakov-Kantorovich operatorleri

Baskakov operatorleri

Vi (x) = (n + ': N 1) x*(1 4 x)" "k, x >0

olmak tizere
Lnf)(x) = i Ve COf (g)

k=0

sekilde tanimlanir. [2, p. 115]' de belirtildigi gibi, Kantorovich genellestirmesi
asagidaki sekildedir

o)

(k+1)/n

GHE =1 v @ | f(®t,

k=0 k/n

Buradan, u,, = % icin L,, n € N operatdrleri,
k+1

Luf) (@) = 2™ S (2nx — DF (2nx + 20— 1)K [ f(0dt, x 2 3.
n

seklinde tanimlanmaistir.

(Lne) ) = 52+ 2

oldugundan, (3.11)’ den,

1
1—3n<4nx,x2§

oldugu goriiliir.
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Boylece L,, n € N, operatorlerinin - daha iyi bir yaklasim sonucu

gosterilmistir.

3.3.3. Modifiye Stancu-Kantorovich Operatorleri

Stancu polinomlari [7], a> 0 igin,

x(k,—a) (1 _ x)(n—k,—a)

Wflﬁf) (x) = (Z) 1(n,-a) ’

x®D:=x(x+a)...(x+ (k—-1Da)

olmak iizere,

L)) = Z w® @f (5) x € 0.1)
k=0

dir. Asagidaki esitlikler saglanir

1+na

Lneo == eo, Lnel = ell Lnez — 62 + —n(1+a)

(e1 —ez).
Stancu operatorlerinin Kantorovich genellestirmesi [5],

(k+1)/(n+1)

6N =+ 1) ) wi () f(Hdt
k=0

k/(n+1)

seklinde verilmistir. (3.7) ile olusturulan operatérler igin,

Up =) ut = % VeA = E, 1] olarak alindiginda, (3.11) bagintisi,

1+na
n(l+a)

Bn = i¢in,

—1-B,+2(n+1)B,2x-1)<0

verdigi

(3.12)

seklinde yazilabilir. Ozel olarak, o = 0 icin, Stancu operatdrleri Bernstein

operatorlerine doniisiir ve G, operatorleri (3.9) ve (3.10)’ dan, klasik Kantorovich

operatorleri [4] haline gelir.

Bu durumda B,= 1/n ve her x < 3/4 i¢in (3.12) bagintist saglanir. Buna gore,

1 1
-1—-——+2n+1)—-(2x-1)<0
—2(n+ D= (@2x-1)

—n—-1+02n+2)2x—-1
( a )( )<0
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—(n+1) +2(:+ H(2x —-1) <0

n+1D)22x—-1)—-1) <
n

0

n+1)

(4x—-2-1)<0

n+1)

(4x—3) <0

(n+1)
n

>0

4x—-3 <0

4x < 3

3
XS

elde edilir. Sonug olarak, [1/4, 3/4] aralig1 iizerinde dahi L, (n € N) operatorleri

daha iyi bir yaklagim sonucu verir. o > 0 i¢in,

2nf, + 36, +1
= in
w21 4(n+ 1B,

alinirsa, 1/2 <1 < 1 oldugu gériiliir. Buna gore L,, (n € N) operatorleri, G,, (n € N)

operatdrlerine gore I = E, ‘t] araliginda daha iyi bir yaklasim sonucu verir.
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4.AFIN FONKSIiYONLARI KORUYAN KANTOROVICH TiPLi
OPERATORLERIN YAKINSAKLIK OZELLIKLERI

4.1. K,, Operatoriiniin Tanimi Ve Momentlerinin Hesaplanmasi
Bu boliimde, 3. boliimde verilen ve afin fonksiyonlarin1 koruyan operatorlerden

esinlenerek K,, operatorlerinin bazi yakisaklik 6zellikleri incelenecektir ([24]).
K (N0 = 1 Zker, Ange @) [ f(0)de  x € H®

seklinde verilen operator i¢in teoremlerin hesaplamalarinda faydalanacagimiz

momentleri ve merkezil momentleri hesaplayalim.

Lemma 4.1. L,, (3.4)’ teki operator olsun.n € Nvex € A*olsun.e.(t) =t7,
r =0,1,2,3,4 icin,

i) K (e)(x) = 1

i) Ky (e)(x) = x + 2

i) By (e)06) = Ln(e) () + e —

3

) T (€)(2) = Li(es) () + 5 tnLy(e2) (1) + i — o

V) By (4)(x) = Ln(e) () + 2upLy(e3) () + 2u3Ly () (1) + udx — 22
elde edilir.

Ispat.

i) Rn(eo)(x) = 1 oldugu operatoriiniin tanimindan goriilmektedir.

I|) Rn(el)(X) = u_lnzkeln An,k(x) f;:}‘ck-'-l tdt

1 1
= z Ak (%) 5 (%% see1 = Xi)

" kel

= = Tt (03 (oners = Fnie) (s + )

= iZkEIn An,k (x) % (un(un + an,k))
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1 1
= Z An,k x)= (u% + 2unxn,k)
U 6 2

un
=—-+x
2

ceey T 1 1
iii) Kn(ex)(x) = ;Zkan Ap e (x) 3 (x‘rs;,k+1 - xg,k)
1 1
= ZZkEIn A s () 3 (%nper1 — xn,k)(xft,k+1 t Xnk+1Xnk T x?z,k)

L 2
= EZkEIn A (X) Uy [(xn,k Ftp)” + Xy (K + Up) + xrzl,k]

2 2

u u
= Z A () X2 1+ upx + 3= L,(e3)(x) + upx + ?n

kely

N> 1 1
iv) Kn(e3)(x) = w Yker, Ank(X) 1 (x;}t,k+1 - xﬁ,k)
1 1
= ke, Ank (X) Z((x%,kﬂ - x%,k)(x%,k+1 its x%,k))

= ﬁ Yker, Ank(X) (xn,k+1 - xn,k)(xn,k+1 + xn,k)(xrzl,k+1 + xrzl,k)

1
= E Z An,k (X) [un(an,k + un)((un + xn,k)z + xrzl,k)
" kel

=N dk O Bt Y A () 0B
nk\X xn,k 4u n,k\X unxn,k
n

k€l, kel,

1 3 1 4
+ L, Z A i (%) AUy Xy, o + L, Z A (x) uy

kel kel

Un

= La(e2)(0) + 3t L (e) () + i —

Buradan, (v) benzer sekilde hesaplanabilir.

P

Lemma 4.2. o (t) = (t—x)",n=0,1,2,... olsun. (3.4) ile verilen operator, K,
igin, {p2(x) = Kn(@Z(t);x) Ve {na(x) = Ky (@ (t); x) dir. Buradan;

2

Uy 2
Zn,z (x) = Ln(ez; ;x) + ? - X

ve
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na(x)
= Ly, (e4) (%) + Qu,, — 4x)L,(e3)(x) + Quz — 6xu, + 6x%)L,(e;)(x)
+4x3u, L, (e;)(x) — 3x*L,(ey) (x) + up — 2x2u?
dir.
Ispat.

Lemma 4.1' i kullanarak asagidaki ifadeler elde edilir.

|74 2 u%’ un 2
{n2(x) = Kn(@x(t); x) = Lp(ez;x) + 3 + upx — 2x(x + > +x

= L,(ezx) + % - x2
Simdi K,,(@3(t); x)’ i hesaplayalim.
Ina(x) = Kn(02(); x)
= K,(eq,x) — 4K, (e3,x) + 6K, (€5, x)x? — 4K, (e, x) x>
+x*K, (e, x)

= L,(e4;x) + 2u,L,(e3;x) + 2ulL,(ey; x) + udx + ujt

3 , Uy
—4x | L,(e3;x) + EunLn(ez; x) +upx + T

2
+6x2 (Ln(ez; xX) + upx + u3—") — 4x3 (% + Ln(el;x)>
+x*L,(ey; X))
= L,(eq; x) + Qu, — 4x)L,(e3)(x) + 2Qu2 + 6xu,, + 6x2)
L, (e)(x) + 4x3u, L, (e;) (x) — 3x*u, L, (e;)(x)
—3x*L,(eq) (%) + up — 2x%u?.

Boylece istenen sonug elde edilir.

4.2. Siireklilik Modiilii Yardimiyla Yakinsakhk Hizinin Hesaplanmasi

Bu boliimde, f € R* alinarak, K,, operatérii igin yaklasim sonucu verilecektir.

Daha 6nce tanimlandi1 iizere, u(x) = 1 + x? agirlik fonksiyonu ve Ky, f°yebagh

pozitif bir sabit olsun.

35



B, R ={f: R* > R: |[f()| £ Kr n(x)}
ve

¥ (R*) =C (R*) n B, (RY).

Cl’f (R*) = {f € Cu(]RJr) llm Zix; K < 00} seklinde verilen fonksiyon uzay1 goz

oniine alinsm. Buna gore, Cf(R*) c C, (R*) c B,(R*) yazilabilir. Bu uzayda
norm,

If (x)]
nes

If1l, =

seklinde tanimlidir. Eger f € CX(R*) ise “L"(f)llu < “fllu, dir. Bu sonuglar ve

Korovkin tipli teoremler [2, 3, 6, 9, 10] 'da goriilebilir.

C*(R*) kiimesi, lim L9~ k> o sartin1 ~ saglayan tim f € C(RY)

x—o00 1+x2
fonksiyonlarinin alt uzay1 olsun. Burada k pozitif bir sabittir. f € C¥(R") igin
agirlikli siireklilik modiili Tanim 2.5 te verilmistir. Agirlikli siireklilik modiilii

kullanilarak asagidaki teorem ispatlanacaktir.
Teorem 4.1 f € CX (R*) ise,

|[Ba(f320) = f(0)] < 3201 + 2)Q(f3 Y4 ().
dir.
Ispat. (3.8) 6zelliginden,

Q(f;28) < 2(1+ D) + 6HQS; 6)

yazilabilir.
Pozitif A i¢in, f € C¥ (R*) i¢cin Q(f; §) tamimina gore ve x,t € R ve

6 > 0 icin asagidaki esitsizlik saglanir.

F(O - FO1 < 16(1 +x)0(f; 8) (1 +20).
Lemma 4.1 ve (3.9) u kullanarak,
|[Bn(f; ) = f(0) | < FOO|1 = Ku (10| + Ko (I (0) = ()] %)
elde edilir. (3.8) e K,, i uygularsak;
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Xnk+1

Ralfi0) = F@] S 1 ) A [ 17O = 01t

kel Xnk

< 16(1 + x2)Q(f; §) (1 + —anf”)

elde edilir. Buradan, § = 3/, 4 (x) segilirse,

Ra(fi0 = 0] <3201+ 0 (£ 2[na() )

esitsizligi saglanir.
Teorem 4.2 f" € C(R) ve w(f";6), f" ‘nin streklilik modilii olsun.

Sonlu é§ > 0 igin,

~ 1 :
[(Raf)0 = @] -5 /") < <f_¢<< ‘>>

NI E))

1
Cn,z (x)
esitsizligi elde edilir.

Ispat. Ce[x,t] igin (2.1) esitligini ve x sabit noktasindaki Taylor agilimi

kullanilarak,
Aft,0) = ‘f(t) - L2 L oy
_ (=% [F®)=f(0)—f' (x)(t—x) "
-2 2 [ 2(t—2x)2 —f (x)]
_(t—x)? 2f’(t) — ') = f"(x)
2! 2(t — x)

_ - x)z [2 AC9) f”(x)]

(—)2

"= "] ¢ €Elxt]
Modiil alinarak devam edilirse.

I/l(f;t,x)l<( —9 o) - £ )

Y
s(t 2 16— )
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(t— x)?

w(f"; |t —
(t— x)?

)
W(f"ile = xI3)

<(t—x)2 (1 [t— XI) (f";8)

- 2

=122 + 2= (51 5)

=21 @ - £l < SRl 1 - 2D
<D st — )
s“;’?z(l =)o)
<3 (-0 + 5 ugms)
elde edilir. Simdi K, ‘ye uygulanirsa;
|(Rar, ) <x>|=‘(an)oc)—f(x)—f'(x)cn,l(x)—@cn,z(x)‘

= |(Ruf)@) = F@) = 24,00 < (Rula(fs.,01) (0

[y

RO (MOPRE )

N

inz(X) ", 1 (I?n|31_x|3)(x)>
(f 6)< | fn,z(x)

elde edilir. Buradan,
6= (Knlel - x|3)(x)/(n,2(x)

secilerek ve

(Rales — %)) < Jzn,4<x). Jzn,2<x)

esitsizligi kullanilarak,

(RN - 0 -1 [0 ‘
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< [tuaGo (f"; J:Vg‘*gg)
n,2

bulunur. Sonug olarak,

<o <f”' vV Zn,4(x)>
B " V0020

L (Rf) ) - f) — ()
Vn2(x) 2

esitsizligi elde edilerek ispat tamamlanir.
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5. TARTISMA VE SONUC

Matematiksel Analiz’ in 6nemli bir dali da Yaklasimlar Teorisidir. Bu teori
de kendi i¢inde bir¢cok dala ayrilmaktadir. Bu dallardan birisi de lineer pozitif
operatorlerin  yakinsaklik durumlarinin incelenmesidir. Bu konu gecmisten
giiniimiize kadar popiilerligini hala siirdiirmektedir. En iyi bilinen lineer pozitif
operatorler Bernstein, Baskakov, Sz&sz-Mirakyan operatorleridir. Bu operatdrlerin
cesitli genellestirmeleri tanimlanarak, belli kosullar altinda yakinsaklik 6zellikleri

incelenmektedir.

Bu tezde afin fonksiyonu koruyan Kantorovich tipli operatorler ile ilgili
makaleler incelenmistir. Bu makalelerden birisi Agratini’ nin “A Note On
Kantorovich Type Operators Which Preserve Affine Functions “. Bu g¢alismasindan
esinlenerek bazi yaklagim teoremleri verilmistir. Yakinsaklik igin Kkuantitatif
hesaplamalar yapilmistir. Agirlikli uzaylarda modifiye bir operatoriin yakinsaklik
ozellikleri incelenmistir. Boylece modifiye operatorlerin, klasik operatorlerden daha

1yl yaklasim sonuglar1 verdigi gosterilmistir.

Bu tezi hazirlamaktaki amacimiz, ge¢gmisten giinlimiize 6nemini koruyan bazi
lineer pozitif operatorlerin, genellestirilmis halleri ile ilgili yapilan ¢alismalan takip

eden bir kaynak olusturmaktir.
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