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AN AGENT-BASED APPROACH TO ASSESS THE IMPACT OF 

ELECTRICITY GENERATION ON CARBON EMISSIONS 

SUMMARY 

The research addresses the complex interplay between climate change, energy 

production, and economic policies in general and the specific context of the electricity 

generation sector in Türkiye. This research will seek to respond to critical challenges 

related to CO2 reduction, showing how different sources of energy can provide the 

country's energy mix and how future policies might influence these dynamics. 

The main focus of this research is to study the interaction of energy, economic, and 

environmental policy in a complex way, showing its consequences for electricity 

demand and generation and CO2 emissions in Türkiye, taking into account its specific 

geographical and climatic condition. The agent-based model (ABM) and Global 

Climate Model (GCM) data are used in this study to evaluate the influence of different 

future policies on framing electricity generation-based CO2 emissions in a climate 

change regime. Some of the key objectives of this study include identifying the most 

accurate GCMs for Türkiye, assessing how climate change is going to influence future 

electricity production, projecting increased space cooling needs, assessing the 

effectiveness of different policies in reducing CO2 emissions, and analyzing changes 

in the electricity mix of Türkiye and the generation capacity over time. These 

objectives, therefore, enable the study to provide strategic information on sustainable 

energy planning and policy development in Türkiye. 

In the central place, a model of agent-based simulation will be developed, allowing for 

an experiment in greater detail with scenarios on different policies, such as carbon 

taxes and subsidies for renewable energy. Through this study, different policy 

outcomes can be simulated to provide information on the likely impacts on CO2 

emissions, and to help identify effective ways of reducing it while ensuring electricity 

reliability. 

The research methodology involves several key steps. First, climate data from the 

CMIP6 experiment is collected and compared with observation-based data to identify 

the GCMs that best represent the climatic conditions in Türkiye. Those models are 

then used to predict future climate variables under a high-emission scenario, providing 

a basis for understanding how climate change might impact Türkiye's energy systems. 

In estimating the future values of climate variables, a machine learning approach using 

Extreme Gradient Boosting was utilized. 

Another important aspect of this investigation is the evaluation of various energy 

policies and their consequences in terms of CO2 emissions from generated electricity. 

The ABM will simulate the interaction of government, the Independent Power 

Producers (IPPs), and the market forces deep into the various policy scenarios that 

could influence energy production and its related emissions. This would permit the 

identification of the best strategies leading to sustainable electricity generation with 

the least environmental impact. 
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Turkey's electricity output forecast, while showing a high decline in solar power 

generation due to efficiency loss, it increases the effect of the rising temperature. The 

declines are projected to be highest in the Mediterranean and the Eastern Black Sea 

Regions. The least amount of solar potential is exhibited by the Eastern Black Sea 

Region, making this region economically unviable for photovoltaic solar power plants. 

This decrease in the Marmara and Southeastern Anatolia Regions is relatively less in 

percentage. It is observed that wind power production will increase, especially in the 

Thrace region and the north of Central Anatolia, where a decrease in wind power is 

observed in the Eastern Black Sea and Uşak-Kütahya-Eskişehir-Bolu region. 

It is expected that global warming will elevate Cooling Degree Days (CDD) by almost 

two and a half times in the majority of Turkish cities-mostly Mediterranean as well as 

the southeastern part of the country. Changes in cooling requirements thus represent 

an overall increase of CDDs in the period 2020-2040, computed from the GCM's 

output, thus bringing to the fore the need for structural improvement in their cooling 

infrastructure. 

This research covers a wide analysis of how various energy policy options impact the 

electricity sector of Türkiye concerning capacity expansion, electricity price, and CO2 

emissions. The study applies a scenario choice-based analysis with one basic scenario 

and nine peculiar policy scenarios in order to draw wide lessons regarding the role and 

potential of combining various policy measures to better meet the climate and energy 

challenge using renewable energy sources (RES). 

The ABM used for the forecast of electricity demand is almost linear, reaching 456 

TWh in 2030, 521 TWh in 2035, and 571 TWh in 2040. By 2040, industrial demand 

will be above 50% of total demand, outpacing the residential and commercial sectors. 

The projection from the ABM also gives insight into the future distribution of 

technologies in electricity generation, underlining the role of policy scenarios in 

shaping capacity expansion and emissions. 

A drastic improvement in forecast installed capacity from the installed capacities under 

the base case of PV would amount to approximately 28.7 GW and 79.5 GW under the 

respective horizons 2030 and 2040, while similar action for reduction of corporate tax 

could lead up to an enhancement as huge as 94 GW of capacities through that sector 

in comparison to a modest augmentation witnessed for Wind powers' respective 

installations. Natural gas power plants are expected to grow, while coal power plant 

capacity is unchanged. Nuclear power, because of its base-load dependability, may 

decrease the dependence on natural gas power plants. 

With the expansions in capacity, there will be a drop in prices of electricity up to 2029 

and eventually stabilize. The most promising prices are forecasted when the two 

policies of carbon tax and renewable energy subsidy are executed. Without policy 

intervention, price increases may occur, particularly when nuclear power is integrated. 

The cost for renewable technologies, such as PV and wind power, is seen to 

continuously decrease and become more economically feasible. It is expected that the 

investment costs of PV systems will decrease by more than 19% from 2023 to 2040, 

while those of wind power will decline by about 16%. Biomass and geothermal 

technologies will also become cheaper, although hydro-electric, natural gas, and coal-

which are more traditional sources-will not see much change. These trends reinforce 

the movement toward cleaner, more sustainable energy systems. 
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The analysis yields a continuous extension of the capacity of solar and wind power 

plants in all alternatives. This growing extension of RES causes a threshold effect in 

the year 2032, so that CO2 emissions during electricity generation pass their maximum 

to decline. Hereby, the drop is caused due to the continuing share of the energy mix 

expanded by RES; however, such a drop in carbon emissions depends also on the 

individual energy-climate policies. 

The study recommends a combination of nuclear power deployment, carbon taxing, 

and subsidies for RES to achieve the greatest reduction in cumulative CO2 emissions. 

It thus advises the government to provide inflation-indexed RES subsidies in 

conjunction with a carbon tax. An integrated approach drives the transition to a low-

carbon energy system but improves the financial viability of renewable energy 

projects. In this regard, it is optimum to see the decline in over 11% CO2 emission 

within the baseline projection for the years 2022 to 2040. 

In total, the carbon tax can achieve a CO2 emission reduction of 1.52% below the base 

case. On the other hand, the subsidy on RES will result in higher cuts, up to 4.14%. 

The sum effect will actually be more than 6%, showing a synergy effect above adding 

the effects from each policy, since both policies have been in place. 

Nuclear power also plays an important role. Without additional policies, deploying 

nuclear power plants could decrease cumulative CO2 emissions by approximately 

5.3%. However, the wide dissemination of nuclear power plants involves high initial 

investment costs and public skepticism. Therefore, governmental support for the 

development of such infrastructure and changing of public opinion could be required. 

On the price of electricity, the study foresees a further drop in prices up to 2029 amidst 

increased RES capacities, after which the price stabilizes. The prices are expected to 

stay between $25 to $31 per MWh for all scenarios. Concerning electricity prices, RES 

subsidies are important in that they allow RES power plants to bid lower, thus pulling 

down the overall market price. The best strategy to achieve low CO2 emissions at the 

least electricity price appears to be using nuclear power together with RES subsidies; 

this offers the double advantage of being both an environmentally and economically 

sound policy option. 

This research, therefore, underlines the need for a diversified and integrated approach 

to energy policy. Renewable energy expansion, nuclear power deployment, and 

targeted subsidies and taxes can help Türkiye effectively respond to the challenges of 

climate change and transition towards a sustainable and resilient energy future. The 

study provides actionable insights for policymakers to design effective energy-climate 

policies and achieve a more environmentally responsible and economically viable 

energy landscape. 
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BİR AJAN TEMELLİ YAKLAŞIM İLE ELEKTRİK ÜRETİMİNİN KARBON 

EMİSYONLARI ÜZERİNDEKİ ETKİSİNİN DEĞERLENDİRİLMESİ 

ÖZET 

Bu çalışma, iklim değişikliği, elektrik üretimi ve ekonomik politikalar arasındaki 

karmaşık ilişkiyi, özellikle Türkiye'nin elektrik üretim sektörü üzerinde yoğunlaşarak 

incelemektedir. Araştırma, çeşitli enerji kaynaklarının ülkenin elektrik karışımına 

katkısını ve gelecekteki politikaların bu dinamikleri nasıl etkileyebileceğini 

keşfederek karbondioksit (CO2) emisyonlarını azaltma konusundaki kritik zorlukları 

ele almayı amaçlamaktadır. 

Bu çalışmanın temel amacı, enerji, ekonomi ve çevre politikaları arasındaki karmaşık 

etkileşimi ve bunların Türkiye'deki elektrik talebi, üretimi ve CO2 emisyonları 

üzerindeki etkisini incelemektir. Ülkenin özel coğrafi ve iklimsel koşullarını dikkate 

alarak, enerji-iklim politikalarının iklim değişikliği etkisi altındaki CO2 emisyonlarını 

nasıl şekillendirebileceğini değerlendirmek için bir ajan tabanlı simülasyon modeli ve 

Küresel İklim Modelleri (KİM) verileri kullanılmaktadır. Çalışma, Türkiye için en 

doğru KİM'leri belirleme, iklim değişikliğinin gelecekteki elektrik üretimini nasıl 

etkileyeceğini değerlendirme, artan soğutma ihtiyaçlarını tahmin etme, farklı 

politikaların elektrik üretimi kaynaklı CO2 emisyonlarını azaltmadaki etkinliğini 

değerlendirme ve Türkiye'nin elektrik karışımındaki ve üretim kapasitesindeki 

değişimleri analiz etme gibi birkaç temel hedef belirlemektedir. Bu hedefler 

aracılığıyla, çalışmanın Türkiye'deki sürdürülebilir enerji planlaması ve politika 

geliştirme için stratejik içgörüler sağlaması amaçlanmaktadır. 

Çalışmanın merkezinde, KİM'lerden gelen gelecekteki iklim projeksiyonlarını entegre 

eden bir ajan tabanlı simülasyon modelinin geliştirilmesi bulunmaktadır. Bu model, 

karbon vergileri veya yenilenebilir enerji teşvikleri gibi çeşitli politika senaryoları ile 

detaylı deneyler yapma olanağı tanımaktadır. Çeşitli politika sonuçlarını simüle 

ederek, çalışmada elektrik üretimi kaynaklı CO2 emisyonları üzerindeki potansiyel 

etkileri ve farklı stratejilerin emisyonları azaltma konusundaki etkinliğini belirlemeye 

yönelik değerli içgörüler sağlanmaktadır. 

Araştırma metodolojisi birkaç ana adımı içermektedir. İlk olarak, CMIP6 deneyinden 

elde edilen iklim verileri toplanarak gözleme dayalı verilerle karşılaştırılmakta ve 

Türkiye'nin iklim koşullarını en doğru şekilde temsil eden KİM'ler belirlenmektedir. 

Bu modeller, yüksek emisyon senaryosunda gelecekteki iklim değişkenlerini tahmin 

etmek için kullanılmakta ve bu, iklim değişikliğinin Türkiye'nin enerji sistemleri 

üzerindeki etkilerini anlamak için bir temel sağlamaktadır. Gelecekteki iklim 

değişkenlerinin değerlerini tahmin etmek için Extreme Gradient Boosting makine 

öğrenme yöntemi kullanılmaktadır. 

Bu makine öğrenme yaklaşımı, verilerdeki karmaşık ve doğrusal olmayan ilişkileri ele 

alma yeteneği nedeniyle tercih edilmiştir. Eğitim veri seti ile eğitilip test veri seti ile 

hata oranları en aza indirilen modeller, daha sonra SSP5-8.5 iklim senaryosu altında 

gelecekteki iklim değişkenlerini tahmin etmek için kullanılmakta ve bu, enerji 
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sistemleri üzerindeki potansiyel gelecekteki iklim etkilerini anlamak için sağlam bir 

temel sağlamaktadır. 

İklim verileri işlendikten sonra, çalışma, Türkiye'deki enerji manzarasını 

değerlendirmek için kritik öneme sahip olan elektrik talebi, soğutma derece günleri 

(CDD) ve rüzgar ve güneş enerjisi sistemlerinden elektrik üretimi gibi temel enerji 

göstergelerini tahmin etmektedir. Ayrıca, teknoloji yatırım kararları için yarar 

fonksiyonu ağırlıkları Analitik Hiyerarşi Süreci ve Çok Kriterli Fayda Tekniği 

aracılığıyla belirlenmektedir. Bu yöntemler, çeşitli kriterleri ve paydaş tercihlerini 

dikkate alarak farklı enerji teknolojilerine yatırım önceliklerini belirlemek için 

sistematik bir yaklaşım sunmaktadır. 

Çalışmanın önemli bir yönü, farklı enerji politikalarının elektrik üretimi kaynaklı CO2 

emisyonları üzerindeki etkilerinin değerlendirilmesidir. Ajan temelli model (ABM), 

hükümet, bağımsız enerji üreticileri (IPP'ler) ve piyasa güçleri arasındaki etkileşimleri 

simüle ederek çeşitli politika senaryolarının elektrik üretimi ve emisyonlar üzerindeki 

etkilerini derinlemesine analiz etmektedir. Bu yaklaşım, çevresel etkiyi asgariye 

indirerek sürdürülebilir enerji üretimi sağlamak için en etkili stratejilerin 

belirlenmesine olanak tanımaktadır. 

Türkiye'nin elektrik üretim projeksiyonları, sıcaklık artışlarından kaynaklanan 

verimlilik kayıpları nedeniyle güneş enerjisi üretiminde önemli bir düşüş 

öngörmektedir. Akdeniz ve Doğu Karadeniz bölgelerinde en büyük azalmanın 

yaşanması beklenirken, Doğu Karadeniz Bölgesi'nin fotovoltaik güneş enerjisi 

santralleri için ekonomik olarak uygun olmadığı görülmektedir. Buna karşın, Marmara 

ve Güneydoğu Anadolu bölgelerinde güneşten elektrik üretiminde en az düşüş 

yaşanacağı öngörülmektedir. Rüzgar enerjisi üretiminin ise Trakya ve kuzey Orta 

Anadolu bölgelerinde artması, Doğu Karadeniz ve Uşak-Kütahya-Eskişehir-Bolu 

bölgelerinde ise azalması beklenmektedir. 

Soğutma Derece Günleri (CDDs), soğutma enerji talebini tahmin etmede kullanılan 

bir metrik olarak çoğu şehirde, özellikle Akdeniz ve güneydoğu bölgelerde, önemli bir 

artış göstermektedir. KİM'lerin çıktıları, 2020'den 2040'a kadar genel bir artış 

göstermekte olup, büyüyen soğutma taleplerini yansıtmakta ve iyileştirilmiş soğutma 

altyapısının gerekliliğini vurgulamaktadır. 2031 ve 2032 yıllarında dikkate değer 

artışlar gözlemlenmektedir, ardından gelen yıllarda ise hafif düşüşler ve toparlanmalar 

yaşanmaktadır. Veriler, iklim değişikliğinin enerji tüketim desenleri üzerindeki 

etkisini öne çıkararak, sürdürülebilir enerji çözümleri ve iklim uyum stratejilerine olan 

ihtiyacı ortaya koymaktadır. 

Bu çalışma, çeşitli enerji politikalarının kapasite genişlemeleri, elektrik fiyatları ve 

CO2 emisyonları üzerindeki etkilerini kapsamlı bir şekilde değerlendirmektedir. Bir 

temel senaryo ve dokuz farklı politika senaryosunu inceleyerek, yenilenebilir enerji 

kaynaklarının (YEK) kritik rolünü ve farklı politika önlemlerinin iklim ve enerji 

sorunlarına nasıl yanıt verebileceğini vurgulamaktadır. 

ABM çıktıları, elektrik talebini neredeyse doğrusal bir artış olarak göstermekte, talebin 

2030'da 456 TWh, 2035'te 521 TWh ve 2040'ta 571 TWh seviyelerine ulaşması 

öngörülmektedir. Endüstriyel elektrik talebinin 2040'a kadar toplam talebin %50'sini 

aşması, konut ve ticari sektörleri geçmesi beklenmektedir. ABM'nin projeksiyonları 

ayrıca, elektrik üretim teknolojilerinin gelecekteki dağılımı hakkında içgörüler 

sunmakta ve politika senaryolarının kapasite genişlemesi ve emisyonlarla başa 

çıkmadaki önemini vurgulamaktadır. 
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Fotovoltaik (PV) güneş enerjisi kapasitesinin önemli ölçüde büyümesi 

öngörülmektedir; temel senaryoda 2030'da 28,7 GW ve 2040'ta 79,5 GW'a ulaşması 

beklenmektedir. Kurumlar vergisi oranlarını düşürme gibi politika önlemleri, PV 

kapasitesini 2040'a kadar 94 GW'a çıkarabilmektedir. Rüzgar enerjisi kapasitesinin de 

artması beklenmektedir, ancak bu artış PV'ye göre daha yavaş olacaktır. Doğalgaz 

santralleri genişlemesi beklenirken, kömür santralları kapasitesi büyük ölçüde 

değişmeyecektir. Nükleer enerji, temel yük güvenilirliği nedeniyle doğalgaz santralları 

ihtiyacını azaltabilir. 

Elektrik fiyatlarının kapasite genişlemeleri nedeniyle 2029'a kadar düşmesi, 

sonrasında ise stabil hale gelmesi öngörülmektedir. En uygun fiyatların, hem karbon 

vergisi hem de yenilenebilir enerji teşvik politikaları uygulandığında elde edileceği 

projeksiyon edilmektedir. Ancak, politika müdahaleleri olmadan, fiyatların artması, 

özellikle nükleer enerjinin entegrasyonu ile birlikte olabilmektir. 

Yenilenebilir teknolojilerin maliyet düşüşleri, PV ve rüzgar enerjisi dahil, devam 

etmesi beklenmektedir ve bu durum onları daha ekonomik hale getirecektir. PV 

sistemleri için yatırım maliyetlerinin 2023'ten 2040'a kadar %19'dan fazla düşmesi, 

rüzgar enerjisi maliyetlerinin ise yaklaşık %16 azalması öngörülmektedir. Biyokütle 

ve jeotermal teknolojiler de maliyet düşüşleri yaşayacak, ancak hidroelektrik, 

doğalgaz ve kömür gibi geleneksel kaynaklar minimal değişiklikler gösterecektir. Bu 

eğilimler, daha temiz ve sürdürülebilir enerji sistemlerine geçişi güçlendirmektedir. 

Analiz, tüm senaryolar kapsamında güneş ve rüzgar enerjisi santrallerinin 

kapasitelerinde tutarlı bir artış göstermektedir. Bu YEK genişlemesi, 2032'de CO2 

emisyonlarının zirveye ulaşmasına ve ardından düşmeye başlamasına yol açmaktadır. 

Bu düşüş, enerji karışımındaki YEK'in artan payına atfedilmektedir. Ancak, CO2 

emisyonlarındaki azalma derecesi, uygulanan özel enerji-iklim politikalarına bağlı 

olarak değişiklik göstermektedir. 

En yüksek CO2 emisyonu azalmasını sağlamak için çalışma, nükleer enerji kullanımı, 

karbon vergisi ve enflasyona göre ayarlanmış YEK teşviklerinin kombinasyonunu 

önermektedir. Bu entegre yaklaşım, düşük karbonlu enerji sistemine geçişi 

hızlandırmakla kalmayıp, yenilenebilir enerji projelerinin finansal uygunluğunu da 

artırmaktadır. Bu optimal senaryoda, 2022'den 2040'a kadar CO2 emisyonlarının 

%11'den fazla azaltılması mümkün olabilmektedir. 

Nükleer enerjinin rolü de oldukça önemlidir. Ek bir politika olmaksızın nükleer enerji 

santrallerinin devreye alınması, toplam CO2 emisyonlarını %5.3 oranında azaltabilir. 

Bu potansiyel faydalara rağmen, nükleer enerjinin yaygın olarak benimsenmesi 

yüksek başlangıç yatırım maliyetleri ve kamu şüpheciliği gibi zorluklarla karşı 

karşıyadır. Bu nedenle, hükümet müdahalesi, nükleer altyapı gelişimini desteklemek 

ve kamu endişelerini ele almak için gerekli olabilir. 

Elektrik fiyatları açısından, çalışma, YEK kapasitelerindeki artış nedeniyle fiyatların 

2029'a kadar düşmesini ve ardından bir istikrar dönemine girmesini öngörmektedir. 

Fiyatların tüm senaryolar arasında MWh başına 25 ila 31 dolar arasında dalgalanması 

beklenmektedir. YEK sübvansiyonları, YEK santrallerinin daha düşük teklifler 

sunmasını sağlayarak elektrik fiyatlarının genel olarak düşürülmesinde kritik bir rol 

oynamaktadır. Nükleer enerji ve YEK sübvansiyonlarının kombineli olarak 

uygulanması, hem CO2 emisyonlarını hem de elektrik fiyatlarını minimize etmede en 

etkili strateji olarak ortaya çıkmakta ve çevresel ve ekonomik iyileşmelerin iki yönlü 

avantajını sunmaktadır. 
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Çalışma ayrıca YEK’lerin piyasa dinamikleri üzerindeki etkisini de vurgulamaktadır. 

Düşük marjinal maliyetlere sahip olan YEK'ler, "merit-order etkisi" olarak bilinen bir 

duruma yol açar; bu durum, daha yüksek maliyetli üretim yöntemlerinin yerini alarak 

genel piyasa fiyatlarının düşmesine neden olur. YEK kapasiteleri arttıkça, elektrik 

üretiminin ortalama marjinal maliyeti azalır ve bu da daha istikrarlı ve uygun maliyetli 

elektrik fiyatlarına katkıda bulunur. 

Elektrik talebinin ABM kullanılarak hassas bir şekilde tahmin edilmesi, enerji 

verimliliğini artırma, talep tarafı yönetimini geliştirme ve şebeke optimizasyonu 

çabalarını ilerletme açısından kritik bir öneme sahiptir. ABM, sektör düzeyinde 

elektrik tüketimini yönlendiren faktörlere derinlemesine bakarak enerji israfını 

azaltma, yük desenlerini ince ayar yapma ve enerji verimli teknolojiler ve yöntemlerin 

benimsenmesini teşvik etme yollarını aydınlatmaktadır. Bu proaktif yaklaşım, kamu 

hizmetleri, şebeke işletmecileri ve politika yapıcılara talep yanıtı girişimleri, zaman 

dilimine bağlı fiyatlandırma stratejileri ve enerji verimliliği teşvikleri gibi 

özelleştirilmiş müdahaleleri uygulamak için eyleme dönük bilgiler sağlamaktadır. Bu 

önlemler, sadece sistem maliyetlerini azaltmayı değil, aynı zamanda enerji tüketimi 

spektrumunda genel enerji verimliliğini artırmayı da hedeflemektedir. 

Sonuç olarak, bu araştırma, enerji politikasına yönelik çeşitlendirilmiş ve entegre bir 

yaklaşımın önemini vurgulamaktadır. Yenilenebilir enerji genişlemesi, nükleer enerji 

kullanımı ve hedeflenmiş sübvansiyonlar ile vergiler gibi stratejileri bir araya 

getirerek, Türkiye iklim değişikliği nedeniyle karşılaştığı zorlukları etkili bir şekilde 

aşabilir ve sürdürülebilir ve dirençli bir enerji geleceğine geçiş yapabilir. Çalışma, 

politika yapıcılara etkili enerji-iklim politikaları oluşturma ve çevresel olarak sorumlu 

ve ekonomik olarak uygulanabilir bir enerji manzarası elde etme konusunda 

uygulanabilir içgörüler sunmaktadır. 
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 INTRODUCTION  

 Background 

A comprehensive analysis of temperature records from the past century reveals a clear 

and consistent upward trend in global average temperatures. By combining direct 

measurements from weather stations, sea surface temperature data, and satellite 

observations, researchers have assembled extensive datasets that accurately track 

global temperature changes over time. These datasets, supported by paleoclimate 

evidence, indicate substantial planetary warming, especially in recent decades. Since 

the late 19th century, the global average temperature has increased by about 1.2°C, 

with the most rapid rises occurring after 1970 (Masson-Delmotte et al., 2021). As this 

is not a uniform warming, the higher latitudes (especially the Arctic region) have seen 

larger changes in temperature relative to the global average, causing increased rates of 

ice melt and thawing of permafrost. The data strongly suggest that human activities 

including the burning of fossil fuels, deforestation, and industrial processes are the 

most dominant causes of this warming trend. 

One of the other evidences that support the rising global temperatures comes from 

many indicators and proxy records. Changes in ice core specimens, tree rings, and 

coral reefs are consistent with the instrumental temperature record and extend the view 

of the current warming trend over a longer period. The frequency and intensity of 

heatwaves and extreme weather events, such as hurricanes, droughts, and heavy 

precipitation, have also raised in a manner consistent with climate model predictions 

(Pachauri et al., 2014). These models, based on atmospheric dynamics and feedback 

mechanisms, project continued warming under different greenhouse gas emission 

scenarios. The Intergovernmental Panel on Climate Change (IPCC) highlights the 

urgent need to reduce emissions to limit future temperature rises and prevent the most 

severe impacts of climate change. Therefore, the analysis of temperature records not 

only underscores the significant warming over the past century but also emphasizes 

the critical need for comprehensive climate action. 
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In this context, Carbon dioxide (CO2) emissions are pivotal in driving climate change 

due to their substantial role in the greenhouse effect. As one of the most prevalent 

greenhouse gases (GHGs) in the Earth's atmosphere, CO2 is predominantly generated 

by human activities such as the combustion of fossil fuels (coal, oil, and natural gas), 

deforestation, and various industrial processes. Since the onset of the Industrial 

Revolution, atmospheric CO2 levels have surged dramatically from approximately 280 

parts per million (ppm) to over 425 ppm today (SIO, 2023; Ritchie et al., 2023). This 

sharp increase is mainly due to the extensive growth of industrial activities and the 

consequent rise in fossil fuel usage. The heightened CO2 concentrations amplify the 

natural greenhouse effect, trapping additional heat in the atmosphere and resulting in 

global warming and related climate changes (See Figure 1.1). 

 

Figure 1.1 : Global average surface temperature anomaly relative to 1961-1990. 

GHGs can be defined as the constituents of atmospheric composition that absorb 

infrared radiation, further re-emitting and causing the so-called 'greenhouse effect.' 

Key GHGs include carbon dioxide, CH4 (methane), N2O, and fluorinated gases. Each 

one has different GWP values and a span of time spent in the atmosphere; they are 

expected to impact climate change in an assortment of ways. While CO2 is much more 

abundant than methane, for example, methane has a GWP about 28-36 times higher 

over a 100-year period, so its relatively short lifetime in the atmosphere still makes it 

an important factor in driving climate change. Nitrous oxide, for example, has a GWP 

about 298 times greater than CO2 and stays in the atmosphere for more than a century. 
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Fluorinated gases, though present in smaller quantities, can have GWPs in the 

thousands and long atmospheric lifetimes, substantially contributing to long-term 

climate forcing (Masson-Delmotte et al., 2021). 

It refers to the process whereby a layer of GHGs in the atmosphere can trap heat, thus 

maintaining the planet at a temperature which can support life. However, this effect 

has been highly enhanced by human activities increasing the concentration of GHGs. 

The solar radiation that reaches the Earth's surface is first absorbed then re-emitted as 

infrared radiation. Infrared radiation is absorbed by the GHGs in the atmosphere and 

re-emitted in all directions, including back to the Earth's surface, causing further 

warming. This enhanced greenhouse effect results in higher global temperatures, 

which then lead to climate change. As already mentioned, the consequences of this 

heating are wide-ranging, affecting weather patterns, sea levels, and ecosystems. 

Understanding the sources of GHG emissions is essential for elaborating effective 

mitigation strategies. Sources of GHG emissions are varied and include energy 

production, transport, industry, agriculture, and waste management. Each of these 

sectors has a different contribution to the general pattern of emissions, thus requiring 

a source-specific approach to reduction. 

Figure 1.2 presents annual global GHG emissions from various sectors for the period 

1990-2020. Emissions are split across ten sectors, including: other fuel combustion, 

bunker fuels, waste, buildings, industry, fugitive emissions from energy production, 

agriculture, manufacturing and construction, transport, and electricity and heat. A 

notable trend is the significant increase in GHG emissions from electricity and heat 

production, which consistently rose from 8.65 gigatonnes (Gt) of CO2-eq. in 1990 to 

15.18 GtCO2-eq. in 2020. Transport emissions also saw a marked increase, nearly 

doubling from 4.73 GtCO2-eq.  to 7.29 GtCO2-eq. over the same period (Ritchie et al., 

2020). 

Industrial emissions showed a steady rise, while emissions from manufacturing and 

construction exhibited more variability but an overall upward trend. Agricultural 

emissions remained relatively stable but consistently high, indicating the sector's 

substantial contribution to global GHG emissions. Emissions from waste, buildings, 

and other fuel combustion also increased, though at a slower rate compared to 

electricity and transport sectors. 
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Fugitive emissions from energy production, representing leaks during the extraction, 

processing, and transport of fossil fuels, showed a moderate increase over the decades. 

Bunker fuels, used for international shipping and aviation, demonstrated a gradual rise 

in emissions, reflecting the growing global transportation demands. 

This sectoral breakdown highlights the critical areas for targeted GHG reduction 

strategies, with electricity and heat production, transport, and industry being key 

sectors where significant emission cuts could substantially impact global GHG levels. 

 

Figure 1.2 : Annual global GHG emissions by sector. 

As given in Figure 1.2, electricity and heat production causes approximately one-third 

of the global GHG emissions due to their heavy reliance on fossil fuels, particularly 

coal, natural gas, and oil. These energy sources are carbon-intensive, releasing large 

quantities of CO2 and other GHGs during combustion. High energy demand from 

industrial, residential, and commercial sectors exacerbates emissions, as power plants 

and heating systems must operate continuously to meet these needs. Additionally, 

inefficiencies in energy production and transmission lead to higher emissions, as older, 

less efficient plants often remain in use due to economic and infrastructural constraints. 

The combustion process emits not only CO2 but also CH4 and N2O, which are potent 

GHGs with higher global warming potentials than CO2. The growing global 

population and economic expansion further increase the demand for electricity and 

heat, especially in developing regions where energy infrastructure is rapidly 

expanding. 
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In an effort to supply the world with its ever-increasing demand for electricity, 

different types of power plants have been invested in and built across the globe. These 

have ranged from new constructions to renovations of already existing facilities, the 

purpose of which was to capture several energy sources. For a long time, coal, 

hydroelectric, and nuclear power plants have been used as the backbone of most 

countries in generating electricity. Coal plants are predominant due to their large 

capacity and established infrastructure. But all this has changed over time as 

tremendous investments have been made in renewable technologies of energy 

production. Solar and wind power recently had amazing growth spurts thanks to the 

changing technology and cost dynamics. Natural gas is also an important fossil fuel 

source considered to be cleaner than coal. 

In this regard, Figure 1.3 and 1.4 show the global electricity mix from 1985 to 2023, 

with the breakdown of different energy sources that contribute to it. Initially, coal, 

hydro, and nuclear energy were the major sources of electricity generation. Coal has 

always maintained the highest share, from around 3748 TWh in 1985 and has been 

increasing year after year, peaking at 10468 TWh in 2023. Hydroelectric power has 

also been highly significant, rising from around 1979 TWh in 1985 to over 4211 TWh 

by 2023. Nuclear power also contributed greatly to it, as it rose steadily from 1489 

TWh in 1985 and crossed 2686 TWh by 2023. These three have always been the 

significant ones in the electricity mix, giving a mirror reflection of their importance in 

global energy supply (Ritchie et al., 2024). 

By contrast, the contributions from renewable energy sources-solar, wind, and 

bioenergy-have grown very fast, particularly from the early 2000s onwards. The 

contribution of solar energy was almost zero in the beginning, increasing to a whole 

new level. From 0.01 TWh in 1985, it surged to 1629.9 TWh in 2023. This position 

changed from 0.06 TWh in 1985 for wind to 2304.44 TWh in 2023. Bioenergy has 

also risen gradually to reach 678.74 TWh in 2023. This marks a global transition 

toward more sustainable and renewable sources of energy in efforts to address climate 

change and reduce reliance on fossil fuels. While natural gas also increased quite 

significantly from 1426 TWh in 1985 to 6623 TWh in 2023, this positions it as a 

transition fuel in the global energy mix. As Ritchie et al. (2024) note, even with these 

advances, the continued dominance of coal is indicative of how far the rest of the world 

is from moving toward a fully low-carbon energy system. 
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Figure 1.3 : Global electricity generation by source. 

 

Figure 1.4 : Global electricity mix shares of generation technologies. 

 Research Significance 

As a developing country, the demand for electricity in Türkiye is increasing day by 

day due to its growing population and expanding economy. The requirement for 

energy increases every year with more urbanization and industrialization. Improved 

living standards and increased usage of electronic gadgets increase the consumption 

of electricity. Besides, all strategic initiatives undertaken by the government of 

Türkiye for economic development and infrastructure building increase the demand 

for reliable sources of power. 

Figure 1.5 below shows the country's electricity generation from 1985 to 2023. It 

illustrates graphically the changes in the country's sources of electricity over the years. 

In the earlier years-that is, starting in 1985 through the late 1990s, coal and 
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hydroelectricity had been the two main sources of electricity, wherein coal's 

contribution to the country's total was consistently over 30%, while that of 

hydroelectric power ranges from 30% to 60%. (See Figure 1.6). During this period, 

natural gas and oil also dominated significantly, especially in the mid-1990s, when the 

country diversified its energy portfolio. The striking point here is that, over time, the 

share of oil declined considerably while natural gas consumption increased 

enormously and reached the highest in the early 2000s (Ritchie et al., 2024). This 

shows how Türkiye strategically changed track in terms of energy sources toward a 

more diverse but highly fossil fuel-based energy mix. 

From the mid-2000s, there is quite an evident gradual shift in the use of renewable 

sources of energy, with solar and wind power leading the fray. Solar power started to 

appear in the energy mix around 2014 and has grown steadily to reach considerable 

contributions by 2023, while wind power also follows the same trend-from the early 

2000s, one can notice it and then substantial in the mix by the 2010s. While there is a 

presence of bioenergy and other renewables from the early 1990s, more consistent and 

larger contributions happened recently (Ritchie et al., 2024). Such gradual but clear 

shifts towards renewable energy sources indicate efforts in Türkiye to reduce 

dependence on fossil fuels with the constraint on emissions. However, with coal and 

natural gas still major contributors, this indicates ongoing challenges in being able to 

make a full transition into a sustainable model of energy. 

 

Figure 1.5 : Electricity generation by source in Türkiye. 

As concerns about climate change and global warming continue to escalate, the 

transition towards green energy technologies is becoming increasingly crucial in 
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shaping the future of electricity generation. In this context, Türkiye has made 

significant strides by heavily investing in renewable energy sources such as wind and 

solar. This commitment is driven by both environmental considerations and the desire 

to reduce dependency on finite resources. Over the past decade, Türkiye has achieved 

remarkable growth in renewable energy capacity, increasing the share of renewables 

(excluding hydro) in its total installed capacity from 3.5% to an impressive 22.96% as 

of 2023 (MENR, 2023). This shift underscores the importance of renewable energy in 

addressing climate challenges. 

 

Figure 1.6 : Electricity mix shares of generation technologies in Türkiye. 

However, the effectiveness of renewable energy production is largely contingent upon 

uncontrollable natural factors such as wind speed, temperature, and solar irradiance. 

These variables introduce uncertainty and make it difficult to generate electricity 

reliably from these renewable sources. In this regard, understanding and mitigation of 

these uncertainties form the basis of optimization and stability in renewable systems. 

The inherent variability in these energy sources requires strong modeling and 

forecasting to ensure that supply is made available without necessarily compromising 

stability. 

This work investigates complex interactions of climate-energy-economy (CEE)  

through a novel agent-based model (ABM). Coupled with the future projections of 

Global Climate Models (GCMs), estimated through state-of-the-art machine learning 

techniques, the current study shows an advanced, complex analysis that identifies how 

the two most important climate variables would impact energy supply and demand. 

The ABM developed in this paper allows one to run in detail a whole variety of policy 
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scenarios, ranging from imposing carbon taxes to providing subsidies. This makes it 

of tremendous value when modeling varied policy outcomes during the planning and 

optimization of long-term energy strategies. 

The significance of the research is that it could project, based on different policy 

conditions in generating electricity, the amount of CO2 that would be emitted. This 

way, policymakers can identify ways through which emission could be reduced with 

adequate and secure energy supply. Agent-based modeling, therefore, offers a useful 

tool in assessing the potential impacts of various policy measures to support decision-

making for the transition to a more sustainable energy future. 

This study has underlined the vital role of renewable energy in dealing with climate 

change and the importance of sophisticated modeling tools in managing the 

uncertainties associated with renewable energy production. The substantial 

investments of Türkiye in wind and solar energy mark the exemplary proactive steps 

that need to be taken in order to mitigate environmental impacts and reduce resource 

dependency. This research, via state-of-the-art simulation models and machine 

learning, provides relevant input to the CEE nexus, giving insights into the paths 

toward more efficient and sustainable energy policies. 

 Research Objectives 

The overall objective of the study is to analyze complex interactions of energy-

economic-environmental policy impacting electricity demand and production as well 

as the resulting CO2 emissions, considering geographical and climatic conditions in 

the case of Türkiye. In this paper, an attempt is made to incorporate an agent-based 

simulation model with input data from GCMs in order to obtain a more accurate view 

of the impacts of different future energy and economic policies on CO2 emissions from 

the electricity generation sector, considering the progression of climate change. The 

present research attempts to critically consider the following key objectives: 

Identification of optimal GCMs for Türkiye: The first objective will be to identify 

the GCMs that best capture the climatic conditions relevant for the study area of 

Türkiye. This means different climate models have to be analyzed in order to estimate 

their performance in simulating temperature fluctuations, wind speeds, and solar 

irradiance for the specific climatic patterns in Türkiye. By choosing the most suitable 
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GCMs, evidence of their reliability and accuracy will be at hand for subsequent 

simulations and projections within the study. 

Assessment of future electricity generation under climate change: The second 

objective gives the focus to study the impacts that might be induced from climate 

change on future electricity generation in Türkiye, including deep analysis of how 

changing environmental factors of wind speed, solar radiation, and temperature 

variation will shape the output of renewable energy sources. The dynamics understood, 

the study intends to project the changeable capacity and efficiency of wind, solar, and 

other renewable energy technologies over time due to climate change.  

Projection of space cooling needs due to climate change: This third objective deals 

with analyzing how climate change will influence space cooling demands in Türkiye. 

This means increased temperatures are necessarily going to increase the demands for 

air conditioning and other technologies of cooling that, in turn, will be reflected in the 

demand for electricity. In this study, an attempt at quantification was done to 

incorporate changes into wider energy demand forecasts that provide a clear vision of 

the future energy needs and the related stress on the production systems. 

Assessment of the impacts of policies on CO2 emissions: The fourth objective probes 

how different energy and economic policies are going to affect CO2 emissions from 

electricity generation in view of climate change. This involves simulating policy 

scenarios that include the introduction of carbon taxes, subsidy for renewable energy, 

among other regulatory measures. These would be intended to ascertain the extent 

these policies can succeed in reducing associated emissions and therefore indicate the 

best direction effective measures, which will be conducive to the achievement of 

environmental sustainability with reduced environmental damages or impacts on 

production. 

Analysis of changes in electricity mix and generation capacity: The fifth objective 

is periodic projected changes in the mix of electricity and generation capacity in the 

view of climate change through government regulations or policy intervention. This 

will be done by devising scenarios of what the future composition of renewable 

energies, such as wind and solar, will look like, along with the necessary changes in 

overall generation capacity to meet future demands. By charting these trends, the study 
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should yield strategic insights for the planning and development of Türkiye's energy 

infrastructure. 
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 LITERATURE REVIEW 

 Agent Based Simulation Models 

In the international literature, the impacts of government policies on energy demand 

and generation have been explored using various methods. Among the most effective 

approaches to investigate the effects of various policies, whether singular or in 

combination, on the energy sector is Agent-Based Simulation. In this context, Sopha 

et al. (2011) aim to identify potential interventions for the purchase of wood pellet 

heating in Norway using an agent-based model. The theoretically and empirically 

established model suggests that for a wood pellet market to succeed, financial support, 

stable wood pellet prices, and technical development, namely functional reliability 

improvement, need to be established simultaneously. In another study, Lee et al. 

(2014) present an innovative agent-based simulation model that integrates the 

behaviors of individual homeowners within a long-term domestic stock framework, 

specifically for energy policy analysis. Their findings highlight that current policies 

fall considerably short of the 80% target, suggesting a need to reassess the existing 

subsidy levels. The model reveals that the current subsidies overly benefit specific 

technologies, thereby hindering others with higher potential for energy savings. 

Policymakers can utilize this model to explore additional scenarios and develop more 

compelling policy alternatives. 

Another study focusing on buildings' energy consumption, Liang et al. (2019), propose 

an agent-based model for formulating Energy Efficiency Enhancement policies. The 

model conceptualizes the government and homeowners as agents, applying principal-

agent theory to simulate their decision-making processes. Subsequently, a platform 

grounded in this model is created, enabling the optimization of incentive policies under 

varying conditions. In this platform, the model's effectiveness is analyzed by 

considering three different policy scenarios from China. The results of this study show 

that the incentive policy deduced from this model performed best in satisfying the 

energy and financial criterion. In a related study on household behaviors, Hesselink 
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and Chappin (2019) present a systematic review of agent-based modeling studies on 

the adoption of energy efficiency by households. They analyze the use of modeled 

technologies, simulated policies, and included decision-making theories and empirical 

data. The resulting analysis provides a general overview of the interrelation between 

technologies, barriers, and policies, which, using pre-existing models, gives basic 

policy recommendations. The review reveals that most studies primarily concentrate 

on various obstacles, including capital shortages, insufficient information, high initial 

costs, and a general lack of awareness. 

More recently, Babatunde et al. (2023) utilized an ABM to carry out simulations 

encompassing various scenarios from 2015 to 2050, with the aim of examining the 

impact of renewable energy policies on emission reduction within Malaysia's energy 

sector. The results of these simulations indicate that the implementation of all 

renewable energy initiatives resulted in a 16 percent increase in the proportion of 

renewable energy usage, accompanied by a 26 percent decrease in emissions intensity 

compared to 2005 levels. However, this progress falls short of the government's target 

of a 45 percent reduction. These findings underscore that a single approach alone 

cannot attain the ambitious emission reduction objective. 

In addition to the studies on energy policies, there are also studies in the literature 

under the same title focusing on the penetration of renewable energy sources using 

agent-based modeling. Karimi and Veaz-Zadeh (2021) propose a structure for ABM 

intended to evaluate sustainable policies of the electricity system and, particularly, 

integrated renewable energies. This type of policymaking is considered a multistage 

process entailing long-term dynamics, uncertainty, and complexity. The framework, 

proposed in their ABM model, identifies and categorizes all acting actors of energy 

systems and their unique rules, properties, and interactions. Accordingly, the model 

was applied to one representative system containing many well-known electricity 

generation technologies, including renewables, under various policy scenarios. The 

ABM-based evaluation has, therefore, indicated that badly fitted or unsustainable 

energy policy scenarios produce uncertain results and are likely to entail either long-

run electricity shortages or environmental degradation. 

On the other hand, Ernst and Briegel (2017) present an agent-based social simulation 

model, aimed at validating a dynamically enhanced psychological decision micro-
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theory through the introduction of negotiation-based decisions, social environment, 

and personal communication. A survey on psychological factors associated with the 

acceptation of green energy and sustainable lifestyles is complemented by experiments 

focused on information processing styles and communication networks. The 

experiment conducted within the model examines the influence of the frequency of 

personal communication about the technology and the influence of a significant media-

covered event on the adoption of green energy. The results point to the potential of 

social simulation as a means to build and test dynamic psychological theories. 

In another study, Palmer et al. (2015) develop an ABM to explore how modifications 

to the Italian Support Plan might influence the spread of photovoltaic (PV) solar 

systems among single-family and two-family households. The payback period is 

calculated by considering factors such as capital costs, zonal solar radiation levels, 

government incentives, gains from utilizing self-generated electricity against 

purchasing from the existing electricity grid, operational and maintenance expenses. 

Environmental benefits are assessed based on the reduction of CO2 emissions. 

Household income reflects specific regional economic conditions and also accounts 

for the agent's age, education level, and household type. Lastly, the effect of 

communication is gauged by the number of connections with other households that 

have already adopted PV systems. The findings suggest that under Italy's new tariff 

guarantee program, local PV installations have moved beyond the initial expeditious 

expension stage. However, while further expansion is anticipated, it is expected to 

proceed at a much slower pace, illustrating the significant impact of policy changes on 

the spread of renewable energy systems. 

In a similar article, Zhao et al. (2011) create a decision support system to evaluate the 

impact of regulations and incentives on the growth rate of distributed PV systems, 

aiming to prevent grid destabilization and sharp rises in electricity prices. The study 

utilizes both ABM and system dynamics approaches. The models, which are based on 

actual data from residential districts in two distinct regions of the United States, 

effectively illustrate how policies influence PV system growth across different 

locations. 

Similarly, Wang et al. (2018) integrate a social network-based innovation diffusion 

model with anecdotal information exchange to analyze household perceptions of 
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benefits in deciding to adopt residential PV systems. A case study is conducted for 

villages in Beijing, exploring different scenarios related to policies from both 

economic benefits and information dissemination in the social network. The study 

findings indicate that: 1) Providing free insurance against the harm caused by PV 

adoption can increase the adoption rate from 24% to as high as 62% (full insurance), 

and the cost of acquiring new adopters is only 36% of providing additional subsidy; 2) 

In cases where most households lack sufficient knowledge about PV systems, 

enhancing communication poses a barrier to the adoption of residential PV; and 3) 

Information campaigns and screening are both effective and necessary in reducing the 

negative effects resulting from strengthened communication in the initial phase of the 

residential PV market.  

In their study, Ponta et al. (2018) investigate the economic effects of a tariff guarantee 

policy designed to encourage investments in renewable energy generation. To conduct 

this analysis, they use an enhanced form of the Eurace macroeconomic model, which 

integrates both fossil fuel-based and renewable energy sectors. The results show that 

the tariff guarantee policy effectively encourages the conversion of the energy sector 

towards sustainability and increases investment levels by positively impacting 

unemployment rates. Additionally, it is observed that costs of financing instruments 

did not impact government finances.  

Meanwhile, Chen et al. (2018) develop an integrated ABM-Monte Carlo simulation to 

analyze how risk and adaptive technical choices of energy companies influence their 

decision-making processes, especially in assessing the impact of investment choices 

on the energy sector's development. The results indicate that risk aversion and adaptive 

technical preferences within the firm are of paramount importance in the transition 

toward a low-carbon electricity sector and create a synergistic effect. Risk aversion 

further stabilizes the transition process.  

In addition to energy policies, although limited in the literature, carbon trading has 

also been analyzed using agent-based simulation methods. In this regard, Cong and 

Wei (2010) examine the potential effects of implementing a Carbon Emission Trading 

(CET) system on China's power sector and evaluates various options for allocating 

allowances. ABM represents a promising new approach that addresses limitations of 

traditional methods. They construct an ABM, called CETICEM (CET Introduced 
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China Electricity Market), to simulate the implementation of CET in China. 

CETICEM features six agent classes and two distinct markets. The key findings are as 

follows: i) CET internalizes environmental costs, causing a 12% rise in average 

electricity prices and transferring carbon price volatility to the electricity market, 

resulting in a 4% increase in electricity price volatility. ii) CET affects the cost 

competitiveness of various power production systems through carbon pricing, 

significantly enhancing the adoption of environmentally friendly systems; in 

particular, the uptake of expensive solar power generation increases by 14%. iii) 

Emission-based allocation results in higher electricity and carbon prices compared to 

output-based allocation, encouraging producers to adopt greener practices. 

Tang et al. (2015) develop a multi-factor model to evaluate various CET concepts and 

determine the most suitable option for China. Their bottom-up model, incorporating 

major economic agents within a general equilibrium framework, reveals that CET can 

effectively lower carbon emissions, albeit with some negative economic impacts. The 

study finds that the historical allocation rule is less aggressive compared to the 

benchmark rule. Setting the carbon price at approximately 40 RMB/ton yields 

satisfactory emission reductions. Additionally, the penalty rate, economic growth, 

mitigation effects, and subsidies for energy technology improvements can further 

reduce emissions without significant economic drawbacks. The new model is deemed 

a promising tool for CET policy development. 

In a follow-up study, Tang et al. (2017) propose a multi-factor ETS simulation model 

for carbon allocation auction design in China. This model includes the government 

and sector-specific firms as agents, interacting through three markets: the commodity 

market, primary carbon auction market, and secondary carbon trading market. Various 

auction designs are analyzed, with results showing that ETS positively impacts carbon 

reduction and energy structure improvement but poses economic challenges. Among 

auction formats, the single-price design is moderate, while the discriminatory price 

design leads to more pronounced economic and emission reduction outcomes. 

The examination of policies related to climate and climate change using agent-based 

simulation methods holds significant importance in the literature, given that climate 

change ranks among today's most pressing global issues.  



18 

Among the pioneering works in this area, Nannen and van den Bergh (2010) illustrate 

the application of an evolutionary agent-based model to assess climate policies, taking 

into account the diverse strategies of individual agents. The model's distinctive aspect 

is that it evaluates the effectiveness of an economic strategy based on an agent's 

relative well-being compared to their immediate neighbors within a social network. 

This approach enables the analysis of policies that impact individuals' comparative 

standings. They propose two novel climate policies: one modifies relative welfare 

through direct incentives, while the other shapes social interaction networks via 

advertising. These policies are demonstrated using a simple global warming model 

where a source with negative environmental impact may be substituted for renewable 

energy, which is environmentally neutral but less cost-effective.  

In another climate policy study, Gerst et al. (2013) introduce the ENGAGE multi-level 

model structure: an agent-based approach and relaxing some of the standard modeling 

assumptions. The framework incorporates local actors- including firms and 

households-into an evolutionary model representing economic development, energy 

generation systems, and climate change. It is thus set up to evaluate policies 

considering intermediary decision-making as well as social and technological 

evolution. Accordingly, the introduced model is used in order to explore the issue of 

reciprocal feedback between international agreements and local policy impacts. 

Isley et al. (2015) introduce a new model that combines agent-based and game-

theoretic approaches to explore how short-run policy choices affect the long-term 

trajectories of emission reduction. Their findings indicate that carbon pricing policies 

are designed by the main causes of long-term decarbonization outcomes. A related 

work, Chappin et al. (2017) present a modular and flexible ABM approach based on 

the toolkit of EMLab for the modeling of climate and energy policy in the European 

Union. Various challenges and methods concerned with energy transitions are 

discussed, including an agent-based investment model dealing with the issues of 

European energy policy. The model features a core framework with modules for 

carbon and renewable energy policies, capacity mechanisms, and intermittent 

renewable sources. They go on to discuss the relevance of the model through an 

overview of results, ongoing projects, and a case study on EU ETS reforms. 
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Furthermore, Lamberti et al. (2018) introduce the Dystopian Schumpeter Meeting 

Keynes (DSK) model-an agent-based integrated assessment model-developed in 

opposition to computable general equilibrium frameworks. Within the model, 

heterogeneous firms are interacting in the capital-good, consumption-good, and energy 

sectors, showing the way GHG emissions and changes in temperature will affect labor 

productivity, energy efficiency, and capital stock. The DSK model is able to match a 

wide range of empirical patterns on economic and climate dynamics. 

Similar to previous study, Rengs et al. (2020) extend an already existing general-

purpose macroeconomic ABM by investigating various climate policy options under 

different behavioral assumptions. Their model runs various policy scenarios, such as 

carbon taxation, labor tax reductions, subsidies for the adoption of greener 

technologies, and other measures, for their impact on carbon emissions and economic 

performance. The results suggest that carbon taxation could reduce emissions by a 

significant amount with no deterring effect on employment, while the subsidy for 

greener technology adoption may yield only limited emission reduction and potentially 

higher unemployment. 

In a comparable investigation, Czupryna et al. (2020) suggest an ABM approach to 

investigate the trade-off between economic growth and environmental protection. The 

paper considers how individual decisions between economic growth and climate 

protection interact at the aggregate economic level. It is found that heterogeneity of 

agents, technology, and damage functions could yield slower GDP growth and higher 

climate damages than models with homogeneous agents. 

There are also studies that compile existing literature on this subject. In this context, 

Balint et al. (2017) present a survey from a scientific perspective on the micro and 

macroeconomics of climate change and discussed the challenges ahead for this 

research line. As a result of the study, they identify four areas in which complex system 

models already generate valuable insights: 1) coalition formation and climate 

negotiations, 2) macroeconomic impacts of climate-related events, 3) energy markets, 

and 4) dissemination of climate-friendly technologies. Meanwhile, Hansen et al. 

(2019) conduct a systematic review of 62 studies to evaluate the potential of ABM in 

understanding energy transitions from a socio-scientific point of view. The results 

highlight that ABM's greatest potential lies in its application to policy and planning 
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decisions. In a similar study, Castro et al. (2019) review 61 ABM studies focused on 

climate-energy policies aimed at reducing emissions, spreading technologies, and 

conserving energy. They cover a wide range of policy tools and recommend future 

research directions for ABMs to address overlooked policy questions. More recently, 

Yao et al. (2023) provide a systematic review of ABM and multi-agent system (MAS) 

applications from 2007 to 2021. They categorize studies based on agent 

implementations, examining MAS applications in building, district, and regional 

energy systems, as well as ABM applications in behavior simulation and policy-

making. The review underscores the potential of ABM in energy transition research 

due to its flexible and decentralized decision-making capabilities. 

Apart from the studies mentioned earlier, numerous other studies employ ABM to 

evaluate the effects of various policies on reducing emissions, disseminating 

technologies, and converting energy. Table 2.1 classifies these studies according to 

their application domains, while Table 2.2 categorizes them based on the policy 

instruments employed.
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Table 2.1 : Classifications of ABM studies based on application. 

 

 

 

 

 

 

Theme Subcategory Studies 

Emission reduction 

Carbon Market 
Matsumoto (2008), Chappin and Dijkema (2009), Richstein et al. (2014), Tang et al. (2015), Isley et al. (2015), Lee and Han (2016), 

Zhu et al. (2016), Tang et al. (2017), Zhu et al. (2018) 

Electricity Market 
Karimi and Vaez-Zadeh (2021), Veit et al. (2009), Chen et al. (2013), Beckendach et al. (2018), Li (2017), Li and Strachan (2017), 

Kraan et al. (2018), Wu et al. (2018), Czupryna et al. (2020) 

Macroeconomic Analysis 
Gerst et al. (2013), Monasterolo and Raberto (2016), Lamperti et al. (2018), Monasterolo and Raberto (2018), Rengs et al. (2020), 

Niamir et al. (2020) 

Vehicle Market Mueller and De Haan (2009), van der Vooren and Brouillat (2015), Hofer et al. (2018) 

Product/Technology Diffusion 

Electric Vehicles 
Köhler et al. (2009), Eppstein et al. (2011), Natarjan et al. (2011), McCoy and Lyons (2014), Silvia and Krause (2016), Kangur et al. 

(2017), Ramsey et al. (2018), Klein et al. (2020), Buchmann et al. (2021), Zhuge et al. (2021) 

Renewable energy 
Held (2010),Nannen and van den Bergh (2010), Ermst and Briegel (2017), Herrmann and Savin (2017), Safarzyńska and van den 

Bergh (2017), Chen et al. (2018), Ponta et al. (2018) 

Residential Solar Panel 
Palmet et al. (2015), Rai and Robinson (2015), Wang et al. (2018), Al Irsyad et al. (2019), Stavrakas et al. (2019), Caprioli et al. 

(2020) 

Low Carbon/Energy Products Bleda and Valente (2009), Desmarchelier et al. (2013), D’Orazio and Valente (2018) 

Heating Technologies Sopha et al. (2011), Sopha et al. (2013) 

Energy Conservation 

Residential Buildings 
Damiani and Sissa (2013), Lee et al. (2014), Hicks and Theis (2014), Hicks et al. (2015), Kowalska-Pyzalska (2016), Jensen and 

Chappin (2017), Walzberg et al. (2017), Moglia et al. (2018), Niamir et al. (2018), Wang et al. (2018) 

Office Buildings Azar and Menassa (2011), Zhang et al. (2011), Zhao (2012), Lin et al. (2016), Jia et al. (2019) 

Transport Schröder and Wolf (2017), Safarzyńska and van den Bergh (2018), Adenaw and Lienkamp (2021) 

Multi-Field Allen et al. (2019) 
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Table 2.2 : Classifications of ABM studies based on policy instruments. 

Theme Policy Instrurement Studies 

Emission reduction 

Tax 
Isley et al. (2015), Karimi and Vaez-Zadeh (2021), Chen et al.(2013), Li (2017), Li and Strachan (2017), Kraan et al. (2018), Wu et al. 

(2018), Gerst et al. (2013), Monasterolo and Raberto (2016), Monasterolo and Raberto (2018), Rengs et al. (2020), Niamir et al. 

(2020), van der Vooren and Brouillat (2015) 

Emissions Trading 
Matsumoto (2008), Chappin and Dijkema (2009), Richstein et al. (2014), Richstein et al. (2015), Tang et al. (2015), Isley et al. (2015),  

Lee and Han (2016), Zhu et al. (2016), Tang et al. (2017), Zhu et al. (2018), Beckenbach et al. (2018) 

Subsidy 
Richstein et al. (2015), Tang et al. (2015), Beckenbach et al. (2018), Czupryna et al. (2020), Gerst et al. (2013), Rengs et al. (2020), 

Niamir et al. (2020) 

Command and Control Beckenbach et al. (2018), van der Vooren and Brouillat (2015) , Hofer et al. (2018) 

Discount/Pricing Mueller and De Haan (2009) ), van der Vooren and Brouillat (2015) 

Financial instruments Czupryna et al. (2020), Monasterolo and Raberto (2016), Monasterolo and Raberto (2018) 

Mixed Politics van der Vooren and Brouillat (2015), Hofer et al. (2018) 

Other Veit et al. (2009), Chen et al. (2013), Li and Strachan (2017), Hofer et al. (2018), Lamperti et al. (2018), Rengs et al. (2020) 

Product/Technology Diffusion 

Subsidy 
Natarajan et al. (2011), Silvia and Krause (2016), Kangur et al. (2017), Herrmann and Savin (2017), Safarzyńska and van den Bergh 

(2017), Safarzyńska and van den Bergh (2018) 

Information Acquisition/Marketing 
Nannen and van den Bergh (2010), Ernst and Briegel (2017), Wang et al. (2018), Bleda and Valente (2009), Desmarchelier et al. 

(2013) , Sopha et al. (2018) 

Tariff Guarantee Herrmann and Savin (2017), Ponta et al. (2018), Palmer et al. (2015), Al Irsyad et al. (2019) 

Tax Eppstein et al. (2011), Kangur et al. (2017), Nannen and van den Bergh (2010), Desmarchelier et al. (2013) 

Infrastructural Policies Silvia and Krause (2016), Kangur et al. (2017) 

Discount/Pricing Eppstein et al. (2011), Rai and Robinson (2015), Wang et al. (2018) 

Other Financial Incentives Palmer et al. (2015), Al Irsyad et al. (2019) 

Financial instruments Safarzyńska and van den Bergh (2017), Al Irsyad et al. (2019), D’Orazio and Valente (2018) 

Other Köhler et al. (2009), Natarajan et al. (2011), McCoy and Lyons (2014), Silvia et al. (2016), Safarzyńska and van den Bergh (2017) , 

Chen et al. (2018), Wang et al. (2018), Desmarchelier et al. (2013), Sopha et al. (2011), Sopha et al. (2013) 

Energy Conservation 

Information Acquisition/Marketing Kowalska-Pyzalska (2016), Jensen and Chappin (2017), Moglia et al. (2018), Azar and Menassa (2011), Zhang et al. (2011), Schröder 

and Wolf (2017) 

Incentives Lee et al. (2014), Hicks and Theis (2014), Hicks et al. (2015), Moglia et al. (2018), Safarzyńska and van den Bergh (2018) 

Tax Lee et al. (2014), Hicks et al. (2015) 

Other Financial Incentives Moglia et al. (2018), Wang et al. (2018), Azar and Menassa (2011), 

Smart Measurement Systems Damiani and Sissa (2013), Walzberg et al. (2017) 

Other Lee et al. (2014), Moglia et al. (2018), Niamir et al. (2018), Zhang et al. (2011), Allen et al. (2019) 
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 Climate Projections 

The quantity of research examining the effectiveness of various techniques for 

ensembling GCMs is steadily rising. However, this section will primarily focus on 

reviewing papers that predominantly utilize Machine Learning (ML) methods among 

all the GCM ensemble approaches available. 

Of these, the Random Forest (RF) algorithm is one of the in-use methods for GCM 

ensembling. In this context, Ahmed et al. (2019), first evaluate the performance of 36 

CMIP5 (Coupled Model Intercomparison Project Phase 5) GCMs in capturing the 

precipitation and temperature variability over Pakistan. Further, they rank the 

performance of the best performing GCMs by multi-model ensemble analysis in both 

RF and simple mean methods. The current paper reports results showing that, in this 

regard, the RF method outperforms a simple mean. In another similar research, Homsi 

et al. (2020) project the likely precipitation change over Syria due to climate change. 

Using methods of symmetrical uncertainty (SU) and multi-criteria decision analysis 

(MCDA), it identifies an optimum GCM for precipitation projection. It then used a RF 

model to produce the multi-model ensemble of precipitation projections for the four 

RCPs. 

To further assess the future changes in drought metrics, Prodhan et al. (2022) use the 

Deep Neural Network (DNN) and Gradient Boosting Regression Tree techniques for 

combining selected CMIP6 GCMs, along with the RF algorithm. It is found from the 

results that the proposed ensemble method presents higher performance compared to 

individual techniques. 

The Support Vector Machine (SVM) technique has also been used in various 

researches for the ensembling of GCMs in literature. For instance, Ahmed et al. (2020) 

utilize several machine learning techniques, including SVM, to ensemble best models 

from a pool of 36 CMIP5 GCMs over Pakistan for precipitation and temperature 

prediction. The K-Nearest Neighbor (KNN) algorithm and Relevance Vector Machine 

(RVM) algorithms outperform Artificial Neural Network (ANN) and SVM 

algorithms. Thus, KNN and RVM methods are suggested to develop Multi Model 

Ensembles (MMEs) for temperature and precipitation. In a similar study, Dey et al. 

(2022) employ ANN, RF and SVM algorithms to ensemble top-5 GCMs for 

precipitation and temperature projection over the Damodar River basin in India. The 
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results of this research indicate that both the SVM and RF methods outperform ANN 

and simple mean approaches. Wang et al. (2022) investigate extreme temperature 

indices in the North China Plain based on climate observations at 54 meteorological 

stations and projection data from seven CMIP6 GCMs. It investigates temporal and 

spatial variations in these indices during the past and future periods. The result 

suggests that the RMSE of the multi-GCM predictions regressed by SVM are smaller 

than those obtained by using the arithmetic mean approach. 

ANN is generally considered an essential ensemble integration approach of GCMs 

along with the RF and SVM algorithms. Acharya et al. (2014) apply a nonlinear 

approach called the Extreme Learning Machine (ELM) to the outputs of GCM to 

estimate the MME of NEMR in southern part of India. In this study, the proposed 

technique is compared to other conventional MME methods, such as the simple 

arithmetic mean of GCMs and multiple linear regressions based on singular value 

decomposition. A wide variety of skill metrics, including spread distribution, 

multiplicative bias, and prediction errors, is utilized to evaluate the performance. 

Results show that ELM efficiently captures extremes compared to other MME 

methods. Recently, Yan et al. (2022) try applying an ANN approach to integrate 

multiple models using outputs from CMIP6, hence achieving better nonlinear and 

complex relationships between the climate models than the normally adopted approach 

of ensemble median. This improves the accuracy of predictions of the future 

precipitation patterns. Then, they analyze temporal changes and spatial distribution of 

the indices for several climate zones in China in three distinct time periods of the 21st 

century (2023 to 2100) and found that the application of multi-evaluation metrics 

outperforms the traditional ensemble median approach. 

In addition to these studies, Kim et al. (2020) investigate the skill of various MME 

methods in enhancing the accuracy of 1-month lead seasonal forecast products. Seven 

MME methods are compared based on their hindcast performance for global 2-meter 

temperature and precipitation from 1983 to 2009. It is found that Genetic Algorithm 

(GA) emerged as the most effective MME method for predicting both global 2-meter 

temperature and precipitation across all seasons. In this work, Jose et al. (2022) use 

five different ML approaches, namely RF, SVM, Multiple Linear Regression (MLR), 

Extra Tree Regressor (ETR), and Long-Short Term Memory (LSTM), for the 

integration of temperature and precipitation information from 13 CMIP6 GCMs over 
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India. The results show that LSTM performs prominently better than others in the 

integration of the precipitation data, while RF and LSTM performed exceptionally well 

with the temperature data. Moreover, this study has shown that all the ML methods 

outperform the simple mean approach. 

Sun et al. (2023) propose a Convolutional Neural Network (CNN) framework for 

MME of monthly precipitation over China from the CMIP6 models and, compared to 

32 GCMs, quantile mapping (QM), and other in-widely used MME approaches such 

as Arithmetic Mean Ensemble (ENS), MLR, SVM, RF, and KNN, against in-situ 

measurements. CNN gives the best MR value of 0.96, outperforming KNN, RF, and 

MLR. While slightly trailing the top GCM, it surpasses other MME methods in 

capturing observed interannual variations and probability density functions, showing 

minimal sensitivity to changes in ensemble size. Lastly, Fu et al. (2023) introduce a 

regional downscaling model called stacking-MME, which combines multiple machine 

learning models through stacking. The model's performance is assessed in simulating 

precipitation, solar radiation, maximum temperature, and minimum temperature, and 

in predicting three future climate variable scenarios across near-term (2031–2040), 

medium-term (2051–2060), and long-term (2081–2090). Results indicate that Light 

Gradient Boosting Machine, Gradient Boosting Regressor, and RF demonstrate the 

most effective performances among the nine machine learning models evaluated. 

Table 2.3 : Summary of GCM ensemble studies. 

Reference Study Area Method Variable 
Acharya et al. (2014) India ANN Precipitation 
Wang et al. (2018) Australia RF, SVM, Bayesian 

Model Average 
Temperature, Precipitation 

Ahmed et al. (2019) Pakistan RF Temperature, Precipitation 
Yılmaz (2019) Euphrates-Tigris Basin, 

Türkiye 
Arithmetic mean Temperature, Precipitation, 

Evapotranspiration 
Xu et al. (2020) Han River, China Bayesian Model 

Average 
Precipitation 

Kim et al. (2020) Several cities MLR, ANN, Genetic 

Alg. 
Temperature, Precipitation 

Ahmed et al. (2020) Pakistan ANN, KNN, SVM, 

RVM 

Temperature, Precipitation 

Homsi et al. (2020) Syria RF Precipitation 

Carvalho et al. (2021) Europe Overlap percentage Wind speed 

Bağçacı et al. (2021) Türkiye Arithmetic mean Temperature, Precipitation 

Asadollah et al. (2021) Iran GBRT Temperature, Precipitation 

Dey et al. (2022) India ANN, RF, SVM Temperature, Precipitation 

Jose et al. (2022) Netravati, India SVM, ETR, MLR, 

RF, LSTM 

Temperature, Precipitation 

Prodhan et al. (2022) South Asia RF, GBRT, DNN Temperature, Precipitation 

Yan et al. (2022) China ANN Precipitation 

Zhang et al. (2022) Global OLS, DT, DNN Temperature, Precipitation 

Wang et al. (2022) North China SVM Temperature, Precipitation 
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Table 2.3 (continued)  : Summary of GCM ensemble studies. 

Reference Study Area Method Variable 
Gholami et al. (2023) Gharesu basin, Iran Runoff Hybrid 

Approach 
Precipitation 

Guven (2023) East Thrace, Türkiye RF, GBRT, XGBoost Temperature, Precipitation, 

Radiation, Wind Speed 

Sun et al. (2023) China SVM, CNN, MLR, 

KNN, RF 
Precipitation 

Fu et al. (2023) Zhongwei, China 9 ML algorithms Temperature, Precipitation, 

Radiation 

Zhao et al. (2023) East China Arithmetic mean Precipitation 

Present study Türkiye XGBoost Temperature, Radiation, 

Wind Speed 
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 METHODOLOGY AND MODEL 

This study goes in for a structured and comprehensive methodology to analyze the 

impacts of energy, economic, and environmental policies on energy demand, 

production, and CO2 emissions in Türkiye. Firstly, the study involves data collection 

and regridding of GCM-based climate data from the experiment CMIP6, and further 

compares these with observation-based data, ERA 5, which has been bias-corrected 

with CRU data, henceforth referred to as ERA5. These have been compared for the 

three skill measures: Kling-Gupta efficiency, normalized Root-Mean Squared Error, 

and a modified index of agreement. All that will be needed to further establish the 

appropriateness in providing accurate and reliable climate data for subsequent 

analysis. 

Performances of GCMs are analyzed with the objective of selecting the four best 

models that could satisfactorily describe the climatic condition in Türkiye. Further, the 

top-ranked models will be trained using ERA5 via the Extreme Gradient Boosting Tree 

(XGBoost) method of machine learning. It is a technique well adapted for dealing with 

complicated nonlinear associations of variables given in Table 3.1. The resultant 

models, used for the future forecasting of climate variables under the SSP5-8.5 climate 

scenario, provide a strong base to understand the potential future climatic impacts on 

energy systems. 

After the processing of climate data, the study estimates important energy indicators 

related to electricity demand, cooling-degree-days (CDD), and the generation of wind 

and solar power systems. The estimates are important to determine the future energy 

landscape of the country. Besides, the Analytical Hierarchical Process (AHP) and the 

Multi-Attribute Utility Technique (MAUT) are utilized to determine the utility 

function weights corresponding to the decisions of technology investment. These 

methods allow a systematic approach to prioritizing investments in various energy 

technologies, considering multiple criteria and stakeholder preferences. 
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Finally, one ABM is developed which is capable of simulating various policy 

scenarios. This model allows complex interactions of different agents such as 

Independent Power Producers (IPPs) and government within the energy system to be 

explored. The ABM shows the probable impacts of different policy preferences on 

energy demand, production, and CO2 emissions under various simulation scenarios. 

Figure 3.1 provides an overview of the proposed GCM-ABM framework structure 

with details on components and their linkages. In the presented framework, the 

integration of GCMs and ABM for simulating a set of policies regarding electricity 

demand, production, and related CO2 emissions in the case of Türkiye is shown. Figure 

3.1 facilitates an easier description of the methodology to be followed in this study by 

providing a clear visual display of the dynamic processes involved. 

 

Figure 3.1 : Proposed model framework. 

 Climate Model 

GCMs are the specialized tool applied by the scientist to know, understand, and predict 

Earth's climate system. Such models run simulation interactions between atmosphere, 

oceans, land surfaces, and ice by integrating physical, chemical, and biological 

processes. The major application of GCMs is projections on future climate conditions 

according to a wide range of GHG emission scenarios and, therefore, useful insights 

into potential impacts by researchers and policy makers in developing strategies for 

mitigation and adaptation. 

GCMs are the result of several decades of research and are based on the fundamental 

principles of physics, representing processes such as atmospheric circulation, ocean 
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currents, and energy exchanges through mathematical equations. Such models work 

for the whole globe, which is divided into some sort of grid system whereby the climate 

conditions for each cell in the grid are estimated and updated step by step in time. It 

enables GCMs to capture large-scale climate features such as El Niño events and 

monsoons, at the same time providing insights into regional climate changes. 

The large increases in resolution and skill are the resultant consequences of large 

improvements in computational powers and data. The new models make full use of 

comprehensive observational databases derived from satellite observations, from 

weather stations, and from ocean buoys that have formed an important aspect in the 

processes of model simulation validation and enhancement. Equally, new algorithm 

and parameterizations that are at present being devised have enabled improved 

representations of complex procedures of cloud formation or land-atmosphere 

interaction. 

GCMs have been a cornerstone in climate science, forming the basis for such major 

assessments as the reports done by the Intergovernmental Panel on Climate Change 

(IPCC). These models yield critical evidence supporting human influence over climate 

change and help identify probable future risks in the form of sea-level rise, extreme 

weather events, change in ecosystems, and agriculture. As the world grapples with the 

challenges of climate change, GCMs remain at the forefront of research in providing 

the essential knowledge to inform effective decision-making (Lee et al., 2023).  

GCMs work by discretizing the surface of the Earth into a three-dimensional grid, with 

each cell having a unique geographical location. Within each model grid cell, 

atmosphere, ocean, land, and ice are simulated through mathematical equations driving 

physical processes that include fluid dynamics, thermodynamics, and radiation. Such 

a set of equations allows for variables in air temperature and pressure, wind speed, 

humidity, and the currents in the oceans. These models calculate the interactions 

among those components and simulate exchanges of energy and matter within and 

among grid cells through time. The time steps at which the model makes these 

calculations are from a few minutes to several hours, and projection of climate change 

on timescales from days and months to hundreds of years is enabled. 

The performance of models in GCMs is directly related to the quality of the input data 

and algorithmic complexity. Observational data from a satellite, ground station, or 
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buoy may be used as an initial condition for the model and constant verification. 

Advanced parameterization schemes are applied to represent processes that occur at 

scales smaller than the resolution of the grid, such as cloud formation, convection, and 

land-atmosphere interactions that are essential to capture the richness of the climate 

system (Lee et al., 2023). Thirdly, GCMs usually make several runs, referred to as 

ensembles, by having slightly different initial conditions or different settings of the 

parameters to represent uncertainties and natural variability. These ensembles help to 

bound the future climate possibilities and to identify signals that are most robustly 

projected. 

Ensembling of GCMs is vital in climate studies due to the manifold benefits which this 

particular technique offers. This ensembling technique enhances the robustness and 

reliability of the climate projection by amalgamating outputs of various GCMs. This 

method decreases uncertainties in models compared to single model outputs, offering 

more comprehensive and closer-to-reality future climate scenarios. It is useful for 

ascertaining agreement among models using ensembling, hence displaying common 

trends and patterns despite model diversity. This enables the possibility to explore 

uncertainty ranges, which is crucial for making informed decisions on climate 

adaptation and mitigation. (Gholami et al., 2023). Besides, various ensembling 

techniques, including weighted averaging or machine learning algorithms, allow 

integrating various sources of information, such as different emission scenarios and 

model configurations, thus further enriching the scope and depth of climate 

projections. These ensembling methods involve different ways of combining outputs 

from different models with the view to enhancing predictive accuracy and reliability. 

One such big way is by weighted averaging wherein the predictions are weighted in 

inverse proportion to a measure of the model's performance or their reliability. Thus, 

it would capitalize on strengths of each particular model while reducing a particular 

model's biases or inaccuracy. A weighted average allows much in simplicity, 

adaptability, and translucency-weights may even be tuned finer through empirical 

cross-validation and insights experted or otherwise. However, the technique may be 

sensitive to weight selection, which can introduce subjectivity or uncertainty unless 

done with careful calibration. It also assumes constant performance for each model 

over time, potentially overlooking temporal changes (Castaneda-Gonzalez et al., 

2023).  
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Another emerging technique for ensembling involves machine learning algorithms that 

will incorporate multiple GCM outputs through data-driven modeling, such as neural 

networks or random forests. These algorithms capture the complex interactions and 

nonlinearities of the climate system that might further improve predictive 

performance. Machine learning-based ensembling automatically adapts and refines 

ensemble weights based on training data, hence limiting manual intervention. 

However, all those methods require really substantial computational resources. The 

mechanisms of the ensemble predictions are not so easy to understand and far from 

transparent; it is not easy to judge their reliability. 

Each of these techniques has particular strengths-for instance, simple averaging is easy 

and tends to reduce random errors, while the more sophisticated techniques can 

account for model biases and uncertainties more accurately. They also have 

weaknesses, like the possibility of overfitting in the more complicated techniques and 

the computational intensity of large ensemble runs. Understanding such trade-offs is 

important for applying GCM ensembling effectively in climate projections. 

Table 3.1 compares all the popular methods of ensembling, along with their respective 

pros and cons in detail. Weighted averaging adds the relative performance of each 

model together for its advantages to increase the accuracy in predictions. In ANN, 

while highlighting complex nonlinear data relationships, ANN can be very 

computational and suffer from overfitting issues. Random Forests, being the ensemble 

of many decision trees, provide robustness and interpretability but may face the 

problem of high variance. XGBoost has high predictive power and efficiency but may 

result in overfitting unless it is tuned correctly. SVM work very well for high-

dimensional spaces but can be pretty slow when it comes to handling big datasets. 

K-NN is simple and intuitive but computationally expensive and sensitive to noise. 

Decision Trees provide clear and interpretable models but can be unstable, overfitting 

easily. Naive Bayes Classifier is rather computationally effective for large sets of data 

and efficient, presupposing the independence of features. Gradient Boosting Machines 

are powerful predictors, correcting the errors of weak learners sequentially, but they 

can be prone to overfitting and require careful tuning. This comprehensive overview 

helps in selecting the appropriate ensembling method based on specific needs and 

constraints. 
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Table 3.1 : Advantages and disadvantages of the ensembling methods (adapted from Dineva and Atanasova, 2020). 

 

 

 

Ensembling Technique       Description Advantage Disadvantage 

Weighted Averaging         Combines outputs from multiple models by 

assigning weights based on performance or 

reliability.     

Simplicity and flexibility 

Transparency in weight adjustment 

Straightforward interpretation of 

ensemble predictions 

Facilitates communication and decision-

making in climate-related contexts                     

Sensitivity to weight selection, 

potentially introducing subjectivity or 

uncertainty  

Assumes constant model performance 

over time, may overlook temporal 

variations or model drift                     

Artificial Neural Networks 

(ANN)  

Utilizes interconnected layers of nodes to learn 

complex relationships between input and output 

data.  

Ability to capture nonlinear relationships 

in the data 

Flexible architecture capable of handling 

various input types and complexities  

Require large amounts of data for 

training 

Vulnerable to overfitting if not properly 

regularized  

Training can be computationally 

intensive and time-consuming  

Random Forests (RF)        Ensemble learning method that constructs multiple 

decision trees and then combines their predictions 

through averaging. 

Robust against overfitting 

Less sensitive to noise and outliers in the 

data 

Can handle both numerical and 

categorical data                                                                                                            

Less interpretable compared to 

individual decision trees 

Can be computationally expensive for 

large datasets and complex models 

May suffer from biases in class 

distributions if not properly balanced      

Extreme Gradient Boosting 

(XGBoost)  

Gradient boosting algorithm that sequentially trains 

weak learners and combines their predictions to 

improve accuracy.                                                 

High predictive performance 

Ability to handle missing data 

effectively 

Feature importance analysis for model 

interpretation                                                                                                          

Prone to overfitting if hyperparameters 

are not tuned properly  

Sensitive to outliers and noisy data 

Training can be time-consuming for 

large datasets and complex models                          

Support Vector Machines 

(SVM)  

It builds hyperplanes in high-dimensional space to 

classify data points. 

Effective in high-dimensional spaces 

Versatile, as it can use different kernel 

functions for various data types 

Robust against overfitting                                                                                               

 Memory-intensive for large datasets 

Can be sensitive to the choice of kernel 

function and hyperparameters 

 Limited interpretability compared to 

simpler models              
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Table 3.1 (continued) : Advantages and disadvantages of the ensembling methods (adapted from Dineva and Atanasova, 2020). 

Ensembling Technique       Description Advantage Disadvantage 

k-Nearest Neighbors (k-NN)  Non-parametric method for classification and 

regression that predicts the output based on the 

majority vote or average of its k-nearest neighbors.  

Simple and intuitive  

No training phase required 

Effective for small datasets with simple 

decision boundaries                                                                    

Computational complexity increases 

with the size of the training dataset 

Sensitive to the choice of distance metric 

and value of k 

Can be inefficient for high-dimensional 

data      

Decision Trees              A hierarchy of trees partitioning the space 

recursively, so decisions depend upon feature 

values at each level of the tree. 

Easy to interpret and visualize 

Can handle both numerical and 

categorical data 

Robust to outliers and missing values                                                             

 Prone to overfitting, especially with 

deep trees 

Instability, as small variations in the data 

can lead to different tree structures 

Limited expressiveness for capturing 

complex relationships   

Naive Bayes Classifier     Probabilistic classifier based on Bayes' theorem, 

assuming independence between features.                                                                                    

 Simple and computationally efficient 

Effective for text classification and spam 

filtering 

Can handle large feature spaces with 

sparse data                                                                                           

Strong independence assumption may 

not hold in real-world datasets 

Limited expressive power for capturing 

complex relationships                                                                

Gradient Boosting Machines  Ensemble learning method that builds models 

sequentially, each correcting errors of the previous 

ones.                                                                      

High predictive accuracy 

Robust to outliers and noisy data 

Feature importance analysis for model 

interpretation                                                                                                                           

Sensitive to overfitting, especially with 

deep trees and large learning rates 

Prone to longer training times compared 

to simpler models                                                        

Logistic Regression        Linear regression model used for binary 

classification, estimating probabilities using the 

logistic function.                                                              

Simple and interpretable 

Efficient for large datasets with many 

features 

Outputs probabilities for class 

membership                                                                                                                    

Assumes linear relationship between 

features and log-odds of the outcome 

Limited flexibility compared to more 

complex models                                                                       
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3.1.1 Normalized root mean squared error (nRMSE) 

nRMSE represents an important measure in many disciplines, such as engineering and 

data science, since it may reveal different characteristics in a model performance 

evaluation. It provides a very advantageous property for measuring the performance 

using the same scale of magnitude irrespective of data or the actual predictions (Chen 

and Liu, 2012). The normalization in the name of nRMSE means dividing the RMSE 

with a measure of observed data variability such as range or standard deviation. This 

is for a fair comparison; see equation 3.1. 

𝑛𝑅𝑀𝑆𝐸 =
[
1

𝑁
∑ (𝐺𝑖−𝑂𝑖)

2𝑁
𝑖=1 ]

1/2

𝑂𝑚𝑎𝑥−𝑂𝑚𝑖𝑛
      (3.1) 

Here, Gi represents the simulated values obtained from GCMs, while Oi represents 

observation values from ERA5/CRU. N is the total number of data used in the analysis. 

nRMSE makes the interpretation of model performance easier because there is 

consistency and intuitiveness of results. Unlike the absolute error metrics like RMSE, 

which provides insight into the absolute magnitude of the prediction errors, nRMSE 

provides a dimensionless measure that is independent of the data scale. This is quite 

useful for comparing models that operate on different scales or datasets. Therefore, 

nRMSE is an indispensable tool for researchers, analysts, and practitioners seeking to 

benchmark and compare the accuracy of predictive models across different domains 

and datasets. 

3.1.2 Modified index of agreement (md) 

The modified index of agreement, md, is a statistical measure in general applications 

but finds its way into everyday usage in model performance analysis, especially in 

hydrology, climatology, and other environmental sciences. It provides full information 

on the agreement between observed and simulated values and thus gives useful insights 

into the accuracy and dependability of predictive models. 

While the traditional measures involve either correlation coefficients or RMSE, the 

md considers the pattern and magnitude of errors in observed and simulated data 

points. The md hence reflects on timing and amplitude discrepancies, allowing a 

holistic view of model performance that will definitely enable researchers and 

practitioners to spot the areas of refinement in their models. 
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𝑚𝑑 = 1 −
∑ |𝑂𝑖−𝐺𝑖|
𝑁
𝑖=1

∑ (|𝐺𝑖−𝑂̅|+|𝑂𝑖−𝑂̅|)
𝑁
𝑖=1

      (3.2) 

where 𝑂̅ stands for the mean of the observed data. 

md has a number of properties which are advantageous for model evaluation. Being 

dimensionless and ranging from 0 to 1, md offers an easily understandable measure of 

fit, with 1.0 indicating a perfect agreement between observed and simulated values. 

This is one of the reasons why it is so usable by stakeholders: they can discern the 

level of agreement between model predictions and observations (Willmott, 1981). 

Besides, md is resistant to outliers, hence resistant to extreme values and fluctuations 

in the dataset. Being able to present a balanced judgment about the events in terms of 

both timing and amplitude, md serves as a useful instrument for researchers and 

practitioners in many spheres, who strive for improving models predictive accuracy. 

3.1.3 Kling-Gupta efficieny (KGE) 

The Kling-Gupta Efficiency (KGE) is a metric that will crop up rather often in 

hydrological and environmental modeling. It's an overall indicator of model 

performance, integrating the main components: correlation, bias, and variability. 

Designed to be an improvement on more traditional indices, including the Nash-

Sutcliffe Efficiency (NSE), KGE allows for a nuanced assessment of goodness of fit 

in regard to both simulated and observed values by means of their agreement in mean, 

variability, and correlation. This holistic approach allows for more accurate 

identification of model strengths and weaknesses, hence enhancing the reliability of 

model evaluations across different conditions and time scales (Liu, 2020; Quintero et 

al., 2020). 

𝐾𝐺𝐸 = 1 − √(𝑅 − 1)2 + (
𝜎𝐺

𝜎𝑂
− 1)

2

+ (
𝜇𝐺

𝜇𝑂
− 1)

2

  (3.3) 

Here, R represents the Pearson correlation coefficient calculated between the observed 

and simulated time series, σO stands for the standard deviation of observations, σG 

denotes the standard deviation of simulations, µG represents the mean of the simulated 

values, and µO indicates the mean of the observed values. 

KGE is widely adopted in hydrological and environmental research due to its many 

advantageous characteristics. In formulation, KGE yields a dimensionless metric, 

bounded from negative infinity to 1, where 1 represents a perfect agreement. This 
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standardized scale makes the model performance easy to interpret and compare across 

different studies and applications. Since KGE has the same sensitivity to systematic 

and random errors, it is a valued tool when it comes to the evaluation of complex 

hydrological processes and environmental systems.  

3.1.4 Selection of GCMs 

In evaluating the selected climate variables for each grid, data from GCMs will be 

compared with ERA5/CRU biased data using the above-described methods. 

Numerical values of each grid are ranked according to the performance of models. For 

the 13 selected GCMs (See Table A.1), the best-performing model in the selected grid 

takes the first rank, and the worst-performing one takes the 13th rank. In this ranking, 

the model with the lowest nRMSE will be considered the winner, while at the same 

time the model with the highest scores on the remaining two criteria will also be 

selected as a winner. 

In this study, to rank the performance of GCMs for each climate variable in each grid, 

two different methods, namely Multiple-criteria Decision Analysis (MCDA) and 

Comprehensive rating metrics (MR), are employed consecutively. 

3.1.4.1 Multiple-criteria decision analysis (MCDA) 

MCDA has been found to be effective in ranking alternatives by aggregating 

information from diverse sources, as indicated by studies such as those by Homsi et 

al. (2020) and Salman et al. (2019). In this study, ranking of the GCMs will be done 

using scores obtained from an MCDA approach. This is done through the development 

of a payoff matrix, whereby the frequency of grid point numbers for a particular rank 

realized by a GCM is considered. For 13 GCMs under consideration, payoff matrix 

dimensions are 13 by 13, ranging between ranks 1 and 13. Model performance will be 

quantified based on the frequency of occurrence of each GCM across all grid points 

falling within Türkiye. The overall performance of a GCM over the study area will, 

therefore, be determined by its frequency of occurrence across different grid points. A 

higher frequency of occurrence attributes more weight to a particular model, resulting 

in a higher ranking compared to other models. 

Following this approach, when a GCM attains rankings of 1, 2, 3, ..., n at grid points 

X1, X2, X3, Xn, respectively, the MCDA score for the GCM is computed as follows: 
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𝑀𝐶𝐷𝐴 𝑆𝑐𝑜𝑟𝑒 = 𝑋1 + 𝑋2 ∙ (1 2)⁄ + 𝑋3 ∙ (1 3⁄ ) + ⋯+ 𝑋𝑛 ∙ (1 𝑛⁄ )   (3.4) 

For instance, a GCM will get n/1 points in case it ranks 1 (best performance) at all the 

n grid points. In the case of getting rank 2 at m grid points, the points are given as m/2, 

and so on. The total score is calculated by summing the points assigned to all the ranks 

obtained by a given GCM. 

3.1.4.2 Comprehensive rating metrics (MR) 

The MR approach, as extracted from the existing literature, was followed in this 

research to synthesize MCDA ranking results of models against all the performance 

criteria and climate variables into a single metric. MR can be mathematically defined 

as: 

𝑀𝑅 = 1 −
1

𝑛𝑚
∑ 𝑟𝑎𝑛𝑘𝑖
𝑛
𝑖=1       (3.5) 

Here, m and n denote the number of evaluation metrics and the number of GCMs, 

respectively; in this paper, m = 9 including 3 KGE, 3 md, and 3 nRMSE metrics, while 

n = 13. The higher the value of MR close to 1, the more powerful the GCM will be in 

reproducing the observed data. 

 Extreme Gradient Boosting Regression Tree 

XGBoost is an ensemble machine learning algorithm with its foundation in decision 

trees and using gradient boosting techniques, established initially as part of a research 

project at the University of Washington in 2016. Renowned for its accomplishments 

in Kaggle competitions and its vital role in the latest industry applications, XGBoost 

receives considerable contributions from an active data science community (Niu et al., 

2019). 

XGBoost is recognized as an optimized gradient tree boosting technique that 

efficiently builds sequential decision trees, hence allowing for fast computation on a 

wide range of computing platforms. It has gained popularity due to its efficiency in 

modeling new features and classifying data points with high accuracy in tabular and 

structured datasets (Fan et al., 2018). 

Evolved from a decision tree-based approach, XGBoost initially employed bagging-a 

collection meta-algorithm that took the predictions of multiple decision trees and 

combined them through majority voting. Further enhancements included reducing the 
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margins of error in constructing sequential models with assistance from the gradient 

descent algorithm. Furthermore, XGBoost tackles overfitting and missing values 

through parallel processing for optimized gradient boosting by ways of tree pruning 

and parallelization, along with hardware optimization. 

The implementation of the XGBoost algorithm proceeds as follows: Consider a dataset 

S =  {(𝑥𝑖, 𝑦𝑖); 𝑖 = 1,2,⋯ , 𝑛; 𝑥𝑖 ∈ 𝑅
𝑚, 𝑦𝑖 ∈ 𝑅}, where n denotes the number of 

observations, m signifies the number of features, and y represents the target variable. 

Let 𝑦̂𝑖
𝑋𝐺 denote the outcome generated by the model 

𝑦̂𝑖
𝑋𝐺 = 𝜙(𝑥𝑖) = ∑ 𝑓𝑝

𝑃
𝑝=1 (𝑥𝑖)    (3.6) 

fp represents a decision tree, and fp(xi) signifies the score for the pth tree for the ith 

observation. To select the function fp, it is necessary to minimize the regularized 

objective function, expressed as: 

𝑓𝑝 = ∑ 𝐿(𝑦𝑖 , 𝑦̂𝑖
𝑋𝐺) + ∑ 𝛺(𝑓𝑝)𝑝𝑖     (3.7) 

incorporating both the loss function L and a penalty parameter Ω to mitigate the 

model's complexity. 

𝛺(𝑓𝑝) = 𝛼𝑇 +
1

2
𝜆‖𝑤‖2     (3.8) 

Here, α and λ represent the parameters regulating the penalty for the leaves T and the 

leaf weight w respectively. The inclusion of Ω(fp) serves to prevent overfitting and 

streamline the models generated by the algorithm. 

XGBoost employs a unique algorithm in tree construction, utilizing the Similarity 

Score and Gain to pinpoint the most effective node divisions. 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 =
(∑ 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑖

𝑛
𝑖=1 )

2

∑ [𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖×(1−𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖)]−𝜆
𝑛
𝑖=1

     (3.9) 

The concept of "prior probability" denotes the probability of an outcome estimated in 

a preceding step. At the outset, a probability of 0.5 is allocated to all observations to 

formulate the initial tree. Later, with the construction of other trees, this a priori 

probability gets updated, combining for the first prediction and all the predictions 

gathered from previous trees. The λ is a regularisation parameter. After calculating the 

Similarity Score of each leaf node, the Gain could be worked out in the following step: 

𝐺𝑎𝑖𝑛 = 𝐿𝑒𝑓𝑡 𝑙𝑒𝑎𝑓𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 + 𝑅𝑖𝑔ℎ𝑡 𝑙𝑒𝑎𝑓𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 − 𝑅𝑜𝑜𝑡𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦  (3.10) 
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The greatest Gain signifies the optimal point for dividing the tree. 

XGBoost has many parameters, all of which are very influential in the behavior and 

predictive performance of this algorithm. These include a learning rate that controls 

the contribution of each tree in the overall model, the maximum depth of each tree, 

regularization terms to prevent overfitting, and the number of trees in the ensemble. 

• Learning Rate: Better known as the "eta" parameter, the learning rate controls 

the contribution of each tree to the global model: where a lower learning rate 

increases the robustness of the model by decreasing the influence a single tree 

would have, a higher learning rate allows for faster learning but might increase 

the risk of overfitting. 

• Maximum Depth: Sometimes referred to as "max_depth," this parameter 

defines the deepest level to which trees in an ensemble can expand. In this 

regard, while deeper trees can capture even more complex data relationships, 

they are typically more subject to overfitting. Finding the right maximum depth 

thus finds a sweet spot between model complexity and generalization 

performance. 

• Regularization Terms: Preventing overfitting, XGBoost contains several 

regularization terms: "gamma"-the minimum loss reduction required to create 

further partitioning of leaf nodes, and "lambda" ("alpha") is the L1 (Lasso) and 

L2 (Ridge) regularization on leaf weights, respectively. These penalize overly 

complex models to give ultimately better generalization performance. 

• Number of Trees: This is often referred to as "n_estimators," which is the total 

number of boosting rounds or iterations during model training. Increasing the 

number of trees can improve model performance up to a point but may increase 

training time and lead to overfitting if not tuned properly. 

The optimization of these parameters involves finding that combination of values from 

which the model achieves the highest predictive power with minimal overfitting. This 

can be done by grid search, randomized search, or more intelligent optimization 

techniques that can systematically explore this parameter space and identify the best 

configuration of a given dataset and objective. 

Finally, the algorithm is trained and evaluated on the validation set or by using cross-

validation for every possible combination of parameter values. Further, the optimal 
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value of the parameters is determined regarding the performance metric-performance 

score on the validation set-which might be accuracy or mean squared error. 

In this study, the XGBoost algorithm is used to ensemble the top four CGMs for the 

prediction of future values of climate variables in each grid. Prior to ensembling and 

forecasting, the datasets-both top four GCMs and ERA5/CRU-are split into two parts: 

namely, the train dataset and the test dataset. The training dataset consists of data over 

the years from 2010 to 2013, while the test dataset includes data from the year 2014 

only. 

In every grid, climate variables are forecasted for the future until 2040 using a grid 

search technique to find the best combination of parameters that minimize the RMSE. 

 Analytical Hierarchical Process (AHP) 

The AHP was developed by Saaty in 1980 as an advanced decision-analysis technique 

that embodies both psychological and mathematical elements. According to Saaty 

(2001), it is a structured technique for analyzing complex problems that include 

knowledge and judgments. 

From the day it was discovered, AHP has been a vital tool for the analyst and 

researcher. It has gained widespread acceptance as one of the most important methods 

in multiple criteria decision-making. Several major publications have appeared, 

expressing the wide-ranging applications that AHP has in the broad fields of 

optimization, alternative selection, efficient distribution of resources, and much more, 

to name a few (Vaidya and Kumar, 2006). 

Basically, AHP works by setting priorities of the alternatives and the criteria on which 

such alternatives are based. Relevant criteria are selected by decision makers into the 

hierarchy to be considered, while irrelevant ones are discarded. The criteria could also 

range from well-defined and measurable criteria such as weight and length to 

intangible ones that do not have pre-defined scales. 

In general, the priorities for each alternative's performance on every criterion are 

determined through pairwise comparisons of judgment or ratios of scale 

measurements, wherever possible. Such prioritization allows a resolution of the 

difficulty with disparate scales by interpreting their significance relative to user values. 
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Finally, a process of weighting and aggregation is used to deduce overall priorities for 

the alternatives about their contributions to the goal. This process parallels the 

arithmetic used in the past combination of alternatives evaluated under multiple 

criteria using a common scale for an aggregate result - normally monetary. Using the 

AHP, a multidimensional scaling problem is reduced to a unidimensional scaling 

problem (Saaty, 2001). 

To assess the significance of variables, it's necessary to establish a pairwise 

comparison matrix A belonging to the real space Rn×n. Moreover, this matrix must 

adhere to the following criteria: 

• ai,j > 0; 

• ai,i  = 1; 

• ai,j = 1/aj,i  for all i,j=1,2,…,n. 

The pairwise comparison matrices are constructed utilizing Saaty's suggested 1-9 

importance scale. Particularly, when a study's findings have broad implications across 

a significant population, researchers frequently aggregate opinions from multiple 

individuals to formulate these decision matrices. Furthermore, many researchers adopt 

the geometric mean method during consolidation to ensure the reliability of the 

pairwise comparison matrices. Table 3.2 provides an explanation of the importance 

scale values and their corresponding interpretations. 

Table 3.2 : Importance scale values 

Intensity of Importance Definition Interpretation 

1 Equal importance i and j equally important 

2 Weak  

3 Moderate importance i slightly more important than j 

4 Moderate plus  

5 Strong importance i more important than j 

6 Strong plus  

7 Very strong importance i very strongly more important than j 

8 Very, very strong  

9 Extreme importance i extremely more important than j 

Normalization of a pairwise comparison matrix involves the division of each element 

by the sum of its column (3.11). Once the normalized pairwise comparison matrix is 

obtained, the normalized principal eigenvector corresponding to each row can be 

calculated by averaging the values in that row (3.12). 
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𝑎̅𝑖,𝑗 =
𝑎𝑖,𝑗

∑ 𝑎𝑖,𝑗
𝑛
𝑖=1

                                                           (3.11) 

𝑤𝑖 =
∑ 𝑎̅𝑖,𝑗
𝑛
𝑗=1

𝑛
                                                          (3.12) 

In this context, wi, 𝑎̅𝑖,𝑗 and n represent the normalized principal eigenvector for row i, 

the elements of the normalized pairwise comparison matrix Anorm, and the number of 

factors, respectively.  

Evaluating the model's consistency requires deriving the principal eigenvector (λmax) 

using equation 3.13. 

𝜆𝑚𝑎𝑥 = ∑
𝑤𝑖

∑ 𝑎𝑖,𝑗
𝑛
𝑖=1

𝑛
𝑖=1                                             (3.13) 

After calculating λmax, the consistency index (CI) can be determined using the 

following equation: 

𝐶𝐼 =
𝜆𝑚𝑎𝑥−𝑛

𝑛−1
                                                   (3.14) 

Finally, the consistency rate (CR) is expressed as follows: 

𝐶𝑅 = 𝐶𝐼
𝑅𝐼⁄                                                  (3.15) 

Table 3.3 presents the value of RI (Random Index) utilized in equation 3.15. 

Table 3.3 : Random Index values based on the number of variable.  

n: 2 3 4 5 6 7 8 9 10 

RI: 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.51 

 Multi-Attribute Utility Technique (MAUT) 

Multi-Attribute Utility Technique (MAUT) embeds psychological measurement 

models and scaling techniques appropriate for evaluating alternatives with more than 

one relevant attribute. Moreover, MAUT can be used as a decision aid since it 

decomposes complex evaluation tasks into more easily managed subtasks (Winterfeldt 

and Fischer, 1975). 

It basically aims at valuing and comparing alternatives in respect to a pre-defined set 

of attributes or criteria. MAUT is strategically designed to support the decision-maker 

in making an informed decision, especially in cases when complicated multi-criteria 

considerations come into view. A utility score of 1.0 shall be assigned for the most 

favored option, with 0.0 assigned for the least favored choice. Next, experts choose a 
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midpoint value that has a utility score of 0.5, which is exactly halfway between the 

most and least preferred alternatives. Experts then identify a "quarter point" value with 

a utility score of 0.25, positioned halfway between the midpoint and the least preferred 

alternatives. Finally, experts determine a value function with a utility score of 0.75, 

representing a point halfway between the most preferred and the midpoint values. 

(Doczy and AbdelRazig, 2017). In this regard, the framework of MAUT is given in 

Figure 3.2. 

For criteria requiring maximization (i.e., higher marginal utility scores are preferable): 

𝑔𝑖𝑗 =
𝑐𝑗𝑎𝑖−𝑀𝑖𝑛𝑗[𝑐𝑗𝑎𝑖]

𝑀𝑎𝑥𝑗[𝑐𝑗𝑎𝑖]−𝑀𝑖𝑛𝑗[𝑐𝑗𝑎𝑖]
     (3.16) 

For criteria necessitating minimization (i.e., lower marginal utility scores are 

preferable): 

𝑔𝑖𝑗 =
𝑀𝑎𝑥𝑗[𝑐𝑗𝑎𝑖]−𝑐𝑗𝑎𝑖

𝑀𝑎𝑥𝑗[𝑐𝑗𝑎𝑖]−𝑀𝑖𝑛𝑗[𝑐𝑗𝑎𝑖]
     (3.17) 

Where ai represents alternative i; cj represents criteria j; gij denotes the normalized 

score for ai in cj, where 0 ≤ gij ≤ 1; cj(ai) indicates the performance score of ai in cj; 

Maxj[cj(ai)] and Minj[cj(ai)] represent the maximum and minimum elements in the 

column vectors cj, respectively. 

 

Figure 3.2 : Framework of MAUT. 

 Auto-Regressive Integrated Moving Average (ARIMA) 

The Auto-Regressive Integrated Moving Average (ARIMA) model, is a method 

employed in time-series forecasting to predict the future value of a variable based on 

its historical values. It integrates auto-regression and moving averages while also 

employing differencing to eliminate trends and/or seasonality. The model can be 

represented by the following equation: 

𝑦́𝑡 = 𝑐 + 𝜙1𝑦́𝑡−1 +⋯+ 𝜙𝑝𝑦́𝑡−𝑝 + 𝜃1𝜀𝑡−1 +⋯+ 𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡   (3.18) 
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Here, 𝑦́𝑡 represents the differenced series and is computed by considering both the 

lagged values of y and the lagged errors. 

The ARIMA model is defined by three parameters: p, d, and q. The p parameter 

dictates the number of lagged periods in the autoregressive component of the model. 

For example, with p=4, the model utilizes data from the past four periods to make 

predictions. The d-parameter indicates the numbers of differencing steps necessary for 

the time series to become stationary, removing thereby trends and seasonality-meaning 

constant mean and variance over time-which forms a necessary prerequisite for any 

ARIMA-modelling. It simply means the q parameter represents how many lags exist 

in the moving average part, dealing with the error or residual of that time series 

variable explained neither by the autoregressive and nor by differencing features. The 

two combined finally boost an added ARIMA model which can better estimate future 

values given one's past variation. 

 Agent Based Model 

ABM is a way of computational modeling of complex systems that involves the 

simulation of individual entities, called agents, and their interaction within an 

environment. Each independent agent has behaviors, decision-making processes, and 

interactions with other agents and the surrounding environment. Such agents can 

model any entity from the individual in society to components involved in a 

manufacturing process (Macal and North, 2005). 

The significant underpinning of agent-based modeling and simulation is the emergent 

capabilities in the interactional processes across independent agents. By simulating the 

behaviors of each agent, a researcher would visually observe their collective 

interactions over time to gain insight into the general dynamics of such a system. ABM 

is of particular value when studying systems for which analytical methods are 

inadequate, such as determining the flow of traffic in cities, analyzing the spread of 

diseases, or simulating economic markets (Macal and North, 2005). 

The advantage of the agent-based modeling technique can be considered its potential 

to grasp a complex and diverse world that, by nature, represents real systems. Agents 

in ABM exhibit heterogeneous characteristics and adaptive behaviors based on local 

interactions. That gives them much more realistic capabilities of description compared 
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with the traditional aggregate models for complex systems study (Khodabandelu and 

Park, 2021). Further, ABM allows analysts to conduct scenario analyses simply by 

changing the behavior of agents or environmental parameters. In that respect, ABM 

becomes a versatile tool for decision-making and policy evaluations. Apart from the 

features of the individual agent, ABM has a number of distinctive qualities giving it 

uniqueness and some advantages against other widely used simulation methods, 

notably Discrete-Event Simulation (DES) and System Dynamics (SD). 

One of the key distinguishing features of ABM is that it recognizes agent 

heterogeneity. While other methods of simulation tend to represent a system in a 

homogeneous form, assigning similar properties to all agents within one group and 

regulating similar interaction protocols among them, ABM allows modeling agents to 

have a heterogeneous approach, differentiating each agent individually even from 

those within the same group (Macal and North, 2005). This perspective of 

heterogeneity facilitates the accurate modeling and enhances the collective behavior 

of the overall model. This is beneficial in many scenarios, as the oversimplification 

entailed in a homogeneous approach may overlook the individual differences among 

agents and thus can result in misleading deviations from reality (Lu et al., 2016). 

A further important characteristic of ABM is its ability to handle problems with 

multiple options quite efficiently. The fact that each individual agent can be unique in 

ABM leads to the creation of almost all possible scenarios (Zhang et al., 2019). Even 

though this is often highly computational, it also raises the possibility of finding better 

options than the other simulation methods. DES and SD use a top-down approach. 

They start by building the system at a high, macro level, then propose hypotheses and 

test their validity, often relying on empirical data for analysis (Lu et al., 2016). 

Contrarily, ABM is a bottom-up approach in which characteristics and the interaction 

of the agents at an individual level are defined; emergent outcomes are produced at the 

macro-level of the system. This micro-level agent modeling makes ABM well-suited 

for exploring various what-if questions without heavy reliance on empirical analyses, 

excessive assumptions, or biased, preconceived model directions. Additionally, micro-

level agent modeling allows ABM to investigate the likelihood of different scenarios 

occurring, including those that are rare but could significantly impact system outcomes 

(Tah, 2005). 
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Considering these capabilities and advantages of this method, ABM is one of the most 

proper methods to accurately simulate the proposed model. Thus, the following ABM 

structure is utilized in this study (Figure 3.3).  

 

Figure 3.3 : Structure of the proposed ABM. 

The proposed model includes three different agent types, namely government, 

independent power producers (IPP), and market maker. Government agent is 

responsible for the setting carbon tax, carbon allowance, and subsidies, while market 

maker agent stands for the collecting bids and determining the electricity prices. IPP 

agents represent the electricty producers which have different portfolios and profit 

margin expectations, and they give bids for each electricity generation technology in 

their portfolios. 

To simulate the proposed ABM, this study employs four modules: 

• Electiricty demand module 

• Electricity generation module 

• Capacity addition/shut-down module 

• Carbon module 
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3.6.1 Electricity demand module 

Considerig the electricity consumption of Türkiye, three major sector which constitute 

more than 93 percent of total electricity demand of Türkiye are analysed in this study 

(TEDC, 2023). These are i) residential buildings, ii) commercial buildings, and iii) 

industry. Electricty demand of each sector shows different sensitivities for changes in 

electricity prices, income levels, population, and temperature.  

Based on these sensivities, equations 3.19, 3.20, and 3.21 show the electricity demand 

of residential sector, commercial sector, and industry, respectively. 

 
ECAt

res = ECAt−1
res ∙ [1 + (

𝑌𝑡
𝑌𝑡−1

− 1) ∙ 𝜌𝑔𝑑𝑝
𝑟𝑒𝑠 ] ∙ [1 + (

𝑃𝑡−1
𝑒𝑙𝑒𝑐.𝑐𝑜𝑛𝑠.𝑟𝑒𝑠

𝑃𝑡−2
𝑒𝑙𝑒𝑐.𝑐𝑜𝑛𝑠.𝑟𝑒𝑠

− 1) ∙ 𝜌𝑝
𝑟𝑒𝑠]

∙ [1 + (
𝐶𝐷𝐷𝑡
𝐶𝐷𝐷𝑡−1

− 1) ∙ 𝜌𝑐𝑑𝑑
𝑟𝑒𝑠 ] ∙ [1 + (

𝑃𝑜𝑝𝑡
𝑃𝑜𝑝𝑡−1

− 1) ∙ 𝜌𝑝𝑜𝑝] 

(3.19) 

 
ECAt

com = ECAt−1
com ∙ [1 + (

𝑌𝑡
𝑌𝑡−1

− 1) ∙ 𝜌𝑔𝑑𝑝
𝑐𝑜𝑚] ∙ [1 + (

𝑃𝑡−1
𝑒𝑙𝑒𝑐.𝑐𝑜𝑛𝑠.𝑐𝑜𝑚

𝑃𝑡−2
𝑒𝑙𝑒𝑐.𝑐𝑜𝑛𝑠.𝑐𝑜𝑚 − 1) ∙ 𝜌𝑝

𝑐𝑜𝑚]

∙ [1 + (
𝐶𝐷𝐷𝑡
𝐶𝐷𝐷𝑡−1

− 1) ∙ 𝜌𝑐𝑑𝑑
𝑐𝑜𝑚] ∙ [1 + (

𝑃𝑜𝑝𝑡
𝑃𝑜𝑝𝑡−1

− 1) ∙ 𝜌𝑝𝑜𝑝] 

(3.20) 

 
ECAt

ind = ECAt−1
ind ∙ [1 + (

𝑌𝑡
𝑌𝑡−1

− 1) ∙ 𝜌𝑔𝑑𝑝
𝑖𝑛𝑑 ] ∙ [1 + (

𝑃𝑡−1
𝑒𝑙𝑒𝑐.𝑐𝑜𝑛𝑠.𝑖𝑛𝑑

𝑃𝑡−2
𝑒𝑙𝑒𝑐.𝑐𝑜𝑛𝑠.𝑖𝑛𝑑

− 1) ∙ 𝜌𝑝
𝑖𝑛𝑑]

∙ [1 + (
𝐶𝐷𝐷𝑡
𝐶𝐷𝐷𝑡−1

− 1) ∙ 𝜌𝑐𝑑𝑑
𝑖𝑛𝑑 ] ∙ [1 + (

𝑃𝑜𝑝𝑡
𝑃𝑜𝑝𝑡−1

− 1) ∙ 𝜌𝑝𝑜𝑝] 

(3.21) 

Equation 3.22 stands for the calculation changes in real Gross Domestic Product 

(GDP) per capita in year t compared to the previous year considering the real GDP per 

capita potential growth rate (𝜂𝑡
𝑌) in year t and capital damage factor (𝜂𝐶𝐷𝐹) for natural 

disasters in response to rising temperatures. 

𝑌𝑡

𝑌𝑡−1
= (1 + 𝜂𝑡

𝑌) ∙ (1 − 𝜂𝐶𝐷𝐹 ∙ (𝑇𝑡
𝑃𝑂𝑃 − 𝑇0

𝑃𝑂𝑃))       (3.22) 

𝑇𝑡
𝑃𝑂𝑃 is the population-weighted average temperature of Türkiye, and it is calculated 

as  

𝑇𝑡
𝑃𝑂𝑃 =

∑ 𝑃𝑜𝑝𝑖,𝑡∙𝑇𝑖,𝑡
81
𝑖=1

∑ 𝑃𝑜𝑝𝑖,𝑡
81
𝑖=1

      (3.23) 

where 𝑃𝑜𝑝𝑖,𝑡 and 𝑇𝑖,𝑡 represent the population and annual average temperature of ith 

city in year t. 𝑇0
𝑃𝑂𝑃, which is the population-weighted aveage temperature of Türkiye 



48 

for the base year 2020, is calculated as 285.43K based on the established climate 

models. 

𝑃𝑜𝑝𝑖,𝑡 = 𝛾𝑖 ∙ 𝑃𝑜𝑝𝑖,𝑡−1 ∙ 𝛽𝑡     (3.24) 

𝛽𝑡 =
∑ 𝑃𝑜𝑝𝑖,𝑡
81
𝑖=1

𝑃𝑜𝑝𝑡
𝑇𝑆      (3.25) 

where 𝛽𝑡 is the population correction coefficient in year t, and 𝑃𝑜𝑝𝑡
𝑇𝑆 is the total 

population of Turkey projected by TurkStat (2017b). 

Table 3.4 displays the variables employed for computing electricity demand across 

each sector, along with their respective descriptions and values sourced from the 

literature. 

Table 3.4 : Variables of electricity demand calculations. 

Variable Description Value Reference 

𝝆𝒈𝒅𝒑
𝒓𝒆𝒔  Income elasticity of residential electricity demand 0.227 

Guven et al. (2021) 

𝝆𝒑
𝒓𝒆𝒔 Price elasticity of residential electricity demand -0.126 

𝝆𝒄𝒅𝒅
𝒓𝒆𝒔  CDD elasticity of residential electricity demand 5.397 

𝝆𝒈𝒅𝒑
𝒄𝒐𝒎 Income elasticity of commercial electricity demand 0.219 

𝝆𝒑
𝒄𝒐𝒎 Price elasticity of commercial electricity demand -0.147 

𝝆𝒄𝒅𝒅
𝒄𝒐𝒎 CDD elasticity of r commercial electricity demand 4.55 

𝝆𝒈𝒅𝒑
𝒊𝒏𝒅  Income elasticity of industrial electricity demand 0.548 

𝝆𝒑
𝒊𝒏𝒅 Price elasticity of industrial electricity demand -0.145 

𝝆𝒄𝒅𝒅
𝒊𝒏𝒅  CDD elasticity of industrial electricity demand 3.25 

𝝆𝒑𝒐𝒑 Population elasticity of electricity demand 5.198 Sağlam et al. (2023) 

𝜼𝒕
𝒀 Real GDP per capita potential growth rate  OECD (2021) 

𝜼𝑪𝑫𝑭 Capital damage factor for natural disasters 0.061% Czupryna et al. 

(2020) 

𝑷𝒐𝒑𝒊,𝒕 Projected population of cities  Author’s calculation 

based on TurkStat 

(2017a, b) data 

3.6.2 Electricity generation module 

This study utilizes actual portfolios of IPPs in Türkiye, where company names will be 

anonymized and replaced with codes. The analysis focuses on the top 50 power 

generation enterprises and treats the collective installed capacity of the remaining 

facilities in Türkiye, constituting the 51st power generation enterprise, as a single 

entity. Comprising 21.1% of the total capacity, these smaller enterprises are relatively 
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small-scale and are more likely to adjust to market conditions based on industry-wide 

behavior patterns, particularly in terms of technology preferences, risk assessment, and 

investment thresholds (Chen et al., 2013). Given that the GCM outputs provide climate 

variables only, these data need to be integrated into various mathematical equations to 

relate them to energy production within the ABM before calculating electricity 

production from wind and solar. 

Initially, wind speeds derived from the model represent speeds at a height of 10 meters 

above the surface. However, modern wind turbine towers often exceed 150 meters in 

height, necessitating adjustments to wind speeds based on altitude. For this study, an 

average wind turbine hub height of 100 meters was assumed, and wind speed was 

recalculated using the following equation: 

𝑤𝑠𝑝𝑑(𝑧) = 𝑤𝑠𝑝𝑑(𝑧𝑟𝑒𝑓) (
𝑧

𝑧𝑟𝑒𝑓
)
𝛼

    (3.26) 

where z and zref denote the hub height of the wind turbine (100 m) and the GCM output 

height (10 m), respectively. wspd(𝑧ref) is the wind speed at 𝑧ref and 𝛼 =1/7 is the 

coefficient of the power law exponent, taken as suitable in open areas as indicated by 

earlier studies (e.g., Carvalho et al., 2021; Guven, 2023; Sawadogo et al., 2019). 

Wind Power Density (WPD) generally stands for assessing the wind power generation 

potential and is widely being used as an indicative measure expressed by the following 

formula: 

𝑊𝑃𝐷 =
1

2
∙ 𝜌 ∙ 𝑤𝑠𝑝𝑑(𝑧)3      (3.27) 

Here, 𝜌 represents air density (1.225 kg/m³). The main point can be drawn from the 

above formulation that WPD varies with cube of wind speed; hence small changes in 

the speed of winds would drastically impact the yield from wind. 

The performance of a PV system hinges on the downward surface solar radiation it 

receives and the efficiency of the PV modules. Notably, PV system efficiency varies 

with ambient temperature (Dutta et al., 2022). To evaluate PV efficiency in relation to 

temperature, this study employs the Evans-Florschuetz PV efficiency correlation 

coefficients (Dubey et al., 2013). 

𝜂𝑐 = 𝜂𝑟𝑒𝑓[1 − 𝛽𝑟𝑒𝑓(𝑇𝑐 − 𝑇𝑟𝑒𝑓)]     (3.28) 
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Where 𝜂ref and 𝛽ref denote the defined PV efficiency (0.20) at the reference temperature 

(𝑇ref=25°𝐶) and the temperature coefficient (0.0045), respectively. 

The temperature 𝑇𝑐 is defined by the equation: 

𝑇𝑐 = 𝑐1 + 𝑐2𝑡𝑎𝑠 + 𝑐3𝑟𝑠𝑑𝑠 + 𝑐4𝑤𝑠𝑝𝑑    (3.29) 

Here, 𝑐1=4.3°𝐶, 𝑐2=0.943, 𝑐3=0.028°𝐶 m2W−1, and 𝑐4=−1.528°𝐶 m−1 (Jerez et al., 

2015). 

The energy obtainable from the PV panel depends on solar radiation and panel 

efficiency, given by the equation: 

𝐸𝑃𝑉 = 𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 (
𝑊

𝑚2
) × 𝜂𝑐     (3.30) 

Each company is unique concerning the portfolio and capacity of production facilities. 

The production of electricity from photovoltaic panels depends on the shortwave 

radiation that reaches the surface and the panel efficiency, which is modified according 

to temperature and wind speed, as shown before. Then, the amount of produced 

electricity coming from a 1m² PV panel during year t is given by 

𝑄𝑖,𝑃𝑉,𝑗,𝑡 = ∑ 𝜂𝑐𝑑 × 𝑟𝑠𝑑𝑠𝑑 × 24 
365
𝑑=1 [kWh/m2]  (3.31) 

In this context, 𝑖 denotes the IPP number, 𝑗 represents a specific plant within the 

selected IPP portfolio, and rsdsd stands for the average surface incident shortwave solar 

radiation on day 𝑑. 

Likewise, electricity generation from the wind turbine is determined based on the 

following equation, which relies on the wind power density. 

𝑄𝑖,𝑊𝑇,𝑗,𝑡 = ∑ 𝜋 × 𝑅2 × 𝛽𝑊𝑇 ×𝑊𝑃𝐷𝑑 × 24 
365
𝑑=1 [kWh]   (3.32) 

The equation for calculating energy production from a wind turbine involves the radius 

R of the rotor and the efficiency 𝛽WT of the wind turbine. In this study, the turbine 

efficiency was set at 0.4 based on literature sources (Rehman et al., 2023). 

Following the calculation of energy production from renewable resources, which 

varies depending on the climate, the initial step in the process is to compute "residual 

generation." This term refers to the disparity between the total electricity demand 

(𝐷𝑡
𝑡𝑜𝑡𝑎𝑙) and the energy generated from renewable sources. The deficit represented by 
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residual generation will be fulfilled by fossil fuel-based power plants (such as coal or 

natural gas) or high-availability plants (including hydroelectric, biogas, biomass, 

nuclear, and geothermal facilities). 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝐷𝑒𝑚𝑎𝑛𝑑 − 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑃𝑉&𝑊𝑇   (3.33) 

As the first step, IPPs conduct annual production planning (𝐺𝑖,𝑡𝑒𝑐ℎ,𝑗,𝑡
𝑝𝑙𝑎𝑛𝑛𝑒𝑑

) for each power 

plant within their portfolio, taking into account the capacity and capacity factor of each 

plant. 

𝐺𝑖,𝑡𝑒𝑐ℎ,𝑗,𝑡
𝑝𝑙𝑎𝑛𝑛𝑒𝑑

= 8760 × 𝐶𝐹𝑡𝑒𝑐ℎ × 𝐶𝑎𝑝𝑖,𝑡𝑒𝑐ℎ,𝑗     (3.34) 

Then, they formulate an annual electricity sales price offer (𝑏𝑖𝑑𝑖,𝑡𝑒𝑐ℎ,𝑗,𝑡) for each plant 

in their portfolio using the following equation. 

 𝑏𝑖𝑑𝑖,𝑡𝑒𝑐ℎ,𝑗,𝑡 = {[𝑃𝑡𝑒𝑐ℎ,𝑡
𝑓𝑢𝑒𝑙

∙ 𝐺𝑖,𝑡𝑒𝑐ℎ,𝑗,𝑡−1
𝑎𝑐𝑡𝑢𝑎𝑙 ∙ 𝑓𝑡𝑒𝑐ℎ

𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 + (𝐺𝑖,𝑡𝑒𝑐ℎ,𝑗,𝑡−1
𝑎𝑐𝑡𝑢𝑎𝑙 ∙

𝑓𝑡𝑒𝑐ℎ − 𝐶𝑖,𝑡𝑒𝑐ℎ𝑗,𝑡
𝑎𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒) ∙ 𝑡𝑎𝑥𝑡

𝑐𝑎𝑟𝑏𝑜𝑛 + 𝑂𝑃𝐸𝑋𝑖,𝑡𝑒𝑐ℎ𝑗,𝑡 + 𝐷𝑒𝑝𝑟𝑖,𝑡𝑒𝑐ℎ𝑗,𝑡] ×

  (1 +
𝜗𝑡−1

1−𝑡𝑎𝑥𝑡𝑒𝑐ℎ,𝑡
) 𝐺𝑖,𝑡𝑒𝑐ℎ𝑗,𝑡−1

𝑎𝑐𝑡𝑢𝑎𝑙  ⁄ } − 𝑠𝑢𝑏𝑠𝑖,𝑡𝑒𝑐ℎ,𝑗,𝑡            

(3.35) 

The descriptions of parameters used in equation 3.35 are presented in Table 3.5. 

Table 3.5 : Parameters of bidding calculation. 

Parameter Description 

𝑷𝒕𝒆𝒄𝒉,𝒕
𝒇𝒖𝒆𝒍

 Fuel price 

𝑮𝒊,𝒕𝒆𝒄𝒉,𝒋,𝒕−𝟏
𝒂𝒄𝒕𝒖𝒂𝒍  Actual generation of previous year 

𝒇𝒕𝒆𝒄𝒉
𝒄𝒐𝒏𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏

 Unit fuel consumption of power plant 

𝒇𝒕𝒆𝒄𝒉 Unit carbon emission of power plant  

𝑪𝒊,𝒕𝒆𝒄𝒉𝒋,𝒕
𝒂𝒍𝒍𝒐𝒘𝒂𝒏𝒄𝒆 Carbon allowance of power plant 

𝒕𝒂𝒙𝒕
𝒄𝒂𝒓𝒃𝒐𝒏 Carbon tax ($/ton CO2) 

𝑶𝑷𝑬𝑿𝒊,𝒕𝒆𝒄𝒉𝒋,𝒕 OPEX of power plant 

𝑫𝒆𝒑𝒓𝒊,𝒕𝒆𝒄𝒉𝒋,𝒕 Depreciation of power plant 

𝝑𝒕−𝟏 Expected profit margin of IPP  

𝒕𝒂𝒙𝒕𝒆𝒄𝒉,𝒕 Corporation Tax  

𝒔𝒖𝒃𝒔𝒊,𝒕𝒆𝒄𝒉,𝒋,𝒕 Government subsidy 

Following the derivation of equations 3.34 and 3.35 for each power plant, the average 

electricity sales price offer (𝑏𝑖𝑑𝑡
𝑎𝑣𝑔

) is computed using equation 3.36. 
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𝑏𝑖𝑑𝑡
𝑎𝑣𝑔

=
∑ ∑ ∑ 𝐺𝑖,𝑡𝑒𝑐ℎ,𝑗,𝑡

𝑝𝑙𝑎𝑛𝑛𝑒𝑑
𝑗 ×𝑏𝑖𝑑𝑖,𝑡𝑒𝑐ℎ,𝑗,𝑡𝑡𝑒𝑐ℎ𝑖

∑ ∑ ∑ 𝐺
𝑖,𝑡𝑒𝑐ℎ,𝑗,𝑡
𝑝𝑙𝑎𝑛𝑛𝑒𝑑

𝑗𝑡𝑒𝑐ℎ𝑖

    (3.36) 

For renewable energy power plants, actual generation matches planned generation. 

However, for power plants using fossil resources, the actual production (𝐺𝑖,𝑡𝑒𝑐ℎ,𝑗,𝑡
𝑎𝑐𝑡𝑢𝑎𝑙 ) is 

determined by equation 3.37. 

𝐺𝑖,𝑡𝑒𝑐ℎ,𝑗,𝑡
𝑎𝑐𝑡𝑢𝑎𝑙 = {

𝐺𝑖,𝑡𝑒𝑐ℎ,𝑗,𝑡
𝑝𝑙𝑎𝑛𝑛𝑒𝑑

, 𝑡𝑒𝑐ℎ: 𝑃𝑉,𝑊𝑇,…

𝐺𝑖,𝑡𝑒𝑐ℎ,𝑗,𝑡
𝑝𝑙𝑎𝑛𝑛𝑒𝑑

×
𝐷𝑡
𝑡𝑜𝑡𝑎𝑙−∑𝐺𝑖,𝑃𝑉+𝑊𝑇,𝑗,𝑡

∑ ∑ ∑ 𝐺
𝑖,𝑡𝑒𝑐ℎ,𝑗,𝑡
𝑝𝑙𝑎𝑛𝑛𝑒𝑑

𝑗𝑖𝑡𝑒𝑐ℎ

, 𝑡𝑒𝑐ℎ:𝐶𝑜𝑎𝑙, 𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝐺𝑎𝑠
  (3.37) 

Ultimately, the electricity sales price offered by the market maker agent is defined by 

equation 3.38. 

𝑃𝑡
𝑒𝑙𝑒𝑐 = 𝑏𝑖𝑑𝑡

𝑎𝑣𝑔
𝑒
[𝜏(

𝐷𝑡
𝑡𝑜𝑡𝑎𝑙−∑ ∑ ∑ 𝐺

𝑖,𝑡𝑒𝑐ℎ,𝑗,𝑡
𝑝𝑙𝑎𝑛𝑛𝑒𝑑

𝑗𝑡𝑒𝑐ℎ𝑖

∑ ∑ ∑ 𝐺
𝑖,𝑡𝑒𝑐ℎ,𝑗,𝑡
𝑝𝑙𝑎𝑛𝑛𝑒𝑑

𝑗𝑡𝑒𝑐ℎ𝑖

)]

    (3.38) 

Here, τ represents a proportional coefficient that reflects price fluctuations resulting 

from imbalances between supply and demand, set at 0.001 according to Cong and Wei 

(2010). 

3.6.3 Capacity addition/shut-down module 

Anticipating future demand for electricity, IPPs may invest in new power plants. To 

begin, each producer of electricity must forecast electricity demand and supply in the 

future. It is pressumed each IPP employs an ARIMA algorithm to predict demand for 

year t+3 (𝐷𝑖,𝑡+3
𝑝𝑟𝑒𝑑.𝑡𝑜𝑡𝑎𝑙

): 

𝐷𝑖,𝑡+3
𝑝𝑟𝑒𝑑.𝑡𝑜𝑡𝑎𝑙

𝑄𝑡
𝑠𝑒𝑟𝑣.+𝑄𝑡

𝑐𝑜𝑛𝑠𝑡𝑟.−𝑄𝑡
𝑟𝑒𝑡. > 𝜀𝑖     (3.39) 

Here, 𝑄𝑡
𝑠𝑒𝑟𝑣. denotes the generation capacity in service, 𝑄𝑡

𝑐𝑜𝑛𝑠𝑡𝑟. indicates the power 

plants under construction, and 𝑄𝑡
𝑟𝑒𝑡. represents the power plant capacity expected to 

reach the end of their lifespans before year 𝑡+3. 

Once the investment decision is taken, capacity of newly built power plants is 

determined, using estimations on electricity deficits and share of a producer on the 

electricity market, with equation 3.40.  

𝑄𝑖,𝑡
𝑖𝑛𝑣. = (

𝐷𝑖,𝑡+3
𝑝𝑟𝑒.𝑡𝑜𝑡𝑎𝑙

𝜀𝑖
+ 𝑄𝑡

𝑟𝑒𝑡. − 𝑄𝑡
𝑠𝑒𝑟𝑣. − 𝑄𝑡

𝑐𝑜𝑛𝑠𝑡𝑟.) ∙
∑ ∑ 𝐺𝑖,𝑡𝑒𝑐ℎ,𝑗,𝑡

𝑎𝑐𝑡𝑢𝑎𝑙
𝑗𝑡𝑒𝑐ℎ

∑ ∑ ∑ 𝐺𝑖,𝑡𝑒𝑐ℎ,𝑗,𝑡
𝑎𝑐𝑡𝑢𝑎𝑙

𝑗𝑡𝑒𝑐ℎ𝑖
   (3.40) 
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Once capacity of newly built power plants is determined, the suitability of different 

power plant technologies is evaluated, considering their return on investment and 

related risks, as well as preferences about risks, public acceptance, environmental 

impact -assessed as Global Warming Potential (GWP) in the life cycle- and 

technology. The utility function equation used in this study is presented in equation 

3.41. 

𝑈𝑖,𝑡𝑒𝑐ℎ,𝑗,𝑡
𝑖𝑛𝑣. = (𝜔𝑡𝑒𝑐ℎ

𝑒𝑐𝑜 𝜃𝑖,𝑡𝑒𝑐ℎ,𝑗,𝑡
𝑒𝑐𝑜 + 𝜔𝑡𝑒𝑐ℎ

𝑠𝑜𝑐 𝜃𝑡𝑒𝑐ℎ
𝑠𝑜𝑐 +𝜔𝑡𝑒𝑐ℎ

𝑒𝑛𝑣 𝜃𝑡𝑒𝑐ℎ
𝑒𝑛𝑣 ) ∙ 𝜑𝑖,𝑡𝑒𝑐ℎ,𝑡   (3.41) 

Here, ω represents the weight of the criteria determined through the AHP analysis, 

while θ denotes the environmental, economic, and social utility score of the technology 

In this regard, Table 3.6 presents social acceptance percentages and environmental 

impacts for various technologies (Baur et al., 2022; Chatzimouratidis and Pilavachi, 

2008; Marashli et al., 2022). 

Table 3.6 : Social acceptance percentages and environmental impacts of 

technologies. 

Technology Social Acceptance (%) Environmental Impact (g CO2-eq/kWh) 

Wind 23.1 13.45 
Geothermal 19.89 37.4 
PV 18.44 38.8 

Hydro 10.73 22.7 
Biomass 8.47 62.4 

CCGT 7.02 502 

Coal 3.01 936 
Nuclear 1.76 26.9 

The economic utility function for energy investments is expressed as follows (Chen et 

al., 2018): 

𝜃𝑖,𝑡𝑒𝑐ℎ,𝑗,𝑡
𝑒𝑐𝑜 = (1 − 𝑒−𝛾𝑖∙𝑊𝑖,𝑡𝑒𝑐ℎ,𝑗,𝑡

𝑖𝑛𝑣.

)    (3.42) 

𝑊𝑖,𝑡𝑒𝑐ℎ,𝑗,𝑡
𝑖𝑛𝑣.  here is the discounted investment return rate, (3.43), and 𝛾i is the Arrow–

Pratt risk aversion coefficient, influencing the attitude of an IPP towards risk: a 

positive 𝛾i characterizes risk-averse attitudes, and the stronger the aversion to risk, the 

higher is the value of 𝜙𝑖,tech,𝑡 defines the share of this technology in the portfolio of an 

enterprise and its contribution to the total national contribution of the identical 

technology. 
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𝑤𝑖,𝑡𝑒𝑐ℎ,𝑗,𝑡
𝑖𝑛𝑣. =

∑

{
 
 

 
 (𝑄𝑖,𝑡

𝑖𝑛𝑣.∙8760∙𝐶𝐹𝑡𝑒𝑐ℎ∙𝑃𝑡
𝑒𝑙𝑒𝑐.𝑎𝑣𝑔

)−(𝑄𝑖,𝑡
𝑖𝑛𝑣.8760∙𝐶𝐹𝑡𝑒𝑐ℎ∙𝑓𝑡𝑒𝑐ℎ−𝐶𝑛𝑒𝑤.𝑖,𝑡𝑒𝑐ℎ𝑗,𝑡

𝑎𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒 )∙𝑡𝑎𝑥𝑡
𝑐𝑎𝑟𝑏𝑜𝑛

+𝑠𝑢𝑏𝑠𝑡𝑒𝑐ℎ,𝑡∙𝑄𝑖,𝑡
𝑖𝑛𝑣.−𝑃

𝑡𝑒𝑐ℎ,𝑡
𝑓𝑢𝑒𝑙

∙𝑄𝑖,𝑡
𝑖𝑛𝑣.∙𝑓

𝑖,𝑡𝑒𝑐ℎ,𝑗,𝑡
𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

−𝑂𝑃𝐸𝑋𝑖,𝑡𝑒𝑐ℎ𝑗,𝑡

(1+𝑟)𝑡−𝑡́

}
 
 

 
 

𝑇𝑡𝑒𝑐ℎ+𝑡
𝑡́=𝑡

𝐼𝑛𝑣𝑛𝑒𝑤.𝑖,𝑡𝑒𝑐ℎ,𝑗,𝑡
+ 𝐷𝑒𝑐𝑜𝑚𝑡𝑒𝑐ℎ           (3.43) 

Moreover, if a power plant has continuous losses for five consecutive years or reaches 

the end of its useful life, the generation company will dismantle it. 

Considering the limited resources for low-carbon resources, environmental constraints 

also put a limit on their excessive use, as expressed in equation 3.44. Once the overall 

installed capacity of a specific technology reaches its resource threshold, further 

investment in that technology is not allowed, unless some power plants using the same 

technology are dismantled. 

∑ ∑ 𝑄𝑖,𝑡𝑒𝑐ℎ,𝑗 ≤ 𝐶𝑎𝑝𝑡𝑒𝑐ℎ
𝑙𝑖𝑚𝑖𝑡

𝑗𝑖      (3.44) 

With ongoing technological advancements and economies of scale, the cost of energy 

generation technologies is decreasing year by year. Equation 3.45 illustrates the future 

average investment cost of a specific technology using a learning-by-doing model. 

ln (𝐼𝑛𝑣𝑡𝑒𝑐ℎ,𝑡
𝑎𝑣𝑔

) = ln (𝐼𝑛𝑣𝑡𝑒𝑐ℎ,𝑡0
𝑎𝑣𝑔

) − 𝜎𝑡𝑒𝑐ℎ ∙ ln (
(∑ ∑ 𝑄𝑖,𝑡𝑒𝑐ℎ,𝑗𝑗𝑖 )

𝑡

(∑ ∑ 𝑄𝑖,𝑡𝑒𝑐ℎ,𝑗𝑗𝑖 )
𝑡0

)   (3.45) 

where σtech stands for the experience index for the technology tech (See Table 3.7). 

Table 3.7 : Experience indexes of technologies (adapted from Wesseh Jr and Lin, 

2016; Rubin et al., 2015; Chen et al., 2018). 

Technology σtech 

Wind 0.15 

Geothermal 0.1 

PV 0.15 

Hydro 0.03 

Biomass 0.1 

CCGT 0.03 

Coal 0.07 

Nuclear 0.3 

3.6.4 Carbon Module 

For any given year, the government would have apportioned carbon quotas to all the 

fossil-based power plants for that coming year as well as specified the subsidy policy 

during that time. According to Chen et al. (2018), at the very outset, the government 
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would calculate carbon emission allowances of each power plant for the upcoming 

year using the grandfathering allocation mechanism: 

𝐶𝑖,𝑡𝑒𝑐ℎ,𝑗,𝑡+1
𝑎𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒 = (1 − 𝜂𝑟𝑟) ∙ 𝐺𝑖,𝑡𝑒𝑐ℎ,𝑗,𝑡

𝑎𝑐𝑡𝑢𝑎𝑙 ∙ 𝑓𝑖,𝑡𝑒𝑐ℎ,𝑗,𝑡 ∙ (1 − 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑑𝑟𝑎𝑡𝑒)  (3.46) 

The government provides subsidies to businesses involved in solar, wind, or biomass 

generation and evaluates the potential discontinuation of the subsidy scheme. 

Subsidies for renewable generation from solar, wind, or biomass cease once the 

levelized cost of electricity (LCOE) for these sources matches that of natural gas power 

plants. 

This study assumes that the prevailing carbon tax rate is influenced by cumulative 

quotas and emissions from the preceding period. The current carbon tax rate can be 

approximated as (Cong and Wei, 2010): 

𝑡𝑎𝑥𝑡
𝑐𝑎𝑟𝑏𝑜𝑛 = 𝑡𝑎𝑥𝑡−1

𝑐𝑎𝑟𝑏𝑜𝑛 ∙ 𝑒(𝜆
𝑐∙(𝑇𝑜𝑡𝑎𝑙 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑡−1−𝑇𝑜𝑡𝑎𝑙 𝑎𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒𝑡)) ∙ (1 + 𝜖𝑡)~𝑁(0, 0.01

2) (3.47) 

λc denotes a proportional coefficient, set at 0.005 (Cong and Wei, 2010). Additionally, 

a random disturbance represented by ϵt is incorporated to accommodate various 

unforeseen factors. The initial value for the carbon tax rate, denoted as 𝑡𝑎𝑥𝑡=0
𝑐𝑎𝑟𝑏𝑜𝑛, is 

set at $75 per ton of CO2-equivalent, aligning with the average carbon tax rate in 

Europe as of March 2024 (EU Carbon Permits, 2024). 

 Data 

To implement the proposed model efficiently, a wide-ranging dataset is assembled 

from various sources. This procedure entails consolidating information from numerous 

channels to guarantee precision and dependability. The upcoming Table 3.8 functions 

as a succinct repository, presenting the compiled data alongside their corresponding 

origins. 

 Assumptions 

In this study, it is hypothesized that Türkiye's CO2 emissions, accounting for 

approximately 1.5% of the global total, exert a negligible influence on the global 

climate. Within the context of renewable energy advancement, IPPs are assumed to 

strategically invest in PV and wind energy projects, focusing on regions with optimal 

efficiency. Consequently, estimating power generation from these sources relies on 
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calculations derived from the average output of the most efficient locations, utilizing 

capacity factors projected from future GCMs predictions.  

Furthermore, it is assumed that Türkiye has reached its full capacity for hydropower 

plants, thereby limiting IPPs' ability to establish new facilities in this sector. 

Additionally, IPPs are expected to face obstacles in pursuing offshore wind turbine 

projects, further complicating Türkiye's transition to renewable energy sources. 

Despite these assumptions, IPPs are anticipated to persist in their efforts to advance 

renewable energy solutions within Türkiye's energy landscape. 

Table 3.8 : Technical parameters of technologies. 

 PV Wind Hydro Geothermal Biomass Coal NG Nuclear Reference 

Fuel 

Consumption 

(ton/MWh) 

- - - - - 0.4 0.26 0.08 

LAZARD 

(2023), 

NREL 

(2023) 

CAPEX 

(M$/MW) 

0.92 1.1 2.574 5.3875 4.332 4.9 0.975 11.2 

Variable 

OPEX 

($/MWh) 

- - - 16.375 5.8 4.25 3.75 4.5 

Fixed OPEX 

(k$/MW-year) 

10.5 27.5 64 14.5 150.85 65.375 13.5 142 

Carbon 

emission 

(gCO2/kWh) 

- - - - - 900 460 - IPCC 

(2014) 

Experience 

index 

0.15 0.15 0.03 0.1 0.1 0.07 0.03 0.3 

Chen et 

al. (2018) Construction 

time (year) 

1 1 4 3 2 4 2 6 

Life span 

(year) 

30 30 100 30 45 30 30 60 NREL 

(2023) 

In alignment with the aforementioned assumptions, the deployment of electricity 

generation technologies encounters specific capacity limitations. Specifically, it is 

proposed that the maximum capacity for PV systems in Türkiye is 387 GW, as reported 

by Kilickaplan et al. (2017). Similarly, the capacity cap for wind energy systems is 

estimated at 83 GW (Oğulata, 2003). Moreover, it is assumed that the capacity 

threshold for geothermal systems in Türkiye is approximately 5 GW (Url-1), while the 

capacity restriction for biomass energy systems is projected to be 9.5 GW (Ozcan et 

al., 2015). 

Besides these assumptions, one base scenario and nine policy scenarios will be 

evaluated with the purpose to see the impact of energy policies on capacity additions, 
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electricity prices and CO2 emissions resulting from electricity generation. The features 

of the scenarios are presented in Table 3.9. The nuclear power plant capacity is taken 

as 4800 MW by considering the installment of the existing nuclear power plant in 

Akkuyu, Mersin. 

Table 3.9 : Features of policy scenarios. 

Scenario Carbon Tax Renewable Subsidy Corporation Tax 

Reduction for RES 

Nuclear 

Power Plant 

Base - - - - 

1 - 5 $/MWh (escalated with 

inflation rate) at t=0 

- - 

2 75 $/ton CO2-eq at 

t=0 

- - - 

3 75 $/ton CO2-eq at 

t=0 

5 $/MWh (escalated with 

inflation rate) at t=0 

- - 

4 - - 10% reduction - 

5 - - 40% reduction - 

6 - - - 4800 MW 

t=3 

7 - 5 $/MWh (escalated with 

inflation rate) at t=0 

- 4800 MW 

t=3 

8 75 $/ton CO2-eq at 

t=0 

5 $/MWh (escalated with 

inflation rate) at t=0 

- 4800 MW 

t=3 

9 75 $/ton CO2-eq at 

t=0 

Transfer of half of the 

carbon tax revenue as a 

subsidy for RES 

- 4800 MW 

t=3 

However, for comparison purposes, a carbon tax of US$75 per ton of CO2 can be 

justified for matching with the average carbon price prevailing within the EU market 

dynamics and hence essentially covering the full environmental cost of carbon 

emissions. This benchmark will allow a relative analysis of how such a policy might 

have influenced Turkey's electricity prices and emissions reduction, therefore allowing 

some insight into how things could change. Adopting this rate allows for a consistent 

evaluation of economic and environmental impacts, ensuring a relevant comparison 

despite Türkiye's non-EU status. Moreover, Table 3.10 presents the technical 

parameters of electricity generation technologies. 
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Table 3.10 : Technical parameters of electricity generation technologies. 

 PV Wind Hydro Geothermal Biomass Coal Natural 

Gas 

Nuclear 

Fuel 

Consumption 

(ton/MWh) 

- - - - - 0.4 0.26 0.08 

Carbon 

emission 

(gCO2/kWh) 

- - - - - 900 460 - 

Experience 

index 

0.15 0.15 0.03 0.1 0.1 0.07 0.03 0.3 

CAPEX 

(M$/MW) 

0.92 1.1 2.574 5.3875 4.332 4.9 0.975 11.2 

Variable OPEX 

($/MWh) 

- - - 16.375 5.8 4.25 3.75 4.5 

Fixed OPEX 

(k$/MW-year) 

10.5 27.5 64 14.5 150.85 65.375 13.5 142 

Life span (year) 30 30 100 30 45 30 30 60 

Construction 

time (year) 

1 1 4 3 2 4 2 6 
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 RESULTS AND DISCUSSION 

 Climate Projections 

As given in Section 1.3, the first objective of this study is to identify the most accurate 

GCMs that can simulate Türkiye’s unique climate conditions. To detect the top four 

GCMs, outputs of CGMs for each climate variable were compared with ERA5/CRU 

data in 120 grids using three different methods, namely, Kling-Gupta efficiency, 

normalised Root Mean Squared Error, and modified index of agreement. 

Following the calculation of these values for evergy grid, Multi-Criteria Decision 

Analysis (MCDA) method was applied to determine the performance of GCMs. The 

results of MCDA and rankings are given in Table 4.1 and Table 4.2, respesctively. 

 Table 4.1: MCDA results for each climate variable.  
 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 

RSDS  

KGE 37.9 38.6 9.8 18.4 14.8 11.4 16.6 42.0 67.7 52.4 14.7 33.4 17.5 

md 40.3 33.8 14.8 14.9 12.3 13.0 13.1 45.1 73.0 47.0 14.8 42.2 11.2 

nRMSE 44.9 41.9 10.0 14.8 12.1 13.9 15.7 40.7 76.6 44.5 13.9 31.5 14.8 

TAS 

KGE 25.8 34.2 34.9 31.7 29.4 41.9 32.3 9.7 28.4 41.9 25.6 20.4 19.1 

md 36.2 54.2 30.4 29.5 36.2 27.6 16.9 28.1 29.3 35.4 12.7 26.0 13.0 

nRMSE 32.7 42.6 45.4 27.8 34.3 29.0 24.8 9.6 29.8 39.6 12.0 33.2 14.5 

SFCWIND 

KGE 61.2 29.5 9.1 27.7 29.7 13.9 56.6 15.2 30.6 26.7 25.8 14.5 34.7 

md 75.6 24.9 9.2 24.5 25.7 13.3 60.1 13.7 25.7 23.3 25.3 12.3 41.7 

nRMSE 52.4 21.4 9.1 30.8 27.6 14.1 59.6 14.0 36.5 34.3 19.9 11.4 44.1 

Table 4.2: Rankings of GCMs for each climate variable. 
 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 

RSDS  

KGE 5 4 13 7 10 12 9 3 1 2 11 6 8 

md 5 6 9 7 12 11 10 3 1 2 8 4 13 

nRMSE 2 4 13 8 12 11 7 5 1 3 10 6 9 

TAS 

KGE 9 4 3 6 7 2 5 13 8 1 10 11 12 

md 3 1 5 6 2 9 11 8 7 4 13 10 12 

nRMSE 6 2 1 9 4 8 10 13 7 3 12 5 11 

SFCWIND 

KGE 1 6 13 7 5 12 2 10 4 8 9 11 3 

md 1 7 13 8 4 11 2 10 5 9 6 12 3 

nRMSE 2 8 13 6 7 10 1 11 4 5 9 12 3 

After determining performance of each GCM utilizing MCDA, the comprehensive 

ranking metric (MR) method was employed to amalgamate the MCDA ranking 
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outcomes of the models into a unified metric across all performance criteria and 

climate variables. 

Table 4.3: The most successful GCMs for simulating Türkiye’s climate conditions. 

 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 

MR 0.709 0.641 0.291 0.453 0.462 0.265 0.513 0.350 0.675 0.684 0.248 0.342 0.368 

Rank 1 4 11 7 6 12 5 9 3 2 13 10 8 

The values in the Table 4.3 represent the performance scores of each model with 

respect to the MR. For instance, Model 1 (M1) has a score of 0.709, indicating it 

performs well according to the MR criterion. Model 2 (M2) has a score of 0.641, 

ranking it lower compared to Model 1 but still relatively high among the models. 

Model 11 (M11) has the lowest score of 0.368, indicating poorer performance 

according to the MR criterion. The second row labeled "Rank" shows the ranking of 

each model based on their scores for the MR criterion. Model 1 (M1) has the highest 

score and therefore ranks first, while Model 11 (M11) has the lowest score and ranks 

last. 

As a result of these analyses, within the range of 13 GCMs, ACCESS-CM2, INM-

CM5–0, INM-CM4–8, and ACCESS-ESM-1-5 emerged as the most promising 

options. Hence, they were chosen for forecasting Türkiye's future climate. 

As the next step, the XGBoost ML algorithm was employed to ensemble the outputs 

of these GCMs due to the advantages of ensemling process provided in the 

Methodology Section.  The future projections for each grid and climate variable are 

generated by combining the SSP5.85 scenario data from the chosen climate models. 

Projections were conducted for the years 2023-2040. 

As a consequence of this projection, the alterations in future projections relative to 

historical data were determined by applying equations 3.26-3.30 . Figure 4.1 illustrates 

the variations in the averages of the periods 2025-2030, 2031-2035, and 2036-2040 

compared to the average energy potentials from 1985 to 2014, expressed as 

percentages for each grid. 

The forecast indicates an anticipated decline in the electricity output from solar power 

plants across Turkey, attributed to efficiency losses exacerbated by rising 

temperatures. Foremost among the regions expected to experience the most significant 

decrease are the Mediterranean and Eastern Black Sea Regions. However, despite the 

projected decline, the Eastern Black Sea Region presently exhibits relatively low solar 

potential, rendering it economically unfavorable for the installation of photovoltaic 
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solar power plants. This study's findings corroborate the unsuitability of this region for 

such installations in the future. Conversely, the Marmara Region (particularly Thrace) 

and the Southeastern Anatolia Region are anticipated to undergo the least reduction in 

electricity production from photovoltaic solar power plants. Remarkably, these 

outcomes align with existing literature, as reported by Ha et al. (2023) and Jerez et al. 

(2015). 

 

Figure 4.1 : Change in energy production as percentages for different time horizons. 

Upon examining electricity generation from wind turbines, an uptick in wind power 

production is projected, notably in Thrace and the northern reaches of Central Anatolia 

(near Çorum and Tokat). Conversely, a downturn in wind power potential is 

anticipated in the Eastern Black Sea, and Uşak-Kütahya-Eskişehir-Bolu regions. 

Notably, these findings echo earlier research in the literature, as documented by Çetin 

(2023). 

Furthermore, the mean CDDs for every city in Turkey are calculated over three 

specific time periods, employing temperature projections derived from GCM forecasts 

(Refer to Figure 4.2). It becomes conspicuously apparent that the average CDDs are 

expected to undergo a substantial increase across most cities, notably within the 

Mediterranean region and the southeastern sector of Turkey, as a consequence of the 

influences of global warming. These observations align with existing literature, as 

evidenced by studies such as those conducted by Lionello and Scarascia (2018) and 

Batibeniz et al. (2023). 
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Figure 4.2 : Change in CDDs of cities based on time horizons. 

Table 4.3 illustrates the annual population-weighted CDDs from 2020 to 2040. CDDs 

are a metric used to estimate the demand for energy needed to cool buildings; they 

increase with rising temperatures. The data shows a general upward trend over the two 

decades, suggesting an increase in cooling requirements over time, which may be 

indicative of a warming climate or changing population distribution towards warmer 

areas. 
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Notable increases are seen in the years 2031 (127.06) and 2032 (129.31), with slight 

dips and recoveries in subsequent years. This pattern reflects an overall increase in 

cooling demand, highlighting the importance of planning for enhanced cooling 

infrastructure and energy resources to manage the growing need effectively. The data 

underscores the impact of climate change on energy consumption patterns, 

emphasizing the need for sustainable energy solutions and climate adaptation 

strategies. 

 

Figure 4.3 : Population weighted CDD of Türkiye. 

 AHP and Utility Function 

In this study, an AHP analysis was conducted to determine the weights of utility 

function components given in equation 3.41. The weights of utility function 

components given in equation 3.41 were determined through an AHP analysis. The 

AHP analysis involved gathering comparative values provided by 11 experts from 

academia specializing in energy and environment, as well as the private sector 

focusing on energy and finance. After the survey values were collected, the pairwise 

comparison matrix was created as the first step of the AHP (See Table 4.4). 

Table 4.4: Pairwise comparison matrix. 
 

W1 W2 W3 

W1 1 6.590817 6.473262 

W2 0.151726 1 1.995506 

W3 0.154482 0.501126 1 

Sum 1.306208 8.091943 9.468768 

Following the pairwise comparison matrix, a normalized pairwise comparison matrix 

was created by applying equation 3.12 (See Table 4.5). The AHP analysis resulted in 
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determining the weights of environmental, economic, and social utility scores as 0.095, 

0.15, and 0.755, respectively. 

Table 4.5: Normalized pairwise comparison matrix. 
 

W1 W2 W3 Criteria Weight 

W1 0.765575 0.814491 0.683644 0.755 

W2 0.116158 0.12358 0.210746 0.150 

W3 0.118267 0.061929 0.10561 0.095 

Moreover, since the Consistency Ratio (CR) with the value of 0.088 is lower than the 

threshold value (0.1) given by Saaty (1980), it can be concluded that the result of the 

AHP analysis is reliable. 

Taking into account the MAUT, experts determine utility scores based on the ranges 

and units of utility functions related to environmental impact and social acceptance. 

Table 4.6 outlines these utility scores, while Figure 4.4 depicts the utility curves. 

Table 4.6: Utility scores for each quartile. 

Criteria/Score Range 0 0.25 0.5 0.75 1.0 

Environmental 13.45-936 13.45 290.12 420.21 520.34 936 

Social acceptance 1.76-23.21 1.76 7.02 11.42 17.42 23.21 

 

 

Figure 4.4 : Utility function of a) Environmental impact, and b) Social acceptance 

for electricity generation technologies. 

Table 4.7 presents the combined utility scores for environmental impact and social 

acceptance of each electricity generation technology, derived from utility curves 

established using the MAUT and weights determined through AHP analysis. These 

scores are calculated in accordance with equation 4.1, which is a component of 

equation 3.41. 

0.150(0.0468𝑥𝑠𝑜𝑐 − 0.0686) + 0.095(−0.0011𝑥𝑒𝑛𝑣 + 0.9946)  (4.1) 
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where xsoc and xenv are scores of environmental impact and social acceptance given in 

Table 4.7, respectively. 

Table 4.7: Combined utility scores of electricity generation technologies. 

Technology Combined Utility 

Scores Wind 0.245 

Geothermal 0.220 

PV 0.210 

Hydro 0.157 

Biomass 0.137 

CCGT 0.081 

Coal 0.008 

Nuclear 0.094 

 Agent Based Simulation 

The outcomes of 10 distinct energy-climate policy scenarios, executed through a 

mathematically described agent-based simulation model detailed in Section 3.6, are 

outlined in the subsequent section. 

The outputs of ABM are caterogized under five titles; i) electricity demand, ii) capacity 

additions, iii) carbon emissions, iv) electricity prices, and v) changes in technology 

costs. 

Before executing the scenarios, the model is validated using data from 2020 to 2022. 

The outputs of the ABM, specifically electricity prices, emissions, and electricity 

demand, are compared with actual data from this period. Table 4.8 presents a 

comparison between the real data and the model outputs for 2020-2022. The results 

indicate that the model's outputs closely align with the observed data, confirming that 

the model is suitable for forecasting future values. 

Table 4.8: Comparison of real data and model outputs for validation. 

 Year Price Demand Emission 

Real Data 

2020 40.92 262.7 128.8 

2021 55.6 288.8 143.7 

2022 147.5 296.6 145.2 

Model Output 

2020 41.1 264.2 129.4 

2021 54.4 286.7 144.1 

2022 149.2 299.1 145.9 
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4.3.1 Electricity demand 

As outlined in the electricity demand module (Section 3.6.1), the demand for 

electricity is greatly influenced by shifts in income levels, electricity prices, 

temperature, and population.  

Precise prediction of electricity demand using ABM holds pivotal significance in 

advancing energy efficiency, demand-side management, and grid optimization 

endeavors. By delving into the factors driving electricity consumption at the level of 

sectors, the ABM illuminates pathways for curbing energy wastage, fine-tuning load 

patterns, and fostering the uptake of energy-efficient technologies and methodologies. 

This proactive stance toward demand forecasting equips utilities, grid operators, and 

policymakers with actionable insights to deploy tailored interventions, including 

demand response initiatives, time-of-use pricing strategies, and incentives for energy 

efficiency. These measures are geared towards not only reducing system costs but also 

bolstering overall energy efficiency across the spectrum of energy consumption. 

Illustrated in Figure 4.5, the projected electricity demand for Türkiye under the base 

scenario exhibits an almost linear trajectory. Projections suggest that by 2030, 2035, 

and 2040, electricity demand is anticipated to reach 456 TWh, 521 TWh, and 571 

TWh, respectively. 

 

Figure 4.5 : Electricity demand of Türkiye. 

Figure 6 illustrates Türkiye's annual sectoral electricity demand. With the projected 

rise in industrial electricity consumption, the industrial sector's share of total electricity 

demand is anticipated to exceed 50%, reaching 54% by 2040. Conversely, the growth 

rates of residential and commercial electricity demand are expected to be 

comparatively lower than that of industrial electricity demand. Forecasts indicate that 
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residential and commercial electricity demand will reach 124.7 TWh and 138 TWh, 

respectively, by 2040, while industrial electricity demand is poised to surpass 308 

TWh. 

 

Figure 4.6 : Sectoral electricity demand.  

4.3.2 Capacity additions 

One significant outcome of the implemented ABM lies in its ability to project the 

installed capacity of electricity generation technologies, a factor heavily contingent 

upon policy scenarios. The distribution of installed capacity holds significant sway 

over not only emissions but also electricity prices. By simulating various policy 

scenarios, the ABM provides insights into how different regulatory frameworks and 

market conditions can shape the future landscape of electricity generation, facilitating 

informed decision-making processes aimed at achieving environmental sustainability 

and economic efficiency in the energy sector. 

The installed capacity projections derived from ABM emerge as a fundamental tool 

for the long-term strategic identification of policymakers, energy strategists, and all 

concerned stakeholders. It is also essential that the probable development and 

deployment of different electricity generation technologies over time provide 

significant information for the determination of decision-makers about the future 

infrastructural requirements, avenue identification of investments, and resiliency of 

energy policy, thereby acting in tune with overall socio-economic objectives. 

Moreover, factoring in variables like technological advancement, fuel availability, 

environmental regulations, and market dynamics, the installed capacity projections 
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using ABM will let stakeholders foresee upcoming challenges and opportunities for 

transitioning to a more sustainable and resilient energy paradigm. 

Additionally, ABM is good at modeling the distribution of installed capacity across a 

suite of electricity generation technologies that enable the assessment of system 

reliability, resilience, and adaptability under a range of future scenarios. The ABM 

allows stakeholders to test whether available capacity will meet reliably future 

electricity demands without compromising grid stability or leading to potential 

shortages by simulating such a complex interaction between supply and demand 

dynamics, fluctuating renewable generation, and demand patterns. It views capacity 

planning in a holistic way that builds comprehension of complex dynamics inside 

energy systems; this, in turn, enhances strategy development to reinforce energy 

security while minimizing risks during the efficient integration of renewable sources 

into the grid. 

Figures 4.7 and 4.8 depict the installed capacities and their respective shares needed 

to meet Türkiye's electricity demand across various policy scenarios. In the base 

scenario, installed PV capacity is projected to reach 28.7 GW by 2030, 50.7 GW by 

2035, and 79.5 GW by 2040. This projection represents an almost tenfold increase in 

current installed PV capacity by 2040. Across all policy scenarios, PV technology 

emerges as the most favored choice for IPPs. 

The policy identified as having the most significant impact on increasing installed PV 

capacity is the reduction of corporate tax rates. Under this policy, installed PV capacity 

could potentially reach 94 GW by 2040. However, it is important to recognize that the 

full utilization of this installed capacity is not guaranteed, as it depends on actual 

electricity demand and market prices. As illustrated in Figure 4.9, the share of RES in 

the electricity mix is 72 percent in Scenarios 4 and 5, which are the lowest among all 

scenarios. This indicates that IPPs have overinvested in PV systems, leading to a 

substantial amount of idle capacity. Consequently, while tax reductions can 

significantly boost PV installations, careful consideration must be given to aligning 

capacity expansion with realistic demand forecasts and economic conditions to avoid 

inefficiencies and underutilization of resources. 

Wind power capacity is also expected to grow significantly in all scenarios. The 

installed wind power capacity is projected to increase by 1.5-fold every five years. 
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These trends suggest that solar and wind power systems will be the cornerstone of 

future electricity generation investments. In contrast, biomass, hydroelectric, and 

geothermal power plants show limited expansion potential compared to PV and wind 

systems due to capacity constraints. 

In the base scenario, installed wind power capacity is projected to reach 20 GW by 

2030, 31 GW by 2035, and 46.7 GW by 2040. While the reduction of corporate tax 

rates also stimulates an increase in wind power installations, this effect is relatively 

modest compared to the surge in PV capacity additions. Despite the positive impact of 

tax incentives, wind power does not experience the same dramatic growth as PV, 

reflecting different dynamics and investment incentives between these renewable 

technologies. Nevertheless, wind power remains a crucial component of the future 

energy mix, contributing significantly to the overall increase in renewable energy 

capacity. The strategic expansion of wind power, albeit at a slower pace than PV, 

underscores its vital role in complementing solar energy and ensuring a balanced and 

sustainable energy transition. 

 

Figure 4.7 : Installed capacities of technologies in 2030, 2035, and 2040. 
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In the case of fossil fuel-based power plants, natural gas power plants are anticipated 

to grow more than coal. Under the base scenario, the installed capacity of natural gas 

power plants is expected to reach 27.7 GW by 2030, 36.1 GW by 2035, and 47.2 GW 

by 2040, while that of coal power plants would remain largely the same beyond 2030. 

This reflects a strategic shift in the energy mix, driven by the need for more flexible 

and responsive solutions for power generation. 

This increased interest in natural gas-powered electrical plants has come primarily 

because of the efficiency at which such a facility could provide both load-following 

and peak-load operation. Natural gas plants, unlike coal-fired plants that supply base 

loads since their power output is stable and steady, can easily ramp up and down to 

meet increased and decreased output requirements caused by demand fluctuations. 

This flexibility is, however, important in a power grid that has a large share of 

intermittent and variable sources of energy like wind and solar. The greater the share 

of renewable energy sources in the energy mix, the more vital this becomes for quick 

scaling up or down of production to maintain grid stability and reliability. 

Besides, the expansion in natural gas capacity is also driven by increasing variability 

from RES on the grid. The output of wind and solar generation varies with 

meteorological conditions and time of day, making the operation of natural gas-fired 

power plants necessary as a backup to maintain a reliable supply of electricity. Such 

plants can compensate for dips in renewable generation quickly in order to avoid 

blackouts and ensure demand for electricity at all times. 

Natural gas, therefore, is an essential complement to the transition process in order to 

balance out the intermittency of RES and ensure the reliability of the overall electricity 

grid. This makes natural gas particularly crucial in this context: enabling further 

integration of intermittent renewable sources by offering flexible and responsive 

supply. 

On the other hand, it is revealed that the installation of nuclear power plants can reduce 

investments in natural gas power plants due to the significant advantages nuclear 

energy provides for base-load power generation. Nuclear plants offer a consistent and 

reliable electricity output, operating at high capacity factors and delivering a 

continuous energy supply, which lessens the need for additional natural gas plants to 

meet base-load demands. Additionally, once built, nuclear power plants have lower 
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operating costs and produce no greenhouse gas emissions during operation, making 

them appealing for countries focused on reducing carbon emissions while maintaining 

a stable energy supply. As nuclear energy can satisfy a substantial portion of base-load 

requirements, the demand for natural gas plants, particularly those intended for base-

load generation, decreases.  

 

Figure 4.8 : Capacity shares of technologies in 2030, 2035, and 2040. 

As illustrated in Figure 4.8, in the absence of governmental policy interventions in the 

electricity market, projections indicate that wind and solar power plants will 

collectively constitute half of Türkiye's total installed capacity by 2040. Each 

governmental policy uniquely impacts capacity development over different 

timeframes. Renewable energy subsidies significantly enhance capacity additions for 

wind and solar power plants in the short to medium term. However, their influence 

wanes in the long term. Conversely, carbon tax systems promote a more steady and 

sustained growth for wind and solar power plants over time. 
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Despite these differing impacts of policies, the share of RES in the total installed 

capacity is projected to remain below 71 percent in all scenarios. This suggests that 

while policies can drive considerable growth in renewable energy capacities, other 

factors may limit their ultimate share in Türkiye's energy mix. 

 

Figure 4.9 : Share of RES in electricity mix in 2030, 2035, and 2040. 

4.3.3 Carbon emissions 

Carbon taxing within the energy sector functions as a market-driven strategy aimed at 

reducing carbon emissions by imposing taxes on the carbon content of fossil fuels used 

in energy generation. This approach incentivizes energy producers to lower their 

carbon output by making fossil fuel consumption more expensive and thus less 

attractive compared to cleaner alternatives. Figure 4.10 illustrates the trajectory of 

carbon taxes under Scenarios 3, 4, and 9, highlighting how these taxes evolve over 

time to promote a shift towards more sustainable energy sources. 

Projections indicate that by 2040, the carbon tax could exceed $271.1 per ton of CO2 

if implemented independently, without the integration of other policy measures. This 

scenario reflects a substantial increase in costs associated with carbon emissions, 

encouraging significant reductions in fossil fuel use. However, if carbon taxing is 

combined with other policy instruments, such as renewable energy subsidies or 

regulatory mandates, the carbon tax is anticipated to reach a slightly lower peak of 

$257.3 per ton of CO2. This suggests that complementary policies can achieve similar 

environmental objectives with a less aggressive carbon tax rate, potentially easing the 
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economic burden on energy producers while still fostering a transition to cleaner 

energy sources. 

 

Figure 4.10 : Progression of carbon taxes. 

The different paths of annual and cumulative electricity generation-based CO2 

emissions, considering capacity installations and energy-climate policies, are shown 

in Figure 4.11. In the baseline scenario, assuming no new policies are implemented, 

annual CO2 emissions are set to peak at 174.6 million tons in 2032. This peak is 

expected to occur as a result of continued dependence on fossil fuels for energy 

generation. Following this peak, a decline in annual emissions is anticipated due to the 

increasing capacity of RES. By 2040, even without policy interventions, annual CO2 

emissions are expected to decrease to 118 million tons, indicating a natural shift 

towards cleaner energy driven by market and technological factors. 

The influence of energy-climate policies on CO2 emissions, however, is unmistakable. 

Various policy measures, such as carbon taxes and renewable energy subsidies, can 

significantly alter the emissions trajectory. Through the implementation of these 

policies, there is a clear potential to accelerate the reduction in CO2 emissions. The 

analysis shows that with appropriate policies in place, cumulative CO2 emissions for 

the period of 2022-2040 could be reduced by more than 11% compared to the baseline 

scenario. This reduction underscores the effectiveness of targeted policy interventions 

in mitigating climate change and promoting sustainable energy practices. These 

findings also highlight the critical role of government policies in shaping the future of 

energy and emissions. While market forces and technological advancements will 
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naturally drive some reduction in CO2 emissions, policy measures are essential for 

achieving more substantial and timely reductions. 

 

Figure 4.11 : Annual and cumulative electricity generation-based CO2 emissions. 

As the ABM operates only until 2040, the emissions outputs are extrapolated based on 

their trends to assess the effectiveness of the policies in achieving the net-zero target 

by 2053 (See Figure 4.12). The base scenario, which lacks any policy intervention, 

shows a gradual decline in emissions but fails to reach net-zero by 2053, indicating 

that without policy measures, decarbonization efforts will be insufficient to meet the 

target. 

Scenarios involving a carbon tax (S2, S3, S8, S9) show a more significant reduction 

in emissions compared to those without such a tax. For instance, Scenario 2, which 

implements a carbon tax of $75/tonCO2-eq. at t=0, results in a notable decrease in 

emissions, although it does not fully achieve net-zero by 2053. The combination of a 

carbon tax with renewable energy subsidies, as seen in Scenarios 3 and 8, accelerates 

the decline in emissions, pushing them closer to the net-zero target. 
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Renewable energy subsidies alone, as in Scenario 1, contribute to emission reductions 

but are less effective than scenarios incorporating a carbon tax. However, when 

combined with the introduction of new nuclear power capacity (Scenario 7), the 

subsidy shows an enhanced impact, nearly achieving net-zero emissions. Scenario 9, 

which integrates a carbon tax, a transfer of half the carbon tax revenue as a subsidy for 

renewable energy, and the addition of nuclear power, is the most effective strategy. It 

not only reduces emissions at a faster rate but also comes closest to or potentially 

achieves net-zero emissions by 2053. 

These results suggest that the multi-faceted approach, combining carbon pricing, 

subsidies for renewable energy, and the expansion of nuclear power, works best to 

meet the 2053 net-zero emissions goal in electricity generation. The integration of 

financial incentives and diversified energy sources significantly amplifies the 

effectiveness of policy measures. 

Figure 4.12 : Extrapolated emissions based on their trends. 

4.3.4 Electricity prices 

Understanding the future trends of electricity prices is important both for policymakers 

and consumers. Several factors, such as capacity expansions and policy interventions, 

influence the projected changes in these prices. This analysis considers the expected 

trends in electricity pricing up to the end of the forecast period, emphasizing the impact 

of different scenarios on price stabilization. This overview tries to put into perspective 

the expected impacts of capacity growth and certain energy policies, such as carbon 
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taxes and subsidies for renewable energies, on the cost of electricity and wider energy 

market implications. 

As seen in Figure 4.13, electricity prices are set to decline significantly up to 2029 due 

to capacity expansion. Beyond this initial decline, prices are set to stabilize across all 

scenarios for the rest of the forecast period. This decline is attributed to increased 

supply and efficiency brought on by these expansions in capacity. This stabilization 

infers a balancing in the supply and demand of electricity in the market, allowing both 

consumers and business entities to budget properly. 

The most desirable rates of electricity are expected when carbon tax and renewable 

energy subsidy policies operate. Such policy measures encourage cleaner energy 

sources, hence driving down the costs. In contrast, in Scenario 6, with no policy 

interventions except integration of a nuclear power plant in the grid, the highest prices 

of electricity are seen. This example further shows how different policy decisions 

greatly affect energy prices and signifies the importance of a holistic approach to 

policy-making in order to better manage electricity cost and sustainable energy 

practices. 

 

Figure 4.13 : Electricity prices. 

4.3.5 Changes in technology costs 

As technology continues to advance and economies of scale are realized, the cost of 

energy generation technologies is steadily decreasing each year. Innovations in 

renewable energy sources such as solar and wind power have led to more efficient and 

cost-effective solutions. Additionally, increased investment in research and 

development has accelerated the pace of technological improvements, further driving 
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down costs. This trend is not only making clean energy more accessible and affordable 

but also fostering a competitive market that encourages further advancements and 

sustainable practices in the energy sector. 

As illustrated in Equation 3.45, the investment costs of electricity generation 

technologies vary with installed capacity and the experience index. Accordingly, 

Figure 4.14 shows the projected changes in investment costs for 2030, 2035, and 2040 

for each generation technology under the base scenario. 

 

Figure 4.14 : Changes in cost of electricity generation technologies. 

The most substantial cost reduction is anticipated in PV system installations. This 

technology is projected to see a decrease of over 19 percent in costs from 2023 to 2040. 

Wind power systems are also expected to experience significant cost reductions, with 

an estimated decline of approximately 16 percent over the same period. These 

reductions are driven by advancements in technology, increased manufacturing 

efficiencies, and economies of scale. As a result, both PV and wind power systems are 

becoming more economically viable, contributing to the broader adoption of 

renewable energy sources. 

In addition to the anticipated cost reductions in PV and wind power systems, biomass 

technology is expected to see a 10.5 percent decrease in costs by 2030. After this initial 

reduction, the investment costs for biomass technology are projected to stabilize, 

remaining constant until 2040. Meanwhile, geothermal electricity generation 

technology is forecasted to undergo a continuous cost reduction of over 11.5 percent 

from 2023 to 2040. Conversely, only minimal cost reductions are anticipated for the 

well-established electricity generation technologies such as hydro-electric, natural gas, 

and coal. This marginal decrease reflects the maturity and established nature of these 

technologies, which have already undergone significant optimization. As a result, the 

potential for further cost savings is limited compared to newer, rapidly evolving 
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renewable technologies. The modest cost changes in these traditional energy sources 

highlight the increasing economic competitiveness of emerging renewable options, 

reinforcing the shift towards cleaner, more sustainable energy systems. 

 Discussion 

This study explores the potential impact of climate-energy policies on various aspects 

of the electricity sector in Türkiye, including electricity demand, renewable electricity 

generation, capacity expansions, electricity prices, and CO2 emissions from electricity 

generation. It also considers the influence of future climate change on these factors. 

The research begins by identifying the top four GCMs that can accurately simulate 

Türkiye’s unique climate conditions. This identification is achieved using three 

methods: normalized Root Mean Square Error, Kling-Gupta Efficiency, and modified 

index of agreement. 

Among all the GCMs evaluated, the most promising ones were ACCESS-CM2, INM-

CM5-0, INM-CM4-8, and ACCESS-ESM-1-5. These models are further used to 

project the future climate of the nation, Türkiye, under the SSP5-8.5 scenario, which 

is rather pessimistic and often referred to as Business-as-Usual. By applying such 

models, the study offers an integrated approach that can point out how climate changes 

could affect the projected future of the electricity sector in Türkiye by formulating 

applicable climate-energy policies that may offset adverse impacts and foster 

sustainable energy practices. 

In the future climatic conditions of Türkiye, it is evident that rising temperatures due 

to climate change will strongly affect electricity demand for space cooling, especially 

in the Mediterranean and southeastern parts of the country. With the rise in 

temperatures, the need for air conditioning also increases, thus increasing the 

consumption of electricity. This causes some pressure on the energy infrastructure and 

requires one to take proactive steps to mitigate such effects. 

The government can use various strategies to address the increasing demand for space 

cooling. First, there is a need to promote energy-efficient building practices that ensure 

new constructions are by default designed in ways that minimize cooling needs. 

Another approach is through incentives for the adoption of sustainable cooling 

technologies, which may encourage households and businesses to invest in efficient 
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systems. Furthermore, awareness of efficient cooling behavior-for instance, optimal 

settings of the thermostat and maintenance of cooling equipment-will have the 

potential to pay rich dividends for decreasing consumption. 

Besides that, the integration of passive thermal management systems (PTMS) such as 

thermochromic smart windows (TSW) and daytime passive radiative coolers (DPRC) 

will greatly reduce electricity consumption due to air conditioning. These advanced 

technologies also help regulate heat absorption and its dissipation within comfortable 

indoor temperature ranges, exempting buildings from active cooling requirements. 

According to Lin et al. (2021), the installations of these systems can save up to 17% 

of the electricity that is constantly utilized for air-conditioning. Therefore, it will be 

easy for Türkiye to respond to heightened demand for cooling with the rise in 

sustainable energy development. 

The present study has examined one base case scenario and nine policy scenarios in 

evaluating the capacities of different energy policies for capacity expansion, electricity 

price, and CO2 emissions from generation. It is observed in all these policy scenarios 

that capacity expansion in solar and wind power plants has increased considerably.This 

expansion in RES leads to a pivotal moment in 2032, where CO2 emissions from 

electricity generation peak and then begin to decline in all scenarios. However, the 

degree of impact on CO2 emissions varies with each specific energy-climate policy 

implemented. 

To achieve the greatest reduction in cumulative CO2 emissions, the study recommends 

the deployment of nuclear power plants in conjunction with both carbon taxing and 

subsidies for renewable energy sources by the government. In this optimal scenario, 

the government would provide a subsidy adjusted for inflation, alongside the carbon 

tax, to incentivize the adoption of clean energy technologies. This combined approach 

not only accelerates the transition to a low-carbon energy system but also ensures the 

financial viability of renewable energy projects. By strategically implementing these 

measures, Türkiye can effectively manage the growth in energy demand while 

significantly reducing its carbon footprint, paving the way for a sustainable and 

environmentally responsible energy future. 

While carbon taxing alone has the potential to reduce cumulative CO2 emissions by 

1.52% compared to the base scenario, RES subsidies may achieve a more substantial 
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reduction of 4.14%. If implemented together, the reduction in CO2 could be more than 

6% due to a synergistic effect greater than that of either policy in isolation. Such a 

combined approach would exploit the interaction between economic incentives and 

regulatory measures in providing major emission reductions. 

Moreover, in synergy with the nuclear power plants deployment, such policies could 

further raise the cumulative CO2 emission reduction to over 11% during the projection 

period. This is a far-reaching approach that points to the importance of a diversified 

approach to energy policy-where various measures reinforce each other to maximize 

environmental benefits. In contrast, the effect of reducing corporation taxes for RES 

on CO2 emissions is marginal. Thus, if the main goal set by the government is to 

minimize CO2 emissions in the short run, carbon taxing, RES subsidies, and 

deployment of nuclear power would be far more effective than to introduce corporation 

tax reductions for RES. 

The nuclear power installed in the absence of any climate-energy policy would achieve 

a far-from-negligible reduction of 5.3% in cumulative CO2 emissions, underlining the 

crucial role that nuclear energy could play in the mitigation of emissions. However, 

nuclear power plants are not very attractive for widespread adoption due to significant 

initial investment costs and public skepticism about the operation of plants. This may, 

therefore, create the need for the government's intervention in leading investments in 

and operating nuclear power plants. 

In the absence of adequate enthusiasm by the IPPs regarding investment in nuclear 

energy, the gap between theoretical benefits of nuclear power and the practical 

challenges has to be filled by government intervention. A proactive role played by the 

government in financing and overseeing the development of nuclear infrastructure 

may help shape a cleaner, more sustainable energy future. Additionally, concerted 

efforts to address public concerns and enhance transparency regarding nuclear energy's 

safety and efficacy are essential for garnering broader societal acceptance and support 

for nuclear power initiatives. 

Another important result of this study refers to the forecast of electricity prices, 

considering the influence of energy-climate policies. With the continuous increase in 

capacity additions, especially in RES, the electricity price is expected to drop 

significantly until 2029 and then remain relatively stable. During this stable phase, the 
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prices are expected to range between 25-31 $/MWh for all scenarios. The introduction 

of RES subsidies will have substantial price-reduction effects, especially because the 

current cuts in corporation taxes for RES reduce the prices slightly. The impact is high 

since RES power plants, while operating under the auspices of subsidies, are in a 

position to present bids that can pull down the prices on average. 

The combination of deploying nuclear power plants with the inflation-adjusted RES 

subsidy scheme is the best policy for reaching both minimum CO2 emissions and 

minimum electricity prices. This option creates a synergy between the strong points of 

nuclear energy in the emission reduction process and the cost-reduction impact of RES 

subsidies. In this way, by using these two options, it would be possible for the country 

to achieve two goals simultaneously: a reduction in the GHG emission rate and 

keeping electricity prices at low levels for consumers. 

This will also form an important link between the stabilization of electricity prices and 

the marginal generation cost of RES in electricity price stabilization. Generally, most 

RES have low marginal costs of electricity production and therefore are influential in 

market dynamics. With their very minimal ongoing operational costs, once the initial 

infrastructural investments are made, the price of electricity is therefore depressed. 

This is, in particular, the case in electricity markets, where power plants are dispatched 

according to their marginal costs, and often RES, due to their low operational 

expenses, have priority in the merit order. Because of this "merit order effect," more 

expensive generation methods are displaced, which reduces the overall market price 

for electricity. This interplay of low marginal costs of RES and their prominence in 

the energy mix is an important contributor to price stabilization. 

Furthermore, the RES penetration alters the very nature of the cost structure of 

electricity production. With increasing shares of RES, the average marginal cost of 

electricity production falls, and the market price is correspondingly affected. The 

marginal cost falls especially strongly when the generation of low-cost electricity is 

high, such as on sunny or windy days. This means that greater availability of 

inexpensive electricity not only satisfies demand at a lower cost but also promotes 

more stable electricity prices over time. 

Any results obtained from any study can only be made valid by comparing them with 

other studies or governmental projections. A comparison between the results of this 
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study and the National Energy Plans issued by the Ministry of Energy and Natural 

Resources (MENR) in 2022 sheds light on very important data. While this study 

estimates total installed capacities in the range of 147.6-162.8 GW in 2030 and 190.2-

204.3 GW in 2035, according to MENR, total capacities will amount to 149.1 GW and 

189.7 GW for the same periods, respectively. The detailed capacity comparison 

between the results of this study and the National Energy Plans regarding 2035 is given 

in Table 4.9. It is obvious that the results from ABM and projections by MENR are 

very close, which shows the strength of the developed GCM-ABM framework in 

estimating capacity additions, taking into consideration future electricity demand and 

projections from wind and solar power plants. 

This agreement underlines the robustness of the GCM-ABM framework for capturing 

plausible future scenarios accurately and therefore enhances confidence in the 

projections made by this study. Furthermore, it demonstrates the capabilities of the 

model in providing valuable insights into the potential impacts of various energy-

climate policies on key aspects such as electricity prices, capacity expansions, and CO2 

emissions from electricity generation. This therefore makes the model very important 

for policymakers and other stakeholders as they consider the efficiency of various 

policy interventions that will finally shape the course of sustainability and resilience 

in the energy landscape of the Turkish economy. The robustness and accuracy revealed 

by the model form the ground on which further alternative policy scenarios can be 

explored, and what these may potentially mean for Türkiye's energy transition 

trajectory. 

Table 4.9: Comparison of capacity projections for 2035 (GW). 

Scenario Solar Wind Hydro Other Natural 

Gas 

Coal Nuclear Total 

Base 50.67 31.04 37.35 10.34 36.14 27.41 0 192.96 
1 52.85 31.85 31.64 10.84 37.63 25.43 0 190.24 
2 53.98 31.03 37.35 10.34 36.09 26.46 0 195.24 

3 56..38 32.12 31.64 10.85 36.93 25.13 0 193.06 
4 62.07 33.45 31.72 10.5 40.21 26.34 0 204.28 

5 62.17 33.45 31.72 10.5 41.87 26.34 0 204.28 

6 50.11 31.89 31.72 11.09 41.87 26.16 4.8 197.63 
7 64.01 30.78 31.64 10.47 33.59 25.56 4.8 200.84 

8 64.11 30.75 31.64 10.5 33.47 25.42 4.8 200.71 
9 56.21 33.4 31.72 10.93 37.44 25.29 0 194.96 

MENR 52.9 29.6 35.1 7.5 35.5 24.3 4.8 189.7 

Subsequent studies may expand on this work by comparing other climate scenarios to 

the high-emission one employed in this work. Even though this work relies 

predominantly on projections from selected GCMs following a high-emission 
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pathway, examination of several Representative Concentration Pathways or Shared 

Socioeconomic Pathways would provide a more complete sense of how alternative 

climate policies and emission paths might influence electricity production and carbon 

emissions. Sensitivity analyses with different climate projections can contribute to the 

robustness of the findings and include data on the range of likely future situations with 

alternative climate mitigation approaches. 

Subsequent research should also involve a broader sensitivity analysis of the key 

parameters in the ABM. While this analysis provides a baseline projection of 

electricity generation, demand, and CO2 emissions for different policy scenarios, 

further exploration of parameter uncertainties—such as varying social acceptance rates 

of renewable technologies, fuel price volatility, and technology learning curves—

would improve model accuracy. Monte Carlo simulation or global sensitivity analysis 

techniques can be employed to put numbers to the impact of parameter change on the 

model outputs and hence increase policy recommendation confidence. 

Lastly, widening the scope of research to a larger geographical extent or cross-country 

comparison would enhance its applicability. Although this research is done in Türkiye, 

the same can be applied for other regions of the world with varied energy 

infrastructure, climatic situations, and policy regimes. Lessons learned from the 

comparative performance of policy instruments in various nations with varying 

economic and technological realities would be highly effective in guiding global 

energy transition policy. Moreover, integration of global energy trade patterns and 

interconnections of electricity across borders would also highlight the role of regional 

cooperation in impacting carbon emissions as well as energy security. 
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 CONCLUSION 

The present study develops a comprehensive impact analysis related to climate-energy 

policies on the Turkish electricity market for a set of key variables: electricity demand, 

renewable electricity generation, capacity expansions, electricity prices, and CO2 

emissions. The research is based on sound methodological framework, including the 

selection of four GCMs that better simulate the Turkish climate and, subsequently, 

using them in order to produce future projections for the SSP5-8.5 scenario. This is a 

sensible approach, where the projections can be done based on dependable climate 

data, giving much credibility to the findings. 

This identification is done using three skills, skills comprising normalized Root Mean 

Square Error, Kling-Gupta Efficiency, and a modified index of agreement. Among the 

evaluated GCMs, the most promising ones are ACCESS-CM2, INM-CM5-0, INM-

CM4-8, and ACCESS-ESM-1-5. Further, these models are used to project future 

climate over Türkiye under the SSP5-8.5 scenario, which is a pessimistic one and 

generally known as a Business-as-Usual scenario. Utilizing these models, the study 

provides a comprehensive analysis of how projected climate changes could affect the 

electricity sector in Türkiye. This information helps in formulating effective climate-

energy policies to mitigate adverse impacts and promote sustainable energy practices. 

Indeed, the analysis here shows that this rise in temperature due to climate change will 

raise electricity demand for cooling hugely in the country's Mediterranean and 

southeastern parts. As a matter of fact, all these call for proactive strategies by the 

government on how to manage increased demand by promoting energy-efficient 

building practices, providing incentives toward sustainable cooling technologies, and 

increasing public awareness. Besides, PTMSs such as TSW and DPRCs are highly 

promising systems to reduce cooling energy consumption. 

It estimates some key energy indicators regarding electricity demand, cooling-degree-

days, and electricity generation from wind and solar power systems after the climate 

data processing, which are essential in evaluating the future energy landscape in 
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Türkiye. Furthermore, it identifies utility function weights for the investment decisions 

of technological alternatives through AHP and MAUT methods. These methodologies 

provide a systematic approach to investment priority setting across different energy 

technologies, based on multiple criteria and the various preferences of the 

stakeholders. 

A further step involves the development of an ABM that will simulate various policy 

scenarios. This model allows studying interactions at detailed levels among different 

agents interacting in the energy system, like Independent Power Producers and 

government agencies. After the performance of a number of simulation scenarios, the 

ABM draws useful inferences from the potential consequences of various policy 

decisions on energy demand, production, and CO2 emissions. 

The study evaluates a number of policy scenarios, with a strong role for renewable 

energy sources in the future electricity mix. The increase in solar and wind capacities 

is a common outcome across the scenarios and creates a structural break in CO2 

emissions from electricity generation starting in 2032. This study shows that the 

combination of nuclear power deployment with carbon taxation and RES subsidies 

gives the highest possible reduction in cumulative CO2 emissions, showcasing the 

strength of their interaction within this combined policy approach. 

It also identifies the impact of these policies concerning electricity prices, which will 

further decline until 2029 and thereafter stabilize. It also shows that the most relevant 

driver of a reduction in electricity price is provided by the introduction of subsidies to 

RES due to the low marginal cost of the RES power generation. Indeed, coupling 

nuclear power plants with RES subsidies is found as the pathway able to optimally 

reduce CO2 emissions and electricity prices while providing economic and 

environmental goals. 

The alignment of the study's projections with the National Energy Plans issued by the 

MENR further validates the reliability of the established GCM-ABM framework. This 

close correlation underscores the robustness of the model in capturing potential future 

scenarios and its utility as a tool for policymakers to evaluate the effectiveness of 

different energy-climate policies. 

The findings of this study can be summarized as follows: 
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• Climate Models: ACCESS-CM2, INM-CM5-0, INM-CM4-8, and ACCESS-

ESM-1-5 are detected as the most successful models for reflecting unique 

climate conditions of Türkiye. 

• Solar Power Production: Projections indicate a decrease in electricity 

production from solar power plants in Türkiye due to reduced efficiency caused 

by rising temperatures. 

• Cooling Degree Days: There is a significant increase projected in CDDs across 

nearly all cities, especially in the Mediterranean region and southeastern 

Türkiye, due to the impacts of global warming. 

• Electricity Demand: Future electricity demand is estimated to increase to 456.2 

TWh in 2030, 521.4 TWh in 2035, and 571 TWh in 2040, considering 

variations in CDDs, electricity prices, income, and population. 

• Renewable Energy Capacity: Despite various policy implications, Renewable 

Energy Source capacity shares are not expected to exceed 71% in any scenario, 

with fossil fuel-based power plants remaining as baseload and load-following 

sources. 

• Fossil fuel based-Power Plants: Coal power plants continue to serve as primary 

base-load sources, while natural gas power plants are expected to play a more 

significant role in load-following and peak demand due to the intermittent 

nature of electricity generation from wind and solar power plants. 

• CO2 Emissions: Following RES capacity expansions, electricity generation-

based CO2 emissions are projected to peak in 2032 and then decline across all 

scenarios. 

• Policy Impact on Emissions: Proper policy implementation has the potential to 

reduce cumulative CO2 emissions by over 11% from 2022 to 2040 compared 

to the baseline scenario. 

• Electricity Prices: Electricity prices are forecasted to decrease significantly 

until 2029 due to capacity expansions, stabilizing thereafter. Optimal rates are 

achieved with the concurrent implementation of carbon tax and RES subsidy 

policies. 

• Optimal Policy Combination: The most effective combination for minimizing 

both CO2 emissions and electricity prices involves deploying nuclear power 

plants and implementing RES subsidies adjusted for inflation. 
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• Policy Impact Estimation: The model demonstrates promise in estimating the 

impact of various energy-climate policies beyond those studied, on electricity 

prices, capacity additions, and CO2 emissions. 

In conclusion, this study highlights some key lessons to be learned from the interaction 

of climate change and energy policy, with feasible recommendations on how to 

manage the consequences of climate change for the electricity sector in Türkiye. With 

an integrated and diversified energy policy promoting renewable energy, energy 

efficiency, and nuclear power, Türkiye would be well equipped to respond to the 

challenges brought about by climate change and head toward a sustainable and resilient 

energy future. This study provides a foundation for future analyses of alternate policy 

scenarios, their implications, and is intended to inform the ongoing sustainable energy 

development debate. 

Although the proposed GCM-ABM framework demonstrates high performance, there 

are several limitations to this study that present opportunities for future research: 

• Expansion of GCMs: Currently, the study is based on 13 GCMs. A larger 

number of GCMs included in the analysis may give more robust and possibly 

more precise climate projections, allowing a fuller understanding of potential 

climate impacts on the energy system of Türkiye. 

• Inclusion of Electric Vehicles (eVs): Electricity demand from the growing 

share of eVs is excluded from the analysis because this percentage is close to 

negligible in Türkiye. While eV percentages go up, a more feasible prediction 

of these could be derived for eV demand addition into future updates of the 

model. Its inclusion shall become imperative when this kind of transport 

becomes generally in use in order to arrive at valid previsions and improve 

management strategies concerning such demand on grids. 

• Integration of Additional Renewable Technologies: Future research could 

concentrate on the integration of other renewable technologies, such as 

advanced bioenergy and new storage solutions, to complete the vision of how 

renewables could be integrated into and impact the electricity system. 
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APPENDIX A : Tables 

Table A.1 : Selected GCMs and their resolutions. 

No Model Institute, Country Horizontal Resolution 

M1 ACCESS-CM2 Commonwealth Scientific and Industrial Research 
Organisation, Australia 

 

1.9° x 1.3° 

M2 ACCESS-ESM-1-5 1.9° x 1.2° 

M3 BCC-CSM2-MR 
Beijing Climate Center (BCC) and China Meteorological 

Administration (CMA), China 
1.1° x 1.1° 

M4 CMCC-ESM2 Euro-Mediterranean Centre on Climate Change coupled 

climate model, Italy 
1.25° x 0.938° 

M5 CMCC-CM2-SR5 

M6 GFDL-ESM4 Geophysical Fluid Dynamics Laboratory, US 1.3° x 1° 

M7 HadGEM3-GC31-LL Met Office Hadley Centre, UK 1.25° x 1.875° 

M8 IITM-ESM 
Centre for Climate Change Research, Indian Institute of 

Tropical Meteorology, India 
1.875° x 1.9° 

M9 INM-CM4–8 
Institute of Numerical Mathematics, Russia 2° x 1.5° 

M10 INM-CM5–0 

M11 MIROC6 Japanese Modelling Community, Japan 1.4° x 1.4° 

M12 MPI-ESM1–2-HR Max Planck Institute for Meteorology, Germany 0.9° x 0.9° 

M13 UKESM1–0-LL Met Office Hadley Centre, UK 1.9° x 1.3° 
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