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ÖZET 

 

KANTOROVICH TİPLİ  

OPERATÖRLERİN YAKINSAKLIK ÖZELLİKLERİ 

 

UĞUR YILMAZ, GİZEM 

Kırıkkale Üniversitesi 

Fen Bilimleri Enstitüsü 

Matematik Anabilim Dalı, Yüksek Lisans Tezi 

Danışman: Doç. Dr. DİDEM AYDIN ARI 

AĞUSTOS 2024, 43 sayfa 

 

Bu tez dört bölümden oluşmaktadır. Birinci bölüm giriş kısmı olup, yaklaşımlar 

teorisi ile ilgili bazı bilgiler verilmiştir. İkinci bölüm bazı temel tanımlar ve teoremler 

içerir. Üçüncü bölümde Kantorovich operatörünün yakınsaklık özellikleri, dördüncü 

bölümde ise afin fonksiyonları koruyan Kantorovich tipli operatörlerin yakınsaklık 

özelliklerini inceleyeceğiz. 

 

ANAHTAR KELİMELER: Kantorovich tipli operatör, yakınsaklık oranı, ağırlıklı 

süreklilik modülü, Voronovskaya tipli teorem. 
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ABSTRACT 

 

                   APPROXIMATION PROPERTIES OF KANTOROVICH    

                                           TYPE OPERATORS  

 

 

UĞUR YILMAZ, Gizem 

Kırıkkale University 

Graduate School of Natural and Applied Sciences 

Department of Mathematics, Master of Science Thesis 

Supervisor: Doç. Dr. Didem AYDIN ARI 

AUGUST 2024, 43 pages 

 

This thesis consists of four parts. The first part is the introduction part and some 

information about the theory of approximations is given. The second part contains 

some basic definitions and theorems. In the third part, we will examine the 

convergence properties of the Kantorovich operator and in the fourth part, we will 

examine the convergence properties of Kantorovich-type operators which preserve 

affine functions. 

 

 

Key Words: Kantorovich type operator, rate of convergence, weighted modulus of 

continuity, Voronovskaya type theorem. 
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1.GİRİŞ 

 

Analizin önemli alanlarından birisi de Yaklaşımlar Teorisidir. Bu teori, 

fonksiyonların daha basit fonksiyonlarla yani polinomlar, Fourier serileri, tam 

fonksiyonlar gibi fonksiyonlarla yaklaşma durumunu incelemektedir. Burada en iyi 

yaklaşımın nasıl elde edileceği en az hata ile bu hesaplamaların nasıl yapılabileceği, 

yakınsaklık derecesi ve yakınsaklık hızının hesaplanması gibi konular ele 

alınmaktadır. Yaklaşım teorisi fonksiyonlarla yakınsaklığının yanında diferansiyel 

denklemler integral denklemleri ısı denklemlerinin çözümleriyle birlikte de ortaya 

çıkmaktadır. Bu nedenle araştırmacılar tarafından farklı yönleri ile büyüyüp 

gelişmekte olan bir alandır. Araştırmacılar daha iyi sonuçlar elde edebilmek için 

klasik operatörleri genelleştirerek veya modiifiye ederek yeni operatör dizileri 

tanımlayarak çalışmalara devam etmektedir Bu teorinin sadece analiz de uygulaması 

yoktur. Mühendislikte, optimizasyon, ekonomi, istatistik gibi birçok alanda da 

kullanılmakta olduğundan popülerliğini uzun yıllardır korumaktadır. Örneğin yapay 

sinir ağlarının geometrik tasarımlarında, nüfus dağılımnda, grafik tasarımlarında, 

görüntü işleme ve sinyalizasyon sistemlerinde, otomotiv endüstrisinde kullanımları 

bulunmaktadır. Bununla birlikte matematiğin kendi içindeki dallarla da bir köprü 

görevi görmekte olup pür ve uygulamalı matematiği birleştirmektedir. 

Yaklaşımlar teorisinde en çok kullanılan operatörlerden birisi de lineer pozitif 

operatör dizileridir. Lineer pozitif operatör dizilerinin bazı fonksiyonlar tarafından 

tekrar üretildiği veya bazı fonksiyonları koruduğu bilinmektedir. Bu fonksiyonlara 

örnek olarak test fonksiyonları, üstel fonksiyonlar, afin fonksiyonları v.b. verilebilir 

(bkz [1,4,8,9]). 

Agratini [5], afin fonksiyonları yeniden üreten operatörlerle ilgili bir çalışma 

yapmıştır. Bu çalışmada 𝐿𝑛𝑒0= 𝑒0 ve 𝐿𝑛𝑒1= 𝑒1, n ∈ 𝑁, şartlarını sağlayan 

operatörlerle ilgili bazı yeni yakınsaklık sonuçları elde etmiştir. Diskre operatörler 

süreksiz fonksiyonlara yaklaşmak için uygun olmadığından, bu operatörler integral 

tipli operatörlere genelleştirilmektedir. Bernstein, Baskakov, Szàsz gibi klasik 

operatörlerin, Durmeyerr, Kantorovich gibi integral genelleştirmeleri de literatürde 

mevcuttur [16,17]. İntegral operatörleri, genellikle sabitleri korur. 𝐿𝑛𝑒0= 𝑒0 özelliği 
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sağlanır ki bu da, operatörün 𝑒0’ daki değerinin yine 𝑒0 olduğunu gösterir. Ancak 

operatörün 𝑒1’ deki değeri korunmaz. 

Bu çalışmada, bir operatörün yaklaşım özelliklerinin bilinmesi durumunda, 

Kantorovich tipli operatörün, klasik ve ağırlıklı süreklilik modülü yardımıyla, bazı 

yakınsaklık sonuçları elde edilecektir. 

Özellikle operatörün momentleri bilindiğinde, aynı operatörün Kantorovich formu 

için de yakınsama sonuçlarının verilebileceği gösterilecektir. 
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2. TEMEL TANIM VE TEOREMLER 

 

Tanım 2.1.  𝑉 ≠ ∅ bir küme ve (𝐾, +, . ) reel veya kompleks sayılar cismi olsun. 

V de bir iç işlem ⨁: 𝑉 × 𝑉 → 𝑉 ve bir dış işlem ⨀: 𝐾 × 𝑉 → 𝑉 şeklinde tanımlansın. 

Eğer aşağıdaki şartlar sağlanıyorsa ⨀ ve ⨁ işlemleriyle birlikte V‘ ye K cismi 

üzerinde tanımlı bir lineer uzay veya vektör uzayı denir ve (𝑉, ⨁, (𝐾, +,∙), ⨀) ile 

gösterilir. 

1) Her 𝑥, 𝑦, 𝑧 ∈ 𝑉 için (𝑉, ⨁) iç işlemine göre değişmeli gruptur. 

𝑣1 ) Kapalılık özelliği,  𝑥⨁𝑦 ∈ 𝑉 

𝑣2 ) Birleşme özelliği,  𝑥⨁(𝑦⨁𝑧) = (𝑥⨁𝑦)⨁𝑧 

𝑣3 ) Birim eleman,  𝑥⨁𝜃 = 𝜃⨁𝑥 = 𝑥 olacak şekilde  𝜃 ∈ 𝑉 dir. 

𝑣4 ) Ters eleman,  𝑥⨁𝑥−1 = 𝑥−1⨁𝑥 = 𝜃 olacak şekilde  𝑥−1 = −𝑥 ∈ 𝑉 dir. 

𝑣5 ) Değişme özelliği,  𝑥⨁𝑦 = 𝑦⨁𝑥 

2) Her 𝛼, 𝛽 ∈ 𝐾 ve her 𝑥, 𝑦 ∈ 𝑉 için skalerle çarpma yani V deki ⨀ dış işlemine göre 

aşağıdaki şartlar sağlanır. 

𝑣6 ) Kapalılık özelliği,  𝛼⨀𝑥 ∈ 𝑉 

𝑣7 ) Skalerlerin çarpım,  (𝛼 ∙ 𝛽)⨀𝑥 = 𝛼⨀(𝛽⨀𝑥) 

𝑣8 ) Soldan dağılma özelliği,  𝛼⨀(𝑥⨁𝑦) = (𝛼⨀𝑥)⨁(𝛼⨀𝑦) 

𝑣9 ) Sağdan dağılma özelliği,  (𝛼 + 𝛽)⨀𝑥 = (𝛼⨀𝑥)⨁(𝛽⨀𝑥) 

𝑣10) Birim eleman,  1𝐾⨀𝑥 = 𝑥 olacak şekilde  1𝐾 ∈ 𝐾 dır. 

Tanım 2.2. (𝑋, +, . ) bir K cismi (ℝ 𝑣𝑒𝑦𝑎 ℂ ) üzerinde tanımlı lineer uzay ve  

‖∙‖: 𝑋 → 𝐾 

𝑥 → ‖𝑥‖ 

bir fonksiyon olsun. 𝜃𝑥,  𝑋 vektör uzayının etkisiz elemanı olmak üzere 

i) Her 𝑥 ∈ 𝑋 için ‖𝑥‖ ≥ 0 (Pozitif tanımlılık) 

ii) Her 𝑥 ∈ 𝑋 için  ‖𝑥‖ = 0 ⇔ 𝑥 = 𝜃𝑥 (Uzayın birim elemanı) 

iii) Her 𝛼 ∈ 𝐾 ve 𝑥 ∈ 𝑋 için ‖𝑎𝑥‖ = |𝑎|‖𝑥‖ (Skalerle çarpma) 
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iv) Her 𝑥, 𝑦 ∈ 𝑋 için ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖  (Üçgen eşitsizliği) 

şartları sağlanıyorsa ‖∙‖ fonksiyonuna 𝑋 üzerinde bir norm ve (𝑋, ‖∙‖) ikilisine bir 

normlu uzay denir. Böylece (𝑋, ‖∙‖, +, (𝐾, +, . ), . ) uzayı lineer normlu uzaydır. 

Tanım 2.3. (𝑋, 𝑑) bir metrik uzay ve (𝑥𝑛) bu uzayda bir dizi olsun. ∀𝜀 > 0 için 

𝑚, 𝑛 > 𝑛0 olduğunda 𝑑(𝑥𝑚, 𝑥𝑛) < 𝜀 olacak şekilde 𝑛0 sayısı varsa (𝑥𝑛) dizisine 

Cauchy dizisi denir. Eğer 𝑋 deki her Cauchy dizisi yakınsak ise yani 𝑥𝑛 → 𝑥 𝜖 𝑋 ise 

𝑋 uzayına tam uzay denir. 

Tanım 2.4. 𝑋 ve 𝑌 iki fonksiyon uzayı olsun. Eğer 𝑋’ den alınan herhangi bir 𝑓 

fonksiyonuna 𝑌’ de bir 𝑔 fonksiyonu karşılık getiren bir 𝐿 kuralı varsa, buna 𝑋 

uzayında bir operatör denir. Bu operatör 𝐿(𝑓; 𝑥) = 𝑔(𝑥) biçiminde gösterilir.  

Tanım 2.5. 𝑋 ve 𝑌 lineer fonksiyon uzayları olmak üzere, 

𝐿: 𝑋 ⟶ 𝑌 

şeklindeki 𝐿 operatörünü göz önüne alalım. Eğer ∀𝑓, 𝑔 ∈ 𝑋 ve ∀𝛼, 𝛽 ∈ 𝑅 için 

𝐿(𝛼𝑓 + 𝛽𝑔; 𝑥) = 𝛼𝐿(𝑓; 𝑥) + 𝛽𝐿(𝑔; 𝑥) 

koşulu sağlanıyor ise 𝐿 operatörüne lineer operatör denir. 

Tanım 2.6. Eğer bir 𝐿 operatörü pozitif değerli fonksiyonu yine pozitif değerli bir 

fonksiyona dönüştürüyor ise yani, 𝑓 bir fonksiyon ve 𝐿 bir operatör olmak üzere, 

𝑓 ≥ 0 için 𝐿(𝑓) ≥ 0 

ise 𝐿 operatörüne pozitif operatör denir. Hem lineerlik hem de pozitiflik şartlarını 

sağlayan operatörlere lineer pozitif operatörler denir.  

𝑓 ≤ 0 iken 𝐿(𝑓; 𝑥) ≤ 0 eşitsizliği de sağlanır. 𝑓 ≤ 0 olduğunu kabul edelim. Bu 

durumda −𝑓 ≥ 0 olacaktır. 𝐿 operatörü pozitif olduğundan, 

𝐿(−𝑓; 𝑥) ≥ 0 

olur.  

𝐿 operatörünün lineerlik özelliği de gözönünde bulundurulduğunda, 

−𝐿(𝑓; 𝑥) ≥ 0 ⟹ 𝐿(𝑓; 𝑥) ≤ 0 

elde edilir. Dolayısıyla  

𝑓 ≤ 0 ise 𝐿(𝑓; 𝑥) ≤ 0 . 
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Tanım 2.7. 𝑓 ∈ 𝐶[𝑎, 𝑏] olsun. 𝛿 > 0 için 

                                                 𝜔(𝑓; 𝛿) =  sup
𝑥,𝑡 ∈ [𝑎,𝑏]
|𝑡−𝑥|≤𝛿

|𝑓(𝑡) − 𝑓(𝑥)|                         (2.1) 

ile tanımlanan 𝜔(𝑓; 𝛿) ifadesine 𝑓 fonksiyonunun süreklilik modülü denir. 

Lemma 2.1. Süreklilik modülü 𝛿 > 0 için aşağıdaki özellikleri sağlar. 

i. 𝜔(𝑓; 𝛿) ≥ 0 

ii.  𝛿1 ≤ 𝛿2 ise 𝜔(𝑓; 𝛿1) ≤ 𝜔(𝑓; 𝛿2) 

iii. ∀𝑚 ∈ 𝑁 için 𝜔(𝑓; 𝑚𝛿) ≤ 𝑚𝜔(𝑓; 𝛿) 

iv. ∀𝜆 ∈ 𝑅+için 𝜔(𝑓; 𝜆𝛿) ≤ (𝜆 + 1)𝜔(𝑓; 𝛿) 

v. 𝑙𝑖𝑚
𝛿⟶0

𝜔(𝑓; 𝛿) = 0 

vi. |𝑓(𝑡) − 𝑓(𝑥)| ≤ 𝜔(𝑓; |𝑡 − 𝑥|) 

vii. |𝑓(𝑡) − 𝑓(𝑥)| ≤ (
|𝑡−𝑥|

𝛿
+ 1) 𝜔(𝑓; 𝛿). 

Tanım 2.8. 

𝐾𝑓, 𝑓’ ye bağlı bir sabit olmak üzere, 𝑓 pozitif reel eksende sürekli, lim
𝑥→∞

𝑓(𝑥)

1+𝑥2 = 𝐾𝑓 

ve 𝐾𝑓 sonlu olsun. 

𝐶𝐾𝑓[0,∞)
= {𝑓: 𝑓, [0, ∞) 𝑠ü𝑟𝑒𝑘𝑙𝑖 𝑣𝑒  lim

𝑥→∞

𝑓(𝑥)

1+𝑥2 = 𝐾𝑓} sınıfı şeklinde tanımlansın. Bu 

uzayda norm,  

||𝑓||
𝐶𝐾𝑓

= sup
0≤𝑥

|𝑓(𝑥)|

1 + 𝑥2
 

biçiminde tanımlıdır. 

 

𝑓 ∈ 𝐶𝐾𝑓
 [0, ∞) için, 

Ω(𝑓; 𝛿) = sup
0≤𝑥

|ℎ|<𝛿

|𝑓(𝑥 + ℎ) − 𝑓(𝑥)|

(1 + 𝑥2)(1 + ℎ2)
 

şeklinde gösterilen Ω(𝑓; 𝛿) ifadesine, ağırlıklı uzayda bir süreklilik modülü denir 

([14]). 

Lemma 2.2 Ω(𝑓; 𝛿) aşağıdaki özellikleri sağlar. 
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i. |𝑓(𝑡) − 𝑓(𝑥)| ≤ (1 + (𝑡 − 𝑥)2)(1 + 𝑥2)𝛺(𝑓; |𝑡 − 𝑥|) 

ii. 𝑚 ∈ ℕ için 

𝛺(𝑓; 𝑚𝛿) ≤ 2𝑚(1 + 𝛿2)𝛺(𝑓; 𝛿). 

iii. 𝜆 ∈  ℝ 𝑣𝑒 𝑓 ∈  𝐶𝐾𝑓 [0, ∞) için 

𝛺(𝑓; 𝜆𝛿) ≤ 2(1 + 𝜆)(1 + 𝛿2)𝛺(𝑓; 𝛿) 

iv. lim
𝛿→0

𝛺(𝑓; 𝛿) = 0′ dır. 

İspat i . 𝛺(𝑓; |𝑡 − 𝑥|) 𝑠𝑢𝑝
0≤𝑥

|𝑡−𝑥|<|𝑡−𝑥|

|𝑓(𝑡)−𝑓(𝑥)|

(1+𝑥2)(1+(𝑡−𝑥)2)
   yazılarak 

|𝑓(𝑡) − 𝑓(𝑥)| ≤ (1 + (𝑡 − 𝑥)2)(1 + 𝑥2)𝛺(𝑓; |𝑡 − 𝑥|) 

eşitsizliği elde  edilir. 

ii. m bir doğal sayı olmak üzere 

𝛺(𝑓; 𝑚𝛿) = 𝑠𝑢𝑝
0≤𝑥

|ℎ|<𝑚𝛿

|𝑓(𝑥+ℎ)−𝑓(𝑥)|

(1+𝑥2)(1+ℎ2)
= sup

0≤𝑥
|ℎ|<𝛿

|𝑓(𝑥+𝑚ℎ)−𝑓(𝑥)|

(1+𝑥2)+(1+(𝑚ℎ)2)
  dir. 

|𝑓(𝑥 + 𝑚ℎ) − 𝑓(𝑥)| = |∑ 𝑓(𝑥 + 𝑘ℎ) − 𝑓(𝑥 + (𝑘 − 1)ℎ)𝑚
𝑘=1 |  

≤ (1 + ℎ2) ∑
|𝑓(𝑥+𝑘ℎ)−𝑓(𝑥+(𝑘−1)ℎ)|

(1+ℎ2)(1+(𝑥+(𝑘−1)ℎ)2)

𝑚
𝑘=1 (1 + (𝑥 + (𝑘 − 1)ℎ)2  

= (1 + ℎ2)𝛺(𝑓; 𝛿) ∑ (1 + (𝑥 + (𝑘 − 1)ℎ)2)𝑚
𝑘=1   

≤ (1 + ℎ2)𝛺(𝑓; 𝛿)[1 + (𝑥 + 𝑚ℎ)2)] ∑ 1𝑚
𝑘=1   

≤ 𝑚(1 + ℎ2)[2 + 2(𝑥2 + (𝑚ℎ)2]𝛺(𝑓; 𝛿)   

≤ 2𝑚(1 + ℎ2)(1 + 𝑥2) (1 +
(𝑚ℎ)2

1+𝑥2 ) 𝛺(𝑓; 𝛿)    

        ≤ 2𝑚(1 + ℎ2)(1 + 𝑥2)(1 + (𝑚ℎ)2)𝛺(𝑓; 𝛿) 

elde edilir. Böylece 

|𝑓(𝑥+𝑚ℎ)−𝑓(𝑥)|

(1+𝑥2)(1+(𝑚ℎ)2)
≤ 2𝑚(1 + ℎ2)𝛺(𝑓; 𝛿)  

bulunur. Supremum alınırsa, 𝑚 ∈ ℕ için 
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𝑠𝑢𝑝
0≤𝑥

|ℎ|≤𝛿

|𝑓(𝑥 + 𝑚ℎ) − 𝑓(𝑥)|

(1 + 𝑥2)(1 + (𝑚ℎ)2)
≤ 2𝑚(1 + 𝛿2)𝛺(𝑓; 𝛿) 

elde edilir.  𝜆 ∈  ℝ  için, [|𝜆|] ≤ 𝜆 ≤ [|𝜆|] + 1 olduğundan  

𝛺(𝑓; 𝜆𝛿) ≤   𝛺(𝑓; ([|𝜆|] + 1)𝛿) 

                                ≤ 2([|𝜆|] + 1)(1 + 𝛿2)𝛺(𝑓; 𝛿) 

                            ≤ 2(1 + 𝜆)(1 + 𝛿2)𝛺(𝑓; 𝛿) 

eşitsizliği sağlanır. 

Tanım 2.9. 𝐿: 𝑋 → 𝑌 bir operatör olsun. 𝐷(𝐿), 𝐿 nin tanım kümesi olmak üzere, 

∀𝑓𝜖𝐷(𝐿) için, 

∥ 𝐿(𝑓; 𝑥) ∥𝑌≤ 𝑀 ∥ 𝑓 ∥𝑋 

eşitsizliğini sağlayan 𝑀𝜖𝑅+ varsa 𝐿′ ye 𝐷(𝐿)′ de sınırlı operatör denir. 

∥ 𝐿 ∥𝑋→𝑌= 𝑖𝑛𝑓{𝑀: ‖𝐿(𝑓; 𝑥)‖𝑌 ≤ 𝑀‖𝑓‖𝑋} 

sayısına 𝐿 operatörünün normu denir. 

Tanım 2.10. 𝑋 ve 𝑌 normlu uzaylar 𝐿: 𝑋 → 𝑌 lineer operatör olsun. Her 𝜀 > 0 

sayısına karşılık öyle bir pozitif 𝛿(𝜀, 𝑓0) sayısı bulunabilir ki ‖𝑓 − 𝑓0‖𝑋 < 𝛿 

olduğunda 

‖𝐿(𝑓) − 𝐿(𝑓0)‖𝑌 < 𝜀 eşitsizliği sağlanırsa 𝐿 operatörü 𝑓0 𝜖 𝑋 için süreklidir denir. 

Tanım 2.11. (𝑠𝑛) reel terimli bir dizi olsun. (𝑠𝑛) dizisinin sonlu adetteki terimleri 

hariç diğer tüm terimleri bir 𝑠 sayısının keyfi 𝜀 > 0 komşuluğunda kalıyorsa (𝑠𝑛) 

dizisinin limiti 𝑠 dir denir ve (𝑠𝑛) → 𝑠 ile veya 𝑙𝑖𝑚
𝑛→∞

𝑠𝑛 = 𝑠 ile gösterilir. 

Teorem 2.1. (Weierstrass Yaklaşım Teoremi) 

𝑓 fonksiyonu, [𝑎, 𝑏] aralığı üzerinde, sürekli fonksiyonlar uzayında olmak üzere, 

∀ 𝜀 > 0 için, |𝑓(𝑥) − 𝑃𝑛(𝑥)| < 𝜀 olacak şekilde n.dereceden bir 𝑃𝑛(𝑥) polinom 

dizisi vardır. Yani her sürekli 𝑓 fonksiyonuna karşılık gelen 𝑃𝑛(𝑥) polinomlar dizisi 

vardır. Bernstein, Weierstrass teoreminde adı geçen polinomlara bir örnek olan 

Bernstein polinomlarını 𝑥 ∈ [0,1] için, 
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𝐵𝑛(𝑓; 𝑥) = ∑ 𝑓 (
𝑘

𝑛
) (

𝑛
𝑘

) 𝑥𝑘(1 − 𝑥)𝑛−𝑘

𝑛

𝑘=0

 

şeklinde tanımlamıştır. 

Yaklaşımlar teorisinde önemli teoremlerden birisi de Korovkin tarafından vermiştir. 

Bu teorem, lineer pozitif operatörler alanında yapılan çalışmalara büyük katkı 

sağlamıştır. 

Teorem 2.2. (P.P. Korovkin Teoremi (1951)) 

𝑓 ∈ 𝐶[𝑎, 𝑏]  olsun. Tüm reel eksende, |𝑓(𝑥)| < 𝑀𝑓 olmak üzere,                         (2.2) 

Eğer 𝐿𝑛(𝑓; 𝑥) lineer pozitif operatör dizisi, her 𝑥 ∈ [𝑎, 𝑏] için, 

i. 𝐿𝑛(1; 𝑥) ⇉ 1 

ii. 𝐿𝑛(𝑡; 𝑥) ⇉ 𝑥 

iii. 𝐿𝑛(𝑡2; 𝑥) ⇉  𝑥2 

koşullarını sağlıyorsa, bu durumda her 𝑓 ∈ [𝑎, 𝑏] için,  𝐿𝑛(𝑓; 𝑥) ⇉ 𝑓(𝑥) dir. 

İspat: 𝑓 ∈ 𝐶[𝑎, 𝑏] olsun. Sürekli fonksiyon tanımından her pozitif 𝜀 sayısına karşılık 

öyle bir 𝛿 bulabiliriz ki |𝑡 − 𝑥| ≤ 𝛿 olduğunda |𝑓(𝑡) − 𝑓(𝑥)| < 𝜀 olur. |𝑡 − 𝑥| > 𝛿 

olduğunda ise (2.2)’ den ve üçgen eşitsizliğinden dolayı, 

                               |𝑓(𝑡) − 𝑓(𝑥)| ≤ |𝑓(𝑡)| + |𝑓(𝑥)| ≤ 2𝑀𝑓                                          (2.3) 

yazılabilir. Diğer taraftan eğer |𝑡 − 𝑥| > 𝛿  ise  
|𝑡−𝑥|

𝛿
> 1 olacağından, 

(𝑡−𝑥)2

𝛿2 > 1                 (2.4) 

sağlanır. (2.3) ve (2.4)’ ten 

|𝑓(𝑡) − 𝑓(𝑥)| ≤ 2𝑀𝑓 ≤ 2𝑀𝑓

(𝑡 − 𝑥) 2

𝛿2
 

eşitsizlikleri sağlanır. 

Özetle |𝑡 − 𝑥| ≤ 𝛿 için, |𝑓(𝑡) − 𝑓(𝑥)| < 𝜀 ve |𝑡 − 𝑥| > 𝛿 için, 

|𝑓(𝑡) − 𝑓(𝑥)| ≤ 2𝑀𝑓

(𝑡 − 𝑥)2

𝛿2
 

elde edilir. Böylece her 𝑡 ∈ ℝ ve 𝑥 ∈ [𝑎, 𝑏] için; 
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                                        |𝑓(𝑡) − 𝑓(𝑥)| < 𝜀 + 2𝑀𝑓
(𝑡−𝑥)2

𝛿2
              (2.5) 

dir. Eğer (i), (ii) ve (iii) koşullarını sağlayan (𝐿𝑛) operatör dizisinin, 

lim
𝑛→∞

‖𝐿𝑛(𝑓(𝑡); 𝑥 − 𝑓(𝑥)‖𝐶[𝑎,𝑏] = 0 

eşitliğini sağladığını gösterirsek ispat tamamlanmış olur. 

Lineerlikten: 

|𝐿𝑛(𝑓(𝑡); 𝑥) − 𝑓(𝑥)| = |𝐿𝑛(𝑓(𝑡); 𝑥) − 𝑓(𝑥) + 𝐿𝑛(𝑓(𝑥); 𝑥) − 𝐿𝑛(𝑓(𝑥); 𝑥)| 

                                           = |𝐿𝑛(𝑓(𝑡); 𝑥) − 𝐿𝑛(𝑓(𝑥); 𝑥) + 𝐿𝑛(𝑓(𝑥); 𝑥) − 𝑓(𝑥)| 

                            = |𝐿𝑛 ((𝑓(𝑡) − 𝑓(𝑥)); 𝑥) + 𝑓(𝑥)(𝐿𝑛(1; 𝑥) − 1)| 

yazılabilir. Burada üçgen eşitsizliği kullanılırsa, 

|𝐿𝑛(𝑓(𝑡); 𝑥) − 𝑓(𝑥)| ≤ |𝐿𝑛 ((𝑓(𝑡) − 𝑓(𝑥)); 𝑥)| + |𝑓(𝑥)||(𝐿𝑛(1; 𝑥) − 1)| 

yazılabilir. Diğer taraftan lineer pozitif operatörler monoton artan olduğundan 

|𝐿𝑛 ((𝑓(𝑡) − 𝑓(𝑥)); 𝑥)| ≤ 𝐿𝑛(|𝑓(𝑡) − 𝑓(𝑥)|; 𝑥) 

yazılabilir. Böylece, 

|𝐿𝑛(𝑓(𝑡); 𝑥) − 𝑓(𝑥)| ≤ 𝐿𝑛(|𝑓(𝑡) − 𝑓(𝑥)|; 𝑥) + |𝑓(𝑥)||(𝐿𝑛(1; 𝑥) − 1)| 

olduğu gösterilmiş olur. (2.2)’den, 

|𝐿𝑛(𝑓(𝑡); 𝑥) − 𝑓(𝑥)| ≤ 𝐿𝑛(|𝑓(𝑡) − 𝑓(𝑥)|; 𝑥) + 𝑀𝑓|𝐿𝑛(1; 𝑥) − 1| 

yazılabilir. (𝐿𝑛) monoton artan olduğundan (2.5)’in kullanılmasıyla; 

                          |𝐿𝑛(𝑓(𝑡); 𝑥) − 𝑓(𝑥)|

≤ 𝐿𝑛 (𝜀 +
2𝑀𝑓

𝛿2
(𝑡 − 𝑥)2; 𝑥) + 𝑀𝑓|(𝐿𝑛(1; 𝑥) − 1)|                          (2.6) 

bulunur. Diğer taraftan; 

𝐿𝑛 (𝜀 +
2𝑀𝑓

𝛿2
(𝑡 − 𝑥)2; 𝑥) = 𝐿(𝜀; 𝑥) + 𝐿𝑛 (

2𝑀𝑓

𝛿2
(𝑡 − 𝑥)2; 𝑥)    

                    = 𝜀𝐿𝑛(1; 𝑥) +
2𝑀𝑓

𝛿2
𝐿𝑛(𝑡2 − 2𝑡𝑥 + 𝑥2; 𝑥) 

= 𝜀𝐿𝑛(1; 𝑥) +
2𝑀𝑓

𝛿2
[𝐿𝑛(𝑡2; 𝑥)−𝑥2−𝑥2 + 2𝑥2 − 2𝑥𝐿𝑛(𝑡; 𝑥) + 𝑥2𝐿𝑛(1; 𝑥)] 
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= 𝜀𝐿𝑛(1; 𝑥) +
2𝑀𝑓

𝛿2
[𝐿𝑛(𝑡2; 𝑥)−𝑥2 + 2𝑥2 − 2𝑥𝐿𝑛(𝑡; 𝑥) + 𝑥2𝐿𝑛(1; 𝑥)−𝑥2] 

           = 𝜀𝐿𝑛(1; 𝑥) +
2𝑀𝑓

𝛿2
[(𝐿𝑛(𝑡2; 𝑥)−𝑥2) + 2𝑥(𝑥 − 𝐿𝑛(𝑡; 𝑥) + 𝑥2𝐿𝑛(1; 𝑥) − 1)] 

bulunur.  Son eşitlik, (2.6)’da yerine yazılırsa 

|𝐿𝑛(𝑓(𝑡); 𝑥) − 𝑓(𝑥)| 

≤ 𝜀𝐿𝑛(1; 𝑥) +
2𝑀𝑓

𝛿2
[(𝐿𝑛(𝑡2; 𝑥)−𝑥2) + 2𝑥(𝑥 − 𝐿𝑛(𝑡; 𝑥) + 𝑥2𝐿𝑛(1; 𝑥) − 1)] 

   +𝑀𝑓|(𝐿𝑛(1; 𝑥) − 1)|                                                                                   (2.7)                                                        

elde edilir. (i), (ii) ve (iii) koşullarının (2.7)’ de kullanılması ile  

|𝐿𝑛(𝑓(𝑡); 𝑥) − 𝑓(𝑥)| < 𝜀 

elde edilir. Böylece lim
𝑛→∞

max
𝑎≤𝑥≤𝑏

|𝐿𝑛(𝑓(𝑡); 𝑥) − 𝑓(𝑥)| = 0 ile ispat tamamlanır. 

Tanım 2.12. Verilen 𝑓 fonksiyonu ve (𝑥1, 𝑦1), … … , (𝑥𝑛, 𝑦𝑛), 𝑦𝑛 = 𝑓(𝑥𝑛) şeklindeki 

𝑛 tane nokta için, 

𝑃𝑗 = 𝑌𝑗 ∏
𝑥 − 𝑥𝑘

𝑥𝑗 − 𝑥𝑘

𝑛

𝑘=1
𝑗≠𝑘

 

olmak üzere, 

𝑃(𝑥) = ∑ 𝑃𝑗(𝑥)

𝑛

𝑗=1

 

şeklinde tanımlanan polinoma Newton İnterpolasyon Polinomu denir. 

Tanım 2.13. Her pozitif 𝜎 sayısı için, 

𝜔𝐿𝑝
(𝑓: 𝜎) = sup

|𝑡|≤𝜎
(∫ |𝑓(𝑥 + 𝑡) − 𝑓(𝑥)|𝑝𝑑𝑥

∞

−∞

)

1
𝑝⁄

 

İfadesine, 𝑓′ nin 𝐿𝑝 uzayındaki süreklilik modülü denir. 

 



11 

 

Tanım 2.14. Her 𝜀 > 0 ve her bir 𝑥 ∈ 𝛢 için en az bir 𝑛0 ∈ 𝑁 vardır öyleki her 𝑛 ≥

𝑛0 için |𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀 oluyorsa (𝑓𝑛) dizisi 𝛢 üzerinde 𝑓 fonksiyonuna noktasal 

yakınsaktır denir. Burada 𝑛0 sayısı hem 𝜀 , hem de  𝑥 noktasına bağlıdır. 

Tanım 2.15. Her 𝜀 > 0 için en az bir  𝑛0 öyleki her 𝑛 ≥ 𝑛0 ve her   𝑥 ∈ 𝛢 için 

|𝑓𝑛(𝑥) − 𝑓(𝑥)| < 𝜀 oluyorsa (𝑓𝑛) dizisi 𝛢 üzerinde 𝑓 fonksiyonuna düzgün 

yakınsaktır denir ve kısaca 𝑓𝑛 ⇉ 𝑓 şeklinde gösterilir. Burada 𝑛0 sayısı sadece 𝜀 

sayısına bağlı olup  𝑥 noktalarından bağımsızdır. 

Tanım 2.16. Kompakt bir 𝐼 = [𝑎, 𝑏] aralığı üzerinde tanımlı, a noktasında sağdan b 

noktasında soldan sürekli olmak üzere tüm noktalarda sürekli olan fonksiyonların 

kümesine sürekli fonksiyonlar uzayı denir ve 𝐶[𝑎, 𝑏] veya 𝐶(𝐼) şeklinde gösterilir. 

𝐶[𝑎, 𝑏] uzayı kısaca, 

𝐶[𝑎, 𝑏]: = {𝑓|𝑓: [𝑎, 𝑏] → ℝ tanımlı ve ∀𝑥 ∈ [𝑎, 𝑏] için sürekli} 

şeklinde ifade edilir. 

Tanım 2.17. 𝑓 fonksiyonu [𝑎, 𝑏] üzerinde mutlak süreklidir gerek ve yeter şart ∀𝜀 >

0 için bir 

 𝛿 > 0 vardır öyleki, 

∑(𝑏𝑘 − 𝑎𝑘) < 𝛿

𝑛

𝑘=1

 

şartını sağlayan her sonlu ve ikişerli ayrık 

{(𝑎𝑘, 𝑏𝑘) ⊂ [𝑎, 𝑏]: 𝑘 = 1,2, … , 𝑛} 

aralık ailesi için 

 

sağlanır. Bu tanıma göre mutlak sürekli her fonksiyon süreklidir fakat bunun karşıtı 

doğru değildir. 

Tanım 2.18  

(𝑋, 𝑈, 𝜇) bir ölçü uzayı olsun. 0 < 𝑝 < ∞ olmak üzere, 

𝐿𝑝 = {𝑓 ∈ 𝑀(𝑋, 𝑈): |𝑓|𝑝 ∈ 𝐿(𝑋, 𝑈, 𝜇)} 
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kümesine 𝑝. kuvvetten integrallenebilen fonksiyonlar sınıfı denir. 

Tanım 2.19. 𝑓𝑛 ve 𝑓 fonksiyonları 𝐿𝑝 uzayının elemanları olsun.  

(𝑓𝑛) dizisi 𝑓 fonksiyonuna 𝑝-inci mertebeden ortalama yakınsaktır ⇔ ∀𝜀 > 0 için 

∃𝑛0 ∈ 𝑁 öyleki ∀𝑛 ≥ 𝑛0 için 

‖𝑓𝑛 − 𝑓‖𝑝 < 𝜀 

Bu yakınsaklık çeşidine 𝐿𝑝′ de yakınsaklık da denir. Burada 𝑝 ≥ 1 olup  

‖𝑓𝑛 − 𝑓‖𝑝 = (∫ |𝑓𝑛 − 𝑓|𝑝𝑑𝜇
𝑋

)

1
𝑝

 

dir. Buna göre; 

(𝑓𝑛) dizisi 𝑓 fonksiyonuna 𝐿𝑝 de yakınsak ⇔ 𝑙𝑖𝑚
𝑛→∞

‖𝑓𝑛 − 𝑓‖𝑝 = 0. 

Tanım 2.20. 𝐷 ⊂ ℝ2 sınırlı ve kapalı bir bölge olmak üzere, D bölgesi üzerindeki iki 

değişkenli sürekli fonksiyonlar uzayı  

𝐶(𝐷): = {𝑓|𝑓: 𝐷 →ℝ  tanımlı ve ∀(𝑥, 𝑦) ∈ 𝐷 için sürekli) 

şeklinde gösterilir. 

Tanım 2.21. Kompakt bir [𝑎, 𝑏] aralığında tanımlı bir f fonksiyonunun her bir 𝑘 =

1,2, … için k-ıncı mertebeden türevleri var ve bu türevler sürekli ise 𝐶𝑘[𝑎, 𝑏] uzayına 

k-ıncı mertebeden türevlenebilir sürekli fonksiyonlar uzayı denir. 

Tanım 2.22. 𝐾: ℝ𝑚 → ℝ𝑛 bir fonksiyon ve 𝐿: ℝ𝑚 → ℝ𝑛 lineer fonksiyon olsun. Her 

𝑥 ∈ ℝ𝑚 ve  ℝ𝑛’ deki bir b vektörü için, 

𝐾(𝑥) = 𝐿(𝑥) + 𝑏 şartını sağlayan bir  𝐿 lineer fonksiyonu varsa,  𝐾 ‘ya afin 

fonksiyon denir. 

Bir afin fonksiyonu, öteleme dönüşümüne sahip lineer bir fonksiyondur. Eğer 

𝐾: ℝ𝑚 → ℝ𝑛 afin fonksiyon ise, her  𝑥 ∈ ℝ𝑚 için, 

𝐾(𝑥) = 𝐴(𝑥) + 𝑏 olacak şekilde bir  𝑛 × 𝑚 tipinde A matrisi ve ℝ𝑛’ deki bir b 

vektörü vardır. Eğer 𝑓: ℝ → ℝ afin ise her 𝑥 ∈  ℝ için 𝑓(𝑥) = 𝑎𝑥 + 𝑏 olacak şekilde 

a ve b reel sayıları vardır. 
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Tanım 2.23. Afin dönüşümü, 𝑓: ℝ𝑛 → ℝ𝑚  fonksiyonu 𝑥, 𝜆 ∈ ℝ 𝑣𝑒 ∀𝑥, 𝑦 ∈ ℝ𝑛 için, 

𝑓((1 − 𝜆)𝑥 + 𝜆𝑦) = (1 − 𝜆)𝑓(𝑥) + 𝜆𝑓(𝑦) 

koşulunu sağlayan fonksiyona denir. Bununla birlikte 

𝑓 (∑ 𝜆𝑘𝑦𝑘

𝑛

𝑘=1

) = ∑ 𝜆𝑘𝑓(𝑦𝑘)

𝑛

𝑘=1

 

eşitliği sağlanır. 

Lemma 2.3.  

𝑎1, . . . , 𝑎𝑛 ve 𝑏1, . . . , 𝑏𝑛 herhangi  reel sayılar ise, 

(𝑎1𝑏1+. . . +𝑎𝑛𝑏𝑛)2 ≤ (𝑎1
2+. . . +𝑎𝑛

2)(𝑏1
2+. . . +𝑏𝑛

2) 

dir. 

İspat. 

𝑃(𝑥) = (𝑎1𝑥 − 𝑏1)2+. . . +(𝑎𝑛𝑥 − 𝑏𝑛)2 

olsun. Eğer, 

𝐴 = 𝑎1
2+. . . +𝑎1

2 

𝐵 = 𝑏1
2+. . . +𝑏1

2
 

𝐶 = 𝑎1𝑏1+. . . +𝑎𝑛𝑏𝑛 

ise, 

𝑝(𝑥) = 𝐴𝑥2 − 2𝐶𝑥 + 𝐵 

elde edilir. Her 𝑥𝜖𝑅 için, 𝑝(𝑥) karelerinin toplamı olduğundan 𝑝(𝑥) ≥ 0 çıkar. Yani 

her 𝑥𝜖𝑅 için, 

𝐴𝑥2 − 2𝐶𝑥 + 𝐵 = 𝑝(𝑥) ≥ 0 

bulunur. Her reel sayı için geçerli olan böyle bir eşitsizlik, ancak, 𝐶2 − 𝐴𝐵 ≤ 0 ise 

mümkündür. Bu durumda 

(𝑎1𝑏1+. . . +𝑎𝑛𝑏𝑛)2 ≤ (𝑎1
2+. . . +𝑎𝑛

2)(𝑏1
2+. . . +𝑏𝑛

2) 

bulunur. 
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Tanım 2.24.  

𝑓 𝜖 𝐶[0, ∞)  ve 𝑛 𝜖 ℕ ve 𝑃𝑛,𝑘 = (
𝑛 + 𝑘 − 1

𝑘
)

𝑥𝑘

(1+𝑥)𝑁+𝑘 olmak üzere 

𝐵𝑛̌(𝑓; 𝑥) =
1

(1 + 𝑥)𝑛
∑ 𝑓 (

𝑘

𝑛
) (

𝑛 + 𝑘 − 1
𝑘

)
𝑥𝑘

(1 + 𝑥)𝑘

∞

𝑘=0

 

       = ∑ 𝑃𝑛,𝑘𝑓 (
𝑘

𝑛
)

∞

𝑘=0

 

ifadesine Baskakov operatörü denir. 

Tanım 2.25.  

𝑓 𝜖 𝐶[0, ∞) ve 𝑥 𝜖 [0, ∞)  olmak üzere, 

𝑆𝑛(𝑓; 𝑥) = 𝑒−𝑛𝑥 ∑
𝑛𝑥𝑘

𝑘!
𝑓 (

𝑘

𝑛
)

∞

𝑘=0

 

ifadesine Szàsz operatörü denir. 

Tanım 2.26. 

𝑓 ∈ 𝐿𝑝([0,1]) için  

𝐾𝑛(𝑓; 𝑥) = (𝑛 + 1) ∑ (
𝑛
𝑘

) 𝑥𝑘(1 − 𝑥)𝑛−𝑘 ∫ 𝑓(𝑡)𝑑𝑡

𝑘+1
𝑛+1

𝑘
𝑛+1

𝑛

𝑘=0

 

şeklinde tanımlanan operatöre Kantorovich operatörü denir. Kantorovich 

operatörünün 1, 𝑡 𝑣𝑒 𝑡2 ‘deki değerleri aşağıdaki verilmiştir. 

𝐾𝑛(1; 𝑥) = ∑(𝑛 + 1) (
𝑘 + 1

𝑛 + 1
−

𝑘

𝑛 + 1
) (

𝑛
𝑘

) 𝑥𝑘(1 − 𝑥)𝑛−𝑘

𝑛

𝑘=0

 

                 = 𝐵𝑛(1; 𝑥) 

               = 1,                                                                            

𝐾𝑛(𝑡; 𝑥) = ∑
𝑛 + 1

2

𝑛

𝑘=0

(
(𝑘 + 1)2 − 𝑘2

(𝑛 + 1)2
) (

𝑛
𝑘

) 𝑥𝑘(1 − 𝑥)𝑛−𝑘 
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=
𝑛

𝑛 + 1
∑

𝑘

𝑛
(

𝑛

𝑘
) 𝑥𝑘(1 − 𝑥)𝑛−𝑘 +

1

2(𝑛 + 1)
∑ (

𝑛
𝑘

) 𝑥𝑘(1 − 𝑥)𝑛−𝑘

𝑛

𝑘=0

𝑛

𝑘=0

 

               =
𝑛

𝑛+1
𝑥 +

1

2(𝑛+1)
  ve  

𝐾𝑛(𝑡2; 𝑥) = ∑[
𝑛 + 1

3
(

(𝑘 + 1)3 − 𝑘3

(𝑛 + 1)3
)]

𝑛

𝑘=0

(
𝑛
𝑘

) 𝑥𝑘(1 − 𝑥)𝑛−𝑘 

=
1

3(𝑛 + 1)2
∑((𝑘 + 1)2 + 𝑘

𝑛

𝑘=0

(𝑘 + 1) + 𝑘2) (
𝑛
𝑘

) 𝑥𝑘(1 − 𝑥)𝑛−𝑘 

                  =
𝑛2

(𝑛 + 1)2
𝐵𝑛(𝑡2; 𝑥) +

𝑛

(𝑛 + 1)2
𝑥 +

1

3(𝑛 + 1)2
 

                  =
𝑛2

(𝑛 + 1)2
(𝑥2 +

𝑥(1 − 𝑥)

𝑛
) +

𝑛

(𝑛 + 1)2
𝑥 +

1

3(𝑛 + 1)2
 

Teorem 2.3. 𝑓 ∈ ∁[0,1] ve 𝑥 ∈ [0,1] için, 

𝑙𝑖𝑚
𝑛→∞

𝐾𝑛(𝑓; 𝑥) = 𝑓(𝑥). 

Teorem 2.4. 

𝑓 ∈ 𝐿𝑝[0,1], (1 ≤ 𝑝 < ∞) ise 

𝑙𝑖𝑚
𝑛→∞

||𝐾𝑛(𝑓) − 𝑓||
𝑝

= 0 

dir. 

İspat. 𝐾𝑛 operatörü 𝐿𝑝[0,1]′ den 𝐿𝑝[0,1]′ e sınırlı bir operatördür. Ayrıca 

Weierstrass teoreminden 𝑓 ∈ 𝐿𝑝[0,1] olduğundan, verilen 𝜀 > 0 için öyle bir  

𝑔 ∈ 𝐶[0,1] fonksiyonu vardır ki, 

||𝑓 − 𝑔||
𝑝

< 𝜀 

ve bir 𝑛0 ∈ 𝑁 öyleki 𝑛 ≥ 𝑛0 için 

||𝐾𝑛(𝑔) − 𝑔||
𝑝

< 𝜀 

eşitsizlikleri sağlanır. 

 

||𝐾𝑛(𝑓) − 𝑓||
𝑝

= ||𝐾𝑛(𝑓) − 𝐾𝑛(𝑔) + 𝐾𝑛(𝑔) − 𝑔 + 𝑔 − 𝑓||
𝑝
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 ≤ ||𝐾𝑛(𝑓) − 𝐾𝑛(𝑔)||
𝑝

+ ||𝐾𝑛(𝑔) − 𝑔||
𝑝

+ ||𝑔 − 𝑓||
𝑝
 

 ≤ ||𝑓 − 𝑔||
𝑝

(||𝐾|| + 1) + ||𝐾𝑛𝑔 − 𝑔||
𝑝
 

olup ∀n ≥ 𝑛0 için ||𝐾𝑛(𝑓) − 𝑓||
𝑝

≤ 𝜀(||𝐾|| + 2) yazılabilir. Böylece ispat 

tamamlanır.           

Tanım 2.27. 𝑓 fonksiyonunun 𝑞 türevi 𝑞 ≠ 1 için 𝐷𝑞𝑓(𝑥) =
𝑓(𝑞𝑥)−𝑓(𝑥)

𝑥(𝑞−1)
 şeklinde 

tanımlıdır. Bununla birlikte lim
𝑞→1

𝐷𝑞𝑓(𝑥) = 𝑓′(𝑥)’ dir.  

𝑞 integral, 

∫ 𝑓(𝑥)𝑑𝑞(𝑥) = 𝑎 ∑ 𝑓(𝑎𝑞𝑛)(𝑞𝑛 − 𝑞𝑛+1)

∞

𝑛=0

𝑎

0

= (1 − 𝑞) ∑ 𝑎𝑞𝑛𝑓(𝑎𝑞𝑛)

∞

𝑛=0

 

eşitliği le tanımlanır. 

Tanım 2.28. 𝑓, [0,1] üzerinde 𝑞 -integrallenebilir fonksiyon olmak üzere 𝑞 ∈ [0,1] 

için, 

𝐾𝑛
𝑞(𝑓; 𝑥) = ∑([𝑛 + 1] ∫ 𝑓(𝑡)𝑑𝑞𝑡)

[𝑘+1]
[𝑛+1]

[𝑘]
[𝑛+1]

𝑛

𝑘=0

[
𝑛
𝑘

] 𝑞−𝑘𝑥𝑘 ∏ (1 − 𝑞𝑠𝑥)

𝑛−𝑘−1

𝑠=0

 

şeklinde tanımlanan operatöre 𝑞 -Bernstein Kantorovich operatörü denir. Test 

fonksiyonlarındaki değerleri aşağıda verilmiştir. Öncelikle operatörün 1’ deki değeri 

verilsin. 

𝐾𝑛
𝑞(1; 𝑥) = ∑([𝑛 + 1] ∫ 𝑑𝑞𝑡)𝑃𝑛,𝑘

𝑞

[𝑘+1]
[𝑛+1]

[𝑘]
[𝑛+1]

𝑛

𝑘=0

 

olup 𝑞-integral yardımıyla 

∫ 𝑑𝑞𝑡 = ∫ 𝑑𝑞𝑡 − ∫ 𝑑𝑞𝑡

[𝑘]
[𝑛+1]

0

[𝑘+1]
[𝑛+1]

0

[𝑘+1]
[𝑛+1]

[𝑘]
[𝑛+1]
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= (1 − 𝑞)
[𝑘 + 1]

[𝑛 + 1]
∑ 𝑞𝑗 − (1 − 𝑞) ∑ 𝑞𝑗

∞

𝑗=0

∞

𝑗=0

 

=
[𝑘 + 1] − [𝑘]

[𝑛 + 1]
 

=
𝑘 + 𝑞𝑘 − 𝑘

[𝑛 + 1]
=

𝑞𝑘

[𝑛 + 1]
 

yazılabilir.  Böylece 

𝐾𝑛
q(1; 𝑥) = 1 

dir. Benzer şekilde operatörün 𝑡 ve 𝑡2’ deki değerleri 

𝐾𝑛
q(𝑡; 𝑥) =

[𝑛]

[𝑛 + 1]
𝑥 +

1

[2]

1

[𝑛 + 1]
 

𝐾𝑛
q(𝑡2; 𝑥) = 𝑙𝑖𝑚

𝑛→∞

[𝑛] [𝑛 − 1]

[𝑛 + 1]2 𝑥2 +
[2](1 + [2])

[3]

[𝑛]

[𝑛 + 1]2 𝑥 +
1

3

1

[𝑛 + 1]2  

elde edilir. 

 

Teorem 2.5. 

0 < 𝑞𝑛 < 1 olmak üzere 𝑞 = (𝑞𝑛) dizisi   𝑙𝑖𝑚
𝑛→∞

𝑞𝑛 = 1 koşulunu sağlasın. 𝑓,  [0,1] 

aralığında sürekli ve monoton artan bir fonksiyon ve 𝑥 ∈ [0,1] olmak üzere, 

𝑙𝑖𝑚
𝑛→∞

𝐾𝑛
𝑞𝑛 (𝑓; 𝑥) = 𝑓(𝑥) 

dir. 

İspat.𝑓 monoton artan bir fonksiyon ise 𝐾𝑛
𝑞(𝑓; 𝑥): ∁[0,1] → ∁[0,1]’e dönüşüm yapan 

lineer pozitif bir operatördür. Test fonksiyonlarındaki değerleri yukarıda verilmiştir. 

𝑞 yerine (𝑞𝑛) dizisi seçilerek 

𝑙𝑖𝑚
𝑛→∞

[𝑛]𝑞𝑛

[𝑛 + 1]𝑞𝑛

= 𝑙𝑖𝑚
𝑛→∞

[𝑛 + 1]𝑞𝑛
− 1

𝑞𝑛[𝑛 + 1]𝑞𝑛

= 𝑙𝑖𝑚
𝑛→∞

1

𝑞𝑛 −
1

𝑞𝑛[𝑛 + 1]𝑞𝑛

= 1 

𝑙𝑖𝑚
𝑛→∞

[𝑛]𝑞𝑛
[𝑛 − 1]𝑞𝑛

[𝑛 + 1]𝑞𝑛
2

= 𝑙𝑖𝑚
𝑛→∞

(
[𝑛 + 1]𝑞𝑛

− 1
𝑞𝑛

) (
[𝑛 + 1]𝑞𝑛

− [1 + 𝑞]

𝑞𝑛
2 )

[𝑛 + 1]𝑞𝑛
2

= 1 

elde edilir. Böylece Korovkin teoreminin hipotezleri sağlaır. 

Teorem 2.6. 𝐹, 𝑓 fonksiyonunun 𝑞 anti türevi olsun. Bu durumda  
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𝐷𝑞𝐵𝑛+1
𝑞 (𝐹; 𝑥) = 𝐾𝑛

𝑞(𝑓; 𝑞𝑥). 

İspat. Aşağıdaki  

𝐷𝑞 ( ∏ (1 − 𝑞𝑠𝑥)

𝑛−𝑘−1

𝑠=0

) = −[𝑛 − 𝑘] ∏ (1 − 𝑞𝑠+1𝑥)

𝑛−𝑘−2

𝑠=0

 

eşitliği yazılabilir. Buradan, 

𝐷𝑞𝐵𝑛+1
𝑞 (𝐹; 𝑥) = ∑ 𝐹 (

[𝑘]

[𝑛 + 1]
)

𝑛+1

𝑘=0

[
𝑛 + 1

𝑘
] 𝐷𝑞 (𝑥𝑘 ∏(1 − 𝑞𝑠𝑥)

𝑛−𝑘

𝑠=0

)

= ∑ 𝐹 (
[𝑘]

[𝑛 + 1]
)

𝑛+1

𝑘=0

[
𝑛 + 1

𝑘
] {[𝑘]𝑥𝑘−1 ∏(1 − 𝑞𝑠+1𝑥)

𝑛−𝑘

𝑠=0

− 𝑥𝑘[𝑛 − 𝑘 + 1] ∏ (1 − 𝑞𝑠+1𝑥)

𝑛−𝑘−1

𝑠=0

}

= ∑ 𝐹 (
[𝑘]

[𝑛 + 1]
)

𝑛+1

𝑘=0

 
[𝑛 + 1][𝑛]!

[𝑛 + 1 − 𝑘]! [𝑘 − 1]!
𝑥𝑘−1 ∏ (1 − 𝑞𝑠+1𝑥)

𝑛−𝑘−1

𝑠=0

− ∑ 𝐹 (
[𝑘]

[𝑛 + 1]
) [

𝑛
𝑘

]
[𝑛 + 1][𝑛]!

[𝑛 − 𝑘]! [𝑘]!
𝑥𝑘

𝑛+1

𝑘=1

∏ (1 − 𝑞𝑠+1𝑥)

𝑛−𝑘−1

𝑠=0

 

                            = ∑ (𝐹 (
[𝑘+1]

[𝑛+1]
) − 𝐹 (

[𝑘]

[𝑛+1]
)) [

𝑛
𝑘

] [𝑛 + 1] ∏ (1 − 𝑞𝑠+1𝑥)𝑥𝑘𝑛−𝑘−1
𝑠=0

𝑛
𝑘=0  

                             = ∑ ([𝑛 + 1] ∫ 𝑓(𝑡)𝑑𝑞

[𝑘+1]

[𝑛+1]
[𝑘]

[𝑛+1]

𝑡)

 

 

[
𝑛
𝑘

]𝑛
𝑘=0  𝑥𝑘 ∏ (1 − 𝑞𝑠+1𝑥)𝑛−𝑘−1

𝑠=0  

                                = 𝐾𝑛
𝑞(𝑓; 𝑞𝑥) 

elde edilir. 

Tanım 2.29. Bir noktada aldığı değer ve türevleri 𝑓 fonksiyonununkiler ile aynı olan 

𝑝 polinomun,a 𝑓 ile uyumlu polinom adı verilir. Eğer, 

𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2+. . . +𝑎𝑛𝑥𝑛 

polinomu 𝑥 = a noktasında 𝑛 inci mertebeden türevlenebilen 𝑓 fonksiyonu ile 

uyumlu ise, 

𝑝(a) = 𝑓(a) ⇔ 𝑎0 = 𝑓(a) 

𝑝′(a) = 𝑓′(a) ⇔ 𝑎1 = 𝑓′(a) 

𝑝′′(a) = 𝑓′′(a) ⇔ 2𝑎2 = 𝑓′′(a) 

𝑝′′′(a) = 𝑓′′′(a) ⇔ 2.3. 𝑎3 = 𝑓′′′(a) 

𝑝(4)(a) = 𝑓(4)(a) ⇔ 2.3.4. 𝑎4 = 𝑓(4)(a) 
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olup bu şekilde devam edilirse, 

𝑝(𝑘)(a) = 𝑓(𝑘)(a) ⇔ 2.3. . . 𝑘. , 𝑎𝑘 = 𝑓(𝑘)(a) 

olur. Yani 𝑘 = 0,1,2, … , 𝑛 için, 

𝑎𝑘 =
𝑓(𝑘)(a)

𝑘!
 

dir. Böylece derecesi 𝑛′ den büyük olmayan bir tek 𝑝 polinomu vardır. Bu polinom 

𝑥 = 𝑎 noktasında 𝑓 fonksiyonu tarafından üretilen Taylor polinomu 

𝑝(𝑥) = ∑
𝑓(𝑘)(𝑎)

𝑘!

𝑛

𝑘=0

(𝑥 − 𝑎)𝑘 

 

şeklinde ifade edilebilir.  

Teorem 2.7. 

𝑛 ≥ 1 olmak üzere  𝑓 ile 𝑔,  𝑥 = 0 noktasında 𝑛-inci mertebeden türevlenebilen birer 

fonksiyon ve 𝑝𝑛’ de 𝑛-inci dereceden bir polinom olsun. 𝑙𝑖𝑚
𝑥→0

𝑔(𝑥) = 0 olmak üzere 

𝑓(𝑥) = 𝑝𝑛(𝑥) + 𝑥𝑛𝑔(𝑥) yazılabiliyorsa, 𝑝𝑛 polinomu 𝑓 fonksiyonu tarafından 

𝑥 = 0 noktasında üretilen Taylor Polinomudur. 

Tanım 2.30. Yukarıdaki teoremlerden 𝑥 = 𝑎 noktasında 𝑓(𝑥) ve 𝑝(𝑥) değerleri göz 

önüne alınırsa 𝑓(𝑥) − 𝑝(𝑥) farkının birbirine çok yakın olduğu görülür. Eğer, 𝑓(𝑥) −
𝑝(𝑥) = 𝐾𝑛(𝑥) denirse 𝐾𝑛(𝑥) ifadesine kalan terim, fark veya hata denir.  Buradan, 

∑
𝑓𝑘(𝑎)

𝑘!
(𝑥 − 𝑎)𝑘

𝑛

𝑘=0

+ 𝐾𝑛(𝑥) 

yazılabilir ki bu ifadeye kalan terimli Taylor Formülü denir. 

 

Tanım 2.31 𝑓 fonksiyonu 𝑎 noktasını içeren bir aralıkta her mertebeden 

türevlenebilir olsun.  

∑
𝑓𝑘(𝑎)

𝑘!
(𝑥 − 𝑎)𝑘

𝑛

𝑘=0

+ 𝐾𝑛(𝑥) 

serisine 𝑥 = 𝑎 noktasında 𝑓 fonksiyonu tarafından üretilen Taylor Serisi adı verilir. 

Tanım 2.32. Bir 𝑧 = 𝑓(𝑥, 𝑦) fonksiyonunun 𝑧0 = (𝑎, 𝑏) noktasında her mertebeden 

kısmî türevleri mevcut olsun. 

∑
1

𝑘!
[𝑓𝑥(𝑎, 𝑏)(𝑥 − 𝑎) + 𝑓𝑦(𝑎, 𝑏)(𝑦 − 𝑏)]

𝑘
∞

𝑘=0
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=𝑓(𝑎, 𝑏) +
1

1!
[𝑓𝑥(𝑎, 𝑏)(𝑥 − 𝑎) + 𝑓𝑦(𝑎, 𝑏)(𝑦 − 𝑏)] 

+1

2!
[𝑓𝑥𝑥(𝑎, 𝑏)(𝑥 − 𝑎)2 + 2𝑓𝑥𝑦(𝑎, 𝑏)(𝑥 − 𝑎)(𝑦 − 𝑏) + 𝑓𝑦𝑦(𝑎, 𝑏)(𝑦 − 𝑏)2] + ⋯ 

serisine 𝑓 fonksiyonunun, (𝑎, 𝑏) noktasındaki Taylor serisi denir. Bu serinin yakınsak 

olması için gerek ve yeter şart 0 < 𝜃 < 1 için, 

𝐾𝑛(𝑥, 𝑦) 

=
1

(𝑛 + 1)!
{[𝑓𝑥(𝑎 + 𝜃(𝑥 − 𝑎), 𝑏 + 𝜃(𝑦 − 𝑏))]

𝑛+1
(𝑥 − 𝑎)𝑛+1 

+[𝑓𝑦(𝑎 + 𝜃(𝑥 − 𝑎), 𝑏 + 𝜃(𝑦 − 𝑏))(𝑦 − 𝑏)]
𝑛+1

(𝑦 − 𝑏)𝑛+1} 

kalan teriminin sıfır olmasıdır. 

Tanım 2.33. 𝑛 ≥ 1 olmak üzere bir 𝑓 fonksiyonunun tanım kümesinden seçilen 

𝑥0, 𝑥1, … , 𝑥𝑛 şeklindeki 𝑛 + 1 tane nokta için 

𝑓[𝑥0] = 𝑓(𝑥0) 

𝑓[𝑥0, 𝑥1] =
𝑓(𝑥1) − 𝑓(𝑥0)

𝑥1−𝑥0
 

𝑓[𝑥0, 𝑥1, 𝑥2] =
𝑓[𝑥1, 𝑥2] − 𝑓[𝑥0, 𝑥1]

𝑥2−𝑥0
 

 

𝑓[𝑥0, 𝑥1, … , 𝑥𝑛] =
𝑓[𝑥1, … , 𝑥𝑛] − 𝑓[𝑥0, 𝑥1, … , 𝑥𝑛−1]

𝑥𝑛−𝑥0
 

şeklinde tanımlanan eşitliğe 𝑓 fonksiyonunun 𝑛 -inci mertebeden bölünmüş farkları 

denir ([21]). Bir 𝑓 fonksiyonunun bölünmüş farkı aynı fonksiyonun 𝑘-ıncı 

mertebeden türevinin lineer birleşimi olarak yazılabilir. Şimdi bunu ifade eden 

teorem verilsin. 

Teorem 2.8. 

𝑖 = 0,1, … , 𝑛 ve 𝑥𝑖 ∈ [𝑎, 𝑏] olsun. Eğer 𝑓 ∈ 𝐶𝑘[𝑎, 𝑏] ise Rolle teoreminden 

𝑓[𝑥0, 𝑥1, … , 𝑥𝑘] =
𝑓(𝑘)(𝜉𝑥)

𝑘!
 

olacak şekilde en az bir 𝜉𝑥 ∈ [𝑎, 𝑏] vardır ([21]). 

Teorem 2.9. 𝑛 ∈ 𝑁, ℎ > 0  olmak üzere keyfi bir 𝑓 fonksiyonu için ardışık iki 

noktanın fonksiyon altındaki görüntüleri arasındaki farkı, 

f(𝑥𝑖+1) − f(𝑥𝑖) = 𝑓(𝑥𝑖 + ℎ) − 𝑓𝑥(𝑖) = ∆ℎ𝑓(𝑥𝑖) 

ile gösterelim. 

∆ℎ
0𝑓(𝑥0) = 𝑓(𝑥0) 



21 

 

       ∆ℎ
1 𝑓(𝑥𝑖) = 𝑓(𝑥𝑖 + ℎ) −  f(𝑥𝑖) 

şeklinde devam edilirse, 

∆ℎ
𝑘+1𝑓(𝑥𝑖) = ∆ (∆ℎ

𝑘𝑓(𝑥𝑖)) = ∆ℎ
𝑘𝑓(𝑥𝑖+1) − ∆ℎ

𝑘𝑓(𝑥𝑖) 

ile tanımlanan ∆  operatörüne ileri fark operatörü denir. İleri fark operatörü kısaca  

∆𝑛𝑓(𝑥𝑖) = ∑(−1)𝑘 (
n
𝑘

) 𝑓(𝑥𝑖+𝑛−𝑘)

𝑛

𝑘=0

 

şeklinde de yazılır. Yukarıdaki tanımlardan ileri fark operatörü ile bölünmüş farklar 

arasında aşağıdaki ilişki elde edilir. 

Teorem 2.10. Her 𝑖, 𝑘 ≥ 0 için 𝑥𝑖 = 𝑖 olmak üzere 

𝑓(𝑥𝑖, 𝑥𝑖+1, … , 𝑥𝑖+𝑘) =
1

𝑘!
∆𝑘𝑓(𝑥𝑖) 

dir. 

Tanım 2.34. 𝑓: [𝑎, 𝑏] ⊂ ℝ → ℝ bir fonksiyon olsun. Her 𝑥1, 𝑥2 ∈ [𝑎, 𝑏] ve her 𝜆 ∈
[0.1] için  

𝑓(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≤ 𝜆𝑓(𝑥1) + (1 − 𝜆)𝑓(𝑥2) 

oluyorsa 𝑓 fonksiyonuna [𝑎, 𝑏] üzerinde konvekstir denir. Bu durumda −𝑓 

fonksiyonu konkav olur. Konvekslik tanımı 𝑘 + 1 tane farklı nokta için de yazılabilir. 

𝑥0, 𝑥1, … , 𝑥𝑘 ∈ [𝑎. 𝑏] ve 𝜇𝑖 ∈ 𝑅 için ∑ 𝜇𝑖
𝑘
𝑖=0 = 1 olmak üzere  

 

eşitsizliği sağlanıyorsa, 𝑓 fonksiyonuna konveks fonksiyon denir ([19]). 

Teorem 2.11. 𝑓: [𝑎, 𝑏] → ℝ fonksiyonunun (𝑎, 𝑏) üzerinde ikinci mertebeden türevi 

var olsun. Eğer ∀𝑥 ∈ (𝑎. 𝑏) için 𝑓′′(𝑥) ≥ 0 oluyorsa, 𝑓 fonksiyonu [𝑎. 𝑏]′ de 

konvekstir.  

Teorem 2.12. 𝑓 fonksiyonu [𝑎, 𝑏] üzerinde konvekstir ancak ve ancak 𝑓 nin ikinci 

mertebeden bölünmüş farkları negatif olmayandır.  

İki değişkenli fonksiyonlar için ileri fark operatörü üçgensel bölge üzerinde 

aşağıdaki gibi tanımlanır. 

Tanım 2.35. 𝑖, 𝑗 ∈ 𝑁, 0 < 𝑖 + 𝑗 ≤ 2 olmak üzere eğer ℎ ∈ 𝑅+ için  𝛥ℎ
(𝑖,𝑗)

𝑓 ≥ 0 ise, bu  

durumda 𝑓(𝑥, 𝑦) fonksiyonuna (𝑖, 𝑗)-inci mertebeden konvekstir denir ([22]). 

Böylece iki değişkenli fonksiyonlar için konvekslik tanımının iki değişkenli ileri fark 

operatörü ile verilebilmesi, kısmî türevler yardımıyla da ifade edilebileceği anlamına 

gelir. 
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Tanım.2.36. Operatörler için noktasal yakınsaklık durumu, verilen bir 𝑓 

fonksiyonunun Taylor açılımının bir sonucu olarak, 

lim
𝑛→∞

(𝜆𝑛)|𝑇𝑛(𝑓) − 𝑓| = 𝜑(𝑓, 𝑥) 

şeklinde yazılabilir. Böylece 𝑛 → ∞ için 
1

𝜆𝑛
→ 0 dizisine operatörün kendisini 

oluşturan fonksiyona asimptotik (noktasal yakınsaklık) hızı, 𝜑(𝑓, 𝑥) ifadesine ise 

operatörün asimptotik değeri denir. Literatürde bu duruma en iyi örnek 1932 yılında 

Bernstein operatörleri için ispatlanmış olan Voronovskaya teoremidir. 

Tanım 2.37. 𝐷 = [𝑎, 𝑏] × [𝑐, 𝑑] ⊂ ℝ2 sınırlı bir bölge ve 

𝐶(𝐷): = {𝑓|𝑓: 𝐷 → ℝ, ∀(𝑥, 𝑦) ∈ 𝐷 için 𝑓  𝑠ü𝑟𝑒𝑘𝑙𝑖} 

olmak üzere 𝑓 ∈ 𝐶(𝐷) ve 𝛿 > 0 için, 

𝜔(𝑓; 𝛿) =
𝑠𝑢𝑝

√(𝑡 − 𝑥)2 + (𝑠 − 𝑦)2 ≤ 𝛿
     {|𝑓(𝑡, 𝑠) − 𝑓(𝑥, 𝑦)|; 𝑡, 𝑥 ∈ [𝑎, 𝑏], 𝑠, 𝑦 ∈ [𝑐, 𝑑]} 

veya 

𝜔(𝑓; 𝛿1, 𝑠2) =
𝑠𝑢𝑝

|𝑡−𝑥|≤𝛿1
|𝑠−𝑦|≤𝛿2

{|𝑓(𝑡, 𝑠) − 𝑓(𝑥, 𝑦)|; 𝑡, 𝑥 ∈ [𝑎, 𝑏], 𝑠, 𝑦 ∈ [𝑐, 𝑑]} 

fonksiyonuna, 𝑓 fonksiyonunun 𝐷 bölgesi üzerindeki tam süreklilik modülü denir.  

Burada 𝛿 ∈ (0, √(𝑏 − 𝑎)2 + (𝑑 − 𝑐)2  dir ([19]). 

 

Tanım 2.38. Binom formülü 

(𝑥 + 𝑦)𝑛 = ∑ (
𝑛
𝑖

) 𝑥𝑖(𝑦)𝑛−𝑖

𝑛

𝑖=0

 

şeklindedir. Binom formülünde 𝑦 = 1 − 𝑥 alınırsa   

(𝑥 + 1 − 𝑥)𝑛 = ∑ (
𝑛
𝑖

) 𝑥𝑖(1 − 𝑥)𝑛−𝑖

𝑛

𝑖=0

 

elde edilir. Böylece binom formülü yardımıyla Bernstein bazı olarak bilinen 

𝑃𝑛,𝑘(𝑥) = (
𝑛
𝑘

) 𝑥𝑘(1 − 𝑥)𝑛−𝑘 

elde edilir. Benzer şekilde binom formülü iki değişkenli olarak elde edilebilir. Binom  

formülünden yola çıkarak, 

(𝑥 + 1 − 𝑥)𝑛 = ∑ (
𝑛
𝑖

) 𝑥𝑖(1 − 𝑥)𝑛−𝑖

𝑛

𝑖=0
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eşitliğinin sağ tarafındaki parantez içine 𝑦 eklenip çıkarılırsa, 

(1)𝑛 = ∑ (
𝑛
𝑖

) 𝑥𝑖(𝑦 + 1 − 𝑥 − 𝑦)𝑛−𝑖

𝑛

𝑖=0

 

olur. Sağ taraftaki parantezin (𝑛 − 𝑖) . dereceden binom açılımı yapılırsa, 

1 = ∑ (
𝑛
𝑖

) 𝑥𝑗

𝑏

𝑖=0

∑ (
𝑛 − 𝑖

𝑗
) 𝑦𝑗(1 − 𝑥 − 𝑦)𝑛−𝑖−𝑗

𝑛−𝑖

𝑗=0

 

elde edilir. Buradan iki değişkenli binom formülü, 

𝑏𝑖,𝑗
𝑛 (𝑥, 𝑦) = ∑ ∑ (

𝑛
𝑖

) (
𝑛 − 𝑖

𝑗
) 𝑥𝑗𝑦𝑗(1 − 𝑥 − 𝑦)𝑛−𝑖−𝑗

𝑛−𝑖

𝑗=0

𝑛

𝑖=0

 

olarak elde edilir. 
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3. KANTOROVICH TİPLİ OPERATÖRLERİN YAKINSAKLIK 

ÖZELLİKLERİ 

 

 Yaklaşım Teorisi alanında lineer pozitif operatörler ve bu operatörlerin çeşitli 

genelleştirilmeleri ile ilgili çalışmalar günümüzde de önemini korumaktadır. Lineer 

pozitif operatör dizileri genel olarak (𝐿𝑛)𝑛≥1 ile gösterilir. Bu operatör dizilerinin, 

bazı fonksiyonları koruduğu veya bazı fonksiyonlar tarafından tekrar üretildiği ile 

ilgili birçok çalışma bulunmaktadır. Örneğin test fonksiyonları, üstel fonksiyonlar, 

afin fonksiyonlar v.b. [8, 11, 12, 16]. Agratini [12], afin fonksiyonlarını koruyan 

operatörlerle ilgili bir çalışma yapmıştır. Bu çalışmada  𝐿𝑛𝑒0= 𝑒0 ve 𝐿𝑛𝑒1= 𝑒1 

(𝑛 ∈  ℕ) eşitliklerinin sağlandığı operatörleri kullanarak bazı yakınsaklık sonuçları 

elde etmiştir. Bu çalışmada diskre operatörler, süreksiz fonksiyonlara yaklaşmak için 

uygun olmadığından, integral tipli operatörlere genelleştirilmişlerdir. Bu 

yöntemlerden birisi de Kantorovich yöntemidir. Genellikle integral operatörleri 

𝐿̃𝑛𝑒0= 𝑒0 özelliğini sağlar. Ancak diğer afin fonksiyonlarını korumayabilir. Örneğin,  

𝐿̃𝑛𝑒1≠ 𝑒1 dir. Buna örnek olarak Bernstein ve Bernstein - Kantorovich operatörünü 

verebiliriz. 

Klasik Bernstein operatörleri, 

                𝐵𝑛(𝑓; 𝑥) = ∑ 𝑝𝑛,𝑘(𝑥)𝑛
𝑘=0 𝑓 (

𝑘

𝑛
),𝑓 ∈ 𝑅[0,1], 𝑥 ∈ [0,1]                        (3.1)        

                                    

          𝑝𝑛,𝑘(𝑥) = (
𝑛
𝑘

) 𝑥𝑘(1 − 𝑥)𝑛−𝑘, 𝑘 = 0, 𝑛  

şeklinde tanımlanmıştır ve 𝐵𝑛𝑒0 = 𝑒0, 𝐵𝑛𝑒1 = 𝑒1 dir. 

Bernstein operatörünün Kantorovich  genelleştirmesi ise, 𝑓 ∈ 𝐿1([0,1]) olmak üzere, 

𝐾𝑛(𝑓; 𝑥) = (𝑛 + 1) ∑ 𝑝𝑛,𝑘(𝑥)𝑛
𝑘=0 ∫ 𝑓(𝑡)𝑑𝑡

(𝑘+1) (𝑛+1)⁄

𝑘 (𝑛+1)⁄
,  𝑥 ∈ [0,1]                            (3.2) 

şeklinde tanımlanmıştır. Bu operatör için 𝐾𝑛𝑒0 = 𝑒0 , 𝐾𝑛𝑒1 ≠ 𝑒1 dir. 

Bu bölümde, bir operatörün momentleri bilindiğinde, aynı operatörün Kantorovich 

tipli genelleştirilmesi için, momentleri ile yaklaşım sonuçları verilecektir. Son olarak 

bu özellikleri sağlayan bazı operatör örnekleri verilecektir. 

3.1. Operatörün Tanımı ve Özellikleri 

Bu bölümde 𝐻, 𝐻∗ ⊆  𝑅 aralıkları, 𝐻 = [0,1] veya 𝐻∗ = 𝑅+ olarak kabul 

edilsin. Burada aralığın sınırlı ve sınırsız olması durumunda inceleme yapılacaktır. 
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𝐼𝑛 ⊆ 𝑁 bir indis kümesi olmak üzere (𝑥𝑛,𝑘)
𝑘∈𝑙𝑛

 , 𝐻 aralığı üzerinde bir dizi olsun. 

(𝑥𝑛,𝑘)
𝑘∈𝑙𝑛

 dizisinin eşit uzaklıklı köşelere sahip olduğunu, yani; 𝑙𝑖𝑚
𝑛

𝑢𝑛= 0 olacak 

şekilde, her n ∈ 𝑁 için,  

            𝑥𝑛,𝑘+1−𝑥𝑛,𝑘 = 𝑢𝑛, k∈ 𝐼𝑛                                         (3.3) 

olduğu göz önüne alalım. Aslında diskre lineer pozitif operatörlerin büyük 

çoğunluğu, bu özelliğe sahiptir. 𝑥𝑛,𝑘 = 
𝑘

𝑛
  seçersek, 𝑢𝑛 =

1

𝑛
 olacağı açıktır. Aşağıdaki 

gibi tanımlanan ayrık tipli lineer pozitif operatörlerin bir dizisini ele alalım. 

𝐿𝑛(𝑓; 𝑥) = ∑ 𝜆𝑛,𝑘(𝑥)𝑓(𝑥𝑛,𝑘)𝑘∈𝐼𝑛
, 𝑥 ∈ 𝐻, 𝑘 ∈ 𝐼𝑛                            (3.4) 

Burada her (𝑛, 𝑘) ∈ 𝑁 × 𝐼𝑛 için 𝜆𝑛,𝑘 ∈ 𝐶(𝐻), 𝜆𝑛,𝑘≥ 0 dir. Burada, eğer 𝐶𝑎𝑟𝑑(𝐼𝑛) 

sonlu ise, 𝑓 ∈ 𝐶(𝐻) olur. Eğer 𝐶𝑎𝑟𝑑(𝐼𝑛) sonlu değil ise, 𝑓 ∈ 𝐹(𝐻) elde edilir.  

Burada, 𝐹(𝐻) := {𝑔 ∈ 𝐶(𝐻) : (3.4)'deki seri mutlak yakınsaktır} şeklinde tanımlıdır. 

𝐶𝐵(𝐻) ile 𝐻 üzerinde tanımlı tüm reel değerli sürekli ve sınırlı fonksiyonların uzayı 

gösterilsin. Buna göre 𝐶𝐵(𝐻) ⊂ 𝐹(𝐻)’ dir. Burada, yine, 𝑟 = 1 ve 𝑟 = 2 için er∈

𝐹(𝐻) olsun. 𝐿𝑛 operatörleri afin fonksiyonlarını yeniden üretirler. Böylece, 

∑ 𝜆𝑛,𝑘(𝑥)𝑘∈𝐼𝑛
= 1                                        (3.5) 

ve 

                                              ∑ 𝜆𝑛,𝑘(𝑥)𝑘∈𝐼𝑛
𝑥𝑛,𝑘 = 𝑥, 𝑥 ∈ 𝐻                                  (3.6) 

eşitlikleri sağlanır. 𝑢𝑛, (3.3)' de verildiği şekilde olmak üzere u∗ = sup
𝑛 ∈ N

𝑢𝑛 olsun. Eğer 

𝐻∗ = ℝ+ ise, 𝐴∗ = [
𝑢∗

2
, ∞) aralığı dikkate alınırken, 𝐻 = [0,1] iken,  

𝐴 = [
𝑢∗

2
, 1] aralığını göstersin. 𝐿𝑛  (𝑛 ∈ 𝑁) operatörlerinin Kantorovich tipli 

genelleştirmesi Agratini [12] tarafından aşağıdaki gibi tanımlanmıştır. 

            𝐿̃𝑛𝑓(𝑥) =
1

𝑢𝑛
∑  𝜆𝑛,𝑘𝑘∈𝑙𝑛

(x −
𝑢𝑛

2
)∫ 𝑓(𝑡)𝑑𝑡

𝑥𝑛,𝑘+1

𝑥𝑛,𝑘
    x∈ 𝐴∗                            (3.7) 

Eğer 𝐼𝑛 sonlu ise, 𝑓 fonksiyonu H üzerinde integrallenebilir olacak şekilde 

seçilmelidir. Aksi takdirde, f fonksiyonu, anti türevi F(H) uzayına ait olacak şekilde 

H aralığı üzerinde lokal integrallenebilir olmalıdır. Ayrıca 𝑥𝑛,𝑘 ∈ 𝐻  ve 𝑥𝑛,𝑘+1 ∉ 𝐻 
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olacak şekilde, bir 𝑘 ∈ 𝐼𝑛  için, 𝑥𝑛,𝑘+1 'in yerine  𝑥𝑛,𝑘  ifadesi kullanılırsa ve H 

sınırlıysa, integral sıfır olacaktır.  𝐿̃𝑛 ( n ∈ 𝑁)  lineer  pozitif operatördür. 

(3.2)’ de, 𝐿̃𝑛  operatörlerinin afin fonksiyonları koruduğu gösterilecektir. Ayrıca bazı 

durumlarda bu tip operatörlerin klasik Kantorovich operatörlerinden daha küçük bir 

yaklaşım hatası verdiği gösterilecektir. 

3.2. Operatörünün Momentlerinin Hesaplanması 

Bu bölümde 𝐿̃𝑛 operatörünün momentlerini inceleyelim. 

Teorem 3.2.1. 𝑒𝑟(𝑡) = 𝑡𝑟 , 𝑟 = 0, 1, 2  ve  𝐿̃𝑛, (3.7) ile tanımlanan operatör olsun.  

Her x ∈ 𝐴∗ için, 

(i) (𝐿̃𝑛𝑒0)(𝑥) = 1 

(ii) (𝐿̃𝑛𝑒1)(𝑥) = 𝑥    

(iii) (𝐿̃𝑛𝑒2)(𝑥) = (𝐿𝑛𝑒2) (𝑥 −
𝑢𝑛

2
) + 𝑢𝑛𝑥 −

𝑢𝑛
2

6
 

eşitlikleri sağlanır.. Burada 𝑢𝑛 ve 𝐿𝑛 sırasıyla (3.3) ve (3.4) ile tanımlanır. 

İspat. (i) (3.5)' ten açıktır. (3.3) ve (3.6)' yı kullanılarak, 

(𝐿̃𝑛𝑒1)(𝑥) =
1

2𝑢𝑛
∑  𝜆𝑛,𝑘𝑘∈𝐼𝑛

(𝑥 −
𝑢𝑛

2
)(2𝑢𝑛𝑥𝑛,𝑘+𝑢𝑛

2) 

                            = (𝐿𝑛𝑒1)( 𝑥 −
𝑢𝑛

2
)+ 

𝑢𝑛

2
(𝐿𝑛𝑒0)(𝑥 −

𝑢𝑛

2
)  

                                                    = 𝑥 

bulunur. Benzer şekilde (3.3) ve (3.7) kullanılarak, 

(𝐿̃𝑛𝑒2)(𝑥) =
1

3𝑢𝑛
∑  𝜆𝑛,𝑘𝑘∈𝐼𝑛

(𝑥 −
𝑢𝑛

2
) (3𝑥𝑛,𝑘

2 𝑢𝑛+3𝑥𝑛,𝑘𝑢𝑛
2+𝑢𝑛

3) 

eşitliği elde edilir. 

(i) ve (ii)’ den, 𝐿̃𝑛 (n ∈ ℕ) operatörlerinin, afin fonksiyonu koruduğu gösterilmiştir. 

Bununla birlikte 2. mertebeden merkezil momenti, 

                  𝜇𝑛,2(𝑥): = (𝐿̃𝑛𝛼2
𝑥)(𝑥) olur. (𝛼𝑥(𝑡)  =  𝑡 −  𝑥, (𝑡, 𝑥)  ∈   𝐻 × 𝐴∗)  

şeklinde verilsin. Teorem 1’ deki ifadeler kullanılarak, herhangi bir 𝑥 ∈  𝐴 için  
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                  𝜇𝑛,2(𝑥) = (𝐿𝑛𝑒2) (𝑥 −
𝑢𝑛

2
) + 𝑥(𝑢𝑛 − 𝑥) −

𝑢𝑛
2

6
                                    (3.8) 

şeklinde elde edilir. 

𝐿𝑛 (  𝑛 ∈  ℕ) diskre operatörü göz önüne alınarak, genelleştirilmiş Kantorovich 

operatörü aşağıda verilmiştir. 

                         (𝐺𝑛𝑓)(𝑥) =
1

𝑢𝑛
∑  𝜆𝑛,𝑘𝑘∈𝑙𝑛

(𝑥) ∫ 𝑓(𝑡)𝑑𝑡
𝑥𝑛,𝑘+1

𝑥𝑛,𝑘
     x∈ 𝐻.                     (3.9) 

𝐿̃𝑛 (n ∈ ℕ) için, benzer yolu takip ederek, her 𝑥 ∈  𝐻 için, aşağıdaki formüller elde 

edilir.  

(𝐺𝑛 𝑒0)(𝑥) = 1 

(𝐺𝑛𝑒1)(𝑥) = 𝑥 +
𝑢𝑛

2
 

(𝐺𝑛𝑒2) (𝑥) = (𝐿𝑛𝑒2)(𝑥) + 𝑢𝑛𝑥 +
𝑢𝑛

2

3
. 

İkinci dereceden merkezil moment  

                  𝜇∗
𝑛,2

(𝑥): = (𝐺𝑛𝛼2
𝑥)(𝑥) =  (𝐿𝑛𝑒2)(𝑥) − 𝑥2 +

𝑢𝑛
2

3
                            (3.10) 

olarak elde edilir. 

Teorem 3.2.2. 

𝐚. 𝐻 = [0,1] ve 𝐴 = [
𝑢∗

2
, 1]  olsun. Herhangi bir 𝑓 ∈ 𝐶(𝐻) fonksiyonu için, 𝐿̃𝑛 ve 𝐺𝑛 

operatörleri  

|(𝐺𝑛𝑓)(𝑥) − 𝑓(𝑥)| ≤ 2𝜔𝐻 (𝑓; √𝜇𝑛,2
∗ (𝑥)) 

ve            

                                        | 𝐿̃𝑛𝑓(𝑥) − 𝑓(𝑥)| ≤ 2𝑤𝐴∗(𝑓; √𝜇𝑛,2(𝑥))  

eşitsizliklerini sağlar. 

b. 𝐻∗ = [0, ∞) ve 𝐴∗  = [
𝑢∗

2
, ∞) olsun. τ sabit olmak üzere, τ >

𝑢∗

2
 olur.  

Herhangi bir 𝑓 ∈ 𝐶𝐵 (𝐻) fonksiyonu için, 𝐿̃𝑛 ve 𝐺𝑛  (𝑛 ∈  ℕ) operatörleri için 

aşağıdaki eşitsizlikler sağlanır.  
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|(𝐺𝑛𝑓)(𝑥) − 𝑓(𝑥)| ≤ 2𝜔[0,𝜏] (𝑓; √𝜇𝑛,2
∗ (𝑥)) 

ve 

 |𝐿̃𝑛𝑓(𝑥) − 𝑓(𝑥)| ≤ 2𝜔[𝑢∗/2,𝜏] (𝑓; √𝜇𝑛,2(𝑥)). 

İspat.  

Süreklilik modülü yardımıyla verilen bu sonuçlar, doğrudan Shisha ve Mond [6] 

tarafından kanıtlanan aşağıdaki ifadenin sonucudur. 

Eğer Λ, C([a, b])’ de tanımlı lineer pozitif operatör ise, her x ∈ [a, b] ve λ > 0 için,  

|(𝛬𝑓)(𝑥) − 𝑓(𝑥)| ≤ |𝑓(𝑥)||(𝛬𝑒0)(𝑥) − 1| 

+ ((𝛬𝑒0)(𝑥) +
1

𝜆
√(𝛬𝑒0)(𝑥)(𝛬𝜌𝑥

2)(𝑥)) 𝜔(𝑓; 𝜆) 

olur. Eğer, 𝜆 = √(𝛬𝜌𝑥
2)(𝑥) seçilirse, ispat tamamlanır. 

Yaklaşım hatasının üst sınırı incelenerek, 𝜇𝑛,2 < 𝜇𝑛,2
∗  sağlandığında, 𝐿̃𝑛 (𝑛 ∈ 𝑁) 

operatörlerinin daha kullanışlı olduğu görülür. 

Teorem 3.2.3. 

𝐿𝑛 (3.4) ile tanmlanan operatör olmak üzere, 

(𝐿𝑛𝑒2) (𝑥 −
𝑢𝑛

2
) − (𝐿𝑛𝑒2)(𝑥) + 𝑢𝑛 𝑥 <

𝑢𝑛
2

2
, 𝑥 ≥

𝑢∗

2
                                 (3.11) 

eşitsizliği sağlanırsa, 𝑛 ∈   ℕ olmak üzere (3.7)′de tanımlanan 𝐿̃𝑛 ile (3.9) ile 

verilen 𝐺𝑛 operatörleri karşılaştırıldığında, sürekli ve sınırlı fonksiyonlar için daha 

iyi bir yaklaşım sonucu elde edilir. 

İspat: 𝜇𝑛,2 < 𝜇𝑛,2
∗  ve (3.8) ve (3.10) bağıntıları kullanılarak ispat tamamlanır. 

3.4. Örnekler 

İlk iki örnek 𝐻∗ = 𝑅+ ve son örnek 𝐻 = [0,1] durumu göz önüne alınarak 

verilmiştir. 

3.3.1. Modifiye Szász – Mirakjan - Kantorovich operatörleri 

Klasik Szász-Mirakjan operatörleri, 

𝑠𝑛,𝑘(𝑥) = 𝑒−𝑛𝑥 (
𝑛
𝑘

)
(𝑛𝑥)𝑘

𝑘!
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olmak üzere, 

(𝐿𝑛𝑓)(𝑥) = ∑ 𝑠𝑛,𝑘

∞

𝑘=0

(𝑥)𝑓 (
𝑘

𝑛
) 

dir. 

Szász-Kantorovich operatörleri, (bkz. Butzer [1]) 

(𝐺𝑛𝑓)(𝑥) = 𝑛 ∑ 𝑠𝑛,𝑘
∞
𝑘=0 (𝑥) ∫ 𝑓(𝑡)𝑑𝑡, 𝑥 ≥ 0

(𝑘+1) 𝑛⁄

𝑘 𝑛⁄
. 

şeklinde tanımlanmıştır. 

Bu durumda,  𝑢𝑛 =
1

𝑛
 için, 𝐿̃𝑛, 𝑛 ∈ 𝑁, operatörleri, 

(𝐿̃𝑛𝑓)(𝑥) = 𝑛𝑒
1−2𝑛𝑥

2 ∑
(2𝑛𝑥−1)𝑘

2𝑘𝑘!

∞
𝑘=0 ∫ 𝑓(𝑡)𝑑𝑡, 𝑥 ≥

1

2

𝑘+1

𝑛
𝑘

𝑛

. 

şeklinde verilmiştir. Bu operatörler Duman, Özarslan ve Della Vecchia [3]. 

tarafından tanımlanmış ve yaklaşım özellikleri incelenmiştir. Klasik Szász-Mirakjan 

operatörleri için, 

(𝐿𝑛𝑒2)(𝑥) = 𝑥2 +
𝑥

𝑛
 

eşitliği sağlanır ve (3.11)'te yerine koyulursa, 

(𝐿𝑛𝑒2) (𝑥 −
𝑢𝑛

2
) − (𝐿𝑛𝑒2)(𝑥) + 𝑢𝑛 𝑥 <

𝑢𝑛
2

2
 

olmak üzere,  

(𝐿𝑛𝑒2) (𝑥 −
𝑢𝑛

2
) = (𝑥 −

𝑢𝑛

2
)2 + (

𝑥 − 𝑢𝑛

2𝑛
) 

elde edilir. Buradan, 

(𝑥 −
𝑢𝑛

2
)2 +

𝑥 −
𝑢𝑛

2
𝑛

− 𝑥2 −
𝑥

𝑛
+ 𝑢𝑛𝑥 <

𝑢𝑛
2

2
 

𝑥2 − 𝑥𝑢𝑛 +
𝑢𝑛

2

4
+

𝑥

𝑛
−

𝑢𝑛

2𝑛
− 𝑥2 −

𝑥

𝑛
+ 𝑢𝑛𝑥 <

𝑢𝑛
2

2
 

𝑢𝑛
2

4
−

𝑢𝑛

2𝑛
<

𝑢𝑛
2

2
 

yazılır. 𝑢𝑛 =
1

𝑛
  olduğundan, 
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1

4𝑛2
−

1

2𝑛2
<

1

2𝑛2
 

−
1

4𝑛2
<

1

2𝑛2
 

−
3

4𝑛2
< 0 

elde edilir. Bu durum,  𝐿̃𝑛 operatörlerinin daha küçük bir yaklaşım hatası ürettiğini 

gösterir. 

3.3.2. Modifiye Baskakov-Kantorovich operatörleri 

Baskakov operatörleri 

𝑣𝑛,𝑘(𝑥) = (
𝑛 + 𝑘 − 1

𝑘
) 𝑥𝑘(1 + 𝑥)−𝑛−𝑘, 𝑥 ≥ 0 

olmak üzere 

(𝐿𝑛𝑓)(𝑥) = ∑ 𝑣𝑛,𝑘

∞

𝑘=0

(𝑥)𝑓 (
𝑘

𝑛
). 

şekilde tanımlanır. [2, p. 115]' de belirtildiği gibi, Kantorovich genelleştirmesi 

aşağıdaki şekildedir 

 

(𝐺𝑛𝑓)(𝑥) = 𝑛 ∑ 𝑣𝑛,𝑘

∞

𝑘=0

(𝑥) ∫ 𝑓(𝑡)𝑑𝑡.
(𝑘+1)/𝑛

𝑘/𝑛

 

Buradan, 𝑢𝑛 =
1

𝑛
  için 𝐿̃𝑛, 𝑛 ∈ ℕ operatörleri, 

(𝐿̃𝑛𝑓)(𝑥) = 2𝑛𝑛𝑛+1 ∑ (2𝑛𝑥 − 1)𝑘∞
𝑘=0 (2𝑛𝑥 + 2𝑛 − 1)−𝑛−𝑘 ∫ 𝑓(𝑡)𝑑𝑡,

𝑘+1

𝑛
𝑘

𝑛

   𝑥 ≥
1

2
.  

şeklinde tanımlanmıştır. 

(𝐿𝑛𝑒2)(𝑥) = 𝑥2 +
𝑥(1 + 𝑥)

𝑛
 

olduğundan, (3.11)’ den, 

1 − 3𝑛 < 4𝑛𝑥, 𝑥 ≥
1

2
 

olduğu görülür. 
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Böylece 𝐿̃𝑛, 𝑛 ∈ ℕ, operatörlerinin daha iyi bir yaklaşım sonucu verdiği 

gösterilmiştir. 

3.3.3. Modifiye Stancu-Kantorovich Operatörleri 

Stancu polinomları [7],  α ≥ 0 için, 

𝑤𝑛,𝑘
(𝛼)(𝑥) = (

𝑛
𝑘

)
𝑥(𝑘,−𝛼)(1 − 𝑥)(𝑛−𝑘,−𝛼)

1(𝑛,−𝛼)
, 

   

  𝑥(𝑘,−𝛼): = 𝑥(𝑥 + 𝛼) .  .  . (𝑥 + (𝑘 − 1)𝛼) 

olmak üzere, 

(𝐿𝑛𝑓)(𝑥) = ∑ 𝑤𝑛,𝑘
(𝛼)

𝑛

𝑘=0

(𝑥)𝑓 (
𝑘

𝑛
) , 𝑥 ∈ [0,1] 

dir. Aşağıdaki eşitlikler sağlanır 

𝐿𝑛𝑒0 = 𝑒0,         𝐿𝑛𝑒1 = 𝑒1,       𝐿𝑛𝑒2 = 𝑒2 +
1+𝑛𝛼

𝑛(1+𝛼)
(𝑒1 − 𝑒2). 

Stancu operatörlerinin Kantorovich genelleştirmesi [5], 

(𝐺𝑛𝑓)(𝑥) = (𝑛 + 1) ∑ 𝑤𝑛,𝑘
(𝛼)

𝑛

𝑘=0

(𝑥) ∫ 𝑓(𝑡)𝑑𝑡
(𝑘+1)/(𝑛+1)

𝑘/(𝑛+1)

 

şeklinde verilmiştir. (3.7) ile oluşturulan operatörler için, 

 𝑢𝑛 =
1

𝑛+1
, 𝑢∗ =

1

2
  ve A = [

1

4
, 1] olarak alındığında, (3.11) bağıntısı, 

 𝛽𝑛 =
1+𝑛𝛼

𝑛(1+𝛼)
  için,  

−1 − 𝛽𝑛 + 2(𝑛 + 1)𝛽𝑛(2𝑥 − 1) < 0                                    (3.12) 

şeklinde yazılabilir. Özel olarak, α = 0 için, Stancu operatörleri Bernstein 

operatörlerine dönüşür ve 𝐺𝑛 operatörleri (3.9) ve (3.10)’ dan, klasik Kantorovich 

operatörleri [4] haline gelir. 

Bu durumda 𝛽𝑛= 1/𝑛 ve her 𝑥 <  3/4 için (3.12) bağıntısı sağlanır. Buna göre, 

−1 −
1

𝑛
+ 2(𝑛 + 1)

1

𝑛
(2𝑥 − 1) < 0 

−𝑛 − 1 + (2𝑛 + 2)(2𝑥 − 1)

𝑛
< 0 
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−(𝑛 + 1) + 2(𝑛 + 1)(2𝑥 − 1)

𝑛
< 0 

(𝑛 + 1)(2(2𝑥 − 1) − 1)

𝑛
< 0 

(𝑛 + 1)

𝑛
∙ (4𝑥 − 2 − 1) < 0 

(𝑛 + 1)

𝑛
∙ (4𝑥 − 3) < 0 

(𝑛 + 1)

𝑛
> 0 

4𝑥 − 3 < 0 

4𝑥 < 3 

𝑥 <
3

4
 

elde edilir. Sonuç olarak, [1/4, 3/4] aralığı üzerinde dahi 𝐿̃𝑛  ( 𝑛 ∈  ℕ) operatörleri 

daha iyi bir yaklaşım sonucu verir. α > 0 için, 

τ = inf
𝑛≥1

2𝑛𝛽𝑛 + 3𝛽𝑛 + 1

4(𝑛 + 1)𝛽𝑛
 

alınırsa, 1/2 < τ < 1 olduğu görülür. Buna göre 𝐿̃𝑛 ( 𝑛 ∈  ℕ) operatörleri, 𝐺𝑛 (𝑛 ∈ ℕ) 

operatörlerine göre 𝐼 = [
1

4
, τ] aralığında daha iyi bir yaklaşım sonucu verir. 
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4.AFİN FONKSİYONLARI KORUYAN KANTOROVİCH TİPLİ 

OPERATÖRLERİN YAKINSAKLIK ÖZELLİKLERİ 

 

4.1. 𝑲̃𝒏 Operatörünün Tanımı Ve Momentlerinin Hesaplanması 

Bu bölümde, 3. bölümde verilen ve afin fonksiyonlarını koruyan operatörlerden 

esinlenerek 𝐾̃𝑛 operatörlerinin bazı yakınsaklık özellikleri incelenecektir ([24]).  

𝐾𝑛̃ (𝑓)(𝑥) =
1

𝑢𝑛
∑  𝜆𝑛,𝑘𝑘∈𝐼𝑛

(𝑥) ∫ 𝑓(𝑡)𝑑𝑡
𝑥𝑛,𝑘+1

𝑥𝑛,𝑘
     , x ∈ 𝐻∗ 

şeklinde verilen operatör için teoremlerin hesaplamalarında faydalanacağımız 

momentleri ve merkezil momentleri hesaplayalım. 

Lemma 4.1. 𝐿𝑛, (3.4)’ teki operatör olsun. 𝑛 ∈  ℕ ve 𝑥 ∈   𝐴∗ olsun. 𝑒𝑟(𝑡 ) = 𝑡𝑟 , 

 𝑟 = 0,1,2,3,4  için, 

i) 𝐾𝑛 ̃ (𝑒0)(𝑥) = 1 

ii) 𝐾𝑛 ̃ (𝑒1)(𝑥) = 𝑥 +
𝑢𝑛

2
 

iii) 𝐾𝑛̃ (𝑒2)(𝑥) = 𝐿𝑛(𝑒2)(𝑥) + 𝑢𝑛𝑥 −
𝑢𝑛

2

3
 

iv) 𝐾𝑛̃ (𝑒3)(𝑥) = 𝐿𝑛(𝑒3)(𝑥) +
3

2
𝑢𝑛𝐿𝑛(𝑒2)(𝑥) + 𝑢𝑛

2𝑥 −
𝑢𝑛

3

4
 

 v) 𝐾𝑛̃ (𝑒4)(𝑥) = 𝐿𝑛(𝑒4)(𝑥) + 2𝑢𝑛𝐿𝑛(𝑒3)(𝑥) + 2𝑢𝑛
2𝐿𝑛(𝑒2)(𝑥) + 𝑢𝑛

3𝑥 −
𝑢𝑛

4

5
 

elde edilir. 

İspat. 

i) 𝐾̃𝑛(𝑒0)(𝑥) = 1 olduğu operatörünün tanımından görülmektedir. 

ii) 𝐾̃𝑛(𝑒1)(𝑥) =
1

𝑢𝑛
∑ 𝜆𝑛,𝑘(𝑥)𝑘∈𝐼𝑛

∫ 𝑡𝑑𝑡
𝑥𝑛,𝑘+1

𝑥𝑛,𝑘
 

                          =
1

𝑢𝑛
∑ 𝜆𝑛,𝑘(𝑥)

𝑘∈𝐼𝑛

1

2
(𝑥𝑛,𝑘+1

2 − 𝑥𝑛,𝑘
2 ) 

  =
1

𝑢𝑛
∑ 𝜆𝑛,𝑘(𝑥)𝑘∈𝐼𝑛

1

2
(𝑥𝑛,𝑘+1 − 𝑥𝑛,𝑘)(𝑥𝑛,𝑘+1 + 𝑥𝑛,𝑘) 

  =
1

𝑢𝑛
∑ 𝜆𝑛,𝑘(𝑥)𝑘∈𝐼𝑛

1

2
(𝑢𝑛(𝑢𝑛 + 2𝑥𝑛,𝑘)) 
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                          =
1

𝑢𝑛
∑ 𝜆𝑛,𝑘(𝑥)

𝑘∈𝐼𝑛

1

2
(𝑢𝑛

2 + 2𝑢𝑛𝑥𝑛,𝑘) 

                          =
𝑢𝑛

2
+ 𝑥 

iii) 𝐾̃𝑛(𝑒2)(𝑥) =
1

𝑢𝑛
∑ 𝜆𝑛,𝑘(𝑥)𝑘∈𝐼𝑛

1

3
(𝑥𝑛,𝑘+1

3 − 𝑥𝑛,𝑘
3 ) 

  =
1

𝑢𝑛
∑ 𝜆𝑛,𝑘(𝑥)𝑘∈𝐼𝑛

1

3
(𝑥𝑛,𝑘+1 − 𝑥𝑛,𝑘)(𝑥𝑛,𝑘+1

2 + 𝑥𝑛,𝑘+1𝑥𝑛,𝑘 + 𝑥𝑛,𝑘
2 ) 

           =
1

3𝑢𝑛
∑ 𝜆𝑛,𝑘(𝑥)𝑘∈𝐼𝑛

𝑢𝑛 [(𝑥𝑛,𝑘 + 𝑢𝑛)
2

+ 𝑥𝑛,𝑘(𝑥𝑛,𝑘 + 𝑢𝑛) + 𝑥𝑛,𝑘
2 ] 

    = ∑ 𝜆𝑛,𝑘(𝑥)

𝑘∈𝐼𝑛

𝑥𝑛,𝑘
2 + 𝑢𝑛𝑥 +

𝑢2

3
= 𝐿𝑛(𝑒2)(𝑥) + 𝑢𝑛𝑥 +

𝑢𝑛
2

3
 

iv) 𝐾̃𝑛(𝑒3)(𝑥) =
1

𝑢𝑛
 ∑ 𝜆𝑛,𝑘(𝑥)𝑘∈𝐼𝑛

1

4
(𝑥𝑛,𝑘+1

4 − 𝑥𝑛,𝑘
4 ) 

  =
1

𝑢𝑛
 ∑ 𝜆𝑛,𝑘(𝑥)𝑘∈𝐼𝑛

1

4
((𝑥𝑛,𝑘+1

2 − 𝑥𝑛,𝑘
2 )(𝑥𝑛,𝑘+1

2 + 𝑥𝑛,𝑘
2 )) 

                  =
1

4𝑢𝑛
 ∑ 𝜆𝑛,𝑘(𝑥)𝑘∈𝐼𝑛

(𝑥𝑛,𝑘+1 − 𝑥𝑛,𝑘)(𝑥𝑛,𝑘+1 + 𝑥𝑛,𝑘)(𝑥𝑛,𝑘+1
2 + 𝑥𝑛,𝑘

2 ) 

     =
1

4𝑢𝑛
 ∑ 𝜆𝑛,𝑘(𝑥)

𝑘∈𝐼𝑛

[𝑢𝑛(2𝑥𝑛,𝑘 + 𝑢𝑛)((𝑢𝑛 + 𝑥𝑛,𝑘)2 + 𝑥𝑛,𝑘
2 ) 

= ∑ 𝜆𝑛,𝑘(𝑥)

𝑘∈𝐼𝑛

𝑥𝑛,𝑘
3 +

1

4𝑢𝑛
∑ 𝜆𝑛,𝑘(𝑥)

𝑘∈𝐼𝑛

6𝑢𝑛
2𝑥𝑛,𝑘

2                 

+
1

4𝑢𝑛
∑ 𝜆𝑛,𝑘(𝑥)

𝑘∈𝐼𝑛

4𝑢𝑛
3𝑥𝑛,𝑘 +

1

4𝑢𝑛
∑ 𝜆𝑛,𝑘(𝑥)

𝑘∈𝐼𝑛

𝑢𝑛
4           

 = 𝐿𝑛(𝑒3)(𝑥) +
3

2
𝑢𝑛𝐿𝑛(𝑒2)(𝑥) + 𝑢𝑛

2𝑥 −
𝑢𝑛

3

4
 

Buradan, (v) benzer şekilde hesaplanabilir. 

Lemma 4.2. 𝜑𝑥
𝑛(𝑡) = (𝑡 − 𝑥)𝑛 , 𝑛 = 0, 1, 2, … olsun. (3.4) ile verilen operatör, 𝐾𝑛̃ 

için,  𝜁𝑛,2(𝑥) =  𝐾𝑛̃(𝜑𝑥
2(𝑡); 𝑥) ve 𝜁𝑛,4(𝑥) =  𝐾𝑛̃(𝜑𝑥

4(𝑡); 𝑥) dir. Buradan; 

𝜁𝑛,2(𝑥) = 𝐿𝑛(𝑒2, ; 𝑥) +
𝑢𝑛

2

3
− 𝑥2 

ve 
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𝜁𝑛,4(𝑥) 

= 𝐿𝑛, (𝑒4)(𝑥) + (2𝑢𝑛 − 4𝑥)𝐿𝑛(𝑒3)(𝑥) + (2𝑢𝑛
2  − 6𝑥𝑢𝑛 +  6𝑥2)𝐿𝑛(𝑒2)(𝑥) 

+4𝑥3𝑢𝑛𝐿𝑛(𝑒1)(𝑥) − 3𝑥4𝐿𝑛(𝑒0)(𝑥) + 𝑢𝑛
4 − 2𝑥2𝑢𝑛

2  

dir. 

İspat. 

Lemma 4.1' i kullanarak aşağıdaki ifadeler elde edilir. 

𝜁𝑛,2(𝑥) = 𝐾̃𝑛(𝜑𝑥
2(𝑡); 𝑥) = 𝐿𝑛(𝑒2; 𝑥) +

𝑢𝑛
2

3
+ 𝑢𝑛𝑥 − 2𝑥(𝑥 +

𝑢𝑛

2
+ 𝑥2 

   = 𝐿𝑛(𝑒2; 𝑥) +
𝑢𝑛

2

3
− 𝑥2. 

Şimdi 𝐾̃𝑛(𝜑𝑥
4(𝑡); 𝑥)’ i hesaplayalım. 

                             𝜁𝑛,4(𝑥) = 𝐾̃𝑛(𝜑𝑥
4(𝑡); 𝑥) 

                                        = 𝐾̃𝑛(𝑒4, 𝑥) − 4𝐾̃𝑛(𝑒3, 𝑥) + 6𝐾̃𝑛(𝑒2, 𝑥)𝑥2 − 4𝐾̃𝑛(𝑒1, 𝑥)𝑥3  

                                                  +𝑥4𝐾̃𝑛(𝑒0, 𝑥) 

                                       = 𝐿𝑛(𝑒4; 𝑥) + 2𝑢𝑛𝐿𝑛(𝑒3; 𝑥) + 2𝑢𝑛
2𝐿𝑛(𝑒2; 𝑥) + 𝑢𝑛

3𝑥 + 𝑢𝑛
4  

                             −4𝑥 (𝐿𝑛(𝑒3; 𝑥) +
3

2
𝑢𝑛𝐿𝑛(𝑒2; 𝑥) + 𝑢𝑛

2𝑥 +
𝑢𝑛

3

4
) 

                                            +6𝑥2 (𝐿𝑛(𝑒2; 𝑥) + 𝑢𝑛𝑥 +
𝑢𝑛

2

3
) − 4𝑥3 (

𝑢𝑛

2
+ 𝐿𝑛(𝑒1; 𝑥)) 

                                                  +𝑥4𝐿𝑛(𝑒0; 𝑥)) 

                                      = 𝐿𝑛(𝑒4; 𝑥) + (2𝑢𝑛 − 4𝑥)𝐿𝑛(𝑒3)(𝑥) + (2𝑢𝑛
2 ± 6𝑥𝑢𝑛 + 6𝑥2) 

                                              𝐿𝑛(𝑒2)(𝑥) + 4𝑥3𝑢𝑛𝐿𝑛(𝑒1)(𝑥) − 3𝑥4𝑢𝑛𝐿𝑛(𝑒1)(𝑥) 

                                              −3𝑥4𝐿𝑛(𝑒0)(𝑥) + 𝑢𝑛
4 − 2𝑥2𝑢𝑛

2. 

Böylece istenen sonuç elde edilir. 

4.2. Süreklilik Modülü Yardımıyla Yakınsaklık Hızının Hesaplanması 

Bu bölümde, 𝑓 ∈   ℝ+ alınarak, 𝐾̃𝑛 operatörü için yaklaşım sonucu verilecektir.  

Daha önce tanımlandığı üzere, 𝜇(𝑥) = 1 + 𝑥2 ağırlık fonksiyonu ve 𝐾𝑓 ,  f ‘ ye bağlı 

pozitif bir sabit olsun. 
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𝐵𝜇 (ℝ+) = {𝑓 ∶  ℝ+ → ℝ ∶  |𝑓(𝑥)| ≤  𝐾𝑓 𝜇(𝑥)} 

ve 

𝐶𝜇
𝑘  (ℝ+) = 𝐶 (ℝ+)  ∩  𝐵𝜇 (ℝ+). 

𝐶𝜇
𝑘(ℝ+) = {𝑓 𝜖 𝐶𝜇(ℝ+) ∶  lim

𝑥→∞

𝑓(𝑥)

𝜇(𝑥)
= 𝐾𝑓 < ∞} şeklinde verilen fonksiyon uzayı göz 

önüne alınsın. Buna göre, 𝐶𝜇
𝑘(ℝ+) ⊂  𝐶𝜇 (ℝ+) ⊂ 𝐵𝜇(ℝ+) yazılabilir. Bu uzayda 

norm, 

||𝑓||
𝜇

= sup
𝑥𝜖ℝ+

|𝑓(𝑥)|

𝜇(𝑥)
 

şeklinde tanımlıdır. Eğer  𝑓 ∈ 𝐶𝜇
𝑘(ℝ+) ise ||𝐿𝑛(𝑓)||

𝜇
≤ ||𝑓||

𝜇
’ dir. Bu sonuçlar ve 

Korovkin tipli teoremler [2, 3, 6, 9, 10] 'da görülebilir. 

𝐶𝑘(ℝ+) kümesi,  lim
𝑥→∞

|𝑓(𝑥)|

1+𝑥2 = 𝑘 > 0 şartını sağlayan tüm 𝑓 ∈ 𝐶(ℝ+)  

fonksiyonlarının alt uzayı olsun. Burada 𝑘 pozitif bir sabittir. 𝑓 ∈ 𝐶𝑘(ℝ+) için 

ağırlıklı süreklilik modülü Tanım 2.5’ te verilmiştir. Ağırlıklı süreklilik modülü 

kullanılarak aşağıdaki teorem ispatlanacaktır. 

Teorem 4.1  𝑓 ∈ 𝐶𝜇
𝑘  (ℝ+) ise, 

|𝐾̃𝑛(𝑓; 𝑥) − 𝑓(𝑥)| ≤ 32(1 + 𝑥2)Ω(𝑓; √𝜁𝑛,4(𝑥)4 ). 

dir. 

İspat. (3.8) özelliğinden, 

Ω(𝑓; 𝜆𝛿) ≤ 2(1 + 𝜆)(1 + 𝛿2)Ω(𝑓; 𝛿) 

yazılabilir. 

Pozitif 𝜆 için, 𝑓 ∈ 𝐶𝜇
𝑘 (ℝ+) için Ω(𝑓; 𝛿) tanımına göre ve  𝑥, 𝑡 ∈  ℝ+ ve  

𝛿 > 0 için aşağıdaki eşitsizlik  sağlanır. 

|𝑓(𝑡) − 𝑓(𝑡)| ≤ 16(1 + 𝑥2)Ω(𝑓; 𝛿) (1 +
|𝑡−𝑥|4

𝛿4 ). 

Lemma 4.1 ve (3.9) u kullanarak, 

|𝐾̃𝑛(𝑓; 𝑥) − 𝑓(𝑥) | ≤ 𝑓(𝑥)|1 − 𝐾̃𝑛(1; 𝑥)| + 𝐾̃𝑛(|𝑓(𝑡) − 𝑓(𝑥)|; 𝑥) 

elde edilir. (3.8) e 𝐾̃𝑛 i uygularsak; 
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|𝐾̃𝑛(𝑓; 𝑥) − 𝑓(𝑥)| ≤
1

𝑢𝑛
∑ 𝜆𝑛,𝑘(𝑥)

𝑘∈𝐼𝑛

∫ |𝑓(𝑡) − 𝑓(𝑥)|

𝑥𝑛,𝑘+1

𝑥𝑛,𝑘

𝑑𝑡 

                                                    ≤ 16(1 + 𝑥2)Ω(𝑓; 𝛿) (1 +
𝜁𝑛,4(𝑥)

𝛿4
) 

elde edilir. Buradan, 𝛿 = √𝜁𝑛,4(𝑥)4  seçilirse, 

|𝐾̃𝑛(𝑓; 𝑥) − 𝑓(𝑥)| ≤ 32(1 + 𝑥2) Ω (𝑓; √𝜁𝑛,4(𝑥)
4

  ) 

eşitsizliği sağlanır. 

Teorem 4.2  𝑓′′ ∈ 𝐶(ℝ) ve 𝜔(𝑓′′; 𝛿),  𝑓′′ ‘nin süreklilik modülü olsun. 

Sonlu 𝛿 > 0 için, 

|
1

𝜁𝑛,2(𝑥)
[(𝐾̃𝑛𝑓)(𝑥) − 𝑓(𝑥)] −

1

2
𝑓′′(𝑥)| ≤ 𝜔 (𝑓′′;

√𝜁𝑛,4(𝑥)

√𝜁𝑛,2(𝑥)
) 

eşitsizliği elde edilir. 

İspat.  𝜁 𝜖 [𝑥, 𝑡]  için (2.1)  eşitliğini ve 𝑥 sabit noktasındaki Taylor açılımı 

kullanılarak, 

𝜆(𝑓; 𝑡, 𝑥) = |𝑓(𝑡) − 𝑓(𝑥) −
𝑓′(𝑥)

1!
(𝑡 − 𝑥) −

𝑓′′(𝑥)

2!
(𝑡 − 𝑥)2| 

 =
(𝑡−𝑥)2

2!
2 [

𝑓(𝑡)−𝑓(𝑥)−𝑓′(𝑥)(𝑡−𝑥)

2(𝑡−𝑥)2 − 𝑓′′(𝑥)] 

=
(𝑡 − 𝑥)2

2!
[2

𝑓′(𝑡) − 𝑓′(𝑥) − 𝑓′′(𝑥)

2(𝑡 − 𝑥)
] 

                                          =
(𝑡−𝑥)2

2!
[2

𝑓′′(𝜁)

2
−

𝑓′′(𝑥)

2
] 

     =
(𝑡 − 𝑥)2

2!
[𝑓′′(𝜁) − 𝑓′′(𝑥)],     𝜁 ∈ [𝑥; 𝑡] 

Modül alınarak devam edilirse. 

                                |𝜆(𝑓; 𝑡, 𝑥)| ≤
(𝑡 − 𝑥)2

2!
|𝑓′′(𝜁) − 𝑓′′(𝑥)| 

≤
(𝑡 − 𝑥)2

2!
𝜔(𝑓′′; |𝜁 − 𝑥|) 
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≤
(𝑡 − 𝑥)2

2!
𝜔(𝑓′′; |𝑡 − 𝑥|) 

≤
(𝑡 − 𝑥)2

2!
𝜔(𝑓′′; |𝑡 − 𝑥|

𝛿

𝛿
) 

   ≤
(𝑡−𝑥)2

2!
(1 +

|𝑡−𝑥|

𝛿
) 𝜔(𝑓′′; 𝛿) 

                =
1

2
((𝑡 − 𝑥)2 +

(𝑡−𝑥)2|𝑡−𝑥|

𝛿
) 𝜔(𝑓′′; 𝛿) 

                                      =
(𝑡−𝑥)2

2!
|𝑓′′(𝜁) − 𝑓′′(𝑥)| ≤

(𝑡−𝑥)2

2!
𝜔(𝑓′′ ; |𝜁 − 𝑥|) 

≤
(𝑡 − 𝑥)2

2!
𝜔(𝑓′′; |𝑡 − 𝑥|) 

                                               ≤
(𝑡−𝑥)2

2!
(1 +

|𝑡−𝑥|

𝛿
) 𝜔(𝑓′′; 𝛿) 

                    ≤
1

2
((𝑡 − 𝑥)2 +

|𝑡 − 𝑥|3

𝛿
) 𝜔(𝑓′′; 𝛿) 

elde edilir. Şimdi 𝐾̃𝑛 ‘ye uygulanırsa;  

|(𝐾̃𝑛𝜆(. , 𝑥)) (𝑥)| = |(𝐾̃𝑛𝑓)(𝑥) − 𝑓(𝑥) − 𝑓′(𝑥)𝜁𝑛,1(𝑥) −
𝑓′′(𝑥)

2
𝜁𝑛,2(𝑥)| 

                                       = |(𝐾̃𝑛𝑓)(𝑥) − 𝑓(𝑥) −
𝑓′′(𝑥)

2
𝜁𝑛,2(𝑥)| ≤ (𝐾̃𝑛|𝜆(𝑓; . , 𝑥)|)(𝑥) 

                                       ≤
1

2
 . 𝜔(𝑓′′; 𝛿) (𝜁𝑛,2(𝑥) +

(𝐾̃𝑛|𝑒1−𝑥|3)(𝑥)

𝛿
) 

                                       =
𝜁𝑛,2(𝑥)

2
 . 𝜔(𝑓′′; 𝛿) (1 +

1

𝛿
 .

(𝐾̃𝑛|𝑒1−𝑥|3)(𝑥)

𝜁𝑛,2(𝑥)
) 

elde edilir. Buradan, 

𝛿 = (𝐾̃𝑛|𝑒1 − 𝑥|3)(𝑥)/𝜁𝑛,2(𝑥) 

seçilerek ve 

(𝐾𝑛|𝑒1 − 𝑥|3)(𝑥) ≤ √𝜁𝑛,4(𝑥). √𝜁𝑛,2(𝑥) 

eşitsizliği kullanılarak, 

|(𝐾̃𝑛𝑓)(𝑥) − 𝑓(𝑥) −
𝑓′′(𝑥)

2
√𝜁𝑛,2(𝑥)| 
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≤ √𝜁𝑛,2(𝑥)𝜔 (𝑓′′;  
√𝜁𝑛,4(𝑥)

√𝜁𝑛,2(𝑥)
) 

bulunur. Sonuç olarak,  

|
1

√𝜁𝑛,2(𝑥)
(𝐾̃𝑛𝑓)(𝑥) − 𝑓(𝑥) −

1

2
𝑓′′(𝑥)| ≤ 𝜔 (𝑓′′;  

√𝜁𝑛,4(𝑥)

√𝜁𝑛,2(𝑥)
) 

eşitsizliği elde edilerek ispat tamamlanır. 
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5. TARTIŞMA VE SONUÇ 

Matematiksel Analiz’ in önemli bir dalı da Yaklaşımlar Teorisidir. Bu teori 

de kendi içinde birçok dala ayrılmaktadır. Bu dallardan birisi de lineer pozitif 

operatörlerin yakınsaklık durumlarının incelenmesidir. Bu konu geçmişten 

günümüze kadar popülerliğini halâ sürdürmektedir. En iyi bilinen lineer pozitif 

operatörler Bernstein, Baskakov, Szász-Mirakyan operatörleridir. Bu operatörlerin 

çeşitli genelleştirmeleri tanımlanarak, belli koşullar altında yakınsaklık özellikleri 

incelenmektedir. 

Bu tezde afin fonksiyonu koruyan Kantorovich tipli operatörler ile ilgili 

makaleler incelenmiştir. Bu makalelerden birisi Agratini’ nin “A Note On 

Kantorovich Type Operators Which Preserve Affine Functions “. Bu çalışmasından 

esinlenerek bazı yaklaşım teoremleri verilmiştir. Yakınsaklık için kuantitatif 

hesaplamalar yapılmıştır. Ağırlıklı uzaylarda modifiye bir operatörün yakınsaklık 

özellikleri incelenmiştir. Böylece modifiye operatörlerin, klasik operatörlerden daha 

iyi yaklaşım sonuçları verdiği gösterilmiştir. 

Bu tezi hazırlamaktaki amacımız, geçmişten günümüze önemini koruyan bazı 

lineer pozitif operatörlerin, genelleştirilmiş halleri ile ilgili yapılan çalışmaları takip 

eden bir kaynak oluşturmaktır. 
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