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FOREWORD

The commitment to understanding the intricate relationship existing between climate
change, energy systems, and sustainable technologies has been the hallmark of this
PhD journey. It is a reflection of years of research work, well guided by the urge to
make some contribution toward the global effort of mitigating climate change through
innovative approaches in energy production. This would not have been possible
without the continued support of my mentors, Prof. Dr. M. Ozgiir KAYALICA and
Prof Dr. Omer Liitfi SEN, whose encouragement and expertise have been of
paramount importance in shaping the direction and depth of my studies. | am very
grateful to my family and best friends who have shown immense patience with my
grumpiness during this period. The presentation of these results herein is the hope that
their contribution to new knowledge will positively affect the community's
understanding regarding sustainable energy solutions and their huge potential for
enabling positive environmental and societal impacts.

February 2025 Denizhan GUVEN
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AN AGENT-BASED APPROACH TO ASSESS THE IMPACT OF
ELECTRICITY GENERATION ON CARBON EMISSIONS

SUMMARY

The research addresses the complex interplay between climate change, energy
production, and economic policies in general and the specific context of the electricity
generation sector in Tiirkiye. This research will seek to respond to critical challenges
related to CO> reduction, showing how different sources of energy can provide the
country's energy mix and how future policies might influence these dynamics.

The main focus of this research is to study the interaction of energy, economic, and
environmental policy in a complex way, showing its consequences for electricity
demand and generation and CO2 emissions in Tiirkiye, taking into account its specific
geographical and climatic condition. The agent-based model (ABM) and Global
Climate Model (GCM) data are used in this study to evaluate the influence of different
future policies on framing electricity generation-based CO, emissions in a climate
change regime. Some of the key objectives of this study include identifying the most
accurate GCMs for Tiirkiye, assessing how climate change is going to influence future
electricity production, projecting increased space cooling needs, assessing the
effectiveness of different policies in reducing CO> emissions, and analyzing changes
in the electricity mix of Tirkiye and the generation capacity over time. These
objectives, therefore, enable the study to provide strategic information on sustainable
energy planning and policy development in Tiirkiye.

In the central place, a model of agent-based simulation will be developed, allowing for
an experiment in greater detail with scenarios on different policies, such as carbon
taxes and subsidies for renewable energy. Through this study, different policy
outcomes can be simulated to provide information on the likely impacts on CO2
emissions, and to help identify effective ways of reducing it while ensuring electricity
reliability.

The research methodology involves several key steps. First, climate data from the
CMIP6 experiment is collected and compared with observation-based data to identify
the GCMs that best represent the climatic conditions in Tiirkiye. Those models are
then used to predict future climate variables under a high-emission scenario, providing
a basis for understanding how climate change might impact Tiirkiye's energy systems.
In estimating the future values of climate variables, a machine learning approach using
Extreme Gradient Boosting was utilized.

Another important aspect of this investigation is the evaluation of various energy
policies and their consequences in terms of CO, emissions from generated electricity.
The ABM will simulate the interaction of government, the Independent Power
Producers (IPPs), and the market forces deep into the various policy scenarios that
could influence energy production and its related emissions. This would permit the
identification of the best strategies leading to sustainable electricity generation with
the least environmental impact.
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Turkey's electricity output forecast, while showing a high decline in solar power
generation due to efficiency loss, it increases the effect of the rising temperature. The
declines are projected to be highest in the Mediterranean and the Eastern Black Sea
Regions. The least amount of solar potential is exhibited by the Eastern Black Sea
Region, making this region economically unviable for photovoltaic solar power plants.
This decrease in the Marmara and Southeastern Anatolia Regions is relatively less in
percentage. It is observed that wind power production will increase, especially in the
Thrace region and the north of Central Anatolia, where a decrease in wind power is
observed in the Eastern Black Sea and Usak-Kiitahya-Eskigehir-Bolu region.

It is expected that global warming will elevate Cooling Degree Days (CDD) by almost
two and a half times in the majority of Turkish cities-mostly Mediterranean as well as
the southeastern part of the country. Changes in cooling requirements thus represent
an overall increase of CDDs in the period 2020-2040, computed from the GCM's
output, thus bringing to the fore the need for structural improvement in their cooling
infrastructure.

This research covers a wide analysis of how various energy policy options impact the
electricity sector of Tiirkiye concerning capacity expansion, electricity price, and CO>
emissions. The study applies a scenario choice-based analysis with one basic scenario
and nine peculiar policy scenarios in order to draw wide lessons regarding the role and
potential of combining various policy measures to better meet the climate and energy
challenge using renewable energy sources (RES).

The ABM used for the forecast of electricity demand is almost linear, reaching 456
TWh in 2030, 521 TWh in 2035, and 571 TWh in 2040. By 2040, industrial demand
will be above 50% of total demand, outpacing the residential and commercial sectors.
The projection from the ABM also gives insight into the future distribution of
technologies in electricity generation, underlining the role of policy scenarios in
shaping capacity expansion and emissions.

A drastic improvement in forecast installed capacity from the installed capacities under
the base case of PV would amount to approximately 28.7 GW and 79.5 GW under the
respective horizons 2030 and 2040, while similar action for reduction of corporate tax
could lead up to an enhancement as huge as 94 GW of capacities through that sector
in comparison to a modest augmentation witnessed for Wind powers' respective
installations. Natural gas power plants are expected to grow, while coal power plant
capacity is unchanged. Nuclear power, because of its base-load dependability, may
decrease the dependence on natural gas power plants.

With the expansions in capacity, there will be a drop in prices of electricity up to 2029
and eventually stabilize. The most promising prices are forecasted when the two
policies of carbon tax and renewable energy subsidy are executed. Without policy
intervention, price increases may occur, particularly when nuclear power is integrated.

The cost for renewable technologies, such as PV and wind power, is seen to
continuously decrease and become more economically feasible. It is expected that the
investment costs of PV systems will decrease by more than 19% from 2023 to 2040,
while those of wind power will decline by about 16%. Biomass and geothermal
technologies will also become cheaper, although hydro-electric, natural gas, and coal-
which are more traditional sources-will not see much change. These trends reinforce
the movement toward cleaner, more sustainable energy systems.
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The analysis yields a continuous extension of the capacity of solar and wind power
plants in all alternatives. This growing extension of RES causes a threshold effect in
the year 2032, so that CO emissions during electricity generation pass their maximum
to decline. Hereby, the drop is caused due to the continuing share of the energy mix
expanded by RES; however, such a drop in carbon emissions depends also on the
individual energy-climate policies.

The study recommends a combination of nuclear power deployment, carbon taxing,
and subsidies for RES to achieve the greatest reduction in cumulative CO2 emissions.
It thus advises the government to provide inflation-indexed RES subsidies in
conjunction with a carbon tax. An integrated approach drives the transition to a low-
carbon energy system but improves the financial viability of renewable energy
projects. In this regard, it is optimum to see the decline in over 11% CO2 emission
within the baseline projection for the years 2022 to 2040.

In total, the carbon tax can achieve a CO. emission reduction of 1.52% below the base
case. On the other hand, the subsidy on RES will result in higher cuts, up to 4.14%.
The sum effect will actually be more than 6%, showing a synergy effect above adding
the effects from each policy, since both policies have been in place.

Nuclear power also plays an important role. Without additional policies, deploying
nuclear power plants could decrease cumulative CO2 emissions by approximately
5.3%. However, the wide dissemination of nuclear power plants involves high initial
investment costs and public skepticism. Therefore, governmental support for the
development of such infrastructure and changing of public opinion could be required.

On the price of electricity, the study foresees a further drop in prices up to 2029 amidst
increased RES capacities, after which the price stabilizes. The prices are expected to
stay between $25 to $31 per MWh for all scenarios. Concerning electricity prices, RES
subsidies are important in that they allow RES power plants to bid lower, thus pulling
down the overall market price. The best strategy to achieve low CO2 emissions at the
least electricity price appears to be using nuclear power together with RES subsidies;
this offers the double advantage of being both an environmentally and economically
sound policy option.

This research, therefore, underlines the need for a diversified and integrated approach
to energy policy. Renewable energy expansion, nuclear power deployment, and
targeted subsidies and taxes can help Tiirkiye effectively respond to the challenges of
climate change and transition towards a sustainable and resilient energy future. The
study provides actionable insights for policymakers to design effective energy-climate
policies and achieve a more environmentally responsible and economically viable
energy landscape.
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BiR AJAN TEMELLI YAKLASIM ILE ELEKTRIK URETIMININ KARBON
EMIiSYONLARI UZERINDEKI ETKiSiNIN DEGERLENDIRILMESI

OZET

Bu caligsma, iklim degisikligi, elektrik iiretimi ve ekonomik politikalar arasindaki
karmasik iligkiyi, 6zellikle Tiirkiye'nin elektrik tiretim sektorii lizerinde yogunlasarak
incelemektedir. Arastirma, gesitli enerji kaynaklarinin iilkenin elektrik karigimina
katkisim ve gelecekteki politikalarin bu dinamikleri nasil etkileyebilecegini
kesfederek karbondioksit (CO2) emisyonlarini azaltma konusundaki kritik zorluklar
ele almay1 amaglamaktadir.

Bu calismanin temel amaci, enerji, ekonomi ve ¢evre politikalari arasindaki karmasik
etkilesimi ve bunlarin Tirkiye'deki elektrik talebi, iiretimi ve CO2z emisyonlari
lizerindeki etkisini incelemektir. Ulkenin 6zel cografi ve iklimsel kosullarini dikkate
alarak, enerji-iklim politikalarinin iklim degisikligi etkisi altindaki CO2 emisyonlarini
nasil sekillendirebilecegini degerlendirmek i¢in bir ajan tabanli simiilasyon modeli ve
Kiiresel iklim Modelleri (KIM) verileri kullanilmaktadir. Calisma, Tiirkiye icin en
dogru KiM'leri belirleme, iklim degisikliginin gelecekteki elektrik {iretimini nasil
etkileyecegini degerlendirme, artan sogutma ihtiyaclarini tahmin etme, farkli
politikalarin elektrik iretimi kaynakli CO2 emisyonlarini azaltmadaki etkinligini
degerlendirme ve Tirkiye'nin elektrik karisimindaki ve iiretim kapasitesindeki
degisimleri analiz etme gibi birkag temel hedef belirlemektedir. Bu hedefler
aracilifiyla, calismanin Tirkiye'deki siirdiiriilebilir enerji planlamasi ve politika
gelistirme i¢in stratejik i¢goriiler saglamasi amag¢lanmaktadir.

Calismanin merkezinde, KiM'lerden gelen gelecekteki iklim projeksiyonlarini entegre
eden bir ajan tabanli simiilasyon modelinin gelistirilmesi bulunmaktadir. Bu model,
karbon vergileri veya yenilenebilir enerji tesvikleri gibi gesitli politika senaryolart ile
detayli deneyler yapma olanagi tanimaktadir. Cesitli politika sonuclarin1 simiile
ederek, calismada elektrik tiretimi kaynakli CO2 emisyonlar: iizerindeki potansiyel
etkileri ve farkli stratejilerin emisyonlar1 azaltma konusundaki etkinligini belirlemeye
yonelik degerli i¢goriiler saglanmaktadir.

Arastirma metodolojisi birka¢ ana adimi igermektedir. {1k olarak, CMIP6 deneyinden
elde edilen iklim verileri toplanarak gézleme dayali verilerle karsilastirilmakta ve
Tiirkiye'nin iklim kosullarin1 en dogru sekilde temsil eden KiM'ler belirlenmektedir.
Bu modeller, yiiksek emisyon senaryosunda gelecekteki iklim degiskenlerini tahmin
etmek i¢in kullanilmakta ve bu, iklim degisikliginin Tirkiye'nin enerji sistemleri
tizerindeki etkilerini anlamak icin bir temel saglamaktadir. Gelecekteki iklim
degiskenlerinin degerlerini tahmin etmek igin Extreme Gradient Boosting makine
O0grenme yontemi kullanilmaktadir.

Bu makine 6grenme yaklasimi, verilerdeki karmasik ve dogrusal olmayan iliskileri ele
alma yetenegi nedeniyle tercih edilmistir. Egitim veri seti ile egitilip test veri seti ile
hata oranlar1 en aza indirilen modeller, daha sonra SSP5-8.5 iklim senaryosu altinda
gelecekteki iklim degiskenlerini tahmin etmek i¢in kullanilmakta ve bu, enerji
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sistemleri lizerindeki potansiyel gelecekteki iklim etkilerini anlamak i¢in saglam bir
temel saglamaktadir.

Iklim verileri islendikten sonra, calisma, Tiirkiye'deki enerji manzarasim
degerlendirmek icin kritik 6neme sahip olan elektrik talebi, sogutma derece giinleri
(CDD) ve riizgar ve giines enerjisi sistemlerinden elektrik {liretimi gibi temel enerji
gostergelerini tahmin etmektedir. Ayrica, teknoloji yatirim kararlar1 igin yarar
fonksiyonu agirliklart Analitik Hiyerarsi Siireci ve Cok Kriterli Fayda Teknigi
araciligiyla belirlenmektedir. Bu yontemler, cesitli kriterleri ve paydas tercihlerini
dikkate alarak farkli enerji teknolojilerine yatirim Onceliklerini belirlemek igin
sistematik bir yaklagim sunmaktadir.

Caligmanin 6nemli bir yonii, farkli enerji politikalarinin elektrik iiretimi kaynakli CO2
emisyonlar tizerindeki etkilerinin degerlendirilmesidir. Ajan temelli model (ABM),
hiikiimet, bagimsiz enerji tireticileri (IPP'ler) ve piyasa gii¢leri arasindaki etkilesimleri
simiile ederek ¢esitli politika senaryolarinin elektrik iiretimi ve emisyonlar iizerindeki
etkilerini derinlemesine analiz etmektedir. Bu yaklasim, g¢evresel etkiyi asgariye
indirerek siirdiiriilebilir enerji {iretimi saglamak icin en etkili stratejilerin
belirlenmesine olanak tanimaktadir.

Tiirkiye'nin elektrik {iretim projeksiyonlari, sicaklik artiglarindan kaynaklanan
verimlilik kayiplar1 nedeniyle gilines enerjisi iiretiminde Onemli bir disiis
ongormektedir. Akdeniz ve Dogu Karadeniz bélgelerinde en biiylik azalmanin
yasanmas1 beklenirken, Dogu Karadeniz Bolgesinin fotovoltaik giines enerjisi
santralleri i¢in ekonomik olarak uygun olmadigi gériilmektedir. Buna karsin, Marmara
ve Gilineydogu Anadolu bdlgelerinde giinesten elektrik iiretiminde en az disis
yasanacag1 ongorilmektedir. Riizgar enerjisi iiretiminin ise Trakya ve kuzey Orta
Anadolu boélgelerinde artmasi, Dogu Karadeniz ve Usak-Kiitahya-Eskisehir-Bolu
bolgelerinde ise azalmasi beklenmektedir.

Sogutma Derece Giinleri (CDDs), sogutma enerji talebini tahmin etmede kullanilan
bir metrik olarak ¢ogu sehirde, 6zellikle Akdeniz ve giineydogu bolgelerde, nemli bir
artis gostermektedir. KiM'lerin ¢iktilar;, 2020'den 2040'a kadar genel bir artis
gostermekte olup, biiyliyen sogutma taleplerini yansitmakta ve iyilestirilmis sogutma
altyapisinin gerekliligini vurgulamaktadir. 2031 ve 2032 yillarinda dikkate deger
artiglar gozlemlenmektedir, ardindan gelen yillarda ise hafif diistisler ve toparlanmalar
yasanmaktadir. Veriler, iklim degisikliginin enerji tiiketim desenleri iizerindeki
etkisini One ¢ikararak, siirdiirtilebilir enerji ¢oziimleri ve iklim uyum stratejilerine olan
ithtiyaci ortaya koymaktadir.

Bu calisma, ¢esitli enerji politikalarinin kapasite genislemeleri, elektrik fiyatlar1 ve
CO2 emisyonlar tizerindeki etkilerini kapsamli bir sekilde degerlendirmektedir. Bir
temel senaryo ve dokuz farkli politika senaryosunu inceleyerek, yenilenebilir enerji
kaynaklarmin (YEK) kritik roliinii ve farkli politika onlemlerinin iklim ve enerji
sorunlarina nasil yanit verebilecegini vurgulamaktadir.

ABM ciktilar, elektrik talebini neredeyse dogrusal bir artis olarak gostermekte, talebin
2030'da 456 TWh, 2035'te 521 TWh ve 2040'ta 571 TWh seviyelerine ulagmasi
ongoriilmektedir. Endiistriyel elektrik talebinin 2040'a kadar toplam talebin %50'sini
asmasi, konut ve ticari sektorleri gegmesi beklenmektedir. ABM'nin projeksiyonlari
ayrica, elektrik {iiretim teknolojilerinin gelecekteki dagilimi hakkinda iggdriiler
sunmakta ve politika senaryolarinin kapasite genislemesi ve emisyonlarla basa
¢ikmadaki 6nemini vurgulamaktadir.
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Fotovoltaik (PV) giines enerjisi kapasitesinin Onemli Olclide  biiylimesi
ongoriilmektedir; temel senaryoda 2030'da 28,7 GW ve 2040'ta 79,5 GW'a ulagmasi
beklenmektedir. Kurumlar vergisi oranlarini diisiirme gibi politika onlemleri, PV
kapasitesini 2040'a kadar 94 GW'a ¢ikarabilmektedir. Riizgar enerjisi kapasitesinin de
artmasi1 beklenmektedir, ancak bu artis PV'ye gore daha yavas olacaktir. Dogalgaz
santralleri genislemesi beklenirken, komiir santrallar1 kapasitesi biiyiik Olciide
degismeyecektir. Niikleer enerji, temel ylik giivenilirligi nedeniyle dogalgaz santrallari
ihtiyacini azaltabilir.

Elektrik fiyatlarinin kapasite genislemeleri nedeniyle 2029'a kadar diigmesi,
sonrasinda ise stabil hale gelmesi 6ngoriilmektedir. En uygun fiyatlarin, hem karbon
vergisi hem de yenilenebilir enerji tesvik politikalart uygulandiginda elde edilecegi
projeksiyon edilmektedir. Ancak, politika miidahaleleri olmadan, fiyatlarin artmasi,
ozellikle niikleer enerjinin entegrasyonu ile birlikte olabilmektir.

Yenilenebilir teknolojilerin maliyet diisiisleri, PV ve riizgar enerjisi dahil, devam
etmesi beklenmektedir ve bu durum onlar1 daha ekonomik hale getirecektir. PV
sistemleri i¢in yatirim maliyetlerinin 2023'ten 2040'a kadar %19'dan fazla diismesi,
rlizgar enerjisi maliyetlerinin ise yaklasik %16 azalmasi ongoriilmektedir. Biyokiitle
ve jeotermal teknolojiler de maliyet diisiisleri yasayacak, ancak hidroelektrik,
dogalgaz ve komiir gibi geleneksel kaynaklar minimal degisiklikler gosterecektir. Bu
egilimler, daha temiz ve siirdiiriilebilir enerji sistemlerine gegisi gliclendirmektedir.

Analiz, tim senaryolar kapsaminda giines ve rilizgar enerjisi santrallerinin
kapasitelerinde tutarli bir artis gostermektedir. Bu YEK genislemesi, 2032'de CO2
emisyonlarinin zirveye ulagsmasina ve ardindan diismeye baslamasina yol agmaktadir.
Bu diisiis, enerji karisimindaki YEK'in artan paymna atfedilmektedir. Ancak, CO:
emisyonlarindaki azalma derecesi, uygulanan 6zel enerji-iklim politikalarina baglh
olarak degisiklik gostermektedir.

En yiiksek CO2 emisyonu azalmasini saglamak i¢in ¢aligma, niikleer enerji kullanima,
karbon vergisi ve enflasyona gore ayarlanmis YEK tesviklerinin kombinasyonunu
onermektedir. Bu entegre yaklasim, diisilk karbonlu enerji sistemine gecisi
hizlandirmakla kalmay1p, yenilenebilir enerji projelerinin finansal uygunlugunu da
artirmaktadir. Bu optimal senaryoda, 2022'den 2040'a kadar CO2 emisyonlarinin
%11'den fazla azaltilmasi miimkiin olabilmektedir.

Niikleer enerjinin rolii de olduk¢a 6nemlidir. Ek bir politika olmaksizin niikleer enerji
santrallerinin devreye alinmasi, toplam CO2 emisyonlarini %5.3 oraninda azaltabilir.
Bu potansiyel faydalara ragmen, niikleer enerjinin yaygin olarak benimsenmesi
yuksek baglangi¢ yatinm maliyetleri ve kamu stlipheciligi gibi zorluklarla karsi
karsiyadir. Bu nedenle, hiikiimet miidahalesi, niikleer altyap1 gelisimini desteklemek
ve kamu endiselerini ele almak i¢in gerekli olabilir.

Elektrik fiyatlar1 acisindan, ¢alisma, YEK kapasitelerindeki artis nedeniyle fiyatlarin
2029'a kadar diismesini ve ardindan bir istikrar donemine girmesini dngormektedir.
Fiyatlarin tiim senaryolar arasinda MWh bagina 25 ila 31 dolar arasinda dalgalanmasi
beklenmektedir. YEK siibvansiyonlari, YEK santrallerinin daha diisiik teklifler
sunmasini saglayarak elektrik fiyatlarinin genel olarak diisiiriilmesinde kritik bir rol
oynamaktadir. Niikleer enerji ve YEK siibvansiyonlarinin kombineli olarak
uygulanmasi, hem CO2 emisyonlarini hem de elektrik fiyatlarint minimize etmede en
etkili strateji olarak ortaya ¢ikmakta ve ¢evresel ve ekonomik iyilesmelerin iki yonlii
avantajin1 sunmaktadir.
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Caligma ayrica YEK lerin piyasa dinamikleri iizerindeki etkisini de vurgulamaktadir.
Diisiik marjinal maliyetlere sahip olan YEK!'ler, "merit-order etkisi* olarak bilinen bir
duruma yol agar; bu durum, daha yiiksek maliyetli iiretim yontemlerinin yerini alarak
genel piyasa fiyatlarinin diismesine neden olur. YEK kapasiteleri arttikca, elektrik
iretiminin ortalama marjinal maliyeti azalir ve bu da daha istikrarli ve uygun maliyetli
elektrik fiyatlarina katkida bulunur.

Elektrik talebinin ABM kullanilarak hassas bir sekilde tahmin edilmesi, enerji
verimliligini artirma, talep tarafi yonetimini gelistirme ve sebeke optimizasyonu
cabalarini ilerletme acisindan kritik bir 6neme sahiptir. ABM, sektor diizeyinde
elektrik tiiketimini ydnlendiren faktorlere derinlemesine bakarak enerji israfim
azaltma, yiik desenlerini ince ayar yapma ve enerji verimli teknolojiler ve yontemlerin
benimsenmesini tesvik etme yollarini aydinlatmaktadir. Bu proaktif yaklasim, kamu
hizmetleri, sebeke igletmecileri ve politika yapicilara talep yanit1 girisimleri, zaman
dilimine baglh fiyatlandirma stratejileri ve enerji verimliligi tesvikleri gibi
ozellestirilmis miidahaleleri uygulamak icin eyleme doniik bilgiler saglamaktadir. Bu
Onlemler, sadece sistem maliyetlerini azaltmay1 degil, ayn1 zamanda enerji tiiketimi
spektrumunda genel enerji verimliligini artirmay1 da hedeflemektedir.

Sonug olarak, bu arastirma, enerji politikasina yonelik ¢esitlendirilmis ve entegre bir
yaklagimin 6nemini vurgulamaktadir. Yenilenebilir enerji genislemesi, niikleer enerji
kullanim1 ve hedeflenmis siibvansiyonlar ile vergiler gibi stratejileri bir araya
getirerek, Tiirkiye iklim degisikligi nedeniyle karsilastig1 zorluklari etkili bir sekilde
asabilir ve siirdiiriilebilir ve direngli bir enerji gelecegine gecis yapabilir. Calisma,
politika yapicilara etkili enerji-iklim politikalari olusturma ve ¢evresel olarak sorumlu
ve ekonomik olarak uygulanabilir bir enerji manzarasi elde etme konusunda
uygulanabilir iggoriiler sunmaktadir.
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1. INTRODUCTION

1.1 Background

A comprehensive analysis of temperature records from the past century reveals a clear
and consistent upward trend in global average temperatures. By combining direct
measurements from weather stations, sea surface temperature data, and satellite
observations, researchers have assembled extensive datasets that accurately track
global temperature changes over time. These datasets, supported by paleoclimate
evidence, indicate substantial planetary warming, especially in recent decades. Since
the late 19th century, the global average temperature has increased by about 1.2°C,
with the most rapid rises occurring after 1970 (Masson-Delmotte et al., 2021). As this
Is not a uniform warming, the higher latitudes (especially the Arctic region) have seen
larger changes in temperature relative to the global average, causing increased rates of
ice melt and thawing of permafrost. The data strongly suggest that human activities
including the burning of fossil fuels, deforestation, and industrial processes are the

most dominant causes of this warming trend.

One of the other evidences that support the rising global temperatures comes from
many indicators and proxy records. Changes in ice core specimens, tree rings, and
coral reefs are consistent with the instrumental temperature record and extend the view
of the current warming trend over a longer period. The frequency and intensity of
heatwaves and extreme weather events, such as hurricanes, droughts, and heavy
precipitation, have also raised in a manner consistent with climate model predictions
(Pachauri et al., 2014). These models, based on atmospheric dynamics and feedback
mechanisms, project continued warming under different greenhouse gas emission
scenarios. The Intergovernmental Panel on Climate Change (IPCC) highlights the
urgent need to reduce emissions to limit future temperature rises and prevent the most
severe impacts of climate change. Therefore, the analysis of temperature records not
only underscores the significant warming over the past century but also emphasizes

the critical need for comprehensive climate action.



In this context, Carbon dioxide (CO2) emissions are pivotal in driving climate change
due to their substantial role in the greenhouse effect. As one of the most prevalent
greenhouse gases (GHGS) in the Earth's atmosphere, CO: is predominantly generated
by human activities such as the combustion of fossil fuels (coal, oil, and natural gas),
deforestation, and various industrial processes. Since the onset of the Industrial
Revolution, atmospheric CO> levels have surged dramatically from approximately 280
parts per million (ppm) to over 425 ppm today (S10, 2023; Ritchie et al., 2023). This
sharp increase is mainly due to the extensive growth of industrial activities and the
consequent rise in fossil fuel usage. The heightened CO concentrations amplify the
natural greenhouse effect, trapping additional heat in the atmosphere and resulting in

global warming and related climate changes (See Figure 1.1).
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Figure 1.1 : Global average surface temperature anomaly relative to 1961-1990.

GHGs can be defined as the constituents of atmospheric composition that absorb
infrared radiation, further re-emitting and causing the so-called ‘greenhouse effect.’
Key GHGs include carbon dioxide, CH4 (methane), N2O, and fluorinated gases. Each
one has different GWP values and a span of time spent in the atmosphere; they are
expected to impact climate change in an assortment of ways. While CO2 is much more
abundant than methane, for example, methane has a GWP about 28-36 times higher
over a 100-year period, so its relatively short lifetime in the atmosphere still makes it
an important factor in driving climate change. Nitrous oxide, for example, has a GWP

about 298 times greater than CO and stays in the atmosphere for more than a century.



Fluorinated gases, though present in smaller quantities, can have GWPs in the
thousands and long atmospheric lifetimes, substantially contributing to long-term

climate forcing (Masson-Delmotte et al., 2021).

It refers to the process whereby a layer of GHGs in the atmosphere can trap heat, thus
maintaining the planet at a temperature which can support life. However, this effect
has been highly enhanced by human activities increasing the concentration of GHGs.
The solar radiation that reaches the Earth's surface is first absorbed then re-emitted as
infrared radiation. Infrared radiation is absorbed by the GHGs in the atmosphere and
re-emitted in all directions, including back to the Earth's surface, causing further
warming. This enhanced greenhouse effect results in higher global temperatures,
which then lead to climate change. As already mentioned, the consequences of this
heating are wide-ranging, affecting weather patterns, sea levels, and ecosystems.
Understanding the sources of GHG emissions is essential for elaborating effective
mitigation strategies. Sources of GHG emissions are varied and include energy
production, transport, industry, agriculture, and waste management. Each of these
sectors has a different contribution to the general pattern of emissions, thus requiring

a source-specific approach to reduction.

Figure 1.2 presents annual global GHG emissions from various sectors for the period
1990-2020. Emissions are split across ten sectors, including: other fuel combustion,
bunker fuels, waste, buildings, industry, fugitive emissions from energy production,
agriculture, manufacturing and construction, transport, and electricity and heat. A
notable trend is the significant increase in GHG emissions from electricity and heat
production, which consistently rose from 8.65 gigatonnes (Gt) of CO2-eq. in 1990 to
15.18 GtCO2-eq. in 2020. Transport emissions also saw a marked increase, nearly
doubling from 4.73 GtCO»-eq. to 7.29 GtCO2-eq. over the same period (Ritchie et al.,
2020).

Industrial emissions showed a steady rise, while emissions from manufacturing and
construction exhibited more variability but an overall upward trend. Agricultural
emissions remained relatively stable but consistently high, indicating the sector's
substantial contribution to global GHG emissions. Emissions from waste, buildings,
and other fuel combustion also increased, though at a slower rate compared to
electricity and transport sectors.



Fugitive emissions from energy production, representing leaks during the extraction,
processing, and transport of fossil fuels, showed a moderate increase over the decades.
Bunker fuels, used for international shipping and aviation, demonstrated a gradual rise
in emissions, reflecting the growing global transportation demands.

This sectoral breakdown highlights the critical areas for targeted GHG reduction
strategies, with electricity and heat production, transport, and industry being key

sectors where significant emission cuts could substantially impact global GHG levels.
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Figure 1.2 : Annual global GHG emissions by sector.

As given in Figure 1.2, electricity and heat production causes approximately one-third
of the global GHG emissions due to their heavy reliance on fossil fuels, particularly
coal, natural gas, and oil. These energy sources are carbon-intensive, releasing large
quantities of CO2 and other GHGs during combustion. High energy demand from
industrial, residential, and commercial sectors exacerbates emissions, as power plants
and heating systems must operate continuously to meet these needs. Additionally,
inefficiencies in energy production and transmission lead to higher emissions, as older,
less efficient plants often remain in use due to economic and infrastructural constraints.
The combustion process emits not only CO:z but also CH4 and N20O, which are potent
GHGs with higher global warming potentials than CO.. The growing global
population and economic expansion further increase the demand for electricity and
heat, especially in developing regions where energy infrastructure is rapidly

expanding.



In an effort to supply the world with its ever-increasing demand for electricity,
different types of power plants have been invested in and built across the globe. These
have ranged from new constructions to renovations of already existing facilities, the
purpose of which was to capture several energy sources. For a long time, coal,
hydroelectric, and nuclear power plants have been used as the backbone of most
countries in generating electricity. Coal plants are predominant due to their large
capacity and established infrastructure. But all this has changed over time as
tremendous investments have been made in renewable technologies of energy
production. Solar and wind power recently had amazing growth spurts thanks to the
changing technology and cost dynamics. Natural gas is also an important fossil fuel

source considered to be cleaner than coal.

In this regard, Figure 1.3 and 1.4 show the global electricity mix from 1985 to 2023,
with the breakdown of different energy sources that contribute to it. Initially, coal,
hydro, and nuclear energy were the major sources of electricity generation. Coal has
always maintained the highest share, from around 3748 TWh in 1985 and has been
increasing year after year, peaking at 10468 TWh in 2023. Hydroelectric power has
also been highly significant, rising from around 1979 TWh in 1985 to over 4211 TWh
by 2023. Nuclear power also contributed greatly to it, as it rose steadily from 1489
TWh in 1985 and crossed 2686 TWh by 2023. These three have always been the
significant ones in the electricity mix, giving a mirror reflection of their importance in

global energy supply (Ritchie et al., 2024).

By contrast, the contributions from renewable energy sources-solar, wind, and
bioenergy-have grown very fast, particularly from the early 2000s onwards. The
contribution of solar energy was almost zero in the beginning, increasing to a whole
new level. From 0.01 TWh in 1985, it surged to 1629.9 TWh in 2023. This position
changed from 0.06 TWh in 1985 for wind to 2304.44 TWh in 2023. Bioenergy has
also risen gradually to reach 678.74 TWh in 2023. This marks a global transition
toward more sustainable and renewable sources of energy in efforts to address climate
change and reduce reliance on fossil fuels. While natural gas also increased quite
significantly from 1426 TWh in 1985 to 6623 TWh in 2023, this positions it as a
transition fuel in the global energy mix. As Ritchie et al. (2024) note, even with these
advances, the continued dominance of coal is indicative of how far the rest of the world

is from moving toward a fully low-carbon energy system.
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Figure 1.3 : Global electricity generation by source.
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Figure 1.4 : Global electricity mix shares of generation technologies.
1.2 Research Significance

As a developing country, the demand for electricity in Tiirkiye is increasing day by
day due to its growing population and expanding economy. The requirement for
energy increases every year with more urbanization and industrialization. Improved
living standards and increased usage of electronic gadgets increase the consumption
of electricity. Besides, all strategic initiatives undertaken by the government of
Tiirkiye for economic development and infrastructure building increase the demand
for reliable sources of power.

Figure 1.5 below shows the country's electricity generation from 1985 to 2023. It
illustrates graphically the changes in the country's sources of electricity over the years.
In the earlier years-that is, starting in 1985 through the late 1990s, coal and



hydroelectricity had been the two main sources of electricity, wherein coal's
contribution to the country's total was consistently over 30%, while that of
hydroelectric power ranges from 30% to 60%. (See Figure 1.6). During this period,
natural gas and oil also dominated significantly, especially in the mid-1990s, when the
country diversified its energy portfolio. The striking point here is that, over time, the
share of oil declined considerably while natural gas consumption increased
enormously and reached the highest in the early 2000s (Ritchie et al., 2024). This
shows how Tiirkiye strategically changed track in terms of energy sources toward a

more diverse but highly fossil fuel-based energy mix.

From the mid-2000s, there is quite an evident gradual shift in the use of renewable
sources of energy, with solar and wind power leading the fray. Solar power started to
appear in the energy mix around 2014 and has grown steadily to reach considerable
contributions by 2023, while wind power also follows the same trend-from the early
2000s, one can notice it and then substantial in the mix by the 2010s. While there is a
presence of bioenergy and other renewables from the early 1990s, more consistent and
larger contributions happened recently (Ritchie et al., 2024). Such gradual but clear
shifts towards renewable energy sources indicate efforts in Tiirkiye to reduce
dependence on fossil fuels with the constraint on emissions. However, with coal and
natural gas still major contributors, this indicates ongoing challenges in being able to
make a full transition into a sustainable model of energy.
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Figure 1.5 : Electricity generation by source in Tiirkiye.

As concerns about climate change and global warming continue to escalate, the

transition towards green energy technologies is becoming increasingly crucial in



shaping the future of electricity generation. In this context, Tiirkiye has made
significant strides by heavily investing in renewable energy sources such as wind and
solar. This commitment is driven by both environmental considerations and the desire
to reduce dependency on finite resources. Over the past decade, Tiirkiye has achieved
remarkable growth in renewable energy capacity, increasing the share of renewables
(excluding hydro) in its total installed capacity from 3.5% to an impressive 22.96% as
of 2023 (MENR, 2023). This shift underscores the importance of renewable energy in
addressing climate challenges.
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Figure 1.6 : Electricity mix shares of generation technologies in Tiirkiye.

However, the effectiveness of renewable energy production is largely contingent upon
uncontrollable natural factors such as wind speed, temperature, and solar irradiance.
These variables introduce uncertainty and make it difficult to generate electricity
reliably from these renewable sources. In this regard, understanding and mitigation of
these uncertainties form the basis of optimization and stability in renewable systems.
The inherent variability in these energy sources requires strong modeling and
forecasting to ensure that supply is made available without necessarily compromising

stability.

This work investigates complex interactions of climate-energy-economy (CEE)
through a novel agent-based model (ABM). Coupled with the future projections of
Global Climate Models (GCMs), estimated through state-of-the-art machine learning
techniques, the current study shows an advanced, complex analysis that identifies how
the two most important climate variables would impact energy supply and demand.
The ABM developed in this paper allows one to run in detail a whole variety of policy



scenarios, ranging from imposing carbon taxes to providing subsidies. This makes it
of tremendous value when modeling varied policy outcomes during the planning and

optimization of long-term energy strategies.

The significance of the research is that it could project, based on different policy
conditions in generating electricity, the amount of CO, that would be emitted. This
way, policymakers can identify ways through which emission could be reduced with
adequate and secure energy supply. Agent-based modeling, therefore, offers a useful
tool in assessing the potential impacts of various policy measures to support decision-

making for the transition to a more sustainable energy future.

This study has underlined the vital role of renewable energy in dealing with climate
change and the importance of sophisticated modeling tools in managing the
uncertainties associated with renewable energy production. The substantial
investments of Tiirkiye in wind and solar energy mark the exemplary proactive steps
that need to be taken in order to mitigate environmental impacts and reduce resource
dependency. This research, via state-of-the-art simulation models and machine
learning, provides relevant input to the CEE nexus, giving insights into the paths

toward more efficient and sustainable energy policies.

1.3 Research Objectives

The overall objective of the study is to analyze complex interactions of energy-
economic-environmental policy impacting electricity demand and production as well
as the resulting CO2 emissions, considering geographical and climatic conditions in
the case of Tirkiye. In this paper, an attempt is made to incorporate an agent-based
simulation model with input data from GCMs in order to obtain a more accurate view
of the impacts of different future energy and economic policies on CO2 emissions from
the electricity generation sector, considering the progression of climate change. The

present research attempts to critically consider the following key objectives:

Identification of optimal GCMs for Tiirkiye: The first objective will be to identify
the GCMs that best capture the climatic conditions relevant for the study area of
Tiirkiye. This means different climate models have to be analyzed in order to estimate
their performance in simulating temperature fluctuations, wind speeds, and solar

irradiance for the specific climatic patterns in Tiirkiye. By choosing the most suitable



GCMs, evidence of their reliability and accuracy will be at hand for subsequent

simulations and projections within the study.

Assessment of future electricity generation under climate change: The second
objective gives the focus to study the impacts that might be induced from climate
change on future electricity generation in Tiirkiye, including deep analysis of how
changing environmental factors of wind speed, solar radiation, and temperature
variation will shape the output of renewable energy sources. The dynamics understood,
the study intends to project the changeable capacity and efficiency of wind, solar, and

other renewable energy technologies over time due to climate change.

Projection of space cooling needs due to climate change: This third objective deals
with analyzing how climate change will influence space cooling demands in Tiirkiye.
This means increased temperatures are necessarily going to increase the demands for
air conditioning and other technologies of cooling that, in turn, will be reflected in the
demand for electricity. In this study, an attempt at quantification was done to
incorporate changes into wider energy demand forecasts that provide a clear vision of
the future energy needs and the related stress on the production systems.

Assessment of the impacts of policies on COz emissions: The fourth objective probes
how different energy and economic policies are going to affect CO2 emissions from
electricity generation in view of climate change. This involves simulating policy
scenarios that include the introduction of carbon taxes, subsidy for renewable energy,
among other regulatory measures. These would be intended to ascertain the extent
these policies can succeed in reducing associated emissions and therefore indicate the
best direction effective measures, which will be conducive to the achievement of
environmental sustainability with reduced environmental damages or impacts on

production.

Analysis of changes in electricity mix and generation capacity: The fifth objective
is periodic projected changes in the mix of electricity and generation capacity in the
view of climate change through government regulations or policy intervention. This
will be done by devising scenarios of what the future composition of renewable
energies, such as wind and solar, will look like, along with the necessary changes in

overall generation capacity to meet future demands. By charting these trends, the study
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should yield strategic insights for the planning and development of Tiirkiye's energy

infrastructure.
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2. LITERATURE REVIEW

2.1 Agent Based Simulation Models

In the international literature, the impacts of government policies on energy demand
and generation have been explored using various methods. Among the most effective
approaches to investigate the effects of various policies, whether singular or in
combination, on the energy sector is Agent-Based Simulation. In this context, Sopha
et al. (2011) aim to identify potential interventions for the purchase of wood pellet
heating in Norway using an agent-based model. The theoretically and empirically
established model suggests that for a wood pellet market to succeed, financial support,
stable wood pellet prices, and technical development, namely functional reliability
improvement, need to be established simultaneously. In another study, Lee et al.
(2014) present an innovative agent-based simulation model that integrates the
behaviors of individual homeowners within a long-term domestic stock framework,
specifically for energy policy analysis. Their findings highlight that current policies
fall considerably short of the 80% target, suggesting a need to reassess the existing
subsidy levels. The model reveals that the current subsidies overly benefit specific
technologies, thereby hindering others with higher potential for energy savings.
Policymakers can utilize this model to explore additional scenarios and develop more

compelling policy alternatives.

Another study focusing on buildings' energy consumption, Liang et al. (2019), propose
an agent-based model for formulating Energy Efficiency Enhancement policies. The
model conceptualizes the government and homeowners as agents, applying principal-
agent theory to simulate their decision-making processes. Subsequently, a platform
grounded in this model is created, enabling the optimization of incentive policies under
varying conditions. In this platform, the model's effectiveness is analyzed by
considering three different policy scenarios from China. The results of this study show
that the incentive policy deduced from this model performed best in satisfying the

energy and financial criterion. In a related study on household behaviors, Hesselink
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and Chappin (2019) present a systematic review of agent-based modeling studies on
the adoption of energy efficiency by households. They analyze the use of modeled
technologies, simulated policies, and included decision-making theories and empirical
data. The resulting analysis provides a general overview of the interrelation between
technologies, barriers, and policies, which, using pre-existing models, gives basic
policy recommendations. The review reveals that most studies primarily concentrate
on various obstacles, including capital shortages, insufficient information, high initial
costs, and a general lack of awareness.

More recently, Babatunde et al. (2023) utilized an ABM to carry out simulations
encompassing various scenarios from 2015 to 2050, with the aim of examining the
impact of renewable energy policies on emission reduction within Malaysia's energy
sector. The results of these simulations indicate that the implementation of all
renewable energy initiatives resulted in a 16 percent increase in the proportion of
renewable energy usage, accompanied by a 26 percent decrease in emissions intensity
compared to 2005 levels. However, this progress falls short of the government's target
of a 45 percent reduction. These findings underscore that a single approach alone

cannot attain the ambitious emission reduction objective.

In addition to the studies on energy policies, there are also studies in the literature
under the same title focusing on the penetration of renewable energy sources using
agent-based modeling. Karimi and Veaz-Zadeh (2021) propose a structure for ABM
intended to evaluate sustainable policies of the electricity system and, particularly,
integrated renewable energies. This type of policymaking is considered a multistage
process entailing long-term dynamics, uncertainty, and complexity. The framework,
proposed in their ABM model, identifies and categorizes all acting actors of energy
systems and their unique rules, properties, and interactions. Accordingly, the model
was applied to one representative system containing many well-known electricity
generation technologies, including renewables, under various policy scenarios. The
ABM-based evaluation has, therefore, indicated that badly fitted or unsustainable
energy policy scenarios produce uncertain results and are likely to entail either long-

run electricity shortages or environmental degradation.

On the other hand, Ernst and Briegel (2017) present an agent-based social simulation

model, aimed at validating a dynamically enhanced psychological decision micro-
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theory through the introduction of negotiation-based decisions, social environment,
and personal communication. A survey on psychological factors associated with the
acceptation of green energy and sustainable lifestyles is complemented by experiments
focused on information processing styles and communication networks. The
experiment conducted within the model examines the influence of the frequency of
personal communication about the technology and the influence of a significant media-
covered event on the adoption of green energy. The results point to the potential of
social simulation as a means to build and test dynamic psychological theories.

In another study, Palmer et al. (2015) develop an ABM to explore how modifications
to the Italian Support Plan might influence the spread of photovoltaic (PV) solar
systems among single-family and two-family households. The payback period is
calculated by considering factors such as capital costs, zonal solar radiation levels,
government incentives, gains from utilizing self-generated electricity against
purchasing from the existing electricity grid, operational and maintenance expenses.
Environmental benefits are assessed based on the reduction of CO2 emissions.
Household income reflects specific regional economic conditions and also accounts
for the agent's age, education level, and household type. Lastly, the effect of
communication is gauged by the number of connections with other households that
have already adopted PV systems. The findings suggest that under Italy's new tariff
guarantee program, local PV installations have moved beyond the initial expeditious
expension stage. However, while further expansion is anticipated, it is expected to
proceed at a much slower pace, illustrating the significant impact of policy changes on

the spread of renewable energy systems.

In a similar article, Zhao et al. (2011) create a decision support system to evaluate the
impact of regulations and incentives on the growth rate of distributed PV systems,
aiming to prevent grid destabilization and sharp rises in electricity prices. The study
utilizes both ABM and system dynamics approaches. The models, which are based on
actual data from residential districts in two distinct regions of the United States,
effectively illustrate how policies influence PV system growth across different

locations.

Similarly, Wang et al. (2018) integrate a social network-based innovation diffusion
model with anecdotal information exchange to analyze household perceptions of
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benefits in deciding to adopt residential PV systems. A case study is conducted for
villages in Beijing, exploring different scenarios related to policies from both
economic benefits and information dissemination in the social network. The study
findings indicate that: 1) Providing free insurance against the harm caused by PV
adoption can increase the adoption rate from 24% to as high as 62% (full insurance),
and the cost of acquiring new adopters is only 36% of providing additional subsidy; 2)
In cases where most households lack sufficient knowledge about PV systems,
enhancing communication poses a barrier to the adoption of residential PV; and 3)
Information campaigns and screening are both effective and necessary in reducing the
negative effects resulting from strengthened communication in the initial phase of the

residential PV market.

In their study, Ponta et al. (2018) investigate the economic effects of a tariff guarantee
policy designed to encourage investments in renewable energy generation. To conduct
this analysis, they use an enhanced form of the Eurace macroeconomic model, which
integrates both fossil fuel-based and renewable energy sectors. The results show that
the tariff guarantee policy effectively encourages the conversion of the energy sector
towards sustainability and increases investment levels by positively impacting
unemployment rates. Additionally, it is observed that costs of financing instruments

did not impact government finances.

Meanwhile, Chen et al. (2018) develop an integrated ABM-Monte Carlo simulation to
analyze how risk and adaptive technical choices of energy companies influence their
decision-making processes, especially in assessing the impact of investment choices
on the energy sector's development. The results indicate that risk aversion and adaptive
technical preferences within the firm are of paramount importance in the transition
toward a low-carbon electricity sector and create a synergistic effect. Risk aversion

further stabilizes the transition process.

In addition to energy policies, although limited in the literature, carbon trading has
also been analyzed using agent-based simulation methods. In this regard, Cong and
Wei (2010) examine the potential effects of implementing a Carbon Emission Trading
(CET) system on China's power sector and evaluates various options for allocating
allowances. ABM represents a promising new approach that addresses limitations of
traditional methods. They construct an ABM, called CETICEM (CET Introduced
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China Electricity Market), to simulate the implementation of CET in China.
CETICEM features six agent classes and two distinct markets. The key findings are as
follows: 1) CET internalizes environmental costs, causing a 12% rise in average
electricity prices and transferring carbon price volatility to the electricity market,
resulting in a 4% increase in electricity price volatility. ii) CET affects the cost
competitiveness of various power production systems through carbon pricing,
significantly enhancing the adoption of environmentally friendly systems; in
particular, the uptake of expensive solar power generation increases by 14%. iii)
Emission-based allocation results in higher electricity and carbon prices compared to

output-based allocation, encouraging producers to adopt greener practices.

Tang et al. (2015) develop a multi-factor model to evaluate various CET concepts and
determine the most suitable option for China. Their bottom-up model, incorporating
major economic agents within a general equilibrium framework, reveals that CET can
effectively lower carbon emissions, albeit with some negative economic impacts. The
study finds that the historical allocation rule is less aggressive compared to the
benchmark rule. Setting the carbon price at approximately 40 RMB/ton yields
satisfactory emission reductions. Additionally, the penalty rate, economic growth,
mitigation effects, and subsidies for energy technology improvements can further
reduce emissions without significant economic drawbacks. The new model is deemed

a promising tool for CET policy development.

In a follow-up study, Tang et al. (2017) propose a multi-factor ETS simulation model
for carbon allocation auction design in China. This model includes the government
and sector-specific firms as agents, interacting through three markets: the commodity
market, primary carbon auction market, and secondary carbon trading market. Various
auction designs are analyzed, with results showing that ETS positively impacts carbon
reduction and energy structure improvement but poses economic challenges. Among
auction formats, the single-price design is moderate, while the discriminatory price

design leads to more pronounced economic and emission reduction outcomes.

The examination of policies related to climate and climate change using agent-based
simulation methods holds significant importance in the literature, given that climate

change ranks among today's most pressing global issues.
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Among the pioneering works in this area, Nannen and van den Bergh (2010) illustrate
the application of an evolutionary agent-based model to assess climate policies, taking
into account the diverse strategies of individual agents. The model's distinctive aspect
is that it evaluates the effectiveness of an economic strategy based on an agent's
relative well-being compared to their immediate neighbors within a social network.
This approach enables the analysis of policies that impact individuals' comparative
standings. They propose two novel climate policies: one modifies relative welfare
through direct incentives, while the other shapes social interaction networks via
advertising. These policies are demonstrated using a simple global warming model
where a source with negative environmental impact may be substituted for renewable

energy, which is environmentally neutral but less cost-effective.

In another climate policy study, Gerst et al. (2013) introduce the ENGAGE multi-level
model structure: an agent-based approach and relaxing some of the standard modeling
assumptions. The framework incorporates local actors- including firms and
households-into an evolutionary model representing economic development, energy
generation systems, and climate change. It is thus set up to evaluate policies
considering intermediary decision-making as well as social and technological
evolution. Accordingly, the introduced model is used in order to explore the issue of

reciprocal feedback between international agreements and local policy impacts.

Isley et al. (2015) introduce a new model that combines agent-based and game-
theoretic approaches to explore how short-run policy choices affect the long-term
trajectories of emission reduction. Their findings indicate that carbon pricing policies
are designed by the main causes of long-term decarbonization outcomes. A related
work, Chappin et al. (2017) present a modular and flexible ABM approach based on
the toolkit of EMLab for the modeling of climate and energy policy in the European
Union. Various challenges and methods concerned with energy transitions are
discussed, including an agent-based investment model dealing with the issues of
European energy policy. The model features a core framework with modules for
carbon and renewable energy policies, capacity mechanisms, and intermittent
renewable sources. They go on to discuss the relevance of the model through an

overview of results, ongoing projects, and a case study on EU ETS reforms.
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Furthermore, Lamberti et al. (2018) introduce the Dystopian Schumpeter Meeting
Keynes (DSK) model-an agent-based integrated assessment model-developed in
opposition to computable general equilibrium frameworks. Within the model,
heterogeneous firms are interacting in the capital-good, consumption-good, and energy
sectors, showing the way GHG emissions and changes in temperature will affect labor
productivity, energy efficiency, and capital stock. The DSK model is able to match a

wide range of empirical patterns on economic and climate dynamics.

Similar to previous study, Rengs et al. (2020) extend an already existing general-
purpose macroeconomic ABM by investigating various climate policy options under
different behavioral assumptions. Their model runs various policy scenarios, such as
carbon taxation, labor tax reductions, subsidies for the adoption of greener
technologies, and other measures, for their impact on carbon emissions and economic
performance. The results suggest that carbon taxation could reduce emissions by a
significant amount with no deterring effect on employment, while the subsidy for
greener technology adoption may yield only limited emission reduction and potentially
higher unemployment.

In a comparable investigation, Czupryna et al. (2020) suggest an ABM approach to
investigate the trade-off between economic growth and environmental protection. The
paper considers how individual decisions between economic growth and climate
protection interact at the aggregate economic level. It is found that heterogeneity of
agents, technology, and damage functions could yield slower GDP growth and higher

climate damages than models with homogeneous agents.

There are also studies that compile existing literature on this subject. In this context,
Balint et al. (2017) present a survey from a scientific perspective on the micro and
macroeconomics of climate change and discussed the challenges ahead for this
research line. As a result of the study, they identify four areas in which complex system
models already generate valuable insights: 1) coalition formation and climate
negotiations, 2) macroeconomic impacts of climate-related events, 3) energy markets,
and 4) dissemination of climate-friendly technologies. Meanwhile, Hansen et al.
(2019) conduct a systematic review of 62 studies to evaluate the potential of ABM in
understanding energy transitions from a socio-scientific point of view. The results

highlight that ABM's greatest potential lies in its application to policy and planning
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decisions. In a similar study, Castro et al. (2019) review 61 ABM studies focused on
climate-energy policies aimed at reducing emissions, spreading technologies, and
conserving energy. They cover a wide range of policy tools and recommend future
research directions for ABMs to address overlooked policy questions. More recently,
Yao et al. (2023) provide a systematic review of ABM and multi-agent system (MAS)
applications from 2007 to 2021. They categorize studies based on agent
implementations, examining MAS applications in building, district, and regional
energy systems, as well as ABM applications in behavior simulation and policy-
making. The review underscores the potential of ABM in energy transition research

due to its flexible and decentralized decision-making capabilities.

Apart from the studies mentioned earlier, numerous other studies employ ABM to
evaluate the effects of various policies on reducing emissions, disseminating
technologies, and converting energy. Table 2.1 classifies these studies according to
their application domains, while Table 2.2 categorizes them based on the policy

instruments employed.
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Table 2.1 :

Classifications of ABM studies based on application.

Theme

Subcategory

Studies

Emission reduction

Carbon Market
Electricity Market

Macroeconomic Analysis

Vehicle Market

Matsumoto (2008), Chappin and Dijkema (2009), Richstein et al. (2014), Tang et al. (2015), Isley et al. (2015), Lee and Han (2016),
Zhu et al. (2016), Tang et al. (2017), Zhu et al. (2018)
Karimi and Vaez-Zadeh (2021), Veit et al. (2009), Chen et al. (2013), Beckendach et al. (2018), Li (2017), Li and Strachan (2017),
Kraan et al. (2018), Wu et al. (2018), Czupryna et al. (2020)
Gerst et al. (2013), Monasterolo and Raberto (2016), Lamperti et al. (2018), Monasterolo and Raberto (2018), Rengs et al. (2020),
Niamir et al. (2020)
Mueller and De Haan (2009), van der VVooren and Brouillat (2015), Hofer et al. (2018)

Product/Technology Diffusion

Electric Vehicles
Renewable energy

Residential Solar Panel

Low Carbon/Energy Products

Heating Technologies

Kohler et al. (2009), Eppstein et al. (2011), Natarjan et al. (2011), McCoy and Lyons (2014), Silvia and Krause (2016), Kangur et al.
(2017), Ramsey et al. (2018), Klein et al. (2020), Buchmann et al. (2021), Zhuge et al. (2021)
Held (2010),Nannen and van den Bergh (2010), Ermst and Briegel (2017), Herrmann and Savin (2017), Safarzyfiska and van den
Bergh (2017), Chen et al. (2018), Ponta et al. (2018)
Palmet et al. (2015), Rai and Robinson (2015), Wang et al. (2018), Al Irsyad et al. (2019), Stavrakas et al. (2019), Caprioli et al.
(2020)
Bleda and Valente (2009), Desmarchelier et al. (2013), D’Orazio and Valente (2018)

Sopha et al. (2011), Sopha et al. (2013)

Energy Conservation

Residential Buildings

Office Buildings
Transport
Multi-Field

Damiani and Sissa (2013), Lee et al. (2014), Hicks and Theis (2014), Hicks et al. (2015), Kowalska-Pyzalska (2016), Jensen and
Chappin (2017), Walzberg et al. (2017), Moglia et al. (2018), Niamir et al. (2018), Wang et al. (2018)
Azar and Menassa (2011), Zhang et al. (2011), Zhao (2012), Lin et al. (2016), Jia et al. (2019)

Schroder and Wolf (2017), Safarzynska and van den Bergh (2018), Adenaw and Lienkamp (2021)
Allen et al. (2019)
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Table 2.2 : Classifications of ABM studies based on policy instruments.

Theme

Policy Instrurement

Studies

Emission reduction

Tax

Emissions Trading

Subsidy
Command and Control
Discount/Pricing

Financial instruments

Isley et al. (2015), Karimi and Vaez-Zadeh (2021), Chen et al.(2013), Li (2017), Li and Strachan (2017), Kraan et al. (2018), Wu et al.
(2018), Gerst et al. (2013), Monasterolo and Raberto (2016), Monasterolo and Raberto (2018), Rengs et al. (2020), Niamir et al.
(2020), van der Vooren and Brouillat (2015)

Matsumoto (2008), Chappin and Dijkema (2009), Richstein et al. (2014), Richstein et al. (2015), Tang et al. (2015), Isley et al. (2015),
Lee and Han (2016), Zhu et al. (2016), Tang et al. (2017), Zhu et al. (2018), Beckenbach et al. (2018)

Richstein et al. (2015), Tang et al. (2015), Beckenbach et al. (2018), Czupryna et al. (2020), Gerst et al. (2013), Rengs et al. (2020),
Niamir et al. (2020)

Beckenbach et al. (2018), van der VVooren and Brouillat (2015) , Hofer et al. (2018)

Mueller and De Haan (2009) ), van der VVooren and Brouillat (2015)
Czupryna et al. (2020), Monasterolo and Raberto (2016), Monasterolo and Raberto (2018)

Product/Technology Diffusion

Mixed Politics van der Vooren and Brouillat (2015), Hofer et al. (2018)
Other Veit et al. (2009), Chen et al. (2013), Li and Strachan (2017), Hofer et al. (2018), Lamperti et al. (2018), Rengs et al. (2020)
Subsidy Natarajan et al. (2011), Silvia and Krause (2016), Kangur et al. (2017), Herrmann and Savin (2017), Safarzynska and van den Bergh

Information Acquisition/Marketing

Tariff Guarantee
Tax

Infrastructural Policies
Discount/Pricing

Other Financial Incentives
Financial instruments
Other

(2017), Safarzynska and van den Bergh (2018)
Nannen and van den Bergh (2010), Ernst and Briegel (2017), Wang et al. (2018), Bleda and Valente (2009), Desmarchelier et al.
(2013) , Sopha et al. (2018)
Herrmann and Savin (2017), Ponta et al. (2018), Palmer et al. (2015), Al Irsyad et al. (2019)

Eppstein et al. (2011), Kangur et al. (2017), Nannen and van den Bergh (2010), Desmarchelier et al. (2013)
Silvia and Krause (2016), Kangur et al. (2017)
Eppstein et al. (2011), Rai and Robinson (2015), Wang et al. (2018)
Palmer et al. (2015), Al Irsyad et al. (2019)
Safarzynska and van den Bergh (2017), Al Irsyad et al. (2019), D’Orazio and Valente (2018)

Kohler et al. (2009), Natarajan et al. (2011), McCoy and Lyons (2014), Silvia et al. (2016), Safarzyfiska and van den Bergh (2017) ,
Chen et al. (2018), Wang et al. (2018), Desmarchelier et al. (2013), Sopha et al. (2011), Sopha et al. (2013)

Energy Conservation

Information Acquisition/Marketing

Incentives

Tax

Other Financial Incentives
Smart Measurement Systems
Other

Kowalska-Pyzalska (2016), Jensen and Chappin (2017), Moglia et al. (2018), Azar and Menassa (2011), Zhang et al. (2011), Schroder
and Wolf (2017)
Lee et al. (2014), Hicks and Theis (2014), Hicks et al. (2015), Moglia et al. (2018), Safarzynska and van den Bergh (2018)

Lee et al. (2014), Hicks et al. (2015)
Moglia et al. (2018), Wang et al. (2018), Azar and Menassa (2011),
Damiani and Sissa (2013), Walzberg et al. (2017)
Lee et al. (2014), Moglia et al. (2018), Niamir et al. (2018), Zhang et al. (2011), Allen et al. (2019)

22



2.2 Climate Projections

The quantity of research examining the effectiveness of various techniques for
ensembling GCMs is steadily rising. However, this section will primarily focus on
reviewing papers that predominantly utilize Machine Learning (ML) methods among

all the GCM ensemble approaches available.

Of these, the Random Forest (RF) algorithm is one of the in-use methods for GCM
ensembling. In this context, Ahmed et al. (2019), first evaluate the performance of 36
CMIP5 (Coupled Model Intercomparison Project Phase 5) GCMs in capturing the
precipitation and temperature variability over Pakistan. Further, they rank the
performance of the best performing GCMs by multi-model ensemble analysis in both
RF and simple mean methods. The current paper reports results showing that, in this
regard, the RF method outperforms a simple mean. In another similar research, Homsi
et al. (2020) project the likely precipitation change over Syria due to climate change.
Using methods of symmetrical uncertainty (SU) and multi-criteria decision analysis
(MCDA), it identifies an optimum GCM for precipitation projection. It then used a RF
model to produce the multi-model ensemble of precipitation projections for the four
RCPs.

To further assess the future changes in drought metrics, Prodhan et al. (2022) use the
Deep Neural Network (DNN) and Gradient Boosting Regression Tree techniques for
combining selected CMIP6 GCMs, along with the RF algorithm. It is found from the
results that the proposed ensemble method presents higher performance compared to
individual techniques.

The Support Vector Machine (SVM) technique has also been used in various
researches for the ensembling of GCMs in literature. For instance, Ahmed et al. (2020)
utilize several machine learning techniques, including SVM, to ensemble best models
from a pool of 36 CMIP5 GCMs over Pakistan for precipitation and temperature
prediction. The K-Nearest Neighbor (KNN) algorithm and Relevance Vector Machine
(RVM) algorithms outperform Artificial Neural Network (ANN) and SVM
algorithms. Thus, KNN and RVM methods are suggested to develop Multi Model
Ensembles (MMESs) for temperature and precipitation. In a similar study, Dey et al.
(2022) employ ANN, RF and SVM algorithms to ensemble top-5 GCMs for

precipitation and temperature projection over the Damodar River basin in India. The
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results of this research indicate that both the SVM and RF methods outperform ANN
and simple mean approaches. Wang et al. (2022) investigate extreme temperature
indices in the North China Plain based on climate observations at 54 meteorological
stations and projection data from seven CMIP6 GCMs. It investigates temporal and
spatial variations in these indices during the past and future periods. The result
suggests that the RMSE of the multi-GCM predictions regressed by SVM are smaller

than those obtained by using the arithmetic mean approach.

ANN is generally considered an essential ensemble integration approach of GCMs
along with the RF and SVM algorithms. Acharya et al. (2014) apply a nonlinear
approach called the Extreme Learning Machine (ELM) to the outputs of GCM to
estimate the MME of NEMR in southern part of India. In this study, the proposed
technique is compared to other conventional MME methods, such as the simple
arithmetic mean of GCMs and multiple linear regressions based on singular value
decomposition. A wide variety of skill metrics, including spread distribution,
multiplicative bias, and prediction errors, is utilized to evaluate the performance.
Results show that ELM efficiently captures extremes compared to other MME
methods. Recently, Yan et al. (2022) try applying an ANN approach to integrate
multiple models using outputs from CMIP6, hence achieving better nonlinear and
complex relationships between the climate models than the normally adopted approach
of ensemble median. This improves the accuracy of predictions of the future
precipitation patterns. Then, they analyze temporal changes and spatial distribution of
the indices for several climate zones in China in three distinct time periods of the 21st
century (2023 to 2100) and found that the application of multi-evaluation metrics

outperforms the traditional ensemble median approach.

In addition to these studies, Kim et al. (2020) investigate the skill of various MME
methods in enhancing the accuracy of 1-month lead seasonal forecast products. Seven
MME methods are compared based on their hindcast performance for global 2-meter
temperature and precipitation from 1983 to 2009. It is found that Genetic Algorithm
(GA) emerged as the most effective MME method for predicting both global 2-meter
temperature and precipitation across all seasons. In this work, Jose et al. (2022) use
five different ML approaches, namely RF, SVM, Multiple Linear Regression (MLR),
Extra Tree Regressor (ETR), and Long-Short Term Memory (LSTM), for the

integration of temperature and precipitation information from 13 CMIP6 GCMs over
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India. The results show that LSTM performs prominently better than others in the
integration of the precipitation data, while RF and LSTM performed exceptionally well
with the temperature data. Moreover, this study has shown that all the ML methods

outperform the simple mean approach.

Sun et al. (2023) propose a Convolutional Neural Network (CNN) framework for
MME of monthly precipitation over China from the CMIP6 models and, compared to
32 GCMs, quantile mapping (QM), and other in-widely used MME approaches such
as Arithmetic Mean Ensemble (ENS), MLR, SVM, RF, and KNN, against in-situ
measurements. CNN gives the best MR value of 0.96, outperforming KNN, RF, and
MLR. While slightly trailing the top GCM, it surpasses other MME methods in
capturing observed interannual variations and probability density functions, showing
minimal sensitivity to changes in ensemble size. Lastly, Fu et al. (2023) introduce a
regional downscaling model called stacking-MME, which combines multiple machine
learning models through stacking. The model's performance is assessed in simulating
precipitation, solar radiation, maximum temperature, and minimum temperature, and
in predicting three future climate variable scenarios across near-term (2031-2040),
medium-term (2051-2060), and long-term (2081-2090). Results indicate that Light
Gradient Boosting Machine, Gradient Boosting Regressor, and RF demonstrate the

most effective performances among the nine machine learning models evaluated.

Table 2.3 : Summary of GCM ensemble studies.

Reference Study Area Method Variable
Acharya et al. (2014) India ANN Precipitation
Wang et al. (2018) Australia RF, SVM, Bayesian Temperature, Precipitation
Model Average
Ahmed et al. (2019) Pakistan RF Temperature, Precipitation
Yilmaz (2019) Euphrates-Tigris Basin, Arithmetic mean Temperature, Precipitation,
Tiirkiye

Xu et al. (2020)

Han River, China

Bayesian Model

Evapotranspiration
Precipitation

Average
Kim et al. (2020) Several cities MLR, ANN, Genetic ~ Temperature, Precipitation
Alg.
Ahmed et al. (2020) Pakistan ANN, KNN, SVM, Temperature, Precipitation
RVM
Homsi et al. (2020) Syria RF Precipitation
Carvalho et al. (2021) Europe Overlap percentage Wind speed
Baggcaci et al. (2021) Tirkiye Arithmetic mean Temperature, Precipitation
Asadollah et al. (2021) Iran GBRT Temperature, Precipitation
Dey et al. (2022) India ANN, RF, SVM Temperature, Precipitation
Jose et al. (2022) Netravati, India SVM, ETR, MLR, Temperature, Precipitation
RF, LSTM
Prodhan et al. (2022) South Asia RF, GBRT, DNN Temperature, Precipitation
Yan et al. (2022) China ANN Precipitation
Zhang et al. (2022) Global OLS, DT, DNN Temperature, Precipitation
Wang et al. (2022) North China SVM Temperature, Precipitation
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Table 2.3 (continued) : Summary of GCM ensemble studies.

Reference Study Area Method Variable
Gholami et al. (2023) Gharesu basin, Iran Runoff Hybrid Precipitation
Approach

Guven (2023) East Thrace, Tirkiye RF, GBRT, XGBoost

Sun et al. (2023) China SVM, CNN, MLR,
KNN, RF

Fu et al. (2023) Zhongwei, China 9 ML algorithms

East China

Tiirkiye

Arithmetic mean
XGBoost

Zhao et al. (2023)
Present study

Temperature, Precipitation,
Radiation, Wind Speed
Precipitation

Temperature, Precipitation,
Radiation
Precipitation
Temperature, Radiation,
Wind Speed
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3. METHODOLOGY AND MODEL

This study goes in for a structured and comprehensive methodology to analyze the
impacts of energy, economic, and environmental policies on energy demand,
production, and CO2 emissions in Tiirkiye. Firstly, the study involves data collection
and regridding of GCM-based climate data from the experiment CMIP6, and further
compares these with observation-based data, ERA 5, which has been bias-corrected
with CRU data, henceforth referred to as ERA5. These have been compared for the
three skill measures: Kling-Gupta efficiency, normalized Root-Mean Squared Error,
and a modified index of agreement. All that will be needed to further establish the
appropriateness in providing accurate and reliable climate data for subsequent

analysis.

Performances of GCMs are analyzed with the objective of selecting the four best
models that could satisfactorily describe the climatic condition in Tiirkiye. Further, the
top-ranked models will be trained using ERAS via the Extreme Gradient Boosting Tree
(XGBoost) method of machine learning. It is a technique well adapted for dealing with
complicated nonlinear associations of variables given in Table 3.1. The resultant
models, used for the future forecasting of climate variables under the SSP5-8.5 climate
scenario, provide a strong base to understand the potential future climatic impacts on

energy systems.

After the processing of climate data, the study estimates important energy indicators
related to electricity demand, cooling-degree-days (CDD), and the generation of wind
and solar power systems. The estimates are important to determine the future energy
landscape of the country. Besides, the Analytical Hierarchical Process (AHP) and the
Multi-Attribute Utility Techniqgue (MAUT) are utilized to determine the utility
function weights corresponding to the decisions of technology investment. These
methods allow a systematic approach to prioritizing investments in various energy

technologies, considering multiple criteria and stakeholder preferences.
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Finally, one ABM is developed which is capable of simulating various policy
scenarios. This model allows complex interactions of different agents such as
Independent Power Producers (IPPs) and government within the energy system to be
explored. The ABM shows the probable impacts of different policy preferences on

energy demand, production, and CO. emissions under various simulation scenarios.

Figure 3.1 provides an overview of the proposed GCM-ABM framework structure
with details on components and their linkages. In the presented framework, the
integration of GCMs and ABM for simulating a set of policies regarding electricity
demand, production, and related CO2 emissions in the case of Tiirkiye is shown. Figure
3.1 facilitates an easier description of the methodology to be followed in this study by

providing a clear visual display of the dynamic processes involved.
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Figure 3.1 : Proposed model framework.
3.1 Climate Model

GCMs are the specialized tool applied by the scientist to know, understand, and predict
Earth's climate system. Such models run simulation interactions between atmosphere,
oceans, land surfaces, and ice by integrating physical, chemical, and biological
processes. The major application of GCMs is projections on future climate conditions
according to a wide range of GHG emission scenarios and, therefore, useful insights
into potential impacts by researchers and policy makers in developing strategies for

mitigation and adaptation.

GCMs are the result of several decades of research and are based on the fundamental

principles of physics, representing processes such as atmospheric circulation, ocean
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currents, and energy exchanges through mathematical equations. Such models work
for the whole globe, which is divided into some sort of grid system whereby the climate
conditions for each cell in the grid are estimated and updated step by step in time. It
enables GCMs to capture large-scale climate features such as El Nifio events and

monsoons, at the same time providing insights into regional climate changes.

The large increases in resolution and skill are the resultant consequences of large
improvements in computational powers and data. The new models make full use of
comprehensive observational databases derived from satellite observations, from
weather stations, and from ocean buoys that have formed an important aspect in the
processes of model simulation validation and enhancement. Equally, new algorithm
and parameterizations that are at present being devised have enabled improved
representations of complex procedures of cloud formation or land-atmosphere

interaction.

GCMs have been a cornerstone in climate science, forming the basis for such major
assessments as the reports done by the Intergovernmental Panel on Climate Change
(IPCC). These models yield critical evidence supporting human influence over climate
change and help identify probable future risks in the form of sea-level rise, extreme
weather events, change in ecosystems, and agriculture. As the world grapples with the
challenges of climate change, GCMs remain at the forefront of research in providing

the essential knowledge to inform effective decision-making (Lee et al., 2023).

GCMs work by discretizing the surface of the Earth into a three-dimensional grid, with
each cell having a unique geographical location. Within each model grid cell,
atmosphere, ocean, land, and ice are simulated through mathematical equations driving
physical processes that include fluid dynamics, thermodynamics, and radiation. Such
a set of equations allows for variables in air temperature and pressure, wind speed,
humidity, and the currents in the oceans. These models calculate the interactions
among those components and simulate exchanges of energy and matter within and
among grid cells through time. The time steps at which the model makes these
calculations are from a few minutes to several hours, and projection of climate change

on timescales from days and months to hundreds of years is enabled.

The performance of models in GCMs is directly related to the quality of the input data

and algorithmic complexity. Observational data from a satellite, ground station, or
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buoy may be used as an initial condition for the model and constant verification.
Advanced parameterization schemes are applied to represent processes that occur at
scales smaller than the resolution of the grid, such as cloud formation, convection, and
land-atmosphere interactions that are essential to capture the richness of the climate
system (Lee et al., 2023). Thirdly, GCMs usually make several runs, referred to as
ensembles, by having slightly different initial conditions or different settings of the
parameters to represent uncertainties and natural variability. These ensembles help to
bound the future climate possibilities and to identify signals that are most robustly

projected.

Ensembling of GCMs is vital in climate studies due to the manifold benefits which this
particular technique offers. This ensembling technique enhances the robustness and
reliability of the climate projection by amalgamating outputs of various GCMs. This
method decreases uncertainties in models compared to single model outputs, offering
more comprehensive and closer-to-reality future climate scenarios. It is useful for
ascertaining agreement among models using ensembling, hence displaying common
trends and patterns despite model diversity. This enables the possibility to explore
uncertainty ranges, which is crucial for making informed decisions on climate
adaptation and mitigation. (Gholami et al., 2023). Besides, various ensembling
techniques, including weighted averaging or machine learning algorithms, allow
integrating various sources of information, such as different emission scenarios and
model configurations, thus further enriching the scope and depth of climate
projections. These ensembling methods involve different ways of combining outputs

from different models with the view to enhancing predictive accuracy and reliability.

One such big way is by weighted averaging wherein the predictions are weighted in
inverse proportion to a measure of the model's performance or their reliability. Thus,
it would capitalize on strengths of each particular model while reducing a particular
model's biases or inaccuracy. A weighted average allows much in simplicity,
adaptability, and translucency-weights may even be tuned finer through empirical
cross-validation and insights experted or otherwise. However, the technique may be
sensitive to weight selection, which can introduce subjectivity or uncertainty unless
done with careful calibration. It also assumes constant performance for each model
over time, potentially overlooking temporal changes (Castaneda-Gonzalez et al.,
2023).
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Another emerging technique for ensembling involves machine learning algorithms that
will incorporate multiple GCM outputs through data-driven modeling, such as neural
networks or random forests. These algorithms capture the complex interactions and
nonlinearities of the climate system that might further improve predictive
performance. Machine learning-based ensembling automatically adapts and refines
ensemble weights based on training data, hence limiting manual intervention.
However, all those methods require really substantial computational resources. The
mechanisms of the ensemble predictions are not so easy to understand and far from

transparent; it is not easy to judge their reliability.

Each of these techniques has particular strengths-for instance, simple averaging is easy
and tends to reduce random errors, while the more sophisticated techniques can
account for model biases and uncertainties more accurately. They also have
weaknesses, like the possibility of overfitting in the more complicated techniques and
the computational intensity of large ensemble runs. Understanding such trade-offs is

important for applying GCM ensembling effectively in climate projections.

Table 3.1 compares all the popular methods of ensembling, along with their respective
pros and cons in detail. Weighted averaging adds the relative performance of each
model together for its advantages to increase the accuracy in predictions. In ANN,
while highlighting complex nonlinear data relationships, ANN can be very
computational and suffer from overfitting issues. Random Forests, being the ensemble
of many decision trees, provide robustness and interpretability but may face the
problem of high variance. XGBoost has high predictive power and efficiency but may
result in overfitting unless it is tuned correctly. SVM work very well for high-

dimensional spaces but can be pretty slow when it comes to handling big datasets.

K-NN is simple and intuitive but computationally expensive and sensitive to noise.
Decision Trees provide clear and interpretable models but can be unstable, overfitting
easily. Naive Bayes Classifier is rather computationally effective for large sets of data
and efficient, presupposing the independence of features. Gradient Boosting Machines
are powerful predictors, correcting the errors of weak learners sequentially, but they
can be prone to overfitting and require careful tuning. This comprehensive overview
helps in selecting the appropriate ensembling method based on specific needs and

constraints.
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Table 3.1 : Advantages and disadvantages of the ensembling methods (adapted from Dineva and Atanasova, 2020).

Ensembling Technique

Description

Advantage

Disadvantage

Weighted Averaging

Artificial Neural Networks
(ANN)

Random Forests (RF)

Extreme Gradient Boosting
(XGBoost)

Support Vector Machines
(SVM)

Combines outputs from multiple models by
assigning weights based on performance or
reliability.

Utilizes interconnected layers of nodes to learn
complex relationships between input and output
data.

Ensemble learning method that constructs multiple
decision trees and then combines their predictions
through averaging.

Gradient boosting algorithm that sequentially trains
weak learners and combines their predictions to
improve accuracy.

It builds hyperplanes in high-dimensional space to
classify data points.

Simplicity and flexibility

Transparency in weight adjustment
Straightforward interpretation of
ensemble predictions

Facilitates communication and decision-
making in climate-related contexts
Ability to capture nonlinear relationships
in the data

Flexible architecture capable of handling
various input types and complexities

Robust against overfitting

Less sensitive to noise and outliers in the
data

Can handle both numerical and
categorical data

High predictive performance

Ability to handle missing data
effectively

Feature importance analysis for model
interpretation

Effective in high-dimensional spaces
Versatile, as it can use different kernel
functions for various data types
Robust against overfitting

Sensitivity to weight selection,
potentially introducing subjectivity or
uncertainty

Assumes constant model performance
over time, may overlook temporal
variations or model drift

Require large amounts of data for
training

Vulnerable to overfitting if not properly
regularized

Training can be computationally
intensive and time-consuming

Less interpretable compared to
individual decision trees

Can be computationally expensive for
large datasets and complex models
May suffer from biases in class
distributions if not properly balanced
Prone to overfitting if hyperparameters
are not tuned properly

Sensitive to outliers and noisy data
Training can be time-consuming for
large datasets and complex models
Memory-intensive for large datasets
Can be sensitive to the choice of kernel
function and hyperparameters

Limited interpretability compared to
simpler models

32



Table 3.1 (continued) : Advantages and disadvantages of the ensembling methods (adapted from Dineva and Atanasova, 2020).

Ensembling Technique

Description

Advantage

Disadvantage

k-Nearest Neighbors (k-NN)

Decision Trees

Naive Bayes Classifier

Gradient Boosting Machines

Logistic Regression

Non-parametric method for classification and
regression that predicts the output based on the
majority vote or average of its k-nearest neighbors.

A hierarchy of trees partitioning the space
recursively, so decisions depend upon feature
values at each level of the tree.

Probabilistic classifier based on Bayes' theorem,
assuming independence between features.

Ensemble learning method that builds models
sequentially, each correcting errors of the previous
ones.

Linear regression model wused for binary
classification, estimating probabilities using the
logistic function.

Simple and intuitive

No training phase required

Effective for small datasets with simple
decision boundaries

Easy to interpret and visualize

Can handle both numerical and
categorical data

Robust to outliers and missing values

Simple and computationally efficient
Effective for text classification and spam
filtering

Can handle large feature spaces with
sparse data

High predictive accuracy

Robust to outliers and noisy data
Feature importance analysis for model
interpretation

Simple and interpretable

Efficient for large datasets with many
features

Outputs probabilities for class
membership

Computational complexity increases
with the size of the training dataset
Sensitive to the choice of distance metric
and value of k

Can be inefficient for high-dimensional
data

Prone to overfitting, especially with
deep trees

Instability, as small variations in the data
can lead to different tree structures
Limited expressiveness for capturing
complex relationships

Strong independence assumption may
not hold in real-world datasets

Limited expressive power for capturing
complex relationships

Sensitive to overfitting, especially with
deep trees and large learning rates
Prone to longer training times compared
to simpler models

Assumes linear relationship between
features and log-odds of the outcome
Limited flexibility compared to more
complex models
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3.1.1 Normalized root mean squared error (nRMSE)

NRMSE represents an important measure in many disciplines, such as engineering and
data science, since it may reveal different characteristics in a model performance
evaluation. It provides a very advantageous property for measuring the performance
using the same scale of magnitude irrespective of data or the actual predictions (Chen
and Liu, 2012). The normalization in the name of NRMSE means dividing the RMSE
with a measure of observed data variability such as range or standard deviation. This

is for a fair comparison; see equation 3.1.

[%Z?’:ﬂ(;i—oi)z]l/z

Omax—Omin

nRMSE = (3.1)

Here, Gi represents the simulated values obtained from GCMs, while O; represents

observation values from ERA5/CRU. N is the total number of data used in the analysis.

NRMSE makes the interpretation of model performance easier because there is
consistency and intuitiveness of results. Unlike the absolute error metrics like RMSE,
which provides insight into the absolute magnitude of the prediction errors, nRMSE
provides a dimensionless measure that is independent of the data scale. This is quite
useful for comparing models that operate on different scales or datasets. Therefore,
NRMSE is an indispensable tool for researchers, analysts, and practitioners seeking to
benchmark and compare the accuracy of predictive models across different domains

and datasets.

3.1.2 Modified index of agreement (md)

The modified index of agreement, md, is a statistical measure in general applications
but finds its way into everyday usage in model performance analysis, especially in
hydrology, climatology, and other environmental sciences. It provides full information
on the agreement between observed and simulated values and thus gives useful insights

into the accuracy and dependability of predictive models.

While the traditional measures involve either correlation coefficients or RMSE, the
md considers the pattern and magnitude of errors in observed and simulated data
points. The md hence reflects on timing and amplitude discrepancies, allowing a
holistic view of model performance that will definitely enable researchers and

practitioners to spot the areas of refinement in their models.
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where O stands for the mean of the observed data.

md has a number of properties which are advantageous for model evaluation. Being
dimensionless and ranging from 0 to 1, md offers an easily understandable measure of
fit, with 1.0 indicating a perfect agreement between observed and simulated values.
This is one of the reasons why it is so usable by stakeholders: they can discern the
level of agreement between model predictions and observations (Willmott, 1981).
Besides, md is resistant to outliers, hence resistant to extreme values and fluctuations
in the dataset. Being able to present a balanced judgment about the events in terms of
both timing and amplitude, md serves as a useful instrument for researchers and

practitioners in many spheres, who strive for improving models predictive accuracy.

3.1.3 Kling-Gupta efficieny (KGE)

The Kling-Gupta Efficiency (KGE) is a metric that will crop up rather often in
hydrological and environmental modeling. It's an overall indicator of model
performance, integrating the main components: correlation, bias, and variability.
Designed to be an improvement on more traditional indices, including the Nash-
Sutcliffe Efficiency (NSE), KGE allows for a nuanced assessment of goodness of fit
in regard to both simulated and observed values by means of their agreement in mean,
variability, and correlation. This holistic approach allows for more accurate
identification of model strengths and weaknesses, hence enhancing the reliability of
model evaluations across different conditions and time scales (Liu, 2020; Quintero et
al., 2020).

KGE=1—\/(R—1)2+<Z—Z—1)2+(Z—2— )2 (3.3)

Here, R represents the Pearson correlation coefficient calculated between the observed
and simulated time series, oo stands for the standard deviation of observations, 6g
denotes the standard deviation of simulations, pc represents the mean of the simulated

values, and po indicates the mean of the observed values.

KGE is widely adopted in hydrological and environmental research due to its many
advantageous characteristics. In formulation, KGE yields a dimensionless metric,

bounded from negative infinity to 1, where 1 represents a perfect agreement. This

35



standardized scale makes the model performance easy to interpret and compare across
different studies and applications. Since KGE has the same sensitivity to systematic
and random errors, it is a valued tool when it comes to the evaluation of complex

hydrological processes and environmental systems.

3.1.4 Selection of GCMs

In evaluating the selected climate variables for each grid, data from GCMs will be
compared with ERA5/CRU biased data using the above-described methods.
Numerical values of each grid are ranked according to the performance of models. For
the 13 selected GCMs (See Table A.1), the best-performing model in the selected grid
takes the first rank, and the worst-performing one takes the 13th rank. In this ranking,
the model with the lowest NRMSE will be considered the winner, while at the same
time the model with the highest scores on the remaining two criteria will also be

selected as a winner.

In this study, to rank the performance of GCMs for each climate variable in each grid,
two different methods, namely Multiple-criteria Decision Analysis (MCDA) and

Comprehensive rating metrics (MR), are employed consecutively.

3.1.4.1 Multiple-criteria decision analysis (MCDA)

MCDA has been found to be effective in ranking alternatives by aggregating
information from diverse sources, as indicated by studies such as those by Homsi et
al. (2020) and Salman et al. (2019). In this study, ranking of the GCMs will be done
using scores obtained from an MCDA approach. This is done through the development
of a payoff matrix, whereby the frequency of grid point numbers for a particular rank
realized by a GCM is considered. For 13 GCMSs under consideration, payoff matrix
dimensions are 13 by 13, ranging between ranks 1 and 13. Model performance will be
quantified based on the frequency of occurrence of each GCM across all grid points
falling within Tiirkiye. The overall performance of a GCM over the study area will,
therefore, be determined by its frequency of occurrence across different grid points. A
higher frequency of occurrence attributes more weight to a particular model, resulting

in a higher ranking compared to other models.

Following this approach, when a GCM attains rankings of 1, 2, 3, ..., n at grid points
X1, X2, X3, Xn, respectively, the MCDA score for the GCM is computed as follows:
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MCDA Score =X, +X,-(1/2) + X5-(1/3) + -+ X,, - (1/n) (3.4)

For instance, a GCM will get n/1 points in case it ranks 1 (best performance) at all the
n grid points. In the case of getting rank 2 at m grid points, the points are given as m/2,
and so on. The total score is calculated by summing the points assigned to all the ranks

obtained by a given GCM.

3.1.4.2 Comprehensive rating metrics (MR)

The MR approach, as extracted from the existing literature, was followed in this
research to synthesize MCDA ranking results of models against all the performance
criteria and climate variables into a single metric. MR can be mathematically defined

as.
MR =1-— %Z?zlranki (3.5)

Here, m and n denote the number of evaluation metrics and the number of GCMs,
respectively; in this paper, m = 9 including 3 KGE, 3 md, and 3 nRMSE metrics, while
n = 13. The higher the value of MR close to 1, the more powerful the GCM will be in

reproducing the observed data.

3.2 Extreme Gradient Boosting Regression Tree

XGBoost is an ensemble machine learning algorithm with its foundation in decision
trees and using gradient boosting techniques, established initially as part of a research
project at the University of Washington in 2016. Renowned for its accomplishments
in Kaggle competitions and its vital role in the latest industry applications, XGBoost
receives considerable contributions from an active data science community (Niu et al.,
2019).

XGBoost is recognized as an optimized gradient tree boosting technique that
efficiently builds sequential decision trees, hence allowing for fast computation on a
wide range of computing platforms. It has gained popularity due to its efficiency in
modeling new features and classifying data points with high accuracy in tabular and
structured datasets (Fan et al., 2018).

Evolved from a decision tree-based approach, XGBoost initially employed bagging-a
collection meta-algorithm that took the predictions of multiple decision trees and
combined them through majority voting. Further enhancements included reducing the
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margins of error in constructing sequential models with assistance from the gradient
descent algorithm. Furthermore, XGBoost tackles overfitting and missing values
through parallel processing for optimized gradient boosting by ways of tree pruning

and parallelization, along with hardware optimization.

The implementation of the XGBoost algorithm proceeds as follows: Consider a dataset
S={(x;,y:);i=12,--,m;x; €ER™,y; € R},where n denotes the number of
observations, m signifies the number of features, and y represents the target variable.

Let 9 denote the outcome generated by the model
P =p(x) =X fr (%) (3.6)

f, represents a decision tree, and fo(xi) signifies the score for the pth tree for the it"
observation. To select the function fp, it is necessary to minimize the regularized

objective function, expressed as:

fo =2 L, 97¢) + X, 0(f,) (3.7)

incorporating both the loss function L and a penalty parameter Q to mitigate the
model's complexity.

o(f,) = aT +Allwl)? (3.8)

Here, a and A represent the parameters regulating the penalty for the leaves T and the
leaf weight w respectively. The inclusion of Q(fp) serves to prevent overfitting and

streamline the models generated by the algorithm.

XGBoost employs a unique algorithm in tree construction, utilizing the Similarity

Score and Gain to pinpoint the most effective node divisions.

2
(T, Residual;)
Y-, [Previous Probability;x(1—-Previous Probability;)]-21

Similarity Score = (3.9

The concept of "prior probability"” denotes the probability of an outcome estimated in
a preceding step. At the outset, a probability of 0.5 is allocated to all observations to
formulate the initial tree. Later, with the construction of other trees, this a priori
probability gets updated, combining for the first prediction and all the predictions
gathered from previous trees. The A is a regularisation parameter. After calculating the

Similarity Score of each leaf node, the Gain could be worked out in the following step:

Gain = Left leafsimilarity + Right leafsimilarity - ROOtsimilarity (3-10)
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The greatest Gain signifies the optimal point for dividing the tree.

XGBoost has many parameters, all of which are very influential in the behavior and
predictive performance of this algorithm. These include a learning rate that controls
the contribution of each tree in the overall model, the maximum depth of each tree,

regularization terms to prevent overfitting, and the number of trees in the ensemble.

e Learning Rate: Better known as the "eta" parameter, the learning rate controls
the contribution of each tree to the global model: where a lower learning rate
increases the robustness of the model by decreasing the influence a single tree
would have, a higher learning rate allows for faster learning but might increase
the risk of overfitting.

e Maximum Depth: Sometimes referred to as "max_depth,” this parameter
defines the deepest level to which trees in an ensemble can expand. In this
regard, while deeper trees can capture even more complex data relationships,
they are typically more subject to overfitting. Finding the right maximum depth
thus finds a sweet spot between model complexity and generalization
performance.

e Regularization Terms: Preventing overfitting, XGBoost contains several
regularization terms: "gamma"-the minimum loss reduction required to create
further partitioning of leaf nodes, and "lambda™ ("alpha") is the L1 (Lasso) and
L2 (Ridge) regularization on leaf weights, respectively. These penalize overly
complex models to give ultimately better generalization performance.

e Number of Trees: This is often referred to as "n_estimators,” which is the total
number of boosting rounds or iterations during model training. Increasing the
number of trees can improve model performance up to a point but may increase

training time and lead to overfitting if not tuned properly.

The optimization of these parameters involves finding that combination of values from
which the model achieves the highest predictive power with minimal overfitting. This
can be done by grid search, randomized search, or more intelligent optimization
techniques that can systematically explore this parameter space and identify the best

configuration of a given dataset and objective.

Finally, the algorithm is trained and evaluated on the validation set or by using cross-

validation for every possible combination of parameter values. Further, the optimal
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value of the parameters is determined regarding the performance metric-performance

score on the validation set-which might be accuracy or mean squared error.

In this study, the XGBoost algorithm is used to ensemble the top four CGMs for the
prediction of future values of climate variables in each grid. Prior to ensembling and
forecasting, the datasets-both top four GCMs and ERAS/CRU-are split into two parts:
namely, the train dataset and the test dataset. The training dataset consists of data over
the years from 2010 to 2013, while the test dataset includes data from the year 2014

only.

In every grid, climate variables are forecasted for the future until 2040 using a grid
search technique to find the best combination of parameters that minimize the RMSE.

3.3 Analytical Hierarchical Process (AHP)

The AHP was developed by Saaty in 1980 as an advanced decision-analysis technique
that embodies both psychological and mathematical elements. According to Saaty
(2001), it is a structured technique for analyzing complex problems that include

knowledge and judgments.

From the day it was discovered, AHP has been a vital tool for the analyst and
researcher. It has gained widespread acceptance as one of the most important methods
in multiple criteria decision-making. Several major publications have appeared,
expressing the wide-ranging applications that AHP has in the broad fields of
optimization, alternative selection, efficient distribution of resources, and much more,

to name a few (Vaidya and Kumar, 2006).

Basically, AHP works by setting priorities of the alternatives and the criteria on which
such alternatives are based. Relevant criteria are selected by decision makers into the
hierarchy to be considered, while irrelevant ones are discarded. The criteria could also
range from well-defined and measurable criteria such as weight and length to

intangible ones that do not have pre-defined scales.

In general, the priorities for each alternative's performance on every criterion are
determined through pairwise comparisons of judgment or ratios of scale
measurements, wherever possible. Such prioritization allows a resolution of the

difficulty with disparate scales by interpreting their significance relative to user values.
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Finally, a process of weighting and aggregation is used to deduce overall priorities for
the alternatives about their contributions to the goal. This process parallels the
arithmetic used in the past combination of alternatives evaluated under multiple
criteria using a common scale for an aggregate result - normally monetary. Using the
AHP, a multidimensional scaling problem is reduced to a unidimensional scaling
problem (Saaty, 2001).

To assess the significance of variables, it's necessary to establish a pairwise
comparison matrix A belonging to the real space R™". Moreover, this matrix must

adhere to the following criteria:

o ajj>0;
e a3 =1,

e ajj=1/g; forallij=1,2,...,n.

The pairwise comparison matrices are constructed utilizing Saaty's suggested 1-9
importance scale. Particularly, when a study's findings have broad implications across
a significant population, researchers frequently aggregate opinions from multiple
individuals to formulate these decision matrices. Furthermore, many researchers adopt
the geometric mean method during consolidation to ensure the reliability of the
pairwise comparison matrices. Table 3.2 provides an explanation of the importance
scale values and their corresponding interpretations.

Table 3.2 : Importance scale values

Intensity of Importance Definition Interpretation
1 Equal importance i and j equally important
2 Weak
3 Moderate importance i slightly more important than j
4 Moderate plus
5 Strong importance i more important than j
6 Strong plus
7 Very strong importance i very strongly more important than j
8 Very, very strong
9 Extreme importance i extremely more important than j

Normalization of a pairwise comparison matrix involves the division of each element
by the sum of its column (3.11). Once the normalized pairwise comparison matrix is
obtained, the normalized principal eigenvector corresponding to each row can be

calculated by averaging the values in that row (3.12).
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In this context, wi, a; ; and n represent the normalized principal eigenvector for row i,

the elements of the normalized pairwise comparison matrix Anorm, and the number of

factors, respectively.

Evaluating the model's consistency requires deriving the principal eigenvector (Amax)

using equation 3.13.

Wi

Anax = ?:1@ (3.13)

After calculating Amax, the consistency index (CI) can be determined using the

following equation:

C] = Amax—n (3.14)

n-—1
Finally, the consistency rate (CR) is expressed as follows:
CR="C1/p, (3.15)
Table 3.3 presents the value of Rl (Random Index) utilized in equation 3.15.

Table 3.3 : Random Index values based on the number of variable.

n: 2 3 4 5 6 7 8 9 10
RI: 0 0.58 0.90 1.12 1.24 1.32 141 1.45 151

3.4 Multi-Attribute Utility Technique (MAUT)

Multi-Attribute Utility Technique (MAUT) embeds psychological measurement
models and scaling techniques appropriate for evaluating alternatives with more than
one relevant attribute. Moreover, MAUT can be used as a decision aid since it
decomposes complex evaluation tasks into more easily managed subtasks (Winterfeldt
and Fischer, 1975).

It basically aims at valuing and comparing alternatives in respect to a pre-defined set
of attributes or criteria. MAUT is strategically designed to support the decision-maker
in making an informed decision, especially in cases when complicated multi-criteria
considerations come into view. A utility score of 1.0 shall be assigned for the most
favored option, with 0.0 assigned for the least favored choice. Next, experts choose a
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midpoint value that has a utility score of 0.5, which is exactly halfway between the
most and least preferred alternatives. Experts then identify a "quarter point" value with
a utility score of 0.25, positioned halfway between the midpoint and the least preferred
alternatives. Finally, experts determine a value function with a utility score of 0.75,
representing a point halfway between the most preferred and the midpoint values.
(Doczy and AbdelRazig, 2017). In this regard, the framework of MAUT is given in
Figure 3.2.

For criteria requiring maximization (i.e., higher marginal utility scores are preferable):

cjai—Min]- [cjai]

gij = (3.16)

" Maxj[cja;]-Minj[cja;]

For criteria necessitating minimization (i.e., lower marginal utility scores are

preferable):

Maxj[cja;|-cja;

"~ Maxj[cja;]-Minj[c;a;]

Where a; represents alternative i; cj represents criteria j; gij denotes the normalized

score for a; in ¢j, where 0 < gjj < 1; cj(ai) indicates the performance score of aj in cj;

Maxj[cj(ai)] and Minj[cj(ai)] represent the maximum and minimum elements in the

column vectors c;, respectively.

Scoring
alternatives

i

<—| Utility function ‘

| Identifying criteria } -| Assigning weights } »

Ranking and | Calculating overall
selection utility

Figure 3.2 : Framework of MAUT.
3.5 Auto-Regressive Integrated Moving Average (ARIMA)

The Auto-Regressive Integrated Moving Average (ARIMA) model, is a method
employed in time-series forecasting to predict the future value of a variable based on
its historical values. It integrates auto-regression and moving averages while also
employing differencing to eliminate trends and/or seasonality. The model can be

represented by the following equation:

}Ilt =c+ ¢1}I/t_1 + -+ ¢p5]t—p + 91€t_1 + -+ qut—q + &t (318)
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Here, y, represents the differenced series and is computed by considering both the

lagged values of y and the lagged errors.

The ARIMA model is defined by three parameters: p, d, and g. The p parameter
dictates the number of lagged periods in the autoregressive component of the model.
For example, with p=4, the model utilizes data from the past four periods to make
predictions. The d-parameter indicates the numbers of differencing steps necessary for
the time series to become stationary, removing thereby trends and seasonality-meaning
constant mean and variance over time-which forms a necessary prerequisite for any
ARIMA-modelling. It simply means the q parameter represents how many lags exist
in the moving average part, dealing with the error or residual of that time series
variable explained neither by the autoregressive and nor by differencing features. The
two combined finally boost an added ARIMA model which can better estimate future

values given one's past variation.

3.6 Agent Based Model

ABM is a way of computational modeling of complex systems that involves the
simulation of individual entities, called agents, and their interaction within an
environment. Each independent agent has behaviors, decision-making processes, and
interactions with other agents and the surrounding environment. Such agents can
model any entity from the individual in society to components involved in a
manufacturing process (Macal and North, 2005).

The significant underpinning of agent-based modeling and simulation is the emergent
capabilities in the interactional processes across independent agents. By simulating the
behaviors of each agent, a researcher would visually observe their collective
interactions over time to gain insight into the general dynamics of such a system. ABM
is of particular value when studying systems for which analytical methods are
inadequate, such as determining the flow of traffic in cities, analyzing the spread of

diseases, or simulating economic markets (Macal and North, 2005).

The advantage of the agent-based modeling technique can be considered its potential
to grasp a complex and diverse world that, by nature, represents real systems. Agents
in ABM exhibit heterogeneous characteristics and adaptive behaviors based on local

interactions. That gives them much more realistic capabilities of description compared
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with the traditional aggregate models for complex systems study (Khodabandelu and
Park, 2021). Further, ABM allows analysts to conduct scenario analyses simply by
changing the behavior of agents or environmental parameters. In that respect, ABM
becomes a versatile tool for decision-making and policy evaluations. Apart from the
features of the individual agent, ABM has a number of distinctive qualities giving it
uniqueness and some advantages against other widely used simulation methods,
notably Discrete-Event Simulation (DES) and System Dynamics (SD).

One of the key distinguishing features of ABM is that it recognizes agent
heterogeneity. While other methods of simulation tend to represent a system in a
homogeneous form, assigning similar properties to all agents within one group and
regulating similar interaction protocols among them, ABM allows modeling agents to
have a heterogeneous approach, differentiating each agent individually even from
those within the same group (Macal and North, 2005). This perspective of
heterogeneity facilitates the accurate modeling and enhances the collective behavior
of the overall model. This is beneficial in many scenarios, as the oversimplification
entailed in a homogeneous approach may overlook the individual differences among

agents and thus can result in misleading deviations from reality (Lu et al., 2016).

A further important characteristic of ABM is its ability to handle problems with
multiple options quite efficiently. The fact that each individual agent can be unique in
ABM leads to the creation of almost all possible scenarios (Zhang et al., 2019). Even
though this is often highly computational, it also raises the possibility of finding better
options than the other simulation methods. DES and SD use a top-down approach.
They start by building the system at a high, macro level, then propose hypotheses and
test their validity, often relying on empirical data for analysis (Lu et al., 2016).
Contrarily, ABM is a bottom-up approach in which characteristics and the interaction
of the agents at an individual level are defined; emergent outcomes are produced at the
macro-level of the system. This micro-level agent modeling makes ABM well-suited
for exploring various what-if questions without heavy reliance on empirical analyses,
excessive assumptions, or biased, preconceived model directions. Additionally, micro-
level agent modeling allows ABM to investigate the likelihood of different scenarios
occurring, including those that are rare but could significantly impact system outcomes
(Tah, 2005).
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Considering these capabilities and advantages of this method, ABM is one of the most
proper methods to accurately simulate the proposed model. Thus, the following ABM

structure is utilized in this study (Figure 3.3).

Initial Data:
Demand coefficients, Portfolio, Energy generation
from RES, Energy price, Generation Technologies,
Utility function coefficients...

|4
! v
IPP (1) IPP (N)
Forecast load Forecast load
Bid for electricity price Bid for electricity price
Compare Investment Options Compare Investment Options
Investment Decision Investment Decision
I I Update System Data:
‘ Demand
T Installed Capacity
Agent Investment Decision Energy Price
l Carbon Allowance
.. Carbon Tax
Emission check Subsidies
Generation Technologies
Final Year I

Figure 3.3 : Structure of the proposed ABM.

The proposed model includes three different agent types, namely government,
independent power producers (IPP), and market maker. Government agent is
responsible for the setting carbon tax, carbon allowance, and subsidies, while market
maker agent stands for the collecting bids and determining the electricity prices. IPP
agents represent the electricty producers which have different portfolios and profit
margin expectations, and they give bids for each electricity generation technology in

their portfolios.

To simulate the proposed ABM, this study employs four modules:
e Electiricty demand module
o Electricity generation module

e Capacity addition/shut-down module

e Carbon module
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3.6.1 Electricity demand module

Considerig the electricity consumption of Tiirkiye, three major sector which constitute
more than 93 percent of total electricity demand of Tiirkiye are analysed in this study
(TEDC, 2023). These are i) residential buildings, ii) commercial buildings, and iii)
industry. Electricty demand of each sector shows different sensitivities for changes in
electricity prices, income levels, population, and temperature.

Based on these sensivities, equations 3.19, 3.20, and 3.21 show the electricity demand

of residential sector, commercial sector, and industry, respectively.

ECAT®S — ECAT®S - |1 Y: res ) pglec.cons.res . N
o =R Uy T ) P | | petecconsres — 1) P

t—-1

3.19
N e I
DD, Pcda Pop, Ppop
Pte_leic cons.com
ECA{°™ = ECA{T - [1 + (E - 1) p;g’;l] [1 + <m - 1) pgom]
iy (3.20)
[+ (epps =) eeae] [+ (e =1) o
CDD,_, cdd Pop,_, pop
Y Pelec cons.ind
ECAM = ECAIM - [1 + <t_1 - 1) pg}g,] [1 + <W ) p;,"d]
2 (3.21)

CDD, ) Pop,
[ ) s (22 ) e
[ +<CDDt_1 ) Pedd + Pop,_4 Ppop

Equation 3.22 stands for the calculation changes in real Gross Domestic Product
(GDP) per capita in year t compared to the previous year considering the real GDP per
capita potential growth rate (n)) in year t and capital damage factor (n¢PF) for natural

disasters in response to rising temperatures.

Y,

le = (1+n{)- (1 —nPF-(TFF = T5°7)) (3.22)

TFOP is the population-weighted average temperature of Tiirkiye, and it is calculated
as

TFoP = Boylopu (3.23)

where Pop; , and T;, represent the population and annual average temperature of i"

city in year t. TS9P, which is the population-weighted aveage temperature of Tiirkiye
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for the base year 2020, is calculated as 285.43K based on the established climate

models.
Pop;; =vy; - Pop;t—1 * Bt (3.24)
3L, Pop;
Br = —PZP;E £ (3.25)

where B, is the population correction coefficient in year t, and Pop!® is the total
population of Turkey projected by TurkStat (2017b).

Table 3.4 displays the variables employed for computing electricity demand across

each sector, along with their respective descriptions and values sourced from the

literature.
Table 3.4 : Variables of electricity demand calculations.
Variable  Description Value Reference

Pyip Income elasticity of residential electricity demand 0.227

Py Price elasticity of residential electricity demand -0.126

pray CDD elasticity of residential electricity demand 5.397

Pgap Income elasticity of commercial electricity demand 0.219

Py Price elasticity of commercial electricity demand -0.147 Guven et al. (2021)
Pt CDD elasticity of r commercial electricity demand 4.55

p;’}i‘; Income elasticity of industrial electricity demand 0.548

p;',"d Price elasticity of industrial electricity demand -0.145

pind CDD elasticity of industrial electricity demand 3.25

Ppop Population elasticity of electricity demand 5.198 Saglam et al. (2023)

n! Real GDP per capita potential growth rate OECD (2021)
n¢PF Capital damage factor for natural disasters 0.061% Czupryna et al.
(2020)

Pop;,  Projected population of cities Author’s calculation

based on TurkStat
(20174, b) data

3.6.2 Electricity generation module

This study utilizes actual portfolios of IPPs in Tiirkiye, where company names will be
anonymized and replaced with codes. The analysis focuses on the top 50 power
generation enterprises and treats the collective installed capacity of the remaining
facilities in Tiirkiye, constituting the 51st power generation enterprise, as a single

entity. Comprising 21.1% of the total capacity, these smaller enterprises are relatively
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small-scale and are more likely to adjust to market conditions based on industry-wide
behavior patterns, particularly in terms of technology preferences, risk assessment, and
investment thresholds (Chen et al., 2013). Given that the GCM outputs provide climate
variables only, these data need to be integrated into various mathematical equations to
relate them to energy production within the ABM before calculating electricity

production from wind and solar.

Initially, wind speeds derived from the model represent speeds at a height of 10 meters
above the surface. However, modern wind turbine towers often exceed 150 meters in
height, necessitating adjustments to wind speeds based on altitude. For this study, an
average wind turbine hub height of 100 meters was assumed, and wind speed was

recalculated using the following equation:

wspd(z) = wspd(Zres) (i) (3.26)

where z and zref denote the hub height of the wind turbine (100 m) and the GCM output
height (10 m), respectively. wspd(zrer) is the wind speed at zrr and a =1/7 is the
coefficient of the power law exponent, taken as suitable in open areas as indicated by
earlier studies (e.g., Carvalho et al., 2021; Guven, 2023; Sawadogo et al., 2019).

Wind Power Density (WPD) generally stands for assessing the wind power generation
potential and is widely being used as an indicative measure expressed by the following

formula:

WPD = % - p - wspd(z)3 (3.27)

Here, p represents air density (1.225 kg/m?). The main point can be drawn from the
above formulation that WPD varies with cube of wind speed; hence small changes in

the speed of winds would drastically impact the yield from wind.

The performance of a PV system hinges on the downward surface solar radiation it
receives and the efficiency of the PV modules. Notably, PV system efficiency varies
with ambient temperature (Dutta et al., 2022). To evaluate PV efficiency in relation to
temperature, this study employs the Evans-Florschuetz PV efficiency correlation
coefficients (Dubey et al., 2013).

Ne = Nyref [1 - ,Bref(Tc - Tref)] (328)
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Where nrerand Brer denote the defined PV efficiency (0.20) at the reference temperature
(Trer=25°C) and the temperature coefficient (0.0045), respectively.

The temperature T is defined by the equation:
T, = c; + cytas + c3rsds + c,wspd (3.29)

Here, c1=4.3°C, ¢2=0.943, ¢5=0.028°C m*W, and cs=—1.528°C m™* (Jerez et al.,
2015).

The energy obtainable from the PV panel depends on solar radiation and panel

efficiency, given by the equation:

Epy = Radiation (-—) X 7. (3.30)

Each company is unique concerning the portfolio and capacity of production facilities.
The production of electricity from photovoltaic panels depends on the shortwave
radiation that reaches the surface and the panel efficiency, which is modified according
to temperature and wind speed, as shown before. Then, the amount of produced

electricity coming from a 1m? PV panel during year t is given by

Qipvjt = »365 Ney X TSdsq X 24 [KWh/m?] (3.31)

In this context, i denotes the IPP number, j represents a specific plant within the
selected IPP portfolio, and rsdsq stands for the average surface incident shortwave solar

radiation on day d.

Likewise, electricity generation from the wind turbine is determined based on the
following equation, which relies on the wind power density.

Qiwr,jr = o2 X R? X Byyr X WPDy x 24 [KWh] (3.32)

The equation for calculating energy production from a wind turbine involves the radius
R of the rotor and the efficiency Swr of the wind turbine. In this study, the turbine

efficiency was set at 0.4 based on literature sources (Rehman et al., 2023).

Following the calculation of energy production from renewable resources, which
varies depending on the climate, the initial step in the process is to compute "residual
generation.” This term refers to the disparity between the total electricity demand

(Dfetaly and the energy generated from renewable sources. The deficit represented by
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residual generation will be fulfilled by fossil fuel-based power plants (such as coal or
natural gas) or high-availability plants (including hydroelectric, biogas, biomass,

nuclear, and geothermal facilities).

Residual Generation = Electricity Demand — Generationpygyr (3.33)

Gplanne

d
i tech, j,t) for each power

As the first step, IPPs conduct annual production planning (

plant within their portfolio, taking into account the capacity and capacity factor of each

plant.

l d
Giz,)t:cr;:,lje,t = 8760 X CFrecn X Capitecn,j (3.34)

Then, they formulate an annual electricity sales price offer (bid,; . j ) for each plant

in their portfolio using the following equation.

; - fuel | ~actual . pconsumption actual .
bldi,tech,j,t = {[Ptech,t Gi,tech,j,t—l tech + (Gi,t:ech,j,t—l

allowancey , carbon
ftech i Ci,techj,t ) taxt + OPEXi,techj,t + Depri,techj,t] X (3-35)

V-1 actual
1+ ) Gictwa:, |t — subs; ,
( 1-taXiecht itechjt—1 i,tech,jt

The descriptions of parameters used in equation 3.35 are presented in Table 3.5.

Table 3.5 : Parameters of bidding calculation.

Parameter Description
P{::Ift Fuel price
gg‘;}‘ﬁ.’t_l Actual generation of previous year
g::‘;“mpti“" Unit fuel consumption of power plant
Frech Unit carbon emission of power plant
lowance Carbon allowance of power plant
taxcarbon Carbon tax ($/ton CO,)
OPEX;echjt OPEX of power plant
Depr; techj Depreciation of power plant
91 Expected profit margin of IPP
taxiech s Corporation Tax
SubS;ech jt Government subsidy

Following the derivation of equations 3.34 and 3.35 for each power plant, the average

electricity sales price offer (bid;"?) is computed using equation 3.36.

51



planned ,
YiXtech Xj Gi,tech,j,t Xbid;tech,jt

planned
YiXtech Xj Gi,tech.j.t

bid;"? = (3.36)

For renewable energy power plants, actual generation matches planned generation.
However, for power plants using fossil resources, the actual production (G4 ) is

determined by equation 3.37.

Grlanned voch. PV, WT, ...

i,tech,jt’
G{lfggi?l' = ptotal_y ¢ . (337)
, it planned t i,PV+WT,jt .
Glroch it lamer» tech: Coal, Natural Gas

YtechZi Zj Gi,tech,j,t

Ultimately, the electricity sales price offered by the market maker agent is defined by

equation 3.38.

total planned
(Dt ~XiXtechXjGj tech,jt
T

lanned
. av TiZtech Y Gl oS
Pflec — bldt ge iatechjtech,jt (338)

Here, 1 represents a proportional coefficient that reflects price fluctuations resulting
from imbalances between supply and demand, set at 0.001 according to Cong and Wei
(2010).

3.6.3 Capacity addition/shut-down module

Anticipating future demand for electricity, IPPs may invest in new power plants. To
begin, each producer of electricity must forecast electricity demand and supply in the

future. It is pressumed each IPP employs an ARIMA algorithm to predict demand for

pred.totaly.
Di,t+3 )

year t+3 (

pred.total
Ditys
serv. constr. ret.
Q¢ Q¢ Q¢

> g (3.39)

Here, Q3¢ denotes the generation capacity in service, Qf°™' indicates the power
plants under construction, and Q7¢* represents the power plant capacity expected to

reach the end of their lifespans before year t+3.

Once the investment decision is taken, capacity of newly built power plants is
determined, using estimations on electricity deficits and share of a producer on the

electricity market, with equation 3.40.

' Dpre.total X 2j G'aCtual'
mv. _ (L3 Qret. _ (sServ. _ pconstr. | _&tech&jTitech )t (3 40)
it — ; t t t YiYtech X GEiuY .

€ iZtech ZjYitech,jt
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Once capacity of newly built power plants is determined, the suitability of different
power plant technologies is evaluated, considering their return on investment and
related risks, as well as preferences about risks, public acceptance, environmental
impact -assessed as Global Warming Potential (GWP) in the life cycle- and
technology. The utility function equation used in this study is presented in equation
3.41.

inv. _ eco peco soc psoc env penvy ,
i,tech,jt — (wtech i,tech,j,t + wtechgtech+wtech0tech) (Pi,tech,t (3-41)

Here, o represents the weight of the criteria determined through the AHP analysis,
while 6 denotes the environmental, economic, and social utility score of the technology
In this regard, Table 3.6 presents social acceptance percentages and environmental
impacts for various technologies (Baur et al., 2022; Chatzimouratidis and Pilavachi,
2008; Marashli et al., 2022).

Table 3.6 : Social acceptance percentages and environmental impacts of
technologies.

Technology Social Acceptance (%) Environmental Impact (g CO2-eq/kWh)
Wind 23.1 13.45

Geothermal 19.89 374

PV 18.44 38.8

Hydro 10.73 22.7

Biomass 8.47 62.4

CCGT 7.02 502

Coal 3.01 936

Nuclear 1.76 26.9

The economic utility function for energy investments is expressed as follows (Chen et
al., 2018):

eco _ —yewi
fioen e = (1= e Mikeenss (3.42)

inv.

itecn,j¢ here is the discounted investment return rate, (3.43), and yi is the Arrow—
Pratt risk aversion coefficient, influencing the attitude of an IPP towards risk: a
positive yi characterizes risk-averse attitudes, and the stronger the aversion to risk, the
higher is the value of ¢:tech,c defines the share of this technology in the portfolio of an
enterprise and its contribution to the total national contribution of the identical
technology.
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inv. elec.avg inv. allowance carbon
(Qj 8760-CFrecn Py )=(Qyt '8760°CFrech ftech=Cnew.itech),t) taXE
pinv._pfuel _iny. consumption _ X .
ZTtech+t +substech,e Qi Precht it fi,tech,]',t OPEXjtechj,t

t=t @a+nt-t

Wii,rtlgéh,j,t = + Decomyecp, (343)

IMVnew.itech,jt

Moreover, if a power plant has continuous losses for five consecutive years or reaches

the end of its useful life, the generation company will dismantle it.

Considering the limited resources for low-carbon resources, environmental constraints
also put a limit on their excessive use, as expressed in equation 3.44. Once the overall
installed capacity of a specific technology reaches its resource threshold, further
investment in that technology is not allowed, unless some power plants using the same

technology are dismantled.
XX Qutecnj < Capice’ (3.44)

With ongoing technological advancements and economies of scale, the cost of energy
generation technologies is decreasing year by year. Equation 3.45 illustrates the future

average investment cost of a specific technology using a learning-by-doing model.

(Zix; Qi,tech,j)t> (3.45)

avg _ avg _ . —_ Tt
10 (MVieen,) =10 (MVieenzg) = Otecn " I ((zizjoimh.»to
where otech Stands for the experience index for the technology tech (See Table 3.7).

Table 3.7 : Experience indexes of technologies (adapted from Wesseh Jr and Lin,
2016; Rubin et al., 2015; Chen et al., 2018).

Technology Gtech
Wind 0.15
Geothermal 0.1
PV 0.15
Hydro 0.03
Biomass 0.1
CCGT 0.03
Coal 0.07
Nuclear 0.3

3.6.4 Carbon Module

For any given year, the government would have apportioned carbon quotas to all the
fossil-based power plants for that coming year as well as specified the subsidy policy
during that time. According to Chen et al. (2018), at the very outset, the government
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would calculate carbon emission allowances of each power plant for the upcoming

year using the grandfathering allocation mechanism:
u _ tual
i(,lteg‘i,‘l/,?,rtliel =1 —=np)- Gic,ltcegigj,t ’ fi,tech,j,t * (1 — reservedrate) (3.46)

The government provides subsidies to businesses involved in solar, wind, or biomass
generation and evaluates the potential discontinuation of the subsidy scheme.
Subsidies for renewable generation from solar, wind, or biomass cease once the
levelized cost of electricity (LCOE) for these sources matches that of natural gas power

plants.

This study assumes that the prevailing carbon tax rate is influenced by cumulative
quotas and emissions from the preceding period. The current carbon tax rate can be

approximated as (Cong and Wei, 2010):
taxtcarbon = tax;:f;bon . e(ac-(Total emissions;_;—Total allowancey)) . (1+€)~N(0 0.012) (347)

Ac denotes a proportional coefficient, set at 0.005 (Cong and Wei, 2010). Additionally,
a random disturbance represented by e is incorporated to accommodate various
unforeseen factors. The initial value for the carbon tax rate, denoted as tax‘5Po", is
set at $75 per ton of COz-equivalent, aligning with the average carbon tax rate in
Europe as of March 2024 (EU Carbon Permits, 2024).

3.7 Data

To implement the proposed model efficiently, a wide-ranging dataset is assembled
from various sources. This procedure entails consolidating information from numerous
channels to guarantee precision and dependability. The upcoming Table 3.8 functions
as a succinct repository, presenting the compiled data alongside their corresponding

origins.

3.8 Assumptions

In this study, it is hypothesized that Tirkiye's CO, emissions, accounting for
approximately 1.5% of the global total, exert a negligible influence on the global
climate. Within the context of renewable energy advancement, IPPs are assumed to
strategically invest in PV and wind energy projects, focusing on regions with optimal

efficiency. Consequently, estimating power generation from these sources relies on
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calculations derived from the average output of the most efficient locations, utilizing
capacity factors projected from future GCMs predictions.

Furthermore, it is assumed that Tirkiye has reached its full capacity for hydropower
plants, thereby limiting IPPs' ability to establish new facilities in this sector.
Additionally, IPPs are expected to face obstacles in pursuing offshore wind turbine
projects, further complicating Tiirkiye's transition to renewable energy sources.
Despite these assumptions, IPPs are anticipated to persist in their efforts to advance

renewable energy solutions within Tiirkiye's energy landscape.

Table 3.8 : Technical parameters of technologies.

PV Wind Hydro Geothermal Biomass Coal NG Nuclear  Reference
Fuel - - - - - 0.4 0.26 0.08
Consumption
(ton/MWh)
CAPEX 0.92 11 2.574 5.3875 4.332 4.9 0.975 11.2 LAZARD
(M$/MW) (2023),
Variable - - = 16.375 5.8 4.25 3.75 45 NREL
OPEX (2023)
($/MWh)
Fixed OPEX 105 27.5 64 14.5 150.85 65.375 13.5 142
(k$/MW-year)
Carbon - - - - - 900 460 - IPCC
emission (2014)
(gCO/kWh)
Experience 0.15 0.15 0.03 0.1 0.1 0.07 0.03 0.3
index Chen et
Construction 1 1 4 3 2 4 2 6 al. (2018)
time (year)
Life span 30 30 100 30 45 30 30 60 NREL
(year) (2023)

In alignment with the aforementioned assumptions, the deployment of electricity
generation technologies encounters specific capacity limitations. Specifically, it is
proposed that the maximum capacity for PV systems in Tiirkiye is 387 GW, as reported
by Kilickaplan et al. (2017). Similarly, the capacity cap for wind energy systems is
estimated at 83 GW (Ogulata, 2003). Moreover, it is assumed that the capacity
threshold for geothermal systems in Tiirkiye is approximately 5 GW (Url-1), while the
capacity restriction for biomass energy systems is projected to be 9.5 GW (Ozcan et
al., 2015).

Besides these assumptions, one base scenario and nine policy scenarios will be

evaluated with the purpose to see the impact of energy policies on capacity additions,
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electricity prices and CO2 emissions resulting from electricity generation. The features
of the scenarios are presented in Table 3.9. The nuclear power plant capacity is taken
as 4800 MW by considering the installment of the existing nuclear power plant in
Akkuyu, Mersin.

Table 3.9 : Features of policy scenarios.

Scenario Carbon Tax Renewable Subsidy Corporation Tax Nuclear
Reduction for RES Power Plant

Base - - - -
1 - 5 $/MWh (escalated with - -
inflation rate) at t=0
2 75 $/ton COz.eqat - - -
t=0
3 75 $/ton COzeqat 5 $/MWh (escalated with - -
t=0 inflation rate) at t=0
4 = - 10% reduction -
5 - - 40% reduction -
6 - - - 4800 MW
t=3
7 - 5 $/MWh (escalated with - 4800 MW
inflation rate) at t=0 t=3
8 75 $/ton COzqat 5 $/MWh (escalated with - 4800 MW
t=0 inflation rate) at t=0 t=3
9 75 $/ton COz¢qat Transfer of half of the - 4800 MW
t=0 carbon tax revenue as a t=3

subsidy for RES

However, for comparison purposes, a carbon tax of US$75 per ton of CO2 can be
justified for matching with the average carbon price prevailing within the EU market
dynamics and hence essentially covering the full environmental cost of carbon
emissions. This benchmark will allow a relative analysis of how such a policy might
have influenced Turkey's electricity prices and emissions reduction, therefore allowing
some insight into how things could change. Adopting this rate allows for a consistent
evaluation of economic and environmental impacts, ensuring a relevant comparison
despite Tiirkiye's non-EU status. Moreover, Table 3.10 presents the technical

parameters of electricity generation technologies.
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Table 3.10 : Technical parameters of electricity generation technologies.

PV Wind Hydro Geothermal Biomass Coal Natural Nuclear
Gas

Fuel - - - - - 04 0.26 0.08
Consumption
(ton/MWh)
Carbon - - - - - 900 460 -
emission
(gCO,/kwh)
Experience 0.15 0.15 0.03 0.1 0.1 0.07 0.03 03
index
CAPEX 0.92 11 2,574 5.3875 4.332 4.9 0.975 11.2
(M$/MW)
Variable OPEX - - - 16.375 5.8 4.25 3.75 45
($/MWh)
Fixed OPEX 10.5 275 64 145 150.85 65.375 135 142
(k$/MW-year)
Life span (year) 30 30 100 30 45 30 30 60
Construction 1 1 4 3 2 4 2 6
time (year)
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4. RESULTS AND DISCUSSION

4.1 Climate Projections

As given in Section 1.3, the first objective of this study is to identify the most accurate
GCMs that can simulate Tiirkiye’s unique climate conditions. To detect the top four
GCMs, outputs of CGMs for each climate variable were compared with ERA5/CRU
data in 120 grids using three different methods, namely, Kling-Gupta efficiency,

normalised Root Mean Squared Error, and modified index of agreement.

Following the calculation of these values for evergy grid, Multi-Criteria Decision
Analysis (MCDA) method was applied to determine the performance of GCMs. The
results of MCDA and rankings are given in Table 4.1 and Table 4.2, respesctively.

Table 4.1: MCDA results for each climate variable.

M1 M2 M3 M4 M5 M6 M7 M8 M9  M10 MI11 M12 M13

KGE 379 386 98 184 148 114 166 420 677 524 147 334 175

RSDS md 403 338 148 149 123 130 131 451 730 470 148 422 112
nRMSE 449 419 100 148 121 139 157 407 766 445 139 315 148

KGE 258 342 349 317 294 419 323 97 284 419 256 204 191

TAS md 362 542 304 295 362 276 169 281 203 354 127 260 130
nRMSE 327 426 454 278 343 290 248 96 298 396 120 332 145

KGE 612 295 91 277 297 139 566 152 306 267 258 145 347

SFCWIND md 756 249 92 245 257 133 601 137 257 233 253 123 417
nRMSE 524 214 91 308 276 141 596 140 365 343 199 114 441

Table 4.2: Rankings of GCMs for each climate variable.

M1I M2 M3 M4 M5 M6 M7 M8 M9 MI0 M1l M12 MI13

KGE 5 4 13 7 10 12 9 3 1 2 11 6 8

RSDS md 5 6 9 7 12 11 10 3 1 2 8 4 13
NRMSE 2 4 13 8 12 11 7 5 1 3 10 6 9

KGE 9 4 6 7 5 13 8 1 10 11 12

TAS md 3 1 5 6 2 11 8 7 4 13 10 12
NRMSE 6 2 1 9 4 8 10 13 7 3 12 5 11

KGE 1 6 13 7 5 12 2 10 4 8 9 11 3

SFCWIND md 1 7 13 8 4 11 2 10 5 9 6 12 3
NRMSE 2 8 13 6 7 10 1 11 4 5 9 12 3

After determining performance of each GCM utilizing MCDA, the comprehensive
ranking metric (MR) method was employed to amalgamate the MCDA ranking
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outcomes of the models into a unified metric across all performance criteria and
climate variables.

Table 4.3: The most successful GCMs for simulating Tiirkiye’s climate conditions.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13
MR 0709 0641 0291 0453 0462 0.265 0513 0350 0.675 0.684 0.248 0.342 0.368
Rank 1 4 11 7 6 12 5 9 3 2 13 10 8

The values in the Table 4.3 represent the performance scores of each model with
respect to the MR. For instance, Model 1 (M1) has a score of 0.709, indicating it
performs well according to the MR criterion. Model 2 (M2) has a score of 0.641,
ranking it lower compared to Model 1 but still relatively high among the models.
Model 11 (M11) has the lowest score of 0.368, indicating poorer performance
according to the MR criterion. The second row labeled "Rank™ shows the ranking of
each model based on their scores for the MR criterion. Model 1 (M1) has the highest
score and therefore ranks first, while Model 11 (M11) has the lowest score and ranks

last.

As a result of these analyses, within the range of 13 GCMs, ACCESS-CM2, INM-
CM5-0, INM-CM4-8, and ACCESS-ESM-1-5 emerged as the most promising

options. Hence, they were chosen for forecasting Tiirkiye's future climate.

As the next step, the XGBoost ML algorithm was employed to ensemble the outputs
of these GCMs due to the advantages of ensemling process provided in the
Methodology Section. The future projections for each grid and climate variable are
generated by combining the SSP5.85 scenario data from the chosen climate models.

Projections were conducted for the years 2023-2040.

As a consequence of this projection, the alterations in future projections relative to
historical data were determined by applying equations 3.26-3.30 . Figure 4.1 illustrates
the variations in the averages of the periods 2025-2030, 2031-2035, and 2036-2040
compared to the average energy potentials from 1985 to 2014, expressed as

percentages for each grid.

The forecast indicates an anticipated decline in the electricity output from solar power
plants across Turkey, attributed to efficiency losses exacerbated by rising
temperatures. Foremost among the regions expected to experience the most significant
decrease are the Mediterranean and Eastern Black Sea Regions. However, despite the
projected decline, the Eastern Black Sea Region presently exhibits relatively low solar

potential, rendering it economically unfavorable for the installation of photovoltaic
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solar power plants. This study's findings corroborate the unsuitability of this region for
such installations in the future. Conversely, the Marmara Region (particularly Thrace)
and the Southeastern Anatolia Region are anticipated to undergo the least reduction in
electricity production from photovoltaic solar power plants. Remarkably, these
outcomes align with existing literature, as reported by Ha et al. (2023) and Jerez et al.
(2015).
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Figure 4.1 : Change in energy production as percentages for different time horizons.

Upon examining electricity generation from wind turbines, an uptick in wind power
production is projected, notably in Thrace and the northern reaches of Central Anatolia
(near Corum and Tokat). Conversely, a downturn in wind power potential is
anticipated in the Eastern Black Sea, and Usak-Kiitahya-Eskisehir-Bolu regions.
Notably, these findings echo earlier research in the literature, as documented by Cetin

(2023).

Furthermore, the mean CDDs for every city in Turkey are calculated over three
specific time periods, employing temperature projections derived from GCM forecasts
(Refer to Figure 4.2). It becomes conspicuously apparent that the average CDDs are
expected to undergo a substantial increase across most cities, notably within the
Mediterranean region and the southeastern sector of Turkey, as a consequence of the
influences of global warming. These observations align with existing literature, as
evidenced by studies such as those conducted by Lionello and Scarascia (2018) and
Batibeniz et al. (2023).
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Figure 4.2 : Change in CDDs of cities based on time horizons.

Table 4.3 illustrates the annual population-weighted CDDs from 2020 to 2040. CDDs
are a metric used to estimate the demand for energy needed to cool buildings; they
increase with rising temperatures. The data shows a general upward trend over the two
decades, suggesting an increase in cooling requirements over time, which may be
indicative of a warming climate or changing population distribution towards warmer

areas.
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Notable increases are seen in the years 2031 (127.06) and 2032 (129.31), with slight
dips and recoveries in subsequent years. This pattern reflects an overall increase in
cooling demand, highlighting the importance of planning for enhanced cooling
infrastructure and energy resources to manage the growing need effectively. The data
underscores the impact of climate change on energy consumption patterns,
emphasizing the need for sustainable energy solutions and climate adaptation

strategies.
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Figure 4.3 : Population weighted CDD of Tiirkiye.
4.2 AHP and Utility Function

In this study, an AHP analysis was conducted to determine the weights of utility
function components given in equation 3.41. The weights of utility function
components given in equation 3.41 were determined through an AHP analysis. The
AHP analysis involved gathering comparative values provided by 11 experts from
academia specializing in energy and environment, as well as the private sector
focusing on energy and finance. After the survey values were collected, the pairwise

comparison matrix was created as the first step of the AHP (See Table 4.4).

Table 4.4: Pairwise comparison matrix.

w1 W2 W3
w1 1 6.590817 6.473262
W2 0.151726 1 1.995506
W3 0.154482 0.501126 1
Sum 1.306208 8.091943 9.468768

Following the pairwise comparison matrix, a normalized pairwise comparison matrix

was created by applying equation 3.12 (See Table 4.5). The AHP analysis resulted in
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determining the weights of environmental, economic, and social utility scores as 0.095,

0.15, and 0.755, respectively.

Table 4.5: Normalized pairwise comparison matrix.

w1l W2 W3 Criteria Weight
w1 0.765575 0.814491 0.683644 0.755
W2 0.116158 0.12358  0.210746 0.150
W3 0.118267 0.061929  0.10561 0.095

Moreover, since the Consistency Ratio (CR) with the value of 0.088 is lower than the
threshold value (0.1) given by Saaty (1980), it can be concluded that the result of the

AHP analysis is reliable.

Taking into account the MAUT, experts determine utility scores based on the ranges
and units of utility functions related to environmental impact and social acceptance.

Table 4.6 outlines these utility scores, while Figure 4.4 depicts the utility curves.

Table 4.6: Utility scores for each quartile.

Criteria/Score Range 0 0.25 0.5 0.75 1.0

Environmental 13.45-936  13.45 290.12 420.21  520.34 936
Social acceptance  1.76-23.21  1.76 7.02 11.42 17.42 23.21
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Figure 4.4 : Utility function of a) Environmental impact, and b) Social acceptance
for electricity generation technologies.

Table 4.7 presents the combined utility scores for environmental impact and social
acceptance of each electricity generation technology, derived from utility curves
established using the MAUT and weights determined through AHP analysis. These
scores are calculated in accordance with equation 4.1, which is a component of

equation 3.41.

0.150(0.0468x,, — 0.0686) + 0.095(—0.0011%,,, + 0.9946) (4.1)
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where Xsoc and Xenv are scores of environmental impact and social acceptance given in

Table 4.7, respectively.

Table 4.7: Combined utility scores of electricity generation technologies.

Technology Combined Utility
Wind 0.245
Geothermal 0.220
PV 0.210
Hydro 0.157
Biomass 0.137
CCGT 0.081
Coal 0.008
Nuclear 0.094

4.3 Agent Based Simulation

The outcomes of 10 distinct energy-climate policy scenarios, executed through a
mathematically described agent-based simulation model detailed in Section 3.6, are
outlined in the subsequent section.

The outputs of ABM are caterogized under five titles; i) electricity demand, ii) capacity
additions, iii) carbon emissions, iv) electricity prices, and v) changes in technology

costs.

Before executing the scenarios, the model is validated using data from 2020 to 2022.
The outputs of the ABM, specifically electricity prices, emissions, and electricity
demand, are compared with actual data from this period. Table 4.8 presents a
comparison between the real data and the model outputs for 2020-2022. The results
indicate that the model's outputs closely align with the observed data, confirming that

the model is suitable for forecasting future values.

Table 4.8: Comparison of real data and model outputs for validation.

Year Price Demand Emission
2020 40.92 262.7 128.8
Real Data 2021 55.6 288.8 143.7
2022 147.5 296.6 145.2
2020 41.1 264.2 129.4
Model Output 2021 54.4 286.7 144.1
2022 149.2 299.1 145.9
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4.3.1 Electricity demand

As outlined in the electricity demand module (Section 3.6.1), the demand for
electricity is greatly influenced by shifts in income levels, electricity prices,

temperature, and population.

Precise prediction of electricity demand using ABM holds pivotal significance in
advancing energy efficiency, demand-side management, and grid optimization
endeavors. By delving into the factors driving electricity consumption at the level of
sectors, the ABM illuminates pathways for curbing energy wastage, fine-tuning load
patterns, and fostering the uptake of energy-efficient technologies and methodologies.
This proactive stance toward demand forecasting equips utilities, grid operators, and
policymakers with actionable insights to deploy tailored interventions, including
demand response initiatives, time-of-use pricing strategies, and incentives for energy
efficiency. These measures are geared towards not only reducing system costs but also
bolstering overall energy efficiency across the spectrum of energy consumption.

Mustrated in Figure 4.5, the projected electricity demand for Tiirkiye under the base
scenario exhibits an almost linear trajectory. Projections suggest that by 2030, 2035,
and 2040, electricity demand is anticipated to reach 456 TWh, 521 TWh, and 571
TWh, respectively.
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Figure 4.5 : Electricity demand of Tiirkiye.

Figure 6 illustrates Tiirkiye's annual sectoral electricity demand. With the projected
rise in industrial electricity consumption, the industrial sector's share of total electricity
demand is anticipated to exceed 50%, reaching 54% by 2040. Conversely, the growth
rates of residential and commercial electricity demand are expected to be

comparatively lower than that of industrial electricity demand. Forecasts indicate that

66



residential and commercial electricity demand will reach 124.7 TWh and 138 TWh,
respectively, by 2040, while industrial electricity demand is poised to surpass 308
TWh.
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Figure 4.6 : Sectoral electricity demand.
4.3.2 Capacity additions

One significant outcome of the implemented ABM lies in its ability to project the
installed capacity of electricity generation technologies, a factor heavily contingent
upon policy scenarios. The distribution of installed capacity holds significant sway
over not only emissions but also electricity prices. By simulating various policy
scenarios, the ABM provides insights into how different regulatory frameworks and
market conditions can shape the future landscape of electricity generation, facilitating
informed decision-making processes aimed at achieving environmental sustainability

and economic efficiency in the energy sector.

The installed capacity projections derived from ABM emerge as a fundamental tool
for the long-term strategic identification of policymakers, energy strategists, and all
concerned stakeholders. It is also essential that the probable development and
deployment of different electricity generation technologies over time provide
significant information for the determination of decision-makers about the future
infrastructural requirements, avenue identification of investments, and resiliency of
energy policy, thereby acting in tune with overall socio-economic objectives.
Moreover, factoring in variables like technological advancement, fuel availability,

environmental regulations, and market dynamics, the installed capacity projections
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using ABM will let stakeholders foresee upcoming challenges and opportunities for
transitioning to a more sustainable and resilient energy paradigm.

Additionally, ABM is good at modeling the distribution of installed capacity across a
suite of electricity generation technologies that enable the assessment of system
reliability, resilience, and adaptability under a range of future scenarios. The ABM
allows stakeholders to test whether available capacity will meet reliably future
electricity demands without compromising grid stability or leading to potential
shortages by simulating such a complex interaction between supply and demand
dynamics, fluctuating renewable generation, and demand patterns. It views capacity
planning in a holistic way that builds comprehension of complex dynamics inside
energy systems; this, in turn, enhances strategy development to reinforce energy
security while minimizing risks during the efficient integration of renewable sources

into the grid.

Figures 4.7 and 4.8 depict the installed capacities and their respective shares needed
to meet Tirkiye's electricity demand across various policy scenarios. In the base
scenario, installed PV capacity is projected to reach 28.7 GW by 2030, 50.7 GW by
2035, and 79.5 GW by 2040. This projection represents an almost tenfold increase in
current installed PV capacity by 2040. Across all policy scenarios, PV technology

emerges as the most favored choice for IPPs.

The policy identified as having the most significant impact on increasing installed PV
capacity is the reduction of corporate tax rates. Under this policy, installed PV capacity
could potentially reach 94 GW by 2040. However, it is important to recognize that the
full utilization of this installed capacity is not guaranteed, as it depends on actual
electricity demand and market prices. As illustrated in Figure 4.9, the share of RES in
the electricity mix is 72 percent in Scenarios 4 and 5, which are the lowest among all
scenarios. This indicates that IPPs have overinvested in PV systems, leading to a
substantial amount of idle capacity. Consequently, while tax reductions can
significantly boost PV installations, careful consideration must be given to aligning
capacity expansion with realistic demand forecasts and economic conditions to avoid

inefficiencies and underutilization of resources.

Wind power capacity is also expected to grow significantly in all scenarios. The

installed wind power capacity is projected to increase by 1.5-fold every five years.
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These trends suggest that solar and wind power systems will be the cornerstone of
future electricity generation investments. In contrast, biomass, hydroelectric, and
geothermal power plants show limited expansion potential compared to PV and wind

systems due to capacity constraints.

In the base scenario, installed wind power capacity is projected to reach 20 GW by
2030, 31 GW by 2035, and 46.7 GW by 2040. While the reduction of corporate tax
rates also stimulates an increase in wind power installations, this effect is relatively
modest compared to the surge in PV capacity additions. Despite the positive impact of
tax incentives, wind power does not experience the same dramatic growth as PV,
reflecting different dynamics and investment incentives between these renewable
technologies. Nevertheless, wind power remains a crucial component of the future
energy mix, contributing significantly to the overall increase in renewable energy
capacity. The strategic expansion of wind power, albeit at a slower pace than PV,
underscores its vital role in complementing solar energy and ensuring a balanced and

sustainable energy transition.
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Figure 4.7 : Installed capacities of technologies in 2030, 2035, and 2040.
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In the case of fossil fuel-based power plants, natural gas power plants are anticipated
to grow more than coal. Under the base scenario, the installed capacity of natural gas
power plants is expected to reach 27.7 GW by 2030, 36.1 GW by 2035, and 47.2 GW
by 2040, while that of coal power plants would remain largely the same beyond 2030.
This reflects a strategic shift in the energy mix, driven by the need for more flexible

and responsive solutions for power generation.

This increased interest in natural gas-powered electrical plants has come primarily
because of the efficiency at which such a facility could provide both load-following
and peak-load operation. Natural gas plants, unlike coal-fired plants that supply base
loads since their power output is stable and steady, can easily ramp up and down to
meet increased and decreased output requirements caused by demand fluctuations.
This flexibility is, however, important in a power grid that has a large share of
intermittent and variable sources of energy like wind and solar. The greater the share
of renewable energy sources in the energy mix, the more vital this becomes for quick

scaling up or down of production to maintain grid stability and reliability.

Besides, the expansion in natural gas capacity is also driven by increasing variability
from RES on the grid. The output of wind and solar generation varies with
meteorological conditions and time of day, making the operation of natural gas-fired
power plants necessary as a backup to maintain a reliable supply of electricity. Such
plants can compensate for dips in renewable generation quickly in order to avoid

blackouts and ensure demand for electricity at all times.

Natural gas, therefore, is an essential complement to the transition process in order to
balance out the intermittency of RES and ensure the reliability of the overall electricity
grid. This makes natural gas particularly crucial in this context: enabling further
integration of intermittent renewable sources by offering flexible and responsive
supply.

On the other hand, it is revealed that the installation of nuclear power plants can reduce
investments in natural gas power plants due to the significant advantages nuclear
energy provides for base-load power generation. Nuclear plants offer a consistent and
reliable electricity output, operating at high capacity factors and delivering a
continuous energy supply, which lessens the need for additional natural gas plants to

meet base-load demands. Additionally, once built, nuclear power plants have lower
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operating costs and produce no greenhouse gas emissions during operation, making
them appealing for countries focused on reducing carbon emissions while maintaining
a stable energy supply. As nuclear energy can satisfy a substantial portion of base-load
requirements, the demand for natural gas plants, particularly those intended for base-

load generation, decreases.
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Figure 4.8 : Capacity shares of technologies in 2030, 2035, and 2040.

As illustrated in Figure 4.8, in the absence of governmental policy interventions in the
electricity market, projections indicate that wind and solar power plants will
collectively constitute half of Tiirkiye's total installed capacity by 2040. Each
governmental policy uniquely impacts capacity development over different
timeframes. Renewable energy subsidies significantly enhance capacity additions for
wind and solar power plants in the short to medium term. However, their influence
wanes in the long term. Conversely, carbon tax systems promote a more steady and
sustained growth for wind and solar power plants over time.
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Despite these differing impacts of policies, the share of RES in the total installed
capacity is projected to remain below 71 percent in all scenarios. This suggests that
while policies can drive considerable growth in renewable energy capacities, other

factors may limit their ultimate share in Tiirkiye's energy mix.
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Figure 4.9 : Share of RES in electricity mix in 2030, 2035, and 2040.
4.3.3 Carbon emissions

Carbon taxing within the energy sector functions as a market-driven strategy aimed at
reducing carbon emissions by imposing taxes on the carbon content of fossil fuels used
in energy generation. This approach incentivizes energy producers to lower their
carbon output by making fossil fuel consumption more expensive and thus less
attractive compared to cleaner alternatives. Figure 4.10 illustrates the trajectory of
carbon taxes under Scenarios 3, 4, and 9, highlighting how these taxes evolve over

time to promote a shift towards more sustainable energy sources.

Projections indicate that by 2040, the carbon tax could exceed $271.1 per ton of CO>
if implemented independently, without the integration of other policy measures. This
scenario reflects a substantial increase in costs associated with carbon emissions,
encouraging significant reductions in fossil fuel use. However, if carbon taxing is
combined with other policy instruments, such as renewable energy subsidies or
regulatory mandates, the carbon tax is anticipated to reach a slightly lower peak of
$257.3 per ton of COa. This suggests that complementary policies can achieve similar

environmental objectives with a less aggressive carbon tax rate, potentially easing the
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economic burden on energy producers while still fostering a transition to cleaner

€energy sources.
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Figure 4.10 : Progression of carbon taxes.

The different paths of annual and cumulative electricity generation-based CO>
emissions, considering capacity installations and energy-climate policies, are shown
in Figure 4.11. In the baseline scenario, assuming no new policies are implemented,
annual CO2 emissions are set to peak at 174.6 million tons in 2032. This peak is
expected to occur as a result of continued dependence on fossil fuels for energy
generation. Following this peak, a decline in annual emissions is anticipated due to the
increasing capacity of RES. By 2040, even without policy interventions, annual CO>
emissions are expected to decrease to 118 million tons, indicating a natural shift

towards cleaner energy driven by market and technological factors.

The influence of energy-climate policies on CO. emissions, however, is unmistakable.
Various policy measures, such as carbon taxes and renewable energy subsidies, can
significantly alter the emissions trajectory. Through the implementation of these
policies, there is a clear potential to accelerate the reduction in CO2 emissions. The
analysis shows that with appropriate policies in place, cumulative CO2 emissions for
the period of 2022-2040 could be reduced by more than 11% compared to the baseline
scenario. This reduction underscores the effectiveness of targeted policy interventions
in mitigating climate change and promoting sustainable energy practices. These
findings also highlight the critical role of government policies in shaping the future of

energy and emissions. While market forces and technological advancements will
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naturally drive some reduction in CO2 emissions, policy measures are essential for
achieving more substantial and timely reductions.
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Figure 4.11 : Annual and cumulative electricity generation-based CO> emissions.

As the ABM operates only until 2040, the emissions outputs are extrapolated based on
their trends to assess the effectiveness of the policies in achieving the net-zero target
by 2053 (See Figure 4.12). The base scenario, which lacks any policy intervention,
shows a gradual decline in emissions but fails to reach net-zero by 2053, indicating
that without policy measures, decarbonization efforts will be insufficient to meet the

target.

Scenarios involving a carbon tax (S2, S3, S8, S9) show a more significant reduction
in emissions compared to those without such a tax. For instance, Scenario 2, which
implements a carbon tax of $75/tonCOz-q. at t=0, results in a notable decrease in
emissions, although it does not fully achieve net-zero by 2053. The combination of a
carbon tax with renewable energy subsidies, as seen in Scenarios 3 and 8, accelerates

the decline in emissions, pushing them closer to the net-zero target.
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Renewable energy subsidies alone, as in Scenario 1, contribute to emission reductions
but are less effective than scenarios incorporating a carbon tax. However, when
combined with the introduction of new nuclear power capacity (Scenario 7), the
subsidy shows an enhanced impact, nearly achieving net-zero emissions. Scenario 9,
which integrates a carbon tax, a transfer of half the carbon tax revenue as a subsidy for
renewable energy, and the addition of nuclear power, is the most effective strategy. It
not only reduces emissions at a faster rate but also comes closest to or potentially

achieves net-zero emissions by 2053.

These results suggest that the multi-faceted approach, combining carbon pricing,
subsidies for renewable energy, and the expansion of nuclear power, works best to
meet the 2053 net-zero emissions goal in electricity generation. The integration of
financial incentives and diversified energy sources significantly amplifies the

effectiveness of policy measures.
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Figure 4.12 : Extrapolated emissions based on their trends.
4.3.4 Electricity prices

Understanding the future trends of electricity prices is important both for policymakers
and consumers. Several factors, such as capacity expansions and policy interventions,
influence the projected changes in these prices. This analysis considers the expected
trends in electricity pricing up to the end of the forecast period, emphasizing the impact
of different scenarios on price stabilization. This overview tries to put into perspective

the expected impacts of capacity growth and certain energy policies, such as carbon
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taxes and subsidies for renewable energies, on the cost of electricity and wider energy

market implications.

As seen in Figure 4.13, electricity prices are set to decline significantly up to 2029 due
to capacity expansion. Beyond this initial decline, prices are set to stabilize across all
scenarios for the rest of the forecast period. This decline is attributed to increased
supply and efficiency brought on by these expansions in capacity. This stabilization
infers a balancing in the supply and demand of electricity in the market, allowing both

consumers and business entities to budget properly.

The most desirable rates of electricity are expected when carbon tax and renewable
energy subsidy policies operate. Such policy measures encourage cleaner energy
sources, hence driving down the costs. In contrast, in Scenario 6, with no policy
interventions except integration of a nuclear power plant in the grid, the highest prices
of electricity are seen. This example further shows how different policy decisions
greatly affect energy prices and signifies the importance of a holistic approach to
policy-making in order to better manage electricity cost and sustainable energy

practices.
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Figure 4.13 : Electricity prices.
4.3.5 Changes in technology costs

As technology continues to advance and economies of scale are realized, the cost of
energy generation technologies is steadily decreasing each year. Innovations in
renewable energy sources such as solar and wind power have led to more efficient and
cost-effective solutions. Additionally, increased investment in research and

development has accelerated the pace of technological improvements, further driving
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down costs. This trend is not only making clean energy more accessible and affordable
but also fostering a competitive market that encourages further advancements and

sustainable practices in the energy sector.

As illustrated in Equation 3.45, the investment costs of electricity generation
technologies vary with installed capacity and the experience index. Accordingly,
Figure 4.14 shows the projected changes in investment costs for 2030, 2035, and 2040

for each generation technology under the base scenario.
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Figure 4.14 : Changes in cost of electricity generation technologies.

The most substantial cost reduction is anticipated in PV system installations. This
technology is projected to see a decrease of over 19 percent in costs from 2023 to 2040.
Wind power systems are also expected to experience significant cost reductions, with
an estimated decline of approximately 16 percent over the same period. These
reductions are driven by advancements in technology, increased manufacturing
efficiencies, and economies of scale. As a result, both PV and wind power systems are
becoming more economically viable, contributing to the broader adoption of

renewable energy sources.

In addition to the anticipated cost reductions in PV and wind power systems, biomass
technology is expected to see a 10.5 percent decrease in costs by 2030. After this initial
reduction, the investment costs for biomass technology are projected to stabilize,
remaining constant until 2040. Meanwhile, geothermal electricity generation
technology is forecasted to undergo a continuous cost reduction of over 11.5 percent
from 2023 to 2040. Conversely, only minimal cost reductions are anticipated for the
well-established electricity generation technologies such as hydro-electric, natural gas,
and coal. This marginal decrease reflects the maturity and established nature of these
technologies, which have already undergone significant optimization. As a result, the

potential for further cost savings is limited compared to newer, rapidly evolving
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renewable technologies. The modest cost changes in these traditional energy sources
highlight the increasing economic competitiveness of emerging renewable options,

reinforcing the shift towards cleaner, more sustainable energy systems.

4.4 Discussion

This study explores the potential impact of climate-energy policies on various aspects
of the electricity sector in Tiirkiye, including electricity demand, renewable electricity
generation, capacity expansions, electricity prices, and CO2 emissions from electricity
generation. It also considers the influence of future climate change on these factors.
The research begins by identifying the top four GCMs that can accurately simulate
Tiirkiye’s unique climate conditions. This identification is achieved using three
methods: normalized Root Mean Square Error, Kling-Gupta Efficiency, and modified

index of agreement.

Among all the GCMs evaluated, the most promising ones were ACCESS-CM2, INM-
CM5-0, INM-CM4-8, and ACCESS-ESM-1-5. These models are further used to
project the future climate of the nation, Tiirkiye, under the SSP5-8.5 scenario, which
is rather pessimistic and often referred to as Business-as-Usual. By applying such
models, the study offers an integrated approach that can point out how climate changes
could affect the projected future of the electricity sector in Tiirkiye by formulating
applicable climate-energy policies that may offset adverse impacts and foster

sustainable energy practices.

In the future climatic conditions of Tiirkiye, it is evident that rising temperatures due
to climate change will strongly affect electricity demand for space cooling, especially
in the Mediterranean and southeastern parts of the country. With the rise in
temperatures, the need for air conditioning also increases, thus increasing the
consumption of electricity. This causes some pressure on the energy infrastructure and

requires one to take proactive steps to mitigate such effects.

The government can use various strategies to address the increasing demand for space
cooling. First, there is a need to promote energy-efficient building practices that ensure
new constructions are by default designed in ways that minimize cooling needs.
Another approach is through incentives for the adoption of sustainable cooling

technologies, which may encourage households and businesses to invest in efficient
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systems. Furthermore, awareness of efficient cooling behavior-for instance, optimal
settings of the thermostat and maintenance of cooling equipment-will have the

potential to pay rich dividends for decreasing consumption.

Besides that, the integration of passive thermal management systems (PTMS) such as
thermochromic smart windows (TSW) and daytime passive radiative coolers (DPRC)
will greatly reduce electricity consumption due to air conditioning. These advanced
technologies also help regulate heat absorption and its dissipation within comfortable
indoor temperature ranges, exempting buildings from active cooling requirements.
According to Lin et al. (2021), the installations of these systems can save up to 17%
of the electricity that is constantly utilized for air-conditioning. Therefore, it will be
easy for Tiirkiye to respond to heightened demand for cooling with the rise in

sustainable energy development.

The present study has examined one base case scenario and nine policy scenarios in
evaluating the capacities of different energy policies for capacity expansion, electricity
price, and CO. emissions from generation. It is observed in all these policy scenarios
that capacity expansion in solar and wind power plants has increased considerably. This
expansion in RES leads to a pivotal moment in 2032, where CO, emissions from
electricity generation peak and then begin to decline in all scenarios. However, the
degree of impact on CO, emissions varies with each specific energy-climate policy

implemented.

To achieve the greatest reduction in cumulative CO2 emissions, the study recommends
the deployment of nuclear power plants in conjunction with both carbon taxing and
subsidies for renewable energy sources by the government. In this optimal scenario,
the government would provide a subsidy adjusted for inflation, alongside the carbon
tax, to incentivize the adoption of clean energy technologies. This combined approach
not only accelerates the transition to a low-carbon energy system but also ensures the
financial viability of renewable energy projects. By strategically implementing these
measures, Tirkiye can effectively manage the growth in energy demand while
significantly reducing its carbon footprint, paving the way for a sustainable and

environmentally responsible energy future.

While carbon taxing alone has the potential to reduce cumulative CO2 emissions by

1.52% compared to the base scenario, RES subsidies may achieve a more substantial
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reduction of 4.14%. If implemented together, the reduction in CO2 could be more than
6% due to a synergistic effect greater than that of either policy in isolation. Such a
combined approach would exploit the interaction between economic incentives and

regulatory measures in providing major emission reductions.

Moreover, in synergy with the nuclear power plants deployment, such policies could
further raise the cumulative CO2 emission reduction to over 11% during the projection
period. This is a far-reaching approach that points to the importance of a diversified
approach to energy policy-where various measures reinforce each other to maximize
environmental benefits. In contrast, the effect of reducing corporation taxes for RES
on CO; emissions is marginal. Thus, if the main goal set by the government is to
minimize CO2 emissions in the short run, carbon taxing, RES subsidies, and
deployment of nuclear power would be far more effective than to introduce corporation

tax reductions for RES.

The nuclear power installed in the absence of any climate-energy policy would achieve
a far-from-negligible reduction of 5.3% in cumulative CO; emissions, underlining the
crucial role that nuclear energy could play in the mitigation of emissions. However,
nuclear power plants are not very attractive for widespread adoption due to significant
initial investment costs and public skepticism about the operation of plants. This may,
therefore, create the need for the government's intervention in leading investments in

and operating nuclear power plants.

In the absence of adequate enthusiasm by the IPPs regarding investment in nuclear
energy, the gap between theoretical benefits of nuclear power and the practical
challenges has to be filled by government intervention. A proactive role played by the
government in financing and overseeing the development of nuclear infrastructure
may help shape a cleaner, more sustainable energy future. Additionally, concerted
efforts to address public concerns and enhance transparency regarding nuclear energy's
safety and efficacy are essential for garnering broader societal acceptance and support

for nuclear power initiatives.

Another important result of this study refers to the forecast of electricity prices,
considering the influence of energy-climate policies. With the continuous increase in
capacity additions, especially in RES, the electricity price is expected to drop

significantly until 2029 and then remain relatively stable. During this stable phase, the
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prices are expected to range between 25-31 $/MWh for all scenarios. The introduction
of RES subsidies will have substantial price-reduction effects, especially because the
current cuts in corporation taxes for RES reduce the prices slightly. The impact is high
since RES power plants, while operating under the auspices of subsidies, are in a

position to present bids that can pull down the prices on average.

The combination of deploying nuclear power plants with the inflation-adjusted RES
subsidy scheme is the best policy for reaching both minimum CO; emissions and
minimum electricity prices. This option creates a synergy between the strong points of
nuclear energy in the emission reduction process and the cost-reduction impact of RES
subsidies. In this way, by using these two options, it would be possible for the country
to achieve two goals simultaneously: a reduction in the GHG emission rate and

keeping electricity prices at low levels for consumers.

This will also form an important link between the stabilization of electricity prices and
the marginal generation cost of RES in electricity price stabilization. Generally, most
RES have low marginal costs of electricity production and therefore are influential in
market dynamics. With their very minimal ongoing operational costs, once the initial
infrastructural investments are made, the price of electricity is therefore depressed.
This is, in particular, the case in electricity markets, where power plants are dispatched
according to their marginal costs, and often RES, due to their low operational
expenses, have priority in the merit order. Because of this "merit order effect,” more
expensive generation methods are displaced, which reduces the overall market price
for electricity. This interplay of low marginal costs of RES and their prominence in

the energy mix is an important contributor to price stabilization.

Furthermore, the RES penetration alters the very nature of the cost structure of
electricity production. With increasing shares of RES, the average marginal cost of
electricity production falls, and the market price is correspondingly affected. The
marginal cost falls especially strongly when the generation of low-cost electricity is
high, such as on sunny or windy days. This means that greater availability of
inexpensive electricity not only satisfies demand at a lower cost but also promotes

more stable electricity prices over time.

Any results obtained from any study can only be made valid by comparing them with

other studies or governmental projections. A comparison between the results of this
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study and the National Energy Plans issued by the Ministry of Energy and Natural
Resources (MENR) in 2022 sheds light on very important data. While this study
estimates total installed capacities in the range of 147.6-162.8 GW in 2030 and 190.2-
204.3 GW in 2035, according to MENR, total capacities will amount to 149.1 GW and
189.7 GW for the same periods, respectively. The detailed capacity comparison
between the results of this study and the National Energy Plans regarding 2035 is given
in Table 4.9. It is obvious that the results from ABM and projections by MENR are
very close, which shows the strength of the developed GCM-ABM framework in
estimating capacity additions, taking into consideration future electricity demand and

projections from wind and solar power plants.

This agreement underlines the robustness of the GCM-ABM framework for capturing
plausible future scenarios accurately and therefore enhances confidence in the
projections made by this study. Furthermore, it demonstrates the capabilities of the
model in providing valuable insights into the potential impacts of various energy-
climate policies on key aspects such as electricity prices, capacity expansions, and CO>
emissions from electricity generation. This therefore makes the model very important
for policymakers and other stakeholders as they consider the efficiency of various
policy interventions that will finally shape the course of sustainability and resilience
in the energy landscape of the Turkish economy. The robustness and accuracy revealed
by the model form the ground on which further alternative policy scenarios can be
explored, and what these may potentially mean for Tiirkiye's energy transition

trajectory.

Table 4.9: Comparison of capacity projections for 2035 (GW).

Scenario  Solar Wind Hydro  Other Natural Coal Nuclear Total
Base 50.67 31.04 37.35 10.34 36.14 27.41 0 192.96
1 52.85 31.85 31.64 10.84 37.63 25.43 0 190.24

2 53.98 31.03 37.35 10.34 36.09 26.46 0 195.24

3 56..38  32.12 31.64 10.85 36.93 25.13 0 193.06

4 62.07 33.45 31.72 10.5 40.21 26.34 0 204.28

5 62.17 33.45 31.72 10.5 41.87 26.34 0 204.28

6 50.11 31.89 31.72 11.09 41.87 26.16 4.8 197.63

7 64.01 30.78 31.64 10.47 33.59 25.56 4.8 200.84

8 64.11 30.75 31.64 10.5 33.47 25.42 4.8 200.71

9 56.21 334 31.72 10.93 37.44 25.29 0 194.96
MENR 52.9 29.6 35.1 7.5 35.5 24.3 4.8 189.7

Subsequent studies may expand on this work by comparing other climate scenarios to
the high-emission one employed in this work. Even though this work relies

predominantly on projections from selected GCMs following a high-emission
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pathway, examination of several Representative Concentration Pathways or Shared
Socioeconomic Pathways would provide a more complete sense of how alternative
climate policies and emission paths might influence electricity production and carbon
emissions. Sensitivity analyses with different climate projections can contribute to the
robustness of the findings and include data on the range of likely future situations with

alternative climate mitigation approaches.

Subsequent research should also involve a broader sensitivity analysis of the key
parameters in the ABM. While this analysis provides a baseline projection of
electricity generation, demand, and CO, emissions for different policy scenarios,
further exploration of parameter uncertainties—such as varying social acceptance rates
of renewable technologies, fuel price volatility, and technology learning curves—
would improve model accuracy. Monte Carlo simulation or global sensitivity analysis
techniques can be employed to put numbers to the impact of parameter change on the
model outputs and hence increase policy recommendation confidence.

Lastly, widening the scope of research to a larger geographical extent or cross-country
comparison would enhance its applicability. Although this research is done in Tiirkiye,
the same can be applied for other regions of the world with varied energy
infrastructure, climatic situations, and policy regimes. Lessons learned from the
comparative performance of policy instruments in various nations with varying
economic and technological realities would be highly effective in guiding global
energy transition policy. Moreover, integration of global energy trade patterns and
interconnections of electricity across borders would also highlight the role of regional

cooperation in impacting carbon emissions as well as energy security.
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5. CONCLUSION

The present study develops a comprehensive impact analysis related to climate-energy
policies on the Turkish electricity market for a set of key variables: electricity demand,
renewable electricity generation, capacity expansions, electricity prices, and CO2
emissions. The research is based on sound methodological framework, including the
selection of four GCMs that better simulate the Turkish climate and, subsequently,
using them in order to produce future projections for the SSP5-8.5 scenario. This is a
sensible approach, where the projections can be done based on dependable climate

data, giving much credibility to the findings.

This identification is done using three skills, skills comprising normalized Root Mean
Square Error, Kling-Gupta Efficiency, and a modified index of agreement. Among the
evaluated GCMs, the most promising ones are ACCESS-CM2, INM-CM5-0, INM-
CM4-8, and ACCESS-ESM-1-5. Further, these models are used to project future
climate over Tirkiye under the SSP5-8.5 scenario, which is a pessimistic one and
generally known as a Business-as-Usual scenario. Utilizing these models, the study
provides a comprehensive analysis of how projected climate changes could affect the
electricity sector in Tiirkiye. This information helps in formulating effective climate-

energy policies to mitigate adverse impacts and promote sustainable energy practices.

Indeed, the analysis here shows that this rise in temperature due to climate change will
raise electricity demand for cooling hugely in the country's Mediterranean and
southeastern parts. As a matter of fact, all these call for proactive strategies by the
government on how to manage increased demand by promoting energy-efficient
building practices, providing incentives toward sustainable cooling technologies, and
increasing public awareness. Besides, PTMSs such as TSW and DPRCs are highly

promising systems to reduce cooling energy consumption.

It estimates some key energy indicators regarding electricity demand, cooling-degree-
days, and electricity generation from wind and solar power systems after the climate

data processing, which are essential in evaluating the future energy landscape in
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Tiirkiye. Furthermore, it identifies utility function weights for the investment decisions
of technological alternatives through AHP and MAUT methods. These methodologies
provide a systematic approach to investment priority setting across different energy
technologies, based on multiple criteria and the various preferences of the

stakeholders.

A further step involves the development of an ABM that will simulate various policy
scenarios. This model allows studying interactions at detailed levels among different
agents interacting in the energy system, like Independent Power Producers and
government agencies. After the performance of a number of simulation scenarios, the
ABM draws useful inferences from the potential consequences of various policy

decisions on energy demand, production, and CO2 emissions.

The study evaluates a number of policy scenarios, with a strong role for renewable
energy sources in the future electricity mix. The increase in solar and wind capacities
IS a common outcome across the scenarios and creates a structural break in CO;
emissions from electricity generation starting in 2032. This study shows that the
combination of nuclear power deployment with carbon taxation and RES subsidies
gives the highest possible reduction in cumulative CO2 emissions, showcasing the
strength of their interaction within this combined policy approach.

It also identifies the impact of these policies concerning electricity prices, which will
further decline until 2029 and thereafter stabilize. It also shows that the most relevant
driver of a reduction in electricity price is provided by the introduction of subsidies to
RES due to the low marginal cost of the RES power generation. Indeed, coupling
nuclear power plants with RES subsidies is found as the pathway able to optimally
reduce CO. emissions and electricity prices while providing economic and

environmental goals.

The alignment of the study's projections with the National Energy Plans issued by the
MENR further validates the reliability of the established GCM-ABM framework. This
close correlation underscores the robustness of the model in capturing potential future
scenarios and its utility as a tool for policymakers to evaluate the effectiveness of

different energy-climate policies.

The findings of this study can be summarized as follows:
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Climate Models: ACCESS-CM2, INM-CM5-0, INM-CM4-8, and ACCESS-
ESM-1-5 are detected as the most successful models for reflecting unique
climate conditions of Tiirkiye.

Solar Power Production: Projections indicate a decrease in electricity
production from solar power plants in Tiirkiye due to reduced efficiency caused
by rising temperatures.

Cooling Degree Days: There is a significant increase projected in CDDs across
nearly all cities, especially in the Mediterranean region and southeastern
Tirkiye, due to the impacts of global warming.

Electricity Demand: Future electricity demand is estimated to increase to 456.2
TWh in 2030, 521.4 TWh in 2035, and 571 TWh in 2040, considering
variations in CDDs, electricity prices, income, and population.

Renewable Energy Capacity: Despite various policy implications, Renewable
Energy Source capacity shares are not expected to exceed 71% in any scenario,
with fossil fuel-based power plants remaining as baseload and load-following
sources.

Fossil fuel based-Power Plants: Coal power plants continue to serve as primary
base-load sources, while natural gas power plants are expected to play a more
significant role in load-following and peak demand due to the intermittent
nature of electricity generation from wind and solar power plants.

CO. Emissions: Following RES capacity expansions, electricity generation-
based CO» emissions are projected to peak in 2032 and then decline across all
scenarios.

Policy Impact on Emissions: Proper policy implementation has the potential to
reduce cumulative CO emissions by over 11% from 2022 to 2040 compared
to the baseline scenario.

Electricity Prices: Electricity prices are forecasted to decrease significantly
until 2029 due to capacity expansions, stabilizing thereafter. Optimal rates are
achieved with the concurrent implementation of carbon tax and RES subsidy
policies.

Optimal Policy Combination: The most effective combination for minimizing
both CO2 emissions and electricity prices involves deploying nuclear power

plants and implementing RES subsidies adjusted for inflation.
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e Policy Impact Estimation: The model demonstrates promise in estimating the
impact of various energy-climate policies beyond those studied, on electricity

prices, capacity additions, and CO2 emissions.

In conclusion, this study highlights some key lessons to be learned from the interaction
of climate change and energy policy, with feasible recommendations on how to
manage the consequences of climate change for the electricity sector in Tiirkiye. With
an integrated and diversified energy policy promoting renewable energy, energy
efficiency, and nuclear power, Tiirkiye would be well equipped to respond to the
challenges brought about by climate change and head toward a sustainable and resilient
energy future. This study provides a foundation for future analyses of alternate policy
scenarios, their implications, and is intended to inform the ongoing sustainable energy

development debate.

Although the proposed GCM-ABM framework demonstrates high performance, there

are several limitations to this study that present opportunities for future research:

e Expansion of GCMs: Currently, the study is based on 13 GCMs. A larger
number of GCMs included in the analysis may give more robust and possibly
more precise climate projections, allowing a fuller understanding of potential
climate impacts on the energy system of Tirkiye.

e Inclusion of Electric Vehicles (eVs): Electricity demand from the growing
share of eVs is excluded from the analysis because this percentage is close to
negligible in Tirkiye. While eV percentages go up, a more feasible prediction
of these could be derived for eV demand addition into future updates of the
model. Its inclusion shall become imperative when this kind of transport
becomes generally in use in order to arrive at valid previsions and improve
management strategies concerning such demand on grids.

e Integration of Additional Renewable Technologies: Future research could
concentrate on the integration of other renewable technologies, such as
advanced bioenergy and new storage solutions, to complete the vision of how
renewables could be integrated into and impact the electricity system.
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APPENDIX A : Tables

Table A.1 : Selected GCMs and their resolutions.

No Model Institute, Country Horizontal Resolution
M1 ACCESS-CM2 Commonwealth Scientific and Industrial Research 1.9°x 1.3°
M2 ACCESS-ESM-1-5 Organisatiom Australia 1.9°x 1.2°

] } Beijing Climate Center (BCC) and China Meteorological o o
M3 BCC-CSM2-MR Administration (CMA), China LIPx L
M4 CMCC-ESM2 Euro-Mediterranean Centre on Climate Change coupled 1.25° x 0.938°
M5 CMCC-CM2-SR5 climate model, Italy =) XD
M6 GFDL-ESM4 Geophysical Fluid Dynamics Laboratory, US 1.3°x1°
M7  HadGEM3-GC31-LL Met Office Hadley Centre, UK 1.25°x 1.875°
M8 IITM-ESM Centre for Cllmate_Change Research, In(_jlan Institute of 1.875° x 1.9°

Tropical Meteorology, India

M9 INM-CM4-8 . - . . o o
M10 INM-CM5.0 Institute of Numerical Mathematics, Russia 2°x 1.5
M11 MIROC6 Japanese Modelling Community, Japan 1.4°x1.4°
M12 MPI-ESM1-2-HR Max Planck Institute for Meteorology, Germany 0.9°x0.9°
M13 UKESM1-0-LL Met Office Hadley Centre, UK 1.9°x1.3°
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